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Risk Sharing and Group Decision Making

Abstract

In a decision-making problem where a group will receive an uncertain payoff which must be divided among
the members of the group, the ultimate payoff of interest is the vector of individual payofts received by the
members of the group. In this paper, preferences are quantified in terms of cardinal utility functions for such
vectors of payoffs. These utility functions can represent preferences concerning “equitable” and “inequitable”
vectors of payoffs as well as attitudes toward risk. The individual utility functions are aggregated to form a
group utility function for the vector of payofs, and this latter function is, in turn, used to generate a group
utility function for the overall group payoff and a sharing rule for dividing the group payoff into individual
payofts. The resulting group decisions are Pareto optimal in utility space. Properties of the sharing rule and the
group utility function are investigated for additive and multilinear group utility functions.
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ABSTRACT

i1 this paper, a mechedology for dodelinz group decision—-making
problems is presenced. As a vesult of a decision, a group will receive
a savoif which oust be divided among the members of the group. The
ultinace pavorZ of incterastg is che veectost of iadividual payoffs raceived
vy the members of the group, and preferences are quantified in rerms of
gardinal ueility functioms for such vectors of payoeffs. Such wtilicy functions
can Terresent preferances concerming "equicabie” and "inequirable" veccors
ol payafis as well as ateitydes toward risk, The individual ucilicy fuactions
2r¢ aggregated to form a group utilicy funccion for che wector of payoils,
and zhis lactey function 1s, In curn, used to generate a group utiliry
funczion for the overall group payofi and a sharing tule for dividing the
zooup payoeff  {ate individual payoffs. The rasulsing group dacisions arcz
Parato oprizal. Propercies of the sharing ru;e and the group utility functien
are investigased under different assumpriouns concerniemg the form of the groue

utilicy fanetion.
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. INTRODUCTION

This paper considers the problem of a group facing a decision-making
protblem under uncertainty. The zroup must choose an actlon and will recaive
a pavoff which denends on che acrion taken and on the sutcomes of certain
grencs ot variables. Afrer che group pavofl is received, it must be divided
among the members of the group. The ultimate interest of the group centers
on the wvector of paveifs to the individual menbers, =ot on tlhe group payofl
irself,

an exanple of the tvype of sitmation thar Is of iIncerest here iz a
group of individuals who form a partmership and proceed ro comdust Husiness,
Yany decisions zust be made by the parinership, and these decisioms will affeat
rae ifacecme of zhe parrtnersniy and hence of the partomers rhemselves., DJifferenc
rarsners may have diZferext ztritudes toward risk and dilferexs oraeferences
concertsing the division of the partnership’s inocome. Iz this paper we
sresent a group decision-making model that takes into aczaunt such atticudes
and preferences.

The problem of group decision making has recelved a grear deal of
aztension from researchers in sany discipliazes. The concerz in this paper is
wizh normacive models of group decisfion wmakiag, as opposed o dehaviaral
aspects iavelving incteractions within the group. Much of the past research
involving notmative models of decision making has f{eocused upon the area of
soclal chofce, and a4 dominant force in this area has been tha early work
o2 Arrow {19%1). arrow's "Izpossibilicy Theorem” shows that given orderings
of zunsequences 5y a number of individuals, no group ordering cf these

consequences exists that satisfies a3 set cof seemizgly reasonable behavioral
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assumprLions, Good summariss of soclzl cholce theory are srovided in the
agoks ef Jen (I1970) and Tiskburn (1973).

Wworking wich eardinal ugilicy functions rather than ordinal vodilicy
functions, Harsanyi (1933) presentsconditions uynder which a group cardinal
utilizy Zunction can be exprassed as & linear combinacion of the urility
iuncticns of the individuals comprisiang the group. Xeenev (1976) provides
slzemmate conditions lesading to a group ucilicy function. The interpersonmal
czenparisons of utilisy necessary to arrive at a group urility function are
of sarticular iaterest, and such compariscns are discussed in Harsanyl (1977).

Wilson (1968) uses Parero optimality as a decision-making ericeriom
ang considers rthe exisrence and construction of a grouwp ucilicy funcrion
when each indivifuval cares oaly abour his owm individual payefii. Raiffa (1968)
dlscusses Dargaining and arbicracion as procedures for arriviag at a siagle
ssratagy Itom a Pareno-opeimal ses. These and other aspects of group decision
Jaxing ara covered by TaValle (1978), who illustrarces chese concepts guite
lupidly wich a series of axanples. LaValle also oroposes the use of an
"allocation funcetion' as an arbitrazion precedure for the selection of a
Pareto-oprimal solution.

The role of equity in group decisioun-umaking wodels has Tacaived
particulzy attention, and models have been criticized on the groups of net
allewing for eguicvy. For examvle, see Eirviwoed (1972}, Reeney and Wirkwood (1973},
and ¥eeney end Raiffa (1976). An important conflict between equity and Parsty
ovtimality is discussed in Xirkwood (1979). However, this work has considered
individual and group cardinal utility fuactioms for cthe group pavoerf, or
censequence, not for ethe payoffs te individual members,

The objective of this paper is to present a methodology for medeling



zroud decisicn-making problems. Praferences are considered in tesms of
cardizal uriligies Sor entirs vectors of paveils fo individual members of
the FToup. IThus, consideratioms such as equity cen be taken into accounc.
The individuyal urility funcrions are aggresated to fatm a group ucilicy
funerion for the vector of payoffs, and thils latter funetion is, in turn,
ysed to generar2 a group utilisy function for rthe group paveii a2nd a sharing
rule forv dividing the group pavoif into iadividual payoffs. Properties of
the shariag rule and the group utility function asre iznvesrigated under
difierenr assumprions conceraiag the forw of cthe group utiiicy function.

The general methodology of our group decision-making model is presenczed
in Section 2. <Cases in which the group utilizy fumction I{or the wector of
individual paveifs i3 additive and multilinear  are censidered iIn Sectlious

aad 4, vespestivelw, Some geperal results are obiained for the additive

"

and mulrilinear cases, and examples are given to Lfilustrate fhess cases.

A brief sucmarv i3 presented iz Sectiom 5.



2. A GROU? DEICISTON-MAKING MODEL

Zuppose that a gvoud of o members faces a decision-making problem.
The group must choose an action a from a set of alternatives A, and y
represanis the payasf to the group as a result of cie actieon. The pavefsd
v could simply be a monetary payoff, or it could be gpulcidizensional in
Tlafur=.

