
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2016

Engineering Principles Of Photosystems And Their
Practical Application As Long-Lived Charge
Separation In Maquettes
Zhenyu Zhao
University of Pennsylvania, zzyhorde@gmail.com

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Biochemistry Commons, and the Biophysics Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2667
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Zhao, Zhenyu, "Engineering Principles Of Photosystems And Their Practical Application As Long-Lived Charge Separation In
Maquettes" (2016). Publicly Accessible Penn Dissertations. 2667.
https://repository.upenn.edu/edissertations/2667

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2667&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=repository.upenn.edu%2Fedissertations%2F2667&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/4?utm_source=repository.upenn.edu%2Fedissertations%2F2667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2667?utm_source=repository.upenn.edu%2Fedissertations%2F2667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2667
mailto:repository@pobox.upenn.edu


Engineering Principles Of Photosystems And Their Practical Application
As Long-Lived Charge Separation In Maquettes

Abstract
Light-activated electron transfer reactions between cofactors embedded in proteins serve as the central
mechanism underlying numerous biological processes essential to the survival and prosperity of most
organisms on this planet. These processes range from navigation, to DNA repair, to metabolism, and to solar
energy conversion. The proper functioning of these processes relies on the creation of a charge-separated
states lasting for a necessary length of time, from tens of nanoseconds to hundreds of milliseconds, by the
arrays of cofactors in photosystems. In spite of decades of experiments and theoretical frameworks providing
detailed and extensive description of the behavior of the photosystems, coherent and systematic
understanding is lacking regarding the underlying structural and chemical engineering principles that govern
the performance of charge-separation in photosystems, evaluated by the fraction of the input energy made
available by the photosystem for its intended function. This thesis aims to establish a set of engineering
principles of natural and man-made photosystems based on the fundamental theories of electron transfer and
the biophysical and biochemical constraints imposed by the protein environment, and then to apply these
engineering principles to design and construct man-made photosystems that can excel in charge-separation
while incurring minimal cost in their construction. Using the fundamental theories of electron transfer, this
thesis develops an efficient computational algorithm that returns a set of guidelines for engineering optimal
light-driven charge-separation in cofactor-based photosystems. This thesis then examines the validity of these
guidelines in natural photosystems, discovering significant editing and updating of these guidelines imposed
by the biological environment in which photosystems are engineered by nature. This thesis then organizes the
two layers of engineering principles into a concise set of rules and demonstrates that they can be applied as
guidelines to the practical construction of highly efficient man-made photosystems. To test these engineering
guidelines in practice, the first ever donor-pigment-acceptor triad is constructed in a maquette and
successfully separates charges stably for >300ms, establishing the world record in a triad. Finally, this work
looks ahead to the engineering of the prescribed optimal tetrads in maquettes, identifying what’s in place and
what challenges yet remain.
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 ABSTRACT 
 

ENGINEERING PRINCIPLES OF PHOTOSYSTEMS AND THEIR PRACTICAL APPLICATIONS 

IN MAQUETTES 

Zhenyu Zhao 

P.Leslie Dutton 

Light-activated electron transfer reactions between cofactors embedded in proteins serve as the 

central mechanism underlying numerous biological processes essential to the survival and 

prosperity of most organisms on this planet. These processes range from navigation, to DNA 

repair, to metabolism,  and to solar energy conversion. The proper functioning of these processes 

relies on the creation of a charge-separated states lasting for a necessary length of time, from 

tens of nanoseconds to hundreds of milliseconds, by the arrays of cofactors in photosystems. In 

spite of decades of experiments and theoretical frameworks providing detailed and extensive 

description of the behavior of the photosystems, coherent and systematic understanding is 

lacking regarding the underlying structural and chemical engineering principles that govern the 

performance of charge-separation in photosystems, evaluated by the fraction of the input energy 

made available by the photosystem for its intended function. This thesis aims to establish a set of 

engineering principles of natural and man-made photosystems based on the fundamental 

theories of electron transfer and the biophysical and biochemical constraints imposed by the 

protein environment, and then to apply these engineering principles to design and construct man-

made photosystems that can excel in charge-separation while incurring minimal cost in their 

construction. Using the fundamental theories of electron transfer, this thesis develops an efficient 

computational algorithm that returns a set of guidelines for engineering optimal light-driven 

charge-separation in cofactor-based photosystems. This thesis then examines the validity of 

these guidelines in natural photosystems, discovering significant editing and updating of these 

guidelines imposed by the biological environment in which photosystems are engineered by 

nature. This thesis then organizes the two layers of engineering principles into a concise set of 



viii 
 

rules and demonstrates that they can be applied as guidelines to the practical construction of 

highly efficient man-made photosystems. To test these engineering guidelines in practice, the first 

ever donor-pigment-acceptor triad is constructed in a maquette and successfully separates 

charges stably for >300ms, establishing the world record in a triad. Finally, this work looks ahead 

to the engineering of the prescribed optimal tetrads in maquettes, identifying what’s in place and 

what challenges yet remain. 
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PREFACE 
 

One of the most exciting and interesting aspects of my thesis, I find, is the theory-practice 

duality that permeates its entirety and defines its unique nature, which is largely reflected 

in the organization and presentation of this thesis at a supra-chapter level into two parts. 

The first part, which constitutes the relatively larger half of this thesis, focuses on the 

theoretical exploration and discovery of the fundamental engineering constraints and 

principles that govern the behavior and optimality of photosystems, based in both the 

fundamental physical theories of electron transfer as well as the need for survival, that is, 

protection of the photosystem against damages. The first part then formulates a series of 

design blueprints based on its combined understanding of these constraints and then 

delivers them to the second part of thesis, where the stage is set for these design 

blueprints to be carried out in small, water-soluble, man-made proteins. Part II of this 

work thus details the efforts in establishing the experimental infrastructure, understanding 

and overcoming the practical constraints involved in the specific engineering 

environment, and in achieving the first ever and longest ever man-made charge-

separation by an electron-transfer based triad system in biological environment. 

Although I have separated the thesis into two parts, with Part I involving mostly the 

theoretical side of the work and Part II the experimental, never is there a chapter or a 

section in this thesis where the theory or the experiment stands completely in isolation. 

Each chapter in the more theoretical Part I is either preoccupied with the validation of its 

theoretical findings in practice or seeks to modify the theories with limits and constraints 
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imposed by the boundaries of practice. Similarly, every experimental result in Part II is 

evaluated against the theoretical model upon which the analysis relies.  
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Part I: Formulation of comprehensive 

engineering guidelines for electron-

transfer based photosystems in biological 

context via computational modeling and 

optimization 
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Chapter I: Theoretical basis of Moser-Dutton ruler 

based electron transfer engineering guidelines  
 

1.1 Introduction:  

Electron transfer reactions within, across, and from proteins form the fundamental 

building blocks of almost all essential biological functions across species, families, and 

even kingdoms. Involving direct movement of electrons from one molecule to another, it 

is the basis of respiration that powers the metabolism of every living cell. It empowers 

the most efficient and clean source of energy of this planet, photosynthesis in both plants 

and bacteria. It also drives the protection and repair mechanism that safeguards against 

DNA-damage. As the significance of biological electron transfer cannot be understated, 

scientific efforts striving towards a complete and straightforward understanding of this 

process have been consistently surging forward over the last few decades. From the 

ground-breaking efforts of Chance(1) and Devault(2), Marcus(3-5), Hopfield(6) that set 

the theoretical foundation to the seminal recent works by Moser/Dutton(7) and Gunner(8, 

9), Gray, and Winkler(10), we have obtained an in-depth understanding of electron 

transfer in both inorganic and organic(biological) systems that transformed electron 

transfer from a scientific novelty to a well-described and readily modeled process. This 

in-depth understanding has allowed us to reduce the complexity and high computational 

cost of the complete quantum mechanical theory of electron transfer to an elegant and 

easy-to-implement semi-classical empirical expression that’s arithmetic in nature. This 

ostensibly simplistic expression, now widely known as the Moser-Dutton ruler, comes 

out of analysis of large amount of experimental results on ET rates in biological and 

semi-biological systems(11-13). This empirical simplification in the presentation of the 

underlying principles governing electron transfer has opened doors to previously 

impractical and unviable computational simulations of electron transfer kinetics of 

natural and man-made photosystems in the fields of  photosynthesis, DNA-repair, signal-

sensing and transduction, charge-separation, and more. Since systematic application of 

computational simulation of photosystem kinetics serves as the theoretical foundation of 
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both halves of my thesis, namely the 

engineering blueprints of natural and man-

made photosystems, I have devoted the 

opening chapter of my thesis to describe and 

trace its development from the very beginning 

of systematic formulation of theories to 

explain the phenomenon of electron transfer 

until the current forefront of research on 

electron transfer, where the elegance of the 

Moser-Dutton ruler has become an essential 

component of the essential toolset of 

photosynthetic research.  

1.2 Electron transfer formulated as a non-

adiabatic tunneling phenomenon in 

solution.  

The phenomenon of electron transfer between 

an acceptor and a donor molecule is based in 

electron tunneling across a potential barrier, a 

fundamental quantum mechanical phenomenon 

and a popular pedagogical example that had 

been described in detail applied to electron 

transfers as early as the 1920s(14, 15).Because of the particle-wave duality of the 

electron and its long wavelength, the wave function describing the probability density of 

the electron is able to penetrate a potential barrier, representing the insulating 

surrounding that separates the electron at its donor from its acceptor. This penetration 

gives rise to a non-zero probability that the electron will be found at the donor, shown in 

Figure 1.1A. Unlike traditional chemical reactions, which are largely adiabatic processes 

described by transition-state theories involving reactants overcoming an activation energy 

barrier at the crossing point of the potential energy surfaces to form the products(16), 

 

Figure 1.1: Electronic and nuclear 
components of electron transfer. A: the 

electronic wavefunction overlap between 
that of the acceptor and of the donor. The 
degree of overlap depends on the distance 
and is seen as the value of the matrix 
element HAB. Adapted from (Hopfield 
reference) B: Non-adiabatic crossing of 
nuclear potential functions of the acceptor 
and donor, known as the Eyrin limit on 
electron transfer rates. C: Adiabatic, normal 
electron transfer with low transition 
probability given by the FC term of Fermi’s 
Golden Rule. 
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electron transfer reactions are largely non-adiabatic, in the sense that there does not exist 

a strong enough coupling between the nuclei of the donor and acceptor to split the 

potential curves as shown in Figure 1.1C to cause the transition probability from donor to 

acceptor to be 1, and necessitates an entirely different theoretical framework.(3, 17)  To 

quantatively describe the probability of the electron tunneling from the donor to the 

acceptor, Fermi’s Golden Rule, an expression of fundamental importance to transition 

from state A to state B in light of quantum mechanics, is invoked. In its original form, 

Fermi’s golden rule is stated as following: 

           [1] 

, where Wk refers to the transition probability between state i and state k, h-bar is the 

adjusted Boltzmann constant, Hp is the perturbation Halmitonian applied to state k, while 

ρk represents the density of the target states per unit of energy(18).  

Fermi’s golden rule was derived using time-dependent perturbation theory in quantum 

mechanics to compute the probability of a transition when a system residing in an initial 

state is perturbed by a certain potential.(citation for time-dependent perturbation theory, 

Feyman lectures here).  It is stated in the most general form in equation [1], as the 

expression can be applied to all types of transitions and not just electron transfers. (19) 

When applied to tunneling based electron transfers, according to the derivation 

summarized by Devault(2), Fermi’s golden rule takes on a slightly different form, : 

𝑟𝑎𝑏 =
2𝜋

ℎ
|𝐻𝐴𝐵(𝑟)|2𝐹𝐶             [2] 

kpk kHiW 
 22
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Written as 

the product 

of a “matrix 

element” 

term(Hab) 

measuring 

the 

interaction 

between the 

initial and 

final 

electronic state of the transition and the overlap between the vibrational states that are 

part of the potential energy surfaces(FC) of the acceptors and donors involved in the 

transition(in our case the electron transfer), Fermi’s Golden Rule provides the most direct 

and comprehensive fundamental mathematical description of the rate of electron transfer 

between two molecules. It separates contributions to the electron transfer rate into an 

electronic term and a vibronic(nuclear) term. The electronic term, the matrix element HAB 

of tunneling, gives the rate of the electron transfer when the nuclei of the donor and 

acceptors are both in the appropriate locations to effect the electron transfer without 

violating the Frank-Condon principle(20) and conservation of energy. It is measured by 

the overlap of the electronic wave-functions of the acceptor and donor within the 

tunneling medium that attenuates exponentially as the distance between them increases, 

and can be written as the following: 

|𝐻𝐴𝐵(𝑟)|2 = 𝑉0
2 exp(𝛽𝑅)              [3] 

, where the term V
2

0 represents the maximal overlap between the electronic 

wavefunctions of the acceptor and donor, 𝛽 is the pre-exponential factor coefficient of the 

decay of the electronic coupling. In addition to visualizing the matrix element as the 

overlap of the electronic wave-functions, however, it is helpful to consider HAB as the 

spacing between the two potential surfaces at their intersection as shown in Figure 1.2. 

 

Figure 1.2: Non-adiabatic and adiabatic nuclear potential surfaces of 
electron transfer reaction participants. A: Reactant and product intersection with 

0 transition probability, where no coupling between the electronic wavefunctions of the 
reactant and product exists. B: Non-adiabatic transition represented by small 
transition probability resulting from weak coupling between the recant and product. C: 

adiabatic reaction characterized by large transition probability from large overlap. 
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That is, the greater the overlap between the electronic wave-functions, the larger the 

coupling between the nuclear surfaces between the reactants of the electron transfer 

reaction and, consequently, the less non-adiabatic it becomes. Indeed, when overlap 

integral is large enough, the coupling becomes so great that a break in the potential 

surfaces takes place and the transition probability at the intersection becomes unity, 

giving us the behavior of a transition-state driven chemical reaction rather than a 

tunneling-based ET reaction. Because of the simple correspondence between the overlap 

of the wave-functions to the matrix element, this model of the electronic term has 

remained as the consensus model since the very early days of understanding electron 

transfers in terms of tunneling events(13, 21, 22).  

1.3 Modeling the nuclear term of the Fermi’s expression for electron transfer 

The nuclear term, on the other hand, represents the probability of bringing the acceptor 

and donor nuclei to the appropriate location on the reaction coordinate. As already 

discussed, in the 

electron 

transfer/tunnelin

g formulation of 

Fermi’s golden 

rule, the energy 

density is 

represented by 

the Frank-

Condon overlap 

integral between 

the nuclear 

potential energy 

surfaces of the 

acceptor and 

 

Figure 1.3: The reorganization energy of an electron transfer reaction 
and the inverted region. Left: the parabolic potential energy surfaces of the 

reactant and product in the electron transfer reaction, with the driving force ΔG
o
, 

activation energy EA, and reorganization energy λ, of the reaction shown with 
appropriate arrows. Right: parabolic dependence of the rate of electron transfer on 
the driving force of the reaction. The inverted region effect is shown as the 
decreasing rates past the reorganization energy maximum. 
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donor, essentially describing the overlap of the vibrational states that make up the 

potential energy surfaces.  The earliest description of the FC term was formulated by 

Marcus using a combination of the formalisms of both transition state theory and the 

Landau-Zener formulation of Fermi’s “golden rule” formulation.(3, 23) Treating the 

nuclear potential energy surfaces of the reactant and product as purely classical harmonic 

oscillators, as seen in Figure 1.3, Marcus determined the effective activation energy 

barrier analog for the non-adiabatic electron transfer reaction to be:  

𝐸⩲ =
(𝜆 − 𝛥𝐸)2

4𝜆
                 [4] 

This activation energy is then used in the derivation of the Frank-Condon nuclear term. 

Using the Landau-Zener model of the Fermi’s golden rule(24), Marcus derived the 

Frank-Condon contribution to the ET rate in his model from the difference in the slope of 

the slopes of the reactant and product nuclear potential surfaces as well as the velocity of 

crossing the intersection of the surfaces. 

 [5] 

, where v is the velocity of crossing the intersection of the surfaces and is proportional to 

the activation energy stated in equation [4], and ΔF12 is proportional to the reorganization 

energy. By replacing v and ΔF12 in equation [5] with the corresponding terms, Marcus 

obtained a nuclear term that’s shown in equation [6]. Here the FC nuclear term is thus a 

Gaussian distribution with its characteristic mean and variance dependent on two 

important quantities: The free energy difference between the acceptor and donor states, 

and the reorganization energy between the acceptor and donor state: 

𝐹𝐶𝑀 ∝  𝑒
−

(𝜆−𝛥𝐸)2

4𝜆𝑘𝐵𝑇       [6] 

The mean of the Gaussian, when viewed from the free energy difference’s perspective, is 

the reorganization energy, while the variance is the product between that and kBT, the 
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ambient temperature thermal energy of the system. Marcus’ formulation was purely 

classical, regarding the nuclear energy surfaces of the reactants as classical harmonic 

oscillator. One of the most significant and surprising predictions of the Marcus 

formulation of the electron transfer rate model is the presence of an inverted-region. That 

is, because of the parabolic dependence of the electron transfer rate on the driving force 

of the reaction, when the driving force of the electron transfer reaction is equal to the 

reorganization energy of the system, the rate reaches its maximum, and further increases 

in driving forces leads to decreases rather than expected increases in the rate of the 

electron transfer, as shown in Figure 1.3B. The driving forces greater than the 

reorganization energy are called the inverted-region, which exerts a slowing effect on the 

rate of electron transfer. The existence of the inverted region, when demonstrated 

experimentally, had been one of the most convincing evidence in support of Marcus’ 

version of the electron transfer theory. The inverted region indicates that electron transfer 

reaction can be slowed down by adopting a small reorganization energy and a 

appropriately large 

driving force, a 

device called 

inverted-region 

stabilization that 

would receive 

significant attention 

in the upcoming 

chapters.  

However, the 

classical Marcus 

description of the ET 

rates soon was 

discovered to be 

insufficient in 

 

Figure 1.4: Hopfield’s quantized model of electron transfer 
successfully explains the low-temperature behavior of reaction 
centers. The points plotted are from the experimentally determined ET rates 
in Chromatium. The curve is drawn using the Hopfield semi-classical model 

of the ET rate. Reproduced from (6) 
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describing ET behaviors at low temperature. Specifically, while the classical Marcus 

theory predicts continual decreases in ET rates as temperature decreases, the 

experimentally observed rates begin to level off and stop decreasing as temperature falls 

below a threshold value. (1, 25) This is seen in Figure 1.4. Consequently, further studies 

by Hopfield and others have added quantum mechanical corrections that included 

characteristic vibrational frequency of the nucleus of the acceptor and donor molecules to 

account for the disappearance of observed temperature dependence of the electron 

transfer at low temperature.(26) Unlike Marcus with his transition state theory approach, 

Hopfield arrived at his expression by treating electron transfer as an analogue to energy 

transfer between an acceptor and donor, essentially invoking Fermi’s golden rule in the 

quantum mechanical way, calculating the FC factor term as an integral of two energy 

functions representing the effects of taking away and adding an electron to and from the 

participants of the ET reaction respectively. Similar to the electronic absorption and 

emission spectra used to compute the FC factor in energy transfer and spectroscopy, 

Hopfield derived the Frank-Condon factor for electron transfer as the integral between 

the nuclear “spectra” of the reactant and product. I will not go through the details of the 

derivation, as those who are mathematically inspired can easily follow the elegant flow of 

Hopfield’s thoughts in his article. However, it is worth emphasizing that the FC term in 

Hopfield’s formulation is calculated from a novel and inventive cross integral of 

probability density functions of various energies of the reactant and product. It is not 

surprising that the effective result of Hopfield’s derivation is a modified version of the 

Marcus model, as both approaches are based largely in Fermi’s golden rule(Marcus used 

the Landau-Zener formulation to arrive at his expression), in spite of the significant 

differences in the motivations and points-of-departure in the derivation of these two 

models. The semi-classical ET rate equation modifies the effective variance of the 

Gaussian to be dependent on the quantized characteristic frequency of the acceptor and 

donor molecule as a harmonic oscillator, modulating the width of the Gaussian curve 

with a cotangent function and thereby resolving the low-temperature disagreements 

between experimental data and the classically based Marcus theory. At high temperature 

limits, the temperature dependence behavior predicted by the classical Marcus theory 
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resumes. Hopfield’s semi-classical model, as shown in Figure 1.5, modifies the slowing 

down effect of the inverted region by widening the parabola that describes the rate 

dependence on the driving force, and indeed represents an improvement in fitting of 

temperature-dependent experimental data. The inverted-region slowing effect becomes 

more gradual in the Hopfield model, requiring a much larger driving force past the 

reorganization energy to 

achieve the same level of 

slowing, as seen in Figure 

1.5.   

Hopfield’s formulation is 

described as semi-classical 

because it only incorporates a 

single quantum mechanical 

character of the system into 

the model, the quantized 

vibrational energy levels of 

the potential energy surfaces 

of the reactant and product. 

Jortner(27), Levich, and 

Dogonadze(28) have proposed a fully quantum mechanical model, in which an additional 

overlap integral between the vibrational wavefunctions of the reactant and product of the 

electron transfer reaction is included, representing the true Frank-Condon term in the 

quantum mechanical sense: 

𝐶(𝑛𝑛′) = ∫ 𝜒𝑛 𝜒𝑛′ 𝑑𝑥               [7] 

The updated, fully QM version of the FC term is then: 

𝐹𝐶𝑄𝑀 = ∑ 𝐶2(𝑛, 𝑛 + 𝑝)𝑒−𝛽ℎ𝜔𝑛(1 − 𝑒−𝛽ℎ𝜔)∞
𝑛=0         [8] 

 

Figure 1.5: Comparison of classical Marcus and semi-
classical Hopfield rate-driving force parabolas. Red trace 

represents the Hopfield and green represents the Marcus model. 
The remaining parameters used to plot these two traces are in the 
bottom right corner.  
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This model introduces coupling to temperature dependent vibrational levels, modifying 

the FC term with relative contributions from various vibrational states occupied at certain 

temperatures. When fully expanded and written out, equation [7] includes a numerically 

cumbersome and computationally expensive series of summation terms that can be 

prohibitive in repeated application of the rate equation for modeling. This highly precise 

model introduces periodic rise and fall into the driving force Gaussian curve but, given 

the uncertainties involved in the experimental measurements of ET rates, poses great 

 

Figure 1.6: Various models’ abilities to accurately fit experimental ET rates.  Electron transfer 

rates between the final acceptor of the Sphaeroides reaction center and the ground state of the pigment at 
various temperatures, along with model fits provided by the models described in this chapter. The relevant 
models include the classical Marcus Gaussian in green, the quantum mechanical modified Marcus model 
in red(Hopfield), and the full quantum mechanical model in purprle. The multiple oscillator model is 
described in the Gunner work but not included in the discussion in this chapter. Figure reproduced and 
adapted from (8) 
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danger of over-fitting when applied as the general model for biological and chemical 

electron transfers. Moreover, the large number of parameters involved in the expression 

as well as the discreet summations makes any kind of repeated application of such model 

difficult and impractical. The complexity of the QM model can be seen in Figure 1.6, 

where all of the above-described models are used, in addition to the Moser-Dutton 

empirical approximation of the Hopfield semi-classical expression we will introduce in 

the next section.  

1.4 Empirical simplification of the ET rate equation without loss of generalizability 

While the Hopfield semi-classical and the fully QM-based implementation of Fermi’s 

Golden Rule in the context of biological electron transfer have been proven to be an 

accurate and reliable theoretical model(29, 30), its mathematical complexity, in terms of 

both the large number of parameters involved, use of discreet summation terms with 

varying lengths depending on the temperature, and the presence of a Bessel function 

within the expression, makes its application in systematic and repeated computational 

applications costly and impractical. The goal of this thesis is to formulate comprehensive 

and practical engineering guidelines for ET-based photosystem. Consequently, we cannot 

directly apply either the Jortner model or the Hopfield model. Nevertheless, the Hopfield 

formulation is the perfect point of departure from which a computationally efficient 

model can be constructed, using experimental rates as the guide for complexity reduction.  

In the early 1990s Gray and Winkler conducted an extensive series of experiments in 

which electron transfer rates between various Ruthenium metal complexes bound to 

modified Azurin and Cyt C with different driving forces and distances were measured 

with high accuracy.(31-33) Around the same time, Gunner from the Dutton group(8, 9) 

conducted an extensive and encompassing study on the electron transfer between the 

pheophytin of a bacterial reaction center protein and its natural electron acceptor Qa, 

along with a large array of substituted quinones of various chemical and therefore redox 

properties. Additionally, the availability of the X-ray crystal structures of bacterial 

reaction centers(34, 35) led to a wide variety of studies in ET rates of natural 
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photosystems using mutants to adjust distances as well as driving forces between the 

cofactors. This abundance of experimentally reported electron transfer rates and their 

accompanying distances and driving forces within protein environment provided the 

necessary foundation for an empirically based and computationally friendly formulation 

of the rate expression in equation (2) that allows for ET rate prediction of moderate to 

high accuracy while drastically reducing the number of parameters required and 

complexity of computation involved. 

The effort towards a more mathematically tractable and pragmatic rate expression began 

with the simplification of the semi-classical(Hopfield) model of the nuclear term using 

large number of empirical measurements of electron transfer reaction rates between 

reactants with known adjustments in driving forces at fixed room-temperature.(7) Fitting 

of experimental measurements of ET rates from natural reaction centers modified with a 

large variety of quinones and semi-quinones as well as semi-synthetic Ru(II/III) 

containing ET proteins as shown in Figure 1.7A and B, in addition to fully synthetic ET 

systems, to the semi-classical model demonstrates a persisting and general independence 

of electron transfer rates of the characteristic frequency at different temperatures.  That is, 

for ET reactions in natural, synthetic, or non-protein environments between various types 

of cofactors at room temperature, a single characteristic frequency of hω=70mV 

satisfactorily produces models that accurately describe their electron transfer rates. The 

prevalence of a single characteristic frequency in all of the experimentally determined ET 

rates strongly suggests that the Gaussian of the nuclear term in the Hopfield ET rate 

expression can be drastically simplified to depend only on the driving force and the 

reorganization energy, with the contribution of all other parameters reduced to a 

computable constant, thereby greatly reducing the computational complexity of modeling 

the rate of electron transfer in biological context. The extent and elegance of 

simplification becomes most satisfying when the ET rate is presented in its log form. The 

exponent disappears and results in a simple, arithmetic nuclear term that varies with 

respect to the driving force quadratically.  
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While the nuclear term simplification was achieved via fitting experimentally determined 

ET rates between reactants of constant distances and known driving forces, the electronic 

term proves to be more straightforward. Since the Frank-Condon term of the Hopfield 

rate expression is a Gaussian, its contribution to the ET rate is maximal when the driving 

force equals the mean of the Gaussian, specifically the reorganization energy of ET 

reaction. With maximal contribution from the FC term, the remaining parameters that 

fully describe the ET rate are the distance between the cofactors and the exponential 

coefficient that describes the “height” of the intervening potential energy barrier. By 

examining and tabulating the natural logarithm of ET rates against various ET reactions 

with known distances and known driving forces, as shown in Figure 1.8, Moser et al 

demonstrated a remarkably consistent linear relationship with a constant slope between 

the distances and the ET rates across 12 orders of magnitude in various protein-based 

systems. Moreover, examination of ET reactions with known distances in non-protein 

 

Figure 1.7: A single characteristic frequency is capable of accurately describing the electron 
transfer rates in biological context. A: electron transfer rates between BPh and QA in Sphaeroides with 

varying driving forces generated by native and non-native quinones, with models fitted with the quantimzed 
semi-classical Hopfield equation with various characteristic frequency, with the solid trace being hω=70mV. 
B: Electron transfer rates between semi-synthetic ruthenium-cytochrome, ruthenium-myoglobin, bridged 
porphyrin-quinone. All models are fitted using hω=70mV with the semi-classical Hopfield model. Figure 
reproduced from (7) 
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environment also demonstrated linear relationship, with a slope different from that of 

protein ETs. Consequently, Moser(7) et al concluded that, without significant loss of 

accuracy, a universal exponential factor for protein electron transfer exists, and when 

compared to exponential factors for other tunneling media, protein interior resemble 

glassy organic solvent. However, a more accurate statement would be that the average of 

protein interior when acting as the tunneling barrier between cofactors in the context of 

electron transfer is fairly constant and similar across various protein species. This 

conclusion allows for an elegant simplification of the electronic term of the Hopfield 

semi-classical rate expression similar to that of the nuclear term. Together, the respective 

empirical approximations of the nuclear and electronic terms allow us to write equation 

[2] in the following form: 

𝑙𝑜𝑔𝑘𝑒𝑡
𝑒𝑥𝑒𝑟 = 13 −

𝛽

2.3
(𝑅 − 3.6) − 3.1

(Δ𝐺+𝜆)2

𝜆
    [9] 

, where 13 is the Eyring limit of rates, 

obtained from kBT/h with T=298K, and β is 

the characteristic coefficient of the 

intervening medium between the acceptor 

and donor of the electron transfer(36, 37), 3.6 

represents the minimal Van der Waal contact 

distance cutoff, and 3.1 is the log-

transformed numerical coefficient obtained 

from using the standard 70mV characteristic 

frequency as shown above.  

This expression significantly reduces the 

complexity of electron transfer rate 

prediction while maintains a moderately high 

level of accuracy. It has not only allowed for 

predictions of single rates between pairs of 

electron-transfer active cofactors, but also, 

 

Figure 1.8: Common log-linear dependence of 
electron transfer rates on distances between 
the cofactors. Distances and rates are obtained 

from reported experimental measurements in 
natural and semi-synthetic ET systems. Figure 
reproduced from  (7) 
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and much more importantly, enabled fast and robust model building for complex electron 

transfer systems consisting of multiple cofactors.  

1.5 Successful applications of the Moser-Dutton rate expression 

This expression, dubbed by many as the Moser-Dutton ruler, has seen extensive 

application since its formulation in 1992 in various experimental and theoretical studies 

of natural and man-made photosystems as well as electron-transfer driven natural 

enzymes that are not light-activated. In addition to predicting individual electron transfer 

rates for experimentalists, it was used by theorists who are interested in modeling 

ensembles of electron-transfer active cofactors, either for the kinetics of an entire reaction 

center or for abstract exploration of design principles for electron transfer devices.  

On the experimental side, the rate expression is used to model and estimate expected ET 

rates in photolyaze(38, 39) and cryptochrome, cytochromes(40), PS II and I(12, 41-43), 

and Viridis reaction center(44). 

On the theoretical side, applications of the Moser-Dutton rate expression was used to 

formulate some engineering principles that determine whether a particular arrangement of 

a triad was optimal or not, without having demonstrated either the intent or results to 

systematically provide a comprehensive engineering blueprints for all photosystems(45). 

The expression was also used to examine photosystems’ engineering tolerances for 

driving forces and distances(13), also to explore and discover consistent trends in 

electron-transfer based natural enzymes. (11) 

1.6 Conclusions  

In the opening chapter of this thesis, I summarized the various theoretical models, with 

increasing levels of complexities, which describe the rates of electron transfer between 

any pairs of cofactors. These models are either computationally too costly or insufficient 

in accuracy to be implemented with high efficiency in computational modeling of 

ensemble of electron transfer cofactors. Consequently, this chapter also described the 

seminal efforts by Moser et al. in their formulation of the empirical rate expression that 
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reduces the complexity of modeling the rates of electron transfer to 3 variables without 

significant loss of generality. With numerous applications that demonstrated its accuracy 

and elegance, the rate expression known as Moser-Dutton ruler offers the ideal 

computational infrastructure for systematic analysis that seeks to discover the 

fundamental principles governing the efficiency of ET-based charge-separation and 

formulate engineering blueprints for optimal charge-separating photosystems.   
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Chapter II: Engineering blueprints for optimal designs 

of photoactivated charge separation in ET based 

systems: rules and principles. 

2.1 Introduction: 

Light-activated charge separation is the central process in a myriad of essential biological 

functions ranging from photosynthesis to DNA repair and signaling. (1-5)They share a 

common structural and engineering motif where the light activation of a pigment cofactor 

creates an excited electron/hole that, via electron transfers between multiple cofactors, 

quickly evolve into a charge-separated state, with a reducing negative charge residing on 

a distant acceptor cofactor and a oxidizing donor on a donor cofactor, as seen in Figure 

2.1. Understanding of this fundamental common theme and descriptions of 

photosynthetic energy conversion structures, metabolism and genomes of terrestrial and 

aquatic plants and microorganisms have opened the door to their reengineering by 

biologists and emulation by synthetic chemists. Synthetic biologists and biochemists 

intend to maintain the unique power of plant photosystems to oxidize water as a vast 

source of reducing electrons but, rather than directing electrons along their natural course 

to reduce CO2 to carbohydrates, they are steering them more directly toward generation 

of H2 and reduced carbon or nitrogen compounds as fuels. In parallel, chemists aim to 

synthesize molecular mimics of early photochemical steps of natural photosynthesis with 

the same goal of generating chemical fuels in response to mankind’s rapidly growing 

energy needs.  
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The experimental 

and theoretical 

advances outlined in 

the previous chapter 

have allowed us to 

approach electron 

transfer events as 

kinetics problems 

where the rates of 

ET can be computed 

in an elegant 

manner using a 

small set of 

parameters and 

require minimal 

computational 

resources. Specifically, the Moser-Dutton ruler(6), formulated as an simplified 

representation of the semi-classical Hopfield-modification of the Marcus theory(7, 8), 

based on a large collection of various ET reactions in biological and synthetic settings, 

shown here as equations [1]A and [1]B, allows efficient and fast calculation of electron 

transfer rates between any pair of cofactors given the distance, free energy difference, 

and reorganization energy between the two. The derivation and specific terms of this set 

of equations had been covered in great detail in Chapter I. Although the fundamental 

assumptions made during the formulation of the Moser-Dutton ruler limit its applications 

ostensibly to “long-range” electron transfers in protein, in practice the ruler has been 

demonstrated to be effective for ET reactions whose distances are near Van der Waal 

distance. Given any electron transfer driven system, we can fully describe its kinetics as 

long as the distances between the participating cofactors, their respective redox 

potentials, and the nature of the medium for the electron transfers are known.  

 

Figure 2.1: Multitudes of natural photosystems that rely on electron 
transfer driven charge separation to achieve essential functions in 
biology. Top Left: crystal structure of photolyase in complex with its 

substrate, DNA, as well as the energy diagram describing the electron 
transfer details. Bottom Left: crystal structure of phytochrome, reproduced 

from (5). Right: crystal structure of rhodopsin. (4)  
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log ket
exer   =     13 - (R-3.6)/2.3 - 3.1(G+)2/

log ket
ender  =      log ket

exer – G/0.06 [1B]

Past studies of our group have demonstrated successful and effective application of the 

Moser Dutton ruler in reproducing the electron transfer kinetics in well-studied light 

activated charge separation process of bacterial photosystem I and photosystem II using 

only the reported photophysical properties of the chromophores and the reported redox 

midpoint potential values of the cofactors and the distances between them.(9, 10) 

Similarly, application of the Moser-Dutton ruler by other research groups have shown its 

capability to model electron transfer rates in bacterial and plant photosystems, as well as 

other electron-transfer based enzymes. (11-13)Our past results applying our empirical 

rate equations to various photosystems successfully demonstrated that, given all the 

necessary parameters of any ET-based photosystems, models constructed from Moser-

Dutton ruler can accurately describe the system in terms of its non-equilibrium kinetics. 

This description of the ET-kinetics in turn allows us to compute an essential quantity that 

we from here on consider as the characteristic metric of any light-activated, electron-

transfer based charge-separating device: the yield of the charge-separated state at a 

specific selected lifetime.  

With the growing demand and desire to engineer and design light-activated photosystems 

in biological and chemical settings without relying on modification of the structurally 

complex natural reaction centers, we noticed an apparent lack of systematic and 

comprehensive analysis or available analytic tools to provide a reliable and robust set of 

guidelines to identify what optimally efficient molecular photochemical systems, natural 

or manmade, would comprise in terms of photo-pigment and redox cofactor numbers, 

properties and size and geometry to catalyze oxidation of water for the production of 

reduced chemicals and fuels. (14-16) Certain attempts were made previously by other 

research groups in analyzing and exploring the effects of specific engineering parameters 

on the efficiency of the photosystem(17, 18), but, without offering an extensive review 

here, none has taken the comprehensive and exhaustive, first-principle based approach 
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we envisioned to be necessary for formulating a complete set of engineering principles 

for ET-based photosystems. Here we develop an efficient, simple, yet highly accurate 

analytical paradigm using the Moser-Dutton ruler to create engineering blueprints that 

identify and prescribe optimal design parameters for ET-based photochemical devices, 

relying solely on the fundamental theories of electron transfer introduced in the previous 

chapter. Due to the simplicity of the underlying theory and the non-probabilistic nature of 

our analytical algorithm, our computational system is implementable in all common and 

local programming environments without the requirement of computing clusters or cloud 

services. At the same time, because of the lack of engineering principles and constraints 

other than the Moser-Dutton ruler incorporated into the algorithm, the engineering 

principles formulated in this chapter represent the purest and most general set of rules 

that are universal to all photosystems that rely on ET-driven charge separation as the core 

mechanism. However, it also means that applications of these principles to designs and 

engineering in specific environments, such as the biological context represented by 

protein environment, would require additional modifications and amendments to improve 

their effectiveness, as will be demonstrated in detail in Chapter III.  

2.2 Abstracting photosystems to cofactors and their roles: the n-ad paradigm. 

In order to devise a systematic analytic approach for all photosystems, natural or man-

made, using the Moser-Dutton ruler’s computational elegance and simplicity, we 

consider only the electron transfer active cofactors of the photosystems, abstracting away 

the surrounding environment, e.g. protein residues in the case of natural photosystems, as 

an essential parameter for the rate equation, namely the reorganization energy. This 

abstraction results in what we term as the n-ad paradigm, where n is the number of 

cofactors in the photosystem under consideration, and we always have n>0, as shown in 

Figure 2.2A. Consequently, the minimal photosystem is a photochemical monad, 

consisting of a single photoactivatable pigment cofactor, P, which upon photo-excitation 

forms an excited state P* and subsequently returns to the ground state with a 

characteristic excited state decay rate. Many pigments also have excited states that 

undergo singlet to triplet conversion to produce excited state with significantly 
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slower(spin-forbidden) decay rate. In our n-ad paradigm, however, such conversion is 

equivalent to replacing the pigment with one that has a lower photon energy and slower 

decay rate, without loss of generality. Our analysis later will reveal and discuss the 

advantages and disadvantages of including a triplet excited state P in the engineering of a 

photosystem.  

