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Bayesian Inference for the Negative Binomial Distribution via Polynomial
Expansions

Abstract
To date, Bayesian inferences for the negative binomial distribution (NBD) have relied on computationally
intensive numerical methods (e.g., Markov chain Monte Carlo) as it is thought that the posterior densities of
interest are not amenable to closed-form integration. In this article, we present a “closed-form” solution to the
Bayesian inference problem for the NBD that can be written as a sum of polynomial terms. The key insight is
to approximate the ratio of two gamma functions using a polynomial expansion, which then allows for the use
of a conjugate prior. Given this approximation, we arrive at closed-form expressions for the moments of both
the marginal posterior densities and the predictive distribution by integrating the terms of the polynomial
expansion in turn (now feasible due to conjugacy). We demonstrate via a large-scale simulation that this
approach is very accurate and that the corresponding gains in computing time are quite substantial.
Furthermore, even in cases where the computing gains are more modest our approach provides a method for
obtaining starting values for other algorithms, and a method for data exploration.
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Abstract

To date, Bayesian inferences for the negative binomial distribution (NBD) have relied

on computationally intensive numerical methods (e.g., Markov chain Monte Carlo) as it is

thought that the posterior densities of interest are not amenable to closed-form integration.

In this paper, we present closed-form solutions to the Bayesian inference problem for the

NBD. The key insight is to approximate the ratio of two gamma functions using a polynomial

expansion, which then allows for the use of a conjugate prior. Given this approximation, we

arrive at closed-form expressions for the moments of both the marginal posterior densities

and the predictive distribution. We demonstrate that this approach is very accurate and

that the corresponding gains in computing time are quite substantial.



1 Introduction

For the past 80 years, numerous researchers have modeled count data assuming the individual-

level count, Xi, is distributed Poisson(�i) and the rate parameter �i is distributed gamma(r; �).

In other words, the marginal distribution of Xi follows a negative binomial distribution

(NBD):

[xijr; �] =

Z
1

0

[xij�i][�ijr; �] d�i

=

Z
1

0

�xii e
��i

xi!

�r�r�1i e���i

�(r)
d�i

=
�(r + xi)

�(r)xi!

�
�

�+ 1

�r �
1

�+ 1

�xi
(1)

The �rst application of this characterization of the NBD was presented by Greenwood

and Yule (1920) to model accident statistics. It has subsequently been used to model

phenomena as diverse as the purchasing of consumer packaged goods (Ehrenberg 1959),

salesperson productivity (Carroll, Lee, and Rao 1986), and library circulation (Burrell 1990).

The standard inference approach has been to estimate r and � using maximum like-

lihood from the marginal distribution of Xi given in (1). This so-called empirical Bayes

method then bases inferences on the estimated marginal distribution [xijr̂; �̂]. For exam-

ple, a common application is to make predictions of future counts, Yi, conditional on past

behavior, e.g., E(Yijxi; r̂; �̂) = (r̂ + xi)=(�̂ + 1). These traditional analyses treat r and �

as �xed and known at r̂ and �̂. A key shortcoming of this approach is that it ignores the

variability (estimation uncertainty) of r̂ and �̂ as estimates of r and �. Furthermore, it

does not allow the incorporation of any prior information in the analysis, such as insights

that may have been derived from previous studies or from subjective information.

A natural solution to these problems is to adopt a Bayesian approach in which prior

distributions are speci�ed for the NBD model parameters r and �. In recent years, several

researchers have utilized Bayesian inference for the NBD (e.g., Deely and Smith 1998;
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Klugman 1992; Schl�uter, Deely, and Nicholson 1997). However, none of these have obtained

closed-form inferences, as we do here. To demonstrate these past shortcomings, and our

approach, we set up the general problem formulation as follows.

Let the vector x = (x1; : : : ; xn) represent the observed (count) data for n subjects

measured across a time period of unit length. Assuming x1; : : : ; xn are generated i.i.d.

NBD(r; �), we have

[xjr; �] =
nY
i=1

�
�(r + xi)

�(r)xi!

�
�

�+ 1

�r �
1

�+ 1

�xi�

=

"
nY
i=1

�(r + xi)

�(r)xi!

