
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2017

Data Privacy Beyond Differential Privacy
Zhiwei Steven Wu
University of Pennsylvania, wuzhiwei@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Computer Sciences Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2645
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Wu, Zhiwei Steven, "Data Privacy Beyond Differential Privacy" (2017). Publicly Accessible Penn Dissertations. 2645.
https://repository.upenn.edu/edissertations/2645

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2645&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F2645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2645?utm_source=repository.upenn.edu%2Fedissertations%2F2645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2645
mailto:repository@pobox.upenn.edu


Data Privacy Beyond Differential Privacy

Abstract
Computing technologies today have made it much easier to gather personal data, ranging from GPS locations
to medical records, from online behavior to social exchanges. As algorithms are constantly analyzing such
detailed personal information for a wide range of computations, data privacy emerges as a paramount
concern. As a strong, meaningful and rigorous notion of privacy, Differential

Privacy has provided a powerful framework for designing data analysis algorithms with provable privacy
guarantees. Over the past decade, there has been tremendous progress in the theory and algorithms for
differential privacy, most of which consider the setting of centralized computation where a single, static
database is subject to many data analyses. However, this standard framework does not capture many complex
issues in modern computation. For example, the data might be distributed across self-interested agents, who
may have incentive to misreport their data; and different individuals in the computation may have different
expectations to privacy.

The goal of this dissertation is to bring the rich theory of differential privacy to several computational
problems in practice. We start by studying the problem of private counting query release for high-dimensional
data, for which there are well-known computational hardness results. Despite the worst-case intractability
barrier, we provide a solution with practical empirical performances by leveraging powerful optimization
heuristics. Then we tackle problems within different social and economic settings, where the standard notion
of differential privacy is not applicable. To that end, we use the perspective of differential privacy to design
algorithms with meaningful privacy guarantees.

(1) We provide privacy-preserving algorithms for solving a family of economic optimization problems under
a strong relaxation of the standard definition of differential privacy---joint differential privacy.

(2) We also show that (joint) differential privacy can serve as a novel tool for mechanism design when solving
these optimization problems: Under our private mechanisms, the agents are incentivized to behave truthfully.

(3) Finally, we consider the problem of using social network metadata to guide a search for some class of
targeted individuals (for whom we cannot provide any meaningful privacy guarantees). We give a new variant
of differential privacy---protected differential privacy---that guarantees differential privacy only for a subgroup
of protected individuals. Under this privacy notion, we provide a family of algorithms for searching targeted
individuals in the network while ensuring the privacy for the protected (un-targeted) ones.
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ABSTRACT

DATA PRIVACY BEYOND DIFFERENTIAL PRIVACY

Zhiwei Steven Wu

Michael Kearns and Aaron Roth

Computing technologies today have made it much easier to gather personal data, rang-

ing from GPS locations to medical records, from online behavior to social exchanges. As

algorithms are constantly analyzing such detailed personal information for a wide range

of computations, data privacy emerges as a paramount concern. As a strong, meaningful

and rigourous notion of privacy, Differential Privacy has provided a powerful framework

for designing data analysis algorithms with provable privacy guarantees. Over the past

decade, there has been tremendous progress in the theory and algorithms for differential

privacy, most of which consider the setting of centralized computation where a single,

static database is subject to many data analyses. However, this standard framework does

not capture many complex issues in modern computation. For example, the data might be

distributed across self-interested agents, who may have incentive to misreport their data;

and different individuals in the computation may have different expectations to privacy.

The goal of this dissertation is to bring the rich theory of differential privacy to several

computational problems in practice. We start by studying the problem of private counting

query release for high-dimensional data, for which there are well-known computational

hardness results. Despite the worst-case intractability barrier, we provide a solution with

practical empirical performances by leveraging powerful optimization heuristics. Then we

tackle problems within different social and economic settings, where the standard notion

of differential privacy is not applicable. To that end, we use the perspective of differential

privacy to design algorithms with meaningful privacy guarantees.

• We provide privacy-preserving algorithms for solving a family of economic opti-
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mization problems under a strong relaxation of the standard definition of differential

privacy—joint differential privacy.

• We also show that (joint) differential privacy can serve as a novel tool for mechanism

design when solving these optimization problems: Under our private mechanisms,

the agents are incentivized to behave truthfully.

• Finally, we consider the problem of using social network metadata to guide a search

for some class of targeted individuals (for whom we cannot provide any meaningful

privacy guarantees). We give a new variant of differential privacy—protected differ-

ential privacy—that guarantees differential privacy only for a subgroup of protected

individuals. Under this privacy notion, we provide a family of algorithms for search-

ing targeted individuals in the network while ensuring the privacy for the protected

(un-targeted) ones.
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CHAPTER 1

Introduction

People are producing more information than ever. Algorithms today have access to an su-

perabundance of fine-grained personal data, including everything from medical records to

GPS locations, from online behaviors to social exchanges. By analyzing such a wide range

of information, powerful algorithms have been making tremendous impact on many do-

mains as diverse as academic research, policy making and electronic commerce. However,

in reality many of the most informative data sets happen to contain the most sensitive

personal information. As a result, the tension between the privacy of the individuals and

the usefulness of the analysis on their data is inevitable: on the one hand, revealing the in-

dividuals’ private information (directly or indirectly) raises moral and legal concerns; but

on the other hand, analyzing data in aggregate can provide insights that largely benefit

the society.

This thesis studies on the problem of privacy-preserving data analysis that focuses on the

following question: How can we perform useful analysis on sensitive data while preserving

the privacy of the individuals? A key step in tackling this problem is to first understand

what it means to protect the individuals’ privacy in a computation. One tempting privacy

measure is the so-called “data anoymization” or “de-identification,” where the basic idea is

to “de-identify” the dataset by removing personally identifiable information (for example,

name, gender, and age), and then publish the “anonymous” dataset. Ironically, these de-

identification mechanisms are not resilient to the so-called “re-identification attacks.” One

notable example is the attack on Netflix challenge dataset. During the Netflix challenge

machine learning contest, the company released its users’ movie rating dataset with all

of the user names removed, so researchers could study the datasets in order to design

new learning algorithms for movie recommendations. While the machine learning contest
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itself was a huge success, the allegedly anonymous data sets was far from private. By cross-

linking the Internet Movie Database (IMDb), two researchers were able to to de-anonymize

most of the users in the dataset [Narayanan and Shmatikov, 2008]. As a result, Netflix was

faced with a costly lawsuit and had to cancel all subsequent contests. Other examples of

re-identification attacks abound, including the one on the AOL search logs [Barbaro and

Zeller, 2006] (see Ohm [2009] for a survey on the failure of anonymization). As Cynthia

Dwork put it, “de-identified data isn’t,” and de-identification is simply not a solution for

privacy-preserving data analysis.

Privacy risk arises even when we never publish the data. For example, it may seem in-

nocuous to release aggregate statistics (that are not specific to any individual), but all of

the statistics in combination can reveal a great deal about a single individual in the dataset.

A striking example is the application of a statistical method, originally developed to deter-

mine whether an individual is contributing trace amounts of genomic DNA to a complex

forensic mixture, to data from Genomic Wide Association Study (GWA) genetic studies. In

particular, the genetic studies contain the allele frequencies of certain case groups for large

numbers of single nucleotide polymorphisms (SNPs), which are essentially a large collec-

tion of summary statistics that are not about any single individual. Researchers demon-

strate that given the genomic data of any single individual they can accurately determine

whether the individual participated in the study or not, and can therefore further infer

whether the individual has disease associated with the study [Homer et al., 2008]. As a

result, the GWA genomic dataset was removed from the public domain. In general, such

privacy risk persists whenever too many summary statistics that are overly accurate are

released (see Dwork et al. [2017] for a survey of privacy attacks on aggregate data).

Privacy attacks have taught us a valuable lesson: Protecting privacy is a delicate task, and

ad-hoc privacy measures have proven to be problematic. Privacy-preserving data analysis

calls for a more principled approach that is based on a strong, meaningful, and mathemat-

ically rigorous notion of privacy. From the standpoint of algorithm design, the desiderata

2



for a meaningful privacy notion are three-fold.

• First, it is crucial to work with a stringent and worst-case privacy guarantee. The

privacy notion should be a property of the algorithm, with no assumption on what

the data “looks like” or what knowledge the adversary has. As a result, privacy

preservation will be a provable mathematical guarantee.

• Second, it is important that such notion enables effective use of data. One potential

disadvantage of working with a stringent privacy notion is that it may rule out all

algorithms with non-trivial utility guarantee. Thus, a meaningful privacy notion

should allow one to effectively acquire useful aggregate information while revealing

nothing about any single individual.

• Lastly, a meaningful notion should also facilitate private algorithm design. In par-

ticular, it should also come with a collection basic principles and tools for reasoning

and designing private algorithms, so that we can build algorithmic solutions for a

broad class of data analysis tasks.

As we will see, Differential Privacy is such a definition.

1.1. Differential Privacy

The notion of differential privacy was first proposed by the seminal work of Dwork, McSh-

erry, Nissim, and Smith [Dwork et al., 2006]. Informally, differential privacy is a stability

constraint on algorithms—it requires that no single individual’s data in the input data set

has a significant influence on the output information. The promise of such stability guar-

antee is that no data subject will be affected for contributing her private data to any study

or data analysis subject to differential privacy. The exact definition of differential privacy

formalizes such stability notion in a mathematical and quantifiable way, and provides a

privacy measure “epsilon”, which allows algorithm designer to reason about privacy loss

in the computation.

3



To understand the strength of this privacy notion, imagine an adversary who is trying to

learn about the private information of “Bobby”, whose data may or may not be part of the

database in the computation. The adversary gets to observe the algorithm’s output (as a

function of the input database), and may also has access to any arbitrary side information.

For example, he might even know the private data of every other individual except Bobby,

and quite a bit about Bobby. Differential privacy guarantees that no matter what such side

information might be, the adversary will learn almost nothing new about Bobby whether or

not his data is in the database.

Despite being a stringent privacy notion, differential privacy does not prevent useful data

analysis. To illustrate the compatibility between learning and differential privacy, consider

a medical study releases that smokers have much higher chances of getting lung cancer.

Suppose that our protagonist Bobby happens to be a smoker. After learning his health risk,

his insurance company decides to raise his insurance premium. In this case, is Bobby’s pri-

vate information “leaked” from this study? Differential privacy takes the stance that this

is not a privacy violation: if the medical study is carried out subject to differential privacy,

then the correlation between smoking and lung cancer will still be released whether or not

Bobby’s data is in the study.

Differential privacy as an algorithmic stability notion is not only a desideratum, but also

a useful tool for data analysis. There is a intimate connection between differential pri-

vacy and generalization in adaptive analysis (formally established in [Dwork et al., 2015]).

One way to interpret the guarantee of differential privacy is the following: if we replace

any single data record in the database by a random person from the population, the out-

put (in distributional sense) will be approximately the same. As a result, any statistical

claim derived from a differentially private analysis also generalizes to the underlying dis-

tribution from which the data is drawn. Therefore, techniques in differential privacy can

serve as a tool to prevent over-fitting for adaptive data analysis even when privacy is not

a concern! The stability guarantee of differential privacy is also useful when there are

4



incentives involved in the computation. In a strategic environment, we can interpret the

stability guarantee of differential privacy as follows: if any self-interested agent manip-

ulate his or her private data input to the mechanism, the agent will not be able to affect

the outcome (e.g. the set of prices imposed on the goods) by much. Consequently, ev-

ery agent participating in the computation has almost no incentive to misreport the data.

In Chapter 6, we will leverage this connection between differential privacy and truthful-

ness to develop incentive-compatible mechanisms that truthfully elicit private data from

self-interested agents for computation.

Differential privacy also admits a powerful algorithmic framework. There are two im-

portant features that allow a rich class of differentially private algorithms. The first one

is robustness to post-processing: any data-independent post-processing procedure on a dif-

ferentially private output continues to satisfy differential privacy. In other words, if we

promise differential privacy in the algorithm’s output, no data analyst can incur more pri-

vacy loss by running further analysis on the output. The second one is its compositional

property: the composition of any two private algorithms remains private with the privacy

loss parameter increasing gradually. This compositional reasoning greatly facilitates al-

gorithm design—we can divide the computation into different building blocks and design

private solutions for these parts in isolation. We will provide more details in Chapter 2.

1.2. Beyond Differential Privacy

Most work in differential privacy literature focuses on the setting of centralized compu-

tation: given access to a private static database, the algorithm performs its data analysis

and outputs aggregate information (e.g. summary statistics) in privacy-preserving man-

ner. While this is a powerful framework that allows us to develop meaningful private

algorithms for optimization, statistical analysis, and machine learning, it has limitations

when we wish to solve problems beyond such a centralized setting.
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1.2.1. Privacy in Economic Environments

Let us consider the following simple allocation problem that the centralized framework

does not capture. There is a collection of goods and a group agents with their private

values over the goods. Our goal is to compute a feasible allocation to maximize the so-

cial welfare—the sum of the values over the assigned items across all buyers. The private

values might be related to treatment of some embarrassing disease or indicative of some

business strategy, so we wish to compute the allocation while protecting the agents’ pri-

vate values. However, it is impossible to compute an allocation with high welfare under

the standard definition of differential privacy. The intuition is quite simple: if we view the

entire assignment as the output by the algorithm, differential privacy requires that the as-

signment to each agent to be insensitive to the change of his own private values. However,

if we want to achieve high-welfare, we must give each agent what he prefers! As a result,

there is a direct contradiction between differential privacy and high welfare.

The incompatibility between differential privacy and useful algorithms is common in other

domains including driving route suggestion and residency matching assignment. Can we

use perspective of differential privacy to provide meaningful private algorithms in these

domains despite the obvious incompatibility? To answer this question, let us take the

special structure of this type of problems—both the input and the output to the algorithm

is naturally partitioned amongst the participants in the problem. For example, in the

allocation problem we can view the agents individually submitting their private values to

the algorithm, and then the algorithm separately tell each agent what item they get. Taking

this distributed view, we can reformulate the goal of privacy protection differently. Since

the assignment is no longer publicly visible, we can allow the each agent’s assignment to

be sensitive to his private information. However, we still need to protect any single agent’s

private information from the output assignment to all the other agents: fix any agent i, we

would like the assignment to all the other agents except i to reveal little information about

i’s private value.
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We can formulate such privacy desideratum as a relaxation of the standard notion of differ-

ential privacy—joint differential privacy first proposed by Kearns et al. [2014]. Informally,

it requires that the output to all the other agents to be insensitive to the change of any

single agent’s private data. Despite being a relaxation, joint differential privacy is still

extremely strong: it implies that for any agent i in the computation, even if all the other

agents except i collude and share their information, they would not be able to learn about

agent i’s private information!

Now that we have a meaningful privacy notion for this large class of economic optimiza-

tion problems, how do we design algorithms subject to this new privacy constraint? Do

we need to “re-invent” all the powerful tools we have for the standard notion of differen-

tial privacy, including all the basic algorithms and the composition theorem? Fortunately,

we give a remarkable structural result that allows us to “stand on the shoulders of the

giants” of (standard) differential privacy. We present a algorithmic framework, termed

as the billboard model, under which the algorithm publishes signals that satisfies standard

differential privacy to all the agents, and each agent is able to compute his or her part of

the output solution based on the private signal and the agent’s private data. The billboard

model is in fact very compatible with many distributed computing protocols, including

the deferred acceptance algorithm [Kelso and Crawford, 1982], and the dual decomposi-

tion optimization algorithm [Boyd et al., 2011]. To design algorithms under the billboard

model, we can simply focus on computing a private version of the signal (e.g. prices on

the goods), and demonstrate that the resulting solution has good quality despite the noise

we introduce in the computation. Based on this powerful framework, we will provide al-

gorithms for a family of economic optimization problems under this strong notion of joint

differential privacy in Chapters 4 and 5,

1.2.2. Heterogeneous Privacy Guarantees Across Populations

The standard framework of differential privacy aims to provide privacy guarantee for ev-

eryone in the population. However, such universal privacy guarantee may not be appro-
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priate if not all members of the population have an equal right to, or demand for, privacy.

Consider the problem of using social network metadata to guide a search for some class

of targeted individuals such as terrorists and organized criminals. Since the goal of the net-

work search is to identify members of the targeted class in the network, we cannot possibly

provide any meaningful privacy guarantees to the targeted individuals (and few would ar-

gue that actual criminals have the same right to privacy). However, since the network

search will eventually encounter members not in the targeted class, we do wish to provide

privacy for the private network data of such protected individuals.

A natural question arises: how can we balance the privacy guarantee for the protected indi-

viduals while allowing effective search for the targeted? To address this question, we propose

another relaxation of differential privacy—protected differential privacy proposed by Kearns

et al. [2016]. Under this relaxation, we aim to provide differential privacy guarantee only

to the protected individuals. However, the reformulation of the privacy guarantee is not

the end of the story. The critical technical challenge in this graph search problem is that

we don’t know who the targeted individuals are a-priori.1

More generally, the notion of protected differential privacy is an important step towards

a more general computational framework that manages the different privacy guarantees

we wish to provide to different sub-groups in the population. This additional degree of

freedom is very desirable and opens up more possibility of designing meaningful privacy-

preserving algorithms when the underlying population may have different expectations to

privacy.

1.3. Outline of Results

In the remainder of this thesis, we will structure the contents as follows.

In Chapter 2, we will provide the basic definition of differential privacy along with the

1This is exactly what we are trying to identify!
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basic algorithmic tools for designing private algorithms.

In Chapter 3, we will focus on a fundamental problem in privacy-preserving data analysis—

private counting query release. For this problem in (standard) differential privacy, our goal

is to overcome the curse of dimensionality in practice and provide an algorithm with prac-

tical empirical run-time performance. The result is based on a joint work with Gaboardi,

Gallego Arias, Hsu, and Roth [Gaboardi et al., 2014].

In Chapter 4, we will introduce the constriant of joint differential privacy, a meaning-

ful privacy guarantee for a wide range of problems in economic environments, including

distributed optimization and equilibrium computation. In particular, we will focus on

solving the allocation problem under the billboard model. This result is based on a joint

work with Hsu, Huang, Roth, and Roughgarden [Hsu et al., 2014a].

In Chapter 5, we will provide a general algorithm for solving a family of convex programs

under the constraint of joint differential privacy. In particular, the algorithm can be used

to solve allocation problems with more a more general class of valuation functions, which

gives an improvement over the result in Chapter 4. We will continue to study the same

class of optimization problems in Chapter 6, but from the angle of mechanism design. In

particular, we will demonstrate how (joint) differential privacy can be used as a tool to

obtain incentive-compatible mechanisms. This is based on a joint work with Hsu, Huang,

and Roth [Hsu et al., 2016].

Finally, in Chapter 7, we will focus on a graph search problem for which we only seek to

provide differential privacy guarantee for a subgroup in the population. In particular, we

will provide a family of graph search algorithms under the constraint of protected differ-

ential privacy. This is based on a joint work with Kearns, Roth, and Yaroslavtsev [Kearns

et al., 2016].
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CHAPTER 2

Background

I am in the database, but nobody knows.

Cynthia Dwork

2.1. The Definition of Differential Privacy

Differential Privacy is an algorithmic property, specifically for randomized algorithms.1

Roughly speaking, it requires that the any single individual in the data set has little influ-

ence on the information output by the algorithm. More concretely, it is a stability notion

on (randomized) algorithms such that the change to any single data record in the dataset

does not change the probability of any event (based on the output) by much.

In this chapter, we will mostly focus on the standard setting of centralized computation

and formalize the guarantee above. We assume the existence a trusted and trustworthy

curator who has access to a sensitive database D that contains the private data records

of n individuals. We also assume a data universe X , which is the set of all possible data

types (e.g., all possible genotypes). It is useful to think of each data record corresponding

to a “row” in the database, and we will write D as an element in the set X n.2 A query is

a function of the database. We assume a data analyst that asks the data curator a set of

queries (possibly adaptively), and the data analyst provide the answers by running some

privacy mechanism (or simply private algorithm)M with output range R.

To formally introduce differential privacy, it is important to define the neighboring rela-

1It is a folklore that any non-trivial differentially private algorithm is necessarily randomized.
2Sometimes a database is defined as a multi-set, that is D ⊆ X , which is useful when the size of the database

is not publicly known.
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tionship among databases. In particular, two databases D,D ′ ⊂ X are neighboring if they

differ by at most a single data element, that is their hamming distance ‖D4D ′‖ ≤ 1. More

generally, one can define the neighboring relationship with respect to other metric over

the databases, and the privacy guarantee will be adapted accordingly. Differential privacy

requires that the algorithm has “close” output distributions on any pair of neighboring

databases. Formally:

Definition 2.1.1 ([Dwork et al., 2006]). A mechanismM : X n→ R satisfies (ε,δ)-differential

privacy if for every S ⊆ R and for all neighboring databases D,D ′ ∈ X n, the following holds:

Pr[M(D) ∈ S] ≤ eεPr[M(D ′) ∈ S] + δ

If δ = 0 we say M satisfies ε-differential privacy.

The most important parameter in the definition is the privacy loss parameter ε. The

smaller the value of ε is, the more the stable the algorithm is, and hence the better pri-

vacy guarantee we can provide. To understand the privacy guarantee, let us consider the

following quantity: for any pair of databases D and D ′, any outcome o in the range R, let

L(D,D ′ , o) = ln
(

Pr[M(D) = o]
Pr[M(D ′) = o]

)
,

which is commonly referred to as the privacy loss incurred by observing the outcome o.

In particular, ε-differential privacy (with δ = 0) implies that for any pairs of neighboring

databases D,D ′ and outcome o, the absolute value of L(D,D ′ , o) is bounded by ε. When

ε goes to 0, this means D and D ′ are almost equally likely to produce the outcome o.

As a result of such indistinguishability guarantee, the privacy of any single individual

is protected even when the adversary is equipped with really strong side information.

Suppose that the adversary knows the entire database except for the i-th person’s data

(that is, he has full knowledge about D−i), and he knows that the i-th record is either a or

b, which correspond to a pair of neighboring databases D and D ′. Even in this case, the

adversary can learn almost nothing more about the individual i by observing the output
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by the algorithm.

When δ is non-zero, we are typically interested in values of δ that are less than the in-

verse of any polynomial in the size of the database n. For example, even if a mechanism

randomly outputs a few data records in the dataset, it will still satisfy (0,δ)-differential

privacy with δ in the order of O(1/n).

We can also express the guarantee of differential privacy through the notion of max diver-

gence. Fix any pair of random variables Y and Z, we will write

D∞(Y ||Z) = max
S⊆Supp(Y )

[
ln

Pr[Y ∈ S]
Pr[Z ∈ S]

]

to denote the max divergence between two random variables Y andZ. Also, the δ-approximate

max divergence between Y and Z is defined to be

Dδ∞(Y ||Z) = max
S⊆Supp(Y ):Pr[Y∈S]≥δ

[
Pr[Y ∈ S]− δ

Pr[Y ∈ S]

]
.

Claim 2.1.2. A mechanismM is

1. ε-differentially private if and only if on every pair of neighboring datasets D and D ′,

D∞(M(D)||M(D ′)) ≤ ε and D∞(M(D ′)||M(D)) ≤ ε; and is

2. (ε,δ)-differentially private if and only if on every pair of neighboring datasets D and D ′:

Dδ∞(M(D)||M(D ′)) ≤ ε and Dδ∞(M(D ′)||M(D)) ≤ ε.

2.2. Properties of Differential Privacy

We will highlight some of the most important properties of differential privacy. The first

one is its resilience to post-processing. To put it simply, a data analyst cannot incur more

privacy loss by “thinking” very hard about the output from a differentially private algo-

rithm. The claim is formalized below, and see [Dwork and Roth, 2014] (Proposition 2.1)

for a formal proof.
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Lemma 2.2.1 (Post-Processing). LetM : X ∗→ R be a (ε,δ)-differentially private mechanism.

Let f : R→ R′ be an arbitrary randomized mapping. Then f ◦M : X ∗→ R′ is (ε,δ)-differentially

private.

Next, we will discuss the compositional property of differential privacy. Suppose we have

several differentially private subroutines at hand, and we wish to build a more sophisti-

cated algorithm by composing these subroutines. How do we perform the privacy analysis

for the entire algorithm? The composition theorem of differential privacy says that the

“privacy losses add up.” We will first provide the following basic composition theorem

(see [Dwork and Roth, 2014] (Theorem B.1) for a formal proof).

Theorem 2.2.2 (Basic Composition). LetMi : X ∗→ Ri be an (εi ,δi)-differentially private al-

gorithm for i ∈ [k]. Then ifM[k] : X ∗→
∏k
i=1Ri is defined to beM[k](D) = (M1(D), . . . ,Mk(D)),

thenM[k] is (
∑k
i=1 εi ,

∑k
i=1 δi)-differentially private.

Now we will give a more sophisticated version of the composition theorem. To formally

introduce the result, we consider a model in which an adversary can affect the input

databases to the future mechanisms, along with the queries to these mechanisms. Let

F be class of differentially private mechanisms. (For instance, the class can just be the set

of all ε-differentially private mechanisms given a fixed level of ε.) Fix any adversary A, we

consider two experiments, Experiment 0 and Experiment 1, defined as follows.

Experiment b for family F and adversary A: For each round i = 1, . . . , k:

1. A outputs two neighboring datasets D0
i and D1

i , a mechanismMi ∈ F , and parame-

ters wi .

2. A receives yi ∈RMi(wi ,D
b
i ).

In this experiment, the adversary is allowed to be adaptive, and thus is may choose the

pairs of databases D0
i , D1

i , mechanisms, and the parameters based on the outputs of previ-

ous mechanisms. The view V b of the adversary A in the experiment b includes A’s internal
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randomness and all of the mechanism outputs (y1, . . . , yk).3

How does this experiment relate to the composition of differential privacy? Consider an

adversary who always choose D0
i to hold Bob’s data and D1

i to differ only in that Bob’s data

is replaced by Alice’s data. Then experiment 0 can be thought of as the “real world,” where

Bob’s data is repeatedly used in the computation, and the experiment 1 can be thought of

as the “parallel world,” where Bob’s data is never used. The fact that the mechanisms in

class F satisfies differential privacy guarantees that the two experiments need to be “close”

to each other. We will now define the notion of k-fold adaptive composition, which will be

useful for describing the advanced composition theorem.

Definition 2.2.3. We say that the family F of mechanisms satisfies ε-differential privacy under

k-fold adaptive composition if for every adversary A, we have D∞(V 0||V 1) ≤ ε where V b denotes

the view of A in the experiment b defined above.

Similarly, F satisfies (ε,δ)-differential privacy under k-fold adaptive composition if for every

adversary A, we have Dδ∞(V 0||V 1) ≤ ε

Theorem 2.2.4 (Advanced Composition[Dwork et al., 2010b]). Let ε,δ,δ′ > 0, the class of

(ε,δ)-differentially private mechanisms satisfies (ε′ , kδ + δ′)-differential privacy under k-fold

adaptive composition for:

ε′ =
√

2k ln(1/δ′) + kε(eε − 1).

We will often use the following corollary, which demonstrate that the privacy loss in an

adaptive composition of k ε-differentially private mechanisms grows roughly as
√
kε.

Corollary 2.2.5. Given target privacy parameters ε′ ∈ (0,1) and δ′ > 0, to ensure (ε′ , kδ + δ′)-

differential privacy over k mechanisms, it suffices that each mechanism is (ε,δ)-differentially

private, where

ε =
ε′

2
√

2k ln(1/δ′)
.

3Note that the datasets Dbi ’s,Mi ’s, and parameters wi ’s can all be determined from (y1, . . . , yk).
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2.3. Basic Tools

The most basic differentially private mechanism is the Laplace mechanism, which allows

us to release noisy answer for any real-valued query based on its `1 sensitivity. The Laplace

Distribution centered at 0 with scale b is the distribution with probability density function

Lap(z|b) =
1

2b
exp

(
−|z|
b

)
.

We say X ∼ Lap(b) when X has Laplace distribution with scale b. Let f : X ∗ → Rd be an

arbitrary d-dimensional function. The `1 sensitivity of f is defined to be

∆1(f ) = max
D∼D ′

‖f (D)− f (D ′)‖1.

The Laplace mechanism with parameter ε simply adds noise drawn independently from

Lap
(
∆1(f )
ε

)
to each coordinate of f (x).

Theorem 2.3.1 (Laplace Mechanism [Dwork et al., 2006]). Let ε > 0. The Laplace mechanism

is ε-differentially private.

A similar basic tool is the Gaussian Mechanism, which releases private perturbations of

vector valued functions f : X n→ Rk by adding Gaussian noise with scale proportional to

the `2 sensitivity of the function f :

∆2(f ) = max
neighboring D,D ′∈X n

‖f (D)− f (D ′)‖2.

Theorem 2.3.2 (Gaussian Mechanism (see e.g. Dwork and Roth [2014] for a proof)). Let

ε,δ ∈ (0,1). Let c be a number such that c2 ≥ 2log(1.25/δ), then the Gaussian Mechanism

(which outputs f (D)+Z where Z ∼N (0,σ2)k with σ ≥ c∆2(f )/ε) is (ε,δ)-differentially private.

Another basic tool is called the exponential mechanism, which allows us to privately solve
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the following selection problem: given a set of alternatives, select one that is the “best” fit

for the sensitive dataset. Here how good an alternative is for the dataset is measured by a

quality score function. More formally:

Theorem 2.3.3 (Exponential Mechanism[McSherry and Talwar, 2007]). Given some arbi-

trary output range R, the exponential mechanism with score function S selects and outputs an

element r ∈ R with probability proportional to

exp
(
εS(D,r)

2∆

)
,

where ∆ is the sensitivity of S, defined as

∆ = max
D,D ′ :|D4D ′ |=1,r∈R

|S(D,r)− S(D ′ , r)|.

The exponential mechanism is ε-differentially private.

The sparse vector mechanism from differential privacy takes a numeric threshold and a

sequence of (possibly adaptively chosen) queries. Sparse vector outputs ⊥ while the cur-

rent query has answer substantially less than the threshold, and outputs > and halts when

the query has answer near or exceeding the threshold. The code is in Algorithm 1.

Algorithm 1 Sparse vector mechanism Sparse(ε,T )
Input: Privacy parameter ε > 0, threshold T , and stream of ∆-sensitive queries q1,q2, . . . .

Initialize: T̂ := T + Lap
(

2∆
ε

)
.

for each query qi :
Let y := qi + Lap

(
4∆
ε

)
.

if y ≥ T̂ :
Output ai =>, Halt.

else
Output ai :=⊥.

We will use a standard accuracy result about the sparse vector mechanism.

Lemma 2.3.4 (see e.g., Dwork and Roth [2014] for a proof). Let α > 0,β ∈ (0,1). Say sparse

vector on a sequence q1, . . . , qk of ∆ sensitive queries and threshold T is (α,β)-accurate if with
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probability at least 1−β, it outputs⊥while qi has value at most T −α, and halts on the first query

with value greater than T +α. Then, sparse vector with privacy parameter ε is ε-differentially

private and (α,β)-accurate for

α =
8∆(logk + log(2/β))

ε
.
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CHAPTER 3

Private Counting Query Release

3.1. Introduction

Differentially private query release is one of the most fundamental tasks for privacy-preserving

data analysis. The goal of query release is to release accurate answers to a set of statistical

queries. A statistical query is asking “what is the fraction of individuals in the database

satisfies some specified property?” As observed early on by Blum et al. [2005], performing

private query release is sufficient to simulate any learning algorithm in the statistical query

model by Kearns [1998].

Since then, the query release problem has been extensively studied in the differential pri-

vacy literature. While simple perturbation can be used to privately answer a small num-

ber of queries [Dwork et al., 2006], more sophisticated approaches can accurately answer

nearly exponentially many queries in the size of the private database [Blum et al., 2013,

Dwork et al., 2009, 2010b, Roth and Roughgarden, 2010, Hardt and Rothblum, 2010,

Gupta et al., 2012, Hardt et al., 2012]. A natural approach, employed by many of these

algorithms, is to answer queries by generating synthetic data: a safe version of the dataset

that approximates the real dataset on every statistical query of interest.

Unfortunately, even the most efficient approaches for query release have a per-query run-

ning time linear in the size of the data universe, which is exponential in the dimension

of the data [Hardt and Rothblum, 2010]. Moreover, this running time is necessary in the

worst case [Ullman, 2013], especially if the algorithm produces synthetic data [Ullman

and Vadhan, 2011].
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This exponential runtime has hampered practical evaluation of query release algorithms.

One notable exception is due to Hardt et al. [2012], who perform a thorough experimental

evaluation of one such algorithm, which they called MWEM. They find that MWEM has

quite good accuracy in practice and scales to higher dimensional data than suggested by

a theoretical (worst-case) analysis. Nevertheless, running time remains a problem, and

the approach does not seem to scale to high dimensional data (with more than 30 or so

attributes for general queries, and more when the queries satisfy special structure1). The

critical bottleneck is the size of the state maintained by the algorithm: MWEM, like many

query release algorithms, needs to manipulate an object that has size linear in the size of

the data universe (i.e., exponential in the dimension). This quickly becomes impractical as

the record space grows more complex.

In this chapter, we present DualQuery, an alternative algorithm which is dual to MWEM

in a sense that we will make precise. Rather than manipulating an object of exponential

size, DualQuery solves a concisely represented (but NP-hard) optimization problem. Crit-

ically, the optimization step does not require a solution that is private or exact, so it can

be handled by existing, highly optimized solvers. Except for this step, all parts of our al-

gorithm are extremely efficient. As a result, DualQuery requires (worst-case) space and (in

practice) time only linear in the number of queries of interest, which is often significantly

smaller than the number of possible records. Like existing algorithms for query release,

DualQuery has a provable accuracy guarantee and satisfies the strong differential privacy

guarantee.

We evaluate DualQuery on a variety of datasets by releasing 3-way marginals (also known

as conjunctions or contingency tables), demonstrating that it solves the query release prob-

lem accurately and efficiently even when the data includes hundreds of thousands of fea-

tures. We know of no other algorithm to perform accurate, private query release for rich

1Hardt et al. [2012] are able to scale up to 1000 features on synthetic data when the features are partitioned
into a number of small buckets, and the queries are chosen to never depend on features in more than one
bucket.
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classes of queries on real data with more than even 100 features.

3.2. Related Work

There has been a significant amount of work on privately releasing synthetic data based on

a true dataset while preserving the answers to large numbers of statistical queries [Blum

et al., 2013, Dwork et al., 2009, Roth and Roughgarden, 2010, Dwork et al., 2010b, Hardt

and Rothblum, 2010, Gupta et al., 2012]. These results are extremely strong in an infor-

mation theoretic sense: they ensure the consistency of the synthetic data with respect to

an exponentially large family of statistics. However, all of these algorithms (including the

notable multiplicative weights algorithm of Hardt and Rothblum [2010], which achieves

the theoretically optimal accuracy and runtime) have running time exponential in the di-

mension of the data. With standard cryptographic assumptions, this is necessary in the

worst case for mechanisms that answer arbitrary statistical queries [Ullman, 2013].