Additional cofactors 

in the photosystems 

can play the roles of 

acceptors, A, or 

donors, D. Acceptors 

receive an electron 

from the excited 

state of the P or from 

a previous acceptor 

and form either 

intermediate or final 

charge separated 

states. Donors 

donate an electron to 

the oxidized ground state of the P after the excited state of P has given its electron off to 

the acceptor or the preceding donor. Unless otherwise noted, all cofactors of the 

photochemical n-ads are arranged in a linear fashion, with the acceptors lined up to one 

side of the pigment, and donors on the other side. Consequently, the linear arrangement 

ensures that the full diameter of the cofactors will contribute to the distances between 

cofactors that are not adjacent to each other. The additional distances provided by the size 

of the intervening cofactor is one of the fundamental reasons why multi-ads offer 

significant performance gains over dyads. Rather than having the same distance for 

charge-separation and charge-recombination and therefore fully relying on the inverted 

region of the parabolic Marcus curve to stabilize the charge-separated state, multi-ads 

 

Figure 2.2: Cofactor-centric, role-based abstract representation of 
all photosystems and representation of their mechanism. A: natural 

photosystems, sush as PSII, represented as cofactor multi-ads, with the 
essential functions of the cofactors reduced to a dyad/triad representation on 
the right. B: The details of the electron transfer kinetics of the n-ad paradigm, 

as well as the coverage of the solar energy spectrum by various pigments of 
the photochemical n-ads. 
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exploit the size of the cofactors to gain additional effective distance for the charge-

recombination electron transfer. This will be discussed in greater detail in some of the 

upcoming sections in this chapter. 

In spite of the possibility to include both donor and acceptor cofactors, we will 

demonstrate in an upcoming section that without any loss of generality in the case of 

triads, and with almost no loss of generality in the case of tetrads and beyond, to consider 

only n-ads that consist of pigments and acceptors, as donor-containing triads(DPA), when 

only the fundamental principles of electron transfer are concerned, are mathematically 

equivalent to PA-only triads, and therefore would provide the same optimal performance 

as pigment-acceptor(PAA) triads, while donor-containing tetrads are almost congruent to 

pigment-acceptor-only tetrads, and will confer marginal gain(DPAA) or no gain(DDPA) 

over pigment-acceptor tetrads(PAAA).  However, in practical design settings, as will 

become evident in Chapter V and VI when we attempt to construct a proof-of-principle 

triads experimentally, including a donor rather than an additional acceptor offers the 

practical advantage of a much larger selection of cofactors from a already limited pool of 

candidates. 

2.3 Performance parameters as metrics for optimality of design 

It is impossible to establish any sense of optimality of design without having a standard 

and universal metric to compare the designs and determine which is more or less optimal. 

Since the goal of most known natural and man-made photochemical device is to harvest 

and convert solar energy into high-energy charges separated state for subsequent usage, 

usually in the form of diffusion limited catalysis, we identify and propose two parameters 

that together form the metric that determines the performance of any charge-separating 

photosystems and allow for direct comparisons between them: engineering efficiency at 

any selected lifetime of charge separation. Its definition is shown in Figure 2.3, as a 

product of the quantum yield(QY) of the charge separated state at selected lifetime and 

the ratio of energy preserved(REP) in the charge separated state. Engineering efficiency 

at any selected lifetime offers the most appropriate metric for the performance of 
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photosystems in most circumstances because it accurately measures the percentage of the 

incident photon energy that is captured and held available by the charge separation for at 

least as long as the specified lifetime. The selected lifetime of choice is usually on the 

order of 1-100ms, since this range represents the timescale of diffusion-limited chemical 

reaction typical of the type of catalysis coupled to photoactivated charge separation, such 

as hydrogen evolution(19, 20). This quantity therefore directly demonstrates the 

capability of the given photosystem in solar energy conversion at a timescale that allows 

it to be functionally relevant. 

However, it is important to notice that as the product of ratio of energy preserved and 

quantum yield at selected lifetime, optimal engineering efficiency sometimes does not 

correspond to either maximal quantum yield or maximal ratio of energy preserved, but 

rather a compromise between the two or a preference for one of the two. In certain 

circumstances, this 

means also that the 

appropriate metric for 

a photosystem’s 

performance is no 

longer the engineering 

efficiency, but rather 

QY or REP. It is 

straightforward to see 

that neither QY nor 

REP can be optimized 

without trivializing the 

problem unless 

additional constraint 

on the other parameter 

is enforced. 

Specifically, without 

 

Figure 2.3: Performance metrics to evaluate and compare different 
charge-separating photosystems. Left: Definition of “stored energy” 

and “photon energy” in the context of a DPA triad. Red dashed arrows 
represent premature recombinations. Green solid traces represent charge-
separating electron transfers. Right: Definition of the “yield” of the charge-

separated in the context of a DPA triad. It is crucial to note that these 
definitions are universal across all forms of photochemical charge-
separating devices, and dependent on the configuration of the device, only 
the specific representation will differ, while the concept remains the same. 



27 
 

setting a lower limit on the REP, optimizing QY alone will lead to the trivial solution of 

minimal REP, since QY has a somewhat inverse correlation with the energy preserved. 

Similarly, optimizing for REP without constraining QY will also lead to an arbitrarily 

high value of REP but minimal QY. This concept will become important in Chapter III, 

when we examine the engineering of conserved core cofactor units of natural 

photosystems and their adherence to and deviation from the optimal engineering 

blueprints we propose here in this chapter. It becomes apparent that natural photosystems 

preferentially “chose” to optimize for quantum yield while allowing the REP to be 

suboptimal when biologically relevant constraints are also included in the engineering 

landscape. 

2.4 Analytical paradigm and the mathematical infrastructure of the formulation of 

the engineering blueprints.  

Our analytical paradigm consists of three progressive steps/stages towards the final goal 

of obtaining the optimal engineering parameters that give us photosystems with the 

highest performance metrics outlined above, and the three stages are: descriptive, 

predictive, and prescriptive. 

The technical details of the implementation of the analytical paradigm described in this 

section using Mathematica 10.0 are included at the end of this chapter in section 2.12. 

The descriptive stage involves direct application of the Moser-Dutton ruler detailed in 

Chapter 1 to obtain estimates of electron transfer rates between the cofactors of any 

photosystems with arbitrary parameters, thereby providing a descriptive illustration of the 

kinetics of electron and shedding some lights on the performance of the photosystem. 

In the predictive stage, we seek to obtain either closed form or numerical but 

mathematically tractable and computationally robust representation of the metrics and 

then use such solution to compute the metrics given any arbitrary configuration of the 

parameters of the photosystems. Chris C. Moser has contributed most significantly to the 
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development of the essential algorithms and many of the analytical procedures for the 

predictive and the following prescriptive stages of the analysis.  

To arrive at such expressions for the efficiency of any given photochemical device, we 

describe the electron transfer kinetics between all cofactors of the photosystem as the 

semi-analytic solution of a system of differential equations generated from computing the 

rates between all ET-active “microstates” of the photosystems. Each of such microstate 

represents a non-equilibrium snapshot of the photosystem that captures the location of the 

excited electron created initially by photo-excitation of the pigment cofactor. For 

example, in an abstract 3-cofactor system, termed PAA triad, 4 microstates exist: 

{[P*A1A2], [P
+
A

-
1A2], [P

+
A1A

-
2], [P

+
A1A2]}. We can then write a rate equation for each 

of the 4 microstates as a function of rates between the microstates and the population of 

the microstates. As summarized in Scheme 2.1, the solution to this system of ordinary 

differential equations contains the full kinetic information of all electron transfer events 

following the photo-excitation of the pigment cofactor, listed as time-dependent functions 

of the population of each of the microstates. One of these functions describes the 

population of the final charge-separated state for a specific photosystem, depending on 

the number of cofactors involved. Evaluation at selected time allows us to discover the 

quantum yield(abbreviated from now on as QY) at a selected lifetime. When multiplied 

by the fraction of energy preserved in the charge-separated state, we obtain a 

mathematical expression for our desired metric, engineering efficiency at a given 

lifetime. This expression is a numerical function with the parameters that set up the 

system of ODEs for the ET kinetics of the photosystem as independent variables, 

including but not limited to: the distances and driving forces between all pairs of 

cofactors, reorganization energies for each ET reactions, photophysical properties of the 

pigment such as photo energy and excited state decay rates, and so on.  
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Finally, in the prescriptive stage, we subject the numerical function of the performance 

metrics to various optimization processes with different constraints and free parameter 

spaces depending on the problem of interest. The result of the optimization is a list of 

design parameters that together will generate the photosystem with the optimal 

performance given the constraints. Although any of the parameters that determine the 

value of the engineering efficiency of the charge-separated state can be fixed and 

considered as constraints, we particularly choose a few parameters as the constraints and 

regard the rest as design parameters. Specifically, we believe that certain parameters are 

much more difficult to vary and adjust in comparison to others, and these include the 

incident photon energy, lifetime of the excited state of the pigment, the reorganization 

 

Scheme 2.1 : Analytical steps to obtain the complete kinetic information of a ET-based 
photosystem as a time-dependent function of all engineering parameters. Top left: Formulation of 

the kinetics problem as a typical eigenvalue problem, where the operation is the differentiation and the 
eigenvalue matrix consists of the rates. Top right: specific differential equations along with the 
boundary/starting condition. Bottom left: solution of the eigenvalue problem written as a sum of products 
of eigenvectors and exponentials of eigenvalues. Bottom right: mathematical expression for the 
engineering efficiency at selected lifetime. 
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energy of the system and so on. These are “hard” parameters that cannot be easily 

modulated without completely throwing away a design, while the “soft” parameters, 

including the distances driving forces between cofactors, can be modified significantly 

faster and more easily in practice. Consequently, in this and the next chapter, we usually 

consider the “hard” parameters as constraints and the “soft” parameters as accessible 

engineering inputs.  

Also in the prescriptive stage of our analysis, we can examine the engineering tolerance 

towards a certain subset of the parameters that determine the optimal value of the EE. 

Specifically, given all the parameters that are returned by our prescriptive algorithm to be 

the optimal engineering parameters, we can fix most of them and allow certain others to 

vary, while computing the resulting engineering efficiency. This gives us a contour, in x-

dimension, with x being the number of parameters allowed to vary, that demonstrate the 

shape of the engineering landscape of this subset of parameters in the vicinity of 

optimality. It allows us to understand how much tolerance to changes in parameters the 

engineering of photosystems provides, thereby giving us an additional way to measure 

the practicality of the design, since in most real engineering circumstances, it is near 

impossible to design following the exact specification of the blueprints, as will become 

evident in Chapter V and VI.  

Throughout all three stages of our analytical paradigm, it makes the important 

assumption that the photosystem under consideration only involves one excited electron, 

and all cofactors within the system are Nernst n=1 redox centers, that is, their conversion 

from reduced to oxidized state only involves the transfer of a single electron. This is a 

simplifying but reasonable assumption, since almost all known natural photosystems 

employ only n=1 redox centers as ET cofactors as their core components. 

2.5 Comprehensive engineering blueprints of optimal charge-separating dyads 

To explore the design landscape and to create a set of comprehensive engineering 

blueprints for man-made or natural photosystems, we consider the prescriptive stage of 

our analytical paradigm, examining the values of the design parameters as well as the 



31 
 

tolerance range of these parameters that produce the optimally performing photosystems 

according to our metrics. However, our expression of the engineering efficiency of the 

photochemical device depends on more variables than those that can be straightforwardly 

and concisely illustrated. In order to provide a clear picture without sacrificing the 

comprehensiveness of our study, we will explore and present the optimal engineering of 

photochemical multi-ads iteratively to allow us to focus on a few design parameters at a 

time, while holding the remaining parameters locally/temporarily constant, allowing them 

to vary across separate “experiments”. Many of the parameters that are held constant are 

those mentioned above as “hard” parameters, or constraints. 

Specifically, we apply our prescriptive analysis with fixed and/or constrained parameters 

that represent certain situational design and engineering limitations. We begin by 

demonstrating the optimal engineering for a “generic” n multi-ad, namely, the n-ads 

engineered in a protein-interior whose reorganization energy is 0.7eV for all the electron 

transfer events within the photosystem, using a typical chromophore whose excited state 

is singlet and decays via fluorescence with a lifetime of 6ns. Using these locally 

constrained “generic” parameters, we sequentially examine the optimal engineering 

efficiency for dyads, triads, and tetrads at various selected lifetimes with various incident 

photon energies (representative of different available pigment cofactors) at a fixed 

uniform reorganization energy. For each level of complexity of the multi-ads we explore 

the distances and driving forces between the cofactors that are necessary to produce the 

optimal engineering efficiency under the given conditions. We then relax these 

constraints and examine the effects of varying these previous held parameters on the 

engineering efficiency. By observing and analyzing the patterns and trends of the 

correlation of the engineering parameters with the engineering efficiency, we formulate 

corresponding design blueprints that are universal and fundamental to any electron 

transfer based photosystems, applicable to practical engineering regardless of the setting 

and the specific environment in which the photosystem is designed. However, the lack of 

any other constraints than the fundamental theories of electron transfer that govern these 

design blueprints also means that the design blueprints formulated at this stage are also 
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subjected to modifications when additional constraints are included for engineering in 

specific settings, as will become apparent  in Chapter III. 

It is particularly attractive to 

go through the analysis of 

the multi-ads from dyads to 

tetrads and beyond, since 

dyad represents the 

fundamental and most basic 

form of charge-separating 

device. It allows us to fully 

understand the immediate 

interactions of physical 

principles that promote long-

lived, highly efficient charge 

separation. With the 

behaviors of dyads fully 

understood, we can then 

isolate and focus on the 

additional interaction of 

physical principles that are 

provided by the additional 

cofactors and the 

corresponding electron 

transfers. However, it is 

important to point out here 

that in order to fully illustrate 

the engineering specifics of 

the dyad, the choice of 

“generic” reorganization of 

 

Figure 2.4: Engineering blueprints of photochemical dyads, 
demonstrating various aspects of the optimal engineering 
parameters at selected lifetime of charge-separation 
ranging from ns to megaseconds. Top: Engineering efficiency 

of P-A dyads of various incident photon energy(singlet excited 
state), with a 0.3eV reorganization energy. Upper mid: energy gap 

between the singlet excited state of the pigment and the acceptor 
for dyads of various incident photon energy, plotted at 0.3eV 
reorganization energy. Bottom: P-A distance of the optimal dyad at 

selected lifetime for various incident photon energies.  

Photon 
energy=3.0eV 
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0.7eV represents too harsh of a condition and prevents us from presenting a complete 

engineering landscape of the dyad. That is, in an environment whose reorganization 

energy is 0.7eV, dyad is incapable of sustaining stable charge-separation for lifetimes 

greater than microseconds. Instead, for the sake of clear demonstration of the engineering 

principles governing the behavior of dyads, we choose 0.3eV as the default 

reorganization energy, and will return to the default value of 0.7eV for the analysis of the 

triads and tetrads. 

Panel A(top) of Figure 2.4 demonstrates the optimal engineering efficiency of a PA dyad, 

at selected lifetimes ranging from 10ns to 100s for a series of incident photon energies. 

The B and C panels of Figure 2.4 illustrate the corresponding driving forces(represented 

as energy consumed) and distances between the cofactors required to achieve the optimal 

efficiency for the various incident photons shown in panel A.  For all the incident 

photons, panel A shows that the optimal efficiency achievable by a photochemical dyad 

decreases monotonically with respect to increasing lifetime of charge-separation until the 

engineering efficiency drops to 0. Much more interestingly, note that this monotonic 

relation between the efficiency and the lifetime consists of two separate phases: an 

approximately linear “slow phase” and a non-linear, quasi-exponential “fast phase”. The 

approximately linear “slow phase” of the decrease in engineering efficiency corresponds 

to the necessary energy “consumed” in order to generate and stabilize the charge-

separated state for a given lifetime, since according to equation 1B, the uphill electron 

transfer to repopulate the excited state(in the case of the dyad) or the preceding 

intermediate charge-separated state(in the case of the triad, tetrad, and beyond) is slowed 

down by 1 decade per 60mV of additional driving force, representing the additional 

energy required per Boltzmann distribution to populate the preceding state in the electron 

transfer.(21) This association led us to coin the term “Boltzmann phase” for the 

approximately linear portion of the engineering efficiency decay. This relation is 

demonstrated by the 60mV/decade slope of the linear phase of the energy consumed 

curves of the optimal dyads in Figure 2.4B. This represents the theoretical minimal cost 
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in the engineering of charge-separating photosystems that is expected to last a certain 

lifetime.   

This constant cost of charge-separation, therefore the Boltzmann phase of the engineering 

efficiency, however, is only applicable when the charge-separated state is stabilized via 

the inverted region of the Marcus curve. That is, when the driving force of the direct 

charge-recombination from the CS state to the ground state is so far in the inverted 

region(see section 1.5 of Chapter I) that it is faster for the electron in the CS state to 

recombine through uphill thermal repopulation of the excited state or the preceding 

intermediate charge separated state followed by its own decay route; in the case of the 

dyad it is therefore the singlet excited state decay. The exact rate of this uphill 

repopulation-decay combination can be computed in the way shown in Figure 2.5, as a 

product of the equilibrium constant of the forward and reverse ET and the rate of the CR 

of the repopulated state. Figure 2.5 also demonstrates the validity of this method of 

computing the uphill-repopulation driven recombination with experimental data obtained 

from observations of such up-and-over events in modified bacterial reaction center. (21, 

22)The effective decay via the combination of the thermal repopulation of the preceding 

state and its own decay mechanism appears here, when only the principles of electron 

transfer are considered, to be the more efficient and therefore superior method of charge-

recombination, but as will be discussed in further details in chapter III, it poses one of the 

most severe challenges faced by the engineering of photosystems when biological context 

are considered.   
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As the rate of the direct recombination becomes faster as a result of the optimal 

engineering adjusting to increasing design constraints, such as increasing lifetime of 

charge-separation(shown in Figure 2.4A following the progress of each individual trace), 

decreasing incident photon energy(shown in Figure 2.4A at a fixed lifetime across 

multiple traces), and so on, the engineering efficiency enters the “fast phase”, where 

recombination routes faster than uphill thermal recombination become dominant. In the 

case of dyads, the “fast phase” corresponds to faster direct recombination as the driving 

forces from the CS state to the ground state is no longer large enough to exploit the 

stabilizing effect of the Marcus inverted region. We thus term the fast decaying phase the 

Marcus phase. Consequently, this allows to conclude that the increasing design 

constraints listed above all correspond to the common effect of pushing the dyad out of 

 

Figure 2.5: Indirect charge-recombination via uphill thermal repopulation of preceding, 
higher-lying energy states and the calculation of its rate. Top left: energy-diagram cartoon 

illustrating the steps involved in recombination via uphill thermal repopulation. Right: experimentally 
measured rates of recombination in bacterial reaction center with substituted quinones follow the model 
of recombination by thermal repopulation. (21)Bottom left: computing the exact rates of recombination 

by thermal repopulation. 
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the Boltzmann phase by lessening the stabilizing effect of the inverted region as the 

difference between the A
-
 to P

+
 driving force and the reorganization energy becomes 

smaller. Because of its ability to effectively magnify the slowing effect of the Marcus 

inverted region, a small reorganization energy appears to be, and has indeed been 

accepted as the consensus in the field of photosynthesis, the optimal and necessary 

engineering condition for successful charge-separating device. However, as will become 

evident later in this chapter as well as the next chapter, deliberate adaptation of low 

dielectric environments(small reorganization energy) is not an engineering guideline 

followed by natural photosystems. In fact, as will be revealed by the analysis of Chapter 

III, the engineering of natural photosystems appear to have proceeded directly against the 

guideline proposed here by completely avoiding the Marcus inverted region stabilization 

and recombination by thermal uphill repopulation of preceding intermediate charge-

separated states or the excited state.  
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Once the dyads’ engineering enters the “fast phase”, additional engineering devices must 

be engaged to offer 

other means of 

stabilization than the 

Marcus inverted 

region. As seen in 

Figure 2.4C, P-A 

distance becomes the 

next stabilizing factor 

exploited to provide 

additional stabilization 

when the direct 

recombination rate 

becomes comparable 

to that of the uphill 

thermal repopulation 

of the excited state. 

However, while 

slowing down the 

direct recombination 

rate, increased P-A 

distance also decreases 

the rate of the forward 

electron transfer to 

create the charge-

separated state equally. 

This statement is of 

utmost important and 

deserves detailed 

explanation and 

 

Figure 2.6: Trikes for optimal dyads at representative lifetimes. 
The energy levels and rates between the states are shown. 
Forward ET rates are shown in green arrows while 
recombinations are shown in red. A: details of optimal PA dyad 

designs with 1.8eV incident photon energy and 0.3eV reorganization 
energy, optimized for 10ns. B: same as A but for 1us. C: same as B but for 
100ms.  
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illustration.  

In fact, to better understand the detailed interactions of the all the factors influencing the 

yield and efficiency of various photosystems from dyads to other multi-ads, we present in 

a new type of plots we term “Trikes”, as exemplified by Figure 2.6. Unique to each 

configuration of an ET-based photosystem, “Trike” consists of the energy diagram of the 

cofactors of the photosystem displaying the rates of each significant ET reaction of the 

photosystem; the kinetic profile of the electron transfer reactions of the photosystem, and 

the cofactor arrangement of the photosystem. Together the three components of a “Trike” 

illustrates the details and specifics of the complete electron transfer kinetics of a 

photosystem under a specific set of constraints/environmental variables, revealing main 

loss mechanisms and reasons of failures, as well as providing a detailed and 

straightforward understanding of the complete kinetic information of the specific design 

of the photosystem.  

Specifically for dyads, as seen in Figure 2.6A-C, forward electron transfer must compete 

with the inherent decay rate of the excited state, for which we have used the standard 

singlet fluorescence lifetime of tetrapyrrole pigments of 6ns. Specifically, the difference 

between Figure 2.6B and C demonstrates the challenges dyads cannot overcome with the 

engineering devices available to guarantee high yield at the desired lifetime. Between 

1ms and 1s, the dyad must “pay” additional 180mV in energy to ensure that the 

recombination via uphill repopulation is on the timescale of seconds, but the additional 

cost in energy results in a smaller driving force to the ground state, and in order to slow 

down the direct recombination, increasing the P-A distance becomes necessary. When the 

optimal dyads continue to increase the P-A distance to slow down the direct 

recombination rate to allow the charge-separated state to achieve longer and longer 

lifetimes, the forward rate eventually becomes too slow and the charge-separated state is 

prevented from forming. This results in the engineering efficiency of the dyads begin to 

leave the Boltzmann phase and enter the Marcus phase, quickly falling to 0 at lifetimes 

that are often inadequate for diffusion-limited chemical reactions.  
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We have fully explored and 

illustrated the possible 

engineering devices available to 

photochemical dyads to generate 

stable and long lived charge-

separation in response to stronger 

and harsher constraints. It is 

evident that as the most basic 

form of photosystem for charge-

separation, dyads are highly 

limited in their performance and 

display high sensitivity to 

increasing engineering 

constraints. The poor performance 

of dyads is rooted in the lack of 

effective additional engineering 

devices to rely upon when its 

primary method of stabilization of 

charge-separation, namely the 

Marcus inverted region, becomes 

inadequate due to increasing 

constraints. This limitation 

explains well the observation that 

no effective, dyad charge-

separating photosystems has been 

observed in nature, and 

engineering efforts at constructing 

charge-separating dyads(23, 24) have been largely unsuccessful or unimpressive at best, 

with the longest charge-separated reported to be 200us. 

 

Figure 2.7: Optimal engineering blueprints for PAA 
triad at selected lifetimes from nano- to kiloseconds 
for photon energies from 1.0eV to 3.0eV. Top: 

Engineering efficiencies of the optimal triads at various 
lifetimes with various incident photon energies. Mid: The 

amount of energy used in terms of driving forces to create 
the final CS state with optimal efficiency at selected lifetimes 
for various incident photon energies. Bottom: The distance 
between the pigment and the acceptor at various incident 
photon energies. 

Photon energy=3.0eV 
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2.6 Engineering blueprints for optimal triads. 

The engineering of charge-separating multi-ads demonstrate the fundamental 

phenomenon that allows us to draw one of the central design guidelines of electron-

transfer based photosystems. The addition of another cofactor in the form of either 

another acceptor cofactor linearly placed further ahead of the primary acceptor, or a 

donor cofactor placed on the other side of the acceptor beyond the donor, immensely 

improves the engineering efficiency achieved by the charge-separating photosystem at 

lifetimes that are relevant to chemistry. Here we focus our analysis of the PAA triad due 

to the structural and organizational similarity to the PA dyad as well as the simplicity 

with which its efficiency and energy-preserved metrics could be discussed, although as 

will be demonstrated in section 2.6, the behavior of the DPA triad is in fact identical to 

that of the PAA triad.  

As shown in Figure 2.7, the optimal engineering of triads significantly outperforms that 

of dyads, sustaining charge-separation of much higher efficiency at much longer lifetimes 

and much lower incident photon energy. However, similar to the dyads, the engineering 

efficiency curves still consist of the Boltzmann and Marcus phases, although the 

Boltzmann phase of triads tend to persist significantly longer than that of dyads and the 

distinction between the two phases are more blurred, with a smoother transition between 

the two phases. Indeed, as seen in Figure 2.7C, the cost of charge-separation for triads 

largely replicate and extend the trends observed in Figure 2.4C, that is, triads continue to 

give up 60mV per each additional decade for the lifetime of the charge-separation, until 

the Boltzmann phase ends and the Marcus phase begins. To demonstrate effect of the 

increasing engineering constraints on the distances of triads in the most direct and 

straightforward manner, we chose to plot the mean edge-to-edge distance between P-A1 

and A1-A2 in Figure 2.7C. Here a trend similar to the one seen in Figure 2.4 is also 

observed. Specifically, for longer lived charge-separation, distances must be used to 

extend the Boltzmann-based stabilization of the charge-separated state when the inverted-

region slowing down of the direct recombination is no longer enough. The significant 
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extension of the Boltzmann phase, as seen in both Figure 2.7B and C, accounts for the 

impressive performance gain in triads over dyads, but the question remains, how? 

The presence of the second acceptor allows the charge-separating device to utilize an 

additional engineering device that fundamentally alters the engineering landscape of 

charge-separating devices that characterize the necessity of multi-ads in successful 

designs of long-lasting charge-separation. The extra cofactor(s) allow the photosystem to 

extend the “linear”, Boltzmann phase of the efficiency/lifetime curve by stabilizing the 

charge-separated with distances when the Marcus inverted region is no longer applicable. 

But how is this different from the dyads? Indeed, dyads also attempted to exploit 

distance, but the increased distance also slowed down the electron transfer reaction to 

create the CS state. Because of the additional cofactor and its linear placement away from 

the pigment, triads can enjoy the benefit of the distance-based stabilization of the CS 

state without slowing down the forward ET reaction to form the charge-separated state. In 

fact, as seen in the Trikes of Figure 2.6, triads can be seen as dyads that have separate 

distances for the forward ET reaction and the charge-recombination reaction, with the 

distance for the forward ET reaction significantly shorter than that of the recombination 

reaction. Indeed, because electron transfer distances are calculated from the side-to-side 

distances between cofactors, the size of the primary acceptor effectively become the 

additional distance between the final CS state and the pigment cofactor that provides the 

extra stabilization(slowing down the charge-recombination) without slowing down the 

charge-separation. This extra distance allows the charge-separated state to continue to 

recombine via the uphill thermal repopulation of the preceding CS state/the P* even 

though the driving force of the A2 to P
+
 reaction can no longer keep the direct 

recombination in the Marcus inverted region. Thanks to the stabilization by the extra 

distance offered by the size of the cofactor, the forward ET reactions, both from P* to A1 

and from A1 to A2 can be engineered so that the electron can arrive at the final charge-

separated state while incurring minimum amount of loss in both the quantum yield and 

the energy preserved given the constraint of required lifetime of charge-separation, of 

course.  
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As the constraints continue to become harsher, triads gradually begin to lose the ability to 

sustain the charge-separation using entirely the Boltzmann phase. Unlike the dyads, the 

Marcus phase of triads manifests itself from multiple sources of failures and therefore 

appear more gradual and smooth than what’s seen in the dyads, where a precipitous drop 

in the efficiency results from the slowing down of the forward electron transfer from P to 

A to an extent where the forward ET rate is slower than the lifetime of the excited state. 

In triads, premature charge recombination to the ground state can happen at two rather 

than one branching points for triads, namely the P* to A1 and the A1 to A2, where 

forward electron transfers must compete against the rate of decay of the singlet excited 

and the A1
-
 to P

+
 recombination. The presence of two rather than one branching point 

appears to present additional challenges not faced by the single branching point in dyads, 

providing more opportunities for the photosystem to fail. In reality, however, the two 

branching points allow the triad to distribute the necessary extra distance for Boltzmann-

stabilized longer lifetimes between the P-A1 and A1-A2 pairs. This ensures that, for the 

lifetimes at which dyads fail completely and beyond, triads do not see its engineering 

efficiency suffer a sudden decay to 0 but rather a much more gradual and smooth trend, 

as can be seen from a comparison of the curves representing the same photon energy(say, 

1.4eV) in Figure 2.7 and Figure 2.4.  
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Figure 2.8A-C 

illustrate triads’ 

significantly 

improved abilities to 

deal with pressures 

from increasing 

constraints in 

comparison to dyads, 

specifically 

emphasizing the 

ability to sustain 

increasingly long-

lived charge-

separation without 

suffering a drastic 

failure as seen in 

Figure 2.4. It is 

important to note that 

only at lifetimes as 

long as 100s, the 

optimal triad enters 

the Marcus phase, in 

which the direct 

recombination to the 

ground state proceeds 

faster than the uphill-

thermal repopulation 

driven recombination, 

as seen in Figure 

2.8C. Yet even at this 

 

Figure 2.8: Electron transfer details of optimal triads at various 
selected lifetimes. The green arrows and numbers indicate the rate of 

the forward electron transfers, while the red are recombination reactions, 
with the solid traces representing direct and dashed traces represent 
uphill-repopulation followed by recombination. The cartoon and the 
numbers indicate the distances between the cofactors, while the kinetic 
profile shows the populations of the various states during the charge-
separation. A: optimal triad for a 10ns charge separation. B: 100ms CS. C: 
100s CS. 
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long-lived lifetime, the major source of loss in efficiency stems from the premature 

recombination occurring at the two branching points when the forward ET rates are 

slowed down by the increased distances to stabilize the final CS state, rather than 

lowering of the energy level of the final charge-separated state or the complete failure in 

ability to send the electron to the final charge-separated state. Indeed, to generate and 

stabilize a 100s charge-separation using the minimal Boltzmann cost, we would expect 

around 720mV of the incident photon energy to be expended, Figure 2.8C shows that the 

energy preserved in the charge-separated state is 1.06eV. That is, 740mV of the incident 

energy is used to generate and stabilize the final charge separated state, matching the 

expected minimal cost of the charge-separation since in order to generate a 100s charge-

separation with optimal efficiency the actual lifetime of the CS state must be at least 1 

order of magnitude greater, and we begin counting the 60mV/decade cost at the lifetime 

of the excited state. With the forward rate form P* to A1 at 740ps and the singlet excited 

state decaying at 6ns, 12% loss is incurred at this branching point, and another 4% is 

incurred at the second branching point. In stark contrast to the 33% loss at the only 

branching point in the PA dyad at a lifetime 3 decades earlier seen in Figure 2.6C, triads’ 

ability to split the necessary increase in distance to the two sub-steps along the formation 

of the final CS state, along with the “free” additional distance provided by the diameter of 

the cofactor, represents the central engineering mechanism that distinguishes it from the 

dyads.   

2.7 Engineering blueprints of optimal photochemical tetrads  
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After the significant 

improvement provided by 

the third cofactor we have 

seen in the previous section,  

it is therefore natural to 

expect that the addition of 

the 4
th

 cofactor would 

provide a similarly 

significant improvement in 

the engineering. However, 

Figure 2.9 demonstrates 

that, unlike the dramatic 

improvements seen in the 

transition from a dyad to a 

triad, the incorporation of a 

4
th

 cofactor does not grant 

the same level of 

improvements in the 

engineering efficiency we 

had seen by going from 2 to 

3. Instead, for most incident 

photon energies at most 

selected lifetimes, the 

engineering efficiency 

traces of the tetrads appear 

to be highly similar to those 

of the triads, offering 

marginal increases at 

 

Figure 2.9: Optimal engineering blueprints of charge-
separating tetrads at selected lifetimes under different 
incident photon energies at 0.7eV reorganization energy, 
demonstrating the following characteristics of the optimal 
tetrads: Top: Engineering efficiency. Mid: Energy used to create 
the final charge-separated state. Bottom: Average inter-cofactor 
distances. 

Photon energy=3.0eV 
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lifetimes longer than necessary. Only at lifetimes well past the 100ms mark of practicality 

do we observe significant differences between the tetrads and triads, or at photon energies 

lower than 1.8eV. 
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One of the most noticeable differences between the traces of triads and tetrads is that 

tetrads now display almost no noticeable phase change between the “Boltzmann” and the 

“Marcus” within the window of selected lifetimes that we are examining. Instead, the 

engineering efficiency curves of tetrads with various incident photons appear to look 

either completely linear, with increasing negative slopes as the incident photon energy 

becomes lower. This behavior is unsurprising given our understanding of the mechanistic 

details that account for the differences between the dyads and the triads. Specifically, the 

addition of yet another cofactor allows for additional distance-based stabilization of the 

charge-separated state, allowing the charge-separation to take further advantage of the 

Boltzmann stabilization. The 4
th

 cofactor provides not only additional “free” distance in 

 

Figure 2.10: Engineering details of optimal charge-separating tetrads at uniform 0.7eV 
reorganization energy and 1.8eV incident photon energy.  The energy diagram on the left shows 

the energy levels of the various CS states and the rates between them. The cartoon on the right lists the 
distances between the cofactors, while the kinetics profile at the bottom demonstrates the population of 
the various CS states at different lifetimes. 
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the form of cofactor diameter, but also another branching point to mediate the loss caused 

by premature charge-recombination. This is simply a continuation of the trend we have 

observed in the previous sections and therefore will not be significantly elaborated except 

for an exemplary representation of an optimal triad producing uniform quantum yield and 

theoretically maximal energy preserved, seen in Figure 2.10. The extra branching also 

allows the average inter-cofactor distances for the tetrads to be much smaller than the 

triads, as can been see in a 

comparison between the 

corresponding distance panels 

of Figure 2.9 and Figure 2.7. 

Moreover, the lifetime at which 

the optimal tetrads must adopt 

non-van der Waal contact 

distance is also delayed in 

tetrads, thanks to the additional 

cofactor and branching allowing 

more flexibilities to distribute 

the necessary distance 

stabilization when the inverted-

region slowing becomes 

inadequate. 

This extra distance-based 

stabilization is almost 

inconsequential, when only the 

fundamental principles of 

electron transfer are considered, 

for engineering charge-

separation that last no longer 

 

Figure 2.11: Isomorphism of various configurations of 
triads and tetrads. Top: traces of engineering efficiency of the 3 

different possible tetrad configurations at various selected 
lifetimes, with the colored labels corresponding to the various 
forms of tetrads. Fixed photon energy of 1.8eV. Bottom: 

engineering efficiency of the 2 possible triad configurations at 
various selected lifetime with the same optimization algorithm 
under the same set of constraints. The deviation at the ks of the 
DPAA from the other two tretrads results from the numerical 
instability of the model. 

Photon 

energy=1.8eV 
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than 100ms, since, as already seen in Figure 2.8, the distance-assisted Boltzmann 

stabilization by triads with 1.8eV incident photon only begin to fail well past 100ms.  

2.8 Equivalence of donors and acceptors in triads and beyond 

In our exposition of the optimal designs of triads and tetrads in the previous section, we 

have only examined the engineering of PAA triad and PAAA tetrad, while the DPA 

configuration for triad and the DPAA or DDPA configurations for tetrad exist. Here we 

demonstrate that the choice to focus on acceptor-only n-ads significantly simplifies the 

challenge of presentation as well as avoids numerical computational instabilities, without 

any loss of generality. That is, the optimality of engineering, measured by the metric 

engineering efficiency, is the same given the same set of engineering constraints for the 

various possible configurations of triads and tetrads, although the engineering parameters 

to produce such optimality might be different. In fact, we make the stronger claim that 

the optimization problem for all different configurations of mult-ads, as long as they 

share the same number of cofactors, can be considered isomorphic within the scope of 

this work and our engineering blueprints for optimal charge-separating device.    

We first present the isomorphism for the triads, shown in the bottom half of Figure 2.11. 

For triads, both PAA and DPA have four microstates. More importantly, the rate 

coefficient matrices for the system of ODEs for PAA and DPA have the same non-zero 

terms. That is, electron transfer reactions between all microstates are equivalent for the 

two configurations of triads. Consequently, during the optimization process to discover 

the maximal engineering efficiency at various lifetimes, the optimal solutions of the 

system of ODEs, namely, the electron transfer kinetics, of the two configurations, will 

also be equivalent, although the parameters that generate the optimal performance will 

differ, since the donor cofactor sends its electron to the ground state of P. Notice that the 

optimal engineering efficiency curve for the PAA triad overlaps completely with the 

curve for the DPA triad.  

For tetrads, DDPA arrangement and PAAA arrangements have the same symmetric 

identity as that between DPA and PAA. They both have the same number of microstates 
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eligible for electron transfer, specifically 5, and the rate matrices are equivalent upon 

rearrangements in the exact same way as those of the triads. Indeed, as shown in the top 

half of Figure 2.11, the optimal engineering efficiency of an arbitrary DDPA and PAAA 

tetrad are identical throughout all timescales. However, with DPAA, there are 6 rather 

than 5 microstates, making DPAA mathematically not identical to the other two. 

However, when the optimization algorithm is applied to the DPAA, we have observed 

that other than small numerical fluctuations at extreme conditions(as seen at the far end 

of the DPAA trace in Figure 2.11 bottom), DPAA’s optimal behavior is identical to that 

of PAAA and DDPA. Although further discussion to fully understand the differences 

between DPAA and PAAA/DDPA could prove to be interesting, given the scope of the 

current work and the myriad of other topics of interest, I have decided to limit the 

discussion in this thesis to the practical indistinguishibility of the different variants of 

tetrads and triads that could be considered in the design process.  

2.9 Increasing tolerance for design parameters as n-ads become more complex 

While the analysis in the previous sections have sought to identify the optimal 

engineering efficiencies attainable by photochemical multi-ads and the necessary 

engineering parameters required to achieve such optimality, we have not considered the 

engineering tolerance at the optimalities. That is, within what range of values of the 

engineering parameters prescribed by our blueprint for optimality does the engineering 

efficiency of charge-separation remain sufficiently close to optimal. The extent to which 

the engineering parameters are allowed to deviate from the optimal values without 

noticeable decrease in the efficiency is defined as the engineering tolerance. The 

tolerance is essentially a reflection of the overall smoothness of the engineering 

landscape; greater tolerance suggests that the engineering landscape, in terms of the 

parameters that influence the engineering efficiency of the photochemical device, is 

relatively flatter, while smaller tolerance corresponds to a more jagged landscape. 