#�
�

�+ 1

�nr �
1

�+ 1

�Pn

i=1
xi

(2)

Specifying a prior [r; �], it follows that the k-th marginal posterior moment of r given

data x is given by

E(rkjx) =

Z
rk[rjx] dr

=

ZZ
rk[r; �jx] d� dr; and then from Bayes rule

=

RR
rk[xjr; �][r; �] d� drRR
[xjr; �][r; �] d� dr

(3)

Similarly, the k-th marginal posterior moment of � is given by

E(�kjx) =

Z
�k[�jx] d�

=

ZZ
�k[r; �jx] dr d�

=

RR
�k[xjr; �][r; �] dr d�RR
[xjr; �][r; �] d� dr

(4)

(An equivalent expression can be written for E(Y k
i jx), the k-th moment of the predictive

distribution.) Performing the requisite integrations allows the analyst to make the infer-

ences of interest; i.e., to obtain parameter estimates, predictions, etc., from the appropriate

marginal posterior distributions.
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To highlight the challenges associated with a Bayesian analysis of the NBD, we substitute

(2) into (3), which yields

E(rkjx) =

RR
rk
�Qn

i=1

�(r + xi)

�(r)xi!

��
�

�+ 1

�nr �
1

�+ 1

�Pn

i=1
xi

[r; �] d� dr

RR �Qn
i=1

�(r + xi)

�(r)xi!

��
�

�+ 1

�nr �
1

�+ 1

�Pn

i=1
xi

[r; �] d� dr

(5)

It is easy to specify a prior for � such that we can integrate � out of the above expression

(such a distribution is well understood and appears in many places including some of the

earlier mentioned Bayesian NBD references). To date, however, no researcher has been able

to specify a prior for r such that there exists a closed-form solution to the above expression,

and likewise for (4). (A closed-form solution trivially exists for the degenerate case of

a point-mass prior for r, e.g., Klugman (1992).) Therefore, researchers have resorted to

computationally intensive numerical methods (e.g., Markov chain Monte Carlo) in order to

make the inferences of interest.

In this paper, we present a closed-form solution to the Bayesian inference problem for

the NBD. We do this by specifying a prior for the model parameters r and � which, after

utilizing a polynomial expansion to approximate the ratio of two gamma functions (details

provided in Sections 2.1 and 2.2), leads to a closed-form solution for the relevant marginal

posterior moments. The remainder of this paper is as follows. Section 2 develops closed-

form expressions for the moments of the marginal posterior densities for both r and �. In

Section 3, we present a simulation study that demonstrates the accuracy of our approach

and the substantial savings in computing time associated with its use. Section 4 shows the

corresponding moments (using the same method as in Section 2) for the evaluation of the

moments of the predictive distribution. In particular, we derive closed-form expressions

for the conditional mean and variance. We conclude (Section 5) with a few brief summary

comments.
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2 Moments of the Marginal Posterior Densities

Our goal is to come up with closed-form expressions for E(rkjx) and E(�kjx). We start by

assuming independent priors for r and � with the following marginals:

i. Marginal prior for �: Consider a prior of the form

[�j�1; �2] /

�
�

�+ 1

��1�1� 1

�+ 1

��2+1

When �1 = 1 and �2 = �1, we have an improper uniform prior on �. Specifying the

proportionality constant as 1=B(�1; �2), we have a beta-prime prior on � (Johnson,

Kotz, and Balakrishnan (JKB) 1995, p. 248):

[�j�1; �2] =
1

B(�1; �2)

�
�

�+ 1

��1�1� 1

�+ 1

��2+1

; �1; �2 > 0 (6)

which is equivalent to assuming �=(� + 1) � beta(�1; �2). The mean and variance of

the beta-prime distribution are

E(�) =
�1

�2 � 1

var(�) =
�1(�1 + �2 � 1)

(�2 � 1)2(�2 � 2)

If prior information is available for � (from past data or otherwise), then values of �1

and �2 can be determined by moment matching to arrive at an informative prior.

ii. Marginal prior for r: Consider a prior of the form

[rja; b; z1; z2] /
(r � z1)

a

(r � z2)b

When a = b = 0, we have an improper uniform prior on r. Specifying the proportion-

ality constant as [�(b)(z1 � z2)
b�a�1]=[�(b� a� 1)�(a+ 1)], we have a Pearson Type
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VI prior on r (JKB, p. 344):

