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Should a firm’s price respond dynamically to shifts in demand? With dynamic pricing the firm can
exploit high demand by charging a high price, and can cope with low demand by charging a low
price to more fully utilize its capacity. However, many firms announce their price in advance and
do not make adjustments in response to market conditions, i.e., they use static pricing. Therefore,
with static pricing the firm may find that its price is either lower or higher than optimal given
the observed market condition. Nevertheless, we find that when consumers are strategic and can
anticipate such pricing behavior, a firm may actually be better off with static pricing. Dynamic
pricing can be ineffective because it imposes pricing risk on consumers - given that it is costly to
visit the firm, an uncertain price may cause consumers to avoid visiting the firm altogether. We
show that the advantage of static pricing relative to dynamic pricing can be substantially larger
than the advantage of dynamic pricing over static pricing. However, the superiority of dynamic
pricing can be restored if the firm sets a modest base price and then commits only to reduce its price,
i.e., it never raises its price in response to strong demand. Hence, a successful implementation of
dynamic pricing tempers the magnitude of price adjustments.

1 Introduction

Uncertainty in demand suggests that firms can benefit from dynamic pricing. With dynamic

pricing a firm delays its pricing decisions until after market conditions are revealed so that the firm

can adjust prices accordingly - when demand is ample, set a high price, and when demand is weak,

set a low price. Yet, despite the apparent advantages, many firms do not adjust prices to respond

to market conditions. For example, movie theaters charge a fixed price, regardless of whether the

movie turned out to be a hit or a flop. Restaurants do not adjust their menu prices depending on

whether it is a busy or a slow night. Sports teams keep their seat prices fixed, regardless of how

well the team is performing, or if the weather on a particular game day turns out to be good or

bad.1

1A few exceptions exist. The San Francisco Giants of the MLB and the Dallas Stars of the NHL are experimenting
with dynamic pricing techniques using a software developed by the Austin-based start-up, QCue (Branch 2009). It
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Several explanations have been provided for why firms may not adjust prices in response to

changing demand conditions (a phenomenon which is sometimes referred to as price stickiness or

price rigidity). Firms may incurmenu costs to change prices (Mankiw 1985): if it is costly to change

prices, firms naturally hesitate to change prices frequently. Menu costs were originally thought of as

the physical costs for changing prices, such as the cost to reprint restaurant menus. They can also

be interpreted to be managerial costs (information gathering and decisions-making) or customer

costs (communication and negotiation of new prices) (Zbaracki et al. 2004). Alternatively, sticky

prices may be due to consumer psychology: consumers dislike price changes, especially if they

perceive the changes to be “unfair”(e.g., Hall and Hitch 1939; Kahneman et al. 1986; Blinder et

al. 1998).

While menu costs and consumer psychology may play a role in pricing decisions, we present an

alternative explanation. A key component of our theory is that consumers incur “visit costs” -

before consumers attempt to make purchases, they must incur a cost to consider the purchase. For

example, a consumer must drive to a baseball park or must take the time to call a restaurant, etc.

Consequently, dynamic and static pricing impose different risks on consumers. With a dynamic

pricing strategy a consumer risks incurring the visit cost only to discover that the price charged is

more than she wants to pay, i.e., dynamic pricing imposes a price risk on consumers. With static

pricing a consumer may discover after visiting the firm that the firm has no capacity left to sell,

i.e., static pricing imposes rationing risk on consumers. We find that it can be better to impose on

consumers rationing risk (via static pricing) than pricing risk (via dynamic pricing). Furthermore,

the advantage of static pricing can be substantial whereas the advantage of dynamic pricing is less

significant.

The limitation with dynamic pricing is not that the firm may choose to lower its price when it

observes weak demand - consumers like price cuts and are therefore more willing to visit a firm that

is known for cutting its price. The drawback with dynamic pricing is that the firm may choose a

high price when demand is abundant - why incur a visit cost when you may also have to pay a high

price? This suggests a hybrid approach - the firm starts with a modest base price and commits

only to reduce the price from that level. This “constrained”dynamic pricing strategy is better for

the firm because it blends the demand-supply matching benefits of pure dynamic pricing with the

incentives of static pricing. Hence, dynamic pricing can be a good strategy for the firm as long as

the firm is not too aggressive in its price adjustments. Otherwise, static pricing may be the better

has been reported that for Giants’tickets, “the price change will most likely be 25 cents to $1”(Muret 2008), where
tickets range from $8 to $41. These price changes do not appear very significant and it is not yet clear how using
the software affects these teams’revenues.
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Table 1. Summary of Consumer Types.

Segment Number Value Visit cost
High type X ∼ F (·) vh c
Low type ∞ vl 0

alternative, despite its rigidity to respond to changing demand conditions.

2 Model Description

A single firm with k units of capacity sells to two types of consumers, all of whom require one

unit of capacity to be served. There is a potential number of X high-value consumers, where X

is a non-negative random variable that is drawn from a cumulative distribution function F (·), pdf

f (·), complimentary cdf F (·) = 1 − F (·) and mean µ = E[X]. The high-value consumers are

non-atomistic. They have value vh for the firm’s service. They must incur a positive cost, c < vh,

to “visit” the firm (e.g., the time and effort to walk to a movie theater) to purchase the service.

The visit cost need not be an explicit cost. It can also be interpreted as a mental cost to consider

an alternative or an opportunity cost — the cost of forgoing an outside option when choosing to

consider visiting the firm. All of the realized high-type consumers must decide whether or not to

visit the firm and if they do not, then they receive zero net value. We allow them to adopt mixed

strategies: let γ ∈ [0, 1] be the probability that a high-type consumer visits the firm.

Low-value consumers are the second type of consumers. There is an ample number of them,

and each of them has vl value for the firm’s service. These consumers do not incur a cost to visit

the firm, which implies that the firm can always sell its entire capacity by charging vl. Therefore,

an alternative interpretation of vl is that it is the maximum price that guarantees the firm can sell

its entire capacity regardless of market conditions.2 Table 1 summarizes the consumer types.

