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First-Principles Studies Of Solar Cell Materials: Absorption, Carrier
Lifetime And Non-Linear Optical Effect

Abstract
The next generation solar cell materials have attracted tremendous research to improve their performance. In
these materials, chalcogenides materials, inorganic perovskite and newly developed organometal halide
perovskite have demonstrated their potential usage as solar cells owing to their exceptional properties to
absorb the light and transform the light energy to current. Hence, understanding and improving these
properties can promote further material design strategies for higher performance but lower the cost. Density
functional theory is a widely used accurate calculation method to compute various physical properties of a
material in an efficient way. In this thesis, we mainly use the density functional theory method to explore the
light-matter interaction and its effect to the material's application as a solar cell. Alkali-metal chalcogenides
have been found to exhibit appropriate band gaps for solar cells. We find that the volume compression can
substantially enhance the optical dielectric function and the absorption coefficient intrinsically. The density
function calculation and the tight-binding model show that this structure-property relation is mainly owing to
the wavefunction phase change by compression, where the one-dimensional atomic chains play a significant
role to relate the optical absorption and the structural change. But the high absorption does not guarantee
high power conversion efficiency. This is because the excited carrier need to diffuse to the electrodes before
they recombine. Organometal halide perovskites are found to have very large diffusion length and the long
carrier lifetime. But the mechanism for such phenomena is still unknown. Here, by studying the structural
change to the band structure and spin using CH3NH3PbI3 as an example, we find that the strong Rashba
effect contributes to the long carrier lifetime by creating spin-forbidden electronic transitions, which slows
down the radiative recombination and enhance the carrier lifetime. Furthermore, to study the spatial disorder
effect to the electronic structure, we develop a large-scale tight-binding model which can highlight the
structural disorder but still compute the band structure efficiency for very large systems. We find that the
spatial disorder can create localized changes. These charge localization are spatially separated for valence band
minimum and conduction band maximum. Therefore, their recombination will be further slowed down due
to such spatial separation. In addition to these solar cell mechanism, we also studied the non-linear optical
effect (bulk photovoltaic effect) in inorganic semiconductors. In this thesis, I use the example of
CH3NH3PbI3 to illustrate its bulk photovoltaic effect responses. It is found that this material can generate
more than three times large photo-current than the prototypical material BiFeO3, although its polarization is
only less than one tenth of BiFeO3. We think this is due to its delocalized electronic structure of the band
edges. The effect of Cl to the bulk photovoltaic response is also studied, we find that the apical substitution of I
to Cl can enhance the response owing to the larger polarization. The bulk photovoltaic response of other
materials such as LiAsSe2, BiFeO3 are compared, and we generalize the strategies to design new materials
with better performance.
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ABSTRACT

FIRST-PRINCIPLES STUDIES OF SOLAR CELL MATERIALS: ABSORPTION,

CARRIER LIFETIME AND NON-LINEAR OPTICAL EFFECT

Fan Zheng

Andrew M. Rappe

The next generation solar cell materials have attracted tremendous research to improve their

performance. In these materials, chalcogenides materials, inorganic perovskite and newly

developed organometal halide perovskite have demonstrated their potential usage as solar

cells owing to their exceptional properties to absorb the light and transform the light energy

to current. Hence, understanding and improving these properties can promote further mate-

rial design strategies for higher performance but lower the cost. Density functional theory is

a widely used accurate calculation method to compute various physical properties of a ma-

terial in an efficient way. In this thesis, we mainly use the density functional theory method

to explore the light-matter interaction and its effect to the material’s application as a solar

cell. Alkali-metal chalcogenides have been found to exhibit appropriate band gaps for solar

cells. We find that the volume compression can substantially enhance the optical dielec-

tric function and the absorption coefficient intrinsically. The density function calculation

and the tight-binding model show that this structure-property relation is mainly owing to

the wavefunction phase change by compression, where the one-dimensional atomic chains

play a significant role to relate the optical absorption and the structural change. But the high

absorption does not guarantee high power conversion efficiency. This is because the excited

carrier need to diffuse to the electrodes before they recombine. Organometal halide per-

ovskites are found to have very large diffusion length and the long carrier lifetime. But the

mechanism for such phenomena is still unknown. Here, by studying the structural change

to the band structure and spin using CH3NH3PbI3 as an example, we find that the strong
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Rashba effect contributes to the long carrier lifetime by creating spin-forbidden electronic

transitions, which slows down the radiative recombination and enhance the carrier lifetime.

Furthermore, to study the spatial disorder effect to the electronic structure, we develop a

large-scale tight-binding model which can highlight the structural disorder but still compute

the band structure efficiency for very large systems. We find that the spatial disorder can

create localized changes. These charge localization are spatially separated for valence band

minimum and conduction band maximum. Therefore, their recombination will be further

slowed down due to such spatial separation. In addition to these solar cell mechanism, we

also studied the non-linear optical effect (bulk photovoltaic effect) in inorganic semicon-

ductors. In this thesis, I use the example of CH3NH3PbI3 to illustrate its bulk photovoltaic

effect responses. It is found that this material can generate more than three times large

photo-current than the prototypical material BiFeO3, although its polarization is only less

than one tenth of BiFeO3. We think this is due to its delocalized electronic structure of the

band edges. The effect of Cl to the bulk photovoltaic response is also studied, we find that

the apical substitution of I to Cl can enhance the response owing to the larger polarization.

The bulk photovoltaic response of other materials such as LiAsSe2, BiFeO3 are compared,

and we generalize the strategies to design new materials with better performance.
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Chapter 1

Introduction
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Solar energy is an alternative energy sources in addition to the fossil fuels. It is limitless,

clean, safe, renewable and generates less CO2. Photovoltaic (PV) effect, by converting the

sunlight to the electricity, is one of the most important ways of solar energy application.

From the time when people first observed the PV effect in the conductive solution in 1839

to current that more than 5×107 square meter PV solar panels are built to generate up to

8379 MWatt in United States [7], the ability to synthesize high efficiency solar cell has

grow rapidly. With the more advanced techniques used in the solar cell industry, the price

of the solar cell has dropped significantly. In 1977 after the invention of the PV solar cell,

the price is as high as $76.67/Watt. However, this price has dropped to $0.74/Watt in 2013

owing to the massive production and usage [8]. Although the PV solar cell is increasingly

important and rapidly expanding over the conventional energy generation ways, the total

electricity from the PV solar cell is still limited to 0.6% in 2015, which is far less than

other energy generations such as natural gas (29%), oil (36.2%) and coal (16.1%) [7]. Even

compared to other renewable energy sources as wind (1.9%) and hydroelectric (2.4%), the

PV solar cell application is relatively low. The solar cell energy technique is still new.

Hence, understanding the PV effect and designing the new materials with cheaper price but

high frequency, are needed to advance the PV solar technique.

There are many factors to describe the performance of the PV solar cells. Shown in

Fig. 1.1 is a typical measured I-V curve. As denoted in the Figure, the most impor-

tant parameters are short-circuit current (Isc), open-circuit voltage (Voc), filling parameter

(FF ). Finally, the resulting power conversion efficiency (PCE) will be expressed as PCE

= IscVocFF/Pin with Pin as the incoming light power.

The most most common commercial solar cell is the silicon p-n junction type solar

cell invented in 1954. In this system, the different doped p- or n-type silicon semicon-

ductors will form an internal electric field built across the interface owing to the uneven

distributed electron (and holes) when the two materials are attached. This internal electric

2



field can further promote the excited electron and hole separation after their generating by

the light. These separated carriers (electrons and holes) can diffuse to the electrodes, and

then flow to the load to make power. However, this type of PV solar cell suffers from the

Shockley–Queisser limit, which is 34% for ideal p-n junction solar cell due to the carrier

recombination, sunlight spectrum losses, et al. Furthermore, the band gap of this solar cell

is limited by the band gap the silicon, i.e. it can only increase to around 1.3 eV, which

further limits its usage. Therefore, we want to explore and design new materials for the

potential solar cell applications.

There are several aspects that are important to design new materials for the solar cell:

• Appropriate band gap. The energies of the sunlight is not evenly distributed for all

the frequencies. The frequency range with the most concentrated energy is mainly

in the visible light range from 400 nm to 750 nm, corresponding 1.1 ∼3.1 eV. This

requires the band gap of the material for the light absorption should be at least less

than 3 eV. Lower band gap materials can further maximize its power conversion

ability. People have done tremendous work to reduce the band gap such as doping

and solid solution [9, 10, 11, 12, 13, 14, 15, 16]. Furthermore, structure change

such as transforming from rhombohedral to tetragonal reduces the band gap of the

perovskites. [17] Introducing domain and domain wall can also decrease the band

gap and make it applicable to the solar cells [18].
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Figure 1.1: A typical I-V curve for the working solar cell.
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• High absorption. Absorption spectrum describes how much light can be absorbed

under the illumination, i.e. how much light can be used to excited electrons and holes.

The materials with very high absorption are expected owing to their potential abilities

to convert more sunlight. Many semiconductors such as InP, GaAs, GaP, CdS, CdSe,

ZnSe et al. Shown in Fig. 1.2 is the absorption spectrum for some of the solar cell

semiconductors, displaying relatively high absorption coefficient. Many work has

been done to enhance the absorption of the material, from internal or external aspects.

The most commonly used is the surface plasmon induced by metallic nanoparticles

to increase the optical absorption in semiconductors [19, 20, 21, 22, 23].

• Long diffusion length. When the excited carriers (electrons and holes) are separated,

they diffuse to the boundary of the sample to transform into the electrode. It is quite

possible that these carriers can recombine and emit photons. In more complicated

situations, the recombination will not generate photons, instead, the non-radiative re-

combination will happen, transforming the energy of the light to heat. Thus, raising

the carrier diffusion length is significant to increase the PCE. The diffusion length is

related to the product of the carrier lifetime and the mobility. The former is propor-

tional to its effective mass (relevant to the band dispersion), which is the property of

the material itself. The latter (i.e. carrier lifetime) is related to many aspects. But

defects and electron-phonon coupling are generally the most relevant factors. High

defect density and strong electron-phonon coupling will significantly reduce the car-

rier lifetime. In addition, in materials with indirect band gap, the conduction band

minimum (CBM) and valence band maximum (VBM) are not located at the same k

point, and their recombination will be forbidden in principle unless with the help of

the phonons. Therefore, materials with indirect band gap tend to have long carrier

lifetime, such as silicon.
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Figure 1.2: The absorption spectrum of various semiconductors.(reproduced from Ref. [4])
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Density functional theory (DFT) demonstrates to be an efficient yet accurate way to

compute physical properties of the materials. With the recent development of the accu-

rate functionals, DFT has become a standard method to compute the materials’ geometric

and electronic structures. Although this method is a ground state theory, we can still use

DFT to describe excited-state related properties. In this thesis, I will discuss the first-

principles calculations for the potential solar cell materials. This thesis will emphasize: i)

use first-principles method (mainly DFT) to understand physical properties of the materi-

als, ii) use first-principles method to explain the experimental observed phenomena, iii) use

first-principles method to design new materials for the solar cell applications.

With the above mentioned focuses, in Chapter 3, based on first-principles calculations,

we predict a substantial increase in the optical dielectric function of LiAsSe2 under pres-

sure. We find that the optical dielectric constant is enhanced threefold under compression

along all three axes by 3%. This enhancement is mainly due to the dimerization strength

reduction of the one-dimensional (1D) As–Se chains in LiAsSe2, which significantly al-

ters the wavefunction phase mismatch between two neighboring chains and changes the

transition intensity. By developing a tight-binding model of the interacting 1D chains,

the essential features of the low-energy electronic structure of LiAsSe2 are captured. Our

findings are important for understanding the fundamental physics of LiAsSe2 and provide a

feasible way to enhance the material optical response that can be applied to light harvesting

for energy applications.

In Chapter 4, we move to another type of materials called organometal halide per-

ovskite. Organometal halide perovskites are promising solar-cell materials for next-generation

photovoltaic applications. The long carrier lifetime and diffusion length of these materials

make them very attractive for use in light absorbers and carrier transporters. While these as-

pects of organometal halide perovskites have attracted the most attention, the consequences

of the Rashba effect, driven by strong spin-orbit coupling, on the photovoltaic properties
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of these materials are largely unexplored. In this work, taking the electronic structure

of CH3NH3PbI3 (methylammonium lead iodide) as an example, we propose an intrinsic

mechanism for enhanced carrier lifetime in 3D Rashba materials. Based on first-principles

calculations and a Rashba spin-orbit model, we demonstrate that the recombination rate is

reduced due to the spin-forbidden transition. These results are important for understand-

ing the fundamental physics of organometal halide perovskites and for optimizing and de-

signing the materials with better performance. The proposed mechanism including spin

degrees of freedom offers a new paradigm of using 3D Rashba materials for photovoltaic

applications. Furthermore, with our recently developed new method to solve large-scale

tight-binding Hamiltonian, we find that the conduction band minimum and valence band

maximum of the trajectory from the classical molecular dynamics simulation are spatially

separated, which creates slower recombination compared to the high symmetric structure.

This mechanism could also contribute to the long carrier lifetime.

In Chapter 5, we compute the shift current, a dominant mechanism of bulk photovoltaic

effect (BPVE) for ferroelectric photovoltaics, in CH3NH3PbI3 and CH3NH3PbI3−xClx from

first principles. We find that these materials give approximately three times larger shift cur-

rent PV response to near-IR and visible light than the prototypical ferroelectric photovoltaic

BiFeO3. The molecular orientations of CH3NH+
3 can strongly affect the corresponding PbI3

inorganic frame so as to alter the magnitude of the shift current response. Specifically, con-

figurations with dipole moments aligned in parallel distort the inorganic PbI3 frame more

significantly than configurations with near net zero dipole, yielding a larger shift current

response. Furthermore, we explore the effect of Cl substitution on shift current, and find

that Cl substitution at the equatorial site induces a larger response than does substitution at

the apical site. In addition, we review the bulk photovoltaic effect in BiFeO3 and LiAsSe2

and make comparisons. Based on the comparison, we find that the delocalied orbital char-

acter can enhance the shift current. With this, we propose three types of materials which

8



may have large shift current and BPVE.

In Chapter 6, the whole thesis is summarized with future directions.
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Chapter 2

Methods
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2.1 Density Functional Theory

Hamiltonian. The Hamiltonian of the system can be represented as [24]:

Htot = Hnulkin +Helekin +Hnul−ele +Hele−ele +Hnul−nul

=
∑
i

p2
i

2m
+
∑
I

P2
I

2MI

−
∑
I

∑
i

zIe
2

|ri −RI |
+

1

2

∑
i 6=j

e2

|ri − rj|
+

1

2

∑
I 6=J

zIzJe
2

|Ri −Rj|

This Hamiltonian describes the kinetic energy of electrons, kinetic energy of ions, electron-

nucleus interaction, electron-electron and nucleus-nucleus interactions, respectively, where

i,j, p, and r are for electrons, and I ,J , P, and R are for nucleus. With the Born-Oppenheimer

approximation, the Hamiltonian can be further split into electronic part He and the nucleus

part HN . For example, the electronic part can be expressed as:

He = Helekin +Hnul−ele +Hele−ele

Density function theory (DFT) is designed to solve the electronic Schrodinger equation

efficiently yet accurately.

