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Supernova Cosmology And How To Talk About It: New Approaches To
Cosmological Parameter Inference With Type Ia Supernovae And An
Assessment Of The Education And Public Outreach Program Of The
Dark Energy Survey

Abstract
The discovery of the accelerating expansion of the Universe launched a new chapter in modern cosmology.
Evidence for this accelerating expansion was first observed using Type Ia supernovae, which are brilliant,
standardizable explosions that can be detected at large distances and used to infer cosmological parameters.
New surveys are being designed to detect thousands of Type Ia supernovae, ushering in an era where
parameter inference is no longer limited by statistics, but by systematic uncertainties. One of these systematics
which is not well understood is the progenitor and progenitor environment, which can be investigated by
studying properties of the supernova host galaxy. In this dissertation, I use the three-year sample of
photometrically-classified and spectroscopically-confirmed Type Ia supernovae from Sloan Digital Sky
Survey-II Supernova Survey to explore correlations between supernova luminosity and host-galaxy mass,
metallicity, and star-formation rate. Observations suggest that such correlations should be incorporated to
improve the standardization of Type Ia supernova luminosities. As such, new techniques for parameter
inference will need to accommodate increasingly large samples of supernovae and a variety of standardization
models. In this dissertation, I also introduce the BAyesian hierarchical Modeling with BIased Simulations
(BAMBIS) algorithm, a novel approach to parameter inference using Type Ia supernovae which can, in
principle, include systematics such as host-galaxy correlations in a robust statistical framework.

In addition to offering new scientific research opportunities, the quest to understand the evolution of the
cosmos brings excellent opportunities for astronomers to engage in science education and public outreach
(EPO). I present an analysis of the Dark Energy Survey EPO program, a unique large-scale astronomy EPO
initiative organized and led entirely by professional astronomers. In this analysis, I detail the development of
the EPO program as well as analyze the strengths and weaknesses of a subset of specific initiatives. I also
discuss scientists' reported methods of communicating science with the public.
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ABSTRACT

SUPERNOVA COSMOLOGY AND HOW TO TALK ABOUT IT:

NEW APPROACHES TO COSMOLOGICAL PARAMETER INFERENCE WITH

TYPE IA SUPERNOVAE AND AN ASSESSMENT OF THE EDUCATION AND

PUBLIC OUTREACH PROGRAM OF THE DARK ENERGY SURVEY

Rachel Cane Wolf

Masao Sako

The discovery of the accelerating expansion of the Universe launched a new chapter

in modern cosmology. Evidence for this accelerating expansion was first observed using

Type Ia supernovae, which are brilliant, standardizable explosions that can be detected

at large distances and used to infer cosmological parameters. New surveys are being de-

signed to detect thousands of Type Ia supernovae, ushering in an era where parameter

inference is no longer limited by statistics, but by systematic uncertainties. One of these

systematics which is not well understood is the progenitor and progenitor environment,

which can be investigated by studying properties of the supernova host galaxy. In this dis-

sertation, I use the three-year sample of photometrically-classified and spectroscopically-

confirmed Type Ia supernovae from Sloan Digital Sky Survey-II Supernova Survey to ex-

plore correlations between supernova luminosity and host-galaxy mass, metallicity, and

star-formation rate. Observations suggest that such correlations should be incorporated

to improve the standardization of Type Ia supernova luminosities. As such, new tech-

niques for parameter inference will need to accommodate increasingly large samples of

supernovae and a variety of standardization models. In this dissertation, I also introduce

the BAyesian hierarchical Modeling with BIased Simulations (BAMBIS) algorithm, a

novel approach to parameter inference using Type Ia supernovae which can, in principle,

include systematics such as host-galaxy correlations in a robust statistical framework.
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In addition to offering new scientific research opportunities, the quest to understand

the evolution of the cosmos brings excellent opportunities for astronomers to engage in

science education and public outreach (EPO). I present an analysis of the Dark Energy

Survey EPO program, a unique large-scale astronomy EPO initiative organized and led

entirely by professional astronomers. In this analysis, I detail the development of the EPO

program as well as analyze the strengths and weaknesses of a subset of specific initiatives.

I also discuss scientists’ reported methods of communicating science with the public.
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Chapter 1

Introduction

Nearly twenty years ago, two teams of astronomers made the surprising discovery that

the Universe is expanding at an accelerating rate. This ground-breaking conclusion was

reached using observations of roughly 40 Type Ia supernovae (Riess et al., 1998; Perl-

mutter et al., 1999). The significance of this contribution was officially recognized by the

global scientific community, and the analysis team leads were awarded the Nobel Prize

in Physics in 2011. This discovery launched the era of modern cosmology and has led to

one of the greatest unsolved problems in modern physics.

The mysterious phenomenon that drives the accelerating expansion of our Universe

has been called “dark energy” - dark as its nature remains an enigma, and energy as the ac-

celerated expansion is a behavior perhaps explained by a homogenous “vacuum energy”

permeating all of space and opposing the force of gravity. Independent observations us-

ing a variety of cosmological probes have demonstrated that this dark energy constitutes

roughly 70% of the mass-energy density of the Universe today.

To this day, Type Ia supernovae (SNe Ia) continue to be one of the most precise tools

used to study dark energy (Howell, 2011). These standardizeable cosmological distance

indicators provide an excellent means to measure the evolution of the cosmos over time.

It is widely accepted that a SN Ia is the result of a thermonuclear explosion of a carbon-

oxygen white dwarf in a binary system whose mass has reached the Chandresekhar limit
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(Whelan and Iben, 1973; Nomoto, 1982; Iben and Tutukov, 1984; Webbink, 1984; Hille-

brandt and Niemeyer, 2000). The explosion physics and the nature of the progenitor, i.e

the white dwarf’s companion, however, remain unknown. Our ability to more precisely

standardize SN Ia may rest on furthering our understanding of these mechanics and other

correlations related to the SN Ia and its environment. Measurements of dark energy will

only improve if we can make the SN Ia standardization model more complete.

In this Chapter, I discuss the standard cosmological model and how SNe Ia were used

in the discovery of dark energy. I also describe how SNe Ia are distinguished from other

types of stellar explosions. Finally, I describe the significance of recent large-scale SNe

surveys and the transition to the era of precision cosmology.

1.1 The Path to Modern Cosmology

For thousands of years, curiosity about the history and fate of our Universe, or cosmol-

ogy, has been a key component in the evolution of science. The earliest studies of cos-

mology primarily focused on celestial mechanics. Ancient Greek philosophers such as

Aristotle and Ptolemy sought to explain the motions of the “heavenly bodies” they ob-

served wandering through the sky (Ptolemy and Toomer, 1984). This fascination with

the cosmos only grew over time and was a major focus of the “scientific revolution” of

the 16th century. Copernicus’ theory of heliocentrism, Kepler’s laws of planetary motion,

and Galileo’s critical observations of sunspots and of Jupiter’s moons were just some

of the remarkable contributions that emerged during the time. In the following century,

Isaac Newton published his laws of motion and universal gravitation, paving the way for

grander theories about the Universe at large and the era of modern cosmology.

The study of cosmology was transformed in the early twentieth century when Al-

bert Einstein published his theory of General Relativity. In his work Einstein postulated,

among many other things, a unified description of gravity as a property of space and

time. This formalism included a cosmological constant, a term which would account for
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the energy density of the vacuum of space. The cosmological constant was introduced

to counteract the attractive force of gravity and was necessary to explain the widely ac-

cepted notion that while individual parts of the Universe, such as stars and planets, were

in motion, the Universe itself was static.

One of the first astronomers to apply Einstein’s theory of relativity to cosmology

was Georges Lemaître. In 1927, Lemaître proposed that the Universe was not actually

static, but expanding (Lemaître, 1927). Lemaître’s work, however, which also included

one of the first propositions of a “Big Bang,” was met with much skepticism. Two years

later, Edwin Hubble provided observational evidence for an expanding Universe when he

plotted the velocities of galaxies as a function of their distance and found a positive linear

correlation (Hubble, 1929):

v = H0d . (1.1)

Here, v is the object’s recessional velocity, d is its distance, and H0 is the Hubble con-

stant, often measured in kms−1 Mpc−1 which describes the present-day rate of expansion.

Proof and acceptance of an expanding Universe was a radical departure from the status

quo, transforming the way people thought about the cosmos.

Hubble’s Law (Eq. 1.1) is explored, in practice, by using a more fundamental quantity

proportional to an object’s velocity, known as redshift. Redshift (z) describes how the

wavelength of light from an emitted source (λemit) changes relative to the wavelength

recorded by an observer (λobs). As an object recedes from an observer, the wavelength of

its emitted light gets stretched and the object appears redder, thus the name red-shift. We

define redshift such that

z≡ λobs−λemit

λemit
. (1.2)

An object’s redshift can be directly obtained by measuring the absorption and emission

features of its spectrum.

In contrast, an object’s distance cannot be directly measured. Instead, astronomers use

the light received from a distant object as a proxy for its distance. For an object with some
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observed flux, F , and intrinsic luminosity, L, the luminosity distance, DL, is described as

D2
L =

L
4πF

. (1.3)

Astrophysical objects with known luminosities are referred to as standard candles and are

incredibly useful for estimating cosmological parameters. SNe Ia fall into this category

of objects and their use in cosmological analyses is detailed in Section 1.2.

Hubble’s observations dramatically changed our understanding of the Universe. Af-

ter making his initial observations, he concluded that the present-day expansion rate is

roughly 500 kms−1 Mpc−1. Since then, countless experiments have sought to measure

H0 more precisely, with current estimates using different probes hovering around 70

kms−1 Mpc−1 (Riess et al., 2016; Grieb et al., 2017; Bonvin et al., 2017). Of course,

measurements of the Hubble constant only tell us about the present expansion of the Uni-

verse. Understanding the full expansion history, which has become the crux of modern

cosmology, requires analysis of the expansion rate over time, or the evolution of the more

fundamental Hubble parameter, H(t).

1.1.1 A Cosmological Model

At its core, physics (and astrophysics) relies on mathematical models to explain the phe-

nomena of the natural world. Such is the case in cosmology, where a variety of models,

each incorporating different assumptions, explain the evolution of the Universe. Many

of these models make use of an arbitrary length scale factor, a(t), where today a(t) = 1,

and a(t) = 0 at the very beginning of the Universe. We can relate this scale factor to the

redshift

1+ z =
1
a
, (1.4)

and define the Hubble parameter as

H(t)≡ ȧ
a
, (1.5)

where ȧ signifies the change in scale factor over time.
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Establishing a length scale in this way is useful for applications of Einstein’s theory

of general relativity, in which a metric describes the geometric and causal structure of

spacetime. The standard metric used in cosmology, often referred to as the Friedmann-

Lemaître-Robertson-Walker metric, rests on the assumptions that our Universe is ho-

mogenous and isotropic. These assumptions lead to a set of analytic equations that can

be used to probe the evolution, and mass-energy density, of the Universe

ȧ2 + kc2

a2 =
8πGρ +Λc2

3
, (1.6)

and
ä
a
=−4πG

3

(
ρ +

3p
c2

)
+

Λc2

3
. (1.7)

In these equations, G is Newton’s constant of gravitation, Λ is the cosmological constant,

c is the speed of light, k represents a constant denoting spacial curvature, ρ is the mass-

energy density, and p is the pressure. Note that Einstein’s cosmological constant, which

was initially introduced as a term to account for the vacuum energy-density of space, re-

mains as a crucial factor in the modern equations. Rather than being used to explain a

static Universe, the cosmological constant is now used to explain the observed accelerat-

ing expansion.

As far as we are aware, there are four components that contribute to the total mass-

energy of the Universe: spatial curvature, matter (majority dark matter), radiation, and

dark energy. If we assume each of these entities can be described as a fluid, then we

can then relate the density and pressure of each component at a particular scale factor

(redshift, time) with an equation of state

p = w(a)ρ(a)c2 , (1.8)

where we allow the density to evolve with scale factor and w is known as the equation

of state parameter. In most cases, we assume w is a constant and does not evolve, i.e.,

w(a) = w = w0. Rather than use the density directly, cosmologists prefer to use a di-

mensionless parameter, Ω = ρ

ρc
, where ρc is the total mass-energy density necessary for a

Universe with no curvature.
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Combining Eq. 1.8 with Eqs. 1.6 and 1.7 and transforming from scale factor to redshift

space, we have an expression for the Hubble parameter as a function of the mass-energy

densities of curvature (subscript k), matter (subscript m), radiation (subscript r), and dark

energy (subscript Λ):

H2(z) = H2
0

(
Ωm,0(1+ z)3 +Ωr,0(1+ z)4 +Ωk,0(1+ z)2 +ΩΛ,0(1+ z)3(1+wΛ)

)
. (1.9)

Observations using a variety of cosmological probes, including SNe Ia, Baryon Acous-

tic Oscillations (BAO), and the Cosmic Microwave Background (CMB), have been stud-

ied to estimate the components of the mass-energy density of the Universe today. The ra-

diation component has been found to be Ωr,0 . 10−4 and evidence suggests the Universe

is very close to spatially flat, i.e., Ωk,0 ≈ 0 (Komatsu et al., 2011; Planck Collaboration

et al., 2016). Analyses using SNe Ia alone as well as those using combined probes find

results consistent with wΛ =−1, where wΛ is assumed to be constant in redshift (Conley

et al., 2011; Planck Collaboration et al., 2016). Currently, the most robust measurements

of the mass-energy density indicate a flat Universe, comprised of 5% baryonic matter

(matter that includes atoms of any sort), 27% cold dark matter, and 68% dark energy, i.e.,

Ωm,0 = 0.32 and ΩΛ,0 = 0.68 (Planck Collaboration et al., 2016); Ωm +ΩΛ = 1. This

model is commonly referred to as a flat, Λ-Cold Dark Matter (ΛCDM) cosmology. While

current observations are consistent with the ΛCDM model, w is only constrained to within

10%; therefore, there is the possibility for dark energy models with w 6=−1. The suite of

models which allow for a varied value of w while still maintaining the current consensus

of the mass-energy density are referred to as wCDM models.

1.1.2 SNe Ia as Cosmological Distance Indicators

In the context of SN Ia cosmology, what is perhaps most relevant is how the Hubble

parameter relates to the luminosity distance, DL. If we assume the Universe is spatially

flat, then the luminosity distance is defined as

DL =
c

H0
(1+ z)

∫ z

0

dz′

H(z′)
. (1.10)
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Therefore, precise measurements of the luminosity distance will yield precise estimates

of the Hubble parameter and corresponding mass-energy densities.

Astronomers conventionally use magnitude, rather than flux, as a means of referring to

the brightness of an object. This system remains as an artifact of ancient Greek astronomy,

where the brightness of an object was scaled with the brightest objects having a magnitude

of one and the dimmest having a magnitude of six (Ryden, 2003). In modern times,

astronomers have adapted a standard, logarithmic magnitude scale, with the brightest

objects having the smaller magnitudes.

The apparent magnitude, m, is defined as

m =−2.5log(
f
f0
) , (1.11)

where f is the observed flux of the object and f0 is a standard reference flux, e.g., the flux

of the star Vega. We also define an absolute magnitude, M, as a measure of the apparent

magnitude the object would have were it 10 parsecs away, where

M =−2.5log
(

L
f04π(10pc)2

)
. (1.12)

The distance modulus of an object, µ , is defined as the difference between the absolute

and apparent magnitude

µ ≡ m−M = 5log(DL)−5 , (1.13)

where DL is measured in parsecs. In this form, µ acts a distance, but is measured in

magnitudes rather than kilometers or parsecs.

This expression for the distance modulus, however, is incomplete, as the apparent

magnitude m is not a direct representation of the object’s flux. Photons emitted from any

astrophysical object, whether observed by eye or by camera, are detected by a set of filters,

either biological or instrumental, that detect light at different wavelengths. In the case of

modern telescopes, filters are designed to collect light in a distinct set of passbands such

that the color of an object can be obtained by comparing the amount of photons observed

in each passband. Due to cosmological redshift, light from extragalactic objects will
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appear redder. This shift in observed flux will depend on the transmission functions of the

filters and the redshift and spectral energy distribution (SED) of the source. Furthermore,

as emitted photons travel from the source they must pass through galactic dust, both from

the object’s own galaxy and from our Milky Way, which will make the object appear

redder and dimmer. Therefore the amount of this shift in observed flux also depends on

the composition of the dust through which the photons must pass.

To obtain a more accurate estimate of the object’s apparent magnitude, we must cor-

rect for these two effects. Correcting for the photons in the redder passbands is known as

a K-correction, and requires knowledge of or an assumption about the SED of the object

of interest. The Milky Way extinction correction, referred to as A, is fairly well under-

stood (Schlegel et al., 1998; Schlafly and Finkbeiner, 2011), but extinction from the host

galaxy must be estimated and marginalized over when computing the apparent brightness.

If we consider mobs to be the apparent magnitude as measured by an observer, then the

complete distance modulus is defined as

µ = (mobs−A−K)−M = 5log(DL)−5 . (1.14)

As described in Section 1.2, SNe Ia are in a class of astrophysical objects known as

“standard candles.” This means that the intrinsic luminosity, and thus absolute magnitude

M, of SNe Ia are known. Using the relationship between apparent magnitude and distance

modulus, and the definition of the distance modulus as a function of the Hubble parameter,

we can use SNe Ia to infer cosmological parameters such as Ωm,0, ΩΛ,0, and w. For

example, for a wCDM, cosmology, we can write the distance modulus as

µ = 5log

 c
H2

0
(1+ z)

∫ z

0

dz′√
Ωm,0(1+ z′)3 +ΩΛ,0(1+ z′)3(1+wΛ)

−5 . (1.15)

Rather than using the derived luminosity distance, the typical SN Ia Hubble diagram

(e.g., Figures 1.6 and 1.12) features µ as a function of z. SNe Ia on the low-redshift part of

the diagram help constrain the local Universe, e.g., H0, while SNe Ia on the high-redshift

part of the diagram are more useful for constraining changes in the Hubble parameter.
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1.1.3 Evidence for Cosmic Acceleration

In the 1990s, two teams of astronomers set out to use SNe Ia to measure the rate of

expansion of the Universe. At the time, it was believed that the Universe was matter dom-

inated, and that the rate of expansion should be decreasing due to gravitational attraction.

The goal of the members of the Supernova Cosmology Project (Perlmutter et al., 1999,

SCP) and High-Z Supernova Search Team (Riess et al., 1998, HZT) was to measure the

deceleration parameter q0, where

q≡− äa
ȧ2 , (1.16)

and q0 > 0 indicates deceleration. To ensure their analyses could constrain the Hub-

ble parameter in the local and distant Universe, both teams included SNe Ia from the

nearby (z . 0.15) Calan/Tololo Supernova Search (Hamuy et al., 1996). Using indepen-

dent, corrected (see Section 1.1.2), and standardized (see Section 1.2.3) measurements

of spectroscopically-confirmed SNe Ia, both teams observed that high-redshift SNe Ia

were fainter than expected and made the revolutionary conclusion that the Universe is not

decelerating, but in fact accelerating in its expansion.

Figure 1.1 displays the evidence for dark energy from the SCP and HZT. The left panel

of Figure 1.1 features Hubble diagrams (HZT top, SCP bottom) with SN Ia observations

plotted as a function of redshift. As shown in both plots, SN Ia data from these experi-

ments most closely aligned with a flat cosmology with positive contributions from both

Ωm and ΩΛ, and notably ΩΛ > 0. The right panel presents the Ωm-ΩΛ contour regions at

1σ , 2σ and 3σ confidence levels. Constraints from both experiments are consistent with

today’s more precise measurements of Ωm,0 ≈ 0.3 and ΩΛ,0 ≈ 0.7.

1.2 Type Ia Supernovae

SNe Ia are critical probes of the standard cosmological model. Observations of these

incredibly bright explosions (L ∼1010L�), visible out to high redshifts, have provided

evidence for the accelerating expansion of the universe (Riess et al., 1998; Perlmutter

9



0.0               0.2         0.4              0.6            0.8               1.0
Redshift 

Ef
fe

ct
iv

e 
A

pp
ar

en
t M

ag
ni

tu
de

A
B C D

E F
G

A:
B:
C:
D:
E:
F:
G:

HZT

SCP

D
is

ta
nc

e 
M

od
ul

us

         0.01                    0.1                                    1.0
Redshift

Figure 1.1: Evidence for the accelerating expansion of the Universe. Top Left: Corrected

distance modulus as a function of redshift, adapted from Riess et al. (1998). Bottom Left:

Effective SN Ia magnitude as a function of redshift, adapted from Perlmutter et al. (1999).

As shown in both plots, data from the two experiments most closely aligned with a flat

cosmology with both positive Ωm and ΩΛ components. Right: Ωm-ΩΛ contour regions

from both the HZT and SCP, adapted from Perlmutter and Schmidt (2003). Constraints

are presented at the 1σ , 2σ , and 3σ confidence levels; results presented here are consis-

tent with Ωm,0 ≈ 0.3 and ΩΛ,0 ≈ 0.7.
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et al., 1999) and the existence of dark energy. These objects are often referred to as

“standardizable candles,” as their intrinsic luminosity can be calibrated with light-curve

width (‘stretch’) and optical color (Phillips, 1993; Hamuy et al., 1996; Riess et al., 1996;

Tripp, 1998). After applying these corrections using light-curve fitting techniques, there

remains a 1σ dispersion in peak brightness of about 0.1 magnitudes, corresponding to

about five percent in luminosity distance, DL (Conley et al., 2011; Betoule et al., 2014).

1.2.1 Progenitor Scenarios

SNe Ia are a class of stellar explosion whose physical mechanism, and thus spectra and

light curves (brightness over time), are fundamentally different from other types of SNe.

These other SNe, including Type II and Types Ib and Ic, are driven by the gravitational

core collapse of young, massive (M & 8M�) stars (Smartt, 2009). While the progenitor

of a SN Ia has yet to be observed, it is believed that SN Ia are the result of a thermonu-

clear explosion occurring as the mass of a carbon-oxygen white dwarf approaches the

Chandresekhar limit (MCH ≈ 1.4M�) and the temperature increases enough to ignite car-

bon (Whelan and Iben, 1973; Nomoto, 1982; Iben and Tutukov, 1984; Webbink, 1984;

Hillebrandt and Niemeyer, 2000).

While the observable features of SNe Ia provide clues about the explosion mechanism,

the exact nature of the progenitor system is unknown. There are currently two leading the-

ories describing SN Ia explosion mechanics: the single-degenerate and double-degenerate

scenarios. In both cases, the white dwarf is one of two stars in a binary star system. In

the single-degenerate scenario, the white dwarf’s companion is a non-degenerate main

sequence or red giant star. The white dwarf accretes mass from its companion via Roche

lobe overflow or from stellar wind (Whelan and Iben, 1973). In the double-degenerate

scenario, two white dwarfs spiral into each other and ultimately merge (Iben and Tutukov,

1984; Webbink, 1984). Recent observations suggest potential links between progenitor

scenarios and sub-classes of SNe Ia, but do not constrain a definitive SN Ia progeni-

tor channel (Maeda and Terada, 2016). Although the SN Ia progenitor has never been
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directly detected, progenitor scenarios have been constrained using a variety of observa-

tional tools.

The most direct means to identify the SN Ia binary companion is to search in pre-

and post-explosion images. Using archival Hubble Space Telescope (HST) and Chandra

X-ray images of the location near SN 2011fe, Li et al. (2011) reject the possibility of a

red giant or He main sequence (M & 1.0M�) companion. Kelly et al. (2014) use archival

Keck and HST images and post-explosion HST imaging of SN 2014J and determine ob-

servational flux constraints, which also reject a red giant companion. It has been predicted

that during the explosion the companion’s envelope will deposit thermal emission into the

SN ejecta; this will result in excessive blue emission in the first days after explosion and

is more exaggerated for a more extended companion (Marietta et al., 2000; Kasen, 2010).

Such excess emission was detected in observations of SN Ia iPTF14atg and SN Ia 2015,

providing evidence for the single-degenerate scenario (Cao et al., 2015; Marion et al.,

2016).

SN Ia spectra, from which we can extract information about the explosion and lo-

cal environment, are also useful tools for studying progenitor scenarios. There are two

stages during which information about the progenitor system can be studied with spectra:

explosive nucleosynthesis and radiation transport (Parrent et al., 2014). In their analysis

of SN 2011fe spectra, Nugent et al. (2011) find that the early-time spectra are dominated

by intermediate-mass elements and strong features from unburnt carbon and high-velocity

oxygen and that the typical double ionized species features are absent. The spectra also do

not exhibit features of early shock. These observations are used to constrain the luminos-

ity of the companion star and provide support for a degenerate SN Ia companion. Spectral

analysis of PTF 11kx provides evidence of the single-degenerate scenario (Dilday et al.,

2012). Spectral features indicate the presence of fast-moving interior circumstellar ma-

terial, velocities of absorption features that are larger than typical red giant winds, and a

delay between the explosion and the emergence of Ca and H emission. These features

can only be explained by a model in which the white-dwarf accretes mass through wind
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from a red giant.

SN Ia explosion modeling is yet another useful tool as different explosion mechanisms

should lead to differing appearances of SNe Ia. Favored models in the single-degenerate

scenario include delayed detonation, failed deflagration, and double denotation (Maeda

and Terada, 2016). In the double-degenerate scenario, popular explosion models include

white-dwarf mergers, white-dwarf collisions, and violent mergers. Röpke et al. (2012)

use observations from SN 2011fe to explore the delayed-detonation and violent merger

models and find the data more closely match the white dwarf merger; yet there is not an

obvious statistical preference for one model over another. A possible shortcoming of the

violent merger model, however, is that it should lead to a larger diversity of light curves,

spectral features, and polarization signals than currently observed (Bulla et al., 2016).

While models have well-constrained the mass of the progenitor white dwarf (Maeda and

Terada, 2016), no single model can best explain current SN Ia observations.

1.2.2 SN Ia Classification

The term ‘super-novae’ was first coined in 1934 by Baade and Zwicky to describe astro-

physical objects which presented a “very curious puzzle”: the “maximum brightness they

emit [is] nearly as much light as the whole nebula in which they originate” (Baade and

Zwicky, 1934). In the same work, Baade and Zwicky also note that this group of objects

can be found, “not only in the nearer systems, but [...] all over the accessible range of

nebular distances.”

Today, this class of astrophysical objects is separated into two main subgroups cate-

gorically defined by their explosion mechanics. SNe Ia are believed to be the result of

the thermonuclear explosion of white dwarf stars, the carbon-oxygen remnants of low-

mass stars. The exact explosion mechanism remains unknown, but it is believed that the

white dwarf star accretes mass from a companion and that ultimately its internal density

becomes high enough to overcome electron degeneracy pressure. The increase in density

reignites nuclear fusion, which spreads throughout the star. Fusion reignition sends two
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shockwaves: first a wave of subsonic deflagration and then one of supersonic detonation.

This process completely destroys the star and leaves behind no remnant. A typical SN Ia

produces 0.4−0.9M� of 56Ni (Kasen and Woosley, 2007). The thermonuclear fusion of

C and O in the white dwarf progenitor produces intermediate mass elements (Mg, Si, S,

Ca) along with iron-peak elements (Ni, Co, Fe) (Hillebrandt and Niemeyer, 2000). The

light curve is powered by the Comptonization of gamma rays produced by the radioactive

decay of 56Ni (t 1
2
= 6.1 days) → 56Co (t 1

2
= 77 days) → 56Fe, where t 1

2
indicates the

half-life of decay (Colgate and McKee, 1969; Stritzinger et al., 2006).

Other SNe are believed to be the result of the gravitational core collapse of massive

stars at the end of the stellar life cycle. The progenitor stars of these explosions are

massive enough that the temperature and density in the core can facilitate nuclear fusion.

This process begins with the fusion of hydrogen to helium and continues with heavier

elements until an iron core remains. At this point, the star can no longer produce enough

energy to sustain its outer layers. The end of fusion results in an imbalance between

the force of gravity and electron degeneracy pressure in the core, ultimately leading to

energy loss by neutrinos, photo-disintegration, and the collapse of the core to a neutron

star. Observations of the remnants of this type of SN show that the explosion can leave

behind a black hole or neutron star, which is likely dependent on the initial mass of the

progenitor. Unlike SN Ia progenitors which have yet to be directly observed, ≈ 10 core-

collapse SNe have had their progenitors identified as supergiants (Smartt, 2009). SN

Types II, Ib, and Ic fall under this category of core-collapse explosions.

Figure 1.2 shows a schematic diagram of the stellar life cycle, including the distinct

channels which result in core-collapse and thermonuclear SNe.

SNe Ia optical spectra and light curves are distinct from other types of SNe (Filip-

penko, 1997). SN Ia spectra are devoid of hydrogen and have strong Si II lines at peak

brightness. SN Ib and SN Ic spectra also lack hydrogen; SN Ib feature helium and Si

II at peak brightness, while SN Ic spectra do not have helium or silicon features. SN II

are defined by the presence of hydrogen in their spectra. Generally, the shape of SN Ia
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Figure 1.2: Schematic diagram of the stellar life cycle, showing the different channels for

the gravitational core-collapse and thermonuclear SNe. Image credit: SETI Institute.

light curves are roughly similar from event to event, while there is much dispersion in the

shapes of SN II light curves. SN Ia light curves exhibit narrow maxima and fade away

gradually, while SN II light curves tend to have broader peaks and fade away more sharply.

Figure 1.3 presents a comparison of representative optical spectra and light curves for the

different SN types.

SNe Ia can be classified by either their spectra or light curves. Spectroscopic confir-

mation is the surest way to identify a SN Ia, but spectroscopic classification of an entire

SN sample may be difficult due to limited resources. Photometric classification, on the

other hand, is a means of identifying SN Ia using observed photometry and assigning a

type probability to an individual SN light curve. Photometrically-classified SN Ia sam-

ples, however, are more likely to contain contaminants from other SN types. Pure and

efficient photometric classification is essential as SN surveys grow in size and scope.
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Figure 1.3: Representative optical spectra (top) and light curves (bottom) of several SN

types, reproduced from Filippenko (1997). SN Ia are unique compared to other types:

their spectra exhibit no hydrogen features and their light curves have brighter maxima

and fade away more gradually after peak.
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1.2.3 Light-Curve Fitting and SN Ia Standardization

The introduction of charge-coupled device (CCD) technology to modern astronomy rev-

olutionized SN Ia research, as it dramatically increased the number of observed events

and significantly improved photometry and light curve sampling (Phillips, 1993). With

this advance in data quality came the opportunity to explore, in greater detail, the intrinsic

dispersion of SN Ia peak absolute magnitudes. In his work, Phillips (1993) discovered a

strong correlation between SN Ia peak brightness and decline rates; he observed that SN

Ia with brighter peak magnitudes tend to fade away more slowly. SN Ia with longer de-

cline times have wider light curves, and so this became known as the “width-luminosity”

or “stretch-luminosity” relation. Riess et al. (1996) and Tripp (1998) also observed a cor-

relation between SN Ia luminosity and observed color, which has come to be known as

the ‘color-luminosity’ relation; brighter SN Ia tend to be bluer, while redder SN Ia tend to

be dimmer. Although the cause for these relationships is not well-understood, correcting

SN Ia luminosity using correlations with light-curve properties has been shown to reduce

the scatter in magnitude. Figure 1.4 presents examples of SN Ia luminosity corrections

using these correlations. The left panel features a plot of peak magnitude in three different

filters as a function of decline rate (Phillips, 1993). The decline rate is given by ∆m15(B)

which signifies the decline in peak B-band magnitude in the 15 days post peak; smaller

values of ∆m15(B) correspond to SN Ia that fade away more slowly and are intrinsically

brighter. The right panel features Hubble diagrams (µ versus redshift) for SNe Ia that

have been corrected for the luminosity dispersion and extinction using light-curve stretch

and color (Riess et al., 1996). The top panel displays SNe Ia that have not been corrected;

the bottom shows SNe Ia that have had this correction applied, and the corresponding

reduction in Hubble diagram dispersion.

To make use of these standardizing relations, SN Ia light curves must be measured

with proper temporal cadence to estimate the decline rate (stretch), and in multiple filters

to estimate the color. Obtaining these light curve parameters requires fitting observational

data to a set of models. Currently, there are two popular frameworks for light-curve mod-
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Figure 1.4: The SN Ia “stretch-luminosity” and “color-luminosity” relations. The left

panel features a plot of peak magnitude in three different filters as a function of decline

rate, reproduced from Phillips (1993). The decline rate is given by ∆m15(B) which sig-

nifies the decline in peak B-band magnitude in the 15 days post peak; smaller values of

∆m15(B) correspond to SN Ia that fade away more slowly and are intrinsically brighter.

The right panel features Hubble diagrams (µ versus redshift) for SNe Ia that have been

corrected for the luminosity dispersion and extinction using light-curve stretch and color,

reproduced from Riess et al. (1996). The top panel displays SNe Ia that have not been

corrected; the bottom shows SNe Ia that have had this correction applied, and the corre-

sponding reduction in Hubble diagram dispersion.
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eling: the Multicolor Light Curve Shape (MLCS2k2; Jha et al., 2007) and the Spectral

Adaptive Lightcurve Template (SALT2; Guy et al., 2007).

MLCS2k2 uses model photometry in the UBV RI bands to fit the light-curve data.

Variation in the observed light curves is parameterized by a single parameter, ∆, called

the “luminosity correction.” The model trains on low-redshift events where the distances

are known, and so outputs a value of the distance modulus when fitting. Before fitting the

data, observations passed to MLCS2k2 must be K-corrected. One primary advantage to

MLCS2k2 is that it claims to separate variations in SN color into contributions from dust

and from intrinsic differences in SN color. Each SN that is fit by the model has an output

µ , ∆, V -band extinction (AV ), and a date of maximum light.

SALT2 is a fundamentally different approach that uses template SEDs to fit observed

fluxes; this means K-corrections are relatively straightforward. The SALT2 algorithm

uses model SN Ia SEDs that evolve with time to find the expected rest-frame flux in a

given passband. Unlike MLCS2k2, SALT2 does not make any assumptions about the

source of color variations or variations in the SN light curve. In fact, one of a few select

scatter models can be incorporated. For example, the “coherent” scatter model assumes

that the SN Ia dispersion is coherent at all times and wavelengths, i.e., constant scatter

σCOH≈ 0.1. The “G10” model assumes 70% of the scatter comes from coherent variation

and 30% from variation in SN Ia color (Guy et al., 2010). In the “C11” model, 75% of the

SN Ia dispersion comes from variation in color, while 25% comes from coherent variation

(Chotard et al., 2011). The latter two models are based on observation and were converted

into spectral variation models in Kessler et al. (2013).

The SALT2 model assumes that a SN Ia light curve can be parameterized by an epoch

of maximum light in the B-band (t0), stretch (x1), color (c), and the overall normalization,

or amplitude, of the SED (x0). These model parameters are output upon fitting light-

curve observations using the SALT2 algorithm. The peak B-band magnitude is defined

as the transformation of x0 into magnitude space, i.e., mB = −2.5log(x0). Using this
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parameterization, the distance modulus is defined as

µ = mB−M+α× x1−β × c , (1.17)

where M is the SN absolute magnitude, and α and β are global regression parameters.

The difference between the standardized, observed distance modulus and the theoretical,

or best fit, distance modulus (Eq. 1.15) is quantified as the Hubble Residual (HR).

This representation of the distance modulus using the light-curve color, stretch, and

peak B-band magnitude has become one of the most popular SN Ia standardization mod-

els. Attempts to improve and expand upon this model have been a substantial focus of

SN Ia cosmology in the last ten years. For further detail on extensions to and parameter

inference using this standardization model, see Chapter 2.

1.3 Supernovae in the Era of Precision Cosmology

In the last fifty years, there has been a dramatic shift in the structure of astronomy surveys;

projects have evolved from those with a few co-located astronomers to large international

collaborations creating new world-class instruments (National Research Council, 2010b).

Together, these surveys have detected thousands of new supernovae, of all types, in the

redshift range 0 < z < 1.5. In the last decade alone, projects such as the Sloan Digi-

tal Sky Survey-II Supernova Survey (Frieman et al., 2008, SDSS-SNS), the Equation of

State Supernovae: Trace Cosmic Expansion survey (Miknaitis et al., 2007, ESSENCE),

the Supernova Legacy Survey (Guy et al., 2010, SNLS), the Panoramic Survey Telescope

& Rapid Response System (Kaiser et al., 2002, Pan-STARRS), and The Dark Energy Sur-

vey (Bernstein et al., 2012; Kessler et al., 2015, DES) have detected hundreds of SNe Ia

to use for cosmology analyses and to improve photometric classification software. Fig-

ure 1.5 shows the dramtatic increase in the number of detected SNe since the discovery of

dark energy. By combining SNe Ia detected by these different surveys (e.g., Figure 1.12),

we can more completely fill in the SN Ia Hubble diagram and thus better constrain cos-

mological parameter estimates.
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Figure 1.5: SNe detected since 1885. TOP: Total number of SNe detected by

1997; the two experiments which confirmed the existence of dark energy are rep-

resented in grey and yellow. BOTTOM: Total number of SNe detected by 2010,

including new-large scale projects such as SDSS and SNLS. Frames adapted from

https://commons.wikimedia.org/wiki/

File:Sn_discoveries.gif.
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The detection of thousands of new SN Ia candidates means that SN cosmology anal-

yses will no longer be limited by statistics. Uncertainties will instead be dominated by

systematic errors which affect many measurements simultaneously and with some type of

correlation (Howell, 2011). Such systematics include: calibration, selection effects, SN Ia

evolution with redshift, host-galaxy correlations, and contamination from other SN types.

This transition from statistics-dominated to systematics-dominated analyses signifies a

new “era of precision cosmology.”

1.3.1 The Sloan Digital Sky Survey-II Supernova Survey

The SDSS1 is an international collaboration of hundreds of scientists at dozens of insti-

tutions worldwide. For more than fifteen years, SDSS scientists have been working to

create the largest map of the large-scale structure of the Universe. The SDSS began tak-

ing data in 2000, and recently published its thirteenth data release (SDSS Collaboration

et al., 2016). The SDSS camera is mounted on the 2.5m telescope at the Apache Point

Observatory in New Mexico (Gunn et al., 1998, 2006) and the imaging array uses five

optical filters, ugriz, that span from 3000-11,000 Å (Fukugita et al., 1996).

In 2005, the SDSS began its second phase of operations, which included the SDSS-

SNS. Data were collected over a three month observing season (September - November)

in 2005, 2006, and 2007. The survey observed Stripe 82, a 300 deg2 equatorial region of

the Southern sky located approximately between 20 and 4 hours of right ascension (20h .

α . 4h) and between−1.25 and +1.25 degrees in declination (−1.25◦. δ .+1.25◦), in

drift-scan mode obtaining nearly simultaneous 55 second exposures in each of the ugriz

SDSS filters. The average cadence of the survey, including losses due to weather and

sky brightness, was roughly four days. Point sources were observed with 50% detected

completeness at r = 22.6 on average, where the typical peak magnitude for a SN Ia at

z = 0.2 is r ≈ 20.8 (Frieman et al., 2008).

SDSS images were processed in the SDSS pipeline (Stoughton et al., 2002). Astro-

1www.sdss.org
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physical objects were identified via a difference imaging pipeline where template images

were subtracted from search images with potential transients. Light curves were con-

structed using the technique known as “scene modeling photometry” (Holtzman et al.,

2008) and fluxes were calibrated to the standard star catalog to obtain photometry ac-

curate to roughly 1% Ivezić et al. (2007). Objects detected in two or more filters after

frame subtraction were then visually scanned and marked as transients if they were not

obvious artifacts. Spectroscopic measurements were made for likely SN candidates when

resources were available. The candidate selection and filtering algorithms, as well as the

spectroscopic identification, are described in Sako et al. (2008). After three observing

seasons, the SDSS-SNS discovered 10,258 new transient objects and spectroscopically

identified 500 SNe Ia and 81 core-collapse SNe (Sako et al., 2014).

In addition to spectroscopically confirming 500 SNe Ia, the SDSS-SNS also photo-

metrically classified 907 SNe Ia. Light-curves of these likely SNe Ia were analyzed using

the Photometric SN IDentification software (PSNID; Sako et al., 2011). PSNID uses the

observed photometry of the SNe to first compute a Bayesian probability associated with

each of the assumed three SN types (SN Ia, SN Ibc, and SN II), as well as parameters and

errors assuming a SN Ia model, using Markov Chain Monte Carlo (MCMC). The same

procedures are then performed on a large simulated mixture of SN Ia and core-collapse

SNe. For each SN candidate in the sample, the measured SN Ia parameters (extinction,

light-curve stretch, and redshift) are compared with those of the simulated set to calculate

Cartesian distances to the SN’s neighbors which are used then to determine a nearest-

neighbor probability. The combination of the χ2-fit, Bayesian, and nearest-neighbor

probabilities are used for the final classification.

Figure 1.6 displays the Hubble diagrams for subsets of spectroscopically-confirmed

and photometrically-classified SNe Ia from the SDSS-SNS which meet additional light-

curve quality and redshift uncertainty cuts (Sako et al., 2014). As shown in Figure 1.6, the

Hubble diagram of the photometrically-classified sample is more scattered than that of the

spectroscopically-confirmed sample. This is particularly noticeable in the low-redshift
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range (z < 0.2), where the photometrically-classified sample is likely contaminated by

core-collapse SNe. Note that the black best fit line does not correspond with the best fit

cosmology from the sample, but is a fiducial cosmology used to guide the eye.

The Hubble diagrams shown in Figure 1.6 have not been corrected for selection bias.

In a magnitude limited survey, only the brighter objects are observed at large distances,

resulting in selection biases. The severity of this selection bias will depend on the com-

pleteness of the survey as well as any additional selection cuts imposed on the SNe Ia

to create a final sample for analysis. Expected selection bias can be quantified, often as

a function of redshift, using rigorous simulations of a SN survey and comparing the ex-

pected to the observed distance moduli. Figure 1.7 presents the expected selection bias

(µfit−µsim) for the SDSS-SNS sample for two distinct sets of selection criteria. As shown

in Figure 1.7, the degree of the bias depends on the selection criteria imposed. Not ac-

counting for this bias will yield higher-than-expected values of Ωm. Treatment of this bias

remains a complex problem in SN Ia cosmology and is further discussed in Chapters 2

and 4. Assuming a flat, ΛCDM model, the best fit cosmology using the spectroscopically-

confirmed sample after correcting for selection bias is Ωm = 0.315±0.093.

As described in Section 1.2.3, one of the goals of modern SN Ia cosmology experi-

ments is to reduce the scatter in the Hubble diagram. HR as a function of redshift for the

spectroscopically-confirmed sample from the SDSS-SNS is presented in Figure 1.8.

The wealth of data available from the SDSS-SNS has led to several analyses with the

goal of better understanding, and reducing, this HR scatter. Several works have explored

correlations between HR and properties of the SN Ia environment. Correlations between

HR and host-galaxy mass, metallicity, and star formation rate have been observed (Lam-

peitl et al., 2010; Gupta et al., 2011; D’Andrea et al., 2011; Hayden et al., 2013; Wolf

et al., 2016; Campbell et al., 2016). The relationships between SN Ia properties, includ-

ing light-curve color and stretch and spectral features, have also been investigated (Nordin

et al., 2011). While a strong correlation between HR and host-galaxy mass (> 3σ ) is ob-

served using the SDSS-SNS, there is no physical reason why mass should cause this effect
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Figure 1.6: Hubble diagram for subsamples of spectroscopically-confirmed (top, 457 SNe

Ia) and photometrically-classified (bottom, 827 SNe Ia) SNe Ia from the full three-year

SDSS-SNS, adapted from Sako et al. (2014). The large scatter for low-redshift (z < 0.2)

objects in the photometrically-classified sample is likely due to contamination from core-

collapse SNe. The black trend line is not the best fit cosmology from the sample, but a

fiducial cosmology used to guide the eye.
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Figure 1.7: Expected bias in distance modulus measurements in the SDSS-SNS, as de-

termined from simulations, using two different sets of sample selection criteria, adapted

from Sako et al. (2014). The bias using the set of stricter selection criteria (red, Selection

Criteria 2) is more severe than that using Selection Criteria 1 (black).
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Ωm= Ωm
best-fit +2σ

Ωm= Ωm
best-fit - 2σ

Figure 1.8: HR for the full three-year set of spectroscopically-confirmed SNe Ia, adapted

from Sako et al. (2014). The dashed and dot-dashed red lines represent the best fit cos-

mology ±2σ , respectively.

and the exact driver of the HR scatter remains unknown.

1.3.2 Supernova Host-Galaxy Correlations

It is widely believed that standardization of SNe Ia luminosity can be improved by includ-

ing correlations between host-galaxy properties and HR. One of the first explorations of

this correlation is presented in Gallagher et al. (2005), who studied the host-galaxy prop-

erties of nearby SNe Ia and found a tenuous correlation between the HR and host-galaxy

gas-phase metallicity. More recently, Kelly et al. (2010), Sullivan et al. (2010), and Lam-

peitl et al. (2010), using independent data sets, demonstrated that SNe Ia in more massive

hosts are about ∼0.1 magnitudes brighter (after light-curve corrections) than those in

lower mass hosts. Figure 1.9 features the observed correlation between HR and host-

galaxy mass presented in Kelly et al. (2010). In their analysis, Kelly et al. (2010) used

∼60 nearby SNe Ia (0.015 < z < 0.08) with host stellar masses computed from photom-
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etry from the Sloan Digital Sky Survey. After analyzing their data with both MLCS and

SALT2, they concluded that SNe Ia in massive hosts are 10% brighter than those in low

mass hosts. Linear regression analysis of the SN Ia and host-mass data yielded a non-zero

slope with ∼3σ significance.

Figure 1.9: Correlation between HR and host-galaxy mass, reproduced from Kelly et al.

(2010). The weighted averages in the high and low mass bins (black crosses) differ by

0.11 magnitudes (2.5σ). The upper panel features the posterior distribution of the slope

obtained using MCMC sampling.

In the recent literature, there have been several studies indicating that rather than a

continuous linear slope, the HR trend with host stellar mass behaves more like a “step”

function, which has a transition region connecting the two levels (Childress et al., 2013;

Johansson et al., 2013; Rigault et al., 2013). This trend has become known as the “mass

step.” In their analysis, Childress et al. (2013) combine their sample of SNe Ia from the
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Nearby Supernova Factory with SNe Ia from the literature (namely Kelly et al. 2010,

Sullivan et al. 2010, and Gupta et al. 2011) to create a sample of 601 SNe Ia spanning low

and high redshift. Figure 1.10 presents HR and host-galaxy mass data from the combined

Childress et al. (2013) SNe Ia sample. The top figure shows data from the individual

SNe Ia and the best fit linear and step function trends. When performing a linear fit, they

find a non-zero linear slope with ∼3.4σ confidence. If instead the data are separated into

low and high-mass bins, the bin difference is found to be 0.077 magnitudes with 5.6σ

confidence. Binned values in HR and host mass are presented in the bottom figure, and

suggest the trend is not linear, but in fact consistent with a plateau at low and high mass

separated by a transition region from log(M/M�) = 9.8 to log(M/M�) = 10.4. Several

physical models for this behavior were expounded and compared to the data, and the

authors concluded that the cause of the trend may be due to a combination of the shape

of the galaxy mass-metallicity relation, the evolution of SN Ia progenitor age along the

galaxy mass sequence, and the uncertain effects of SN color and host galaxy dust.

Johansson et al. (2013) analyzed a sample of 247 SDSS SNe Ia using only SDSS

host-galaxy photometry. They find that, as in Childress et al. (2013), the HR-mass rela-

tion behaves as a sloped step function, with essentially zero slope at the high- and low-

mass ends and a non-zero slope in the region 9.5 < log(M/M�) < 10.2. They report

that the step in the HR-mass plane is close to the evolutionary transition mass of low-

redshift galaxies first described by Kauffmann et al. (2003b). This transition mass occurs

at log(M/M�) ∼10.5 and signifies a change in galaxy morphology and stellar popula-

tions. Johansson et al. (2013) concluded that differences between SN Ia progenitors in

these populations could imply the existence of two samples of SNe Ia with high and low

HR.

Following on the work of Childress et al. (2013), Rigault et al. (2013) use integral field

spectroscopy for a sample of 89 SNe Ia from the Nearby Supernova Factory to measure

Hα emission within a 1 kpc radius around each SN. This Hα surface brightness was

used to define SN environments as either “locally star-forming” or “locally passive” and
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Figure 1.10: Correlation between HR and host-galaxy mass, reproduced from Childress

et al. (2013). The top panel features a linear and step fit; a non-zero slope is found with

3.4σ confidence and 0.077 magnitude difference is found between the low and high-

mass bins. The bottom panel features the HR and host-mass correlation in bins, which

suggest the trend is perhaps not best fit by a linear function, but by a step function with

an intermediate transition region.
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Rigault et al. (2013) found that the mean standardized brightness for SNe Ia with local

Hα emission is on average 0.09 magnitudes fainter than for those without. They find

a bimodal structure in HR, and claim that the intrinsically brighter mode, exclusive to

locally passive environments, is responsible for the mass step. They argue that HRs are

highly dependent on local environment, with local Hα emission being more fundamental

than global host properties.

There is no known mechanism by which the mass of the host galaxy can directly in-

fluence the explosion of a single white dwarf; therefore, other host properties that are

correlated with galaxy mass must be invoked to explain the underlying physical mecha-

nism of this relation. For example, host galaxy gas-phase metallicity is widely assumed

to be a proxy for progenitor metallicity, and there are models suggesting that SN Ia lumi-

nosities depend on the stellar metallicity of the progenitor (Timmes et al., 2003; Kasen

et al., 2009). Therefore, correlations between host metallicity and SN properties have

been of recent interest as well. D’Andrea et al. (2011) use a complete sample of all 34

SNe Ia with z < 0.15 detected by the SDSS-SNS and corresponding host-galaxy spectra

and found significant correlations between gas-phase metallicity and specific star forma-

tion rate with HR. Similar trends were observed by Childress et al. (2013) and Pan et al.

(2014) using data from the SuperNova Factory and Palomar Transient Factory, respec-

tively. Konishi et al. (2011) also analyzed host spectra of SDSS SNe and concluded that

SNe Ia in metal-rich galaxies are 0.13 magnitudes brighter after correcting for light-curve

width and color. Given that broadband photometry of galaxies is more readily available

than galaxy spectra, several studies have estimated host galaxy physical properties from

photometry. Gupta et al. (2011) used 206 SNe Ia from the SDSS-SNS and host-galaxy

multi-wavelength photometry and found that while the relation of HR with host stellar

mass was highly significant, the relation with mass-weighted age of the host was not.

Building on this work, Hayden et al. (2013) calibrated the fundamental metallicity rela-

tion (FMR) of Mannucci et al. (2010) to better estimate host metallicity from photometry,

and found that using the FMR improves HR correlation beyond the stellar mass alone.
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More recently, using empirical models of galaxy star formation histories and theoretical

SN delay time distribution models, Childress et al. (2014) have argued that the mean ages

of SNe Ia progenitors are responsible for driving the HR correlation with host mass.

Many recent studies utilize host-galaxy spectroscopy to study these relations

(D’Andrea et al., 2011; Childress et al., 2013; Pan et al., 2014). Using spectroscopy rather

than photometry provides direct access to the galaxy SED and a better estimate of dust

extinction. It also allows for derivations of the gas-phase metallicity and star-formation

rates via narrow emission lines. Campbell et al. (2016) use a set of 581 photometrically-

classified and spectroscopically-confirmed SNe Ia from the SDSS-SNS to explore cor-

relations with spectroscopic host-galaxy properties, using published spectroscopy from

the SDSS DR10 catalog (Ahn et al., 2014) and focusing on the impact on cosmological

parameter constraints. In their analysis, Campbell et al. (2016) explored changes in pa-

rameter constraints when including correlations with host-galaxy mass, metallicity, and

star-formation rate. Figure 1.11 presents the change in 1σ and 2σ constraints on w and

Ωm using only SNe Ia for four different variations of the SN Ia luminosity standardiza-

tion including host-galaxy mass; results using the standard relation are shown in black.

As shown in Figure 1.11, the choice of host-galaxy correction model can significantly

change the position of the 1σ credible region.

Clearly, correlations between SN Ia luminosity and host-galaxy properties are an im-

portant systematic that has implications for cosmological parameter inference. Under-

standing these correlations is an active area of study, as the community believes it will

lead to more precise, unbiased cosmological estimates and illuminate the nature of the

SN Ia progenitor.

1.3.3 The Joint Light Curve Analysis

Observations of spectroscopically-confirmed SNe Ia from the SDSS-SNS, together with

SNe Ia from the SNLS and several low-redshift samples, were used in a joint light curve

analysis which obtained one of the most precise cosmological parameter estimates using
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Figure 12. w versus !m for the sample of 581 SNe Ia with measured host-galaxy properties. Left-hand panels: w versus !m using only SNe Ia data together
with a prior on H0. Right-hand panels: SNe Ia + H0 + BAO + CMB. The black contours are uncorrected in all panels. Top panels: the blue contours are
corrected for the host-galaxy stellar mass using the best-fitting linear function, with m = −0.078 mag/log(Mhost/M⊙)and c = 0.772 mag. The red contours
are corrected for the host-galaxy metallicity using a step function split at a stellar mass of log(Mhost/M⊙)=10, with 0.091 ± 0.045 mag as the linear offset
between the two bins. Middle panels: the blue contours are corrected for the host-galaxy stellar metallicity using the best-fitting linear function, with m =
−0.154 mag/dex and c = 1.320 mag. Bottom panels: the blue contours are corrected for the host-galaxy log age using the best-fitting linear function, with m =
−0.059 mag/G yr and c = 0.004 mag. The red contours have m and c as free parameters in the COSMOMC fit, the green contours have only m as a free parameter
for the mass, metallicity and age correlation in the top, middle and bottom panels, respectively. The contours enclose 1σ and 2σ limits on w and !m.

Fig. 13 shows the w versus !m cosmological contours for all
the host-galaxy correction we have investigated in the cosmological
analysis, with H0 SH0ES prior (Riess et al. 2011), LRGs (Reid et al.
2010), and the full WMAP7 CMB power spectrum (Larson et al.
2011). This clearly shows that all the different fits agree within 1σ

error contours. The linear correction for the host-galaxy stellar mass,
when allowed to vary in the cosmological analysis has the largest
effect on the cosmological parameters, shifting to lower values of
!m and more negative values of w.

We also investigate using separate correlations for SNe
host-galaxy mass for star-forming or passive galaxies in the

cosmological analysis. We find that when using the fixed corre-
lations from Section 5.3 the derived cosmological parameters are
consistent with the results when using a single correction for the
host-galaxy mass. Additionally, we tested allowing the slope to vary
in the cosmological fit for the passive and star-forming galaxies sep-
arately. However, both populations converge to the same value for
the slope, and this is consistent with that found when the com-
bined sample was fitted. Thus, we conclude that our current data do
not require passive and star-forming galaxies to be separated, but
caution that this may become important for the next generation of
SN surveys.
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Figure 1.11: Constraints on w and Ωm for four variations of the the SN Ia luminosity

standardization relation, adapted from Campbell et al. (2016). Results shown in black are

without any host-galaxy corrections.

