
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2017

Essays In Industrial Organization And Applied
Microeconomics
Peichun Wang
University of Pennsylvania, peichun21@gmail.com

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Economics Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2629
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Wang, Peichun, "Essays In Industrial Organization And Applied Microeconomics" (2017). Publicly Accessible Penn Dissertations. 2629.
https://repository.upenn.edu/edissertations/2629

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2629&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=repository.upenn.edu%2Fedissertations%2F2629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2629?utm_source=repository.upenn.edu%2Fedissertations%2F2629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2629
mailto:repository@pobox.upenn.edu


Essays In Industrial Organization And Applied Microeconomics

Abstract
This dissertation consists of three essays in the areas of Industrial Organization and Applied Microeconomics.

The first essay studies high-tech firms' product portfolio choices under competition. I develop a model of
dynamic portfolio adjustments in the context of the Chinese smartphone market, using the product life cycle
as an empirically tractable heuristic to capture firms' dynamic incentives in new product introductions. I first
show that product life cycles endogenously arise in markets with rapid technological innovations, are
heterogeneous across products, and are affected by the level of market competition. I then estimate
smartphone demand and manufacturers' variable, maintenance and sunk introduction costs on a detailed
monthly market-level dataset of Chinese smartphones between 2009 and 2014. Finally, I use a 2012 large-
scale pro-competitive policy introduced by the Chinese government as an experiment to decompose the
handset manufacturers' incentives to introduce new products and show that the increased competition
reduces the average product's short-run profits by 5% but its lifetime profits by 41% by shrinking its product
life cycle. These dynamic incentives have large implications for both consumer welfare gains from product
variety and the speed of technology adoption in this market.

In the second essay, my co-authors and I explore the sensitivity of the U.S. government's ongoing incentive
auction to multi-license ownership by broadcasters. We document significant broadcast TV license purchases
by private equity firms prior to the auction and perform a prospective analysis of the effect of ownership
concentration on auction outcomes. We find that multi-license holders are able to raise spectrum acquisition
costs by 22% by strategically withholding some of their licenses to increase the price for their remaining
licenses. We analyze a potential rule change that reduces the distortion in payouts to license holders by up to
80%, but find that lower participation could greatly increase payouts and exacerbate strategic effects.

The third essay studies whether liberalizations of gun permits in the U.S. deterred violent crimes. Setting off an
ongoing controversy, Lott and Mustard (1997) famously contended that so-called shall-issue laws (SILs)
deterred violent crime. In this controversy the weapon of choice has been the differences-in-differences (DD)
estimator applied to state and county panel data spanning various intervals of time. By treating violent crime
as a career choice, this essay brings to bear a more general method, a cohort panel data model (CPDM) that
incorporates the fundamental dynamic insights regarding entering and exiting a career. Our model
distinguishes among three key parameters that jointly determine the effect of SILs on crime, (i) a direct effect
on entry decisions, (ii) a surprise effect on exit decisions by individuals who entered criminal careers prior to
the passage of SILs, and (iii) a selection effect on exit decisions by those who entered in the presence of SILs.
We find significant and time-invariant results that reject the deterrence hypothesis as well as the DD model
specification. Our results suggest that passages of SILs contribute to about one third of total violent crimes in
2011, particularly through higher turnover of violent criminals.
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ABSTRACT

ESSAYS IN INDUSTRIAL ORGANIZATION AND APPLIED MICROECONOMICS

Peichun Wang

Ulrich Doraszelski

This dissertation consists of three essays in the areas of Industrial Organization and

Applied Microeconomics.

The first essay studies high-tech firms’ product portfolio choices under competition.

I develop a model of dynamic portfolio adjustments in the context of the Chinese smart-

phone market, using the product life cycle as an empirically tractable heuristic to capture

firms’ dynamic incentives in new product introductions. I first show that product life

cycles endogenously arise in markets with rapid technological innovations, are heteroge-

neous across products, and are affected by the level of market competition. I then estimate

smartphone demand and manufacturers’ variable, maintenance and sunk introduction

costs on a detailed monthly market-level dataset of Chinese smartphones between 2009

and 2014. Finally, I use a 2012 large-scale pro-competitive policy introduced by the Chi-

nese government as an experiment to decompose the handset manufacturers’ incentives

to introduce new products and show that the increased competition reduces the average

product’s short-run profits by 5% but its lifetime profits by 41% by shrinking its product

life cycle. These dynamic incentives have large implications for both consumer welfare

gains from product variety and the speed of technology adoption in this market.

In the second essay, my co-authors and I explore the sensitivity of the U.S. govern-

ment’s ongoing incentive auction to multi-license ownership by broadcasters. We docu-

ment significant broadcast TV license purchases by private equity firms prior to the auc-
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tion and perform a prospective analysis of the effect of ownership concentration on auc-

tion outcomes. We find that multi-license holders are able to raise spectrum acquisition

costs by 22% by strategically withholding some of their licenses to increase the price for

their remaining licenses. We analyze a potential rule change that reduces the distortion in

payouts to license holders by up to 80%, but find that lower participation could greatly

increase payouts and exacerbate strategic effects.

The third essay studies whether liberalizations of gun permits in the U.S. deterred vi-

olent crimes. Setting off an ongoing controversy, Lott and Mustard (1997) famously con-

tended that so-called shall-issue laws (SILs) deterred violent crime. In this controversy the

weapon of choice has been the differences-in-differences (DD) estimator applied to state

and county panel data spanning various intervals of time. By treating violent crime as a

career choice, this essay brings to bear a more general method, a cohort panel data model

(CPDM) that incorporates the fundamental dynamic insights regarding entering and exit-

ing a career. Our model distinguishes among three key parameters that jointly determine

the effect of SILs on crime, (i) a direct effect on entry decisions, (ii) a surprise effect on exit

decisions by individuals who entered criminal careers prior to the passage of SILs, and

(iii) a selection effect on exit decisions by those who entered in the presence of SILs. We

find significant and time-invariant results that reject the deterrence hypothesis as well as

the DD model specification. Our results suggest that passages of SILs contribute to about

one third of total violent crimes in 2011, particularly through higher turnover of violent

criminals.
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Chapter 1

Product Portfolio Choices with

Product Life Cycles

1.1 Introduction

High-tech products often exhibit product life cycles (Hughes, 1990)3, or time paths of sales

(or profits) from a product’s initial release into the marketplace until its discontinuation4,

that are persistently bell-shaped (Cox, 1967; Day, 1981)5, albeit with much variation be-

tween products (Polli and Cook, 1969; Wood, 1990)6. Such time paths have mostly been

explained by the slow diffusion of information: consumers are unsure about the quality of

new products, and learn through word-of-mouth, repeated purchases, or imitation (Bass,

1969; Harrell and Taylor, 1981; Kwoka, 1996); or are only partially aware of new product

introductions, and rely on advertising to expand their choice sets (Goeree, 2008). These

3The origin of the term “product life cycle” can be traced to Schumpeter (1934). The concept was popular-
ized in the 1960s in marketing (Levitt, 1965) by drawing an analogy with the life cycle of biological creatures
(Tellis and Crawford, 1981).

4In this paper, I refer to product life cycle as the sales path of a particular product. Product life cycles
can also refer to the evolution of the overall market size of an industry (Jovanovic, 1994; Klepper, 1996); the
technological development of a new prototype before reaching the market (Terzi et al., 2010); or export patterns
from developed to developing countries (Vernon, 1966; Segerstrom, Anant and Dinopoulos, 1990).

5In marketing, this is also described as the four stages of product life cycles: introduction, growth, maturity,
and decline, also sometimes referred to as an S-curve.

6Criticisms of the rigid description of the birth-growth-maturity-death path of PLC (Wood, 1990;
Michelle Grantham, 1997) are based on the fact that PLCs are often heterogeneous across products. These
critics, however, concede that the PLC theory provides a useful framework for firms’ new-product strategies
(Dhalla and Yuspeh, 1976). This paper explicitly explains the heterogeneity of PLCs across products and how
firms take them into account.
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demand-side explanations are likely incomplete, however. Such time paths are also af-

fected by technological innovations that push the frontier of the quality spectrum and drive

down production costs. More importantly, firms compete in product portfolios rather than

on a product-by-product basis. These features point to a different explanation for product

life cycles: firms’ strategic incentives for innovation and product introductions.

What are firms’ incentives in product introductions? How does competition affect

firms’ product portfolio choices in technologically progressive markets? Firms’ product

portfolio competition is key to understanding consumer welfare gains from product vari-

ety. In high-tech industries, these incentives also determine the speed at which products

with new technology are introduced to the market.

In a differentiated product market, firms’ introductions of similar products steal busi-

ness from each other while differentiated products may help expand the market (Spence,

1976; Berry and Waldfogel, 1999). Firms’ portfolio adjustments involve more consider-

ations: A multi-product monopolist can offer a menu of products to screen consumers

with heterogeneous preferences (White, 1977; Crawford and Shum, 2007); The effect of

competition on multi-product firms’ portfolio choice is theoretically ambiguous even in

duopoly markets (Johnson and Myatt, 2003; Chu, 2010)—the incumbent firm can respond

to entry by either expanding or contracting its product portfolio depending on demand

and cost characteristics. Furthermore, different from mature industries, high-tech markets

typically exhibit fast-changing variable costs and quality availability with high product

development costs, inducing firms to be forward-looking in product introductions. Fi-

nally, the fast pace of technological innovation also quickly expands the breadth of quality

covered by the typical product portfolio, generating large gains to variety from heteroge-

neous demand. To address how competition affects firms’ product portfolio choices and

to decompose firms’ incentives (both static and dynamic) in product introductions, this

paper develops a tractable model of forward-looking firms’ equilibrium product portfolio

choices.

I study this question in the context of the $70 billion (annual) Chinese smartphone mar-

ket. The Chinese smartphone industry experienced rapid technological growth between

2009 and 2014. During this period, the quality of smartphones improved significantly: For
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example, the frontier CPU clock speed improved from 1GHz to 2.7GHz. At the same time,

production costs fell: Total component costs for a low-end 3G smartphone dropped from

$90 in mid-2011 to $43 in mid-20137. Handset manufacturers also carried many products

and updated frequently. On average, a major manufacturer sold 15.4 products in a market-

month, and an average product was available for sale for 21.9 months. Compared to the

component costs, upfront development costs in this industry were much higher—for in-

stance, estimated to be more than $200,000 for a domestic low-end handset in 20128.

I first provide a stylized model to show that the simple assumption of Moore’s Law

(Moore, 1965)—decreasing variable costs and expanding quality frontier9—is sufficient to

endogenously generate bell-shaped product life cycles. This model also shows that the

product life cycle peaks higher and tapers off more slowly for a higher-quality product and

for the same product in a market with less competition at the time of its release. Descriptive

evidence also shows that these characteristics (product quality, market competition) at the

time of a product’s initial release have strong predictive powers for the eventual realization

of lifetime sales accumulated over the product’s life cycle. These relationships form a basis

for how firms can account for the variation in its product life cycle when introducing a new

product. Interviews with smartphone product managers in China also suggest the use of

product life cycle in portfolio adjustments.

With this completed, I then turn to addressing my two main research questions: how

does competition affect firms’ product portfolio choices and what are firms’ static and dy-

namic incentives in product introductions? To address the former, I first develop a model

of smartphone manufacturers’ product portfolio choices. Every month, firms adjust their

portfolios by introducing new products and/or discontinuing existing products, taking

into account the static tradeoffs that include per-period maintenance and marginal costs, as

well as the product portfolio competition that anticipates second-stage Bertrand price com-

7Nomura Global Markets Research, “China Smartphone chips: LTE changes the balance,”
https://www.nomura.com/events/china-investor-forum/resources/upload/China Smartphone chips.pdf,
accessed March 27, 2016.

8http://www.cctime.com/html/2011-7-14/2011713151032991.htm, in Chinese, accessed October 15, 2016.
The average handset testing fee of $32,000 was estimated to be about 15% of total development costs per
product.

9The original observation in Moore (1965), referred to as Moore’s Law, was that the number of transistors
in an integrated circuit doubles approximately every two years. This observation has since been revised and
rephrased in different ways by technology executives.
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petition, based on consumers’ preferences over prices and product characteristics. When

introducing a new product, firms also evaluate the dynamic tradeoffs between the sunk

introduction cost and the expected future stream of profits. In particular, I assume that

firms have rational expectations for the future evolution of technologies and market struc-

tures, conditional on the observable characteristics of the new product and the market at

its release time.

Addressing the latter question—what are firms’ static and dynamic incentives in prod-

uct introductions?—is the main empirical challenge in this paper. The dynamic game of

firms’ portfolio choices is intractable, given the proliferation of products. Forming expec-

tations for the future evolution of technologies and market structures requires managers to

track more than trillions of possible product configurations. This paper proposes a heuris-

tic way to approximate firms’ decisions about a new product’s introduction by relating the

pattern of its product life cycle to what firms observe at the time of its release. A closely

related approach is proposed in Wollmann (2016) to simplify the dynamic product intro-

duction problem using the hurdle rate, which is effectively a way of net present value

calculation based on a fixed time path of profits across products and markets. I show that

in more mature industries with slow innovation, such as the commercial truck industry

studied by Wollmann (2016), product life cycles are much flatter and homogeneous, and

therefore my model with product life cycles converges to one with hurdle rates. How-

ever, when bell-shaped product life cycles are salient, as is the case in smartphone or other

high-tech markets, the heterogeneity of product life cycles recovers unbiased sunk costs

for different products. More importantly, hurdle rates are assumed to be fixed in the coun-

terfactual, while product life cycles in my model are endogenously affected by the level of

competition, which changes in the counterfactual. This captures firms’ dynamic incentive

changes under different market structures.

To recover the parameters of how firms form beliefs about future profits, as well as

their costs and the demand they face, this paper employs a proprietary dataset of monthly

province-level mobile phone sales, prices, and characteristics in China between 2009 and

2014. During this time, mobile phone handsets were mainly sold through brick-and-

mortar retailers, largely constraining consumers to shop within their province. Therefore,
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I define a market on the province-month level, yielding 2,201 markets from 71 months and

31 provinces of data. The rational expectation assumption allows me to estimate firms’

beliefs about future profits using the observed technologies and market structures. The

large variation in market competitiveness across Chinese provinces then identifies how

competition affects product life cycles.

I estimate maintenance and sunk costs by forming bounds based on firms’ revealed

preferences10. Given the modular nature of smartphone production, scrap values are neg-

ligible in this industry11. The thin tails of product life cycles toward the product’s end then

allow me to interpret product discontinuation decisions statically, and also give me tight

bounds on per-period maintenance costs. Sunk costs are estimated by comparing changes

in both instantaneous and lifetime product profitability. Identification of maintenance and

sunk costs comes from variations across provinces in market structure, demand character-

istics, and timing differences in product introductions and discontinuations.

I illustrate the contributing factors to the speed of innovation via product introductions

using a Chinese government experiment that allows me to study the effect of a large wave

of small firm entry on incumbent firms’ product portfolio choices by both directly chang-

ing the market competitiveness and indirectly changing the patterns of product life cycles.

Specifically, in 2012, facing foreign high-tech firms that dominate the market, the Chinese

government implemented a large-scale, pro-competitive policy to subsidize entries from

small domestic smartphone manufacturers. Aimed at promoting market competition and

domestic high-tech manufacturing, the policy cost billions of dollars12 and induced a large

10Following the recent literature on using bounds (Pakes et al., 2015; Wollmann, 2016), instead of parametric
assumptions, to treat fixed costs in the presence of multiple equilibria, I assume that the observed product
configurations in markets are Nash equilibrium outcomes. In other words, no unilateral change in product
portfolio choice can be profitable for any firm, yielding both upper and lower bounds for product maintenance
and sunk introduction costs. Similar to Berry, Eizenberg and Waldfogel (2016) and Fan and Yang (2016), I
make use of the computed bounds directly and also feed them into a inequality penalty function to obtain
point estimates.

11Manufacturers also do not face significant capacity and liquidity constraints in this industry, given their
large size and the presence of contract factories. This eliminates much of the opportunity costs of introducing
and maintaining a product in this market. More details are provided in Section 1.2.

12The policy first lowered handset testing fees by the Ministry of Industry and Information Technology
(MIIT). http://www.cctime.com/html/2011-7-14/2011713151032991.htm, in Chinese, accessed October 15,
2016. The report suggests that this policy cut about 4% of total development costs per product, decreasing
the government’s revenue by roughly $20 million, based on the number of new products in my data. The
policy also urged state-owned telecom carriers to spend up to $10 billion in 2012 on marketing mainly for
small domestic firms’ products. http://tech.qq.com/a/20111229/000116.htm, in Chinese, accessed October
15, 2016.
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inflow of fringe firms13: from 92 to 318 between 2012 and 2013, making the smartphone

market more competitive14. Given the recency of the policy, I ask the question of how suc-

cessful it was in promoting market competition15. On the surface, the average incumbent

firm’s portfolio size went up from 16.3 to 20.2 products, and the median handset price

was consistently dropping from RMB 1,693 to 1,306. However, as technology was quickly

improving in this market, the quality frontier was expanding while component costs were

falling, promoting such market evolution even in the absence of an industrial policy.

With my estimates, undoing the Chinese competitive policy reveals two results. First,

decomposition of firms’ incentives to introduce new products shows that the dynamic

consideration is important in firms’ portfolio choices. Increased competition reduces the

average product’s short-run profits by 5% but its lifetime profits by 41% by shrinking its

product life cycle. Second, the policy might not have been as successful as it seemed in

increasing variety: Firms would have been able to self-regulate through product intro-

ductions. In the absence of the costly fringe entry, incumbent major manufacturers would

have introduced seven more handsets per province-month (almost four times the observed

number of new products), and the average handset price would have increased by only

about $1 (0.5%) compared to what was observed after the policy. Annualized total welfare

would have been only $0.36 billion (0.4%) less, compared to the billions of dollars spent.

Product life cycles generated by technological innovations play an important role in firms’

self-regulation: Not accounting for firms’ future outlook would overstate the welfare ben-

efit of the policy by $430 million.

This paper makes three main contributions. The first is its demonstration that product

life cycles naturally arise in markets with rapid technological innovations. This expands

the reduced-form view of product life cycles in the literature. In explaining the life cycle of

products in various markets, previous studies have either included product age effects in

their specifications of consumer utility (Moral and Jaumandreu, 2007; Ngwe, 2016) or es-

timated hazard rates of product turnover based on product age (Stavins, 1995; Greenstein

13These firms are considered fringe in this paper, given their relatively homogeneous and low-quality prod-
ucts, as well as their low market shares. More details are provided in Section 1.2.

14Fringe firms gained about 20% of total market share. The market was already relatively competitive: The
average Herfindahl Index went from 1189 to 882 between January of 2012 and 2013.

15I do not attempt to address the other policy goal, of promoting domestic high-tech manufacturing.
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and Wade, 1998).

The second contribution is to develop an empirically tractable model of equilibrium

product portfolio choices of forward-looking firms. The empirical entry literature has

cleanly characterized firms’ static tradeoffs in product choices (Mazzeo, 2002; Seim, 2006).

Advances in the estimation of dynamic games (Hotz et al., 1994) have enabled empiri-

cal work to capture firms’ dynamic incentives in markets with smaller state space (Bajari,

Benkard and Levin, 2007; Blonigen, Knittel and Soderbery, 2013; Collard-Wexler, 2013;

Ryan, 2012; Sweeting, 2013). I contribute to these two literatures by accounting for firms’

dynamic incentives for product introductions in the large product space—typical in high-

tech markets—through the use of product life cycles as an empirically tractable heuristic.

The results of this paper also contribute to studies on the effect of changes in market struc-

ture on welfare (Fan, 2013; Li et al., 2016; Wollmann, 2016), the value of technological in-

novations (Eizenberg, 2014; Nosko, 2014), and welfare gains from product variety (Berry,

Eizenberg and Waldfogel, 2016; Fan and Yang, 2016).

The third contribution is its analysis of how changes in the level of competition af-

fect product variety and welfare in the market. I decompose firms’ static and dynamic

incentives in product introductions and show that ignoring the dynamics would signif-

icantly overestimate the benefits of industrial policies aimed at promoting competition.

This contributes to the discussion of the costs and benefits of industrial policies (Green-

wald and Stiglitz, 2006; Aghion et al., 2015) adopted by many developing countries in

recent decades.

The rest of the paper proceeds as follows. Section 1.2 introduces the empirical setting

and provides descriptive evidence of product life cycle properties. Section 1.3 presents

the empirical model. Section 1.4 discusses the estimation strategy and results. Section 1.5

describes the policy setting and compares counterfactual welfare estimates from different

entry models. Section 1.6 concludes.
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1.2 The Chinese smartphone industry: Data and evidence

In this section, I introduce the empirical setting and data. I then briefly discuss the intuition

for product life cycle formation in high-tech markets, which I analyze in detail in Appendix

A.1. Finally, I present descriptive evidence of the product life cycle and its properties.

Overview

The Chinese smartphone industry is a significant and ideal market for studying high-tech

firms’ product portfolio choices. Smartphone manufacturers sold more than 300 million

handsets in 2014, with a total of $70 billion in revenue. The Chinese smartphone indus-

try during this time was a typical high-tech market, with fast-improving technologies but

decreasing retail prices (Figure 1.2.1). Several features of this market make it particularly

attractive. Unlike the US smartphone market, smartphone manufacturers in China decide

which models to introduce, as opposed to the carriers16,17; demand for smartphone hand-

sets is also much more separable from carrier services18. As mentioned, dominant offline

sales during this time19 segments this market by geography. Finally, mobile phone manu-

facturing has become specialized during this time—manufacturers purchase components

(e.g., chipsets, displays, cameras, etc.) from upstream firms20, and only integrate them

16The three state-owned telecom carriers in China are (with subscribers as of May 2015, in millions): China
Mobile (816); China Unicom (290); and China Telecom (191). Each operates a different network across different
generations of telecommunications in China, allocated by MIIT. Network ownership during 2G: GSM (CM,
CU) and CDMA (CT); 3G: TD-SCDMA (CM), WCDMA (CU), and EVDO (CT); and 4G: TD-LTE (CM, CU, CT)
and FDD-LTE (CU, CT).

17One industry source suggests that the timing of different models/versions of a product—but typically
not whether to introduce the product at all—can be influenced by carriers. In this paper, I focus on port-
folio choices at the product level and collapse different models/versions of the same product into one. See
Appendix A.2.2 for details. Moreover, I observe some cases in which products were compatible with some
carriers but not others. This is often due to cost and demand, rather than contracting and bargaining. For
example, CT has the smallest subscriber base and also operated CDMA in the 2G era, which is monopolized
by Qualcomm with its intellectual property, and thus requires higher royalty payments from smartphone
manufacturers to make and sell CDMA phones.

18The majority of smartphone handsets were sold contract-free. For the portion of sales through carriers,
retail prices in the data also reflect handset prices, without accounting for promotions on carrier services.
Carrier service quality is controlled for in the demand estimation with the networks they operate. I assume
that residual variations in the carrier contracts and service quality are absorbed by time trend and market
fixed effects of the outside good in the demand specification.

19About 10% of total handset sales were made online during 2009-2014. I drop all online sales in this paper,
as I cannot observe their destinations.

20Several firms considered this paper are vertically integrated, e.g. Samsung. However, subsidiaries of
these international conglomerates often remain separate entities in decision-making. For example, Samsung’s
handset manufacturer only ordered 60% of its batteries for its Galaxy Note 7 from Samsung’s own battery
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with their operating systems and software21. Such modular production allows handset

manufacturers to easily adjust their product portfolios on a monthly basis, and also sug-

gests that very little R&D is required for handsets below the technology frontier22.

Figure 1.2.1: Typical high-tech industry dynamics: Improving quality and declining price
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(b) Major characteristic (2): Display size
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(c) Major characteristic (3): Camera resolution

0
5

1
0

1
5

C
a

m
e

ra
 R

e
s
o

lu
ti
o

n
 (

m
e

g
a

-p
ix

e
l)

A
p
r 
0
9

D
e
c 
0
9

A
u
g
 1

0

A
p
r 
1
1

N
o
v 
1
1

Ju
l 1

2

M
a
r 
1
3

N
o
v 
1
3

Ju
l 1

4

Frontier

Median

Camera Quality Improves

(d) Median price
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Notes: This figure plots the frontier and median of three main characteristics (CPU clock speed, display size,
and camera resolution) of smartphone handsets, and the median selling price among all smartphone models
from major manufacturers in China, between Jan. 2009 and Nov. 2014. This figure shows that the Chinese
smartphone market during 2009-2014 exhibits the typical features of a high-tech industry: Product quality
(technology frontier) is quickly improving; at the same time, prices are falling.

Data sources

Data for this paper come from four main sources. First, smartphone sales data come

from GfK Market Research, and include the universe of mobile phone (feature phone and

manufacturer, SDI, and the other 40% from a Chinese manufacturer, ATL. I also account for these firms’ po-
tential cost advantages in production by including firm fixed effects in my cost estimations.

21The abundance of contract-based factories, design houses, and software developers in this industry (de-
tails in Appendix A.2.1) further specializes the handset production process.

22See, for example, https://www.bloomberg.com/news/articles/2015-07-13/how-1-000-buys-a-
smartphone-brand-to-challenge-samsung, accessed November 6, 2016.
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smartphone, separately) sales23 in China between Jan. 2009 and Nov. 2014. There are 31

provinces and 71 months, giving me 2,201 markets. I observe unit sales, average prices,

and handset characteristics at the handset model/province/year-month level24. Handset

characteristics include all aspects of a smartphone25. For a parsimonious empirical specifi-

cation, I include in my demand and cost estimation only three major characteristics—CPU

clock speed, display size, and camera resolution—and a fourth characteristic, “Other”,

constructed from the first component of a principal component analysis of the other char-

acteristics (summary statistics in Table 1.1).

I supplement the GfK data with hand-collected data from two electronics catalogue

websites: GSMArena and its Chinese equivalent, ZOL26, for each product’s advertised

product line name27, to capture the demand effects of product line marketing as well as

missing product characteristics28. These two websites, together with the GfK data, provide

a complete set of characteristics for all 1,782 models of major smartphone handsets sold

during this period, which I then collapse down to 691 unique products29.

I match the smartphone manufacturers identified in GfK to the Annual Industrial Sur-

vey (AIS), which is a comprehensive firm/year level data of all medium and large enter-

prises in China. I construct firm-specific cost shifters using the differential government

subsidies received by firms and the interest rates they pay on their loans each year30.

23Available feature phone data allow me to specify demand that allows for substitutions between feature
phones and smartphones.

24I also observe the types of retail channels (rather than the specific stores) a handset is sold through. I
make use of the types of retailers to shift a product’s maintenance cost per month in my estimation. Unless
otherwise noted, I collapse data to the model/province/year-month level.

25These include CPU clock speed, display size, camera resolution, battery capacity, RAM, storage space,
thickness of the phone, number of SIM card slots, near-field communication capability, compatibility with
various carrier networks, etc.

26Websites: http://www.gsmarena.com/ and http://www.zol.com.cn/
27GfK collects information on product factory codes. The websites give me the matched advertised names

of the products, allow me to put products into manufacturers’ heavily advertised product lines, and capture
the joint marketing effects in my demand estimation. For example, several models of the original Samsung
Galaxy S are coded as Samsung I9008 in the GfK data.

28Several variables are missing observations from the GfK data. For example, while the GfK data does
provide the model name of the chipsets and other characteristics, such as the number of cores, the variable
CPU clock speed is mostly missing.

29Different versions of the same product are collapsed based on characteristics. See Appendix A.2.2 for
details.

30All major smartphone manufacturers (defined in the section “Key players”) that have legally registered
for a separate entity in China are included in this data. With the exception of Apple, I match all other 11
major manufacturers with the AIS data. In the case of Apple, I can match it to its main manufacturer in China,
Foxconn Technology Group, and argue that cost shifters of the contract manufacturer likely also affect Apple’s
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Data on the demographics of the markets come from the Dios Database. I observe the

population of each province/year31, which defines the size of the markets32. Dios data

also provide information on the quintiles of annual consumption (henceforth referred to

as income) separately for urban and rural residents, which I use to construct empirical

distributions of income in each province/year33.

Producers

This paper focuses on the product portfolio choices of the major smartphone manufactur-

ers. I define a smartphone manufacturer as major if it obtains at least 5% national market

share (in units) at any point during 2009-2014. This results in 12 major manufacturers, in-

cluding, as loosely categorized in the industry in 2014, Apple and Samsung, who are the

highest premium brands; Nokia, Motorola and HTC, who are on the decline in brand val-

ues; ZTE, Huawei, Coolpad, and Lenovo, who are mid-level domestic brands; and Xiaomi,

Oppo, and Vivo, who are the new domestic high-end brands.

These 12 manufacturers constitute a relatively stable set of firms in the industry, ac-

counting for more than 80% of total market share throughout this period (summary statis-

tics in Table 1.2). While market shares move between these manufacturers (e.g., notably

the fall of Nokia), only Xiaomi, Oppo, and Vivo are slight latecomers to the market34, and

the other nine firms are always present35.

The rest of this market consists of small manufacturers I consider fringe36. They pro-

duce relatively more homogeneous and lower-quality products compared to the major

manufacturing costs.
31I only use the population between age 15 and 64, given their more likely use of smartphones.
32Similar to Nevo (2001), who defines market size as 1 cereal serving per person per day, I define market

size as 1 handset per person per year.
33I assume that income distribution in each market is log-normally distributed, and draw from distributions

estimated with the quintiles. See Appendix A.3.1 for more details.
34Oppo has been producing feature phones, but only started making smartphones in 2011. Vivo spun off

from Oppo around the same time. Xiaomi is a completely new entrant that has grown to be one of the larger
smartphone manufacturers. All three focus on higher-end handset production.

35There are also three major acquisition activities during this period: Motorola to Google (Aug. 2011),
Nokia to Microsoft (Apr. 2014), and Motorola to Lenovo (Oct. 2014). Since the first two do not involve another
incumbent manufacturer, and the third happened at the very end of my sample, I assume the same firm
behavior before and after acquisition, and treat Lenovo and Motorola as separate firms throughout.

36These firms are often referred to as “white-box” manufacturers in the press, given the history of many
of them as no-label phone manufacturers and the homogeneity of their products. As the technological and
market barriers to entry were lowered around 2012, many more fringe firms entered the market and captured
more market shares (up to 20% overall). See Section 1.5 for details of changes in 2012.

11



Table 1.1: Major smartphone handset characteristics

Mean Std Min Max
CPU clock speed (GHz) 1.078 0.473 0.003 2.7

Display size (inch) 4.131 0.954 1.5 6.4
Main camera resolution (mega-pixels) 5.768 3.399 0 16.15

Correlations
Other characteristics (PCA 1st comp.) 0 1.752 -3.837 6.769

Battery capacity (mAh) 1,806 620.4 700 4,250 0.8741
Depth (mm) 11.27 3.286 4.9 28.2 -0.7448

RAM (mega-bytes) 792.9 657.9 1 3,072 0.9049
ROM (giga-bytes) 7.007 11.05 0.01 128 0.6881

# of SIM cards 1.391 0.488 1 2 0.2343
NFC 0.1225 0.3280 0 1 0.6364

Notes: Handset characteristics for smartphone handsets by major manufacturers. Data on model level af-
ter winsorizing on specialty phones but before collapsing on similar characteristics (N = 1, 755). “Other”
characteristic is the first component of the principal component analysis of the six other characteristics, with
respective correlations shown in the last column. Display size is measured from the diagonal of phone screens
(excluding edges that are not part of the screen); screen technologies (AMOLED, IPS, TFT, Retina, Super
AMOLED, Super LCD, etc.) and resolutions (pixels per inch) are also observed, but are highly correlated
with screen sizes (hence dropped). Main camera typically refers to the camera on the back of the phone; front
camera and/or secondary camera on the back are also observed, but are dropped due to high correlation with
the quality of the main camera. Depth measures the physical thickness of the handset in millimeters. RAM
measures memory, and ROM measures storage of the handsets. Handsets in China also typically have 1-2 SIM
card slots. NFC indicates near-field communication functionality.
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manufacturers, and mainly differ in their industrial design. Fringe firms also enter more

into provinces with larger/wealthier populations, generating variations in market com-

petitiveness across provinces. Figure 1.2.2 shows significant variation in the presence of

fringe firms across markets in Jan. 2013. Figure 1.2.3 then documents the price variation of

handsets by the major manufacturers across these markets. Other upstream, downstream,

and related industries are summarized in Appendix A.2.1.

Table 1.2: Market shares of major manufacturers

Market shares (in units)
2009 2010 2011 2012 2013 2014

Apple 0.5% 4.3% 7.2% 7.7% 6.0% 8.7%
Samsung 4.6% 4.2% 18.5% 21.5% 21.3% 17.1%

Nokia 77.6% 75.1% 36.3% 8.4% 2.4% 1.3%
Motorola 9.6% 7.2% 6.8% 4.0% 0.9% 0.2%

HTC 3.2% 2.6% 4.8% 5.1% 2.8% 1.8%

ZTE 0.1% 0.6% 6.5% 7.3% 5.5% 3.1%
Huawei 0.0% 0.8% 8.1% 8.9% 9.7% 10.3%
Coolpad 2.0% 1.7% 2.8% 8.3% 9.3% 10.0%
Lenovo 0.4% 0.7% 2.4% 9.4% 12.4% 10.5%

Xiaomi 0.0% 1.3% 2.6% 7.1%
Oppo 0.1% 1.8% 3.6% 5.1%
Vivo 0.0% 1.5% 3.5% 5.8%

Fringe total share 2.1% 2.9% 6.3% 15.0% 19.9% 19.0%
# Firms 41 44 107 347 471 495

Units sold (millions) 19.3 33.4 85.8 194 352 342
Value sold (billions of RMB) 43.7 73.5 176 343 546 520

Notes: Data from GfK Market Research. The set of major manufacturers is relatively
stable during my sample—only Xiaomi, Oppo, and Vivo are later entrants into this mar-
ket. Firms are grouped by loose categorizations according to industry sources: Apple
and Samsung command highest brand premiums; Nokia, Motorola, and HTC used to
be dominant players, but have since been on the decline as iOS and Android gained
popularity. ZTE, Huawei, Coolpad, and Lenovo are typically grouped together in in-
dustry reports, and are often referred to as “Zhong-Hua-Ku-Lian” in Chinese; these are
domestic mid-level brands. Xiaomi, Oppo, and Vivo have focused more on higher-end
products since their entry into the market. Total # of firms include the 12 major manu-
facturers. Total sales include both major and fringe smartphones (thus higher than the
$70 billion revenue of major manufacturers mentioned before).
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Figure 1.2.2: Geographical variation in market competition: Fringe presence
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Figure 1.2.3: Major smartphone price variation across provinces
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Products

This paper focuses on major smartphone manufacturers’ portfolio choices of non-flagship

products. A flagship product is defined, in this paper, as the highest-priced product of

a manufacturer in each market-month37. The detailed monthly patterns of product intro-

ductions and discontinuations across markets allow me to identify entry and maintenance

costs. Out of the 569 non-flagship products in the sample, I observe the initial national

release dates of 513 products (due to left truncation). On average, they are eventually re-

leased into 25.6 markets (out of 31 provinces) with a standard deviation of 7.7 markets.

Conditional on entry, Figure 1.2.4 shows that most products are released in all markets

within 5 months, suggesting that entries across markets are likely not due to inventory

management practices across markets38. I observe, for 8,319 product-markets, the discon-

tinuation month of the product in that market, which serves as my sample for the esti-

mation of maintenance costs. Of these, I observe both the entry and exit month of 7,405

product-markets that I will use to estimate firms’ product life cycle beliefs and sunk intro-

duction costs. Among the 7,405 observations, on average, a product lasts on the shelf for

21.9 months, with a standard deviation of 12.6 months. Moreover, the average firm portfo-

lio at any time and market has 15.4 products, with a standard deviation of 11.8 products;

covers a large range of products in terms of price (on average, more than half the market);

and exhibits large variations across firms and time (summary statistics in Table 1.3).

Demand attributes

The mobile penetration rate has gone up substantially during this period in China. In 2009,

there were only 56 mobile phone users per 100 population. This penetration rate has gone

up to 95% by early 2015, with 1.29 billion mobile users39. During this time, smartphones

are quickly replacing feature phones as the dominant type of mobile phone in China, as

37There are 122 unique flagship products in this sample. For example, this includes Samsung Galaxy S and
Note. This also includes all of Apple’s and Xiaomi’s products, given their simple product lines.

38This practice is more likely to occur within markets in which manufacturers could move inventories
among different retailers. In the global market, it is also common practice to ship obsolete products from
more developed markets to emerging markets.

39http://www.miit.gov.cn/n11293472/n11293832/n11294132/n12858447/16505685.html, Ministry of In-
dustry and Information Technology, in Chinese, accessed March 27, 2016.
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Figure 1.2.4: Market-level product introduction delays
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Notes: This figure shows that product introductions at the province level are
unlikely due to inventory management practices, given that most products
have short delays—within five months. These delays reflect firms’ strate-
gic product portfolio choices at the province level, given different local mar-
ket conditions, and are used to identify products’ sunk introduction costs.
Plotted is the distribution of entry delays in months on the product-market
level. Entry delays are defined as the lag of time between when a product is
first introduced anywhere in China and when it is introduced to a particular
province.
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Table 1.3: Major manufacturers’ product portfolio sizes

Avg. province-month Portfolio size
2009 2010 2011 2012 2013 2014

Apple 1.857 2.197 2.411 2.720 3.454 4.317
Samsung 5.194 9.539 19.10 31.72 36.05 33.15

Nokia 21.59 29.48 29.90 31.09 25.97 17.95
Motorola 7.293 13.23 22.97 31.48 24.57 11.98

HTC 5.533 8.393 11.35 17.71 18.56 19.95

ZTE 1 1.585 3.838 10.70 18.70 21.42
Huawei 1 1.778 5.043 15.02 21.52 25.41
Coolpad 3.418 5.047 9.067 22.99 29.60 33.32
Lenovo 1.248 1.846 3.558 17.90 31.38 33.34

Xiaomi 1 1.038 2.290 4.331
Oppo 1.356 6.822 14.33 18.24
Vivo 1 6.483 15.55 18.47

Avg. # products (across firms) 5.348 8.122 9.216 16.31 20.16 20.16
Total # products (national) 94 153 238 361 443 489
Avg. range of price % rank 0.562 0.500 0.529 0.569 0.682 0.727

Notes: This table summarizes firms’ product portfolio sizes. The number of products
includes both flagship and non-flagship products, after collapsing on similar character-
istics, winsorizing on specialty phones, and averaging across market-months. Firms are
grouped based on loose categorizations according to industry standards. Total # prod-
ucts (national) only includes 12 major manufacturers’ products; for fringe products, see
Figure 1.5.1b. Range of price % rank is equal to a firm’s highest-priced product’s % rank
in prices in the market minus its lowest, measuring the spread of the portfolio (ranges
between zero and one). These statistics show that the average major manufacturer car-
ries a product portfolio that covers more than half the quality spectrum in the market at
any time.

18



shown in Figure 1.2.5. By early 2015, smartphone ownership has also reached 58% and

varies substantially across income groups40.

Figure 1.2.6 shows the large heterogeneity in income across markets, as well as the

relative level of income compared to the average price of feature phones and smartphones.

For example, the average income in Beijing is consistently more than 3 times higher than

that of Tibet during this period. Moreover, the national average income in 2009 is RMB

7,928, while the average smartphone price is 2,258 and feature phone price is 771. By 2014,

the national average income has grown to 14,603, while the smartphone price has fallen to

1,458 and feature phone price to only 319 (also with quality improvements, as suggested in

Figure 1.2.1). Though not depicted, within-market income heterogeneity is also large. On

average, the highest quintile of urban residents consumes more than 2.8 times more than

the lowest urban quintile annually, and the median quintile of urban residents consumes

about 2.7 times more than the median quintile of rural residents annually.

Intuition and evidence: Product life cycles

Figure 1.2.7 shows that product life cycles are pervasive in the Chinese smartphone mar-

ket. I align the time paths of (unit) sales of all product-markets to their release times (age

zero) and compute the 25th, 50th, and 75th percentiles of sales within each age cohort, af-

ter normalizing by each product-market’s first-month sales41. The resulting time paths

of sales across all product-markets exhibit the typical bell shapes discussed in the early

marketing product life cycle theory.

In Appendix A.1, I provide a stylized model of product life cycle formation in high-tech

markets. I show that bell-shaped product life cycles endogenously arise in a model with

a standard Logit demand system, decreasing production costs, and an expanding technol-

ogy frontier. The intuition is as follows. In high-tech markets, Moore’s Law suggests that

production costs for new products fall faster than the average product in the market. As

a result, the price of the new product also falls faster and generates more sales at the be-
40http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-

climb-in-emerging-economies/, accessed March 27, 2016.
41The reason for this normalization is, one, for comparisons across products with different initial sales; and

two, as evidenced in Figure 1.2.8 and specified in the model in Section 1.3, forward-looking managers forecast
the ratio of lifetime and immediate payoffs.
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Figure 1.2.5: Substitution between feature phone and smartphone
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Notes: This figure shows that smartphones were quickly surpassing feature
phones as the main type of mobile phone in China during this period. This
figure also highlights the importance of accounting for substitutions between
smartphones and feature phones in the demand estimation for the first half
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Figure 1.2.6: Demand heterogeneity across markets and time
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tion) in Beijing is consistently more than 3 times higher than that of Tibet.
This gives rise to very different demand characteristics in these two markets,
given the high prices of smartphones compared to income. These hetero-
geneities are also evolving over time, as mobile phone prices quickly fall,
and income in China is fast growing during this period. Plotted are average
smartphone handset prices (monthly, national); average feature phone hand-
set prices (monthly, national); average national annual consumption (plotted
at mid-year); and average annual consumption in Beijing and Tibet.

21



Figure 1.2.7: Product life cycles (PLCs)
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Notes: This figure shows that bell-shaped product life cycles are pervasive
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ginning of the life cycle. As the speeds at which prices fall converge in a market, sales will

also stabilize. As the quality frontier expands with new technology, sales eventually drop

to zero (or below the threshold to justify per-period fixed costs), given the competition

from more and better products. This nonmonotonic time path results in the bell shapes of

product life cycles. Details of the stylized model are in Appendix A.1. Comparative stat-

ics in Figure A.1.2 further show that in the same market, a higher-quality product might

have lower immediate sales due to high initial price, but higher lifetime sales compared

to a lower-quality product; the same product has lower immediate sales, but much lower

lifetime sales in a more competitive market.

