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A Microfluidic Approach For Evaluating Novel Antithrombotic Targets

Abstract
Microfluidic systems allow precise control of the anticoagulation/pharmacology protocols, defined reactive
surfaces, hemodynamic flow and optical imaging routines, and thus are ideal for studies of platelet function
and coagulation response. This thesis describes the use of a microfluidic approach to investigate the role of the
contact pathway factors XII and XI, platelet-derived polyphosphate, and thiol isomerases in thrombus growth
and to evaluate their potential as safer antithrombotic drug targets. The use of low level of corn trypsin
inhibitor allowed the study of the contact pathway on collagen/kaolin surfaces with minimally disturbed
whole blood sample and we demonstrated the sensitivity of this assay to antithrombotic drugs. On collagen/
tissue factor surfaces, we found the relative contributions of the extrinsic pathway, the contact pathway, and
the thrombin feedback pathway vary with tissue factor surface concentration. Platelet-derived polyphosphate
potentiated the thrombin feedback pathway at low tissue factor level but enhanced fibrin fiber structure
regardless of tissue factor level. At locations with low tissue factor level, thrombosis may be druggable by
contact pathway and polyphosphate inhibition, although thrombolytic susceptibility may benefit from
polyphosphate antagonism regardless of tissue factor level. We developed a peptide-based platelet-targeting
thiol reduction sensor to visualize thrombus-incorporated thiol reductase activity. Although distribution of
thiol reductase activity was shown to be correlated with the level of platelet activation, protein disulfide
isomerase inhibition showed a limited effect on platelet aggregation in microfluidic thrombosis assay. We also
used the microfluidic system to explore the injury patch size limit for triggering clotting. We observed a full
clotting response of platelet deposition, thrombin generation and fibrin polymerization on one of the smallest
biological units of a single collagen fiber presenting tissue factor and von Willebrand factor suggesting the lack
of physiological injury patch size limit. Finally, we made the first estimation of thrombin flux from growing
thrombus under flow using the microfluidic thrombosis assay in combination with enzyme-linked
immunosorbent measurement of thrombin-antithrombin complex. We found thrombin is robustly generated
within clots by the extrinsic pathway, followed by late-stage factor XIa contributions, with fibrin localizing
thrombin via its antithrombin activity as a self-limiting hemostatic mechanism.
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ABSTRACT 
 

A MICROFLUIDIC APPROACH FOR EVALUATING NOVEL 

ANTITHROMBOTIC TARGETS 

 

Shu Zhu 

Scott L. Diamond 

Microfluidic systems allow precise control of the anticoagulation/pharmacology 

protocols, defined reactive surfaces, hemodynamic flow and optical imaging routines, 

and thus are ideal for studies of platelet function and coagulation response. This thesis 

describes the use of a microfluidic approach to investigate the role of the contact pathway 

factors XII and XI, platelet-derived polyphosphate, and thiol isomerases in thrombus 

growth and to evaluate their potential as safer antithrombotic drug targets. The use of low 

level of corn trypsin inhibitor allowed the study of the contact pathway on 

collagen/kaolin surfaces with minimally disturbed whole blood sample and we 

demonstrated the sensitivity of this assay to antithrombotic drugs. On collagen/tissue 

factor surfaces, we found the relative contributions of the extrinsic pathway, the contact 

pathway, and the thrombin feedback pathway vary with tissue factor surface 

concentration. Platelet-derived polyphosphate potentiated the thrombin feedback pathway 

at low tissue factor level but enhanced fibrin fiber structure regardless of tissue factor 

level. At locations with low tissue factor level, thrombosis may be druggable by contact 

pathway and polyphosphate inhibition, although thrombolytic susceptibility may benefit 

from polyphosphate antagonism regardless of tissue factor level. We developed a 

peptide-based platelet-targeting thiol reduction sensor to visualize thrombus-incorporated 

thiol reductase activity. Although distribution of thiol reductase activity was shown to be 
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correlated with the level of platelet activation, protein disulfide isomerase inhibition 

showed a limited effect on platelet aggregation in microfluidic thrombosis assay. We also 

used the microfluidic system to explore the injury patch size limit for triggering clotting. 

We observed a full clotting response of platelet deposition, thrombin generation and 

fibrin polymerization on one of the smallest biological units of a single collagen fiber 

presenting tissue factor and von Willebrand factor suggesting the lack of physiological 

injury patch size limit. Finally, we made the first estimation of thrombin flux from 

growing thrombus under flow using the microfluidic thrombosis assay in combination 

with enzyme-linked immunosorbent measurement of thrombin-antithrombin complex. 

We found thrombin is robustly generated within clots by the extrinsic pathway, followed 

by late-stage factor XIa contributions, with fibrin localizing thrombin via its antithrombin 

activity as a self-limiting hemostatic mechanism. 
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Chapter 1 : Introductions 

1.1 Hemostasis and thrombosis 

Hemostasis refers to the rapid response from the hemostatic system to prevent 

excessive bleeding upon tissue injury [1]. Hemostasis requires the concerted actions from 

vascular, platelets and coagulation enzymes.   Neurogenic constriction of damaged blood 

vessel immediately diminishes blood loss. Exposed collagen and von Willebrand Factor 

(vWF), the two major physiological platelet activators, trigger and support primary 

platelet aggregation over injury sites [2]. Activated platelets experience shape change and 

release autocrine activators such ADP and thromboxane (TXA2), which promote platelet 

secondary aggregation [2]. Meanwhile, exposed tissue factor (TF) initiates plasma 

coagulation cascade and leads to thrombin production. Thrombin, as the principle 

enzyme of coagulation, promotes platelet aggregation and cleaves soluble fibrinogen to 

fibrin [3]. Fibrin polymerizes into fibrin network to increase clot integrity and stability 

[4].  

Thrombosis refers to excessive clotting response usually observed in diseased 

vessels. Unlike a hemostatic plug whose growth is usually confined in the vessel wall and 

extravascular space, thrombi form exclusively in the vessel lumen [1]. Thrombosis can 

cause obstruction of blood flow in diseased vessel and increase the risk of numerous life 

threatening diseases like stroke, myocardial infarction and venous thromboembolism [1].  

1.2 Plasma coagulation cascade 

Plasma coagulation can be initiated via two distinctive pathways: the contact 

pathway and the extrinsic pathway (Figure 1-1). The extrinsic pathway prompts major 
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clotting response upon vascular injury. Disrupted endothelium exposes TF to blood 

stream. Circulating factor VII (FVII) subsequently forms complex TF/FVIIa with TF in 

its activated form. TF/FVIIa complex then activates common pathway factor X (FX) and 

creates crosstalk between the two initiation pathways by activating factor IX (FIX). The 

contact pathway is initiated by the activation of factor XII (FXII) on anionic surfaces. 

Clotting is dominated by this pathway when blood is exposed to foreign surfaces that are 

bearing negative charges. Although extracellular RNA and DNA, collagen and misfolded 

protein have been identified as naturally occurring FXII activators, the contact pathway is 

less relevant to primary hemostasis since FXII deficiency is not associated with a 

bleeding phenotype [5]. Upon activation, FXIIa converts downstream factor XI (FXI) to 

its activated form FXIa, which will then lead to the formation of intrinsic tenase 

FIXa/FVIIIa. Following the “waterfall” coagulation cascade, both pathways merge to the 

common pathway where FX is activated by either the extrinsic tenase (TF/FVIIa) or the 

intrinsic tenase (FIXa/FVIIIa) forming prothrombinase (FXa/FVa) complex on 

phospholipid membranes [6]. The prothrombinase complex catalyzes the activation of 

zymogen prothrombin. Thrombin, as the central protease of the coagulation cascade, can 

self-amplify via a FXI dependent feedback pathway and cleaves soluble fibrinogen into 

fibrin polymer. Calcium ions play essential roles in assisting coagulation. Both intrinsic 

tenase and prothrombinase complex only function in the presence of calcium ions [7]. 

Thus, calcium chelators (i.e. citrate) have been used as anticoagulants for blood 

collection. 
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Figure 1-1 Schematic of simplified model of the coagulation cascade.  

Blood coagulation can be initiated via two distinctive pathways. Contact pathway is 

triggered when blood is exposed to negatively charged surfaces on which FXII is 

converted to FXIIa. FXIIa can activate FXI and lead to the activation of FIX and 

subsequent FXa generation. Extrinsic pathway is initiated by exposed TF at injury site. 

TF complexes with FVIIa and robustly activate FX and FIX. Both pathways merge into 

common pathway where thrombin is generated. Thrombin, as the central protease in the 

coagulation cascade, can amplify coagulation via contact pathway by activating FXI and 

can also convert soluble fibrinogen to insoluble fibrin fibers.  
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1.3 Current antithrombotic strategies 

Antithrombotic therapies have been widely used in clinical practices for more 

than 50 years. Current antithrombotic therapies can be divided into two major categories: 

anticoagulant and antiplatelet drugs. Anticoagulant drugs target and inhibit coagulation, 

thereby limiting thrombin and fibrin formation and preventing unlimited clot growth. The 

most commonly used anticoagulant drug in the U.S is warfarin, a traditional drug that 

inhibits vitamin K-dependent synthesis of calcium-dependent coagulation factors [8].  

More recently, direct acting oral anticoagulants (DOACs) have been introduced into 

market. DOACs are direct inhibitors for thrombin (dabigatran) and coagulation factor Xa 

(FXa, rivaroxaban and apixaban), which are the two key coagulation factors belong to the 

final common pathway of the coagulation cascade [9, 10].  Antiplatelet drugs limit clot 

growth by inhibiting platelet aggregation. Aspirin is one representative antiplatelet drug. 

It suppresses the production of the autocrine platelet activator TXA2, therefore inhibiting 

platelet aggregation [2].  

Despite the fact that antithrombotic drugs have been widely used for treating 

thrombosis for decades, thromboembolic disorder is still one of the leading causes of 

morbidities and mortality worldwide indicating the inefficiency of the current therapies 

[10].  Additionally, most of the antithrombotic drugs are associated with bleeding risks. 

Studies have shown over 10% of annual bleeding rates by warfarin administration. 

Elderly patients are more prone to cardiovascular diseases requiring antithrombotic 

treatment but are also at higher risk of bleeding with current antithrombotic drugs [11]. 



5 
 

Due to the unmet medical needs in thrombosis treatment, researchers are still seeking for 

safer and more effective antithrombotic strategies.  

1.4 Recreating in vivo hemodynamics using microfluidic devices 

The in vivo cardiovasculature achieves robust oxygen delivery by pumping blood 

from the heart to the smallest of capillaries.  Composed of diverse cell types, blood flows 

through a branched and flexible geometry of living vessels.  Biorheological complexity 

arises from single protein and protein ensemble mechanics, single cell biomechanics, 

dense suspensions of cells in time-dependent flows, and cellular mechanobiological 

response to forces transmitted by and through fluids and tissues.   In contrast, the in vitro 

setting, once a single glass dish (now plastic), is a sterile environment lacking both flow 

and forces, which has at least progressed to the 96-well plate format and beyond.  

Bridging these two extremes is the in microfluidico setting that combines flow and high 

replicates at small length scales to recreate biochemical and biological complexity under 

the dynamic conditions of the vasculature.     

For blood research, the microfluidic device can be considered an “open” reactor 

system that contains a small reservoir on or off the device from which blood flows 

directly into the microfluidic channel(s).  While blood is held by the perfect in vivo 

container (the endothelium), blood should be considered perturbed when it is obtained by 

phlebotomy and delivered to the reservoir of the device. Using fresh human blood ex vivo 

in flow experiments requires precise consideration of anticoagulation so that the blood is 

minimally perturbed prior to introduction into the microfluidic channel.  For coagulation 

research in which blood generates thrombin, several triggers should be considered and 
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controlled: (i) air/biomaterial activation of the contact pathway factor FXII, (ii) platelet 

dependent activation of the contact pathway (via polyphosphate release and other FXIIa 

activators), (iii) extrinsic activation by endogenous tissue factor (from phlebotomy or 

from a disease state in the donor) or exogenous TF added by the experimentalist to the 

reservoir or affixed to the surface of the microchannel (Figure 1-2A).   Numerous 

inhibitors and experimental designs allow control of these pathways to obtain clotting 

conditions that range from contact dominated to extrinsic pathway dominated (Figure 1-

2B) [12, 13].    
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Figure 1-2 The initiation and pharmacological regulation of thrombin  

 production and coagulation using whole blood in microfluidic devices.  

A, Pre-patterned collagen/TF surface can simultaneously trigger thrombin generation and 

support platelet aggregation. As thrombi builds up, packed activated platelets secret high 

concentration of polyphosphate (polyP), which promotes contact activation and thrombin 

feedback activation of FXI and enhances fibrin physical structure. B, By varing TF 

surface concentration and CTI concentration used for anticoagulation, Zhu et al. in 2015 

generated various coagulation conditions under which thrombin generation can be 

primarily dominated by the contact pathway (low/no CTI, no TF) or the extrinsic 

pathway (high/low CTI, high TF) or regulated by both pathways with comparable 

contributions (low CTI, low-medium TF). 
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1.4.1 Inhibitors and activators 

Sodium citrate, a calcium chelating reagent, is typically used as anticoagulant to 

inhibit calcium dependent mechanisms in the coagulation cascade [14]. Clotting resumes 

upon recalcification prior to flow into the microfluidic device. However, FXII activation 

can proceed in the absence of calcium and prime the contact pathway. Because resting 

time of citrated blood is often an uncontrolled variable, corn trypsin inhibitor (CTI), a β-

FXIIa inhibitor at a low level of 4 μg/mL can be used to study the contact pathway by 

providing partial blockade of contact activation during blood collection but still allowing 

FXIIa generation on a prothrombotic surface. High level of CTI (40-100 μg/mL) provides 

strong blockade of β-FXIIa thus allowing the study of the extrinsic pathway.  CTI at high 

concentrations may have some activity on Factor XIa (FXIa) [15, 16]. Antibodies such as 

14E11 prevent activation of FXI by FXIIa and are analogous to CTI in their use [17-19].  

For either CTI or 14E11, thrombin can still feedback activate FXI to FXIa. Antibodies 

against FXI/FXIa that prevent activation of Factor IX (of the intrinsic tenase Factor 

IXa/Factor VIIIa) eliminate both the contact pathway and the thrombin feedback 

activation of FXI, replicating a FXI-deficiency (hemophilia C). A procoagulant surface 

can be created in the microchannel by patterning collagen which causes platelet 

activation via GPVI and mediates adhesion through activated platelet integrin α2β1 [20-

22].  Addition of kaolin to collagen will enhance contact activation of FXII [12], while 

addition of lipidated TF to collagen (0.1 to 10 molecules/μm
2
) [23-25] spans the relevant 

dose-response regime for triggering the extrinsic pathway.  Use of direct Factor Xa or 

thrombin inhibitors (eg. 1 μM apixaban or 100 μM PPACK, respectively) prevent 

clotting and allow the study of platelet, red blood cell, and neutrophil function in flowing 
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whole blood without the confounding influence of thrombin and fibrin.  Additionally, 

pharmacological modulators of clotting (recombinant FVIIa, anti-TFPI) [26] or platelet 

activation (aspirin, P2Y12 inhibitors, protease activated receptor-1 inhibitors) can be used 

as part of the experimental design [12, 27-29]. 

1.4.2 Microfluidic device fabrication 

Microfluidic devices are fabricated by soft lithography with PDMS. High quality 

photomasks (10,000 dpi) are designed in computer-aided design programs (i.e. DraftSight 

and LayoutEditor) and are sent for manufacture at OutputCity (Bandon, OR). Designed 

features on photomasks can be transferred onto silicon wafers using standard 

photolithograph [30]. Mixed PDMS prepolymer and curing reagent are cured over the 

master. The molded PDMS are then cut into individual devices. Fluidic and vacuum ports 

are added using microfluidic biopsy punch.  

1.4.3 Defined surfaces for coagulation studies 

Neeves et al. [22] demonstrated the technique of patterning fibril collagen onto 

glass surface with a single channel PDMS device. This technique can be applied to 

generate focal thrombosis within defined prothrombotic regions. In fact, surface-

immobilized collagen fibrils not only activate platelets and support platelet aggregation 

but also serve as substrates for other hemostatically active proteins and/or particles. 

Colace et al. [23] linked TF-incorporated lipid liposomes to collagen surface by biotin-

avidin interaction to create defined prothrombotic surfaces mimicking in vivo injuries. 

Zhu et al. [12] utilized electrostatic interaction to decorate collagen surfaces with kaolin 
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(FXII activator) nanoparticles or lipidated TF that can trigger thrombin generation via the 

contact pathway or via both the contact and the extrinsic pathways (Figure 1-2B).  

1.4.4 8-channel device 

A microfluidic device that consists of 8 flow channels was developed by Maloney 

et al. in 2010 [20], which was subsequently used in several works to generate focal 

thrombosis on micro-patterned collagen surfaces [12, 13, 23, 24, 26, 28, 31, 32] (Figure 

1-3A). The vast majority of microfluidic models used to study the hemostatic mechanism 

under relevant local wall shear rate conditions are driven by constant flow rate (Const Q) 

syringe pumps. Instead, the in vivo pump, the heart, operates in a constant pressure drop 

mode and the branchlike networks of the vasculature ensure that Const Q in any vessel is 

unlikely.  In 2012 Colace et al. [24] demonstrated that a platelet/fibrin aggregate 

depositing under Const Q in a fixed volume experiences a nonlinear increase in local wall 

shear rate (Figure 1-3C) whereas a platelet/fibrin mass forming under constant pressure 

drop conditions (Const ΔP) experiences an initial increase in local wall shear rate 

followed by a decline (Figure 1-3D), caused by a decrease in flow rate during the 

formation of the thrombus (Figure 1-3D, bottom panel). The authors were able to 

achieve Const Q vs. Const ΔP conditions by employing the 8-channel flow device. Under 

Const Q conditions whole blood was run through all 8 channels, while under Const ΔP 

conditions, channels with whole blood were staggered with channels of whole blood 

treated with EDTA to chelate Ca
2+

, an essential component of platelet adhesion. 

Platelet/fibrin masses formed under Const Q conditions grew more rapidly than those 

under Const ΔP, perhaps due to increased VWF function under increased shear rate [33] 
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and always ruptured (formed in vitro emboli, Figure 1-3C) from the pro-aggregatory 

surface. Those in vitro thrombi developed under Const P conditions, however, grew to 

fully occlude their containing vessels and divert flow through the EDTA containing 

channels (Figure 1-3D). The Const ΔP mode is the more physiological relevant mode of 

operation; in which thrombotic occlusion can be achieved by diverting flow to a paired 

open channel. However, under this operation mode, the requirement of pressure relieving 

channels reduced the availability of the assay channels on a single device, which can be 

potentially changed by employing a pressure sensing and controlling system in each 

channel. 

Local hemodynamic conditions around a developing microfluidic thrombus can 

be calculated using both 2-D and 3-D COMSOL models in conjunction with 

epifluorescence microscopy to quantify platelet and fibrin deposition. When whole blood 

was treated with GPRP, a peptide inhibitor of fibrin polymerization, the resulting thrombi 

were unable to resist local wall shear rates of 2,900 s
-1

 (Figure 1-3C-D, open circles). 

Although fibrin, the polymeric protein that weaves a tight mesh around platelet 

aggregates, was already believed to provide clots with structure [34], this study was the 

first to quantify a dramatic increase in the shear resistance of clots formed with fibrin as 

opposed to those formed in the presence of GPRP.     

This 8-channel device allowed for simultaneous evaluation of platelet 

responsiveness to multiple inhibitors under precisely controlled surface and 

hemodynamic conditions without requiring large volume of whole blood. This high-

throughput microfluidic thrombosis model has been used to evaluate platelet function and 

coagulation from patients with congenital bleeding disorders [26, 31].  
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Figure 1-3 8-channel device.  

A, A microfluidic device consisting of 8 separate inlets perfused by a single outlet (top). 

This device can be run under Const Q by perfusing all 8 channels with whole blood or 

under Const ΔP by staggering channels of whole blood with channels of whole blood 

treated with EDTA to prevent platelet deposition. The bottom panel illustrates 4 platelet 

masses (of 8) depositing in parallel under whole blood perfusion at 1000 s
-1

 at Const Q 

(platelets were labeled with a fluorescently tagged antibody). The channel width is 250 

μm. B, At Const Q, when whole blood was perfused over collagen surface at 100 s
-1

, both 

platelet aggregation and fibrin formation were promoted in the presence of high level of 

surface immobolized TF (~ 5-10 molec/μm
2
). In Colace et al. 2012, local wall shear rate 

was calculated using a two-dimensional COMSOL model at a representative platelet 

surface by assuming that the aggregate height was proportional to its epifluorescence. C, 

Platelet/fibrin masses (closed circles) experienced an increase in shear rate until rupture. 

Samples treated with GPRP to inhibit fibrin formation (open circles) did not withstand 

shear rates greater than 2900 s
-1

. D, Platelet/fibrin masses formed under Const ΔP 

experienced a biphasic local wall shear rate profile. When aggregates approached 75% of 

full channel occlusion, a steep drop in channel flow rate was calculated. A representative 

samples treated with GPRP (open circles) began to occlude the channel but ruptured at 

~150 sec and organized into a more hemodynamically favorable conformation such that 

the local wall shear rates could not be accurately predicted.  
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Chapter 2 : Contact activation of blood coagulation on a defined kaolin/collagen 

surface in a microfluidic assay 

2.1 Introduction 

Contact pathway can be strongly triggered by negatively charged surfaces such as 

glass, kaolin and celite [35]. Zymogen factor XII (FXII) is activated to FXIIa upon 

contacting with anionic surfaces and leads to a multistep cascade, whereby  thrombin 

(FIIa) forms as a potent platelet activator and trigger of fibrin polymerization [36, 37].  

The pathophysiology of contact pathway is not fully elucidated. While tissue factor 

triggered extrinsic pathway prompts major response to vascular injury, contact pathway 

likely has a minor role in hemostasis since factor XII deficiency is not associated with a 

bleeding defect. However, recent experiments revealed that FXII-mediated fibrin 

formation is essential for thrombus stability in a mice model [38-40]. In contrast, FXI-

deficient (hemophilia C) patients display little spontaneous bleeding but at elevated risk 

of bleeding post-injury or post-operative, especially at sites with high fibrinolysis [41]. It 

has been suggested that pharmacological inhibitors of FXIIa or FXIa may be drugs useful 

for limiting thrombosis with reduced risk of bleeding side effects [42-44].  

Many studies of contact pathway have been conducted for the purpose of 

investigating unfavorable thrombosis on blood-contacting medical devices. Most of these 

studies mainly focus on the activation mechanism of FXII. The approach often eliminates 

blood flow and cellular components, which then allows contact activation in static tubes 

with plasma [45-47]. However, flow and cellular constituents are both present in human 

blood vessels, fundamentally altering reaction dynamics as compared to a cell-free 

system under static conditions.  Flow based studies designed to intentionally trigger and 
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measure contact pathway are less common.  Glass capillary flow reactor has been used to 

study plasma coagulation via artificial surface activation [48].  Kaolin-activated 

thromboelastography (TEG) has been applied as a predictive test for post-operative 

bleeding to assess clotting factors (i.e. rate, strength, and stability) under non-flow 

condition [49, 50]. Typically, citrate is used as an anticoagulant which allows 

recalcification immediately prior to an experiment. However, FXIIa can be formed under 

calcium-free conditions and the resting time in citrate is often an uncontrolled variable.  

In contrast, corn trypsin inhibitor (CTI) is a potent and selective inhibitor of βFXIIa (but 

not αFXIIa).  Blood will eventually clot by the contact pathway even in the presence of 

high dose CTI (40 to 100 µg/mL) [51].  The use of low dose CTI (4 µg/mL) provides a 

~30-minute window from blood draw to last data point whereby blood does not clot in 

the tube but will generate thrombin at the site of a thrombotic trigger such as collagen.  

