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Vaccines have significantly improved human health through decreasing morbidity and mortality associated
with infectious diseases. Through the use of vaccines, we have seen the eradication of Small Pox and the
control of numerous other diseases which once crippled the society. However, older vaccine technologies have
not been successful in tackling many remaining infectious diseases including Human Immunodeficiency Virus
(HIV), Malaria, Tuberculosis (TB), emerging diseases or therapeutically impacting cancer. Due to the
complexity of these targets, novel vaccine platforms are needed. DNA vaccines were first reported in the early
1990s and demonstrated significant success in small animals. However, due to their lack of robust
immunogenicity in large animals and human subjects, excitement was quickly tempered. After years of
optimizations and improvements, DNA vaccines can now generate responses as high or higher than other
vaccine platforms in these species. Here we explore some of the strength of DNA vaccine technology to
improve vaccine-induced responses further. First, due to the ease of production and ability to formulate
multiple plasmids into a single immunization, we explore the relationship between vaccine breadth and the
coverage of induced responses. Formulations of multiple plasmids encoding the HIV-1 surface protein,
Envelope, were able to induce superior responses compared to a single plasmid formulation. These responses
were further improved by including small clusters of plasmids, limiting the diversity within a single
immunization. We also explore the use of plasmid encoded immune adjuvants to enhance or tailor the vaccine
responses. Two sets of adjuvants, mucosal chemokines and various forms of CD40L, display a range of
adjuvanting effects and can increase protection against challenge. Overall, these improvements in DNA
vaccine performance will progress the translational development of new studies aimed at impacting
important, however, difficult infectious diseases.
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ABSTRACT 

 

NOVEL APPROACHES TO IMPROVE DNA VACCINE INDUCED RESPONSES 

AGAINST DIFFICULT INFECTIOUS DISEASE TARGETS  

Megan C Wise  

David B Weiner 

Vaccines have significantly improved human health through decreasing morbidity 

and mortality associated with infectious diseases. Through the use of vaccines, we have 

seen the eradication of Small Pox and the control of numerous other diseases which once 

crippled the society. However, older vaccine technologies have not been successful in 

tackling many remaining infectious diseases including Human Immunodeficiency Virus 

(HIV), Malaria, Tuberculosis (TB), emerging diseases or therapeutically impacting 

cancer. Due to the complexity of these targets, novel vaccine platforms are needed. DNA 

vaccines were first reported in the early 1990s and demonstrated significant success in 

small animals. However, due to their lack of robust immunogenicity in large animals and 

human subjects, excitement was quickly tempered. After years of optimizations and 

improvements, DNA vaccines can now generate responses as high or higher than other 

vaccine platforms in these species. Here we explore some of the strength of DNA vaccine 

technology to improve vaccine-induced responses further. First, due to the ease of 

production and ability to formulate multiple plasmids into a single immunization, we 

explore the relationship between vaccine breadth and the coverage of induced responses. 

Formulations of multiple plasmids encoding the HIV-1 surface protein, Envelope, were 

able to induce superior responses compared to a single plasmid formulation. These 
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responses were further improved by including small clusters of plasmids, limiting the 

diversity within a single immunization. We also explore the use of plasmid encoded 

immune adjuvants to enhance or tailor the vaccine responses.  Two sets of adjuvants, 

mucosal chemokines and various forms of CD40L, display a range of adjuvanting effects 

and can increase protection against challenge. Overall, these improvements in DNA 

vaccine performance will progress the translational development of new studies aimed at 

impacting important, however, difficult infectious diseases.  
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CHAPTER 1 INTRODUCTION 

1.1 Vaccines 

 Microorganisms are constantly bombarding humans. Upon infection, the host can 

usually mount an immune response against these microbes, which in many instances 

could be protective. Vaccines harness the effectiveness of this immune response to 

protect people from primary infection. The first vaccine was developed by Edward Jenner 

in 1798 when he collected Cowpox (Variolea vaccinae) from cows to immunize subjects 

for prevention of the deadly Smallpox (1). Pasteur almost 70 years later, expanded this 

concept to inactivated vaccines (1). Since then, vaccines have profoundly changed the 

infectious disease landscape represent one of the most effective public health tools. 

Smallpox, which claimed over 300-500 million lives in the 20th century, has now been 

eradicated by vaccination(2). Currently, the World Health Organization (WHO) has 

licensed 25 vaccines against infectious diseases (Table 1.1) (3). For the ten year 

anniversary of the Vaccines for Children (VFC) program, the Centers for Disease Control 

(CDC) released a report stating that vaccines prevented over 700,000 childhood deaths, 

322 million cases of childhood illness and saved over $295 billion in direct hospital cost 

(4, 5). Vaccines are extremely cost effective and are very useful in resource-limited 

settings as they require limited training to deliver, only entail 1-4 injections, and can lead 

to rapid protection. However, even though there are numerous clinically approved 

vaccines, there remains a need to develop vaccines against many modern infectious 

diseases including Human Immunodeficiency Virus (HIV), Malaria and Tuberculosis as 

well as emerging infectious diseases like Ebola, Dengue, and Zika (6).  
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In general, previously clinically approved vaccines are developed for the 

prophylactic setting to prevent disease. Few vaccines induce sterilizing immunity, 

completely preventing infection, but most instead prevent dissemination and morbidity/ 

mortality (1, 6, 7). Vaccines work by priming and creating an antigen-specific memory 

response. Upon infection, the recall responses rapidly and effectively expand to prevent 

the appearance of infection and disease (3, 7, 8). Most clinically approved vaccines have 

humoral correlate of protection, however, there are some exceptions such as BCG which 

induced cellular responses leading to cytokines production, macrophage activation and 

control of Tuberculosis in the young (3, 9). Even in vaccines which have a humoral 

correlate of protection, cellular responses should not be dismissed. The need for antigen-

specific CD4 T cells to induce highly avid and specific antibodies as well as the ability of 

CD8 T cells to control and kill infected cells are essential for vaccine protection (3). 

Depending on the type of vaccination, the immune response will be differentially skewed.   

 While there are two main types of vaccines, live or inactivated/ fractioned 

preparations, there are many different forms of vaccines including whole inactivated, live 

attenuated, polysaccharide conjugated, recombinant subunit, recombinant vectors, virus-

like particles, peptides, and nucleic acids. A description of the WHO-approved vaccines 

and their corresponding vaccine platforms are listed in Table 1.1.  

1.1.1. Live attenuated vaccines 

 Live attenuated vaccines are the closest platform to active infection. They are 

created by mutating a part of the pathogen to render it unable to replicate to the capacity 

of its unmutated parent (1, 10). Live attenuated vaccines produce both cellular and 
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humoral responses and can induce lifelong immunity with one or two shots(6). However, 

there are some drawbacks for live attenuated vaccines. First, there is always the potential 

that the pathogen could mutate back to its active, virulent form (11). Additionally, people 

who are immunocompromised cannot receive these vaccines due to the inability of the 

immune system to control the vaccine (12). Furthermore, attenuated vaccine strains can 

spread from person to person. Another potential drawback is the creation of these 

vaccines which can be difficult, especially for larger pathogens like bacteria (13). 

Traditionally, live attenuated vaccines for viruses like Measles and Mumps were created 

by passaging the virus numerous times in cells which do not support normal replication 

(10, 11). To grow in these hostel conditions, the virus must mutate, thus weakening its 

growth in the human host. However, bacteria which have more genes than viruses are 

much more complicated and may require the mutation or removal of multiple genes.  

1.1.2. Whole Inactivated Vaccines 

 Whole inactivated vaccines are the killed form of the infectious microbe (1, 3, 6). 

Methods of inactivation include heat, radiation or chemical such as the use of formalin 

(6). As long as the microbe is carefully purified and inactivated fully, killed vaccines are 

very safe. Unlike Live attenuated vaccines, whole inactivated vaccines have no risk of 

reversion to a virulent form. Additionally, due to the lack of replication, there are less 

adverse reactions. However, these vaccines tend to have lower immunogenicity than live 

attenuated vaccines (6). This lack of immunity leads to the need of additional booster 

vaccinations to maintain immunity. Additionally, inactivation of the microbe can lead to 
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misfolding of antigen proteins, thus creating an immune response which is ineffective 

against the pathogen (14). 

1.1.3. Polysaccharide conjugate vaccines  

 Polysaccharides are an ideal target for many bacterial microbes since they are 

expressed on the surface and differ from self-polysaccharides. However, the immune 

response induced against polysaccharides are extremely limited. B cells can undergo two 

differentiation pathways, T cell dependent or independent (1, 3). T cell independent B 

cells become activated without the aid of CD4 helper T cells. These responses can occur 

when the B cell receptor binds to polysaccharides which are not presented on MHCs. 

Thus, there is limited to no T cell specific responses to this antigen, eliminating T cell 

help to the B cell (15). B cells which undergo T cell independent activation produce a 

rapid response but this response wanes quickly and induces limited memory (15). 

Additionally, these B cells have undergone fewer rounds of maturation and thus produce 

lower affinity antibodies (16, 17). On the other hand, during T cell dependent B cell 

responses, the B cell obtains adequate CD4 help, undergoes rounds of maturation and 

develop high-affinity antibody responses as well as memory. Conjugate vaccines can 

overcome the inability of the immune system to induce a potent and long-lasting humoral 

response against polysaccharides. In a conjugate vaccine, a strong antigen is chemically 

attached to a polysaccharide (1, 3, 16, 17). The T cells then respond to the strong antigen 

and provide the necessary CD4 help to polysaccharide specific B cells. Dr. John B. 

Robbins created the first conjugate vaccine against  Haemophilus influenza type B 
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establishing a pathway for numerous other conjugate vaccines including the 

Pneumococcus vaccine (18, 19).  

1.1.4. Subunit vaccines  

 Subunit vaccines are similar to whole inactivated vaccines but instead of 

containing the entire microbe, only contain a specific protein or group of proteins. Of all 

of the proteins expressed by the microbe, the ones predicted to be the most immunogenic 

or important for protection are included in the vaccine (7, 20). However, determining 

which proteins to include is one of the most difficult aspects of a recombinant subunit 

vaccine. Since the vaccine includes only a specific set of antigens, there tend to be less 

off target immune responses which decrease the risk of adverse events (20). These 

vaccines are made from purified antigen from the whole inactivated microbe or by using 

recombinant DNA technology (21-24). Most subunit vaccines are formulated with an 

adjuvant to increase the vaccine-induced immune response. Adjuvants will be discussed 

in detail in a later section.  

1.1.4.1. Toxoid vaccines 

Toxoid vaccines can be viewed as a subclass of subunit vaccines. Upon infection, 

many bacteria release toxins which are the main cause of symptoms. This includes 

infections of Tetanus, Diphtheria, and Pertussis bacteria (25, 26). During infection of 

these pathogens, neutralization of the toxin would decrease morbidity and mortality. To 

induce an immune response to neutralize the toxin, vaccinologists inactivate the toxin to 

create a toxoid (6). These toxoids retain their antigenic characteristics while having no 

functional properties. Thus, a toxoid vaccine primes the immune system against the toxin, 
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inducing neutralizing antibodies that will block the activity of the toxoid before side 

effects are observed.  

1.1.4.2. Virus-Like Particle (VLP) vaccines 

 Virus-like particle vaccines are an additional class of subunit vaccines. VLPs self-

assemble into small particles which look like a virus but are not infectious. Due to the 

characteristics of certain viral proteins, VLPs can naturally form upon expression and 

purification. These VLPs can display more native-like epitopes compared to a single 

protein molecule. Furthermore, the self-assembly can lead to increased stability and 

capacity to target specific cells within the body. Additionally, VLPs can be used to carry 

different cargo into cells. For example, if a plasmid of DNA is in solution when VLP 

assembly occurs, this plasmid can be encapsulated within the VLPs. Currently, there are 

three WHO approved VLPs vaccine all targeting HPV (Cervertex® and Gardasil®/ 

Gardasil9®). These vaccines include the major capsid protein, L1, which self-assemble 

into a VLP. There are additional VLP vaccines in preclinical and clinical development 

including the Hepatitis E vaccine which is approved in China but not recommended by 

WHO.  

1.1.5. Viral vectors 

Currently, there is no WHO approved licensed viral vector vaccine with most 

viral vector research focuses on gene therapy. However, there are numerous different 

phase 1, 2, and 3 clinical trials which harness the use of viral vectors for vaccination (27). 

The main viral vectors used in vaccine research are Adenovirus, Vaccinia, Pox, and 

Adeno-associated virus (AAV) (27, 28). Viral vectors have numerous similarities to live 
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attenuated vaccines including replicating infection and expression of antigen in cells.  

However, unlike live attenuated vaccines, the vectors only express a small amount of the 

pathogen and thus are much safer and potentially easier to produce than live attenuated 

vaccines (28). Viral vectors are limited in the length of the insert they can accommodate, 

restricting the number or types of genes which can be encoded. Additionally, if the viral 

vector retains it native surface proteins, the vector’s tropism may not be ideal for the type 

of immune response needed for protection (28). The lack of tropism can be overcome or 

modified by including the surface protein of the pathogen of interest (29, 30). Further, 

immune responses induced by viral vectors can be limited by the host immune response 

to the vector itself. This prevents repeat administration of the vector to increase responses 

(27, 31-33). Many researchers overcome this hurdle by creating prime-boost strategies or 

by using vectors which do not circulate in humans (33-36).   

1.1.6. Peptide vaccines  

There are no peptide vaccines approved for clinical use. Nevertheless, there are 

over 400 clinical trials using peptide vaccines mostly targeting cancer antigens (37). 

Additional targets include infectious diseases, allergy, diabetes and Alzheimer’s disease 

(37). Peptide vaccines gained popularity due to the ease of manufacturing and the ability 

to specifically target the immune response. Peptide vaccines come in two different 

flavors, short epitope-specific peptides and synthetic long peptides (SLPs). SLPs are 

usually 15-35 amino acids in length and encode both a CD4 and CD8 epitope (37). Due 

to their length, SLP vaccines do not require a subject HLA typing or epitope prediction 

which are necessary for short epitope peptides (38). These SLP peptides can be 
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formulated with adjuvants or lipids similar to recombinant subunit vaccines and are taken 

up by antigen-presenting cells (APCs). After intracellular processing in the APCs, these 

peptides can be presented on both HLA class I and II, leading to induction of both CD8 

and CD4 help. However, there is a potential for off-target effects as the peptides are 

expressed out of the context of the rest of the antigen and may be processed and 

presented in a different manner (39). Short peptides are usually 8-11 amino acids in 

length and are restricted to subjects HLA type (37). Thus they require epitope mapping or 

prediction using sophisticated algorithms. However, these algorithms are limited as even 

for the most well studied MHC allele; the prediction is usually only 60% correct (40). 

Additionally, these prediction models do not adjust for the abundance of the T cells and 

could predict a rare T cell epitope (41). Also, if the peptide epitope only targets class I, 

these CD8 T cells will have suboptimal and short-lasting responses due to the lack of 

help. There are additional prediction models for HLA class II peptides which could be 

included in the vaccine to stimulate an adequate amount of help (42, 43).     

1.1.7. Nucleic acids 

 Like viral vectors, there are no WHO approved nucleic acid based vaccines. 

However, there are many different clinical trials which are exploring the use of nucleic 

acid vaccines. Both RNA and DNA-based strategies are in development and due to 

advances in technology have recently seen a resurgence.  

1.1.7.1. DNA vaccines  

 DNA vaccines were first reported in the early 1990s (44). Initially, the vaccine 

platform saw great success in small animal models (45-48). However, once progressed 
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into non-human primates and people, the vaccines induced limited immunity (49-52). 

After years of optimizations, DNA vaccines are now major contenders for novel vaccine 

development.  

 The premise of DNA vaccination is to use plasmids which carry an insert 

encoding the antigen of interest. Like other vaccine platforms, typically DNA vaccines 

are administered to the muscle or in the dermis. The muscle or dermal cells are then 

transfected with the plasmid which will be exosomally transcribed and translated into the 

antigenic protein (53). The protein will then be processed and presented on MHC class I 

or secreted leading to cross-presentation on MHC class II (54). Any resident APCs can be 

transfected or APCs which translocate into the site of vaccination, will then drain to the 

local lymph node and stimulate cellular and humoral responses (53, 54). Due to the high 

ability to present on MHC class I, DNA vaccines are potent inducers of cellular immune 

responses.  

Unlike viral vectors, DNA vaccines are not hindered by vector serology and thus can 

be given multiple times with repeated boosting of responses (31). DNA vaccines are also 

extremely safe as they contain minimal elements on the plasmid backbone and only 

encode for a specific antigen of interest (53). Since they are non-live, non-replicating, and 

non-spreading, there is no fear of reversion, and very limited side effects have been 

observed (51, 55-58). There are additional benefits to the DNA vaccine platform 

including vaccine stability, the ease of manufacturing plasmid as vaccines as well as a 

short time frame for insert development (53). Moreover, unlike recombinant subunit 

vaccines, since antigen encoded by DNA vaccines are produced in host cells, the protein 



10 
 

may contain native glycosylations and processing making the resulting immune responses 

of more relevance.  

The main drawback for DNA vaccines is the lack of immunogenicity. After years of 

optimizations, DNA vaccines can now induce cellular responses as good, if not high than, 

viral vectors (31). These optimization strategies include modifications made to the insert 

itself, the backbone and the mode of delivery (53). The different plasmid optimization 

strategies are described in Table 1.2.  

 Even with all of these modifications, vaccine-induced immunity increased but 

was still significantly lower than viral vectors (59). One of the largest improvements in 

DNA vaccine platform was the use of novel delivery strategies to increase the 

transfection efficiency. Delivery methods include using gene gun (a biolistic particle 

delivery system), encapsulation in nanoparticles, VLPs or the use of electroporation (EP) 

(58-63). Electroporation is the use of electrical pulses to create small transient pores in 

the cell membrane. Additionally, it creates an electrical gradient which drives the 

negatively charged DNA into the positively charged cell (64). The transient pores then 

reseal with the plasmid successfully in the cell. Electroporation can increase the 

transfection efficiency of DNA vaccination 100-1000 fold and revolutionized the DNA 

vaccine field (31, 58, 64). All of these optimization and delivery modifications led to 

DNA vaccines with more consistency inducing strong and potent vaccine-induced 

responses. 
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1.1.7.2. RNA vaccines  

Similar to DNA vaccines, RNA-based vaccines were first reported in the early 

1990s (44). After success in small animals for the prevention of infectious disease and 

cancer, initial excitement was quickly dampened by the lack of stability and difficulty in 

manufacturing RNA-based products (65-67). However, almost 20 years later, after 

numerous improvements in synthesis technology and production, interest in RNA 

vaccines has been revitalized. Nevertheless, these improvements while exciting are 

behind those of DNA vaccines.  

There are multiple different ways in which RNA vaccines are delivered into a 

host. The first and most developed is the use of dendritic cells isolated from a patient, 

transfected ex vivo with mRNA encoding the antigen of interested, and then fused back 

into the patient (67-69). Clinical trials using these ex vivo transfected DCs have been 

mainly for oncogenic targets including colorectal, pancreatic, neuroblastoma, and 

melanoma (68). Regarding RNA vaccines, this method is the most developed and 

frequently used approach in the clinic. It is extremely time-consuming, costly and 

requires patient-specific cell preparations (67). RNA vaccines can also be delivered as 

naked, formulated with proteins or encapsulated by lipids or viral/ bacterial vectors (69, 

70). RNA is extremely susceptible to degradation by nucleases. To overcome this, 

formulation and encapsulating strategies have aided in the stability of the RNA by 

preventing degradation (71). Additionally, complexing can increase the targeting of the 

RNA to certain cell types allowing for the tailoring of the vaccine-induced responses 

(70).   
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There have been additional improvements for the RNA transcript as well. 

Traditionally, the RNA is manufactured using a DNA plasmid encoding the template for 

the mRNA transcript in combination with bacteriophage (like T7) polymerase (71). All 

mRNA must include a 5’ cap and a poly(A) tail which can be added during transcription 

or enzymatically afterward (70). Without these two elements, the host cell will not 

translate the mRNA. Additionally, there has been abundant research into superior 

sequences in the 5’ and 3’ untranslated regions. These regions can increase the stability 

of the RNA and translation but can also contain destabilizing elements such as 

microRNA binding sites and AU-rich regions (72-74). A single chromatographic step can 

be used to purify the RNA leading to increased expression (75). 

The two most prominent and well-studied RNA vaccines include the self-

amplifying RNA and RNActive® produced by CureVac. The self-amplifying RNA is 

based on the alphavirus genome using its RNA replication machinery. The structural 

proteins which would produce an infectious virus have been replaced by the antigens of 

interest (76). Similar to naked RNA, the RNA template is transcribed in vitro off of a 

plasmid DNA template by T7 RNA polymerase (77). To increase the stability of the 

RNA in vivo and increase transfection efficiency, the self-amplifying RNA is usually 

encapsulated by lipids or a viral replication particle composed of zwitterionic lipids, 

cationic lipids, cholesterol and PEGylated lipid (77).  The other major platform, 

RNActive® vaccines, is a product of CureVac. These RNA vaccines use in silico 

modifications of the mRNA sequence in both the 5’ and 3’ UTRs to increase stability and 

translation. These changes use only natural nucleic acids and have been shown to 
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increase the duration of expression (78). For example, unmodified RNA has a peak 

expression of 6-8 hours after injection which quickly diminishes. With RNActive®, the 

peak expression is extended to 24 hours with prolonged expression to up to 9 days (78). 

Additionally, RNActive® is complexed with protamines or small arginine-rich proteins 

which are found in the nucleus and have similar roles to histones during spermatogenesis 

(79). Mechanistic studies have demonstrated that naked mRNA can induce a Th2 like 

responses (80). However, when mRNA is complexed with protamine/RNA complex, it 

acts as a danger signal and stimulated a Th1 response (81). This stimulation occurs via 

the TLR7/8 recognition of the complex leading to innate immune activation and 

expression of key inflammatory cytokines like type 1 interferons (78). Additional studies 

into uptake pathways have demonstrated a difference between the localization in the cell 

of the complexed vs. naked RNA, further supporting the induction of different immune 

sensors (70, 82). Nonetheless, these complexes are extremely tight and thus limit the 

amount of antigen which can be translated. To overcome this lack of translation, 

RNActive® uses a specific ratio of complexed to naked RNA (78). The RNActive® 

platform has seen success in the clinic against both prostate cancer and non-small cell 

lung cancer (78, 83, 84).  

1.1.7.3. Similarities and differences between RNA and DNA vaccines  

There are many similarities between the two nucleic acid vaccine platforms. First, 

both vaccines initially sparked interest due to the ability to have indefinite boosting 

without the inhibition of seroconversion (31, 78). Nucleic acid vaccines harness the 

power of host cell expression, allowing for modifications which might not be achievable 
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during ex vivo expression. Due to this intracellular expression, both platforms efficiently 

induce strong CD8 T cell responses due to MHC class I processing but can also lead to 

cross-presentation on MHC class II and induction of humoral responses. Additionally, 

nucleic acid vaccines can be easily manufactured and developed, allowing for rapid 

progression into the clinic during potential outbreak situations. The platforms also allow 

for the ease of formulation as well as combining multiple RNA or DNA plasmids, 

increasing the breadth of coverage. Additionally, the manufacturing process is fairly 

similar between different antigens and thus can be easily scaled or manipulated for novel 

targets. Furthermore, neither platform is restricted to MHC haplotype as can be observed 

with peptide vaccines.  The immunogenicity for both platforms can also be enhanced or 

tailored by the use of genetic adjuvants which will be further discussed in the next 

section.  

One of the largest differences between the two platforms is the localization of the 

nucleic acids. RNA vaccines are translated in the cytoplasm and never enter into the 

nucleus (67). DNA vaccines, on the other hand, must pass through the nuclear envelope 

to get transcribed (53). This leads to the possibility of DNA integration into the host 

genome, an issue not encountered with RNA vaccines. However, over the 30 plus years 

of DNA vaccine development, no integration events have been observed in both pre-

clinical and clinical trials (53). Depending on the sequence of the RNA vaccine template, 

numerous innate immune sensors including TLR3 and TLR7/8 can be activated leading 

to the increased production of type 1 IFNs (70). Though this can be positive and lead to a 

self-adjuvanting vaccine, if not controlled, it could cause increased off-target effects, 
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decreased adaptive immune responses and produced fever and flu-like illnesses (85). 

Similar responses have not been observed with DNA vaccine. DNA vaccines also have 

increased stability compared to RNA vaccines, which was a major limitation during the 

early development of the platform (85, 86). However, many improvements in technology 

have increased the stability of RNA vaccines (67, 70). Finally, the expression kinetics of 

the two platforms are slightly different. Antigen expression of DNA vaccines is 

theoretically slower than naked RNA vaccines. Antigen expression with DNA vaccines 

can be observed as early as 1-hour post injection with peak express around 24-48 hours 

and strong expression observed out to day 7 (78, 87). Thus, RNA vaccines have a much 

more transient expression than DNA vaccines. Furthermore, RNA vaccines contain 

minimal coding elements and do not include a promoter, bacterial resistant markers, and 

origin of replication that are required for DNA manufacturing (67, 70). Overall, these two 

platforms both have their strengths and weaknesses. However, RNA has a much more 

limited data set and we have to wait and see its development progress.  

1.2. Adjuvants  

Though optimizations to the DNA platform did increase vaccine-induced responses, 

there is still room for improvement and tailoring of those responses. Traditionally, 

vaccine adjuvants are used in formulation with whole inactivated or subunit vaccines to 

stimulate an improved immune response to the antigen (88). The first approved and most 

widely used adjuvant is alum which works by creating a depot that retains the antigen at 

the site of injection (89, 90). This leads to the “leaking” of the antigen, preventing rapid 

dissemination and elimination, leading to a continuous stimulation of the immune system. 
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It also leads to the increased activation of recruited APCs through stimulation of the 

inflammasome (91, 92). Without the addition of alum, a subunit vaccine would only 

produce low and short-lived responses (3). Alum is used in the Tetanus, Diphtheria, and 

Pertussis (DTaP) combination vaccine, Haemophilus influenzae type b (Hib), 

Pneumococcus, HPV and Hepatitis A and B vaccines (93). There are two other clinical 

approved adjuvants in the United States, AS04 which is a combination of 

monophosphoryl lipid A (MPL) / alum and an oil and water emulsion AS03 (94). AS04 is 

currently used in the HPV vaccine, Cervarix®, and works through stimulating Toll-like 

receptor 4 via MPL as well as having the adjuvant effects of alum (90, 94, 95). MPL is a 

derivative of Lipid A which is the active portion of the lipopolysaccharide (LPS) found 

on the surface of gram-negative bacteria (in this case Salmonella minnesota) (96). Due to 

its modifications, MPL induces similar cytokine profile as LPS but is less toxic and thus 

induces fewer side effects (97). The other approved adjuvant is AS03 which is found only 

in the US pandemic Influenza vaccine stockpile (98). It is currently not available to the 

public. It is a combination of α-tocopherol, squalene and polysorbate 80 (98). It works by 

increases APC uptake of the antigen and the induction of the innate immune system (99).  

There are many different reasons to include a vaccine adjuvant. In the case of AS03 

and the pandemic influenza vaccine, it was demonstrated that the addition of AS03 

increased antibody titers over no adjuvant and would allow for the use of a decreased 

dose (98). This allowed for dose sparing of the vaccine and thus increased the US supply. 

Adjuvants can also work by increasing the kinetics of the vaccine response; broadening 

the breadth; increasing the immunogenicity in newborns or the elderly; decreasing the 
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number of vaccinations needed and tailoring the immune system to induce a certain type 

of response (93). 

1.2.1. Plasmid-encoded immune adjuvants  

DNA vaccines can also harness the power of adjuvants. However, in the case of 

DNA vaccines, the adjuvant used is slightly different from traditional adjuvants. Plasmid-

encoded immune adjuvants harness the power of molecules which, when expressed in a 

normal setting, would increase or alter the immune responses. These plasmids encode 

cytokines, chemokines or other immune molecules and are co-formulated with a 

plasmid(s) expressing the antigen(s) of interest. When the plasmids are injected followed 

by in vivo EP, both plasmids enter the muscle cells and are co-expressed (Figure 1.1). 

Plasmid-encoded immune adjuvants have demonstrated the ability to increase APC 

activation and antigen presentation; increase the number, breadth or potency of both CD8 

and CD4 T cells; and influence the humoral response by increasing class switching, 

isotype or affinity/ avidity of the antibody response (100, 101). They are a powerful tool 

to not only increase the immunogenicity of DNA vaccination but also to tailor the 

response towards the desired pathway. However, not all adjuvants will work as many 

times atopic expression of certain immune mediators will not affect or will decrease 

vaccine-induced responses. 

1.2.1.1. Success of IL-12 as an immune adjuvant  

Interleukin 12 (IL-12) is a cytokine mainly produced by APC which has a role in 

the induction of naïve T cells into T helper1 (Th1) cells during an immune response and 

in expanding natural killer (NK) cell function (102). It is a heterodimer cytokine, created 
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by two subunits, p35, and p40, leading to p70. Binding of IL-12 to its receptors (IL-

12Rβ1 and β2) leads to a signaling cascade which upregulates the phosphorylation and 

dimerization of STAT1, 3, 4, and 5 transcription factors (103). This, in turn, leads to the 

increased production of key inflammatory cytokines including IFN-γ and TNF-α and 

polarization of the T cell into long-term Th1 differentiation (104, 105). Additionally, IL-

12 plays a role in proliferation and increases the functionality of T cells (106, 107).  

Due to its role in Th1 development and increases in CD8 T cell killer function, 

IL-12 was explored as a plasmid-encoded immune adjuvant. Initial studies examined pIL-

12 in combination with an HIV vaccine in mice (108). This study was performed before 

the use of EP, yet the study demonstrated that when plasmid IL-12 (pIL-12) was used in 

combination with DNA vaccination, there was an increase in antigen-specific T cell 

responses and most importantly, an increase in CTL activity (108, 109). Furthermore, 

these responses persisted into memory and afforded increased protection when mice were 

challenged (110). In rhesus macaques, the addition of pIL-12 was demonstrated to have 

dose-sparing effects on an SIV DNA vaccine while increasing both humoral and cellular 

responses (111). When pIL-12 was combined with EP, an additive enhancement was 

observed, increasing both cellular and humoral responses in NHPs (59). More 

specifically proliferation, memory, and polyfunctionality were significantly enhanced 

when both pIL-12 and EP were combined (59). pIL-12 was then combined with an HIV-1 

DNA vaccine (PENNVAX-B: HIV-1 clade B Env, Gag, and Pol) in a multicenter 

randomized clinical trial. The immunogenicity outcomes of the trials supported many of 

the pre-clinical findings of pIL-12’s adjuvanting effects. The addition of pIL-12 increased 
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the percentage of subjects which had CD4 or CD8 T cell responses (IFN-γ or IL-2 

production after stimulation) after the second or third immunization (Table 1.3) (57, 58). 

The magnitude of the T cell responses did not increase significantly, but the overall rate 

of response of subjects did. Importantly, there was no increase in adverse events with the 

addition of pIL-12 (58). This is especially important as the systemic delivery of 

recombinant IL-12 has shown increased immune activation leading to many side effects 

and decrease tolerance of the treatment (112).  

1.2.1.2. Novel Immune adjuvants  

pIL-12 laid the groundwork for the development of other plasmid-encoded 

immune adjuvants. There has been extensive work to develop additional adjuvants which 

either alone or in combination with pIL-12 could increase DNA vaccine-induced 

responses. Some of the more prominent and researched adjuvants include IL-15, 

Granulocyte macrophage colony-stimulating factor (GM-CSF), and IL-28 (57, 113-117). 

Within this thesis, I will focus on two kinds of novel adjuvants, mucosal chemokines and 

the use of CD40 ligand (CD40L). Each adjuvant will be described in detail at the 

beginning of each chapter.  

1.3. Targets of vaccination  

Though there are 25 WHO-approved vaccines, there is still a remaining need to 

develop vaccines against both infectious diseases and cancer targets. For example, HIV, 

TB, Malaria and neglected tropical diseases (NTD) accounted for 4.3 million deaths 

worldwide in 2014 (118). There is also a need for the development of vaccines against 

emerging infectious diseases and zoonotic diseases like Ebola, Middle Eastern respiratory 
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syndrome (MERS), and Zika (100, 119-121). Additionally, with the increase in global 

temperature and the expansion of vectors to areas previously uninhabited, the globe is 

observing a spreading of diseases like Dengue and Chikungunya which previously were 

isolated to a small area of the world (118).  

In addition to infectious targets, there has also been increased interest in using a 

person’s immune system to combat and control cancer growth.  These vaccines can be 

used in either the prophylactic or therapeutic setting. In contrast to many vaccines against 

infectious diseases which have a humoral correlate of protection, cancer vaccines must 

induce strong cellular responses (122). These responses are then able to target and kill the 

cancerous cells, preventing growth and metastasis. However, there are complications for 

producing a cancer vaccine especially those which are not caused by infectious agents 

like Human Papillomavirus (HPV). One of the largest hurdles for cancer vaccine 

development is the ability to induce T cell responses against self-antigens (122). Though 

there are certain proteins which are overexpressed on oncogenic cells, targets need to be 

carefully selected to prevent off-target toxicities. Once a target protein is selected, the 

vaccine needs to break tolerance. Due to the complexity of some of these diseases and 

cancer targets, vaccine development will likely have to expand beyond the traditional 

platforms.  

1.3.1. Human Immunodeficiency Virus 

The first target I will focus on is HIV.  
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1.3.1.1. Overview of HIV 

Human Immunodeficiency Virus (HIV) was first discovered in the early 1980’s.  