The firm seeks to maximize revenue and consumers seek to maximize their net value, the value

of the service minus visit costs and the price paid to the firm. The sequence of events is as follows:

(1) the firm chooses a pricing strategy, which is a set of prices A, A ⊆ R+; (2) the number of

high-type consumers, X, is realized; (3) high-type consumers choose a visit strategy, γ, knowing

the firm’s pricing strategy, A, but not the realization of X; (4) the firm observes γ and X and

chooses a price, p∗, from among those in A; (5) all high-type consumers who visited the firm plus

2Our results continue to hold qualitatively even if low-type consumers incur a positive visit cost, as long as this
cost is suffi ciently low. In this case, the firm cannot guarantee selling its entire capacity by charging vl. However,
if the visit cost of low type consumers is low enough, there exists a positive price that makes all low type consumers
visit and therefore guarantees that the entire capacity can be sold.
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the low-type consumers observe p∗ and decide to purchase if p∗ is no greater than their value for

the service; and (6) if there are more than k high-type consumers who want to purchase, the k

units are randomly rationed among them, i.e., they have priority over the low-types (our allocation

rule). In step (4) the firm chooses the revenue maximizing price from the set A given γ and X :

p∗ = arg maxp∈A {R (p, x, γ)}, where x is the realization of X and

R (p, x, γ) =


pk p ≤ vl

pmin {γx, k} , if vl < p ≤ vh
0 p > vh

.

Note, the firm sells units only at a single price (the firm does not have the ability to price discrimi-

nate). If fewer than k units of capacity are sold, the remainder earns zero revenue. Our rationing

rule (that the high types have priority over the low types) has also been adopted by Su and Zhang

(2008) and Tereyağoğlu and Veeraraghavan (2009). This allocation rule simplifies the analysis, but

is not critical for our results. In fact, we later argue that any other allocation may only strengthen

our main result.

We do not a priori restrict the number of prices in A. They can be thought of as commonly

established price points in the market. We say the firm uses a static pricing strategy when the

firm includes only a singe price in its set, A = {ps} . Given that there is only one choice in A,

consumers know exactly what the price will be before they choose whether or not to visit. We

say the firm uses a dynamic pricing strategy when A includes two or more prices that could be

observed for some realizations of γ and X. Even though consumers are charged only one price,

the price is dynamic in the sense that it is chosen from a set of possible prices based on updated

information (the realization of demand). Section 4 studies the static pricing strategy and section

5 studies a particular dynamic pricing strategy, A = R+. Section 6 compares these two strategies

and section 7 considers a broader set of dynamic pricing strategies.

3 Related Literature

There is an extensive literature on dynamic pricing with exogenous demand, i.e., situations in which

the pricing strategy does not influence how many customers visit the firm, when they consider

purchasing or their valuations for the firm’s service. See Elmaghraby and Keskinicak (2003) for

a review. With exogenous demand the question is not whether dynamic pricing is better than

static pricing (it clearly is) but rather how to implement dynamic pricing (when to change prices

and by how much), how much better is dynamic pricing and under what conditions is dynamic

pricing substantially better. However, dynamic pricing does not clearly dominate static pricing
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when consumers are strategic.

Several papers discuss dynamic versus static pricing in the context of multi-period models with

strategic consumers. These consumers pose a challenge to the firm because they can time when they

purchase - they will not buy at a high price if they can anticipate that the price will be substantially

lower later on. With dynamic pricing the firm cannot commit to not lower its price, whereas with

static pricing the firm commits to a price path that does not include substantial price reductions.

It is precisely this commitment that confers an advantage to static pricing over dynamic pricing,

as shown formally by Besanko and Winston (1990). However, their model has no uncertainty in

either the number of consumers or their valuations, nor a capacity constraint. An important virtue

of dynamic pricing is that it enables the firm to better match its supply to its uncertain demand.

Hence, there is a tradeoff between committing to limited price reductions (thereby encouraging

consumers to buy early on at a high price) and responding to updated demand information so

as to maximize revenue given constrained capacity. This tension is explored by Dasu and Tong

(2006), Aviv and Pazgal (2008) and Cachon and Swinney (2009). In models with fixed capacity,

Dasu and Tong (2006) and Aviv and Pazgal (2008) find that neither scheme dominates and the

performance gap between them is generally small. Cachon and Swinney (2009) allow the firm to

adjust its capacity and finds that dynamic pricing is generally better. The key differences between

our model and these papers is that our consumers incur visit costs and our firm only chooses a

single price. Hence, consumers do not consider when to buy (there is only a single opportunity

to buy), but rather they consider whether to incur a cost to visit the firm. Consequently, in our

model static pricing is not used to prevent strategic waiting but rather to encourage consumers

to participate in the market. However, like those other papers, our firm has limited capacity and

potential demand is uncertain, so dynamic pricing is better than static pricing at matching supply

to demand.

Like Cachon and Swinney (2009), Liu and van Ryzin (2008) and Su and Zhang (2008) allow the

firm to control capacity to prevent strategic waiting for discounts - with less inventory consumers

face greater rationing risk if they wait. However, in these papers the firm implements a static

pricing policy, and they do not consider dynamic pricing.

As in our model, in Dana and Petruzzi (2001), Çil and Lariviere (2007), Alexandrov and Lariv-

iere (2008) and Su and Zhang (2009) consumers incur a visit cost before they can transact with the

firm. Dana and Petruzzi (2001) have fixed prices and focus instead on how visit costs influence the

firm’s capacity choice. Çil and Lariviere (2007) studies the allocation of capacity across two market

segments and Alexandrov and Lariviere (2008) study why firms may offer reservations. Prices are
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exogenously fixed in both of those papers. In Su and Zhang (2009) a firm chooses a price and a

capacity before observing potential demand. Consumers observe the firm’s price before choosing

whether to incur a visit cost, but they do not observe the firm’s capacity nor the number of con-

sumers in the market. In contrast, in our model the firm chooses a set of potential prices before

observing potential demand and then chooses its actual price (constrained by initial decision) after

observing potential demand. Furthermore, in our model the firm’s capacity is fixed and known to

consumers. Hence, our model is suitable for comparing static versus dynamic pricing whereas Su

and Zhang (2009) focus on capacity commitments and availability guarantees (and cannot compare

static versus dynamic pricing).

Van Mieghem and Dada (1999) study price postponement, which is related to our dynamic pric-

ing strategy - the firm chooses a price after learning some updated demand information. However,

they do not consider strategic consumer behavior (their demand is exogenous), so price postpone-

ment is always beneficial in their setting, unlike in our model.

Other papers that compare between different pricing schemes when consumers are strategic

include single versus priority pricing (Harris and Raviv 1981), subscription versus per-use pricing

(Barro and Romer 1987; Cachon and Feldman 2010), and markdown regimes with and without

reservations (Elmaghraby et al. 2006). In all of these papers the firm selects its pricing strategy

before learning some updated demand information, whereas in our study we allow the firm to choose

a price after potential demand is observed.