Microfluidic devices allow the study of thrombotic events by perfusion of whole 

blood over well-defined prothrombotic surfaces [20, 22, 23, 52]. Microfluidics enables 

precise control of flow condition and real-time observation of thrombus structure. In this 

chapter, Zhu and Diamond describe a prothrombotic surface composed of collagen and 

kaolin that is capable of activating blood coagulation via the contact pathway, 

independent of tissue factor (TF). This surface also serves as a biologically important 

substrate for anchoring activated platelets and polymerized fibrin. Engagement of contact 

pathway was evaluated by dynamic accumulation of localized platelets and fibrin on the 

collagen/kaolin surface. This microfluidic assay allowed a controlled study of the 

sensitivity of contact pathway function to wall shear rate.   
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2.2 Materials and Methods 

2.2.1 Fluorescent labeling of kaolin particles 

For imaging of kaolin on collagen, fluorescent labeling of kaolin particles was 

carried out in a two-step reaction [53]. Kaolin was mixed with 3-mercaptopropyl-

trimethoxysilane in 80% methanol (50 mL methanol/g kaolin) in a 3:1 mass ratio. The 

mixture was stirred at room temperature for 6 hr to activate kaolin surface by converting 

surface hydroxyl groups to thiol groups, filtered, and washed 3 times with 80% methanol. 

The residue was collected and vacuum-dried for 12 hr. Powdered kaolin was then dried at 

80 ºC for 5 hr. Labeling solution was prepared by adding 5 mg fluorescein-5-maleimide 

into 120 mL phosphate buffered saline (PBS). Activated kaolin (125 mg) along with 50 

mL ethanol was mixed with labeling solution for 1 hr. Kaolin was centrifuged (5000 g, 1 

min) and supernatant was discarded.  The pellet was resuspended in 1 mL PBS buffer. 

Centrifugation and re-suspension were repeated several times until supernatant was clear. 

Fluorescent kaolin pellet was vacuum-dried (12 hr) and stored to avoid light and 

moisture. 

2.2.2 PS/PC liposomes 

Liposomes were prepared according to a previous reported technique [54]. L-α-

phosphatidylcholine (PC) and L-α-phosphatidylserine (PS) (Avanti Polar Lipids, 

Alabaster, AL) were vacuum-dried in an 80:20 molar ratio. The dried film was 

resuspended in 1 mL HEPES buffered saline (HBS) at 2.3 mg-lipid/mL. A size extruder 

generated <100 nm diameter liposomes. 
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2.2.3 Thrombin biosensor on platelet surface 

Soluble thrombin was detected under flow conditions using a platelet-linked 

thrombin biosensor [55]. A total of 4 µL of anti-human CD61 antibody (5 mg/mL, 

Biolegend, San Diego, CA) was mixed with 8 µL of 900 µM DBCO-sulfo-NHS ester 

(Click Chemistry Tools, Scottsdale, AZ) in 28 µL of HBS buffer. The mixture was 

incubated at room temperature for 30 min. A volume of 2.5 µL of Tris-HCl (1M, pH 8) 

was then added to quench the DBCO linking of anti-human CD61. Diluted peptide 

thrombin sensitive peptide (4 µL of 4 mM) was added into the reaction to initiate labeling 

reaction and incubated in the dark at room temperature for 4 hr. The thrombin sensor was 

then gel filtrated with P6-Gel beads (hydrated in HBS buffer) yielding approximately 100 

µL of platelet binding thrombin sensor (5 µg/mL).  

2.2.4 PDMS patterning and flow devices 

The microfluidic patterning device and the 8-channel microfluidic flow device 

were fabricated with poly(dimethylsiloxane) (PDMS, Ellsworth Adhesives, Germantown, 

WI) as previous described [22]. The protein patterning device has a single channel (250 

µm in width, 60 µm in height) and two outlets at both ends of the channel allowing 

protein infusion for coating. The flow device has 8 cylindrical reservoirs connecting to 8 

evenly spaced channels that merge to a single outlet. Both devices have a vacuum groove 

that allows them to be reversibly vacuum bonded onto glass slides.  
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2.2.5 Kaolin/collagen and TF/collagen surfaces 

Glass slides were rinsed with ethanol for 15 sec followed by DI water for 30 sec 

and were dried with compressed filtered air. The patterning device was vacuum bonded 

onto a cleaned glass slide. A volume of 5 µL of acid insoluble collagen type I (Chronolog 

Corp, Havertown, PA) followed by 20 µL bovine serum albumin (0.5% BSA in HBS) 

perfusion through the channel forming an immobilized thin matrix of well aligned 

collagen fibrils. Kaolin suspension (50 mg/mL HBS) was centrifuged briefly (500 g, 

15sec) to remove aggregates and supernatant was mixed with prepared PS/PC liposomes 

in a 3:1 volume ratio. Kaolin surface concentration can be varied via changing the 

centrifugation time: 5 sec centrifugation gives highly packed kaolin surface; 30 sec 

centrifugation gives sparse kaolin deposition while 15 sec centrifugation gives a medium 

density of localized kaolin on collage fibrils. A volume of 10 µL of kaolin/lipids 

suspension or Dade Innovin recombinant human tissue factor (50% in HBS, VWR Corp, 

Radnor, PA) was pulled through the channel and allowed to settle over collagen for at 

least 30 min before rinsing with 10 µL BSA to remove excessed kaolin, TF or lipids. 

2.2.6 Characterization of kaolin/collagen surface  

For calibration, fluorescent kaolin was suspended in HBS buffer to five 

concentrations (0, 10, 20, 30, 40 mg/mL) and allowed to completely fill the main channel 

of the patterning devices and to settle overnight at 65ºC forming five dried fluorescent 

kaolin (without collagen) films with surface concentrations from 0-2.4 pg/μm
2
. 

Fluorescent intensity was measured by imaging. A fluorescent intensity vs. mass curve 

was then constructed (Figure 2-1). Four fluorescent kaolin/collagen surfaces with zero, 
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low, medium and high amount of kaolin were made. Their surface mass concentrations 

were extrapolated from the mass vs. fluorescent intensity curve. Surface coverage of 

kaolin/collagen surface was calculated with thresholding tool in ImageJ (NIH). A 

calibration curve was made by relating surface concentration to surface coverage.  
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Figure 2-1 Fluorescent intensity vs. surface concentration for pure fluorescent 

kaolin surface.  

A linear dependency of fluorescent intensity of kaolin particles on its surface 

concentration was observed.  
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2.2.7 Blood collection and preparation for microfluidic assay 

Blood was collected via venipuncture from health donors (who were free of 

alcohol and medication for 72 hr prior to experiments) into corn trypsin inhibitor (CTI, 4 

µg/mL WB, Haematologic Technologies, Essex Junction, VT). All donors were consent 

under approval of University of Pennsylvania Institutional Review Board. First 5 mL of 

blood was discarded to avoid tissue factor contamination. Blood was treated with anti-

human CD61 antibody (BD Biosciences, San Jose, California) for platelet detection and 

Alexa Fluor 488 fluorescent fibrinogen (Life Technologies, Grand Island, NY) for 

observation of fibrin generation. All experiments were initiated within 5 min after venous 

phlebotomy. For antithrombotic therapy tests, platelet thrombin biosensor was added into 

blood in 1:9 ratio for the measurement of thrombin level. Anti-human CD41a antibody 

and Fluor 647 fluorescent fibrinogen were added for platelet and fibrin detection, 

respectively.  

2.2.8 Microfluidic model for contact activation 

The 8-channel flow device was vacuum bonded to a glass slide with its flow 

channels mounted perpendicularly to the pattered kaolin/collagen surface, forming eight 

evenly spaced 250µm×250µm prothrombotic patches (Figure 2-2). Blood was perfused 

over prothrombotic surfaces under either venous (100 s
-1

) or arterial wall shear rates 

(1000 s
-1

) controlled by a syringe pump (Harvard Apparatus PHD 2000, Holliston, MA) 

(Figure 2-2). A custom stage held 3 flow devices allowing up to 24 conditions to be 

imaged simultaneously in single experiment.  Platelet accumulation, fibrin generation, 
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and thrombin formation were monitored by 3-color imaging with a fluorescence 

microscope (IX81, Olympus America Inc., Center Valley, PA) with specified time 

intervals. Images were captured with a CCD camera (Hamamatsu, Bridgewater, NJ) and 

were analyzed with ImageJ (NIH). All images were background subtracted. The center 

65% of the prothrombotic region was selected to avoid edge effects and fluorescent 

intensities of the selected region were recorded for analysis.  

2.2.9 Constant flow mode and pressure relief mode 

By changing the inlet condition of each well of the 8-channel device, thrombus 

could form under either constant flow mode or pressure relief mode [24].  As a clot 

approaches channel occlusion, shear rates on the thrombus surface become very large 

under constant flow mode. Given the power of the syringe pump, a 60-micron thick clot 

can never block the channel in the constant flow rate mode. The pressure relief mode 

approaches a constant pressure drop driven flow allowing an occlusive clot to stop flow 

and divert flow to a relief channel. Constant flow mode: CTI treated blood was perfused 

in all eight channels and inlet wall shear rate was maintained in all channels before full 

channel occlusion. Pressure relief mode: EDTA (8 mmol/L, ethylenediaminetetraacetic 

acid) treated blood was fed into every other channel to ablate platelet deposition and 

clotting. The matched EDTA channel allows clot formation to proceed at essentially 

constant pressure drop in the matched, active assay channel (no EDTA present).  
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2.2.10 Detection of thrombin activity with time in a tube clotting assay  

Citrated (1:9 WB) and CTI-treated (4 μg/mL) whole blood was diluted 1:4 HBS 

buffer and recalcified to 10 mM final calcium concentration in 384-well plate (65 

µL/well) right before experiment. A thrombin specific fluorogenic substrate Boc-

Asp(OBzl)-Pro-Arg-AMC (10 µmol/L, peptide international) was added to detect 

thrombin generation in terms of fluorescence of released aminomethylcoumarin (AMC) 

[51, 56]. Kaolin or recombinant TF was added into wells to trigger clotting. Fluorescence 

was measured with Thermo Fluoroskan in 15 sec time intervals for 1 hr. Fraction 

conversion of thrombin substrate f was calculated with following equation: f(t) = [F(t) - 

F(0)]/[Fmax – F(0)] where F(t) is the instantaneous fluorescent reading in the well, Fmax is 

the maximum readings in the well. f(t) was calculated for each well and was averaged 

over all replicated wells. The initiation time Ti of thrombin generation was defined at the 

time point when 5% of the thrombin substrate was converted (f=0.05).  A large burst in 

thrombin always occurs promptly after Ti. 

2.2.11 Statistical analysis 

Data were compared to controls using two-tail Student’s t-test. P-value < 0.05 

was considered statistical significant. For antithrombotic therapy tests, Bonferroni 

correction was performed since multiple statistical tests were being performed 

simultaneously.  
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Figure 2-2  Experimental design.  

Collagen was patterned with a single channel device that was vacuum bonded on a glass 

slide (left, red dye to show flow path). After BSA-blocking, a mixture of kaolin and 

PS/PC liposome was pulled through the main channel and allowed to settle for 30 min, 

forming a 250-μm wide immobilized kaolin/collagen film (middle). The patterning 

device was then replaced by an 8-channel device that was mounted perpendicular to 

kaolin/collagen strip forming 8 evenly spaced 250 μm × 250 μm procoagulant zones. CTI 

(4μg/mL) treated blood was perfused over kaolin/collagen surfaces in the presence of 

fluorescent conjugated platelet and fibrinogen labels (right). Flow was initiated within 5 

min after venous phlebotomy and shear rate was controlled by a syringe pump. In some 

experiments, EDTA was added to blood in lanes 2, 4, 6, 8 to operate in a constant 

pressure drop mode. 
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2.3 Results 

2.3.1 Kaolin surface concentration 

Kaolin particles displayed flow-resistant adsorption to collagen (up to 1000 s
-1

), 

an adsorption likely depending on electrostatic attraction between anionic kaolin surface 

and cationic regions on collagen fibrils. This kaolin adsorption occurred even with 

precoating of collagen with BSA. A calibration experiment demonstrated a linear 

dependency between kaolin surface concentration and % area surface coverage (Figure 

2-3B) as expected for the thin collagen matrix. Figure 2-3C-F correspond to collagen 

surfaces with no, low, medium, and high level of florescent kaolin. Surface 

concentrations were determined from the calibration line and converted to surface ratio 

(µm
2
 kaolin/ µm

2
 glass) using the specific surface area of kaolin particles of 16 µm

2
/µg-

kaolin [57, 58].  Addition of PC/PS liposomes to the kaolin/collagen was designed to 

promote contact-triggered coagulation by providing an anionic lipid surface for 

prothrombinase formation (Factor Xa/Va) even in the absence of activated platelets.  In 

well plate assay of thrombin generation, initiation of thrombin generation was accelerated 

when PC/PS (2.3 μg/mL final concentration) was added into 5-fold diluted, 40 µg/mL 

CTI-treated, recalcified citrated PPP (Figure 2-4). Using fluorescent annexin V binding 

assay, we also determined that PS/PC deposition was controlled by collagen and was not 

affected by kaolin (data not shown). To delineate the effect of PC/PS, same amount of 

liposomes were patterned onto all surfaces including kaolin free collagen surface. To 

demonstrate that kaolin could trigger contact activation in a well plate assay (no flow), 

citrated WB (4 μg/mL CTI, 5-fold diluted) initiated thrombin generation at ~25 min after 
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recalcification and addition of kaolin (0.3-300 μg/mL) shortened the time lag in a dose 

dependent manner (Figure 2-5). The fastest thrombin generation was observed at about 

10min after recalcification. 
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Figure 2-3 Determination of kaolin surface concentration.  

A, Kaolin/collagen surface (with not PS/PC) was visualized using scanning electron 

microscopy (black bar represents 5 μm). White particles are kaolin and grey lines in the 

background are collagen fibrils. B, A calibration curve of fluorescent kaolin surface 

concentration was constructed. C-F, Surface with no, low, medium and high level of 

fluorescently labeled kaolin particles were visualized with fluorescent microscope. 

Surface concentrations were determined from B.  



27 
 

 

 

Figure 2-4  Lipids promote platelet poor plasma clotting in the presence of kaolin. 

PPP was prepared from whole blood treated with both citrate (1:9 WB) and high CTI (40 

µg/mL). A thrombin specific fluogenic substrate Boc-Asp(OBzl)-Pro-Arg-AMC was 

added into re-calcified (10 mM) PPP to detect thrombin generation in. A blend of lipids 

shortened the initiation time of thrombin generation (5% substrate converted) in PPP by 

about 10 min.  The prothrombotic effects of kaolin was enhanced with the presence of 

lipids. However, lipids failed to further advance the initiation time when kaolin 

concentration increased from 3 to 30 µg/mL. 
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Figure 2-5 Kaolin sped up thrombin generation in whole blood in a dose 

dependent manner. 

Citrate (1:9 WB) and CTI (4 µg/mL) treated whole blood (1:4 HBS) was recalcified (10 

mM) right before measurements. Kaolin was added to trigger contact pathway. A 

thrombin specific fluorogenic substrate Boc-Asp(OBzl)-Pro-Arg-AMC was used to 

monitor the thrombin generation.  Kaolin sped up thrombin formation in a dose 

dependent manner. Fastest thrombin generation was observed at 10 min with 300 µg/mL 

kaolin, which is a comparable concentration with kaolin suspension used for 

kaolin/collagen surface preparation.  
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2.3.2 Effect of kaolins surface concentrations on activity of contact pathway 

In the microfluidic assay, highly concentrated kaolin (> 0.3 pg/μm
2
) blocked 

collagen fibrils and resulted in severe reduction in platelet deposition (data not shown) 

and was excluded from further experiments. Platelet deposition was not affected by 

medium or low kaolin concentration under either pressure relief or constant flow mode 

(Figure 2-6A-B). However, presence of medium level of kaolin (0.12 pg/μm
2
) 

accelerated onset of fibrin generation by over 100 sec and quantitatively promoted fibrin 

formation for both pressure relief and constant flow modes (Figure 2-6C-D). Depending 

on the donor, low level of kaolin (0.03 pg/μm
2
) could either enhance or had no effect on 

fibrin formation suggesting a modest inter-donor variation in response to the lowest dose 

kaolin (data not shown).  All subsequent experiments used a medium level of kaolin, 

which always promoted fibrin formation under flow for all donors.  
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Figure 2-6 Dynamic change of platelet and fibrin fluorescent intensities on  

 kaolin/collagen surface. 

A-B, Dynamic change of platelet and fibrin fluorescent intensities on kaolin/collagen 

surface. CTI (4μg/mL) treated whole blood was perfused over kaolin/collagen surface at 

100 s
-1

. Platelet deposition (± SD, shaded) for different kaolin concentrations are identical 

indicating kaolin is not interfering with platelet deposition under either pressure relief or 

constant flow mode. C-D, Medium level of kaolin accelerated the onset of fibrin 

formation under both pressure relief mode and constant flow mode. 
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2.3.3 Effect of flow conditions on activity of contact pathway 

Averaged results (Figure 2-7) showed that fibrin generation was favored at 

venous shear rate (100 s
-1

) compare to arterial shear rate (1000 s
-1

) for either constant 

flow or pressure relief mode. Under pressure relief mode, no significant difference was 

observed between the level of platelet depostion at arterial shear rate and at venous shear 

rate. Platelet deposition always preceded fibrin formation. At venous shear rate, fibrin 

generation was significantly more efficient under constant flow mode. However, at 

arterial shear rate, fibrin generation was diminished regardless of the flow modes. Under 

constant flow mode, reduced platelet deposition at arterial shear rate significantly delayed 

occlusion time. However, under pressure relief mode, there was no clear dependency of 

occlusion time on the degree of platelet deposition. Consistent with a previous study on 

TF bearing collagen surface,  platelets tend to form plug at upstream of kaolin/collage 

patches at venous shear rate [24]. In contrast, a more homogenous platelet distribution 

with a heavy tail at the downstream region was observed at arterial shear rate (Figure 2-

8). It is possible that under pressure relief mode, full channel occlusion is affected more 

by the spatial distribution of platelet mass on collagen matrix.  
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Figure 2-7 Average platelet and fibrin signal on collagen/kaolin surface at  three  

 representative time points. 

Full channel occlusion times are included in an embedded table. Student’s t-test was 

applied to compare the differences on platelet and fibrin signal and occlusion time under 

different flow conditions (p<0.05; **, p<0.01). 
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Figure 2-8 Platelet aggregation on collagen/kaolin surface. 

Platelet (red) aggregation on kaolin/collagen surface at 5 representative time points under 

four flow conditions. Arrow indicates flow direction. Platelets tend to form plugs at front 

side of kaolin/collagen surface at low shear rate. High shear rate forced platelet mass 

downstream forming more elongated thrombi along the flow direction. Embolization or 

partial dislocation of thrombi was rarely seen under pressure relief mode since excessive 

pressure was released through the adjacent empty channels. 
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2.3.4 Kaolin/collagen vs. TF/collagen surfaces 

We compared the flow sensitivity of contact activation with that of extrinsic 

activation by TF. To avoid thrombi embolization as they grew in the presence of 

thrombin generation, all dynamic data was obtained under pressure relief mode. TF was 

more efficient in terms of stimulating thrombin formation in well plate (Figure 2-9). A 

level of 2.3 pM TF induced faster thrombin generation than 0.78 mg/mL kaolin 

(comparable to concentration of kaolin suspension used for surface preparation). Under 

flow condition, platelet aggregation initiated slightly earlier on TF/collagen surface, but 

after the early phase (first 180 sec), platelet signal on kaolin/collagen and TF/collagen 

surface were statistically identical (Figure 2-10A-B and Figure 2-11). Fibrin formation 

was faster on TF/collagen surface at both venous and arterial shear rates. But at arterial 

shear rate, fibrin onset was substantially delayed and suppressed on both kaolin/collagen 

and TF/collagen surfaces (Figure 2-10 C-D and Figure 2-11). Interestingly, at arterial 

shear rate, final fibrin fluorescent intensity was statistically identical on two surfaces 

(Figure 2-11).  
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Figure 2-9 TF is more efficient in triggering WB clotting in well plate. 

Citrate (1:9 WB) and CTI (4 µg/mL) treated whole blood (1:4 HBS) was recalcified (10 

mM) right before measurements. Kaolin or diluted recombinant tissue factor was added 

to trigger either extrinsic or contact pathway. A thrombin specific fluorogenic substrate 

Boc-Asp(OBzl)-Pro-Arg-AMC was used to monitor the thrombin generation. Tissue 

factor induced faster thrombin generation.  
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Figure 2-10 Dynamics of platelet deposition and fibrin formation on collagen/TF  

 and collagen/kaolin at venous and arterial shear rates. 

A-B, CTI-treated whole blood (4 μg/mL) was purfused over kaolin/collagen or 

TF/collagen surface at either venous (100s
-1

) or arterial (1000s
-1

) shear rate under 

pressure relief mode. No significant difference was observed in platelet mass growth on 

two surfaces. C-D, TF significantly accelerated fibrin generation at low shear rate (C) but 

not at high shear rate (black arrows indicate occlusion time). 
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Figure 2-11 Averaged platelet and fibrin intensities on collagen/TF and  

 collagen/kaolin surfaces at three representative time points.  

No significant difference on platelet aggregation was seen on two surfaces after the first 

180 sec. TF induced faster fibrin generation. However, at arterial shear rate, endpoint 

fibrin level was not significantly different on two surfaces. Full channel occlusion time 

points are included in an embedded table. T test was applied to compare the platelet and 

fibrin signal and occlusion time on two surfaces (*, p<0.05; **, p<0.01). 
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2.3.5 Pharmacological effect of antithrombotic therapies 

Concentrations of antithrombotic therapies were either based on the dose level 

resulting in 50%-70% reduction in platelet aggregation in the flow assay (data not shown) 

or doses from previous studies [20]. MRS 2197 and 2-MeSAMP block P2-family P2Y1 

and P2Y12 receptors, respectively [59, 60]. Both inhibitors showed robust inhibitory 

effect on platelet deposition (Figure 2-12A-B), which is consistent with previous 

observation in a similar microfluidic model lacking thrombin production [20]. Aspirin 

inhibits thromboxane A2 production by acetylating cyclo-oxygenase 1 (COX -1). 250 

µM aspirin was required for significant reduction in platelet aggregation in this assay 

with thrombin generation. Thrombin and fibrin formation were also delayed with the 

presence of these three antiplatelet reagents. GSNO is a nitric oxide (NO) donor under 

physiological condition and had been known to inhibit platelet adhesion to collagen 

fibrils [61]. Iloprost, as a prostacyclin (PGI2) analog, is an effective inhibitor of collagen-

induced platelet aggregation [62, 63]. Both reagents resulted in significant delay in 

platelet aggregation as well as reduction in fibrin accumulation (Figure 2-13A-D). 

Thrombin level was lowered by both reagents but the effect of GSNO on thrombin was 

not statistical significant.  
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Figure 2-12 Effect of antiplatelet therapies on thrombus formation on collagen 

/kaolin surface.  

Anticoagulated blood (CTI, 4μg/mL) was treated with MRS (10 μM), 2-MeSAMP (100 

μM) or ASA (250 μM) right before experiment and perfused over kaolin/collagen surface 

at 1000s
-1

 under constant pressure mode. A, C, E, Dynamic changes of platelet 

aggregation, fibrin formation and thrombin generation on kaolin/collagen surface are 

based on a representative experiment (± STD, shaded). B, D, F, Averaged fluorescent 

intensities from three experiments for platelet, fibrin and thrombin are presented at three 

representative time points (*, p<0.05; **, p<0.01). 
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Figure 2-13 Effect of antiplatelet therapies on thrombus formation on collagen 

/kaolin surface.  