Practically, engineering tolerance carries great significance since when the engineering 

blueprints are realized in practical designs, many additional constraints that are not 

considered in the formulation of the engineering blueprints in this chapter could make it 
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impossible to actually use the prescribed optimal engineering parameters. A greater 

tolerance therefore corresponds to a higher likelihood that the realized design would 

replicate the engineering efficiency that’s promised by the blueprints. In fact, strong 

tolerances in certain engineering parameters can be considered to be much more 

important in naturally occurring photosystems than the absolute engineering efficiency 

attainable, as will be revealed and examined in this section and in Chapter III of this 

thesis.  
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Following the order of the analysis of the previous sections, we begin by examining the 

engineering tolerances of the optimal dyads. Figure 2.12d illustrates the contours of the 

 

Figure 2.12: Tolerances for design parameters in dyads and triads.  A: Examplary kinetic traces 

of the dyads and triads shown in this figure.  B: engineering tolerance of the redox potentials of the two 
acceptors in an optimally designed triad at 100ms, with contours of equal engineering efficiency. C: 
engineering tolerances of the distances between the cofactors in an optimally designed triad at 100ms, 
with contours of equal engineering efficiency. D: engineering tolerance of the acceptor redox potential and 
distance to the pigment for an optimal dyad at 100ms, with the red segment bisecting the contours into 
two regions of dominant loss routes, further illustrated by the inserted kinetic details. The left insert 
represents suboptimal engineering of the dyad when the distance is too short and therefore cannot 
provide enough distance-based stabilization when Boltzmann stabilization is no longer adequate at 
100ms. The right insert shows when too much distance stabilization slows down the charge-separating 
reaction too much. 
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distances and driving forces of dyads when a charge-separated state lasting 100ms is 

required. For the purpose of illustration we have chosen the special constraint of 0.3eV 

reorganization energy, since otherwise no effective charge-separation can be observed at 

100ms for dyads. It is not difficult to conclude that even with such a generous constraint 

of 0.3eV reorganization energy, only very small deviations from the exact values of the 

optimal parameters are allowed before the efficiency begins to deteriorate. In fact, when 

the practicality of engineering is considered, in terms of both the P-A distance and the 

Em of the acceptor, only the optimality is allowed. That is, in a practical setting, the 

design of the optimally performing dyad offers no tolerance and therefore poses yet 

another challenge in attempts to construct such devices. Figure 2.12d also demonstrates 

the consequences of suboptimal engineering. When the P-A distance is to large, the yield 

of the CS state decreases as the forward ET slows down and gets outcompeted by the 

excited state relaxation rate. When the P-A distance is too small, faster charge-

recombinations, largely in the form of uphill thermal repopulation of the P*, causes lower 

 

Figure 2.13: Engineering tolerances for the design parameters of the second and final 
acceptors in a PAAA tetrad, with an incident photon energy of 1.8eV under normal reorganization 

energy of 0.7eV, examined when all other parameters are fixed at optimal values and two are allowed to 
vary. Left: engineering tolerance for the Ems of the second and final acceptors. Right: engineering 
tolerances of the distances between the first-second and second-final acceptors.  
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yield at the selected lifetime.  

It is also interesting to note that the dyads offer greater tolerances in the distance than in 

the Em of the acceptor. This reflects the importance of the total reliance on the 

Boltzmann stabilization offered by the slowing effect of the inverted-region. Any 

significant deviation in the Ems of the acceptor would cause the driving force to the 

ground state of the P to become either too great or too small, annulling the stabilization 

effect.  

As we increase the number of cofactors from 2 to 3, not only do we see significant 

improvements in the absolute performance, but also some increases in the engineering 

tolerances, as seen in panel B and C of 

Figure 2.12, more so in the tolerances for 

the distances than the Ems of the cofactors. 

In fact, the “optimality plateau” for the Ems 

of the acceptors of the triad is only 150mV 

wide at maximal difference. In design 

practices, this range is not large enough to 

offer different options of cofactors since the 

differences in the Ems of different families 

of cofactors could easily be greater than 

200mV. The distances offer somewhat 

larger flexibility, but the only practically 

relevant tolerance is for the A1-A2 distance 

with a range of 3.5Å. This range is also 

considered rather small, especially when the 

photosystem is to be engineered in a de-

novo man-made protein environment as will 

be seen in Chapter V and VI.(25) 

While the move from 3 to 4 does not offer 

 

Figure 2.14: Effects of the excited state 
lifetimes on the optimal engineering 
efficiencies of photochemical devices. Top: 

optimal P-A dyads’ engineering efficiency at 
lifetimes from ns to megaseconds under excited 
lifetimes of 6ns, 1us, and 1ms. Bottom: optimal 
engineering efficiencies of triads at the 3 
lifetimes of excited states. 
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the same kind of dramatic improvements in absolute optimal engineering efficiency as 

from 2 to 3 in the chemically relevant range of lifetimes, it makes up by providing 

significant gains in the engineering tolerances of the parameters. Consider the 

comparison between Figure 2.13 and the two triad panels of 2.12. In both the distance 

and energetic perspectives, the region of optimal efficiency is significantly greater for the 

tetrads. In fact, the level of tolerances offered by tetrads for the Ems of the cofactors is 

finally large enough to be meaningful in design practices. The range of 250mV for 

acceptor A3 and ~500mV for acceptor A2 is large enough that either different choices of 

different cofactors or modifications of the local environments of the platform housing the 

photosystem can be allowed. Similarly, the large range of values of distances for both the 

secondary and ternary acceptors are also large enough that allow for various attempts at 

designs in practice. The range of >10A of tolerance for the A2A3 distance and the >5A 

range for the A1A2 distance make the design of optimal tetrads a significantly less 

challenge than that of the tetrads.  

This significant contrast between the engineering tolerances of the tetrads and triads will 

figure heavily in the results of the next chapter, where we explore the engineering 

principles when biological contexts are considered. The significantly greater engineering 

tolerances of tetrads allow them to provide a much more robust and resilient engineering 

landscape when additional engineering constraints not considered in this chapter are 

incorporated in Chapter III in order to establish a more specific and applicable version of 

the engineering blueprints for optimal photosystems in biological contexts.  

2.10: Effect of the lifetime of the excited state on the engineering of photosystems 

Now that we have a good understanding of the trends of engineering parameters in the 

shifting landscape of optimal dyads, triads, and tetrads, it is time to examine the effects of 

the constraint, “hard” parameters that have remained fixed so far. In the various 

EE/lifetime traces in Figure 2.4, the effect of increasing the constraint represented by the 

incident photon energy has already been demonstrated. Given a fixed, uniform 

reorganization energy, decreasing the incident photon energy leads to smaller 
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stabilization of the charge-separated state via the Marcus inverted region and earlier onset 

of the Marcus phase, resulting in a much shorter Boltzmann phase in the 

efficiency/lifetime curves and therefore a harsher engineering landscape for optimal 

performance.  

One of the most interesting and non-trivial constraint that we have not considered is the 

lifetime of the excited state of the pigment, although it can exert significant impact on the 

optimal engineering of the photosystems. As shown in Figure 2.14, increasing the 

lifetime of the excited state greatly increases the length of the Boltzmann stabilized phase 

of the efficiency/lifetime curve, suggesting that lifetime of the excited state should be 

extended as long as possible to minimize cost in charge-separation and therefore 

efficiency in the engineering. We will soon reveal in Chapter III that this statement in the 

engineering guideline established in this chapter, along with many others, are the result of 

optimization based on an incomplete set of constraints and therefore not practically viable 

unless specific measures are taken during the practice of constructing these photosystems 

to remove or alleviate those constraints. Nevertheless, it is important to remember that 

longer lifetime of the excited state indeed represent a significant improvement in the 

engineering landscape of any photosystems, and the choice to adopt a charge-separated 

state with a ms lifetime rather than ns is one of the central engineering devices that made 

our near-second charge-separation possible in the face of overwhelmingly suboptimal 

practical constraints, as will be described in Chapter V and VI.  

2.11: Conclusion: Central engineering principles for optimal charge-separating 

photosystems based on the fundamental theories of electron transfers. 

Throughout this chapter, we have established an abstract, cofactor-focused analytical 

paradigm that reliably and accurately describes the details of electron transfer kinetics of 

charge-separating photosystems, natural or man-made, from a small set of input variables 

that can be considered as the essential engineering parameters of photosystems. Using 

this paradigm, we have developed an elegant and straightforward algorithm that allows 

for fast and accurate determination of the performance of any photosystems, measured as 
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engineering efficiency at a specific lifetime of charge-separation. We have exploited the 

computationally inexpensive nature of our algorithm to conduct prescriptive analysis on 

the engineering of ET driven charge-separating devices, delineating the engineering 

principles for optimal design of n-ads that are based in fundamental theories of electron 

transfer alone. 

As we carefully studied the prescribed optimal engineering parameters of dyads, triads, 

and tetrads given by our n-ad paradigm model, we discovered a series of conserved 

mechanisms that explain dyads’ consistent failure to sustain long-lived charge-separation 

while triads and tetrads success at such tasks. We consider these mechanisms the 

fundamental engineering principles of ET-based charge-separating photosystems, 

dictating the blueprints for optimal designs. We were able to condense the trends and 

patterns manifested in the optimal engineering into the following set of principles that, as 

long as the fundamental theories of electron transfer are the only constraints considered, 

allow the construction of optimal engineering of ET-based charge-separating 

photosystems: 

(1) 60mV/decade Boltzmann stabilization represents the minimal energy cost for 

charge-separation that lasts for any desired length of time. 

(2)  Uphill-repopulation based recombination is the optimal and preferred route to 

dissipate the charge-separated state. 

(3) Stabilization of the charge-separated by maximally slowing down the rate of 

direct charge-recombination via low reorganization energy and long distance 

leads to optimal performance at any selected lifetime.  

(4) Incorporation of additional cofactors to make n-ads with n>2 introduces essential 

distance-based stabilization of the CS state from the diameter of the cofactor as 

well as multiple branching points to offer multiple loss routes to avoid drastic 

decay in performances. 

These fundamental engineering principles prescribe optimal designs of ET-based 

photosystem that are characterized by a few engineering motifs, which would result in the 
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highest quantum yield of the CS state while preserving the greatest fraction of the 

incident photon energy at the longest lifetime. These motifs would characterize an 

optimal charge-separating photosystem as a triad with the cofactors, one pigment and 

either two acceptors or one donor and one acceptor, arranged in a linear fashion, 

assembled in an environment that would be as low in reorganization energy as possible, 

and with redox potentials of the cofactors no greater than 60mV per each decade past the 

lifetime of the excited state less in energy than the excited state. The choice of triad over 

tetrads comes from the notion that when reorganization energy is specifically engineered 

to be low, thee marginal improvements of tetrads over triads do not justify the significant 

additional experimental effort to engineer a tetrad.  

However, until this point, all of the engineering prescriptions demonstrated have been 

derived from optimization studies using the Moser-Dutton ruler alone, a model for the 

rates of electron transfer reactions. The intended application of such engineering 

blueprints is in protein-based biological environments. Consequently, it is necessary to 

evaluate whether and to what extent the engineering blueprints established in this chapter 

are followed by natural photosystems. 

2.12: Computational methods 

All analysis performed and discussed in this chapter are implemented and carried out using Wolfram 

Mathematica, with version 9.0 for the results obtained prior to 2016 and version 10.0 for the those obtained 

in 2016.  

For each variant of the model n-ads ranging from dyads(P-A or D-P) to tetrads(PAAA/DPAA/DDPA/DDDP), 

we have defined and implemented in Mathematica a function that returns the engineering efficiency of the n-

ad, which from now on will be referred to as Е. E takes as input variables all the engineering parameters of 

the n-ad, including: selected lifetime of the charge-separation, t; pair-wise distances between the cofactors 

within the n-ad, R; driving forces between the cofactors, ΔG; photon energy of the pigment to generate the 

excited state, hv; reorganization energy of the overall electron transfer environment, λ; the lifetime of the 

excited state, τ; the diameter of the cofactors in the n-ad, PD; and redox potential of the ground state of the 

pigment, EmP.  Based on the full electron transfer kinetics energy diagram of the n-ad, we then generate the 

m-by-m electron transfer rate matrix A, where m is the number of available states that are electron transfer 

competent, as explained in section 2.4. Each element of A, namely, Aij, refers to the rate of all the possible 

electron transfers, with the off-diagonal elements representing the ET rates from the jth microstate to the ith 
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microstate and the diagonal elements the electron transfer rates leaving microstate i heading to all possible 

destination microstates. We then defined each of the rates included in matrix A using the Moser-Dutton ruler 

introduced in section 2.2, except for the rate between the microstate representing the excited state of the 

pigment and the ground state of the pigment, which is computed using the inverse of the lifetime of the 

excited state, as part of the engineering parameters. The implementation of E then uses Mathematica’s 

Eigensystem function to find the eigenvalues and eigenvectors of the matrix A, which then are used to 

construct the general solution of the time-dependent population profile of the specific n-ad as shown in 

Scheme 2.1 as a sum of exponentials. The initial condition that describes the state of the n-ad upon a 

photoexcitation event is then used to compute the coefficients in front each of the exponential terms in the 

general solution calling the “Solve” function of Mathematica, thereby producing the special solution, which 

contains the time-dependent electron occupancy for each of the cofactor. The implementation of E then 

returns the value of the population of the charge-separated state(one of the microstates whose population is 

described by the specific solution) multiplied by the ratio of the energy preserved in the charge-separated 

state and the input variable hv described above. The energy preserved in the charge-separated state is 

computed as the difference between the final acceptor and the donor or the ground state Em of the pigment 

when no donor is present.  

The implementation of E described above allows us to perform both descriptive and predictive analysis on 

an n-ad, as it returns the metric of the performance of this n-ad given a set of design parameters. To 

implement the prescriptive analysis, we took advantage of the “NMaximize” function of Mathematica. The 

NMaximize function is called with E and a subset of the engineering parameters used to compute E as input 

variables, along with a set of constraints that restrict the possible values of the parameters to be tested 

during the optimization process. As described in sections 2.4 and 2.5, we treated distances and driving 

forces between cofactors as the soft design parameters and thus used them as the varying parameters for 

each calling of the NMaximize function, while keeping hv, λ, τ, PD, EmD all fixed. To generate the plots 

shown in figures 2.4, 2.7, 2.9, and 2.11, we have run the NMaximize function on E for a set of selected 

lifetimes t ranging from 1ns to 1000s at the interval of every half log decade and a set of hv ranging from 

3.0eV to 1.0eV at 0.4eV interval and plotted the optimal engineering efficiency as a function of the 

increasing selected lifetime for each hv. To examine the trend of optimal engineering efficiency with respect 

to other design parameters, “NMaximize” is simply called with a different set of variables at specific intervals 

and plotted with respect to the desired variable. For all of the analysis performed in this and the following 

chapter, NMaximize function is used with the option of “DifferentialEvolution” as the selected method of 

optimization with “RandomSeed” flag set to 1.  

To produce the contour plots shown in Figure 2.12, E is evaluated at a set of points representing a range of 

two of the many design parameters with other parameters are held constant either at optimal values or 

values specified by the user.  

To generate the trike plots shown in Figure 2.6,2.8, and 2.10. a modified version of E was implemented, 

which we will term P. Rather than returning the numerical value of the engineering efficiency, P returns the 

plot of the time-evolution of the populations of all the microstates involved in the electron transfer as well as 
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the rates of each individual electron transfer reaction involved in the n-ad, with the uphill-based 

recombination rate computed as shown in Figure 2.5.  
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Chapter III: The universal catalytic quartet and its 

subversion and rewriting of the engineering blueprints 

of charge-separating photosystems 

3.1: Introduction:  

While in the previous chapter we developed a comprehensive set of engineering 

blueprints and guidelines for optimal photo-activated charge-separating device based 

purely on the fundamental rules of physics governing electron transfer, our goal remains 

to carry out designs of highly efficient charge-separating photosystems in biologically 

relevant environments such as the interior of small, hydrophilic proteins. Consequently, 

here in this chapter we attempt to examine whether and how much the engineering 

principles discovered in the previous chapter continue the development of the 

engineering guidelines for optimal photosystems by discovering and understanding more 

specific and practical constraints imposed upon naturally occurring electron transfer 

processes by biophysical, biochemical, and biological environments and conditions. This 

allows us to correct, refine, and enrich the engineering blueprints we obtained from 

Chapter II and to carry out designs that are practical and applicable to biological contexts. 

In order to discover these additional engineering constraints enforced by the biological 

setting and the corresponding modifications to the existing design principles to achieve 

optimality, the ideal object to study is nothing other than the charge-separating multi-ads 

that are engineered by nature through the process of evolution, the various biological 

electron-transfer based photosystems responsible for some of the most fundamental 

processes of living organisms.  
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Many biological functions essential to the survival of organisms across different 

kingdoms are accomplished by electron transfer based photoactivated charge separation 

processes, ranging from DNA repairs(1, 2) to photosynthesis, exploiting a significant 

portion of the solar spectrum with high efficiency, as seen in Figure 3.1.(3) These 

processes are driven by a series of small molecule cofactors encapsulated in complex 

protein frameworks called photosystems. Despite the seemingly enormous differences in 

the function and apparent structures of the protein frameworks representing them, these 

biological photosystems share a highly conserved structural engineering motif as their 

core functional unit. A catalytic quartet of four redox active and electron transfer 

 

Figure 3.1: Natural photosystems cover a broad range of the solar 
radiation spectrum. The black trace represents the black-body radiation of the 

modern sun at visible and near- to mid-IR range, shown as both raw photon flux 
on the left vertical axis and transimission on the right vertical axis. The four 
colored traces represent the transmission spectra of various prominent natural 
photosystems. Namely they indicate wavelengths at which the pigments of natural 
photosystems absorb photons and produce excited singlet states to drive charge-
separation. The numbers on the top indicate the energy of the absorbed photon as 
well as the energy of the excited state of the corresponding photosystems. 
Reproduced and modified from Blankenship et al(3).  
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competent cofactors tightly bound to the center of the photosystems form the basis of the 

functional core unit. This functional core is highly conserved in various organisms, as 

summarized in Figure 3.2, and all share the same P-A-A-A organization of cofactors(4). 

(5-8)That is, the catalytic quartet consists of a pigment cofactor followed by three 

acceptor cofactors that relay the excited electron produced by photo-excitation of the 

pigment cofactor to form the final charge separated state. In the bacterial photosystems, 

this quartet consists of the light-activated bacterial chlorophyll dimer as the pigment, and 

the bacterial chlorophyll monomer, bacterial pheophytin, and Qa as the chain of three 

acceptors. Similarly, in the plant photosystem I and II, P680/P700 dimer serve as the 
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pigment, a bacterial chlorophyll serve as the primary acceptor, a bacterial pheophytin 

play the role of the secondary acceptor A2, while a quinone(QA) that does not diffuse 

away and remains integral to the photosystem. Additionally, signaling and DNA repair 

enzymes in the crytochrome/photolyase family contains a photosensitive Flavin as the P 

and a chain of three tryptophans as the acceptors.  

 

Figure 3.2: The universal PAAA organization of the functional cores of natural photosystems 
of various species. (A) The cofactors of natural photosystems are embedded within complex matrices of 
natural reaction centers, significant portion of which is membrane-bound. B: The essential cofactors 

involved in the charge-separation processes of various natural reaction centers, with their redox midpoint 
potentials shown relative to a common scale.  Electron transfer reactions of the natural photosystems are 
shown as arrows of different colors. 
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This consensus is quite 

surprising, in light of the 

optimal engineering 

blueprints we have 

formulated in chapter II, 

where we demonstrated 

that the marginal benefit, 

measured in differences in 

the engineering efficiency 

gained from adopting a 4-

cofactor linear tetrad 

design rather than a triad, 

is significantly less than 

that of the transition from 

dyads to triads. Moreover, 

other than extreme cases 

where the engineering 

constraints(incident 

photon energy or 

reorganization energy) 

become very prohibitive, triads offer performances that are adequate and not significantly 

worse than those of tetrads, especially for charge-separation that last hundreds of 

milliseconds for the purpose of driving subsequent catalytic reactions. The design 

blueprints based purely on the physics of electron transfer, therefore, creates the 

expectation that triads are sufficiently competent and would be adopted widely in nature. 

However, as already become evident, this is not the case. This startling observation thus 

prompts us to examine the catalytic quartets of natural photosystems with greater care in 

order to discover trends and underlying principles that would allow us to expand, correct, 

and improve our design guidelines.  

 

Figure 3.3: Universally conserved catalytic quartet in 
photosystems across organisms. Top: organization of electron 

transfer active cofactors in four representative photosystems of various 
organisms. Bottom: The highly conserved quartet consisting of 
cofactors structurally and functionally integral to the photosystems. 
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A closer examination of photosystems that contain the core quartet reveals the following 

list of characteristics common to all: 

1. The quartet consists of a single photoactivatable pigment cofactor and a chain of 

three acceptors or donors.  

2. The quartet functions solely through tunneling-based electron transfer reactions. 

3. Three out of the four cofactors of the quartet belong to one family of chemical 

molecules while the remaining member belongs to another family with vastly 

different chemical and redox properties. 

4. The presence of three acceptors/donors in a chain with close spacing between the 

first two acceptors promotes ultra-fast formation of the final charge separated 

state  

5. The quartet favors a curved configuration rather than linear arrangement of the 

chain of cofactors. 

6. The electron transfer between the penultimate and the final acceptor involves a 

significant driving force.  

7. Processes involved in the quartet not coupled to any bond-formation or breaking. 

Together, these traits suggest that, in addition to the apparent similarity in terms of 

cofactor organization, the catalytic quartets of natural photosystems share highly 

conserved fundamental characteristics that would imply the presence of a novel set of 

engineered principles not considered in Chapter II, that govern the design of the natural 

photosystems. In addition, the lack of naturally occurring triads and the abundance of the 

tetrads in natural photosystems led us to conclude that the engineering blueprints we 

developed throughout the previous chapter are in fact incomplete, inadequate, or simply 

incorrect, due to the fact they are derived and formulated solely from the fundamental 

physics of electron transfer while all naturally occurring photosystems function as 

components of living organisms. We therefore hypothesize that the biological context of 

natural photosystems exert significant influence on the engineering of photosystems, 

imposing additional constraints, thereby establishing novel engineering guidelines that 

revise or replace those formulated previously.  
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In order to reveal these additional constraints and uncover the novel engineering 

guidelines, we aim to study the natural photosystems using the same methodologies and 

approach we used for the abstract photohchemical multi-ads in the previous chapter. That 

is, we construct accurate but computationally efficient models of the catalytic quartets of 

the natural photosystems in order to gain systematic understanding of the transfer kinetics 

of the photosystems and their performances, measured in engineering efficiencies, 

enabling us to analyze trends and patterns and finally identify and establish the 

engineering principles in addition to the physics of electron transfer reactions. In the past, 

efforts by the Dutton group have successfully reproduced various important components 

of the kinetics of complete natural reaction centers with all of their cofactors of primary, 

secondary, and even tertiary functions by applying the Moser-Dutton ruler using the 

distances and driving forces known from experiments and fitting the remaining less 

straightforward parameters using the descriptive and predictive stages of our analytical 

paradigm introduced in Chapter II(9-11). However, in the above cited studies, our models 

have only accurately matched the rates that had been experimentally determined at the 

time of their publication. Many rates, even the existence of certain ET reactions and their 

corresponding intermediate species, remained elusive and unresolved. These happened to 

be electron transfer reactions during the initial events of the catalytic quartets of the 

biological photosystems. Their transient nature, lasting for as long as 3ps, coupled with 

the fact that the rates of their formation being slower than the rates of their disappearance, 

made them difficult to detect. Because of the lack of available experimental data at the 

time of the previous studies, the initial rates of electron transfer have therefore not 

received the attention they deserve, as will be seen in sections below. Recent 

experimental advances(12-15) have successfully elucidated most of these early events of 

electron transfer in biological photosystems and presented us with additional impetus to 

provide a complete model of the core catalytic quartets of natural photosystems, in 

addition to uncovering the universal engineering principles that led to this common 

design motif.  
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Here in this chapter we begin with constructing complete and accurate kinetic models of 

the core catalytic quartets of all of the listed biological RCs, using the most up-to-date 

distances and driving forces, referencing them to the consensus electron transfer rates 

determined by experiments(12-15) and applying our Moser-Dutton ruler based 

methodology from the previous chapter along with various necessary modifications and 

improvements as explained below. Our model reveals that the catalytic quartets of natural 

photosystems employed a surprising set of novel engineering approaches that contradict 

and violate the engineering guidelines for optimal multi-ads. These engineering 

approaches include:  

1: the ultra-fast, ~200-ps lifetime of the singlet excited state of the pigment cofactor,  

2: the uniform high reorganization energy of 0.7eV that characterizes the protein 

environment of the natural photosystems,  

3: the close spacing between the first three cofactors in the quartet that limits inter-

cofactor distances to below 5.5A,  

4: the highly pronounced curved arrangement of the cofactors that significantly decreases 

the distances between the acceptors and the pigment while still maintaining the tetrad 

design, and,  

5: the sub-optimal choices for the redox potentials of the cofactors when no external 

potential is present.  

These engineering approaches produced tetrads that violate and contradict the 

engineering guidelines from Chapter II, characterized by the ultra-fast formation of a 

highly stable final CS state with near-unity yield whose engineering efficiency further 

increases under physiological membrane potential and who undergoes direct charge-

recombination to the ground state of the pigment without revisiting the various highly 

unstable high energy, harmful intermediate CS states that are made highly transient and 

short-lived as well as difficult to reform via thermal repopulation. Careful studies of these 

novel engineering approaches and devices allow us to identify a single, essential, and 



70 
 

previously not considered engineering constraint based in the biological context of 

natural photosystems: protection against damages to the structural and functional 

elements of the photosystem by high energy, unstable side species of the electron transfer 

active cofactors. We discover that this single engineering principle is responsible for all 

of the novel engineering devices employed by natural photosystems that are not 

prescribed by the engineering blueprints formulated in Chapter II. 

Finally, we demonstrate that we can apply the same type of prescriptive optimization 

algorithms used in Chapter II to formulate a new set of engineering guidelines with our 

revised engineering constraints based on the combination of biological engineering 

constraints and fundamental theories of electron transfer. Such application generates 

engineering prescriptions for a new set of optimal charge-separating devices that are 

characteristically highly similar to the catalytic quartets observed in nature. That is, the 

new optimal photosystems returned by our revised algorithm share many of the common 

traits listed above, thereby proving that our reformulated design guidelines have largely 

captured the underlying engineering principles that resulted in the universal catalytic 

quartet among natural systems. However, in spite of such organizational similarities, 

there are significant potentials for improvements in the engineering efficiency of natural 

photosystems that can be unlocked by designs that parameters provided by the 

prescriptive studies, even when the protein environments used for the design become 

even less hydrophobic than those of the natural photosystems. Furthermore, we show that 

if we only partially revise our engineering blueprints from the previous chapter to 

accommodate only some of the biological constraints while leaving others to be 

accounted for by practical experimental details, we have the capability to improve the 

performance of photosystems to an unprecedented level of high efficiency.  In the end, I 

provide a look ahead to the second half of this thesis, showing that maquettes, a 

minimalist, man-made protein scaffold, would perfectly satisfy the need for a platform on 

which the engineering blueprints and guidelines we have formulated in both Chapter II 

and the current chapter can be tested and realized with the highest level of control and 
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efficiency. I show that the application of maquette would significantly facilitate the 

optimal engineering of a catalytic quartet in water-soluble protein environment.  

3.2 Results and Discussion: 

3.2.1 Rhodobacter Sphaeroides reaction center as the reference model system par 

excellence for illustrating the catalytic quartet model 

It is very difficult to construct and test a highly accurate model for the kinetics of electron 

transfer within the catalytic quartet without first having a well-studied and fully 

understood natural quartet as reference. Among all the naturally occurring photosystems, 

those of the Archae family, specifically of the species Viridis and Sphaeroides have been 

best studied and understood. High resolution crystal structures of the bacterial reaction 

centers have become available since late 1980s(6, 7, 16, 17). Soon after the structure of 

 

Figure 3.4: Structural details of the electron transfer active cofactors of Sphaeroides reaction 
center and the distances separating them. Left: cartoon representation of the path of the electron from 
P(BChl2) to A3(QA), outlining the catalytic quartet. Right: detailed distances between pairs of electron 

transfer active cofactors and the protein environment surrounding these cofactors. Reproduced with 
permission from Chris Page’s thesis. 
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the reaction center of Sphaeroides became available, researches have independently 

recognized the special importance of a subset of the cofactors within the Sphaeroides 

reaction center that are integral to both its structure and function: the Bacterial 

chlorophyll dimer(abbreviated from now on as P), the bacterial chlorophyll 

monomer(Ba), the bacterial pheophytin(H), and the non-diffusive quinone(QA). 

Numerous mutants have been generated to study almost all aspects of these reaction 

centers, mostly focusing on the electron transfer kinetics and how it is impacted by 

changes in both the protein surrounding and the properties of the cofactors involved.  

Moreover, the electron transfer kinetics of the Sphaeroides reaction center has been 

described almost completely over the years. Well recorded rates for each step exist in 

multiple sources of literature. The once highly controversial details of the initial steps(18-

22)of the electron transfer mechanisms have also recently seen significant advances that 

help bring about a rough consensus, thereby making Sphaeroides RC one of the rare 

natural photosystems whose electron transfer kinetics of the core cofactors are known to 

very minute details at each individual step. (12-15) Additionally, extensive studies that 

modify the components of the bacterial reaction center have also been performed, 

including mutations that result in measurable changes in the midpoint potentials of the 

ground state of the pigment, the Pheophytin, and the Qa cofactors, (13, 23, 24)further 

validating the existing experimental rates that together produce the complete kinetics of 

electron transfer and charge separation.    

Given the ample experimental results as references, the conserved catalytic quartet, the 

cofactors integral and central to the reaction center of R.Sphaeroides, serves as the most 

appropriate model to understand the engineering principles governing the recurring 

natural catalytic quartet. Therefore, we begin our analysis of the engineering principles of 

the catalytic quartet by modeling the electron transfer kinetics of the conserved catalytic 

quartet of the Sphaeroides bacterial photosystem as a PAAA tetrad, with the same 

programing details as described in Chapter II. Unlike the past studies of the Dutton group 

on the kinetic details of natural photosystems(9, 10)which focused on exploring 

parameters that would allow the models to reproduce the experimentally observed 
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electron transfer rates, in the present study the main goal is to uncover the underlying 

interaction of already understood engineering principles of photosystems and novel 

principles not included in the existing guidelines. Consequently, our model treats the 

catalytic quartet of Sphaeroides reaction center as an instance of the PAAA tetrad with 

preset parameters obtained from the crystal structure and electrochemical studies(7, 

25)on the energetic details of the reaction center. We model the bacterial chlorophyll 

dimer as the pigment, monomer BA as A1, H as A2, and QA as A3. This representation of 

the catalytic quartet of the Sphaeroides reaction center allows us to apply all three stages 

of our analytical paradigm, namely, descriptive, predictive, and prescriptive as discussed 
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in Chapter II to the Sphaeroides RC. The application of the first two stages of the analysis 

to the Sphaeroides tetrad, when compared to the results from Chapter II, allow us to 

discover and examine the various novel engineering principles that are not provided by 

the fundamental physics of electron transfer. With the prescriptive stage, we gain the 

advantage of 

looking at the 

performance of and 

deviation from 

optimality of the 

natural 

photosystems under 

various levels of 

constraints imposed 

upon by newly 

discovered 

engineering 

principles, 

beginning with the 

minimal set of 

constraints that 

represent the 

fundamental 

physics of electron 

transfers, 

equivalent to what 

we used to obtain 

the engineering 

principles in 

Chapter II. For 

each new constraint 

 

Figure 3.5 Predicted electron transfer kinetics of Sphaeroides catalytic 
quartet using uniform reorganization energies. Top: Energy levels, rates of 

ETs,  distances, and kinetic profile generated using a uniform lambda of 0.3eV. 
Bottom: same as top, generated using a uniform lambda of 0.7eV.  



75 
 

discovered using the previous two stages of the analytical paradigm, we will update our 

algorithm to reflect the effect of the constraint on the performance of the model quartet. 

That is, we incorporate the new constraints into our model by fundamentally changing the 

way we compute the engineering efficiency from the input parameters. The details of 

how each additional constraint affects the implementation of the algorithm will be 

explained individually in the following sections. This allows us to consider the catalytic 

quartet of the Sphaeroides reaction center not as a special entity but rather as one of the 

many possible configurations of a general charge-separating tetrad. Therefore, we can 

utilize the structural and functional information of the reaction center as an initial 

condition/starting point for optimization studies under existing and novel constraints. By 

examining the extent of optimality and deviation from optimality of the Sphaeroides RC 

under various levels of constraints, especially from the trends in the engineering 

parameters, we can evaluate to what extent does our revised collection of engineering 

principles approach the real engineering blueprints nature followed to produce the 

catalytic quartet we have now; more importantly, we can examine the effects of 

artificially removing individual or combination of these constraints, exposing the 

catalytic quartet to potential risk and vulnerabilities and seeing what kind of performance 

gain results from such modification.  

3.2.2 Resolving the apparent paradox within the initial electron transfer rates in 

R.Sphaeroides RC 

In the process of establishing an accurate model for the Sphaeroides quartet, we 

discovered the first major biology-driven revision to our established engineering 

principles from Chapter II. To establish our model, we obtained the necessary parameters 

of the bacterial reaction centers from the canonical crystal structures and the seminal 

studies. (7, 25) The distances and the redox potentials/driving forces of the catalytic 

quartet of Sphaeroides reaction center are shown in Figure 3.4. Given these parameters, 

we generated the expected electron transfer kinetics of the quartet at various 

reorganization energies uniform across the entire reaction center, presented in the forms 

of trikes as those shown in Chapter II. The results are summarized in Figure 3.5. A 
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careful comparison to the experimentally determined rates revealed that, unlike the 

analysis we performed in Chapter II, no single uniform reorganization energy can fully 

and completely correctly account for the experimental rates, and neither can a special, 

low reorganization energy of 0.3eV for the initial step. The discrepancy mainly involves 

the initial steps of the charge separation, as shown in greater detail in Figure 3.6 and 

summarized in Table 3.1, with step-by-step comparison to the experimentally determined 

electron transfer rates. Here it shows the expected electron transfer rates of the initial 

charge separation between the pigment P780* and the primary acceptor, Chla, and the 

charge recombination from the Chla- to the ground state of P780+ at both low and high 

reorganization energies, 0.3eV and 0.7eV respectively. We noticed that while the 

experimentally determined value of the forward electron transfer rate from the singlet 

excited state of the pigment to the ChlA can be described by a Marcus curve with a 

reorganization energy of 0.3eV, the corresponding charge recombination can instead only 

be described by the Marcus curve with a reorganization energy of 0.7eV. This apparent 

contradiction indicates that neither the simple uniform reorganization energy model, nor 

the model where the reorganization energy for the initial step is held extremely low at 

0.3eV, long deemed to be the correct model for the ET kinetics of natural RCs(26-28)is 

successful in delivering a satisfying explanation of the experimental results. Indeed, a low 

initial reorganization energy model cannot account for the rapid direct recombination 

from the Chla to the ground state of P780+. Similarly, a low reorganization energy cannot 

account for the 15ns recombination rate from the Pheophytin to the P780 ground state. At 

the same time, as shown in Figure 3.6, a uniform lambda of 0.7eV fails to accurately 

reproduce the observed rates of Sphaeroides reaction center. Consequently, a different 

and previously encountered model is needed to accurately describe all the rates in the 

reaction center.  

Table 3.1: Experimental and modeled rates of initial electron transfer of Sphaeroides RC. 

ET step Experimental 

rates 

Theoretical  rates 

@ 0.3eV 

Theoretical 

rates @ 

0.7eV 

Theoretical  

0.3eV/0.7eV 

relaxable 

lambda mixture 
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P* -> BA 3.5ps 3.7ps 69ps 3.7ps 

BA
-
 -> P

+
(direct 

recombination) 

200-700ps 110ms 100ps 100ps 

BA
-
 -> P

+
(uphill 

thermal 

recombination) 

NA 8ns 8ns 66ns 

BA
-
 -> HA 0.9ps 1.2ps 25ps 1.2ps 

HA
-
 -> 

P
+
(direct 

recombination) 

20ns 1.3ms 12ns 12ns 

HA
-
 -> P

+
(via 

uphill thermal 

repopulation 

of excited B
-
) 

Possibly 4ns 

(from the 

second of the 

multi-

exponential fits 

made by 

Gibasiewicz )  

80ns(assuming a 

further 8ns up-and-

over recombination 

from BA
-
) 

5ns 130ns 

HA
-
 -> QA  200ps 4ns 400ps 4ns 

QA
-
 -> P

+
 

(direct 

recombination) 

100ms 1s 50ms 50ms 

QA
-
 -> P

+
 (via 

uphill-thermal 

repopulation 

of HA
-
 

 120s 30s 13s 

 

3.2.3: A combination of unrelaxed and fully relaxed protein dielectrics as the only 

appropriate model for experimentally observed ET kinetics. 

As seen in the previous section, both models that use uniform reorganization energy and 

a special low reorganization energy for the initial step fail to explain the all the 

experimentally measured electron transfer kinetics in these photosystems, especially the 

ultra-fast initial steps. Here we propose a time-dependent model for the dielectric protein 

environment, manifested in our model as the reorganization energy, where an uniform 

high reorganization energy of 0.7eV fully describes the completely relaxed dielectric 
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protein environment at timescales slower/longer than 10ps, while at timescales 

faster/shorter than 10ps, a low reorganization energy of 0.3eV describes yet unrelaxed 

dielectric protein environment. The central assumption of this model uses a well-proven 

notion about protein dielectrics when ultra-fast changes in charge distribution occurs 

within the protein environment, typical of fast electron transfers as seen in the initial 

steps of bacterial reaction centers and type 2 reaction centers such as PSII.  

As the dominant tunneling medium for electron transfer reaction in protein, as introduced 

in Chapter I of this thesis, the protein environment surrounding the acceptors and donors 

of the electron transfer reaction exert significant influences upon the ET rates via its 

dielectric properties. In most circumstances, the dielectrics of protein environment can be 

treated statically and regarded almost as isotropically uniform, as in the algorithm we 

used throughout Chapter II. However, in electron transfer reactions of natural reaction 

centers such as those described above, electrostatic charges on the amino acid residues 

that make up the protein dielectric environment experience redistribution as a result of 

protein’s dynamic response to the transfer of charges that occur, however, only on the 

order of >10ps. When electron transfer reactions taking place on timescales faster than 

10ps, however, the dielectric relaxation of the surrounding protein environment has not 

yet taken place as the protein dynamics has an upper bound on its timescale as shown by 

Woodbury(29, 30). Consequently, an electron transfer reaction between the same pair of 

acceptor and donors, when allowed to proceed at timescales faster than 10ps, will 

experience an effective reorganization energy, on the order of 0.3eV, that is significantly 

lower than the uniform reorganization energy that represents the overall protein 

environment at post-relaxation, equilibrium timescales that is appropriate for the type of 

protein under consideration. This transient small effective reorganization has been 

recognized by the field of photosynthetic research since the 1980s but has not received its 

deserved attention as one of the central engineering devices adopted by natural 

photosystems.(31-34) This unrelaxed low reorganization at <10ps timescales, 

summarized in Figure 3.7, can now fully account for the apparent paradox summarized in 

Figure 3.5 and the left 3 panels of 3.6. Indeed, using this model and the native distances 



79 
 

and driving force parameters, we were able to accurately predict the kinetics of the 

Rb.Sphaeroides RC, as shown in the far right panel of Figure 3.6, where all rates agree to 

very small margin of errors with the experimentally determined rates.  

