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Diftusion of New Products in Heterogeneous Populations: Incorporating
Stochastic Coefhicients

Abstract

Diftusion models have had a major impact on the literature and practice of marketing science. Following the
pioneering work of Bass (1969), which suggested a deterministic model for homogeneous populations, the
basic diffusion model has been extended to incorporate:

changes in the market potential over time (Mahajan & Peterson 1978);

complimentarity, substitutability, contigent & independent relations of the new product with other
brands in the market place (Peterson & Mahajan 1978);

spatial diffusion pattern (Mahajan & Peterson 1979);

varying word-of-mouth effects (Easingwood, Mahajan & Muller 1983);

various marketing mix effects including the effect of price on both innovation and imitation
coefficients (Robinson and Lakhani 1975) or advertising effect on the innovation coefficient (Horsky
and Simon 1983).

competitive effects (Eliashberg & Jeuland 1982, Fershtman, Mahajan and Muller 1983)
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I. Introduction

Diffusion models have had a major impact on the literature and practice
of marketing science. Following the pioneering work of Bass (1969), which
suggested a deterministic model for homogenecus populations, the basic
diffusion model has been extended to incorporate:

@ changes in the market potential over time (Mahajan & Peterson 1978);

@) complimentarity, substitutability, contingent & independent relations

of the new product with other brands in the market place (Peterson &
Mahajan 1978);

@ spatial diffusion pattern (Mahajan & Peterson 1979);

@) varying word-of-mouth effects (Easingwood, Mahajan & Muller 1983);

® various marketing mix effects including the effect of price on both

innovation and imitation coefficients (Robinson and Lakhani 1975)
or advertising effect on the innovation coefficeint (Horsky and

Simon 1983).

(® competitive effects (Eliashberg & Jeuland 1982, Fershtman, Mahajan

and Muller 1983) Conte?Hhron caw'

These extensions and especially incorporation oﬁnmarketing mix effects, SE
the dominant current trend in the basic diffusion model, ::Lresponsive to
management needs. Yet, it is quite surprising that the diffusion research
tradition has ignored stochastié modeling considerations. The desirability of
a stochastic perspective is especially vital given the (a) uncertainty inherent
in all marketing operations as evident by the rapidly changing consumer tastes,
unpredictable competitive activities, technology and cother envirconmental
conditions, and (b) the heterogeneity of any target adopting population as
evident in the growing literature on market segmentation. More specifically,
empirical support for the heterogeneity in the diffusion context is offered by

Robertson, Fraser & Wind (1972). Although this issue has been addressed by



Jeuland (1979, 1981), his focus 1s more on parsimonious models and not the
long-term forecasting implications and estimation issues, which are the focus
of this paper. In addition, to our knowledge, the proposed modeling approach
is different from other efforts.

The cobjective of this paper is to propose a stochastic extension to the
traditional deterministic diffusion models. In particular, a random-coefficients
diffusion model is proposed and developed (section 2), its estimation discussed
(section 3) and its comparison with the conventional deterministic meodel is
presented based on the results of computer simulations which varied the values
of the coefficients of innovation and imitation (section 4). The paper concludes
with a brief discussion of the managerial implications of the results and

proposed directions for future research.



IT. Derivation of the Model - A Stochastic Differential Equations Approach

For an homogeneous population, we assume the following diffusion model:

dN(t) N(t).

N(t) = S35~ = (0 + gy ) (M = N(eD+ 6(¢) (2.1)

where:

N(t) is the cumulative number of adopters at time t

M is the total market potential (ceiling)
p is the coefficient of innovation (p>o)
q is the coefficient of imitation (g>o0)

3(t) is a normally distributed model's error term.
This model has been proposed for marketing applications by Bass (1969), and
has been tested empirically and found to be useful for a variety of durable

goods (Dodds, 1973); Schmittlein and Mahajan (1982).

Defining X(t) = Mt)¥M as the cumulative market penetration1 at time t,
then:

X(t) === (p + qX(£)) (1-X(t)) + &(t) (o<X(t)<1) (2.2)
In the sequel we shall omit occasionally the time domain for notational
simplicity.

To incorporate heterogeneity into our model, we adopt the following
standard statistical assumptions. Both § and d are assumed to be stochastic

coefficients such that:

5=p+gp (2-3)

1In this paper we shall focus on market penetration as the managerial statistic
‘of interest, thereby assuming that the total market potential can be estimated
through an independent method. An alternative viewpoint is that the market
potential is determined judgementally as the target market, a procedure which
is done often in practice.