The idea of the DFT is that for a system withN electrons, without writing the wavefunc-

tion with 3N degree of freedom such as φ(r1, r2, ..., rN), the ground state charge density

n(r) is used as the most basic quantity throughout this theory. This charge density is unique

for the ground state, hence, the process of solving the ground state is to minimize the total

energy of the Hamiltonian by varying the charge density.

Kohn-Sham equaton. By choosing the orthonormal orbitals as the basis, the charge

density can be decomposed into n(r) =
∑

i φ
∗
i (r)φi(r). Hele−ele as the Hartree (or Coulomb)

energy can be expressed as:
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HHartree = EH[n] =
1

2

∫
n(r)

e2

|r− r′|
n(r′)drdr′

and the kinetic energy of a system of non-interacting electrons with the same density can

be represented as:

Hele,non−inter = T0[n] =
∑
i

〈φi(r| −
~2∇2

2m
|φi(r〉

Thus, the total energy (electronic part) will be:

E[n; vext] = T0[n] + EH[n] +

∫
vext(r)n(r)dr + Exc[n]

where vext(r) is the external potential acting to the electrons from the nucleus. The exchange-

correlation (EX) functional (Exc[n]) is defined as:

Exc[n] = T [n]− T0[n] + Eee[n]− EH[n]

which is to describe the general difference between non-interacting electron gas and the

real system. There is no exact form for the EX functionals. Different kinds of EX function-

als have been proposed [25]. The bottom of this ladder is the local density approximation

(LDA) with only local density used for the functional, and the generalized gradient ap-

proximation (GGA) with the local density and the density gradient ingredients. Although

they are simple, they actually provide accurate results for many materials, which may be

12



owing to the error cancellation. Above this level is called meta-GGA functional, where

the density Laplacian is introduce, greatly improving the atomization energy for molecules

and surface energy for solids [26]. More accurate functional is to include the exact ex-

change (exchange term from Hartree-Fock), which gives very accurate prediction, but it

is also expensive. With the expression for the Hartree energy and the specific form of the

EX functional, the variation of the density can be solve analytically (V = δE/δn(r)). The

Kohn-Sham equation can be solved as:

[
−~2∇2

2m
+ vext(r) + Vcoul(r) + VXC(r)

]
φi(r) = εiφi(r)

where Vcoul(r) and VXC(r) are functional derivatives of Hartree and EX energy, respec-

tively. By diagonalizing the Hamiltonian, the Kohn-Sham orbital energy (εi) and eigenvec-

tor (φi) can be solved. The total energy calculated from DFT is not the sum of Kohn-Sham

orbital energies, instead, it is expressed as:

ETot =
∑
i

εi − EH[n] + EXC[n]−
∫
VXC(r)n(r)dr

2.2 Linear Response and Density Functional Perturbation

Linear response in Kohn-Sham equation. With the perturbation of the external potential

(δV0), the density (n(r) responses to such potential change as: δn(r) =
∫
χ(r, r′)δV0(r′)dr′.

χ is the density response to the potential perturbation (polarizability) [27]. Thus, the total

potential change (with the screening of the charge density change) is:
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δV (r) = δV0(r) + e2

∫
δn(r′)

|r− r′|
dr′

=

∫ (
δ(r− r′) + e2

∫
χ(r′′, r′)

|r− r′|

)
δV0(r′)dr′

≡
∫
ε(r, r′)δV0(r′)dr′

where ε ≡ δ(r− r′) + e2
∫ χ(r′′,r′)
|r−r′| dr

′′

For Kohn-Sham equation, δn(r) =
∫
χ(r, r′)δVKS(r′)dr′, where δVKS = δV0 + δVH +

δVXC. In order to evaluate the charge denisty derivative, the 1st-order KS orbital perturba-

tion can be expressed as:

δψi(r) =
∑
j 6=i

ψj(r)
〈ψj| δVKS |ψi〉

εi − εj

so δn(r) =
∑

i fiδψ
∗
iψi+c.c., where fi is the occupation number, and δn can be further

expressed as:

δn(r) = 4<
∑
ij,i6=j

fi − fj
εi − εj

ψ∗iψj 〈ψj| δVKS |ψi〉

With this, when the VKS is local, the independent-particle (KS picture) polarizability is

solved as:

χ0(r, r′) = 4<
∑
c,v

ψ∗v(r)ψc(r)ψ∗c (r
′)ψv(r

′)

εv − εc
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But what we need is χ instead of χ0, i.e. the response to the external potential is needed.

Remember δn = χδV0 = χ0δVKS, with little algebra, the χ can be expressed as:

χ = (χ−1
0 − vc − fxc)

−1

where vc and fxc are the functional derivatives of Hartree and EX potentials, respectively.

In the plane-wave code, χ0 and χ are solved in the momentum space, i.e. written with the

plane-wave basis set. These quantities will be used in the following perturbation calcula-

tions.

Phonon and electron-phonon coupling. From the Hellman-Feynman theorem,

∂ε

∂λi
=

∫
nλ(r)

∂Vλ(r)

∂λi
dr

where λ is a variable to control perturbation [28]. By expanding the potential as V =

V0 +
∑

i λi
∂Vλ
∂λi

+ . . . and charge density n = n0 +
∑

i λi
∂nλ
∂λi

+ . . . , the above equation can

be further expanded as (to the 1st order):

∂ε

∂λi
=

∫
n0
∂Vλ(r)

∂λi
dr

+
∑
j

λj

∫
∂nλ(r)

∂λj

∂Vλ(r)

∂λi
dr

+ n0

∑
j

λj

∫
∂V 2

λ (r)

∂λi∂λj
dr

The above deferential of λ are evaluated when λ = 0. By integrate the above equation,

it gives:
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ε = ε0 +
∑
i

λi

∫
n0(r)

∂Vλ(r)

∂λi
dr

+
1

2

∑
i,j

λiλj

∫ [
∂nλ(r)

∂λj

∂Vλ(r)

∂λi
+ n0

∂V 2
λ (r)

∂λj∂λj

]
dr

Now, if we treat λ as the ion displacement uα,i(R) (α is the components of the distortion

x, y and z; i is the position of the atoms; R is the lattice vectors), the force constant matrix

can be written as:

Cαi,βj(R−R′) =
∂ε2

∂uα,i(R)∂uβ,j(R′)

= C ionic
αi,βj(R−R′) + Celec

αi,βj(R−R′)

The ionic contribution can evaluated by performing derivative Ewald summation. The

electronic part will be:

Cαi,βj(R−R′) =

∫
∂n(r)

∂uα,i(R)

∂V (r)

∂uβ,j(R′)
+ n0(r)

∂V 2(r)

∂uα,i(R)∂uβ,j(R′)
dr

In the plane-wave code, the force constant is evaluated in the momentum space asC(q).

Cαi,βj(R − R′) = 1
N

∑
q eiq·(R−R′)C̃αi,βj(q). The detailed form for the force constant is

expressed as:

Cαi,βj(q) =

∫ [
∂n(r)

∂uαiq

]
∂V (r)

∂uβjq
dr +

∫
n0(r)

∂V 2(r)

∂uαi,q=0∂uβjq=0

dr
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with uα,i(R) = uαiqeiq·R. Finally, the dynamic matrix D can be solved as:

D̃αi,βj(q) =
C̃αi,βj(q)√
MiMj

The phonon eigenvectors and eigenvalues are solved by diagonalizing the dynamic ma-

trix. Here, the density response (∂n
∂u

) will be solved based on the linear response as men-

tioned before.

Electron-phonon coupling. The most important quantity of describing the electron-

phonon coupling is the electron-phonon coupling matrix element g. This matrix element

can be written as:

gq,ν(k, i, j) =

(
~

2Mωqν

) 1
2

〈ψi,k|
∂VKS

∂uqν

|ψj,k+q〉

where q and k are the wavevectors for phonons and electrons. ν is the mode index. ψ is

the electronic wavefunction and u is the phonon eigenmode.

2.3 Light-matter Interaction

Interaction picture and evolution operator. Following are the important definations and

properties of the interaction picture and the evolution operator.

The evolution operator U is defined as:

|ψ(t)〉I = UI(t) |ψ(t = 0)〉I
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Here, recall that |ψ(t = 0)〉I = |ψ(t = 0)〉. The subscript I indicates the interaction picture

is used.

For the interaction picture and Schrodinger picture transformation, it follows:

|ψ(t)〉I = ei/~H0t |ψ(t = 0)〉

O(t)I = ei/~H0tO(t)e−i/~H0t

UI(t) = ei/~H0tU(t)

where H0 is the Hamiltonian without time dependence. O is a general operator.

When adding the time-dependent perturbation V (t), the interaction picture for the

Schodinger equatoin turns out to be:

i~
∂UI(t)

∂t
= VI(t)UI(t)

By solving this differential equation, the evolution operator is:

UI(t) = 1− i

~

∫ t

0

VI(t
′)UI(t

′)dt′

With such expansion, we have

First order :UI(t)
(1) = 1− i

~

∫ t

0

VI(t
′)dt′

Second order :UI(t)
(2) = 1− i

~

∫ t

0

VI(t
′)dt′ − 1

~2

∫ t

0

dt′
∫ t′

0

dt′′VI(t
′)VI(t

′′)
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Assuming the system is at the ground state |n〉when t = 0, we can derive the wavefunc-

tion of t = t for any order using the above time evolution operator. As an example, here,

the perturbation Hamiltonian is written as V (t) = e
m

A(t) · p = e
m

A0 cos(ωt) · p, which is

the light-matter coupling with the light frequency ω and the vector field A coupled with the

momentum p of the material. The dipole approximation (long wavelength approximation)

is used due to the large wavelength of the photon compared to the lattice vectors.

First-order response. The first-order perturbed crystal polarization due to light illu-

mination can be derived by solving the responses χ with P (ω) = χ(ω)E(ω) (E is the

electric field of the light). Using the above evolution operator, the first-order perturbed

wavefunction is:

|ψ(t)(1)〉I =

[
1− i

~

∫ t

0

VI(t
′)dt′

]
|ψ(0)〉I

If we rewrite the perturbation term, V (t) = e
2m

A0(eωt+e−ωt)eηt ·P, where η (0 < η �

1) is to assume that the ground state condition is set to −∞ instead of t = 0 for simplicity.

By recasting the perturbation into the wavefunction evolution, if we only expand the

eωt term, we have:

|ψ(t)(1)〉I = |n〉+
ie

~m

∫ t

−∞
e
i
~H0t′eiωt

′
A0 · pe−

i
~H0t′ |n〉

By inserting the expansion 1 =
∑

n′ |n′〉 〈n′|, the above equation will be:

|ψ(t)(1)〉I = |n〉+
ie

~m
A0 ·

∑
n′

|n′〉 〈n′|p |n〉 ei(ωn−ωn′+ω)t+ηt

i(ωn − ωn′ + ω) + η
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Now we can derive the total polarization of the crystal by evaluating P(t) = 〈ψ(t)| r |ψ(t)〉,

where r is the position operator. Thus, the first-order total polarization is:

P̄(1) = 〈ψ(t)
(1)
I | rI |ψ(t)(1)〉I

= 〈n| r |n〉

+
ie

~m
A0

∑
n′

〈n| rI |n′〉 〈n′|p |n〉
ei(ωn−ωn′+ω)t+ηt

i(ωn − ωn′ + ω) + η

− ie

~m
A0

∑
n′

〈n|p |n′〉 〈n′| rI |n〉
e−i(ωn−ωn′+ω)t+ηt

−i(ωn − ωn′ + ω) + η

The position operator can be further replaced with momentum operator by using the

Heisenberg equation of motion:

〈n| r |n′〉 =
i

me

〈n|p |n′〉
ωn − ωn′

, when n 6= n′

Therefore, the polarization will be:

P̄(1) = P̄0

− e

~m2
A
∑
n′

|〈n|p |n′〉|2 eiωt+ηt

i(ωn′ − ωn + ω) + η

1

ωn − ωn′

+
e

~m2
A
∑
n′

|〈n|p |n′〉|2 e−iωt+ηt

i(ωn′ − ωn + ω)− η
1

ωn − ωn′

where P̄0 is the permanent polarization of the material. Since we want to solve the polar-

ization in momentum space, a Fourier transform is performed as P(ω) =
∫ t
−∞ eiωt−ηtP(t).

So the induced polarization will be:
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P̄(1) =
ec

iω~m2
E
∑
n′

|〈n|p |n′〉|2 1

i(ωn′ − ωn + ω)− η
1

ωn − ωn′

recalling the relation E(ω) = iωA(ω)/c. Thus, polarization response χ to the light electric

field E can be expressed as:

χ(ω) =
ec

ω~m2

∑
n′

|〈n|p |n′〉|2 1

−(ωn′ − ωn + ω)− iη
1

ωn − ωn′

= − ec

ω~m2

∑
n′

|〈n|p |n′〉|2 1

ωn − ωn′

(
πδ(ωn′ − ωn + ω) + iP 1

ωn′ − ωn

)

The above formula can be split into two parts: the real part and the imaginary part.

The imaginary part describes the real transitions owing to the delta function, requiring the

energy of the photon to be the same to the bands’ energies difference. It can be approved

that the real part and imaginary part satisfy the Kronig-Kramer’s relation analytically and

numerically.

Here, we only expand the contribution from the eiωt. The e−iωt will give similar results.

Moreover, the electronic occupation of the states are implicit. This is because we assume

that |n〉 is the valence state and |n′〉 are the conduction state. For the above derivation, the

density matrix technique (Liouville picture) can also be used, and it should give the same

results.

The susceptibility is the response of the polarization to the light perturbation. From this

response, the absorption coefficient, refractive index, optical dielectric, and loss functions

can be derived as they all belong to the first-order (linear response) properties of materials.

Second-order response and shift current. The perturbed wavefunction can be further

expanded to the second order under the light illumination.
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|ψ(t)〉 = |ψ(0)〉+ |ψ(t)(1)〉+ |ψ(t)(2)〉+ . . .

From the above example of the first-order expansion, |ψ(t)〉(1) will contain the term

eiωt, i.e. oscillate with the same frequency as light. For the second-order term, we can

imagine that the light perturbation operator will apply to the wavefunction twice, which

can create e2iωt term, e−2iωt term, and zero frequency term (eiωt−iωt). The first two condi-

tions actually is the basis for the second-harmonic generation by oscillating with twice the

frequency of the light. The last condition without any oscillation may act as the carrier state

to generate DC current which is the shift current. For example, if the expectation value of

the momentum is evaluated for the current up to the second order, it will be:

J = 〈ψ(t)|p |ψ(t)〉

= 〈ψ(0)|p |ψ(t)(2)〉+ 〈ψ(t)(2)|p |ψ(0)〉+ 〈ψ(t)(1)|p |ψ(t)(1)〉

where all the terms can provide the none oscillating contribution to the total current. Here, I

will not show the derivation of the shift current. People can find the details in Ref. [29, 30].

The short-circuit shift current response σ is a rank three tensor, and it can be computed
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using perturbation theory, yielding the formula in the thin sample limit as

Jq = σrsqErEs

σrsq(ω) = πe
( e

m~ω

)2 ∑
n′,n′′

∫
dk (f [n′′k]− f [n′k])

× 〈n′k| P̂r |n′′k〉 〈n′′k| P̂s |n′k〉

×
(
−∂φn

′n′′(k,k)

∂kq
− [χn′′q(k)− χn′q(k)]

)
× δ (ωn′′(k)− ωn′(k)± ω)

where n and k are, respectively, the band index and wave-vector, f is the occupation, ~ωn

is the energy of state n, φn′,n′′ is the phase of the momentum matrix element between state

n′ and n′′ and χn is the Berry connection for state n. If spin-orbit coupling is considered,

each Bloch state has spinor form and the current response becomes a sum over spinor

components. Here, the response σ can be written with respect to the intensity instead of the

electric field for simplicity. In this case, the unit transformation |E|2 = 2n
εrε0c

I0 is needed,

where n is the refractive index; εr and ε0 are the relative and vacuum susceptibilities; I0 is

the incoming light intensity.

