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Technical Report on:

Comparative Design, Scaling, and Control of

Appendages for Inertial Reorientation
Thomas Libby, Student Member, IEEE, Aaron M. Johnson, Member, IEEE,

Evan Chang-Siu, Member, IEEE, Robert J. Full, and D. E. Koditschek, Fellow, IEEE

This technical report provides full derivations and defini-

tions for the paper, [1].

I. ANALYTIC SOLUTION OF TEMPLATE DYNAMICS

Integration of the system dynamics, given in [1, Eqn. 8] as,

θ̈b =





4P

ωmId

(
1− θ̇b

ξωm

)
, for 0 ≤ t < ts,

− 4P

ωmId
, for t ≥ ts.

is easier in the rescaled coordinates introduced in [1, Eqn. 13],

t̃s = γts, t̃f = γtf , θ̃h =
θh
θb,f

, ω̃m =
ξωm

γθb,f
, (1)

where [1, Eqn. 14],

γ :=

(
4Pξ

Idθ2b,f

) 1

3

. (2)

We will use prime notation instead of a dot to denote time

derivatives with respect to t̃, i.e. ()′ := d/dt̃,

θ̇b = γθb,f θ̃
′
b, θ̈b = γ2θb,f θ̃

′′
b . (3)

In the rescaled system, the dynamics are simply,

θ̃′′ =

{
1

ω̃m

(
1− θ̃′

ω̃m

)
, for 0 ≤ t̃ < t̃s

− 1
ω̃m

, for t̃ ≥ t̃s.
(4)
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Integrating from the initial conditions θ̃′(0) = 0 and θ̃(0) = 0
yields the flow over the acceleration phase,

θ̃′(ω̃m, t̃) = ω̃m

(
1− exp

( −t̃

ω̃2
m

))
(5)

θ̃(ω̃m, t̃) = ω̃mt̃− ω̃3
m

(
1− exp

( −t̃

ω̃2
m

))
, (6)

for t̃ < t̃s. The flow over deceleration is,

θ̃′(ω̃m, t̃) = θ̃′(ω̃m, t̃s)−
1

ω̃m

(t̃− t̃s), (7)

θ̃(ω̃m, t̃) = (t̃− t̃s)θ̃
′(ω̃m, t̃s)−

1

2ω̃m

(t̃− t̃s)
2 + θ̃(ω̃m, t̃s, ),

(8)

for t̃ > t̃s. The maneuver ends at a halting time t̃h = t̃s + t̃r,

when the body comes to rest. The duration of the braking

phase, t̃r, is the zero of (7), or equivalently the speed at the

switch divided by the braking acceleration (1/ω̃m),

t̃r = ω̃mθ̃′(ω̃m, t̃s). (9)

The final body angle is thus an explicit function of the

switching time and ω̃m, and can be written out by combining

(5)–(9),

θ̃h = g̃θ(ω̃m, t̃s) := θ̃(t̃s + g̃r(ω̃m, ω̃m, t̃s))

= t̃r θ̃
′(ω̃m, ts, )−

1

2ω̃m

t̃2r + θ̃(ω̃m, ts)

=
ω̃m

2
(θ̃′(ω̃m, ts))

2 + θ̃(ω̃m, ts)

=
ω̃m

2

(
ω̃m − ω̃m exp

(−t̃s
ω̃2
m

))2

+ ω̃mt̃s − ω̃3
m + ω̃3

m exp

(−t̃s
ω̃2
m

)

= ω̃mt̃s −
ω̃3
m

2

(
1− exp

(−2t̃s
ω̃2
m

))
. (10)

The halting time is simply the sum of the switching time and

the braking time,

t̃h = g̃h(ω̃m, t̃s) := t̃s + t̃r

= t̃s + ω̃2
m

(
1− exp

(−t̃s
ω̃2
m

))
(11)
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Substituting the definitions of the rescaled coordinates, (1)

and (2), into (10) and (11),

th = gh(p) :=
1

γ
g̃h

(
ξωm

γθb,f
, γts

)
(12)

= ts +
Ibξω

2
m

4P

(
1− exp

(
− 4P

Ibξω2
m

ts

))
, (13)

θh = gθ(p) := θb,f g̃θ

(
ξωm

γθb,f
, γts

)
(14)

= ξωmts −
Ibξ

2ω3
m

8P

(
1− exp

(
− 8P

Ibξω2
m

ts

))
. (15)

as given in [1, Eqn. 9] and [1, Eqn. 10].