The three disturbance terms, (%), ;1, 2), are assumed to be multivariate nor-

mally distributed with mean values vector o, and variance - covariance matrix:

2
% 9%y ©
g_a o 0

PP’ g 7,
0O 0 g

(2.5)

A continuous time random process, w(t), is said to be a zero-mean white-

noise normal process if Eﬁt) has a multivariate normal distribution

with E[Eﬁt)] = o

where E[ ] denotes expectation operator,

and Coviw(t), w(t)] = o for t # 1,

where Cov[ ] denotes the covariance operator.

Another continuous time stochastic process, u(t), Wiener process, is

defined as the integral of the white-noise normal process, that is,

t
u(t) = fw(n)dn and du(r) = w(t)de.
o]

It is also multivariate normally distributed (Sage and Melsa, 1971).

In our model, the white-noise normal process,

€
£

is assumed to be statiomary, and the random vector

spdt
ﬂ(t) = Eth
edt

has a mean values vector

E[du(t)] = o

1 (2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)



and variance - covariance matrix2 {Sage and Melsa, 1971)

2
de dt
T 7p %pJa ©
E[(Qg(t)(gg(t)) 1= po_o_ dt g dt o
P g q
0 o glat (2.12)
L~ —

Finally, it can also be shown (Sage and Melsa, 1971) that:

Cov[X(t)du(t)] =Cov[X2(t)_d_u(t)] =Cov[X3(t)_d_u(t)] = o (2.13)

That is, the stochastic variates generated by the Wiener prcesses are inde-

pendent of X(t), Xz(t) and X3(t) at any point of time.

Having introduced the stochastic coefficients, we can rewrite now

equation (2.2) as:
dX = [p + qX(1-X) - pX+§qX(1—X‘) + gp(l—X) + z]dt (2.14)

This equation can be written more generally as:

3 .
dX = g(X,t)dt + Zai(X)dui (2.15)
i=1
where gX,t) = p + qX(1-X) - pX

aL(X) =1-X

- 2
az(X) =X -X
a3(X) =1

Fugation (2.15) is a stochastic differential equation. In order to solve
it for the probability density function of i(t), one needs to obtain the
Fokker-Planck partial differential equaticon whose solution is possible only
under narrow circumstances where g{ ) is linear in X and the coefficients of
dui (i = 1,3) do not depend upon X at all (Sage and Melsa, 1971). Assuming
that i(t) can be approximated by a normal distribution, we shall proceed now
to determine the dynamics of the mean p =E[X(t)] and the variance V = V[X(t)]

of this distribution. Fundamental to this derivation is the Ito differential

2Note that . the variance - covariance of du(t) is proportional to dt rather

than (dt)z.



rule (see, for a concise illustration, Kamien and Schwartz, 1981).

Taking expectations on both sides of (2.13) and recalling (2.13) and

(2.11) we obtain:

E[dX] = dE[X] = [p + (q-p) E[X] - qE[X*]]dt .

which can be rewritten as an ordinary differential equation:

d 2
I = P+ (@ - ql” + V),
where 1 and V denote the mean value and the variance of X(t), respectively.

Thus, we need to generate an additional differential equation for V.

Let

¥y = F(X) = x? (2.

Expanding by Taylor serjes implies the following:

16)

18)

2
dy X dx + 5 Eiz(dx) 2XdX + (dX)°, (2.19)
Ito Theorem uses the following multiplication rules (see Sage and Melsa, 1971)
(du,) (du,) = (du,)? = o2 (2.20)
17295 9132 i i’
where: = Cov{du,, du, ] and 52 =  Var [du.]
re. Uij i’ j i i
Var [ ] denotes the wvariance operator.
(duy)(de) = 0, (2.21)
2 _
(de)® = 0. (2.22)
But,
2 3 2 '
= b .
(dx) (g(X)dt +, T a, (X)du,) (2.23)

Using (2.20) - (2.22) and (2.12), it can be shown that



3
2 2
dx)- = igl ai(X)Var[dui]dt + 2p0’pcqal(X)az (X)dt . (2.24)

Hence, substituting (2.15) and (2.24) in (2.19) we obtain

3 3
- 2 ‘
dy = [2Xg(X) + iglai(x)var[dui] + ZDcpcqal(X)az(X)]dt + ZXig1 ai(X)dui. (2.25)

Taking expectations on both sides of (2.25) and dividing by dt, we obtain

again through (2.13) and (2.11) that:

2
dgix ] = 2E[pX + (q—p)X2 - qXB] + UiE[l—ZX + Xz] + UiE[Xz-ZX3 + X4] +
o? 4 2pcpcrqE[x-2x2 + X7 (2.26)
Hence,
dE [x%] 2
5 =4+ B+ cEXY + DE[XT] + KE[XY (2.27)
where
2 2
= +
A o g
2
B = 2p - 265 + 2
L I
2 _,
C = 2q- 2p + cp + cq - 4ocpcq (2.28)
2
D = -2q %~ +
q Zoq ZQGPU
K = 02
q

Note that Equation (2.27) is given in terms of non-central moments. To rewrite

it in terms of central moments, we need to use the following relationships:

E[Xz] =V + uz
EIX®] = E[x - )31 + 3uv +4.° (2.29)
E[x“] = E[(X - u)"] + 4E[(X - ]_1)3] + 6u2V + u4

We shall also use the fact that for a normal distribution (the distribution assumed

on X(t)):



E[(X -~ 1)°] = 0 and E[X - w)%] = 3v2. (2.30)

Substituting (2.29) in (2.27) and observing that

we obtain
T o=a+ b+ o+ + 00w + D + RV + 677 + 5 -
- 2ulp + (@ - pu - qG? +) 1. (2.32)

Substituting from (2.28) and rearranging terms we obtain the second ordinary

differential equation:

av 2 2 2 2 2
~— = g +o +2 (pog ~oc )u+ (6 +a° -bpoog Iy +
dt p pPoq T Ip¥ p q P9p7q ¥

20 (po_ - Uq)u3 + a2u4 + 235 0 - 302 - 2q)uv +

P q P q q . .
6c uzv + (2q -2p+ 024'02 - b4po o )V + 302Vz (2.33)
P g P q q

Equation (2.33) needs to be solved simultaneously with

N L

[¥a]

d 2
& = P+ (epu - qu” - qv, (2.17)

for some initial conditions u(to) and V(to).
It is interesting to note that becuase of the nonlinearity in X in
Equation (2,2), the last term in Equation (2.17) represents the discrepancy in

the predicted evolution of the mean penetration between our model, and a model

that assumes ne heterogenity and solves Equation (2.2) deterministically.



Suﬁpose, for a moment, that the two approaches yield identical estimated
parameters; p, 4. Since both g and V are positive, the mean penetration
curve, E[X] (long-range forecasting), predicted by a deterministic solution
of Equation (2.2) (i.e., assuming no heterogeneity and a very small model's

error term) will always be overestimated. The magnitude of the discrepancy

depends, of course, on 4§, the imitation coefficient, as well as on the other
dX

parameters that affect V. The one-step—-ahead forecast, E[EE,X] {short-term

forecast), however, will be the same in both cases. These issues will be

further investigated and illustrated later. At this point, we turn to a

disucssion of estimating the model's parameters.
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III. Estimation Issues

The model of concern here can be written as:

dX{t - o

BE) = 5-x(e)) + GK(O) (1-X(£)) + E(e) (o<t)
Approximating the continuous model by its discrete version, we shall rewrite
the time domain as a subscript to emphasize more clearly its discrete nature

and obtain:

A = D -— a - g =] 2 ey
Xt p(l Xt) + th(l Xt) + &, (t=1, 2, T)
Defining
= A
Yt X
th = l - Xt
Zyp = X (A-X)
Bl =P
2 - 4

We obtain the following multiple regression model:

B.Z. +E  (t=1, ..., T

¥oo= B2y + 8,2, +E

t

This model which is known as a random regression coefficients model has
received much attention in the statistical literature (Rao, 1965; Theil 1971
Maddala, 1977; Pfeffermann, 1982). Random coefficients regression models can

be developed under a variety of assumptions which may lead to different

(3.

(3.

(3.
(3.

(3

(3.

(3.

(3.

-
]

1)

2)

3)

4)

.5)

6)

7)

8)
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estimation procedures. Hence, it is important to interpret the underlying
conditions generating the random coefficients model. Im our case, it is
assumed to the vector é_is drawn once from a multivariate normal distribution
and is used repeatedly to generate the observations. The disturbance term
is assumed to be drawn from a statiomary distribution, every time an cbser-
vation is generated.

As we have shown in (2.33) and (2.17), six parameters are needed to be
estimated: p, q, cp, Uq, o0, and g. The estimated paramters can be used

to describe the evolution of the mean, E[X(t)], and thus to make a long-

term forecasting. If, however, one is concerned only with short-term

forecasting, E[aX iXt], then it can be readily seen from (3.2) and by recalling

t
that E[ép] = Eféq] = E[g] = o, that only p and q need to be estimated. We

shall describe now estimation procedures for all six parameters.