I now present descriptive evidence for these properties of the product life cycle. I first

quantify the dynamic realizations of product life cycles, or the area under the curve in

Figure 1.2.7, by constructing a PLC multiplier, which is defined as the realized lifetime unit

sales of a product normalized by its first-month sales42. This multiplier then captures the

relationship between the immediate sales and the lifetime sales of a new product, which a

forward-looking product manager would need to account for in her future outlook before

adjusting her product portfolio. In theory, the PLC multiplier is a complicated object, such

as the realization of a Markov perfect equilibrium of the dynamic product portfolio game.

In the rest of this section, free from any model, I show that, as suggested by the stylized

model, the PLC multiplier can be predicted based on static observable characteristics of

the products and markets.

Figure 1.2.8a shows a binned scatter-plot of the log of the PLC multiplier against the

relative quality of the product. To remain model-free, the quality here is measured by the

percentile rank of a product’s release price among all the products in the market at the time

of its release43. This is thus a static measure of initial relative quality, and does not change

over time. Figure 1.2.8a shows that, relative to a product’s immediate sales, the product’s

lifetime sales increase in its initial relative quality in the market: Roughly, controlling for

42Only products for which I observe both the entry and exit months are included in this analysis for the
entire realized paths of sales.

43The relationship between the PLC multiplier and the quality of the product remains the same with alter-
native measures of relative quality, such as using the first component of a principal component analysis of
all handset characteristics. In my empirical specification, I construct a quality index using products’ mean
utilities from demand estimates.
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the same level of immediate sales, a product released at the top of the quality spectrum

has about twice as large a product life cycle (lifetime sales) than a product released at the

bottom of the quality spectrum. From a firm’s perspective, in introducing a new product,

for the same amount of immediate sales, a higher-quality product can justify much higher

sunk set-up costs given its more durable expected product life cycle.

Figure 1.2.8b shows the relationship between the realized product life cycle and static

market competitiveness at the release time of the product. I measure market competition

using the number of products in the market when the product is first introduced. Varia-

tions in market competitiveness come from both provincial differences and fringe entries

over time, as discussed in Section 1.2. Figure 1.2.8b shows that not only can we infer the

immediate sales of a new product, considering the usual static tradeoffs faced by firms,

given the competitiveness of the market, but we can also, to some extent, predict the life-

time sales of the product based on the expected immediate sales and the contemporaneous

level of market competition. Moreover, this relationship has implications for counterfactu-

als: When markets become more (less) competitive, forward-looking firms not only expect

less (more) immediate sales44, but also revise down (up) their future outlook on their prod-

ucts’ lifetime sales as their expected product life cycles become shorter (longer).

44The direction of change for static profitability remains theoretically ambiguous, depending on where new
products are introduced into the product space and demand substitution patterns.
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Figure 1.2.8: Lifetime sales vs. product and market characteristics at release
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Notes: This figure shows that a product’s eventual realization of lifetime sales systematically correlates with the
characteristics of the product and the market at its release time, even after normalizing by its immediate sales.
Plotted from model-free data. PLC multiplier is the ratio of a product’s realized lifetime unit sales and its first-
month sales. The relative quality of a product is measured as the percentile rank of its release price in the market at
the time of release (thus this rank does not change over time). Market competitiveness is measured by the number
of smartphone models (major and fringe) in the market at the time of the product’s release (also static and constant
over time). Data are residualized from firm and province fixed effects. Relationships shown are both statistically
significant at the 1% level.
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1.3 Model

This section presents a two-stage model over many periods that captures firms’ static and

dynamic incentives in product introductions, as well as how they are affected by compe-

tition. Given features of this industry and computational limits, I make several modeling

choices. I take the set of smartphone manufacturers as given, and do not model firms’

entry and exit decisions. I focus on the 12 major manufacturers’ strategic incentives in

product introductions, and take the hundreds of fringe firms’ products as given45. More

importantly, I model firms’ portfolio adjustment decisions on the province-month (m, t)

level—the modular nature of smartphone production allows firms to quickly adjust their

product portfolios based on local market conditions46. Specifically, before each period

(month), outside my model, I assume that firms are endowed with a pool of potential

product designs J f ,t, from which they could choose to introduce as new products into

their portfolios J f mt. I thus only recover market-level product introduction costs, as op-

posed to total product development costs, in my estimation. Finally, I only model firms’

strategic incentives to introduce non-flagship products. The reason for this abstraction is

that firms’ choice of flagship products often relates to reasons beyond the costs and bene-

fits analyzed in this paper, such as technological constraints and brand image47. Therefore,

I treat flagship products to be exogenously (to my model) placed in firms’ portfolios and

do not attempt to estimate costs for these products48.

45In other words, equilibria of the model allow for major manufacturers’ strategic reactions in product port-
folios to fringe entry, but assume that fringe firms exogenously introduce products. This is reasonable, given
major manufacturers’ dominant market share, and also because fringe firms mostly produce mid- to low-end
handsets often due to technology constraints, rather than strategic incentives in product positioning. While I
do not model fringe firms’ strategic product offerings, my model allows consumers to choose fringe products,
and major manufacturers to respond to fringe entry in their portfolio choices and pricing.

46When asked about product development, industry sources suggest that they have a pool of new designs
every year, developed at the national level or higher, but product managers choose what to release based
on local market conditions at their regional offices on a monthly, or even more frequent, basis. Moreover,
modeling and estimating the actual development costs of these designs are computationally infeasible: The
portfolio game is at least of the order of 231⇥12 if firms optimize over which set of markets to enter and when,
ex ante.

47Several of the major manufacturers in this market design and export smartphones globally. As discussed,
I specify the entry game at the province level. As a result, I do not need to additionally assume the exclusivity
of designs for the Chinese market. I do, however, assume that the timing of release is related to local market
conditions only. This is true for non-flagship products, even when they are also sold outside China, but less
so for flagship products, where many of the release dates are globally coordinated.

48I do not, for example, explain any of the portfolio choices of Apple or Xiaomi, given that they only carry
flagship products.

26



As a result, I specify a full-information, discrete game of product portfolio competition,

played between major smartphone manufacturers as follows:

1. Stage I: Product portfolio choice

(a) Introduction
�

SCjmt
�

and maintenance
�

Fjmt
�

cost shocks
�

µjmt, hjmt
�

of each po-

tential product j 2 J f ,t are realized.

(b) Firms form beliefs about the lifetime profitability of each potential product,

EPjm.

(c) Firms simultaneously adjust product portfolios, by introducing new products

(out of potential products J f ,t), and/or discontinuing old ones (from existing

products J f m,t�1), based on beliefs about new products’ lifetime profitability

EPjm, j 2 J f mt, j 62 J f m,t�1, and expectations of the existing products’ current

profitability Epjmt(Jmt), j 2 J f m,t�1, j 2 J f mt, over Stage II shocks
�

x jmt, wjmt
�

, to

maximize expected portfolio profits P f mt.

2. Stage II: Pricing

(a) Marginal cost
�

mcjmt
�

and demand shocks
�

x jmt, wjmt
�

of every active product

j 2 Jmt are realized.

(b) Given all of the product portfolios Jmt, firms simultaneously set prices pjmt,

given demand, to maximize profits.

(c) Consumers choose, given characteristics and prices {X(Jmt), p(Jmt)} of the avail-

able products in the market.

Firms solve the game backwards by first computing Stage II payoffs for all possible con-

figurations of product portfolios, then choosing their portfolios in Stage I to maximize

expected profits. I also present the model in the same order in the rest of this section.

1.3.1 Demand

Demand for smartphone handsets in China is simpler than the US, given its separable na-

ture from carrier services, as discussed in Section 1.2—I therefore describe the demand
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system for smartphone handsets with a Logit discrete choice model. Demand attributes

described in Section 1.2 suggest several features of demand in this market to be accounted

for in the model. The first is income effects. Given the price of handsets as a relatively

substantial portion of consumers’ annual consumption—especially for the earlier sample,

lower-income provinces, and rural population—demand likely exhibits income effects that

are often assumed away for smaller-item purchases. The second is the heterogeneity in

price sensitivity across consumers with different income levels. I account for both by spec-

ifying a log function of utility for money in the demand model. The third is the likely

heterogeneity in the quality of consumers’ current handsets over time. While the dynam-

ics are important for estimating demand for durable goods49, I abstract away from this

aspect, given data limitations. Instead, I include a flexible specification of the outside good

in my demand estimation to capture this heterogeneity.

I now specify the demand system. A market is defined as a province-month, and con-

sumers choose among the J alternatives of mobile phone handsets in a market—or the

outside good of not purchasing any handset this month—to maximize utility. In the case

of not purchasing, the consumer enjoys utility from consuming her current handset hold-

ing (or lack thereof). I then specify the utility of consumer i choosing product j in province

m and month t as follows:

uijmt = Major · (bxj + DNC
jmt + l f (j) + ll(j)) + Fringe · (k1 + k

t
1t) + Feature · (k2 + k

t
2t)

+ alog(yi � pjmt)� (b

t
0t + lm + lq(t) + alog(yi)) + x jmt + eijmt. (1.3.1)

Available handsets on the market are categorized into major smartphones, fringe smart-

phones, and feature phones. I collapse all fringe and feature phones so that there is one

of each in any market, with share-weighted average price within each type. Major smart-

phone characteristics xj include CPU clock speed, camera resolution, display size, and

the “Other” characteristic described in Section 1.2. The network compatibility term DNC
jmt

includes fixed effects for the generations of networks, as well as compatibility with each

49See Gowrisankaran and Rysman (2012). I thus also abstract away from firms’ dynamic pricing behaviors
induced by forward-looking demand.
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carrier50, which captures consumers’ valuations of carrier service quality and the potential

cost of switching between carriers51. Firm and product line fixed effects are included to

capture brand preferences and marketing effects. For fringe and feature phones, I allow

for separate intercepts, as well as time trends to capture the growth in their quality over

time. The term alog(yi � pjmt) is consumers’ disutility for price, where a measures price

sensitivity and yi the income of the individual. I use the log functional form, which is

supported by a Cobb-Douglas utility function in consumption similar to Berry, Levinsohn

and Pakes (1995) and Petrin (2002), which reflects consumers’ heterogeneous sensitivity

to price due to income effects52. The outside option is chosen to be not buying a mobile

phone this month after including both fringe and feature phones in the demand model.

A time trend is included in the outside option to reflect the fact that consumers’ current

handset holdings are, on average, of higher quality over time, similar to Eizenberg (2014).

A province fixed effect is included to allow for a different intercept for the different quality

of current holdings in each province. lq(t) is a month dummy (Jan. to Dec.) that absorbs

the seasonality in sales. The base utility from income does not drop out of the equation,

given the nonlinearity of the functional form. x is the unobserved (to the econometrician)

characteristics that are observable to both firms and consumers. Finally, e is a preference

shock assumed to be i.i.d. type I extreme value distributed.

I can then express the market share of product j in market mt as,

sjmt =
Z exp[djmt + a(log(yi � pjmt)� log(yi))]

1 + Âl2Jmt exp[djmt + a(log(yi � plmt)� log(yi))]
dPy(yi), (1.3.2)

where d is the linear part of the utility function and Py(yi) is the empirical distribution of

income in market mt53.
50This term varies over time as I collapse different versions of the product that are released at different times.
51Switching costs mostly capture the fact that phone numbers are not portable if consumers decide to switch

carriers in China. This policy was only temporarily relaxed in two provinces during this time.
52The log functional form also more naturally limits the size of the markets—consumers with annual con-

sumption levels lower than the price of a handset will not purchase that product in the model.
53See Appendix A.3.1 for income distributions and evaluation of the integral in equation (1.3.2).
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1.3.2 Pricing

In Stage II of the game, firms observe everyone’s product portfolio decided in Stage I.

They have also observed the shocks of demand and marginal costs, and therefore know

their demand and cost. Firms then simultaneously set prices for all of the products in their

portfolios, J f mt, to maximize profits, for firm f in market mt,

p f mt = Â
j2J f mt

(pjmt �mcjmt) · sjmt(p) · Mmt, (1.3.3)

where Mmt is the market size and sjmt is given by the demand system and all of the prices

in the market. I then first invert out the marginal costs without assuming any structures

with the first-order conditions,

mcjmt = pjmt + sjmt

Z

(T · Di)
�1dPy(yi), (1.3.4)

where Di =
∂si
∂p is the matrix of partial derivatives for consumer i and T is the product own-

ership matrix (i.e., Tlj = 1 if products l and j belong to the same firm and zero otherwise).

I then project the implied marginal costs at equilibrium onto characteristics of the hand-

sets with flexible functional forms54. In particular, I assume that marginal costs are convex

in the major characteristics of the handsets, but I allow for the speeds at which the produc-

tion costs of components of different quality fall over time to differ nonparametrically,

mcjmt =
4

Â
k=1

ck(t)exp(xk
j ) + l f (j) + lm + lt + Gjmt + wjmt, (1.3.5)

where, again, major characteristics include CPU clock speed, camera resolution, display

size, and the “Other” characteristic. Industry reports55 show that chipsets, displays, and

cameras constitute most of the production costs (bill of materials, or BOM) across hand-

sets. I therefore allow the per-quality cost function to be very flexible for the three major

characteristics, but remain constant for the “Other” characteristic. Additionally, marginal

costs are allowed to have different intercepts for different firms, provinces (distribution

54I do not have sufficient bill of materials tear-down data to construct component costs.
55Sample cost breakdowns from Teardown.com.
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costs from major manufacturing centers on the east coast), and time. Finally, I include

the cost shifters (government subsidies and loan interest rates) and network compatibility

(both in the Gjmt term), as well as an i.i.d. cost shock wjmt.

1.3.3 Product portfolio choice

In Stage I of the game, firms adjust their product portfolios. In particular, managers need

to decide which new products to introduce, and which existing products to take down,

to maximize expected portfolio profits. Forward-looking firms in fast-changing high-tech

markets anticipate not only Stage II static profits p f mt(Jmt), but also lifetime profits of their

new products EPjm(Jmt) in the market:

P f mt = max
J f mt✓J f ,t

Â
j2J f mt,j2J f m,t�1

⇥

Epjmt(Jmt)� Fjmt
⇤

+ Â
j2J f mt,j/2J f m,t�1

⇥

EPjm(Jmt)� SCjmt
⇤

,

(1.3.6)

where SCjmt is the sunk introduction cost of product j to market m in month t, reflect-

ing one-time marketing costs, product launch events, renegotiation with local retailers,

etc.; Fjmt is a monthly fixed cost to maintain a product in the firm’s portfolio, reflecting

any channel fixed costs and per-period marketing costs (billboards, TV airtime rates, etc.).

Therefore, the first term is the expected total static profits of maintaining existing products,

and the second term is the expected lifetime profits of introducing new products.

This specification of firms’ objective function, rather than a Bellman equation, makes

several important simplifying assumptions. First, I assume zero scrap values—if a product

is taken down, firms make zero profits56. I then interpret firms’ product discontinuation

decisions as static57, which allows me to identify maintenance costs58. Firms therefore

evaluate only the product’s static profits—as well as its static impact on other products

in the portfolio if it is maintained on the shelf—against the maintenance cost. Second, I

interpret the sunk introduction costs SCjmt’s to also include opportunity costs of waiting

56This is reasonable, given the lack of capacity (see Section 1.2) and liquidity (major manufacturers are
mostly large multi-sector firms) constraints in this market.

57The static assumption here is also based on managers’ practice in this industry: Once a product is intro-
duced, they do not actively think about its life cycle, but only monitor sales so that its presence in the market is
always justified. This is reasonable, in the sense that the impact of any single product’s introduction on other
products’ life cycle paths is likely second order compared to its static impacts.

58This is also reasonable, given the observed thin tails of product life cycles toward their end.
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to launch the product in the future. The opportunity costs are likely small in this market,

given the fast-changing technology—an available design today will quickly become obso-

lete in a few months. As a result, the dynamic game of product introductions collapses to

equation (1.3.6), where firms weigh expected lifetime profits of a new product against its

sunk introduction cost.

However, as alluded to earlier, the expectation of future sales of a product, EPjm(Jmt),

taken over the future evolution of technology mcjmt’s, and product portfolio Jmt’s, requires

managers to keep track of trillions of states, and is thus intractable. While I have shown in

Section 1.2 that the static observables have predictive power for future sales of a product,

and thus can be used by managers in new product introduction, the question of what

managers actually do in the industry remains.

Is the concept of the product life cycle and the prediction of its magnitude used by

managers in this industry? This was Theodore Levitt’s concern (Levitt, 1965)59. Since

then the concept of the product life cycle has been written into an abundance of business

review articles60 and introductory marketing textbooks61, and has become one of the most

familiar concepts among executives around the world. Interviews with product managers

of smartphone manufacturers and industry analysts in China suggest the prevalent use of

the product life cycle to forecast product sales after introduction. For example, the Head

Product Manager of Samsung Mobile in China said:

Every month we determine PLCs and EOPs [end-of-products] to adjust our
product lines. Everyone tries their best to make predictions of PLCs given
the competition. We used to be able to sell our mid-level handsets for 18
months, but can barely maintain 12 months now with the amount of com-
petition.

Combined with the descriptive evidence shown in Section 1.2, I model firms’ prod-

uct introduction decisions by weighing a product’s sunk cost of introduction against the

firm’s rational expectation of the lifetime profitability of the product based on static observ-

59Levitt (1965) famously said, “The concept of the product life cycle is today at about the stage that the
Copernican view of the universe was 300 years ago: a lot of people knew about it, but hardly anybody seemed
to use it in any effective or productive way.”

60Chambers, Mullick and Smith (1971) discuss various forecasting methods for the product life cycle; Sam-
pere (2014) mentions Xiaomi’s product strategy around the length of its product life cycle.

61E.g., Buzzell (1972) and Kotler and Armstrong (2010).
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able product and market characteristics. Specifically, I let firms approximate the expected

lifetime profits of a new product, by relating its lifetime profits to its short-run profits at

release,

EPjm(Jmtjm
0
) = E(x

jmtjm
0

,w
jmtjm

0
)pjmtjm

0
(Jmtjm

0
) · dPLCjm, (1.3.7)

where firms first form beliefs about the magnitude of the product life cycle, based on char-

acteristics of the product and the market at launch-time, for product j, released at tjm
0 in

province m,

dPLCjm = q

PLCXjmtjm
0

, (1.3.8)

where the parameters q

PLC is what firms use to make their best linear predictions, and

remain to be estimated.

The dynamic product portfolio game specified in equation (1.3.6) can be then reformu-

lated as follows: Firms simultaneously choose a set of non-flagship products (given their

flagship products exogenously) to maximize their own expected profits, given the other

firms’ portfolios, or the market product configuration J,

P f mt = max
J f mt✓J f ,t

Â
j2J f mt,j2J f m,t�1

[E(x jmt,wjmt)pjmt(Jmt)� Fjmt]

+ Â
l2J f mt,l 62J f m,t�1

[E(xlmt,wlmt)plmt(Jmt) · dPLClm � SClmt], (1.3.9)

where the expected static profits are integrated over Stage II shocks, and lifetime profits

are approximated with firms’ rational beliefs about product life cycles—both of which are

determined by the market product configuration J, as a result of firms’ portfolio competi-

tion62.

Necessary equilibrium conditions of this game then require every firm f to consider

all possible subsets of the potential-product pool J f ,t (or the power set) in each market-

62This game specified in equation (1.3.9) also assumes no economies of scope for either introducing a new
product, or maintaining an existing one. This is fairly standard in the literature. Empirically, product entries
plausibly do not exhibit economies of scope, given the setup of large manufacturers’ regional offices and
low transportation costs of smartphones. I also do not model the actual development of products, but only
their introductions to the market, after they are developed. Product maintenance could potentially exhibit
economies of scope. I argue that, with small product configuration changes in the counterfactual, this effect is
likely small.
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month (mt), and have no incentive to deviate from the chosen product portfolio J f mt. These

conditions are fairly weak and typically yield many equilibria in positioning games such

as equation (1.3.9). In the estimation to follow, I only build off these necessary conditions to

make inference on sunk and maintenance cost parameters. In the counterfactual analysis,

I rely on firms’ best-response dynamics to select equilibrium.

Finally, sunk costs SCjmt = SC(qSC, Xf m|µjmt) also vary with the smartphone manufac-

turer, and which market the product is introduced into, with an i.i.d. shock µjmt observed

by firms at the beginning of Stage I. Maintenance costs Fjmt = F(qF, Xjm|hjmt) are shifted

by observable characteristics of the product, the type of retail channels, and the market,

with an i.i.d. shock hjmt also observed by firms at the beginning of Stage I.

1.4 Estimation and results

The estimation proceeds in five steps. Similar to solving the game, I work backward in

estimating the model.

1.4.1 Demand

I estimate demand similarly to Berry, Levinsohn and Pakes (1995), using the Generalized

Method of Moments. The main source of endogeneity concerned here is that major smart-

phone manufacturers choose prices after observing demand shocks x’s. I construct three

sets of moments. Following the literature63, I first make a timing assumption that firms

make product choices prior to observing demand shocks, and therefore E[x jmt|xj] = 0.

Given the large number of firms and products, I also assume that fringe and feature phones

are priced competitively, and thus E[x jmt|pjmt] = 0 for product j’s that are not major smart-

phones. The timing assumption also validates the second set of moments, which uses

characteristics of other firms’ products to shift markups (i.e. E[x jmt|x� f ] = 0)—I use the

differentiation IVs in Gandhi and Houde (2015), which measures competition from prod-

63Notably, Fan and Yang (2016), Wollmann (2016), Berry, Levinsohn and Pakes (1995), and many other
studies based on BLP.
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ucts with similar characteristics64. The last set of moments is constructed with instruments

that shift marginal costs of production. Specifically, as mentioned in Section 1.2, I use the

level of government subsidies and the interest rates firms pay on their loans each year as

cost shifters. As shown in Aghion et al. (2015), government subsidies and low-interest

loans are two important types of industrial policies in China that are shown to be corre-

lated with state ownership of firms. Therefore, I argue that while these are likely correlated

with firms’ production costs, they are plausibly uncorrelated with demand shocks.

Table 1.4 presents the demand estimates. I first compare estimates from linear speci-

fications of OLS and IV with no income heterogeneity for a descriptive look at the data.

I simply use the average income in a market for all consumers in that market, reducing

equation (1.3.1) to a linear Logit model, which is then estimated following Berry (1994).

This is shown in the first two columns. The sign of the price sensitivity coefficient a is

negated due to the functional form. Notably, the price sensitivity coefficient is much larger

when price endogeneity is accounted for; at the same time, consumers’ tastes for handset

characteristics are also much stronger. When I move to the third column, where I incor-

porate income heterogeneity and estimate the model by minimizing the GMM objective,

the price sensitivity coefficient is much larger, which suggests the large degree of hetero-

geneity in consumers’ sensitivity to prices. The other estimates are relatively stable from

the linear IV estimates, with stronger preferences for the major characteristics. Other es-

timates are sensible: Consumers prefer 3G and 4G phones; China mobile compatibility is

valued the most due to its largest subscriber base; Apple commands a much larger brand

value, followed by Oppo, Xiaomi, and Samsung, which are the other higher-end brands;

both fringe and feature phone qualities are increasing over time; and finally, the quality of

the outside good is also quickly increasing over time, reflecting the fact that consumers are

holding better handsets over time.

64Demand estimates using the standard “BLP” instruments—sum of characteristics of all competing prod-
ucts in the market—are similar, with slightly weaker estimates of price sensitivity.
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Table 1.4: Demand estimates

OLS IV IV
Income heterogeneity No No Yes

log(yi � pjmt) 1.3457*** 9.2285*** 25.921***

Major smartphones
CPU clock speed (GHz) 0.0004*** 0.3496*** 0.4581***

Display size (inch) 0.7255*** 1.3004*** 1.3978***
Camera resolution (MP) -0.0981*** 0.0225*** 0.1031***
“Other” characteristic 0.1441*** 0.1824*** 0.2464***

2G phone (omitted) (omitted) (omitted)
3G phone 1.7602*** 2.1035*** 2.2079***
4G phone 1.9071*** 2.2145*** 2.3663***

Compatible with CMCC 1.1973*** 1.1869*** 1.1262***
Compatible with CU 0.8886*** 0.6621*** 0.5981***
Compatible with CT 0.8225*** 0.7961*** 0.8254***

Apple (omitted) (omitted) (omitted)
Samsung -2.2775*** -5.2575*** -5.6323***
Coolpad -0.9288 -7.5883*** -8.3547***

HTC -5.2996*** -6.4191*** -6.6120***
Huawei -1.5449*** -6.7430*** -7.4443***
Lenovo -0.3630 -7.7284*** -8.3827***

Motorola -3.3387*** -7.0755*** -7.5790***
Nokia -2.4202*** -5.6584*** -6.1392***
Oppo -1.8160*** -4.7697*** -4.9703***
ZTE -1.0991 -8.0059*** -8.9878***

Xiaomi -1.1026*** -4.1727*** -5.4851***
Vivo -2.4004*** -5.4351*** -5.9169***

Feature/fringe phones
Feature phone 7.2663*** 2.8261*** 1.7808***

Feature phone trend 0.0334*** 0.0958*** 0.1011***
Fringe smartphone -0.3097*** -2.4251*** -2.4218***

Fringe smartphone trend 0.1680*** 0.1969*** 0.1974***

Outside good
Time trend 0.0611*** 0.1375*** 0.1642***
Constant -8.6051*** -3.1578*** 0.0033***

N 330,866 330,866 330,866
R2/GMM objective 0.542 0.215 3,212

Notes: This table summarizes raw demand coefficient estimates. Columns 1 & 2—with-
out income heterogeneity—are estimated with average province income which reduces
equation (1.3.1) to a linear specification, which can be estimated using Berry (1994). Col-
umn 3 shows results from the full demand model estimated with GMM. *, **, and ***
indicate statistical significance at the 1%, 5%, and 10% level, respectively. Product line,
month, and province fixed effects are not reported.
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1.4.2 Marginal costs

With the demand estimates, marginal costs are first inverted out using equation (1.3.4)

and then projected onto product characteristics to estimate the evolution of marginal costs

over time using equation (1.3.5). I make a similar timing assumption that product choices

happen prior to the realization of marginal cost shocks so that E[wjmt|xj] = 0. I estimate

the per-quality cost function ck(t) for each of the three major characteristics over time non-

parametrically with year fixed effects. Table 1.5 presents the results. Columns 2-4 report

the coefficients for each major characteristic exp(xk
j ) over time. The coefficients are falling,

at a progressively slower pace over time. The pattern very well reflects Moore’s Law,

where production costs exponentially decay. Figure 1.4.1 shows this pattern graphically.

Although I do not have data on component-specific costs, I plot the estimated component

costs of CPUs, displays, and cameras using observed product characteristics by year. Cost

schedules along the quality dimension flatten over time. Equivalently, component costs at

higher-quality levels fall much faster. Back to Table 1.5, the other estimates are also sensi-

ble: Cost of the “Other” characteristic is smaller but comparable; cost shifters indeed move

production costs in the expected directions.

While Table 1.5 and Figure 1.4.1 show sensible slope estimates, Table 1.6 presents evi-

dence that the estimated levels of marginal costs are in line with industry estimates of the

bill of materials. As I do not have detailed data on marginal costs of the handsets, I follow

the industry standards of “entry-level” 3G smartphones to select two low-end 3G smart-

phones and compare their estimated marginal costs (predicted marginal costs E
wjmt mcjmt)

with the industry estimates of comparable handsets. The industry BOM estimates also fall

quickly over time, and my predicted marginal costs for the Nokia X5 and the Samsung

I5508 fall reasonably close to the range of estimates.

1.4.3 Maintenance costs

I now turn to the estimation of maintenance costs. Solving the game in equation (1.3.9)

is difficult: The full entry game is of the order 2N , where N is the total number of actual

and potential products in the market. In the case of Jan. 2013, Beijing, N � 199, which is
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Table 1.5: Marginal cost coefficient estimates

Estimate SE
exp(CPU clock speed)

2009 755.6*** 14.43
2010 242.2*** 8.980
2011 159.1*** 5.119
2012 112.6*** 2.617
2013 100.4*** 1.855
2014 46.87*** 1.495

exp(Display size)
2009 72.03*** 0.6775
2010 45.34*** 0.3338
2011 17.90*** 0.1698
2012 8.574*** 0.0722
2013 2.460*** 0.0268
2014 1.189*** 0.0164

exp(Camera resolution)
2009 69.77*** 0.7661
2010 30.15*** 0.4274
2011 12.66*** 0.1512
2012 2.791*** 0.0314
2013 1.463*** 0.0261
2014 0.2381*** 0.0108

exp(”Other” characteristic) 12.59*** 0.2280
Subsidies -27.29*** 0.7000

Interest rates 5.050*** 0.9064
Constant 1272*** 24.46

R2 0.751
N 261,051

Notes: This table shows that component cost (almost) exponentially decays
over time without any functional form assumptions. The convex cost sched-
ule for each major characteristic flattens out over time. Cost shifters (gov-
ernment subsidies and loan interest rates) used for demand estimation are
included and indeed shift production costs in expected directions. *, **, and
*** indicate statistical significance at the 1%, 5%, and 10% level, respectively.
Firm, time, and province fixed effects, and network compatibility are not re-
ported. The number of observations drops after I eliminate flagship products
for cost estimation. CPU clock speed is measured in GHz, display size in
inches (diagonal), and camera resolution in half mega-pixels.
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Figure 1.4.1: Estimated component cost reductions

Notes: This figure plots predicted component costs at estimated parameters,
against the observed component quality of smartphone handsets in my sam-
ple. While the convex-shaped cost schedule across quality is assumed from
the exponential functional form, rates at which these cost schedules fall over
time are estimated nonparametrically with year dummies. This figure shows
that marginal cost schedules flatten over time, i.e., a new high-quality compo-
nent comes out at a higher price but the price also falls much faster than that
of a lower-quality component (Moore’s Law). In Appendix A.1 I show that
this feature of high-tech markets naturally generates bell-shaped product life
cycles and their properties shown in Figure 1.2.8.
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the observed number of non-flagship products in the market. Therefore, I instead use the

necessary conditions (for any observed product configuration to be a Nash equilibrium)

to first construct bounds on maintenance costs65. The argument is as follows. For the

current configuration J in market mt to be a Nash equilibrium, it has to be the case that

any unilateral change by any firm f to remove a product j cannot be profitable for that

firm, i.e.,

E(x,w)p f mt(J)� Fjmt � E(x,w)p f mt(J \ j), (1.4.1)

which provides an upper bound on the maintenance cost Fjmt. Similarly, any unilateral

change by any firm f to add a product j also cannot be profitable for that firm, i.e.,

E(x,w)p f mt(J) � E(x,w)p f mt(J [ j)� Fjmt, (1.4.2)

which provides a lower bound on the maintenance cost Fjmt. Combining equation (1.4.1)

and equation (1.4.2) gives us an interval that Fjmt must fall between.

To empirically compute the bounds, I rely on monthly EOPs (product discontinua-

tions66), as well as variations in market structures and demand characteristics across mar-

kets for identification. I first restrict the sample to the 8,319 product-markets mentioned

in Section 1.2 in which I observe the discontinuation months (products discontinued at

least one month before the sample ends in Nov. 2014). To construct the upper bounds,

I remove one product at a time from the last month before it is discontinued in a market,

and compute equation (1.4.1), i.e., E(x,w)p f mt(J)�E(x,w)p f mt(J \ j), where I compute Stage

I expected profits by integrating out the estimated empirical distribution of
�

x jmt, wjmt
�

from demand and marginal cost estimation67. To construct the lower bounds, I add one

product at a time to the first month it is discontinued in a market, and similarly compute

65The conditions used to construct the bounds are similar to Fan and Yang (2016). I differ in the empirical
implementation and interpretation, as I separately estimate product maintenance and introduction costs.

66Given the fine level of my market definition (province-month) and the retail transaction nature of the
data, in some cases, it would look like the products were temporarily taken down and then started selling
again. I let the demand model rationalize such patterns instead of modeling it as a discontinuation decision
by managers.

67The procedure is similar to Fan and Yang (2016): I draw
⇣

x̂ jmt, ŵjmt

⌘

from their respective empirical dis-
tributions within market-month, compute equilibrium prices and variable profits, and then take the average
profits for each firm.
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equation (1.4.2), i.e., E(x,w)p f mt(J [ j)�E(x,w)p f mt(J). The resulting bounds are shown in

Figure 1.4.2. The bounds are fairly tight, given the monthly data.

For the estimation of firm beliefs about product life cycles and sunk introduction costs

to follow, the rest of this section shows how I obtain point estimates of maintenance costs68.

I specify per-period maintenance costs to be shifted by product, retail channel, and market

characteristics,

log(Fjmt) = q

FXjm + hjmt, (1.4.3)

where the characteristics Xjm include a quality index of the product constructed from the

demand estimates69, qj = bxj; average income of the market; overall shares of the sales

of product j in province m through different channels (carriers, general electronics stores,

telecommunication stores, and others70), to reflect the different inventory and shelving

costs at different retail channels; and firm fixed effects. In particular, I assume that the

maintenance cost for a product-market is, on average, constant over time71.

With the computed bounds and the specification in equation (1.4.3), I obtain point es-

timates of maintenance costs by minimizing the following simulated inequality objective

function,

Q(q) =
1
s Â

s,j,m
[max{F(q, Xjm|hs

jmt)�UBjm, 0}2 + max{LBjm � F(q, Xjm|hs
jmt), 0}2], (1.4.4)

the rationale of which is to penalize the parameters for going beyond the bounds. Com-

68Given the tight bounds of estimated maintenance costs shown in Figure figure 1.4.2, I could follow Berry,
Eizenberg and Waldfogel (2016) and Fan and Yang (2016), and directly use these bounds for welfare analyses.
Different from those studies, the dynamic nature of my model requires feeding estimated maintenance costs
into the estimation of sunk costs—which are also estimated with bounds—resulting in “bounds on bounds.”
This is currently in progress.

69See Fan and Yang (2016) for a similar quality index measure.
70I observe six types of retail channels in the GfK data: general electronics stores (e.g., GOME and Sun-

ing—large chain electronics and appliances stores similar to BestBuy in the US); carrier retail channels;
telecommunication stores, which are small storefronts that only sell cell phone-related products (both chain
and independent); online retail; and others (general-purpose markets similar to Walmart in the US). After
dropping online sales, I combine chain and independent telecommunication stores in this analysis.

71This is consistent with smartphone product managers’ and industry analysts’ expectations as well: Main-
tenance cost is typically small and fixed over time. Moreover, after controlling for product quality, firm iden-
tity, market wealthiness, and types of channels, I argue that it is reasonable to assume that any idiosyncratic
shock each month is unlikely to be correlated with observables, especially within a two-year window—the
typical life span of a smartphone handset in this market. It is worth noting that this assumption allows me to
separately identify sunk introduction costs from the per-period maintenance costs.
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Table 1.6: Estimated productions costs vs. industry BOM estimates

2010 2011 2012 2013 2014
Nokia X5 1,209 688 332 210

Samsung I5508 746 426 287 209

Industry BOM est. for “entry-level” 3G smartphones
553-618 378-410 254-285

Notes: This table shows that, for selected “entry-level” 3G smartphones (as defined by
industry standards), my estimates are in line with industry BOM (bill of materials, or
total production costs) estimates. Marginal cost predictions are mean estimates without
cost shocks. Industry estimates from Nomura Global Markets Research; see footnote 148
for link. Currency in RMB; industry estimates converted from USD using each year’s
respective exchange rates. Industry numbers are based on midyear estimates. Reported
marginal cost predictions are as of July of the corresponding year.

Figure 1.4.2: Maintenance cost bounds
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Notes: This figure plots distributions of upper (red dashed) and lower (navy solid)
bounds (in logs), computed from equation (1.4.1) and equation (1.4.2). This figure shows
that computed bounds used to estimate maintenance costs are very tight given thin tails
of product life cycles and monthly data.
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putational details are in Appendix A.3.2.

Table 1.7 shows the point estimates: Maintenance costs are higher for higher-quality

products, in wealthier markets, at carrier channels, and for generally higher-end brands.

In terms of levels of maintenance costs, Figure 1.4.3 shows the distribution of estimated

maintenance costs in the sample market of Jan. 2013, Beijing. In this market, maintenance

costs are estimated to average about RMB 106K and range between 20K and 262K. Al-

ternatively, these are equivalent to USD of 17K, 3.3K, and 42K, respectively. Among the

products in this market, the higher-end Samsung Galaxy Premier would cost RMB 232K to

be maintained on the shelf each month, while a mid-level Samsung handset—the Galaxy

Trend 2—would cost only about half that, or 128K, each month. For a much lower-end

handset from the old HTC sub-brand Dopod72, Model 566 would only cost 37K to remain

on retailers’ shelves each month.

1.4.4 Firm beliefs about product life cycles

The rational expectation assumption allows me to construct firms’ beliefs about the prod-

uct life cycle dPLC from the realized technologies (marginal costs and product qualities in

Ep) and market structures Jmt, and expected variable profits and maintenance costs each

period internally consistent with the model,

PLCjm =
ÂTjm

t=tjm
0
[E(x jmt,wjmt)pjmt(Jmt)� F̂jm]

E(x
jmtjm

0
,w

jmtjm
0
)pjmtjm

0
(Jmtjm

0
)

, (1.4.5)

where Tjm denotes the month product j is actually discontinued from province m, and F̂jm

is the expected per-period maintenance cost prior to observing the cost shock h’s. The term

PLCjm then represents the relationship between product j’s static payoff to its lifetime pay-

off in province m—the denominator is its expected flow profits prior to observing demand

and marginal cost shocks, whereas the numerator is its expected lifetime profits.

To relate firms’ expectations of dynamic payoffs to their static profits in the model, I

estimate their expected magnitude of product life cycles, dPLC, by projecting the realized

72Similar to Samsung’s sub-brand Anycall in China, HTC’s sub-brand Dopod was discontinued since 2010
when all of its models began to be simply branded under HTC.
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Table 1.7: Maintenance cost coefficient point estimates

Estimate SE
Product, market, retailer chars.

Product quality (index) 0.264*** 0.006
Avg. province income 0.324*** 0.014
Share of carrier sales 0.479*** 0.110

Share of GES sales -0.037 0.122
Share of TCS sales -0.186* 0.113

Share of Other sales (omitted)

Manufacturer-specific costs
Samsung (omitted)
Coolpad -0.321*** 0.030

HTC -0.862*** 0.034
Huawei -0.170*** 0.034
Lenovo 0.208*** 0.033

Motorola -0.451*** 0.027
Nokia 0.370*** 0.031
Oppo 0.305*** 0.046
ZTE -0.374*** 0.034
Vivo 0.099** 0.044

Std. dev.(s
h

) of cost shock (h) 1.03(-4) 0.003
Constant 9.12*** 0.112

N 8,319

Notes: This table shows point estimates of maintenance cost coefficients.
Product quality is constructed from demand estimates of four major char-
acteristics of smartphone handsets (CPU clock speed, display size, camera
resolution, and the “Other” characteristic). Avg. province income is included
as a proxy for wealthiness of the market, as it likely shifts advertising rates
and shelving cost at retailers. Sales through four types of retail channels are
defined on product-market level, and do not vary over time—this reflects dif-
ferent costs of inventory and shelf space at different retailers. Manufacturer-
specific costs reflect firms’ differential costs in marketing, their relationships
with local retailers, whether they have regional offices, and etc. Apple and
Xiaomi are excluded from all cost estimations, given that they only carry flag-
ship products. Standard deviation of the cost shock also implicitly incorpo-
rates unexpected shocks in firms’ future profitability, to rationalize contradic-
tions of maintenance cost bounds. (x) indicates ⇥10x. *, **, and *** indicate
statistical significance at the 1%, 5%, and 10% level, respectively.
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Figure 1.4.3: Estimated maintenance costs in sample market: Jan. 2013, Beijing

Notes: This figure plots estimated maintenance costs in Jan. 2013, Beijing, with sum-
mary statistics in this market, and three sample products. Dopod is the old HTC sub-
brand in China before 2010. The Galaxy Premier is a higher-level product than the
Galaxy Trend 2 by Samsung. Plotted are estimated mean maintenance costs without
cost shocks. Currency in RMB. In USD: min = 3.3K; mean = 17K; max = 42K.
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PLC’s onto contemporaneous characteristics of the products and markets at the time of

release, to estimate firms’ belief parameters q

PLC:

log(PLCjm) = b

PLCxjmtjm
0
+ l f (j) + lm + fjm, (1.4.6)

where xjmtjm
0

includes major characteristics of the product and market at the time of release

informed by the stylized model: the quality (index) of the product, the frontier quality

(index) of the market, the number of products in the market, and the average income of

the market (as proxy for price sensitivity). I also allow for different intercepts for each firm

and province. The PLC shock f is assumed to be i.i.d.73.

Estimated demand and marginal and maintenance costs are used to compute equa-

tion (1.4.5), which is then used to estimate firms’ PLC beliefs in equation (1.4.6). The sam-

ple is further restricted to the 7,405 product-markets whose introduction and discontinu-

ation are both observed. Table 1.8 presents the results, which confirm the practice of the

managers, evidence in Section 1.2, and intuition from the stylized model: PLCs are larger

for higher-quality products and in less competitive markets; moreover, PLCs are also de-

pressed by the quality frontiers of markets and strengthened by consumer price sensitiv-

ity74. These relationships are even clearer in Table 1.9 with a 2-by-2 example. Managers

can expect about 4 times more lifetime profits of a product compared to its first-month

profits in the less competitive Tibet market than in Beijing (although the level of lifetime

profits of any product might very well be higher in Beijing). At the same time, Samsung’s

managers of the Galaxy Ace can expect about one-third more lifetime profits, compared to

its profits in the release month, than Nokia’s managers of the C5.

73This shock includes many future uncertainties faced by managers at the time of decision. In particular,
this shock could be correlated with today’s actions, in that managers’ portfolio decisions would likely affect
future market structures. I argue, however, that this is of second-order importance to the managers whose
heuristic predictions likely do not cover this effect.