In the 30 plus years, HIV has infected over 60 million people worldwide, led to 22 

million deaths, and created over 13 million orphans (123-125).  It is a retrovirus, which is 

distinguished from other viruses by two steps in its life cycle. First, Retroviruses use 

reverse transcription to transcribe its RNA genome into DNA (126). Secondly, 

retroviruses integrate its cDNA genome into the host cellular DNA (126). There are 

seven different genera of retroviruses including lentivirus which includes HIV-1, 2 and 

Similan Immunodeficiency Virus (SIV) (127).  There are four key genes encoded by the 

HIV genome, gag, pol, pro, and env. Each of the genes and functions are described in 

Table 1.4.  

The receptor for HIV is CD4 and the co-receptors CCR5 or CXCR4 (128). Upon 

binding, the Env trimer undergoes conformational changes exposing a fusion peptide and 

leading to the merging of the viral and cellular membrane (129, 130). Viral DNA is then 

formed by Reverse Transcriptase (RT) and is integrated into the host chromosome by 

Integrase (131). The new viral RNA produced is then used as both genomic RNA and as 

a template for viral protein production (132). These proteins are then packaged and 

assembled into viral particles which then bud from the cellular membrane (132).  

HIV-1 and 2 were originally zoonotic diseases transmitted from non-human 

primates (NHPs) to humans in Africa (133). The pandemic HIV group M (which includes 

clades A, B, C, D, E, F and G) came from a transmission of SIV in a chimpanzee into a 

human host (133). The primary route of infection is sexual contact, but HIV can also be 
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transmitted vertically from mother to child as well as through the blood (134). The most 

effective transmission rate is through infected blood transfusions (>90%), followed by 

mother to child (~25%) and then sexual (134). Though sexual transmission accounts for 

the majority of infections, this route has the lowest efficiency, with transmission 

occurring between 1 in 200 to 500 unprotected transmission events (134). This rate can 

be significantly enhanced by the viral load of the donor, co-infections, and circumcision 

(134). There is a significant bottleneck during sexual transmission, with infection usually 

being established by 1-4 viruses (134). These viruses seed the infection and rapidly 

diversify (135). The natural history of HIV infection is characterized by an acute 

infection with high peak viral loads which are then controlled down by the adaptive 

immune system to a set point. However, eventually, the immune system loses its limited 

control, CD4 T cell levels significantly drop, and the person progresses to Acquired 

Immunodeficiency Syndrome (AIDS) (136).  Usually, a person does not die due to HIV 

but instead due to opportunistic infections in which the diminished immune system can 

no longer fight or control (136). AIDS is characterized by immune deficiencies in both B 

and T cell dysfunction which leads to greater opportunistic infections, neoplastic diseases 

like Kaposi’s sarcoma, organ dysfunction and autoimmune dysregulation (136).  

1.3.1.2. Protection against HIV 

There are numerous different ways in which the immune system can limit HIV 

viremia. However, to date, there is no natural correlate of protection against HIV. Though 

these responses are not able to clear the infection, they can control it and prevent 

sustained high viral loads. There are multiple responses which have been identified and 
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all likely play some role in control. The best evidence for control of viremia is for cellular 

immunity. Upon infection, CD8 T cells develop against multiple epitopes in all HIV 

proteins. The majority of responses are against structural proteins such as Gag and Pol 

(137). However, the virus is constantly evolving away from epitopes which are 

recognized by CTLs, limiting their effectiveness. There have been many studies which 

have demonstrated the ability for the cellular response to control infection in both NHP 

and humans (138-140). For example, the loss of CD8 T cells during primary SIV 

infection of NHPs leads to a higher set point viral load and rapid disease progression 

(141). Additionally, in humans, lower viral loads and better disease course correlated 

with higher T cell responses and certain MHC class I alleles (142).  

Humoral immune responses also develop during HIV infection. The majority of 

the humoral responses are against the surface glycoprotein Env and a rare number (5-

15%) of infected subjects do develop strong neutralizing antibodies (143-145). However, 

by the time the neutralizing antibodies develop, the virus has already escaped the immune 

pressure, limiting the effectiveness of the antibody (146). Due to this escape, the antibody 

is clearly executing pressure on the virus but whether or not these antibodies are 

contributing to viral control in vivo is still unclear (144, 147). In addition to neutralization 

capacity which will be further discussed below, antibodies have many other roles in 

preventing the spread of HIV including crosslinking of viruses, trapping at the epithelial 

surface, phagocytosis, and antibody-dependent cellular cytotoxicity (ADCC) (143, 147). 

The effects of these antibodies on both protection from infection and control of viremia 

are beginning to be explored in NHP through passive transfer studies (148).  
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1.3.1.3. Difficulties in HIV vaccine development  

There are many factors causing the development of an HIV vaccine to differ from 

classical vaccines. For example, classical vaccines mimic natural immunity against re-

infection. Currently, there are no cases of natural immunity and elimination of HIV 

infection in humans. Additionally, it is difficult to determine exactly what a vaccine 

should induce since we do not know the exact immune response needed to control or 

prevent the infection. Furthermore, most vaccines protect against disease (morbidity/ 

mortality) and not against infection (3). Upon infection, HIV will preferentially target 

activated CD4 T cells (136, 149). Some of these T cells will rest down and become a pool 

of cells which have the proviral DNA integrated into the cell’s DNA (149). Though these 

cells are not actively creating infectious virions, upon reactivation of the cells, the virus 

can be produced (149). This causes a major hurdle for HIV infection since very early, a 

latent reservoir, which is not patrolled by the immune system, will be established (150, 

151). Due to integration and the ability for HIV to establish latent reservoirs, the ideal 

vaccine would create sterilizing immunity with no infection. The ability to eliminate 

these latent reservoirs is a major focus of the HIV CURE initiative, however, currently a 

treatment still eludes scientist (150, 151). Furthermore, the most effective vaccines tend 

to be whole-killed or live attenuated organisms. Some of the first studies to come out of 

the HIV vaccine field were killed HIV-1 (152). Unfortunately, killed HIV-1 did not retain 

its immunogenicity and was found to induce non-protective responses (152). Moreover, 

the use of live attenuated retrovirus is not a safe option as it can easily revert to its fully 

immunogenic form. Finally, most vaccines protect against infections that are infrequently 
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encountered (1). In some populations, the HIV could be encountered on a daily basis 

(153).  

 There are three potential outcomes of an HIV vaccine. The first and most ideal is 

sterilizing immunity, leading to complete protection, no detectable HIV, and no 

transmission. Though this is the desired outcome of vaccination, it is the hardest bar to 

obtain. The second outcome is a transient infection. In this scenario, infection occurs, but 

the disease does not progress. There may be detectable levels of viremia early, but at later 

time points, the immune system has cleared the infection. With this vaccination, 

transmission may occur only briefly during early infection. The third potential outcome is 

a vaccine that induces long-term control of infection. The vaccine would play a similar 

role to that of highly active antiretroviral drugs. It would control viral loads to low or 

undetectable levels, maintain CD4 T cell levels, prevent disease progression and 

significantly lower transmission rates. Thus, the vaccine would replace the daily need to 

take antiretrovirals, preventing the side effects of the drugs and lowering treatment cost.   

1.3.1.4. HIV Envelope Diversity and other characteristics  

In addition to the above complications in HIV vaccine development, another 

major hurdle is the diversity of the HIV surface protein Envelope (Env). The major cause 

of the diversity is the high rates of viral replication, the error-prone reverse transcriptase, 

and the fact that HIV frequently recombines (135, 154). The amount of diversity 

observed in the Env in a single asymptomatic individual who has been infected for six 

years is equivalent to the amount of global diversity in the H3N2 circulating influenza 

strains (155). This diversity increases when viruses are sequenced from multiple 
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individuals across the globe. Currently, there are nine different genetic subtypes (clades) 

(A, B, C, D, F, G, H, J, and K) with two recombinant forms (CRF01_AE and 

CRF02_AG). The most common clades are A, B, C, D, CRF01_AE, and CRF02_AG. 

Clades tend to circulate regionally, however, due to travel and the ease of movement, 

there are many areas in which multiple clades are circulating at one time (156). This 

restricts the possibility of the development of a clade-specific vaccine to limit some of the 

diversity which must be covered. 

In addition to Env diversity, there are many other factors which lead to difficulty 

in vaccine development. Firstly, HIV Env is a heterotrimer composed of 3 gp120s and 3 

gp41s subunits. Studies have demonstrated that Env is constantly breathing and changing 

shape on the virus (157, 158). When it binds to CD4 and exposes potentially neutralizing 

epitopes, it is in a high energy state which is extremely unstable and only last for seconds 

(158-160). This constant movement shields potential neutralizing epitopes and leads to 

the immune system responding to areas which will not have any effect on the virus. 

Additionally, studies have suggested the density of Env on the HIV virion surface is 

extremely low (161, 162). This lack of antigen could create issues if the antibodies 

induced by the vaccine do not have high affinity/ avidity for the Env. Since the amount of 

Env is low, this could eliminate the ability for antibodies to increase their avidity by 

crosslinking to another Env structure on the virus. An additional ways Env is a difficult 

target is that is it extremely glycosylated. HIV Env is one of the most heavily 

glycosylated proteins discovered (163-165). This glycosylation acts as a shield for the 

Env, preventing antibodies from recognizing and binding to hidden neutralizing epitopes. 
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Many of the potent antibodies induced to HIV Env have to navigate this glycan shield to 

reach into its binding epitope (164, 165).  

1.3.1.5. Broadly neutralizing antibodies  

Even though there are many difficulties in producing a potent humoral response 

against Env, a small percentage of people (5-15%), over multiple years, do develop 

potent antibodies (144, 166, 167). These antibodies are terms broadly neutralizing 

antibodies in that they can neutralize 70-100% of tested viruses (144). The less potent 

and first of these antibodies were isolated using phage display (168, 169). Thus, they 

would not necessarily be heavy and light chain combinations which would naturally 

occur in subjects. However, newer technology has allowed for the sorting of Env positive 

B cells and high throughput procedures to obtain novel antibody sequences (170, 171). 

This has led to a flurry of new discoveries of broadly neutralizing antibodies (bNabs). 

bNabs are classified based off of what epitope they binding to. Currently, there are six 

major classes (Table 1.5) (172-178). The most recent antibodies are highly potent and 

able to neutralize a wide range of viral isolates at microgram to nanogram levels (172-

178). In subjects which develop these bNabs, however, their virus has already escaped 

from the humoral pressure and thus even though this potent antibody has been created, 

the person’s viral load remains unchanged. This does not mean that these bNabs could 

not be effective in other people. There have been numerous studies investigating the 

strength of bNabs in both NHP and the clinic. For example, a single infusion of a bNab 

into an NHP can significantly increase the number of challenges required to obtain 

infection (179). Studies in humanized mice and NHPs have demonstrated that infusion of 
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bNabs into mice with productive HIV/ SHIV infection, significantly decrease viral loads 

(180-183). Additionally, there have been clinical studies which have used two bNabs, 

3BNC117 and VRC01 in subjects with HIV infection. In subjects who had undetectable 

viral loads while on antiretrovirals (ART), there was no change in the viral reservoir after 

VRC01 infusion. However, upon a single dose of VRC01, six of eight subjects with 

detectable plasma viral loads saw a 1.1 to 1.8 log decrease in viral loads (184). Trials 

have also been performed with treatment interruption of ART to test the efficacy of 

VRC01 to delay or prevent viral rebound.  Though VRC01 did delay the time to viral 

rebound compared to historical controls, there was no long-term decrease in viral load or 

prevention of rebounding even though VRC01 levels were high (185). Studies have been 

performed with shorter durations between VRC01 infusions and had similar outcomes 

(186). 3BNC117 has been tested for safety and efficacy in both healthy human subjects 

as well as those HIV infected. The majority (88%) of the HIV-infected subjects in this 

trial were not on ART and a 0.8-2.5 log reduction in viral load was observed with a single 

infusion (187). This decrease in viral load was maintained for up to 28 days (187). 

Rebound studies have also been performed with 3BNC117 with similar delay in rebound 

as seen with VRC01 treatment(188). In all bNab trials, the infusions were well tolerated 

with limited to no severe adverse events (184-188). Researchers are further investigating 

what viral populations rebound, why there is a loss of control, increase in virological 

resistance as well as effects on the immune system after infusion (184-189).   Another 

avenue of research is in the field of gene therapy, which is exploring the ability to harness 
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viral vectors to encode these bNabs. Thus, the infected cell would produce the antibody, 

circumventing the need for the immune system to produce it (190, 191).  

Recently there has been increased interest in establishing how these bNabs are 

developed. Studies have explored the interaction between the viral evolution and the B 

cell receptor as well as immune characteristics between subjects who do and do not 

develop these bNabs. Seminal work performed by the Duke CHAVI-ID demonstrated the 

dance between the virus and the B cell receptor (192-194). The group followed subjects 

longitudinally and screened for neutralization titers. Once the serum demonstrated bNab 

characteristics, the subject’s samples were retrospectively sequenced for both viral 

evolution and BCR diversity. Through this study and others, we are beginning to 

understand that a bNab lineage does not develop on its own, but also may require a helper 

BCR which forces the virus down a pathway eventually exposing the bNab epitope (193). 

It has also become evident that many germline BCRs, which eventually lead to bNab 

development, do not bind to the HIV Env but are instead activated by other antigens. 

How to potentially stimulate these BCRs is also a field of great interest.  

Ideally, a vaccine would induce similar humoral responses as a bNab. However, 

upon further analysis, bNabs have antibody characteristics which are quite distinct from 

other vaccine induced antibodies. Within the germinal centers, antibodies undergo rounds 

of affinity maturation. The level of somatic hypermutation within a variable heavy chain 

is between 3-12% for an anti-influenza antibody (195). For some of the more potent and 

broad bNabs, the rate of somatic hypermutation compared to the germline is between 21-

36% (196, 197). This high rate of somatic hypermutation likely requires multiple rounds 
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of affinity maturation. This may require years of antigen presentation and maturation 

which could explain the length of time required for a subject to develop these antibodies. 

Furthermore, the region that mainly determines the binding epitope of the antibody, the 

complement determining region 3 (CDR3), is extremely long (198). Normal CDR3s are 

around 16 whereas for HIV bNabs it is between 20-34 (198, 199). These long CDR3 are 

required to reach into the glycan shield to bind to the Env. Many of these CDR3s interact 

with the glycans and increase the avidity of the antibody (198). How to induce such long 

CDR3s with a vaccine is an open question in the field.  

1.3.1.6. Major clinical trials in HIV vaccine development  

There have been over 45,000 human volunteers in over 180 HIV vaccine clinical 

trials since 1987 (152). The vast majority of these trials have been phase I and II clinical 

trials. There have been some major phase IIB and III efficacy trials. The first two phase 

III trials Vax003 and Vax004 were both gp120 recombinant protein vaccines formulated 

in alum (200-202). The two trials had a combined 7900 subjects and were performed in 

Thailand (Vax003) and the USA (Vax004). The Thai trial enrolled injection drug users 

(one of the hardest populations to protect) whereas the US trial focused on men who have 

sex with men (MSM) and high-risk women. Both trials, unfortunately, had the same 

outcome of no efficacy (200-202). After these trials and the difficulty in isolating strong 

neutralizing antibodies, the field began to shift towards a more T cell based vaccine. This 

led to the HVTN502 Step trial and the HVTN503 Phambili Trial. Both trials use an 

Adenovirus subtype 5 virus expressing HIV-1 gag, pol, and nef genes (203, 204). These 

two trials were performed in the US and South Africa respectively. The Step trial focused 
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on MSM and high-risk heterosexual men and women whereas the Phambili Trial focused 

on heterosexual men and women only. Both studies again did not show any efficacy and 

also observed transient increases in infection risk in the vaccinated vs. the placebo group 

(205-207).  

Following these two vaccines and the increased risk associated with vaccination, 

there was a slight shift towards focusing on a vaccine which induced both humoral and 

cellular responses. The RV144 phase III trial used a modified Canarypox-based vectored 

vaccine (ALVAC) followed by a gp120 protein boost (AIDSVAX B/E) in alum (208). 

The trial was performed in Thailand focusing on community population and enrolling 

over 16,000 subjects. This was also the first prime-boost platform to be tested with the 

hypothesis that the ALVAC would induce strong cellular responses but limited humoral 

responses which would be boosted with the protein immunizations. The results of the trial 

demonstrated moderate 31.2% efficacy – the best efficacy in an HIV vaccine trial to date 

(208, 209). Unfortunately, there were no observed effects on plasma viral load once a 

person became infected (209). The vaccine efficacy did wane over time with peak 

vaccine efficacy post final vaccination around 70% which then contracted down to 31.2% 

3.5 years post final vaccination (208, 210).  Post-hoc correlates analysis revealed that 

protection was not mediated by neutralizing antibody titers or T cell responses (211). 

Instead, IgG antibodies binding to the variable loop 1 and 2 of HIV Env gp120 decreased 

the risk of infection whereas serum IgA antibodies to Env weakened vaccine efficacy 

(212). Further analysis demonstrated that these V1/V2 specific IgG antibodies could lead 

to antibody-dependent cell cytotoxicity (ADCC), virus capture and low levels of 
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neutralization (213, 214). Additionally, these vaccine-induced antibodies were able to 

induce a sieve effect in the virus which did break through (215). The role of serum IgA is 

still under investigation and how this response differs from mucosal IgA. Additional 

studies have revealed that the primary binding epitope for the serum IgA antibody 

blocked the binding epitope for the effective IgG response (216, 217). Follow-up studies 

are in progress to building on the efficacy of the RV144 trial including a phase III trial in 

South Africa which will test similar vaccine platform and schedule but with modified 

Envs to better match the local circulating strains. Additionally, there are numerous 

studies investigating potential methods to increase the level and durability of vaccine 

efficacy by incorporating additional boost as well as comparing each of the different 

vaccine-induced responses to further understand how these responses develop and differ.  

1.3.1.7. DNA vaccines and HIV 

DNA vaccines against HIV were initially attempted as a solo platform 

immunization. However, due to limited immunogenicity induced by these vaccinations, 

many of the recent and ongoing clinical trials combine DNA prime with a boost 

composed of proteins or viral vectors. Similar to other HIV vaccines, initial vaccines 

were composed of only HIV Env in the hopes of inducing strong humoral responses. 

During the movement from humoral based vaccines to cellular, the insert antigen 

progressed from the surface protein Env to the intracellular structural and accessory 

proteins Gag and Pol. Current vaccine inserts included both Env as well as a combination 

of Gag and Pol. As DNA delivery technology developed over the years, EP and gene gun 

were incorporated into the vaccine regimen. There have been 5 phase II studies which 
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have used DNA vaccination. The first trial, IAVI010 which was a DNA prime (no EP) 

MVA boost, saw limited induced immune responses (218). Other phase II studies 

including HVTN 205, RV172, and HVTN204, all DNA prime viral vector boost, 

demonstrated increased cellular responses compared to IAVI010 (219-221). There has 

been one phase IIb efficacy study which has incorporated a DNA prime followed by Ad5 

boost (HVTN505). In this trial, over 2000 subjects were immunized with a mixture of 6 

DNA plasmids encoding Gag, Pol, Nef from clade B (HXB2, NL4-3, NY5/BRU) and 

HIV Env clade A (92RW020), B (HXB2/BaL), and C (97ZA012) delivered by Biojector 

2000® gene gun (222). This was boosted by 4 recombinant Adenovirus serotype 5 

encoding clade B Gag-Pol fusion, clade A, B or C Env. This study was prematurely 

stopped due to lack of efficacy in the vaccine arm. Table 1.6 includes a description of 

each of the phase II trials as well as the ongoing phase I clinical trials which incorporate 

DNA vaccination.  

Our lab has been active in the development of HIV DNA vaccines over the years. 

One recent completed trial of HIV DNA vaccines from our lab, HVTN070, and 

HVTN080 demonstrated the strongest induction of antigen-specific T cells observed in a 

DNA only regimen (Table 1.3) (57, 58). This study was described in the DNA encoded 

immune adjuvants section. Additionally, our DNA vaccines are being studied in two 

ongoing prophylactic phase I trials (RV262 and HVTN098). In HVTN098, the regimen 

selected is based on the success observed in HVTN080. Subjects in HVTN098 will be 

vaccinated with a combination of our consensus clade A and C Envelopes (gp140) as 

well as plasmids encoding consensus M Gag and Pol with or without pIL-12. Also, this 
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trial will investigate the ability of ID immunizations to increase humoral responses by 

targeting the skin which is rich with antigen presenting cells.  

1.3.2. HPV 

The second target I will focus on for my thesis is Human Papillomavirus (HPV) 

1.3.2.1. Overview of HPV 

The family of Papillomaviruses has evolved for millions of years with their host. 

Due to this extensive co-host evolution, there is little transmission of species-specific 

Papillomavirus to other host species (223). Papillomaviruses infect numerous different 

animal species including birds, reptiles, marsupials and mammals (224). Currently, there 

are no Papillomaviruses that infect amphibians or lower phylogenetic orders (224). The 

majority of infections occur at mucosal and cutaneous epithelium except Bovine 

Papillomaviruses 1 and 2 which infect the mesenchymal tissues (225). There are over 150 

different types of Human Papillomaviruses (HPV) which have been sequenced (226). The 

majority of these do not cause disease and have evolved to cause chronic unapparent 

infections. However, there is a subset of HPV types which are classified as “high risk” 

and thus can cause disease specifically cancer (227). Due to their influence on human 

health, these “high risk” types the focus of most research.  

Papillomaviruses are small non-Enveloped icosahedral viruses which have a 

single circular double-stranded DNA genome. This genome is around eight kilobases in 

length and usually, is bound to cellular histones. The genome has eight open reading 

frames with three functional parts: the early genes (E1-E7) are needed for viral 

replication, the late (L1, L2) are structural and the long control region (LCR) which has 
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cis elements needed for viral replication and transcription (228). Table 1.7 describes each 

of the genes encoded by “high risk” HPV and their general role in the viral lifecycle. To 

note, there is no E3 protein due to an early sequencing error which suggested a third early 

open reading frame (228).  

The genomes of Papillomaviruses are extremely stable as there are few mutations 

or recombination events (228). Papillomaviruses are categorized based on their L1 

protein which is one of the most conserved proteins in the genome (229, 230). If an L1 

protein has greater than 10% diversity from any known Papillomavirus, then it is 

considered a new type. Diversity between 2-10% is a subtype, and less than 2% is 

classified as a variant (229). To date, there are 16 different Papillomavirus genuses (228). 

These genuses are phylogenetically related but could be biologically distinct. There are 

four genuses that infect humans: alpha, beta, gamma, and delta. Table 1.8 describes the 

“high risk” HPV types, as well as two other types included in the HPV prophylactic 

vaccine, which is described later. Presently, all of the “high risk” HPV types are from the 

alpha genus (228).  

The receptor for Papillomaviruses is currently still unknown. Restriction to the 

epithelium and particular host suggest a specific receptor. However, the virus can bind to 

a wide variety of cells in vitro, potentially implying that the restriction may be due to cell 

intrinsic restriction factors (231). Glycosaminoglycans (GAGs), FC receptors and α6 

integrins have all been proposed as receptors, but none have been confirmed (231). HPV 

lesion formation usually occurs after a wound is formed and infection of the basal stem 

cells of the epidermis. The division of these cells, which is associated with wound 
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healing, allows for the virus’ genome to enter into the nucleus and be episomally 

maintained (232). These lesions can naturally clear or progress, leading to the 

precancerous stages called cervical intraepithelial neoplasia (CIN) 1-3. CIN is the 

definition of abnormal cells in the cervix after detection by histological examination of 

cervical biopsies (228). The different stages represent the proportion of abnormal cells 

that compose the sample, with CIN 1 being the lowest and CIN 3 the highest. There are 

also similar stages and definitions for vaginal (ValN 1-3) and vulvar (VIN 1-3) 

abnormalities.  

Natural immunity to HPV infection does develop. Greater than 90% of infection 

will clear within two years (223, 233). There are still many remaining questions as to the 

role of natural immunity in clearance, control of reinfection, and prevention of 

reactivation. For example, within the 90% of people who will clear infections within two 

years, only 50-60% of people will develop detectable serum antibodies against HPV 

(234). It has been suggested that part of the reason natural immunity is limited to HPV 

infection is due to the virus’s ability to surpass recognition by the innate immune system. 

Initial infection does not create viral loads, cell lysis or death and limits innate pattern 

recognition receptors (PRR) signals (235). Additionally, the viral proteins E6 and E7 

(discussed further below) can counteract many signaling pathways including the STAT 

pathways and interferon response factor 1 signaling (236-239) as well as downregulate 

MHC-I expression on the surface (240-242). This leads to a more tolerant phenotype with 

ineffective activation of antigen presenting cells and cellular responses. Studies in both 

humans and animals models suggest that clearance of lesions are passive instead of 
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active, with the clearance caused by the replacement of infected cells by “normal” cells 

during basal cell division (243-245). These cells can still have viral genomes but are not 

actively producing viral proteins. However, studies in immunocompromised subjects and 

animals do suggest a role of the immune response, as reactivation of the virus can occur 

after immune depletion (223). Other factors that could contribute to viral reactivation 

include changes in hormone levels or abrasions and wound healing (228).  

1.3.2.2. Prophylactic vaccination  

There are three WHO approved HPV vaccines to prevent infection, reduce HPV-

associated disease and formation of genital warts. All are indicated for females and males 

ages 9-26 but recommended for ages 11-12. All of these vaccines are based on the L1 

gene and the formation of virus-like particles (246, 247). Cervarix®  is a bivalent vaccine 

protecting against HPV16 and 18, Gardasil®  is a quadrivalent vaccine which protects 

against HPV 16, 18, 6 and 11 and Gardasil 9®  (approved in 2014) adds to Gardasil®  and 

protects against serotypes 31, 33, 45, 52, 58 (Table 1.8) (246-248). The two main types, 

HPV 16 and 18, account for about 70% of all cervical cancers (223, 228, 249). However, 

there are many other types of HPV-associated cancers including vaginal, head and neck, 

and anal. Table 1.9 describes the prevalence of each of the nine types covered by 

Gardasil 9® when the cancer is HPV-positive (249-252). HPV 6 and 11 are not “high 

risk” types but do cause laryngeal papillomas and are a major cause of genital warts.  

The prophylactic HPV vaccine uses the L1 gene as the immunogen. The L1 gene 

will form virus-like particles (VLPs) spontaneously when expressed, which will assemble 

in a similar manner to virus assembly during natural infection (253, 254). The VPL has a 
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pentameric structure composed of 72 L1 units (227). Due to the repetitive nature of the 

VLP, it is highly immunogenic. During natural infection, the L1 exposes major 

neutralizing epitope and humans will develop limited humoral responses to these epitopes 

(255). These epitopes are highly variable and thus only induce type-specific antibodies 

(228, 256). The more conserved epitopes of L1 are hidden inside the VLP, and thus the 

immune response does not induce cross type neutralizing antibodies (257). If a person has 

cross type-specific antibodies, it is usually an indication that they have been infected with 

multiple types and upon cross absorption, the humoral response will be mono-specific 

(255). Similar, but stronger humoral responses are induced by the prophylactic vaccine 

and thus are the major reason for the increase in valency between Gardasil® (protecting 

against four strains) and Gardasil 9® (protecting against nine strains).  

These vaccines have demonstrated significant efficacy in protection against the 

included types. In the phase III efficacy trial for both Cervarix® and Gardasil®, the 

vaccine prevented 100% of moderate to severe precancerous lesions (CIN2/3) in subjects 

who were naïve for infection (246, 247). The antibody titers induced by the vaccines 

were 10-100 time higher than humoral responses induced during natural infection (257). 

These humoral responses do decrease one log from peak (post final vaccination) to 18 

months post final vaccination (153, 258, 259). However, these levels do eventually 

stabilize and remain higher than after natural infection. The protective antibody levels 

needed is still unknown, and there is a remaining question as to how long this protection 

will last or if booster immunizations will be required. Preliminary studies suggest that the 

prophylactic vaccines induce strong memory responses, but continued surveillance is 
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required to determine if additional immunizations are necessary (223). The longest follow 

to date is with the quadrivalent vaccine, which prevented greater than 90% of persistent 

infections in women who were previously uninfected for up to 5 years (258).  

There are three key areas of research to improve the prophylactic vaccine: 1) 

increasing the immunogenicity, 2) decreasing the cost of production and 3) a universal 

HPV vaccine. A universal HPV vaccine is ideal and would prevent infection by all HPV 

types. Within L2, the other protein which assembles into the capsomer, there are 

neutralizing epitopes which are conserved across types (260, 261). However, most of the 

L2 is not exposed to the surface but instead situated inside the capsomer (261). There is a 

small epitope which is exposed, but this epitope is much less immunogenic compared to 

the L1 epitopes and antibodies induced to this area are much weaker (256, 261). Pre-

clinical research is progressing on increasing the immunogenicity of this L2 epitope by 

linking it to other immunogenic proteins or by adding L2 into the L1 VLPs (228). 

Additional areas of active research are decreasing the cost of the vaccine and the number 

of immunizations required. To date, the HPV vaccine is one of the most expensive 

vaccines. Additionally, the requirement of 3 immunizations limits the rate of complete 

vaccination and induces sub-protective immune responses. There is ongoing research into 

using other expression systems like plants, viral vectors or bacteria, and DNA vaccines to 

increase the vaccine induced response and lower the cost of production (228).  

1.3.2.3. Therapeutic vaccination  

Unfortunately, these impressive prophylactic vaccines do not treat already 

established HPV infection. In the phase III trial of Gardasil®, an arm of the study 
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included women already infected with CIN2/3. The vaccination did not afford any 

protection or decreased the severity of the disease (153, 258, 259). Due to the low uptake 

of the HPV prophylactic vaccines and an increase in HPV-associated cancers, there is a 

need to develop an efficacious therapeutic vaccine. To date, most therapeutic vaccines 

focus on two key proteins: E6 and E7.  

 The E6 protein interacts with four types of cellular proteins: transcriptional co-

activators, cellular polarity and motility proteins, tumor suppressors and inducers of 

apoptosis, and finally DNA replication and repair factors (228, 262, 263). All of these 

interactions are essential in the life cycle of the virus or the immortalization of the cell. 

Drilling down deeper for the tumor suppressor role, E6 recruits the protein ligase, E6 

associated protein, to p53, thus preventing p53’s tumor suppressive activity (263, 264). 

Additionally, E6 leads to the activation of Telomerase, which is a major factor in the 

immortalization of the cells (265). The main target for E7 is the family of retinoblastoma 

(Rb) proteins or pocket proteins. E7 will bind to many proteins within the family, but the 

most established binding partners are p105Rb, p107Rb, and p130Rb (266, 267). Upon 

binding to E7, the Rb proteins are degraded, eliminating their ability to regulate the cell 

cycle. p105Rb and p107Rb are important for cell cycle regulation in the basal cells 

whereas p130Rb is important for cell re-entry in the upper epithelial layers (268-270). E7 

can also bind to proteins involved in cell cycle regulation, as well as, the destabilization 

of the centrosomes leading to mitotic deficiencies (271).  

 The expression levels of E6/E7 increases as the tissue progresses from CIN 1 to 3 

(228). Tissues which display CIN 1 classification still support the viral life cycle of HPV. 
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The activity of E6 and E7 is not high enough to compromise the integrity of the cell and 

thus virus production is supported (228). When tissues progress to CIN 2+,  the level of 

E6 and E7 increase, leading to expanded genetic errors, cell cycle dysregulation and 

increased conversion to oncogenesis (228).  It is currently unknown what causes the 

dysregulation in the expression levels of E6 and E7, but studies have suggested that it 

could be hormonally related (272). Additionally, stages CIN 2+ have increased the 

amounts of integrated viral genomes. Though these integration events occur randomly, 

studies have found that many integrated viral genomes from cancer biopsies have 

integration events disrupting the E1/E2 ORF (273, 274). This prevents E2 ability to 

regulate the expression level of E6 and E7, further leading to increased expression of 

these two proteins (273-275). An integrated HPV genome is not necessary for oncogenic 

formation. However, studies have found that as much as 70% of HPV16 cervical cancers 

have integrated genomes (276-279).  

 Due to E6’s and E7’s role in malignancy formation and the drastic increase in 

expression levels in precancerous and cancerous tissues, most therapeutic vaccines have 

focused on the use of E6/E7 as antigens. To prevent the activity of these two proteins, 

mutations are usually incorporated to disrupt the pRb and p53 binding sites (40). 

Additionally, vaccines have also used E2 and E5, two proteins which are expressed early 

during transformation. Many different vaccine modalities have been used, focusing 

mainly on the ability to induce cytolytic T cells (CTLs) to control tumor growth. The 

earliest HPV therapeutic vaccines were focused around protein immunization using 

recombinant E6 and E7. To increase the limited immunogenicity induced with E6 and E7 
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alone, these two proteins were fused with other proteins including heat shock protein 65 

(Hsp65) or the bacterial protein CyaA of Bordetella pertussis (280-282). Many protein 

conjugate vaccines have demonstrated success in preclinical testing, but few have been 

moved into clinical trials. The most prominent are Hsp65-E7 linked protein which, in a 

phase II study, demonstrated 35% complete responses in anogenital intraepithelial 

neoplasia (282). In an additional phase II study in CIN3 subjects, 13 out of 58 subjects 

demonstrated complete histological regression (283). However, in both of these studies, 

the researchers were unsure if the response rate was due to the vaccine or natural 

regression and clearance (282, 283). Additional recombinant protein vaccine trials have 

used the HPV L2 protein fused to E7 to increase immunogenicity. When immunized with 

the TLR-7 agonist, imiquimod, histological regression of VIN2/3 was observed by week 

52 in 63% (12 out of 19) of subjects (283). Similar fusion with L2 has been performed 

with HPV 6 and assessed in over 300 subjects for clearance and prevention of recurrence 

of genital warts. Though humoral responses were detected in subjects, there was no 

difference in vaccinated vs. placebo regarding recurrence (284).  