A. Analytic solution of template dynamics with a current limit

If the maximum allowable torque is limited to some factor

β ∈ (0, 1) less than the stall torque of the motor, τℓ = βτm,

the optimal reorientation consists of three phases: a constant

torque phase until a time t̃ℓ when the acceleration becomes

voltage-limited, then a phase following the speed–torque curve

of the motor until the controlled switch at t̃s, followed by a

constant braking torque phase of duration t̃r until t̃h. In this

case, the time-switched dynamics of (4) become instead,

θ̃′′ =





β
ω̃m

, for 0 ≤ t̃ < t̃ℓ
1

ω̃m

(
1− θ̃′

ω̃m

)
, for t̃ℓ ≤ t̃ < t̃s

− β
ω̃m

, for t̃ ≥ t̃s

(16)

The current limited acceleration flow is,

θ̃′(ω̃m, t̃, β) =
β

ω̃m

t̃

θ̃(ω̃m, t̃, β) =
β

2ω̃m

t̃2 (17)

for t̃ < t̃ℓ.
The transition to voltage-limited acceleration occurs at a

time tℓ, when the current-limited torque equals the back-EMF

limited torque,

t̃ℓ = inf

{
t̃ > 0 | β

ω̃m

=
1

ω̃m

(
1− θ̃′(ω̃m, t̃, β)

ω̃m

)}
(18)

=
1− β

β
ω̃2
m, (19)

The transition state is thus an explicit function of β and ω̃m,

θ̃′ℓ := θ̃′(ω̃m, t̃ℓ, β) = (1− β)ω̃m (20)

θ̃ℓ := θ̃(ω̃m, t̃ℓ, β) =
(1− β)2

2β
ω̃3
m. (21)

With these initial conditions, (20)–(21), the voltage-limited

dynamics admit the solution,

θ̃′(ω̃m, t̃, β) = ω̃m

(
1− β exp

(−(t̃− t̃ℓ)

ω̃2
m

))
, (22)

θ̃(ω̃m, t̃, β) = θ̃ℓ + ω̃m(t̃− t̃ℓ)

− βω̃3
m

(
1− exp

(−(t̃− t̃ℓ)

ω̃2
m

))
, (23)

for t̃ℓ ≤ t̃ ≤ t̃s. Finally, the flow over deceleration is,

θ̃′(ω̃m, t̃, β) = θ̃′(ω̃m, t̃s, β)−
β

ω̃m

(t̃− t̃s), (24)

θ̃(ω̃m, t̃, β) = θ̃(ω̃m, t̃s, β) + (t̃− t̃s)θ̃
′(ω̃m, t̃s, β)

− β

2ω̃m

(t̃− t̃s)
2, (25)

for t̃ > t̃s. The analysis follows similarly to the previous

section, with the return time given by the function,

t̃r = g̃r(ω̃m, t̃s, β) :=
ω̃m

β
θ̃′(ω̃m, t̃s, β), (26)

the final time given by,

t̃h = g̃h(ω̃m, t̃s, β) := t̃s + t̃r (27)

= t̃s +
ω̃2
m

β

(
1− β exp

(−(t̃s − t̃ℓ)

ω̃2
m

))
(28)

and the explicit form of g̃θ,

θ̃h = g̃θ(ω̃m, t̃s, β) := θ̃(ω̃m, t̃s + g̃r(ω̃m, t̃s), β) (29)