74Average consumer price sensitivity is negatively proxied by the wealthiness of the market. The intuition
behind this relationship is that PLCs in the model in Appendix A.1 are driven by price changes (due to cost
drops), which are magnified into profits in markets with higher price sensitivities.
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Table 1.8: Firm belief coefficient estimates

Estimate SE
Chars. at release time

Product quality (index) 0.609*** 0.015
Frontier quality (index) -0.344*** 0.019

# Products in market -0.001*** 5.65(-5)
Avg. province income -1.470*** 0.192

Manufacturer-specific effects
Coolpad (omitted)

HTC 0.651*** 0.054
Lenovo 0.225*** 0.049

Motorola 0.601*** 0.051
Nokia 0.781*** 0.052
ZTE -0.070 0.047

Oppo 0.489*** 0.078
Samsung 0.664*** 0.047
Huawei 0.269*** 0.046

Vivo 0.556*** 0.079

Constant 3.423*** 0.142
R2 0.513
N 7,405

Notes: This table shows coefficient estimates of how firms form rational ex-
pectations over lifetime profits of their new products at release time. Depen-
dent variable is the sum of the expected future stream of profits, computed
with estimated demand, marginal cost, and from firms playing Stage II pric-
ing game under realized market structures in the future. Inclusion of the
four continuous variables are informed by the descriptive evidence in Fig-
ure 1.2.8 and the stylized model provided in Appendix A.1. The sample of
7,405 observations consists of all product-markets in which I observe both
introduction and discontinuation of the product in the market. (x) indicates
⇥10x. *, **, and *** indicate statistical significance at the 1%, 5%, and 10%
level, respectively. Province fixed effects not reported. Summary statistics
for the continuous variables: product quality (mean: 5.83, sd: 1.33); frontier
quality (mean: 8.64, sd: 1.80); # products in market (mean: 591, sd: 472); and
avg. province income (mean: 1.15, sd: 0.47).
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1.4.5 Sunk introduction costs

The estimation of sunk introduction costs follows a revealed preference argument simi-

lar to that of the maintenance costs. I also integrate out estimated fjm’s, and use firms’

expected product life cycles to relate their static profits to dynamic profits. Specifically,

removing a product from the first month it is introduced in a market results in an upper

bound of the introduction cost, i.e.,

E(x jmt,wjmt)pjmt(J) · dPLCjm � SCjmt + Â
l2J f mt,l 6=j

E(xlmt,wlmt)plmt(J) � E(x,w)p f mt(J \ j), (1.4.7)

and similarly, adding a product to the month before it is first introduced in a market results

in a lower bound of the introduction cost, i.e.,

E(x jmt,wjmt)pjmt(J [ j) · dPLCjm � SCjmt + Â
l2J f mt

E(xlmt,wlmt)plmt(J [ j)  E(x,w)p f mt(J). (1.4.8)

Given the nature of the introduction cost, I allow it to vary flexibly with the identity of

the firm and which market the product is being launched into, with an i.i.d. shock µ each

month,

log(SCjmt) = l f (j) + lm + µjmt. (1.4.9)

The rest of the introduction-cost estimation follows closely the logic of the maintenance

costs using objective function 1.4.4 to obtain point estimates. Identification of the sunk

costs comes from several sources. First, while I estimate maintenance costs with bounds, I

obtain point estimates with the inequality objective function to avoid bounds on bounds75.

Second, although I estimate maintenance costs using end-of-products, I assume monthly

maintenance costs are, on average, fixed throughout each product’s lifespan. With these

assumptions, the identification of sunk costs comes from variations in local market condi-

tions and the timing of introductions across markets (Figure 1.2.4).

Results are presented in Table 1.10. Instead of the actual coefficient estimates, I report

the implied introduction cost of an average product from each brand into a select sample

75Given the estimated tight bounds of maintenance costs, bound estimates of sunk costs based on
maintenance-cost bounds might still be reasonable—this is currently in progress.
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of representative provinces for interpretation. Overall, these introduction costs range be-

tween 2 and 15 million RMB—roughly USD 320K and 2.4 million—per product-market76.

Introduction costs are higher for higher-end brands and wealthier and larger (in popula-

tion) markets.

1.5 Counterfactual policy analysis

With the model and estimates in hand, I now illustrate firms’ product portfolio responses

to the industrial policy introduced at the beginning of this paper with counterfactual anal-

yses. Spending up to $10 billion USD in subsidies77, this policy induced entry of a large

fringe78 both in the number of fringe models and their total market share, shown in Figure

1.5.1. This policy started roughly in Jan. 2012, and I evaluate the impact of fringe entry

on incumbent firms’ product portfolio choices one year later, in Jan. 2013. I do so in a

counterfactual experiment by considering what would have happened to product variety,

prices, and welfare in the absence of the fringe competition.

Addressing this question requires explicitly solving the incumbent firms’ product port-

folio choice game in equation (1.3.9), which presents several challenges. First, the presence

of multiple equilibria in positioning games is the rule rather than exception. Enumerating

all equilibria of the portfolio game is impossible for any decent size of potential prod-

76These estimates are substantially higher than the estimates of development costs cited from press in Sec-
tion 1.1 for several potential reasons. First, MIIT’s estimates are on the model level, while I collapse similar
models onto the product level. Second, MIIT’s estimates are based on a low-end domestic handset—target
of the industrial policy—while my estimates are for the major smartphone manufacturers’ products. Third,
MIIT’s estimates likely focus on design and engineering costs of handset development, while my estimates
include market-level marketing and retail negotiation efforts, as well as the opportunity costs of waiting to
launch the product in the future.

77These subsidies were delivered in the form of cutting product testing fees and fringe-product marketing,
by state-owned carriers. See footnote 12 for more details.

78Two technological barriers were also lifted around the same time. Both MediaTek and Qualcomm started
releasing reference designs that made integrating their chipsets into smartphone handsets much easier for
handset manufacturers. Android also started gaining popularity in China around 2011-2012, starting with its
version 2.2 (Froyo), which gave rise to a large support industry of software developers. These two combined
largely reduced the need for smartphone manufacturers to have teams of engineers and R&D to produce mid-
to low-level handsets, allowing them to focus on low-cost manufacturing. Therefore, results in this section
can also be interpreted as the effects of technology sharing and platform entry on product varieties. However,
I do not estimate firms’ product development costs on the country/year level, and therefore cannot separate
out the effect of the competitive policy and the technology-sharing inventions. This paper thus does not aim
to provide a detailed cost/benefit analysis of the competitive policy, but only studies the effect of competition
on product variety.
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Figure 1.5.1: Chinese industrial policy and fringe presence

(a) 2012 Chinese pro-competitive policy in the smartphone market
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(b) Fringe presence
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Notes: These two figures show the effect of the 2012 pro-competitive policy
implemented by the Chinese government—the increasing presence of fringe
firms in the Chinese smartphone market after 2012. Plotted in Figure 1.5.1a is
the total number of unique fringe smartphone manufacturers in China. Solid
vertical line, at Jan. 2012, indicates the approximate beginning of the policy.
Dashed vertical line, one year later (Jan. 2013), indicates the month in which
I evaluate the effect of this policy in counterfactual analysis. In Figure 1.5.1b,
solid blue line and dashed red line are stacked (gap represents products by
major manufacturers).
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ucts for the twelve major manufacturers to consider79. I therefore use an iterated best-

response algorithm and randomize the order of play between firms across simulations80.

Second, the pool of potential product designs available to firms every month is unob-

served, changes over time, and determines the dimensionality of the game. To tractably

answer the question of firms’ product portfolio responses to fringe entry, I define the set

of potential products in Jan. 2013 to include all non-flagship products that were intro-

duced in China between January and February of 2013. This allows me to examine which

major manufacturer’s product introduction was promoted early or delayed due to fringe

entry. Finally, I further constrain the dimensionality of the game by only considering new

product introductions in the counterfactual81.

Table 1.11 first summarizes the set of potential products. There are a total of 17 products

to be considered by seven firms, with Samsung having the most products at four. Column

3 shows that this set is a significant portion (⇠10%) of firms’ existing product portfolios.

Examples show that these products are important—the Samsung Galaxy Grand eventually

became a blockbuster handset and the ZTE Grand S was near the market’s frontier quality

in all major characteristics. The final column shows how many product introductions were

observed, on average, in each market. Table A.1 in Appendix A.2.3 presents the full list of

potential products.

A final piece needed for the counterfactual simulation is the construction of sunk and

variable costs, firms’ PLC beliefs, as well as consumers’ mean utility for products, which

79The size of the product introduction game alone is the power set of the set of all potential products. For
example, in my actual counterfactual exercise, I consider 17 potential products among seven incumbent firms.
Solving for all equilibria of this game is of the size 217—in order to consider all possible product configura-
tions. Then to solve for equilibrium prices in Stage II under each product configuration, 10 simulations of
this exercise would roughly take 3 months of runtime on 100 high-power computing cores in parallel on the
Wharton High-Performance Computing Cluster.

80The iterated best-response algorithm is equivalent to an equilibrium selection procedure based on a best-
response dynamic suggested in Lee and Pakes (2009) and also implemented in Wollmann (2016). Randomizing
the order of play across simulations produces an “average” equilibrium in the counterfactual. Details of the
iterated best-response algorithm are in Appendix A.3.3.

81In the counterfactual, I keep firms’ product discontinuation decisions at the observed level. Allowing
firms to re-adjust product discontinuation timings also makes the portfolio game computationally infeasi-
ble—for instance, the game of product discontinuation alone is of order 2199 in Jan. 2013, Beijing. This further
simplification is justified for two reasons. First, for a product still near the peak of its product life cycle, it is
unlikely that this change in competition will alter the firm’s portfolio profitability to the extent that the prod-
uct will be immediately discontinued. Second, for a product approaching the tail of its product life cycle, it is
more likely that its EOP might be affected by the change in competition. However, given the thin tail of the
product life cycle, the impact of its discontinuation (or lack thereof) on the firm’s new-product-introduction
decisions is likely orders of magnitudes smaller than the profitability change of the new product.
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are not observed in the data in a given market-month (Jan. 2013), but could have been

offered, and might now be offered in the more concentrated world82. I follow the timing

of the model described in Section 1.3, and let firms play the Stage I portfolio choice game:

First draw sunk cost shocks from the estimated distribution µjmt ⇠ N(0, ŝ

µ

); then con-

struct sunk costs from the point-estimated coefficients, using equation (1.4.9); firms form

beliefs dPLCjm, using equation (1.4.6); then take expectations for Stage II marginal costs and

demand, over shocks (wjmt, x jmt) (from equation (1.3.5) and (1.3.1)); and finally, firms take

turns in maximizing expected portfolio profit specified in equation (1.3.9), conditional on

other firms’ up-to-date portfolios, and iterate until no firm has an incentive to deviate.

I first decompose the static and dynamic incentives behind firms’ product introduction

incentives. Increased fringe competition affects the incumbent firms’ static portfolio prof-

itability as well as their expected patterns of product life cycles in the future. I illustrate

these two mechanisms by considering a scenario in which all 17 potential products were

introduced in all 31 markets. In Table 1.12, I compare how the average static and dynamic

profitability of these 527 product-markets were affected by fringe entry. Ignoring impacts

of these introductions on other products, the average product’s short-run profits decrease

by RMB 38K, or 5.3% with fringe competition. This is the typical static entry argument,

which predicts additional firm/product entry, induced by higher profitability in less com-

petitive environments, and vice versa. The dynamic channel considered in this paper is

through changes in expected product life cycles: On average, additional competition also

depresses the average magnitude of expected product life cycles by 38%, and when put

together with the static profit changes, this implies an average lifetime profitability reduc-

tion of 41%, or 6.9 million RMB, per product-market. Firms’ dynamic product introduction

incentives thus will amplify the effect of competition on firms’ portfolio choices in equilib-

rium.

I now turn to equilibrium results. In equilibrium, however, the effect of competition on

firms’ static portfolio choices is ambiguous (Johnson and Myatt, 2003; Chu, 2010): Incum-

bent firms could “fight” by expanding their portfolios toward the low-end fringe entry,

82I observe 78 instances of product introductions in the 31 markets in Jan. 2013, out of the 17⇥ 31 = 527
possible product introductions.
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or “accommodate” by segmenting the market, depending on the heterogeneous demand,

costs, existing products, and strategic interactions among the incumbent firms. Further-

more, these different static incentives will be amplified by the dynamic incentives of chang-

ing product life cycles from the competitive pressure.

To illustrate the effect of competition on firms’ pricing, and static and dynamic product

introduction incentives in equilibrium, I compare predictions of three different models in

the counterfactual to the observed product variety, prices, and welfare: In the counterfac-

tual without fringe competition, 1) product portfolios are fixed at the observed level83, and

firms only adjust prices; 2) firms re-optimize product portfolios, but (naively) hold their

PLC beliefs constant; 3) firms re-optimize product portfolios, and rationally adjust PLC

beliefs.

Findings: portfolio sizes and welfare predictions

As a baseline, I observe 2.52 new product introductions per market after fringe entry (Table

1.13). Average market-month welfare totals 1.497 billion RMB, or an annualized 557 billion

RMB, for China, including consumer surplus from access to the mobile phone handset

market84 and major manufacturers’ variable profits85.

83Another comparison is a model that does not allow for any new product introduction at all, which is more
consistent from an ex ante policy analysis perspective. This is currently in progress. Compared to that model,
the current model, with portfolios fixed at the observed level, provides a lower bound on the power of product
introductions in constraining markups and prices in the counterfactual.

84Consumer surplus is computed as the simulated compensating variation with income effects (McFadden,
2012).

85In the following welfare calculations (only in the calculations of firm profits in the fourth row in Table
1.13), for comparison purposes, I do not include firms’ sunk and maintenance costs, and accordingly also do
not account for expected future profits of products.
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Table 1.9: Predicted PLC multipliers, example

dPLC Beijing Tibet
Quality\Comp. competitive concentrated

Nokia C5 low 29.04 115.4
Samsung Galaxy Ace high 37.46 158.3

Notes: This table shows a 2-by-2 example of predicted PLC multipliers dPLC for the
(lower-end) Nokia C5 and the (higher-end) Samsung Galaxy Ace in Beijing (more com-
petitive) and Tibet (less competitive), at estimated parameters shown in Table 1.8. dPLC
is defined as the ratio between expected lifetime profits of a product with its instanta-
neous profits in the first month after its release. This table shows that expected PLCs are
much larger/longer for a higher-quality product, or in a market with less competition
at the time of release.
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Table 1.10: Estimated average introduction costs

Avg. introduction cost
(RMB, millions)

Brand
avg. across products and markets

Vivo 10.22
Oppo 9.303

Samsung 7.577
Motorola 7.053

Nokia 6.686
Lenovo 6.137
Huawei 5.033
Coolpad 4.324

HTC 3.969
ZTE 2.917

Province (entry cost into)
avg. across products and brands

Guangdong 15.19
Jiangsu 10.26

Shanghai 8.552
Henan 7.753
Beijing 7.720

Inner-Mongolia 5.713
Tianjin 5.010
Tibet 4.143

Jiangxi 2.859
Hainan 1.937

Notes: This table shows that the average introduction cost for a new product into one
province is about $1 million, with large heterogeneity across brands and markets. It
is estimated to be more costly to introduce a new product from a higher-end brand
into a larger/wealthier market. Reported introduction costs are not actual coefficient
estimates, but rather implied average introduction costs for the respective brands into
the respective provinces. Reported province introduction costs are a select subset of the
estimated introduction costs for 31 provinces.
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Table 1.11: Potential products in Jan. 2013

Firm # Potential Existing avg. Example # Introduction
product portfolio size (Jan.)

Samsung 4 35.52 Grand 0.32
Huawei 3 20.58 Y310 1.29
Lenovo 3 29.29 LePhone 0.23
Coolpad 3 27.77 8070 0.29

ZTE 2 14.42 Grand S 0
Oppo 1 12.00 R2 0.39
Vivo 1 12.58 S11 0
Total 17 237.2 2.52

Notes: This table summarizes the set of potential products and players in the counter-
factual game. Potential products are defined as the set of all products newly introduced
to any of the 31 provinces between Jan. and Feb. of 2013. This table suggests that these
products are important (e.g., the Samsung Galaxy Grand was a blockbuster handset;
ZTE’s Grand S was close to the technology frontier at the time), and significant in mag-
nitude (about 10% of existing portfolios). Columns 2 and 4 are averaged across markets.
Column 4 shows, in Jan., how many product introductions each market sees, on aver-
age, in the data. Table A.1 in Appendix A.2.3 presents the full list of potential products
with their characteristics.

Table 1.12: Decomposition of static and dynamic product-introduction incentives

Before policy After policy Change
w/o fringe w/ fringe

Short-run profits (RMB, 000’s) 757.2 719.2 -5%
Expected PLC magnitude 22.21 13.73 -38%

(Lifetime / short-run profits)

Lifetime profits (RMB, millions) 16.82 9.875 -41%

Notes: This table illustrates the mechanisms under how market competition affects
firms’ product profitability and in turn their product introduction incentives. I de-
compose firms’ product introduction incentives into direct profitability concerns and
indirect concerns through their expectations of the product life cycle in the following
exercise: let all 17 potential products be introduced into all 31 markets and compare
the average profitability/product life cycle of each product when the fringe is present
from the policy to when it is eliminated in the counterfactual. This table shows that
the increased competition reduces an average product’s immediate profitability by 5%
but its expected lifetime profitability by 41% through the 38% reduction in firms’ PLC
multiplier belief calculations. All reported numbers are averaged across the 17 ⇥ 31
product-markets.
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Table 1.13: Effects of fringe entry: Portfolio sizes and welfare predictions

Observed Counterfactual: no fringe
w/ fringe fixed products w/o DPLC w/ DPLC
(baseline) (price effects only) (static) (dynamic)

# New products 2.52 2.52 7.32 9.58

Avg. handset price (RMB) 1,501 1,523 1,512 1,508
Consumer surplus (RMB, millions) 897 830 839 842

Firm profits (RMB, millions) 601 635 645 650

Annualized welfare (RMB, billions) 557 545 552 555

Notes: This table summarizes results of the counterfactual simulations, and decomposes the price effect, effect on firms’ static
product-introduction incentives, and effect on firms’ dynamic product-introduction incentives, due to the fringe competition. Specif-
ically, this table presents major handset manufacturers’ product portfolio choices in equilibrium, and welfare estimates, both ob-
served after fringe entry, and predicted in the absence of fringe competition, using three different models, in Jan. 2013. Column 1
presents observed product introductions, and welfare estimates based on those, after fringe entry. In column 2, firms’ portfolios are
fixed at the observed level, and can only adjust prices. In column 3, firms can adjust both their product portfolios and prices, but
(naively) hold their future beliefs constant. In column 4, firms optimally adjust their portfolios and prices, based on both instanta-
neous profitability changes, as well as their future-belief changes, at the estimated parameters, in the counterfactual with no fringe
competition. All numbers, except welfare, are averaged across 31 markets and 100 simulations in one month. Avg. handset price is
share weighted. Consumer surplus is computed by simulated compensating variations with income effects for access to the entire
set of mobile phone handsets following McFadden (2012). Firm profits exclude introduction and maintenance costs and expected
future profits. Welfare is annualized and summed over all provinces in China.
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Column 2, Table 1.13, shows the price effects of fringe entry if we do not let firms adjust

their product portfolios in the counterfactual: Increased competition is predicted to have

constrained prices by 1.4%; increased consumer surplus by 8.0% (both lower prices and

more product variety from fringe firms); and decreased producer markups (profits) by

5.4%. The net welfare benefit of this policy is predicted to be an annualized 11.5 billion

RMB in China.

In column 3, I let firms re-optimize product portfolios based on considerations of static

tradeoff changes and a fixed future outlook (equivalent to a fixed hurdle rate model86):

Incumbent manufacturers would have introduced almost three times more new products

without fringe competition. Firms’ additional product introductions in the less compet-

itive environment self-regulate anti-competitive price effects, markups, and loss of con-

sumer surplus: Welfare is predicted to have been only 4.8 billion RMB lower, without the

fringe entry.

Finally, column 4 presents predictions using my model with product life cycles. With-

out fringe competition, firms fully re-optimize product portfolios, taking into account both

the change in short-run profits and the change in future outlook for product life cycles. As

alluded to in Table 1.12, the additional channel of firms’ dynamic product-introduction

incentives is important: Firms would have introduced 2.3 more handsets per province-

month, had we accounted for their now larger magnitudes of product life cycles in the less

competitive environment. Firms’ dynamic considerations of product life cycles in portfolio

choices help further self-regulate markets: Without fringe entry, the average price would

have been only 7 RMB higher, and total welfare would have fallen by only about 2 billion

RMB, or 19% of what was predicted in column 2, without allowing for portfolio adjust-

ments. Compared to results in column 3, not accounting for firms’ dynamic incentives in

product introductions can understate firms’ portfolio responses to the industrial policy by

24%, and overstate the welfare benefit of the policy by about 3 billion RMB, or more than

twice as much.
86See Wollmann (2016). This still differs slightly, in that I use sunk cost estimates from my model with PLCs

in the counterfactual.
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Findings: heterogeneous effects and product positioning

Table 1.13, however, also masks significant heterogeneity in the effect of competition on

firms’ portfolio choices. As previously shown in Figure 1.2.2, after the implementation of

the industrial policy, fringe entry also varied significantly across markets given heteroge-

neous demand characteristics and market sizes. As a result, removing fringe competition

in the counterfactual, Figure 1.5.2 unveils heterogeneous effects of the industrial policy

on product variety across markets. Expectedly, larger and wealthier markets were able

to justify more fringe entry after the policy, which, in turn, depressed incumbent firms’

new product introductions the most: For instance, both Shanghai and Inner-Mongolia saw

three new product launches in Jan. 2013—while Shanghai would have seen, on average

(across simulations), 9.7 products, but Inner-Mongolia would have only seen 2.2 more

products in the absence of fringe competition.

More interestingly, the kind of products that would have been introduced is also dif-

ferent. Figure 1.5.3 shows the effect of competition on firms’ product positioning choices

by comparing the distribution of incumbent firms’ new product characteristics with and

without fringe competition. I summarize product characteristics in a vertical measure of

product quality—constructed from demand estimates, i.e. bxj + DNC
jmt + l f (j) + ll(j) from

equation (1.3.1)—for exposition: For example, Lenovo’s LePhone 2802 was introduced at

the bottom of the quality spectrum, while Samsung’s Galaxy Grand was near the quality

frontier at the time.

As discussed, the effect of low-end fringe entry on incumbent firms’ portfolio choices

is theoretically ambiguous—Figure 1.5.3 shows that incumbent smartphone manufactur-

ers responded to fringe entry by expanding their product portfolios (in range, not size),

and introducing more “fighting brands,” such as the Lenovo LePhone 2802, to compete

with fringe products. Figure 1.5.3 thus reveals another unintended consequence of the

industrial policy: Not only increased competition depresses new product introductions

overall, but also, to a larger extent, reduces mid- to high-end market competition between

major manufacturers, effectively slowing down the speed of product innovation in the

market, driven by firms’ strategic incentives for product introductions. Bottom two panels
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Figure 1.5.2: Market-level analysis of the effect of competition on product variety
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Notes: This figure breaks down results presented in Table 1.13 by markets.
Dark blue bars indicate observed market-level new-product introductions,
in Jan. 2013, from major manufacturers. Light pink bars denote additional
(stacked) new-product introductions—ones that would have happened, had
fringe competition been eliminated. Provinces are sorted by the level of
fringe presence in Jan. 2013 (number of fringe firms in province). This figure
shows that the depression of new-product-introduction incentives is stronger
in larger/wealthier markets, where fringe firms were justified to enter, with
significant heterogeneity across markets.
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of Figure 1.5.3 also show different predictions of firms’ product portfolio responses based

on static and dynamic incentives. Interestingly, my model of dynamic product portfolio

choice predicts a more spread out product configuration than a static model—suggesting

that, in the absence of fringe competition, even the low-end market would not have been

hurt as much as what would be predicted by a static model.

1.6 Conclusions

The bell-shaped time path of sales called the product life cycle is pervasive in many mar-

kets and is one of the oldest concepts in marketing. Although descriptive theories about

product life cycle shapes have been developed over the past decades, little is known about

how firms take product life cycles into account in introducing new products, and even less

is known about the welfare implications of such PLC-based new-product strategies.

This paper first shows that product life cycles endogenously arise in markets with rapid

technological innovations and exhibit bell-shaped sales paths for many high-tech products.

The stylized model of product life cycle formation also provides useful comparative statics

of the magnitudes of lifetime product sales compared to static observables of the product

and market. These comparative statics are supported by the data and by the practices of

product managers of smartphone manufacturers. I then use the product life cycle as an

empirically tractable heuristic to model firms’ dynamic product portfolio choices. When

the level of market competition changes, firms not only expect immediate changes in their

product profitability, but also adjust their future outlook for the product’s profitability.

As a result, not accounting for firms’ dynamic incentives in product introductions can

understate firms’ product portfolio responses to industrial policies aimed at promoting

competition and overstate policy impacts on product varieties and welfare in the market.
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Figure 1.5.3: Effect of fringe entry on incumbent firms’ product quality choices
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Notes: This figure shows that, in the face of fringe entry, incumbent firms expanded their
product portfolios and introduced more “fighting brands”—this also softened portfolio
competition in the mid- to high-end market, and effectively slowed down the speed
of product innovation in the market. Bottom two panels also show that the dynamic
model of product portfolio choices predicts a more spread out product configuration in
the absence of fringe entry, suggesting that even the low-end market would not have
been hurt as much as what would be predicted under a static model. Product charac-
teristics are summarized in this figure by the “estimated quality” measure constructed
from demand estimates, i.e., bxj + DNC

jmt + l f (j) + ll(j).
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Chapter 2

Ownership Concentration and

Strategic Supply Reduction87

2.1 Introduction

In 2010, the U.S. Federal Communications Commission (FCC) proposed to acquire spec-

trum from broadcast TV license holders and sell it to wireless carriers to be repurposed into

mobile broadband spectrum. The so-called incentive auction combines a reverse auction

for broadcast TV licenses with a forward auction for selling the thus-acquired spectrum

to wireless carriers. Between the two auctions lies a repacking process where remaining

broadcasters are reassigned channels to clear a contiguous nationwide block of spectrum

for wireless use. Prior to the currently ongoing auction, estimates put the expected revenue

from the forward auction at up to $45 billion, in excess of the payouts to broadcast TV li-

cense holders in the reverse auction, with the balance going towards the costs of repacking

spectrum into a contiguous block and to the government.88,89 In this paper, we study the

potential for strategic behavior in the reverse auction.
87Joint with Ulrich Doraszelski, Katja Seim, and Michael Sinkinson, the Wharton School of the University

of Pennsylvania.
88See Expanding Opportunities for Broadcasters Coalition (EOBC) Notice of Oral Ex Parte Filing with

the FCC, June 13, 2014, available at http://www.tvtechnology.com/portals/0/EOBC0614.pdf, accessed on
November 15, 2015.

89The Congressional Budget Office (CBO) estimates the net proceeds from the incentive auction to fall be-
tween $10 billion and $40 billion, with an expected value of $25 billion, the middle of that range. “Proceeds
From Auctions Held by the Federal Communications Commission”, CBO Report 50128, April 21, 2015, avail-
able at https://www.cbo.gov/publication/50128, accessed on November 15, 2015.
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We document that following the announcement of the incentive auction, a number of

private equity firms acquired broadcast TV licenses in several local media markets, often

purchasing multiple licenses in the same market. Newspaper articles and industry reports

claimed that these purchases were undertaken with the goal of trying to “flip” broadcast

TV licenses for profit in the reverse auction.90 Politicians also raised concerns about spec-

ulation.91 Yet, reselling broadcast TV licenses does not necessarily entail efficiency losses.

We argue that in addition to speculative motivations behind reselling broadcast TV

licenses, there is the potential for strategic bidding. In a prospective analysis of the incen-

tive auction, we show that owners of multiple licenses have an incentive to withhold some

of their licenses from the auction, thereby driving up the closing price for the remaining

licenses they own and affecting a large transfer of wealth from the government - and ulti-

mately taxpayers - to themselves. Apart from affecting closing prices, this behavior causes

efficiency losses as the set of broadcast TV licenses surrendered in the auction is not the

socially optimal set and may reduce the total amount of spectrum that will be repurposed.

Repurposing spectrum from broadcast TV to mobile broadband usage is no doubt an

extremely valuable - and complex - undertaking. The incentive auction was very carefully

designed and has many desirable properties such as strategy proofness (Milgrom et al.,

2012; Milgrom and Segal, 2014). If broadcast TV licenses were separately owned, then it

is optimal for an owner to bid a station’s value as a going concern in exchange for relin-

quishing the broadcast license; we refer to this as naive bidding. Our paper points out the

sensitivity of the incentive auction to multi-license ownership. In particular, the rules of

the auction leave room for strategic supply reduction for firms that own multiple broad-

cast TV licenses. Such firms can withhold a subset of their licenses from the auction to

raise the closing price for the remaining licenses. This behavior is purely rent-seeking, as

these firms are attempting to increase their share of existing wealth without creating any

90See “NRJ Wins Bidding For WSAH New York,” TVNewsCheck, November 29, 2011, “Small TV Stations
Get Hot,” The Wall Street Journal, September 3, 2012, “Speculators Betting Big on FCC TV Spectrum Auc-
tions,” Current.org, February 26, 2013, “TV Spectrum Speculation Nears $345 Million,” TVNewsCheck, March
1, 2013, “Broadcast Incentive Spectrum Auctions: Gauging Supply and Demand,” SNL Kagan Broadcast In-
vestor, November 20, 2013, and “TV Station Spectrum Deals Expand Into Major Network Affiliates as Players
Stake Out Positions Pre-Auction,” SNL Kagan Broadcast Investor, December 4, 2013.

91See “Rep. LoBiondo Seeks FCC Info On Possible Spectrum Speculation,” Broadcasting & Cable, February
12, 2014.
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new wealth.

We use a simple model to illustrate how strategic supply reduction works in the con-

text of the reverse auction and under what circumstances it is a profitable strategy for

multi-license owners. Our model implies that certain types of broadcast licenses are more

suitable for a supply reduction strategy and that certain types of local media markets are

more vulnerable to this type of behavior. We begin by showing that the ownership patterns

in the data are broadly consistent with the implications of the model.

In a second step, we analyze the reverse auction in more detail and quantify increased

payouts and efficiency losses due to strategic supply reduction. To do so, we undertake

a large scale valuation exercise to estimate reservation values for all currently held UHF

broadcast TV licenses. We combine various data sources to estimate a TV station’s cash

flows and from them infer its value as a going concern. This allows us to simulate the

auction outcome for all participating license holders, accounting for the repacking process

at a regional level, and then to assess the impact of potential strategic bidding.

We compare the outcome under naive bidding with the outcome when we account for

the ownership patterns in the data and allow multi-license owners to engage in strategic

supply reduction. Our approach solves for all equilibria of a simplified version of the re-

verse auction that accounts for the repacking process at the regional - though not at the

national - level. We then show that across markets, strategic supply reduction has a large

impact on closing prices and payouts to broadcast TV license holders and causes sizable ef-

ficiency losses. For a nationwide clearing target of repurposing 126 MHz of spectrum, the

initial starting point of the incentive auction when it commenced on March 29, 2016, strate-

gic behavior by multi-license owners increases payouts by 22%. The payout increases, as

well as payouts from the auction in general, are concentrated in a small number of mar-

kets, however, with nearly 99% of payout increases occurring in markets with two or more

owners of multiple licenses. This reflects two factors. First, there is significant variation

in station cashflows and thus willingness-to-sell due to stations’ differential success in at-

tracting advertising revenue. This results in steep increases in closing prices as more li-

censes are acquired. Second, the FCC’s need to clear spectrum is particularly pronounced

in large markets where the expected demand by wireless carriers means that even high-
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value TV licenses can successfully sell into the auction and that strategically withholding

a low-value station can drive up closing prices significantly. We illustrate these issues in a

case study of the Philadelphia, PA, market.

Netting out the firms’ reservation values from their auction payouts, the strategic sup-

ply reduction strategy translates into surplus increases of several billion dollars across

broadcast TV license owners. This reflects that a multi-license owner who withholds a

license from the auction creates a positive externality for other market participants by rais-

ing the closing price in the market. The multi-license owner, by selling his remaining

licenses in the market, captures some of this externality, but not all of it: while in aggre-

gate, payouts increase by 22%, they increase by 25% for multi-license owners and 19% for

single-license owners.

We propose a partial remedy that imposes a constraint on the ordering of bids of multi-

license owners. The rule change reduces the effect of strategic behavior by roughly eighty

percent. This result is directly policy relevant as it suggests ways of mitigating the im-

pact of strategic supply reduction. Our hope is that this proves useful in designing future

auctions in the U.S. and other countries as they strive to alleviate the “spectrum crunch”

resulting from the rapid growth in data usage by smartphones in recent years.

We also illustrate how a firm may extend a supply reduction strategy by leveraging

technological constraints on the repacking of spectrum across local media markets. While

a complete analysis of multi-market strategies at the national level is computationally in-

feasible, we highlight a particular case of a firm owning licenses in adjacent markets and

the potential effect of reducing supply in one market on the closing price in another tar-

geted market. In this case, we find a six-fold increase in the impact of strategic bidding.

Finally, we quantify the effect of potential low participation by non-commercial (pub-

lic) and religious broadcasters. A reduction in participation among such licenses leads

to a significant number of auction failures, and large increases in payouts when auctions

complete. We suggest that modifying must-carry regulations could be a useful tool in

increasing auction participation.

There is a rich literature on strategic bidding in multi-unit auctions. Substantial the-

oretical work (Wilson, 1979; Back and Zender, 1993; Menezes, 1996; Engelbrecht-Wiggans
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and Kahn, 1998; Jun and Wolfstetter, 2004; Riedel and Wolfstetter, 2006; Ausubel et al.,

2014) and experimental evidence (List and Lucking-Reiley, 2000; Kagel and Levin, 2001;

Engelmann and Grimm, 2009; Goeree, Offerman and Sloof, 2013) point to the potential for

strategic demand reduction. In addition, case studies of past spectrum auctions have doc-

umented strategic demand reduction (Weber, 1997; Grimm, Riedel and Wolfstetter, 2003).

Our paper is most closely related to the empirical literature examining market power in

wholesale electricity markets (Wolfram, 1998; Borenstein, Bushnell and Wolak, 2002; Hor-

tacsu and Puller, 2008), where firms bid supply schedules and have strategic incentives

to alter their bids and raise closing prices for inframarginal units. In contrast to electric-

ity markets, however, in our setting the acquisition of significant market power is easier:

a small number of licenses outstanding in a given local market, combined with the dis-

creteness of broadcast spectrum units (6 MHz), implies that a single additional license can

confer a significant increase in market power in the spectrum market to its owner.

Significantly, our paper departs from much of the auction literature in that it does not

invert the first-order conditions to recover valuations from observed bids. Instead, we

use auxiliary data to directly estimate valuations. One reason is the lack of bidding data

because, by congressional order, the FCC is unable to release details of the auction pro-

ceedings until two years after completion of the incentive auction.

However, even if data were available, extending the standard first-order conditions ap-

proach to our case of multi-unit auctions with personalized prices is less than straightfor-

ward and may entail challenges to identification as discussed by Cantillon and Pesendorfer

(2007) in the context of heterogeneous multi-unit first-price auctions. More importantly,

the descending clock nature of the ongoing incentive auction exacerbates identification

concerns. While the value of a broadcast license can be inferred from the price at which

it drops out of the auction, payout price provides at most an upper bound on the value

of a broadcast license that instead sells into the auction. Further, observing that a broad-

cast license is withheld from the auction is uninformative about its value if a multi-license

owner chooses to withhold it from the auction for strategic reasons. This is in contrast to

work on wholesale electricity markets where complete supply schedules are observed. We

also do not adopt the moment inequalities approach in Fox and Bajari (2013) that - rather
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than assuming full optimality of bids - only assumes that the configuration of licenses that

a multi-license owner sells into the auction dominates any alternative configuration due to

the typically small number of alternatives in our setting given that licenses are not perfect

substitutes for one another. This approach also only identifies relative valuations but not

the levels of valuations that are required for the analysis of welfare effects of ownership

concentration.

Our work is also related to the extensive literature on collusion in auctions (Asker

2010, Conley and Decarolis 2016, Kawai and Nakabayashi 2015, and Porter and Zona

1993, among others), including spectrum auctions (Cramton and Schwartz, 2002). A multi-

license owner in our setting internalizes the profit implications of all licenses he controls as

is the case with colluding, but otherwise independent, single-license owners. Finally, we

contribute to the literature on distortions induced by incentive schemes and regulation in

various settings such as employee compensation (Oyer, 1998), environmental regulation

(Fowlie, 2009; Bushnell and Wolfram, 2012), health care (Duggan and Scott Morton, 2006),

and tax avoidance (Goolsbee, 2000).

The remainder of this paper is organized as follows: Section 2 describes the setting

and sets out a simple model of strategic supply reduction, Section 3 presents data and

descriptive evidence, Sections 4 and 5 describe the main analysis and results, and Section

6 concludes.

2.2 The FCC incentive auction

The rapid growth in data usage by smartphones has significantly increased the demand for

mobile broadband spectrum in recent years.92 At the same time, some previously allotted

spectrum is no longer used intensively. In particular, each of approximately 8,500 currently

92According to FCC Chairman Tom Wheeler, “America has gone mobile. Most Americans would have a
hard time imagining life without their smartphones, and tens of millions are similarly in love with their tablets.
The problem is that spectrum, the lifeblood of all wireless technologies, is finite. That wasn’t a problem be-
fore the mobile web, when most consumers were mostly watching videos or surfing the web at home. If we
don’t free up more airwaves for mobile broadband, demand for spectrum will eventually exceed the supply. If
you’ve ever been frustrated by websites that loaded slowly or videos that wouldn’t download to your phone,
you have a sense what that world could look like.” See “Channel Sharing: A New Opportunity for Broadcast-
ers,” Official FCC Blog, available at https://www.fcc.gov/news-events/blog/2014/02/11/channel-sharing-
new-opportunity-broadcasters, accessed on November 15, 2015.
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operating TV stations owns a license for a 6 MHz block of spectrum covering a particular

geographical area for over-the-air transmission of programming. Yet, as of 2010 only about

10% of U.S. TV households used broadcast TV, with a rapidly declining trend.93

In its 2010 National Broadband Plan, the FCC under then-chairman Julius Genachowski

proposed, and was authorized by Congress in 2012, to conduct a incentive auction to re-

allocate spectrum from TV stations located in the higher frequency UHF band to wireless

providers. The incentive auction consists of a reverse auction in which TV stations sub-

mit bids to relinquish spectrum rights in exchange for payment and a forward auction in

which wireless operators bid for the newly available spectrum.

While the FCC has conducted spectrum auctions in the past, the incentive auction is the

first time an auction to sell spectrum is combined with an auction to purchase spectrum

from existing licensees.94 Designing this auction is complicated not only by incumbent

claims on spectrum, but also by technological constraints for mobile data and broadcast TV

uses. Originally projected for early 2014, the incentive auction was repeatedly postponed

due to legal and technological challenges, first to the middle of 2015 and then again to its

ultimate starting date of March 29, 2016.95

The format of the ongoing auction was made public in May 2014.96 The forward auc-

tion to sell spectrum to wireless carriers uses an ascending-clock format similar to previous

spectrum auctions. The reverse auction uses a descending-clock format in which the price

offered to a TV station for its spectrum usage rights declines with each successive round

93“Connecting America: The National Broadband Plan”, FCC, 2010, Chapter 5, p. 89.
94“Let’s start with the concept of an incentive auction. While it has never been tried before, its power

lies in how it addresses the root of all issues: economics. If it is possible to marry the economics of de-
mand with the economics of current spectrum holders, it should be possible to allow market forces to
determine the highest and best use of spectrum. In mid-2015 we will run the first ever incentive auc-
tion. Television broadcasters will have the opportunity to bid in a reverse auction to relinquish some or
all of their spectrum rights, and wireless providers will bid in a forward auction on nationwide, ’repacked’
spectrum suitable for two-way wireless broadband services.” See FCC Chairman Tom Wheeler’s pre-
pared remarks at the “Wireless Spectrum And The Future Of Technology Innovation” Forum, available at
https://apps.fcc.gov/edocs public/attachmatch/DOC-326215A1.pdf, accessed on November 15, 2015.

95See “The Path to a Successful Incentive Auction,” Official FCC Blog, December 6, 2013, avail-
able at https://www.fcc.gov/news-events/blog/2013/12/06/path-successful-incentive-auction-0, accessed
on November 15, 2015, and “F.C.C. Delays Auction of TV Airways for Mobile,” The New York Times, October
24, 2014.

96See https://apps.fcc.gov/edocs public/attachmatch/FCC-14-50A1.pdf, accessed on November 15, 2015.
An excellent and detailed explanation of the mechanism is available from the FCC and greatly informs our
analysis. See Appendix D of FCC Public Notice in matter FCC-14-191 “Comment Sought On Competitive
Bidding Procedures For Broadcast Incentive Auction 1000, Including Auctions 1001 And 1002,” released De-
cember 17, 2014.
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of bidding. A TV station faces a price for its broadcast license that is personalized to it (see

Section 2.2.2 for details). If a TV station chooses to participate in the reverse auction, it has

several options for relinquishing its spectrum usage rights: going off the air, moving chan-

nels from a higher frequency band (UHF channels 14-36 and 38-51 or high VHF channels

7-13) to a lower frequency band (respectively, VHF channels 2-13 or low VHF channels

2-6) to free up more desirable parts of the spectrum, or sharing a channel with another TV

station.

Between the reverse and forward auctions, a repacking process takes place in which

the remaining TV stations are consolidated in the lower end of the UHF band to create a

contiguous block of spectrum in the higher end of the UHF band for wireless use.97 The

process is visually similar to defragmenting a hard drive on a personal computer. How-

ever, it is far more complex because many pairs of TV stations cannot be located on ad-

jacent channels, even across markets, without causing unacceptable levels of interference.

As a result, the repacking process ties together all local media markets. In practice, the

reverse auction is therefore at the national level. A further consequence of interference is

that even though each TV station owns a license for a 6 MHz block of spectrum covering

a particular geographical area, far more than 6n MHz of spectrum are likely required to

accommodate n remaining TV stations in a market.

The auction rules integrate the reverse and forward auctions in a series of stages. For

the first stage, initial commitments from stations and repacking constraints determined an

initial maximum nationwide clearing target of 126 MHz. Each stage of the incentive auc-

tion begins with multiple rounds of the reverse auction, followed by multiple rounds of

the forward auction. The reverse auction determines the cost of acquiring a set of licenses

that allow the repacking process to meet the clearing target. There are many different feasi-

ble sets of licenses that could be surrendered to meet a particular clearing target given the

complex interference patterns between stations; the reverse auction is intended to identify

the low-cost set.

After the reverse auction determines the cost of acquiring an amount of spectrum, the

97Congress’ authorization of the incentive auction required the FCC to make all reasonable efforts to pre-
serve the coverage area and population served by TV stations involved in the repacking.
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forward auction determines the willingness-to-pay of wireless operators for this amount

of spectrum. If willingness-to-sell in the reverse auction outpaces willingness-to-pay in

the forward auction, the clearing target is decreased, so that a smaller set of lower value

TV stations have to be acquired. The process repeats until a “final stage rule” is satisfied

that ensures that proceeds in the forward auction (more than) cover payouts in the reverse

auction and the cost of repacking spectrum.98

At the time of this writing, the FCC has completed three stages of the auction. The

reverse auction phase of the auction’s first stage concluded on June 29, 2016. The total

payout required to meet the initial 126 MHz clearing target amounted to $86.4 billion,

which was not met in the forward auction in attempting to sell the freed spectrum to wire-

less providers; it yielded a payout of only $23.1 billion. Since this first stage, the clearing

target has been lowered twice and the FCC opened the fourth stage for a clearing target of

84 MHz on December 13, 2016.

We next provide additional details on the reverse auction and illustrate the potential

for strategic supply reduction.