Nevertheless, there have been some experimental evaluations of these approaches on real

datasets. Most related to our work is the evaluation of the MWEM mechanism by Hardt

et al. [2012], which is based on the private multiplicative weights mechanism [Hardt and

Rothblum, 2010]. This algorithm is inefficient (it manipulates a probability distribution

over a set exponentially large in the dimension of the data space) but with some heuristic

optimizations, Hardt et al. [2012] were able to implement the multiplicative weights algo-

rithm on several real datasets with up to 77 attributes (and even more when the queries

are restricted to take positive values only on a small number of disjoint groups of features).

However, it seems difficult to scale this approach to higher dimensional data.

Another family of query release algorithms are based on the Matrix Mechanism [Li et al.,

2015, Li and Miklau, 2015]. The runtime guarantees of the matrix mechanism are similar

to the approaches based on multiplicative weights—the algorithm manipulates a “matrix”

of queries with dimension exponential in the number of features. Yaroslavtsev et al. [2013]

evaluate an approach based on this family of algorithms on low dimensional datasets, but
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scaling to high dimensional data also seems challenging. A recent work by Zhang et al.

[2014] proposes a low-dimensional approximation for high-dimensional data distribution

by privately constructing Bayesian networks, and shows that such a representation gives

good accuracy on some real datasets.

Our algorithm is inspired by the view of the synthetic data generation problem as a zero-

sum game, first proposed by Hsu et al. [2013]. In this interpretation, Hardt et al. [2012]

solves the game by having a data player use a no-regret learning algorithm, while the query

player repeatedly best responds by optimizing over queries. In contrast, our algorithm

swaps the roles of the two players: the query player now uses the no-regret learning al-

gorithm, whereas the data player now finds best responses by solving an optimization

problem. This is reminiscent of “Boosting for queries,” proposed by Dwork et al. [2010b];

the main difference is that our optimization problem is over single records rather than sets

of records. As a result, our optimization can be handled non-privately.

3.3. The Query Release Game

First, we will give the formal definition of a counting query.

Definition 3.3.1. For any predicate ϕ : X → {0,1}, the counting query (or statistical query)

Qϕ : X n→ [0,1] is defined by

Qϕ(D) =
∑
x∈D ϕ(x)
|D |

,

where |D | denotes the size of the database D.

The analysis of our algorithm relies on the interpretation of query release as a two player,

zero-sum game [Hsu et al., 2013]. In the present section, we review this idea and related

tools.

Game Definition Suppose we want to answer a set of queries Q. For each query q ∈ Q,

we can form the negated query q̄, which takes values q̄(D) = 1 − q(D) for every database

D. Equivalently, for a linear query defined by a predicate ϕ, the negated query is defined
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by the negation ¬ϕ of the predicate. For the remainder, we will assume that Q is closed

under negation; if not, we may add negated copies of each query to Q.

Let there be two players, whom we call the data player and query player. The data player

has action set equal to the data universe X , while the query player has action set equal to

the query class Q. Given a play x ∈ X and q ∈ Q, we let the payoff be

A(x,q) := q(D)− q(x), (3.1)

where D is the true database. As a zero sum game, the data player will try to minimize the

payoff, while the query player will try to maximize the payoff.

Equilibrium of the Game Let ∆(X ) and ∆(Q) be the set of probability distributions over

X and Q. We consider how well each player can do if they randomize over their actions,

i.e., if they play from a probability distribution over their actions. By von Neumann’s

minimax theorem,

min
u∈∆(X )

max
w∈∆(Q)

A(u,w) = max
w∈∆(Q)

min
u∈∆(X )

A(u,w),

for any two player zero-sum game, where

A(u,w) := Ex∼u,q∼wA(x,q)

is the expected payoff. The common value is called the value of the game, which we denote

by vA. Intuitively, von Neumann’s theorem states that there is no advantage in a player go-

ing first: the minimizing player can always force payoff at most vA, while the maximizing

player can always force payoff at least vA.

This suggests that each player can play an optimal strategy, assuming best play from the

opponent—this is the notion of equilibrium strategies, which we now define. We will soon

interpret these strategies as solutions to the query release problem.

Definition 3.3.2. Let α > 0. Let A be the payoffs for a two player, zero-sum game with action
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sets X ,Q. Then, a pair of strategies u∗ ∈ ∆(X ) and w∗ ∈ ∆(Q) form an α-approximate mixed

Nash equilibrium if

A(u∗,w) ≤ vA +α and A(u,w∗) ≥ vA −α

for every strategy u ∈ ∆(X ),w ∈ ∆(Q).

If the true database D is normalized to be a distribution D̂ in ∆(X ), then D̂ always has zero

payoff:

A(D̂,w) = Ex∼D̂,q∼w[q(x)− q(D)] = 0.

Hence, the value of the game vA is at most 0. Also, for any data strategy u, the payoff of

query q is the negated payoff of the negated query q̄:

A(u, q̄) = Ex∼u[q̄(x)− q̄(D)] = Ex∼u[q(D)− q(x)],

which is A(u, q̄). Thus, any query strategy that places equal weight on q and q̄ has expected

payoff zero, so vA is at least 0. Hence, vA = 0.

Now, let (u∗,w∗) be an α-approximate equilibrium. Suppose that the data player plays u∗,

while the query player always plays query q. By the equilibrium guarantee, we then have

A(u∗,q) ≤ α, but the expected payoff on the left is simply q(D) − q(u∗). Likewise, if the

query player plays the negated query q̄, then

−q(D) + q(u∗) = A(u∗, q̄) ≤ α,

so q(D)− q(u∗) ≥ −α. Hence for every query q ∈ Q, we know |q(u∗)− q(D)| ≤ α. This is pre-

cisely what we need for query release: we just need to privately calculate an approximate

equilibrium.
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Solving the Game To construct the approximate equilibrium, we will use the multiplica-

tive weights update algorithm (MW).2

This algorithm maintains a distribution over actions (initially uniform) over a series of

steps. At each step, the MW algorithm receives a (possibly adversarial) loss for each action.

Then, MW reweights the distribution to favor actions with less loss.

The algorithm is presented in Algorithm 2.

Algorithm 2 The Multiplicative Weights Algorithm
Let η > 0 be given, let A be the action space
Initialize Ã1 uniform distribution on A
For t = 1,2, . . . ,T :

Receive loss vector `t

For each a ∈ A:
Update At+1

a = e−η`
t
aÃta for every a ∈ A

Normalize Ãt+1 = At+1∑
i A

t+1
i

For our purposes, the most important application of MW is to solving zero-sum games.

Freund and Schapire [1996] showed that if one player maintains a distribution over ac-

tions using MW, while the other player selects a best-response action versus the current

MW distribution (i.e., an action that maximizes his expected payoff), the average MW

distribution and empirical best-response distributions will converge to an approximate

equilibrium rapidly.

Theorem 3.3.3 ([Freund and Schapire, 1996]). Let α > 0, and let A(i, j) ∈ [−1,1]m×n be the

payoff matrix for a zero-sum game. Suppose the first player uses multiplicative weights over

their actions to play distributions p1, . . . ,pT , while the second player plays (α/2)-approximate

best responses x1, . . . ,xT , i.e.,

A(pt ,xt) ≥max
x
A(pt ,x)−α/2.

2 The MW algorithm has wide applications; it has been rediscovered in various guises several times. More
details can be found in the comprehensive survey by Arora et al. Arora et al. [2012].
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Setting T = 16logn/α2 and η = α/4 in the MW algorithm, the empirical distributions

1
T

T∑
i=1

pi and
1
T

T∑
i=1

xi

form an α-approximate mixed Nash equilibrium.

3.4. Dual Query Release

By the game interpretation, the algorithm of Hardt and Rothblum [2010] (and the MWEM

algorithm of Hardt et al. [2012]) uses MW for the data player, while the query player plays

best responses. For privacy, their algorithm selects the query best-responses privately via

the exponential mechanism of McSherry and Talwar [2007]. Our algorithm simply re-

verses the roles.

While MWEM uses a no-regret algorithm to maintain the data player’s distribution, we will

instead use a no-regret algorithm for the query player’s distribution. Likewise, instead of

finding a maximum payoff query at each round, our algorithm selects a minimum payoff

record at each turn. The full algorithm can be found in Algorithm 3.

Our privacy argument differs slightly from the analysis for MWEM. There, the data distri-

bution is public, and finding a query with high error requires access to the private data.

Our algorithm instead maintains a distribution Q over queries which depends directly on

the private data, so we cannot use Q directly. Instead, we argue that queries sampled from

Q are privacy preserving. Then, we can use a non-private optimization method to find a

minimal error record versus queries sampled fromQ. We then trade off privacy (which de-

grades as we take more samples) with accuracy (which improves as we take more samples,

since the distribution of sampled queries converges to Q).

Given known hardness results for the query release problem [Ullman, 2013], our algo-

rithm must have worst-case runtime polynomial in the universe size |X |, so is not theoret-

ically more efficient than prior approaches. In fact, even compared to prior work on query
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release (e.g., [Hardt and Rothblum, 2010]), our algorithm has a weaker accuracy guaran-

tee. However, our approach has an important practical benefit: the computationally hard

step can be handled with standard, non-private solvers.

The iterative structure of our algorithm, combined with our use of constraint solvers, also

allows for several heuristics improvements. For instance, we may run for fewer iterations

than predicted by theory. Or, if the optimization problem turns out to be hard (even

in practice), we can stop the solver early at a suboptimal (but often still good) solution.

These heuristic tweaks can improve accuracy beyond what is guaranteed by our accuracy

theorem, while always maintaining a strong provable privacy guarantee.

Algorithm 3 DualQuery

Input: Database D ∈ R|X | (normalized) and linear queries q1, . . . , qk ∈ {0,1}|X |.
Initialize: Let Q =

⋃k
j=1 qj ∪ q̄j , Q1 uniform distribution on Q,

T =
16log |Q|
α2 , η =

α
4
, s =

48log
(

2|X |T
β

)
α2 .

For t = 1, . . . ,T :
Sample s queries {qi} from Q according to Qt.
Let q̃ := 1

s

∑
i qi .

Find xt with A(q̃,xt) ≥maxxA(q̃,x)−α/4.
Update: For each q ∈ Q:
Qt+1
q := exp(−ηA(q,xt)〉) ·Qtq.

Normalize Qt+1.
Output synthetic database D̂ :=

⋃T
t=1 x

t .

Privacy The privacy proofs are largely routine, based on the composition theorems. Rather

than fixing ε and solving for the other parameters, we present the privacy cost ε as function

of parameters T ,s,η. Later, we will tune these parameters for our experimental evaluation.

We first prove pure ε-differential privacy.

Theorem 3.4.1. DualQuery is ε-differentially private for

ε =
ηT (T − 1)s

n
.
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Proof. We will argue that sampling fromQt is equivalent to running the exponential mech-

anism with some quality score. At round t, let {xi} for i ∈ [t − 1] be the best responses for

the previous rounds. Let r(q,d) be defined by

r(q,D) =
t−1∑
i=1

(q(xi)− q(D)),

where q ∈ Q is a query and D is the true database. This function is evidently ((t − 1)/n)-

sensitive in D: changing D changes each q(D) by at most 1/n. Now, note that sampling

from Qt is simply sampling from the exponential mechanism, with quality score r(q,D).

Thus, the privacy cost of each sample in round t is ε′t = 2η(t − 1)/n (Theorem 2.3.3).

By the standard composition theorem (Theorem 2.2.2), the total privacy cost is

ε =
T∑
t=1

sε′t =
2ηs
n
·
T∑
t=1

(t − 1) =
ηT (T − 1)s

n
.

We next show that DualQuery is (ε,δ)-differentially private, for a much smaller ε.

Theorem 3.4.2. Let 0 < δ < 1. DualQuery is (ε,δ)-differentially private for

ε =
2η(T − 1)

n
·
[√

2s(T − 1)log(1/δ) + s(T − 1)
(
exp

(
2η(T − 1)

n

)
− 1

)]
.

Proof. Let ε be defined by the above equation. By the advanced composition theorem

(Theorem 2.2.4), running a composition of k ε′-private mechanisms is (ε,δ)-private, for

ε =
√

2k log(1/δ)ε′ + kε′(exp(ε′)− 1).

Again, note that sampling from Qt is simply sampling from the exponential mechanism,

with a (T − 1)/n-sensitive quality score. Thus, the privacy cost of each sample is ε′ =

2η(T − 1)/n (Theorem 2.3.3). We plug in k = s(T − 1) samples, as in the first round our
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samplings are 0-differentially private.

Accuracy The accuracy proof proceeds in two steps. First, we show that “average query”

formed from the samples is close to the true weighted distribution Qt. We will need a

standard Chernoff bound.

Lemma 3.4.3 (Chernoff bound). Let X1, . . . ,XN be IID random variables with mean µ, taking

values in [0,1]. Let X̄ = 1
N

∑
iXi be the empirical mean. Then,

Pr[|X̄ −µ| > T ] < 2exp(−NT 2/3)

for any T .

Lemma 3.4.4. Let β ∈ (0,1), and let p be a distribution over queries. Suppose we draw

s =
48log

(
2|X |
β

)
α2

samples {q̂i} from p, and let q̄ be the aggregate query

q̄ =
1
s

s∑
i=1

q̂i .

Define the true weighted answer Q(x) to be

Q(x) =
|Q|∑
i=1

piqi(x).

Then with probability at least 1− β, we have |q̄(x)−Q(x)| < α/4 for every x ∈ X .

Proof. For any fixed x, note that q̄(x) is the average of random variables q̂1(x), . . . , q̂s(x).

Also, note that E[q̄(x)] =Q(x). Thus, by the Chernoff bound (Lemma 3.4.3) and our choice

of s,

Pr[|q̄(x)−Q(x)| > α/4] < 2exp(−sα2/48) = β/ |X |.
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By a union bound over x ∈ X , this equation holds for all x ∈ X with probability at least

1− β.

Next, we show that we compute an approximate equilibrium of the query release game. In

particular, the record best responses form a synthetic database that answer all queries in

Q accurately. Note that our algorithm doesn’t require an exact best response for the data

player; an approximate best response will do.

Theorem 3.4.5. With probability at least 1 − β, DualQuery finds a synthetic database that

answers all queries in Q within additive error α.

Proof. As discussed in Section 3.3, it suffices to show that the distribution of best responses

x1, . . . ,xT forms is an α-approximate equilibrium strategy in the query release game. First,

we set the number of samples s according to in Lemma 3.4.4 with failure probability β/T .

By a union bound over T rounds, sampling is successful for every round with probability

at least 1− β; condition on this event.

Since we are finding an α/4 approximate best response to the sampled aggregate query

q̄, which differs from the true distribution by at most α/4 (by Lemma 3.4.4), each xi is

an α/4 + α/4 = α/2 approximate best response to the true distribution Qt. Since q takes

values in [0,1], the payoffs are all in [−1,1]. Hence, Theorem 3.3.3 applies; setting T and η

accordingly gives the result.

Remark 3.4.6. The guarantee in Theorem 3.4.5 may seem a little unusual, since the convention

in the literature is to treat ε,δ as inputs to the algorithm. We can do the same: from Theo-

rem 3.4.2 and plugging in for T ,η,s, we have

ε =
4ηT

√
2sT log(1/δ)
n

=
256log3/2 |Q|

√
6log(1/δ) log(2|X |T /β)
α3n

.
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Solving for α, we find

α =O
(

log1/2 |Q| log1/6(1/δ) log1/6(2|X |/γ)
n1/3ε1/3

)
,

for γ < β/T .

3.5. Case study: 3-way marginals

In our algorithm, the computationally difficult step is finding the data player’s approxi-

mate best response against the query player’s distribution. As mentioned above, the form

of this problem depends on the particular query class Q. In this section, we first discuss

the optimization problem in general, and then specifically for the well-studied class of

marginal queries [Thaler et al., 2012, Gupta et al., 2013, Dwork et al., 2014]. For instance,

in a database of medical information in binary attributes, a particular marginal query may

be: What fraction of the patients are over 50, smoke, and exercise?

The Best-Response Problem Recall that the query release game has payoff A(x,q) de-

fined by Equation (3.1); the data player tries to minimize the payoff, while the query player

tries to maximize it. If the query player has distribution Qt over queries, the data player’s

best response minimizes the expected loss:

argmin
x∈X

E
q←Qt

[q(D)− q(x)] .

To ensure privacy, the data player actually plays against the distribution of samples q̂1, . . . , q̂s.

Since the database D is fixed and q̂i are linear queries, the best-response problem is

argmin
x∈X

1
s

s∑
i=1

q̂i(D)− q̂i(x) = argmax
x∈X

s∑
i=1

q̂i(x).

By Theorem 3.4.5 it even suffices to find an approximate maximizer, in order to guarantee
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accuracy.

3-Way Marginal Queries To look at the precise form of the best-response problem, we

consider 3-way marginal queries. We think of records as having d binary attributes, so that

the data universe |X | is all bitstrings of length d. We write xi for x ∈ X to mean the ith bit

of record x.

Definition 3.5.1. Let X = {0,1}d . A 3-way marginal query is a linear query specified by 3

integers a , b , c ∈ [d], taking values

qabc(x) =

 1 : xa = xb = xc = 1

0 : otherwise.

Though everything we do will apply to general k-way marginals, for concreteness we work

with 3-way marginals.

Given sampled conjunctions {ûi} and negated conjunctions {v̂i}, the best-response problem

is

argmax
x∈X

∑
i

ûi(x) +
∑
j

v̂j(x).

In other words, this is a MAXCSP problem—we can associate a clause to each conjunction:

qabc⇒ (xa ∧ xb ∧ xc) and ¯qabc⇒ (x̄a ∨ x̄b ∨ x̄c),

and we want to find x ∈ {0,1}d satisfying as many clauses as possible.3

Since most solvers do not directly handle MAXCSP problems, we convert this optimization

problem into a more standard, integer program form. We introduce a variable xi for each

literal xi , a variable ci for each sampled conjunction ûi , a variable di for each sampled

3Note that this is almost a MAX3SAT problem, except there are also “negative” clauses.
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negated conjunction v̂i , and we form the following integer program.

max
∑
i

ci +
∑
j

dj

with ∀ûi = qabc : xa + xb + xc ≥ 3ci

∀v̂j = ¯qabc : (1− xa) + (1− xb) + (1− xc) ≥ dj

xi , ci ,di ∈ {0,1}

Note that xi ,1 − xi corresponds to the literals xi , x̄i , and ci = 1, di = 1 exactly when their

respective clauses are satisfied. Thus, the objective is the number of satisfied clauses. The

resulting integer program can be solved using any standard solver; we use CPLEX.

3.6. Case study: Parity queries

We can also apply DualQuery to another well-studied class of queries: parities. Each spec-

ified by a subset S of features, these queries measure the number of records with an even

number of bits on in S compared to the number of records with an odd number of bits on

in S.

Definition 3.6.1. Let X = {−1,+1}d . A k-wise parity query is a linear query specified by a

subset of features S ⊆ [d] with |S | = k, taking values

qS(x) =

 +1 : even number of xi = +1 for i ∈ S

−1 : otherwise.

Like before, we can define a negated k-wise parity query:

q̄S(x) =

 +1 : odd number of xi = +1 for i ∈ S

−1 : otherwise.
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Barak et al. [2007] observed that answering k-way marginal queries can be reduced to

answering k-wise parity queries to the same accuracy, in the following sense.

Theorem 3.6.2 ([Barak et al., 2007]). Let qS be a k-way marginal query specified by the set of

features S, and let D be a database of records. Then,

qS(D) =
1
2k

∑
T⊆S

pT (D),

where pT is the parity query for features T .

Note that the coefficients sum to 1: hence, answering parity queries with additive error

α is enough to answer marginal queries with additive error α. We now consider how

to handle these queries with our algorithm. For the remainder, we specialize to k = 3.

Like marginal queries, it suffices to give the best-response optimization problem; unlike

marginal queries, we need to handle k-wise parities for every k ≤ 3 in order to apply

Theorem 3.6.2.

Given sampled parity queries {ûi} and negated parity queries {v̂i}, the best response prob-

lem is to find the record x ∈ X that takes value 1 on as many of these queries as possible. We

can construct an integer program for this task: introduce d variables xi , and two variables

cq,dq for each sampled query. The following integer program encodes the best-response

problem.

max
∑
i

ci

such that ∀ûi = qS .
∑
j

xSj = 2di + ci − 1

∀v̂i = q̄S .
∑
j

xSj = 2di + ci

xi , ci ,di ∈ {0,1}

Consider the (non-negated) parity queries first. The idea is that each variable ci can be set
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to 1 exactly when the corresponding parity query takes value 1, i.e., when x has an even

number of bits in S set to +1. Since |S | ≤ 3, this even number will either be 0 or 2, hence is

equal to 2di for di ∈ {0,1}. A similar argument holds for the negated parity queries.

3.7. Experimental Evaluation

Dataset Size Attributes Binary attributes
Adult 30162 14 235
KDD99 494021 41 396
Netflix 480189 17,770 17,770

Table 1: Test Datasets for DualQuery
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Figure 1: Average max error of (ε,0.001)-private DualQuery on 500,000 3-way marginals
versus ε.
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Figure 2: Error and runtime of (1,0.001)-private DualQuery on KDD99 versus number of
queries.

We evaluate DualQuery on a large collection of 3-way marginal queries on several real

datasets (Table 1) and high dimensional synthetic data. Adult (census data) and KDD99

(network packet data) are from the UCI repository [Bache and Lichman, 2013], and have

a mixture of discrete (but non-binary) and continuous attributes, which we discretize into

binary attributes. We also use the (in)famous Netflix movie ratings dataset, with more than
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Figure 3: Error and runtime of (1,0.001)-private DualQuery on 100,000 3-way marginal
queries versus number of attributes.

17,000 binary attributes. More precisely, we can consider each attribute (corresponding to

a movie) to be 1 if a user has watched that movie, and 0 otherwise.

Rather than set the parameters as in Algorithm 3, we experiment with a range of param-

eters. For instance, we frequently run for fewer rounds (lower T ) and take fewer samples

(lower s). As such, the accuracy guarantee (Theorem 3.4.5) need not hold for our pa-

rameters. However, we find that our algorithm gives good error, often much better than

predicted. In all cases, our parameters satisfy the privacy guarantee Theorem 3.4.2.

Accuracy We evaluate the accuracy of the algorithm on 500,000 3-way marginals on

Adult, KDD99 and Netflix. We report maximum error in Figure 1, averaged over 5 runs.

(Marginal queries have range [0,1], so error 1 is trivial.)

The runs are (ε,0.001)-differentially private, with ε ranging from 0.25 to 5.4

For the Adult and KDD99 datasets, we set step size η = 2.0, sample size s = 1000 while

varying the number of steps T according to the privacy budget ε, using the formula from

Theorem 3.4.2. For the Netflix dataset, we adopt the same heuristic except we set s to be

5000.

The accuracy improves noticeably when ε increases from 0.25 to 1 across 3 datasets, and

4 Since our privacy analysis follows from the composition theorem of differential privacy, our algorithm
actually satisfies (ε,δ)-privacy for smaller values of δ. For example, our algorithm is also (

√
2ε,δ′)-private for

δ′ = 10−6. Similarly, we could choose any arbitrarily small value of δ, and the composition theorem would
tell us that our algorithm was (ε′ ,δ)-differentially private for an appropriate value ε′ , which depends only
sub-logarithmically on 1/δ.
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the improvement diminishes gradually with larger ε. With larger sizes, both KDD99 and

Netflix datasets allow DualQuery to run with more steps and get significantly better error.

Scaling to More Queries Next, we evaluate accuracy and runtime when varying the

number of queries. We use a set of 40,000 to 2 million randomly generated marginals

Q on the KDD99 dataset and run DualQuery with (1,0.001)-privacy.

For all experiments, we use the same set of parameters: η = 1.2,T = 170 and s = 1750. By

Theorem 3.4.2, each run of the experiment satisfies (1,0.001)-differential privacy. These

parameters give stable performance as the query class Q grows.

As shown in Figure 2, both average and max error remain mostly stable, demonstrating

improved error compared to simpler perturbation approaches. For example, the Laplace

mechanism’s error growth rate is O(
√
|Q|) under (ε,δ)-differential privacy.

The runtime grows almost linearly in the number of queries, since we maintain a distribu-

tion over all the queries.

Scaling to Higher Dimensional Data Finally, we evaluate accuracy and runtime be-

havior for data dimension ranging from 50 to 512,000. We evaluate DualQuery under

(1,0.001)-privacy on 100,000 3-way marginals on synthetically genearted datasets. We re-

port runtime, max, and average error over 3 runs in Figure 3; note the logarithmic scale

for attributes axis. We do not include query evaluation in our time measurements—this

overhead is common to all approaches that answer a set of queries.

When generating the synthetic data, one possibility is to set each attribute to be 0 or 1 uni-

formly at random. However, this generates very uniform synthetic data: a record satisfies

any 3-way marginal with probability 1/8, so most marginals will have value near 1/8. To

generate more challenging and realistic data, we pick a separate bias pi ∈ [0,1] uniformly

at random for each attribute i. For each data point, we then set attribute i to be 1 indepen-

dently with probability equal to pi . As a result, different 3-way marginals have different
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answers on our synthetic data.

For parameters, we fix step size η to be 0.4, and increase the sample size s with the di-

mension of the data (from 200 to 50,000) at the expense of running fewer steps. For these

parameters, our algorithm is (1,0.001)-differentially private by Theorem 3.4.2. With this

set of parameters, we are able to obtain 8% average error in an average of 10 minutes of

runtime, excluding query evaluation.

Methodology In this section, we discuss our experimental setup in more detail.

Implementation details. The implementation is written in OCaml, using the CPLEX con-

straint solver. We ran the experiments on a mid-range desktop machine with a 4-core Intel

Xeon processor and 12 Gb of RAM. Heuristically, we set a timeout for each CPLEX call to

20 seconds, accepting the best current solution if we hit the timeout. For the experiments

shown, the timeout was rarely reached.

Data discretization. We discretize KDD99 and Adult datasets into binary attributes by

mapping each possible value of a discrete attribute to a new binary feature. We bucket

continuous attributes, mapping each bucket to a new binary feature. We also ensure that

our randomly generated 3-way marginal queries are sensible (i.e., they don’t require an

original attribute to take two different values).

Setting free attributes. Since the collection of sampled queries may not involve all of

the attributes, CPLEX often finds solutions that leave some attributes unspecified. We set

these free attributes heuristically: for real data, we set the attributes to 0 as these datasets

are fairly sparse;5 for synthetic data, we set attributes to 0 or 1 uniformly at random.6

5The adult and KDD99 datasets are sparse due to the way we discretize the data; for the Netflix dataset,
most users have only viewed a tiny fraction of the 17,000 movies.

6For a more principled way to set these free attributes, the sparsity of the dataset could be estimated at a
small additional cost to privacy.
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Parameter tuning. DualQuery has three parameters that can be set in a wide variety of

configurations without altering the privacy guarantee (Theorem 3.4.2): number of itera-

tions (T ), number of samples (s), and learning rate (η), which controls how aggressively

to update the distribution. For a fixed level of ε and δ, there are many feasible private

parameter settings.

Performance depends strongly on the choice of parameters: T has an obvious impact,

increasing s increases the number of constraints in the integer program for CPLEX.

For sparse datasets like the ones in Table 1, with larger η (in the range of 1.5 to 2.0) and

smaller s (in the same order as the number of attributes), we obtain good accuracy when

we set the free attributes to be 0. But for denser data like our synthetic data, we get better

accuracy when we have smaller η (around 0.4) and set the free attributes randomly. As for

runtime, we observe that CPLEX could finish running quickly (in seconds) when the sample

size is in about the same range as the number of attributes (factor of 2 or 3 different).

Parameter setting should be done under differential privacy for a truly realistic evaluation.

Overall, we do not know of a principled approach to handle this issue; private parameter

tuning is an area of active research (see e.g., [Chaudhuri and Vinterbo, 2013]).

3.8. Discussion and Conclusion

We have given a new private query release mechanism that can handle datasets with di-

mensionality multiple orders of magnitude larger than what was previously possible.

Indeed, it seems we have not reached the limits of our approach—even on synthetic data

with more than 500,000 attributes, DualQuery continues to generate useful answers with

about 30 minutes of overhead on top of query evaluation (which by itself is on the scale

of hours). We believe that DualQuery makes private analysis of high dimensional data

practical for the first time.
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However, this remarkable improvement in running time is not free: our theoretical ac-

curacy bounds are worse than those of previous approaches [Hardt and Rothblum, 2010,

Hardt et al., 2012]. For low dimensional datasets for which it is possible to maintain a dis-

tribution over records, the MWEM algorithm of Hardt et al. [2012] likely remains the state

of the art. Our work complements MWEM by allowing private data analysis on higher-

dimensional data sets.
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CHAPTER 4

Jointly Private Matchings and Allocations

4.1. Introduction

In the classic maximum-weight matching problem in bipartite graphs, there are k goods

j ∈ {1, . . . , k} and n buyers i ∈ {1, . . . ,n}. Each buyer i has a value vij ∈ [0,1] for each good j,

and the goal is to find a matching µ between goods and buyers which maximizes the social

welfare SW =
∑n
i=1 vi,µ(i). When the buyers’ values are sensitive information,1 it is natural

to ask for a matching that hides the reported values of each of the players.

It is not hard to see that this goal is impossible under the standard notion of differential

privacy, which requires that the allocation must be insensitive to the reported valuations of

each player. We formalize this observation later in this chapter, but the intuition is simple.

Consider the case with two types of goods with n identical copies each, and suppose that

each buyer has a private preference for one of the two types: value 1 for the good that

he likes, and value 0 for the other good. There is no contention since the supply of each

good is larger than the total number of buyers, so any allocation achieving social welfare

OPT−αn can be used to reconstruct a (1 − α) fraction of the preferences; this is plainly

impossible for non-trivial values of α under differential privacy.

In light of this obstacle, is there any hope for privately solving maximum-weight matching

problems? In this chapter, we show that the answer is yes: it is possible to solve matching

problems (and more general allocation problems) to high accuracy assuming a small num-

ber of identical copies of each good, while still satisfying an extremely strong variant of

differential privacy. We observe that the matching problem has the following two features:

1For instance, the goods might be related to the treatment of disease, or might be indicative of a particular
business strategy, or might be embarrassing in nature.
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1. Both the input and solution are naturally partitioned amongst the same n people:

each buyer i receives the item µ(i) they are matched to in the solution.

2. The problem is not solvable privately because the item given to each buyer must

reflect their own private data.

By utilizing these two features, we show that the matching problem can be accurately

solved under the constraint of joint differential privacy [Kearns et al., 2014]. Informally

speaking, this requires that for every buyer i, the joint distribution on items µ(j) for j , i

must be differentially private in the reported valuation of buyer i. As a consequence, buyer

i’s privacy is protected even if all other buyers collude, potentially sharing the identities

of the items they receive. As long as buyer i does not reveal their own item, i’s privacy is

protected.

We then show that our techniques generalize beyond the max-matching problem to the

more general allocation problem. Here, each buyer i has a valuation function defined over

subsets of goods vi : 2[k] → [0,1] from some class of valuations, and the goal is to find a

partition of the goods S1, . . . ,Sn maximizing social welfare; note that the maximum-weight

matching problem is the special case when agents are unit demand, i.e., only want bundles

of size 1. More specifically, we consider buyers with gross substitutes valuations. This is

an economically meaningful class of valuation functions that is a strict subclass of sub-

modular functions and are the most general class of valuations for which our techniques

apply.

4.1.1. Our Techniques and Results

Our approach makes a novel connection between market clearing prices and differential pri-

vacy. Prices have long been considered as a low-information way to coordinate markets;

our work formalizes this intuition in the context of differentially private allocation. Specif-

ically, we will use Walrasian equilibrium prices: prices under which each buyer is simulta-

neously able to buy a most preferred bundle of goods, and no good is over-demanded.
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Although the allocation itself cannot be computed under standard differential privacy,

we show how to differentially privately compute the Walrasian equilibrium prices while

coordinating a high welfare allocation under joint differential privacy.

We start from the classic analysis of Kelso and Crawford [1982], who show how to use as-

cending price auctions to compute Walrasian equilibrium prices. In the classical ascending

price auction, each good begins with a price of 0 and each agent is initially unmatched

to any good. Unmatched agents i take turns bidding on the good j∗ that maximizes their

utility at the current prices: i.e., j∗ ∈ argmax(vij − pj ). When a bidder bids on a good j∗,

they become the new high bidder and the price of j∗ is incremented. Bidders are tenta-

tively matched to a good as long as they are the high bidder. The auction continues until

there are no unmatched bidders who prefer to be matched at the current prices. The al-

gorithm converges because each bid increases the the prices, which are bounded by some

finite value.2 Moreover, every bidder ends up matched to their most preferred good given

the prices. Finally, by the first welfare theorem of Walrasian equilibria, any matching that

corresponds to equilibrium prices maximizes social welfare. We emphasize that this fi-

nal implication is key: “prices” play no role in our problem description, nor do we ever

actually charge “prices” to the agents—the prices are purely a device to coordinate the

matching.

We give an approximate, private version of Kelso and Crawford’s algorithm based on sev-

eral observations. First, in order to implement this algorithm, it is sufficient to maintain

the sequence of prices of the goods privately: given a record of the price trajectory, each

agent can figure out what good they are matched to. Second, in order to privately main-

tain the prices, it suffices to maintain a private count of the number of bids each good has

received over the course of the auction; we can accomplish this task using private counters

due to Dwork et al. [2010a], Chan et al. [2011]. Finally, it is possible to halt the algorithm

early without significantly harming the quality of the final matching. By doing so, we re-

2Bidders do not bid on goods for which they have negative utility; in our case, vij ∈ [0,1].
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duce the number of bids from each bidder, enabling us to bound the sensitivity of the bid

counters, reducing the amount of noise needed for privacy.

The result is an algorithm that converges to a matching together with prices that form an

approximate Walrasian equilibrium. We complete our analysis by proving an approximate

version of the first welfare theorem, which shows that the matching has high weight.

The algorithm of Kelso and Crawford [1982] extends to the general allocation problem

when players have gross substitute preferences, and our private algorithm does as well.

We note that this class of preferences is the natural limit of our approach, which makes

crucial use of equilibrium prices as a coordinating device: in general, when agents have

valuations over bundles of goods that do not satisfy the gross substitutes condition, Wal-

rasian equilibrium prices may not exist.

We first state our main result informally in the special case of max-matchings, which we

prove in Section 4.3. We prove our more general theorem for allocation problems with

gross substitutes preferences in Section 4.4. Here, privacy is protected with respect to a

single agent i changing their valuations vij for possibly all goods j.

