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A Measurement Error Approach for Modeling Consumer Risk Preference

Abstract
Von Neumann-Morgenstern (vN-M) utility theory is the dominant theoretical model of risk preference.
Recently, market researchers have adapted vN-M theory to model consumer risk preference. But, most
applications assess utility functions by asking just n questions to specify n parameters. However, any
questioning format, especially under market research conditions, introduces measurement error. This paper
explores the implications of measurement error on the estimation of the unknown parameters in vN-M utility
functions and provides procedures to deal with measurement error.

We assume that the functional form of the utility function, but not its parameters, can be determined a priori
through qualitative questioning. We then model measurement error as if question format and other influences
cause the consumer to choose the unknown “risk parameter” from a probability distribution and to make his
decisions accordingly. We provide procedures to estimate the unknown parameters when the measurement
error is either (a) Normal or (b) Exponential.

Uncertainty in risk parameters induces uncertainty in utility and expected utility, and hence uncertainty in
choice outcomes. Thus, we derive the induced probability distributions of the consumer's utility and the
estimators for the implied probability that an alternative is chosen.

Results are obtained for both the standard decision analysis “preference indifference” question format and for
a “revealed preference” format in which the consumer is asked simply to choose between two risky
alternatives.

Since uniattribute functions illustrate the essential risk preference properties of vN-M functions, we
emphasize uniattribute results. We also provide multiattribute estimation procedures. Numerical examples
illustrate the analytical results.
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ABSTRACT

Von Neumann-Morgenstern (vN-M) utility theory is the dominant theoretical
model of risk preference. Recently, market researchers have adapted vN-1M
theory to model consumer risk preference. But, most applications assess
utility functions by asking just n questions to specify n parameters.
However, any questioning format, especially under market research conditions,
introduces measurement error. This paper explores the implications of
measurement error on the estimation of the unknown parameters in vN-M utility
functions and provides procedures to deal with measurement error.

We examine two measurement error distributional assumptions, Normal and
Exponential. For each error assumption we provide (1) maximum likelihood
estimators for the risk parameters (or their distributions), (2) induced
probability distributions of the utility functions, and (3) estimates of the
implied probability that an alternative is chosen. (Uncertainty in risk
parameters induces uncertainty in utility and expected utility, and hence
uncertainty in choice outcomes.)

We provide results for the standard preference indifference questions in
which the consumer provides either a "certainty equivalent" or a probability
such that he is indifferent among two alternative lotteries. We also provide
results for revealed preference questions in which the consumer simply chooses
between two alternatives. For prediction, outcomes can be specified by
lotteries or by continuous distributions.

Since uniattribute functions illustrate the essential risk preference
properties of vN-M functions, we emphasize uniattributed results. We also
provide multiattribute procedures and an example.

Numerical examples illustrate the results.
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1. PERSPECTIVE

The measurement and modeling of how consumers form preferences among risky

alternatives is becoming an important problem in marketing science as

researchers begin to focus on purchases of durable goods such as automobiles,

home heating systems, home computers, and major appliances. An integral part

of such consumer decisions is the choice of a specific product, say a gas

furnace, when the attributes of the product, say annual cost and reliability,

are not known with certainty.

A number of procedures have been proposed to model consumer risk. For

example, Pras and Summers (1978) include the standard deviation of an

attribute as a risk measure. Among these procedures is explicit risk

assessment with von Neumann-Morgenstern (vN-M) utility functions. VN-M

utility functions have the advantages that they are:

(1) Theoretically derived from an axiomatic base (von Neumann and
Morgenstern 1947, Friedman and Savage 1952, Herstein and Milnor 1953,
Jensen 1967, Marshak 1950, and others),

(2) provide a set of practical functional forms derived from testable
behavioral assumptions (see review in Keeney and Raiffa 1976), and

(3) have been applied extensively to model managers' decisions (see
extensive reviews in Farquhar 1977 and Keeney and Raiffa 1976).

However, until recently, vN-M utility functions have not achieved widespread

use in marketing. This reluctance by marketing academics and practitioners

stems in part because the question formats can be difficult and because the

consumer modeling has not acknowledged measurement error as have more widely

accepted techniques such as conjoint analysis (Green and Srinivasan 1978) and

logit analysis (McFadden 1980). For example, both Hauser and Urban (1979) and



Eliashberg (1980) have successfully modeled consumer preferences and have

forecast reasonably well with vN-M theory, but both studies use the decision

analysis procedure which requires complex questions to first test behavioral

assumptions and then obtain exactly n observations to fit n parameters.

The consumer preference modeling task is different from the decision

analysis task. Market research interviews are usually severely limited in

time, hence, tradeoffs must be made among interviewee training, assumption

testing, complexity of questions, and the number of questions. Marketing

researchers/scientists often prefer to ask more simpler questions to

statistically infer properties and estimate parameters. Such procedures must

acknowledge potential measurement error.

More recently, marketing scientists have recognized these issues and have

begun to adapt vN-M theory to marketing problems. For example, Ingene (1981)

uses a Taylor series expansion to obtain simpler functional forms which are

estimatable with linear regression; Currim and Sarin (1982) adapt conjoint

analysis to vN-1M utility functions. Both approaches have practical merit and

indicate the renewed interest in vN-M utilty modeling.

In this paper, we take a different approach to the marketing problem. We

explicitly acknowledge measurement error, but retain the axiomatic base and

powerful, practical functional forms of vN-M theory. In the face of

measurement error, we develop procedures to estimate unknown parameters for

vN-M utility functions and we examine the implications of such measurement

error on the utility functions and choice outcomes.

In approaching this problem, we make a number of tradeoffs with respect to

(1) how we model measurement error, (2) what probability distributions we

assume for measurement error, (3) which functional forms we investigate, (4)

what type of attribute uncertainty we analyze, and (5) which question formats
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we consider. No doubt other researchers will have different tastes and make

other tradeoffs. Our goal is not to exhaust the possibilities, but to analyze

in depth the issues we feel are most relevant. We are hopeful that other

researchers will choose to extend our results, address related issues (with

different tradeoffs), and undertake empirical investigations that will provide

evidence for or against our error distribution assumptions. We feel that this

paper provides an important first step.

2. REVIEW OF VN-M CONCEPTS

This section briefly reviews some aspects of vN-M utility theory that are

necessary for our analyses. For greater detail see Keeney and Raiffa (1976).

The primary advantage of vN-M utility theory is its ability to model risk

preferences. Basically, products are represented by their attributes and

uncertainty (risk) is modeled as a probability distribution over the

attributes. The vN-M function assigns a scalar value to every possible

outcome of the uncertain attributes such that the consumer will prefer the

product which has the maximum expected utility. The axioms imply that such a

utility function exists and is unique (subject to a scaling change). The

market research task is to obtain an estimate of this function such that

expected utility is a reasonable predictor of the consumer's behavior.l

In general, a vN-M utility function can be an arbitrary function, but

research in the last 20 years has identified a set of parametered functions

based on reasonable behavioral assumptions. These functions are valuable for

market research because they allow us to parameterize, and hence simplify, the

l[In marketing research, measurement error exists. Thus, we rarely can
predict with certainty and instead forecast choice probabilities. Predictions
of choice probabilities require modification of the vN-M axiom system. For
one set of axioms see Hauser (1978).]
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estimation problem and because they focus our attention on functional forms

that can be justified a priori with a qualitative analysis of the consumer's

risk preferences.

Uniattributed functions

Uniattributed functions are derived from assumptions about how a

consumer's risk preference changes as his "assets" increase. For example, we

might expect a consumer to be less concerned about uncertainty of ±$100 in

heating bills if his base heating bill were $3000 than he would be if his base

heating bill were $300. Pratt (1964) proposed a measure, called local risk

aversion, R(x), of how a consumer's risk attitude varies with his asset level,

x. If u(x) is the utility function, R(x) is given by:

R(x) = - d2u(x) /du(x) (1)
dx2 dx

If R(x) is positive the consumer is risk averse, if R(x) is negative, risk

prone, and if R(x) is zero, risk neutral. Larger absolute values of R(x)

imply greater risk aversion (proneness).

A related concept is proportional risk aversion, S(x), which measures a

consumer's risk preference when consequences are measured in proportion to

assets. For example, if the uncertainty in heating bills was ±10% of the

base bill. If x is the minimum (reference) value of x, then S(x) is given

by:

S(x) = (x - x ) R(x). (2)
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For clarity we refer to R(x) as "absolute" risk aversion measure to

distinguish it from the proportional risk aversion measure.