Rewriting the model in matrix notation we obtain:

Y _ z B . _E_
(TX1) (Tx2) (2X1) * (TXD)
with
E[E] = ¢ Ege’] = o'L
2
E[EJ = 9_= [H] E{(B - W) - _)T] =4 = Op pcpc?
~T popr—"q O'%
Covlgpg’] = o

We can rewrite the regression structure (3.9) in the form

[axe

(e

= +ZE-D +E=

where from assumptions (3.10) and (3.11)

Eﬂi] = 0 and E[ééT] = ZAZT + Ugl

(3.9

(3.10)

(3.11)

(3.12)

(3.13)



14

This model exhibits heteroskedastic error structure and thus requires a
Generalized Least Squares (GLS) approach for obtaining the Minimum Mean
Square Linear Unbiased Eétimator (MMSLUE) of Q. It has been shown, however,
by Rao (1965, Lemma 3) that due to the c?l term in the error structure, the

GLS estimator of any linear combination of g, Eﬁ&, is the same as the

Ordinary Least Square (0LS). That is,

v = w@n Ty (3.14)

This result is true regardless what A is. The variance of the estimator

Eﬁi depends on A and is given by

var IETQ_] = ETAE + E_TUZ(ET_Z_)_I_W_ (3.15)

Hence, in order to estimate E[§] = [E], one needs to employ an QLS estimation

approach to the regression model described in (3.9).

In order to estimate cp, Gq’ Y g = p0yTgs and ¢ once £ has been esti-

mated, we shall follow a procedure illustrated by Theil (1971). From (3.8)

we know that
~ Ta
e, = Y -0.Z. wQ,Z = Y -2.0 (3.16)
Hence, from (3.13)

Ta T T2, T, -1
= = 3.17
Var [e, ] = Var [Z.8] 282+ Z07(Z22) 2, (3.17)

Equation (3.17) can also be written as:

var [e,] = 72 52 4 72 42

2
1¢% + 22, 2, c +o¢ (3.18)

2t%q 1£°2t% pq t



where

t

i3

T _ .
¢ = Et(g?z) lgt = ¢(§t, E) is some function of the independent

variables at time t only, as well as the independent variables at times 1,

ey Euuuu, T.

Since E[et] =

2, 2 2 2 2
Efe.] = 219 2t

2 2.2 2

€ = 98y T 0%yt %5
where

E£,] = o.

q2%1c%ae

+ Z Uq + 2zlt22t b

Equation (3.18) implies that

2
+ ¢t.

+ g ¢t + £

It can also be shown (Theil, 1971, p. 624) that

var [£,] = 2(E[2D%.

Given that Z Z,, and ¢t are known,

1> 72t

2 . . 2
02, T, C and 02 can be estimated by running a regression of ¢, on Z

p q Pq

Z and ¢t. It should be noted though that ft

2t

term, An estimation procedure for such a regression model has been developed

and applied by Theil and Mennes (1959).

p. 246). As noted by them, it appears that a rather considerable number of

observations is needed to estimate cp

precision.

’ Uq

t

the formulation (3.20) suggests that

1c?

is a heteroskedastic error

(It is illustrated in Theil,

b

o}
P4

, and ¢ with reasonable

1971,

2,

(3.19)

(3.20)

(3.21)

(3.22)
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V. Some Illustrative Simulation Results

As we have shown in equations (2.17) and (2.33), the long-term stochastic
coefficients model's prediction depends upon the nature of the randomness
surrounding the coefficients (i.e., op, oq and p). As noted earlier, it is
quite clear from (2.17) that the discrepancy between long-term forecasting
based on stochastic coefficients and a fully deterministic model (i.e., a
model that assumes a perfectly homogeneous population) is determined by the
magnitude of q, the imitation coefficient, as well as by the variance, V,
which in turn depends on cp, cq, o and g. In this section we further in-

vestigate the nature of these discrepancies.