4 Static Pricing Strategy

With a static pricing strategy, the firm chooses a single price, p, to include in A before observing

demand, so consumers know that the price will indeed be p before deciding whether or not to visit

the firm. All high-value consumers who visit the firm receive a net value equal to vh− p− c if they

obtain a unit, and if they do not obtain a unit, their net value is −c. A customer visits the firm if

net utility is not negative, i.e., if

φ (vh − p) ≥ c, (1)

where φ is the customer’s expectation for the probability of getting a unit conditional on visiting

the firm. φ is determined by the underlining potential demand distribution, X, the high-value

customers’strategy, γ, and the rationing rule used to allocate scarce capacity. All else being equal,

as γ increases, more high-type customers will visit the firm, thereby reducing the chance that any
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one of them will get a unit. In particular,

φ =
SγX (k)

γµ
=
S (k/γ)

µ
, (2)

where SD (q) = ED[min {D, q}] is the sales function and S (·) is shorthand for SX (·). Note that

S (k/γ) /µ is the firm’s fill rate, or the fraction of high-customer demand who visits the firm that

the firm is able to satisfy. This probability accounts for the observation that, conditional on being

in the market, a consumer is more likely to be in a market with a large number of consumers (and

therefore have a low chance to get a unit) than in a market with a few number of consumers (and

therefore have a high chance to get a unit). See Deneckere and Peck (1995) and Dana (2001) for a

more detailed discussion of why the fill rate correctly expresses the probability of receiving a unit

given our allocation rule.

With finite capacity, φ < 1 is surely possible, i.e., under static pricing consumers face a rationing

risk when they visit the firm.

Definition 1 A high-type consumer faces a rationing risk if there is a chance that the consumer

will not be able to obtain the unit at a price which is strictly lower than the consumer’s value for

the unit.

A symmetric equilibrium strategy for high-type consumers is a γ̂ ∈ [0, 1] such that γ̂ is optimal

for each consumer given that all other consumers choose γ̂ as their strategy. If p is low enough,

there is an equilibrium in which all high-type consumers visit the firm, i.e., γ̂ = 1. From (1) and

(2), that occurs if
S (k)

µ
(vh − p) ≥ c

or

p ≤ vh −
µc

S (k)
= p.

If p > p, the unique symmetric equilibrium has γ̂ < 1, where γ̂ is the unique solution to

S (k/γ̂) =
µc

vh − p
, (3)

or, alternatively,

p = vh −
µc

S (k/γ̂)
.

In this case, for every price p there exists a unique γ̂(p) that satisfies 3 and is decreasing in p.

Using (3) the firm’s revenue function can be written as a function of γ̂ alone. Define Rhs (γ̂) as the
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firm’s revenue function from only high-type customers:

Rhs (γ̂) = Sγ̂X (k)

(
vh −

µc

S (k/γ̂)

)
(4)

= γ̂S (k/γ̂) vh − γ̂µc

Observe that the first term in 4 is the expected value high-type consumers receive, accounting for

the possibility of rationing and the second term is the sure visit costs they incur. Hence, Rhs (γ̂)

is the high-type consumers’total welfare. Consequently, restricting attention to only high-type

consumers, the firm chooses a price that both maximizes its revenue as well as consumer welfare.

That is, by charging a single price the firm is able to extract all consumer welfare.

The next lemma finds the equilibrium fraction of high-type consumers who visit the firm under

static pricing, γs. If c is suffi ciently low, all customers visit the firm. Otherwise, a fraction of the

high-type customers visit. (This and all subsequent proofs are provided in the appendix.)

Lemma 1 With static pricing, the firm’s revenue function from high-type consumers, Rhs (γ̂) , is

concave. Let γs = arg maxRhs (γ̂) : (i) if vh
∫ k
0 xf (x) dx ≥ µc, then γs = 1 and phs = ps; otherwise

(ii) γs is the unique solution to

vh

∫ k/γs

0
xf (x) dx = µc (5)

and

phs = vh −
µc

S (k/γs)
.

Instead of choosing phs and selling only to high type consumers, the firm also has the option to

choose ps ≤ vl, in which case the firms sells all its capacity and its revenue is psk. Clearly, ps = vl

is optimal among the prices that guarantee full utilization.

The firm’s optimal price, ps, is either phs or vl. It can be shown that Rhs (γs) = kvhF (k/γs).

Thus, ps = phs when vhF (k/γs) ≥ vl, otherwise ps = vl. In the former case, revenue is independent

of vl, whereas in the latter case it is linearly increasing in vl.

5 Dynamic Pricing Strategy

With a dynamic pricing strategy the firm chooses its price, from a set of possible options, after

observing γ (the fraction of consumers who visit the firm) and x (the realization of high-type

demand). We consider in this section a particular dynamic pricing strategy in which the firm

imposes no a priori constraint on the price it can choose, A = R+. Given this strategy, the firm’s

optimal price is either vh or vl : demand is inelastic in p ≤ vl and vl < p ≤ vh, so it is optimal to
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set a price equal to the maximum of one of those two ranges. Note, consumer and firm behavior

would not change if the pricing strategy were A = {vl, vh}. Section 7 considers other dynamic

pricing strategies.

Given A = R+, the firm can price at p = vl and earn revenue vlk. Alternatively, it can price

at p = vh and earn revenue vhγx. Consequently, the firm chooses p = vl when

x ≤ vl
vh

k

γ
, (6)

which has probability F (vlk/(vhγ)) and chooses p = vh, otherwise.

Observe that high value consumers only earn positive utility if the price is vl and they are able

to obtain the unit. In all other cases, consumers get zero surplus. Thus, to find the high-type

consumer’s surplus from visiting the firm, we let ψ be the high-type consumer’s expectation for

the probability that the firm charges vl and he is able to get a unit. A high value consumer is

indifferent towards visiting the firm if

ψ (vh − vl) = c. (7)

As in the discussion of Section 4, in equilibrium, the belief about the probability ψ has to be

consistent with the actual probability. Given our rationing rule, because vl is charged only when

γx ≤ vl
vh
k < k (from 6), high type consumers are guaranteed to get the unit when the price is vl.

(They may not be able to get the unit if the price if vh, but in this case, their surplus is zero.)

Thus, according to Definition 1, under dynamic pricing consumers do not face a rationing risk.

However, they do face a price risk.

Definition 2 A high-type consumer faces a price risk if the consumer does not know which price

will be charged when the consumer chooses whether to visit the firm.