The most common uniattributed functional forms are based on constant R(x)

or S(x). As Table 1 indicates, constant R(x) implies an exponential function

and constant S(x) implies a power function. The third functional form, linear

utility, is a special case when R(x) = S(x) = 0. This is the risk neutral

form which applies when risk does not affect the consumer's decision.

(In Table 1 we have restricted r > 0 in both functional forms. This is

for simplicity of exposition. Our analyses can be modified for r < 0, but

to do so would unnecessarily complicate the exposition. We leave these

straightforward extensions to the reader.)

TABLE 1

COMMON UNIATTRIBUTED vN-M UTILITY FUNCTIONS

Behavioral Assumption Functional Form Range of Attribute

1. Constant absolute
risk averse (R(x)=r)

1 e -r(x - Xo)

(1 - e-r(x - x ) X),

(1- e - r(x * - xo))

r> 0

r >0

< < 
O0

x < x < x*

2. Constant proportional
risk averse or prone
(S(x) = 1 - r)

3. Risk neutral (special
case of (1) when r+O
and (2) when r+l.)

(x - x )

(x*- )r

(x - x )

(X*- x0)

r> 0 x < x < X
o _

xx< X< x*
o~ 

Note: Functional forms also exist for r < 0. For ease of exposition we restrict our
analyses to r > 0. For constant proportional risk attitude, the utility function is
risk averse for 0 < r < 1 and risk prone for r > 1.

-5-
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Other uniattributed functional forms are possible, for example, a

logarithmic form or a sum of exponential forms, but the three functions in

Table 1 are the functional forms that have dominated applications in decision

analysis and marketing science. Furthermore, in reviewing 30 applications,

Fishburn and Kochenberger (1979) found the constant R(x) and constant S(x)

functional forms fit the data quite well and substantially better than the

linear form.

Multiattributed functions

Multiattributed functions are derived from assumptions about utility and

preference independence (or dependence) among attributes. Empirical

experience in decision analysis and marketing science has found them to be

feasible and useful. Rather than review the most common functional forms

here, we return to the multiattributed issue in Section 5 where we provide an

example based on the commonly used multilinear form.

Empirical experience

Neither decision analysts nor marketing scientists have explicity

approached vN-M utility measures as error-laden measures. Meyer and Pratt

(1968) provide a procedure for "fairing" deterministically a smooth function

through a set of points, Fishburn and Kochenberger (1979) use a minimum mean

squared error procedure, and Currim and Sarin (1982) use a conjoint-like

procedure, but none of these authors explicitly model measurement error

statistically or examine its implications. We know of no systematic empirical

study quantifying measurement error at the individual level.
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It is useful, however, to examine how risk parameters have varied across

applications. Table 2 summarizes the Fishburn and Kochenberger data for

"above target" risk averse individuals. Although the intervals are coarse

and unequal, Table 2 might suggest a normal distribution across applications

for the parameter in the constant proportional risk aversion utility function

and an exponential distribution for the constant absolute risk averse utility

function. Results vary by whether utility is assessed for gains or losses and

whether or not the individual is risk averse or seeking, but in 7 of 8 cases

the distribution "looks" either normal or exponential.

TABLE 2

VARIATION IN RISK PARAMETERS ACROSS APPLICATIONS

(Risk averse individuals from review by Fishburn and Kochenberger, 1979)

Constant Proportional Risk Aversion Constant Absolute Risk Aversion
r no. of applications r no. of applications

[0, 1/2] 3 [0, 1/4) 10

[1/2, 4/5] 10 [1/4, 1] 7

[4/5, 1] 4 [1, ] 0

2[Fishburn and Kochenberger assess functions for utility "above target" and
"below target." They find interesting variation. Our Table 2 is but part of
their extensive study. Our purpose is to illustrate the type of results
obtained.]
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3. SINGLE PARAMETER UNIATTRIBUTED UTILITY FUNCTIONS

VN-M utility theory applies to single attributes and to multiple

attributes. We begin our analyses with single-parameter uniattributed utility

functions because the essential risk modeling capability of vN-M theory is

embodied in uniattributed functions and because the most commonly used

functional forms are single-parameter functional forms. Section 4 examines

multiple-parameter uniattributed forms and Section 5 examines multiattributed

utility functions.

Following Fishburn and Kochenberger (1979) we assume that separate

parameters are estimated "above target" and "below target", thus we can assume

that the utility function is either concave throughout the region,

xo < x < X, or convex throughout the region. Without loss of

generality we assume that the attribute of interest, x, has been scaled such

that preference is monotonically increasing in x over the region of

estimation. For example, if there were a finite ideal point, say length of an

automobile, we either (1) assess separately for the range above and the range

below the ideal point or (2) assess with respect to a rescaled attribute such

as distance from the ideal point.

Our results are derived at the level of the individual consumer, that is,

we assume that any variation in the unknown parameter, r, represents

uncertainty in measuring that parameter and/or uncertainty across time and

situations. We note, however, that our results can be interpreted for

variation across consumers with proper modification in definitions. Before we

present the conceptual framework that we have developed, we provide an example

that illustrates the nature of the problem of interest, and its essential

characteristics.
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An Illustrative Example

Suppose that a consumer is considering replacing his antiquated home

heating-system with a new oil, gas, electric, or solar system. He is

uncertain about unit fuel cost, about heating efficiency, and about weather,

thus, the annual savings, x, of the new system over the present system is an

uncertain outcome. Suppose that he has some prior beliefs about the savings

due to each system and that these prior beliefs can be characterized by a

probability distribution over the range of 200 < x < $1200. We want to

estimate his utility for values of x and to predict his future choices.

Using a standard decision analysis lottery questioning format, we ask the

lottery question in Figure 1. The consumer is given a choice between two

heating systems. Heating system A, a solar system, has a known savings of

x. dollars. The savings of heating system B, an oil system, are less

certain and depend upon the price of oil. If conditions are favorable, the

savings are 1200, and if they are unfavorable, the savings are only 200.

The consumer is asked to specify the likelihood (probability), pi, of

favorable conditions such that he would be indifferent between system A and

system B.

Solar Heating Oil Heating

$1200 saved

Pi
xi dollars saved ~

- Pi)
3200 saved

Figure : Schematic of Lottery Measurement

From discussions with the consumer we believe a constant proportional risk

averse utility function is appropriate. For our problem, the function is:

u(xi, r) = (xi - 200) r / (1 0 0 0 )r (3)

-9-
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If the vN-M axioms hold, then Figure 1 implies:

u(xi, r) = piu(12 0 0, r) + (1 - pi) u(200, r) (4)

Substituting equation (3) in equation (4) yields:

r r
(xi- 200)r / 1000r = Pi (1) + (1-pi)(0) = Pi (5)

Finally, if there were no errors and we know xi and i, we could ob-

tain r by solving the algebraic relationship in equation (5).

The practice in marketing research is to ask multiple questions as illus-

trated in Table 3 and to utilize all the information obtained. That is, we

could vary xi and have the consumer specify a Pi for each xi. We would

then solve equation (5) for each xi. However, as Table 3 indicates, we are

likely to get a different value of r for each question since it is quite un-

likely that the consumer will be perfectly consistent in responding to the

various questions.

TABLE 3
EXAMPLE ASSESSMENT FOR THE ANNUAL SAVINGS

OF A HOME HEATING SYSTEM

r(xi, Pi)
i Xi Pi (constant proportional
Measurement (dollars) risk averse)

1 300 .30 .52
2 400 .45 .50
3 500 .55 .50
4 600 .65 .47
5 700 .70 .51
6 800 .75 .56
7 900 .85 .46
8 1000 .90 .47
9 1100 .95 .49
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Conceptualization of Measurement

We can conceptualize this measurement as shown in Figure 2. We, the

experimenter, choose a set of questions. The type of question chosen as well

as other factors could well induce errors in the measurement process. For

example, Hershey, Kunreuther and Schoemaker (1982) found that the domain of

outcomes (e.g., pure loss versus mixed lottery) and the decision context

(e.g., abstract versus concrete formulation) may be influential in the

observation of the consumer risk attitude. In our framework, for a given

utility function, there is some true risk parameter, rT , but our question

format induces error. We describe this error by a distribution, f(rlX), of

the risk parameter.