The zroup members are uncertain abour th2 payoif cthat will be
obtained, aad far each a g4, the uncercainty I3 represented 1a terms of
a propabilicy distriburtior for y given that a is chosen. In order to focus
on wtilizy-relaced aspects of the group decision-making problem, Wwe assuze
Zor the purposes of this paper that the group mesbers agree on the probabilicy
discrituzions ¢f incerzst. In some situations, for ianscance, the prodabllicy
mgchanisa generating the pavoifs may be well kiown and easy o agree upon,
as in the case of a group combining ics Tesources to play a game of chaoce
ar a casing, When the group mezmbers have different fnfornacion, they might
pooi all of their inforzation and base thelr probabilicies en the peoled
informacion., Alcarnarively, che group members may have ounly limited knowledge
upen whiz2d to base fheir prnEabilities and_may therefore obtain probabiiicies
from an ocutside experc. [ each member's state of information is diffuse
relative rp the informarion provided by the expert, then che group mighe
agrse to yse the exvercz's probabilities in the group decision~making problem.

Cnee 3 1s chosen and ¥y is obecained, ¥ twst be divided among the grour
mezmbers. For cenvenience, we assume that v Is infinicely divisible, although
constraints on the divisibilicy of y could easily be incorporatsd ince the
medel. The payoff to wember 1 is denoced by x,;, and x = [xl,...,xnﬁ

vepresents the vecror of paveffs to the n group members. TFor a given payoff
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v, any wveector satisfiyiag v = %, 1s attainablsa,
A=l

i
An izportan:t aspect of the model developed in chis paper is the
wav in waich the praferences of the individual grovp zembers are Srought
iaro the model., We assume chat the group pavoff 7 has no Incrinsic "value"

per se to the individuals comprising the group, but that its "value"

is indirec: in the sense chat It can be divided into individual payofls
xl,...,xn. Thus, the prelerences of Incerest are prefarences conceraiag
xl,...,xﬂ, neot ﬁreferen:es coggeraing y. Mareover, we are Ipterested ia

zach member's preferences concerning the entire vector X, ot just the
member’s preferences for his or her own payeif. This enables each individual
ro expraess feelings about his or her own pavefs in relagtion o cha pzryofls
received by the octher n-1 group aembers. Sowme zembers might scrongly prefer

an equal division of ¥, while gchers mighr feel thai cerrain unegual divisions

ara "fa;;er" in some sense {or are preferred even iZ they are "unfaiz"

Wa assume taat each group member sssesses a cardinal utilizy function
for 3. Member i's utility fumction 1s denoted By u, (3). These utilicy
functions can be assessed By considering prefarences among leotteries imvolving
%. Sivece x £s multfdimensional, the urility assesszent procedures discussed
in Reeney and Raiffs (19768) are relevanc hera. In parcicular, it Is Zasirable
£y sonsider zhe applicabiliisy of various preferential assumpzions {e.z.,
addicive ipdependence, mutual utilitry independence) that may sioplify the
farz of the urility {uncrion. Examples inwolwving such assuupcions are

oresented in Segiions 3 and 4.

Given the z individual utili:ty funciicns ultg},....unig}, the vext

5ze2p in the mekhodology is ta form a group ucilicy Zunction uG{EJ. Expressing

o

u. 4% a funertion of rthe individual urility functicas necessicates the

-
W

spnsideracion of loctteries invelving w,,...,u_. Harsanyl (1933) shows thaz



1 gerzzain condicions ars satisiled, U, can he expressed as a linear

gomolization {with posicive coelfficients) of the ifndividual urility functiouns.
Xeenev and Xirkwood {19735) and Xeeney and Raiifa {1976) discuss altarnate

sacs of conditiens that lead to a group uvtilicy function that is a linear
lead to more general

as well a5 econditions that
model does noc place

a
Althouzil dur
from

forms for the group usilicy funcrion,
G

caoination of Uy peresd
the aggregarion rule that is used to degermine u
i for reasous

a--f.«-ion on

any vasgristi
the linear aggregation tule wary appealing

ul,...,un, we fiad

discussed larer in t£his section.

@f u.{x} provides the groun with a urilicy fuaecion, but
Wy -

Tae farmacion of
it i3 a3 funcsien of x, whereas the paveif to the groupr frcm the group decision-
The cholce of an action a from the sac A

-

a single vaiue ¥.
as the group’s external decisicon-making problem, and the

=aking problem is
can be thoughco of
proc-a¥, can be thought of as the
Obvisusly, the group's extarmal

divisisn of v fato iadividual pavoiis x
intermal decision-meking problem.
mavy be affserad »v the internal problem, because the degirabiliry of

- In che model

gTour's

pradlen
an extaraal sayoff v devends on now the paveff is co be shared.
zember's preferences for various sharing rules

developed here, each group
rhe model in terms of the individual atilicy

nave been incorporared into
Furshermore, the agreement of the group members concerning

functions for x.
the preovabilicies of events or variavles of interest removes the possibilicy
also, if the group has to

of side tets involving these evencs cor variables.
naks a number of decisions over time, consideriang the internal and external

sroblems simuitansouslv is likely co lead to a c¢eumplex, intractable model.
45 & resulr, ir seems reasonable to separate the intermal and external problems,

and we treat the internal problen as a consivained maximizacion prodiad:



t(®) = max u.(x)
= -

(1)
. n
subjeer toe ¢ X, T V.
i ©
Gepmetrically, for a given y we comsider the hyperplane ? LI in
i=1
{x, uG)—space and f£ind the point on that byperplane for which s isg

maxinized. This procedure L3 illustrated in Figure 1 for a situation
wicth a=3,

The x at which u. is maximized for a given y is demoted by x*(y),

G
so rhart UG(y} = uG{g*{y}}. If x*{y) is considered as a Junction of ¥,

it traces out the "oprimal" sharing rule for 2ll values of y. For example,
il (¥} Zollows cthe line Zor which x1=le---=xn, theg the group will always
divide the paveif equally; if it Follows the xi—axis, then gembez 1 will
always teceive fhe entfire payoff; and so on. Toe sharing rule shown in
Figuze 2 Zor a case with n=2 provides perfect egulry foT ¥ near zero dur
gives member 1 a larzger proportion of y than member 2 for larze absolute

L] ]

vaiunes of y. Gecmetrically, x*(¥) represents a "vidge" in the grapn of
u, (%) as a funcriom of x.
The model Zevelioped iz this paper, then, begizs with a set of indfividual
utilicy fuaccions uitg) for che entire vector of Individocal payoefls x.
These individual ueilisy %gncticns are aggregated o fora a group urillr
Zunetien uG(g} for %, and (1) is used to transiorm uG(E} into a group ucilicy
function UG{y} for the group payofZ v. The group uzilizy feunccion UG{y} is
ro ba used for group decision~msking purposes, with the group chaosiag an
accion 3 S0 as to maximize E
At diffarent steps io the process described here, two differenr tvpes

"IL: |

of rradeoifs are considered. TFirst, in the imirial asszessment of ul,.. a
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fhe group members zusc conmsider tradeofis among the dimensions of x.

