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Extending the Generalized Multinomial Logit Model: Error Scale and
Decision-Maker Characteristics

Abstract
This essay contributes to the development of models that allow for heterogeneity across respondents in the
error scale of the multinomial logit model. The potential to explain respondent heterogeneity by differences in
error scale has been recognized for some time (Louviere 2001), but models that allow for continuous error
scale heterogeneity have only recently been developed (Sonnier, Ainslie and Otter 2007, Keane et al. 2009).
The most general of these models is the “Generalized Multinomial Logit Model” (G-MNL), which allows for
heterogeneity both in error scale and all attribute preferences, including the price attribute (Keane et al.
2009). We further develop the G-MNL by proposing a Bayesian estimation strategy, allowing for
straightforward incorporation of decision-maker characteristics as covariates to individual-level error scale, in
a way that is computationally tractable. In a data set on personal computer (PC) choices in a survey setting
(Lenk et al. 1996), we find that respondents who are older have higher average error scale indicating that they
make less reliable decisions than those who are younger. Respondents who perceive themselves to be expert
when it comes to making PC choices have lower average error scale, indicating that they make more reliable
choices. These findings are consistent with recent theorizing on the relationship between cognitive resources
and error scale (Swait and Adamowicz 2001). We also facilitate the use of G-MNL in practice by empirically
exploring the data requirements for obtaining accurate estimates of the G-MNL and find that estimating this
model requires a somewhat larger number of respondents and a larger number of observed choices per
respondent than is typical in commercial market research.
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Abstract 

 

This essay contributes to the development of models that allow for heterogeneity across 

respondents in the error scale of the multinomial logit model. The potential to explain respondent 

heterogeneity by differences in error scale has been recognized for some time (Louviere 2001), but 

models that allow for continuous error scale heterogeneity have only recently been developed (Sonnier, 

Ainslie and Otter 2007, Keane et al. 2009). The most general of these models is the “Generalized 

Multinomial Logit Model” (G-MNL), which allows for heterogeneity both in error scale and all attribute 

preferences, including the price attribute (Keane et al. 2009). We further develop the G-MNL by 

proposing a Bayesian estimation strategy, allowing for straightforward incorporation of decision-maker 

characteristics as covariates to individual-level error scale, in a way that is computationally tractable. In a 

data set on personal computer (PC) choices in a survey setting (Lenk et al. 1996), we find that 

respondents who are older have higher average error scale indicating that they make less reliable 

decisions than those who are younger. Respondents who perceive themselves to be expert when it comes 

to making PC choices have lower average error scale, indicating that they make more reliable choices. 

These findings are consistent with recent theorizing on the relationship between cognitive resources and 

error scale (Swait and Adamowicz 2001). We also facilitate the use of G-MNL in practice by empirically 

exploring the data requirements for obtaining accurate estimates of the G-MNL and find that estimating 

this model requires a somewhat larger number of respondents and a larger number of observed choices 

per respondent than is typical in commercial market research. 
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1. Introduction 

Bayesian methods have allowed marketing researchers to develop complex model specifications, 

including hierarchical specifications that allow for heterogeneity across individual decision makers in the 

parameters of the multinomial logit model. Early modeling efforts typically placed convenient and 

tractable specifications on the distribution of heterogeneity, most commonly a normal or lognormal 

distribution on the parameters of the multinomial logit model (cf., Allenby and Ginter 1995, Rossi, 

Allenby and McCulloch 2005). However, recent work has proposed alternative specifications of the 

population distribution that, it is argued, apply shrinkage to parameters that are economically meaningful, 

and provide better fit to the types of data sets typically found in marketing (cf., Sonnier, Ainslie and Otter 

2007).  

This essay contributes specifically to the development of models that allow for heterogeneity 

across respondents in the error scale of the multinomial logit model. The potential to explain respondent 

heterogeneity by differences in error scale has been recognized for some time (Louviere 2001), but 

models that allow for continuous error scale heterogeneity have only recently been developed (Sonnier, 

Ainslie and Otter 2007, Keane et al. 2009). The most general of these models is the “Generalized 

Multinomial Logit Model” (G-MNL), which allows for heterogeneity both in error scale and all attribute 

preferences, including the price attribute. Using a simulated maximum likelihood estimation framework, 

Keane et al. (2009) show that this model is identified (using synthetic data designed to be similar to 

typical data sets from choice experiments) and that it provides superior fit (measured by BIC), in a 

number of empirical applications, over the commonly used specification that places a multivariate normal 

distribution on the coefficients of the multinomial logit model (MVN-MNL), implicitly assuming error 

scale homogeneity. In this essay, we further develop the G-MNL by proposing a Bayesian estimation 

strategy, allowing for straightforward incorporation of covariates to individual-level error scale, such as 

demographics.  

We use our proposed approach to explore the relationship between decision maker characteristics 

and error scale. In particular, we investigate the relationship between error scale and the decision maker‟s 
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age and expertise. In a data set on personal computer (PC) choices in a survey setting (Lenk et al. 1996), 

we find that respondents who are older have higher average error scale indicating that they make less 

consistent decisions and respondents who perceive themselves to be expert when it comes to making PC 

choices have lower average error scale, indicating that they make more consistent choices.  

1.1 Related literature 

Since the importance of considering error scale in multinomial logit models was first pointed out 

(Swait and Louviere 1993), a number of different modeling approaches have been proposed for 

investigating error scale differences. Covariance heterogeneity models and heteroscedastic multinomial 

logit models allow researchers to explore the aggregate effect of manipulations on error scale and have 

been used to explore how the design of choice experiments affects error scale (Swait and Adamowicz 

2001a, 2001b, Hensher Louviere and Swait 1999, DeShazo and Fermo 2002, Dellaert Brazell and 

Louviere 1999) and to measure the aggregate effects of context or framing manipulations on error scale 

(Salisbury and Feinberg 2009).  

To understand heterogeneity in error scale across individual respondents, a variety of methods 

have been used. A brute-force approach is to collect more data, and more informative data, from each 

respondent as in Louviere et al. (2008b), allowing individual-level, fixed-effects models to be estimated 

for each respondent. When individual-level fixed-effects are identified by the data, error scale differences 

can be explored using the approach proposed by Swait and Louviere (1993), treating each person as a 

“data set”. When sufficient data to estimate individual-level models is not available, researchers have 

proposed using latent class models that allow for differences in error scale, but not other parameters, 

across discrete groups (Magidson and Vermunt 2007, Kanetkar, Islam and Louviere 2005). However, the 

latent class framework is limiting in that it restricts the distribution of error scale across the population to 

be multinomial with a relatively small number of support points and does not readily allow the 

incorporation of observed decision-maker characteristics of as covariates to error scale.  
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A few researchers have proposed hierarchical random coefficients models that allow for error 

scale to vary continuously across the population. In this paper we adopt a slight variation of G-MNL 

model proposed by Keane et al. (2009), which nests the model proposed by Sonnier, Ainslie and Otter 

(2007). We develop a Bayesian approach to estimating the G-MNL model, which, unlike other estimation 

approaches, allows us to easily investigate covariates to individual error scale differences. We use this 

model to explore the relationship between an individual‟s error scale and his or her expertise with the 

purchase category and find that error scale is negatively correlated with expertise and positively 

correlated with age. While preliminary, these findings suggest that experts make more consistent choices 

while older respondents make less consistent choices. In the conclusions, we discuss implications of these 

findings for behavioral research on choice consistency. 

In addition, we facilitate the use of G-MNL in practice by empirically exploring the data 

requirements for obtaining accurate estimates of the G-MNL and find that estimating this model requires 

a larger number of respondents and a larger number of observed choices per respondent than is typical in 

commercial market research. Even so, collecting appropriate data to estimate the model seems to be 

feasible. We also explore the ability of different Bayesian model fit statistics, in particular log marginal 

likelihood and deviance information criteria (DIC), to identify when the true model used to generate the 

data is G-MNL versus the traditional MVN-MNL specification. We find that whether the researcher‟s 

focus is on the individual- or population-level likelihood (Trevisani and Gelfand 2003) is important when 

identifying the correct population-level model. 

2. A model for heterogeneity in error scale  

Under the random utility interpretation of the multinomial logit model, consumers are assumed to 

choose the product that offers them the greatest utility, where utility is an unobserved random variable,  

jjj xu   ' , (1) 
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where jx  is a vector of  K attributes for alternative j,   is an unknown K-vector of parameters, and j  is 

an IID error term distributed according to the double exponential distribution with scale parameter  . 

This results in the multinomial logit likelihood 
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It is well-understood that the parameters of this model, the vector  and the scalar , are not 

separately identified (cf., Ben-Akiva and Lerman 1985, Louviere, Hensher and Swait 2000), and  is 

typically normalized to 1, resulting in the familiar multinomial logit likelihood with parameters  . 

 When the multinomial logit model is used as the unit-level likelihood in a hierarchical model 

specification, it is standard practice to maintain the assumption that   is 1 across all consumers  and to 

specify that i  follows a multivariate normal distribution (cf., Rossi, Allenby and McCulloch 2005) 

across consumers (indexed by i). However, equation (1) suggests that there may also be heterogeneity 

across consumers in the error scale parameter, i  (Louviere, et al. 2008b, Keane et al. 2009). For a given 

vector of preferences, i , if the scalar i  is small for a particular consumer then all elements of the 

vector ii  /   will be larger and the model in equation (2) will predict that 1) the consumer will make 

more consistent choices when repeatedly faced with the same set of alternatives (i.e., the model will 

predict more extreme purchase likelihoods for a given set of alternatives), and 2) the consumer will react 

more strongly than others with the same i  
to changes in any of the attributes. As we will discuss in 

more detail, these differences in predicted choices for different levels of i  can serve to identify the error 

scale of one consumer relative to another, even though the absolute level of error scale is unidentified. 

Thus it seems reasonable to explore specifications of the population distribution for the multinomial logit 

parameters that allow for heterogeneity in i  as well as i . (Note that heterogeneity in i is better 
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identified the greater the dimension of i ; in fact heterogeneity in i  can not be distinguished from 

heterogeneity in i  when the dimension of i  is 1.) 

We should point out that differences across individuals in error scale are not merely a 

phenomenon of theoretical interest; differences in error scale lead to fundamentally different predictions 

about what consumers will choose, given a new set of alternatives. Salisbury and Feinberg (2008) show 

that when error scale is larger, choice probabilities for less desirable options increase while choice 

probabilities for more desirable options decrease, and that an increase in error scale can lead to 

respondents choosing a more diverse range of options, even as relative preferences for the alternatives 

remain constant. Similarly, sequences of choices from individuals with high error scale will appear more 

varied or “diversified” than choices from individual with low error scale, even when those two individuals 

have the same preferences for the alternatives. Estimates of economically meaningful quantities, like 

price elasticity and willingness-to-pay, may also be different, depending on whether heterogeneity in error 

scale is accommodated in the model (Sonnier, Ainslie and Otter 2007).  