2.2.1 The reverse auction

The reverse auction uses a descending-clock format. A TV station that participates in the

reverse auction is offered a personalized price at which it can either remain in the auction,

indicating that it is prepared to accept this price to cease operating and surrender its broad-

cast license, or leave the auction, indicating that the price is too low and that it prefers to

continue operating and potentially be repacked to a new UHF channel. In the subsequent

analysis, we abstract from the options to relocate from a higher to a lower frequency band

or to share a channel with another station. We discuss this simplification further in Section

2.4.2.

Broadcast licenses are assigned by the FCC to a local media market, which is the des-

ignated market area (DMA) as defined by Nielsen Media Research based on the reach and

98Specifically, the final stage rule requires that proceeds in the forward auction are at least $1.25 per MHz
per population for the largest 40 wireless service market areas and not only cover payouts in the reverse
auction but also the FCC’s administrative costs, the reimbursements of channel relocation costs incurred by
TV stations, and the funding of the First Responder Network Authority’s public safety operations.
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viewing patterns of TV stations. A DMA is defined as a group of counties such that the

home market TV stations hold a dominance of total hours viewed. There are 210 DMAs in

the U.S. that vary in size from New York, NY, with over 7 million TV households, to Glen-

dive, MT, with 4,230 TV households. Appendix Table B.1 lists the top ten DMAs based on

their 2012 rank.

Across these 210 markets, a total of 2,166 broadcast licenses are eligible for the auc-

tion.99 They can be classified by type of service into UHF and VHF stations, by type of use

into commercial and non-commercial stations, and by power output into full-power (pri-

mary and satellite100) and low-power (class-A) stations. Appendix Table B.2 summarizes

the auction-eligible broadcast licenses.

Formally, in round t of the reverse auction, a currently active TV station j is offered the

price

pjt = jjPt

,

where P
t

is the base clock price and jj is the station’s broadcast volume. The base clock

price P
t

begins at $900 and decreases with each successive round of bidding. The broadcast

volume

jj = M
q

CoveragePopj · Inter f erenceCntj (2.2.1)

is a known function of the station’s population reach CoveragePopj and the interference

count Inter f erenceCntj, defined as the number of TV stations that station j can potentially

interfere with in the repacking process. Finally, M = 17.253 is a scaling factor that is chosen

to set the maximum jj across the U.S. to one million.

The broadcast volume is an important concept: the FCC uses it to personalize the base

clock price to a TV station based on its value as a broadcast business (as proxied by pop-

99See http://www.fcc.gov/learn, accessed on November 15, 2015. The FCC excludes approximately
10,000 low-power, translator, multi-cast signal, and cable stations from the reverse auction. In 2016, the
FCC updated the list of auction-eligible stations, see http://transition.fcc.gov/Daily_Releases/Daily_

Business/2015/db0609/DA-15-679A2.pdf, accessed on February 10, 2016. In this paper, we work with the
earlier list of 2,166 auction-eligible stations as it underlies the FCC’s repacking simulations (see Section 2.3.1).

100A satellite station is a relay station that repeats the broadcast signal of its parent primary station.
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ulation reach) and the difficulty of repacking the station in case it does not surrender its

license (as proxied by the interference count). The broadcast volume thus reflects that the

FCC is willing to incentivize a TV station to surrender its license if the alternative of having

to repack the station is particularly challenging. Importantly, the broadcast volume for all

TV stations is known in advance to all auction participants.

The design of the reverse auction is partly dictated by the FCC’s obligation to guaran-

tee a 6 MHz block of spectrum to any TV station that chooses to remain on air rather than

surrender its license. At the initial base clock price of $900, most, if not all, TV stations

would be prepared to surrender their licenses. Hence, any remaining TV stations can be

trivially repacked. The auction mechanism then preserves the feasibility of repacking as it

unfolds as follows: as the base clock price descends, licenses withdraw from the auction,

deciding that the price is too low and that they would prefer to continue broadcasting.

When this happens, the feasibility of repacking every single remaining license in the auc-

tion must be asserted one-by-one given the interference patterns of the withdrawing and

the remaining stations. If a remaining license can no longer be repacked, the price it sees

is “frozen” and it is declared to be “provisionally winning,” in that the FCC will accept

its bid to surrender its license. In this case, the withdrawing station effectively sets the

price of the frozen station. The base clock price then falls and the process of feasibility

checking repeats with each new withdrawal. The reverse auctions ends if all TV stations

have either withdrawn from the auction or are provisionally winning. Note that there is

no single market price at which a station sells; different stations obtain different closing

prices for their spectrum depending on the exact base clock price when, given the implied

set of withdrawn stations, they could no longer be repacked.

2.2.2 Strategic supply reduction

Clock auctions are strategy proof (Milgrom et al., 2012; Milgrom and Segal, 2014). Hence,

if a TV station is independently owned, its owner optimally remains in the reverse auction

until
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pjt = jjPt

< vj,

where vj is the reservation value of TV station j that reflects its value as a going concern.

We henceforth refer to this strategy as naive bidding.

Clock auctions are not only strategy proof but also “group-strategy proof” (Milgrom

and Segal, 2014). This means that no coalition of bidders has a joint deviation from naive

bidding that is strictly profitable for all members of the coalition. However, as Milgrom

and Segal (2014) explicitly acknowledge, their results do not apply if bidders are “multi

minded,” a concept that includes bidders with multiple objects for sale.

We show that a firm owning multiple broadcast licenses may indeed have an incentive

to deviate from naive bidding. Note that this does not contradict group-strategy proofness

as it suffices that the deviating group, i.e., the multi-license owner, is better off as a whole.

Withdrawing a license from the auction could increase the price for the remaining broad-

cast TV licenses that a firm owns. However, the firm is then left with a TV station that it

may have been able to sell into the auction. Therefore, this supply reduction strategy is

only profitable if the gain from raising the closing price for other stations exceeds the loss

from continuing to own a TV station instead of selling it into the auction.

For concreteness and simplicity, consider a situation where all stations are perfectly

interchangeable in the repacking process. A firm owns TV stations a and b. The FCC

intends to acquire k broadcast licenses and stations are ordered in ascending order of the

ratio vj
jj

. If va
ja

< vk
jk

and vb
jb

< vk
jk

, then under naive bidding the reverse auction closes at

base clock price vk+1
jk+1

and both licenses sell into the auction, yielding the firm a profit of

(ja + jb)
⇣

vk+1
jk+1

⌘

� (va + vb). On the other hand, if the firm withholds station a from the

auction, then the closing base clock price rises to vk+2
jk+2

and its profit is va + jb
vk+2
jk+2
� vb. It

is therefore profitable to engage in strategic supply reduction and withhold TV station a

from the auction if the gain in profit from selling the license of TV station b outweighs the

loss in profit from not selling the license of TV station a, or

jb

✓

vk+2
jk+2

� vk+1
jk+1

◆

> ja

✓

vk+1
jk+1

◆

� va. (2.2.2)
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The left-hand side implies that strategic supply reduction is more likely to be profitable if

jb is large and if the increase in the closing base clock price vk+2
jk+2
� vk+1

jk+1
is large. The right-

hand side implies that it is more likely to be profitable if ja is small and va is large. In short,

strategic supply reduction is more likely to be profitable if the “leverage” of increasing the

closing base clock price is large and the opportunity cost of continuing to own a TV station

is small.

Strategic supply reduction has been explored in earlier work on multi-unit auctions in

wholesale electricity markets (e.g. Wolfram, 1998): if a firm’s bid for one of its generators

has a chance to set the price, then the firm has an incentive to raise that bid if it will earn the

price increases on its inframarginal generators.101 Other electricity market papers consider

this the exercise of market power, and note that the effects can be large when demand or

supply is inelastic (Borenstein, Bushnell and Wolak, 2002). Unlike in wholesale electricity,

a broadcast TV license is indivisible, leading to sharper behavior in our setting: while there

is a maximum of 28 UHF licenses outstanding in a given DMA market, the median DMA

market has 7 UHF licenses, and the mean is 8.2; for the median market, the market share

increase from owning two licenses, rather than a single one, represents a market share

jump from 14.3% to 28.6%. Furthermore, because of interference constraints, licenses are

not homogeneous in the repacking process. Both facts may amplify the impact of strategic

supply reduction. At the same time, unlike the short-run demand for electricity, the FCC’s

demand for licenses is not inelastic, and we account for this in our subsequent analysis of

the reverse auction.

Equation 2.2.2 implies that certain types of DMAs are more vulnerable to a supply

reduction strategy and that certain types of broadcast TV licenses are more suitable for

this type of behavior. First, ideal markets from a supply reduction perspective are DMAs

in which the FCC will likely need to acquire a positive number of broadcast licenses and

where, at the expected demand levels, closing prices for selling stations are likely to change

significantly should a lower value station be removed from the auction. This maximizes

the impact of withholding a license from the auction on the closing price (the left-hand

101This mechanism is also similar to the upper bound of the “bidder exclusion effect” considered by Coey,
Larsen and Sweeney (2015) in the case of a non-random merger of auction participants.
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side of equation 2.2.2). Second, suitable groups of licenses consist of some stations with

higher broadcast volume to sell into the auction and some with lower broadcast volume

to withhold. We return to these implications of the model below when discussing the data

and our results.

2.3 Data and descriptive evidence

We begin by describing the various sources of data used in the analysis and then turn to

providing descriptive evidence in support of the model from Section 2.2.2.

2.3.1 Data sources

We use several sources of data to construct firm valuations, determine how non-selling

TV stations would be repacked, and summarize the likely spectrum demand in a given

market in the forward auction. First, we rely on the MEDIA Access Pro Database (2003 -

2013) from BIA Kelsey (henceforth BIA) and the Television Financial Report (1995 - 2012)

from the National Association of Broadcasters (NAB) to estimate a TV station’s cash flows

and from them infer its reservation value going into the auction.

BIA contains the universe of broadcast TV stations. It provides station, owner, and

market characteristics, as well as TV stations’ transaction histories covering the eight most

recent changes in ownership. The BIA’s revenue measure covers broadcast-related rev-

enue in the form of local, regional, and national advertising revenue, commissions, and

network compensation. We refer to BIA’s revenue measure as advertising revenue in what

follows. For commercial stations, advertising revenue is missing for 30.9% of station-year

observations, which we impute as detailed in Appendix B.1.1.3. For non-commercial sta-

tions, advertising revenue is missing for 99.7% of station-year observations and we do not

impute it.

The BIA data excludes non-broadcast revenue, most notably, retransmission fees. These

are fees TV stations charge pay-TV providers to use their content, which the trade press

mentions as a small but growing source of revenue for many TV stations.102 Outside esti-

102See, e.g., “SNL Kagan raises retrans fee forecast to $9.8B by 2020; Mediacom’s CEO complains to FCC”,
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mates suggest that advertising revenue accounts for a declining share of a typical station’s

revenue, estimated at 69% in 2016, with the remaining revenue coming from retransmis-

sion fees (24%) and online revenues (7%).103 Consequently, the variation in advertising

revenue across stations is a major, but not the sole, driver of the variation in cash flows

and thus willingness-to-sell in the reverse auction.

To get at non-broadcast revenue and ultimately profitability, we rely on NAB as a sec-

ond source of data. For commercial full-power stations, NAB collects financial informa-

tion. Revenue is broken down into detailed source categories from which we are able to

construct advertising revenue and non-broadcast revenue. NAB further covers expenses

related to programming, advertising, and other sources, and profitability as measured by

cash flows. However, for confidentiality reasons, NAB reports only the distributions of

these measures (the 25th, 50th, and 75th percentiles, as well as the mean) at various lev-

els of aggregation, resulting in “tables” such as “ABC, CBS and NBC affiliates in markets

ranked 51-60 in 2012” or “CBS affiliates in markets ranked 1-50 in 2012.” Appendix Table

B.4 lists the set of 66 tables for 2012; other years are very similar. In Section 2.4 we de-

scribe a method to combine the station-level data on advertising revenue from BIA with

the aggregated data from NAB to estimate a TV station’s cash flows.

To simulate the repacking process required to construct a contiguous spectrum block

out of acquired TV broadcast spectrum, we use three inputs available from the FCC: a TV

station interference file, a TV station domain file, and a repacking feasibility checker that

takes these two files as inputs.104 The first file lists, for every TV station and every chan-

nel, sets of other TV stations that cannot be located on the same channel, or alternatively

cannot be located on adjacent channels, due to interference constraints given the stations’

facility locations. Looking only at the UHF channels that would exist if the 126 MHz clear-

ing target had been met (channels 14-30), this file lists 2.5 million pairwise restrictions

between broadcast TV stations. As an example, Figure 2.3.1 shows the set of the 102 TV

stations that have interference constraints with WCAU, the Philadelphia affiliate of NBC.

FierceCable, July 7, 2015.
103“Retrans Revenue Share Expands In Latest U.S. TV Station Industry Forecast”, Justin Nielson, S&P Global

Market Intelligence, Jul 14, 2016.
104All three files are available at http://data.fcc.gov/download/incentive-auctions/Constraint_

Files/.

77

http://data.fcc.gov/download/incentive-auctions/Constraint_Files/
http://data.fcc.gov/download/incentive-auctions/Constraint_Files/


Figure 2.3.1: Interference constraints for NBC Philadelphia (WCAU)

Notes: Each pin represents the facility location of a TV station. WCAU (NBC Philadel-
phia) is denoted by a green pin. TV stations denoted by red pins have adjacent-channel
interference constraints, while those denoted by yellow pins have same-channel interfer-
ence constraints. A total of 102 broadcast TV stations have some interference constraint
with WCAU.

Of those, 37 have adjacent-channel constraints, meaning that they cannot even be located

one channel above or below WCAU in the repacked region of spectrum, while the rest

have same-channel constraints. Interference is influenced by several factors, including ge-

ography, broadcast tower height, and the transmitter’s power output. The second file, the

domain file, provides a list of channels that a given station may be assigned to in repacking.

For most UHF stations, the set of valid channels is the set of all UHF channels, although

some have fewer due to international broadcasters or military broadcasting. Relying on

these two inputs, the so-called SATFC feasibility checker ascertains whether or not a set of

stations can be feasibly repacked into a set of channels given interference constraints and

constraints on station channel locations. SATFC is run as part of the reverse auction and

uses optimized approaches to NP-complete problems to limit the space of problems to be

considered.

Last, the simplified reverse auction model above pointed to DMA-level spectrum de-

mand as a determinant of the likely success of strategic supply reduction. To construct a

simple demand estimate, we rely on output of a large-scale simulation exercise conducted

by the FCC to determine the likely number of UHF stations it has to acquire in each DMA
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Figure 2.3.2: Demand across DMAs

Notes: This histogram indicates how many DMAs need a given number of licenses to
be surrendered in order to meet the overall clearing target to be met in the FCC’s simu-
lations. Data are the median, minimum, and maximum of the FCC simulated repacking
scenario outcomes that assume 100% participation for the 120 MHz clearing target.

to meet a nationwide clearing target of 120 MHz.105 The FCC performed 100 simulations

that differ in the identity of the TV stations that do not relinquish their licenses and re-

quire repacking after the auction. We restrict attention to the 27 repacking simulations that

assume full participation by UHF auction-eligible licenses. For our initial descriptive anal-

ysis, we label a DMA as a positive demand DMA if at the median across these simulations

the FCC expected to acquire at least one license. Figure 2.3.2 shows that in many DMAs

no licenses need to be acquired in expectation to meet this clearing target; hence, payouts

from the reverse auction are expected to be concentrated in a small number of DMAs.

The various data sets use a number of different station identifiers. Below, we identify a

station either by its call sign (e.g., WCAU, continuing with the NBC Philadelphia example

from above) or by the FCC identifier of the facility from which it broadcasts (e.g., WCAU’s

broadcast facility ID is 63153).

105The FCC also conducted a similar simulation exercise to derive the likely number of stations to be
cleared in each market to satisfy an 84 MHz clearing target. We focus on 120 MHz as it is closer to
the Stage 1 clearing target the FCC used in the actual auction, which forms the basis for our simula-
tions. See FCC’s Public Notice Appendix, “Analysis of Potential Aggregate Interference,” available at
https://apps.fcc.gov/edocs public/attachmatch/DA-14-677A2.pdf, accessed on March 10, 2016.
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2.3.2 Descriptive evidence

Our data reveal significant ownership concentration, both within and across DMAs, con-

sistent with the idea of “chains” of broadcasters. We focus on the 1,672 UHF licenses that

the FCC denoted as eligible for the reverse auction in November 2014 and used in its own

simulation exercises.106 In 2012, the 1,672 UHF licenses are held by 514 unique owners.

Of these 514 owners, 330 hold a single license, 60 hold two licenses, and 37 hold three li-

censes. The remaining 87 owners hold at least four licenses. Of the 204 DMAs with UHF

broadcasters, 79 DMAs have only single-license owners while the remaining 125 DMAs

have at least one owner that owns multiple licenses in the DMA.

Ownership concentration has traditionally been a concern of regulators. The FCC Lo-

cal TV Ownership Rules permit ownership of up to two full-power commercial stations

in the same DMA if either the two stations’ service areas do not overlap or at least one of

the two stations is not ranked among the top four stations in the DMA, based on the most

recent audience market share, and at least eight independently owned full-power stations

broadcast in the DMA in addition to any jointly owned stations.107 These rules are oriented

towards the business of running TV stations that primarily earn revenues through adver-

tising and have a limited effect in preventing a firm from accumulating market power in

the reverse auction. Waivers for the rules can be - and have been - granted for failing or

financially distressed stations. The rules also do not apply to satellite, public, and low-

power stations. However, these types of stations still hold licenses to 6 MHz of spectrum

and are eligible for the auction.

Table 2.1 summarizes ownership patterns, first for all 204 DMAs and then for the 121

DMAs with positive demand under a clearing target of 120 MHz in the FCC’s simula-

tions. On average, a positive demand DMA has 9 broadcast TV licenses that are held by

7.15 owners. The number of multi-license owners is 1.36 on average for positive demand

DMAs compared to 1.20 for all DMAs. The counts of ownership configurations in the bot-

tom panel of the table reinforce that ownership is more concentrated in positive demand

106The FCC excludes 6 DMAs without UHF stations from its repacking simulations. These DMAs are Bangor,
ME, Glendive, MT, Juneau, AK, Lafayette, IN, Mankato, MN, and Presque Isle, ME.

107See Title 47 of Code of Federal Regulations, Chapter I.C, Part 73. H, Section 73.3555.
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DMAs. In 81 out of 121 or 67% of positive demand DMAs at least one firm owns multiple

licenses compared to 125 out of 204 or 61% of all DMAs. Taken together, this suggests that

multi-license ownership is a broad concern for the reverse auction.

In addition, news reports have pointed out that at least three private equity firms -

LocusPoint Networks, NRJ TV, and OTA Broadcasting - spent almost $345 million acquir-

ing 39 broadcast TV licenses from 2010 to early 2013, mostly from failing or insolvent

stations in distress, and mostly low-power licenses (25 low-power versus 14 full-power

licenses).108,109 Since those press mentions and through the end of our data set in late 2013,

an additional 4 license purchases by the three private equity firms were recorded, for a

total of 43 license purchases. Of the 43 transactions, 25 are for licenses that cover the same

DMA as that of another purchased license and may thus be indicative of attempts to accu-

mulate market power in the reverse auction. Most of the stations are on the peripheries of

major DMAs, ranging from Boston, MA, to Washington, DC, on the Eastern Seaboard and

from Seattle, WA, to Los Angeles, CA, along the West Coast.

Table 2.1 illustrates that ownership is especially concentrated in the 18 DMAs in which

the three private equity firms have been active (henceforth, private equity active DMAs).

The number of multi-license owners is 2.67 on average for private equity active DMAs, and

in 15 out of 18, or 83%, of these DMAs at least one firm owns multiple licenses. Moreover,

at a 120 MHz clearing target, the FCC anticipated to purchase 6.67 licenses on average in

private equity active DMAs compared to 3.42 licenses in positive demand DMAs. In line

with the model in Section 2.2.2, the three private equity firms appear to focus on DMAs

with robust demand for spectrum.

Section 2.2.2 discusses what types of TV stations are best suited for a supply reduction

strategy. Table 2.2 summarizes the characteristics of TV stations transacted from 2003 to

2009 in the first column and those of TV stations transacted from 2010, when the incentive

auction was proposed, to 2013 in the remaining columns. The latter are further separated

108See, e.g., http://www.tvnewscheck.com/article/65850/tv-spectrum-speculation-nears-345-million or
http://current.org/2013/02/speculators-betting-big-on-fcc-tv-spectrum-auctions/, accessed on November
15, 2015.

109According to FCC filings, the Blackstone Group LP owns 99% of LocusPoint Networks. NRJ TV LLC is
a media holding company funded through loans from Fortress Investment Group LLC according to a recent
U.S. Securities and Exchange Commission filing. Lastly, OTA Broadcasting is a division of MSD Capital, L.P.,
which was formed to manage the capital of Dell Computer founder Michael Dell.
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Table 2.1: Ownership concentration

All Positive Private equity
DMAs demand DMAs active DMAs

(n = 204) (n = 121) (n = 18)
DMA averages:

Number of licenses 8.20 9.00 15.94
Number of owners 6.51 7.15 12.22

Number of multi-license owners 1.20 1.36 2.67
Expected number of licenses demanded 2.03 3.42 6.67
Counts of DMAs with j multi-license owners:

j = 0 79 40 3
j = 1 53 31 3
j = 2 42 30 2
j = 3 17 11 3

j = 4+ 13 9 7

Notes: An observation is a DMA. Table displays average number of licenses, owners,
and multi-license owners present in each DMA, together with average of median DMA-
level FCC simulated demand at the 120 MHz clearing target. Positive demand DMAs
are DMAs where the FCC expects to purchase at least one license (at median) under
the 120 MHz clearing target. Private equity active DMAs are DMAs where one of the
three private equity firms holds at least one license. Multi-license owners refers to firms
owning more than one auction-eligible license within one DMA.

into transactions in the 121 DMAs with positive expected demand under a clearing target

of 120 MHz and transactions involving the three private equity firms.

Consistent with the model, the three private equity firms have acquired TV stations

with high broadcast volume. They also typically have low valuations, as evidenced by

the low prices paid and the fact that very few stations are affiliated with a major network.

Even compared to transactions in positive demand DMAs, the TV stations acquired by

these firms are particularly high in population reach, interference count, and broadcast

volume. Private equity firms also concentrate predominantly on DMAs expected to have

positive demand and above average levels of demand: at a 120 MHz clearing target, 98%

of their transactions fall into positive expected demand DMAs with average demand of

9 licenses compared to 60% positive demand DMAs with average demand of 3 licenses

for all transactions between 2010 and 2013. We caution that most differences between

the subsamples are not statistically significant in light of the small sample sizes and large

variances of many of the outcomes. In Section 2.5.1, we return to the model implications
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and investigate the attributes of licenses that multi-license owners choose to strategically

withhold from and bid into the auction.

2.4 Analysis

We first estimate the reservation value of a TV station going into the auction. Then we

simulate the auction and compare the outcome under naive bidding with the outcome

when we account for the ownership pattern in the data and allow multi-license owners to

engage in strategic supply reduction.

2.4.1 Reservation values

The reservation value of TV station j in a particular DMA going into the reverse auction

held at time t0 is the greater of its cash flow value VCF
jt0

and its stick value VStick
jt0

:

vjt0 = max
n

VCF
jt0

, VStick
jt0

o

. (2.4.1)

The industry standard for valuing a broadcast business as a going concern is to assess its

cash flow CFjt0 and scale it by a cash flow multiple MultipleCF
jt0

. Hence, the cash flow value

of the TV station is

VCF
jt0

= MultipleCF
jt0

· CFjt0 . (2.4.2)

This is the price a TV station expects if it sells itself on the private market as a going con-

cern. The stick value VStick
jt0

, on the other hand, reflects solely the value of the station’s

broadcast TV license and tower, not the ongoing business. This is the valuation typically

used for unprofitable or non-commercial broadcast licenses. It is computed from the sta-

tion’s population reach CoveragePopjt0 and the stick multiple MultipleStick
jt0

as

VStick
jt0

= MultipleStick
jt0

· 6 MHz · CoveragePopjt0 . (2.4.3)

For example, a TV station reaching 100,000 people with a license for a 6 MHz block of

spectrum and a stick multiple of $0.30 per MHz per population (henceforth MHz-pop) is
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worth $180,000 based on its fixed assets alone.

While we observe a TV station’s covered population, its cash flow is only available at

various levels of aggregation in the NAB data. Moreover, we observe neither the cash flow

multiple nor the stick multiple. Below we explain how we estimate these objects and infer

the station’s reservation value vjt0 .

Cash flows. We specify a simple accounting model for cash flows.110 The cash flow CFjt

of TV station j in a particular DMA in year t is

CFjt = a

�

Xjt; b

�

ADjt + RT
�

Xjt; g

�

� F
�

Xjt; d

�

+ ejt, (2.4.4)

where a

�

Xjt; b

�

ADjt is the contribution of advertising revenue to cash flow, RT
�

Xjt; g

�

is non-broadcast revenue (including retransmission fees), F
�

Xjt; d

�

is fixed cost, and ejt ⇠

N
�

0, s

2� is an idiosyncratic, inherently unobservable component of cash flow. Only ad-

vertising revenue ADjt and station and market characteristics Xjt are directly observable

in the BIA data. To estimate the remaining components of cash flow, we specify flexible

functional forms of subsets of Xjt for a

�

Xjt; b

�

, RT
�

Xjt; g

�

, and F
�

Xjt; d

�

and estimate the

parameters q = (b, g, d, s) drawing on the aggregated data from NAB.

We proceed using a simulated minimum distance estimator as detailed in Appendix

B.1.2. The parameters q = (b, g, d, s), together with our functional form and distributional

assumptions in equation 2.4.4, imply a distribution of the cash flow CFjt of TV station j in

a particular DMA in year t. We first draw a cash flow error term ejt for each TV station

covered by the aggregated data from NAB. Then we match the moments of the predicted

cash flow and non-broadcast revenue distributions to the moments reported by NAB for

different sets of TV stations and DMAs. In particular, we match the mean, median, 25th

and 75th percentiles of cash flow and the mean of non-broadcast revenue for each NAB

table in each year, yielding a total of 3,313 moments.

The correlation between the moments of the predicted distributions at our estimates

and the moments reported by NAB is 0.98 for cash flow and 0.84 for non-broadcast rev-

110In doing so, we follow the Well Fargo analyst report, “Broadcasting M&A 101 Our View of the Broadcast
TV M&A Surge,” J. Davis Herbert and Eric Fishel, June 26, 2013.
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enue. The estimates indicate that major network affiliates are most profitable; that non-

broadcast revenue has grown significantly in recent years; and that there are economies of

scale in fixed cost. Appendix B.1.2.4 gives details on parameter estimates and fit measures.

Multiples. To estimate the multiples MultipleCF
jt and MultipleStick

jt , we begin with the 350

transactions for an individual broadcast TV station in the eleven years from 2003 to 2013 as

recorded by BIA.111 We extract 136 transactions based on cash flows and 201 transactions

based on stick values between 2003 and 2013.112 We infer the cash flow multiple and stick

multiple from the transaction price using equations 2.4.2 and 2.4.3, respectively. Because

the transacted stations may be a selected sample, we incorporate industry estimates of the

range of the multiples. Using these estimates as priors, we estimate a Bayesian regression

model to project multiples on station and market characteristics Xjt. This allows us to

predict multiples for any TV station, not just those that were recently transacted. Appendix

B.1.3 provides further details. The resulting posteriors, shown in Appendix Figure B.1.3,

are a normal distribution for the cash flow multiple and a log-normal distribution for the

stick multiple.

Reservation values. We use our estimates to infer a TV station’s reservation value for

its broadcast license going into the auction. Not all the 1,672 UHF stations that the FCC

includes in its simulation exercise are covered in the aggregated data from NAB that we

use to estimate the cash flow model in equation 2.4.4. The omissions are 386 low-power

UHF stations and 290 non-commercial UHF stations. We therefore extrapolate from our

estimates as follows. First, we assume that low-power stations are valued in the same way

as full-power stations conditional on station and market characteristics Xjt. Second, we

111BIA records 877 transactions with full transaction prices, as opposed to station swaps, stock transfers,
donations, etc. We focus on the 350 transactions involving a single license in order to evaluate the trading
multiples as a function of station and market characteristics. Of these 350 transactions, 26 involve the three
private equity firms.

112Because 2012 is the last year of availability for the NAB data, we cannot estimate a TV station’s cash flow
for 2013. To classify transactions, we proceed as follows: We first define a TV station to be a major network
affiliate if it is affiliated with ABC, CBS, Fox, or NBC. We then classify a transaction as based on stick value if it
is for a non-major network affiliate with a cash flow of less than $1 million. Regardless of network affiliation,
we also classify a transaction as based on stick value if the TV station has a negative cash flow. Finally, we
classify a transaction that would have implied a stick value greater than $4 per MHz-pop to be based on cash
flow and a transaction that would have implied a cash flow multiple greater than 30 to be based on stick value.
Together, we drop 13 transactions that do not fit the criteria.
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assume that non-commercial stations are valued by stick value, consistent with industry

practice.

To infer the reservation value of TV station j in a particular DMA going into the reverse

auction, we set t0 = 2012 and draw from the estimated distribution of the cash flow error

term ejt0 to get cCFjt0 . We draw from the respective posterior distributions of the multiples

to get \Multiple
CF
jt0

and \Multiple
Stick
jt0

. A commercial station’s reservation value bvjt0 is then

the higher of the realized draws of its discounted broadcast cash flow value and its stick

value as specified in equations 2.4.1-2.4.3; a non-commercial station’s reservation value bvjt0

is its stick value. Our estimates imply that the average TV station in our data has a cash

flow value of $42.2 million and a stick value of $4.5 million. For 31.6% of TV stations, our

estimates indicate that the reservation value is given by its stick value rather than its cash

flow value.

Example. As an example, Figure 2.4.1 shows a sample draw from our estimated reserva-

tion values for auction-eligible UHF licenses in the Philadelphia, PA, DMA. The licenses

are ordered by their reservation value, and we overlay each license’s 2012 advertising rev-

enues from the BIA dataset. In addition, we label each license by its network affiliation

on the horizontal axis. It is immediately apparent that our estimated valuations correlate

with advertising revenues and network affiliation. In addition, it is clear that reservation

values can differ greatly across licenses.

Reservation values are not the same as naive bids in the auction, as pointed out in Sec-

tion 2.2.1; since a license is shown a personalized price based on its broadcast volume, two

licenses with the same reservation value may have very different clock prices at which they

would withdraw from the reverse auction. Figure 2.4.2 plots, for the same draw of valua-

tions as above, each license’s broadcast volume against its reservation value. While there

is some positive correlation, it is far from perfect, and the vertical cluster of licenses on

the left indicates that a number of licenses with similar reservation values have broadcast

volume levels that are multiples of one another.

As a result of the variation in broadcast volumes, naive bids have a different distribu-

tion than reservation values. Figure 2.4.3 plots naive bids compared to reservation values.
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Figure 2.4.1: Sample draw of valuations for Philadelphia licenses

Notes: This chart shows reservation values (left axis), advertising revenues (right axis),
and network affiliations (horizontal axis) for all auction-eligible UHF licenses in the
Philadelphia DMA, for a single draw from our estimated distributions of valuations
and multiples. The Philadelphia ABC affiliate broadcasts from the VHF spectrum and
so is not included here.

Figure 2.4.2: Correlation of broadcast volume and reservation values

Notes: This scatterplot shows broadcast volume (left axis) against reservation values
(horizontal axis) for all auction-eligible UHF licenses in the Philadelphia DMA, for a
single draw from our estimated distributions of valuations and multiples.
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Figure 2.4.3: Naive bids and reservation values for Philadelphia licenses

Notes: This chart shows reservation values (left axis), naive bids (right axis), and net-
work affiliations (horizontal axis) for all auction-eligible UHF licenses in the Philadel-
phia DMA, for a single draw from our estimated distributions of valuations and multi-
ples. ABC Philadelphia broadcasts from the VHF spectrum and is not included here.

Stations with a relatively low broadcast volume - that are shown a relatively low price in

the auction - would withdraw from the auction at relatively higher clock prices. For ex-

ample, the licenses affiliated with MdF and AsiaV have valuations similar to many other

stations, but far lower broadcast volume, meaning that they are shown a relatively lower

price than other stations for the same clock price in the auction. Consequently, they would

withdraw from the auction at a higher clock price than a station with a similar valuation

but higher broadcast volume, and so their naive bids in terms of the clock price are rela-

tively high.

In other contexts, we would interpret the naive bids in Figure 2.4.3 as the elements of a

supply curve. Here, however, that would ignore repacking constraints. Since the licenses

are not perfectly interchangeable in repacking, the supply of licenses at a given point in the

auction depends on what other licenses have already been surrendered. To illustrate, we

return to the Philadelphia example in Section 2.5.2, where we show our simulation auction

outcomes for this particular draw of reservation values.

While reservation values alone ignore repacking constraints that together make up sup-
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ply, they are nevertheless useful in assessing the implications of the basic model in Section

2.2.2 descriptively, outside of full model simulations. We test whether pre-auction acqui-

sitions are concentrated in vulnerable DMAs where the change in closing clock price is

likely large due to supply reduction: we relate the propensity of a purchase by one of the

three private equity firms in a probit regression to the increase in reservation values that

results from removing from the auction either one or two licenses that would otherwise

sell given the median number of licenses the FCC expects to be repurchased in the DMA

(the term in parentheses on the left hand side of equation 2.2.2). Controlling for population

and number of licenses, we find in unreported results that private equity firms were more

likely to acquire licenses in DMAs where the distribution of reservation values is relatively

steep around expected demand levels and strategic supply reduction is thus likely to be

profitable.

2.4.2 Simulations

To quantify the impact of strategic supply reduction, we solve for all equilibria of a sim-

plified localized version of the reverse auction. Since it is possible, albeit unlikely, that due

to interference constraints, the withdrawal of a license in New York, NY, sets the price of a

license in Los Angeles, CA, through a series of domino effects, the reverse auction is truly

national. Checking the feasibility of repacking a particular station is an NP-complete com-

putational problem that can easily take hours to run. Indeed, according to the FCC’s own

reports, Round 22 of the first stage of the reverse auction was delayed by one day since

the FCC computing engine could not determine the necessary outcomes on time.113 The

computational challenge is further compounded here as we study the impact of strategic

supply reduction by enumerating all auction equilibria and integrate over the distribution

of estimated cash flows using Monte Carlo simulation.

As a step towards making the analysis computationally feasible, we reduce the size

of the nationwide repacking problem by taking repacking constraints into account only

at a regional level. Our approach is as follows: for a “focal” DMA m 2 {1, 2, ..., 204}, we

113See https://auctiondata.fcc.gov/public/projects/1000/reports/reverse_announcements, ac-
cessed on December 9, 2016.
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Table 2.3: Repacking “regions” of licenses

Mean Min 25% Median 75% Max
Number of Eligible UHF Licenses:
By DMA 8.2 1 4 7 11 28
By Repacking Region 83.5 3 54 82.5 112.5 191
Distance Between Eligible UHF Licenses:
By DMA 34.86 0 1.52 22.44 49.11 414.92
By Repacking Region 184.19 0 107.44 176.61 252.91 779.5

Notes: Statistics are for 204 DMAs with eligible licenses. Distances are in miles. All
pairwise distances between stations’ broadcast towers in the same DMA or Repacking
Region are computed, and statistics are for the full sample of 17,438 pairwise distances
within DMAs and 1,751,112 pairwise distances within Repacking Regions.

define the “region” of DMA m as the set of all DMAs in which at least one station has an

interference constraint with at least one station in DMA m. We simulate the auction for a

focal DMA m taking all stations in that DMA’s region into account, even those stations that

do not have any direct interference constraints with licenses in the focal DMA. The object

of interest is the payouts in the focal DMA alone. Table 2.3 shows that a typical repacking

region consists of a far larger set of licenses, and a far more distant set of licenses, than

those in a DMA alone. Figure 2.4.4 shows the set of TV stations considered to be a part of

the Philadelphia region for repacking purposes in our simulations.

We require a number of additional simplifications. First, to sidestep the forward auc-

tion and the multi-stage nature of the overall incentive auction, we fix the clearing target

in the reverse auction to be the clearing target used by the FCC in the first round of the

actual incentive auction, namely 126 MHz, the clearing target at the time we performed

our simulations below. The assumption of a fixed clearing target does not imply that the

FCC’s demand for a given license is inelastic because there are many sets of licenses that

can be repacked to meet the target.

Second, we assume full participation by auction-eligible stations. This is a conservative

assumption: concerns have been raised about the possibility of some license holders, such

as nonprofit or religious stations, being motivated by considerations beside profitability

and choosing not to participate in the reverse auction, even though it would in likelihood

be profitable for those stations to surrender their license. In the popular press, several

commercial broadcasting chains have shown little interest in the auction, with the CEO of
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Figure 2.4.4: The repacking “region” for Philadelphia, PA

Notes: Each pin represents the facility location of an auction-eligible UHF broadcast TV
station. Stations in the Philadelphia DMA are denoted by red pins. Stations denoted
by yellow pins are in other DMAs that have at least one station that has a repacking
constraint with a Philadelphia station. A total of 126 broadcast stations are considered
to be in the Philadelphia region for the purposes of our analysis.

Sinclair Broadcasting Group, which operates 74 stations, stating he “hasn’t heard of any

broadcaster who has said they have anything for sale.”114 We consider the effect of partial

participation specifically by non-commercial station types in Section 2.5.5 and find that

total payouts can easily double, even in the absence of strategic bidding, if participation is

low among such stations.

Third, we focus exclusively on the full surrender of UHF licenses into the auction in line

with the FCC’s own simulation exercise. We thus set aside VHF licenses and, similarly, do

not model a TV station’s additional option of moving from a higher to a lower frequency

band in order to free up more desirable parts of the spectrum. The price that a VHF station

is offered for going off the air and the price that a UHF or a VHF station is offered to move

channels are fixed fractions of the price that a UHF station is offered for going off the air.

For this reason, the FCC’s own auction simulations focus solely on the number of UHF

licenses required to meet a given clearing target in its repacking simulations. We also do

not consider the option of channel-sharing arrangements. Channel-sharing refers to a sit-

114“FCC can auction spectrum, but will broadcasters sell?”, Joe Flint, The Los Angeles Times, February 17
2012.
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uation where two TV stations enter into a private agreement to share a license to 6 MHz of

spectrum and split the proceeds from selling the other license into the auction. It is unclear

how attractive this option is, in part due to technological constraints.115 Channel-sharing

arrangements are likely to boost participation in the reverse auction, thereby effectively

reducing the number of UHF licenses required from regular auction participants to meet a

given clearing target.

Fourth, we assume complete information among the owners of TV stations in that they

know the broadcast volume jjt0 and reservation value vjt0 of every TV station. The as-

sumption of complete information greatly simplifies the analysis relative to an asymmet-

ric information formulation. The net effect of this assumption on prices and payouts is

ambiguous as it makes it easier for firms to implement supply reduction strategies while

also eliminating any possible ex-post regret for multi-license owners. Furthermore, while

knowledge of reservation values is a strong assumption, many large broadcasters have en-

gaged consultants to help them estimate valuations heading into the auction. In addition,

industry groups of smaller broadcasters have helped their members to similarly estimate

valuations in their DMAs. While there may be some residual uncertainty about reservation

values, we conjecture that a model with incomplete information has similar but possibly

less sharp implications as our current model. In particular, strategic supply reduction with

incomplete information manifests itself by a multi-license owner raising her bid above a

station’s reservation value instead of outright withdrawing the station from the auction,

which could have a smaller impact on closing prices.

Our baseline is the outcome of the reverse auction with naive bidding. Under naive

bidding, we simply ignore the ownership pattern in the data and treat TV stations as in-

dependently owned. In line with the discussion in Section 2.2.2, TV license j remains in

the auction until the base clock price drops below vj
jj

. To account for uncertainty in our

estimates of reservation values, we construct reservation values by repeatedly drawing

realizations of the cash flow error term ej and the multiples MultipleCF
j and MultipleStick

j .

1156 MHz of spectrum is insufficient for two high-definition video streams. The FCC has piloted a channel-
sharing arrangement in Los Angeles, CA, showing that it is technologically feasible for one high-definition
video stream and one or more standard-definition video streams to share 6 MHz of spectrum. 6 MHz of
spectrum may no longer suffice if a TV station eventually transitions from a high-definition to a ultra-high-
definition (4K) video stream.
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Given a particular set of implied reservation values, we proceed as follows to compute the

naive bidding outcome (a formal coding of the algorithm is presented in Appendix B.2):

1. Any participating license in a focal DMA’s repacking region whose reservation value

is above its starting price is repacked into the available spectrum. If it is not possible

to accommodate all of these licenses in the available channel space (UHF channels 14-

30 for the 126 MHz clearing target), then the auction is considered to have failed.116

2. All remaining licenses are considered “active” in the auction. They are sorted in

descending order by their reservation price and are denoted by j 2 {1, ..., J}, where

j = 1 is the station with the highest reservation value in terms of the base clock

price. As the base clock price falls, licenses withdraw one by one. Each time a license

j withdraws, we verify that each of the remaining “active” stations in {j + 1, ..., J}

could still feasibly be repacked if it were to withdraw in the next round of the auction.

If station k 2 {j + 1, ..., J} can no longer be repacked due to j having withdrawn, it

is no longer “active”, and instead is “frozen” at the current base clock price. The

payout to station k is therefore set by station j, who made it no longer feasibly to

repack k.

3. The base clock price drops and the process continues until all licenses are either

repacked or frozen.

Unless otherwise noted, we report average auction outcomes based on 100 draws from the

distribution of reservation values below. With 204 DMAs, each with its own repacking

region, and 100 simulation draws, we determine payouts for 20,400 simulated auctions.