Second, In the aggregavisn of u Sealy Ly forn u cradeoffis azong the

1" G’
d¢imersions of u = (ul,...,un} musk be considered. In the second step, a

lizear aggregation tule,

w () = 2w (0, (2)
=1t

wiEn li *» 0 for ia},...,n, 15 very z2ppealing Iin rhe sense thar it is rae
enly rule which guarantees chat the resulting decision will be Pareto
optizal, bur linear rules have been criticized on che grounds that they
do nec caks inco acsount considerations of equiry, For a discyssioa of

tais "eonflier" between Pareco optimaliry and equitw, ses Lirkwood (1973).

waen the Iindividual and group ucsilicy functions are funcsions of che group

)

avozl ¥, as has generallr been the case in the liceriture, the aggregactian

in

t2p providas the onlv opooriunicy Sor tradeofls among diZfsrant mempers of
the greun, angd hence matiers such ag equicy, to be considersed. As a rasule,
egulsy and Parats cptimalicy must borh be considered ip u-svace.

Jacause the zmodel developed here allews Jov the consideration of ¢wo
tymes of tradeofis, it Is pessible to aveid a comflict besween Pareso
cpeimalicy and equity. Parers optimalicy involves u-space, and the use of
the Iinear aggragation rule in (2) guarantees Pareta-optimal decisions.
Therafors, although our general zodal dees oot Tastrict the aggragatiom
rule, wa invoxe the assumorion of a linear aggragaclion rule for the rest
of £ais paper Lecause of che desirabilicy of Parece ovcimalicy. As for
egquity, it seams to us that equity is best considered in terms of x-space
Tacther thap u-stace , aand the group membars' fzelings abour squicy sheuid
be refleczed in uG{§}. in impertant adwantage of assessing utilities in
terms of x 1s chac it enables the group to take into account eguicy considera-

ticns without sacrificing Paraeto oprimalify.



3. ADDITIVE GROUP UTILITY FUNCTIONS

A5 notad in Seczion 2, it is desirsble o consider the applicabilicy
2f various prefsrential assumpcisns that mav simpiify the form of the uzilicy
fupecion (of an ladividual or of the group) for k. The most commonly
encountared vpe of wicilacrribute utilicy funcrtion in decision analvsis
applicacions is an adcigive form, and additive group utilicy funections are
studied in chis segzion. In Section 4, multilipear group uvoiliry funcoions,
which have the advantage of being able o seflecr equiry consideracions,
are investigazred.

The utilizy fupction of member { Sor ¥ 15 5234 ro be addicive IF it

can be expressed in the form

u, {x) =

e [

X L2 3
x_.u, [xJ} (3

where uy s 13 a conditioral vwrilicy fuanzion oI member L for xj {which is
assumed t3 be a monoionic, Iingreasing rumciiom of xj) and kij is5 a posisive
scaling comsgant far i, 4=1,...,0. A& utilizy function Ior x is adcicive

il and only if the elemencs of x are additive independent {(Reeney and Raliia,
1978), which geans that preferences sver lotteries icvolving X dapend ouly

en their =zarginal probabilicy distributians for the elemenrs of x and nor

ou cheir joint probabilicy distributioms. Tor example, 1f =, ... .
addizive iadependent, indiffereace is implied between (1) a lottery chat
vields x = {z,...,z) wich probadbilicy 1l/n and x = (0,...,0) wich probabilicy

{a-1)/n, and {2) a locrervy that yields, far i=l,...,n, xi-z ang = =0 for

J
imd wirh probability 1/n. Ia the first lettery, ei:ther all g=oup mexbers

receive a pavaif z or none of them receive anything, whereas in the second

lozzary, one xzember receives z and the rest receive nothing. Thus, Ia an

4



ox ToHL fense,
sapond lottsry
ta indiffarence becwsen tae two
abpuabt the &x peost eguity of che
of 2 lozrery are inequitable ex

2¥ ahio® sense, Tfor doth of che

2as a 1/n chanc2 of veceiving z
Thus, when aquity is discussad,
gx post  equity and ex ante equicy.
would 1i%e to focus
n

uG{§} = .

T {x.),
j=1 °

i
ﬂ.Gj qu

«»37t.  Thersfore,
the fodividual ucilicy

The 2ost reasonavle scenario leading to

af rha imdividual ucility fune:ions are

couid conceivably lead to an addizive Ue

i zare re be inegquizable.

lgrreries

on the fapli

the firsc leotzery Ls guarantesd o be aquitabls while the

Addicive indepeadence leads

and therefore a lack of concern
Of couvrse, even when the ouilcomes
Yocrery may be eguicable in an

in che example, each individual

and a2 {n-1}/n chance of receiving nothing.

1t {5 izmportanc to distinguish between

cations of group ueiliry funcrcions

can be expressad ia additive form:

(&}

8 few words about how such a uG

funecions Upaees,d TR in order.

an addisive u. is gne in which all

G

theaselves addicive. {Other scenarios

but are highly uniikely because

they would rzquire che fortuitous circeumstance thar the non-additive terns

from diflereac individuals' utility functions cancel each cther cur!

ef darsanyi's (1935) condicions leading

4 -

as a whole should be indifferent between the lotieries,

Cue

to a linear aggresgation rule is that

every individual is indifferaent betwean certain leocrterias, tie group

Thus, indifference

among lotterifas with different jeint probabilicies but the same marginal

probabilirias carries ovaer from the Individuals to the group.