There are a variety of ways one might specify a joint distribution for i  and i ; one might 

consider any distribution with positive support for i . For computational simplicity, we specify the 

population distributions for i  and i  as multivariate normal and log-normal respectively, specifically, 

   
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(3) 

where iz  is a vector of variables describing consumer i, which has been mean-centered. By mean 

centering  iz , the mean of )log( i  is fixed at zero and the median of i  is fixed at 1. This constraint is 

required for identification; without it, there would be multiple pairs of distributions for i  and i  that 

would result in the same implied distribution on ii  /  and therefore the same likelihood. Under the 

restriction, the estimated parameter, i , can be interpreted as a measure of consumer i‟s logit error 
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relative to the median. (An alternative identification constraint, which we do not explore here, is to fix the 

error scale for one consumer to 1 and assume that the remaining i  follow some population distribution. 

This would result in a model form similar to those that have been proposed for combining different 

sources of choice data, where each consumer represents a unique “data source” (Louviere, et al. 2008b). 

The joint distribution proposed in equation (3) does not allow for correlation between i  and i , as 

allowing for correlations would lead to a similar identification problem in practice . The proposed model 

nests within it the usual specification of the hierarchical multinomial logit (MVN-MNL) model (i.e., 

1i  for all i) when 02  (cf., Rossi, Allenby and McCulloch 2005). When, additionally, 0

, the mixed logit model (N-MNL) is obtained (cf., Train 2003). 

  We will refer to the model proposed in equations (2) and (3) as the generalized hierarchical 

multinomial logit model (G-MNL). It is similar to the type II generalized multinomial logit model 

proposed by Keane et al. 2009; however, our formulation and Bayesian estimation approach allows for 

the inclusion of individual characteristic variables (e.g., age, gender, category experience) as covariates to 

the individual-level error scale parameters, allowing us to explore potential drivers of individual 

differences in choice error scale. Keane et al. (2009) discuss the possibility of including such covariates in 

the formulation, but their simulated maximum likelihood estimation approach limits the feasibility of 

estimating models with these covariates and they do not present any model estimates with covariates. The 

other minor difference is in how they choose to fix the location of the error scale distribution; they 

propose to fix the mean of the lognormal distribution for i  at 1, rather than the median as in equation 

(3).  

2.1 Implied distribution of ii  / .  

While the standard MVN-MNL model (i.e., ii    1 ) results in a distribution of ii  / , that is 

normally distributed, the G-MNL model implies that ii  /  is the ratio of a multivariate normal and a 
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univariate normal. This ratio, ii  / ,  has  a specific pattern of correlation between the elements even 

when i  has a diagonal covariance matrix. Specifically,  
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(4) 

The second term in the last line of equation (4) corresponds to a common correlation across the elements 

of ii  /  that is induced solely by heterogeneity in i . This correlation is proportional to    ii EE  . 

If two elements of i  both have large, positive expectations, then the corresponding elements of ii  /  

will be have a large, positive correlation. If one element of i  has a large, positive expectation and 

another a large, negative expectation, then the corresponding elements of ii  /  will have a large, 

negative correlation. Intuitively, this structured nature of the covariance of ii  /  that is induced by 

heterogeneity in i  helps to identify heterogeneity in i  based only on observed choices.  

Figure 1 shows an example set of synthetic values for ii  /  generated according to the 

population distribution in equation (3) with  3.0diag  and 1.02  . When   is restricted to be 

diagonal, i.e., there are no correlations between elements of the attribute preference vector, we will refer 

to the model as the diagonal G-MNL. For Figure 1, the mean of  i  was set at (-3.65, -2.74, -1.83, -0.91, 

0, 0.91, 1.83, 2.74, 3.65). The resulting distribution for i  has a mean of 1.051 and a variance of 0.116. 

The scatterplots in Figure 1 show 600 draws of ii  / . Even with this modest amount of variation in 

error scaling across the population, the resulting distribution for ii  /  shows a distinct pattern: elements 
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of ii  /  with means further from zero have skewed distribution and are more highly correlated with 

other elements of ii  / , even though the elements of i are uncorrelated.  

Figure 1. The distribution of ii  /  for the diagonal G-MNL model shows strong correlations and 

skewness even when elements of i  
are uncorrelated.   

 

It is an empirical question as to whether the distribution of ii  /  implied by equation (3) can be 

well approximated by the standard MVN-MNL model, which imposes a multivariate normal distribution 

on ii  / . Certainly, the MVN-MNL can capture the correlations described in Figure 1, if not the 

skewness and, as we will show, may represent a reasonable prior on individual-level parameters. But, it is 

clear from Figure 1, that if i  is heterogeneous across the population, the distribution of ii  /  would 
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not be well modeled with the diagonal G-MNL specification, i.e., a model where ii    1  and   is 

restricted to be diagonal.  

In the next section, we will investigate the sample size required to distinguish data generated 

according G-MNL from data generated according to MVN-MNL or N-MNL. To the extent that ii  /  

can be identified from observed choices for individual i, we expect to be able to empirically identify 

which specification of the population distribution fits best to a particular data set. These three population 

distributions (G-MNL, MVN-MNL and N-MNL) will also lead to different patterns of shrinkage, and we 

would expect to get the best individual-level parameter recovery when the higher-level model used in 

estimation corresponds to the one used to generate the individual-level coefficients and error scale values.  

2.2 Related Models 

Type I and type II generalized multinomial logit model. The model proposed in equations (2) 

and (3) is closely related to the type II generalized multinomial logit model proposed by Keane et al. 

(2009). They also propose an alternative G-MNL model (type I) that allows for an error scaling term to 

multiply the population means, but not the unexplained heterogeneity. Their estimation strategy allows 

for continuous mixing between type I and type II scaling and, empirically, they find support for type II 

scaling in most of the choice-based conjoint data sets they investigate. They also show that a G-MNL 

model will fit better to data generated according to G-MNL with sample sizes similar to a typical choice-

based conjoint study. In ten choice-based conjoint data sets, they find empirical support for models that 

allow for heterogeneity in error scale (G-MNL and a model where only i  is heterogeneous, which we 

will refer to as S-MNL), versus models that do not allow for heterogeneity in error scale (N-MNL and 

MVN-MNL). Their analysis suggests that comprehending heterogeneity in error scale is particularly 

important in data sets that involve more complex choice objects (i.e., objects with more complex 

attributes).  
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Surplus or willingness-to-pay multinomial logit model. The G-MNL model nests within it the 

surplus or willingness-to-pay (WTP-MNL) model proposed by Sonnier, Ainslie and Otter (2007) when 

log(price) is included as an attribute with a coefficient restricted to i/1  for all consumers. This results 

in a model where the willingness-to-pay for any attribute (i.e., the ratio of the coefficient for an attribute 

relative to the coefficient for price) is normally distributed. The implied distribution for ii  /  is quite 

similar to that for the G-MNL, except that the WTP-MNL model results in large correlations between the 

coefficient for price and the other coefficients, induced by heterogeneity in i , even when   is diagonal. 

Applying the model to data from choice experiments on midsize sedans and cameras, they find that the 

WTP-MNL model fits the data sets better (as measured by the posterior predictive likelihood of holdout 

tasks) and that the resulting estimated distribution of willingness-to-pay has greater face validity, relative 

to the MVN-MNL model. This suggests that the G-MNL, which nests the willingness-to-pay MNL 

model, would also provide better fit to this data than the standard MVN-MNL specification.  

2.3 Estimation   

Our approach to estimation is Bayesian with conditionally-conjugate, diffuse, proper priors for 

0 ,  , , , and 
2 ,  which allows us to use the usual Metropolis-within-Gibbs sampler for the 

hierarchical multinomial logit model (cf., Rossi, Allenby and McCulloch 2005) with only minor 

modifications to accommodate the additional error scale parameter. The parameters are drawn in four 

blocks: 1) 0 ,  , and,  are drawn from their joint full-conditional distribution, which is multivariate 

normal, 2)  and 
2  are drawn from their joint full-conditional, which is Inverted-Wishart, 3) i  are 

drawn individually for each i using a Metropolis-Hastings step, 4) i  are drawn individually for each i 

using a similar Metropolis-Hastings step. There are two factors in the full-conditional likelihood for i  

and i , the multinomial logit likelihood in equation (2) and the joint multivariate normal distribution for 

 ii  ),log( . Full details of the sampling algorithm are included in Appendix A.  
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3. Identification of the model 

3.1 Data requirements for estimation of G-MNL 

Parameter recovery in hierarchical model specifications is a complicated function of the structure 

of the data and the prior, so to shed light on what type of data is necessary to estimate the model with 

reasonable precision, we estimated the G-MNL model using a number of synthetic data sets with 

systematically varying structure. As a baseline, we estimated the G-MNL model using data generated 

according to the G-MNL model, with 600 respondents, 50 choice tasks per respondent, 3 alternatives per 

choice task (with no „none‟ option) and 9 attributes. Attribute data was generated independently for each 

attribute according to a standard normal distribution
1
. Individual-level parameters i were generated as in 

Figure 1.
2
 

 Although hierarchical specifications like G-MNL do not require that individual-level fixed-

effects parameters are identified, recovery of individual-level and population-level parameters, 

particularly the parameters that involve second and higher-order moments, requires substantial 

information in the data about each of the individuals. In this context, information for each individual is 

increased by increasing the number of choices for each individual (cf., Louviere, et al. 2008b). Table 1 

shows that as we vary the number of choices observed for each respondent from 20 to 100 (holding other 

characteristics of the data at the base level), we find increasingly tighter posteriors for both individual and 

population-level parameters (as measured by the average posterior standard error) and posteriors that are 

more consistent with the values used to generate the data (as measured by the root mean squared error 

between the true values and the posterior modes.) 

                                                      
1
 Data from a designed experiment where attribute data is manipulated to maximize information would 

likely be more informative than our synthetic data. 
2
 Keane et al. (2009) also use synthetic data to show that the G-MNL model is formally identified by the 

likelihood for two data sets similar in structure to a typical choice experiment and that reasonable 

recovery of true parameters in synthetic data is possible, however their study is limited to two synthetic 

data sets: one with 79 respondents, 32 choices per respondent, 2 alternatives per choice task, and 6 

attributes; and one with 331 respondents, 16 choice tasks per respondent, 2 alternatives per choice task, 

and 8 attributes. 
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We also found a general pattern that the posterior modes of the population parameters are biased 

outwards; that is, elements of 0  and )diag( have posterior modes that are greater in absolute value 

than the values used to generate the data. We summarize this “outward bias” as 

  )sgn()data]|mode([ ,0,0,0

true

i

true

ii  
 
in Table 1. We find that when there are few choices observed for 

each respondent or when there are a large number of parameters, there is substantial posterior support for 

extremely high absolute values of ii  /  among a small number of individuals, i, whose choices are 

perfectly predicted by the model. This leads to high estimates of the level of heterogeneity in error scale, 

i.e., outward bias in 
2 , which can be compensated for by outward bias in 0  and )diag( . This 

problem with outward bias in finite samples is not unique to the G-MNL model. A similar study with the 

MVN-MNL model (reported in Appendix B) shows that MVN-MNL estimates are also subject to 

outward bias when the number of observed choices is small, although the bias is less than for the G-MNL 

model.  