Unsurprisingly, the reaction center of Sphaeroides is not the only natural photosystems 

that demonstrate the paradoxical initial electron transfer rates that require the unlreaxed 

protein dielectrics for a satisfying model. The same combination of fast forward ET and 

fast direct recombination is also observed in photosystem II and I. Figure 3.8 

demonstrates the same comparison between recently reported rates of early electron 

transfer events and the effectiveness of the mixture model in accounting for such rates. 

However, it is important to note that for PS II and PS I, the lack of a strong consensus in 

the rates of electron transfers and even the actual mechanism of electron transfer, make 

these two photosystems less than ideal candidates for modeling and also removes them 

from the focus of our study in this chapter. Nevertheless, because of the accuracy with 

 

Figure 3.6: Rates of initial electron transfers in R.Sphaeroides at various uniform and mixed 
reorganization energies compared to experimentally measured rates. Left most: experimentally 
determined ET rates of R.Sphaeroides. Mid left: model-determined ET rates using an uniform reorganization 
energy of 0.3eV. Mid Right: model-determined ET rates using a uniform reorganization energy of 0.7eV. Far 
right: model-determined ET rates using the mixed 0.3eV/0.7eV unrelaxed/relaxed dielectric environment model. 
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which our model has predicted the few rates that were successfully measured by 

experiments, I believe that our model-predicted ET rates for the remaining steps of PS I 

and PS II can serve as references and benchmarks for future experiments aimed to 

determine these yet unknown rates. Our discussion of them within this thesis will only go 

as far as predicting the rates of electron transfers using the unrelaxed/relaxed model.  

 

The simultaneous occurrence of ultra-fast(<5ps) forward ET and ultra-fast(<1ns) initial 

direct recombination rates can only result from an electron transfer environment that is 

characterized by a uniformly high reorganization energy at equilibrium(timescales >10ps) 

and a low reorganization energy at ultra-fast timescales. Moreover, the presence of this 

combination of unrelaxed low dielectrics and high equilibrium reorganization energy in 

all of the major natural photosystems suggest that rather than an evolutionary exception 

 

Figure 3.7: Marcus ET kinetics of initial electron transfer in natural photosystems described 
by both unrelaxed and relaxed dielectric protein environments at different timescales.  The blue 

trace describes the log ET of the forward and reverse electron transfer between the P870 and the initial 
acceptor Ba in R.Sphaeroides if the reorganization is as low as 0.3eV. The green trace represents the log 
ET rate of the same electron transfers if the reorganization energy is 0.7eV. The filled circle and square on 
the two curves represent the experimentally observed rates.  
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and coincidence, such an environment of overall high dielectrics typical of interior or 

polar protein, is in fact a widely adopted, universal novel engineering device not 

predicted by the engineering principles we have formulated in Chapter II. In the next 

section, I will explore and understand the effect of this special engineering device on the 

performance of the natural photosystems and discover the biological design constraints 

natural engineering overcame with this device. 

3.2.4 Uniformly high reorganization energy is a central engineering feature 

universal to natural photosystems. 

The results of the previous section led us to conclude that the conserved catalytic quartet 

of natural photosystems operate in an environment that is characterized by uniformly 

high reorganization energy of  at least 0.7eV, contrary to both long-held view of the field 

and the engineering principles we developed in Chapter II. In the traditionally held model 

where an isolated and special low reorganization energy is assigned to the initial step of 

electron transfer in natural photosystems,(26, 27)it is believed that such low 

reorganization is necessary to slow down the recombination from the various acceptors to 

 

Figure 3.8: PSII electron transfer kinetics demonstrate unrelaxed low reorganization energy 
behavior. Left: experimentally determined rates of electron transfers in PS II. Question marks indicate 

rates that have not been determined or reported. The ranges of the known rates reflect the differing 
rates reported by independent studies(citations). Mid: ET kinetics predicted by the model specified in 
the text with a uniform reorganization of 0.3eV without the unrelaxed low reorganization at timescale 
<10ps. Rates that are slower than 10

6
s

-1
 are considered very slow and not specifically written out. Right: 

ET kinetics predicted by the model using a 0.3eV/0.9eV unrelaxed/relaxed mixture constraint added to 
the kinetics algorithm as specified in the text. 

  



82 
 

the ground state of the pigment and thereby stabilize all of the charge separated states, 

including both the intermediate and the final CS states. Similarly, the engineering 

blueprints we formulated in Chapter II indicates that the optimal method to stabilize the 

charge-separated state for n-ads is the Boltzmann stabilization, namely slowing down the 

direct recombination via a combination of inverted-region effect and increasing the 

distance of the recombination reaction, forcing the CS state to recombine via the uphill-

repopulation of either the intermediate CS state or the excited state. Consequently, when 

only the physics of electron transfer are concerned, reorganization energy as low as 

possible would represent the optimal engineering option, as lower reorganization energies 

tend to significantly decrease the rate of the direct charge-recombination and force the 

photosystem to choose the decay route that incurs the least energetic cost.  On the 

contrary, the conclusion we arrived at by the end of the previous section suggests that 

natural engineering of the biological photosystems did not favor or specifically engineer 

towards low reorganization energy in the form of low protein dielectrics, and the 

presence of transient low reorganization energy of 0.3eV provided by the unrelaxed 

protein dielectrics during the ultrafast forward electron transfer reactions serves a purpose 

that’s completely opposite of the said expectation, whose effect we will leave until 

section 3.2.6 to further elaborate upon. Instead of exploiting the Marcus inverted region 

to slow down the direct charge recombinations and stabilizing the intermediate CS states 

prior to the formation of the final charge-separated state, natural engineering of the 

photosystems employed novel engineering devices not prescribed by our engineering 

principles from Chapter II that strongly favor and promote fast but non-premature direct 

recombination, competing favorably against uphill-thermal repopulation of the preceding 

CS or the excited states followed up recombination. As seen in Figure 3.5 and 3.6, 

reorganization energy as high as 0.7eV uniform across the entire protein accelerates the 

charge-recombination between the initial and secondary charge-separated state to the 

ground state of the pigment to be on the order of 100ps and 10ns respectively, rather than 

the millisecond lifetime that would have been with a special low initial reorganization 

energy. This result indicates that the engineering of the natural photosystems did not 

follow the optimal engineering principles from Chapter II but rather took the completely 
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opposite direction. It sought to destabilize rather than stabilize the intermediate charge-

separated state, minimizing their lifetimes rather than maximizing them as normally 

expected.  
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In fact, here we show that the natural photosystems have engineered their placements and 

choices of cofactors so that they can deliver optimal charge-separation under uniformly 

high reorganization energy. Rather than modifying thousands of residues to obtain a more 

favorable dielectric environment, natural reaction center instead chose an optimal 

configuration of four cofactors in terms of their distances and redox potentials that could 

separate charge with near uniform quantum yield at high reorganization energy. It is 

important to note that here rather than using engineering efficiency as the metric we 

choose to use the quantum yield of the photosystem, since we are examining the 

performance of a single instance of a tetrad with fixed distances and energies under 

various conditions. The blue traces of the right panel in Figure 3.9 illustrates the quantum 

yield and engineering efficiency of Sphaeroides RC as a function of increasing 
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equilibrium lambda with an unrelaxed lambda staying at 0.3eV. In addition to the native 

Sphaeroides reaction center shown in blue, we also show the semi-optimized case where 

the Ems of the Sphaeroides were allowed to vary with the distances fixed, or where both 

the Ems and distances are allowed to vary. These two traces will be discussed in greater 

detail later in this chapter. Here we observe that all three Sphaeroides RCs demonstrate 

different extents of sensitivity towards increasing reorganization energy, relative to the 

degree of freedoms they were allowed to have in the optimization processes. In spite of 

the differences in extents of sensitivity, we notice that all three cases show a drastic 

decrease in efficiency when the overall reorganization energy moves beyond 0.7eV, the 

value associated with average interior of polar proteins. Similarly, the performance, 

measured in quantum yield, of PS II is also examined across increasing reorganization 
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energy and shown in Figure 3.10. It demonstrates a trend that’s highly similar to that seen 

in Figure 3.9, with a somewhat higher critical point at which the efficiency experiences a 

sudden drop. Together these two results strongly reinforce our claim that the cofactors of 

the functional core of natural photosystems are engineered to function effectively in an 

environment of high reorganization energy, rather than the opposite, which has been a 

long held belief in the field of photosynthetic research.  

 

Figure 3.9: Sphaeroides reaction center specifically engineered for high performance at 
uniformly high reorganization energies. Left: Structural and energetic details of Sphaeroides reaction 

center according to the quartet model. Right: Quantum yield and engineering efficiencies at increasing 
reorganization energies of three types of tetrads. Green: fully optimal tetrads under the constraint of 
curved geometry and the unrelaxed lambda of 0.3eV. Red: semi-optimized tetrad where the distances are 
held constant but driving forces are allowed to vary. 
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3.2.5 Natural photochemical quartets rely on incomplete dielectric relaxation, ultra-

fast excited state lifetime, and closely placed initial cofactors to minimize the 

lifetimes of the intermediate CS states. 

As we have seen from section 3.2.2, although natural photosystems are engineered in an 

environment whose reorganization energy at equilibrium(>10ps) is uniformly high at 

0.7eV, at timescales <10ps, however, a much lower reorganization energy is available 

and is indeed used by the engineering of the natural photosystems to ensure ultra-fast 

formation of the final charge-separated state without noticeable loss in quantum yield. 

 

Figure 3.10: Photosystem I/II adopted generic water-soluble protein environment characterized 
by high uniform reorganization energy. Left: Structural and energetic details of Sphaeroides 

reaction center according to the quartet model. Right: Quantum yield and engineering efficiencies at 
increasing reorganization energies of three types of tetrads. Green: fully optimal tetrads under the 
constraint of curved geometry and the unrelaxed lambda of 0.3eV. Red: semi-optimized tetrad where 
the distances are held constant but driving forces are allowed to vary  
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According to the 

engineering 

blueprints for 

optimal tetrads 

formulated in 

Chapter II, even 

under 

reorganization 

energies as high 

as 0.7eV/0.9eV 

and above, 

tetrads are 

capable of 

sustaining highly 

efficient, long-

lived charge-

separation. 

However, in order to achieve that, the engineering guidelines specify that the initial 

electron transfer from the excited state of the pigment to the primary acceptor must be on 

the order of hundreds of picoseconds and no faster than that. However, the experimental 

evidence reveals that natural photosystems have adopted pigments whose singlet excited 

states have lifetimes on the order of hundreds of picoseconds,(13)rather than the 6ns 

singlet excited state lifetime we have used throughout our formulation of optimal 

engineering blueprints in the previous chapter. The ultra-fast lifetime of the excited state 

means that the rate of the initial forward electron transfer must be significantly faster than 

hundreds of picosecond to avoid premature charge-recombination, if high quantum yield 

of the charge-separated state is to be achieved. The significantly faster lifetime makes it 

necessary for the natural catalytic quartet to take advantage of the transient low 

reorganization energy to promote and facilitate the fast forward transfers of the excited 

electron to the next acceptor along the acceptor chain to efficiently and quickly generate 

 

Figure 3.11: ET distance-rate model with unrelaxed low reorganization 
energy considered.  The distance dependence of the rate of an electron 

transfer reaction with driving forces of 80mV(blue trace) and -80mV(red trace) at 
a general reorganization energy of 0.7eV at timescales >10ps and an unrelaxed 
reorganization energy of 0.3eV at timescales < or = 10ps.   
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the final charge separated state, which is then stabilized for ~100ms in order to carry out 

its desired function of sustaining catalysis. 

To effectively take advantage of this low reorganization energy at fast timescales, natural 

photosystems exploited yet another engineering device that is not prescribed by the 

blueprints from Chapter II: minimizing the distances between the cofactors involved in 

the initial steps of the charge-separation to near Van der Waal contact to maximize the 

effective ET rate. Figure 3.10 demonstrates that a bi-phasic relationship between inter-

cofactor distances and the resulting ET rates exists when the unrelaxed low 

reorganization is included in the model and when the driving force is favorable. A critical 

distance separates the fast from the slow phase, at which a sharp decrease in electron 

transfer rate occurs, representing the shift from the faster rate given by the unrelaxed 

protein dynamic to the slower rate under fully relaxed, equilibrium dynamic. It is 

important to note that the critical distance at which the two phases separate, shown in 

Figure 3.10 to be around 5.5A, will depend on the driving force of the electron transfer 

reaction. For the natural photosystems, whose driving forces for the initial steps are, on 

average, about 80mV downhill, the critical distance of 5.5A is extremely relevant and 

crucial. In fact, all the distances observed up-to-date in the first two steps of natural 

photosystems are strictly bounded by 5.5A. Consequently, it becomes apparent that the 

engineering of natural reaction centers preferred smaller inter-cofactor distances to 

encourage ultra-fast forward electron transfer, so that the intermediate charge-separated 

state, specifically in the case of the Sphaeroides RC the Ba
-
 and the H

-
, are as short lived 

as possible.  
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Figure 3.12: Effects of reorganization energy 
on the engineering of tetrads from the 
perspective of varying lifetimes of charge-
separation. From top to bottom: each panel 

displays the optimal engineering efficiency of 
dyads, triads, and tetrads at CS lifetimes ranging 
from ns to 100s, with an uniform reorganization 
energy at the level shown at the top of the panel.  

More importantly, also shown in Figure 3.11 is the behavior of the rate of the 

reverse(uphill) electron transfer between 

the same pair of cofactors when the 

unrelaxed low reorganization energy is 

considered. Unlike the downhill reaction 

rate curve, the one for the reverse 

reaction does not involve a phase 

transition and therefore does not have a 

fast phase corresponding to that of the 

downhill reaction. Moreover, we notice 

that for the distances chosen by natural 

engineering, namely <5.5A, the 

difference between the downhill and 

uphill rates are significantly larger than 

that when the distances of the electron 

transfer is greater than 5.5A. In fact, the 

critical distance mentioned above not 

only creates a fast and a slow phase for 

the forward electron transfers, it also 

produces two phases for the uphill 

thermal repopulation based 

recombination, recalling Figure 2.4 from 

the previous chapter detailing how the 

recombination via uphill-repopulation is 

computed. Indeed, the fast phase not 

only increases the forward electron 

transfer rate, but also practically 

eliminates any potential charge-

recombination that goes through the 

uphill-thermal-repopulation route. 
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Together we can conclude that the close spacing between the initial cofactors, as one of 

the central engineering devices employed by natural photosystems, serves to ensure that 

the single dominant event in the early steps of natural photosystems is the ultra-fast and 

essentially irreversible formation of the charge-separated state while minimizing the 

possibility of any intermediate states lingering. 

The transient low reorganization energy for the forward electron transfer, coupled with 

the high uniform reorganization energy given by the protein environment, adds another 

engineering mechanism to destabilize any intermediate charge-separated state. In addition 

to the acceleration of the direct recombination to the ground state of the pigment, natural 

engineering also organized the cofactors in such configurations as to both increase the 

electron-transfer rates from the excited state along the entire chain of acceptors to the 

final charge-separated state, and to eliminate any practical possibility of repopulation of 

the intermediate CS states. Together these engineering devices constitute the greatest 

subversion of the engineering blueprints formulated in Chapter II as well as long-held 

understanding of engineering principles of natural photosystems. Natural photosystems 

are engineered to avoid any possible existence of the intermediate charge-separated states 

or the excited state of the pigment beyond the timescale of 200ps, at which the final 

charge-separated is formed in an almost irreversible manner and kept alive for 100ms. 

3.2.6: tetrads have significant engineering advantage over triads for effective long-

lived charge-separation at high reorganization energies.  

The presence of uniform high reorganization throughout natural photosystems prompts us 

to examine the effect of various reorganization energies on the performance of 

photosystems, which, in our formulation of the fundamental design blueprints of 

photosystems in Chapter II, did not receive much attention, since it largely represents the 

effects of the environment of the platform upon which the photosystem is engineered and 

therefore better suited for the discussions. However, after having identified the high 

reorganization energy as  one of the fundamental engineering devices exploited by 

natural(biological) photosystems to produce highly efficient charge-separated state under 
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the constraints that were not considered in the previous chapter, this inquisition is now 

necessary. Figure 3.12, Figure 3.13, and Figure 3.14 together demonstrate the effect of 

increasing reorganization energy on the optimal engineering efficiencies of linear dyads, 

triads, and tetrads at the range of lifetimes of interest as well as at specifically 100ms in 

spectacular fashion. It is important to note that these are the optimal engineering 

efficiencies generated using the algorithm shown in Chapter II, where none of the 

engineering approaches of natural photosystems is modeled. Nevertheless, even in an 

engineering landscape where far less constraints are considered, the tetrads demonstrate 

significant advantage over both dyads and triads in maintaining high performance at 

reorganization energy equal to or greater than 0.7eV. We have demonstrated in section 

2.8 that photosystems with higher number of cofactors confer significantly greater 

engineering tolerance and therefore can perform much better in more constrained 

engineering landscape. These results therefore suggest that the absence of triads and the 

universal presence of tetrads in the core functional units of natural photosystems are the 

manifestation of another novel engineering device employed by natural photosystems, 

this time as a secondary response to the adoption of the high reorganization energy 

environment. While it can be argued that at the experimentally determined uniform 

reorganization energy of 0.7eV of natural photosystems, the difference in the optimal 

engineering efficiency between triads and tetrads do not differ significantly, the 

difference becomes significantly greater when the novel engineering approaches 

discovered in this chapter are included in the model, as will be seen in section 3.2.10. 
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3.2.7 Natural photosystems adopt 

curved geometry to promote direct 

charge recombination at long 

lifetimes 

While the previously characterized 

engineering devices all aimed to 

minimize the lifetimes of the 

intermediate charge-separated state, 

one of the most important and 

impactful engineering approaches by 

natural photosystems focuses mainly 

on the final charge-separated state, 

redirecting its route of its 

recombination from the Boltzmann-

stabilized uphill-repopulation to 

direct electron transfer reaction to the 

ground state of the pigment. 

According to the engineering 

principles established in Chapter II, 

multi-ads allow stable charge-

separations that last hundreds of 

milliseconds by asymmetrically 

slowing down direct charge 

recombination via a chain of acceptors placed linearly. This allows the diameter of the 

intermediate cofactors to maximally increase the effective distance between the final 

charge-separated state and the pigment, thereby maximizing the lifetime of the CS state. 

While the engineering of natural photosystems does utilize the chain of acceptors, 

surprisingly it did not arrange the cofactors linearly but rather in a curved geometry. As 

already discussed above, the high reorganization energy protein environment of the 

 

Figure 3.13: Effects of increasing reorganization 
energy on dyads, triads, and tetrads. From top to 

bottom: optimal engineering efficiency of dyads, triads, 
and tetrads plotted with increasing uniform 
reorganization energy at lifetimes from ns to 100s.  
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natural photosystems promotes fast direct charge recombinations from the intermediate 

charge-separated states during the electron transfer events leading up to the final charge 

separation. The high direct charge recombination rates ensure that these high energy 

intermediate CS states will not be long-lived when the path to the final charge-separated 

is somehow blocked. This protects the photosystem from undesirable side-reactions by 

these high energy intermediate states that could cause severe damage to the photosystem. 

However, the final charge separated state, although significantly lower in energy due to 

the significant drop in the energy levels described above as part of the essential 

engineering, must also be engineered so that direct recombination to the ground state of 

the pigment is preferred to the uphill repopulation of one of the intermediate CS states. 

Because the lifetime of the final CS state is on millisecond timescale at minimum and 

many times significantly longer, high reorganization energy alone is inadequate at 

promoting direct recombination, if the photosystem is engineered in a linear geometry as 

we have discovered in Chapter II. Linear arrangement of the cofactors in a photochemical 

triad/tetrad 

inevitably leads 

to uphill thermal 

repopulation of 

the proceeding 

charge separated 

state. In order to 

ensure the final 

CS state 

recombines 

directly to the 

ground state, 

natural 

photosystems 

adopted the 

fourth major 

 

Figure 3.14: Effects on the engineering efficiencies of abstract 
multi-ads viewed from the reorganization energy perspective, 
with fixed selected lifetime of 100ms. Dark blue traces represent the 
quantum yield of the respective dyad(dotted), triad(dashed), and 
tetrad(solid) photosystems. Light blue represent the energy preserved in 
the final charge separated state. 
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engineering device, bending the arrangement of the cofactors into a curved geometry in 

order to decrease the distance between the final acceptor and the pigment. 

This represents another major deviation from our existing engineering blueprints that are 

based solely in the physics of electron transfer theories: maximizing the distance between 

the pigment and the final acceptor to allow for maximal distance-based CS stabilization 

and take full advantage of the Boltzmann phase of the engineering efficiency decay. 

Instead, the charge-separated state is now engineered to have only adequate distance 

away from the pigment to sustain charge-separation long enough before it directly 

recombines with the ground state of the pigment. Figure 3.15 showcases the dramatic 

effect of promoting direct recombination via the curving effect. The curved engineering 

of the cofactors by an effective 50 degree brought the final acceptor from 35Å away in 

the linear arrangement to 22.4 Å away in the curved arrangement, resulting in 8 orders of 

magnitude of acceleration of ET rates and allowing the final charge-separated state to 

recombine directly rather than through uphill repopulation routes. This result 

convincingly determines the main effect of adopting a curved configuration of cofactors. 

 

Figure 3.15: The curving of the cofactors of natural photosystem to favor direct recombination 
from the final charge-separated state to the pigment. A: the rates of direct RC from QA to P at 

various effective curvature of the reaction center, representing a simple one-angle bending of the P-
QA distance. Red line represents the rate of the QA to P if the RC was arranged linearly like in B. 
Green line represents the experimentally observed rate. B: linear and curved models of the catalytic 
quartet.  
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Moreover, the curved design of the natural photosystems not only increases the rate of 

direct recombination from the final acceptor to the pigment, it also exerts the same effect 

on the direct recombination from the secondary acceptor, Pheophytin, to the ground state. 

This acceleration effect is shown in Figure 3.16. Instead of the near millisecond direct 

recombination rate 

when the cofactors are 

arranged linearly even 

with a uniform high 

reorganization energy 

of 0.7eV, the curved 

arrangement 

accelerates the direct 

recombination rate by 

5 orders of magnitude 

to a few nanoseconds, 

ensuring that if 

somehow Pheophytin 

becomes reduced and 

cannot transfer its 

electron to the final 

acceptor QA it will not repopulate either the excited state of the pigment or the primary 

acceptor BA, or have the time to undergo intersystem conversion to become the triplet 

state.  

In addition to recognizing the adoption of curved cofactor arrangement as an important 

engineering device of natural engineering, it is of greater significance to be able to 

incorporate this into our n-ad computational model of photosystems in order obtain a 

updated version of optimal engineering guidelines that reflect the previously 

unconsidered constraint of protection against damage. While the three-dimensional 

arrangements of the cofactors in natural photosystems cannot be exactly described by a 

 

Figure 3.16: The curving of natural photosystems to accelerate 
direct recombination from Pheophytin to the ground state. The 

rates of direct RC from HB to P at various effective curvature of the 
reaction center, representing a simple one-angle bending of the P-H 
distance. Red line represents the rate of the HB to P if the RC was 
arranged linearly. 



97 
 

two-dimensional representation, previous sections in this chapter have successfully 

shown that the using the individual distances for each pair of cofactors from the crystal 

structures we have generated highly accurate kinetics model. This suggests that if we can 

discover a 2-dimensional projection of the 3d cofactor arrangements that allow us to 

obtain pair-wise distances that are comparable to those from the crystal structure, then 

this 2-dimensional project is a model that adequately describes the real arrangement of 

cofactors. After carefully examining various possible options, the 2D representation of 

the curving of the natural catalytic quartet, shown in the bottom half of Figure 3.13B, 

stood out as the model that gave the best distances. This model describes the curved 

geometry by placing the acceptors A2 and A3 at two angles, θ1 and θ2. Moreover, the 

diameters of the cofactors are included in the horizontal projection of the A1-A2 and A2-

A3 distances. That is, the curving of the cofactors in this model allows the cofactors to 

overlap to certain extent from the horizontal perspective. This is necessary to model the 

amount of effective distance contraction described above in a 2-dimensional 

representation of the curving. The effective distances between the non-adjacent cofactors 

are computed according to the equations shown at the bottom of Figure 3.15B.  

Up to this point, we have discovered and described a series of major engineering devices 

used by natural photosystems, all of which appear to violate and contradict the 

prescriptions of the engineering blueprints established in the previous chapter. All of 

these engineering devices contribute to the common goal of minimizing the lifetime of 

the intermediate CS states as well as prevention of uphill repopulation of these 

intermediate states when direct recombination routes are too slow. This suggests that the 

presence of these intermediate states at timescales longer than hundreds of picoseconds 

represents highly unfavorable engineering conditions for the natural photosystems. Next 

we proceed to address this question central to this chapter: what is nature of this novel 

constraint based in biological context of the natural photosystems that led to the 

adaptation and adoption of these engineering approaches. 
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3.2.8: Protection against the potential damage by long-lived intermediate charge-

separated states is a central engineering constraint in optimal designs of 

photosystems. 

The simultaneous adoption and adaptation of a series of engineering devices by the 

natural photosystems unanimously serve to minimize both the lifetime and the probability 

of re-formation of any of the states prior to the final charge-separated state in the electron 

transfer kinetics scheme, limiting the timescale of the presence of these intermediate 

states to a few to <200ps in the best case, and a few ns in the worst case. Here we 

demonstrate that the presence of the intermediate states at timescales longer than 

nanoseconds becomes sources of significant damage to both the functionality and 

integrity of the photosystem, thereby representing a central and essential engineering 

constraint based in the biological context of natural photosystem design. This constraint 

is the main underlying basis for natural photosystems’ deviation from and contradiction 

against the blueprints formulated from electron transfer theory. Consequently, the 

incorporation of this constraint into the algorithm shown in Chapter II would allow us to 

formulate a new set of engineering blueprints for photosystems that confer damage-free 

optimal performance in protein environments.  

While the final acceptors of the natural photosystems tend to be moderate in its energy 

levels, the reduced radical states of the preceding cofactors that constitute the 

intermediate charge-separated states are significantly higher in energy and much less 

stable. With the ground state Em ranging from 470mV to >1000mV, the excited state of 

the pigments can be as reductive as -1000mV, and even on the higher end(PS II), the 

pigment’s singlet excited state has an Em of -780mV.  Other than the excited states, the 

intermediate charge-separated states of the natural photosystems also tend to be highly 

reductive, since the optimal engineering principle aims to minimize energy loss prior to 

the final charge-separated state. Their redox midpoint potentials range from -930mV to -

650mV. Consequently, in addition to the ability to reduce their intended electron transfer 

partners, specifically the next acceptor in the cofactor chain, these intermediate cofactors 

can also reduce any other redox active entities in the vicinity when the proper conditions 
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are met, thanks to the same fundamental theories of electron transfer that allow the 

reduction of their intended electron acceptors. Because of their extremely low reduction 

potential, the intermediate states can easily reduce redox-active side-chains and even 

parts of the main chain of the protein surrounding protein framework. Moreover, because 

the cofactors are all n=1 redox agents, their reduction would produce highly reactive and 

dangerous radicals that can be destructive to both the functional and structural integrity of 

the photosystem. Unlike their intended ET partners, however, the possible unintended 

targets are usually significantly farther away and the ET rates for these highly dangerous 

and undesirable reactions would be much slower than those with their intended partners. 

Therefore, the unintended ET reactions would only take place when the intermediate 

charge-separated states somehow remain active or reappear at much longer timescales. If 

the design blueprints formulated in Chapter II are strictly followed, where the charge-

separated states, both the intermediate and the final, are Boltzmann stabilized via a 

combination of long distance and low reorganization energy, the existence of the 

intermediate states at timescales as long as tens or hundreds of milliseconds is inevitable, 

due to the preference for charge-recombination via thermal uphill-repopulation of the 

preceding states and the slow direct recombination. In fact, the optimal engineering 

blueprints established in Chapter II lead to designs of photosystems that are optimal at 

self-destruction. It is therefore no surprise that these design blueprints are not followed by 

the engineering of photosystems in nature.  

In addition to direct damages to the protein environment, 3 out of the 4 cofactors of the 

core quartet are tetrapyroles and therefore can easily form triplet states when they remain 

in the high energy radical states.(35, 36) Triplet excited states of tetrapyroles can easily 

react with oxygen molecules, which are present in the environment of functional natural 

photosystems. The reaction of triplet excited states of tetrapyroles with oxygen generates 

reactive singlet oxygen(ROS) species, exposing the photosystem to structural and 

function damage. (37, 38).The rate of intersystem conversion, the process of forming the 

triplet excited state from the singlet excited state, is usually on the order of 10-100ns. 

Consequently, the engineering of natural photosystems must reduce the lifetimes of any 



100 
 

intermediate CS states to faster than 10ns, in case the intended electron transfer to the 

next acceptor in the cofactor chain fails to take place.  

3.2.9 Revised engineering blueprints for optimal photosystems prescribe designs 

highly similar to known natural photosystems 

With the understanding of the fundamental basis of natural photosystems’ novel 

engineering approaches we have identified and described throughout the chapter, we are 

now in place to modify our optimization algorithm from Chapter II to incorporate all of 

the novel engineering approaches in order to formulate new optimal blueprints that reflect 

both the physics of electron transfer and the biological context of engineering 

photosystems in protein environments. 

First of all, we have modified the method that computes the rate of electron transfer 

between any two cofactors to include the unrelaxed low dielectrics at fast enough 

timescales. Specifically, if the rate of the ET reaction between any pairs of cofactors 

occurs faster than 10ps then we use 0.3eV as the reorganization energy between this pair, 

otherwise the reorganization energy for this specific electron transfer would resume to the 

uniform reorganization energy reflecting the equilibrium environment of the 

photosystem.  



101 
 

In addition, as shown in Figure 3.15B, rather than arranging the cofactors in a completely 

linear fashion as we have done in Chapter II, cofactors are now placed following a curved 

geometry, characterized by two additional engineering parameters not present in the 

previous versions of the algorithm: θ1 and θ2, representing the angles at which the 

cofactors are curving. With these two additional parameters, we can then compute the 

effective distances between all pairs of the cofactors in the curved arrangement using 

simple trigonometry.  

These new optimal design blueprints also allow us to examine the extent of the optimality 

of the engineering of natural photosystems in the presence of the additional engineering 

devices we have discovered in this chapter, by comparing the performance of natural 

photosystems with that of the optimized tetrads from the revised algorithm. Figure 3.17 

demonstrates the specific engineering details of optimal tetrads with incident photon 

energy of 1.4eV from the revised optimization algorithm in comparison to the natural 

photosystems, specifically the Sphaeroides RC. We notice that the optimized tetrads 

under the revised algorithm display the same engineering motifs as the natural 

 

Figure 3.17: Optimal tetrads under the revised engineering guidelines display high similarity to 
natural photosystems. Left: electron transfer details of the reaction center of Sphaeroides, with the rates 

of each step of the ET kinetics shown next to the arrows as in previous trikes, while the distances between 
the cofactors are shown on the right top, and the populations of the various states shown at bottom right. 
Right: electron transfer details of the optimized tetrads using the revised algorithm that incorporates the 

engineering devices described in this chapter. 
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photosystems, although minute details do differ, such as the specific redox potentials and 

the distances. The rates of the electron transfers, especially the first two forward steps as 

well as all of the direct recombination steps display practically no difference from one 

another. Moreover, the final forward ET step in both the optimal model and the natural 

photosystems, namely between A2 and A3 and H and QA, demonstrate a significant 

increase in free energy difference in comparison to the previous steps. This large drop-

off, a well-known phenomenon in natural photosystems, is shown here to be the optimal 

engineering measure, intended to ensure that the recombination from the final acceptor 

state occurs via direct ET with the ground state of the pigment. The most impressive 

similarity between the model tetrad and the natural photosystem is in fact the kinetic 

profiles, also shown in Figure 3.17. The time evolutions of the populations look largely 

identical, with very minor differences that cannot be easily perceived. This demonstrates 

that the overall engineering of photosystems can be considered optimal.  

However, while both the optimal model tetrads and the natural photosystems display 

similar engineering motif and kinetics, a revisit to Figure 3.10 and 3.11 demonstrates the 

performance of the fully optimized tetrad(when both the distances and midpoint 

potentials are allowed to vary) as well as the semi-optimized tetrad(fixing the distances to 

be identical to the distances of Sphaeroides reaction center) display higher engineering 

efficiency but very similar, practically identical quantum yield in the range of 

reorganization energy that’s relevant to the engineering of photosystems in protein 

environment(0.6eV to 0.9eV). The similarity in quantum yield between the natural and 

the optimal tetrads reaffirm our above-stated result, that the kinetics of natural 

photosystem is designed to the level of optimality. The discrepancy in engineering 

efficiency, however, indicates that the absolute energy preserved in the final charge-

separated according to the newly revised design blueprints is higher than that of the 

natural photosystem. This can also be seen from the two energy diagrams in Figure 3.18, 

where the energy level of QA lies noticeably lower than that of the final acceptor in the 

optimal model tetrad. We will analyze and account for this discrepancy with our newly 

revised optimal engineering guidelines in section 3.2.11, which in fact reflects an 
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additional but secondary engineering constraint that are faced specifically by the natural 

photosystems that are engineered in trans-membrane environment. 

3.2.10: four cofactors are the minimal requirement for high performance charge-

separating photosystems when the engineering dogma of damage protection is 

included 

Although we have already demonstrated in 3.2.6 that tetrads hold significant engineering 

advantage over dyads and triads when the photosystem is engineered in environments 

characterized by uniform high reorganization energy, the advantage at the low end of the 

range of high reorganization energy tetrad holds over triads is not significant enough to 

fully justify the complete absence of triads in natural photosystems. However, this 

conclusion was reached rather prematurely in section 3.2.6 using the model established in 

the previous chapter, where the novel engineering devices were not considered. It is 

necessary to examine the dependence of multi-ads on reorganization energy under the 

revised optimal model, although we hypothesize that since additional and stronger 

constraints have been added to the model, tetrads’ advantage could only become greater.  
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It is not surprising to discover that, under the revised engineering guidelines of this 

chapter, triads can no longer supply the same or similar level of high efficiency at 

lifetimes required for chemical catalysis at reorganization energies that are at least 0.7eV, 

and become completely unviable as an engineering option, as seen in Figure 3.18. Figure 

3.18 illustrates that when the additional engineering guidelines provided by biochemical 

and biophysical constraints are engaged and the time-dependent, relaxation enabled 

dielectric environment is applied, tetrads’ advantage over dyads and triads becomes 

significantly more pronounced than what was shown above in section 3.2.6. It is 

important to note that the efficiency of optimal triads shown in this figure is obtained 

 

Figure 3.18: tetrads are the minimal engineering requirement for high performance when 
protection against damage is included as an essential engineering constraint.  Left: optimal 

quantum yield, energy preserved, and engineering efficiency of optimized linear(red) and curved(green) 
tetrads and linear triad(brown) at increasing reorganization energies from 0.3eV to 1.3eV. Right: cartoons 

representing the structural organization of the triads and tetrads examined in this figure. 
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using a model does not include 

the curved geometry, which in 

fact over-estimates the optimal 

performance of triads, and even 

in this comparison, a significant 

advantage in is seen for tetrads at 

the relevant reorganization 

energies.   

This result confirms and further 

solidifies a previously stated 

conclusion that 4 cofactors is the 

minimal engineering requirement for a photosystem characterized by uniform or near-

uniform quantum yield and optimal engineering efficiency in an environment 

representative of typical interior of polar proteins.   

3.2.11: Natural catalytic quartet anticipates membrane potential effect with 

suboptimal cofactor energetics 

In the comparison of the optimal tetrads according to the revised engineering principles 

to existing natural photosystems, it appears that the natural catalytic quartet of a 1.4eV 

photon pigment is only partially optimal, as seen in both Figure 3.9 and 3.10. Only the 

behavior of the quantum yield of the natural photosystem appears to agree with the 

prescribed optimal tetrads, while the engineering efficiency remains much higher than 

that of the natural photosystem. This means that both the semi-optimized(using the same 

inter-cofactor distances as the native with Ems allowed to vary) and the fully-

optimized(both distances and Ems allowed to vary, with cofactors arranged in the curved 

geometry described above) versions of the said quartet display higher energy preserved 

than the native Sphaeroides quartet at relevant reorganization energies. That is, the Em of 

the final acceptor in the Sphaeroides is lower in energy than what the engineering 

 

Figure 3.19: Quantum yield’s dependence on the 
membrane potential experienced by the Sphaeroides 
reaction center. Reproduced from (41)  
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blueprints prescribes as optimal. It appears that natural engineering incurred additional 

energetic costs that are not demanded by the revised engineering guidelines. 

Here we describe an additional engineering constraint that’s faced specifically by natural 

photosystems such as the reaction center of Sphaeroides that span the membrane of 

thykloids and serve to transport charges from one side of the membrane to the other. This 

constraint is 

therefore the effect 

of a trans-

membrane electric 

field generated by 

the intended 

function of the 

reaction center 

over time, 

resulting in 

significant changes 

in the redox 

midpoint potentials 

of the cofactors at 

equilibrium. 

Various studies 

have demonstrated 

that the cofactors 

of Sphaeroides 

reaction center 

experience 

significant 

modulation from a 

membrane 

 

Figure 3.20 The shut-down effect imposed upon the reaction center of 
Sphaeroides by increasing membrane potentials. Top:  effect of increasing 

membrane potential on the quantum yield of the Spaheroides reaction center. 
Bottom:  effect of increasing membrane potential on the engineering efficiency of 

the Sphaeroides reaction center.  
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potential as strong as 200mV/nm, established at equilibrium when continual formation of 

the charge-separated state results in an artificial electric field across the membrane where 

the reaction center resides. (39, 40)Moreover, the modulating effect of the membrane 

potential is applied unevenly to the various cofactors in the natural reaction center of 

Sphaeroides, since the cofactors are arranged along the direction of the field. Therefore, 

the more distal cofactors will experience greater changes in potentials than the more 

proximal ones. Specifically, the Em of QA experiences the full effect of the membrane 

potential, while that of the chlorophyll monomer experiences the least.  Figure 3.20 

demonstrates the effect of increasing membrane potentials on the quantum yield of the 

native Sphaeroides reaction center.(41-43) The classic study reveals that there is a 

parabolic relationship between the quantum yield of the reaction center and the increasing 

membrane potentials, thereby specifying an optimal level of membrane potential beyond 

which the photosystem begins to fail. It has been known that the strength of the generated 

membrane potential causes the effective midpoint potentials of the cofactors in the 

reaction center to change, thereby impacting both the energy preserved and quantum 

yield of the charge separation.  