Anticoagulated blood (CTI, 4μg/mL) was treated with Iloprost (5 nM) or GSNO (70 µM) 

right before experiment and perfused over kaolin/collagen surface at 1000s
-1

 under 

constant pressure mode. A, C, E, Representative dynamic changes of platelet, fibrin and 

thrombin on kaolin/collagen surface is based on a single experiment (± STD, shaded). B, 

D, F, Averaged fluorescent intensities from three experiments for platelet, fibrin and 

thrombin are presented at three representative time points (*, p<0.05; **, p<0.01). 
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2.4 Discussion 

A surface was designed to activate contact pathway and allow for platelet capture.  

The activity of contact activation in this microfluidic assay was evaluated by initiation 

time and dynamics of platelet and fibrin deposition on kaolin/collagen surface. 

Additionally, collagen and platelets on their own can trigger the contact pathway [64]. 

However, Kaolin induced more efficient contact activation compare to collagen alone. 

Collagen stimulated platelets could enhance both coagulant activity and proteolytic 

cleavage of FXII and of FXI [65]. The presence of a medium level of kaolin (0.12 

pg/µm
2
) accelerated fibrin generation but did not interfere with platelet activation or 

platelet deposition on collagen. Fibrin generation was completely abolished by high dose 

of CTI (40 µg/mL) confirming the enhancement of fibrin generation by kaolin was FXIIa 

dependent (Figure 2-14). Inhibition of FXIIa accelerated thrombus embolization, which 

is consistent with our previous finding that fibrin deficient thrombus exhibits lower 

stability [24]. A direct comparison between FXII and FXI inhibition in a baboon model 

suggests FXI inhibition has more significant antithrombotic effect than FXII inhibition 

[66]. We’ve previously observed striking defects in both platelet and fibrin deposition 

when blood from severe hemophilia C patient was perfused over collagen [31]. A future 

comparison of FXII and FXI knockout in this assay would provide useful information for 

developing safe and effective antithrombotic therapy. 

The prothrombotic effect of kaolin/collagen surface can be affected by different 

flow conditions. In this study, initial wall shear rate (100 s
-1 

and 1000 s
-1

) and flow mode 

(pressure relief and constant flow) were the two variables in flow condition. A previous 
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reported COMSOL model showed that under constant flow mode, wall shear rate 

increases dramatically when thrombus approaches to full channel occlusion [24]. At 

arterial shear rate, fibrin formation was suppressed under both flow modes. High shear 

rate probably caused enhanced dilution of coagulation factors and inhibition of fibrin 

assembly.  Our results suggested that at low shear condition when platelet plug forms at 

upstream side of kaolin/collagen patch, pressure driven convective transport of activated 

coagulation factors and fibrin monomers could aid coagulation reactions while at high 

shear condition excessive fast convection severely disturbed coagulation reactions.   

We conclude that surface-linked kaolin can activate contact pathway under flow 

conditions but is not nearly as potent as insoluble particles added to a closed systems 

lacking flow.  In the flow assay, TF/collagen surface triggered extrinsic pathway 

particularly well to allow fibrin generation, especially at venous shear rate. In well plate, 

TF was much more potent than kaolin in terms of stimulating thrombin generation. 

Compare to contact pathway, extrinsic pathway is also a much shorter reaction pathway 

leading to prothrombinase (FXa/FVa), which may contribute to the stronger potency of 

TF than kaolin under either static or flow condition.  

Antithrombotic reagents targeting P2Y1, P2Y12, cyclooxygenase-1 or activating 

IP-receptor or guanylate cyclase were tested in the microfluidic model. To explore 

occlusive thrombus growth under flow in the presence of thrombin, tests were conducted 

at arterial wall shear rate and under pressure relief mode.  All tested anti-platelet agents 

showed inhibitory effect on platelet deposition.  Under flow condition, platelets could aid 

coagulation reactions by helping localizing coagulation proteins and providing required 
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phospholipid surface. Delay and reduction in thrombin and fibrin generation was 

observed as expected as platelet deposition was disturbed by antithrombotic reagents.   

The role of FXII in coagulation has been investigated in several animal models. 

FXII-mediated fibrin formation contributes to thrombus stability in mouse models [38-

40]. Antibodiy targeting heavy chain of FXII and antibody blocking FXI activation by 

FXIIa both reduces thrombus growth in baboon arteriovenous shunt thrombosis model 

[17, 66]. Knocking out FXIIa provides thromboprotection without increasing bleeding 

risk in an extracorporeal bypass system in rabbits under TF deficient condition wherein 

the thrombin generation is mainly driven by contact activation on non-physiological 

surface [67].  The role of FXII in thrombus formation in human is however not 

elucidated. Individuals with complete deficiency (<10%) of FXII is protected from 

myocardial infarction, whereas mild FXII deficiency (10-50%) increases the risk of 

myocardial infarction [68] indicating the effect of FXIIa is complicated and yet to be 

established when thrombus formation is initiated by extrinsic pathway. It’s revealed in a 

recent study that extrinsic pathway prompts the initial pathological thrombosis formation 

whereas FXIIa promotes the stability of thrombi in later phase [69] suggesting the 

complementary roles extrinsic and contact pathway played in pathological thrombosis. 

Here we are, as the first to explore the activity of contact pathway under controlled flow 

and defined surface conditions in the presence of anti-platelet agents. It is a potential 

interest to incorporate TF into the microfluidic assay and study the activity of contact 

pathway with TF exposure.  
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Figure 2-14 Inhibition of fibrin formation on collagen/kaolin surface by high CTI 

or PPACK.  

Platelet deposition and fibrin generation on kaolin/collagen surface with blood treated 

with CTI (4 and 40 µg/mL) and PPACK (100 μM). The kinetic data was obtained at 

venous shear rate under constant flow mode.  
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2.5 Conclusions 

The primary goal of this study was to develop a microfluidic model that can be 

used to assess the activity of contact pathway under flow conditions. Our approach was to 

bind kaolin to collagen, thus forming a substrate that can simultaneously induce contact 

activation and platelet activation/binding. Perfusion of whole blood over the 

kaolin/collagen surface in microfluidic flow chamber allowed observation of thrombus 

structure, specifically platelets and fibrin formation on the surface. Instead of directly 

measuring the bulk level of FXIIa, we evaluated the activity of contact pathway by 

dynamic change of platelet and fibrin, as they have the critical effects on thrombus 

structure.  Fibrin formed distal of FXIIa was subject to reduced assembly at arterial flow 

conditions.  We found that TF-triggered extrinsic pathway is more potent than kaolin 

initiated contact pathway in terms of stimulating thrombin formation under both static 

and low shear condition, but both surfaces showed a similar sensitivity to high shear rate 

despite different pathways they triggered. This microfluidic assay was also sensitive to 

inhibitory effect of antithrombotic therapies targeting P2Y1, P2Y12, cyclooxygenase-1 or 

activating IP-receptor or guanylate cyclase. The sensitivity of this microfluidic assay to 

antithrombotic drugs makes it a good candidate for potential drug screening tests and 

clinical diagnostic assays of antithrombotic therapy targeting contact pathway. 
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Chapter 3 : FXIa and platelet polyphosphate as therapeutic targets during human 

blood clotting on collagen/tissue factor surfaces under flow 

3.1 Introduction 

Many anticoagulants target prothrombinase formation or thrombin, but can be 

associated with bleeding risks.[11, 70]  Reducing thrombotic risk without effect on 

normal hemostasis may require targeting factors that promote thrombus propagation and 

stability.[71]  The contact pathway is not essential for hemostasis since factor XII (FXII) 

deficiency is not associated with a bleeding phenotype and factor XI (FXI)-deficient 

(hemophilia C) patients display a relatively mild bleeding disorder.[41]  The 

prothrombotic function of FXII and FXI has been demonstrated in several animal vessel 

injury models.[38, 69, 72-80]  Additionally, platelet derived polyphosphate (polyP, ~ 60-

70mer) has recently been identified as a weak FXII activator[81] that also promotes the 

feedback activation of FXI by thrombin,[82] FV activation by FXIa, FXa, or 

thrombin[83, 84] and enhances fibrin physical structure.[85, 86]  Also, cationic inhibitors 

of polyP reduce venous and arterial thrombosis in animal injury models.[87]   These 

observations suggest that the contact pathway is a potential source of therapeutic targets 

for safer antithrombotic therapies.[88]   Distinct from animal models, testing inhibitors of 

FXIa and polyP in human blood under thrombotic flow conditions helps to prioritize and 

inform inhibitor development against these targets.  Importantly, platelet concentrations 

in wall-attached thrombi forming under flow are 50 to 200-fold greater than those found 

in whole blood, a complexity that distinguishes microfluidic flow studies from test tube 

studies.[20, 24, 89] 



47 
 

Recently, a Phase 2 trial demonstrated that FXI-antisense oligonucleotide (FXI-

ASO) reduced FXI levels and decreased the incidence of deep vein thrombosis (DVT) 

after knee arthroplasty without increasing bleeding, thus providing evidence that FXIa 

can contribute to thrombosis in humans.[90] However, postoperative bleeding in knee 

arthroplasty is relatively uncommon and the rate of bleeding with FXI-ASO was not 

significantly lower than that seen with enoxaparin.[91, 92]   The FXI-ASO trial 

demonstrates a role for FXIa in DVT, but does not resolve the role of either platelet 

polyP or FXIIa in post-arthroplasty DVT since FXIa can inactivate tissue factor pathway 

inhibitor (TFPI)[93] and FXI can be feedback-activated by thrombin.[94]  During knee 

arthroplasty, FXIIa may (or may not) be activated by polyP, DNA/histones, RNA, 

sulfatides, or other factors.[95] 

We used a microfluidic assay of platelet deposition and coagulation on a type I 

fibrillar collagen/lipidated tissue factor (TF) surface that can trigger thrombin generation 

via the contact pathway and/or extrinsic pathway.[12, 24]  We utilized two distinct 

monoclonal anti-FXI antibodies, 14E11 and O1A6, to explore the role of FXI in contact 

activation and in promoting thrombin amplification. 14E11 selectively inhibits FXI 

activation by FXIIa but not FXI activation by thrombin, and O1A6 interferes with both 

FXI activation by FXIIa and FIX and FV activation by FXIa.[17-19] O1A6 does not 

directly inhibit FXI activation by thrombin but disrupts FXIa dependent thrombin 

amplification mechanism by inhibiting FIX activation by FXIa, which is the downstream 

reaction of FXI feedback activation in the thrombin feedback loop. By use of low level 

corn trypsin inhibitor (CTI, 4 µg/mL), the contact pathway contributions can be studied 

in whole blood in vitro without the overwhelming dominance of the “container.”  With 4 
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µg/mL CTI, drawn blood does not clot in the reservoir during the experiment but will 

generate thrombin via FXIIa in ~300 sec when perfused over collagen or surface-linked 

contact activators.[12] We investigated the role of platelet-derived polyP in promoting 

thrombin generation and enhancing fibrin structure and clot stability by inhibiting polyP 

with PPXbd, the recombinant polyP-binding domain of E. coli exopolyphosphatase (IC50, 

8.5 μg/mL).[82, 87]  This microfluidic data with human blood demonstrated specific 

conditions when FXIa and platelet polyP play a kinetically significant role in clotting 

under flow conditions that can be targeted with inhibitors. 

3.2 Methods 

3.2.1 Materials 

Reagents were obtained  as follows: DBCO-Sulfo-NHS Ester (Click Chemistry 

Tools, Scottsdale, AZ, USA), azide free anti-human CD61 antibody (BioLegend, San 

Diego, CA, USA), annexin V-FITC, anti-human CD41a, antibody anti-human CD61 

antibody (BD Biosciences, San Jose, CA, USA), Alexa Fluor 647 conjugated human 

fibrinogen (Life Technologies, Grand Island, NY, USA), corn trypsin inhibitor (CTI, 

Haematologic Technologies, Essex Junction ,VT, USA), Dade
®

 Innovin
®
 PT reagent 

(Siemens, Malvern, PA, USA), collagen (type I, Chrono-log, PA, USA), recombinant 

human tissue plasminogen activator (tPA, abcam, MA, USA), ethylenediaminetetraacetic 

acid (EDTA), grade I glutaraldehyde, sodium cacodylate, hexamethyldisilane (sigma, St. 

Louis, MO, USA) and H-Gly-Pro-Arg-Pro-OH (GPRP, EMD Chemicals, San Diego, CA, 

USA).  The murine anti-human FXI monoclonal antibodies O1A6 and 14E11 were gifts 

from Dr. Andras Gruber (Oregon Health & Science University). Polyphosphate binding 
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protein (PPXbd) was prepared as described in the supplemental material.[82]  A custom 

made thrombin sensitive peptide azidoacetyl-AK(5FAM)-GALVPRGSAGK(CPQ2)-NH2 

was obtained from CPC scientific (Sunnyvale, CA, USA) for click reactions to anti-CD61 

as previously described.[55] 

3.2.2Preparation and characterization of collagen/TF surface  

Glass slides were rinsed with ethanol followed by deionized water and dried with 

filtered air. A volume of 5 µL collagen was perfused through the patterning channel (250 

μm wide x 60 μm high) of a microfluidic device to create a single stripe of fibrillar 

collagen as previously described.[22]  Lipidated TF was then sorbed to the collagen 

surface by introduction of 5 µL of Dade
®
 Innovin

®
 PT reagent (20 nM stock 

concentration)[96] diluted 300, 100, and 5-fold with HEPES buffered saline to obtain 

low, medium, and high [TF]wall surface densities of ~0.1, ~0.2, and ~2 molecule-TF/μm
2
, 

respectively, as estimated by imaging of sorbed FITC-annexin V-stained vesicles (Fig. 

S1).  In all experiments, the PT reagent was incubated with the collagen for 30 min 

without flow, followed by rinsing and blocking with 20 μL bovine serum albumin (0.1% 

BSA) buffer.  

3.2.3 Blood collection and preparation 

Blood was obtained via venipuncture into CTI (4 μg/mL) from healthy donors 

who self-reported to be free of alcohol use and medication for at least 72 hours prior to 

blood collection.  In some experiments, blood was collected without the use of CTI.  All 

donors provided informed consent under approval of University of Pennsylvania 
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Institutional Review Board.  Blood was treated with anti-FXI antibodies or PPXbd 

immediately after blood collection. Platelets were labeled with anti-human CD61 

antibody (or anti-human CD41a antibody when thrombin was measured with the platelet 

targeting sensor). Fluorescent fibrinogen was added (1 mg/mL stock solution, 1:80 v/v% 

in whole blood) for the measurement of fibrin generation. All experiments were initiated 

within 5 min after phlebotomy. 

3.2.4 Microfluidic clotting assay on collagen/±TF surface 

An eight channel PDMS (polydimethylsiloxane) flow device was vacuum-

mounted perpendicularly to collagen/TF surfaces forming eight parallel spaced 

prothrombotic patches (250 × 250 μm) as previously described.[20] Treated blood was 

perfused across the 8 channels by withdraw through a single outlet. Initial wall shear rate 

was controlled by a syringe pump (Harvard Apparatus PHD 2000, Holliston, MA) 

connected to the outlet on the flow device. Thrombi were formed either under constant 

flow rate (constant Q, CTI treated blood in all 8 channels) or under constant pressure 

drop (constant ΔP) condition.[24] To achieve constant ΔP, EDTA-treated blood was 

delivered into alternating channels to abolish thrombus formation, thus allowing CTI-

treated blood to clot and divert flow into the matched EDTA channels. Experiments with 

added recombinant tPA were conducted under constant ΔP to avoid clot embolism before 

acquiring fibrinolysis profiles. Platelet, fibrin and/or thrombin activity were monitored 

simultaneously by epifluorescence microscopy (IX81, Olympus America Inc., Center 

Valley, PA, USA). Images were captured with a CCD camera (Hamamatsu, Bridgewater, 
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NJ, USA) and were analyzed with ImageJ (NIH). To avoid side-wall effects, fluorescence 

values were only taken from the central 75% of the channel.  

3.2.5 Preparation of PPXbd 

 A synthetic gene containing the AviTag biotin acceptor peptide (Epoch Life 

Sciences) was cloned into a previously described PPXbd plasmid [97] using NcoI and 

XbaI. This plasmid was transfected into BL21-D3 cells (New England Biolabs). PPXbd 

production was induced overnight at 15°C by the addition of 400 μM (final 

concentration) IPTG to cells growing in NYZ media. The cells were then pelleted and 

lysed, and PPXbd was purified on amylose resin (New England Biolabs). 

3.2.6 Determination of TF surface concentrations 

 Collagen-adherent relipidated TF (Dade
®
 Innovin

®
 PT reagent) was visualized by 

annexin V staining (Figure 3-1). Surface TF concentration ([TF]wall) was estimated by 

measuring the percent stained surface area and converting it to [TF]wall based on the 

random packing limit of 200 molec-TF/µm
2
 (see detailed calculation below).  

Liposome radius (r) was 118 ± 14 nm (measured by dynamic light scattering). 

The projected area of single liposome is πr
2 

≈ 14000π nm
2

. Assume all the liposomes are 

perfect spheres with radius of 118 nm and are densely packed in a hexagonal packing 

manner with a packing density of 0.9069, the packing limit was found to be about 21 

liposomes/μm
2
 (Eqn. 1). 

 
6 2

2

2 2 2

10
1 0.9069 21

43982

liposome nm liposome
m

nm m m


 
                                         Eqn. 1 
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We assume on average, 20 TF molecules are incorporated into a single liposome 

and 50% of the incorporated liposomes are exposing their extracellular domain to the 

bulk solution.[23, 24] The saturated TF surface concentration was then found to be about 

200 TF-molecule/μm
2
. Surface coverage (x%) of TF liposomes was measured from 

annexin V staining. Since the 2D packing limit of the liposomes is known to be 90.69%, 

the percentage of stained area in packing limit can be calculated (x/90.69 %). This 

percentage can be used to calculate the corresponded liposome (Eqn. 2) and TF surface 

concentration (Eqn. 3). 

2
liposome surface concentration = 21

90.69

liposome x

m
                                             Eqn. 2 

2
TF surface concentration = 200

90.69

TF molecule x

m


                                             Eqn. 3 

  The estimated concentrations are listed in Table 3-1. Based on the estimation, we 

made nominal estimations that [TF]wall = ~0.1 molec-TF/µm
2
, ~0.2 molec-TF/µm

2
, and 

~2 molec-TF/µm
2
 for low, medium and high [TF]wall, respectively. 

3.2.7 Scanning electronic microscopy 

In some experiments, thrombi were fixed under flow in situ with 2% Grade I 

glutaraldehyde in HBS buffer.  The glass slides were then removed from the PDMS 

device and the fixed thrombi were washed 6 times in 0.2 M sodium cacodylate, incubated 

in sodium cacodylate overnight at 4 ̊C, dehydrated in graded ethanol (with balance of 

sodium cacodylate), rinsed with hexamethyldisilane, air dried, and sputter coated with 

gold/palladium. Samples were imaged with Quanta 600 FEG Mark II scanning electron 

microscope equipped with Schottky field emission electron gun. Thickness of fibrin 
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fibers was averaged across measurements (Image J, NIH) from 40 random selected fibers 

in images captured at 3500x magnification.  

3.2.8 Statistical analysis 

Difference between control and treated groups was analyzed with Student’s t-test. 

The difference was considered significant when p-value is smaller than 0.05.    
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Figure 3-1 Annexin V staining of TF liposomes on collagen surface.  

Stained liposomes appear as white dots. Measured surface coverage was used to estimate 

surface concentration at low, medium and high [TF]wall. Nominal [TF]wall were assigned 

for different TF levels based on the estimations.  
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 Low 

(300x dilution) 

Medium  

(100x dilution) 

High 

(5x dilution) 

Measured surface 

coverage (%) 

0.045 ± 0.017 0.083 ± 0.026 0.797 ± 0.385 

Liposome/area 

(liposome/ μm
2
) 

0.010 ± 0.004 0.019 ± 0.006 0.185 ± 0.006 

TF-molecule/area 

(TF-molec/ μm
2
) 

0.099 ± 0.037 0.183 ± 0.057 1.758 ± 0.849 

 

Table 3-1 Estimated TF surface concentration. 

TF surface concentrations were estimated based on the surface coverage by lipid 

liposomes measured with annexin V staining. 
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3.3 Results 

3.3.1 Contact pathway was indispensable for thrombin generation on collagen 

surface 

Both anti-FXI antibodies, 14E11 and O1A6, were tested individually in whole 

blood (20 μg/mL) perfused at a venous wall shear rate of 100 sec
-1

 over a collagen 

surface (no [TF]wall).  Perfusion of whole blood (treated only with 4 µg/mL CTI) without 

antibodies resulted in immediate and rapid platelet accumulation with thrombin and fibrin 

production detected after 300 sec of perfusion.  Both antibodies had minimal effect on 

platelet deposition, which is driven by the collagen and platelet-derived secondary 

aggregation mediators ADP and thromboxane.[28] Both antibodies caused complete 

inhibition of thrombin generation and fibrin formation (Figure 3-2).  In the presence of 

low level of CTI, the contact pathway was required as the most proximal trigger of 

thrombin production as demonstrated by the inhibitory activity of 14E11 and O1A6.  This 

result is consistent with prior observations made with whole blood from a patient with a 

severe FXI deficiency.[31]   Furthermore, in an experiment with raw blood (no CTI) 

which allows for rapid and massive thrombin and fibrin formation through unrestricted 

FXIIa generation, 14E11 substantially delayed clotting (Figure 3-3).  Since addition of 

CTI and 14E11 together (Figure 3-2 and Figure 3-3 C-D) prevented thrombin and fibrin 

formation, the presence of bloodborne tissue factor can be excluded. 
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Figure 3-2 14E11 and O1A6 individually block thrombin/fibrin generation on  

 collagen. 

Anticoagulated whole blood (CTI, 4 μg/mL) was treated with FXI antibody 14E11 or 

O1A6 (20 μg/mL) and was perfused over collagen surface at 100 s
-1 

under constant flow 

rate condition (Q = constant). FXI antibodies efficiently abolished thrombin and fibrin 

generation on collagen surface without affecting platelet deposition. A-C, Dynamics of 

platelet deposition, and generation of fibrin and thrombin based on 5 clotting events (± 

SD, shaded). Endpoint images (t = 600 sec) of platelet (red), fibrin (green) and thrombin 

(cyan) on collagen surface are embedded in corresponded subgraphs (white arrows 

indicate flow direction, scale bar = 50 μm). D, Final platelet, fibrin and thrombin 

fluorescence (t = 600 sec) was normalized to control. Adding FXI antibodies caused over 

90% reduction in final fibrin and thrombin generation. (**, p < 0.01; ***, p < 0.005) 
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Figure 3-3 Low level of CTI is required for blocking XIIa generation in 

reservoirs.  

A, Blood was collected into syringe with or without CTI (± 4 μg/mL) and was transferred 

into labeling tubes supplemented with or without 14E11 (± 20 μg/mL) to create 4 

anticoagulated conditions. Treated blood was then perfused over collagen surface at 100 

s
-1 

(Q = constant). B-D, Platelet, fibrin and thrombin dynamic curves were generated 

based on 4 clotting events. Adding 14E11 to collected non-anticoagulated blood only 

partially blocked thrombin generation indicating massive and rapid XIIa generation 

during blood collection. When blood was collected into low CTI, FXIIa generation in 

reservoir was minimized and the lag-phase before measurable thrombin/fibrin generation 

was prolonged. 14E11 completely blocked thrombin/fibrin generation in low CTI treated 

blood. 
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3.3.2 14E11 and O1A6 inhibited thrombin generation at low [TF]wall  

Regardless of [TF]wall, platelet deposition on collagen/TF surfaces was not 

affected by 14E11 or O1A6 over the first 420 sec (Figure 3-4 A-C). By 500 sec, most of 

the formed thrombi were partially or fully occlusive and subject to large hemodynamic 

forces that drove embolization.  The lag phase before detectable fibrin formation was < 

100 sec on collagen/high [TF]wall, and this lag time was prolonged as [TF]wall was 

decreased (Figure 3-4 D-F).  As [TF]wall increased, the amount of fibrin produced by 7 

min also increased.   At low [TF]wall ~0.1 molecule-TF/µm
2
,  fibrin formation was 

detectable at ~ 240 sec and was significantly reduced by both 14E11 or O1A6 at times 

between 300 and 400 sec (Figure 3-4 D).  O1A6 maintained its ability to inhibit fibrin 

generation up to medium [TF]wall ~0.2 molecule-TF/µm
2
.  However, at high [TF]wall, 

fibrin formation was not affected by 14E11 or O1A6.  
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Figure 3-4 Potency of 14E11 and O1A6 varies depending on [TF]wall.  