When we decreased the number of choice tasks to 10 (keeping other characteristics of the data at 

the base levels), we found that the posterior of the individual-level error scale became so diffuse that the 

MCMC sampler did not traverse the space well and we were unable to obtain parameter estimates. (Note 

this did not happen with the MVN-MNL model estimates reported in Appendix B.)  Consequently, 

caution should be used when estimating the G-MNL model with low number of choice tasks per 

individual relative to the number of parameters in i .  

Similarly, decreasing the number of attributes from 9 to 3 (holding other characteristics of the 

data at the base level) decreases the number of parameters, thereby increasing the information available 

for each individual about the parameters. The reverse is true when the number of attributes is increased 

and when we attempted to estimate the model with 21 attributes we again had difficulty traversing the 

highly diffuse posterior.  
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Increasing the number of alternatives from 3 to 10 also modestly improves inference. Intuitively, 

when more alternatives are included in the choice task, the utility of the chosen alternative is more clearly 

bounded and the individual-level parameters are better identified.  

To explore how the amount of information available at the population-level improves inference, 

we also varied the number of individuals observed. We find that inference about population-level 

parameters is substantially improved as the number of respondents is increased from 200 to 1000, with 

RMSE and outward bias both notably reduced. However, inference about individual-level parameters 

does not improve much between 200 and 600 and seems to level off between 600 and 1000.  

Table 1. Recovery of G-MNL parameters improves as the information available for each individual 

increases and as the total sample size increases.  

 
 

Overall, the results presented in Table 1 suggest that recovery of the parameters of the G-MNL 

model is possible in data sets similar to those produced in commercial choice experiments, although it is 

preferable to use data sets with somewhat more respondents and more choice tasks than is typical. 

However, the estimates reported in Table 1 correspond to the case where there is no model 

misspecification, i.e., the data was generated according to the G-MNL model and the G-MNL model was 

10** 20 50* 100 3* 10 200 600* 1000 3 9* 21**

β 0 - 1.11 0.31 0.19 0.31 0.13 0.81 0.31 0.06 0.06 0.31 -

diag(Σ) - 0.58 0.24 0.13 0.24 0.09 0.48 0.24 0.09 0.07 0.24 -

σ
2

- 0.23 0.05 0.02 0.05 0.03 0.14 0.05 0.02 0.01 0.05 -

 i - 0.93 0.46 0.39 0.46 0.33 0.95 0.46 0.46 0.79 0.46 -

λi - 0.36 0.28 0.24 0.28 0.21 0.33 0.28 0.25 0.26 0.28 -

β 0 - 0.14 0.05 0.04 0.05 0.04 0.12 0.05 0.03 0.07 0.05 -

diag(Σ) - 0.16 0.06 0.04 0.06 0.04 0.14 0.06 0.04 0.13 0.06 -

σ
2

- 0.05 0.02 0.01 0.02 0.01 0.04 0.02 0.01 0.01 0.02 -

 i - 0.76 0.44 0.36 0.44 0.36 0.56 0.44 0.40 0.51 0.44 -

λi - 0.49 0.29 0.22 0.29 0.22 0.35 0.29 0.24 0.25 0.29 -

β 0 - 0.94 0.26 0.17 0.26 0.11 0.69 0.26 0.05 0.04 0.26 -

diag(Σ) - 0.56 0.22 0.12 0.22 0.09 0.45 0.22 0.08 -0.05 0.22 -

σ
2

- 0.23 0.05 0.02 0.05 0.03 0.14 0.05 -0.02 0.01 0.05 -

** We were unable to obtain parameter estimates with a diffuse prior.

* Base level.  Other columns represent parameter recovery when one feature of the data is changed and 

all others are held at base levels.

Average 

Outward Bias

Number of 

Attributes

Number of 

Choice Tasks

RMSE

Average 

Posterior SD

Number of 

Alternatives

Number of 

Respondents
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used in estimation. In the next section, we investigate the issue of misspecification of the population 

distribution in hierarchical MNL models.  

3.2 Empirically identifying the specification of the population distribution  

To determine whether or not it is possible to identify which model specification is most 

appropriate for a given data set using model fit statistics, we generated data according a particular 

specification of the population-level model (N-MNL, S-MNL or diagonal G-MNL) and then estimated 

alternative specifications using the synthetic data. Based on the results of the previous section, we 

generated data sets that consisted of 600 individuals completing 50 choice tasks out of three alternatives 

with 9 continuous attributes, as this quantity of data seems sufficient to get reasonable recovery of G-

MNL parameters and is similar in size to commercial choice experiments (albeit on the large side).  

In computing model fit statistics for hierarchical models, it is helpful to make a distinction 

between two sets of parameters: the parameters of the population distribution and the individual-level 

parameters. When we compare two hierarchical models, it is important to consider whether the 

researcher‟s focus is on the population-level parameters or the individual-level parameters and model 

comparison statistics, including marginal likelihoods and deviance information criteria (DIC) will differ 

depending on which parameters are in focus (Trevisani and Gelfand 2003, Spiegelhalter et al. 2002). This 

distinction is an important one to make, particularly when comparing findings across studies that use a 

classical estimation framework (i.e., maximum simulated likelihood) and those that take a Bayesian 

perspective and employ MCMC methods. Although, as we will describe, it is possible to compute model 

comparisons with either a population or individual-level focus under both estimation paradigms, the 

computational methods used to estimate parameters make it more computationally convenient for 

Bayesian researchers to take an individual-level focus and classical researchers to take a population-level 

focus.  

 Despite what may be computationally convenient, if the managerial goal is to make accurate 

predictions for the individuals in the estimation sample, as is often the case in direct marketing contexts, 
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then the researcher‟s focus should be on the individual-level parameters,   ii  , . In this context, model 

fits should be computed with respect to the individual-level likelihoods, conditional on the posterior of 

the individual-level parameters. For instance, in the case of the hierarchical MNL model, the individual-

level likelihood is  

   









i t

ijtiiit

I xyL }{,,|   
(5) 

When we use 
IL  as the likelihood when computing model comparisons, the population-level 

distributions can be interpreted as a complex, adaptive prior on the focal parameters,   ii  , . The 

"model" is then simply 
IL . MCMC samplers for the hierarchical MNL compute 

IL  on each pass of the 

sampler, thus it is computationally convenient for those who use a Bayesian estimation approach to 

compute model-fit statistics with an individual-level parameter focus (cf., Rossi, Allenby and McCulloch 

2005). However it is possible to estimate individual-level parameters using classical methods (Train 

2003) and individual-level fit statistics can be computed using these individual-level estimates and the 

likelihood in equation (5).  

While individual-level focus may be appropriate in applications where inference about the 

individuals in the sample is important, researchers often intend to make inference beyond the individuals 

in the sample. For instance, those who use choice models in product design typically view the individuals 

used in estimation as a sample of a larger population and will often use the population-level parameters to 

make predictions about total market share (cf., Michalek 2005). It is also common in academic research to 

interpret the population parameters in order to make statements about the general nature of consumer 

choice, for instance, whether or not heterogeneity across decision makers can be explained more 

parsimoniously by differences in error scale (Keane et al. 2009). If the modeling goal is to interpret the 

population-level parameters or make predictions about individuals outside the sample, then it is 

appropriate to take a population-level focus. In the case of the G- MNL model, the likelihood used to 

compute model fits with a population-level focus is  
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(6) 

In this context, both the population-level and individual-level likelihoods are both considered 

components of the model and the prior is simply the prior on the population-level parameters. Maximum 

simulated likelihood algorithms maximize an estimate of
PL , so it is computationally convenient for those 

who use a classical estimation framework to report model fit statistics with a population-level focus (cf., 

Train 2005). Note that this calculation is equivalent to computing the likelihood of the observed choices 

in the data set using the posterior predictive distribution of   ii  ,  for new individuals not observed in 

the sample and so is appropriate when considering how well the population-level model estimated from a 

sample characterizes the population. 

To investigate the ability of individual-level and population-level fit statistics to detect the correct 

specification of the population distribution, we generated data according to three different models: N-

MNL, S-MNL and diagonal G-MNL. The population-level parameters were the same as those used in the 

previous section. We then estimate four alternative models using this data: S-MNL, N-MNL, MVN-

MNL, and G-MNL
3
. Both the deviance information criteria (Spiegelhalter et al. 2002) and the log 

marginal likelihood (cf., Rossi Allenby and McCulloch 2005) were computed using the individual-level 

likelihood in equation (5). The log marginal likelihood was estimated using the harmonic mean of 
IL over 

the 14,000 draws from the posterior of the individual-level parameters (Newton and Raftery 1994). 

Average deviance, model complexity, pD, and DIC were also was computed based on 
IL  for these 

14,000 draws. For comparison with Keane et al. (2009) we also report BIC, which was estimated by 

taking the maximum of 
IL  over the 14,000 draws (that is, we did not run a procedure to maximize 

IL , 

but presume that the maximum over the MCMC draws is a close approximation to the actual maximum).  

                                                      
3
 Estimation of the MVN-MNL and G-MNL model with the S-MNL data proved to be difficult, so we do 

not report results. When diffuse priors are used for the population-level parameters these models allow 

extensive over-fitting of the individual-level choice data.  
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Table 2 reports the model comparison statistics computed with an individual-level parameter 

focus, which generally do a poor job at determining the true model. The log-marginal likelihood favors 

the G-MNL model regardless of what the true model is. The log marginal likelihood for G-MNL and 

MVN-MNL are also quite close, indicating that these two models are difficult to distinguish using the log 

marginal density computed with an individual-level focus.
4
 This is somewhat unsurprising; when there is 

sufficient data available for each individual and when the population-level likelihood is interpreted as a 

component of a complex prior on the individual-level parameters, then both of these models provide 

sufficient flexibility to fit any data set well.  

The S-MNL model, in contrast, does not seem to be able to fit the data well when there is 

heterogeneity in the preference parameters. This suggests that when the true data generating process is 

unknown and the goal is individual-level prediction (e.g., CRM database scoring), models that allow for 

heterogeneity in preferences, such as G-MNL and MVN-MNL, may provide better individual-level fits 

than models like S-MNL that do not. If sufficient data is available, it may not be critical which population 

distribution (MVN-MNL versus G-MNL) is used as the individual-level estimates will be more 

influenced by the individual-level likelihood than by the specification of the population distribution which 

forms a prior on the individual-level parameters.  