Theorem 4.1.1 (Informal). Suppose there are n agents and k types of goods, with each with

s identical copies. There is a computationally efficient ε-joint differentially private algorithm

which computes a matching of weight OPT−αn as long as

s ≥O
( 1
α3ε
·polylog

(
n,k,

1
α

))
.

For certain parameter ranges, the welfare guarantee can be improved to (1−α)OPT.

Our algorithms actually work in a privacy model that is stronger than joint differential

privacy, called the billboard model. We can view the algorithm as a mechanism that posts

the prices publicly on a billboard as a differentially private signal such that every player can

deduce what object they should be matched to just from their own private information and

the contents of the billboard. As we show, algorithms in the billboard model automatically
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satisfy joint differential privacy.

Furthermore, we view implementations in the billboard model as preferable to arbitrary

jointly differentially private implementations. Algorithms in the billboard model only

need the ability to publish sanitized messages to all players, and do not need a secure

channel to communicate the mechanisms’ output to each player (though of course, there

still needs to be a secure channel from the player to the mechanism). The previous work

by McSherry and Mironov [2009] and some of the results by Gupta et al. [2010] can be

viewed as existing examples of algorithms in the billboard model.

In Section 4.5, we complement our positive results with lower bounds showing that our

results are qualitatively tight. Not only is the problem impossible to solve under the stan-

dard differential privacy, assuming multiple copies of each good is also necessary to get

any non-trivial solution even under joint differential privacy.

Theorem 4.1.2 (Informal). No joint differentially private algorithm can compute matchings of

weight greater than OPT−αn on instances in which there are n agents and s copies of each good,

when

s ≤O
(

1
√
α

)
.

In particular, no algorithm can compute matchings of weight OPT − o(n) on instances

for which the supply s = O(1). In addition, we show that when goods have supply only

s = O(1), it is not even possible to compute the equilibrium prices privately under stan-

dard differential privacy. Our lower bounds are all reductions to database reconstruction

attacks. Our technique for proving this lower bound may be of general interest, as the

construction may be useful for other lower bounds for joint differential privacy.

4.1.2. Related Work

The privacy of our algorithms relies on work by Dwork et al. [2010a] and Chan et al.

[2011], who show how to release a running count of a stream of bits under continual ob-
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servation—i.e., report the count as the stream is revealed, provide high accuracy at every

point in time, and keep the transcript differentially private.

Much work in differential privacy has focused on answering numeric valued queries on

a private dataset. In contrast, work on private combinatorial optimization problems has

been sporadic (e.g., Nissim et al. [2007], Gupta et al. [2010]). Part of the challenge is

that many combinatorial optimization problems, including the allocation problems we

consider in this chapter, are impossible to solve under differential privacy. To sidestep

this problem, we employ the solution concept of joint differential privacy. First formalized

by Kearns et al. [2014], similar ideas are present in the vertex and set-cover algorithms of

Gupta et al. [2010], the private recommendation system of McSherry and Mironov [2009],

and the analyst private data analysis algorithms of Dwork et al. [2012], Hsu et al. [2013].

Our algorithm is inspired by Kelso and Crawford [1982], who study the problem of match-

ing firms to workers when the firms have preferences that satisfy the gross substitutes con-

dition. They give an algorithm based on simulating simultaneous ascending auctions that

converge to Walrasian equilibrium prices and a corresponding matching. In some respect,

this approach does not generalize to more general valuations: Gul and Stacchetti [1999]

show that gross substitutes preferences are precisely the set of preferences for which Wal-

rasian equilibrium prices are guaranteed to exist.

Our work is closely related to recent work on computing various kinds of equilibrium or

efficient outcomes under the constraint of joint differential privacy (e.g., correlated equi-

librium [Kearns et al., 2014], Nash equilibrium [Rogers and Roth, 2014], and minmax

equilibrium [Hsu et al., 2013]). In particular, our work establishes the billboard model as

a basic paradigm for designing algorithms under joint differential privacy, which serves as

a building blocks for later works, including [Cummings et al., 2015, Rogers et al., 2015,

Kannan et al., 2015, Cummings et al., 2016].
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4.2. Preliminaries

4.2.1. The Allocation Problem

We consider allocation problems defined by a set of goodsG, and a set of n agents [n]. Each

agent i ∈ [n] has a valuation function vi : 2G → [0,1] mapping bundles of goods to values.

A feasible allocation is a collection of sets S1, . . . ,Sn ⊆ G such that Si ∩ Sj = ∅ for each i , j:

i.e., a partition of goods among the agents. The social welfare of an allocation S1, . . . ,Sn is∑n
i=1 vi(Si), the sum of the agent’s valuations for the allocation; we are interested in finding

allocations which maximize this quantity. Given an instance of an allocation problem,

we write OPT = maxS1,...,Sn

∑n
i=1 vi(Si) to denote the social welfare of the optimal feasible

allocation.

A particularly simple valuation function is a unit demand valuation, where bidders demand

at most one item. Such valuation functions take the form vi(S) = maxj∈S vi({j}) and can be

specified by numbers vi,j = vi({j}) ∈ [0,1], which represent the value that bidder i places on

good j. When bidders have unit demand valuations, the allocation problem corresponds

to computing a maximum weight matching in a bipartite graph.

Our results will also hold for gross substitute valuations, which include unit demand val-

uations as a special case. Informally, for gross substitute valuations, any set of goods S ′

that are in a most-demanded bundle at some set of prices p remain in a most-demanded

bundle if the prices of other goods are raised, keeping the prices of goods in S ′ fixed. Gross

substitute valuations are a standard class of valuation functions: they are a strict subclass

of submodular functions, and they are precisely the valuation functions with Walrasian

equilibria in markets with indivisible goods [Gul and Stacchetti, 1999]. Two other sim-

ple examples of gross substitute valuations are (1) additive functions, which takes the form

v(S) =
∑
j∈S v({j}) and (2) symmetric submodular functions, such that v(S) = f (|S |) for some

monotone concave function f : R+→ R+.
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To give the formal definition, we will need some notation. Given a vector of prices {pg }g∈G,

the (quasi-linear) utility that player i has for a bundle of goods Si is defined to be ui(Si ,p) =

vi(Si)−
∑
j∈Si pj .

3

Given a vector of prices p, for each agent i we can define the set of most demanded bundles:

ω(p) = argmaxS⊆G ui(S,p). Given two price vectors p,p′, we write p � p′ if pg ≤ p′g for all g.

Definition 4.2.1. A valuation function vi : 2G → [0,1] satisfies the gross substitutes condi-

tion if for every two price vectors p � p′ and for every bundle S ∈ω(p), if S ′ ⊆ S satisfies p′g = pg

for every g ∈ S ′, then there is a bundle S∗ ∈ω(p′) with S ′ ⊆ S∗.

Finally, we will typically consider markets with multiple copies of each type of good. Two

goods g1, g2 ∈ G are identical if for every bidder i and for every bundle S ⊆ G, vi(S ∪ {g1}) =

vi(S∪{g2}): i.e., the two goods are indistinguishable according to every valuation function.

Formally, we say that a set of goods G consists of k types of goods with s supply if there

are k representative goods g1, . . . , gk ∈ G such that every good g ′ ∈ G is identical to one of

g1, . . . , gk , and for each representative good gi , there are s goods identical to gi in G. For

simplicity of presentation we will assume that the supply of each good is the same, but

this is not necessary; all of our results continue to hold when the supply s denotes the

minimum supply of any type of good.

4.2.2. Joint Differential Privacy

Suppose agents have valuation functions vi from a class of functions C. A database D ∈ Cn

is a vector of valuation functions, one for each of the n bidders. Two databases D,D ′ are

i-neighbors if they differ in only their i’th index: that is, if Dj = D ′j for all j , i. If two

databases D,D ′ are i-neighbors for some i, we say that they are neighboring databases.

When the range of a mechanism is also a vector with n components (e.g., R = (2G)n), we

3This is a natural definition of utility if agents must pay for the bundles they buy at the given prices. In this
chapter, we are concerned with the purely algorithmic allocation problem, so our algorithm will not actually
charge prices. However, prices will be a convenient abstraction throughout our work.
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can define joint differential privacy: this requires that simultaneously for all i, the joint

distribution on outputs given to players j , i is differentially private in the input of agent

i. Given a vector x = (x1, . . . ,xn), we write x−i = (x1, . . . ,xi−1,xi+1, . . . ,xn) to denote the vector

of length n− 1 which contains all coordinates of x except the i’th coordinate.

Definition 4.2.2 (Kearns et al. [2014]). An algorithmM : Cn → (2G)n is (ε,δ)-joint differ-

entially private if for every i, for every pair of i-neighbors D,D ′ ∈ Cn, and for every subset of

outputs S ⊆ (2G)n−1,

Pr[M(D)−i ∈ S] ≤ eεPr[M(D ′)−i ∈ S] + δ.

If δ = 0, we say thatM is ε-joint differentially private.

Note that this is still an extremely strong definition that protects i from arbitrary coalitions

of adversaries—it weakens the constraint of differential privacy only in that the output

given specifically to agent i may be sensitive in the input of agent i.

4.2.3. Differentially Private Counters

The central tool in our algorithm is the private streaming counter proposed by Chan et al.

[2011] and Dwork et al. [2010a]. Given a bit stream σ = (σ1, . . . ,σT ) ∈ {0,1}T , a stream-

ing counter M(σ ) releases an approximation to cσ (t) =
∑t
i=1σi at every time step t. The

counters release accurate approximations to the running count at every time step.

Definition 4.2.3. A streaming counterM is (α,β)-useful if with probability at least 1− β, for

each time t ∈ [T ],

|M(σ )(t)− cσ (t)| ≤ α.

For the rest of this chapter, let Counter(ε,T ) denote the Binary mechanism of Chan et al.

[2011], instantiated with parameters ε and T . The mechanism produces a monotonically

increasing count, and satisfies the following accuracy guarantee. Further details may be

found in Section 4.6.

Theorem 4.2.4 (Chan et al. [2011]). For β > 0, Counter(ε,T ) is ε-differentially private with
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respect to a single bit change in the stream, and (α,β)-useful for

α =
2
√

2
ε

ln(2/β) log(T )5/2.

4.3. Private Max-Weight Matching

In this section, we study the special case of unit demand valuations. Though our later algo-

rithm for gross substitutes valuations generalizes this case, we first present our algorithm

in this simpler setting to highlight the key features of our approach.

Consider a matching market with n bidders and k different types of goods, where each

good has supply s and bidder i has valuation vij ∈ [0,1] for good j. Some agents may not

end up being matched to a good: to simplify notation, we will say that unmatched agents

are matched to a special dummy good ⊥.

To reach a maximum weight matching, we first aim to privately compute prices p ∈ [0,1]k

and an allocation of the goods µ : [n]→ [k]∪ {⊥} such that most bidders are matched with

their approximately favorite goods given the prices and each over-demanded good almost

clears, where a good is over-demanded if its price is strictly positive.4 We will show that

if we can achieve this intermediate goal, then in fact we have computed an approximate

maximum weight matching.

Definition 4.3.1. A price vector p ∈ [0,1]k and an assignment µ : [n]→ [k]∪ {⊥} of bidders to

goods is an (α,β,ρ)-approximate matching equilibrium if:

1. all but a ρ fraction of bidders i are matched to an α-approximate favorite good: i.e.,viµ(i)−

pµ(i) ≥ vij − pj − α for every good j, for at least (1 − ρ)n bidders i (we call these bidders

satisfied);

2. the number of bidders assigned to any type of good is below its supply; and

4This is the notion of approximate Walrasian equilibrium we will use.
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3. each over-demanded good clears except for at most β supply.

4.3.1. Overview of the Algorithm

Our algorithm takes the valuations as input, and outputs a trajectory of prices that can be

used by the agents to figure out what they are matched to. For the presentation, we will

sometimes speak as if the bidders are performing some action, but this actually means

that our algorithm simulates the actions of the bidders internally—the actual agents do

not interact with our algorithm.

Algorithm 4 (PMatch) is a variant of a deferred acceptance algorithm first proposed and

analyzed by Kelso and Crawford [1982], which runs k simultaneous ascending price auc-

tions: one for each type of good. At any given moment each type of good has a proposal

price pj . In a sequence of rounds where the algorithm passes through each bidder once in

some fixed, publicly known order, unsatisfied bidders bid on a good that maximizes their

utility at the current prices: that is, a good j that maximizes vij − pj . (This is the Propose

function.)

The s most recent bidders for a type of good are tentatively matched to that type of good;

these are the current high bidders. A bidder tentatively matched to a good with supply s

becomes unmatched once the good receives s subsequent bids; we say this bidder has has

been outbid. Every s bids on a good increases its price by a fixed increment α. Bidders keep

track of which good they are matched to, if any, and determine whether they are currently

matched or unmatched by looking at a count of the number of bids received by the last

good they bid on.

To implement this algorithm privately, we count the number of bids each good has received

using private counters. Unsatisfied bidders can infer the prices of all goods based on the

number of bids each has received, and from this information, they determine their favorite

good at the given prices. Their bid is recorded by sending the bit 1 to the appropriate

counter. (This is the Bid function.) Matched bidders store the reading of the bid counter
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on the good they are matched to at the time that they last bid (in the variable di); when

the counter ticks s bids past this initial count, bidders conclude that they have been outbid

and become unmatched. The final matching is communicated implicitly: the real agents

observe the full published price trajectory and simulate what good they would have been

matched to had they bid according to the published prices.

Since the private counters are noisy, more than s bidders may be matched to a good. To

maintain feasibility, the algorithm reserves some supplym: i.e., it treats the supply of each

good as s −m, rather than s. The reserved supply m is used to satisfy the demand of excess

bidders who believe themselves to be matched to a good; the number of such bidders is at

most s, with high probability.

Our algorithm stops as soon as fewer than ρn bidders place bids in a round. We show

that this early stopping condition does not significantly harm the welfare guarantee of

the matching, while it substantially reduces the sensitivity of the counters: no bidder ever

bids more than O(1/(αρ)) times in total. Crucially, this bound is independent of both the

number of types of goods k and the number of bidders n. By stopping early, we greatly

improve the accuracy of the prices since the amount we must perturb the bid counts to

protect privacy increases with the sensitivity of the counters.

To privately implement the stopping condition, the algorithm maintains a separate counter

(counter0) which counts the number of unsatisfied bidders throughout the run of the al-

gorithm. At the end of each round, bidders who are unsatisfied will send the bit 1 to this

counter, while bidders who are matched will send the bit 0. If this counter increases by

less than roughly ρn in any round, the algorithm halts. (This is the CountUnsatisfied

function.)

4.3.2. Privacy Analysis

In this section, we show that the allocation output by our algorithm satisfies joint differen-

tial privacy with respect to any single bidder changing all of their valuations. We will use
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Algorithm 4 PMatch(α,ρ,ε)

Input: Bidders’ valuations ({v1j}kj=1, . . . , {vnj}
k
j=1)

Initialize: for bidder i and good j,

T =
8
αρ
, ε′ =

ε
2T

, E =
2
√

2
ε′

(lognT )5/2 log
(

4k
γ

)
, m = 2E + 1

counterj = Counter(ε′ ,nT ) pj = cj = 0,

µ(i) = ∅, di = 0, counter0 = Counter(ε′ ,nT )

Propose T times; Output: prices p and allocation µ.

Propose:
for all bidders i do

if µ(i) = ∅ then
Let µ(i) ∈ argmaxj vij − pj , breaking ties arbitrarily
if viµ(i) − pµ(i) ≤ 0 then

Let µ(i) :=⊥ and Bid(0).
else Save di := cµ(i) and Bid(eµ(i)).

else Bid(0)
CountUnsatisfied

Bid: On input bid vector b
for all goods j do

Feed bj to counterj .
Update count cj := counterj .
if cj ≥ (pj /α + 1)(s −m) then

Update pj := pj +α.

CountUnsatisfied:
for all bidders i do

if µ(i) ,⊥ and cµ(i) − di ≥ s −m then
Feed 1 to counter0.
Let µ(i) :=⊥.

else Feed 0 to counter0.
if counter0 increases by less than ρn− 2E then

Halt and output µ.

a basic but useful lemma: to show joint differential privacy, it is sufficient to show that the

output sent to each agent i is an arbitrary function of (i) some global signal that is com-

puted under the standard constraint of differential privacy, and (ii) agent i’s private data.
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We call this model the billboard model: agents can compute their output by combining a

common signal—as if posted on a public billboard—with their own private data. In our

case, the price history over the course of the auction is the differentially private message

posted on the billboard. Combined with their personal private valuation, each agent can

compute their personal allocation.

Lemma 4.3.2 (Billboard Lemma). Suppose M : D → R is (ε,δ)-differentially private. Con-

sider any set of functions fi :Di ×R→R′, where Di is the portion of the database containing i’s

data. The composition {fi(ΠiD,M(D))} is (ε,δ)-joint differentially private, where Πi : D→Di

is the projection to i’s data.

Proof. We need to show that for any agent i, the view of the other agents is (ε,δ)-differentially

private when i’s private data is changed. Suppose databases D,D ′ are i-neighbors, so

ΠjD = ΠjD
′ for j , i. Let R−i be a set of possible outputs to the bidders besides i. Let

R∗ = {r ∈ R | {fj(ΠjD,r)}−i ∈ R−i}. Then, we need

Pr[{fj(ΠjD,M(D))}−i ∈ R−i] ≤ eεPr[{fj(ΠjD
′ ,M(D ′))}−i ∈ R−i] + δ

= eεPr[{fj(ΠjD,M(D ′))}−i ∈ R−i] + δ

so Pr[M(D) ∈ R∗] ≤ eεPr[M(D ′) ∈ R∗] + δ,

but this is true sinceM is (ε,δ)-differentially private.

Theorem 4.3.3. The sequence of prices and counts of unsatisfied bidders released by PMatch(α,ρ,ε)

satisfies ε-differential privacy.

Sketch. We give a rough intuition here, and defer the full proof to Section 4.6. Note that

the prices can be computed from the noisy counts, so it suffices to show that the counts are

private. Since no bidder bids more than T ≈ 1/(αρ) times in total, the total sensitivity of

the k price streams to a single bidder’s valuations is onlyO(1/(αρ)) (independent of k) even

though a single bidder could in principle bid Ω(1/α) times on each of the k streams. Hence

the analysis of these k simultaneously running counters is akin to the analysis of answering
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histogram queries, multiple queries whose joint sensitivity is substantially smaller than the

sum of their individual sensitivities.

By setting the counter for each good with privacy parameter ε′ = ε/2T , the prices are ε/2

differentially private. By the same reasoning, setting the unsatisfied bidders counter with

privacy parameter ε′ = ε/2T also makes the unsatisfied bidders count ε/2 private. Thus,

these outputs together satisfy ε-differential privacy.

While this intuition is roughly correct, there are some technical details. Namely, Chan

et al. [2011] show privacy for a single counter with sensitivity 1 on a non-adaptively chosen

stream. Since intermediate outputs (i.e., prices) from our counters will affect the future

streams (i.e., future bids) for other counters, this is not sufficient. In fact, it is possible

to prove privacy for multiple counters running on adaptively chosen streams, where the

privacy parameter depends only on the joint sensitivity of the streams and not on the

number of streams. We show this result using largely routine arguments; details can be

found in Section 4.6.

Theorem 4.3.4. PMatch(α,ρ,ε) is ε-joint differentially private.

Proof Sketch. Note that given the sequence of prices, counts of unsatisfied bidders, and the

private valuation of any bidder i, the final allocation to that bidder can be computed by

simulating the sequence of bids made by bidder i, since the bids are determined by the

price when bidder i is slotted to bid and by whether the auction has halted or not. Bidder

i’s final allocation is simply the final item that i bids on. The prices and halting condition

are computed as a deterministic function of the noisy counts, which are ε-differentially

private by Theorem 4.2.4. So, Lemma 4.3.2 shows that PMatch is ε-joint differentially

private.
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4.3.3. Utility Analysis

In this section, we compare the weight of the matching produced by PMatch with OPT.

As an intermediate step, we first show that the resulting matching paired with the prices

computed by the algorithm forms an approximate matching equilibrium. We next show

that any such matching must be an approximately max-weight matching.

The so-called first welfare theorem from general equilibrium theory guarantees that an ex-

act (i.e., a (0,0,0)-) matching equilibrium gives an exact maximum weight matching. Com-

pared to this ideal, PMatch loses welfare in three ways. First, a ρ fraction of bidders may

end up unsatisfied. Second, the matched bidders are not necessarily matched to goods that

maximize their utility given the prices, but only to goods that do so approximately (up to

additive α). Finally, the auction sets aside part of the supply to handle over-allocation

from the noisy counters. This reserved supply may end up unused, say, if the counters

are accurate or actually under-allocate. In other words, we compute an equilibrium of a

market with reduced supply, so our welfare guarantee holds if the supply s is significantly

larger than the necessary reserved supply m.

The key performance metric is how much supply is needed to achieve a given welfare ap-

proximation in the final matching. On the one hand, we will show later that the problem

is impossible to solve privately if s =O(1) (Section 4.5). On the other hand, the problem is

trivial if s ≥ n: agents can be simultaneously matched to their favorite good with no coor-

dination; this allocation is trivially both optimal and private. Our algorithm will achieve

positive results in the intermediate supply range, when s ≥ polylog(n).

Theorem 4.3.5. Let α > 0, and µ be the matching computed by PMatch(α/3,α/3, ε). Let OPT

denote the weight of the optimal matching. Then, if the supply satisfies

s ≥ 16E′ + 4
α

=O
(

1
α3ε
·polylog

(
n,k,

1
α
,

1
γ

))
,

55



and n > s, the matching µ has social welfare at least OPT−αn with probability ≥ 1−γ , where

E′ =
288
√

2
α2ε

(
log

(72n
α2

))5/2
log

(
4k
γ

)
.

Remark 4.3.6. Our approximation guarantee here is additive. Later in this section, we show

that if we are in the unweighted case—vij ∈ {0,1}—we can find a matching µ with welfare at

least (1−α)OPT. This multiplicative guarantee is unusual for a differentially private algorithm.

The proof follows from the following lemmas.

Lemma 4.3.7. We call a bidder who wants to continue bidding unsatisfied; otherwise bidder i

is satisfied. At termination of PMatch(α,ρ,ε), all satisfied bidders i are matched to a good µ(i)

such that

vi,µ(i) − pµ(i) ≥max
j

(vi,j − pj )−α.

Proof. Fix any satisfied bidder i matched to j∗ = µ(i). At the time that bidder i last bid

on j∗, by construction, vij∗ − pj∗ ≥ maxj(vij − pj ). Since i remained matched to j∗, its price

could only have increased by at most α, and the prices of other goods j , j∗ could only

have increased. Hence, at completion of the algorithm,

vi,µ(i) − pµ(i) ≥max
j

(vij − pj )−α

for all matched bidders i.

Lemma 4.3.8. Assume all counters have error at most E throughout the run of PMatch(α,ρ,ε).

Then the number of bidders assigned to any good is at most s and each over-demanded good

clears except for at most β supply, where

β = 4E + 1 =O
(

1
αρε

·polylog
(

1
α
,
1
ρ
,

1
γ
,k,n

))
.

Proof. Since the counter for each under-demanded good never exceeds s−m, we know that

each under-demanded good is matched to no more than s−m+E < s bidders. Consider any

56



counter c for an over-demanded good. Let t be a time step such that

c(nT )− c(t + 1) ≤ s −m < c(nT )− c(t),

where c(t) denotes the output of the counter at time t. Note that the bidders who bid after

time t are the only bidders matched to this good at time nT . Let σ be the true bid stream

for this good and let the sum of bids in σ up to time t be h(σ,t). Then, the total number of

bidders allocated to this good at time nT is

h(σ,nT )− h(σ,t) ≤ h(σ,nT )− h(σ,t + 1) + 1

≤ (c(nT ) +E)− (c(t + 1)−E) + 1

≤ s −m+ 2E + 1 = s.

Similarly, we can lower bound the number of bidders allocated to this good:

h(σ,nT )− h(σ,t) = (h(σ,nT )− c(nT )) + (c(nT )− c(t)) + (c(t)− h(σ,t))

> s −m− 2E > s − 4E − 1.

Therefore, every over-demanded good clears except for at most β = 4E + 1 supply, which

gives

β =
16
√

2
αρε

(
log

(
6n
αρ

))5/2

log
(

4k
γ

)
+ 1

=O
(

1
αρε

·polylog
(

1
α
,
1
ρ
,

1
γ
,k,n

))
.

Lemma 4.3.9. Assume all counters have error at most E throughout the run of PMatch(α,ρ,ε).

Then at termination all but a ρ fraction of bidders are satisfied, so long as s ≥ 8E + 1 and

n ≥ 8E/ρ.
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Proof. First, we show that the total number of bids made over the course of the algorithm is

bounded by 3n/α. We account separately for the under-demanded goods (those with price

0 at the end of the auction) and the over-demanded goods (those with positive price). For

the under-demanded goods, since their prices remain 0 throughout the algorithm, their

corresponding noisy counters never exceeded (s −m). Since no bidder is ever unmatched

after having been matched to an under-demanded good, the set of under-demanded goods

can receive at most one bid from each agent; together the under-demanded goods can

receive at most n bids.

Next, we account for the over-demanded goods. Note that the bidders matched to these

goods are precisely the bidders who bid within s −m ticks of the final counter reading.

Since the counter has error bounded by E at each time step, this means at least s −m− 2E

bidders end up matched to each over-demanded good. Since no agent can be matched to

more than one good there can be at most n/(s −m− 2E) over-demanded goods in total.

Likewise, we can account for the number of price increases per over-demanded good.

Prices never rise above 1 (because any bidder would prefer to be unmatched than to be

matched to a good with price higher than 1). Therefore, since prices are raised in incre-

ments of α, the price of every over-demanded good increases at most 1/α times. Since

there can be at most (s −m+ 2E) bids between each price update (again, corresponding to

s −m ticks of the counter), the total number of bids received by all of the over-demanded

goods in total is at most
n

s −m− 2E
· 1
α
· (s −m+ 2E).

Since each bid is either on an under or over-demanded good, we can upper bound the total

number of bids B by

B ≤ n+
n
α

(s −m+ 2E
s −m− 2E

)
=
n
α

(
α +

s −m+ 2E
s −m− 2E

)
.

The algorithm sets the reserved supply to be m = 2E + 1 and by assumption, we have

58



s ≥ 8E + 1. Since we are only interested in cases where α < 1, we conclude

B ≤ n+
n
α

(s −m+α
s −m−α

)
≤ 3n
α
. (4.1)

Now, consider the halting condition. Either the algorithm halts early, or it does not. We

claim that at termination, at most ρn bidders are unsatisfied. The algorithm halts early

if at any round of CountUnsatisfied, counter0 (which counts the number of unsatisfied

bidders) increases by less than ρn−2E, when there are at most ρn−2E+2E = ρn unsatisfied

bidders.

Otherwise, suppose the algorithm does not halt early. At the start of each round there

must be at least ρn− 4E unsatisfied bidders. Not all of these bidders must bid during the

Propose round since price increases while they are waiting to bid might cause them to no

longer demand any item, but this only happens if bidders prefer to be unmatched at the

new prices. Since prices only increase, these bidders remain satisfied for the rest of the

algorithm. If the algorithm runs for R rounds and there are B true bids,

B ≥ R(ρn− 4E)−n.

Combined with our upper bound on the number of bids (Equation (4.1)) and our assump-

tion ρn ≥ 8E, we can upper bound the number of rounds R:

R ≤
(3n
α

+n
)
·
(

1
ρn− 2E

)
≤

(4n
α

)( 2
ρn

)
=

8
αρ

:= T .

Thus, running the algorithm for T rounds leads to all but ρn bidders satisfied.

Lemma 4.3.10. With probability at least 1−γ , PMatch(α,ρ,ε) computes an (α,β,ρ)-matching

equilibrium, where

β = 4E + 1 =O
(

1
αρε

·polylog
(

1
α
,
1
ρ
,

1
γ
,k,n

))
so long as s ≥ 8E + 1 and n ≥ 8E/ρ.
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Proof. By Theorem 4.2.4, counter0 is (λ1,γ/2)-useful, and each of the k good counters is

(λ2,γ/2)-useful, where

λ1 =
2
√

2
ε′

(lognT )5/2 log
(

4
γ

)
and λ2 =

2
√

2
ε′

(lognT )5/2 log
(

4k
γ

)
.

Since we set E = λ2 > λ1, all counters are (E,γ/2)-useful, and thus with probability at

least 1− γ , all counters have error at most E. The theorem then follows by Lemmas 4.3.7

to 4.3.9.

With these lemmas in place, it is straightforward to prove the welfare theorem (Theo-

rem 4.3.5).

Theorem 4.3.5. By Lemma 4.3.10, PMatch(α/3,α/3,ε) calculates a matching µ that is an

(α/3,β,α/3)-approximate matching equilibrium with probability at least 1− γ , where β =

4E′ + 1. Let p be the prices at the end of the algorithm, and S be the set of satisfied

bidders. Let µ∗ be the optimal matching achieving welfare
∑n
i=1 vi,µ∗(i) = OPT. We know

that |S | ≥ (1−α/3)n and

∑
i∈S

(viµ(i) − pµ(i)) ≥
∑
i∈S

(viµ∗(i) − pµ∗(i))−α|S |/3.

Let N ∗j and Nj be the number of goods of type j matched in µ∗ and µ respectively, and let

G be the set of over-demanded goods at prices p.

Since each over-demanded good clears except for at most β supply, and since each of the

n agents can be matched to at most one good, we know that |G| ≤ n/(s − β). Since the true

supply in OPT is at most s, we also know that N ∗j −Nj ≤ β for each over-demanded good j.
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Finally, by definition, under-demanded goods j have price pj = 0. So,

∑
i∈S

viµ∗(i) −
∑
i∈S

viµ(i) ≤
∑
i∈S

pµ∗(i) −
∑
i∈S

pµ(i) +α|S |/3

=
∑
j∈G

pj(N
∗
j −Nj ) +α|S |/3

≤
∑
j∈G

β +α|S |/3 ≤
nβ

s − β
+α|S |/3.

If s ≥ 4β/α, the first term is at most αn/3. Finally, since all but αn/3 of the bidders are

matched with goods in S, and their valuations are upper bounded by 1, so

∑
i

viµ(i) −
∑
i

viµ∗(i) ≤ αn/3 +α|S |/3 +αn/3 ≤ αn.

Unpacking β from Lemma 4.3.10, we get the stated bound on supply.

4.3.4. Multiplicative Approximation to Welfare

In certain situations, a slight variant of PMatch (Algorithm 4) can give a multiplicative

welfare guarantee. In this section, we will assume that the value of the maximum weight

matching OPT is known; it is often possible to privately estimate this quantity to high

accuracy. Our algorithm is PMatch with a different halting condition: rather than count

the number of unmatched bidders each round, count the number of bids per round. Once

this count drops below a certain threshold, halt the algorithm.

More precisely, we use a function CountBids (Algorithm 5) in place of CountUnsatisfied

in Algorithm 4.

Theorem 4.3.11. Suppose bidders have valuations {vij} over goods such that

min
vij>0

vij ≥ λ.
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Algorithm 5 Modified Halting Condition CountBids
CountBids:
for all bidders i do

if µ(i) ,⊥ and cµ(i) − di ≥ s −m then
Let µ(i) := ∅

if i bid this round then
Feed 1 to counter0.

else Feed 0 to counter0.
if counter0 increases by less than αOP T

2λ − 2E then
Halt; For each i with µ(i) = ∅, let µ(i) =⊥

Then Algorithm 4, with

T =
24
α2

rounds, using stopping condition CountBids (Algorithm 5) in place of CountUnsatisfied

and stopped once the total bid counter increases by less than

αOPT
2λ

− 2E

bids in a round, satisfies ε-joint differential privacy and outputs a matching that has welfare at

least O((1−α/λ)OPT), so long as

s = Ω

(
1
α3ε
·polylog

(
n,k,

1
α
,

1
γ

))
and OPT = Ω

(
λ

α3ε
·polylog

(
n,k,

1
α
,

1
γ

))
.

Proof. Privacy follows exactly like Theorem 4.3.4. We first show that at termination, all

but αOPT /λ bidders are matched to an α-approximate favorite item. The analysis is very

similar to Lemma 4.3.10. Note that every matched bidder is matched to an α-approximate

favorite good, since it was an exactly favorite good at the time of matching, and the price

increases by at most α. Thus, it remains to bound the number of unsatisfied bidders at

termination.

Condition on all counters having error bounded by E at all time steps; by Theorem 4.2.4

and a union bound over counters, this happens with probability at least 1−γ . Like above,

we write s′ = s−m for the effective supply of each good. Let us first consider the case where
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the algorithm stops early. If the total bid counter changes by less than αOPT
2λ − 2E, the true

number of bids that round is at most

Q =
αOPT

2λ
.

We will upper bound the number of unsatisfied bidders at the end of the round. Note that

the number of unsatisfied bidders at the end of the round is the number of bidders who

have been rejected in the current round. Suppose there are N goods that reject bidders

during this round. The total count on these goods must be at least

(s′ − 2E) ·N −Q

at the start of the round, since each counter will increase by at most 2E due to error, and

there were at most Q bids this round. By our conditioning, there were at least

(s′ − 2E) ·N −Q − 2EN

bidders matched at the beginning of the round. Since bidders are only matched when their

valuation is at least λ, and the optimal weight matching is OPT, at most OPT
λ bidders can

be matched at any time. Hence,

N ≤
(OPT
λ

+Q
)
· 1
s′ − 4E

.

Then, the total number of bidders rejected this round is at most 2EN +Q. Simplifying,

2EN +Q ≤ 2E
s′ − 4E

·
(OPT
λ

+Q
)

+Q

≤
( 6E
s′ − 4E

)(OPT
λ

)
+
αOPT

2λ
.
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To make the first term at most αOPT
2λ , it suffices to take

6E
s′ − 4E

≤ α
2

s′ ≥ 12E
α

+ 4E

s ≥ 12E
α

+ 6E + 1,

or s ≥ 18E/α. In this case, the algorithm terminates with at most αOPT
λ unsatisfied bidders,

as desired.

On the other hand, suppose the algorithm does not terminate early, the bid count increas-

ing by at leastQ−2E every round. By our conditioning, this means there are at leastQ−4E

bids each round; let us bound the number of possible bids.

Since bidders only bid if they have valuation greater than λ for a good, and since the max-

imum weight matching has total valuation OPT, at most OPT /λ bidders can be matched.

Like before, we say goods are under-demanded or over-demanded: they either have final

price 0, or positive final price.

There are at most OPT /λ true bids on the goods of the first type; this is because bidders

are never rejected from these goods. Like before, write s′ = s −m. Each counter of a over-

demanded good shows s′ people matched, so at least s′−2E bidders end up matched. Thus,

there are at most
OPT

λ(s′ − 2E)

over-demanded goods. Each such good takes at most s′+2E bids at each of 1/α price levels.