 Therapeutic HPV vaccines have also harnessed the use of peptide vaccines. Both 

short epitope specific and synthetic long peptides (SLPs) have been used in clinical trials 

against HPV disease. In a clinical trial using subjects with VIN3 disease, SLPs against E6 

and E7 demonstrated complete and durable responses in 47% of subjects (285). Strong 

and broad CTL responses were observed in these subjects, which peaked after first 

vaccination (285, 286). Shorter epitope-specific peptides have also been used. The most 

common epitopes are E711-20, E782-90, E786-93, E629-38 in combo with adjuvants or lipids 
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(40). However, there has been very modest success with these short peptides with the 

highest responses rate observed in high-grade CIN or VIN subjects (18% complete 

response, 50% partial response) (287). Due to the limited induction of immune responses 

produced by short peptides, there is abundant research into modifications in their delivery 

and formulation for vaccination studies.  

 Dendritic cell-based vaccines have also been used in the HPV therapeutic field. 

These autologous DCs are usually pulsed with either peptides/ proteins or transduced 

with nucleic acids or viral vectors encoding the target antigen. The first phase I DC 

vaccine was performed in 15 late state cervical patients. Overall, the vaccine was well 

tolerated and 4 out of 15 subjects developed antigen-specific immune responses (288). 

However, no subject observed clinical responses (288).  There have been numerous other 

DC vaccines with the best response rate observed in a phase I clinical trial of subjects 

with stage IB/IIA cervical cancer. In this study, DCs were pulsed with HPV 16/18 E7 and 

keyhole limpet hemocyanin (KLH). All subjects developed antigen-specific CD4 

responses with 8 out of 10 developing antigen-specific CTLs (289).  

 Clinical trials using the viral vectors Vaccinia and Modified Vaccinia Ankara 

(MVA) have also been performed for therapeutic HPV vaccination. Vaccinia viruses 

encoding E6/E7 fusion protein for HPV16 and 18 has been used alone and in prime-boost 

regimens with DNA or protein prime (40). The clinical trial which demonstrated the best 

response rate was in 18 VIN 2/3 patients, as 13 developed HPV-specific responses and 8 

subjects observed partial responses as defined as a regression in lesion diameter by 50% 

(290). Contrary to many of the other therapeutic trials, most MVA clinical trials have 
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used an MVA encoding the E2 protein. In a phase I/II clinical trial with 34 CIN2/3 

subjects, vaccination with the MVA vector induced complete histological regression in 

20 subjects with an additional 11 observing partial reduction by 50% (291). All subjects 

developed HPV-specific cellular and humoral responses (291). There are many ongoing 

preclinical studies using other viral vectors including adenovirus, alphaviruses, and 

lentiviruses (40). Additionally, there have been clinical trials utilizing bacterial vectors 

encoding HPV E7. The bacterial vector is base off of listeria monocytogenes which is a 

gram positive bacterium that infects macrophages. Due to its bacterial life cycle and 

ability to escape the phagosomes, the vector can stimulate both MHC class I and II 

responses (292). To increase the immunogenicity of the vector, E7 was fused with the 

non-hemolytic fragment of Listeriolysin O protein (LLO). In a phase I trial in late stage 

metastatic cervical cancer, 4 out of 13 subjects observed a reduction in tumor load (293). 

This vector is currently being tested in a phase I/II trial in persistent or recurrent cervical 

cancer, a phase I/II in HPV16 positive oropharyngeal cancer and a phase II randomized, 

single-blind, placebo-controlled trial in CIN2/3(40, 294).  

 Finally, DNA vaccines have also been used in the treatment of HPV infection. A 

plasmid encoding the HPV16 E783-95 epitope formulated with biodegradable polymer 

microparticles has been used in phase I clinical trials of AIN and CIN2/3. Due to the 

peptide restriction, the subjects were required to be HLA-A2 positive (295). In the phase 

I trial in 12 AIN subjects, 10 develop antigen-specific immune responses (295). In the 

CIN2/3 trial of 15 subjects, 11 developed HPV-specific T cell responses, and 5 had 

complete histological regression (296). Due to these two successes, a modified DNA 
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vaccine which included epitopes for both E6/E7 and types 16 and 18 was assessed in a 

phase II randomized, double-blind, placebo-controlled trial in 123 CIN 2/3 subjects 

(297). There was higher resolution of lesions in the vaccinated compared to control, but 

these levels were not significantly higher (297). A plasmid encoding E7 attached to 

Hsp70 has also been assessed in a phase I/ II trial in CIN2/3 subjects. The Rb binding of 

E7 was disrupted as well as a signal sequence was added to increase the section of the 

fused protein. Of the 15 subjects, 8 developed CTL responses, and 3 observed complete 

responses (298). The same plasmid was used in a prime-boost regimen with the 

recombinant vaccinia virus described above in CIN 3 subjects. Seven out of twelve 

subjects developed immune responses with 42% complete response rate (299).  

 Our group in collaboration with Inovio Pharmaceuticals has also developed an 

HPV therapeutic DNA vaccine. This vaccine includes the combination of two plasmids 

expressing RNA and codon optimized E6 and E7 proteins for HPV16 and 18. The E6 and 

E7 proteins are encoded on the same plasmid but have a furin cleavage site to allow for 

proper folding and processing. Additionally, both E6 and E7 activity has been ablated by 

mutating the pRb and p53 binding sites (300). This vaccine is delivered intramuscularly 

followed by in vivo EP. A phase I trial in CIN2/3 subjects after cervical resection 

demonstrated that 14 out of 18 subjects developed CTL responses and that these cellular 

responses expressed multiple lytic markers and were able to kill in an ex vivo assay (301). 

Following this success, the vaccine was moved into a phase IIb double-blind, placebo-

controlled, efficacy study in women who have CIN 2/3. In the per protocol analysis, 53 

out of 107 vaccinated (49.5%) vs. 11 out of 36 placeboes (30.6%) displayed histological 
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regression (55). This increase in clearance was statistically significant and was the first 

time a DNA vaccine demonstrated clinical efficacy. Furthermore, vaccination increased 

virological clearance in cervical biopsy samples, 52.3% vs. 25.7% in controls (55). 

Additionally, correlates analysis revealed an increase in CD8 T cells in the epithelial and 

stroma of non-CIN2/3 cervical tissue and increase in peripheral CD8 T cells which 

displayed an active killing phenotype (CD138, Perforin positive) (55). This vaccine is 

currently being moved into a phase III clinical trial.  

1.4. Thesis objects 

Though DNA vaccines have seen large improvements in immunogenicity over the 

last ten years, there is a continued need for their further development and further 

enhancement. In chapter 2, we will harness the ability for DNA plasmids to be easily 

formulated together and investigate if increased breadth of immunization leads to 

improved cross-clade HIV humoral responses. In chapter 3, we will build on the success 

demonstrated in chapter 2 and explore the use of primary vs. consensus Envelope 

immunogens. We will further develop the use of multi-plasmid formulation to enhance 

humoral responses induced by a DNA vaccination. Chapters 4 and 5, we will investigate 

novel plasmid encoded immune adjuvants to enhance DNA vaccine-induced responses. 

The two sets of adjuvants will be mucosal chemokines (chapter 4) and the use of various 

forms of immune co-stimulation molecule CD40 ligand (chapter 5).  
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Table 1.1: Description of the WHO-approved vaccines 

Vaccine  Type 

Anthrax  Toxoid (protein) 

Cholera Monovalent vaccine – whole killed V.cholerae O1 + protein 

(cholera toxin B subunit)  

Bivalent – whole killed serogroups O1 and O139 

Diphtheria Toxoid  (protein) 

Hepatitis A Inactivated  

Live attenuated 

Hepatitis B (HbsAg) Subunit 

Hepatitis E (currently not 

recommended by WHO) 

Subunit (VLP) 

Haemophilus influenzae b  Polysaccharide peptide conjugate  

Human Papilloma-Virus Bivalent, quadrivalent, and 9-valent subunit vaccine (VLP) 

Influenza 

Influenza intranasal 

Inactivated subunit 

Live attenuated 

Japanese Encephalitis Inactivated 

Live attenuated  

Live recombinant 

Measles Live attenuated 

Meningococcal  Polysaccharide (bivalent – A,C; trivalent – A,C, W135; and 

quadrivalent – A, C, W135, Y 

polysaccharide-protein conjugate (monovalent – A or C or 

quadrivalent (A, C, W135, Y) 

Protein  (serogroup B) 

Mumps Live attenuated 

Pertussis, whole cell 

Pertussis, Acellular 

Inactivated 

Subunit/ toxoid 

Pneumococcus  Polysaccharide-protein conjugate (target either 10 or 13 of the 

most prevalent serotypes)  

Polio Sabin 

Polio Salk 

Live attenuated 

Inactivated 

Rabies Inactivated 

Rotavirus Live attenuated  

Rubella Live attenuated 

Tetanus  Toxoid (protein) 

Tick-borne encephalitis Inactivated  

Tuberculosis (BCG) Live bacteria (different subtype) 

Typhoid fever Polysaccharide-peptide conjugate  

Live attenuated 

Varicella 

Herpes Zoster 

Live attenuated 

Yellow Fever Live attenuated 
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Table 1.2: Description of DNA vaccination optimization strategies 

Optimization strategy Description 

Plasmid Optimization Improve gene transcription and expression 

Strong promoter  Many different promoters, both non-specific and muscle 

specific, were explored to increase transcription. The most 

common is the human CMV promoter as it is a burst promoter.  

Termination site Two to three stop codons are usually encoded to ensure no read 

through 

Poly (A) signal site Added for increase export of the mRNA from the nucleus and 

proper processing 

Enhancer Elements Increase promoter activity  

Gene Optimization Enhanced protein production 

RNA optimization Leads to more efficient translation. Removed any predicted 

RNA secondary structural or instability elements  

Codon Optimization Uses species-specific codon changes to increase the 

translational efficiency. There are many algorithms for mouse, 

nonhuman primates as well as humans.  

Kozak Sequence Increases the translational initiation 

Leader Sequence Improves the stability of the mRNA and leads to increased 

efficiency of translation and processing. The most common 

leader sequence is the IgE leader.  
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Table 1.3: Cellular response rates from HVTN080  

Immunization % CD4 (number of subjects) % CD8 (number of subjects) 

EP EP+12 EP EP+12 

Second 30.0 (3/10) 67.9 (19/28) 10.0 (1/10) 35.7 (10/28) 

third 44.4 (4/9) 80.8 (21/26) 33.3 (3/9) 51.9 (14/27) 
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Table 1.4: Description of HIV genes and their properties and functions.  

Gene Properties/ function  

gag Proteolytically cleaved to form the internal 

structural proteins Matrix (MA), Capsid 

(CA), and Nucleocapsid (NC) 

pro Protease (PR)  

pol Proteolytically cleaved into Reverse 

transcriptase (RT) and Integrase (IN) 

enzymes 

env Surface glycoprotein which is cleaved into 

two subunits gp120 and gp41 
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Table 1.5: Broadly neutralizing antibodies to HIV  

Binding site Antibody 

V2/ glycan PG9, PG16, PGT140s, CAP256-VRC26’s 

V3/V4/ glycans PGT120s and PGT130s 

V3/ CD4i 3BNC176 

CD4bs 
B12, VRC01, NIH45-46, 12A12, 

3BNC117, VRC-CH30’s 

Face of contiguous areas of gp41 and 

gp120 
35O22, PGT150’s 

MPER 2F5, 4E10, 10E8 
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Table 1.6: HIV DNA vaccine trials 

type Study protocol Candidate 

Vaccine 

EP or 

gene gun 

Phase # result 

DNA

– Pox 

IAVI010 DNA-HIVA/ 

MVA-HIVA 

(A) 

N/A IIa 115 Rare IFN-γ 

ELISpot 

responses 

(218) 

DNA-

Pox 

HVTN205 GeoVax JS7 

DNA/ MVA 

HIV62 (B) 

N/A IIa 225 93.2% subject 

developed 

antibodies in 

DDMM arm 

CD4 T cell – 

66.4% 

CD8 – 21.8% 

(219) 

DNA-

Ad5 

RV172 DNA (VRC-

HIV DNA016-

00-VP)/ rAd5 

(VRC-

HIVADV014-

00-VP (A, B, 

C)) 

Biojector 

2000® 

I/IIa 324 IFN- γ ELISpot 

in 63% of 

volunteers 

(220) 

DNA-

Ad5 

HVTN204 DNA (VRC-

HIV DNA016-

00-VP)/ rAd5 

(VRC-

HIVADV014-

00-VP (A, B, 

C)) 

Biojector 

2000® 

IIa 480 IFN- γ ELISpot 

in >60% of 

volunteers 

(221) 

DNA-

Ad5 

HVTN505 

 

DNA (VRC-

HIV DNA016-

00-VP)/ rAd5 

(VRC-

HIVADV014-

00-VP (A, B, 

C)) 

Biojector 

2000® 

IIb 2504 Premature stop 

due to lack of 

efficacy(222) 

DNA- 

Pox 

HVTN104 

NCT02165267  

DNA Nat-B, 

Con-S Env, 

Mosaic Env 

MVA- CMDR 

Biojector 

2000® 

I 105 Ongoing 

DNA- 

VSV 

HVTN087 

NCT01578889   

DNA: HIV-

MAG + pIL-12 

VSV HIV gag 

Ichor 

TriGrid® 

I 100 Ongoing 

https://www.google.com/url?q=https://clinicaltrials.gov/show/NCT02165267&sa=D&ust=1471966544188000&usg=AFQjCNG3E1s_TAqIyQBdkZY_qH-I_5dusg
https://www.google.com/url?q=https://clinicaltrials.gov/show/NCT01578889&sa=D&ust=1471966544191000&usg=AFQjCNFDr1PJ7eyONxpvfLwpWzkJ6sHJvw
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Table 6 (con): HIV DNA vaccine trials  

type Study 

protocol 

Candidate 

Vaccine 

EP or gene 

gun 

Phase # result 

DNA- 

Pox 

RV262 

NCT0126072

7 

PENNVAX-G 

MVA CMDR 

Cellectra 5P® 

Or Biojector 

2000® 

I 92 Ongoing 

DNA HVTN098 

NCT0243176

7 

PENNVAX-GP + 

IL-12 

Celletra 5P®  

and 3P® 

I 94 Ongoing 

DNA CRO2049 

NCT0207598

3 

GTU multiHIV B 

clade 

IM+ EP – 

Ichor 

TriGrid® 

No EP – IM+ 

ID and IM+ 

Transcutaneo

us 

I 30 ongoing 

DNA-

protein 

CUTHIVAC0

02 

 

NCT0258979

5 

 

DNA-C 

CN54ENV; 

CN54gp140 

Ichor 

TriGrid® 

I 24 ongoing 

Pox- 

Ad 

DNA- 

Ad - 

Pox 

IAVI 

N0004/HIVC

ORE004 

NCT0209999

4 

 

DNA: SG2.HIV 

consv 

MVA: HIVconsv 

rAd35: GRIN 

Ichor 

TriGrid® 

I/II 72 ongoing 

DNA-

Pox-

Protein 

UKHVCSpok

e003 

NCT0192228

4 

DNA: CN54ENV 

and ZM96GPN 

Protein: 

CN54ENV gp140 

MVA-C 

 I 40 ongoing 

 

VRC-HIV DNA016-00-VP : mixture of 6 DNA plasmids – Gag, Pol, Nef from clade B 

(HXB2, NL4-3, NY5/BRU) and HIV Env – clade A (92RW020), B (HXB2/BaL) and c 

(97ZA012)  

rAd5 (VRC-HIVADV014-00-VP (A, B, C))-  4 recombinant serotypes 5 – clade B Gag-

Pol fusion, clade A Env, Clade B Env and Clade C Env 

 

PENNVAX GP – Gag, Pol, Env – clade A and C  

PENNVAXG- Gag, Env clade A, C, D 

 

MVA CMDR – CM235 ENV/ CM240 Gag/Pol 

https://www.google.com/url?q=https://clinicaltrials.gov/show/NCT02431767&sa=D&ust=1471966544187000&usg=AFQjCNHvWfAXHqrwrIIsC4b6D7l5fPCSkA
https://www.google.com/url?q=https://clinicaltrials.gov/show/NCT02431767&sa=D&ust=1471966544187000&usg=AFQjCNHvWfAXHqrwrIIsC4b6D7l5fPCSkA
https://www.google.com/url?q=https://clinicaltrials.gov/show/NCT02589795&sa=D&ust=1471966544201000&usg=AFQjCNE_2SlUPh9VRxXk8CFK4m9vpCQuEg
https://www.google.com/url?q=https://clinicaltrials.gov/show/NCT02589795&sa=D&ust=1471966544201000&usg=AFQjCNE_2SlUPh9VRxXk8CFK4m9vpCQuEg
https://www.google.com/url?q=https://clinicaltrials.gov/show/NCT02589795&sa=D&ust=1471966544201000&usg=AFQjCNE_2SlUPh9VRxXk8CFK4m9vpCQuEg
https://www.google.com/url?q=https://clinicaltrials.gov/show/NCT02099994&sa=D&ust=1471966544201000&usg=AFQjCNEFfbZyeksuzp9yLAbZIWcRv4vZlA
https://www.google.com/url?q=https://clinicaltrials.gov/show/NCT02099994&sa=D&ust=1471966544201000&usg=AFQjCNEFfbZyeksuzp9yLAbZIWcRv4vZlA
https://www.google.com/url?q=https://clinicaltrials.gov/show/NCT01922284&sa=D&ust=1471966544202000&usg=AFQjCNGRmjWm-P1LkQ2Fiv99tyPLS0exAw
https://www.google.com/url?q=https://clinicaltrials.gov/show/NCT01922284&sa=D&ust=1471966544202000&usg=AFQjCNGRmjWm-P1LkQ2Fiv99tyPLS0exAw
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GTU multiHIVB clade – Multiantigen- synthetic fusion protein build by full-length 

polypeptides of Rev, Nef, Tat, p17 and p24 with 20 epitopes for Protease, Reverse 

Transcriptase and gp160 (HAN2 HIV-B) 

 

MVA-C: Gag-Pol-Nef and gp120 from clade C 97CN54 

 

GeoVax – DNA: pGA2/JS7 DNA – Gag, Protease, Reverse Transcriptase, Tat, Rev, and 

Vpu – clade B HIV-HXB2/BH10 and Env (ADA sequence) 

 

MVA – MVA62B – HIV Gag, Protease, RT, Env from the same sequence as DNA prime 
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Table 1.7: HPV genes and role in viral lifecycle 

Promoter Gene Role 

Early 

E1 

Recognize origin of 

replication with E2, has 

helical-like activities 

E2 

Recognize origin of 

replication with E1, role in 

viral transcription, 

replication and genome 

partitioning 

Dependent on interactions 

with cellular proteins 

E4 

Acts later in lifecycle, 

induces cytoskeleton 

rearrangement, G2 arrest, 

viral assembly and escape 

from epithelial surface 

E5 

Increases cell proliferation, 

activates protein kinases, 

inhibits MHC trafficking to 

cell surface, inhibits 

apoptosis 

E6 

Target regulators of cell 

cycle – p53, induces 

telomerase, prevents cell 

differentiation 

E7 

Target regulator of cell 

cycle – retinoblastoma Rb 

proteins 

Late 

L1 
Major capsid encodes the 

neutralizing epitope 

L2 

Minor capsid– required for 

encapsulation of the HPV 

DNA 
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Table 1.8: “High Risk” + HPV6/11 types and risk level 

Genus species Type species Other 

papillomaviruses 

risk 

Alpha 

5 HPV 26 HPV 51 

High-risk mucosal 

lesions also in benign 

lesions 

6 HPV 53 

HPV 30 

HPV 56 

HPV 66 

High-risk mucosal 

lesions also in benign 

lesions 

7 HPV 18 

HPV39 

HPV 45 

HPV 59 

HPV 68 

HPV 70 

High risk mucosal lesions 

9 HPV 16 

HPV 31 

HPV 33 

HPV 35 

HPV 52 

HPV 58 

HPV 67 

High risk malignant 

mucosal lesions 

10 HPV 6 

HPV 11 

HPV 13 

HPV 44 

HPV 74 

Benign mucosal lesions, 

lower risk  

11 HPV 34 HPV 73 High risk mucosal lesions 

Blue: Included in Cervarix®, Gardasil® and Gardasil 9® 

Green: Included in Gardasil® and Gardasil 9®   

Purple: Included in Gardasil 9® 
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Table 1.9: Percent prevalence of each type in HPV-positive cancers from distinct tissues. 

 Invasive 

cervical 

cancer (%) 

(249) 

Anal 

carcinomas 

(%) (251) 

Invasive 

vaginal 

cancer (%) 

(252) 

Vulvar 

cancer (%) 

(250) 

Oropharyngeal 

(302) 

Attributable 

to HPV (%) 

100 90 40 40 12 

 

HPV 6 <1 2 1 <1  

HPV 11 <1 <1 <1 <1  

HPV 16 61 76 59 73 60.2 

HPV 18 10 3 5 5 

HPV 31 4 1 5 1 5.7 

HPV 33 4 2 5 7 

HPV 45 6 1 4 3 

HPV 52 3 <1 3 2 

HPV 58 2 2 4 1 
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Figure 1.1: Diagram of how plasmid encoded immune adjuvants work. A plasmid 

encoding the antigen of interested is co-formulated with a plasmid encoding immune 

modulators. These two plasmids are injected into the same site of the muscle followed by 

in vivo electroporation (EP). The muscle cell will then produce both the antigen and 

immune adjuvant leading to changes in the vaccine induced response.  
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CHAPTER 2 ENHANCED SYNTHETIC MULTI-CLADE DNA PRIME INDUCES 

IMPROVED CROSS-CLADE REACTIVE FUNCTIONAL ANTIBODIES WHEN 

COMBINED WITH AN ADJUVANTED PROTEIN BOOST IN NON-HUMAN 

PRIMATES 

2.1 Introduction  

Even with effective anti-retroviral drugs, HIV remains an enormous global health 

burden. Vaccine development has been problematic in part due to the high degree of 

diversity and poor immunogenicity of the HIV Env protein. Studies suggest that a 

relevant HIV vaccine will likely need to induce broad cellular and humoral responses 

from a simple vaccine regimen due to the resource-limited setting in which the HIV 

pandemic is most rampant. DNA vaccination lends itself well to increasing the amount of 

diversity included in a vaccine due to the ease of manufacturing multiple plasmids and 

formulating them as a single immunization. By increasing the number of Envs within a 

formulation, we were able to show increased breadth of responses as well as improved 

functionality induced in a non-human primate model.  This increased breadth could be 

built upon, leading to better coverage against circulating strains with broader vaccine-

induced protection.  

The induction of broad multifunctional antibody responses with an HIV vaccine in 

non-human primates (NHP) has been challenging. Previous studies of neutralizing 

antibodies have focused on rare tier 1 HIV-1 viruses that are relatively easy to neutralize, 

due to the difficulty to induce neutralizing responses against the more common tier 2 

HIV-1 isolates (303, 304). Current vaccines using a nucleic acid prime followed by a 



60 
 

protein or viral vector boost usually induce either no or minimal neutralizing antibodies 

after the priming immunizations and require one or more boosts to observe induction of 

substantial titers (305-311).   

It has also been reported that vaccine-induced non-neutralizing Fc-mediated antibody 

functions could be important in providing protection from HIV-1 infection (312). Among 

these functions, ADCC has been reported to play a relevant role in control. In fact, 

several studies have correlated protection from SIV and SHIV infection with the presence 

of ADCC activity (313-315). Moreover, in the ALVAC/AIDSVax® RV144 clinical trial, 

which provided a modest 31.2% protection from infection, the ADCC responses in 

vaccinees with low-level anti-Env plasma IgA responses correlated with a lower risk of 

infection (211, 217). Moreover, in the course of natural infection, ADCC responses have 

been associated with a delay in disease onset, virus control, and the status of long-term 

non-progressors (316-318). In a previous study with DNA prime-MVA boost, DNA 

prime-MVA and gp140 boost, MVA prime-MVA and gp140 boost, and four doses of 

gp140 alone, all failed to induce any ADCC activity in NHP sera (319). However, 

recently it has been shown that DNA or MVA priming followed by a gp140 boost based 

on a transmitter founder virus (HIV C.1086) can induce ADCC activity following the 

protein boost (320). However, it remains unclear if similar activity can be achieved by 

DNA only prime or in combination with a boost containing unmatched Envs. 

Though DNA has previously been relegated to a priming role due to its inability to 

induce strong humoral responses, many advances in the field, including the use of DNA 

and RNA optimization strategies as well as the use of electroporation (EP), and better 
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formulations, have increased the effectiveness of this platform in stimulating primary 

immune responses (31, 58, 61, 101, 301, 321, 322). This once modest platform is now 

capable of inducing T-cell responses as good as or better than viral vectors (31). 

Additionally, these improvements have enabled DNA to induce humoral responses in 

NHP and humans.  For example, in a recent phase I clinical trial, all subjects (18/18) 

responded to at least two vaccine antigens by ELISA after receiving a DNA vaccine for 

HPV (301).  Despite these advances in the immunogenicity achieved with DNA alone, 

improvements are still needed, especially for the induction of functional protective 

antibodies and increased breadth of responses. One of the strengths of DNA vaccination 

is the ability to include multiple Env constructs in a single injection with ease of 

manufacturing and formulation. We have recently reported on the ability to combine 

multiple consensus Env immunogens to increase both humoral and cellular responses 

above those induced by the individual constructs in small animals (323). The antibody 

responses were further boosted with protein immunization and were able to neutralize a 

panel of tier 1 viruses with neutralizing titers of greater magnitude than either platform 

alone (323).  

This chapter further examined how an improved DNA prime capable of inducing 

strong antibody responses impacts the magnitude and quality of the HIV Env-specific 

antibody response when combined with an adjuvanted recombinant protein boost in 

rhesus macaques (RhM). Building upon small animal studies, I determine if increased 

polyvalency of Env constructs would increase the breadth of immune responses in NHP. 

Compared to the single Env construct, including multiple consensus Env immunogens 
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significantly increased cross-clade binding titers. I observed broad binding antibodies and 

tier 1 neutralization titers averaging 102 with the improved synthetic multi-Env (ME) 

DNA prime alone. With just a single protein boost, neutralization titers increased 10- to 

100-fold, and ADCC activity was observed against SF162 coated targets. Together these 

data demonstrate the utility of improved synthetic ME DNA priming used in combination 

with protein boosts.  

2.2 Materials and Methods 

Plasmids: All plasmids were RNA and codon optimized and included an IgE leader 

sequence for efficient transcription and translation. The inserts were all consensus 

immunogens created as previously described (57, 58, 323-326) and cloned into the pVax 

backbone under the control of the human cytomegalovirus immediate early 

promoter/enhancer. The cytoplasmic tail of all Env antigens was truncated to prevent Env 

recycling.  

Vaccination: Fourteen Indian rhesus macaques were housed at The Children’s Hospital 

of Philadelphia (Philadelphia, PA) according to the standards of the American 

Association for Accreditation of Laboratory Animal Care and all animal protocols were 

IACUC approved.  Five animals (B group) were vaccinated at week 0, 6, 12 and 18 with 

an HIV DNA consisting of consensus plasmids expressing multiclade Gag and Pol with 

clade B Env. Five animals (ME group) were vaccinated at weeks 0, 6, 12 and 18 with an 

HIV DNA vaccine consisting of consensus plasmids expressing multiclade Gag and Pol 

with clade A, B, C, D, and A/E Env.  All DNA was formulated in water at 1.0mg for Gag 

and Pol and 1.5mg for each Env constructs. Both groups along with an additional four 
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naïve animals were boosted with 100ug recombinant SF162 gp140 formulated in MF59 

adjuvant at week 32. DNA was delivered to a single site in the quadriceps followed by in 

vivo EP with the constant current CELLECTRA® device (Inovio Pharmaceuticals, 

Plymouth Meeting, PA) with 3 pulses at 0.5A constant current, a 52ms pulse length and 

0.2s rest between pulses. Recombinant protein was delivered in a single IM injection. 

Blood Collection: Animals were bled two weeks following each immunization. Blood 

(20mL at each time point) was collected in EDTA tubes, and PBMCs were isolated using 

standard Ficoll-Hypaque procedure with Accuspin tubes (Sigma-Aldrich, St. Louis MO).  

Intracellular staining of PBMCs: Intracellular staining of PBMCs was performed as 

previously described (61). Briefly, after isolation, PBMCs (1-2 x 106) were stimulated 

with individual pools of either Gag, Pol, Env A, B, C, or D for 6h in a 96 well U-bottom 

plate. Each peptide pool contained approximately 1μg of each peptide. Media only (R10) 

and PMA (0.1μg/ml) and ionomycin (0.5μg/ml) were used as negative and positive 

controls respectively. All stimulations were performed in the presence of secretion 

inhibitors brefeldin A (1μg/ml BD Biosciences, San Jose, CA) and monensin (1μg/ml; 

BD Biosciences). After stimulation, cells were washed with phosphate-buffered saline 

(PBS) and stained with violet amine-reactive dye Live/Dead stain (Life Technologies, 

Carlsbad, CA) for 5min followed by surface staining for 30min at room temperature. 

Cells were washed with PBS and fixed/permeabilized with BD Cytofix/Cytoperm (BD 

Biosciences) for 15min at room temperature. Following washing with BD Perm/Wash 

buffer, cells were stained with intracellular antibodies for 1hr at room temperature, 

washed and fixed with 2% paraformaldehyde. Cells were analyzed using a modified BD 
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LSR II (BD Biosciences) and analysis performed with FlowJo 9.2 (Tree Star, Ashland, 

OR).  

Endpoint binding ELISA: The ELISA assay was performed as previously described 

using 1µg/mL HIV consensus clade A, B or C gp120 (Immune Technology, New York, 

NY) in PBS-T (PBS with 0.5% Tween 20) (327). Endpoint titers were determined as 

previously reported (328). Briefly, the upper prediction limit of HIV-specific IgG 

antibodies was calculated using the Student t-distribution where the mathematical 

formula that defines the upper prediction limit was expressed as the standard deviation 

multiplied by a factor based on the number of naïve controls and a 95% confidence 

interval. The endpoint titer was reported as the reciprocal of the lowest dilution that 

remained above the upper prediction limit.  

Multi-Env Binding ELISA: A similar protocol as above was used to determine binding 

specificity against multiple different Envs. Briefly, plates were coated with 1µg/mL of 

each of the specific Envs: ZM197, A244, 92RW020, HXBC2, TRJO455, SF162, and 

gp41 (HXBC2) (Immune Technology, New York, NY) in PBS. After blocking, serum 

from pre-bleed, two weeks post final DNA immunization, or 2 weeks post final protein 

immunization were diluted 1:50 in  1% FBS in PBS-T and allowed to incubate for 1hr at 

room temperature. Mouse anti-NHP IgG HRP (Southern Biotech, Birmingham, AL) at a 

1:5000 dilution in 1% FBS in PBS-T was used. Plates were then developed using 

SIGMAFAST™ OPD (o-Phenylenediamine dihydrochloride) tablets according to the 

manufacturer’s instructions (Sigma-Aldrich, St. Louis, MO). The reaction was stopped 

after 15min with the addition of 2N H2SO4. Plates were then read at an optical density of 
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450nm on a GloMax® 96 Microplate Luminometer (Promega Madison, WI). All samples 

were plated in duplicate. 

V1/V2 and V3 binding specificity ELISA Cyclic V1/V2 or V3 binding specificities 

were determined as previously described (329). Briefly, plates were coated with 1µg/mL 

cyclic V1/V2 and V3 constructs and incubated at 37oC for 1.5hrs. After washing with 1X 

PBS-T, serum from pre-bleed, week 20 (post final DNA immunization) and week 34 

(post protein boost) were diluted 1:35 and incubated for 1.5hrs at 37oC. Secondary anti-

human Alkaline Phosphatase conjugated Ab (Southern Biotech Birmingham, AL) was 

diluted 1:2000 and incubated for 1.5hrs at 37oC. After washing, plates were developed 

with the pNPP substrate (1mg/ml in 10% Diethanolamine) and incubated for 30min at 

room temperature. Plates were then read at OD405nm.  

Individual Peptide Mapping: Overlapping 15-mer peptides were obtained from the NIH 

AIDS Reagent Program for consensus clade C HIV-gp160 (catalog number 9499). 

Peptides were resuspended in PBS to obtain a concentration of 1mg/peptide in 1ml.  

Plates were coated with 1μg/ml of peptide and ELISA was performed as described above. 

Avidity Index ELISA: The avidity of the humoral responses were assessed against 

consensus clade A, B, and C gp120 two weeks after each DNA vaccination for ME 

group, two and eleven weeks after protein boost for clade B only DNA, ME DNA and 

protein only groups. Plates were coated with 1ug/ml of either consensus clade A, B, or C 

gp120 (Immune Technology, New York, NY) in PBS. After blocking, serum was diluted 

1:50 or for the dilution curves 1:50 and then four-fold from there in 1% FBS in PBS-T. 
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Each sample was run in quadruplicate where half of the wells were treated, and half were 

untreated.  After an 1 hour incubation, plates were washed five times with PBS-T. Half of 

the wells for each sample were incubated with a denaturing reagent, 8M urea, for 5 

minutes while the others were incubated with PBS. Plates were washed and incubated 

with mouse anti-NHP IgG HRP (Southern Biotech, Birmingham, AL) at a 1:5000 

dilution in 1% FBS in PBS-T. Plates were then developed as described above and OD450 

values were obtained. The avidity index was determined by dividing the OD450 values of 

the treated by the untreated and multiplying by 100.  