With dynamic pricing, high-type consumers know that if they visit the firm, they will be able

to obtain the unit if the price is low (no rationing risk), but they do not know what price will be

charged. With other allocation rules, the high-type consumer may not be guaranteed to obtain a

unit conditional that the price is low, i.e., the high-type consumer may also face a rationing risk.

Consequently, with other allocation rules high-type consumers may be less inclined to visit the firm

and the firm’s revenue could be lower than what is achieved with our allocation rule.

The actual probability a high-type consumer obtains a unit at p = vl therefore is the proba-

bility that the firm charges that price, conditional that the high type consumer is in the market.

Because the market size, X, is uncertain, conditional on his presence in the market, a high type
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consumer’s demand density is xf (x) /µ (following Deneckere and Peck 1995). Therefore, this

consumer anticipates that the price will be vl with probability

ψ =

∫ vl
vh

k
γ

0 xf (x) dx

µ
. (8)

Note that ψ ≤ F (vlk/(vhγ)): if a high-type customer is in the market, the probability that demand

is low (which implies that the price charged is vl) is lower than the unconditional probability.

If vl < vh − c, then there exists some γ that satisfies (8). If vl ≥ vh − c, then γ = 0 is the

optimal strategy for consumers: if the utility from visiting is less than the lowest possible price,

the consumer never visits. As that case is not interesting, we assume vl < vh − c. Let γd be

the fraction of high-type consumers who visit the firm in equilibrium under dynamic pricing. The

following lemma characterizes γd.

Lemma 2 The fraction of high-type consumers who visit the firm in equilibrium, γd, is unique.

Furthermore, (i) γd = 1, if ∫ vl
vh
k

0
xf (x) dx ≥ µc

vh − vl
;

and (ii) otherwise, γd is the solution to

(vh − vl)
∫ vl

vh

k
γd

0
xf (x) dx = µc. (9)

Observe, that while the value of vl did not factor into the solution of γs, it definitely affects the

fraction of high-type consumers who visit the firm under dynamic pricing.

Lemma 3 The following limits hold: (i) limvl→0 γd (vl) = 0; and (ii) limvl→vh−c γd (vl) = 0. Fur-

thermore, if F (·) is an increasing generalized failure rate (IGFR) distribution, the fraction of

consumers who visit the firm in equilibrium under dynamic pricing, γd (vl), is quasi-concave.

Lemma 3 shows that when vl is either very low or very high, high-type consumers do not visit

the firm under dynamic pricing. If vl → vh− c, consumers know that whether the price charged is

vl or vh, they will obtain no utility from the product, and therefore they decide not to visit. When

vl → 0 high-type consumers can potentially obtain the highest surplus. However, consumers

anticipate that in this case there is little chance that the firm will choose p = vl. Hence, they

decide not to visit the firm.
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The firm’s revenue with dynamic pricing is

R∗d = F

(
vl
vh

k

γd

)
vlk + vhγd

∫ k
γd

vl
vh

k
γd

xf (x) dx+ F

(
k

γd

)
vhk

= vhk − vhγd
∫ k

γd

vl
vh

k
γd

F (x) dx

= vlk + vhγd

(
S

(
k

γd

)
− S

(
vl
vh

k

γd

))
,

where γd is characterized in Lemma 2. The next lemma characterizes the revenue function at the

boundaries of vl.

Lemma 4 The following limits hold: (i) limvl→0Rd = 0; and (ii) limvl→vh−cRd = (vh − c) k.

6 Comparison between Static and Dynamic Pricing

Holding the consumer’s strategy, γ, fixed dynamic pricing is clearly superior - after observing the

realization of demand, γx, the firm can decide whether it makes sense to choose a high price, vh, and

possibly not fully utilize its capacity, or to choose a low price, vl, and sell all of its capacity. Static

pricing does not give the firm the flexibility to optimally respond to realized demand. However, the

consumer’s strategy is not fixed - it depends on the set of potential prices the firm initially chooses,

A. With static pricing consumers face a rationing risk but not a price risk, whereas with dynamic

pricing they face a price risk but not a rationing risk. According to the Theorem 1, the price risk

associated with A = R+ leads to lower potential demand than the rationing risk of static pricing.

Hence, with static pricing the firm enjoys higher potential demand but the inability to optimally

respond to it, whereas with dynamic pricing the firm has flexibility to respond but receives less

potential demand.

Theorem 1 The fraction of consumers who visit the firm under dynamic pricing is lower than

under static pricing.

To understand the difference between the visiting behavior in equilibrium under the two pricing

schemes, observe that, in equilibrium, the fraction of consumers who visit the firm under static

pricing is given by (5) and can be written as

vh

∫ k
γs
0 xf (x) dx

µ
= c, (10)
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Table 2. Parameter values used in the numerical study.

Parameter Values
Demand distribution Gamma
µ 1
σ {0.25µ, 0.5µ, µ, 1.5µ, 2µ}
k {0.1µ, 0.5µ, µ, 2µ, 5µ}
c {0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99}
vh 1

The left-hand side of (10) is the utility of a high-type consumer when the firm chooses a market

clearing price, which is zero if demand is less than capacity and vh otherwise. Hence, (10) can be

interpreted in terms of prices - it is as if the consumer expects that the price will be zero if demand

is less than capacity (generating a utility of vh) and that the price will be vh if capacity is binding

(generating a utility of zero). With dynamic pricing, the fraction of consumers who visit the firm

is given by (9) and can be written as

(vh − vl)
∫ vl
vh

k
γd

0 xf (x) dx

µ
= c. (11)

Now the consumer expects that the price will be vl ≥ 0 if demand is less than (vl/vh)(k/γd),

i.e., there is a smaller chance of a smaller discount than with static pricing, implying that fewer

consumers choose to visit with dynamic pricing.

Although static pricing generates higher demand, it does not always charge the highest price,

so it may not yield the highest revenue. The following theorem states that static pricing indeed

generates higher revenue than dynamic pricing when vl is suffi ciently low because high-type con-

sumers anticipate that the firm is unlikely to charge vl when it is low and therefore they decide not

to visit the firm. With static pricing consumers always anticipate some surplus from visiting, so

some visit and some revenue can be gained. When vl is suffi ciently high, the two schemes generate

the same revenue because they both charge vl and always sell all of their capacity.

Theorem 2 There exists a ṽl, such that R∗s (vl) > R∗d (vl) for all vl < ṽl. Further, R∗s (vh − c) =

R∗d (vh − c) = (vh − c) k.