We then model the consumer's response as if he chooses a utility function,

u(x, r), draws a risk parameter, ri, from f(rlX) independently for each

question, and provides an answer to the question, say Pi, such that Pi

is consistent with u(x, ri). When we obtain I observations, it is our task

to estimate f(rlX). If errors are unbiased (zero mean) or if the bias is

T
known, we can then obtain an estimator of r

3 for each product which he evaluates in answering the question.][Or for each product which he evaluates in answering the question.]



Parameterized utility function Experimenter chooses question
u(x, rT) describes consumer. format which induces error.

We know form but not the Error can also be induced

parameter, rT. by other sources.

"truth" \ /"error"

Consumer is now modeled by utility form,
u(x, r), and distribution, f(rlX)

of risk parameter.

For each question*, consumer

lI chooses ri, from f(rlX). 

I iI
Consumer evaluates alternatives 

in question with u(x, ri). 

ts I

:| | Consumer provides answer to I
question.

When I observations are obtained, experimenter

estimates X and hence f(rX). 

*Or each alternative
in the question.

Figure 2: Conceptualizaition of Error Modeling

The assumption of error being induced by question format or by other

sources such as temporal variation, approximation, etc., and its modeling

through random draws of the risk parameter is similar to "random utility"

error theories such as Thurstone (1927) or Luce and Suppes (1965), but

modified to emphasize the strength of vN-M theory -- risk preference.

We note that our model of the consumer's response (dotted box in Figure 2)

is a paramorphic model, that is, we assume that the consumer responds as if he

follows the postulated procedure. Such details of cognitive response are

inherently unobservable (without introducing new observation errors), but

serve to provide a modeling framework with which to represent measurement

error.

-12-
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For the question format in Figure 1, the experimenter specifies xi, the

consumer draws ri from f(rlX), and provides us with Pi. Figure 2

implies that Pi then must satisfy the equation

Pi = u(xi, ri) (6)

We can then solve this equation for ri. That is, for a constant

proportional risk averse utility function,

ri = r(xi, Pi) = log(pi)/log[(x i - 200)/1000] (7)

This is the value given in the third column of table 3. It will be useful in

estimating f(rlX).

To analyze the implications of Figure 2 we investigate a number of

issues. (1) We obtain methods to estimate X, and hence f(rlX), from data

obtained from indifference questions such as that shown in Figure 1. (We

allow X to be vector valued.) (2) We obtain methods to estimate X from

revealed preference questions where the consumer is given two alternatives and

asked to choose his most preferred. (3) Since uncertainty in r induces

uncertainty in u(x, r), we derive the distribution of utility from the

estimated distribution of r. (4) Since uncertainty in utility induces

uncertainty in expected utility and hence uncertainty in choice outcomes, we

derive expressions for the probability a given alternative is chosen by the

consumer. We investigate these issues for alternatives represented by

discrete (Bernoulli) distributions of the attribute, x, and for alternatives

represented by continuous distributions (e.g., Normal) of the attribute x.

-13-



We begin with maximum likelihood estimators, X, for X, when questions

are asked in the format of an indifference question. We address revealed

preference questions after we derive the necessary analytic tools, i.e.,

expressions for the distribution of utility and for choice probabilities.

Estimation for Preference Indifference Question Formats

A preference indifference question is a question such as Figure 1 where

the experimenter provides x*, xo, and either xi or Pi. The consumer

answers with a value of Pi (or xi) such that he is indifferent between the

two alternatives.

The experimenter's task is to estimate X from I indifference questions.

Before we can proceed further, we must make an assumption about the family of

distributions, f(rlX). In this paper, we investigate two error

distributions: (1) Normal distributions and (2) Exponential distributions.

Normal error theory has the advantage that it is the natural assumption

usually made in statistical theory. Its drawback is that ri can take on any

value in the range (-co, ). However, if the mean is significantly larger

than the standard deviation, then negative values of ri will be extremely

rare.

Exponential error is not subject to this problem since we can restrict

r > r, i.e., f(rlX) = ( - r )- 1 exp[-(r - r )/(X - r)]
-0 0 0 0

for r > r. However, exponential error theory does imply an assymetric

distribution with its peak at r r and zero probability for r < r.

Normal error and Exponential error are clearly quite different theories.

Each has its advantages and its disadvantages and, a priori, each reader will

have his own favorite theory. We investigate both assumptions in this paper

in the belief that these two assumptions are each flexible and together span a

broad range of potential shapes for f(rlX).

-14-
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As it turns out, it is quite simple to obtain the maximum likelihood

estimator (MLE) for X, once an error assumption is made about the shape of

f(rlX). (MLE's are important for applied statistics because they are

consistent, efficient, and a function of minimal statistics.)

Suppose we ask I questions of the format of Figure 1. That is, for a

vector of "certain outcomes," x = ( 1, x2, ... , xI), we obtain a vector

of corresponding "answers," p = ( 1, P2' **', PI
) ' Because successive

questions are independent, the joint probability, F(pix, ), of observing

p given x and X is:

F(2Ix, ) =J i f(r(xi, pi)lX) ia r(xi, pi)/pi ! (8)

where I ar(xi, Pi)/api I is the absolute value of the Jacobian transformation

(Mood and Greybill 1963) and r(xi, i) is defined as the solution to

equation (6).

To obtain the MLE's for , X, we maximize F(jlx,X) with respect

to X. Since the Jacobian is independent of X and maximizing log

F(Rlx,X) is equivalent to maximizing F(p,lx,X) we can also obtain

X by maximizing the following log likelihood function:

L(rIx, p) = Zilog f(rilX) (9)

where

r i = r(xi, Pi)

In other words, we simply treat the ri as data points. This has a number of

very practical advantages.

-15-
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Estimators

If we treat the ri as data, the MLE's are well known for both Normal

error and Exponential error. If p and a2 are the mean and variance of

the Normal distribution, then4:

p = (1/I)Zir i (10)r (10)

2 = (l/I)zi(r - M) (11)

For exponential errors:

x - (1/I) iri (12)

Furthermore, j and X can be interpreted as the expected ("true")

values of r for Normal and Exponential error, respectively, if we assume

induced error is zero-mean.

MLE's are invariant under transformation, that is, if O is an MLE for

0, then g(O) is the MLE for g(O) (Giri 1977, Lemma 5.1.3). Thus, if

we interpret or X as the "true" values of r, then u(xi, ') or

u(xi, X) are estimators of the "true" values of u(xi) for Normal and

Exponential error, respectively.

Note that equations (10), (11), and (12) apply for both the constant

absolute and constant proportional risk averse forms in Table 1. For that

matter, they apply for any uniattributed utility function for which a unique

ri can be computed for each consumer question. For the generalized

version of the binary preference comparison question shown in Figure 1

(xo < i < = for absolute risk aversion and x < xi x*

for proportional risk aversion), the inverse functions are given by:

4[Equation (11) is the MLE for a2 , but it is^biased for finite I.

The more commonly used estimator is (I/I-l))a2. Also, if we want to

estimate r, its MLE is ro = mini {ri}.]
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Aslt i xConstant _ log (1 - pi
Absolute risk: r(xi, Pi) = (13)

aversion (x -x )

Constant log i)
Proportional risk: r(xi, Pi) = (14)

aversion log [(xi - xo)/(x* X )]

When x < x < x* for absolute risk aversion, the inverse function

can be obtained numerically and, for a few special cases, analytically.

Question Format

We derived equation (9) for the case when the xi's were specified by

the experimenter such that the consumer's answers were the pi's. But, by

symmetry, it is clear that equation (9) applies if the probabilities, Pi'S

are specified and the consumer supplies the certain outcomes, xi's. In

fact, a modified equation (9) will apply for any question format for which

one can obtain an observation of ri. See Farquahar (1982) for a review of

alternative question formats. However, equation (9) does not imply that the

experimenter's choice of question format is free from systematic bias.

Different formats can induce different magnitudes of error, e.g., different

a2 for Normal errors, or, for that matter, different types of error,

e.g., different f(rlX). But equation (9) does state that once the error

assumption is made, equations (10) and (11) or (12) apply independent of the

question format.

Statistical Inference

One can test a hypothesis about the "true" value of r. For example, if

normal error theory applies and the researcher wishes to test whether the

"true" value of r is significantly different from some hypothesized value,

rH, he can use a t-test with (I - 1) degrees of freedom based on the

-17-
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A ^
statistic, (rH - )(I - 1) 1/2/a. Similar results apply for exponential

error theory, except that the sampling distribution for X has a gamma

density with mean, XH and variance X /n.