[rja; b; z1; z2] = L1
(r � z1)

a

(r � z2)b
where L1 =

�(b)(z1 � z2)
b�a�1

�(b� a� 1)�(a+ 1)
(7)

where b > a > �1 and r � z1 > z2. Note that the beta-prime density (6) is a Pearson

Type VI density with a = �1 � 1, b = �1 + �2, z1 = 0 and z2 = �1. The mean and

variance of this distribution are

E(r) = z1 +
(z1 � z2)(a+ 1)

b� a� 2

var(r) =
(z1 � z2)

2(a+ 1)(b � 1)

(b� a� 2)2(b� a� 3)

(Note: there are errors in JKB for these equations which are corrected here). The

four parameters z1, z2, a, and b can be expressed in terms of the �rst four moments

of r to arrive at an informative prior. The rationale for this choice of marginal prior

will be discussed in Section 2.1.

2.1 Moments of the Marginal Posterior of r

To derive an expression for the k-th moment of the posterior density of r, we �rst substitute

(6) into (5) and perform the integration over �. As can be seen by the forms in (5) and

(6), the term ( �
�+1

)nr from the NBD combines readily with ( �
�+1

)�1�1 from the beta-prime

prior for � (likewise for the 1
�+1

terms). This then yields

E(rkjx) =

R
rk
hQn

i=1
�(r+xi)

�(r)xi!

i
�(nr+�1)

�(nr+�1+C1�1)
[r] drR hQn

i=1
�(r+xi)

�(r)xi!

i
�(nr+�1)

�(nr+�1+C1�1)
[r] dr

(8)

where C1 =
Pn

i=1 xi + �2 + 1.

The task now facing us is to substitute (7) into (8) and perform the integrations over

r. The problem here is that r appears in two ratios of gamma functions in each integral |

a form that is not analytically tractable. To get past this hurdle, we will �rst express each
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ratio of gamma functions as a polynomial in r, thus making it easy to integrate over the

prior on r by integrating the product of the polynomials term by term. The �rst ratio of

gamma functions involving �(r + xi)=�(r) can be expressed exactly as a polynomial in r.

The second ratio �(nr+ �1)=�(nr+ �1 +C1 � 1) is approximated by a polynomial in r. As

we describe, by including a su�ciently large number of terms, this approximation can be

made as close as necessary.

Consider the �rst ratio of gamma functions. Letting x� = max(x1; : : : ; xn) and nj the

number of observations (e.g., people) with count xi = j, we have

nY
i=1

�(r + xi)

�(r)
=

�
�(r + 1)

�(r)

�n1 ��(r + 2)

�(r)

�n2
� � �

�
�(r + x�)

�(r)

�nx�
= rn1 [r(r + 1)]n2 � � � [r(r + 1) � � � (r + x� � 1)]nx�

= rs1(r + 1)s2 � � � (r + x� � 1)sx� (9)

where si = ni + ni+1 + � � �+ nx�.

We expand the second ratio of gamma functions as follows:

�(nr + �1)

�(nr + �1 + C1 � 1)
=

C1Y
j=2

1

nr + �1 + C1 � j

=

C1Y
j=2

1

(nr + �1 + C1)(1� j=(nr + �1 + C1))

= y1�C1
C1Y
j=2

1

1� j=y

= y1�C1
C1Y
j=2

�
1 +

j

y
+
j2

y2
+ � � �

�

where y = nr + �1 + C1. Taking the �rst m terms of the in�nite series (1 + j
y
+ j2

y2
+ : : : ),

and then the �rst m terms of the corresponding product of these polynomials, we obtain

the key approximation!:
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�(nr + �1)

�(nr + �1 + C1 � 1)
� y1�C1

�
1 +

U1

y
+
U2

y2
+ � � �+

Um

ym

�

where the polynomial coe�cients U1; : : : Um can be calculated by recursive polynomial mul-

tiplication. (Note: we have developed a fast and simple recursive algorithm to compute

the U 's. In addition, standard software packages such as Mathematica will perform this

calculation directly.) Letting K1 = (�1 + C1)=n, we have

�(nr + �1)

�(nr + �1 + C1 � 1)
� [n(r +K1)]

1�C1

mX
l=0

Ul

[n(r +K1)]
l

(10)

where U0 = 1. (This generalizes to m terms the one-term approximation for the ratio of

two gamma functions given in Johnson, Kotz, and Kemp (1992, equation 1.33) as well as

the two-term expansion given in Abramowitz and Stegun (1972, equation 6.1.47).)

