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Abstract

We use a panel data set that combines annual brand-level advertising ex-

penditures for over three hundred brands with measures of brand awareness

and perceived quality from a large-scale consumer survey to study the effect

of advertising. Advertising is modeled as a dynamic investment in a brand’s

stocks of awareness and perceived quality and we ask how such an investment

changes brand awareness and quality perceptions. Our panel data allow us to

control for unobserved heterogeneity across brands and to identify the effect

of advertising from the time-series variation within brands. They also allow

us to account for the endogeneity of advertising through recently developed

dynamic panel data estimation techniques. We find that advertising has con-

sistently a significant positive effect on brand awareness but no significant effect

on perceived quality.
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1 Introduction

In 2006 more than $280 billion were spent on advertising in the U.S., well above 2% of

GDP. By investing in advertising, marketers aim to encourage consumers to choose

their brand. For a consumer to choose a brand, two conditions must be satisfied:

First, the brand must be in her choice set. Second, the brand must be preferred over

all the other brands in her choice set. Advertising may facilitate one or both of these

conditions.

In this research we empirically investigate how advertising affects these two con-

ditions. To disentangle the impact on choice set from that on preferences, we use

actual measures of the level of information possessed by consumers about a large

number of brands and of their quality perceptions. We compile a panel data set that

combines annual brand-level advertising expenditures with data from a large-scale

consumer survey, in which respondents were asked to indicate whether they were

aware of different brands and, if so, to rate them in terms of quality. These data offer

the unique opportunity to study the role of advertising for a wide range of brands

across a number of different product categories.

The awareness score measures how well consumers are informed about the exis-

tence and the availability of a brand and hence captures directly the extent to which

the brand is part of consumers’ choice sets. The quality rating measures the degree

of subjective vertical product differentiation in the sense that consumers are led to

perceive the advertised brand as being better. Hence, our data allow us to investi-

gate the relationship between advertising and two important dimensions of consumer

knowledge. The behavioral literature in marketing has highlighted the same two di-

mensions in the form of the size of the consideration set and the relative strength of

preferences (Nedungadi 1990, Mitra & Lynch 1995). It is, of course, possible that ad-

vertising also affects other aspects of consumer knowledge. For example, advertising

may generate some form of subjective horizontal product differentiation that is un-

likely to be reflected in either brand awareness or perceived quality. In a recent paper

Erdem, Keane & Sun (2008), however, report that advertising focuses on horizontal

attributes only for one out of the 19 brands examined.

Understanding the channel through which advertising affects consumer choice is

important for researchers and practitioners alike for several reasons. For example, Sut-

ton’s (1991) bounds on industry concentration in large markets implicitly assume that

advertising increases consumers’ willingness to pay by altering quality perceptions.

While profits increase in perceived quality, they may decrease in brand awareness
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(Fershtman & Muller 1993, Boyer & Moreaux 1999), thereby stalling the competitive

escalation in advertising at the heart of the endogenous sunk cost theory. Moreover,

Doraszelski & Markovich (2007) show that even in small markets industry dynamics

can be very different depending on the nature of advertising. From an empirical per-

spective, when estimating a demand model, advertising could be modeled as affecting

the choice set or as affecting the utility that the consumer derives from a brand. If the

role of advertising is mistakenly specified as affecting quality perceptions (i.e., pref-

erences) rather than brand awareness as it often is, then the estimated parameters

may be biased. In her study of the U.S. personal computer industry, Sovinsky Goeree

(2008) finds that traditional demand models overstate price elasticities because they

assume that consumers are aware of – and hence choose among – all brands in the

market when in actuality most consumers are aware of only a small fraction of brands.

For our empirical analysis we develop a dynamic estimation framework. Brand

awareness and perceived quality are naturally viewed as stocks that are built up

over time in response to advertising (Nerlove & Arrow 1962). At the same time,

these stocks depreciate as consumers forget past advertising campaigns or as an old

campaign is superseded by a new campaign. Advertising can thus be thought of

as an investment in brand awareness and perceived quality. The dynamic nature of

advertising leads us to a dynamic panel data model. In estimating this model we

confront two important problems, namely unobserved heterogeneity across brands

and the potential endogeneity of advertising. We discuss these below.

When estimating the effect of advertising across brands we need to keep in mind

that they are different in many respects. Unobserved factors that affect both adver-

tising expenditures and the stocks of perceived quality and awareness may lead to

spurious positive estimates of the effect of advertising. Put differently, if we detect an

effect of advertising, then we cannot be sure if this effect is causal in the sense that

higher advertising expenditures lead to higher brand awareness and perceived quality

or if it is spurious in the sense that different brands have different stocks of perceived

quality and awareness as well as advertising expenditures. For example, although in

our data the brands in the fast food category on average have high advertising and

high awareness and the brands in the cosmetics and fragrances category have low ad-

vertising and low awareness, we cannot infer that advertising boosts awareness. We

can only conclude that the relationship between advertising expenditures, perceived

quality, and brand awareness differs from category to category or even from brand to

brand.

Much of the existing literature uses cross-sectional data to discern a relationship
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between advertising expenditures and perceived quality (e.g., Kirmani & Wright 1989,

Kirmani 1990, Moorthy & Zhao 2000, Moorthy & Hawkins 2005) in an attempt to

test the idea that consumers draw inferences about the brand’s quality from the

amount that is spent on advertising it (Nelson 1974, Milgrom & Roberts 1986, Tellis

& Fornell 1988). With cross-sectional data it is difficult to account for unobserved

heterogeneity across brands. Indeed, if we neglect permanent differences between

brands, then we find that both brand awareness and perceived quality are positively

correlated with advertising expenditures, thereby replicating the earlier studies. Once

we make full use of our panel data and account for unobserved heterogeneity, however,

the effect of advertising expenditures on perceived quality disappears.1

Our estimation equations are dynamic relationships between a brand’s current

stocks of perceived quality and awareness on the left-hand side and the brand’s pre-

vious stocks of perceived quality and awareness as well as its own and its rivals’

advertising expenditures on the right-hand side. In this context, endogeneity arises

for two reasons. First, the lagged dependent variables are by construction correlated

with all past error terms and therefore endogenous. As a consequence, traditional

fixed-effect methods are necessarily inconsistent.2 Second, advertising expenditures

may also be endogenous for economic reasons. For instance, media coverage such as

news reports may affect brand awareness and perceived quality beyond the amount

spent on advertising. To the extent that these shocks to the stocks of perceived qual-

ity and awareness of a brand feed back into decisions about advertising, say because

the brand manager opts to advertise less if a news report has generated sufficient

awareness, they give rise to an endogeneity problem.

