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Self-Assembling Peptide Nanomaterials: Molecular Dynamics Studies,
Computational Designs And Crystal Structure Characterizations

Abstract
Peptides present complicated three-dimensional folds encoded in primary amino acid sequences of no more
than 50 residues, providing cost-effective routes to the development of self-assembling nanomaterials.� The
complexity and subtlety of the molecular interactions in such systems make it interesting to study and to
understand the fundamental principles that determine the self-assembly of nanostructures and morphologies
in solution. Such principles can then be applied to design novel self-assembling nanomaterials of precisely
defined local structures and to controllably engineer new advanced functions into the materials. We first
report the rational engineering of complementary hydrophobic interactions to control β-fibril type peptide
self-assemblies that form hydrogel networks. Complementary to the experimental observations of the two
distinct branching morphologies present in the two β-fibril systems that share a similar sequence pattern, we
investigated on network branching, hydrogel properties by molecular dynamics simulations to provide a
molecular picture of the assemblies. Next, we present the theory-guided computational design of novel
peptides that adopt predetermined local nanostructures and symmetries upon solution assembly. Using such
an approach, we discovered a non-natural, single peptide tetra-helical motif that can be used as a common
building block for distinct predefined material nanostructures. The crystal structure of one designed peptide
assembly demonstrates the atomistic match of the motif structure to the prediction, as well as provides
fundamental feedback to the methods used to design and evaluate the computationally designed peptide
candidates. This study could potentially improve the success rate of future designs of peptide-based self-
assembling nanomaterials.
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ABSTRACT 
 

SELF-ASSEMBLING PEPTIDE NANOMATERIALS: MOLECULAR DYNAMICS STUDIES, 

COMPUTATIONAL DESIGNS AND CRYSTAL STRUCTURE CHARACTERIZATIONS 

Huixi Violet Zhang  

Jeffery G. Saven 

Peptides present complicated three-dimensional folds encoded in primary amino acid sequences 

of no more than 50 residues, providing cost-effective routes to the development of self-

assembling nanomaterials.  The complexity and subtlety of the molecular interactions in such 

systems make it interesting to study and to understand the fundamental principles that determine 

the self-assembly of nanostructures and morphologies in solution. Such principles can then be 

applied to design novel self-assembling nanomaterials of precisely defined local structures and to 

controllably engineer new advanced functions into the materials. We first report the rational 

engineering of complementary hydrophobic interactions to control β-fibril type peptide self-

assemblies that form hydrogel networks. Complementary to the experimental observations of the 

two distinct branching morphologies present in the two β-fibril systems that share a similar 

sequence pattern, we investigated on network branching, hydrogel properties by molecular 

dynamics simulations to provide a molecular picture of the assemblies. Next, we present the 

theory-guided computational design of novel peptides that adopt predetermined local 

nanostructures and symmetries upon solution assembly. Using such an approach, we discovered 

a non-natural, single peptide tetra-helical motif that can be used as a common building block for 

distinct predefined material nanostructures. The crystal structure of one designed peptide 

assembly demonstrates the atomistic match of the motif structure to the prediction, as well as 

provides fundamental feedback to the methods used to design and evaluate the computationally 

designed peptide candidates. This study could potentially improve the success rate of future 

designs of peptide-based self-assembling nanomaterials.  
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Chapter 1 Introduction  

1.1 General background  

1.1.1 Existence of biomolecular-derived assemblies in nature 

Natural biomolecular assemblies and derivatives are highly-ordered materials that 

are complex in structure and rich in function. For example, ferritin is a hollow protein 

assembled from 24 subunits, and is critical in iron storage and mineralization in living 

systems(1); viruses use highly-symmetrical, protein-coated vesicles for encapsulation and 

protection of genetic information, immunological evasion, target binding, and 

oligonucleotide delivery(2); S-layer proteins assemble as a major cell-wall component for 

protein protection, scaffolding and nutrient uptake in many bacteria(3); laminins undergo 

receptor-directed assembly on cell surfaces that are involved in activities such as cell 

differentiation, movement and signaling and are important for tissue survival(4, 5); 

assembly of nacre defines growth and ordering of inorganic/organic hybrid phases 

essential for the superior mechanic and color features of shells(6). Despite the large 

variety and unique material properties, assembling processes in natural systems 

oftentimes are dependent on the environment or require external energy input. Synthetic 

systems can be engineered to overcome the barriers and requirements of assembling 

processes in nature. Therefore, it is of great interest to study and engineer biological and 

synthetic self-assemblies that are robust in spontaneous assembling processes for 

nanomaterial applications.  
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1.1.2 Overview and history of designed self-assemblies 

Engineered nanomaterial self-assemblies are targeted to achieve ordered systems 

from disordered components with minimal human or machine intervention(7). Design 

approaches have employed synthetic molecules and inorganic-organic hybrids as building 

blocks targeting a broad range of applications in nanoelectronics, nanomachines, 

photovoltaics, molecular-level data storage and catalysis(8, 9). Although numerous 

examples of self-assembling nanomaterials have been discovered since as early as 1950s, 

the design of complex, multi-dimensional, highly-ordered self-assemblies has become 

successfully realized only in the past two decades. The Murray group pioneered the 

design of diverse self-assembling binary and ternary nanoparticle superlattices via 

synthetic small-molecules(10–14). Additionally, synthetic polymers are largely employed 

in the designs of hierarchical self-assemblies(15), such as dendronized polymers and 

block copolymers amphiphiles. The Percec group are experts in dendronized polymer 

self-assemblies and have discovered the isomeric libraries of quasi-equivalent primary 

structures composing self-assembling dendrons and dendrimers that decode the 3D 

assembly architectures(9, 16, 17). The “self-assembly” of block copolymers is usually 

realizable through the careful tuning of the assembling environment such as solvents/non-

solvents(18), pH and temperature, as well as block composition and length. For example, 

successful approaches to achieve block copolymer assemblies include “phase 

inversion”(19), living crystallization-driven self-assembly (CDSA)(18, 20), and kinetic 

controls(21, 22).  

However, synthetic molecules, especially block copolymers, rarely have 

controllable sequences to precisely define structure and chemistry. Biomolecules, such as 



  
 

3 

DNA, RNA, peptides, and proteins, naturally have the three-dimensional structures and 

functions decoded in their primary sequences, therefore providing a sequence-controlled, 

alternative approach for novel designs of advanced self-assembling nanomaterials. DNA 

tiles and origami are established as a nanomaterials field, where both empirical 

knowledge and computer prediction allow the design of proper base pairing and 

hybridizations to build targeted, complex nanostructures(23–25). Although the DNA 

nanostructures can be highly-ordered, there are still limitations in their finite assembly 

size and dimensionalities in all cases(23). Only the DNA tensegrity triangle has produced 

substantial 3D crystals thus far(26). DNA’s primarily function in nature is to encode 

genetic information. This relatively low-level chemical and functional complexity is 

another limitation of DNA self-assemblies compared to proteins- and peptides-based 

assemblies. Additional attachments to DNA self-assemblies are necessary to achieve 

functional diversity. For example, the Mirkin group has further functionalized DNAs into 

spherical nucleic acid (SNA) self-assemblies through multivalent hybridization with 

nanoparticles, creating superlattices of various architectures(27–29), and further 

producing precisely engineered optical properties(30).  

Because of such functional limitations, nature chooses proteins, rather DNAs, for 

most of its functional molecular assemblies. Proteins and peptides have an expanded 

building-block library of twenty natural amino acids rather than four bases used in DNAs. 

For the past decade, more research efforts have been spent in the area of de-novo design 

of peptide- and protein-based self-assemblies than that of DNA assemblies. The designed 

assemblies span various geometrical, mechanical, and functional properties, and range 

from hydrogel networks(31) to solid biomaterials(7), and can form various hierarchical 
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nanostructures, such as one-dimensional tubes(32), rods(33) and fibrils(31, 34), two-

dimensional sheets (35–38) and three-dimensional cages(39–43) and crystals (44–46). 

Because proteins are rich in functions, it has become possible to utilize well-designed 

complex nanostructures to spatially distribute chemical functionalities in the controlled 

amino acid sequences, although the process remains more challenging for synthetic 

polymers and DNAs. Recent advances include a self-assembling biomolecular 

hydrogenase enzyme that has improved catalytic activity and resistance to protease, heat 

and oxygen due to the ordered encapsulation(47). Additionally, controlled and precise 

patterning of hybrid organic–inorganic structures has been successfully realized via 

designed solution-phase protein self-assemblies, where metal ions(48), and functional 

small molecules(45) co-assemble into hierarchical, highly-ordered nanostructures. Lastly, 

the Mayo group and the Mirkin group reported designed self-assembly hybrids between 

proteins and DNAs(49, 50) that lay the foundation for the engineering of a new class of 

bio-nanomaterials.  

1.2 Motivations of designing peptide-based self-assemblies 

Proteins and peptides are structurally-complex building blocks that nature 

provides for self-assembling nanomaterial. Their structural complexity comes from the 

rich primary sequence of amino acids, well-defined secondary structures such as α-

helices and β-sheets, specific intramolecular interactions in tertiary structures, and from 

the intermolecular interactions which guide the ordered, sometimes symmetrical, 

quaternary structures. Such innate structural complexity of proteins and peptides offers 

advantages for constructing self-assembling nanomaterials.  
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1.2.1 Advantages of designed peptide self-assemblies 

Protein- and peptide-based self-assemblies and their derivatives have advantages 

over synthetic organic polymers and DNA in multiple aspects: 1) controlled structural 

output through primary sequence; 2) a large pool of amino acid monomers, including 

unnatural amino acids; 3) accessibility to post-assembling chemical modifications; 4) 

high bio-compatibility in-vivo.  For peptides, which typically have a short primary 

sequence, there are additional advantages, including straightforward synthesis through 

standard solid-phase techniques, easier to design into self-assemblies than large proteins, 

and highly compatible to nonbiological modifications. 

Given these advantages, a variety of biomedical, chemical and energy related 

applications of peptide-based self-assemblies have been reported. Hydrogel networks 

cross-linked by peptide assemblies are promising artificial extracellular matrices for cell 

culture, tissue engineering and regenerative medicine(31, 51, 52). These hydrogel 

networks could also serve as carriers for controlled delivery and release of drugs(53, 54) 

and functional proteins(55).  Peptide-based self-assemblies rich in arginine and lysine 

residues have also been proved to have antimicrobial or antibacterial effects, which could 

be applied to treat infections(56, 57). Enzyme-responsive peptide self-assemblies have 

shown efficacy in cancer therapeutics(58–60). Fusion peptide self-assemblies with 

enzymes have assisted in improving protease and esterase catalytic activity(61) and 

offered a simple and cost-effective strategy to stabilize and reuse carbonic anhydrase(62). 

Besides that, peptide-inorganic hybrid self-assemblies have been designed towards the 

development of more efficient nano-electronics and solar cells, such as peptide-
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DDP(Zn)-TiO2 hybrid assemblies capable of photoinduced charge separation with spatial 

control of the donor-acceptor pair by tuning the peptide sequence(63).  

Many past successful designs of highly-ordered self-assemblies rely on scaffolds 

from natural proteins, where the interior/core structure of the protein is adopted to 

preserve its globular fold (tertiary structure), and only interfaces between proteins are 

designed and modified(35–38, 43, 46, 64). The de novo designs that use arbitrary protein 

backbones and non-natural sequences without existing references to nature still remain 

very challenging for predetermined molecular- and nano-structures. The Baker group 

tackles the problem in the realm of novel isolated proteins such as tandem protein repeat 

architectures and the TIM-barrel fold through geometric and chemical rules(65, 66). 

Peptides have fewer degrees of freedom than proteins due to short primary sequences and 

are a reasonable starting point to engineer novel tertiary folds and quaternary assembly 

architectures from scratch, and design sequences accordingly using rational and 

computational approaches. However, the reported successful designs of ordered peptide 

self-assemblies with high control and precision are limited to peptide oligomers, like 

helical barrels(67), and a cage-shaped nanostructure(68). Therefore, there is still large 

room of improvement regarding designing novel and non-natural peptide-based self-

assemblies with predefined nanostructures. Some of the chapters in this thesis will 

present results to address the engineering of lattice-forming peptides of non-natural 

sequences and backbones by computational design approaches. Next, we will review 

rational and computational approaches used in the designs that will appear in the later 

chapters of the thesis. 
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1.2.2 Computational design vs. rational design 

The design methodology for protein- and peptide-based self-assemblies can be 

grouped into two categories: rational approaches and computational approaches. Rational 

designs combine biomimicry and chemical intuitions to engineer self-assembling 

biomaterials. In some cases, natural self-assembling sequence patterns are adopted, such 

as amyloid beta and precursor proteins(61, 69, 70), leucine-zippers(71, 72) and laminin- 

and collagen-derived motifs(73, 74). Other times peptide amphiphiles are designed based 

on well-understood chemical interactions between the polar and nonpolar parts of the 

sequences(75, 76). Self-assemblies designed by those strategies usually adopt irregular 

nanostructures lack of long-term periodicity because of the less-controlled, nonspecific 

associations between the flexible peptide building blocks. These structures are typically 

observed in peptide-based hydrogels. To have a better control of the assembly 

nanostructures and to engineer defined long-term order, an alternative rational design 

strategy employs natural proteins of known structure and symmetry, and fuse them 

together through mutagenesis(77)
,
(39), or through simple covalent linkages such as 

disulfide bonds. Although these attempts have successfully produced the defined 

nanostructures, the selection of assembly building blocks is still constrained by a small 

portion of known proteins in nature. Thus the accessible nanostructures are limited. On 

the other hand, the computational approach, guided by theory and biomolecular models 

of the defined assembly nanostructures such as rods, sheets, cages and lattices, can 

achieve precise control and fine tuning of the building-block geometry and orientations. 

Furthermore, it is possible to achieve atomistic-level precision with the designed 

assembly nanostructures using a computational design approach(40, 44, 46, 66).  More 
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specifically, given an assembly nanostructure, computational design identifies energy 

minima in a large conformational and sequence landscape where noncovalent, 

interatomic interaction energetics are calculated within the building-block proteins and at 

the protein-protein interfaces. However, such interactions are subtle to design as the 

energetics are approximated. Therefore, finding sequences that will fold and self-

assemble into a particular nanostructure with predetermined order and symmetry in the 

conformational and the sequence energy-landscape is a non-trivial task.   

One critical step in the computational design of protein- and peptide-based self-

assemblies is to find such primary sequences able to fold into target tertiary structures 

and assemble into targeted nanostructures of higher order. The target tertiary structure 

can be taken from the backbone of natural proteins or created using mathematical 

models(78, 79). Additional constraints can be imposed on the design, such as symmetric 

approximations(80) between the neighboring monomer building blocks, to improve the 

computational efficiency when designing infinite lattices or symmetrical cages. There is 

typically no unique answer to what such sequences should be, since nature gives many 

examples where sequences sharing no similarities fold into nearly identical 

structures(81)
,
(82).  In order to find those sequences, approximations of folding free 

energy, derived from appropriate physical models, can be used as an objective function 

and minimized by optimization techniques. Due to the tremendous number of amino acid 

combinations possible in only a medium-sized protein sequence, and the various 

conformations each amino acid could possess, it is crucial to have computationally 

efficient methods to solve the functions that model the energetics of designed structures 
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accurately. Lazaridis & Karplus(83) and Mendes et al(84). have categorized the energy 

models into three types: 1) Statistical effective energy functions, such as the 

environmental energy model(85, 86) and the helix propensity model(87); 2) Empirical 

effective energy functions achieved by machine-learning(88–92); 3) Physical effective 

energy functions, which use atom-level force field such as CHARMM(93), AMBER(94) 

and OPLS(95). A combination of these three types of energy models are usually 

incorporated in the computational approach at different design stages. 

Another important aspect of computational design is the balance between 

computational efficiency and sampling thoroughness when facing the huge phase space 

of possible sequences. Heuristic techniques are efficient for sampling the whole structural 

and/or sequence space; for example, Monte Carlo simulated annealing(96)(97), and 

genetic algorithms(98, 99) have been widely used in computational designs. The 

drawback of heuristic search is that finding the global minimum of the energy objective 

function is not guaranteed. Instead, the objective function could be trapped in one of the 

local minima. To overcome this issue, another set of algorithms applying dead-end 

elimination or its generations(100–102) have been developed to search through a subset 

of the whole phase space and to identify the designed sequence at global minimum. 

However, one has to keep in mind that dead-end elimination is very computationally 

expensive. An alternative to explicit sampling is to apply computational design via a 

statistical-mechanics based probabilistic approach, which characterizes the energetics of 

an ensemble of designed sequences in a given nanostructure using the mean-field energy 

theory(103, 104). In this approach, the probabilities of amino acids at the designed 
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peptide sites are estimated by minimizing the free energy or maximizing the entropy of 

the sequence ensemble using nonlinear optimization techniques that identifies local 

energy minima. Additional Monte Carlo sampling or the grid search techniques for 

backbone structures with different nanostructure configurations can be combined into the 

probabilistic approach to design peptide assemblies of defined symmetry and crystalline 

order(44). 

1.3 Thesis Contributions 

This section is a summary of the set of key results and findings of the following chapters: 

Chapters 2, 3, and 4, in this thesis.  