Putting these two estimates together, the total number of bids B is upper bounded by

B ≤ OPT
λ
·
(
1 +

s′ + 2E
s′ − 2E

)
≤ 6OPT

λα

if s′ ≥ 4E, which holds since we are already assuming s′ ≥ 4E + 12E
α . Hence, we know the
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number of bids is at most

T · (Q − 4E) ≤ B ≤ 6OPT
λα

T ≤ 6OPT
λ
·
( 2λ
αOPT−8λE

)
.

Assuming αOPT ≥ 16λE, we find T ≤ 24/α2.

With this choice of T , the supply requirement is

s ≥ 18E
α

= Ω

(
1
α3ε
·polylog

(
n,k,

1
α
,

1
γ

))
. (4.2)

Likewise, the requirement on OPT is

OPT ≥ 16λE
α

= Ω

(
λ

α3ε
·polylog

(
n,k,

1
α
,

1
γ

))
.

Now, we can follow the analysis from Theorem 4.3.5 to bound the welfare. Suppose the

algorithm produces a matching µ, and consider any other matching µ∗. For each bidder

who is matched to an α-approximate favorite good,

viµ(i) − pµ(i) ≥ viµ∗(i) − pµ∗(i) −α.

Each such bidder is matched to a good with value at least λ, so there are at most OPT /λ

such bidders. Summing over these bidders (call them S),

∑
i∈S

viµ(i) − pµ(i) ≥
∑
i∈S

viµ∗(i) − pµ∗(i) −
αOPT
λ

.

Letting Nj ,N ∗j be the number of goods of type j matched in µ,µ∗ and rearranging,

∑
i∈S

viµ∗(i) − viµ(i) ≤
∑
j∈S

pj(N
∗
j −Nj ) +

αOPT
λ

.
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Exactly the same as in Theorem 4.3.5, each over-demanded good (pj > 0) clears except for

at most β = 4E+1 supply. Since at most OPT
λ bidders can be matched, the number of goods

with pj > 0 is at most
OPT
λ(s − β)

.

Like before, N ∗j −Nj ≤ β. Since there are at most αOPT /λ bidders not in S and each has

valuation in [0,1], when summing over all bidders,

∑
i

viµ∗(i) − viµ(i) ≤
OPTβ
λ(s − β)

+
αOPT
λ

+
αOPT
λ

.

The first term is at most αOPT /λ for s ≥ β(1+1/α), when the algorithm calculates a match-

ing with weight O((1 −α/λ)OPT). Since β = 4E + 1, this reduces to the supply constraint

Equation (4.2).

Remark 4.3.12. For a comparison with Theorem 4.3.5 and PMatch, consider the “unweighted”

case where bidders have valuations in {0,1} (i.e., λ = 1). Note that both PMatch and the mul-

tiplicative version require the same lower bound on supply. Ignoring log factors, PMatch re-

quires n = Ω̃(1/α3ε) for an additive αn approximation, while Theorem 4.3.11 shows OPT =

Ω̃(1/α3ε) is necessary for a multiplicative α, hence additive αOPT, approximation. Hence,

Theorem 4.3.11 gives a stronger guarantee if OPT = õ(n) in the unweighted case, ignoring log

factors.

4.4. Extension to Gross Substitute Valuations

While Kelso and Crawford’s algorithm is simplest in the unit demand setting, it can also

compute allocations when bidders have gross substitutes valuations. Before we discuss

our analogous extension, we will first introduce some notation for gross substitutes val-

uations. Unlike unit demand valuations, bidders with gross substitute valuations may

demand more than one good. Let Ω = 2G denote the space of bundles (i.e., subsets of

goods). Like previous sections, let k be number of types of goods, and let s be the supply
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of each type of good. Let d denote the market size—the total number of goods, includ-

ing identical goods, so d = ks.5 We assume that each bidder has a valuation function on

bundles, vi : Ω → [0,1], and that this valuation satisfies the gross substitutes condition

(Definition 4.2.1).

Like before, we simulate k ascending price auctions in rounds. Bidders now maintain a

bundle of goods that they are currently allocated to, and bid on one new good each round.

For each good in a bidder’s bundle, the bidder keeps track of the count of bids on that

good when it was added to the bundle. When the current count ticks past the supply, the

bidder knows that they have been outbid.

The main subtlety is in how bidders decide which goods to bid on. Namely, each bidder

treat goods in their bundle as fixed in price (i.e., bidders ignore the price increment of at

most α that might have occurred after winning the item). Goods outside of their bundle

(even if identical to goods in their bundle) are evaluated at the true price. We call these

prices the bidder’s effective prices, so each bidder bids on an arbitrary good in his most-

preferred bundle at the effective prices. The full algorithm is given in Algorithm 6.

Privacy is very similar to the case for matchings.

Theorem 4.4.1. PAlloc(α,ρ,ε) satisfies ε-joint differential privacy.

Proof. Essentially the same proof as Theorem 4.3.4.

Theorem 4.4.2. Let 0 < α < n/d, and g be the allocation computed by PAlloc(α/3,α/3, ε), and

let OPT be the optimum max welfare. Then, if d ≥ n and

s ≥ 12E′ + 3
α

=O
(

1
α3ε
·polylog

(
n,k,

1
α
,

1
γ

))
,

5In general, goods may have different supplies, if s denotes the minimum supply of any good. Hence, d is
not necessarily dependent on s.
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Algorithm 6 PAlloc(α,ρ,ε) (with Gross Substitute Valuations)
Input: Bidders’ gross substitute valuations on the bundles {vi : Ω→ [0,1]}
Initialize: for bidder i and good j,

T =
10
αρ
, ε′ =

ε
2T

, E =
2
√

2
ε′

(lognT )5/2 log
(

4k
γ

)
+ 1, m = 2E + 1,

counter0 = Counter(ε′ ,nT ), counterj = Counter(ε′ ,nT ), pj = cj = 0, dg = 0,

g(i) = {∅} for every bidder i

Propose T times; Output: prices p and allocation g.

Propose:
for all bidders i do

for all goods g ∈ g(i) do
if ctype(g) − dg ≥ s −m then

Remove g(i) := g(i) \ g
Let p0 be the original cost of g(i).
Let ω∗ ∈ argmax

ω)g(i)
vi(ω)− p(ω \ g(i))− p0 arbitrary.

if vi(ω∗)− p(ω \ g(i))− p0 ≥ vi(g(i))− p0 then
Let j ∈ω∗ \ g(i) arbitrary.
Save dj := ctype(j)
Add g(i) := g(i)∪ j and Bid(ej)

else Bid(0)
CountUnsatisfied

Bid: On input bid vector b
for all goods j do

Feed bj to counterj .
Update count cj := counterj .
if cj ≥ (pj /α + 1)(s −m) then

Update pj := pj +α.

CountUnsatisfied:
for all bidders i do

if i wants continue bidding then
Feed 1 to counter0.

else Feed 0 to counter0.
if counter0 increases by less than ρd − 2E then

Halt and output µ.
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the allocation g has social welfare at least

n∑
i=1

vi(g(i)) ≥OPT−αd

with probability at least 1−γ , where

E′ =
360
√

2
α2ε

(
log

(90n
α2

))5/2
log

(
4k
γ

)
+ 1.

Remark 4.4.3. In comparison with Theorem 4.3.5, Theorem 4.4.2 requires a similar constraint

on supply but promises welfare OPT−αd rather than OPT−αn. Since OPT ≤ n this guarantee

is only non-trivial for α ≤ n/d, so the supply has a polynomial dependence on the total size

of the market d. In contrast, Theorem 4.3.5 guarantees good welfare when the supply has a

logarithmic dependence on the total number of goods in the market.

We note that if bidders demand bundles of size at most b, then we can improve the above welfare

bound to OPT−αnb. Note that this is independent of the market size d and smoothly generalizes

the matching case where b = 1.

Similar to Definition 4.3.1, we define an approximate allocation equilibrium as a prerequisite

for showing our welfare guarantee.

Definition 4.4.4. A price vector p ∈ [0,1]k and an assignment g : [n]→Ω of bidders to goods

is an (α,β,ρ)-approximate allocation equilibrium if

1. for all but ρd bidders, vi(g(i))− p(g(i)) ≥maxω∈Ω vi(ω)− p(ω)−α|g(i)|;

2. the number of bidders assigned to any good is at most s; and

3. each over-demanded good clears except for at most β supply.

The following lemmas show that our algorithm finds an approximate allocation equilib-

rium. We prove the last two requirements first.

Lemma 4.4.5. Assume all counters have error at most E throughout the run of PAlloc(α,ρ,ε).
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Then, the number of bidders assigned to any good is at most s and each over-demanded good

clears except for at most β supply, where

β = 4E + 1 =O
(

1
αρε

·polylog
(
n,k,

1
α
,
1
ρ
,

1
γ

))
.

Proof. Consider any good j. If it is under-demanded, the counter corresponding to j never

rise above s −m. Hence by our conditioning, at most s −m+ E < s bidders are assigned to

j. If j is over-demanded, the same reasoning as in Lemma 4.3.10 shows that the number

of bidders matched to j lies in the range [s −m− 2E,s −m+ 2E + 1]. By the choice of m, the

upper bound is at most s. Likewise, at least s −m+E = s − (4E + 1) bidders are assigned to

j. Setting β = 4E + 1 gives the desired bound.

Lemma 4.4.6. We call a bidder who wants to bid more unsatisfied; otherwise, a bidder is

satisfied. At termination of PAlloc(α,ρ,ε), all satisfied bidders are matched to a bundle g(i)

that is an α · |g(i)|-most preferred bundle.

Proof. We first show that a bidder’s bundle g(i) remains a subset of their most preferred

bundle at the effective prices, i.e., with prices of goods in g(i) set to their price at time of

assignment, and all other goods taking current prices.

This claim follows by induction on the number of timesteps (ranging from 1 to nT ). The

base case is clear. Now, assume that the claim holds up to time t. There are three possible

cases:

1. If the price of a good outside g(i) is increased, g(i) remains part of a most-preferred

bundle by the gross substitutes condition.

2. If the price of a good in g(i) is increased, some goods may be removed from the

bundle leading to a new bundle g ′(i). The only goods that experience an effective

price increase lie outside of g ′(i), so g ′(i) remains a subset of a most-preferred bundle

at the effective prices.
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3. If a bidder adds to their bundle, g(i) is a subset of the most-preferred bundle by

definition.

Hence, a bidder becomes satisfied precisely when g(i) is equal to the most-preferred bun-

dle at the effective prices. The true price is at most α more than the effective price, so the

bidder must have an α|g(i)|-most preferred bundle at the true prices.

Lemma 4.4.7. Suppose all counters have error at most E throughout the run of PAlloc(α,ρ,ε).

Then at termination, all but ρd bidders are satisfied if

n ≤ d and d ≥ 8E
ρ

= Ω

(
1

αρ2ε
·polylog

(
n,k,

1
α
,
1
ρ
,

1
γ

))
.

Proof. Note that as long as the algorithm does not halt, at least ρd − 4E bidders are unsat-

isfied at the beginning of the round. They may not actually bid when their turn comes,

because the prices may have changed. Let the number of bids among all bidders be B, and

suppose we run for R rounds. We expect at least ρd − 4E bids per round, so R(ρd − 4E)−B

is a lower bound on the number of times a bidder is unsatisfied but fails to bid.

In the matching case, if a bidder is unsatisfied at the beginning of the round but fails to

bid during their turn, this must be because the prices have risen too high. Since prices are

monotonic increasing, such a bidder will never be unsatisfied again.

In contrast, the gross substitutes case is slightly more subtle. Bidders who are unsatisfied

at the beginning of a round and don’t bid on their turn may later become unsatisfied again.

Clearly, this happens only when the bidder loses at least one good after they decline to

bid: if they don’t lose any goods, then the prices can only increase after they decline to bid.

Thus, they will have no inclination to bid in the future.

There are at most n cases of the bidder dropping out entirely. Thus, the number of times

bidders report wanting to reenter the bidding is at least R(ρd − 4E) − n − B. Since a bid-

der loses at least one good each time they reenter, the number of reentries is at most the
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number of bids B. Hence, the number of bids in R rounds is at least

B ≥
R(ρd − 4E)−n

2
. (4.3)

Now, let s′ = s −m = s − (2E + 1) be the effective supply and consider how many bids are

possible. Each of the k types of goods will accept at most s′ + 2E = s+ 1 bids at each of 1/α

price levels, so there are at most k(s+ 1)/α = (d + k)/α possible bids. Setting the left side of

Equation (4.3) equal to (d + k)/α, we find

R ≤ 1
α

(
2(d + k) +αn
ρd − 4E

)
:= T0,

so taking T ≥ T0 suffices to ensure that the algorithm halts with no more than ρd bidders

unsatisfied. Assuming ρd ≥ 8E and d ≥ n,

T0 ≤
10d
αρd

=
10
αρ

= T .

The requirement on n and d is then

d ≥ 8E
ρ

= Ω

(
1

αρ2ε
·polylog

(
n,k,

1
α
,
1
ρ
,

1
γ

))
and n ≤ d,

as desired.

Lemma 4.4.8. With probability at least 1−γ , PAlloc(α,ρ,ε) computes an (α,β,ρ)-approximate

allocation equilibrium where

β =O
(

1
αρε

·polylog
(
n,k,

1
α
,
1
ρ
,

1
γ

))
,

so long as

d ≥ 8E
ρ

= Ω

(
1

αρ2ε
·polylog

(
n,k,

1
α
,
1
ρ
,

1
γ

))
and n ≤ d.

Proof. Condition on the error for each counter being at most E throughout the run of the
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algorithm. By Theorem 4.2.4, this holds for any single counter with probability at least

1−γ/2k. By a union bound, this holds for all counters with probability at least 1−γ . The

theorem follows by Lemmas 4.4.5 to 4.4.7.

Now, it is straightforward to prove the welfare theorem (Theorem 4.4.2).

Proof. The proof follows the matching case (Theorem 4.3.5) closely. By Lemma 4.4.8, (g,p)

is a (α/3,β,α/3)-approximate allocation equilibrium, where β = 4E′ + 1. Then all but αd/3

bidders are satisfied and get a bundle g(i) that is α|g(i)| optimal; let this set of bidders be

B. Note that
∑
i |g(i)| ≤ d. Let g∗ be any other allocation. Then,

∑
i∈B

vi(g(i))− p(g(i)) ≥
∑
i∈B

vi(g
∗(i))− p(g∗(i))− α

3
|g(i)|

∑
i∈B

vi(g
∗(i))− vi(g(i)) ≤

∑
i∈B

p(g∗(i))− p(g(i)) +αd/3 =
∑
j∈G

pj(N
∗
j −Nj ) +αd/3

where the Nj is the number of good j sold in g and N ∗j is the number of good j sold in g∗. If

pj > 0, we know Nj ≥ s − β, hence N ∗j −Nj ≤ β ≤ αs/3. Since pj ≤ 1 for each good j, we have

∑
j∈G

pj(N
∗
j −Nj ) ≤

∑
j

pj(N
∗
j −Nj ) ≤ α

∑
j

s = αd/3.

Furthermore, at most αd/3 bidders are left unsatisfied in the end; these bidders contribute

at most αd/3 welfare to the optimal matching since valuations are bounded by 1. Putting

it all together, ∑
i

vi(g
∗(i))− vi(g(i)) ≤ αd/3 +αd/3 +αd/3 = αd.

The stated supply bound s follows directly from Lemma 4.4.8.
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4.5. Lower Bounds

Our lower bounds all reduce to a basic database reconstruction lower bound for differen-

tial privacy.

Theorem 4.5.1. Let mechanism M : {0,1}n → {0,1}n be (ε,δ)-differentially private, and sup-

pose that for all database D, with probability at least 1− β, ‖M(D)−D‖1 ≤ αn. Then,

α ≥ 1− eε + δ
(1 + eε)(1− β)

:= θ(ε,δ,β).

Proof. Fix a database D ∈ {0,1}n and sample an index i uniformly at random from [n]. Let

D ′ be a neighboring database of D that differs at the i-th bit. By assumption, we have that

with probability at least 1− β

‖M(D)−D‖1 ≤ αn, ‖M(D ′)−D ′‖1 ≤ αn.

Since i is chosen uniformly, we then have

Pr[M(D)i =Di] ≥ (1−α)(1− β), Pr[M(D ′)i =D ′i ] ≥ (1−α)(1− β).

It follows that Pr[M(D ′)i = Di] ≤ 1− (1−α)(1− β) because Di , D ′i . By definition of (ε,δ)-

differential privacy, we get

(1−α)(1− β) ≤ Pr[M(D)i =Di] ≤ eεPr[M(D ′)i =Di] + δ ≤ eε(1− (1−α)(1− β)) + δ.

Then we have

1−α ≤ eε + δ
(1 + eε)(1− β)

as desired.

In other words, no (ε,δ)-private mechanism can reconstruct more than a fixed constant
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fraction of its input database. For ε,δ,β small, θ(ε,δ,β) ∼ 1/2. Informally, this theorem

states that a private reconstruction mechanism can’t do much better than guessing a ran-

dom database. Note that this holds even if the adversary doesn’t know which fraction was

correctly reconstructed.

Our lower bounds will all be proved using the following pattern.

• First, we describe how to convert a database D ∈ {0,1}n to a market, by specifying the

bidders, the goods, and the valuations vij ∈ [0,1] on goods.

• Next, we analyze how these valuations change when a single bit in D is changed.

This will control how private the matching algorithm is with respect to the original

database, when applied to this market.

• Finally, we show how to output a database guess D̂ from the matching produced by

the private matching algorithm.

This composition of three steps will be a private function from {0,1}n→ {0,1}n, so we can

apply Theorem 4.5.1 to lower bound the error, implying a lower bound on the error of the

matching algorithm.

4.5.1. Standard Differential Privacy

Note that Algorithm 4 produces market clearing prices under standard differential privacy.

We will first show that this is not possible if each good has unit supply. Recall that prices

correspond to an (α,β,ρ)-approximate matching equilibrium if all but ρ bidders can be allo-

cated to a good such that their utility is within α of their favorite good (Definition 4.3.1).

We will ignore the β parameter, which controls how many goods are left unsold.

Theorem 4.5.2. Let n bidders have valuations vij ∈ [0,1] for n goods. Suppose that mechanism

M is (ε,δ)-differentially private, and calculates prices corresponding to an (α,β,ρ)-approximate
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matching equilibrium for α < 1/2 and some β with probability 1−γ . Then,

ρ ≥ 1
2
θ(2ε,δ(1 + eε),γ).

Note that this is independent of α.

Proof. Let D ∈ {0,1}n/2 be a private database and construct the following market. For each

bit i we construct the following gadget, consisting of two goods 0i ,1i and two bidders,

bi , b̄i . Both bidders have valuation Di for good 1i , 1 −Di for good 0i , and valuation 0 for

the other goods. Evidently, there are n bidders and n goods.

Note that changing a bit i in D changes the valuation of exactly two bidders in the market:

bi and b̄i . Therefore, mechanismM is (2ε,δ(1 + eε))-differentially private with respect to

D. Let the prices be p0i ,p1i . To guess the database D̂, we let D̂i = 1 if p1i > 1/2, otherwise

D̂i = 0.

By assumption, M produces prices corresponding to an (α,β,ρ)-approximate matching

equilibrium with probability 1 − γ . We do not have access to the matching, but we know

the prices must correspond to some matching µ. Then, for all but ρn gadgets, µ matches

both bidders to their α-approximate favorite good and both goods are matched to bidders

who receive α-approximate favorite goods.

Consider such a gadget i. We will show that exactly one of p0i or p1i is greater than 1/2,

and this expensive good corresponds to bit Di . Consider one of the bidders in this gadget,

and suppose she prefers good g+ with price p+, while he received good g− with price p−.

Since she receives an α-approximate favorite good,

(1− p+)− (0− p−) ≤ α, so p+ − p− ≥ 1−α > 1/2.

So p+ > 1/2 and p− < 1/2. Note that good g+ is in the gadget, while good g− may not be.

So, one of the goods in the gadget has price strictly greater than 1/2. The other good in
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the gadget is an α-approximate favorite good for some bidder. All bidders have valuation

0 for the good, hence its price must be strictly less than 1/2.

Thus, the reconstruction procedure will correctly produce bit for each such gadget, and

so will miss at most ρn bits with probability at least 1 − γ . The combined reconstruction

algorithm is a map from {0,1}n/2 → {0,1}n/2, and (2ε,δ(1 + eε))-differentially private. By

Theorem 4.5.1,

2ρ ≥ θ(2ε,δ(1 + eε),γ).

This completes the proof.

4.5.2. Separation Between Standard and Joint Differential Privacy

While we can compute an approximate maximum-weight matching under joint privacy

when the supply of each good is large (Lemma 4.3.10), this is not possible under standard

differential privacy even with infinite supply.

Theorem 4.5.3. Let n bidders have valuations vij ∈ {0,1} for 2 goods with infinite supply.

Suppose that mechanismM is (ε,δ)-differentially private, and computes a matching with weight

at least OPT−αn with probability 1−γ . Then,

α ≥ θ(ε,δ,γ).

Proof. Let D ∈ {0,1}n. We assume two goods, 0 and 1. We have one bidder bi for each bit

i ∈ [n], who has valuation Di for 1, and valuation 1−Di for 0. Since changing a bit changes

a single bidder’s valuation, applyingM to this market is (ε,δ)-private with respect to D.

To guess the database D̂, we let D̂i be 0 if bi is matched to 0, 1 if bi is matched to 1, and

arbitrary otherwise.

Note that the maximum welfare matching assigns each bi the good corresponding to Di ,

and achieves social welfare OPT = n. IfM computes an matching with welfare OPT−αn,

it must give all but an α fraction of bidders bi the good corresponding to Di . So, the recon-
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structed database will miss at most αn bits with probability 1−γ , and by Theorem 4.5.1,

α ≥ θ(ε,δ,γ).

Note that this gives a separation: under joint differential privacy, Algorithm 4 can release

a matching with welfare OPT−αn for any α, provided supply s is large enough (by Theo-

rem 4.3.5), while this is not possible under standard differential privacy even with infinite

supply.

4.5.3. Lower Bounds for Joint Differential Privacy

Finally, we show that a large supply assumption is necessary in order to compute an addi-

tive α maximum welfare matching under joint differential privacy.

Theorem 4.5.4. Let n bidders have valuations vij ∈ [0,1] for k types of goods with supply s

each. Suppose mechanism M is (ε,δ)-joint differentially private for ε,δ < 0.1, and calculates

a matching with welfare at least OPT−αn with probability 1 − γ for γ < 0.01, and all n,k, s.

Then, s = Ω(
√

1/α).

Proof. Let k = n/(s+1). Given a private databaseD ∈ {0,1}k , construct the following market.

For each bit i, we construct a gadget with two goods 0i ,1i , each with supply s. Each gadget

has a distinguished bidder bi and s identical bidders, all labeled b̄i . Let bidder bi , who we

call the real bidder, have valuation Di for 1i , and 1−Di for 0i . Bidders b̄i , which we call the

spy bidders, all have the same valuation: η = 1
4s for 0i or 1i drawn at random, and 0 for all

other goods (in and out of the gadget). We say a bidder prefers a good if they have positive

valuation for the good.

Note that changing a bit in D changes a single bidder’s valuation. Also note that the spy

bidders’ valuations do not depend on D. Hence, by joint differential privacy of M, the

function that maps the above market throughM to the allocation of just the spy bidders
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is (ε,δ)-differentially private with respect to an entry change in D.

We will describe how to guess D̂ based on just the spy bidders’ joint view, i.e., the goods

they are assigned. This reconstruction procedure will then be (ε,δ)-differentially private,

and we can apply Theorem 4.5.1 to lower bound the error ofM . For every bit i ∈ [k], let

D̂i be 1 if the spy bidders in gadget i are all assigned to 0i , 0 if the spy bidders in gadget i

are all assigned to 1i , and uniformly random otherwise.

We’ll say that a gadget agrees if the spy bidders and real bidder prefer the same good. Gad-

gets that don’t agree, disagree. Let w be the number of gadgets that agree. By construction,

gadgets agree independently with probability 1/2 each. Hence, Hoeffding’s inequality

gives

Pr
[∣∣∣∣∣w − k2

∣∣∣∣∣ ≤ λk] ≥ 1− 2exp(−2λ2k)

for some λ to be specified later; condition on this event. With probability at least 1 − γ ,

mechanismM computes a matching with welfare at least OPT−αn; condition on this event

as well. Note that the optimum welfare is 1 + (s − 1)η for gadgets that agree, and 1 + sη for

gadgets that disagree, hence OPT = w(1 + (s − 1)η) + (k −w)(1 + sη) in total.

For each gadget, there are several possible allocations. Intuitively, an assignment gives

social welfare, but may also lead to a bit being reconstructed. Let RB(µ) = ‖D − D̂‖1 be the

error of the reconstruction when the matching is µ. We’ll argue that any matching µ with

nearly optimal social welfare must result in large expected reconstruction E[RB(µ)]. By

linearity,

E[RB(µ)] =
∑
i∈[k]

Pr
[
Di = D̂i

]
,

so it suffices to focus on gadget at a time.

First, suppose the gadget i agrees. The matching µ can give the preferred good to the

bidder, the spies, or neither. If the preferred good goes to the bidder, this gives at most
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1 + (s − 1)η social welfare. Not all the spies get the same good, so

Pr
[
Di = D̂i

]
=

1
2
.

If the preferred good goes to the spies, then this contributes sη to social welfare, and

Pr
[
Di = D̂i

]
= 0.

Note that it doesn’t matter whether the bidder is assigned in µ, since the social welfare is

unchanged and the reconstruction algorithm doesn’t have access to the bidder’s allocation.

There are other possible allocations, but they are dominated by these two choices since

they get less social welfare for higher reconstruction probability.

Now, suppose gadget i disagrees. There are several possible allocations. First, both the

bidder and the spies may get their favorite good. This gives 1 + sη welfare, and

Pr
[
Di = D̂i

]
= 1.

Second, the bidder may be assigned their favorite good, and at most s − 1 spies may be

assigned their favorite good. This leads to 1 + (s − 1)η welfare, with

Pr
[
Di = D̂i

]
=

1
2
.

Again, there are other possible allocations, but they lead to less social welfare or higher

reconstruction probability. We say the four allocations above are optimal.

Let a1, a2 be the fractions of agreeing gadgets with the two optimal agreeing allocations,

and d1,d2 be the fractions of disagreeing gadgets with the two optimal disagreeing allo-

cations. Let t be the fraction of agreeing pairs. The following linear program minimizes

(1/k)E[RB(µ)] over all matchings µ achieving an α-approximate maximum welfare match-
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ing for supply s.

LPs := minimize:
1
2
a1 + d1 +

1
2
d2

such that: a1 + a2 ≤ t

d1 + d2 ≤ 1− t
1
2
−λ ≤ t ≤ 1

2
+λ

(1 + (s − 1)η)a1 + sηa2 + (1 + sη)d1 + (1 + (s − 1)η)d2

≥ t(1 + (s − 1)η) + (1− t)(1 + sη)− αn
k

The last constraint is the welfare requirement, the second to last constraint is from condi-

tioning on the number of agreeing gadgets, and the objective is (1/k)E[RB(µ)].

Plugging in η = 1
4s ,λ = 1/128,α = k

16ns and solving, we find

(a1, a2,d1,d2, t) =
( 65

128
,0,

31
128

,
1
4
,

65
128

)

is a feasible solution for all s with objective α′ = 159/256. To show that this is optimal,

consider the dual problem:

DUALs := maximize: − ρ2 +
(1

2
−λ

)
ρ3 −

(1
2

+λ
)
ρ4 +

(
1 + sη − αn

k

)
ρ5

such that: − ρ1 + (1 + (s − 1)η)ρ5 ≤
1
2

− ρ1 + sηρ5 ≤ 0

− ρ2 + (1 + sη)ρ5 ≤ 1

− ρ2 + (1 + (s − 1)η)ρ5 ≤
1
2

ρ1 − ρ2 + ρ3 − ρ4 + ηρ5 ≤ 0
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We can directly verify that

(ρ1,ρ2,ρ3,ρ4,ρ5) =
(5

2
s − 1,

5
2
s − 1,0,

1
2
,2s

)

is a dual feasible solution with objective α′ = 159/256.

We know thatM calculates an additive α-approximate maximum welfare matching. While

the allocations to each gadget may not be an optimal allocation, suboptimal allocations all

have less social welfare and larger RB. So, we know the objective of LPm is a lower bound

for RB(M).

Thus, E[RB(M)] ≥ kα′ for any supply s. Since RB is the sum of k independent, 0/1 random

variables, another Hoeffding bound yields

Pr
[
RB(M)/k ≥ α′ −λ′

]
≥ 1− 2exp(−2λ′2k).

Set λ′ = 1/256, and condition on this event. All together, any matching mechanism M

which finds a matching with weight at least OPT−αn failing with at most γ probability

gives an (ε,δ)-private mechanism mapping D to D̂ such that

1
k
· ‖D − D̂‖1 ≥ α′ −λ′ = 79/128.

with probability at least 1−γ − 2exp(−2λ2k)− 2exp(−2λ′2k).

For ε,δ < 0.1 and γ < 0.01, this contradicts Theorem 4.5.1 for large k. Note that the failure

probability and accuracy do not depend directly on s since λ,λ′ ,α′ are constants. Hence

α� k
16ns

=
1

16s(s+ 1)

uniformly for all s, and s = Ω(
√

1/α) as desired.
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4.6. Privacy Analysis for Counters

Chan et al. [2011] show that Counter(ε,T ) is ε-differentially private with respect to single

changes in the input stream, when the stream is generated non-adaptively. For our ap-

plication we require privacy to hold for a large number of streams whose joint-sensitivity

can nevertheless be bounded, and whose entries can be chosen adaptively. To show that

Counter is also private in this setting (when ε is set appropriately), we first introduce some

differential privacy notions.

4.6.1. Adaptive Composition

We give a slight generalization of Theorem 2.2.4.

Lemma 4.6.1 (Generalization of Theorem 2.2.4). Let ∆1 ≥ 0. The class of ε
∆1

-private mecha-

nisms satisfies ε-differential privacy under adaptive composition, if the adversary always selects

databases satisfying
T∑
t=1

∣∣∣Dt,0 −Dt,1∣∣∣ ≤ ∆1.

In other words, the privacy parameter of each mechanism should be calibrated for the

total distance between the databases over the whole composition (the `1 sensitivity).

4.6.2. Binary mechanism

We reproduce the Binary mechanism here in order to refer to its internal workings in

our privacy proof. First, it is worth explaining the intuition of the Counter. Given a bit

stream σ : [T ]→ {0,1}, the algorithm releases the counts
∑t
i=1σ (i) for each t by maintaining

a set of partial sums
∑

[i, j] B
∑j
t=i σ (t). More precisely, each partial sum has the form

Σ[2i + 1,2i + 2i−1], corresponding to powers of 2.

In this way, we can calculate the count
∑t
i=1σ (i) by summing at most log t partial sums: let
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i1 < i2 . . . < im be the indices of non-zero bits in the binary representation of t, so that

t∑
i=1

σ (i) =
∑

[1,2im] +
∑

[2im + 1,2im + 2im−1] + . . .+
∑

[t − 2i1 + 1, t].

Therefore, we can view the algorithm as releasing partial sums of different ranges at each

time step t and computing the counts is simply a post-processing of the partial sums. The

core algorithm is presented in Algorithm 7.

Algorithm 7 Counter(ε,T )

Input: A stream σ ∈ {0,1}T
Output: B(t) as estimate for

∑t
i=1σ (i) for each time t ∈ [T ]

for all t ∈ [T ] do

Express t =
log t∑
j=0

2jBinj(t).

Let i←minj{Binj(t) , 0}
ai ←

∑
j<i aj + σ (t), (ai =

∑
[t − 2i + 1, t])

for 0 ≤ j ≤ i − 1 do
Let aj ← 0 and âj ← 0

Let âj = aj + Lap(log(T )/ε)

Let B(t) =
∑

i:Bini (t),0

âi

4.6.3. Counter Privacy Under Adaptive Composition

We can now show that the prices released by our mechanism satisfy ε-differential privacy.

Theorem 4.3.3. The sequence of prices and counts of unsatisfied bidders released by PMatch(α,ρ,ε)

satisfies ε-differential privacy.

Proof. Chan et al. [2011] show this for a single sensitivity 1 counter for a non-adaptively

chosen stream. We here show the generalization to multiple counters run on adaptively

chosen streams with bounded `1 sensitivity, and bound the `1 sensitivity of the set of

streams produced by our algorithm. We will actually show that the sequence of noisy

partial sums released by Counter satisfy ε-differential privacy. This is only stronger: the

running counts are computed as a function of these noisy partial sums.
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To do so, we first take the view of an adversary in the adaptive composition experiment

(Theorem 2.2.4) and then show that the view of this adversary is precisely the sequence of

noisy partial sums. The composition theorem (Lemma 4.6.1) will then show that the se-

quence of noisy partial sums are differentially private with respect to a change in a bidder’s

valuation.

Let the two runs b = 0,1 correspond to any two neighboring valuations (vi ,v−i) and (v′i ,v−i)

that differ only in bidder i’s valuation. We first analyze the view on all of the counter(j)

for j = 1, . . . , k.

The adversary will operate in phases. There are two kinds of phases, which we label Pt

and P ′t : one phase per step of the good counters, and one phase per step of the halting

condition counter. Both counters run from time 1 to nT , so there are 2nT phases in total.

At each point in time, the adversary maintains histories {bi}, {b′i} of all the bids prior to

the current phase and histories {ei}, {e′i} of all prior reports to the halting counter counter0,

when bidder i has valuation vi ,v′i respectively.

Let us consider the first kind of phase. One bidder bids per step of the counter, so one

bidder bids in each of these phases. Each step of the experiment the adversary will observe

a partial sum. Suppose the adversary is in phase Pt. Having observed the previous partial

sums, the adversary can simulate the action of the current bidder q from the histories of

previous bids by first computing the prices indicated by the previous partial sums. The

adversary will compute q’s bid when the valuations are (vi ,v−i), and when the valuations

are (v′i ,v−i). Call these two bids bt ,b′t (which may be ⊥ if q is already matched in one or

both of the histories).

Note that for bidders q , i, it is always the case that bt = b′t. This holds by induction:

it is clearly true when no one has bid, and bidder q’s decision depends only on her past

bids, the prices, and her valuation. Since these are all independent of bidder i’s valuation,

bidder q behaves identically.
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After the adversary calculates bt ,b′t, the adversary simulates update and release of the

counters. More precisely, the adversary spends phase Pt requesting a set of partial sums

Σ = {σ jI | j ∈ [k], I ∈ St},

where St ⊆ [1,nT ] is a set of intervals ending at t, corresponding to partial sums that

Counter releases at step t.