The effect of quantum yield can be easily incorporated into our quartet model of the 

natural photosystems. Figure 3.20 demonstrates the impact of increasing effective 

membrane potential on both the quantum yield and the engineering efficiency of a native 

Sphaeroides reaction center operating at its standard ET environment represented by a 

reorganization energy of 0.7eV, with an unrelaxed low dielectric environment 

represented by a 0.3eV reorganization energy. Our predictive analysis shows that there is 

indeed an optimal membrane potential prior to which the engineering efficiency of the 

reaction center continues increasing and past which a critical failure essentially shuts 

down the system. Figure 3.21 demonstrates the performance of the Sphaeroides reaction 

center after applying the effects of the membrane potential on the potentials of the 

cofactors. We notice that the optimal tetrads do display improved engineering efficiency 

over the membrane-potential free case, as the quantum yield remains unaffected while the 

energy preserved in the final CS state has increased. However, it is important to note that 
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the direct recombination rates from the intermediate acceptors to the ground state of the 

pigment are slowed down by the effects of the membrane potential, which increases the 

driving force for the direct recombination electron transfer and thus induces a greater 

inverted-region effect.  

We claim that the shut-down effect at higher membrane potentials is another engineering 

device employed by the natural photosystems for the protection against damage. At 

higher membrane potentials, the secondary acceptor Pheophytin would no longer have a 

direct recombination rate that’s faster than the <10ns timescale that we have identified to 

be essential for the protection effect. This is seen in Figure 3.22, where the direct-

recombination rate from H to P
+
 has been slowed to 210ns due to the membrane potential 

effect, making its presence highly dangerous. However, the natural catalytic quartet is 

engineer

ed to 

anticipat

e this. 

Due to 

the 

unequal 

effect the 

membran

e 

potential 

exerts on 

the 

various 

cofactors

, at high 

membran

e 

 

Figure 3.21 Effects of the membrane potential on the performance of 
Spaheroides reaction center. A modified version of figure 3.11, with the addition of the 

performance of Sphaeroides RC when the effects of the membrane potential is added.   
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potentials, the once favorable forward electron transfer from BA to H is now uphill and 

becomes highly unfavorable, resulting in a greater rate from H back to BA, thereby 

causing the apparent shut-down effect. At an effective membrane potential of 170mV, we 

see that the shut-down effect is partially engaged, with the quantum yield of the 

Sphaeroides reaction center reduced to 32%. With further increases in the membrane 

potential, the unfavorability of the BA to H reaction will keep aggravating and eventually 

leads to the complete failure we observe in Figure 3.20.  

However, it is important to note that we chose not to present a discussion of the effects of 

the equilibrium membrane potential on the effect of our optimal design blueprints, as the 

effects of membrane potential is not an essential constraint like the protection against 

damages by the intermediate charge-separated states most of this chapter has focused on. 

The membrane potential is a by-product of designing a trans-membrane photosystem 

whose function helps generate the membrane potential. The actual application of the 

revised engineering blueprints for an optimal charge-separating tetrad in practice, as will 

be shown in chapter VII, will be carried out in a small, man-made, and water-soluble 

protein, absolving the engineering of any necessity to compromise its compromise while 

 

Figure 3.22: Effects of membrane potentials on the details of electron transfer kinetics in the 
Sphaeroides reaction center. Left: details of the electron transfer kinetics of the Sphaeroides reaction center 
when no membrane potential is involved. Right: kinetics of the electron transfer of the reaction center when 

110mV of effective membrane potential is applied.  Rates are shown along with the arrows indicating the direction 
and partners of the electron transfers. 
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incurring extraneous structural complexity.  Indeed, the results and discussion of this 

section aimed to further advance the importance of protection against any possible 

sources of damage as the central engineering constraint of ET-based photosystems in 

addition to the fundamental theories of electron transfers. 

3.3 Conclusions: 

Throughout this chapter, we began with a set of engineering principles that we have 

shown to be the guidelines for optimal engineering of charge-separating photosystems, 

formulated on a complete understanding of the interactions of the physics of electron 

transfer reactions between cofactors. The examination of naturally occurring 

photosystems revealed the surprising fact that nature did not follow the engineering 

blueprints we have shown to be optimal and prompted us to discover additional 

engineering principles that are based in the fundamental theories of electron transfer. 

 

Figure 3.23: Shut-down effect of higher membrane potential on the Sphaeroides reaction 
center. Details of the electron transfer kinetics of the reaction center of Sphaeroides under high 

membrane potentials, at which partial shut-down effect is observed. Red trace represents the excited 
state of the pigment, while light blue represents the final excited, and purple is the ground state of the 
pigment.  
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Instead, natural engineering of photosystems adopted various devices and approaches that 

prioritize both the efficiency of the charge-separation and the safety and integrity of the 

photosystem. These novel engineering devices serve to protect the photosystem from the 

potential damages induced by the high-energy intermediate radical states preceding the 

final charge-separated state. Ironically, the engineering principles that are considered 

optimal when only the theories of electron transfer are involved turn out to be highly 

unfavorable and lead to completely unviable designs. However, upon understanding that 

protection against damage is an essential engineering constraint along with the limits set 

by the physics of electron transfer, a new set of optimal engineering blueprints were 

successfully formulated by modifying the theoretical model to incorporate the series of 

engineering approaches and devices employed by nature to address damage protection. 

This new set of engineering guidelines prescribe designs that are highly similar to known 

natural photosystems in spite of small discrepancies and variations, indicating that the 

revised model is adequate and sufficient for practical application.  

This chapter finishes the theoretical side of my thesis, after having extensively explored 

the engineering landscape of photosystems from the perspectives of fundamental electron 

transfer theories as well as practical constraints imposed upon by the biological 

environment of natural photosystems. The results and conclusions of this half of my 

thesis becomes the guidelines that the efforts described in the second half of the thesis 

will follow, to the best of their ability thanks to the many additional constraints that are 

highly specific to particular experimental approaches we have access to in the 

engineering of photosystems. These practical constraints do not represent universal 

limitations but rather lack of resources or accesses and therefore are not considered or 

included in the guidelines of this chapter.  

3.4 Computational methods 

The analysis performed in this chapter and their corresponding results utilized computational methods that 

are extensions and further developments of those described in Computational Methods section of Chapter 2. 

We will continue using the notational system of the methods section of Chapter 2.  
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To model the electron transfer kinetics of the quartet of Sphaeroides photosystem, we implemented another 

variant of the function P described in the methods section of Chapter 2 and will call it Sp. Rather than 

specifying only the pair-wise distance between adjacent cofactors and use the linear geometry to infer the 

pairwise distances between all the cofactors, Sp requires the user to input pairwise distances between all 

pairs of cofactors, in order to reflect the non-linear arrangement of cofactors in the natural reaction centers. 

Additionally, Sp also includes a conditional statement that checks whether each electron transfer is taking 

place at timescales faster than 10ps when computing the rate of electron transfers between each pair of the 

cofactors using the Moser-Dutton ruler and uses the value of 0.3eV as the reorganization energy if the 

condition is evaluated to be True.  

To reflect both the dynamic reorganization energy and the curved geometry in generating the optimal 

engineering blueprints, we implemented a variant of E, and will call it Ec. Ec includes two extra input 

parameters in addition to those required by E, θ1 and θ2, which are used to compute the effective distances 

between the pigment and the secondary and tertiary acceptors as shown in Figure 3.15. The calculation of 

the effective distances involves calling trigonometric functions that are built-in components of Mathematica 

10.0. Depending on the analysis, parameters θ1 and θ2 are either kept constant at 45
o
 and 60

o
 or allowed to 

vary as part of the varying design parameters that are the objects of optimization using the NMaximize 

function. Ec is optimized in a similar way as E as described in Chapter 2, using the “DifferentialEvolution” 

flag as the selected method of optimization and “1” as the selected “RandomSeed” flag.  

We also implemented a version of E to examine the level of optimality in the energetics of the natural 

Sphaeroides reaction center and will denote it as ESp. ESp fixes all the pairwise distances between the 

cofactors to be the values used in Sp. ESp thus does not take distances as input parameters. ESp is 

optimized under a series of constraints using the “NMaximize” built-in function of Mathematica similar to E, 

with the “DifferentialEvolution” method flag and the “RandomSeed” flag of 1, but only with respect to the 

driving forces between the cofactors rather than both distances and driving forces.  

To reflect the effect of increasing membrane potentials on the performance of Sphaeroides reaction center, 

we implemented a function MemPot to compute the Em of all the cofactors under a user-specified level of 

membrane potential. The implementation of MemPot involves a distance-discounted modification of the 

redox potentials of the cofactors, returning a set of new redox potentials which are then further used in Sp to 

calculate the electron transfer kinetics in Sphaeroides RC under various membrane potentials shown in 

Figures 3.20-3.22.  
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Part II: Experimental application and testing of optimal 

engineering blueprints in maquette platform 
 

Preface:  

The previous three chapters of this work have focused mainly on exploration of the 

fundamental physical, biological, biochemical, and biophysical principles, constraints, 

and approaches that govern the engineering of an optimal charge-separating device 

within a protein-based, biologically relevant design platform. Although these chapters 

gave significant consideration to the practical constraints and influences on the 

engineering of charge-separation devices thanks to nature of the protein environment that 

natural reaction centers selected, all the simulation conducted have not specifically 

included any component of the protein environment, and all the biological constraints 

have been incorporated into the algorithm as heuristics-based modifications of the 

solutions to the system of ordinary differential equations. The end goal of such 

engineering blueprints, however, is the practical realization of the optimal design, and 

consequently, in order to truly test the validity and effectiveness of the engineering 

principles we have discovered and organized throughout the first half of this thesis, 

experimental testing and verification are the necessary next steps. 

The second part of my thesis therefore focuses on the practical application and 

examination of the engineering principles and guidelines arrived at in the first three 

chapters. I begin the empirical testing of the engineering guidelines by a brief exploration 

of the essential tools for the testing of these principles in Chapter IV, giving an 

contextualizing summary, by no means comprehensive or complete, that allows the 

readers to understand and appreciate the choice of maquette as the appropriate platform 

upon which practical testing of the optimal engineering blueprints. In Chapter V, I 
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present a series of novel experimental techniques successfully applied to maquettes that 

greatly expanded the horizons of biophysical and biochemical functionalities achievable 

by maquettes, leading to the successful engineering and construction of a charge-

separating triad in a maquette that supports long-lived charge-separation with lifetimes up 

to 428ms, reported in Chapter VI, a proper capstone for my thesis, demonstrating that the 

engineering guidelines formulated in the first part of the thesis indeed carries great 

potential in practical design of charge-separating photosystems. The combined results of 

part I and II successfully demonstrate that, given the proper experimental infrastructures, 

the optimal designs prescribed by the engineering guidelines will lead to photosystems 

built in small water-soluble proteins with unparalleled efficiencies and tolerances to their 

functional environments.   
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Chapter IV: Maquette as the ideal versatile platform 

for engineering of photochemical charge-separating 

device  
 

4.1: The necessity of de-novo designed protein as engineering platform for optimal 

photosystems. 

The engineering guidelines for long-lived charge separation in multiads detailed in 

Chapter II and III have demonstrated that a quartet comprising of a photo-activatable 

pigment along with three additional acceptor molecules arranged in a curved chain with 

close spacing between the first two acceptors, comprises the most concise form of 

engineering guidelines for optimal charge-separating device, that’s robust enough to 

deliver near-unity quantum yield at hundreds of milliseconds. Chapter III also 

demonstrated that natural photosystems largely follow the prescribed optimal 

engineering, except for the energy expended beyond the amount required by the optimal 

 

Scheme 4.1: Long-lived charge-separation in synthetic supramolecular triads and tetrads. Top Left: 

Charge-separating tetrad consisting of a Zn-porphyrin, free-base porphyrin, ferrocene, and fullerene. Bottom 
left: electron transfer kinetics of the tetrad, with the lifetime of the CS determined to be 380ms. Top Right: 
Charge-separating triad, same as the tetrad minus the free-base porphyrin. Bottom Right: electron transfer 
kinetics of the triad, with the lifetime of the CS determined to be 16us. Reproduced from (7) 
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engineering guidelines to compensate for the membrane potential effect(see Chapter III) 

and to further ensure that no uphill repopulation of the intermediate CS states takes place. 

However, the final product of a single natural photosystems’ charge-separation cannot be 

directly used by mankind, and the immense structural complexity, coupled with their 

native trans-membrane environment, makes any effective and efficient reengineering of 

the natural photosystems too difficult.  

Because of the abovementioned difficulty of reengineering existing natural photosystems 

into small and water-soluble devices with the same ability to separate charge highly 

efficiently at long lifetimes, designs and construction of electron-transfer based charge 

separating device consisting of multi-ads of redox active cofactors have been largely 

limited to synthetic supramolecules. Within the last two decades, extensive efforts have 

been exerted on constructing such synthetic multi-ads.(1-6) While these systems have the 

capabilities to achieve very long charge separation, (lasting for >100ms), they require 

extensive effort in terms of complex preparation as the synthetic process requires 

incremental incorporation of cofactors one after another. This naturally leads to a 

multiplication of necessary steps in the synthesis scheme and consequently a prohibitive 

low yield and high costs, severely hampering the practicality of such synthetic multi-ads 

in their application for solar energy conversion. For example, the reported scheme for the 

photochemical tetrad that separates charges for 380ms by Fukuzumi et al. (7)consists of 8 

separate steps, with an accumulative yield of 0.61%, assuming perfect transition between 

the steps. In fact, the scale of the scheme begins on the order of 10g and ends with a total 

of 17mg of product.  

Moreover, the synthetic multi-ads that have been reported to achieve >100ms charge-

separation all include more than three cofactors. The longest lifetime of charge-separation 

reported in a synthetic triad is only 16us(8),as shown in Scheme 4.1. This suggests that 

the designs of the chemical supramolecular photosystems have not followed the optimal 

engineering guidelines developed in the first part of this thesis, and, more importantly, 

development of a more appropriate engineering platform can address this shortcoming.  
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In addition to the difficulty of construction, such synthetic chemical systems have very 

limited means to modulate distances between the cofactors, the fundamental parameter 

that influences the yield and lifetime of charge-separation. Literature suggests that the 

most reliable method of distance modulation for such synthetic multi-ads is via 

incorporation of additional cofactors, as simply increasing the covalent chemical linker 

between the cofactors results in loss of rigidity of the device and therefore would not 

contribute to increase in inter-cofactor distances. Yet incorporation of additional 

cofactors to extend distances inevitably leads to further complication of the synthetic 

complexity and therefore practicality of the device.  

Finally, it remains to be seen how readily such synthetic chemical devices could be 

linked with the corresponding catalytic components that would allow the stable charge 

separation to achieve its desired function, since creating such linkage requires further 

steps in the final synthetic schemes, leading to further reduction in the already low yield 

of the synthesis.  

Consequently, engineering of charge-separation multi-ads in simple, small, but 

structurally and functionally stable protein scaffolds that also offer significant degree of 

fine-grained control over its structural details stands out as the appropriate practical 

approach.  A few well-tested experimental methods in de-novo engineering of proteins 

serve as potential candidates, which I will describe in the following section. 

4.2: Overview of major approaches in de-novo protein design. 

Design and engineering of de-novo protein is not a novel idea, and in fact, the first 

appearance of this concept goes back to 1902, when Emil Fischer delivered his Nobel 

prize speech, claiming that the future of “physiological chemistry will not only make 

extensive use of the natural enzymes as agents, but when it will also prepare synthetic 

ferments for its purposes” .(9) Since then, numerous researches from both experimental 

and computational perspectives have undertaken the quest for the Holy Grail of 

intelligent, effective, and complete method of de-novo protein design. Among the efforts 

three main approaches can be identified, based on their attitudes towards existing natural 
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proteins: repeated mutagenesis followed by screening and selection with natural protein 

sequences and motifs as starting points, computational optimization of permutation and 

concatenation of short natural protein sequences, and first-principle heuristics based 

sequence design free of mimicry of natural proteins.  

In the first approach, also known as directed evolution(10, 11), the DNA of an existing 

protein is used as the starting point for a set of error-prone mutagenesis that generates a 

library of specific size, usually on the order of 10
6-10

 different sequences. The quality and 

success of directed evolution largely depends on the ability of the library-generation to 

sample as uniformly and as widely as possible the relevant protein sequence space. High 

throughput screening using various functional assays based on the desired enzymatic 

activity to be engineered and sequencing is then employed as the method of artificial 

selection. In addition to functional assays, in-vivo compartmentalization of the target 

protein followed by subsequent fluorescence-based sorting of the cell expressing the 

protein has also become available for functions that are not easily assayed directly. The 

process is then repeated through certain number of iterations until either the functional 

assay metrics converges or the improvements in metrics per iteration per cost becomes so 

small that it can no longer justify further cycles.  The pipeline of directed evolution is 

summarized in Figure 4.1.  
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In the second approach, best exemplified and represented by the “Rosetta” method(12-

14), de-novo design of protein with catalytic functions is accomplished via a cascade of 

computational optimizations. The first optimization involves a “grafting” process where a 

“theoenzyme” of desired catalytic function, abstracted in the format of a series of 

coordinates and constraints, is matched with the optimal protein scaffold sequence from 

known proteins to provide the best fitting active site for the function. After a candidate 

scaffold has been selected, the next step involves repeated application of two 

optimization processes in series. First applied is the minimization of a limited energy 

function involving the backbone and the catalytic residues of the active site. It returns the 

best position for the substrate to interact with the active site. It is followed by the 

minimization of the same energy function while trying out all possible amino-acids for 

residues in the active site that are not directly catalytic. The new active site is now used 

as input for another iteration of the optimization that searches for the optimal locations 

for the residues involved in the actual catalysis. Then a repeated optimization for the best 

sequence takes place. After 3-4 iterations a final optimization without heavy constraints 

in the earlier steps is executed to ensure that the design has converged to a structure that 

 

Figure 4.1: The iterative processes of directed evolution. a | The process of directed evolution in the 

laboratory mimics that of biological evolution. A diverse library of genes is translated into a corresponding 
library of gene products and screened or selected for functional variants in a manner that maintains the 
correspondence between genotype (genes) and phenotype (gene products and their functions). These 
functional genes are replicated and serve as starting points for subsequent rounds of diversification and 
screening or selection. b | Although the mutational space is multidimensional, it is conceptually helpful to 

visualize directed evolution as a series of steps within a three-dimensional fitness landscape. Library 
generation samples the proximal surface of the landscape, and screening or selection identifies the genetic 
means to 'climb' towards fitness peaks. Directed evolution can arrive at absolute maximum activity levels 
but can also become trapped at local fitness maxima in which library diversification is insufficient to cross 
'fitness valleys' and access neighboring fitness peaks. Figure and legends reproduced from (10) 
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indeed produces a stable active site. Due to the stochastic nature of the sequence and 

position sampling of the Rosetta algorithm, each design process, given the same initial 

condition, produces a different output. Consequently, it is usual to consider many design 

outputs and select the optimal design after examining and comparing their projected 

activities using molecular dynamics.  The 

entire process of protein design by Rosetta 

is summarized in Figure 4.2.  

While both methods and even combinations 

of the two have at times generated 

impressive results that are regarded as 

milestones in protein design, such as the 

genesis of a novel catalyst for a chemical 

reaction previously never catalyzed by any 

natural agent, none of the designs have 

produced enzymes that deliver catalytic 

performance on par with or even within 

orders of magnitude of the natural 

counterparts. The lack of successes have 

been largely attributed to the enormous 

difference between the size of the search 

space of protein sequences (on the order of 

10
300

 for a average-sized protein) and the 

ability to sample this space by directed 

evolution.(15) Moreover, the Rosetta design 

protocol depends on a reliable and clear 

understanding of the structure and property 

of the ideal active site, which relies on prior 

knowledge that is independent of the design 

process. Similarly, the Rosetta method’s 

 

Figure 4.2: Iterative process of 
computational protein design using 

Rosetta3. Figure reproduced from (12). 
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initial matching process, due to practical constraints on our current computational 

capabilities, cannot sample the entire sequence of the candidate protein scaffold, but 

instead must require the user to judiciously select a subset of the sequence. Together 

these two steps indicate that the Rosetta algorithm in fact uses a mixture of heuristics and 

stochastic sampling of the sequence space. This in turn implies that it is not necessary and 

sufficient, even given enough computational resources, Rosetta would be able to discover 

the optimality in the sequence space.  

More importantly, as recently stated by Woolfson (16), the real sequence space of 

naturally occurring proteins is also highly non-uniform, with the probability masses of 

optimally functional sequences concentrated in a very small subspace of the entire 

possible “protein universe”, as shown in Figure 4.3. While the lack of optimal sequences 

in the space where 

natural proteins did not 

favor is still heavily 

debated, it is 

straightforward to 

show that sequence 

space known to 

produce functional 

structure is adequate in 

supporting and 

sustaining an immense 

variety of functions, 

and this known 

sequence space can be summarized by a simple set of biophysical and biochemical 

principles while abstracting away the fine details of the individual amino-acids.  

While the previously mentioned approaches could not free itself fully from heuristic 

elements, we here introduce a third approach that completely isolates itself from any 

stochastic element in the design process, and focuses entirely on rule-based, heuristics-

 

Figure 4.3: The highly non-uniform distribution of probability 
masses for the optimal sequences in the protein sequence space. 

The protein sequence space is shown in a simplified, abstract 3D space. 
Fitness measures the optimality of the specific sequence. Figure 
reproduced from (16) 
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central engineering revolved around fundamental biophysical and biochemical principles 

that determine protein secondary and tertiary structures as well as protein-cofactor 

interactions and cofactor-based protein functions. The comparison and contrast between 

the methods of protein design discussed so far are summarized in Figure 4.4.  

4.3 The Maquette approach: origin and development 

The so-called “maquette” approach takes on the challenge of protein design from a 

heuristic, first-principle perspective. Rather than trying to discover the optimality of 

design within the entire protein sequence space or a significant subspace of it, the 

maquette approach limits itself to highly specific and special regions of the sequence 

search space where the probability of discovering sequence optimality for the desired 

 

Figure 4.4: A 2-dimensional map illustrating the relative positions of major protein design 
approaches with respect to the type and degree of constraints imposed upon the design, or the strength 
of the prior applied to the distribution of the sequence space. The horizontal axis represents the level of 

heuristics based constraints based on fundamental biophysical and biochemical principles, while the vertical axis 
indicates the level of constraints on the sequence space based on heuristics of naturally occurring sequences. 
Maquette approach relies on strong biophysical/biochemical heuristic constraints but no natural protein based 
constraint, while directed evolution is the opposite. Figure adapted from the PhD thesis of Tammer Farid. 
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function is expected to be high according to a set of heuristics. Moreover, rather than 

comprehensively searching through the now limited sequence space using random or 

computational methods, the maquette approach further restricts and contracts the 

sequence space by increasing the granularity of the sequence from amino-acid level to 

biochemical-property level, significantly reducing the complexity of the optimization 

problem.  From a Bayesian perspective, the maquette approach implements a set of 

strong priors on the problem of protein design and generates a posterior distribution of 

the sequence space that’s highly inhomogeneous and non-isotropic. Together these 

characteristics make maquette approach the least complex and at the same time most 

reliable method of the three. At the same time, because of the strong prior on the 

sequence space, the maquette approach is limited in its scope of structural and functional 

diversity in comparison to the other methods, making it high attractive for only a small 

subset of protein functions and less attractive for the rest.  

The maquette approach began in 1990s as an attempt to construct a functionally versatile 

but structurally stable testing ground for oxidoreductase functions.(17, 18) From the 

beginning on, the maquette approach has chosen 4-alpha-helical bundle as the 

fundamental structural requirement, because the engineering requirements for 4-helical 

bundles were well-understood and attractively simple, at the same time 4-helical bundles 

offering a stable yet non-rigid platform upon which various functions could be 

implemented without significant departures from the fundamental.  This decision 

immediately reduces the search space for the optimal sequences for the maquette 

approach, limiting it to a small sub-space of the much larger search space considered by 

the methods described above. However, this reduction in the search space for sequences 

does not automatically translate to a reduction in the potential range of functions that can 

be designed in maquettes. Alpha-helical bundles can provide protein environments 

ranging from highly hydrophobic to hydrophilic, and active site designs for numerous 

functionalities are possible since alpha-helix represents one of the fundamental and most 

common secondary structures for protein.  
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The choice of helical-bundle structural motif induces the first and also the strongest set of 

rule-based priors on the sequence space: binary patterning and heptad repeat, as seen in 

Figure 4.6. When hydrophilic and hydrophobic residues are placed alternatingly in a 7-

residue repeat in an aqueous solution,(19, 20) the electrostatic and hydrophobic 

interactions between the solvent and the protein itself force the polypeptide to adopt a 

helical secondary structure, with the hydrophilic residues on one side of the helix and the 

hydrophobic ones on the other, buttressed by the hydrogen-bonds formed between the 

backbones of residues on the same side of the helix. When multiple such polypeptides are 

present, the hydrophilic and hydrophobic interactions further compel them to form 

tetramers that create a hydrophobic core isolated from the hydrophilic exterior. However, 

the tetrameric version of the helical bundle does not allow the engineering of the 

topology of the maquette, as the direction of monomer in the tetramer is determined 

based on thermodynamic partitioning and random chance. The next set of rule-based 

priors, therefore, is the placement of loop residues between 4 near-repeats of the would-

be monomeric polypeptide, resulting in a 4-helical bundle consists of a single polypeptide 

chain with a single topology. This is necessary to ensure that the intended anchoring 

positions of cofactors to achieve the desired function follows the specification of the 

design. Until now, these two sets of rule-based sequence constraints have provided the 

necessary basis for constructing a stable and functionally neutral scaffold.  
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The next sets of rule-

based sequence 

constraints are 

intended to supply the 

functional 

specifications of the 

design. These include 

but are not limited to 

selections of: primary 

and secondary 

residues that comprise 

the binding sites of 

cofactors for the 

desired function; level 

of hydrophobicity of 

the hydrophobic 

interior of the 4-

helical bundle; overall 

charge-patterning of 

the exterior of the bundle; length of the loops between the component helices of the 

bundle; level of hydrophobicity of the hydrophilic exterior of the bundle; and so on.  

The primary residues of the cofactors binding sites simply determine the location as well 

as the type of cofactors required by the desired function. (22-24)Since the cofactors of 

interest in maquette designs are mostly redox active molecules, the primary binding sites 

are usually on positions that are facing the hydrophobic interior of the bundle. Up to now, 

binding sites for metal tetrapyrroles such as heme, zn-porphyrin, chlorin, and so on, have 

allowed for high affinity ligation for these cofactors in various maquettes.(25) The 

secondary residues of cofactor anchoring, however, require significantly more planning 

and thoughts. They are the residues that provide either stabilizing or destabilizing effects 

 

Figure 4.5: Cofactors successfully incorporated into maquettes 
categorized by their chemical properties. The tetrapyroles have 

been the main focus of cofactor bindings in the past, but the other 
cofactors have also demonstrated their fitness for maquette applications. 

Reproduced from (21) 
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on the cofactors of interest. For example, the binding site of a heme cofactor requires the 

residue at the i+4 position to be of hydrophilic nature in order to increase binding 

affinity(26). In addition to tetrapyroles, a large variety of other cofactors have also 

demonstrated successful incorporation and functions in maquettes. Figure 4.5 

demonstrates the multitude of cofactors that have been shown to have high affinity 

binding to the maquettes(21).  

The hydrophobicity of the protein interior determines the rigidity and flexibility of the 

overall maquette structure, as well as its thermal stability. This characteristic of the 

maquette must be modulated depending on its intended function. Many functions require 

or prefer the local environment of the functional cofactors to be highly dynamic and 

flexible, thereby allowing facile exchange of ligands or access to substrates. For example, 

the binding of heme to maquettes that have histidine binding sites on adjacent helices 

require the interior to be dynamic enough that concerted outward rotation can take place 

so that the proper His rotamer can form(27, 28). This therefore requires a mixing of polar 

and non-polar residues in the interior-facing part of the maquette to anticipate the helical 

rotation prior to heme binding. In general, when the overall maquette structure is beyond 

a certain threshold of rigidity, it has difficulty in rearranging itself structurally to 

accommodate for the cofactor, which, although mostly hydrophobic, could have minor 

structural peculiarities that would require the maquette to dynamically adapt. Finally, in 

the context of electron transfer, highly hydrophobic protein environments correspond to 

low dielectric environment and tend to decrease the reorganization energy for the electron 

transfer. 

The charge-patterning of the maquette surface represents another significant source of 

sequence space constraints that depend on the intended function of the maquette. The 

distribution as well as number of charged residues on the exterior facing parts of the 

maquette directly determines its ability to interact with itself or, when present, another 

partner protein.(29) This becomes important when the maquette is designed to serve 

either as a donor or an acceptor in functions requiring inter-protein electron transfers. 

Highly charged surfaces allow the protein to interact strongly with its intended partner 
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and consequently increase the rate of electron transfer. Moreover, specifically increasing 

the charges of a region of the maquette can preferentially strengthen the inter-protein 

interaction between the maquette and its intended partner at the intended site, giving 

further options to engineering. As an example, Bryan Fry of the Dutton group has 

designed maquettes whose varied charge patterning and distribution on their exteriors 

allow them to differentially interact with natural proteins such as cytochrome 

c(Manuscript in preparation). When equipped with the appropriate cofactors, the 

interactions with other protein partners allow the maquette to transfer electrons from and 

to the appropriate partner proteins. This is highly desirable in the context of engineering 

charge-separating photosystems in maquettes, as the partnership with other proteins 

removes the necessity of engineering the down-stream catalytic function in the same 

maquette that also houses the charge-separating photosystem. However, discussion of 

inter-protein electron transfer is outside of the scope of this thesis, but has been an 

ongoing effort and the center of studies by my colleague Bryan Fry in the Dutton lab, 

whose thesis will focus on the interaction between electron-transfer competent maquettes 

and natural proteins.  

The length of the loops connecting the helices has been shown to strongly modulate both 

the thermal stability of the protein as well as its affinity to ligands whose ligation sites are 

engineered at the ends of the maquette.(30) Longer loops allow more dynamic 

movements of the individual helices and therefore decrease the rigidity of the maquette. 

The increased dynamic movements in turn lead to a less stable hydrophobic core of the 

helical bundle of the maquette, resulting in changes in cofactor affinities. Moreover, the 

loop region, completely exposed to the aqueous environment surrounding the protein, 

serves as ideal sites for catalytic modules such as cobalt-clusters, although as already 

mentioned above, the need to engineer catalytic site in the same maquette already tasked 

with charge-separation is small, and therefore the structurally regulatory function of the 

length of the loops remains the main constraint on the sequence space of the loop 

residues. 
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Finally, the exterior of the maquette could be engineered to comprise mostly of 

hydrophobic residues that are usually found in the exterior of membrane proteins.(31-33)) 

This option allows for engineering of membrane-friendly maquettes that are either 

completely embedded in membranes or partly embedded, exposing hydrophilic ends and 

thereby acting as trans-membrane maquettes. This engineering option greatly expands the 

horizon of potential maquette function, including artificial ion channels, receptors, and 

any biological functions associated with membrane or trans-membrane proteins.  

4.4 Maquettes as the ideal testing platform of design blueprints and engineering 

guidelines for photochemical multi-ads for charge-separation 

Because of the context of its historical development, the maquette approach has been 

applied mostly to protein functions and enzymatic activities that revolve around 

anchoring and exploiting redox-active cofactors: oxidation and reduction of substrate 

molecules(34), light-harvesting(35), and since its first application, more than three 

decades of continual research efforts have been devoted to understanding and 

improvements of the heuristics that provide the proper priors for the sequence space, as 

extensively discussed above. Together with the stability of the helical bundle structural 

motif and the functionally neutral nature of maquettes as a scaffold, they make maquette 

approach the ideal choice for designing and engineering protein-based platform to test the 

engineering blueprints for charge-separation devices demonstrated in the first part of this 

thesis.(36) Indeed, our engineering guidelines for man-made photochemical multi-ads, 

aimed to unlock the full potential of the catalytic quartet, consider the placement of a set 

of optimally selected set of redox-active cofactors and pigments within a non-specific and 

highly stable water-soluble protein environment to be essential to the successful design. 

The functionally neutral maquette further excels as the platform of choice due to the 

quantized but exact control over the location of the cofactors, allowing the engineering to 

modulate both the distances between and the redox potentials of the cofactors.  

Additionally, the simple, minimalist nature of the maquettes, in terms of its sequence, 

structure, and size, removes possible interferences from otherwise complex and delicate 

protein environment that could impact the testing of engineering blueprints. Finally, the 
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practical ease and speed with which maquettes could be expressed and reengineered 

means that experimental examination of the design blueprints can proceed with high 

efficiency.  This allows us to exploit an iterative procedure involving design-test-redesign 

that can ensure that we converge to the design that’s optimal and most appropriate with 

respect to both the theoretical specifications and practical constraints. This iterative 

aspect is summarized in Figure 4.6, with certain steps, such as III.2 and III.3, variable to a 

great extent depending on the intended function of the maquette designed. 

4.5 Structured, 

stable, versatile, and 

adaptable: The 

newest generation of 

maquette with 

crystal structure 

A common and 

persistent criticism of 

the maquette approach 

had been the lack of 

high resolution 

structural information 

to confirm the 

realization of the rule-

based design. This 

lack of detailed 

structural information 

has largely been the 

caused by past 

designs’ choices of 

design priors that 

prioritize the functional neutrality and versatility of the design product. That is, these 

 

Figure 4.6: The iterative process of the maquette approach. Major 

steps are listed using Roman numerals while minor steps are in listed in 
Arabic numbers. Figure modified and reproduced from(28)  
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designs did not choose a single function and employ a large collection of engineering 

devices to ensure that the product of the design delivers only that single intended 

function. Consequently, the resulting maquettes serve as ideal scaffolds not only for its 

intended function, but also many other unintended yet similar functions. Recently, a new 

generation of maquettes, designed with a highly specific function in mind, has become 

the first family of single-chain maquettes to produce high-quality crystal that produces 

high-resolution X-ray diffraction and subsequently 3D structures. Discussion of the 

specifics of this family of maquettes will soon be seen in the thesis of my colleague 

Nathan Ennist and will therefore be kept brief here. As seen in Figure 4.7, the design of 

this maquette aimed to create a high-affinity, high specificity iron-tetrapyrole with a 

diagonally ligated bis-his ligation site residing on one end of the maquette, a single-his, 

high-affinity zinc-tetrapyrole binding site in the center, and two auxiliary functional sites 

consisting of a tyrosine residue and metal binding center on the other end of the 

maquette. Rather than using simple heptad repeats to ensure the helical structure and 

following the streamline shown in Figure 4.6, this generation of maquettes incorporated 

additional designs that are residue specific, considering the primary and secondary shells 

of ligation for both of the tetrapyroles, as well as the steric and charge-based stabilization 

of cofactor binding. With the available crystal structure, this maquette has become the 

new workhorse of the Dutton group’s experimental side, as the structural information 

allows for accurate and targeted changes in the structure for either modification of 

existing or introduction of new functions. As will be seen in Chapter V and VI, this 

maquette, along with the various mutants designed to examine the principles of electron 

transfer, will serve as the platform upon which the proof-of-principle set of triads are 

engineered and tested.  

4.6 Conclusion: 

This chapter offered an overview of the major methods of de-novo design and 

engineering of proteins, all of which represent different approaches to the highly daunting 

problem of optimizations of a fitness/functionality measure within the search-space of all 

available protein sequences. Amongst the available approaches, the maquette approach 
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was selected as the most appropriate 

because it offers the greatest level of 

distance and redox Em control while 

incurring the least amount of 

experimental cost in terms of both 

computational requirement and the 

amount of time involved in developing 

the needed platform. The task of 

engineering a charge-separating 

photosystem as specified by the 

engineering guidelines from Part I of this 

thesis presents a set of requirements that 

are very different from other de-novo protein design that are better addressed by either 

directed evolution or Rosetta-based computational design or a combination of both, 

namely, the lack of a theo-enzyme, a prototype active site and a well-defined single 

reaction. The choice of the maquette approach as the ideal platform is further encouraged 

by the availability of a structurally elucidated family of maquettes, which offers 

unprecedented simplicity and accuracy with which target functional modification of the 

maqutte can be carried out. This provides the necessary experimental infrastructure to not 

only construct a single proof-of-principle photochemical triad to demonstrate that the 

predicted performance jump from dyads to triads can be realized, but also, more 

importantly, to examine the effects of varying some of the engineering parameters on the 

performance of the charge-separation in practice. 

  

Figure 4.7:  X-ray 
crystal structure of the 
water-soluble maquette 
MZH3 at a resolution of 
2.02 Å.  The protein is 

ligating a heme (blue), a 
synthetic zinc porphyrin 
(red), and 2 Mn atoms 
(green). Figure adapted 
from crystal structure 
solved by Nate Ennist. 
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Chapter V: Towards a proof-of-principle 

photochemical triad charge-separating device in 

maquette 

5.1 Introduction:  

As demonstrated in the previous chapter, the maquette approach represents the most 

appropriate method for engineering a versatile and stable platform upon which practical 

application and examination of the optimal engineering guidelines formulated in Part I of 

this thesis can be carried out, thanks to its ease with which the locations and 

environments of the cofactors can be easily and efficiently customized and the conditions 

of the experiments involved in the construction of the multi-ads can be easily controlled. 

However, in spite of the extensive functionalities already achieved in the past using the 

maquette approach both within and without the Dutton group,(1-5) construction of 

photochemical multi-ads, especially when n≥3, within maquettes as charge-separation 

devices presents a few significant engineering challenges that have never been 

encountered in the past applications of the maquette approach. As one of the core 

functionalities that are intended for maquettes, ET-based charge-separation has, however, 

only seen very limited application in maquettes and without demonstrating much 

significant successes. Up to now, only three cases of ET-based charge-separation in 

maquettes have been reported, two of which are shown in Figure 5.1, and all involve only 

P-A dyads with suboptimal performance, in terms of engineering efficiency and lifetime 

of the charge-separated state. In fact, the engineering of maquettes up to now had not 

considered the incorporation of more than two cofactors with different redox and 

photophysical properties. As seen in the P-A dyad shown in Figure 5.1B, the pigment and 

the acceptor are located at the two ends of the 4-helical bundle of the maquette, 

suggesting that significant engineering modifications to existing maquettes as well as 

changes in the fundamental design philosophy of maquettes are necessary to achieve this 

breakthrough.  
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The prospect of engineering photochemical multi-ads in maquettes with n>2 presents the 

following list of previously unseen experimental challenges in the maquette design 

environment:  

1) stably and readily anchoring at least 3 unique cofactors with differing physical and 

chemical properties within the framework of a single four-helical bundles.  

2) guaranteeing the site specificity of all cofactors specified by the design blueprints of 

the multi-ad via varying the cofactor ligation/incorporation method.  

3) providing the necessary inter-cofactor distances as prescribed by the design blueprints. 

 

Figure 5.1: Electron-transfer based charge-separating dyads in previous generations of short 
maquettes produced by the Dutton group. A: decay of the bleach signal of the soret signal repreenting 

the ground state of the pigments in ZnP/ZnC-Heme dyads. B: reduction of heme bound in 8 μm maquette 
following photoexcitation of ZnP. dashed and bold traces are absorption spectra of the sample before and 
after 20 min of white light illumination, respectively. experiments were performed in 20 mm cHeS, 150 mm 
Kcl, pH 9.0, and 0.1 mm aniline. C: reduction of bound heme following photoexcitation of 8-bromoriboflavin 
covalently attached to 8 μm maquette. dashed and bold traces show absorption spectra before and after 60 
min of white light illumination, respectively. experiments were performed in 20 mm cHeS, 150 mm Kcl, pH 
9.0, and 1 mm edTA. experiments in b and c were done in duplicate. Figure and legends adapted from (3)  
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Moreover, in addition to the challenges faced by the engineering of maquttes themselves, 

even greater constraints are imposed upon by the highly limited selection of cofactors to 

follow the optimal midpoint potentials prescribed by the optimal engineering blueprints. 