 In section 2.1-2.2, we will introduce de-novo, rationally designed, self-assembling 

peptides MAX1 and LNK1. MAX1 and LNK1, despite their similar sequence patterns, 

are capable of self-assembling into distinct β-fibril nanostructures respectively and form 

hydrogel networks.  In section 2.3, experimental characterizations for the two peptide 

self-assemblies are detailed. In section 2.4, computational and modeling details for the 

two peptide self-assemblies are described. Section 2.5-2.6 shows the key results of the 

computational and experimental work followed by discussion.  In brief, transmission 

electron microscopy (TEM) reveals branched fibrils of MAX1 and rigid rod-like fibrils of 

LNK1 with no branches (section 2.5.1). MAX1 and LNK1 hydrogel assembly exhibit 

very different rhelogical behaviors (section 2.5.2). We constructed molecular models of 

the two peptide self-assemblies and use molecular dynamics (MD) simulations to obtain 

dynamic and molecular structural information and to understand the driving force for 

their distinct assembly features. Each peptide is a single β-hairpin with the same 
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hydrophobic patterning featuring a hydrophobic face and a hydrophilic face, only the 

identities of the hydrophobic amino acids differ. MD simulations and quantitative 

analysis of the fibril models are presented to provide molecular insights into the fibril 

structures and the fluctuations of the two self-assemblies (section 2.5.3), which can 

inform the rational design of new peptide-based materials.  

 Section 3.1-3.6 presents a set of computationally designed peptide self-assemblies 

with four predetermined nanostructures, an isolated helical bundle and three crystalline 

nanosheets with different local symmetries. Section 3.3.1 describes the computational 

design details of the 29-residue peptides guided by statistical-mechanics based theory. 

We encoded the information required for multiple, distinct nanostructures into a novel 

sequence of a single bundle motif as a common building block for four distinct, 

predetermined material nanostructures.  These predetermined structures were specified by 

the design of the exterior sequences of the helical bundles motifs. Section 3.3.2 -3.3.3 

shows the TEM and small angle neutron scattering (SANS) characterizations of the 

nanomaterials composed of the designed peptides upon solution assembly. The peptides 

self-assemble into distinct nanostructures (non-assembling bundles and nanosheets) with 

various degrees of agreement to the predefined local symmetry and repeating-unit size. 

Furthermore, the material solution assembly process is robust with respect to both 

variation of solution conditions (pH and temperature) and covalent modification of the 

computationally designed peptides. Section 3.4 presents additional modeling to address 

and discuss the possible lattice configurations formed in two of the nanosheet materials 

that appear to deviate from the designed local structures in the solution assembly. 
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 Lastly, in section 4.1-4.7, we expand our study on one of the computationally 

designed self-assembling peptides from Chapter 3, and report the crystal structure and 

more solution phase characterizations of the lattice nanostructure. Section 4.4.1 recaps 

the computational design strategy in brief, followed by detailed description of X-ray 

crystallographic and small angle x-ray scattering (SAXS) characterizations of the peptide 

lattice in section 4.4.2. In section 4.4.3, we compare the crystal structure of the peptide 

lattice to the design model. The crystal structure reveals that the helical bundle motif 

matches to the design with atomistic precision. Such motif is applicable as a common 

building block to design different peptide lattices. Section 4.4.4 investigates the lattice 

structures assembled under different solution conditions and shows the consistency 

between these structures and robustness of the assembly. Additional molecular modeling 

and energetics calculated on peptide assembly consistent with the crystal structure 

configuration are reported in section 4.4.5. We discuss in section 4.5 the successful 

design of the helical bundle motif, and the possible causes of disagreement between the 

designed and the observed lattice structure from a thermodynamic perspective.  In 

particular, we emphasize the critical role of specific hydrophobic interactions in 

stabilizing the peptide bundle-bundle interfaces in the tightly-packed crystal assembly. 

This discussion also suggests fundamental ways to potentially improve the success rate of 

future computational design of protein- and peptide- based lattices.  
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CHAPTER 2 Engineering Complementary Hydrophobic Interactions to 

Control β-Hairpin Peptide Self-Assembly, Network Branching, and Hydrogel 

Properties 

Adapted with permission from Biomacromolecules. 15, 3891–900 (2014). Copyright 

(2014) American Chemical Society. 

 

2.1 Abstract 

The MAX1 β-hairpin peptide (VKVKVKVK-V
D
PPT-KVKVKVKV-NH2) has 

been shown to form nanofibrils having a cross-section of two folded peptides forming a 

hydrophobic, valine-rich core, and the polymerized fibril exhibits primarily β-sheet 

hydrogen bonding(105–111). These nanofibrils form hydrogel networks through fibril 

entanglements as well as fibril branching(112). Fibrillar branching in MAX1 hydrogel 

networks provides the ability to flow under applied shear stress and immediately reform a 

hydrogel solid on cessation of shear. New β-hairpins were designed to limit branching 

during nanofibril growth because of steric specificity in the assembled fibril hydrophobic 

core. The nonturn valines of MAX1 were substituted by 2-naphthylalanine (Nal) and 

alanine (A) residues, with much larger and smaller side chain volumes, respectively, to 

obtain LNK1: (Nal)K(Nal)KAKAK-V
D
PPT-KAKAK(Nal)K(Nal)-NH2. LNK1 was 

targeted to self-associate with a specific “lock and key” complementary packing in the 

hydrophobic core in order to accommodate the Nal and Ala residue side chains. The 

experimentally observable manifestation of reduced fibrillar branching in the LNK1 

peptide is the lack of solid hydrogel formation after shear in stark contrast to the MAX1 

branched fibril system. Molecular dynamics simulations provide a molecular picture of 
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interpeptide interactions within the assembly that is consistent with the branching 

propensity of MAX1 vs. LNK1 and in agreement with experimental observations. 

2.2 Introduction 

Specific molecular recognition interactions within peptide and protein molecules 

have been used widely for designing smart, responsive hydrogel materials. Prominent 

examples of such efforts include materials based on specific interactions between coiled 

coil domains such as leucine zipper domains, interactions between ditryptophan (WW) 

and proline-rich domains, standard linear peptides based on purely α-helical structures in 

addition to tetratricopeptide repeat (TPR)−peptide interactions(113–118). A specific type 

of protein−protein interaction, named the “Lock and Key” mechanism, involves 

recognition between specific molecules with complementary steric binding domains. This 

specific steric packing has been studied extensively in proteins but not toward designed 

materials development(119–122). The lock and key analogy was first put forward by 

Emil Fischer more than 100 years ago specifically to describe specificity in 

enzyme−substrate interactions(123). An example of widely studied, shape-dependent 

lock and key type interactions is the ligand protein interaction between the vitamin biotin 

and the egg white glycoprotein avidin, which is of tremendous interest in 

biotechnological applications(124). Similarly, Holzinger et al. have reported 

complexation between biotin and β-cyclodextrin as a representation of a new bio-receptor 

immobilization affinity system(125). Among the related shape-dependent recognition 

patterns involving proteins, interactions between proteins and DNA based on DNA local 

shape variations (individual base pair and minor double helix region) and DNA global 
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shape variations (various helical topologies and deformations) have also been widely 

reported(126). Solution-assembled fibrillar networks based primarily on hydrophobic and 

hydrogen bonding interactions between β-hairpin peptides have been studied 

extensively(105, 108, 110). In this work, we discuss experimental and simulation studies 

of the hydrogel network behavior of β-hairpin peptide-based hydrogels and the impact of 

designed hydrophobic and steric interactions at the cores of the fibrils forming the 

networks. 

 Hydrogen bonding-dominated assemblies of peptides into linear nanostructures 

include natural nanostructures formed by amyloid and amyloid-like assembly of proteins 

and polypeptides, as well as synthetic peptides demonstrating uniform, linear, and 

unbranched morphologies such as nanofibrils, nanotapes, nanoribbons, nanobelts, 

nanotubes and many hydrogel networks based on such morphologies(127–135). A 

prominent example of hierarchical fibrillar self-assembly of peptides based on 

hydrophobic interactions and hydrogen bonding has been reported by the Pochan and 

Schneider research groups. These groups have studied the self-assembly of MAX1 

(VKVKVKVK-V
D
PPT-KVKVKVKV-NH2) and related peptide sequences(105, 108, 

110). MAX1 is an amphiphilic 20 amino acid residue peptide with alternating 

hydrophobic valine and hydrophilic lysine residues with a -VDPPT- turn sequence in the 

middle. Found in random coil conformations in aqueous solution with neutral to low pH 

due to repulsion between positively charged lysine side chains, folding into the β-hairpin 

conformation, and consequent intermolecular assembly can be triggered by modulating 

solution conditions such as increasing pH (pH ∼ 9)(105, 136, 137), increasing ionic 
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strength (e.g., ∼ 150 mM NaCl)(108, 111, 112), and increasing temperature (T =37 

°C)(106). The higher pH and high ionic strength conditions deprotonate lysines or screen 

interactions between lysines, respectively, thus allowing the turn sequence to force the 

peptide arms to arrange in an antiparallel conformation, the β-hairpin conformation. The 

β-hairpin is stabilized by significant hydrogen bonding between the beta-strands of the 

peptide as well as the conformation of the turn sequence that anchors the arms. 

Additionally, folding and assembly can be affected by a rise in temperature that induces 

the hydrophobic interactions both within and between the peptides both promoting 

folding and intermolecular assembly. The hierarchical self-assembly of these β-hairpins 

into uniform fibrils takes place due to several interactions. Facial hydrophobic 

interactions between the valine faces of two hairpins collapsed together form the cross-

section of a growing fibril (Figure 2.1). Additionally, lateral intermolecular hydrogen 

bonding and additional hydrophobic interactions between folded hairpins define the axis 

of the growing fibrils(110). After assembly, MAX1 forms self-standing hydrogel 

networks that are purely physically cross-linked. The facial hydrophobic collapse at the 

core of the growing fibrils sometimes results in formation of a defect characterized by 

potentially incomplete burial of the hydrophobic valine side chains and sliding of the 

layers at the bilayer interface in a manner that disrupts extension of the linear fibril. Such 

defects lead to the nucleation of a branch point in the fibril growth leading to two 

daughter fibrils extending from the branch point(112). These branch points contribute to 

physical cross-linking of the hydrogel network in addition to fibrillar entanglement. The 

defects in hydrophobic face packing of folded, opposing hairpins in a fibril, and the 
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consequent branch point/new crosslink point that is formed, can be partially attributed to 

the lack of specificity in the facial hydrophobic interactions between peptides due to the 

uniform steric volumes of the valine side chains. In this paper, we attempt to introduce 

“lock and key” type specificity in the facial hydrophobic interactions of the MAX1 

peptide in an attempt to significantly limit the formation of branching cross-links formed 

as a result of nonspecific hydrophobic collapse.  

Several variants of MAX1 have been designed and studied. These variants have 

different primary sequences and have been developed to incorporate different 

functionalities such as faster gelation kinetics(136, 137), photo-cross-linkable hydrophilic 

side chains(138), inherently antibacterial properties(139), and swapped positions of 

hydrophobic and hydrophilic residues(110). They all undergo hierarchical self-assembly 

in a manner very similar to MAX1 resulting into a uniform fibrillar nanostructure. These 

functional variants have been designed by varying the hydrophilic side chains of MAX1. 

Each of these peptides has a nonspecific valine hydrophobic face like MAX1. Thus, 

designed modifications to the hydrophobic face of MAX1 offer relatively unexplored, 

fertile ground to the study of self-assembly and network behavior of the resulting 

peptides. 

Herein a designed peptide, (Nal)K(Nal)KAKAK-V
D
PPT-KAKAK(Nal)K(Nal)-

NH2, is presented and studied, wherein four valine residues of MAX1 (VKVKVKVK-

V
D
PPT-KVKVKVKV-NH2) have been replaced with non-natural 2-naphthylalanine 

(Nal) amino acid residues, whose side chains possess larger steric volumes than valine. 

The middle, nonturn valines of MAX1 have been replaced by alanine (A) residues, which 
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has a smaller side-chain steric volume than valine. Thus, the hydrophobic surfaces of two 

LNK1 hairpins can pack specifically into a lock and key type structure in the 

hydrophobic core. Such complementary steric interactions are often associated with well-

defined structures in proteins (Figure 2.1). This is in stark contrast to the simple 

hydrophobic collapse in MAX1 and the less specific interactions associated with an 

interface that comprises only valine residues. Thus, fibrils formed from LNK1 peptide 

self-assembly are intended to be unbranched (Figure 2.1) as compared to the branched 

fibrils of MAX1 formed from incomplete, defective collapse of non- specific valine faces 

during β-hairpin assembly. We hypothesize that LNK1 fibrils form percolated networks 

only by fibril entanglement as opposed to the hydrogel networks of MAX1 that form a 

network due to fibril branching as well as entanglement. Due to the hypothesized severe 

inhibition in the branching in the LNK1 fibrillar hydrogel networks, these materials are 

expected to have a significantly different response to shear treatment as compared to the 

MAX1 network hydrogels. Specifically, the LNK1 hydrogel networks are expected to 

undergo flow and fibril fracture and disentanglement when subject to shear treatment but 

lack hydrogel reformation ability post-shear due to fibril collapse and permanent loss of a 

percolated network. We report on the assembly of the LNK1 peptide, the local fibril 

nanostructure, and ultimate hydrogel network structure via a combination of (i) physical 

characterization techniques such as circular dichroism (CD), transmission electron 

microscopy (TEM) and oscillatory rheological measurements as well as (ii) molecular 

dynamics simulations to complement the experimental observations. 
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Figure 2.1. Ribbon representations of MAX1 and LNK1. MAX1 can form branched 

nanofibrils. LNK1 is restrained to form only linear fibrils. The inserts are views of 

fibrillar cross sections. In MAX1, valine residues form a nonspecific, “flat” hydrophobic 

interface. In LNK1, specific hydrophobic steric interactions appear as well as the interior 

hydrophobic interface between complementary naphthylalanine and alanine side chains. 

Adapted with permission from Biomacromolecules (2014). 

 

2.3 Materials and methods 

Peptide Synthesis. Peptides MAX1 and LNK1 were designed at the University of 

Delaware and synthesized and purified by New England Peptide, LLC (Gardener, MA, 
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USA) where matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) 

mass spectral analysis data confirming molecular weights of purified peptides were 

obtained. Both peptides were prepared using Fmoc-based solid phase peptide synthesis as 

described elsewhere(140).  

Hydrogel Preparation. A 1 mg aqueous solution of either MAX1 or LNK1 peptide in 

100 μL of deionized chilled water (5 °C) is prepared leading to a 1% (w/v) aqueous 

solution. An equal amount of chilled (5 °C) buffer solution pH 9 (250 mM boric acid, 20 

mM NaCl) is added to both aqueous solutions to give buffered solutions of either MAX1 

or LNK1. Then the temperature of the solutions is raised to 30 °C to obtain 0.5% (w/v) 

hydrogels with effective solution conditions pH 9 (125 mM boric acid, 10 mM NaCl). 

The same procedure is used to obtain networks from MAX1 and LNK1 peptides using a 

different solution condition using a pH 7 buffer (100 mM bis-tris propane, 300 mM 

NaCl), ultimately leading to pH 7 (50 mM bis-tris propane, 150 mM NaCl). Briefly, an 

equal volume of chilled (5 °C) pH 7 (100 mM bis-tris propane, 300 mM NaCl) buffer 

solution is added to a chilled (5 °C) 1% (w/v) aqueous solution of either MAX1 or 

LNK1. The temperature is immediately raised to 30 °C to obtain 0.5% (w/v) hydrogels.  

Circular Dichroism. CD spectra were collected using an AVIV Model 420 (AVIV 

Biomedical, Inc. Lakewood, NJ, USA) CD spectrophotometer. Solutions of MAX1 and 

LNK1 (150 μM) at pH 9 and 10 mM NaCl were prepared by adding equal volumes of 

chilled (5 °C) buffer solution of pH 9 (250 mM boric acid, 20 mM NaCl) to 300 μM 

deionized peptide solution. The random coil to β-hairpin folding transition temperatures 

were determined by scanning temperatures from 15 to 60 °C keeping the wavelength of 
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incident radiation fixed at 218 nm, the signature wavelength at which a significant drop 

in mean residue ellipticity indicates the formation of β-sheet secondary structure. Mean 

residue ellipticity [θ] was calculated from the equation [θ]= θobs/(10l × c × n), where θobs 

is the measured ellipticity (millidegrees), l is the path length of the cell (cm), c is the 

peptide concentration (molar), and n is the number of residues on the peptide sequence. 

Temperature scans were performed with 2 °C increments and 5 min equilibration time at 

each temperature.  

Oscillatory Rheology. Oscillatory rheology measurements were performed on an ARG2 

rheometer (TA Instruments, New Castle, DE, USA) using 20 mm diameter stainless steel 

parallel plate geometry. For the initial time sweep measurements, the samples for both 

LNK1 and MAX1 were prepared as follows. Buffered peptide solutions were prepared in 

ice-chilled conditions by adding 120 μL of chilled (5 °C) pH 9 (250 mM boric acid, 20 

mM NaCl) buffer to 120 μL of 1% (w/ v) of peptide solution in chilled (5 °C) deionized 

water. The chilled (5 °C) buffered peptide solution was quickly transferred to the Peltier 

plate of the ARG2 rheometer equilibrated at 5 °C, and the upper plate was lowered to a 

gap height of 500 μm. The upper plate and the Peltier plate were equilibrated to 35 °C 

prior to carrying out the rheological experiments. Oscillatory time sweep measurement 

steps carried out for 90 min each, before and after subjecting the hydrogel networks to a 

steady-state shear of 1000/s for 120 s, were carried out for both MAX1 and LNK1. 