                                                      
4
 Note that each cell in Table 2 represents a single set of data and a single estimation run, and findings 

may change were the experiment run repeatedly. There is also the potential for inaccuracy in our estimate 

of the log marginal likelihood and further investigation with more accurate estimates of log marginal 

likelihood (Gelfand and  Dey 1994, Chib and Jeliazkov 2001) is warranted. 
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Table 2. Model fit statistics computed based on the individual-level likelihood do not distinguish 

different specifications of the population-level model.  

 

Table 2 also shows that when the DIC and BIC statistics are computed with individual-level 

focus, they are also seldom unable to identify the true model. The BIC statistic, in particular, seems 

poorly suited when the individual-level parameters are the focus; it strongly favors the more parsimonious 

S-MNL model regardless of the true data generating process, perhaps because the BIC adjustment for 

number of parameter is inappropriate for the large numbers of individual-level parameters.  

S-MNL N-MNL MVN-MNL G-MNL

log marginal 

likelihood (NR)
-6,183 -6,062 -5,402 NA

deviance 12,260 12,118 10,486

pD 599 1,668 3,330

DIC 12,859 13,786 13,816

maximum ll -6,071 -5,944 -5,098

parameters 609 5,400 5,400

BIC 16,037 46,431 44,740

log marginal 

likelihood (NR)
-9,361 -5,982 -5,820 -5,724

deviance 18,643 11,505 11,293 11,078

pD 343 6,007 5,353 5,795

DIC 18,987 17,512 16,646 16,873

maximum ll -9,275 -5,580 -5,472 -5,331

parameters 609 5,400 5,400 6,000

BIC 22,446 45,704 45,488 49,043

log marginal 

likelihood (NR)
-9,343 -6,357 -6,119 -5,866

deviance 18,600 12,365 11,827 11,342

pD 419 5,164 4,468 6,479

DIC 19,019 17,529 16,295 17,821

maximum ll -9,248 -5,993 -5,748 -5,461

parameters 609 5,400 5,400 6,000

BIC 22,393 46,529 46,039 49,303
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NA
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Table 3. Model fit statistics computed based on the population-level likelihood more clearly 

distinguish different specifications of the population-level model. 

 

We also computed the log marginal likelihood, DIC and BIC using the population-level 

likelihood in equation (6). The integral in equation (6) was estimated using 100 draws from 

 ii z,,,| 0   and  ii z,,| 2  for each respondent and this calculation was repeated for 500 

draws from the posterior of the population-level parameters taken from the MCMC sampler. (This takes a 

similar amount of computational time as running 50,000 iterations of the MCMC sampler.) The log 

marginal likelihood was estimated using the harmonic mean of 
PL over the 500 draws.

5
 Average 

                                                      
5
 For the individual-level focus, the log marginal density was estimated as the harmonic mean of 14,000 

draws from the posterior of   ii  ,  and so may be less noisy than the population-level estimates of log 

marginal density which were based only on 500 posterior draws.  

S-MNL N-MNL MVN-MNL G-MNL

log marginal 

likelihood (NR)
-6,360 -6,529 -7,278 NA

deviance 12,697 13,041 14,338

pD 10 17 120

DIC 12,707 13,059 14,458

maximum ll -6,342 -6,500 -7,042

parameters 11 18 45

BIC 12,754 13,115 14,372

log marginal 

likelihood (NR)
-9,479 -8,657 -8,680 -8,735

deviance 18,937 17,093 17,166 17,254

pD 12 70 47 166

DIC 18,949 17,164 17,212 17,420

maximum ll -9,460 -8,464 -8,446 -8,531

parameters 11 18 45 47

BIC 18,989 17,044 17,181 17,363

log marginal 

likelihood (NR)
-9,484 -8,759 -8,872 -8,886

deviance 18,951 17,368 17,514 17,535

pD 12 -23 76 101

DIC 18,963 17,345 17,590 17,637

maximum ll -9,466 -8,622 -8,648 -8,664

parameters 11 18 45 47

BIC 19,003 17,360 17,583 17,628
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NA

NA
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deviance, pD, and DIC were also computed based on these 500 draws and BIC was estimated based on 

the maximum of 
PL  over the 500 draws. Table 3 reports the model comparison statistics computed with a 

population-level focus.  

Unsurprisingly, when the model fit statistics are computed at the population-level, there is a 

clearer distinction between the fit of MVN-MNL and G-MNL. When the true data generating process is 

N-MNL or S-MNL, DIC and BIC both agree with the log marginal likelihood and correctly identify the 

true model. However, we did find that when the true data generating process was diagonal G-MNL, the 

population-level statistics incorrectly identified the N-MNL model as the best model. In this case, the N-

MNL,  MNV-MNL and G-MNL models all have very similar log marginal likelihoods and it is possible 

that if the experiment were repeated, the model identified as best might change. The population-level 

models that allow for heterogeneity in i  (N-MNL, MVN-MNL and G-MNL) are all quite similar in fit 

and it seems that a fair amount of data is required to distinguish them, even when a population-level focus 

is used.  

Because of the availability of software to estimate MVN-MNL, it is possible that researchers are 

estimating MVN-MNL when the only source of heterogeneity in the data is error scale heterogeneity 

(Keane et al. 2009). When MVN-MNL is estimated with S-MNL data, the estimated covariances for 𝛽𝑖  

show a distinct pattern that is consistent with equation (4) and Figure 1, specifically, the estimated 

correlations between elements of i  in the MVN-MNL specification are related to the estimated 

population means of i  (Table 4). We suggest that researchers who estimate MVN-MNL models should 

check estimates of  , to see if this pattern of correlations is present and, if it is, a model that 

accommodates error scale (S-MNL or G-MNL) should be tested.  
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Table 4. When MVN-MNL is estimated with S-MNL data, estimates for 𝚺 show a distinct pattern of 

correlations.  

 
*The mean of  i  was set at (-3.65, -2.74, -1.83, -0.91, 0, 0.91, 1.83, 2.74, 3.65.) 

4. Heterogeneity in error scale among choice experiment respondents 

In this section we explore, empirically, the extent to which there is evidence for heterogeneity in 

error scale in observed consumer choices, i.e. evidence for S-MNL and G-MNL models over MVN-MNL 

models. Our empirical investigations use data collected in choice experiments, where it is possible to 

collect the larger numbers of choices for each individual required to identify G-MNL. In two choice 

experiments, one on bathroom scales and a second on personal computers, we find that the G-MNL model 

is the best fitting population-level model, suggesting that there is heterogeneity in error scale. 

Additionally, the Bayesian estimation approach we propose readily allows the incorporation of covariates 

to  𝜆𝑖  and 𝛽𝑖 , and so we incorporate several covariates to error scale. In the data set on personal computer 

choice, we find that error scale is negatively correlated with expertise and positively correlated with age, 

suggesting that people who feel they are expert PC buyers make more consistent choices in a choice 

experiment and that those who are older make less consistent choices. 

{Ed. Note: In both applications of the model, I am currently reporting all results including model fits, 

parameter estimates for all of the models I attempted to estimates.  I envision cutting this down to a 

smaller set of tables designed to illustrate the key points.  But for now, I wanted those who read this to be 

able to see all the results that we might draw from.} 

4.1 Bathroom Scale Choice Experiment 

{Ed. Note: This study may be eliminated entirely.  The only thing it contributes is another data set where 

G-MNL is the best-fitting model and there are many objectionable things I had to do to get the model to 

estimate.} 

 

 

2.444 1.612 0.995 0.513 0.013 -0.462 -0.952 -1.500 -2.056

0.793 1.689 0.796 0.389 0.011 -0.385 -0.751 -1.167 -1.612

0.662 0.637 0.924 0.236 0.005 -0.235 -0.491 -0.771 -1.048

0.433 0.396 0.325 0.572 0.002 -0.098 -0.226 -0.379 -0.494

0.013 0.012 0.009 0.005 0.444 0.010 -0.024 0.019 -0.004

-0.397 -0.398 -0.329 -0.173 0.019 0.555 0.241 0.350 0.471

-0.637 -0.605 -0.534 -0.313 -0.038 0.339 0.913 0.722 0.965

-0.768 -0.719 -0.642 -0.401 0.022 0.377 0.605 1.559 1.560

-0.822 -0.776 -0.681 -0.409 -0.004 0.395 0.631 0.781 2.559
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Data and estimation. The bathroom scale data consisted of responses from 184 student subjects, 

who each completed 50 choice tasks from a set of three different bathroom scale profiles and a “none” 

option.
 
The bathroom scale profiles had six attributes, which could each take one of 5 discrete levels. The 

attributes were manipulated according to an experimental design that was fixed across respondents. 

Effects codes for the attributes are used in estimation. In addition to the choice responses, the data set 

included each consumer‟s response to the question, “Have you purchased a [bathroom] scale in the past 2 

years?”, which we incorporated in the model as a covariate to error scale. The experiment is described in 

more detail in Michalek (2005). Initial MCMC runs suggested that the posterior with the G-MNL 

specification including effects codes for all six attributes was too diffuse to properly traverse with the 

MCMC sampler
6
. So, the least important attribute, “Area”, was dropped from the model specification. We 

also eliminated 32 respondents who selected the cheapest alternative more than half the time or selected 

the “none” option more than half the time, as these respondents had extremely poorly identified error 

scale. For these respondents, the error scale, 𝜆𝑖 , is confounded with the price parameter or the “none” 

parameter. To provide additional shrinkage for the remaining respondents, we used a moderately 

informative prior on the population variance parameters: )100,05.0(~   ),100IW(~ 12  I . All 

posterior estimates are based on chains of length 200,000 with a burn-in of 10,000. 

Model comparisons. Table 5 shows that the population-level log marginal likelihood and the 

DIC statistics suggest that the G-MNL is most consistent with the bathroom scale data. In fact, all of the 

models that allow for heterogeneity in error scale (S-MNL, diagonal G-MNL and G-MNL) have better 

log-marginal density than the MVN-MNL model, which does not. This strongly suggests that there is 

error scale heterogeneity in this data set. The fact that diagonal G-MNL is favored over the MVN-MNL 

model is remarkable given that the diagonal G-MNL model only has 65 population-level parameters 

                                                      
6
 Note that the bathroom scale data is likely to be somewhat more informative per observed choice than 

the data used in the parameter recovery study, because the bathroom scale data followed an experimental 

design, while the parameter recovery study used randomly generated (but orthogonal) data. However, we 

are increasing the demands on the data relative to the simulation studies by incorporating the covariate to 

𝜆𝑖  and 𝛽𝑖 . 
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versus 252 for the MVN-MNL model. However, we also find that the G-MNL model is also preferred 

over the S-MNL and diagonal G-MNL models indicating that there is also evidence of heterogeneity in 

i , in addition to i  and that accommodating correlations between elements of i  
improves fit. 