Formaily, 1% e,

is given 9y {3) for 1=],...,n and if the linear

ageregation rule in (2} is used co geneérate Loy then



n - T, -
uG{:{} = - T LI {2{1} . T ‘cl‘uu“-'r ('_‘{:] ' [:J}
im] J=l 1 15 .'-j. a _‘,:l ol ]
waeze ko 2 Agkyy and ug () = 2 SR CRY; i Ak,
.j i‘l il ] J i*l -3 L1 - i=] j

-

In order to be able to Interprer {(and thus to assess core easily) the

utilicy functicas of interest here, we impose, without loass of generaliry,
5 " - = F o a2 -

some scaling reguirements. for each j, we can choose x, aod xj such

ol

. oo , - B , - - e
chat xj is preferrved to x,. Tor instance, if chs ser of possible values

3

ot xj is bounded, the best and worst possible wvalues of x, can be used.

Then we scale che ucility funcrions such that

- oy . oy o,
qu{Ajj uij(xj) uGEE_} uiff ) 0 {6}
and
ugy ) = 0, (%) = g (x%0) 5 % =1 ("

- . a a ] ag o oo
for L,§=1,...,2, where x = Exl,...,x1} and x = (x soe X Y. Now
+

=

"

&,, =L Sor i=l,...,n

g1

HB

{3) z2ad (7}, sogezher wirh (3) and (&), imply shat

. o, ; . . =] <] go o v}
and 1 &G = 1. The scaling comstant X, eduals u (31,---.3 % PR S
501 j ij 171 §=1""F 'yl n

wnich can be assessed by decermining the szopabilicy p that makes member £

(e

o oo = Q - 2 .
l,....xn] and 3 letrtary 7ieliding = wich »

Q
indiffere barveen (X ...
ndiflerent { i ’xjﬂl‘xj 'xj+

s 0 R . . .
abilizy p and w wizh probapilicy l-p. Iatulitively, zighe %e copsidered o zep

3
3 14
sent che power or Ioportance of =ember j in cthe zroup, as judged bv zember i, The =

incerprecation ia cerms of group prefersnces cao be given to k., . Also, the

GJ

scaling rescricticns imply rhat the sum of the coefficienss of the linmear

n
azzregarion functiom must be one: z li = 1.
i=]
¥ext, we will characterfze the optimal sharing rule and the group
is additive. In order :o look at the group's

utility function for y when u.
-

attizude roward Tisk, we assuze Zhat u {x*} and uw_ . fx.) are cwice differenciszhle
-

19 Gt ]

iml,.,..,n and we £efine the Prats-airvow risk sversion funcrions (Pratt, 1954)

-l

(1Y

el
o



L]
3
i

- [ = om Mg, ' .

Iy 55} uijixj]fuij{ij}. {3)

rGj(?J) = - uaj(xj}fuéj(xj}, {9}
a2nd

rG(?} = - U&(y}fﬁé(?}, (109

wiera the primes denots differentiation. Here rij and r Tepresant the

Gj

Tisk avarsion Zuncticns of wmember I and the group for the payoff to member j,

and r. reprasents the group's risk aversion function for the group payuff y.
~

In the following two propesitions, we assume positive risk aversion functions,

wiich Implies risk averse behavior.

-

Proeposition 3.1, If u. is additive wich u,, t9ice differentiable and

G Gj
rGj *» 0 for j=i,...,a, then
:".‘xf:(?} » _— *
e I ¢ 1 DD M G- S TN ¢S 125 D s Sl OO
Y SRRCH T B ]-_E'; GL71 ’
and
o] -1 -1
- = = - ax* =3 2
-G{}'} iliﬁlhﬂitxl{:‘r}}] d . (l-}

A proef ol the vropasition is given in che Appendix. From (Il}, the rate
of incrzase cf member §'s sharva of v inereases as rGj dacreasas wich Tey
heid censtant for jFi.  Thag is, as the group becomes less risk averse with

"szake' in the group paveff y inereasasg. Of course,

vespect 0o xj, cewper j's
as Che examples presenced larer in this section will desoustrate, membar j
may nave fo pay for this increased "stake” in v by making side pavments ro
gchar grour menbers. The second resulc in Propesition 3.1 shows how the
group’s risk aversion for v can be related to the group's risk aversion for
the individual mayofifs XppeersX o From {12}, the group is less risk averse

toward v than toward auy individual x,, and the following proposicion provides

il‘

aven sCTongey scatements about rGfY}-



-13-

Progpasicion 3.1, If uy is additive with u cwice differantiable and

i]
rij > 2 Zov i,j=1,...1, then
-1 . -1 . .
n - min{r. {(x*(v)); < z_{¥} <« saxir, (x¥ 1
§1 & <*(v)ir < G{ } 2= 2 ij J{y}}r {13
and
-1 -1
7 i 1 - rr x ‘Ir,.
n ?f?frij(xj(}}}' L.y 2a E?f‘rijijiy})' (14}

A proof 13 given in the Appeadix. Proposiconm 3.2 indicates that not only

is the group less risk averse coward y chaz toward aany individual x,, bug
H

its risk aversion funcetlon for y is less than the largesc :Gj{xgtyj} oY a

Zfacrtor of l/a. This suggescs that groups counsisting of very lacge nuobers

of visk-averse Zewmbers should be approximately risk neutral, which can be

atzriduted to the group members sharing the risk. In the special zase of

(2]

aqually risk-averse mesbers, with T £ ¢ for all i, we have t_(v) = tix¥(¥))/m,
* Ly -

whiczh clearly goes to zere 25 1 increases.