We next account for the ownership pattern in the data. We assume that a multi-license

owner engages in strategic supply reduction by withholding one or more of its TV stations

from the reverse auction at the outset of the auction. Hence, an owner of no TV stations has

2no � 1 possible combinations of licenses to consider bidding into auction, and if there are

No multi-license owners in the repacking region, there are ’No
o=1(2

no � 1) strategy profiles

116In practice, it is very rare for the auction to fail. The fail rate for our main results is under 0.7% of simula-
tions, and those cases involve many strategic withdrawals of licenses. It is unclear although perhaps unlikely
that massive withdrawals of licenses could constitute equilibria.
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across firms, assuming again full auction participation by single-license owners. Given

computational constraints, this creates an infeasibly large strategy space for at least some

repacking regions; there are 17 owners with 20 or more TV stations and one owner with 93

TV stations in the data. Hence, we impose a restriction on the strategy space, by limiting

strategic bidding to licenses in the focal DMA, rather than all licenses owned by a given

firm across the repacking region. This reduces both No to only multi-license owners and no

to only licenses in the focal DMA. For example, a multi-license owner of a given license in

the Philadelphia, PA, DMA considers strategic bidding only for that and any other licenses

in the Philadelphia, PA, DMA, but not for those held in, say, the Harrisburg, PA, DMA,

even though we consider such stations in repacking.

For each of the resulting strategy profiles, we re-run the above algorithm to determine

the payouts associated with this strategy profile, assuming that firms bid their valuations

for the set of licenses they consider bidding into the auction under the particular profile

under consideration. We use these payouts to determine whether a particular strategy

profile is an equilibrium outcome of each multi-license owner’s strategic choice of licenses

to bid into the auction in the focal DMA by verifying the absence of any unilaterally prof-

itable deviations from the strategy. With no or one multi-license owner in a DMA, there is

a unique pure-strategy equilibrium set of licenses to bid into the auction. With more than

one multi-license owner, there may be multiple equilibria; we enumerate all of them.

To be able to accommodate the large dimensional strategy space under strategic bid-

ding, we make one final simplification in estimating auction outcomes: we do not assert

feasibility or compute payouts for stations outside the focal DMA; we instead assume they

exit the auction at the same base clock price when they would have exited under naive

bidding over the entire repacking region. We assert feasibility only for active licenses in

the focal DMA when these licenses exit. Our main results compare naive and strategic

outcomes under this simplification. In Section 2.5.6 we show that in select major markets

that we tested, this simplification introduced an error of less than 0.20% in the strategic

payouts we computed relative to asserting feasibility and computing payouts for all non-

focal DMA stations. It had virtually no effect on naive payouts across all markets. At the

same time, computational speed increased by a factor of 15 to 20. To further illustrate how
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we complete our simulations, Appendix Figure B.2.1 shows the reverse auction process

in detail for two alternative strategy profiles of multi-license owners in Philadelphia, PA,

for a given draw of simulated valuations. Appendix Figure B.2.2 graphically depicts the

auction progress under the first strategy profile by plotting the locations of licenses that

withdraw and/or are frozen.

Restricting strategic bidding to the focal DMA, the Pittsburgh, PA, DMA has 4,601

strategy profiles to consider, the largest number of any DMA in our data. The total sum

of strategy profiles across the 204 DMAs is 17,316, implying solving a total number of

1,731,600 simulated auctions.117 We recognize that restricting strategic bidding to the focal

DMA is likely to create a lower bound on the effect of strategic bidding by multi-license

owners. In Section 2.5.4 we return to the Philadelphia case study and explicitly allow a

particular multi-license owner to strategically bid an additional license from a neighboring

DMA; we demonstrate large effects.

Despite the simplifications, our analysis is near the bound of what can be computed in

a reasonable amount of time. The over two million simulations in this paper were com-

pleted on a combination of the Wharton High-Performance Computing Cluster and the

Amazon EC2 Cloud Computing Platform over a period of just under one month during

the summer of 2016, typically utilizing over 500 dedicated cores (without hyperthreading)

simultaneously.

2.5 Results

2.5.1 Naive versus strategic bidding

We compare the outcome of the reverse auction under naive bidding with the outcome

under strategic bidding when we account for the ownership patterns in the data. Table 2.4

shows the main results: payouts to broadcast TV licenses holders under naive and strategic

bidding, broken down into different subsets of DMAs. As there may be multiple equilibria

when more than one firm in a DMA controls multiple licenses, we present moments of the

117In contrast, if we allowed multi-license owners to bid strategically within each repacking region, the num-
ber of strategy profiles would be a completely unmanageable 6.89 · 1044.
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resulting payout distributions across equilibria. In a given DMA, we record the minimum,

mean, median, and maximum payout level across equilibria for strategic bidding for each

simulated set of reservation values. We then average each of these four moments across

simulation draws. Table 2.4 then reports the sum of the payouts across particular group-

ings of DMAs for each moment. In the following, we focus on comparing payouts under

naive bidding to the average equilibrium payout under strategic bidding.118

The first thing to remark upon is that strategic bidding generally leads to higher pay-

outs in the reverse auction. This need not be the case: there exist equilibria in DMAs where

total payouts are lower due to strategic behavior, although higher for the firm engaged in

supply reduction.119 At the mean payout level across equilibria, strategic bidding is found

to increase total payouts from $16.999 billion to $20.740 billion, an increase of 22%. Mov-

ing down the table, we see that nearly 99% of payout increases are concentrated in DMAs

with two or more multi-license owners. Further, we see that DMAs in which private equity

firms are active are an important source of increased payouts. Those 18 DMAs are large, ac-

counting for 70.4% of payouts in the base case; however, they account for 95.7% of the total

increase in payouts at the mean due to strategic bidding. In addition, we see that there is

some skew to the distribution, with some exceptionally large payout increases at the high

end of the distribution for certain strategic equilibria. For example, in the 18 private equity

active DMAs, the average maximum strategic equilibrium payout across equilibria is 51%

greater than the payout under the naive base case. Panel B shows the large spillover effect

of strategic bidding: single-license owners, who have no incentive to reduce supply, see

payout increases of 19.1% at the mean strategic bidding equilibrium. While multi-licenses

owners benefit more in percentage terms, the level of payout increases is actually greater

among single-license owners.

Table 2.4 masks significant heterogeneity in the impact of strategic supply reduction.

Even under naive bidding, there are an average of just over 90 DMAs that see payouts of

zero across simulations. Under strategic bidding, an average of 23 DMAs, or just 11% of

118In the rare cases where there is no pure strategy equilibrium, we assume firms revert to naive bidding.
119A firm can selfishly increase its own profits through strategic bidding, but by withdrawing a license from

the auction, it also affects which other licenses are sold in. In some occasions, more expensive licenses are
substituted with less expensive ones due to strategic bidding by others.
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Table 2.5: Auction surplus to private equity firms

Total Total Profits
# Stations Purchase Price ($M) Naive ($M) Strategic ($M)

NRJ 14 235.51 690.79 1, 473.04
(81.31) (140.56)

OTA 20 77.05 446.79 1,237.10
(44.94) (144.61)

LocusPoint 9 54.75 200.65 400.44
(24.64) (62.22)

Notes: Profits are averages over 100 auction simulations, and in the case of strategic bid-
ding, averages over equilibria, summed across all DMAs where the firms hold licenses.
Total profits are defined as total proceeds from the auction for stations that sell, plus the
reservation values of stations that do not sell, less the purchase prices paid by the firms
for the stations.

DMAs, show payout increases from strategic bidding.120

Our simulations allow us to determine the profitability of strategic supply reduction

for the three private equity firms. Table 2.5 presents the results. As discussed in Section

2.3.2 these firms have acquired TV stations with high broadcast volume but low valuations

as going concerns. Even under naive bidding, the firms stand to profit as their payouts in

the reverse auction plus the value of any unsold licenses substantially exceed their total

acquisition costs.

The simulations bear out the implication of the model in Section 2.2.2 that a multi-

license owner sells stations with higher broadcast volume into the auction but withholds

stations with lower broadcast volume. Table 2.6 shows the average broadcast volume and

reservation value of the licenses owners decide to keep and sell under naive and strategic

bidding simulations. Comparing attributes of unsold stations under naive and strategic

bidding, we see that owners on average keep stations of lower value and sell stations

of higher value under strategic bidding. This is counter-intuitive, until one sees that the

stations kept have lower broadcast volume, and so are less valuable in the auction, while

those sold have higher broadcast volume, making them particularly attractive to sell into

the auction. In general, we see that strategic behavior leads to a higher amount of broadcast

volume being acquired to reach the clearing target, increasing the total payouts.

There are two potential efficiency losses from strategic bidding by multi-license own-

120On average, one DMA per simulation will see a decrease in payouts from strategic bidding.
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Table 2.6: Station characteristics for auction licenses

Bidding Strategy
Naive Strategic

License Averages Unsold Sold Unsold Sold
Broadcast Volume (000s) 156.893 214.051 100.554 343.060

(2.920) (8.853) (4.544) (18.041)
Reservation Value ($M) 44.959 8.845 32.742 20.072

(1.254) (0.827) (3.750) (3.929)

Notes: Statistics describe averages of station characteristics for selling and non-selling
licenses across all 204 DMAs and 100 auction simulations per DMA, and in the case of
strategic bidding, first averaged across equilibria for each auction simulation. Standard
errors based on 100 simulation draws are in parentheses.

ers: first, such behavior changes the set and number of licenses surrendered in the auction;

second, such behavior risks reducing the amount of spectrum that is repurposed in the

auction.

The set of stations surrendered under strategic bidding differs from that under naive

bidding, as implied by Table 2.6. Therefore, strategic bidding by multi-license owners

distorts the set of licenses that are surrendered from a socially optimal set to a different

set, allowing perhaps lower-value licenses to remain on-air while higher-value licenses are

surrendered. Such efficiency losses are likely significant; our simulations indicate that the

average license that remains unsold under naive bidding has a reservation value of less

than half of the reservation value of an unsold license in the average strategic equilibrium.

In addition, there is a risk that strategic bidding by multi-license owners could cause

a stage of the auction to fail, leading to a reduction of the overall clearing target. As the

forward auction is outside of the scope of this paper, we cannot address this prospect

numerically, although we mention it as a possibility.

2.5.2 Case study: Philadelphia, PA

In this section we illustrate the impact of strategic bidding for a particular realization of

valuations for stations in the Philadelphia, PA repacking region. Figure 2.5.1 shows graphs

of outcomes first under naive, and then under strategic bidding. Both charts show all eli-

gible UHF licenses in the focal Philadelphia, PA, DMA ordered by their simulated reserva-

tion values in light gray on the left y-axis. We further display on the second y-axis payouts
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in terms of base clock prices as triangles; recall that the payout in terms of base clock maps

to license-specific payouts on the left y-axis through the broadcast volume of each license.

Lastly, we display on the second y-axis the firms’ bids in terms of base clock prices as

squares. These correspond to the stations’ transformed reservation prices and indicate the

base clock price at which the station would drop out of the auction, if it is not frozen at

a higher base clock price. The first image shows the outcome under naive bidding. In

the second, we present a strategic equilibrium of this simulation where two multi-license

owners each are able to increase their own auction surplus by withdrawing one of their

licenses from the auction (these licenses are identified by strategic bids of $900, which is

the starting base clock price of the auction). Note that the withdrawal of two licenses in-

creases payouts for several other licenses, implying a positive spillover to those licensees,

but the two firms find it individually rational to withdraw licenses solely based on their

own profit motives. Total payouts in this DMA go from nearly $1.7 billion for 15 licenses

under naive bidding to over $2.5 billion for 16 licenses in the strategic equilibrium pre-

sented here. This example thus clearly indicates the inefficiencies associated with strategic

bidding: not only is it possible that the mix of stations that sells in the auction is distorted

(e.g., UniMas does not sell under naive bidding but does under strategic bidding, while

MyNetwork TV sells under strategic bidding but not under naive), but strategic bidding

may also result in the government needing to purchase a larger number of licenses to reach

its predetermined clearing target given the interference patterns between the stations that

are now not selling in the auction.

Appendix Figure B.2.1 shows the precise details of these two simulations, with the

naive bidding simulation in the left column and strategic on the right. The figure shows

the order in which licenses withdraw from the auction and the base clock price at which

they withdraw, labeling licenses by their FCC Facility ID number, and including their net-

work affiliation in parentheses. Importantly, the figure emphasizes that we repack a large

region around the DMA, by highlighting the few licenses in the Philadelphia, PA, DMA in

bold. The left column of the figure shows how major network affiliates in large markets

withdraw from the auction immediately, as starting base clock prices are too low. For ex-

ample, License #9610 is CBS New York, and it withdraws immediately from the auction.
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Reading down the column, we see how licenses withdraw and how all remaining licenses

are then checked for feasibility in repacking. If a license can no longer be feasibly repacked

due to a withdrawal, its payout is frozen based on the current clock price. We only list

freezes for licenses in the focal Philadelphia, PA, DMA.

The right column of the figure shows how the strategic withdrawal of two licenses

changes the prices at which other licenses become frozen in the auction. For example, li-

cense #39884 becomes frozen by the withdrawal of license #73333 at a clock price of $298.15

in the naive bidding simulation, but in the strategic simulation, it is frozen earlier by the

withdrawal of license #63153 at a clock price of $444.89, increasing its payout by 49% even

though its owner is not the firm withdrawing licenses. The two multi-license owners who

own pairs (#74464, #55305) and (#61111, #72278), find withdrawing licenses a profitable

strategy individually.121

2.5.3 Partial remedy

We have so far shown that strategic supply reduction may lead to increased payouts and

efficiency losses in the reverse auction. We next propose a change to the auction rules and

show how it limits the potential for rent-seeking. The model in Section 2.2.2 shows that

strategically reducing supply is more likely to be profitable if the increase in the closing

base clock price from withholding a license can be leveraged by selling a license with

high broadcast volume into the auction. Our proposal aims to weaken this mechanism by

limiting the strategy space of multi-license owners. In particular, we stipulate that a multi-

license owner must first withdraw her highest broadcast volume license. Once that has

been withdrawn from the reverse auction, the owner may withdraw her second highest

broadcast volume license, and so on.

Table 2.7 shows how the rule change affects our main results. The increase in payouts

from strategic bidding are 80% less than in Table 2.4 at the mean. Interestingly, under
121NRJ who withdraws #74464 foregoes a surplus on that license of $37.5 million = ($221.79-

$106.71)*326127.3, which is the naive clock payout less reserve value measured in terms of base clock price
times broadcast volume, in exchange for increasing the payout in terms of clock price for license #55305 from
$221.79 to $298.15, which when multiplied by a broadcast volume of 570169.3 is $43.5 million. LocusPoint that
withdraws #72278 loses nothing on that license as it does not sell under naive bidding, but its withdrawal in-
creases the payout to license #61111 by $23.8 million, by raising the freezing clock price from $72.66 to $221.79,
given a broadcast volume of 159417.7.
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this alternative policy, the outcome under strategic bidding presented in Figure 2.5.1 for

the Philadelphia, PA, DMA would no longer involve feasible strategies since there, both

firms withhold their lower broadcast volume stations. This would thus cease to be an

equilibrium outcome.

Efficiency requires that, for otherwise identical licenses, the licenses with the lowest

reservation values are sold into the auction. In the spirit of the literature on regulation

where effort is not verifiable (Laffont and Tirole, 1986), the rule change leverages the fact

that broadcast volume, unlike cash flows, is observed and contractible. Our estimates im-

ply that broadcast volume is positively correlated with reservation value: averaged across

simulation runs the correlation is 0.47 overall and 0.44 within DMA.122 The rule change

therefore mitigates efficiency losses by requiring that licenses with higher broadcast vol-

umes, and likely higher reservation values, are withdrawn first from the reverse auction.

The rule change has two potential shortcomings, aside from legal considerations. First,

a multi-license owner may be able to circumvent the rule change by selectively entering

her licenses into the reverse auction in the first place. However, the rules of the auction

may be further rewritten to compel a multi-license owner to either participate with all her

licenses in the auction or not at all. Second, and perhaps more importantly, forcing lower

broadcast volume licenses to sell before higher broadcast volume licenses may complicate

the repacking process to the extent that licenses with higher broadcast volume and poten-

tially also higher interference count may no longer sell and have to be repacked.

2.5.4 Multi-market strategies

Strategic bidding may extend beyond market borders if multi-license owners withhold a

license in a DMA from the reverse auction to drive up the closing base clock price in a

neighboring DMA where they also own a license. Here, we illustrate how such strategies

may work continuing with the Philadelphia, PA, case study. As mentioned above, it is

not computationally feasible to consider all multi-market strategies in a repacking region,

given the prevalence of multi-license ownership and the need to simulate over uncertainty

in reservation values.
122Within DMA correlations are averaged over 184 DMAs that have three or more stations.
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In late 2012 NRJ purchased WGCB-TV in the Harrisburg, PA, DMA for $9 million.

While NRJ owns no other TV stations in the Harrisburg, PA, DMA the firm had previously

purchased WTVE and WPHY in the Philadelphia, PA, DMA in late 2011 and early 2012

for $30.4M and $3.5M respectively. WGCB-TV has a very high interference count and may

interfere with 161 stations in the repacking process. A closer look shows that WGCB-TV is

not actually located in Harrisburg, PA, but in Red Lion, PA, towards both the Philadelphia,

PA, and Baltimore, MD, DMAs. Figure 2.5.2 shows how the broadcast contours of WGCB-

TV and WTVE overlap. Hence, if NRJ withdraws WGCB-TV from the reverse auction, this

may sufficiently complicate the repacking process to increase demand in the Philadelphia,

PA, DMA, and potentially other DMAs.

Table 2.8 shows the effect on payouts in the Philadelphia, PA, focal DMA of allowing

NRJ to bid its license to WGCB-TV strategically in concert with its licenses in the Philadel-

phia, PA, DMA. We continue to assume that all remaining multi-license owners in the

Philadelphia, PA, DMA, to the extent that they own licenses outside that focal market, con-

sider strategic bidding for their Philadelphia stations only. From a practical perspective,

this relocates the license of WGCB-TV from the Harrisburg DMA to the Philadelphia DMA

for ownership purposes without actually relocating the broadcast tower. This change alone

increases the number of strategy profiles to consider from 729 to 1701 for each simulation

draw.

The first row in Table 2.8 shows Philadelphia’s results from our main results in Table

2.4. The first and second rows show that the partial remedy proposed in Section 2.5.3 is

very effective in this DMA. The third row shows that total payouts can increase dramat-

ically in this DMA if NRJ bids its Harrisburg license strategically. The fourth row shows

that the partial remedy is no longer particularly effective in this situation, suggesting that

our above estimate is likely an upper bound of the true degree to which the remedy would

restrain the extent to which strategic bidding can influence payouts.

Note that all payouts in the table exclude any payout to WGCB-TV, so they are directly

comparable across scenarios. In particular, one can see that having an additional strategic

lever is valuable in the tail end of equilibrium payouts in this case study.

More generally, cross-market ownership can be seen as positive for the auction, as sell-
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Figure 2.5.2: Multi-market strategy in the Mid-Atlantic

Notes: Map plots reception contours from FCC TV Query database for WGCB-TV (Har-
risburg) in red and WTVE (Philadelphia) in blue. Contour plots reflect reception of DTV
signals from the broadcast towers. Image via Google Maps.

ing licenses should be complementary across markets if it allows a larger clearing target

to be attained. However, in this context, it has the potential to be negative if withdrawing

WGCB-TV from the auction sufficiently complicates repacking in Philadelphia: NRJ may

find it worthwhile to withdraw WGCB-TV from the auction if either the proceeds from

selling WGCB-TV are low, or if NRJ’s increase in profits from its Philadelphia licenses is

large.

2.5.5 Partial participation

So far, we have conservatively assumed full participation on behalf of all eligible UHF

licensees. We now consider what payouts may be under reduced participation. In partic-

ular, the results in Table 2.9 show total payouts when we assume that across simulation

draws, both a) none of the religious stations participate, and b) a random subset of 50% of

non-commercial stations does not participate, for a total of 253 non-participating licenses

in each simulation draw. The results highlight how important full participation is to the

auction’s success. First, limited participation makes the failure of the auction significantly
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Table 2.9: Naive outcomes under reduced participation

Payouts ($B) under: Naive Bidding Payout Increase from
# DMAs Full Limited Limited Participation

All DMAs, No-Fail Simulations 204 16.999 33.869 99.2%
(0.751) (2.005)

No-Fail Positive Payout DMAs 45 5.545 10.341 86.5%
(0.265) (0.867)

Notes: Data are averages over 100 auction simulations. Standard deviations across 100
simulations are in parentheses. Limited participation means that no religious stations
participate (108 licenses) and that a random subset of 50% non-commercial stations do
not participate (145 additional licenses). The “All DMAs” row is conditional on auction
non-failure. “No-Fail Positive Payout DMAs” is a set of markets that always see positive
payouts, yet never see the auction fail across 100 simulations.

more likely, as all of the licenses in the non-participating group, and any other stations

that were identified as participating but that have reservation values in terms of the base

clock price above the auction’s starting point, need to be repacked for the auction to even

be able to start. This means that in 4.2% of all 20,400 naive bidding simulations under

reduced participation, the auction immediately concluded as a failure, which never oc-

curred under full participation. It is immediately clear that low participation - before any

strategic withdrawal of licenses - can have dramatic effects on payouts, nearly doubling

them. The first row of Table 2.9 shows that, conditional on the auction not failing, payouts

would effectively double due to non-participation by religious and some non-commercial

licensees. To avoid comparing subsets of simulation draws from different markets, the

second row limits the sample to DMAs that always see strictly positive payouts and yet

never see auction failure under lowered participation; the effect is nearly as dramatic, with

an 86.5% increase in payouts.

The fact that the mechanism is sensitive to participation leads us to a second recom-

mendation. The likely reason many small broadcasters would choose to remain on-air

relates to “must-carry” provisions in FCC regulations. While the regulations are fairly

complex, they stipulate that a large cable operator must carry any and all local broadcast

stations, unless such a station has opted-out and requested retransmission fees.123 There-

123Any cable operator offering more than 12 channels must set aside one-third of their channel capacity
for local commercial broadcasters. Any cable operator offering more than 36 channels must carry all non-
commercial and educational broadcasters.
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fore, continuing to broadcast guarantees that many small licenses will be carried on cable,

which greatly broadens their reach or potential advertising audience. One simple mea-

sure to increase participation, therefore, would be to allow broadcasters to relinquish their

spectrum licenses but retain their must-carry status, so that they can continue to operate

as businesses and reach viewers through cable systems.

2.5.6 Robustness of the repacking approach

Here, we consider the effect of how our simulations limit repacking on outcomes. Our

main results for both naive and strategic bidding rely on simulations that do not assert the

feasibility of repacking of licenses outside the focal DMA, but instead assume that these li-

censes withdraw or are frozen at the same time as when we assert feasibility for all stations

in the entire region under naive bidding. A more complete but computationally intensive

analysis of strategic bidding would assert feasibility for all regional licenses to determine

at which points licenses withdraw or are frozen in the auction under each strategy profile,

in effect treating all licenses in the region as if they were in the focal DMA. We denote the

full analysis of bidding by all stations in the repacking region as “robust repacking” in the

following. To assess the implication of our simplification, we perform two exercises. First,

we compare our naive repacking results to naive robust repacking results for all DMA

markets; second, we compare our strategic repacking results to strategic robust repacking

results for two important DMAs.

We first compare naive bidding outcomes when we robustly assert feasibility for all

licenses in the region to the above outcomes when assuming that licenses outside the fo-

cal DMA are frozen or repacked at the same point in the auction as occurs under robust

repacking, without explicitly asserting feasibility. The latter simplified repacking proce-

dure greatly decreases the computational burden by more than an order of magnitude.

Table 2.10 shows the results for all DMAs. The assumption has a very limited effect on

payouts under naive bidding, with robust repacking reducing total payouts by just under

0.2%. In addition, the correlation between payouts in all 20,400 simulations is 0.9997.

We then consider how strategic bidding outcomes would change if we continued to
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Table 2.10: Naive outcomes under robust repacking

Payouts ($B) under: Naive Bidding
All DMAs 16.9994

(0.7513)
All DMAs, 16.9655

Robust Repacking (0.7330)

Notes: Data are averages over 100 auction simulations. Standard deviations across 100
simulations are in parentheses. Robust repacking implies that payouts and feasibility
were computed and asserted for all licenses in the region, as opposed to only the focal
DMA.

account for feasibility of all licenses in the region, instead of only those licenses in the focal

DMA. To assess these issues, we simulated the robust regional repacking for all strategy

profiles for the New York, NY, (729 strategy profiles for each simulation draw) and Wash-

ington, DC, (189 strategy profiles for each simulation draw) DMAs, as doing so for all

DMAs would not be computationally feasible. Note that while we thus treat all licenses in

the region as though they were part of the focal DMA for repacking purposes, we continue

to assume that strategic bidding occurs only between licenses within the focal DMA, but

not between all licenses a firm owns across the full repacking region. Table 2.11 shows

the results of this exercise, and affirms that the impact of the repacking simplification on

strategic outcomes is very small. Our intuition is that robust repacking is more flexible

and so leads to lower payouts, although the results in these two markets suggest that the

impact is negligible.

2.6 Conclusions

In this paper we explore ownership concentration as a means to seek rents in the context

of the U.S. government’s acquisition of broadcast TV licenses in the ongoing incentive

auction. Ownership concentration is an important policy concern as the FCC has worried

about encouraging a healthy supply of licenses in the reverse auction and has viewed

outside investors as more likely to part with their licenses than potentially “sentimental”

owners. Our prospective analysis shows that this is likely to give rise to strategic supply

reduction and raise the cost of acquiring spectrum.
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In particular, we argue that firms may engage in rent-seeking by attempting to reduce

supply of broadcast TV licenses in the reverse auction. We conduct a large-scale valuation

exercise for all UHF auction-eligible broadcast licenses in order to highlight the potential

for strategic supply reduction and quantify the resulting increases in payouts and effi-

ciency losses. The effect of ownership concentration can be substantial, and this paper is

the first attempt to quantify this effect.

For the auction’s initial clearing target of 126MHz, on which we base the simulations

in this paper, the first stage of the reverse auction resulted in a spectrum acquisition cost

of $86.4B, far exceeding the revenue the FCC was able to realize in the forward auction, a

total of only $23.1B. Our base specification shows instead payouts of only roughly $17B in

the reverse auction, which would have been low enough to end the incentive auction after

the first stage.

While the goal of our paper is not to attempt to predict the exact reverse auction out-

come, our broad findings indicate that it is likely that both participation below 100% and

strategic bidding may have contributed to the failure to clear the opening target. Our re-

sults in Section 2.5.5 suggest that participation of less than 50% of eligible noncommercial

stations nearly doubles spectrum acquisition costs, even in the absence of any strategic

bidding. Strategic supply reduction, even when constrained to licenses in the same DMA

market, increases broadcaster payouts by 22%, on average, as we show in Section 2.5.1. In

a case study of cross-market strategic supply reduction, as would have likely taken place

in the auction itself, payouts due to strategic bidding increased by a much more significant

87.2%. While computational constraints do not allow us to investigate whether the partic-

ular Philadelphia case study is representative of the effect of cross-market strategic supply

reduction in other DMAs, the results in Section 2.5.4 suggest that our baseline strategic

supply reduction effects are likely a lower bound on the true extent of rent seeking that

could arise in the auction due to multi-license ownership.

The execution of the incentive auction, the most novel auction designed since the incep-

tion of spectrum auctions, is an incredibly difficult task that, based on current indications,

has been very successfully tackled. We do not take a stand on whether any specific action

would have altered the bidding results in the reverse auction. For example, it is impossible
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for us to assess whether full participation could ever have been achieved. We hope nev-

ertheless that our work proves useful in designing future auctions geared at repurposing

spectrum toward more efficient use.
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Chapter 3

Do Concealed Gun Permits Deter

Crime?124

3.1 Introduction

Shall-issue laws are state laws providing for the liberal issue of concealed gun permits

analogous to getting a drivers license. Setting off a long controversy, Lott and Mustard

(1997) (henceforth LM) reasoned that SILs increase the probability that a given would-be

perpetrator’s crime will fail because he can no longer tell which prospective victim may

carry a gun and respond with threats or gun shots. In this controversy the weapon of

choice has been the differences-in-differences (DD) estimator applied to state and county

panel data spanning various intervals of time. Researchers have come to divergent con-

clusions spanning “more guns, less crime” to “more guns, more crime.”

Elementary dynamic analysis highlights the possibility of three different effects of the

introduction of SILs - one effect on those already vested in a life of violent crime, another

effect on those teetering between entering such a life and the alternatives and, thereafter,

a selection effect on the exit of those who chose to enter in the presence of SILs. With

panel data on individual potential and actual violent criminals, an empirical specification

to measure these effects would be straight forward. Unfortunately state (not individual)

panels of crime rates for various types of violent crimes constitute the best available data.
124Joint with Marjorie B. McElroy, Duke University.
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To date the research on the impact of SILs has ignored any forward-looking behav-

iors and insights from analysis of the dynamics - insights such as the contemporaneous

responses of existing violent criminals may differ between those who were hit with SILs

after they became violent criminals and those who selected into a life of violent crime de-

spite the presence of SILs. Rather, variations on a static DD approach have been employed,

typically estimating one effect of SILs for each type of violent crime. We argue that DD es-

timators can be viewed as weighted sums of three effects where the weights depend on

the shares of three corresponding sub-populations (potential entrants, those who were hit

with SILs after they became violent criminals, and those who selected into a life of violent

crime despite the presence of SILs). As the sub-populations change systematically as more

time elapses since the passages of SILs, so will the DD estimates. Thus suppose because

the time series lengthens as the years roll by, an early investigator applies DD to a sample

period including the immediate aftermath of SILs but not a longer run and a later investi-

gator includes many time periods long after SILs passed. Then the DD estimate of the first

will tend to estimate a surprise effect (muddied by a bit of a selection effect mixed in) and

the DD estimate of the second investigator will weigh the selection effect more heavily.

And since these effects bear different magnitudes, the DD estimate produced by the sec-

ond investigator will tend to be different from the first investigator. This sensitivity of the

DD estimate to the time span of the sample period provides a setup for a long controversy!

This situation likely arose because there seemed to be no way to incorporate the basic

insights into panel data on crime aggregated to state (county, city) averages. In contrast,

the CPDM proposed here, while using data aggregated to the state level can, nonetheless,

tease out the three separate effects dictated by almost any dynamic model. We attack the

problem indirectly - first by building a model of entry and exits from careers in violent

crime and wrapping up all three effects in a net entry (= entry minus exits) equation. Un-

der appropriate assumptions we link this to the observed changes in the number of crimes

at the state level, a well-measured dependent variable. In addition, we develop appro-

priate proxies for the relevant sub-populations of violent criminals. With these in hand,

we specify a Cohort Panel Data Model and provide maximum likelihood estimators of the

three different effects of SILs on violent crime rates for all violent crimes as well as the four
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components.

Assuming that violent crime is a career, we provide a straightforward dynamic inter-

pretation of what we term LM’s deterrence hypothesis. Namely, SILs reduce the prospec-

tive value of a criminal career and also the continuation value for existing criminals. This

is sufficient to sign the three effects and we strongly reject this hypothesis. We show how

the CPDM nests the standard DD model thereby revealing exactly how the DD scuttles the

basic implications from dynamics. Tests resoundingly reject the restrictions that reduce the

CPDM to a DD model.

Our paper is related to recent work that closely examine the empirical specifications

of DD. Bertrand, Duflo and Mullainathan (2004) (henceforth BDM) reviews a large set of

DD papers and points out the underestimated standard errors due to serially correlated

outcomes. In this paper, similar to Iyvarakul, McElroy and Staub (2011), we recognize that

the point estimates are even biased in the DD specification in a large subset of the papers

reviewed in BDM due to heterogeneous agents’ dynamic decision making. By applying

the more general CPDM to the crime setting in this paper, we show the wide application

and robustness of CPDM in any setting that involves decision making of forward-looking

agents.

This paper also sheds light on the controversial literature on concealed carry weapons,

where almost all papers have employed variations of DD as their main statistical specifi-

cation. LM was the first to use a large panel data set and essentially a DD specification,

exploiting the different timing of state SIL passages, to rigorously study the effects of SILs

on violent crimes. Since then, several papers have found the opposite, or facilitating ef-

fects of guns on crimes (Ayres and Donohue, 2003b,a) (henceforth AD); some have found

no effects (Black and Nagin, 1998; Dezhbakhsh and Rubin, 1998); while some others have

confirmed LM’s findings (Plassmann and Tideman, 2001)125. While most of these studies

make use of the same crime and law passage data set and a DD specification, they mainly

differ in the lengths of their samples and various controls (time trends and demographics)

used. We show that after accounting for serially correlated error terms as suggested by

BDM, most of the results (those of both LM and AD) are rendered insignificant. Further-

125Moody and Marvell (2008) presents a more thorough literature review of the debate on SILs.
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more, the estimates vary with the size of the sample, suggesting that the DD model is a

misspecification. In contrast, the CPDM yields significant results that are invariant to the

lengths of different sample periods (see Section 3.5.2).

This paper also fits in the broader literature on the economics of crimes. We construct

a novel proxy for age-specific violent crime rates to study entry and exit behaviors of indi-

vidual violent criminal cohorts. Similar to the economics of crimes and sociology literature

(Hirschi and Gottfredson, 1983), we find consistent distributions of violent crimes across

ages and further parameterized an exit function of violent criminals by age. Our results

suggest that the recent liberalizations of gun laws, in addition to increasing overall violent

crimes, also increased the turnover - both entry and exit - of violent criminals, effectively

increasing the number of people with violent crime records, while reducing the duration

of their violent criminal careers on average. Higher turnover of violent criminals has large

social implications for criminal records, poverty, labor market outcomes, and etc. These

results are consistent with and complement the recent work on the reasons and effects of

the prison boom in the U.S. (Neal and Rick, 2014; Johnson and Raphael, 2012)126.

Finally, our CPDM embeds a structural model of criminal discrete choices, extending

Gary Becker’s rational criminal framework (Becker, 1968) to the dynamic setting. Simi-

lar to the structural labor and crime literature (Wolpin, 1984; Imai and Krishna, 2004), we

model individual criminals as forward-looking agents with heterogeneous propensity to

commit crimes who dynamically optimize utility. However, while these papers estimate

criminal behaviors with very special samples of micro data (e.g. the Philadelphia Birth Co-

hort Study), we believe that state panel data are more widely accessible to researchers and

representative of general population and criminal population to study the overall crime

patterns. Instead of solving individual-level Bellman equations, we are also able to ag-

gregate to the cohort, state and year level for the simple estimation procedure that still

captures average costs and benefits of entry and exit decisions.

The rest of the paper is organized as follows: Section 3.2 sets up the model, Section 3.3

introduces data and descriptive evidence, Section 3.4 describes the empirical specification

126Johnson and Raphael (2012) also exploits the dynamics as an instrument to identify the effects of changes
in incarceration rates on changes in crime rates with state panel data. We explicitly address the dynamic
adjustments of criminals as well as the heterogeneity among criminals with our CPDM.
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in detail, Section 3.5 presents results and Section 3.6 concludes.

3.2 Model

This section presents a spare model that captures the essential consequences of forward

looking behaviors on the part of potential and actual violent criminals in order to identify

the differing effects of SILs across three sub-populations as well as the total effect. Treating

violent crime as an occupation lets us capture the effects of SILs on entry into and exit from

a career in violent crime in a familiar way. Potential entrants are all those who are capable

but not yet criminals; potential exitors are all those who are currently violent criminals.

To simplify the language, in this paper, we refer to careers in violent crimes as “careers”

and use violent criminals and criminals interchangeably. We also refer to the potential

entrants and exitors as the “entry cohort” and the “exit cohort” even though it is not,

strictly speaking, a cohort but a stage of life.

Assume the choice governing entry is captured by a value function and those govern-

ing exit by a continuation function. The passage and presence of SILs affect both. Begin

with the entry cohort. Let (s, t) denote state s in period t and let NEn = the number of

potential entrants in (s, t).Then a familiar, straightforward reduced-form representation of

decisions to enter careers in violent crime would be

Entryst = (a0 + a1 ISIL
st + e

En
st )NEn

st (3.2.1)

where ISIL
st = 1 if SILs are in effect, and e

En
st is a well-behaved random error to be

discussed. Parameters to be estimated are the base entry rate, a0, and the impact of SILs

on entry, a1. Note that the dependent variable Entryst is unobserved.

With forward looking behaviors, the contemporaneous effects of SILs on exits from ca-

reers in violent crime depend on whether this career was chosen before or after the passage

of SILs. For those whose entry was prior, the passage of a SIL induces a surprise change

in the continuation value of this career and consequently exit rates change by the surprise

effect, denoted by b2. In the case that the advent of SILs causes continuation values to fall,
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the exit rates increase and b2 > 0, and vice versa. Use NSurprised
st to denote the size of the

surprised cohort.

In contrast to the surprised cohort, those who chose their careers in violent crime after

the passage of SILs presumably capitalized the effect of SILs on the value of a career in

violent crime when they selected into careers of violent crime. Use NSelected
st to denote the

size of this selected cohort. For if the pool of potential entrants is heterogeneous in their

“quality” (proclivity for violent crime) the change in the value of the violent career path

induced by SILs will affect not just the quantity of entrants as in Equation 3.2.1 but also

their quality and, in turn, change their exit rate down the road. This is captured by the

selection effect b1. In the case that the advent of SILs decreases continuation values, the

marginal and average violent criminal will have a higher quality, be more buffered from

negative career shocks, and thus have a lower probability of exiting or b1 < 0, and vice

versa. These effects are captured in the reduced form exit equations,

ExitSelected
st =(b0 + b1 ISIL

st + e

Ex
st )NSelected

st (3.2.2)

ExitSurprised
st =(b0 + b2 ISIL

st + e

Ex
st )NSurprised

st (3.2.3)

Thus, as shown below, in contrast to diff-in-diff specifications, this enables the CPDM

to explain turning points in criminal activity and not just either upswings or downturns.

Finally, subtracting exits from entrances gives the net increase in criminals,

NetEntryst =(a0 + a1 ISIL
st + e

En
st )NEn

st

�(b0 + b1 ISIL
st + e

Ex
st )NSelected

st

�(b0 + b2 ISIL
st + e

Ex
st )NSurprised

st

=(a0 + a1 ISIL
st )NEn

st � (b0 + b1 ISIL
st )NSelected

st � (b0 + b2 ISIL
st )NSurprised

st + est

(3.2.4)

where the error est = e

En
st NEn

st � e

Ex
st NSelected

st � e

Ex
st NSurprised

st is mean zero, heteroskedas-
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tic, and can be written as s

2 =
h

(NEn
st )2

p + (NSelected
st )2 + (NSurprised

st )2
i

s

2
Ex, where p = s

2
En

s

2
Ex

is a parameter to be estimated. Should Var(eEn
st ) = Var(eEx

st ), then s

2 = Var(eEn
st ) and the

variance is homoskedastic.

Equation 3.2.4 is the basic model for the CPDM. Later in the empirical work, we inves-

tigate the effect of floodgate and aging effects to this model. Our approach highlights the

importance of three separate effects of SILs: a1 a direct effect on entry of youths into violent

criminal careers and b1 the subsequent selection effect on their exits; and b2 the surprise

effect on cohorts of older criminals who began their careers prior to SILs. Further, these

three parameters capture the two fundamental implications of dynamic analysis. These

are (i) the impact of SILs on behaviors are not symmetric between potential entrants and

exitors (youths in their entry windows and violent criminals) - roughly, the a’s are not

equal to the corresponding b’s; and (ii) the impact of SILs on exits from violent criminal

careers differs between those who began their careers before the advent of SILs and those

who began after - b1 6= b2.

Given ideal panel data on individuals, we could observe entries and exits of potential

and actual criminals and form subsamples of criminals according to whether their entry

preceded or post-dated the advent of SILs. Then the strategy would be to estimate each of

these three separate effects - using something like diff-in-diff - on the corresponding three

sub-samples. In reality such data are not on the visible horizon. Unlike other occupations,

the pool of criminals as well as their entries and exits go unobserved. The panel data we do

have are aggregated to the state (or county or city) level and, of course, do not parse out the

criminal population, much less record entry dates. Thus a three-separate-regression esti-

mation strategy for state panel data that parallels that for micro panel data is precluded. In

particular, this strategy is precluded because the crime rates (dependent variables) avail-

able are for the entire state population, not for the three key sub-populations. The point

of using the cohort panel data model is that, despite observing only the impact of SILs

on violent crimes aggregated to the state level, nonetheless the CPDM provides a way to

identify the three fundamental dynamic effects of SILs - a1, b1, and b2.
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Table 3.1: Effects of SILs on criminal careers

Cohorts Before SIL After SIL
ISIL
st = 0 ISIL

st = 1
Entry
NEn

st a0 a0 + a1
Exit

NSelected
st b0 b0 + b1

NSurprised
st b0 b0 + b2

Net Entry
NEx

st = NSelected
st + NSurprised

st a0NEn
st � b0NEx

st (a0 + a1)NEn
st � b0NEx

st
�b1NSelected

st � b2NSurprised
st

a0NEn
st + a1 ISIL

st NEn
st � b0NEx

st � b1 ISIL
st NSelected

st � b2 ISIL
st NSurprised

st

Notes: Breakdown of the CPDM into entry and exit, before and after SIL. Multiplying
cohort sizes in column 1 with average effects in columns 2 & 3 yields the respective
contributions of each cohort to the total effect of SILs on criminal careers. Summing
across rows then gives the total effect, or equivalently, our CPDM.

3.2.1 Implications

It is worth pausing to create a sketch of the model as contained in Table 3.1. The first two

blocks in Table 3.1 show the contribution of each cohort (entry, selected and surprised) to

the aggregate net entry rate with the second and last columns giving these contributions

before and after SILs, respectively. In the third block of rows, weighting each row by its

share and then subtracting exits from entries gives the net entry rate before and after SILs.

NEx
st is the number of all potential exitors. Finally weighting the second and last share-

weighted column total net entries by (1� ISIL
st ) and ISIL

st gives the desired net entry rate

for each (s, t) in the last block. Note that the expression in the last block is the same with

Equation 3.2.4.

We use this table to lay out, in turn, the evolution of the crime rate over time, the

implications of the deterrence hypothesis, the nesting and testing diff-in-diff specifications

as special cases of the CPDM.
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Table 3.2: Evolutions of criminal cohorts

Impacts on Before Passage At Passage After Passage
Criminal Cohorts Old Eqm. Transition Years New Eqm.

t < t⇤ t = t⇤ t⇤ < t < t⇤⇤ t � t⇤⇤

s⇤Surprised
st⇤ b2 0 b2 0 < s⇤Surprised

st b2 < b2 0
s⇤Selected

st⇤ b1 0 0 0 < s⇤Selected
st b1 < b1 b1

Notes: Exit cohort sizes and contributions to the total effect over time. Cohorts are
normalized by the total exit cohort size NEx

st .

3.2.1.1 Evolutions of criminal cohorts

Under the CPDM, how would passages of SILs affect crime rates? As Equation 3.2.4 and

Table 3.1 show, the obvious effects are captured by a1, b1and b2 that affect entry and exit

of the corresponding sub-populations. We turn to how the size and share of each sub-

population evolve over time.