To resolve the endogeneity problem we use the dynamic panel data methods de-

veloped by Arellano & Bond (1991), Arellano & Bover (1995), and Blundell & Bond

(1998). The key advantage is that these methods do not rely on the availability of

strictly exogenous explanatory variables or instruments. This is an appealing method-

ology that has been widely applied (e.g., Acemoglu & Robinson 2001, Durlauf, John-

son & Temple 2005, Zhang & Li 2007) because valid instruments are often hard to

come by. Further, since these methods involve first differencing, they allow us to con-

trol for unobserved factors that affect both advertising expenditures and the stocks

1Another way to get around this issue is to take an experimental approach, as in Mitra & Lynch
(1995).

2This source of endogeneity is not tied to advertising in particular; rather it always arises in
estimating dynamic relationships in the presence of unobserved heterogeneity. An exception is the
(rather unusual) panel-data setting where one has T → ∞ instead of N → ∞. In this case the
within-groups estimator is consistent (Bond 2002, p. 5).
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of perceived quality and awareness and may lead to spurious positive estimates of the

effect of advertising. In addition, our approach allows for factors other than adver-

tising to affect a brand’s stock of perceived quality and awareness to the extent that

these factors are constant over time.

Our main finding is that advertising expenditures have a significant positive ef-

fect on brand awareness but no significant effect on perceived quality. These re-

sults appear to be robust across a wide range of specifications. Since awareness

is the most basic kind of information a consumer can have for a brand, we con-

clude that an important role of advertising is information provision. On the other

hand, our results indicate that advertising is not likely to alter consumers’ quality

perceptions. This conclusion calls for a reexamination of the implicit assumption

underlying Sutton’s (1991) endogenous sunk cost theory. It also suggests that ad-

vertising should be modeled as affecting the choice set and not just utility when

estimating demand. Finally, our findings lend empirical support to the view that ad-

vertising is generally procompetitive because it disseminates information about the

existence, the price, and the attributes of products more widely among consumers

(Stigler 1961, Telser 1964, Nelson 1970, Nelson 1974).

The remainder of the paper proceeds as follows. In Sections 2 and 3 we explain

the dynamic investment model and the corresponding empirical strategy. In Section 4

we describe the data and in Section 5 we present the results of the empirical analysis.

Section 6 concludes.

2 Model Specification

We develop an empirical model based on the classic advertising-as-investment model

of Nerlove & Arrow (1962). Related empirical models are the basis of current research

on advertising (e.g., Naik, Mantrala & Sawyer 1998, Dube, Hitsch & Manchanda

2005, Doganoglu & Klapper 2006, Bass, Bruce, Majumdar & Murthi 2007). Naik

et al. (1998), in particular, find that the Nerlove & Arrow (1962) model provides a

better fit than other models that have been proposed in the literature such as Vidale

& Wolfe (1957), Brandaid (Little 1975), Tracker (Blattberg & Golanty 1978), and

Litmus (Blackburn & Clancy 1982).

We extend the Nerlove & Arrow (1962) framework in two respects. First, we allow

a brand’s stocks of awareness and perceived quality to be affected by the advertising

of its competitors. This approach captures the idea that advertising takes place in

a competitive environment where brands vie for the attention of consumers. The
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advertising of competitors may also be beneficial to a brand if it draws attention

to the entire category and thus expands the relevant market for the brand (e.g.,

Nedungadi 1990, Kadiyali 1996). Second, we allow for a stochastic component in the

effect of advertising on the stocks of awareness and perceived quality to reflect the

success or failure of an advertising campaign and other unobserved influences such as

the creative quality of the advertising copy, media selection, or scheduling.

More formally, we let Qit be the stock of perceived quality of brand i at the

start of period t and Ait the stock of its awareness. We further let Eit−1 denote the

advertising expenditures of brand i over the course of period t − 1 and E−it−1 =

(E1t−1, . . . , Ei−1t−1, Ei+1t−1, . . . , Ent−1) the advertising expenditures of its competi-

tors. Then, at the most general level, the stocks of perceived quality and awareness

of brand i evolve over time according to the laws of motion

Qit = git(Qit−1, Eit−1, E−it−1, εit),

Ait = hit(Ait−1, Eit−1, E−it−1, εit),

where git(·) and hit(·) are brand- and time-specific functions. The idiosyncratic error

εit captures the success or failure of an advertising campaign along with all other

omitted factors. For example, the quality of the advertising campaign may matter

just as much as the amount spent on it. By recursively substituting for the lagged

stocks of perceived quality and awareness we can write the current stocks as functions

of all past advertising expenditures and the current and all past error terms. This

shows that these shocks to brand awareness and perceived quality are persistent over

time. For example, the effect of a particularly good (or bad) advertising campaign

may linger and be felt for some time to come.

We model the effect of competitors’ advertising on brand awareness and perceived

quality in two ways. First, we consider a brand’s “share of voice.” We use its

advertising expenditures, Eit−1, relative to the average amount spent on advertising

by rival brands in the brand’s subcategory or category, E−it−1.
3 To the extent that

brands compete with each other for the attention of consumers, a brand may have

to outspend its rivals to cut through the clutter. If so, then what is important

may not be the absolute amount spent on advertising but the amount relative to

rival brands. Second, we consider the amount of advertising in the entire market

3The Brandweek Superbrands survey reports on only the top brands (in terms of sales) in each
subcategory or category. The number of brands varies from 3 for some subcategories to 10 for others.
We therefore use the average, rather than the sum, of competitors’ advertising.
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by including the average amount spent on advertising by rival brands in the brand’s

subcategory or category. Advertising is market expanding if it attracts consumers to

the entire category but not necessarily to a particular brand. In this way, competitors’

advertising may have a positive influence on, say, brand awareness.

Taken together, our estimation equations are

Qit = µi + λt + γQit−1 + f(Eit−1, E−it−1) + εit, (1)

Ait = µi + λt + γAit−1 + f(Eit−1, E−it−1) + εit. (2)

Here µi is a brand effect that captures unobserved heterogeneity across brands and

λt is a time effect to control for possible systematic changes over time. The time

effect may capture, for example, that consumers are systematically informed about

a larger number of brands due to the advent of the internet and other alternative

media channels. Through the brand effect we allow for factors other than advertising

to affect a brand’s stocks of perceived quality and awareness to the extent that these

factors are constant over time. For example, consumers may hear about a brand and

their quality perceptions may be affected by word of mouth. Similarly, it may well be

the case that consumers in the process of purchasing a brand become more informed

about it and that their quality perceptions change, especially for high-involvement

brands. Prior to purchasing a car, say, many consumers engage in research about

the set of available cars and their respective characteristics, including quality ratings

from sources such as car magazines and Consumer Reports. If these effects do not

vary over time, then we fully account for them in our estimation because the dynamic

panel data methods we employ involve first differencing.