To iiluscrate group decision making with additive group arilicy functicaos,

two examples with n=2 will be considered. Ia the first exac—ple, the zembers'
utflicy funcrticas are fdeartical wizh the possible excention of diZferences
in scaling comstants. Zoth conditiomal urility funetions are expomenzial,

f=plying constant risk aversion:
-2 X, - K,}

- 11 . 1 - 22 p =1 T .
u, (1} k l{ e 1+ Kiz{' e )} for i=1,2, wherte ¢y ¥ a,
. > 9, xl > O,and x, > 0. The group urility functien Zor x is of che Zcrm
- T e xl —e,%,
uc{g} = sGl(l -a )+ ﬁGzil -a ¥,
with ¥ %oy llkli kzi for £+ » 1,2, Maxioiziag uG(E} veder che conscrains
H - 1
Xy Foxy =Y yields
-1 .
xf{?} - Eczf{cl +e)ly (e) + cz} lﬂ{ﬂGllekGE 5) T gY £ 3
and

-1 + . . = T - 7 -
K& {v) = Ec f{c + czj}y - {cl +c,) ln{aclclfxczﬂzi (L ~4gq)7 - s-



} represencs tha propottion of ¥ that member I Tecaivas,

ia(x ey i ) represents a side sayment from member 2

and s = (o, + c.) G % C 5

1 2
o memoer L. Yete that che proporticnal division oi 7 depends only on the
twe risk ave-sion measures v, (x* = ¢ apd .. (x*{ = C nat on tha
scaling censzancs. From (I11), the rate of iacrease of xf as v lncreases

] -1. \ - . . .
stould be <y afcl - czlfclczi i c°f(cl ¥, which is consisrtent with

“2
e shariog rule tustc derived. The more risk averse member receives a
szaller share of ¥ but will bHe compensated by receiviag a positive side
pavment unless the scaling constant for the less risk avaerse gember is
sufiiciencty larze to overceme the diffarence in risk aversionm coeflicients.
The side pavmen:t depends on the scaling constants as well as on che risk
aversion cgefilciears, and the scaling censtants might be chought of as an
ingicaticn of the rzlative power of she g-oup members,

The grouo utility funcetion for ¥ in this exapple can he fZound by

substizutiag t*fVJ and x#(y) for xl ancd %,
'-C_lﬁ C.5 -C_C
DG{y} =1 - {ﬂGl + e Ja . .

{2}, and the tesult is

P

@2
Thaus, the group utilicy funetion for vy is expoaencial with coanstact risk
avarsion coefficienc rG(yj a clczf(cl + czl, as we could have detarmined
v using {12} teo find rG{y}. Also, from (13} or (14), we have

ain fe_,¢

1772

zo the resuel:s CHaC the move risk averse member receives less than half of v.

172 < c,c?H{¢ + } < max {e¢ ,cz /2, which reduces in chis case

¥oce that whan cl =z rG{y) 15 exactly cgne-Balf the comeon risk aversion

2'!
coefiicient. When <y d 2,

ard ¢,/2 pecause the less risk averse nember is taking on a layger share of

however, rG(y} is less than the average of ¢1!2

the risk than is the cora risk averse member.

In our seccnd example iavolving an additive group utility function, the
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1y

genbers’ ucilicy fuacrionms differ in -erms of che condicional utiliey
funcctions as well as :the scaling comstancs. Each member Is risk averse
with Tespect to his own pavoif and risk aeutral wich respect to the ocher

—exhar's paveii:

. P
ulig) 511[alx1 (al l)xll + klixz
and
2
= T r - - 1%
(8 = )Xy ¥ kpplagny « 3, - Dx,l,
whera 1 < a, < 2 and 0 < x, <l for I=1,2. The tisk aversion functioms

corvespondiag to the conditiopal utility Supcrions are

- = - -1 - -l - - E 3
rll(xl) [alfal 1) /2 xl] . rlzixz} kzlfxl) 0, and
-1

|
rzzfxz} = {azfaz - 1) 7/2 - 32] . The condition that I < a, < ? zuaranzees

chat uii(xi} f5 izmcreasiag and risk averse on the unir imorterval,

The group utillty fumerion for x in this example Is of che Jomm

2
= ! -3 f - oY - A 3 -
selx) = Gukpa + Ak, 0% - Ak (3 Lixy + (%, 2Kan2,)%,
lakzﬁiaz - E)xg. Maximizing uG{x} undger the conszraiztc X, + X, = 7 vields
<y} = ha¥yplay = Dy B LTI o Y - i S b ¥ e
s - * - TR l - Lk -
i llkllial 1) + lzazz(az 1) _[Alﬁll{ al} + Azﬂzz{l azl]
=gy + 8
and . n . . . .
<k (e) = Ak 3y - Dy I T It e S W e ¥
X L: P N . D - EEPE - % i
2 Alﬂll{el 1y + Azgzztaz 1) 'lﬂlall{l al} + 2522[- 3,
= {1 - @7 - 8§,

where q and s once agafin represent che proporction of ¥ that member 1 receives

and a side pavment from member 2 to member 1. Here the division of 7 depends

not just om a, and a,, which are psaramerers of 4y q and sy {fand hence of T

1 27

4 A% well), but alse oa the scaliang coastancs « and .. and on che

and 1 11 22

2

coefiizienczs A, and L. of che linear aggregazion funcriom. The progortion g

1 2

facrrasaes as EZ inereases celacive oo &l, 38 k:” increasses velagive 0 k11.

11
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and as a, iacreases relative to a . When 4, and k,, increase relacive to
and k1 , respectively, more welght Zs nlaced on Gy relative ro ul” and
ials greacer welght on risk aversion with respect o x, leads to a smaller

[ =3

proyortion of y for member 2. Similarly, as a, increases telative to T

hecomes Tore rigk averse raelative fo u1l.

) aad x%(¥)} are subscitutadé ingo uGig}, the resulting group

When x*(
1 Z
ucilisy Zunecion for ¥ is guadratic:

UG(y} - ayz + by + ¢,

whers
z Z
- 1Y% = - -
1llg ‘22(32 131 - g

a=a _kl‘ial

-

Ekllfal - 1l)as + klE{I - q) + kzlq + kzzazfl - q) +

EkZEEaE - 1)1 - q)s
{2 is jrrelevans for decision-making purposes). The risk aversion fumetion
UG{y} is rG(y} = [~(t/2a) - ?]il, as comparad with

13 TRy Ak 0 - )

corr2sponding to

-

:Gi{xi} = f-di - xi}

far imi,2, where dl = {llkl

and dE = {Alslz + lz‘zzazjfhz'zz{* - azj.