An Illustration

Consider the problem in Table 3. Using equations (10), (11), and (12) we

estimate p = .50 and a = .03 for Normal errors and X = .50 for Exponential

error. A chi-square goodness-of-fit test suggests that the data are more

likely to be generated from a Normal distribution. A utility function based

on rT = = .5 is shown in Figure 3. For normal error theory, a 95%

confidence interval for is [.48, .52] and for a it is [.02, .06].

Distribution of Utility

If the risk parameter, r, were known with certainty, we could compute u(x, r)

for any x and compute directly the expected utility of a product. However, even

with an MLE for the "true" parameter, X, our knowledge about r is still

represented by a random variable with distribution, f(rlX). This uncertainty

in r induces uncertainty in u(x, r) for any x. Hence, the expected utility and,

ultimately, the choice outcome are random variables. We begin by computing the

probability density function of u(x, r). We then examine its implications. For

simplicity of analytic exposition we restrict our results to the infinite range

(0 < x < o) constant absolute risk averse utility function and (for

exponential errors) to r > 0.
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Figure 3: Maximum-likelihood Estimate of Assessed Utility Function

Proposition 1: If measurement error is modeled as NORMAL, then the utilfty

functions have lognormal distributions. In particular:

u(s, r) A(-kp, ka) for constant proportional risk aversaon

A 2

1 - u(x, r) ~ A(-x, 2a2 ) for constant absolute risk aversdn

where k - log [(z, - x)/(x- Zo)]

A(a, b) - a lognormal distribution with parameters a, b.

Proof. By definition, if z is a normal random variable with mean, , ad

variance, a2, and if z = log y, then y is a lognormal random variable

with parameters and a2, designated y A(U, a2). See

Aitchison and Brown (1969). For constant proportional risk avEr-sion,

r(x, u) - -k-11log u or log u - -kr(x, u). If r(x, u) N(, o),
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then -kr(x, u) N(-kp, k a ) which is our first result. For

constant absolute risk aversion log (1 - u) = -xr(x, u) yielding the second

result.

Proposition 2: If measurement error is modeled as EXPONENTIAL, then the

utility functions have Beta distributions. In particular,

u(x, r) ~ Beta(l/Xk, 1) for constant proportional risk aversion

u(x, r) ~ Beta(l, 1/Xx) for constant absolute risk aversion

where Beta(c, d) - a Beta distribution with parameters c, d.

Proof. Restriction to r > 0 implies r = 0. f(rlX) induces a

distribution on u, g(ulX) according to the following transformation

formula: g(ulX) = f(r(x, u)lX)lr(x,u)/aul. See Mood and Greybill

(1963, p. 224). For constant proportional risk aversion f(rl) = X-1

exp(-r/X), r(x, u) = k- 1 log u, and Iar/aul = 1/ku. Substituting

in the transformation formula yields g(ulX) = (Xk)-lu(l/Xk)-l

which we recognize as a Beta distribution with parameters (l/Xk) and 1. A

c-l d-lbeta distribution with parameters c, d is proportional to u (l-u)

For constant absolute risk aversion r(x, u) = -(l/x) log(l - u) and

lar/aul = l/[x(l - u)]. Substituting the transformation formula

yields g(ulX) = (xrl(l - u)(l/; x ) -l which we recognize again as

a Beta distribution with parameters 1 and (l/xx).

Propositions 1 and 2 are useful for practical applications involving

risky and riskless alternatives. For both error theories, the induced

distributions on u(x, r) are recognizable distributions with known

properties similar to those that arise in quantal choice problems. This

will become key as we proceed to forecasts of choice probabilities. Because
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lognormal and Beta distributions compound nicely with conjugate

distributions (DeGroot 1970) it is possible to obtain analytic results for

important distributions of outcomes.

Probability of Choice

If r were known with certainty, the expected utility of each product

could be computed and we would simply forecast that the consumer would

choose the product with the maximum expected utility. In which case, our

forecasting statement would be made categorically, that is, with probability

zero or one. Instead, u(x, r) is a random variable with distributions given

by Propositions 1 and 2. Hence, the best we can forecast is the

probability, P (0 < P < 1) that the consumer will choose product

j. That is,

Pj = Prob[fu(x, r)h(x)dx > fu(x, r)hk(x)dx for k = 1, 2, ... J] (15)

where h(x) is the probability distribution of outcomes for Alternative j.

If we were evaluating riskless alternatives, then equation 15 becomes a

quantal choice problem similar to logit or probit analysis (McFadden 1980)

except that we use lognormal or Beta distributions rather than the double

exponential and normal distributions used in logit and probit analyses,

respectively. Related quantal choice problems for riskless alternatives have

been studied. For example, Boyd and Mellmon (1980) estimated a quantal choice

model for automobiles in which the distribution of utility was a lognormal

mixture of double exponential distributions. Since the key contribution of

vN-M theory is modeling of uncertain outcomes and since the details of quantal

choice models are discussed in at least two separate books (Manski and

McFadden, 1981, and Daganzo, 1979), we do not dwell on riskless alternatives

here.
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Instead, we examine in detail two important cases of equation (15). IlWe

examine binary choices among:

(1) Products whose outcomes are specified by lotteries possessing

discrete (Bernoulli) probabilities, and

(2) Products whose outcomes are specified by continuous probability

density functions, especially normal distributions.

These cases illustrate the essential ideas behind equation (15). We can

obtain analytic results for both problems. We leave the problems of other

uncertain outcomes and multiple choices for future research, although we point

out that, in principle, one could use Propositions 1 and 2 with numerical

techniques to compute Pj via equation (15). This would be analogous to the

use of numerical techniques in state-of-the-art multiple choice probit

analysis (see Daganzo 1979).

Binary Choice Between Lotteries

The first consumer choice situation that we consider is characterized as a

binary choice problem with dichotomous outcomes illustrated in Figure 4.

Without loss of generality assume xl > x2 and > a. (If

x1 > x2 and a > a, then Alternative 1 would dominate Alternative 2.)

This simple choice problem contains the essence of risky choice; the

individual must decide among a potentially greater payoff, Alternative 1, and

a greater likelihood of the payoff, Alternative 2.
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Figure 4: Binary Choice Problem

Our objective is to estimate the probability, Pi, that the consumer will

choose Alternative 1, given that we have estimated the parameters, X, of the

probability density function from which the risk parameter, r, is drawn.

Before we proceed, we note that, for the binary choice problem presented in

Figure 4, measurement errors may be induced once, for the question as a whole,

or twice, once for each alternative. This gives rise to two viewpoints

(assumptions) regarding the nature of our conceptualizations of how consumers

draw r from f(rlX).

We label these assumptions as single and multiple random draws. Under the

single random draw assumption, the consumer draws the corresponding risk

parameter only once, and he is consistent in the sense of using the same

parameter (and hence, the same utility function) to evaluate all alternatives

in his choice set. Under the multiple random draw assumption, the consumer
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draws the risk parameter every time he evaluates an alternative. The two

assumptions imply similar, but slightly different, choice probabilities. We

begin with single random draw.

Proposition 3: For the binary choice problem with discrete outcomes

(Figure 4), under the single random draw assumption, if measurement error is

modeled as NORMAL, then:

A. A A

P1 [( - K log(B/a) )/a for constant proportional risk aversion

P i4[(rc- )I/a] if ax > Bx2 for constant absolute risk aversion
(infinite range, 0 < x < x)

if axl< 1x2

where

-1
K = log[(x - X)/X2 - X)],

and r c solves the equation

B exp(-rcx2) - a exp(-rcxl) =B - a,

and [ ] denotes the cumulative distribution function of a normally

distributed variate.