The parameter γ measures how much of last period’s stocks of perceived quality

and awareness are carried forward into this period’s stocks; 1 − γ can therefore be

interpreted as the rate of depreciation of these stocks. Note that in the estimation we

allow all parameters to be different across our estimation equations. For example, we

do not presume that the carryover rates for perceived quality and brand awareness

are the same.

The function f(·) represents the response of brand awareness and perceived quality

to the advertising expenditures of the brand and potentially also those of its rivals.

In the simplest case absent competition we specify this function as

f(Eit−1) = β1Eit−1 + β2E
2
it−1.
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This functional form is flexible in that it allows for a nonlinear effect of advertising

expenditures but does not impose one. Later on in Section 5.6 we demonstrate the

robustness of our results by considering a number of additional functional forms. To

account for competition in the share-of-voice specification, we set

f(Eit−1, E−it−1) = β1

(
Eit−1

E−it−1

)
+ β2

(
Eit−1

E−it−1

)2

and in the total-advertising specification, we set

f(Eit−1, E−it−1) = β1Eit−1 + β2E
2
it−1 + β3E−it−1.

3 Estimation Strategy

Equations (1) and (2) are dynamic relationships that feature lagged dependent vari-

ables on the right-hand side. When estimating, we confront the problems of unob-

served heterogeneity across brands and the endogeneity of advertising.

In our panel-data setting, ignoring unobserved heterogeneity is akin to dropping

the brand effect µi from equations (1) and (2) and then estimating them by ordinary

least squares. Since this approach relies on both cross-sectional and time-series vari-

ation to identify the effect of advertising, we refer to it as “pooled OLS”(POLS) in

what follows.

To account for unobserved heterogeneity we include a brand effect µi and use

the within estimator that treats µi as a fixed effect. We follow the usual convention

in microeconomic applications that the term “fixed effect” does not necessarily mean

that the effect is being treated as nonrandom; rather it means that we are allowing for

arbitrary correlation between the unobserved brand effect and the observed explana-

tory variables (Wooldridge 2002, p. 251). The within estimator eliminates the brand

effect by subtracting the within-brand mean from equations (1) and (2). Hence, the

identification of the slope parameters that determine the effect of advertising relies

solely on variation over time within brands; the information in the between-brand

cross-sectional relationship is not used. We refer to this approach as “fixed effects”

(FE).

While FE accounts for unobserved heterogeneity, it suffers from an endogeneity

problem. In our panel-data setting, endogeneity arises for two reasons. First, since

equations (1) and (2) are inherently dynamic, the lagged stocks of perceived quality

and awareness may be endogenous. More formally, Qit−1 and Ait−1 are by construc-
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tion correlated with εis for s < t. The within estimator subtracts the within-brand

mean from equations (1) and (2). The resulting regressor, say Qit−1 −Qi in the case

of perceived quality, is correlated with the error term εit − εi since εi contains εit−1

along with all higher-order lags. Hence, FE is necessarily inconsistent. Second, ad-

vertising expenditures may also be endogenous for economic reasons. For instance,

media coverage such as news reports may directly affect brand awareness and per-

ceived quality. Our model treats media coverage other than advertising as shocks

to the stocks of perceived quality and awareness. To the extent that these shocks

feed back into decisions about advertising, say because the brand manager opts to

advertise less if a news report has generated sufficient awareness, they give rise to

an endogeneity problem. More formally, it is reasonable to assume that Eit−1, the

advertising expenditures of brand i over the course of period t − 1, are chosen at

the beginning of period t− 1 with knowledge of εit−1 and higher-order lags and that

therefore Eit−1 is correlated with εis for s < t.

We apply the dynamic panel-data method proposed by Arellano & Bond (1991) to

deal with both unobserved heterogeneity and endogeneity. This methodology has the

advantage that it does not rely on the availability of strictly exogenous explanatory

variables or instruments. This is welcome because instruments are often hard to

come by, especially in panel-data settings: The problem is finding a variable that

is a good predictor of advertising expenditures and is uncorrelated with shocks to

brand awareness and perceived quality; finding a variable that is a good predictor of

lagged brand awareness and perceived quality and uncorrelated with current shocks to

brand awareness and perceived quality is even less obvious. The key idea of Arellano

& Bond (1991) is that if the error terms are serially uncorrelated, then lagged values of

the dependent variable and lagged values of the endogenous right-hand-side variables

represent valid instruments.

To see this, take first differences of equation (1) to obtain

Qit−Qit−1 = (λt−λt−1)+γ(Qit−1−Qit−2)+(f(Eit−1)−f(Eit−2))+(εit−εit−1), (3)

where we abstract from competition to simplify the notation. Eliminating the brand

effect µi accounts for unobserved heterogeneity between brands. The remaining prob-

lem with estimating equation (3) by least-squares is that Qit−1−Qit−2 is by construc-

tion correlated with εit−εit−1 since Qit−1 is correlated with εit−1 by virtue of equation

(1). Moreover, as we have discussed above, Eit−1 may also be correlated with εit−1

for economic reasons.
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We take advantage of the fact that we have observations on a number of periods

in order to come up with instruments for the endogenous variables. In particular,

this is possible starting in the third period where equation (3) becomes

Qi3 −Qi2 = (λ3 − λ2) + γ(Qi2 −Qi1) + (f(Ei2)− f(Ei1)) + (εi3 − εi2).

In this case Qi1 is a valid instrument for (Qi2 − Qi1) since it is correlated with

(Qi2 −Qi1) but uncorrelated with (εi3 − εi2) and, similarly, Ei1 is a valid instrument

for (f(Ei2) − f(Ei1)). In the fourth period Qi1 and Qi2 are both valid instruments

since neither is correlated with (εi4 − εi3) and, similarly, Ei1 and Ei2 are both valid

instruments. In general, for lagged dependent variables and for endogenous right-

hand-side variables, levels of these variables that are lagged two or more periods are

valid instruments. This allows us to generate more instruments for later periods. The

resulting estimator is referred to as “difference GMM” (DGMM).

A potential difficulty with the DGMM estimator is that lagged levels may be poor

instruments for first differences when the underlying variables are highly persistent

over time. Arellano & Bover (1995) and Blundell & Bond (1998) propose an aug-

mented estimator in which the original equations in levels are added to the system.

The idea is to create a stacked data set containing differences and levels and then to

instrument differences with levels and levels with differences. The required assump-

tion is that brand effects are uncorrelated with changes in advertising expenditures.

This estimator is commonly referred to as “system GMM” (SGMM). In Section 5 we

report and compare results for DGMM and SGMM.

It is important to test the validity of the instruments proposed above. Following

Arellano & Bond (1991) we report a Hansen J test for overidentifying restrictions.

This test examines whether the instruments are jointly exogenous. We also report the

so-called difference-in-Hansen J test to examine specifically whether the additional

instruments for the level equations used in SGMM (but not in DGMM) are valid.