SNe Ia to date (Betoule et al., 2014, hereafter JLA). The complete JLA sample consists of

740 spectroscopically confirmed SNe Ia with redshifts out to z∼1. SNe Ia in the interme-

diate redshift range (0.05 < z < 0.4) were drawn from the SDSS-SNS (Sako et al., 2014).

The high- and low-redshift sample was taken from Conley et al. (2011). High-redshift

SNe Ia were culled from the first three years of SNLS (Guy et al., 2010; Conley et al.,

2011). The remaining low-redshift SNe Ia were drawn from a compilation of low-redshift

surveys, most with photometric observations from the Harvard-Smithsonian Center for

Astrophysics (CfA3).

The main goal of the JLA analysis was to provide stronger cosmological parameter

constraints using a sample spanning a large redshift range and with reductions in sys-

tematic uncertainties. The effort was primarily focused on 1) improving photometric

calibration, 2) more rigorously determining uncertainties in light curve models, and 3)

including the SDSS-SNS sample in the light-curve training and cosmological analysis

(Betoule et al., 2014).

The similarity in design and implementation of the SDSS-SNS and SNLS surveys,
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as well as their complementarity in redshift, motivated the effort for joint photometric

calibration. Photometric measurements for the SDSS-SNS and SNLS were made inde-

pendently but using similar methods, and relied on relative calibration to HST solar analog

stars and Landolt standards, respectively. After including corrections for the survey trans-

mission functions, analysis of the cross-calibration sample showed that the photometry

of the two instruments was uniform at the 3 mmag level (Betoule et al., 2014). Remain-

ing calibration uncertainties, including uncertainties of the flux standards, the low-redshift

sample, and the HST SNe Ia, were combined with this photometric calibration uncertainty

to compute the total contribution necessary for accurate parameter estimation.

Rather than utilize a more conventional SN Ia distance estimator (Eq. 1.17), the

JLA analysis incorporated host-galaxy mass as a standardizing parameter in their SALT2

model. They define the standardized distance modulus as

µ = mB− (MB−α× x1 +β × c) , (1.18)

where mB, x1 and c are the light curve peak B-band magnitude, stretch, and color, and MB

is the absolute SN Ia magnitude. Unlike the standard relation, however, the JLA analysis

assumes the absolute magnitude is a function of host-galaxy stellar mass (Mstellar), where

MB =

M1
B if Mstellar < 1050M�

M1
B +∆M otherwise

, (1.19)

and M1
B and ∆M are additional fit parameters in the model. This particular model form

was based on that of Conley et al. (2011), which aimed to correct for effects due to the

observed correlations between host-galaxy properties and MB and β (Sullivan et al., 2011;

Johansson et al., 2013). Observed distance moduli were computed using Eq 1.18 and used

to compute the best fit ΛCDM cosmology. Details for this fitting procedure are described

in Chapter 2.

The Hubble diagram of the combined JLA sample and corresponding best fit cos-

mology contours are presented in Figure 1.12. The distance modulus-redshift relation of

the best fit ΛCDM cosmology for a fixed H0 = 70 kms−1 Mpc−1 is featured in black.
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Weighted averages of the residuals in bins of width ∆z/z∼0.24 are shown in black dots.

The filled gray contours represent the 68% and 95% confidence regions using the full

JLA SNe Ia sample; red dashed contours represent fit results excluding the SDSS-SNS

sample.

The best fit value of the matter-energy density using the full JLA sample was Ωm =

0.295±0.034 and the correlation between Ωm and any of the nuisance parameters (α,β ,

∆M) was less than 10%. They find that the SDSS-SNS sample exacts as an alternative

anchor for the SNLS+low-redshift sample and that including these intermediate range

SNe Ia reduces the total uncertainty in Ωm by 25%.

Since the initial discovery of dark energy, constraints on Ωm using SNe Ia have im-

proved by nearly 70% (Perlmutter et al., 1999; Riess et al., 1998; Conley et al., 2011;

Betoule et al., 2014). This is largely attributed to increases in statistical power, as well as

better understanding of systematic uncertainties such as those from photometric calibra-

tion and the SN Ia spectral evolution model (Kessler et al., 2013; Mosher et al., 2014).

Despite improvements in calibration, the accuracy of photometric calibration remains the

dominant limiting systematic uncertainty in SN Ia cosmology. However, improvements

in the accuracy of spectrophotometric standards or in the production of laboratory-made

calibration sources should make approaching the systematic limit of ∼1 mmag possible,

particularly with CCD-based photometric measurements (Astier et al., 2013). Large-scale

surveys such as DES and LSST will be equipped to ease the calibration problem, however

these surveys will still have to contend with issues of photometric classification and cor-

relations between SN Ia luminosity and host-galaxy properties in order to achieve even

more precise cosmology estimates.
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Figure 1.12: Hubble diagram and corresponding Hubble residuals (top) and best fit cos-

mology contours (bottom), reproduced from Betoule et al. (2014). Filled gray contours

represent the 68% and 95% confidence regions for the full JLA sample. Red dashed

contours exclude data from the SDSS-SNS.
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Chapter 2

Statistical Frameworks for

Cosmological Parameter Inference

using SNe Ia

SNe Ia are powerful tools for cosmological parameter inference. By comparing SNe Ia

observations to theory, we can constrain parameters such as Ωm and w0 (see Chapter 1).

Conventionally this comparison is made via a two-stage process, given a particular SN

Ia model. First, SN Ia fluxes are fit to obtain light-curve properties, e.g., color, stretch,

and ∆m15(B). How these summary statistics are then used depends on the choice of SN

Ia model and light-curve fitter. For example, the µ values output by MLCS2k2 can be

used to fit the SN Ia Hubble diagram. In the case of the SALT2 model, the light-curve fit

parameters are used to simultaneously constrain cosmological parameters and the SN Ia

luminosity correction coefficients (e.g., α and β ).

A variety of statistical frameworks exist to obtain estimates of cosmological param-

eters from SNe Ia light-curve data. This includes traditional χ2-minimization, Bayesian

inference, and Approximate Bayesian Computation. While some of these frameworks

have the functionality to compare cosmological models and provide a relative measure of

model “goodness,” this will not be discussed in this thesis. For a review of model selec-
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tion, see e.g., Trotta (2008); Gelman et al. (2014). In this Chapter, I review commonly-

used techniques for cosmological parameter inference using spectroscopically-confirmed

SNe Ia and discuss several remaining systematic challenges. Throughout this disserta-

tion, I will discuss cosmological parameter inference in the context of the SALT2 SN Ia

model, unless otherwise specified.

2.1 Introduction

A common problem in statistical inference is how to estimate parameters (e.g., Ωm) of

a theoretical model using empirical observations. Statistical approaches to this problem

have been divided into two primary schools of thought: frequentist and Bayesian. In the

frequentist approach, a model parameter is believed to have a single true value; in the

Bayesian approach, a parameter is believed to be fixed, but drawn from some probability

distribution. Fundamentally, the difference between frequentist and Bayesian methods

lies in the interpretation of probability. In the frequentist perspective, probability is con-

sidered to be a relative frequency; in contrast, Bayesian probability is considered to be a

degree of belief (D’Agostini, 1995).

These differences inspire an important distinction between the frequentist and

Bayesian approaches to parameter estimation. Frequentists seek to explore the data like-

lihood, the probability of the data given some model. Bayesians, on the other hand, are

interested in the posterior probability, or the probability of the model given the data.

These two interpretations and the ways in which they are evaluated, are related, yet fun-

damentally distinct.

2.2 Outlining the SN Ia Cosmology Problem

We consider SN Ia light curves (observed flux over time) as the most fundamental obser-

vations of a SN survey. However, rather than use light-curve fluxes directly, we frequently
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use light-curve fit parameters as data for cosmological parameter inference. For the pur-

pose of this discussion we consider the data (D, elements of which are noted with the

superscript “obs”) to be the set of measured SALT2 light-curve fit parameters and their

associated errors:

Di = {zobs
i ,mobs

Bi ,x
obs
1i ,cobs

i ,Cobs
i } , (2.1)

where zobs
i is the redshift of the ith SN Ia in the dataset, and mobs

Bi ,x
obs
1i , and cobs

i are the

light-curve fit parameters. Cobs
i is the covariance matrix of measurement uncertainties

defined by the experiment:

Cobs
i =

 σmBi
2 σmBi,x1i σmBi,ci

σmBi,x1i σx1i
2 σx1i,ci

σmBi,ci σx1i,ci σci
2

 . (2.2)

We define the set of light-curve fit parameters only as di

di = {mobs
Bi ,x

obs
1i ,cobs

i } , (2.3)

as it will be useful for discussion later in this chapter.

Of interest are the set of cosmological model parameters and the global SN Ia stan-

dardization parameters that minimize the scatter about the SN Ia Hubble diagram. For

reference, the SALT2 SN Ia model of the distance modulus (µ) is given by

µi = mBi−M0 +α× x1i +β × ci , (2.4)

where M0 is the reference SN Ia absolute magnitude and α and β are the global standard-

ization (regression) parameters. The intrinsic scatter in SN Ia magnitude, often referred

to as σint, is also included as an unknown parameter in the model. This represents the

currently unexplained remaining scatter about the SN Ia Hubble diagram after correcting

for correlations between SN Ia luminosity and light-curve properties (Section 1.2.3). The

exact form of this intrinsic scatter, e.g., as a global parameter added to the SN Ia mag-

nitude, depends on the model under investigation. In many cases, this is treated a single

coherent scatter in SN Ia magnitude, i.e.,

mscat
Bi ∼ N(mBi,σ

2
int) . (2.5)
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Other models incorporate scatter in both magnitude and SN Ia color (Guy et al., 2010;

Chotard et al., 2011; Kessler et al., 2013). In the SALT2mu parameter estimation algorithm

(Marriner et al., 2011), the intrinsic scatter is treated as function of the model parameters

and observed light-curve fit property covariances

σ
2
inti = C

obs
i00 +α

2Cobs
i11 +β

2Cobs
i22 +2αCobs

i01 −2βCobs
i02 −2αβCobs

i12 . (2.6)

We define θc as the set of cosmological parameters and θs as the set of SN Ia stan-

dardization parameters. θ is defined as the complete set of these parameters, e.g., for a

flat ΛCDM cosmological model and the standardization model of Eq. 2.4:

θ ≡ [θc,θs] = [Ωm,M0,H0,α,β ,σint] . (2.7)

As M0 is completely degenerate with H0, most analyses fix H0 to the current best estimate

of the Hubble constant.

2.3 Traditional Cosmological Parameter Estimation

Methods using SNe Ia

The χ2-minimization technique has traditionally been used for estimating cosmological

parameters and SN Ia standardization parameters from SN Ia light-curve fit data (Riess

et al., 1998; Perlmutter et al., 1999; Kessler et al., 2009a; Marriner et al., 2011; Conley

et al., 2011; Betoule et al., 2014). χ2-minimization relies on constructing an optimal

statistic which compares observations to theory, and using that statistic to evaluate the

likelihood of the data given a proposed model. In the conventional framework, the best-fit

model will be that which minimizes the value of the statistic and maximizes the value of

the likelihood. However, this is not necessarily the case in the SN Ia cosmology problem,

which requires a complex statistic to fully capture survey systematics.

The χ2 statistic is frequently used in regression analyses to measure how well a data

set matches a theoretical model. For a set of N observed events x = {xobs
i ...xobs

N }, the

40



random variable χ2 is defined as

χ
2 ≡

N

∑
i=1

(xobs
i − xmod

i )2

σ2
i

, (2.8)

where xmod
i is a function of the model parameters and σ2

i is the uncertainty of the data. If

the data xobs
i are independent with Gaussian errors, then χ2 follows a chi-squared distri-

bution χ2
ν with mean ν , where ν indicates the number of degrees of freedom. When the

data are a good fit to the model, we expect χ2/ν ≈ 1. χ2/ν >> 1 or χ2/ν << 1 indicate

the model is not a good fit to the data and should be rejected.

The likelihood, L, is defined in terms of this χ2, i.e.,

L ≡ p(D|θ) (2.9)

L= (2πσ
2)−N/2exp

(
−χ

2/2
)
. (2.10)

In this description of the likelihood, the parameter set θ which minimizes χ2 also maxi-

mizes the likelihood. The particular θmax which satisfies this condition is known as a max-

imum likelihood estimator. Values of θmax obtained using a χ2-minimization (maximum-

likelihood) technique are single-valued and are assumed to have Gaussian uncertainties.

In practice, the likelihood is evaluated by sampling p(D|θ) over the model parameter

space. In simple cases, this can be done by evaluating the likelihood across a grid of points

in parameter space. However, as the dimensionality of the problem increases and/or the

likelihood function becomes more complex, more sophisticated sampling mechanisms are

required. It becomes more efficient to explore regions of parameter space near the peak

of the likelihood distribution, rather than sampling across every possible point in θ .

One technique commonly used to explore the parameter space is Markov Chain Monte

Carlo (MCMC). MCMC algorithms construct a “chain” of points in parameter space,

where the position of each element in the chain is only informed by the position of its

predecessor. For example, in the subclass of “random walk” MCMC algorithms, the chain

“moves” by drawing new steps from a proposal distribution and comparing the likelihood

of the new step to that of the previous step. Features of the proposal distribution can be
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altered to adjust parameters such as the step size. A crucial property of an MCMC chain

is that it ultimately evolves to a stationary or “target state” distribution independent of

the starting point. If the chain has converged properly, this “target state” distribution is

proportional to the probability distribution of interest. Several MCMC algorithms exist,

with a variety of proposal distributions and other tunable parameters. Popular MCMC

algorithms include the Metropolis-Hastings (Metropolis et al., 1953), Gibbs sampling,

and ensemble sampling (Goodman and Weare, 2010).

In the context of SN Ia cosmology, the χ2 statistic takes the form

χ
2 = (µobs−µ

mod)TC−1(µobs−µ
mod) , (2.11)

where µmod is the vector of theoretical distance moduli evaluated using the set of cosmo-

logical model parameters (Eq. 1.15). µobs is the set of observed distance moduli computed

for each SN Ia using the observed light curve and subsequent light-curve fit parameters

(e.g., using Eq. 2.4). Cµ is the total covariance matrix which is often a linear combination

of measurement uncertainties (Cobs), the intrinsic Hubble diagram dispersion, redshift

uncertainties, and other systematics. For example, the full covariance matrix used in the

Betoule et al. (2014) analysis is given by

C =Cη +diag
(

5σz

zlog10

)2

+diag(σ2
lens)+diag(σ2

coh) . (2.12)

In this formalism, Cη includes contributions from systematics: uncertainties stemming

from the error propagation of light-curve fitting, i.e., Cobs; light-curve model uncertainties

(which will depend on the regression cofficients α and β ) and selection bias uncertain-

ties estimated from rigorous simulations of the SN Ia sample; uncertainties of the SN Ia

host-galaxy masses; corrections for Milky Way extinction; peculiar velocities; and sam-

ple contamination from core-collapse SNe. The other terms account for uncertainties in

cosmological redshift, the variation in SN Ia magnitudes due to gravitational lensing, and

any remaining intrinsic scatter not captured by other terms, respectively. Clearly, com-

puting the full covariance matrix is nontrivial. Furthermore, this technique assumes that

contributions to the covariance matrix are fixed across all of parameter space. While this
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is a justified assumption for global systematics including Milky Way extinction and core-

collapse contamination, it is possible that uncertainties related to selection effects vary

across parameter space.

Although χ2-minimization has been widely adopted and tested by the SN Ia commu-

nity, a few significant issues remain:

1. Unlike Eq 2.8, the SN Ia χ2 includes parameters in θ , namely α and β , in the un-

certainty (C); i.e., the contribution to C from light-curve fitting is dependent on α

and β . From Eqs. 2.11, it is apparent that certain values of (α,β ) may maximize

the covariance, and thus minimize the χ2, but also maximize the difference between

µmod and µobs. Because α and β act as both range and location parameters, their

errors are not necessarily Gaussian. This means that χ2/ν ≈ 1 is no longer a sat-

isfactory measure of goodness-of-fit. Furthermore, the value which minimizes the

χ2 may no longer maximize the likelihood.

2. Although the intrinsic dispersion is treated as a model parameter, there is much va-

riety in the way in which it is estimated. In many cases, the χ2 is first minimized

and σint is adjusted until χ2/ν ≈ 1. This is precisely what is done in Conley et al.

(2011), where a single σ2
int is determined for each of the SN survey samples. Be-

toule et al. (2014) add additional degrees of freedom to their χ2 by splitting the

SN Ia sample into redshift bins and calculating a minimized χ2 per bin. They then

use these minimized χ2 values to iteratively determine the intrinsic scatter. Fit-

ting for the intrinsic dispersion in this way means that only a single number can be

estimated without any uncertainty.

3. Many of the χ2-minimization analyses involve a combination of parameter infer-

ence techniques. A single analysis may include χ2-minimization, iterative updates,

and marginalization to infer best-estimates of the parameters of interest. Therefore,

it is difficult to compare uncertainties from these analyses to those that use more

standard sampling techniques.
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2.4 New Statistical Techniques

2.4.1 Bayesian Parameter Inference

In contrast to χ2-minimization techniques, Bayesian analyses aim to construct the poste-

rior probability of the model parameters given the data, or p(θ |D). To do this, we make

use of Bayes’ theorem, which relates the posterior probability to the likelihood

p(θ |D) = p(D|θ) p(θ)
p(D)

= L p(θ)
p(D)

. (2.13)

It is often more useful to rewrite Bayes’ theorem in the context of a particular modelM

which is a function of the parameter set θ . In this case, Eq. 2.13 becomes

p(θ |D) = L p(θ |M)∫
L(D|M(θ))p(θ)dθ

. (2.14)

The probability p(θ |M) in Eq. 2.14 is known as the prior. The prior describes where

we believe the true value of the parameters lie and is generally informed by the data

and current or past experiments. While the inclusion of a prior is controversial to many

frequentists, well-motivated priors, e.g., a physical prior requiring galaxy mass to be pos-

itive, ensure that we are using prior information to the best of our ability before gathering

and analyzing the data. While there exists a wide range of prior functions, there are a few

which are common in the SN Ia literature: uniform, Gaussian, and Jeffreys. A uniform

(flat) prior indicates that all points in parameter space are equally probable, but explicitly

prohibits points in parameter space outside the prior range. The shape of Gaussian priors

can be easily manipulated, and their long tails do not definitively exclude specific parts

of parameter space. A Jeffreys prior goes as 1/θ , is uniform in log space, and is often

used for inference of scale parameters. The choice of priors primarily depends on how

much information is available. Broader priors should be used in cases with little infor-

mation; narrow priors, e.g., from a well-tested theory, are useful in cases with poor data.

Ultimately, the choice of prior should not dominate the likelihood. Analyses where the

prior is the dominant driver of the posterior indicate that the data cannot constrain the

parameters of interest or that the prior was inappropriately chosen.
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The denominator of Eq 2.14 is the product of the likelihood and prior integrated over

all points in parameter space. This quantity is often referred to as the model evidence and

is used to determine the “best” model in a set of competing models.

Just as the likelihood is sampled in the χ2-minimization technique, the joint posterior

probability, p(θ |D), is sampled in Bayesian inference. Rather than sample the full joint

posterior, however, we often sample the product of the likelihood and the prior as this is

proportional to the posterior and does not require the integration over the full range of

parameter space. Therefore, a likelihood is also essential for this method of parameter

inference.

2.4.1.1 Bayesian Hierarchical Models

Linear regression with uncertainties in both the independent and dependent variables,

as is the case with the SN Ia cosmology problem, is nontrivial in the classical Bayes

formalism. The Bayesian Hierarchical Model (BHM) framework was introduced in Gull

(1989) to address this issue. Gull proposes a two-part solution:

1. Hidden variables, which represent the latent or “true” values of measured quantities

are introduced. These are treated as nuisance variables and ultimately marginalized

over.

2. Informative priors are imposed on the hyperparameters, parameters describing the

latent variables. These priors are particularly important for hyperparameters repre-

senting the locations of the latent variables, e.g., the mean of a distribution.

Gull (1989) asserts that this hierarchical or “sub-model” structure recovers unbiased esti-

mates of the parameters, particularly of the slope parameters, as long as informative priors

are included. Here, bias in an estimated parameter refers to a systematic deviation from

the true value of the parameter, i.e.,

bias≡
〈

θ
best fit−θ

true
〉
, (2.15)
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and can only be estimated over multiple realizations of the data.

Figure 2.1 displays a sample BHM for a simple toy regression problem with errors in

the independent (xi) and dependent (yi) variables (March et al., 2011). In Figure 2.1, solid

lines indicate probabilistic connections and dashed lines indicate deterministic connec-

tions. Parameters to be constrained are circled in red, latent variables are circled in blue,

and data are circled in green. As shown in Figure 2.1, there are two types of parameters

to be constrained: the conventional set of model parameters (θ ) and the hyperparameter

describing the width of the latent x distribution (Σx). To achieve unbiased estimates of

θ , informative priors must be imposed on the hyperparameters. The classic Bayesian ap-

proach would not include the hyperparameter Σx which describes the distribution of the

latent xi.

2.4.1.2 Bayesian Inference with SNe Ia

Recently, Bayesian inference has become a more popular technique in SN Ia cosmology

analyses due to its flexibility and computational efficiency. The BHM framework easily

incorporates a variety of SN Ia standardization models and can be used to explore model

nuances and build sophisticated model networks.

Figure 2.2 features two example hierarchical frameworks designed for cosmological

parameter inference using SNe Ia. The top panel of Figure 2.2 displays the BHM network

presented in March et al. (2011), the first application of BHM to the SN Ia cosmology

problem. The bottom panel features a more recent and complex BHM presented in Rubin

et al. (2015). In both networks shown in Figure 2.2, dashed lines indicate deterministic

relations and solid lines indicate probabilistic relations. Both models include cosmolog-

ical parameters and the SALT2 SN Ia standardization coefficients α and β . They also

include hyperparameters describing the position and scale of the latent light-curve color

and stretch distributions. The Rubin et al. (2015) model builds on that of March et al.

(2011) by including other parameters such as host-galaxy standardization coefficients and

parameters describing systematic uncertainties and sample limiting magnitudes. For fur-
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Figure 2.1: Sample BHM reproduced from March et al. (2011). Solid lines indicate

probabilistic connections; dashed lines indicate deterministic connections. Parameters

to be constrained are circled in red, latent variables are circled in blue, and the data are

circled in green. The classic Bayesian model would not include the Σx hyperparameter

describing the distribution of the latent xi.
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ther examples of the diversity of BHM models applied to SN Ia data, see Mandel et al.

(2009), Shariff et al. (2016), and Mandel et al. (2016).

In many SN Ia BHM analyses, deriving the analytic form of the likelihood involves

change of variables, marginalization over latent variables and nuisance parameters, as-

sumptions about variable covariances, etc. This leads to analytic prescriptions of the

likelihood that are rather complex and may be incomplete. For example, after marginaliz-

ing over latent variables, nuisance parameters, and SN Ia redshift uncertainties, the March

et al. (2011) likelihood is expressed by

p(d|θ) =
∫

dlogRcdlogRx|2πΣC|−1/2|2πΣP|−1/2|2πΣ0|−1/2|2πK|1/2×

exp
[
−1

2
(
XT

0 Σ
−1
C X0−∆

T
Σ
−1
A ∆− kT

0 K−1k0 +bT
mΣ
−1
0 bm

)]
.

(2.16)

Definitions of the parameters used in the likelihood are described in Appendix C of March

et al. (2011). We do not define them here as we include the likelihood merely as an

illustrative example of SN Ia BHM likelihood complexity.

Rubin et al. (2015) employ several variations of their BHM for cosmological parame-

ter inference, using the Union2.1 compilation of 580 SNe Ia assembled by the Supernova

Cosmology Project (Suzuki et al., 2012). When comparing their BHM posteriors to the

corresponding best-fit results obtained using the traditional χ2-minimization approach

and the same SN Ia standardization model, they find their 1-D marginalized posteriors

give roughly the same 1σ uncertainty region for Ωm.

2.4.2 Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) offers a “likelihood free” means of sampling

from the posterior distribution when the likelihood is intractable. This idea of an alterna-

tive means of parameter inference was first introduced in Rubin (1984) and the algorithm

and official name of ABC was established in Beaumont et al. (2008).

The goal of the ABC algorithm is to simulate samples directly from the posterior dis-

tribution p(θ |D) without assuming a particular form for the likelihood. At each proposed
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Figure 2.2: Sample Bayesian hierarchical networks for the SN Ia cosmology problem,

reproduced from March et al. (2011, top) and Rubin et al. (2015, bottom). Solid lines

indicate probabilistic connections; dashed lines indicate deterministic connections. The

UNITY model builds on that of March et al. (2011) and includes the same set of cos-

mological and standardization parameters and hyperparameters as a subset of their larger

parameter set.
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point in parameter space θ ∗, a simulation of the data is drawn, i.e., D∗ ∼ f (D|θ ∗). Sam-

pling the posterior by forward-modeling the data allows for the inclusion of complicated

systematics and other survey-specific effects that are not trivial to include in standard χ2-

minimization or other likelihood-based techniques (e.g., BHM). The simulated data set is

then compared to the data by way of a metric ρ . Simulations which are “close” to the data

are accepted, while others are rejected. The criterion for acceptance is determined by a

tolerance threshold ε , which is initially large, but decreased at each step as the simulated

distribution converges on the true distribution. Proposed parameters θ ∗ are accepted if

ρ(D∗−D)< ε . (2.17)

This form of “rejection sampling” is the most common implementation of the ABC

algorithm. The process of adapting the threshold to ensure reasonable acceptance rates

and proper convergence is known as Sequential Monte Carlo (SMC). SMC will produce

samples from p(θ |ρ(D∗−D)< ε) which will approximate the posterior if ε is small.

Cases of higher dimensional data may reduce the acceptance rate and efficiency of

the ABC algorithm. In some instances, it may be simpler to use a lower dimensional

summary statistic of the data, e.g., a sample mean or variance. Summary statistics used

in this way should be sufficient statistics, where information contained in the data is also

contained in the summary statistic. Using these sufficient statistics ensures that we have

not reduced our ability to constrain the parameters of interest.

2.4.2.1 ABC Parameter Inference with SNe Ia

The development of sophisticated supernova light-curve simulation software, such as the

SuperNova ANAlysis package (SNANA; Kessler et al., 2009b) offer an excellent opportu-

nity for ABC SN Ia cosmology analyses. Such analyses have only recently been explored

in works such as Weyant et al. (2013) and Jennings et al. (2016).

Weyant et al. (2013) use the SNANA suite to simulate SNe Ia from the SDSS-SNS

(Section 1.3.1) and apply their algorithm to data used in the SDSS-SNS first year cosmol-

ogy analysis (Kessler et al., 2009a). They choose to fit the simulated light curves with
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MLCS2k2 (Section 1.2.3) and use the difference between the observed distance modulus

and simulated distance modulus as their metric. To evaluate their metric, they smooth the

distance moduli as a function of redshift using nonparametric linear regression (loess;

Cleveland et al., 1992) and take the difference between the theoretical and observed val-

ues at the observed redshifts. They define ρ as the median absolute difference between

the smoothed curves.

Figure 2.3 compares the uncertainty regions in the inference of w0 and Ωm using

the Weyant et al. (2013) ABC framework and the χ2-minimization analysis described

in Kessler et al. (2009a). As demonstrated in the Figure, the ABC inference recovers a

roughly equivalent uncertainty region as the χ2-minimization treatment even when incor-

porating a complex forward-model simulation of the data.

Figure 2.3: Weyant et al. (2013) comparison of uncertainty regions in the w−Ωm param-

eter space using ABC and the χ2 method as described in Kessler et al. (2009a).

Jennings et al. (2016) proposes alternative ABC metrics using light-curve flux mea-

surements and the SALT2 light-curve fit parameters (Section 1.2.3) using a set of SNANA-

simulated SNe Ia light curves from the Dark Energy Survey Supernova Program (Kessler
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et al., 2015). Their analysis includes parameter inference with two distinct metrics and

with and without including systematic uncertainties as parameters in the model. In the

“Tripp Metric,” the difference between the observed and theoretical distance moduli is

computed for the sets of simulated and observed SNe

∆data =

1
Ndata

Ndata

∑
i

[µ(zdata
i ,θ ∗)− (mdata

b,i +α∗xdata
1,i −β ∗cdata

i −M0−δM∗0)]
2

σ2
mb,i

+(α∗σx1,i)
2 +(β ∗σci)

2 +σ2
int

∆sim =

1
Nsim

Nsim

∑
j

[µ(zsim
j ,θ ∗)− (msim

b, j +α∗xsim
1, j −β ∗csim

j −M0−δM∗0)]
2

σ2
mb, j

+(α∗σx1, j)
2 +(β ∗σc j)

2 +σ2
int

,

and the metric is defined as the difference between the two offsets:

ρTripp = |∆data−∆sim| . (2.18)

Rather than use the light-curve fit parameters, the “Light-Curve” metric uses the light-

curve fluxes directly and compares the differences in observed fluxes in the griz bands for

the simulated and observed SNe Ia. This is done by comparing the difference in fluxes

to a “reference difference” distribution that accounts for sampling variance in a fixed

cosmology. The metric is defined as

ρLC =
Nbins

∑
j=0

χ
2
j , where (2.19)

χ
2
j ≡

(OcT c̃, j−Ecc, j)
2

Ecc, j
, (2.20)

OcT c̃ is the observed distribution of flux differences, and Ecc is the expected distribution

of flux differences.

Figure 2.4 presents example 1σ and 2σ contour regions using the “Light-Curve” (top)

and “Tripp” (bottom) metrics. Dashed lines in both plots indicate the posterior distribu-

tions when systematic uncertainties are included as parameters in the model and the yel-

low star indicates the true values of the parameters used to generate the simulated data set.
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As Figure 2.4 shows, both ABC metrics successfully recover the input value in the 1σ un-

certainty region. The 1σ posterior is narrower using the “Tripp” metric than when using

the “Light-Curve” metric, yet including systematics tightens the uncertainty region using

the “Light-Curve” metric. The bottom figure also includes results using traditional χ2-

minimization parameter inference with MCMC (purple contours). The ABC algorithm

recovers similar 1σ and 2σ uncertainty regions to those inferred with χ2-minimization

while including more complicated survey-specific effects such as weather conditions and

spectroscopic selection efficiency.

2.5 Assumptions and Challenges in SN Ia Parameter In-

ference

Each of the methods described in Sections 2.3 and 2.4 has its own advantages and dis-

advantages. For example, likelihood-based frameworks are often computationally more

efficient than ABC; likelihood evaluation and sampling typically requires much less com-

puting time than the forward-model simulations and SMC necessary for ABC parameter

inference. On the other hand, ABC methods which rely on simulations of the data can

more robustly account for survey-specific effects which are difficult to describe analyti-

cally. When performing cosmological parameter inference, it is critical that one is aware

of the different ways in which these methods deal with several key assumptions and chal-

lenges:

1. Analytic Likelihood Assumptions

In the standard likelihood-based technique, the likelihood p(D|θ) is often assumed

to be a Gaussian, multivariate Gaussian, or product of Gaussian distributions (March

et al., 2011; Betoule et al., 2014; Rubin et al., 2015; Shariff et al., 2016). This im-

plies that each data point is normally distributed about the model value with the

variance (covariance) as indicated by the likelihood. While this treatment has be-

come convention, there is no reason to assume that all SNe Ia data follow this pre-
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Figure 2.4: 1σ and 2σ contour regions using the “Light-Curve” (top) and “Tripp” (bot-

tom) metrics reproduced from Jennings et al. (2016). The yellow stars indicate the true

values used in the simulated data set. Green contours represent the results using the ABC

metric; purple contours represent results using traditional χ2-minimization parameter in-

ference. Dashed (ABC) and dot-dashed (χ2-minimization) lines indicate the increased

parameter uncertainty when including systematics.
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scription. ABC methods avert this assumption by avoiding the use of the likelihood

entirely.

2. Analytic Model Assumptions

Conventional likelihood-based techniques also require an analytic description of

the model, e.g., in the SN Ia case, we utilize a regression equation to parameterize

µmod
i . However, including parameters to account for more realistic effects, such

as selection bias, is nontrivial and may result in a model parameterization that is

incomplete or incorrect. ABC methods do not rely on such a model prescription,

but must instead design an effective metric by which to compare the observations to

simulated data. Developing such a metric is also nontrivial and choice of metric can

significantly effect the resulting posterior distributions of interest (Jennings et al.,

2016).

3. Systematic Uncertainties

Properly including systematics is essential, particularly in the era of precision cos-

mology (Section 1.3). In likelihood-based techniques, it has become standard prac-

tice to incorporate systematic effects into the covariance matrix used in the likeli-

hood (Kessler et al., 2009a; Conley et al., 2011; Betoule et al., 2014). However,

accounting for modeling and instrumental systematics, as well as correlations be-

tween parameters of interest is not straightforward (Morrison and Schneider, 2013;

Betoule et al., 2014). Estimating some systematic effects, such as those from light-

curve fitting, requires rigorous simulations; if these estimates are drawn from too

few a number of simulations, or if the simulations are drawn from a fixed cosmol-

ogy, then the estimated covariance may be insufficient. Therefore methods which

rely on a fixed derived covariance matrix must be used with caution, as uncertainties

in the covariance propagate to uncertainties in the inferred cosmological parame-

ters (Dodelson and Schneider, 2013). Frameworks which rely on forward-model

simulations of the data, such as ABC, avoid many of these issues as the effect of
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various systematics are reevaluated at each proposed point in parameter space.

4. Selection Bias

Perhaps one of the most significant remaining challenges in SN Ia cosmology

is how to appropriately treat selection bias. This is particularly important in a

magnitude-limited survey where only the brightest objects are detected at high red-

shifts.

As discussed in Section 1.3.1, this selection bias can be quantified using survey-

specific simulations:

µbias i ≡ µfit i−µsim i , (2.21)

where µfit i is the distance modulus derived from the best fit cosmology and µsim i is

the simulated observed distance modulus. This bias is typically quantified in bins

of redshift (i.e., µbias i′ =< µbias i > ; zi′ < zi ≤ zi′+1) and derived from simulations at

a fixed cosmology, but has been shown to yield more accurate inference when also

binned as a function of light-curve parameters (Scolnic and Kessler, 2016). Several

analyses have included this estimation of the bias when using an incomplete sample

of SNe Ia for cosmological parameter inference. In this case, the observed distance

moduli are “corrected” for selection bias by adding an additional bias factor to the

observed distance moduli or peak B-band magnitude, i.e., µobs
i → µobs

i + µbias i′

(Kessler et al., 2009a; Conley et al., 2011; Campbell et al., 2013; Betoule et al.,

2014; Shariff et al., 2016). While this solution results in unbiased cosmological

parameter estimates, there is no statistical justification for accounting for this global

effect on an individual SN Ia basis.

Another proposed solution is to parameterize the selection as part of the SN Ia

standardization model. To this effect, Rubin et al. (2015) include sample limiting

magnitudes as fit parameters in their model. This approach also yields unbiased

estimates in the cosmological parameters, but is entirely dependent on the analytic

model description.
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Methods which incorporate forward-model simulations of the data and accurately

simulate survey-specific selection effects can account for selection bias in a robust,

statistical framework. A particular advantage of this treatment is that rather than

include a correction derived from a fixed cosmology, the simulation can explore the

difference in selection effects at all proposed points in parameter space.

5. Data and Parameter Covariance

In addition to properly accounting for systematic uncertainties, methods of cosmo-

logical parameter inference must also be able to accommodate covariances between

the data points and/or the model parameters. This becomes increasingly difficult

when selection effects must also be included in the framework, i.e., it is unclear

how imposing a magnitude cut on a SN Ia sample affects covariance between mobs
Bi

and cobs
i . This can be addressed in an analytic model by making assumptions about

parameter covariance or by using forward-model simulations to explore these co-

variances at different proposed points in parameter space.

As we move forward in the era of precision cosmology, developing statistical frame-

works which can accommodate photometrically-classified samples will be essential. While

promising methods have been introduced (e.g., Kunz et al., 2013; Hlozek et al., 2012;

Kessler and Scolnic, 2017), new frameworks will have to addresses not only the issues

described here, but others such as type contamination and host-galaxy misidentification.
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Chapter 3

SDSS-II Supernova Survey: An

Analysis of the Largest Sample of Type

Ia Supernovae and Correlations with

Host-Galaxy Spectral Properties

3.1 Introduction

Type Ia supernovae (SNe Ia) are crucial observational probes for investigating the his-

tory of our expanding universe. The origin of these phenomena remains a mystery, al-

though there is evidence for two distinct SN Ia progenitor systems (the so-called single-

degenerate and double-degenerate scenarios) that result in a thermonuclear explosion oc-

curring as the mass of a carbon-oxygen white dwarf approaches the Chandresekhar limit

(Whelan and Iben, 1973; Nomoto, 1982; Iben and Tutukov, 1984; Webbink, 1984; Hille-

brandt and Niemeyer, 2000). Observations of these incredibly bright explosions, visible

This chapter has modified for this thesis from the published Wolf et al. (2016).
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out to high redshifts, have provided evidence for the accelerating expansion of the uni-

verse (Riess et al., 1998; Perlmutter et al., 1999) and are used to measure cosmological

parameters with increasing precison (Astier et al., 2006; Kessler et al., 2009a; Conley

et al., 2011; Betoule et al., 2014; Scolnic et al., 2014a). Their efficacy as “standard can-

dles,” however, relies on the ability to calibrate intrinsic luminosity with SN light-curve

width (“stretch”) and optical color (Phillips, 1993; Hamuy et al., 1996; Riess et al., 1996;

Tripp, 1998). After applying these corrections using light-curve fitting techniques, there

remains a 1σ dispersion in peak brightness of about 0.1 mag, corresponding to about 5%

in distance (Conley et al., 2011; Betoule et al., 2014). The origin of this scatter remains

unknown, yet it is postulated that both the progenitor and its environment play a role

(Gallagher et al., 2005, 2008; Neill et al., 2009; Howell et al., 2009; Kelly et al., 2010).

In this chapter, we study the relationship between SN Ia Hubble residuals (HRs) and

properties of their host galaxies, including mass, metallicity, and star-formation rate, us-

ing SN Ia data and host-galaxy photometry from the full three-year Sloan Digital Sky

Survey-II Supernova Survey (Sako et al., 2014, SDSS-SNS; hereafter S14) and a com-

bination of host-galaxy spectra from an ancillary program of the SDSS-III Baryon Os-

cillation Spectroscopic Survey (Dawson et al., 2013; Olmstead et al., 2014, hereafter

BOSS) and from the SDSS I/II spectroscopic survey (Strauss et al., 2002; Abazajian

et al., 2009). In comparison to recent literature, this is the largest single-survey sam-

ple of spectroscopically-confirmed or photometrically-classified SN Ia light curves and

host-galaxy spectroscopic data. As newer, larger surveys, such as the Dark Energy Sur-

vey (Bernstein et al., 2012), Pan-STARRS (Kaiser et al., 2002), and LSST (LSST Science

Collaboration et al., 2009) will also heavily rely on photometrically-classifed samples of

SNe Ia, the biases and selection effects discussed in this analysis will be critical for future

host-galaxy studies.

We adopt the best fit flat, ΛCDM cosmology for SNe Ia alone as determined by Be-

toule et al. (2014, hereafter B14), a joint analysis of 740 spectroscopically-confirmed

SNe Ia from a compilation of surveys of low-, intermediate-, and high-redshift ranges
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(Ωm = 0.295). Since the value of the Hubble constant is degenerate with the absolute

magnitude of SNe Ia, we adopt H0 = 70 km s−1 Mpc−1. We use this cosmology to com-

pute HR, defined as HR ≡ µSN− µz, where µSN is the distance modulus estimated from

fitting SN Ia light curves and µz is the distance modulus computed using the redshift and

the assumed cosmology. The HR quantifies whether our SNe Ia are overluminous (nega-

tive HR) or underluminous (positive HR) after light-curve correction.

The general structure of this analysis is as follows: in Section 3.2 we describe our SN

and galaxy data. Section 3.3 highlights light-curve quality requirements for the SNe Ia

sample and describes the treatment of effects such as Malmquist bias. Section 3.4 de-

tails our methods for extracting galaxy spectroscopy and the selection cuts we impose on

the host-galaxy sample. Section 3.5 outlines how we derive host-galaxy properties from

emission-line fluxes. The sample selection requirements discussed in Sections 3.3, 3.4,

and 3.5 ultimately yield two final samples for analysis, which contain 345 and 144 SNe Ia,

respectively. In Section 3.6 we present our findings, and we discuss our results in Sec-

tion 3.7.

3.2 Observational Data

Observations from the SDSS-SNS were used for our SN Ia sample, and a combination of

spectra from SDSS and BOSS was utilized for host-galaxy spectroscopy. Spectra of host

galaxies are important not only for securing redshifts of their SNe but also as probes of the

physical properties of galaxies themselves. As summarized in Chapter 1, these properties

can influence the SN Ia progenitor and the subsequent explosion. We describe how we

obtain our SN and host galaxy data in Sections 3.2.1 and 3.2.2, respectively.

3.2.1 Supernovae

All SNe in this work were discovered and observed by the SDSS-SNS (see Chapter 1).

A full description of data acquisition and reduction from the SDSS-SNS can be found in
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the final Data Release paper (S14). Over its three-year run, the SDSS-SNS discovered

10,258 new variable objects in the redshift range 0.01 < z < 0.55. Of these, 499 were

spectroscopicallyclassified as SNe Ia (“Spec-Ia”). In S14, these SNe Ia are typed “SNIa.”

Analyses that use spectroscopically identified samples of SNe Ia (e.g., Kessler et al.,

2009a; Betoule et al., 2014) are highly pure, as they contain, to high confidence, only

SNe Ia. However, such samples, as in the case of the SDSS-SNS, can be biased, as the

likelihood of an SN Ia being spectroscopically classified is a function of many factors: its

location within the host galaxy, its relative brightness compared to the surface brightness

of the host galaxy, and its color (but not the intrinsic brightness; see Figure 10 of S14).

Additionally, the expense of spectroscopy is a limiting factor in rolling SN surveys such

as the SDSS-SNS: resources are typically unavailable (or observing conditions disadvan-

tageous) for a complete spectroscopic program. For these reasons, we also use in this

chapter SDSS-SNS transients that have been photometrically-classified, using the host-

galaxy spectroscopic redshift as a prior, as SNe Ia (“Phot-Ia”). In S14, these SNe Ia are

typed “zSNIa.” We describe the classification and data-quality cuts applied to this catalog

of transients in Section 3.3.

3.2.2 Host Galaxies

Our primary source of SN host-galaxy spectroscopy is the BOSS survey of SDSS-III

(Eisenstein et al., 2011). BOSS, which ran from 2008 to 2014, was designed to measure

the scale of baryon acoustic oscillations (BAOs) by observing 1.5 million galaxies to red-

shift z < 0.7 and 150,000 quasars at redshifts 2.15 < z < 3.5 over an area of 10,000 deg2.

To accommodate this survey, the original SDSS spectrograph was rebuilt with smaller

fibers (2′′ diameter, allowing a larger number of targets per pointing), more sensitive de-

tectors in both the blue and red channels, and a wider wavelength range (361−1014 nm).

These improvements allowed the survey to reach higher galaxy redshifts and observe

about one magnitude deeper than SDSS. A detailed description of the BOSS spectrograph

(as the upgraded instrument is now known) can be found in Smee et al. (2013).
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Approximately 5% of the BOSS fibers were allocated to ancillary science programs,

one of which was the systematic targeting of host galaxies of SN candidates from the

SDSS-SNS. Targets for this program were prioritized based on the probability of the

observed transient being a Type Ia or core-collapse (CC) SN using the photometric–

classification software PSNID (see Section 1.3.1), as well as on the r-band fiber mag-

nitude of the host galaxy (rfiber < 21.25). A total of 3761 of the 4777 requested targets

were observed, with non-observations primarily due to the finite availability of fibers and

clashes with higher priority targets. The SDSS-SNS target selection for this ancillary

program is detailed in Olmstead et al. (2014) and Campbell et al. (2013).

We use in this analysis the host-galaxy matching done in S14. Here each detected

transient is matched to the SDSS Data Release 8 (Aihara et al., 2011) catalog using an

algorithm that identifies the “nearest” galaxy in a parameter space that accounts for the

apparent size and surface brightness profile of each galaxy within a 30′′ radius of the

transient coordinates. It is estimated that this method is able to match host galaxies with

97% accuracy (S14).

The host-galaxy matching that defined the target selection for BOSS spectroscopy

was performed years prior to the development of the algorithm used in S14. Therefore, it

would not be unexpected if some fraction of the BOSS targets do not correspond to the

currently identified host galaxy, resulting in an incorrect assumed redshift for some SNe.

We find that the existing redshifts (either from the SN spectrum or from a non-BOSS host

spectrum) of three SNe Ia disagree with those of their respective BOSS targets. For each

of these cases, the BOSS spectrum is of a galaxy that is offset from the currently identified

host by more than 8′′, indicating that the BOSS target is not the correct host. To avoid

possible ambiguity, we remove these three SNe from our sample. For further discussion

of BOSS targeting and host-galaxy mismatches see S14.

As all of Stripe 82 lies within the area observed by the SDSS-I/II spectroscopic sur-

vey, many of our transients have pre-existing host spectra. The BOSS ancillary program

targeted the location of the SN within the galaxy where spectroscopy of the host galaxy
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already exists in the SDSS database. This work derives global spectroscopic properties

of the host galaxies and thus preferentially uses SDSS spectra where they exist, as these

spectra typically have higher signal-to-noise ratio (S/N) than BOSS spectra due to their

larger fiber width (3′′ diameter) and being centered on the host galaxy.

We will return to this point briefly in Section 3.5, where we discuss the breakdown of

spectra passing various cuts for data quality.

3.3 Supernova Selection and Properties

We select our sample of photometrically classified SNe Ia using the Photometric SN IDen-

tification (PSNID) software (Sako et al., 2011) described in S14. In this work we use only

those classifications from S14 where the host-galaxy redshift is included as a prior on the

light-curve fit, which is important for precise placement of SNe Ia on the Hubble dia-

gram. We impose the PSNID selection criteria outlined in Section 4 of S14: the PSNID

fit probability is≥ 0.01 for the SN Ia model; the Bayesian probability of being an SN Ia is

≥ 0.9; and the nearest-neighbor probability of being an SN Ia is greater than that of being

a CC SN. We place an additional requirement on light-curve sampling, requiring the can-

didate to have at least one detection at −5≤ Trest ≤+5 days and one at +5 < Trest ≤+15

days, where Trest is the rest-frame time such that Trest = 0 corresponds to peak brightness

in rest-frame B band. Imposing these criteria yields a sample of 824 photometrically-

classified SNe Ia with a purity and efficiency of ∼96% (determined from simulations; for

more complete definitions of sample purity and efficiency see S14).

The photometrically classified SNe selected by the above requirements, combined

with the 499 Spec-Ia, define a maximally large sample of SNe Ia in SDSS-SNS. As we

are interested in host-galaxy correlations with the derived distance modulus to these SNe,

we apply additional cuts to create a sample that can produce reliable distance estimates.

We fit these light curves using the implementation of SALT2 (Guy et al., 2010) in the

SuperNova ANAlysis package (SNANA; Kessler et al., 2009b), keeping only SNe Ia that
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meet the following criteria:

1. At least one detection before peak brightness (Trest < 0).

2. At least one measurement with Trest >+10 days.

3. At least five detections between −15 < Trest <+60 days.

4. At least three filter-epoch detections with S/N > 5.

5. The measured color (c) and stretch (x1) are within the elliptical cut outlined in

Campbell et al. (2013, Figure 6).

6. PFIT > 0.01, where PFIT is the SALT2 light-curve fit probability based on the χ2.

Distance moduli are then estimated using the code SALT2mu (Marriner et al., 2011),

also a part of the SNANA suite. In the SALT2 model, the distance modulus is given by

µSN = mB−M0 +αx1−βc, (3.1)

where mB (peak apparent B-band magnitude), x1, and c are fit for each individual SN and

M0 (absolute magnitude), α , and β are global parameters of the SN sample. SALT2mu

computes α and β (cosmology-independent corrections for the light-curve stretch and

color) from a given SN Ia sample, allowing us to determine µSN for each SN in the sample.

This computation of the distance modulus, however, has not been corrected for se-

lection effects (i.e. Malmquist Bias). The well-known Malmquist bias stipulates that for

a magnitude limited survey, a given SN Ia may appear brighter due to random statistical

fluctuations. These fluctuations can be seen to a greater distance and thus a larger portion

will be detected in a magnitude-limited sample. To determine the correction for this ef-

fect, as well as other corrections stemming from SALT2 fitting (e.g., poor fits to low S/N

data), we run SDSS-like simulations (with approximately 10 times the data statistics) and

compare the expected (µTRUE) and observed (µFIT) distance moduli. Realistic light curves

are simulated using the SNANA code, where the MC is used to make detailed comparisons
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with the data using different models of intrinsic SN Ia brightness variations (Kessler et al.,

2013). The simulations assume the best fit flat ΛCDM cosmology of B14 (Ωm = 0.295)

and SN Ia are generated using the SALT2 model (Guy et al., 2010). As in Kessler et al.

(2013), we simulate asymmetric Gaussian distributions for our input color and stretch.

The following parameters best match our data: c̄ = −0.09, σ+,c = 0.13, σ−,c = 0.02,

x̄1 = 0.5, σ+,x1 = 0.5, and σ−,x1 = 1.5. Comparisons between the data and simulations

are presented in Figure 3.1.

The average difference in distance modulus as a function of redshift, which we define

as µBIAS, is presented in Figure 3.2. In the lower-redshift range (z . 0.3) the bias is

very small; however, as the redshift exceeds z = 0.3, the offset noticeably grows with

redshift. In the higher redshift regime, the magnitude of the bias approaches that of our

host-galaxy effects; therefore, correcting for this bias may potentially misconstrue any

observed host-galaxy correlations. To ensure that our sample is not contaminated by this

bias, we choose to limit the redshift of our SNe Ia to z < 0.3. If we recompute the bias for

this lower redshift sample only, we find −0.006 < µBIAS < 0.008 and conclude that this

effect is negligible and does not require additional corrections.

As presented in Table 3.1, 473 SNe Ia meet the light-curve sampling, c and x1, PFIT,

and redshift requirements.

The elliptical cut in the c–x1 plane removes much of the contamination from CC SNe

in the photometric sample. We apply this cut on light-curve fit parameters to both the

Phot-Ia and Spec-Ia samples, as we wish to maintain homogeneity across our combined

sample and as these light-curve fit parameters are used to estimate the SN distance mod-

uli. Given our data, we find best fit values of α = 0.14± 0.012 and β = 3.11± 0.140.

In order to obtain χ2
red ≈ 1, an intrinsic scatter of 0.167 mag must be added when per-

forming the fit. HRs for our SNe are then calculated from µSN and µz computed with

the assumed B14 cosmology. However, we note that we do not incorporate this intrinsic

scatter into the uncertainty on the distance moduli µSN used in this analysis. Rather, we

independently fit for the intrinsic scatter when analyzing correlations between HR and
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Figure 3.1: Comparison of MC simulation (red histogram) and SDSS-SNS data (black

points). The MC distributions are normalized to the low-z (z < 0.25) data. Error bars

on the data points represent the square root of the number of SNe Ia in the respective

bin. Distributions are displayed for the redshift (top), SALT2 color (middle) and SALT2

stretch (bottom).
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Table 3.1. Cumulative PM Sample Definition

Selection Requirements Removed Total Phot-Ia Spec-Ia
SNe Ia

Total SDSS-SNS Transients – 10,258 – –
S14 SNe Iaa 8935 1323 824 499
Nonpeculiar SNe Ia 8 1315 824 491
Light-curve sampling 534 770 434 336
Elliptical c, x1 cuts 67 703 382 321
PFIT > 0.01 41 662 361 301
z < 0.3 189 473 215 258
HR outlier rejection 7 466 208 258
Host spectrum identified 116 350 177 173
Host, SN redshift agreement 3 347 176 171
Well-defined host mass 2 345 176 169

aThis removes transients, such as CC SNe, that were not identified as

SNe Ia in Sako et al. (2014).
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Figure 3.2: Difference between the measured and true distance modulus (defined as

µBIAS) from our simulations, as a function of redshift. Data points are inverse-variance

weighted averages in redshift bins of width 0.025 with error bars representing the width

of each bin. Each bin contains at least 500 SNe Ia.

host-galaxy properties. This is further explained in Section 3.6.

When examining the HR for our data, we notice a strong correlation between HR and

c, particularly for c < 0; we do not observe such a correlation between HR and x1. Both

trends are also apparent in our simulations and this trend with c has been seen previously

in SN surveys at both low and high redshift (Sullivan et al., 2011; Ganeshalingam et al.,

2013). We elect not to correct for this effect in our analysis as this is not done in previous

works and we wish to compare our results in the most consistent manner possible. A

discussion of HR-c corrections and the effect on our results can be found in Appendix A.

Figure 3.3 displays the distribution of HRs of those SNe Ia passing our selection re-

quirements. The mean of the distribution is 0.014 mag and the standard deviation is

0.228. We remove from our sample seven SNe with HRs > 3σ from the mean (corre-

sponding to HR <−0.668 and HR > 0.697) as it is highly unlikely that these are normal

SNe Ia. All SNe removed in this way are Phot-Ia; this outlier rejection method does not

affect the number of spectroscopically-confirmed SNe Ia in our sample. After removing
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these outliers, the mean and standard deviation of the HR distribution reduce to 0.002

and 0.187, respectively. Imposing this requirement leaves 208 Phot-Ia and 258 Spec-Ia in

our sample. As a check, we have examined the Hubble diagram of this sample and found

that imposing these criteria removes the majority of potential contaminants and shows no

noticeable redshift-dependent pollution. Overall, this Hubble diagram is much cleaner

than what is presented in Sako et al. (2014), due to the fact that we impose stricter S/N

requirements and temporal coverage of our SN Ia light curves.
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Figure 3.3: Distribution of HRs calculated using the derived SALT2mu distance moduli.

Histograms are stacked such that the Phot-Ia (blue) and Spec-Ia (green) add to the total

number in a given bin. The mean of the distribution is 0.014 mag and the standard devi-

ation is 0.228. We remove from our sample seven SNe with HRs > 3σ from the mean

(corresponding to HR <−0.668 and HR > 0.697) as it is highly unlikely that these out-

liers are normal SNe Ia. All outliers removed in this way are Phot-Ia. This reduces the

mean and standard deviation to 0.002 and 0.187, respectively.

Finally, we require that the SNe Ia have an observed host-galaxy spectrum and

photometrically derived host-galaxy mass with well-defined uncertainties (as described in

Section 3.5.3). The requirement that each host has a BOSS or SDSS spectrum is necessary

to ensure that we are correctly matching the SN Ia with its host. This requirement removes

69



both Phot-Ia and Spec-Ia with host spectra followed up by programs other than BOSS or

SDSS, as well as hostless Spec-Ia. Although each host in our sample has an observed

spectrum, we do not use spectral absorption features to obtain host masses (discussed in

Section 3.4.1) and instead rely on photometric mass measurements.