Anticoagulated whole blood (CTI, 4 μg/mL) was treated with FXI antibody 14E11 or 

O1A6 (20 μg/mL) and was perfused over collagen/TF surfaces at 100 s
-1

 (Q = constant). 

A-C, Platelet deposition on collagen was unaffected by FXI antibodies despite the 

difference in [TF]wall. D, E, O1A6 showed inhibitory effect on fibrin generation at low 

and medium [TF]wall. 14E11 only reduced fibrin generation at low [TF]wall. F, Neither of 

the antibodies caused reduction in fibrin at high [TF]wall
 
. (*, p < 0.05; **, p < 0.01) 
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3.3.3 PPXbd inhibited fibrin generation on collagen/low [TF]wall surface at venous 

shear rate 

Under conditions of constant flow rate, PPXbd (250 µg/mL) was tested on 

collagen/TF at the inlet venous shear rate (100 s
-1

) using whole blood with CTI (4 

µg/mL).  Platelet aggregation remained unaffected when platelet-derived polyP was 

inhibited with PPXbd (Figure 3-5 A-C), consistent with platelet deposition being largely 

driven by collagen and released mediators or secondary aggregation.   Measurable fibrin 

accumulation on collagen surface alone (no TF) did not appear until 400 sec (Figure 3-5 

D) and was less than that observed on collagen/TF surfaces.  PPXbd did not reduce fibrin 

formation on a pure collagen surface, indicating that other triggers were more prominent 

activators of the contact pathway than platelet-derived polyP. This is consistent with the 

relatively low activity of small forms of platelet-derived polyP to activate FXII.[98]  

With TF on the surface, PPXbd reduced fibrin formation at low [TF]wall but this 

inhibition was not detectable at high [TF]wall (Figure 3-5 E-F). This experiment defines a 

specific condition in which endogenous platelet polyP leads to enhanced fibrin 

production under a condition of low extrinsic pathway activation. Similarly, for a 

condition where FXII activation could proceed unimpeded, perfusion of raw blood (no 

CTI) resulted in rapid and massive platelet and fibrin deposition that was unaffected by 

PPXbd (Figure 3-6).   
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Figure 3-5 PPXbd inhibits fibrin generation at low [TF]wall under venous 

condition.  

Anticoagulated whole blood (CTI, 4 μg/mL) was treated with PPXbd (250 μg/mL) and 

was perfused over collagen or collagen/TF surface at 100 s
-1

 (Q = constant). A-C, Platelet 

deposition on collagen was unaffected by PPXbd despite the difference in [TF]wall. D-F, 

Fibrin generation was only inhibited by PPXbd on collagen/low [TF]wall surface but not 

on collagen or collagen/high [TF]wall surface. (*, p < 0.05; **, p < 0.01) 
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Figure 3-6 Massive XIIa dependent thrombin generation masked the effect of  

 PPXbd.  

A, Non-anticoagulated blood was collected and was transferred into labeling tubes in 

which 14E11 (20 μg/mL) and/or PPXbd (250 μg/mL) were added to create 4 

anticoagulated conditions. Treated blood was then perfused over collagen surface at 100 

s
-1 

(Q = constant). B-D, Platelet, fibrin and thrombin dynamic curves were generated 

based on 4 clotting events. E, Without adding 14E11, XIIa generation during blood 

collection and in reservoirs lead to fast and massive thrombin/fibrin formation and 

masked the effect of PPXbd. Adding 14E11 minimized XIIa generation in reservoirs but 

allowed XIIa generated during blood collection to prime thrombin feedback loop. F, The 

effect of PPXbd was detectable under this condition.  
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3.3.4 PPXbd inhibited thrombin and fibrin generation on collagen/low [TF]wall 

surface at arterial shear rate 

Since animal studies have supported a role for the contact pathway during arterial 

thrombosis, we tested PPXbd at arterial shear rate (1000 s
-1

) under constant pressure drop 

conditions where occlusive clots can stop flow.[24]  Thrombi were formed on collagen or 

collagen/low [TF]wall  in the presence and absence of PPXbd.  Consistent with the 

observation under venous condition, platelet deposition was not significantly altered by 

polyP inhibition (Figure 3-7A-B).   As was seen for venous conditions, PPXbd had no 

significant effect on platelet, thrombin, or fibrin accumulation for clotting of blood on 

pure collagen (no TF) at an arterial shear rate (Figure 3-7A, C, E).  PPXbd inhibited 

thrombin and fibrin by 54% (p = 0.012) and 70% (p = 0.037) on collagen/low [TF]wall 

~0.1 molecule-TF/µm
2 

(Figure 3-7D, F).   The reduction in thrombin signal became 

significant after 300 sec (Figure 3-7E, F). Under this flow condition, occlusive thrombi 

were observed at around 400 sec into experiment on collagen/low [TF]wall. Simply 

decreasing [TF]wall to zero did not cause reduction in the time to full channel occlusion. 

Delayed occlusive thrombi were only observed when polyP was inhibited at no [TF]wall 

(Figure 3-8).    
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Figure 3-7 PPXbd inhibits fibrin and thrombin generation on collagen/low 

[TF]wall at arterial shear rate.  

Anticoagulated whole blood (CTI, 4 μg/mL) was treated with PPXbd (250 μg/mL) and 

was perfused over or collagen or collagen/low [TF]wall surface at 1000 s
-1

 under constant 

pressure drop condition (ΔP = constant). A, B, Platelet deposition on collagen was 

unaffected by PPXbd. C, D, Fibrin generation was inhibited by PPXbd on collagen/low 

[TF]wall surface but not on the collagen-alone surface. E, F, Consistent with the reduction 

in fibrin on collagen/low [TF]wall, thrombin generation at low [TF]wall was also lowered 

by PPXbd after 300 sec. (*, p < 0.05; **, p < 0.01) 
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Figure 3-8 PPXbd delayed occlusion on collagen surface.  

Anticoagulated whole blood (CTI, 4 μg/mL) was treated with PPXbd (250 μg/mL) and 

was perfused over or collagen or collagen/low [TF]wall surface at 1000 s
-1

 under constant 

pressure drop condition (ΔP=constant). Full channel occlusion was only significantly 

delayed when PPXbd treated blood was perfused over collagen surface with no [TF]wall
 

when compare to the occlusion time on surfaces with low [TF]wall. t-test results are 

included (n = 10, 5 donors). (*, p < 0.05; **, p < 0.01) 
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3.3.5 PPXbd blocked mechanisms downstream of FXIIa on collagen/low-medium 

[TF]wall 

At venous shear, we found the addition of PPXbd to blood, in which FXIIa 

activation of FXI is blocked by 14E11, caused significant reduction in fibrin formation on 

collagen/low-medium [TF]wall after the first 200 sec (Figure 3-9A). In contrast, adding 

PPXbd to O1A6 treated blood, in which FIX activation by FXIa is blocked, did not cause 

further reduction in fibrin formation at the same [TF]wall (Figure 3-9B). This suggests the 

inhibited thrombin/fibrin generation at low-medium but not high or no [TF]wall by PPXbd 

was associated with its inhibition on mechanisms downstream of FXIIa.  



68 
 

 

 

Figure 3-9 PPXbd inhibits pathways downstream of FXIIa.  

A, B, Anticoagulated whole blood (CTI, 4 μg/mL) was treated with 14E11 (20 μg/mL) to 

inhibit FXIIa activation of FXI or with O1A6 to block FIX activation by FXIa and was 

perfused over collagen/low-medium [TF]wall surface at 100 s
-1

 under constant flow rate 

mode (Q = constant). Adding PPXbd to 14E11 treated blood caused significant reduction 

in fibrin signal after the first 200 sec. PPXbd showed no effect on fibrin generation when 

it was added to O1A6 treated blood. (*, p < 0.05; **, p < 0.01) 
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3.3.6 PPXbd altered fibrin structure and promoted clot retraction upon fibrinolysis   

 Recombinant tPA (30 nM) was added to blood prior to perfusion to initiate 

fibrinolysis. Degradation of fibrin was observed after occlusion when the platelet mass 

stopped growing and the fibrin signal started to decline due to lysis. Fibrinolysis initiated 

earlier and proceeded faster in the presence of PPXbd (Figure 3-10C, D) indicating a 

role for platelet-derived polyP in protecting the fibrin clot from lysis, regardless of the 

[TF]wall. The platelet plateau level was significantly higher in PPXbd-treated clots, which 

was likely caused by retraction of occlusive thrombi, considering that platelet 

propagation was unaffected by PPXbd at early time points (Figure 3-10A, B). We 

quantified clot retraction by analyzing the platelet area reduction at the downstream edge 

which proceeded against the direction of flow (Figure 3-11A). The presence of PPXbd 

caused a larger area reduction at both high and low [TF]wall (Figure 3-11D). We further 

analyzed the retraction under two extreme conditions: (i) preserving all formed fibrin by 

not adding lytic reagent, and (ii) blocking fibrin polymerization with GPRP.   PPXbd had 

no significant effect on retraction under these two conditions (Figure 3-11B-C).  We also 

examined the impact of PPXbd on fibrin physical structure by measuring the fibrin fiber 

diameter in SEM micrographs of whole blood clots formed under flow condition (100 s
-1

, 

Q = constant) on collagen/TF surfaces (Figure 3-11E-F, H-I). PPXbd significantly 

reduced the fiber diameters at both high and low [TF]wall (Figure 3-11G, J).  
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Figure 3-10 PPXbd reduces thrombus resistance to fibrinolysis induced by 

recombinant tPA.  

Recombinant tPA (30 nM) was added to PPXbd-treated whole blood (250 μg/mL) right 

before flow initiation (100s
-1

, ΔP = constant). A, B, Platelet deposition was identical with 

or without PPXbd during the first 400 sec. However, the platelet signal reached a higher 

plateau level after occlusion (indicated by black arrows) when treated with PPXbd. C, D, 

Fibrinolysis was initiated after occlusion and proceeded faster in the presence of PPXbd 

at both high and low [TF]wall. Dynamics of platelet and fibrin accumulation were based 

on three clotting events (± SD, shaded area).  
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Figure 3-11 PPXbd enhances clot retraction after flow cessation and alters fibrin 

fiber thickness.  

A, Clot retraction was quantified by the reduction in area at the downstream edge, as 

measured from just prior to occlusion (pink outline) to endpoint of experiment (white 

area). B-D, Scale bars represent 50 μm. Anticoagulated WB (4 μg/mL CTI) was either 

untreated or treated with 5 mM GPRP or 30 nM recombinant tPA and was perfused over 

collagen surface with high or low [TF]wall. Area change was averaged across multiple 

donors. E, F, H, I, Representative scanning electron micrographs of thrombi formed 

under flow (100 s
-1

, Q = constant) on collagen/high [TF]wall surface with or without 

PPXbd or on collagen/low [TF]wall surface with or without PPXbd. Left subgraphs (scale 

bar = 100 μm) of E, F, H, I show the structure of whole thrombi while right subgraphs 

(scale bar = 10 μm) are zoomed in images of the areas outlined by red boxes. G, J, Flow 

direction was from right to left. Average fiber thickness was smaller in PPXbd treated 

thrombi at both high and low [TF]wall. (*, p < 0.05; **, p , 0.01) 
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3.4 Discussion and Conclusions 

In this study, we investigated the role of FXI in contact activation and in 

promoting thrombin amplification by selectively targeting FXIIa-dependent FXI 

activation and FXIa-dependent activation of FIX and FV using FXI antibodies 14E11 and 

O1A6, respectively. The extrinsic pathway was left intact but its relative contribution was 

tuned by varying wall TF concentration. Based on our observations, we propose a model 

showing relative contributions of the three major mechanisms of thrombin generation: 

FXIIa dependent thrombin generation, FXIa mediated thrombin amplification, and TF 

induced thrombin generation (Figure 3-12). The contact pathway was required for 

thrombin generation on collagen surfaces since 14E11 and O1A6 robustly blocked 

thrombin and fibrin generation. At low [TF]wall, contributions of the contact pathway and 

the extrinsic pathway were comparable. 14E11 and O1A6 individually caused partial 

inhibition of fibrin generation. As [TF]wall was increased, FXIIa dependent contact 

activation became less significant. Thrombin feedback mechanism became more 

detectable since O1A6 but not 14E11 caused significant reduction in fibrin generation. 

Finally, when [TF]wall exceeded 2 molec-TF/µm
2
, neither of the FXI antibodies reduced 

fibrin formation, indicating thrombin was generated primarily via the extrinsic pathway. 

The activity of the two antibodies, especially at low [TF]wall, in reducing fibrin formation 

was essentially due to the inhibition of contact activation, as was observed in Figure 3-2, 

although the identity of the most proximal activators of FXII and FXI was not resolved. 
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Figure 3-12 Role of XIIa, XIa, and polyP in thrombus formation on collagen/TF  

 surfaces.  

Proposed schematic showing the role of activated coagulation factors and platelet 

secreted polyP in thrombin generation at high (A), medium (B), low (C) and null (D) 

[TF]wall. Weight and shade of arrows represent the relative contribution of the indicated 

mechanism.  Activated platelets are indicated by “p*”. 
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Platelet-derived polyP has been proposed as a mediator for coagulation and clot 

structure. However, the masking effect of TF has caused discrepancy in reported data 

regarding platelet-derived polyP as endogenous activator of FXII[81, 99-101], which 

raises the question whether polyP is physiologically important, as TF is usually present at 

injury sites. Our microfluidic data supports a role for platelet polyP as an enhancer of 

clotting under specific venous flow conditions with low (but not high) levels of wall 

derived TF, consistent with the role of thrombin-feedback activation of FXI implicated in 

the FXI-ASO study of DVT prevention.[90] The fact that adding PPXbd to FXIIa 

inhibited blood caused further reduction in fibrin at low-medium [TF]wall suggests that 

polyP potentiating pathway(s) downstream of FXIIa activation of FXI that requires low 

participation of the extrinsic pathway. Insignificant thrombin feedback caused by 

insufficient thrombin generation on collagen or overwhelmed thrombin generation by 

high [TF]wall made the potentiating effect of polyP on thrombin feedback mechanism 

negligible. Interestingly, reduction in thrombin was seen with PPXbd on collagen (no 

[TF]wall) when 14E11 was added to raw blood (no CTI) shortly after blood collection. In 

this case, 14E11 only partially blocked thrombin generation indicating thrombin leakage 

from surface-induced contact activation during blood collection, which was probably 

sufficient for initiating the thrombin feedback loop. As expected, the effect of PPXbd was 

completely masked by massive FXIIa dependent thrombin generation in raw blood when 

14E11 was excluded. Thus, we hypothesize that the contribution of polyP is only 

detectable when the thrombin feedback loop is primed with adequate, but not excessive 

amounts, of thrombin generated via either the contact or extrinsic pathway. The 

sensitivity of thrombin and fibrin production to the inhibitory effect of PPXbd under 
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arterial shear condition at low (but not no) [TF]wall suggests a similar promoting role of 

polyP in arterial thrombosis. However, we found the role of polyP as FXII activator in 

this microfluidic model was less important as surface-immobilized long chain polyP 

(700mer), which was shown in well plate as a much more potent FXII activator than 

platelet-derived short chain polyP [98], failed to promote fibrin generation on a collagen 

(no [TF]wall) surface (Figure 3-13). In this assay, platelet aggregation is primarily 

mediated by collagen signaling and endogenous secondary aggregation agonists, and thus 

was not sensitive to the reduction in thrombin generation caused by PPXbd. Delayed full 

channel occlusion only occurred when TF and polyP were both absent even though total 

platelet fluorescence was not affected, indicating factor(s) other than total deposited 

platelet mass (i.e. spatial distribution of platelet mass) could be affected by polyP and 

cause the change in occlusion time.  

PolyP also exerts effects on clot structure by enhancing fibrin polymerization [85, 

98] and attenuating binding of fibrinolytic proteins to fibrin.[86] But these effects have 

not been validated in human whole blood under flow conditions in the presence of TF. 

We were able to show the reduced diameter of fibrin fibers formed in polyP-deficient 

thrombi regardless of the wall TF concentration. As a result, polyP-deficient thrombi 

were more prone to tPA-induced lysis. We also noticed polyP attenuated retraction of 

occlusive thrombi during fibrinolysis. We speculate that polyP modulated contraction by 

enhancing fibrin structure based on the observation that thrombi contracted to the same 

degree with or without polyP when fibrin polymerization was abolished. Furthermore, the 

attenuating effect of polyP on clot retraction was only significant upon fibrinolysis. 

Platelets are known to generate heterogeneous contractile force based on the stiffness of 
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surrounding environment.[102] It is possible that polyP incorporated into fibrin fibers 

caused the fibers to exhibit better retention of stiffness upon fibrinolysis, thus limiting 

clot retraction. The effect of polyP on clot stiffness is probably thrombin-independent and 

directly caused by the incorporation of polyP into fibrin fibers[85] since similar 

attenuating effect was observed at both low and high [TF]wall. When fibrinolysis was 

excluded, the stall force generated by the dense and stiff fibrin network prevented 

platelets from contracting despite the difference in fibrin structure caused by polyP.  

In this study, we demonstrated that the role of FXIIa, FXIa and platelet-derived 

polyP in thrombus formation on collagen may vary depending upon [TF]wall. To our 

knowledge, this is the first study to show the effect of polyP on thrombin generation and 

fibrin structure with human whole blood under controlled flow condition with the 

presence of surface immobilized TF.  
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Figure 3-13 Platelet and fibrin deposition on collagen/polyP surface.  

A, DAPI (4’,6-diamidino-2-phenylindole) stained long chain polyP (700mer, Kerafast, 

Boston, MA, USA) on collagen surface (scale bar = 10 μm). B, C, Platelet deposition and 

fibrin generation on collagen surface was not affected by polyP.  
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Chapter 4 : Platelet-targeting thiol reduction sensor detects protein disulfide 

isomerase activity on activated platelets in mouse and human blood under flow 

4.1 Introduction 

Thiol isomerases constitute a family of enzymes that are commonly found in 

endoplasmic reticulum (ER). These enzymes mediate disulfide bond formation, 

reduction, and rearrangement which are essential for protein folding. Platelets do not 

have an ER, but store and secrete protein disulfide isomerase (PDI) and other thiol 

isomerases upon activation [103-106]. Among the family of thiol isomerases, PDI, 

ERp57, and ERp5 have been implicated in thrombus formation [107-113]. Thiol 

isomerases have two catalytically active thioredoxin-like domains which can be in either 

a reduced (dithiol) or oxidized (disulfide) form depending upon surrounding redox 

condition. Activated platelets primarily express PDI in dithiol form, which catalyzes 

reduction or isomerization of disulfide bonds and has been proposed to induce free thiol 

exposure on activated platelet surface and conformational changes in GP1bα [114]. PDI 

expression upon platelet activation facilitates redox remodeling of αIIbβ3 and promotes 

platelet aggregation [115-118]. Once secreted, PDI likely accumulates in the thrombus by 

directly interacting with β3 integrin [116]. α2β1 is also a potential substrate for PDI since 

disulfide exchange is necessary for α2β1 but not GPVI mediated platelet adhesion [119]. 

With the promising antithrombotic efficacy of PDI inhibition both in vitro and in vivo, 

PDI inhibitors like quercetin-3-rutinoside (rutin) have been tested as potential 

antithrombotic reagent [120-122]. PDI has also been hypothesized as a mediator of tissue 

factor decryption [123, 124]. The source of PDI activity in a clot is also poorly 

understood. Endothelium may serve as the primary source of PDI required for thrombus 
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formation [125], although mouse platelet-derived PDI was also essential for thrombus 

formation on a collagen-coated surface [126].  

Common reductase activity assays [127] are not easily adapted for detection 

under hemodynamic conditions in whole blood due to instantaneous dilution of signal by 

flow and distinctive redox condition in whole blood as compare to assay buffers. 

Fluorescent-conjugated PDI antibodies have been used to detect PDI in vivo but have not 

been able to detect PDI activity within thrombi [107, 125, 128]. In the present study, we 

developed a platelet targeting sensor for measuring total platelet-derived thiol reductase 

activity under flow conditions. The sensor contains a disulfide linked glutathione (GSSG) 

mimicking peptide conjugated to a CD61 antibody that is able to bind to platelets (Figure 

4-1). The peptide fluoresces upon disulfide bond breakage and the antibody localizes the 

fluorescent signal on the platelet surface. We characterized and used this sensor to detect 

thiol reductase activity in a microfluidic thrombosis model and in an in vivo laser injury 

model, acquiring new information about the role of platelet-derived PDI in thrombus 

formation and spatial gradient of thiol reductase activity in vivo. 
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Figure 4-1 Platelet-targeting thiol isomerase sensitive fluorogenic sensor (PDI-

sAb).  

Customized thiol containing peptides have either a quencher (CPQ2) attached at N-

terminus and or a fluorophore (CP488) and an azido group attached at N-terminus and C-

terminus, respectively. The fluorophore is quenched due to close proximity to quencher 

once the peptides were bridged correctly by disulfide bond. Dibenzylcyclooctyne-NHS 

ester (DBCO) labels primary amine groups on anti-CD61 antibody and reacts with azide-

labeled peptide thus serving as a connector linking disulfide bridged peptides (PDI-sP) to 

antibody. Fluorescence increases (at 519 nm) upon disulfide bond breakage by thiol 

isomerase.  



81 
 

4.2 Materials and Methods 

4.2.1 Materials 

Customized peptides AGCGAK(CPQ2) and azidoacetyl-AGCGAK(CP488) (CPC 

scientific, Sunnyale, CA, USA) are conjugated with a quencher (CPQ2, peptide Q) or a 

fluorophore (CP488, peptide F) (M.W. 996.1 and 944.9, respectively, purity > 90%). 

Reagents and antibodies used in this study are listed  as follows: DBCO-Sulfo-NHS Ester 

(Click Chemistry Tools, Scottsdale, AZ, USA), azide-free anti-human CD61 antibody 

(BioLegend, San Diego, CA, USA), anti-human CD41a, antibody anti-human CD62P 

antibody (BD Biosciences, San Jose, CA, USA), Alexa Fluor® 647 conjugated human 

fibrinogen (Life Technologies, Grand Island, NY, USA), human recombinant protein 

disulfide isomerase (rhPDI, Biovision, Milpitas, CA, USA), 5,5’-dithiobis-(2-

nitrobenzoic acid) (DTNB), dithiothreitol (DTT), glutathione (GSH), oxidized 

glutathione (GSSG), sodium phosphate, disodium ethylenediaminetetraacetic acid 

(EDTA), acetic acid, sodium citrate (Sigma-Aldrich, St. Louis, MO, USA), H-Gly-Pro-

Arg-Pro-OH (GPRP, EMD Chemicals, San Diego, CA, USA), corn trypsin inhibitor 

(CTI, Haematologc Technologies, Essex Junction ,VT, USA), D-Phe-Pro-Arg-CMK 

(PPACK, Santa Cruz Biotechnology, Dallas, Texas, USA), apixaban (Selleck Chemicals, 

Houston, TX, USA), Dade
®
 Innovin

®
 PT reagent (Siemens, Malvern, PA, USA), 

Bradford protein assay kit, HEPES (Fisher Scientific, Pittsburg, PA, USA) and BioGel P-

6 gel (Bio-Rad, Hercules, CA, USA).  
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4.2.2 Production of disulfide-linked thiol isomerase sensitive hetero-peptide dimers 

(PDI-sP)  

Hetero-peptide dimers were synthesized according to a previously developed method 

(Figure 4-2) [129]. Briefly, peptide Q (quencher) and peptide F (fluorophore) were 

dissolved separately in 0.1 % (v/v) acetic acid to a concentration of 10 µg/µL. Ellman’s 

buffer was prepared with 100 mM sodium phosphate, 5 mM EDTA and 7.5 mM DTNB 

in H2O (pH = 7.4). Reaction buffer was prepared with 100 mM sodium phosphate and 5 

mM EDTA in H2O (pH = 7.4). Peptide Q (10 µL) was mixed with 80 µL of reaction 

buffer and 10 µL of Ellman’s buffer. The reaction mixture was blanketed with N2 and 

incubated for 2 hours at room temperature before peptide F (10 µL) was added to the 

reaction, followed by another 2 hours of N2 blanketed incubation in the dark. Formation 

of heterodimers (PDI-sP) was verified by adding reducing reagent DTT and measuring 

the fluorescence increase. Addition of DTT on average caused a 10-fold increase in 

fluorescence (Table 4-1).  