Neutralization: Neutralization was determined using the previously described TZM-bl 

based assay (304). Briefly, pseudotyped viruses were produced by transfecting 293T cells 

with plasmids expressing HIV env and env deficient HIV-1 backbone plasmid 

(pSG3ΔEnv) using FuGene6 (Promega Madison, WI). Media containing viruses were 

collected 48hrs after transfection, spun and cleared through a 0.45μm filter. The virus 

was then titered to determine the TCID at which infectivity produced 150,000 relative 

luminescence units (RLU). For neutralization, serum was diluted 1:20 in 10% D-MEM 

growth medium followed by serial 3-fold dilutions (range 1:20 to 1:43740) and incubated 

for 1hr at 37⁰ C with titered virus. TZM-bl cells were then added (1 x 104/ well in 100μl) 

with DEAE-Dextran with the final concentration of 10μg/ml. Controls included TZM-bl 

cells only and cells with virus only. Plates were incubated for 48hrs at 37⁰C. Following 

incubation, 150μl of media were removed, and 100μl of Bright-Glo luciferase reagent 

(Promega Madison, WI) was added. After a 2min lysis, 150μl of the lysate was 

transferred into a 96 well black solid plate, and luminescence was measured using a 
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Victor 3 Luminometer (Perkin Elmer Waltham, MA). The 50% inhibitory dose (ID50) 

titer was determined as the serum dilution that caused a 50% reduction in the RLU 

compared to the level in the virus control after subtraction of the cell control background.  

ADCC: ADCC activity against SF162 coated target cells was measured using the 

ADCC-GranToxiLux (GTL) assay as previously described (330). This assay measures 

the percentage of target cells containing active Granzyme B (%GzB), a principal effector 

of cell-mediated cytotoxicity (331), after incubation with effector cells and serum 

samples. Target cells were CEM.NKRCCR5 cells (NIH AIDS Reagent Program, Division 

of AIDS, NIAID, NIH: CEM.NKR-CCR5 from Dr. Alexandra Trkola) coated with 

recombinant HIV-1 clade B SF162 gp120 (Immune Technology Corp, New York, NY). 

ADCC activity against HIV-1 infected cells was measured as a percentage of target cell 

killing using the Luciferase ADCC assay as described (216). For these assays, the 

CEM.NKRCCR5 target cells were infected with a replication-competent infectious 

molecular clone designed to encode the SF162.LS (accession number EU123924) env 

gene in cis within an isogenic backbone that also expresses the Renilla luciferase reporter 

gene and preserves all viral open reading frames (332, 333). For both ADCC assay 

methodologies, the effector cells were PBMC isolated from an HIV-1 seronegative 

human donor heterozygous for 158F/V polymorphic variants of Fcγ receptor 3A. Serum 

was tested at baseline, week 20 (2 weeks post final DNA immunization), and week 34 (2-

week post protein boost). Serum samples were tested using 4-fold serial dilutions ranging 

from 1:100 to 1:102,400. The results were calculated as maximal % specific Granzyme B 

(% GzB) and % specific killing for the GTL and Luc ADCC assay respectively after 
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subtracting the activity observed before immunization (after background subtraction). We 

also calculated the area under the curve (AUC) of ADCC activity versus serum dilution 

for the responses observed using each assay after background subtraction. For the Luc 

ADCC assay, the AUC was calculated above a 10% cut-off. 

Statistics: Statistical analysis was performed using GraphPad Prism (GraphPad Software, 

Inc. La Jolla, CA) Analysis among groups was performed using an independent T-test 

and a Mann-Whitney test depending on the normalcy of data when two groups were 

being compared and an ANOVA when three groups were being compared. A p-value less 

than 0.05 was considered statistically significant.  

2.3 Results 

 

Multi-Envelope formulation induces potent cross-clade cellular response 

In this study, we characterized cellular and humoral response induced by a highly 

optimized DNA prime and adjuvanted recombinant protein boost in RhMs. To address if 

multiple consensus Env immunogen are able to broaden vaccine-induced responses, two 

different priming immunizations were used. One group of five RhMs received four doses 

of pHIV Gag, Pol and consensus clade B Env gp140 DNA at weeks 0, 6, 12 and 18 

followed by SF162 (Clade B) gp140 protein boost formulated in MF59 (adjuvanted 

protein) at week 32. Another group of five received a multi-Env (ME) DNA prime 

consisting of four doses of pHIV Gag, Pol and consensus clade A, B, C, D, and AE Env 

gp140 DNA at weeks 0, 6, 12 and 18 followed by the same protein boost. Four RhMs 

received the adjuvanted protein only at week 32. All of the consensus DNA immunogens 
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were created as previously described and included RNA and codon optimization as well 

as efficient IgE leader sequence (324). All constructs were formulated together in water 

and delivered in a single intramuscular immunization followed by adaptive EP as 

previously described (324).    

We first assessed how increasing the breadth of the prime impacts cellular 

immune responses using multiparameter flow cytometry. Peripheral blood mononuclear 

cells (PBMCs) were stimulated overnight with overlapping Gag, Pol, Env A, Env B, Env 

C and Env D peptides and the total response calculated as the percentage of cells making 

IFN-γ, IL-2 or TNF-α. Following four DNA primes, we observed strong T-cell responses 

induced by both the clade B only and the ME-prime (Figure 2.1a, b, Table 2.1). The 

inclusion of additional Env plasmids did not further enhance the magnitude of the 

response. The total CD8+ response to all antigens was comparable at 0.87  0.38% for a 

clade B prime and 0.87  0.27% for the ME-prime. In addition to CD8+ responses, the 

synthetic DNA prime was also capable of inducing robust CD4+ responses averaging 

0.47  0.15% for a clade B prime and 0.48  0.13% for the ME-prime.  There was a shift 

in the frequencies of Env responses with the clade B only immunization inducing 0.09% 

of CD4+ and 0.10% of CD8+ T-cell responses compared to 0.40% and 0.74% respectively 

for the ME DNA vaccination. Thus, within the ME DNA responses, Env accounts for 

84% and 85% CD4+ and CD8+ responses compared to clade B only immunization where 

Gag and Pol responses dominate. Following a clade B recombinant protein (SF162) 

boost, clade B CD4+ T-cell responses were significantly enhanced from the post-DNA 

prime level for the clade B only prime (*p < 0.05) and trended up in the ME-prime 
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compared to pre-boost levels (p = 0.06) (Figure 2.1c). The post-boost CD4+ T-cell levels 

were also significantly higher for the clade B primed RhMs compared to the protein only 

levels (*p < 0.05) and trended towards an increase in the ME-prime RhMs (p = 0.09).  

The protein boost was able to slightly affect the CD8+ clade B specific responses in the 

clade B Env only primed RhMs but not the ME group (Figure 2.1d).  

Multi-Envelope DNA vaccine produces superior humoral responses compared to a single 

DNA Env formulation.  

 We hypothesized that these CD4+ responses would provide sufficient T-cell help 

for the induction of functional antibody responses. To assess the induction of antibodies 

with a single vs. ME-prime, we first determined the magnitude and breadth of antibody 

binding. The ME DNA prime induced higher and broader binding antibody responses 

compared with a clade B prime alone (Figure 2.2). After just two doses of ME DNA, all 

five animals produced antibodies which could bind clade A, B and C HIV-1 Env gp120 

proteins, whereas no Env-binding antibodies were detected in sera from animals given 

two doses of the clade B DNA prime. Animals receiving the clade B DNA prime required 

the protein boost before all five animals produced clade B binding gp120 antibodies as 

well as cross-reactive clade A and C binding antibodies. Priming with the ME DNA 

strategy significantly enhanced binding titers against all three Envs after two (*p<0.05), 

three (**p<0.01) and four (***p<0.001) immunizations compared to the single clade B 

DNA vaccination. Additionally, ME prime-boost was significantly elevated from both the 

clade B prime-boost and recombinant protein alone following the protein boost at week 

32  (**p<0.01 for all gp120s). Although the adjuvanted protein boost was an SF162 clade 
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B protein, we still observed an enhancement in clade A and C binding titers primed with 

ME DNA. Though these binding antibody responses do wane in the memory phase, we 

are still able to detect high binding titers eleven weeks after protein boost, with ME DNA 

prime-protein boost group having the highest levels.  

ME DNA vaccination induces cross-clade binding titers and lower gp41 reactive 

antibodies compared to protein only immunization.  

Having observed enhanced binding titers with the ME-prime, we wanted to 

understand further the binding epitopes recognized by the induced antibodies. We first 

tested the ability of antibodies to bind to various primary gp120 and gp41 proteins 

(Figure 2.3). After the DNA priming immunizations, the ME group had high binding 

antibodies to all gp120 Envs tested, which spanned clades A, B, C, and AE. These 

responses with ME DNA only were either above or on the same level as the protein only 

control group (Figure 2.3a-b). When analyzing binding antibodies specific to gp41 

region of HIV Env, the DNA only groups induced a lower level of binding compared to 

the protein only controls (Figure 2.3c). Upon receiving the protein boost, gp41 specific 

antibodies were expanded to levels above the DNA only groups. We do see an increase in 

binding across multiple different Envs in the clade B DNA prime-protein boost group, 

these levels are still lower than the ME prime-protein boost and reflect more closely the 

levels of protein only immunization.  

Vaccine-induced antibodies target the V3 loop of gp120 

Recently, two key areas in the gp120 protein have been found to important in 

vaccine protection. Antibodies binding to both V1/V2 and V3 regions contribute to the 
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moderate efficacy of the RV144 trial (211, 212, 214, 329, 334, 335). Therefore, antibody 

binding to V1/V2 and V3 epitopes were assessed after DNA prime-protein boost or after 

protein only immunization (Figure 2.4).  The V1/V2-gp70 fusion protein carrying the 

following V1/V2 sequences were tested:  strain A2 clade B, consensus A, consensus C 

and consensus AE.  Minimal ELISA binding activity (at a serum dilution of 1:35) was 

noted with the strain A2 clade B V1/V2-fusion protein using post-boost sera from RhMs 

that received the prime-boost regimens (data not shown).  However, there was substantial 

reactivity (2 to 40 fold increase in OD values) in the sera of all animals during the 

immunization regimen against cyclic V3 peptides carrying the sequences of consensus A 

and C as well as the sequence of clade B strain MN (Figure 2.4).  Importantly, 

immunization with ME DNA induced similar levels of binding when compared to the 

protein only immunization group. These levels are increased significantly when ME 

DNA was followed by protein boost (p < 0.001 compared to pre-boost levels), inducing 

antibody levels higher than DNA or protein only immunization. To further define the 

specificity of the antibody binding, we mapped linear epitopes within the V3 loop using 

overlapping 15-mer peptides derived from the consensus clade C Env (Figure 2.5a). 

Using a serum dilution of 1:50, we observed the strongest binding to the peptide that 

spans the V3 crown (peptide 9261) in the sera of animals immunized with the ME DNA 

prime-protein boost (Figure 2.5b). The sera were also able to bind to a peptide that 

contains the N-terminal β-sheet and the crown of V3 (peptide 9259).   
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DNA vaccination drives increase antibody avidity which was boosted upon protein 

immunization 

To further characterize the humoral responses induced by DNA prime-protein 

boost regimen, we investigate how the antibody avidity to consensus clade A, B, and C 

gp120 changed over time. The ability to induce highly avid antibody has been shown to 

be a correlate of protection in NHPs (336) and is especially important in a prophylactic 

HIV vaccine where Env density is low, potentially preventing the possibility of bivalent 

binding (337).  Due to the limit in antibody titers after DNA vaccination with the clade B 

only regimen, antibody avidity was determined using the ME DNA group (Figure 2.6a). 

The avidity index for clades A, B, and C increased, though not significantly, after 2nd and 

3rd immunization. After the 4th immunization, the avidity index against clade B gp120 

increases to levels significantly higher (*p <0.05) than after the 2nd immunization. For 

clades A and C gp120, however, the avidity index after 4th DNA immunization was 

slightly lower than after the 3rd. Upon protein boosting, the avidity index for all clades 

increased to close to 100, which was significantly higher compared to levels after 2nd, 3rd, 

and 4th immunization and these levels were maintained into memory. The avidity index 

after protein boost was compared across clade B DNA only prime, ME-prime and protein 

only immunization. The ME-prime resulted in significantly higher avidity index after 

protein boost compared to clade B only immunization (clade A gp120 ***p < 0.001, 

clade C gp120 ****p<0.0001) and protein only immunization (clade A gp120 **** 

p<0.0001, clade B gp120 ****p<0.0001, clade C gp120 ****p<0.0001) (Figure 2.6b). 

Interestingly, for the clade B gp120, even with the low amount of binding antibodies after 
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DNA only vaccination, the clade B only DNA prime induced significantly higher avidity 

after clade B protein boost compared to protein only immunization (**p<0.01). Memory 

responses were also investigated and for both the clade B DNA prime-protein boost and 

the protein only immunization; the avidity index was increased at the memory time point 

compared to the levels two weeks after vaccination (Figure 2.6c). For all clades, at the 

memory time point, the avidity index was significantly higher for the ME prime-protein 

boost group compared to clade B only prime-boost and protein only groups. Since the 

avidity index for the ME DNA prime-protein boost two weeks post vaccination and 

memory time points were close to 100, we also investigated at which dilution the avidity 

index began to decline (Figure 2.7). When serum was diluted four-fold lower, the avidity 

index was slightly decreased and continued to drop down at each sequent dilution. The 

avidity index curves for both two weeks post protein boost and memory are similar 

suggesting that these levels are maintained but not necessarily increased.  

Monovalent protein boost increases functional antibody titers primed by DNA 

vaccination 

Having characterized binding antibodies, we next sought to determine how 

DNA, protein and a combined DNA prime-protein boost compared to the induction of 

neutralizing antibodies. Neutralizing titers were measured two weeks following the final 

immunization using the TZM-bl assay against clade AE, B and C tier 1 Env-pseudotyped 

viruses. We observed cross-clade neutralizing antibodies after the ME DNA prime-

protein boost compared to either ME DNA, or protein delivered alone (Figure 2.8a). In 

fact, all five ME DNA prime-protein boost animals had neutralizing titers to MN.3 and 
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MW965.26 that averaged two orders of magnitude higher than titers induced with ME 

DNA alone. After protein boost, the neutralization titers against MN.3 (ID50 range: 337-

4434) were significantly higher (p<0.05) compared to DNA only (ID50 range: 45-192) 

and protein only immunization (ID50: baseline). Similar trends were seen with 

MW965.26 pseudotyped virus, where neutralization titers induced by ME prime-protein 

boost (ID50 range: 256-9379) were increased, though not significantly, compared to DNA 

only (ID50 range: 67-280) (p<0.13) and protein only (ID50 range: baseline-27) (p<0.1). 

Animals immunized with ME DNA alone or with ME DNA prime-protein boost had low 

neutralizing responses to the clade AE TH023.6 pseudovirus (ID50 range ME DNA: 

baseline-177; ME + protein: baseline-1897; protein only: baseline). A single dose of 

gp140 protein alone resulted in essentially no neutralizing antibodies to any of the three 

pseudoviruses tested. These neutralization titers wane into the memory phase, with ME 

DNA prime-protein boost having levels below 102 for all three pseudotyped viruses.  

Lastly, we examined the ability of the different vaccine platforms to induce 

functional antibody responses capable of inducing antibody-dependent cellular 

cytotoxicity (ADCC) as an indication of the induced Fc-mediated Ab functions capable 

of recognizing infected cells. We analyzed samples using HIV-1 clade B SF162 gp120 

coated cells, homologous to the recombinant protein boost (330). We observed 

significantly higher ADCC, measured as both maximal %GzB activity and %GzB 

activity AUC (Figure 2.8b-c), in animals that received the ME DNA prime-protein boost 

when compared with DNA alone (* p<0.05) or with protein alone (** p<0.01). We next 

evaluated the ADCC response using HIV-1 SF162-infected target cells (Luciferase 
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ADCC assay). The responses detected for the ME DNA prime-protein boost group were 

higher when compared to the other two groups. However, these differences did not reach 

statistical significance (Figure 2.8d-e).   

2.4 Discussion 

There is a critical need for an effective HIV vaccine to induce helper cells to 

support cytotoxic T-cell responses that can kill virus-infected cells, as well as provide 

strong B-cell help required for the maturation of antibodies and induction of B-cell 

memory. The delivery of consensus Env DNAs from multiple clades can enhance the 

breadth of the T-cell response that could help avoid T-cell escape upon infection. By 

using the consensus Envs, a DNA vaccine can specifically encode conserved T-cell 

epitopes which could be included in many different strains. Importantly, the robust 

responses generated with a synthetic DNA prime were efficiently boosted by the 

administration of an adjuvanted recombinant protein. While CD4+ T-cell responses were 

more effectively boosted with protein, modest boosting of CD8+ T-cells were also 

observed, especially in the animals receiving only the clade B prime, where a larger 

percentage of the T-cell response was matched to the clade B recombinant boost.  

 In addition to robust T-cell responses, in this study, we observed for the first time 

the ability of synthetic DNA to induce high titers of binding antibodies, similar to protein 

vaccine platforms which have been characterized as being able to induce strong humoral 

responses (338-340). Though the clade B only group induced lower humoral responses, 

this was not due to lower protein expression as both CD4+ and CD8+ T cell responses 

against clade B Env peptides was higher in the B only group compared to the ME DNA 
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immunization (CD4+: 0.087% vs 0.046%, CD8+: 0.102% vs 0.064% respectively) (Table 

2.1). These data also suggest that an ME DNA prime can elicit a broad humoral response 

and both heterologous and homologous responses can be boosted with a single 

recombinant protein.  Also, we observed lower gp41 binding after four doses of DNA 

immunizations compared to a single dose of recombinant gp140 Env (Figure 2.3c). 

Though preliminary, this suggests that the DNA vaccination focused the humoral 

responses to the gp120 region of Env, even when delivered in a full length or truncated 

gp140 form. This response could be due to the antigen being presented on the surface of 

transfected cells, leading to less exposure of the gp41 region when compared to 

recombinant free protein. Additionally, the avidity index of humoral responses was 

significantly higher when RhMs are primed with DNA followed by protein boost 

compared to protein only immunization (Figure 2.6). Even for the group immunized with 

clade B only DNA, the avidity to consensus clade B gp120 was significantly higher after 

protein boost compared to the protein only immunizations. This suggests that DNA 

vaccination could be inducing adequate help, which is expanded upon boosting with 

protein. The functional antibody response observed was qualitatively similar to the 

binding antibody response with the ME DNA prime-protein boost inducing the highest 

neutralizing and ADCC titers compared to either platform alone (Figure 2.8). The ability 

to boost with multiple protein Envs may further increase antibody breadth, titers, and 

potency. Studies investigating differences between heterologous/homologous prime-

boost immunizations containing multiple Envs are of interest, and this study provides a 

strong rationale for these.  
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 The ability to induce humoral responses to specific portions of the HIV Env could 

increase the protective efficacy of the vaccine regimen. In the case of the modestly 

successful RV144 trial, these antigenic regions include the V1/V2 region as well as the 

V3 region. We detected minimal to no vaccine-induced antibodies to V1/V2 fusion 

proteins. These responses may not have been adequately primed by the DNA 

immunization nor further expanded by the adjuvanted protein immunization. Even 

though there was limited V1/V2 binding, we did observe substantial induction of 

antibodies binding to the V3 region of clades A, B, and C (Figure 2.4). These responses 

were highest in the ME DNA prime-protein boost immunized group. Analysis of the 

RV144 trial demonstrated that antibodies against V3 inversely correlated with risk of 

infection in a subpopulation of vaccines which had low levels of serum IgA Env-specific 

antibodies (214). Additional analysis revealed that these antibodies would be able to exert 

immune pressure against the virus (329, 341). The antibodies were found to 

predominately bind to a region that included the I307 amino acid, which is a key contact 

point for many V3 binding antibodies (342-344). This amino acid is maintained within 

our peptides used for linear mapping and was included in the two peptides that indicated 

the highest binding. Though glycan-independent V3 antibodies are less broad and potent 

in their neutralization capacity than the glycan-dependent V3 antibodies, the former have 

been shown to be important in reducing infection in the RV144 trial and in providing 

sterilizing protection in passive transfer challenges (345-348). Thus, the ability for a 

vaccine to induce such antibodies may be important for protection.  
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 The improved immunogenicity seen within this study was achieved in the absence 

of employing immune plasmid adjuvants to increase vaccine-induced responses. The 

inclusion of molecular adjuvants such as IL-12, IL-28 or CCL28 may further enhance the 

cellular and humoral responses achieved by a synthetic DNA prime (57, 58, 113, 349-

351). Potentially, the inclusion of one of these plasmid adjuvants could help increase 

memory responses leading to the maintenance of neutralizing antibodies.  Additionally, 

novel delivery devices such as intradermal electroporation have shown promising pre-

clinical results and the ability to induce improved humoral responses (60, 61, 321). 

Lastly, boosting with more than one dose of recombinant protein, protein from multiple 

clades, or recombinant epitope-scaffold proteins that focus the immune response on 

particular regions of the Env, as well as the use of alternative adjuvants may further 

improve the breadth, magnitude and maintenance of the HIV-specific response. These 

results merit future pre-clinical evaluation to test further the limits of polyvalency from 

more potent DNA constructs on inducing anti-HIV immune responses. Improved DNA 

primes may be combined with multiple platforms to improve platforms performance.      
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Tables 

 

Table 2.1: CD4+ and CD8+ T cell responses induced to each vaccine included 

antigen. Cellular responses were determined after final DNA vaccination. PBMCs were 

stimulated with overlapping peptides to Gag, Pol, and Envs from clade A, B, C, and D 

and stained for polyfunctional flow. Responses were characterized as cells expressing 

IFN-γ, TNF-α or IL-2.  
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Figures 

Figure 2.1: DNA prime-protein boost induces robust CD4+ and CD8+ T-cell 

responses. T-cell responses were measured two weeks following the fourth dose of DNA 

(B or ME) and after the recombinant gp140 boost using polyfunctional flow cytometry. 

DNA vaccines consisted of pGag/Pol/Env B (B) or pGag/Pol/Env A, B, C, D, A/E (ME). 

Responses are the sum of any cells producing IL-2, TNF-α, or IFN-γ. Total CD4+ (a) and 

CD8+ (b) T-cell responses to individual HIV antigens following the DNA prime. Total 

CD4+ (c) and CD8+ (d) T-cell responses to the HIV Env clade B peptide pools following 

DNA prime (B or ME), DNA prime plus adjuvanted protein boost (B+gp140 or 

ME+gp140) or the protein alone (gp140). Bars represent mean with error bars 

representing standard error. Significance reported as * p<0.05 as determined by modified 

ANOVA. 



82 
 

Figure 2.2: ME DNA vaccination induces increased binding titer responses 

compared to single Env immunization. Responses were measured two weeks after each 

immunization and eleven weeks after protein boost (memory). Vaccine groups were 

pGag/Pol/Env B prime-gp140 boost (clade B DNA) (red squares), pGag/Pol/Env A, B, C, 

D, A/E prime-gp140 boost (ME DNA) (blue circles) or recombinant gp140 boost alone 

(green triangle). Endpoint binding titers against consensus clade A (a), clade B (b) and 

clade C (c) gp120 following each immunization and memory time point. Horizontal 

brackets represent significant differences as determined by modified ANOVA between 

groups at a given time point (*p<0.05, **p<0.01, ***p<0.001). Bars represent mean. 
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Figure 2.3: ME DNA prime-protein boost increases the breadth of antibody binding 

compared to single Env prime. Serum binding responses were measured two weeks 

after DNA only immunization (week 20), DNA + protein boost immunization (week 34) 

or protein only immunization (week 34) for both single clade B DNA prime and ME 

DNA prime. Binding antibodies against gp120s spanning clades B (a) and clades A, C, 

and AE (b) as well as against whole protein gp41 (HXBC2) (c) were determined. Optical 

density values are reported as box and whisker plots. 
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Figure 2.4: V3 binding induced following ME DNA prime and expanded after boost. 

Serum was diluted 1:35 and analyzed using sera drawn at week 0 before vaccination, two 

weeks following the fourth DNA prime (week20) and two weeks following the 

recombinant gp140 protein boost (week34). Binding antibodies were detected against the 

cyclic V3 peptides representing consensus A and C as well as the sequence from clade B 

(strain MN). Horizontal brackets represent significant differences as determined by 

modified ANOVA between groups at a given time point (***p<0.001). Optical density 

values are reported as box and whisker plots.  
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Figure 2.5: Vaccination induces binding antibodies to linear epitopes in the V3 

crown and β sheet. Binding antibody epitopes were mapped using a serum dilution of 

1:50 two weeks following the ME DNA prime (week 20), ME DNA prime-protein boost 

(week 34), or protein boost alone (week 34). (a) Consensus clade C peptides were used 

for the mapping of responses. (b) The DNA prime-protein boost was mapped to two 

sequences, 9259 (CTRPNNNTRKSIRIG) and 9261 (RKSIRIGPGQTFYAT). Bars 

represent mean with error bars representing standard error. 
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Figure 2.6: ME DNA prime increased the avidity index of humoral responses after 

protein boost compared to clade B DNA prime and protein only vaccination. The 

avidity index of humoral responses against consensus clade A, B, and C gp120s were 

determined two weeks after each immunization and into memory for the ME DNA 

prime-protein boost group (a). The avidity index was also analyzed two weeks after 

protein boost (b) and at a memory time point (c) for all three groups against consensus 

clade A, B and C gp120. Horizontal brackets represent significant differences as 

determined by modified ANOVA between groups at a given time point (*p<0.05, 

**p<0.01, ***p<0.001). Bars represent mean. 
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Figure 2.7: Avidity index of ME DNA prime-protein boost responses decreases with 

increasing dilution. The avidity index of the humoral response induced by the ME DNA 

prime-protein boost was assessed at decreasing dilutions two (a) and eleven (memory) (b) 

weeks post protein boost. Responses were determined against consensus clade A, B, and 

C gp120 proteins.  
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Figure 2.8: ME DNA prime-protein boost induces functional antibodies capable of 

neutralization and ADCC. (a) Neutralizing antibodies were measured two weeks after 

the ME DNA prime, ME DNA prime-protein boost and into memory. Neutralization 

titers were also determined for protein only immunizations two weeks after vaccination 

and into memory. ADCC was analyzed two weeks following the ME DNA prime, ME 
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DNA prime-protein boost or protein boost alone. The maximal % specific (b) and area 

under the curve (AUC) (c) Granzyme B activity was determined using the GTL assay 

with SF162 coated targets. Background (pre-immunization) activity was subtracted from 

each measurement. The maximal % specific killing (d) and AUC specific killing (e) were 

determined using the luciferase assay with infected CD4+ target cells. The values 

represent percent specific killing after baseline correction. Bars represent mean with error 

bars representing standard error. Significance determined using modified ANOVA 

(*p<0.05, **p<0.01). 
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CHAPTER 3: EXTREME POLYVALENCY INDUCES POTENT CROSS-CLADE 

CELLULAR AND HUMORAL RESPONSES IN SMALL ANIMALS AND NON-

HUMAN PRIMATES 

3.1. Introduction  

A major obstacle to vaccine development is the diversity of HIV-1 and creating 

an immunogen that can produce responses which will be broad enough to encompass the 

global or even regional diversity of the virus. As demonstrated in the above chapter, 

consensus immunogens have displayed considerable potential in driving T cell responses 

which exhibit cross-clade reactivity when compared to wild-type HIV immunogens (323, 

324, 352-355). However, this coverage is limited to cellular responses and fails to induce 

a potent and broad neutralizing antibody response. Recently, it has been reported that 

guinea pigs vaccinated with transmitted founder gp140 Envelope proteins were able to 

induce low but broad neutralizing antibodies to both tier 1 and tier 2 viruses (356).  This 

general induction of coverage may be ideal for a priming immunization, establishing a 

response which can be boosted with the addition of either chronic or consensus 

Envelopes.  

 Given the above requirement, DNA vaccination may be the optimal platform for a 

successful HIV vaccine. Advances in technology including codon and RNA optimization 

as well as electroporation can induce anti-HIV cellular responses to levels comparable 

with viral vectors (31). Also, this platform would allow for the expression of full-length 

gp160 protein and could allow for the presentation of the native trimer to the immune 

system. Cryo-EM structures of Envelopes have highlighted the differences between 
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gp120 and gp140 structures and the potential for off-target effects if the proper 

immunogen is not provided (357-359). DNA vaccination also allows for multiple 

difference plasmids to be delivered simultaneously, increasing the coverage of the 

immunization.  

 Though DNA vaccines against HIV can induce potent cellular immunity, 

antibody titers have remained low, are limited in functional antibody titers, and usually 

require a boost. Thus, we looked to expand the ability of the DNA platform to induce 

both binding and neutralizing antibodies. In addition to the consensus immunogens which 

we have previously published on, we have created a panel of 26 plasmids expressing 

acute or early primary gp160s (360-362). Each plasmid was immunogenicity in mice, 

inducing either cellular, humoral or both responses. Formulation studies were performed 

to ensure that delivery of multiple plasmids to a single site did not damp the vaccine 

induced response. We determined that delivery of up to 6 plasmids into a single site 

increased humoral responses over delivering each plasmid to a separate site. After down 

selection of a combination of plasmids in rabbits, the most potent inducer of 

neutralization was moved into non-human primates (NHP). NHPs immunized with a 

combination of 14 different Env plasmids developed strong cellular response against 

heterologous consensus clade A, B and C peptides. Additionally, strong binding titers 

were induced which remained elevated into memory time points. These NHPs developed 

a range of binding to V1/V2 scaffold proteins, suggesting a potential binding epitope. 

Tier 1 neutralization titers were observed across time, and after the final immunization, 

we were able to detect low neutralization titers against SF162P3 (tier 2 Env). 
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Additionally, with DNA vaccination alone, we were able to induce potent antibody-

dependent cellular cytotoxicity (ADCC) against multiple gp120 and gp140 coated targets. 

To our knowledge, this is one of the first times that ADCC has been induced with only 

DNA vaccination. Thus the induction of strong cellular as well as humoral responses, 

which have limited but detectable functionality, suggest that DNA vaccines composed of 

acute/ early HIV Envs could be the ideal priming immunizations. Further expansion of 

these responses could be observed with the use of a protein boost composed of acute or 

chronic Envs.  

3.2. Materials and methods  

Envelope immunogens: Plasmids expressing codon and RNA optimized HIV-1 

Envelope glycoproteins (gp160) were made synthetically using OptimumGene® Codon 

optimization analysis (GenScript, Piscataway, NJ). Inserts were then cloned into the 

pVAX (Invitrogen, Carlsbad, CA) backbone using either BamHI/ XhoI or BamHI/EcoRI 

cloning sites. Each insert was under the control of the cytomegalovirus immediate-early 

promoter. A description of each of the inserts can be found in Table 3.1.  

Expression of plasmids: Each plasmid was tested in vitro for proper expression. Briefly, 

HEK 293T cells (ATCC, Manassas, VA) were cultured in Dulbecco’s Modified Eagle 

Medium (Thermo Fisher Scientific, Carlsbad, CA) supplemented with 10% fetal bovine 

serum (Atlas, Ft. Collins, CO) and 1% penicillin and streptomycin (Thermo Fisher 

Scientific). Twenty-four hours before transfection, 7.5x105 cells were plated in 1.5mls of 

media in a six well dish. Each plasmid was used in a separate transfection with pVax 

empty backbone serving as a negative control. Transfection was performed using 



94 
 

NeoFectin transfection reagent (NeoScientific, Cambridge, MA) following 

manufacturer’s protocol. Forty-eight hours after transfection, cells were collected and 

washed with PBS and lysed using Cell Signaling lysis buffer (Cell Signaling, Danvers, 

MA) modified with EDTA-free protease inhibitor (Roche, Basel, Switzerland). Bradford 

assay was used to quantify protein concentration of lysate following manufacturer’s 

protocol (BioRad, Hercules, CA). The normalized lysate was then run on a NuPAGE® 

12% Tris-Acetate gel and transferred to a PVDF membrane following manufacturer’s 

protocol (Thermo Fisher Scientific). After 1 hour blocking with LI-COR Odyssey 

blocking buffer (LI-COR, Lincoln, Nebraska), membranes were probed overnight with a 

1:1000 dilution of human 2G12 antibody (ImmuneTechnologies Corp, New York, NY) 

and 1:5000 dilution of mouse anti-human β-actin (Sigma-Aldrich, St. Louis, MO) as a 

loading control. After washing with PBS-Tween, 1:10,000 dilution of secondary goat 

anti-human IRdye 680 and goat anti-mouse IRdye 800CW (LI-COR) antibodies were 

added in blocking buffer supplemented with 0.1% Tween and 0.01% SDS (Sigma-

Aldrich). Membranes were probed for 1 hour at room temperature followed by washing 

with PBS-Tween and PBS. Membranes were then scanned using LI-COR Odyssey CXL.  

Immunization of Mice: All mice were housed in compliance with the NIH and 

University of Pennsylvania Institutional Animal Care and Use Committee guidelines. To 

test for immunogenicity, 6-8 week old C57Bl/6 mice (Jackson Laboratories, Bar Harbor 

ME) were immunized with 25ug of each plasmid followed by in vivo electroporation 

(EP) using the CELLECTA® 3P adaptive constant current electroporation device (Inovio 

Pharmaceuticals, Plymouth Meeting, PA) as previously described (323). Mice were 
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immunized three times at 2-week intervals and sacrificed one week after final vaccination 

to assess vaccine-induced immune responses. 

Immunization of Guinea Pigs for Formulation Study: All guinea pigs were housed 

and handled according to the standards of the Institutional Animal Care and Use 

Committee (IACUC) at BioTox Sciences (San Diego, CA). Female Hartley guinea pigs 

(300-350 grams) were immunized with 100ug of DNA intradermal mantoux injection 

every three weeks with in vivo EP as described above. Six clade A plasmids were 

delivered to six separate sites or formulated together and spread across six different sites. 