Arellano & Bond (1991) further develop a test for second-order serial correlation

in the first differences of the error terms. As described above, both GMM estimators

require that the levels of the error terms be serially uncorrelated, implying that the

first differences are serially correlated of at most first order. We caution the reader

that the test for second-order serial correlation is formally only defined if the number

of periods in the sample is greater than or equal to 5 whereas we observe a brand on

average for just 4.2 periods in our application.

Our preliminary estimates suggest that the error terms are unlikely to be serially
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uncorrelated as required by Arellano & Bond (1991). The AR(2) test described above

indicates first-order serial correlation in the error terms. An AR(3) test for third-

order serial correlation in the first differences of the error terms, however, indicates

the absence of second-order serial correlation in the error terms.4 In this case, Qit−2

and Eit−2 are no longer valid instruments for equation (3). Intuitively, because Qit−2

is correlated with εit−2 by virtue of equation (1) and εit−2 is correlated with εit−1

by first-order serial correlation, Qit−2 is correlated with εit−1 in equation (3), and

similarly for Eit−2. Fortunately, however, Qit−3 and Eit−3 remain valid instruments

because εit−3 is uncorrelated with εit−1.

We carry out the DGMM and SGMM estimation using STATA’s xtabond2 rou-

tine (Roodman 2007). We enter third and higher lags of either brand awareness or

perceived quality, together with third and higher lags of advertising expenditures

as instruments. In addition to these “GMM-style” instruments, for the difference

equations we enter the time dummies as “IV-style” instruments. We also apply

the finite-sample correction proposed by Windmeijer (2005) which corrects for the

two-step covariance matrix and substantially increases the efficiency of both GMM

estimators. Finally, we compute standard errors that are robust to heteroskedasticity

and arbitrary patterns of serial correlation within brands.

4 Data

Our data are derived from the Brandweek Superbrands surveys from 2000 to 2005.

Each year’s survey lists the top brands in terms of sales during the past year from 25

broad categories. Inside these categories are often a number of more narrowly defined

subcategories. Table 1 lists the categories along with their subcategories. The surveys

report perceived quality and awareness scores for the current year and the advertising

expenditures for the previous year by brand.

Perceived quality and awareness scores are calculated by Harris Interactive in

their Equitrend brand-equity study. Each year Harris Interactive surveys online be-

tween 20, 000 and 45, 000 consumers aged 15 years and older in order to determine

their perceptions of a brand’s quality and its level of awareness for approximately

1, 000 brands.5 To ensure that the respondents accurately reflect the general pop-

4Of course, the AR(3) test uses less observations than the AR(2) test and is therefore also less
powerful.

5The exact wording of the question is: “We will display for you a list of brands and we are asking
you to rate the overall quality of each brand using a 0 to 10 scale, where ‘0’ means ‘Unacceptable/Poor
Quality’, ‘5’ means ‘Quite Acceptable Quality’ and ‘10’ means ‘Outstanding/Extraordinary Quality’.
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1. Apparel h. frozen pizza
2. Appliances i. spaghetti sauce
3. Automobiles j. coffee

a. general automobiles k. ice cream
b. luxury l. refrigerated orange juice
c. subcompact m. refrigerated yogurt
d. sedan/wagon n. soy drinks
e. trucks/suvs/vans o. luncheon meats

4. Beer, Wine, Liquor p. meat alternatives
a. beer q. baby formula/electrolyte solutions
b. wine r. pourable salad dressing
c. malternatives 14. Footwear
d. liquor 15. Health and Beauty

5. Beverages a. bar soap
a. general b. toothpaste
b. new age/sports/water c. shampoo

6. Computers d. hair color
a. software 16. Household
b. hardware a. cleaner

7. Consumer Electronics b. laundry detergents
8. Cosmetics and Fragrances c. diapers

a. color cosmetics d. facial tissue
b. eye color e. toilet tissue
c. lip color f. automatic dishwater detergent
d. women’s fragrances 17. Petrol
e. men’s fragrances a. oil companies

9. Credit Cards b. automotive aftercare/lube
10. Entertainment 18. Pharmaceutical OTC
11. Fast Food a. allergy/cold medicine
12. Financial Services b. stomach/antacids
13. Food c. analgesics

a. ready to eat cereal 19. Pharmaceutical Prescription
b. cereal bars 20. Retail
c. cookies 21. Telecommunications
d. cheese 22. Tobacco
e. crackers 23. Toys
f. salted snacks 24. Travel
g. frozen dinners and entrées 25. World Wide Web

Table 1: Categories and subcategories. Items in italics have been removed.
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ulation their responses are propensity weighted. Each respondent rates around 80

of these brands. Perceived quality is measured on a 0-10 scale, with 0 meaning un-

acceptable/poor and 10 meaning outstanding/extraordinary. Awareness scores vary

between 0 and 100 and equal the percentage of respondents that can rate the brand’s

quality. The quality rating is therefore conditional on the respondent being aware of

the brand.6

We supplement the awareness and quality measures with advertising expenditures

that are taken from TNS Media Intelligence and Competitive Media Reporting. These

advertising expenditures encompass spending in a wide range of media: Magazines

(consumer magazines, Sunday magazines, local magazines, and business-to-business

magazines), newspaper (local and national newspapers), television (network TV, spot

TV, syndicated TV, and network cable TV), radio (network, national spot, and local),

Spanish-language media (magazines, newspapers, and TV networks), internet, and

outdoor.

After eliminating categories and subcategories where observations are not at the

brand level (apparel, entertainment, financial services, retail, world wide web) or

where the data are suspect (tobacco), we are left with 19 categories (see again Table

1). We then drop all private labels and all brands for which we do not have perceived

quality and awareness scores as well as advertising expenditures for at least two years

running. This leaves us with 348 brands.

Table 2 contains descriptive statistics for the overall sample and also by category.

In the overall sample the average awareness score is 69.35 and the average perceived

quality score is 6.36. The average amount spent on advertising is around $66 million

per year. There is substantial variation in these measures across categories. The

variation in perceived quality (coefficient of variation is 0.11 overall, ranging from 0.04

for appliances to 0.13 for computers) tends to be lower than the variation in brand

awareness (coefficient of variation is 0.28 overall, ranging from 0.05 for appliances to

0.46 for telecommunications), in line with the fact the quality rating is conditional on

the respondent being aware of the brand. The contemporaneous correlation between

You may use any number from 0 to 10 to rate the brands, or use 99 for ‘No Opinion’ option if you
have absolutely no opinion about the brand.” Panelists are being incentivized through sweepstakes
on a periodic basis but are not paid for a particular survey.