Throughout the oscillatory time sweep measurements, the oscillatory frequency was 

maintained at 6 rad/s and oscillatory strain at 1%. The gap height was maintained at 500 

μm for both the steady-state shear and oscillatory measurements. Further characterization 
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of network properties of both MAX1 and LNK1 networks was carried out using 

oscillatory frequency sweep measurements at a constant 1% oscillatory strain. Prior to the 

frequency sweep measurements both hydrogel networks were allowed to assemble inside 

syringes by pulling buffered solutions (pH 9 125 mM boric acid, 10 mM NaCl) of both 

peptides into syringes then maintained at 35 °C. The hydrogels were then subjected to a 

multiple injection treatment that involved a sequential injection of MAX1 or LNK1 

networks formed inside a syringe, seven times through a 27−1/ 2 G needle. For future 

reference to this method within this thesis, it shall be referred to as the “Injection Shear” 

treatment.  

Transmission Electron Microscopy. Transmission electron microscopy was carried out 

on a 120 kV Tecnai-12 Electron Microscope (FEI Company, Hillsboro, OR, USA). 

MAX1 or LNK1 hydrogel was prepared at 0.5% (w/v) with final hydrogel conditions of 

pH 7 (50 mM bis-tris propane, 150 mM NaCl). To observe the fibrillar width, particularly 

the local nanostructure of LNK1 vs MAX1 networks, 10 μL of gel was diluted to a 

concentration of 0.1% (w/v), and a drop was placed on a 300 mesh copper-coated grid 

(Electron Microscopy Sciences, Hatfield, PA, USA) held by a pair of tweezers. Excess 

fluid was blotted off with filter paper. Then, immediately, 3 μL of a 1% (w/v) of uranyl 

acetate solution in water was placed on the grid and blotted off after 40 s. The grid was 

left to dry for an hour and used for imaging. For the preparation of the sample for MAX1 

and LNK1 networks after being subject to the injection shear treatment as described 

above, a small piece of the treated hydrogel without dilution was placed on a 300 mesh 

copper-coated grid, and the excess volume of gel was blotted off. Three microliters of a 
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1% (w/v) of uranyl acetate aqueous solution was placed on the grid and blotted off after 

40s to stain the sample. This method was applied to the network samples after injection 

shear treatment to capture their morphology without dilution and additional mixing 

effects. 

2.4 Computational modeling 

2.4.1 Preparation of initial peptide and fibril structures 

The initial structures of both MAX1 and LNK1 were constructed as octamers of 

β-hairpins, forming two layers of β-sheets (a bilayer) with hydrophilic lysine residues 

exposed on the fibril exterior and the hydrophobic residues (valine in MAX1; 2-

naphthylalanine and alanine in LNK1) buried within the bilayer at the interface between 

the two β-sheets. The construction of the initial model involved three-steps. First, the 

coordinates of the backbone atoms of two 8-residue β-strands were generated de novo, 

consistent with trans amide bonds and a pleated β-sheet (φ = −135°, ψ = 135°). Individual 

antiparallel β-strands were then positioned at hydrogen-bonding distance from each other 

at heavy atom donor−acceptor distances of 3.1 Å. A β-turn (VDPPT) between the two 

beta strands was added using cyclic-coordinate descent algorithm for loop 

modeling(141), complemented by a neighbor-dependent Ramachandran 

distribution(142). The turn contained a trans peptide bond that connected the two proline 

residues. An amide capping group was added to the C-terminus. In the next step, amino 

acid side chains were added to the constructed backbones. Two hairpins were positioned 

such that their hydrophobic faces were in contact and the total energy was minimized 

(using NAMD and the CHARMM22 molecular potential, see below) with respect to 
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variation of the rigid body translation of the parallel hairpins with respect to one another. 

Side chain conformations where determined as the most probable amino acid 

conformations identified by statistical sequence design algorithm(44, 143–145); Nal side 

chain conformations (rotamers) were adapted from those associated with phenylalanine. 

In the last step, the complete octamer structures were created by replicating the hairpin 

bilayer pairs along the fibril growth direction. Two initial structures of LNK1 were 

generated: (1) the neighboring LNK1 hairpins were positioned such that neighboring beta 

strands were at hydrogen bonding distance, and (2) this structure from (1) was energy 

minimized interbilayer distance while simultaneously solving for the most likely side 

chain conformations using computational design methods identify the most probable Nal 

conformations(44, 143–145). 

2.4.2 Molecular simulations 

Molecular dynamics simulations were performed using the NAMD2 

package(146) with the modified CHARMM22 force field(93) with TIP4P water 

model(147). Energy minimization by conjugate gradient and line search were performed 

for 100 to 500 steps on all initial peptide structures. All peptide models were solvated 

using the SOLVATE module in VMD(148). A rectangular simulation box was chosen 

such that the minimum initial separation between any peptide atom and the nearest 

boundary of the solvent box was 15 Å. The appropriate choice of water model can affect 

the production of correct conformations of small peptides(149), and four-site water 

models such as TIP4P, which can better populate fully coordinated water configurations 

than three-site water models, have been suggested for simulating such systems(150). 
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Sodium and chloride counter-ions were added to neutralize the protonated Lys residues, 

and the ionic strength was set to 0.1 M. All Lys residues are protonated to maintain the 

equivalence of Lys residues in the fibril. Interestingly, this choice also demonstrates the 

robustness of the β-fibril assemblies to the electrostatic repulsive interactions among 

these exterior Lys residues. Each system (MAX1: 30,136 atoms, LNK1: 33,132 and 

35,738 atoms) was then subjected to a constant 1000-step energy minimization prior to 

the simulations.  

The NPT ensemble was applied to all systems with constant pressure at 1 atm and 

constant temperature at 310 K for MAX1 and 320 K for LNK1 to match experimental 

conditions. Constant pressure was maintained by the Nos −Hoover Langevin piston 

method, and constant temperature was controlled by Langevin dynamics. Electrostatic 

interactions were evaluated fully by particle-mesh Ewald (PME) method at 1.0 Å grid 

spacing under periodic boundary conditions. Nonbonded interactions were gradually cut 

off from 10 to 12 Å with the pair-list interactions truncated at 14 Å. The SHAKE 

algorithm(151) was employed to preserve rigid bonds involving hydrogen atoms. An 

initial 300 ps of solvent relaxation was performed for each model system with protein 

atoms fixed to their initial coordinates. For the MAX1 octamer, five separate simulations 

were performed with different starting solvent configurations and random initial 

velocities; these initial configurations were sampled at 100, 150, 175, 200, and 250 ps 

from the solvent-relaxation trajectory. For the LNK1 octamer, three simulations were 

performed for each of two distinct initial protein structures as described above. For each 

structure, three initial solvent configurations were sampled from the solvent-relaxation 
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trajectories at 100, 150, and 200 ps. Each system was then subject to another 1000-step 

energy minimization following by a 100 ps preproduction simulation. During these 

solvent relaxation and preproduction simulations, the bonded and van der Waals 

interactions were calculated at every 1 fs time step, and the long-term full electrostatics 

were computed every other step. Subsequently, for the production simulations, a 2 fs time 

step was used, and configurations were sampled for analysis every 0.01 ns. 

2.5 Results and discussion 

2.5.1 MAX1 and LNK1 hydrogel assembly 

For the same solution conditions (pH 9, 125 mM boric acid, 10 mM NaCl), the CD data 

(mean residue ellipticity as a function of temperature) (Figure 2.2) reveal similar folding 

transition temperatures (Tf ∼ 30 °C) from random coil to the β-sheet secondary 

conformation for both MAX1 and LNK1 (full wavelength spectra for MAX1 and LNK1 

from which Figure 2.2 was constructed are shown in the Supporting Figure 2.3). The 

local nanostructures for both MAX1 and LNK1 fibrils are similar, in particular the fibril 

thickness as observed by TEM (Figure 2.4); both peptides assemble into fibrils with 

uniform width of approximately 3 nm. This similarity in the MAX1 and LNK1 fibril 

morphology and the width of the fibril is consistent with each peptide assembling into a 

fibril whose cross-section involves two stacked β hairpins that contact one another via a 

hydrophobic core. 
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Figure 2.2. Circular dichroism data (mean residue ellipticity in deg·cm/decimole at 218 

nm v/s temperature °C) showing approximately the same folding transition temperature 

(∼30 °C) from random coil to β-sheet secondary conformation for both MAX1 and 

LNK1. Adapted with permission from Biomacromolecules (2014). 
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Figure 2.3. Mean residual ellipticity values as a function of incident wavelength (200-

250 nm) at different temperatures (°C), indicated in the column to the right for (a) MAX1 

(b) LNK1 both at 150 µM concentration at solution conditions pH 9 (125 mM boric acid, 

10 mM NaCl). Adapted with permission from Biomacromolecules (2014)  
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Figure 2.4. Transmission electron micrographs of (a) MAX1 and (b) LNK1. Samples 

were prepared at pH 7, 50 mM bis-tris propane, 150 mM NaCl buffer, and stained with 

1% (w/v) uranyl acetate in deionized water. Adapted with permission from 

Biomacromolecules (2014). 

 

2.5.2 Rheological behavior of hydrogel assembly 

Solid MAX1 hydrogels exhibit a unique property of undergoing shear thinning 

and flow under an applied shear stress (outside of the material linear viscoelastic regime) 

but immediately recovering into solid gels on cessation of shear. An earlier study by Yan 

et al.(152) exploring the hydrogel behavior during and after flow indicated the fracture of 

the gel networks into domains much larger than the length scale of individual fibrils in 

order to flow. The network morphology within the gel domains during flow was 

structurally identical to the parent network at rest; the peptide fibrils displayed the same 

cross-section, the same physical cross-linking points of fibrillar entanglement and 

branching, and the same porosity. On cessation of shear, the large gel domains 

immediately percolate and form a bulk, hydrogel network. This shear-thinning and 
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rehealing behavior of MAX1 would not exist if the network disassembled into individual 

fibrils during flow since there would be no immediate mechanism for the fibrils to 

recross-link and percolate into a bulk network. Our hypothesis has been that it is the 

frequent and fast fibrillar branching during MAX1 assembly that is key to this shear-

thinning but immediate network reformation behavior. If the network were composed of 

fibrils with only physical entanglements for cross-links, the shear flow would disentangle 

the fibrils, thus completely disrupting the network after shear. However, the branching 

causes the network to fracture into large domains of intact network structure in response 

to shear that does not allow the simple disentanglement of peptide fibril physical cross-

links during shear flow.  

 If the fibril branching in MAX1 is responsible for the observed shear-thinning and 

immediate gel reformation behavior, then ridding the system of most fibril branching 

should significantly affect the hydrogel flow properties. For MAX1, the putative fibril 

interior interface between peptides contains solely valine residues. Such a “flat,” 

featureless, hydrophobic interface is expected to tolerate fluctuations in the relative 

orientations of peptides within the fibrillar assembly and potentially lead to fibril 

branching. As mentioned earlier, the design of steric specificity in the hydrophobic core 

of the LNK1 fibrils was an attempt to produce lock and key type interactions and 

preclude fibrillar branching. Thus, a very different shear response is expected when 

LNK1 hydrogel networks, presumably held together with primarily physical 

entanglements as cross-links, are subject to the exact same shear treatment as the MAX1 

networks. 
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 To explore the rheological response of MAX1 and LNK1 networks to shear and 

flow, self-assembled hydrogels from LNK1 or MAX1 were produced at a concentration 

of 0.5% (w/ v) at pH 9 (125 mM boric acid, 10 mM NaCl). Under these conditions, both 

hydrogels show similar preshear behavior with G′ ∼ 250 Pa ≫ G″ ∼ 20 Pa for the MAX1 

hydrogel and G′ ∼ 200 Pa and G″ ∼ 20 Pa for the LNK1 hydrogel, where G′ and G'' are 

the storage and loss moduli, respectively. Figure 2.5a shows the shear-thinning and 

recovery character of MAX1 hydrogels in which a MAX1 gel was subjected to steady-

state shear rate of 1000/s for 120 s. Upon cessation of shear, the hydrogel immediately 

showed solid gel properties (G′ ∼ 75 Pa ⟫ G″) and quickly recovered to almost the same 

value of storage modulus of the preshear, original MAX1 network (G′ ∼ 250 Pa) after 

several hours. In stark contrast, when an LNK1 network, formed with the same solution 

conditions as the MAX1 hydrogel network, was subject to the identical shear treatment, it 

immediately displayed very weak hydrogel network properties (G′ ∼ 5 Pa > G″) and 

failed to recover to even 10% of its original modulus value after several hours (Figure 

2.5b). The LNK1 design was meant to prevent branching of the peptide fibrils during 

assembly. The response to shear was consistent with this absence of branching, and the 

shear treatment destroyed most physical entanglements between LNK1 fibrils that were 

unable to reform in any significant way on cessation of shear. This lack of rehealing upon 

cessation of shear is a clearly different shear response by the LNK1 hydrogel network, 

relative to MAX1, that will be discussed later in this section. 
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Figure 2.5 Oscillatory time sweep measurements before and after application of steady-

state shear (1000/s for 120 s, indicated by dotted line) on 0.5% (w/v) (a) MAX1 and (b) 

LNK1 networks under the same solution conditions (pH 9 125 mM boric acid 10 mM 

NaCl). Solid squares indicate G′ (Pa) and open circles G″ (Pa). Adapted with permission 

from Biomacromolecules (2014). 

 After a simple steady shear treatment of LNK1 inside the rheometer (Figure 2.5b), 

the oscillatory shear data indicate a significant reduction in the hydrogel storage modulus 

G′, consistent with a strong reduction of network-like properties of LNK1. In order to 

more closely mimic conditions of potential clinical usage, both LNK1 and MAX1 

hydrogels were subject to the syringe injection shear treatment as described in the 

Materials and Methods section. The oscillatory frequency sweep data in Figure 2.6b 

reveal a complete elimination of hydrogel network properties of LNK1 networks post 

injection shear treatment. The LNK1 sample shows a greater value of the loss modulus, 

G″, as compared to the storage modulus, G′, with G″ > G′ at all frequencies. This is a 

clear signature of a material that is not a percolated hydrogel network but, rather, is a 

particulate suspension or molecular solution. In stark contrast, MAX1 materials retain 

hydrogel network properties even after the injection shear treatment with G′ ≫ G″ at all 
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frequencies. The transmission electron micrograph in Figure 2.6d shows the morphology 

of the LNK1 networks at the end of the syringe injection shear treatment. Observed 

fibrillar bundle-like nanostructures are much wider (∼15−20 nm) and more nonuniform 

than LNK1 fibrils observed prior to injection (Figure 2.6b). The existence of these 

bundled structures can be attributed to fibrillar stacking within LNK1 samples as a result 

of the injection shear treatment that caused disentanglement of the original percolated 

LNK1 network. Once in these stacks, the fibrils no longer contribute to network 

properties that confer large storage modulus and no longer form physical cross-links 

through entanglements. In contrast, the MAX1 local nanostructure at the end of the exact 

same shear injection treatment (Figure 2.6c) is similar to the MAX1 fibrils seen 

pretreatment in Figure 2.4. The oscillatory frequency sweep measurements carried out on 

the MAX1 networks clearly indicate a gel-like response from MAX1 networks postshear 

injection treatment. MAX1, with a hydrophobic face composed entirely of valine side 

chains that have the same side chain volume, demonstrates fibrillar branching and, thus, a 

bulk hydrogel network of MAX1 subject to shear treatment reheals into a fully percolated 

network when shear is stopped. Even the nanostructure of the MAX1 network before and 

after shear treatments is the same. In the case of the LNK1 peptides with a designed 

specificity in the hydrophobic face, fibrillar branching is severely limited, and the 

rehealing properties of bulk LNK1 hydrogels subject to shear are eliminated. Indicative 

of this rheological behavior is the significant morphology change in LNK1 from 

individual fibrils in the initial hydrogel network to a multi-fibrillar bundled structure after 

flow, presumably due to LNK fibrils collapsing together, thus eliminating network 
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properties. Considering the experimental data together, designed hydrophobic specificity 

clearly affects the self-assembled hydrogel properties. 

 

Figure 2.6 Oscillatory frequency sweep (a) MAX1 and (b) LNK1 measurements after 

application of injection shear treatment to both networks formed under the same solution 

conditions (pH 9 125 mM boric acid, 10 mM NaCl). Solid squares indicate G′ (Pa) and 

open circles G″ (Pa). Transmission electron micrographs of (c) MAX1 and (d) LNK1 

post injection shear treatment. Adapted with permission from Biomacromolecules (2014). 
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2.5.3 Simulation trajectories of MAX1 and LNK1: Local molecular structures 

The experimental results suggest that LNK1 molecules, due to the hydrophobic 

specificity in the resultant fibril cores, significantly limit fibril branching and thus greatly 

affect bulk hydrogel response to shear. Here, MD simulation is used to provide molecular 

insights into why MAX1 and LNK1 β-fibrils result in different nanostructures (i.e., lack 

of branching in LNK1 vs MAX1) and consequent hydrogel properties.  

 

Figure 2.7 Renderings of representative equilibrium structures of (a) MAX1 octamer 

after 70 ns and (b) LNK1 octamer after 70 ns. Orthogonal views are shown for each. 

Coloring is used to distinguish layers in bilayer structure of each fibrillar assembly. The 

molecular structure of LNK1 presents a specific “lock and key” packing style between 

size-complementary Nal and Ala residues. “Aromatic ladder” of Nal residues is shown in 

the panel on the right in (b) (Thr and Val residues are omitted from this figure for clarity). 

Adapted with permission from Biomacromolecules (2014). 
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Simulations of MAX1 and LNK1 octamers in explicit solvent were performed for 

70 ns. The initial structure consisted of ideal, coplanar β sheet structures. The initial 

configuration contained antiparallel beta strands throughout each layer and had a 2-fold 

rotational symmetry along the fibril axis. This was termed the “anti” configuration. In 

preliminary simulations of MAX1 and LNK1, this anti configuration was found to be 

more persistent and robust than the “syn” fibril configuration, wherein the beta hairpin 

turns are in proximity and are on the same side of the peptide bilayer. A syn relationship 

is adopted between turns within distinct monolayers of the bilayer (along the fibril axis). 