Table 5. Population-level model fit statistics for bathroom scale data suggest that G-MNL is most 

consistent with this data. 

 

Table 6, Table 7, and Table 8 compare the population-level parameters for the four estimated 

models. Table 6 shows the estimated population-level parameters related to error scale. All of the models 

that allow for heterogeneity in error scale find support for substantial heterogeneity in error scale. 

Additionally, we find no relationship between error scale and the covariate “purchased a bathroom scale 

in the past 2 years”. Note that in Table 7 and Table 8 the estimated parameters Δ and Σ for G-MNL 

appear to be re-scaled relative to the MVN-MNL and diagonal G-MNL models. In light of the outward 

bias we found with G-MNL in the parameter recovery study, it seems quite possible that the G-MNL 

estimates have some outward bias. The S-MNL estimates for bathroom scale data also seem to be scaled 

down relative to the other models, which is consistent with an inward bias that we found when the S-

MNL model is estimated to G-MNL or MVN-MNL models (details available from the author upon 

request). This suggests that caution should be used when comparing the population-level parameter 

estimates across different specifications of the population distribution. It seems that models that allow for 

different levels of flexibility in error scale can lead to different scales for the estimate of the population 

means of the attribute preferences.  

log marginal density (N-R)

pD

average deviance

DIC

maximum ll (from draws)

parameters

observed choices

BIC

-8,485

18,096

17,552

diagonal

G-MNL
G-MNL

254

18,693

7,600

252

-9,060

MVN-MNLS-MNL

-8,212

-50.2

16,989

17,039

18,463

-9,038

-8,871

7,600 7,600

-9,106

46.7

17,670

65

17,623

9.9

18,106

23

18,859

-396.0

-9,807

18,282

7,600

20,254

-9,001
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Table 6. Comparison of estimates of ),( 2 for the bathroom scale data.  

 

 

Table 7. Comparison of estimates of   for the bathroom scale data.  

 

median median median median

0.05 -0.01 0.14 -0.03 -0.15 0.08 -0.05 -0.20 0.08

0.33 0.26 0.45 0.36 0.26 0.52 0.79 0.47 1.10

Purchased in last 2 years

Variance

MVN-MNLS-MNL

2.5-97.5 %-tile2.5-97.5 %-tile 2.5-97.5 %-tile 2.5-97.5 %-tile

diagonal G-MNL G-MNL

median median median median

none 0.01 -0.06 0.07 0.40 -0.13 0.85 0.74 0.32 1.16 1.42 0.78 2.15

250 lbs. 0.11 0.06 0.16 0.29 0.13 0.48 0.31 0.11 0.50 0.50 0.17 0.88

300 lbs. 0.22 0.18 0.28 0.62 0.44 0.79 0.67 0.49 0.85 1.14 0.85 1.46

350 lbs. 0.10 0.06 0.16 0.34 0.17 0.54 0.36 0.15 0.54 0.63 0.32 0.97

400 lbs 0.08 0.02 0.14 0.27 0.08 0.44 0.27 0.06 0.49 0.43 0.13 0.74

0875 0.27 0.23 0.32 0.69 0.52 0.84 0.64 0.47 0.84 1.19 0.79 1.59

1.00 0.25 0.20 0.33 0.70 0.52 0.89 0.70 0.54 0.86 1.15 0.85 1.49

1.143 -0.06 -0.12 0.00 0.08 -0.13 0.26 0.05 -0.14 0.24 0.03 -0.30 0.35

1.333 -0.49 -0.56 -0.43 -1.18 -1.46 -0.87 -1.23 -1.51 -0.97 -2.20 -2.88 -1.67

0.094" -0.15 -0.20 -0.11 -0.28 -0.43 -0.11 -0.33 -0.51 -0.14 -0.51 -0.80 -0.21

0.125" 0.18 0.13 0.23 0.64 0.48 0.82 0.64 0.44 0.84 1.08 0.81 1.38

0.156" 0.17 0.12 0.23 0.58 0.37 0.79 0.53 0.32 0.75 0.90 0.57 1.21

0.188" 0.17 0.12 0.23 0.37 0.11 0.65 0.44 0.21 0.66 0.71 0.36 1.09

1.00" -0.26 -0.32 -0.21 -0.44 -0.62 -0.27 -0.52 -0.76 -0.32 -0.91 -1.30 -0.60

1.25" 0.28 0.23 0.36 0.73 0.55 0.93 0.76 0.59 0.95 1.39 1.08 1.74

1.50" 0.36 0.28 0.42 0.91 0.75 1.07 0.93 0.66 1.13 1.74 1.39 2.22

1.25" 0.47 0.41 0.53 1.02 0.81 1.22 1.00 0.79 1.29 1.91 1.44 2.52

$15 0.43 0.38 0.49 0.97 0.81 1.14 0.96 0.75 1.17 1.61 1.31 2.00

$20 0.10 0.05 0.15 0.37 0.21 0.52 0.40 0.28 0.55 0.71 0.48 0.97

$25 -0.28 -0.35 -0.21 -0.54 -0.73 -0.37 -0.57 -0.79 -0.37 -0.97 -1.37 -0.64

$30 -0.82 -0.91 -0.74 -1.87 -2.16 -1.58 -1.88 -2.22 -1.57 -3.25 -3.96 -2.75

none -0.17 -0.52 0.20 -0.04 -0.43 0.33 -0.06 -0.77 0.39

250 lbs. 0.06 -0.12 0.32 0.09 -0.12 0.30 0.15 -0.18 0.44

300 lbs. 0.03 -0.11 0.19 0.03 -0.14 0.22 0.03 -0.23 0.29

350 lbs. -0.02 -0.24 0.17 -0.03 -0.22 0.16 -0.07 -0.36 0.24

400 lbs -0.03 -0.21 0.14 -0.02 -0.23 0.17 -0.01 -0.27 0.28

0875 0.21 0.08 0.35 0.26 0.06 0.44 0.35 0.03 0.65

1.00 0.04 -0.12 0.21 0.05 -0.11 0.21 0.11 -0.14 0.43

1.143 -0.11 -0.29 0.11 -0.11 -0.29 0.08 -0.20 -0.49 0.12

1.333 -0.25 -0.53 -0.02 -0.36 -0.61 -0.06 -0.39 -0.89 0.13

0.094" -0.05 -0.20 0.09 -0.08 -0.24 0.11 -0.19 -0.48 0.12

0.125" -0.10 -0.25 0.04 -0.07 -0.23 0.08 -0.01 -0.25 0.24

0.156" 0.17 -0.02 0.39 0.20 0.02 0.39 0.27 -0.07 0.56

0.188" -0.03 -0.22 0.18 0.05 -0.19 0.29 0.00 -0.32 0.39

1.00" 0.10 -0.03 0.23 0.13 -0.05 0.31 0.22 -0.06 0.49

1.25" -0.04 -0.20 0.11 -0.04 -0.22 0.14 -0.14 -0.43 0.13

1.50" -0.14 -0.31 0.03 -0.13 -0.32 0.05 -0.34 -0.66 -0.05

1.25" -0.09 -0.32 0.12 -0.07 -0.34 0.15 -0.21 -0.59 0.17

$15 -0.17 -0.34 -0.01 -0.10 -0.33 0.10 -0.37 -0.65 -0.07

$20 -0.10 -0.25 0.02 -0.10 -0.26 0.04 -0.22 -0.44 -0.01

$25 0.13 -0.05 0.32 0.14 -0.07 0.36 0.23 -0.09 0.51

$30 0.34 0.09 0.54 0.22 -0.11 0.51 0.72 0.19 1.14

capacity

capacity

aspect ratio

gap

number size

Intercept

price

Purchased 

in last 2 

years

price

aspect ratio

gap

number size

G-MNL

2.5-97.5 %-tile2.5-97.5 %-tile 2.5-97.5 %-tile 2.5-97.5 %-tile

MVN-MNLS-MNL diagonal G-MNL
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Table 8. Comparison of estimates of diagonal (Σ) for the bathroom scale data.  

 

 

Although the population-level comparisons in Table 5 suggest that the G-MNL model is most 

consistent with this data, estimation software for MVN-MNL is widely available and is regularly used by 

practitioners. The estimated individual-level parameters are then used to make market share predictions 

by averaging over individual-level share predictions (cf., Sawtooth Software 2005). Table 9, which 

reports the model fit statistics for the individual-level parameters, suggests that when this approach is 

used, it may not be critical which population-level specification is used. Individual-level log-marginal 

density and DIC are quite close for the MVN-MNL and G-MNL model and favor the MVN-MNL 

specification, suggesting that when the MVN-MNL model serves as a prior on the individual-level 

parameters, it provides sufficient flexibility to fit the individual-level parameters well.  

median median median median

none 5.73 4.35 8.45 5.08 4.23 7.40 13.47 9.81 20.00

250 lbs. 1.05 0.74 1.51 1.76 1.24 2.09 2.96 2.23 4.30

300 lbs. 0.54 0.39 0.98 1.00 0.79 1.32 1.80 1.31 2.77

350 lbs. 0.85 0.59 1.23 1.21 0.85 1.50 2.81 2.07 4.09

400 lbs 0.74 0.54 1.13 1.26 1.03 1.67 2.51 1.89 3.68

0875 0.53 0.36 0.78 1.24 0.83 1.55 3.90 2.76 6.04

1.00 0.63 0.46 0.88 0.82 0.68 1.07 1.92 1.46 2.86

1.143 1.16 0.79 1.55 1.30 1.11 1.75 3.55 2.67 5.39

1.333 2.16 1.64 3.01 2.78 2.10 3.73 9.21 6.71 14.89

0.094" 0.45 0.30 0.65 0.99 0.80 1.36 2.42 1.68 3.29

0.125" 0.67 0.50 1.04 0.89 0.68 1.21 1.75 1.31 2.52

0.156" 0.98 0.72 1.49 1.41 1.00 1.72 3.11 2.29 4.22

0.188" 1.62 1.28 2.43 1.86 1.36 2.62 4.24 3.36 6.49

1.00" 0.42 0.30 0.70 1.05 0.85 1.86 2.84 2.01 4.23

1.25" 0.58 0.40 1.07 0.94 0.71 1.10 2.42 1.65 3.52

1.50" 0.55 0.33 0.79 1.21 0.88 1.42 3.32 2.45 5.27

1.25" 1.40 1.10 1.94 1.94 1.60 2.67 6.53 4.82 10.11

$15 0.44 0.32 0.61 1.24 1.00 1.72 2.87 1.95 4.28

$20 0.25 0.18 0.42 0.50 0.43 0.64 1.03 0.76 1.43

$25 0.79 0.58 1.24 1.44 1.10 2.01 2.99 2.22 4.62

$30 1.97 1.38 2.76 2.85 2.45 3.69 6.45 5.13 11.67

gap

number size

price

capacity

aspect ratio

2.5-97.5 %-tile 2.5-97.5 %-tile 2.5-97.5 %-tile

MVN-MNLS-MNL diagonal G-MNL G-MNL

2.5-97.5 %-tile
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Table 9. Individual-level model fit statistics for bathroom scale data suggest that the MVN-MNL 

serves as an adequate prior on individual-level parameter estimates. 