To obtain additional results comparing R∗s to R
∗
d, we construct 175 instances using all combi-

nations of µ, σ, k, c and vh in Table 2. For all instances, we observe that R∗d increases monotonically

with vl, despite that fact that fewer high-type consumers visit the firm as vl gets large (i.e., the

12



Figure 1. Revenue functions under static (R∗s) and dynamic (R
∗
d) pricing as a function of vl for

X ∼ Gamma (1, 1), vh = 1, k = 0.5, c = 0.1.

higher per unit revenue from an increase in vl dominates any reduction in high-type consumer

demand). Therefore, for the remainder of our analysis, we assume revenue with dynamic pric-

ing is increasing in vl.
3 Given (A1), it can be shown that there exists a unique ṽl such that

R∗s (vl) > R∗d (vl) for all vl < ṽl and R∗s (vl) ≤ R∗d (vl) for all vl ≥ ṽl.

Assumption 1 (A1) Revenue with dynamic pricing is increasing in vl, i.e., R∗′d (vl) > 0 ∀vl.

Figure 1 illustrates the revenue functions under both pricing schemes as a function of vl for

one of the instances in our study. The advantage of static pricing is greatest when vl = 0. The

advantage of dynamic pricing is greatest when vl = v̂l, where v̂l = vhF (k/γs) (i.e., v̂l is the smallest

vl for which the firm charges ps = vl under static pricing). We define ∆s = R∗s (0)−R∗d (0) = R∗s (0)

and ∆d = R∗d (v̂l) − R∗s (v̂l) and compare these measures in our sample. The results, reported in

Table 3, are consistent with the observation from Figure 1: the advantage of R∗s over R
∗
d is indeed

more significant than the advantage of R∗d over R
∗
s. In all cases ∆s > ∆d and at best ∆d is at most

70.4% of ∆s. On average, ∆d is only a little more than a tenth of ∆s.

The value ṽl provides another measure of the relative advantage of static over dynamic pricing:

a large value of ṽl indicates that static pricing is superior to dynamic pricing over a large set of

parameters. We first consider how capacity, k, influences ṽl. With static pricing, as k decreases,

the probability to obtain the unit decreases, so consumers face a higher rationing risk. With

dynamic pricing, as k decreases, the firm is less likely to charge vl, so consumers face a higher

3 It is diffi cult to analytically show that the dynamic pricing function is increasing in vl because (i) the function
γd (vl) is not monotone in vl; and (ii) usual methods (such as the Envelope Theorem) cannot be applied on the
dynamic pricing revenue function because it is not obtained through optimization, but rather is a consequence of
equilibrium behavior.
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Table 3. Summary statistics of the maximum benefit of using dynamic pricing, ∆d, relative to the
maximum benefit of using static pricing, ∆s (in %).

∆d/∆s

average 11.86%
standard deviation 16.02%
minimum 6.8 · 10−3%
maximum 70.40%

price risk. Under both pricing schemes, the decrease of k negatively affects consumers visiting

behavior. For all instances of Table 2, we observe that ṽl increases when the level of capacity

decreases implying that the price risk effect is stronger than the rationing risk, i.e., static pricing is

favored over dynamic pricing as capacity decreases. Now consider how the visit cost, c, influences

ṽl.

Lemma 5 The following hold: (i) When c = 0, γs = γd = 1 and R∗s (vl) ≤ R∗d (vl) ∀vl; and (ii)

limc→vh γs = limc→vh γd = 0 and R∗s (vl) = R∗d (vl) = vlk ∀vl.

Lemma 5 shows that when the cost to visit the firm is either negligible or very high, dynamic

pricing dominates static pricing. When c → 0, all high-type consumers visit the firm regardless

of the pricing strategy. In this case, dynamic pricing naturally performs better. When c →

vh, the visit cost is so high that high-type consumers do not visit the firm. Thus, under both

pricing schemes the firm is better off charging vl and selling all its capacity (i.e., the two schemes

are equivalent). Finally, we observe that as the visit cost, c, increases, ṽl first increases and

then decreases. Therefore, the range of vl for which static pricing dominates is the largest for

intermediate values of c. Figure 2 illustrates this, by plotting ṽl/ (vh − c) as a function of c for

different capacity levels, where X ∼ Gamma (1, 1) and vh = 1. Note that the value of ṽl/ (vh − c)

measures the fraction below which static pricing performs better than dynamic pricing. Each line

represents the value of ṽl/ (vh − c) for a different capacity level. For example, when k = 2 and

c = 0.2, static pricing is strictly better than dynamic pricing in 30% of the vl parameter range.

Finally, consider how the coeffi cient of variation affects the value of ṽl. Assuming that the

number of high-type consumers is Gamma distributed provides a simple way to numerically test

how a change in the coeffi cient of variation affects ṽl. The coeffi cient of variation is defined as

CV = σ/µ, where σ is the standard deviation of X. For all instances of Table 2, we observe that ṽl

increases as CV decreases. This suggests that pricing dynamically becomes more favorable (in the

sense that the range for which dynamic pricing dominates increases) when the high-type consumer
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Figure 2. The threshold ṽl/ (vh − c) as a function of c for X ∼ Gamma (1, 1), vh = 1 and different values
of k.

demand uncertainty rises. To summarize, static pricing is more likely to be better than dynamic

pricing (in the sense that ṽl is large relative to vh − c) for low values of capacity and demand

uncertainty and for intermediate values of visit cost.

7 Generalized dynamic pricing

The previous section demonstrates that static pricing can perform better than dynamic pricing

when vl is low relative to vh. But we considered one particular dynamic pricing strategy, A = R+.

This section considers whether there exists a better dynamic pricing strategy. To this end, we now

allow the firm to choose which prices to include in the set A. Recall that static and dynamic

pricing are special cases of this scheme: under static pricing the firm selects a single price A = {ps}

and under dynamic pricing the firm selects all possible prices, A = R+.

Theorem 3 For every A, there exists a subset B = {pl, ph} where pl ∈ A, ph ∈ A such that

max
p∈A
{R (p, x, γ)} = max

p∈B
{R (p, x, γ)} .

Furthermore, pl = supp∈A {p ≤ vl} and ph = supp∈A {p ≤ vh}.