This is based on recent 2D 
13
C−

13
C fpRFDR and PITHIRDS-CT NMR data that 

supported this nanostructure and showed evidence for a syn relationship in MAX8 with 

possible coexistence of an anti-orientations of the hairpins(153). Later, the exact nature of 

the turn placement on MAX1 was discovered by solid-state NMR studies and in 

agreement with our model(154). Over the course of repeated simulations, MAX1 was 

observed to adopt a variety of fibrillar configurations achieved through interlayer sliding 

and twisting of the β strands (Figure 2.8a). On the other hand, simulations of LNK1 

exhibited conformational rigidity and little sliding of β strands, even for different initial 

structures. Throughout the LNK1 simulations, the complementary packing of napthyl 

side-chains was retained (Figure 2.7b).  

The site fluctuations of the interior hydrophobic amino acids were considered for 

each peptide. In LNK1, the shape- complementary design involving large Nal side chains 

opposite small Ala residues assists to stabilize and rigidify the self- assembled structure, 

largely restricting LNK1 fibril to linear growth. In comparison, MAX1 has a relatively 
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flat and featureless hydrophobic interior interface comprising only Val. Side-chain 

mobility was examined at these interior interfaces. To characterize such fluctuations, the 

side chain dihedral angle χ1 was defined using four atoms (Nal: N-CA-CB- CG, Val: N-

CA-CB-CG1). This angle χ1 is the interior torsional angle for rotation about the bond 

connecting Cα and Cβ atoms of the amino acid side chain. Such internal angles are 

expected to populate energy basins centered near of 60°, 180°, and 300°. For the LNK1 

simulations, Nal residues were observed to populate values of χ1 at either 180° or 300°, 

and none of the residues were observed to sample both of these basins; each residue was 

essentially locked in a particular value of χ1 and impeded from rotating due to the tight 

packing of the bilayer’s hydrophobic interior. In contrast, Val residues in MAX1 were 

observed to explore χ1 values near 60°, 180°, and 300°, with χ1 = 180° being the most 

populated (85%). Individual side chains were observed to transition between these values 

of the angles. Thus, in MAX1, the bilayer interface is not rigid, and Val side chains can 

rotate to potentially accommodate lateral sliding of the two layers.  

The oligomer simulations can be used to estimate the larger scale structure of the 

fibril, such as the twist of the fibril. The longitudinal twist is characterized by a twisting 

angle α, defined as the effective angle between adjacent β-strands on the same β sheet 

(same layer). A vector associated with each β-strand was defined as vi =r08 − r02 or vi = 

r13 − r19, where rn is the position of the Cα atom of residue n (the same convention as 

used in the cross-angle calculation described below). The twisting angle α was calculated 

using cosα = (vi × vi+1) / |vi| |vi+1| and 10 interior pairs of adjacent β-strands of each 

sampled configuration; the coordinates of the four edge β-strands were not included since 
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these are not representative of the interior structure of the fibril. Larger α denotes a 

structure with more longitudinal twist and smaller overall pitch. MAX1 exhibited α = 

6.75 ± 0.77°, whereas LNK1 was flatter and less twisted with a value of α = 4.54 ± 1.39° 

(uncertainties are one standard deviation). The predicted corresponding pitch in each case 

is 53 β-strands (25 nm) for MAX1 and 80 β-strands (40 nm) for LNK1. Previous 

simulations of amyloid peptides have also observed that (a) longer fibrils exhibit a higher 

propensity for introduction of defects with increasing twist and (b) fibrils with 

complementary packing of residues along an interior interface are less twisted(155). 

Larger twist values require the sliding of the layers at the interior hydrophobic interface. 

The complementary interior packing of LNK1 prevents this, whereas MAX1 with its 

flatter, more mobile interior interface can accommodate such sliding. 

To quantify the structure and fluctuations of the peptide bilayer, a crossing angle 

θ was defined, which is the effective angle between β-strands on opposing β-sheets 

within the fibril. A vector v1 describing the orientation of a β-strand is represented by the 

difference in the coordinates (r08 − r02, r19 − r13) of the Cα atoms on residues Lys08 and 

Lys02 / Lys13 and Lys19, v1 = r08 − r02 and v2 = r19 − r13. For a pair of β-strands 

opposite each other within the fibril oligomer, the crossing angle can be calculated using 

cosθ = (v1 · v2) / |v1| |v2|. If two strands are parallel, then θ = 180°. θ was then averaged 

across all eight pairs in the structure for each sampled configuration. MAX1 exhibited a 

range of crossing angles, and representative configurations are rendered in Figure 2.8a. 

As can be seen in Figure 2.8a, the closer the crossing angle is to θ = 180°, the more 

aligned the β-strands are on the opposite sheets. The distribution of this crossing angle 
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was calculated using configurations sampled after the first 20 ns of the simulations. 

Despite initial conditions near θ = 180° for each peptide, the simulations sample a wide 

range of crossing angles for MAX1, θ = 159° − 178°. Analogous simulations of LNK1 

have a narrow range of θ and a single peak centered at θ = 175° corresponding to a well-

aligned cross-beta conformation that could extend linearly during fibril growth. On the 

other hand, MAX1 explores a much broader range of θ and has two maxima (Figure 2.8c) 

at θ = 176° and θ = 167°, respectively. The large fluctuations and the presence of the 

second peak at θ = 167° are consistent with a significant population of MAX1 

conformations that could potentially form branch points where the two leaflets of the 

fibril bilayer separate thus exposing valine side chains. For such values of θ, the resulting 

β-strands at the ends of the oligomer, their partially exposed valine residues and available 

backbone hydrogen bonding sites, are poised to recruit additional peptides and form two, 

new daughter fibrils at such a putative branch point. For values less than θ = 180°, there 

is potential exposure of valines and hydrophobic surface as this angle decreases. Analysis 

of the exposed solvent accessible hydrophobic surface area (VMD), however, reveals 

only a weak negative correlation of this surface area with crossing angle for the small 

oligomers considered in the simulations (Pearson’s correlation coefficient of −0.3). This 

is consistent with the notion that smaller crossing angles have greater exposed solvent 

accessible hydrophobic surface area. Simulations of larger assemblies are likely 

necessary, however, to better resolve the roles of exposed hydrophobic groups in fibril 

extension and defect formation.  
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Figure 2.8 (a) Representative conformations of the MAX1 model at different crossing 

angles. The top series of structures show the extent of the crossing angle θ. The bottom 

series presents qualitative visualization of the twist and gradual exposure of hydrophobic 

surface as the crossing angle decreases. (b) Modeled MAX1 branch point from two 

perspectives. Transparent regions (not sampled from the simulation) are modeled based 

upon the MAX1 configuration at θ =160° and positioned along the fibril growth 

direction. (c) Distributions of crossing angle θ for MAX1 (blue) and LNK1 (red). 

Sampled configurations are obtained from five simulations of MAX1 and six simulations 

of LNK1. Representative structures of MAX1 (θ =167°) and LNK1 (θ =175°) from the 

simulations are rendered. Sampled configurations are collected every 10 ps after the first 

20 ns for each MAX1 simulation and after the first 15 ns for the LNK1 simulations. 

Adapted with permission from Biomacromolecules (2014). 
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Although the short oligomers considered in the simulations are certainly not 

fibrils, they are likely suggestive of the fibril’s interior molecular structure. The octamers 

used in the MD simulations, composed of 8 β-hairpins and 16 β-strands, provide a 

representation of the β-fibril likely present in the hydrogel. The 16 β-strands form a 

“cross-β”-like structure. Other recent MD simulations also show examples of the 

formation of the “cross-β” structure in small collections of peptide molecules(156, 157). 

For example, MD simulations performed by the activation-relaxation technique coupled 

with a coarse-grained energy model showed the formation of the “cross-β” structure with 

six strands of one of the shortest amyloid-forming peptides KFFE(158). Another example 

is the tetramer of the peptide Beta2m (NHVTLSQ) that has been shown to visit 

conformations of a double-layered β-sheet(159).  

The twisted “cross-β” structure observed in the simulation is not unique to MAX1 

and LNK1. In fact, a number of other amyloid-like fibrils show a twisted and bent β-sheet 

structure in simulations, such as the layered peptide self-assembly mimic (PSMA)(160) 

and the Alzheimer’s Aβ fibril(161). Although fibril bending was not observed in the 

simulations of MAX1/LNK1 octamer units due to the limited fibril length of these model 

oligomers, the bending feature is confirmed by the TEM images of both fibril networks. 

In contrast, due to the approximately cylindrical cross-section of the β-hairpin fibrils, any 

twisting of the fibrils is not resolvable experimentally in TEM. If the β-hairpin fibril 

cross-section is more ribbon-like due to molecular design and has a larger aspect ratio, 

then the twists of the β-sheet fibril can be observed microscopically(162). In the 

simulations, MAX1 is more twisted than LNK1. This is because Nal residues align in the 
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hydrophobic interface of LNK1 to stack and form an “aromatic ladder” pattern and the 

complementary steric interactions at the bilayer interface prevent sliding of the layers. 

Similar aromatic ladders can flatten and rigidify the “cross β” structure and stabilize the 

structure via increased numbers of hydrogen bonds and side-chain contacts between 

sheets(160). The LNK1 fibril would be expected to be less flexible and more resistant to 

structural defects, such as branching, during self-assembly. 

2.6 Conclusion 

The LNK1 peptide design employs a steric lock and key specificity in the 

hydrophobic core of the β-sheet fibrils formed by the peptide. Experimentally, stark 

differences in the network properties of the hydrogels formed by the LNK1 peptide were 

observed when compared to hydrogels formed from MAX1 peptide. A prominent 

difference was the lack of recovery of storage modulus G′ (Pa) values from the LNK1 

network after the brief application and cessation of steady-state shear. In addition to this, 

sequential syringe injections applied to the networks as a means of shear treatment 

caused complete elimination of network properties of the LNK1 networks whereas 

MAX1 samples retained hydrogel properties. These experimental differences are 

attributed to the lack of branching in LNK due to the lock and key hydrophobic packing 

in the constituent fibril cores. The experimental observations were supported by 

molecular dynamics simulations carried out on modeled structures of MAX1 and LNK1. 

The simulations reveal that in the bilayer fibril complementary hydrophobic interactions 

yield a “lock and key” hydrophobic core packing. Moreover, the LNK1 hairpins form an 

aromatic ladder-like pattern, which renders it less flexible. The LNK1 fibril is expected to 
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be resistant to structural defects like branching during self-assembly, which is consistent 

with the experimentally observed unbranched homogeneous fibrillar structure of LNK1. 

MAX1 differs from the LNK1 primarily in terms of having a sterically nonspecific 

hydrophobic core amenable to fluctuations in spacing and packing between fibril 

hairpins, suggestive of a system susceptible to branching. Thus, molecular design, here 

applied to the creation of the LNK1 peptide, can be used to control and modulate the 

assembly, nanoscale structure, and rheological properties of a variety of peptide based 

hydrogel networks. 
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CHAPTER 3 Computationally Designed Peptides for Self-Assembly of 

Nanostructured Lattices 

Adapted from the manuscript under review with Science Advances. Science (2016) 
 

3.1 Abstract 

Folded peptides present complex exterior surfaces specified by their amino acid 

sequences, and the control of such surfaces offers high-precision routes to self-

assembling materials. The complexity of peptide structure and the subtlety of 

noncovalent interactions make the design of predetermined nanostructures difficult. 

Computational methods can facilitate such design and are used here to determine 29-

residue peptides that form tetrahelical bundles that, in turn, serve as building blocks for 

lattice-forming materials. Four distinct assemblies were engineered. Peptide bundle 

exterior amino acids were designed in the context of three different interbundle lattices in 

addition to one design to produce bundles isolated in solution. Solution assembly 

produced three different types of lattice-forming materials that exhibited varying degrees 

of agreement with the chosen lattices used in the design of each sequence. Transmission 

electron microscopy revealed the nanostructure of the sheet-like nanomaterials. In 

contrast, the peptide sequence designed to form isolated, soluble, tetrameric bundles 

remained dispersed and did not form any higher-order assembled nanostructure. Small-

angle neutron scattering confirmed the formation of soluble bundles with the designed 

size. In the lattice-forming nanostructures, the solution assembly process is robust with 

respect to variation of solution conditions (pH and temperature) and covalent 

modification of the computationally-designed peptides. Solution conditions can be used 
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to control micron-scale morphology of the assemblies. The findings illustrate that with 

careful control of molecular structure and solution conditions, a single peptide motif can 

be versatile enough to yield a wide range of self-assembled lattice morphologies across 

many length scales (1 nm – 10 μm). 

3.2 Introduction 

Self-assembly of designed molecules in solution provides striking potential for 

efficiently achieving complex, robust materials with nanometer precision. Traditional 

nanomaterial assembly strategies have employed small molecules(163, 164) or 

polymeric(165–167) amphiphiles. Recently developed assembly methods can produce 

complexity in structure and composition through chemical variation of the assembling 

molecules(168–171) or the use of hierarchical solution assembly protocols(20, 172–174). 

Biopolymers offer unique capabilities to encode both local molecular building block 

structure and long range material morphology via the design of specific sequences; such 

design has been applied to DNA(23, 175), polypeptides(68, 77, 176–180), and polymer-

biomolecule hybrids(23, 181). Solution assembly of peptides can readily produce “one-

dimensional” nanostructures such as fibrils(182–184) and tubes(185–187). New peptide 

nanostructure formation strategies have employed non-natural peptide sequences(68) as 

well as biomimetic strategies using modified natural proteins(35, 46). Much of the 

peptide work involves the synthesis of new systems and subsequent characterization of 

the structures they form. The a priori design of proteins and peptides that form targeted 

assemblies is subtle, however, due to the complexities and subtleties of folding and 

protein-protein interactions. Moreover, such assemblies can be highly sensitive to 
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sequence and mutation. These difficulties have motivated the experimental use of more 

easily programmed interactions at protein interfaces, such as metal coordination(48), to 

drive intermolecular assembly. 

Theoretical and computational methods provide a way to approach the design of 

intermolecular, noncovalent interactions between self-assembling peptides or proteins in 

solution to produce materials with predetermined morphologies, including desired point 

and space group symmetries(37, 39, 40, 188). Nearly all these efforts in assembly design 

have employed variants of natural proteins as building blocks, and different tertiary and 

quaternary structures are often employed for different local geometries in the assembly. 

Herein, we present the computational de novo design of peptides that are robust, easily 

synthesized, and versatile. 

Our aim is to explore the extent to which the information required for folding and 

intermolecular long-range order can be designed de novo into short peptide sequences, as 

opposed to the redesign of large natural proteins. The effort is focused on (a) de novo 

design of a homotetrameric helix bundle motif that is robust with respect to variation of 

exterior residues, (b) design of the exterior residues to guide the solution assembly of 

variants of this motif into distinct lattices having rectangular, square, or hexagonal local 

symmetries, (c) experimental characterization and determination of the extent to which 

the nanostructures are robust with respect to solution phase conditions and, (d) 

exploration of how solution conditions can be used to control micron-scale morphology. 
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3.3 Results  

3.3.1 Computational design  

The designed building block motif consisted of a helical homotetramer of four 29-

residue peptides arranged with D2 symmetry (Figure 3.1). While many similar oligomeric 

helical proteins have been designed and investigated, we seek a structure that is robust 

with respect to variation of exterior residues, and we opt to design the structure and 

hydrophobic core de novo. Candidate bundles were generated via a multiparameter 

mathematical model of helical coiled coils(78) with the final bundle structure specified 

by a set of five defining geometric parameters (see details below). For each candidate 

bundle motif, a probabilistic approach was applied to calculate the sites pecific 

probabilities of the amino acids at variable residues(44). The calculations also yield an 

average energy, E, over sequence probabilities for a given bundle structure(44). Using E 

as an objective function in a Monte Carlo search over helix bundle parameters was 

performed. A helical peptide structure and 11 interior hydrophobic residues were 

specified (highlighted in gray in Table 3.1), providing the tetrameric helix bundle motif, 

or building block, for subsequent design of the material assemblies. The remaining 18 

residues were designed in the context of four predetermined material nanostructures: an 

isolated, water-soluble helix bundle not expected to self-associate (Figure 3.1A) and three 

material assemblies derived from P622, P422, and P222 space group symmetries (Figure 

3.1B-3.1D). These layered space group symmetries each contain D2-symmetric positions 

on which the individual peptide bundles were positioned (Figure 3.1B-3.1D). 

Calculations were performed using only a single, isolated layer from the corresponding 

space group. For a given nanostructure symmetry, the variation of the unit cell 
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parameters produced a set of possible lattice structures consistent with the chosen 

symmetry; the amino acid probabilities and E were calculated for each such assembly 

structure. From the resulting energy landscape for each type of assembly, energy minima 

were identified. Within these minima, sequences were identified, where the amino acid 

with the largest calculated probability was selected at each variable residue position. 

More detailed computational design approach is described below.  

 

 

Figure 3.1: Computationally designed, helical, homotetramer assemblies. A-D: Models 

of peptides forming distinct nanostructures using a de novo designed helical 

homotetramer motif, which comprises both the backbone coordinates of the D2 

symmetric tetramer and interior hydrophobic residues. In the left of each panel, designed 

exterior residues are colored according to chemical properties: positively charged KHR 

(blue), negatively charged DE (red), polar NQSTY (green), hydrophobic FILMVW 
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(yellow), and small AG (cyan). Interior hydrophobic residues common to all the 

sequences are gray. On the right of each panel, the targeted assemblies are rendered along 

with symmetry axes (C2 oval, C3 triangle, C4 square, C6 hexagon) and the unique 

dimensions of the unit cell, a and b. (A) D2 symmetric tetramer designed in isolation and 

targeted to remain not assembled in solution. The exterior residues of the remaining 

proteins were designed in the context of a single layer from the corresponding space 

groups: (B) P622; (C) P422; (D) P222. 
 