 

 

4.2 PC Buy/No-Buy Data  

Data and estimation. The PC data consisted of 201 subjects, who each made 20 binary choices 

between a PC profile and “don‟t buy.”  The PC profiles each had 14 binary attributes, which were near-

orthogonally manipulated according to a design that was fixed across respondents. In addition, we 

considered four potential individual-level characteristics to include in the model: gender, age, PC 

ownership and whether the respondent considered him/herself to be an “expert at buying PCs.” Similar to 

the bathroom scale data, initial MCMC runs suggested that the posterior for this data and the G-MNL 

specification with 14 attributes was too diffuse to properly traverse, so we dropped the three attributes 

that had insignificant parameter estimates (based on preliminary estimates for a MVN-MNL model). We 

also used a diffuse prior on the population variance parameters: )100,01.0(~   ),2IW(~ 12  IK . 

All posterior estimates are based on chains of length 200,000 with a burn-in of 10,000.  

Model comparisons. We estimated S-MNL, MVN-MNL, and G-MNL specifications for the PC 

buy/no-buy data. Focusing on the population-level parameters, we find that all four models have similar 

log marginal likelihood, with the G-MNL model favored (Table 10). Notably, the log-marginal likelihood 

for the S-MNL model is nearly the same as for the MVN-MNL, suggesting that a model that includes 

heterogeneity in error scale (but not in 𝛽𝑖)  produces a model that describes the data nearly as well as one 

that includes full-covariance heterogeneity in 𝛽𝑖 .  

log marginal density (N-R)

pD

average deviance

DIC

maximum ll (from draws)

parameters

BIC

13,995

-5,050

diagonal

G-MNL
G-MNL

3,344

9,924

2,329.1

3,344

-5,072-5,289

3,668.6

10,326

38,14419,337

12,254

-4,835

39,983 39,551

18,048

S-MNL

-8,895

-8,951 -5,038

193.1

9,854

173

12,112

3,192

17,855

MVN-MNL

-4,811

2,258.1
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Table 10. Population-level log marginal densit for PC buy/no-buy data favors the G-MNL 

specification. 

 

Table 11 reports the individual-level model comparison statistics, which favor the MVN-MNL 

model. Similarly to the bathroom scale data, we find that the MVN-MNL and the G-MNL models both 

produce individual-level parameter estimates that fit the data quite well, while the S-MNL model, which 

does not allow as much flexibility in the individual-level parameters, does not fit the individual-level data 

well. This suggests that if individual-level parameters are the object of inference and are used in 

prediction then it is reasonable to use a MVN-MNL model.  

Table 11. Individual-level model fit statistics for PC buy/no-buy data indicate that the MVN-MNL 

specification produces the best-fitting individual-level parameters. 

 

 

Parameter estimates. In Table 12, we report the relationship between error variance, i , and the 

respondents‟ age, gender, current PC ownership and self-reported expertise in buying a computer. In the 

G-MNL formulation, we find significant relationships between error variance and PC ownership, age and 

maximum ll

BIC 4,228

G-MNLMVN-MNLS-MNL

3,510

3,404.3

-1,762

115

-1,761

-1,774

16

-1,637

120.4

3,525

60.3

4,258

-1,772

3,655

16.8

3,554

110

pD

DIC

log marginal density (N-R)

average deviance 3,449.53,537.6

parameters

-1,673

maximum ll

BIC

-771

21,55319,828

-987

5,058

4,061

1,681.1

212

G-MNL

2,412

1,774.9

2,286.0

S-MNL

2,211

2,934

-1,704

3,368.9

3,558

-926

188.8pD

DIC

-1,649

average deviance

parameters

log marginal density (N-R)

MVN-MNL

-743

1,252.7
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purchasing expertise. We find that those who claim to have expertise in purchasing PCs have lower error 

variance. As we will discuss further, this is consistent with the hypothesis that respondents who have 

greater expertise make more consistent decisions when faced with similar choice tasks. The G-MNL 

model estimates also indicate that that those who currently own a PC have higher error scale, which may 

be indicative of their being more conflicted about the task in general, e.g., “Why should I buy a PC if I 

already own one anyway?” or could be due to owners placing more weight on terms left out of the utility 

specification such as omitted attributes or interactions. We also find that those who are older make less 

consistent choices, which seems reasonable given that older people have less expertise in the category in 

general and may devote fewer cognitive resources to answering the survey questions. Estimates for the 

remaining population-level parameters are included in Appendix C. 

Table 12. Estimates of ),( 2 for the PC buy/no buy data indicate that respondents who do not 

own a PC, who are younger and who are  more experienced in the category make more consistent 

choices. 

 

5. Interpretation of individual differences in error scale 

In the bathroom scale and PC data we found preliminary evidence of heterogeneity in the error 

scale in a choice model, consistent with what has been found by Keane et al. 2009. There are many 

potential contributors to heterogeneity in error scale. In market data on choices, a major potential source 

of individual differences in error scale is differences in the importance of omitted attributes across 

respondents; for example, if a subgroup of consumers pays close attention to aesthetic appeal of the 

alternatives, but aesthetic appeal is not included in the model, then these consumers will have greater 

median median median

PC Owner -0.02 -0.08 0.05 0.33 0.23 0.43

Gender -0.04 -0.29 0.24 -0.32 -0.99 0.27

Age 0.01 -0.01 0.03 0.04 0.02 0.07

Expert Buyer -0.07 -0.14 0.02 -0.29 -0.52 -0.06

Variance 0.34 0.29 0.44 0.58 0.41 0.85

2.5-97.5 %-tile

MVN-MNLS-MNL

2.5-97.5 %-tile

G-MNL

2.5-97.5 %-tile
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estimated error scale. The G-MNL model will accommodate these differences and may provide better 

predictive ability if heterogeneity in the importance of omitted attributes exists in the data.  

In choice experiments like those reported on here, the researcher controls the presentation of the 

choice task and there are no systematically varying attributes other than those presented and modeled, so 

the potential for differences in omitted attributes is reduced. However, even in choice experiments, 

heterogeneity in error scale may still remain due to misspecification errors; for example, if a significant 

interaction has been left out of the specification of the deterministic portion of the utility, then consumers 

who place the greatest weight on the interaction will have higher estimated error scale, ceteris paribus, 

than respondents who don‟t place high weight on this interaction. Respondents for whom the linear 

specification of the deterministic portion of the utility is inaccurate may also have greater estimated error 

scale. Similarly, respondents who are making more inferences about attributes that have been left out of 

the choice task may have greater estimated error scale. It is important to keep in mind when interpreting 

estimates of error variance that differences in misspecification across respondents will lead to differences 

in estimated error scale.  

However, it has been suggested that even in the complete absence of specification errors, we 

would likely still find individual differences in error scale and that the remaining variation in error scale 

can be interpreted as a characteristic of the decision maker and choice context that might be dubbed 

“choice consistency” (Deallert, Brazell and Louviere 1999, Louviere 2001). Choice consistency can be 

defined as the respondent‟s propensity to make the same decision when faced with the same choice 

scenario repeatedly. Indeed, error scale increases when consumers make decisions about future 

consumption versus decisions about immediate consumption (Salisbury and Feinberg 2009) and error 

scale increases as the complexity of a choice task increases (cf. Louviere, al. 2008b). These observations 

are difficult to explain entirely by misspecification and suggest that some portion of what we estimate as 

the error scale in the G-MNL model corresponds to the consistency with which individual consumers 

answer choice questions. While our modeling approach does not permit us to disentangle choice 

consistency from other contributors to heterogeneity in error scale, the concept of choice consistency 
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motivates our interest in the relationship between characteristics of the individual such as age and 

expertise and  error scale.  

In particular, we find in the PC data that older respondents have greater error scale. This is 

consistent with the hypothesis that respondents who have fewer cognitive resources to devote to a choice 

task, for example due to age, will make less consistent choices (de Palma, Myers and Papageorgiou 1994, 

Swait and Adamowicz 2001). This hypothesis has been substantiated in other studies for instance, fatigue 

effects have been found to occur in choice experiments (Bradley and Daly 1994), where respondents 

make less consistent choices during the second half of a choice experiment versus the first. It has also 

been shown that choice experiments with more taxing designs (e.g., more attributes, more attributes that 

differ between alternatives) result in greater error scale (Louviere, et al. 2008a, Dellaert Brazell and 

Louviere 1999). Our finding on the relationship between age and error scale in the PC data contributes to 

the growing body of evidence that any situation that decreases a respondent‟s cognitive resources (e.g., 

distraction, aging) will, all else equal, result in less consistent decisions and greater error scale.  

Similarly, one might hypothesize that respondents with high expertise making decisions in the 

target category require fewer cognitive resources to make a decision and will make more consistent 

decisions than those with less expertise, contributing to lower estimated error scale for respondents with 

high expertise. Our findings in the PC data are consistent with this hypothesis; respondents with high 

stated expertise have significantly lower estimated error scale. Although our modeling methods cannot 

shed light on what differentiates the thought processes of “experts” from non-experts, we would expect 

that an expert will have developed a rich schema around the product category, including the benefits of 

various product features and how he values those features.  

Note that our findings on the relationship between error scale and expertise are not consistent 

with what one would expect were differences in error scale driven by differences in the extent of 

misspecification between experts and non-experts. One would expect that experts are more likely to have 

considered all attributes and potential interactions (e.g., “cell phones with 4G service really should have 

larger displays”) and to the extent that we leave these interactions out of the model, error scale should be 
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higher for these expert individuals. In contrast, we find empirically that experts have lower levels of error 

scale, suggesting that the relationship between expertise and error scale is mediated through an effect of 

expertise on choice consistency, rather than the effect of expertise on misspecification (although it is 

possible that both effects are operative in our data set).  

Our preliminary findings on the relationship between error scale and expertise would be 

complemented by additional experiments designed to confirm and flesh out our preliminary findings. 