In a thick sample, considering the light absorption coefficient αrr (ω), the current re-

sponse can be described by the Glass coefficient G [31]

Grrq =
σrrq
αrr

When measuring in-plane current, the current is dependent on the device architecture

(Fig. 2.1).

• When the current direction in the cell is perpendicular to the light illuminatono di-

rection. The total current J is Jq(ω) = GrrqIrw, where I is the light intensity and w
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is the sample width.

• When the current direction is parallel to the light illumination direction. The current

will be Jq(ω) = GrrqIr
D

A, where D is the thickness of the sample, and A is the area

of the electrode.

j j

a) b)

Figure 2.1: The two types of device architecture. The blue bar indicate the electrode posi-
tion: a) current is parallel to the light illumination direction, b) current si perpendicular to
the light illumination direction. Their charge current formula using Glass coefficient will
be different.
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Chapter 3

Substantial optical dielectric

enhancement by volume

compression in LiAsSe2

1

1F. Zheng, J. A. Brehm, S. M. Young, Y. Kim and A. M. Rappe, Phys. Rev. B, 93, 195210 (2016)
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3.1 Introduction

The dielectric response, as a fundamental physical property of materials, describes how

materials respond to an external electric field. In semiconductors, when the applied electric

field frequency is in the range of visible light, the photon excitation of electronic inter-

band transitions dominates the total dielectric response, which is described by the opti-

cal dielectric function. The optical dielectric function is strongly related to other optical

properties of the material, including light absorption, refraction and non-linear optical re-

sponses. Therefore, the enhancement and tunability of the optical dielectric function of

a material are significantly important in various areas, such as solar cell, optical devices

and sensors. A great deal of research has been done to increase the material optical di-

electric response. In particular, defects, material doping and surface plasmon induced by

metallic nanoparticles have been widely used to increase the optical absorption in semicon-

ductors [19, 20, 21, 22, 23]. Whereas most of the previous methods rely on the assistance

of another material, the intrinsic bulk dielectric response enhancement of the light absorber

is less studied.

Alkali-metal chalcogenides such as KPSe6, K2P2Se6, LiAsSe2, LiAsS2 and NaAsSe2

have been synthesized, and their band gaps lie in the visible light region [32]. Since they

have spontaneous polarization, these materials are potential candidates to show the bulk

photovoltaic effect [33]. Moreover, strong optical second-harmonic generation susceptibil-

ity has been observed experimentally and theoretically [32, 34, 35]. However, the effect

of structural distortion on their linear optical responses has not been studied[36], and the

structure-property-optical performance relationship is still unclear. In this paper, by us-

ing a first-principles method, we show that the optical dielectric constant of LiAsSe2 in-

creases threefold by volume compression. More interestingly, As and Se atoms in LiAsSe2

form weakly interacting quasi-one-dimensional atomic chains, of which the dimerization
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strength can be tuned by volume compression. Atomic chains have attracted a great deal of

interest, due to their one-dimensional nature giving rise to exotic phenomena such as con-

ductivity [37, 38], metal-insulator transition [39], and topological phases [40, 41]. Herein,

their important roles in light absorption are emphasized. As illustrated by a tight-binding

model, the dimerization strength is strongly coupled to the relative phases of the gap state

wavefunctions between the two neighboring chains. By reducing the wavefunction phase

mismatch between the chains, the magnitude of transition intensity for the transitions near

the band edges increase significantly, giving rise to substantial optical dielectric function

enhancement.

3.2 Computational Method

Figures 3.1a and b show the experimental structure (ES) of LiAsSe2 [32]. The polar phase

of LiAsSe2 has theCc space group with the glide plane perpendicular to the lattice vector~b.

The polarization induced by ionic displacement lies in the ~a-~c plane [33]. As shown, the As

and Se atoms form distorted quasi-one-dimensional atomic chains along the~b direction[42].

This chain and its neighboring chains form a two-dimensional chain plane (illustrated as

the grey plane), and these chain planes are separated by Li-Se planes (light purple plane).

In the ES, this As–Se chain dimerizes, creating alternating As–Se bonds with two different

bond lengths.
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Li

Se
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2.47 �

3.15 �

2.57 �

2.92 �

Chain plane Chain planeLi-Se plane

113°

Figure 3.1: a) The unit cell of LiAsSe2. The lines between As and Se atoms indicate the
quasi-one-dimensional chains. The chain with its neighbor chains form a chain plane (grey
color plane). These parallel chain planes are separated by the Li-Se plane (light purple
plane) in the middle. b) Side view of the experimental structure (ES). c) Side view of
the compressed structure (CS). The differences between the ES and the CS are mainly ion
motions in the ~b direction. As illustrated by the bond lengths between two neighboring
As–Se bonds, ES shows stronger dimerization strength along the chain than CS.
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The plane-wave density functional theory (DFT) package QUANTUM-ESPRESSO

was used to perform structural relaxations and electronic structure calculations, with the

Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation exchange-correlation

functional [43]. Norm-conserving, designed non-local pseudopotentials were generated

with the OPIUM package [44, 45]. A plane-wave cutoff energy of 50 Ry was sufficient to

converge the total energy with the k-point sampling on a 4×8×8 grid. The structure relaxed

with the PBE functional underestimates the dimerization along the chain, and it does not

match with the ES. By using the GGA + U method with effective Hubbard Ueff = 7.5 eV on

the As 4 p orbitals, the relaxed structure matches the ES very well. Adding U on p orbitals

to get the correct structure is not rare, as the large self-interaction error originating from s

or p orbitals may partially be corrected by the DFT+U method [46, 47]. The DFT calcu-

lated band gap is 0.8 eV, which underestimates the experimentally measured 1.1 eV [32].

With the converged charge density, the wavefunctions used for the dielectric function cal-

culations are obtained from non-self-consistent calculations performed on a denser k-point

grid of 20×36×36 and a sufficient number of empty bands (76 empty bands). By using the

long wavelength approximation and the single particle approximation, the imaginary part

of the optical dielectric function is calculated as Eq.(3.1),

ε2,ii(ω) =
π

2ε0

e2

m2 (2π)4 ~ω2

∑
c,v

∫
BZ

dk |〈c,k| pi |v,k〉|2 δ(ωc,k − ωv,k − ω) (3.1)

where ω is the light frequency; i is the Cartesian coordinate; k is the Bloch wave vector; c,

v denote the conduction and valence band with energy ~ωc/v. The real part of the dielectric

function, ε1, can be calculated from the Kramers-Kronig relation.
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3.3 Results and Discussion

The compressed structure (CS), with much weaker dimerization strength of the atomic

chains (Fig. 3.1c), is obtained by compressing all the lattice vectors by 3%, followed by

the relaxation of the internal atomic positions[42]. This compression corresponds to ap-

proximately 27 kbar stress applied almost hydrostatically. The volume compression of

LiAsSe2 strongly enhances its optical dielectric response as shown in the calculated optical

dielectric functions of the ES and CS (Fig. 3.2a). Furthermore, we find that the dielec-

tric function changes continuously vs. applied compression. Other compression strengths

are also tested as shown in the Appendix Figure.1.9. Figures 3.2b, c and d illustrate the

calculated joint density of states (JDOS), refractive index and absorption spectrum along

the ~b direction as a function of the photon energy for the ES and CS, respectively. Two

other components of the optical dielectric function are also shown in the Appendix Fig.10,

showing much less enhancement under compression. As shown from the spectrum, the

CS shows much higher linear optical responses near the band gap than the ES. In particu-

lar, the optical dielectric constant of the CS increases to more than three times its original

value (Fig. 3.2a). The imaginary part of the optical dielectric function, describing the real

electronic inter-band transitions, also shows great enhancement under compression. As

expressed in Equation (3.1), the imaginary part of the dielectric function is the product of

JDOS
∑

c,v,k δ(ωc,k − ωv,k − ω) and the transition intensity |〈c,k| pi |v,k〉|2. However, we

find that the JDOS contribution to the enhancement is negligible. As shown in Fig. 3.2b, in

the energy range 0 < ~ω < 2 eV where the imaginary part ε2 shows substantial enhance-

ment, the calculated JDOS for the ES and CS (shifted) have very similar magnitude. Here,

we want to emphasize that owing to the different band gaps (0.2 eV) of the ES and CS, the

JDOS of the CS is shifted by 0.2 eV in order to compare. Therefore, this dielectric function

enhancement mainly comes from the increase of transition intensity by compression.
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Figure 3.2: a) LiAsSe2 optical dielectric (ε) function spectrum of the ES and CS as a
function of photon energy along ~b. ε1 is the real part of the dielectric response spectrum,
and ε2 is the imaginary part. b) Joint density of states for the two structures. Owing to the
different band gaps of the ES and CS (0.2 eV difference), the inset graph shows the shifted-
CS (shifting the spectrum by 0.2 eV) and ES JDOS spectra in order to compare with the
same band gaps. c) Refractive index (n) spectrum along ~b. d) Absorption coefficient (α)
spectrum~b.
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To further resolve the origin of the dielectric enhancement by pressure, we present

the distribution of the transition intensity as a function of k in momentum space. Fig-

ure 3.3 shows the transition intensity distributions in the Brillouin zone (BZ), with the

transitions between the valence band maximum (VBM) to the conduction band minimum

(CBM) within the the energy range of 0–2 eV, since these transitions are dominant in the

dielectric function enhancement. As displayed in Figure 3.3, the k-resolved distributions

show distinct patterns in addition to their overall differences in the corresponding dielectric

constants. For the ES, most of the k points have similar yet low magnitude of transi-

tion intensities. However, for the CS, the k-resolved transition intensity shows significant

changes, with the high magnitude k points mostly distributed on a thin plane perpendicular

to the reciprocal lattice vector ~kb. The k points contributing the highest transition intensi-

ties are broadly located in the middle region in this plane. Along the ~ka and ~kc directions of

this plane, the transition intensity changes slowly with respect to wavevectors, indicating

the weak bonding character. This can be attributed to the weak As/Se–Se/Li inter-planar

and As–Se inter-chain interactions. However, the magnitude of transition intensity shows

rapid change along the ~kb direction, as illustrated by the transition intensity profile along

this direction (Fig. 3.7b). This strong k-dependent transition intensity distribution reveals

the strong covalent bonds character along the chain direction. The highly inhomogeneous

distribution of the transition intensity can be considered as an indication of the quasi one-

dimensional nature of the system near the low-energy spectrum, stemming from the dimer-

ization changes of the As and Se atoms. Furthermore, the structural inhomogeneity leads

to anisotropic optical responses as shown by the other two components of the dielectric

functions (Appendix Fig.10), where only the dielectric response along chain direction is

enhanced significantly when applying compression. Therefore, investigating the electronic

structure of the chains is essential to further understand the origin of the dielectric response

enhancement.
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Figure 3.3: Distribution of |〈ψv,k|p |ψc,k〉|2 /V (eV/Å3) in the Brillouin zone (BZ) ex-
tracted from DFT calculation of LiAsSe2 for a) the ES and b) CS. V is the volume of the
unit cell. For simplicity, the primitive BZ is illustrated as an orthogonal box with reciprocal
lattice vectors ~ka, ~kb, and ~kc along the three edges of the box. The transitions with transi-
tion energy less than 2 eV are plotted, as this energy region shows the greatest dielectric
function enhancement. The detailed transition intensity profiles along the black lines in the
figures for the ES and CS are shown in Fig. 3.7b.
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Figure 3.4 shows the DFT band structures plotted along Γ–Y. Under compression, most

bands along the ~kb direction show relatively small changes, except the bands near the band

edges. The CS shows strong dispersion near its optical gap at (0.0, 0.42, 0.0) (fractional

coordinate), as its CBM shows a “dip” while the VBM shows a “bump”. The ES has its

band gap shifted towards the BZ boundary at (0.0, 0.46, 0.0). Comparing to those of the

CS, the bands of the ES near the band gap shows much less dispersion, and the dip and

bump features become less obvious. Besides the band dispersion change, the band gap

shows noticeable change from 0.80 eV (ES) to 0.62 eV (CS). More importantly, we find

that the inter-band transition between the band edges in the CS provides the highest tran-

sition intensity magnitude, but this corresponding value in the ES is very low. In order to

understand the bonding characters of these states which give the highest transition intensity,

the charge density iso-surfaces of the VBM and CBM are plotted in Figure 3.4. Unexpect-

edly, both the ES and CS show quite similar charge density distributions, with non-bonding

Se p orbital character as VBMs and non-bonding As p as CBMs, suggesting that the atomic

orbital overlaps cannot explain such large dielectric enhancement by compression due to

their similar charge densities. Rather, we find that the dimerization change induced by the

compression can strongly alter the phase of wavefunctions so as to vary transition intensity

magnitude significantly, as we will discuss below.
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a) b)

ES CS
Y Y

Figure 3.4: The band structure of LiAsSe2 from Γ to Y (0, π/b, 0) along ~kb, and the charge
density iso-surfaces of the conduction band minimum (CBM) and valence band maximum
(VBM) states indicated by the blue squares in the band structures for a) ES and b) CS.
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To demonstrate the significant influence of wavefunction phase change on the optical

response enhancement, we construct a two-dimensional (2D) tight-binding (TB) model

with interacting atomic chains illustrated in Figure 3.5a. The TB model comprises four

orbitals (i, j =1, 2, 3, 4) in a square lattice with lattice constant a and periodic boundary

conditions along ~b and ~c to model a chain plane in LiAsSe2. Owing to the weak interac-

tion between the chain plane and the Se–Li plane, the inter-planar interaction along the ~a

direction is not considered. As shown in the charge density distributions (Fig. 3.3) and the

projected density of states (see Fig. 3.6 and Appendix Fig.8), the p orbitals from the As

and Se atoms are crucial and they form σ-type covalent bonds along the chain (along the~b

direction). Thus, the TB Hamiltonian can be written as:

H(k) =
∑
i

(
εic
†
i,kci,k

)
+
∑
〈i,j〉

(
tijc
†
i,kcj,k + c.c.

)
(3.2)

where ε is the onsite energy and t is the hopping strength between nearest orbitals i and

j. In this Hamiltonian, the onsite energies of As and Se orbitals are set to E0 + δE and

E0 − δE, respectively. The dimerized hopping strength is denoted as t1 ± δt1 to describe

the alternating As–Se bond lengths. By compression, the dimerization is reduced, leading

to more even As–Se neighboring bond length along the chain, and the smaller δt1 magni-

tude. Across the chains (~c-direction), π-bonding between the p orbitals forms, where the

corresponding hopping interaction is denoted as t2 ± δt2. We find that this inter-chain in-

teraction is of crucial importance in reproducing the correct DFT band structure, although

these interactions are weak relative to the intra-chain interaction, thus assuming |t2| < |t1|.

The onsite energies and hopping strengths of the TB Hamiltonian are tuned to reproduce

the DFT band structure near the band edges.