Each guinea pig received the same total amount of DNA, volume of injection and sites of 

immunization.  Blood was collected for analysis before every vaccination.  

Immunization of Guinea Pigs for in vivo analysis: To differentiate each of the 

Envelopes, three tags were added via plasmid mutagenesis (Genscript): pQ168ENVe2-

his, pQ23ENV17-flag, pDu151.2-cMyc. All tags were added to the C-terminus of the 

protein.  Two female Hartley guinea pigs (300-350 grams) were injected with 16.5ug of 

each plasmid (50ug of total DNA) formulated together and injected ID using a mantoux 

injection. The area was then immediately electroporated using the ELGEN-SEP 4x4 array 

(3 pulses at 25V, pulse length 100msec, pulse delay 200msec). Guinea pigs were then 

euthanized 24 hours after treatment, and the vaccinated skin was harvested. The skin 

biopsies were fixed by immersion in 4% paraformaldehyde (Sigma-Aldrich) for 12hr at 

4oC. After washing with PBS, biopsies were immersed in 15% sucrose solution followed 

by immersion in 30% sucrose. The biopsies were then embedded in O.C.T compound 

(Fisher Scientific) and snap frozen. The skin was then sectioned in cryostat at a thickness 
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of 15µm, placed on a glass slide and stored at -80oC. Sections were then incubated with 

BSA-Histology buffer (0.5% (v/v) Triton-X, 3% (w/v) BSA in 1x PBS) for 30 min at 

room temp. Primary antibodies were then added to each section and incubated for 2 hours 

at room temp. Primary antibodies include: Goat anti-FLAG (1:1000 QED Bioscience, 

San Diego, CA); mouse anti-HIS (1:200 Abcam, Cambridge, UK) and rabbit anti-myc 

(1:100, Abcam). After washing with PBS, the first round of secondary antibodies were 

added in BSA-Histology buffer. Following washing with PBS, sections were incubated 

with a second round of secondary antibodies. Round one included: donkey anti-goat IgG 

– AF488 (1:200 Abcam) and donkey anti-rabbit IgG- AF55 (1:200 LifeTechnologies). 

The second round included goat anti-mouse- AF647 (1:200 Invitrogen). Sections were 

washed again and mounted with DAPI-Fluoromount (Fisher Scientific) and covered with 

a coverslip. Sections were imaged with Olympus BX51 Fluorescent Microscope, 

QImaging Retiga3000 camera and QImaging software.  

Immunization of Rabbits: All rabbits were housed and handled according to the 

standards of the Institutional Animal Care and Use Committee (IACUC) at BioTox 

Sciences (San Diego, CA). Female New Zealand white rabbits (1900 grams) were 

immunized using 100ug/ plasmid of DNA intradermal every three weeks with in vivo EP 

as described above. All plasmids were formulated together and injected into multiple 

sites (3-6 depending on the number of plasmids). Each site received 100ug of mixed 

DNA in a 100ul mantoux injection. Blood was collected for analysis before every 

vaccination.  
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Immunization of Non-human primates: Four Indian rhesus macaques were housed at 

Bioqual (Rockville MD) according to the standards of the American Association for 

Accreditation of Laboratory Animal Care, and all animal protocols were IACUC 

approved. All animals received six vaccinations: the first four were administered 

intradermally, and the last two were administered intramuscularly. The first and second 

vaccination on weeks 0 and 6 were a combination of six clade A primary Envelopes (1.0 

mgs each), formulated together and delivered to 6 separate sites. The third immunization 

delivered on week 12 was a combination of three clade B Envelopes (1.0 mgs each), 

formulated together and administered to three different sites. The four immunization 

delivered on week 18 was a combination of five clade B Envelopes (1.0 mgs each), 

formulated together and administered to five different sites. The fifth and six vaccination 

were given on weeks 44 and 81, composed of all 14 Envelopes (1.0 mgs each) formulated 

together and delivered to a single site. All DNA deliveries were followed by in vivo EP 

with the constant current CELLECTRA® device (Inovio Pharmaceuticals, Plymouth 

Meeting, PA) with three pulses at 0.5A constant current, a 52ms pulse length and 1s rest 

between pulses. 

Blood Collection: Animals were bled two weeks following each immunization (weeks 2, 

8, 14, 20, 46, 83) and at memory time points (weeks 32, 43, 68, 81). Blood (15ml at each 

time point) was collected in EDTA tubes, and peripheral blood mononuclear cells 

(PBMCs) were isolated using the standard Ficoll-Hypaque procedure with Accuspin 

tubes (Sigma-Aldrich).  An additional 10ml was collected into clot tubes for serum 

collection.  
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Mouse IFN-gamma Enzyme-linked immunospot assay (ELISpot): Ninety-six well 

filter plates (Millipore, Billerica, MA) were coated with anti-IFN-γ capture antibody 

(R&D, Minneapolis, MN) overnight at 4o C. Spleens were isolated from mice one week 

after final immunization. After processing the spleens as previously described (323), 

2x105 cells were added to the blocked plates. Cells were stimulated with overlapping 

15mer peptide pools for consensus clade A, B, or C gp160 (5ug/ml per peptide). Media 

alone and concanavalin A (Sigma-Aldrich) were used as negative and positive controls 

respectively. After 18hrs of stimulation, the plates were washed, and secondary detection 

antibody (R&D) was added for 24hrs at 4o C. Plates were then washed and developed 

using the ELISpot Blue Color Module (Millipore) per the manufacturer’s protocol. Plates 

were then scanned and counted using CTL-ImmunoSpot® S6 FluoroSpot plate reader 

(CTL, Shaker Heights, OH). 

Mouse serum binding using enzyme-linked immunosorbent assay (ELISA): Before 

sacrificing, serum from mice was collected to determine the vaccine-induced humoral 

responses. Maxisorp 96 well plates (Thermo Fisher Scientific) were coated with 1ug/ml 

of consensus clade A, B, or C gp120; consensus clade A, B, or C gp140; or HXBC2 gp41 

(clade B) (Immune Technology Corp.) in PBS and stored at 4o C overnight. After 

blocking with 10% fetal bovine serum (FBS) in PBS for one hour, mouse serum was 

diluted 1:50 in 1% FBS in PBST (0.1% Tween). After one hour at room temperature and 

washing, secondary goat anti-mouse HRP-labeled antibody (Santa Cruz Biotechnology, 

Dallas, TX) was used at a 1:5000 dilution. Plates were washed and developed for 5 

minutes using SimgaFast OPD tablets (Sigma-Aldrich) and stopped with 100ul of 2N 
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sulfuric acid (Sigma-Aldrich). The OD450nm was determined using the Promega 

GloMax plate reader (Promega, Madison, WI).  

Endpoint binding titer ELISA: Maxisorp 96 well plates (Thermo Fisher Scientific) 

were coated with 1ug/ml of 92RW020, SF162, or ZM197M (Immune Technology Corp) 

and incubated overnight at 4o C. Plates were blocked as described above for 1 hour at 

room temperature. Plates were then washed again and incubated with specific guinea pig, 

rabbit or NHP sera diluted with 1% FBS in 1xPBS + 0.02% Tween-20 for one hour at 

room temperature. Dilutions started at 1:50 and then a four-fold dilution was performed. 

After washing, plates were incubated with dilutions of horseradish peroxidase-conjugated 

goat anti-guinea pig (1:2000) or donkey anti-rabbit (1:5000) IgG (Santa Cruz Biotech) or 

goat anti-NHP (1:5000) (Southern Biotech, Birmingham, AL) for one hour at room 

temperature. The plates were developed and read as described above. Endpoint titers 

were determined as previously reported (45). Briefly, the upper prediction limit of 

Envelope-specific IgG antibodies was calculated using the Student t distribution. The 

upper prediction limit was defined as the standard deviation multiplied by a factor based 

on the number of naïve controls and a 95% confidence interval. Endpoint titer was the 

lowest dilution that remained above the upper prediction limit.   

Avidity Index ELISA: Plates were coated with 1ug/ml of either 92RW020 (clade A), 

Sf162 (clade B) and ZM197 (clade C) gp120 (Immune Technology, New York, NY) in 

PBS. After blocking, guinea pig or NHP serum was diluted 1:100 or 1:500 (respectively) 

in 1% FBS in PBS-T. Each sample was run in quadruplicate where half of the wells were 

treated, and half were untreated.  After one hour incubation, plates were washed five 
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times with PBS-T. Half of the wells for each sample were incubated with a denaturing 

reagent, 8M urea, for 5 minutes while the others were incubated with PBS. Plates were 

washed and incubated with goat anti-guinea pig IgG HRP (1:2000) (Sana Cruz Biotech) 

or mouse anti-NHP IgG HRP (1:5000) (Southern Biotech, Birmingham, AL) in 1% FBS 

in PBS-T. Plates were then developed as described above and OD450 values were 

obtained. The avidity index was determined by dividing the OD450 values of the treated 

by the untreated and multiplying by 100.  

Neutralization: Neutralization was determined using the previously described TZM-bl 

based assay (304). The 50% inhibitory dose (ID50) titer was determined as the serum 

dilution that caused a 50% reduction in the RLU compared to the level of the virus 

control after subtraction of the cell control background.  

Rhesus IFN-gamma ELISpot: To determine cellular responses, interferon-gamma 

(IFN-γ) ELISpots (MabTech, Stockholm Sweden) were performed following 

manufacturer’s protocols. Isolated PBMCs were stimulated overnight in the presence of 

either specific peptide antigens (Consensus clade A and B Envelope peptides (NIH AIDS 

Research & Reagent Program, Germantown, MD), R10 (negative control), or anti-CD3 

(positive control). All samples were run in triplicate. Spot-forming units were determined 

using the CTL-ImmunoSpot® S6 FluoroSpot plate reader. 

Intracellular staining of PBMCs: Intracellular staining of PBMCs was performed as 

previously described (61). Briefly, after isolation, PBMCs (1-2 x 106) were stimulated 

with pools of either consensus clade A, B or C peptides for 6h in a 96 well U-bottom 
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plate. Each peptide pool contained approximately 1μg of each peptide. Media only (R10) 

and PMA (0.1μg/ml) and ionomycin (0.5μg/ml) (BD Bioscience, San Jose, CA) were 

used as negative and positive controls respectively. All stimulations were performed in 

the presence of Golgi stop/ Golgi plugTM (1:500 dilution BD Biosciences) and anti-

CD107a (PE cy7 clone H4A3 BD Bioscience). After stimulation, cells were washed with 

PBS and stained with violet amine-reactive dye Live/Dead stain (Life Technologies, 

Carlsbad, CA) for 5min followed by surface staining for 30min at room temperature. 

Surface stain included CD4 (PECy5.5 clone S3.5 Invitrogen), CD8 (BV650 clone SK1 

Biolegend, San Diego), CD95 (PE cy 5 clone DX2, Biolegend), CD28 (BV510 clone 

CD28.2 Biolegend) and dump channel antibodies CD14 (Pacific Blue clone M5E2 

Biolegend) and CD16 (Pacific Blue clone 3G8 Biolegend). Cells were washed with PBS 

and fixed/permeabilized with BD Cytofix/Cytoperm (BD Biosciences) for 15min at room 

temperature. Following washing with BD Perm/Wash buffer, cells were stained with 

intracellular antibodies for 1hr at room temperature. Intracellular stain included CD3 

(APC-Cy7, clone SP34-2 BD Bioscience), IL-2 (PE clone Mq1-17H12, Biolegend), IFN-

γ (APC, clone B27 Biolegend), and TNF-α (PE-Cy7 clone Mab11, Biolegend). Cells 

were analyzed using a modified BD LSR II (BD Biosciences) and analysis performed 

with FlowJo 9.2 (Tree Star, Ashland, OR).  

Binding antibody multiplex assay (BAMA): To further determine binding to various 

gp120s, gp140s, and V1/V2 scaffold proteins, a customized multiplex binding assay was 

used as previously described (146, 211). Proteins were a gracious gift from Drs. Hua-Xin 

Liao, Bart Haynes and Shan Lu. Serum from week 20 (post ID), week 46 (post-IM 1) and 
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week 83 (post-IM 2) were tested at six 5-fold serial dilutions starting at 1:80. The area 

under the curve (AUC) was calculated using GraphPad Prism.  

Antibody-dependent cellular cytotoxicity (ADCC): ADCC activity against various Env 

coated target cells was measured using the ADCC-GranToxiLux (GTL) assay as 

previously described (330). Briefly, target cells were CEM.NKRCCR5 cells (NIH AIDS 

Reagent Program, Division of AIDS, NIAID, NIH: CEM.NKR-CCR5 from Dr. 

Alexandra Trkola) coated with recombinant HIV-1 gp120 against WITO (B), JR-FL (B) 

and 92UG037.1 (A) or gp140 1086 (C). Effector cells were PBMC isolated from an HIV-

1 seronegative human donor heterozygous for 158F/V polymorphic variants of Fcγ 

receptor 3A. NHP serum was tested at baseline, week 20 (2 weeks post 4th ID 

immunization), week 46 (2-week post 1st IM boost), and week 83 (2 weeks post 2nd IM 

boost). Serum samples were tested using 4-fold serial dilutions ranging from 1:100 to 

1:102,400. ADCC titers were calculated as the dilution at which responses were greater 

than or equal to 8% GzB expression.  

Statistics: Statistical analysis was performed using GraphPad Prism (GraphPad Software, 

Inc. La Jolla, CA). Analysis among groups was performed using an independent T-test 

and a Mann-Whitney test depending on the normalcy of data when two groups were 

being compared and an ANOVA when three groups were being compared. A p-value less 

than 0.05 was considered statistically significant.  
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3.3. Results 

Construction and design of primary isolate HIV-1 Envelopes and in vitro expression 

 A panel of plasmids expressing RNA and codon optimized HIV-1 gp160 primary 

Envelopes from clade A, B, and C were constructed using the pVAX backbone. All 

sequences were obtained from GenBank using the accession numbers listed in Table 3.1. 

Envelope sequences were isolated from patients that ranged in disease progress from 

acute/early transmitted isolates to Fiebig stage VI (360-362). To confirm expression of 

each plasmid, Western blot analysis was performed on transfected 293T lysate. All 

plasmids expressed and were detected by the neutralizing antibody 2G12 (Figure 3.1).  

Immunogenicity of primary HIV-1 Env plasmids in mice  

 To ensure that each plasmid was immunogenic, C57Bl/6 mice were immunized 

with 25ug of each plasmid three times at 2-week intervals. One week after final 

immunization, cellular and humoral responses were determined against consensus clade 

A, B, and C. All plasmids induced either a cellular or humoral responses; however there 

was variation between different plasmids (Figure 3.2). For example, the highest cellular 

response as assessed by IFN-γ spot forming units (SFU) was plasmid A5 (Q23ENV17) 

(over 2000 SFU), and the lowest was plasmid C9 (Du156.12) (<100 SFU but above 

background) (Figure 3.2a). Additionally, the regions of the antigen which stimulate T 

cell responses differ across plasmids. Cellular responses induced by clade A Envs tended 

to be more reactive to the N-terminus peptides (pool 1) whereas responses to clade B and 

C Env were spread across the protein (Figure 3.2a). Humoral responses induced by these 

plasmids were also determined using consensus clade A, B, and C gp120 and gp140 
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proteins as well as HXBC2 gp41 (Figure 3.2b-d). Similar to the cellular responses, a 

wide range of binding reactivity across the plasmids was observed. Surprisingly, certain 

plasmids like B2 (REJO4541.67), B4 (TRJO4551.58), C1 (CAP45.2.00.G3), and C5 

(ZM233M.PB6) which induced strong cellular responses, did not induce any humoral 

responses against consensus proteins. This could potentially be due to the lack of 

consensus proteins expressing the binding epitope; the binding epitope induced by each 

plasmid was conformational; or a lack of overall humoral responses. In contrast, there 

were plasmids which induce both strong humoral and cellular responses like A6 

(Q259d2.17), B1 (WITO4160.33), B5 (CAAN5342.A2), C7 (ZM214M.PL15), and C11 

(Du172.17).  

Formulation of plasmids affects the strength of the response  

  We next wanted to determine if multiple plasmids expressing the clade A 

primary Envs could be formulated together and delivered to increase the breadth of 

antibody responses. However, questions arose as to if there would be antigen competition 

between the groups of Envelopes and thus, two vaccination regimens were performed: 

one where all of the plasmids were formulated together and another were each plasmid 

was given in a separate site. Guinea pigs were immunized four times with 100ug of each 

plasmid ID followed by electroporation (Figure 3.3a). The total amount of DNA for each 

immunization was the same across both groups (600ug total – 100ug/plasmid), and the 

route and electroporation protocol were the same. The only difference was whether or not 

the plasmids were immunized separately or mixed. Endpoint binding titers to the same 

primary gp120s were used to determine the induction of humoral responses. Though at 
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the end of the vaccination (week 12) binding titers between the mixed vs. separate were 

similar, the induction of humoral responses was quicker in the mixed group than in the 

separate group (Figure 3.3b). Avidity of humoral responses was assessed at week 12 to 

determine if there was any difference between the two vaccination groups (Figure 3.3c). 

The avidity index to 92RW020, SF162, and ZM197 were all slightly higher, though not 

significantly different, in the guinea pigs which received the mixed formulation. Also, 

post final vaccination neutralization titers were slightly, though not significantly, higher 

in the mix vs. separate group for three different tier 1 viruses (MN.3, SF162, and 

THO23.6) (Figure 3.3d). This data suggest that mixing the Envelopes together did not 

dampen the humoral responses but instead, increased the initial seroconversion rate and 

induced more superior functional antibody titers. Due to this and the ease mixed 

formulation provides for vaccine administration, all further studies were performed in this 

fashion.  

Multiple Env plasmids were expressed in the same cells within the skin 

To determine if multiple Envelopes were being expressed in the same cell, tags 

were added to three different plasmids to efficiently detect each Envelope. Three tags 

were added to the C-terminus of three existing constructs using plasmid mutagenesis. The 

three constructs were pQ168ENVe2-HIS, pQ23ENV17-FLAG, pDu151.2-MYC and all 

expressed in vitro (data not shown). Two guinea pigs were injected with 16.5ug of each 

plasmid formulated together and delivered to the dermis followed by electroporation. 

Expression of all constructs can be detected after 24 hours after injection (Figure 3.4a). 
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Importantly, there was an overlap of fluorescent signal in multiple cells (Figure 3.4b). 

This suggests that multiple constructs were being expressed in a single cell.  

Groups of 6 Env plasmids induce strong humoral responses in rabbits 

 To further investigate the use of small groups of primary Envelopes, groups of 

four rabbits were immunized with six plasmids expressing either clade A, clade B or 

clade C Envs (Figure 3.5a). All plasmids (100ug/plasmid) were formulated together and 

delivered to six sites ID followed by electroporation. Binding titers against clade A 

(92RW020), clade B (SF162) and clade C (ZM197) were assessed for each group of 

immunized rabbits over time (Figure 3.5b-d). After a single immunization, half of the 

animals immunized with clade C Envs seroconverted to clade A, B, and C gp120 proteins 

(Figure 3.5d). By the second immunization, all animals immunized with clade B and C 

Envs seroconverted to all gp120s (Figure 3.5c-d). Humoral responses in the rabbits 

immunized with clade A Envs took slightly longer than with clade B and C combinations 

but eventually did induce strong binding titers to all three gp120s (Figure 3.5b) Humoral 

responses were boosted by each immunization, reaching peak titers three weeks after 

final immunizations. Even though the animals were immunized with only a single clade, 

all rabbits induce strong cross-clade binding titers. In fact, the clade C immunized rabbits 

had the highest binding titer responses to the clade B (SF162) gp120 protein. Overall, 

formulating multiple primary transmitter founder or acute Envelopes together in a single 

formulation induced strong cross-clade binding titers.   
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Increased diversity within group expanded antibody responses  

 To investigate whether the results seen in the single clade immunizations could be 

further expanded upon, two different groups of plasmids were used each containing two 

clade A, B, and C primary gp160 Envelopes. Four rabbits were immunized with 

combination 1 (pA1, A2, B1, B4, C4, C8) twice followed by combination 2 (pA3, A4, 

B6, B7, C2, C3) (Figure 3.6a). The plasmids were all formulated together per different 

combination with 100ug (600ug total) of DNA construct used per immunization, 

delivered ID followed by electroporation.  The mean diversity within the groups was 

22.0% and 21.0% respectively. The mean diversity between the groups was 20.6%. Once 

again after two immunizations, there was potent induction of binding titers against 

primary clade A, B, and C gp120s (Figure 3.6b).  Neutralization titers were assessed over 

time against tier 1 viruses (MN.3, MW965.26, and Q23ENV17) (Figure 3.6e). The 

highest neutralization titers were observed against MW965.26 on weeks 9 and 12. 

Limited responses were detected against MN.3 with no responses induced against 

Q23ENV17. The combination of plasmids expressing two clade A, B, and C gp160s did 

induce potent binding titers but limited neutralization breadth.  

“Clouds” with limited diversity expanded the neutralization breadth of sera  

 We next wanted to investigate if limiting the diversity within a “cloud” could 

enhance responses. Using the same six clade A plasmids (pA1-A6) as a priming dose, 

four rabbits were immunized with additional “clouds” or groups of plasmids which were 

more limited in diversity and remained within clades (Figure 3.6a). The intra-cloud 

diversity ranged from 12.4-16.4%, and inter-cloud was consistently around 20%. Each 
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immunization was between 500ug - 600ug of total DNA (100ug of each plasmid) mixed 

and administered ID to five or six separate sites followed by electroporation. This limited 

intra-cloud diversity regimen did not disrupt the ability to induce potent cross-clade 

binding titers against the three primary isolate gp120 compared to the previous 

formulation (Figure 3.6c). There was a consistent boosting of titers after every 

immunization, with the highest binding titers obtained after the final immunization at 

week 12. Neutralization titers demonstrated stronger kinetics of induction and higher 

titers compared to group 4 (A, B, C mixed) (Figure 3.6e). In comparison to group 4 (A, 

B, C mixed), group 5 induced responses to MW965, MN.3 and Q23ENV17 after the 

second immunization and continued to increase after the final immunization. The ability 

to induce this robust of a response by DNA alone has yet to be seen and could lend itself 

well to further expansion by boosting with a different platform.  

Highest induction of robust antibody responses in rabbits primed twice with the same 

“cloud”  

 The final group of rabbits explored if multiple priming immunizations with the 

same cloud could increase vaccine-induced responses. This would allow for the immune 

system to potentially honing in on specific epitopes which would later be expanded by 

boosting with additional clouds. Rabbits were immunized twice with the clade A 

plasmids (pA1-A6) and boosted with two different groups of primarily clade B 

immunogens (Figure 3.6a). The intra-cloud diversity ranged from 13.3-14.3% and the 

inter-cloud diversity between 14-17.6%. Thus, this regimen has the lowest diversity 

between the clouds compared to the other two combinations. This low intra-cloud 
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diversity did not limit the responses, as potent binding titers were induced in all animals 

after two immunizations (Figure 3.6d). The highest and quickest induction of 

neutralization was observed for this group, with the most powerful response happening 

after the final immunization (Figure 3.6e). Also, sera from two rabbits were able to 

neutralize more isolates at higher IC50 concentrations than groups 4 and 5 (Table 3.2). 

This includes hard to neutralize tier 2 viruses where only one virus (Ce1176_A3) was not 

able to be neutralized. Thus, priming rabbits with two immunizations of the same group 

of plasmids focuses the immune system in a way that allows for effective induction of 

broadly binding and neutralizing antibodies.  

Non-human primates immunized with “clouds” of primary Envelopes induced potent 

cellular responses 

 To further characterize the vaccine-induced responses produced by the most 

potent regimen, four rhesus macaques (RhMs) were immunized with a similar vaccine 

regimen (Figure 3.7a). On weeks 0, 6, 12 and 18, the NHP received a mixture of 

different Envelopes (1mg/plasmid) formulated together and delivered ID followed by 

electroporation. To further expand the vaccine-induced responses, at weeks 44 and 81, all 

animals received all of the Envelopes from vaccination 1-4 (1mg/plasmid) delivered IM 

at a single site followed by electroporation. Cellular and humoral responses were 

followed two weeks after each vaccination. After only a single immunization, IFN-γ spot 

forming units (SFU) were detected against consensus clades A and B peptides (Figure 

3.7b). These responses were not boosted with the second or third immunization of the 

priming cloud but were expanded upon after the fourth immunization. After the final ID 
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immunization, the average total IFN-γ SFU was around 500 SFU with an even 

distribution of reactivity between clade A and B (range 100- 1,500 SFU) (Figure 3.8 a). 

Though there was contraction into the memory phase (weeks 32 and 43), cellular 

responses were still detected against consensus clade A and B almost six months (week 

43) after final ID immunization (Figure 3.7c). After the first IM boosting immunization 

at week 44, cellular responses expanded greatly to levels over quadruple the amount seen 

after final ID immunization. Over eight months after IM immunization (week 81), 

cellular responses contracted but remained around the levels observed after final ID 

immunization. Upon second IM boost, cellular responses again expanded above those 

detected after the previous IM immunization with IFN-γ SFU averaging around 7000 

(responses varying from 4000- 10,000 SFU) (Figure 3.8b). These responses were 

extremely high, especially since they were against unmatched peptides. Also, since 

consensus peptides were used, this suggests that these small “clouds” of immunogens 

induced potent cellular responses against conserved regions within the Envelope. This 

could be important for the induction of cytotoxic T cells as well as provide broad CD4 T 

cell help.  

 To further explore the cellular responses induced by the primary Envelope cloud 

immunization, intracellular cytokine staining was performed using consensus clade A, B 

and C peptides. CD8 T cell responses after ID immunization (week 20) primarily 

expressed IL-2 and TNF-α with limited IFN-γ production (Figure 3.7d). Each IM 

immunization increased the percent of CD8 T cells expressing IFN-γ. TNF-α production 

further increased after the final IM immunization (week 83). In contrast, the IL-2 
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production observed after final ID immunization was not boosted by both IM 

immunizations and levels after final IM immunization were the same as after final ID 

immunization. CD4 T cell responses were also assessed against clade A, B and C 

peptides (Figure 3.7e). The percent of CD4 T cells expressing IFN-γ and IL-2 was 

relatively the same after the ID immunization (week 20) with a lower percentage of CD4 

T cells expressing TNF-α. Similar to CD8 T cells, the proportion of CD4 T cells secreting 

IL-2 remained relatively consistent across time with slight waning at each memory time 

point. However, after the first IM immunization, there was a sharp increase in CD4 T 

cells secreting IFN-γ. Similar boost was not observed after the second immunization. 

Expression of TNF-α remained consistent into memory after ID immunization, was 

boosted by the first and second IM immunization. Importantly, similar to ELISpots, we 

observed potent cytokine secretion after stimulation with cross-clade consensus peptides. 

Though these NHPs were only immunized with clade A and B primary Envs, cellular 

responses against consensus clade C peptides were detected at similar levels to clade B 

responses.  

Binding and functional antibodies induced using primary Env DNA vaccination 

 The primary Envelope cloud immunization also induced potent humoral 

responses. After a single immunization, two out of eight RhMs seroconvert to clade A, B 

and C gp120 proteins (Figure 3.9a). After the final ID immunization, all animals had 

strong endpoint binding titers against the primary Envelopes averaging above 104. 

Similar to cellular responses, binding titers also contracted down in the memory phase 

but remain high (average above 103) six-month post last ID immunization (week 43). 
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Also similar to cellular responses, after the IM boost, binding titers reached levels higher 

than after ID immunization with the average binding titer above 105. These responses are 

also slightly boosted after a second IM immunization to levels reaching 106. Strong 

avidity indexes of around 0.8 were induced after the second ID immunization (Figure 

3.9b). However, subsequent ID immunization did not improve the avidity index. The first 

IM boost increased the avidity index across all three gp120 proteins with minimal to no 

increase in avidity after the second IM immunization. To further explore the binding 

capacity of the humoral responses induced, binding to consensus and primary gp120 and 

gp140s was determined using binding antibody multiplex assay (BAMA) (Figure 3.9c). 

Strong binding titers against clade A, B, C and AE Envs were detected with the highest 

responses obtained after the first IM immunization. The strongest binding response was 

detected against the primary isolate gp140 Env 1086c, with almost three-fold higher area 

under the curve (AUC) binding compared to other Envs. V1/V2 binding against multiple 

different gp70 scaffolds was also assessed (Figure 3.9d). Interestingly there were three 

binding patterns to V1/V2 scaffolds which emerged. The first was binding kinetics 

similar to that which was observed in the binding to the whole protein with induction by 

the final ID immunization, peak after first IM immunization and similar levels after the 

second IM immunization (Figure 3.9d bottom graph). The second pattern was the 

induction of binding after ID immunization but no boosting after each IM immunization 

(Figure 3.9d top graph – TT31P and TV1.21). The final pattern was limited to no 

induction of binding (Figure 3.9d top graph – RHPA4259 and 62357). These differences 

in binding patterns could help suggest a potential target epitope.  
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 In addition to binding titers, the vaccination regimen also induces functional 

antibodies. Using only DNA vaccination, we were able to get cross-clade neutralization 

titers against a diversity of tier 1 viruses (Figure 3.10a). After ID immunization, 

neutralization titers for MN.3, MW965 and SF162 average above or around 102. After the 

first IM boost, levels were increased to above 103 for MN.3 and MW965 and just below 

103 for SF162. After the second IM boost, we did not see levels increase above those 

observed after the initial IM boost. In fact, for MN.3, MW965, and SF162, the levels 

were lower and usually averaged around the same titers as those seen after the ID 

immunizations. However, levels against SF162P4 IMC were detected and importantly, 

there were limited but low neutralization titers induced against the tier 2 virus SF163P3 

after final IM immunization (Figure 3.10b). Since the role of antibodies with ADCC 

capabilities has been suggestive in protection against HIV-1 infection (RV144 correlates 

analysis), we also tested ADCC activity against targets coated with 1086c (gp140), 

WITO (gp120), JR-FL (gp120) and 92UG037.1 (gp120) (Figure 3.10c). Similar to 

V1/V2 binding, three different patterns of ADCC induction emerge. The first displays 

similar kinetics to BAMA, V1/V2 binding pattern 1 and neutralization titers with peak 

titers induced post 1st IM immunization which was not further boosted after the 2nd IM 

(1086c and JR-FL). The second pattern was observed with WITO coated targets where 

the strongest response was observed after the ID immunizations. If the one outlier was 

removed from the analysis, these responses are maintained with the first IM 

immunization but slightly decline with the second. The third pattern was observed with 

92UG037.1 where only 1 or 2 NHPs were able to induce low ADCC activity against the 
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target cells. Differences between these three Env could again suggest differences in 

binding epitopes and induction of certain humoral responses after each immunization. 

Interestingly, the AUC determined by the binding antibody multiplex assay and ADCC 

titers against 1086c correlated (Spearman r=0.8909 p= 0.0005) (Figure 3.10e). However, 

similar correlations were not found for WITO, JR-FL, and 92UG037.1 (Figure 3.11).  

These data supports the use of primary transmitter founder Envelopes deliver in small 

“cloud” immunizations for the induction of potent cellular and humoral responses.  

3.4. Discussion  

An effective HIV-1 vaccine will likely need to induce both cellular and humoral 

responses. Previously, DNA vaccines have been able to induce potent cellular responses 

but lacked humoral responses. Advances in plasmid optimizations, formulation, and 

delivery, have significantly increased DNA vaccine's ability to induce humoral responses. 

Here, we explore the ability to use combinations of full-length gp160 Envs which were 

isolated during the early/ acute phase of infection (360-362). All inserts were 

immunogenic in mice, displaying a range of cellular and humoral responses. 

Interestingly, there was not a consistent pool of peptides which was dominated across all 

antigens. Instead for clades B and C inserts, cellular immune responses were detected 

across the entire antigen. We observe similar breadth of responses using our consensus 

antigens (324). In contrast, the majority of clade A Env inserts induced very strong 

responses against the N-terminus (pool 1) and fewer responses across the rest of the 

protein. This could be due to the heterogous nature of the peptide used or a dominant 

epitope at the N-terminus of the protein. Additionally, this dominance could be mouse 
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specific since when a combination of these plasmids was administered into NHPs, 

responses to all four peptide pools is evident; however, pool 1 still dominates (Figure 3.7 

and 3.8). Furthermore, we currently do not know if different peptide pool reactivities 

were dominated by CD4 or CD8 T cell responses. Additional studies to further 

understand why certain Env induce balanced cellular and humoral responses to the entire 

antigen while others produce responses to only certain regions is underway.   

The ability to induce protective responses against multiple serotypes is evident in 

the Influenza, Human Papillomavirus, and Pneumococcus vaccines (19, 153, 247, 248, 

363). Due to the breadth of HIV diversity, is it likely that multiple antigens will need to 

be formulated into a single injection for ease of delivery. Regarding humoral responses, 

within this study, we demonstrated that up to six plasmids could be combined and lead to 

strong humoral responses than when delivered to individual sites. Though none of these 

differences (kinetics, endpoint binding titers, avidity or neutralization) were significantly 

different, the ability to formulate multiple plasmids together far outweighs delivering 

them to separate sites. Using immunofluorescence and tagged constructs, we also show 

that up to three constructs were detected in the same cell. This leads to the possibility of 

heterotrimers, which have been previously shown to induce stronger neutralization titers 

compared to homotrimers of Env proteins (364, 365). In theory, the diversity within these 

heterotrimers could focus the immune response on conserved epitopes. Importantly, it is 

within these conserved regions of HIV-1 that broadly neutralizing antibodies targets 

(167). However, these regions tend to be much less immunogenicity than the variable 

loops and thus are more difficult to target. We are continuing to follow up on whether or 
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not DNA encoded gp160s can form in vivo heterotrimers and if so, how does the percent 

diversity between the Envs affect this ability.  