First set aside the entry cohort and presume it is exogenous (i.e., fertility is independent

of SILs). Divide the selected (NSelected
st ) and surprised (NSurprised

st ) cohorts by the total exit

cohort (NEx
st ) so they sum to one, s⇤Selected

st + s⇤Surprised
st = 1. Prior to SILs, crime evolves

according the pre-SIL entry and exit rates as they hit the associated entry and exit cohorts.

Further, note that as of the period when SILs become effective (t⇤), essentially all criminals

would have entered before this. Thus in t⇤ none of the stock of criminals were selected

into crime under SILs so that s⇤Selected
st⇤ = 0 and thus s⇤Surprised

st⇤ = 1. This contrasts with the

long run here defined as beginning when the last survivor in the surprised cohort retires

or exits (t⇤⇤) . By then the cohort shares have reversed: s⇤Selected
st⇤ = 1 and s⇤Surprised

st⇤ = 0 and

they remain there going forward. Most importantly, for t in between t⇤ and t⇤⇤, the shares

evolve systematically with s⇤Selected
st⇤ growing (approaching 1) at the expense of s⇤Surprised

st⇤

(approaching 0). These shares are the weights on the selection and surprise effects. Hence,

the impact of these effects on crime rates go from the surprise effect (b2) dominating in the

immediate aftermath of the passage of SILs, then fading as these older criminals exit and

the fraction selected into crime grows until, in the long run, only the selection effect of SILs

remains. These trends are summarized in Table 3.2.
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3.2.1.2 The deterrence hypothesis

LM’s deterrence hypothesis has a natural interpretation in terms of the CPDM. Recall the

channel they envisioned was that in the presence of concealed guns born by law-abiding

citizens, violent criminals faced lower payoffs in the form of increased risk from their in-

tended victim because they can no longer tell which victims are unarmed and which not.

This translated into our CPDM model as lowering the value of entering a career in vio-

lent crime and also lowering the continuation value for those who are already criminals.

Consequently, we interpret the deterrence hypothesis as implying that SILs reduce entry

via lowering the career value, i.e., a1 < 0. Also, thereafter, those who select into crime are

fewer in number but more hardcore than otherwise, i.e., b1 < 0. Finally, and this likely

gets closest to what LM had in mind: the advent of SILs is a negative surprise for the

continuation value for current criminals and they exit at higher rates than otherwise, i.e.,

b2 > 0.

3.2.1.3 Nesting DD in CPDM

To show that the CPDM nests the basic DD we return to the two basic insights from a

dynamic model of entry and exit into crime. These are (i) differential impacts of SILs be-

tween potential entrants and exitors (youths in their entry windows and violent criminals)

- roughly, the a’s are not equal to the corresponding b’s; and (ii) the impact of SILs on

criminals’ exits by those who began their careers before and after the advent of SIL are not

equal, i.e., b1 6= b2. It is exactly the denial of these insights that reduces the CPDM to the

DD estimators.

Let us impose these in turn on the specification of the CPDM in Equation 3.2.4. First

deny insight (ii) by imposing the restriction that those who became criminals before and

after the advent of SIL exhibit the same contemporaneous responses to the presence of

SILs, or b1 = b2 = b⇤, a common value. In that case Equation 3.2.4 becomes

NetEntryst =(a0 + a1 ISIL
st )NEn

st � (b0 + b⇤ ISIL
st )NEx

st + est (3.2.5)
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Then further deny insight (i) by imposing that the contemporaneous impact of SILs

on the crime rate is the same for potential entrants as for criminals, or a0 = �b0 and

a1 = �b⇤. Equation 3.2.5 is reduced to

NetEntryst =a0Nst + a1 ISIL
st Nst + est (3.2.6)

where Nst = NEn
st + NEx

st is the total relevant population at risk to contribute to the net

change in the number of criminals. Equation 3.2.6 is then the familiar DD form and is, as

everyone knows, completely static.

3.3 Data and descriptive evidence

We draw from several sources of data in this paper in order to build up the cohorts in the

CPDM and to overcome data difficulties in traditional studies of crimes.

To construct the basic dependent variables (violent crimes), we follow the literature

and obtain data from the Uniform Crime Report (UCR) maintained by the Federal Bureau

of Investigation (FBI). The UCR data starts from 1977, as used in LM, but we focus on the

period 1980-2011 due to other data constraints (BJS, see below). UCR reports violent crime

and arrest rates at the state-year level in five categories: (1) murder and nonnegligent

manslaughter, (2) forcible rape, (3) robbery, (4) aggravated assault, and (5) total violent

crimes. Crime rates are used to construct dependent variables in our empirical specifica-

tion, while state-level arrest rates are proxies for state police enforcement intensities, as is

often used in the literature. Demographic control variables are obtained through the Re-

gional Economic Information System (REIS) of the Bureau of Economic Analysis (BEA).

These variables include real per capita personal income, income maintenance, unemploy-

ment insurance, and retirement payment for people older than 65 on the state-year level

and are again broadly used in this literature to control for state-level income and welfare

conditions over time. Table 3.3 summarizes these crime and control variables.

We obtain single-age population estimates from the Census on the state-year level to
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Table 3.3: Main sample summary statistics: all states, 1980-2011

Mean SD Min Max N
Crime Rates

(Crimes/100,000 pop.)
Violent 480.21 308.17 47.01 2921.80 1632
Murder 6.69 6.95 0.16 80.60 1632

Rape 35.08 13.42 7.30 102.18 1632
Robbery 145.30 151.26 6.40 1635.06 1632

Agg. Assault 293.13 171.62 31.32 1557.61 1632
Arrest Rates

(Arrests/100,000 pop.)
Violent 167.40 109.95 3.13 1313.82 1600
Murder 5.14 4.97 0 52.00 1599

Rape 10.41 6.48 0 92.49 1598
Robbery 35.98 44.75 0.16 1251.85 1597

Agg. Assault 116.06 74.70 2.78 656.23 1600
Control Variables
State Pop. (M) 5.24 5.83 0.41 37.69 1632

Pop. Density (pp/mile2) 313.25 1191.56 0.62 9306.41 1632
Inc. Mainten. ($) 404.46 179.72 104.26 1282.19 1632
Income ($000s) 28.87 7.01 15.01 64.88 1632

Unemploy. Insur. ($) 142.92 103.09 18.86 780.47 1632
Retire. Pay. ($000s) 3.53 1.13 1.18 7.00 1632

Notes: Crime type definitions - murder and nonnegligent manslaughter is defined as
the willful (nonnegligent) killing of one human being by another; rape is defined as the
carnal knowledge of a female forcibly and against her will; robbery is defined as the
taking or attempting to take anything of value from the care, custody, or control of a
person or persons by force or threat of force or violence and/or by putting the victim
in fear; aggravated assault is defined as an unlawful attack by one person upon another
for the purpose of inflicting severe or aggravated bodily injury.
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Figure 3.3.1: SIL adoptions trend
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Notes: Bars indicate the number of SIL passages in each year (right axis) and the line
shows the total number of SIL states so far (left axis).

construct age-specific entry cohorts in our model. For more homogeneous effects, we focus

only on the male population in this paper127.

There has also been controversy over the exact years of passage of SILs in several states

in the literature. We conduct our independent research in the SIL passage years in all states

and show them in Appendix C.2.1. Our coding of the passage years is aligned with AD and

extends it 2011. We plot in Figure 3.3.1 these SIL passages over time. The upward trended

line over the three decades suggests explosive increases in the number of SIL states from 5

to 41. By 2011, 41 states have SILs in place and 36 of these were passed during our sample

period 1980-2011. Many states have been persuaded to adopt SILs by political lobbyists as

well as strong academic influence (e.g. LM), corroborating the importance to understand

effects of SILs. We also identify the causal effects of SILs by exploiting the variations in the

timing of state adoptions.

It is well known that U.S. crime rates peaked shortly after 1990 and have been falling

127Violent crimes reported to be committed by females are far less than those by males and are likely to be
different in nature.
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rather smoothly ever since. Also, our CPDM with b2 < 0 and b1 > 0 can explain an

upswing followed by a downturn in the crime rate. This does not, nonetheless, make the

CPDM a good candidate for explaining the national peak in crimes in the early 1990’s.

This can be seen in Figure 3.3.2. There states are partitioned into five groups with the

states within a group all adopting SILs about the same time128. The first group of states

adopted SILs prior to 1985 or have always had equivalent laws as SIL and the last group

includes states that adopted SILs in 2011 or never adopted SIL by 2011. If the swings

were all explained by the CPDM model, the peak crime rates for each group would all

occur some years after that group adopted SILs and Figure 3.3.2 would have a series of

humps whose max moves to the right as adoption years become more recent. But that is

not the case. Instead, Figure 3.3.2 shows that for all groups, crime rates peak around 1990.

Thus the CPDM for SILs could explain deviations from the overwhelming national peak

in the early 1990’s. But it is an unlikely candidate for explaining the huge national swing.

On the other hand, it is important to control for non-linear time trends in the empirical

specification.

Importantly, the patterns in Figure 3.3.2 argue against the endogeneity of SILs. For

example, the group of states with the second lowest crime rate was the last group to pass

SILs while the group with the lowest crime rate was the earliest. In short Figure 3.3.2 gives

no reason to suspect that high (or low) crime rates cause states to pass SILs.

To visualize the effects of SILs on violent crimes estimated from a typical DD speci-

fication, we compare average crime rates of the treated states vs. the non-treated states.

The multiple treatment dates (16 unique years for the 36 states that adopted SILs within

our sample) make it difficult to present the treatment and control groups graphically us-

ing the standard multiple-event DD as in Equation 3.2.6. We follow Gormley and Matsa

(2011) here129 - define a 20-year window around each treatment date t⇤ (normalizing t⇤

to zero), use all states who never adopted SILs within the window as the control group

and states that exactly adopted SIL in t⇤ as the treated group, and call the two groups to-

128See Figure 1 of Ayres and Donohue (2003b) for comparison. We follow them for this categorization but
extend it into a longer panel and finer groupings.

129In the rest of the paper, we use the standard multiple-event DD as our DD specification for estimations but
only use the Gormley and Matsa (2011) procedure here for graphically comparing the treated and the control.
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Figure 3.3.2: Violent crime rates by SIL passage years
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gether a cohort. Then we average across cohorts for the overall treated and control groups.

The results are shown in Figure 3.3.3. In the top row, we plot the levels of crime rates for

each crime category, where solid lines are for the treated group and dashed lines for the

control group. We find only ambiguous evidence of the effect of SILs - already showing

evidence against LM and AD. In particular, the declining crime rates (or in some cases,

the “inverted-V” shape) of the treated group cannot be used as evidence for the deterrence

hypothesis in comparison to the control group. In the second row, we plot the same for the

changes (or net entry) in each crime category. Visually, a small positive effect of SILs can

be detected in the treated group compared with the control - the DD is able to capture the

more nuanced effect when specified on the changes, while still leaving much dynamics to

be explained.

The final data set we use is the national arrests by age groups data from the Bureau

of Justice Statistics (BJS). The BJS arrests data differs from the UCR arrests data in that it

reports arrest rates on the age group-year level for each crime category. It covers the period
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1980-2011 and reports in 17 age groups: 9 or younger, 10-12, 13-14, 15, 16, 17, 18-20, 21-24,

25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, and 65 or older. Together with the UCR

data, we then impute age-specific arrest and crime rates, the lack of which is a traditional

data problem in studies of crimes, due to the nature of crime reporting (see Appendix C.2.2

for the imputation procedure).

3.4 Empirical specification

In this section we turn back to the CPDM and bring it to the data. We lay out an empirical

strategy here to construct the relevant cohorts and to estimate the CPDM parameters.

Recall our CPDM in Equation 3.2.4 and Table 3.1 - unfortunately we do not observe the

dependent variable in Equation 3.2.4. The link between the unobserved number of new

criminals and the observed net increase in crimes is kast = crimes
criminals . Multiplying Equa-

tion 3.2.4 through by kast converts the criminals dependent variable to the change in crime

rate. Ideally, we would know both components of the change in crime rates, kast and

Dcriminalsst. But given the impracticality of a large representative panel on the number of

criminals, this seems, at best, beyond the visible horizon. The simplest practical assump-

tion is that k is constant across all criminals. In that case, multiplying through Equation

3.2.4 by k converts the dependent variable to the observe change in the crime rate and

changes the interpretation of the coefficients. Thus, the parameters to be estimated become

a

0
i = kai in place of ai and b

0
i = kbi in place of bi. Thus, a

0
0 the baseline new crimes/year

attributed to the entry cohort, a

0
1 the change in these crimes due to SILs, and so forth. Note

that the percent increase in entry rate due to SILs is identified as a1�a0
a0

= a

0
1�a

0
0

a

0
0

because the

k’s cancel and the analogous result holds for b1 and b2.

In an abuse of notation we re-use the a’s and b’s and write the basic CPDM for crime

rates as

NetEntryst = a0NEn
st + a1 ISIL

st NEn
st � b0NEx

st � b1 ISIL
st NSelected

st � b2 ISIL
st NSurprised

st (3.4.1)
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The model above assumes that kast = crimes
criminals is constant for all criminals at all ages

and in every (s, t). We have nothing to add to the usual discussions of holding such pa-

rameters constant every s, but need to deal with the obvious fact that intensity k varies

across ages and in response to SILs. Our dependent variable is the time-differenced rate,
NumberO f Crimes

Population . In turn the number of crimes is the number of criminals times the average

crimes
criminals . Data limitations preclude parsing out changes in this intensity between changes

in the components. If data permitted, we could pursue a more complex model that dis-

tinguished, for example, the effects of SILs on the numbers of entrants and their average

intensity k. But, it is not hard to see that such a dynamic model would predict that either

both effects are positive or both effects are negative and our entry parameter a1 measures

the combination of these two. Hence, although we refer to “entries and exits of criminals,”

a more accurate descriptor would be “increases and decreases in the crime level.” We pre-

fer, however, “entries and exits” because it constantly reminds us of the dynamic decision

making underpinning our model.

In constructing the cohorts, the entry cohorts are ideally composed of all capable (rea-

sonable ages, discussed below) males that are not violent criminals130 already. Since the

number of violent criminals at a time in a state is unobservable to us and is relatively small

compared to the total population (violent crimes / total population are 0.48% on average),

we simply use the male populations as the entry cohorts. Exit cohorts, on the other hand,

are even harder to construct. Criminal populations are obviously unobservable. Much of

the crime literature suffer from this unavoidable data difficulty and in this paper we try to

remedy it using proxies. Older males’ population is a potential candidate to proxy for the

exit cohorts but it lacks correlation with the actual criminal cohorts and variation from the

entry cohorts (perfectly collinear when weighted by total male population). Crime rates

are better proxies for the exit cohorts if we believe that criminals across different states,

years, and ages commit similar number of crimes. The only remaining issue is that the

UCR crimes data only vary at the state-year level and we need age-specific exit cohorts to

identify the selection and surprise effects. We thus supplement the UCR crime rates data

130We loosely define violent criminals as anyone who has committed at least one of the four types of violent
crimes in a year.
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with the BJS age-specific arrests data to impute the age-specific crimes131 (Appendix C.2.2).

Now before we can specify the entry and exit cohorts, we need one more piece of infor-

mation (assumption in this case). Remember that we needed the age-specific crimes data

to construct the variables NSelected
st and NSurprised

st for the identification of the selection and

surprise effects. The reason is that we need to know which age groups entered when to cat-

egorize them into young and old cohorts (see below for specific procedures). To do so, we

opt for a parsimonious specification132 in which we define entry and exit windows. Figure

C.2.1 (Appendix C.2.2) suggests that violent crimes peak around age 20, across types of

crime and time. Classic sociology theory, discussed in Hirschi and Gottfredson (1983), also

confirms that the age distribution of criminals does not vary across times, places, or types

of crime133. We thus define our entry-only window to be age 13-21, and exit-only window

22-64. The cutoffs of these windows are also empirically informed, beyond what the the-

ory suggests. The age range 13-64 covers, on average, 98% of the crimes committed in a

given state-year and allows for easier parametrization (constant entry rate and quadratic

exit rates, see below)134. The age 21 that divides our entry and exit windows is picked out

by maximizing the log-likelihood of the estimated baseline CPDM (see below).

Part of the main contribution of this paper is to capture the heterogeneous treatment

effects of SILs due to the dynamically optimizing behaviors of different cohorts. The se-

lected and surprised cohorts in the model thus tease these effects (selection and surprise)

apart from the base exit rate. We define the selected and surprised cohorts as follows. With

age-specific crimes (or criminals, as proxied for), an age cohort belongs to the selected co-

hort if the entirety of its entry window (13-21) is spent after the SIL passage in that state.

Similarly, an age cohort is part of the surprised cohort if the entirety of its entry window is

131The imputation procedure and the use of proxy variables will likely introduce measurement errors, which
we assume to be uncorrelated with the regressors, as typically done in this literature.

132An alternative is to specify a nonlinear probability model to figure out the proportions of people of differ-
ent entry dates within age groups.

133This suggests that any legislation differences and changes would impact the whole distribution of ages
similarly. In Figure C.2.1, we observe that the far tails (beyond age 40) of the distributions become fatter over
time (from left to right), suggesting an aging criminal population. However, the distributions still peak around
age 20 and thus do not affect our choice of entry and exit windows.

134This is also the reason why we do not allow overlapping entry and exit windows. The relatively narrow
entry window of 13-21 allows for a plausibly constant entry rate but the variations in young male popula-
tion do not pick up all entry variations. Thus allowing exit in the same region would severely bias the exit
parametrization.
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spent before the SIL passage in that state. For age cohorts that experience SIL passage dur-

ing their entry windows, we divide the cohort by weights corresponding to the number of

years within their entry windows before and after SIL passage135.

Key to our identification of CPDM is the difference in the evolution of different cohorts

over time after the passage of SILs. Expanding on AD’s case studies on the populous state

Florida, where SIL went into effect in 1988, we illustrate these evolutions in Figure 3.4.1.

The entry cohort measures male population between 13 and 21 and is relatively stable and

exogenous to the SIL passage. The total exit cohort (of violent criminals) measures the

current stock of violent criminals and thus fluctuates with violent crime rates and exhibits

the “inverted-V” shape following the national pattern. The exit cohort is further divided

into the surprised and the selected cohorts after the adoption of SIL. As time goes by, the

selected cohort converges again to the total exit cohort while the surprised cohort disap-

pears as the violent criminal stock is replaced with entrants from the post-SIL era. A new

equilibrium establishes as the selected cohort coincides with the total exit cohort. In Figure

3.4.1 we also show the lengths of samples used in LM and AD. In examples like Florida,

where SIL is adopted before 1992, LM’s sample weighs more on the surprise effect in a DD

model while AD’s sample weighs more on the selection effect. We show in Section 3.5.2

that in the full national sample, given gradual passages of SILs among different states, DD

is biased by the changing weights of surprise and selection effects while CPDM tease them

apart consistently.

Figure 3.4.2, on the other hand, shows the evolutions of the average ages of the differ-

ent cohorts. While the overall entry and exit cohorts stay relatively constant in age, the

surprised cohort on average grows in age over time due to the lack of replenishment of

new entries and will eventually all reach retirement age. The selected cohort also on av-

erage grows in age due to the initial aging of its constituents but will be balanced out by

new entries and converge to the total exit cohort around age 34 when the surprised cohort

dies out. The differences and changes in average ages across cohorts and time pose an

challenge to the identification of the selection and surprise effects in our model, which we

135This is internally consistent in the model when we estimate a constant entry rate. See more discussion
below on aging effects and non-constant entry rates.

134



Figure 3.4.1: Illustration of cohort size evolutions
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Cohort Size Evolutions Example: Florida (SIL 1988) 

Entry Cohort Exit Cohort Selected Cohort Surprised Cohort

SIL LM AD

Notes: Entry cohort is measured in 100,000 population on the left axis. Exit cohorts
are measured in 100,000 population on the right axis. The solid vertical line indicates
SIL passage in Florida in 1988. The vertical dashed lines indicate where LM and AD’s
samples end, respectively.
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Figure 3.4.2: Illustration of average cohort age evolutions
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Notes: Evolutions of the average age in each cohort. The solid vertical line indicates SIL
passage in Florida in 1988.

now turn to address.

Much of this paper is concerned with capturing the heterogeneity in cohorts as defined

by the timing of their entries into crimes and the passage of SILs. However, there is another

dimension of heterogeneity, intertwined with our cohorts definition, which we have so

far ignored - the heterogeneity in ages. People of different ages have different physical

conditions (important for committing violent crimes), have accumulated different levels

of human capital (either human capital in the crime career that results in different skills

or human capital outside crimes that results in different values of outside options), have

different lengths of potential career left until retirement in crimes (important if we think

that people dynamically optimize in choosing their careers), and etc.

In theory, these competing forces over the life cycle likely result in a non-linear base exit

probability (irrelevant to the passage of SILs) that bottoms out in male criminals’ 30’s or

40’s. Ignoring this crucial fact (and only estimating a constant exit rate) will bias estimates

for selection and surprise effects in our model due to their differences and evolutions in

ages. To fit the exit rate over the life cycle empirically, in Figure 3.4.3, we plot an empirical
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Figure 3.4.3: Aging effects on violent crime entry and exit

Notes: Fraction changes of the imputed crime rates against ages, averaged across all
state-year observations. The left panel shows the entire criminal career span defined in
this paper (13-64, entry and exit). The right panel zooms in on the 22-64 age range.

distribution of exit rates derived from the imputed age-specific crime rates. Specifically, we

compute the fraction changes from crime age cohort a in year t to crime age cohort a + 1

in year t + 1 in total violent crimes averaged over all state-years and plot them against

age. The positive region in the left panel indicates net entry and confirms our choice of

entry window again136. The right panel suggests that the exit rate for total violent crimes

averages about 8% (without controlling for anything), bottoms out in the early 30’s, and

increases until retirement. Therefore, Figure 3.4.3 presents empirical evidence for not only

our choice of the entry window but also the functional form we use to parametrize the

aging effects on base exit rates.

We thus parametrize the average base exit rate b0 as a quadratic function in age as

follows137,
136These fraction changes do not reflect entry probability since the denominators are current criminals but

not potential entrants. The graph, however, does suggest aging effects on entry as well but specifying a non-
constant entry rate will result in non-linearity of the model in differentiating selected from surprised cohorts.
Since the aging effects on entry do not interfere with the identification of other coe¢cients in the model, we
only estimate the average entry rate using a constant term.

137Derivation of Equation 3.4.2: b0NEx
st = b0 Â64

a=22 NEx
ast = Â64

a=22 g

a NEx
ast = Â64

a=22(g0 + g1a + g2a2)NEx
ast =
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b0NEx
st = g0

64

Â
a=22

NEx
ast + g1

64

Â
a=22

aNEx
ast + g2

64

Â
a=22

a2NEx
ast (3.4.2)

We then estimate (g0, g1, g2) in place of b0 in the CPDM with aging effects.

In a dynamic model, the surprise effect only measures the average change in exit rates

among the surprised cohort. However, with heterogeneity in proclivity for crime, remain-

ing careers till retirement, etc., the marginal criminals are to be surprised first, with less

incumbent criminals to be surprised as time passes after the SIL passage. We therefore

expect the surprise effect to be most salient in the immediate years following passages of

SILs and to gradually taper off over time. We thus non-parametrically decompose the sur-

prise effects into several floodgate effects over the years succeeding the passage of SILs.

Specifically, we let b2 = Â9+
j=0 lj I

j
st, where I j

st are dummies indicating the jth year after SIL

passage. lj’s then represent the evolution of the surprise effects after the initial passages

of SILs.

Combining everything discussed above and building upon the baseline CPDM equa-

tion, we arrive at the following estimating equation for CPDM with both aging and flood-

gate effects.

DC
st(NetEntry) =a0

21

Â
a=13

NEn
ast + a1

21

Â
a=13

NEn
ast ISIL

st � g0

64

Â
a=22

NEx
ast � g1

64

Â
a=22

aNEx
ast � g2

64

Â
a=22

a2NEx
ast

�b1 ISIL
st

64

Â
a=22

NSelected
ast �

9+

Â
j=0

lj I
j
st

64

Â
a=22

NSurprised
ast + GXst + est (3.4.3)

We estimate this equation separately for each crime type as well as the total violent

crimes. The dependent variable, net entry, is constructed as the difference between the

number of crimes in state s in year t + 1 and year t weighted by state population in year t,

i.e. DC
st = (Ct+1

s � Ct
s)/Popt

s. All cohort variables on the right-hand side are also weighted

by state population in year t for consistency. Xst include all control variables (state popula-

tion, population density, real per capita personal income, income maintenance, unemploy-

ment insurance, and retirement payment for people older than 65), state and year fixed

g0 Â64
a=22 NEx

ast + g1 Â64
a=22 aNEx

ast + g2 Â64
a=22 a2NEx

ast
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effects, and state-specific linear and quadratic time trends. est is assumed to be autocorre-

lated over time within each state.

We also follow the dynamic panel data literature (e.g. Anderson and Hsiao (1982)) and

use the lagged variables NEx
as,t+1, NSelected

as,t+1 and NSurprised
as,t+1 as instruments for all exit cohorts

in the model138. The additional identifying assumption being made is that crime rates Cst

follow an AR(1) process over time within each state. We then use two stage least squares

to estimate the CPDM.

3.5 Results

In this section we present the estimates of our CPDM, test for the deterrence hypothesis as

well as the model specification, further compare DD to the CPDM, and finally decompose

the three effects from CPDM in a counterfactual example.

3.5.1 CPDM estimates

Table 3.4 presents estimates of 4 different specifications of the CPDM, with and without

the aging and the floodgate effects, on the total violent crimes only.

The baseline model estimates only the three basic effects (direct, selection, and sur-

prise) on top of the base entry and exit rates. Only the CPDM parameters are reported

and signed under the deterrence hypothesis in parentheses. The signs of the precisely

estimated direct effect a1 and selection effect b1 contradict those predicted under the de-

terrence hypothesis, which we thus strongly reject. The two signs are, however, internally

consistent within the model - more entry into violent crimes after SIL passages will lead to

higher rate out of the criminal force when it comes to exit - a labor force shakeout. The sur-

prise effect, on the other hand, is estimated to increase exit rates post-SIL for cohorts who

became criminals before SIL passages. The older incumbent cohort is still shocked nega-

tively despite the positive reactions of the potential entrants. We thus only find evidence

on partial deterrence of SILs on the incumbent criminals.

To interpret the magnitudes of our estimates, we note again that the model is estimated

138This is because the exit cohorts are imputed partially with the crime rates.
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Table 3.4: CPDM specifications

Baseline w/ Aging w/ Floodgate w/ Both
Entry a0 0.0188*** 0.0111† 0.0210*** 0.0148*

(0.0145) (0.2742) (0.0049) (0.1418)
SIL Entry a1 (-) 0.0042*** 0.0055*** 0.0037*** 0.0046**

(0.0049) (0.0023) (0.0054) (0.0208)
Exit b0 0.5310*** 0.5269***

(0.0000) (0.0000)
Exit g0 51.7108*** 51.8624***

(0.0032) (0.0027)
Exit g1 -3.2453*** -3.2551***

(0.0024) (0.0020)
Exit g2 0.0483*** 0.0484***

(0.0016) (0.0013)
Selection b1 (-) 0.2628** -0.1023 0.3759*** 0.1161*

(0.0429) (0.3787) (0.0179) (0.1697)
Surprise b2 (+) 0.1129*** 0.1086***

(0.0006) (0.0195)
Floodgate l0 0.1071*** 0.0890**

(0.0002) (0.0537)
Floodgate l1 0.0962*** 0.0822**

(0.0120) (0.0669)
Floodgate l2 0.1091*** 0.0886*

(0.0007) (0.1531)
Floodgate l3 0.0960*** 0.0706†

(0.0020) (0.2672)
Floodgate l4 0.0770*** 0.0555

(0.0132) (0.4294)
Floodgate l5 0.0558* 0.0301

(0.1262) (0.7143)
Floodgate l6 0.0630* 0.0355

(0.1309) (0.7152)
Floodgate l7 0.0351 -0.0199

(0.3907) (0.8304)
Floodgate l8 0.0008 -0.0609

(0.9880) (0.5588)
Floodgate l9+ -0.0050 -0.1172

(0.9487) (0.3825)
Log-likelihood -7694 -7696 -7688 -7682

F-statistics 175.5 138.0 111.6 95.4
Nb. Obs. 1549 1549 1549 1549

Notes: All regressions are run on the total violent crimes. Arrest rates of violent crimes, demographic and
welfare controls, state and year fixed effects and state-specific linear and quadratic time trends are controlled
for but not reported. g0, g1, g2 are coefficients of the constant, linear and quadratic terms of the exit function
(of age). lj’s measure the surprise effect in the jth year after SIL passage. Key coefficients relevant for testing
the deterrence hypothesis are signed in parentheses. Standard errors are clustered at the state level. Two-sided
p values are in parentheses. †, *, **, and *** indicate one-sided statistical significance at the 15, 10, 5, and 1
percent level.
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with crime rates as proxies instead of actual criminal populations. The dependent variable

as well as all the exit cohorts are measured in the number of crimes (all variables are then

weighted by every 100,000 state population), while the entry cohorts are measured in the

number of potential entrants. Therefore, we have actually estimated the following equa-

tion,

DC
st(NetEntry) =â0k

21

Â
a=13

NEn
ast + â1k

21

Â
a=13

NEn
ast ISIL

st � b0

64

Â
a=22

NEx
ast

�b1 ISIL
st

64

Â
a=22

NSelected
ast � b2 ISIL

st

64

Â
a=22

NSurprised
ast + GXst + est

where k is the number of crimes committed by a career violent criminal in a year and

assumed to be constant across age, state, and time. Now the â’s and b’s measure the cor-

responding entry and exit probabilities into and out of the criminal force (since we can

divide the equation through by k). Since we can not separately identify the â’s from k due

to data limitations, we only roughly interpret the magnitudes of the a’s. The estimated a1

suggests that, if a criminal commits 10 violent crimes a year, we estimate a 0.19% entry

probability into violent criminals from the pool of all males between 13-21 in the absence

of SIL. On the other hand, without knowing k, we estimate a 22.3% (= 0.0042/0.0188) in-

crease in this entry probability due to the direct effect of SIL. For exits, in the absence of

SIL, violent criminals are estimated to exit with 53.1% probability annually. The estimated

selection and surprise effects suggest that the criminal cohort that entered after SIL pas-

sages experience an additional 26.3 percentage points in exit probability with SIL due to

the dilution in criminal quality from the higher entry rate, while the cohort that entered

before SIL passages is surprised and exits with a probability increase of 11.3 percentage

points.

Building upon the baseline model, we first introduce the aging effects that parametrize

the base exit rate. We find very strong empirical evidence supporting the aging effects on

base exit rates for violent criminals. All aging parameters are strongly significant. The

resulting parabola of exit rates constructed from these estimates suggests the lowest exit
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rate around age 34, evidence for the peak of violent criminals’ careers as a consequence of

aging and human capital accumulations. All CPDM coefficients stay unchanged from the

baseline model except for the selection effect. Aging effects take away the significance of

the selection effect coefficient due to the differences in average ages across these different

cohorts. The previously estimated selection effect is thus an artifact of the fact that the

selected cohort is on average much younger, which is now absorbed away by the aging

effects.

On the other hand, if we just relax the surprise effect to be flexible over time with the

floodgate effects, the estimated CPDM parameters (except the surprise effect) stay almost

unchanged from the baseline specification, while the surprise effect gets less precisely esti-

mated over time as cohorts drop out of our sample. We refuse the temptation of re-running

the regressions with ex-post cutoffs but only report them in Table C.3 for robustness. The

estimated magnitudes of the surprise effect also confirm the theory and taper off over time,

capturing the reactions of the older cohort. Combining all of above, we arrive at our pre-

ferred specification with both aging and floodgate effects, as stated in Equation 3.4.3 and

shown in the last column of Table 3.4.

We maximize the log-likelihood of the total violent crime regression to arrive at the

entry window cutoff at age 21. F-statistics of the full model strongly reject null hypotheses

that all coefficients of the model (except state and year fixed effects) are zeros and provide

measures of the fit of the model.

We conduct hypothesis and specification tests in Table 3.5. Here we first formally test

that the parabola of exit rates bottom out around age 33.6, statistically significant from

zero. We also show that the aging effects and floodgate effects are both jointly significant

where applicable. Although it is obvious from the point estimates in Table 3.4 that the

deterrence hypothesis (a1 > 0, b1 < 0, and b2 > 0) will be rejected, we present the formal

one-sided hypothesis tests in Table 3.5. Finally, we turn to the specification tests of DD.

Specifically, the null hypotheses are the two restrictions in Section 3.2.1.3 that reduce the

CPDM to Equation 3.2.5 and Equation 3.2.6. Namely, (1) b1 = b2 = b⇤ and ((2) a0 = �b0,

(3) a1 = �b⇤). Note that when we specify the non-parametric floodgate effects, (1) and (3)

require all the floodgate effects to be the same with the selection effect to reduce to DD.
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Table 3.5: Hypothesis and specification tests: CPDM specifications

Baseline w/ Aging w/ Floodgate w/ Both
Turning point 33.6*** 33.6***

(0.0000) (0.0000)
Joint significance tests

Aging (g’s) 17.21*** 16.90***
(0.0002) (0.0002)

Floodgates (l’s) 32.27*** 34.72***
(0.0004) (0.0001)

Deterrence hypothesis tests
a1 < 0 0.0042*** 0.0055*** 0.0037*** 0.0046**

(one-sided) (0.0025) (0.0012) (0.0027) (0.0104)
b1 < 0 0.2628** -0.1023 0.3759*** 0.1161*

(one-sided) (0.0215) (0.8107) (0.0090) (0.0849)
b2 > 0 0.1129 0.1086 0.0972 0.0773

(one-sided) (0.9997) (0.9903) (0.9997) (0.9185)
Diff-in-diff nested specification tests

(1) b1 = lj, 8j 1.25 3.03* 15.22† 23.96***
(0.2628) (0.0815) (0.1241) (0.0077)

(2) a0 = �b0 162.31*** 296.04*** 175.48*** 323.69***
(0.0000) (0.0000) (0.0000) (0.0000)

(3) �a1 = b1 = lj, 8j 16.02*** 6.80** 32.18*** 44.15***
(0.0003) (0.0333) (0.0000) (0.0000)

(2) & (3) 171.75*** 313.08*** 475.39*** 588.90***
(0.0000) (0.0000) (0.0000) (0.0000)

Notes: Age of the turning point, F-statistics for the joint significance tests, point esti-
mates of the CPDM parameters, and F-statistics for the DD tests are shown. For spec-
ifications with floodgate effects, we replace b2 with the weighted cumulative surprise

effect of the first five floodgate effects, i.e. Â4
j=0 lj

Âi Iij
st

Âi,j Iij
st

> 0. One-sided p values

are in parentheses for the deterrence hypothesis tests. Two-sided p values are in paren-
theses for the rest. †, *, **, and *** indicate one-sided (deterrence hypothesis tests) and
two-sided (rest) statistical significance at the 15, 10, 5, and 1 percent level.
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Figure 3.5.1: Estimated selection and floodgate surprise effects

Notes: Point estimates of selection (leftmost on each plot) and floodgate effects from
CPDM on violent crimes and sub-categories (Table 3.6).

Bottom of Table 3.5 then shows results that strongly reject the DD specification across all

four specifications of the CPDM.

We further estimate our preferred specification on the four sub-categories of violent

crimes. Table 3.6 shows the results. We first note that most of the estimated CPDM param-

eters (with exception of surprise effects in later years) are significant and very consistent

across crime types, suggesting much stronger results compared to the existing literature

on SILs.

The floodgate surprise effects are again higher and more precisely estimated at the

beginning and taper off nicely in later years. The pattern persists across all crime types

as well. Figure 3.5.1 plots the floodgate surprise effects against the estimated selection

effect (leftmost). The selection effects are generally higher than or equal to the surprise

effects, suggesting again against the deterrence hypothesis. The differences between the

two effects (particularly in rape and robbery) also imply the misspecification of a DD.

In the same vein of Table 3.5, we show results of formal hypothesis and specification

tests on Table 3.4 in Table 3.7. We find the turning points to be statistically significant and
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Table 3.6: CPDM with aging and nonparametric floodgate effects: Crime types

Violent Murder Rape Robbery Agg. Ast.
Entry a0 0.0148* 0.0003** 0.0009† 0.0127** 0.0087*

(0.1418) (0.0906) (0.2303) (0.0379) (0.1455)
SIL Entry a1 (-) 0.0046** 0.0001** -0.0001 0.0012** 0.0015*

(0.0208) (0.0931) (0.5455) (0.0571) (0.1625)
Exit g0 51.8624*** 27.6572*** 15.8851** 127.8388*** 15.3134***

(0.0027) (0.0000) (0.0626) (0.0001) (0.0017)
Exit g1 -3.2551*** -1.5197*** -1.1057** -7.9613*** -1.0533***

(0.0020) (0.0000) (0.0296) (0.0001) (0.0002)
Exit g2 0.0484*** 0.0193*** 0.0183*** 0.1182*** 0.0173***

(0.0013) (0.0000) (0.0122) (0.0000) (0.0000)
Selection b1 (-) 0.1161* 0.1101 0.2250 0.6073** 0.0133

(0.1697) (0.8271) (0.3451) (0.0978) (0.8487)
Floodgate l0 0.0890** 0.1354* -0.0322 0.1698** 0.0348

(0.0537) (0.1987) (0.5159) (0.0880) (0.3547)
Floodgate l1 0.0822** 0.1521* -0.0224 0.1725*** 0.0242

(0.0669) (0.1805) (0.7011) (0.0163) (0.5000)
Floodgate l2 0.0886* 0.0749 0.0075 0.1423* 0.0407

(0.1531) (0.4367) (0.9043) (0.1748) (0.3396)
Floodgate l3 0.0706† 0.1601† -0.0659 0.1748† 0.0158

(0.2672) (0.2101) (0.4377) (0.2149) (0.6921)
Floodgate l4 0.0555 0.1107* -0.0671 0.1667† 0.0010

(0.4294) (0.1630) (0.3416) (0.2820) (0.9826)
Floodgate l5 0.0301 0.0862 -0.0550 0.1114 -0.0115

(0.7143) (0.4756) (0.4754) (0.5664) (0.8261)
Floodgate l6 0.0355 0.0735 -0.0552 0.1097 -0.0187

(0.7152) (0.4470) (0.4965) (0.6520) (0.7663)
Floodgate l7 -0.0199 0.2120** -0.2131** 0.0434 -0.0535

(0.8304) (0.1474) (0.0782) (0.8584) (0.3525)
Floodgate l8 -0.0609 -0.0091 -0.1217 0.0761 -0.1211**

(0.5588) (0.9305) (0.3146) (0.7633) (0.0908)
Floodgate l9+ -0.1172 0.0378 -0.1722* -0.1743 -0.1241*

(0.3825) (0.7961) (0.1564) (0.6609) (0.1631)
Log-likelihood -7682 -2286 -4012 -6827 -7088

F-statistics 95.4 672.5 62.3 171.8 122.2
Nb. Obs. 1549 1548 1547 1546 1549

Notes: Arrest rates (of corresponding crime categories), demographic and welfare controls, state and year
fixed effects and state-specific linear and quadratic time trends are controlled for but not reported. g0, g1,
g2 are coefficients of the constant, linear and quadratic terms of the exit function (of age). lj’s measure the
surprise effect in the jth year after SIL passage. The F-statistics test for the joint significance of all estimated
coefficients and reject the null (all coefficients are equal to zero) in all specifications. Key coefficients relevant
for testing the deterrence hypothesis are signed in parentheses. Standard errors are clustered at the state level.
Two-sided p values are in parentheses. †, *, **, and *** indicate one-sided statistical significance at the 15, 10,
5, and 1 percent level.
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consistent across crime types, with murder being slightly higher (39) and rape and aggra-

vated assault lower (30), reflecting the peak of the combination of male physical conditions

and criminal skill accumulations. All other tests show similar results across crime types as

the total violent crime as shown in Table 3.5.

3.5.2 Comparing DD to CPDM

We further compare DD to our CPDM in this section, in relation to the evolutions of co-

horts. Expanding on the Florida example depicted in Figure 3.4.1, Figure 3.5.2 shows the

evolutions of average cohort sizes (across states) over time. Again, the total entry cohort

measures male population between 13-21 and is stable over time (exogenous to SIL pas-

sages). Interacting the entry cohort with SIL passages, the double-solid line exhibits the

growth of SIL states as shown in Figure 3.3.1. The total exit cohort again follows the na-

tional trend of violent crimes. However, note that the total exit cohort is not the sum of the

selected and surprised cohorts nationally as states adopt SILs at different times and some

states never do so. The surprised cohort first increases as more states adopt SILs and then

starts decreasing in late 1990’s as the old criminal cohorts exit without being replenished.

Finally, the selected cohort keeps gradually increasing as more states adopt SILs and more

new criminals having entered under SILs.

Top of Table 3.8 presents the evolutions of the shares of these cohorts for different sam-

ple lengths (LM, AD, and this paper). sEn is the share of the entry cohort as a fraction of

the total population at risk (the sum of entry and exit cohorts). s⇤Selected and s⇤Surprised are

defined similarly as in Section 3.2.1.1, as a fraction of the total exit cohort. Note that the

share of the surprise cohort is highest in the middle sample due to the dynamics.

Given these evolutions, we then compare the corresponding DD estimates in these

different samples with our CPDM. We estimate two standard DD models as follows,

Cst =a + bISIL
st + GXst + #st (3.5.1)

DC
st =a

0 + b

0 ISIL
st + G0Xst + #st (3.5.2)
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Table 3.7: Hypothesis and specification tests: Crime types

Violent Murder Rape Robbery Agg. Ast.
Turning point 33.6*** 39.3*** 30.2*** 33.7*** 30.5***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Joint significance tests

Aging (g’s) 16.90*** 51.10*** 8.24** 58.91*** 25.52***
(0.0002) (0.0000) (0.0162) (0.0000) (0.0000)

Floodgates (l’s) 34.72*** 7.79 32.43*** 32.60*** 18.30*
(0.0001) (0.6498) (0.0003) (0.0003) (0.0501)

Deterrence hypothesis tests
a1 < 0 0.0046** 0.0001** -0.0001 0.0012** 0.0015*

(one-sided) (0.0104) (0.0466) (0.7273) (0.0286) (0.0813)
b1 < 0 0.1161* 0.1101 0.2250 0.6073** 0.0133

(one-sided) (0.0849) (0.4136) (0.1726) (0.0489) (0.4244)
b2 > 0 0.0773 0.1268 -0.0360 0.1653 0.0234

(one-sided) (0.9185) (0.9052) (0.2782) (0.9346) (0.7363)
Diff-in-diff nested specification tests

(1) b1 = lj, 8j 23.96*** 15.59† 32.60*** 21.51** 17.52*
(0.0077) (0.1120) (0.0003) (0.0178) (0.0636)

(2) a0 = �b0 323.69*** 216.66*** 38.21*** 430.67*** 74.06***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

(3) �a1 = b1 = lj, 8j 44.15*** 25.25*** 32.65*** 35.45*** 18.47*
(0.0000) (0.0084) (0.0006) (0.0002) (0.0712)

(2) & (3) 588.90*** 364.62*** 82.23*** 742.73*** 154.53***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Notes: Age of the turning point, F-statistics for the joint significance tests, point esti-
mates of the CPDM parameters, and F-statistics for the DD tests are shown. We replace
b2 with the weighted cumulative surprise effect of the first five floodgate effects, i.e.