For each σ jI ∈ Σ, D0,D1 ∈ {0,1}I are defined by

D0
k =

 1 : if bk = j

0 : otherwise

and similarly forD1, with bid history {b′i}. Informally, a databaseD for σ jI encodes whether

a bidder bid on good j at every timestep in I . The adversary will defineM to sum the bits

in the database and add noise Lap(1/ε0), an ε0-differentially private operation. Once the

partial sums for Pt are released, the adversary advances to the next phase.

Now, suppose the adversary is in the second kind of phase, say P ′t . This corresponds to a

step of the halting condition counter. We use exactly the same construction as above: the

adversary will request the partial sums corresponding to each timestep. The adversary will

simulate each bidder’s action by examining the history of bids and prices. Now suppose

the two runs differ in bidder i’s valuation. Following the same analysis, the reports to this

halting condition counter differ only in bidder i’s reports.

With this definition, the view of the adversary on database {D0} and {D1} is precisely the

noisy partial sums when the valuations are (vi ,v−i) and (v′i ,v−i), respectively. So, it suffices

to show that these views have almost the same probability.

We apply Lemma 4.6.1 by bounding the distance between the databases for counter(1) to

counter(k). Note that the sequence of databases {D0}, {D1} chosen correspond to streams
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of bids that differ only in bidder i’s bid, or streams of reports to counter(0) that differ only

in bidder i’s report. This is because the bid histories {bt}, {b′t} and report histories {et}, {e′t}

differ only on timesteps where i acts. Thus, it suffices to focus on bidder i when bounding

the distance between these databases.

Consider a single good j, and suppose cj of i’s bids on good j differ between the histories.

Each of bidder i’s bids on j show up in log(nT ) databases, so

∑
|D0
j −D

1
j | ≤ cj lognT ,

where the sum is taken over all databases corresponding to good j. The same is true for

the halting condition counter: if there are c0 reports that differ between the histories, then

∑
|D0

0 −D
1
0 | ≤ c0 lognT .

Since we know that a bidder can bid at most T times over T proposing rounds, and will

report at most T times, we have `1 sensitivity bounded by

∆1 ≤ c0 lognT +
∑
j

cj lognT ≤ 2T lognT .

By Lemma 4.6.1, setting

ε0 =
ε

2T lognT

suffices for ε-differential privacy, and this is precisely running each Counter with privacy

level ε′ = ε/2T .
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CHAPTER 5

Jointly Private Convex Programming

5.1. Introduction

In Chapter 4, we provide an algorithm for computing approximately max-weight match-

ings under joint differential privacy. The algorithm implements an ascending price auc-

tion in a deferred-acceptance style, and also uses prices (which are the dual variables in

the matching problem) to coordinate the allocation. As a result, the techniques rather spe-

cific to matchings, which don’t easily generalize even to the k-demand allocation problem

(when agents have general preferences over bundles of k goods), and certainly not to gen-

eral convex optimization problems. In fact, simply solving the allocation problem beyond

gross substitutes valuations was stated as the main open problem in the original paper

by Hsu et al. [2014a]; our results solve this problem as a special case. Our algorithm also

yields approximate truthfulness, which is described in Chapter 6.

Our main contribution is a technique for solving a large family of convex optimization

problems under joint differential privacy. Concretely, consider any convex optimization

problem that can be written in the following separable form:

maximize
x

∑n
i=1 v

(i)(x(i)) + v(0)(x(0))

subject to x(i) ∈ S(i) (for all i)∑n
i=1 c

(i)
j (x(i)) + c(0)

j (x(0)) ≤ bj (for all j).

Here, x(i) denotes the variables that form agent i’s portion of the output, for i = 1, . . . ,n.

We also allow data for a special “agent 0” to model auxiliary variables and constraints that

don’t depend on private data. The functions {v(i)}i in the objective are concave, while the
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constraint functions {c(i)
j }i,j are convex; both can depend on the private data of agent i. The

compact and convex sets S(i) model the feasible region for a single agent; they are naturally

private data.

There are two types of constraints in the above convex program. The first type of con-

straints (x(i) ∈ S(i)) involves only the variables of a single agent (for example, the flow

conservation constraints between an agent’s private source and destination in the multi-

commodity flow problem). These are the “easy” constraints from a privacy perspective—if

these were the only kinds of constraints, then each agent could separately optimize her

own portion of the objective subject to these easy constraints. This is trivially jointly dif-

ferentially private: an agent’s output would be entirely independent of the other agents’

data.

The second type of constraints involves variables from different agents (for example, the

capacity constraints in multi-commodity flow, or resource constraints in multi-dimensional

knapsack). These constraints are the “hard” constraints from the perspective of privacy:

they couple different agents, forcing them to somehow coordinate their solution.

We give a general method for solving separable convex programs so that we approximately

optimize the objective and satisfy the constraints, subject to joint differential privacy:

Theorem 5.1.1 (Informal, some important parameters missing). There is an ε-jointly differ-

entially private algorithm which can solve linearly separable convex programs while (1) exactly

satisfying the personal constraints, (2) obtaining objective value at least OPT−α, and (3) guar-

anteeing that the sum violation over the k coupling constraints is at most

α ≈ Õ
(
kσ
ε

)
,

where σ is a measure of the sensitivity of the convex program. For packing problems, we can also

guarantee no violation of the coupling constraints at a small additional cost in the objective. For

a broad class of problems, we can also round to integral solutions with a small additional loss.
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Our technique is based on the dual decomposition method in distributed optimization.1

While the original motivation for such techniques was to solve large optimization prob-

lems on distributed networks of computers, distributed solvers are conceptually attractive

from a privacy standpoint: they solve problems with distributed data, while minimizing

communication between players.

Specifically, we construct a “partial Lagrangian” by bringing the hard (coupling) con-

straints into the objective, while leaving the easy (personal) constraints to constrain the

primal feasible region. Doing this leaves us with the following equivalent minimax prob-

lem:

minimize
λ≥0

maximize
x:x(i)∈S(i)

L(x,λ) :=
∑
i v

(i)(x(i))−
∑
j λj

(∑
i c

(i)
j (xi)− bj

)
.

This partial Lagrangian can be viewed as the payoff of zero-sum game between the pri-

mal player (the maximization player, controlling the x variables) and the dual player (the

minimization player, controlling the λ variables). Under this interpretation, equilibrium

strategies (x∗,λ∗) form the optimal primal and dual solutions. Further, approximate equi-

libria correspond to approximately optimal primal-dual solution pairs (in a sense we will

make precise).

Without privacy, a standard way to find an approximate equilibrium is via repeated play:

Repeatedly simulate play of the game, letting one player (for us, the dual player) update

his variables using a no-regret algorithm (for us, gradient descent), while letting the other

player (for us, the primal player) repeatedly best respond to his opponent’s actions. The

time averaged play of this simulation converges quickly to an approximate minimax equi-

librium of the game [Freund and Schapire, 1996].2

However, differential privacy—and joint differential privacy, in particular—complicates

this picture. First, the best response of the primal player is a candidate solution, whose

various components depend strongly on the private information of agents (say, their pri-

1See Boyd et al. [2011] for an overview of this and related techniques.
2Recall that we use the same result to construct DualQuery in Chapter 3.
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vate feasible region). Second, for the dual player to run a no-regret algorithm, she must

have access to the losses of the candidate solution. In our situation, this is the also private

information.

To get around these difficulties, we take advantage of the separable structure of convex

program. Crucially, the form of the Lagrangian allows us to compute a primal best re-

sponse by having each of the n agents best respond individually, without coordination:

Given the current dual variables λ(t)
j , agent i solves the problem

maximize
x(i)

v(i)(x(i))−
∑
j λ

(t)
j c

(i)
j (x(i))

subject to x(i) ∈ S(i),

which is an optimization problem that is independent of the private data of other players

j , i.

Due to the form of the Lagrangian, the combination of the individual agents’ best re-

sponses forms a primal best response in the optimization problem, and the time-averaged

strategies of individual agents form our near-optimal primal solution. Since each agent

i’s solution depends on the other agents’ data only through the dual player’s actions, a

standard argument shows that we can guarantee joint-differential privacy for the solution

by ensuring that the dual actions satisfy standard differential privacy. To privatize these

plays, we implement privacy preserving gradient descent, by adding Gaussian noise to the

gradient of the Lagrangian at each step.

5.1.1. Related Work

Distributed optimization techniques date back to the 1950s, with the original goal of solv-

ing large optimization problems with networks of computationally limited machines. The

area is very rich with mathematically elegant algorithms, many of which are used in prac-

tice today.
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The method we develop in this chapter is based on a simple technique called dual decom-

position. For a more comprehensive overview, the reader can consult the excellent survey

by Boyd et al. [2011].

In the previous chapter, we give an algorithm for computing approximately max-weight

matchings under joint differential privacy. The previous algorithm implements an ascend-

ing price auction in a deferred-acceptance style, and also uses prices (which are the dual

variables in the matching problem) to coordinate the allocation. The techniques in the

previous chapter is rather specific to matchings, which don’t easily generalize even to the

k-demand allocation problem (when agents have general preferences over bundles of k

goods), and certainly not to general convex optimization problems.

For related work in private optimization, Hsu et al. [2014b] consider how to solve various

classes of linear programs under (standard) differential privacy. Their work contains many

negative results because many natural linear programs cannot be solved under the stan-

dard differential privacy, while we give broadly positive results under the looser notion of

joint differential privacy. Nissim et al. [2007] consider combinatorial optimization prob-

lems, also under the standard constraint of differential privacy. Our work is also related

to private empirical risk minimization, which involves unconstrained convex minimization

subject to the standard differential privacy [Chaudhuri et al., 2011, Jain et al., 2011, Kifer

et al., 2012, Jain and Thakurta, 2014, Bassily et al., 2014]. Many of these papers use pri-

vacy preserving variants of gradient descent (and other optimization algorithms), which

we use as part of our algorithm.

5.2. Preliminaries

5.2.1. Zero-Sum Games and No-Regret Dynamics

We now present a continuous version of the no-regret dynamics for two-player zero sum

game. (Previously in Chapter 3, we present the version for normal form games, where the
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payoffs are given by a matrix.)

Consider a two-player zero-sum game with payoff function A : X ×Y → R. The maximiza-

tion player selects an action x ∈ X , with the goal of maximizing A(x,y). Simultaneously,

the minimization player selects an action y ∈ Y with the goal of minimizing A(x,y).

We will consider games such that:

• for all x,y ∈ X ×Y the payoff A(x,y) is bounded;

• X and Y are closed, compact, convex sets;

• fixing y ∈ Y , A(x,y) is a concave function in x; and

• fixing x ∈ X , A(x,y) is a convex function in y.

It is known that any such game has a value V : the maximization player has an action x∗ ∈ X

such that A(x∗, y) ≥ V for all y ∈ Y , and the minimization player has action y∗ such that

A(x,y∗) ≤ V for all x ∈ X [Kneser, 1952]. We can define approximate minimax equilibria of

such games as follows:

It is known that any such game has a value V : the maximization player has an action x∗ ∈ X

such that A(x∗, y) ≥ V for all y ∈ Y , and the minimization player has action y∗ such that

A(x,y∗) ≤ V for all x ∈ X [Kneser, 1952]. We can define approximate minimax equilibria of

such games as follows:

Definition 5.2.1. Let α ≥ 0. A pair of strategies x ∈ X and y ∈ Y form an α-approximate

minimax equilibrium if

A(x,y) ≥max
x′∈X

A(x′ , y)−α ≥ V −α and A(x,y) ≤min
y′∈Y

A(x,y′) +α ≤ V +α.

To compute an approximate minimax equilibrium, we will use the following T -round

no-regret dynamics: one player plays online gradient descent [Zinkevich, 2003] as an

93



no-regret algorithm, while the other player selects a best-response action in each round.

We will let the min player be the no-regret learner, who produces a sequence of actions

{y1, . . . , yT } against max player’s best responses {x1, . . . ,xT }. For each t ∈ [T ],

yt+1 = ΠY
[
yt − η · ∇yA(xt , yt)

]
and xt = argmax

x
A(x,yt),

where ΠY is the Euclidean projection map onto the set Y : miny′ ‖y−y′‖2, η is the step size.

In the end, denote the minimization player’s regret as

Ry ≡
1
T

T∑
t=1

A(xt , yt)−
1
T

min
y∈Y

T∑
t=1

A(xt , y).

Now consider the average actions for both players in this dynamics: x̄ = 1
T

∑T
t=1 xt and ȳ =

1
T

∑T
t=1 yt. Freund and Schapire [1996] showed that the average plays form an approximate

equilibrium:

Theorem 5.2.2 (Freund and Schapire [1996]). (x̄, ȳ) forms a Ry-approximate minimax equi-

librium.

In order to construct the approximate equilibrium privately, we also develop a noisy and

private version of the online gradient descent algorithm, described in the following sec-

tion.

5.2.2. Private Online Linear Optimization

In this section we consider a private version of the online linear optimization problem.

The techniques we use to solve this problem are relatively standard (and are similar to

solutions in e.g. Kearns et al. [2014] and Bassily et al. [2014]), but we work in a somewhat

different setting, so we provide proofs here for completeness.

The learner has action set P ⊂ Rk , and the adversary has action space X ⊂ [−X,X]k . Given

any action p of the learner, and action x of the adversary, the (linear) loss function for the
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learner is `(p,x) = 〈p,x〉. For any sequence of T actions from the adversary {x1, . . . ,xT }, the

learner’s goal is to minimize the regret defined as

RT =
1
T

T∑
t=1

〈pt ,xt〉 −min
p∈P

1
T

T∑
t=1

〈p,xt〉.

For privacy reason, the learner only get to observe noisy and private versions of the adver-

sary’s actions. In particular, we can think of the loss vectors over T rounds as a (T × k)-

dimensional statistics x = (x1, . . . ,xT ) some underlying sensitive population D. Suppose we

add noise sampled from the Gaussian distributionN (0,σ2) on every entry of x. We will de-

termine the scale of σ in the privacy analysis, and we will use the following concentration

bound of Gaussian distribution.

Fact 5.2.3 (Gaussian Tails). Let Y be a random variable sampled from the distributionN (0,σ2)

and a = ln2/(2π), then for all λ > 0

Pr[|Y | > λ] ≤ 2exp
(
−aλ2/σ2

)
.

Fact 5.2.4 (Gaussian Sums). Let Y1, . . . ,Yn be independent variables with distributionN (0,σ2).

Let Y =
∑
i Yi . Then, the random variable Y ∼N (0,nσ2), and so

Pr[|Y | > λ] ≤ 2exp
(
−aλ2/(nσ2)

)
.

Let {x̂t} be the noisy loss vectors. The learner will update the action pt using projected

gradient descent

pt+1 = ΠP [pt − ηx̂t] ,

where ΠP is the Euclidean projection map onto the set P : minp′ ‖p−p′‖2, η is the step size.

Before we show the regret bound for our noisy gradient descent, we here include the no-

regret result for standard online gradient descent (with no noise).
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Lemma 5.2.5 ([Zinkevich, 2003]). For any actions and losses space P and X , the gradient

descent algorithm: pt+1 = ΠP [pt − ηxt] has regret

RT ≤
‖P‖2

2ηT
+
η‖X‖2

2
.

We are now ready to show the following regret bound for this noisy gradient descent.

Theorem 5.2.6. Let ‖P‖ = maxp∈P ‖p‖ and ‖X‖2 = maxx∈X ‖x‖2, then with probability at least

1− β,

RT =O
(
‖P‖2

√
k

√
T

(
X + σ log

(
T k
β

)))
.

Proof. Let νt denote the noise vector we have in round t, we can decompose the regret into

several parts

RT =
1
T

T∑
t=1

〈pt ,xt〉 −
1
T

min
p∈P

T∑
t=1

〈p,xt〉

=
1
T

T∑
t=1

〈pt , x̂t〉 −
1
T

T∑
t=1

〈pt ,νt〉 −
1
T

min
p∈P

T∑
t=1

〈p,xt〉 −min
p̂∈P

T∑
t=1

〈p̂, x̂t〉

− 1
T

min
p̂∈P

T∑
t=1

〈p̂, x̂t〉

=

 1
T

T∑
t=1

〈pt , x̂t〉 −
1
T

min
p̂∈P

T∑
t=1

〈p̂, x̂t〉

− 1
T

T∑
t=1

〈pt ,νt〉 −
1
T

min
p∈P

T∑
t=1

〈p,xt〉 −min
p̂∈P

T∑
t=1

〈p̂, x̂t〉


= R̂T −

1
T

T∑
t=1

〈pt ,νt〉 −
1
T

min
p∈P

T∑
t=1

〈p,xt〉 −min
p̂∈P

T∑
t=1

〈p̂, x̂t〉


≤ R̂T −

1
T

min
p∈P

T∑
t=1

〈p,νt〉 −
1
T

min
p∈P

T∑
t=1

〈p,xt〉 −min
p̂∈P

T∑
t=1

〈p̂, x̂t〉

 .
We will bound the three terms separately. By the no-regret guarantee of online gradient

descent in Lemma 5.2.5, we have the following the regret guarantee w.r.t the noisy losses

if we set η = ‖P‖√
T ‖X̂ ‖

R̂T =
1
T

T∑
t=1

〈pt , x̂t〉 −min
p∈P

1
T

T∑
t=1

〈p, x̂t〉 ≤
‖P‖2

2ηT
+
η‖X̂ ‖2

2
=
‖P‖‖X̂ ‖
√
T

,
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where ‖P‖ and ‖X̂ ‖ denote the bound on the `2 norm of the vectors {pt} and {x̂t} respec-

tively.

Recall that for any random variable Y sampled from the Gaussian distribution N (0,σ2),

we know from Fact 5.2.3

Pr[|Y | ≥ d · σ ] ≤ 2exp(−ad2).

For each noise vector νt and any coordinate i, we have with probability except β/T k that

|νt(i)| ≤ σ
√

1
a · log

(
2T k
β

)
. By union bound, we have with probability except β that

max
t

max
i
|νt(i)| ≤ σ

√
1
a
· log

(
2T k
β

)
and so for all t, ‖νt‖2 ≤ σ

√
k
a
· log

(
2T k
β

)

Since x̂t = xt + νt, we know that

‖X̂ ‖ ≤
√
k

X + σ

√
1
a
· log

(
2T k
β

) .
Now we bound the second and third term. From Fact 5.2.4, we know with probability at

least 1− β/k, for each coordinate i,

∑
t

νt(i) ≤ σ

√
T
a
· log

(
2k
β

)
.

By a union bound, we know with probability at least 1− β

∥∥∥∥∥∥∥∑t νt/T
∥∥∥∥∥∥∥∞ ≤

√
σ2

a log(k/β)
√
T

and so

∥∥∥∥∥∥∥∑t νt/T
∥∥∥∥∥∥∥

2

≤

√
kσ2

a log(k/β)
√
T

.

Now we could use Holder’s inequality to bound the second term

− 1
T

min
p∈P

T∑
t=1

〈p,νt〉 ≤

∣∣∣∣∣∣∣min
p∈P
〈p,

T∑
t=1

νt/T 〉

∣∣∣∣∣∣∣ ≤ ‖P‖
√
kσ2 log(k/β)
√
aT

.
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Let p∗ ∈ argminp∈P
∑T
t=1〈p,xt〉 and p̂∗ ∈ argminp̂∈P

∑T
t=1〈p̂, x̂t〉. We can rewrite the third

term as

− 1
T

min
p∈P

T∑
t=1

〈p,xt〉 −min
p∈P

T∑
t=1

〈p̂, x̂t〉

 = −〈p∗,
∑
t

xt/T 〉+ 〈p̂∗,
∑
t

x̂t/T 〉

= −〈p∗,
∑
t

x̂t/T 〉+ 〈p̂∗,
∑
t

x̂t/T 〉 −
〈
p∗,

1
T

∑
t

xt −
∑
t

x̂t

〉
(Holder’s inequality) ≤ 〈p∗, 1

T

∑
t

(νt)〉 ≤ ‖P‖
√
kσ2 log(k/β)
√
aT

.

In the end, we have that

RT ≤
‖P‖
√
k

√
T


X + σ

√
1
a
· log

(
2T k
β

)+ 2

√
σ2 log(k/β)
√
a


≤ ‖P‖

√
k

√
T

X + 2σ

√
1
a
· log

(
2T k
β

)
=
‖P‖
√
k

√
T

X +
(√

8π
log2

)
σ

√
log

(
2T k
β

)
=O

(
‖P‖
√
k

√
T

(
X + σ log

(
T k
β

)))
.

This completes the proof.

5.3. Private Dual Decomposition

Let’s consider the electricity scheduling problem, which will be our running example as

we present our algorithm. Suppose we have n agents, who need power for T intervals.

Each interval is subdivided into Q slots, and agents have different valuations v ∈ [0,1] for

different slots. There is a maximum amount of electricity c available for each (interval,

slot) pair. Finally, agents demand some total amount of electricity dt ∈ [0,Q] during each

interval, and at most dmax in total over all intervals. The demand may be zero for some

intervals, say, if the agent is not home. Translating the description in the introduction, we

98



have the following linear program:

maximize
n∑
i=1

T∑
t=1

Q∑
q=1

v
(i)
tq x

(i)
tq

subject to
n∑
i=1

x
(i)
tq ≤ ctq (for t ∈ [T ],q ∈ [Q])

Q∑
q=1

x
(i)
tq ≥ d

(i)
t ,

Q∑
q=1

T∑
t=1

x
(i)
tq ≤ dmax, and x

(i)
tq ∈ [0,1] (for i ∈ [n], t ∈ [T ],q ∈ [Q]) .

We consider each agent’s valuations v(i) and demands d(i) to be private. Agent i will receive

variables x(i), which indicate when she is getting electricity. With this in mind, notice

that this LP has a particularly nice structure: the objective and first constraints are sums

of terms that (term by term) depend only a single agent’s data and variables, while the

second constraints only constrain a single agent’s data. This LP is an instance of what we

call linearly separable convex programs.

Definition 5.3.1. Let the data universe be X , and suppose there are n individuals. We map

each database D ∈ X n to a linearly separable convex optimization problem O, which consists

of the following data: for each agent i,

• a compact convex set S(i) ⊆ Rl ,

• a concave objective function v(i) : S(i)→ R,

• and k convex constraint functions c(i)
j : S(i)→ R (indexed by j = 1 . . . k);

all defined by Di . O also includes the following data, independent of D:

• a compact convex set S(0) ⊆ Rl ,

• a concave objective function v(0) : S(0)→ R,

• k convex constraint functions c(0)
j : S(0)→ R (indexed by j = 1 . . . k),
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• and a vector b ∈ Rk .

The convex optimization problem is:

maximize
n∑
i=0

v(i)(x(i))

subject to
n∑
i=0

c
(i)
j (x(i)) ≤ bj (for j = 1 . . . k)

x(i) ∈ S(i) (for i = 0 . . .n).

We call the set of all such optimization problems the class of problems associated to X or

simply a class of problems, if X is unimportant.

Intuitively, the variables, objective, and constraints indexed by i belong to agent i for i ∈

{1, . . . ,n}. The constraints and variables for i = 0 are shared—it is sometimes useful to have

auxiliary variables in a convex program that do not correspond to any player’s part of the

solution. We call the first kind of constraints the coupling constraints, since they involve

multiple agents’ variables and data. We call the second kind of constraints the personal

constraints, since they only involve a single agent’s variables and data. We write S = S(0) ×

· · · × S(n) for the portion of the feasible region defined only by the personal constraints.

Example 5.3.2. The coupling constraints are the power supply constraints on each time slot,

and the personal constraints are the agent’s demand constraints for different intervals.

5.3.1. Algorithm

To solve the convex program, we will work extensively with the Lagrangian:

L(x,λ) =
n∑
i=0

v(i)(x(i))−
k∑
j=1

λj

 n∑
i=0

c
(i)
j (x(i))− bj

 .

For clarity of presentation, we will assume in the following that our optimization problems
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are feasible and that the strong duality condition holds, i.e.,

max
x∈S

min
λ∈Rk+
L(x,λ) = min

λ∈Rk+
max
x∈S
L(x,λ).

If our problems are not even approximately feasible, this will be easy to detect, and the

assumption that strong duality holds is without loss of generality in our setting, since our

goal is only to approximately satisfy the coupling constraints.3

We will interpret the Lagrangian objective as the payoff function of a zero-sum game be-

tween a primal player (controlling the x variables), and a dual player (controlling the λ

variables). We will privately construct an approximate equilibrium of this game by simu-

lating repeated play of the game. At each step, the primal player will best-respond to the

dual player by finding x maximizing the Lagrangian subject to the dual player’s λ. The

dual player in turn will run a no-regret algorithm to update the λ variables, using losses

defined by the primal player’s choice of x. By a standard result about repeated play Theo-

rem 5.2.2, the average of each player’s actions converges to an approximate equilibrium.

We will first detail how to privately construct this approximate equilibrium. Then, we

will show that an approximate equilibrium is an approximately optimal primal-dual pair

for the original problem; in particular, the primal player’s point will be approximately

feasible and optimal. Throughout, let the problem be O = (S,v,c,b).

Remark 5.3.3. Before we begin, we want to clarify one point. We will sometimes say “Agent i

plays . . . ” or “Agent i solves . . . ”. These descriptions sound natural, but are slightly misleading:

Our algorithms will not be online or interactive in any sense, and all computation is done by

our algorithm, not by the agents. Agents will submit their private data, and will receive a single

output. Our algorithm will simulate the agent’s behavior, be it selecting actions to play, or

solving smaller optimization problems, or rounding.

3Strong duality is guaranteed in particular by Slater’s condition [Slater, 1950]: there exists some point x ∈ S
such that for all j ∈ [k],

∑n
i=0 c

(i)
j (x) < bj . If this is not already the case, it can be guaranteed by simply relaxing

our constraints by a tiny amount. Since our solutions will already only approximately satisfy the coupling
constraints, this is without loss.
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Let’s start with the primal player’s best-response. Rewriting the Lagrangian and fixing λ,

at each round, the primal player plays

argmax
x∈S

L(x) =
n∑
i=0

v(i)(x(i))−
k∑
j=1

λjc
(i)
j (x(i))

+
k∑
j=1

λjbj , (5.1)

which can be computed by solving

x(i) ∈ BR(i)
(
O, {λj}

)
:= argmax

x∈S(i)

v(i)(x)−
k∑
j=1

λjc
(i)
j (x)


independently for each agent i, and combining the solutions to let x := (x(1), . . . ,x(n)).

For the dual player, we will use the online gradient descent algorithm due to Zinkevich

[2003] for a suitably chosen target set Λ, together with noise addition to guarantee differ-

ential privacy. At each time step we feed in a perturbed version of the loss vector l ∈ Rk

defined to be the gradient of the Lagrangian with respect to λ:

lj :=
∂L
∂λj

=
n∑
i=0

c
(i)
j (x(i))− bj .

To obtain privacy properties, we further add Gaussian noise the to above gradient and

update the dual variables according to the noisy gradients.

Putting everything together, our algorithm Private Dual Decomposition (PrivDude) pre-

sented in Algorithm 8 solves linearly separable convex programs under joint differential

privacy.

5.3.2. Privacy

Next, we establish the privacy properties of PrivDude. We will first argue that the dual

variables λ satisfy (standard) differential privacy, because the algorithm adds Gaussian
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Algorithm 8 Joint Differentially Private Convex Solver: PrivDude(O,σ ,τ,w,ε,δ,β)
Input: Convex problem O = (S,v,c,b) with n agents and k coupling constraints, gradient
sensitivity bounded by σ , a dual bound τ , width bounded by w, and privacy parameters
ε > 0,δ ∈ (0,1), confidence parameter β ∈ (0,1).
Initialize:

λ
(1)
j := 0 for j ∈ [k], T := w2, ε′ :=

εσ√
8T ln(2/δ)

, δ′ :=
δ

2T
,

η :=
2τ

√
T
(
w+ 1

ε′ log
(
T k
β

)) , Λ := {λ ∈ Rk+ | ‖λ‖∞ ≤ 2τ}.

for iteration t = 1 . . .T
for each agent i = 0 . . .n

Compute personal best response:

x
(i)
t := argmax

x∈S(i)

v(i)(x)−
k∑
j=1

λ
(t)
j c

(i)(x).

for each constraint j = 1 . . . k
Compute noisy gradient:

ˆ̀(t)
j :=

 n∑
i=0

c(i)(x(i)
t )

− bj +N
(
0,

2σ2 log(1.25/δ′)
ε′2

)
,

Do gradient descent update:

λ(t+1) := ΠΛ

(
λ(t) + η ˆ̀(t)

)
.

Output: x̄(0) := 1
T

∑T
t=1 x

(0)
t and λ̄ := 1

T

∑T
t=1λ

(t) to everyone, x̄(i) := 1
T

∑T
t=1 x

(i)
t to agents

i ∈ [n] .
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noise to the gradients. Then, we will argue that the primal solution satisfies joint differen-

tial privacy, because each agent’s best-response depends only on her own private data and

the dual variables.

First, we define neighboring convex problems.

Definition 5.3.4. Let D,D ′ ∈ X n be two neighboring databases. We say the associated convex

programs O,O′ are neighboring problems.

By looking at how much the gradient lj may change in neighboring instances, we can

determine how much noise to add to ensure differential privacy.

Definition 5.3.5. A problem O has gradient sensitivity bounded by σ if

max
k∑
j=1

∣∣∣∣c(i)
j (x(i))− c′(i)j (x′(i))

∣∣∣∣2 ≤ σ2,

where the maximum is taken over agents i, dual variables {λj} ⊆ Rk+, neighboring problems O

and O′, and

x(i) ∈ BR(i)
(
O, {λj}

)
and x′(i) ∈ BR(i)

(
O′ , {λj}

)
.

Example 5.3.6. We can bound the gradient sensitivity of the electricity scheduling LP. By chang-

ing her private data, an agent may change her demand vector by at most dmax in each of T time

slots. Since the coupling constraints are simply the total demand over all agents for each time

slot, the gradient sensitivity is at most σ = 2
√
dmax.

The gradient sensitivity σ is the key parameter for guaranteeing privacy. By definition,

it is a bound on the `2 sensitivity of the gradient vector l. By Theorem 2.3.2, releasing

the noisy vector l̂ by adding independent Gaussian noise drawn from the distribution

N (0,2σ2 log(1.25/δ)/ε2) to each coordinate satisfies (ε,δ)-(standard) differential privacy.

Thus, the following theorem shows privacy of the dual variables in PrivDude.

Theorem 5.3.7. Let ε > 0,δ ∈ (0,1/2) be given. The sequence of dual variables λ(1), . . . ,λ(T ) and

the public variables x(0)
1 , . . . ,x

(0)
T produced by PrivDude satisfy (ε,δ)-differential privacy.

104



Proof. By Theorem 2.3.2 and Theorem 2.2.4.

To show joint differential privacy of the primal variables, note that agent i’s best response

function BR(i)(O, {λj}) (defined in Equation (5.1)) is a function of i’s personal data and the

current dual variables λj , which satisfy standard differential privacy by Theorem 5.3.7.

So, we can use the billboard lemma (Lemma 4.3.2) to show the sequence of best-responses

satisfies joint-differential privacy.

Theorem 5.3.8. Let ε > 0,δ ∈ (0,1/2) be given. Releasing the sequence of private variables

x
(i)
1 . . .x

(i)
T to agent i satisfies (ε,δ)-joint differential privacy.

Proof. By Theorem 5.3.7 and Lemma 4.3.2.

5.3.3. Accuracy

Now, let us turn to accuracy. We first argue that the exact equilibrium of the game in which

we restrict the dual player’s strategy space corresponds to an optimal primal-dual pair for

the original game. While the original game allows the dual variables to lie anywhere in Rk+,

we need to restrict the dual action space to a bounded subset Λ, in order to use gradient

descent. We first show that if Λ is a large enough set, restricting the dual player to play

in Λ will not change the equilibrium strategy and value of the game. We next show that

PrivDude computes an approximate equilibrium of the Lagrangian game. Finally, we show

that the approximate equilibrium strategy of the primal player must be an approximately

feasible and optimal point of the original convex program.

For the first step, we observe that the optimal primal and dual solutions (x∗,λ∗) achieve the

value of the unrestricted game, which is the optimal objective value OPT of the original

convex program.

Lemma 5.3.9. Let (x∗,λ∗) achieve

argmax
λ∈Rk+

min
x∈S
L(x,λ).
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Then,

• x∗ is a feasible solution to the original convex program, and

• L(x∗,λ∗) = OPT, the optimal objective value of the original convex program.

Proof. Follows directly from strong duality of the convex problem.

We now reason about the restricted game, in which the dual player plays in a subset Λ ⊆ Rk+.

We first define a key parameter for the accuracy analysis, which measures how much the

objective can be improved beyond OPT by infeasible solutions, as a function of how much

the infeasible solution violates the constraints.

Definition 5.3.10. Consider all instances O = (S,v,c,b) in a class of problems. We call τ > 0 a

dual bound for the class if for all δ ≥ 0, i, and x ∈ S such that

n∑
i=0

k∑
j=1

(
c

(i)
j (x(i))− bj

)
+
≤ δ, we have

n∑
i=0

v(i)(x(i)) ≤OPT(O) + τδ,

where OPT(O) is the optimum objective for O. (We will frequently elide O, and just say OPT

when the convex program is clear.)

Example 5.3.11. The coupling constraints are power supply constraints. Violating these con-

straints by δ in total will increase the objective by at most δvmax ≤ δ, so τ = 1 is a dual bound

for this problem.

Intuitively, the dual bound indicates how much the objective can increase beyond the op-

timal value by slightly violating the feasibility constraints. It will control how large the

dual action space must be, in order to discourage the primal player from playing an infea-

sible point at equilibrium. More precisely, we can show that the game with dual actions

restricted to Λ still has the optimal and feasible point as the equilibrium strategy for the

primal player, if Λ is large enough.

Lemma 5.3.12. Suppose τ is a dual bound for a class of convex optimization problems. Then
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if we restrict the dual action space to be Λ = {λ ∈ Rk+ | ‖λ‖2 ≤ 2τ
√
k}, there is a dual strategy

λ• ∈Λ such that (x∗,λ•) is an equilibrium of the restricted game.

Proof. By strong duality, there exists (x∗,λ∗) an equilibrium of the Lagrangian game with

value OPT. Played against any strategy in Λ, x∗ gets value at least OPT since it is an

optimal, feasible solution of the convex program. We first show that restricting the dual

player’s action set to Λ leaves the value of the game at OPT.

Consider any other primal action x. If it doesn’t violate any coupling constraints, then the

dual player can set all dual variables to 0. Thus, x has payoff at most OPT in the worst case

over all dual player strategies in Λ.