The difficult to design cofactors with customizable redox potentials covering the range 

prescribed by the optimal engineering blueprint will be further examined in the next two 

chapters and indeed remains as the greatest challenge in accurately following the optimal 

engineering guidelines. 

In order to address the novelty and difficulty presented by the above-listed engineering 

challenges, a multitude of biophysical and biochemical methods completely new to the 

context of maquette design have been tested in combinations in the many attempts at 

constructing a stable and functional charge-separating triad, yielding results of varying 

effectiveness. While most of the attempted methods have not survived to the final, 

successful design that produced record-breaking charge-separation lifetime and yield that 

will be the centerpiece of Chapter VI, they nevertheless deserve their places in this thesis 

since, in spite of not being part of the final solution, they have served to greatly expand 

the capabilities and potentials of the maquette approach. They represent incremental 

knowledge in maquette designs that will inevitably prove useful in future designs. Here in 

the remainder of this chapter I aim to describe each of the novel engineering 

methodologies applied to the maquette approach, the extent to which they contributed to 

the successful engineering of the charge-separating multi-ads in maquettes, and their 

corresponding significance to the future of maquette design. 

5.2 Methods: 

Standard biophysical and biochemical methods are summarized at the end of the thesis in 

Appendix A1, but methods special and specific to this chapter are presented here to 

emphasize their relevance and novelty in the context of maquette approach. 

5.2.1: In-vivo incorporation of C-type heme in maquettes expressed in E.Coli 
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In addition to the standard protein expression protocols, an additional plasmid encoding the CCM enzymes 
are co-transformed into BL-21 strains and selected with both antibiotics resistances by the plasmid 
containing the maquette DNA and the plasmid containing the C-type maturation enzymes. Cell cultures(2L) 
are inoculated by 5ml of overnight pre-culture and induced when the cell density, represented by OD of the 
culture, reaches 0.6 after incubation at 37C

o
. Induction is achieved with IPTG, but to encourage heme 

production, 100uM of FeCl2 and levulinic acid are added to the culture. The culture is kept at 37C
o
 for 

30mins and then transferred to 20C
o
 for overnight incubation.  

5.2.2: in-vivo incorporation of propargyl tyrosine in maquettes. 

Standard mutagenesis was used to introduce a TAG Amber codon into the plasmid encoding the Gen2 
maquette. The plasmid was then transformed into a pre-made strain of E. coli BL21 (DE3) competent cell 
already containing the pDule2-AzfRS plasmid containing an M.jannaschii mutant tRNA synthetase and tRNA 
CUA pair. Single colonies were selected and grown in 4 mL of LB using Amp (100 μg/mL) and streptomycin 
(Strep, 100 μg/mL) for overnight hours at 37 °C with shaking at 250 rpm. The 4 mL primary culture was 
inoculated into 1 L of minimal media containing 6 g of Na 2 HPO 4 , 3 g of KH 2 PO 4 , 0.5 g of NaCl, and 1 
g of NH 4 Cl: 1 mL of 2 M MgSO 4,1 mL of 15 mg/mL FeCl 2 (in 1.0 M HCl), 1 mL of 15mg/mL ZnCl 2 (in 
acidified water), 2 mL of 10% Bacto yeast extract (w/v), 25 mL of 40% glucose (w/v) supplemented with Amp 
and Strep and grown at 37 °C with shaking at 250 rpm until OD 600 1.0. Protein expression was induced 
with 1.0 mM p-propargyloxyphenylalanine (pPf) and 1.0 mM IPTG. Cells were incubated at 25 °C with 250 
rpm shaking for Overnight. Cell lysis and purification were performed using the standard methods described 
in the Appendix of this thesis. 

5.2.3: Click-chemistry between the azido-containing label and the PPY-containing maquette. 

Catalysts for the click reaction was first prepared by mixing 100uM of Cu(1.25μL of 80mM CuSO4) and 
500μM THPTA ligand(10μL of 50mM) and spinning down to remove any precipitations. 1mM ascorbate was 

 

Table 5.1: Some representative sequences of Gen1 maquettes. The cofactors ligated and their 

respective redox midpoint potentials and dissociation constants are shown.  Table reproduced and 
adapted from (3) 
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added to the catalyst mixture to reduce the mixture for 5 mins. 3-5 equivalents of the maquette is then added 
to the reduced catalyst mixture dropwise. The mixture is then allowed to react for 1-3 hours at room 
temperature. The mixture is then examined by MALDI to ensure the completion of the reaction, and 
purification is carried out using standard HPLC method shown in the Appendix. 

5.3 Results: 

5.3.1 Engineering of an extended maquette to accommodate three redox/ET active 

cofactors 

Prior to the attempt to engineer a charge-separating multi-ad in maquette, incorporation 

of more than two unique cofactors into maquettes had not been considered, and 

consequently, there had not been any existing maquette design that even provides the 

appropriate dimension to accommodate three tetrapyrroles in terms of spatial 

requirements. As seen in Table 5.1 as well as figure 5.2, the past generations of 

maquettes designed to ligate two cofactors all have individual helices that are 27 amino 

acids residues long.(3) Since the cofactor binding site must not be situated at the 

beginning or the end of the sequence and the cofactor themselves, usually tetrapyrroles, 

have their own dimensions, the actual maximal edge-to-edge distance obtainable in such 

maquettes is 14 Å.   The first novel design effort therefore was to extend existing 

maquette vertically so that three binding sites for three different cofactors could be 

engineered. This extension is shown in figure 5.3. According to our design blueprint, an 

optimal triad with its cofactors arranged linearly must have at least 30 Å of distance 

between the binding site on one end of the maquette to the other binding site on the other 

end of the maquette, providing enough space for 3 cofactors as large as tetrapyroles to be 

present simultaneously inside the maquette with adequate(~5Å) distances between each 

pair of the cofactors. While the need to have longer helical bundles is apparent, it is non-

trivial to determine how to extend the helices, specifically, what amino acids to add to the 

sequence so that while the helices are elongated, minimal impact on the biophysical 

properties of the maquette is expected. The rather obvious choice is to extend the 

maquette helices by adding yet another heptad repeat that consists of the middle region of 

the existing generation of maquettes. This heptad repeat inserted is thus AEEALNQ, with 

the F replaced by A as the addition of four phenylalanine simultaneously to an already 
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stable maquette would disproportionally increase the thermal stability and consequently 

the rigidity of the 

maquette and cause 

ability to bind 

cofactors with high 

affinity to suffer.   

The extended 

maquette’s 

sequence in shown 

in Figure 5.3, 

demonstrates heme 

affinity similar to 

that of its 

predecessor, as 

shown in Figure 

5.4 With heme affinity on the order of 10nM, the extended maquette satisfies the initial 

requirement of serving as the design platform of the multi-ad photosystem envisioned by 

the engineering blueprints from Chapter II and III.   

5.3.2 Engineering of a single-his binding site for anchoring of Zn-porphyrin and 

other Zn-based pigment cofactors   

The extended maquette, as shown in Figure 5.2, has two bis-his ligation sites for B-

type(non-covalent) heme binding, inherited from its predecessor generation of maquettes. 

In order to allow the maquette to serve as the design platform for photochemical multi-

ads, at least one additional cofactor binding site with site specificity needs to be created. 

Unlike bis-his binding sites, which is capable of high affinity ligation of iron porphyrins, 

single-his site provides site-specific ligation of Zn-based tetrapyroles such as chlorins and 

porphyrins with similarly high affinities(6). Single-his site is utilized in the engineering 

of the photochemical dyad in the Gen1 maquettes shown in Figure 5.1. Consequently, the 

 

Figure 5.2: example sequences of Gen1 single-chain maquettes with 
binding sites for hemes. . Regions shaded in green represent the loop region 

of the maquette, while shading in light blue represents the helical region. Top: 
Gen1 maquette sequences, with 27 residues per helix. The placement of the 
cofactors are shown in the cartoon on the right. Bottom: Gen2 maquette with the 
helical region extended by a heptad repeat. 
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logical implementation of the necessary Zn-porphyrin binding site for the Gen2 maquette 

is also a single-his site, however, in the middle of the helical bundle rather at the end 

since we aim to engineer a donor-pigment-acceptor triad, which has been shown in 

Chapter III to be equivalent to the model PAA triad used throughout both Chapter II and 

III in terms of optimality under the same set of constraints. That is, the DPA triad and the 

PAA triad would be able to separate charges with the same efficiency at the same 

lifetimes as long as the engineering parameters prescribed by the optimal blueprints are 

followed, although the engineering parameters themselves could be significantly 

different. Figure 5.3 demonstrates the modification of the Gen2 maquette to include a 

single-his binding site in the middle of the helical bundle, while Figure 5.4 demonstrates 

this maquette’s ability to ligate both heme and Zn-porphyrin cofactors with high 

affinities. Special thanks are given here to Tatianna Esipova from the Vinogradov group 

for her generous assistance in the preparation of the specific ZnP used throughout this 

thesis.  

We have 

attempted to 

determine the 

redox potential of 

the ZnP/ZnP
+ 

transition in the 

Gen2 maquette 

using standard 

spectral 

electrochemical 

method 

summarized in the 

Appendix. 

However, due to 

the high potential 

 

Figure 5.3: Further functionalization of Gen2 maquette to include Zn-

porphyrin binding site and C-heme incorporation capability. Same as in 

Figure 5.2, but this time the Gen2 maquette now includes a single-his binding site 
in the middle of helix 4(top) and the CXXCH motif in helix 4(bottom). 
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of the species and the lack of appropriate redox mediators to facilitate the electron 

transfer, a rather significant hysteresis was observed, as shown in Figure 5.5. This 

resulted in a rather rough estimate of the ZnP potential in the Gen2 maquette. In Chapter 

VI I will demonstrate a significantly improved set of measurements of the redox 

potentials of the same ZnP in the new generation of maquettes.  

5.3.3 Engineering of CXXCH motif for in-vivo attachment of C-type heme for 

cofactor site-specificity 

With the extended maquette now capable of accommodating 3 tetrapyrroles, although 

two of which are the same non-covalently ligated hemes, the next step of design is to 

impart the binding sites of the cofactors with site specificity so that cofactors intended to 

serve the roles of D, P, and A can be incorporated at the correct locations. At the time of 

the design of the Gen2 maquettes, iron tetrapyrroles of different midpoint potentials were 

the main candidates of interest for all the electron transfer roles. Past efforts in the Dutton 

group have demonstrated that the presence of the CXXCH motif(7) on a maquette allows 

in-vivo covalent attachment of C-type heme to maquettes. This is accomplished by co-

expressing the maquette at appropriate condition with a cascade of chaperone proteins 

that catalyze the formation of covalent linkages between the cysteine residues and the 

vinyl groups of the B-heme in reduced environments of the extracellular matrix of the 

E.coli. It was especially advantageous in solving the problem of site-specificity for three 

different tetrapyrroles that have very similar physical properties to have the protein 

expressed already with one of the three components covalently attached, since iron-

tetrapyroles would ligate to any available bis-his sites that are not occupied, unless heavy 

engineering of the local environments of the binding site cause the binding site for the 

intended acceptor to strongly favor the acceptor. This type of engineering is time-

consuming, requiring multiple cycles of iterative design and testing, rather against the 

underlying philosophy of the maquette approach. Consequently, in-vivo c-heme 

maturation became the logical next step towards the construction of the complete DPA 

triad with three functionally and biophysically different cofactors. While C-type 

maturation had indeed been demonstrated to be viable in de-novo proteins, the maquettes 
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utilized for that demonstration was much smaller in size and did not include multiple 

binding sites for hemes. Consequently, in order to maximize the chance of success with 

the Gen2 maquette, we implemented additional experimental techniques to increase the 

indigenous production of hemes in bacterial.(8-10)  

Figure 5.6 demonstrates the 

engineering, expression, and 

yield of the in-vivo c-heme 

maturation on the extended 

Gen2 maquette. C-type 

maquette demonstrates a 

unique spectral signature, 

with the soret peak slightly 

red-shifted by 3nm in 

comparison to the non-

covalently ligated B-heme, 

allowing for easy 

identification of successful c-

heme incorporation. 

However, over the course of 

the purification of the C-type 

maquettes, I realized that, at least in the C-type maquette discussed in this chapter, the 

covalent 

linkage of the 

heme to the 

protein via 

the two 

cysteine 

residues is 

highly 

 

Figure 5.5: Spectral electrochemical measurement of the 
redox potential of the ground state of the ZnP. vertical axis 

represents the absorbance of the soret peak under 
increasing/decreasing potentials shown on the horizontal axis. 
4uM of protein with sub-stoichiometric amount of ZnP bound, in 
standard PBS buffer used throughout this thesis. No mediator was 
used. 

 

Figure 5.6: In-vivo incorporation of C-heme in the long BT6 maquette. Left: 

UV-Vis spectrum of the purified, C-heme containing maquette(red) plotted along the 
same maquette with non-covalently attached B-heme(blue). 
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sensitive to reduction in the presence of oxygen. The spectral signature of C-heme 

disappears upon reduction of the C-heme by strong reducing agents such as β-

mercaptolethanol and sodium dithionite. This leads to unexpected difficulty in 

preparation of C-type containing maquettes to concentrations greater than 1mM, resulting 

in the difficulty described in section 5.3.7 when a few of the techniques described in this 

chapter are needed simultaneously to generate the desired triad with proper cofactor site-

specificities. 

5.3.4 Non-covalently ligated and electrochemically poised DADPIX as the electron 

donor in the triad 

After securing the site-specificity of one of the two bis-his binding sites via in-vivo 

maturation of C-type heme, the remaining bis-his site automatically gained site-

specificity since iron-tetrapyroles do not ligate readily to single-his sites. The next step 

towards the complete construction of the DPA triad in maquettes is to decide whether the 

C-heme should act as acceptor or donor, and which iron-tetrapyrole to incorporate for the 

 

Figure 5.7: Redox midpoint potential of C-type heme in Gen2 maquette determined by two 
independent methods. Left: spectral electrical chemical determination of the C-heme potential in 

4uM of maquette in 200mM NaCl, 20mM sodium phosphate, 2mM Tris-HCl at pH 7.4.Vertical axis 
represents the absorbance of the soret peak of the C-heme at 409nm. Horizontal axis shows the 
potential of the environment in which the protein is placed. Right: cyclic voltammetry of 20mM of the 

Gen2 maquette containing c-heme in standard PBS buffer using the method described in the Appendix. 
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remaining bis-his site.  

To determine the proper role of the C-heme, it is necessary first to determine its redox 

midpoint potential within the maquette. Using standard electrospectral chemical 

techniques summarized in the Appendix, the redox potential of C-heme in the Gen2 

maquette was determined to be -200mV, as shown in Figure 5.7. Since at this point, the 

choices of the final cofactor for the triad is limited to iron-tetrapyroles, the range of 

possible potential is rather small, and the most appropriate role for the C-heme would be 

the acceptor A. In order to produce a charge-separated state with reasonable amount of 

energy preserved and a proper driving force for the donor to give off its electron to the P
+
 

radical, the candidate for the donor cofactor must either be already reduced in the normal 

redox environment of a aqueous solution with decent amount of salt or can be poised by 

an external factor, either a chemical or electrodes, to remain in the reduced state, without 

affecting the redox states of the other cofactors. With the redox environment of aqueous 

solution having a potential around +250-350mV, the first option of having tetrapyroles 

already reduced is not viable, and therefore DADPIX became the ideal choice as the 

donor cofactor, since it can be selectively poised to remain in the reduced state with a 

weak reductant such as ascorbate. With a redox potential of ~50mV, ascorbate can reduce 

DADPIX only without 

affecting the C-heme or 

the pigment of Zn-

porphyrin. This redox 

poising by ascorbate is 

shown in Figure 5.8, 

where the first DPA triad 

in a maquette is 

successfully assembled.  

Scheme 5.1: Synthesis scheme of propargyl tyrosine. Adapted 
from the supplementary information of (11) 



147 
 

5.3.5 Incoporation of unnature amino acids as site-specific covalent anchoring point 

for additional cofactors 

The combination of the inability to keep all of the DADPIX in its reduced state and the 

lack of reliable techniques to isolate the ascorbate from participating in the electron 

transfer reaction resulted in transient absorption experiment results that are difficult to 

interpret. I will not include the data here in this thesis since it does not offer beneficial 

information to future designs and engineering of functional maquettes. Nevertheless, this 

demonstrated that the choice of 3 tetrapyroles for the DPA triad is not viable, as the range 

of redox potential is too small and the biophysical properties of the cofactors are too 

similar.   

Unnatural amino acid has become an attractive method of introducing chemical 

modifications to proteins in recent years.(11, 12) I would like to express my sincere 

appreciation for the expertise of Professor Petersson, whose research group focuses on 

the various applications of unnatural amino acids to expand the horizons of protein 

functions. With his advice as well as generous assistances from John Warner and 

Rebecca Wissner, students mentored by Professor Petersson, I was able to apply 

 

Figure 5.8: Full assembly of the first DPA triad in a maquette using DADPIX-ZnP-C-heme as the 
cofactors, with ascorbate poised DADPIX as the donor. Left: Redox spectrum of DADPIX bound to 

5uM of maquette by in presence and absence of 10mM ascorbate. Right: Assembly of the DPA triad at 
various stages during the preparation, in 5uM of maquette in standard phosphate buffer(200mM NaCl, 
20mM sodium phosphate, 2mM Tris-HCl @pH7.4). 



148 
 

unnatural amino to maquettes to expand the selection of potential cofactors for the 

construction of a functional DPA triad. Specifically, the Gen2 mauqette was expressed in 

a strain of E.coli that co-expresses a modified tRNA synthetase and tRNA that recognizes 

the amber(TAG) codon not as a stop codon but rather a coding codon. The modified 

tRNA synthetase charges the tRNA that interacts with the amber codon with the 

unnatural amino acid of choice instead. This leads to the incorporation of the unnatural 

amino acid into the maquette. However, the efficiency of amber-codon suppression is far 

from 100%, and more frequently than not, TAG is interpreted as the stop-codon by the 

bacteria, leading to translation of a fragment of the intended maquette and therefore 

decrease in the yield of the maquette with the unnatural amino acids. The specific strain 

provided generously by the Petersson lab and used with the Gen2 maquette contains the 

tRNA and its synthetase for propargyl tyrosine, shown in Figure 5.9. It is a alkyne 

derivative of normal tyrosine, having the ability to undergo click-chemistry with 

molecules containing azide moiety(13)The chemical preparation of the unnatural amino 

acid from normal tyrosine is summarized in Scheme 5.1 and Figure 5.9, and the 

subsequent successful incorporation of propargyl tyrosine into the Gen2 maquette is 

shown in Figure 5.10.  

Although this experiment successfully demonstrated the applicability of unnatural amino 

 

Figure 5.9: chemical characterization of propargyl tyrosine using Left: MALDI-TOF with 1mM 

sinapinic acid as the matrix, and Right: 1D proton NMR, with the structure of the molecule shown as 
insert, and the various chemical shift peaks labeled to reflect the hydrogens they correspond to. 
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acid in de-novo engineered proteins that have no structural or sequence resemblance to 

existing natural proteins, the yield of the protein is far less than ideal as will be discussed 

in section 5.4.1. 

5.3.6 Click chemistry based covalent incorporation of cofactors into maquettes 

The successful expression of maquettes containing unnatural amino acid opens up yet 

another route of novel cofactor incorporation into the maquettes. As already mentioned 

above, the unnatural amino acid successfully incorporated in the maquettes, propargyl 

tyrosine, is click-chemistry ready. The presence of the terminal alkyne allows reactions 

with molecules containing the azido-group to take place in mild conditions that are ideal 

for small proteins such as maquettes. The details of the click-chemistry reaction are 

summarized in the methods section, while Figure 5.11 demonstrates the successful 

modification of the propargyl-tyrosine containing maquette with a azido derivative of 

ferrocenes. The choice of ferrocene as the donor is explained in further detail in Chapter 

VI, as this chapter is mainly devoted to showcasing the various novel techniques that 

have been individually successfully applied to the maquette approach in order to expand 

the possible methodologies of customizing maquettes for the intended function. However, 

because incomplete reaction between the protein and the modifier is possible, another 

round of purification by HPLC is required. This leads to a further decrease in the yield of 

the final desired product.  

5.4 Discussion 

5.4.1:  Challenges of bringing everything together: consistent failures in 

simultaneous application of multiple methods presented in this chapter.  

Up to this point, all the engineering methodologies described in this chapter have proved 

to be successful to various extents in their ability to expand and improve site-specific 

incorporation of cofactors with distinct intended roles individually. However, none of the 

methods presented here alone brings site-specific incorporation of the D-P-A method to 

completion. Instead, a combination of methods is necessary. However, when multiple 
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methods described in this chapter were applied to maquettes simultaneously in an 

attempt, as is necessary to ensure the necessary site-specificies for the construction of the 

complete triad, we were surprised by the lack of synergies between almost all of these 

methods introduced. That is, simultaneous applications of more than one of the above 

presented methods result in significant reduction in the final yield of the desired maquette 

with cofactors incorporated. As already shown above, the combination of in-vivo 

maturated C-heme and the chemically poised DADPIX resulted in suboptimal 

experimental condition that prevented proper detection of the formation of the charge-

separated state. On the other hand, in order to incorporate both the propargyl tyrosine and 

the C-heme into the maquette, as both methods occur in-vivo during the expression of the 

protein, the maquette must undergo a series of mechanisms required for both maturation 

schemes before it is completely expressed. It is highly probable that a strong 

incompatibility exists between these two in-vivo incorporations, as the yield of maquette 

that have successfully incorporated both C-heme and propargyl tyrosine is negligible. A 

closer examination of the mechanisms of these two incorporations reveals that the C-

heme maturation takes place after an exportation of the nascent maquette to the 

periplasmic space(10, 14)with a significantly more reducing environment than the 

cytoplasm, due to the presence of a small export tag sequence near the N-terminus of the 

expressed protein, while the incorporation of the propargyl tyrosine takes place during 

translation, when the tRNA is successfully charged with the unnatural amino acid and 

recognizes TAG. However, for the cases when the translation machinery did not succeed 

at amber codon suppression and the translation is terminated, the product still contains 

the export tag sequence and promptly exported to the periplasmic space. This causes the 

periplasmic space to be filled with a large amount of peptides that do not contain the 

proper heme binding site, causing the CCM chaperones to have increased difficulty in 

locating their substrates.  

However, it is indeed worth pointing out that rather than applying two or more of the 

methods demonstrated in this chapter simultaneously, single application of the click-

chemistry upon successful incorporation of the propargyl tyrosine would impart the 
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necessary site-specificity for a DPA triad if the acceptor role is played by either a 

DADPIX or a B-heme. This experiment was indeed planned but was transformed and 

carried out in the more promising form of engineering a DPA triad using the same 

strategy in the new generation of maquettes with a high resolution crystal structure, as 

described in detail in the upcoming Chapter VI.  

5.4.2: Sky’s the limit: maquette approach’s first-principled, functionally neutral 

nature makes it susceptible to any type of functionalization. 



152 
 

While none of the novel modifications of maquettes described in this chapter was used in 

the engineering of the final DPA triad showcased in Chapter VI, thanks to the valiant 

effort by Nathan Ennist in obtaining the crystal structure of a maquette, these 

modifications were all successful as far as their immediate purposes were concerned. 

Indeed, throughout this chapter, it has been repeatedly demonstrated that customization 

of maquettes by biophysical and biochemical techniques that could be problematic to 

natural proteins, tend to produce successful, positive results. This reflects one of the 

central characteristics of maquettes and underscores a major advantage of the maquette 

approach as a method of protein engineering: the functionally neutral nature of maquettes 

as medium or a platform. As demonstrated in Chapter IV, the single set of first-principled 

 

Figure 5.10: Incorporation of propargyl tyrosine into maquettes. Mass spectrum of the 

purified maquette using the procedure described in the methods section. The mass of the 
mauqette without the propargyl tyrosine is shown for reference. 
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based constraints invariant to all maquette designs is the combination of the binary 

patterning and the heptad repeat of the residues. This set of fundamental rules leaves the 

function side of maquettes to be essentially tabula rasa, further constrained to a various 

but still not a great extent by the additional engineering of the specific sequences. The 

maquettes showcased in this chapter, Gen1 and Gen2 specifically, are excellent examples 

of minimally engineered sequences that are largely functionally unconstrained. Other 

than the binding sites for the cofactors, the maquette sequences demonstrated so far are 

only engineered to ensure that the four-helical bundle motif is realized, without 

overwhelming rigidity in the hydrophobic core to preclude cofactor binding. This 

functionally neutral chacteristic, to the best of my understanding, allows the maquettes to 

be highly compatible with engineering techniques, underscoring one of maquette 

approach’s unique 

strengths among the 

various protein design 

methods.  

5.5 Conclusion 

Chpater V of my thesis is 

a special place where a 

large collection of 

experimental results that 

would otherwise receive 

no attention, in terms of 

being showcased in 

presentations in front of 

crowds or included as 

figures or even 

supplementary figures in 

manuscripts, get their due recognition. Although they did not contribute to the record-

breaking charge-separating triad that takes on the main role of the next chapter, these 

 

Figure 5.11: Incorporation of azido-ferrocene in maquettes via 
click-chemistry. Mass spectra of the product of the click-chemistry 

reaction(green) in comparison against the reactant(blue), with the 
difference being the mass of the azido-ferrocene. The insert illustrates 
the mechanism of the reaction. 
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results have significantly expanded the horizon of functional engineering of maquettes, 

demonstrating the great potential of maquette approach has in the application of 

functional derivatization of proteins by biochemical and biophysical methods. These 

results also exposed the maquette engineering to possibilities of cofactors that have never 

been associated with protein environments in the past, such as the ferrocene and 

fullerenes, synthetic molecules with redox midpoint potentials that are ideal as electron 

transfer partners, either acceptors or donors, for pigments such as Zn-porphyrins and 

chlorins. Indeed, the exploratory experiments with azido-ferrocenes shown in this chapter 

led to the adoption of ferrocene as the donor, albeit via a different linkage mechanism, by 

the triads in Chapter VI.  
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Chapter VI: Engineering of water-soluble charge-

separating Donor-Pigment-Acceptor(DPA) triads in a 

highly structured 4-helical scaffold protein to achieve 

world record for longest lifetime of charge-separation 

and to test the theoretical design blueprints of general 

charge-separating devices  

6.1 Introduction:  

In the previous chapter, I described an array of novel engineering modifications of the 

original generation of single-chain amphiphilic maquettes(1, 2) aimed to bring about an 

engineering breakthrough that allows single maquettes to accommodate more than two 

different cofactors of differing redox and photophysical properties with high affinities, 

without requiring inter-protein interactions or the presence of small redox molecules in 

the surrounding environment. This represents an evolutionary step in the development of 

the maquette approach in protein engineering that enables the construction of a donor-

pigment-acceptor triad as the first, proof-of-principle step towards the eventual 

engineering of the optimal photochemical multi-ads specified by the engineering 

blueprints. In spite of the individual successes to various extents achieved separately, 

these engineering modifications have not seen successful simultaneous implementation 

due to various practical limitations of the Gen2 maquettes used, as described at end of the 

previous chapter. Consequently, the challenge to ensure site specificity while maintaining 

reasonable yield of the final product, namely the intended charge-separating triad design 

specified by the engineering blueprints, had not been satisfied. Moreover, the lack of high 

resolution structural information on that generation of maquette from either an NMR or 

X-ray 3D has also limited the confidence with which the necessary reengineering of the 

existing maquettes were carried out. Indeed, no DPA triad that demonstrates formation of 

small, long-lasting charge-separation with lifetimes greater than 100ms based on this 

generation of maquettes had been successfully engineered. Fortunately, thanks to the 

efforts of Nathan Ennist of the Dutton group(manuscript in preparation), a new 

generation of maquettes that offer both detailed structural information and high site-
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specificities for cofactors became available as the ideal platform and testing ground for 

charge-separating multi-ads, obviating any further need to engineer the Gen2 maquette 

reported in Chapter V.  

In addition to the evolution from dyads to triads and beyond in the form of maquette 

design, another necessary fundamental change in the paradigm of practical CS 

engineering necessary as learned from the efforts described in Chapter V is that 

tetrapyrroles alone are insufficient to produce even proof-of-principle charge-separating 

triads, as they are only able to provide a limited number of midpoint potentials within a 

range that’s too small to obtain desirable driving forces for the lifetime and yield of 

charge separation.(3) When the pigment cofactor availability is limited to Zn-

porphyrin/Zn-chlorin due to practical constraints and the usage of triplet excited state is 

tolerated by artificially subjecting the photosystem to anaerobic environments, hemes’ 

 

Figure 6.1: Available tetrapyrrole cofactors successfully incorporated into maquettes in 
past studies. The corresponding midpoint potentials and binding affinities to maquettes are listed in 

Table 6.1. Figure reproduced from (3) with author’s permission. The number shown below each cofactor 
refers the cofactor’s partition coefficient between octanol and hexane.  
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range of midpoint potential makes them the adequate candidates for the acceptor role, 

especially when more appropriate acceptors with much lower midpoint potentials are not 

available due to a simple lack of available candidates. Consequently, the restriction of 

cofactors selection to tetrapyrrole forces the choices for donors to be difficult and highly 

suboptimal. Specifically, the tetrapyrroles that have been successfully incorporated into 

maquettes in previous studies fall within the range of -220mV(B-heme) and 50mV, as 

shown in Figure 6.1. In comparison to the expected 600mV or higher potential(shown in 

chapter V and examined in detail again in this chapter) of the ground state of the pigment 

molecule, none of the tetrapyrroles can serve as adequate donor, as we have seen in 

Chapter II that the optimal Em of the donor should be slightly above that of the pigment 

ground state to produce efficient long-lived charge separation.  In order to approach the 

optimality prescribed by the engineering blueprints in Chapter II and III, it is therefore 

necessary to expand the types of cofactors beyond tetrapyrroles. Incorporation of many 

frequently used non-tetrapyrrole cofactors capable of participating in electron transfer 

reactions, as seen in the previous chapter and as to be demonstrated in this chapter, 

usually  involves covalent modifications of side chains or backbones of the maquette, 

with a linker that influences the effective inter-cofactor distances  Without detailed 

structural information of a given maquette, however, it is significantly more difficult, 

more risky, and impractical to design modification sites without existing structural 

information of the protein platform.  

In this chapter we report the successful design and engineering of a series of proof-of-

principle donor-pigment-acceptor(DPA) charge-separating devices, built on top of a 

platform of a new generation of highly ordered and structurally stable maquettes 

engineered by Nathan Ennist of the Dutton group(manuscript in preparation), whose 

structural details of up to 1.9 Å resolution had been determined by X-ray crystallography. 

We demonstrate the successful incorporation and utilization of ferrocene, a highly 

effective cofactor used previously exclusively in synthetic engineering of charge 

separation that had never been applied to protein-based electron transfer.(4, 5) We 

investigate the specific engineering landscape of our proof-of-principle triads given the 
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structural and practical constraints using the engineering guidelines we established in 

Chapter II and III.  We remark the successful and significant generation of the longest 

living charge-separated state, over 331ms, ever observed and engineered in a triad device, 

to the best of our knowledge, also the longest lasting charge-separation ever observed in 

any protein-based designs. Finally, we report the empirical effects of varying distances 

and driving forces on the lifetime, quantum yield, and engineering efficiency of the 

charge-separation achieved by our DPA triad and compare the observation to the 

expected changes described by our theoretical model.  

6.2: Methods:  

Standard molecular biology, biophysical, and biochemical methods are summarized in 

the Appendix  rather than reported here in order to make the presentation of this already 

large chapter less overbearing. However, methods unique to this chapter and essential to 

the assembly of the triad are described here. Moreover, the details of the SVD-based 

global analysis of the transient absorption data are also reported here, since it constitutes 

one of the main advances this study actually resulted in, an effective and straightforward 

standard method used by other members of the laboratory.   

 

Table 6.1: Dissociation constants and Ems, along with other properties, of the tetrapyrroles 

that have been successfully incorporated into maquettes. The names of the tetrapyrroles correspond 
to those shown in figure 6.2. Reproduced from (3) with author’s permission.  
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6.2.1 covalent modification of maquette via cysteine-maleimide reaction: 

 N-ferrocenyl maleimide was incorporated into the maquette by mixing the molecule in DMF with 50uM of 

the maquette in 6M Guanadinium HCl and 5mM TCEP at 10:1 ratio and rotating overnight with protection 

from light. The unreacted protein was separated from the reacted via HPLC using a gradient of 

water/AcCN mixture going from 35%AcCN:65% water to 65% AcCN and 35% water. The unlabeled 

protein eluted at 51%AcCN:49%water while the labeled protein eluted later at 55%AcCN and 45% water. 

The purity of the labeled protein fraction is examined and verified using MALDI-TOF, assisted by the 

matrix of saturated solution of synaptic acid at 45% laser intensity.   

6.2.2: Fluorescence emission spectroscopy:  

Fluorescence emission spectra of the ZnP bound to the maquette were measured using fluoremeter, The 

sample was excited at 540nm and emission spectra were collected from 550nm up to 1100nm, the detection 

limit of the instrument. The sample was examined both in aerobic(atmospheric) and anerobic conditions. 

The anaerobic condition was achieved by aeration by dried argon on the top of the sample with stirring for 

2 hours, coupled with addition of the oxygen scavenging system(6) using a mixture of 1μM glucose, 10nM 

glucose oxidase, and 1nM catalase, as described in the reference. 

6.2.3: Redox and electrochemical measurements:  

The redox potentials of the cofactors in the maquette were measured using electrochemical spectroscopy 

and square-wave voltammetry. 30-50uM of cofactor bound maquette in 50mM phosphate, 200mM NaCl 

was mixed with mediators of appropriate potentials for the specific cofactor of interest. For DADPIX and 

B-heme, a mixture of Anthra-quinone-2-sulfonate (100µM), Benzly Viologen (50µM), Methyl Viologen 

(50µM),Sulfanilamide (50µM), Indigo trisulfonate (50µM), Phenazine (50µM) was used, while for the Zn 

porphyrin, a mixture of high potential mediators including K2[Ir], 2,6-p-quinone, was used. The samples 

were subjected to increasingly oxidizing potentials in the range of +_200mV of the estimated potentials of 

the cofactors at 20mV increments. UV-vis spectra at each potential was recorded after the sample has 

stabilized after each potential change. The samples were then subjected to increasingly reducing potentials, 

again using 20mV decrements.   

6.2.4: Transient absorption spectroscopy of the monad, dyad, and triads:  

The photodynamics of the monad, dyad, and triad are all probed via nano-second transient absorption 

spectroscopy. All samples were kept under anaerobic conditions via a combination of aeration with dried 

argon for 2 hours and the addition of a oxygen scrubbing system consisting of 5nM catalase,10nM glucose 

deoxygenase, and 1uM of glucose. A Nd:YAG laser excites the sample at 532nm, then a pulsed Xe lamp is 
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used to probe the post-excitation sample at various delay times of interest. The instrument design limits our 

time resolution to as fast as 50ns and as slow as seconds. The probe Xe lamp light, dispersed by a 

monochrometer, is captured by a PIMAX CCD camera. The captured image is compared with the same 

image captured when no laser excitation occurs, thereby generating a difference spectrum.  

6.2.5: SVD-based global analysis and kinetics model fitting of the transient 

absoprtions data:  

Singular Value Decomposition(SVD) is applied to the data matrix obtained from preprocessing of the raw 

transient absorption data. The implementation of SVD in this specific thesis involves the usage of Matlab 

2014b. The analysis calls the built-in “svd” function of Matlab on the raw data. The raw data is represented 

by matrix A, with dimensions l by t, where l is the number of wavelengths and t is the number of time-

resolved snapshots taken during the experiment. Calling the “svd” function using A as the input variable 

returns a left matrix U with dimensions l by l, a central matrix S with dimensions l by t, and a right matrix 

V with dimensions t by t.  

The right matrix V resulting from the SVD is used to fit a kinetics model described by solutions of ODEs 

depending on the configuration of the photosystem examined. The model fitting follows a modified version 

of the method described by Hofrichter(7) where a linear transformation matrix C is applied to the expected 

population matrix P computed from the model. The L2 norm of the difference between the right t by t 

matrix and the product CP is minimized by the standard minimization function “fminfunc” available in 

MATLAB 2014b, in which the rates of various electron transfers in the kinetics model along with the 

elements of the C matrix are allowed to vary. The minimization function is instructed to utilize the quasi-

newton minimization procedure. Various initial conditions are tried in order to obtain the best fitting of the 

data. The results of the minimization is examined by comparing the residual of the minimization to other 

values obtained from different sets of initial conditions to ensure that the minimum discovered by the 

algorithm is, as far as the information reveals, the global minimum or a satisfying local minimum. The 

values of the C matrix as well as the rates of the electron transfer between the states are then used to 

compute the reconstructed elemental spectra that make up the observed raw data as well as the electron 

transfer kinetics that best explains the observed data.  
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6.3 Results: 

6.3.1: High resolution X-ray crystal structure of a novel generation of highly stable 

and cofactor-specific maquette as the appropriate template for DPA triad design. 

Thanks to the efforts of Nathan Ennist of the Dutton Group(manuscript in preparation), a 

new interpretation of the maquette approach was adopted where the focus of design shifts 

from a general, omnibus like scaffold capable of supporting and sustaining multiple 

dissimilar functions to a more specific and particular platform that specializes in a small 

set of highly similar functions, namely highly stable and independent cofactor binding. 

The change in the implementation of the maquette approach led to the engineering of the 

first single-chain 4-helix bundle maquette that has been successfully crystalized and 

yielded X-ray structure at 1.9A resolution, in both holo- and apo- forms. This design 

created a 4-helical bundle that contains three independent, modular cofactor “slots” 

specifically designed for the three roles of a charge-separating triad, as shown in Figure 

6.2. The maquette exploits a bis-his ligation to bind iron-porphyrin at one end of the 

maquette as the A slot, a single-his ligation to bind Zn-porphyrin/Zn-chlorin in the 

middle of the maquette as the P slot, and finally a less structured D slot consisting of a 

metal binding site for future catalysis and a generic ligation site for incorporation of high 

potential, non-tetrapyrrole cofactors.  
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However, the high specificity is 

achieved by trading off the 

versatility and adaptability of 

the designs of the past 

generations of maquettes, as 

both the bis-his and single-his 

sites are highly engineered, with 

residues constituting the 

primary and secondary shells 

surrounding the cofactors 

chosen particularly for optimal 

binding of specific tetrapyrroles, 

namely, hemes and Zn-

porphyrins respectively. As 

shown in Figure 6.2, the highly 

specific binding sites for the two 

tetrapyrroles ligate both the 

iron- and zinc-porphyrin in 

place so stably that the electron 

density for both factors, more so 

for the heme and less for the zn-

porphyrin, can be clearly seen. 