We remove those SNe Ia that do not meet these criteria and are left with a sample of

345, which we define as the PM (Photometric Mass) sample. These cuts, in addition to all

those previously described in this section, are outlined in Table 3.1. The PM sample is one

of two samples of SNe Ia we analyze in Section 3.6; further spectroscopic requirements

imposed to cull the second sample are detailed in Section 3.4.2

3.4 Host Galaxy Spectral Analysis

We describe here our analysis of BOSS and SDSS-I/II spectra of the host galaxies of

SNe Ia from the SDSS-SNS. Section 3.4.1 outlines the procedure used to measure fluxes,

equivalent widths, and amplitude-to-noise ratio (the ratio of the peak flux of the emission

line to the continuum; hereafter A/N) from the spectra, which we optimize and use instead

of existing catalog data. Section 3.4.2 details the requirements, both physical (e.g., active

galactic nucleus [AGN] contamination) and observational (e.g., S/N), we impose on the

spectra to be included in our subsequent analysis of host-galaxy emission-line properties.

3.4.1 Methods

Emission-line properties of galaxy spectra obtained as part of the BOSS and SDSS-I/II

programs are calculated using Version 1.8 (v1.8) of the code GANDALF (Gas AND Absorp-

tion Line Fitter; Sarzi et al., 2006). GANDALF simultaneously fits for the stellar population

and the emission-line spectrum, which prevents the presence of absorption lines from

biasing the measurement of ionized gas emission. GANDALF uses pPXF (penalized Pixel-

Fitting; Cappellari and Emsellem, 2004) to measure the stellar kinematics of the galaxy

while masking the emission-line regions. The code then fits the gas kinematics (velocity
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and velocity dispersion) and measures emission-line fluxes for a user-determined set of

(Gaussian) emission lines. The effects of dust in the observed galaxy are corrected for by

simultaneously fitting for extinction under the assumption of a Calzetti (2001) reddening

law. A sample GANDALF spectral fit is shown in Figure 3.4.

Our work with GANDALF closely follows that of Thomas et al. (2013, hereafter T13),

which details the method used for measuring emission-line properties in SDSS DR9 (Ahn

et al., 2012). As in T13, our galaxy templates are simple stellar population (SSP) models

from Maraston and Strömbäck (2011, hereafter M11). The particular set of models we use

is built on the MILES stellar library, which is extended into the UV based on a theoretical

library (necessary to constrain the blue end of our observed spectra). Our template library

is derived using a Salpeter initial mass function (IMF) (Salpeter, 1955), as an extended

UV library for M11 is not available with Chabrier (Chabrier, 2003) or Kroupa (Kroupa,

2001) IMFs. We resample the M11 galaxy templates to have a wavelength-independent

resolution of R = 2000. This is an approximation to the true instrumental resolutions

of both SDSS I/II and BOSS, which are wavelength dependent. Before conducting our

analysis, we convert the observed spectra from the SDSS-standard vacuum wavelengths

into air wavelengths. We additionally assume only a single metallicity (solar) and a subset

of 19 of the 47 available galaxy ages in the model. These choices are motivated by the

fact that the primary goal is to remove the continuum; small variations in the underlying

spectrum only matter to the extent that they affect the emission-line measurements. It

also results in a significant reduction in computation time. We ran GANDALF on a subset

of our spectra using both the full and reduced sets of temporal templates and found that

our results were in no way affected by this choice.

We have made a few changes from the analysis of T13 that are optimized to our data

set. The most significant of these is how we tie spectral lines in the fitting procedure,

fixing the velocity and width of the Balmer and forbidden lines to values derived for Hα

and [N II], respectively. T13 does not adopt this procedure as Hα and [N II] are redshifted

beyond the BOSS wavelength range at z > 0.45, and their goal is a homogeneous deriva-
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Figure 3.4: Sample GANDALF fit of the BOSS spectrum for the host of CID 13897.

Wavelengths in this spectrum are given in the rest frame. Flux density is in units of

10−17 erg s−1 cm−2 Å−1. The data are shown in black with the best fit model overplotted

in red. The green dot-dashed line represents the continuum fit and the blue line shows

the emission spectrum, which is obtained by subtracting the continuum model from the

best fit model. Residual points between the data and the best fit spectrum are also shown

in purple. Vertical dashed lines indicate the emission lines predominantly used in our

analysis. The three lower panels display the specific regions that contain these lines.
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tion of emission-line fluxes across the entire BOSS sample. Thus, they allow the velocity,

width, and amplitude of each emission line to be fit freely. However, all of the SNe Ia

included in this analysis are below this redshift. Therefore, we explicitly restrict our anal-

ysis to galaxies where we observe Hα and [N II] and take advantage of the constraining

power added by tying the line velocities and widths together.

Unlike in T13, we first correct the observed spectra for the effects of dust absorption

in the Milky Way before running GANDALF. We use the extinction values from Schlegel

et al. (1998) and assume the Cardelli et al. (1989, CCM) extinction law (with RV = 3.1).

In addition, we use Case B recombination (Osterbrock, 1989), which assumes a ratio

of intrinsic Hα to Hβ flux (the “Balmer decrement”) of 2.86, to correct for host-galaxy

extinction, while T13 utilizes the extinction output by GANDALF, derived from a fit to the

underlying galaxy continuum. We find that in three cases, the observed Hβ flux output

by GANDALF is so large (> 10−13 erg s−1 cm−2 Å−1) that the computed extinction value

is unphysical. These large Hβ flux values are also unphysical, and so we remove these

spectra from our sample.

The emission-line file used in our GANDALF fits is given in Table 3.2. This file allows

the user to specify how to tie spectral lines together or fit them freely, and whether certain

lines should be masked in the fit. We note as an example that, unlike T13, we mask the

Na I absorption feature when fitting the continuum. For more details on how to create a

user-specific emission-line file, see Sarzi et al. (2006).

We also make some adjustments to the GANDALF code. We have modified GANDALF to

return flux uncertainties for lines where the velocity and width of the species are tied to

those of a stronger line. GANDALF v1.8 treats the uncertainty of the velocity and line width

in these cases as zero and thus computes no uncertainty. We treat the uncertainties of the

fitted parameters for these weaker lines in the same way as those to which they are tied.

In addition, GANDALF v1.8 incorrectly measures the EW of spectral lines; the flux density

of the continuum needs to be scaled up by a factor of (1+ z). We include this correction,

which is also discussed in T13, in our analysis. Finally, we note that the stellar kinematics
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from pPXF are derived over the region 4000−6500 Å in the rest frame of the galaxy. This

is the same band as in T13, although it is incorrectly stated in that work. Comparisons

between our GANDALF results and those in the SDSS DR10, which include modifications

on the published SDSS DR9 results as stipulated in T13, are presented in Appendix A.

Recent analyses of SN Ia host-galaxy spectra by Johansson et al. (2013, hereafter

J13) and Pan et al. (2014, hereafter P14) used GANDALF to extract absorption spectra,

as well as emission lines. Absorption spectra can be used to estimate galaxy age and

stellar metallicity but require that the spectra be of sufficient S/N to measure absorption-

line indices. J13 used host-galaxy spectra from SDSS-II (z . 0.2) while P14 obtained

most of their host spectra from Gemini observations (z < 0.09). The redshift limit for

these samples is much lower than for our sample presented here (and in the case of P14,

the host observations were taken using telescopes with larger apertures), and thus their

host spectra are higher S/N. Like J13, we make use of SDSS-II spectra; however, the

majority of our spectra are from BOSS and are generally lower S/N (see discussion in

Section 3.5.4). Therefore, for this work we analyze only emission-line spectra and do not

attempt to extract properties from absorption spectra. As noted in T13, one could attempt

to do so by stacking spectra to increase the S/N, but we leave this exercise for future study.

3.4.2 Selection Criteria

Here we describe the requirements placed on our host-galaxy spectroscopy, which allow

us to take the emission-line fluxes, measured as described in the previous section, and

derive reliable host-galaxy properties in Section 3.5.

To ensure accurate spectral line fits and emission-line fluxes, T13 requires A/N > 2

for the Hα , Hβ , [O III], and [N II] lines. However, we have many cases where these four

emission lines are detected and yet not all their A/N > 2. Requiring A/N > 2 for only the

Hα and Hβ lines removes the bulk of our low S/N spectra, as well as the majority of our

passive-galaxy sample, without sacrificing the large sample size. Therefore, we impose

this A/N criterion on the Balmer lines only.
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Table 3.2. GANDALF Emission-Line Setup File

Line Index Line Name Rest Wavelength Action1 L-kind2 A_i3 V_g/i4 sig_g/i5 Fit-Kind6

(r A)

0 He II 3203.15 m l 1.000 0 10 f
1 [Ne V] 3345.81 m l 1.000 0 10 f
2 [Ne V] 3425.81 m l 1.000 0 10 f
3 [O II] 3726.03 m l 1.000 0 10 t25
4 [O II] 3728.73 m l 1.000 0 10 t25
5 [Ne III] 3868.69 m l 1.000 0 10 f
6 [Ne III] 3967.40 m l 1.000 0 10 f
7 H5 3889.05 m l 1.000 0 10 f
8 Hε 3970.07 m l 1.000 0 10 f
9 Hδ 4101.73 m l 1.000 0 10 t24
10 Hγ 4340.46 m l 1.000 0 10 t24
11 [O III] 4363.15 m l 1.000 0 10 f
12 He II 4685.74 m l 1.000 0 10 f
13 [Ar IV] 4711.30 m l 1.000 0 10 f
14 [Ar IV] 4740.10 m l 1.000 0 10 f
15 Hβ 4861.32 m l 1.000 0 10 t24
16 [O III] 4958.83 m l 1.000 0 10 t25
17 [O III] 5006.77 m l 1.000 0 10 t25
18 [N I] 5197.90 m l 1.000 0 10 f
19 [N I] 5200.39 m l 1.000 0 10 f
20 He I 5875.60 m l 1.000 0 10 f
21 [O I] 6300.20 m l 1.000 0 10 f
22 [O I] 6363.67 m l 1.000 0 10 f
23 [N II] 6547.96 m l 1.000 0 10 t25
24 Hα 6562.80 m l 1.000 0 10 f
25 [N II] 6583.34 m l 1.000 0 10 f
26 [S II] 6716.31 m l 1.000 0 10 t25
27 [S II] 6730.68 m l 1.000 0 10 t25
90 sky 5577.00 m l 1.000 0 10 f
91 sky 6300.00 m l 1.000 0 10 f
92 sky 6363.00 m l 1.000 0 10 f

100 Na I 5890.00 m l -1.000 0 10 t101
101 Na I 5896.00 m l -1.000 0 10 f

1The “action” sets whether each of the listed lines should be fit (f), ignored (i), or

whether the surrounding spectral region should be masked (m). As GANDALF runs, the “action” is changed by the

code; e.g., if the “action” is set to “m,” the line will be masked when fitting for the continuum, then changed to “f”

when fitting for the emission lines. The subsequent fields in the setup file are only used when the “action” is set to

“f.”
2The line-kind “l-kind” allows GANDALF to identify whether or not a line should be treated as belonging to a

doublet or multiplet. All lines can be treated individually (l) or can be tied to the strongest element of their multiplet

(dXX), where XX is the line index. If a line is identified as part of a doublet or multiplet, its amplitude is fixed to

that of the strongest element via A_i.

3Used to set the relative emission (A_i > 0) or absorption (A_i < 0) strength of lines in a multiplet. If a line is

to be treated individually, A_i is set to unity.

4Initial estimate for line velocity, km s−1.

5Initial estimate for line velocity dispersion, km s−1.

6Indicates if the position and width of the line are found freely (f) or tied (tXX) to another line, where XX is the

line index.
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We then use BPT diagnostics (Baldwin et al., 1981) to separate the star-forming galax-

ies from those dominated by AGNs. This classification requires an analysis of the opti-

cal diagnostic plane spanning log([O III]/Hβ ) versus log([N II]/Hα). We first utilize the

hyperbolic division of the plane in Kewley et al. (2001) and then adopt the stricter divi-

sion presented in Kauffmann et al. (2003a) to select star-forming galaxies more carefully.

Hosts for which Kewley et al. (2001) and Kauffmann et al. (2003a) disagree are deemed

“Composite,” as in Brinchmann et al. (2004). It is crucial to separate the AGN-dominated

spectra as their emission lines are produced by different physical processes and thus will

produce inaccurate metallicity estimates. The BPT diagram for our sample after imposing

A/N cuts is presented in Figure 3.5.

In Table 3.3 we list the cuts applied in this section which reduce the PM sample, given

in Table 3.1, to a sample of 144 SN Ia host galaxies for which we produce (see Section 3.5)

reliable measurements of mass (M), metallicity (Z), and specific star-formation rate (S);

we refer to this as the MZS sample. The A/N cut is the most significant, reducing our

sample by ≈ 50%, demonstrating the difficulty in measuring emission-line properties

from low S/N data. We note that the final cut in Table 3.3 (not described in this section)

is a requirement on the fraction of galaxy light obtained within the BOSS/SDSS fiber.

This is necessary to ensure the properties derived from our spectra are global host-galaxy

properties. As this cut is not based on the spectroscopy itself, but rather on host-galaxy

photometry, it is detailed in Section 3.5.4.

3.5 Derived Host Galaxy Properties

In this section we describe the methods used to derive the host-galaxy properties, both

spectroscopic and photometric, used in this analysis. Sections 3.5.1 and 3.5.2 detail the

processes for computing, respectively, gas-phase metallicities and star-formation rates

(SFRs) from the measurements obtained in Section 3.4. In Section 3.5.3 we describe the

source for our host-galaxy masses. We discuss fiber aperture effects—what biases may
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Figure 3.5: BPT diagram for host galaxies of our SNe Ia. The galaxies displayed here

have passed selection criteria through A/N cuts, as outlined in Tables 3.1 and 3.3. We

have trimmed the axes to better focus on the bulk of our sample; therefore, some star-

forming hosts and AGNs may not be shown. Galaxies to the right of the blue curve

(Kewley 2001) are deemed AGNs (black points), while those to the left of the red curve

(Kaufmann 2003b) are regarded as star-forming (green points). Those galaxies that lie

between the two curves (purple points) are labeled “Composite.” We continue our analysis

using galaxies to the left of the blue curve, although not all will be included in the final

sample for analysis.
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Table 3.3. Cumulative MZS Sample Definition

Selection Requirements Removed Total Phot-Ia Spec-Ia
SNe Ia

PM Sample – 345 176 169
a Observed Hβ flux < 104 3 342 176 166
Hα and Hβ A/N > 2 149 184 88 96
Star-forming or “Composite” host 9 175 80 95
0.2≤ g-band fiber fraction < 1 31 144 78 66

aFlux density in units of 10−17 erg s−1 cm−2 Å−1

be present, how we correct for them, and their impact on sample selection—in Section

3.5.4.

3.5.1 Metallicity

There are several methods for estimating gas-phase metallicity (Z ≡ log(O/H)+12) from

emission-line fluxes. Although the metallicities from each method do not have the same

absolute values, relative values tend to remain consistent (i.e., a galaxy with low metal-

licity in one method will have low metallicity in another). Kewley and Ellison (2008,

hereafter KE08) summarize these techniques and derive conversions from one metallicity

calibration into another. In this analysis we adopt the calibration of Kewley and Dopita

(2002, hereafter KD02), as recommended by (and updated in) KE08.

The KD02 algorithm is split into upper (high Z) and lower (low Z) branches based

on the ratio of the [N II] and [O II] line fluxes obtained from the galaxy spectrum ([O II]

= [O II λ3727]+ [O II λ3729]; [N II] = [N II λ6584]). For galaxies with log([N II]/[O II])

>−1.2, the metallicity is found via the real roots of the polynomial

log([N II]/[O II]) =1106.8660−532.15451Z +96.373260Z2

−7.8106123Z3 +0.2392847Z4 .
(3.2)
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The systematic accuracy of this method on the high-Z branch, as stated in KE08, is

∼0.1 dex.

For galaxies with log([N II]/[O II]) < −1.2, the KD02 method derives metallicities

using an average of two distinct R23 calibrations (for a more complete discussion of R23

see KE08) with a systematic uncertainty of ∼0.15 dex. The first method utilizes the

iterative procedure of Kobulnicky and Kewley (2004, hereafter KK04) in the lower R23

branch, while the second (McGaugh, 1991) is based on the photoionization code CLOUDY

(Ferland et al., 1998) with associated analytic solutions from Kobulnicky et al. (1999). We

require that a solution is found using both techniques to determine an accurate metallicity.

3.5.2 Star Formation Rate

The Hα line flux is used to determine the SFR of our host galaxies, as it traces luminosity

from young (∼106 yrs), massive (M > 10M�) stars (Kennicutt, 1998). It also allows for

a direct coupling of nebular emission to instantaneous SFR, independent of any previous

star formation history. As outlined in Kennicutt (1998), the SFR for a galaxy with a

Salpeter IMF can be found by

SFR (M� yr−1) = 7.9×10−42L(Hα) (erg s−1) , (3.3)

where the Hα luminosity is determined using the line flux and the assumed B14 cosmol-

ogy. Brinchmann et al. (2004) have shown that the conversion factor between L(Hα) and

SFR is dependent on the mass and metallicity of the galaxy. To account for this varia-

tion, as in D’Andrea et al. (2011, hereafter D11), we assume a systematic uncertainty in

log(SFR) of 0.2.

We note that we correct our SFR values for aperture effects (see Section 3.5.4). In

addition, we compute the specific star-formation rate (sSFR) by dividing the SFR by the

photometrically derived galaxy stellar mass, which is described in the following subsec-

tion.

To test the validity of our methods, we compare our metallicity and sSFR measure-
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ments to those reported in D11, as they also extract emission-line fluxes from BOSS and

SDSS host-galaxy spectra and also compute metallicity using the KD02 algorithm. We

find that for the 39 hosts that overlap in the two samples, we recover the gas-phase metal-

licity and SFR measurements reported in D11. The distribution of the difference between

our measurements and those of D11 shows no bias and has an approximately Gaussian

distribution; 95% of the sample agrees to within 2σ .

3.5.3 Host Mass

Stellar masses for our host galaxies are taken from S14 and were computed using the

method of Gupta et al. (2011). This method employs model SEDs generated on a fixed

grid using the Flexible Stellar Population Synthesis code (FSPS; Conroy et al., 2009;

Conroy and Gunn, 2010). Synthetic photometry computed from these model SEDs in the

SDSS ugriz bands was compared to SDSS photometry of our host galaxies2 while fixing

the redshift to the spectroscopic value. For more details on the FSPS model parameters

used and on the exact method of estimating stellar mass, see Gupta et al. (2011). Sys-

tematic uncertainties in stellar mass estimates for normal galaxies are generally < 0.2 dex

(Conroy, 2013). At best it is 0.1 dex (25%), and so we incorporate this 0.1 dex into our

systematic uncertainty.

3.5.4 Aperture Effects

As we are deriving some galaxy properties from fixed-aperture spectra, we require a pa-

rameter that indicates the degree to which each spectrum is representative of a global

average. To do this we compute in ugriz for each spectrum the ratio of flux observed

within the fiber (the fiberMag) to the total flux of the target galaxy based on a profile

fit (the modelMag). The fiber and model magnitudes are taken from the SDSS Catalog

Archive Server. We refer to the derived ratio in each band as the fiber fraction. Because
2Obtained from the DR8 Catalog Archive Server (CAS) at

http://skyservice.pha.jhu.edu/casjobs/
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our sample consists of spectra from both 2′′ and 3′′ diameter fibers, we compute fiber

fractions for both cases.

Based on the g-band fiber fraction, we remove the star-forming and “Composite”

spectra whose properties are not indicative of the global average of the target galaxy. First,

we find that some hosts have a g-band fiber fraction greater than 1. Although objects are

deblended before the modelMag is computed, this is not the case for the fiberMag; thus,

we obtain fiber fractions > 1. After visual inspection of these cases, we conclude that

these hosts have bright, nearby neighbors that contribute to the observed fiber magnitude.

Since these spectra include contamination from a galaxy other than the target, the derived

properties cannot be assumed to be representative of the SN Ia host. Second, all hosts with

a g-band fiber fraction < 0.2 are removed from our sample. At these low fiber fractions

too little of the galaxy is being measured to compute a global, rather than core, metallicity

(Kewley et al., 2005). These two aperture cuts, as mentioned in Section 3.4.2, finalize our

MZS sample at 144 galaxies (Table 3.3).

Figure 3.6 shows the derived host gas-phase metallicities as a function of g-band fiber

fraction, with the dashed line indicating the lower-limit for inclusion in the MZS sample.

We compute inverse-variance-weighted averages over three bins of g-band fiber fraction

(such that the bins are approximately equally sized) and find little correlation between

g-band fiber fraction and gas-phase metallicity. This indicates that our use of different

physical scales does not have a significant effect on our metallicity, and thus we make no

aperture-based corrections.

We also use the u-band fiber fraction to adjust our estimate of the SFR based on the

measured Hα line flux (Gilbank et al., 2010). Because our emission-line flux measure-

ments are affected by the fixed aperture size, the Hα flux we measure is not a global

representation of the entire galaxy. Therefore, to obtain a more reasonable estimate of the

total SFR for the host, the Hα flux measurement is corrected by dividing by the u-band

fiber fraction as in Gilbank et al. (2010, Appendix A).

Another important aperture effect to consider is that our analysis uses both SDSS and

81



0.0 0.2 0.4 0.6 0.8 1.0
8.0

8.5

9.0

9.5

0.0 0.2 0.4 0.6 0.8 1.0
g-band Fiber Fraction

8.0

8.5

9.0

9.5

12
+l

og
[O

/H
]

BOSS (2")

SDSS (3")

Total Bins

Figure 3.6: Host metallicity as a function of g-band fiber fraction for hosts that satisfy

BPT cuts. The dashed line at g-band fiber fraction = 0.2 represents the threshold fiber

fraction above which the derived gas-phase metallicity is considered indicative of the

global average (Kewley et al., 2005). Inverse-variance-weighted binned averages, of ap-

proximately equal-sized bins, are plotted in red. There is a slight (0.07 dex) decrease in

metallicity with increasing fiber fraction.
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BOSS spectra, with 3′′ and 2′′ fiber diameters, respectively. For 19 of our SNe Ia, the

hosts were targeted by both SDSS and BOSS; we use spectra from these observations to

compare the derived metallicities. We find the difference between the metallicity mea-

surements to be within 0.1 dex (equivalent to systematic uncertainties) for 83% of hosts,

approximately Gaussian, and centered at zero. This indicates that our sample suffers no

metallicity bias due to aperture effects.

The majority of the host-galaxy spectra we use were obtained from BOSS rather than

from SDSS-I/II. Priority for BOSS targets was given to galaxies with a 3′′ r-band fiber

magnitude < 21.25, though some galaxies fainter than this limit were observed (Olmstead

et al., 2014). By contrast, SDSS-I/II spectra were obtained from the SDSS Legacy Survey

and other targeted surveys within SDSS, many of which had much brighter limiting mag-

nitudes. As a result, the SDSS spectra tend to have higher S/N and their corresponding

galaxies are at lower redshift. In addition, since they are the brightest galaxies at a given

redshift, they are generally more massive and more metal-rich. This effect is displayed in

Figure 3.7. The BOSS spectra peak at slightly lower metallicity compared to the SDSS

spectra while also extending much farther into the low-metallicity regime. The median

metallicity for the BOSS spectra is Z = 8.85, while the median metallicity for the SDSS

spectra is Z = 8.97. It is important to remember that this offset is an effect of target selec-

tion, not a bias due to the fiber aperture size, as we have demonstrated from hosts present

in both spectroscopic samples.

Where spectra exist for both BOSS and SDSS galaxies, we choose to use the SDSS

spectrum for our analyses in Section 3.6. In addition to being higher-S/N spectra on

average, all SDSS spectra targeted the core of the galaxy, while some spectra from the

BOSS ancillary program targeted the location of the SN itself (Olmstead et al., 2014). In

all cases where only BOSS spectra exist for a galaxy, the fiber was centered on the galaxy

core. Together with the cuts in this section and examination of potential sources for

aperture bias, this selection creates a consistent, high-quality set of data for our analyses.
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Figure 3.7: Distribution of host gas-phase metallicities for SDSS (green) and BOSS (blue)

galaxies in our MZS sample, with total number counts shown in the top panel and the

corresponding cumulative distribution function in the bottom panel. To focus on the bulk

of our sample, we leave out one host with Z < 8.2 from this figure. The vertical dashed

line at 12+log(O/H) = 8.69 represents the solar metallicity value, shown for comparison.

The SDSS spectra are systematically higher metallicity than the BOSS spectra due to how

targets were selected for the two samples.
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3.6 Results

In Table A.1, we present our derived SN Ia and host-galaxy properties for all data used

in this analysis. All 345 of these SNe Ia have passed SN light-curve quality cuts, have an

identified host-galaxy spectrum, and have a photometrically derived host mass (the PM

sample; Table 3.1). For a subset of 144 of these SNe Ia, the MZS sample, we have spec-

troscopically measured global host-galaxy metallicities and SFRs. Table 3.3 summarizes

the requirements placed on this sample.

The derived host-property uncertainties quoted in Table A.1 do not include any sys-

tematic uncertainties previously discussed (0.1,0.2, and 0.1 dex for metallicity, SFR, and

stellar mass, respectively). Similarly, error bars in subsequent plots (e.g., Figures 3.11

and 3.12) reflect only statistical uncertainties for clarity. However, when fitting for linear

trends, systematic uncertainties are added in quadrature to the quoted statistical uncer-

tainties. As S14 reports asymmetric mass uncertainties, we choose the larger value as the

single, conservative estimate.

In the following analysis, we discuss our derived host properties and SN Ia properties,

as well as explore correlations between them. We use the IDL LINMIX routine, which

employs the linear regression model presented in Kelly (2007), to assess the strength of

observed correlations:

ŷ = mx̂+b+ ε . (3.4)

Here m is the fit slope, b is the fit intercept, and ε is the scatter about the best fit regression

line. As described in Kelly (2007), we assume that ε is drawn from a normal distribution

with mean zero and variance σ2. Throughout this work we report the intrinsic dispersion

(σ ) and its uncertainty, computed by taking the square root of the posterior distribution

of the best fit variance. We define the significance of a nonzero slope as m/σm, where

m is the best fit slope and σm is the error on the slope. LINMIX allows for uncertain-

ties in the dependent and independent variables (assuming Gaussianity) and employs a

Bayesian approach using Markov Chain Monte Carlo (MCMC). Posterior distributions
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for at least 10,000 iterations of the MCMC are used to determine the regression coeffi-

cients and their errors. For completeness, we report the median and standard deviation

of the posterior distributions of the best fit slope, intercept, and dispersion in our results

tables. This method of linear fitting was chosen over other linear regression techniques

(such as least-squares) as we find that the LINMIX fits provide more realistic estimates

for our fit parameter errors.

We also use the Spearman rank correlation coefficient and corresponding significance

test to study the relationship between SN Ia and host-galaxy properties. This is a non-

parametric measure of statistical dependence that requires that the relationship between

the two variables of interest is monotonic, but not necessarily linear. The value of the co-

efficient, ρ , ranges from −1 to +1 with |ρ|= 1 indicating a perfectly monotone relation.

The null hypothesis for this test states that there is no correlation between the dependent

and independent variable; the associated p-value describes the chance that random sam-

pling of the data would have generated the observed correlation. While this technique

provides important insight into our SN Ia–host-galaxy correlations, we must be cautious

as it does not account for large differences in the measurement errors of different data

points when computing the correlation coefficient.

A general outline is as follows: Section 3.6.1 describes our derived host-galaxy prop-

erties. Section 3.6.2 discusses the stretch and color of our SNe Ia and correlations between

these parameters and host-galaxy properties. Section 3.6.3 examines the individual rela-

tions between HR and host-galaxy mass, gas-phase metallicity, and sSFR, separately. In

Section 3.6.4 we explore the interplay between these host properties and how they affect

trends with HR when fit simultaneously.

3.6.1 Host-Galaxy Properties

The redshift distributions of the PM and MZS hosts are shown in Figure 3.8. The mean

and median redshifts for both the PM and MZS samples is z = 0.24, and the shapes of the

redshift distributions are consistent. The median redshifts of the Spec-Ia and Phot-Ia in
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subsamples are 0.19 and 0.26, respectively, in both the PM and MZS. We thus conclude

that the requirements we impose on our host-galaxy spectroscopic data when creating the

MZS sample does not result in any redshift bias relative to the PM sample.
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Figure 3.8: Redshift distributions of the PM and MZS samples. Histograms are stacked

such that the number of Spec-Ia (green) and Phot-Ia (blue) shown in each bin add to the

total number of SNe Ia in that bin. The mean and median redshifts of the PM and MZS

samples are each z = 0.24. For both samples, the median redshift of the Spec-Ia is 0.19

and the median redshift of the Phot-Ia is 0.26.

We present in Figure 3.9 the host-galaxy stellar mass distribution for both our PM and

MZS samples, both as a whole and as a function of redshift. While the MZS host-galaxy

sample only contains star-forming galaxies through the requirement of measurable emis-

sion lines, the PM sample consists of both star-forming and elliptical galaxies. The inclu-

sion of elliptical galaxies, which have a higher mass on average, results in the PM sample

spanning a slightly larger range in masses with a higher mean mass (log(M/M�)= 10.5)

than the MZS sample (log(M/M�)= 10.2). We also see in the right panels of Figure 3.9

that there is no noticeable trend of host mass with redshift for our sample over this redshift
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range, indicating that our sample has no strong differential bias with redshift.
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Figure 3.9: Mass distributions of our PM (dashed) and MZS (solid) galaxies are displayed

in the top left panel. The means of the PM and MZS mass distributions (in log(M/M�))

are 10.5 and 10.2, respectively. The bottom left panel presents the cumulative fraction of

hosts as a function of mass. The right panels show our galaxy masses as a function of

redshift.

In Figure 3.10 we show the distributions of metallicity and sSFRs from our MZS sam-

ple. The mean gas-phase metallicity for our sample is Z = 8.84, and the mean sSFR is

log(sSFR)=−9.43. While the sSFR distribution is roughly Gaussian, the metallicity dis-

tribution is negatively skewed, although there are few galaxies with subsolar metallicities

even in the long low-metallicity tail. As shown in the inset panels in Figure 3.10, we see

no evolution of metallicity or sSFR with redshift.

As we use different IMFs, methods, selection criteria, and calibration techniques, we

cannot directly compare our results to previous studies. However, we can qualitatively

assess how our host-property distributions compare to those of other surveys. The peak

host-galaxy mass in the PM sample is consistent with that in the PTF (P14), SNFactory
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Figure 3.10: Left panel: metallicity distribution of galaxies in our MZS sample. The mean

of the metallicity distribution is Z = 8.84. Right panel: sSFR distribution of galaxies in

our MZS sample. The mean of the sSFR distribution is log(sSFR)= −9.43. The inset

figures of both panels display the respective host properties as a function of redshift.

Axes of the inset figures have been adjusted to focus on the metallicity and sSFR redshift

dependence; as such, some data points are excluded from the plots.

(Childress et al., 2013, hereafter C13), SNLS (Sullivan et al., 2010), and Pan-STARRS1

(Scolnic et al., 2014a, hereafter PS1).

We notice that our host-galaxy mass distribution contains relatively fewer galaxies

with log(M/M�) . 9.0. We attribute this primarily to the BOSS targeting criteria and

the use of the SDSS DR8 catalog for host identification. Given that our Phot-Ia sam-

ple depends on redshifts from BOSS, which only targeted hosts brighter than a certain

magnitude, we expect this sample to be biased against SNe in low-luminosity (low-mass)

hosts. We also lose low-mass hosts due to the r-band magnitude limit of 22.2 for SDSS

DR8, which is the catalog used to select host galaxies in S14.3 In addition, our choice of

mass-fitting technique may also contribute to the dearth of low-mass hosts. We use FSPS

masses in this work, which are shown in Figure 23 of S14 to be ≈ 0.3 dex higher than the

3Though a deep co-added image catalog exists for SDSS Stripe 82 (Annis et al., 2014), these images

contain SN light for SNe occurring in 2005. Ideally, SN surveys in the future should create custom co-added

images excluding images with SNe and use these for host identification and host-galaxy studies.
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masses derived from ZPEG (a code commonly used by other works). Therefore, we note

that our reduced host-mass range may affect our derived trends with HR (Section 3.6.3).

In the MZS sample, the derived metallicities of P14 for PTF host galaxies are biased

substantially lower than our metallicities, but as the typical offset between the calibration

used by us and in that work is 0.2−0.3 dex, the range of measured values is consistent.

C13 uses a calibration that typically returns a wider range of metallicities, and this is seen

in their results compared to this work. However, although C13 also finds the peak of their

distribution at 12+log(O/H)≈ 9.0, they have a greater fraction of their host-galaxies at

subsolar than can be explained through calibration techniques alone. In addition, we find

that the sSFR distribution of the MZS sample also exhibits a lack of low-sSFR hosts when

compared to other studies. One reason for this difference is that some studies (Sullivan

et al., 2010; Childress et al., 2013) with hosts with lower SFRs rely on host photometry,

rather than spectroscopy, to obtain SFR measurements and are thus not limited by spectral

quality requirements.

The differences in these property distributions likely stem from our spectral quality

requirements. We impose a cut on the A/N of the Hα and Hβ lines to ensure good spectral

quality, but by doing so reject those spectra with lower emission-line flux measurements.

If we remove this A/N criterion, an additional 41 hosts would be included in the MZS

sample. Of these 41, 26.8% have subsolar metallicity. Additionally, we find that 58.5%

of the 41 additional hosts have low sSFR (log(sSFR) < −10). Adding these hosts into

our sample would not significantly impact the fraction of low-metallicity hosts, but would

raise the fraction of low-sSFR hosts from 9.7% to 20.5%. However, we believe that the

quality of these spectra is not sufficient to produce reliable host-property estimates, and

so we do not include these in our sample.

3.6.2 SN Ia Light-curve Properties

SN Ia light-curve parameters such as color (c) and stretch (x1)—the essential calibration

tools for using SNe Ia as distance indicators—have long been known to correlate with
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host environment (Hamuy et al., 1996; Gallagher et al., 2005). Figure 3.11 shows the

SN Ia stretch and color as a function of our derived host-galaxy properties. We observe

the correlations seen by Howell et al. (2009) and Sullivan et al. (2010): more massive

galaxies host fainter, redder SNe Ia. We also find that SNe Ia with higher c occur in

galaxies with lower sSFRs. Since the SN Ia color parameter contains information not

just on the intrinsic color of the SN but also effects of host-galaxy dust extinction, it is

expected that both massive galaxies and those with low specific star formation should host

redder SNe Ia. It is interesting to note that we find that low-metallicity galaxies tend to

host only blue SNe Ia, to an extent not seen in low-mass or high-sSFR galaxies (properties

that are correlated with low metallicity). This metallicity–color relation is consistent with

what is found in C13 and P14.

To quantify the strengths of these correlations, we perform a Spearman rank test on

each combination of SN Ia and host property displayed in Figure 3.11. In each of the

six cases, the correlation coefficient is nonzero; however, only the SN Ia stretch–host

mass correlation exhibits enough evidence to reject the null hypothesis (ρ = −0.308,

p = 5.305×10−9).

3.6.3 HR as a Function of Host-galaxy Properties

We now examine whether the stretch- and color-corrected luminosities of SNe Ia (and

thus HRs) show correlations with properties of their host galaxies. Linear fits to the data

using the LINMIX routine are shown on the figures included in this section, and the cor-

responding results are reported in Table 3.4. Spearman rank correlation statistics for each

linear fit are also presented in Table 3.4. We note that the posterior distributions of the

model parameters of these fits are roughly Gaussian. To determine the model parameters

of these fits, we choose the point estimator to be the median of the posterior distribution,

limiting the effects of outliers in the distribution. Errors on the fit parameters are obtained

using the standard deviation of the respective posterior distribution. Host-galaxy proper-

ties are also split to create low- and high- mass (metallicity, sSFR) bins which are then
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Figure 3.11: SNe Ia color (c) and stretch (x1) as a function of derived host properties. The

left panel displays data from the PM sample; the middle and right panels show data from

the MZS sample. Axes have been truncated to focus on the bulk of the data.

used to compute the difference between the HR in these bins (“HR step”). The split point

of each property is chosen to be the median of its respective distribution, thus creating

two bins of equal number. We define the “HR step” as the difference between the high-

and low-binned inverse-variance-weighted averages. When computing the significance of

the step (the mean and uncertainties on the mean), we fit for the unknown intrinsic scatter

that ensures χ2/dof ≈ 1 after the step is removed. These bins are also included in rele-

vant figures in this section. We note that when we refer to the over- or under-luminosity

of SNe Ia in this section, this refers to the luminosity after light-curve corrections have

been applied.

Figure 3.12 shows HR as a function of mass for the PM sample. Using LINMIX, a

nonzero slope of the linear fit is detected at 3.6σ . We also take the difference between

the inverse-variance weighted averages of the high- and low-mass bins and measure the

“HR step” to be −0.048± 0.019 mag. A similar trend is present in the MZS sample;

the best fit slope and the HR step are both shown to be consistent within 1σ that of the
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Table 3.4. LINMIX Linear Fit Results for HR as a

Function of Derived Host-Galaxy Properties

Host Sample Na Splitb HR Step Slope Intercept σ Sigc ρ p-value
Property Value [mag] [mag]

Mass PM 345 10.5 0.048±0.019 −0.055±0.015 0.570±0.160 0.121±0.009 3.62σ −0.1708 0.0015
Mass MZS 144 10.2 0.082±0.030 −0.071±0.029 0.728±0.293 0.136±0.014 2.46σ −0.2094 0.0118
12+log(O/H) MZS 144 8.9 0.057±0.031 −0.579±0.409 5.162±3.641 0.125±0.021 1.42σ −0.1811 0.0299
sSFR MZS 144 −9.4 0.013±0.031 0.019±0.046 0.190±0.437 0.140±0.014 0.42σ 0.0965 0.2500

aSample size.

bValue used to create high- and low-mass (metallicity, sSFR) bins of equal number. The median of the respective host-property distribution.

cSignificance of a nonzero slope.

full PM sample. Our results show that more massive galaxies host overluminous SNe Ia,

supporting previous findings (Lampeitl et al., 2010; Sullivan et al., 2010; Gupta et al.,

2011; Childress et al., 2013; Betoule et al., 2014).

The results of the Spearman rank correlation test for both the PM and MZS samples

further support the significance of the HR–mass relation. In both cases, we find ρ ≈−0.2,

which indicates that more massive galaxies host overluminous SN Ia. For both samples,

there is a less than 2% chance that this correlation is due to chance, and thus we again

conclude that this correlation is significant.

Several recent studies suggest that HR as a function of host-galaxy mass resembles a

smoothly-varying step function rather than a line. To explore this idea of a “mass step,”

we fit an empirical continuous step function to our data in the PM sample. We choose a

function of the form

HR = A
(

2
1+ e−B(x−C)

−1
)
, (3.5)

where the parameter A controls the amplitude, B controls the steepness of the step, and

C indicates the step position. The independent variable, x, is the host mass, log(M/M�).

We use the IDL routine MPFITFUN (Markwardt, 2009) to perform a least-squares fit,

using input parameters motivated by results in previous works, and find that the resulting

best fit to the data is highly sensitive to the choice of input parameters. We also compute

the best fit to inverse-variance-weighted average bins of varying bin width and minimum
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Figure 3.12: HR as a function of host-galaxy mass for the PM sample. The LINMIX

linear fits to the data are shown in dashed black; red squares represent inverse-variance-

weighted binned averages, with bins split at log(M/M�)= 10.5. The significance of a

nonzero slope is 3.6σ and the difference in HR between the high and low-mass bins is

0.048 mag. This result indicates that more massive galaxies host overluminous SNe Ia.
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number of SNe Ia per bin and find that choice of bin width and number of SNe Ia per bin

significantly affects the best fit results.

Therefore, we choose to explore the shape of the HR–mass relation using nonpara-

metric regression. We employ the loess routine in the R statistical software package,

which is based on the cloess regression detailed in Cleveland et al. (1992). This method

of locally weighted smoothing combines linear regression in a k-nearest-neighbor-based

model and relies on a user-input bandwidth, also known as the span (α), to determine

the proportion of the data to be used in each local regression (i.e., a fit at some point x

is computed using its neighbors, and contributions from neighboring points are weighted

based on their distance from x). While this method cannot produce an empirical model, it

does illustrate the general shape of the data.

The results of the loess regression are presented in Figure 3.13, with the HR axis

truncated to better focus on the fit. The best fit to the data is shown in red with an approx-

imate corresponding 1σ confidence interval. This method of local regression is sensitive

to edge effects but has no consequence on the resulting best fit for the bulk of the data.

Therefore, the behavior of the best fit at the low- and high-mass extremes must be inter-

preted with caution. After testing multiple spans, we determine a span that responds best

to fluctuations in the data of α = 0.6.

As shown in Figure 3.13, there appears to be a relatively smooth transition region

in the HR–mass relation between 10.0 . log(M/M�) . 10.4. However, because of the

sensitivity of the fit at the edges, the shape of the “step regions” is not well represented.

In addition, the computation of the best fit did not include measurement error, which may

affect the observed behavior. The shape of the HR–mass relation is similar to the behavior

reported in C13 and J13; the slope of the transition region in J13, C13, and this work is

roughly −0.2. We note that our results should be correlated with what is presented in J13

and C13 as their analyses utilize a subset of the SDSS SNe Ia. Despite the shortcomings

of our chosen fitting technique, the nonparametric fit is an interesting interpretation of the

HR–mass relation, and a more rigorous treatment should be considered for future studies.
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Figure 3.13: Nonparametric regression fit of HR as a function of host-galaxy mass. The

best fit is presented in red with the approximate corresponding 1σ confidence interval. A

span of α = 0.6 was used for the fit.

We next examine the correlation between HR and host-galaxy gas-phase metallicity;

the results are shown in Figure 3.14. The best-fit linear relation has a negative slope

with 1.4σ significance, suggesting that more metal-rich galaxies host more overluminous

SNe Ia. Examining the difference between our low- and high-metallicity bins reveals an

“HR step” of 0.057 magnitudes with 1.86σ significance. When analyzing this relation us-

ing the Spearman coefficient, we find a statistically significant correlation (ρ =−0.1811,

p = 0.0299) between HR and gas-phase metallicity. Although the LINMIX results do not

recover a significant correlation, the other statistical analysis tools indicate that there is a

significant difference between the low- and high-metallicity populations. This suggests

that the behavior of HR–metallicity relation may not be adequately represented by the

LINMIX linear fit.

Finally, we investigate HR as a function of sSFR. These results are shown Figure 3.15.

The significance of this trend deviating from a nonzero slope as determined by LINMIX,
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Figure 3.14: HR as a function of gas-phase metallicity for the MZS sample. These points

are separated at 12+log(O/H) = 8.9 to create high- and low-metallicity bins. Red squares

indicate the inverse-variance-weighted average of these bins. The difference between

the binned averages is 0.057 mag. The linear LINMIX fit to the data is shown in dashed-

black; there is a 1.4σ significance of a nonzero slope, which suggests that more metal-rich

galaxies host overluminous SNe Ia.
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however, is only 0.42σ . In addition, the difference between the average HR in the high-

and low-sSFR bins is 0.013 mag with 0.42σ significance. The trend seen here is the

weakest correlation observed between HR and host-galaxy properties. The results of the

Spearman correlation test (ρ = 0.0965, p = 0.25) suggest that we do not have enough

evidence to reject our null hypothesis; the HR–sSFR trend resembles a random sampling

of uncorrelated variables.
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Figure 3.15: HR as a function of sSFR for the MZS sample. Points are separated at

log(sSFR) = −9.4 to create high- and low-sSFR bins. Red squares indicate the inverse-

variance-weighted average of these bins. The difference between the binned averages is

0.013 mag. The linear LINMIX fit to the data is shown in dashed-black; there is a 0.42σ

significance of a nonzero slope. This slight correlation suggests that galaxies with lower

sSFRs host overluminous SNe Ia.

As discussed in Section 3.6.1, our cut on the Hα and Hβ A/N, which is imposed to

ensure spectral quality, removes 41 hosts from the MZS sample. If we add these hosts

back into the MZS sample and recompute the slope of the HR-sSFR relation we find a

slope of 0.021±0.02, which is within 0.1σ of the slope observed using the MZS sample.
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A Spearman rank test on this new sample also shows little evidence of an HR–sSFR

correlation (ρ = 0.1337, p = 0.0695). This indicates that the A/N requirement and the

lack of very low sSFR hosts do not have a strong effect on our trend of HR with host

sSFR.

3.6.4 HR as a Function of Multiple Host-galaxy Properties Simulta-

neously

Our wealth of data allows an investigation of HR not only as a function of an individual

host-galaxy property but also as a function of several host properties simultaneously. We

perform linear fits of HR using combinations of two, and a combination of all three,

derived host-galaxy parameters. For these linear fits, we include the relation with SFR as

a opposed to sSFR as the sSFR and mass uncertainties are correlated. We then examine

the HR–metallicity and HR–sSFR relation in several mass bins and also after correcting

for the HR–mass relation. Since mass appears to have the most dominant effect on HR,

removing this dependence could provide important insight into the degeneracy of our

host-galaxy properties.

We first use the LINMIX package for multiple linear regression to determine the best

fit relation between HR and multiple host-galaxy parameters. When using all three host

properties, this function takes the form:

HR = a× log(M/M�)+b× (12+ log(O/H))+ c× log(SFR)+d +σ
2 , (3.6)

where the coefficients a, b, c, d, and σ2 are the parameters to be fit. These same coeffi-

cients are fit using combinations of two host properties, i.e.,

HR = a× log(M/M�)+b× (12+ log(O/H))+d +σ
2 (3.7)

HR = a× log(M/M�)+ c× log(SFR)+d +σ
2 (3.8)

HR = b× (12+ log(O/H))+ c× log(SFR)+d +σ
2 . (3.9)
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We assume that the errors on the host-parameters are uncorrelated.

When fitting for Equation 3.6, repeated trials (i.e., running LINMIX multiple times)

do not yield the same fit results. For each fit parameter, results between trials are con-

sistent within 1σ but can have dramatically different values (e.g., a = −0.374± 31.68

compared to a = 0.53± 2.67). We perform 20 trials of the same linear fit and find a

substantial variance between fit-parameter outputs for each trial and strong skewness in

the fit-parameter distributions. Although repeated fit-parameter outputs are not identical,

the results of each fit are consistent with no significant correlation between HR and all

host-galaxy properties.

In addition, we perform 20 trials of each of the fits using two host-galaxy properties

(Equations 3.7-3.9). Fit-parameter distributions with similar variance and skewness are

observed using Equations 3.7 and 3.9; these fits are also consistent with no correlation.

The output fit parameters using host-galaxy mass and SFR are nearly identical between

the different trials, and the mass component is significant at ≈ 1σ , again suggesting that

the fit is consistent with no correlation.

We find that the large errors on our model parameters are due, in part, to an inap-

propriate choice of interval estimator. Upon further analysis, we find that many of the

LINMIX model parameter posterior distributions are highly non-Gaussian with strong

skewness and high kurtosis. While we continue to use the median of the distribution as

our point estimator, we recompute a new interval estimator rather than use the standard

deviation; we find the interval, about the median, that contains approximately 68% of

the distribution. We take the average of the lower and upper bounds and use this as the

uncertainty. Using this method, we obtain more reasonable errors on our fit parameters

(i.e., a = −0.374± 31.68 becomes a = −0.374± 2.67). However, utilizing this new es-

timator does not generally affect the significances of correlations observed between HR

and multiple host-galaxy properties simultaneously.

We also study the dependence of HR on metallicity, as well as on sSFR, while im-

posing different criteria on host mass to try to control for the apparently dominant effect

100



of mass. First, we remove the HR–mass dependence by adding the measured PM sam-

ple “HR step” of 0.049 mag to the HR of our higher-mass (log(M/M�) ≥ 10.2) MZS

hosts. We then re-fit HR as a function of metallicity and also HR as a function of sSFR

(this time including measurement errors again). In both cases, the direction of the best

fit slope is the same as that fit with the entire MZS sample. However, the significance of

nonzero slopes in both cases is < 1σ . We next investigate HR as a function of metallic-

ity and sSFR in mass bins. Our first separation is into low and high-mass bins, split at

log(M/M�) = 10.2, shown in Figure 3.16. In each case, the significance of a nonzero

slope for the best fit to the data is . 0.8σ , which is consistent with flatness.

Unfortunately, each of these tests is consistent with no correlation between HR and

multiple host-galaxy properties. This is perhaps largely due to the variation in measure-

ment errors between the properties, i.e., photometric stellar masses are much easier to

estimate and have smaller uncertainties than spectroscopically derived properties such as

metallicity and SFR. We recommend that future surveys interested in studying these cor-

relations obtain high-S/N host-galaxy spectra for as many SN Ia host galaxies. We also

recommend further investigation of how to incorporate correlations, both physical and in

measurement uncertainty, between various host-galaxy properties in future studies of this

type. Hopefully, combining the results of these efforts will provide a better understanding

of the physical mechanism driving these observed trends.

3.7 Discussion

In this section, we compare our linear fit results of HR as a function of host-galaxy proper-

ties to those reported in previous studies. We also separate the PM and MZS samples into

Spec-Ia and Phot-Ia subsets to assess the effect of including a sample of photometrically-

classified SNe Ia on studies of HR and host properties. Finally, we discuss the differences

between the star-forming and passive galaxies in our PM sample.
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Figure 3.16: HR as a function of metallicity and sSFR for the MZS sample in low- and

high-mass bins. LINMIX linear fits to the data are shown in dashed-black. In each case,

the significance of a nonzero slope is . 0.8σ .
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3.7.1 Comparing with Previous Studies

We compare the correlations observed in this work between HR and host-galaxy prop-

erties with those reported in previous studies and present a sample of HR–host-galaxy

correlations as well as fit significances as they are reported in the literature. In some

cases, a linear best fit to the data was not provided, and thus we provide the significance

of the binned-average HR step. Because of differences in metallicity calibrations and

IMFs used for host-mass calculations, we encourage the reader to use caution when com-

paring linear fit results from all previous works directly. However, we can consider the

strengths and significances of the linear correlations between HR and host-galaxy proper-

ties to get a qualitative sense of how these studies compare. We present this summary in

Table 3.5 and note that the list of works included only represents a subset of the literature.

As seen in Table 3.5, the results of this study confirm much of what is established in

the literature. In five studies using a sample of more than 100 SNe Ia, a significant linear

correlation (& 3σ ) was found suggesting that more massive galaxies host overluminous

SNe Ia; it is possible that the three studies that did not detect such a correlation did not

have large enough samples to detect as strong of an effect. Although the HR step with

host-galaxy mass observed for the PM sample in this work is smaller than what is re-

ported in several other studies, it is consistent at . 1.7σ . The trend observed between HR

and host-galaxy gas-phase metallicity and sSFR is also consistent with existing results,

particularly that the HR–sSFR correlation is the weakest observed.

When comparing to D11, it is important to clarify that they computed two estimates of

sSFR: “sSFRspec” (using host-galaxy masses determined from the spectroscopic fit to the

galaxy continuum) and “sSFRphot” (using masses derived from host-galaxy photometry).

In their study, they find a > 3σ correlation between HR and sSFRspec. Unfortunately, we

are unable to compute spectroscopic masses (and thus sSFRspec) in our current emission-

line analysis and suggest this for future study. However, D11 find that the correlation

between HR and sSFRphot is only significant at the 1.2σ level.4 Given that the method

4As expounded in D11, the difference between sSFRspec and sSFR phot (and thus their trends with HR)

103



Table 3.5. Comparison of Correlations Found between HR and Host-galaxy mass (M),

Gas-Phase Metallicity (Z), and Specific Star Formation Rate (S)

Work SN Survey Host Sample HR Step Slope a Slopeb

Property Size (mag) (mag/dex) Significance (σ )

This work (PM) SDSS-SNS M 345 0.048±0.019 −0.055±0.015 3.6σ (L)
This work (MZS) SDSS-SNS M 144 0.082±0.030 −0.071±0.029 2.5σ (L)
Sullivan ‘10 SNLS M 195 0.080±0.020 −0.042±0.013 3.3σ (L)
Lampeitl ‘10 SDSS (z≤ 0.21) M 162 0.100±0.025 −0.072±0.018 4.9σ (L)
Gupta ‘11 SDSS M 206 0.096±0.028 −0.057±0.019 3σ (L)
Kelly ‘10 CfA3 M 62 0.094±0.045 −0.150±0.060 2σ (L)c

C13 SNf M 115 0.085±0.028 −0.043±0.014 3.1σ (L)
P14 PTF M 50 0.085±0.047 −0.041±0.030 1.4σ (L)
Scolnic ‘14 Pan-Starrs1 M 112 0.040±0.032 – 1.25σ (B)
This work (MZS) SDSS-SNS Z 144 0.057±0.031 −0.579±0.409 1.4σ (L)
Konishi ‘11 SDSS Z 72 0.130±0.060 – 1.8σ (B)
D11 SDSS (z≤ 0.15) Z 34 0.091±0.021 – 1.3σ (L)d,e

C13 SNf Z 69 0.103±0.036 −0.106±0.043 2.5σ (L)
P14 PTF Z 36 0.115±0.046 −0.358±0.176 2σ (L)
This work (MZS) SDSS-SNS S 144 0.013±0.031 0.019±0.046 0.4σ (L)
P14 PTF S 48 0.070±0.041 −0.019±0.077 0.25σ (L)
D11 SDSS (z≤ 0.15) Sc 34 – – 1.2σ (L)d

aSlopes presented use the sign convention where Hubble residuals are defined as HR = µSN−µz. This switches the sign of

the values reported in Sullivan et al. (2010) and Lampeitl et al. (2010).

bWe have included significances for linear fits (L) and differences in high- and low-mass (metallicity, sSFR) bins (B) (for

those paper that do not provide linear fit results).
cResult quoted is from using SALT2.

dsSFRphot (see D’Andrea et al., 2011).

eThe uncertainty quoted on the HR Step is as reported and does not include intrinsic scatter.
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we use to compute sSFR in this work is analogous to D11’s sSFRphot, it is not unexpected

that we see a significance of similar strength.

3.7.2 Photometric versus Spectroscopic SN Ia Subsets

Here we consider the Phot-Ia and Spec-Ia subsets of the PM and MZS samples separately

and recompute correlations between HR and host-galaxy properties. Figure 3.17 displays

the linear fits for the separate datasets, and the fit results are presented in Table 3.6. Gen-

erally, in each study of HR as a function of host property using just the Spec-Ia, the

significance of a nonzero slope is . 2σ . The significance of a nonzero correlation be-

tween HR and host-galaxy mass using the Phot-Ia is 3.9σ , while the significance of the

relation using only the Spec-Ia is 1.5σ . When using the Phot-Ia MZS subsample, the sig-

nificances of a nonzero HR-metallicity correlation and nonzero HR–sSFR correlation are

1.6σ and 1.1σ , respectively. As evident in Figure 3.17, the correlation between HR and

metallicity for the Phot-Ia may be best fit by a nonlinear function. We find that in all cases

of HR as a function of host property, the linear fits obtained for the Spec-Ia are in the same

direction as those for the Phot-Ia. The slopes of the linear fits for the Phot-Ia and Spec-Ia

subsamples, for the HR–metallicity and HR–sSFR relations, are consistent within 1.3σ .