Theorem 3 demonstrates that within the general set of pricing strategies, it is suffi cient for the

firm to consider only pricing strategies in which the firm commits to at most two prices before

demand is realized. To explain, recall that there are two types of consumers and the firm must

choose the optimal price among the preannounced feasible set, A, after observing the realization of
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demand. Thus, no matter how many prices are in A, after observing demand, either the firm will

choose pl ∈ A, where pl is the highest price in A that low-type consumers will buy at, or the firm will

choose ph ∈ A, where ph is the highest price in A that high-type consumers will buy at. High-type

consumers anticipate this and thus, their equilibrium joining behavior under set A is equivalent to

their equilibrium joining behavior under set B = {pl, ph}. As an example, the dynamic pricing

strategy A = R+ is equivalent to the dynamic pricing strategy Bd = {vl, vh}. Therefore, we can

restrict attention to the subset of the pricing schemes A, in which the firm preannounces at most

two prices.

Denote the allowable prices under static and dynamic pricing by Bs = {ps} and Bd = {vl, vh},

respectively. Moreover, let R{pl,ph} be the revenue function when the set of prices {pl, ph} is

announced, pl ≤ vl and vl < ph ≤ vh. The revenue function is given by:

R{pl,ph} = plk + phγg

(
S

(
k

γg

)
− S

(
pl
ph

k

γg

))
,

where γg is given by

vh − ph
µ

S

(
k

γg

)
+
ph − pl
µ

∫ pl
ph

k
γg

0
xf (x) dx = c

Theorem 4 The following properties hold:

1. R{vl,ps} ≥ R∗s.

2. R{vl,ph} ≥ R{pl,ph} ∀pl ≤ vl.

The first statement of Theorem 4 implies that static pricing is always dominated by a dynamic

strategy in which the firm announces {vl, ps} . Relative to static pricing, Bs, with that scheme

more consumers visit the firm (because they anticipate that they may be charged vl) and the firm

gains the capability to choose the better price to respond to demand conditions. Thus, when the

firm can reduce its price, dynamic pricing can actually work better for both consumers and the

firm. In fact, the second part of the theorem suggests that the problem with Bd = {vl, vh} is not

with the lower price: holding the high price fixed, the firm’s best low price is the highest possible

low price, vl. (Note, this is not immediately obvious because the high-type consumers are more

likely to visit with pl < vl than with pl = vl.) Thus, the concern with Bd = {vl, vh} is with the

high price, vh. While ph < vh generates lower revenue for the firm per sale than ph = vh, more

high-type consumers are likely to visit with ph < vh. Hence, revenue with ph < vh may be higher

than with ph = vh.
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If γd = 1, then it is not possible to improve upon Bd = {vl, vh}: all high-type consumers join

and revenue is maximized in all realizations of demand. However, among all 175 instances of Table

2,when γd < 1, we always find there exists a price ph < vh such that R{vl,ph} > R∗d. In other

words, the dynamic pricing strategy Bd = {vl, vh} can be improved by committing to leave the

high-type consumers with some surplus no matter which price is chosen - the problem with the

dynamic pricing strategy Bd = {vl, vh} is that the high price can be too high.

We are now in a position to define a better dynamic pricing strategy. Let p∗h = arg maxph R{vl,ph}

and Bg = {vl, p∗h}. That is, p∗h is the optimal high price and R{vl,p∗h} is the maximum revenue that

can be achieved under the generalized scheme. We refer to Bg as constrained dynamic pricing

because the firm a priori constrains itself to not charge the highest possible price - when demand is

high the firm may prefer to charge vh, but due to its initial commitment, it is restricted to choose

p∗h ≤ vh. In addition to earning more revenue, the key distinction between Bg and Bd is that with

Bg the firm must be able to commit to choose a price that everyone knows may be sub-optimal once

demand is realized whereas such a commitment is not necessary with Bd. Without that ability to

commit, the firm is relegated to choose the only dynamic pricing strategy that is sub-game perfect,

Bd.

Whether a firm can commit to Bg = {vl, p∗h} may depend on how it is implemented. One way

to implement Bg is to announce vl as the “list price”(or “regular price”) and commit to charge the

list price or to charge the moderately higher price, p∗h. More naturally, the firm can announce p∗h

as the list price and commit to charge either that list price or a lower price (and the lower price

will be vl). It seems plausible that firms, through repeated dynamics, may be be able to commit

to only mark down their prices. In fact, this policy (sometimes referred to as asymmetric price

adjustments), is both empirically observed and theoretically assumed (e.g., Aviv and Pazgal 2008;

Liu and Van Ryzin 2008; Su and Zhang 2008). Our theory provides an explanation for this effect

beyond “consumers dislike price increases”- by committing to leave consumers with some surplus

in all states, the firm is ensuring that a suffi cient number of consumers will actually make the effort

to visit the firm.

Static pricing, Bs = {ps}, also requires a commitment on the part of the firm (to neither mark

up or mark down). Figure 3 illustrates that the commitment to not mark up is more important

than the commitment to not mark down, as Bg = {vl, p∗h} generates higher revenue than both

static, Bs, and dynamic pricing, Bd.

It is straightforward to show that limvl→0R{vl,p∗h} = limvl→0R
∗
s (vl) and that limvl→vh−cR{vl,p∗h} =

limvl→vh−cR
∗
s (vl) = limvl→vh−cR

∗
d (vl). In addition, for each parameter combination, our numeri-
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Figure 3. Revenue functions under static (Rs), dynamic (Rd) and the generalized (R{vl,p∗h}) pricing
schemes as a function of vl for X ∼ Gamma(1, 1), vh = 1, k = 0.5, c = 0.1.

Table 4. Summary statistics of the maximum benefit of using either static or dynamic pricing relative to
the maximum benefit of using the constrained dynamic pricing policy (in %).

R∗s (ṽl) /R{ṽl,p∗h} max {R∗s (vl) , R
∗
d (vl)} /R{vl,p∗h}

average 77.4% 93%
standard deviation 13.0% 10.7%
minimum 58.2% 58.2%
maximum 99.7% 100%

cal results found that implementing the constrained dynamic pricing policy is most beneficial when

vl = ṽl (i.e., the vl where R∗s = R∗d). Column 2 in Table 4 documents the ratio R
∗
s (ṽl) /R{ṽl,p∗h},

where note that R∗s (ṽl) = R∗d (ṽl). This ratio measures the worst case performance of the best

simple pricing scheme relative to the optimal generalized scheme. We find that in the worst case,

either static or dynamic pricing yields only 77.4% of the revenue generated by constrained dynamic

pricing. As this is the worst case scenario, we are also interested in the average benefit for different

values of vl. To this end, for each instance in 2 we consider the eleven vl such that the ratio of vl

to vh is taken from the following set:

{0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99} .

If a resulting vl exceeds vh− c, we exclude it from the analysis, which leaves us with 925 instances.