Now, if we let z1; z2 2 f�x
�; : : : ;�1; 0g and assume a; b integer, then for

vt =

8>><>>:
1 if jz1j = t� 1

0 otherwise

and wt =

8>><>>:
�1 if jz2j = t� 1

0 otherwise

(7) and (9) combine to give us

nY
i=1

�(r + x1i)

�(r)
[r] = L1

h
rs1+v1a+w1b � � � (r + x� � 1)sx�+vx�a+wx�b(r + x�)sx�+1+vx�+1a+wx�+1b

i
= L1

h
rh1(r + 1)h2 � � � (r + x�)hx�+1

i

where ht = st+vta+wtb and sx�+1 = 0. (While the restriction of a; b to integers is somewhat

restrictive, it still leaves a very 
exible class of priors for r.) Letting h = h1+h2+� � �+hx�+1,

we can write this product as a polynomial in r:
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nY
i=1

�(r + x1i)

�(r)
[r] = L1

h
a0 + a1r + � � �+ ahr

h
i
= L1

hX
j=0

ajr
j (11)

where the polynomial coe�cients can be computed for given h1; : : : ; hx�+1 using the same

algorithm used to compute the U 's in (10). (Note that a0 = a1 = � � � = ah1�1 = 0, as there

are no terms less than h1.)

Substituting (10) and (11) into (8), we get

E(rkjx) �

R
rk
�Ph

j=0 ajr
j
�
(r +K1)

1�C1
Pm

l=0
Ul

[n(r+K1)]
l drR �Ph

j=0 ajr
j

�
(r +K1)1�C1

Pm
l=0

Ul

[n(r+K1)]
l dr

=

Ph
j=0 ajQj+kPh
j=0 ajQj

(12)

where

Qj =

Z
rj(r +K1)

1�C1

mX
l=0

Ul

[n(r +K1)]
l
dr

=

mX
l=0

�(C1 � j + l � 2)

�(C1 + l � 1)

�(j + 1)

K
C1�j+l�2
1

Ul

nl
(13)

which follows naturally (from the normalizing constant) from the de�nition of the Pearson

Type VI density in (7). That is, the Pearson Type VI density is a conjugate family for the

NBD after employing the approximation to �(nr + �1)=�(nr + �1 + C1 � 1) given in (10).

Thus, closed-form posterior inferences are now feasible for r.

In order for the integral in (13) to be the normalizing constant of the Pearson Type VI,

and hence de�ned, we must have C1�j+l�2 > 0 8 j; l. The maximum value that j can take

on is h+k ((11) is of order h, and we are computing E(rkjx); thus h+k terms at most) while

the minimum value that l can take on is 0. Therefore, Qj is de�ned 8 j when C1�h�k > 2.

Now h =
Px�+1

i=1 hi =
Px�+1

i=1 si + a� b =
Px�+1

i=1

Px�

j=1 nj + a� b =
Pn

i=1 xi + a� b. Recall

C1 =
Pn

i=1 xi + �2 + 1. Therefore C1 � h � k > 2 , �2 > a � b + k + 1. If we are simply
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interested in the mean of the marginal posterior of r (k = 1), the approximation presented

in (12) holds, provided the parameters of the marginal prior distributions for r and � satisfy

the condition �2 > a� b+ 2 (which is not very restrictive).