On the other hand, suppose x violates some constraints:

δ :=
k∑
j=1

 n∑
i=0

c
(i)
j (x(i))− bj


+

> 0.

We can construct a dual player action λ′ ∈ Λ to give the primal player payoff strictly less

than OPT:

1. For constraints j where x violates the constraints

n∑
i=0

c
(i)
j (x(i)) > bj ,

set λ′j = 2τ .

2. For constraints j where x satisfies the constraint:

n∑
i=0

c
(i)
j (x(i)) ≤ bj ,

set λ′j = 0.

Note that λ′ is a valid dual action in the restricted game, since λ′ ∈ Λ. Now, let’s bound
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the payoff L(x,λ′) by comparing it to L(x∗,λ∗). By assumption, the objective term increases

by at most τδ. While L(x∗,λ∗) has no penalty since all constraints are satisfied, L(x,λ′) has

penalty 2τδ since there is δ total constraint violation. Thus,

L(x,λ′) ≤ L(x∗,λ∗)− 2τδ+ τδ <OPT .

Thus, any infeasible x gets payoff at most OPT in the worst case over dual strategies Λ.

Since x∗ is a primal play achieving payoff OPT, the value of the game must be exactly OPT.

In particular, x∗ is a maxmin strategy.

Now, since the primal player and the dual player play in compact sets S,Λ, the minmax

theorem [Kneser, 1952] states that the restricted game has an equilibrium (x•,λ•). Thus,

λ• ∈Λ is a minmax strategy, and (x∗,λ•) is the claimed equilibrium.

In the remainder, we will always work with the restricted game: the dual player will have

action set Λ = {λ ∈ Rk+ | ‖λ‖2 ≤ 2τ
√
k}.

To show that PrivDude computes an approximate equilibrium, we want to use the no-regret

guarantee Theorem 5.2.6. We define the second key parameter for accuracy.

Definition 5.3.13. Consider all problem instances O = (S,v,c,b) for a class of convex optimiza-

tion problems. The class has width bounded by w if

max

∣∣∣∣∣∣∣
n∑
i=0

c
(i)
j (x(i))− bj

∣∣∣∣∣∣∣ ≤ w,
where the max is taken over all instances O, and coupling constraint j, and x ∈ S.

Example 5.3.14. The coupling constraints are of the form

n∑
i=1

x
(i)
tq ≤ ctq,

and the x variables lie in [0,dmax]. Let cmax = maxt,q ctq be the maximum capacity over all slots.
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If we assume there are a large number of agents so ndmax � cmax, then the width is bounded by

w = ndmax.

The width controls how fast online gradient descent converges. However, although the

convergence time depends polynomially onw, our accuracy bound depends only on log(w).

Applying Theorem 5.2.6 gives the following regret guarantee for the dual player.

Lemma 5.3.15. Suppose w is the width for a class of convex optimization problems. Then with

probability at least 1 − β, running PrivDude for T = w2 iterations yields a sequence of dual

plays λ(1), . . . ,λ(T ) ∈ Λ with regret Rp to any point in Λ, against the sequence of best responses

x1, . . . ,xT , where

Rp =O
(
kτσ log1/2(w/δ)

ε
log

wk
β

)
.

As above, σ is the gradient sensitivity and τ is the dual bound.

Proof. We add Gaussian noise with variance

2σ2 log(1.25T /δ)
ε′2

to each gradient, where

ε′ =
ε√

8kT log(1/δ)
.

Furthermore, the target space Λ has `2 diameter 2τ
√
k. So by Theorem 5.2.6, the regret to

the sequence of unnoised best responses x1, . . . ,xT is at most

Rp ≤
τ
√
k

√
T

w+ 4

√
π log(1.25T /δ)

log2
σ
ε′

log
(

2T k
β

)
≤ τ
√
k

(
1 +

20σ
√

8k
ε

log
(

2T k
β

)
log1/2

(T
δ

))
≤ 40

√
8kτσ
ε

log
(

2w2k
β

)
log1/2

(
w2

δ

)
=O

(
kτσ
ε

log
wk
β

log1/2 w
δ

)
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as desired.

By applying Theorem 5.2.2, we immediately know that PrivDude computes an approxi-

mate equilibrium.

Corollary 5.3.16. With probability at least 1 − β, the output (x̄, λ̄) of PrivDude is an Rp-

approximate equilibrium for

Rp =O
(
kτσ log1/2(w/δ)

ε
log

wk
β

)
.

Finally, we show that PrivDude generates an approximately feasible and optimal point.

For feasibility, the intuition is simple: since the dual player can decrease the Lagrangian

value by putting weight 2τ on every violated constraint, there can’t be too many violated

constraints: x̄ is an approximate equilibrium strategy for the primal player, and hence

achieves nearly OPT even against a best response from the dual player.

Proving approximate optimality is similar. We think of the primal player as deriving pay-

off in two ways: from the original objective, and from any over-satisfied constraints with

positive dual variable. The dual player can always set the dual variables for over-satisfied

constraints to zero and decrease the Lagrangian value. If the primal player derives large

payoff from these over-satisfied constraints, then the best response by the dual player will

substantially reduce the payoff of the primal player and lead to a contradiction with the

approximate maxmin condition. More formally, we have the following theorem.

Theorem 5.3.17. Suppose a convex program O = (S,v,c,b) has width bounded by w and gra-

dient sensitivity bounded by σ , and dual bound τ . With probability at least 1 − β, PrivDude

produces a point x̄ ∈ S such that:

• the total violation of coupling constraints is bounded by

k∑
j=1

n∑
i=0

(
c

(i)
j (x̄(i))− bj

)
+

=O
(
kσ log1/2(w/δ)

ε
log

wk
β

)
, and
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• the objective satisfies

n∑
i=0

v(i)(x̄(i)) ≥OPT−α, for α = 2Rp =O
(
kτσ log1/2(w/δ)

ε
log

wk
β

)
.

Proof. By Lemma 5.3.15, PrivDude computes an Rp approximate equilibrium (x̄, λ̄) with

Rp =O
(
kτσ log1/2(w/δ)

ε
log

wk
β

)
,

with probability at least 1− β.

Let us consider first consider feasibility. Since S is convex and each best response lies in S,

x̄ ∈ S. Suppose x̄ violates the coupling constraints by

∆1 :=
k∑
j=1

 n∑
i=0

c(i)(x̄(i))− bj


+

.

Define λ′ ∈Λ as

λ′ =


2τ if

∑n
i=0 c

(i)(x̄(i)) > bj

0 otherwise.

Let’s compare the payoff L(x̄, λ̄) to L(x̄,λ′). By the equilibrium property, we have

OPT−Rp ≤ L(x̄, λ̄) ≤OPT+Rp

and

L(x̄,λ′) ≥OPT−2Rp. (5.2)

For L(x̄,λ′), since the dual bound is τ , we know

n∑
i=0

v(i)(x̄(i)) ≤OPT+τ∆1.
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At the same time, the penalty is at least

k∑
j=1

λ′j

 n∑
i=0

c
(i)
j (x̄(i))− bj

 ≥ 2τ∆1.

So,

L(x̄,λ′) ≤OPT−τ∆1

and by Equation (5.2),

∆1 ≤
2Rp
τ

=O
(
kσ log1/2(w/δ)

ε
log

wk
β

)

as desired.

To show optimality, let the convex program have optimal objective OPT. Suppose x̄ has

objective value:
n∑
i=0

v(i)(x̄(i)) = OPT−α.

and say the penalty against λ̄ is

ρ =
k∑
j=1

λ̄j

 n∑
i=0

c
(i)
j (x̄(i))− bj


for total Lagrangian value L(x̄, λ̄) = OPT−α − ρ. Consider the deviation of the dual vari-

ables λ′ ∈Λ:

λ′j =


0 if coupling constraint j loose

λ̄j otherwise.

Then L(x̄,λ′) = OPT−α. But since (x̄, λ̄) is an Rp-approximate equilibrium,

L(x̄,λ′) ≥OPT−2Rp

so α ≤ 2Rp as desired.
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Remark 5.3.18. We stress that Theorem 5.3.17 bounds the sum of the violations over all cou-

pling constraints. In Section 5.5, we discuss how to modify the solution to instead give a stronger

bound on the maximum violation over any coupling constraint at a small cost to the objective

value.

Applying Theorem 5.3.17 to the electricity scheduling LP, we immediately have the fol-

lowing result.

Corollary 5.3.19. With probability at least 1 − β, PrivDude run on the electricity scheduling

LP produces an electricity schedule x̄ that

• satisfies all demand constraints exactly,

• exceeds the power supply constraints by

O

QT√
dmax log(ndmax/δ)

ε
log

ndmaxTQ
β


in total, over all time slots, and

• achieves welfare at least OPT−α for

α =O

QT√
dmax log(ndmax/δ)

ε
log

ndmaxTQ
β

 ,
where OPT the optimal objective value.

5.4. Examples

In this section, we illustrate the general bounds for PrivDude by instantiating them on

several example problems. For each example, we present the problem description and

the relevant parameters (gradient sensitivity, dual bounds, and width), and then state the

guarantee we get on the quality of the solution produced by PrivDude.

While some examples are combinatorial optimization problems, our instantiations of PrivDude
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Problems
Relevant
Parameters

Welfare / Cost
(OPT±)

Constraint
Violation

d-demand
Allocation

d: max bundle size;
k: # goods

Õ (kd/ε) Õ (kd/ε)

Multi-commodity
Flow

L: longest path;
m: # edges

Õ
(
m
√
L/ε

)
Õ

(
m
√
L/ε

)
Multi-dimensional
Knapsack

vi : value; {wij}: weights
k: # resources

Õ
(
k3/2 maxi,j

vi
wij
/ε

)
Õ

(
k3/2/ε

)
Allocation with
shared resources

m: # projects; k: # resources
d: # resources a project needs

Õ
(
md3/2/ε

)
Õ

(
md3/2/ε

)
Aggregative Games
Equilibrium LP

k: dimension of aggregator;
γ : sensitivity of aggregator

N/A Õ
(
k3/2γ/ε

)
Table 2: Instantiations of PrivDude to different optimization problems.

only produce fractional solutions. To simplify the presentation, we will not discuss round-

ing techniques here. In Section 5.5, we present a extension of PrivDude to privately round

the fractional solution with a small additional loss.

5.4.1. The d-Demand Allocation Problem

Consider a market with n agents, a collection of goods G of k different types, and let sj be

the supply of good j. We assume that the agents have d-demand valuations over bundles of

goods, i.e., they demand bundles of size no more than d. Let B = {S ⊆ G | |S | ≤ d} denote

the set of all bundles with size no more than d. For each S ∈ B and i ∈ [n], we write v(i)(S)

to denote agent i’s valuation on S; we assume that v(i)(S) ∈ [0,1]. We are interested in

computing a welfare-maximizing allocation:

maximize
n∑
i=1

∑
S∈B

v(i)(S) · x(i)(S)

subject to
n∑
i=1

∑
S3j

x(i)(S) ≤ sj (for j ∈ [k])

∑
S⊆B

x(i)(S) ≤ 1, x(i)(S) ≥ 0 (for i ∈ [n],S ∈ B).
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The private data lies in agents’ valuations over the bundles, and two problem instances are

neighboring if they differ by any agent i’s valuations. Since each agent demands at most d

items, the gradient sensitivity σ is at most
√

2d, and the width is bounded by nd. Also, the

problem has a dual bound τ = 1, as each agent’s valuation is bounded by 1.

Corollary 5.4.1. With probability at least 1−β, PrivDude(·,
√

2d,1,nd,ε,δ,β) computes a frac-

tional allocation x̄ such that the total supply violation is bounded by

α =O
(
kd log1/2(nd/δ)

ε
log

ndk
β

)
with welfare

n∑
i=1

∑
S⊆G

v(i)(S)·x̄(i)(S) ≥OPT−τα = OPT−α.

Note that the average violation per good is Õ(d/ε). See Section 5.5 for a method that solves

this problem with no constraint violations, at a small cost to the objective.

Remark 5.4.2. Our result gives an affirmative answer to the open problem posed by Hsu et al.

[2014a] (Chapter 4): can the allocation problem be solved privately for more general valuation

functions beyond the class of gross substitutes (GS)? Our welfare and supply violation bounds

are incomparable with the ones in their work, which assume GS valuations. For a detailed

discussion, see Section 5.5.

Note that there are exponentially many primal variables (in d), but our error bound is inde-

pendent of the number of variables. Moreover, we can implement PrivDude efficiently given

a demand oracle for each player, which, for any given item prices {λj}, returns a bundle

B ∈ argmaxS∈B(v(i)(S)−
∑
j∈S λj ) for each agent i.

5.4.2. Multi-Commodity Flow

While a broad class of combinatorial problems are instantiations of the d-demand al-

location problem, some problems have special structure and more compact representa-

tions. For example, consider the following multi-commodity flow problem over a network

G(V ,E). There arem edges and n agents, and each agent needs to route 1 unit of flow from

its source si to its destination ti . We assume that for any agent i, any path from si to ti has

length bounded by L. For each edge e ∈ E, there is an associated cost c(i)
e if an agent i uses

115



that edge, and we assume that c(i)
e ∈ [0,1] for all e and i. Also, each edge e has a capacity

constraint: the amount of flow on edge e should be no more than qe. The problem can be

written as the following LP:

minimize
n∑
i=1

∑
e∈E

c
(i)
e · x

(i)
e

subject to
n∑
i=1

x
(i)
e ≤ qe (for each e ∈ E)

x(i) forms a (si , ti)-flow (for each i ∈ [n]).

The private data lies in each agent’s costs on the edges and its source and destination. Since

each agent only routes 1 unit of flow, the gradient sensitivity of the problem is bounded

by σ =
√

2L.

The problem has a dual bound τ = 1, and its width is bounded by n.

Corollary 5.4.3. With probability at least 1 − β, PrivDude(·,
√

2L,1,n,ε,δ,β) computes a frac-

tional flow x̄ such that the total capacity violation is bounded by

α =O
(
m
√
L log1/2(n/δ)

ε
log

nm
β

)
,

and the resulting fractional flow has total cost at most OPT+ατ = OPT+α.

Note again that this is the total violation summed over all edges. The average violation per

edge is smaller by a factor of m: Õ(
√
L/ε). See Section 5.5 for a method that solves this

problem with no constraint violations, at a small cost to the objective.

5.4.3. Multi-Dimensional Knapsack

In a multi-dimensional knapsack problem, there are a set of n items with values vi ∈ [0,1]

and k different resources with capacities ci > 0. Each item i requires an amount wij ∈ [0,1]

of each resource j. The goal is to select a subset of items to maximize the sum value while
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satisfying the resource constraints:

maximize
n∑
i=1

∑
e∈E

vi · x(i)

subject to
n∑
i=1

wij x
(i) ≤ cj (for each j ∈ [k])

x(i) ∈ [0,1] (for each i ∈ [n]).

Each agent’s private data consists of both the value of her job vi and its resource demands

{wij}. The gradient sensitivity is bounded by σ =
√
k, because each item can consume at

most 1 unit of each resource. The problem has a dual bound τ = maxi,j
vi
wij

, and the width

is bounded by n.

Corollary 5.4.4. With probability at least 1 − β, PrivDude(·,
√
k,1,n,ε,δ,β) computes a frac-

tional assignment such that the total violation in the resource constraints is bounded by

α =O

k√k log1/2(n/δ)
ε

log
nk
β

 ,
and has total profit at least

OPT−τα = OPT−α ·max
i,j

vi
wij

.

5.4.4. Allocations with Shared Resources

We now give an example with auxiliary decision variables that are not associated with

private data. Suppose we have n agents, m projects, and k different resources. Each agent i

has private valuations {vij} over the projects. Each project requires a set of resources in Rj ,

but the resources can be shared between different projects. A unit of resource r has cost cr ,

and for any project j with ej enrolled agents, we require at least ej units of resources r for

every r ∈ Rj . We also assume that each project requires at most d distinct resources, and so

the number of coupling constraints is bounded bymd. We further assume that vij , cr ∈ [0,1]

for all i, j and r. Our goal is to match people to projects so that the welfare of the agents
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minus the total cost of the resources is maximized, as illustrated by the following linear

program:

maximize
n∑
i=1

m∑
j=1

vij xij −
k∑
r=1

cr yr

subject to
n∑
i=1

xij ≤ yr (for j ∈ [k] and r ∈ Rj )

k∑
j=1

xij ≤ 1, xij ≥ 0 (for i ∈ [n], j ∈ [k]).

The private data lies in the valuations of the agents over the projects, and two problem in-

stances are neighboring if they only differ in some agent i’s preferences over the projects.

To fit this problem into our general framework, we interpret the variables {yr} as the “pub-

lic” variables, controlled by “agent 0”. The gradient sensitivity is bounded by σ =
√

2d.

The problem has a dual bound τ = 1, and the width of the problem is bounded by w = n.

Corollary 5.4.5. With probability at least 1 − β, PrivDude(·,
√

2d,1,n,ε,δ,β) computes a frac-

tional allocation x̄ such that the total resource violation (resource shortage across all projects) is

bounded by

α =O

md√d log1/2(n/δ)
ε

log
nmd
β

 ,
and the project matching along with the resource allocation gives welfare at least OPT−ατ =

OPT−α.

5.4.5. Equilibrium Computation in Aggregative Games

A recent paper by Cummings et al. [2015] showed that mixed strategy equilibria in ag-

gregative games4 can be computed using an algorithm that repeatedly solves a feasibility

4They consider multi-dimensional aggregative games, a broad class of games that generalizes both anony-
mous games and weighted congestion games. For more details, see Cummings et al. [2015].
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linear programs of the following form:

n∑
i=1

m∑
`=1

c
j
i` · xi` ≤ ŝ (for all j ∈ [k])

−
n∑
i=1

m∑
`=1

c
j
i` · xi` ≤ −ŝ (for all j ∈ [k])

x(i) ∈ Bi (for all i ∈ [n]).

Each agent i controls the variables x(i) = (xi1, . . . ,xim), which forms a probability distribu-

tion over m actions. We assume that each coefficient in the coupling constraint is bounded

by |cji` | ≤ γ . Note that we can add the objective minx 0 the LP without changing the prob-

lem, so it can be framed as a linearly separable convex program. In particular, the gradient

sensitivity is bounded by
√
kγ . Since the objective function is a constant, any positive num-

ber is a dual bound for this problem, so we could use τ = 1 as a dual bound. Also, the width

is bounded by γn.

Corollary 5.4.6. With probability at least 1−β, PrivDude(·,
√
kγ,1,γn,ε,δ,β) outputs a mixed

strategy profile that has total violation across all of the constraints bounded by

α =O

k√kγ log1/2(1/δ)
ε

log
nkγ

β

 .
Remark 5.4.7. This leads to an improvement over the private LP solver in Cummings et al.

[2015], which gives a violation bound of Õ
(√

nγ√
ε

)
. Since n is large and k is a constant in their

setting, our violation bound is considerably better with no the polynomial dependence on n.

5.5. Achieving Exact Feasibility

When the convex program has additional structure, we can extend PrivDude to achieve ad-

ditional guarantees. In this section, we’ll discuss two extensions to PrivDude: guaranteeing

exact feasibility.
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We will continue to work with packing linear programs with a null action (Definition 6.3.1),

assuming one more thing.

Assumption 5.5.1. We will consider classes of packing linear programs O = (S,v,c,b) with

one extra condition: Each S(i) is a polytope such that at each vertex x, for all j, c(i)
j (x) = 0 or

c
(i)
j (x) ≥ L > 0. This parameter L is valid for the entire class; in particular, it does not depend on

private data.

Our modification to the solution of PrivDude will work in two steps. Instead of tightening

the constraints like TightDude, we run PrivDude on the original linear program. Similar

to TightDude, each agent will then round her solution by selecting a uniformly random

best response from her set of best responses x(i)
1 , . . . ,x

(i)
T . To handle the constraint violation,

we will maintain a differentially private flag on each constraint, which is raised when the

constraint goes tight. In order, we will take agent i’s rounded solution if the flag is down

for every constraint she contributes to, i.e., for every j with
〈
c

(i)
j ,x

(i)
〉
> 0. Otherwise, she

goes unserved: we give her solution 0. The full code is in Algorithm 9.

Let’s consider the first step. By almost the same analysis as for TightDude, we can show

that the rounding procedure degrades the objective and violates the constraints by only a

small amount (past what was guaranteed by Theorem 5.3.17).

Theorem 5.5.2. Let β > 0 be given. Suppose each agent i independently and uniformly at

random selects x̃(i) from x
(i)
1 , . . . ,x

(i)
T . Then with probability at least 1− β,

• the objective satisfies 〈v, x̃〉 ≥OPT−α, for

α =O
((
kτσ
ε

+
√
V ·OPT

)
log

(
wk
β

)
log1/2

(w
δ

))
;

and
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Algorithm 9 RoundDude(O,σ ,τ,w,ε,δ,β)
Input: Packing linear program O = (S,v,c,b) with n agents and k coupling constraints,
gradient sensitivity bounded by σ , a dual bound τ , width bounded by w, and privacy
parameters ε > 0,δ ∈ (0,1/2), and confidence parameter β ∈ (0,1).
Initialize:

δ′ :=
δ
2
, ε′ :=

ε

2
√

8T ln(1/δ′)
, ζ :=

8C∞(logn+ log(3k/β))
ε′

,

Tj := bj − ζ, Fj := Sparse(ε′ ,Tj ) for j ∈ [k].

Run PrivDude:
(x̄, λ̄) := PrivDude(O,σ ,τ,w,ε/2,δ/2,β/3).

for each agent i = 0 . . .n:

Select x̃(i) uniformly at random from best responses x(i)
1 , . . . ,x

(i)
T .

if Fj => for some constraint with c(i)
j (x̃(i)) > 0:

Set x̂(i) := 0.
else Set x̂(i) := x̃(i).
Query each sparse vector j with

q
(i)
j :=

n∑
l=0

c
(l)
j (x̂(l)).

Output: x̂(i) to agents i ∈ [n].

• the total constraint violation is bounded by

k∑
j=1

(〈
cj , x̃

〉
− bj

)
+

=O


√
kC∞‖b‖1 log

(
k
β

) ,
as long as

‖b‖1 = Ω

(
kσ
ε

log2
(
wk
β

)
log

(w
δ

)
max

{σ
ε
,1

})
.

Proof. Let x̄ be the output from the (ε/2,δ/2)-private PrivDude. Note that the objective

〈v, x̃〉 is the sum of i independent random variables, each bounded in [0,V ]. By Theo-
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rem 5.3.17, we can lower bound the expected objective:

E [〈v, x̃〉] = 〈v, x̄〉 ≥OPT−160
√

8kτσ
ε

log
(

4w2k
β

)2

log
(2
δ

)
,

with probability at least 1 − β/2. Applying the concentration bound (Theorem 6.3.4), we

have

〈v, x̃〉 >OPT−160
√

8kτσ
ε

log
(

4w2k
β

)2

log
(2
δ

)
−

√
2V ·OPTlog

(
2(k + 1)
β

)
= OPT−O

((
kτσ
ε

+
√
V ·OPT

)
log

(
wk
β

)
log1/2

(w
δ

))

with probability at least 1− β/2(k + 1).

For the constraints, define yj = (
〈
cj x̄

〉
− bj )+ to be the constraint violation for j, if any. For

each constraint, we can bound the expected left-hand side of each constraint for x̃:

E
[〈
cj , x̃

〉]
=

〈
cj , x̄

〉
≤ bj + yj .

Since
〈
cj , x̃

〉
is the sum of i independent random variables in [0,C∞], applying Theo-

rem 6.3.4 gives: 〈
cj , x̃

〉
< bj + yj +

√
3(bj + yj )C∞ log

(
2(k + 1)
β

)
with probability at least β/2(k + 1). So, the total constraint violation is bounded by

k∑
j=1

(〈
cj , x̃

〉
− bj

)
+
≤

k∑
j=1

yj +

√
3(bj + yj )C∞ log

(
2(k + 1)
β

)

≤

 k∑
j=1

yj

+

√√√√
3kC∞ log

(
2(k + 1)
β

)‖b‖1 +
k∑
j=1

yj

,
where the second step is by Jensen’s inequality. The sum of yj is the total constraint viola-
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tion of x̄, which is bounded by Theorem 5.3.17:

k∑
j=1

yj ≤
160
√

8kσ
ε

log
(

4w2k
β

)
log1/2

(2w
δ

)
� ‖b‖1,

where we have assumed that the constraint violation guarantees for PrivDude are non-

trivial.5 Then,

k∑
j=1

(〈
cj , x̃

〉
− bj

)
+
≤ 160

√
8kσ
ε

log
(

4w2k
β

)
log1/2

(2w
δ

)
+

√
6kC∞‖b‖1 log

(
2(k + 1)
β

)

=O


√
kC∞‖b‖1 log

(
k
β

)
with probability at least 1− β/2(k + 1); the last step holds since we have assumed

kσ2

ε2 log2
(
wk
β

)
log

(w
δ

)
� ‖b‖1.

Taking a union bound over the k+1 Chernoff bounds, everything holds with probability at

least 1−β/2. Since PrivDude succeeds with probability 1−β/2, the total failure probability

is 1− β.

Now, let’s consider the second step. To maintain the flags on each constraint, we will use

k copies of the sparse vector mechanism [Dwork and Roth, 2014]. Recall that This standard

mechanism from differential privacy takes a numeric threshold and a sequence of (possibly

adaptively chosen) queries. Sparse vector outputs ⊥ while the current query has answer

substantially less than the threshold, and outputs > and halts when the query has answer

near or exceeding the threshold. See Section 2.3 for the details.

Our queries will measure how large each constraint is for the users who have already

submitted their solution x(i), and the threshold will be slightly less than the constraint

5If the constraint violation for PrivDude itself is already too big, then there is no hope for getting non-trivial
constraint violation for RoundDude.
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bound bj . We want to argue two things: (a) sparse vector doesn’t halt while the constraint

is at least α away from being tight (for some α to be specified), and (b) each constraint

ends up feasible.

The following result shows show how much objective RoundDude loses in order to guar-

antee exact feasibility.

Theorem 5.5.3. Let β ∈ (0,1) be given. With probability at least 1 − β, RoundDude run on

a packing linear program produces a solution exactly satisfying all the constraints, and with

objective at least OPT−α, for

α =O
(√
V log

(
k
β

)(√
OPT +

√
V
L

(
C∞ logn

ε
+
√
kC∞‖b‖1

)))
,

as long as

‖b‖1 = Ω

(
kσ
ε

log2
(
wk
β

)
log

(w
δ

)
max

{σ
ε
,1

})
.

Proof. Let x̂ be the output. Since we make at most n queries to every flag and each query is

C∞-sensitive, by Lemma 2.3.4 and a union bound over all k flags, the final left-hand side

of each constraint is at most

〈
cj , x̂

〉
≤ Tj +

32
√

2C∞(logn+ log(3k/β)
√

log(2/δ))
ε

= bj ,

with probability at least 1 − β/3; in particular, x̂ is strictly feasible. Furthermore, each

constraint with raised flag satisfies

〈
cj , x̂

〉
≥ Tj −

32
√

2C∞(logn+ log(3k/β)
√

log(2/δ))
ε

= bj − 2ζ.

Now, an agent is only unserved if she contributes to a violated constraint. Since the best-

response problem of each agent is to maximize a linear function over a polytope S(i), all

best-responses are vertices. So, an unserved agent contributes at least L > 0 to violated

constraints, and each unserved bidder reduces the total constraint violation by at least L.

124



By Theorem 5.5.2, with probability at least 1− 2β/3, the total constraint violation of x̃ is:

k∑
j=1

(〈
cj , x̃

〉
− bj

)
+
≤ 3

√
kC∞‖b‖1 log

(
k
β

)
.

Now the final output x̂ has no constraint violation, and has reduced the right-hand side of

each constraint by at most 2ζ. So, the number of agents who are unserved is at most

U ≤ 1
L

2ζ + +3

√
kC∞‖b‖1 log

(
k
β

) .
Since each unserved agent contributes at most V to the objective, the final output x̂ reduces

the objective of x̃ by at most UV , so

〈v, x̂〉 ≥OPT−160
√

8kτσ
ε

log
(

6w2k
β

)
log1/2

(2w
δ

)
−

√
2V ·OPTlog

(
3(k + 1)
β

)

− V
L

64
√

2C∞(logn+ log(3k/β)
√

log(2/δ))
ε

+ 3

√
kC∞‖b‖1 log

(
k
β

)
= OPT−O

(√
V log

(
k
β

)(√
OPT +

√
V
L

(
C∞ logn

ε
+
√
kC∞‖b‖1

)))
.

With probability at least 1 − β, sparse vector is accurate, the rounding succeeds, and

PrivDude succeeds.

To show privacy, we use a result about the privacy of sparse vector.

Theorem 5.5.4 (see e.g., Dwork and Roth [2014] for a proof). Let ε > 0. Sparse(ε,T ) is

ε-differentially private.

Privacy of RoundDude follows directly.

Theorem 5.5.5. Let ε > 0,δ ∈ (0,1/2). Then, RoundDude satisfies (ε,δ)-joint differential pri-

vacy.
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Proof. By Theorem 5.5.4 and Theorem 2.2.4, the flags are (ε/2,δ/2)-differentially private.

Theorem 5.3.7 shows that the result of PrivDude is (ε/2,δ/2)-jointly differentially private.

By the billboard lemma (Lemma 4.3.2) and composition (Theorem 2.2.4), RoundDude is

(ε,δ)-jointly differentially private.

Comparison with Chapter 4 Like for TightDude, we can compare the welfare guarantee

of RoundDude to the welfare guarantee of PAlloc on the d-demand allocation problem. As

discussed there in Corollary 5.4.1, τ = 1 is a dual bound, σ = d
√

2 bounds the gradient

sensitivity, and w = n bounds the width. The maximum welfare for any agent is V =

1 and each agent contributes at most C∞ = 1 towards each coupling constraint. Each

agent’s feasible set is simply the simplex {x : Rm |
∑m
i=1 xi ≤ 1}, so the minimum non-zero

coordinate at any vertex is L = 1. Applying Theorem 5.5.3, we can lower bound the welfare

of RoundDude on a d-demand problem.

Corollary 5.5.6. With high probability, RoundDude run on a d-demand problem with supply

s for each good finds a solution with welfare at least

OPT−Õ
(
k
√
s

ε

)

and exactly meets the supply constraints, as long as s = Ω(d2/ε2), ignoring logarithmic factors.

Proof. Note that the sum of the scalars ‖b‖1 in the d-demand problem is simply the total

number of items sk. The welfare theorem for RoundDude (Theorem 5.5.3) holds as long as

sk = ‖b‖1 ≥ Ω̃

(
kσ
ε

max
{σ
ε
,1

})
.

As discussed in Section 5.4, the gradient sensitivity for the d-demand problem is bounded

by σ = d
√

2. So, we need s ≥ d2/ε2. The welfare guarantee follows from Theorem 5.5.3,

plugging in parameters V = L = C∞ = 1 and noting that the maximum welfare OPT is at

most the total number of goods sk, so OPT ≤ ‖b‖1.
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While the welfare guarantees are somewhat incomparable (see discussion for TightDude),

we can try to make a rough comparison. Take α ≈ (dε)1/3, and say the supply s ≈ d3/α3ε ≈

d2/ε2 (the minimum needed for both Lemma 4.4.8 and Corollary 5.5.6 to apply). Then by

Corollary 5.5.6, RoundDude gets welfare at least

OPT−Õ
(
kd

ε2

)

versus OPT−αn ≈OPT−n(dε)1/3. Thus, RoundDude improves for larger n:

n� kd2/3

ε7/3
.
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CHAPTER 6

Privacy as a Tool for Mechanism Design

6.1. Introduction

In this chapter, we will continue to study the same type of distributed optimization prob-

lems in Chapter 5, but under the setting where the agents have preferences over their parts

of the final solution, and the objective of the convex program is to maximize the total value

of all agents (social welfare). We can guarantee asymptotic truthfulness at little additional

cost to the approximation factor, with only minor modifications to the algorithm PrivDude.

By taking our approximately optimal primal/dual solution pair and making a small mod-

ification (losing a bit more in approximate feasibility), we can treat the dual variables as

prices. Then, every agent is allocated her favorite set of primal variables given her con-

straints and the prices.1

In general, this property would not be enough to guarantee truthfulness: while no agent

would prefer a different solution at the given prices, agents may be able to manipulate the

prices to their advantage (say, by lowering the price on the goods they want). However,

in our case, the dual variables (and hence, the prices) are computed under differential

privacy; they can’t be substantially manipulated by any single agent. As we show, this

makes truth telling an approximate dominant strategy for all players.

The connection between differential privacy and approximate truthfulness was first made

by McSherry and Talwar [2007], and later extended in many papers (e.g., by Nissim et al.

[2012] and Chen et al. [2013]). Huang and Kannan [2012] showed a generic (and typi-

cally computationally inefficient) method to make welfare maximization problems exactly

1Similar to our algorithm in Chapter 4, the allocation and prices can also be seen as an Walrasian equilibrium
[Gul and Stacchetti, 1999].
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truthful subject to standard differential privacy, but their techniques cannot solve most

natural auction problems (in which each agent receives some allocation) with non-trivial

social welfare guarantees.

In contrast, we show a generic method of obtaining joint differential privacy and approx-

imate truthfulness for any problem that can be posed as a linearly separable convex pro-

gram, which covers relaxations of combinatorial auctions as a special case. Our method

is also efficient when the problem can be solved efficiently without privacy. In particular,

the connection between joint differential privacy and truthfulness is more subtle. In or-

der for a jointly differentially private computation to be approximately truthful, it must

in some sense be computing an equilibrium of an underlying game [Kearns et al., 2014,

Rogers and Roth, 2014, Cummings et al., 2015, Rogers et al., 2015, Kannan et al., 2015]. In

our case, this corresponds to computing dual variables which serve as equilibrium prices.

Using joint differential privacy circumvents criticisms of standard differential privacy as

a solution concept by Nissim et al. [2012], Xiao [2013], who note that all strategies under

standard differential privacy are approximate dominant strategies, so it does not really

matter what an agent chooses to play. Under joint differential privacy, this is not the case:

not all of an agent’s strategies are approximate dominant strategies, even though truthful

reporting can be made dominant.

6.2. Achieving Approximate Truthfulness

In the course of computing an approximate (primal) solution to the convex program,

PrivDude also computes an approximate dual solution, which has a standard interpre-

tation as prices (e.g, see Boyd and Vandenberghe [2004]). Informally, if we think of each

constraint as modeling a finite resource that is divided between the variables, the dual

variable for the constraint corresponds to how much each variable should “pay” for using

that resource. If each agent has a real-valued valuation function for their portion of the

solution, and the objective of the convex program is the sum of the valuation functions (a
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social welfare objective), then we can make the prices interpretation precise: Each agent’s

solution will approximately maximize her valuation less the prices charged for using each

constraint, where the prices are the approximate dual solution produced by PrivDude.