 

Table 3.1: Table of computationally determined peptides for solution assembly. Colored 

rectangles contain eight candidate sequences that were experimentally characterized. 

Sequences were theoretically designed to produce tetrahelical bundles. BNDL_1 was 

designed in the absence of any lattice assembly and is expected to remain soluble 

(brown). The P222 (orange), P422 (green), and P622 (blue) sequences were designed in 

the presence of lattices of corresponding symmetry. The remaining P222_9 and P422_1 

sequences contain covalently modified termini. P222_4 is the only sequence candidate 

that did not behave as predicted and could not be assembled into the desired 

nanostructure in the solution conditions used for the other peptides. The heptad repeat 

positions (abcdefg) of all peptides are shown in the table heading. The designed, 

hydrophobic interior residues of the motif shown are highlighted in grey. 
 



  
 

51 

3.3.1.1 Design of homotetrameric helix bundle motif 

An antiparallel tetrameric coiled coil with D2 point group symmetry was selected 

as the building block for the designed nanomaterials. Structures and sequences of the 

tetramer were de novo designed computationally to identify a single tetrahelical motif 

that would be robust with respect to variation of exterior residues, residues which could 

be subsequently designed for specific assemblies.   

The construction of the homotetrameric helical (coiled coil) structures used a 

mathematical model that describes such structures with a small number of geometric 

parameters(78). Modifications were made to include rotation of peptide planes 

(comprising backbone N, Cα and C atoms)(79). Each sequence contained 29 residues to 

allow approximately four helical heptad repeats. In the model, the superhelix refers to the 

helical bundle structure formed by the coiling of four alpha helices. An ensemble of the 

four alpha helical peptides was created by varying a set of associated geometrical 

parameters: the super-helical radius R, the super-helical phase α (α=45° when the 

neighboring helices are equal-distant from each other), the relative displacement of the 

ends of the helices parallel to the super-helical axis Z, the minor-helical phase θ (rotation 

of the alpha helix about its axis), and the super-helical pitch P (Figure 3.2).
 
Given a set of 

these geometric parameters that specify the coordinates of a single helix, the remaining 

three helices were constructed by performing symmetry operations consistent with the D2 

point group. 
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Figure 3.2: Representative backbone configurations of the helix bundle motif building 

block illustrating variation of the geometric parameters associated with the bundle. 
 

Monte-Carlo simulated annealing (MCSA) was used to sample parameters and 

identify helical bundle sequences and structures as local minima on an energy surface.  

Let {R, α, Z, P, θ} denote the set of the parameters that characterize a particular backbone 

scaffold configuration. These parameters were confined within values associated with 

natural coiled-coil tetramers (R: 6.8Å -- 7.8Å, α: 35° -- 55°, Z: -1.5Å -- 3Å, P: -118 --

∞)(78).
  
The values of θ were grouped into three categories of the bundle, based upon the 

location of heptad positions in the structure(189): θ = 10° -- 30° (interior heptad 

positions:  a, d); θ = -10° -- 10° (interior heptad positions:  a, d, e); θ = 30° -- 50° (interior 

heptad positions:  a, d, f). 
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For each generated helical structure, a statistical sequence design methodology 

was used to calculate the probabilities of hydrophobic amino acids (A, V, I, L, M, F, Y 

and W) at interior residue positions. Sites 1 and 28 were located at the end of the helical 

motif and solvent exposed, thus defined as exterior positions. To estimate the 

probabilities, a statistical thermodynamic theory was applied, wherein an entropy or its 

Legendre transform are optimized subject to constraints on the sequences(44, 145). 

Herein, the CHARMM22 force field(93) was used.  As done in previous work, an 

average internal energy over the ensemble of sequences was calculated, and its conjugate 

temperature β
-1

 was specified such that β=0.5 mol/kcal. A helix propensity scoring 

function, Eh ,(87) was employed and constrained to values expected for helical peptides 

of the chosen length(190). For 29-residue helical segments in a database of natural 

protein structures, Eh takes on values in the range  -12.1 kcal/mol to -7.5 kcal/mol; in the 

design calculations, values of Eh = -8.88 kcal/mol, -9.75 kcal/mol, and -10.18 kcal/mol 

were applied in separate Monte Carlo samplings. A symmetry assumption was applied to 

leverage the symmetry of the D2 point group(44, 80). For each sampled tetrahelical 

configuration, an average (internal) energy per peptide was calculated using the site-

specific probabilities of the amino acids.  This average energy was used as the objective 

function in 5000-step Monte Carlo searches with exponential annealing schedules.  

Ten lowest energy structures were selected.  The sequence considered in each 

case comprised the most probable amino acid at each residue position. For the resulting 

structures, void volumes were assessed by CastP(191). The final candidate was chosen 

because its total and maximum void volumes are comparable to those of 15 crystalized 

antiparallel homo-tetramers. This helix bundle structural motif, which comprised the 
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tetrahelical structure and identities of 11 interior hydrophobic amino acids (Figure 3.3), 

was used in all the subsequent designs targeting distinct assemblies with predetermined 

nanostructures (Figure 3.1A, 3.1B, 3.1C, 3.1D). 

 
Figure 3.3: Side and top view of the selected low-energy helix bundle motif with the 

most probable amino acids at the interior sites shown in space-filling representations: N 

terminus is depicted in blue and C terminus in red circles. 
 

3.3.1.2 Design of helix bundles targeting materials with predetermined 

nanostructures 

The exterior residue positions of the helix bundles were determined so that self-

assembly of the bundle motifs would produce assemblies with chosen, distinct 

nanostructures. The targeted assemblies were an isolated helix bundle (expected to 
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remain soluble and not form higher order lattice assemblies in solution) and three distinct, 

two-dimensional lattices. Layered lattice symmetries were selected to satisfy the 

following criteria: 1) the lattice contains internal positions with D2 point group symmetry 

on which the bundle motifs were positioned and 2) the lattice contains no axes of skew 

symmetry perpendicular to each layer. The space groups P222, P422, and P622 were 

selected.  Each is a layer space group, and only a single, isolated layer was used in the 

design calculations.    

Peptide sequences were identified that are compatible with the targeted 

nanostructure.  The statistical mechanical approach mentioned previously was applied 

and symmetry assumptions were imposed to incorporate point and space group 

symmetries.   For each targeted material, peptide sequence design was performed with 

the designed helix bundle building block motif, allowing 18 natural amino acids (all 

natural amino acids but Pro and Cys) at each of 18 variable exterior residue positions.    

The designed soluble, non-lattice forming helix bundle is labeled BNDL_1 (Figure 3.1A), 

and the quality of the structure was validated by Molprobity(192). For design in the 

context of one of the chosen lattice symmetries, unit cell parameters were modulated to 

vary the spacing between neighboring bundle motifs in the search for low-energy lattice 

structures. For P222, the unit cell dimensions a and b were varied.  For P422 and P622, 

there is only one unique unit cell dimension a.  For P622, an additional set of distinct 

lattice structures containing a 90° rotation about an interior C2 symmetry axis was also 

considered.  A grid search was used (at 0.1 Å increment) to construct the sequence-

structure energy landscapes for each lattice nanostructure.  For each lattice, the average 

energy over the sequence probabilities was calculated using the statistical design 
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approach. Low energy candidates were selected from local minima on the landscape of 

each type of lattice.  If Trp or Tyr were not among the most probable amino acid at any of 

the variable residues, sites where Trp or Tyr were probable were constrained as one of 

these two amino acids in subsequent calculations; these residues were introduced to 

facilitate determination of peptide concentrations. The numbers of lowest-energy 

sequences selected for further characterization were 4, 5, and 14 for the P222, P422, and 

P622 lattices respectively. The candidates’ Molprobity scores fall within the range 

observed for 53 solved structures of coiled-coil proteins from the CC+ database. In the 

last step, PDBePISA(193) was used to assess the candidates’ potential to form desired 

assemblies and the resultant protein-protein interactions at the bundle-bundle interfaces.   

Based upon these assessments, a total of 9 designed sequence candidates were chosen for 

experimental synthesis and characterization (Table 3.1). 

3.3.2 Solution assembly and characterization 

In solution, all but one of the computationally designed peptides exhibited the 

intended assembly properties: the peptide designed using the isolated tetramer template 

(Figure 3.1A) remained soluble and did not form higher order structure, while those 

designed in the context of a lattice (Figure 3.1B-D) formed some sort of regular array. 

Nine designed sequences were selected for experimental investigation (Table 3.1). The 

single sequence designed to form isolated bundles (BNDL_1) formed soluble 

homotetramers that did not undergo further interbundle assembly. Seven molecules 

computationally designed to form material assemblies with specific, interbundle packing 

did, in fact, produce sheet-like nanomaterials. No assembly was observed for the 

sequence P222_4 (Table 3.1). 
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Figure 3.4: A) Small-angle neutron scattering data and nanocylinder fit (black curve) of 

BNDL_1 assembled from 5 mM peptide solution in borate buffer, pH10. Fit provides a 

cylinder length of ~3.5 nm and radius of ~ 1 nm consistent with tetrameric coiled coil 

soluble bundle design. Peptide solutions heated to 80°C to obviate inter or intramolecular 

structure and then allowed to cool to room temperature for B-D) intermolecular 

assembly. B, left) Low magnification cast film TEM image of P622_6 assembled from 1 

mM peptide solution in phosphate buffer, pH7. B, right) High magnification of 

negatively stained lattice consistent with P622 symmetry. Upper inset is the FFT 

calculated from the high magnification TEM data while the lower inset is the inverse FFT 

(IFFT) calculated using the FFT maxima. C, left) Low magnification cast film TEM 

image of P422_1 assembled from 1 mM peptide solution in borate buffer, pH10. C, 

right) High magnification of negatively stained lattice. Upper and lower insets are the 

FFT and IFFT, respectively. D, left) Low magnification cast film image of P222_1 

assembled from 1 mM peptide solution in phosphate buffer, pH7. D, right) High 

magnification of positively stained lattice. Upper and lower insets are the FFT and IFFT, 

respectively.  
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Figure 3.5: Analytical ultracentrifugation data and analysis of BNDL_1.  Top: 

Experimental interference pattern including best fit of the sedimentation velocity data 

from 6.086 to 7.032 cm. Sample BNDL_1 at 0.5 mM in borate buffer (pH 10).  Middle: 

Residual plot of the fitted sedimentation velocity data along the radius of the cell.  

Bottom: Distribution plot showing one solution population at ~ 3.8 kDa consistent with a 

peptide monomer and one at ~16.2 kDa consistent with a peptide tetramer or pentamer. 

The sedimentation coefficient, S, is directly proportional to Mf (buoyancy mass). The 

peak at very low S values is most likely due to residual TFA from the synthesis and 

purification of the peptide.  Statistics of the data fit are: n =98116, root-mean-square 

deviation, rmsd =0.0061, sum of squares of the regression, SSR = 3.62, signal/rmsd > 

1000. 
 

  



  
 

59 

Figure 3.4 presents representative data from four different peptide molecules 

theoretically designed to produce the four chosen nanostructures in Figure 3.1. Figure 

3.4A shows small-angle neutron scattering (SANS) results for BNDL_1 modeled as a 

short cylinder with dimensions consistent with the designed, tetrameric coiled coil. 

Analytical ultracentrifugation (AUC) supports the presence of tetrameric helix bundles 

coexisting with a minority of monomeric peptide (Figure 3.5). BNDL_1 solutions were 

experimentally monitored for three months, and no interbundle lattice structure was 

observed. Figure 3.4B shows the nanostructure formed from assembled P622_6 

molecules that is consistent with hexagonal local symmetry and the targeted unit cell 

parameters (Table 3.2). The structure is stabilized by two unique bundle-bundle 

interfaces that arise from the design around the three-fold symmetry axis (Figure 1B). 

Both interfaces, one between two antiparallel helices and the other between two parallel 

helices, are populated by salt-bridges, hydrogen bonds and hydrophobic interactions in 

the computational design. Figure 3.4C shows materials formed from the self-assembly of 

P422_1 that have the targeted four-fold-like symmetry. While four-fold symmetry is clear 

in Figure 3.4B, the experimentally observed unit cell dimensions are larger than predicted 

(Table 3.2). Figure 3.4D shows materials formed from the self-assembly of P222_1. The 

observed morphology consists of regular nanosheets having the targeted rectangular 

structure, but differences are observed in symmetry and unit cell spacings from what was 

theoretically designed (Table 3.2). Although the targeted lattice parameters are not 

precisely recovered experimentally in each case, taken together, the data support the use 

of computational design to realize a set of homotetrameric helix-bundles having 

predetermined self-assembly properties (e.g. sheet-forming tetrameric peptide bundles vs. 
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soluble bundles) and distinct, local ordering that is determined by the exterior surface 

residues of the helical bundle. 

 

Table 3.2: Lattice parameters of the self-assembling peptides from the design in 

comparison with those determined from analysis of Fourier transforms of the TEM 

images in Figure 3.4. a and b denote the dimensions of the two-dimensional unit cell, � 

denotes the interior angle defined by sides a and b. 

 

3.3.3 Covalent modifications and solution modulations 

The robustness and versatility of the designed bundle-forming peptides were further 

explored by changing solvent conditions. Different solution conditions, selected on the 

basis of the physicochemical properties of the bundles, could be used to manipulate 

interbundle assembly and alter the resulting superstructural morphology of the 

nanomaterials. For example, Figure 3.6A and 13B reveal that micron-scale morphology 

of P622_2 can be manipulated simply by first melting secondary structure in solution at 

80 °C and subsequently quenching to two different temperatures. Smaller particles were 

formed at the higher quenching temperature (50 °C) than at the lower quenching 

temperature (25 °C). The data suggest that a higher temperature results in a much slower 

assembly process. Figure 3.6C and 13D reveal the sensitivity of select bundle assemblies 

to changes in pH. Molecule P222_9 has a theoretical pI=7 and was assembled under two 

solution conditions that differed only in pH. Clearly, assembly at pH 7 resulted in two-

dimensional, plate-like growth, while at pH 10, assembly yielded anisotropic growth and 
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the formation of long, needle-like structures. The thickness of the needles prevented 

clear, high magnification lattice imaging, but the layer spacings of the underlying lattice 

(Figure 3.7) were consistent with the nanostructure observed for molecule P222_9 

(Figures 8 and 11). The results suggest that at pH 10 there is a clear preference in growth 

direction during helix bundle solution assembly. 

Covalent alteration of the original, designed peptides also can be employed to 

probe the robustness of the assembly as well as to modulate assembly at particular 

solution conditions. For example, acetylation of the N-terminus of P222_9 (denoted 

P222_9_Ac, Table 3.1) reduces its theoretical isoelectric point from pI=7 (P222_9) to 

pI=4 (P222_9_Ac), allowing for assembly at low pH. At pH 4.5, P222_9 remains 

dissolved whereas P222_9_Ac (Figure 3.6E) assembles into the same nanostructure as 

that observed for P222_9 at pH 7 (Figure 3.8). Similarly, P422_1_Ac forms plate 

nanostructures at pH 8 (Figure 3.6F), whereas P422_1 assembles at pH 10 (Figure 3.4B). 

Therefore, one can use covalent modifications of the designed peptide sequences to alter 

solution conditions in which nanostructures can be formed. Adding residues to the 

termini of the originally predicted sequences did not disrupt solution self-assembly. 

Specifically, sequences of two, four and six glycine residues were added to the N-

terminus of P222_9 (Table 3.1), resulting in quite uniform assemblies (Figure 3.6G, H) 

with similar lattice structures to those observed for the unmodified P222_9 (Figure 3.9). 

These observations reveal the robust nature of these theoretically designed peptides and 

their material assemblies. Altogether, the data of Figure 3.6 exemplify that multiple 

modifications of the theoretically predicted sequences remain competent for forming the 

selected nanostructures. 
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Figure 3.6: Cast film TEM examples of morphology control with manipulation of 

solution assembly conditions and peptide primary structure. All sample solutions heated 

to above 80 °C for 1 hour to obviate any assembled or secondary structure before 

respective cooling treatment. A,B: 0.5 mM P622_2 peptide at pH 7 (phosphate buffer) 

quenched to A) 50 °C vs. B) 25 °C , imaged after 1 day. C,D: 1.0 mM P222_9 ambiently 

cooled to room temperature with C) pH 7 (phosphate buffer) vs. D) pH 10 (borate buffer) 
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showing a clear difference in superstructure growth. E,F: Plates grown from 0.1 mM 

peptide solutions with peptide primary structure altered through acetylation of the 

Nterminus. E) Ambient cooling to room temperature allowing assembly P222_9_Ac at 

low pH of 4.5 in sodium acetate buffer and F) P422_1_Ac quenched to 50 °C at pH 8 in 

phosphate buffer. G,H: Plates grown from 1.0 mM peptide solutions at pH 7 (phosphate 

buffer) after ambient cooling to room temperature with P222_9 peptide primary structure 

altered through addition of G) 4 glycines vs. H) 6 glycines to the Nterminus of the 

P222_9 peptide molecule. 

 
Figure 3.7:  High magnification TEM of 1.0 mM P222_9 ambiently cooled to room 

temperature from 80 °C at pH 7 (left)  and pH 10 (right). 
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Figure 3.8:  High-magification TEM of (left) lattice of P222_9_Ac at pH 7 ambiently 

cooled to room temperature from 80 °C and (right) P422_1_Ac at pH 8 quenched to 40 

°C from 80 °C. 