2.2 Moments of the Marginal Posterior of �

Turning our attention to �, the moments of its marginal posterior can be computed in a

similar manner. Substituting (2) and (6) into (4) and simplifying, we get

E(�kjx) =
1Qk

l=1(C1 � l � 1)

R hQn
i=1

�(r+xi)

�(r)

i
�(nr+�1+k)

�(nr+�1+C1�1)
[r] drR hQn

i=1
�(r+xi)

�(r)

i
�(nr+�1)

�(nr+�1+C1�1)
[r] dr

(14)

Applying the same logic used to derive (10), we have

�(nr + �1 + k)

�(nr + �1 + C1 � 1)
=

C1�kY
j=2

1

nr + �1 + C1 � j

� [n(r +K1)]
1+k�C1

mX
l=0

V k
l

[n(r +K1)]
l

(15)

where V k
0 = 1, and we have a separate set of polynomial coe�cients, V k

1 ; : : : V
k
m for each of

the k moments of the posterior of �. These can again be computed using the previously

mentioned recursive algorithm.

Substituting (11) and (15) into (14), we get

E(�kjx) �
nkQk

l=1(C1 � l � 1)

R �Ph
j=0 ajr

j
�
(r +K1)

1+k�C1
Pm

l=0

V k

l

[n(r+K1)]
l drR �Ph

j=0 ajr
j

�
(r +K1)1�C1

Pm
l=0

Ul

[n(r+K1)]
l dr

=
nkQk

l=1(C1 � l � 1)

Ph
j=0 ajR

k
jPh

j=0 ajQj

(16)

where
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Rk
j =

Z
rj(r +K1)

1+k�C1

mX
l=0

V k
l

[n(r +K1)]
l
dr

=

mX
l=0

�(C1 + l � j � k � 2)

�(C1 + l � k � 1)

�(j + 1)

K
C1+l�j�k�2
1

V k
l

nl
(17)

which again follows from the normalizing constant of the Pearson Type VI density in (7).

Thus, closed-form posterior inferences are obtained for �. In order for (17) to be de�ned,

we must have C1 + l � j � k � 2 > 0 8 j; l, which leads to the same condition as before

(�2 > a� b+ k + 1).

3 A Simulation Study

To assess the accuracy and computational feasibility of our approach, we performed a large-

scale simulation study using three main factors: r (3 levels), � (3 levels), and m, the

number of polynomial expansion terms (5 levels) for the ratio of two gamma functions

given in (10) and (15). We selected these as simulation factors as we wanted to know: (a)

whether the quality of the estimates varied with the true (latent) values of r and �, and (b)

whether the number of terms utilized in the approximating expansion played a signi�cant

role in determining accuracy. A fully crossed design was implemented yielding 45 simulation

conditions.

For each condition, a given simulation consisted of N = 500 observations from a negative

binomial distribution with the given r and �. Two hundred replicates were generated for

each of the 45 conditions; that is 200 data sets of size 500. The results reported for each

condition is the average over these replicates.

To select simulation values for r and �, we utilized a re-parameterization of the NBD

values of r and � in terms of � = corr(Xi; Yi) = 1=(� + 1), the correlation between two

negative binomial draws in non-overlapping periods of equal length for a given individual,

10



and P0 = P (Xi = 0) = [�=(� + 1)]r = (1 � �)r, the fraction of 0 values. (� also equals the

square of the correlation between the observed count (Xi) and the individual's latent rate

(�i).) This re-parameterization is convenient as both � and P0 are bounded between 0 and

1, allowing us to select a grid along the unit square. In addition, � and P0 are common

and intuitive quantities which can be selected by a researcher based on historical �gures or

expert judgment.

We selected the 3 � 3 grid corresponding to 0.25, 0.50, 0.75 for each of � and P0 leading to

the values of r and � given in columns 3 and 4 of Table 1. For m, the number of polynomial

expansion terms used, we selected �ve values: 1, 2, 10, 50, and 300. Experimentation with

our approach indicated that these values would demonstrate the increased accuracy of the

estimates asm increases. Computing time using an HP-UX 9000 server, and code written in

Fortran, for generating 200 data sets of size 500 and estimating the corresponding moments

using our approach was 2, 3, 7, 45, and 800 seconds respectively for m = 1; 2; 10; 50; 300.

This clearly suggests very practical computing time for a given single data set, especially

when compared to the numerical methods (e.g., MCMC) traditionally used in the Bayesian

setting.