The slopes of the fits of the HR–mass relation between the Phot-Ia and Spec-Ia samples

are consistent at 2.3σ ; however, both are consistent with the slope recovered using the

full PM sample within 1.5σ .

might be due to corrections for aperture effects which are applied to sSFRphot but not to sSFRspec. See

Section 4.2 of D11 for more details.

105



8 9 10 11 12 13

−1.0

−0.5

0.0

0.5

1.0

8 9 10 11 12 13
log(M/M

O ·
)

−1.0

−0.5

0.0

0.5

1.0

µ
S

N
−

µ
z

Spec−Ia

PM

8 9 10 11 12 13

−1.0

−0.5

0.0

0.5

1.0

8 9 10 11 12 13
log(M/M

O ·
)

−1.0

−0.5

0.0

0.5

1.0

µ
S

N
−

µ
z

Phot−Ia

PM

8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4

−1.0

−0.5

0.0

0.5

1.0

8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4
12+log(O/H)

−1.0

−0.5

0.0

0.5

1.0

µ
S

N
−

µ
z

Spec−Ia

MZS

8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4

−1.0

−0.5

0.0

0.5

1.0

8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4
12+log(O/H)

−1.0

−0.5

0.0

0.5

1.0

µ
S

N
−

µ
z

Phot−Ia

MZS

−12 −11 −10 −9 −8 −7

−1.0

−0.5

0.0

0.5

1.0

−12 −11 −10 −9 −8 −7
log(sSFR)

−1.0

−0.5

0.0

0.5

1.0

µ
S

N
−

µ
z

Spec−Ia

MZS

−12 −11 −10 −9 −8 −7

−1.0

−0.5

0.0

0.5

1.0

−12 −11 −10 −9 −8 −7
log(sSFR)

−1.0

−0.5

0.0

0.5

1.0

µ
S

N
−

µ
z

Phot−Ia

MZS

Figure 3.17: HR as a function of derived host properties for the Spec and Phot SN Ia

samples separately. The first row displays HR as a function of mass for the PM sample,

and the lower two rows show HR as a function of derived host properties for the MZS

sample. LINMIX fits to the data are shown in dashed-black. Fit results are reported in

Table 3.6.
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Table 3.6. Fit Results for HR as a Function of Host Properties:

Spec-Ia and Phot-Ia

Host Property Sample SN Typea Nb Slope Intercept σ [mag] Sigc ρ p-value

Mass PM S 169 −0.028±0.018 0.287±0.188 0.113±0.010 1.54σ −0.0718 0.3538
Mass PM P 176 −0.101±0.026 1.042±0.270 0.137±0.017 3.87σ −0.2496 0.0008
12+log(O/H) MZS S 66 −0.277±0.250 2.464±2.240 0.119±0.019 1.11σ −0.0718 0.5668
12+log(O/H) MZS P 78 −1.518±0.960 13.512±8.640 0.133±0.043 1.58σ −0.2797 0.0132
sSFR MZS S 66 −0.011±0.046 −0.102±0.440 0.126±0.017 0.24σ −0.0130 0.9177
sSFR MZS P 78 0.127±0.120 1.204±1.140 0.170±0.026 1.06σ 0.1845 0.1058

aIndicates Spec-Ia (S) or Phot-Ia (P).

bNumber of SNe Ia in the sample.

cSignificance of a nonzero linear slope.
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The weaker HR–mass correlation in the Spec-Ia sample is a bit unexpected, especially

when comparing to previous analyses using SDSS SNe Ia. In particular, we would expect

a similar significance to that reported in Gupta et al. (2011), which uses a comparably-

sized sample of spectroscopically-confirmed SNe Ia, also from the SDSS-SNS. However,

we note that while many of the SNe Ia used in this analysis overlap with those in the

Gupta et al. (2011) sample, there are several key differences in our sample construction,

namel,: sample redshift cuts, SN Ia light-curve quality criteria, requirements on host-

galaxy spectroscopy, and host-galaxy photometry used to compute stellar masses. We

find that only 94 SNe Ia overlap between the Gupta et al. (2011) sample and our PM

sample. A comparison of the median of the best fit LINMIX posterior slopes of each

overlapping sample yields an agreement of 0.08σ , indicating that sample construction,

rather than methodology, plays a large role in the differing results between the two works.

Initially, we believed that the magnitude limit of the host spectroscopic follow-up

may have biased our Spec-Ia host sample against low-mass hosts. To test this, we create

a sample of SN Ia hosts using all criteria in Table 3.1, without imposing any requirements

on the host spectra, and compare this mass distribution to that of the Spec-Ia hosts. Using

the two-sided Kolmogorov–Smirnov test, we find no significant difference between the

Spec-Ia host-mass distribution and that of this new sample, even when only considering

the low-mass hosts. This indicates that our spectral quality requirement does not change

our results.

The disagreement between the Spec-Ia and Phot-Ia results when fitting for HR as a

function of mass is also surprising, particularly if the Spec-Ia and Phot-Ia samples are

indeed drawn from a homogenous sample of SNe Ia. To further explore the results, we

plot the 68% and 95% confidence intervals of the slope and intercept LINMIX posterior

distributions for both samples. As shown in Figure 3.18, the two samples show poor

agreement. We also see that the Phot-Ia slope is definitively negative and that both the

slope and intercept distributions are wider than those of the Spec-Ia.

While the differences we observe between the Spec-Ia and Phot-Ia samples could be
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Figure 3.18: Contour intervals showing the 68% and 95% confidence regions of the Spec-

Ia (green) and Phot-Ia (blue) LINMIX posterior distributions for the HR–mass relation.

attributed to random statistical fluctuations, the contour plots strongly allude to a more

fundamental discrepancy between the Phot-Ia and Spec-Ia subsamples. Issues with pho-

tometric typing, for example, may seriously affect the homogeneity of the two datasets,

thus limiting the ability to perform comparable analyses with each independently. While

probing the differences between the Spec-Ia and Phot-Ia subsamples is beyond the scope

of this work, we encourage future studies to explore this problem further.

3.7.3 Star-forming and Passive Hosts in the PM Sample

Although we require the host-galaxies in the MZS sample to have active star formation

(as indicated by strong Hα emission), we do not require this of the PM hosts. Therefore,

the PM sample is comprised of both actively star-forming and passive galaxies. Mo-

tivated by the fact that SN properties and rates are correlated with the amount of star

formation in their hosts (e.g., Hamuy et al., 2000; Sullivan et al., 2006), we study cor-

relations between HR and mass separately for star-forming and passive hosts using the
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FSPS photometric measurements of SFR reported in S14 and the suggested division at

log(sSFRFSPS) =−12. We require a “star-forming” galaxy to have log(sSFRFSPS)>−12

and a “passive” galaxy to have log(sSFRFSPS) ≤ −12. While this separation may not

be absolute, it provides a reasonable estimate of star formation activity, yielding 259 star-

forming hosts and 86 passive hosts. We fit for linear trends of HR with host mass for these

two groups separately; results are shown in Figure 3.19. In star-forming galaxies, there

is a 3.3σ significance of a nonzero slope; however, in passive galaxies, the significance

of a nonzero slope is only 0.09σ . This may be due, in part, to the fact that we lose the

low-mass end of the mass distribution for the passive hosts, which significantly reduces

the mass range for this subsample. The inverse-variance-weighted average HR of the star-

forming and passive samples is calculated, including the best fit intrinsic scatter, and we

find that SNe Ia in the passive galaxies are 0.041 mag more luminous, with a confidence

of 1.87σ , than those in star-forming galaxies after light-curve correction. This trend is

consistent to 1.3σ with Lampeitl et al. (2010) who also used SDSS SNe and reported a

' 0.1 mag difference between star-forming and passive hosts at the 2−3σ level. 5

In the recent study by Childress et al. (2014), they predict that SNe Ia in star-forming

hosts are a more uniform sample than those in passive hosts due to the homogeneity of

young progenitors. We expect that this uniformity would be apparent in the distribution

of HRs in the sense that the HR distribution in the star-forming sample would exhibit

less scatter than that of the passive sample. A comparison of the HR distributions for

the two samples reveals no statistical difference in their medians or standard deviations.

However, further analysis with a larger sample of low-mass host galaxies is necessary to

make a definitive statement about the findings of Childress et al. (2014).

5We note that readers should approach the comparison to the Lampeitl et al. (2010) results cautiously,

as the sample construction (96 overlapping SNe Ia) and calculation of HRs differs significantly between the

two works.
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Figure 3.19: HR as a function of host mass for the PM sample, separated into star-forming

and passive galaxy groups. LINMIX fits to the data are shown in dashed-black. For our

star-forming galaxies (left panel) we find the significance of a nonzero slope is 3.3σ . The

trend with the passive galaxies (right panel) is consistent with flatness (0.09σ ).
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3.8 Summary and Conclusions

In this chapter we have examined the relationship between SN Ia HRs and derived host-

galaxy properties for subsamples of SNe Ia from the SDSS-SNS. Host-galaxy masses are

determined using SDSS photometry as described in S14, and gas-phase metallicity and

SFRs are derived using host-galaxy spectroscopy as detailed in Section 3.5. We utilize

one sample of 345 SNe Ia with well-constrained host mass measurements (PM sample)

and a subset of 144 SNe Ia that also have metallicity and SFR measurements from host

spectra (MZS sample). The PM sample is the largest single-survey set of SNe Ia and

host-galaxy spectroscopic data used in a study of this type.

To determine the relation between HR and host-galaxy properties, we perform linear

fits with the LINMIX IDL routine and quote the significances of nonzero correlations.

Using the PM sample, we observe with a significance of 3.6σ that more massive galaxies

tend to host overluminous SNe Ia after light-curve corrections, confirming what is previ-

ously reported in the literature. This is one of the most significant detections of this effect,

second only to Lampeitl et al. (2010), who also use SDSS SNe Ia. We find less significant

correlations between HR and metallicity (1.4σ ) and HR and sSFR (0.4σ ), in agreement

with the results presented in previous works. We also utilize the Spearman rank test

as a nonparametric measure of the correlations between HR and host-galaxy properties;

we find strong evidence for a nonzero correlation (p < 0.03) for the HR–mass and HR–

metallicity relations. The result of the HR-metallicity hypothesis test somewhat contra-

dicts the LINMIX fit results, as it suggests that there is evidence for a monotonic relation

between HR and host-galaxy metallicity. This indicates that perhaps the HR–metallicity

correlation is nonlinear and should be further explored using other fitting techniques.

Our large sample size also allows us to study correlations between HR and host-galaxy

properties using multiple host-galaxy parameters simultaneously. We use the multiple

linear regression LINMIX package to fit for HR as a function of linear combinations of

host mass, metallicity, and SFR. When using a combination of all three host parameters,

no statistically significant correlation is recovered. Similarly, no significant correlation is
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recovered when fitting for HR as a function of mass and metallicity and of metallicity and

SFR. We also split our sample into two mass bins and study HR as function of metallicity

and sSFR in each bin. We find that in these mass bins, the linear trends of HR–metallicity

and HR–sSFR are consistent with zero slope to within 1σ . With each multiparameter

test, we find that the HR correlation is consistent with flatness. Unless we are able to

measure other host-galaxy properties as accurately as mass and appropriately account for

the physical correlations between these host properties, then determining the true nature

of this correlation will remain challenging.

To study the effects of including photometrically-classified SNe Ia in our analysis, we

divide the MZS and PM samples into spectroscopically-confirmed (Spec-Ia) and

photometrically-classified (Phot-Ia) SNe. We recompute our linear fits of HR with host-

galaxy mass (metallicity, sSFR) in these subsamples; in all cases, for a respective host-

galaxy property, linear fits from both subsets are in the same direction and slopes are

consistent < 2.5σ . Using the Phot-Ia alone generally produces a fit with greater signif-

icance than that found when using the Spec-Ia alone. The fits obtained from the Spec

and Phot-Ia samples are also consistent with the larger PM and MZS samples as a whole.

However, we also find that the results obtained using the Spec-Ia and Phot-Ia, particularly

when comparing the HR–mass relation, could point to a striking difference between the

two sets of SNe Ia. If we cannot assume that the PM sample is a homogeneous set of SNe

Ia, or we cannot trust the purity of the photometric sample, this raises serious concerns

about the usefulness of large-area surveys like DES and LSST that will observe thou-

sands of photometrically-classified SNe Ia. As photometric typing is improved, we are

confident that these Phot-Ia will be critical tools in HR–host-property studies.

Throughout this analysis we determine, in several variations, correlations between

HR and host-galaxy properties. Yet we remain unsure about the physical mechanisms

driving these relationships. If progenitor age is truly responsible for the host bias, as

proposed by Childress et al. (2014), and if host-galaxy stellar age traces the progenitor

age (which is likely true for star-forming galaxies), then a large sample of high-S/N host-
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galaxy spectra of a size comparable to the sample in this work would be helpful in further

probing these correlations. Obtaining such a large number of high-quality spectra will

be difficult, but good S/N of the continuum is necessary to measure absorption lines and

therefore infer stellar population age as was done by Johansson et al. (2013). In this work,

requiring that each host galaxy has a spectrum from SDSS or BOSS greatly reduced the

size of our sample. While the number of SNe Ia being discovered continues to rapidly

increase, the number of host galaxies targeted for spectroscopic follow-up lags behind.

We strongly advocate that current and future SN surveys strive for completeness of host-

galaxy spectral follow-up so that further analyses of host-galaxy correlations will benefit

from the increased statistics and suffer minimal bias. We are hopeful that future work

using larger, higher-quality datasets will contribute valuable insight into the nature of SN–

host correlations and the complex combination of intrinsic and environmental features that

affect SNe Ia.
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Chapter 4

BAMBIS: Bayesian Hierarchical

Modeling with Biased Simulations For

SN Ia Cosmology Including Selection

Effects

4.1 Introduction

Type Ia supernovae (SNe Ia) are excellent probes for measuring the properties of dark en-

ergy and the accelerating expansion of the universe (Riess et al., 1998; Perlmutter et al.,

1999). Using these objects for cosmological parameter inference has enabled precise

estimates of the current dark matter density, Ωm, and the dark energy equation of state pa-

rameter, w (Betoule et al., 2014). The uncertainties of SNe Ia cosmology have, however,

become dominated by systematic errors, and this limitation is driving the strategy for new,

large-scale SN programs. Surveys such as The Dark Energy Survey Supernova Program

(Bernstein et al., 2012, DES-SN) and the Large Synoptic Survey Telescope (LSST Sci-

ence Collaboration et al., 2009, LSST) will detect thousands of SNe Ia and new analysis

tools will need to be developed to use these large samples most effectively.
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In this chapter we introduce the framework for a novel Bayesian hierarchical model

(BHM) algorithm for cosmological parameter inference using SNe Ia. The BAyesian hi-

erarchical Modeling with BIased Simulations (BAMBIS) algorithm adds two new key

features to the available suite of SN Ia cosmology tools. First, BAMBIS uses forward

modeling of the data at every proposed point in parameter space, allowing for treatment

of any selection effects or other observational systematics that can be properly simulated,

regardless of whether they can robustly be accounted for in analytic likelihoods. This

includes effects such as weather variations or down-selection due to limited follow-up re-

sources. Second, BAMBIS then estimates each model’s probability distribution function

(PDF) in the observational space using Kernel Density Estimation (KDE) of the simulated

data; this provides a non-parametric estimate of the PDF that does not require analytically

tractable likelihoods.

The use of SNe Ia as cosmological probes rests on the ability to standardize their peak

luminosities (magnitudes m), which are derived from observed light-curve fluxes. Typ-

ically, this standardization uses a model that relates SN Ia luminosity to light-curve fit

parameters. One common model is the “Tripp” regression relation which relates SALT2

(Guy et al., 2010) light-curve fit color c and width x1 (“stretch”) to SN Ia peak B-band

luminosity (Phillips, 1993; Tripp, 1998). In this case, the light curve data are thus com-

pressed into {mBi,ci,x1i} for events i at redshifts zi. To obtain estimates of cosmological

parameters (such as Ωm), traditional analyses maximized the likelihood of these data vary-

ing the cosmological parameters and the SN Ia luminosity regression coefficients α and

β of x1 and c, respectively. Several recent analyses have moved beyond this technique to

conduct Bayesian parameter inference in a hierarchical (layered) model, which vary not

only the conventional model parameters, but also the “hyperparameters” describing the

intrinsic population distributions of SN redshift, color, stretch, or host mass.

In a conventional Bayesian analysis, posterior distributions of parameters of interest

are obtained by comparing a set of observed data to an analytic model. These posterior

distributions are often sampled using Markov Chain Monte Carlo (MCMC) techniques,
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which construct a sequence of points in parameter space, known as a “chain.” Various

techniques are distinguished by nuances in the model, forms of the likelihood PDF, or

differences in sampling algorithms. Rubin et al. (2015), for example, develop a sophis-

ticated model and likelihood that account for correlations between SN Ia luminosity and

host-galaxy mass, and allow for evolution of SN Ia color and stretch with redshift. Shariff

et al. (2016) incorporate similar correlation and evolution parameters into their model and

use Partially Collapsed Gibbs Sampling (PCG) and Ancillarity-Sufficiency Interweaving

Strategy (ASIS) to improve the convergence of their MCMC chains. Mandel et al. (2016)

improve upon the standard color-correction model by accounting for host-galaxy dust and

intrinsic SN Ia scatter separately.

BHM approaches also vary in their treatment of observational biases; some simply

assume the data set is complete, while others incorporate selection effects as parameters

of the model. In a magnitude-limited survey, only the more luminous objects are ob-

served at large distances; this effect is known as Malmquist bias. This selection biases

the observed SN Ia sample to be bluer and brighter than the intrinsic population and must

be accounted for to obtain unbiased cosmological parameter estimates. To address this

point, Rubin et al. (2015) included sample limiting magnitudes (i.e., a parameter describ-

ing the maximum magnitude observed in a given survey) as analytic parameters of their

model and were able to recover Ωm and w0 without bias, but recovered biased values of

the regression coefficients. Shariff et al. (2016) add distance corrections, determined us-

ing simulations presented in Betoule et al. (2014), to SN Ia magnitudes obtained from the

Joint Light Curve Analysis (Betoule et al., 2014) and find w0 to be 1.6σ larger and Ωm to

be 2.8σ larger than previously reported.

Such approaches are informative but remain limited in some respects, e.g., by approx-

imating a complex selection process with a simplified parametric form, or by making ad

hoc “corrections” to the measurements. Often these corrections are derived for a single

choice of cosmology and/or population parameters, whereas in reality the selection or

other biases may vary across the model space. Furthermore, the model is assumed to
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have a fixed uncertainty, and hyperparameters – that may be of interest in SN Ia popula-

tion studies – are marginalized over and not reported.

A promising alternative to conventional MCMC techniques for cases with intractable

likelihood functions is Approximate Bayesian Computation (ABC), which offers a

“likelihood-free” approach to parameter estimation. In contrast to typical MCMC analy-

ses, the ABC method (Beaumont et al., 2008) relies on forward-modeling the data at every

point in parameter space, and compares data to simulation via a distance metric with a

specified tolerance level. This tolerance level evolves with each iteration, and decreases

as the forward-model simulation converges on the data distribution. Jennings et al. (2016)

present SUPERABC as an application of ABC to SN Ia cosmology. While these meth-

ods can include selection effects and systematics in a more robust way than conventional

BHM frameworks, the ABC metric is often difficult to construct, and chain convergence

can be less efficient than likelihood-based techniques.

The BAMBIS approach to parameter estimation allows us to address several limita-

tions of current SN Ia cosmological parameter estimation by combining non-parametric

likelihood evaluation with full forward-modeling of the data. While the method as out-

lined here only applies to spectroscopically-confirmed SNe Ia, its features allow for a

natural extension to a photometrically classified sample.

Before demonstrating BAMBIS on a set of simulated SN Ia light-curve parameters

(Section 4.5), we illustrate fundamental components of the algorithm using two toy-

model examples. In the first example (Section 4.4.1), we model a hierarchical regres-

sion problem, similar to that of SN Ia standardization, but without any additional com-

plications such as selection effects or measurement uncertainty. In the second problem

(Section 4.4.2), we include a complex selection function as part of the model.

In the examples presented in this chapter, we do not include systematic uncertainties,

e.g., light-curve fitting error, in the models under investigation. Including such systemat-

ics is straightforward in the BAMBIS algorithm, as long as they can be accurately mod-

eled by the simulator. In traditional likelihood-based approaches, including systematics
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in the analytic likelihood can be nontrivial and serve as a potential source of systematic

parameter bias. For example, the covariance matrix must account for measurement un-

certainty if the model used in the likelihood does not include random noise. As BAMBIS

does not use analytic likelihoods and would, in practice, estimate the likelihood using

a noisy model at each proposed point in parameter space, we do not expect systematic

uncertainties to impose any additional parameter bias. Rather, we expect parameter bias

may stem from the algorithm itself, e.g., from the non-parametric estimation of the like-

lihood. Therefore, we explore parameter bias without including systematics as this will

more clearly illuminate effects incurred from the algorithm.

4.2 Overview of Bayesian Inference and Kernel Density

Estimation

In the Bayesian framework, one of the primary goals is to estimate the posterior probabil-

ity distribution, p(Θ|D), of the parameters Θ of a modelM, given some data D. Using

Bayes’ theorem, the posterior can be written as

p(Θ|D) = L(D|M(Θ))π(Θ)∫
L(D|M(Θ))π(Θ)dΘ

, (4.1)

or more commonly

p(Θ|D) ∝ L(D|M(Θ))π(Θ) , (4.2)

whereL(D|M(Θ)) is the likelihood, or the probability of the data given a particular set of

model parameters, π(Θ) contains prior information about the data, e.g., a physical prior

can be imposed on a mass variable to restrict the parameter space to positive values, and

the denominator of Eq. 4.1 is the product of the likelihood and prior integrated over all

points in parameter space.

In the SN Ia analysis, the likelihood, L, can be written in hierarchical (multi-level)

form, i.e., Figure 4.1. Atop the hierarchy are some hyperparameters, which are parameters

governing the distribution of some other stochastic parameters in Θ. For example, if π(Θ)

119



is drawn from a normal distribution with mean m and variance s2 (i.e., π(Θ)∼N (m,s2)),

then m and s could be treated as hyperparameters of the model. In the SN Ia case, many of

the parameters thus generated are unobserved or “latent” (such as the intrinsic, noiseless

characteristics of individual SNe). Bayesian hierarchical modeling allows for simultane-

ous inference of these latent variables with the hyperparameters of interest.

In practice, one generates MCMC samples from the posterior distribution by evaluat-

ing the likelihood of the data given different values in the model parameter space. In many

cases, the likelihood can be parameterized as a multivariate Gaussian distribution, where

the mean is dictated by the choice of physical model and the covariance is measured or

estimated either analytically or numerically. However, direct evaluation of the likelihood

may require unreliable assumptions about the analytic form of the likelihood PDF (e.g.,

about the mean and covariance of a Gaussian, or the Gaussian assumption itself). In the

case of SN Ia cosmology, the processes of detecting transient events, measuring their

light curves, fitting these to parametric functions, and obtaining redshift information are

complex and impossible to describe exactly as analytic functions of the underlying SN

Ia event characteristics, especially regarding the selection criteria that are implicit or ex-

plicit to this process. The standard approach cannot be used without forcing an analytic

approximation onto the likelihood of the data.

What can be done instead, however, is to simulate these processes and generate sam-

ples of D that are drawn from the likelihood. In the SN Ia application, the data are points

in the 4-dimensional space spanned by three light-curve fit parameters and the redshift for

each selected SN Ia event. We can then apply density estimators to the simulated set of

SNe Ia to assign a likelihood L to each SN Ia in the observed D.

A kernel density estimator (KDE) smooths the discrete simulated distribution with

a kernel of a chosen size (bandwidth). This effectively assigns each real event a like-

lihood by measuring the distances to neighboring events in the simulated data for each

model being tested. The quality of the estimated PDF is largely dependent on choice of

bandwidth. If the chosen bandwidth is too small, then the resulting PDF is noisy or “un-
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Figure 4.1: BHM describing the SN Ia model used for this sample implementation of

BAMBIS (Section 4.5). Dashed lines represent deterministic relationships and solid lines

indicate probabilistic relationships. The diagram features three distinct parameter types:

parameters which will be varied in the MCMC (solid oval), fixed parameters (solid rect-

angle), and derived parameters (dashed oval). Blue parameters represent hyperparameters

and corresponding derived parameters; green parameters represent cosmological param-

eters. Latent variables are enclosed by a single circle; the distributions of observed vari-

ables are enclosed by concentric circles. The variable Si indicates whether or not a given

SN Ia passes selection criteria and is included in the final observed data set.
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Table 4.1. Standard Deviation of Gaussian Fits to KDE of p(x)

Bandwidth σx

0.02 3.066
0.18 (Scott’s Rule) 3.116
1.0 4.235

dersmoothed;” if the bandwidth is too large, then the resulting PDF is likely insensitive

to irregular features or “oversmoothed.” Common rules of thumb exist to help inform

bandwidth selection including Gaussian approximation and Scott’s rule (Sturges, 1926;

Scott, 2015).

In Figure 4.2, we present a simple example of estimates of a Gaussian PDF (blue

histogram) using SciPy’s gaussian_kde with four distinct choices of bandwidth. For this

realization of 5,000 samples of the random variable x ∼N (0,3), the optimal bandwidth

using Scott’s Rule is ≈ 0.18. As shown in Figure 4.2, the density estimate using the

narrower choice of bandwidth (green curve) is noisy, while the estimate using the larger

bandwidth (magenta curve) is oversmoothed and does not capture the peak of the PDF

well.

To further explore the estimated densities, we fit a Gaussian distribution to each and

compare the mean and standard deviation to that of x. For the realization of 5,000 sam-

ples, σx = 3.049. The standard deviations of the KDE Gaussian fits are summarized in

Table 4.1. In all cases, the KDE generates an estimated PDF that is broader than the true

distribution. The broadening of the distribution decreases as the number of samples used

to construct the KDE increases; however, this is inevitable when constructing a density

estimate with a finite sample.

The effects of kernel size and resulting PDF smoothing increases with dimensionality.

We illustrate this effect in Figure 4.3 where we present the two-dimensional density for
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Figure 4.2: KDE estimates of p(x) (blue histogram) using four distinct choices of band-

width. The bandwidth determined by Scott’s Rule is ≈ 0.18. The density estimate using

the narrower bandwidth is clearly too noisy (green curve), while the density estimate using

too large a bandwidth (magenta curve) appears oversmoothed and does not appropriately

estimate the peak of the distribution. Corresponding standard deviations of Gaussian fits

to the KDEs are presented in Table 4.1.
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Figure 4.3: Two dimensional PDF evaluated using an analytic multivariate Gaussian (left)

and Gaussian KDE (right) with arbitrarily large bandwidth. Denser regions are shown in

blue; regions of low density are shown in light pink. The bandwidth was selected to

emphasize the effect of choosing an inappropriate kernel size; the broadening of the PDF

can be seen in both the y and z dimensions.

correlated Gaussian variables y and z,

(
y
z

)
∼N

((
0.5
1.0

)
,

(
1 0.252

0.252 4

))
(4.3)

evaluated using an analytic multivariate Gaussian (left) and the Gaussian KDE (right).

The bandwidth selected in this example was chosen to be arbitrarily large to emphasize

the effect of choosing an inappropriate bandwidth. As shown in Figure 4.3, the estimated

PDF is broader in both the y and z dimensions. This is particularly evident near the peak

of the distribution.

As Figures 4.2 and 4.3 show, we must keep in mind that KDE estimators are invariably

biased in the sense of being broader than the true distribution as a result of the convolution

of the sample by the kernel function. We will remain alert to the possibility of this bias

propagating into biased parameter inferences.
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4.3 The BAMBIS Algorithm

BAMBIS uses MCMC sampling of the model parameters, but differs from previous algo-

rithms in that the likelihood L(D|Θ) is determined via density estimation from a Monte

Carlo simulation of events generated for each sampled model. In this section we detail the

BAMBIS algorithm and describe particular features which should be carefully considered

upon implementation.

The BAMBIS algorithm for a generic set of model and hyperparameters, Θ, using a

generic data set of d dimensions (corresponding to the number of observed variables per

data point), Dd , proceeds as follows:

Step 1: A point in parameter space, Θp, is proposed by the MCMC sampler.

Step 2: Simulated data are drawn using Θp, which provide a sampling of the distribution of

points in the data space produced by the model.

Step 3: A KDE is used to estimate the non-parametric, d-dimensional PDF of the model

from the simulated sample.

Step 4: The likelihood of the data given the model is estimated by evaluating the KDE PDF

at each data point in Dd .

Step 5: The MCMC algorithm accepts or rejects the point Θp based on this likelihood.

The details of the MC simulation procedure required for Step 2 depend on the param-

eter set Θ and choice of forward-model simulation package. We note that the BAMBIS

algorithm is designed to be independent of simulation package choice. Any simulation

package may be introduced, as long as it can effectively simulate 1) the astrophysical pro-

cesses that generate the real data, and 2) the measurement processes that are applied to

the real observations, including features such as selection effects and survey systematics.

The resulting simulated data are used in the likelihood as a non-analytic estimate of

the model. The size of the simulated data set should be large enough to ensure proper
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sampling of the d-dimensional PDF. This “synthetic likelihood” technique is an effective

means of evaluating the likelihood using summary statistics when the model and/or like-

lihood is intractable (Wood, 2010). For more details on Bayesian synthetic likelihoods,

see Price et al. (2017).

These MC simulations also allow us to incorporate complex selection effects in a

robust statistical framework. In traditional cosmological analyses, a bias correction - on

individual SN Ia magnitude, color, etc, as determined by simulations - is added to the

data to account for biases stemming from selection effects (Betoule et al., 2014; Shariff

et al., 2016). Such bias corrections are often computed as a function of redshift, e.g., by

simulating the observation of a population of events (see e.g., Scolnic and Kessler, 2016;

Betoule et al., 2014). But in fact, these biases can depend on many model parameters

including w0, α , and β , and thus it becomes inaccurate to apply a fixed set of corrections

to the data while exploring the model posterior. In BAMBIS, we do not create an ad

hoc model for selection. Rather, we apply to the simulation the same selection process

experienced by the data. The use of MC simulations in this way also allows us to properly

treat other effects, such as measurement errors that vary from event to event, or systematic

errors in the measurement tools, which are not straightforward to include in an analytic

likelihood.

We note that BAMBIS is written in the open-source Python programming language.

Any simulation packages, KDE routines, or sampling algorithms also written in Python

are straightforward to incorporate; other programs not written in Python can be included

via a Python wrapper.

4.3.1 Algorithm Caveats

4.3.1.1 Noisy Likelihoods

One of the more challenging aspects of the approach is the impact of including a stochastic

model on the sampling of parameter space. In conventional likelihood-based techniques,
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the value of the model at a given point in parameter space is fixed. This allows for triv-

ial comparison of the likelihood at two points in parameter space, which is the crux of

sampling methods such as Metropolis Hastings MCMC. For example, in the Metropo-

lis Hastings (MH) algorithm, the acceptance probability (ap) which dictates whether a

proposal from point Θ1 to point Θ2 is accepted is governed by

ap = min
[

1,
L(Θ2)q(Θ1|Θ2)

L(Θ1)q(Θ2|Θ1)

]
, (4.4)

where q is some proposal density and ap = 1 indicates the point is a more likely match

to the data and should therefore be accepted. In typical cases, we assume the process

exhibits detailed balance – the probability of transitioning from Θ1 to Θ2 is equivalent to

transitioning from Θ2 to Θ1.

In the BAMBIS algorithm, estimating the model using MC simulations means that

the model, and thus, the likelihood, will vary over multiple evaluations of the likelihood

at the same point in parameter space. Therefore, such a comparison of L(Θ1) and L(Θ2)

is not immediately straightforward. While we expect the noisy likelihood to retain the

approximate shape of the desired posterior, variations in the likelihood may be particu-

larly worrisome near the peak of the distribution. Figure 4.4 presents an example of these

likelihood variations for a mock data set sampling over a wide range of parameter space

(Θa, left panel) and closer to the peak (Θb, right panel). As shown in the left panel of Fig-

ure 4.4, the general shape of the posterior peaks at the true value (dashed red line), despite

the noise in the individual evaluations of the likelihood (blue points). While this maxi-

mum is still discernible when we explore closer to the peak (right panel), the fluctuations

in the likelihood at a particular Θb indicate that the maximum likelihood value may not

necessarily correspond to the peak of the posterior. This also means that the likelihood at

a proposed Θp, perhaps far from the peak of the posterior, may fluctuate to be higher than

the likelihood at the peak, causing the proposal to be accepted when it should in fact be

rejected.

The “exact approximate” psuedo-marginal MCMC approach was proposed as a so-

lution to the problem of MCMC sampling using model estimation from MC simulations
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Figure 4.4: Example of noisy likelihood for a sample mock data set sampling over a wide

range of parameter space (Θa, left panel) and closer to the peak (Θb, right panel). The

true value of the parameter used to generate the mock data is indicated by the dashed red

lines. Blue dots represent an individual evaluation of the likelihood at each point in Θa

and Θb; black lines connect the means at each proposed point.

(Beaumont, 2003; Andrieu and Roberts, 2009). In this approach, the acceptance prob-

ability is a function of an estimate of the likelihood, rather than the exact L, which is

precisely the problem at hand. In this case,

ap = min

[
1,

ˆp(Θ2)q(Θ1|Θ2)
ˆp(Θ1)q(Θ2|Θ1)

]
, (4.5)

where ˆp(Θ2) and ˆp(Θ1) are noisy estimates of the likelihood. It can be shown that using

these noisy estimates in the MCMC sampling will still generate an exact sampling of the

posterior.

Consider the noise in the likelihood to be the random variable Wp = ˆp(Θp)/L(Θp)

where Wp is drawn from the joint distribution of Θp and a random variable wp introduced

for the purpose of illustration, i.e., Wp ∼ Lp(wp|Θp). If we treat the proposal density as

not only an update of Θ, but as an update of w, then the proposal draws (Θ2,w2) from the

density

(Θ2,w2)∼ w2q(Θ2|Θ1)p(w2|Θ2) , (4.6)
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and we therefore have the approximate acceptance probability

ap = min
[

1,
w2L(Θ2)p(w2|Θ2)q(Θ1|Θ2)p(w1|Θ1)

w1L(Θ1)p(w1|Θ1)q(Θ2|Θ1)p(w2|Θ2)

]
. (4.7)

Further inspection of Eq. 4.7 reveals that the target density of interest is proportional to

wpL(Θp)p(wp|Θp) , (4.8)

which is equivalent toL(Θp), the target density of interest, after marginalizing over all wp.

Note that this analysis relies on two important assumptions: 1) that the estimator ˆp(Θp)

is unbiased, and 2) that we must keep and re-use the noisy ˆp(Θp) when we compute the

acceptance ratio for the subsequent proposals.6 If these conditions are satisfied, then we

expect standard MCMC algorithms to reach the target density, but that convergence may

take longer than the classical problem (Beaumont, 2003).

4.3.1.2 Posterior Sampling

There exists a wide variety of sampling algorithms, each with its own set of tunable

parameters and designed to be optimized to a particular problem. When using BAMBIS,

it is essential to use a sampler that can accommodate the stochastic nature of the model

and likelihood.

We elect to explore the parameter space using the affine-invariant ensemble sampler

emcee (Foreman-Mackey et al., 2013). emcee makes use of the “stretch move” algorithm

which updates the position of a point, or walker, in an ensemble based on the positions of

the walkers in the complementary ensemble (Goodman and Weare, 2010). To update the

position of a walker at position X1, a walker X2 is drawn randomly from the positions of

the remaining walkers and a new position is proposed

X1→ Y = X2 +Z[X1−X2] , (4.9)

6https://darrenjw.wordpress.com/2010/09/20/the-pseudo-marginal-approach

-to-exact-approximate-mcmc-algorithms/
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where Z is a random variable drawn from a distribution g(Z = z). This distribution is a

function of an adjustable scale parameter a

g(z) ∝


1√
z if z ∈

[1
a ,a
]

0 otherwise
, (4.10)

with the corresponding acceptance probability,

ap = min
[

1,ZN−1 p(Y )
p(X1)

]
, (4.11)

where N is the dimension of the parameter space.

Algorithm performance and chain convergence are measured by the acceptance frac-

tion ( fa) and autocorrelation time (τ), which is a direct measure of the number of evalua-

tions of the posterior required to produce independent samples of the target density. When

using emcee, we evaluate fa and τ periodically as the chain converges. It is recommended

to run the chain for≈ 10−20τ to achieve convergence. We expect that as the chain moves,

the acceptance fraction may be lower than typically recommended ( fa ∼ 20−40%). This

is due to the fact that walkers may get “stuck” at randomly large values of the log like-

lihood and it may take several proposals to move to a new point in parameter space. If

sampling performance becomes an issue, Foreman-Mackey et al. (2013) suggest adjust-

ing the scale factor a or increasing the number of walkers. We discuss any necessary

deviations from the default sampler settings in each presented BAMBIS sample imple-

mentation.

4.3.1.3 Choice of KDE

To minimize the artificial broadening of the PDF of the observed variables, we want to

select an interpolation kernel that smooths over the maximal number of samples for a

given kernel volume.

We produce a “matched elliptical Gaussian kernel density estimator” (MEGKDE) via

the following algorithm:
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1. Determine the covariance matrix of the training sample {Xi} as

Σ =
〈
(X−〈X〉)(X−〈X〉)T

〉
.

2. Perform the Cholesky decomposition Σ−1 = LT L for a lower-triangular matrix L,

and transform the training samples to Yi = L(Xi−〈X〉). The variable Y has identity

covariance matrix.

3. Choose a size σ for a spherical KDE kernel in the Y space. The rule σ =N−1/(q+4)
s ,

where Ns is the number of samples and q = 4 is the dimensionality of the data, is

shown by Silverman (1986) to minimize interpolation error for nearly-Gaussian

distributions.

4. Define the density at a target point X0 as

ρ(X0) =
detL

(2πσ2)q/2

Ns

∑
i=1

e−|L(X0−〈X〉)−Yi|2/2σ2
, (4.12)

where the exponent now contains the Euclidean distances between samples and

the target point in the Y space. The routine can be accelerated by using a kD

tree to rapidly isolate the sample points that are close enough to Y0 to contribute

significantly to the sum.

4.3.1.4 Model and Data Outliers

Another important issue to consider is the size of the simulation used to estimate the

density. There is a correlation between the variance of the likelihood at a given point in

parameter space and the size of the simulation used to estimate the model. This effect

will depend on the dimensionality of the problem and is explored in Section 4.4.1.

A final issue to consider is how to handle outlier points. There could be a Θp from

which a simulation is drawn where p(Di|Θp) = 0. In this case, we set a “floor” on the

PDF to ensure that all data points are used in the evaluation of the likelihood. We choose

a value such that the model will be penalized, but not completely rejected, as this should
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not be the primary reason for the point rejection. After extensive testing, we find that

setting p(Di|θp) = 0.95 in these cases is a sufficient floor.

4.4 Proof of Concept

While the physical process by which nature generates SN Ia light curves is unknown, a

model of this process can be incorporated into a simulator and used to simulate realistic

SN Ia fluxes. Tools for parameter inference such as BAMBIS will only be successful if

there exists at least one set of parameters for which the simulation accurately reflects the

natural process. Before demonstrating the BAMBIS algorithm on SN Ia simulations, we

present two simpler examples, which we can use as proof of concept. We choose to sim-

ulate a four dimensional hierarchical regression model, as a similar model is frequently

used in the SN Ia cosmology problem.

4.4.1 Toy Problem 1: Gaussian Linear Regression Model

In this example, we assume the observed data set D consists of N observed variables: w,

x, y, and t. We draw these variables using the following hierarchical model:

wtrue
i ∼ N

(
w̄,σ2

w
)

(4.13)

xtrue
i ∼ N

(
x̄,σ2

x ,
)

(4.14)

ytrue
i ∼ N

(
ȳ,σ2

y ,
)

(4.15)

t true
i ∼ N

(
α×wi +β × xi + γ× yi +δ ,σ2

int
)
. (4.16)

This essentially mimics the SALT2 SN Ia regression model (Eq. 2.4), where t is analogous

to the SN Ia distance modulus or peak B-band magnitude. In this first example, we do

not include additional measurement uncertainty nor apply any selection. Therefore each

“true” variable is also observed (denoted by the superscript “obs”), i.e., wobs
i = wtrue

i ,
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xobs
i = xtrue

i , yobs
i = ytrue

i , tobs
i = t true

i . We define the set of hyperparameters describing the

latent distributions as

ψex1 ≡ [w̄,σw, x̄,σx, ȳ,σy] , (4.17)

and the set of model parameters as

θex1 ≡ [α,β ,γ,δ ,σ int] . (4.18)

The complete hierarchical model for this example is presented in Figure 4.5.

Figure 4.5: BHM for toy example without additional measurement uncertainty or sample

selection. Dashed lines indicate deterministic relationships; solid lines indicate proba-

bilistic relationships. Model parameters are circled in green and hyperparameters are

circled in blue. Latent variables are enclosed in a single circle; observed variables are

enclosed in a double circle.

For the purpose of demonstration, we draw a mock data set of 700 observations using

this toy model and denote this data set as D1. We elect to draw a sample of 700 obser-
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Table 4.2. D1 Input Parameter Values

Parameter Input Value

w̄ 0.5
σw 1.0
x̄ 0.0
σx 0.1
ȳ 0.5
σy 2.0
α 0.15
β 3.0
γ 0.2
δ 0.0
σint 0.15

vations as this is roughly the expected size of the three-year spectroscopically-classified

SN Ia sample of the DES-SN (see Section 4.5). The input values used to draw D1 are

presented in Table 4.2. Values listed in Table 4.2 were chosen arbitrarily as this first test

is only used to validate the BAMBIS algorithm. 1-D marginalized distributions of the

observed variables in D1 are shown in Figure 4.6.

We define the posterior probability for each data point in the 4-D data space as

p(θex1,ψex1|wobs
i ,xobs

i ,yobs
i ,zobs

i ). Using Bayes’ theorem, we relate this to the product of

the likelihood L and prior Π(θex1,ψex1)

p(θex1,ψex1|wobs
i ,xobs

i ,yobs
i ,zobs

i ) ∝ Li×Π(θex1,ψex1) , (4.19)

where Li is given by

Li = p(wobs
i ,xobs

i ,yobs
i ,zobs

i |θex1,ψex1)

= p(wobs
i ,xobs

i ,yobs
i ,zobs

i |wtrue
i ,xtrue

i ,ytrue
i ,ztrue

i )× p(wtrue
i ,xtrue

i ,ytrue
i ,ztrue

i |θex1,ψex1) .

(4.20)

We assume each observation is independent and therefore define the likelihood for the
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Figure 4.6: 1-D marginalized distributions of observed variables w, x, y, and z for D1.

full data sample as the product of the likelihoods of the individual observations, i.e.,

Lex1 = ∏
i
Li . (4.21)

4.4.1.1 Results

To test the BAMBIS algorithm, we use D1 to infer θex1 and ψex1. At each proposed point

in parameter space, we draw a simulation from θp and ψp using the same model which

generated D1. When quoting results, we report the best fit value of each parameter as

the median of its 1-D marginalized PDF. As we do not assume our posterior distributions

are Gaussian, errors are quoted at the corresponding 16% and 84% quantile levels; we

refer to these uncertainties as σ− and σ+, respectively. As with any MCMC analysis, the

contours of the prior are noisy due to finite sampling.

In this first example, the forward-simulation, density estimate, and likelihood eval-

uation take ≈ 1s at each proposed point in parameter space. We run emcee using 100

walkers, over four compute cores, for ≈ 24 hours. Our chains converge after ≈ 150,000
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Table 4.3. Best fit Parameter Estimates Using D1

Parameter Prior∗ Input Value Best fit σ− σ+

w̄ Flat 0.5 0.507 0.043 0.046
σw U(0,2.0) 1.0 0.989 0.026 0.028
x̄ Flat 0.0 0.004 0.005 0.003
σx U(0,0.5) 0.1 0.098 0.002 0.003
ȳ Flat 0.5 0.49 0.073 0.067
σy U(0,4.0) 2 2.009 0.056 0.041
α Flat 0.15 0.152 0.006 0.006
β Flat 3 3.027 0.062 0.051
γ Flat 0.2 0.2 0.003 0.003
δ Flat 0.0 0.002 0.006 0.008
σint U(0,0.3) 0.15 0.149 0.004 0.004

∗A “Flat” prior indicates an unbounded uniform prior.

total samples (including burn-in) have been drawn. We use ≈ 20,000 samples from the

converged chain to estimate median and uncertainties of the 1-D marginalized posterior

distributions. We used the default settings for the emcee algorithm. The average accep-

tance fraction over all the walkers was 12% and τ ranged from 40− 80 for the eleven

parameters.

Figure 4.7 displays the posterior distributions of θex1 and ψex1 inferred using D1;

priors and best fit results are presented in Table 4.3. As shown in Figure 4.7, BAMBIS

successfully recovers all input parameters within the 1σ uncertainty region. The 1-D

marginalized posterior distributions are each roughly Gaussian.

To explore potential bias in the BAMBIS algorithm, we run BAMBIS on 24 additional

sets of mock data realized using the same model and parameter values listed in Table 4.2.

Each mock data set contains 700 observed data points. The 1σ uncertainty regions for

each of the data realizations is shown in Figure 4.8. For each data realization, the con-

nected points represent the 16%, 50%, and 84% quantiles of the given 1-D marginalized

136



0.9
2

0.9
6

1.0
0

1.0
4

w

0.0
06

0.0
00

0.0
06

0.0
12

x

0.0
90

0.0
95

0.1
00

0.1
05x

0.3
0

0.4
5

0.6
0

0.7
5

y

1.8
4

1.9
2

2.0
0

2.0
8

2.1
6

y

0.1
4

0.1
5

0.1
6

0.1
7

2.8
2.9
3.0
3.1
3.2

0.1
90

0.1
95

0.2
00

0.2
05

0.0
1

0.0
0

0.0
1

0.0
2

0.4
0

0.4
8

0.5
6

0.6
4

w
0.1

38
0.1

44
0.1

50
0.1

56
0.1

62

in
t

0.9
2

0.9
6

1.0
0

1.0
4

w
0.0

06
0.0

00
0.0

06
0.0

12

x
0.0

90
0.0

95
0.1

00
0.1

05

x
0.3

0
0.4

5
0.6

0
0.7

5

y
1.8

4
1.9

2
2.0

0
2.0

8
2.1

6

y
0.1

4
0.1

5
0.1

6
0.1

72.8 2.9 3.0 3.1 3.2
0.1

90
0.1

95
0.2

00
0.2

05 0.0
1

0.0
0

0.0
1

0.0
2

w

0.1
44

0.1
52

0.1
60

int

Figure 4.7: 1σ and 2σ credible regions of the θex1 and ψex1 parameter posteriors using

D1. Yellow stars indicate the true parameter values. Priors on the parameters are listed in

Table 4.3.
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Table 4.4. Parameter Bias Over 25 Data Realizations

Parameter True Mean † σavg
∗ Fractional

Value Bias (b) Bias (|b/σavg|)

w̄ 0.5 0.002 0.039 0.051
σw 1.0 −0.011 0.026 0.423
x̄ 0.0 0.0 0.004 0.0
σx 0.1 −0.001 0.003 0.333
ȳ 0.5 −0.016 0.075 0.213
σy 2 −0.012 0.054 0.222
α 0.15 −0.0 0.006 0.0
β 3 −0.004 0.056 0.071
γ 0.2 −0.0 0.003 0.0
δ 0.0 −0.0 0.007 0.0
σint 0.15 −0.001 0.004 0.25

†Bias for an individual data realization is defined as the

difference between the median of the 1-D marginalized PDF

and the true parameter value, i.e., bw̄ = w̄bestfit− w̄true.

∗We define σavg as the average of σ++σ−
2 over the 20 data

realizations.

posteriors. The true values used to generate the mock data (Table 4.2) are designated by

dashed red lines. We quantify the bias for a given parameter as the difference between

the true value and the median of the 1-D marginalized PDF, i.e., bw̄ = w̄bestfit− w̄true.

In Table 4.4, we present the mean bias, average error, and fractional bias over the 25

data realizations. The data realizations suggest that the best fit values of each of our 11

parameters are biased by < 0.43 times the 1σ uncertainty of the mock data.
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Figure 4.8: Best fit results over 25 realizations of mock data. Black points represent the

16%, 50% and 84% quantiles of the 1-D marginalized PDFs for each parameter, i.e., the

connected black line represents the 1σ uncertainty region for a given 1-D marginalized

PDF. Red dashed lines indicate the true value used to create the mock data sets.
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4.4.1.2 Conclusions

In this first example, we have validated the BAMBIS algorithm for a simple toy regression

problem. Using a mock data set of 700 observed data points, we recover 11 model and

hyperparameters within their respective 1σ uncertainty regions. The 1-D marginalized

posteriors of the model parameters and hyperparameters are roughly Gaussian and well

constrained despite the use of wide, uniform priors. Over 25 realizations of the data, we

recover the parameters within < 0.43 times their 1σ uncertainties. These results validate

the basic premise of the BAMBIS algorithm for this simple toy example.

In the results presented here, we simulated 100,000 samples of the observed data at

each proposed point in parameter space. This number was chosen to be arbitrarily large

such that variance in the total log likelihood would be reduced. To explore the effect

of simulation size on the log likelihood variance, we evaluated the log likelihood at the

same θex1 and ψex1 100 times using the same data set and for six different choices of

simulation size. In Figure 4.9 we show the variance of these evaluations as a function of

the simulation size; the sample size used in this example is indicated by a black star.
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Figure 4.9: Variance over 100 realizations of the total log likelihood as a function of

simulation size at a single θex1 and ψex1. The black star indicates the simulation size used

to estimate the density for the results presented in Section 4.4.1.1.
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As Figure 4.9 indicates, the variance of the log likelihood is strongly dependent on

the simulated sample size. However, we note that despite a variance of σ2 ≈ 20 in log-

likelihood space, we are still able to constrain the parameters of interest.

4.4.2 Toy Problem 2: Gaussian Linear Regression with Selection Ef-

fects

One of the most significant remaining challenges of SN Ia cosmology is the treatment

of selection bias. By forward modeling the data at every proposed point in parameter

space, we can include selection effects in a statistically robust framework without making

concessions for analytic approximations.

In this section, we expand the model presented in Section 4.4.1 to include a selection

function which censors data based on observational limits of the dependent variable, t.

This is analogous to a realistic magnitude-limited SN Ia survey in which the only the

brightest objects are detected and submitted for spectroscopic follow-up. We implement

selection via the following:

Step 1: Draw wtrue, xtrue, ytrue and t true from the model described in Section 4.4.1 and using

the input parameters listed in Table 4.2.

Step 2: Divide wtrue into J bins, each denoted as w j. Define the total number of samples in

each bin as N j.

Step 3: In each w j, select the M j smallest values of t true; M j is defined by a survey-specific

selection fraction, f j, such that M j = N j f j.

A sample comparison of the true t and observed t after selection in w j bins is shown in

Figure 4.10.

Although we typically do not know the total number of true samples, by using a

simulation at each point in parameter space we can keep track of the total number of
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Figure 4.10: True and observed w and t; note the axes have been truncated to focus on

the densest region of the 2-D distribution. Black lines indicate the bin widths in the w

dimension and the corresponding tobs limit. The black lines demonstrate the sharp, step

cutoffs which are difficult to estimate with a KDE.

simulated objects and the number which pass the selection criterion. In this example, we

elect to use an arbitrary selection function detailed in Table 4.5.

We draw a true mock data set of 700 objects using the model described in Section 4.4.1

with parameters listed in Table 4.2. After selection, 539 observed data points remain; we

denote this set of mock data as D2. True and observed distributions of the variables in D2

are presented in Figure 4.11. As shown in Figure 4.11, the selection function results in

the dramatic truncation of t true.

This sharp truncation is also evident in each of the w j bins. Figure 4.10 shows the

true and observed w and t, where f j of the smallest t true values are selected in each w j

bin. Black lines indicate the width of the w j bin and the corresponding tobs limit. These

steep step cutoffs are difficult for a KDE to reproduce accurately. Therefore, in the case

where we apply selection, we estimate the density in each w j bin separately as it allows

us to build the KDE on a smoother detection of objects.

As we are no longer using a complete set of observations, we must modify the like-

lihood (Eq. 4.20) to account for the objects which are not included in the final observed
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Table 4.5. Bins and selection fractions

for the example selection function

Lower Bin Value f j

wtrue =−3.0 1.0
wtrue =−1.7 0.9
wtrue =−0.4 0.8

wtrue = 0.9 0.7
wtrue = 2.2 0.6
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Figure 4.11: 1-D marginalized distributions of the true (blue) and observed (orange) vari-

ables of D2. The selection function used to construct the observed distribution is detailed

in Table 4.5.
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data set. The model described here is akin to a two-stage SN Ia survey with a com-

plex selection process. The first stage is the “detection,” where the data vector X ≡

{wtrue,xtrue,ytrue, t true} is assigned. We assume that the simulator can yield a density

n(X) = N̄ pd(X) of events that will pass all “detection” criteria. We normalize∫
dX pd(X) = 1 so that N̄ is the expectation of the sample size, and scales with the overall

wtrue distribution in the w j bin under consideration.

The second stage of the survey is “selection,” where we posit as a test case that there

were only M slots available for observing, and that these were allocated to the M most

negative events in a given w j bin. More generally we imagine some selection function

s(X) and that the detailed analysis is restricted to events with si = s(Xi) ≤ s0, where s0

is the Mth-smallest si. After selection, the detailed information of the remaining N−M

un-selected events is lost; we only retain knowledge of how many were discarded in

this way. Our data vector is hence D ≡ ({Xi},N), the union of the M selected data

points and the total number of detected objects. This kind of data-dependent selection

process is common in real-life experiments but often difficult to incorporate into a chi-

squared-minimization analysis. In BAMBIS, we assign a probability ps(D|M, N̄, pd): the

probability of obtaining the selected data given the predetermined selection count M and

the simulation-derived model of the occurrence rate of the data. We assume that the data

are independent events, so that the detected events are Poisson-distributed. With N as the

total number of objects detected in the data, we can write

ps(D|M, N̄, pd) = p({Xi}|s0,M, pd)× p(s0|N,M, pd)× p(N|N̄). (4.22)

The last term is the standard Poisson probability. The middle term is the probability of the

selection cutoff landing between s0 and s0 +δ s. This is better understood by introducing

the cumulative distribution function

f (s0) =
∫

s(X)<s0

dX pd(X) (4.23)

By definition, f is uniformly distributed between 0 and 1 for the detected objects. The

condition p(s0) is met if a) one of the N data points has s0 < s j < s0 +δ s, and b) M−1
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of the remaining N−1 points have si < s0. Defining f0 = f (s0), we therefore can use the

binomial distribution B to express

p(s0|N,M, pd) = N
d f
ds

∣∣∣∣
s0

B(M−1,N−1, f0)

=
N!