83 
 

 

 

Figure 4-2 Two step reaction for producing disulfide-linked thiol isomerase 

sensitive hetero-peptide dimers (PDI-sP). 

Thiol group on the quencher conjugated peptide (peptide Q) is firstly protected by adding 

5,5’-dithiobis-(2-nitrobenzoic acid (DTNB) into the reaction and incubating under N2 

blanket for 2 hr. The fluorophore conjugated peptide (peptide F) was then added into the 

reaction to replace the protective group. After 2 hr incubation under N2 blanket in the 

dark, peptide Q and F were linked by a disulfide bond forming PDI-sP and causing 

dramatic reduction in measured fluorescence in the reaction. 2-nitro-5-thiobenzoate 

(TNB) as byproduct of the reaction will be eliminated in subsequent purification steps. 
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Table 4-1 PDI-P fluorescence change after addition of reducing reagent DTT.  

Adding 30 mM DTT caused a greater than 10 fold increase in fluorescent signal. The 

high sensitivity of disulfide-bridged peptide to thiol reductase activity was maintained 

even when PDI-P was highly diluted.  
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4.2.3 Synthesis of thiol isomerase sensitive antibody (PDI-sAb) 

DBCO-Sulfo-NHS Ester was dissolved in 1% DMSO to a final concentration of 

900 µM and was mixed with anti-human CD61 antibody and HEPES-buffered saline 

(HBS buffer, 20 mM HEPES, 150 mM NaCl, pH = 7.4) in 2:1:7 volume ratio. The 

DBCO linking reaction was quenched by addition of Tris-HCl buffer (1 M, pH = 8.0) 

after 30 min incubation at room temperature. PDI-sP was added to the reaction in a 1:1 

volume ratio. The reaction was incubated in the dark at room temperature for 4 hours and 

was then purified on BioGel P-6 gel column yielding purified PDI-sAb in HBS buffer (10 

μg/ml measured by Bradford protein assay). Sensitivity of PDI-Ab to reducing reagents 

was measured in a Flex station microplate reader (495 nm ex/519 nm em, Molecular 

Devices, Sunnyvale, CA, USA) by directly mixing reducing reagents with PDI-sAb. PDI-

sAb fluorescence on platelets was measured by flow cytometry (Accuri C6). A mouse 

specific version of the sensor was generated using an anti-mCD41 antibody. 

4.2.4 Microfluidic clotting assay on collagen surface 

PDI-sAb was tested in human whole blood (WB) in a previously developed 

microfluidic assay [20]. Briefly, a 250 μm wide collagen strip was generated by perfusing 

collagen type I fibrils through a PDMS patterning device that was vacuum-bonded on 

ethanol cleaned glass slides. The patterning device was then replaced by an eight-channel 

flow device which was perpendicularly vacuum-bonded on the collagen surface, 

generating 8 evenly spaced prothrombotic patches (250 μm×250 μm). Human WB was 

anticoagulated with a low level of CTI (4 μg/mL WB) or PPACK (100 µM) and was 
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perfused over collagen surface at venous shear rate (100 s
-1

). The shear rate was 

controlled by a syringe pump (Harvard Apparatus, Holliston, MA, USA). The dynamic 

change of platelet (CD41a), fibrin(ogen), and PDI-sAb (1:9 WB) signal was monitored 

with IX81 fluorescent microscope (Olympus, Center Valley, PA, USA).  

4.2.5 Blood collection and preparation 

Blood was collected via venipuncture from healthy donors (free of alcohol and 

medication 72hrs prior to donation) in accordance with the University of Pennsylvania 

IRB approval. Blood was collected directly into CTI (4 μg/mL) or PPACK (100 μM) for 

microfluidic experiment or into sodium citrate (1:9 WB) or PPACK for platelet rich 

plasma preparation (300×g, 10 min).  

4.2.6 Mouse intravital microscopy 

Intravital imaging was done as previously described [130]. Briefly, male mice 8-

12 weeks of age were anesthetized with an intraperitoneal injection of sodium 

pentobarbital (90 mg/kg), and their jugular vein was cannulated for the introduction of 

PDI-Ab and anti-CD62P AF-647. The mouse cremaster muscle was prepared for 

viewing, and maintained under a constant flow of bicarbonate buffer (37 °C) bubbled 

with 95%/5% N2/CO2. Mouse arterioles of 30-50 μm diameter were visualized with a 

BX61WI microscope (Olympus, St. Louis, MO, USA) with a 60X (0.9 NA) water 

immersion objective, and a CSUX1 spinning disk confocal scanner (Yokogawa, Sugar 

Land, TX, USA). Fluorescence imaging was done using diode pumped solid state lasers 

(405 nm, 488 nm, 561 nm, 647 nm) with acousto-optic tunable filter control as an 
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excitation source (LaserStack, Intelligent Imaging Innovations, Denver, CO, USA). 

Images were captured using an Evolve digital camera (Photometrics, Tucson, AZ, USA).  

Penetrating injuries were produced with a pulsed nitrogen dye laser (SRS NL100, 

440 nm) focused on the vessel wall through the microscope objective. The laser was fired 

1-10 times until red blood cells either escaped into the extravascular space or became 

trapped within the layers of the vessel wall. The University of Pennsylvania Institutional 

Animal Care and Use Committee approved all procedures. After injury, platelet 

deposition was monitored using brightfield imaging, core development with anti-CD62P, 

and PDI activity with PDI-sAb. Background fluorescence was measured within the vessel 

for both PDI-sAb and anti-CD62P, and subtracted from the images to determine positive 

signal. In representative images, the core is shown as binary based on the background 

fluorescence and PDI-sAb signal is shown as the indicated gradient. Microscope control, 

image capture, and analysis were performed by Slidebook 5.0 (Intelligent Imaging 

Innovations, Denver, CO, USA). 

4.3 Results 

4.3.1 Sensitivity of PDI-sAb to reducing reagents  

Rapid disulfide cleavage of PDI-sAb was observed upon addition of high dosages 

of DTT (Figure 4-3A) or GSH (Figure 4-3B). Peak fluorescence was quickly achieved 

within 30 sec. PDI-sAb exhibited a threshold response to DTT cleavage. It remained in 

disulfide form at low DTT concentrations (5 and 50 µM) but was robustly cleaved by 

higher concentrations of DTT and reached 8-fold increase in fluorescence with the 

highest tested DTT concentration (30 mM). Compared to DTT, GSH was more potent in 
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cleaving PDI-Ab at 50 µM. However, GSH exhibited much lower reductive activity at 

higher dosages (5 and 30 mM), indicating the different electron transfer potentials of the 

two reducing reagents.  
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Figure 4-3 PDI-sAb sensitivity to reducing reagents.  

A, B, To determine the sensitivity of synthesized PDI-sAb to reducing reagents, various 

concentrations of DTT or GSH were added to PDI-Ab (○ 5 μM, ■ 50 μM, □ 500 μM, ♦ 5 

mM, ● 30 mM). Fluorescence increased immediately after the addition of reducing 

reagents and reached peak value within the first 30 seconds. C, Fold increase in RFU at 

300 sec reveals a difference in potency of reducing reagents. (*, p < 0.05; **, p < 0.01, 

***, p < 0.005) 
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4.3.2 Sensitivity of PDI-sAb to rhPDI and psPDI 

Platelet-rich plasma was isolated from citrated human whole blood and was 

incubated with PDI-sAb (2 μg/ml) for 5 min before dilution to 2% PRP in HBS buffer. 

Human recombinant PDI (0, 70, or 700 nM rhPDI) was then added to initiate PDI-sAb 

cleavage. The time and dose-dependent to the increase in PDI-sAb signal indicated 

sensitivity to reductase activity of nanomolar concentrations of rhPDI (Figure 4-4A). In 

these measurements, a low concentration of 50 μM DTT was added to provide a favored 

redox condition and to prevent dithiol reformation before sampling. Such low DTT 

concentration did not lead to appreciable increase in fluorescent signal (Figure 4-3A and 

Figure 4-4) indicating the shift in PDI-sAb signal was solely dependent on the thiol 

reductase activity provided by rhPDI (Figure 4-4B).  

The sensitivity of PDI-sAb to endogenous platelet reductase activity was also 

measured by flow cytometry with citrated 2% PRP. PRP was incubated with PDI-sAb in 

HBS buffer for 5 minutes before recalcification (5 mM Ca
2+

) and addition of agonists (60 

µM TRAP and 2 nM convulxin). Unstimulated platelets did not express significant 

reductase activity within the first 300 sec. A slight increase in PDI-sAb signal was 

observed at later times, which was probably caused by platelet activation and granule 

release indicated by slight increase in P-selectin expression after 400 sec post 

recalcification (Figure 4-5A, C, D). Stimulated platelets rapidly expressed massive 

reductase activity. The dynamics of the PDI-sAb signal were similar to that of P-selectin 

expression suggesting expression of reductase activity on platelet surface occurred at the 

same time as granule release (Figure 4-5B, C, D). 
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With the observation of concurrent expression of P-selectin and PDI activity on the 

platelet surface, correlation between PDI activity expression and phosphatidylserine (PS) 

exposure was also tested. A total of 10
4
 events were collected after incubating 2% PRP 

(isolated from PPACK treated whole blood) with PDI-sAb (5 μg/ml) and agonists (60 

µM TRAP and 2 nM convulxin) for 15 minutes. Baseline activity was measured in PDI-

sAb labeled non-stimulated PRP (Figure 4-6A, C). By the end of 15 minutes incubation, 

a majority (90.1%) of the stimulated platelets expressed P-selectin on their surfaces 

(Figure 4-6B). About half of the P-selectin expressing population exhibited cell surface-

associated thiol reductase activity (94.8% of the total reductase activity). There was a 

clear linear dependence of thiol reductase activity with P-selectin expression.  Only 

slightly over than half (59.6%) of the stimulated platelets became PS positive, but over 

80% of the reductase activity was expressed on PS positive platelets (Figure 4-6D). Our 

data indicates the expression of thiol reductase activity was directly associated with the 

level of platelet activation and granule release.  
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Figure 4-4 PDI-sAb sensitivity to exogenously added rhPDI.  

A, Real time flow cytometry of unstimulated platelets labeled with PDI-sAb. 

Recombinant human PDI (rhPDI) was added to initiate sensor cleavage. Mean 

fluorescence increased rapidly and reached maximum value by 300 sec at [rhPDI] = 700 

nM. B, A histogram of all collected events shows a significant shift in mean PDI-sAb 

fluorescence by 700 nM rhPDI.  
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Figure 4-5 Sensitivity of PDI-sAb to platelet-derived thiol reductase activity.  

A, B, Real-time flow cytometry of PDI-sAb labeled resting (A) or stimulated platelets 

(B). A rapid increase in PDI-sAb mean fluorescence was only observed when platelets 

were stimulated by TRAP and convulxin. C, D, A dynamic increase of PDI-sAb mean 

fluorescence is consistent with that of P-selectin expression on stimulated platelet 

surface. 
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Figure 4-6 Platelet expression of thiol reductase activity is associated with 

granule release and PS expression.  

A-D, Two dimensional dot profiles show the relationship between thiol reductase activity 

expression and granule release on resting or stimulated platelets and the relationship 

between thiol reductase activity expression and PS expression on resting or stimulated 

platelets. The vertical axis represents PDI-sAb fluorescence while the horizontal axis 

represents P-selectin (A, B) or PS (C, D) fluorescence.  
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4.3.3 Sensitivity of PDI-sAb to PDI inhibition 

To test the sensitivity of PDI-sAb to PDI inhibition, 2% PRP (isolated from 

PPACK treated whole blood) was incubated with the PDI inhibitors rutin (740 μM, IC50 

= 6.1 μM)[121] or PACMA 31(420 μM, IC50 = 10 μM)[131] along with platelet agonists 

(60 µM TRAP and 2 nM convulxin) and PDI-sAb (5 μg/ml). A total of 10
4
 events were 

collected after a 15 min incubation. Maximum thiol reductase activity was collected on 

stimulated platelets without inhibitor addition. Rutin is a selective inhibitor of PDI [121] 

but only caused partial reduction in reductase activity on stimulated platelets suggesting 

other platelet-derived thiol isomerases are also important sources of platelet surface 

reductase activity (Figure 4-7A). PDI-null platelets display normal P-selectin exposure 

[126]. A slight reduction in P-selectin exposure on rutin-treated platelets suggesting off-

target effects of rutin at the high dosage levels [126]. Complete inhibition of PDI-sAb 

signal was observed when stimulated platelets were treated with PACMA31 (Figure 4-

7C). This dramatic inhibitory effect of PACMA31 was probably caused by its cell 

permeability, which probably also contributed to the severely disturbed P-selectin 

expression (Figure 4-7D). We also found when platelets were treated with rutin or 

PACMA31, much less reductase activity was observed even in the P-selectin positive 

population, which indicates that the decreased PDI-sAb signal on rutin or PACMA31 

treated platelets was not simply due to reduced thiol isomerase expression caused by 

disturbed granule release (Figure 4-8). It has also been reported PDI inhibition 

upregulates PS exposure on endothelial cells [132], but we failed to detect an effect of 

rutin on platelets PS exposure (Figure 4-9).  
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Figure 4-7 PDI-sAb sensitivity to PDI inhibitors.  

Histograms show thiol reductase activity and P-selectin expression on resting (black), 

stimulated (blue) or inhibitor-treated stimulated (red) platelets. Rutin (740 μM) partially 

inhibited reductase activity (A) and had mild inhibitory effect on P-selectin expression 

(B) while PACMA31 (420 μM) resulted in a complete knock-out of reductase activity 

(C) and a large reduction in P-selectin expression (D).  
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Figure 4-8 PDI inhibitors cause reduction in thiol reductase activity expression 

on platelet surface.  

Two dimensional dot profile shows the relationship between thiol reductase activity 

expression (vertical axis) and P-selectin expression (horizontal axis) on resting platelet 

surfaces (A, D), stimulated but inhibited platelet surfaces (B, E), or on stimulated platelet 

surfaces (C, F). PDI specific inhibitors rutin (B) or PACMA 31 (E) was used to inhibit 

platelet-derived PDI activity. Both rutin and PACMA 31 caused significant reduction in 

platelet surface-associated thiol reductase activity even in P-selectin positive population. 
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Figure 4-9 Rutin does not cause reduction in platelet PS exposure.  

The histograms show thiol reductase activity (A), P-selectin expression (B) or PS 

exposure (C) on resting (black), stimulated (blue) or rutin-treated stimulated (red) 

platelets. Rutin caused significant reduction in mean PDI-sAb fluorescence indicating its 

inhibitory effect on PDI activity (A). Rutin also caused impaired P-selectin expression 

compare to stimulated but non-inhibited platelets (B). However, rutin did not cause 

reduction in PS exposure (C). 
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4.3.4 Detection of PDI reductase activity in a microfluidic thrombosis model 

CTI- (4 μg/ml) or PPACK- (100 μM) treated human whole blood was labeled 

with PDI-sAb (1:10 WB, 1 μg/ml) before it was perfused over a patterned collagen 

surface at 100 s
-1

 initial wall shear rate. Platelet deposition and reductase activity in 

growing thrombi were monitored simultaneously. The rapid increase of PDI-sAb signal 

was predominately observed over the first 200 sec whereas platelets continued to 

accumulate for over 500 sec (Figure 4-10). In the presence of thrombin, adding rutin (82 

μM) did not cause reduction in platelet aggregation or in PDI-sAb cleavage (Figure 4-10 

A-C). A similar effect was observed with a monoclonal function-blocking PDI antibody 

(RL90, 20 μg/mL); platelet aggregation on collagen was only affected by PDI inhibition 

when thrombin was inhibited by PPACK (Figure 4-11). Interestingly, rutin and RL90 

only caused reduction in PDI-sAb and CD41 fluorescence after 60 sec, which is when 

primary aggregation of platelets on collagen occurred.  
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Figure 4-10 Detection of thiol reductase activity in vitro. 

Low level of CTI (4 μg/ml, A-C) or PPACK (100 μM, D-F) treated whole blood was 

perfused over collagen at venous shear rate (100 s
-1

). A, B, Platelet deposition and thiol 

reductase activity were unaffected by rutin (82 μM) in the presence of thrombin. C, 

Images of platelet and PDI-sAb signals on collagen at 500 seconds show no 

distinguishable difference between control and rutin treated thrombi. D, E, Rutin caused 

significant reduction in platelet deposition and detected thiol reductase activity when 

thrombin was inhibited by PPACK. F, Real time images at 500 seconds show a severe 

reduction in platelet and PDI-sAb signals in rutin treated thrombus. Scale bars represent 

100 μm. 
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Figure 4-11 Rutin causes severe reduction in platelet deposition on collagen in the  

 absence of thombin.  

Low level of CTI- (4 µg/mL) treated (A, B) or PPACK- (100 µM) treated whole blood 

(C, D) was perfused over a collagen surface at venous shear rate (100 s
-1

). A, B, Platelet 

deposition and thiol reductase activity were unaffected by RL90 (20 μg/mL) in the 

presence of thrombin. C, Images of platelet and PDI-sAb signals on collagen at 500 

seconds show no distinguishable difference between control and RL90 treated thrombi. 

D, E, RL90 caused significant reduction in platelet deposition and detected thiol 

reductase activity when thrombin was inhibited by PPACK. F, Real time images at 500 

seconds show a severe reduction in platelet and PDI-sAb signals in RL90 treated 

thrombus. Scale bars represent 100 μm. 
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4.3.5 Detection of PDI reductase activity in vivo 

Laser injury of mouse cremaster arterioles consistently produces a hemostatic 

thrombus that prevents continued red cell loss, and develops a characteristic architecture 

consisting of a core of highly activated platelets covered by a shell of loosely-packed and 

less activated platelets [133]. Using a mouse anti-platelet scaffold we produced a mouse 

PDI-sAb to investigate PDI reductase activity in the context of this injury model. We 

consistently observed a gradient of PDI-sAb signal within the thrombus, which was 

strongest in the core region proximal to the injury site (Figure 4-12). These results are 

consistent with our in vitro results showing increased PDI reductase activity associated 

with highly activated, P-selectin positive platelets.  
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Figure 4-12 Detection of thiol reductase activity in vivo.  

Thiol reductase activity was detected in thrombus formed after laser-induced arteriolar 

wall injury in mouse. The site of the injury was observed using confocal fluorescence 

microscopy. Black arrow indicates flow direction. A, Platelets (blue) were outlined with 

bright field images. B, C, Thiol reductase activity (green) was more concentrated in the 

core area and co-localized with P-selectin positive (outlined in red) area (C). 
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4.4 Discussion and Conclusions 

In vivo studies have suggested that endothelial PDI plays a role in thrombus 

formation. [125], but the importance of platelet-derived PDI has been questioned. To 

address this issue, in this study we have developed a platelet-targeted PDI sensor (PDI-

sAb) that is suitable for sensing thiol reductase activity on or near the surface of human 

platelets in a microfluidic thrombosis model that does not include endothelial cells. 

Additionally, we generated a version of the sensor that targets mouse platelets and used it 

to visualize sensor fluorescence dynamics within a growing thrombus in an in vivo laser 

injury model. 

In flow cytometry, we found that PDI-sAb was a sensitive marker for thiol 

reductase activity and was capable of detecting the activity of nanomolar levels of rhPDI. 

Upon activation, platelets displayed rapidly increasing PDI-sAb signal, which was 

consistent with the dynamics of P-selectin expression on platelet surface, suggesting the 

endogenous source of detected reductase activity. We subsequently found the majority of 

the detectable activity was localized on PS positive platelets, suggesting that expression 

of the reductase activity is dependent on the level of platelet activation. 

In a microfluidic clotting assay, we were able to visualize the development of 

PDI-sAb signal in growing thrombi on collagen surface. Most of the PDI-sAb signal 

increase was detected during the first 200 sec suggesting initial platelet deposition on 

collagen and proximity to the surface, instead of secondary platelet aggregation during 

clot buildup, was correlated with platelet thiol reductase activity expression. Despite the 

high micromolar levels of GSH contained in whole blood [134], we found neither 
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anticoagulated whole blood nor thrombin (concentrated pure enzyme) exhibited 

appreciable reductase activity for at least 15 minutes (Figure 4-13), which confirms the 

thrombus incorporated PDI-sAb signal was caused by endogenous thiol reductase activity 

instead of non-specific cleavage by blood enzymes. Several in vitro studies have shown 

the importance of thiol isomerase activity for normal platelet aggregation [108, 110, 112, 

121, 125]. However, neither PDI inhibitor rutin nor PDI antibody RL90 caused reduction 

in platelet accumulation on collagen surface in the presence of thrombin in our hands. A 

previous study has shown PDI-null platelets exhibit normal aggregation and granule 

release when stimulated by high dosages of agonists [126]. In our microfluidic assay, the 

abundant surface-immobilized collagen and locally-generated secondary aggregation 

agonists (i.e. thrombin, ADP, and thromboxane) were probably sufficient to overcome 

PDI inhibition by rutin or RL90. Thus, we attribute the lack of efficacy of PDI inhibition 

to high level of both primary and secondary agonists for platelet aggregation and the 

compensating effect from other platelet-expressed thiol isomerases. We also found that 

when thrombin is inhibited, PDI inhibition only disturbed platelet aggregation after the 

initiation phase (~60 sec). In this assay, immobilized collagen vigorously and rapidly 

activates and recruits platelets during the initiation phase. It is unlikely PDI can further 

promote this process given both of the potency and surface density of collagen is high. In 

this microfluidic system, PDI was most likely taking part in platelet secondary 

aggregation by either facilitating α2bβ3 remodeling or other unknown mechanisms and its 

effect is only detectable in the absence of thrombin. However, we cannot tell if this was 

because PPACK neutralized the masking effect of thrombin on PDI function or thrombin 
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inhibition caused deficient expression of other endogenous thiol isomerases as alternative 

sources of thiol isomerase activity.   

We have also presented, to our knowledge, the first sensor capable of measuring 

the spatiotemporal distribution of PDI reductase activity in vivo. We observed a gradient 

of PDI-sAb signal emanating away from the in vivo injury site. PDI reductase activity 

was predominately associated with highly activated P-selectin positive platelets which 

were localized in the core of thrombus. Both endothelium and platelets are sources of 

extracellular PDI in vivo [107, 108, 125]. Endothelium- and platelet-derived PDI may 

differ in function in that endothelium PDI may be more critical for initial platelet 

recruitment while platelet PDI may be more important for continued thrombus 

propagation [107, 121, 135]. The finding that PDI inhibition had no effect on initial 

platelet aggregation on collagen in the microfluidic thrombosis model lacking 

endothelium is in agreement with this scenario. Sequential PDI secretion by endothelium 

and then activated platelets would introduce a time dependency of PDI availability from 

different cellular sources [107, 125], which could also contribute to a less dominant role 

of platelet PDI on initial platelet adhesion in vivo.  