Â4
j=0 lj

Âi Iij
st

Âi,j Iij
st
> 0. One-sided p values are in parentheses for the deterrence hypoth-

esis tests. Two-sided p values are in parentheses for the rest. †, *, **, and *** indicate
one-sided (deterrence hypothesis tests) and two-sided (rest) statistical significance at
the 15, 10, 5, and 1 percent level.
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Figure 3.5.2: Evolutions of national average cohort sizes
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where Equation 3.5.1 is estimated with levels of violent crimes, while Equation 3.5.2

uses year-to-year changes of violent crimes. ISIL
st is the standard multiple-event DD dummy

that equals one if state s has SIL in place at time t. Xst includes the same set of controls as

in our CPDM in Equation 3.4.3. Note that Equation 3.5.2 is the same with Equation 3.2.6

after weighting by the total population. The first two samples highly resemble the data

used in LM and AD139. The DD specifications in Equations 3.5.1 and 3.5.2 are more general

and robust than the “dummy variable model” of LM and the “hybrid model” of AD140. We

also account for auto-correlated errors by clustering at the state level.

The estimates are shown in the middle panel of Table 3.8. Similar to BDM, we find

that most of the effects are essentially zero (with no consistency in signs) after controlling

for trends and auto-correlations of errors. We only find significant effects (about 7% re-

duction in crimes following passages of SILs) with the 1980-1999 sample on the levels of

crime rates141. The DD estimates reflect the evolutions and offsetting effects of the differ-

ent cohorts. We have found that the surprise effect increases exit rates and thus decreases

net entry rates and levels of crimes - the effect of SIL on crimes is thus dominantly neg-

ative when the surprised cohort dominates in the 1980-1999 sample. The reversed trends

of the entry and exit cohorts, together with the positive entry and selection effects, also

contribute to the negative DD estimate in the 1990’s sample. In the full sample, as the exit

cohort shrinks with the national trend, the surprised cohort decreases, and the tapering off

of the surprise effect over time, we see very weak evidence of positive effects estimated by

DD. The DD estimates are also largely insignificant as the entry effects offset the surprise

and selection effects.

We then turn to the CPDM estimates of the varying sample lengths in the bottom panel.

For comparison, we only show estimates from the baseline CPDM using ordinary least

squares142. We find strongly significant results with consistency in the estimated signs

139We differ with them in data in two ways. Both of their data begin with 1977 while ours is cut off at 1980
due to the availability of the cohort population data. We also estimate a DD from 1977 but only report results
from 1980 (which are similar) for comparison with the CPDM. While AD also use state-level panel data, LM
uses county-level crime data. We also use state-level data for comparison with CPDM but the DD estimates
are similar on the county level as well.

140We defer further discussions on the literature to Appendix C.1.2. See Table C.7 and Table C.8 for details.
141These results largely contradict with findings of LM and AD. See Appendix C.1.2 for replications of LM

and AD, and comparisons of different DD specifications.
142For robustness, see Appendix C.1.1.4 for OLS estimates of the full model.
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Table 3.8: DD vs. CPDM for different sample lengths

1980-1992 1980-1999 1980-2011
Average Cohort Sizes

sEn 0.9585 0.9559 0.9574
sEn ISIL 0.1707 0.2762 0.4230

sEx = 1� sEn 0.0415 0.0441 0.0426
s⇤Selected 0.4727 0.3235 0.3585

s⇤Surprised 0.5273 0.6765 0.6415
Diff-in-Diff in Levels

SIL Dummy -0.8789 -38.0306* 0.8612
(0.9550) (0.0582) (0.9580)

Diff-in-Diff in Changes
SIL Dummy -1.6291 -0.2657 2.6447

(0.8881) (0.9758) (0.6256)
Baseline CPDM

Entry 0.1626* 0.0091 0.0190**
(0.0949) (0.7368) (0.0107)

SIL Entry 0.0017 0.0028* 0.0041***
(0.3214) (0.0538) (0.0015)

Exit 1.0768*** 0.3946*** 0.3232***
(0.0000) (0.0003) (0.0000)

Selection 0.2604 0.3174* 0.1943†

(0.6146) (0.0595) (0.1342)
Surprise 0.0381 0.1054*** 0.1067***

(0.5829) (0.0000) (0.0001)
Nb. Obs. 657 994 1549

Notes: All regressions are run on the total violent crimes. All regressions are run using
OLS. Arrest rates of violent crimes, demographic and welfare controls, state and year
fixed effects and state-specific linear and quadratic time trends are controlled for but
not reported. Standard errors are clustered at the state level. Two-sided p values are in
parentheses. †, *, **, and *** indicate two-sided statistical significance at the 15, 10, 5,
and 1 percent level.

across different sample lengths. In the shorter samples, the CPDM also struggles to pre-

cisely estimate base exit rates (column 1) and base entry rates (column 2), which may bias

the dynamic selection and surprise effects slightly upwards due to the aging effects of exit.

Despite of this, the CPDM also consistently estimates the direct entry effect across all sam-

ples, which, together with the consistently estimated signs of other parameters, yields the

most important policy implications.
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3.5.3 Counterfactual example

In order to make direct policy evaluations with the CPDM, accounting for the entry, se-

lection and surprise effects, we consider the following counterfactual example. In this

example, we eliminate SILs from all states and compute the counterfactual crime levels

in the U.S. had we never adopted SILs. To do so, we start with crime rates in 1980 at the

beginning of our sample, let the CPDM predict changes in crimes from year to year for

all states while shutting down all post-SIL effects (entry, selection, and surprise), and then

simulate crime levels for all states in all following years. The result is shown in Figure

3.5.3. The actual data (solid line) shows that violent crimes totaled at 1.3 million in the

U.S. in 1980, peaked at 1.9 million in 1992, and settled at 1.2 million in 2011. When we

take away the effects of SILs (dotted line), we find a drop in violent crimes that shows the

dynamic properties that the CPDM captures. After eliminating SILs, the counterfactually

predicted crime rates track the actual crime rates very closely for 2/3 of the sample and

only diverge in the last 1/3, although by year 2000, 3/4 of the states have already adopted

SIL. For example, in 1995, the counterfactual prediction only shows a 1.4% (about 26000

crimes annually) reduction in crime levels. By 2011, there is a large reduction of 34.8% (or

about 419000 crimes) in total violent crimes143.

We then further decompose this gap between the levels of crimes into the three effects

captured by CPDM. From the dotted line where there are no post-SIL effects, we first add

back only the direct entry effect (dash-dotted line). Graphically, the entry effect is positive

and significant, driving up the total violent crime level to about 1.4 million in 2011. Adding

on top of that the surprise effects (dashed line), which increase exit rates in the first few

years following SIL passages and taper off after, shifts down the overall curve but dissi-

pates at the end of the sample. Finally, the remaining gap between the dashed line and the

solid line represents the selection effect, which captures the increased exit rates from the

lesser criminals who entered post-SIL. As expected, this gap keeps widening over time as

143We interpret the large drop as an upper bound for the amount of crime reductions if SILs were eliminated.
The reason is that, although we have eliminated all post-SIL effects in the counterfactual simulation, we keep
the stock of criminals (i.e. base exit cohorts) constant. With lower entry rate absent SILs, we should see a
smaller stock of criminals and consequently less exits as well, which would shift up the dotted line. We ignore
this second-order effect in this exercise.

151



Figure 3.5.3: Decomposition of entry, selection, and surprise effects
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the younger cohorts replace their older counterparts.

3.6 Conclusions

In this paper, we use a more general cohort panel data model to bring a consistent and

unified answer to the debate of the effects of shall-issue laws on violent crimes. The CPDM

incorporates dynamic decision-making by forward-looking agents through the estimation

of (i) a direct effect of SIL passages on entry (into violent crime careers), (ii) a selection

effect on exit for those who entered the violent crime under SIL, and (iii) a surprise effect

on exit for those who entered prior to the advent of SIL. We find all three effects to be

positive - suggesting that in addition to the deterrence effect on existing criminals (who

entered before SIL), the passages of SIL also substantially lower the barrier of entry for

new potential criminals. The combined effect is large - eliminating all passed SILs from

the beginning would reduce total violent crimes by about one third by 2011.

We further show that in contexts where heterogeneous agents make forward-looking

decisions the standard DD is a model misspecification due to the lack of dynamic consider-

ations. Our CPDM reduces to the standard DD with restrictions that shut down the three

effects. The estimated coefficients strongly reject such restrictions and thus rule the DD

as misspecified. We then compare the CPDM and DD estimates on samples with varying

lengths corresponding to the literature (LM and AD). We find that the DD estimates fluctu-

ate systematically based on the evolutions of cohort shares - leading to the heated debate

in the literature. The CPDM, on the other hand, yields consistent and highly significant

results across different sample lengths.
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Appendix A

Appendix to Chapter 1

A.1 Stylized model of product life cycle formation

In this section, I present a stylized model to show that bell-shaped product life cycles

endogenously arise in technologically progressive markets under mild conditions. The

model is based on a standard Logit demand system and only assumes that (1) the quality

frontier of the market expands, and (2) the production cost of a new product decays over

time.

I first set up the model. The industry evolves over continuous time t, although all

agents behave myopically. There is a one-dimensional continuous product space J (quality

spectrum). The product space is exogenously filled with single-product firms j (general-

ized to multi-product firms below) at all times, occupying the [qj � 1
2 dq, qj +

1
2 dq] portion

of the product space.

Two technologies are developed exogenously outside this industry. One is the frontier

of the quality spectrum, below which the continuum of products (or firms) lives, repre-

sented by Q(t), i.e., 8j 2 J, qj 2 [Q, Q(t)]. I assume that the quality frontier increases over

time due to upstream product innovations, i.e., dQ
dt > 0. The other technology is the cost

of production, C(t, q), which is assumed to fall over time given cheaper component costs,

i.e., ∂C(t,q)
∂t < 0.

The demand system follows a standard Logit model. Consumer i’s utility in purchasing
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product j at time t is given by

uijt = bqj � apj(t; qj) + eijt,

where b > 0 is consumers’ marginal utility for the quality of the product, a > 0 is the price

sensitivity, and eijt is distributed i.i.d. Type I Extreme Value. Prices are endogenously set

to maximize profits in this market,

�!p 2 arg max
p

(p� C(t, q))s(p, q).

Now, to show the bell shape of product life cycles, I will solve for the market share of

each product as a function of time and show that under very mild conditions, this function

is increasing in the interval after release and decreasing after. Integrating out the Logit

preference shocks, the market share of any product j at time t is expressed as

sj(t; qj) =
exp(bqj � ap(t; qj))dq

1 +
R Q(t)

Q exp(bw� ap(t; w))dw

.

Since prices are endogenously determined in a Logit model with continuous product space,

as dq! 0, markups become constant from the first-order conditions of the pricing game144:

sj + (pj � Cj)
∂sj

∂pj
= sj � (pj � Cj)asj = 0) pj = Cj +

1
a

,

and we can thus express the share function in terms of production costs over time,

s(t, q) =
exp(bq� aC(t, q)� 1)dq

1 +
R Q(t)

Q exp(bw� aC(t, w)� 1)dw

.

To arrive at closed-form solutions, I first make a few simplifying functional form as-

sumptions, which will subsequently be relaxed in the numerical simulations. I first as-

sume that the production cost function is independent of the quality of the products, i.e.,

C(t, q) = C(t), 8q (Assumption I). This assumption significantly simplifies the share func-

144Therefore, the following analysis also directly applies to multi-product firms as cross-price elasticities
approach zero and product ownership becomes irrelevant.
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tion to the following:

s =
bebqdq

beaC+1 + ebQ � ebQ ,

and its derivative with respect to t,

∂s
∂t

=
ebqdq

(beaC+1 + ebQ � ebQ)2

✓

�abeaC+1 ∂C
∂t
� bebQ ∂Q

∂t

◆

,

and therefore

sign
✓

∂s
∂t

◆

= sign
✓

�aeaC+1 ∂C
∂t
� ebQ ∂Q

∂t

◆

.

Now, under Assumption I, it is clear that the countervailing forces of the decreasing

production costs and the expanding quality frontiers could drive the bell shape of product

life cycles. Formally, if I additionally assume that the decay of production costs eventually

has to taper off, i.e., limt!• C = C and limt!•
∂C
∂t = 0, then it is always the case that 9t

such that 8t > t, ∂s
∂t < 0, or, in other words, the market share of the product eventually

also has to decrease. Now for the time path of sales to be bell-shaped or nonmonotonic, we

simply need�aeaC+1 ∂C
∂t > ebQ ∂Q

∂t for some t. If, for example, let C(t) = C0� At and Q(t) =

Q0 + Bt, then we have a unique peak of the product life cycles at t⇤ = ln( aA
B )�(bQ0�aC0�1)

aA+bB .

I now slightly relax Assumption I. Let’s instead assume that the production cost is

linear in quality at any point in time, i.e., C(t, q) = c(t)q (Assumption II). Without loss of

generality, I assume that Q = 0 and let c̃ = b� ac. Then I can rewrite the market share as

s =
eceecqdq

eec + eecQ ,

and its derivative with respect to t,

∂s
∂t

=
eecqdq

(eec + eecQ � 1)2

✓

[(eec2 + eceecQ � ec)q� ecQeecQ + eecQ � 1]
∂

ec
∂t
� ec2eecQ ∂Q

∂t

◆

,

and therefore,

sign
✓

∂s
∂t

◆

= sign
✓

[(eec2 + eceecQ � ec)q� ecQeecQ + eecQ � 1]
∂

ec
∂t
� ec2eecQ ∂Q

∂t

◆

.
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It is now harder to draw conclusions about the shape of product life cycles based on the

primitives of the market, even under the functional form Assumption II. I therefore resort

to numerical simulations to further explore the shapes of and variations in product life

cycles generated by this model. In the numerical simulations below, I will also be able to

relax the continuous time and product space assumptions.

Numerical simulations and comparative statics

In my empirical model of product portfolio choices with product life cycles in Section 1.3,

managers form beliefs about the total lifetime profitability of a new product, based on how

patterns of product life cycles correlate with characteristics of the product and the market

at the time of its release. These profit-maximizing product managers, however, need not

to care about the actual shape of product life cycles. This section provides intuition for

the formation of product life cycles in high-tech markets, and why the eventual lifetime

profitability of a product systematically correlates with its quality, and the competitiveness

of the market at the time of its release, via numerical simulations.

I first set up the numerical setting. The product space is discretized with dq = 0.2, or

26 starting products within the initial quality spectrum of [0, 5]. The industry is simulated

forward for 50 periods. The quality frontier grows linearly (Q(t) = 5 + 0.2t) and the per-

quality production cost exponentially decays, so that it halves every 18 periods (c(t) =

1.3⇥
� 1

2
�

t
18 ). Production (marginal) cost is linear in the quality of products (C(t, q) = c(t)q).

Demand parameters: b = 1 and a = 1. Equilibrium prices are numerically solved (instead

of constant markups).

Figure A.1.1 illustrates the intuition behind product life cycle formation in technolog-

ically progressive markets, as discussed in Section 1.2. In Figure A.1.1a, production costs

for different product-quality levels fall at different speeds over time, which are translated

into speeds at which prices fall for different-quality products (while markups are endoge-

nously determined in this model, differential cost reductions still significantly shift the

prices—this is especially true if the number of products is large, and markups do not vary

much).
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Figure A.1.1b then shows that differential price paths are mapped onto consumers’

mean utility. As the mean utility of a product increases more quickly than most prod-

ucts in the market at the beginning of its release (because that is when its cost falls most

quickly), its market share rises accordingly. As the speeds at which products’ costs decline

converge, their market shares also converge to their respective levels. When the quality

frontier expands, and more and better products are introduced, the market share of exist-

ing products will eventually vanish. Figure A.1.1c shows the resulting bell-shaped product

life cycles.

I now turn to comparative statics of product life cycles with respect to characteristics

of the product and the market. As evidenced in Figure 1.2.8, lifetime sales of a product ac-

cumulated over its product life cycle systematically correlate with its quality and market

competitiveness at release time. With the stylized model in hand, I illustrate these com-

parative statics with simulated product life cycles in Figure A.1.2. To isolate the effects of

product quality and market competition on product life cycles, I fix the quality frontier,

i.e., Q(t) = 5, so that no new products are introduced to change the market structure.

Figure A.1.2a shows the product life cycles for products of different quality in the same

market over time: While low-quality products might have higher short-run sales when

first-released, given their low prices, their product life cycles taper off very quickly; on the

other hand, higher-quality products have much higher potential in their future sales, with

higher peaks and slower tapering off in their product life cycles. Figure A.1.2b shows how

product life cycles vary with the level of market competition (number of equally spaced

products in simulation) for the same product in different markets: Increased competition

not only reduces the product’s short-run sales, but also its lifetime sales—to a much larger

extent—by shrinking its product life cycle (i.e., taper off faster).
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Figure A.1.1: Product life cycle formation: Intuition

(a) Prices (b) Mean utility

(c) Market shares

Notes: This set of figures shows the intuition behind product life cycle for-
mation in technologically progressive markets. Roughly, differences in cost
reduction between different product-quality levels drive differential price
paths shown in Figure A.1.1a, which are then mapped onto mean utility in
Figure A.1.1b. These differential trends in mean utility cause newly released
products’ market share to rise, as their prices fall faster, and eventually vanish
as they become obsolete, resulting in bell-shaped product life cycles shown
in Figure A.1.1c. Plotted are numerical simulation results.
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Figure A.1.2: Product life cycle: Comparative statics

(a) Product quality (b) Market competition

Notes: This figure shows how product life cycles correlate with product qual-
ity and market competition. In particular, Figure A.1.2a shows that, in the
same market, a higher-quality product might have lower short-run sales,
given its high release-price, but eventually much larger lifetime sales, be-
cause its product life cycle peaks higher, and tapers off much more slowly.
On the other hand, Figure A.1.2b shows that, for the same product, increased
market competition not only reduces the product’s short-run sales, but, to a
much larger extent, its lifetime sales, by shrinking its product life cycle. Plot-
ted are numerical simulation results.

Evidence: Comparing mature vs high-tech industry

The model of product life cycle formation presented in this section relies on the assumption

of decreasing production costs and expanding quality frontiers. In other words, according

to the model, product life cycles should be more salient in technologically progressive mar-

kets and much flatter in more mature industries, in which the extent to which production

cost falls and quality frontier expands is small. This also justifies managers’ use of fixed

hurdle rates in approximating dynamic payoffs in those industries, as pointed out in the

literature (see Section 1.1). While a formal test of this theory must be left for future research

that uses cross-industry data on product life cycles145, this section takes a first step in that

direction by presenting evidence with one example.

Specifically, I make use of the separate feature phone handset data from GfK, which

offers the same level of detail as the smartphone data used in this paper. I compare the

145One that is similar to Polli and Cook (1969) in spirit.
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Figure A.1.3: PLCs in mature vs. high-tech industry

Notes: This figure shows that, between two otherwise similar industries, the
more mature (feature phone) industry exhibits much flatter product life cy-
cles, compared to the high-tech (smartphone) industry. Plotted from monthly
mobile phone handset sales from China between Jan. 2009 and Nov. 2014;
pooled across provinces and products; aligned by the release month of each
product in each province. Monthly unit sales are normalized by release-
month sales; the blue (red) line shows median feature phone (smartphone)
sales within age (in months) cohorts.

observed product life cycles of feature phone handsets with those of smartphones. The

advantage of this comparison is that across industries, feature phones are very close to

smartphones in most aspects, except for the maturity of its technology. Figure A.1.3 shows

this comparison of the median product life cycle of smartphone handsets (as seen in Figure

1.2.7) and that of the feature phones; both are from the Chinese market between 2009 and

2014, and both are normalized by first-month sales. The peak of the median smartphone

PLC is more than twice as large as that of feature phones, which only reaches two times

initial sales. Figure A.1.3 thus lends some support to the theory presented in this section

and the different uses for product life cycles and hurdle rates across different industries.
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A.2 Appendix: Data

A.2.1 Other players and related industries

There are several other players in this market that, although important in certain aspects146,

are not crucial to my study of product choice, and thus I abstract away from them. Most of

the hardware innovations are driven by the chipsets used in smartphones. Chipmakers147

thus often establish exclusive contracts with major smartphone manufacturers for their

top-of-the-line chipsets. However, this is not an issue, given my focus on non-flagship

products, which typically feature older models of chipsets that are available to all firms.

I also do not explicitly model the behaviors of the carriers and retailers. According to in-

dustry reports148, channels on average require 25% margins from handset manufacturers.

In my empirical work, I deduct channel margins from the profits of the manufacturers

accordingly. Finally, I also ignore other more inconsequential players, such as contract

factories (original equipment manufacturers), design houses (original design manufactur-

ers)149, and other operating system and software developers. The existence of these parties,

to some extent, justifies my assumptions of no capacity constraints or economies of scope

in the estimation.

A.2.2 Product definition

Defining what constitutes a product is often not easy150. This is especially the case for

consumer electronics, where some specifications can be tweaked/customized across dif-

ferent models without much costs to manufacturers. In this paper, I first collapse handset

models with different customization, such as storage space, and compatibility with dif-

ferent carrier networks151. Moreover, smartphone manufacturers sometimes release a re-
146Sinkinson (2014) and Yang (2016) explore these aspects in the US smartphone market.
147The three most dominant chipmakers in this market are MediaTek, Qualcomm, and Spreadtrum.
148Nomura Global Markets Research, “China Smartphone chips: LTE changes the balance,”

https://www.nomura.com/events/china-investor-forum/resources/upload/China Smartphone chips.pdf,
accessed March 27, 2016.

149These firms help smartphone manufacturers design their bill of materials (BOM). In other words, they
come up with the list of components for each handset, given the needs of the smartphone manufacturer.

150See Kaplan and Menzio (2015), where price dispersions vary significantly depending on how broadly
products are defined.

151GfK data are on the model level, and therefore do not differentiate on industrial design, such as the color
of the phone.
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branded older model in the same product line. There are many reasons firms do this, from

a product-line management perspective; I do not focus on this aspect in this paper, and col-

lapse these models based on their characteristics. I also winsorize products by dropping

extreme specialty phones152. The result is a sample of 691 major smartphone products,

down from 1,782 models in the original sample.

Before I detail the procedures used to identify different versions of the same product

in this section, it is worth first discussing why they exist. Firms in this market introduce

multiple versions of the same handset for several potential reasons. The first is technical.

Due to differences in the networks of the three carriers as well as upgrades from the second

to the third and then to the fourth generation of networks, smartphone manufacturers

often have to introduce multiple versions of the same handset to capture consumers of

each carrier. The timing of these releases is sometimes coordinated, but often different. The

second reason is product customization. For example, once the first model is introduced,

additional set-up costs for variations in the model with different storage space is usually

minimal. On the benefit side, these variations of the original model help firms further

segment the market or price discriminate. The third reason relates to product life cycle

management. As pointed out by Enis, La Garce and Prell (1977), once a product reaches

the plateau of its life cycle, additional introduction of model tweaks helps extend the time

the product stays on the plateau before dropping off. While I acknowledge the importance

of all of the above potentially strategic firm behaviors, this paper does not focus on these

aspects, and will thus simply collapse different versions of the same product.

The procedure is as follows. I define a product B to be a “copycat” of a product A if

the following criteria are met: 1) they are in the same product line; 2) B is released after A;

3) among all the products that satisfy 1) and 2), the characteristics of A are closest (metrics

defined below) to those of B, with distance D; and 4) D is less than some threshold T. This

problem resembles a clustering algorithm, as copycats defined here are simply clusters

of products with very similar characteristics. A standard issue in clustering is the chains

152For example, I drop ultra-luxury phones targeted as high-end gifts, such as the Samsung Clamshell series,
which sell for more than 8000 RMB (compared to initial release prices of iPhones at around 6000). I also drop
phones cheaper than 600 RMB (release price). Finally, I drop specialty models, such as the Nokia 808 Pureview,
which features a 41 mega-pixel camera.
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of neighbors. The algorithm used in this paper is similar to the Jarvis-Patrick algorithm

(Jarvis and Patrick, 1973) with one shared neighbor threshold. Finally, the distance metric

is a standard fraction Euclidean distance with the threshold chosen at 0.2 empirically, i.e.,

DAB =

v

u

u

t

1
6

6

Â
k=1

 

log(xk
B)� log(xk

A)

SD(log(xk))

!2

where the six characteristics include camera resolution, display size, display resolution,

thickness of the phone, CPU clock speed, and battery capacity; each characteristic is weighted

by its own standard deviation across all models before the summation is taken.

A.2.3 List of potential products

Table A.1 presents the list of all potential products defined in Section 1.5 in the counterfac-

tual analysis.

A.3 Computational details

A.3.1 Demand

To evaluate the integral in equation (1.3.2), I first construct the empirical distributions of

income in each market. I observe the average income of each quintile of the income dis-

tribution among urban and rural residents in each province/year. I assume that income

is distributed log-normally in each province/year (urban and rural separately), and esti-

mate the mean and standard deviation of each distribution using Simulated Method of

Moments.

Then, for each market (province/month), I assume that income distributions remain

constant within the calendar year. I then draw 40 consumers from each market’s estimated

income distribution, 20 urban and 20 rural. The integral in equation (1.3.2) is then eval-

uated with 20 Gauss-Hermite quadrature points each for urban and rural residents in a

market. In particular, the corresponding quadrature weights are weighted by the ratio of

urban/rural population in the market.
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Table A.1: Jan. 2013 potential products, major characteristics

Brand Product CPU clock speed Display size Camera resolution
(GHz) (inch) (MP)

Samsung

Galaxy Grand 1.2 7.99 5
Galaxy Style 1.2 5.04 4.3

Galaxy Infinite 1.2 3.15 4
Google Nexus 1.2 4.92 4.6

Huawei
Ascend W1 1.2 5.04 4

Ascend Y310 1 3.15 4
C8813 1.2 5.04 4.5

Lenovo
A590 1 3.15 5

LePhone 2802 1 3.15 4
LePhone 2908 1.2 3.15 4.5

Coolpad
5876 1 3.15 4.5
7251 1.2 5.04 5
8070 1 3.15 4

ZTE Grand S 2.3 12.78 5
U816 1.2 3.15 4.5

Oppo R2007 1.3 5.04 4.7

Vivo S11 1 5.04 4.3

Market Median 0.9 5.04 3.5
(Jan. 2013) Max 2 12.83 5.5

Notes: This table shows that potential products defined in Section 1.5 are of significant
quality compared to existing products in the market at the time.

165



The same procedure follows in evaluating the integral in equation (1.3.4).

A.3.2 Point estimates of maintenance and introduction costs

To arrive at point estimates for maintenance and sunk introduction costs, I minimize the

objective function in equation (1.4.4). The upper (UBjm) and lower (LBjm) bounds are pre-

computed from equation (1.4.1), equation (1.4.2), equation (1.4.7), and equation (1.4.8), and

provide identification for the point estimates. I will use maintenance costs for illustration.

Procedurally, I pre-draw s = 100 draws of cost shocks h

s
jmt from an i.i.d. N(0, s

h

) distribu-

tion, where s

h

remains to be estimated. In practice, I construct the objective function on

the log-scale, i.e., F(q, Xjm|hs
jmt) = q

FXjm + h

s
jmt, where q = (qF, s

h

). Similarly, both UBjm

and LBjm are converted to log-scale, as in Figure 1.4.2. I then obtain the point estimates

shown in Table 1.7 by solving (qF, s

h

) 2 argminQ(q).

A.3.3 Counterfactual

I first describe the procedure used in computing the equilibrium of my model with PLCs

(last column in Table 1.13). PLC beliefs are first computed according to equation (1.3.8)

and based on new market characteristics after removing the fringe. The portfolio game in

equation (1.3.9) is solved using a Gauss-Seidel iterated best-response algorithm. I solve the

game for 100 simulations for each of the 31 markets. In each simulation, I first randomize

the move orders of the 7 firms in consideration and draw the entry cost shocks for each

of the 17 potential products from the estimated distribution of the shock. I then iterate

through the firms based on the random order drawn in that simulation. In each iteration,

one firm computes its payoffs for each of its 2n possible strategies (where n is the number of

its potential products) according to equation (1.3.9). Note that each of its strategies defines

a product market configuration (given the other firms’ current portfolio strategies, which

are initiated at all 17 products being introduced, as well as all incumbent products). For

the firm to compute its payoffs under that strategy, a new vector of equilibrium prices for

all products (including incumbents) has to be re-computed according to equation (1.3.4).

The firm in consideration in this iteration then chooses the strategy that yields the highest
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payoff and updates the strategy vector (of length 17, filled with zeros and ones). In the

next iteration, the next firm observes the updated strategy vector and makes its decisions

accordingly. The algorithm keeps iterating over firms and terminates when the strategy

vector ceases to change. I record the final strategy vector and report the average in the

first row of Table 1.13. Other equilibrium outcomes can then be computed based on the

product market configuration defined by the final strategy vector.

To solve the model without PLCs, the game solution algorithm is identical, except that

when firms compute equation (1.3.9) for each of its strategies, I keep PLC beliefs fixed at

the level at which fringe firms were present. For the column with product introductions

fixed at the observed level, I do not solve the portfolio game, but simply use observed

product configurations to compute the other equilibrium outcomes.

167



Appendix B

Appendix to Chapter 2

B.1 Appendix: Data

B.1.1 Sample construction and primary variables

In this appendix, we describe how we construct the sample of DMAs and TV stations used

and discuss several details of the data sources we rely on. Our objective is to infer a TV

station’s reservation value going into the auction from its cash flow or population coverage

scaled the appropriate multiple. While the auction is scheduled for March 2016, we infer a

TV station’s reservation value as of 2012 as the latest year of availability for both the BIA

and NAB data. Our analysis is further made difficult by the fact that different data sources

cover different TV stations.

B.1.1.1 DMAs

The U.S. is divided into 210 DMAs. DMAs are ranked annually according to market size

as measured by the total number of homes with at least one television (henceforth, TV

households, measured in thousand). Table B.1 lists the top ten DMAs in 2012 along with

some characteristics from the BIA data.
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Table B.1: Top ten DMAs (2012)

Rank DMA TV Households Station Count Income ($)
1 New York, NY 7,388 19 49,518
2 Los Angeles, CA 5,570 24 36,972
3 Chicago, IL 3,493 18 40,500
4 Philadelphia, PA 2,993 19 42,034
5 Dallas-Ft. Worth, TX 2,571 17 37,215
6 SF-Oakland-San Jose, CA 2,507 18 53,448
7 Boston, MA 2,380 16 48,294
8 Washington, DC 2,360 11 49,495
9 Atlanta, GA 2,293 13 33,726
10 Houston, TX 2,185 14 40,704

Notes: Includes all auction-eligible commercial full-power and low-power
(class-A) TV stations. Income is average per capita disposable personal in-
come. Source: BIA.

Table B.2: TV station counts by power output and type of use and service (2012)

Type of Use and Service
Commercial Non-commercial
UHF VHF UHF VHF UHF VHF Total

Full-power
Primary 950 292 281 104 1,231 396 1,627
Satellite 57 55 0 0 57 55 112

Low-power (Class-A) 376 42 8 1 384 43 427
Total 1,772 394 1,672 494 2,166

Notes: Only stations that are eligible for participation in the incentive auc-
tion included. Primary stations denote the owner’s main station in the DMA.
Satellite stations are full-power relay stations re-broadcasting for the primary
stations. Non-commercial stations carry educational or public broadcast pro-
gramming.

B.1.1.2 TV stations

Table B.2 shows counts of auction-eligible TV stations as of 2012, broken down by power

output, type of use, and type of service. There are a total of 2,166 auction-eligible TV

stations. We focus on the 1,672 UHF stations that the FCC includes in its repacking simu-

lations.
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B.1.1.3 BIA data

After restricting to full-power (primary and satellite) and low-power (class-A) stations, the

BIA data provides us with 24,341 station-year observations from 2003 to 2013. Commer-

cial stations make up 19,595 observations and non-commercial stations, including dark

stations, for 4,746 observations.

For commercial stations, advertising revenue is missing for 6,058, or 30.9%, station-year

observations. Table B.3 shows the share of station-year observations with missing adver-

tising revenue for commercial stations. Advertising revenue is missing for almost all satel-

lite stations because BIA subsumes a satellite’s advertising revenue into that of its parent

primary station.153 Missing values are further concentrated among low-power (Class-A)

stations, among stations affiliated with Spanish-language networks (Azteca America, In-

dependent Spanish, Telemundo, Unimas, and Univision) and other minor networks, and

among independent stations. There are no discernible patterns in missing values along

other dimensions of the data such as the market size.

We impute advertising revenue for commercial stations where it is missing by regress-

ing the log of advertising revenue (in $ thousand) ln ADjt on station, owner, and mar-

ket characteristics Xjt. We run this regression separately for each year from 2003 to 2013

and use it to predict advertising revenue ADjt. We include in Xjt the log of the station’s

population coverage (in thousand), an indicator for whether the TV station has multicast

sub-channels, power output fixed effects (primary and class-A), fixed effects for the eleven

affiliations in Table B.3, fixed effects for the interaction of affiliation groups (see Section

B.1.2.1) with U.S. states, an indicator for whether the owner owns more than one TV sta-

tion in the same DMA, ownership category fixed effects (whether the owner owns one,

between two and ten, or more than ten TV stations across DMAs), the number of TV sta-

tions in the DMA, the number of major network affiliates in the DMA, the wealth and

competitiveness indices for the DMA (see Section B.1.2.1), and the log of the number of

TV households (in thousand) in the DMA. Finally, we account for the contribution of any

153We enforce this convention for the 36 station-year observations where a satellite has non-missing advertis-
ing revenue. We manually link satellite stations to their parent primary stations because BIA does not provide
this information. The 114 satellite stations in Table B.2 belong to 80 primary stations.
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satellite stations to advertising revenue by including in Xjt the number of satellite stations

that belong to the primary station NSAT
jt .The adjusted R2 is 0.99 in all years in logs and

0.75 on average in levels, suggesting that we capture most of the variation in advertising

revenue across stations and years.

With the estimates in hand, we predict advertising revenue ADjt as dADjt = e \ln ADjt+
ŝ

2
2

to account for the non-zero mean of the log-normally distributed error term with esti-

mated variance ŝ

2. We proceed as follows: First, for a primary station we impute ad-

vertising revenue ADjt where missing as dADjt. Second, we compute the contribution

of satellite stations (if any) to the advertising revenue of their parent primary station as

ADjt � ADjt/eb̂SAT NSAT
jt , where b̂SAT is the estimated coefficient for the number of satellite

stations. For a primary station we net out the contribution of satellite stations by replacing

advertising revenue ADjt with ADjt/eb̂SAT NSAT
jt . Third, for a satellite station we impute ad-

vertising revenue ADjt by allocating the contribution of satellite stations to the advertising

revenue of their parent primary station in proportion to the population coverage of the

satellite stations.

B.1.1.4 NAB data

NAB collects detailed financial information for commercial full-power stations. In 2012,

NAB received 785 responses on 1,288 originated questionnaires, corresponding to a re-

sponse rate of 60.9%.

NAB reports the data at various levels of aggregation. Table B.4 shows the resulting 66

tables for 2012.154 The number of tables fluctuates slightly year-by-year because NAB im-

poses a minimum of ten TV stations per aggregation category to ensure confidentiality.155

Note that a TV station may feature in more than one table. For example, WABC-TV is the

ABC affiliate in New York, NY. Its data is used in calculating statistics for (1) markets of

rank 1 to 10; (2) major network affiliates; (3) all ABC affiliates; and (4) ABC affiliates in

markets with rank 1 to 25.
154We exclude 15 aggregation categories that are defined by total revenue from each year’s NAB report

because the BIA data is restricted to advertising revenue.
155Some years, in particular, break out United Paramount and Spanish-language networks but not other

minor networks. We conclude that the response rate of other minor networks is very low and thus exclude
other minor networks from most of the subsequent analysis.

171



Table B.3: Missing advertising revenue for commercial stations

Missing advertising revenue
Station-year

count
Station-year count %

Full-power
Primary 13,490 937 6.95
Satellite 1,252 1,216 97.12

Low-power (Class-A) 4,853 3,905 80.47
Major networks

ABC 2,497 420 16.82
CBS 2,423 314 12.96
Fox 2,272 318 14.00
NBC 2,445 376 15.38

Minor networks
CW 850 99 11.65
MyNetwork TV 745 133 17.85
United Paramount 269 37 13.75
Warner Bros 267 24 8.99
Spanish-language networks 1,747 563 32.23
Other 3,159 1,781 56.38

Independent 2,921 1,993 68.23
Total 19,595 6,058 30.92

Notes: United Paramount and Warner Bros merged in 2006 to form CW.
Spanish-language networks include Azteca America, Telemundo, Univision,
UniMas, and Independent Spanish stations.

For each aggregation category, NAB reports the mean, 1st, 2nd, and 3rd quartiles for

cash flow and detailed revenue source categories. We define non-broadcast revenue as the

sum of total trade-outs and barter, multicast revenue, and other broadcast related revenue.

We further define advertising revenue as the sum of local, regional, national, and politi-

cal advertising revenues, commissions, and network compensations. Because we do not

observe correlations between the detailed revenue source categories, we can construct the

mean of non-broadcast revenue and advertising revenue but not the quartiles. We present

sample moments of cash flow and non-broadcast revenue for select aggregation categories

in Table B.5.156

156To validate the data, we compare the mean of advertising revenue from the NAB data to suitably averaged
advertising revenue from the BIA data. The resulting 662 pairs of means from the two data sources exhibit a
correlation of 0.92.
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Table B.4: NAB tables (2012)

Table Description Table Description

1 All Stations, All Markets 34 ABC, CBS, FOX, NBC, Markets 176+
2 All Stations, Markets 1-10 35 ABC, All Markets
3 All Stations, Markets 11-20 36 ABC, Markets 1-25
4 All Stations, Markets 21-30 37 ABC, Markets 26-50
5 All Stations, Markets 31-40 38 ABC, Markets 51-75
6 All Stations, Markets 41-50 39 ABC, Markets 76-100
7 All Stations, Markets 51-60 40 ABC, Markets 101+
8 All Stations, Markets 61-70 41 CBS, All Markets
9 All Stations, Markets 71-80 42 CBS, Markets 1-25

10 All Stations, Markets 81-90 43 CBS, Markets 26-50
11 All Stations, Markets 91-100 44 CBS, Markets 51-75
12 All Stations, Markets 101-110 45 CBS, Markets 76-100
13 All Stations, Markets 111-120 46 CBS, Markets 101+
14 All Stations, Markets 121-130 47 FOX, All Markets
15 All Stations, Markets 131-150 48 FOX, Markets 1-50
16 All Stations, Markets 151-175 49 FOX, Markets 51-75
17 All Stations, Markets 176+ 50 FOX, Markets 76-100
18 ABC, CBS, FOX, NBC, All Markets 51 FOX, Markets 101+
19 ABC, CBS, FOX, NBC, Markets 1-10 52 NBC, All Markets
20 ABC, CBS, FOX, NBC, Markets 11-20 53 NBC, Markets 1-25
21 ABC, CBS, FOX, NBC, Markets 21-30 54 NBC, Markets 26-50
22 ABC, CBS, FOX, NBC, Markets 31-40 55 NBC, Markets 51-75
23 ABC, CBS, FOX, NBC, Markets 41-50 56 NBC, Markets 76-100
24 ABC, CBS, FOX, NBC, Markets 51-60 57 NBC, Markets 101+
25 ABC, CBS, FOX, NBC, Markets 61-70 58 CW, All Markets
26 ABC, CBS, FOX, NBC, Markets 71-80 59 CW, Markets 1-25
27 ABC, CBS, FOX, NBC, Markets 81-90 60 CW, Markets 26-50
28 ABC, CBS, FOX, NBC, Markets 91-100 61 CW, Markets 51-75
29 ABC, CBS, FOX, NBC, Markets 101-110 62 MNTV, All Markets
30 ABC, CBS, FOX, NBC, Markets 111-120 63 MNTV, Markets 1-50
31 ABC, CBS, FOX, NBC, Markets 121-130 64 MNTV, Markets 51+
32 ABC, CBS, FOX, NBC, Markets 131-150 65 Independent, All markets
33 ABC, CBS, FOX, NBC, Markets 151-175 66 Independent, Markets 1-25

Notes: Data comes from NAB annual directory for 2012. Market numbers re-
fer to a market’s rank in terms of size. NAB rules prohibit aggregation when
there are too few respondents in a particular grouping, which determines the
market size ranges. Tables with total revenue breakouts are excluded.
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Table B.5: Sample moments for select aggregation categories (2012)

Cash Flow ($ million) Non-broadcast
Percentile Revenue ($ million)

Mean 25th 50th 75th Mean
All Stations 7.798 1.243 3.752 9.178 2.977
All Stations, Markets 101-110 4.120 1.704 3.619 6.444 2.102
All Major Affiliates 9.244 1.936 4.929 10.90 3.326
ABC Affiliates, Markets 1-25 32.40 15.09 27.15 42.46 7.596
NBC Affiliates, Markets 101+ 3.652 1.293 3.283 5.901 1.883
All CW Affiliates 3.929 0.355 1.798 3.224 2.884
MyNetwork TV, Markets 1-50 3.124 1.270 1.799 3.215 2.507
All Independent Stations 2.786 -0.020 1.288 4.327 2.195

Notes: Data comes from NAB annual directory for 2012. A select few cate-
gories are reported (see Table B.4 for all categories). Non-broadcast revenues
are constructed as the sum of total trade-outs and barter, multicast revenues,
and other broadcast related revenues. We thus only obtain the mean as we
lack information on the correlations of the respective distributions.