Proof. We scale u(x, r) such that u(x , r) = 0 and u(x*, r) = 1. Then,

for the binary choice problem P1 = Prob [au(xl, r)> u(x2, r)] where r

indicates random variable. Substituting for the constant proportional risk

aversion utility function, u(x, r) = (x - xo)r/(x* - xo)r. This

yields that P1 = Prob[r > log(B/a)/log[(xl - xo)/(x2 - xo)] =

Prob [r > K log(B/a)]. Recognizing that r ~ N((p, a2) and

(( - z)/a) = Prob [r > z] yields the result. The result is only

approximate since we ignore r < 0 which occurs with low probability when

> > a. Now substituting the infinite range constant absolute risk
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aversion utility function, u(x, r) = 1 - e , into au(xl, r) =

1u(x 2,r) yields the equation for r Note that as r + c, u(x, r) + 1,

and Alternative 2 will be preferred since > a. As r 0,

Alternative 1 will be preferred if ax1 > x2 since u(x, r) approaches

linearity. Thus, if there is only one solution to the equation for r ,

P1 = Prob [O < r < rc]. For ax > x2, there is only one solution

to the equation for rc > 0. We provide a proof of this fact in

Lemma 1. See appendix. If axl < x2, then au(xl, r) < Bu(x2, r)

for r > 0, hence P1 = 0.

Proposition 4: For the binary choice problem with discrete outcomes

(Figure 4), under the single random draw assumption, if measurement error is

modeled as EXPONENTIAL, then:

P1 [iB/a] for constant proportional risk aversion

A A

P1 1 - eexp[r / ] if axl> 8x2 for constant absolute risk aversion
C (infinite range, 0 < x < o)

0 if axl < x2

where and r are defined in Proposition 3.

Proof. The results follow the same arguments except Prob[r > Z] =

exp(-z/X). The result is exact since Prob[r < 0] = 0.

Propositions 3 and 4 are useful results. To illustrate their application,

consider the hypothetical alternatives in Figure 5. Alternative 1 is oil heat

where the high risk reflects volatile supplies. Alternative 2 is gas heat

where the risk reflects only uncertainty in the heating characteristics of the

home.
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Figure 5: Hypothetical Characteristics of the Risk Involved for
Two Home Heating Systems

Using the distribution implied by the data in Table 3, = .5, C = .03.

From Figure 5, a = .3, = .5, x = 1200, and x2 = 600. Assuming a

constant proportional risk averse utility function and substituting these

values in (16), yields P1 = [{.5 - log(.5/.3)/log(1000/400)}/.03] =

C[-1.92] = .027 for normal error theory. In a marketing forecasting

application, we would assign a .027 value to the probability that the consumer

would choose oil heat.

We now consider multiple random draws. We have been able to obtain

analytic results for constant proportional risk averse utility functions.

These results are stated in Proposition 5.

Proposition 5: For the binary choice problem with discrete outcomes

(Figure 4), under the multiple random draw assumption, for a constant

proportional risk averse utility function:

P1 - p - 10og(2/aW)J/, } for NORMAL errors

-26-
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1 2 + 2where 2 + k2

kin log[(,- x )/(]- xO)], k2 - log[(x* - .)/(2 - o)]

p [k 2 /(kL+ k2 ) B/cal]-(l/k2 ) 2for EXPONENTIAL errors

Proof. Alternative 1 will be chosen if au(x1, r1) > u(x2, r2 ).

Consider first normal error theory. Rearranging terms this condition

becomes log u(xl, r1) - log u(x2, r2) > log (/a). Using

Proposition 1, the left hand side of the inequality is distributed as

N[p(k2 - kl), a (k2 + k2 )] and the result follows from

-1
the recognition that k 2 - k = log[(xl - o)/(x 2 -X )] = K 

Now consider exponential error theory. Again rearranging terms indicates

that Alternative 1 will be chosen if u(x1, rl)/u(x2, r2) > /a.

Let ui = u(xi, ri) then by Proposition 2 and the assumption of

independent draws g(ul,u2) is given by:

g(u, u2) = (X2klk2)- ( 1) 1 ()(/k 2)

Define z = u/u 2 and t = U2 then the p. d. f. of z and t is obtained

using a Jacobian transformation:

fzt(z, t) = qlq2(z)ql-l(t)ql+ q2
- 1

where q = (1/Xk i)

Integrating out t yields the marginal distribution for z:

qlq2 zql-1 < z < 1

fz() = 
qlq2 z-q2 - 1 z > 1

ql + q2
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Since (/a) > 1, P1
= Prob[z > B/] = f fz(z)dz = [ql/(ql+ q2)](/a)-q2.

S/z

Finally, substituting qi (l/ki) into the above expression yields the

result.

It is interesting to compare Proposition 3 (Normal errors, constant

proportional risk aversion) to Proposition 5 ( Normal errors, constant

proportional risk aversion). This comparison illustrates the impact of

measurement error on our ability to estimate choice probabilities. Without

T T
error, r is known and alternative 1 will be chosen, P1 = 1, whenever r

> K log( $ ). This corresponds to Propositions 3 and 5

with a + 0. As our uncertainty, a, about r increases, our ability to predict

decreases, i.e., P1 decreases for > K log(B/a). If we compound that

error by allowing the consumer multiple random draws from f(rlX), then our

ability to predict is modified still further because we replace a by Kfn.

The differences in Propositions 3 and 5 make clear the implications of our

assumption about our knowledge of the consumer's risk parameter.

One can obtain similar interpretations by comparing Propositions 4 and 5

for exponential errors. The forms are the same, but the constants vary, e.g.,

-1
K VS. d 

Thus, clearly, an "open-loop" prediction of probabilities, i.e., use

indifference questions to estimate f(rlX) and Propositions 3 or 5 to

estimate P1, will depend on the assumptions we make about how uncertainty in

u(x, r) affects uncertainty in choice outcomes. On the other hand, a "closed-

loop" revealed preference prediction of probabilities will not depend on this
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assumption. For example, a revealed preference estimate of a will be

smaller by a factor of () if we use Proposition 3 rather than

Proposition 5, but Kn will cancel out when we use the same proposition to

forecast probabilities.

In other words, if we are most interested in estimating P1, then we

should use revealed preference questions (discussed later) because they will

produce estimates of P1 which are invariant with respect to the single/

multiple draw assumption. If we are most interested in estimating A, then

preference indifference questions are likely to be better because X obtained

by equations (10)-(12) does not depend on "solving" X = g(P1) and hence

will not depend upon the single/multiple draw assumption. (The need to "solve"

= g(pl) will become clear when we discuss revealed preference.)

Such robustness of "closed-loop" revealed preference techniques is

discussed in the econometric literature. For example, Domencich and McFadden

(1975, p. 57) provide a table and discussion illustrating the similarity in

probability predictions of the Logit, Probit, and Arctan probability of

choice models. The Logit is based on Double-exponential errors, the Probit

is based on Normal errors, and the Arctan is based on Cauchy errors.

We derive revealed preference estimators later, but first we complete

this subsection with the estimates of P1 for constant absolute risk averse

utility functions. Despite the fact that the lognormal and Beta distributions

are well studied (e.g. Aitchison and Brown 1969, DeGroot 1970, Drake 1967) we
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have been unable to obtain analytic results for P with constant absolute

risk averse utility. Instead Proposition 6 relies upon implied integral

equations which require numerical techniques.

Proposition 6: For the binary choice problem with discrete outcomes

(Figure 4), under the multiple random draw assumption, for a constant absolute

risk averse utility function:

P1 Prob [2 - (-) for NORMAL errors

where P1p A(log a - x p, X1 2 )

2^2
q2 A(log - x2P, x2a )

P1 Prob [atu1 -u >0] for EXPONTIAL errors

where u Beta (1, 1/)xL)

Proof. The proof is similar to that of Proposition 5. For NORMAL errors we

use the limited reproductive properties of the lognormal distribution

(Aitchison and Brown, 1969) and some algebra. See Barouch and Kaufman (1976)

for issues involving sums of lognormal random variables.

Binary Choice Among Alternatives Represented by Continuous Distributions of Outcomes

The previous subsection dealt with choices among outcomes represented by

lotteries. Such choices are important because (1) most measurement questions

take the form of lotteries and (2) lotteries represent the essential risk

problem of a choice between one alternative with greater potential reward and

another alternative with greater chance of getting the reward.
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Although attributes of many consumer products can be represented by

lotteries, many other attributes will be represented by continuous

distributions such as the Normal distribution. For example, if we buy a new

automobile, we might expect that the miles per gallon we actually obtain is

best represented by a Normal distribution based on the published EPA estimate.

Proposition 7 derives the probability of choice, P, if the two outcomes

are represented by Normal distributions with means and variances, mi,

2 2v2 and , v2 respectively. We assume that outcomes take on

mostly positive values, that is, ml > > v and > > v2 For

simplicity we state the result only for single random draws with constant risk

averse utility functions. Other results are obtainable but some require

numerical techniques. Without loss of generality assume m1 > m2 and

v > V2. (If ml > m2 and v 1 < v2 then P1 = 1.)