(M−1)!(N−M)!
f M−1
0 (1− f0)

N−M d f
ds

∣∣∣∣
s0

.

(4.24)

The first term is the probability for the distribution of M− 1 independent values of X

given that all are in the selection region, plus one point somewhere in s0 < s j < s0 +δ s.

Combining these probabilities, and marginalizing over N̄ with a Jeffreys prior ∝ 1/N̄,

yields

ps(D|M, pd) =
∫ dN̄

N̄
ps(D|M, N̄, pd) =

N!
(M−1)!(N−M)!

f M−1
0 (1− f0)

N−M
M

∏
i=1

pd(Xi)

(4.25)

= MB(M,N, f0)
M

∏
i=1

pd(Xi)/ f0 .

The marginalization over the total wtrue rate (N̄) yields a simpler form, with one term

giving the probability of the selection cutoff occurring at the s0 of the data, and the second

half describing the distribution of the M selected events in the observed data space. Our

selection process is posited to have different thresholds in each of a series of w j bins; we

apply Eq. 4.25 to each w j bin separately. This means that we are implicitly marginalizing

over a distinct wtrue rate, analogous to a distinct SN rate, in each w j bin, and hence it

would be redundant to include any parameters describing the wtrue rate explicitly in our

MCMC (we do of course need to choose a “truth” distribution when creating the mock

data vector).

In this case including selection, the total likelihood over all w j bins can be written as

L=
J

∏
j=1

M jB(M j,N j, f0 j)
M j

∏
i=1

pd(Xi j)/ f0 j , (4.26)

where J is the total number of bins and each of the j bins are assumed to be independent.

We define the parameters of interest which will be varied in the MCMC as

ψex2 ≡ [x̄,σx, ȳ,σy] , (4.27)
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and

θex2 ≡ [α,β ,γ,δ ,σ int] . (4.28)

Note that unlike ψex1, ψex2 does not include the hyperparameters describing the latent w

distribution.

4.4.2.1 Results

When including a selection function in the simulation, we find that additional measures

must be taken to ensure proper and efficient MCMC sampling. First, by evaluating the

KDE in bins of the larger simulation sample, we must be careful that a simulation drawn

from a particular θp and ψp will generate enough samples in each of the bins. For exam-

ple, there may be a θp and ψp which, for a particular bin, generates too few or no samples.

To address this issue, we require that a proposed model generate at least 1,000 samples

in each bin; if this criterion is not met, then we reject the model entirely. Second, we

find that when including selection, the default emecee scale factor a = 2 is too large to

ensuring proper chain mixing near the peak of the posterior; we therefore change the scale

factor to a = 1.2. By doing so, we find that it is more difficult for a walker to move away

from regions of low log likelihood. This is particularly troublesome if the walker starts

in a low-likelihood region as it tends to get “stuck.” To address this issue, we require that

the log likelihood values of the initial walker positions do not correspond to a model that

would be rejected outright by the algorithm.

As in Section 4.4.1, we simulate 100,000 samples at every point proposed by the

sampler. We use 100 walkers, spread over 10 compute cores, and run BAMBIS for 10

hours. We find that ≈ 150− 200,000 samples are required for convergence (including

burn in) and the final acceptance fraction is ≈ 15%. Marginalized posteriors for θex2 and

ψex2 using D2 are shown in Figure 4.12 and best fit results are presented in Table 4.6.

We recover roughly Gaussian posteriors for each of nine parameters in θex2 and ψex2.

Each of the true parameters is recovered within the 1σ uncertainty region except for σint,

which we recover just outside the 1σ uncertainty region. We find the uncertainties on the
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Figure 4.12: 1σ and 2σ uncertainty regions for the θex2 and ψex2 posteriors inferred

using D2. True parameter values are indicated by yellow stars. Best fit results and priors

are presented in Table 4.6.
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Table 4.6. Best Fit Parameter Estimates Using D2

Parameter Prior∗ Input Value Best Fit σ− σ+

x̄ Flat 0.0 0.004 0.005 0.004
σx U(0,0.5) 0.1 0.101 0.005 0.004
ȳ Flat 0.5 0.452 0.071 0.087
σy U(0,4.0) 2 2.02 0.055 0.074
α Flat 0.15 0.146 0.007 0.008
β Flat 3 3.044 0.087 0.069
γ Flat 0.2 0.202 0.003 0.004
δ Flat 0.0 −0.003 0.007 0.009
σint U(0,0.3) 0.15 0.157 0.006 0.004

∗A “Flat” prior indicates an unbounded uniform prior.

model and hyperparameters are roughly the same as the average uncertainties reported

in Table 4.4, despite our including a complex selection function in the forward-model

simulation and likelihood evaluation.

As in Section 4.4.1.1, we explore potential algorithm bias by performing parameter

inference using 25 realizations of mock data. Bias results are illustrated in Figure 4.13

and presented in Table 4.7. Although six of the nine parameters are biased < 0.3 times

their respective 1σ uncertainties, we observe a systematic bias in σy (0.5σ ), σx (1σ ) and

σint (0.8σ ). In particular, we note that σx and σint are both biased to be systematically

larger than the input value.

4.4.2.2 Conclusions

Using D2, we have demonstrated that when selection effects are included in the model,

BAMBIS can successfully recover eight of the nine model and hyperparameters within

their respective 1σ uncertainty regions. However, over 25 realizations of mock data, we

find bias in the recovery of σy (0.5σ ), σx (1σ ), and σint (0.8σ ). We suspect that this is
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Figure 4.13: Best fit results over 25 realizations of mock data including selection effects.

Black points represent the 16%, 50% and 84% quantiles of the 1-D marginalized PDFs

for each parameter, i.e., the connected black line represents the 1σ uncertainty region for

a given 1-D marginalized PDF. Red dashed lines indicate the true value used to create the

mock data sets.
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Table 4.7. Parameter Bias Over 25 Data Realizations

Parameter True Mean † σavg
∗ Fractional

Value Bias (b) Bias (|b/σavg|)

x̄ 0.0 0.001 0.005 0.2
σx 0.1 0.004 0.004 1.0
ȳ 0.5 0.006 0.088 0.068
σy 2 −0.036 0.069 0.522
α 0.15 0.002 0.007 0.286
β 3 −0.002 0.074 0.027
γ 0.2 −0.002 0.004 0.5
δ 0.0 −0.002 0.007 0.286
σint 0.15 0.004 0.005 0.8

†Bias for an individual data realization is defined as the

difference between the median of the 1-D marginalized PDF

and the true parameter value, i.e., bx̄ = x̄bestfit− x̄true.

∗We define σavg as the average of σ++σ−
2 over the 25 data

realizations.
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related to density estimation in each of the w j bins.

To explore potential biases from the KDE, we compare the difference between the

discrete PDF of the 4-D simulated data and the PDF constructed using the KDE. We

first draw a simulation of 100,000 samples from θ true
ex2 and ψ true

ex2 and estimate the 4-D

density in each of the w j bins. We then draw a set of 50,000 samples of “test data,” also

drawn from θ true
ex2 and ψ true

ex2 and without applying selection. Figure 4.14 shows the 2-D

marginalized densities in each of the w j bins obtained from the discrete binning of the

“test data” and evaluating the KDE estimate at each of the “test data” bin points. We

note that no selection or PDF floor (Section 4.3.1) has been applied here; this is purely a

comparison of the binned densities.

In each of the 2-D marginalized plots, we see that the estimated PDF is broader at the

peak than the discrete PDF constructed by binning the “test data.” We also observe that

the estimated PDFs are steeper than their discrete counterparts. The estimated PDFs (top

rows) appear slightly more rounded than their discrete counterparts (bottom rows), likely

due to the KDE smoothing. These estimated PDFs are also more broadly peaked than

the discrete distributions. We note the starkest difference between the edge bins on both

extremes of the distribution; however, we expect these differences are not the primary

source of bias as the bulk of the likelihood is evaluated using points in the middle three

bins.

As another means of comparing the estimated and discrete densities, we plot the

binned, 1-D marginalized PDFs of the 50,000 sample “test data” set in Figure 4.15.7

These 1-D distributions provide further confirmation of the observations made from Fig-

ure 4.14. In each of the w j bins, the wtrue distribution is markedly non-Gaussian. In the

three central bins, the estimated PDFs have broader and shorter peaks than the discrete

PDFs.

At this time, we are unable to make a definitive statement about the source of the

parameter bias and cannot predict how the bias will materialize for each parameter in the

7Note that these densities are plotted with different bin sizes than those used in Figure 4.14.
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Figure 4.14: 2-D marginalized densities of the 4-D {w,x,y, t} “test data” set in bins of w j.

w j bins are plotted in ascending order from left to right. Each pair of rows compares the

discrete PDF of the “test data” (bottom) to the density estimate from the KDE evaluated

at the binned “test data” points (top) in each of the five w j bins. Dark blue indicates the

densest regions, light pink indicates regions of lowest density.

152



Figure 4.15: 1-D marginalized binned discrete (red) and estimated (blue) PDFs of the

50,000 sample “test data” set in w j bins. w j bins are plotted in ascending order from left

to right.
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model. We remind the reader that PDFs presented in Figures 4.14 and 4.15 were con-

structed without applying selection. Therefore, we do not believe that including selection

effects is causing the parameter bias. In fact, preliminary tests in which θex2 and ψex2

were inferred without applying selection (i.e., f j = 1,∀ j), but by evaluating the likeli-

hood in w j bins, also produced parameter biases. We leave further exploration of these

effects to future work.

4.5 SN Ia Cosmology with the SALT2 Regression Model

Here we apply BAMBIS to the specific problem of cosmological parameter estimation

using SNe Ia. In the previous two sections, we demonstrated the capabilities of the BAM-

BIS algorithm using Gaussian linear regression models. When including selection in the

model, we observe systematic parameter biases in the latent width hyperparameters. The

source of this bias will be further explored in future work, and thus this section is in-

cluded as an illustration of how a complex cosmological model may be integrated into the

BAMBIS framework.

We present a simplified regression model, based on that of SALT2, and include se-

lection effects in a manner which is similar to that presented in Section 4.4.2. Other

systematics such as measurement uncertainty are not included in this demonstration, but

are discussed in Section 4.6.

For the purpose of demonstration, we assume our data set is derived from a sample of

spectroscopically-confirmed SNe Ia; we assume that in this survey, the supernova light-

curve fluxes are being fit to the SALT2 model with these parameters: scaled light-curve

amplitude (mobs
B ), stretch (xobs

1 ), and color (cobs ' B−V at the epoch of peak brightness).

We use a BHM to describe the probabilistic relationships between these observed

variables and the corresponding “true” variables. In our BHM, xtrue
1 , ctrue and ztrue are

drawn from distributions determined by a set of hyperparameters, ψ . These variables,

along with the set of model parameters, θ , are used to standardize each i SN Ia brightness
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via the Tripp regression relation (Tripp, 1998; Phillips, 1993):

mtrue
Bi = M+∆M0 +µ(ztrue

i ,Ωm,w,H0)+α× xtrue
1i +β × ctrue

i . (4.29)

In this model, M is the rest-frame SN Ia absolute magnitude and mtrue
Bi is the peak B-band

magnitude scaled from the light-curve amplitude. The calculated distance modulus, µ , is

a function of H0, Ωm, w, and each SN Ia redshift, ztrue
i . ∆M0 is a correction factor to the

rest-frame SN Ia magnitude and α and β are global standardization parameters, where

typically α < 0 and β > 0. In this demonstration, we assume a flat wCDM cosmology

model where the dark energy equation of state parameter, w, is constant in time, i.e.,

w = w0. We hold M = −19.36 and H0 = 70 km s−1 Mpc−1 fixed, as its value is fully

degenerate with ∆M0.

In addition to the cosmological parameters described in Eq. 4.29, our model con-

tains a parameter giving an intrinsic Gaussian variance σ2
intmB

of the apparent magnitude

at fixed (zi,xi,ci). We include σ2
intmB

in the parameter set θ . As we are simulating a

spectroscopically-confirmed sample, we assume no uncertainty on the SN Ia redshift (i.e.,

zobs
i = ztrue

i ).

We define the full set of model parameters as

θ ≡ [∆M0,α,β ,σ2
intmB

,Ωm,w0] . (4.30)

The set of hyperparameters, ψ , includes the SN Ia rate (Rz) and the parameters de-

scribing the distributions of xtrue
1 and ctrue. The particular form of Rz used in this analysis

is further detailed in Section 4.5.1. In this model, we assume xtrue
1 and ctrue are drawn

from skew normal distributions, each parameterized by variables location (ξ ), scale (ω),

and shape (φ ):

p(x) =
1

ωπ
e−

(x−ξ )2

2ω2

∫
φ

(
x−ξ

ω

)
−∞

e−
t2
2 dt , (4.31)

where φ = 0 corresponds to a Gaussian distribution. This is motivated by recent SN Ia

population studies which suggest the light-curve parameter distributions, particularly the

light-curve color, are best described by asymmetric Gaussian or skew normal distributions

(Scolnic and Kessler, 2016; Kessler et al., 2013).
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The mean, variance, and skewness of the skew normal distribution (subscripts m, v and

s, respectively) are derived from the variables ξ , ω and φ , e.g., for the color distribution

cm = ξc +ωcδc

√
2
π
, (4.32)

cv = ω
2
c

(
1− 2δ 2

c
π

)
, (4.33)

cs =
4−π

2
(δc
√

2/π)3

(1−2δ 2
c /π)

3
2
, (4.34)

where δc =
φc√
1+φ 2

c
and the subscript c indicates the parameters describing the color dis-

tribution. Corresponding parameterizations exist for the stretch distribution.

We define the set of hyperparameters defining the skew normal color and stretch dis-

tributions as

ψskewnorm ≡ [ξx,ωx,φx,ξc,ωc,φc] , (4.35)

the corresponding set of derived parameters as

Ψskewnorm ≡ [xm,xv,xs,cm,cv,cs] , (4.36)

and the full set of hyperparameters as

ψ ≡ [Rz,ψskewnorm] . (4.37)

Figure 4.1 presents a graphical representation of this SN Ia model. Note that in addi-

tion to θ , ψ , and the random variables of interest, Figure 4.1 includes a variable Si. This

variable indicates whether or not a given SN Ia passes the survey selection criteria and is

included in the final data set. As shown in the diagram, we assume this selection function

depends on the redshift and apparent magnitude of the SNe Ia. Details of the selection

function are described in Section 4.5.1.

The sample SN Ia cosmology BHM implemented here (Figure 4.1), while generating

realistic light-curve fit parameter distributions, is not any more complex or sophisticated

than existing analyses. In fact, unlike in Rubin et al. (2015) or Shariff et al. (2016), we
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do not include any correlations with SN Ia host mass or allow for evolution of light-curve

parameters with redshift. Nor do we separate the SN Ia color from host dust as in Mandel

et al. (2016). Our model was chosen for demonstration purposes only and as a means to

validate the method. Incorporating these model components is straightforward, and will

be explored in future work. In this implementation, however, we do include SN Ia rate as

a parameter in the model, which is ultimately marginalized over.

We define the posterior distribution describing the probability of the model parame-

ters given the data for each i SN Ia as p(θ ,ψ,Ψ|mobs
Bi ,x

obs
1i ,cobs

i ,zobs
i ); the corresponding

likelihood is given by p(mobs
Bi ,x

obs
1i ,cobs

i ,zobs
i |θ ,ψ,Ψ). As we are incorporating a two-stage

selection process, we use the likelihood described in Eq. 4.26 and apply it to the specific

SN Ia problem. In this case, we evaluate the likelihood in bins of zobs; therefore, we can

fix the SN Ia rate as it is implicitly marginalized over in each redshift bin.

4.5.1 Sample Forward-Model Simulation and Mock Data

Our simulation bypasses the generation and analysis of light-curve data by directly gen-

erating simulated observations of the {mB,z,x1,c} values assigned to each SN Ia. We

assume a survey consisting of the union of two samples: a highly complete low-redshift

sample (S1: ztrue ≤ 0.1), and a high-redshift sample (S2: 0.05 . ztrue . 1.2) modeled after

the DES-SN.

Color and stretch distribution shapes, and the selection function for SNe Ia from S1

and S2, are loosely based on 5,000 SNe Ia simulated in the conditions of the first DES-SN

observing season, generated by the SuperNova ANAlysis package (SNANA; Kessler et al.,

2009b) and its implementation of SALT2. Details of the DES-SN can be found in Kessler

et al. (2015) and a description of the Dark Energy Camera (DECam) can be found in

Flaugher et al. (2015). The DES-SN observes ten 3 deg2 fields (eight “shallow” and two

“deep”), roughly once per week, in the griz filters. The “shallow” fields are observed to

an average depth of 23.5, while the “deep” fields are observed out to an average depth of

24.5 in each of the griz bands (Kessler et al., 2015).
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In what follows we detail the procedure for simulating the observed redshift, color,

stretch, and peak B-band magnitude distributions from θ and ψ . Most of the procedure

is identical for S1 and S2 and performed for both populations. We assume the sizes of S1

and S2 are fixed such that S1 is 10% the size of S2, i.e., the total number of SNe Ia in the

population is 1.1 times the number of SNe Ia in S2. Variables drawn from the respective

populations are denoted with the subscripts S1 and S2.

Step 1: Draw the redshift distribution.

S1: Draw ztrue
S1 ∼ U(0,0.1).

S2: Draw ztrue
S2 from

Rz =
dN
dz

=

{
2.65×10−5(1+ z)γ ,0.05≤ z≤ 1.0

7.35×10−5,z > 1.0
, (4.38)

where the rate is given in units of SNe Mpc−3h3
70yr−1. Here γ is a parameter typi-

cally between 1 and 3.8

Step 2: Draw xtrue
1 and ctrue from Eqs. 4.31 - 4.34 using ψ .

Step 3: Draw mtrue
B such that

mtrue
Bi ∼N (M+∆M0 +µ(ztrue

i ,Ωm,w0,H0)+α× xtrue
1i +β × ctrue

i ,σ2
intmB

) (4.39)

Step 4: Apply selection criteria to determine which SNe Ia will remain in the observed

sample.

S1: We assume all of the low-redshift SNe Ia (z ≤ 0.1) pass selection cuts and so

we do not apply any additional selection.

S2: A model for selection that mimics the assignment of scarce spectroscopic fol-

lowup time is applied. As in Section 4.4.2, we assume the f j brightest objects are

selected in each redshift bin. The selection function utilized for this example is

described in Table 4.8.
8The exact form of this rate was chosen via private communication with R. Kessler, but is roughly based

on the SN Ia rate published in Perrett et al. (2012).
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Table 4.8. Bins and selection fractions

for example SN Ia selection function

Lower Bin Value f j

ztrue = 0.0 1.0
ztrue = 0.1 0.95
ztrue = 0.3 0.9
ztrue = 0.5 0.8
ztrue = 0.6 0.7
ztrue = 0.7 0.6
ztrue = 0.8 0.3

Step 5: Compile the remaining observed variables that pass selection cuts, mobs
B , xobs

1 , cobs,

and zobs, from both S1 and S2 for a full-forward model of the data.

Following this procedure, we generate a mock data set of 667 spectroscopically-

confirmed SNe Ia using the parameter values listed in Table 4.9, and denote this as D3.

To generate a mock data set of this size, we draw an initial high-redshift population of

1,200 SNe Ia and a low-redshift population of 120 SNe Ia; roughly 50% of the population

remain in the observed sample after selection. We remind the reader that our mock data

set is derived using the same model used in the simulations for the purpose of method

validation. We also note that we keep track of how many SNe Ia are simulated and how

many are selected so we can evaluate the binomial factor in the likelihood (Eq. 4.26).

The true and observed 1-D marginalized distributions of D3 are shown in Figure 4.16.

As expected, the observed set of SNe Ia are bluer (more negative values of c) and brighter

(more positive values of x1) than the population. The mean color shifts from 0.003 (true)

to−0.023 (observed) and the mean stretch shifts from−0.039 (true) to 0.089 (observed).
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Figure 4.16: 1-D marginalized distributions of the true (blue) and observed (orange) SN

Ia light-curve parameters and redshifts in D3. The selection function used to construct the

observed sample is given in Table 4.8.
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Table 4.9. Parameter Values for Mock Data

Parameter Input Value

Ωm 0.3
w0 −1.0
γ 1.5
α −0.14
β 3.2
∆M0 0.0
σintmB 0.15
ξx 0.5
ξc −0.05
ωx 1.0
ωc 0.1
φx −1.0
φc 1.0

4.5.2 Results

As in Section 4.4.2.1, we adjust the emcee scale factor to a = 1.2 to ensure proper chain

mixing near the peak of the posterior region. The simulation of 100,000 SNe Ia and

evaluation of the log likelihood at each point proposed by the sampler takes ≈ 2s. We

use 80 walkers, over 20 compute cores, and run the chains for ≈ 1.5 days. We find the

MCMC chains take much longer to converge in this case, with typical autocorrelation

times of τ ≈ 80−100 for the twelve parameters of interest. Convergence of the MCMC

chain requires ≈ 250,000 samples, including burn in.

Results using D3 are presented in Figure 4.17 and Table 4.10. For this particular real-

ization, we recover each of the parameters in θ and ψskewnorm within the 1σ uncertainty

regions. Many of the recovered posteriors are roughly Gaussian, despite our use of wide

uniform priors. Skewness of the color and stretch are particularly difficult to constrain;

the cs posterior is strongly non-Gaussian and skewed right. We recover w0 =−1.04+0.085
−0.080

and Ωm = 0.303+0.024
−0.019. We remind the reader that as we are not including systematic
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Table 4.10. Best Fit Parameter Estimates Using D3

Parameter Prior Input Value Best Fit σ− σ+

w0 U(−1.5,−0.6) −1.0 −1.04 0.08 0.085
Ωm U(0.1,0.6) 0.3 0.303 0.024 0.019
xm
∗ — −0.064 −0.024 0.046 0.061

xv
∗ — 0.682 0.642 0.049 0.056

xs
∗ — −0.137 −0.144 0.06 0.043

cm
∗ — 0.006 0.009 0.006 0.005

cv
∗ — 0.007 0.007 0.001 0.001

cs
∗ — 0.137 0.088 0.081 0.112

∆M0 U(−0.1,0.1) 0.0 −0.013 0.02 0.022
α U(−0.25,−0.05) −0.14 −0.139 0.008 0.013
β U(2,4) 3.2 3.195 0.075 0.059
σint U(0,0.25) 0.15 0.156 0.007 0.006

∗Note that priors are imposed on the hyperparameters and not the derived

parameters presented here. We impose wide uniform priors on the width

of the latent stretch and color distributions informed by the widths of the

observed distributions: ωx ∼ U(0,2σxobs
1
), ωc ∼ U(0,2σcobs).

uncertainties, errors on Ωm and w0 are idealized and should not be compared to previous

measurements.

Given the observed parameter biases in Section 4.4.2, we expect to see parameter

biases in the SN Ia cosmology model; how this bias will manifest, however, is unclear.

We believe we must fully understand the source of bias presented in Section 4.4.2 before

assessing biases in the cosmological model. Therefore, we present five realizations of the

mock data as illustrative examples of cosmological parameter inference.

As we are primarily interested in cosmological parameter biases, w0 and Ωm contours

inferred using each of the data realizations are displayed in Figure 4.18. We are able to

recover both Ωm and w0 within their respective 1σ uncertainty regions in each of the re-
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Figure 4.17: 1σ and 2σ uncertainty regions for the twelve parameters in θ and ψskewnorm.

Yellow stars indicate the true values used in the simulation input. Priors and best fit results

for each of the parameters are listed in Table 4.10.
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alizations. However, it appears that the median of the 1-D marginalized w0 posterior is

systematically smaller than the true value and that the median of the 1-D marginalized

Ωm posterior is systematically larger than the true value. In a cursory analysis of the re-

gression and hyperparameters, we find the skewness of the color and stretch distributions

also appear to be systematically smaller than the truth, and that the intrinsic scatter is

systematically larger than the truth. Of course, from these five realizations, we are un-

able to determine if these perceived biases are a manifestation of the bias exhibited in

Section 4.4.2 or just random fluctuations from limited statistics.

Figure 4.18: Contours of w0 and Ωm posteriors using five realizations of mock data.

Filled contours represent 1σ and 2σ uncertainty regions; the yellow star indicates the

true parameter values. Uncertainty regions inferred from D3 are shown in purple.

4.5.3 Conclusions

Using a simple SN Ia regression model and a mock realization of 667 observed SNe Ia,

we have shown that BAMBIS can recover the input simulation parameters within their

1σ uncertainties, where cs and xs are the most difficult parameters to constrain. As we
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are aware of an inherent bias in the algorithm (demonstrated in Section 4.4.2), we only

realize five sets of mock SN Ia data for illustrative purposes. In these realizations, there

appears to be a systematic bias in w0 in that the median of the inferred posterior is lower

than the true value; a systematically larger values of Ωm are also observed. However,

we cannot assess the significance of these biases without further testing. As discussed in

Section 4.4.2.2, we will investigate if such bias can be attributed to the non-parametric

estimate of the PDF in each of the redshift bins in future work.

Despite potential parameter biases, we can utilize these simple simulations to compare

the uncertainties on the inferred w0 and Ωm using the BAMBIS algorithm and a standard

analytic χ2 likelihood. We use a χ2 based on the work of Kelly (2007) which models a

BHM with Gaussian latent variable distributions:

χ
2
i = DT

i V−1Di , (4.40)

where

Di =

 mobs
Bi − (M+∆M0 +µ(zi)+αxm +βcm)

xobs
1i − xm

cobs
i − cm

 (4.41)

and

V =

 α2xv +β 2cv +σ2
intmB

αxv βcv

αxv xv 0
βcv 0 cv

 . (4.42)

We also assume a Gaussian likelihood such that

p(mobs
Bi ,x

obs
1i ,cobs

i |θ ,ψ) =
1

2π|V |1/2 exp
(
−1

2
χ

2
)
. (4.43)

Figure 4.19 shows the difference in the inferred w0 and Ωm posterior distributions be-

tween the two techniques using the D3 data set. As we have not included any parameters

in the analytic model to account for selection effects, we expect the posteriors obtained

using this technique to be biased; therefore, we scale the posteriors in Figure 4.19 by their

respective medians for better comparison. As shown in the figure, although BAMBIS

includes a complex selection function, stochastic model, and non-parametric density es-

timates, it can more strongly constrain w0 and Ωm than this particular analytic approach.
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The larger size of the uncertainty regions obtained using the analytic χ2 is likely due

to 1) the assumption of a Gaussian likelihood for the selected data and 2) the choice to

model the latent distributions as Gaussians, which we know to be incorrect. This second

point is particularly important, as the lack of explicit cs and xs model dependence is likely

allowing too much freedom in the parameter sampling.

0.2 0.0 0.2 0.4

0.1
6

0.0
8

0.0
0

Analytic
BAMBIS

Figure 4.19: Comparison of w0 and Ωm posteriors inferred with BAMBIS (blue) and a

standard analytic χ2 used in a Gaussian likelihood (green). Contours represent 1σ and

2σ uncertainty regions; posteriors have been scaled by their respective median values.

While this comparison presents an interesting assessment of parameter uncertainties,

it perhaps more clearly illuminates the dangers of incorrect analytic model and likelihood

assumptions. Although the analytic χ2 used in this example is not as sophisticated as

those of other BHM analyses (Rubin et al., 2015; Shariff et al., 2016; Mandel et al., 2016),

it illustrates how difficult it is to capture selection effects and non-Gaussian distributions

in an analytic framework.
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4.6 Summary and Future Work

In this chapter, we have introduced BAMBIS, a BHM likelihood and algorithm for cos-

mological parameter and SN Ia hyperparameter estimation. BAMBIS has two primary

features that distinguish it from conventional BHM techniques: 1) the model is character-

ized by a sample of Monte-Carlo simulated SNe and 2) the likelihood of the observations

under the model is evaluated using a non-parametric PDF produced by kernel density

estimation of the simulation sample. These features allow us to incorporate correlations

between observed variables and effects due to selection bias in a robust statistical frame-

work. Using a non-parametric density estimate also allows us to avoid making incorrect

assumptions about the analytic description of the model and the likelihood.

Using two toy examples, we demonstrated that BAMBIS can successfully recover the

input simulation parameters. In the first simple Gaussian linear regression model, we

generate 25 realizations of mock data and find that BAMBIS recovers all eleven model

and hyperparameters within 0.43 times the 1σ uncertainty. When we include selection

effects in the regression model, we find notable biases in the inferred σy (0.5σ ), σx (1σ ),

and σint (0.8σ ) over 25 realizations of the data. Determining the source of this bias

requires further exploration of the non-parameteric density estimation, particularly when

constructed in bins of an independent variable (i.e., redshift). This will be investigated in

future work.

We also present results using a simplified SN Ia SALT2 regression model. Although

we do not include systematics such as measurement uncertainty, we model a two-stage

SN Ia survey with object detection and selection via a complex selection function. Using

a mock data set of 667 low and high redshift SNe Ia, we recover w0 and Ωm within their

respective 1σ uncertainty regions.. Our posterior distributions are roughly Gaussian, with

cs and xs being the most difficult parameters to constrain. As with Toy Problem 2, we

observe systematic biases in our recovered parameters; however, it is unclear if these

biases are due to a feature of the algorithm or finite sample statistics.

To completely validate the BAMBIS algorithm, we need to explore BAMBIS’ perfor-
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mance when systematics, such as measurement and calibration uncertainties, are included

in the model. We do not expect that including such effects will bias the algorithm results,

as long as they are properly included in the forward-model simulations. A simple model

including systematics could include building upon the model outlined in Section 4.5 by

drawing a covariance matrix for each SN Ia from a Wishart distribution with scale matrix

Σ2
meas and three degrees of freedom, i.e.,

Cobs
i ∼W(Σ2

meas,3) . (4.44)

However, rigorous treatment of survey-specific systematics would involve using a more

sophisticated SN Ia simulation package such as SNANA.

Including such complex models raises concerns about MCMC run times and chain

convergence. While the data simulation and likelihood evaluation in the examples shown

in this chapter took ≈ 1−2s per walker per MCMC proposal, it is likely that more com-

plex models will require ≈ 30s - few minutes. This suggests that running BAMBIS using

a more realistic SN Ia simulation package will require more computing time than was

used in the demonstrations in this chapter. In each of the three demonstrations, no more

than 20 compute cores were used for a given MCMC chain. We expect that paralleliza-

tion on a much larger scale, perhaps∼ 80−100 cores, will be required to achieve realistic

convergence times.

This computation issue could potentially be mitigated by using a more efficient sam-

pling algorithm. As demonstrated throughout this chapter, using emcee required signifi-

cant tuning in the cases which involved selection effects. We therefore intend to explore

other sampling algorithms, including nested sampling and parallel-tempering ensemble

sampling, which may improve the efficiency of chain convergence.

In addition to including experimental systematic uncertainties, within this framework

there is also scope to expand the model in the likelihood to account for physical effects

such as correlations with the host-galaxy mass, redshift evolution of color and stretch, and

core-collapse contamination. As we enter the era of large-scale surveys, such as DES-SN

and LSST, it is crucial to have analysis tools for sets of photometrically-classified SNe Ia.
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Such samples will not only have biases from selection effects, but could potentially con-

tain contamination from core-collapse (CC) SN. Analytic frameworks for cosmological

parameter inference using photometrically-classified samples are in production and under

development (e.g., Hlozek et al., 2012; Kunz et al., 2013; Kessler and Scolnic, 2017), but

rely on many of the assumptions described in Chapter 2. While BAMBIS was designed

for a set of spectroscopically-confirmed SNe Ia, its functionality could be extended to a

photometric sample. For example, one could model the SNe Ia and CC SN as indepen-

dent populations and fit for two distinct sets of model and hyperparameters. One could

also include parameters of the photometric-classification software, i.e., Photometric SN

IDentification (PSNID; Sako et al., 2011), in the model. Since BAMBIS relies on MC

simulations of the data, we are not restricted by analytic descriptions of the model and

can incorporate a wealth of options in the algorithm. However, before we incorporate

more sophisticated elements in the algorithm, we must better understand any sources of

parameter bias.
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Chapter 5

Engaging the Public as a

Scientist-Communicator

“Astronomy plays a special role within public science communication. It serves, most

conspicuously, as a general science “catcher,” not at least for young people. [...] Astron-

omy embraces core sciences such as mathematics, physics, chemistry, biology and geol-

ogy, as well as technical disciplines including optics, observational techniques and data

analysis. [...] To many people, however, rather than offering insights into the “mechan-

ics” of nature, astronomy invites an emotional involvement in subjects like cosmology,

the Solar System and the possibility of (finding) extraterrestrial life. In short, astronomy

attracts a wide spectrum of people and may serve as a powerful vehicle for improving the

public awareness and understanding of science.” – Madsen and West (2003)

5.1 Introduction

The need for improved communication between scientists and the general public is recog-

nized worldwide (Burns et al., 2003; National Research Council, 2010b). Life in the 21st

century is motivated by advances in science and technology, and institutions ranging from
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government agencies to scientific societies are calling for a transformation of the public

perception of and appreciation for science. However, surveys suggest that the public does

not know much about science, i.e. the scientific process and academic culture, and that

scientists do not know much about the public (Miller, 1998; Lévy-Leblond, 1992). Fur-

thermore, there is evidence for continued high levels of interest in science, but continuing

low levels of accessible understanding of science (Miller, 2001). Such a paradox indi-

cates that the relationship between science and the public will only improve if there are

updated, innovative modes of communication.

For centuries, communication of science was almost exclusively reserved for in-

tradisciplinary exchange (Madsen and West, 2003). As a result, knowledge of scientific

progress and breakthroughs was confined to the sphere of professional scientists. While

this remains a primary means of communication for many scientists, the research com-

munity is experiencing a shift from the “ivory tower” paradigm (Madsen and West, 2003).

Scientists are now interacting with the public, and within their own communities, as pub-

lic lecturers, in print and visual media, and through new avenues such as social media and

science cafes. In this chapter, I summarize 1) why astronomy is an excellent subject for

science communication; 2) reasons for scientists to participate in public engagement; 3)

professional astronomers’ opinions about science education and public outreach.

5.2 Astronomy: A Science to Captivate an Audience

Astronomy is one of the most popular sciences used to spur public interest (Heck and

Madsen, 2013). Astronomical data often consist of spectacular images that can be both

scientifically explained and admired for their beauty. Simulations of complex astrophysi-

cal systems can be used not only as scientific tools but as a dazzling displays of the power

of modern computing. Questions such as “Are we alone in the Universe?” and “How did

the Universe begin?” challenge imagination and moral philosophy. Unlike many other

sciences, explaining fundamental astronomy concepts does not necessarily rely on under-
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standing of complex mathematics or technical terminology. From countless perspectives,

astronomy captures an audience.

Topics in astronomy translate well to a diverse array of education and public outreach

(EPO) programming initiatives. For example, planetarium shows provide an immersive

glimpse into the wonders of the night sky. Citizen science projects such as Galaxy Zoo9

invite scientific collaboration between scientists and the public and demonstrate the im-

portance of data science and computing. Written communication in popular magazines,

websites, and blogs can be complemented by images and infographics and used to narrate

stories of discovery. Public radio shows and podcasts can be used to communicate astron-

omy news, history, and notable astronomy events, such as eclipses and meteor showers,

to a vast audience. Larger organized events such as science festivals, museum events,

and star parties are venues where astronomers and the public can engage more personally

and as a result, make impactful connections. On both smaller and grander scales, there is

ample opportunity for astronomers to share their expertise and experience with the public.

5.3 Why Engage in Astronomy EPO?

Although measuring the success and impact of astronomy EPO programming is difficult,

there are countless reasons to participate in astronomy EPO. According to the National

Research Council, astronomers’ most important contribution to society lies in the area of

science education (National Research Council, 2001). This includes raising public aware-

ness of science, translating science concepts to students and teachers, and contributing to

educating a technically and technologically capable citizenry. In addition to the societal

benefits of astronomy engagement, it can also be personally gratifying, and lead to new

meaningful mentoring or collaborative networks and partnerships.

There is substantial statistical evidence that the public is interested in astronomy pro-

gramming (National Research Council, 2001). There are approximately 1,100 planetaria

9https://www.galaxyzoo.org/
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in North America, visited by nearly 28 million people yearly. Collectively, the South-

western Consortium of Observatories attracts 500,000 visitors yearly, with the Visitor

Center at Arecibo in Puerto Rico hosting an average of 120,000 people. Hundreds of

thousands of people subscribe to magazines such as Sky and Telescope and Astronomy

and radio shows such as “Stardate/Universo” have been reported to reach millions of lis-

teners weekly. Astronomy-related websites and social media accounts are also incredibly

popular, with the Hubble Space Telescope10 and NASA11 Twitter accounts having 2.4

million and 22 million followers, respectively.

Engaging the public is also critical for securing funding and updating policy for

federally-sponsored astronomy programs. In the United States, taxpayer dollars allo-

cated to agencies such as the National Science Foundation, the Department of Energy,

and NASA provide most of the federal funding of astronomical research, with NASA

contributing more than 85% of federal research grants.12 Scientific societies such as The

American Association for the Advancement of Science (AAAS) have recognized that

scientists can and should play a significant role in securing research funding and are en-

couraging public engagement through public policy training and fellowships.

In addition to having societal benefits, engaging in science EPO furthers scientists’

professional development. Translating technical aspects of research for both written and

oral public engagement improves scientists’ ability to communicate their work to their

colleagues at conferences, in lectures, and in academic journals. In fact, studies have

shown that scientists who participate in public engagement are more active academically

(Jensen et al., 2008; Bauer et al., 2011). Participation in EPO also provides a unique op-

portunity to build a professional network outside the niche research environment and can

lead to interdisciplinary scientific collaboration and better relationships with departmental

colleagues.

10https://twitter.com/NASA_Hubble
11https://twitter.com/NASA
12https://www.aaas.org/fy16budget/astronomy-and-astrophysics
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5.4 Astronomers’ Attitudes Towards Education & Public

Outreach

Generally, professional scientists are in favor of EPO (Ecklund et al., 2012; Andrews

et al., 2005; Poliakoff and Webb, 2007). However, results from several studies find signif-

icant cultural and institutional barriers against public engagement (Thorley, 2016). Com-

mon concerns focus on reputation and academic career, with many early career scientists

worried that EPO activity will be seen as superfluous by their advisors (Ecklund et al.,

2012). There is also a wider perception that scientists who devote time to EPO spend less

time and are less rigorous when conducting research (Jensen et al., 2008). The most sig-

nificant reported barrier is time, as time spent on EPO is often viewed as time that should

otherwise be spent on research (Thorley, 2016; Poliakoff and Webb, 2007).

Specific EPO attitudes and experience of professional astronomers is an emerging

topic of study (Dang and Russo, 2015; Thorley, 2016). Although there are many studies

in the literature regarding amateur astronomer’s attitudes towards EPO and their effective-

ness as science communicators (e.g. Gibbs and Berendsen, 2006; Berendsen et al., 2008;

Sakimoto, 2008; Yocco et al., 2012), there are few analyses exploring the opinions and

motivations of professional astronomers. Much astronomy EPO is organized and imple-

mented by amateurs and EPO professionals rather than professional scientists (Raddick,

2008), and there are few public recordings of astronomers’ individual efforts. Further-

more, large-scale EPO projects organized and implemented by professional researchers

(e.g. graduate students, postdoctoral researchers, tenured faculty) are scarce.

In the first global study of astronomer’s views on EPO, Dang and Russo (2015) ana-

lyzed survey responses from 155 professional astronomers at the 2012 International As-

tronomical Union General Assembly. In addition to the development of personal interest

in astronomy, their survey explored views on participation, time constraints, and budget

restrictions of EPO. Overall, 79% of respondents expressed belief that EPO initiatives are

essential; 19% claimed they are important.
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Figure 5.1 shows the distribution of work hours (blue) and free-time hours (yellow)

respondents indicated they dedicate to EPO. Analysis of the data revealed no significant

difference between the amount of free time and work time allocated for EPO activities.

Furthermore, using a Spearman’s rho correlation test, it was determined that astronomers

who devote more work time to EPO activities also dedicate more free time to EPO (ρ =

0.46, p < 0.05).

6"
"

participants$were$given$the$possibility$to$not$disclose$answers$questions$concerning$the$budget$and$time$

spent$on$outreach$initiatives.$$

$ As$ studies$ showed$many$ scientists$ viewed$EPO$as$ a$hobby$ rather$ than$ as$part$ of$ their$ duty$ at$

work,$the$participants$were$asked$for$the$amount$of$free$time$and$working$time$spent$on$EPO$activities$

(Poliakoff,$2007).$The$analysis$of$the$data$revealed$no$significant$difference$between$the$amount$of$free$

time$and$working$time$allocated$for$EPO$activities$with$a$median$of$0$to$2$hours$spent$on$EPO$per$week$

on$average$as$shown$in$Figure$2.$After$using$the$Spearman’s$rho$correlation,$it$was$determined$that$the$

scientists$ who$ claim$ to$ spend$ more$ time$ at$ work$ on$ EPO$ activities$ weekly$ also$ dedicate$ more$ time$

outside$ of$ work.$ The$ analysis$ showed$ a$ moderate$ correlation$ between$ the$ two$ variables$ (!=' 0.46;'
p<0.05).$Interestingly,$this$does$not$agree$with$Poliakoff’s$study$which$reported$that$scientists$considered$
EPO$ activities$ to$ be$ a$ hobby$ rather$ than$ a$work$ duty.$ This$ implies$ that$ time$ constraint$ isn’t$ the$main$

factor$ influencing$ astronomers$ to$ take$ part$ of$ outreach$ activities,$ and$ that$ there$ exist$ other$ factors$

motivating$them$into$investing$both$time$at$work$and$outside$of$work$to$such$projects.$

"

Figure'2'Distribution'of'working'and'free'time'spent'on'average'on'EPO'activities'per'week.'

$ Out$ of$ the$ 155$ respondents,$ a$ quarter$ of$ them$ (56$ participants)$ chose$ to$ not$ disclose$ the$

percentage$of$their$research$grant$attributed$to$EPO.$Among$those$who$did$answer$the$question$(N=116),$

50$astronomers$claimed$that$0%$of$their$grant$money$was$allocated$to$education$and$public$outreach$and$

15$of$them$use$between$0K2%$for$EPO$activities.$Hence,$most$the$respondents$reported$that$less$than$2%$

of$their$research$grant$into$EPO$initiatives,$which$is$less$financial$support$than$what$is$suggested$in$many$

science$ communication$ guidelines$ (Brake,$ 2010;$ Bowater,$ 2013).$ As$ mentioned$ before,$ the$ 2000$

Wellcome$Trust$report$showed$there$was$a$lack$of$financial$support$for$EPO.$$

To$ explore$ this$ matter,$ astronomers$ were$ asked$ what$ percentage$ of$ grant$ money$ should$ be$

invested$ into$ EPO.$ The$ response$ rate$ for$ this$ question$ was$ 83%$ (138$ out$ of$ 155$ participants).$

Interestingly,$the$results$significantly$differed$from$the$previous$question$(p'<'0.05)$as$shown$in$Figure$3.$
This$time,$only$13$respondents$claimed$that$0%$of$research$grants$should$be$invested$into$EPO$activities.$

On$ average$ astronomers$ suggested$ that$ 5K10%$of$ research$ grant$ should$ be$ allocated$ to$ EPO$ activities$

which$is$significantly$greater$than$the$amount$used$for$outreach.$$

Figure 5.1: Number of working (blue) and free time (yellow) hours spent on average on

EPO activities per week, reproduced from Dang and Russo (2015).

The survey also asked respondents about grant funding, specifically how much is

allocated for EPO. Survey responses are summarized in Figure 5.2. Among those who

responded to the particular question, 43% (n = 116) reported that 0% of their grant funds

are used towards EPO. However, when asked how much of their grant funding should be

allocated to EPO, however, astronomers reported that they believed 5-10% of research

grants should be directed toward EPO programming on average. In general, astronomers

reported that a higher portion of their grant funding should be allocated toward EPO,

perhaps providing evidence for a change in grant policies and distribution.

Dang and Russo (2015) conclude that most astronomers have a positive attitude to-

wards outreach. Astronomers sharing this view in positions of authority (e.g. mentors

and supervisors) also tend to encourage their students to pursue EPO activities. However,
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$

Figure'3'Distribution'of'percentage'of'research'grant'astronomers'currently'invest'and'suggest'to'allocate'into'public'outreach'
engagement.'

Given$ this$ result,$a$new$question$arises,$do$astronomers$generally$wish$ to$ spend$more$of$ their$
research$grant$into$EPO$than$what$they$currently$spend?$The$Spearman$rank$correlation$test$revealed$a$
correlation$between$ respondents’$ current$ and$ suggested$budget$ spent$on$EPO$activities$ (ρ'='0.59;'p'<'
0.05).$This$shows$that$in$general$in$this$survey,$the$participants$suggested$a$higher$amount$of$portion$of$
their$research$grant$than$what$is$currently$allocated$to$outreach$initiatives.$This$implies$that$astronomers$
generally$ think$ there$ is$ a$ lack$ of$ financial$ support$ for$ EPO$ activities$ and$ suggest$ that$ policies$ on$ the$

distribution$of$their$research$grant$includes$a$higher$budget$for$EPO.$

" An$ interesting$ finding$ from$ Poliakoff’s$ studies$ on$ factors$ predicting$ scientists’$ decision$ to$

participating$ in$ EPO$ activities$ was$ their$ past$ behavior.$ The$ research$ revealed$ that$ a$ scientist$ who$ has$
been$involved$in$EPO$projects$in$the$past$is$more$likely$to$participate$in$the$near$future$(upcoming$year).$
Consequently,$ taking$part$of$outreach$activities$at$an$early$ stage$of$ career$ increases$ the$chance$ that$a$

scientist$would$get$involved$in$EPO$activities$regularly$in$future$career$stages.$However,$Ecklund’s$studies$
on$ views$ of$ public$ engagement$ activities$ among$ scientists$ demonstrate$ that$ one$ of$ the$ participants’$
concern$was$the$lack$of$support$from$mentors$for$taking$part$in$outreach$activities.$As$a$result,$this$also$

affects$scientists’$decision$to$take$part$in$of$outreach$projects$at$later$stages$of$their$careers.$To$address$
this$ topic,$ astronomers$were$ asked$ if$ they$ recommended$ or$ encouraged$ their$ student$ to$ get$ involved$
with$EPO$projects.$For$the$most$part$(70%$of$the$participants),$the$answer$was$positive$as$opposed$to$2%$

who$ answered$ negatively.$ The$majority$ of$ the$ 43$ participants$ who$ did$ not$ answer$ the$ question$were$
either$Master/PhD$students$or$postKdoctoral$fellows$for$whom$the$question$was$not$applicable.$This$was$
unexpected$since$many$scientists$claimed$a$ factor$ inhibiting$ the$participation$ in$EPO$ initiatives$was$ the$

disapproval$ by$ mentors$ and$ department$ heads$ (Ecklund,$ 2012).$ This$ could$ either$ mean$ that$
encouragement$ to$ participate$ in$ outreach$ projects$ is$more$ present$ in$ the$ community$ of$ astronomers$
than$other$sciences.$However,$the$way$the$question$was$posed$was$biased$towards$a$positive$response.$A$

more$accurate$way$to$measure$this$would$have$been$give$the$respondents$an$ordinal$scale$rather$than$
the$only$possibilities$of$answering$positively$or$negatively$when$they$were$asked$if$they$encourage$their$

students$to$participate$in$EPO$initiatives.$

Figure 5.2: Percentage of research grants astronomers currently invest (blue) and suggest

to allocate (yellow) into public outreach engagement, reproduced from Dang and Russo

(2015).

motivating and inhibiting factors remain unclear. It is likely that these factors are depen-

dent on the nature of the EPO project and that they are significantly affected by the EPO

culture at a particular institution or within a particular project.

5.5 Summary

Astronomy is an exemplary field for science education and public outreach, as it natu-

rally attracts and inspires scientific curiosity. Yet though there is clear public interest in

astronomy, there remains a disconnect between the practicing scientists and general pub-

lic. Despite the general support of EPO and many opportunities to be involved in EPO

programming, astronomers’ participation is often limited due to time constraints and in-

stitutional stigma. Exploring astronomers’ involvement in EPO is an emerging field of

study, and astronomy EPO programming will only improve upon critical analysis and

reflection of the experiences of scientist-communicators.
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Chapter 6

Education & Public Outreach in The

Dark Energy Survey

6.1 Introduction

The landscape of professional astronomy has dramatically transformed over the past fifty

years. While the field was once dominated by individuals or small, co-located teams

(e.g., a professor and a graduate student), advances in technology have revolutionized

the ways in which science is practiced and communicated (National Research Council,

2010b). International collaborations have emerged as the new standard, bringing about

new research, administrative, and sociological opportunities and challenges. The primary

charge of these large-scale astronomy surveys is to use evidence-based research to an-

swer fundamental questions about our Universe. The drive to solve mysteries like the

nature of dark matter and dark energy drive project commissioning, instrument develop-

ment, project implementation, data products, and analysis (National Research Council,

2010b). Collaboration on such a large scale requires cooperation and respect amongst

scientists from a diverse group of ages, genders, and cultures. In addition to the potential

for groundbreaking science, this next generation of astronomy surveys also comes with a

wealth of innovative material and experience that can be used to inspire and engage with
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public interest in science (Borne et al., 2009).

Education and Public Outreach (EPO) programming has been a cornerstone of na-

tionally sponsored agencies such as the National Aeronautics and Space Administration

(NASA) in the USA for decades. The NASA Office of Education is dedicated to design-

ing hands-on activities, creating teacher resources, developing opportunities for students,

and inspiring students to pursue careers in the STEM disciplines (Rosendhal et al., 2004).

Similarly, the multi-national European Space Agency (ESA) has a well developed and

actively maintained EPO presence.13 The NASA and ESA EPO efforts would not be

possible without an agreed strategy, support from dedicated, well-trained staff, and an

appropriate funding stream.

In the past ten years, many large-scale astronomy programs have devoted resources to

EPO programming. For example, the Hubble Space Telescope (HST) and Sloan Digital

Sky Survey created their own EPO initiatives (Griffin, 2003; Raddick, 2002), including

Hubblesite14 and SDSS Voyages15, which encourage users to explore publicly available

astronomy images, and data products, through a variety of online lesson plans and hands-

on activities. In addition to more conventional avenues of astronomy EPO such as public

lectures, science festivals, and planetarium shows, several innovative avenues for connect-

ing science, and scientists, with the public have emerged. For example, citizen science,

in which expert scientists collaborate with members of the public to complete a science

project, is growing in popularity year-on-year (Borne et al., 2009; Haywood and Besley,

2014).

The importance of EPO activities to modern astronomy is demonstrated by the fact

that several projects that are still in the development stage are already investing resources

into public engagement. For example, the website for the James Webb Space Telescope

(JWST, set to launch in 2018), already includes detailed EPO materials designed for K-12

13 http://www.esa.int/Education/ESA_at_the_forefront_of_space_education
14http://hubblesite.org/
15http://voyages.sdss.org/
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formal and informal education.16 The Large Synoptic Survey Telescope (LSST), which

will not begin taking data until the end of the decade, describes its EPO program as “as

ambitious as the telescope itself.”17 The LSST EPO program includes plans for citizen

science partnerships with The Zooniverse18, and data visualization projects with several

planetaria. Finally, The Wide-Field Infrared Survey Telescope (WFIRST, set to launch in

the mid 2020’s) outlines the internal organizational structure of the project and includes

EPO as an element of its Science Operations Center.19

As the examples above demonstrate, EPO programming is now being put at forefront

of collaboration structure well before any data have been taken. However, in the case

of the Dark Energy Survey (DES, founded in 2004), EPO was not embedded during the

development stage and had to be “shoehorned in” after survey operations were underway.

The DES EPO program evolved from the grass-roots efforts of a small number of col-

laboration members who are passionate about science communication and outreach. This

“bottom-up” approach has been positive in that it has resulted in a variety of innovative

EPO projects. However, there have also been some unforeseen pitfalls and barriers. As

such, our EPO experience in DES provides a unique perspective that can be used to in-

spire (and/or caution) teams developing EPO programs for the next generation of large

astronomy projects.

In Section 6.2 we outline the internal structure of DES, specifically highlighting the

benefits and challenges of including EPO within the official collaboration structure. In

Section 6.3, we describe several of our EPO projects, including project goals, organization

details, and project outputs. For each, we propose recommendations for similar future

projects. Relevant DES project links are listed in Table 6.1 and references to this table are

denoted in the text by an asterisk. Section 6.4 summarizes our strategy for internal EPO

recording and describes scientists’ reported methods of science communication. Finally,

16https://jwst.nasa.gov/teachers.html
17https://www.lsst.org/about/epo
18https://www.zooniverse.org/
19https://wfirst.gsfc.nasa.gov/science/
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Table 6.1. List of Online DES EPO Resources

Web Address Summary

http://www.darkenergysurvey.org DES Website
http://www.darkenergysurvey.org/ DES DArchive Homepage
news-and-results/darchives/
https://darkenergydetectives.org/ DES Dark Energy Detectives
http://www.darkenergysurvey.org/ DES DarkBites Homepage
education/darkbites/
http://www.darkenergysurvey.org/ DES DEScientist of
education/scientist-of-the-week/ the Week Homepage
https://www.flickr.com/photos/129954880@N03 DES Flickr
https://www.youtube.com/channel/ DES YouTube Channel
UCkAD7Un4aX–Y2ETTs_mImQ
https://www.facebook.com/darkenergysurvey/ DES Facebook Page
https://twitter.com/theDESurvey DES Twitter Page

we conclude with a summary of the DES EPO experience in Section 6.5.

6.2 Survey Overview, Collaboration Structure, and the

Evolution of the DES EPO Program

In this section we outline the underlying DES science (Section 6.2.1), describe how the

grass-roots EPO effort was integrated into the larger, pre-existing collaboration structure

(Section 6.2.2), and summarize how the dedication of a few scientists ultimately matured

into an active DES EPO community (Section 6.2.3). We also outline the guiding prin-

ciples driving the DES EPO effort (Section 6.2.4). Finally, we describe the DES social

media strategy, as social media has been a primary vehicle for EPO product distribution

(Section 6.2.5).
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6.2.1 DES Project and Science

In the late 1990s, two teams of astronomers made the unexpected discovery that the Uni-

verse is expanding at an accelerating rate (Riess et al., 1998; Perlmutter et al., 1999). The

mysterious agent of this acceleration, which acts against gravity’s attractive force, has

been named ‘dark energy.’ Understanding the nature of dark energy has become one of

the greatest unsolved problems in modern cosmology (Hinshaw et al., 2013; Planck Col-

laboration et al., 2016). The goal of the international DES collaboration is to study this

accelerating expansion with unprecedented precision and accuracy.

DES is surveying 5000 deg2 of the southern sky, using the Dark Energy Camera

(Flaugher et al., 2015, DECam) mounted on the 4-m Victor M. Blanco telescope at the

Cerro-Tololo Inter-American Observatory. DES is scheduled to take data for five years

(2013-2018), observing each year from August-February. Although much of the observ-

ing is computer-automated, DES collaboration members travel to the telescope site during

the DES season to help take data. Once DES data is collected, the DES Data Management

team stores and processes the data, preparing it for DES scientists all over the world to

analyze. DES traces its origins as a project concept back to at least 2004. However, the

first DES images were not taken until September 2012.