To complete the simulation speci�cation, we needed to select values of the hyperpa-

rameters (a; b; z1; z2), the Pearson Type VI parameters for the prior on r, and (�1; �2), the

beta-prime parameters for the prior on �. These values were then inserted into equations

(12) and (16), along with the 500 negative binomial draws, to obtain estimates E(rjx) and

E(�jx) for each simulation.

We ran each of the 45 simulation conditions under three choices of these hyperparame-

ters, all having z1 = 0 and z2 = �1 indicating a beta-prime prior on r:

11



prior on r prior on �

i) improper uniform weakly informative with mean 1

(a = 0; b = 0) (�1 = 2; �2 = 3)

ii) weakly informative with mean 1 weakly informative with mean 1

(a = 1; b = 5) (�1 = 2; �2 = 3)

iii) weakly informative with mean 1 improper uniform

(a = 1; b = 5) (�1 = 1; �2 = �1)

We note that the condition with two uniform priors does not satisfy the constraint

�2 > a�b+2, described earlier, and thus could not be explored. As our results indicated no

signi�cant di�erences across the three choices of the hyperpriors (determined by a repeated

measures ANOVA), the results reported below are the average across the three sets. As

with any Bayesian analysis, though, this is due, in part, to the large sample size selected

(N = 500) in comparison to the small amount of information in the priors.

Reported in Table 1 are the Mean Absolute Estimation Errors (MAEE) for the �rst

moments, avg(j dE(rjx)� rj) and avg(j dE(�jx)��j), for each of the 45 simulation conditions

and aggregated across various cells. Columns 1{5 convey the 3 � 3 grid for � and P0, and

the corresponding values of r, � and E(Xi) = r=�, respectively. The results indicate a

number of interesting features. First, as expected, the estimation error decreases with an

increasing number of expansion terms m. In fact, we observe a very poor �t for a small

number of terms and a good �t for the m = 300 condition. Secondly, estimation error

increases with E(X). This suggests that when the sample average is large, many more

terms in the expansion m are necessary to provide adequate estimates. But even in the

worst case (row 3), the 300-term approximation is excellent and, if necessary, additional

terms could be added with very little di�culty or computational burden.

4 Moments of the Predictive Distribution

The approach developed above for evaluating the moments of the marginal posterior densi-

ties can be applied to the evaluation of the moments of the predictive distribution (E(Y k
i jx)).

As prediction is among the most common applications of the NBD model in practice, closed-

12
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form moments in this instance have great practical value. Let Yi be the count variable for

individual i in a non-overlapping time period, where the two periods corresponding to Xi; Yi

are of equal length. In this section, we focus on evaluating the mean and variance of the

predictive distribution: E(Yijx) and var(Yijx). The method easily generalizes to higher

moments.

Given r and �, the mean and variance of Yi, conditional on xi, are:

E(Yijxi; r; �) =
r + xi

�+ 1
and var(Yijxi; r; �) =

r + xi

�+ 1
+

r + xi

(�+ 1)2

It follows that

E(Yijx) =

ZZ
r + xi

�+ 1
[r; �jx] d� dr (18)

and

var(Yijx) =

ZZ �
r + xi

�+ 1
+

r + xi

(�+ 1)2

�
[r; �jx] d� dr

= E(Yijx) +

ZZ
r + xi

(�+ 1)2
[r; �jx] d� dr (19)

Central to evaluating (18) and (19) is the evaluation of the following integral:

ZZ
r + xi

(�+ 1)k
[r; �jx] d� dr =

RR
r+xi

(�+1)k
[xjr; �][r][�] d� drRR

[xjr; �][r][�] d� dr
(20)

Substituting (2) and (6) into (20) and simplifying, we get

ZZ
r + xi

(�+ 1)k
[r; �jx] d� dr =

kY
l=1

(C1 + l � 2)

R
(r + xi)

hQn
i=1

�(r+xi)

�(r)

i
�(nr+�1)

�(nr+�1+C1+k�1)
[r] drR hQn

i=1
�(r+xi)

�(r)

i
�(nr+�1)

�(nr+�1+C1�1)
[r] dr

(21)

14



Using the same logic as in (10), we have

�(nr + �1)

�(nr + �1 + C1 + k � 1)
=

C1Y
j=2�k

1

nr + �1 + C1 � j

� [n(r +K1)]
1�C1�k

mX
l=0

W k
l

[n(r +K1)]
l

(22)

where W k
0 = 1, and we have a separate set of polynomial coe�cients, W k

1 ; : : :W
k
m for

k = 1; 2, computed using the previously mentioned recursive algorithm.