In addition to exploring multiple different combinations of HIV Envs, we also 

used different sites for delivery. Due to advances in electroporation technology, different 

tissues can be targeted including the traditional, intradermal and intramuscular (64). 

Within this study, NHP were vaccinated with four ID immunizations followed by two IM 

boost. These two sites have different cellular composition and thus could produce unique 

vaccine-induced responses. We observed a single ID immunization induced strong 

cellular responses and seroconversion in 50% of the animals (Figure 3.7a, 3.9a). 

Interestingly, even though cellular responses did not boost with the 2nd and 3rd ID 

immunization, we observed continual improvement in humoral responses. However, 

though binding titers improve over the ID immunizations, the avidity of these antibodies 

remains fairly consistent only increasing upon IM immunization (Figure 3.9 a-b). We 

observed a sharp increase in cellular responses after the first IM immunization, with both 

CD4 and CD8 T cells expressing IFN-γ. This boost in responses was also observed in 

both binding and functional antibody titers (Figure 3.9 and 3.10). Unexpectedly, these 

functional antibody titers did not further increase after the second IM immunization but 

instead were at levels similar to after the ID immunizations. Following the second IM 

immunization, CD8 T cells dominated IFN-γ production with a decrease in CD4 T cell 

production compared to after the 1st IM immunization (Figure 3.7 d-e). Here we 

demonstrate for the first time that ID DNA immunization can be further expanded by IM 

immunization. The ability to understand how the different sites of immunization skew the 
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immune response and how boosting can affect memory cell activation is imperative for 

DNA vaccine development.   

Overall, the work within this chapter builds on the success we have previously 

seen with our consensus immunogens (323, 352). We have developed numerous different 

plasmids expressing consensus, chronic and acute/ early Envs. We demonstrated that 

guinea pigs and rabbits exposed to groups of immunogens could induce strong binding 

titers to heterologous Envs and different clouds of plasmids can influence the kinetics of 

tier 1 neutralization induction. Additionally, combinations of 14 different Env plasmids 

were able to induce strong cellular and humoral responses. Importantly, these humoral 

responses were functional after only DNA vaccination. Determining what combination of 

Envs produces the strongest and broadest responses is imperative for the HIV vaccine 

field.  
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Tables 

Name Insert Clade Tier Accession # Transmission Stage

A1 Q769ENVd22 A 2 AF407158 FSW acute early

A2 Q168ENVe2 A 2 AF407148 FSW acute early
A3 Q842ENVd12 A 2 AF407160 FSW acute early

A4 Q461ENVe2 A 2 AF407156 FSW acute early

A5 Q23ENV17 A 2 AF004885 FSW Fiebig IV

A6 Q259d2.17 A 2 AF407152 FSW acute early

B1 WITO4160.33 B 2 AY835451 F-M Fiebig II

B2 REJO4541.67 B 2 AY835449 F-M Fiebig II

B3 RHPA4259.7 B 2 AY835447 Fiebig < V

B4 TRJO4551.58 B 3 AY835450 M-M Fiebig II

B5 CAAN5342.A2 B 2 AY835452 M-M

B6 PVO.4 B 3 AY83544 M-M Fiebig III

B7 TRO.11 B 2 AY835445 M-M Fiebig III

B8 AC10.0.29 B 2 AY835446 M-M Fiebig III

B9 QHO692.42 B 2 AY835439 F-M Fiebig V

C1 Cap45.2.00.G3 C 2 DQ435682 FSW

C2 Cap210.2.00.E8 C 2 DQ435683 FSW

C3 Du422.1 C 2 DQ411854 FSW Fiebig V

C4 ZM53M.PB12 C 2 AY423984 F-M

C5 ZM233M.PB6 C 2 DQ388517 F-M

C6 ZM249M.PL1 C 2 DQ388514 F-M

C7 ZM214M.PL15 C 2 DQ388516 F-M

C8 Du123.6 C 2 DQ411850 FSW Fiebig VI

C9 Du151.2 C 2 DQ411851 FSW Fiebig V

C10 Du156.12 C 2 DQ411852 FSW Fiebig <IV

C11 Du172.17 C 2 DQ411853 FSW Fiebig VI  

Table 3.1: Characteristics of acute/ early primary Envs. For ease, each plasmid is 

denoted by the clade letter followed by a number throughout the chapter. All inserts were 

RNA and codon optimized and encoded for the full gp160 Env protein.  
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RHPA4258.7 

Tier 2      

Clade B

TRO.11         

Tier 2      

Clade B

Ce1176_A3 

Tier 2      

Clade C

BF1266.431

a Tier 2      

Clade C

Q842.d12 

Tier 2      

Clade A

C2101.c01 

Tier 2      

Clade AE

RHPA            

Tier 2      

Clade B

REJO             

Tier 2       

Clade B

CM235-2          

Tier 2       

Clade AE

Group Animal 
Bleed 

Week

Week 0 <20 <20 <20 <20 <20 <20 23 <20 44

Week 12 <20 <20 <20 <20 <20 <20 363 <20 34

Week 0 <20 <20 <20 <20 <20 <20 <20 <20 36

Week 12 <20 <20 <20 <20 <20 <20 435 <20 97

Week 0 <20 22 <20 <20 <20 <20 40 <20 62

Week 12 154 36 <20 143 288 45 139 438 294

Week 0 <20 <20 <20 <20 <20 <20 31 <20 47

Week 12 47 <20 <20 50 100 <20 109 83 110

Week 0 <20 <20 <20 <20 <20 <20 24 <20 74

Week 12 214 54 21 228 387 84 404 749 915

Week 0 <20 <20 <20 <20 <20 <20 31 <20 <20

Week 12 310 57 26 364 716 109 270 329 389

ID50 in Tzmbl Cells ID50 in A3R5.7 Cells

1

2

Group 6

Group 4

1

2

Group 5

1

2

 

Table 3.2: Serum neutralization titers against a panel of tier 2 viruses from the top 

two rabbits from groups 4, 5, and 6. The two rabbits with the strongest binding titers 

were tested for neutralization against a panel of Tier 2 viruses. Colors represent the 

strength of neutralization with green between baseline to 100, yellow 100-200, red 200-

500 and deep red great than 500.  
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Figures 

 

Figure 3.1: In vitro expression of primary HIV-1 Env plasmids. 293T cells were 

transfected with each plasmid. Forty-eight hours later, cell lysate was harvested, and 

Western blot was performed to determine expression levels. All plasmid express Env 

detected by the neutralizing antibody 2G12 and the expected length.  
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Figure 3.2: Immunogenicity of each plasmid in mice. (a) Cellular responses post final 

vaccination as measured by IFN-γ spot forming units (SFU) after ex vivo stimulation of 

splenocytes with consensus clade A, B or C depending on the clade of the insert. 

Humoral antibody responses as assessed by binding to consensus clade A, B, or C gp120 

(b) or gp140 (c). Binding to gp41 was also determined (d). Dotted line in represents 

background binding level.  
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Figure 3.3: Guinea pigs immunized with mixed Envelopes induced stronger and 

quick humoral responses compared to separate immunization. (a) Immunization 

scheme for guinea pig vaccination with two different groups: one were all of the plasmids 

were mixed and formulated together and another where each plasmid was delivered into a 

separate site. (b) Binding titers against clade A (92RW020), clade B (SF162) and clade C 

(ZM197) primary gp120s over time.  (c) Avidity index of binding to 92RW020, SF162, 

and ZM197 at week 12. (d) Neutralization titers for week 12 serum were determined for a 

set of tier 1 viruses. 
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Figure 3.4: Expression of multiple constructs in skin. Guinea pigs were vaccinated 

intradermally with three constructs expressing a tagged HIV-1 Env construct. After 24 

hours, the skin was biopsied and stained for expression of the tags. (a) Expression of each 
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construct can be detected. (b) Overlay of each construct demonstrating multiple 

constructs were expressed from a single cell.  
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Figure 3.5: Rabbits immunized with mixed clade A, B or C Envelopes induced 

strong humoral responses. (a) Rabbits were immunized with six clade A, B or clade C 

Env plasmids. All plasmids were formulated together (100ug of each plasmid, 600ug 

total) and delivered ID followed by electroporation. Binding titers against clade A 

(92RW020), clade B (SF162) and clade C (ZM197) primary gp120s for clade A (group 1 
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(b)), clade B  (group 2 (c)) or clade C (group 3 (d)) immunized rabbits.  Individual titers 

are denoted in the shapes, geometric mean titers by the horizontal bar and standard error 

by the bracket.  
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Figure 3.6: Clouds of Envelope plasmids increased functional humoral responses. 

(a) Rabbits were immunized with 3-6 Envelope plasmids formulated together and 

delivered intradermally followed by EP. Endpoint binding titers over time against 
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92RW020 (clade A), SF162 (clade B) and ZM197 (clade C) for group 4 (b), group 5 (c) 

and group 6 (d) immunized rabbits. (e) Neutralization titers against tier 1 viruses across 

time for each immunization group.  
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Figure 3.7 Cellular responses induced by clouds of primary HIV-1 Env plasmids in 

non-human primates. (a) Four Indian Rhesus Macaques were immunized with a 

combination of 14 different plasmids expressing primary HIV-1 Envelopes following a 

similar immunization protocol as in rabbit group 6 (Figure 3.6). IFN-γ ELISpot 
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responses in peripheral blood mononuclear cells (PBMCs) after overnight stimulation 

with consensus clade A and B peptides after ID immunizations (b) or memory and IM 

boost (c). Cellular responses were also assessed for intracellular cytokine production of 

IFN-γ, IL-2 and TNF-α after stimulation with consensus clade A, B or C peptides. 

Cytokine production over the time course of immunizations for CD8 (d) or CD4 (e) 

subset of CD3 T cells.  
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Figure 3.8: Individual ELISpot responses over time. IFN-γ ELISpot responses over 

time for each NHP after ID immunizations (a) or memory and IM boost (b). NHP 4 died 

due to unrelated causes on week 80.  
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Figure 3.9: Strong humoral binding responses induced by clouds of plasmids 

expressing primary HIV-1 Envs. (a) Endpoint binding titers over time against 

92RW020, SF162, and ZM197. (b) Avidity index against 92RW020, SF162 and ZM197 

after the second, third, fourth ID immunization and each of the IM boost. (c) Binding to 
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consensus and primary gp120/gp140 Envs as assessed by binding antibody multiplex 

assay (BAMA). (d) Antibody binding responses to multiple scaffolded (gp70) V1/V2 

after final ID immunization and after each IM boosts.   
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Figure 3.10: DNA immunization alone induced functional antibody titers. To further 

understand the vaccine-induced humoral response induced by the cloud DNA 

vaccination, both neutralization titers, as well as, ADCC activity were explored over the 

time course of immunizations. (a) Neutralization titers against a panel of tier 1 viruses 

across time. (b) Week 83 serum (two-week post final immunization) was assessed for 

neutralization capacity against two infectious molecular clones: SF162P4 (tier 1) and 

SF162P3 (tier 2). (c) Antibody-dependent cellular cytotoxicity (ADCC) titers were 

determined against targets coated with gp140 (1086c) or gp120 (WITO, JR-FL, and 

92UG037.1) for serum from weeks 20 (post final ID), week 46 (post 1st IM) and 83 (post 

2nd IM). (d) There was a strong correlation between binding to 1086c gp140 as assessed 

by BAMA and ADCC titers against 1086c gp140.  
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Figure 3.11: No correlation between BAMA binding and ADCC titers for WITO, 

JR-FL, and 93UG037.1. Contrary to the correlation observed with 1086c, there was no 

correlation between BAMA binding and ADCC titers for the other three gp120s which 

were assessed in both assays.  
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CHAPTER 4: CHEMOKINE ADJUVANTED ELECTROPORATED-DNA 

VACCINE INDUCES SUBSTANTIAL PROTECTION FROM SIMIAN 

IMMUNODEFICIENCY VIRUS VAGINAL CHALLENGE 

4.1 Introduction 

Although a large number of vaccines have been tested, after a 30-year effort, there 

is still a need for a highly efficacious HIV-1 vaccine.  The recent RV144 clinical vaccine 

trial in Thailand demonstrated that 31% of vaccinated individuals could be protected 

(208, 211, 366). The need for an effective HIV-1 vaccine to extend positively on these 

results remains pressing. DNA-based vaccines alone have been shown to induce weak 

immune responses in non-human primates (NHP) and humans thus limiting their stand-

alone utility. However, many technological advances to the platform have recently 

resulted in improving this platform’s performance in the clinic (58, 301). Such advances 

include using codon and RNA optimization, electroporation, and the use of genetic 

adjuvants to tailor the immune response (57, 61, 101, 321, 322, 367-371). The potency of 

plasmid adjuvants for DNA vaccines was recently demonstrated in HVTN080 trial, 

reporting that the inclusion of pIL-12 (plasmid encoded IL-12) in a DNA + EP 

formulation in humans increased vaccine-induced responses (58). In this study following 

three immunizations, 88.9% of vaccinated subjects developed CD4+ or CD8+ responses. 

However, an effective HIV vaccine will likely need to induce antibody responses (366, 

372). The role of antibodies in protection has been supported by the immune correlates 

analysis of RV144 and in several studies using passive transfer of broadly neutralizing 

antibodies to NHPs resulting in protection against challenge (180, 211, 212, 217, 335, 
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373-375). However, these broadly neutralizing antibodies are highly somatically 

hypermutated with uncommon characteristics such as long CDR3s, calling into question 

whether a vaccine will be able to induce such antibodies (376).  

To increase the magnitude and quality of humoral responses induce by DNA 

vaccination, we explored the use of mucosal chemokine plasmid adjuvants in 

combination with an SIV vaccine. Previously, we determined that the CCR10L adjuvants 

CTACK (cutaneous T-cell attracting chemokine or CCL27) and MEC (mucosa-

associated epithelial chemokine, or CCL28) increase the levels of vaccine-specific 

mucosal IgA and IgG in small animals (349, 377). The receptor for these two chemokines 

is CCR10 which is expressed on mucosal and epithelial tissue, allowing for the 

recirculation and localization of naïve, memory and effector T cells and antibody 

secreting B cells (378-385). Also, the chemokine TECK (thymus-expressed chemokine or 

CCL25) which binds to CCR9 has been found to be important in T cell homing to the 

lamina propria and intraepithelium of the small intestine (386-389). Previous studies have 

also shown that the inclusion of TECK with a DNA vaccine can elevate antigen-specific 

responses in both the serum and mucosal compartments of mice (390).  

We report here that rhesus macaques (RhMs) vaccinated with SIV gag, env, and 

pol and CCR9L and CCR10L adjuvants delivered by electroporation can be protected 

from multiple low-dose intravaginal challenges with SIVsmE660. When all vaccine arms 

were combined, 13 out of 19 animals remained uninfected or displayed aborted infection, 

controlling the virus to undetectable levels, leading to a total vaccine protection of 68% 

vs. 14% in control challenged animals (P = 0.0016). The highest protection was seen in 
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the DNA + CCR10L group with an 89% protection rate (P = 0.0003) with 6 of 9 RhMs 

displaying aborted infection and two RhMs remaining uninfected.  The inclusion of 

mucosal chemokine plasmid adjuvants improved challenge outcomes by over two-fold 

compared to DNA alone and suggests that further study of novel immune adjuvanted 

vaccines are of importance.   

4.2 Materials and Methods  

Study Design: Groups of female rhesus macaques (Macaca mulatta) of Indian origin (n 

= 5 per group) were immunized at weeks 0, 6, 12, 18 and 48 with 1.5 mg per construct of 

pSIVmac pol,  consensus pSIVsm env and 3.0 mg pSIVsm gag without adjuvant. 

Adjuvanted groups included rhCCL25 (n = 5), rhCCL27 (n = 5) or rhCCL28 (n = 5), at 

0.5 mg. DNA was formulated in sterile water with 1% wt/wt poly-L-glutamate sodium 

salt and delivered in two separate sites followed by in vivo electroporation using the 

CELLECTRA® device (Inovio Pharmaceuticals, Inc.; Plymouth Meeting, PA). An 

additional 14 animals were treated with water followed by EP and served as a naïve 

control. RhMs with protective MHC allele mamu A01* were evenly distributed to not 

bias results. TRIM5α analysis was performed after challenge and did not appear to have a 

major impact on the overall challenge outcome (Table 4.1). One animal from the 

CCR10L immunized group died before challenge due to unrelated causes and was not 

included in any of the analysis.  

Animal husbandry and specimen collection schedule: RhMs were housed at Tulane 

National Primate Research Center in accordance with the standards of the American 
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Association for Accreditation of Laboratory Animal Care. Animals were allowed to 

acclimate for at least 30 days before any immunization. All protocols were approved by 

Tulane National Primate Center Animal Care and Use Committee. 

Collection of whole blood from rhesus macaques: Animals were anesthetized with 

ketamine (0.1 ml/kg) or tiletamine/zolazepam (0.06–0.10 ml/kg). Blood samples were 

collected from the femoral vein using the Sarstedt S-Monovette collection system 

(Sarstedt; Nümbrecht, Germany). Peripheral blood mononuclear cells (PBMC) were 

isolated by standard Ficoll-hypaque centrifugation.  

Collection of vaginal wash from rhesus macaques: After administration of anesthesia, 

an appropriate-sized feeding tube was carefully introduced into the vaginal vault. A 

syringe containing 2 ml saline was attached to the feeding tube and used to instill and 

aspirate the saline from the vaginal vault. The sample was transferred to a sterile conical 

tube placed on ice, centrifuged at 800g and the supernatant divided into small aliquots 

and stored at -80oC until assayed. The pellet of cells was also stored at -80oC until 

assayed, however, due to low recovery of antigen-specific T-cells, these were of poor 

quality and low in numbers which were not useful for analysis. No vaginal biopsies were 

collected during this study due to the concern of scarring which could affect challenge 

outcome.  

Rhesus IFN-gamma Enzyme-linked immunospot assay (ELISpot): Interferon-gamma 

(IFN-γ) ELISpot was performed as previously described for macaque (391) to determine 

antigen-specific (IFN-γ) secreting cells from immunized animals. Cells were stimulated 
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overnight in the presence of either specific peptide antigens (SIV-1mac239 Gag or Pol 

(NIH AIDS Research & Reagent Program, Germantown, MD) and SIVsmE660 Env 

(Invitrogen), R10 (negative control), or Concanavalin A (positive control).  

Detection of SIV-specific antibodies: The presence of antibodies specific for SIV 

antigens was semiquantitatively determined by WB.  The IgA and IgG SIV-specific 

antibodies from sera and genital secretions were analyzed using SIV western blot strips 

from ZeptoMetrix Corp (Buffalo, NY).  Strips were incubation overnight with dilutions 

of sera or vaginal secretions normalized to ~0.5 µg IgG or IgA/ strip. The WB strips were 

developed with affinity purified alkaline phosphatase-conjugated goat anti-monkey IgA 

and with peroxidase-conjugated goat anti-monkey IgG reagents (Rockland 

Immunochemicals, Pottstown, PA). The reactivity of samples with particular SIV 

antigens was visualized after the addition of alkaline phosphatase (Bio-Rad, Hercules, 

CA) and peroxidase (Sigma, St. Louis, MO) substrates.  The densities of relevant bands 

of assay samples were measured using an AlphaImager 3400 (Alpha Inotech Corp, San 

Leandro, CA). According to the intensity of the resulting blue and red bands to a 

particular SIV antigen, arbitrary values ranging from 0 to 4 were ascribed to each sample. 

For SIV Envelope-specific antibodies endpoint titers were determined as previously 

reported(328).  

V1/V2 mapping: V1/V2 mapping was performed by using peptides for the V1/V2 region 

of SIVsmE660 Envelope region. Nunc MaxiSorp (Rochester, NY) plates were coated 

with approximately 1 μg/ml pooled peptides. Plates were blocked with 10% fetal bovine 

serum followed by washing in 0.1% polysorbate 20 in PBS. Serum was diluted 1:50. 
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Plates were washed, and an anti-monkey IgG HRP secondary antibody (SouthernBiotech, 

Birmingham, AL) was added. Plates were washed and developed using the Sigmafast 

OPD substrate (Sigma). Values are reported as the OD read at 450 nm. 

Determination of neutralizing antibody titers: Neutralizing antibody responses against 

tier 1 SIVsmE660.11 were measured using luciferase-based virus neutralization assays 

with TZM-bl cells as previously described (392).  

Antibodies for PBMC flow cytometry: Surface stain monoclonal antibodies (mAbs) 

include: anti-CD4 [L200], anti-CD49d 4 integrin [9F10] and anti-CD95 [DX2] (BD 

Biosciences, San Jose, CA); anti-CD14 [TUK4], anti-CD20 [HI47] and LIVE/DEAD 

Fixable Aqua Dead Cell Stain Kit (Invitrogen, Grand Island, NY); anti-CD28 [CD28.2] 

(Beckman Coulter, Pasadena, CA); anti-CD8 [2ST8.5H7] (Custom, mAb from Serotec, 

conjugation kit from Invitrogen). Intracellular stain mAbs include: anti-CD3 [SP34-2] 

and anti-TNF- [MAb11] (BD Biosciences); anti-IFN- [4S.B3] and anti-IL-2 [MQ1-

17H12] (Biolegend, San Diego CA). 

Flow cytometry staining protocol for PBMCs: PBMCs were isolated from RhMs and 

cryopreserved.  Samples were thawed and stimulated overnight (18 hours) in R10 at 

2x106 cells/mL with (i) SIVmac239 peptide pools specific for Gag or Pol, R10 (negative) 

or Staphylococcal Enterotoxin B (SEB, positive).  1ul/mL GolgiPlug (brefeldin A) and 

0.7ul/mL GolgiStop (monensin) (BD Biosciences) were added 1 hour after stimulation 

began. Cells were then stained as previously described13.  

Intravaginal challenge of rhesus macaques: All 28 animals were intravaginally 
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challenged with 500 TCID50 SIVsmE660 prepared in the laboratory of Dr. Phil Johnson 

(Children’s Hospital of Pennsylvania) twice a week for two weeks. The TCID50 of this 

stock was re-titered in CEMx174 cells at the time of challenge and was 4000 TCID50. 

The dose was chosen to mimic early HIV infection. Depo-Provera was not used during 

the challenge to increase the RhMs ability to become infected. Blood samples were 

collected twice weekly for six weeks, weekly for two weeks, and then monthly to day 

190 after challenge to monitor plasma viral load. TRIM5α analysis was performed and 

did not affect challenge outcome. Additional blood and tissue samples were collected at 

days 14, 28, and 56 after challenge and processed as described for the pre-challenge 

samples. RhMs were defined as aborted infections if the viral loads remained below the 

level of detection for the remainder of the study (6 months post challenge). Time to viral 

control was determined as the number of days after initial infection to the first day viral 

loads were undetectable or 150 days if progressively infected.  

SIV viral RNA quantitation: SIV viral RNA was quantitated using a procedure 

described previously (393, 394).  

Statistical analysis: Data are presented as the mean ± S.E.M or median as specified in 

the figure legends based off of the normalcy of the data as calculated from triplicate wells 

from each experimental group. The statistical difference between immunization groups 

was assessed by using Mann-Whitney test, modified ANOVA test or Fisher exact test. 

Comparisons between samples with a P value <0.05 were considered to be statistically 

different and therefore significant.  
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4.3 Results 

Inclusion of mucosal chemokine adjuvants induces robust cellular responses to all 

antigens 

In this study, we vaccinated four groups of animals consisting of five female 

RhMs with pSIVmac239 pol and pSIV sooty mangabey consensus envelope and gag 

vaccine alone or in combination with CCR9L pCCL25 or CCR10Ls pCCL28 or pCCL27 

at weeks 0, 6, 12, 18 and boosted at week 48. We also vaccinated 14 female rhesus 

macaques with water followed by EP and termed this group “naïve” control animals 

(Figure 4.1a). The consensus immunogens were developed as previously described using 

multiple sooty mangabey SIV sequences (324, 326, 395). The homology of the SIVsm 

Envelope to isolates from SIVsmE660 swarm ranges from 94-97% (Figure 4.1b). 

Compared to pre-vaccination levels (Figure 4.2a), after four immunizations, all RhMs 

showed robust cellular responses against all vaccine immunogens (Figure 4.2b). RhMs 

immunized with CCR9L chemokine had significantly higher total amount of IFN-γ 

secreting PBMCs compared to DNA only (P < 0.01) which was predominately CD8+ T 

cell driven (Figure 4.3). All animals demonstrated good recall responses after the final 

immunization to all included vaccine antigens (Figure 4.2c). Cellular responses were 

further investigated two weeks after final immunization to determine if there were 

differences in cytokine profiles between the groups. Peripheral blood mononuclear cells 

(PBMCs) were stimulated with Gag and Pol peptides followed by intracellular cytokine 

staining. The inclusion of CCR9L adjuvant increased the amount of antigen-specific 

CD8+ T cells secreting IFN-γ, TNF-α, and IL-2 (Figure 4.2d). The addition of CCR10L 
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adjuvants only marginally affected CD8+ T cells, with the largest difference in TNF-α and 

IL-2 expression, compared to the DNA only group (Figure 4.2d).  Polyfunctionality for 

both CD4+ and CD8+ T cells were also assessed after final vaccination (Figure 4.4), 

displaying limited differences in the number of cells secreting all three cytokines but 

increased differences in populations secreting either two or a single cytokine.  

Inclusion of mucosal chemokine adjuvants increases humoral responses in sera and 

secretions 

 Since both CCR9L and CCR10L adjuvants have previously been shown to 

increase humoral responses (349, 377, 390), we investigated the vaccine-induced 

antibody production in serum and vaginal washes. We confirmed that the addition of 

CCR10L adjuvant enhanced vaccine-specific IgA above the levels induced by DNA 

alone vaccination. These results were obtained by measuring Gag (p27)- and Env 

(gp160)-specific IgA in the serum and vaginal wash by ELISA and western blot (WB) 

two weeks after final vaccination. The use of CCR10L adjuvant resulted in significant 

elevation in serum IgA levels against p27 antigen (P<0.05 compared to both DNA only 

and CCR9L) and against gp160 (P < 0.05 compared to DNA only) measured as WB band 

intensity (Figure 4.5a). Additionally, there was a trend for increased serum IgA against 

gp160 observed in RhMs vaccinated with CCR9L adjuvant. However, there were no 

significant differences in the levels of serum SIV-specific IgA Envelope ELISA binding 

titers between groups (Figure 4.5e). Serum IgG revealed similar strong WB band 

intensities against p27 and gp160 in the CCR10L adjuvant group (Figure 4.5b). 

Moreover, endpoint titers of serum IgG antibodies to gp140 also tended to be elevated in 
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CCR10L adjuvanted RhMs (Figure 4.5f). Although the values are not significant, due to 

large variability, the p27 and gp160 IgA binding antibodies were elevated in vaginal 

secretions of animals receiving CCR10L adjuvants (Figure 4.5c). Only 3 out of 5 RhMs 

receiving the DNA vaccine exhibited measurable IgA responses averaging 0.53 WB band 

intensity units. In contrast, 7 out of 9 animals receiving CCR10L adjuvants had 

measurable p27 IgA responses, with an average WB band intensity of 1.6. In the CCR9L 

adjuvant group, 4 out of 5 animals had measurable p27 IgA responses with an average 

WB band intensity of 1.1. Likewise, there were no detectable vaginal gp160 IgA 

responses in DNA-vaccinated animals, whereas 4 out of 9 animals receiving CCR10L 

adjuvanted vaccine had gp160-specific responses. Neither CCR9L nor CCR10L 

adjuvants appeared to have much of an effect on vaginal IgG responses compared to 

DNA only immunized group (Figure 4.5d).  

 To further characterize potentially protective vaccine-induced humoral responses, 

we measured V1/V2 binding using a linear peptide pool ELISA and the neutralizing 

antibody titers using the standard TZM-bl assay. The consensus SIVsmE660 vaccine 

induced V1/V2 binding antibodies, but V1/V2 binding seemed to be only slightly 

enhanced by the addition of CCR9L or CCR10L adjuvants (Figure 4.5g). Serum IgG 

binding to linear peptides against V3 and gp41 were also investigated, but there was no 

induction of responses to these regions by the vaccine (data not show). We also observed 

neutralizing titers present against the tier 1 SIVsmE660.11 pseudotyped virus; however, 

there were no significant differences in neutralization titer between groups, with CCR9L 

vaccinated animals showing a slight increase compared to the other groups (Figure 4.5h).  
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Inclusion of CCR9L and CCR10L adjuvants enhance protection against challenge 

  To assess the impact of vaccine induce responses and acquisition of SIV, we 

performed a repeat intravaginal challenge with 500 TCID50 (median tissue culture 

infective dose) SIVsmE660 that had been previously titered for vaginal challenge. 

Fourteen vaccine-naïve animals were included as challenge controls. Following 

challenge, we observed that 12 out of 14 vaccine-naïve RhMs became infected, and all 

animals exhibited an acute peak of viremia of 106 to 108 viral copies per ml and setpoint 

from 104 to 106 viral copies per ml (Figure 4.6a). Two vaccine-naïve animals did not 

become infected with a baseline percent protection of 14.2. Grouping all vaccinated 

animals together, 13 out of 19 display either no infection or aborted infection 

corresponding to 68% protection (Figure 4.6b) which is highly significant (P = 0.0016 

compared to naïve). When animals were divided into their corresponding vaccine 

regimens, there was a large difference in challenge outcome. Two out of five DNA only 

vaccinated RhMs remained uninfected, leading to 40% protection (P= 0.23 compared to 

naïve) (Figure 4.6c). This protection trended higher in the CCR9L vaccinated animals, in 

which three out of five RhMs were protected, corresponding to 60% protection (P = 0.06 

compared to naïve) (Figure 4.6d). The challenge outcomes for animals immunized with 

CCR10L adjuvanted vaccine were noticeably different; 2 out of 9 RhMs remained 

uninfected, and 1 out of 9 displayed progressive infection. The remaining 6 out of 9 

animals had aborted infections, exhibiting brief viremia that rapidly declined to below 

detectable levels, resulting in 89% protection which is highly significant (P = 0.003 

compared to naïve) (Figure 4.6e).  
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  Following challenge, we also observed significant vaccine effects on viral 

parameters. Compared with vaccine-naïve animals, there was a significant decrease in 

peak viral load in all vaccinated animals (P<0.05) (Figure 4.7a), specifically in the 

CCR10L adjuvanted group (P<0.05) (Figure 4.7b). A more dramatic adjuvant effect was 

observed when analyzing the time to viral control. There was a trend towards decrease 

time to viral control in all vaccinated compared to naïve animals (Figure 4.7c). This was 

further emphasized when each group was analyzed. RhMs immunized with CCR10L 

adjuvants showed a significant decrease in days to viral control when compared to naïve 

(P<0.001), DNA only (P<0.001) and CCR9L chemokine adjuvant (P< 0.001) with an 

average time to control of 38.7 days (Figure 4.7d). Viral loads for all uninfected and 

aborted infections remained below detection thru the end of the study, six months post-

challenge (Figure 4.6).  

Differential induction of vaginal IgA and IgG antibodies could influence outcome of 

vaccination  

  To further understand how differential induction of antibody isotypes could 

influence the challenge outcome, data analysis was performed for animals grouped 

according to their disease progression. Specifically, “uninfected” animals were defined as 

having no detectable viral loads through challenge follow up; “aborted infection” for the 

animals which were infected but controlled viremia to undetectable levels; and finally 

“progressive infection” for the animals with measurable viral loads throughout the study. 

Humoral responses were followed two months post challenge, a time chosen to be after 

the peak of viral infection. In the uninfected animals, the vaginal and serum IgA and IgG 
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antibodies specific for Envelope remained unchanged after challenge, suggesting that 

these animals remained truly uninfected (Figure 4.8a-b). However, animals with aborted 

or progressive infections had significant increases in Envelope binding antibody titers in 

both systemic and mucosal compartments (Figure 4.8a-b). In both abortive and 

progressive animals, vaginal antibody endpoint binding titers to Envelope increased 

almost 4000-fold for IgA and 30,000-fold for IgG after infection. Within the serum 

compartment, these increases were 50,000-fold and 1,000,000-fold for IgA and IgG 

respectively.  Additionally, serum neutralizing titers of antibodies did not change after 

challenge for uninfected RhMs but did increase significantly for both aborted and 

progressively infected RhMs (Figure 4.8c).  

  To determine whether potential correlates of immunity exist for RhMs which 

remained uninfected or displayed aborted infection, we analyzed responses two weeks 

after final immunization. Due to the limited number of animals in each outcome group, 

the study analysis was not powered to detect small changes in antibody levels and thus 

there was no significant difference when evaluating individual groups. However, there 

were some trends of importance: including differences in the induction of vaginal IgA 

and IgG to viral proteins (Figure 4.9a–b). Specifically, RhMs with progressive infection 

only exhibited vaginal IgA and IgG antibodies to Gag (p27) whereas RhMs which 

remained uninfected or aborted infection displayed vaginal IgA and IgG antibodies to 

Envelope, Gag, and Pol. For all proteins except Gag, RhMs with aborted infection 

exhibited the highest levels of IgA and IgG. Within the serum, all challenge outcome 

groups induced binding IgA and IgG antibodies to all vaccine antigens (Figure 4.9c-d). 
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Binding titers of serum antibodies to Envelope (gp160) did not show any difference 

between the groups (Figure 4.9e-f). Uninfected animals exhibited the highest level of 

SIVsmE660.11 neutralizing antibody titers followed by the abortively infected group 

(Figure 4.9g). When investigating the V1/V2 linear epitope binding response, both 

uninfected and abortively infected RhMs showed higher responses than the progressively 

infected animals (Figure 4.9h).  The number of IFN-γ secreting T cells were similar in 

all outcomes indicating that peripheral T cell responses did not appear to contribute to 

challenge outcome (Figure 4.9i). Total CD4+ or CD8+ T cells secreting cytokines after 

4th and 5th immunization also did not appear to correlate with challenge outcome or peak 

viral loads (Figure 4.10a-b). Taken together, the data from this pilot study suggest that 

the presence of mucosal IgA and IgG and neutralization titers inversely correlate with 

levels of SIV infection and likely contributes to prevention of infection.  