36



Se 

As

As

Se

a)

A
to

m
ic

 c
h

a
in

d
ir

r
e
c
ti

o
n

As,j=1
Se,j=3 

As,j=4 Se,j=2 

4

-2

-4

δt1/t2|=0.00
δt1/t2|=0.42
|δt1/t2|=0.84
|δt1/t2|=1.27

c)

(0,0) (0.5,0)

Figure 3.5: a) 2D TB model for weakly interacting As–Se chains (the inset graph shows the
chains in LiAsSe2). The dashed lines indicate the chain-chain interaction connecting the
As–Se chains (solid lines). t ± δt denotes the hopping strength. b) The Brillouin zone of
the 2D model. The band structure (graph c) is plotted along the thick blue line. c) The band
structure calculated from the 2D TB model along the chain propagation direction under
different dimerization strengths (δt1/t2 with t2 fixed).
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By solving the TB model numerically, we obtain the band structures in Fig. 3.5c plot-

ted along the chain propagation direction indicated by the blue line in Fig. 3.5b. We also

calculate the band structures by gradually reducing the dimerization strength (decreasing

δt1) with t2 fixed, and find that the band gap position shifts away from the BZ boundary.

Furthermore, the As p and Se p atomic orbital projections in DFT and the TB model are

compared for the valence and conduction band as shown in Fig. 3.6. The TB model cal-

culation shows the same orbital hybridization and the trend of change under compression

to DFT, validating the TB model we use. In addition, the maximally-localized Wannier

functions are computed for the ES and CS structures [48]. Their onsite energies and hop-

ping strengths also fall into the range of the TB model in this work. From the TB band

structure, the dispersion of the band edges are significantly enhanced when decreasing δt1.

This feature becomes clearer by calculating the k-resolved transition intensity using the TB

wavefunctions.
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Figure 3.6: The Bloch wavefunction projection onto the Se p and As p orbitals along the
bands for a) ES by DFT, b) CS by DFT, c) ES by TB and d) CS by TB. The size of the
circle and square represents the atomic orbital contribution weight.
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The transition intensity (I) is expressed as I (k) = |W v,c (k) Π (k)|2, with W v,c =∑
j,j′ C

v∗
j′,kC

c
j,k, summing over the contributions of the wavefunction coefficients to the tran-

sition intensity. In this case, Π accounts for the contribution generated when constructing

the TB basis set from the localized atomic orbitals, with its relative value only determined

by the wavevector without solving the Hamiltonian. Shown in Fig. 3.7 is the calculated

I along the same k-path as used in the TB band structure (Fig. 3.5b). By reducing the

dimerization strength of the atomic chains (reducing δt1/t2), the transition intensities for

the band edge states and nearby increase significantly, which agrees well with the DFT

transition intensity trend under compression shown in Fig. 3.7b. Additionally, by plotting

W which is contributed only from the wavefunction as we are interested, it is clear that it

shows exactly the same trend as I, demonstrating the significant role of wavefunctions in

the enhancement of the transition intensity under pressure.

The low-energy k · p effective theory provides simpler and more explicit band structure

and wavefunction expression. The HamiltonianH (k) is further expanded in the vicinity of

the BZ boundary as H(k) = H(K) + (k−K)H ′(K) with k = K + (q, 0), K = (π/b, 0).

From the k ·p Hamiltonian, the energies for the valence band (E−) and the conduction band

(E+) near the BZ boundary are obtained as:

E± (q) = ±
√
δE2 − 2

√
4t22Ω (q) + 4δt22 + Ω (q) (3.3)

Ω (q) = 4δt21 + (qat1)2 (3.4)

When |δt1| > |t2|, the band gap is at the BZ boundary (q = 0). By decreasing the dimer-

ization strength such as |δt1| < |t2|, the band gap wavevector (q(Eg)) is 2
√
t22 − δt21/ (at1).

This change of band gap position as a function of the dimerization strength (δt1/t2) agrees

with our DFT band structures of LiAsSe2. In the ES, the strong dimerization between the
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As and Se atoms moves the band gap close to the BZ boundary. In the CS, the reduced

dimerization due to the compression shifts the band gap away from the boundary, giving

rise to the strong dispersion for the states near the gap. (The detailed derivation of the

effective Hamiltonian is in the Appendix and Calculation Details.)

Within this low energy theory, the phase relationships of the wavefunctions are further

explored by evaluating the analytical expression of wavefunctions for the band edge states.

When the band gap is not at the BZ boundary (|δt1| < |t2|) , the wavefunctions of the gap

states have simple forms:

ψVBM = 1/
√

2
(
0, eiθ, 1, 0

)
, (3.5)

ψCBM = 1/
√

2
(
1, 0, 0, eiθ

)
(3.6)

where the wavefunctions are written with the TB basis of the four orbitals: χAs,j=1, χSe,j=2,

χSe,j=3, and χAs,j=4 (Fig. 3.5a). Due to the simple form of the wavefunctions, we use

these two states to show the effect of phases of the chains. Here, θ = arcsin (|δt1/t2|)

indicates the dimerization strength of the atomic chains. From the wavefunction expression,

it is clear that the VBM and CBM are always non-bonding states without mixing of the

As and Se orbitals, which is also observed in the DFT calculation. More interestingly,

θ controls the phase mismatch between the wavefunctions of the two chains in the chain

plane. For example, for the CBM wavefunction, when θ = 0, the orbitals on χAs,j=1

and χAs,j=4 are populated in the same phase, while, with nonzero θ 6= 0, χAs,j=1 on one

chain and χAs,j=4 on the neighboring chain have the phase difference of eiθ between the

corresponding wavefunction coefficients. Hence, the application of the hydrostatic stress

to LiAsSe2 reduces θ, enabling wavefunction phase matching between the two neighboring
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Figure 3.7: a) Calculated transition intensities I(k) and |W v,c (k)|2 (W v,c (k) =∑
j,j′ C

v∗
j′,kC

c
j,k) from 2D TB model. The x axis is the wavevector along the chain direction.

b) Transition intensities (eV/Å3) extracted from DFT calculation of transition intensity for
the ES and CS. They are plotted along the chain direction as indicated by the short black
lines in Fig. 3.3.

atomic chains, which is essential to the enhancement of dielectric responses.
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Using this simple form of wavefunctions, the band edge transition intensity is evaluated

as I ∝
∣∣eiθ + e−iθ

∣∣2 = cos2 (θ) = 1 − (δt1/t2)2. The first exponential term eiθ originates

from one chain and the other term from the neighboring chain. (More details of transition

intensity calculation using the TB model is in the Appendix and Calculation Details.) In

this material, the finite dimerization strength of the two neighboring chains have opposite

effects to their contributions to the transition intensity. Therefore, without varying the

overlaps between the atomic orbitals, the phase change of the wavefunction induced by

structural change alters the overall dielectric function significantly.

3.4 Conclusion

In summary, by using a first-principles method, we have shown that volume compression

can significantly enhance the optical dielectric function and the dielectric constant by fac-

tor of three in LiAsSe2. This material is essentially a network of As–Se 1D atomic chains

with the dimerization strength tunable by compression. The enhancement of the transition

intensity near band edges is the main reason of the overall dielectric function improve-

ment. A 2D tight-binding model with weakly interacting atomic chains is developed to

explore the relation of dimerization strength and transition intensity. When the dimer-

ization is strong, the wavefunctions of the two neighboring chains have significant phase

mismatch, providing destructive interference that reduces to the dielectric function. By

reducing this wavefunction phase mismatch via compression, the collective contributions

from the chains dramatically enhance the overall dielectric response and light absorption.

Our results indicate that this material is suitable as the light absorber in the solar cell ap-

plication. Furthermore, since the transition intensity is related to other optical processes

such as second-harmonic generation and the non-linear optical effects, we expect that the

volume compression can enhance their responses.
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3.5 Appendix and Calculation details

Transition intensity and TB model

The Bloch wavefunction based on the TB orbitals is:

ψn,k =
∑
j

Cn,k
j χk

j (3.7)

χk
j (j=1, 2, 3, and 4) is expanded as

∑
R eik·(R+sj)φR,j , and φR,j is the localized atomic

orbital centering at the position of R + sj .

With the Bloch wavefunctions, the transition intensity is expressed as:

I(k) = |〈ψv,k|p |ψc,k〉|2

=

∣∣∣∣∣∑
j,j′

Cv∗
j′,kC

c
j,kΠjj′,x (k)

∣∣∣∣∣
2

(3.8)

where Πj,j′ (k) = eik(sj−sj′)
∑

R̄ eikR̄ 〈φ−R̄,j′|p |φ0,j〉 with summation over nearest hop-

ping neighbor unit cells denoted by R̄, which is only related to the wavevector, orbital

position and the momentum matrix element between two localized atomic orbitals.

The low energy Hamiltonian is written as:

H(q) =



E i2δt1 − qat1 2t2 0

−i2δt1 − qat1 −E 0 2t2

2t2 0 −E i2δt1 − qat1

0 2t2 −i2δt1 − qat1 E
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Figure 3.8: The projected density of states (PDOS) of the a) ES and b) CS. The band gap
states are mainly Se p and As p orbital characters.

with respect to the four orbitals shown in Figure 3.5. Based on this Hamiltonian, the band

edge states can be solved as Equations 4 and 5.

When calculating the transition intensity for band edge transitions, the transition inten-

sity can be further simplified as:

I(q) =
∣∣Cv∗

j′=1,qC
c
j=0,qΠj=0,j′=1 + Cv∗

j′=2,qC
c
j=3,qΠj=3,j′=2

∣∣2
=
∣∣eiθ + e−iθ

∣∣2 |Π (q)|2

≡ |W v,c (q)|2 |Π (q)|2 (3.9)

In this model, Πj=0,j′=1 = Πj=3,j′=2. The transition intensity is only related to the wave-

function coefficient C and the wavefunction phase mismatch between two neighboring

chains.
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Figure 3.9: a) Optical dielectric functions under different compressions. b) The enhance-
ment of the dielectric constants under different compressions.

Projected density of states

Fig.8 shows the projected density of states (PDOS) for the ES and CS. For the states

near the band gap, p orbitals from Se and As are dominant to the valence bands and con-

duction bands. Hence, these two types of orbitals are crucial and considered in the tight-

binding (TB) model.

Continuous Change of Optical Dielectric under Pressure

In the main text, 3% compression is shown illustrating the enhancement of the optical

dielectric function. However, this compression induced enhancement is continuous under

the pressure. Shown in Fig.9 is the optical dielectric functions under the different com-

pression as 1%, 2%, 3% and 4% (corresponding to the stress 7.1, 14.5, 27.0 and 42.0 kbar,

respectively). The dielectric constant is continuously enhanced under the compression as

shown in Fig.9 b). Although the smaller band gaps due to the stronger compression con-

tribute to the dielectric constants, the imaginary parts of the optical dielectrics are showing

significant increase under the compressions.

XX and ZZ Components of the Optical Dielectric

LiAsSe2 shows strong anisotropy of the optical dielectric function in the three direc-
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Figure 3.10: a) Optical dielectric functions in xx component of the ES and CS. b) Optical
dielectric functions in zz component of the ES and CS.

tions owing to the different bonding properties along the three axis as shown in Fig.10.

This anisotropy is significantly enhanced under the compression as yy (same to bb, used

in the main text) component shows great increase. This further originates from the special

electronic structure in the y direction (same to~b direction). In particular, the polarization on

a−c plane distinguishes the bonding properties along ~a and ~c for the band edges. However,

the enhancement of xx and zz are much less significant compared to the yy (same to bb)

component shown in Fig.10 for the ES and CS. Here, we want to clarify that x, y and z are

along the Cartesian axis. Thus, the x direction is the same to the ~a direction, however, z

direction is slightly different from the ~c direction.
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4.1 Introduction

The organometal halide perovskites (OMHPs) have attracted significant attention due to

the rapid increase in their photovoltaic power conversion efficiency. In the past 3 years,

the reported efficiency of OMHP-based solar cells has almost doubled from 9.7%[49] to

over 20% [50, 51, 52], making OHMPs very promising for low-cost and high-efficiency

photovoltaics. CH3NH3PbI3 (MAPbI3), and other closely-related hybrid perovskites such

as Cl-alloyed and Br-alloyed MAPbI3 (MAPbI3−xClx and MAPbI3−xBrx), (NH2)2CHPbI3

(formamidinium lead iodide, FAPbI3), and Sn-alloyed MAPbI3 (MAPbxSn1−xI3), all dis-

play band gaps (1.1 to 2.1 eV) in the visible light region. Recently, the Ge-based OMHPs

have been synthesized such as CsGeI3, MAGeI3 and FAGeI3, which posses spontaneous

polarization owing to the small size of Ge+2 [53]. They are all favorable for photovoltaic

applications [54, 55, 56, 57, 58, 59, 1, 60, 61]. The class of materials also possesses

strong light absorption, comparable to other classic semiconductors such as GaAs, InP,

and CdTe[56, 4, 62, 63]. Also, these materials show relatively fast charge generation, high

carrier mobility, and long carrier lifetime[64, 65, 66, 67, 68].

However, there are factors that hinder the commercialization of the OMHP solar cells.

The stability (material degradation) challenge significantly reduces the robustness of OMHPs

as the solar cells. Tremendous work has been done to understand the mechanism of the

degradation.[69, 70, 71, 72, 73, 74, 75, 76]. Such degradation is further accelerated due

to exposure to moisture light, or heat[77, 78, 79]. Besides the structure stability, the sta-

bility of the performance also limits the practical application of the OMHPs. In particular,

the I-V hysterisis (PCE depends on operated voltage scanning direction and rate) still re-

mains as a concern before market visibility[80, 81, 82, 83, 84]. Also, the PCE is strongly

affected by fabrication method, age of the sample[85, 86, 82, 83, 87, 88], making the de-

termination of the PCE very ambiguous. People have found that large grain of OMHPs
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significantly reduces the I-V hysterisis, and gives rise to stable performance under oper-

ating conditions[89, 87, 90]. In addition, material design demonstrates to be a promising

way to enhance both types of stability for the structure and performance[91]. For exam-

ple, (MA,FA)Pb(I,Br)3 generates ¿20% PCE with negligible I-V hysterisis effect, and high

stability[92].

As a short summary, the advantages and disadvantages of the OMHPs are list below:

Advantages:

• High and fast growing PCE

• Cheap

The reason for its high PCE is mainly because:

• Appropriate band gaps

• Relatively high absorption

• Long carrier lifetime and diffusion length

• Low defect concentration

Disadvantages:

• Structure instability

• Strong I-V hysterisis effect

• Containing Pb (poison)

Beyond photovoltaic. In addition to solar cell applications, various OMHP materials

are also proposed to use as thermoelectric devices due to their large Seebeck coefficient and

low thermal conductivity[1, 93, 94, 95]. Furthermore, OMHPs recently are introduced as
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nanolaser materials owing to the high fluorescence yields and wavelength tunability[96, 97,

98, 99]. Due to their appropriate band gaps, OMHPs can also be used as sensor [100, 101]

and water-splitting cells [102].

Structure of OMHPs. OMHPs have the perovskite-type structure ABX3, with Cs+1,

MA+1, FA+1 ions are at theA site, and Pb+2, Sn+2 are at theB site. Halide atoms including

Cl, Br and I are atX site. At low temperature, most of the OMHPs favors the orthorhombic

structure. Withe increasing the temperature, they transform into more symmetric structure

(such as tetragonal). At high temperature, most of the OMHPs will show cubic structure.