Column 3 in Table 4 reports the relative advantage of constrained dynamic pricing over the two

simpler policies and indicates that on average, the simpler policies yield 7% less revenue than

constrained dynamic pricing.
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Figure 4. Worst case performance of dynamic or static pricing relative to the constrained dynamic pricing
policy as a function of the visit cost, c, for different values of the coeffi cient of variation, CV .

Furthermore, we find that the relative advantage of constrained dynamic pricing is greatest when

the visit cost, c, or the demand uncertainty (measured by the coeffi cient of variation, CV = σ/µ)

are high, as illustrated in Figure 4.

8 Conclusion

We explain why a firm may prefer static pricing over dynamic pricing when consumers are strategic

and decide whether to consider to purchase based on the firm’s chosen pricing strategy. By

charging a static price a firm imposes a rationing risk on consumers whereas a firm that changes

prices dynamically imposes a price risk on consumers. Imposing a rationing risk on consumers

can dominate, especially when consumers’ valuations for the product are highly variable. The

problem with dynamic pricing is that the firm may charge a high price that leaves consumers with

zero surplus, so the firm can improve its revenues by implementing a pricing strategy that leaves

consumers with a positive surplus in all states of demand. Overall, we conclude that even though

dynamic pricing responds better to demand conditions, charging a static price can be the preferable

pricing strategy when consumers are strategic. However, constrained dynamic pricing is an even

better strategy - charge either a reasonable list price or mark down from that list price, but never

mark up.
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Appendix

Proof of Lemma 1. First, note that the expected sales function is given by

S (k/γ) =

∫ k/γ

0
xf (x) dx+

k

γ
F

(
k

γ

)
and that

S′ (k/γ) =
dS (k/γ)

dγ
= − k

γ2
F

(
k

γ

)
Differentiating Rhs (γ) with respect to γ, we get:

ζs (γ) =
dRhs (γ)

dγ
= vh

(
S (k/γ) + γS′ (k/γ)

)
− µc

= vh

∫ k/γ

0
xf (x) dx− µc.

Rhs (γ) is concave because ζs (γ) is decreasing in γ. The optimal γs may be 1 (a corner solution)

if ζs (1) ≥ 0 (result (i)) or interior, in which case solving the first-order condition ζs (γ) = 0 gets

the result (ii). Note that γs 6= 0, because we assume that vh > c.

Proof of Lemma 2. Under dynamic pricing, the indifferent consumer solves

∫ vl
vh

k
γ

0 xf (x) dx

µ
(vh − vl) = c. (12)

As the left-hand-side (LHS) strictly decreases with γ and the right-hand-side (RHS) is constant,

there either exists a unique γ ∈ [0, 1] which solves (12), or, if (vh − vl)
∫ vl
vh
k

0 xf (x) dx > µc, there

does not exist a γ which solves (12), in which case γd = 1.

Proof of Lemma 3. Limit calculations: (i) Let h′ (x) = xf (x) so that h (ξ) =
∫ ξ
0 xf (x) dx.

Therefore, from the Fundamental Theorem of Calculus,
∫ vl
vh

k
γd

0 xf (x) dx = h
(
vl
vh

k
γd

)
− h (0) =

h
(
vl
vh

k
γd

)
(because h (0) = 0). Note that h′ (ξ) > 0 and thus invertible. From (12), we can write

h
(
vl
vh

k
γd

)
= µc/ (vh − vl) and

h−1
(

µc

vh − vl

)
=
vl
vh

k

γd
.

Rearranging, we get:

γd =

vl
vh
k

h−1
(

µc
vh−vl

) .
h−1

(
µc

vh−vl

)
> 0, since µc/ (vh − vl) > 0, h (0) = 0 and h′ (x) > 0. Thus, taking the limit, we get

limvl→0 γd = 0. (ii) Rearranging (12) and letting vl → vh− c, we get that for (12) to hold, we must

have limvl→vh−c
∫ vl
vh

k
γd(vl)

0 xf (x) dx = µ, which implies that limvl→vh−c γ (vl) = 0.
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To show that γd (vl) is quasi-concave, write:

F = (vh − vl)
∫ vl

vh

k
γd

0
xf (x) dx− µc.

Note that if condition (12) holds, F = 0. Differentiating F and applying the Implicit Function

Theorem, we get:

∂F
∂vl

=

(
vh − vl
vl

)(
vl
vh

k

γd

)2
f

(
vl
vh

k

γd

)
−
∫ vl

vh

k
γd

0
xf (x) dx,

∂F
∂γd

= −
(
vh − vl
γd

)(
vl
vh

k

γd

)2
f

(
vl
vh

k

γd

)
and

∂γd
∂vl

=
γd
vl

(
1−

vl
∫ y
0 xf (x) dx

(vh − vl) y2f (y)

)
(13)

=
γd
vl

(
1 +

vl
vh − vl

(
F (y)

yf (y)
−
∫ y
0 F (x) dx

y2f (y)

))
,

where y = vl
vh

k
γd
. Observe first that γd/vl is decreasing in vl (and therefore that y is increasing in

vl). To see this, note that
γd
vl

=

k
vh

h−1
(

µc
vh−vl

) ,
which is decreasing in vl because h−1 is increasing. Equating (13) to zero and rearranging, we get:

−vh − vl
vl

=

(
1

y

)(
F (y)

yf (y)

)(
y −

∫ y
0 F (x) dx

F (y)

)
.

Note that the LHS is increasing. The first term on the RHS is decreasing and the second terms is

decreasing as well, because F is IGFR. Differentiating the third term with respect to y, we get:

1−
F
2

(y) + f (y)
∫ y
0 F (x) dx

F
2

(y)
= −

f (y)
∫ y
0 F (x) dx

F
2

(y)
< 0,

and therefore it is decreasing as well. Thus, the RHS is decreasing. Together with the fact that

γd = 0 in the limits and that γd ≥ 0, we get the desired result.

Proof of Lemma 4. The results immediately follow from the limits of Lemma 3.

Proof of Theorem 1. To establish the result, assume first that γs and γd are interior. Denote

the LHS of (5) and the LHS of (9) by τ s (γ) and τd (γ), respectively. Observe that τ s (γ) > τd (γ)

∀γ. Furthermore, τ ′s (γ) < 0 and τ ′d (γ) < 0. Since the RHS of both conditions is the same, the
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result follows. Also note that the conditions for boundary solutions are such that

vh

∫ k

0
xf (x) dx > (vh − vl)

∫ vl
vh
k

0
xf (x) dx,

implying that we must have that γs ≥ γd (vl) ∀vl.