Having established the fact that both models (deterministic and stochastic)

will yield the same OLS estimated coefficeints, p and §, we have chosen to
investigate possible forecasting discrepancies for different values of p
(innovation coefficient) and § (the imitation coefficient). OLS estimated
parameters for P and § reported in the literature (Bass (1969), Dodds (1973)
Easingwood, Mahajan & Muller (1983) and Schmittlein and Mahajan (1982)) are
in the range of .000 - .070 for § and .150-2.742 for g. Table 1 summarizes
these findings. Given, however, the limited numbers of products for which the
P and q parameters have been established, and the lack of a conceptual boundary
for their values, we decided to simulate results for p ranging systematically
from .01 to .16 and § from .25 to 4.00. We begin our analysis, however, with
a specific real world example of a medical product whose parameters have been
estimated to be: P=.0572 and §=1.7888 (Schmittlein and Mahajan, 1982).

In order to focus on the impact of heterogeneity, we assume that G<<Gp,
and we solve the two nonlinear differential equations (2.17) and (2.33)
with initial conditions u(o) = V{o) = o, for variocus values ofcp, Oq and p.
This was done using the program DGEAR, one of the IMSL computer subroutines,.
Solution to the deterministic differential equation

dx

T - @+ a-Y (4.1)

can be obtained through integration and shown to be:



TABLE 1
The Reported Ranges of Innovation Coefficient (p)

and Innovation Coefficient (q)
Range of ratio
Study Products Ranges of p Ranges of q of q over p
Bass (1969) 11 consumer durables 005876-.028632 .17110~.65410 9-82
Dodds (1973) color & cable TV .005447~-,008875 .44168-.83687 51-154
.020000-.06962C .32480-1.7888 14-31
8-130, 571

3 Durable goods and
.15000-2.74200

Schmittlein & Mahajan
2 Radiology products

(1982)
.000021~.018380

5 Consumer durables

Easingwood, Mahajan &
Muller (1983)3

3 Their model assumes that the coefficient of imitation, ¢q, varies over time, and the values reported

rough approximations only,

in Table 1 represent
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~(p+q)t
X(t) = l—.—_.g____._ . (4.2)

Defining the coefficient of variation for the two model's parameters as

UP
k = B
P P (4.3)
and
a
k = _Q
q q,

we have examined the effect of different degrees of heterogeneity (captured
through the magnitudes of kp and kq), and the correlation between the model's
coefficients, upon t?e prediction of the stochastic coefficients model, in
comparison to the deterministic model. More specifically, kp and kq were

set equal to 0.1, 0.2 and 0.3, for each of the following values of p: =0.95,
-0.20, 0. +0.20, +0.95. The two models' forecasts were examined at time
intervals equal to 0.1. Table 2 shows the prediction obtained by the deter-
ministic model (equation (4.2)). Table 3 illustrates some interesting
comparative results.

The first two columns of Table 3 correspond to the coefficienté of
variation of E and a, respectively, The third column shows the correlation
coefficient between E and E. The fpurth column shows the maximum discrepancy
(in percentage) between the penetration predicted by deterministic and the
stochastic model, whereas the fifth column demonstrates the time at which
this maximum discrepancy occurs,

One advantage of the stochastic coefficients model is the feasibility

of constructing interval estimates around the mean, u. As shown in Table 4,
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TABLE 2

Predictions Obtained by the Deterministic Model (5:.0572, a=l.7888)

t X(t)
0.10000 0.00626
0.20000 0.01368
0.30000 0.02245
(.40000 0.03280
0.50000 0.04495
0.60000 0.05917
0.70000 0.07572
0.80000 0.09487
0.90000 0.11687
1.000606 0.14195
1.100G0 0.17030
1.20000 0.20200
1.30000 0.23707
1.40000 0.27536
1.50000 0.31661
1.60000 0.36040
1.70000 0.406138
1.80600 0.45325
1.90000 0.50084
2,00000 0.54814
2.10000 0.59437
2.20000 0.63881
2.30000 0.68087
2.40000 0.72007
2.50000 0.75611
2.60000 0.78880
2.70000 0.81881
2.80000 0.84414
2.90000 0.86703
3.000600 0.88698
3.10000 0.90427
3.20000 0.91914
3.30000 0.93187
3.40000 0.94271
3.50000 0.95192
3.60000 06.95970
3.70000 0.96627
3.80000 0.97180
3.90000 0.97645
4, 00000 0.98035
4.10000 0.98361
4.20000 0.98635
4.30000 0.98863
4.40000 0.99053
4.50000 0.99211
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TABLE 3

Comparison Between Deterministic and Stochastic Models' Predictions
(p=.0572, g=1.7888)
k k A (%) tp max k t
_B 9 o _max max X max kx~