= θ̃(ω̃m, t̃s, β) +
ω̃m

2β
(θ̃′(ω̃m, t̃s, β))

2 (30)

= ω̃mt̃s + ω̃3
m(β − 1) exp

(
1− β

β
− t̃s

ω̃2
m

)

+
βω̃3

m

2

(
1− exp

(
2(1− β)

β
− 2t̃s

ω̃2
m

))
(31)

Note that if ω̃m is very large, the acceleration will be so slow

that the system never reaches the speed-limited phase and the

critical switching time t̃c ≥ t̃ℓ. In this case, the acceleration

and braking phases are symmetric with equal durations and

t̃h = 2t̃s. The condition for this behavior can be found by

taking t̃s = t̃ℓ in (30) and is,

ω̃m ≥
(

β

(1− β)2

) 1

3

. (32)

The optimal gearing can be found by using the critical

switching time, t̃c = g̃c(ω̃m) and minimizing the final time

t̃h = g̃θ(ω̃m, g̃c(ω̃m)), with no constraints on ω̃m other than

non-negative real. The halting time t̃h varies with β, thus vary-

ing the power constant kp and speed constant ks, as defined

in [1, Sec. II-C1]. Optimal gear ratio is only weakly sensitive

to current limit, varying less than 5% over the possible values

of β (Fig. 1, middle). The required nominal power with the

optimal gear ratio grows rapidly with decreasing current limit;

limiting torque to 50% increases required nominal power by

53%, while a current limit of 25% nearly triples the required

nominal power (Fig. 1, bottom).

The current-limited versions of the template behavior, [1,

Eqn. 9] and [1, Eqn. 10], can be derived by substituting the

definitions of the rescaled coordinates, (1), into (28) and (30)

as in the previous subsection.

II. ALTERNATE CONTROLLER FORMULATIONS

A. Event-based switching

The time-switched bang-bang controller of the previous

section can be replaced by an event-based switch or guard
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Fig. 1. Constrained switching time fraction, t̃c/t̃f , no-load speed ratio ks,
and power constant kp for submaximal current limitation.

condition G(θ̃, θ̃′) = 0. For example,

Gθ := θ̃ − θ̃s, (33)

where the value of θ̃s is found easily from (6) (or (23) for

the current-limited case). For the optimally geared case with

β = 1, θ̃s ≈ 0.7; this value changes for suboptimal gearing or

β < 1 (Fig. 1, top).

B. Feedback controllers regulating body angle

For additional robustness, the template controller may use

proportional-derivative (PD) feedback on the body angle (rel-

ative to the desired final position, θb,f , and velocity, θ̇b = 0).

The controller torque takes the form,

τ = Kp(θb,f − θb) +Kd(0− θ̇b), (34)

subject to the limits imposed by the motor model. Given high

enough gains, the torque will saturate, producing speed-limited

acceleration and current-limited braking as in the switched

case; the effective switching time (when τ = 0) depends

on the ratio of controller gains. Finding the ratio of gains

corresponding to a particular value of p is easily done in

the dimensionless system coordinates. Substituting τ = θ̈b/Id
and applying the spatiotemporal rescaling of (1) to (34), the

dimensionless closed-loop dynamics are,

θ′′ = K̃p(1− θ̃) + K̃d(0− θ̃′), (35)

where K̃p = Kp/(γ
2Id) and K̃d = Kd/(γId). The closed

loop dynamics are subject to the motor-imposed acceleration

limits,

− β

ω̃m

≤ θ̃′′ ≤ β

ω̃m

(
1− θ̃′

ω̃m

)
, (36)

for θ̃′ ≥ 0 (the condition for negative body velocity is found by

multiplying the inequality by −1, but will never occur during

the optimal reorientation).