Proposition 7: For binary choice among Normally distributed outcomes, under

the single random draw assumption, for a constant absolute risk averse utility

function:

2 2
Pi -2(m m2 )/(v - v2)a a for OBRIAL errors

A A2 2
P1 - 1 - expl2(m1 - m2 )/X(vl - v2)] for PONITIAL errors

Proof. First we recognize that the expected utility for a constant risk

averse utility function with outcomes described by f(x) is given by

E(u) -= u(x, r)f(x)dx = 1 - erxf(x)dx 1 - M(r) where M(r) is the
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moment generating function of f(x). See Keeney and Raiffa (1976, p. 201),

Drake (1967, chapter 3). For the Normal distribution, M(r) =

~^ ~~2 2
22 22exp(-rm + r v /2). Thus, P1 = Prob[l - exp(-rml + r vl/2) > 1 -

2 2 2
exp(-rm2 + r v2 /2)]. Simplifying yields, P1 = Prob[r <2(m 1 - v2)].

Finally, substituting the appropriate f(rlX) yields the result.

We have stated the result explicity for Normally distributed outcomes, but

since the key idea of the proof is the use of moment generating functions

(also known as exponential or Laplace transforms) we can obtain results for

any distribution for which the moment generating function is tabled. This

includes the continuous Beta, Cauchy, Chi-square, Erlang, Exponential, Gamma,

Laplace, and Uniform distributions as well as some discrete distributions such

as the Binomial, Geometric, and Poisson distributions. See tables in Keeney

and Raiffa (1976, p. 202) and Drake (1967, pp. 271-276).

For the constant proportional risk averse utility function we can also

obtain results by using the Mellin transform, xrf(x)dx, for those

distributions for which it exists. See tables in Bateman (1954).

Estimation for Revealed Preference Questions

The most commonly used question formats in decision analysis use some form

of preference indifference question. However, in marketing such questions

have been criticized as too complex. On the other hand, revealed preference

questions, where the consumer is asked to choose among (or rank order)

alternatives, are very common. For example, conjoint analysis, as reviewed by

Green and Srinivasan (1978), uses this form of questioning and is one of the

most widely used marketing research procedures. In fact, Currim and Sarin

(1982) use a modified conjoint analysis procedure to estimate vN-M-like
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utility functions. Furthermore, revealed preference is one of the most

commonly used techniques in transportation demand analysis. See Manski and

McFadden(1981).

As discussed earlier, revealed preference is a "closed loop" technique for

choice probabilities because we estimate based on observed Pl's in order to

predict for new Pl's. Intuitively, we expect such measurement techniques to be

less sensitive to the assumed distribution of measurement error when predicting

probabilities than "open-loop" techniques that estimate on indifference questions in

order to predict probabilities.5

Since we are addressing a market research issue, we allow the experimenter to

choose the question format much as he would choose the fractional factorial design

in conjoint analysis. For revealed preference estimation the consumer's task is

simple. He is given I pairs of alternatives. Each alternative is described by the

probability distribution of outcomes (usually lotteries, but continuous

distributions are allowable if they can be described adequately to the consumer).

For each pair of alternatives, the consumer is asked to choose the alternative which

he prefers. Propositions 3 through 7 give us the analytic tools to obtain

estimators for f(rlX) from the answers to such questions.

Let i
= 1 if the consumer chooses Alternative 1 from the ith pair and let

6i 0 if he chooses Alternative 2. Let 6 be the vector of 6i's. Then,

the joint probability, F(6IX), of observing a particular set of answers, 6,

given f(rlX) is given by:

5If our interest is in the risk parameter, r, not the purchase probability, Pl,
then indifference questions are "closed-loop" and revealed preference is
"open-loop." Thus, for estimating r, indifference questions will be less sensitive
to the assumed form of the error distribution.
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F(1) = i=l p Ui (- 1 - (16)

where Pli = Pli() are determined for each question, i, by the

appropriate proposition. (I.e., Proposition 3, 4, 5, 6 or 7 or their

extensions.) For example, for lotteries under the multiple random draw

assumption with exponential errors and a constant proportional risk averse

utility function, Pli is given by:

PlI(X) = [k/(kli+ k2i)][V/a] -(1 2i (17)

In principle we could form a log-likelihood function based on equations (16) and

(17) and then maximize it by numerical techniques to obtain MLE's of X, X.

However, if the experimenter chooses his measurement design carefully, he can obtain

practical analytic expressions for . In particular, for equation (16), if (1) he

chooses a, , x and x2 for the first question (review figure 4) and if (2)

for every subsequent question, i, he chooses a and Xli. Then i and

x2i according to the following rule:

x2i Xo + [(x2 - Xo)/(x,- xo)]Yi (x*- x) (18)

Bt = (B/a)Yi at (19)

Yi log[(xli- Xo)/(x*- xo)]/log[(x1- x)/(x*- Xo)] (20)

then he can obtain an analytic expression for X. (Note we have suppressed the

subscript 1 on Xll, etc for the base question, i=l).

The analytic expression is obtained from the invariance properties of MLE's in

the following way. Equations (18) through (20), ensure that for all X, Pli is

constant for all questions. Define I1 as the number of times the first
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alternative is chosen, then F(61X) becomes a Binomial distribution function for

I1. The MLE for a Binomial distribution is obtained simply as P1 = I1/I. X

is obtained by solving the equation P1() 
= I1/I. For equation (17) we obtain

x = [(1/k2) log(8/a)]/[log{k I/(k 1 + k2)I1}] (21)

where a, , kl, and k2 are obtained from the reference question.

To illustrate this technique, consider a set of questions in which each

alternative is a potential heating system. The attribute of interest is

reliability, that is, a 0 to 10 scale indicating how likely it is that the system

will not require major repairs during the next five years. One such question is

illustrated in Figure 6. (For example, the reliability index might be 10 times the

probability that no repair will be required.)

Reliability = 8

a = .4

.6 Reliability = 0

Heating System 1

Which heating system do you prefer?

Reliability = 3

.1 ~ Reliability = 0

Heating System 2

Figure 6: Schematic of Revealed Preference Question Corresponding to Proposition 5

We can then ask 10 questions of this form as indicated in Table 4. (We have

rounded B to the nearest .05.) We record I, the number of times the consumer

prefers heating system 1.
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TABLE 4
Example Experimental Design for Revealed Preference Questions

Question Heating System 1 Heating System 2
Number Xli ai x2i

1 9.5 .5 7.5 .60
2 9.0 .5 5.5 .75
3 8.5 .5 4.0 .90
4 8.0 .4 3.0 .90
5 7.5 .3 2.0 .85
6 7.0 .2 1.5 .70
7 6.5 .2 1.0 .90
8 9.5 .6 7.5 .70
9 9.0 .6 5.5 .90

10 9.5 .7 7.5 .85

For example, if I1 = 2, then X = .44, and if I - 3, then X = .61.

We could, of course, obtain better estimates by asking more questions. For

example, if I = 100 and I = 21, then X = .45 and if I = 22, then X = .47.

We constructed equations (18) through (21) and Table 4 for Proposition 5,

Exponential error. It is also posible to construct experimental designs for

Normal errors, for continuous distributions of outcomes, and for constant

absolute risk averse utility function. The experimenter simply chooses the

appropriate proposition (or its extension) and derives the conditions on a,

3, xl, and x2 such that P1 is constant for all questions. X is the

solution to P1(X) = I /I. For example, for Proposition 7, we restrict

1%
2 2

(ml- )/( v l-v 2) to be constant to assure P1 is constant. For

Normal errors, there are two unknown parameters, hence we must either (1)

assume one parameter is known, or (2) ask two sets of clustered questions to

obtain two equations in two unknowns.
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Summary of Single Parameter Uniattributed Utility Functions

This completes our discussion of single paramter, uniattributed utility

functions. We have presented a conceptual framework that can be applied when

the marketing researcher is interested in explicitly considering measurement

errors. Throughout our development, we have tried to provide the researcher

with flexibility by (1) specifying two error distributions; (2) analyzing two

commonly accepted utility functions; and (3) deriving estimators and choice

probabilities for various choice situations and assumptions about single and

multiple random draws.

Our estimators give the experimenter a choice of question formats. He can

choose preference indifference questions such as those used in decision

analysis or revealed preference questions such as those used in conjoint

analysis. For estimators of Pi, revealed preference questions are likely to

be less sensitive to the form of error distribution. For estimators of

f(rlX), preference indifference questions are likely to be best.