Ideally, these experiments should be designed to have more choices observed for each decision maker, so 

that individual-level error scale is better identified. This can be achieved either by presenting more tasks 

to each decision maker or by asking the decision maker to make more choices within each task, e.g., by 

using dual response choice tasks (Brazell et al. 2006) or by asking respondents to choose most and least 

preferred alternatives (Louviere, et al. 2008b). Such experiments should also employ simpler choice 

alternatives so that heterogeneity in misspecification can reduced by estimating interaction terms and non-

linear specifications in the utility function. We could then interpret error scale estimates more clearly as 

“choice consistency”. In an experimental setting we can also manipulate the independent variables that 

we hypothesize may influence choice consistency; for instance, we could manipulate the amount of 

cognitive resources the subject can devote to the task (e.g., through distraction) or to change their 

experience in the product category (e.g., by asking them to read neutral product reviews before 

completing the choice task) to more fully flesh out the causal relationships between choice consistency, 

cognitive capacity and experience with the product category. Such experiments could also be used to 

identify other moderators of choice consistency.  

Beyond expertise, there are a number of other covariates to error scale that could be included in 

G-MNL models. For example, people with lower need for cognition (Petty and Cacioppo 1986) might be 

expected to have greater error scale. It has also been suggested that response latencies are related to error 

scale (Haaijer, Kamakura and Wedel 2000). Similarly, increasing the complexity of the choice task may 

increase error scale and practitioners should consider experimental designs that anticipate this effect 

(Louviere, et al. 2008a). Designs explicitly based on the information matrix for the G-MNL model, 
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integrating over prior distributions for the relationship between error scale and other covariates, should be 

considered.  

6. Conclusions and future research 

This essay contributes to the development of the G-MNL model in a number of ways. We 

propose a Bayesian estimation procedure for the G-MNL, which readily accommodates characteristics of 

individual decision makers as covariates to error scale. We then test that procedure using two data sets 

and find that the G-MNL model does provide better fit to both data sets than the standard MVN-MNL, as 

measured by the log marginal likelihood focused on the population-level parameters, suggesting that the 

population-level model in G-MNL is more consistent with the data. This finding suggests that there is 

heterogeneity in error scale that is not properly accounted for by the structure of the MVN-MNL model. 

We note, however, that individual-level parameters estimated under MVN-MNL and G-MNL models 

seem to perform equally well and the MVN-MNL model is likely sufficient for applications where 

individual-level prediction is the goal and there is sufficient data available for each individual (e.g., CRM 

applications). We also find little support at the population-level for the S-MNL specification, suggesting 

that there is heterogeneity in i  in these data sets. The inflexibility of the S-MNL model at the 

individual-level also severely limits the ability of that model to fit individual-level parameters well.  

We also facilitate the use of G-MNL in practice by empirically exploring the data requirements 

for obtaining accurate estimates of the G-MNL and find that estimating this model requires a larger 

number of respondents and a larger number of observed choices per respondent than is typical in 

commercial market research, but even so, seems to be  feasible.  

There are a number of outstanding methodological issues related to G-MNL that remain to be 

addressed. In particular, given the widespread availability of software to estimate the MVN-MNL model, 

it would be valuable to practitioners to develop a method to detect error scaling effects directly from 

MVN-MNL model estimates, without estimating the G-MNL or S-MNL models.  
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Finally, our preliminary experience with the MCMC sampler for G-MNL suggests that 

introducing the heterogeneous error scale parameter improves mixing. This is consistent with the recent 

findings in Bayesian estimation that suggest that introducing weakly or unidentified “working 

parameters” improves mixing (see Gelman et al. 2008 for a review). Further research comparing 

algorithm performance could lead to substantially improved sampling algorithms for both G-MNL and 

the traditional MVN-MNL model.  

Expertise and error scale. In addition to contributing to the development of the G-MNL model, 

we also use the model and a Bayesian estimation approach to explore the relationship between an 

individual‟s error scale and several covariates. In the PC data, we find that an individual's error scale is 

positively related to age and negatively correlated with his self-stated expertise at making purchases in the 

category. Both findings are suggestive: age is negatively related to cognitive resources, so it is not 

surprising that older respondents would make less consistent choices when faced with the same set of 

alternatives. Respondents who believe they have greater expertise are likely to have more stable 

preferences and more confidence in their choices, and so would be expected to make more consistent 

choices. These findings contribute to the growing body of literature that suggests that some of the 

variation in error scale across respondents can be interpreted as differences in “choice consistency” 

(Louviere 2001).  

These preliminary findings suggest a new opportunity for the study of the marketing dynamics of 

consumer expertise in an emerging category. As the category develops, we would expect that experienced 

buyers, who are likely to have lower error variance, will represent a growing portion of the market. If 

expertise is related to error scale, then the product attributes will explain more and more of the choice 

behavior in the market over time, even if the underlying value respondents place on those attributes 

remains constant. This, in turn, would lead to less “diversification” in market shares as the category 

develops; the product with the best set of features will gain market share over time relative to products 

with less desirable features (even if the products remain unchanged). If we ignore the relationship 

between error scale and expertise when developing choice models for emerging products, we risk making 
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inaccurate predictions about how the market will develop. Similarly, we might make different predictions 

based on how the age of the consumer base evolves over time and influences the distribution of error 

scale. 

  



37 

 

 

References 

Allenby, G.M. and J.L. Ginter (1995) Using Extremes to Design Products and Market Segments, Journal 

of Marketing Research, 32(4), 392-403.  

Ben-Akiva, M. and S.R. Lerman (1985) Discrete Choice Analysis: Theory and Application to Travel 

Demand, The MIT Press, Cambridge, MA.  

Bradley, M. and A. Daly. 1994. Use of the logit scaling approach to test for rank-order and fatigue effects 

in stated preference data. Transportation, (21)2, 167-184.  

Brazell, J.D., C.G. Diener, E. Karniouchina, W.L.Moore, V. Severin and P.-F. Uldry (2006) The no-

choice option and dual response choice designs, Marketing Letters, 17, 255-268.  

Chib S. and I. Jeliazkov (2001) Marginal Likelihood From the Metropolis–Hastings Output, Journal of 

the American Statistical Association, 96(453), 270-281.  

Dellaert, G.C., Brazell, J.D. and J.J. Louviere (1999) The Effect of Attribute Variation on Consumer 

Choice Consistency, Marketing Letters, 10(2), 139-147.  

dePalma, A., G.M. Myers and P.I. Papageorgiou (1994) Rational Choice Under an Imperfect Ability to 

Choose, American Economic Review, 84(3), 419-440.  

DeShazo, J.R. and G. Fermo (2002) Designing Choice Sets for Stated Preference Methods: The Effects of 

Complexity on Choice consistency, Journal of Environmental Economics and Management, 44(1), 

123-143.  

Gelfand, A.E. and D.K. Dey (1994) Bayesian Model Choice: Asymptotics and Exact Calculations, 

Journal of the Royal Statistical Society Series B, 56(3), 501-514. 

Gelman, A., D.A. van Dyk, Z. Huang and W.J. Boscardin (2008) Using Redundant Parameterizations to 

Fit Hierarchical Models, Journal of Computational and Graphical Statistics, 17(1), 95-122.  

Haaijer, R. W. Kamakura and M. Wedel (2000) Response Latencies in the Analysis of Conjoint Choice 

Experiments, Journal of Marketing Research, 37(3), 376-382. 

Hensher, D. A., J. J. Louviere, and J. Swait (1998) Combining Sources of Preference Data, Journal of 

Econometrics, 89(1-2), 197–221. 

Kanetkar, V., T. Islam and J. Louviere (2005) Latent Segments or Scale Variations: A Simple Choice 

Model to Incorporate Heterogenety, working paper.  

Keane, M.P., J. Louviere, N. Wasi and D.G. Fiebig (2009) The Generalized Multinomial Logit Model, 

Marketing Science, forthcoming.  

Lenk, P.J., W.S. DeSarbo, P.E. Green and M.R. Young (1996) Hierarchical Bayes Conjoint Analysis: 

Recovery of Partworth Heterogeneity from Reduced Experimental Designs, Marketing Science, 

15(2), 173-191.  

Louviere, J.J. (2001) What If Consumer Experiments Impact Variances as well as Means? Response 

Variability as a Behavioral Phenomenon, Journal of Consumer Research, 28(3), 506-511. 



38 

 

 

Louviere, J.J. and T. Eagle (2008) Confound it! That Pesky Little Scale Constant Messes Up Our 

Convenient Assumptions!, Proceedings of the 2006 Sawtooth Software Conference.  

Louviere, J.J., D.A. Hensher and J.D. Swait (2000) Stated Choice Methods, Cambridge University Press, 

Cambridge, UK.  

Louviere, J.J., Islam, T., Wasi, N., Street, D. & Burgess, L.B. (2008a) Designing Discrete Choice 

Experiments: Do Optimal Designs Come At A Price?, Journal of Consumer Research, 35(2), 360-

375. 

Louviere, J.J., Street, D., Burgess, L.B., Wasi, N., Islam, T. & Marley, A.A. (2008b) Modeling the 

choices of individual decision-makers by combining efficient choice experiment designs with extra 

preference information, Journal of Choice Modelling, 1(1), 128-163. 

Magidson, J., and Vermunt, J.K. (2007). Removing the scale factor confound in multinomial logit choice 

models to obtain better estimates of preference. October 2007 Sawtooth Software Conference 

Proceedings.  

Michalek, J.J. (2005) Preference Coordination in Engineering Design Decision-Making, Ph.D. 

Dissertation, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 

USA. 

Newton, M.A. and A.E. Raftery. 1994. Approximate Bayesian Inference with the Weighted Likelihood 

Bootstrap. Journal of the Royal Statistical Society Series B (Methodological), 56(1), pp 3-48. 

Petty, R. E., & J.T. Cacioppo (1986) Communication and Persuasion: Central and Peripheral Routes to 

Attitude Change. New York: Springer-Verlag. 

Rossi, P.E., G.M. Allenby, R. McCulloch (2005) Bayesian Statistics and Marketing, John Wiley and 

Sons, Chichester, UK.  

Sawtooth Software (2005) The CBC/HB System for Hierarchical Bayes Estimation: Version 4.0 

Technical Paper.  

 Salisbury, L.C. and F. Feinberg (2008) Future preference uncertainty and diversification: The Role of 

Temporal Stochastic Inflation, Journal of Consumer Research, 35(2), 349-359. 

Salisbury, L.C. and F. Feinberg (2009) Alleviating the Constant Stochastic Variance Assumption in 

Marketing Research: Theory, Measurement, and Experimental Test, Marketing Science, 

forthcoming.  

Sonnier, G., A. Ainslie and T. Otter (2007) Heterogeneity distributions of willingness-to-pay in choice 

models, Quantitative Marketing and Economics, 5(3), 313-331. 