Since the dual solution (and hence the final price vector) is computed under standard

differential privacy, we can also guarantee approximate truthfulness: an agent can’t sub-

stantially increase her expected utility by misreporting her private data. Informally, this

is because agents can only influence the prices to a small degree, so since the algorithm

is maximizing their utility function subject to the final prices (which they have little in-

fluence on), agents are incentivized to report their true utility. One technical difficulty is

that since we are computing only an approximate primal and dual solution, there may be

a small number of agents who are not getting their approximately utility maximizing al-

location. For approximate truthfulness, we will modify their allocations to assign them to

their favorite solution at the dual prices. This may further violate some primal constraints,

but only by a small amount.

Let us first define the class of optimization problems we will solve truthfully.

Definition 6.2.1. Let the data universe be X , and suppose there are n individuals. A class of

welfare maximization problems is a class of convex programs O = (S,v,c,b) associated to X ,

with the following additional properties:

• Bounded welfare: v(i)(x(i)) ≤ V for all agents i and points x(i) ∈ S, for all feasible sets S for

agent i in the class.

• Bounded constraints:
∑k
j=1 c

(i)
j (x(i)) ≤ C1 for all agents i points x(i) ∈ S, for all feasible sets

S for agent i in the class.

• Null action: for each agent i, there exists x(i) ∈ S(i) such that v(i)(x(i)) = c
(i)
j (x(i)) = 0 for

all constraints j. We call such a point a null action for i.

Now, we can define the personal data and utility function for each player. As is typical in
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the literature, agents’ utilities will be quasilinear in money.

Definition 6.2.2. Recall that agent i has a compact feasible set S(i) ⊆ Rd , valuation function

v(i) : Rd → R, and constraint functions c(i)
j : Rd → R. We assume that v(i)(x(i)) = 0 for any

x(i) < S(i). An agent’s utility for solution x(i) and price p(i)(x(i)) ∈ R is v(i)(x(i))− p(i)(x(i)).

Our truthful modification to PrivDude will assign each constraint a price λj ∈ R, and charge

each agent i price

p(i)(x(i)) =
k∑
j=1

λjc
(i)
j (x(i)),

where agent i’s solution is x(i). To guarantee truthfulness, we want every agent to have a

solution that is approximately maximizing her utility given the fixed prices on constraints.

This motivates the following definition:

Definition 6.2.3. Let α ≥ 0 and prices λ ∈ Rk be given. An agent i with solution x(i) is α-

satisfied with respect to these prices if

v(i)(x(i))−
k∑
j=1

λjc
(i)
j (x(i)) ≥max

x∈S(i)
v(i)(x)−

k∑
j=1

λjc
(i)
j (x)−α.

We are now ready to present our approximately truthful mechanism for welfare maxi-

mization. The idea is to run PrivDude, obtaining solution x̄ and approximate dual solution

λ̄, which we take to be the prices on constraints. For α to be specified later, we change the

allocation for each agent i who is not α-satisfied to a primal allocation x̃(i) that maximizes

her utility at prices λ̄. Combining x̃ with x̄ for α-satisfied agents gives the final solution.

We call this algorithm TrueDude, formally described in Algorithm 10.

Let’s first show that the final allocation is approximately feasible, and approximately max-

imizing the objective (the social welfare). Both proofs follow by bounding the number of

α-unsatisfied agents, and arguing that since the intermediate solution (x̄, λ̄) is an approx-

imate equilibrium (by Corollary 5.3.16), changing the allocation of the unsatisfied agents

will only degrade the feasibility and optimality a bit more (beyond what is guaranteed by
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Algorithm 10 TrueDude(O,σ ,τ,w,ε,δ,β)
Input: Welfare maximization problem O = (S,v,c,b) with n agents and k coupling con-
straints, gradient sensitivity bounded by σ , a dual bound τ , width bounded by w, and
privacy parameters ε > 0,δ ∈ (0,1/2), confidence parameter β ∈ (0,1), and truthfulness
parameter α.
Run PrivDude:

(x̄, λ̄) := PrivDude(O,σ ,τ,w,ε,δ,β).

for each agent i = 0 . . .n:
Let the price of the solution be:

p(i)(x) :=
k∑
j=1

λ̄jc
(i)
j (x).

if x̄(i) does not satisfy

v(i)(x̄(i))− p(i)(x(i)) ≥max
x∈S(i)

v(i)(x)− p(i)(x)−α,

Set
x̄(i) := argmax

x∈S(i)

v(i)(x)− p(i)(x).

Output: x̄(i) and price p(i)(x(i)) to agents i ∈ [n].

Theorem 5.3.17).

Lemma 6.2.4. Let α > 0 be given, and let (x̄, λ̄) be an Rp-approximate equilibrium of the

Lagrangian game. Then, the number of bidders who are not α-satisfied is at most Rp/α.

Proof. Note that the Lagrangian can be written as the sum of agent utilities plus a constant:

L(x,λ) =
n∑
i=0

v(i)(x(i))−
k∑
j=1

λjc
(i)
j (x(i))

+
k∑
j=1

λjbj =
n∑
i=0

u(i)(x(i),p(i)) +
k∑
j=1

λjbj ,

so every α-unsatisfied agent that deviates to her favorite solution at prices λ increases

the Lagrangian by at least α; suppose that there are m such bidders. Since (x̄, λ̄) is an

Rp-approximate equilibrium, we can bound the change in the Lagrangian by

αm ≤ L(x, λ̄)−L(x̄, λ̄) ≤Rp.
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So, at most m ≤Rp/α agents can be α-unsatisfied.

This immediately gives us approximate feasibility and optimality for the output of TrueDude:

Corollary 6.2.5. Let β > 0. Running TrueDude on a welfare optimization problemO = (S,v,c,b)

with gradient sensitivity bounded by σ , a dual bound τ , and width bounded by w, produces a

point x̄ such that all agents are α-satisfied, and with probability at least 1− β:

• the maximum violation of any constraint is at most Rp(2/τ +C1/α); and

• the welfare
∑n
i=0 v

(i)(x̄(i)) is at least OPT−Rp(2+V /α), where OPT is the optimal welfare.

As above,

Rp =O
(
kτσ log1/2(w/δ)

ε
log

wk
β

)
.

Proof. Follows directly from Theorem 5.3.17, since any unsatisfied agent changes the wel-

fare by at most V and has total contribution to all constraints at mostC1, and by Lemma 6.2.4

there are at most Rp/α unsatisfied agents.

Additionally, TrueDude is approximately individually rational: no agent will have large

negative utility. More precisely:

Lemma 6.2.6. Suppose TrueDude compute solution x(i) and payment p(i)(x(i)) for agent i.

Then,

v(i)(x(i))− p(i)(x(i)) ≥ −α.

Proof. The null action in agent i’s feasible region has utility equal to 0: the valuation is 0,

and the constraint functions are all 0, so the payment is 0. The claim follows, since

v(i)(x(i))− p(i)(x(i)) ≥max
x∈S(i)

v(i)(x)− p(i)(x)−α.

Now, let us turn to showing approximate truthfulness. We now suppose that agents may
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misreport their feasible set S(i) and valuation function v(i), but not their constraint func-

tions c(i)
j ; we want to show that agents can’t gain much in expected utility by misreporting

their inputs.2

More formally, we want to show approximate truthfulness. We will give a combined multi-

plicative and additive guarantee:

Definition 6.2.7. Fix a class of welfare maximization problems. Consider a randomized func-

tion f that takes in a convex optimization problem O = (S,v,c,b), and outputs a point x(i) ∈ S(i)

and a price p(i)(x(i)) ∈ R to each agent i. We say f is (ρ,γ)-approximately truthful if every

agent i with true feasible set S(i) and valuation function v(i) has expected utility satisfying

E
f (O′)

[
v(i)(x(i))− p(i)(x(i))

]
≤ ρ E

f (O)

[
v(i)(x(i))− p(i)(x(i))

]
+γ,

where O = (S(i),S(−i),v(i),v(−i), c,b) is the problem when agent i truthfully reports, and O′ =

(S ′(i),S(−i),v′(i),v(−i), c,b) is the problem when agent i deviates to any report S ′(i),v′(i) in the

class.

Remark 6.2.8. We note that the inequality must hold for any data from other agents S(−i),v(−i),

not necessarily their true data. Put another way, truthful reporting should be an approximate

dominant strategy (in expectation), not just an approximate Nash equilibrium.

We use a standard argument for achieving truthfulness via differential privacy. First, we

show that conditioning on the prices being fixed, an agent can’t gain much utility by chang-

ing her inputs; this holds deterministically, since agents are getting their approximately

utility maximizing solution given the prices and their reported utility.

Lemma 6.2.9. Condition on TrueDude computing a fixed sequence of dual variables prices

λ(1), . . . ,λ(T ), and let λ̄ = (1/T )
∑T
t=1λ

(t) be the final prices. Suppose an agent i has true feasible

set S(i) and valuation v(i). Let u(i)(S,v, {λ(t)}) be i’s utility (computed according to her true

feasible set, valuation, and final prices λ̄) for the output x̄(i) TrueDude computes when the

2More precisely, we can allow agents to misreport their constraint functions as long as the functions are
verifiable: they must feel their true contribution to the constraint (e.g., in terms of payments) when computing
their utility.
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sequence of dual variables is {λ(t)} and i reports feasible set S and valuation v. Then,

u(i)(S ′ ,v′ , {λ(t)}) ≤ u(i)(S(i),v(i), {λ(t)}) +α

for every set S ′ and valuation v′.

Proof. By Corollary 6.2.5, we know all agents are α-satisfied, so

u(i)(S(i),v(i), {λ(t)}) ≥max
x∈S(i)

v(i)(x)−
k∑
j=1

λ̄jc
(i)
j (x)−α.

Now, we claim that

max
x∈S(i)

v(i)(x)−
k∑
j=1

λ̄jc
(i)
j (x) ≥ v(i)(x′)−

k∑
j=1

λ̄jc
(i)
j (x′)

for any x′. This is clear for x′ ∈ S(i). For x′ < S(i), we know v(i)(x′) = 0 so the right hand

side is at most 0. Since there is a null action in S(i), the left hand side is at least 0, so the

inequality is true for x′ < S(i).

In particular, letting x′ be i’s solution when reporting (S ′ ,v′) against dual variables {λ(t)},

the right hand side is precisely u(i)(S ′ ,v′ , {λ(t)}), and we have

u(i)(S(i),v(i), {λ(t)}) ≥ u(i)(S ′ ,v′ , {λ(t)})−α

as desired.

Now, we use differential privacy. Since the sequence of dual variables (and final dual

prices) are computed under standard differential privacy, any agent misreporting her in-

put only has a limited effect on the prices. More formally, we will use the following stan-

dard lemma about the expected value of a differentially private mechanism.

Lemma 6.2.10 (McSherry and Talwar [2007]). Suppose we have a non-negative real valued
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mechanism M : D → R+ that is (ε,δ)-differentially private, and suppose that the output is

bounded byM(D) ≤ B for all inputs D ∈ D. Then, if D,D ′ ∈ D are neighboring inputs,

E [M(D)] ≤ eεE
[
M(D ′)

]
+ δB.

This is enough to argue that TrueDude is approximately truthful in expectation.

Theorem 6.2.11. Suppose we run TrueDude on a class of welfare optimization problems with

a dual bound τ . Then, TrueDude is (ρ,γ)-approximately truthful for

ρ = eε, γ = α(2eε − 1) + δmax{V ,C1τ
√
k}.

Proof. Fix valuations and feasible sets of n−1 agents, the constraint functions of all agents,

and consider a possibly deviating agent i. We first note that since the prices λ̄ have norm

‖λ̄‖2 ≤ τ
√
k, the maximum price charged is

〈
c(i)(x), λ̄

〉
≤ ‖c(i)(x)‖2‖λ̄‖2 ≤ C1τ

√
k

by Cauchy-Schwarz. Since the valuation is at most V , the utility of agent i is bounded by

max{V ,C1τ
√
k}. As above, let u(i)(S,v, {λ(t)}) be the true utility of agent i for the outcome

produced by TrueDude when reporting feasible set S and valuation v, against dual vari-

ables λ(t). By approximate individual rationality (Lemma 6.2.6), u(i)(S,v, {λ(t)}) +α ≥ 0. By

Lemma 6.2.9,

u(i)(S,v, {λ(t)}) ≤ u(i)(S(i),v(i), {λ(t)}) +α

for every sequence of dual variables {λ(t)}. Let g(O) be the sequence of dual variables

produced by TrueDude on problem O. Noting that u(i)(S,v,−) is a deterministic function

of the sequence of dual variables, which are differentially private, Lemma 6.2.10 shows
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that

E
{λ(t)}∼g(O′)

[
u(i)(S ′(i),v′(i), {λ(t)})

]
≤ E
{λ(t)}∼g(O)

[
u(i)(S(i),v(i), {λ(t)}) +α

]
≤ eε E

{λ(t)}∼g(O)

[
u(i)(S(i),v(i), {λ(t)}) + 2α

]
+ δmax{V ,C1τ

√
k}

≤ eε E
{λ(t)}∼g(O)

[
u(i)(S(i),v(i), {λ(t)})

]
+α(2eε − 1) + δmax{V ,C1τ

√
k},

where O = (S(i),S(−i),v(i),v(−i), c,b) is the problem when agent i truthfully reports, and

O′ = (S ′(i),S(−i),v′(i),v(−i), c,b) is the problem when agent i deviates to any report S ′(i),v′(i)

in the class.

Finally, it is straightforward to show that TrueDude is private.

Theorem 6.2.12. TrueDude satisfies (ε,δ)-joint differential privacy.

Proof. By the privacy of PrivDude (Theorems 5.3.7 and 5.3.8) and the billboard lemma

(Lemma 4.3.2).

6.3. Adding Exact Feasibility

For the more restricted class of packing linear programs, not only can we achieve approxi-

mate truthfulness, but we can also achieve exact feasibility. In fact, we can also round each

agent’s solution to a vertex in their feasible region Si (which is integral for many problems);

this can lead to more natural solutions for many problems (e.g., matchings and flows).

Let’s first define the linear programs we will consider.

Definition 6.3.1. A class of packing linear programs is a class of convex programs O =

(S,v,c,b) with the following additional properties:

• Objective functions are linear and bounded: 0 ≤ v(i)(x(i)) ≤ V for all x(i) ∈ S(i).

• Constraint functions are linear and bounded: 0 ≤ c(i)(x(i)) ≤ C∞ for all x(i) ∈ S(i).
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• For each i, 0 ∈ S(i).

The parameters V ,C∞ should hold for the whole class (i.e., they are independent of the private

data). To emphasize that the objective and constraints are linear, we will often write
〈
v(i),x(i)

〉
for v(i)(x(i)), and likewise for c(i)

j .

Our algorithm TightDude will first tighten the constraints, by reducing the scalars bj by an

amount ξ; we think of this step as “reserving some constraint”. Next, we will run PrivDude

on the reduced problem. Like TrueDude, we will let the final dual variables be the prices

for the constraints, and we will reassign agents who are very unsatisfied to their favorite

good at the final prices; this will guarantee approximate truthfulness. Finally, satisfied

agents will round: they will each select one of their best responses x(i)
1 , . . . ,x

(i)
T uniformly at

random. Note that for packing linear problems, each best response is a vertex of an agent’s

private feasible region (if agents break ties by selecting vertices).

Since each agent’s favorite good at the prices is also a vertex of the private feasible region,

all agents will end up playing at a vertex. We will choose the amount ξ to cover the

potential increase in each constraint from the unsatisfied agents and from the rounding,

thereby giving exact feasibility.

We present the algorithm TightDude in Algorithm 11.

To analyze the welfare and the constraint violation, let OPTred be the optimal objective

of the reduced problem, and let κ = maxj ξ/bj be the largest fraction of constraint we are

reducing. We assume that the problem is feasible, so OPTred is defined and κ < 1. We can

immediately lower bound OPTred .

Lemma 6.3.2. OPTred ≥ (1−κ)OPT .

Proof. For any optimal solution x∗ of the original problem, (1−κ)x∗ is a feasible solution of

the reduced problem with objective (1−κ)OPT. The personal feasibility constraints aren’t

violated since 0 ∈ S(i).
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We’ll first briefly argue approximate truthfulness; the argument for TrueDude carries over

unchanged. Note that the final output x̃(i) for any unsatisfied bidder is x̄(i) in expectation,

while any unsatisfied bidder gets her favorite good at the final prices. Thus, truthfulness

is clear by Theorem 6.2.11.

Corollary 6.3.3. Suppose we run TightDude on a class of packing linear programs with a dual

bound τ . Then, TightDude is (ρ,γ)-approximately truthful for

ρ = eε, γ = α(2eε − 1) + δmax{V ,Cτ
√
k}.

Next, let’s look at the welfare guarantee. We can bound the possible welfare loss from

reassigning unsatisfied bidders by the same argument form TrueDude, and we can use a

standard Chernoff-Hoeffding bound to bound the possible welfare loss from rounding.

Theorem 6.3.4 (see e.g., Dubhashi and Panconesi [2009]). Suppose X =
∑
iXi is a finite sum

of of independent, bounded random variables 0 ≤ Xi ≤M, and µL ≤ E[X] ≤ µH . Then, for any

β > 0,

Pr
[
X > µH +

√
3MµM log(1/β)

]
≤ β and Pr

[
X < µL −

√
2MµL log(1/β)

]
≤ β

Theorem 6.3.5. Let β > 0 be given. Then with probability at least 1 − β, TightDude run on a

packing linear program O = (S,v,c,b) with gradient sensitivity bounded by σ , a dual bound τ ,

and width bounded by w has objective satisfying 〈v, x̃〉 ≥OPT−α, for

α =O
(
κ ·OPT+

(
kτσ
ε

(
1 +

V
α

)
+
√
V ·OPT

)
log

(
wk
β

)
log1/2

(w
δ

))
,

for

κ = max
j
ξ/bj < 1,

so

min
j
bj � ξ = Ω

(
‖b‖1/2∞ +

kτσC∞
ε

log2
(
wk
β

)
log1/2

(w
δ

)(1
τ

+
C∞k
α

))
.
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Proof. Let x̄ be the output from the (ε/2,δ/2)-private PrivDude on the reduced problem

Ored . Note that the objective 〈v, x̃〉 is the sum of i independent random variables, each

bounded in [0,V ]. We can lower bound the expected welfare with by Corollary 6.2.5;

reassigning the unsatisfied bidders leads to welfare at least

E [〈v, x̃〉] = 〈v, x̄〉 ≥OPTred −
80
√

8kτσ
ε

log
(

4w2k
β

)
log1/2

(
2w2

δ

)(
2 +

V
α

)
.

with probability at least 1 − β/2. Applying the concentration bound (Theorem 6.3.4), we

have

〈v, x̃〉 >OPTred −
80
√

8kτσ
ε

log
(

4w2k
β

)
log1/2

(
2w2

δ

)(
2 +

V
α

)
−

√
2V ·OPTred log

(
2
β

)

≥ (1−κ)OPT−80
√

8kτσ
ε

log
(

4w2k
β

)
log1/2

(
2w2

δ

)(
2 +

V
α

)
−

√
2V ·OPTlog

(
2
β

)
= OPT−O

(
κ ·OPT+

(
kτσ
ε

(
1 +

V
α

)
+
√
V ·OPT

)
log

(
wk
β

)
log1/2

(w
δ

))

with probability at least 1− β/2, so everything holds with probability at least 1− β.

Finally, let’s look at the constraint violation.

Theorem 6.3.6. Let β > 0 be given. Then with probability at least 1 − β, TightDude run on a

packing linear program O = (S,v,c,b) with gradient sensitivity bounded by σ , a dual bound τ ,

and width bounded by w has produces an exactly feasible solution as long as

κ = max
j
ξ/bj < 1,

so

min
j
bj � ξ = Ω

(
‖b‖1/2∞ +

kτσC∞
ε

log2
(
wk
β

)
log1/2

(w
δ

)(1
τ

+
C∞k
α

))
.

Proof. Let x̄ be the output from the (ε/2,δ/2)-private PrivDude on the reduced problem

Ored . For each constraint,note that the objective
〈
cj , x̃

〉
is the sum of i independent random

variables, each bounded in [0,C∞]. We can bound the expected left-hand side of each con-
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straint for x̃ by Corollary 6.2.5; reassigning the unsatisfied bidders makes the constraints

at most

E
[〈
cj , x̃

〉]
=

〈
cj , x̄

〉
≤ bj − ξ +

80
√

8kτσ
ε

log
(

4w2k2

β

)
log1/2

(2w
δ

)(2
τ

+
C∞k
α

)

with probability at least 1− β/2k, since the total amount any agent contributes to the con-

straints is C1 = C∞k. Applying the concentration bound (Theorem 6.3.4), we have

〈
cj , x̃

〉
≤ bj − ξ +
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C∞ log
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≤ bj − ξ +

√
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8kτσC∞
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log2
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4w2k2

β

)
log1/2

(2w
δ

)(2
τ

+
C∞k
α

)
≤ bj

with probability at least 1−β/2k, so taking a union bound over all k constraints, everything

holds with probability at least 1− β.

Remark 6.3.7. While we have presented TightDude as achieving approximate truthulness, we

can also run TightDude just for the rounding and exact feasibility by letting the truthfulness

parameter α be large; the welfare and constraint violation bounds degrade gracefully.

Finally, it is straightforward to show that TightDude is private.

Theorem 6.3.8. TightDude satisfies (ε,δ)-joint differential privacy.

Proof. By the privacy of PrivDude (Theorems 5.3.7 and 5.3.8) and the billboard lemma

(Lemma 4.3.2).

Comparison with Chapter 4 In Chapter 4, we give an algorithm for the d-demand al-

location problem (a packing linear program) we considered in Section 5.4, but assuming

additionally the gross substitutes condition [Gul and Stacchetti, 1999] from the economics

literature on agent valuations. In this setting, the algorithm PAlloc in Chapter 4 is (ε,0)-
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joint differentially private algorithm with the following welfare.

While we do not have algorithms specific to the gross substitutes case, we can consider the

d-demand problem (a packing linear program) with general valuations, rather than gross

substitutes. As discussed in Corollary 5.4.1, τ = 1 is a dual bound, σ = d
√

2 bounds the

gradient sensitivity, and w = n bounds the width. The maximum welfare for any agent is

V = 1 and each agent contributes at most C∞ = 1 towards any coupling constraint. While

we can also achieve approximate truthfulness (unlike PAlloc), we will take α to be large;

this makes TightDude non-truthful. Applying Theorem 6.3.5, we can lower bound the

welfare of TightDude on a d-demand problem.

Corollary 6.3.9. With high probability, TightDude run on a d-demand problem with supply s

for each good finds a solution with welfare at least

OPT−Õ
((

1
√
s

+
kd
sε

)
·OPT+

kd
ε

)

and exactly meets the supply constraints, as long as s = Ω̃(kd/ε), ignoring logarithmic factors.

Proof. Note that the max scalar ‖b‖∞ in the d-demand problem is simply supply for each

item s. The welfare theorem for TightDude (Theorem 6.3.5) holds as long as

min
j
bj = s = Ω̃

(√
s+

kσ
ε

)
.

As discussed in Section 5.4, the gradient sensitivity for the d-demand problem is bounded

by σ = d
√

2. So, we need s � kd/ε. The welfare guarantee follows from Theorem 5.5.3,

plugging in parameters V = C∞ = 1 and noting that κ =O
(
1/
√
s+ kd/sε

)
.

The two algorithms are somewhat incomparable, for several reasons:

• The welfare of TightDude (Corollary 5.5.6) depends on k (but not n), while the wel-

fare guarantee in Lemma 4.4.8 depends on n (but not k).
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• The algorithm PAlloc requires the gross substitutes condition while TightDude does

not.

• The algorithm PAlloc satisfies pure (ε,0)-joint differential privacy, while TightDude

satisfies (ε,δ)-joint differential privacy only for δ > 0.

Nevertheless, we can try to make a rough comparison. For the algorithm PAlloc, take

α ≈ (d2/k)1/3, and say the supply s ≈ d3/α3ε ≈ kd/ε (the minimum needed for both utility

guarantee Lemma 4.4.8 and Corollary 5.5.6 to apply). Then by Corollary 6.3.9, TightDude

gets welfare at least

(1− Õ(1)) ·OPT−Õ
(
kd
ε

)
versus OPT−αn ≈ OPT−n(d2/k)1/3. Thus, TightDude improves when n is large compared

to k and OPT:

n� k4/3

dε
+
k1/3

d2/3
·OPT .
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Algorithm 11 TightDude(O,σ ,τ,w,ε,δ,β)
Input: Packing linear program O = (S,v,c,b) with n agents and k coupling constraints,
gradient sensitivity bounded by σ , a dual bound τ , width bounded by w, and privacy
parameters ε > 0,δ ∈ (0,1/2), and confidence parameter β ∈ (0,1).
Initialize:

ξ :=
√

3bj +
160
√

8kτσC∞
ε

log2
(

4w2k2

β

)
log1/2

(2w
δ

)(2
τ

+
C∞k
α

)
,

Ored := O with scalars bj − ξ.

Run PrivDude:
(x̄, λ̄) := PrivDude(Ored ,σ ,τ,w,ε/2,δ/2,β/2).

for each agent i = 0 . . .n:
Let the price of the solution be:

p(i)(x) :=
k∑
j=1

λ̄jc
(i)
j (x).

if x̄(i) does not satisfy

v(i)(x̄(i))− p(i)(x(i)) ≥max
x∈S(i)

v(i)(x)− p(i)(x)−α,

Set
x̃(i) := argmax

x∈S(i)

v(i)(x)− p(i)(x).

else
Select x̃(i) uniformly at random from best responses x(i)

1 , . . . ,x
(i)
T .

Output: x̃(i) and price p(i)(x(i)) to agents i ∈ [n].
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CHAPTER 7

Privacy for the Protected (Only)

7.1. Introduction

The tension between the useful or essential gathering and analysis of data about citizens,

and the privacy rights of those citizens, is at an historical peak. Perhaps the most striking

and controversial recent example is the revelation that U.S. intelligence agencies system-

ically engage in “bulk collection” of civilian “metadata” detailing telephonic and other

types of communication and activities, with the alleged purpose of monitoring and thwart-

ing terrorist activity [Greenwald, 2013]. Other compelling examples abound, including in

medicine (patient privacy vs. preventing epidemics), marketing (consumer privacy vs.

targeted advertising), and many other domains.

Debates about (and models for) data privacy often have an “all or nothing” flavor: privacy

guarantees are either provided to every member of a population, or else privacy is deemed

to be a failure. This dichotomy is only appropriate if all members of the population have

an equal right to, or demand for, privacy. Few would argue that actual terrorists should

have such rights, which leads to difficult questions about the balance between protecting

the rights of ordinary citizens, and using all available means to prevent terrorism.1 A ma-

jor question is whether and when the former should be sacrificed in service of the latter.

Similarly, in the medical domain, epidemics (such as the recent international outbreak of

Ebola [Reuters, 2014]) have raised serious debate about the clear public interest in con-

trolling contagion versus the privacy rights of the infected and those that care for them.

1A recent National Academies study [Council, 2015] reached the conclusion that there are not (yet) techno-
logical alternatives to bulk collection and analysis of civilian metadata, in the sense that such data is essential
in current counterterrorism practices.
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The model and results in this paper represent a step towards explicit acknowledgments of

such trade-offs, and algorithmic methods for their management. The scenarios sketched

above can be broadly modeled by a population divided into two types. There is a protected

subpopulation that enjoys (either by law, policy, or choice) certain privacy guarantees. For

instance, in the examples above, these protected individuals might be non-terrorists, or

uninfected citizens (and perhaps informants and health care professionals). They are to be

contrasted with the “unprotected” or targeted subpopulation, which does not share those

privacy assurances. A key assumption of the model we will introduce is that the protected

or targeted status of individual subjects is not known, but can be discovered by (possibly

costly) measures, such as surveillance or background investigations (in the case of terror-

ism) or medical tests (in the case of disease). Our overarching goal is to allow parties such

as intelligence or medical agencies to identify and take appropriate actions on the targeted

subpopulation, while also providing privacy assurances for the protected individuals who

are not the specific targets of such efforts — all while limiting the cost and extent of the

background investigations needed.

As a concrete example of the issues we are concerned with, consider the problem of using

social network data (for example, telephone calls, emails and text messages between indi-

viduals) to search for candidate terrorists. One natural and broad approach would be to

employ common graph search methods: beginning from known terrorist “seed” vertices

in the network, neighboring vertices are investigated, in an attempt to grow the known

subnetwork of targets.2 A major concern is that such search methods will inevitably en-

counter protected citizens, and that even taking action against only discovered targeted

individuals may compromise the privacy of the protected.

In order to rigorously study the trade-offs between privacy and societal interests discussed

2This general practice is sometimes referred to as “contact chaining”: “Communications metadata, domestic
and foreign, is used to develop contact chains by starting with a target and using metadata records to indicate who
has communicated with the target (1 hop), who has in turn communicated with those people (2 hops), and so on.
Studying contact chains can help identify members of a network of people who may be working together; if one is
known or suspected to be a terrorist, it becomes important to inspect others with whom that individual is in contact
who may be members of a terrorist network.” Section 3.1 of Council [2015].
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above, our work introduces a formal model for privacy of network data that provides prov-

able assurances only to the protected subpopulation, and gives algorithms that allow ef-

fective investigation of the targeted population. These algorithms are deliberately “noisy”

and are privacy-preserving versions of the widely used graph search methods mentioned

above, and as such represent only mild (but important) departures from commonly used

approaches. At the highest level, one can think of our algorithms as outputting a list of

confirmed targeted individuals discovered in the network, for whom any subsequent ac-

tion (e.g. publication in a most-wanted list, further surveillance or arrest in the case of

terrorism; medical treatment or quarantine in the case of epidemics) will not compromise

the privacy of the protected.

The key elements of our model include the following:

1. Network data collected over a population of individuals and consisting of pairwise

contacts (physical, social, electronic, financial, etc.). The contacts or links of each

individual comprise the private data they desire to protect. We assume a third party

(such as an intelligence agency or medical organization) has direct access to this

network data, and would like to discover and act upon targeted individuals.

2. For each individual, an immutable status bit that determines their membership status

in the targeted subpopulation (such as terrorism or infection). These status bits can

be discovered by the third party, but only at some nontrivial cost (such as further

surveillance or medical testing), and thus there is a budget limiting the number of

status bits that an algorithm can reveal. One might assume or hope that in practice,

this budget is sufficient to investigate a number of individuals that is of the order of

the targeted subpopulation size (so they can all be discovered), but considerably less

than that needed to investigate every member of the general population.

3. A mathematically rigorous notion of individual data privacy based on differential

privacy that provides guarantees of privacy for the network data of only the pro-

147



tected individuals, while allowing the discovery of targeted individuals. Informally,

this notion guarantees that compared to a counterfactual world in which any pro-

tected individual arbitrarily changed any part of their data, or even removed them-

selves entirely from the computation, their risk (measured with respect to the prob-

ability of arbitrary events) has not substantially increased.

We emphasize two important points about our model. First, we assume that the process

of investigating an individual to determine their status bit is unobservable, and leaks no

information itself. This assumption is justified in some settings — for example, when the

investigation involves secretly intercepting digital communications, like emails and phone

calls, or when it involves performing tests on materials (like blood samples) or information

already obtained. However, our model does not fit situations in which the investigations

themselves are observable — for example, if the investigation requires interviewing an

individual’s family, friends and colleagues — because the very fact that an individual was

chosen for an investigation (regardless of its outcome) might disclose their private data.

The second point is that “privacy” is a word that has many meanings, and it is important to

distinguish between the types of privacy that we aim to protect (see e.g. Solove’s taxonomy

of privacy [Solove, 2006]).

Our goal is to quantify informational privacy — that is, how much information about a

protected individual can be deduced from the output of an analysis. However, it is impor-

tant to note that the status bit investigations our algorithms make, even if unobservable,

are a privacy loss that Solove calls “intrusion.” Our results can be viewed as providing a

quantitative trade-off between informational privacy and intrusion: using our algorithms,

it is possible to guarantee more informational privacy at the cost of a higher degree of

intrusion, and vice-versa.

Our main results are:

1. The introduction of a broad class of graph search algorithms designed to find and
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identify targeted individuals. This class of algorithms is based on a general notion of

a statistic of proximity — a network-based measure of how “close” a given individual

v is to a certain set of individuals S. For instance, one such closeness measure is the

number of short paths in the network from v to members of S. Our (necessarily ran-

domized) algorithms add noise to such statistics in order to prioritize which status

bits to query (and thus how to spend the budget).

2. A theoretical result proving a quantitative privacy guarantee for this class of algo-

rithms, where the level of privacy depends on a measure of the sensitivity of the

statistic of proximity to small changes in the network.

3. Extensive computational experiments in which we demonstrate the effectiveness of

our privacy-preserving algorithms on real social network data. These experiments

demonstrate that in addition to the privacy guarantees, our algorithms are also use-

ful, in the sense that they find almost as many members of the targeted subpopula-

tion as their non-private counterparts. The experiments allow us to quantify the loss

in effectiveness incurred by the gain in privacy.

To our knowledge, our formal framework is the first to introduce explicit protected and

targeted subpopulations with qualitatively differing privacy rights,3 and our algorithms

are the first to provide mathematically rigorous privacy guarantees for the protected while

still allowing effective discovery of the targeted. More generally, we believe our work

makes one of the first steps towards richer privacy models that acknowledge and manage

the tensions between different levels of privacy guarantees to different subgroups.

3This is in contrast to the quantitative distinction proposed by Dwork and McSherry Dwork and McSherry
[2010], which still does not allow for the explicit discovery of targeted individuals. We also note that our
definition of privacy can be expressed in the “Blowfish privacy” framework He et al. [2014] (although this
had not previously been done).
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7.2. Preliminaries

7.2.1. Computational Model

We study graph search algorithms which operate on graphs G = (V ,E) defined over a ver-

tex set V and edge set E ⊆ V × V . The vertex set V partitioned into two fixed subsets

V = T ∪P , where T represents the targeted subpopulation, and P represents the protected

subpopulation. The algorithms we consider are initially given a single seed vertex s ∈ T (or

several such vertices), and the goal of the algorithm will be to find as many other members

of the targeted subpopulation T as possible.

The algorithm cannot directly observe which subpopulation a particular vertex v ∈ V be-

longs to since otherwise the problem is trivial, but it has the ability to make a query on a

vertex v ∈ V to determine its subpopulation membership. We model this ability formally

by giving the algorithm access to an identity oracle I : V → {0,1}, defined such that I (v) = 1

if and only if v ∈ T . A call to this oracle is the abstraction we use to represent the possibly

costly operation (instantiated in our example applications by e.g. surveillance, or medical

tests) which determines whether a particular member of the population is protected or

not. Because we view these operations as expensive, we want our algorithm to operate by

making as few calls to this oracle as possible. Hence, the algorithm must use the network

data represented by the graph G to guide its search for which vertices to query. This creates

a source of privacy tension since the edges in this network are what we view as private

information.