However, if the experimenter wishes to determine the form of f(rlX)

empirically, we suggest he use preference indifference questions to obtain

r(xi,pi) for sufficiently large I and plot its histogram. If the

histogram is symmetric and unimodal, Normal errors are likely to be the best

assumption; if the histogram is unimodal and skewed with ao i, then

Exponential errors are likely to be the best assumption. If the experimenter

wishes to select empirically among the assumptions of single and multiple

random draws, we suggest he obtain both preference indifference and revealed

preference questions and determine empirically whether Propositions 3 and 5 or

Propositions 4 and 5 produce the best match among the alternative question

formats.
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To select among constant proportional or constant absolute risk aversion,

we suggest the experimenter use qualitative techniques such as those discussed

in Farquahar (1982) and Keeney and Raiffa (1976, pp. 188-200). Keeney and

Raiffa provide numerous examples for both functional forms.

4. MULTIPLE PARAMETER UNIATTRIBUTED UTILITY FUNCTIONS

While the class of single parameter utility functions are the most

commonly used because they are flexible and can accommodate a wide range of

interesting problems, occasionally an experimenter may wish to estimate the

parameters of a utility function that is more complex. For example, Keeney

and Raiffa (1976, p. 209) report that a computer program which has been used

at the Harvard Business School since 1966 is based on the decreasingly risk

averse three parameter function that is a sum of constant absolute risk averse

utility functions. In general, the computation of choice probabilities is not

analytically tractable for multiple parameter functions, but equation 15 still

applies for numerical solutions. Since a researcher choosing a multiple

parameter utility function may be willing to sacrifice analytic simplicity for

greater flexibility, we provide a means to estimate the parameters of the

utility function recognizing numerical integration may be necessary for choice

probabilities and revealed preference.

We provide two methods. The first method requires clustered questioning,

but provides maximum likelihood estimates. The second method relaxes the

clustering requirement, but requires a regression approximation.
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Clustered Questions

Suppose an experimenter wishes to estimate an error distribution for a

three-parameter function. One procedure might be to ask the consumer sets of

three questions and use the information from each set to solve for rli,

r2i' and r3 i. I clusters of three questions then provide the data from

which to estimate a multivariate distribution for rl, r2, and r3.

Let (Xki, Pki) be the certainty equivalent and lottery probability

associated with the ith cluster and kth question within the cluster. Let

Xi = (Xli'X2i''''XKi) and i (Pli'P2i'''''PKi)' If a

vector-valued function, r(xi,pi ), exists mapping the vectors xi and pi

onto the range of the K unknown parameters of the utility function, and if we

assume that errors cause r(xi,pi) to be distributed with a multivariate

normal distribution with mean, j, and covariance matrix, r, then the

maximum likelihood estimators, E and r, are simply the multivariate

extensions of the univariate estimators in equations (10) and (11). That is,

= (1/I) Zir(xi,2i) (22)

r = (1/I) zi (xi'pi) A]r(MxipC) - ] (23)

For a formal proof, see Girl (1977, Chapter 15). As before, we can construct

confidence regions with the multivariate extension of a t-test. For example,

the appropriate statistic for is Hotelling's T2 statistic (Giri 1977,

Chapter 7; and Green 1978, p. 257).

Similar results apply for multivariate exponential error.

-39-

�___



Independent Questions

If, for whatever reasons, the experimenter feels that clustered questions

are not appropriate for his situation, he may wish to ask K x I independent

questions. In this case, without further specifying the interrelationships of

the question formats, we cannot obtain analytic maximum likelihood

estimators. However, we can obtain a practical regression approximation.

Following Pratt (1964) and Keeney and Raiffa (1976, p. 160) define a risk

premium, ri' as the amount by which the certainty equivalent, xi,

exceeds the expected value of the lottery, xi. For the measurement in

Figure l:

ri(xi,pi) = Xi - PiX* - (l-pi)xo (24)

Keeney and Raiffa (1976, p. 161) then consider variation about the expected

value of the lottery and show by Taylor's series expansion that the local risk

aversion, R(x,r), is approximately proportional to i. (R(x,r) is defined

by equation (1) where we have added the unknown parameters, r, to the

notation.) In particular, Keeney and Raiffa show

i(xi,pi) = (1/2)v2iR(xi,r) + (25)

2 2
where vi is the variance of the lottery, vi = (1/2)(x* - xi)2

+ (1/2)(xo - xi)2, and indicates higher order terms that are assumed

to be negligible. Rearranging terms yields:

Ri(xi,pi) = R(xi,r) + ei (26)

0 2 2
where Ri(Xi,Pi) 4(xi Pix* (1-pi)xo)/[(x*-xi) + (Xo-xi)2] is a function

of known data because xi = pix* + (1-pi)xo. Note that we have incorporated

the Taylor's series error, e, in the measurement error, ei.
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Equation (26) is now in the form of a regression equation. If R(xi,r)

is linear in its parameters, ordinary least-squares regression applies.

Alternatively, a researcher may use non-linear techniques for non-linear

R(xi,r). Once the parameters of R(xi,r) are estimated, we can recover

u(xi,r) from equation (1) by integration since u(x,r) =

flfexp[-fR(x,r)dx] dx + f2, where fl and f2 are constants chosen to

scale the utility function.

For example, we might wish to consider utility functions which combine

constant absolute and proportional risk aversion in this case, R(xi,r) =

rl+r2(xi-x )- 1 is linear in the unknown parameters. Since equation

(26) does not require an inverse function, we can allow x, and x to vary

across measurements, i.

5. MUTIATURIBUTED UTILITY FUNCTIONS

The analyses and propositions in Sections 3 and 4 provide us with a means

to estimate and use uniattributed utility functions under conditions of

measurement error. For many applications, such as decisions among alternative

financial investments, a uniattributed theory suffices. However, there are

many applications in marketing where it is necessary to model decisions

involving multiple attributes, each of which is risky. For example, the

decision to buy a home heating system might involve reliability as well as

annual dollar savings. (Choffray and Lilien (1978) illustrate empirically a

multiattributed preference problem for solar air-conditioning.)

We can estimate multiattributed utility functions in two ways.
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Estimation Procedure 1

The first procedure is a two-step procedure which combines the results of

Section 3 with commonly used methods in marketing. In Step 1, we use either

preference indifference or revealed preference questions to obtain estimators

for uniattributed functions for each attribute. Step 1 implicitly assumes

"mutual utility independence" (Keeney 1972) among the attributes, but such an

assumption is implicit in most conjoint and logit analyses. The

multiattributed function, U(x,w) is given by:

M M M

U (xx,w) r m ) + I W mku(xm,rm)u(x',rk) (27)
m=1 mm m=l km

+ third order and higher interaction terms.

Note that if the higher order terms are zero (for conditions see Fishburn

1974), then equation (27) reduces to the commonly used forms in conjoint and

logit analysis.

In Step 2, the experimenter then asks either preference indifference (or

revealed preference) questions using multiattributed alternatives. Standard

conjoint (or logit) analysis procedures are then used to obtain w with

u(xm,rm) rather than xm as the explanatory variables. (rm is our best

estimate of rm.)

Estimation procedure 1 is an approximation. It is a two-stage prcedure

with the potential problem of compounding errors from step 1 to step 2.

However, (1) if such compounding is small relative to other measurement

errors, or (2) if the additive form applies and errors are independent and

identically distributed (i.i.d.) across attributes, then estimation procedure

1 should work well. (If errors are i.i.d., then the w are equally biased

which has no effect since u(x,w) is only unique to a translation.)
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Estimation Procedure 2

Estimation procedure 2 is a one-stage procedure, but is limited by

practicality to preference indifference questions. (Revealed preference would

require numerical techniques.)

Suppose we ask I x L preference indifference questions where L is the

number of parameters, w, to be estimated. Let x = (xpilxi 2 xpiM-Pi -.0 i2''p2 'x"Xpi)

be the levels of the M attributes for the certainty equivalent in the pth

question in the ith cluster. In assessing U(x,w) we specify either (1) all of

-i or (2) Ppi and all but one of the xpi

If we ask our questions in I clusters of L questions and if a computable

vector-valued inverse function W(xi,pi), exists mapping the question set

onto the unknown parameters, then the multiattributed problem is isomorphic to

the multiple parameter uniattributed problem. (Xi is the matrix with rows

-pi and Ei is the vector with elements Pi-). Equations 22 and 23

can be used to estimate the mean and covariance of a multivariate normal

distribution on w. Confidence intervals are computed with Hotelling's T2

statistic.