Substituting expressions (5)–(6) for the state at the time of

switch (where θ′′ = 0),

0 = K̃p(1− θ̃(t̃s, ω̃m))− K̃dθ̃
′(t̃s, ω̃m)

K̃d

K̃p

=
1− θ̃(t̃s, ω̃m)

θ̃′(t̃s, ω̃m)

K̃d

K̃p

=
1− ω̃mt̃c + ω̃3

m

(
1− exp

(
−t̃c
ω̃2

m

))

ω̃m

(
1− exp

(
−t̃c
ω̃2

m

)) , (37)

for β = 1 (the expression for the gain ratio follows the above,

substituting (24)–(25) instead). The critical value that produces

the optimal switch is found by substituting the optimal no-load

speed, ω̃∗
m ≈ 0.74, and corresponding switching time, t̃∗c ≈

1.63 and has a value of K̃d/K̃p ≈ 0.26. For current-limited

dynamics, the ratio of gains increases with decreasing β.

When scaling back to physical torques, the gains will scale

with Id and γ as defined above, so the optimal ratio is,

Kd

Kp

=
K̃d

γK̃p

≈ 0.26
1

γ
(38)

III. DERIVATION OF TAIL CONNECTION FIELD

The angular momentum of the system of rigid bodies can

be found by adding the angular momentum of each body with

respect to some point, O,

HO = Hb,O +Ht,O.

Let {E1,E2} be the world reference frame in the plane, and

define E3 := E1 × E2 which exits the page. Let rb and rt
be the position vectors relative to O of the body and tail,

respectively (as in Fig. 2). Each link’s angular momentum is

the sum of its angular momentum about its own COM and its

moment of linear momentum about O,

Hi,O = Iiθ̇iE3 + ri ×mivi,

where the subscripts i ∈ {b, t} denote the body and tail,

respectively, and vi := vO+ṙi is the absolute velocity of each

link. The total angular momentum of the two body system is,

HO = Hb,O +Ht,O

= (mbrb +mtrt)× vO +
∑

i∈{b,t}

(
Iiθ̇iE3 + ri ×miṙi

)
.

(39)

The centroid of the combined tailed-body mechanism with

respect to O, denoted rcom, is a weighted sum of the link

positions,

rcom =
mbrb +mtrt

mb +mt

. (40)



4

1
E

2
E

rb
e

sb
e

rt
e

st
e

tr

tq
bq

br

r
e

s
e

aq

O

Fig. 2. Reference frames and coordinates.

Note that the first term in (39) is eliminated by choosing

rcom = 0 by placing O at the system COM; in this case, the

angular momentum about O is invariant to system velocity.

Let {er, es} be an orthonormal reference frame with er
aligned with the vector connecting the tail COM to the body

COM, and let θa be the angle of er with respect to the world

reference frame, i.e. the frame is defined by a rotation of θa
about E3,

er := cos θaE1 + sin θaE2, (41)

es := − sin θaE1 + cos θaE2. (42)

This frame enables a simple definition of the vectors from the

system COM to the segment COMs,

rb = rer; rt = −(l − r)er. (43)

The definition of the center of mass fixes r,

−mt(l − r) +mbr = 0 ⇒ r =
mt

mb +mt

l. (44)

Hence the body and tail vectors are related by,

rt =
r − l

r
rb = (1− mb +mt

mt

)rb = −mb

mt

rb. (45)

We can now simplify (39), the expression for total angular

momentum,

HO = (Ibθ̇b + Itθ̇t)E3 + rb × (mbṙb) + rt × (mtṙt)

= (Ibθ̇b + Itθ̇t)E3 +

(
mb +

m2
b

mt

)
rb × ṙb. (46)

The last term of (46) describes the component of angular

momentum due to the two point masses orbiting the COM.

This cross product, derived below, is always perpendicular

to the plane and has a relatively simple expression for

its magnitude in terms of the body-fixed reference frame,

{erb, esb}, and the tail-fixed reference frame, {ert, est}
(defined analogously to (41)–(42) as a rotation about E3 of

θb and θt, respectively).