Taking the most typical MAPbI3 as an example, the space group of this material is Pbnm

below 160 K [3, 1]. By increasing the temperature, it becomes I4/mcm with in-plane oc-

tahedral rotation. Finally, above 330K [1], it shows cubic structure without any octahedral

rotation. Shown in Fig. 4.1 is one typical primitive unit cell of MAPbI3.
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Figure 4.1: The primitive unit cell for MAPbI3. Grey: Pb; Purple: I; Blue: N; Brown:
C; Pink: H. The Pb is in the center of the iodine-cage. The molecule is at A site with +1
charge.
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SOC effect in OMHPs. Due to the presence of heavy atoms, spin-orbit coupling (SOC)

is thought to affect the electronic structure significantly [103, 104, 105]. When SOC is in-

cluded, an angular momentum dependent term is added to the Hamiltonian. Fig. 4.2 a)

shows the band structures without and with spin-orbit coupling. As seen in the figure, SOC

reduces the band gap substantially at the Γ point. At this point, the GGA band gap with

NSOC is close to the experimental value, as the DFT underestimation of band gap is largely

canceled by the exclusion of SOC. This has been seen in GW and hybrid functional cal-

culations [56, 62]. Our calculated electronic structure (NSOC) shows that the conduction

band minimum (CBM) has mostly non-bonding Pb pz orbital character slightly hybridized

with I s; whereas the valence band maximum (VBM) is anti-bonding between I p and Pb s

orbitals, as shown by the real space wavefunction plots in Fig. 4.2 b). The MA molecular

electronic states are not directly involved in the states near the band gap, as confirmed by

other first-principles calculations [76, 63].
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a)

b)

NSOC SOC

VBM CBM

Figure 4.2: a) The band structures of MAPbI (M1) without and with spin-orbit coupling.
Since the system lacks inversion symmetry, the SOC splits bands which are originally de-
generate without SOC. b) The wavefunctions of the VBM and CBM at the Γ point without
SOC (VBM and CBM states are indicated as blue square in the NSOC band structure).
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4.2 Carrier Lifetime

4.2.1 Introduction

To understand the outstanding performance of the OMHPs as solar cells, the exceptionally

long carrier lifetime and diffusion length have been observed in MAPbI3 and MAPbI3−xClx,

which makes these materials better solar cell candidates than other semiconductors with

similar band gaps and absorption coefficients [66, 67, 68]. Intense research has been

directed toward understanding and further enhancing the long carrier lifetime and diffu-

sion length in OMHPs. Previous studies reported a relatively low defect concentration in

MAPbI3 [106, 107, 108, 109, 110], which reduces the scattering centers for nonradiative

charge carrier recombination. Recently, it has been suggested that the spatial carrier seg-

regation caused by disorder-induced localization[111] or domains acting as internal p-n

junctions[112, 76, 18] may reduce the recombination rate. The presence of strong spin-

orbit coupling (SOC) and bulk ferroelectricity in many of the 3D-Rashba OMHP materials

have been studied extensively [113, 104, 114, 103, 115, 116, 117, 118, 119, 56, 120]. How-

ever, the direct role of spin and orbital degrees of freedom on photovoltaic applications are

largely unexplored. In this work, we focus on an intrinsic mechanism for the enhance-

ment of long carrier lifetime due to the Rashba splitting. Using first-principles calcula-

tions and effective models, we find that the Rashba splitting arising from SOC in locally

polarized domains can result in spin-allowed and spin-forbidden recombination channels.

The spin-forbidden recombination path has a significantly slower transition rate due to the

mismatch of spin and momentum. The spin-allowed recombination path, though kineti-

cally favorable, can be suppressed under appropriate spin texture due to the low population

of free carriers induced by the fast carrier relaxation to the band edges. (Here, we con-

sider electron-phonon scattering as the main relaxation mechanism.) Taking the electronic

structures of MAPbI3 under various distortions as examples, we show that the proposed
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Figure 4.3: Diagram of Rashba bands and the electron transport path. The cyan and or-
ange arrows indicate the directions of the spins. The spin texture χ indicates spin vortex
direction, with its signs characterizing spin rotation in “clockwise” (χ = −1) and “coun-
terclockwise” (χ = +1). After absorbing the photons, the excited electrons on conduction
bands Cχ=+1 and Cχ=−1 will quickly relax to Cχ=−1 band minimum ue to the inelastic
phonon scattering. Similarly, the holes will quickly relax to the Vχ=+1 band maximum.
However, the radiative recombination of Cχ=−1 → Vχ=+1 is a spin-forbidden process due
to the opposite spin states they have. Moreover, the minimum of Cχ=−1 band and the max-
imum of χ=+1 band are located in different positions in the Brillouin Zone. his creates an
indirect band gap for recombination, which further slows down the recombination process.

mechanism is possible under room temperature, and is potentially responsible for the long

carrier lifetime in OMHPs. This spin-dependent recombination mechanism highlights the

possibility of using 3D Rashba materials [121, 122, 123, 124] for efficient photovoltaic

applications.
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4.2.2 Results and Discussion

Fig. 4.3 illustrates the mechanism for enhancing the carrier lifetime in a generic 3D Rashba

material. The strong spin-orbit coupling effect from heavy elements (e.g., Pb, Sn, I and

Br) and inversion symmetry breaking owing to the polar distortion (e.g., aligned molecular

dipoles in OMHPs) give rise to the Rashba effect, which lifts the two-fold degeneracy of

bands near the band gap. This is distinct from the Dresselhaus effect, which happens in sys-

tems of different symmetry. Here, C4v symmetry removes Dresselhaus splitting [125, 114].

Indeed, the spin structure of the Dresselhaus model is inconsistent with DFT calculations

of MAPbI3. [113] Near the band gap, the spin degeneracies of the conduction and va-

lence bands are lifted, giving rise to “inner” and “outer” bands with opposite spin textures,

characterizing spin rotation direction as “clockwise” (χ = −1) and “counterclockwise”

(χ = +1) (Fig. 4.3). The photo excitation process creates free electrons and holes, which

can quickly relax to band extrema in the presence of inelastic phonon scattering. When the

spin textures of conduction band minimum (CBM) and valence band maximum (VBM) are

opposite, the radiative recombination of Cχ=−1→ Vχ=+1 is a spin-forbidden transition due

to the mismatch of spin states. This prevents rapid recombination as the photon-induced

spin-flip is a slow process [126]. Moreover, the minimum of the Cχ=−1 band is slightly

shifted compared to the maximum of the Vχ=+1 band (momentum mismatch). This creates

an indirect band gap for recombination, which further slows down the recombination pro-

cess due to the requirement of a phonon with the right momentum. This is also highlighted

in Ref.[127], where the indirect band gap is created by the dynamic disorder of molecules.

In the following, we use the terms favorable and unfavorable relative spin helicity to de-

scribe cases when the VBM and CBM have opposite and aligned spins, respectively.
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Figure 4.4: Dependence of phonon-induced relaxation rate on carrier energies (blue lines)
for electrons (positive energies) and holes (negative energies). The VBM is located at
E = 0 eV, and the CBM is located at E = 0.73 eV. The energies of phonon modes that
contribute strongly to carrier relaxation are shown as dotted lines. The phonon modes listed
in the graph have frequencies as 141.2 cm−1 (MA translation), 315.9 cm−1, 924.3 cm−1,
1441.5 cm−1, 1598.3 cm−1 (MA twisting), and 3158.6 cm−1 (NH vibration), respectively.
(See details in the Appendix)
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The spin texture and carrier population of the CBM and VBM play key roles in en-

hancing carrier lifetime. Our first-principles density functional theory (DFT) calcula-

tions support the realization of this mechanism in OMHPs. Taking the pseudocubic phase

MAPbI3 as an example, we explore the carrier dynamics after the photoexcitation. The

electron-phonon coupling plays a significant role for the relaxation of the excited carriers

in OMHPs. [128] Using Fermi’s golden rule, we calculate the inelastic phonon scatter-

ing rate (see Methods) shown in Fig. 4.4. The relaxation rate (≈ 1015s−1) increases as a

function of carrier energy. This is supported by the sharp jumps of the relaxation rate at

frequencies corresponding to phonon modes (emission thresholds) derived mainly from the

organic molecules, as shown in Fig. 4.4. We find that the organic molecule plays an impor-

tant role for carrier relaxation. The modes that are responsible for these sharp jumps are

identified as MA translation, CH/NH twisting, and CH/NH stretching. [129] In particular,

the contribution of these modes are found in both VBs and CBs, indicating their equally

important role in electrons and holes. The scattering magnitude differences of CBs and

VBs are mainly from their density of states differences (Eq.4). Other modes with both MA

and I vibrations also contribute to the carrier relaxations. But these modes have much lower

frequencies, and the emission thresholds due to these modes occur much closer to the band

edges.

Our calculations reveal that the phonon-induced carrier relaxation rate value is many or-

ders of magnitude faster than the electron-hole recombination rate (≈ 109 s−1)[130, 128].

Therefore, the carriers will rapidly thermalize and from a quasi-static equilibrium distribu-

tion near the CBM and VBM. In Rashba SOC bands, the special spin configuration always

allows a carrier of a certain spin to relax to a lower energy state of the same spin via the

emission of a finite-wavevector phonon. A sequence of such emission events results in the

relaxation of carriers to band edges. In the ideal case of low temperatures and large Rashba
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splitting, nearly all free carriers are located at the band extrema, and the effects of spin and

momentum mismatch on the enhancement of the carrier lifetime will be the greatest. This

effect is less strong at finite temperatures and small Rashba splitting because of the ther-

mal occupation of Cχ=1 and Vχ=−1 bands, which opens spin-allowed recombination paths

such as Cχ=−1→ Vχ=−1. In the case of favorable relative spin helicity, we investigate this

temperature effect by examining the Rashba splitting using a Rashba Hamiltonian[131]:

HR =
~2k2

2m
+ ~vRẑ × ~k · ~σ (4.1)

Ek,s =
~2(k2

z + k2
⊥)

2m
+ s~vRk⊥, k⊥ =

√
k2
x + k2

y (4.2)

The parameters m and vR represent the band mass and Rashba interaction respectively.

By fitting m and vR to DFT band structure of fully relaxed MAPbI3 pseudocubic lattice,

the band energies and spin configurations of the model agree with DFT calculated results.

Furthermore, the tight-binding model introduced below and in the Supporting Information

can be reduced to this Rashba Hamiltonian, demonstrating the role of Rashba SOC in

MAPbI3. We find that the conduction band Rashba splitting (0.108 eV) is much larger than

the thermal energy scale, while the valence band Rashba splitting (0.016 eV) is comparable

to the thermal energy scale. Since electronic correlations are not fully captured in DFT [61],

these values are likely lower bounds of the true splitting. These relatively large Rashba

splittings are likely to give rise to a significant enhancement in carrier lifetime even at

room temperature.
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Figure 4.5: a) Population of carriers at T=298 K, calculated from the Fermi-Dirac distri-
bution, for a) the top valence band and b) the bottom conduction band of MAPbI3. Shown
in dashed lines are the population of carriers in a model material with the same band masses
as MAPbI3, but with vanishing Rashba splitting. c) Unitless lifetime enhancement factor,
as defined in the text, as a function of the conduction band Rashba splitting energy.
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There is an additional factor, arising from the unique features of Rashba band struc-

ture, which promotes occupation of the band extrema. In contrast to the band extrema of

ordinary parabolic bands in semiconductors which are points in momentum space, those

of Rashba materials are one-dimensional rings (Fig. 4.3). This leads to an increase in

the density of states at low energies, resulting in a population of carriers heavily skewed

towards the band extrema (Fig. 4.5a and b) and consequently reduces the overall recombi-

nation rate due to the reasons of spin and momentum mismatch as discussed above. This

increased density of states leads to a predominance of desirable spin carriers, even though

the valence band splitting is comparable to the room temperature energy scale, protecting

the long carrier lifetimes even at room temperature.

The magnitude of Rashba splitting depends on the amount of polar distortion and the

strength of the SOC, both of which can be captured by the Rashba velocity parameter vR.

We calculate the averaged recombination rate

〈τ−1〉 =
∑
χ,χ′

∫
d3k τ−1

χ,χ′(k)neχ(k)nhχ′(k)∫
d3k neχ(k)nhχ′(k)

(4.3)

where τ−1
χ,χ′(k) = Bχ,χ′neχ(k)nhχ′(k) is the band- and momentum-resolved recombination

rate. The spin-mismatch effect is captured by the rate constant Bχ,χ′ , which is larger when

χ and χ′ have parallel spins than otherwise. Enhancement of density of states enters via

the temperature dependent electron and hole occupation numbers ne(k) and nh(k), which

tend to peak at different k points because of momentum mismatch. In order to quantify

the effect of Rashba splitting on the recombination rate, we define the unitless lifetime

enhancement factor as the ratio 〈τ−1〉vR=0/〈τ−1〉vR , where 〈τ−1〉vR is the average recom-

bination rate when SOC is taken into account, and 〈τ−1〉vR=0 refers to a calculation where

SOC is explicitly set to zero in the Rashba model (Fig. 4.5c). Upon tuning the Rashba

splitting continuously in our model, we find that the lifetime enhancement factor increases
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approximately exponentially with Rashba splitting - a consequence of the exponential be-

havior of carrier occupation numbers near the tail of the Fermi-Dirac distribution. Our

model predicts that a Rashba splitting of 0.1 eV can give rise to an order of magnitude

enhancement of carrier lifetime.

As we have seen, the favorable spin helicity of the VBM and the CBM enables the in-

trinsic enhancement of carrier lifetime, with the amount of enhancement depending on the

magnitude of the Rashba splitting. The inversion symmetry-breaking distortions that in-

fluence relative spin helicity and splitting magnitude are therefore intimately related to the

SOC enhancement of carrier lifetime. To reveal the relation, we start with a tight binding

model of the inorganic PbI−3 lattice (see Methods). The displacements of Pb atoms along the

z direction give rise to effective hoppings between Pb s- and p-orbitals along the equatorial

direction (Fig. 4.6a), which would vanish by symmetry in the absence of such displace-

ments. Similarly, displacement of the apical I atoms along the z direction changes Pb–I

bond lengths and effective hoppings along the apical direction (Fig. 4.6b). These modifica-

tions of hopping parameters create the effective inversion symmetry breaking electric fields

described by ~vR in our low-energy theory model (Eq. 4.1). In this model, we find that the

spin textures of the valence bands and conduction bands depend on the combination of Pb

and I displacements. By shifting Pb and I atoms, we can control the spin textures of the

valence and conduction bands, creating favorable and unfavorable relative spin helicities.

As we now proceed to show, this picture is confirmed with DFT calculations.

We focus on two phases of MAPbI3, pseudocubic phase (α phase) and tetragonal

phase (β phase) [1]. The pseudocubic phase of MAPbI3 has space group P4mm with

a = b = 6.31 Å and c = 6.32 Å. It does not have inversion symmetry, because of the

permanent dipole moments of MA+. It is suggested that the aligned molecular orientations

in polar domain can drive Pb-I displacement giving rise to ferroelectric distortions [132].