Probability of Choice

Choice probabilities are obtained with equation (15) and numerical

techniques. For example, one might use equation (15) by sampling from the

multivariate normal distribution , then using the sampled w to compute the

expected utility of each option. Choice probabilities are then the percent of

times an alternative is chosen in, say 1000, draws. This computation method

is similar to methods used in probit analysis, e.g., Dagonzo (1979), and has

proven feasible in that context.
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Estimation Example

We illustrate estimation procedure 2 with a home heating system example.

Suppose-that besides annual savings, xl, the individual is concerned with

reliability as measured by 10 times the probability, x2, that no repair will

be needed each year. We suppose that the individual plans to purchase a

service contract (a form of insurance policy) such that only negative effect

of a repair is inconvenience (not dollar cost). We wish to model the decision

maker's preferences by a constant proportional risk averse, multilinear

utility function. (This is a two-attribute .version of equation (27).)

U(x,w) = w3ul(Xl) + w4u2(x2) + (1-w3-w4)l()u2(x2) (28)

w1 w2
Ul(x) = [(5- 200)/1000] ; u2(x2) =x2

We estimate the four unknown parameters, w = (W, w2, w3 W4 ) by asking

the lottery questions shown in Table 5. In each question, the decision maker

is asked to give a probability, Ppi, such that he is indifferent between a

certainty equivalent, (pil xi 2) and a lottery where the system is

described by (x"pil' X"pi2 ) with probability pi, and by

(XI x' ' ) with probability, (-p ) In other words, the
pil' o pi2 Pi

standard lottery shown in Figure T:

(x" pi x pi2)

(x i X , x i2)- 21 

(Xpil' pi2)

PJ , -_

Figure 7. Schematic of Multivariate Lottery
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The reader will note that we have constructed the questions in Table 4 for

easy computation of the inverse function, w(xi,pi).

Wli log(Pli)/log[xli1 - 200)/1000] (29)

w2i = log(P2i)/log(x2 i2)

3i P3i/Pli

W 4i P4i/P2i

This simplicity is for ease of exposition. Tradeoff questions as well as

lotteries can be used and the inverse function can vary with i as long as it

is computable for all i. Even with our simplification, the sixteen questions

provide the experimenter with a variety of questions to be asked. The

"answers", Ppi' to the lottery qustions were "constructed" by assuming

w = (.50, .33, .40, .80) and rounding off to the nearest .05.

Examination of Table 4 reveals that the estimated parameters, w ,

recover the "known" values quite well. The covariance matrix, r, and the

corresponding correlation matrix, C, can be readily computed with equations 22

and 23.

.0054 .0102 .0009 .0009

.0226 .0010 .0020

.0021 .0010

.0009

_ _

1.0 .93 .27 .41

1.00 .15 .44

1.00 .74

1.00
_mm 

We note that the high off-diagonal elements in C are partially due to the

small sample size, I-4, and partially due to structural correlation in

equation 29. E.g., li appears in the equations for both wl and w3.

Such correlations can be avoided with larger sample sizes and udicious choice

of question format.
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Table 5

EXAMPLE ASSESSMENT FOR THE COST AND RELIABILITY
OF A HOME HEATING SYSTEM

Certainty Equivalent "Win" "Loss" Probability Parameters
i p x x' .x l x 

l Xpi2 Xil pi 2 X Xpi2 Ppi Wli 21 31 41

1 1 400 .20 1200 2 200 2 .45 .50

2 400

3 400

4 200

2 1 600

2 600

3 600

4 200

3 1 800

2 800

3 800

4 200

.20

.00

.20

.40

.40

.00

.40

.60

.60

.00

.60

400

1200

1200

1200

600

1200

1200

1200

800

1200

1200

10

10

10

400 0

200 0

200 0

4

10

10

10

200

600

200

200

6

10

10

10

200

800

200

200

4

0

0

0

6

0

0

0

.60

.20

.50

.65

.75

.25

.60

.75

.80

.30

.65

.32

.44

.83

.47

.31

.38

.80

.56

.44

.40

.81

4 1 1000

2 1000

3 1000

4 200

.80

.80

.00

.80

1200

1000

1200

1200

8

10

10

10

200

100

200

200

8

0

0

0

.90

.95

.35

.75

1'

x =

x2 =

.47

.23

.39

.79

.50 .33 .40 .81

savings in dollars

reliability index

6, SMIARY AND FUTURE DIRECTIONS

This completes our analysis of the implications of measurement error for

modeling consumer risk preference with N-M utility functions. Our emphasis

is on uniattributed single parameter functions since they are the most

commonly used and illustrate the unique advantage of vN-M utility functions.
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Our main results are practical and flexible. They enable the experimenter to

choose among question formats, error assumptions, and functional forms for the

utility function. They provide MLE's for the distributions of risk parameters

and for choice probabilities. Furthermore, we have indicated (with

references) how one can use numerical techniques for the cases where analytic

results are unobtainable.

We have also provided practical procedures for multiple parameter

uniattributed functions and for multiattribute functions. Our procedures

combine the strength of vN-M uniattributed theory with practical measurement

models, conjoint or logit analysis, now in use widely in market research.

We have chosen to illustrate our measurement and estimation procedures

with numerical examples rather than empirical examples. We feel this is

appropriate because:

(1) VN-M utility assessment has proven feasible and reasonably accurate

in published market research and decision analysis studies.

(2) Published evidence seems to suggest that either Normal or Exponential

errors are a reasonable error model.

(3) Analytic reasoning suggests when each question format is likely to be

best; revealed preference for P1 and preference indifference for X.

(4) An extensive literature exists on the type of errors introduced when

assessing vN-M functions. E.G., see Hershey, Kunreuther and Schoemaker

(1982), Schoemaker and Waid (1982), and Schoemaker (1981). Our

propositions provide the analytic tools with which to model that error and

with which to obtain MLE's in the presence of error.

(5) The effects of measurement are best illustrated when the measurement

error is "known."
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Nonetheless, we posit that a measurement error approach will prove useful

both for practical market research problems and for scientific research into

the type and magnitude of errors introduced by alternative question formats.

Our propositions provide the means by which to quantify that error.

Such empirical issues are extremely important and represent non-trivial

future directions. We hope that our analyses provide a beginning.

-48-

III



APPENDIX

Leua 1: Assume B > a and x 1 > 2, then the equation 3 exp(-rcx2) -

a exp(-rcx1) - B - a, has at most one solution for r > 0.

Proof: First, rewrite the equation in functional form:

E(r) = a[l-exp(-rxl)] - B[l-exp(-rx2)] (Al)

recognizing xl > x2 and a > a. Alternative 1 will be chosen

By a Taylor expansion E(r) ax 1 - 3x2 as r+0. Let E(0)

lim^ E(rc) and let E(co) = lim E(rc). Then E(0) > 0 if axl >
r c+U r c*O

if axl < 1x2. By direct substitution E(co) = a - > 0 since

Now differentiate E(r) yielding

whenever E(r) > 0.

kx2 and E(0) < 0

a > B.

E'(r) = dE(r)/dr = axlexp(-rx1) - x 2exp(-rx2) Setting the

derivative equal to zero yields r* = (logax1 - logx 2 )/(x1 - x2 ) .

Since x1 > x2, r* > 0 iff ax1 > x2. Furthermore E'(0) = ax1 -

Bx2 thus E'(0) > 0 iff ax1 > 13x 2

Assume ax1 < x2, then E(0) < 0, E(=) < 0, and E(r) is monotonic in

the range (0,o). Thus there is no solution to Al for rc > 0. If ax1 =

3x2, the only solution for r > 0 is rc 0.

Assume ax1 > 1x 2, then E(0O) > 0, E'(0) > 0, and r* > 0. Thus E(r)

> 0 for r < r*. Now E(r*) > 0, E(co) < 0, and E(r) is monotonic in the

range (r*,). Thus, there is exactly one solution to Al for rc>0 and it occurs

in the range (r*, a). Note that we have also proven that E(r) > 0 for

r (O,rc) and E(r) < 0 for r e(rc,c), thus alternative 1 will only be

chosen in the range (O,rc).
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