 
Figure 3.9:  High-magnification TEM of lattice of P222_9_6Gly at pH 7 ambiently 

cooled to room temperature from 80 °C 
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3.4 Discussion 

The data of Figures 3.4-3.9 support that theoretically designed sequences listed in 

Table 3.1 self-assemble to form predetermined sheet nanostructures or soluble bundles. 

Specifically, the sequence (BNDL_1), targeted to form soluble, non-associating bundles, 

formed homotetramers in solution but did not exhibit further lattice assembly. Similarly, 

the sequence (P622_6) was designed to form two-dimensional sheets with hexagonal 

local symmetry and formed a nanostructure consistent with that identified in the 

computational design of the sequences; this consistency is evidenced in the similarity of 

the unit cell parameters of theoretical model and that derived from analysis of TEM data. 

3.4.1 Computational investigation of the lattices formed by P422_1 and P222_1 

As shown in Figure 3.4, the molecules designed to produce two-dimensional 

plates with P422 symmetry do, in fact, assemble into a two–dimensional sheet 

nanomaterial with local four-fold bundle packing symmetry. However, the lattice spacing 

formed experimentally is larger than that expected from the computational design. 

Similarly, the molecules predicted to yield the two-dimensional materials with P222 

symmetry assembled into sheet nanostructures. However, the lattice symmetry and unit 

cell parameters were different than those identified in the computational modeling. 

Additional calculations using the P422_1 molecule sequence within a related four-fold 

symmetry, P4, reveal a local energy minimum at the experimentally determined unit cell 

parameters (Figure 3.10). The distance between the C2 symmetry axes of neighboring 

bundles within each model structure is essentially indistinguishable: 2.2 nm (P4) vs. 2.2 

nm (P422). With the P4 structure, the unit cell contains 4 helical bundles (16 peptides) as 

opposed to 2 helical bundles (8 peptides) in the original model with P422 symmetry, 
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which is consistent with the larger unit cell dimensions observed experimentally. Similar 

calculations involving P222_1 within a related two-fold symmetry, P2, reveal a local 

minimum that is consistent with the experimental observations (Figure 3.11). 

 

Figure 3.10: Putative structure of assembly of P422_1 helix bundles packed with P4 

symmetry, which is a local minimum within the structure energy landscape with respect 

to variation of the unit cell parameter.   The dimension of the unit cell is a = b = 4.25 nm, 

consistent with that observed experimentally. 

 

 

Figure 3.11.  Putative assembly structures of P222_1 assemblies with P2 symmetry 

located at a local minimum of the structure energy landscape with respect to variation of 

the unit cell parameters.  The dimensions of the unit cell are within the range of those 

observed experimentally:  a = 3.24 nm, b = 3.03 nm and  = 99.6 . 
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3.5 Conclusion 

We have presented an approach for the de novo design of peptide assemblies that 

assemble into nanomaterials with predetermined local structures. A versatile, helical 

homotetrameric building block structure was computationally designed that was 

stabilized largely by the formation of a hydrophobic interior. Subsequent computational 

determination of the bundle exterior residues resulted in solution-assembled materials 

with predetermined morphologies (two-dimensional sheet vs. soluble bundle) and 

distinct, local nanostructures that varied with the bundle exterior sequence. Integrated 

theoretical and experimental studies will guide future refinements for predictably 

achieving specific, desired nanostructures and elucidating the principles underlying their 

formation. In addition to achieving symmetric assemblies of biopolymers, the display of a 

wide variety of chemical functional groups within designed assemblies offers abundant 

opportunities for hierarchical pathways for nanomaterial production, such as biopolymer 

templated growth and/or assembly of inorganic phases with nanoscale precision. 

Computational design combined with the experimental control of assembly pathways has 

the potential to provide exquisite control over new materials with desired nanostructures. 

3.6 Materials and methods 

Peptide synthesis: Peptides were prepared at a 0.25 mmol scale on Rink amide resin 

using an AAPPTec Focus XC synthesizer (AAPPTec, Louisville, KY). Standard Fmoc-

based protocols were employed. Peptides were deprotected for 5 and then 10 minutes 

with 20% piperidine in dimethylformamide (DMF). The coupling reaction was conducted 

for 40 minutes with 4 eq. of the appropriate amino acid dissolved in N-methyl-2-
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pyrrolidone (NMP) (5 mL), 3.8 eq. HCTU dissolved in DMF (2.5 ml), and 8 eq. 

diisopropylethylamine dissolved in NMP (1 ml). Five washes were performed in between 

steps with 50:50 (v:v) DMF:methylene chloride (12 mL) for the first two washes and 

DMF (10 mL) for the last three. Amino acids, resin and activator were purchased from 

ChemPep (Wellington, FL) and used as received. All solvents were analytical grade 

(Fisher Scientific). Peptide cleavage was achieved by shaking peptide solutions for 2 

hours in a cleavage cocktail comprising (by volume) 95% trifluoroacetic acid (TFA), 

2.5% tirisoproylsilane, and 2.5% Milli-Q water. The peptide was then precipitated by 

adding the cleavage cocktail and cleaved peptide to diethyl ether, and the mixture was 

then centrifuged and the supernatant discarded. The process of suspending in diethyl 

ether, centrifuging, and discarding the supernatant was repeated a total of three times. 

The resulting peptide was then dissolved in water and lyophilized. 

Peptide purification: Purification was performed via reverse-phase HPLC using a 

BEH130 Prep C18 10 μm column (XBridge, Waters Corporation, Milford, MA). Crude 

peptides were dissolved in Milli-Q water containing 0.1%-vol TFA, and were filtered 

(0.20 μm filter, Corning, Inc., Corning, NY) before HPLC injection. Products were 

subjected to an elution gradient (Quaternary Gradient Module (Waters 2545), Waters 

Corporation) of 100% solvent A (0.1%-vol TFA) to 30% solvent A within 60 min; the 

composition of solvent B was acetonitrile with 0.1%-vol TFA. Fractions were detected 

using UV-Vis detection at 214 nm (Waters 2489, Waters Corporation) and collected 

(Waters Fraction Collector III, Waters Corporation). The collected fractions were 

examined by ESI-mass spectrometry (LCQ Advantage Mass Spectrometer System, 

Thermo Finnigan, San Jose, CA) with an auto sampler system (Surveyor Autosampler, 
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Thermo Finnigan). Pure fractions were combined and lyophilized. 

Analytical HPLC: Purity analysis was performed via reverse-phase Analytical scale 

HPLC using a BEH C4 3.5 μm column (XBridge, Waters Corporation, Milford, MA). 

Peptides were dissolved in 80/20-vol Milli-Q water/ACN containing 0.1%-vol TFA, and 

filtered with 0.20 μm filter (Corning, Inc., Corning, NY) before injection. Products were 

subjected to a linear elution gradient (Waters 600 Controller, Waters Corporation, 

Milford, MA) of 80% solvent A (Milli-Q water with 0.1%-vol TFA) to 5% solvent A in 

70 min; the composition of solvent B was acetonitrile with 0.1%-vol TFA. Fractions were 

detected using photodiode array detector (Waters 2996, Waters Corporation, Milford, 

MA) tuned at 214 nm. 

Circular dichroic spectroscopy (CD): Secondary structures and the temperature 

dependent behavior of the synthetic peptides were analyzed using circular dichroic 

spectroscopy on a Jasco J-820 spectropolarimeter (JASCO, Inc., Easton, MD). Sample 

solutions were prepared at 0.1 mM concentration in 10mM of buffer appropriate for the 

desired pH and were transferred into an absorption cuvette with 1-mm path length (110- 

QS, Hellma, Inc.). Pure buffer solutions were used for the background correction. Sample 

spectra were recorded from 190-250 nm at desired temperatures. Data points for the 

wavelength-dependent CD spectra were recorded at every nanometer with a 1nm 

bandwidth and a 4-second response time for each data point. The ellipticity at 222 nm 

was used to monitor the temperature-dependent unfolding and refolding of the peptides. 

Data points for the kinetics scans were recorded at 222 nm at 1-minute intervals. The 

mean residue ellipticity, [θ]MRE (deg cm2 dmol
-1

), was calculated using the peptide 

concentration, number of amino acid residues, and cell path length. 
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Transmission electron microscopy: Carbon-coated 200 mesh copper grids (CF200- Cu, 

Electron Microscopy Sciences, Inc.) were freshly treated by glow discharge using a 

plasma cleaner (PDC-32G, Harrica Plasma, Inc.) before sample preparation. 3 μL of 

sample suspension was applied onto the grids. After ~5 min, any remaining liquid was 

blotted from the edge of the grids using filter paper. Then 3 μL Milli-Q water was applied 

the grids and blotted immediately to remove excess unassembled peptides and buffer 

salts. The grids were incubated under ambient conditions for another 30 min before TEM 

observation (Tecnai 12, FEI) or staining. To negatively stain the grids, 3 μL of an 

aqueous solution of uranyl acetate (1% wt.) was applied to the cast-film grids and 

incubated for 20-30 seconds, then blotted with filter paper. The stained grids were 

allowed to sit for at least 10 min under ambient conditions before TEM observation. 

Positive staining of the samples was achieved by exposing the dried cast-film grids to 

ruthenium tetroxide aqueous solution vapor (0.5 % w/v) for 5-10 minutes. The TEM was 

operated at an acceleration voltage of 120 kV, and all images were recorded digitally 

using a Gatan multiscan 791 side-mounted CCD camera. Lattice plane spacings were 

determined by conducting a FFT of the area of interest of a TEM micrograph using 

DigitalMicrograph software v2.3 (Gatan Inc., Pleastanton, CA, USA) and the PASAD 

plug-in.31 FFT intensity was plotted relative to radial distance from the origin as well as 

relative to azimuthal angle. Corresponding real space values of interplanar distances and 

angles were calculated in order to estimate unit cell parameters. Uncertainties of the unit 

cell parameters were approximated by the size of the maxima in the FFT. Fourier filtered 

images (lower insets in Figure 3.4) were obtained by applying masks 
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Small angle neutron scattering (SANS): SANS measurements were conducted at the 

National Center for Neutron Research (NCNR), National Institute of Standards and 

Technology, Gaithersburg, MD on the NG-7 30m SANS beamline. Samples were 

dissolved in 10 mM pH 10 borate buffer prepared in D2O and heated to 80 °C for 1 hour 

to melt any organized secondary structure/aggregated structure and subsequently cooled 

to room temperature for intermolecular assembly. A neutron beam with a mean 

wavelength of 6 Å was defined using a mechanical velocity selector. The wavelength 

spread (Δλ/λ) was 0.15 at full width half max. The 640 mm x 640 mm 
3
He proportional 

counter used has a spatial resolution of 5.08 mm x 5.08 mm. Sample-to-detector distances 

of 1, 4, and 13 m were used to provide a q range of approximately 0.004 to 0.500 Å
–1

, 

where q is the scattering wave vector defined by q = (4/λ) sin(θ/2). Data obtained on this 

instrument was corrected for background noise and radiation, detector inhomogeneity, as 

well as empty cell scattering. Intensities were normalized to an absolute scale relative to 

the empty beam transmission. The uncertainties of individual data points were calculated 

statistically from the number of averaged detector counts. 

SANS curves for BNDL_1 were fit using the SasView software.  A cylinder fit 

was performed using the equations below for the form factor of a right circular cylinder 

with a uniform scattering length density(194, 195).
 
The form factor, P(q), is represented 

by the following: 
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where J1(x) is the first order Bessel function. α is defined as the angle between the 

cylinder axis and the scattering vector, q.  The integral over alpha averages the form 

factor over all possible orientations of the cylinder with respect to q.  L is the cylinder 

length while r is the cylinder radius.  The model fit produced a length = 34.4 +/- 1.1 Å 

and radius = 10.4 +/- 0.2 Å for BNDL_1 as shown in Figure 3.4D. 

Analytical ultracentrifugation (AUC): AUC experiments were run on a Beckman 

Coulter ProteomeLab XL-I instrument. 400μL of 0.5mM peptide solution in buffer (10 

mM borate buffer with extra 50 mM NaCl to screen long range coulombic interactions, 

pH10) was transferred into a two-channel cell equipped with sapphire windows. The cells 

were mounted into a 4-cell An-60 Ti analytical rotor and equilibrated at 20°C for 2 hours 

in the rotor chamber. Sedimentation velocity experiments were carried out at 50,000 rpm 

at 20°C using 800 scans with one scan per minute per sample. The changes of the 

concentration profiles along the cell radius were monitored using Rayleigh interference 

optics. All data were analyzed using the SEDFIT package v14.81.32.(48)  
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CHAPTER 4 Crystal Structure of a Computationally Designed Lattice-forming 

Peptide 

Adapted from the manuscript in preparation (2016) 

4.1 Abstract 

Computational design of self-assembling peptides/proteins offers effective routes 

to engineer advanced novel biomaterials of various nanostructures with precise control 

over complex 3D structures via amino acid sequences. The complexity and subtlety of the 

noncovalent interactions at the assembly interfaces make the consistent success of such 

designs very challenging, and usually requires experimental screenings of a large number 

of candidates. Herein, we report the crystal structure and the solution phase 

characterizations of a computationally-designed peptides that robustly self-assemble into 

lattices. The study reveals a universal helical bundle motif applicable as the building 

block to design different peptide lattices. The critical role of specific hydrophobic 

interactions in stabilizing bundle-bundle interface in the crystal assembly is discussed. 

Additionally, further energetic analysis suggests fundamental ways to potentially improve 

the success rate of future computational designs of protein- and peptide- based lattices.  

4.2 Introduction 

Nature utilizes assemblies to achieve rich functionality through complex, yet 

highly-ordered structures made of biologically derived molecules, such as laminin(4), S-

layer proteins(196, 197), and nacre in shells(6). Such biological assembly processes are 

often dependent on the environment conditions or require external energy input, and thus 

are often hard to reproduce synthetically.  Inspired by nature, designed peptide and 
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protein self-assemblies and derivatives have achieved similar periodic spatial 

arrangements and have shown great promises in various biomaterial applications for 

catalysis(47, 198, 199), controlled drug delivery(68, 200), light harvesting(201–203), and 

in-vivo imaging(204). Efforts towards enhanced nanomaterial applications include 

designed cage systems for encapsulation of nanoparticles, immobilization of metal 

complexes (47, 68), and designed fibril, ribbon, and sheet systems to provide templating 

surfaces for chemical modifications and organic chromophores(199). Advantages of the 

designed peptide/protein assemblies include their spontaneous and usually robust self-

assembly via careful selection of the amino acid primary sequences. Rational design 

methods are commonly used, where starting from self-assembling sequence patterns in 

natural proteins or well-studied motifs, such as peptide amphilphiles, sequences are 

modified, extended, and/or linked based on chemical properties of amino acids. Such 

strategy has been successful in generating one-dimensional (fibril-like)(31, 34), two-

dimensional (sheet-like)(38) and three dimensional self-assembling lattices(35, 41). 

Fusion of natural proteins with known and matched rotational symmetry is another valid 

approach in rational design of self-assembling protein lattices(36, 77).  

Alternatively, computational design methods, where energetics of the assemblies 

are estimated by theoretical models and are used to guide the choice of sequences, allow 

for consideration of larger sequence variability, the possibility to engineer a wide variety 

of nanostructures, and the control of structures with increased precision.  Computational 

design opens possible routes to the precise prediction of multicomponent and hierarchical 

assembly structures down to atomistic resolution with controlled geometry, orientation, 
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and symmetry(39, 40, 44). This has allowed unprecedented chemical diversity for the 

designed protein/peptide assemblies and shows great potential for the discovery of 

advanced functional biomaterials.  

Computational design usually relies on approximations of nonvalent interaction 

energetics, discrete amino-acid conformations, and a simplified solvent environment.  

However, the imperfection in these approximations poses challenges in achieving a high 

success rate of the design predictions among the selected candidate sequences(37, 39, 

64). Yet the fundamental causes of low success rate are rarely explored, partially because 

the molecular structures of the designed sequences are difficult to characterize to the 

atomistic level without their self-assembling robustness to provide large 3D crystals of at 

least tens of microns for single-crystal x-ray diffraction studies.  Neither are the potential 

improvements on the energetic approximations used in computational designs discussed 

in the context of designing protein- and peptide- based self-assemblies.  

Most previous computational designs of 2D lattices and 3D crystals rely on 

natural proteins and only involve the redesign of protein-protein interfaces in the context 

of the targeted nanostructures(37, 38, 44–46). The design of protein lattices from 

sequences out of the natural realm remains extremely challenging due the large ensemble 

of complex intramolecular and intermolecular interactions that guide the folding of 

individual proteins and associations at protein-protein interfaces. The use of peptides, 

which usually are no larger than 50 amino acids, greatly reduces the ensemble size and 

complexity, and thus allows for the engineering of tertiary folds as well as assembly 

nanostructures from scratch at reasonable computational and synthetic cost. On the other 



  
 

76 

hand, peptides, considering their shorter amino-acid sequence, might not be as well-

structured nor provide as diverse chemical functionality as larger proteins, such as 

enzymes. Nonetheless, peptide-based lattices can be considered precursors and templates 

for further functionalized nanomaterials. 

In this work, we report the crystal structure in addition to solution phase 

characterizations of a computationally designed lattice-forming peptide P422_1, and 

reveal the validity of a universal helical bundle motif that can be used as a building block 

for peptide-based lattice nanomaterials. We discuss the critical role of specific 

hydrophobic interactions for stabilizing peptide interfaces in the tightly-packed crystal. 

This study is also of great importance to provide feedback to the computational design 

methods and potentially improve the overall design success rate. 