The DFT fully relaxed pseudocubic structure at 0 K is monoclinic, with molecular dipole
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pointing to the face center of PbI−3 sublattice (see Supplementary Information). Since this

0 K structure is of limited use in the discussion of the PbI−3 sublattice distortions at finite

temperature, here we explore all the possible structures with Pb and apical I displacements

along c direction while respecting the space group. Without distorting the PbI−3 sublattice,

the electronic effect of molecular permanent dipole moment to Rashba splitting is negligi-

ble. Thus, the molecules are aligned along c direction for simplicity. Shown in Fig. 4.6d

are the DFT-calculated spin textures and averaged Rashba splittings at VBM and CBM

respectively for a given pair of Pb and I displacements (see Methods). The areas outlined

by the solid red lines indicate the structures with favorable relative spin helicities, which

also have relatively large band splittings. We find that these structures have Pb and apical

I displaced along opposite directions. This is consistent with typical ferroelectric distor-

tions in inorganic ferroelectrics such as BaTiO3 and PbTiO3. It is noted that large apical I

displacement tends to drive the system away from the region with favorable relative spin

helicity to unfavorable spin helicity (Fig. 4.6d).

We further explore the relationship between relative spin helicity and local distortions

in tetragonal MAPbI3 [1], which is observed at room temperature. The space group of

the tetragonal phase is identified as I4cm, allowing both ferroelectric distortion and PbI6

octahedral rotation (Fig. 4.6e). Fig. 4.6f shows the spin textures and the averaged Rashba

splitting for different Pb and I displacements in I4cm space group. The tetragonal phase

exhibits similar displacement-helicity relationship to the cubic phase, indicating that the

Rashba splitting can also enhance the carrier lifetime in tetragonal phase.

Various experimental studies have demonstrated switchable ferroelectric domains (∼100nm)

and ferroelectricity at room temperature [133, 134, 89, 135]. Many theoretical studies also

suggested the existence of local polar regions at room temperature [111, 76, 136, 137]. The

atomic structures of these polar regions are still not clear. Energetically accessible struc-

tures at room temperature are highlighted by dashed red lines in Fig. 4.6d and f, which
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cover a large region displaying favorable spin textures. Hence, our proposed mechanism

can be realized in MAPbI3 at room temperature, and provides a possible explanation of long

carrier lifetime. Molecular dynamics and Monte-Carlo simulation [60, 138, 139] suggest

that the molecule can rotate in a relatively short time scale, which may result in dynamic

disorder although the issue of order and disorder is still an open question. However, our

proposed mechanism is expected to be valid as long as the disorder correlation length is

large enough to create local regions of finite Rashba splitting (see details in Supporting

Information). In these local regions, we expect that our mechanism still contribute to the

carrier lifetime enhancement. This is also supported by many studied listed above as they

show large polarized domains to validate this mechanism. Moreover, recent studies of

carrier dynamics under magnetic field illustrate the significance of spin in carrier recombi-

nations [140, 141, 142].

Rashba SOC enhanced carrier lifetime highlights the potential of 3D Rashba materi-

als [143] for photovoltaic applications. The ability to incorporate different organic molecules

in OMHPs provides a robust avenue to design 3D Rashba materials. If changes are made

to the dipole magnitude of organic molecules in halide perovskite, the spin helicities and

band splittings are likely to be affected via the Pb and I displacements as discussed above.

Conventional experimental techniques of controlling bulk polarization (e.g, epitaxial strain)

can also be applied to optimize power conversion efficiency.

In summary, we have proposed an intrinsic mechanism for enhancing carrier lifetime

in 3D Rashba materials. In the case of OMHPs, such mechanism can be realized by the

joint action of molecules (electron-phonon coupling) and PbI−3 sublattices (giving rise to

spin-orbit coupling). The photoexcited carriers quickly relax to band edges due to the

electron-phonon coupling. When the spin textures for CBM and VBM are opposite, the

Rashba splitting of bands close to the band gap results in spin-allowed and spin-forbidden

recombination paths. The spin-forbidden recombination path has slow transition rate due
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Figure 4.6: a) and b) Hopping schemes illustrate the effective electric field ~vR,sp and
~vR,pp created by vertical hopping and horizontal hopping respectively for a range of Pb
and I displacements. These two factors caused by different Pb and I displacements con-
trols spin textures of CBM and VBM differently, giving rise to different spin helicities.
c) Schematic diagram showing Pb and I displacement in pseudocubic MAPbI3. Pb: Sil-
ver. I: Indigo. Broken circles are original high-symmetry positions. Molecules are not
shown here. The red square/green diamond indicate the displacements of Ti and apical
O of BaTiO3/PbTiO3 for comparison [5, 6]. The red circle marks the distortions with the
lowest total energy. d) Phase diagram of splitting energy and spin texture for structures
with different Pb and apical I displacement in pseudocubic MAPbI3 calculated from DFT.
The color is the minimum value between the averaged splitting energy of two Rashba con-
duction bands and two valence bands (see Methods). The spin texture phase boundaries
are indicated by the solid red lines. When the structure transforms from a favorable spin
texture region to an unfavorable spin texture region, the two Rashba valence bands or con-
duction bands exchange, creating negative splitting energy. The dashed lines indicate the
areas with energy cost less than 25 meV (under room temperature fluctuation) to distort
Pb and I. e) Schematic diagram showing Pb and I displacement in tetragonal MAPbI3. f)
Similar to d, phase diagram of splitting energy and spin texture for structures with different
Pb and apical I displacement in tetragonal MAPbI3 calculated from DFT. The red circle
marks the distortions with the lowest total energy.
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to mismatch of spin and momentum. The spin-allowed recombination path, though kinet-

ically favorable, will only influence a smaller amount of carriers. In order to achieve this

favorable spin helicity, we explore different Pb and I displacement giving rise to differ-

ent spin textures. A tight binding model is developed to explain this spin-displacement

relation. This mechanism allows OMHPs to behave like direct-gap semiconductors upon

photoexcitation, and like indirect-gap semiconductors during radiative recombination, si-

multaneously harnessing the large carrier densities of the former and the long lifetimes

of the latter. The mechanism we propose highlights the importance of the Rashba effect

and structural distortion for achieving long carrier lifetime and consequently long diffusion

length in organometal halide perovskites.

4.2.3 Appendix

DFT and Electron-phonon coupling The plane-wave DFT package QUANTUM-ESPRESSO [43]

with the Perdew-Burke-Ernzerhof [144] functional (PBE) is used to perform electronic

structure and electron-phonon coupling calculation. Norm-conserving, designed nonlocal

pseudopotentials were generated with the OPIUM package [44, 45]. The following orbitals

are pseudized and considered as valence electrons: Pb: 5d, 6s, 6p; I: 4d, 5s, 5p; C: 2s,

2p; N: 2s, 2p; H: 1s. The planewave cutoff is 50 Ryd to get converged charge density.

The k points are chosen as 8 × 8 × 8 Monkhorst-Pack grid for pseudocubic structure and

6 × 6 × 4 for tetragonal structure [132]. As also shown in other work, the band gap is

underestimated with PBE+SOC [104, 103, 116, 117, 118, 119, 56]. We calculate the in-

elastic phonon scattering rate for electrons and holes using Fermi’s golden rule (with SOC

included) [145, 128]:

τ
(ph) −1
k,n→n′ = ~−1 V

(2π)3

∑
ν

∫
d3k′|gn,n

′

ν,k,k′ |
2δ(Ek,n − Ek′,n′ − ~ων) (4.4)
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where k and n are the wavevector and band index respectively, ν denotes the phonon mode,

Ek,n are electronic band energies and V is the volume of the unit cell. The phonon frequen-

cies ων and electron-phonon matrix elements gn,n
′

ν,k,k′ are obtained from density functional

perturbation theory (DFPT)[27]. Further details are included in Supporting Information.

Lifetime enhancement factor The rate constant Bχ,χ′ in Eq. 4.3 of spin-allowed (χ =

χ′ = ±1) and spin-forbidden (χ 6= χ′) transitions are obtained from averaged DFT calcu-

lated oscillator strength over the k points near band edges. For example, B1,1 ≈ 3.7B1,−1.

Although the calculation with PBE+SOC underestimated the band gap, in this case, only

the ratio of spin-allowed and spin-forbidden transitions matters. In this work, the oscillator

strength is used to show transition probability. Because spin-allowed and spin-forbidden

transitions occur at similar energies (around the magnitude of band gap), the ratio of oscil-

lator strength between these two types of transitions are not affected significantly.

Tight-binding model The tight-binding model is based on PbI−3 structure. Pb 6s, Pb 6p and

the I 5p orbitals are included in this model with spin degree of freedom. The tight-binding

Hamiltonian is:

HTB = Hhop +HSOC (4.5)

where Hhop considers the nearest neighbor hopping between two orbitals, described by tsp,

tppσ and tppπ for s–p σ hopping, p–p σ hopping and p–p π hopping respectively. HSOC is

the on-site SOC term defined as λRashbaL · S. Hopping parameters and λRashba are fitted

to DFT band structures of pseudocubic MAPbI3 with experimental lattice constants. We

reduce our tight-binding Hamiltonian into the Rashba effective model (Eq. 4.1) in two

steps, following the procedure outlined in [113]. First, the I p orbitals are removed by

projecting HTB to the subspace of Pb orbitals:

HPb = PHTBP + PHTBQ
1

E −QHTBQ
QHTBP (4.6)
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(a) (b) (c)

Figure 4.7: Phonon modes corresponding to sharp emission thresholds seen in Fig. 2 of
main text. (a) MA translation, (b) CH/NH twisting, (C) NH vibration. There frequencies
are 141.2 cm−1, 315.9 cm−1 and 3158.6 cm−1, respectively. Pb: grey; I: pink; C: yellow;
N: blue; H: cyan.

where P and Q are projection operators to the Pb and I subspaces respectively. This re-

sults in an effective HamiltonianHPb containing inversion symmetry breaking terms which

modify the effective hopping between Pb orbitals [113]. Next, HPb is reduced to HR using

a similar projection to the CBM and VBM. (See details in Ref. [146])

Rashba splitting energy phase diagram For both pseudocubic and tetragonal phases of

MAPbI3, the apical I and Pb atoms are displaced while respecting the space group identified

from experiments. These displacements generate the 2D map (Fig. 4.6) and each point in

this 2D map corresponds to one structure with the specific pair of Pb and I displacements.

The Rashba splitting energy is defined as |∆ER| = min[〈EC,s=CBM+1 − EC,s=CBM〉 ,

〈EV,s=VBM − EV,s=VBM−1〉]. Here, the sign of ∆ER is indicated as +1 for favorable spin

helicity, and−1 for unfavorable spin helicity. “〈 〉” indicates the average over k points near

CBM or VBM.
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Phonon modes of MAPbI3. Pseudocubic MAPbI3 structure is used to compute electron-

phonon (e-ph) coupling. The structure of MAPbI3 is fully relaxed using the force threshold

of 2.5×10−5 eV/Å with and without SOC. The relaxed structure is a = 6.412 Å, b = 6.346

Å, c = 6.470 Å, α = 90.0 Å, β = 88.8 Å and γ = 90.0 Å. The volume is V = 263.220

Å3, consistent with other computational work [147]. The GGA functional is well known to

overestimate experimental volumes [1, 2, 3].

As illustrated in other studies, imaginary phonons at Γ point are obtained [128], which

may come from the rotational degree of freedom. The contribution of the imaginary mode

can only increase the total phonon relaxation rate, which does not affect our assumption

that the phonon relaxation rate is orders of magnitude faster than radiative recombination.

Because the carriers (electrons and holes) can be relaxed to band edges with fast scattering

rate by other phonon modes (indicated in Fig.2 and Fig. S 4.7). SOC is found to have neg-

ligible effect to the structural relaxations [132, 56, 103, 147] as well as phonon frequencies.

The phonon frequencies ων and electron-phonon matrix element g in this work are obtained

from density functional perturbation theory (DFPT) with SOC included.

Since the purpose of e-ph calculation is to show the high phonon scattering rate, it is not

necessary to perform the expensive DFPT calculation on massive k and q points sampled

in the entire Brillouin Zone to obtain the accurate matrix elements. In this work, three q

points are included to demonstrate the fast phonon scattering rate: ~q = (0.0, 0.0, 0.0) (Γ

phonon scattering, in cartesian coordinate), ~q = (0.0, 0.01, 0.0) (small wavevector phonon

scattering) and ~q = (0.0, 0.04, 0.0) (large wavevector phonon scattering). e-ph coupling of

all these q points show similar phonon scattering rate on the order of 1 × 1015 s−1, which

is several orders faster than the spontaneous recombination rate (. 1× 109 s−1).

Besides the three types of phonon modes mentioned in Fig.2 and Fig. S1, other phonon

modes with relatively small frequencies also contribute to the excited carrier relaxation to

the band edges. For completeness, in Fig. S2, the other five modes with large e-ph coupling
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(a)  [1.00] (b)  [0.40] (c)  [0.17]

(d)  [0.06] (e)  [0.02]

Figure 4.8: Phonon modes with large e-ph coupling strength. The number in the square
brackets indicate the e-ph coupling strength (|g|2) compared to the largest mode (a), which
is set to 1. Their frequencies are 139.5 cm−1, 121.1 cm−1, 97.3 cm−1, 71.3 cm−1 and 40.9
cm−1, respectively. Pb: grey; I: pink; C: yellow; N: blue; H: cyan.

strength are also shown. However, owing to their low frequencies, the sharp jumps induced

by these modes occur much closer to the band edges. Due to the low density of states near

the band edges, these modes do not show abrupt jumps in the relaxation rate graph. As

shown in Fig. S1 and Fig. S2, all the modes contributing large e-ph coupling strength and

fast scattering rate mainly belong to the molecules. Fig. S2 d and e show some iodine

movements, however, their e-ph coupling strengths are also reduced.
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4.3 Large-scale Tight-binding modeling

4.3.1 Introduction

OMHPs are known to exhibit the spatial and temporal structural disorder [2, 148, 149, 60].

Tremendous work has been devoted to understand the way how the structure distorts. In

particular, in the most studied MAPbI3, the A site is occupied by a molecule with per-

manent dipole moment, which drives the PbI3 sublattice distortions (described in Chapter

3). Intense research, both experimental and theoretical[2, 139, 150, 151, 127, 149], have

been directed to study the behavior of the molecules, which is believed to be the origin of

the structural distortion due to their dynamically changing orientations. Recently, the ex-

periments with low-frequency Raman show the similar spectrum pattern in MAPbBr3 and

CsPbBr3, indicating the intrinsic feature of the structural disorder, independent of A site

occupations[152]. While the role of A site to the structure disorder is elusive, the presence

of structural distortion is affirmative, and its effect to the electronic properties needs to be

considered.

The structural disorder may contribute to the long carrier lifetime. Previous studies

indicate that the PbI3 sublattice driven by the A site molecules may form local polar do-

mains [76, 112, 18]. The domain walls in between can help the carrier separation and

diffusion due to the high conductivity. This idea is further shown in Ref. [111], where

a large supercell is computed ab initio with the CBM and VBM charge densities local-

ized in different regions in real space. Furthermore, as illustrated in the above section, the

structural distortion of the A site orientation can lead to the CBM and VBM separation in

momentum space [153, 91, 113, 104, 114, 103, 115], i.e. creating the indirect recombina-

tion, and enhancing the long carrier lifetime. The above ab initio work mostly were done at

0 K, where the temperature effect to the structural disorder is implicit. To directly include

the effect of the temperature directly, people have done the ab initio molecular dynamics
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simulations to study the dynamics of the geometric and electronic structures. In particu-

larly, it is found that the band gap and the band edge states with the fluctuation of 0.1∼0.2

eV were observed [154, 155, 60]. In these simulated systems, the size of the system is still

a few unit cells owing to the high cost of ab initio calculations, and some artifacts may

be introduced due to the finite size. Hence, a large enough dynamical system is needed to

eliminate this problem. TB method has been proven to be an effective yet accurate way

to compute the electronic structure of large systems [156, 157], particularly in the energy

range interested. In this work, by combining the simulation of the classical MD of a large

system of MAPbI3 at finite temperature, and the electronic structure calculation via solving

the TB Hamiltonian, we show the role of the structural disorder to the electronic wavefunc-

tions directly. Our calculation demonstrates the enhancement of carrier lifetime by 20%

due to the disorder. We also observe a very small magnitude of the band gap fluctuation,

showing the significant finite-size effect to the band gaps.