6The 2000 Superbrands survey does not separately report perceived quality and salience scores.
We received these scores directly from Harris Interactive. 2000 is the first year for which we have been
able to obtain perceived quality and salience scores for a large number of brands. Starting with the
2004 and 2005 Superbrands surveys, salience is replaced by a new measure called “familiarity.” For
these two years we received salience scores directly from Harris Interactive. The contemporaneous
correlation between salience and familiarity is 0.98 and significant with a p-value of 0.000.
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brand awareness and perceived quality is 0.60 and significant with a p-value of 0.000.

The contemporaneous correlation between advertising expenditures and the change

in brand awareness is 0.0488 and significant with a p-value of 0.0985 and the contem-

poraneous correlation between advertising expenditures and the change in perceived

quality is 0.0718 and significant with a p-value of 0.0150. These correlations antic-

ipate the spurious correlation between both brand awareness and perceived quality

and advertising expenditures if permanent differences between brands are neglected

(POLS estimator). We will see though that the effect of advertising expenditures on

perceived quality disappears once unobserved heterogeneity is accounted for (FE and

GMM estimators).

The intertemporal correlation is 0.98 for brand awareness, 0.95 for perceived qual-

ity, and 0.93 for advertising expenditures. This limited amount of intertemporal

variation warrants preferring the SGMM over the DGMM estimator. At the same

time, however, it constrains how finely we can “slice” the data, e.g., by isolating a

brand-specific effect of advertising expenditures on brand awareness and perceived

quality.

Since the FE, DGMM, and SGMM estimators rely on within-brand across-time

variation, it is important to ensure that there is a sufficient amount of within-brand

variation in brand awareness, perceived quality, and advertising expenditures. Table

3 presents a decomposition of the standard deviation in these variables into an across-

brands and a within-brand component for the overall sample and also by category.

The across-brands standard deviation is a measure of the cross-sectional variation and

the within-brand standard deviation is a measure of the time-series variation. The

across-brands standard deviation of brand awareness is about 6 times larger than the

within-brand standard deviation. This ratio varies across categories and ranges from

2 for automobiles, beer, wine, liquor, and pharmaceutical prescription to 6 for health

and beauty and pharmaceutical OTC. In case of perceived quality the ratio is about

4 (ranging from 1 for telecommunications to 5 for consumer electronics, credit cards,

and household). Hence, while there is more cross-sectional than time-series variation

in our sample, the time-series variation is substantial for both brand awareness and

perceived quality. Figure 1 illustrates the decomposition for the overall sample. The

left panels show histograms of the brand-mean of brand awareness, perceived quality,

and advertising expenditures and the right panels show histograms of the de-meaned

variables. Again it is evident that the time-series variation is substantial for both

brand awareness and perceived quality.
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Figure 1: Variance decomposition. Histogram of brand-mean of brand awareness, per-
ceived quality, and advertising expenditures (left panels) and histogram of de-meaned
brand awareness, perceived quality, and advertising expenditures (right panels).

5 Empirical Results

In Tables 4 and 5 we present a number of different estimates for the effect of adver-

tising expenditures on brand awareness and perceived quality, respectively. Starting

with the simplest case absent competition, we present estimates of γ, β1, and β2 (the

coefficients on Qit−1 or Ait−1 and Eit−1 and E2
it−1) along with the marginal effect

β1 + 2β2Eit−1 calculated at the mean and the 25th, 50th, and 75th percentiles of

advertising expenditures.

The POLS estimates in the first column of Tables 4 and 5 suggest a significant

positive effect of advertising expenditures on both brand awareness and perceived

quality. In both cases we also reject the null hypothesis that advertising plays no
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role in determining brand awareness and perceived quality (β1 = β2 = 0). Of course,

as mentioned above, POLS accounts for neither unobserved heterogeneity nor endo-

geneity. In the next columns of Tables 4 and 5 we present FE, DGMM, and SGMM

estimates that attend to these issues.7

Regardless of the class of estimator we find a significant positive effect of adver-

tising expenditures on brand awareness. With the FE estimator we find that the

marginal effect of advertising on awareness at the mean is 0.00668. It is borderline

significant with a p-value of 0.105 and implies an elasticity of 0.00638 (with a stan-

dard error of 0.00392). A one-standard-deviation increase of advertising expenditures

increase brand awareness by 0.0408 standard deviations (with a standard error of

0.0251). The rate of depreciation of a brand’s stock of awareness is estimated to be

1-0.223 or 78% per year. The FE estimator identifies the effect of advertising expen-

ditures on brand awareness solely from the within-brand across-time variation. The

problem with this estimator is that it does not deal with the endogeneity of the lagged

dependent variable on the right-hand side of equation (2) and the potential endogene-

ity of advertising expenditures. We thus turn to the GMM estimators described in

Section 3.

We focus on the more efficient SGMM estimator. The coefficient on the lin-

ear term in advertising expenditures is estimated to be 0.00627 (p-value 0.037) and

the coefficient on the quadratic term is estimated to be −0.00000524 (p-value 0.028).

These estimates support the hypothesis that the relationship between advertising and

awareness is nonlinear. The marginal effect of advertising on awareness is estimated

to be 0.00558 (p-value 0.038) at the mean and implies an elasticity of 0.00533 (with

a standard error of 0.00257). A one-standard-deviation increase of advertising ex-

penditures increase brand awareness by 0.0340 standard deviations (with a standard

error of 0.0164). The rate of depreciation decreases substantially after correcting for

endogeneity and is estimated to be 1-0.828 or 17% per year, thus indicating that an

increase in a brand’s stock of awareness due to an increase in advertising expenditures

persists for years to come.

The Hansen J test for overidentifying restrictions indicates that the instruments

taken together as a group are valid. Recall from Section 3 that we must assume

7The estimates use at most 317 out of 348 brands because we restrict the sample to brands with
data for two years running but use third and higher lags of brand awareness respectively perceived
quality and advertising expenditures as instruments. Different sample sizes are reported for the
DGMM and SGMM estimators. Sample size is not a well-defined concept in SGMM since this
estimator essentially runs on two different samples simultaneously. The xtabond2 routine in STATA
reports the size of the transformed sample for DGMM and of the untransformed sample for SGMM.
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that an extra condition holds in order for the SGMM estimator to be appropriate.

The difference-in-Hansen J test confirms that it does, as we cannot reject the null

hypothesis that the additional instruments for the level equations are valid. While

we reject the hypothesis of no second-order serial correlation in the error terms, we

cannot reject the hypothesis of no third-order serial correlation. This result further

validates our instrumenting strategy. However, one may still be worried about the

SGMM estimates because DGMM uses a strict subset of the orthogonality conditions

of SGMM and we reject the Hansen J test for the DGMM estimates (see Table 4).

From a formal statistical point of view, rejecting the smaller set of orthogonality

conditions in DGMM is not conclusive evidence that the larger set of orthogonality

conditions in SGMM are invalid (Hayashi 2000, pp. 218–221).