4.3 Materials and methods 

Peptide synthesis: Peptides were prepared at a 0.25 mmol scale on Rink amide resin 

using an AAPPTec Focus XC synthesizer (AAPPTec, Louisville, KY).  Standard Fmoc-

based protocols were employed.  Peptides were deprotected for 5 min and then 10 min 

with 20% piperidine in dimethylformamide (DMF).  The coupling reaction was 

conducted for 40 min with 4 eq. of the appropriate amino acid dissolved in N-methyl-2-

pyrrolidone (NMP) (5 mL), 3.8 eq. HCTU dissolved in DMF (2.5 ml), and 8 eq. 

diisopropylethylamine (DIEA) dissolved in NMP (1 ml). Five washes were performed in 

between steps with 50:50 (v:v) DMF:methylene chloride (12 mL) for the first two washes 

and DMF (10 mL) for the last three.  Amino acids, resin and activator were purchased 

from ChemPep (Wellington, FL) and used as received. All solvents were analytical grade 
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(Fisher Scientific).  After last step deprotection, peptide cleavage was achieved by 

shaking peptide solutions for 2 hours in a cleavage cocktail comprising (by volume) 95% 

trifluoroacetic acid (TFA), 2.5% tirisoproylsilane, and 2.5% Milli-Q water. The peptide 

was then precipitated by adding the cleavage cocktail and cleaved peptide to diethyl 

ether, and the mixture was then centrifuged and the supernatant discarded. The process of 

suspending in diethyl ether, centrifuging, and discarding the supernatant was repeated a 

total of three times. The resulting peptide was then dissolved in water and lyophilized. 

Peptide purification: Purification was performed via reverse-phase HPLC using a 

BEH130 Prep C18 10 μm column (XBridge, Waters Corporation, Milford, MA). Crude 

peptides were dissolved in Milli-Q water containing 0.1%-vol TFA, and were filtered 

(0.20 μm filter, Corning, Inc., Corning, NY) before HPLC injection. Products were 

subjected to an elution gradient (Quaternary Gradient Module (Waters 2545), Waters 

Corporation) of 100% solvent A (0.1%-vol TFA) to 30% solvent A within 60 min; the 

composition of solvent B was acetonitrile with 0.1%-vol TFA. Fractions were detected 

using   UV-Vis detection at 214nm (Waters 2489, Waters Corporation) and collected 

(Waters Fraction Collector III, Waters Corporation). The collected fractions were 

examined by ESI-mass spectrometry (LCQ Advantage Mass Spectrometer System, 

Thermo Finnigan, San Jose, CA) with an auto sampler system (Surveyor Autosampler, 

Thermo Finnigan). Pure fractions were combined and lyophilized. 

Analytical HPLC: Purity analysis was performed via reverse-phase Analytical scale 

HPLC using a BEH C4 3.5 μm column (XBridge, Waters Corporation, Milford, MA). 

Peptides were dissolved in 80/20-vol Milli-Q water/ACN containing 0.1%-vol TFA, and 

filtered with 0.20 μm filter (Corning, Inc., Corning, NY) before injection.  Products were 
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subjected to a linear elution gradient (Waters 600 Controller, Waters Corporation, 

Milford, MA) of 80% solvent A (Milli-Q water with 0.1%-vol TFA) to 5% solvent A in 

70 min; the composition of solvent B was acetonitrile with 0.1%-vol TFA. Fractions were 

detected using photodiode array detector (Waters 2996, Waters Corporation, Milford, 

MA) tuned at 214 nm. 

Circular dichroic spectroscopy (CD): Secondary structures and their temperature-

dependent behavior of the synthetic peptides were analyzed using a CD 

spectropolarimeter (J-820, JASCO Corporation). Sample solutions were prepared at 0.1 

mM concentration in pH 7 10mM phosphate buffer and transferred into an absorption 

cuvette with 1mm path length (110-QS, Hellma, Inc.). Pure pH 7 10mM phosphate buffer 

solutions were used for the background correction. Sample spectra were recorded from 

190-250 nm at desired temperatures. Data points for the wavelength-dependent CD 

spectra were recorded at every nanometer with a 1nm bandwidth and a 4-second response 

time for each data point. The CD data was converted to mean residue ellipticity, [MRE] 

(deg cm
2
 dmol

-1
) using the formula: MRE in deg cm

2
 dmol

-1 
= mdegrees / (pathlength in 

mm × the molar concentration of peptide × the number of residues).The values of MRE 

at 222 nm were used to monitor the temperature-dependent unfolding process of peptides. 

Data points for the kinetics scans were recorded at 222 nm at 1-minute intervals. 

Transmission electron microscopy (TEM): The carbon-coated 200 mesh copper grids 

(CF200-Cu, Electron Microscopy Sciences, Inc.) were freshly treated by glow discharge 

using a plasma cleaner (PDC-32G, Harrica Plasma, Inc.) before sample preparation. 5 μL 

of sample suspension was applied onto the grids. After ~5 min, any remaining liquid was 

wicked off. Then 5 μL Milli-Q water was applied to the grids and wicked. The grids were 
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incubated under ambient condition for another 30 min before TEM observation (Tecnai 

12, FEI or TALOS, FEI) or staining. To negatively stain the grids, 5 μL uranyl acetate 

aqueous solution (1% wt.) or phosphotungstic acid aqueous solution (2% wt.) was 

applied to the cast-film grids and retained for 20-30 seconds, then blotted with filter 

paper. The stained grids were left for at least 10 min before TEM observation. 

Small angle x-ray scattering: SAXS measurement was conducted using synchrotron 

radiation source on beamline of Bio-CAT at APS Argonne National Laboratory. The 

solution was either loaded in capillary tube for stationary measurement or loaded into 

flow cell for flowing solution measurement. In stationary measurement, X-ray beam was 

aligned to shoot through the precipitation. The use of flow cell reduced the radiation 

damage, but has no effect on diffraction peaks position. The experimental settings in Bio-

CAT are as follows: The storage energy was 12 keV, generating 1.033 Å wavelength X-

ray. The calibrated sample distance was 3.5 m. Scattering pattern was collected using 

Pilatus 3 1M photon counter detector with 172x172 micron pixel size, conducted under 

multiframe mode with 100 or 200 ms exposure time and 5 ms readout time. Data was 

acquired using epics and initially viewed using ImageJ. Blank buffer scattering data was 

used for the background correction. 

Crystallization: P422_1 crystals were prepared using hanging-drop vapor diffusion by 

combining 4 μL of protein solution [5 mg/mL P422_1, 10 mM sodium acetate (pH 4.5)] 

and 4 μL of precipitant solution [0.1 M HEPES (pH 7.0) and 30% (v/v) Jeffamine M-600 

(pH 7.0)] on a 22mm square Hampton Research OptiClear cover slip.  Solutions of 1.0 M 

sodium acetate trihydrate, 1.0 M N-(2-hydroxyethyl)piperazine-N′-(2-ethansulfonic acid) 
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(HEPES), and 50% (v/v) O-(2-Aminopropyl)-O'-(2-methoxyethyl)polypropylene glycol 

500 (Jeffamine M-600) were obtained from Hampton Research. The drop was 

equilibrated against 100 μL of precipitant solution at 20 °C. Crystals formed in a single 

day and grew to full size after seven days. Crystals were flash cooled in liquid nitrogen 

with cryo protection provided by the mother liquor. 

X-ray crystal structure determination: X-ray diffraction data from P422_1 crystals 

was collected at Stanford Synchrotron Radiation Lightsource (SSRL) on Beamline 14-1. 

Indexing, integrating, and scaling of diffraction data were performed using HKL-

2000(205). See Table 1 for data collection statistics.  P422_1 crystalized in the C121 

space group and contained three peptide tetramers in the asymmetric unit (ASU). 

Molecular replacement was performed using PHASER(206) from the PHENIX software 

package(207). Molecular replacement rotation and translation functions were carried out 

using atomic coordinates from a truncated P422_1 design model, where all residues 

except Gly, His, Ile, Val, Trp(208)
 
were changed to Ala, and the sequence shortened by 

two n-terminal and c-terminal residues. PHENIX(207) and COOT(209) were used to 

carry out sequential rounds of refinement and model building. Water molecules were 

added to the structure in the concluding steps of the refinement.  

Table 4.1 

Values in parentheses are for the highest resolution shell 

PDB Entry Name when listed 

Wavelength (Å) 1.18076 

Resolution limits (Å) 50.0-1.90 

Total reflections measured 94489 

Unique reflections measured 24843 
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Space group symmetry C121 

Unit cell dimensions: a, b, c (Å) 78.095, 72.116, 65.481 

Unit cell angles: α, β, γ (degrees) 90.000, 116.188, 90.000 

Vm (Å3/Da) / Solvent Content (%) 1.93 / 36.27 

Rp.i.m. 
a 0.074 (0.804) 

Redundancy 3.8 (3.6) 

CC1/2 
b Need overall (0.386) 

I/σ(I) 36.458 (1.428) 

Completeness (%) 96.6 (95.5) 

Overall B factor from Wilson plot (Å2) 37.74 

Refinement   

No. of reflections  

  Refinement 24826 

  Test set 1213 

Rwork (%) c 17.08 (31.69) 

Rfree (%) c 21.33 (38.71) 

No. of non-H atoms per ASU  

  Protein 2878  

  Solvent 21 

R.m.s. deviations    

  Bonds (Å) 0.012 

  Angles (°) 1.071 

Average B factors (Å2)  

  Protein 56.05 

  Solvent 55.66 

Ramachandran  

  Favored (%)  100 

  Outliers (%)  0 

  
a Rp.i.m. = ∑[1/(n – 1)]1/2|Ih – ⟨Ih⟩|/∑⟨Ih⟩; n is the number of observations 
(redundancy). 
b CC1/2 = στ

2/(στ
2 + σε

2), where στ
2 is the true measurement of error variance 

and σε
2 is the independent measurement of error variance. 

c Rwork = ∑∥F0| – |Fc∥/∑|F0| for reflections contained in the working set. Rfree = 

∑∥F0| – |Fc∥/∑|F0| for reflections contained in the test set which are withheld 

during refinement (5% of total). |F0| and |Fc| are the observed and calculated 
structure factor amplitudes. 
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4.4 Results 

4.4.1 Computational design of P422_1 Peptide 

P422_1 is a 29-residue peptide with sequence (motif residues in bold, described 

below):  DQEIRQMAEWIKKMAQMIDKMAHRIDREA-NH2. In the design of the 

oligomer of P422_1, four separate copies of this peptide compose an antiparallel 

homotetramer helical bundle of D2 point group symmetry (Figure 4.1A and 4.1B). The 

computational design of the structure and sequence of P422_1 is described in detail in 

section 3.3.1 and briefly summarized here. We used a coiled-coil mathematical model to 

construct the backbone coordinates of the antiparallel helical bundle(78, 79). The 

geometrical parameters of the bundle (super-helical phase, radius, offset, pitch and 

minor-helical phase) (210) were sampled using Monte Carlo simulated annealing to 

identify structures and compatible sequences of the 11 hydrophobic amino acids interior 

to the bundle; sequence-structure combinations (bolded in the sequence above) were 

identified at local minima of an average energy over sequences(44, 85).  The objective 

function of the Monte Carlo search is an average energy <E> calculated from statistical-

mechanical molecular design theory(44, 85, 145, 211). The design of the backbone 

structure and the interior sequence yields a helical bundle motif. Further design of the 

bundle exterior residues in a lattice configuration used a lattice symmetry 

approximation(80) and was performed by generating lattice configurations of 

incrementing unit-cell dimension a  in a single layer of the P422 space group, where the 

point symmetry of the helical bundle was aligned with that of the lattice (Figure 4.1C). A 

statistical design theory was applied to evaluate <E> of each lattice configuration(44, 85). 
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We selected the most probable sequence at the energy minimum as P422_1 for further 

experimental synthesis and characterizations. 

 

Figure 4.1 The designed model structure of P422_1. A) A single helical bundle, where 

the motif residues are rendered in spheres with carbon in white, nitrogen in violet, oxygen 

in red, and sulfur in yellow. The exterior residues are rendered in sticks and colored 

according to their chemical properties: positively charged KHR (blue), negatively 

charged DE (red), polar Q (green), hydrophobic WM (grey). B) Four helices in the 

bundle as rods (white) with three two-fold symmetry axes in the D2 point group. C) 2D 

lattice where the bundles in A) assemble with P422 space group symmetry. The peptides 

in the 2D lattice model viewed from top are shown as helical tubes. The unit cell is 

positioned on the lattice (black box) with dimensionality labeled by a. The four-fold and 

two-fold symmetry axes are represented by square and oval shapes. Individual helical 

bundles are designed to be antiparallel with the relative position of N- and C-terminus 

labeled.  

 

4.4.2 Solution phase assembly, crystallization and molecular structure  

We have reported in Chapter 3 the successful solution phase assembly of P422_1 

into square lattices of nanosheet morphology by TEM. Fast Fourier Transform analysis of 

the TEM images further indicates the expected four-fold like symmetry in the lattice 

(Section 3.3.2). However, the spacing observed in the TEM images is on average 4 nm 

compared to 3.1 nm in the designed lattice configuration. Additionally, Small Angle X-
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ray Scattering (SAXS) of the solution assembly reveals a series of sharp diffraction peaks 

and confirms the crystalline nature of the peptide assemblies (Figure 4.7). In order to 

understand the similarities and differences between the solution assemblies and the 

designed lattices on the molecular level, we conducted crystallography experiments and 

solved the structure of P422_1 by molecular replacement (Table 4.1). P422_1 is very 

prone to crystallization and relatively condition insensitive. We got single crystals in 6 

different solution conditions of dimensions up to 180 µm (Figure 4.2). This is in 

agreement with the designed robustness of the assembly structure. P422_1 crystalized in 

the monoclinic C2 space group rather than intended tetragonal P422 space group, and the 

unit cell had dimensions of a=78.1 Å, b= 72.1 Å, c= 65.5Å, α=90.0°, β=116.2°, 

 =90.0° (Figure 2A) rather than a=31.2Å, b=31.2Å, c=N/A, α=90.0°, β=90.0°,  =90.0° 

from the design. The asymmetric unit (ASU) of the P422_1 crystal structure contains 

twelve helices assembled into a trimer of antiparallel homotertramers. The antiparallel 

homotetramers (helical bundles) are as predicted by the computational design described 

above. However, instead of the parallel alignment of the superhelical axes of the helical 

bundles as designed (Figure 4.1C), there is a twisting in the parallel packing between 

neighboring bundles in the ASU of the crystal structure (Figure 4.3A). Such twist is 

extended via a 2-fold rotational crystallographic symmetry to the neighboring ASU in the 

crystal, forming a short twisted ribbon of helical bundles (hexamer of tetramers) (Figure 

4.3B, upperleft). The twisted ribbons further assemble through “knobs-into-holes” 

packing where the end of a ribbon sticks into the major groove of its neighboring copy, 

thus forming the C2 crystal (Figure 4.3B).  
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Figure 4.2 P422_1 Single Crystals A-E). P422_1 peptide in 10 mM NaAcetate pH 4.5, 

100 µL reservoir volume, grown at 20 °C for 7 days. A) 6 µL drop of 5 mg/mL peptide. 