4.3.2 Results and Discussion

As mentioned in the last section, we developed a tight-binding (TB) model to describe the

band edges of MAPbI3. In addition to the TB model in Ref. [113], where only Pb orbitals

are considered, here, the Pb s and p, and I p orbitals are included, with the hopping strength

describing the nearest Pb-I hopping. Thus, the TB Hamiltonian is written as:

H = Honsite +Hhop +HSOC (4.7)

H(k) =
∑
i,α

(
εic
†
iα,kciα,k

)
+
∑
α

∑
〈i,j〉

(
tijc
†
iα,kcjα,k + c.c.

)
+
∑
i,αβ

(
λic
†
iα,kcjβ,k + c.c.

)
(4.8)

where i, j are the index for atomic orbitals, α, β are spins, t is the hopping strength between
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the orbitals, and εi is the onsite energy for orbital i. This TB model does not contain

the molecular orbitals explicitly owing to their high energies far from the band edges of

MAPbI3 [132]. In this model, we consider three types of bonding (and hopping) between

Pb and I: s-p σ bond, p-p σ bond, and p-p π bond. Both onsite energy and hopping strength

can be fitted from DFT calculated band structures. Moreover, because of the significant

role of SOC mentioned before, both spins (spin up and spin down) are included for each

orbital. Their interactions are described by the onsite atomic SOC matrix [113] with the λi

controlling the SOC strength for the orbital i. The structural distortion is essential, and its

effect to the TB mode is reflected by the distortion of the hopping strength as:

tdistort = tundistorte
α(ddistort−dundistort) (4.9)

(ddistort − dundistort) is the bond length difference before and after distortion. α (α < 0)

associated with different bond type (σ and π bonds) is also fitted from various DFT struc-

tures.

In order to fit the TB parameters, our DFT calculation is performed on a single unit

cell MAPbI3 lattice (see the Appendix for details). With the charge density obtained from

self-consistent calculation, we perform a non-self-consistent calculation on the denser k-

point grid as 10×10×10, and fit the TB model to this band structure with the least-square

method. Since the TB mode of one unit cell has 26 bands, we fit to the DFT band structure

with 20 valence bands and 6 conduction bands. In this case, all the parameters including

onsite energy, hopping strength and SOC coupling strength are varied to fit. Shown in

Fig. 4.9 are the DFT and TB calculated band structure comparison for the high symmetric

MAPbI3 single unit cell structure and the distorted structure by manually moving the Pb and

I atoms away the high symmetric positions. Both structures show good agreement between

the DFT and the TB band structures, in particular, the TB calculation can reproduce the
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Figure 4.9: a) The DFT and fitted TB band structures for the primitive MAPbI3 high sym-
metric unit cell (with Pb in the center of cube and I in the center of cubic faces). b) The
DFT and the fitted TB band structures for the distorted structure of MAPbI3 (all atoms are
randomly displaced from the high symmetric structure with less than 0.12 Angstrom ).

band gap, and match the band edge states with the DFT very well. Furthermore, the orbital

characters calculated from the TB are the same to the DFT results [132], with CBM mainly

Pb p and VBM Here, for the bands near the bottom and the top, relatively large deviations

are shown, which is mainly due to the simplicity of the TB model with the nearest hopping

considered, and the mixed molecular orbitals in DFT, respectively.
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To further validate our TB model, we use the TB model on a set of
√

2 ×
√

2 × 2

supercell structures extracted from an ab initio MD simulation to compared with their DFT

calculations. Shown in Fig. 4.10 is the band structures calculated by the TB and DFT.

The TB gives the very accurate band gap with less than 0.02 eV error. In addition, it can

reproduce the band edge states very well, demonstrating the correctness of our TB model.

Furthermore, we calculate the band gaps of the TB and DFT as displayed in Fig. 4.10,

which shows good agreement and enables the using of TB for the much larger system.

We perform the classical MD simulation of the 20×20×20 supercell of MAPbI3 at

room temperature (300K) and generate the trajectories (see the Appendix for details). The

TB Hamiltonian can be built with the input of the MD structures. The most challenge

step is to solve the eigenvalues and eigenvectors of the large Hamiltonian with the size

around 0.2 Million × 0.2 Million. Here, we use the so called Implicitly Restarted Arnoldi

Method to diagonalize the sparse Hermitian matrix. This method is implemented in the

MPI enabled parallel version of ARPACK library as PARPACK [158, 159]. Reverse com-

munication interface is one of the most special technique in this library. Using this method,

it is not necessary to store the large size of the Hamiltonian in the memory, instead, the

only needed action is to design the matrix vector product principle. The PARPACK library

is also capable to print out the eigenvectors for the requested eigenvalues. With all these

features, we can solve the TB model efficiently yet accurately.
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Figure 4.10: a) Band structures calculated from the DFT and TB. b) The band gaps obtained
from the DFT and TB for the structures extracted from ab initio MD simulations. The
structure with blue square is used for band structure calculation shown in a).

77



This large supercell has the band gap at Γ point. Shown in Fig. 4.11 a is the band gap

of the 21 structures extracted from the MD trajectory. From the Fig. 4.9 where the DFT

band structure is shown, the DFT band gap with SOC underestimates the experimental

measurement by around 1 eV, which is well known issue for PBE exchange-correlation

functional. However, the band gap along this trajectory varies with only around 0.01 eV

magnitude, which is much less than the aforementioned 0.1∼0.2 eV fluctuation observed

in the ab initio MD simulations. This shows that the band gap fluctuation depends on

the size of the system under the calculation. To further demonstrate this, we slice this large

system to small sub-systems (shown in Fig. 4.11 b), and calculate the band gaps for the sub-

systems. These values are also plotted in the Fig. 4.11 a. Apparently, as shown from this

graph, when the system becomes smaller, it tends to have large band gap variations. In our

case, the 4×4×4 system has the band gap fluctuation up to 0.2 eV, while this fluctuation

reduces to 0.05 eV when the size of the system increases to 10×10×10. Therefore, we

believe that the previous observed large band fluctuation up to 0.2 eV is more likely to be

the artifact due to the limited size of the system used in the simulation. In the experiments,

people can observe the ferroelectric domain with the size around 100 nm [133, 134, 89,

135]. The domain and the domain wall indeed may affect the band gap as demonstrated

in Ref. [18]. By increasing the size of the system to this further, the band gap should be

constant without explicit change. This stable band gap also explains the sharp absorption

edge and the small Urbach tail. While the overall band gap varies negligibly, this material

shows strong local fluctuations. This is associated with the relatively weak Pb-I bonding

strength yet sensitive electronic structure change, which is further owing to the intrinsic

dynamic disorder of this material [152].
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Figure 4.11: a) The band gap evolution of the classical MD trajectory. Here, we calculate
the electronic structure of 21 structures of this trajectory. Besides the 20×20×20 supercell,
the band gaps of the sliced 10 × 10 × 10, 4 × 4 × 4, and 2 × 2 × 2 are also shown. b) It
shows the diagram of slicing the 20× 20× 20 supercell to obtain smaller supercells.
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Figure 4.12: a) The CBM charge localization in the real space. Here, only one slice of the
supercell is shown for visibility. Each tile represents one Pb atom. b) The VBM charge
localization in the real space. Each tile represents one I atom.

The strong local structural distortion can further affect the wavefunction and the charge

density. In Ref. [111] where molecular orientations are randomly distributed, both CBM

and VBM show charge localization within nanoscale regions, and this effect is highlighted

in a larger system. Our TB calculation also shows similar results. But in our calculation,

instead of using randomized molecular orientation, the MD trajectory is used, making the

picture obtained more realistic. In Fig. 4.12, the charge density of the CBM and VBM at Γ

point are displayed, where only one slice of supercells (20×20×1) is shown for visibility

with each tile representing Pb (CBM) or I (VBM) atom. Apparently, both CBM and VBM

shows uneven spatial distributions. More importantly, the most localized positions of the

CBM and VBM in the real space do not overlap, which could lead to slow recombination

rate. The dynamic random orientation of the molecules can create dynamic indirect band

gap in the momentum space owing to the strain applied by the molecules [127]. In our sim-

ulations, the large system used eliminates such strain and annihilates the k-space indirect

band gap, but still creates ”spatial” indirect band gap owing to the disordered molecular

orientation and the PbI3 sublattice distortions.
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In order to quantify how the spatial localization of the charge density affect the carrier

lifetime, we calculate the recombination rate using the TB wavefunctions. Based on the

Fermi’s golden rule, the recombination rate is expressed as τ−1 ∝
∑

c,v

∫
BZ

dk |〈c,k| pi |v,k〉|2

δ(ωc,k−ωv,k−ω), where τ is the lifetime, c and v indicate the conduction and valence bands

with their energy ωc and ωv, and ω is the light frequency. Due to the low intensity of the sun-

light, the excited carriers will mainly recombine at Γ point where the band gap is present.

Therefore, comparing the momentum matrix element (MME =|〈cCBM,k|p |vVBM,k〉|2) of

the high symmetric structure and the distorted structure obtained from MD simulation will

illustrate the role of the distortion directly, demonstrating their effects to the lifetime. The

momentum matrix element with atomic orbitals can be expressed as [160]:

〈c,k|p |v,k〉 =
m0

i~
〈c,k| [r,H] |v,k〉

=
m0

~
〈c,k| ∇kH (k) |v,k〉 (4.10)

where ∇kH(k) can be solved analytically. With this quantity, the lifetime enhancement

(τ−1
MD/τ

−1
highsym) can be calculated and shown in Fig. 4.13. As we have seen, the magnitude

of the lifetime enhancement in the MD trajectory is around 1.2 of the high symmetric

structure. This enhancement is also very stable along the trajectory. Thus, the disordered

feature of the MAPbI3 creates the spatial separation of the VBM and CBM, which indeed

contributes to the long excited carrier lifetime constantly.
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Figure 4.13: The lifetime enhancement factor (τ−1
MD/τ

−1
highsym) computed with the MD tra-

jectory and the high symmetric structure.
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In summary, we have developed a TB model to describe the band edge states of the

MAPbI3. By fitting to the DFT calculated band structure, the TB model can reproduce the

band gap, band structure and the orbital character very well. Combining with the classical

MD trajectory, we can solve the electronic structure of the very large system using this TB

model. We find that the band gap of the MD trajectory is rather stable. The previously

observed large band gap fluctuation from ab initio MD is more likely to be the artifact of

the system size. Moreover, it is noticed that the structure disorder can affect the spatial

charge density distribution. The separation of the VBM and CBM in the real space causes

the slow radiative recombination rate. We believe that this feature will also contribute to

the exceptional long carrier lifetime observed in MAPbI3 and other OMHPs.

4.3.3 Appendix

DFT calculation

To obtain the band structure, the plane-wave density functional theory (DFT) package

Quantum Espresso is used with Perdew-Burke-Ernzerhof (PBE) generallized gradient ap-

proximation functional [144]. Norm-conserving, designed non-local pseudopotentials were

generated with the OPIUM package [44, 45]. The plane-wave cutoff with 50 Ryd and k-

point grid of 8×8×8 are used to converge the total energy over the number of plane-waves

and k-points. SOC is included to be consistent with the TB.

MD simulation

ab initio simulation
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Chapter 5

Bulk Photovoltaic Effect in MAPbI3
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5.1 Introduction

Bulk photovoltaic effect (BPVE) is the phenomena in systems lacking inversion symmetry,

where photo-current and giant photo-voltage are generated under light illumination [161].

Review of BPVE experiments. BPVE has been observed in many materials sys-

tems, including GaAs [162], quantum wells [163], organic crystals [164], and recently

two-dimensional interfaces. [165] In particular, the BPVE in ferroelectric materials has

been explored experimentally for more than fifty years. In ferroelectrics, the applica-

tion of an external electric field is not necessary for the generation of photocurrent, as

demonstrated in early work on the prototypical ferroelectric BaTiO3 [166], where the

photocurrent was attributed to surface space-charge layers. This was followed by studies

[167, 168, 169, 170, 171, 172] showing the presence of photocurrents and photovoltages

in many other ferroelectrics. Further developments include the strong dependence of pho-

tocurrent on light polarization direction in BaTiO3 [173], and a giant BPVE in LiNbO3

[174, 175] scaling linearly with light intensity. It was found that BPVE is enhanced in

nanostructures. [176] For example, (Pb,La)(Zr,Ti)O3 (PLZT), Pb(Zr,Ti)O3 and the solid

solutions in thin film form can have high photo-current magnitude. [177, 178, 179, 180].

This is further supported by the giant BPVE observed in BaTiO3 thin films. [176]

The shift current theory was proposed as an explanation for the BPVE in BaTiO3 by

von Baltz and Kraut [181], and was later derived within the framework of Green’s functions

[182] and non-linear optics. [183] Young and Rappe reformulated the shift current theory to

enable efficient calculation from first principles [184], and provided the first comparison of

experimental BPVE data to shift current theory. [184] In subsequent first-principles studies

of the shift current in ferroelectric materials, it was shown that the shift current is the main

contributor to the BPVE. [185, 186, 187, 188, 189, 190, 191, 192]

In this Chapter, I will use MAPbI3 as an example to systematically illustrate its shift
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current response. The results of BiFeO3 and LiAsSe2 are also shown for comparison. At the

end, by generalizing the shift current of these materials, general material design principles

for high BPVE are raised with three examples illustrated.
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5.2 MAPbI3

5.2.1 Introduction

MAPbI3 and related materials share similar perovskite structures with ferroelectric oxides.

The tetragonal phase of MAPbI3 was found to have ferroelectric response at room tem-

perature [1]. Various I/V hysteresis measurements suggest that the current is related to

the ferroelectric response [84, 80, 193, 88, 194]. In particular, the large measured open-

circuit voltage allows for the possibility that the BPVE could make a big contribution to the

photo-voltage, as the BPVE can generate a photo-voltage that is above a material’s band

gap. Therefore, studying the BPVE of MAPbI3-based materials is important in terms of

elucidating the underlying mechanism of their high efficiency and continuously optimiz-

ing their properties as a solar cell material. Here, we calculate the shift current response

of MAPbI3 and MAPbI3−xClx, and show that their current responses are approximately

three times larger than that of BiFeO3. Our calculations demonstrate that the molecular

orientations as well as the Cl substitution position can strongly affect their shift current

responses.