The mouse PDI-sAb can detect endogenous platelet reductase activity as well as 

reductase activity derived from other cellular sources but the sensor is clearly sensing the 

platelet surface. The fact that PDI-sAb signal accumulated near endothelium before the 

appearance of the P-selectin positive core area also suggests endothelium as the initial 

source of PDI. After the core-shell structure of thrombus was fully developed, PDI-sAb 

signal was still well retained in the P-selectin positive core area, consistent with flow 
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cytometry results that reductase activity was most localized on the most activated 

platelets. 

In summary, we used a novel approach to visualize extracellular reductase activity during 

thrombus formation both in vitro and in vivo. We found the distribution of reductase 

activity was strongly correlated with P-selectin display and somewhat less correlated with 

PS exposure even though most of reductase activity was localized on PS exposed 

platelets. Expression of thiol isomerase activity was mostly correlated with initial platelet 

aggregation on collagen in the microfluidic thrombosis model. PDI inhibition showed 

limited effect in the present of thrombin suggesting dependency of platelet PDI function 

on the combination and level of triggers for platelet activation. Reductase activity was 

concentrated in the thrombus core area in vivo and was co-localized with P-selectin 

display, which could be a result of more platelet activation in the core and physical 

proximity of the core to endothelium, an alternative cellular source of reductase activity.     
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Figure 4-13 PDI-sAb specifically detects thiol isomerase activities in blood. 

A, High CTI- (40 μg/mL) treated whole blood was labeled with the PDI-sAb and rested 

in wells for 15 minutes. No fluorescence change was detected by the end of 15 minutes in 

resting blood (black). In contrast, adding DTT (30 mM, red) at t = 600 seconds (indicated 

by black inverted triangle) caused over 10-fold change in fluorescence. B, Thrombin (IIa, 

1 μM, black) or DTT (15 mM, red) was added to PDI-sAb (indicated by black inverted 

triangle) in well-plate. The fluorescence change in the wells was recorded for up 15 

minutes. IIa did not cleave PDI-sAb, while DTT caused rapid cleavage of PDI-sAb, 

indicated by the 10-fold increase in fluorescence. 
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Chapter 5 : Minimum wound size for clotting: flowing blood coagulates on a single 

collagen fiber presenting tissue factor and von Willebrand factor  

5.1 Introduction 

Blood coagulation in healthy humans is tightly regulated such that hemostatic clot 

formation is rapid but self-limiting at sites of vascular injury. Vascular damage involves 

exposure of flowing blood to collagen and tissue factor (TF), components that platelets 

and plasma do not normally encounter in healthy vessels. TF binds Factor VIIa to 

generate Factor Xa (FXa) and Factor IXa (FIXa), leading to amplified thrombin 

generation and consequent fibrin polymerization.  Platelet deposition is driven by 

collagen and thrombin and autocrinic release of ADP and thromboxane. The extracellular 

triggers, platelet receptors, and intracellular signaling events of platelet activation as well 

as the TF-triggered extrinsic pathway of coagulation are well defined in terms of 

molecular components.  

However, it is unknown if a lower size limit of a surface defect exists for human 

blood coagulation under flow. Prior experimental determinations of the smallest sized 

surface stimuli necessary for clotting of human blood, defined as the patch size threshold, 

have not deployed the combination of whole blood, hemodynamic flow, and a platelet 

adhesive stimulus. Observations with plasma indicate that a surface trigger may be small 

enough to escape hemostatic responses because diffusible and rapidly inhibited species 

might not reach a local critical concentration. Thus, transport effects may sufficiently 

damp the amplification reactions of the coagulation cascade. Plasma incubated under 

static conditions has great difficulty in generating fibrin when placed on lipid/TF features 

smaller than 50 µm in diameter, but rapidly generates fibrin on features larger than 100 
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µm in diameter.[136] In such measurements, the rate of generation of active FXa and 

Factor Va, thrombin, and fibrin monomer in proximity to the discrete lipid surface must 

overcome (i) diffusion that dilutes local concentrations and (ii) inhibitors such as tissue 

factor pathway inhibitor and antithrombin that quench active species. A similarly sized 

patch threshold was detected with static incubation of platelet rich plasma over lipid-TF 

features smaller than 100 µm in diameter,[137] but a strong patch size threshold was less 

apparent when whole blood was incubated on such features. Convective flow adds an 

additional transport mechanism to remove reactive species from a discrete triggering 

zone.  Perfusion of plasma through a capillary with a 200-µm long zone of lipid/TF 

displayed difficulty in clotting at even sub-physiological wall shear rates above 30 s
-

1
.[138]  Similarly, capillary perfusion of platelet rich plasma over 200-µm long zones of 

lipid/TF displayed difficulty in clotting at a venous wall shear rates of 80 to 120 s
-1

. 

However, a platelet adhesive and stimulatory surface such as collagen was not part of that 

measurement. In contrast, human whole blood readily clots on 250-µm diameter spots of 

microprinted collagen/TF [25] or 250-µm long zones of collagen/TF in microfluidic 

channels [13, 24] at venous and arterial flow conditions. 

In the present microfluidic study of human blood, surface feature size was 

reduced to one of the smallest possible physiological procoagulant trigger, a single 

collagen fiber.  Lipidated TF and von Willebrand factor (VWF) were used to decorate 

collagen fibers to mimic the surface stimuli expected in vivo.[139, 140] Human whole 

blood was minimally perturbed with 4 µg/mL corn trysin inhibitor (CTI, a βFXIIa 

inhibitor) and was immediately perfused over patterned small patches after phlebotomy 
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within 5 min in order to minimize contact-pathway triggered clotting while maintaining 

normal blood responsiveness of the extrinsic pathway of TF initiated coagulation.[12, 13] 

By taking this microfluidic approach, we determined if a patch size threshold exists for 

human blood. We determined under what biochemical and hemodynamic conditions a 

single collagen fiber can support a clotting response of platelet deposition, platelet-

localized thrombin generation,[55] and fibrin polymerization.  

5.2 Materials and Methods 

5.2.1 PDMS patterning and flow devices 

Poly(dimethylsiloxane) (PDMS, Ellsworth Adhesives, Germantown, WI) 

microfluidic devices were fabricated as previous described.[22] Single channel (10 or 20 

µm in width, 60 µm in height) devices were used for protein patterning on glass slides. 

The device used for microfluidic thrombosis assay has 8 evenly spaced flow channels 

(250 µm in width, 60 µm in height) that connect individual cylindrical reservoirs to a 

single outlet. Both devices can be reversibly mounted on glass slides by vacuum bonding.  

5.2.2 Preparation of small collagen patches 

Glass slides were treated with Sigmacote® (Sigma-Aldrich, St. Louis, MO) to 

impede blood clotting outside the patterned prothrombotic surfaces before they were 

rinsed with DI water and were dried with compressed filtered air. Perfusion of 5 µL of 

collagen type I (1 mg/mL, Chronolog Corp, Havertown, PA) followed by 20 µL of 

bovine serum albumin (0.5% BSA in HBS) through the main channel on the patterning 

device that was mounted on a glass slide resulted in immobilized patches of aligned 

collagen fibers on the glass slide.[20, 22] In order to capture single collagen fibers, 
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collagen type I was diluted (10x dilution, 100 µg/mL) in isotonic glucose buffer before 

being perfused through 10 µm wide channels. Lipidated TF was added by incubating 

Dade® Innovin® recombinant human TF (VWR Corp, Radnor, PA) over patterned 

collagen for at least 30 min before a BSA rinse. VWF was added by incubating collagen 

fibers with human plasma VWF (30 µg/mL, FVIII free, Haematologic Technologies, 

Essex Junction, VT) prior to perfusion and an immediate rinse with BSA. Both bright 

field imaging and fluorescent post-staining were used to ensure the precision of the 

patterning technique (Figure 5-1). For collagen staining, micropatterned zones were 

stained with biotinylated anti-collagen I antibody (Abcam, Cambridge, MA), which was 

then detected with Alexa Fluor 488 streptavidin (Life Technologies, Grand Island, NY) 

before a buffer wash. Annexin V-PE (1% in 5mM CaCl2 buffer, BD Bioscience, San Jose, 

California) and anti-VWF (0.5% in HBS buffer, Abcam, Cambridge, MA) were 

subsequently added for fluorescent staining when collagen fibers were precoated with TF 

liposomes and VWF, respectively. 
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Figure 5-1 Microfluidic perfusion and micropatterned collagen fiber surfaces.  

A, An 8-channel microfluidic device (each channel: 250-μm wide x 60-μm high) for 

perfusion of whole blood over a patterned collagen feature. CTI (4 μg/ml)-treated whole 

blood was transferred to each reservoir within 5 min of phlebotomy and was immediately 

perfused over the collagen zone at venous or arterial wall shear rates (100 or 1000 s
-1

) 

controlled by a syringe pump connected at the outlet.  B, E, Red dashed lines indicate 

location of patterned collagen. Collagen fibers were oriented perpendicularly to the flow 

channels (dark vertical lines are channel side walls). B, C, A 20-µm collagen zone was 

typically composed of 4 to 8 aligned collagen fibers. E, F, Single collagen fibers were 

confined within the 250-μm wide zone and no upstream or downstream collagen 

deposition was detected. Annexin V staining demonstrated TF liposomes (red) absorbed 

on fibers in the 20-μm collagen zone (D, cyan) or on a single collagen fiber (G, cyan). 

All scale bars: 50 μm in B-G. 
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5.2.3 Blood collection and preparation  

Blood was collected via venipuncture from health donors (who were self-claimed 

to be free of alcohol and medication for at least 72 hr prior to donation) into D-Phe-Pro-

Arg-CMA (PPACK, 100 μM, Haemtech, Essex Junction, VT) and apixaban (1 μM, 

Selleckchem, Houston, TX) or into CTI (4 or 40 µg/mL WB, Haematologic Technologies, 

Essex Junction, VT). Informed consent was obtained for each donor and performed in 

accordance with the University of Pennsylvania’s IRB approval and the Declaration of 

Helsinki. Minimal amount of CTI (4 µg/mL) was used to block surface induced clotting 

during blood collection while still allowing thrombin generation through both the contact 

and/or the extrinsic pathways depending on TF surface concentration in patterned 

prothrombotic patches.[12, 13] The combination of 100 μM PPACK (irreversible 

thrombin inhibitor) and 1 μM apixaban (direct Xa inhibitor) was used to achieve 

complete thrombin inhibition.  

Blood was treated with anti-human CD61 antibody (BD Biosciences, San Jose, 

California) and Alexa Fluor 647 fluorescent fibrinogen (Life Technologies, Grand Island, 

NY) for platelet and fibrin(ogen) detection, respectively. All experiments were initiated 

within 5 min after venous phlebotomy. Platelet thrombin biosensor was added into blood 

in a 1:9 ratio for the observation of thrombin generation in some experiments [55]. In 

these experiments, anti-human CD41a antibody was used for platelet detection.  
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5.2.4 Microfluidic thrombosis model 

The 8-channel flow device was mounted perpendicularly to patterned collagen 

patches. Blood was perfused over collagen patches at either venous (100 s
-1

) or arterial 

initial wall shear rates (1000 s
-1

). Initial wall shear rate in flow channels was controlled 

with a syringe pump withdrawal at constant volumetric flow rate at the outlet on the 

device. Platelet accumulation, fibrin formation, and thrombin generation were monitored 

with a fluorescence microscope (IX81, Olympus America Inc., Center Valley, PA). 

Images were captured with a CCD camera (Hamamatsu, Bridgewater, NJ) and were 

analyzed with ImageJ (NIH, Bethesda, DC). To avoid edge-wall effects, average 

fluorescence after background subtraction in the center 65% region of the collagen 

patches were collected and recorded for data analysis.  

5.2.5 Scanning electronic microscopy 

Thrombi formed on single collagen/TF/VWF fibers were fixed under flow in situ 

with 2% glutaraldehyde in 0.1 M sodium cacodylate buffer for at least 3 hr at room 

temperature before they were removed from the PDMS microfluidic devices. The fixed 

thrombi were then incubated in the same buffer overnight at 4 °C, dehydrated in graded 

ethanol (with balance of sodium cacodylate buffer), finalized with hexamethyldisilane, 

air dried and stored under vacuum before sputter coating with gold/palladium and imaged 

by scanning electron microscopy. 

5.2.6 Statistical analysis 

Data were compared to controls using two-tail Student’s t-test. P-value < 0.05 

was considered statistical significant.  
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5.3 Results 

5.3.1 Micropatterned zones of collagen fibers   

Using a micropatterning microfluidic device, a 20-μm long zone of multiple 

collagen fibers was deposited on glass, followed by placement perpendicular to the fiber 

orientation of the 8-channel microfluidic blood perfusion device with 8 independent 250-

μm wide flow channels for blood perfusion (Figure 5-1A).  Typically, 4 to 8 individual 

collagen fibers were present in this 20-μm long zone (Figure 5-1B, C) which were then 

coated with lipidated TF (Figure 5-1D) and/or VWF in some experiments.  No fibers 

were detected outside the 250-µm wide × 20-µm long patterning region.  Similarly, a 

single collagen fiber was deposited across the confined 250-µm wide region (Figure 5-1 

E-G).  Annexin V staining confirmed that collagen fibers were able to bind by 

physisorption the TF liposomes containing phosphatidylserine (Figure 5-1G).  TF 

liposomes covered 30.4 ± 4.1 % (n = 11) of total collagen fiber surface, which 

corresponded to a relatively high TF surface concentration of ~1-10 TF molecules/μm
2
 

[13]. This TF surface concentration is comparable to that expected in adventitial regions 

of vessels or in human atherosclerotic carotid artery plaques.[139, 141] 

5.3.2 A single collagen fiber with tissue factor triggers coagulation at venous wall 

shear rate 

The combination of TF-coated collagen fibers, CTI-treated whole blood, and a 

venous shear rate (100 s
-1

) resulted in a favorable condition for thrombin generation. 

Under this condition, platelets were able to adhere and form a substantial clot buildup of 

platelets and fibrin on either a 20-µm long collagen/TF zone (20-µm collagen/TF) or on a 

single collagen/TF fiber (Figure 5-2A).  For the 20-µm collagen/TF, platelet 
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accumulation began in the first 100 sec of flow and continued over the entire 600 sec 

experiment, resulting in a clot mass that essentially filled the channel (60 µm high) over 

the collagen surface (Figure 5-2C). Within the clot formed on the 20-μm collagen/TF, 

thrombin was robustly detected using the thrombin activity biosensor bound to the 

deposited platelets (Figure 5-2A), while fibrin polymerization proceeded over the entire 

course of the experiment (Figure 5-2C) within the platelet deposit.  For zones mimicking 

the defect size of a single endothelial cell (~20 µm), human blood robustly clots under 

venous flow conditions when presented the essential triggers of collagen and tissue factor. 

On a single collagen/TF fiber, platelets were able to adhere and accumulate, generate 

thrombin and fibrin under a venous flow condition (Figure 5-2A, C).  For a single 

collagen fiber, the platelet deposits did not grow across the entire channel height, but 

reached a height of about 30 microns by 600 sec. This reduction in platelet accumulation 

(per unit area) on the single collagen/TF fiber was apparent throughout the entire time 

course of the experiment (Figure 5-2C). However, fibrin generation per unit area was not 

significantly affected by the reduction of stimulus size to the limit of a single collagen 

fiber that captured platelets (Figure 5-2C). Consistent with prior studies with lipid coated 

surfaces presenting TF, the use of lipidated TF alone without collagen was not able to 

trigger or support a clotting response in the wall shear rate range of 100 to 1000 s
-1 

[136, 

137]. 
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Figure 5-2 Thrombus formation on collagen/TF at venous and arterial flows 

conditions.  

A, B, CTI-treated (4 μg/ml) whole blood was perfused over collagen/TF at venous wall 

shear rate (100 s
-1

) or arterial wall shear rate (1000 s
-1

).  Blood coagulation occurred on 

the 20-μm long collagen/TF zone and the single collagen fiber at 100 s
-1

, but not at 1000 

s
-1

 (excluding side-wall accumulation where shear rates are reduced). B, D, For the center 

two-thirds of the channel (excluding the side-wall), platelet and fibrin fluorescence were 

imaged dynamically for 8 replicate clots at each condition. Vertical dashed lines 

represent flow channel side walls. Flow direction: top to bottom. Scale bar: 50 μm. (***p 

< 0.005; ns, not significant). 
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The production of thrombin and fibrin in this experiment was highly dependent on 

the lipidated TF bound to the collagen fibers. Fibrin generation was not detected on a 20-

μm collagen zone or the single collagen fiber lacking TF (Figure 5-3B,E and Figure 5-

4). In the absence of TF, thrombin generation in minimally perturbed blood (4 μg/mL 

CTI) requires a Factor XIIa/Factor XIa-dependent mechanism via the contact pathway, 

which is substantially inhibited by CTI during the short duration of the 600-sec 

experiment. Also, contact activation is generally slower and less efficient than the 

extrinsic pathway under flow condition.[12] Even with a low level of CTI (4 µg/mL), a 

small amount of thrombin likely was generated to enhance platelet activation and 

deposition on the 20-μm collagen zone lsacking TF, but was insufficient to generate any 

fibrin (Figure 5-3E). Relative to CTI-treated blood, complete inhibition of thrombin 

generation using PPACK/apixaban caused a significant reduction of platelet deposition 

on the 20-μm collagen lacking TF (Figure 5-3D). For perfusion of CTI-treated whole 

blood at venous shear rate, there was substantial platelet deposition on 20-μm collagen 

lacking TF, but much smaller deposits were seen on a single collagen fiber lacking TF 

(Figure 5-4). Platelet deposition on a single collagen fiber (no TF) was essentially 

negligible upon thrombin inhibition with PPACK/apixaban (Figure 5-4C). Thus, the 

combination of a platelet adhesive and stimulatory surface along with local thrombin 

generation triggered by TF (or much less potently by contact activation in CTI-treated 

blood) was required for platelet deposition on a trigger as small as a single collagen fiber. 
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Figure 5-3 Thrombus formation on 20-μm collagen at venous flow condition.  

Both platelet deposition (red) and fibrin formation (green) was observed when CTI-

treated (4 μg/ml) whole blood was perfused over 20-μm collagen/TF at 100 s
-1

. B, C, No 

fibrin deposition was observed when CTI or PPACK (100 μM) and apixaban (1 μM) 

treated blood was perfused over 20-μm collagen at venous flow condition. Horizontal 

dashed lines indicate the location of collagen strips (determined by bright field imaging) 

while vertical dashed lines outline flow channels. Flow direction: top to bottom. D, E, 

The presence of TF significantly promoted endpoint platelet and fibrin deposition. Scale 

bar: 50 μm. (* p< 0.05; ** p< 0.01; **** p < 0.001). 
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Figure 5-4 Thrombus formation on small patches of collagen (no TF) at venous 

and arterial flow conditions.  

CTI (4 μg/ml A, B) or PPACK (100 μM) and apixaban (1 μM) treated whole blood (C, 

D) was perfused over a single collagen fiber or over 20-μm collage at venous (100 s
-1

, A, 

C) or arterial (1000 s
-1

, B, D) wall shear rate. Fibrin was not detected on collagen 

surfaces under these shear conditions. Without thrombin inhibition, substantial platelet 

accumulation was observed on 20-μm collagen. Reduction in platelet accumulation was a 

result of thrombin inhibition by PPACK and apixaban. Vertical dashed lines outline flow 

channels. Horizontal dashed lines indicate the location of collagen patches. Flow 

direction: top to bottom. Scale bar: 50 μm.  
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5.3.3 Patch threshold on collagen/TF at arterial flows when von Willebrand Factor 

is absent 

Under arterial flow with wall shear rate of 1000 s
-1

, reactive species washout in 

the boundary layer is greater (Péclet number > 10
3
), platelet collision times are shorter 

(<5 msec) and shear forces per platelet are substantially greater (>1000 pN).[142, 143] 

Severely impaired thrombus formation was consistently observed on both 20-μm long 

zones of collagen and single collagen fibers, even in the presence of TF coating the 

collagen (Figure 5-2B, D). On the 20-μm collagen/TF zone, some platelets deposited 

near the channel side wall where the no-slip condition applies and the flow velocities 

were lower.  However, in the center two-thirds of the rectangular channel (neglecting the 

side walls) where the wall shear rate was 1000 s
-1

, platelet and fibrin deposition was 

negligible (Figure 5-2B,D and Figure 5-3B). Even with immobilized TF, a single 

collagen fiber was neither able to capture platelets nor able to support thrombin 

generation at 1000 s
-1 

(Figure 5-2B,D and Figure 5-4).  This result was fully consistent 

with the essential role of VWF required for platelet GPIbα-dependent capture to collagen 

at arterial shear rates[144] that proceeds firm arrest mediated by GPVI-engagement and 

subsequent α2β1 integrin activation.  In the absence of VWF pre-adsorbed to collagen, a 

patch size threshold existed on 20- ollagen/TF and on a single collagen fiber/TF due 

to a fundamental defect in platelet attachment at arterial wall shear rates, even with TF 

present.  The level of wall shear stress (10 dyne/cm
2
) at this arterial condition was 

insufficient to cause plasma vWF to unfold and form fiber aggregates on the collagen, as 

previously observed at pathological wall shear stresses of >300 dyne/cm
2
 (at wall shear 

rate of >30,000 s
-1

) typical of stenosis.[145] 
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Figure 5-5 For arterial flow, coagulation on collagen/TF fibers requires pre-  

adsorbed VWF.  
A, D, CTI-treated whole blood was perfused at arterial wall shear rate 1000 s

-1
 over 20-

μm collagen/TF zone plus VWF or over a single collagen/TF fiber plus VWF. With 

VWF, the collagen/TF accumulated platelets (red) and fibrin (green) for the 20-μm zone 

or the single fiber by 600 sec. B, E, Onset of platelet deposition on collagen/TF/VWF 

fibers was instantaneous after flow initiation. C, F, There was ~ 300 sec delay in fibrin 

production on both 20-μm zone and a single collagen/TF/VWF. B-E, In comparison, both 

platelet deposition and fibrin formation were essentially absent on collagen/TF lacking 

VWF. Vertical dashed lines represent flow channel side walls. Flow direction: top to 

bottom. Scale bar: 50 μm. (***p < 0.005). 
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Figure 5-6 Incorporation of plasma vWF into formed thrombus on single 

collagen/TF/VWF fibers.  

A, B, Detected VWF (cyan) on a single collagen/TF/VWF fiber is co-localized with 

platelet (red). C, VWF signal on single collagen/TF/VWF increased significantly over 

time. Negative control images confirm that a single collagen/TF fiber lacking pre-

adsorped VWF is not able to capture VWF from plasma. All images were taken at the 

end of flow experiments (t = 600 sec). Vertical dashed lines outline flow channels. Flow 

direction: top to bottom. Scale bar: 50 μm. (*** p < 0.005). 
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5.3.4 Single collagen fiber with TF and VWF supports coagulation at arterial shear 

rate 

At an arterial wall shear rate of 1000 s
-1

, pre-adsorption of VWF to collagen 

eliminated the patch size threshold and promoted platelet and fibrin deposition on both 

the 20-μm collagen/TF/VWF and the single collagen fiber/TF/VWF feature (Figure 5-5). 

On collagen/TF/VWF, platelet deposition began immediately after flow initiation. The 

rate of platelet deposition on the 20-μm collagen/TF/VWF was relatively constant over 

the 600 sec experiment while a gradual slowing in platelet deposition was observed on a 

single collagen/TF/VWF fiber after the first 100 sec (Figure 5-5B,E). Under arterial flow, 

fibrin generation was less abundant than that observed for venous flow conditions 

(Figure 5-5C), consistent with previously observations for 250-µm collagen/TF features 

lacking pre-adsorbed VWF.[24] Fibrin generation was however no longer confined near 

the side walls of the device with reduced flow, as was seen for collagen/TF (no VWF). 