In Figure 2 we plot the marginal effect of advertising expenditures on brand aware-

ness over the entire range of advertising expenditures for our SGMM estimates along

with a histogram of advertising expenditures. For advertising expenditures between

$400 million and $800 million per year the marginal effect of advertising on awareness

is no longer significantly different from zero and, statistically, it is actually negative

for very high advertising expenditures over $800 million per year. The former case

covers around 1.9% of observations and the latter less than 0.5%. One possible in-

terpretation is that brands with very high current advertising expenditures are those

that are already well-known (perhaps because they have been heavily advertised over

the years), so that advertising cannot further boost their awareness. Indeed, average

awareness for observations with over $400 million in advertising expenditures is 74.94

as compared to 69.35 for the entire sample.

Turning from brand awareness in Table 4 to perceived quality in Table 5, we see

that the positive effect of advertising expenditures on perceived quality found by

the POLS estimator disappears once unobserved heterogeneity is accounted by the

FE, DGMM, and SGMM estimators. In fact, we cannot reject the null hypothesis

that advertising plays no role in determining perceived quality. Figure 3 graphically

illustrates the absence of an effect of advertising expenditures on perceived quality

at the margin for our DGMM estimates. While the effect of advertising expenditures

on perceived quality is very imprecisely estimated, it appears to be economically

insignificant: The implied elasticity is −0.0000534 (with a standard error of 0.00883)

and a one-standard-deviation increase of advertising expenditures decrease perceived

quality by 0.000869 standard deviations (with a standard error of 0.144). Note that

the comparable effects for brand awareness are two orders of magnitude larger. Much

of the remainder of this paper is concerned with demonstrating the robustness of this
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Figure 2: Pointwise confidence interval for the marginal effect of advertising expen-
ditures on brand awareness (upper panel) and histogram of advertising expenditures
(lower panel). SGMM estimates.

negative result.

Before proceeding we note that whenever possible we focus on the more efficient

SGMM estimator. Unfortunately, for perceived quality in many cases, including that

in the fourth column of Table 5, the difference-in-Hansen J test rejects the null

hypothesis that the extra moments in the SGMM estimator are valid. In these cases

we focus on the DGMM estimator.

5.1 Objective and Perceived Quality

An important component of a brand’s perceived quality is its objective quality. To the

extent that objective quality remains constant, it is absorbed into the brand effects.

But, even though the time frame of our sample is not very long, it is certainly possible

that the objective quality of some brands has changed over the course of our sample.

If so, then the lack of an effect of advertising expenditures on perceived quality may

be explained if brand managers increase advertising expenditures to compensate for

decreases in objective quality. To the extent that increased advertising expenditures
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Figure 3: Pointwise confidence interval for the marginal effect of advertising expen-
ditures on perceived quality (upper panel) and histogram of advertising expenditures
(lower panel). DGMM estimates.

and decreased objective quality cancel each other out, their net effect on perceived

quality may be zero.

The difficulty with testing this alternative explanation is that we do not have

data on objective quality. We therefore exclude from the analysis those categories

with brands that are likely to undergo changes in objective quality (appliances, auto-

mobiles, computers, consumer electronics, fast food, footwear, pharmaceutical OTC,

telecommunications, toys, and travel). The resulting estimates are reported in Ta-

ble 5 under the heading “objective quality.” We still find no effect of advertising

expenditures on perceived quality.8

5.2 Variation in Perceived Quality

Another possible reason for the lack of an effect of advertising expenditures on per-

ceived quality is that perceived quality may not vary much over time. This is not

8The marginal effects are calculated at the mean, 25th, 50th, and 75th percentile for advertising
for the brands in the categories judged to be stable in terms of objective quality over time.
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the case in our data. Indeed, the standard deviation of the year-to-year changes in

perceived quality is 0.2154.

Even for those products whose objective quality does not change over time there

are important changes in perceived quality (standard deviation 0.2130). For exam-

ple, consider bottled water where we expect little change in objective quality over

time, both within and across brands. Nonetheless, there is considerable variation in

perceived quality. The perceived quality of Aquafina Water range across years from

6.33 to 6.90 and that of Poland Spring Water from 5.91 to 6.43, so the equivalent of

over two standard deviations. Across the brands of bottled water the range is from

5.88 to 6.90, or the equivalent of over four standard deviations.

Further evidence of variation in perceived quality is provided by the automobiles

category. Here we have obtained measures of objective quality from Consumer Re-

ports that rate vehicles based on their performance, comfort, convenience, safety,

and fuel economy. We can find examples of brands whose objective quality does not

change at least for a number of years while their perceived quality fluctuates consid-

erably. For example, Chevy Silverado’s objective quality does not change between

2000 and 2002, but its perceived quality increases from 6.08 to 6.71 over these three

years. Similarly, GMC Sierra’s objective quality does not change between 2001 and

2003, but its perceived quality decreases from 6.72 to 6.26.

The final piece of evidence that we have to offer is the variance decomposition from

Section 4 (see again Table 3 and Figure 1). Recall that the across-brands standard

deviation of brand awareness is about 6 times larger than the within-brand standard

deviation. In case of perceived quality the ratio is about 4. Hence, while there is more

cross-sectional than time-series variation in our sample, the time-series variation is

substantial for both brand awareness and perceived quality. Also recall from Section

4 that perceived quality with an intertemporal correlation of 0.95 is somewhat less

persistent than brand awareness with an intertemporal correlation of 0.98. Given

that we are able to detect an effect of advertising expenditures on brand awareness,

it seems unlikely that insufficient variation within brands can explain the lack of an

effect of advertising expenditures on perceived quality; instead, our results suggest

that the variation in perceived quality is unrelated to advertising expenditures.

The question then becomes what besides advertising may drive these changes

in perceived quality. There are numerous possibilities, including consumer learning

and word-of-mouth effects. Unfortunately, given the data available to us, we cannot

further explore these possibilities.
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5.3 Brand Awareness and Perceived Quality

Another concern is that consumers may confound awareness and preference. That

is, consumers may simply prefer more familiar brands over less familiar ones (see

Zajonc 1968). To address this issue we proxy for consumers’ familiarity by adding

brand awareness to the regression for perceived quality. The resulting estimates are

reported in Table 5 under the heading “brand awareness.” While there is a significant

positive relationship between brand awareness and perceived quality, there is still

no evidence of a significant positive effect of advertising expenditures on perceived

quality.

5.4 Competitive Effects

Advertising takes place in a competitive environment. Most of the industries being

studied here are indeed oligopolies, which suggests that strategic considerations may

influence advertising decisions. We next allow a brand’s stocks of awareness and

perceived quality to be affected by the advertising of its competitors as discussed

in Section 2.9 Competitors’ advertising, in turn, can enter our estimation equations

(1) and (2) either relative in the share-of-voice specification or absolute in the total-

advertising specification. We report the resulting estimates in Table 6.