Swait, J. and W. Adamowicz (2001) The Influence of Task Complexity on Consumer Choice: A Latent 

Class Model of Decision Strategy Switching, Journal of Consumer Research, 28(1), 135-148. 

Swait, J. and W. Adamowicz (2001) Choice Environment, Market Complexity and Consumer Behavior: 

A Theoretical and Empirical Approach for Incorporating Decision Complexity into Models of 

Consumer Choice, Organizational Behavior and Human Decision Processes, 86(2), 141-167.  

http://datasearch.uts.edu.au/business/staff/details.cfm?StaffId=158
http://datasearch.uts.edu.au/business/staff/details.cfm?StaffId=7017
http://datasearch.uts.edu.au/business/staff/details.cfm?StaffId=1334
http://datasearch.uts.edu.au/business/staff/details.cfm?StaffId=158
http://datasearch.uts.edu.au/business/staff/details.cfm?StaffId=1334
http://datasearch.uts.edu.au/business/staff/details.cfm?StaffId=7017


39 

 

 

Swait, J. and J. Louviere. 1993. The role of the scale parameter in the estimation and comparison of 

multinomial logit models, Journal of Marketing Research, 30(3), 305-314. 

Spiegelhalter, D.J., N.G. Best, B.P. Carlin and A. van der Linde (2002) Bayesian Measures of Model 

Complexity and Fit, Journal of the Royal Statistical Society Series B, 64(4), 583-639.  

Train, K.E. (2003) Discrete Choice Methods with Simulation, Cambridge University Press, Cambridge, 

UK.  

Trevisani M. and A.E. Gelfand (2003) Inequalities between Expected Marginal Log-Likelihoods, with 

Implications for Likelihood-Based Model Complexity and Comparison Measures, The Canadian 

Journal of Statistics, 31(3), 239-250.  

 

 

   



40 

 

 

Appendix A. Details of the MCMC sampling algorithm 
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1. Draw ),( 0  per the usual full conditional for the multivariate normal model.  
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which can be done by the usual M-H step for the multinomial logit.  
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Appendix B. Parameter recovery study for MVN-MNL model.  

To explore the potential for outward bias in the MVN-MNL model, we generated data according 

to the true MVN-MNL model and then estimated the MVN-MNL model using this data. The design of 

the study mirrors that reported in Table 1. As expected, we find that posterior standard errors decrease as 

we increase the amount of data or decrease the number of parameters of the model. Recovery of true 

parameters, as measured by the root mean squared error between the true parameters and the modes of the 

posterior distributions, also improves as we increase data or increase parameters. More importantly, we 

find that as the number of choices per unit is decreased, there is substantial outward bias in the posterior 

distributions of both the individual and population-level parameters. When we observe 10 choices for 

each of 600 units with 3 alternatives per task and 9 attributes (data that is quite typical for commercial 

choice experiments), we find an average outward bias in 0  of  0.43. Although this may not affect the 

predictive performance of the model a great deal (i.e., estimated shares may be reasonably accurate), it 

does suggest that caution should be used when interpreting MVN-MNL parameters. In comparing 

parameter recovery results for MVN-MNL (Table 13) versus G-MNL (Table 1), we find that both models 

are subject to this outward bias, however the flexibility of the G-MNL to seems to make the bias more 

pronounced (i.e. more choice observations per unit are required to eliminate the bias). Our experience 

estimating both MVN-MNL and G-MNL with real data sets bore this out.  

Table 13. Recovery of the parameters of the MVN-MNL model shows substantial outward bias as 

the number of observations per respondent is reduced. 

 
  

10 20 50 100 3 10 200 600 1000 3 9 21

 0 0.44 0.18 0.04 0.03 0.04 0.03 0.11 0.04 0.04 0.09 0.04 0.04

diag(Σ) 0.27 0.13 0.02 0.03 0.02 0.03 0.08 0.02 0.04 0.11 0.02 0.04

 i 0.62 0.52 0.41 0.28 0.41 0.40 0.37 0.41 0.37 0.00 0.41 0.33

 0 0.11 0.06 0.04 0.03 0.04 0.03 0.07 0.04 0.03 0.08 0.04 0.03

diag(Σ) 0.13 0.08 0.04 0.04 0.04 0.03 0.08 0.04 0.03 0.11 0.04 0.02

 i 0.65 0.55 0.37 0.33 0.37 0.32 0.42 0.37 0.43 0.00 0.37 0.30

 0 0.43 0.17 -0.01 0.02 -0.01 0.00 0.09 -0.01 0.02 -0.10 -0.01 0.03

diag(Σ) 0.24 0.10 0.01 0.01 0.01 0.00 0.05 0.01 0.02 -0.07 0.01 0.03

 i 0.31 0.25 -0.02 -0.02 -0.02 0.00 0.05 -0.02 -0.02 0.00 -0.02 -0.07

Average 

Posterior SD

Number of 

Alternatives
Number of Units

Number of 

Attributes
Number of Observations

RMSE

Average 

Outward Bias
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Appendix C. Parameter Estimates for PC buy/no buy data 

Table 14. Comparison of estimates of  for the PC buy/no buy data.  

 

median median median

Constant -1.80 -2.00 -1.61 -3.45 -3.87 -3.09 -5.54 -6.24 -5.04

Hot Line 0.16 0.05 0.27 0.23 0.03 0.42 0.10 -0.20 0.41

Ram 0.14 0.02 0.30 0.60 0.38 0.82 0.92 0.65 1.20

Screen 0.23 0.14 0.33 0.47 0.28 0.70 0.91 0.60 1.22

CPU Speed 0.37 0.26 0.49 0.89 0.66 1.11 0.96 0.70 1.26

Hard Disk 0.21 0.06 0.31 0.33 0.13 0.54 0.42 0.05 0.76

CD 0.40 0.30 0.53 1.08 0.87 1.29 1.16 0.82 1.46

Color -0.10 -0.20 0.02 -0.17 -0.38 0.07 -0.42 -0.75 -0.11

Channel 0.24 0.12 0.34 0.56 0.31 0.80 1.22 0.92 1.51

Guarantee 0.12 0.04 0.22 0.30 0.08 0.52 0.65 0.35 0.95

Price -1.51 -1.68 -1.34 -2.92 -3.23 -2.66 -4.03 -4.57 -3.60

Constant -0.37 -0.65 -0.11 -3.47 -4.14 -2.82

Hot Line 0.06 -0.10 0.21 -0.33 -0.81 0.07

Ram -0.03 -0.21 0.14 0.39 0.07 0.73

Screen 0.20 0.06 0.38 1.03 0.56 1.47

CPU Speed -0.08 -0.27 0.09 -0.22 -0.59 0.13

Hard Disk 0.09 -0.12 0.29 0.13 -0.21 0.49

CD -0.09 -0.26 0.08 -0.23 -0.64 0.15

Color -0.10 -0.28 0.06 -0.77 -1.19 -0.33

Channel 0.20 0.02 0.39 1.32 0.95 1.75

Guarantee 0.36 0.19 0.52 0.85 0.41 1.28

Price -0.08 -0.27 0.11 -0.85 -1.29 -0.38

Constant -0.26 -0.84 0.44 0.09 -0.94 1.06

Hot Line 0.44 -0.09 1.02 0.38 -0.19 0.97

Ram -0.17 -0.71 0.38 -0.40 -1.06 0.24

Screen -0.05 -0.59 0.43 -0.22 -0.75 0.42

CPU Speed 0.07 -0.39 0.56 -0.03 -0.61 0.54

Hard Disk -0.17 -0.72 0.41 -0.40 -0.96 0.20

CD -0.28 -0.81 0.22 -0.43 -1.01 0.24

Color 0.26 -0.24 0.87 0.37 -0.30 1.06

Channel -0.35 -0.87 0.25 -0.61 -1.19 0.02

Guarantee 0.00 -0.55 0.54 -0.14 -0.75 0.46

Price -0.13 -0.71 0.44 0.16 -0.83 1.02

Constant -0.05 -0.10 0.00 -0.30 -0.42 -0.19

Hot Line -0.01 -0.05 0.03 -0.11 -0.19 -0.03

Ram 0.00 -0.03 0.04 0.07 0.00 0.15

Screen -0.01 -0.05 0.03 0.02 -0.05 0.10

CPU Speed 0.00 -0.05 0.03 -0.02 -0.10 0.06

Hard Disk -0.04 -0.08 0.00 -0.09 -0.17 -0.02

CD -0.03 -0.07 0.01 -0.13 -0.21 -0.05

Color 0.00 -0.04 0.04 0.00 -0.09 0.07

Channel 0.02 -0.01 0.06 0.14 0.06 0.22

Guarantee -0.03 -0.07 0.01 0.05 -0.04 0.14

Price 0.05 0.00 0.09 -0.06 -0.18 0.04

Constant 0.09 -0.15 0.37 0.78 0.39 1.19

Hot Line -0.05 -0.23 0.14 -0.14 -0.39 0.11

Ram -0.01 -0.20 0.19 -0.06 -0.36 0.20

Screen 0.03 -0.17 0.23 -0.10 -0.30 0.11

CPU Speed 0.30 0.12 0.49 0.39 0.15 0.63

Hard Disk 0.14 -0.06 0.36 0.01 -0.24 0.26

CD 0.02 -0.16 0.21 -0.08 -0.37 0.20

Color 0.02 -0.17 0.22 0.05 -0.18 0.28

Channel -0.19 -0.40 0.04 -0.36 -0.66 -0.08

Guarantee 0.03 -0.17 0.26 -0.15 -0.40 0.12

Price -0.28 -0.51 -0.07 0.20 -0.19 0.57

G-MNL

2.5-97.5 %-tile2.5-97.5 %-tile 2.5-97.5 %-tile

MVN-MNLS-MNL

Gender

PC Owner

Intercept

Expert Buyer

Age
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Table 15. Comparison of estimates of  for the PC buy/no buy data. 

  

  

 

  

 

median median median

Constant 2.99 2.33 3.73 2.57 1.88 3.57

Hot Line 0.94 0.76 1.19 0.96 0.78 1.27

Ram 0.94 0.78 1.13 1.00 0.81 1.25

Screen 0.97 0.83 1.22 1.07 0.90 1.31

CPU Speed 1.16 0.93 1.42 1.22 1.00 1.56

Hard Disk 1.04 0.85 1.24 1.12 0.82 1.45

CD 1.11 0.89 1.40 1.13 0.93 1.46

Color 0.85 0.70 1.08 0.96 0.75 1.20

Channel 0.91 0.71 1.24 1.01 0.81 1.24

Guarantee 0.91 0.75 1.18 1.04 0.73 1.30

Price 1.85 1.49 2.28 1.85 1.46 2.32

2.5-97.5 %-tile 2.5-97.5 %-tile

MVN-MNLS-MNL G-MNL

2.5-97.5 %-tile
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