Fluorescent staining revealed that the captured platelets also released platelet VWF and 

the clot localized VWF signal increased with time (Figure 5-6). In contrast, the single 

collagen/TF fiber lacking pre-adsorbed VWF did not exhibit the ability to capture either 

flowing platelets or sufficient plasma VWF from blood (Figure 5-6 and Figure 5-7C). 

Clearly, pre-adsorbed VWF mediated more efficient platelet deposition than collagen 

alone, as expected for high shear conditions [146]. Furthermore, the presence of TF 

significantly promoted the probability of platelet deposition on a single VWF coated 

collagen fiber. Unlike the complete coverage of the single collagen/TF/VWF fiber by 

platelets and fibrin (Figure 5-7A), scattered platelet microaggregation but not fibrin 

deposition was observed on the single collagen/VWF fiber without immobilized TF 
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(Figure 5-7B). The maximum height of the formed clot on a single collagen/TF/VWF 

fiber was limited to ~10 μm over the collagen fiber on the surface (Figure 5-8), 

considerably smaller than the nearly occlusive clot heights seen over the 20-μm 

collagen/TF/VWF zone under venous flow conditions. Scanning electron microscopy 

(SEM) images show only three to four layers of platelet deposition on the single 

collagen/TF/VWF fiber (Figure 5-7D, E). The bottom layer platelets were fully spread 

and adherent to the surface, whereas the top layers platelets displayed an activated and 

rounded morphology with pseudopods.   
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Figure 5-7 VWF and TF synergistically promote coagulation on single collagen 

fiber at arterial flow.  

A, CTI-treated whole blood was perfused at arterial wall shear rate 1000 s
-1 

over single 

collagen fibers. Platelets (red) and fibrin (green) coated the single collagen/vWF/TF fiber 

by the end of 400 sec. B, Scattered small platelet aggregates but not fibrin deposited on 

the single collagen/vWF fiber. C, No platelet or fibrin was captured on the single 

collagen/TF fiber lacking VWF. Scale bars represent 50 μm in A-C. D, SEM image 

showing the structure of a thrombus formed on a single collage/vWF/TF fiber. E, Closer 

view of the area enclosed in the red box showing three to four layers of platelet 

deposition on the collagen/vWF/TF fiber. Bottom layer platelets were flat and fully 

adherent to the surface, whereas top layer platelets were activated but unspread. Flow 

direction: top to bottom.  
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Figure 5-8 Surface plot of platelet deposits on a single collagen/TF/VWF fiber.  

Surface plots of platelet deposits on single/TF/vWF fibrils were constructed in Image J 

with stacks of confocal images taken at the end of the experiments (t = 600 sec, z-step 

size = 2 µm). More platelets tend to accumulate along the wall due to edge-wall effect. 

However, the maximum height of platelet mass is 8-10 µm in the center two-thirds of the 

channel where all the dynamic fluorescence data was collected.  
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5.4 Discussion 

In this microfluidic study with human blood, we define the conditions for flowing 

blood to clot on features as small as a single collagen fiber.  At venous whole blood flow, 

a single TF-coated collagen fiber promotes robust coagulation in the absence of any 

apparent patch size threshold. For arterial blood flow over collagen/TF lacking VWF 

(and platelets), the convective removal of FXa and FIXa from the TF liposomes 

quenched any observable thrombin production and subsequent fibrin polymerization. To 

overcome patch size thresholding at arterial flows, human blood exploits VWF to initiate 

a full coagulation response on a biological unit as small as a single collagen fiber.   

Numerous mouse studies,[130, 133, 147] ex vivo studies with human blood in 

microfluidic assays,[55, 148, 149] and multiscale numerical modeling [62, 150-152] have 

quantified the complex hemodynamic and transport interactions during coagulation.[153] 

Beyond the highly regulated biochemical networks associated with platelet signal 

transduction and the coagulation protease cascade, relevant physical processes during 

hemostasis include: (i) platelet margination to the wall due to red blood cell motions, (ii) 

the diffusivity of reactive species and their enhanced removal by convection or intraclot 

permeation, (iii) modulation of intraclot diffusion and permeation by platelet retraction, 

and (iv) the effect of flow on the rate and adhesive success of platelet encounters with the 

surface.[130, 147, 149, 154-156]  Importantly, the structural and kinetic properties of 

VWF facilitate platelet capture at high shear conditions [144] and VWF deficiency is 

strongly linked to bleeding phenotypes.[157] 



130 
 

A plasma or platelet rich plasma (PRP)-based static experimental system does not 

fully reflect the complexity of whole blood clotting under hemodynamic conditions.  

With flow, red blood cells drive elevated platelet levels near the wall and this 

phenomenon does not occur in flowing platelet rich plasma. With flowing blood, the 

platelet deposition density greatly exceeds that expected under static conditions. Platelet 

surface area in the dense retracted core of a clot can reach levels as high as 100 cm
2
/µL 

of clot.[153] With platelet deposition, the membrane surface area is greatly increased for 

accumulation of coagulation factors (such as FXa), a process absent in plasma studies of 

patch size thresholding. Deposited platelets can also create restricted transport zones to 

facilitate assembly of coagulation components in the core of the hemostatic thrombus [55, 

130, 133, 147] as well as offering α2bβ3 binding sites to anchor fibrin polymerization 

under flow.   

These studies address the minimum length scale and biochemical criteria 

necessary for a hemostatic response and are fully consistent with the known bleeding 

risks linked to deficiencies in platelets, thrombin generation, or VWF.  Consistent with 

our findings with human whole blood, in vivo laser injury of the mouse cremaster 

arteriole causes a micron-scale wall defect [158] to drive platelet deposition, thrombin 

generation,[55, 130] and fibrin polymerization, especially in the core of the clot.[133, 147] 

Clot production under flow is also highly relevant to dangerous thrombotic events of 

coronary artery occlusion. An important issue related to the patch size threshold is 

whether a surface defect is of sufficient size and potency to cause vessel occlusion at a 

given prevailing flow condition. In coronary stenosis, pathological shear rates are many 
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fold greater than the physiological levels of the current study. Collagen triggers plasma 

VWF fiber formation upon acute exposure of platelet free plasma to a pathological shear 

of over 30,000 s
-1

.[145] Also, these large insoluble fibers can capture and support shear 

induced platelet activation.[159]  The observation of a single collagen fiber coated with 

TF and VWF supporting clotting is also consistent with an earlier study of whole blood 

perfused over VWF pre-coated microspheres (2-μm diameter) at a pathological shear rate 

of 10,000 s
-1

 with platelet aggregation extending over 5 bead diameters downstream of 

the initial platelet-bead adhesion.[160]  

The maximum height of microthrombi on single collagen/TF/VWF fibers was 

~10 μm with three to four layers of platelets, indicating a self-limiting response at arterial 

flow condition. The rapid flow-enhanced elution of platelet agonists may be a cause of 

self-limited clot growth on a single collagen fiber. Even though endothelium was not 

included in this study, evidence for microthrombi formation at extremely small sites of 

endothelial erosion on developing coronary plaque is also consistent with our 

findings.[161, 162] Spatial heterogeneity of platelet activation is well documented in 

laser injury of mouse cremaster arterioles [133] where thrombin [55] and fibrin are 

localized in the platelet P-selectin positive core. SEM images (Figure 5-7) show platelets 

in individual layers exhibit different morphologies, even for a single fiber triggering 

event, suggesting heterogeneity in the level of platelet activation along the height of the 

deposit. Furthermore, we found TF and VWF synergistically promoted thrombus 

formation on single collagen fibers at arterial flow condition. By capturing platelets with 

VWF at flow arterial conditions to a single fiber presenting TF, the generated FXa and 
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FIXa were kinetically significant and sufficiently localized to promote continued platelet 

capture, thrombin generation, and fibrin polymerization. For defects as small as a single 

collagen fiber, the molecular components of the extrinsic pathway function at arterial 

flow conditions because of local VWF-dependent platelet deposition. For exceedingly 

small arterial defects, platelets are particle-based sensors that allow engagement of the 

coagulation protease cascade under high flow. 

5.5 Conclusions 

In conclusion, we demonstrated in a microfluidic system that initiation of clotting 

of flowing human whole blood overcomes a patch threshold response to stimuli patch 

size when TF and VWF are present. At venous shear rate, the presence of tissue factor 

can trigger a full clotting response with platelet deposition, thrombin generation, and 

fibrin polymerization on a single collagen fiber. Pre-adsorbed VWF and TF enabled 

clotting on a single collagen fiber at arterial shear rate. Blood coagulates on surface 

triggers as small as a single collagen fiber to obviate any physiological patch size 

threshold. 
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Chapter 6 : Dynamics of thrombin generation and flux from clots during whole 

human blood flow over collagen/tissue factor surfaces 

6.1 Introduction 

Human thrombin is a multifunctional protease central to coagulation by its 

enzymatic cleavage of platelet PAR1 and PAR4 receptors [163], cleavage of fibrinogen 

to fibrin monomer [164], generation of Factor XIIIa (FXIIIa) [165, 166], and feedback 

activation of Factor XIa (FXIa) [13, 18]. The extrinsic coagulation pathway is triggered 

by tissue factor/Factor VIIa (TF/FVIIa) which generates Factor Xa (FXa) and Factor IXa 

(FIXa) and is essential for hemostasis. In contrast, deficiencies in the contact pathway 

(Factor XII [FXII] and FXI) are not linked to strong bleeding phenotypes.   

The kinetics of the extrinsic tenase (TF/FVIIa), the intrinsic tenase (FIXa/FVIIIa), 

and prothrombinase (FXa/FVa) have been extensively measured [167-169] and 

kinetically modeled for plasma [170-173] or purified enzymes with added lipid [174-

176], and platelet rich plasma [51, 177-179]. These prior kinetic studies explore rate 

processes in a closed and isotropic context (i.e. a tube). However, clotting under 

hemodynamic flow is an open system, involving platelet adhesion and activation on a 

surface as well as rapid build-up of a dense platelet core surrounded by less activated 

platelets in surrounding shell of the clot.  The core of the clot is highly contracted with P-

selectin positive platelets [133, 147], localized thrombin and fibrin [55, 130], and 

localized disulfide reductase activity [180].  The kinetics of thrombin generation are less 

well understood in this hierarchical structure where intrathrombus transport and binding 

effects may control reactions [150, 181-184]. For example, fibrin is known to inhibit 
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thrombin via its antithrombin-I activity [185-187].  Under venous flow, γ’-fibrin has been 

shown to limit thrombin transport, fibrin production, and clot size [188]. 

Direct thrombin or Factor Xa (FXa) inhibitors are orally available and clinically 

approved and do not requiring frequent coagulation monitoring in patients [189].   The 

reduction of thrombotic risk, while still allowing for sufficient hemostasis to prevent 

undesired bleeding, is central to therapeutic potency and dosing. Calibrated automated 

thrombinography (CAT) is a calibrated thrombin generation assay that reports thrombin 

concentration in activated plasma samples as a function of time [190]. CAT measurement 

determines the coagulability of plasma, potentially helpful for clinical diagnosis and drug 

monitoring.  However, the CAT assay provides limited information on the actual 

dynamics of thrombin generation in platelet-rich clots formed under flow. By recreating 

hemodynamic flow over procoagulant surfaces, the dynamics and pharmacology of 

thrombin generation can be studied with human blood ex vivo.  In microfluidic clotting 

assays, fibrin generation is often used as an indirect indicator for thrombin activity [12, 

13, 23, 24, 31].  Our lab previously developed a peptide-based platelet targeting 

biosensor to report platelet associated thrombin activity in both microfluidic and animal 

thrombosis models [55, 130]. To our knowledge, there has been no direct quantitative 

measurement of thrombin flux from a growing thrombus under hemodynamic flow.  This 

lack of measurement may be due to the limited sensitivity of immunoassays to detect 

released thrombin in the stable complex of thrombin-antithrombin (TAT) since released 

thrombin would be severely diluted in macroscopic flow systems with mL/min-scale 

perfusion. In contrast, microfluidics allows detection of clot-released species by limiting 

their dilution through use of μL/min-scale perfusion. 
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Theoretical and experimental studies have suggested thrombin generation is 

sensitive to prevailing shear rate and surface tissue factor (TF) levels [25, 191, 192]. At a 

venous shear rate condition, thrombin flux is predicted to be within a range of 10
-13

-10
-11

 

nmole/μm
2
-sec [191-193]. Using plasma perfusion, our group previously demonstrated in 

a membrane microfluidic system that both wall shear rate and thrombin flux regulate 

physical structure of deposited fibrin fibers. Under venous shear condition, a wall 

thrombin flux of 10
-11

 nmole/μm
2
-sec is required for platelet-free plasma to form a 3-

dimensional fibrin network [193], which is the fibrin structure that is usually observed in 

whole blood thrombi formed on the surface with collagen and TF at venous shear rates 

[13]. In blood, antithrombin (AT) is a potent and rapid thrombin inhibitor [194]. 

Thrombin half-life is less than a minute in the presence of AT [195], a reaction 

accelerated by heparin. Thrombin-antithrombin (TAT) complex measurement has been 

routinely used to estimate thrombin level in plasma samples [51, 196, 197]. Here we 

measure thrombin flux from TF bearing collagen surface and aggregated platelets at a 

venous shear rate in a human whole blood microfluidic thrombosis assay by collecting 

effluent at the outlet of the microfluidic system and subsequently measuring TAT 

complex concentration with enzyme linked immunosorbent assay (ELISA).  

6.2 Materials and Methods 

6.2.1 Materials 

Anti-human CD61 (BD Biosciences, San Jose, CA), Alexa Fluor®647 conjugated 

human fibrinogen (Life Technologies, Grand Island, NY), H-Gly-Pro-Arg-Pro-OH 

(GPRP, EMD Chemicals, San Diego, CA), corn trypsin inhibitor (CTI, Haematologic 
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Technologies, Essex Junction, VT), GR144053 trihydrochloride (Tocris Bioscience, 

Minneapolis, MN), Ethylenediaminetetraacetic acid (EDTA, Sigma, St. Louis, MO), 

Sigmacote® siliconizing reagent (Sigma, St. Louis, MO), Human Thrombin-

Antithrombin Complex ELISA Kit (Abcam, Cambridge, MA), Dade® Innovin® PT 

reagent (Siemens, Malvern, PA), Collagen Type I Chrono-Par
TM

 aggregation reagent 

(Chrono-log, Havertown, PA), and Sylgard® 184 Silicone Elastomer kit (Dow Corning, 

Auburn, MI). O1A6 FXI antibody was a gift from Dr. Andras Gruber (Department of 

Biomedical Engineering, Oregon Health and Science University).  

6.2.2 PDMS patterning and flow device 

Polydimethylsiloxane (PDMS) devices were fabricated as previously described 

[20, 22]. Protein patches with defined dimensions were patterned on glass slides with 

single channel devices (250 or 1000 μm in width, 60 μm in height). Multi-channel flow 

chambers with 8 evenly spaced flow channels (250 μm in width, 10000 μm in length, and 

60 μm in height) diverging from a single inlet and converging into a single outlet were 

used for microfluidic thrombosis assay. All PDMS devices have features on their bottom 

allowing them to be reversibly vacuum bonded onto glass slides.  

6.2.3 Analysis of system response time 

A model microfluidic system was characterized in COMSOL Multiphysics® 

Modeling Software (COMSOL Inc., Burlington, MA). A rectangular domain (10000 μm 

by 60 μm) with created to represent one lane of the actual microfluidic device. The local 

wall shear rate was maintained at 200s
-1

, consistent with the experiments. The thrombin 
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flux was imposed between 100 μm and 350 μm and the transport was mainly governed by 

the convection and diffusion assuming no hindrance from the developing clot. To 

calibrate the system response time, a rectangular flux signal with amplitude of 10
-11

 

nmol/μm-sec was applied for duration of 1 second. The system was propagated with a 

constant timestep of 0.05 sec to obtain the average thrombin concentration at the outlet. 

Similarly, an empirical thrombin flux fitted with the experimental measures was applied 

to obtain the resultant mixing-cup average concentration at the outlet. 

6.2.4 Preparation of thrombotic patches 

Glass slides were treated with Sigmacote® to retard surface triggered clotting. To 

generate collagen patches on glass slides, collagen type I (1mg/mL, 5 μL) followed by 

bovine serum albumin (0.5% BSA in Hepes Buffered Saline, 20 μL) was perfused 

through the main channel on a single channel patterning device [20]. The length of a 

collagen patch (250 μm or 1000 μm) is defined by the dimension of the main channel. 

Tissue factor can be added by subsequent perfusion of 10 μL of Dade Innovin® PT 

reagent through the main channel and incubation over patterned collagen for 30 min 

before a BSA wash. The 23 nM PT reagent stock [96] was diluted 10-fold and 200-fold 

to achieve high and low surface TF surface densities of ~1, and ~0.1 TF molecule/μm
2
, 

respectively. Sorbed TF lipid vesicles were stained with FITC-annexin V. TF surface 

densities were estimated by fluorescent imaging of stained vesicles, as previously 

described [13, 23].  
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6.2.5 Blood collection and sample preparation 

Blood was collected via venipuncture from healthy donors who provided consent 

under approval of University of Pennsylvania Institutional Review Board and were free 

of any medication or alcohol for at least 72 hr prior to donation. Blood was collected into 

syringes with high dosage of CTI (40 μg/mL) and was transferred into Eppendorf tubes 

where it was labeled by CD61 antibody (2 %v/v) and fluorescent fibrinogen (1.3% v/v) 

for platelet and fibrin epifluoresence detection, respectively. In some of the microfluidic 

experiments, additional treatments that were added to blood sample prior to perfusion to 

block platelet aggregation or fibrin polymerization. These additional treatments are 

indicated in the Results.   

6.2.6 Microfluidic thrombosis assay 

After protein patterning, the single channel patterning device was replaced with 

the multichannel flow device. The flow channels were placed perpendicularly to 

patterned TF bearing collagen patches. Labeled whole blood was transferred to syringes 

which were then mounted on a PHD 2000 syringe pump (Harvard Apparatus, Holliston, 

MA) operating on an infusing mode.  Blood was infused into the flow device at a 

constant flow rate of 16 μL/min which corresponds to an initial wall shear rate of 200 s
-1

. 

Platelet aggregation and fibrin formation were simultaneously monitored with a 

fluorescence microscope (IX81, Olympus America Inc., Center Valley, PA). Images were 

captured with a CCD camera (Hamamasu, Bridgewater, NJ) and were analyzed with 

ImageJ (NIH, Bethesda, DC). The outlet of the flow deivce was blocked with 10 μL of 

EDTA. Calcium dependent thrombin generation in blood was immediately quenched by 



139 
 

EDTA once blood exits the device. Blood sample was collected from the outlet every 

other minute. Another 10 μL of EDTA was added to block the outlet immediately after 

sample collection. Collected blood samples were allowed to sit for at least 10 minutes for 

TAT complex formation before subsequent steps.  

6.2.7 TAT-ELISA assay 

Collected blood samples were centrifuged at 1300 g for 15 min. TAT complex 

concentration in isolated platelet poor plasma was detected in a sandwich TAT-ELISA 

assay. Background TAT level was determined by measuring TAT concentration in 

plasma sample isolated from blood that was quenched with EDTA right after 

phlebotomy. Since AT reacts with thrombin in a 1:1 stoichiometric ratio, measured 

average TAT concentration ( ) within the 2 min time interval between sample collections 

was converted to an average thrombin flux ( ) using the following equation: 

                           Equation 1                                                                                    

where Q is flow rate (16 μL/min) and A is total thrombotic area in each device.  

6.3 Results 

6.3.1 Device response time 

Release of a diffusible species from a surface into a flow stream is a classic 

concentration boundary layer phenomenon that can influence the dynamics of 

measurement of the species at the system outlet. Additionally, for sampling parabolic 

flows at the system outlet, the faster streamlines at and near the center of the flow 

contribute more volume per unit time than the slower streamlines at the wall boundary.  
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The discrete sampling of volume at the system exit flow where the species concentration 

may be nonuniform is defined as the “mixing-cup” concentration and involves weighting 

the concentration profile by the velocity profile [198].  In order to calculate the lag time 

of the microfluidic device and exit line and thus relate surface events to remotely sampled 

volumes at the exit, a computational model with a rectangular domain was created and 

the transport of thrombin was calculated by standard Finite Element Method in COMSOL 

(Figure 6-1). A flux with constant amplitude of 10
-11

 nmol/μm-sec and duration of 1 

second was applied at the bottom of the channel near the entrance.  Within 1 second, the 

thrombin concentration was high over the entrance (where collagen/TF resides in the 

experiment) due to the release of soluble thrombin from the bottom boundary; there was 

no significant thrombin yet reaching the outlet. After 1.6 seconds, the outlet (mixing-cup 

average) thrombin concentration begins to rise as thrombin is transported advectively by 

the flow and also by molecular diffusion. By 5 seconds, there was essentially no thrombin 

left near the entrance since the imposed thrombin flux only lasted for 1 second, indicating 

complete and rapid washout at a wall shear rate of 200 s
-1

.  By 7 seconds, the 

concentration of thrombin collected at the outlet reached a maximum. It took almost 20 

seconds for the concentration of thrombin to decay back to zero at the outlet (Figure 6-

1B-C).  Overall, the simulation demonstrated that the microfluidic assay (Figure 6-1A) 

allows the detection of locally generated thrombin at the collagen site with only a minor 

lag time of ~ 10 sec. Also, dilution of thrombin (or TAT) in the prevailing microfluidic 

flow was predicted to allow detection of nM-levels of TAT in the effluent. 
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Figure 6-1 Microfluidic setup for measuring thrombin flux during whole blood  

thrombosis on collagen/TF surface.  

A, A microfluidic device with 8 channels (each channel: 250-μm in width and 60-μm in 

height) diverging from a single inlet and converging into a single outlet was used for 

whole blood perfusion over collagen/TF surface. Blood was collected into CTI (40 

μg/mL) and was loaded into syringes which were subsequently mounted on a syringe 

pump. Blood infusion was initiated within 10 min of phlebotomy at a constant flow rate 

of 16 μL/min (initial wall shear rate = 200   s
-1

). Device outlet flow was collected into 

EDTA to quench thrombin generation with EDTA and allow for TAT formation. Blood 

samples (collected every 120 sec) were subsequently centrifuged and analyzed by TAT 

ELISA. B, The microfluidic system was characterized with a COMSOL convection-

diffusion model. To calculate the device response time, thrombin flux signal from a 250-

μm long surface domain with amplitude of 10
-11

 nmole/μm
2
-sec was imposed as a 

boundary condition for duration of 1 sec. Location of the surface domain is indicated by a 

red dashed line. C, Average thrombin concentration at the outlet peaked after a delay of 7 

sec and leveled off to zero by 20 sec.  
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6.3.2 Clotting under flow: Fibrin rapidly captures thrombin 

Platelets immediately adhered and accumulated on collagen/TF surface (~1 TF 

molecule/μm
2
) after initiation of whole blood flow initiation, whereas fibrin generation 

was detected after a 250 second lag followed by a nearly linear increase until the end of 

the experiment at 800 sec (Figure 6-2 and Figure 6-3).  Under these conditions of 

platelet deposition and fibrin generation on the collagen/TF surface, very little TAT was 

detected over the 800 sec experiment unless Gly-Pro-Arg-Pro (GPRP, 5 mM) was used to 

prevent fibrin polymerization (Figure 6-2B).  Collection of effluent into benzamidine 

(instead of EDTA) to inhibit thrombin prevented the immunodetection of TAT (not 

shown), indicating that free thrombin was eluted off the clot in the presence of 5 mM 

GPRP, that then complexed with antithrombin to form TAT in the EDTA-treated sample.  