Somewhat surprisingly, the share-of-voice specification yields an insignificant ef-

fect of own advertising. We conclude that the share-of-voice specification is simply

not an appropriate functional form in our application. The total-advertising specifi-

cation readily confirms our main findings presented above that own advertising affects

brand awareness but not perceived quality. This is true even if we allow competitors’

advertising to enter quadratically in addition to linearly. Competitors’ advertising

has a significant negative effect on brand awareness and a significant positive effect

on perceived quality.

Repeating the analysis using the sum instead of the average of competitors’ adver-

tising yields largely similar results except that the share-of-voice specification yields a

significant negative effect of advertising on brand awareness, thereby reinforcing our

conclusion that this is not an appropriate functional form.10

9For this analysis we take the subcategory rather than the category as the relevant competitive
environment. Consider for instance the beer, wine, liquor category. There is no reason to expect the
advertising expenditures of beer brands to affect the perceived quality or awareness of liquor brands.
We drop any subcategory in any year where there is just one brand due to the lack of competitors.

10We caution the reader against reading too much into these results: The number and identity
of the brands within a subcategory or category varies sometimes widely from year to year in the
Brandweek Superbrands surveys. Thus, the sum of competitors’ advertising is an extremely volatile
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Overall, the inclusion of competitors’ advertising does not seem to influence our

results about the role of own advertising on brand awareness and perceived quality.

This justifies our focus on the simple model without competition. Moreover, it sug-

gests that the following alternative explanation for our main findings presented above

is unlikely.Suppose awareness depended positively on the total amount of advertising

in the brand’s subcategory or category while perceived quality depended positively

on the brand’s own advertising but negatively on competitors’ advertising. Then the

results from the simple model without competition could be driven by an omitted

variables problem: If the brand’s own advertising is highly correlated with competi-

tors’ advertising, then we would overstate the impact of advertising on awareness

and understate the impact on perceived quality. In fact, we might find no impact of

advertising on perceived quality at all if the brand’s own advertising and competitors’

advertising cancel each other out.

5.5 Category-Specific Effects

Perhaps the ideal data for analyzing the effect of advertising are time series of ad-

vertising expenditures, brand awareness, and perceived quality for the brands being

studied. With long enough time series we could then try to identify for each brand

in isolation the effect of advertising expenditures on brand awareness and perceived

quality. Since such time series are unfortunately not available, we have focused so far

on the aggregate effect of advertising expenditures on brand awareness and perceived

quality, i.e., we have constrained the slope parameters in equations (1) and (2) that

determine the effect of advertising to be the same across brands. Similarly, we have

constrained the carryover parameters in equations (1) and (2) that determine the

effect of lagged perceived quality and brand awareness respectively to be the same

across brands.

As a compromise between the two extremes of brands in isolation versus all brands

aggregated, we first examine the effect of advertising in different categories. This adds

some cross-sectional variation across the brands within a category. As the first column

of Table 7 shows, for the majority of categories, there is nevertheless insufficient

variation to identify an effect of advertising even on awareness: There is a significant

positive effect of advertising expenditures on brand awareness for five categories.

At the same time, there is a significant positive effect on perceived quality for five

measure of the competitive environment. Moreover, the number of brands varies from 3 for some
subcategories to 10 for others, thus making the sum of competitors’ advertising difficult to compare
across subcategories.
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categories (third column).

Two caveats are in order. First, we may be capturing the relationship between

advertising expenditures and perceived quality across brands: Because the SGMM

estimator adds the equations in levels, it relies on more of the cross-sectional varia-

tion for identification. Indeed, the FE estimator that relies solely on variation over

time within brands detects a significant positive effect of advertising expenditures on

perceived quality for just two categories. Second, we are pushing the limit on the

number of instruments. Indeed, we are unable to obtain estimates unless we collapse

the set of instruments, creating one instrument for each variable and lag, rather than

one for each period, variable, and lag.

Second we examine the carryover rate in different categories. As the second column

of Table 7 shows, the rate of depreciation for brand awareness ranges from 1-0.875

or 12% for health and beauty to 1-0.751 or 25% for pharmaceutical prescription. For

perceived quality the rate of depreciation similarly ranges from 1-0.880 or 12% for

appliances to 1-0.766 or 23% for telecommunications (fourth column). Surprisingly,

the SGMM estimates indicate that, once we allow for the carryover rate to vary

by category, advertising expenditures have a positive significant effect on perceived

quality (0.00106 at the mean), although this is not the case for the FE estimates.

In sum, it appears that there are important differences between categories. These

differences, in turn, may help to explain why some brands advertise heavily despite

already enjoying a high level of brand awareness. A case in point is the fast food

category. On average, this category exhibits the highest level of brand awareness and

the second-highest level of advertising expenditures after telecommunications (see

again Table 2). A brand has an incentive to put substantial resources into advertising

if it either has a particularly high response to advertising or a particularly high rate of

depreciation. For brands in the fast food category the rate of depreciation is 1-0.859

or 14% for brand awareness (compared to 1-0.837 or 16% in the overall sample) and

1-0.849 or 15% for perceived quality. At the same time, however, the marginal effect

of advertising expenditures is 0.0144 for brand awareness (compared to 0.00558 in the

overall sample) and 0.000727 for perceived quality. Hence, the response to advertising

is particularly high for both brand awareness and perceived quality.

5.6 Functional Form

Throughout we consider a quadratic functional form for the effect of the level of

advertising expenditures on the level of brand awareness and perceived quality. In
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brand awareness perceived quality
marginal effect carryover rate marginal effect carryover rate

Appliances 0.0233 0.838 *** 0.00374 0.880 ***
(0.0167) (0.0730) (0.00315) (0.0413)

Automobiles 0.00526 0.840 *** 0.000172 0.854 ***
(0.0154) (0.0402) (0.000864) (0.0476)

Beer, Wine, Liquor -0.0264 0.839 *** -0.000988 0.811 ***
(0.0423) (0.0408) (0.00535) (0.0553)

Beverages -0.0245 0.869 *** -0.000564 0.877 ***
(0.0554) (0.0265) (0.00567) (0.0463)

Computers 0.0193 ** 0.799 *** 0.000722 0.826 ***
(0.00777) (0.0370) (0.000470) (0.0488)

Consumer Electronics 0.0210 ** 0.810 *** 0.00189 *** 0.849 ***
(0.00931) (0.0361) (0.000518) (0.0445)

Cosmetics and Fragrances -0.104 * 0.766 *** 0.000874 0.862 ***
(0.557) (0.0521) (0.00141) (0.0545)

Credit Cards 0.00983 * 0.834 *** 0.000231 0.853 ***
(0.00527) (0.0371) (0.000222) (0.0514)

Fast Food 0.0144 *** 0.859 *** 0.000727 *** 0.849 ***
(0.00543) (0.0262) (0.000207) (0.0530)