The scaling constancs and aggregation coefficients play an important

role ina this example, but thev make the results somewhat difficult to intermpret.
Supppose Ihar equal weights are used everywhere, 3o thac A, A,. kll’ kg Koy

and kZE all equal cme-nals., Then q = {az - lﬁf(al + 3, - 2) and
- 2},implying that the mors risk averse member receives

§ = fal - az}KZ{al + a,

less chan half of the group payoif ¥ but receives a positive side paymeat

from £he other member. The group risk avevsion funcrion for y is

-1
(¥} = [{alaj - l)f(al - l}{a2 -1} - ¥} ",

s 2
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4, MULTTIIINEAR GROUP UTILITY FUNMCTIONS
Addigive grouw usility functions are coavenient o work wizh bug
are nct able £o tailect oreferences in favor of or oppeosed to ex nost
equity of :the fodividual payoffs. One of the advantages of the approach
sresenced in this paper 1s the abilicy of the medel to tzke such preferences
ints account wisthour sacrificing Pareto oprimalizy. Io this seccion, we
study a class cf group utilicy Junccions, aultilisear group ucilicy functions,
thas are abla to reflect preferences ceoncersing ex post egquicty. To siaplify
the disgcussion, we restrict our attention to groups with two mexmbers, although
generalizations to groups with more than two members certalnly are peossible
[e.g., see the ciscussion of mulrilizest utility Zunctions ia Chaprer & of
Kaezey and RaiiZa (1976)].
The group urtilicy funetlon for % Ls said o be multiilaear I iy cax
be expressed {a the formn
{x Y+ ko k

uG{E) = kGluGl{xl} + & (‘1}“G2{32)' (15)

GE %52

where for i=1,2, uGi is 2 condirional uciliry fumerlon wnich is5 assumed

be a oonotomis, imcreasigg fumcuien of xi; kGl and sz are pasirive scaling

1s a2 scaling conssant not restricted i siga, A uwiilic

G Gl “G2%1

constants: and k

G

Zfupction for x i3 multiligear 1f xl and xz

wioich deans that conditional preferences for lotteries om xl givan X, do

and conditiomal prefersaces Ior lotceries on

are putually ucilicy izdependenc,

not depend on che lavel of £,

¥, given x. do aot depend on the level of xl (Keeney and Rafiffa, 13758). While

2 1
the definition of =uryal utilicy independence may nocr aopear 2t first glance o
cake equicy considerations into account, we shall see that the muluilliinear

urilisy fungsion can ifndeed reflect such consideraciosns.

In order to be able tg Incerprer the muitilinear utilicy fyncriiom given

ahanT)




by (13), we impose, without loss of generalicv, scome scaling ceguiremenrs,

- . o [l v o . -1 S —
A5 iLn Secticn 3, we choose xi and Xy Ior i=:i,i such that %, is preferred

o . , o el
to %.;. Then we scale the utility funections such chac uG(§ } o= uEi{xi} =0

oo, _ - 4 1 o Lo O, =
and u G{t ) uGi(x- } = 1 for i=1,2. Thus, Koy uG(ni ,xj) for {=1,2
oo
2+5 K Fp - ! L L1
and j#i. Also, frem uc{g } o= kGl + a2 + KGKleGE, we gat
Ke = (1 ~ Key = }kal a2

The group's preferences regarding equity are indicated by the sign of

RG If kG = J, the mulcilinear funetion veduces to an additive fuaction,

and we have seen that ex pest egquity considerations are {rrelavant sthen the
upility fuperiom is addicive, If kG is pogirive, the group prelers ex POSE

equity, whareas if kG is negarcive, the group prefers ex post ilnequicy. Tov

oo

example, consider a cholze betwean (1) a loctery that wields x wich probabizicy

1/2 and 30 with probabilicy 1/2, and (2) a lorcery that vields (xl

. o o e .
probabilicy 1/2 and {xz, xzﬂ) with probabilicy 1/2. The expecred utilisy of

9 ..
xz) with

the first loctery is 1/2, and the expected utility of the second lattery fs
(kG }f_ {1 - %k }I-. Indifferencs between the two lotteries
izmplies indifference about equizy considerations and leads ro k = 0: rhe
marginal discributions of “l aad x, are rhe same in the two lotrteries. 4
prefevence for the first loTtsery suggests a preference far ex pest equiry

i impii 1~ < 1/2, whicel that ¥ wust ive.
and impiies that (2 asﬁclkgzjfz 1/2, which means chat k. muSt be pos 2

Finally, a preference for the second lotcery ls a preference for ax post

inequity that veverses the above imeguality and requires thag kG he negative.

The contemplation of lotreries such as chese, with probadilities varied co

find indifference points, can be useful in the assessment of the scaling constanzs.

We are iateresced In this secrtion in cases in whizsh ucﬁg} is of che

multilinear form. Alchough we are not focusing on the individusl upilicy

A T

——— a ———
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funcrigns ui{g), Wwe ara stil] inreresced Iz cvoes of individeal ucilisy
fuvacsciens over ¥ that lead to mueltilinear group uctilicy functions. Unlorcunase

or doth of the individual urilisy funcsions to he

Fip

t iz aor sufiicient

rd.

mulzilinear themseives. Of course, i chey are multilinear and Identical
zhen the group utilicy funcuion will equal the {adividual utilizy funccioms.

They zeed nor 3e cowpleraly Identical, however, Tor example, suppose chat

they agree on the condisiomal utilicy Zfunecclon of x. and cheir gther noint

1
of agresment is that ﬂlﬂll - k2k21, so that
gl = kg O Ry pup (3] + Ky puy, (g g, (xp)
and
L8 = Ryt (X)) ¥ Rppupp (Rp) + kg Ryatyy (3 up (),
wich klk* = kzkzl and ullixl} = uzlixl}. Then usfg} is aulsiliinear wich
g1 T Bppr Yea T Pa¥iatn TR SOEIS YRy T

s 3 K.+ A% and k. = k& kl flh %, + A&, ). &lzernativelw, of course,

2208500 Gyity g + AR50, Ty = Rk, ok,
Koo ® 1892 F *o%0pe IS S b A R R I L Y

wa could assume that the group bypasses the assessment of IndivizZual usilisy
Suncrions {or assesses them bur does ot use a mechanical aggregation frocedfura}
and meers to assess a group utilicy fumesion. Io a group meering, eguily
cansiderarions would be hard co ignore, and a mulgilizear group ytllisy Sunmeriom
zight be quite appealing.

However che zroup utility Zfuncticn is detezmined, the nexc szep is o
soive (1) given thar u. is mulrilinear. The case with k., = 0 was :created i{a

G G

Section 3, and The case with kG < 0 {a preference I[or inegquicy} seems unlikely

to arise ofgen fn practice. Thevefore, to guarantee the existence of a Taxiounm
in the gzemeral case, we require that kG e pesitive in the following proposicien.