0.1 M HEPES pH 7.0, 30% v/v Jeffamine M-600 reservoir. B) 1 µL drop of 3 mg/mL 

peptide. 0.1 M HEPES pH 7.5, 70% v/v (+/-) 2-Methyl-2,4-pentanediol reservoir. C) 1 

µL drop of 3 mg/mL peptide. 0.05 M Cesium chloride, 0.1 M MES monohydrate pH 6.5, 

30% v/v Jeffamine M-600 reservoir. D) 1 µL drop of 3 mg/mL peptide. 0.075 M Tris pH 

8.5, 18.75% v/v tert-butanol, 25% v/v glycerol reservoir. E) 1 µL drop of 3 mg/mL 

peptide. 0.2 M Potassium chloride, 0.05 M HEPES pH 7.5, 35% v/v pentaerythritol 

propoxylate (5/4 PO/OH) reservoir. F) 1 µL drop of 3 mg/mL P422_1 peptide in 10 mM 

phosphate buffer pH 7.5 suspended over a 500 µL reservoir of 20 mM NaCl, grown at 50 

°C for 12 days. 
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Figure 4.3 The analysis of P422_1 crystal structure. A) Four ASUs, colored 

differently, pack within a unit cell (black box). The unit cell dimensions are labeled. B) 

The packing alignment of ASUs in the crystal from different perspectives. A 3⨉1⨉3 

block of unit cells is show. ASUs take the same color scheme as in A). In the inset (upper 

left), two neighboring ASUs pack to form a twisted ribbon. The oval shape depicts the 

location of a 2-fold rotational symmetry axis. 
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4.4.3 Comparison between the crystal structure and the design 

4.4.3.1 Helical bundle structure 

The successful design of the helical bundle motif is evident in the crystal 

structure. Figure 4.4A shows the superposition of each helix, twelve in total, in the ASU 

of the crystal structure to the designed helix. The average RMSD across twelve helices is 

0.5Å over all Cα atoms and 1.0Å over all backbone atoms compared to the design 

(Figure 4.4B top). Furthermore, the superposition of each of the three unique helical 

bundles in the ASU of the crystal structure to the designed bundle yields an average 

RMSD of 0.8 Å over all Cα atoms and 1.2 Å over all backbone atoms (Figure 4.4B 

middle). Also worth notice is the atomistic agreement between the conformations of the 

motif residues (Ile, Met, Ala) in the crystal structure and in the design, with an RMSD of 

1.3 Å over all sidechain heavy-atoms in the helical bundle superpositions (Figure 4.4B 

bottom).  
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Figure 4.4 Comparison of the helical bundle between the crystal structure and the 

design. A) The superposition of twelve helices in the ASU of the crystal structure (amino 

acids colored according to their chemical properties as in Figure 4.1) and the designed 

peptide (single helix, black). B) Three helical bundles in the ASU, colored as the same 

scheme in Figure 4.5A top, are aligned to the design (white) respectively. (i) 

superposition of the Cα atom trace; (ii) superposition of all backbone atoms (N, C, Cα, O) 

rendered in cartoon; (iii) superposition of the hydrophobic motif sidechain conformations 

(Ile, Ala, Met). RMSDs of the alignment are shown for each superposition. 
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4.4.3.2 Interfaces between two neighboring bundles 

Within each twisted ribbon constituting six helical bundles, there are three unique 

bundle-bundle interfaces related to each other by non-crystallographic pseudo-symmetry 

(Figure 4.5A). The interfaces between helical bundles are composed of mostly 

hydrophobic Met and Trp residues (Figure 4.5 and 4.6B) and three to four hydrogen 

bonds between Lys13 and Gln16 on neighboring antiparallel helices per interface (Figure 

4.5C). The mutation of Gln16 to Leu16 has failed to produce the peptide lattice 

assemblies under the same solution condition and proves the critical role of this hydrogen 

bond to the lattice formation (data not shown). A repeating packing motif of Met-Trp-

Met interactions is found between Met17-Trp10-Met21 of two antiparallel helices at each 

interface (Figure 4.5B). Met17 and Met21 locate on one helix and Trp10 on the other 

antiparallel to the former. There are four such motifs per bundle-bundle interface and the 

combination can greatly stabilize the bundle-bundle associations. A deeper examination 

of the motifs shows a distance of 4.9 ± 0.2Å between S in Met21 and the center of the 

benzene ring in Trp10 and an angle of 13.5 ± 4.9° between the S-aromatic and the ring 

normal vector. Such interaction geometry is among the most frequently observed Met-

aromatic interactions in the PDB database(212). Additionally, the distance between S in 

Met17 and methylene CD1 in Trp10 is 3.9 ± 0.2Å as very close van der Waals contacts.  
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Figure 4.5 The interfaces between neighboring bundles in the crystal. A) The helical 

bundle-bundle interfaces are depicted in the context of the twisted ribbon (composed of 

two ASUs). The full-backbone is shown and colored yellow, orange, and lime 

respectively for each non-crystallographic symmetry related helical bundle. Within each 

bundle-bundle interface, sidechains of critical stabilizing interactions are rendered as 

sticks and colored by atom type as in Figure 4.1A. Colored dash boxes correspond to the 

enlarged and reoriented regions of the interfaces (B, C). B) Two example Met-Trp-Met 

motifs at the bundle-bundle interface are shown in sticks with electron density map 

(2Fo−Fc, contoured at 1.0σ). Dashed black lines between Trp10 and Met21, and Trp10 

and Met17 label two consistent distances across twelve motifs in three bundle-bundle 

interfaces. The packing of the motifs (spheres) on the top is shown in the bottom box. C) 

The hydrogen bonds between Lys13 and Gln16 are shown (black dashed lines) with 

distance between donors and acceptors labeled. Outline colors correspond to the boxes on 

the twisted ribbon structure in A). 
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Despite the striking agreement of the backbone structure of individual bundles 

and the hydrophobic residue conformations to the design, the packing between bundles in 

the crystal structure deviates from the design (Figure 4.6A).  Although in both cases, each 

neighboring bundle contributes a pair of antiparallel helices to the interface, the relative 

orientation of the interfacial helix pair is very different, with strict 4-fold rotational 

symmetry between pairs in the design (Figure 4.1C) compared to a 2-fold-like rotational 

symmetry in the crystal structure. As mentioned above, the bundle-bundle interfaces in 

the crystal structure are populated with specific hydrophobic interactions (Figure 4.6B). 

In comparison, the designed interfaces contain only two non-specific hydrophobic 

Met17-Met17 and Trp10-Trp10 interactions not packed with optimal geometry; rather, 

the stabilizing interactions are dominant by electrostatic interactions including eight 

hydrogen bonds and four additional salt bridges between sidechains of polar residues, 

such as Arg, Glu and Gln, revealed by PDBePISA(193, 213) interface analysis (Figure 

4.6C). These polar residues are mostly buried (buried surface area > 50%) at the bundle-

bundle interfaces in the design. Additionally, interfacial Trp10 is partially solvent 

accessible in the designed lattice whereas it is about 3.6-fold more buried in the crystal 

structure when comparing the buried surface area. As a result, the calculated solvation 

energy gain by PDBePISA on interface formation doubles in the crystal structure 

compared to the designed lattice. 
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Figure 4.6 Comparison of the interfaces between the crystal structure and the 

design. A) Intended heavy-atom alignment between bundle-bundle interfaces in the 

crystal structure (same color scheme as in Figure 4.5A) and the design (white), rendered 

as cartoons. B) Hydrophobic interaction surfaces (grey) in the crystal-structure interfaces; 

surrounding interfacial polar and charged residues are shown as sticks and colored as in 

Figure 4.4A. C) Interaction surfaces in the designed interfaces (same color scheme in B). 
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4.4.4 Consistent lattice structure between the crystal and the solution assembly 

Since the solution conditions for crystallization are different from the solution 

assembly conditions reported previously in Chapter 3, it is essential to establish a strong 

connection between the solved crystal structure lattice and the lattice structure observed 

by TEM and SAXS. Figure 4.7 shows the superposition between the SAXS pattern 

simulated from the crystal structure by Mercury(214) and the experimental SAXS pattern 

of the P422_1 solution assembly. The patterns agree strikingly well, where the largest 

difference in d spacing is 1.3Å between the solution assembly and the crystal structure. 

The slightly larger spacing overall in the solution assembly could be a result of hydration 

when the assemblies freely float in the buffer. Additionally, we observed the periodic 

surface holes of four-fold-like symmetry in the crystal structure that appeared in the high 

magnification TEM image previously reported (Figure 4.8). Lastly, we performed 

crystallization using the same condition as the solution assembly and obtained smaller 

crystals (Figure 4.2F) that were indexed to the same C2 space group with very similar 

crystal parameters to the solved structure. The indexed dimensions of the smaller crystal 

are a=80.7Å, b= 72.7 Å, c= 66.7Å, α=90.0°, β=118.0°,  =90.0°. The evidence indicates 

a consistent lattice structure shared between the solution assembly and the crystal.  
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Figure 4.7: The superposition of the measured (blue) and the calculated (red) SAXS 

data of P422_1. The crystal structure was used as input model for the calculation of the 

corresponding SAXS pattern. 

 

 
Figure 4.8: The four-fold-like symmetry related surface holes on the ab plane of the 

crystal (inset, grey shadows in the surface rendering) that is consistent with the TEM 

image of the solution assembly nanosheet.  
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4.4.5 Molecular modeling consistent with the crystal structure  

To computationally characterize the energetics of the crystal structure in 

comparison with the designed lattice, we calculated the average conformational energy 

        of the P422_1 helical bundle homotetramer using the same statistical mechanical 

design theory used to identify the sequence of P422_1. The calculation using P422_1 

sequence yields                
   for the crystalized C2 lattice configuration,                

    
 

for the designed single-layer P422 lattice configuration and                for an isolated 

bundle of D2 point symmetry respectively. Since there are three non-equivalent helical 

bundles in the C2 lattice that are not related by crystallographic symmetry,                 
   

is calculated as an average over the three bundles in the ASU. We define the lattice 

association energy as, 

                    −                

Theoretically, a more negative      indicates a greater energetic gain upon lattice 

formation from isolated helical bundles.  Interestingly, we find that     
     

 −                is significantly more negative than     
   −               . 

The inconsistency in the energetic preference of lattice formation between the theory 

(C2) and the experiment (P422) suggests possible corrections to the energetic terms used 

in the computational design, such as the use of a linear, distance dependent dielectric 

constant to attenuate the Coulomb potentials between charges as a simplified solvent 

model. We will have more detailed discussion on this aspect below. 
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4.5 Discussion 

4.5.1 The successful design of the helical bundle motif 

The crystal structure of P422_1 demonstrates the successful design of the helical 

bundle motif with precision to the atomistic level. Although the antiparallel 

homotetramer of P422_1 follows the rule of coiled-coil packing, it is a completely novel 

peptide designed computationally that has no putative conserved domains found in the 

NCBI’s non-redundant protein database. The helical bundle motif has been proved 

previously a robust and versatile building block for four distinct peptide nanostructures, 

one non-assembling coiled-coil and three lattices, and can tolerate covalent modifications 

of additional two, four and six glycine residues respectively at the N-terminus without 

losing the lattice features (section 3.3.3). There is enormous potential of such motif to be 

universally applied to create new peptide-based biomaterials with defined nanostructures. 

However, we found that the successful prediction of the accurate packing between the 

helical bundles in a predefined lattice configuration is not a trivial process and might 

need subtle adjustment of the potentials used in the design. 

4.5.2 Hydrophobic Met-Trp-Met motif 

One interesting finding in the P422_1 crystal structure is the putative Met-Trp-

Met motif prevalent at the bundle-bundle interfaces. The interaction between sulfur in 

Met and π-electron donors, such as aromatic rings, exists in about one-third of the all 

known protein structures, and are greatly energetically stabilizing(212, 215). More 

specifically, the up conformation (methyl group in Met points towards the aromatic ring) 

found in all the motif copies in the P422_1 structure (Figure 4.5B) is reported to have a 
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calculated interaction energy of -4.5 to -6.6 kcal/mol at a specific interaction distance of 

~4.8Å(212). In comparison, the measured and calculated interaction energy for a single 

hydrogen bond is -0.5 to -1.5 kcal/mol in protein-ligand complexes(216, 217). Although 

surface salt bridges could stabilize proteins by 0.6 to 1.5 kcal/mol(218–220), it is found if 

buried, their stabilizing effect can be cancelled by the desolvation penalty(221). The 

desolvation penalty is a result of moving two oppositely charged residues exposed in a 

hydrophilic solution, such as buffer, to a hydrophobic region upon burial of the residues, 

such as upon protein-protein association to form a tightly-packed crystal.  The other half 

of the Met-Trp-Met motif contains a less well studied sulfur-methylene interaction in the 

protein environment, yet exists in about 40% of all Met(sulfur) related interactions in 

protein-ligand complexes(222). Although the experimental energetic characterization is 

not found for such motif, it is known that hydrophobic interactions are less sensitive to 

the solution environment, such as pH and ionic strength, and Met and Trp residues suffer 

less desolvation penalty upon burial compared to the polar residues involved in hydrogen 

bonds and salt bridges. Therefore, the interactions in the Met-Trp-Met motif could be 

overall more energetically advantageous for helical bundle associations than the designed 

electrostatic interactions. 

4.5.3 Lattice association energy discrepancy between the design and the crystal 

We also want to understand the possible sources of energy discrepancy on the 

lattice association energy between the design and the crystal structure. One explanation 

for such discrepancy can be favorable desolvation energy for residues involved in the 

bundle-bundle interfaces in the crystal than in the design. A PDBePISA (193) scoring 
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function analysis indicates the association of the bundle-bundle interface is on average 

3.2 kcal/mol more favorable in the crystal structure than in the designed P422 lattice. 

More specifically, the average solvation energy gain upon bundle-bundle association is 

15.3 kcal/mol more negative (less desolvation penalty) in the crystal structure. As a 

result, the large difference in desolvation penalty could play a critical role in offsetting 

the energetic stabilizing effect of electrostatic interactions, such as hydrogen bonds and 

salt bridges, in the designed lattice. 

4.5.4 Feedback to improve the design program: solvent model for peptide lattice 

The electrostatic interactions in the design are attenuated by a linear, distance-

dependent dielectric screening. This is a simplified form to model solvent effects(223). It 

is a useful parameterization when combined with environmental energy model for the 

design of solvated globular proteins(85, 86). However, in the context of a tightly-packed 

peptide lattice, such calculation of the electrostatic potential could lead to an 

overestimation of the energy-stabilizing contribution from hydrogen bonds and salt 

bridges. Therefore, a separate solvation energy model might be needed to take into 

consideration the desolvation penalty of the buried hydrophilic residues upon protein-

protein association in the crystal. Such solvation energy approximation can be achieved 

by using empirical atomic solvation parameters(193) or atomic contact energies(224) 

used in the approximation of electrostatics in the case of designing macromolecule 

crystals. Alternatively, more rigorous analytical solvent models could be applied to 

estimate the solvation energy of buried charges and to compensate the energy model used 

in the design. For example, a mean-field treatment of solvents is applicable by using 
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Langevin dipoles for water in a grid(225) surrounding the protein-protein interface in the 

lattice approximation. The development and benchmark of adjustments to the calculation 

of the electrostatic potential and to include possible solvent models will be the focus of 

future improvements on the statistical-mechanical design theory in light of enhancing the 

success rate of computational design of peptide lattices.  

4.6 Conclusion 

We have presented the computational design of a novel and robust crystal-

forming peptide P422_1 with solution phase characterizations and its crystal structure. 

The building block of P422_1 lattice, a helical bundle motif, has atomistic agreement 

between the design and crystal structure. Such motif is of broad interest for the design of 

different peptide lattices. The bundle-bundle interfaces in the lattice are stabilized by a 

Met-Trp-Met motif featuring hydrophobic interactions in a specific geometry, rather than 

the buried hydrogen bonds and salt bridges between polar residues with higher 

desolvation penalty that are designed. Such observation reveals the critical role of 

specific hydrophobic interactions in the protein-protein interfaces in a crystal. It also 

reveals the necessity of a separate solvent model for the design of peptide lattices other 

than a simplified representation used to calculate electrostatic energies. This work 

provides direct evidence of the successful and yet-to-be improved components of the 

computational design approach, and rare insights into potential ways to enhance the 

design success rate on a fundamental basis.  
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CHAPTER 5 Conclusion 

5.1 Summary and Outlook 

Peptide-based self-assemblies are a new category of nanomaterials that can be 

engineered with defined molecular structures with atomistic precision, and controllable 

nanostructures by design and solution assembly conditions. These peptide-based self-

assemblies can also serve as hybrid material templates for chemical modifications and 

inorganic/organic doping with controlled geometry and spacing.  

In this thesis, we focused on the design aspects of peptide-based self-assemblies, 

and the understanding of fundamental molecular principles that guides the assembly 

interactions. We presented rationally designed peptide self-assembly hydrogels, and 

computationally designed peptide self-assemblies targeted for distinct nanostructures: a 

single helical bundle and three nanosheets of different lattice structures. We further 

characterized the designed peptide self-assemblies by various experimental and modeling 

techniques to understand their material properties, nanostructures and molecular 

structures. In the case of the designed peptide hydrogel, we showed that through careful 

rational, molecular design of the specific hydrophobic interactions in the β-sheet fibrils 

LNK1, one can control and modulate the assembly network morphology, the underling 

molecular structures and the rheological properties of the peptide-based hydrogel 

nanomaterials. Next, we presented the computational design approach to pre-engineer the 

well-defined nanostructures and morphologies into peptide-based self-assembling 

nanomaterials. One of the most important discoveries of this research project is that we 

computationally designed a novel, versatile, α-helical peptide bundle motif, stabilized by 
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shape complementary hydrophobic core, which can be applied as a universal building 

block to a set of hierarchical nanomaterials solution-assembled with distinct lattice 

structures. This is realizable through subsequent computational design of motif exterior 

residues. We reported the successful design of two-dimensional sheet materials based on 

the motif. More specifically, the motif is designed to be shared among four distinct 

nanostructures: a non-assembling, isolated helical bundle in solution and three two-

dimensional lattices with distinct local structures. The TEM, SAXS and a crystal 

structure of one of the lattices proved the concept of such common motif for various 

lattices is successfully explored and captured. However, the subtle packing of the exterior 

residues of the motifs caused the lattices did not always match the prediction. From the 

crystal structure of P422_1, we found the crucial role of Met-Trp-Met hydrophobic 

interactions at peptide interfaces inside the tightly-packed lattice rather than the 

computationally identified, stabilizing electrostatic interactions. The specific hydrophobic 

interactions lock in the relative orientations of neighboring helical bundles in the crystal 

structure deviating from the design. Therefore, moving forward, it is necessary to include 

a more thorough energetic approximation in the computational design approach to take 

into account the desolvation effects at tightly packed protein-protein interfaces, in order 

to improve the design success rate for peptide nanomaterials with predefined lattice 

structures. Additionally, we are currently making efforts in solving the crystal structures 

of the rest of proposed peptide self-assembly designs to obtain the full molecular picture 

of the fundamental rules that determine the outcome of the designs.  

We need to understand that the design methods, particularly the computational 
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approach despite derived from first principles, are still approximations and do not 

guarantee the prespecified molecular- and nano-structures of peptide-based self-assembly 

nanomaterials. The feedback from the experimental characterization provides critical 

guidance for the improvement of the computational design methods, in terms of why the 

structures of the assemblies and the properties of the materials deviate from the 

predictions. In the meantime, existing peptide designs that are highly ordered can be used 

for advanced modifications and can evolve into hybrid materials, such as templating for 

metal nanoparticles, organic cofactors, and crosslinking sites.  

  Regarding future designs, one direction will target more advanced hybrid 

materials, to precisely control the display of different components in the assembled 

peptides, and to incorporate unnatural amino acids into the design methodology. Another 

direction is to expand the nanostructures and macrostructures of the peptide-based self-

assemblies, particularly to include arbitrary symmetry outside of the natural crystal realm 

and to build superlattices similar to inorganic materials.  
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