Equating two expressions for the vector from the pivot to

the system COM,

lberb − rb = ltert − rt

−mb +mt

mt

rb = ltert − lberb

rb = − mt

mb +mt

(ltert − lberb). (47)

The vector ṙb follows from time differentiation of rb,

ṙb = − mt

mb +mt

(ltėrt − lbėrb) (48)

= − mt

mb +mt

(ltθ̇test − lbθ̇besb). (49)

Hence the final term in (46) becomes,

mbmt

(mb +mt)
(ltert − lberb)× (ltθ̇test − lbθ̇besb).

The mass coefficient is also known as the reduced mass,

mr :=
mbmt

(mb +mt)
. (50)

Using the following identities,

(ert × esb) = cos θrE3; (erb × est) = cos θrE3, (51)

we can now evaluate the remaining cross product,

(ltert − lberb)× (ltθ̇test − lbθ̇besb)

= (l2t θ̇t − lbltθ̇b cos θr − lbltθ̇t cos θr + l2b θ̇b)E3

=
(
(l2t − lblt cos θr)θ̇t + (l2b − lblt cos θr)θ̇b

)
E3.

As all terms of HO are perpendicular to the plane, we

drop the vector notation and simply examine the magnitude of

the total angular momentum in this tail anchor, HO,t, where

HO,tE3 = HO. With the coordinate substitution, θt = θb+θr,

and the simplification of the cross product,

HO,t = (Ib +mr(l
2
b − lblt cos θr))θ̇b

+ (It +mr(l
2
t − lblt cos θr))θ̇t

= (Ib + It +mr(l
2
b + l2t − 2lblt cos θr))θ̇b

+ (It +mr(l
2
t − lblt cos θr))θ̇r,

as stated for the tail template kinematics, [1, Eqn. 30].

A. Restriction on domain of dimensionless parameters

Because of coupling between the dimensionless constants

and the requirement of non-negativity of the dimensioned

parameters, only a subset of the dimensionless parameter space

is physically realizable. By definition, [1, Eqn. 32], ξt is

restricted to the interval [0, 1], as the denominator is no smaller

than the numerator and both are strictly positive. Furthermore,

for a given value of ξt there is a maximum value of η. Starting

with positivity of physical parameters,

0 <IbIt + Ibmrl
2
t + Itmrl

2
b

m2
rl

2
b l

2
t

(It +mrl2t )
2
<
IbIt + Ibmrl

2
t + Itmrl

2
b +m2

rl
2
b l

2
t

(It +mrl2t )
2

η2 <
1− ξt
ξt

, η <

√
1− ξt
ξt

, (52)

that is η is bounded above as shown in gray in [1, Fig. 5].

Another bound used in the paper, ensuring positivity of the

denominator of [1, Eqn. 35], may be found by starting with

the positivity of physical parameters and of squared values,

0 <
Ib + It +mr(lb − lt)

2

Ib + It +mr(l2b + l2t )

0 <1− 2mrlblt
Ib + It +mr(l2b + l2t )

, 2ξtη < 1 (53)
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B. Integration of the connection field

The total inertial effect of the tail over a given tail sweep,

θr ∈ [θr1, θr2], is the integral of the connection magnitude

A(θr), [1, Eqn. 35], over that stroke range. This integral can

be written in closed form by first factoring the connection,

A(θr) = ξ
1− η cos θr
1− 2ξη cos θr

=
1

2

2ξ − 2ξη cos θr + 1− 1

1− 2ξη cos θr

=
1

2

(
2ξ − 1

1− 2ξη cos θr
+ 1

)

=
1

2
+

2ξ − 1

4ξη

1

a− cos θr
, a :=

1

2ξη
.