One of the unique strengths of DES is that it employs four complementary techniques

to study the effects of dark energy, through observations of: Type Ia supernovae; grav-

itational lensing; galaxy clusters; and baryon acoustic oscillations. During the course

of the survey, DES will observe thousands of supernovae, map millions of galaxies, and

measure the growth of large-scale structure of our universe (The Dark Energy Survey

Collaboration, 2005).

In addition to studying fundamental cosmological probes, DES makes important con-

tributions to astronomy. DES scientists study the outer reaches of our solar system, find-

ing new candidates for dwarf planets (Gerdes et al., 2017) and other trans-Neptunian

objects. They identify galactic neighbors to our Milky Way (Li et al., 2016). They search

for optical counterparts to newly discovered gravitational waves (Abbott et al., 2016).
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DES is a collaboration of over 400 scientists from 25 institutions in seven countries

around the world (a map of DES institutions is shown in Figure 6.1). University fac-

ulty and researchers, laboratory and observatory staff scientists, postdoctoral researchers,

graduate students, and undergraduates are all working to answer unanswered questions

about our Universe. The support staff, at the telescope and at DES institutions, enable

DES scientists to travel for observing and to gather to discuss latest results at confer-

ences at collaboration meetings. Together, members of the DES collaboration are at the

cutting-edge of science and forging a new frontier for large-scale astronomy.

The various aspects of the survey highlighted in this Section are summarized in Fig-

ure 6.2. The DES EPO program draws inspiration from each of these components to

design innovative EPO programming without necessary relying on published data prod-

ucts. Examples included in the Figure represent only a subset of the material available for

EPO programming.
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Figure 6.1: Map of DES collaborating institutions. Figure credit: Judit Prat, IFAE, DES-Spain.
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Figure 6.2: Schematic diagram illustrating various components of DES which provide

inspiration for the EPO effort. Examples included here are merely a subset.

6.2.2 Organization and Management

The three signatory institutions of DES are the Fermi National Accelerator Laboratory

(hereafter Fermilab), National Center for Supercomputing Applications (hereafter NCSA),

and the National Optical Astronomy Observatory (hereafter NOAO). Support for DES is

provided by grants from these respective institutions, primarily from the U.S. Department

of Energy and the National Science Foundation. Members of the DES Project Office

report directly to these agencies.

DES Scientists are categorized into members, participants, and external collabora-

tors.20 DES members are senior scientists, including faculty (tenured and tenure-track)

and senior research associates, at official DES collaborating institutions. Participants are

typically current postdoctoral researchers and graduates students of DES members. Mem-

bers and participants have access to DES data and data products. External collaborators

20DES membership policies and infrastructure tasks are described in:

http://www.darkenergysurvey.org/wp-content/uploads/2016/05/

membership_policy_revised-Dec-2011.pdf
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are senior scientists at non-DES institutions who provide resources that are otherwise

unavailable to the collaboration, e.g., access to private telescopes. Participants can gain

permanent access to DES data by working on DES infrastructure. Infrastructure activities

include work on DES instrumentation, pipeline development, data calibration, and man-

agement activities. After one year of Full Time Equivalent (FTE) infrastructure work,

participants can apply for data rights; after 2 FTE, participants can apply for Builder sta-

tus, which includes data rights and optional authorship on DES papers. Throughout this

work, we will refer to our DES colleagues as “collaboration members.” This includes full

DES members, participants, and external collaborators.

The internal organization of DES is divided into three main components: collabora-

tion affairs, science, and operations. Collaboration affairs are overseen by the Manage-

ment Committee, who are responsible for making collaboration-wide decisions including

membership and publication policy. The Science Committee is responsible for manag-

ing the DES scientific program and ensuring all science requirements are met. Telescope

operations, data management, and science releases are overseen by the Executive Commit-

tee. Each of these three committees is further subdivided into a variety of smaller groups,

e.g., the Science Committee is comprised of science working groups and the Management

Committee oversees the Publications Board (who review DES publications and enforce

DES publication policy) and Speakers’ Bureau (who recruit DES members to speak at

conferences on behalf of the collaboration). Each subcommittee is governed by official

protocol that dictates how collaboration members should work both within the respective

committee, and with the collaboration as a whole.21

The DES EPO Committee (EPOC) became a part of the official DES organizational

structure in the Fall of 2014 and was placed under the umbrella of collaboration affairs (for

details regarding the creation and development of the EPO Committee, see Section 6.2.3).

Prior to that time, DES did not have a centralized EPO effort nor official recognition of

21Further detail on DES policies and organization can be found in the DES Memorandum of Understand-

ing: https://www.darkenergysurvey.org/wp-content/uploads/2016/05/DES_MOU_as_executed.pdf

185



EPO on a collaboration-wide scale. As such, once the EPOC formed, there were no

policies in place for how the EPOC and its programming should interact and coordinate

with the rest of the collaboration. For example, the EPOC is not invited to Management

Committee meetings, although other committees responsible for collaboration affairs are

included. A summary of the current DES organizational structure, including the EPOC,

is presented in Figure 6.3.

DES Council
Funding 
Agencies

(DOE/NSF JOG)

DES Project 
Office

Executive 
Committee
(Operations)Science 

Committee

Management 
Committee 
(Collaboration 

Affairs)

EPOC, 
Publications 

Board, 
Membership, etc.

Science Working 
Groups

Data 
Management, 

Science Releases, 
etc.

Reports to
Member of
Communication

Figure 6.3: DES internal organization chart, including the EPOC (purple), adapted from

the DES director’s presentation at the Fall 2016 collaboration meeting. Solid arrows in-

dicate a group that reports to and/or is appointed by the box to which it points. Dashed

arrows indicate that the people named in that group are members of the higher-level Com-

mittee to which that box points (e.g., science working group coordinators are members of

the Science Committee, and the Science Committee co-chairs are members of the Execu-

tive Committee). Dotted two-way arrows indicates a line of mutual communication.

The roles and responsibilities of the EPOC have evolved organically since its incep-

tion. As the sole organizers of EPO for the collaboration, the EPOC oversees and con-

tributes to: updating and maintenance of the DES website, DES social media, creation

of informal and formal educational materials, DES events with local communities (e.g.
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museum events and science fairs), internal EPO reporting, public relations22, and much

more. The centralized DES EPO program has a limited, floating budget per the discretion

of the DES director, which is jointly funded by the DES collaborating institutions. Details

of how these funds have been allocated thus far are discussed in Section 6.3.

6.2.3 The Evolution of EPOC

Prior to the Fall 2014 collaboration meeting at the University of Sussex, no sessions ded-

icated to EPO had been scheduled by the scientific organizing committee (SOC). Kathy

Romer (a faculty member at Sussex) was the chair of the Sussex SOC and decided to ar-

range two EPO sessions. This was done in consultation with Brian Nord (a postdoctoral

researcher at Fermilab), who had been, by then, running – single handedly – a DES EPO

initiative known as The Dark Energy Detectives blog.∗ Nord was not able to attend, be-

cause he was observing in Chile at the time, but recommended that Romer speak to Rachel

Wolf (a graduate student at the University of Pennsylvania) about enhancing DES’s so-

cial media presence (Romer’s EPO focus to that date had been on working with school

groups). And so began a grass-root effort to inspire coordinated EPO initiatives within

DES. By the end of the Sussex collaboration meeting, Romer and Nord were asked by the

DES director to lead an official EPO committee (the EPOC) for DES. They agreed to do

so on the condition that Wolf was also included. Nord, Romer and Wolf (NRW hereafter)

thus officially became the coordinators of the EPOC.

To discuss the organization and implementation necessary to get DES EPO off the

ground, NRW established weekly (EPOC coordinator) telecons. NRW also created an

internal DES EPO email listserv to communicate about EPO projects and opportunities

with colleagues.

During the first year of the EPOC, most programming was organized and executed

by NRW. Much of the effort was focused on updating, enhancing and maintaining the

22Note that this is distinct from official press releases which are organized through the Fermilab press

office.
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DES online presence. At the following semi-annual collaboration meeting (Spring 2015),

NRW organized several EPO-specific sessions to present the work carried out so far, to

receive feedback, and to generate new ideas. There were no shortage of new ideas and it

became clear that more colleagues would need to be recruited to keep up with demand.

Fortunately several DES members were eager to contribute, and even to lead, certain

EPO projects, especially those that appealed to their particular interests (e.g. writing,

artwork, or astrophotography). In addition to the weekly NRW coordinator meetings,

monthly EPOC telecons were established to discuss the progress of the various projects.

One of those projects is internal communication and has resulted in a monthly DES-EPO

newsletter that is sent electronically to every registered scientist in the DES membership

database.

6.2.4 DES EPO Guiding Principles

DES EPO efforts have been limited not by a lack of creative ideas, but by the lack of time

that EPOC members could contribute, in addition to their regular duties (and to a lesser

extent, the lack of a dedicated funding stream). Therefore, several underlying principles

were established to help govern the distribution of resources (see below). However, we

note that, in practice, the only DES Projects that actually took off were those that appealed

to our colleagues’ particular interests.

• GP1: Education and Public Outreach (EPO) is an important, worthwhile and en-

joyable activity for individual scientists.

• GP2: EPO is an important and worthwhile activity for science collaborations (es-

pecially those that benefit from public funding).

• GP3: The public are interested in scientists as well as the science.

• GP4: It is possible to challenge the public’s perception of scientists (as “old white

males”) through EPO.
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• GP5: DES should have a strong social media presence.

• GP6: DES should have a professional website with high quality embedded content

and resources.

• GP7: DES EPO should not be restricted to the English language.

• GP8: The EPO Committee (EPOC) will be able to motivate the broader DES mem-

bership to take part in EPO.

• GP9: The EPOC will manage, organize, and connect all DES EPO efforts.

These tenets laid the foundation for more than two years of DES EPO programming.

They also informed interactions between the EPOC and other groups within the DES

organizational structure. While the DES EPO program at large was motivated by GP1

and GP2, specific initiatives had more targeted goals. In Section 6.3, we detail specific

projects and how, where relevant, these principles contributed to project development.

We stress that these guiding principles stemmed from the previous experience of EPO by

NRW, rather than being informed by the literature in the science communication field. In

hindsight, it is clear that the EPOC would have benefited from some external guidance

before launching into project work (see Section 6.5).

6.2.5 DES Social Media Strategy and User Summary

Social media has been one of the main vehicles for distribution of DES EPO content. The

DES Facebook∗ account was created in November 2010; the Twitter account∗ followed

in October 2013. Prior to the creation of the EPOC, social media posts were sparse, with

updates roughly once per month. When the EPOC formed in October 2014, we decided

to centralize the social media effort and make regular posts a priority (GP3, GP5 GP9).

For this reason, most of the DES EPO projects have been driven by the need for a regular

steam of social media content. Since early 2015, there have typically been Facebook (and
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mirrored Twitter) posts at least five times per week: DEST4TD (Section 6.3.3) on Mon-

days, Tuesdays, and Thursdays, DarkBites (Section 6.3.4) on Wednesdays, DEScientist

of the Week (Section 6.3.5) on Fridays, and MLDES (Section 6.3.6) on Sundays. We

note that we opted to post content manually per platform, rather than use a social media

management dashboard.

Since Fall 2014, the number of Facebook page “likes” has increased from≈ 5100 to≈

8000 and the number of Twitter followers has increased from ≈ 30 to ≈ 1400. Figure 6.4

shows the growth in the DES Facebook following starting in April 201423; the red star on

Figure 6.4 indicates the formation of the EPOC.
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Figure 6.4: Total number of DES Facebook page followers per month. The red star sig-

nifies when the EPOC assumed control of the Facebook page and began posting content

regularly.

Throughout this analysis, including in Figure 6.4, we present various metrics used to

asses the social media strategy and reach of several DES EPO initiatives. Many of these

metrics were obtained from Facebook Insights and Twitter Analytics, included metric

services offered by the respective social media platforms. Any categorical information
23We begin our analysis in April 2014 as this is the earliest point from which we can retrieve data from

Facebook.
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used from these metrics is defined by the platforms. We have also conducted surveys

within the collaboration (e.g. B.2) and extracted our own data from the social media sites.

Figures 6.5 and 6.6 present Facebook demographic information for our three pri-

mary social media user groups, based on level of engagement. We define users who

have “liked” or “followed” the Facebook page as “Followers,” users who are exposed to

DES social media posts as “Reached,” and users who actively engage with content as

“Engaged.”

In Figure 6.5 we analyze each user group by age and gender (as gathered by Face-

book). The DES Facebook follower base is roughly 75% men and 25% women (n =

7914); however the engaged users are roughly 60% men and 40% women (n≈ 500). The

largest user age group (≈ 20%) is 25-34, for both men and women and across each of

the three user groups. According to our Twitter metrics, most of our Twitter followers

have self-identified an interest in science. 94% of our followers express an interest in

“Science News” and 89% of our followers express an interest in “Space and Astronomy”

(n = 1402).

Figure 6.6 displays the five most popular user-identified countries of origin and lan-

guages of the Facebook users in our three user groups. As shown in Figure 6.6, the

majority of the Facebook users in each of the three primary user groups are located in the

United States and speak English (US). Each user group also includes users from India,

the UK, and Brazil. In addition to English (US), English (UK) and Spanish are both in the

most popular languages for each user group. We note that the fifth most popular country

for each user group is unique; the “Followers” are found in Mexico, the “Reached” in

Turkey, and the “Engaged” in Australia.

We find our social media demographic information, for the most part, unsurprising.

While the majority of Facebook users in general are young women (Duggan and Bren-

ner, 2013), the fact that the majority of our followers are young men is consistent with

the well-documented issue of the underrepresentation of women in astronomy and astro-

physics (National Research Council, 2010a; Ceci et al., 2014; Ivie and Ray, 2005). We

191



Figure 6.5: Percent of Facebook followers (blue), users reached (yellow), and engaged

users (green) over various user ages. Information is also separated into men (left) and

women (right) user groups. The 25-24 user age group is the most popular in each user

group and for both men and women. While the men are roughly 75% of the total page

followers (n = 7914), women make up nearly 40% of the total engaged users (n≈ 500).

Figure 6.6: Percent of Facebook followers (blue, n = 7914), users reached (yellow,

n ≈ 15000) and engaged users (green, n ≈ 500) in the five most popular user-identified

countries and languages of origin.
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are primarily reaching people predisposed to an interest in science, and not necessarily

inspiring new interest. As expected, most of our followers are in the United States and

English speakers. Perhaps the most puzzling demographics are those describing where

our followers are located. We are unsure why one of primary locations of “Followers”,

Mexico, is not included in the primary locations of people “Reached” or “Engaged.” We

are also unsure why our posts are particularly popular in Turkey. Investigating these de-

mographics in further detail will be explored in a later analysis.

As shown in Figure 6.6, Spanish-language speakers are in the top five of our Face-

book “Follower”, “Reached”, and “Engaged” user groups. Combined with the fact that

DECam is based in a Spanish-speaking country, this evidence suggests that translating

DES content to Spanish is a valuable use of EPO resources (see Section 6.3.6 for more on

EPO translations). Despite this international following, however, translated posts as part

of the MLDES project (Section 6.3.6) reached only ≈ 200 users per post.

Based on these metrics, we find that although the number of people following DES on

social media has increased, it has not increased at the rate we expected. We also conclude

that although we may have increased awareness of the DES project, it appears our primary

audience are those who already self-identify as having an interest in astronomy or science

in general. It is unclear if these users are scientists themselves or enthusiastic members of

the public. Unfortunately, it is unlikely that we have inspired new interest in astronomy.

This suggests that 1) our social media strategy should be restructured and/or 2) the most

effective methods of encouraging new interest in science are not via the web.

6.3 Programming for a Collaboration

In this section, we discuss some24 of the primary DES EPO initiatives organized by the

EPOC since Fall 2014. For each initiative, we present a summary of the project and

24The presented list of initiatives is not an exhaustive compilation of all DES EPO activities, but a repre-

sentative sample of the DES EPO repertoire.
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discuss its implementation and project strengths and challenges. We also offer recom-

mendations for future large-scale astronomy (physics) EPO efforts. Corresponding logic

models detailing the specific inputs (e.g., time, funding), outputs (e.g., online content,

lesson plans), and outcomes (e.g., number of participants, public and scientists’ reactions

to projects) for many of the initiatives presented here can be found in Appendix B. In

some cases where project products were distributed via social media, e.g., using Twit-

ter and/or Facebook, we present analytics from the social media platforms over the 2016

calendar year. We compare these metrics to the global reach of all our products featured

on social media (see Figure 6.7) as a benchmark for impact. We note that many of the

projects described below are on-going, so the discussion presented here is limited to our

experience to date.
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Figure 6.7: Global distribution of Facebook likes per post for DES EPO products fea-

tured on social media described in this work (DArchive – Section 6.3.2; DEST4TD –

Section 6.3.3; DarkBites – Section 6.3.4; DEScientist of the Week 6.3.5) . Blue dashed

and solid lines in the top panel indicate the mean and median, respectively. The bot-

tom panel features a stacked histogram showing the number of posts per EPO product

discussed in this section.
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6.3.1 The darkenergysurvey.org Website

One of the first actions of the EPOC after it was founded in October 2014, was to take

on the responsibility of updating the DES website. The aim was a modern, user-friendly,

web site with integrated social media feeds (GP5, GP6).

Rather than update the content of the existing DES website, we decided to create a

new website that would meet our aesthetic, content, and user-interface goals. This in-

volved updating the “back-end” data access structure as well as the “front-end” publicly

accessible presentation layer. This process, from development to public launch, included:

1) seeking out an external web development agency and obtaining their advice, 2) de-

signing the layout, user experience, and information content, 3) organizing the back-end

features necessary for page updates and maintenance, 4) creating, reviewing, and format-

ting content, and 5) designing a strategy for website maintenance.

Key choices for the front-end revolved around the user experience. We believed that

if this element was appealing, simple and intuitive, the audience would be able to nav-

igate easily to the online content, and want to return to it in the future. Our goal was

to create a site that was easy to navigate, both on a computer and mobile device, for a

variety of user groups (e.g., professional astronomers, educators, general public). After

much internal discussion and research of existing science collaboration sites,25 we opted

for a compromise between a multi-page, hierarchical structure and one with more modern

media-driven features. This allowed us to create a bridge between the past and present

of science collaboration web pages; appealing to self-identified science enthusiasts who

were already used to exploring well-organized and curated sites and new audience mem-

bers who may be attracted by creative content and the multimedia-oriented main page.

Implementation of these front-end features relied on an understanding of back-end

development. For reasons related to budget and site maintenance, we elected to utilize an

existing template service26 for the back-end of the new website. However, as the EPOC

25E.g., hubblesite.org and sdss.org
26https://wordpress.com/
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coordinators did not have the necessary web developing experience, we contracted a pro-

fessional website development team to adjust the back-end structure to suit our needs.

Funding for this project was approved by the DES director and was drawn from contri-

butions from the participating institutions. We worked with the development team for

a year and a half and the cost ultimately came to ≈ $5000. This was the largest single-

project budget of any of our other EPO programs and greater than the sum of EPO funding

allocated for all other DES-EPO projects.

Much of the developers’ time was spent organizing the back-end structure so that

site maintenance would be straightforward. For example, they created a slide interface

for easy graphic uploading and multiple web forms for adding new content. Once the

website was publicly launched, updating and adding content and other site maintenance

was under the purview of the EPOC. Much of the content for the new site was transfered

from the old; however, we devoted a substantial amount of time to updating and rewriting

sections on a range of topics from DES science to collaboration structure.

Although we believe the current DES web page is a significant improvement from the

previous public page (screenshots of the old and updated home pages are presented in

Figure 6.8), development and maintenance required much more time and effort than we

anticipated. In hindsight, we believe we devoted too much time to designing and creating

the optimal aesthetic. This allocation of resources meant that we then did not have enough

time to create and review static web page content or develop other EPO projects. In fact,

several pages of written content had not been published at the time of writing because we

lacked resources for editing.

6.3.1.1 Take-Home Messages

We strongly recommend that future projects devote whatever resources possible to con-

tracting an external web development team who can lead back-end development and aes-

thetic design. This will clear time necessary for content writing, editing, and standardiza-

tion.
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Figure 6.8: Screenshots of original (left) and updated (right) DES website home pages. Note that the screenshot of the new page

does not capture the full screen as the template is widescreen.
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6.3.2 The DArchive: DES Results in a Nutshell

The fundamental charge of DES is to conduct innovative, high-caliber research. As a

large-scale science collaboration, DES scientists work together to produce new science

results that are published in peer reviewed academic journals. While members of the

academic community know how to access and interpret these results, refereed versions

of these papers are not easily accessible to or digestible by the public due to the use

of technical, scientific language. The “DArchive: DES Results in a Nutshell” project

was designed with the goal of dissolving these barriers and making DES science more

accessible to the public (GP3). Our intent was such that each DArchive would feature

a summary of a DES paper, using language and analogies intended to connect a public

audience with the science.

This was one of the first collaboration-wide projects organized by the EPOC. Our

initial goal was to have a complementary DArchive featured with the release of each

DES paper. In an internal collaboration-wide survey (see B.2 for survey details), 91%

of respondents (n = 69) indicated that they supported the DArchive project and believed

it to be a worthwhile DES EPO effort. Between May 2015 and January 2017, there

were 89 DES papers submitted to academic journals; yet there were only 15 published

complementary DArchive articles.∗ Published DArchive posts were featured both on the

DES website and on the DES social media platforms.

6.3.2.1 Project Organization and Implementation

Since its inception, the DArchive project has gone through three iterations of organiza-

tion, which are summarized in Figure 6.9. A logic model describing the inputs for each

iteration is presented in Figure B.1.

In Iteration 1, we expected the paper summaries would be primarily led by the paper

authors (GP8). The EPO Committee created a DArchive template document, intended as

a guide to help the authors draft their pieces, and sent this template, along with a request

for a DArchive, to paper authors. Authors who responded to the request drafted a paper
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Figure 6.9: DArchive work flow for each of the three project organization iterations.
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summary, and the EPO Committee worked with the authors to finalize the DArchive.

During this Iteration of the project, we encountered several key issues with author

participation. Despite our efforts to get in contact with paper authors, the response rate,

and willingness to participate was very low. We expected this might be due to when during

the publication process we contacted the authors, i.e., once the paper had been submitted

for internal collaboration-wide review or after it had been published in a journal, but found

no correlation with request timing and response rate. Some authors found it particularly

difficult to translate their work for a public audience, and therefore the EPOC often had

to spend hours editing a particular piece to meet the DArchive communication goals.

Additionally, some paper authors did not understand the importance of eliminating or

rephrasing some scientific terminology, and would argue with the EPOC about how to

best convey a topic, significantly lengthening the DArchive writing and editing process.

The goal of Iteration 2 was to decrease the amount of effort required by the paper

authors. As part of this Iteration, we assembled the DArchive Team: a group of five au-

thors (including NRW) and one editor-in-chief. The goal of this Iteration was to distribute

the DArchive authorship and improve consistency and quality amongst posts. As part of

Iteration 2, the DArchive team created a new DArchive submission form to help paper

authors condense the most significant sections of their analyses. Questions on this form

included:

• In one or two sentences describe the main hook of the paper.

• In three or four sentences, describe your conclusions, results, and the reasons why

you are excited about this work.

• In a paragraph, describe how you came to these conclusions. Outline the main steps

that lead to your results. Try to avoid too many technical details about systematic

checks, etc.

• In a paragraph, describe how your conclusions contribute to the advancement of

knowledge about dark energy, cosmology etc.
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This form was sent to paper authors, and the DArchive Team drafted paper summaries

based on authors’ submissions. Unfortunately, the issues of Iteration 1 were also present

in Iteration 2. The most significant problem was lack of participation from the paper

authors. However, having a dedicated team of DArchive writers helped streamline the

DArchive process and improved consistency between pieces.

To further reduce the need for author participation, the DArchive Team adopted It-

eration 3. Summaries in this Iteration were driven primarily by the DArchive Team. A

DArchive Team member would read a DES paper, write the paper summary, and then

offer the DES paper author(s) a chance to include revisions. While the structure of this

Iteration gave the DArchive Team more autonomy, DArchive writers had a difficult time

balancing the time commitment necessary to complete a DArchive summary with the de-

mands of their other duties (research, teaching, administration etc.). We found the total

amount of time needed to complete a DArchive, from both the paper author(s) and the

editing team, was roughly ten hours. This translated to the release of about one Darchive

feature per month.

6.3.2.2 Social Media Reach: The DArchive

Figure 6.10 presents the Facebook reach of DArchive-related posts in 2016. Note that

while most of the points correspond to an individual DArchive post, some may correspond

to a general DArchive announcement, e.g., a general link to the DArchive page on the DES

website. As shown in Figure 6.10, the number of people reached per DArchive-related

post is highly variable. The mean number of people reached in 2016 is 1310 while the

median is 907. Figure 6.10 also demonstrates that the majority of DArchive posts reach

less than the median number of Facebook likes per post across all DES EPO products

posted on social media.
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Figure 6.10: Number of people reached on Facebook by the DArchive posts each month

in 2016. Points indicate an individual DArchive post or a reference to the DArchive

catalog on the DES website. The mean and median number of Facebook users reached

per post across all DES social media projects are shown in blue dashed and solid lines,

respectively.

6.3.2.3 Discussion

As made evident during each Iteration of the DArchive structure, the time commitment

was the biggest obstacle blocking the project’s success. It was challenging to get paper

authors, who had already written an academic paper, and DArchive writers, who enjoy

written science communication, to devote the time necessary for each DArchive summary.

Throughout the iterations, the EPOC tried various approaches to incentivize participation

in the project, including:

• Asking the DES director to publicly support the project at collaboration meetings.

• Requesting that the DArchive process be streamlined into the official publication

policy.

• Offering infrastructure credit towards data rights and DES Builder status for partic-

ipation (see Section 6.2.2).
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None of these approaches proved successful. While the director offered public sup-

port for the project, the lack of official policy made it difficult to encourage or mandate

participation. We found the amount of time necessary to write and edit a polished piece

was simply not realistic within the work demands of a full-time scientist.

6.3.2.4 Take-Home Messages

Although an efficient DArchive strategy has not yet been reached and we have not pub-

lished DArchives at our goal rate, experiences in each Iteration were incredibly valuable.

Overall, we learned that aiming for a DArchive summary for each DES paper was too

ambitious, and likely unnecessary as occasionally papers would overlap with similar ma-

terial (i.e., papers from an ongoing analysis would build upon one another). We also

learned that the background information needed to provide context for the scientific anal-

yses was repetitive from piece to piece. We began writing static background articles (i.e.,

about fundamental concepts like redshift or gravitational lensing) and intended to provide

relevant links in each DArchive, but have not yet published them, due to lack of time.

We found that having a “DArchive Editor-in-Chief” was essential, as it not only made the

posts more consistent, but made the process easier for the writers and the paper authors.

In addition to providing an EPO output for the public, we also found the DArchive

project had unexpected value for DES scientists. Writing these pieces gave their authors

opportunity to improve upon their science communication skills. Moreover, DArchives

make DES science results much more accessible to DES members who were not directly

involved. Rather than having to read the whole of an academic papers, DES members

can read a DArchive piece and learn the salient background and results. Furthermore,

should those DES members be invited to give a general DES presentation to peers or to

the public, the DArchives can be used to effectively convey the information in a given

paper to the audience.

We believe that projects like the DArchive involving high-quality science writing

would greatly benefit from professional experience and dedicated funding. Rather than

204



being written by full-time scientists, we recommend these pieces be written by a profes-

sional science writer. These pieces are important “legacy” content for DES, and are part of

the static content on the DES website. We would also recommend finding a more impact-

ful means of product distribution other than social media. The reach statistics presented in

Figure 6.10 are lower than other DES EPO projects (e.g., Figures 6.14 and 6.11). A blog

approach to dissemination would likely be more effective (the Dark Energy Detectives

blog typically reached 45,000 people on Tumblr).

6.3.3 DES Thought for the Day (DEST4TD)

One of the first priorities of the EPOC was to revitalize the DES social media presence

and create a vehicle by which we could increase public awareness of the project (GP5).

We hypothesized that providing a regular stream of social media content would be the

best way to engage an audience that might otherwise be unaware of or uninterested in

DES. However, as working researchers, we did not have the time to be the sole creators

of daily original content. Therefore, we asked collaboration members to contribute by

submitting a DES Thought for the Day (DEST4TD): a short statement about their work,

science interests, or daily routine. In addition to providing the EPOC with social media

content, i.e., to post on Facebook and Twitter, DEST4TD also provided the opportunity

for collaboration members to engage with the public using a new, unconventional medium

which would not require much time or preparation (GP8).

DEST4TD was also intended to serve as a channel through which we could share

real-life experience of DES scientists with the public and contribute to our long-term goal

of making science and scientists more accessible to those outside academia (GP3).

We anticipated that the project would be well received by the collaboration as it pro-

vided a means of reaching a large audience without requiring too much personal time or

long-standing commitment. We also anticipated that collaboration members would re-

spond to email requests for participation as they would be required to spend no more than

five minutes on an individual DEST4TD. When asked about the project, 70% (n = 30)
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of collaboration members responded that they believe DEST4TD was a worthwhile DES

EPO project. Since the beginning of the project, 127 different collaboration members

have contributed a DEST4TD; 13 members have contributed more than five unique sub-

missions. By comparison, only 3 DES members had contributed to DES social media

prior to the creation of the EPOC.

6.3.3.1 Project Organization and Implementation

Developing the most effective project strategy required substantial trial and error. Var-

ious iterations including sending batch emails to randomly selected collaboration mem-

bers, requesting participation via form submission, and sending specific requests to DES

observers at the telescope site proved to be inefficient and ineffective. Ultimately, we

converged on a process where collaboration members were personally emailed at ran-

dom (participants were drawn from the full collaboration member list and emails were

automated via a Python script) and asked to respond to one of a list of prompts, which

included:

• This week for DES, I’m working on ...

• The most exciting thing about working on DES is ...

• The most difficult / frustrating thing about working on DES is ...

• My favorite thing I’ve learned by working on this project is ...

• The biggest mystery in [your specialism in DES] is ...

• When I went observing for DES, I was surprised by ...

• When I went to [my first, the most recent etc] DES collaboration meeting,

I was surprised by ...

• Submit a photo from observing or a public figure from your research
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The response rate to DEST4TD email requests varied throughout the calendar year.

Generally we received bursts of participation around the time of collaboration meetings

and during the observing season (while scientists were at the telescope). To create a suit-

able content repository (in case we received no responses per set of requests) and increase

the chance of response, we doubled the email request size from five to ten collaboration

members per day in the summer of 2016 and pointedly asked for a specific response to one

prompt. The full list of suggestions was also included in the email, in case the particular

prompt did not inspire a response.

DEST4TD submissions were posted daily to the DES Facebook and Twitter accounts

by EPOC founder Wolf. This required: vetting of the source material, i.e., ensuring any

new science results were allowed to be publicly released; condensing posts to 140 char-

acters for Twitter posting; finding related images and relevant article links. This process

took ∼ 5− 10 minutes per day. Although we could have added further automation by

utilizing a social media dashboard, we opted to post manually as it was more convenient

to devote time at our convenience.

A full description of the final DEST4TD framework is presented in Figure B.2.

6.3.3.2 Social Media Reach: DEST4TD

Figure 6.11 presents the number of Facebook users reached by DEST4TD in 2016. Each

black point represents an individual post; red points represent the monthly average. The

average yearly reach in 2016 was 2649 and the median was 1567. We find that in the early

months of the year, the average reach of DEST4TD posts is 1654; from August onwards,

the average increases to 4706. We note that this spike in August occurs in the same month

as the beginning of the DES observing season.

As shown in Figure 6.11, the average number of Facebook users reached by DEST4TD

per month roughly follows the median across all the DES EPO products. This is unsur-

prising, as Figure 6.7 indicates that the majority of posts which reached . 2000 users

were outputs of the DEST4TD project.
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Figure 6.11: Number of Facebook users reached by DEST4TD posts in 2016. Each black

point represents an individual DEST4TD post. Red points represent the average reach per

month. The global mean and median number of Facebook users reached per post across

our various social media projects are shown in blue dashed and solid lines, respectively.

The three most popular DEST4TD submissions of 2016, as determined by reach on

social media, are presented in Figure 6.12. As displayed in Figure 6.12, there does not

seem to be a unifying theme amongst these most popular posts. The most popular post

of January 2016 featured a masked image of a Messier galaxy that was presented in the

context of Pop art. The most popular post of September 2016 featured an image of the

Blanco telescope and surrounding instruments. One of the last posts of the year, and the

most popular of 2016, featured a photo-shopped HST lens image, and a whimsical play

on the Christmas holiday and cosmological parameter inference.

6.3.3.3 Discussion

Overall, we found that the popularity of a particular DEST4TD was rather unpredictable.

Photographs colleagues submitted during or after observing, e.g., of the telescope site or

flora or fauna on the mountain, were generally the most popular and reached thousands

of social media users. We have thus far been unable to assess if DEST4TD has made any
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Figure 6.12: Three most popular DEST4TD posts of 2016 submitted by collaboration

members as determined by social media reach. Posts were submitted in January 2016

(bottom left), September 2016 (top), and December 2016 (bottom right), respectively.
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progress in better connecting DES science and scientists to the public.

Perhaps some of the most valuable information we learned from DEST4TD was

not about developing and distributing social media content, but rather about how sci-

entists perceive themselves and their ability to engage in outreach on social media. In a

DEST4TD follow-up survey, we asked collaboration members about DEST4TD emails

and responses to learn how to improve project participation. While only 6% responded

that they reply to email requests right away, 20% responded that they submit a DEST4TD

once they felt a bit more inspired, and 30% responded that they simply forget to respond to

the request (n = 59). When asked why they did not respond to DEST4TD requests, 12%

of collaboration members noted that they “did not have anything interesting to share.”

Unfortunately, despite our best efforts, our colleagues did not understand our role as the

EPOC and our dedication and expertise in making science accessible and exciting for the

public. Furthermore, our colleagues did not seem to understand that social media is a

powerful tool for publicizing their work.

6.3.3.4 Take-Home Messages

Our experience developing and implementing DEST4TD illuminated two critical issues:

1) social media is an excellent tool by which scientists can engage with the public, but

reaching a target demographic is nontrivial; and 2) scientists are generally quite shy, they

need to be reminded that the public are fascinated by the process of doing science, not

just the final results.

We advocate that “crowd sourced” social-media based initiatives such as DEST4TD

are a net positive when it comes to increasing scientists’ public engagement. However,

specific social media strategies should be developed to ensure posts reach target user

groups. As demonstrated in 6.2.5, the majority of social media users reached by DES

EPO social media initiatives, including DEST4TD, self-identified as having an interest in

science. This suggests that posts such as DEST4TD are not reaching new and underrep-

resented audiences. Although, on occasion, our posts do go “viral” and are presumably
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reaching different audiences. For example, a post about an all-women observing team

reached ≈ 11,000 Facebook users.

In hindsight, it is clear that our DEST4TD efforts would have significantly bene-

fited from feedback from focus groups and market research about social media audiences.

However, these types of evaluation strategies were not realistic within our personnel and

budgetary limits. Science projects that have more resources will likely be more success-

ful in reaching a target audience through social media. On the other hand, our lack of

resources meant that we were forced to tap into the creativity of 100’s of active scientists

(rather than develop content through an editorial team). As a result, the DEST4TD posts

have been characterized by freshness, authenticity, and (often) quirky humor.

6.3.4 DarkBites

The DarkBites project was inspired by the popularity of short, astronomy-related media

that include analogies or other ties to popular culture (GP3). In particular, we sought

to emulate the post style of well-known astrophysicist Neil deGrasse Tyson27 and, as

a result, reach a different audience to those following DEST4TD (Section 6.3.3) or the

DArchive (Section 6.3.2). The initial concept was to generate short (one or two sen-

tences), astronomy and cosmology sound bites that would surprise and inspire the public.

We envisioned that these would be written in such a way that they would be accessible

to anyone over the age of 10. At the Fall 2015 collaboration meeting, we identified a

DES colleague (a graduate student) who was excited by the concept and was never short

of ideas. At about the same time, it came to NRW’s attention that one of the DES post-

doctoral researchers was a talented, and prolific artist. We approached her to ask if she

would be interested in providing occasional illustrations for the DarkBites project. She

was genuinely delighted to do so, and thus each of the 52 weekly DarkBites post was ac-

companied with original artwork. Two other artists joined the project in the latter stages.

27https://twitter.com/neiltyson
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6.3.4.1 Projection Organization and Implementation

Participation in the DarkBites, which lasted roughly one year, was openly advertised to

the entire collaboration. Throughout the duration of the project, the DarkBites team was

comprised of two fact creators and three illustrators. The artistic decisions were made

entirely based on the preferences of the project illustrators, there was no need for editorial

input (which was fortunate as we were not resourced to provide that). DarkBites facts

were composed on a shared online document and illustrations were kept in a shared online

folder. A new DarkBite was posted on social media and the DES website roughly once

a week for one year. Figure 6.13 features an example DarkBite image and caption.∗ A

more complete description of the project inputs and outputs is presented in Figure B.3.

Figure 6.13: An example DarkBite image. The associated caption: If the lifetime of the

universe were compressed to a single calendar year, the entirety of human history would

occur in the last 15 seconds of December 31. Image Credit: Chihway Chang, University

of Chicago; Fact Credit: Daniel Nagasawa, Texas A&M University.
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6.3.4.2 Social Media Reach: DarkBites

Figure 6.14 presents the number of people reached on Facebook by DarkBites posts in

2016. Each black point on the Figure represents an individual DarkBites post; red points

represent the average reach per month. As shown in the Figure, the average number of

people reached increased fairly steadily from April 2016 to August 2016, and roughly

plateaued for the remainder of the year. Over the course of the year, the mean number

of people reached was 3843 and the median was 2873. If we consider only January-June

2016, the mean and median number of people reached were 2320 and 2202, respectively;

for the latter half of the year, the mean and median number of people reached were 5800

and 6360, respectively.
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Figure 6.14: Number of people reached by DarkBites posts in 2016 on Facebook. Each

black point represents an individual DarkBites post. Red points represent the average

reach per month. The mean and median number of Facebook users reached per post

across all the DES EPO social media projects are shown in blue dashed and solid lines,

respectively.

We believe the increase in DarkBites reach after May 2015 could be attributed to two

factors: 1) two new illustrators joined the project and 2) we began featuring images in

color. As shown in Figure 6.14, the two most popular DarkBites of 2016 were featured
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during the month of August. These two DarkBites were both related to sports, with

the most popular referencing the Rio 2016 Olympics. Figure 6.14 clearly shows that

DarkBites posts were some our most popular on social media. The average reach of a

DarkBites post was roughly equivalent to or greater than the average EPO product reach

across all the DES EPO social media initiatives.

6.3.4.3 Discussion

Perhaps the most valuable experience from the DarkBites project was witnessing the ef-

fect and impact of collaborative creativity. This project would never have succeeded

without the artistic talents, creativity, and enthusiasm of our colleagues. We also ob-

served how combining science with popular culture can be an effective tool for science

communication. The most popular DarkBites posts of 2016 featured references to topi-

cal world events, suggesting that integrating science with “trending” topics may increase

content reach.

6.3.4.4 Take-Home Messages

We found that a powerful way to inspire others to engage in EPO is to appeal to their

personal hobbies or interests. We highly recommend that future EPO programs consider

projects that capitalize on the talents of collaboration members.

Furthermore, the DarkBites project became a branching point for other EPO projects.

Finished DarkBites were used by members of the EPOC to complement formal education

curricula for elementary school children and in outreach events to inspire children to draw

their own DarkBites images. We also designed a follow-up project, the “DarkBites Un-

plugged,” as a vehicle to further explain and define the astronomical information included

in the original DarkBites.

Through the organic evolution of the project came the surprising added benefit of

its versatility. Products such as DarkBites which can be used in a variety of venues have

become a valuable asset for our EPO repertoire. It has allowed us to develop additional ac-
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tivities using the same content, thus leveraging the initial investment of the time involved

to develop DarkBites. By comparison, the material generated for DEST4TD has not been

used for other EPO activities. In hindsight, we would have designed more projects with

this in mind and recommend other projects consider this in the future.

6.3.5 DEScientist of the Week

The DEScientist of the Week initiative was designed with the primary goal of making

scientists more accessible to the general public (GP3, GP4). First and foremost, we sought

to highlight the diversity in race, gender, and personality of collaboration members and

scientists in general. We also wanted to provide our colleagues with a means of speaking

openly and honestly about their experience as professional researchers (GP8).

6.3.5.1 Project Organization and Implementation

Each DEScientist of the Week piece featured a profile of a randomly selected DES col-

laboration member. This profile included a photograph (if desired), a small summary of

research interests, and a short-form interview. Interviews were conducted using an online

survey that included questions such as:

• What is your favorite part about being a scientist?

• When did you know you wanted to be a scientist?

• Do you have any hobbies or play any sports?

• What motivates/inspires you?

• If you weren’t a scientist, what would your dream job be?

• Any advice for aspiring scientists?

The profiles were posted weekly on the DES website∗ and linked on social media. A

complete description of the project inputs and outputs is presented in Figure B.4.
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6.3.5.2 Social Media Reach: DEScientist of the Week

Figure 6.15 presents the Facebook reach of DEScientist of the Week posts in 2016. The

average number of Facebook users reached in 2016 by DEScientist of the Week posts was

1285; the median number reached was 977. The post with the highest reach in 2016 was

featured in January and highlighted a female collaboration member from a DES institution

in the United Kingdom. This post was not the first of the year, not the first feature of a

female scientist, and was posted on social media before the launch of the current DES

website. This profile was however featured the day after one of our highest reaching

DEST4TD posts (Section 6.3.3). As shown in Figure 6.15, most DEScientist of the Week

posts reached less than the DES EPO global median and mean number of Facebook users.
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Figure 6.15: Facebook reach for DEScientist of the Week posts in 2016. Black points

represent an individual post; red diamonds represent the monthly average. The global

mean and median number of Facebook users reached per post across our various social

media projects are shown in blue dashed and solid lines, respectively.

6.3.5.3 Discussion

Thus far, we have featured over 80 scientists as DEScientist of the Week. Initially, we

asked only those signed up on the internal DES EPO listserv to participate and the re-
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sponse rate was nearly 100%. After opening the project to the rest of the collaboration,

the total response rate was 60% (n = 149), despite the fact that 82% (n = 85) of surveyed

collaboration members responded that they believed project was a worthwhile EPO ef-

fort. This response rate is much higher than for DEST4TD (Section 6.3.3), which varies

between 10% and 20% depending on the time of year. We believe this higher response

rate is primarily due to the fact that scientists feel flattered to be asked to about them-

selves, whereas they feel nervous about taking about their research. Some collaboration

members have even asked to be featured as DEScientist of the Week to coincide with job

applications.

6.3.5.4 Take-Home Messages

As our colleagues generally have responded favorably to the project and as the project

doesn’t require a great amount of administrative effort, we recommend scientist pro-

file/interview projects as they highlight the diversity in the scientific community and they

have potential for significant long term-impact.

We continue to work toward the long-term goal of changing public opinion of science

and scientists, which may ultimately include updating the structure of the project. As

demonstrated in Figure 6.15, DEScientist of the Week posts did not reach as many fol-

lowers as other DES EPO initiatives. This suggests that the current project structure may

not be the most effective strategy for content distribution. However, interactions with our

social media followers, including shares, likes, and comments, lead us to believe we are

indeed making an impact, even if only on the smallest scales. For example, on the highest

reaching piece of 2016, one social media follower commented that she found the post

inspiring and that the post would help her on her path to becoming a particle physicist. To

further this goal, we intend to make a compilation of the DEScientist of the Week pieces,

either as a book or electronically, and distribute it to classrooms in our local communities.
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6.3.6 Multilingual EPO

As DES is an international collaboration of scientists from seven different countries and a

survey relying on data from the Blanco Telescope at CTIO, we sought to allocate EPOC

resources towards projects that we believed would reach the broader, international com-

munity (GP7). Since we have been resource-limited, we have had to rely on our multilin-

gual collaboration members to assist us in this goal. While there has been some original

content created for our international audiences, most of this effort has focused on trans-

lating existing EPO content.

6.3.6.1 Project Organization and Implementation

The most ambitious of these projects has been a full translation of the DES website,

including sub-page content, into Spanish. Per the approval of the DES director, we have

dedicated≈ $1000 of to the development of a fully-functional Spanish version of the DES

website. Translations are being done by a group of three native Spanish speakers in the

collaboration who have volunteered to translate website content.

In addition to our Spanish-speaking user groups, we attempted to broaden the DES

reach via the “Many Languages of DES”, or MLDES, initiative. In this project, we

asked multilingual members of the collaboration to translate DarkBites (Section 6.3.4),

DEST4TD (Section 6.3.3), or other short-form, online DES EPO content on a weekly

basis. Throughout the duration of the project, our translated languages included: Span-

ish, Portuguese, French, Italian, German, Chinese, Farsi, Russian, Greek, and Serbian.

Translators were reminded weekly to submit any translations by Friday afternoon and

translations were generally posted on social media on Sundays.

Several of our colleagues also contribute to the DES multilingual initiatives in other

ways. Colleagues based in, or native to, non-English-speaking countries frequently post

DES-related content in other languages (e.g., from local news articles or press releases)

to their personal social media accounts; others participate in the spirit of MLDES and

translate existing DES content online. Another small group of collaboration members
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post and maintain an official DES account on Weibo, a Chinese hybrid of Twitter and

Facebook. Posts on Weibo are roughly 40% original content (loosely based on existing

DES posts) and 60% direct translations of DEST4TD or DarkBites. The Weibo page has

roughly 2,000 followers and the average post reaches 1,000 users. The Weibo post with

the largest reach (≈ 30,000) featured an image of an Einstein ring discovered by DES

reminiscent of the logo for Youku (Chinese YouTube).

6.3.6.2 Discussion

As with many of our other projects, MLDES was difficult to sustain due to limited re-

sources. We believe the translated posts did not have a large reach (≈ 200 users per post),

perhaps due to the post schedule (on the weekends) or the chosen distribution platforms,

and the EPOC was too time-constrained to justify continuing the project. The longer-term

projects, such as the Spanish-language translations and maintenance of the DES Weibo

profile, have been more successful. This is likely due to the fact that our multilingual

colleagues who are passionate about these projects have taken leadership roles.

6.3.6.3 Take-Home Messages

These translation initiatives are an excellent example of designing projects that utilize

skills and talents of collaboration members. The wealth of translated content which we

have available is entirely due to the participation and leadership of our multilingual col-

leagues. Their efforts have undoubtedly helped foster an international DES audience.

6.3.7 Image & Video Curation and Creation

Images and figures are a vital component of DES science and DES EPO, and are used

for science communication both within the scientific community and with the public. As

part of our goal to centralize DES EPO effort and products, we attempted to consolidate

image management for the collaboration as a whole (GP9). This was more successful for

some types of images than others. In this section we discuss the creation and curation of
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three main types of images: 1) analysis figures and plots, 2) false-color DECam images,

and 3) photographs, infographics, etc. submitted for EPO initiatives and/or public talks.

6.3.7.1 Project Organization and Implementation

1. Analysis Figures and Plots

The centralization of analysis figures and plots is under the jurisdiction of the DES

Publication Board. Within DES, there exists a mechanism for submitting plots and

figures featured in academic papers to a central database. Collaboration members

are encouraged to submit any plots or figures to this “Figure Library” and are en-

couraged to use these figures in talks and presentations. As many of the figures that

would be included in the Figure Library would also be useful for EPO products such

as The DArchive, the EPOC proposed (without success) a joint image-management

system for academic figures and EPO images to the Science Committee.

2. False-Color DECam Images

False-color images are useful in several contexts and there is no single, DES pipeline

for image processing. While some processing codes are made available in shared

GitHub repositories, there is little communication between collaboration members

working on image processing projects. We attempted to increase communication

about these efforts through announcements at collaboration meetings and notices in

the monthly EPO newsletter.

3. Images & Videos Intended for EPO

A key component of our EPO image strategy involved consolidating images and

videos designed for science education or as part of a science education program.

For example, each of our online initiatives presented the opportunity to communi-

cate science with visual media. In some cases this was an integral component to the

project, e.g., DarkBites (Section 6.3.4). DEST4TD posts (Section 6.3.3) were often

accompanied by some form of visual media - photograph, video, or infographic -
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and DEScientist of the Week pieces (Section 6.3.5) almost always included pho-

tographs of the featured scientist. The variety of EPO initiatives, combined with

content created by collaboration members for public presentations, led to a large

pool of images that required regular maintenance and organization.

6.3.7.2 Discussion

Efforts to more officially integrate image processing and curation into official collabo-

ration structure were not successful. The Figure Library remains the “official” image

repository, although it is unclear if it is actually being used by the bulk of the collabora-

tion. Despite our efforts to consolidate code and image-processing expertise, coordinating

these multiple pipelines proved to be very challenging. We found that several members

of the collaboration had their own codes to process images and did not communicate

their efforts or resources with the rest of the collaboration. We found that this lack of

communication often resulted in the duplication of effort and a poor allocation of time

and resources. As a result of these infrastructure barriers, we refocused our energy on

curating a separate EPO-focused image archive.

After much research, we opted to use Flickr∗ as a repository for EPO-related images.

A select sample of these images are embedded on the DES website. The DES Flickr

account is now maintained by EPOC members, who label and sort images for public use.

While there is an effort to automate this image curation process, it has been slow-going as

those in charge must prioritize their research and have no additional incentive to maintain

the image repository on a regular basis.

DES-related videos are hosted on the DES YouTube channel∗ and embedded on the

DES website. Videos include public lectures, time-lapse videos created while observing,

and other educational materials related to the study of dark energy. Although videos fea-

tured on social media (e.g., as part of DEST4TD) are generally very popular, maintenance

of the YouTube channel has not been a priority of the EPOC as resources and effort are

limited. An update of the DES Youtube channel is currently underway and is being led
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by a member of the DES EPO community.

6.3.7.3 Take-Home Messages

Videos and images included in these three groups will likely be an important component

of the legacy of DES and DES EPO. Moving forward, we will prioritize these efforts to

ensure these media are made available to the public in an organized, user-friendly way.

We recommend that future projects design an image organization scheme early on and

advertise image and video repository structure clearly and consistently.

6.3.8 In-Person Outreach Activities

Although, most of the effort by the EPOC focused on developing materials that could be

shared on-line (Sections 6.3.1-6.3.7), it was our initial intention to also develop materials

for in-person DES EPO activities (GP3, GP4). In practice, we were severely resource

limited and were only able to provide direct support to a small number of events. Two of

these are described below: The Cosmic Kitchen (Section 6.3.8.1) and DES Adler After

Dark (Section 6.3.8.2). The only other support provided by the EPOC to DES members

was the collation of a sample of EPO talks that members could refer to when preparing

their own presentations.

6.3.8.1 The Cosmic Kitchen

“The Cosmic Kitchen” (hereafter TCK) was an hour-long cosmology-themed evening

public lecture delivered by NRW during a DES collaboration meeting in May 2015. The

goal of TCK was to communicate fundamental concepts of cosmology and astrophysics.

It differed from typical EPO lectures because it included multiple demonstrations. This

approach was inspired by the Saturday Morning Physics series at the University of Michi-

gan28 – EPOC founder Nord had regularly participated in the series while a graduate

student.
28outreach.umich.edu/programs/saturday-morning-physics-public-lecture-series
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The tone and structure of TCK intended to mimic that of a televised cooking show.

NRW assumed the personas of cosmology “chefs” and guided the audience through a

“menu” of demonstrations based on ingredients and kitchen equipment. Each course was

accompanied by a series of questions which were intended to spark the audience’s interest

and a demonstration to communicate a particular cosmology concept. For example, the

“menu” included a cheese course during which wheels of cheese were used to demonstrate

the proportions of matter and dark energy in the Universe. The cheese course then led into

questions about dark energy and the accelerating expansion of the universe.

TCK logistics were organized by the local institution staff. While TCK theme and

demonstrations were finalized before the collaboration meeting, the three EPOC “chefs”

had to write scripts, collect materials, rehearse, develop evaluation strategies, and co-

ordinate with the on-site staff during the meeting. This proved to be much more time-

consuming and logistically difficult than expected, not least because the “chefs” were

very busy with other duties during the meeting.

TCK was performed in a campus auditorium for an audience of ≈ 100 people of

all ages. While the flow of the presentation would have improved with more time to

prepare, TCK was generally well-received. The children in the audience particularly

enjoyed the demonstrations; Figure 6.16 is a photograph from the event. Despite our

asking the audience to participate in an online survey after the presentation, we received

no responses.

6.3.8.2 DES Adler After Dark

Adler After Dark (hereafter AAD) is a monthly event hosted by Chicago’s world-renowned

Adler Planetarium.29 Planetarium hours are extended and the event is only open to adults

21 years of age or older. Each event has a different theme, and tickets (priced at $20−$25)

often sell out to a crowd of ∼ 1000 visitors.

In June 2015, a DES collaboration member in the Chicago area approached the Adler

29www.adlerplanetarium.org
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Figure 6.16: EPOC coordinator A.K. Romer interacting with a young audience member

during TCK, May 2015. © Erika Martin
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Planetarium about organizing a DES-themed AAD. As there are several DES institutions

in the Chicago-area,30 some of which already had established partnerships with the Adler

through other EPO initiatives, an extension of DES EPO into the realm of museum pro-

gramming and informal science education seemed natural. After several discussions, a

DES and Halloween themed AAD event was scheduled for October 2015.

The AAD planning committee included the EPOC coordinators, several DES col-

laboration members in the Chicago area, and Fermilab Communications Office person-

nel. For four months the group had regular weekly meetings and telecons to brainstorm

project ideas and develop materials for the event. The final suite of activities consisted of

six different interactive demonstrations that covered cosmology and DES-specific topics

ranging from the fate of the universe to differences between dark energy and dark matter.

This included a “Cosmic Shuffleboard” (patent pending) used to teach about gravitational

lensing and Tug-of-War to illustrate the combating forces of dark energy and gravity. The

group also organized a question-and-answer panel and lecture featuring DES scientists.

According to DES participants and public patrons, the event itself was enjoyed by all

who participated.31 Tickets sold out to a crowd of roughly 1,000 visitors, most of whom

were 20-35 years of age. At least 15 DES collaboration members from the Chicago area

participated as scientist-volunteers. The most popular events were the lecture, Cosmic

Shuffleboard, and Tug-of-War.

While the event was largely deemed a success, we had no means to evaluate whether

or not the activities’ learning goals were met. DES organizers at the event also commented

that there was not enough time to properly set up everything that had been planned and

that some activities were more well-organized and executed than others. Planning and

implementing the six activities was perhaps too ambitious and resources may have been

better spent focusing on a smaller number of activities.

30The University of Chicago, Fermi National Accelerator Laboratory, and Argonne National Laboratory

all encompass “DES Chicagoland.”
31As discussed in private communication with DES colleagues who attended the event.
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6.3.8.3 Discussion

While we were generally pleased with these two events and the corresponding EPO prod-

uct outputs, there was much room for improvement. One of the more flawed components

of these projects was the evaluation strategy (or lack thereof). Although we wrote an

evaluation survey for TCK, without proper incentive there was no reason for visitors to

participate. We believed that creating an online survey which could be easily filled out on

a smartphone would help us gather more responses than traditional pen-and-paper meth-

ods, but this proved to be false. In hindsight, it likely would have been more effective to

hand out paper surveys and ask visitors to participate before leaving the venue, or to have

set up a focus group.