.1 0.1 -0.95 0.298 2.5 0.28998 0.1
.1 0.2 -0.95 1.232 2.5 0.26684 0.1
.1 0.3 -0.95 2,998 2.5 0.31696 1.4
2 0.1 -0.95 0.495 2.4 0.60561 0.1
2 0.2 -0.95 1.207 2.5 0.58162 0.1
2 0.3 -0.95 2.743 2.5 0.55950 0.1
3 0.1 -0.95 0.986 2.3 0.92186 0.1
3 0.2 -0.95 1,479 2.4 0.89841 0.1
3 0.3 ~0.95 2,826 2.5 0.87701 0.1
.1 0.1 -0.20 0.474 2.4 0.31219 0.1
.1 0.2 -0.20 1.594 2.5 0.31313 0.1
.1 0.3 -0.20 3.602 2.5 0.35717 1.3
.2 0.1 ~0.20 0.852 2.4 0.62719 0.1
2 0.2 -0.20 1.945 2.4 0.62584 0.1
2 0.3 ~-0.20 3.958 2.5 0.62738 0.1
3 0.1 -0.20 1.535 2.3 0.94315 0.1
3 0.2 -0.20 2,629 2.4 0.94172 0.1
3 0.3 -0.20 4,696 2.5 0.94309 0.1
.1 0.1 0 0.521 2.4 0.31785 0.1
.1 0.2 0 1.692 2.5 0.32435 0.1
.1 0.3 0 3.765 2.5 0.36793 1.3
.2 0.1 0 0.948 2.4 0.63282 0.1
2 0.2 0 2.147 2.4 0.63711 0.1
2 0.3 0 4,293 2.5 0.64427 0.1
3 0.1 0 1.683 2.3 0.94874 0.1
.3 0.2 0 2.943 2.4 (0.95293 0.1
-3 0.3 0 5.221 2.5 0.95992 0.1
.1 0.1 0.20 0.574 2.4 0.32341 0.1
.1 0.2 0.20 1.796 2.5 0.33521 0.1
.1 0.3 0.20 3.930 2.5 0.37842 1.3
2 0.1 0.20 1.044 2.4 0.63840 0.1
.2 0.2 0.20 2.351 2.4 0.64819 0.1
2 0.3 0.20 4.634 2.5 0.66071 0.1
3 0.1 0.20 1.831 2.3 0.95430 0.1
3 0.2 0.20 3.259 2.4 0.96400 0.1
3 0.3 0.20 5.758 2.5 0.97646 0.1
1 0.1 0.95 0.751 2.4 0.34346 0.1
1 0.2 0.95 2.167 2.5 0.37309 0.1
1 0.3 0.95 4.559 2.5 0.41674 1.2
2 0.1 .95 1.408 2.4 0.65889 0.1
.2 0.2 0.95 3.127 2.4 0.68810 0.1
2 0.3 0.95 5.953 2.5 ¢.71901 0.1
3 0.1 0.95 2.393 2.4 0.97486 0.1
.3 0.2 0.95 4.478 2.4 1.00442 ¢.1
.3 0.3 0.95 7.882 2.5 1.03606 0.1

[eNeleoNoNuNeNeloNeolaNeNololoNolaoloNeRelleNeleRoleNolaleloleRololelNoNoNolNoNoNalleNeNol oo Nl o
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TABLE 4

Predictions Obtained by the Stochastic Model
(p=.0572, q=1.7888, kp=0-l, ka=0-l. 0=0.95)