The change in body angle, ∆θb := θb,f − θb,0, over a given

tail sweep, ∆θr := θr2 − θr1, is then,

∆θb = −
∫ θr2

θr1

A(θr) dθr (54)

= −∆θr
2

+
1− 2ξ

4ξη

∫ θr2

θr1

dθr
a− cos θr

. (55)

The remaining integral can be simplified by way of the

substitution, t := tan θr
2 , and the following identities,

2 arctan t = θr

dθr =
2

1 + t2
dt

cos
θr
2

=
1√

1 + t2√
1 + cos θr

2
=

1√
1 + t2

cos θr =
2

1 + t2
− 1

cos θr =
2

1 + t2
− 1 + t2

1 + t2

cos θr =
1− t2

1 + t2
.

Making the substitutions, the integral in (55) simplifies to,

∫
dθr

a− cos θr
=

∫
1

a− 1−t2

1+t2

2

1 + t2
dt

=

∫
2

a(1 + t2)− (1− t2)
dt

=

∫
2

(a− 1) + (a+ 1)t2
dt

=
2

(a+ 1)

∫
1

b2 + t2
dt, b2 :=

a− 1

a+ 1

=
2

a+ 1

(
1

b
arctan

t

b
+ C1

)

=
2

b(a+ 1)
arctan

(
tan ( θr2 )

b

)
+ C2.

For the sake of space, define the function,

R(θi) := arctan

(
tan

(
θi
2

)

b

)
(56)

=arctan

(√
a+ 1

a− 1
tan

(
θi
2

))

=arctan

(√
1 + 2ξη

1− 2ξη
tan

(
θi
2

))
.

Returning to the expression for body stroke, (55),

∆θb = −∆θr
2

+
1− 2ξ√
1− (2ξη)2

(
R(θr2)−R(θr1)

)
. (57)

IV. DERIVATION OF EQUATIONS OF MOTION FOR A TAILED

SYSTEM

Equipped with the kinematic results of [1, Sec. II], the

balance of angular momentum for a general tailed system

about the COM of each body is (see Fig. 3),

Ḣb = τE3 + (−lberb)× Fp, (58)

Ḣt = −τE3 + (−ltert)× (−Fp), (59)

where τ denotes the torque output of the power train, and

Fp is the pin constraint force (see Fig. 3). Since both the

body and the COM frame are subject to the same gravitational

acceleration, the force of gravity does not appear in the pin

force, which is simply Fp = mbr̈b. The body acceleration

relative to the COM is found by differentiating (49),

r̈b = − mt

mb +mt

(ltθ̈test − ltθ̇
2
t ert − lbθ̈besb + lbθ̇

2
berb).

Substituting into (58) yields,

Ḣb = τE3 − lberb ×mbr̈b

Ibθ̈bE3 = τE3 +mrlberb×
(ltθ̈test − ltθ̇

2
t ert − lbθ̈besb + lbθ̇

2
berb).

Using the identities (51) from Section III, above, along with

(erb × ert) = sin θrE3; (60)

to evaluate the cross products, collecting terms and dropping

the vector notation (as all terms are aligned with E3) we arrive

at the equation of motion for the body link,

(Ib +mrl
2
b ) θ̈b = τ +mrlblt(cos θr θ̈t − sin θr θ̇

2
t ) (61)

Following the same procedure for the tail,

Ḣt = −τE3 + ltert ×mbr̈b

Itθ̈tE3 = −τE3 −mrltert×
(ltθ̈test − ltθ̇

2
t ert − lbθ̈besb + lbθ̇

2
berb)

(It +mrl
2
t )θ̈t = −τ +mrlblt(cos θr θ̈b + sin θr θ̇

2
b ). (62)

the equations of motion for the full nonlinear system are,

M(θr)

[
θ̈b
θ̈t

]
+

[
mrlblt sin θr θ̇

2
t

−mrlblt sin θr θ̇
2
b

]
=

[
1
−1

]
τ (63)

with a mass matrix,

M(θr) =

[
Ib +mrl

2
b −mrlblt cos θr

−mrlblt cos θr It +mrl
2
t

]
, (64)

as claimed in [1, Eqn. 38] and [1, Eqn. 39].
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Fig. 3. Free body diagram for derivation of equations of motion.