Fibrin captured >85% of locally generated thrombin (Figure 6-2B).  Thus, the fibrin 

polymerization inhibitor GPRP was added to all subsequent experiments to eliminate 

fibrin capture of thrombin and allow detection of TAT in the effluent.  Prior studies have 

shown that GPRP has a minor effect on platelet deposition at the low forces of venous 

flow conditions [24].  Also, the contribution of the contact pathway in this microfluidic 

assay has been shown to be minimal for 40 μg/mL CTI-treated whole blood when 

compared to the contribution of the TF-driven extrinsic pathway [26].   
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Figure 6-2 Thrombin flux from clots growing on collagen/TF.  

A, Dynamics of platelet aggregation (■) and fibrin formation (○) during CTI-treated (40 

μg/mL) whole blood perfusion over collagen/high TF (1 molec/μm
2
) at initial wall shear 

rate of 200 s
-1

. B, Measured TAT concentration and thrombin flux during blood perfusion 

over collagen/high TF in the presence (○) and absence (■) of GPRP. C, TAT 

concentration and thrombin flux for TF surface concentration from 1 molec/μm
2 

(■) to 

0.1 molec/μm
2
 (○). D, Averaged TAT concentration and thrombin flux from 13 healthy 

donors for blood perfusion (40 μg/mL CTI and 5 mM GPRP) over collagen/high TF at 

200 s
-1

. * p < 0.05, ** p <0.01.  
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Figure 6-3 Platelet aggregation and fibrin formation on collagen/TF.   

Platelet deposition (red) and fibrin formation (green) at indicated time points during 

blood perfusion (40 μg/mL CTI) over collagen/TF (1 molec/μm
2
). Initial wall shear rate = 

200 s
-1

. Flow direction: top to bottom. Dashed lines outline flow channels. 
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6.3.3 Increased surface TF concentration promotes thrombin flux 

Since fibrin formation requires a threshold concentration of surface TF [25], we 

tested if the amount of immunodetected TAT complex in the effluent was dependent on 

TF concentration on the collagen surface. At ~1 TF molec/μm
2 

(collagen/high TF), the 

TAT concentration displayed a slow increase during the first 500 sec and then an 

accelerated increase during the following 300 sec. By 800 sec, the thrombin flux reached 

~ 0.8×10
-12

 nmole/μm
2
-sec (Figure 6-2C).  At ~ 0.1 TF molec/μm

2 
(collagen/low TF), 

there was a brief initial increase of TAT concentration within the first 200 sec. Between 

200 and 600 sec, TAT concentration remained largely constant. After 600 sec, 

accelerated increase of the TAT concentration was observed. By 800 sec, thrombin flux 

from collagen/low TF surface reached ~ 0.4×10
-12

 nmole/μm
2
-sec, which was only half of 

the thrombin flux from collagen/high TF surface (Figure 6-2C).  

The collagen/high TF surface was used as the test surface for all subsequent 

experiments. A master thrombin generation curve (Figure 6-2D) was developed from 13 

individual experiments with blood from 13 donors, representing the average dynamics of 

human thrombin generation from clots formed on collagen/high TF surface (~1 molecule 

TF/ μm
2
, 5 mM GPRP, 40 μg/mL CTI): a slow increase in thrombin flux during the first 

500 sec to 0.5 x 10
-12 

nmole/μm
2
-sec, followed by an accelerated increase (~4x higher 

than the rate of increase during the first 500 sec), reaching a thrombin flux of ~1.5 x 10
-12

 

nmole/μm
2
-sec by 800 sec at the endpoint of the experiment. The standard error was 

attributed to interdonor variation in thrombin generation of about ± 50 %, as has been 

previously observed with measurements of thrombin generation by the CAT assay [196]. 
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Given this observed variation, subsequent experiments were conducted with at least 4 

donors under matched conditions. 

6.3.4 Thrombin flux amplification via thrombin feedback activation of FXI 

The large and late stage increase in thrombin flux detected between 500 and 800 

sec was consistent with the late stage fibrin and thrombin activity previously detected as a 

result of platelet polyphosphate enhancement of the thrombin-mediated FXIa feedback 

pathway [13, 82, 84, 98].  This late stage participation of thrombin-mediated activation of 

FXIa has also been theoretically predicted [89]. The FXI antibody O1A6 inhibits FXIIa 

activation of FXI and disrupts the FXI dependent thrombin amplification loop by 

inhibiting FXIa generation of FIXa and subsequent FXa activation (Figure 6-4). Adding 

O1A6 (20 μg/mL) into the blood sample abolished the accelerated increase of thrombin 

flux from the collagen/TF surface after 500 sec (Figure 6-4B). Thrombin flux increased 

to 0.2×10
-12

 nmole/μm
2
-sec during the first 400 sec, and remained relatively constant 

after that.  
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Figure 6-4 Thrombin flux is amplified after 500 sec of clotting via thrombin 

feedback generation of FXIa.  

A, FXI antibody O1A6 disrupts thrombin feedback amplification loop by inhibiting 

FXIIa activation of FXI and blocking thrombin feedback activation of FXI. B, O1A6 (20 

μg/mL, ○) abolished late stage increase in thrombin flux from growing thrombi during 

blood perfusion (40 μg/mL CTI, 5 mM GPRP) over collagen/high TF and caused 

significant reduction in final thrombin flux when compared to clotting without O1A6 (■) 

. *** p < 0.005. 
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6.3.5 The first layer of collagen-activated platelets generates the majority of 

thrombin 

We tested the thrombin generating capacity of a monolayer of collagen-adherent 

platelets to that of a thick and dense platelet deposit.  As previously observed [145], the 

glycoprotein IIb/IIIa (αIIbβ3) antagonist, GR144053 (500 nM), abolished secondary 

platelet deposition on collagen/high TF surface.  For the first 500 sec of blood perfusion, 

the thrombin production was essentially the same for a platelet monolayer and a thick 

platelet deposit, indicating that the thick platelet mass was not diminishing thrombin 

production by limiting FX transport or by additional coverage/hindrance of surface TF.  

Interestingly, the accelerated increase of thrombin flux from 600 to 800 sec was largely 

prevented by GR144053 (Figure 6-5A), indicating a role for the thickened platelet 

deposit in thrombin-feedback activation of FXIa (Figure 6-4B) that was operative in this 

late-stage time regime (Figure 6-5A) and also consistent with platelet-dependent release 

of polyphosphate [199]. Additionally, in the absence of GPRP, a platelet monolayer was 

sufficient to support localized fibrin formation (Figure 6-5B).  
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Figure 6-5 The first layer of collagen-activated platelets support initial thrombin  

 production.  

A, Dynamics of measured TAT concentration and thrombin flux from growing thrombi 

(■) or from the first layer of collagen-adherent platelets (○) during blood (40 μg/mL CTI, 

5 mM GPRP) perfusion over collagen/high TF. The αIIbβ3 inhibitor, GR144053 (500 nM) 

was added to abolish platelet secondary aggregation and achieve a monolayer of platelet 

on collagen/high TF. Initial thrombin production during the first 500 sec of blood 

perfusion was intact whereas the final thrombin production on collagen/high TF was 

significantly reduced by GR144053. B, A platelet monolayer was sufficient to support 

localized fibrin formation when fibrin was allowed to polymerize in the absence of GPRP 

(B). ** p < 0.01. 
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6.3.6 Longer collagen/TF zones are less efficient in thrombin production 

The TAT concentration in effluent collected downstream of 1000-μm long 

collagen/high TF was about 2x higher than the detected concentration in effluent from 

250-μm long collagen/high TF (Figure 6-6A). However, the 1000-μm zone was less 

efficient in supporting overall thrombin generation on a per unit area basis. The overall 

thrombin flux from the entire 1000 μm-long zone of collagen/high TF was only half of 

the overall flux from the 250 μm-long zone of collagen/high TF (Figure 6-6B).  On a 

1000-μm zone, most of the platelet accumulation was observed on the first 250 μm, with 

significantly less platelet deposition between 250 and 1000 microns (Figure 6-6C, D).  

This is consistent with boundary layer depletion of depositing platelets in the red blood 

cell (RBC)-free layer of plasma nearest the collagen coating. Roughly half of detected 

thrombin flux from the 1000-μm collagen/high TF zone originated from the first 250 μm 

subregion of the 1000 μm long zone, assuming the first 250 μm had the exact efficiency 

in supporting thrombin generation as for the 250-μm long zone (Figure 6-6E, F). 
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Figure 6-6 Longer collagen/TF zones were less efficient in thrombin production.  

A, B, Measured TAT concentration and thrombin flux from blood perfusion (40 μg/mL 

CTI, 5 mM GPRP) over 250-μm long or 1000-μm long collagen/high TF (~1 

molec/μm
2
). Longer 1000-μm zones supported more thrombin production but less 

thrombin flux on a per unit area basis. C, D, Platelet accumulation was observed over the 

first 250 μm on 1000 μm collagen/high TF with far fewer platelets between 250 μm and 

1000 μm along the flow direction. E, F, About half of the generated thrombin originated 

from the first 250 μm of the 1000-μm zone (E, F). ***, p < 0.005. 
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6.4 Discussion and Conclusions  

In this study, ELISA allowed direct measurement of TAT in plasma isolated from 

whole blood samples collected from the outlet of a microfluidic thrombosis assay. 

Numerical simulation demonstrated the delay in thrombin detection in this setup was 

small (~10 sec) compared to the time interval (120 sec) between sample collections. 

Thus, TAT measurements can be directly converted to thrombin fluxes within each time 

interval. Previous theoretical and experimental studies suggested alterations in shear rates 

and surface TF affect coagulation reaction dynamics and cause substantial changes in 

thrombin flux [191, 192].  

The microfluidic experiments were operated at a constant flow rate mode 

resulting in an initial wall shear rate of 200 s
-1

. The thrombin flux released from growing 

thrombi on collagen/high TF (~ 1 molec/μm
2
) increased over time and reached a level of 

~10
-12 

nmole/μm
2
-min by 800 sec at the end of the experiment. This final thrombin flux 

falls within the suggested range from previous computational models for similar shear 

conditions [191-193]. In our flow system, fibrin localized >85% of thrombin within the 

thrombus and traveled downstream, indicating that free thrombin lasted less than a 

second or two before its capture by fibrin. The TAT ELISA based measurement might 

underestimate the actual thrombin flux due to the following factors: (i) other protease 

inhibitors such as α2-macroglobulin, even though far less effective than AT, also complex 

thrombin [194], (ii) thrombin bound to the clot by fibrin-independent mechanisms would 

not be detected in the plasma TAT-ELISA assay, and (iii) robust thrombin generation at 
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later time points boosted fibrin polymerization, which was not fully quenched by 5 mM 

GPRP (Figure 6-7).   

A thrombin generation curve from 13 individual measurements provides the 

average dynamic change of thrombin flux from growing thrombi on 250 μm long 

collagen/high TF. We calculate that each TF molecule supported generation of ~92000 

thrombin molecule via the extrinsic pathway during the first 500-sec time period. This 

curve displayed an accelerated increase in thrombin flux starting at about 500 sec. This 

accelerated increase was prevented by FXI antibody O1A6. Our previous work indicated 

that participation of the TF-triggered extrinsic pathway was required to generate enough 

thrombin to initiate the FXIa-dependent thrombin amplification mechanism, which can 

be interrupted by O1A6 [13]. This FXI function-blocking antibody also reduced platelet 

aggregation downstream of thrombi formed on collagen/TF suggesting a role of the FXI-

thrombin axis in distal thrombi formation [200]. Therefore, thrombin flux after 500 sec is 

most likely augmented by the FXIa-dependent thrombin amplification loop. FXI 

inhibition did not significantly interfere with thrombin flux within the first 500 second 

indicating the extrinsic pathway is the major contributor of initial thrombin generation in 

CTI-inhibited whole blood clotting  By 500 sec, ~70 % of collagen/TF had been covered 

with accumulated platelets (Figure 6-3), potentially reducing the access to surface 

immobilized TF and enhancing platelet-dependent pathways (such as polyphosphate 

pathways).  

It is known that platelets provide lipid surface for prothrombinase assembly and 

therefore are essential for promoting coagulation [201, 202]. Interestingly, a monolayer 

of platelets provided enough lipid surfaces for robust thrombin generation in the initial 
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phase. The prevention of amplified thrombin generation during later times suggests the 

importance of aggregated platelets in aiding the FXI dependent thrombin feedback loop. 

It is possible that platelet aggregates promote thrombin generation by limiting flow 

dilution and active transport of activated coagulation factors. Additionally, the 

accumulated platelets release polyphosphate to act as a cofactor and promote thrombin 

activation of FXI [13, 82, 98] at later times.  

We found increased collagen/TF patch length reduced the overall efficiency of 

thrombin generation on a per unit area basis, most likely owing to the decay in platelet 

deposition along the flow direction on 1000-μm long collagen/high TF patch. 

Furthermore, we have shown in our previous study that a single collagen/TF fiber (patch 

length < 1 μm) prompts a clotting response of multiple layers of platelet deposition and 

thrombin generation at a venous shear condition [203]. We suspect that the total thrombin 

generation might be greater on larger thrombotic patches, but thrombin generation on a 

per unit area basis decays once the patch size gets too large, which is probably due to 

boundary layer platelet depletion of the near-wall platelet layer and consequently reduced 

platelet deposition in downstream regions of larger patches.   

In summary, we made direct measurements of TAT complex concentration in 

effluent from microfluidic thrombosis assay. We estimated thrombin flux from growing 

thrombi on collagen/TF surface can reach up to 10
-12

 nmole/μm
2
-sec at a venous shear 

condition. Our results suggest polymerized fibrin fibers consume most of the free 

thrombin and likely serve as a mechanism of localizing clotting response near the injury 

site and potentially promoting a hierarchical structure of self-limiting clots.  Furthermore, 
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aggregated platelets were found to play pivotal roles in amplifying thrombin generation 

via the FXI dependent feedback loop. 
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Figure 6-7 Substantial inhibition of fibrin polymerization by GPRP under flow.  

GPRP (5 mM) blocked most, but not all, fibrin polymerization during blood perfusion 

(40 μg/mL CTI) over collagen/TF (1 molec/μm
2
) at an initial wall shear rate of 200 s

-1
. 

Fluorescent images were taken at the end of experiments (t = 800 sec). Flow direction: 

top to bottom. Dashed lines outline flow channels. 
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Chapter 7 : Future Work 

7.1 Effect of flow pulsatility on thrombus growth 

 Due to small length scales within microfluidic devices, in microfluidico 

hemodynamic flows are generally at low Reynolds numbers (Re).  In fact, rather extreme 

geometries are required to create boundary layer separation/impinging flow reattachment 

[160] in an effort to mimic laminar recirculation zones distal of a coronary stenosis (often 

described imprecisely as “disturbed flow” and incorrectly as turbulent). True fluid 

mechanical turbulence can be generated in blood in rare circumstances of arteriovenous 

fistulas, extreme stenosis, or mechanical heart valves. However, turbulence is extremely 

difficult to create using microfluidic devices due to the micron length scales that keep Re 

< 10-100. Additionally, most of the laboratory microfluidic systems operate at steady 

flow condition without incorporating the cyclic nature of blood flow and the complex 

wall shear stress profiles and transport conditions caused by flow pulsatility [52].  

In Chapter 2 and Chapter 3, we developed microfluidic thrombosis assays 

showing that arterial thrombosis may be druggable by contact pathway inhibition when 

its triggered by low [TF]wall. However, arterial thrombosis occurs under pulsatile flow 

conditions due to the cardiac cycle and the flow complexity may affect dynamics of 

thrombus growth. Thus, performing microfluidic thrombosis assays under pulsatile flow 

condition may provide more accurate predictions on the inhibitory effect of contact 

pathway targeting drugs on arterial thrombosis.  

In order to recreate pulsatile flow in the microfluidic system, we developed a 

LabVIEW protocol to control a programmable syringe pump [204]. Using this pumping 
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protocol, we were able to achieve pulsatile and reversing flows in the microfluidic 

system. Desired waveforms can be created in the LabVIEW user interface by 

manipulating three parameters: amplitude, offset (defines the direction) and frequency 

(Figure 7-1). The waveforms were then converted to a DC voltage signal which was then 

converted to analog and digital signals on a data acquisition card. The programmable 

syringe pump can read the signal and administer blood flow into microfluidic device. 

Pulsatile flow profiles can be validated by measuring the instantaneous displacements of 

small latex particles (2.45 μm diameter) in microfluidic channel (Figure 7-2).  

We investigated the effect of pulsatile flow on platelet deposition dynamics in the 

absence of thrombin signaling pathway. Whole blood was treated with PPACK (100 μM) 

and apixaban (1 μM) before blood perfusion to achieve a complete knockout thrombin 

generation during experiment. In preliminary tests, we perfused whole blood over small 

collagen patches (250 μm × 20 μm, a typical patch size used in Chapter 5) in two separate 

8-channel devices. One of the devices operated under constant Q mode (shear rate = 200 

s
-1 

or 600 s
-1

) while another device operated under pulsatile flow condition (average shear 

rate = 325 s
-1

, amplitude = 375 s
-1

, 1 Hz). The hypothesis was that platelet deposition on 

smaller collagen patches would be favored under pulsatile flow condition due to the 

increased instantaneous residence time of platelets at the injury site. However, in these 

experiments, platelet accumulation was not significantly affected by flow pulsatility or 

the slight flow reversal (Figure 7-3).  

It has been known that vWF only plays significant role in facilitating platelet 

adhesion at elevated shear rates and is only essential for stable thrombus formation under 

high shear conditions [144, 205]. The contribution of vWF may be negligible in this 
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preliminary investigation since operating at a low average wall shear rate range. In order 

to investigate the effect of pulsatility on arterial thrombus growth and shear-dependent 

vWF function, future experiments have to be conducted at higher shear rates, 

representative of values in human arteries. Additionally, the current experiment targeted 

thrombin-independent platelet deposition even though increased instantaneous residence 

time at adhesion sites (due to pulsatility and flow reversal) may affect local thrombin 

generation kinetics and thus affect thrombus growth via thrombin dependent platelet 

signaling pathways or via the coagulation pathways. Blood perfusions over collagen/TF 

surfaces without thrombin inhibition are then required to elucidate the effect of pulsatile 

flow on thrombin dependent mechanisms. Furthermore, the current experiment focuses 

on the effect of flow pulsatility on platelet deposition on small collagen patches although 

larger patches will support more stable and more consistent thrombus formation across 

individual flow channels, especially at elevated shear rates. Flow experiments on larger 

patches (i.e. 250 μm × 250 μm) are more appropriate for studying the effect of pulsatile 

flow on arterial thrombosis.  
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Figure 7-1 A LabVIEW program to control programmable syringe pump. 

Screen shot of graphical user interface of the LabVIEW program used to control 

programmable syringe pump to generate pulsatile flow in microfluidic system. 
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Figure 7-2 Representative shear rate profiles. 

Two representative validated profiles of instantaneous shear rates within a single cycle 

calculated from displacements of latex tracer particles. Black line (with cross markers) 

shows a profile with an average shear rate of 325 s
-1

. The amplitude is 375 s
-1

 (1 Hz). 

Black dashed line shows a profile with an average shear rate of 150 s
-1 

and the amplitude 

is 200 s
-1

 (1 Hz). 
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Figure 7-3 Dynamics of platelet adhesion and aggregation on small collagen 

patches.  

A, Average kinetics of platelet accumulation measured by fluorescent intensity under 

pulsatile flow (black, 325 ± 375 s
-1

, 1 Hz) and steady flow (red, initial wall shear rate = 

600 s
-1

) conditions (n = 6 clots). B, Average kinetics of platelet accumulation measured 

by fluorescent intensity under pulsatile flow (black, 325 ± 375 s
-1

, 1 Hz) and steady flow 

(red, initial wall shear rate = 200 s
-1

) conditions (n = 6 clots). 
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7.2 Microfluidic characterization of reaction dynamics of fibrin formation 

 In Chapter 5, we investigated the patch size threshold behavior of initiation of 

blood coagulation using the 8-channel microfluidic setup. In Chapter 6, we used the 

combination of the microfluidic thrombosis assay and TAT-ELISA assay to estimate the 

thrombin flux from clots growing on collagen/TF surface. The microfluidic system 

enables the study of coagulation dynamics under more physiological relevant conditions. 

However, there are limitations with using TAT complex measurement to estimate 

thrombin flux. We found most of the generated thrombin is localized by fibrin fibers and 

inhibition of fibrin polymerization was required to enable downstream thrombin detection 

(Figure 7-4). In some experiments, fibrin formation was observed at later times even in 

the presence of high level of GPRP. Additionally, there are more naturally occurring 

thrombin inhibitors other than antithrombin. Alternatively, conversion of prothrombin to 

thrombin releasing prothrombin fragment 1.2 (F1.2) and F1.2 can be used as an index of 

thrombin generation even in the presence of fibrin generation [206, 207]. Using the 

combination of the microfluidic thrombosis assay we developed in Chapter 6 and a F1.2-

ELISA assay can achieve a more accurate estimation of thrombin flux.  

 In Chapter 6, we intentionally blocked fibrin polymerization in order to detect 

free thrombin. In reality, the presence of fibrin may affect clot structure and clot stability 

[4, 130]. Additionally, understanding the kinetics of fibrin generation within clots 

growing under flow condition may provide insights into the process of fibrinolysis, which 

is one of the important coagulation self-regulatory mechanisms. Thrombin cleaves 

fibrinopeptide A and B (FPA and FPB) and FPA is often used as an index of fibrin 
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generation [208]. We propose using the combination of the microfluidic thrombosis assay 

and a FPA-ELISA assay would provide a way of measuring fibrin generation kinetics in a 

growing clot under flow condition (Figure 7-5). Additionally, D-dimer (DD) is produced 

during fibrin degradation by plasmin and is often used as a marker of endogenous 

fibrinolysis in clinical models [209]. Tissue plasminogen activator (tPA) converts 

plasminogen to plasmin using fibrin as a substrate and plasmin can then initiate 

fibrinolysis [210]. In the microfluidic system, fibrinolysis is negligible due to the absence 

of endothelium, which is the major source of endogenous tPA [211, 212]. However, 

controlled fibrin degradation can be achieved by exogenously adding plasmin to initiate 

fibrinolysis. After microfluidic thrombosis assay, clots formed over collagen/TF surface 

need to be washed in situ with HBS buffer to remove blood cells and enzymes. All 

microfluidic channels should then be filled with plasmin containing buffer for at least 10 

min for complete fibrin degradation in the clots. The fluids within microfluidic channels 

will be collected and subsequently be analyzed with ELISA assay to measure DD 

concentration. The cumulative amount of fibrin generated in the clots can then be 

calculated with endpoint DD measurement. In fact, measuring both total amount of fibrin 

generation with DD-ELISA assay and real-time fibrin formation with FPA-ELISA assay 

in the same experiment will offer a more accurate estimation of the real fibrin formation 

kinetics.  
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Figure 7-4 Fibrin localizes free thrombin via its antithrombin activity.  

To confirm fibrin’s antithrombin activity, extremely low concentration (600 nM) of 

fluorescein conjugated PPACk was used to label thrombin. This low level only labels 

localized thrombin without significantly affecting total thrombin generation. Labeled 

thrombin (cyan) co-localizes with fibrin (green). Once fibrin polymerization is inhibited 

with GPRP, there’s very little thrombin signal suggestion fibrin localizes most of the 

formed thrombin. Antibody against fibrinogen γ’ chain quenched fibrin-thrombin 

interaction. Images of individual clots formed on collagen/TF surfaces were taken at the 

end of the experiments (t =600 sec). Platelets are shown in red, fibrin fibers are shown in 

green and inhibited thrombin is in cyan. 
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Figure 7-5 Cumulative FPA generation detected downstream of growing clots on  

collagen/TF surface from a single experiment.  

Average cumulative FPA generation from 8 clots (1 donor) over 840 sec of blood 

perfusion (40 µg/mL) over collagen/TF surfaces. 
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