4.4 Discussion  

  A strength of the DNA vaccine platform is its ability to combine plasmids 

encoding cytokines and chemokines as part of the vaccine formulation, which were able 

to specifically influence the immune responses towards the desired outcome (57, 58, 101, 

113, 349, 350, 369, 377, 390, 396). In this study, we demonstrated that the addition of 

immune plasmid adjuvants encoding mucosal chemokines could increase the 

effectiveness of a DNA vaccine against an SIV challenge. Macaques immunized with 

CCR10L adjuvanted vaccine demonstrated 89% protection with 6 of 9 displaying aborted 

infection. These animals did not exhibit positive viral loads through the end of the study, 

corresponding to 6 months post-challenge follow-up. Within the CCR10L immunized 
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animals, only 2 out of 9 animals remained uninfected compared to 3 out of 5 for CCR9L 

vaccinated animals and 2 out of 5 in the DNA only immunization, suggesting different 

possible mechanisms of protection between the vaccinated groups. The majority of 

control in the CCR10L immunize animals occurs after the virus has already disseminated 

whereas the control in the CCR9L immunized animals blocks the establishment of 

infection or dissemination into the peripheral blood. Future studies investigating these 

differences in control could shed light on the development of an efficacy HIV-1 vaccine.  

  In addition to the use of a highly novel gene adjuvant, this study has many other 

innovative factors. These include the use of adaptive electroporation to drive increased 

transfection efficiency and in vivo expression of antigen. Within this study, we see strong 

protection against challenge with the use of a DNA only immunization regimen. A 

strength of DNA vaccination continues to be the induction of strong cellular responses 

but limited to no antibody responses. Due to this, we have continued to focus on 

increasing DNA vaccine’s ability to drive systemic and compartmentalized antibody 

responses while trying to maintain cellular responses. Within this study, we were able to 

induce both strong cellular and humoral responses using only DNA without the possible 

serological complications of viral vectors or live attenuated vaccines. There have been 

few studies which have looked at the ability of DNA vaccination to induce mucosal 

responses and in many cases, the addition of a heterologous boost is required (320, 397-

399). However, within this study using only DNA, we see 15 out of 19 RhMs inducing 

mucosal responses as measured by WB band intensity units against either Envelope or 

Gag. Additionally, the constructs used in this study were not matched to the SIVsmE660 
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swarm and demonstrate the ability of a synthetic consensus immunogens to drive cross-

reactive and broad responses that can impact viral infection. The viral challenge was 

specifically titered for vaginal challenge, mimicking early infection from male to female 

while yielding a high rate of infection in naïve. Another novelty of the study is the 

strength of looking at both the serum and mucosal responses. The ability to induce 

responses in both compartments will likely be important for future HIV vaccines. Within 

the study, we see that what is observed in the serum does not necessarily predict what is 

observed in the vaginal mucosa.      

  Though correlate analysis is difficult with smaller animal groups, we do see some 

trends. Compared to other platforms such as the CMV vectors, which show increase 

abortive infection after peak viral load (400-402), we do not observe differences in the 

assayed T cell responses induced between groups. Instead, all difference appeared to be 

related to humoral responses. As expected, uninfected RhMs have the highest titers of 

neutralizing antibodies to SIVsmE660.11 isolate. Subsequent analysis of RV144 trial 

indicated that antibodies to the V1/V2 loops of HIV Envelope correlated with a lower 

risk of HIV infection (211, 334). Following this, RhMs which remained uninfected and 

abortively infected had a higher level of serum IgG binding to the V1/V2 region of 

SIVsmE660 peptides compared to progressively infected animals.  In contrast to RV144, 

there was no difference in serum IgA binding titers to Envelope (gp140) across all groups 

or a correlation between vaccine-induced CD4+ T cells and challenge outcome and 

control. These results suggest the need to further investigate the relationship between 

vaginal IgA and IgG antibodies in HIV protection.  
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  Though all of the differences in immune responses detected were related to 

humoral responses, this does not eliminate the potential for cellular responses to play a 

role in protection after vaccination and additional study in this regard is warranted.   We 

have reported in a trial with the HVTN, that pIL-12 can increase the number of vaccine 

responders in humans receiving an HIV DNA vaccine delivered by EP (58).  A future 

study to compare pIL-12 alone or in combination with mucosal adjuvants in this model 

would be informative.  Additionally, the chemokine adjuvant’s effects on resident 

effector cells at the mucosa is also important. The presence of effector memory T cells at 

the initial mucosal sites of infection could allow for abortive infection to occur. Previous 

studies in mice have suggested that the use of the mucosal chemokine adjuvants was able 

to upregulate the number of cells positive for either the CCR10 or CCR9 receptor at the 

site of vaccination (349, 377, 390). We are continuing to investigate how these cells leave 

the muscle and migrate to mucosal sites where they become effector cells.  

  Within this study, we report an overall protection rate of 68% in all vaccinated 

RhMs against an SIVsmE660 swarm mucosal challenge vs. a control rate of 14%. Within 

the study, there is a significant increase in protection in the CCR10L-adjuvanted animals, 

displaying 89%. These levels of protection from chronic progressive infection are 

significant and thus warrant further investigation. By including different chemokine and 

cytokine adjuvants including mucosal chemokines, DNA vaccines appear to specifically 

focus the immune response to enhance protection.  Such a mechanism is of clear clinical 

relevance for HIV vaccine studies. 
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Tables 
 

 

Table 4.1: Genotype analysis of RhMs and challenge outcome. Genotype analysis was 

performed on each RhM to ensure it did not affect challenge outcome. RhMs were 

grouped based on challenge outcome for all groups including naïve RhMs. Two RhMs in 

the naïve group did not have TRIM5α analysis performed on them and have not been 

included in the table. 
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Figures 
 

 

 

Figure 4.1: Genetic diversity of constructs and immunization schedule. (a) Schematic 

of the immunization and challenge regimens. RhMs were immunized on weeks 0, 6, 12, 

18 and 48. After a 26 week rest, RhMs were challenged with multiple low dose 

SIVsmE660 swarm. (b) Genetic tree of SIV sooty mangabey Envelopes. The consensus 

envelope was made using multiple different SIVsm envelopes. The blue open triangles 
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how sequences from the SIVsmE660 swarm stock used in the experiment. The red square 

represents the consensus Envelope used for immunization. 
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Figure 4.2: Cellular response induced by vaccination. Interferon-gamma secreting 

cells against Gag (green) Pol (blue) and Env (purple) were enumerated by ELISpot assay. 

Responses were measured at week 0 (a) week 20 after 4th vaccination (b) and week 53 

recall / final immunization (c). Intracellular cytokine staining was performed on cells 

stimulated with peptides from Gag and Pol and totaled for CD4 and CD8 at week 53(d).  
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Figure 4.3: Cytokine production from CD4+ and CD8+ T cells after 4th 

immunization. Intracellular cytokine staining was performed on PBMCs isolated at 

week 21 and stimulated with peptides from Gag and Pol and totaled for CD4 (circles) and 

CD8 (triangles). Bars indicate median 
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Figure 4.4: Polyfunctional T cell responses induced by DNA vaccination. 

Polyfunctionality of PBMCs isolated at week 53 was determined for both CD4 (top) and 

CD8 (bottom) against Gag and Pol  
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 Figure 4.5: Chemokine adjuvants enhance the vaccine-induced humoral response. 

Antibody responses were measured at week 50 (2 weeks after final vaccination).  Serum 

IgA (a) and IgG (b) antibodies specific to Gag (p27) and Envelope (gp160) expressed as 

WB band intensities. Serum IgA against p27 was elevated in the group received CCR10L 

compared to DNA only (P< 0.05) and CCR9L (P<0.05). IgA (c) and IgG (d) against Gag 

(p27) and Envelope (gp160) measured in Ig-normalized vaginal secretions and expressed 

as WB band intensities. Serum IgA (e) and IgG (f) antibodies against gp140 Envelope 

protein expressed as ELISA endpoint titers. Serum IgG antibody binding to 15mer 
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peptides spanning the V1/V2 region of Envelope (g). SIVsmE660.11 serum antibody 

neutralizing titers measured by TZM-bl assay (h). Dashed lines denote the limit of 

detection for respective assay. Bars indicate median. The P-values reported were 

calculated using the Mann-Whitney test. * indicates a P < 0.05. 
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Figure 4.6: DNA vaccination and chemokine adjuvants improve the challenge 

outcome. Animals were intravaginally challenged twice a week with SIVsmE660 26 

weeks after the final booster vaccination and the viral loads were determined. The color 

black indicates animals with progressive infection, blue with abortive infection, and red 

the uninfected animals. Viral load in (a) vaccine-naïve animals (n=14); (b) all vaccinated 
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animals (n=19); (c) in DNA only vaccinated animals (n=5); (d) in CCR9L vaccinated 

animals; and (e) in CCR10L vaccinated animals (n=9).  
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Figure 4.7: CCR10L adjuvanted vaccine improved the challenge outcome 

characteristics. (a) Peak viral loads in animals that became infected. The peak of viral 

load was significantly (P<0.05) reduced in vaccinated compared to naïve animals. (b) 

Peak viral loads of each group of vaccinated animals. Peak viral loads was significantly 

reduced (P<0.05) in RhMs receiving CCR10L adjuvanted vaccine compared to naïve 

animals. (c) The number of days until viremia reached undetectable levels in infected 

RhMs. Animals in which viremia was never controlled were scored as day 150. Animals 

receiving CCR10L adjuvant had a shorter time to control of viremia compared to animals 
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receiving CCR9L adjuvanted vaccine (P<0.001), DNA only (P<0.001) and naïve animals 

(P<0.001). Bars indicates mean. The P-values reported were calculated using the 

Student-T test for (a) and a modified ANOVA for (b) and (c). 
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Figure 4.8: Differential induction of humoral responses post challenge. Humoral 

responses were monitored after last immunization and at two months post challenge. 

Serum IgA and IgG specific for gp140 Envelope glycoprotein in vaginal secretions (a) 

and serum (b) expressed by ELISA endpoint titers. Neutralization titers against 

SIVsmE660.11 after final vaccination and at two months post challenge (c). RhMs were 

assigned to either uninfected, aborted or progressively infected groups based on the 

challenge outcome. Bars indicate median. The P-values reported were calculated using 

the Mann-Whitney test. * indicates a P < 0.05 and ** indicates a P < 0.01.   
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Figure 4.9: Correlates analysis of humoral and cellular responses. Antigen-specific 

antibody and IFN-γ responses were measured two weeks following the final vaccination. 

Vaccinated animals were grouped according to their challenge outcome in uninfected 

(n=7) (red), aborted (n=6) (blue) and progressive infection (n=6) (black) groups. Vaginal 

IgA (a) and IgG (b) antibodies specific for different HIV proteins, expressed as intensity 

of WB bands. Both vaginal IgA and IgG antibodies were elevated in uninfected and 

aborted infection compared to progressively infected animals. Serum IgA (c) and IgG (d) 

for different HIV proteins, expressed as WB band intensity. Serum IgA (e) and IgG (f) 
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against SIV gp140, expressed as ELISA endpoint titers. Antibody neutralizing titers (g) 

against SIVsmE660.11 isolate were elevated in uninfected animals compared to abortive 

and progressive infection. Serum IgG (h) antibodies binding to V1/V2 were elevated in 

uninfected, compared to progressively infected animals. Total IFN-γ (i) responses to Gag, 

Pol, and Env by peripheral blood mononuclear cells (PBMCs). The number of IFN-γ 

secreting cells was determined by ELISpot assay and expressed as spot forming units 

(SFU). Dashed lines denote the limit of detection for respective assay. Bars indicates 

mean with s.e.m. 
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Figure 4.10: Peripheral cellular responses do not correlate to challenge outcome or 

peak viral loads. The percent of CD4+ (left) and CD8+ (right) T cells which secreted 

cytokines after stimulated with Gag and Pol peptides was determined two weeks after 4th 

immunization (a) and two weeks after final immunization (b) and plotted against peak 

viral load. There is not a strong correlation between cellular responses, peak viral loads or 

challenge outcomes. 
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CHAPTER 5: A NOVEL SYNTHETIC CD40L PLASMID ADJUVANT 

GENERATES UNIQUE ANTI-HPV DNA VACCINE INDUCED RESPONSES 

THAT IMPACT TUMOR GROWTH 

5.1. Introduction 

 Recently, there have been numerous successes in immunocology, further 

increasing the focus on targeting the immune system to control cancer malignancies. The 

importance of CD8 T cells in controlling tumor growth has been well established in 

mouse models and further supported by correlates found in humans (403-407). However, 

there is continued need to develop novel strategies to increase immune responses against 

cancer antigens. Vaccination lends itself well to inducing both cellular and humoral 

responses against tumor-associated antigens (TAAs), driving the production of antigen-

specific cytotoxic CD8 T cells (122, 408). In many cases, though, these T cells are not 

enough to control or eliminate tumor growth. The use of adjuvants to increase or tailor 

vaccine-induced responses could improve the generation of T cells and increase the 

efficacy of the vaccine (88, 93).  

 Due to its role in both T and B cell development, CD40 ligand (CD40L) is an 

ideal vaccine adjuvant candidate (409, 410). CD40L is a type II membrane protein and 

part of the TNF superfamily of molecules (411). It is expressed on epithelial and smooth 

muscle cells and is upregulated on CD4 T cells upon activation or stimulation (412). Its 

binding partner, CD40, is mainly expressed on antigen presenting cells (APCs), CD8 T 

cells and B cells (413, 414). CD40L binds to CD40 on APCs, leading to the licensing of 

the APC, increased maturation and antigen presentation as well as increased production 
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of IL-12 and other pro-inflammatory cytokines (410, 415, 416). Additionally, CD40-

CD40L interaction on B cells leads to antibody class switching and increased 

proliferation (409). Because of CD40L’s role in acting as a switch of the innate-adaptive 

immune response, there have been many studies to explore its potential as a vaccine 

adjuvant. Several studies used CD40L fused to either viral vectors or proteins to target 

the antigen of interest to APCs (417-425). Others have used CD40L encoded on a DNA 

plasmid and injected together with a plasmid encoding the antigen (109, 426-431). Many 

of these studies observed increases in responses with the addition of CD40L, dominant by 

the enhancement of the CD8 T compartment.  

We wanted to explore further the adjuvanting properties of CD40L by exploring 

its different isoforms. Naturally, CD40L can be membrane bound or cleaved into a 

soluble form (412). Within this study, we sought to directly compare an uncleavable 

membrane-bound form (UC), a wild-type form (WT) and a soluble form (S) of CD40L 

encoded as an immunoadjuvant for a DNA vaccine. These optimized adjuvant plasmids 

were co-delivered with a plasmid expressing the oncogenic proteins E6 and E7 of HPV 

type 16 (300) followed by in vivo electroporation (EP). After two vaccinations, we 

observed significantly higher CD8 and CD4 T cell responses when the soluble (pS-

CD40L) was included as well as slight increases in antibody responses. Similar responses 

were not observed with the pUC- or pWT-CD40L constructs. Upon further investigation, 

these CD8 T cells peaked 11 days after first vaccination when pS-CD40L was included 

and were boosted after the second immunization. Contrary to previous reports, these CD8 

T cell responses were still partially dependent on CD4 T cell help. Additionally, the trend 
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in responses observed after final vaccination were maintained into memory and were 

dependent on delivery to the same local site. Each of the CD40L constructs alone was not 

able to confer protection from a tumor challenge. However, when pS-CD40L was 

included with the HPV DNA vaccine, there was significant tumor control and clearance 

compared to DNA alone or DNA plus pUC- or pWT-CD40L. The inclusion of pS-

CD40L increases both systemic as well as tumor infiltrating antigen-specific CD8 T cells 

in tumor-bearing mice compared to vaccine alone or naïve mice. Additionally, when pS-

C40L was added, the ratio of antigen-specific CD8 T cells to CD4 Tregs in the tumor was 

significantly higher compared to vaccine alone or naïve. These results demonstrate that 

soluble but not membrane-bound CD40L can adjuvant a DNA vaccine and leads to 

increase vaccine efficacy in a therapeutic tumor model.  

5.2. Materials and Methods 

DNA constructs: The sequence for mouse CD40 ligand was obtained from Uniprot 

(P27548). To make the uncleavable (UC) form, the amino acids around the cleavage site 

(111-112) were deleted. For the soluble form (S), the amino acids from the cleave site to 

the C-terminus were included. All inserts were RNA and codon optimized and cloned 

into the pVax backbone (Genscript Piscataway, NJ). The plasmid expressing HPV 16 E6 

and E7 was used as previously described (300).  

Transfection and in vitro expression of plasmid: Transfection and in vitro expression 

To confirm expression of the CD40L constructs, mouse myoblast cell line C2C12 cells 

(ATCC, Manassas, VA) were transfected with each plasmid using Lipofectamin 3000 

(ThermoFisher Scientific) following the manufactures protocol. Media and cell lysate 
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was collected at 24, 48 and 72 hours after transfection. Cells were lysed using a mixture 

of cOmplet, mini, EDTA-free protease inhibitor (Roche, Basel, Switzerland) with Cell 

Signaling Cell lysis buffer (Danvers, MA). To test for expression, cell lysate was run on a 

12% Bis-Tris NuPAGE gel (ThermoFisher Scientific) followed by transfer to PVDF 

membrane (Millipore). The membrane was blocked for 1 hour at room temperature with 

LiCor PBS blocking buffer (Lincoln, NE) and was probed overnight with 1:1000 dilution 

of anti-mouse CD40L (R&D Systems, Minneapolis, MN) and 1:5000 dilution anti β-actin 

(ThermoFisher Scientific) as a loading control in LiCor blocking buffer. After washing 

with 0.1% PBS-Tween (PBST), the membrane was probed with 1:15,000 dilution of 

IRDye® 680RD goat anti-mouse and IRDye® 800CW donkey anti-goat secondary 

antibodies (Licor). The membrane was then washed and developed on the Licor Odessey 

CxL. Expression was also quantified using an anti-mouse CD40L quantitative ELISA kit 

(Boster Biological, Pleasanton, CA) following manufactures protocol.  

Animals: All mice were housed in compliance with the NIH, the University of 

Pennsylvania Institutional Animal Care and Use Committee guidelines, and the Wistar 

Institutional Animal Care and Use Committee. Six to eight week old female C57/BL6 

mice were purchased from Jackson Laboratory.  

Animal Immunizations: Mice were immunized with 5ug of HPV16 E6/E7 plasmid with 

or without 15ug of the different forms of plasmid CD40L (pCD40L). All DNA was 

formulated in water. Mice were injected intramuscularly (IM) in the tibialis anterior 

muscle followed by electroporation (EP) using the CELLECTRA® 3P (Inovio 

Pharmaceuticals, Plymouth Meeting, PA) as previously described (432).  
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Isolation of peripheral blood mononuclear cells (PBMCs): Blood from mice was 

collected in tubes containing 4% sodium citrate (Sigma-Aldrich, St. Louis, MO) to 

prevent clotting. Histopaque 1083 (Sigma-Aldrich) was then layered under the blood. 

After spinning to create the gradient, cells from the buffy coat were collected and used 

for tetramer analysis.  

ELISA 

Before sacrificing, serum was collected to determine the vaccine-induced humoral 

responses. Maxisorp 96 well plates (ThermoFisher Scientific) were coated with 1ug/ml of 

E7 protein (ProteinX Lab, San Diego, CA) in PBS and stored at 4 degrees overnight. 

ELISAs were performed as previously described with the primary mouse serum diluted 

1:50 followed by four-fold dilutions to create a dilution curve. Secondary goat anti-

mouse HRP-labeled antibody (Santa Cruz Biotechnology, Santa Cruz, CA) was used at a 

1:5000 dilution. Plates were developed for 5 minutes using the Sigma Fast OPD tables 

and stopped with 2N sulfuric acid. Endpoint binding titers were calculated as previously 

described. 

CD4 depletion: Mice were administered 100ug of anti-mouse CD4 antibody (clone 

GK1.5 BioXCell, Lebanon, NH) formulated in PBS intraparietal (IP) one day before first 

vaccination followed by every three days after that. Successful depletion was confirmed 

by flow cytometry.  

ELISpot assay: Ninety-six well filter plates (Millipore, Billerica, MA) were coated with 

anti-IFN-γ capture antibody (R&D, Minneapolis, MN) overnight at 4o C. Spleens were 

isolated from mice at various time points depending on the study. After processing the 
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spleens as previously described, 2x105 cells were added to blocked plates. Cells were 

stimulated with overlapping 15mer peptide pools for either E6 or E7 (5ug/ml per peptide) 

(Genscript). Media alone and concanavalin A (Sigma-Aldrich) were used as negative and 

positive controls respectively. After 18hrs of stimulation, the plates were washed, and 

secondary detection antibody (R&D) was added for 24hrs at 4oC. Plates were then 

washed and developed using the ELISpot Blue Color Module (Millipore) per the 

manufacturer’s protocol. Plates were then scanned and counted using the ImmunoSpot® 

S6 FluoroSpot ELISpot plate reader (CTL, Shaker Heights, OH).  

Flow cytometry: For intracellular cytokine staining, 2x106 splenocytes were stimulated 

in the presence of protein transport inhibitor, GolgiStopTM GolgiPlugTM (BD Bioscience, 

San Jose, CA) with the same peptide pools as the ELISpots. Media alone and phorbol 12-

myristate 13-acetate (PMA) and ionomycin (BD Biosciences) stimulations were used as 

negative and positive controls respectively. To test for degranulation of cells, anti-

CD107a antibody (FITC; clone 1D4B; Biolegend, San Diego, CA) was also added during 

stimulation. After 6hrs, cells were washed and stained with LIVE/DEAD violet 

(Invitrogen, Carlsbad, CA). Surface staining was then added containing anti-CD4 

(BV510; clone RM4-5; Biolegend), anti-CD8 (APC-Cy7; clone 53-6.7; Biolegend), and 

anti-CD44 (Alexa Fluor 700; clone IM7; Biolegend). After 30 minute incubation, cells 

were spun, washed, and fixed using the FoxP3/Transcription factor 

fixation/permeabilization kit (eBioscience, San Diego, CA) following manufacturer’s 

protocol. Intracellular staining was then prepared using anti-IFNγ (APC; clone ZMG1.2; 
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Biolegend), anti-TNFα (BV605; clone MP60ZT22; Biolegend), anti-IL2 (PE/Cy7; clone 

JES6-5H4; Biolegend), and anti-CD3 (PE/Cy5; clone145-2C11; eBiosciences).  

For tetramer staining, isolated PBMCs were washed and staining using LIVE/DEAD 

violet. The surface stain was then added containing anti-CD8 (APC-Cy7; clone 53-6.7; 

Biolegend), anti-CD44 (Alexa Fluor 700; clone IM7; Biolegend) and the iTAg tetramer 

H-2Db HPV16E7 tetramer (RAHYNIVTF) (PE; MBL. Woburn, MA). Cells were then 

fixed using BD stabilizing fixative (BD Bioscience).  

All data was collected on a modified LSRII flow cytometer (BD Bioscience) followed by 

analysis with FlowJo software (Tree Star, Ashland, OR).  

Tumor cell line: The TC.1 cell line expressing the HPV E6 and E7 proteins were given 

by Dr. Yvonne Paterson of the University of Pennsylvania. Cells were cultured in 

Dulbecco’s modified Eagle media (Mediatech, Manassas, VA) supplemented with 10% 

fetal bovine serum (Atlas Biologicals, Ft. Collins, CO). Cells were passaged one time 

before implantation.  

Tumor challenge studies: Groups of 10 mice were subcutaneously implanted with 5x104 

TC.1 cells on the right flank of the mouse. One week after implantation, mice were 

vaccinated (IM) with 5ug of HPV16 E6/E7 DNA only, HPV16 E6/E7 DNA only in 

combination with 15ug of pCD40L, or with 15ug of pCD40L alone followed by in vivo 

EP. Mice received boosters on days 14, 21, and 28. Tumors were monitored and 

measured with electronic calipers twice weekly. Tumor volume was calculated using 

(π/6)*(height)*(width)2. Per the University of Pennsylvania’s and Wistar’s Institution 
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Animal Care and Use Committee, all mice which had tumors between 18-20mms or 

which became ulcerated were sacrificed.  

Isolation of tumor infiltrating lymphocytes (TILs): For all TIL studies, tumors were 

harvested at day 21 post tumor implant and immediately placed in cold PBS. Lymphocyte 

isolated was performed as previously described (433). Briefly, tumors were minced in 

500µL of digestion mix. The digestion mix consists of 170mg/L Collagenase I, II and IV 

(ThermoFisher, Waltham, MA), 12.5mg/L DNAse I (Roche, Basel, Switzerland), 25mg/L 

Elastase (Worthington, Lakewood, NJ) in a 50/50 mixture of Hyclone L-15 Leibowitz 

Media (ThermoFisher) and RPMI, supplemented with 5% FBS and 1% 

Penicillin/Streptomycin. Minced tumors were then transferred to a 50mL conical filled 

with 10mL of digestion mix, and rocked gently for 45 minutes. 10mL of complete RPMI 

(RPMI + 10% FBS) was added to the tumor digestion mix, and then cells were filtered 

through a 40µm mesh filter. Cells were then counted and plated for tetramer analysis.   

Statistical analysis: Statistical analysis was performed using a one-way modified 

ANOVA with a Turkey posthoc test for all studies except for the tumor challenge study. 

For this study, a two-way modified ANOVA was performed. All analysis was performed 

using GraphPad Prism Software (La Jolla, CA). Horizontal bars represent mean with 

error bars expressing the standard error.  
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5.3. Results 

Various forms of plasmid CD40L (pCD40L) are expressed in vitro  

Naturally, CD40L is expressed as both a membrane-bound form or as a 

solubilized cleaved version (Figure 5.1a). To address the contributions of each form, 

three different plasmids were produced. First, the wildtype (WT) form of mouse CD40L 

contained the entire coding sequence of CD40L. Two additional constructs were also 

produced, the uncleavable form (UC) expressing only the membrane-bound form of 

CD40L by deleting the amino acids around the extracellular cleavage site (aa111-112) 

and a soluble-only form which only encoded for the amino acids post the cleavage site 

(S) (Figure 5.1b). We transfected the mouse myoblast cell line C2C12 with each plasmid 

to test for the expression in vitro. Western blot analysis of cell lysate revealed that all 

constructs expressed (Figure 5.1c). We used a quantitative ELISA for mouse CD40L to 

quantify the expression of each of the constructs over time. As expected, expression of 

pUC is highest in the cell lysate whereas the pS-CD40L was highest in the cell 

supernatant (Figure 5.1d).  

Soluble CD40L increased CD8 T cell responses against HPV16  E6/E7 

To initially test for immunogenicity, groups of 5 C57Bl/6 mice were vaccinated 

with DNA plasmids expressing the oncogenic proteins of HPV16, E6/E7, with or without 

the different forms of pCD40L. Ten days after the second vaccination, mice were 

sacrificed to assess the vaccine-induced responses (Figure 5.2a). The inclusion of pS-

CD40L significantly increased the number of IFN-γ spot-forming units (SFU) compared 

to vaccine alone (Figure 5.2b). To further characterize the cellular responses, 
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intracellular cytokine staining was performed on splenocytes stimulated with overlapping 

peptide pools for E6 and E7 (Figure 5.2c). Compared to DNA only vaccination, the 

inclusion of pS-CD40L significantly increased the percent of CD8 T cells producing IFN-

γ, IL-2, and TNF-α (p<0.001 for all parameters). These responses were also significantly 

higher than mice vaccinated with HPV+ either the pWT or pUC form of CD40L 

(p<0.001 for all parameters). Since cytolytic killing function and degranulation is 

important for CD8 T cells to combat tumor cells, we also looked at the ability of these 

CD8 T cells to express the degranulation marker CD107a and co-produce IFN-γ. Co-

formulation with pS-CD40L significantly increased antigen-specific CD8 T cells which 

expressed both of these markers compared to HPV only (p<0.05) and HPV+ either pWT 

or pUC-CD40L (p<0.001) (Figure 5.2b lower left graph). The inclusion of pS-CD40L 

also increases the percent of CD8 T cells which were able to express multiple cytokines 

and CD107a compared to vaccine alone (Figure 5.2d). Though CD8 T cell responses 

have been previously found to be the driving force of tumor regression for the HPV16 

E6/E7 DNA vaccine, we also investigated if the inclusion of pCD40L could increase 

CD4 and humoral responses. Antibody responses to HPV E7 protein were slightly 

increased in mice vaccinated with HPV+ pS-CD40L (Figure 5.3 a-b). All five mice in 

the HPV+ pS-CD40L seroconverted and had detectable endpoint binding titers compared 

to 3 out of 5 in the DNA vaccinated alone group. The HPV16 E6/E7 DNA vaccine 

induces limited CD4 T cell responses. However, upon the inclusion of pS-CD40L, the 

percent of antigen-specific CD4 T cells producing IL-2 and TNF-α were significantly 

higher than vaccine alone (p<0.01 and p<0.001 respectively) (Figure 5.3c). These 
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responses were also higher than the pWT or pUC form of CD40L. Overall, the inclusion 

of soluble (pS) CD40L increased both cellular and humoral responses over vaccine alone. 

Interestingly, the same responses were not observed with the pUC or pWT-CD40L which 

either maintains or slightly, though not significantly, decrease vaccine-induced responses.  

Inclusion of soluble CD40L increased antigen-specific CD8 T cell responses in both the 

spleen and the periphery  

We can investigate antigen-specific responses in both the spleen and the 

peripheral blood mononuclear cells (PBMCs) using a tetramer which is specific to the 

dominant epitope in E7 (H-2Db RAHYNIVTF). Ten days after final vaccination, CD8 

tetramer specific responses in both the spleen and PBMCs were significantly higher in 

mice vaccinated with the pS-CD40L and HPV compared to vaccine alone (p<0.01 

(PBMC) and p<0.05 (spleen)) (Figure 5.4 a-b). Similar to the CD8 T cell functional 

responses, the inclusion of pUC- or pWT-CD40L slightly decreased the responses 

compared to vaccine alone. Due to the ability to follow CD8 T cell responses in the 

periphery, antigen-specific responses over time were explored. Within seven days after 

vaccination, low, but detectable tetramer-specific CD8 T cells were observed in the 

PBMCs in all groups. Surprisingly, 11 days after first vaccination there was a dramatic 

increase in tetramer-specific CD8 T cells in mice vaccinated with HPV + pS-CD40L 

(Figure 5.4c). These responses averaged around 17% with some mice having a quarter of 

all circulating CD8 T cells specific for this epitope. Responses contracted to levels 

slightly higher than those in vaccine alone by day 21 when a second boosting 

immunization was given. Within seven days, responses in the vaccine alone group 
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boosted to levels higher than after the first immunization. Though tetramer specific levels 

were higher in mice immunized with HPV + pS-CD40L, after the boost compared to 

those in the vaccine alone, we did not observe levels as high as day 11. Additionally, the 

kinetics of contraction were slower in the HPV + pS-CD40L compared to DNA alone 

suggesting that into memory, the increase in CD8 T cells could be maintained.  

CD8 T cells induced by day 11 post first vaccination are functional but have limited IL-2 

expression  

Due to the large peak in tetramer specific responds on day 11, we wanted to see if 

these antigen-specific T cells were functional.  Mice were immunized with either HPV 

alone or in combination with pCD40L and sacrificed 11 days after first vaccination. The 

inclusion of pS-CD40L significantly increased antigen-specific CD8 T cells expressing 

IFN-γ and TNF-α compared to vaccine alone (p<0.00001 for both) (Figure 5.5a). 

Interestingly, this increase in IFN-γ and TNF-α was not mirrored in IL-2 expression. 

Where DNA alone and HPV + pS-CD40L had similar expression levels. Additionally, a 

significantly higher percentage of CD8 T cells induced by HPV + pS-CD40L express the 

combination of CD107a and IFN-γ (p<0.00001 compared to vaccine only) (Figure 5.5a 

lower left graph). Compared to after first vaccination, there is a decrease in CD8 T cells 

expressing all four parameters (CD107a, IFN-γ, TNF-α, and IL-2) due in part to the lack 

of IL-2 expression (Figure 5.5b). Similar to what was detected in the time course study, 

around 20% of circulating CD8 T cells were tetramer specific when  pS-CD40L was 

included which was significantly higher than with DNA alone (average = 7.9% p<0.01) 

(Figure 5.5c top graph). We also observe similar findings in the spleen, with the 
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combination of HPV + pS-CD40L inducing significantly higher amount of tetramer-

specific CD8 T cells compared to vaccine alone (p<0.00001) and when pWT or pUC 

CD04L is included (p<0.00001) (Figure 5.5c bottom graph).  

Vaccine-induced responses at day 11were partially depended on CD4 T cells 

Studies have demonstrated that the addition of CD40L or CD40 monoclonal 

antibodies could bypass the need for CD4 help (414, 434-439). To address if this was 

also the case in our vaccine system, we depleted mice of CD4 T cells using an anti-CD4 

monoclonal antibody, followed by vaccination at day 0 and day 21 (Figure 5.6a). In mice 

vaccinated with HPV DNA alone (solid line), the depletion of CD4 T cells (dotted line) 

dramatically lowers the percent of tetramer-specific CD8 T cells induced in the periphery 

(Figure 5.6 b-c). After the boost, the increase in tetramer responses in the isotype control 

treated mice was not observed in the CD4 depleted group. If CD8 T cells responses were 

dependent on CD4 T cell help, we would hypothesize that when mice were vaccinated 

with HPV + pS-CD40L, the responses would mimic those of vaccine alone without CD4 

T cells. However, though the tetramer specific responses are significantly lower on day 

11 in the CD4 depleted mice compared to isotype controls (p<0.05), we observed levels 

similar to those induced by the vaccine alone with intact CD4 T cell help. After the 

second immunization, the responses in mice depleted of CD4s and vaccinated with HPV 

+ pS-CD40L, contract down but do not boost. These findings suggest that vaccine-

induced responses when pS-CD40L was included were partially dependent on CD4 T cell 

help for initial responses but require it for memory and recall responses.  