As intended by design, the 

maquette shows similar 4-helix 

bundle width, hydrophobic core 

packing, rotameric states of heme-ligating histidines, and histidine hydrogen bonds with 

nearby threonines.  However, it was unexpected that heme would be held in such a fixed 

orientation (low crystallographic temperature factor) as no facet of the design was 

consciously included to prevent free rotation of the porphyrin ring about the His-Fe 

ligands while keeping propionate groups solvent exposed.  Furthermore, the orientation 

 
 
Figure 6.2: Crystal structures of photochemical maquette, 

top, compared to Mn bound bacterioferritin (PDB ID: 1BFR, 
magenta) and cytochrome bc

1
(PDB ID: 2A06, cyan), bottom. 

Row 2: enlarged resolved structures around the A, P and D slots 
with a Tyr and Mn

2
 pair, ZnP, and heme.  Row 3: close up of the 

bacterioferritin Mn2 Tyr center and the two b heme site of bc
1
. 

Row 4: juxtaposed 4-helix units of cytochrome bc
1

 and 

bacterioferritin. Reproduced from Zhao, Ennist, et al(manuscript 
in preparation). 



164 
 

of the maquette heme relative to the superhelical bundle axis is conspicuously similar to 

the that observed in cytochrome bc1, suggesting that the particular conformation of heme 

in the natural protein is not precisely controlled for any functional purpose, but rather is 

an accident of the structural constraints demanded by this protein fold. Indeed, in spite of 

the de-novo nature of the amino-acid sequences comprising the two binding sites, there 

exist significant similarities between the secondary and tertiary structures of the maquette 

and naturally occurring cytochrome bc1 and b6f.  

The availability of abundant structural information of the new generation of maquette, 

along with its highly engineered and specific functional slots for acceptor, pigment, and 

donor meets the requirements not satisfied by the previous generation of maquettes and 

makes it the appropriate starting point to carry out our design of the DPA triad. However, 

the highly designed nature of the maquette imposes additional constraints on the design 

of the triad, limiting the ease with which the acceptor and the pigment binding sites could 

be modified or moved. We therefore examine the engineering landscape of the DPA triad 

in this maquette under the constraints of fixed binding sites of the P and A. 

6.3.2: Engineering landscape of the DPA triad using the structured maquette as 

design platform.  
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Using the maquette that produced the crystal structure as a starting point, we examine the 

engineering landscape given the constraints we face, namely fixed distance between the P 

and A binding sites. This leaves us with the freedom of choosing the exact location of the 

binding site for the donor(D) within the donor slot as well as its midpoint potential. 

Additionally, the midpoint potential of the acceptor(A) also serves as one of the 

engineering parameters that can be explored experimentally in a short amount of time 

without incurring additional complex and low-yield synthesis to generate other varieties 

of tetrapyrroles with certain redox and photophysical properties.  

We explore the engineering landscape using the type of contour plots as seen in Chapter 

II, generated from the numerical functional representation of the yield of the charge-

separated state in terms of the fundamental parameters of photosystem engineering, 

viewed from the perspective of keeping everything but two variables fixed. Unlike the 

previous plots, however, where we explored the theoretical range of design parameters 

tolerated by a photochemical multi-ads without any practical constraints other than the 

essential parameters we specified, here we are significantly more limited in our choices 

of potentials and distances. Specifically, while in the abstract engineering guidelines we 

focused on the term engineering efficiency as the product of the quantum yield of the 

 

Figure 6.3: Photophysical properpties of the ZnP pigment cofactor for the triad design.  Left: 

electrochemical redox titration of the ZnP in both oxidizing(blue dots) and reducing directions(red dots), 
fitted to n=1 Nernst equations(red and blue curves) after normalization. Right: fluorescence and 

phosphorescence of the Zn-porphyrin pigment used in the triad construction. The cofactor in maquette is 
excited at 532nm and its subsequent fluorescence and phosphorescence was collected in both anaerobic 
and aerobic conditions.  
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charge-separation and the ratio of energy preserved in the charge separation, treating it as 

a real-valued continuous variable, here the ratio of energy preserved in charge separation 

is highly discreet thanks to the limited options of acceptor and donor cofactors we have 

available. Consequently, it is more appropriate for us to examine the engineering contour 

with respect to the quantum yield of the charge-separated state rather than the 

engineering efficiency of the charge-separation, as it provides a more direct and fairer 

metrics for the performance of the device.  

As shown in Figure 6.3, the Zn-porphyrin tetrapyrrole shown in the crystal structure of 

the maquette has a measured redox potential (Em) of 0.9 V and efficiently forms a triplet 

state by intersystem crossing when excited at 532 nm and persists for 20 ms in the 

absence of D or A.  An excited triplet redox potential of 690mV can be estimated from 

the observed 780 nm phosphorescence. Using this cofactor as the pigment(P) of the triad, 

the engineering landscape of the edge-to-edge distances between the P and A or D and 

the influence of the A and D redox potentials are illustrated in Figure 6.4. The contours 

follow the anticipated yield of the D+PA- state at 100 ms, a time chosen to facilitate 

future development of an active catalytic metal center. In panel A, a notable performance 

“cliff” is observed at the D-P distances longer than 10 Å, as the electron transfer rate of 

the donor reducing the P
+
 radical becomes too slow and can no longer compete with the 

direct charge recombination from the A
-
 to the P

+
. A similar effect is seen in the redox 

midpoint potentials of acceptor, represented in practice by the two different iron-

porphyrins available, DADPIX and B-heme. The choice of B-heme would result in a 

significantly lower performance. We therefore favored the choice of DADPIX in our 

construction of the triad, in addition to a more practical reason relating to the spectral 

congestion as will be explained below. 
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Due to quantization of distance engineering in our maquette as described above, only 

select regions in the contour plots are accessible by our design, as shown by the helical 

guide at the top of the figure. We have engineered variants of the DPA triad taking 

advantage of the quantized nature of the binding sites, and have examined their 

performances relative to the prediction made here by our model. Because of the 

flexibility involved with the maleimide linkage to the cysteine residue, there are two 

 

Figure 6.4: Design guidelines of the DPA triad 
in the maquette platform in the same style of 
contour plots as in Chapter II, but here of the 
quantum yield of the charge separated state 
D+PA- at 100 ms. A: Effect of varying the P to D 

distance (horizontal axis) and the acceptor redox 
potential (vertical axis), with the donor potential and 
P-A distance fixed at 0.5 V and 12 Å.  Labels on the 
top represent changes in spacing arising from one 
more alpha helical turn (top) between cofactor 
anchoring amino acids. The red dot represents the 
variant of the DPA where, thanks to the steric effect 
described in Figure 6.5, the donor is farther away 
from the pigment than the other variant represented 
by the light blue dots.  B: corresponding yield 
contours varying the P to D distance with the 
acceptor potential and P to A distance fixed at -0.15 
mV and 12 Å respectively. Symbols represent four 
test designs with varying P to D distances and 
acceptor potentials.  



168 
 

orientations of the donor and therefore two possible distances per variant. This will be 

discussed in detail in the next section. 

More importantly, the bottom panel of Figure 6.4 indicates that there is a even more 

drastic performance drop caused by increases in the redox potential of the donor cofactor 

chosen. The redox potential of the P/P
+
 determines that the donor cofactor must not have 

redox potentials higher than 550mV, in order to maintain a necessary driving force for 

the D->P
+
 ET to take place.  

6.3.3 Incorporation of ferrocene as the donor cofactor into the donor slot of the 

maquette scaffold at near and far donor positions 

The previous section and Figure 6.4B clearly demonstrated the necessity for a donor 

cofactor that can supply redox potentials in the range above 450mV, far above the upper 

limit of known tetrapyrroles. As shown in chapter V and other previous studies in the 

Dutton group, non-tetrapyrrole cofactors have been added to maquettes using click-

chemistry or direct modifications via unnatural amino acids.(8) However, cofactors that 

offer midpoint potentials above 300mV had not been attempted, largely due to the 

general lack of biologically friendly cofactors within this potential range. One of the most 

common cofactors used as donors for Zn-porphyrin pgiments in the engineering and 

design of chemical synthetic photochemical systems is ferrocene. Ferrocene has served as 

the donor cofactor in synthetic triads, tetrads, and pentads that successfully produced 

charge-separation lasting as long as 510ms(pentad) However, applications of ferrocene as 

donors in biological photochemical designs have not been reported, to the best of our 

knowledge. Chapter V has already demonstrated that protein environment, specifically 

the environment provided by de-novo designed, small, water-soluble proteins, is well 

suited for ferrocene. Nevertheless, the click-chemistry based method shown in Chapter V 

requires the incorporation of an unnatural amino acid before the functional moiety could 

be added, creating a bottleneck in a process where yield is a significant factor. 

Consequently, a different method for the incorporation of ferrocene in the donor position 

is required. Due to the availability of a high-resolution crystal structure, however, 
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methods that were once considered unviable for maquettes have now become applicable, 

such as maleimide-based modification of cysteine residues. 

Because of the absence of cysteine residue within the maquette as well as the availability 

of N-ferrocynyl-maleimide and the high resolution structure of the maquette, maleimide 

modification was deemed the ideal method of incorporation for the ferrocene cofoactor. It 

is important to note that maleimide linkage in this specific case is ~3A in length in 

addition to the dimensions of the side-chain of the cysteine residue and the ferrocene. In 

the past, when no structural information was available, this additional distance, along 

with the subsequent uncertainty in the position of the cofactor incorporated via the 

maleimide linkage, made this method undesirable. However, the crystal structure of the 

maquette minimizes this uncertainty. Based on modeling using the crystal structure of the 

holo-protein in pymol, we have identified two optimal anchoring sites, namely, the 

Y168C and G164C mutations(the G164C mutation includes also the Y168L mutation to 

remove the tyrosine as a potential donor even though Figure 6.4 has already demonstrated 

that tyrosine at its native redox potential of 1050mV(9, 10)cannot properly serve as the 

donor for this DPA triad design, for the maleimide linked ferrocene that provides a near- 

and a far- configuration for the ferrocene donor, where the effective edge-to-edge 

distances to the pigment are 6 Å and 12 Å respectively. The near-position, however, 

requires the placement of the cysteine residue further from the histidine residue ligating 

the pigment than the far-position, since, as seen in Figure 6.5A-B, the Y168C mutation is 

too close to the pigment cofactor that due to the steric clashes the maleimide-linked 

ferrocene must adopt the downward-pointing position. On the other hand, the G164C 

ligating site, as shown in Figure 6.5C-D, allows the maleimide-linked ferrocene to adopt 

both the upward and downward pointing positions, but since the downward-pointing 

position would result in a D-P distance(>15Å) too large to sustain effective electron 

transfer, the G164C ligating site, although further away from the Y168C, ends up 

providing the “near-“ ligation for the ferrocene. The difference in the D-P distances 

provided by the two ligation sites are reflected clearly in the electron transfer kinetics of 

these two different triads, as demonstrated below in section 6.3.7.  However, it must be 
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noted here that the arguments presented above are based on observations made from 

pymol modeling using a simulated structure of the N-ferrocenyl-maleimide connected to 

a cysteine sidechain. To obtain additional support, molecular dynamics simulation to 

examine the preference of the cysteine rotamer will be helpful. Additionally, when the 

yield of the maleimide modification and subsequent purification could be improved, 

crystallization of the maleimide-ferrocene modified maquette would be able to offer the 

most convincing evidence for or against the arguments made here.  

Upon deciding where to place the ligating cysteines, we proceeded to express the 

maquettes with cysteines at the two ligation sites and incorporate the maleimide-

ferrocene via standard maleimide-cysteine reaction as described in the methods section.  

Figure 6.6 demonstrates the successful incorporation of the ferrocene into the maquette, 

as seen from the comparison of the MALDI-TOF signals of the unlabeled and labeled 

maquette, as well as successful separation of the reacted fraction of the protein from the 

unreacted using HPLC. However, it is important to note that the maleimide reaction and 

the subsequent HPLC separation puts a practical limit on the concentration and volume of 

the finished ferrocene-maquette adduct to around 20uM/ml at 3-5ml. Moreover, as seen 

in Figure 6.9, the extinction coefficient of the ferrocene cofactor is around 100-200 times 

less than that of the acceptor and pigment cofactors. Consequently, it is impractical to 

determine the redox midpoint potential of the ferrocene in the maquette using the same 

spectral electrochemical methods used to generate the redox titration data shown above. 

Instead, methods optimal for low concentration, small sample-size are preferred, such as 

square-wave step-sized voltammetry were used to determine the in-maquette redox 

potential of the maleimide ligated ferrocene. The bottom two panels of Figure 6.8 

demonstrates the redox midpoint potential of the N-ferrocenyl-maleimide prior to its 

ligation to the maquette via the above-described cysteine-maleimide reaction using both 

cyclic voltammetry and spectral electrochemical redox titration. These measurements 

were conducted with highly concentrated sample of the ferrocene(500mM) so that either 

a strong enough reducing/oxidizing wave can be observed on the CV or a large enough 

peak can be observed by the UV-vis spectroscopy.  
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6.3.4 Assembly of the Heme-ZnP dyad and Heme-ZnP-Ferrocene charge-separating 

triads. 

 

Figure 6.5: Rotamer preferences and their impacts on the effective donor-pigment 
distances in the G164C(near) and Y168C(far) variants of the DPA triad designs. A: pyMOL 

model of the pigment and the cysteine ligated maleimide-ferrocene in the G164C mutant when the 
cysteine rotamer points to the up position, seen in both stick and space-filling representations. This 
results in an effective D-P distance of 5A. B: same as A, except the cysteine rotamer points in the down 
position, with an effective D-P distance of 15A. C: model of the pigment and cysteine ligated 

maleimide-ferrocene in the Y168C mutant when the cysteine rotamer was allowed to adopt the “up” 
position, resulting in severe steric clashes with both the pigment cofactor and the protein backbone, as 
seen in both the stick and space-filling representation of the structure. D: same as C, except with the 
cysteine rotamer pointing down, causing no steric clashes and resulting in a D-P distance of 9.6A. 



172 
 

With the ferrocene covalently 

anchored to the two intended donor 

positions, the next step is to examine 

the binding of the acceptor cofactor 

and the pigment cofactor, thereby 

demonstrating that the incorporation 

of the ferrocene cofactor does not 

significantly alter the structure and 

environment of the maquette 

scaffold and allows for the 

successful assembly of the DPA 

triad in the maquette. To ensure site 

specificity, the assembly proceeds 

sequentially with the addition of the 

bis-his ligated iron-porphyrin and the single-his ligated zinc-porphyrin after the 

ferrocene-cysteine maleimide reaction had been carried out and the reacted species 

separated from the unreacted. Figure 6.7A and B demonstrates the high affinity of the 

maquette to both the iron- and zinc-porphyrin with the presence of the ferrocene. Figure 

6.8A-B shows the redox midpoint potentials of the two acceptor cofactors of choice, 

DADPIX and B-heme, obtained via standard spectral electrochemical titration detailed in 

the methods section, while 6.8C shows the redox potential of the free N-ferrocenyl-

maleimide prior to labeling reaction with the maquette, measured using standard cyclic 

voltammetry. It is interesting to notice that in comparison to previous generations of 

maquettes shown in Chapter IV and V, this new generation of maquette provides 

environments for Fe-porphyrin that causes their redox potential to shift towards the 

positive direction by about 100mV, a significant change based simply on the environment 

of the cofactors alone.  Figure 6.9 shows the UV-Vis absorption spectra of the individual 

redox spectra of the cofactors of the acceptor, pigment, and donor position, as well as the 

overall spectral profile of the completed dyad and triads.  

 

Figure 6.6: covalent incorporation of ferrocene into 
the maquette via maleimide-cysteine linkage. MALDI-

TOF of labeled(blue trace) and unlabeled(red trace) 
maquettes. Notice the ~250amu difference between the 
main peaks of the labeled and unlabeled maquette, 
corresponding to the mass of the ferrocenyl-maleimide 
incorporated via the labeling reaction.  
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While the final goal is the construction and examination of a DPA triad, and successful 

charge-separating dyads had already been demonstrated in maquettes, in order to ensure 

the reliability and correctness of our results and analysis of the DPA triad charge 

separation, it is necessary to understand the complete photophysical and electron transfer 

details of the P monad, and P-A dyad leading up to the complete triad. The necessity to 

understand their behaviors is further increased by the fact that the maquette platform 

upon which the intended triad is constructed belongs to a new generation of single-chain 

 

Figure 6.7: Maquette’s high affinity for the acceptor heme cofactor and the pigment zinc-
porphyrin cofactor after the incorporation of ferrocene. Top left: UV-Vis spectra of a titration of 

the acceptor cofactor DADPIX into the ferrocene-modified maquette at 20mM Sodium Phosphate and 
200mM NaCl., pH 7.4. Top right: fitting of the DADPIX binding titration to a standard dissociation constant 
curve, with the fitted dissociation constant shown in the middle. Bottom left: UV-Vis spectra of a titration 

of the pigment cofactor ZnP into the ferrocene and DADPIX containing maquette at 20mM Sodium 
Phosphate and 200mM NaCl, pH 7.4. Bottome Right: fitting of the ZnP binding titration to standard 1-site 

binding equation using 1.2μM of the protein in standard PBS buffer(200mM NaCl,20mM NaPO4, 2mM 
Tris-HCl) at pH7.4  
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maquettes that had not been used to demonstrate any charge-separating functions. 

To assemble the P monad, we simply added the same Zn-porphyrin that had been used in 

Chapter V, which was also featured in the X-ray crystal structure of the maquette, to the 

Y168C and the G164C maquettes at 1 molar equivalent. The presence of the unreacted 

cysteine residue, due to its presence in the highly stable hydrophobic core of the 

maquette, does not lead to significant dimerization of the maquette, as evidenced by the 

 

Figure 6.8: Redox properties of the acceptor and donor cofactors of the DPA triad. Top Left: spectral 

electrochemical redox titration of DADPIX in the maquette. Blue and red dots correspond to the oxidizing and 
reducing iteration of the titration, while the blue and red traces represent fits to n=1 Nernst equation with the 
midpoint potential obtained from the fit shown in the middle. Top Right:  redox teitratin of B-heme in the 

maquette, similar to top left. Bottom left: cyclic voltammetry of ferrocene-maleimide performed in DMF with 
100mM ferrocene-maleimide at room temperature. Bottom right: electrochemical redox titration of 100mM 
ferrocene-maleimide in DMF, measuring the 450nm absorbance of the ferrocene, whose redox spectra are 
included in the Appendix. 
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monomeric mass observed in the MALDI experiments as well as the earlier elution of the 

unreacted maquette peak in the HPLC purification of the ferrocene labeling reaction. 

Because of the highly engineered nature of the single-his and bis-his binding sites for 

their respective ligating partners, the partition ratio of the 1 molar equivalent of the 

pigment cofactor between the intended P-slot and the empty A-slot will be high. 

Moreover, due to the lack of electron transfer partners and the overall similarity of the 

environments of the P and the A slots, P cofactors should display identical photophysical 

behaviors regardless of the slot it resides in. This will become obvious when the 

photophysical behavior of the monad is analyzed using a SVD-based global analysis 

algorithm demonstrated in sections below.  

To assemble the P-A dyad, we first ligate the acceptor cofactors, either DADPIX or B-

heme, to the bis-his site of the maquette without subjecting it to the ferrocene labeling 

reaction first, same as in the assembly of the P monad. Then upon a de-salting column 

crude purification, we titrate in sub-stoichiometric amount of the ZnP pigment. This is 

essentially identical to the assembly of the DPA triad, except we use the unreacted 

mutant of the maquette, where the single free cysteine residue remains buried in the 

 

Figure 6.9: Assembly of the DPA, DADPIX-ZnP-Ferrocene triad in the scaffold maquette. Left: 

Cartoon representation of the triad with the ferrocene anchoring site shown in both the near and far 
positions. Right: UV-Vis spectra of the redox spectra of the acceptor cofactor(DADPIX) and the spectrum of 
the pigment(ZnP), and the redox spectra of the donor(ferrocene) molecule. 
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hydrophobic core.   

6.3.5 Illustrating the effectiveness of the SVD-based global analysis with simulated 

data  

Because of the highly overlapping spectral signals of the cofactors that make up the DPA 

triads as seen in Figure 6.9, we intend to construct due to the limited available pool of 

off-the-shelf candidates, single-wavelength analysis of the transient absorption spectra is 

expected to be ineffective and has a high probability of returning inaccurate or erroneous 

results. Consequently, an analysis approach that can uncouple the overlapped signals and 

 

Figure 6.10. Synthetic spectra generated to validate the singular value decomposition 
(SVD) model-fitting algorithm.  Synthetic “observed” spectra were generated based on the 3-state 
kinetic model shown in the upper-left.  A) Absorption spectra for the imaginary species “A” and “B” in 
the model.  Species “C” is spectrally silent.  B) The populations of the three states at various 
timepoints, given the rates in the upper-left.  C) The “observed” spectra, computed by multiplying the 
pure spectra in A and the populations in B.  This represents a perfect observation with no noise.  D) 
and E) show the same spectra with the addition of Gaussian noise.  Table 6.2 shows the computed 

rates for various noise amplitudes.  Figure generated by Bryan Fry, with simulated spectral and 
kinetics data provided by me. 
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capture their independently varying nature is highly preferred. As described in the 

methods section, SVD-based global analysis is commonly used for time-dependent 

spectral data consisting of multiple indepdently varying signals with high autocorrelation 

but low correlation with each other throughout the entire time domain.  

Table 6.2: testing the performance of SVD-based model fitting under various noise levels 

 

To illustrate the correctness and the effectiveness of the said method of analysis 

described in detail in the methods section, we generated simulated time-resolved spectral 

data following a two state kinetics model shown in Figure 6.10A that’s similar to the one 

that describes the ET kinetics of the P-A dyad. The spectral component of the data 

consists of two independently varying Gaussian signals with varying degrees of Gaussian 

noises added. The kinetics profile of the 3 species is shown in Figure 6.10C, which 

should be returned by the global analysis algorithm upon successful SVD and model 

fitting analysis. The ability of the global analysis to correctly uncover the underlying true 

component spectral with increasing levels of noise is shown in table 6.1. It is important to 

note that this method remains robust and noise-resistant, providing acceptable accuracy in 

terms of the kinetics parameter discovered from fitting until the noise level begins to 

overwhelm the signal even by naked eye, as seen in Figure 6.10 Together these results 

Noise 
Level 

k1 =100000 s-1 k2 = 10000 s-1 

%Err ( k1

) 

%Stdev 
(k1) 

Max %Err 
(k1) 

%Err ( k2 )

  

%Stdev 
(k2) 

Max %Err 
(k2) 

0.001 0.006 0.10 0.22 0.036 0.12 0.28 

0.002 0.009 0.22 0.62 0.041 0.24 0.67 

0.005 0.095 0.70 1.7 0.15 0.56 1.5 

0.01 0.32 0.97 2.2 0.31 1.1 2.4 

0.02 0.014 2.1 4.5 0.10 2.7 8.1 

0.05 3.8 5.0 16.5 4.1 6.2 15.0 

0.1 22.3 23.3 80.5 71.3 129 400 
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demonstrate the reliability and effectiveness of the global analysis using SVD we have 

developed to overcome the overlapping spectral signals of the cofactors constituting our 

proof-of-principle triads. 

6.3.6 Examining the photophysics of the P monad in the scaffold maquette. 

Upon demonstrating the successful assembly of the DPA photochemical triad with the 

intended site-specificities for all three cofactors as well as the assembly of monads and 

dyads that serve as necessary controls, the next step is to examine the photophysical and 

photochemical details of the charge-separation sequentially from the pigment-only 

monad to the P-A dyad, and finally to the complete DPA triad. For each configuration, 

we report the details of the electron transfer reactions kinetics examined using 

nanosecond transient absorption spectroscopy and subsequently analyzed using a SVD-

based global analysis method, described in detail in the methods section.  

Figure 6.11 describes the 

structural and expected 

kinetics model of the P-only 

monad, while Figure 6.12 

demonstrates the raw 

transient absorption spectra 

of the monad upon laser 

excitation and the SVD-

based global analysis and 

the resulting electron 

transfer kinetics it displays 

when examined under 

transient absorption 

spectroscopy. The raw data 

suggests that the recovery of 

the ground state soret bleach 

 

Figure 6.11: Structural and kinetics model of the P-monad 
in the maquette scaffold. Left: energy diagram and kinetics 

model of the P-monad. The scale on the left indicates the energy of 
the lowest lying singlet excited of the ZnP used, which converts to a 
triplet excited state via intersystem crossing(ISC), with some loss in 
energy. Right: Representation of the electron transfer active 

components of the monad relative to the maquette. 
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occurs on the same timescale as the disappearance of the broad signal from 440nm to 

470nm, indicative of the triplet excited state.  The global analysis reveals that the kinetics 

consists of a single significant component, whose time evolution can be fitted to a single 

exponential model with a lifetime of ~20ms. Together the results suggest that when the 

Zn-porphyrin is the only cofactor ligated to the scaffold maquette, the product is indeed a 

photochemical monad, whose electron “transfer” kinetics follows the model shown in 

Figure 6.12. While the monad might seem extraordinarily uninteresting as is, it serves as 

the necessary and ideal control for the dyad and triad assembly soon to be explored. It 

ensures that the triad design is stable and the site specificity for the pigment cofactor is 

good enough that a uniform and singular kinetics is observed in spite of the fact that 

when the acceptor site is empty pigment cofactors can be ligated there as well as in the 

intended pigment site.  
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Figure 6.12: Transient absorption spectra and SVD-based global analysis of the P-monad 
kinetics. Top left: Transient absorption difference spectra of the P-monad, with traces corresponding to 

various timepoints after laser excitation. Experiments performed in 20mM Sodium Phosphate, 200mM 
NaCl, pH7.4, with 5uM maquette, 1uM glucose, 20nM glucose oxidase/catalase suite for oxygen 
scrubbing function. Two significant spectral signatures can be observed: the bleach of the ground state 
absorption at 424nm, and the appearance of the triplet state excited state between 440nm to 480nm. Top 
Right: Time evolution of the ground state bleach recovery throughout the transient absorption 

experiments. Red trace represents a single exponential fit of the experimental data. Mid Left: SVD 
generated spectral component 1 of the P-monad. Mid mid: Distribution of the singular values of the SVD 
analysis. Mid Right: Quality of fit for the model shown in Figure 6.11. Bot: Complete kinetics model of the 
P-monad using rates obtained from the global analysis. 
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6.3.7 Electron transfer and charge separation kinetics of the P-A dyad in the 

scaffold maquette 

Figure 6.13 

illustrastes 

the 

structural 

and kinetics 

model we 

expect of 

the PA, 

DADPIX-

ZnP, dyad 

assembled 

in the 

scaffold 

maquette. 

Unlike the 

P monad, 

the P-A 

dyad in the 

scaffold maquette is now capable of sustaining charge-separation resulting from electron 

transfer between two cofactors. In order to ensure that electron transfer is indeed taking 

place, a continuous illumination experiment was first conducted to demonstrate that the 

acceptor is driven to accumulate in the reduced state while the dyad is under continuous 

illumination of strong wide-spectrum light in the presence of a sacrificial donor. This 

ensures that, even when the forward electron transfer from the excited state of P to A is 

slow and thereby making the charge-separation kinetically unfavorable, we can still 

obtain evidence of the successful formation of the charge-separated state. The results of 

the continuous illumination on a DADPIX-ZnP dyad is shown in Figure 6.14. We indeed 

observed that over the course of 40mins of continuous exposure to white light, the 

 

Figure 6.13: Assembly of a P-A dyad in the maquette scaffold using DADPIX 
and ZnP without modifying the protein with ferrocene. Left: expected kinetics 

model of the ZnP-DADPIX dyad. In addition to the intersystem crossing from the singlet 
excited state of the P to the triplet excited state, a forward charge-separating electron 
transfer to form the PA CS state is now possible, with a rate of k1. A charge 
recombination to reform the ground state with the rate of kcr is also possible. Mid: 
structures and redox midpoint potentials of the cofactors used for the dyad. Right: 
structural details of the PA dyad in the maquette scaffold.  
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originally fully oxidized DADPIX acceptor gradually becomes fully reduced, while the 

ZnP component of the spectrum did not experience significant changes. The successful 

observation of the accumulation of the redox-difference spectral signal of the acceptor 

indicates that the forward electron transfer from P to A does indeed take place. The next 

step is to examine whether a stable charge-separation can be sustained by the dyad or not.  

In order to fully understand the electron transfer kinetics of the dyad, however, it is 

necessary to obtain time-resolved information using transient absorption, with the same 

setup as in the previous section. As shown in Figure 6.15, the P-A dyad, unlike the P 

monad, has a significantly faster ground-state bleach recovery rate, implying that electron 

transfer is indeed taking place. A further examination using global analysis, shown in 

figure 6.16, informs us that the dyad is able to form a charge separated state at around 5us 

after the laser excitation, and the charge-separated state recombines to form the ground 

state in 100us. The global analysis identifies two independently varying signals, one 

corresponding to the bleach recovery of the ground, while the other represents the charge-

 

Figure 6.14: Continuous illumination of the P-A dyad in the presence of sacrificial donor. Left: 

UV-Vis absorption spectra of the PA dyad(DADPIX-ZnP) under continuous illumination of strong white light. 
The arrow indicates the appearance and accumulation of a spectral signature at 461nm, indicative of 
reduced DADPIX. Spectra were collected at 1 min interval in 20mM Sodium Phosphate, 200mM NaCl, in 
the presence of the oxygen scrubbing suite described in the methods section. Right: Examplary spectra of 

key time points during the continuous illumination experiment, demonstrating the decrease in the soret 

peak of the oxidized DADPIX and the appearance of the reduce DADPIX.  
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separated state between the pigment and the acceptor. Consequently, we were able to fit 

the SVD-separated independent signals to a 3-state model shown in Figure 6.13 and 

obtain the rates described above. The quality of the model fit in the analysis demonstrates 

that the 3-state model accounts for the experimental kinetics observed in the transient 

absorption, as the model-generated component difference spectra correspond well with 

the expected difference spectra of the two species involved in the P-A electron transfer. 

Difference spectrum 1 should correspond to the superposition of the triplet excited state 

spectrum and the negative of the ground state spectrum of the pigment, without any 

contribution from the acceptor spectrum. Difference spectrum 2 should consist of the 

superposition of the spectrum of P
+
, the redox difference spectrum of A, and the negative 

of the ground state spectrum of the P. We notice that the reconstructed spectra 1 and 2 

from the SVD-based global analysis, shown in Figure 6.15 as well, largely agree with the 

spectral signatures of the species we would expect if the kinetics of the dyad-electron 

transfer follows the model shown in Figure 6.16. Especially encouraging is the 

observation of the positive spectral signal near wavelength 405nm in difference spectrum 

2, a signature of the cation of zinc-porphyrins as seen by various experimental 

observation of the cation outside of efforts by our lab.  

 

Figure 6.15: Transient absorption spectra of the P-A dyad in the maquette. Left: raw data from 

the transient absorption experiment, with 6 snapshots at various delays after the laser pulse shown in 
different colors. Right: Estimates of the ET kinetics based on the recovery of the ground state bleach at 
425nm. 
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Importantly, the P-A dyad experiment also serves as a necessary and essential control for 

the following DPA triad experiments, since it demonstrates that the formation of the 

long-lived charge-separated state in the triad experiments is unequivocally due to the 

presence of the ferrocene donor that is not present in the P-A dyad assembly, which did 

not produce any evidence of reduced acceptor cofactor that lasts for hundreds of 

miliseconds.  

 

Figure 6.16: SVD-based global analysis of the P-A dyad in the maquette. Top Left: 

Significance of the components identified by the SVD on the raw data. Two significant 
components are expected from the dyad kinetics model. Top Right: quality of fitting a two state 
model to the first two principle components, dots represent the SVD-generated time evolution 
of the two principle components, while lines are the transformed time evolution of the two 
species using the fitted constants. 
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Interestingly, the quality of the model fitting of the global analysis is significantly 

improved when the 3-state model shown in figure 6.13 is supplemented with a mixture 

 

Figure 6.17: Electron transfer kinetics and charge-separating efficiency of the P-A dyad in the 
maquette. Top: details of the kinetics of electron transfers obtained from the model fitting of the SVD-based 

global analysis. The ISC, 6ns rate of the singlet excited state decay are from prior knowledge and not 
determined from experimental results. Bottom: kinetics of electron transfer generated from the predictive 
analysis stage of a P-A model dyad from Chapter II, using 12Å as the ZnP-DADPIX distance estimated from 

the crystal structure, and measured Ems as described in the chapter. Λ=1.2eV is the best fitted 
reorganization energy. 
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with the P-monad model shown in Figure 6.10, with an additional parameter in the fitted 

model representing the fractional contribution of the 3-state and the 2-state model. The 

minimization process of the model fitting returned a fraction variable valued at 0.9, 

implying that 10% of the P-A dyad assembled in the maquette scaffold contains pigment 

or acceptor cofactors that did not participate in the electron transfer reaction, causing a 

small population of the pigment cofactor to reproduce the P-monad behavior shown in 

the previous section. This can be seen in Figure 6.16 as the small population of the triplet 

excited state, shown as residual ground state bleach that persisted until 5ms before it fully 

recovers.  

Figure 6.17 also illustrates the kinetics of a P-A dyad modeled using the predictive 

analytical algorithm from Chapter II, with an inter-cofactor distance of 12Å, estimated 

 

Figure 6.18: The near- and far- versions of the DADPIX-ZnP-Fc triad. Left: The energy diagram of 

the various ET states and corresponding rates of electron transfer between them. The rates are written in 
abstract form, although the energy levels are drawn accurately to scale. Middle: the cofactors used to 
assemble the triad and their distances. Right: the model structure of the DPA triad. 
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from replacing the B-heme in the crystal structure with a DADPIX in pymol, driving 

force of -600mV, and a fitted reorganization energy of 1.2eV. We notice that the amount 

of discrepancies between the experimentally determined and theoretically predicted rates 

is within half an order of magnitude, demonstrating decent agreements between the 

theories and experimental results.  

6.3.8: Electron transfer and charge-separation kinetics of the canonical ferrocene-

ZnP-DADPIX triad 

With the kinetics of the P monad and the P-A dyad fully elucidated, we are now in a 

position to examine the electron transfer kinetics of the four D-P-A triads we have 

engineered. We begin with the ET kinetics of the ferrocene-ZnP-DADPIX triad 

constructed with the Y168C mutant, where the ferrocene adopts the downward pointing 

orientation that results in a greater, ~9A distance between the pigment and the donor. 

Figure 6.19 demonstrates the raw transient absorption data, while Figure 6.20 illustrates 

the SVD-based model fitting analysis as described in the previous sections. Unlike the P 

monad and the PA dyad, the DPA triad demonstrates direct evidence of long-lived 

 

Figure 6.19: Formation of long-lived charge-separated state directly observable from the raw 
data of the DADPIX-ZnP-Fc triads. Left: raw transient absorption spectra of the DZF(near) triad at 

delay times after 10ms, all the way up to 700ms. The insert is the redox difference spectrum of the 
DADPIX for comparison. Right: Time evolution of the ZnP ground state bleach signal(ΔAbs @425nm) for 
monad, dyads under reduced and oxidized environments, and triads under reduced and oxidized 
environments. 
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charge-separation in the raw transient absorption data before the application of the SVD-

based global analysis to uncover the spectrum of the charge-separated state and its rates 

of formation and disappearance, as the lifetime of the charge-separated state is many 

orders of magnitude and almost 2 orders of magnitudes greater than that of the ground-

state soret bleach. This not only provides direct and strong evidence for the successful 

generation of charge-separated state that lives for hundreds of miliseconds, but also gives 

us a very straightforward and independent method to estimate the yield of the charge-

separation without the global analysis followed by kinetics model fitting. Figure 6.20 

illustrates the details of yield estimation for the DADPIX-ZnP-ferrocene triad in both the 

near- and far-mutants. It’s interesting to note that, as discussed in section 6.3.3 and 

predicted in Figure 6.4, the Y168C mutant, whose ferrocene is further away from the 

pigment, indeed generated charge-separation with lower yield than the G164C mutant 

with a closer positioned ferrocene donor. In fact, the difference in the yields of the two 

variants of the triad as shown in Figure 6.20 corresponds very well with the predicted 

differences in the yields shown in Figure 6.4.  The yield estimate shown in Figure 6.20 

takes advantage of the fact that at early timepoints, the transient absorption data is 

dominated by the signal of the ground state bleach of the pigment, while at much later 

timepoints, the signal consists solely of the charge-separated state. Since the charge-

separated state spectrally consists mostly of the redox difference spectrum of the 

acceptor, in this case DADPIX, whose extinction coefficient is known to us from 

standard spectra, this allows us to estimate the concentration of the charge-separated state 

as well as the concentration of the pigment that is excited by the laser. The ratio of the 

two gives us an estimate of the yield. Using this method, as shown in Figure 6.20, the 

yields of the two variants of the DADPIX-ZnP-Fc triad are calculated to be 62% for the 

near-variant and 31% for the far-variant, in accordance with the predicted yields from 

Figure 6.4. 

Although there is enough direct evidence from the raw data to suggest that we have 

successfully engineered a triad that separates charges for record long lifetimes, it is 

necessary to carry out the more rigorous and detailed global analysis to ensure both the 
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authenticity of the charge-separated state and the exact length of its lifetime. SVD-based 

global analysis requires fitting the experimental data to a kinetics model, and in the case 

of the complete DPA triad, the full kinetics model is shown in Figure 6.18A. The full 

model consists of five separate rate constants and four separate kinetics states. 

Consequently, the full model requires a rather messy set of linear combinations of 

exponentials, generated from the analytical solutions of the system of ODEs that describe 

the movements of electrons in the system. Additionally, the full model would also require 

using the top 3 rather than 2 principal components of the kinetics data, as the third 

principle component represents the intermediate charge-separated state P
+
A

-
. However, 

the triads engineered and analyzed in this chapter have their cofactors arranged linearly, 

which, as demonstrated in both Chapter II and III, causes the charge-recombination from 

 

Figure 6.20: Direct estimate of yields of the near- and far-versions of the DADPIX-ZnP-Fc triads. 

Top Row: yield estimation of the near-variant. Bottom row: yield estimation of the far-variant. Left to right: 
reduced and oxidized spectra of the DADPIX with molar extinction coefficients as units; raw TA spectra of the 
triad at timescales where the Zn ground state bleach dominates(blue, thick) and where the long-lived charge-
separating triad dominates(thin); zoomed-in view of the CS state at timescales >10ms. 
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the final CS state to take the uphill-repopulation route rather than the direct 

recombination with the donor radical D
+
. This results in the reformation of the P

+
A

-
 

intermediate charge-separated that’s on the same time scale as the disappearance of the 

final charge-separated state. In fact, by simply examining the time evolutions(vectors of 

the V
T
 matrix of the singular-value decomposition of the transient absorption data) of the 

third principle components of the near and far triads, as shown in Figure 6.21, we can 

observe that the 3
rd

 principle components for both of these triads, representing the 

intermediate P
+
A

-
 state, contribute to the overall observed transient difference spectra at 

two separate timescales, one corresponding to its formation and disappearance prior to 

the formation of the charge separated state , while the other represents the reformation of 

the intermediate CS state on a timescale slightly ahead of the lifetime of the final charge-

separated state. This result conclusively demonstrates that the intermediate charge-

 

Figure 6.21: Time evolution profiles of the third principle components of the near and far 
variants of the DADPIX triads. Pink dots and line are the time profile of the near variant while the light 

blue represents the time profile of the third principle component of the far variant. 
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separated is reformed and the final charge-separated state goes through the uphill-

repopulation route of recombination as predicted by the engineering principles from 

Chapter II.  