Food 0.0296 0.869 *** 0.00287 0.873 ***
(0.0371) (0.0301) (0.00390) (0.0432)

Footwear -0.0120 0.830 *** 0.00390 *** 0.878 ***
(0.0248) (0.0622) (0.00139) (0.0498)

Health and Beauty 0.0841 *** 0.875 *** 0.00665 *** 0.879 ***
(0.0319) (0.0278) (0.00188) (0.0441)

Household 0.0743 0.862 *** 0.00914 *** 0.876 ***
(0.0670) (0.0317) (0.00296) (0.0434)

Petrol -0.0600 0.847 *** 0.00433 0.852 ***
(0.0676) (0.0357) (0.00266) (0.0505)

Pharmaceutical OTC 0.0147 0.840 *** 0.00329 0.866 ***
(0.206) (0.0604) (0.00253) (0.0437)

Pharmaceutical Prescription -0.00683 0.751 *** -0.00488 ** 0.800 ***
(0.0355) (0.0747) (0.00199) (0.0521)

Telecommunications 0.0105 0.800 *** 0.000203 0.766 ***
(0.0117) (0.0361) (0.000497) (0.0728)

Toys 0.0574 0.815 *** 0.0000834 0.862 ***
(0.0673) (0.0761) (0.00116) (0.0715)

Travel -0.0982 0.832 *** 0.00603 0.861 ***
(0.104) (0.0415) (0.00518) (0.0465)

Table 7: Category-specific effects. Marginal effect of advertising expenditures on
brand awareness and perceived quality at mean by category. Carryover rate by cat-
egory. *, **, and *** indicate a significance level of 0.10, 0.05, 0.01, respectively.
Standard errors in parenthesis. SGMM estimates.
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Table 8 we report results for the estimation of equations (1) and (2) using different

functional forms.

We first consider the case of f(Eit−1) = β1 ln Eit−1 + β2 (ln Eit−1)
2.11 There is no

effect of advertising expenditures on brand awareness and we find a negative effect of

advertising on perceived quality. This may indicate that this functional form is not

appropriate in our application.

Next we allow for a quadratic relationship between the level of advertising expen-

ditures on the one hand and the log of brand awareness and perceived quality on the

other hand. As Table 8 shows, we still find no effect of advertising expenditures on

the log of perceived quality. In contrast, we find a positive effect of advertising on

the log of brand awareness.

6 Discussion

To our knowledge this is the first study to make use of panel data on a wide range

of brands along with recently developed methods for estimating dynamic models

to study the effect of advertising on brand awareness and perceived quality. Our

panel data allow us to control for the unobserved heterogeneity across brands and to

identify the effect of advertising off time-series variation within brands. They also let

us account for the endogeneity of advertising.

Our main findings are that advertising expenditures have a significant positive ef-

fect on a brand’s stock of awareness but no significant effect on its stock of perceived

quality. These findings are consistent with previous empirical work and laboratory

experiments. The results in Ackerberg (2001), for example, indicate that the primary

effect of advertising for the particular brand of yogurt being studied is that of inform-

ing consumers. However, the importance of information may vary with the stages of

a product’s life cycle. Narayanan & Manchanda (2008) find that the responsiveness

of physicians to the informative content of detailing and the responsiveness to the

persuasive content are negatively correlated over time. Mitra & Lynch (1995) show

that, especially in mature product categories, advertising has a much stronger effect

on the size of the consideration set than on the relative strength of preferences.

Our research complements and generalizes existing studies by Shachar & Anand

(1998), Ackerberg (2001), Narayanan, Manchanda & Chintagunta (2005), and Narayanan

11The number of observations differs slightly across specifications because the logarithm of zero is
not defined. Our conclusions remain unchanged if we replace lnEjt−1 by ln(c + Ejt−1), where c > 0
is a constant, in order to be able to use all observations.
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& Manchanda (2008) that apply econometric models to discern the role of advertis-

ing for a single brand or industry. The key idea used in these studies to distinguish

between informative and persuasive advertising is that informed consumers should

not be affected (or as affected) by informative advertising as uninformed consumers

whereas the effect of persuasive advertising should be independent of the amount

of information that is available to consumers. The difficulty lies in identifying the

amount of information that is available to consumers. The common approach is to

proxy for available information with usage experience: once consumers have used

the brand, they must be aware of its existence and should know its characteristics,

so informative advertising should not affect them any more. Since usage experience

is often not directly observable, this empirical strategy is largely limited to newly

introduced brands.12

The current paper contributes to our understanding of the nature of advertising

in two ways. By using data on over 300 brands across 19 product categories, we are

able to say something more general about the effect of advertising than just for a

single brand or industry. In addition, our direct measures of the level of information

possessed by consumers and of their quality perceptions allow us to study the channel

through which advertising affects consumer choice without making assumptions about

the amount of information that is available to consumers on the basis of their purchase

behavior.

While our main findings highlight advertising as a means of providing information

to consumers, there are important differences between categories. In some categories

at least advertising may also be a means of altering quality perceptions. This con-

clusion suggest that a long enough time series on advertising expenditures, perceived

quality, and brand awareness may prove ideal to identify and quantify the various

effects of advertising for a specific category (or even for specific brand) in isolation.

At the same time, however, our results hint at the role of the competitive environment

that cannot be adequately captured without a broad enough cross section.

It is furthermore important to note that our analysis focuses on the short-run re-

lationship between advertising expenditures, brand awareness, and perceived quality.

That is, we can only say that advertising has no short-run influence on perceived

quality. Again this is dictated by the data. It is of course still possible that adver-

tising affects perceived quality, but only after a period of time. On the other hand,

12Anand & Shachar (2004) pursue a different methodology that is not limited to newly introduced
brands, although the data requirement may prevent more wide-spread application. Their study of
advertising for television shows in the form of previews highlights advertising as a vehicle of matching
and information rather than an instrument of persuasion.
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given that we have six years worth of data, the short run in our model is fairly long.

It is unclear whether, in practice, the time horizon of firms is much longer than that.

Therefore, even if advertising had an effect in the long run, brand managers may not

be willing to expend resources today in order to reap benefits that are that far in the

future.

Our findings may also help to resolve the puzzling fact that advertising has little

effect on sales (e.g., Assmus, Farley & Lehmann 1984, Lodish, Abraham, Kalmenson,

Livelsberger, Lubetkin, Richardson & Steve 1995). Recall that sales are measured

as quantity sold times sales price. Since our results suggest that advertising has no

effect on perceived quality, it presumably has no effect on consumers’ willingness to

pay. On the contrary, by making consumers aware of more brands, advertising should

be procompetitive and put downward pressure on prices. Hence, if price decreases

sufficiently, then sales remain constant or even decrease in response to advertising

even if quantity increases.13 Investigating this question further presents a promising

venue for further research.
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