87



M1 M2

a) b)

Figure 5.1: The top and side views of the relaxed MAPbI3 structures with a) molecular
orientation 1 (M1) and b) molecular orientation 2 (M2). M1 has all the net MA molecular
dipoles along the c axis, while M2 has MA molecules with dipoles opposite to that of its
neighboring molecules, yielding a net zero dipole. Four MAPbI3 are considered in one unit
cell. Pb: dark grey, I: purple, C: black, N: light blue, Cl: green, H: light pink.
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5.2.2 Results

The increased symmetry at high temperature is related to the free rotation of the MA

molecules, as observed in both experiments and theoretical calculations [2, 129, 76, 195,

60, 196]. In order to explore the effect of molecular orientation on the structure and shift

current, structures with two different orientations, M1 and M2, starting from the tetragonal

PbI3 inorganic frame, are computed and shown in Fig. 5.1.

As shown in the table, our calculated lattice constants agree well with the experiments

and theoretical works [106, 56, 103, 197, 196, 147]. The computed a and b lattice constants

are slightly different depending on the molecular orientations, and because they are differ-

ent, this confirms that the orthorhombic structure is favored at low temperature. Although

the molecular orientations affect the lattice, the total energy difference between the M1 and

M2 structures is small.

Table 5.1: The lattice constants and relative total energies, per unit cell, of the optimized
MAPbI structures with molecular orientation M1 and molecular orientation M2. The exper-
imental values are from Ref. [1, 2, 3]. Total energy (per 48 atom cell) of the M2 orientation
structure is set to zero.

M1 M2 exp.
a (Å) 8.97 9.00 8.85
b (Å) 8.86 8.77 8.85
c (Å) 12.85 12.95 12.44–12.66

ET (eV) 0.021 0 -
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Because the zzZ response tensor component is the dominant component among all the

tensor elements, Fig. 5.2 shows the MAPbI thin sample limit shift current response σzzZ and

Glass coefficient responseGzzZ for the M1 and M2 structures with and without SOC. Since

the direct band gap calculated with SOC is smaller than that without SOC, the onset energy

of the shift current response calculated with SOC is lower than that calculated without SOC,

as shown in Fig. 5.2. Also, the SOC tends to shift the whole spectrum without substantially

changing its magnitude. On average, the M2 structure has a much smaller current response

and Glass coefficient than the M1 structure. The magnitude of the Glass coefficient is

closely related to material symmetry and state delocalization [29]. We have shown that a

strongly distorted structure with delocalized states involved in an optical transition tends to

give a large Glass coefficient response. Polarization calculations show that the M1 structure

has a polarization of 5µC/cm2, while the M2 structure has nearly zero polarization. Since

the bulk polarization contribution from the molecular dipole moment is estimated to be less

than 2.5µC/cm2 [198, 199]the PbI3 inorganic lattice is a significant contributor to the M1

structure’s polarization, as much larger Pb displacement (≈ 0.07 Å along z) was observed

than in M2 structure (≈ 0.01 Å along z). As a result, the distorted M1 structure provides a

larger shift current response than the more symmetric M2 structure. At room temperature,

the shift current responses can be the average of the M1 and M2 cases due to the disordered

molecular orientations. Limiting the molecular rotation by methods such as doping, lattice

shrinkage, or application of electric field can highlight the current contribution from one

particular orientation. An understanding of the dependence of the current on molecular

and polarization orientations is helpful in understanding the I/V hysteresis under different

applied voltage scanning rates.
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Figure 5.2: a) Shift current response σzzZ and b) Glass coefficientGzzZ vs. incident photon
energy for structures with molecular orientation M1 and orientation M2. The M1 structure
provides a larger shift current response and Glass coefficient than the M2 structure. Calcu-
lations with and without SOC show the same trend for the two orientations.
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Adding Cl has been shown to provide a diffusion length as long as 1 µm without sub-

stantially changing the absorption spectrum [63, 67, 4]. Since MAPbICl has been found to

have a reduced lattice constant along the c axis compared to MAPbI, it is thought that Cl

substitutes I at the apical site of the PbI6 octahedra, but the actual Cl position is still not

clear [200, 201]. In order to understand the effects of Cl position on shift current, we study

different Cl substitution configurations at the apical and equatorial sites for both molecular

orientations, as shown in Fig. 5.3.
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(a) (b)

(c) (d)

Figure 5.3: Fully relaxed structures of MAPbICl with one (a and b) or two (c and d) Cl
atoms per unit cell. The structures shown here have molecular orientation M1. Structures
a and c have equatorial site substitution; structures b and d have apical substitution. The
corresponding four structures with molecular orientation M2 are also tested, but are not
shown here.
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The structures with one and two Cl atoms in one unit cell (with 48 atoms) are fully

relaxed, and their band gaps and polarization magnitudes are shown in Table 5.2. The

structures with Cl at different positions have similar total energies (≈30 meV of the total

energy difference), indicating their similar thermal stabilities. We find that although the

Cl position has no substantial effect on the polarization, it strongly affects the shift current

responses.
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Figure 5.4: Glass coefficientGzzZ calculated with a) NSOC and b) SOC vs. incident photon
energy for the four relaxed structures (a, b, c and d) shown in Fig. 5.3.
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Fig. 5.4 shows the Glass coefficient GzzZ . Responses with and without SOC show a

similar trend for different Cl positions and concentrations. Interestingly, the apical site

substitution of I with Cl tends to give relatively small shift current responses, while the

equatorial site substitution shows much larger responses. This can be explained from wave-

function projections. Our electronic structure calculations show that Pb p orbital character
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Figure 5.5: The projected density of states (PDOS) for Pb atoms calculated from structure
a) M1 orientation without Cl in Fig. 5.1, b) structure c(M1) and c) d(M1) in Fig. 5.3. Energy
of the VBM is set to zero.

slightly hybridized with I dominates the conduction bands near the band gap. In the highly

symmetric structure without octahedral tilting, Pb px, py and pz will be degenerate and hy-

bridized with I s. However, the distortion of Pb-I bonds on the a-b plane will cause the Pb

p orbitals to hybridize with I p orbitals in addition to I s orbitals. This will lift the original

degeneracy between px/y and pz, allowing Pb pz to become the dominant orbital character

of the CBM. This is very clear in the NSOC case. Wave functions calculated with SOC

show a similar picture, but it is not as obvious as in the NSOC case since orbitals with

different angular momentum are mixed together. We can see from the projected density of

states (PDOS) calculated without SOC (Fig. 5.5) that for the structure without Cl, the CBM

has mostly Pb pz orbital character. With increasing Cl concentration at the apical site, the

strong electronegativity of Cl increases the energy bands with Pb pz orbital character while
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leaving px/y unchanged, allowing for a larger band gap. The CBM state, mainly composed

of hybridized px/y orbital character, reduces the current flowing along z direction, since the

px/y orbitals are less delocalized than pz orbitals along z. However, the Cl concentration

only moderately affects the shift current response, as structures containing one Cl atom

yield responses similar in magnitude to those of structures containing two Cl atoms.
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3
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d (M2)

c (M1)

a (M2)

b (M2)

c (M2)

d (M2)

c (M1)

Figure 5.6: Glass coefficient GzzZ a) without and b) with SOC for the four relaxed struc-
tures (a, b, c and d) shown in Fig. 5.3, but with molecular orientation M2. For comparison,
the largest response from the M1 case (structure c(M1)) is also plotted as a grey line. On
average, the M2 orientation gives smaller responses than the M1 orientation for the four
structures.

The shift current is also calculated for the molecular orientation M2, which has the same

Cl configurations discussed previously. Overall, their responses, shown in Fig. 5.6, are

smaller than that corresponding to the M1 orientation, and are similar to the case without

Cl. The minor electronic contribution of the organic species at the band edge, evident from

the PDOS, suggests that the effect of the molecular orientation on the shift current is likely

indirect, occurring through the PbI3 frame. In this case, because the molecular dipoles for

the neighboring molecules are opposite, does anyone notice this weired sentence coming

out here, there is no net dipolar effect on the PbI3 frame, resulting in a nearly symmetric

frame. As the distortion decreases, the dependence of current response on different Cl

position becomes less significant, as in the M1 case.
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Table 5.2: Total polarization magnitude (|P |), z component (|Pz|), and band gap for MAPbI
and MAPbICl structures (a, b, c and d shown in Fig. 5.3) with both molecular orientations
(M1 and M2).

M1 M2
Structure |P | |Pz| Band gap (eV) |P | |Pz| Band gap (eV)

(µC/cm2) (µC/cm2) NSOC SOC (µC/cm2) (µC/cm2) NSOC SOC
MAPbI 6.8 5.0 1.72 0.69 0.7 0.5 1.70 0.75

a 8.3 7.2 1.75 0.76 1.8 1.0 1.72 0.80
b 8.0 6.3 1.90 0.83 2.6 2.4 1.84 0.83
c 6.9 6.2 1.93 0.83 2.3 0.3 1.93 0.83
d 6.1 4.4 1.96 0.84 3.3 3.2 1.91 0.83

In summary, we calculate the shift current responses and polarization magnitudes of

MAPbI and MAPbICl from first principles with and without SOC. We find that the SOC

does not substantially alter the spectrum, though it reduces the band gap. Rather, the MA

orientation and Cl substitution position can strongly affect the shift current response. When

the MA molecules’ net dipole moments are aligned in parallel, the PbI3 inorganic frame

becomes more distorted, resulting in relatively large shift current responses. Conversely,

when the molecules have opposite dipole moments, the structure is nearly symmetric, re-

sulting in much smaller shift current responses. The substitution of Cl at the equatorial

site can enhance the shift current response, because the orbital character contribution at the

CBM is more delocalized along the shift current direction. Thus a higher shift current re-

sponse can be obtained by introducing a large lattice distortion with MA molecules aligned

in parallel, and by substituting Cl at equatorial positions.
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Figure 5.7: The shift current σ calculated for BFO, LiAsSe2 and MAPbI3 for comparison.

5.3 BPVE in BiFeO3, MAPbI3 and LiAsSe2

For comparison, the magnitude of the shift currents of MAPbI3, BFO [202] and LiAsSe2

are plotted in one graph (Fig 5.7). It is found that LiAsSe2 holds record of the highest

shift current computed, which is more than 40 times larger than that of BFO [33]. Here,

MAPbI3 (with Cl doping) shows around three times larger shift current response compared

to BFO, although the polarization of BFO is much higher. (The polarization of BFO is

≈ 90µC/cm2 [203]; MAPbI3 is ≈ 6µC/cm2.) The polarization is not directly related

to the shift current magnitude [29]. The difference of the shift current between BFO and

MAPbI3 is mainly due to the delocalized orbital character in the latter where the edge states

mainly have s or p orbital characters. While in BFO, the localized d orbital character from

iron hamper the shift current response, leading to relatively low magnitude. Based on these

ideas, we also designed new materials for potential solar cell applications. The details of

the material deisign can be found in Ref. [204].
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5.4 Summary

In this Chapter, the shift current responses of MAPbI3 are systematically studied, including

the effect of the Cl doping. This material can gives three times as large as BFO although

its polarization is much smaller. We think this is owing to the delocalized orbital char-

acters near the band edges. Following that, shift current responses of BFO and LiAsSe2

are summarized and compared. LiAsSe2 has the largest shift current response among all

the materials we studied, which is more than 40 time larger than that of BFO. These find-

ings reveal that the delocalized states near the band edge, small band gap and spontaneous

polarization are needed for large BPVE response.
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Chapter 6

Summary and Future Directions
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In this thesis, I have described the main work I have done during my Ph.D. As a sum-

mary, the main topic is to use the first-principles method to study the light-matter inter-

actions for the solar cell applications. In particular, I focused on three types of materi-

als: Alkali-metal chalcogenides such as LiAsSe2, organometal-halide perovskite such as

MAPbI3 and inorganic oxide perovskite such as BiFeO3. By studying the different kinds

of properties of these three types of materials, we generalized the basic rules to design a

material for the solar cell:

• high absorption. For example in LiAsSe2, it is found that by compressing the vol-

ume, the absorption and optical dielectric can be enhanced more than three times.

We think this enhancement originates from the wavefunction change induced by the

dimerization variations. This property is due to the special arrangement of the 2D

atomic-chains in the plane, which leads to the sensitive wavefunction-structure rela-

tion.

• long diffusion length. organometal-halide perovskites (such as MAPbI3) exhibit very

long carrier lifetime and the resulting long diffusion length, making this material

exceptional for the next generation solar cells. In this work, we use the first-principles

method to understand the reason for such long carrier lifetime. We think there are

two contributions: a) the strong spin-orbilt coupling and the ferroelectric distortion

introduce the Rashba effect for the band edges, which leads to the ”spin-indirect”

band gap, i.e. the recombination of the excited carriers is spin-forbidden due to the

special spin-helicity in the Rashba bands. b) At the finite temperature, the strong

spacial and temporal disorder of both A site molecules and Pbi3 sublattice tend to

generate the localized change density of the conduction and valence bands edges

at difference regions in the real space. This separation further slows down their

recombination rate due to their spacial ”non-overlap” feature, which is demonstrated
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by our transition rate calculations.

• non-linear optical effect. Non-linear optical effect, such as bulk photovoltaic effect

(BPVE) has been studied intensely due to its advantages over the normal optical

effect. Here, the example of MAPbI3 is used to illustrate the BPVE calculations and

the analysis. Although the polarization of MAPbI3 is only around one tenth of the

BiFeO3, its BPVE is almost three times larger than that of BiFeO3, demonstrating

its significant role for non-linear optics. In this work, we also studied the effect of

spin-orbit coupling, and the Cl-doping to the BPVE responses. In particular, we

found that the Cl-doping at the apical site can enhance the BPVE by enlarging the

structural distortion. This can contribute to the understanding of the role of Cl in

enhancing the performance of this material as the solar cell, although the existence of

Cl is still elusive. Furthermore, by comparing to BiFeO3 and LiAsSe2, we designed

new materials for the high BPVE, which could be the potential materials for the solar

cell applications.

By summarizing the finished work, we have planned the future directions for further

investigations.

Long carrier lifetime. Understanding the long carrier lifetime in organometal-halide

perovskite is still very important due to the incomplete knowledge for this exceptional

property. A full understanding can further benefit the design of the similar properties but

more advantaged materials. The electron-lattice coupling, as the most important intrinsic

factor, is more emphasized in addition to the extrinsic effects, such as defect. This is

because of the strong dynamic disorder observed in these materials. Therefore, we plan

to have a complete understanding of the wavefunction evolution under the existence of

the coupled phonons. This approach requires the time-dependent picture of the electronic

structure as well as the ionic movement. Our developed large-scale tight-binding model
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could be useful due to its low cost but ability for large systems.

BPVE in Bi(Fe,Cr)O3. In the experiment, it is found that the ordered structure of

Bi(Fe,Cr)O3 shows enhanced bulk photovoltaic effect. However, the reason for this structure-

performance is still unclear. Therefore, we want to understand its origin using the shift

current calculations. In particular, our preliminary results suggest that the ordered structure

indeed leads to more enhanced BPVE responses. This enhancement is not because of the

loss of the polarization, instead, the ordered feature provides more fundamental reasons

which need us to reveal.

BPVE in low-dimensional materials. We have done a lot of work to study the BPVE

in 3D bulk materials. However, the low-dimensional materials’ responses are largely un-

known. But these materials show many exceptional properties. For example, low dimen-

sional materials tend to give higher density of states, which can strongly lift the BPVE

performances for the solar cell. Our preliminary calculations of the 1D polymer demon-

strate this enhancement. Thus, understanding the physics in these materials will benefit

the materials design with higher power conversion efficiency. Furthermore, many exotic

physics have been explored in the 2D and 1D materials. Understanding the BPVE of these

materials can further bridge the shift current mechanism to these new physics.
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