Proposizion 4.1. If e iz ouleilinear wis kG > O and wizh 9. wice

diiierenciable and r,j >0 for § = 1,2, sthen
e

(x*{w)) * '({*( SRR

(ryfzy = Lrg (g (R$0)) + T (g () + Zxixiiz))] (1)

Gl
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L B % [=ax Erclfxff?)), fczixgiy)}} - E{KT(Y)]]: (17>

t[xf{y}} = kaclkGEuél{xf(y}JI[kGE + kaGiuslixf(?]}],
§=1,2, i#j, and the prine denofes diffsrenciation. A proof is given in che
Appeadin, The imslications of the oprimal sharing rule can best be understoad
by cemparing ir with the oprizal shaving rule derived in Section 3 for addicive
wrilicy funmetions. The rule given by {16) can be Interpreced as a two-step

pint pavoif, as follows:

3 () 2o (X302

; rGlfxfE?J} + rGZ{xiiy}j + 3:(3{{?)}

Cfxffy}}
Lon (Rf()) + v, (x4 (y)) = 22 (xF(¥))

and

(¥} rGI{KE{?}}
[xf{y}] + rGEfxE(Y]} + 2:{xf{F]}

61
Tix¥{y})

Cop CALD) * T (<E()) + ZE(xE())

Wnen ¥ {ocreases, a portion of the ipcrease is divided egually berween rhe

rw9 Zesbers, and this is representad by the second term on the vight-hand

Fiy

sice of each squation., The re=mainder of che increase is nerc necessarily

divided equally, with rhe division depending on ey and Tan® In canstrasct,
the entire inecrease in y is allocated on the basis of ey and o, wWhen u. is

aéddicive. The addizienal first-step equal division of part of the iacrsase

when e is muloilinear wish kG > (0 reflects the preference for some degree of

X posSt equity.

as for the second par: of Proposition 3.1, the upper bound Ior rG{F)
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givan 3y (17} is lower than the upper Sound gziven by (13) for the addicive

zase. Alcthough this Is just an uoper bound, it does suggest chat the group
22y cend o be less risk averse in the mulcilinear case than in the addisive
zase. Perhaps the wnowledge rhart the paveffis will e scmewhat equirtable makes
the members willing o assume more risk In thelr joint decisions.

An 2xaople Iinvoiviag exponential condifisnal urilicy functipns will be *
presenced to illiustrate group decisicn making with multilizear group urilioy
functions. The group utilicy function for x 1s of the fomm

-cxX -aX et X
1 2

Y + kﬂzil - 8 Yo+ kG le,zfl 2 Y1 - & Y,

c,xl, and x2 ara posicive. The oprtimal sharing tule Is

. f = } -
u., (%) &Glfl a

T

EG,

T*fV} = {¥/2) + (I/23)1z G‘ + G Gl Gz}f chslksz}] = {v/2} + 5

xg(y} = (y/2) - (lec)ln[{kGl kaleGZJf{kGE + kaclkGEJ] = (¥/2)

12 the group utiligy Iunection wWere addicive with the same coandisional uwroilisy

ki

funcrionms for xl and x,, ¥y would scill be divided egually ur the side sayment

would ba s = {1/2e3Iak../%..). 7The side paymeno:t is smaller Zm the multilinear
4162

case, and !xf{y) - x;(y}[ is smsller as a vesulr.
The group utilicy funczion for ¥ im this example is cot exponential,

aut is a weighted average of two ewponential uzility Iunciions:

U () = 1+ ae 7 o ne C¥/2

v s oy 2TCS L es . . -¢s es
eRaigy 304 b m Kpe T e+ kpke ke te). A

veightad averagze of expomential functiions does not have coms:iant risk averslon,

wnere a = &k

acd che zroup risk aversion funcrion for y is

e
lap H

—oyf2 -oy
ba 7% o 238

rGf?} = le

Jug e—cs + Ecs > 2, implying chat b » 22 and hemce that be-:y!:_ 2ae <7 > 0, Thus
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r.(7) ¢ «f2, which is the wvalue of ¢
r
sonditicnal ueilicy funerions.

. o -

linear case.

P -

-

G

(v} in the addigive case with the sane

The group is less risk aversz in the wulei-



5. SUMMARY

T -Im s e TN

Iie machadology developed im this paper deals with group decisions-
making problems. As a result of 3 decision, a growp will receive a pavofl

which must be divided among the members of she group. Thus, the group faces

boch an excetnal problem and an intermal proflem. The excternal problea iuvolves\

the cholce of zn actiom to Ze taken by the group, and the internal zroblem H

involves the distribution of che group paveii among the memvers. Obviously, |
the intermal and external problems are Intertwined.

The ulrimace pavoff in the group decisiom-making preblem is noc zhe
group pavefI, but che wveczor of individual paveiffs received by the zexbers.
Thus, we zssume that earch ifndividual assesses a cardinal ucilicy funcrtion for
cais wvectsr @I payefis, Such ucilicy funccions can represeat an individual’s
prefarences conceraing "equicadle™ aand "inequirable™ vectors as well as
attitudes toward risk. Iarerpersonal cowmparisons at cthis stage favolve
czmparisens o payeiils, nort compariscens of utilicies.

The next stage, the aggregation of individual ucilicy functioms, does
require iarcerpersonal coaoparisons of urilities, acd we utilize previous
cesulcs from the lizerarure co arrive ar a linear aggregation sule., This
aggregation wule guarantees =hat the group decision will e Parets optizmal.

A majar advantage ¢f che aoprosch developed here iz that It results 13 Parets
oprimal deciszions without sacrificing equity considerarions.