In order to provide a proper model to describe this behavior, a much more complex set of 

ODEs akin to those used in Chapter II and III that model all possible electron transfers in 

all directions, including forward and reverse, within the triad system becomes necessary. 

This complete set of ODEs will most likely not have simple, closed-form solutions as 

those for the ODEs that were sufficient to describe the dyads in the previous section. This 

would make the model fitting of the experimental result a computationally intractable 

problem and therefore is not considered further in this chapter, especially after having 

proven that the third principle component does kinetically represent the reformation of 

the P
+
A

-
 state. Instead, for the sake of efficiency without significant loss of the accuracy 

 

Figure 6.22: SVD-based global kinetics analysis of the far(Top row) and near(bottom row) variants of the 
DPA triad in maquette. Left: singular values of the principle components listed in order. Mid: reconstructed spectra 

of the first and second components of the triads, with molar extinction coefficients as the unit. Right: quality of fit for 
the two triads. 
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of the model, I am proposing the following two alternative models, which, although do 

not attempt to describe the reformation of the intermediate CS state acknowledged and 

proven above, can still offer an accurate model of the lifetime and yield of the charge-

separated state, two metrics that have been regarded as essential since they were defined 

in Chapter II.   

Alternative to the full model, a closer look at the driving forces and distances of this 

specific DPA triad reveals that we can also describe its kinetics with a simpler model 

given that certain assumptions are met. Moreover, as shown in the previous section, the 

rate of charge recombination from the P
+
A

-
 to the ground state is 10 times slower than the 

forward charge-separation rate. This means that, as long as the ET between the donor and 

the cation of the pigment(D to P
+
)  is significantly faster than that of the P

3*
 to A electron 

transfer, we can apply the 3-state model simplification in the global analysis without loss 

of generality. The approximation to the full kinetics model via the simpler 3-state model 

combines the electron transfer reactions from P
3*

 to A and from D to P
+
 as a single 

reaction that forms the final charge-separated state D
+
PA

-
 directly from the triplet excited 

state, treating the system as identical to the dyad shown in Figure 6.12, with the D
+
PA

- 

playing the role of the P
+
A

-
 state.  

The simplified 3-state model should be able to account for the ~60% yield of the near-

variant of the DPA triad, since the analysis of the dyad ET kinetics from the previous 

section has demonstrated that the yield of the charge-separated state of the dyad is ~60%, 

as seen in Figure 6.16. However, the apparent yields of 23% of the far variant DPA triad 

would suggest that the 3-state model would not be applicable in this case, since the low 

yield can only result from a D to P
+
 ET rate that’s comparable or slower than that of the 

recombination from A
-
 to P

+
, as it is highly unlikely that 77% of the pigment cofactor 

remained inactive during the ETs of the triad.  

To establish a model that could account for the low yield of the far-triad without having 

to use the third principle component in the global analysis, I implemented a modified 

version of the full model, where only the top two most significant components are 
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considered in the model fitting. This is possible because in the solution of the system of 

ODE, too complex to include in this chapter and shown in Appendix C instead, the 

expression for the population of the final charge-separated includes all of the rates in the 

kinetics scheme. That is, the information contained in the time-evolution of the excited 

state as well as the final charge-separated would allow us to implicitly figure out the rates 

that are ostensibly not directly related to the states. This modified implementation of the 

full kinetics model for the triad has been highly effective in the analysis of the triad 

kinetics data. 

Figure 6.22 demonstrates the application of the SVD-based global analysis using the 

modified full kinetics model on the transient absorptions data of the near- and far-variants 

of the triad. It is noticeable here that the third principle components, as seen by the first 

non-colored dot in the left two panels of Figure 6.21 are much closer to the first two 

principle components than the third principle components of the monad and dyad 

described in previous sections. This increased significance of the third principle 

component indicates that the triad indeed displays a charge-separating behavior, namely a 

set of electron transfer reactions, that is fundamentally different from that of the monad 

and dyad, proving that the incorporation of the donor has successfully effected an 

evolutionary development in the engineering of photosystems in maquettes, opening the 

door of multi-ad engineering to maquette-based photosystems. 
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Figure 6.23: Experimental and theoretical ET kinetics and charge-separation performances of the near 
variant of the DPA triad. A: theoretically expected electron transfer kinetics of the near DPA triad. Rates are 

computed using a 12A P-A distance, 7A D-P distance, redox potentials as shown in the energy diagram on the left. 
Reorganization energy of 1.5eV is used to obtain the kinetics. B: experimentally determined ET kinetics of the near-
variant of the DPA triad. Dots in the kinetics profile represent transformed vectors of the V

T
 matrix, representing the 

population of the specific state in the model. 
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Figure 6.23 and 6.24 illustrate the experimentally determined rates of the near and far 

variants of the DADPIX-based triads in the styles of trikes, familiarized in Chapters II 

and III in comparison to the theoretical counterparts. The rates are sufficient information 

to determine both the yield and the lifetimes of the charge-separated states. In contrast to 

the dyads, however, the triads involve a more significant level of deviation from the 

theoretical model. While the reason behind this increased discrepancy between the model 

and the experimental values will be examined in the discussion session, it is important to 

note here that rather than focusing on the differences in the numerical values of the rates, 

it is more meaningful to notice the similarity in the relationship between the three rates at 

the branching point of the P
+
A

-
 state between the model and the experimental results for 

the near and the far triads. In the near triad, the rate of the recombination from the 

acceptor to the pigment is slower than the ET rate from the reduced donor to the radical 

P
+
 in both the model and the experimental rates, and the ratios of these two rates in the 

two sets of kinetics are rather similar. This similarity explains for the agreements in 

yields of the theoretical model and the experimental data. The same similarity is also 

observed with the ratios of these two rates in the model and experimental kinetics of the 

far triad. Together they suggest that the fitted kinetics models obtained from the SVD 

analysis has managed to capture the characteristic rates of the underlying true electron 

transfer events occurring in the triad, although the specific routes taken by the electrons 

might differ. 
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Figure 6.24: Electron transfer kinetics of the far-DPA triad and its yield and lifetime, determined 
by both SVD-based model fitting and theoretical model using predictive analysis.  A: theoretically 

expected electron transfer kinetics of the far DPA triad. Rates are computed using a 12A P-A distance, 10A 
D-P distance, redox potentials as shown in the energy diagram on the left. Reorganization energy of 1.5eV 
is used to obtain the kinetics. B: experimentally determined ET kinetics of the near-variant of the DPA triad. 
Dots in the kinetics profile represent transformed vectors of the V

T
 matrix, representing the population of the 

specific state in the model. 
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6.4: Discussion 

6.4.1 Agreements and discrepancies between the model and empirical kinetics and 

their implications. 

In the results sections we have compared the experimentally determined ET kinetics of 

the P-A dyad as well as both versions of the DPA triads with their theoretical model 

counterparts. It was interesting to discover that the experimental and theoretical kinetics 

of the dyad have a significantly smaller amount of disagreements than that of the two 

versions of the triads. While the discrepancies of the dyad’s rates are less than an order of 

magnitude and can therefore be considered as experimental/statistical error, the deviation 

seen in the two triads are much greater and likely reflect differences between the Moser-

dutton ruler based theoretical model and the SVD-based analytical algorithm’s model. 

Here we offer a few possible explanations.  

First of all, the presence of a third cofactor in the triad greatly increases the complexity of 

the system, and this increase in complexity, as already discussed in a previous section 

above, cannot be properly reflected in the kinetics model used in the SVD-based analysis, 

for the sake of practicality. In the case of linearly arranged triads, moreover, it is 

demonstrated with emphasis in Chapter II and III that one of the additional kinetic 

complexity not possible to include in the experimentally fitted model plays an important 

role. For example, the lack of representations of the reverse electron transfer reactions 

prevents the model from being able to explain the uphill-directed recombination typical 

of linear multi-ads. When the kinetics model being fitted to is simpler than the model 

used to compute the theoretically expected kinetics, it is inevitable that discrepancies in 

the experimentally determined rates and the model predicted rates exist.  

Moreover, It is important to note that in order to generate such a predictive kinetics 

profile, not only are the parameters such as inter-cofactor distances and driving forces 

necessary, but also and more importantly, parameters that are less concrete and well-

determined, specifically the reorganization energies between the components of the triad 
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in the protein scaffold. To generate the expected/”theoretical” kinetics shown, we used 

the pigment-acceptor distance from the crystal structure, the pigment-donor distance from 

the model shown in figure 6.10, and the midpoint potentials of the various cofactors 

measured in the scaffold maquette using standard electrochemical procedures 

summarized in the methods section. For the more nebulous reorganization energy, we 

generated model kinetics using a few different uniform reorganization energy, as well as 

combinations of individual reorganization energy for each step of the reactions, and 

ended up choosing a uniform reorganization energy of 1.3eV as the number that 

simultaneously produces the best fit to the experimental kinetics and best describe the 

high-dielectric environment of the small protein interior of the maquette.  

6.4.2 The positives and negatives of the triplet excited state in practical charge-

separation engineering. 

Whereas our design blueprints detailed in Chapter II and III have demonstrated the 

advantages of using the singlet excited state of the pigment cofactor for the overall 

robustness and stability of the photosystem and henceforth prescribed all optimal 

engineering with only the singlet excited state, the practical setting of the proof-of-

principle triad engineering in the maquette scaffold described above, however, limits us 

to the choice of the triplet excited state as the distance between the pigment and acceptor 

slots are too far for effective formation of the initial P
+
-A

-
 charge-separated state before 

the inherent intersystem crossing of the singlet excited state to the triplet excited state 

takes place. While the immediate reaction might be to decrease the P-A distance and 

engineer a singlet-driven charge-separation, a closer inspection at the specific parameters 

of our proof-of-principle triad reveals that the usage of triplet excited state as the main 

driver of charge-separation is indeed the better choice over singlet given the available 

redox midpoint potentials of the acceptor provided by the B-heme and DADPIX are 

significantly higher than prescribed by the optimal engineering blueprints. In fact, to 

make the driving force between the excited state and the acceptor as close to the optimal 

prescribed by the engineering guidelines as possible, the lower-lying triplet excited state 

is indeed the better choice.  
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In addition, the choice of triplet excited state as the starting point of charge-separation 

offers significant freedom and tolerance for the engineering of the remaining components 

of the charge-separating device, as the long lifetime of the triplet excited state, as shown 

above to be around 10-20ms, allows the forward electron transfer to be as slow as 

hundreds of microseconds, thereby relaxing the constraints on distance and on redox 

potentials of the acceptors. 

As already discussed in Chapter II and III, the long lifetime and the ease with which the 

triplet excited state reacts with oxygen molecules to form reactive singlet oxygen species 

mark the principal drawback of using the triplet excited state for long-lived charge-

separation. Indeed, natural photosystems engineered away from the triplet excited states 

of their pigment cofactors by decreasing the distance and driving forces between the 

pigment and the initial acceptors in order to promote the forward ET to generate the CS 

state in less than 1ns. This prevents the intersystem crossing, normally on the order of 

hundreds of picoseconds, from taking place. Moreover, natural photosystems committed 

a significant amount of the possible energy preservable in the final charge-separated state 

to ensure that no facile uphill thermal repopulation of the singlet or the triplet excited 

state could occur. All of these engineering devices were adopted by natural photosystems 

because they do not and can not carry out their designed functions without the presence 

of oxygen, nor do they possess an effective mechanism to remove oxygen local to the site 

of the pigment. Consequently, the presence of the triplet excited state of the pigments 

employed by natural photosystems represents a significant risk that must be avoided. 

However, in the setting of practical engineering of charge-separating devices, triplet 

excited state is less of a threat, at least when the immediate goal is to produce long-

lasting charge-separated state and does not involve any oxygen. As already seen above, 

application of standard and well-reported oxygen removal techniques, ranging from 

purging the experimental environment with inert gases to active removal with effective 

oxygen scrubbing enzyme combinations that have been shown to be electron transfer 

inert, can remove the threat of the singlet oxygen and enables triplet excited state to be a 

viable engineering option. (6, 11, 12)  
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In the end, however, the long-lived charge-separation produced by our man-made 

photosystem must be applicable to practical catalysis through further engineering. The 

coupling of the charge-separation unit to the catalytic unit will impose additional 

constraints on the design of the system, and many constraints could very possibly require 

the presence of oxygen, thereby making the triplet excited state a undesirable option.  

6.4.2: Routes to improve the current DPA triad design 

6.4.2.1 Constitutive donor cofactors with the right potential. 

While ferrocene successfully demonstrated its capability as an effective donor cofactor 

even in protein-based biological setting of charge-separation design, the steps necessary 

to incorporate and purify the ferrocene cofactor lead to significant decreases in the final 

yield of the completed triad, and the size of the maleimide linker resulted from the 

labeling reaction creates uncertainty in the final distance between the pigment and the 

donor, thereby complicating the design process. To overcome these challenges, we desire 

a donor cofactor that is constitutive to the maquette scaffold presents the optimal 

alternative, that is, an amino acid residue that is redox active and has the ability to reduce 

the ground state of pigment cofactors whose potentials are usually higher than 500mV. 

An obvious choice is indeed the aromatic residues such as tyrosine and tryptophan. 

However, the redox potentials of tyrosine and tryptophan in small, hydrophilic proteins 

are significantly higher than the potential of the ground state of the pigment cofactor we 

currently possess(10, 13). Therefore, the utilization of tyrosine/tryptophan as the 

constitutive donor cofactor, as is the case in natural PSII, requires the redox potential of 

the pigment cofactor, when incorporated into the maquette scaffold, be increased 

significantly, by at least 200mV. This can be achieved by modifying the P slot’s local 

environment in terms of its charge distribution and hydrophobicity(14), or customizing 

the chemical substituents on the pigment’s tetrapyrrole ring(15) or the environment of the 

protein(3, 16). Additionally, artificially increasing the pH experienced by the maquette, 

either by modifying the charge distribution of the donor slot or by subjecting the entire 
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maquette to a solution whose pH is high, changes the effective midpoint potential of the 

tyrosine/tryptophan residue, with higher pH resulting in lower potentials.(13) 

Alternatively, since unnatural amino acids have already been successfully incorporated 

into maquettes, constitutive incorporation of cofactors in the form of unnatural amino 

acid residues is yet another possibility to consider. Existing amino acid incorporation 

schemes require specific pairs of unnatural amino acids and their corresponding t-RNA 

synthase, product of directed evolution.(17)  

6.4.3.2 Acceptor with appropriate energetics to allow for singlet-driven charge 

separation 

While the triplet excited state offered a large range of acceptor and donor potentials and 

distance to be viable for successful production of long-lived charge-separation, the 

extreme danger to damage it imposes upon the photosystem, mitigated only by operating 

the photosystem in a highly impractical fully anaerobic environment. In order to engineer 

practically functional and applicable photosystems for efficient and long-lasting charge-

separation at large scale, however, it is necessary to follow the design blueprints specified 

by Chapter III. Namely, a singlet driven charge-separating device with close energy gaps 

between the singlet excited state of the pigment and the subsequent acceptors is indeed 

the ultimate goal of design. To prevent the formation of the triplet state via intersystem 

crossing as have seen in the experimental results presented above, faster forward electron 

transfers than the intersystem crossing rate of the pigment must be designed. As we have 

seen in Chapter II and III, such fast forward electron transfers, when designing against a 

generic protein environment, require the driving force of the initial electron transfer to be 

sufficiently small, with the midpoint potential of the primary acceptor almost identical to 

that of the excited singlet state of the pigment. The secondary acceptor’s, or in the case of 

a donor-containing photosystem, the donor’s redox potential must also be either very 

close to that of the primary acceptor or of the ground state of the pigment.  

In order to realize the prescribed singlet driven designs, it is of utmost importance to have 

the ability to customize the cofactors so that their redox midpoint potentials can be 



202 
 

adjusted at will. Many studies have reported modulations of redox potentials of cofactors 

based on altering either the chemical structure of the cofactors or their environments. 

However, cofactors whose midpoint potentials as low as -700mV and are stable within 

the interior of small water-soluble proteins have not been reported. The need to customize 

the potentials of cofactors at will be further discussed in Chapter VII. 

6.5: Conclusion 

With its high affinity and specificity for the iron-porphyrin as the acceptor, the Zn-

porphyrin as the pigment, and its high resolution crystal structure that allows for the site-

specific engineering and incorporation of a ferrocene as the donor via a cys-maleimide 

reaction, the new generation of maquette has provided the perfect platform upon which 

the first proof-of-principle donor-pigment-acceptor(DPA) triad is successfully 

constructed, producing a stable charge-separated state between the donor and the acceptor 

that lasts over 300ms. This represents the longest lifetime achieved by any charge-

separating triads designed either in biological and synthetic chemical contexts in the 

world, to the best of our knowledge. Moreover, high resolution structure also allowed for 

practical examination of the engineering principles formulated in the first half of this 

thesis. With the successful experimental observation of the reformation of the 

intermediate CS state, the engineering principle that linearly arranged multi-ads induce 

uphill-repopulation based recombination over direct recombination is demonstrated. 

Additionally, the structural information of the maquette also allowed us to vary the 

donor-pigment distance and observe a corresponding change in the yield of the CS state 

as expected by the theoretical model. Together the results of this chapter represent a 

major evolutionary step in the de-novo engineering of multiads following the prescribed 

engineering guidelines from Chapter II. They proved that given the necessary binding 

sites, distances, and proper cofactors, multiads can be engineered and will produce 

performances as predicted by the engineering blueprints. The successes of the theoretical 

engineering principles in practice naturally lead to the final chapter of this thesis, the full 

application of the optimal engineering prescriptions based on both the fundamental 

theories of electron and biological constraints in man-made water-soluble proteins.  
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Chapter VII: Application of the updated optimal 

engineering guidelines to the construction of tetrads in a 

new generation of maquettes  

7.1 Introduction: 

Having formulated a set of comprehensive engineering blueprints for the optimal charge-

separating photosystems with regards to both the physics of electron transfer and the 

biochemistry and biophysics of protection against damage and having demonstrated the 

applicability of constructing multi-ads in man-made proteins, I now finish this thesis by 

laying out the specifics of the necessary engineering devices to construct the optimal 

tetrad that provides the same level of performance of charge-separation as natural 

photosystems but is freed from the overwhelming structural complexity characteristic of 

natural photossytems. This tetrad represents the culmination of the theoretical analysis of 

part I and the experimental results of part II of my thesis, as it combines the advances 

achieved in both parts and produces something novel and at the same time reasonably 

realistic: a photosystem that satisfies all of the engineering constraints that made natural 

reaction centers the way they are but is housed within a man-made 4-helical bundle that’s 

already available and have been shown to be capable of supporting engineering of multi-

ad photosystems. 

7.2: Prescribing an optimal tetrad meeting all practical constraints in the new 

maquette 
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We have observed that when the revised optimal engineering blueprints are duly 

followed, adopting every engineering device discovered in Chapter III for the purpose of 

damage protection, the resulting catalytic quartet does not differ much from known 

natural photosystems, as already shown in Figure 3.18. However, as shown throughout 

Chapter VI, even the most advanced generation of maquettes, which have been the 

platform of the successful >300ms charge-separation, will have difficulty in binding 

cofactors following the curved geometry prescribed by Figure 3.18. Therefore, it is 

important to examine the effects on optimal engineering of photosystems when we relax 

some of the constraints and remove them from the model. The results of Chapter III have 

also shown that, as seen in Figure 3.19, the incorporation of the closely spaced cofactor 

chain engineering device without enforcing the curved design allows the engineering of 

 

Figure 7.1: Optimal tetrad in the new generation of maquettes  using practically available cofactors and 

following the revised engineering blueprints from Chapter II as much as possible. Top: model structure of the 
tetrad in the maquette, with ZnP as the pigment, ZnPPIX as the primary acceptor, DADPIX as the final acceptor, 
and tyrosine/ferrocene as the donor. Left: Energy diagram of the DPAA tetrad, shown here with ZnPPIX as the 
additional acceptor with a guessed driving force ΔGPA of -150mV, while all else remain the same as the DPA triad 
in the previous chapter. 
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high performance charge-separating tetrads under reorganization energy as high as 1.5eV, 

essentially removing the environment surrounding the cofactors as an engineering 

consideration. This is a significant deviation from the engineering blueprints formulated 

in chapter III, where protection of the photosystem against damages holds equal 

importance as maximizing the performance of the photosystem. Nevertheless, the second 

half of my thesis has also demonstrated that the maquette platform upon which we carry 

out our design of photosystems allows for complete control over the environments of the 

electron transfer. Consequently, we have the luxury of relaxing or even intentionally 

ignoring some of the engineering requirements, with the knowledge that the effects of 

such requirements can be achieved via direct control of the ET environment. For 

example, the requirement to restrict the lifetime of the intermediate CS states to <10ns 

can be relaxed when the photosystem is engineered in an oxygen free environment, a 

measure that’s easily achievable when the platform of the photosystem design is a small, 

water-soluble protein rather than a cumbersome transmembrane complex.(1, 2)  Rather 

than diminishing the practical merit of the photosystem engineered, this example 

perfectly demonstrates the power and usefulness of the complete understanding of the 

engineering principles and constraints for photosystem we established throughout this 

chapter. That is, when we are in full control of the engineering environment, the 

engineering approaches that were shown to be essential can be selectively relaxed in 

order to satisfy more pressing practical design constraints, in this case the linear geometry 

of the core of the four helical bundles.  

7.3: Engineering the maquette towards the optimal tetrad.   

Figure 7.1 demonstrates the optimal engineering blueprints for the tetrad to be 

constructed in the new generation of maquettes with the high resolution crystal structure 

described in Chapter VI. This design is the product of the theoretical and experimental 

advances made throughout this thesis, and represents a concluding remark offered by my 

thesis. It demonstrates that the optimal engineering demanded by the revised prescriptive 

algorithm in Chapter III can be satisfied without the need for another generation of 



207 
 

maquettes but rather reengineering of the current generation of maquettes that have been 

shown to be highly compatible with charge-separating multi-ads. 

To practically 

realize this 

design, it 

demands a 

series of 

reengineering 

of both the 

maquette 

scaffold and the 

cofactors 

participating in 

the electron 

transfer and 

charge-

separation. The 

additional 

engineering 

needed on the 

maquette is realistic and easily achievable. Indeed, the current maquette scaffold design 

already boasts three functionally independent slots, optimized for their respective roles. 

The tetrad design would necessitate the inclusion of an additional acceptor slot and the 

repurposing of one of the existing slots from the donor role to the role of a pigment. The 

model shown in figure 7.1 is created based on the crystal structure of the maquette as 

shown in figure 6.3 without any extension of the helices. This therefore suggests that the 

current maquette scaffold’s dimension allows for incorporation of four cofactors, with 3 

tetrapyroles forming the P-A-A chain while a ferrocene plays the role of the donor. This 

also suggests that the engineering would focus mainly on adjusting the packing of the 

 

Figure 7.2: Multi-helical bundles to provide curved geometry for maquettes. 

The need to have curved geometries in maquette-based photosystems can be 
achieved by bundles made with more than 4 helices. 
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hydrophobic core of the maquette to prevent steric clashes when the space originally 

intended for 2 tetrapyroles is appropriated for 3.  

The necessary engineering required for the cofactor, as has always been the case 

throughout this thesis, represents a much greater challenge. This design essentially adds 

another acceptor cofactor in between the P-A in the DPA triad featured in Chapter VI. 

Given the limited available off-the-shelf, we have chosen Zn-protoporphyrin IX, a 

standard light-activatable cofactor that has a radical state whose potential is expected to 

be slightly below that of the ZnP used in the previous chapter.(3) This allows ZnPPIX to 

act as an intermediate acceptor before giving the electron off to the final acceptor, still 

played by DADPIX. However, additional experiments are necessary to determine the 

redox potential of its negative radical state to ensure that it can properly serve as the 

intended intermediate acceptor. Photophysical experiments are also required to ensure 

that laser excitation will preferentially target the ZnP rather than ZnPPIX. The choice of 

ZnPPIX represents a suboptimal compromise and exposes the lack of ability to customize 

cofactors with desired redox potentials as the greatest practical constraint on the 

realization of the optimal engineering blueprints, and consequently, the central focus of 

future research efforts if construction of highly efficient photosystem in small and water-

soluble man-made protein is to become a streamlined engineering commonality.  

7.4: Looking even further ahead: the greatest unresolved challenges 

This chapter has illustrated that with this new generation of maquettes, not only is the 

breakthrough from dyads to triads possible, as already shown in Chapter VI, but also, 

given the necessary engineering infrastructures, the next leap forward to constructing a 

tetrad that’s not far off from the optimal engineering blueprints for tetrads formulated in 

Chapter III based on a combination of electron transfer theories and practical protection 

against damage. However, throughout the experimental half of my thesis, a recurring and 

unrelenting challenge has always been the highly limited range of potentials available 

from the cofactors that can be utilized. This challenge has not been properly addressed 

even with the application of chemical modifications of maquettes via either click-
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chemistry or maleimide-cysteine reaction, since the availability of cofactors whose 

midpoint potentials meet the engineering blueprints did not improve. In order to unlock 

the full potential of the optimal engineering blueprints of photosystems in small and 

water-soluble protein platforms, the ability to customize the redox potentials of cofactors 

either chemically(directly modifying the chemical structure of cofactor) or 

biochemically(modifying the environment of the cofactors).  This involves formulation of 

another set of engineering blueprints, in this case for the redox midpoint potentials of 

cofactors. Because of the ease with which small molecules could be represented by a 

rather large and comprehensive collection of features representative of their unique 

chemical properties, as frequently used by the pharmaceutical industries in the process of 

drug-discovery, the redox potentials of cofactors can be engineered via statistical 

predictive modeling, exploiting recent advances in machine learning algorithms. This can 

either be the primary method of design or a pre-experimental sieve to narrow down 

possible experimental targets. (4)(5)  

The second challenge, as seen in section 7.2 of this chapter, is the ability to allow 

maquettes to adopt non-linear geometries. This can be addressed by using maquettes that 

have multiple hydrophobic core regions rather than only one in the middle of the 4-

helical bundle. Indeed, bundles as large as 8 helices have been constructed by the Dutton 

group, as shown in Figure 7.2. This larger bundle would allow the placement of cofactors 

no longer in a line but in a curved geometry as prescribed by the optimal design shown in 

Figure 3.19.  

The final challenge, lying much further ahead but does represent the ideal destination of 

our efforts, is to allow the engineered optimal tetrad photosystem to be produced and 

assembled by bacteria in-vivo. While the theoretical and practical discussion and 

exploration is outside of the scope of this work, it is necessary, especially at the end of 

this thesis, to place the advances made in this work into perspective.  

It warms the heart to see that what little I have done with the past five years has actually 

gotten us a little bit closer to something nice. 
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APPENDIX  

A.1: Maquette sequences engineered during the process towards constructing the 

DPA triad 

This section of the appendix provides the specific sequences of all the maquettes engineered and 

constructed throughout the experimental part of this thesis.   

Gen1 Maquette:  

GEIWKQHEDALQKFEDALNQFEDLKQLGGSGSGSGG   
EIWKQHEDALQKFEDALNQFEDLKQLGGSGSGSGG  
EIWKQHEDALQKFEDALNQFEDLKQLGGSGSGSGG  
EIWKQHEDALQKFEDALNQFEDLKQL 
 
This maquette is featured in Chapter IV and V as the Gen1 maquette. The basic single-chain 

maquette that provided the fundamental platform upon which a series of engineering devices are 

applied to. 

 

Gen2 Maquette: Zn+C 

FSASALAKHHHHHHGSSGEFGDGENLYFQG 
EIWKQHEDALQKFEEALNQAEEALNQFEDLKQL GGSGSGSGG 
EIWKQHEDALQKFEEALNQAEEALNQFEDLKQL GGSGSGSGG 
EIWKQHEDALQKFEEALNQAEEALNQFEDLKQL GGSGSGSGG 
ECIACHEDALQKFEEALNQHEEALNQFEDLKQL 
 

This maquette is the second generation of the single-chain maquette, after it has been extended 

by one heptad-repeat i the middle and given a single his binding site for zinc-porphyrin and a 

CXXCH motif for the in-vivo maturation of c-heme. A periplasmic export tag was also added to 

the front of the sequence. 

Gen2 Maquette: Zn+C+PPY 

FSASALAKHHHHHHGSSGEFGDGENLYFQG 
EIWKQ(Amber)EDALQKFEEALNQAEEALNQFEDLKQL GGSGSGSGG 
EIWKQHEDALQKFEEALNQAEEALNQFEDLKQL GGSGSGSGG 
EIWKQHEDALQKFEEALNQAEEALNQFEDLKQL GGSGSGSGG 
ECIACHEDALQKFEEALNQHEEALNQFEDLKQL 
 

This maquette is the second generation of the single-chain maquette, modified to contain an 
amber stop condon for the incorporation of the propargyl tyrosine. 
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SM Maquette: structural maquettte: 

MGKGGHHHHHHGGDGENLYFQG 
SPELRQEHQQLAQEFQQLLQEIQQLGRELLKGELQGIKQLREAS 
EKARNPEKKSVLQKILEDEEKHIELLETLQQTGQEAQQLLQELQQTGQELWQL 
GGSGG 
PELRQKHQQLAQKIQQLLQKHQQLGAKILEDEEKHIELLETIL 
GGSGG 
DELRELLKGELQGIKQYRELQQLGQKAQQLVQKLQQTGQKLWQLG 

 
This is the new generation of maquette engineered by Nathan Ennist that has provided the high 
resolution crystal structure shown in Chapter and became the basis upon which the DPA triad 
has been successfully engineered. 
 
SM Maquette Y168C (far) variant. 

MGKGGHHHHHHGGDGENLYFQG 
SPELRQEHQQLAQEFQQLLQEIQQLGRELLKGELQGIKQLREAS 
EKARNPEKKSVLQKILEDEEKHIELLETLQQTGQEAQQLLQELQQTGQELWQL 
GGSGG 
PELRQKHQQLAQKIQQLLQKHQQLGAKILEDEEKHIELLETIL 
GGSGG 
DELRELLKGELQGIKQCRELQQLGQKAQQLVQKLQQTGQKLWQLG 

 
This is the mutant of the SM maquette that allows for the assembly of the far-variant of the DPA 
triad in Chapter VI. 
 
SM Maquette G164C (near) variant. 

MGKGGHHHHHHGGDGENLYFQG 
SPELRQEHQQLAQEFQQLLQEIQQLGRELLKGELQGIKQLREAS 
EKARNPEKKSVLQKILEDEEKHIELLETLQQTGQEAQQLLQELQQTGQELWQL 
GGSGG 
PELRQKHQQLAQKIQQLLQKHQQLGAKILEDEEKHIELLETIL 
GGSGG 
DELRELLKGELQCIKQLRELQQLGQKAQQLVQKLQQTGQKLWQLG 

 
This is the mutant of the SM maquette that allows for the assembly of the near-variant of the DPA 
triad in Chapter VI. 
 

A.2: Mathematical details. 
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The solution to the system of ordinary differential equations for the kinetics model used in the 
SVD-based model fitting, representing a simplified kinetics model for the DPA triads, is included 
here as Figure A.2 

A.3: Common experimental methods  

Here are the experimental methods that represent general biophysical and biochemical techniques utilized 

throughout the experimental parts of this thesis, rather than the specific techniques featured in the methods 

sections of Chapter V and VI.  

Cofactors: 

DADPIX and B-heme used in this thesis were purchased from Frontier Scientific. The zinc porphyrin used as 

 

Figure A.1: Solutions to the system of ordinary differential equations for the kinetics 

model of the DPA triad in Chapter III. The solution is obtained using Mathematica 10.0.  

 

Scheme A1: synthesis of azido-ferrocene from methyl hydroxyl ferrocene. 
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pigment for all the experiments were synthesized and kindly provided to me by Dr. Tatianna Esipova from 

the Vinogradov group. Both hemes and Zn-Porphyrin are dissolved in DMSO to make 10mM stock solutions, 

which are then frozen at -20C
o
. Concentrations are determined via UV-vis spectroscopy and comparison to 

standard molar extinction coefficients.  

Ferrocene came in two forms: N-ferrocenyl-maleimide and methyl-hydroxyl ferrocene. Ferrocene-carboxylic 

acid is used to synthesize Azidoferrocene using scheme A1. 

All non-porphyrin chemicals used in this thesis were purchased purchased from Sigma. 

Proteins/Maquettes: 

Genes encoding maquettes with an N-terminal His-tag and TEV cleavage sequence was 

purchased from DNA2.0 in a pJexpress414 vector with codons optimized for expression in E. coli. 

The protein was expressed as a thioredoxin fusion with a His-tag in E. coli BL21 (DE3) RIL cells 

(Stratagene) for 5 hours at 37˚C, after induction with 0.5 mM IPTG. The cells were harvested by 

centrifugation, resuspended in KH2PO4 buffer with 1% OTG, and lysed by sonication with a 

micro-tip attachment. Lysate was centrifuged at 25,000xg for 25 minutes, with supernatant 

applied to a NiNTA superflow resin (Qiagen) on an Akta FPLC. The fusion protein was cleaved by 

recombinant tobacco etch virus N1a protease overnight, and final purification was via Waters 

reverse-phase HPLC. Molecular weight was assayed by either MALDI or ESI mass spectrometry. 

Cloning and Mutagenesis: 

Primers for cloning the Gen2 maquette out of its original plasmid and for general mutagenesis 

were purchased from Invitrogen. Gen2 maquette DNA were amplified using primers containing 

appropriate restrictive digest sites for the new plasmid to which it was intended to be cloned. The 

PCR product were examined using Gel-electrophoresis and the proper band was excised and 

purified using standard purification techniques, using Invitrogen kits. The fragment is then 

digested with the proper enzymes  and mixed with predigested new plasmids. Ligation reaction 

was then run on this mixture to obtain the new plasmid.  

For mutagenesis,  wildtype plasmids were PCR amplified with primers containing the desired 

mutations. The mixture is then treated with restriction enzyme DPN1 to digest away plasmids that 

had been directly purified from bacteria and would contain methylations. The remaining DNA was 

then transformed into BL21(DE3 ) or DH5α and followed by sequencing analysis to examine 

whether the correct mutagenesis was obtained. 

 



215 
 

UV-vis spectroscopy: 

UV-vis spectra were recorded on a Perkin–Elmer Lambda 2 spectrophotometer using quartz cells of 1.0-cm 

path lengths. Peptide concentrations were between 1 and 50 μM as determined spectrophotometrically 

using ɛ280 = 5600 M
−1

·cm
−1

 for Trp. Maquettes containing cofactors are usually diluted to 4uM and examined 

at room temperature in aqueous buffers, usually 200mM NaCl, 20mM NaPO4, 4mM Tris-HCl at pH7.4 

Kd determination for cofactors: 

Various Maquette’s Kd are usually determined by binding titrations, with protein concentration well below the 

expected Kd if possible, and if not then with the concentration as low as within the limit of detection. Normally 

concentration of 0.5-1μM of maquettes are used. Cofactors are dissolved in the appropriate buffer or 

solvent, usually DMSO when not soluble in aqueous buffers, but regular PBS buffer when they are. 

Cofactors are added at 0.1 molar equivalent of the protein per data point. Spectrum was recorded 

immediately after the addition of the cofactors and after 10mins. When no changes are noticed the next 

equivalent is then added.  

The spectra are then collected and analyzed either via SVD-based model fitting or direct fitting of the 

absorbance value at specific wavelength to the following binding equation: 

𝐴𝑏𝑠 = 𝐻𝑡𝑜𝑡𝜖𝑡𝑜𝑡 + (𝜖𝑏𝑜𝑢𝑛𝑑 − 𝜖𝑓𝑟𝑒𝑒)(
𝐾𝑑 + 𝑃𝑡𝑜𝑡 + 𝐻𝑡𝑜𝑡 − √(𝐾𝑑 + 𝑃𝑡𝑜𝑡 + 𝐻𝑡𝑜𝑡)2 − 4𝑃𝑡𝑜𝑡𝐻𝑡𝑜𝑡

2
) 

 

CD Spectropolarimetry: 

CD spectra were recorded on an Aviv Associates (Lakewood, NJ) model 62DS spectropolarimeter using 

rectangular quartz cells of 0.2- and 1.0-cm path lengths. Thermal control was maintained by a thermoelectric 

module with a Neslab Instruments (Portsmouth, NH) CFT-33 refrigerated recirculating water bath as a heat 

sink. Peptide concentrations for UV-CD experiments were between 5 and 10 μM as determined 

spectrophotometrically using ɛ280 = 5600 M
−1

·cm
−1

 for Trp.  

HPLC purification of labeling reactions: 

Completed reaction mixtures in appropriate solvent were injected into Waters reverse-phase HPLC. 

Gradients starting at 25%/75% water/AcCN (v/v) and ending at 70%/20%, and any gradient within the range, 

can be used depending on the nature of the modification. 

Spectral electrochemical redox titrations: 

Experiments were carried out with a platinum working electrode, gold counter wire, and a Ag/AgCl reference 

electrode. A CH Instruments (Austin Texas USA) Electrochemical workstation was used with the CH 

Instruments interface program. In a cuvette with a 1mm path-length, 20-100µM maquette with desired 

cofactors bound was dissolved in standard PBS buffer described in this thesis. For the titration of hemes, 
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standard ensemble of mediators used were: Anthra-quinone-2-sulfonate (100µM), Benzly Viologen (50µM), 

Methyl Viologen (50µM),Sulfanilamide (50µM), Indigo trisulfonate (50µM), Phenazine (50µM), Pyocyanin 

(50µM), and Hydroxy-Napthquinone (50µM).  The computer software controls the adjusts and maintains the 

potential of the experimental environment based on the user’s intention. The net current in the local 

environment of the working electrode is monitored, and when the current is stabilized, UV-vis spectrum of 

the reaction mixture was taken. This was repeated at 20mV intervals from 250mV below to 250mV above 

the expected midpoint potential of the cofactor. This was done multiple times (2 oxidative, and 2 reductive) 

to see if there was any hysteresis. The raw data was then analyzed either via SVD(outside the scope of this 

thesis) or simple fit to n=1 Nernst equations.  

A.4: redox spectra of cofactors used in this thesis. 

The redox spectra not already shown in the thesis is that of the ferrocene at  the scale where its spectral 

features can be seen. As discussed in the main body of the text, ferrocene’s absorbance is very weak in the 

visible range, with highest exctinction coefficient of ~100M
-1

cm
-1

. This redox difference spectrum is shown 

here, obtained during an electrical spectrochemical redox experiment involving ferrocene in DMF.  

 

 

 

 

 

Figure A.2: Redox spectra of ferrocene.  
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