Substituting (11) and (22) into (21), we get

ZZ
r + xi

(�+ 1)k
[r; �jx] d� dr

�

Qk
l=1(C1 + l � 2)

nk

R
(r + xi)

�Ph
j=0 ajr

j
�
(r +K1)

1�C1�k
Pm

l=0

W k

l

[n(r+K1)]
l
drR �Ph

j=0 ajr
j

�
(r +K1)1�C1

Pm
l=0

Ul

[n(r+K1)]
l dr

=

Qk
l=1(C1 + l � 2)

nk

Ph
j=0 aj

h
Skj+1 + xiS

k
j

i
Ph

j=0 ajQj

(23)

where

Skj =

Z
rj(r +K1)

1�C1�k
mX
l=0

W k
l

[n(r +K1)]
l
dr

=

mX
l=0

�(C1 + k + l � j � 2)

�(C1 + k + l � 1)

�(j + 1)

K
C1+k+l�j�2
1

W k
l

nl
(24)

which again follows from the normalizing constant of the Pearson Type VI density in (7).

In order for (24) to be de�ned, we must have C1 + k + l � j � 2 > 0 8 j; l. Thus Skj

is de�ned 8 j when C1 � h � k > 2 , �2 > a � b + 1. This is automatically satis�ed

when we constrain the parameters of the prior distributions such that the approximation

of the moments of the marginal posterior distributions of r and �, (12) and (16), hold (i.e.,

�2 > a� b+ 2). Thus no new constraints need to be applied.

Substituting (23) into (18) and (19), we get the following expressions for the conditional

15



mean and variance:

E(Yijx) �
C1 � 1

n

Ph
j=0 aj

h
S1
j+1 + xiS

1
j

i
Ph

j=0 ajQj

(25)

and

var(Yijx) � E(Yijx) +
C1(C1 � 1)

n2

Ph
j=0 aj

h
S2
j+1 + xiS

2
j

i
Ph

j=0 ajQj

(26)

5 Conclusions

The negative binomial distribution is widely used to model count data. However, the

standard inference approach estimates the model parameters using maximum likelihood,

treating them �xed and known at r̂ and �̂. In contrast, the Bayesian approach allows for

uncertainty in parameter estimates and the incorporation of prior information.

It had previously been thought that Bayesian inference for the NBD must make use of

numerical integration since expressions for the posterior densities of interest contain a model

parameter within a ratio of gamma functions. However, in this paper we have presented

closed-form solutions to the Bayesian inference problem for the NBD. The key insight is to

approximate the ratio of two gamma functions using a polynomial expansion, which then

allows for the use of a conjugate prior. Given this approximation, we arrive at closed-form

expressions for the moments of both the marginal posterior densities and the predictive

distribution. In fact, the posterior densities themselves are a special case of the results

given. We demonstrate that this approach is very accurate and that the corresponding

gains in computing time are quite substantial.

The accuracy of our approach depends on the number of terms used in the approxima-

tion to the ratio of the two gamma functions. Even for a large number (i.e., 300) of terms,

however, the computational time required to make the relevant inferences is minimal. When

compared to standard numerical methods (e.g., MCMC), the gains in computing time are
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quite substantial. This is of great practical importance as it provides analysts with the


exibility of the Bayesian approach to inference for the NBD without the excessive compu-

tational burden traditionally associated with such an approach.

The approach developed in this paper need not be limited to the NBD. We hope that

this work spurs on other researchers to search for closed-form solutions in other situations

where the application of Bayesian techniques has forced the analyst to resort to computa-

tionally intensive methods. A natural starting point would be to examine other common

distributions such as the beta-binomial and the Pareto. Some researchers have attempted to

implement Bayesian approaches for these models, e.g. Lee and Sabavala (1987) and Arnold

and Press (1989), but in both cases they had to resort to numerical methods of some sort.
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