A. Nondimensionalization of nonlinear tail dynamics

The equations of motion [1, Eqn. 38] and [1, Eqn. 39] can be

written in the generalized coordinates (θb, θr) by substituting

for θt = θb + θr and applying the change of basis to [1,

Eqn. 38],

M(θr)

[
θ̈b
θ̈r

]
+

[
mrlblt sin θr(2θ̇bθ̇r + θ̇2r)

−mrlblt sin θr θ̇
2
b

]
=

[
0
−1

]
τ,

(65)

with a mass matrix,

M(θr) =[
Ib+It+mr(l

2

t+l2b−2lblt cos θr) It+mrl
2

t−mrlblt cos θr

It+mrl
2

t−mrlblt cos θr It+mrl
2

t

]
.

Following the process of [1, Sec. II-B], we substitute the

template motor model for the torque and the scaling factors

from the template, [1, Eqn. 14], along with a new scaling for

the relative angle, θ′r := θ̇r/γ (note that unlike for θb, we do

not normalize for final position). Normalizing by ξt
1−ξt

(Ib +

mrl
2
b ), we define the dimensionless mass matrix,

M̃(θr) =

[ 1−ξt
ξt

+ 1− 2η cos θr 1− η cos θr
1− η cos θr 1

]
,

and the dimensionless Coriolis terms,

C̃(θr, θ̃
′, θ′r) = ηθb,f sin θr

[ 2θ̃′θ′

r

θb,f
+ (

θ′

r

θb,f
)2

−(θ̃′)2

]
, (66)

resulting in dimensionless system dynamics,

M(θ̃r)

[
θ̃′′
1

θb,f
θ′′r

]
+ C̃(θr, θ̃

′, θ′r) =

[
0
−1

]
(1− ξt)τ̃

ξt
,

(67)

with

τ̃ =
1

ω̃m

(
1− ξtθ

′
r

θb,f ω̃m

)
(68)

during acceleration, and τ̃ = 1/ω̃m during braking.

V. DERIVATION OF THE CONNECTION FOR ASSEMBLAGE

OF LIMBS

Here we consider a simplified case, where all appendages

are parallel (but potentially out of phase by 180◦, as in RHex’s

alternating tripod gait), and the N limbs are arranged with

pivots along the centerline of the robot’s body (along which

the body’s COM also falls). Again, the limbs are driven by a

high-gain synchronizing control such that all N legs share the

same angle θt, modulo the phasing noted above.

Using the same reference frames from the tail case, Sec-

tion III, above, let erb be the vector parallel to the body axis,

and ert be the vector to which all limbs are parallel. Denote

the vector from body COM to the ith pivot by,

pi := ℓierb, (69)

and the vector from pivot to appendage COM by,

ti := siliert, (70)

where ℓi is the position of the pivot along the body (ℓ is

negative for pivots behind the body COM), li is the length of

the ith limb, and si := ±1 is negative for legs out of phase

with ert by π. The vector from system COM to appendage

COM is,

ri := rb + pi + ti = rb + ℓierb + siliert, (71)

and the relation between system COM and segment COMs is,

mtotrcom = mbrb +

N∑

i=1

miri, (72)

where mi is the mass of the ith appendage, and mtot :=

mb+
N∑
i=1

mi is the total system mass. Placing the origin at the

system COM (rcom = 0) and solving for rb,

0 = mbrb +

N∑

i=1

mi(rb + ℓierb + siliert) (73)

mtotrb = −
N∑

i=1

mi(ℓierb + siliert) (74)

rb = − 1

mtot

(
erb

N∑

i=1

miℓi + ert

N∑

i=1

misili

)
. (75)

If
N∑
i=1

miℓi = 0 (that is, the mass-weighted pivot distances

from body COM are symmetric), then rb is strictly parallel

to ert,

rb = c ert; c := − 1

mtot

N∑

i=1

misili, (76)

and the vector to the ith appendage COM simplifies to,

ri = ℓierb + (c+ sili)ert. (77)

The connection can be derived from the total angular

momentum; extending (39) to multiple appendages,

HO,l = Ibθ̇bE3 + rb × (mbṙb)+

N∑

i=1

(
Iiθ̇tE3 + ri × (miṙi)

)
.