Thus our goal is to give algorithms which discover members of the targeted population

using the edges in the network to guide their search. We wish to protect the privacy of the

protected individuals: we do not want the outcome of the search to reveal too much about

the edge set incident to any protected individual. However, we want to exploit the edges

incident to targeted individuals in ways that will not necessarily be privacy preserving.
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Formally, our network analysis algorithms take as input a network and a method by which

they may query whether vertices v are members of the protected population P or not.

The class of algorithms we consider are network search algorithms — they aim to identify

some subset of the targeted population. Our formal model is agnostic as to what action

is ultimately taken on the identified members (for example, in a medical application they

might be quarantined, in a security application they might be arrested, etc.) From the

perspective of informational privacy, all that is relevant is that which members of the

targeted population we ultimately identify is observable. Hence, without loss of generality

we can abstract away the action taken and simply view the output of the mechanism to be

an ordered list of individuals who are confirmed to be targeted.

Any practical algorithm must limit the number of status bits that are examined. Our goal

is a total number of status bit examinations that is on the order of the size of the targeted

subpopulation T , which may be much smaller than the size of the protected population

P . This is the source of the tension we study — because the number of calls to the identity

oracle is limited, it is necessary to exploit the private edge set to guide our search (i.e. we

cannot simply investigate the entire population), but we wish to do so in a way that does

not reveal much about the edges incident to any specific protected individual.

7.2.2. Protected Differential Privacy

The privacy guarantee we provide is a variant of differential privacy, an algorithmic def-

inition of data privacy. It formalizes the requirement that arbitrary changes to a single

individual’s private data should not significantly affect the output distribution of the data

analysis procedure, and so guarantees that the analysis leaks little information about the

private data of any single individual. We introduce the definition of differential privacy

specialized for the network setting. We treat networks as a collection of vertices represent-

ing individuals, each represented as a list of its edges (which form the private data of each

vertex). For a network G and a vertex v, let Dv(G) be the set of edges incident to the vertex

v in G. Let Gn be the family of all n-vertex networks.
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Definition 7.2.1 (Vertex Differential Privacy Dwork et al. [2006], Hay et al. [2009]). The

networks G,G′ in Gn are neighboring4 if one can be obtained from the other by an (arbitrary)

rewiring of the edges incident to a single vertex v — i.e. if for some vertex v, Du(G) \ {(u,v)} =

Du(G′) \ {(u,v)} for all u , v. An algorithm A : Gn→O satisfies (ε,δ)-differential privacy if for

every event S ⊆ O and all neighboring networks G,G′ ∈ Gn,

Pr[A(G) ∈ S] ≤ eεPr[A(G′) ∈ S] + δ.

Remark 7.2.2. This definition is also known as vertex differential privacy, and is the strongest

version of differential privacy for networks that is used in the literature (cp. edge differential pri-

vacy). It is a variant of a slightly more general original definition of differential privacy [Dwork

et al., 2006]. Vertex differential privacy was first defined by Hay et al. [2009] and later studied

by Kasiviswanathan et al. [2013] and Blocki et al. [2013].

Recall that differential privacy promises the following: simultaneously for every individ-

ual i, and simultaneously for any event S that they might be concerned about, event S is

almost no more likely to occur given that individual i’s data is used in the computation,

compared to if it were replaced by an arbitrarily different entry. Here, “almost no more

likely” means that the probability that the bad event S occurs has increased by a multi-

plicative factor of at most eε, which we term the risk multiplier. As the privacy parameter

ε approaches 0, the value of the risk multiplier approaches 1, meaning that individual i’s

data has no effect at all on the probability of a bad outcome. The smaller the risk multi-

plier, the more meaningful the privacy guarantee. It will be easier for us to reason directly

about the privacy parameter ε in our analyses, but semantically it is the risk multiplier eε

that measures the quality of the privacy guarantee, and it is this quantity that we report in

our experiments.

4Because it is standard terminology in both graph theory and differential privacy, for us the term “neigh-
bor” has two distinct and separate meanings: two vertices can be neighbors within a network, and two net-
works can be neighbors in the sense we are defining here. Which definition is intended will be clear from the
context.
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Differential privacy promises the same protections for every individual in a network, which

is incompatible with our setting. We want to be able to identify members of the targeted

population, and to do so, we want to be able to make arbitrary inferences from their net-

work data. Nevertheless, we want to give strong privacy guarantees to members of the

protected subpopulation. This motivates our variant of differential privacy, which rede-

fines the neighboring relation between networks: for any protected and targeted subpop-

ulations P and T , two networks G and G′ are neighboring if G′ can be obtained by only

changing a single protected node’s edges in G. Specifically, G = (V ,E) and G′ = (V ,E′) are

neighbors with respect to a partition V = P ∪T if there exists a v ∈ P such that for all v′ , v:

Dv′ (G)∪ {(v,v′)} = Dv′ (G′)∪ {(v,v′)}. Note that for neighboring graphs G and G′, the edge

sets in the subgraph induced on the vertices T must also be the same.5

In the following, we denote the set of all possible networks over the vertices V by G, and

denote the set of all possible outcomes of an algorithm by O.

What this means is that we are offering no guarantees about what an observer can learn

about either the status bit of an individual (protected vs. targeted), or the set of edges

incident to targeted individuals. However, we are still promising that no observer can

learn much about the set of edges incident to any member of the protected subpopulation.

This naturally leads us to the following definition:

Definition 7.2.3 (Protected Differential Privacy). An algorithm A : G → O satisfies (ε,δ)-

protected differential privacy if for every partition of n vertices V into sets P and T , for every

pair of graphs G,G′ that are neighbors with respect to the partition (P ,T ), and for any set of

outcomes S ⊆ O

Pr[A(G) ∈ S] ≤ exp(ε)Pr[A(G′) ∈ S] + δ.

5The “Blowfish privacy” framework gives a general definition of privacy with different neighboring rela-
tions [He et al., 2014]. Our definition can be seen as an instantiation of this general framework. This is in
contrast to other kinds of relaxations of differential privacy, which relax the worst-case assumptions on the
prior beliefs of an attacker as in Bassily et al. [2013], or the worst-case collusion assumptions on collections
of data analysts as in Kearns et al. [2014]. Several works have also proposed assigning different differential
privacy parameters to different individuals (see e.g. Alaggan et al. [2015]) – but this is not compatible with
identifying members of a targeted population.
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If δ = 0, we say A satisfies ε-protected differential privacy.

One way to interpret protected differential privacy is differential privacy applied to an

appropriately defined input. Let the algorithm have two inputs: the set of edges incident

to the protected vertices in P , and the edges in E(T ) = {(u,v) | u,v ∈ T } (i.e. all of the

other edges)6. In this view, protected differential privacy only requires the algorithm to be

differentially private in its first argument, and not in its second. This view, formalized in

the following lemma, will allow us to apply some of the basic tools of differential privacy

in order to achieve protected differential privacy.

Lemma 7.2.4. Given a graphG = (V ,E) and a partition its edges into E2 = E(T ) and E1 = E\E2

an algorithm AI (G) := AI (E1,E2) satisfies (ε,δ)-protected differential privacy if it is (ε,δ)-

differentially private in its first argument.

To visualize the difference between standard differential privacy and protected differen-

tial privacy, see Figure 4. In particular, for algorithms satisfying standard DP (left), the

addition of a single edge (dashed blue) can alter the output distribution by only a small

amount. PDP is similar, except we introduce a targeted subpopulation (highlighted in

red). If the added edge is between two targeted individuals, the output distribution may

change arbitrarily, reflecting the fact that the targeted parties may not enjoy privacy pro-

tection. The formal definitions are stronger, in that privacy for protected individuals must

be preserved even if any number of edges to them is added or deleted.

Our privacy definition promises that what an observer learns about an individual “Alice”

(e.g. that Alice is in contact with a particular individual Bob, or an entire class of individ-

uals — like members of a religious group) is almost independent of Alice’s connections,

so long as Alice is not herself a member of the targeted population. On the other hand, it

does not prevent an observer from learning that Alice exists at all. This models a setting

in which (e.g.) a national government has access to an index of all of its citizens (through

6It is crucial here that such a simplification can only be made for the purposes of the analysis only. Since all
our algorithms are only given access to a membership oracle I there is no way for them to explicitly construct
these two inputs without incurring a cost associated with oracle queries.
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Figure 4: Informal illustration of standard Differential Privacy (DP) versus Protected
Differential Privacy (PDP).

birth and immigration records), but nevertheless would like to protect information about

their interactions with each other.

Remark 7.2.5. A careful reader may already have noticed that there is a trivial graph search

algorithm that achieves 0-protected differential privacy while outputting the entire set of tar-

geted individuals T — it simply queries I (v) for every v ∈ V , and outputs every v such that

I (v) = 1. This algorithm satisfies perfect (i.e. with ε = 0) protected differential-privacy because

it operates independently of the private network G. The problem with this approach is that

it requires querying the status of every vertex v ∈ V , which can be impractical both because of

cost (the query might itself require a substantial investment of resources) and because of soci-

etal norms (it may not be defensible to subject every individual in a population to background

checks). Hence, here we aim to design algorithms that use the graph data G to effectively guide

the search for which vertices v to query. This is what leads to the tension with privacy, and our

goal is to effectively trade off the privacy parameter ε with the number of queries to I that the
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algorithm must make.

7.3. Algorithmic Framework

7.3.1. Statistics of Proximity (SoP)

The key element in our algorithmic framework is the notion of a Statistic of Proximity (SoP),

a network-based measure of how close an individual is to another set of individuals in a

network.

Formally, a statistic of proximity is a function f that maps a network G, a node v, and a set

of nodes S ⊆ T to a real number. Since the value f (G,v,S) can reveal information about the

links in the network, we will often need to perturb the values of these statistics with noise,

calibrated with scale proportional to the targeted sensitivity — the maximum change in any

targeted node’s SoP relative to any set S when a protected node’s adjacency list is changed.

Definition 7.3.1 (Targeted Sensitivity). Let f : G×V ×2T → R be a statistic of proximity. The

targeted sensitivity of f is

∆(f ) = max
G∼G′ ,t∈T ,S⊆T

∣∣∣f (G,t,S)− f (G′ , t,S)
∣∣∣ ,

where G ∼ G′ indicates that G and G′ are neighboring graphs in G relative to a fixed partition of

V into P and T .

Note that when computing the targeted sensitivity we are not concerned with the effect that

a change in the edges incident on vertices in T has on the statistic, nor on the effect of any

change on the statistic computed on vertices v ∈ P .

Another quantity of interest is impact cardinality — the maximum number of nodes whose

SoP’s can change as the result of a change to the adjacency list of a single node v ∈ P :

Definition 7.3.2 (Impact Cardinality). Let f : G×V ×2T → R be a statistic of proximity. The
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impact cardinality of f is

IC(f ) = max
G∼G′ ,S⊆T

∣∣∣{v ∈ V | f (G,v,S) , f (G′ ,v,S)}
∣∣∣ .

We include some examples of candidate SoPs and their sensitivities. A desirable property

for good statistics is that they should have low sensitivity (relative to the scale of the statis-

tic) and small impact cardinality (relative to the target number of queries to the identity

oracle), which will allow us to achieve protected differential privacy by adding only small

amounts of noise to the various parts of our computations.

• Flowk(G,v,S): the value of the maximum flow that can be routed between node v and

the nodes in S using only paths of length at most k;

• Pathk(G,v,S): the number of paths from v to nodes in S with length at most k;

• Triangle(G,v,S) = |{{a,b} ⊆ S | a,b,v forms a triangle in G}|, the number of triangles

formed by the vertex v in G;

• CN(G,v,S) = |{u | (v,u) ∈ E and (u,v′) ∈ E for some v′ ∈ S}|, the number of common

neighbors v has with vertices in S.

In graphs with maximum degree d, the sensitivity of these SoPs are as follows:

• ∆(Flowk) ≤ d since a vertex can only affect the size of the flow by at most d.

• ∆ (Pathk) ≤ (k − 1)dk−1 since the total number of paths from v to S on which a vertex

u ∈ P might lie is at most
∑k−1
j=1 d

j−1dk−j = (k − 1)dk−1. Here we used the index j to

denote the index of u along the path starting from v together with the fact that the

total number of different paths of length ` from u is at most d`.

• ∆ (Triangle) ≤ d since each triangle is associated with an edge and the total number

of edges affected is at most d.

157



• ∆ (CN) ≤ 1 since a single vertex can change the count of common neighbors by at

most 1.

Note that Path1(G,v,S), which simply counts the number of edges between v and S ⊆ T

actually has targeted sensitivity zero. This is because, since S ⊆ T , if v ∈ T is also a member

of the targeted population, then the statistic is a function only of E(T ), the edge set of

the subgraph defined over the targeted sub-population T . Since E(T ) is identical on all

neighboring graphs, and because targeted sensitivity only measures the sensitivity of the

SoP evaluated on targeted nodes to changes in protected nodes, we get zero sensitivity. This

will be important to our analysis.

7.3.2. Non-Private Search Algorithm

We will first describe the non-private version of our search algorithm Target(k,f )7. For

any fixed SoP f , Target proceeds in k rounds, each corresponding to the identification of a

new connected component in the subgraph induced by T . The algorithm must be started

with a “seed vertex” — a pre-identified member of the targeted population. Each round

of the algorithm consists of two steps:

1. Statistic-First Search: Given a seed targeted vertex, the algorithm iteratively grows

a discovered component of targeted vertices, by examining, in order of their SoP

values (computed with respect to the set S of individuals already identified as be-

ing members of the targeted population), the vertices that neighbor the previously

discovered targeted vertices. This continues until every neighbor of the discovered

members of the targeted population has been examined, and all of them have been

found to be members of the protected population. We note that this procedure dis-

covers every member of the targeted population that is part of the same connected

component as the seed vertex, in the subgraph induced by only the members of the

7Our motivation in choosing this particular algorithm is simplicity: it is the most straightforward type
of ”contact chaining” algorithm that ignores privacy entirely, and simply uses the given SoP to prioritize
investigations.

158



targeted population. The formal description is presented in Algorithm 12.

Algorithm 12 SFS(G,t) Statistic-First Search
Input: known targeted t in a network G
Initialize:

T̃ = {t} I = {t} N = neighbors of t

whileN \ I , ∅
Let

v′ = argmax
x∈N \I

Path1(G,x, T̃ )

Query I (v′) to determine v′’s targeted status.
I = I ∪ {v′}
if I (v′) = 1 then T̃ = T̃ ∪ {v′} andN = neighbors of T̃

Output: list T̃

2. Search for a New Component: Following the completion of statistic-first search, the

algorithm must find a new vertex in the targeted population to serve as an initial ver-

tex to begin a new round of statistic-first search. To do this, the algorithm computes

the value of the SoP for all vertices whose status bit has not already been examined,

using as the input set S the set of already discovered members of the targeted pop-

ulation. It then sorts all of the vertices in decreasing order of their SoP value, and

begins examining their status bits in this order. The first vertex that is found to be a

member of the targeted population is then used as the seed vertex in the next round.

We can also specify a budget K , so that the sub-routine will not examine more than

K nodes.

The algorithm outputs discovered targeted individuals as they are found, and so its output

can be viewed as being an ordered list of individuals who are confirmed to be from the

targeted population. We will defer the full description of the non-private algorithm Target

to Section 7.7.
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7.3.3. Private Search Algorithm

The private version of the targeting algorithm PTarget(k,f ,ε), is a simple variant of the

non-private version. The statistic-first search stage remains unchanged, and only the

search for a new component is modified via randomization. In the private variant, when

the algorithm computes the value of the SoP f on each unexamined vertex, it then per-

turbs each of these values independently with noise sampled from the Laplace distribu-

tion Lap(4(f )/ε), where ε is a parameter. The algorithm then examines the vertices in

sorted order of their perturbed SoP values. See Algorithm 13 for a formal description of

the private version of this subroutine.

Private Stopping Rule: In the non-private version of SearchCom, the algorithm will stop

if no targeted node is found in the first K examinations. In the private version, we need to

develop a private stopping rule: we will first use the exponential mechanism to compute

a threshold fK such that the number of unexamined nodes with SoP values above fK is

nearly K and; then we insert a fake targeted node in the network, and stop the algorithm

whenever we examine the fake node.8

The formal description of the full algorithm in presented in Algorithm 14, and its formal

privacy guarantee is in Theorem 7.3.3.

Theorem 7.3.3. Fix any 0 < δ < 1. PTarget(·, ·, ·, ·, k, ·, ε) satisfies ε1-protected differential pri-

vacy for

ε1 = (k − 1)ε,

and satisfies (ε2,δ)-protected differential privacy for

ε2 = 2
√

2(k − 1)ln(1/δ)ε.

8The implementation of the exponential mechanism depends on the range of the SoP values. We provide a
concrete example Section 7.7.
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Algorithm 13 SearchCom(G,T̃ , I , f ,ε,K) Search for a New Component

Input: identified members of the targeted population T̃ ⊆ T in a network G, the set of
investigated nodes I , SoP f , privacy parameter ε, and stopping threshold K
Initialize:
Compute a SoP value fK using exponential mechanism with privacy parameter ε/2, sen-
sitivity parameter IC(f ) and quality score

q(f ) = |(|{v ∈ V \ I | f (v) ≥ f }| −K)| (7.1)

Create a “fake targeted node” vf with SoP value fK
Let V ′ = V

⋃
{vf }

for each v ∈ V ′ \ I :
let f̂ (v) = f (G,v, T̃ ) + ζv where ζv ∼ Lap(4∆(f )/ε)

while (V ′ \ I) , ∅
Let

v′ = argmax
x∈V \I

f̂ (v)

If v′ = vf then Halt
Query I (v′) to determine if v′ ∈ T .
Let I = I ∪ {v′}
if I (v′) = 1 then return {v′}

return ∅

There are two important things to note about this theorem. First, we obtain a privacy

guarantee despite the fact that the statistic-first search portion of our algorithm is not

randomized — only the search for new components employs randomness.9 Second, the

privacy cost of the algorithm grows only with k, the number of disjoint connected com-

ponents of targeted individuals (disjoint in the subgraph defined on targeted individuals),

and not with the total number of individuals examined, or even the total number of tar-

geted individuals identified. Hence, the privacy cost can be very small on graphs in which

the targeted individuals lie only in a small number of connected components or “cells”.

Both of these features are unusual when compared with typical guarantees that one can

obtain under the standard notion of differential privacy.

9 Intuitively, the reason that statistic-first search can remain unmodified and deterministic is that as long
as we remain with a connected component of targeted vertices, we will eventually output only those vertices,
and thus we are not compromising the privacy of protected vertices. It is only when we search for a new
targeted component via protected vertices and the SoP that we must randomize — for instance to provide
privacy to protected “bridge” vertices between targeted components.
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Algorithm 14 Private Search Algorithm: PTarget(G,S , f ,k,N ,ε)
Input: A network G, a seed node S ∈ T , a SoP f for SearchCom, a target number of
components k, a stopping threshold N for SearchCom, and privacy parameter ε
Initialize: Use set I to keep track of the set of investigated nodes. Initially I = {S}.
Let list T̃ = SFS(G,S)
For k − 1 rounds:

let a = SearchCom(G,T̃ , I , f ,ε,N )
if a = ∅

Output T̃
else

let T̃ = T̃ ∪SFS(G,a)
Output T̃

Figure 5: Visual comparison of the non-private algorithm Target (left panel) and the
private algorithm PTarget (right panel) on a small portion of the IMDB network (see Ex-
perimental Evaluation for more details).

Because PTarget adds randomness for privacy, it results in examining a different set of

vertices as compared to Target. Figure 5 provides a sample visualization of the contrasting

behavior of the two algorithms. For each algorithm, blue indicates protected vertices that

have been examined, red indicates targets that have been examined, and gray vertices have

not been examined yet. Both algorithms begin with the same seed target vertex, and by

directed statistic-first search discover a subnetwork of targeted individuals (central red

edges). As a consequence, many protected vertices are discovered and examined as well.

Due to the added noise, PTarget explores the network in a more diffuse fashion, which in
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this case permits it to find an additional subnetwork of targets towards the right side of

the network. The primary purpose of the noise, however, is for the privacy of protected

vertices.

While theorems comparing the utility of Target and PTarget are possible, they require

assumptions ensuring that the chosen SoP is sufficiently “informative”, in the sense of

separating the targeted from the protected by a wide enough margin. In particular, one

needs to rule out cases in which all unexplored targeted vertices are deemed closer to the

current set than all protected vertices, but only by an infinitesimal amount, in which case

the noise added by PTarget eradicates all signal. In general such scenarios are unrealis-

tic, so instead of comparing utility theoretically, we now provide an extensive empirical

comparison.

7.4. Privacy Analysis: Proof of Theorem 7.3.3

We will first establish the simple but remarkable privacy guarantee of SFS — the algorithm

can often identify a targeted connected component free of privacy cost.

Lemma 7.4.1. The graph search algorithm SFS satisfies 0-protected differential privacy.

Proof. Let G and G′ be two neighboring networks in G with respect to the same partition

(P ,T ). We know that both networks have the same set of targeted nodes T and targeted

links E(T ). Since we know that ∆(Path1) = 0, and SFS only branches on the evaluations of

f on nodes v ∈ T , the behavior of SFS depends only on T and E(T ), and hence SFS(G,v,f )

and SFS(G′ ,v, f ) always produce the same output.

To establish the privacy guarantee of SearchCom, we will introduce the subroutine of

Report Noisy Max mechanism: given a database D ∈ X n and a collection of k functions

f1, f2, . . . , fk each with sensitivity at most γ , Report Noisy Max performs the following com-

putation: compute the noisy estimate of each function evaluated on D: f̂i := fi(D) + νi

where νi ∼ Lap(γ/ε); then output the index i∗ = argmaxi f̂i .
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Lemma 7.4.2 ((see e.g. Dwork and Roth [2014])). The Report Noisy Max mechanism is 2ε-

differentially private.

Lemma 7.4.3. The targeting algorithm SearchCom instantiated with privacy parameter ε sat-

isfies ε-protected differential privacy.

Proof. LetG andG′ be neighboring networks in G and f be the SoP of choice. First suppose

that T̃ = T . In this case, SearchCom will output ∅ with probability 1 on both inputs G and

G′, and hence satisfy 0-protected differential privacy. Hence, for the remainder of the

argument, we can assume that there exists a vertex v ∈ T \ T̃ . In this case, the algorithm

can equivalently be viewed as a composition of the following procedures:

• Compute a noisy threshold fK using the exponential mechanism such that the num-

ber of unchecked nodes with SoP’s above fK is nearly K ;

• Use the Report Noisy Max algorithm to output the index of the targeted node t which

maximizes f̂ (t).

When the input to the algorithmG = (V ,E) is viewed as the pair of edge sets (E\E(T ),E(T )),

we show below the procedure satisfies ε-differential privacy with respect to its first argu-

ment. By Lemma 7.2.4 the algorithm SearchCom satisfies ε-protected differential privacy.

The first step is an instantiation of the exponential mechanism. Since the quality score

defined in Equation (7.1) has sensitivity IC(f ), the instantiation satisfies ε/2-differential

privacy with respect to the entire edge set E (and therefore the edge set (E \E(T ))).

The second step is simply an instantiation of the Report Noisy Max that selects the targeted

node with the top noisy SoP. It satisfies ε/2-differential privacy with respect to the edge set

E \E(T ) by our choice of the parameter and also Lemma 7.4.2.

Putting all the pieces together, we can then prove Theorem 7.3.3.

Proof of Theorem 7.3.3. The algorithm is a composition of at most k instantiations of SFS
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and (k − 1) instantiations of SearchCom with privacy parameter ε. Recall that each call

to SFS is 0-differentially private, and each call to SearchCom is ε-differentially private

with respect to the edges incident on vertices in P . By the composition theorem, we know

that the algorithm is (k −1)ε-differentially private by Theorem 2.2.2, and at the same time

(
√

8k ln(1/δ),δ)-differentially private for any δ ∈ (0,1) by Theorem 2.2.4. Our result then

easily follows from Lemma 7.2.4.

7.5. Experimental Evaluation

In this section we empirically demonstrate the utility of our private algorithm PTarget by

comparing its performance to its non-private counterpart Target.

We report on computational experiments performed on real social network data drawn

from two sources — the paper coauthorship network of DBLP (the “Digital Bibliography

and Library Project”) DBLP [2014], and the co-appearance network of film actors of IMDB

(the “Internet Movie Database”) IMDB [2005], whose macroscopic properties are described

in Table 7.5.

Network # vertices # edges Edge relation

DBLP 956,043 3,738,044 scientific paper co-authorship
IMDB 235,710 4,587,715 movie co-appearance

Table 3: Social network datasets for PTarget.

These data sources provide us with naturally occurring networks, but not a targeted sub-

population. While one could attempt to use communities within each network (e.g. all

co-authors within a particular scientific subtopic), our goal was to perform large-scale ex-

periments in which the component structure of targeted vertices (which we shall see is the

primary determinant of performance) could be more precisely controlled.

We thus used a simple parametric stochastic diffusion process (described in Section 7.7) to

generate the targeted subpopulation in each network. We then evaluate our private search
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algorithm PTarget on these networks, and compare its performance to the non-private

variant Target. For brevity we shall describe our results only for the IMDB network; results

for the DBLP network are quite similar.

In our experiments, we fix a particular SoP: the sum of the number of common neighbors

shared between the vertex v and any vertex w that is among the subset of vertices S repre-

senting the already discovered members of the targeted population. This SoP has sensitiv-

ity 1, and so can be used in our algorithm while adding only a small amount of noise. In

particular, the private algorithm PTarget adds noise sampled from the Laplace distribu-

tion Lap(20) to the SoP when performing new component search. By Theorem 7.3.3, such

an instantiation of PTarget guarantees ((k − 1)/20)-protected differential privacy if it finds

k targeted components.

The main trade-off we explore is the number of members of the targeted population that

are discovered by the algorithms (the y-axis in the ensuing plots), as a function of the bud-

get, or number of status bits that have been investigated so far (the x-axis in the ensuing

plots).

In each plot, the parameters of the diffusion model described above were fixed and used to

stochastically generate targeted subpopulations of the fixed networks given by our social

network data. By varying these parameters, we can investigate performance as a function

of the underlying component structure of the targeted subnetwork. As we shall see, in

terms of relative performance, there are effectively three different regimes of the diffusion

model (i.e. targeted subpopulation) parameter space. In all of them PTarget compares fa-

vorably with Target, but to different extents and for different reasons that we now discuss.

We also plot the growth of the risk multiplier for PTarget, which remains less than 2 in all

three regimes.

On each plot, there is a single blue curve showing the performance of the (deterministic)

algorithm Target, and multiple red curves showing the performance across 200 runs of
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our (randomized) algorithm PTarget.

• The first regime (Figure 6) occurs when the largest connected component of the tar-

geted subnetwork is much larger than all the other components. In this regime, if

both algorithms begin at a seed vertex inside the largest component, there is effec-

tively no difference in performance, as both algorithms remain inside this component

for the duration of their budget and find identical sets of targeted individuals. More

generally, if the algorithms begin at a seed outside the largest component, relative

performance is a “race” to find this component; the private algorithm lags slightly

due to the added noise, but is generally quite competitive. In the left panel, we

show the number of targeted vertices found as a function of the budget used for

both the (deterministic) non-private algorithm Target (blue), and for several repre-

sentative runs of the randomized private algorithm PTarget (red). Colored circles

indicate points at which the corresponding algorithm has first discovered a new tar-

geted component. In the right panel, we show average performance over 200 trials

for the private algorithm with 1-standard deviation error bars. We also show the

private algorithm risk multiplier with error bars. In this regime, after a brief initial

flurry of small component discovery, both algorithms find the dominant component,

so the private performance closely tracks non-private, and the private algorithm’s

risk multiplier quickly levels off at around only 1.17.

• The second regime (Figure 7) occurs when the component sizes are more evenly dis-

tributed, but there remain a few significantly larger components. In this setting both

algorithms spend more of their budget outside the targeted subpopulation “search-

ing” for these components. Here the performance of the private algorithm lags more

significantly — since both algorithms behave the same when inside of a component,

the smaller the components are, the more detrimental the noise is to the private

algorithm (though again we see particular runs in which the randomness of the pri-

vate algorithm permits it to actually outperform the non-private). Figure 7 has the
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Figure 6: Performance for the case in which there is a dominant component in the targeted
subpopulation.
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Figure 7: Performance for the case where the component sizes are more evenly distributed,
but still relatively large.

same format as in Figure 6. As we can see, the performance of both algorithms is

hampered by longer time spent investigating non-targeted vertices (note the smaller

scale of the y-axis compared to Figure 6). Targeted component discovery is now

more diffuse. The private algorithm remains competitive but lags slightly, and as

per Theorem 7.3.3 the risk multiplier grows (but remains modest) as more targeted

components are discovered.

• The third regime (Figure 8) occurs when all the targeted components are small, and

thus both algorithms suffer accordingly, discovering only a few targeted individuals;

but again the private algorithm compares favorably with the non-private, finding

only a few less targeted vertices.
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Figure 8: Performance for the case with a highly fragmented targeted subpopulation.

7.6. Conclusion

We view the work presented here as a proof of concept: despite the fact that using net-

work analysis to identify members of a targeted population is intrinsically contrary to the

privacy of the targeted individuals, we have shown that there is no inherent reason why

informational privacy guarantees cannot be given to individuals who are not members of

the targeted population, and that these privacy guarantees need not severely harm our

ability to find targeted individuals. Our work is of course not a complete solution to the

practical problem, which can differ from our simple model in many ways. Here we high-

light just one interesting modeling question for future work: Is it possible to give rigorous

privacy guarantees to members of the protected population when membership in the tar-

geted population is defined as a function of the individuals’ private data? In our model,

we avoid this question by endowing the algorithm with a costly “investigation” operation

which we assume can infallibly determine an individual’s targeted status — but it would

be interesting to extend our style of analysis to situations in which this kind of investiga-

tion is not available.
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7.7. Missing Details

7.7.1. Subpopulation Construction in the Experiments

Pre-processing step on the networks: We sparsify the IMDB and DBLP networks by re-

moving a subset of the edges. This will allow us to generate multiple targeted components

more easily. In both networks, there is a natural notion of weights for the edges. In the

case of DBLP, the edge weights correspond to the number of papers the individuals have

co-written. In the case of IMDB, the edge weights correspond to the number of movies

two actors have co-starred in. In our experiments, we only remove edges with weights less

than 2.

However, the networks we use do not have an identified partition of the vertices into a

targeted and protected subpopulation. Instead, we generate the targeted subpopulation

synthetically using the following diffusion process. We use the language of “infection”,

which is natural, but we emphasize that this process is not specific to our motivating ex-

ample of the targeted population representing people infected with a dangerous disease.

The goal of the infection process is to generate a targeted subpopulation T such that:

1. The subnetwork restricted to T has multiple distinct connected components (so that

the search problem is algorithmically challenging, and isn’t solved by a single run of

statistic-first search), and

2. The connected components of T are close to one another in the underlying network

G, so that the network data is useful in identifying new members of T .

The process infect(G,s,p,q,k) takes as input a seed infected node s, two values p,q ∈ (0,1),

and a number of rounds k, and proceeds with two phases:

1. Infection phase: Initially, only the node s is in the infected set Ĩ . Then in each of the

k rounds, each neighbor v of the infected nodes Ĩ becomes infected independently
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with probability p.

2. Immune phase: After the infection process above, we will set some of the infected

nodes as immune. For each node i in the infected node set Ĩ , let i become “immune”

(non-infected) with probability q.

The infection phase above is common in the literature on contagion in networks; e.g. rel-

atively recently it was considered as the “independent cascades model” of Kempe et al.

[2003]. The immune phase is introduced in order to permit control of the component

structure while still keeping targeted vertices proximate to each other in the resulting net-

work. We include a formal description of the algorithm in Algorithm 15.

Algorithm 15 infect(G,s,p,q,k)
Input: a network G, a seed node s in G, infection probability p, and immune probability
q
Initially the infected population contains only the seed node:

Ĩ = {s}

for t = 1, . . . , k:
for each node v that is neighbor to Ĩ :

Let ν be a uniformly random number from [0,1]
if ν ≤ p then Ĩ = Ĩ ∪ {v}

let T = ∅
for each node v′ ∈ Ĩ :

let ν be a uniformly random number from [0,1]
if ν > q then T = T ∪ {v}

Output: T as the targeted subpopulation

7.7.2. Non-Private Benchmark Target

We here give a formal description of the non-private version of our graph search algorithm

in Algorithm 16.
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Algorithm 16 Non-Private Targeting Algorithm: Target(G,S , f ,k,N )
Input: A network G, a seed node S ∈ T , a SoP f for SearchCom, a target number of
components to find k, and a stopping threshold N for SearchCom
Initialize: Use I to keep track of the set of investigated nodes. Initially I = {S}.
Let list T̃ = SFS(G,S)
For k − 1 rounds:

let count = 0 and a = ∅
while (V \ I) , ∅ and count≤N

Let
v′ = argmax

x∈V \I
f2(G,v, T̃ )

Query I (v′) to determine if v′ ∈ T .
Let I = I ∪ {v′} and count = count +1

if I (v′) = 1 then let a = v′ and break
if a = ∅ then Output T̃
else let T̃ = T̃ ∪SFS(G,a,f1)

Output T̃

7.7.3. SoP Instantiation

In our experiments, we will use the SoP CN for the SearchCom subroutine, which is the

number of common neighbors between the node v and the subset of nodes S representing

the already discovered members of the targeted population. The targeted sensitivity of CN

is bounded by 1.

Lemma 7.7.1. The SoP CN has targeted sensitivity 4(CN) bounded by 1.

Proof. Let G and G′ be two neighboring networks over the same protected and targeted

populations P and T . Let t ∈ T be a targeted node and S ⊆ V be a subset of nodes. Since

G and G′ only differ by the edges associated with a protected node i, we know that the

neighbor sets of both t and S can differ by at most one node between G and G′. Note that

the CN(G,t,S) computes the cardinality of the intersection between these two sets, and

the intersection sets of these two networks can differ by at most one node. It follows that

4(CN) ≤ 1.

Claim 7.7.2. Suppose each graph in the class G has maximum degree no more than d, then the

SoP CN has impact cardinality IC(CN) ≤ d + 1.
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Implementation of the Stopping Rule with CN Suppose that each graph in the class G

has maximum degree no more than d, then the SoP values of CN will be integer values

in the set D = {0,1, . . . ,d}. Then we can compute the stopping threshold fK by using the

exponential mechanism to select a value from the discrete set D.
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