t _u v k=
.16000 0.00624 0.00000 0.34346
.20000 0.01365 0.00001 0.26351
.30000 0.02241 0.00003 0.23203
40000 0.03274 0.00005 0.21577
.50000 0.04487 0.00009 0.20642
.60000 0.05906 0.00014 0.20042
.70000 0.07556 0.00022 0.19638
. 80000 0.09463 0.00033 0.19325
.90000 0.11652 0.00049 0.19041
.00000 0.14143 0.00070 0.18763
.10000 0.16955 0.00098 0.18457
.20000 0.20096 0.00132 0.18094
.30000 0.23563 0.00173 0.17655
.40000 0.27343 0.00219 0.17128
.50000 0.31410 0.00269 0.16511
.60000 0.35722 0.00319 0.15800
. 70000 0.40225 0.00364 0.15002
.80000 0.44853 0.00402 0.14127
.90000 0.49536 0.00427 0.13190
. 00000 0.54196 0.00438 0.12210
.10000 0.58761 0.00434 0.11207
.20000 0.63163 0.00415 0.10200
.30000 0.67343 0.00384 0.09206
.40000 0.71256 0.00345 0.08245
.50000 0.74869 0.00301 0.07332
. 60000 0.78164 0.00256 0.06478
. 70000 0.81134 0.00213 0.05689
.80000 0.83783 0.00173 0.04970
.90000 0.86123 0.00139 0.04321
.00000 0.88174 0.00109 0.03742
.10000 0.89957 0.00084 0.03227
.20000 0.91499 0.00064 0.02773
.30000 0.92823 0.00049 6.02377
.40000 0.93954 0.00037 0.02035
.50000 0.94918 0.00027 0.01737
.60000 0.95735 0.00020 0.01481
.70000 0.96426 0.00015 0.01264
.80000 0.97009 0.00011 0.01065
. 90000 0.97499 0.00Q07 0.00888
.00000 0.97911 0.00006 0.00787
.10000 0.98257 0.00005 0.00733
.20000 0.98546 0.00004 0.00645
.30000 0.98788 0.00003 0.00525
40000 0.98989 0.00001 0.00387
.50000 0.99158 0.00001 0.00257
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for example, a typical evolution of Var [X(t)] is such that it begins at a very
small value, achieves a maximum at some point of time, and finally declines
toward zero again. The user of the model should, however, be aware of the
4
coefficient of variation of X(t), kx = = Recalling that we are assuming
normal distribution for X(t), if kx exceeis 0.33 at a certain point of time,
that implies that 3cx>ux, which means that there exists a positive probability
that X(t) may be either less than zero or greater than ome. This is incon-
sistent with the fact that both X{(t) andy should be between zero and
one. Thus, statements based on confidence intervals will be valid only
whenever ax<<yx (kx<0.33). It should be noted, though, that most of our
simulations show that kx is monotonically decreasing in time. Referring
back to Table 3, the sixth column shows the maximum coefficient of variation for the
market penetration under the various conditions, whereas the last column demonstrates
the time at which this maximum occurs.

The results in Table 3 are quite illustrative. It appears that the
discrepancies between the two models' long-run forecasts increase systematic-
ally as g _, cq and p increase. For example, for gp = 0.3p, Gq = 0.3q.and
o = 0.95, the discrepancy in prediction between the two models becomes
7.88%. Of course, a larger value of q will amplify this discrepancy
even more., The large discrepancies occur, in general, towards the mid-point
of the time horizon, whereas the forecasts are basically identical near the
end points of the time horizon. (Recall that the variance of the stochastic
model approaches zero at the beginning and toward the end of period).

To investigate these phenomena further, the values of p and a were changed

systematically. TFigures 1 and 2 illustrate the two forecasts for the following

cases :
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Figure 1
A Comparison of Deterministic and Stochastic Models for:
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Figure 2
A Comparison of Deterministic and Stochastic Models for:
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Coef?icient of Coeffgcient of
Case Innovation Imitation Figure/Panel
1 .02 .25 1 A
2 .02 .50 B
3 .02 1.00 C
& .02 2.00 D
3 .02 2,50 F
6 .01 .25 2 A
7 .02 .50 B
8 .04 1.00 c
9 .08 2.00 D
10 .16 4.00 E

Common to the 10 cases were Gp=.3p Uq=.3q and p=.95. The
original intention was to simulate the case of §=.02 and q=4.00. Yet
for a a exceeding 2.50 (when § is .02) the variance explodes, leading
to a negative mean, and hence, to an invalid solution. The reported re-
sults are therefore for the case of p=.02 and §=2.50. This finding highlights
the importance of the ratio between € and 5 as well as the magnitude of a.
Too large a ratio of imitators to innovators on top of large magnitudes
for the imitation coefficient may lead to infeasible results. Simulating
different ratios from 100 to 200 with increments of 5 suggests that the
critical ratio for the case of $ = .02364 &= 2.6 is q/p= 110,
This appears to indicate that for extreme cases (large imitation coefficients
and stochasticity) the model may not be appropriate. We note, however, that
the simulation results reported here are still for coefficients with values
that are well within those reported in the literature.

An examination of the figures suggest the following conclusions:

1. With the exception of the two most extreme cases of ﬁ=.02 and a=2.5
(Figure 1 Panel E) and p=.16 and q=4.0 (Figure 2 Panel E) the forecasts of
the deterministic and stochastic models are basically identical near the

end points of the time horizon.

4. In the moderate cases reported in Figure 1 Panels A, B and Figure 2

Panels A, B the two models produce basically identical forecasts.
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3. The discrepancy in the forecasts becomes severe in the mid-time

range

as the value of § is increased beyond 1.0. This can be clearly

seen in the last two columns of Table 5.