The conversion from a group uciliry function for che weccor c¢f iadiwvidual
gavyofis ro a group utilicy funccion for the overall group paveif fg acnieved
by scliving a constrained maxizization problem. This scep Jecrermines 3 rule
for dividing the graup paveff (che intermal problem). Furthermere, Lle

substitution of chis sharing vrule In the group utilizy funcciou Ior che vweccor



ol {ndividual pavefis yielids a grouv utilicy funciion for the group payoff.
The latzer funcrion can e used to make the group's decisions {che external
arsblent.,

Concepivally, the metiodology presenced hers is not diffieylt. The
actual application of this methodology, on the ocher hand, may not be a
siapie matcer because aeltiatirifute utility funccicons (with the individyal
payofis rapresenting the azcributas) are invelved. Thus, any implementation
of the mechodology zust vely heavily oo procederes available for the assessment
of aultiattribure uzilisy functioms. In particular, the zanalysis is simpiified
coasicerably if certain preferencial assumptions can be Invoked to permi: the
cecempasicion of che aulciaccribuce utiliey funcsion into some function of
siangig-atzribuge ypilisy funetions. For extensive discussions of such
cecempositions, whish can sizplify both the assessment of the utilicy funccieons
aad the analwsis of cthese fumetions using che methodelogy in Section 2, see
Lagnay and Raifia (1978},

The rasulrts cbtained in Secticns 3 and & for additive znd mulcilinear
group usilicy functicns provide informarfon about some Implicacions of our
grour deciszion-making modail. In Section 3, the opcimal sharing rule and the
grousn uLilicy funcrion ars charactarized in the additive casa. As the group
hecomes less risk averse with respect te a particular meaber's payoeff, that
mezber's "stake" in the group pavoff increases, alihough side payments Zay
te necessary to pav for this increased stake. Alse, as would be expec:zed,
the group is less risk averse toward che group payoif chan toward anvy
individual paveffs, and large groups of risk-averse members might be expected
to be approximataly visk neutral.

Unlike addicive group usility funccions, multilinear group utility
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functions are gapable of reflecting prefarences regarding ax post agquisy

of pavoifs- A comparison of the Tasults of Section & with those of Section 3
demonsiraces the inaplicatians of including ex post equity consideracions by
adding a multipiigative term 2o the addizive utilicy function. The resulting
mulcilinear ucility Iunction appears to lead to smaller 2x post differences
in iadivizual sayoils and smaller side jpaymencs. Also, an upwmer dound
ierived for the group zisk aversiom function in the aul:iilizear case suggests
that che group =ay tend to be less risk aversa in rhe aulyfilinesar case tian

-

in the additive rcase.

desision. The mechodology alse applias te a sizgle desislion maker rewraseating
a group, as long as the payoff will be discribured among the members of the
group. 7The deczisicn mawer aighc have the group zembers assass taelir individual
utilicgy functions, or, espacilally in the case of a large group, might direccly
assess & "group” uriliiy functiom Ffor sfhe vector of payeffs, possibly with

some guidance from :he group members. Thus, the methodelogy may have potential
implicacions oot just for situarioms such 35 deslisions made by a partaership

o7 other small Zzroup, bur also for situarions such as decisions made by a
public officfal wizill payoffs (mometary cr otherwise) that will be recelived

by mazbers gf the general public.
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Sroaf of Prowvosition 3.1

The first-order condition for oprimalizv is % 4 g (x® ) = %, dm} a

1 Y

wnere the prime denotes differenciation, the argument y of xf i3 omitred for

notational simplicity, and A is a Lagraage oulriplier such that A = Eé(y}.
L

h E N (kX)) = Ut . if iating w.r.t. islds | * *
Thus, ‘GiuGifti} LG{y} Differentiating w.vr.t. ¥ vields k Koy Gi(i ¥ (3 fav) - Uq

and dividing the new equacion by the preceding aguacion gives us

) X "= - fen - 2 b i : J
{axif‘Y)rGi{xi} = ‘G{Y}’ or rG(y}eri(xi) {:x;fay). Summing over i wialds
rG{f} % {rGi(x;}l'l = 1, which proves (12). Substirutiag {12) ia

i=3 i

rG(y)eri{xtj = (;x;!ay}, wa then zet {11}. 7The second-order condition assuring ﬂ

that (I1) is a maxizum Is kG‘ Gi(Ti} < 0, i=1,...,n. which follows from the

concavicy of Uey s il ..,

Procf of Praposicion 3.2

From the proof of Propesicion 3.1, . (7} = ¢ {x;}{?x?!%y}, and summing

G3
over j vields an(F} - E :Gj(x;}{:wgfav} Since 0 < axf!?y < 1 and
j=1 .
% (Fx*f3y) = 1, urG{y) is a coaveXx combinacion of Tes t;} S - |
jﬂl i)
(13} follows directly., Next, we can wrirte u. (% ) = 2 pu(x .}, where
GI3 1 143773 c
' &2 2 w i Tk, = L 'olx,
o, = &ik-jfi ij Differentiating twice w.r xj, we get 4GJ{13} i'lbiuijffj}
and ul (t ) = 2 (1 ), and dividing the former equarcion 3y the latcer
G4 =N ®5%y
- = a - +ap -
vields rGj(Kj) T 1ihijij}, where a, * {Tj}f
iml L-l
- - ni 4 - - bt e dme TS - -
LGj{xj] is also 4 convex cowmoination of '1‘{xj]""’*nj‘xj}’ which impliss thac

aialis, (x¥): < v, (x*) < max*:

] ij i
Combining this result wizh (13) yields (15}).

ronf of Prososizion 4.1

The firsg-order condition far opeimalicy can be written in the form

' - & . a L] 1 - 1 1. 1 1 . Fwriy T i~ oy - ri‘
151 P gy F KeRar¥eaup (5] = ugy (e Iy * Kgkgykgauigy () 1. iifereaczaciag
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z ¥, dividing che new equatlon by the old equation, and

soth sidas w.r.c.
simpiilying vialds
-rGI(REJEExffiy} + t{xf}[l - {Extfiy}] = -rGEExE}[l - (axffay}] + t(xi}{gxf;ayj‘

Salving for axEISy yields (16} for j=1, and (15) for j=2 follows frem

Tnw

Z
I5 a maxiavm,

iy = 1 = (3x%/3¥). The second-crder conditior Indicates that the selurieon
i

Differenriating bech sides of the Iirst-order condirion [each of which

gquals Eé{y}} W.L.t. ¥, dividing by the first-order condition, and simplifying

2ives us

rG{?} = {Exffi?}rclixf] - :(xIJIl - (EKTIEY)] = [1 - (EKTFEY}]rGE(EE) - t(xf}(axffﬁY
dr ) o= YRS T *) & - *f 3 ik} - wit)
h-G(f] k}xif j}rcl{xli fl [Bxlfdf}]rszﬂtz} tfﬂlJ

Buc chis eguation, togesher with the inequality

) Ay s e [ = faexln i 3 * .
faxffd;}aGleT) S (axf/s?)]rGE(xEJ j_max.rcl(xf}, rGE(sz}, yields (17)
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