Another issue with both TCK and AAD was the inability to effectively distribute as-

sociated EPO products throughout the collaboration after the event. We believed that the

activities designed for both TCK and AAD would be useful for other collaboration mem-

bers involved in their own EPO projects. We intended to offer TCK and AAD materials

as packages that could be used at similar events, but believe the EPOC coordinators were

the only ones to have used these materials in subsequent outreach events.

Whether or not developing materials for these events was an effective use of resources

is clearly an important question. While only a small amount of funding (. $500 in total)

was contributed to the projects, we estimate that at least 120 person-hours were spent

planning the activities, organizing logistics, and carrying out the two events. Clearly,

justifying this allocation of resources would be best supported with evaluation data for

these initiatives and comparable data from other projects. However, we did not have the

appropriate evaluation strategy or enough personnel to explore this issue. Therefore, we

intend to more seriously consider evaluation strategies in the future and recommend future

projects design EPO initiatives with project evaluation as a guiding principle.
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6.4 Internal DES EPO Reporting

In the summer of 2015, we organized a recording system to archive collaboration mem-

bers’ engagement in EPO, including participation in internally organized EPO program-

ming, outside EPO related to DES, and other STEM outreach not directly related to the

survey. This effort was driven by: 1) our curiosity about the types of engagement in which

our colleagues are involved and 2) an attempt to learn about EPO endeavors that our col-

leagues would not otherwise communicate with us. We note that while our archive is an

incomplete catalog of the full breadth of our colleagues’ EPO involvement, it provides

some measure of EPO interest and activity.

To create this digital archive, we designed an online form that is now sent to the

collaboration monthly and advertised in the EPO newsletter. The form has two submission

options: the first requires a short summary of the project and the second provides options

to submit answers to a longer, more detailed questionnaire about the type of activity

and audience demographics. For both forms we require that the submitter indicate the

project’s “level of DES-ness,” where “1” indicates no relevance to DES and “5” indicates

the project is entirely dedicated to DES science.

Since the creation of this archival system, 98 unique DES members have submitted

records of their EPO engagement. The current archive contains 209 individual activities,

which include a mix of one-off events and on-going activities. We find the mean and

median “DES-ness” of these projects are both 3. The total archive contains 60 “5,” 22

“4,” 52 “3,” 42 “2,” and 33 “1”-level projects.

Of these 209 projects, 87 include further description of the activity type, e.g., in-

person lecture or online interview. We have 72 documented submissions that include

“In-Person” and 15 that include “Remote” activities, where one submission may include

activities from both categories. We have also divided these two activity types into subcat-

egories. In Figure 6.17, we present the subcategories of the “In-Person” activity type and

the percent of activities that fall under each subcategory. We note that one “In-Person”

activity may include overlap of multiple subcategories.
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Figure 6.17: Activity types for EPO projects recorded with an “In-Person” component.

Note that one “In-Person” activity might include overlap between several sub-categories,

e.g., one activity may include a Talk with Slides and a Demonstration.
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As shown in Figure 6.17, 36% of the “In-Person” activities include a public talk with

slides and 20% of the activities include an audience question and answer session. We

find that only 14% of the “In-Person” activities include an interactive live demonstration.

Activities in the “Other” category include mentoring high school students and tutoring.

We find the majority of “Remote” activities include printed articles or interviews, partic-

ipation in radio shows, and participation in online videos.

We have observed three prominent trends when maintaining this activity archive. The

first is that despite our efforts to send reminders, many collaboration members do not

respond to reporting requests.32 It is therefore difficult to make inferences about scientists

attitudes towards EPO when our data are largely contributed by self-selecting participants.

Secondly, we note that many of our colleagues engaged in EPO are regularly involved in

a variety of EPO projects; roughly 45% (n = 98) of the unique members submitting the

form have submitted multiple activities. Finally, we note that public talks with slides seem

to be a favored means of engaging with the public. This is consistent with the engagement

trends of the larger scientific community, where public talks continue to be the favored

means of filling the “deficit” in public knowledge (Andrews et al., 2005; Bubela et al.,

2009; Besley and Tanner, 2011; Durant et al., 1989; Jensen and Holliman, 2016).

Recently, there has been evidence to support a transition from the “deficit” model of

engagement, where public lack of knowledge or understanding is assumed, to one more

focused on interactive dialogue between scientists and the public (Burns et al., 2003;

Nisbet and Scheufele, 2009; Besley and Tanner, 2011). These studies find that in this

model, participants not only learn about the technical aspects of the science, but the so-

cial, ethical, and economic components of the topic as well (Nisbet and Scheufele, 2009).

DES scientists’ reported engagement practices are further evidence of the disparity be-

tween scientists’ communication methods and best-practices encouraged by communi-

cation professionals. We note, however, that this is not only indicative of an issue with

32From private communication we know of EPO engagement not recorded in the archive, including by

senior DES members.
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the practices of individual scientists, but of an issue with the greater institutional culture.

Inviting scientists to give public lectures continues to be a popular method by which in-

stitutions pursue public engagement. A comparison of the internal EPO reporting data

and suggested science communication strategies in the literature indicates that scientists

would likely benefit from formal public engagement training.

6.5 Summary and Conclusions

In this work, we have described the evolution of education and public outreach program-

ming in the Dark Energy Survey. Unlike many other large-scale astronomy EPO initia-

tives, DES EPO was not based on published data products, but rather inspired by the

foundational science, data processing pipelines, and community of scientists that make

up the DES collaboration. Throughout this work, we commented on the relationship be-

tween the EPOC and the rest of the collaboration, detailed specific EPO initiatives, and

discussed collaboration members’ public engagement practices.

One of the most significant obstacles faced by the DES EPO program was the lack

of time the EPOC coordinators and community members could devote to DES EPO pro-

gramming. Given the amount of time necessary to complete projects such as a DArchive

summary (Section 6.3.2) and our lack of effective incentives, we perhaps should have ex-

pected lower overall participation rates from collaboration members. While many studies

have shown that generally scientists are in favor of EPO (Ecklund et al., 2012; Andrews

et al., 2005; Poliakoff and Webb, 2007), motives for and deterrents from participation in

EPO, remain unclear. Dang and Russo (2015) assert that barriers to astronomers’ partici-

pation in EPO are likely 1) the perceived academic cultural norm that one can only spend

time on EPO after completing necessary academic duties (Ecklund et al., 2012) and 2)

the lack of financial (institutional and grant) support for EPO. However, Dang and Russo

(2015) also find that astronomers in particular are widely supportive of EPO. They find a

positive correlation between the number of work hours and free-time hours astronomers
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spend on EPO (i.e., the more time that they spend on EPO during office hours, the more

they are likely to spend outside those hours). In theory, we should have been able to

attract more collaboration members already involved in EPO to the project. However,

competition for valuable EPO hours was likely a primary reason we could not recruit

more volunteers.

Many of the DES EPO projects thus far have focused, at least in part, on changing the

public perception of science and scientists. It is clear that this goal of changing the status

quo is well-founded. Despite more recent integration of science into popular culture,

e.g., books, television shows, movies, public perception of the “typical scientist” remains

outdated. When asked to draw a scientist, elementary school students largely continue to

depict a male with a lab coat and chemistry set (Barman et al., 1997; Tan et al., 2015).

This limited perception is generally similar for many adults, as the media tends to give

very little coverage to scientists or the scientific method, making scientists seem further

removed from the general public (Losh, 2010). We hoped that by making scientists less

“distant” from the public that we might positively affect perceptions of scientists and their

careers (Losh, 2010). We leave a long-term assessment of this aspect of the DES EPO

program for future work.

Reflecting on our experience holistically, we believe that many of our initial guiding

principles were not realistic given the collaboration organization and structure when the

EPOC was created. Although the EPOC coordinators and many of the EPOC community

members share an enthusiasm for science education and outreach, it is clear that GP1 and

GP2 have not been embedded into collaboration culture. Obviously we cannot expect that

each collaboration member will share our goals, but perhaps officially integrating EPO

into collaboration structure at the onset would have impacted general attitudes towards

public engagement. Such structure may have also improved our experience trying to

coordinate and incentivize EPO efforts (GP8, GP9).

We draw the following conclusions and make the following recommendations for

other scientist-communicators looking to pursue similar EPO endeavors:
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1. It is critical that EPO is integrated into collaboration structure, policy, and culture.

As described throughout this work, we encountered several issues that could have

been avoided had DES EPO been more well integrated into the DES collaboration

structure. Although we received vocal support from the DES director, lack of of-

ficial DES policy regarding EPO resulted in duplicated or inefficient EPO efforts,

lack of respect for EPOC coordinators’ time and expertise, and missed opportuni-

ties for targeted EPO projects for specific science results.

2. Establish an EPO budget before program development. We formed the EPOC under

the assumption that DES EPO funds would be limited. However, we never explic-

itly established an annual budget. We asked for funding as opportunities arose,

which included for development of the DES website and for supplies for smaller

initiatives such as The Cosmic Kitchen. This system meant that we were never

guaranteed funding for an EPO program. If we instead had firmly established a

budget upfront, then we may have allocated resources differently and been able to

fund projects that otherwise were not pursued.

3. Collaboration members can only devote so much of their time to EPO. Designing,

managing, and evaluating EPO programs requires a substantial amount of time.

It difficult to incentivize scientists to participate in EPO programs if they are not

already inclined to do so. Unfortunately, EPO remains undervalued in the astron-

omy community. This is reflected not only in personal attitudes but in funding.

While we have created many successful and innovative DES EPO programs, the

list of projects we have not yet completed or did not have the time to start and/or

complete is much longer. We believed we could incentivize participation by offer-

ing data rights to collaboration members, but this was not sufficient. Although we

have successfully delegated projects to members of the DES EPO community, their

personal time commitments have stalled the completion of projects as well. With-

out proper incentive, or encouraging people to devote time to EPO, it is incredibly
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difficult to carry out an effective EPO program.

4. Contract professionals if budget allows. If there is not adequate funding, set lim-

its on how much time can be dedicated to a particular project. Contracting web

developers for the DES website was essential. Not only did the EPOC not have

the necessary experience to build a website, we also did not have the time. The

time we did allocate to website development was often misplaced, as we focused

on aspects such as structure and aesthetics rather than content development, where

our science expertise was most relevant. As a scientist-communicator developing

an EPO project, we recommend reflecting on how your expertise will be utilized.

If pieces of the project can be accomplished without your constant support, and if

budget allows, consider external contractors for the task. If funding is unavailable,

prioritize projects which balance time commitment and necessary experience.

5. Identify a specific target audience and methods for reaching that audience for each

program. Many of the DES EPO projects discussed in this work were designed to

inspire a general public interest in science. We hoped many of our online initia-

tives would reach people who might not otherwise be inclined towards the STEM

disciplines. As our social media metrics revealed, we were not successful in reach-

ing this target audience. In-person activities such as The Cosmic Kitchen and DES

Adler After Dark reached a similar demographic (i.e., those already convinced that

astronomy is interesting). We encourage future EPO efforts to think critically about

content distribution and how to best interact with the desired audience. For exam-

ple, the DES EPO effort may have been more successful if we had explored other

social media platforms, e.g., Instagram and Snapchat.

6. Inspire other scientists to participate in EPO by designing programs that utilize

their personal interests and skills. Some of the more innovative DES EPO projects,

e.g., DarkBites, evolved from our colleagues’ artistry and creativity. We also found

that collaboration members were more inclined to participate in projects which ap-
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pealed to their personal interests. This included projects centered around graphic

design, astrophotography, video editing, and written science communication. We

also believe these projects garnered more participation because colleagues could

dedicate as much or as little time as they pleased, without feeling pressure to com-

plete a project within a deadline.

7. Consider science communication training sessions led by professionals. Finally,

we strongly recommend the organization of science communication workshops and

trainings. We believe that DES collaboration members, including the coordinators

of the EPOC, would significantly benefit from the professional experience of sci-

ence communication experts. If scientists are expected to be at the forefront of

knowledge, they should be cognizant of the most effective means to communicate

that knowledge.
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Chapter 7

Conclusions

7.1 Type Ia Supernova Luminosity and Host-Galaxy Cor-

relations

In Chapter 3, we used 345 photometrically-classified and spectroscopically-confirmed

SNe Ia from the SDSS-SNS to explore the dependence of the SN Ia absolute luminosity

on host-galaxy properties. We find the strongest correlation (3.6σ ) between Hubble resid-

ual and host-galaxy mass, confirming results in the literature and providing further support

that light-curve calibration should include corrections for the SN Ia environment. We also

find a significant difference in the standardization coefficients for the spectroscopically-

confirmed and photometrically-classified samples. This discrepancy may allude to inho-

mogeneities in the combined sample or impurities in the photometric classification.

Current and future large-scale supernova surveys will provide a wealth of data which

will be used to better explore the systematic uncertainties limiting SN Ia cosmology. The

DES-SN, which will end its five-year observing run in 2018, is expected to detect a total

of ∼ 4000 SNe Ia in the redshift range 0.1 < z < 1.2 (Bernstein et al., 2012). This will

constitute the largest homogenous sample of SNe Ia to date. In the future, LSST expects

to detect∼ 50,000 SNe Ia per year out to z∼ 0.8, with a mean redshift of z∼ 0.45 (LSST
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Science Collaboration et al., 2009). Such large samples will be essential for future SN Ia

host galaxy studies, as they will provide unprecedented statistical power for analyses. For

example, subsamples of fixed host-galaxy mass, metallicity, or star-formation rate will

have sufficient statistics to explore degeneracies between host-galaxy properties and can

be used to investigate how a single host-galaxy property correlates with SN Ia magnitude.

In these analyses, properly incorporating known correlations between host-galaxy mass,

metallicity, and star formation rate, and correlations between their observational errors,

will be essential (Mannucci et al., 2010). In addition, such samples will provide an excel-

lent opportunity to improve photometric-classification software. As the demand for spec-

troscopic confirmation for these SNe Ia will be too great, the majority of SNe Ia will need

to classified photometrically. While current techniques can achieve classification purity

and efficiency of 91% and 94% respectively, classification of core-collapse SNe remains

unreliable (Sako et al., 2014). Software improvements will be critical for cosmological

parameter inference, and should significantly reduce the potential for inhomogeneities in

combined samples of photometrically-classified and spectroscopically-confirmed SNe Ia.

7.2 Statistical Frameworks for SN Ia Cosmology

In Chapter 4, we introduced the BAyesian hierarchical Modeling with BIased Simulations

(BAMBIS) algorithm, a novel statistical techqniue for cosmological parameter inference

using SNe Ia. BAMBIS adds two new key features to the available suite of SN Ia cosmol-

ogy tools. The algorithm employs forward modeling of the data at every proposed point

in parameter space, allowing for treatment of any selection effects or other observational

systematics that can be properly simulated, regardless of whether they can robustly be

accounted for in analytic likelihoods. BAMBIS also estimates each model’s probability

distribution function (PDF) in the observational space using Kernel Density Estimation

(KDE) of the simulated data; this provides a non-parametric estimate of the PDF that does

not require analytically tractable likelihoods.
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We explore the functionality of the BAMBIS algorithm using three models and cor-

responding simulated mock data sets. This includes: 1) Gaussian linear regression, 2)

Gaussian linear regression with a complex selection process, and 3) a simplified SALT2

(Guy et al., 2010) SNa Ia regression model including data selection. Tests of the first

model demonstrate that BAMBIS can recover the input model parameters within 0.43

times the 1σ uncertainty of the data. If we include a selection function, we observe a

systematic bias in the latent width parameters. It is unclear if this bias is due to the in-

evitable smoothing and rounding of the estimated PDF or is perhaps a conflated effect of

non-parametric density estimation in data bins (i.e. redshift bins). In our investigation

of the simplified SN Ia cosmological model, we use a mock data sample of 667 SNe Ia

and recover all cosmological and hyperparameters within their respective 1σ uncertain-

ties. We find that over 5 realizations of SN Ia mock data, there appears to be a systematic

bias in w0 and Ωm; however, it is unclear if this is a manifestation of the biases exhibited

in the Gaussian linear model example or just fluctuations due to limited sample statistics.

These parameter biases will be explored in future work using larger data sets and different

regression models. It is possible that parameter bias is an inevitable consequence of using

non-parametric density estimation, and the pros and cons of the BAMBIS algorithm will

be weighed before applying the framework to real SN Ia data.

Ultimately, we would like to incorporate more sophisticated model systematics such

as survey-specific measurement uncertainty and core-collapse contamination into the BAM-

BIS framework. However, we must first better understand sources of systematic bias in

the algorithm. Using a more efficient sampler, or more computing resources, will also

be critical when we use more sophisticated forward-modeling packages, as we expect the

necessary time per likelihood evaluation to increase significantly. However, we are confi-

dent that BAMBIS can be used for cosmological parameter inference on SN Ia data on a

realistic timescale, even with the current MCMC sampler implementation.
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7.3 Astronomer Engagement in Education and Public Out-

reach

In Chapter 6, we analyzed the DES Education and Public Outreach (EPO) program, one

of the first large-scale astronomy collaboration EPO efforts to be entirely led and orga-

nized by collaboration scientists. We found that although the organic evolution of the

EPO program inspired a variety of innovative projects, it was difficult to integrate EPO

into the pre-existing organizational structure of the collaboration. Many of the DES EPO

products distributed online via the collaboration website and social media reached thou-

sands of users; however, we discovered that rather than attracting a new, and perhaps

underrepresented audience to astronomy, ≈ 75% of our audience were male and ≈ 90%

of our audience indicated a self-identified interest in and predisposition to science. As

full-time scientists, we found the most significant barrier to completing EPO projects was

lack of time, which was often linked to lack of personnel or funding. Finally, we observed

that many of our colleagues continue to participate in modes of science communication

which favor the “deficit” model, with ≈ 36% of reported “in-person” activities including

some type of lecture with slides.

Data presented in Chapter 6 provided only a cursory glance into the abundance of

material available for EPO and astronomy education research available from the DES

EPO experience. A detailed study of social media analytics and website traffic could

provide further insight into key audience demographics such as education, occupation,

and socioeconomic status, and be used to evaluate the overall impact of social media pro-

gramming. Further analysis of our colleagues’ EPO reporting will illuminate correlations

between variables such as scientist age, position (e.g. graduate student, postdoctoral re-

searcher, tenured professor), and institution (i.e. university, national laboratory) and EPO

practices. Through this assessment we can better understand how astronomers value dif-

ferent types of EPO and how much time they feel is appropriate to dedicate to outreach.

We have also begun an analysis of DES collaborators’ attitudes towards EPO. Preliminary
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results indicate that many of our colleagues who were instrumental contributors to DES

EPO programming did not participate in EPO prior to their involvement in DES. We have

also found that establishing a DES-wide culture of EPO was a primary motivating factor

to their continued participation in outreach, both within and outside the collaboration.
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Appendix A

SDSS-SNS Supplemental Data and

Analysis

A.1 Comparison to DR10

As described in Section 3.4, the spectroscopic host properties used in this analysis are

derived from emission-line fluxes measured using our own modified version of GANDALF.

We detail our reasons for this reanalysis there, but note that the primary motivation is to

optimize the emission-line flux measurement to the redshift range of our sample. There-

fore, the host properties published in the SDSS DR10 may differ from those used in this

work.

In this Appendix we use 3787 overlapping spectra to compare results, specifically

measured emission-line fluxes, A/N ratios, and host-galaxy extinction. We also show how

these results would contribute to differences in derived host-properties, namely gas-phase

metallicity. For clarity, parameters derived in DR10 are denoted by the subscript “DR10.”

Some comparisons are best made using the subset of overlapping spectra with Hα and

Hβ A/N > 2, consistent with the quality requirements imposed on the host spectra in our

analysis. This A/N requirement leaves 2118 spectra in common.

In Figure A.1 we compare the A/N values used in this work and those reported in
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DR10 for the four emission lines needed for the BPT diagnostic (Hα , Hβ , [N II], [O III]).

Generally, our A/N values are slightly higher than those in DR10, with the [N II] line

showing the closest agreement. This behavior is expected, as constraining the Balmer

and forbidden lines to have the same width and velocity as Hα and [N II] respectively,

reduces the number of free parameters being fit (see Table 3.2). This effect is particularly

strong at low A/N. We find that 96.0% of the spectra for which we measure A/N > 2 in

both Hα and Hβ pass the same cuts in DR10, and that only 3.4% of the full overlapping

sample pass those cuts in DR10 but not in our sample. The majority of the disagreement

comes from just one of these two Balmer lines failing the cut (87.4%).

This analysis and Thomas et al. (2013, hereafter T13) (for z < 0.45) both use BPT

diagnostics to separate star-forming galaxies from those dominated by other physical

processes (i.e., AGNs). In this analysis we use those galaxies that are classified as ei-

ther “star-forming” or “composite” (SFC) based on this diagnostic. We find that 6.1%

of the galaxies we classify as SFC are otherwise labelled by T13, while 8.3% of the full

overlapping sample are labelled SFC by DR10 but not in this work. Clearly, there is a

discrepancy between the SFC classifications of the two samples. Upon visual inspection

of the spectra DR10 classifies as SFC and we do not, we observe that most of the DR10

spectra look like passive galaxies with very weak Balmer lines, which are unlikely to pass

our A/N cuts for inclusion in our analysis. This confirms the need for a good indicator of

emission-line strength and spectral quality, such as A/N, to ensure a more pure sample of

emission-line galaxies.

In Figure A.2 we compare the observed emission-line fluxes used for the BPT diag-

nostic between this work and DR10, where we have imposed Hα and Hβ A/N > 2. We

make the comparison in observed flux, rather than intrinsic, as the latter quantity includes

corrections for measured extinction and thus doesn’t lend itself to a direct comparison.

While we can use the direct GANDALF output parameters from our analysis, for DR10

we redden the published intrinsic fluxes via the Calzetti (2001) law using the published

E(B−V ) values. We find for all four lines that our measured fluxes are on average higher
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Figure A.1: Comparison of output A/N values between this work and DR10. The line

y = x is shown in red. The ranges in both directions have been limited to focus on the

bulk of the data; 91%, 84%, 91% and 87% of the data in the Hα , Hβ , [N II], and [O III]

lines are shown, respectively. For all emission lines, we find that our A/N values are

systematically higher than those reported in DR10.
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than those in DR10 by ≈ 10−15%, with no apparent dependence on flux. However, we

do expect to find higher observed fluxes than DR10 due to the fact that we, unlike T13,

correct the observed spectra for MW extinction before measuring fluxes.
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Figure A.2: Comparison of the observed emission-line flux measurements between this work and DR10 where Hα and Hβ

A/N > 2. All figure axes have been truncated to focus on the bulk of the data; 90%, 97%, 96%, and 95% of the data points in

the Hα , Hβ , [O III], and [N II] lines are shown, respectively. The top row shows a direct comparison of line flux with the line

y = x shown in red. The corresponding distributions in the bottom row present the difference between the DR10 measurements

and those in this work. The σ value used is the uncertainties from each work added in quadrature.
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Using these observed fluxes and measured extinction, we can compute the intrinsic

line fluxes necessary to estimate host-galaxy properties. While DR10 uses the extinction

output by GANDALF, measured from the continuum, we employ Case B recombination,

which assumes a set ratio of intrinsic Hα and Hβ fluxes. The difference in measured

extinction values between the two methods is shown in Figure A.3. As expected, our

decision to use Case B recombination produces a much wider range of extinction values

than what is reported in DR10. This difference in extinction values translates to a differ-

ence in intrinsic flux measurements between the two works: those reported in DR10 are

systematically lower than those used here.

0.0 0.5 1.0 1.5
Extinction

0

200

400

600

800

N
um

be
r o

f G
al

ax
ie

s

This Work
  

DR10

Figure A.3: Comparison of extinction values used in this work (black) and in DR10 (red).

While this work uses Case B recombination to calculate the extinction, DR10 relies on

the GANDALF output as measured using the spectral continuum fit.

This difference in intrinsic flux measurements does not seem to translate to signifi-

cant differences in computed host-galaxy gas-phase metallicity. We compute the KD02

gas-phase metallicity (detailed in Section 3.5) using the intrinsic fluxes from DR10 and

this work, and present a comparison in Figure A.4. A physical metallicity measurement is

computed for 77% of the overlapping spectra; 54% have a physical metallicity measure-

ment and meet the A/N requirement. As displayed in the figure, the metallicities derived
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using the fluxes from this work slightly overestimate those obtained using the fluxes from

DR10; yet, 98% of the metallicities agree within 2σ .

8.4 8.6 8.8 9.0 9.2 9.4 9.6
8.4

8.6

8.8

9.0

9.2

9.4

9.6
12+log(O/H)KD02

8.4 8.6 8.8 9.0 9.2 9.4 9.6
This Work

8.4

8.6

8.8

9.0

9.2

9.4

9.6
D

R
10

-0.3 -0.2 -0.1 -0.0 0.1 0.2 0.3
12+log(O/H)This Work - 12+log(O/H)DR10

0

100

200

300

400

500

N
um

be
r o

f G
al

ax
ie

s

Figure A.4: Comparison of KD02 gas-phase metallicities derived using emission-line

fluxes from this work and DR10, where Hα and Hβ A/N > 2. Figure axes have been

truncated to focus on the bulk of the data; 96.7% of the data points are shown here.

A direct comparison of metallicity measurements is shown on the left (the line y = x

is plotted in red for comparison); the difference in metallicities is shown on the right.

The median and standard deviation of the difference, including outliers which are not

displayed, are −0.08 dex and 3.73 dex, respectively.

Because spectroscopic SFR is directly proportional to intrinsic Hα emission-line flux,

and thus affected by choice of extinction correction, we would not expect such close

agreement between the SFRs found in this work and those in DR10 (note Figure A.2

only compares observed fluxes). However, we would not expect that these differences in

computing SFR would significantly affect observed HR–SFR or HR–sSFR correlations.

This appendix illustrates that the decision to optimize our analysis of emission-line

spectra for our redshift range does not significantly affect the observed emission lines

extracted from GANDALF. Rather, the more important difference between this analysis and

that of DR10 is the treatment of extinction. The decision to use Case B recombination

when computing extinction affects the intrinsic emission-line flux measurements and thus
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creates an offset in host-property measurements. However, this is not concerning as any

true correlations between SN Ia properties and host-galaxy properties should be observed

independent of choice of extinction correction.

A.2 Correcting For Residual Trends with SN Color

An analysis of our measured HR as a function of SN Ia properties reveals correlations

between SN Ia luminosity and the SALT2 light-curve parameters c and x1. The trend with

x1 is not very strong but the trend with c is significant and shows evidence that bluer SNe

prefer a lower value of β , the slope of the color–luminosity relation (see Equation 3.1).

In Figure A.5 we show HR as a function of c and x1 for our PM sample.
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Figure A.5: HR as a function of SALT2 color (left panel) and stretch (right panel) for the

PM sample. Inverse-variance weighted average bins of width 0.025 dex and 0.5 dex, for

c and x1 respectively, are displayed in red; each bin contains at least 30 SNe Ia.

Scolnic et al. (2014b) showed that nonlinear correlations between color and HR should

be expected due to the asymmetric and narrow underlying distribution of color that corre-

lates with luminosity. They also predict similar relations between HR and color for mod-

els of varying intrinsic scatter and reddening components; namely one model in which in-

trinsic scatter is dominated by color variation (Chotard et al., 2011) and a color-luminosity
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relation following a Milky Way reddening law (β = 4.1) and a second model with scatter

dominated by luminosity variation and a color-luminosity relation following β = 3.1. In

particular, two distinct color–luminosity relations are observed for c < 0 and c > 0. This

effect is displayed in Figure A.5.

To examine this color effect on our HR–host-galaxy correlations, we recompute the

trends fitting for SN Ia color and host properties simultaneously using LINMIX. We ex-

pect that correcting for this correlation with c may weaken our host-galaxy correlations

slightly; but, as discussed in Scolnic et al. (2014b), accounting for this color variation is

not enough to explain the HR trend with host mass. When fitting for the HR–mass-color

relation using the PM sample, the slope of the mass term (−0.054± 0.015) is within

0.05σ of the slope recovered when fitting for the HR–mass relation only. We also re-

cover the sSFR slope of the HR–sSFR-color relation for the MZS sample within 0.05σ

(0.015±0.046) of the slope measured fitting only HR–sSFR. Interestingly, while the pos-

terior distributions of the mass (and sSFR) and color fit coefficients are Gaussian, the

distributions of the metallicity and color coefficients for the HR-metallicity-color rela-

tion are clearly skewed. Despite this skewness, we recover the metallicity coefficient

(−1.299± 0.860) within 1σ of the slope reported fitting the HR–metallicity relation for

the MZS sample. In all cases, we find the slope of the color term to be within 1σ of

−0.705±0.136.

It seems that including the HR–color correlation in our host-galaxy analysis does not

have much of an effect on the observed results. This analysis, however, is only a crude

estimate of these effects. LINMIX assumes a linear relation between HR and color, yet

in Figure A.5 it is apparent that the HR-color relation varies for low and high values of c.

Future works should consider a more robust statistical treatment of this effect.

A.3 PM Sample SN Ia and Host-Galaxy Data
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Table A.1. Properties of SNe Ia and their Host Galaxies

CID IAU Name? Type?,a Redshift? SALT2 c SALT2 x1 HRb(mag) DR8 HostID? BPTc log(M/M�)?,† 12 + log(O/H)† log(sSFR)† gFFd Source

703 ... P 0.30 −0.01±0.05 0.66±0.65 −0.15±0.17 1237663544222483004 1 9.96±0.13 8.92±0.05 −9.82±0.13 0.46 BOSS
762 2005eg S 0.19 −0.04±0.03 1.13±0.27 0.16±0.09 1237666338114765068 1 11.24±0.08 8.92±0.08 −10.16±0.09 0.21 SDSS
779 ... P 0.24 0.02±0.04 0.41±0.39 −0.10±0.12 1237657069548208337 3 10.10±0.09 −999.±−999. −999.±−999. 0.30 BOSS
822 ... P 0.24 −0.09±0.05 −0.58±0.58 0.24±0.16 1237657584950379049 3 10.02±0.15 −999.±−999. −999.±−999. 0.32 BOSS
859 ... P 0.28 0.02±0.04 0.46±0.51 −0.33±0.14 1237666408438301119 1 9.64±0.13 8.80±0.06 −8.91±0.13 0.42 BOSS
911 ... P 0.21 0.24±0.06 −0.48±0.73 −0.10±0.18 1237666407922467526 1 10.14±0.09 8.75±0.05 −9.13±0.09 0.18 BOSS
986 ... P 0.28 0.01±0.06 −0.21±1.09 0.09±0.25 1237663463145079009 1 10.26±0.10 8.61±0.17 −9.21±0.12 0.27 BOSS

1008 2005il P 0.23 −0.02±0.04 0.46±0.48 −0.11±0.11 1237678617430197147 2 10.61±0.14 9.00±0.11 −11.62±0.31 0.28 BOSS
1032 2005ez S 0.13 0.05±0.04 −2.54±0.20 −0.02±0.10 1237666302164664434 2 10.68±0.07 9.10±0.06 −11.38±0.09 0.46 SDSS
1112 2005fg S 0.26 −0.04±0.05 −0.53±0.71 0.10±0.18 1237663478724428434 10 11.35±0.06 8.93±0.09 −9.42±0.07 0.13 SDSS
1119 2005fc S 0.30 −0.14±0.06 0.86±1.38 0.30±0.28 1237663458851619714 0 10.80±0.07 8.99±0.02 −9.25±0.07 0.29 BOSS
1241 2005ff S 0.09 0.05±0.02 −0.54±0.08 −0.09±0.06 1237656567586226517 2 10.70±0.11 8.78±0.05 −9.33±0.11 0.13 BOSS
1253 2005fd S 0.26 −0.10±0.04 −0.93±0.47 −0.12±0.14 1237663457779384632 2 11.15±0.09 9.15±0.05 −11.55±0.12 0.22 BOSS
1354 ... P 0.25 0.20±0.08 −1.12±1.22 −0.15±0.30 1237663784195129684 1 10.63±0.08 8.88±0.02 −8.71±0.09 0.21 BOSS
1371 2005fh S 0.12 −0.10±0.02 0.79±0.10 −0.15±0.06 1237663277923106978 3 10.89±0.08 −999.±−999. −999.±−999. 0.45 SDSS
1415 ... P 0.21 0.17±0.04 0.92±0.50 −0.21±0.13 1237663716016980100 0 11.64±0.13 9.08±0.07 −11.34±0.16 0.29 SDSS
1658 ... P 0.28 0.00±0.05 0.43±0.47 0.06±0.15 1237657191977845356 1 9.73±0.12 8.57±0.95 −9.51±0.18 0.27 BOSS
1794 2005fj S 0.14 0.03±0.03 1.17±0.32 0.11±0.08 1237663542603809147 3 9.27±0.08 −999.±−999. −999.±−999. 0.21 BOSS
1979 ... P 0.29 0.01±0.06 −1.28±1.08 −0.16±0.26 1237678617406604390 1 9.74±0.17 8.78±0.16 −10.09±0.21 0.33 BOSS
2017 2005fo S 0.26 −0.11±0.04 1.37±0.56 0.30±0.16 1237663479793714269 1 10.55±0.08 9.09±0.03 −9.73±0.09 0.32 BOSS
2081 ... P 0.25 −0.10±0.05 −0.43±0.82 0.25±0.18 1237660024493834637 1 10.09±0.09 8.86±0.07 −9.43±0.10 0.53 SDSS
2149 ... P 0.30 −0.09±0.06 0.29±0.73 0.33±0.20 1237666338652487684 3 10.49±0.16 −999.±−999. −999.±−999. 0.35 BOSS
2330 2005fp S 0.21 0.02±0.06 −1.79±0.58 0.41±0.17 1237678434328183252 1 9.87±0.10 9.14±0.05 −10.42±0.13 0.28 BOSS
2372 2005ft S 0.18 0.03±0.03 0.31±0.22 −0.09±0.08 1237657070091108996 1 10.60±0.08 9.02±0.05 −9.90±0.08 0.31 BOSS
2440 2005fu S 0.19 −0.08±0.03 0.43±0.29 0.21±0.09 1237678617436487971 1 10.32±0.08 8.86±0.02 −8.82±0.08 0.28 BOSS
2532 ... P 0.27 0.00±0.05 0.89±0.63 0.21±0.19 1237663783672676591 20 11.44±0.10 9.06±0.13 −11.42±0.19 0.14 BOSS
2561 2005fv S 0.12 0.04±0.03 −0.08±0.11 0.04±0.06 1237678437019287600 1 10.76±0.06 8.78±0.07 −10.36±0.07 0.20 SDSS
2639 ... P 0.22 0.00±0.03 0.40±0.28 −0.33±0.10 1237663544219926794 0 10.92±0.07 9.55±0.05 −14.40±0.61 0.39 BOSS
2766 ... P 0.15 −0.05±0.03 −0.05±0.40 −0.06±0.09 1237666300019802272 0 11.25±0.11 8.98±0.05 −10.57±0.12 0.34 SDSS
2789 2005fx S 0.29 −0.11±0.05 −0.77±0.55 0.00±0.17 1237663444906017256 3 11.22±0.17 −999.±−999. −999.±−999. 0.25 BOSS
2855 ... P 0.25 −0.04±0.04 0.66±0.43 −0.01±0.15 1237663783667630515 1 9.71±0.11 8.95±0.06 −9.34±0.12 0.38 BOSS
2871 ... P 0.29 −0.04±0.02 −0.77±0.96 0.14±0.21 1237663782590873812 0 11.30±0.11 9.20±11.14 −10.04±0.31 0.27 BOSS
2992 2005gp S 0.13 0.10±0.03 −0.96±0.14 −0.20±0.07 1237663237667553616 1 10.23±0.06 8.83±0.06 −9.85±0.06 0.29 SDSS
3080 2005ga S 0.17 −0.05±0.02 0.11±0.19 −0.13±0.07 1237666338115354816 2 10.96±0.11 8.91±0.04 −9.91±0.11 0.26 BOSS
3087 2005gc S 0.17 0.01±0.02 0.53±0.19 −0.09±0.07 1237666338116927817 1 9.66±0.09 8.61±0.09 −9.49±0.10 0.20 BOSS
3317 2005gd S 0.16 0.02±0.03 −0.51±0.19 −0.14±0.07 1237657071695823233 1 10.05±0.07 8.96±0.05 −9.72±0.08 0.20 BOSS
3426 ... P 0.23 −0.15±0.03 −0.28±0.44 0.20±0.12 1237663479799415139 0 11.04±0.09 8.87±0.04 −9.22±0.09 0.26 BOSS
3451 2005gf S 0.25 −0.07±0.03 0.75±0.33 −0.14±0.11 1237663544221499805 0 10.84±0.12 8.96±0.05 −10.35±0.14 0.31 BOSS
3452 2005gg S 0.23 −0.08±0.03 0.89±0.27 −0.03±0.09 1237663544221762366 1 9.23±0.09 8.73±0.82 −8.99±0.12 0.33 BOSS
3565 ... P 0.29 −0.19±0.05 −1.15±0.49 0.22±0.17 1237657191980073195 2 11.95±0.13 9.03±0.16 −10.46±0.19 0.21 SDSS
3592 2005gb S 0.09 −0.04±0.02 −0.14±0.07 −0.02±0.06 1237663204922491010 2 10.74±0.07 9.00±0.03 −9.53±0.07 0.21 SDSS
3887 ... P 0.30 0.03±0.08 −2.69±1.01 −0.28±0.30 1237663784202207497 0 10.86±0.11 −999.±−999. −9.05±0.12 0.37 BOSS
3945 ... P 0.26 −0.16±0.34 0.49±0.09 0.35±0.84 1237663783654392436 2 9.76±0.11 8.74±0.07 −9.31±0.12 0.40 BOSS
4000 2005gt S 0.28 −0.01±0.06 −1.04±0.61 0.10±0.21 1237663783674118396 10 10.92±0.08 8.88±0.16 −10.49±0.18 0.21 BOSS
4019 ... P 0.18 0.16±0.04 0.51±0.28 −0.08±0.09 1237657192516354264 1 11.04±0.07 9.05±0.05 −9.80±0.08 0.30 SDSS
4046 2005gw S 0.28 −0.01±0.04 0.81±0.52 0.01±0.16 1237657191976534239 1 9.36±0.31 8.99±0.03 −7.81±0.31 0.56 BOSS
4181 ... P 0.29 −0.09±0.04 1.88±0.73 0.26±0.18 1237663782603325756 3 10.44±0.08 −999.±−999. −999.±−999. 0.31 BOSS
4206 ... P 0.29 0.03±0.07 −1.52±0.64 −0.06±0.21 1237666407366328709 1 11.01±0.15 8.91±0.07 −9.68±0.15 0.33 BOSS
4311 ... P 0.30 −0.02±0.05 0.09±0.52 −0.17±0.18 1237678617431900508 3 10.48±0.08 −999.±−999. −999.±−999. 0.34 BOSS
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Table A.1 (cont’d)

CID IAU Name? Type?,a Redshift? SALT2 c SALT2 x1 HRb(mag) DR8 HostID? BPTc log(M/M�)?,† 12 + log(O/H)† log(sSFR)† gFFd Source

4676 ... P 0.25 −0.09±0.03 0.60±0.11 0.06±0.09 1237663204922425799 1 10.27±0.12 8.80±0.11 −9.07±0.12 0.35 BOSS
5103 2005gx S 0.16 0.02±0.03 −0.23±0.15 −0.09±0.07 1237657191978893955 1 9.09±0.08 8.43±0.33 −8.47±0.10 0.34 BOSS
5199 ... P 0.22 0.13±0.05 0.77±0.56 0.24±0.15 1237656906350199183 1 9.54±0.11 8.78±0.10 −9.43±0.14 0.41 BOSS
5235 ... P 0.25 0.01±0.05 −0.47±0.40 −0.03±0.14 1237663544222876100 1 9.01±0.18 8.47±0.39 −9.30±0.30 0.83 BOSS
5473 ... P 0.28 −0.07±0.05 −1.07±0.43 0.08±0.16 1237666408440135898 0 11.29±0.14 9.19±0.06 −12.08±0.33 0.23 BOSS
5486 ... P 0.23 0.06±0.05 1.27±0.60 0.13±0.15 1237663478721872641 1 10.22±0.08 8.79±0.04 −9.23±0.09 0.23 BOSS
5533 2005hu S 0.22 0.02±0.03 −0.06±0.28 −0.01±0.08 1237663543682270143 1 9.96±0.09 8.52±0.11 −9.47±0.10 0.17 BOSS
5549 2005hx S 0.12 0.00±0.02 0.25±0.10 0.00±0.05 1237657191443530063 1 8.72±0.10 8.50±0.18 −9.40±0.14 0.52 BOSS
5550 2005hy S 0.16 −0.05±0.02 1.91±0.20 0.03±0.06 1237657191443661086 1 9.56±0.10 8.64±0.04 −8.98±0.10 0.26 BOSS
5635 2005hv S 0.18 −0.03±0.04 0.06±0.41 0.40±0.10 1237663543147364468 3 9.48±0.07 −999.±−999. −999.±−999. 0.41 BOSS
5751 2005hz S 0.13 0.15±0.02 0.65±0.11 −0.09±0.05 1237663204919279814 1 10.78±0.10 9.06±0.04 −9.61±0.10 0.18 BOSS
5776 ... P 0.24 −0.17±0.06 0.11±0.51 0.38±0.17 1237656568119099748 0 11.18±0.09 8.88±0.06 −10.76±0.13 0.24 BOSS
5890 ... P 0.18 −0.01±0.04 0.11±0.31 0.05±0.09 1237663479795286373 2 10.74±0.09 8.97±0.02 −9.76±0.10 0.30 BOSS
5917 ... P 0.30 −0.10±0.04 0.35±0.49 −0.18±0.13 1237663783663174738 3 9.88±0.19 −999.±−999. −999.±−999. 0.21 BOSS
5957 2005ie S 0.28 −0.11±0.04 −0.11±0.44 0.08±0.12 1237663783675756839 1 10.46±0.09 9.05±0.03 −9.39±0.09 0.40 BOSS
5959 ... P 0.21 −0.07±0.03 −0.17±0.26 0.07±0.08 1237663783677198401 2 11.16±0.14 9.04±0.10 −9.97±0.15 0.12 BOSS
5963 ... P 0.24 0.00±0.04 −0.07±0.37 −0.18±0.10 1237663716019208746 1 10.36±0.09 8.88±0.05 −9.58±0.10 0.23 BOSS
6192 2005jy S 0.27 −0.05±0.05 −1.94±0.79 −0.06±0.17 1237678617412764350 1 9.64±0.12 8.22±1.19 −9.45±0.18 0.24 BOSS
6196 2005ig S 0.28 −0.01±0.05 −1.44±0.59 −0.33±0.14 1237663542612460262 3 11.41±0.15 −999.±−999. −999.±−999. 0.26 BOSS
6249 2005ii S 0.30 0.03±0.05 0.60±0.70 −0.04±0.16 1237657190369788342 1 10.05±0.12 10.68±−999. −999.±−999. 0.28 BOSS
6275 ... P 0.27 0.14±0.05 −0.15±0.67 −0.36±0.15 1237663784212562431 1 11.07±0.12 8.85±0.07 −9.45±0.13 0.33 BOSS
6304 2005jk S 0.19 0.07±0.03 −0.49±0.39 −0.09±0.09 1237678617429410146 1 10.66±0.06 8.84±0.07 −9.51±0.07 0.14 BOSS
6406 2005ij S 0.12 0.00±0.02 0.13±0.13 −0.10±0.06 1237660024523915530 1 10.55±0.06 8.85±0.05 −9.71±0.07 0.23 SDSS
6422 2005id S 0.19 −0.11±0.02 0.82±0.22 0.04±0.07 1237663783118897693 1 9.77±0.09 8.79±0.07 −9.52±0.11 0.28 BOSS
6431 ... P 0.26 −0.12±0.07 −2.24±0.60 0.20±0.20 1237663783126958311 0 11.20±0.11 8.54±0.20 −10.39±0.22 0.26 BOSS
6479 ... P 0.23 0.00±0.03 −0.72±0.45 −0.19±0.11 1237678617400509664 2 10.35±0.09 8.81±0.04 −9.52±0.09 0.38 BOSS
6530 ... P 0.19 −0.09±0.04 −1.53±0.03 0.04±0.09 1237663784203649195 3 10.34±0.10 −999.±−999. −999.±−999. 0.51 BOSS
6556 ... P 0.26 0.13±0.05 −0.92±0.57 −0.48±0.13 1237663782589825292 0 11.15±0.07 9.03±0.03 −9.66±0.07 0.21 BOSS
6560 ... P 0.27 −0.02±0.08 −1.12±1.06 0.14±0.22 1237663458852078081 1 9.70±0.09 8.64±0.11 −9.03±0.12 0.37 BOSS
6709 ... P 0.28 0.05±0.09 −1.22±1.06 0.18±0.26 1237663277925139062 2 11.60±0.10 8.78±0.11 −9.09±0.11 0.16 BOSS
6780 2005iz S 0.20 −0.04±0.04 −1.77±0.38 −0.11±0.11 1237663543682007593 10 11.27±0.09 9.13±0.19 −13.59±0.36 0.21 BOSS
6895 ... P 0.22 0.17±0.04 0.20±0.51 −0.35±0.11 1237678617404768743 2 11.29±0.11 9.26±0.08 −11.44±0.18 0.10 BOSS
6903 ... P 0.25 0.00±0.05 −1.44±0.60 −0.21±0.15 1237678617407062453 0 11.45±0.09 8.67±0.10 −10.33±0.12 0.25 BOSS
6936 2005jl S 0.18 −0.02±0.03 0.03±0.31 0.02±0.08 1237656567579870979 1 10.26±0.08 8.90±0.05 −9.44±0.08 0.17 BOSS
7099 ... P 0.22 −0.03±0.03 1.31±0.32 −0.18±0.09 1237678617410338948 1 10.80±0.05 9.18±0.13 −12.03±0.13 0.19 BOSS
7147 2005jh S 0.11 −0.10±0.02 −1.94±0.14 0.03±0.06 1237657190900826305 0 10.56±0.06 −999.±−999. −9.45±0.23 0.25 BOSS
7243 2005jm S 0.20 −0.02±0.04 0.68±0.39 0.01±0.11 1237663479793386066 1 9.22±0.13 8.20±0.30 −9.11±0.14 0.33 BOSS
7258 ... P 0.25 −0.06±0.04 1.45±0.96 0.57±0.18 1237657189814501509 1 11.19±0.11 11.71±57.26 −8.99±0.60 0.28 BOSS
7373 ... P 0.28 −0.07±0.04 1.52±0.52 0.13±0.13 1237663277924614415 1 10.55±0.07 9.03±0.02 −9.13±0.08 0.33 BOSS
7444 ... P 0.25 0.00±0.04 0.95±0.54 0.32±0.15 1237663784746418640 1 9.95±0.11 8.79±0.07 −9.47±0.12 0.33 BOSS
7600 ... P 0.19 0.00±0.04 −2.40±0.36 −0.08±0.10 1237663275774836989 0 11.08±0.09 9.18±0.09 −11.74±0.20 0.25 BOSS
7847 2005jp S 0.21 0.12±0.03 0.14±0.40 −0.16±0.10 1237666407919780198 3 10.70±0.14 −999.±−999. −999.±−999. 0.33 BOSS
8046 2005ju S 0.26 0.05±0.05 0.23±0.49 0.00±0.14 1237663784751399105 20 11.33±0.09 −999.±−999. −8.67±0.12 0.21 BOSS
8195 ... P 0.27 0.14±0.06 1.27±0.94 −0.05±0.23 1237657189818761524 2 11.79±0.13 8.89±0.13 −10.07±0.14 0.29 SDSS
8213 2005ko S 0.19 0.16±0.04 −0.66±0.34 −0.17±0.10 1237656906354000314 2 10.52±0.17 9.12±0.07 −10.52±0.18 0.26 BOSS
8216 ... P 0.29 0.06±0.06 −0.69±0.63 −0.09±0.19 1237663543146513432 1 9.78±0.12 8.89±0.09 −9.42±0.13 0.38 BOSS
8254 ... P 0.19 0.05±0.05 −0.89±0.42 0.11±0.12 1237663462607487236 1 9.72±0.08 8.64±0.04 −9.30±0.08 0.37 BOSS
8495 2005mi S 0.22 −0.02±0.04 0.73±0.46 −0.05±0.11 1237656567585177898 2 11.03±0.06 9.02±0.02 −9.66±0.07 0.19 BOSS
8555 ... P 0.20 0.12±0.04 −1.19±0.39 0.31±0.12 1237663783661797768 1 9.97±0.08 8.96±0.05 −9.21±0.09 0.62 SDSS
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CID IAU Name? Type?,a Redshift? SALT2 c SALT2 x1 HRb(mag) DR8 HostID? BPTc log(M/M�)?,† 12 + log(O/H)† log(sSFR)† gFFd Source

8719 2005kp S 0.12 −0.06±0.02 0.01±0.17 0.02±0.06 1237663783127023965 1 9.31±0.07 8.19±0.27 −8.63±0.09 0.22 BOSS
8921 2005ld S 0.15 −0.02±0.03 0.79±0.25 0.03±0.07 1237663543143825907 1 10.22±0.06 8.70±0.03 −9.02±0.06 0.16 BOSS
9109 ... P 0.28 −0.14±0.04 0.38±0.42 0.04±0.13 1237663785282699688 1 9.36±0.17 9.29±7.57 −8.86±0.22 0.46 BOSS
9457 2005li S 0.26 −0.01±0.06 −0.34±0.60 −0.06±0.17 1237663543685415622 20 11.13±0.15 8.89±0.08 −10.68±0.17 0.25 BOSS
9467 2005lh S 0.22 −0.15±0.02 −1.37±0.01 0.24±0.08 1237678595929407536 0 10.93±0.08 8.66±0.10 −9.67±0.09 0.19 BOSS
9594 ... P 0.30 0.14±0.08 −0.35±0.99 −0.42±0.23 1237663784205156941 0 11.03±0.11 8.96±0.08 −11.35±0.25 0.29 BOSS