(78)
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The moment of linear momentum due to the body mass can

be simplified using (76),

rb ×mbṙb = c ert ×mbc est

= mbc
2θ̇tE3.

The moment of linear momentum due to each appendage can

be simplified using (77),

ri ×miṙi

= mi

(
ℓierb + (c+ sili)ert

)
×
(
ℓiθ̇besb + (c+ sili)θ̇test

)

= mi

(
ℓ2i θ̇b + ℓi(c+ sili)(θ̇b + θ̇t) cos θr + (c+ sili)

2θ̇t

)
E3.

With these simplifications, the magnitude of the angular mo-

mentum, (78), in the E3 direction, HO,lE3 := HO,l, is,

HO,l = Ibθ̇b +mbc
2θ̇t +

N∑

i=1

(
Iiθ̇t +mi

(
ℓ2i θ̇b

+ (c+ sili)
2θ̇t + ℓi(c+ sili)(θ̇b + θ̇t) cos θr

))
,

where the only remaining configuration dependent term is,

N∑

i=1

miℓi(c+ sili)(θ̇b + θ̇t) cos θr,

and hence one criterion for configuration independence is,

N∑

i=1

miℓi(c+ sili) = 0. (79)

This is satisfied if all appendages have equal length, li, and

phase, si, (as when all six of XRL’s legs share the same angle)

and if
N∑
i=1

miℓi = 0 (as required for the simplification of

rb). Note that if an assemblage of N appendages satisfy this

condition, then the addition of an appendage with ℓi = 0 will

result in an assemblage of N +1 appendages that will satisfy

this condition as well.

For limb systems that satisfy (79), the magnitude of the

angular momentum, (78), in the E3 direction simplifies to,

HO,l =

(
Ib +

N∑

i=1

miℓ
2
i

)
θ̇b+ (80)

(
mbc

2 +
N∑

i=1

(
Ii +mi

(
sili −

∑N

j=1 mjsj lj

mtot

)2 ))
θ̇t.

If, further, all legs have identical mass, length, and inertia,

which we will call mt, lt and It for comparison with the tail

anchor, and the pivot locations are symmetric across the body

centerline, i.e.
∑

ℓi = 0),

HO,l = (Ib +mt

N∑

i=1

ℓ2i )θ̇b +NItθ̇t+ (81)

mtl
2
t

(
mbmt

m2
tot

(
N∑

i=1

si

)2

+
N∑

i=1

(
si −

mt

∑N

j=1 sj

mtot

)2)
θ̇t.

To simplify further, assume first that
∑

si = 0,

HO,l = (Ib +mt

N∑

i=1

ℓ2i )θ̇b +N(It +mtl
2
t )θ̇t. (82)

which, after a change of coordinates to (θb, θr), is as claimed

in [1, Eqn. 51]. If instead
∑

si = N ,

HO,l = (Ib +mt

N∑

i=1

ℓ2i )θ̇b +NItθ̇t+ (83)

mtl
2
t

(
mbmt

m2
tot

N2 +

N∑

i=1

(mb +Nmt

mtot

− mtN

mtot

)2)
θ̇t.

= (Ib +mt

N∑

i=1

ℓ2i )θ̇b +NItθ̇t+ (84)

mtmb

mtot

l2tN

(
Nmt +mb

mtot

)
θ̇t.

which, after a change of coordinates to (θb, θr) and substitut-

ing the definition of mrt, is as claimed in [1, Eqn. 52].
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