B.1.2 Cash flows

B.1.2.1 Functional forms

We parameterize a

�

Xjt; b

�
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where I (·) is the indicator function. A f f iliationjt refers to nine of the eleven affiliations157

in Table B.3 and Groupjt to groupings of affiliations (detailed below). MktSizejt is the

number of TV households in the DMA and WealthIndexjt and CompIndexjt are the wealth

and competitiveness indices for the DMA.158

157We normalize the parameter on the indicator for Spanish-language networks to zero. We exclude any TV
station affiliated with other minor networks from the estimation, see footnote 155. To predict the cash flow
for such a TV station from our parameter estimates, we use its station and owner characteristics Xjt and the
parameter on the indicator for Independent.

158To parsimoniously capture market characteristics, we conduct a principal component analysis of the
market-level variables prime-age (18-54) population, average disposable income, retail expenditures, adver-
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We allow the share a

�

Xjt; b

�

of advertising revenue retained as cash flow to vary flex-

ibly by year and network affiliation. We allow for a separate time trend for Fox affiliates

as their profitability grew substantially over time. The competitiveness index CompIndexjt

accounts for differences in the competitive environment across DMAs.

We specify RT
�

Xjt; g

�

as an exponential function of a time trend and market size in

light of the rapid growth of retransmission fees. We make no attempt to separately estimate

an error term for non-broadcast revenue and assume it is one part of ejt in equation 2.4.4

due to additivity.159

Lastly, we let fixed cost F
�

Xjt; d

�

vary flexibly with market size and the network affil-

iation. To streamline the specification, we subsume the affiliations in Table B.3 into three

groups with similar cost structures: (1) ABC, CBS, and NBC; (2) Fox, CW, and Warner Bros;

(3) My Network TV, United Paramount, Spanish-language networks, and Independents.

We include the wealth index WealthIndexjt in the fixed cost to reflect the differential cost

of operating in different DMAs.

B.1.2.2 Data

We combine the station-level data on advertising revenue from BIA with the aggregated

data from NAB. The NAB data yields 3,313 moments across aggregation categories and

the years from 2003 to 2012 as shown in Table B.7.160 There are a total of 11,801 station-year

observations from the BIA data that meet NAB’s data collection and reporting procedure

and therefore map into a table of a NAB report.

B.1.2.3 Estimation

We use a simulated minimum distance estimator. We draw S = 100 vectors of cash flow

error terms e

s =
⇣

e

s
jt

⌘

, where e

s
jt is the cash flow error term of TV station j in year t in

tising revenues, number of primary TV stations, and number of major network affiliates. The first principal
component, denoted as CompIndexjt, loads primarily on to prime-age population, advertising revenues, num-
ber of primary TV stations, and number of major network affiliates. The second principal component, denoted
as WealthIndexjt loads primarily on to average disposable income and retail expenditures.

159We obtain very similar estimates when we separately estimate such an error term.
160We drop the year 2013 from the BIA data as 2012 is the latest year of availability for the NAB data. We

further drop TV stations affiliated with other minor networks from the BIA data, see footnotes 155 and 157.
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draw s. Denote by CFgt, CF1
gt, CF2

gt, and CF3
gt the mean, 1st, 2nd, and 3rd quartiles of the

cash flow distribution reported by NAB in year t for aggregation category g = 1, . . . , Gt,

where Gt is the number of aggregation categories in year t. Similarly, denote by cCFgt(q; e

s),

cCF
1
gt(q; e

s), cCF
2
gt(q; e

s), and cCF
3
gt(q; e

s) the analogous moments of the predicted cash flow

distribution for the TV stations that feature in aggregation category g in year t. Our nota-

tion emphasizes that the latter depend on the parameters q = (b, g, d, s) and the vector of

cash flow error terms e

s in draw s. We use similar notation, replacing CF with RT, for the

mean of the non-broadcast revenue distributions. To estimate q, we match the moments of

the predicted and actual distributions across aggregation categories and years. Formally,

q̂ = arg min
q

2012

Â
t=2003

Gt

Â
g=1

 

CFgt �
1
S

S

Â
s=1

cCFgt(q; e

s)

!2

+
3

Â
q=1

 

CFq
gt �

1
S

S

Â
s=1

cCF
q
gt(q; e

s)

!2

+
⇣

RTgt � cRTgt(q)
⌘2

.

We constrain the standard deviation of the error term to be positive. Our interior-point

minimization algorithm terminates with a search step less than the specified tolerance of

10�12. We use multi starts to guard against local minima. Our estimates are robust to

different starting values.

B.1.2.4 Results

Table B.6 reports the parameter estimates. The estimates are in line with our expectations:

major network affiliates retain a higher share of advertising revenue than minor networks,

with Fox having a positive trend; independent and WB stations retain the highest share of

advertising revenues, albeit with the smallest revenue base; the retained share falls over

time, bottoming out in 2009 before bouncing back in recent years; the retained share is

lower in more competitive markets. Finally, non-broadcast revenue has grown signifi-

cantly in recent years and there are economies of scale in fixed cost.

Figure B.1.1 plots the distributions of the estimated retained share a(Xjt; b), non-broadcast

revenue RT(Xjt; d), and fixed cost F(Xjt; d). Reassuringly, without imposing restrictions,
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Table B.6: Cash flow parameters estimates

Estimates
Retained share a(Xjt; b) of advertising revenue

ABC -0.035
CBS -0.062
Fox -0.382
NBC -0.054
CW -0.113
MyNetwork TV -0.356
United Paramount -0.364
Warner Bros 0.013
Spanish-language networks (normalized) 0
Independent -0.210
Fox ⇥ Trend 0.018
2003 0.692
2004 0.666
2005 0.642
2006 0.630
2007 0.599
2008 0.567
2009 0.529
2010 0.600
2011 0.619
2012 0.636
CompIndex -0.021

Non-broadcast revenue RT(Xjt, g) (log $)
Intercept 6.513
ln(MktSize) 0.527
Trend 0.135

Fixed cost F(Xjt; d) ($ million)
Intercept 63.941
WealthIndex 1.052
Group 1 ⇥ ln(MktSize) -12.851
Group 2 ⇥ ln(MktSize) -11.696
Group 3 ⇥ ln(MktSize) -10.210
Group 1 ⇥ ln(MktSize)2 0.643
Group 2 ⇥ ln(MktSize)2 0.535
Group 3 ⇥ ln(MktSize)2 0.419

s ($ million) 1.030

Notes: Group 1 is ABC, CBS, and NBC; group 2 is Fox, CW, and Warner
Bros; and group 3 is My Network TV, United Paramount, Spanish-language
networks, and Independents.

we estimate a to be between 0.2 and 0.7 in 2012, with an average of 0.51; non-broadcast

revenue is estimated to be between $0.21 million and $10.9 million; fixed cost is estimated
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Figure B.1.1: Estimated retained share of advertising revenue, non-broadcast revenue, and
fixed cost (2012)

Notes: Plots are distributions of estimated retained share of advertising rev-
enue a (left), non-broadcast revenue in dollars (middle), and fixed cost in
dollars (right) in 2012. Includes 1,172 commercial full-power stations in 2012
used in the cash flow estimation.

to be contributing negatively to cash flow in 95% of cases, averaging $4.12 million, with

the highest fixed cost estimated to be up to $21.9 million in 2012.

The cash flow model fits the data well. Figure B.1.2 plots the predicted distributions

of cash flow and non-broadcast revenue, superimposed with the corresponding moments

from the NAB data for all TV stations in 2012. Cash flow is estimated to be between -

$6.4 million and $127 million across TV stations in 2012, with an average of $7.2 million

(compared to $7.8 million reported by NAB). The 25th ($1.6 million), 50th ($3.6 million),

and 75th ($7.8 million) percentiles of the predicted distribution are overlaid in red lines

(dashed, dotted, and dash-dotted, respectively). The black lines of the same patterns refer

to the corresponding moments in the NAB data. Non-broadcast revenue is estimated to

average $3.0 million (compared to $3.0 million reported by NAB).

To further assess the fit of the cash flow model, Table B.7 compares the cash flow and

non-broadcast revenue moments as reported in NAB to the corresponding predicted mo-

ments, broken down type of moment, affiliation, year, and market rank. It provides three

different measures of fit, namely the correlation between actual and predicted moments
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Figure B.1.2: Estimated cash flow and non-broadcast revenue with moments (2012)

Notes: Plots are kernel densities of estimated cash flows (left) and non-
broadcast revenues (right) in 2012 in log terms. Cash flows (in dollars) are
shifted by $15 million to avoid negative numbers. Black lines indicate data
moments and red lines indicate model-predicted moments. Data moments
are from the all-station category in NAB (year 2012, table 1). Includes 1,172
commercial full power stations in 2012 used in the cash flow estimation
procedure. The cash flow distribution is plotted from one simulation with
station-specific errors.
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Table B.7: Cash flow and non-broadcast revenue moments and fit measures

Number of Mean Abs Deviation
Moments Correlation $ million %

All 3313 0.98 0.91 18.11

Type

Cash flow, mean 663 0.99 0.89 13.16
1st quartile 662 0.97 0.90 35.24
2nd quartile 663 0.98 0.90 17.73
3rd quartile 663 0.98 1.36 15.16

Non-broadcast 662 0.84 0.49 28.65
revenue, mean

Affiliation
Major network 1995 0.98 1.00 16.13
Minor network 350 0.93 1.00 38.55
Independent 110 0.73 0.95 62.31

Year

2003 329 0.98 1.03 19.52
2004 325 0.99 0.87 15.05
2005 330 0.98 0.95 19.17
2006 310 0.99 0.96 16.26
2007 344 0.98 0.90 19.68
2008 350 0.98 0.86 20.43
2009 330 0.98 0.66 23.08
2010 330 0.98 0.84 16.30
2011 335 0.97 0.90 18.68
2012 330 0.98 1.11 16.51

Market Rank

1-25 460 0.98 2.37 14.74
26-50 385 0.96 0.94 15.97
51-100 930 0.93 0.63 19.98
101+ 799 0.87 0.47 32.21

Notes: Correlations refer to correlations between predicted and observed
dollar magnitudes for a particular subsample of distribution moments. Per-
cent mean deviations measured as a share of observed dollar magnitudes.

as well as the absolute deviation in millions of dollars and in percent magnitudes, and

percent of absolute deviations. Overall, our cash flow model predicts the 3,313 moments

with a 0.98 correlation. Of the 330 moments from 2012, our predicted moments have a 0.98

correlation with the actual moments reported by NAB; on average, our predicted moments

miss the actual moments by $1.11 million, or 16.5%.
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B.1.3 Multiples

B.1.3.1 Priors

Industry analysts give a range of $0.15 to $0.40 per MHz-pop for the stick multiple and a

range of 10 to 12 for the cash flow multiple.161 Therefore, our prior is that the stick multiple

is distributed log-normally with mean µ

Stick
prior = �1.4 and standard deviation s

Stick
prior = 0.5

(corresponding to a mean of $0.25 per MHz-pop and a standard deviation of $1 per MHz-

pop, thereby covering $0.15 to $0.40 per MHz-pop with probability 0.68). According to

industry analysts, while the stick multiple is believed to be much larger for larger markets,

the cash flow multiple is believed to be symmetrically distributed. Our prior is therefore

that the cash flow multiple is distributed normally with mean µ

CF
prior = 11 and standard

deviation s

CF
prior = 1.

B.1.3.2 Data

As discussed in Section 2.4.1, our data consists of 136 transactions between 2003 and 2012

based on cash flow and 201 transactions between 2003 and 2013 based on stick value. For

cash flow transactions, we infer the cash flow multiple from the transaction price and the

estimated cash flow cCFjt using equation 2.4.2. For stick value transactions, we infer the

stick multiple from the transaction price using equation 2.4.3.

B.1.3.3 Estimation

For cash flow transactions, we estimate the following model for the multiple to construct

its conditional likelihood function:

MultipleCF
jt =bXjt + ejt, (B.1.1)

where Xjt includes owner, station, and market characteristics. Specifically, we include in

Xjt an indicator of whether a station has multicast sub-channels, the station’s population

161See “Opportunities and Pitfalls on the Road to the Television Spec-
trum Auction,” Bond & Pecaro white paper, December 12, 2013, available at
http://www.bondpecaro.com/images/Bond Pecaro Spectrum White Paper 12122013.pdf, accessed on
November 15, 2015.
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coverage (in thousand), the wealth and competitiveness indices for the DMA, power out-

put fixed effects (primary, satellite, and class-A), ownership category fixed effects (whether

the owner owns one, between two and ten, or more than ten stations across markets), fixed

effects for the eleven affiliations in Table B.3, and a full set of year fixed effects. The ad-

justed R2 is 0.68 and we take ŝ

CF
likelihood = 4.52 to be the standard deviation of the 136

estimated residuals.

For stick value transactions, we estimate the following model:

ln MultipleStick
jt =bXjt + ejt, (B.1.2)

where we include in Xjt the log of the station’s output power, the log of the station’s popu-

lation coverage, the wealth and competitiveness indices for the DMA, power output fixed

effects, ownership category fixed effects, affiliation fixed effects, and year fixed effects. The

adjusted R2 is 0.67 and we take ŝ

Stick
likelihood = 0.97.

B.1.3.4 Posteriors

With the estimates in hand, we can predict multiples for any TV stations. To obtain the

posterior for the cash flow, respectively, stick multiple, we update our prior with the con-

ditional likelihood function using Bayes rule as

µposterior =
µpriors

2
likelihood+µlikelihoods

2
prior

s

2
prior+s

2
likelihood

,

s

2
posterior =

s

2
likelihoods

2
prior

s

2
prior+s

2
likelihood

,

where µ

CF
likelihood = \Multiple

CF
jt0

for cash flow transactions and µ

Stick
likelihood = \ln Multiple

Stick
jt0

for stick value transactions and we set t0 = 2012. The posterior standard deviation of

the cash flow multiple is 0.98 and that of the stick multiple is 0.44. Because the posterior

mean depends on Xjt, Figure B.1.3 illustrates the estimated posterior distribution for the

cash flow, respectively, stick multiple in one particular simulation run for the 1,672 UHF

licenses that the FCC includes in its repacking simulations. The prior distributions are

overlaid in red dashed lines.
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Figure B.1.3: Prior and posterior distributions of cash flow and stick multiples

Notes: Probability density function for the prior distributions and estimated
posterior distributions. Plotted from one simulation (one station-specific
draw for each station).

B.2 Algorithm details

There are N TV stations in the focal DMA and the DMAs in its repacking region. As in

section 2.2.2, denote as vj the reservation value of TV station j and asjj station j’s broadcast

volume. We order TV stations such that v1
j1
 v2

j2
 . . .  vN

jN
. Breaking ties in favor of

selling, we have that if the base clock price P exceeds vN
jN

, then all stations 1, . . . , N would

be willing to relinquish their license. If the base clock price is vN
jN

> P � vN�1
jN�1

, then only

stations 1, . . . , N � 1 relinquish their license, while station N prefers to continue operating

and drops out of the auction, at which point it has to be repacked, and so on.

A given clearing target of spectrum maps into a certain number of TV station channels

to be cleared for wireless service. For example, the auction’s initial 126 MHz clearing target

would have corresponded to clearing 21 channels out of a total of 37 non-dedicated UHF

channels in each DMA. In some DMAs, this would be possible without purchasing spec-

trum from TV stations since not all channels are allocated. Denote the channels available

for repacking TV stations that choose to continue operating after the reverse auction by R.

For simplicity, we suppress the dependency of R on the spectrum clearing target.
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The repacking feasibility checker SATFC takes as inputs the remaining available chan-

nels R and a set of TV stations X, together with their interference profile and the channels

to which they could be repacked.162 Denote this as SATFC(X, R). It then returns one of

three possible outcomes:SAT, UNSAT, or TIMEOUT. SAT denotes that the set of sta-

tions X could be satisfactorily repacked. UNSAT indicates that is is not possible, leading

to a station being frozen, while TIMEOUT indicates that within the maximum amount of

time allotted to one run of the feasibility checker, it was not possible to ascertain whether

repacking would be feasible. Based on testing, the FCC has set set the TIMEOUT param-

eter to one minute, which we also use. Their testing found that this time limit offered an

efficient trade off between total computational burden and accuracy, and interpret TIME-

OUT as an UNSAT.

We partition the set of TV stations {1, . . . , N} into a set of “active” stations A, a set

of “frozen” (or “conditionally winning”) stations F, and a set of “inactive”stations I that,

given the initial clock price P = 900 immediate drop out of the auction (see Competitive

Bidding Procedures for Broadcast Incentive Auction 1000, Including Auctions 1001 and

1002, Public Notice FCC 14-191, p. 105, available at https://www.fcc.gov/document/

broadcast-incentive-auction-comment-pn).

Finally, denote as POj the payout to TV station j from the reverse auction in terms of the

base clock price; the station’s ultimate selling price would be jjPOj. We iteratively solve

the reverse auction in Matlab interfacing with SATFC via a Java bridge. To initialize, we

set P = 900, and define the set of active stations A =
n

s 2 {1, . . . , N}| vs
js
 900

o

, the set

of frozen stations F = ∆, and the set of inactive stations I =
n

s 2 {1, . . . , N}| vs
js

> 900
o

.

That is, all TV stations with valuation less than or equal to 900 participate in the reverse

auction. If SATFC(I, R) 6= SAT, then the remaining stations cannot be repacked. In this

case, we declare the auction as failed and set POs = 0 for all s 2 {1, . . . , N}.

Otherwise, we proceed as follows:

1. REPEAT
162We use Perl scripts to create repacking region-specific domain and interference files to use with the SATFC

feasibility checker to simulate the auction. This speeds up computation and decreases the amount of memory
overhead required for large-scale parallel computing.

184

https://www.fcc.gov/document/broadcast-incentive-auction-comment-pn
https://www.fcc.gov/document/broadcast-incentive-auction-comment-pn


(a) For each s 2 A run SATFC(I [ {s}, R).

i. If SATFC(I [ {s}, R) = UNSAT, station s cannot be repacked. Change its

status to frozen: set A  A \ {s}, F  F [ {s}. Its payout is the current

base clock price: POs = P.

(b) If A 6= ∆ then set s = maxs2A(
vs
js
), P = vs

js
, A  A \ {s}, I  I [ {s}, and

POs = 0.

2. UNTIL A = ∆

Step (i) changes the status of any currently active TV station that cannot be repacked in

addition to the currently inactive TV stations to frozen (p. 108 and pp. 112–113, FCC 14-

191). If a TV station is frozen, it receives a payout equal to the current base clock price P.

P, in turn, is determined by the TV station most recently marked as inactive (or, possibly,

the opening base clock price of 900).

At the end of steps (a)–(b) we are guaranteed that changing the status of any remaining

active TV station to inactive preserves feasibility. Step (c) then finds the remaining active

TV station with the highest value and changes its status from active to inactive. This TV

station receives a payout of zero.

B.2.1 Illustration
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Figure B.2.1: Simulation algorithm examples

Notes: Checkmarks (X) indicate that all remaining active stations can feasibly be repacked when the listed
station withdraws. Crosses () indicate that at least one active license can no longer feasibly be repacked when
the listed station withdraws. Events concerning licenses in the focal DMA are in bold. Licenses are numbered
by FCC ID numbers. Prices are in terms of the base clock price.
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Appendix C

Appendix to Chapter 3

C.1 Appendix: Specifications

C.1.1 Robustness

C.1.1.1 Entry windows and retirement ages

In our main specification, we choose the starting age of the entry window and the retire-

ment age based on the empirical distribution of arrests over ages. We then choose the

cutoff between the entry window and the exit window by maximizing the log-likelihood

of the baseline CPDM estimation163. In this section, we arbitrarily vary these three cut-

offs and show that our results are robust. Table C.1 presents the results estimated on our

preferred specification.

C.1.1.2 Aging effects

In this section, we explore different functional forms of the aging effects on base exit rates

and the robustness of the CPDM to the different parametrizations. Table C.2 presents the

results. We note that, although in the last column the cubic term is statistically significant,

we believe that the more parsimonious quadratic polynomial is sufficiently flexible. On the

other hand, we have robust estimates across all specifications except the selection effect in

the last column, which is imprecisely estimated.

163The reported standard errors do not take into account the uncertainty of the cutoffs.
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Table C.1: Entry window and retirement cutoffs (entry start-entry end-retirement)

(11-21-64) (15-21-64) (13-19-64) (13-23-64) (13-21-54) (13-21-74)
Entry a0 0.0168** 0.0119† 0.0137† 0.0106† 0.0160** 0.0128*

(0.0899) (0.2806) (0.2570) (0.2469) (0.0855) (0.1795)
SIL Entry a1 0.0040*** 0.0055** 0.0051** 0.0040** 0.0034** 0.0050***

(0.0136) (0.0342) (0.0258) (0.0229) (0.0320) (0.0130)
Exit g0 52.5361*** 51.1861*** 34.6856*** 70.3408*** 47.2253*** 54.1816***

(0.0028) (0.0030) (0.0000) (0.0128) (0.0013) (0.0015)
Exit g1 -3.2961*** -3.2166*** -2.2753*** -4.2844*** -2.9579*** -3.3876***

(0.0021) (0.0022) (0.0000) (0.0103) (0.0008) (0.0011)
Exit g2 0.0490*** 0.0479*** 0.0350*** 0.0623*** 0.0445*** 0.0498***

(0.0014) (0.0014) (0.0000) (0.0076) (0.0004) (0.0007)
Selection b1 0.1158* 0.1141* 0.1352** 0.1024 0.2259** 0.1029†

(0.1702) (0.1871) (0.0960) (0.3266) (0.0454) (0.2056)
Floodgate l0 0.0927** 0.0842** 0.0666** 0.1056** 0.0738** 0.0994**

(0.0447) (0.0689) (0.0691) (0.0568) (0.0601) (0.0303)
Floodgate l1 0.0851** 0.0779** 0.0598** 0.0979** 0.0649** 0.0943**

(0.0568) (0.0860) (0.0919) (0.0709) (0.0903) (0.0372)
Floodgate l2 0.0911* 0.0844* 0.0644* 0.1070* 0.0715* 0.1020*

(0.1390) (0.1806) (0.1912) (0.1453) (0.1716) (0.1008)
Floodgate l3 0.0734† 0.0660 0.0477 0.0888† 0.0505 0.0817†

(0.2431) (0.3115) (0.3411) (0.2447) (0.3337) (0.2004)
Floodgate l4 0.0583 0.0506 0.0344 0.0747 0.0304 0.0664

(0.4004) (0.4838) (0.5436) (0.3674) (0.6134) (0.3233)
Floodgate l5 0.0329 0.0246 0.0131 0.0474 0.0041 0.0441

(0.6843) (0.7731) (0.8452) (0.6196) (0.9544) (0.5765)
Floodgate l6 0.0386 0.0295 0.0168 0.0555 0.0062 0.0554

(0.6852) (0.7724) (0.8342) (0.6184) (0.9427) (0.5559)
Floodgate l7 -0.0145 -0.0303 -0.0323 -0.0098 -0.0461 0.0053

(0.8729) (0.7607) (0.6692) (0.9273) (0.5650) (0.9526)
Floodgate l8 -0.0521 -0.0752 -0.0706 -0.0544 -0.0913 -0.0341

(0.6030) (0.5033) (0.4057) (0.6452) (0.3309) (0.7285)
Floodgate l9+ -0.1025 -0.1346 -0.1171† -0.1216 -0.1396† -0.0837

(0.4200) (0.3496) (0.2866) (0.4208) (0.2589) (0.5118)
Nb. Obs. 1549 1549 1549 1549 1549 1549

Notes: All regressions are run on the total violent crimes. Arrest rates of violent crimes, demographic and
welfare controls, state and year fixed effects and state-specific linear and quadratic time trends are controlled
for but not reported. g0, g1 and g2 are coefficients of the constant, linear and quadratic terms of the exit func-
tion (of age). lj’s measure the surprise effect in the jth year after SIL passage. Standard errors are clustered at
the state level. Two-sided p values are in parentheses. †, *, **, and *** indicate one-sided statistical significance
at the 15, 10, 5, and 1 percent level.
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Table C.2: Parametrizations of aging effects

Constant Linear Quadratic Cubic Translog Quad. Exp.
Entry a0 0.0210*** 0.0082† 0.0148* 0.0108† 0.0143* 0.0148*

(0.0049) (0.2139) (0.1418) (0.2354) (0.1319) (0.1418)
SIL Entry a1 0.0037*** 0.0025** 0.0046** 0.0063*** 0.0039** 0.0046**

(0.0054) (0.0311) (0.0208) (0.0049) (0.0320) (0.0208)
Exit g0 0.5269*** -5.6213*** 51.8624*** -153.8857*** 626.4235*** 4.8548***

(0.0000) (0.0000) (0.0027) (0.0001) (0.0004) (0.0077)
Exit g1 0.1913*** -3.2551*** 14.5884*** -363.0427*** -1.2217***

(0.0000) (0.0020) (0.0002) (0.0003) (0.0038)
Exit g2 0.0484*** -0.4523*** 52.3943*** 0.0484***

(0.0013) (0.0004) (0.0003) (0.0013)
Exit g3 0.0045***

(0.0006)
Selection b1 0.3759*** 0.2822** 0.1161* 0.0081 0.1701** 0.1161*

(0.0179) (0.0221) (0.1697) (0.9323) (0.0816) (0.1696)
Floodgate l0 0.1071*** 0.0529** 0.0890** 0.1186*** 0.0781** 0.0890**

(0.0002) (0.0970) (0.0537) (0.0157) (0.0692) (0.0537)
Floodgate l1 0.0962*** 0.0454* 0.0822** 0.1137** 0.0711** 0.0822**

(0.0120) (0.1841) (0.0669) (0.0209) (0.0875) (0.0669)
Floodgate l2 0.1091*** 0.0596* 0.0886* 0.1284** 0.0769* 0.0886*

(0.0007) (0.1572) (0.1531) (0.0473) (0.1838) (0.1531)
Floodgate l3 0.0960*** 0.0476† 0.0706† 0.1213** 0.0577 0.0706†

(0.0020) (0.2518) (0.2672) (0.0768) (0.3244) (0.2672)
Floodgate l4 0.0770*** 0.0296 0.0555 0.1171** 0.0397 0.0555

(0.0132) (0.5070) (0.4294) (0.0996) (0.5456) (0.4294)
Floodgate l5 0.0558* 0.0089 0.0301 0.0957† 0.0145 0.0301

(0.1262) (0.8647) (0.7143) (0.2320) (0.8517) (0.7143)
Floodgate l6 0.0630* 0.0113 0.0355 0.1098† 0.0178 0.0355

(0.1309) (0.8438) (0.7152) (0.2345) (0.8463) (0.7152)
Floodgate l7 0.0351 -0.0282 -0.0199 0.0527 -0.0334 -0.0199

(0.3907) (0.5733) (0.8304) (0.5417) (0.6999) (0.8304)
Floodgate l8 0.0008 -0.0607 -0.0609 0.0210 -0.0744 -0.0609

(0.9880) (0.3248) (0.5588) (0.8298) (0.4480) (0.5587)
Floodgate l9+ -0.0050 -0.0835 -0.1172 -0.0466 -0.1206 -0.1172

(0.9487) (0.3108) (0.3825) 0.7168 (0.3368) (0.3825)
Nb. Obs. 1549 1549 1549 1549 1549 1549

Notes: All regressions are run on the total violent crimes. Arrest rates of violent crimes, demographic and
welfare controls, state and year fixed effects and state-specific linear and quadratic time trends are controlled
for but not reported. g0, g1, g2 and g3 are coefficients of the constant, linear, quadratic and cubic terms of the
exit function (of age). For the translog function, we replace age with log(age); for the quadratic experience col-
umn, we replace age with age� 21. lj’s measure the surprise effect in the jth year after SIL passage. Standard
errors are clustered at the state level. Two-sided p values are in parentheses. †, *, **, and *** indicate one-sided
statistical significance at the 15, 10, 5, and 1 percent level.
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Table C.3: CPDM with grouped floodgate effects

Violent Murder Rape Robbery Agg. Ast.
Entry a0 0.0130* 0.0003* 0.0010* 0.0121** 0.0077*

(0.1989) (0.1041) (0.1839) (0.0506) (0.1946)
SIL Entry a1 (-) 0.0051*** 0.0001** -0.0001 0.0013** 0.0017*

(0.0082) (0.0877) (0.6576) (0.0234) (0.1082)
Exit g0 51.5256*** 27.6088*** 15.5613** 127.8716*** 13.9920***

(0.0034) (0.0000) (0.0554) (0.0001) (0.0038)
Exit g1 -3.2329*** -1.5160*** -1.0864** -7.9605*** -0.9719***

(0.0025) (0.0000) (0.0236) (0.0001) (0.0006)
Exit g2 0.0481*** 0.0193*** 0.0180*** 0.1182*** 0.0161***

(0.0017) (0.0000) (0.0085) (0.0000) (0.0001)
Selection b1 (-) -0.0228 -0.2386 0.0909 0.4953* -0.0708†

(0.7713) (0.6279) (0.6114) (0.1217) (0.2219)
Floodgate l0�1 0.1036*** 0.1471* -0.0122 0.1914*** 0.0438*

(0.0122) (0.1707) (0.8044) (0.0084) (0.1923)
Floodgate l2�4 0.1012** 0.1330* -0.0149 0.1904** 0.0441†

(0.0879) (0.1807) (0.8109) (0.0875) (0.2535)
Floodgate l5�9 0.0445 0.1518† -0.0625 0.1266 -0.0077

(0.6051) (0.2261) (0.4402) (0.5348) (0.8893)
Floodgate l10+ 0.0228 0.3195* -0.0594 -0.0052 -0.0059

(0.8338) (0.1476) (0.5055) (0.9868) (0.9378)
Log-likelihood -7689 -2297 -4025 -6830 -7092

F-statistics 123.6 778.0 61.7 175.0 105.6
Nb. Obs. 1549 1548 1547 1546 1549

Notes: Arrest rates (of corresponding crime categories), demographic and welfare controls, state and year
fixed effects and state-specific linear and quadratic time trends are controlled for but not reported. g0, g1, g2

are coefficients of the constant, linear and quadratic terms of the exit function (of age). The F-statistics test
for the joint significance of all estimated coefficients and reject the null (all coefficients are equal to zero) in all
specifications. Standard errors are clustered at the state level. Two-sided p values are in parentheses. †, *, **,
and *** indicate one-sided statistical significance at the 15, 10, 5, and 1 percent level.

C.1.1.3 Floodgate effects

In our preferred specification, we adopt a non-parametric specification of the floodgate

effects. In this section, we show that our estimates for all crime types are robust to more

parametric specifications. Table C.3 presents the results when we group individual year

fixed effects and Table C.4 shows the linear trend estimates.
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Table C.4: CPDM with linear floodgate trend

Violent Murder Rape Robbery Agg. Ast.
Entry a0 0.0138* 0.0003** 0.0009† 0.0120** 0.0083*

(0.1721) (0.0912) (0.2096) (0.0516) (0.1629)
SIL Entry a1 0.0050*** 0.0001** -0.0001 0.0014*** 0.0016*

(0.0164) (0.0962) (0.6136) (0.0168) (0.1433)
Exit g0 51.6829*** 27.7278*** 16.3377** 127.9731*** 14.8706***

(0.0030) (0.0000) (0.0453) (0.0001) (0.0015)
Exit g1 -3.2418*** -1.5233*** -1.1334*** -7.9673*** -1.0244***

(0.0022) (0.0000) (0.0198) (0.0001) (0.0002)
Exit g2 0.0482*** 0.0194*** 0.0187*** 0.1183*** 0.0168***

(0.0015) (0.0000) (0.0076) (0.0000) (0.0000)
Selection b1 0.0070 0.0271 0.1633 0.4449* -0.0349

(0.9364) (0.9473) (0.4631) (0.1393) (0.5816)
Floodgate cons. 0.1363*** 0.1445* 0.0153 0.2343*** 0.0735**

(0.0005) (0.1867) (0.7482) (0.0000) (0.0220)
Floodgate slope -0.0154** -0.0058 -0.0150* -0.0112 -0.0147**

(0.0932) (0.5364) (0.1688) (0.6826) (0.0233)
Log-likelihood -7685 -2291 -4022 -6832 -7090

F-statistics 134.7 834.3 38.5 152.9 98.1
Nb. Obs. 1549 1548 1547 1546 1549

Notes: Arrest rates (of corresponding crime categories), demographic and welfare controls, state and year
fixed effects and state-specific linear and quadratic time trends are controlled for but not reported. g0, g1, g2

are coefficients of the constant, linear and quadratic terms of the exit function (of age). The F-statistics test
for the joint significance of all estimated coefficients and reject the null (all coefficients are equal to zero) in all
specifications. Standard errors are clustered at the state level. Two-sided p values are in parentheses. †, *, **,
and *** indicate one-sided statistical significance at the 15, 10, 5, and 1 percent level.
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C.1.1.4 OLS estimates

Table C.5 presents estimates from OLS without the dynamic panel instruments. We find

similar results compared with Table 3.6 using IVs.

C.1.1.5 CPDM on levels

C.1.2 Literature replications

In this section, we review and test the robustness of model specifications in LM and AD.

We use state-level panel data from 1980 onwards and only present results on the total vi-

olent crimes. LM adopts a simple “dummy variable model,” where they only control for

state and year fixed effects (but not trends). We first try to replicate their results with our

data and then test its robustness with variations of the specification, controls, and sam-

ple lengths. Table C.7 shows the results. Column (1) resembles the most of their main

specification. Specifically, the dependent variable is the log of crime rates and the demo-

graphic controls include arrest rates, state population, population density, real per capita

personal income, income maintenance, unemployment insurance, and retirement payment

for people older than 65. In particular, LM also control for a large set of race and age group

variables (18 groups divided into three races - black, white, and others - and six age groups

- 10-19, 20-29, 30-39, 40-49, 50-59, and 65+). We include the same controls in column 1 for

comparison but later exclude them in our preferred DD specification. Similar to LM, we

find a roughly 8.8% (vs. 5-10% in LM) reduction in violent crimes following SIL passages.

In columns (2) and (3), we keep the same specification but expand the sample to 1999 and

2011, respectively. Despite having more observations in the sample, we find gradually

smaller and less precisely estimated effects. With this specification and the full sample in

(3), we find essentially zero effect of SILs on violent crimes. We then compare column (4)

with (1) by dropping the controversial race and age controls. We also find small and almost

insignificant effects. The last two columns are our preferred specifications164, where we ex-

clude the race and age controls but instead control for state-specific linear and quadratic

time trends and account for serially correlated errors by clustering on the state level. We

164Column (6) corresponds to estimates reported in Table 3.8.
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Table C.5: OLS estimates: CPDM preferred specification

Violent Murder Rape Robbery Agg. Ast.
Entry a0 0.0125* 0.0002 0.0010† 0.0090** 0.0083*

(0.1258) (0.3141) (0.2291) (0.0951) (0.1153)
SIL Entry a1 (-) 0.0032** 0.0002*** -0.0001 0.0010** 0.0011†

(0.0410) (0.0001) (0.5929) (0.0539) (0.2377)
Exit g0 18.8892** 35.5137*** 13.9282† 55.3285*** 6.5723**

(0.0328) (0.0000) (0.2331) (0.0090) (0.0828)
Exit g1 -1.2704** -1.9969*** -0.9334* -3.5189*** -0.5185***

(0.0206) (0.0000) (0.1705) (0.0059) (0.0183)
Exit g2 0.0202*** 0.0261*** 0.0151* 0.0536*** 0.0094***

(0.0114) (0.0000) (0.1053) (0.0031) (0.0022)
Selection b1 (-) 0.0727 0.9867*** 0.2705* 0.2807** -0.0814

(0.3850) (0.0039) (0.1781) (0.0857) (0.3092)
Floodgate l0 0.0636** 0.3219*** -0.0182 0.1179* 0.0289

(0.0894) (0.0003) (0.7077) (0.1230) (0.4013)
Floodgate l1 0.0529* 0.3383*** -0.0129 0.1339*** 0.0120

(0.1372) (0.0001) (0.8265) (0.0104) (0.7102)
Floodgate l2 0.0651† 0.2632*** 0.0170 0.1002 0.0348

(0.2309) (0.0131) (0.7802) (0.3097) (0.3887)
Floodgate l3 0.0468 0.3483*** -0.0589 0.1417† 0.0067

(0.3519) (0.0001) (0.5021) (0.2389) (0.8494)
Floodgate l4 0.0330 0.3017*** -0.0612 0.1021 -0.0023

(0.5540) (0.0012) (0.3384) (0.3958) (0.9537)
Floodgate l5 0.0121 0.2719*** -0.0455 0.0436 -0.0109

(0.8558) (0.0081) (0.5212) (0.7758) (0.8212)
Floodgate l6 0.0230 0.2339*** -0.0526 0.0760 -0.0111

(0.7584) (0.0082) (0.4802) (0.6686) (0.8440)
Floodgate l7 -0.0202 0.3339*** -0.2080** -0.0059 -0.0369

(0.7525) (0.0008) (0.0705) (0.9727) (0.4523)
Floodgate l8 -0.0581 0.1372* -0.1092† 0.0400 -0.1056*

(0.4782) (0.1893) (0.2737) (0.8225) (0.1237)
Floodgate l9+ -0.0752 0.0717 -0.1617* -0.1756 -0.0710

(0.4697) (0.5762) (0.1341) (0.5674) (0.3539)
Nb. Obs. 1549 1548 1547 1546 1549

Notes: Arrest rates (of corresponding crime categories), demographic and welfare controls, state and year
fixed effects and state-specific linear and quadratic time trends are controlled for but not reported. g0, g1, g2

are coefficients of the constant, linear and quadratic terms of the exit function (of age). lj’s measure the sur-
prise effect in the jth year after SIL passage. Key coefficients relevant for testing the deterrence hypothesis are
signed in parentheses. Standard errors are clustered at the state level. Two-sided p values are in parentheses.
†, *, **, and *** indicate one-sided statistical significance at the 15, 10, 5, and 1 percent level.
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Table C.6: CPDM dependent variable: Changes vs. levels

Change DC
st Level Cs,t+1

Lag Cst 1.1261***
(S.E.) (0.4573)

Entry a0 0.0148* 0.0135*
(0.1418) (0.1743)

SIL Entry a1 (-) 0.0046** 0.0037**
(0.0208) (0.0394)

Exit g0 51.8624*** 25.7653***
(0.0027) (0.0005)

Exit g1 -3.2551*** -1.7063***
(0.0020) (0.0001)

Exit g2 0.0484*** 0.0270***
(0.0013) (3E-5)

Selection b1 (-) 0.1161* 0.1987**
(0.1697) (0.0242)

Floodgate l0 0.0890** 0.0703*
(0.0537) (0.1158)

Floodgate l1 0.0822** 0.0640*
(0.0669) (0.1428)

Floodgate l2 0.0886* 0.0757†

(0.1531) (0.2219)
Floodgate l3 0.0706† 0.0603

(0.2672) (0.3314)
Floodgate l4 0.0555 0.0427

(0.4294) (0.5287)
Floodgate l5 0.0301 0.0169

(0.7143) (0.8330)
Floodgate l6 0.0355 0.0217

(0.7152) (0.8122)
Floodgate l7 -0.0199 -0.0288

(0.8304) (0.7343)
Floodgate l8 -0.0609 -0.0681

(0.5588) (0.4868)
Floodgate l9+ -0.1172 -0.1099

(0.3825) (0.3815)
Nb. Obs. 1549 1498

Notes: Arrest rates (of corresponding crime categories), demographic and welfare controls, state and year
fixed effects and state-specific linear and quadratic time trends are controlled for but not reported. g0, g1,
g2 are coefficients of the constant, linear and quadratic terms of the exit function (of age). lj’s measure the
surprise effect in the jth year after SIL passage. Key coefficients relevant for testing the deterrence hypothesis
are signed in parentheses. Standard errors are clustered at the state level. Two-sided p values (except for the
lag variable, which shows the standard error) are in parentheses. †, *, **, and *** indicate one-sided statistical
significance at the 15, 10, 5, and 1 percent level.

195



find no effects on both the log and the level of crimes. Overall, we find that the original LM

specification is sensitive to controls, sample lengths, and assumptions on error structures.

On the other end of the debate, AD study the effects of SILs up to 1999 and employ

a “hybrid model.” In addition to the level shift in a standard DD, they include a trend-

break (overall trend interacted with the SIL dummy) term post-SIL to capture the slope

change. They find overall positive effects of SILs on violent crimes and positive “long

run” effects of SILs suggested by their trend-break term. We argue that, however, in a

DD specification, if our state-specific trends are flexible enough, we should not need the

trend-break term. Therefore, in our preferred DD specification, we include state-specific

quadratic time trends that will capture the “inverted-V” shape argued in this literature.

Table C.8 presents the results. In column (1), we follow AD and drop the race and age

controls. We find an overall increase of about 7.4% in crimes following SIL adoptions. We

add the trend-break term in column (2) and find similar results to AD. In (3) and (4), we

simply vary the sample length and again find inconsistent results over time. In (5), we

add back the race and age controls for comparison. Finally, (6) and (7) are our preferred

specifications165. We find the opposite effects compared to (1), after controlling for state-

specific linear and quadratic time trends and clustering standard errors.

165Column (7) corresponds to estimates reported in Table 3.8.
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C.2 Appendix: Data

C.2.1 State SIL passage years

C.2.2 Age-specific arrest and crime rates

We first use the BJS national arrests by age groups and the shape-preserving piecewise

cubic hermite interpolating polynomials to impute age-specific arrests166. Figure C.2.1

presents the fit results for 1980 and 2010 in four crime categories.

To impute age-specific crime rates, let pst be the probability of arrest for criminals in

state s and year t, assuming it does not vary across ages. We also assume that every crim-

inal commits k crimes each year across states, years and ages. Let C be the number of

crimes, A the number of arrests, and then we have, by definition,
Cast

k

· pst = Aast, where

the subscript a indicates age. Summing over ages and dividing the two equations, we get
Cast

k

pst

Âa
Cast

k

pst
=

Aast

Âa Aast
, and after manipulations, Cast =

Aast

Âa Aast
Cst. We, however, do not ob-

serve arrests on the age-state-year level and have to rely on an additional assumption that

the arrests for each age group as a fraction of the total arrests do not vary across states, i.e.
Aat

Âa Aat
=

Aast

Âa Aast
. It is plausible that criminals of age 20 in Pennsylvania do no better or

worse than those in North Carolina compared to other age groups in the same state. Then

we arrive at the desired variable, age-specific crime rates, Cast =
Aat

Âa Aat
Cst, where Aat are

the age-specific national arrests imputed from BJS and Cst are the state-year level crime

rates data from UCR. We then let the exit cohort NEx
ast = Cast.

166Specifically, we assume there are no violent crimes committed by people younger than 5 or older than 74.
We then assume that the mean age point in an age group has the average arrests in the age group. For example,
there are 21 murders for age group 10-12 in 1987 and thus we let the 11-year olds have 7 murders in order to
construct our data points. Then we interpolate over these data points using cubic hermite polynomials to
impute arrests for each specific age.
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