183 
 

Addition of pS-CD40L to contralateral site does not increase systemic immune responses 

We next wanted to determine if pS-CD40L had systemic or localized adjuvanting 

effects. Mice were injected with pS-CD40L either formulated together or separated and 

delivered to the contralateral leg. Mice received two immunizations at three-week 

intervals followed by EP. Unlike when pS-CD40L was added to the same site, the 

addition of it to a separate site did not lead to adjuvanting effects (Figure 5.7). When pS-

CD40L was given at a separate site, expression of cytokines IFN-γ, TNF-α and the co-

production of IFN-γ and CD107a are at similar levels compared to DNA alone (Figure 

5.7a). Additionally, there is no increase in tetramer-specific CD8 T cells in the spleen or 

PBMCs between DNA alone vs. pS-CD40L at separate sites (Figure 5.7b). Thus, the 

adjuvanting effect of pS-CD40L was only observed when co-formulated and delivered to 

the same local site.  

Vaccine-induced memory responses were maintained with the use of soluble pS-CD40L 

The ability to induce strong memory responses is important for an efficacious 

vaccine. To address if the use of pS-CD40L as an immune adjuvant can maintain 

memory responses, we vaccinated mice two times at three-week intervals and sacrificed 

the mice two months after final vaccination (Figure 5.8a). We observed responses 

similar to those found when mice were sacrificed one week after final vaccination, with 

HPV + pS-CD40L inducing significantly higher percentage of CD8 T cells expressing 

IFN-γ, TNF-α, and IL-2 compared to vaccine alone (p<0.01, p<0.001, and p<0.05 

respectively) or when pUC or pWT CD40L were included (pUC: p<0.05, p<0.001, 

p<0.05 respectively and pWT: p<0.01, p<0.01 and n.s. respectively) (Figure 5.8b). For 
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all vaccination regimens, we see a contraction of CD8 T cells expression IFN-γ but a 

maintenance in IL-2 and TNF-α expression compared to one week after final vaccination. 

In both the PBMCs and spleen, there is also a contraction in tetramer-specific CD8 T cell 

responses, but in both compartments, the use of pS-CD40L increased these levels (Figure 

5.8c). Thus, the use of pS-CD40L increased vaccine-induced responses but also 

maintains them into memory.  

The inclusion of soluble CD40L significantly decreased tumor burden compared to 

vaccine alone and favorably shifts the infiltrating lymphocytes.  

Due to the increase in CD8 T cell responses induced by the addition of pS-

CD40L, we next explored if these increases could confer better protection in a therapeutic 

tumor model. First, we investigated if each of the CD40L plasmids alone could increase 

tumor clearance and control. Groups of 9-10 mice were implanted with 5x104 TC.1 cells 

which express the E6 and E7 protein and have been previously used to test for vaccine 

efficacy (300).  One week later, mice were vaccinated with each of the CD40L plasmids 

alone and tumor growth was monitored bi-weekly. None of the constructs alone led to 

any increase in tumor clearance and control compared to naïve mice (Figure 5.9 a-b). We 

next explored if the combination with HPV DNA vaccine could increase responses. 

Groups of 9-10 mice were implanted with TC.1 cells and vaccinated one week later with 

either HPV alone or in combination with plasmids expressing each of the different 

CD40Ls (Figure 5.10a). The HPV DNA vaccine alone did confer protection when 

compared to naïve mice (Figure 5.10b). However, none of these mice were able to clear 

the tumor, and by the end of study (day 67 post-implantation), only two mice had not 
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reached the study endpoint. The addition of either pUC or pWT forms of CD40L to the 

vaccine had limited effect on tumor control compared to HPV alone (tumor volume n.s. 

compared to vaccine alone for both groups) (Figure 5.10b and Figure 5.10c). However, 

when pS-CD40L was included in the vaccine, 50% of mice were able to clear tumors 

(Figure 5.10 b-c). The inclusion of pS-CD40L led to significantly higher tumor clearance 

and control compared to vaccine alone (p<0.001) or the inclusion of pUC-CD40L and 

pWT-CD40L (p<0.001). Overall, the use of DNA delivered pCD40L alone did not 

increase tumor control in a therapeutic challenge model. However, when pS-CD40L was 

included in combination vaccine, mice were able to significantly control tumor growth 

compared to vaccine alone.  

To further explore the vaccine-induced responses and control of tumor growth; 

we analyzed the tumor infiltration lymphocyte (TIL) population. Groups of 9-10 mice 

were implanted with TC.1 cells and vaccinated at days 7 and 14 post-implant with HPV 

DNA alone or HPV + pS-CD40L. On day 21, PBMCs, spleen, and tumors were 

harvested from the mice and analyzed for vaccine-induced responses (Figure 5.11a). The 

timing was determined based on the rate of clearance of tumors by day 28 in the previous 

experiment when mice were immunized with HPV + pS-CD40L. Similar to the 

immunogenicity data, when pS-CD40L was included, systemic CD8 T cells expressed a 

significantly higher amount of IFN-γ and TNF-α compared to DNA vaccine alone or 

naïve mice (Figure 5.11b). In addition, when pS-CD40L is added, antigen-specific CD8 

T cells also co-express a significantly higher amount of IFN-γ and CD107a compared to 

vaccine alone (p<0.001) or naïve mice (p<0.0001) (Figure 5.11b bottom left graph). We 
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also observed significantly higher amount of CD8 T cells which were tetramer positive in 

both the PBMCs and the spleen with HPV + pS-CD40L (Figure 5.11c). Due to the 

immune suppressive role of CD54 T regulatory cells, we also explored how vaccination 

affected this population systemically and in the tumor. The percent of total CD4 T cells 

which expressed Treg markers (CD25 and FoxP3) was unchanged in both compartments 

for all treatment regimens (Figure 5.11d). Similar to the systemic immune responses, the 

inclusion of pS-CD40L significantly increases the percentage of CD45+ CD3+ tumor 

infiltrating lymphocytes that were positive for both CD8 and the tetramer (p<0.001 

compared to vaccine alone, p<0.0001 compared to naïve) (Figure 5.11e). Though the 

HPV vaccine was able to significantly increase the infiltration of antigen-specific CD8 T 

cells compared to naïve (p<0.001) the addition of pS-CD40L is still able to enhance these 

responses. Both vaccine alone and vaccine + pS-CD40L significantly decrease the 

percent of CD45+ CD3+ T cells that are CD4+, CD25+, FoxP3+ Tregs compared to naïve 

mice (p<0.001 vaccine, p<0.0001 HPV + pS-CD40L) (Figure 5.11e). Thus, the ratio of 

CD8 tetramer positive T cells to CD4 Tregs is favorably skewed towards CD8 T cells in 

both HPV alone and HPV + pS-CD40L compared to naïve but is highest when pS-

CD40L is included (Figure 5.11e). This data supports the earlier findings that pS-CD40L 

increases CD8 T cells and suggest that these cells are functional and able to traffic to the 

tumor site.   

5.4. Discussion 

Over the past decade, there is increased interest in cancer immunotherapies. The 

ability to harness the power of a person’s immune system could limit toxicities and 
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provide durable and effective control (408). In this study, we demonstrate that a DNA 

plasmid encoded immune adjuvant can increase the effectiveness of our HPV16 DNA 

vaccine in mice. The ability to use plasmid encoded immune adjuvants is a strength of 

DNA vaccination and allows for the enhancement or tailoring of vaccine-induced 

responses. Here, we used various forms of CD40 ligand, a molecule having important 

roles in the link between the innate and adaptive immune system. We demonstrate that 

the inclusion of plasmid encoded soluble CD40L (pS-CD40L) can increase HPV DNA 

vaccine-induced responses. When pS-CD40L is formulated together with a plasmid 

encoding HPV16 E6 and E7, we observed increased CD8, CD4, and humoral responses 

after final vaccination and into memory (Figure 5.2, 5.3, and 5.8). It is important to note 

that enhancement of antigen-specific CD8 T cell responses was maintained into memory. 

Studies have shown that when CD40L or CD40mabs are given, APCs can directly 

stimulate CD8 T cells, bypassing the need for CD4 help (414, 434-439). These stimulated 

CD8 T cells, however, are quickly lost and are not maintained into memory since the 

formation of memory CD8 T cells requires CD4 help (440-442). Here we observed that 

CD8 T cells induced one week after final vaccination display similar cytokine profiles as 

memory CD8 T cells. This was further supported by the CD4 depletion studies which 

demonstrated that the quick burst of tetramer-specific CD8 T cells on day 11 is only 

partially dependent on CD4 T cells as well (Figure 5.6). However, the second boost and 

increase of CD8 T cells observed with pS-D40L were completely dependent on the 

requirement of CD4 help (Figure 5.6). Additionally, we observe that the use of pS-

CD40L increased the expression of IL-2 and TNF-α CD4 T cells suggesting that this 
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plasmid encoded immune adjuvant is influencing CD4 T cells. The maintenance of potent 

cellular responses is imperative for an effective therapeutic cancer vaccine.  

Time course analysis revealed a significant peak in tetramer-specific CD8 T cells 

on day 11 post first vaccination when pS-CD40L is included (Figure 5.4). Though 

tetramer-specific CD8 T cells are significantly higher after the second immunization, the 

day 11 peak in response was not replicated to the same level. Further analysis of these 

CD8 T cell responses on day 11 demonstrated that these CD8 T cells display many 

markers of effective CD8 T cells including the expression of IFN-γ, CD107a, and TNF-α 

(Figure 5.5). Importantly, IL-2 expression was not increased significantly over any of the 

other vaccine formulations. Interlukin-2 has an important role in T cell proliferation and 

memory maintenance (443). Thus, if IL-2 production was increased or maintained in 

these antigen-specific CD8 T cells, we could observe a prolonged peak. This could be 

achieved with the combination of other plasmid-encoded immune adjuvants such as pIL-

12 (58, 113). CD40L has been shown to increase IL-12 production from APCs and T 

cells (415), but by combining pIL-12 with pS-CD40L, we could observe a synergistic 

effect. Additional studies into vaccine responses induced by pS-CD40L vs. pIL-12 or in 

combined are currently in progress.  

Due to its ability to potently induce immune responses, increased levels of 

sCD40L could lead to high toxicities and off-target effects (444, 445). Notably, within 

this study, we did not observe any toxicity related to co-administration of any of the 

pCD40L isotypes. This was further supported by the observation that only when pS-

CD40L was co-formulated together and delivered to the same site do we detect enhanced 
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responses (Figure 5.7). When pS-CD40L was given to a distal site, in this case, the 

contralateral leg, immune responses are the same as vaccine alone. This is an important 

safety measure, demonstrating that pS-CD40L is only expressed locally and does not 

appear to be circulating systemically.  

Within this study, we also observe significantly higher control of tumor growth 

when pS-CD40L was given with a suboptimal dose of our HPV DNA vaccine. It is 

important to note that we must use a suboptimal dose of HPV 16 E6/E7 DNA vaccine, as 

a full dose will completely control tumor growth to undetectable levels (data not shown). 

However, at a suboptimal dose, we observe initial control which was then lost after final 

vaccination. In comparison, when pS-CD40L was added, 50% of mice control the tumor 

to undetectable levels and this control was maintained throughout the completion of the 

study (Figure 5.10). The other 50% of mice eventually lose control and succumb to the 

tumor. To further understand the correlate of protection, tumors were harvested at day 21 

and assessed for tumor infiltrating lymphocytes (TILs). This time point was selected 

since day 28 was around the time mice had cleared the tumor. Systemic immune 

responses detected in tumor-bearing mice showed similar trends as in non-tumor mice 

with increased cytokine production in CD8 T cells when pS-CD40L is included (Figure 

5.11). Additionally, there was no difference in the systemic T regulatory cells as defined 

by CD4+ CD25+FoxP3+ T cells. However, when we investigated the TILs when pS-

CD40L was included, there was a significantly higher percentage of antigen-specific CD8 

T cells and a decrease in Tregs compared to vaccine alone or naïve. This inverse in 

effector to regulatory T cells supports the increase clearance observed with pS-CD40L 
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addition. However, the clearance was not 100% and thus there is still room for 

improvement. The loss of initial control observed in all of the groups suggests that these 

CD8 T cells are either becoming exhausted or are receiving inhibitory signals. The ability 

to block these inhibitory signals using checkpoint inhibitor blockade has been a 

significant breakthrough in cancer immunotherapy (446). Combining these blockades 

with our HPV DNA vaccine with or without pS-CD40L could increase the vaccine 

effectiveness.  

The strength of plasmid encoded immune adjuvants has been demonstrated by the 

use of pIL-12 in non-human primates and the clinic (57-59, 113). However, there is a 

need to develop novel DNA adjuvants which could be used alone or in combination with 

IL-12 to increase vaccine-induced responses. Here, we show the use of novel optimized 

plasmids encoding various forms of CD40L. We demonstrate that the inclusion of soluble 

CD40L increases cellular and humoral responses and these responses can increase control 

in a therapeutic tumor model. Further investigation into pS-CD40L’s ability to adjuvant 

other antigens is imperative for its movement into clinical trials.  
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Figures 

 

Figure 5.1: Plasmid construction and in vitro expression. (a) Diagram of annotated 

naturally expressed CD40L. (b) Diagram of each plasmid. (c) Western blot expression of 

plasmid CD40L in transfected cell. (d) Quantification of plasmid expressed CD40L in 

cell lysate and cell supernatant.  
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Figure 5.2: Inclusion of soluble CD40L increased antigen-specific CD8 T cells 

responses. (a) Diagram of the experiment. (b) IFN-γ ELISpot responses to overlapping 
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peptides from E6 and E7. (c) Intracellular cytokine staining of CD8 T cells after peptide 

stimulation. (d) Polyfunctionality of CD8 T cells responses. Pie charts for the percent of 

cells expressing 4, 3, 2, or 1 function. A representative of two separate experiments. 

Significance determined by modified ANOVA *<0.05, **< 0.01 ***< 0.001. 
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Figure 5.3: Inclusion of pS-CD40L in HPV vaccine increased CD4 T cell and 

humoral responses. Endpoint binding titers (a) and dilution curves (b) against E7 

protein. (c) Intracellular cytokine staining of CD4 T cells after peptide stimulation. 

Representative of two separate experiments. Significance determined by modified 

ANOVA *<0.05, **< 0.01 ***< 0.001. 
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Figure 5.4: Soluble CD40L increased tetramer specific responses in both the spleen 

and in the periphery. (a) Lymphocytes were stained with HPV E7 (H-2Db 

RAHYNIVTF) tetramer. Representative flow plots of CD8 cells. (b) Tetramer specific 

responses ten days after final vaccination in the spleen and PBMCs. (c) Time course 

analysis of tetramer specific responses in the periphery. Mice were immunized at day 0 

and 21 and serially bled to isolate and stain PBMCs for tetramer specific responses. Time 
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course responses are the combination of three separate experiments. Significance 

determined by modified ANOVA *<0.05, **< 0.01 ***< 0.001.  
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Figure 5.5: CD8 T cell responses 11 days after first vaccination were functional 

when pS-CD40L was included. Eleven days after first vaccination, mice were scarified 

and immune responses assessed.  (a) Intracellular cytokine staining of CD8 T cells 

stimulated with E6 and E7 peptides. (b) Polyfunctionality of CD8 T cell responses as 
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well as percent of polyfunctionality. (c) Tetramer specific responses in both the spleen 

and in the periphery. Significance determined by modified ANOVA *<0.05, **< 0.01 

***< 0.001 ****<0.0001.  
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Figure 5.6: Immune responses induced by pS-CD40L were only partially depended 

on CD4 T cells. (a) Diagram of vaccination and depletion. (b) CD8 tetramer specific 

responses in the PBMCs for either HPV only or HPV + pSCD40L with (dotted) or 

without (solid) CD4 depletion. (c) CD8 tetramer+ responses on day 11 (top) or day 28 

(bottom). Significance determined by modified ANOVA *<0.05, **< 0.01 ***< 0.001 

****<0.0001.  



200 
 

 

Figure 5.7: pS-CD40L did not have systemic adjuvanting effects. Mice were 

immunized with either HPV alone, HPV + pS-CD40L formulated together (mixed) or 

HPV + pS-CD40L delivered to separate contralateral legs (separate). (a) Antigen-specific 

CD8 T cell responses after stimulation with E6 and E7 peptides. (b) Tetramer specific 

CD8 T cells in the PBMCs and splenocytes. Significance determined by modified 

ANOVA ****< 0.0001.  
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Figure 5.8: Memory responses were maintained when pS-CD40L was added. (a) 

Diagram of vaccination time course. (b) Intracellular cytokine staining after stimulation 

with overlapping peptides to E6 and E7. (c) CD8 tetramer+ responses in the periphery and 

spleen. Significance determined by modified ANOVA *<0.05, **< 0.01 ***< 0.001 

****<0.0001.  
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Figure 5.9: CD40L expression alone did not decrease tumor burden. (a) Mice were 

implanted with TC.1 cells. One week later, mice were vaccinated with each of the 

CD40L constructs followed by three boosts at 1-week intervals. Tumor growth was 

monitored over time. (b) Survival curves of each of the individually delivered CD40L 

plasmids. (c) Survival curves of HPV only, HPV + pUC-CD40L and HPV+ pWT-

CD40L.  



203 
 

 

Figure 5.10: HPV + pS-CD40L increased tumor clearance over vaccine alone. (a) 

Diagram of vaccination. (b) Tumor growth over time for each mouse. There was a 

significant difference in tumor growth and control when pSCD40L is included compared 

to HPV alone (p<0.0001), pUC-CD40L (p<0.0001) and pWT-CD40L (p<0.05) (modified 
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two-way ANOVA).  (c) Survival curve of naïve, HPV only and HPV + pSCD40L.  A 

representative of two individual experiments.  
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Figure 5.11: Addition of pS-CD40L increased antigen-specific T cells in the 

periphery and the tumor. (a) Diagram of the timeline of implantation, vaccination and 

harvest. (b) Systemic immune responses to E6/E7 peptides. (c) Tetramer specific CD8 T 
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cells (c) and CD4 T regulatory cells (FoxP3+ CD25+) (d) in the PBMCs and spleen. (e) 

Tumor infiltrating tetramer-specific CD8 T cells, Tregs, and the ratio of CD8 tetramer-

specific T cells to Tregs. Significance determined by modified ANOVA *<0.05, **< 0.01 

***< 0.001 ****<0.0001.  
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CHAPTER 6: OVERALL CONCLUSIONS AND FUTURE DIRECTIONS 

6.1 Overall conclusions  

The overall goal of my thesis work was to improve the potency of DNA vaccines. 

There are many advantages to the DNA vaccine platform including two which were the 

focus of this thesis: developing novel immune adjuvants to enhance or tailor vaccine-

induced responses and the ability to easily formulate multiple plasmids into a single 

immunization to increase the breadth of coverage. Here, we have demonstrated that 

combinations of multiple plasmids expressing consensus HIV-1 Envs enhanced vaccine-

induced humoral responses over a single plasmid Env formulation and that these 

responses were boosted with protein administration. We have built upon these findings 

and extended the number of plasmids encoding primary acute/early HIV-1 Envs. We now 

have close to 30 plasmids expressing consensus or primary HIV-1 Envs. These plasmids 

induced both cellular and humoral responses in small animals and non-human primates. 

A combination of 14 different primary HIV-1 Env plasmids produced cellular and 

humoral responses in NHPs. Importantly, these humoral responses displayed 

functionality as they were able to neutralize a panel of Tier 1 viruses and had strong 

ADCC activity against gp120/gp140 coated targets. Additionally, we have developed 

four novel plasmid encoded immune adjuvants. The first set of adjuvants encoded 

mucosal chemokines for both T and B cells. These chemokine adjuvants had previously 

shown increased vaccine-induced responses in small animals. The three adjuvants, 

CCL25 (TECK), CCL27 (CTACK) and CCL28 (MEC) were moved into NHP in 

combination with a DNA vaccine for SIV Gag, Pol, and Env. Upon challenge with 
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SIVe660, the addition of CCR10L chemokines (CCL27 and CCL28) significantly 

enhanced protection over naïve with only a single animal demonstrating progressive 

infection. Due to the small size of the study, correlates analysis was difficult but did 

demonstrate that NHPs with abortive or that remained uninfected had stronger induction 

of vaginal antibodies compared to those with progressive infection. We have also 

developed a plasmid-encoded immune adjuvant encoding various forms of CD40 ligand. 

The soluble form of CD40L increased both cellular and humoral responses when 

combined with our HPV 16 E6/E7 DNA vaccine. These enhanced responses led to 

increased protection in a therapeutic challenge model with increased infiltration of 

antigen-specific CD8 T cells into the tumor. Overall, this study has shown that improved 

formulation and inclusion of plasmid encoded immune adjuvants can increase the 

potency of DNA vaccine-induced responses.  

6.2 Future directions for DNA vaccines against HIV 

The combination of plasmids encoding primary and consensus Envelopes.  

Another step for improvement of immune responses against DNA vaccines for 

HIV was to combine the approach for enhanced T cell responses driven by consensus 

HIV -1 Env immunogens with the immunization power of primary Envs to drive strong 

humoral responses.  NHP are currently being vaccinated with three consensus plasmids 

encoding clade A, B, and C, as well as, seven primary Envs. These plasmids are 

formulated together and delivered either ID or IM followed by electroporation. Extensive 

cellular and humoral characterization are being performed to understand further the 

responses induced by ID or IM immunizations. Additionally, to compare the effects of 
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CCL28 (MEC) and IL-12, additional groups of NHPs will be immunized with either IL-

12 or MEC. This will allow for a direct comparison of the two adjuvants to determine 

how vaccine induced responses are influenced.   

There are additional questions which remain about polyvalent HIV Env DNA 

vaccines. Specifically, as seen in Figure 2.1, when the multiple Env plasmids were 

included in the immunization with Gag and Pol, cellular responses to these two antigens 

decreases compared to the single Env immunization. Most likely, an efficacious HIV 

vaccine would include the T cell targets of Gag and Pol to try and prevent any 

dissemination of infection which was able to break through the Env humoral responses. 

This interference of Gag cellular responses has been observed by others as well. 

Determining if only certain Envs have this effect and how to prevent or overcome this 

inhibition is critical for successful HIV vaccine development.  

Educating the immune system using Envelopes isolated during progressive infection in a 

subject who developed a broadly neutralization antibodies (bNab) 

We are constantly surveying the field to determine if we can encode for a better 

antigen. We have formed a collaboration with the Duke Centers for HIV/AID Vaccine 

Immunology and Immunogen Discovery (CHAVI-ID) to investigate if a DNA vaccine 

encoding Envs isolated during the time course of infection could help the humoral 

response down the pathway of bNab development. As discussed in the introduction of 

this thesis, work from the Duke CHAVI-ID retrospectively sequenced a subject’s virus 

and B-cell receptor to determine how the virus informed the production of the bNab (192-

194). Ten Envs from this subject were selected from the transmitted founder viruses to 
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viruses at week 100 of infection. These Envs were carefully selected as key binders to 

BCRs expressed during the maturation pathway (Figure 6.1a). These inserts were RNA 

and codon optimized and expressed as full-length gp160’s in vitro (Figure 6.1b). To 

determine immunogenicity, CB6F1 mice (crosses between balb/C and C57Bl/6 mice) 

were immunized three times at 2-week intervals. All plasmids induced strong cellular 

responses as measured by IFN-γ spot forming units (SFU) after overnight stimulation of 

splenocytes with consensus clade C peptides (Figure 6.1c). Since we did not have 

matched peptides from all of the inserts, we selected the closest clade-specific peptides. 

Additionally, after two immunizations, all but three mice seroconvert to consensus clade 

C gp120 (Figure 6.2a). By the third immunization, complete seroconversion was 

obtained, and endpoint binding titers increase over the post 2nd titers (Figure 6.2b). We 

also observe a range of binding to consensus clade c gp140 and clade c primary gp120s 

(CAP45, Du422.1, ZM53) (Figure 6.2c). Table 6.1 summarized cellular and humoral 

responses across all 10 Envs. Since all inserts were immunogenic, these plasmids were 

moved into rabbit studies to further determine vaccine-induced humoral responses. Three 

groups of 5 rabbits were immunized with three different vaccine regimens (Figure 6.3a). 

All rabbits received the same dose of DNA (500ug) split across the number of plasmids 

delivered at each time. Group 1 received 250ug of each of the transmitted founder virus 

Envs (M11 and M5) for five immunizations. Group 2, termed sequential, is the progress 

of plasmids through time. Thus the rabbits first received the transmitted founder Env 

followed by the week 20 Env, week 30 Envs and so on. Group 3, termed additive, is 

similar to the sequential but instead of only receiving the Env for that time point; the 
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Envs are added to the previous combination. Endpoint binding titers to 92RW020 (clade 

A), SF162 (clade B) and ZM197 (clade C) were determined after each immunization 

(Figure 6.3b). There was no significant difference between each of the groups as all 

animals seroconverted by the third vaccination. Additional studies regarding antibody 

binding to matched Env gp120/gp140s, avidity, and functionality of these antibody 

responses are warranted.  Once these studies have been performed, the vaccine regimen 

with the highest functional antibody titers will be selected to be moved into NHPs for a 

comparison between the combinations of primary/consensus Envs.  

6.3 Future directions for novel plasmid encoded immune adjuvants  

Based on the details of the impact of CCL28 adjuvant in an initial NHP study, CCL28 

(MEC) is moving into a follow-up NHP study to directly compare its adjuvanting effects 

with IL-12. This will be a novel head to head comparison.  

Soluble CD40L  

As demonstrated in chapter 5, pS-CD40L increased vaccine induce cellular and 

humoral responses when combined with our HPV vaccine. We have also performed 

studies to investigate if CD40L can also adjuvant other DNA vaccines. First, our HIV 

consensus clade C Env plasmid was combined with all three CD40L isoforms (Figure 

6.4a). Mice were immunized two times at a three-week interval and sacrificed one week 

after final vaccination. Similar to our HPV results, the inclusion of pS-CD40L increased 

vaccine-induced CD8 T cell responses and binding titers to matched gp120 (Figure 6.4 c-

d). However, in this model, we did not observe an increase in CD4 T cell responses 

(Figure 6.4b).  To address memory responses, we also performed the same vaccination 
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followed by a two-month rest (Figure 6.5a). Again similar to HPV, memory responses 

were enhanced with the addition of pS-CD40L (Figure 6.5). Surprisingly, unlike after 

final vaccination, CD4 T cell responses in memory were significantly higher for the 

expression of IFN-γ, IL-2, and TNF-α compared to vaccine alone (Figure 6.5c). 

Additionally, the inclusion of the uncleavable surface bound form of CD40L (pUC-

CD40L) significantly enhanced CD4 but not CD8 or humoral responses. Whether or not 

an increase in these responses increases protection remains an open question.  

Due to the limitations of mouse models for HIV, to test humoral correlate of 

protection, we have also tested the ability of our CD40L adjuvants to increase responses 

against one of our Influenza constructs. Mice were immunized in a similar manner to the 

HIV study with mice receiving 1ug of our consensus H1 HA vaccine (Figure 6.6a). 

Immune responses assessed after final vaccination demonstrated similar responses as 

seen in both HIV and HPV (Figure 6.6). Both CD4 and CD8 T cell responses were 

significantly enhanced over vaccine alone when pS-CD40L is included (Figure 6.6b-d).  

There was a slight increase in antibody binding titers with pS-CD40L, but the highest 

increases were observed with pWT-CD40L (Figure 6.6e). Memory responses were again 

maintained with increases in CD4 and CD8 T cell responses with pS-CD40L (Figure 

6.7b-d). Interestingly, there was no difference in humoral responses between each of the 

groups which could be due to maxing out the responses (Figure 6.7e). Additional studies 

need to be performed to determine if these antibody titers have the same avidity and 

ability to inhibit hemagglutination. Since a flu challenge is feasible in mice, it is 
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important to demonstrate that inclusion of pS-CD40L can increase protect against both 

morbidity and mortality.  

There are additional questions which need to be addressed for the use of pS-

CD40L. For instance, we have not performed any studies on determining how pS-CD40L 

affects the activation of antigen presenting cells. Depletion of CD4 T cells (Figure 5.6) 

suggest that pS-CD40L is partially working on both the APCs and the CD4 T cells. 

Further understanding the mechanistic action of pS-CD40L could allow us to better pair 

it with antigens or other plasmid-encoded adjuvants. Furthermore, due to the ability of 

pS-CD40L to induce strong cellular responses, it is important to see if it can increase 

vaccine-induced responses to self-cancer antigens. These antigens tend to be much less 

immunogenic due to tolerance and thus we are always exploring new ways to either 

enhance or broaden the vaccine-induced responses.  Additionally, many plasmids 

immune adjuvants have performed well in mice only to fail in inducing similar responses 

in NHPs and humans. It is imperative to move pS-CD40L into NHPs to determine if 

similar immune responses are induced. Another potential avenue of future investigation is 

physically linking soluble CD40L to a secreted antigen of interest. Similar studies have 

been performed with recombinant protein or viral vectors and have shown that the fusion 

of CD40L to the antigen leads to targeting of this antigen to APCs and increase 

presentation. It would be interesting to see if there is a difference in immune responses 

when s-CD40L is delivered fused directly to an antigen or if delivered on a separate 

plasmid.  
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Table 

 
Table 6.1: Immune responses in mice vaccinated with 10 CHAVI-ID Env plasmids. 

Cellular and humoral responses ranked between each plasmid. 1 is the highest with 10 

being the lowest.  
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Figures 

 

Figure 6.1: In vitro and in vivo expression of 10 CHAVI-ID Env plasmids. (a) 

Phylogenetic tree diagram demonstrating the relationship between the 10 Envs. The 

sequences were aligned using ClustalX, and a neighbor-joining tree was created. (b) In 
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vitro expression of each plasmid in transfected 293T cell lysate. (c) CB6F1 mice were 

immunized three times at two-week intervals and sacrificed one week after final 

immunization. Cellular responses were detected using IFN-γ ELISpots using splenocytes 

stimulated with overlapping peptides for consensus clade C gp160. 
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Figure 6.2 Humoral responses induced in mice vaccinated with a single CHAVI-ID 

plasmid. Endpoint binding titers against consensus clade C gp120 post 2nd (a) or 3rd (b). 

(c) Binding to consensus clade C gp120 and gp140 as well as additional clade C primary 

gp120s (CAP45, Du422.1, and ZM53) after final immunization.  
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Figure 6.3: Humoral responses induced by different combinations of the 10 CHAVI-

ID Envs. (a) Rabbits were immunized with three different combinations of DNA 

plasmids expressing the CHAVI-ID Envs. Each rabbit received the same total dose of 
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DNA (500ug) and the same number of immunizations. All immunizations were giving in 

the muscle. (b) Endpoint binding titers over time for 92RW020 (clade A), SF162 (clade 

B), and ZM197 (clade C).  
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Figure 6.4: Inclusion of pS-CD40L with consensus clade C HIV-1 Env DNA plasmid 

increased CD8 T cells and humoral responses. (a) Mice were vaccinated two times at 

three-week intervals and sacrificed one week after final vaccination. Intracellular 

cytokine staining of CD4s (b) and CD8s (c) after stimulation with overlapping consensus 
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clade C peptides. (d) Endpoint binding titers and dilution curves against consensus clade 

C gp120 after the final immunization. Significance determined by modified ANOVA 

*<0.05, **< 0.01 ***< 0.001. 

 



223 
 

Figure 6.5: Including pS-CD40L with HIV Env DNA vaccine increased memory 

responses. (a) Mice were immunized similar to in Figure 6.4. Mice were sacrificed two 

months after final vaccination. (b) IFN-γ ELISpot responses detected against overlapping 

consensus clade C peptides. Intracellular cytokine staining for CD4s (c) and CD8 (d) 



224 
 

after stimulation with homologous peptides. (e) Endpoint binding titers and dilution 

curves to consensus clade C gp120 after final immunization. Significance determined by 

modified ANOVA *<0.05, **< 0.01 ***< 0.001.  
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Figure 6.6: Including pS-CD40L with consensus H1 HA (Flu) increased vaccine 

induced responses. (a) Mice were immunized two times at three week intervals and 

sacrificed one week after final immunization. (b) IFN-γ ELISpot responses detected 
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against overlapping consensus H1 HA peptides. Intracellular cytokine staining for CD4s 

(c) and CD8 (d) after stimulation with homologous peptides. (e) Endpoint binding titers 

and dilution curves to H1 (New Caledonia/20/99) after final immunization. Significance 

determined by modified ANOVA *<0.05, **< 0.01 ***< 0.001. 



227 
 

 

Figure 6.7: Enhanced vaccine-induced responses were maintained into memory with 

pS-CD40L addition. (a) Mice were immunized two times at three-week intervals and 

sacrificed two months after final immunization. (b) IFN-γ ELISpot responses detected 
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against overlapping consensus H1 HA peptides. Intracellular cytokine staining for CD4s 

(c) and CD8 (d) after stimulation with homologous peptides. (e) Endpoint binding titers 

and dilution curves to H1 (New Caledonia/20/99) after the final immunization. 

Significance determined by modified ANOVA *<0.05, **< 0.01 ***< 0.001. 
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