Proof of Theorem 2. R∗s (vl) = kmax
{
vhF (k/γs) , vl

}
. Therefore, R∗s (vh − c) = kmax

{
vhF (k/γs) , vh − c

}
.

To show that R∗s (vh − c) = k (vh − c), it remains to show that vh − c ≥ vhF (k/γs). Combining

with (10), it remains to show that

F (k/γs) ≥
∫ k
γs
0 xf (x) dx

µ
. (14)

The LHS represents the probability that demand is less than k/γs, where the RHS represents the

same probability conditional on a high-type consumer being in the market and hence (14) must

hold.

lim
vl→vh−c

R∗d (vl) = lim
vl→vh−c

F

(
vl
vh

k

γd

)
vlk + lim

vl→vh−c
vhγd

∫ k
γd

vl
vh

k
γd

xf (x) dx+ lim
vl→vh−c

F

(
k

γd

)
vhk

= (vh − c) k,

where the last equality follows because limvl→vh−c γd = 0. In addition, R∗s (0) > 0 and R∗d (0) = 0.

Finally, differentiating R∗d (vl) with respect to vl, we get:

dR∗d (vl)

dvl
= kF

(
vl
vh

k

γd

)
+ vh

∫ k
γd

vl
vh

k
γd

xf (x) dx
dγd
dvl

,

and

lim
vl→vh−c

dR∗d (vl)

dvl
< k

since limvl→vh−c dγd/dvl < 0.

Proof of Lemma 5. (i) When c = 0, condition (i) of Lemma 1 and condition (i) of Lemma 2 hold,

and therefore γs = γd = 1. Furthermore, R∗s (vl) = max {vlk, vhS (k)} and R∗d (vl) = vlk+vhS (k)−

vhS
(
vl
vh
k
)
. Suppose first that vlk ≥ vhS (k). Then, R∗s (vl) = vlk and R∗d (vl) ≥ R∗s (vl). Otherwise,

suppose that vlk < vhS (k). Then, R∗s (vl) = vhS (k) and R∗d (vl) = vlk + R∗s (vl) − vhS
(
vl
vh
k
)
.

R∗d (vl) ≥ R∗s (vl), because
vl
vh
k ≥ S

(
vl
vh
k
)
(from the definition of the expected sales function). (ii)

Following the same steps of Lemma 3, we get that

γs =
k

h−1
(
µc
vh

) .
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Therefore, the limc→vh γs exists and is unique. To find the limit, observe that, when c → vh,

limc→vh cµ/vh = µ and we must have ∫ k
γs

0
xf (x) dx = µ,

which implies that limc→vh
k
γs

= ∞ or limc→vh γs = 0. Furthermore, since γs ≥ γd (vl) ∀vl and

γd ∈ [0, 1] , limc→vh γd (vl) = 0. For the revenues, when γs = 0, R∗s (vl) = max {vlk, 0} = vlk and

when γd = 0, R∗d (vl) = vlk.

Proof of Theorem 3. Suppose that the firm preannounced a set of prices A and that based

on this set, γx high-type consumers visit the firm. Partition the set A to two disjoint sets,

A = A1 ∪ A2, such that A1 = {p ∈ A|p ≤ vl} and A2 = {p ∈ A|p > vl}. Given that γx high-type

consumers visited, the firm can choose to serve only high-type consumers, by choosing a price

p ∈ A2 (if exists) or to serve both consumer types, by choosing a price p ∈ A1 (if exists). Suppose

there exist two prices, p1 ∈ A2 and p2 ∈ A2, where p1 > p2. Because the choice of a price among

A2 will not affect γ, setting p1 strictly dominates p2. Similarly, suppose there exist two prices,

p3 ∈ A1 and p4 ∈ A1, where p3 > p4. Because the firm is guaranteed to sell k units by choosing

any price among A1, setting p3 strictly dominates p4.

Proof of Theorem 4. For the two general prices (pl, ph), such that pl ≤ ph, pl ≤ vl and ph ≤ vh
the revenue function is given by

R (pl, ph) = plk + phγ

(
S

(
k

γ

)
− S

(
pl
ph

k

γ

))
,

where γ is given by
vh − ph
µ

S

(
k

γ

)
+
ph − pl
µ

∫ pl
ph

k
γ

0
xf (x) dx = c. (15)

(1) ps = max
{
vl, p

h
}
. If ps = vl, then Bs = B. If ps = ph, then (15) implies that γs ≤ γ and

R (vl, ps) ≥ Rs, because γs ≤ γ and because maxp∈B {R (p, x, γ)} ≥ maxp∈B′ {R (p, x, γ)} if B′ ⊆ B;

(2) First note that from the assumption that Rd is increasing in vl, we get that

dRd
dvl

=
∂Rd
∂vl

+
∂Rd
∂γd

∂γd
∂vl

(16)

= kF (y) + vh

∫ k
γd

y
xf (x) dx · γd

(
1

vl
− cµ

(vh − vl)2 y2f (y)

)
≥ 0,

where y = vl
vh

k
γd
. To prove the property, we need to show that dR (pl, ph) /dpl ≥ 0. Let z = pl

ph
k
γ .

Differentiating, we get:
∂R (pl, ph)

∂pl
= kF (z) ,
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∂R (pl, ph)

∂γ
= ph

∫ k
γ

z
xf (x) dx

and from the Implicit Function Theorem,

∂γ

∂pl
= γ ·

(ph − pl) z
pl
zf(z)−

∫ z
0 xf (x) dx

(ph − pl) z2f(z) + (vh − ph) kγF
(
k
γ

) .
As ∂R(pl,ph)

∂pl
≥ 0 and ∂R(pl,ph)

∂γ ≥ 0, the result follows immediately if ∂γ
∂pl
≥ 0. It remains to show

that dR (pl, ph) /dpl ≥ 0 if ∂γ
∂pl

< 0. Note that because (vh − ph) kγF
(
k
γ

)
≥ 0, when ∂γ

∂pl
< 0,

∂γ

∂pl
≥ γ

(
1

pl
−

∫ z
0 xf (x) dx

(ph − pl) z2f(z)

)

= γ

 1

pl
−
cµ− (vh − ph)S

(
k
γ

)
(vh − vl)2 z2f (z)


≥ γ

(
1

pl
− cµ

(vh − vl)2 z2f (z)

)
.

Note that the last term is equivalent to the derivative ∂γd
∂pl

of dynamic pricing in (16), where vl = pl

and vh = ph. Thus, if Rd is increasing, it must be that
∂R(pl,ph)

∂pl
≥ 0.
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