10037 ... P 0.25 0.02±0.08 −1.00±0.62 0.09±0.23 1237678617936986968 0 11.11±0.14 8.64±0.07 −10.17±0.16 0.31 BOSS
10299 ... P 0.26 −0.03±0.07 0.99±1.17 0.33±0.24 1237663480336417538 1 9.68±0.13 8.64±0.07 −9.11±0.13 0.31 BOSS
10559 ... P 0.28 0.02±0.06 1.18±0.62 0.00±0.18 1237663275777720792 0 10.76±0.10 8.87±0.06 −9.58±0.12 0.28 BOSS
11306 ... P 0.27 −0.04±0.07 0.56±0.79 −0.04±0.20 1237666300021506130 2 11.30±0.13 9.11±0.16 −10.33±0.15 0.31 SDSS
12781 2006er S 0.08 0.04±0.03 −1.83±0.19 0.18±0.08 1237657189833834706 0 10.94±0.08 9.08±0.07 −11.65±0.15 0.24 SDSS
12804 ... P 0.13 0.03±0.03 0.41±0.32 0.06±0.08 1237663278472626412 1 9.57±0.07 8.72±0.02 −9.26±0.07 0.33 BOSS
12841 2006gk S 0.29 −0.11±0.11 −0.69±1.08 −0.01±0.22 1237657189814567778 1 10.12±0.13 9.08±0.04 −10.16±0.14 0.20 BOSS
12843 2006fa S 0.17 0.04±0.04 −1.01±0.30 −0.29±0.09 1237657189815681386 0 11.26±0.09 9.19±0.05 −12.67±0.34 0.30 SDSS
12856 2006fl S 0.17 −0.09±0.02 0.87±0.20 0.04±0.07 1237663544220975551 1 10.35±0.05 8.95±0.06 −9.60±0.07 0.23 SDSS
12860 2006fc S 0.12 0.14±0.03 −0.30±0.20 0.05±0.07 1237678617938821532 1 10.61±0.05 8.83±0.04 −9.31±0.06 0.15 BOSS
12875 ... P 0.26 0.02±0.09 −1.04±0.63 0.13±0.23 1237657190903972226 0 10.06±0.15 8.93±0.06 −9.91±0.17 0.49 BOSS
12881 2006gu S 0.24 0.02±0.03 0.88±0.54 −0.12±0.13 1237657190909673909 1 9.68±0.11 8.92±0.10 −9.36±0.14 0.44 BOSS
12898 2006fw S 0.08 0.06±0.02 −0.05±0.09 0.01±0.06 1237666407917289559 3 9.95±0.05 −999.±−999. −999.±−999. 0.25 BOSS
12930 2006ex S 0.15 0.02±0.03 1.89±0.40 0.14±0.10 1237663542600205560 1 10.90±0.06 10.68±−999. −999.±−999. 0.16 SDSS
12971 2006ff S 0.24 −0.08±0.03 1.12±0.53 −0.05±0.13 1237663783663436008 3 11.60±0.10 −999.±−999. −999.±−999. 0.29 SDSS
12977 2006gh S 0.25 −0.04±0.04 0.06±0.51 −0.10±0.13 1237663783666516561 1 9.61±0.10 8.54±0.14 −9.23±0.12 0.29 BOSS
13016 ... P 0.25 −0.10±0.05 −0.05±0.51 0.24±0.15 1237663785282306656 1 9.53±0.23 8.66±1.24 −9.43±0.28 0.33 BOSS
13025 2006fx S 0.22 0.04±0.03 0.73±0.31 0.08±0.09 1237663543687905672 1 10.84±0.05 9.03±0.03 −9.61±0.06 0.16 BOSS
13044 2006fm S 0.13 −0.07±0.02 −0.02±0.13 0.04±0.06 1237663479795287086 1 9.91±0.07 8.90±0.04 −9.81±0.08 0.09 BOSS
13070 2006fu S 0.20 −0.15±0.03 0.96±0.28 0.09±0.08 1237663783122698517 1 10.27±0.06 8.86±0.06 −9.37±0.08 0.37 SDSS
13099 2006gb S 0.27 −0.01±0.04 0.31±0.58 0.06±0.15 1237663275780210858 1 10.86±0.08 9.05±0.04 −9.50±0.09 0.34 SDSS
13135 2006fz S 0.10 −0.06±0.02 −1.40±0.07 0.01±0.05 1237657190370181351 3 11.13±0.08 −999.±−999. −999.±−999. 0.30 SDSS
13152 2006gg S 0.20 −0.01±0.02 0.30±0.25 −0.18±0.07 1237663784200503825 1 9.39±0.10 8.54±0.09 −9.10±0.10 0.41 BOSS
13305 2006he S 0.21 −0.02±0.03 1.01±0.30 0.00±0.09 1237663544220189296 1 10.05±0.08 8.60±0.07 −8.66±0.09 0.24 BOSS
13323 ... P 0.23 0.02±0.04 0.36±0.47 0.16±0.12 1237663543142974216 1 10.08±0.08 8.77±0.05 −9.02±0.08 0.25 BOSS
13334 ... P 0.25 0.21±0.08 −0.75±0.74 0.06±0.21 1237663543679190385 1 10.02±0.17 9.05±0.08 −10.14±0.18 0.56 BOSS
13354 2006hr S 0.16 0.09±0.03 1.05±0.17 −0.11±0.07 1237657069548601421 1 10.47±0.08 8.98±0.03 −9.28±0.08 0.36 SDSS
13432 ... P 0.23 0.07±0.09 −1.36±1.00 −0.03±0.26 1237656567040902467 3 10.38±0.07 −999.±−999. −999.±−999. 0.35 BOSS
13441 ... P 0.29 0.03±0.05 0.43±0.88 −0.05±0.19 1237663783654785302 3 11.13±0.11 8.69±0.12 −10.19±0.21 0.11 BOSS
13465 ... P 0.29 0.07±0.09 −0.96±0.92 0.12±0.26 1237663784192508693 1 9.65±0.11 8.69±0.10 −9.08±0.13 0.42 BOSS
13476 ... P 0.28 0.12±0.05 0.81±0.79 0.15±0.17 1237663783121912302 1 9.96±0.14 8.82±0.14 −9.95±0.16 0.34 BOSS
13487 ... P 0.29 0.03±0.06 −1.25±0.48 −0.04±0.17 1237663784212759337 3 11.10±0.17 −999.±−999. −999.±−999. 0.20 BOSS
13506 2006hg S 0.24 0.12±0.05 −0.10±0.65 0.04±0.15 1237663783134691657 3 10.19±0.08 −999.±−999. −999.±−999. 0.38 BOSS
13511 2006hh S 0.24 −0.10±0.04 −1.42±0.46 0.27±0.12 1237663783141441728 2 11.41±0.13 8.93±0.12 −10.38±0.15 0.32 SDSS
13520 ... P 0.27 0.07±0.05 0.03±0.63 −0.30±0.16 1237666339189227760 0 10.49±0.09 8.89±0.08 −10.58±0.12 0.45 BOSS
13610 2006hd S 0.30 −0.10±0.04 0.16±0.54 −0.15±0.15 1237678617402933784 1 10.47±0.10 8.88±0.03 −8.86±0.11 0.59 SDSS
13647 ... P 0.25 −0.02±0.06 −1.09±0.70 −0.10±0.18 1237657189831606432 0 11.21±0.11 8.98±0.12 −11.65±0.41 0.21 BOSS
13689 ... S 0.25 −0.12±0.01 1.18±0.39 0.11±0.08 1237657191980728518 1 10.45±0.07 8.98±0.02 −8.96±0.08 0.22 BOSS
13703 ... P 0.24 −0.02±0.03 −0.15±0.27 −0.07±0.09 1237678617971785824 2 11.30±0.12 8.90±0.03 −9.65±0.12 0.24 BOSS
13727 2006hj S 0.23 −0.03±0.03 1.32±0.35 0.00±0.10 1237678617936135644 1 9.95±0.09 8.72±0.08 −9.36±0.10 0.18 BOSS
13736 2006hv S 0.15 −0.03±0.02 1.12±0.17 0.04±0.06 1237678617407717964 1 9.68±0.08 8.81±0.06 −9.97±0.09 0.22 BOSS
13796 2006hl S 0.15 −0.02±0.02 0.80±0.12 −0.13±0.06 1237663277923696964 3 10.33±0.06 −999.±−999. −999.±−999. 0.15 BOSS
13835 2006hp S 0.25 −0.05±0.03 0.61±0.26 −0.06±0.09 1237663783663173820 1 10.51±0.06 8.96±0.02 −9.43±0.07 0.27 BOSS
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13896 ... P 0.16 0.07±0.04 −0.57±0.39 0.64±0.10 1237657190906397233 2 8.95±0.13 8.80±0.08 −9.79±0.15 0.43 BOSS
13897 ... P 0.23 0.08±0.04 0.54±0.53 0.08±0.14 1237657190907904102 1 10.54±0.06 8.93±0.02 −9.39±0.06 0.38 BOSS
13907 ... P 0.20 0.13±0.04 −0.21±0.30 −0.15±0.10 1237666339724788003 2 11.16±0.15 9.07±0.07 −10.82±0.17 0.23 BOSS
13909 ... P 0.29 −0.11±0.04 0.88±0.39 0.23±0.13 1237666339725771307 3 9.76±0.15 −999.±−999. −999.±−999. 0.18 BOSS
13971 ... P 0.26 0.00±0.06 −0.34±0.68 0.21±0.19 1237678617428165272 1 10.22±0.13 8.42±0.16 −8.95±0.17 0.24 BOSS
14024 2006ht S 0.15 0.04±0.04 −1.92±0.20 −0.05±0.12 1237678617936396489 3 8.93±0.21 −999.±−999. −999.±−999. 1.13 BOSS
14074 ... P 0.26 0.12±0.06 0.72±0.65 0.10±0.17 1237660025032802799 1 9.82±0.10 8.50±0.12 −9.12±0.13 0.25 BOSS
14113 ... P 0.24 0.17±0.04 −0.64±0.63 −0.56±0.14 1237663783136067815 1 10.27±0.08 9.13±0.07 −9.61±0.09 0.36 BOSS
14212 2006iy S 0.20 −0.04±0.03 −0.31±0.18 0.06±0.08 1237678595930063495 1 10.50±0.11 8.93±0.12 −10.72±0.12 0.31 BOSS
14261 2006jk S 0.29 −0.04±0.05 0.68±0.49 −0.19±0.13 1237663543682073622 2 9.13±0.09 9.03±0.07 −9.43±0.11 0.58 BOSS
14284 2006ib S 0.18 −0.07±0.02 −0.29±0.17 −0.23±0.06 1237666300018163914 −999 10.57±0.12 −999.±−999. −999.±−999. −999. SDSS
14331 2006kl S 0.22 0.01±0.04 0.17±0.30 0.14±0.11 1237657190908690822 1 9.70±0.10 8.42±0.47 −8.90±0.13 0.24 BOSS
14333 ... P 0.27 −0.12±0.04 −0.47±0.40 0.14±0.13 1237666339188834503 3 11.00±0.10 −999.±−999. −999.±−999. 0.38 BOSS
14340 ... P 0.28 0.02±0.05 −0.77±0.57 −0.20±0.17 1237656906348888177 3 11.53±0.11 −999.±−999. −999.±−999. 0.41 SDSS
14403 ... P 0.29 −0.13±0.05 −0.77±0.47 0.26±0.16 1237663204921508635 10 10.17±0.13 8.81±0.11 −9.51±0.15 0.40 BOSS
14421 2006ia S 0.17 −0.09±0.03 −0.68±0.19 0.10±0.08 1237680099167109192 2 11.56±0.08 8.97±0.07 −11.13±0.15 0.16 SDSS
14437 2006hy S 0.15 −0.10±0.03 0.62±0.12 −0.05±0.06 1237656567046865251 2 10.19±0.13 8.83±0.09 −10.12±0.14 0.44 BOSS
14438 ... P 0.30 −0.09±0.04 1.56±0.62 0.09±0.15 1237660024495014189 3 9.68±0.08 −999.±−999. −999.±−999. 0.44 BOSS
14444 ... P 0.25 −0.16±0.04 −1.08±0.35 0.32±0.12 1237656567585768071 3 10.95±0.10 −999.±−999. −999.±−999. 0.24 BOSS
14445 ... P 0.24 0.01±0.06 −2.37±0.45 0.10±0.17 1237660025032278372 10 11.40±0.11 −999.±−999. −10.46±0.24 0.28 BOSS
14470 ... P 0.20 −0.01±0.02 −0.31±0.22 −0.15±0.07 1237663783679885795 3 10.15±0.16 −999.±−999. −999.±−999. 0.33 BOSS
14481 2006lj S 0.24 −0.13±0.05 −1.06±0.40 0.28±0.14 1237663784198537430 0 11.21±0.12 8.93±0.03 −10.18±0.12 0.23 BOSS
14524 ... P 0.27 0.07±0.05 −0.22±0.50 0.04±0.15 1237663783141835725 10 10.78±0.06 9.00±0.03 −9.05±0.07 0.33 BOSS
14784 ... P 0.19 0.11±0.04 0.66±0.38 0.16±0.11 1237663457242514193 2 10.72±0.10 8.89±0.04 −9.73±0.10 0.28 BOSS
14846 2006jn S 0.22 −0.05±0.03 0.65±0.29 0.04±0.10 1237663784200765533 1 11.08±0.07 9.04±0.03 −9.58±0.07 0.21 BOSS
14965 ... P 0.28 0.01±0.05 0.03±0.52 −0.27±0.14 1237663785279422932 1 10.01±0.11 8.50±0.17 −9.17±0.12 0.24 BOSS
15033 ... P 0.22 0.07±0.06 −1.67±0.49 0.04±0.18 1237666339188637777 0 11.37±0.08 9.68±0.08 −999.±−999. 0.22 BOSS
15057 2006md P 0.25 −0.03±0.06 −2.38±0.58 0.25±0.18 1237666339726426556 1 9.59±0.11 8.36±0.26 −9.10±0.12 0.40 BOSS
15129 2006kq S 0.20 −0.07±0.03 −0.69±0.23 −0.03±0.09 1237663457240351218 1 10.97±0.08 8.98±0.04 −9.82±0.08 0.29 SDSS
15137 ... P 0.28 −0.08±0.05 −0.69±0.47 0.08±0.14 1237663783121912544 2 10.42±0.13 8.72±0.07 −9.53±0.14 0.40 BOSS
15160 ... P 0.25 0.13±0.05 −0.76±0.43 −0.19±0.14 1237657190367625928 1 10.24±0.09 9.00±0.04 −9.33±0.10 0.25 BOSS
15161 2006jw S 0.25 −0.08±0.04 −0.26±0.25 0.00±0.10 1237657587095765661 1 11.06±0.08 9.02±0.12 −9.91±0.10 0.14 SDSS
15198 ... P 0.29 −0.07±0.03 0.28±0.35 0.00±0.11 1237663783675691751 1 9.57±0.14 8.77±0.20 −9.68±0.21 0.29 BOSS
15201 2006ks S 0.21 0.12±0.04 −1.25±0.48 0.30±0.12 1237663479260643634 0 11.31±0.10 8.86±0.31 −11.53±0.53 0.16 BOSS
15203 2006jy S 0.20 −0.01±0.03 1.16±0.28 0.01±0.08 1237663784204304772 3 10.22±0.08 −999.±−999. −999.±−999. 0.45 BOSS
15219 2006ka S 0.25 −0.14±0.03 −0.15±0.39 0.08±0.10 1237666408457568503 2 11.08±0.09 8.85±0.04 −9.63±0.09 0.30 BOSS
15222 2006jz S 0.20 0.01±0.03 −1.33±0.29 −0.14±0.10 1237657191980204184 3 11.57±0.12 −999.±−999. −999.±−999. 0.21 SDSS
15226 ... P 0.29 0.09±0.07 −1.16±0.53 −0.27±0.18 1237657071698707180 3 10.68±0.12 −999.±−999. −999.±−999. 0.45 BOSS
15234 2006kd S 0.14 0.13±0.03 0.90±0.21 0.25±0.07 1237663204921573628 1 10.52±0.07 9.08±0.05 −10.00±0.08 0.29 SDSS
15260 ... P 0.25 0.15±0.04 1.33±0.45 −0.22±0.13 1237663478724494011 1 10.44±0.13 9.00±0.04 −9.65±0.13 0.32 BOSS
15268 ... P 0.30 −0.11±0.04 0.51±0.67 0.09±0.16 1237663479261037240 1 9.51±0.07 8.53±0.12 −8.72±0.10 0.38 BOSS
15272 ... P 0.28 0.00±0.05 −1.10±0.60 −0.29±0.15 1237663784193360056 0 11.66±0.09 8.97±0.03 −9.90±0.10 0.17 BOSS
15287 2006kt S 0.24 −0.03±0.03 1.09±0.31 0.11±0.09 1237656567043327064 3 10.62±0.17 −999.±−999. −999.±−999. 0.35 BOSS
15301 2006lo P 0.18 −0.02±0.03 −0.33±0.23 0.05±0.08 1237663458316125530 1 10.12±0.09 9.00±0.05 −10.24±0.10 0.33 BOSS
15325 ... P 0.21 0.04±0.04 −0.36±0.35 −0.04±0.10 1237663783137771858 0 10.95±0.10 9.80±0.08 −15.29±4059.13 0.33 BOSS
15347 ... P 0.27 0.00±0.05 −0.85±0.44 −0.30±0.15 1237678617939543280 0 10.74±0.15 9.04±0.05 −10.51±0.16 0.38 BOSS
15356 2006lm S 0.27 −0.04±0.04 −0.64±0.50 −0.18±0.14 1237663543685087893 0 10.74±0.19 8.95±0.18 −11.34±0.60 0.38 BOSS
15365 2006ku S 0.19 −0.06±0.03 0.79±0.23 0.08±0.08 1237678617415450837 2 11.18±0.09 9.00±0.03 −9.70±0.09 0.19 BOSS
15419 ... P 0.28 −0.07±0.04 −0.37±0.48 −0.03±0.13 1237663785279816317 3 9.74±0.18 −999.±−999. −999.±−999. 0.52 BOSS
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15421 2006kw S 0.19 −0.04±0.03 0.20±0.26 0.13±0.07 1237663784749039900 1 10.17±0.07 8.85±0.05 −9.66±0.08 0.35 SDSS
15425 2006kx S 0.16 0.00±0.03 0.98±0.17 −0.26±0.06 1237663239278231823 0 10.53±0.07 9.00±0.05 −11.14±0.19 0.60 SDSS
15433 2006mt S 0.22 −0.06±0.03 −0.06±0.27 0.01±0.09 1237663783667040480 2 10.81±0.09 8.82±0.07 −9.71±0.10 0.30 BOSS
15440 2006lr S 0.26 0.06±0.04 −0.56±0.53 −0.21±0.13 1237663784214790662 2 10.85±0.14 8.88±0.07 −10.18±0.16 0.30 BOSS
15443 2006lb S 0.18 −0.04±0.02 1.57±0.18 −0.09±0.06 1237660240313581839 1 10.34±0.06 8.92±0.04 −9.69±0.08 0.41 SDSS
15459 2006la S 0.13 0.11±0.03 0.38±0.22 0.47±0.07 1237656906346660220 1 9.08±0.07 8.55±0.07 −9.44±0.07 0.36 BOSS
15461 2006kz S 0.19 −0.11±0.03 −0.18±0.21 −0.01±0.07 1237663542607741904 1 10.52±0.08 9.05±0.06 −10.08±0.09 0.15 BOSS
15466 2006mz S 0.25 0.01±0.05 −1.05±0.40 −0.25±0.13 1237663543140550186 3 10.62±0.07 −999.±−999. −999.±−999. 0.29 BOSS
15467 ... S 0.21 −0.09±0.03 0.81±0.26 −0.02±0.08 1237663543141597901 1 10.43±0.05 9.00±0.03 −9.48±0.06 0.39 SDSS
15496 ... P 0.23 −0.05±0.03 1.01±0.28 0.05±0.09 1237657191445627367 0 8.86±0.17 9.55±0.08 −13.50±1.31 0.30 BOSS
15508 2006ls S 0.13 −0.06±0.02 0.88±0.11 0.00±0.06 1237666407380549827 3 9.96±0.07 −999.±−999. −999.±−999. 0.10 BOSS
15535 ... P 0.20 0.04±0.04 −1.82±0.58 0.12±0.13 1237663783661339126 3 10.49±0.15 −999.±−999. −999.±−999. 0.35 BOSS
15584 2006nt S 0.28 −0.05±0.04 0.39±0.42 −0.08±0.13 1237678437018042944 2 10.90±0.13 9.01±0.08 −9.05±0.15 0.19 BOSS
15587 ... P 0.22 −0.01±0.04 −0.01±0.27 −0.04±0.09 1237660241926226266 2 10.70±0.07 8.97±0.03 −9.74±0.07 0.35 SDSS
15603 ... P 0.26 0.12±0.06 −0.99±0.68 −0.20±0.18 1237663275778507207 2 10.49±0.15 8.79±0.10 −9.53±0.17 0.33 BOSS
15648 2006ni S 0.17 0.11±0.05 −1.38±0.35 −0.06±0.11 1237663543138845573 2 11.34±0.09 9.15±0.07 −12.74±0.26 0.37 SDSS
15663 ... P 0.29 −0.04±0.05 −0.75±0.61 −0.22±0.17 1237678595932684553 1 10.55±0.14 9.05±0.06 −10.30±0.14 0.34 BOSS
15675 ... P 0.23 −0.05±0.05 −0.65±0.44 0.09±0.13 1237663444905558636 0 10.94±0.12 8.70±0.27 −10.86±0.18 0.27 BOSS
15719 ... P 0.27 −0.06±0.04 −0.65±0.44 −0.05±0.13 1237678437015487028 1 10.33±0.15 8.93±0.09 −9.60±0.16 0.37 BOSS
15755 ... P 0.28 −0.02±0.04 −0.82±0.44 −0.17±0.14 1237666408441708761 2 10.34±0.10 8.93±0.02 −8.51±0.10 0.35 BOSS
15779 ... P 0.26 −0.04±0.06 −0.08±0.73 0.50±0.20 1237666407362396769 1 10.51±0.09 9.02±0.06 −9.52±0.10 0.32 BOSS
15784 ... P 0.28 0.02±0.05 0.00±0.48 −0.20±0.14 1237657190366904466 1 10.56±0.07 8.86±0.02 −9.83±0.08 0.24 BOSS
15806 ... P 0.25 0.02±0.05 −1.95±0.56 −0.12±0.16 1237663783134167750 2 11.10±0.15 −999.±−999. −9.25±0.16 0.27 BOSS
15829 ... P 0.25 0.09±0.06 1.07±0.83 0.42±0.20 1237663456705316065 1 9.17±0.13 8.50±0.62 −8.59±0.16 0.47 BOSS
15850 ... P 0.25 −0.07±0.05 −1.19±0.35 0.00±0.13 1237663275780538659 0 11.18±0.10 8.68±0.12 −10.55±0.20 0.27 BOSS
15866 ... P 0.19 0.00±0.04 −0.93±0.31 −0.03±0.11 1237663480334909517 0 11.24±0.08 8.83±0.09 −10.78±0.13 0.19 BOSS
15868 2006pa S 0.25 −0.23±0.03 0.31±0.24 0.29±0.09 1237663783140328086 1 10.39±0.10 8.89±0.07 −9.17±0.12 0.14 BOSS
15872 2006nb S 0.21 −0.07±0.04 0.75±0.31 −0.06±0.09 1237663783676609084 1 9.66±0.09 8.92±0.04 −10.17±0.10 0.42 BOSS
15892 ... P 0.18 0.18±0.06 −1.70±0.42 −0.15±0.13 1237678617401688873 1 10.83±0.06 8.96±0.03 −9.26±0.06 0.17 BOSS
15897 2006pb S 0.17 0.01±0.04 −2.41±0.26 −0.03±0.10 1237657189836587309 3 10.82±0.10 −999.±−999. −999.±−999. 0.33 BOSS
15901 2006od S 0.20 −0.05±0.03 0.01±0.26 0.01±0.08 1237666407382647396 0 9.97±0.09 8.14±108.08 −4.62±0.56 0.20 BOSS
15909 ... P 0.22 0.05±0.04 −1.09±0.33 −0.17±0.12 1237663204919148757 3 11.21±0.09 −999.±−999. −999.±−999. 0.29 BOSS
15950 ... P 0.22 0.05±0.05 −1.27±0.47 −0.23±0.14 1237663278467317915 2 11.34±0.05 9.00±0.03 −9.81±0.06 0.23 SDSS
16021 2006nc S 0.12 −0.04±0.02 −0.34±0.13 −0.05±0.06 1237663783666581814 1 10.14±0.07 8.99±0.03 −9.98±0.07 0.15 BOSS
16069 2006nd S 0.13 0.16±0.03 0.89±0.22 −0.06±0.06 1237656906346856638 1 10.84±0.05 8.98±0.03 −9.23±0.06 0.32 SDSS
16073 2006of S 0.15 −0.02±0.02 0.74±0.14 0.18±0.06 1237663782590349551 1 9.75±0.09 8.82±0.06 −9.34±0.09 0.28 BOSS
16099 2006nn S 0.20 0.02±0.02 2.04±0.40 0.11±0.08 1237663782598345186 1 10.66±0.09 8.53±0.33 −10.84±0.20 0.32 SDSS
16172 ... P 0.22 0.10±0.06 0.81±0.59 0.15±0.16 1237663238205407778 1 11.06±0.08 8.95±0.07 −9.91±0.08 0.27 SDSS
16185 2006ok S 0.10 0.06±0.03 −2.23±0.21 0.01±0.07 1237663783667893113 0 9.72±0.09 8.48±0.20 −10.46±0.40 0.39 BOSS
16199 ... P 0.28 0.06±0.06 0.33±0.74 −0.23±0.16 1237678595931177552 1 10.07±0.13 9.03±0.06 −9.94±0.15 0.33 BOSS
16219 ... P 0.26 0.01±0.06 −0.90±0.61 0.02±0.18 1237663204916789403 2 11.17±0.11 −999.±−999. −9.49±0.28 0.31 BOSS
16410 ... P 0.29 −0.10±0.07 0.05±1.04 0.18±0.19 1237678617400181873 1 11.05±0.09 9.08±0.07 −10.20±0.11 0.28 BOSS
16462 ... P 0.24 0.01±0.05 −1.38±0.44 −0.22±0.13 1237663783667957998 0 11.58±0.09 −999.±−999. −8.30±0.30 0.29 SDSS
16467 ... P 0.22 0.02±0.05 −1.83±0.47 −0.16±0.14 1237663479256711274 3 11.06±0.08 −999.±−999. −999.±−999. 0.30 BOSS
16606 ... P 0.23 0.16±0.08 −0.80±0.82 0.07±0.20 1237678617410208604 3 10.41±0.17 −999.±−999. −999.±−999. 0.32 BOSS
16739 ... P 0.27 −0.01±0.04 0.93±0.62 0.26±0.14 1237656567042277752 1 10.28±0.10 9.04±0.04 −9.50±0.11 0.42 BOSS
17168 2007ik S 0.19 −0.04±0.03 0.54±0.31 0.13±0.10 1237660024494883496 1 9.76±0.09 8.55±0.08 −9.21±0.10 0.23 BOSS
17186 2007hx S 0.08 0.11±0.02 0.65±0.15 0.30±0.07 1237666406845644893 2 10.77±0.06 8.62±0.07 −9.54±0.07 0.10 SDSS
17206 ... P 0.16 0.11±0.04 −0.93±0.42 0.02±0.12 1237666301627465999 2 10.79±0.12 8.95±0.06 −9.75±0.13 0.34 SDSS
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17215 2007hy S 0.18 0.02±0.04 0.30±0.42 −0.06±0.11 1237666302168203468 3 11.33±0.08 −999.±−999. −9.30±0.15 0.14 SDSS
17218 2007jp S 0.18 −0.08±0.03 −0.79±0.41 −0.02±0.10 1237657190903513358 1 10.16±0.07 8.98±0.03 −9.51±0.07 0.35 BOSS
17220 2007ji S 0.18 0.13±0.03 1.86±0.29 −0.19±0.09 1237657190909476940 2 10.86±0.13 9.10±0.04 −10.25±0.14 0.32 BOSS
17332 2007jk S 0.18 0.04±0.03 −0.21±0.28 −0.12±0.10 1237660339089899929 2 10.60±0.12 9.11±0.12 −10.22±0.13 0.34 SDSS
17340 2007kl S 0.26 −0.01±0.04 −0.10±0.44 −0.17±0.14 1237666408460452080 0 11.44±0.11 8.99±0.10 −10.54±0.12 0.21 SDSS
17366 2007hz S 0.14 −0.09±0.03 0.57±0.17 −0.07±0.07 1237663542066020598 10 10.97±0.06 8.98±0.06 −9.95±0.06 0.19 SDSS
17374 ... P 0.25 −0.07±0.04 0.25±0.66 −0.01±0.16 1237663542067659081 3 11.07±0.14 −999.±−999. −999.±−999. 0.15 BOSS
17389 2007ih S 0.17 0.06±0.03 1.13±0.38 0.27±0.10 1237666185626256736 1 9.89±0.08 8.81±0.05 −9.36±0.09 0.26 BOSS
17393 ... P 0.22 0.01±0.06 −0.84±1.01 0.10±0.23 1237657189818041289 1 9.65±0.12 8.69±0.14 −9.35±0.15 0.25 BOSS
17408 ... P 0.24 −0.03±0.05 0.33±0.74 0.03±0.19 1237663544214160228 2 11.20±0.09 8.91±0.13 −11.04±0.20 0.19 BOSS
17423 ... P 0.27 −0.17±0.04 −0.21±0.71 0.27±0.16 1237663783117390131 0 10.97±0.13 9.09±0.04 −9.86±0.13 0.35 BOSS
17433 ... P 0.29 0.06±0.06 1.04±0.87 −0.04±0.23 1237657190906593911 1 9.50±0.17 8.58±0.18 −9.47±0.21 0.39 BOSS
17497 2007jt S 0.14 0.04±0.02 0.91±0.13 −0.03±0.06 1237663237122687153 1 10.43±0.05 9.00±0.04 −9.47±0.07 0.23 SDSS
17552 2007jl S 0.25 −0.01±0.04 1.34±0.42 0.08±0.13 1237657189814960898 2 10.69±0.11 8.84±0.04 −9.56±0.11 0.25 BOSS
17586 ... P 0.27 0.11±0.07 −0.67±1.11 −0.47±0.26 1237656567582819018 3 10.51±0.09 −999.±−999. −999.±−999. 0.22 BOSS
17605 2007js S 0.15 0.02±0.04 0.81±0.36 0.01±0.10 1237663479248192988 3 10.84±0.05 −999.±−999. −999.±−999. 0.44 SDSS
17629 2007jw S 0.14 0.06±0.03 −0.35±0.15 −0.15±0.07 1237663782600180017 2 11.20±0.06 9.06±0.03 −10.02±0.07 0.24 SDSS
17748 ... P 0.18 0.17±0.04 1.17±0.55 0.31±0.14 1237663783664812351 1 9.99±0.07 8.82±0.06 −9.19±0.09 0.18 BOSS
17773 ... P 0.29 −0.13±0.05 −1.02±0.66 0.03±0.17 1237663783675101438 1 9.84±0.11 8.94±0.08 −8.95±0.13 0.36 BOSS
17809 2007kr S 0.29 0.01±0.03 1.63±0.45 −0.08±0.12 1237663783126434560 1 9.84±0.12 8.78±0.11 −8.96±0.15 0.32 BOSS
17884 2007kt S 0.24 −0.12±0.03 0.71±0.28 0.04±0.10 1237678617429934631 1 10.45±0.08 9.12±0.05 −9.89±0.09 0.19 BOSS
17899 ... P 0.29 0.02±0.05 1.07±0.50 −0.20±0.17 1237657190902464955 1 9.84±0.12 8.56±0.13 −9.18±0.14 0.43 BOSS
17908 ... P 0.23 0.04±0.06 −1.11±0.58 0.21±0.19 1237663543678992867 0 10.98±0.10 9.17±0.08 −12.24±0.26 0.32 BOSS
17928 ... P 0.20 0.24±0.05 −0.42±0.45 −0.24±0.14 1237657192515174577 0 11.09±0.09 8.86±0.04 −9.65±0.10 0.26 BOSS
17949 ... P 0.26 0.06±0.05 −0.33±0.70 0.04±0.20 1237663783673332230 10 10.30±0.12 −999.±−999. −11.08±0.27 0.33 BOSS
17958 ... P 0.28 −0.07±0.04 1.12±0.61 0.27±0.16 1237663783138755068 10 9.67±0.15 −999.±−999. −9.65±0.39 0.51 SDSS
18011 ... P 0.28 0.21±0.07 0.58±1.01 −0.16±0.26 1237663784191525831 2 10.62±0.08 9.02±0.04 −10.05±0.09 0.26 BOSS
18030 2007kq S 0.16 −0.05±0.03 −0.58±0.25 0.18±0.08 1237663783662649523 1 9.66±0.05 8.52±0.05 −8.97±0.05 0.53 SDSS
18049 ... P 0.29 −0.06±0.06 1.07±0.85 0.10±0.21 1237663783663305098 1 10.12±0.11 8.83±0.07 −9.14±0.12 0.33 BOSS
18083 ... P 0.29 0.13±0.07 −1.12±0.76 −0.35±0.22 1237663782602670523 3 9.61±0.15 −999.±−999. −999.±−999. 0.53 BOSS
18189 ... P 0.29 0.17±0.07 −0.77±0.82 −0.34±0.23 1237663783677133016 1 11.09±0.07 8.97±0.03 −9.40±0.07 0.26 BOSS
18201 ... P 0.29 0.04±0.06 1.00±0.89 −0.09±0.21 1237663783144390824 1 10.98±0.08 8.87±0.06 −9.10±0.09 0.28 SDSS
18253 ... P 0.28 0.03±0.08 −1.48±0.65 −0.11±0.22 1237656906348757528 1 10.34±0.10 9.08±0.06 −9.38±0.11 0.37 BOSS
18276 ... P 0.28 0.13±0.06 0.82±0.70 −0.22±0.19 1237666407363117882 1 9.95±0.13 8.84±0.10 −9.07±0.15 0.29 BOSS
18283 ... P 0.30 0.12±0.07 −1.70±0.65 −0.44±0.22 1237657070090781290 2 11.03±0.07 9.13±0.03 −9.44±0.07 0.28 BOSS
18323 2007kx S 0.15 −0.04±0.03 0.21±0.22 0.16±0.08 1237657191980466833 1 9.36±0.09 8.62±0.11 −9.36±0.11 0.35 BOSS
18324 ... P 0.27 0.08±0.06 −0.45±0.61 −0.11±0.20 1237678434327921353 0 9.78±0.16 251.83±341.32 −10.68±0.80 0.44 BOSS
18325 2007mv S 0.26 −0.07±0.04 0.41±0.39 0.05±0.13 1237657191445954792 10 11.51±0.15 8.79±0.08 −9.74±0.15 0.18 BOSS
18333 ... P 0.25 0.16±0.06 −0.87±0.60 −0.28±0.19 1237666340800823625 1 10.49±0.08 8.94±0.03 −9.32±0.09 0.28 BOSS
18362 ... P 0.24 0.02±0.05 −1.04±0.42 −0.06±0.15 1237657190909673715 1 10.72±0.09 8.93±0.06 −9.84±0.10 0.32 BOSS
18415 2007la S 0.13 −0.09±0.03 −1.63±0.17 0.04±0.07 1237678617407979650 3 10.99±0.09 −999.±−999. −999.±−999. 0.43 SDSS
18456 2007lk S 0.22 0.05±0.03 0.56±0.33 −0.26±0.10 1237663783673397409 10 10.79±0.12 8.96±0.07 −10.82±0.14 0.35 BOSS
18463 2007kv S 0.27 −0.03±0.04 0.97±0.42 −0.02±0.14 1237663784741961992 1 10.24±0.10 9.02±0.04 −9.47±0.11 0.33 BOSS
18588 ... P 0.25 0.17±0.07 1.53±1.02 0.40±0.25 1237660024494358839 1 9.59±0.08 8.64±0.08 −8.51±0.09 0.36 BOSS
18602 2007lo S 0.14 0.06±0.03 0.91±0.19 0.06±0.07 1237663479798104844 3 9.30±0.11 −999.±−999. −999.±−999. 0.31 BOSS
18604 2007lp S 0.18 −0.04±0.03 −2.10±0.22 0.17±0.07 1237663479798956397 3 11.05±0.08 −999.±−999. −999.±−999. 0.32 BOSS
18650 2007lt S 0.11 −0.04±0.02 0.89±0.12 0.15±0.06 1237663479256646245 0 8.91±0.08 8.53±0.12 −9.41±0.09 0.38 BOSS
18697 2007ma S 0.11 0.00±0.02 0.75±0.12 −0.05±0.06 1237657189836390529 1 10.52±0.05 8.97±0.03 −9.58±0.05 0.26 SDSS
18740 2007mc S 0.15 0.03±0.02 −0.04±0.13 −0.16±0.06 1237663785278505244 1 10.66±0.09 8.92±0.07 −9.67±0.09 0.19 BOSS
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Table A.1 (cont’d)

CID IAU Name? Type?,a Redshift? SALT2 c SALT2 x1 HRb(mag) DR8 HostID? BPTc log(M/M�)?,† 12 + log(O/H)† log(sSFR)† gFFd Source

18749 2007mb S 0.19 0.06±0.03 −1.41±0.39 −0.07±0.10 1237663204919672933 3 11.17±0.08 −999.±−999. −999.±−999. 0.24 BOSS
18787 2007mf S 0.19 0.04±0.03 0.18±0.45 0.35±0.10 1237657069549519104 2 11.07±0.13 8.96±0.10 −10.22±0.15 0.17 BOSS
18804 2007me S 0.20 −0.06±0.02 0.91±0.20 −0.11±0.07 1237666407379763650 3 10.30±0.08 −999.±−999. −999.±−999. 0.14 BOSS
18809 2007mi S 0.13 −0.08±0.03 −1.17±0.18 −0.01±0.11 1237666301629563188 10 11.14±0.09 −999.±−999. −11.17±0.34 0.38 SDSS
18835 2007mj S 0.12 −0.01±0.03 0.76±0.11 −0.05±0.06 1237666301093937304 3 10.79±0.10 −999.±−999. −999.±−999. 0.31 SDSS
18855 2007mh S 0.13 −0.03±0.03 0.25±0.15 0.02±0.06 1237666301091709356 2 10.37±0.06 9.09±0.08 −9.98±0.07 0.29 SDSS
18940 2007sb S 0.21 −0.02±0.03 −0.88±0.23 −0.10±0.08 1237657191446610208 1 10.23±0.08 8.98±0.06 −9.82±0.09 0.16 BOSS
18965 2007ne S 0.21 −0.12±0.03 −0.61±0.23 0.05±0.09 1237666340798202045 3 10.63±0.12 9.12±0.04 −9.96±0.13 0.27 BOSS
18971 ... P 0.27 0.05±0.06 −1.51±0.62 −0.03±0.18 1237680099166912698 0 11.19±0.16 9.09±0.08 −10.44±0.22 0.28 BOSS
19000 ... P 0.29 −0.06±0.04 0.86±0.38 −0.09±0.12 1237657070089994814 10 9.89±0.13 −999.±−999. −9.11±0.14 0.40 BOSS
19002 2007nh S 0.27 −0.09±0.03 0.34±0.32 −0.07±0.10 1237657070092025931 3 10.72±0.09 −999.±−999. −999.±−999. 0.43 BOSS
19027 2007my S 0.29 0.00±0.03 0.55±0.56 −0.36±0.14 1237656568119231185 1 9.59±0.14 8.37±0.27 −9.01±0.15 0.37 BOSS
19051 2007nb S 0.28 −0.04±0.03 0.73±0.30 −0.06±0.09 1237663277923959057 3 11.29±0.11 −999.±−999. −999.±−999. 0.30 BOSS
19052 ... P 0.29 −0.06±0.08 −1.71±0.76 0.10±0.25 1237663277924811375 3 10.13±0.15 −999.±−999. −999.±−999. 0.20 BOSS
19149 2007ni S 0.21 −0.02±0.03 1.05±0.19 −0.42±0.07 1237663783674315119 1 9.61±0.10 8.71±0.08 −8.97±0.11 0.33 BOSS
19274 ... P 0.25 0.07±0.05 −0.42±0.81 0.17±0.18 1237666407366001228 1 10.05±0.12 9.07±0.06 −9.59±0.13 0.39 BOSS
19341 2007nf S 0.24 0.01±0.04 −1.48±0.36 −0.10±0.13 1237666339725508846 3 11.02±0.09 9.65±0.09 −15.10±2.03 0.34 BOSS
19347 ... P 0.26 −0.01±0.04 −0.28±0.51 0.14±0.13 1237657071160590831 10 9.71±0.14 8.33±0.47 −9.23±0.17 0.21 BOSS
19353 2007nj S 0.15 0.04±0.03 0.91±0.21 −0.01±0.07 1237657586562105551 1 11.00±0.06 8.88±0.06 −9.61±0.07 0.20 SDSS
19414 ... P 0.29 0.20±0.07 1.31±1.15 −0.06±0.28 1237663479258022833 2 11.19±0.14 9.24±0.10 −12.14±0.19 0.25 BOSS
19616 2007ok S 0.17 −0.03±0.03 0.14±0.19 −0.07±0.06 1237663784213610757 1 11.04±0.05 8.99±0.02 −9.17±0.05 0.35 SDSS
19652 ... P 0.25 0.22±0.07 −0.99±0.67 −0.28±0.18 1237663278459322853 1 10.15±0.10 8.79±0.08 −9.31±0.11 0.20 BOSS
19708 ... P 0.24 −0.04±0.04 −0.91±0.31 −0.40±0.10 1237657587098583274 3 10.91±0.09 −999.±−999. −999.±−999. 0.42 BOSS
19723 ... P 0.26 −0.02±0.04 −0.44±0.37 0.03±0.11 1237663543686725995 1 10.16±0.09 9.00±0.03 −8.56±0.10 0.36 BOSS
19769 ... P 0.25 0.17±0.05 −0.40±0.62 −0.34±0.15 1237656906350920059 1 10.28±0.12 8.95±0.05 −9.71±0.13 0.27 BOSS
19775 2007pc S 0.14 0.09±0.03 −0.22±0.20 −0.03±0.07 1237678617399853623 0 10.49±0.11 8.90±0.05 −10.09±0.12 0.35 BOSS
19821 ... P 0.27 −0.10±0.05 −0.91±0.43 0.15±0.16 1237663278463189658 2 10.54±0.12 9.01±0.10 −10.31±0.15 0.40 BOSS
19969 2007pt S 0.18 0.02±0.03 0.06±0.25 −0.08±0.07 1237663783674511434 1 10.37±0.07 9.02±0.03 −9.11±0.08 0.49 SDSS
19990 2007ps S 0.25 −0.09±0.04 −1.28±0.35 0.05±0.12 1237663783675757163 0 10.63±0.18 9.24±0.14 −12.23±0.32 0.39 BOSS
20033 ... P 0.25 0.08±0.04 −0.85±0.54 −0.20±0.13 1237663783133708698 0 10.62±0.09 9.11±0.17 −11.31±0.15 0.38 BOSS
20040 2007rf S 0.29 −0.11±0.05 1.14±0.73 0.00±0.16 1237678617404179648 3 10.26±0.14 −999.±−999. −999.±−999. 0.46 BOSS
20046 ... P 0.26 0.01±0.04 1.64±0.53 0.06±0.13 1237663544215995236 1 10.03±0.10 8.97±0.05 −9.00±0.12 0.44 BOSS
20048 2007pq S 0.19 0.01±0.04 −0.68±0.52 0.07±0.12 1237663544223793475 1 10.86±0.09 9.30±0.13 −13.66±0.53 0.37 BOSS
20051 2007pv S 0.24 0.00±0.04 2.94±0.74 0.33±0.15 1237678595929801315 1 9.95±0.08 8.82±0.04 −9.19±0.08 0.32 BOSS
20084 2007pd S 0.14 0.14±0.03 0.07±0.29 0.10±0.08 1237666407363444800 1 9.19±0.10 8.71±0.05 −9.30±0.10 1.93 BOSS
20088 ... S 0.24 −0.14±0.03 −0.22±0.22 0.00±0.08 1237663204919935202 2 11.38±0.11 9.05±0.06 −10.47±0.11 0.22 BOSS
20111 2007pw S 0.24 0.01±0.04 0.00±0.61 0.03±0.14 1237666408439940055 0 10.93±0.12 8.92±0.10 −11.02±0.18 0.23 BOSS
20125 ... P 0.17 0.05±0.03 −0.74±0.22 −0.18±0.08 1237663785282371709 3 11.03±0.06 −999.±−999. −999.±−999. 0.30 BOSS
20185 ... P 0.25 0.06±0.08 0.56±1.16 0.66±0.24 1237678617419186293 1 10.55±0.08 8.94±0.04 −8.97±0.09 0.34 BOSS
20227 2007qi S 0.28 −0.15±0.04 −1.15±0.55 0.12±0.15 1237657190900433560 2 11.05±0.17 9.05±0.09 −10.23±0.19 0.16 BOSS
20232 ... P 0.22 0.01±0.04 −1.05±0.56 −0.23±0.12 1237657190908297506 0 11.21±0.11 9.27±16.43 −8.71±0.12 0.28 BOSS
20364 2007qo S 0.22 0.04±0.02 0.31±0.74 −0.05±0.13 1237657069547815314 3 10.39±0.08 −999.±−999. −999.±−999. 0.36 BOSS
20376 2007re S 0.21 0.16±0.04 −1.19±0.44 −0.45±0.11 1237663542604465540 3 10.72±0.14 −999.±−999. −999.±−999. 0.33 BOSS
20467 ... P 0.27 −0.07±0.04 0.96±0.54 0.29±0.14 1237663785279881489 10 9.91±0.11 8.84±0.08 −9.59±0.13 0.40 BOSS
20545 ... P 0.19 0.17±0.03 −1.66±0.50 −0.15±0.10 1237663542609248694 3 10.52±0.08 −999.±−999. −999.±−999. 0.22 BOSS
20663 ... P 0.30 −0.06±0.06 −0.10±0.46 0.02±0.19 1237663204921377321 1 10.81±0.13 8.85±0.06 −9.22±0.14 0.29 BOSS
20687 2007ri S 0.19 0.14±0.05 −0.65±0.74 −0.20±0.14 1237666340799643790 1 10.98±0.07 9.12±0.03 −9.89±0.07 0.20 BOSS
20721 ... P 0.21 0.22±0.05 −0.50±0.82 −0.01±0.16 1237663542606103297 1 10.47±0.08 9.01±0.02 −9.28±0.08 0.33 SDSS
20744 ... P 0.28 0.01±0.05 −0.41±0.89 −0.27±0.19 1237666408436531439 3 11.03±0.12 −999.±−999. −999.±−999. 0.33 BOSS

257



Table A.1 (cont’d)

CID IAU Name? Type?,a Redshift? SALT2 c SALT2 x1 HRb(mag) DR8 HostID? BPTc log(M/M�)?,† 12 + log(O/H)† log(sSFR)† gFFd Source

20768 2007qq S 0.24 0.07±0.06 −0.78±1.17 0.32±0.20 1237657584950379205 0 11.02±0.09 −999.±−999. −10.12±0.14 0.12 BOSS
21858 ... P 0.27 0.13±0.08 −1.58±1.43 0.06±0.32 1237657192516419782 3 11.14±0.10 −999.±−999. −999.±−999. 0.24 BOSS

?As specified in S14.
†Measurement errors on derived host-galaxy properties do not include systematic uncertainties; -999 indicates no mea-

surement could be made.
aDenotes if the SN Ia is spectroscopically confirmed (S) or photometrically typed (P).

bUncertainties on HR do not include the intrinsic ∼ 0.1 mag scatter.
cBPT diagnostic flag that indicates a star-forming (1), composite (2) galaxy, or AGN (0). Star-forming (10) and compos-

ite (20) hosts as determined by the BPT diagnostic where some line fluxes are measured to be zero are also included. In

some cases we cannot measure the necessary line fluxes for the BPT diagnostic (3).
dg-band fiber fraction.
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Appendix B

Supplemental DES Education and

Public Outreach Materials and Analysis

B.1 Program Logic Models

In this Appendix we present logic models for The Darchive, DEST4TD, DarkBites, and

DEScientist of the Week EPO Initiatives. In each model, we describe the inputs, actions,

and product outputs created by the EPO coordinators and participating scientists. We also

present the DES-specific outcomes, as well as the predicted short-term, medium-term,

and long-term outcomes. We encourage readers to treat these logic models as planning

outlines for the respective projects and leave details on project evaluation for future work.

B.2 Internal Survey of EPO Projects

Approximately one year after the formation of the EPOC, we conducted a survey to gauge

collaboration members’ awareness of and attitudes towards the DES EPO program in gen-

eral as well as four specific EPO initiatives. We created an online survey and emailed it to

the entire collaboration, asking all collaboration members to participate. We also adver-

tised the survey at the Fall 2015 collaboration meeting. Small incentives were offered for
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The DArchive

INPUTS

ACTIONS

EPO Coordinators & DArchive Team Scientists

OUTPUTS

OUTCOMES

1. Summaries of academic papers
2. Content for external media & press releases

1. Time to read DES paper: several hours / paper
2. Time to write paper summary: 
several hours / paper
3. Time to iterate with author(s) and edit: 
several hours / paper
4. Vehicle for content distribution
5. Time to distribute online: 30 mins / post

1. DES publication
2. Time to work with EPO team on final 
product: several hours / publication

DES EPO 
OUTCOMES

1. 15 Darchives / 
89 DES Papers

SHORT-TERM
1. Increase project 
awareness
2. Share DES science 
with public
3. Increase internal 
awareness of 
collaboration science

MEDIUM-TERM
1. Improve scientists’ 
communication skills

LONG-TERM
1. Improve public 
scientific literacy

PARTICIPANTS

Iter.1 Iter.2 Iter.3 All

Fill out 
Darchive 
template

Submit 
summary 
form

--- Edit 
figures
& text

Iter.1 Iter.2 Iter.3 All

Set up 
template 
infrastruc
-ture

Create 
summary 
form

1. Read 
paper
2. Write 
Darchive

1. Edit 
figures
& text
2. Post 
Content

Figure B.1: Logic model describing The DArchive project structure and outcomes.
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DEST4TD

INPUTS

ACTIONS

EPO Coordinators Scientists

OUTPUTS

OUTCOMES

1. Online content stream
2. Convenient, online medium for 
science EPO
3. Repository of images for EPO 
projects

1. Vehicle for content distribution
2. Email requests to send to 
collaboration - automated with 
Python script
3. Time to edit and post online: 
5-10 mins / day

1. Time to respond to email 
request: 5-10 mins 

1. Edit submission (if necessary) 
and post content: 5-10 mins / post

1.Write brief message (may 
include photo, figure, 
infographic etc.)
2. Submit form / send message to 
coordinators

DES EPO 
OUTCOMES

1. ~130 
different 
participating 
scientists

SHORT-TERM
1. Increase 
project 
awareness

MEDIUM-TERM
1. New, 
convenient 
medium for 
scientists to 
engage in EPO

LONG-TERM
1. Humanize 
scientists and 
scientific 
process

PARTICIPANTS

Figure B.2: Logic model describing DEST4TD project structure and outcomes.

261



DarkBites

INPUTS

ACTIONS

EPO Coordinators Scientists

OUTPUTS

OUTCOMES

1. Set of original images and corresponding captions

1. Vehicle for content distribution
2. Time to distribute online: 
10 minutes / DarkBite

1. Time to create and check 
science captions: 
10 minutes / DarkBite
2. Time to illustrate Darkbite: 
2-3 hours / DarkBite

1. Post content online

1. Write astronomy/physics fact 
(author)
2. Create visual interpretation of 
fact (illustrator): ~1 / week

DES EPO 
OUTCOMES

1. 52 DarkBites
2. Foundation 
for other 
projects (e.g. 
DarkBites 
Unplugged)

SHORT-TERM
1. Reach larger 
public audience 
through analogy
2. Grow follower 
base with new 
science 
communication 
medium

MEDIUM-TERM
1. Use 
innovative 
science 
communication 
medium to 
improve 
scientists’ 
communication 
skills

LONG-TERM
1. Improve 
public scientific 
literacy

PARTICIPANTS

Figure B.3: Logic model describing DarkBites project structure and outcomes.
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DEScientist of the Week

INPUTS

ACTIONS

EPO Coordinators Scientists

OUTPUTS

OUTCOMES

1. Set of interviews with professional scientists

1. Vehicle for content distribution
2. Time to create interview survey submission 
form: 1 hour
3. Time to recruit scientist participants: 
1 hour / month
4. Time to consolidate survey answers and post 
profile: 30 mins per profile

1. Time to submit 
responses to 
interview questions: 
15 mins
2. Personal 
photograph (if 
desired)

1. Edit and format survey answers
2. Post content online

1. Answer interview 
questions

DES EPO 
OUTCOMES

1. 80+ profiles 
of DES 
collaboration 
members

SHORT-TERM
1. Humanize the 
scientist
2. Increase 
project 
awareness
3. Promote 
diversity and 
inclusivity in DES

MEDIUM-TERM
1. Promote 
diversity and 
inclusivity in 
STEM

LONG-TERM
1. Inspiration 
for next 
generation of 
scientists
2. Change of 
status quo -- 
“anyone can be 
a scientist”

PARTICIPANTS

Figure B.4: Logic model describing DEScientist of the Week project structure and out-

comes.
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those who participated in the survey. A total of 90 collaboration members participated.

Here we include a transcribed copy of the survey. Asterisks indicate questions which

required a response. Participants were offered the opportunity to exit the survey after a

few key sections; these are indicated with investigator notes. The online version of the

survey included examples of the particular EPO initiatives for those who indicated they

were unfamiliar with a particular project. We do not include these examples here.
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DES   Education   &   Public   Outreach   (EPO)   Feedback   Form 

 
Thanks   for   checking   out   the   EPO   evaluation   form!   We'd   very   much   like   to   know   your   thoughts   about   DES   EPO   projects. 
 

The   form   is   divided   into   several   sections.   There   are   four   sections   about   specific   outreach   projects   and   some   general   questions 
at   the   end.   The   questionnaire   is   a   bit   long   (filling   out   the   whole   form   may   take   20   minutes),   but   you   don't   have   to   complete   the 
entire   thing! 
 

Thanks   for   your   participation! 
The   EPO   Committee  
 
 

*Name: _____________________________________________________________ 
 
*Institution: __________________________________________________________ 
 

*Email   Address: ______________________________________________________ 
 
*Current   Position 

   Graduate   Student    Postdoc    Faculty/Professor    Staff   Scientist    Other:  
 

DES   SOCIAL   MEDIA   (SM)   PROJECTS 

 

*What   social   media   platforms   do   you   use? 

Please   select   any   that   apply 
   Facebook    Twitter    Instagram    Snapchat    None    Other: 

 
*Do   you   know   where   to   find   DES   social   media   posts? 

   Yes    No    What’s   social   media?? 
 
DES   Thought   for   the   Day   (DEST4TD) 

*Are   you   familiar   with   the   DES   Thought   for   the   Day   (DEST4TD)   project? 

   Yes    No    Yes,   but   I   could   use   a   refresher 
**Investigator   Note:   If   the   participant   indicated   anything   other   than   “Yes”,   he/she   was   sent   to   an   example   DEST4TD.** 
 
Check   all   that   apply 

   I   have   contributed   a   DEST4TD       I   would   contribute   a   DEST4TD  
   I   think   DEST4TD   is   a   worthwhile   EPO   initiative    I   think   DEST4TD   can   be   improved 

 
T4TD   Feedback 

Looking   for   inspiration      What   do   you   think   of   the   T4TD   posts?   Have   you   been   asked   to   submit   a   T4TD?   What   would 
encourage   you   to   participate   in   T4TD?______________________________________________________________ 
 

DEScientist   of   the   Week 

*Are   you   familiar   with   the   DEScientist   of   the   Week   project? 

   Yes    No    Yes,   but   I   could   use   a   refresher 
**Investigator   Note:   If   the   participant   indicated   anything   other   than   “Yes”,   he/she   was   sent   to   an   example   DEScientist   of   the   Week.** 
 

Check   all   that   apply 

   I   have   participated   in   DEScientist   of   the   Week       I   would   participate   in   DEScientist   of   the   Week 
   I   think   DEScientist   of   the   Week   is   a   worthwhile   EPO   project       I   think   DEScientist   of   the   Week   can   be   improved 

 

DEScientist   of   the   Week   (SoW)   Feedback 

Looking   for   inspiration      What   do   you   think   of   SoW?      Would   you   be   willing   to   participate   in   SoW? 
_____________________________________________________________ 
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Would   you   like   to   continue   to   questions   about   The   DArchive? 

   Sure!    No   thanks,   I’d   like   to   go   to   the   final   page. 
**Investigator   Note:   As   the   DArchive   is   a   longer   project,   we   gave   participants      the   opportunity   to   end   the   survey   at   this   point.** 
 
The   DArchive 

Are   you   familiar   with   The   DArchive   project? 

      Yes,   and   I’ve   read   a   post   recently       Yes,   but   I   haven’t   read   a   post   before 
      No       Yes,   but   I   could   use   a   refresher 

**Investigator   Note:   If   the   participant   indicated   anything   other   than   “Yes,   and   I’ve   read   a   post   recently”,   he/she   was   sent   to   an   example 
DArchive   Post.** 
 
Check   all   that   apply 

   I   have   submitted   a   DArchive   summary       I   would   be   willing   to   write   a   DArchive   summary 
   I   think   the   DArchive   is   a   worthwhile   EPO   project    I   think   the   DArchive   can   be   improved 

 
The   DArchive   Feedback 

Looking   for   inspiration      What   do   you   think   of   The   DArchive?   Do   you   think   the   posted   DArchives   summarized   the   DES   papers 
well?   Would   you   be   willing   to   write   a   DArchive   summary? 
_____________________________________________________________ 
 
Would   you   like   to   continue   to   questions   about   Dark   Energy   Detectives? 

   Sure!    No   thanks,   I’d   like   to   go   to   the   final   page. 
**Investigator   Note:   As   Dark   Energy   Detectives   is   a   longer   project,   we   gave   participants      the   opportunity   to   end   the   survey   at   this   point.** 
 
Dark   Energy   Detectives   (DED) 

Are   you   familiar   with   The   Dark   Energy   Detectives   project? 

   Yes       No    Yes,   but   I   could   use   a   refresher 
**Investigator   Note:   If   the   participant   indicated   anything   other   than   “Yes”,   he/she   was   sent   to   an   example   Dark   Energy   Detectives.** 
 
Check   all   that   apply 

   I   have   written   a   DED   post    I   would   be   willing   to   write   a   DED   post 
   I   think   the   DED   is   a   worthwhile   DES   project    I   think   DED   can   be   improved 

 
Dark   Energy   Detectives   Feedback 

Looking   for   inspiration      What   would   encourage   you   to   write   a   post?      Do   you   like   the   theme   of   the   blog? 
_____________________________________________________________ 
 

Last   Few   General   Questions 

You’re   almost   done! 
 
*Have   you   received   an   email   to   participate   in   a   DES   EPO   project?      Did   you   participate?      If   not,   what   would   inspire   you 

to   get   involved?    You   can   answer   for   one   project   in   particular   or   several. 
_____________________________________________________________ 
 
* Do   you   read   the   monthly   EPO   Newsletter?      Do   you   find   it   useful?      Do   you   think   it   can   be   improved?   
_____________________________________________________________ 
 
*The   EPO   Committee   is   working   to   maintain   a   record   of   all   DES   EPO   activity.      Did   you   know   you   can   record   nonDES 

STEM   outreach   activity? 

      Yes,   and   I   have   submitted   a   form       Yes,   but   I   have   not   submitted   the   form 
      No       No,   I   thought   it   was   for   only   DESspecific   events 
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