The discrepancy between the two models may even be more severe as

. ~ ~ a r
the ratio between ¢q an p increases. This can be seen from a

comparison of Figures 1/D and 2/D, and more explicitly in Figure 3.

An examination of Table 5 suggests that as the ratio between

a and B increases (cases 1 through 5):

These

ratio

# of periods to reach 997% penetration tends to decrease for both the

stochastic and deterministic models (col 1).

the discrepency between the two models tends to start earlier (col 2)

and lasts longer (col 3).

the maximum discrepency occurrs in general sooner (col 4) and its

magnitude inecreases (col 3).

results hold also for the case in which P and § increase but the

of § over P is held constant (at 25). It should be noted, though,

that the conclusions discussed above may depend quite heavily upon

the specific values of P and g.
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TABLE 5
Summary Comparisons of the Ten Stochastic

Diffusion Models with Deterministic Models

-1- -2- 4z of =3~ Time =4~ -5-

# of periods Z of periods Periods with At which

For 997 Before the Discrepancy Maximum

Cumulative Discrepancy Greater Discrepancy Maximum -

Case Penetration (0.5%) Starts than 0.57% Occurrs Discrepanc
p i fasp| s* ot |
1
0.02 10.2502.5| 27.0 27 ’ 40.7% 22.2% 13.0 0.7%
0.02 [0.50] 25| 16.0 16 ; 31.27 50.0% 8.0 1.8%
0.02 |1.00| 50 9.0 8.5 27.8% 66.7% 5.0 4.7%
0.02 |[2.00)100 5.4 4,6 25.9% 70.4% 3.0 16.2%
0.02 |2.50{125| 5.8 3.8 | 20.7% 75.9% 3.2 40.6%
0.01 ]0.251 25 31.0 31 -38.77 32.3% 16 0.9%
0.02 {0.50] 25 16.0 16 31.27 - 50.0% 8.0 1.8%
I

0.04 |1.00] 25 8.0 3 25.0% 68.8% 4.0 3.7%
0.08 |2.00| 25 4,2 3.8 19.0% 76.27% 2.2 8.17%
0.16 |4.00] 25 2.5 1.9 16.0% 80.0% 1.2 24.9%
4

S indicates the stochastic model and D indicates the deterministic model.
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V. Conclusions and Implications

A diffusion model incorporating stochastic coefficients, which is
appropriate for heterogeneous populations, was proposed and its estimation
discussed. A comparison of this model with the conventional deterministic
diffusion model suggests that the deterministic model would overstate the
forecast of adoptor population in the mid-time range. Such systematic
"bias'" of the deterministic model can have significant detrimental effect on
management confidence in the reliance on deterministic diffusion models.

The simulation findings get added significance given the conceptual attractive-
ness of a stochastic based diffusion model.

In any diffusion process one can identify two sources of uncertaintly
——parametric and structyral ﬁncertainty. Parametric uncertainty seeks to
study the model behavior due to parameters misspecifications, error in
measurement and estimation, --the model error term-- and most importantly
the heterogenity of the given population. It is in fact a form, or randomization
of the trajectory, that we could expect if there was no uncertainty and the
population was homogenous.

Structural uncertainty arises from the probabilistic relatiomship between
components in the diffusion process. For example, how do innovators emerge?
How do they affect other innovators and imitators? Similarly, what are the
interactions between adopters and potential adopters? Can these relationships
be characterized with certainty, or be expressed in terms of probabilities of
potential interaction, and probabilities that such interactions will lead to
an increase in adoption.

Thus, uncertainty may enter at many points, within the parameters of the
diffusion model or by altering the structure of the process. In this paper we

restrict ourselves to parametric uncertainties, i.e., uncertainty about the para-
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meters of innovation and imitation due to heterogenous population and a model

error term. Subsequent research is needed to deal with structural uncertainty.
In addition to further work on the uncertainty aspects of diffusion, new

stochastic diffusion models should be developed to integrate and generalize

the work on the dynamic aspects of diffusion, i.e., an extension of deterministic

diffusion models with dynamic parameters. Furthermore, still needed are incor-

porations through stochastic optimal control approaches of marketing mix

variables (Tapeiro 1983) and competitive considerations. Such extensions

offer exciting challenges to researchers in the diffusion, stochastic modeling

and marketing strategy areas helping tc increase the managerial relevance of

diffusion models.
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