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Abstract
Drug discovery of small-molecule protein inhibitors is a vast enterprise that involves several scientific
disciplines (i.e. genomics, cell biology, x-ray crystallography, chemistry, computer science, statistics), with
each discipline focusing on a particular aspect of the process. In this thesis, I use computational and
experimental approaches to explore the most fundamental aspect of drug discovery: the molecular
interactions of small-molecules inhibitors with proteins.

In Part I (Chapters I and II), I describe how computational docking approaches can be used to identify
structurally diverse molecules that can inhibit multiple protein targets in the brain. I illustrate this approach
using the examples of microtubule-stabilizing agents and inhibitors of cyclooxygenase(COX)-I and
5-lipoxygenase (5-LOX).

In Part II (Chapters III and IV), I focus on membrane proteins, which are notoriously difficult to work with
due to their low natural abundances, low yields for heterologous over expression, and propensities toward
aggregation. I describe a general approach for designing water-soluble variants of membrane proteins, for the
purpose of developing cell-free, label-free, detergent-free, solution-phase studies of protein structure and
small-molecule binding. I illustrate this approach through the design of a water-soluble variant of the
membrane protein Smoothened, wsSMO. This wsSMO stands to serve as a first-step towards developing
membrane protein analogs of this important signaling protein and drug target.
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ABSTRACT 

COMPUTATIONAL APPROACHES FOR DESIGNING PROTEIN/INHIBTOR 

COMPLEXES AND MEMBRANE PROTEIN VARIANTS 

Krishna Gajan Vijayendran (Advisor: Dr. Jeffrey G. Saven) 

 

The discovery of small-molecule inhibitors of protein targets is a vast enterprise that 

involves several scientific disciplines (i.e. genomics, cell biology, x-ray crystallography, 

chemistry, computer science, statistics), with each discipline focusing on a particular 

aspect of the process. In this thesis, I use computational and experimental approaches 

to explore the most fundamental aspect of drug discovery: the molecular interactions 

that take place between drugs and their protein targets.  

 

In Part I: Designing a Drug, I describe how computational docking approaches can be 

used to identify structurally diverse molecules that can inhibit multiple protein targets in 

the brain. I illustrate this approach using the examples of microtubule-stabilizing agents 

and inhibitors of cyclooxygenase (COX)-I and 5-lipoxygenase (5-LOX).  

 

In Part II: (Re)Designing a Drug Target, I focus on membrane proteins, which are 

notoriously difficult to work with due to their low endogenous levels, low yields from 

protein expression systems, and propensities to aggregate in solution. I describe a 

general approach for designing water-soluble variants of membrane proteins, for the 

purpose of developing a cell-free, label-free, detergent-free, solution-phase assay for 

assessing ligand-binding events. I illustrate this approach though the design of a water-

soluble variant of the membrane protein Smoothened, wsSMO. wsSMO stands as a 

first-step towards developing membrane protein analogs of this important signaling 

protein and drug target. 
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FORWARD 

My motivation for a research career is driven by the promise of science to develop 

effective therapeutics against diseases that currently plague us. Over the past several 

years, it dawned on me that the pathophysiology of many diseases, particularly in the 

fields of infectious diseases and oncology, can be reduced to a joint genetic-molecular 

basis. Examples of this include genetic mutations that result in acquired drug resistance 

via binding site mutations (i.e. HIV protease mutations that were identified in the 1990s, 

and Smoothened mutations that were identified in the 2010s in basal-cell carcinoma); 

and the acquisition of genetic elements that result in resistance to certain antibiotics (i.e. 

methicillin-resistant Staphylococcus aureus). Identifying the genetic states that exist 

within a disease context, and identifying drugs that are effective (and ineffective) towards 

each state, can allow for the development of effective therapeutic regimens. This is 

illustrated by the emergence of second-line HIV protease inhibitors, and by the use of 

antibiotic combinations to treat dangerous drug-resistant bacterial strains. From these 

examples, a general approach to drug design can be formulated: use biological 

experiments and structural analyses to determine the role of a protein target in a 

disease; from this information, use chemistry to design molecules that can inhibit this 

protein's activity; and use genomic analyses to identify patients whose disease is driven 

by this protein. Extrapolating this approach to several disease-relevant protein targets 

can allow for the identification of regimens consisting of drugs that attack multiple protein 

targets. 

During my Ph.D. years, my goal was to develop a core background that would allow me 

to one day become involved in this type of drug design process. The work described in 

Part I: Designing a Drug allowed me to identify drug candidates via computational 

structure-based drug design, and to make a subset of these candidates using synthetic 

organic chemistry techniques. The work described in Part II: (Re)Designing a Drug 
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Target, spanned the field of physical chemistry, protein design and biochemistry. It 

allowed me to understand the principles underlying protein structure; the experimental 

approaches for protein purification; and the different biophysical approaches to test 

ligand-binding. Both projects existed at the interface between medicine, chemistry and 

computer science.   

 

I thank you for taking the time out to read about my research, and to learn about the 

research approach that I will be dedicating my career to. 

 

 

Krishna Vijayendran 

December 19th, 2016 

Philadelphia, PA
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INTRODUCTION 

Drug discovery of small-molecule protein inhibitors is a vast enterprise that involves 

several scientific disciplines. These disciplines include genomics (identification of 

potential drug targets from clinical samples of a particular disease), biology 

(experimental validation of these targets in cellular and animal models), x-ray 

crystallography (acquisition of the target's macromolecular structure), computational 

chemistry (prediction of the activity of drug candidates based on the target's structure), 

statistics (analysis of high-throughput screening data of millions of compounds), organic 

chemistry (synthesis and optimization of candidate compounds obtained from a screen), 

pharmacology (evaluation of bioavailability and toxicity of candidate compounds in 

animal models) and, lastly, clinical medicine (conducting clinical trials of candidate drugs 

in human beings).  

Each of these disciplines approaches the drug discovery process from a unique 

perspective, and are all vitally important to the end goal of identifying compounds that 

can successfully treat a disease. In the following chapters, I use computational and 

experimental approaches to explore what I consider to be the most fundamental aspect 

of the drug discovery process: the molecular interactions of small-molecule inhibitors 

with proteins.   

 

In Part I: Designing a Drug (Chapters I and II), I focus on the computational design of 

drugs, and the modeling of drug-protein complexes. I describe how computational 

docking approaches can be used to not only develop brain-penetrant inhibitors, but to 

also identify compounds that can inhibit multiple targets in the brain. In Part II: 

(Re)Designing a Drug Target (Chapters III and IV), I switch my focus from drugs to the 

protein targets themselves. Membrane proteins are a class of protein targets that are 

notoriously difficult to work with and develop drugs against. Using principles from 
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statistical mechanics, I developed an algorithm that can take an input membrane protein 

structure and output a water-soluble variant of it. Such a variant would enable one to test 

drug binding in a solution-phase assay, without the use of detergents, fluorescent 

labeling or radio-labeling.  

    

Part I: Challenges with designing brain penetrant inhibitors  

For the first part of my thesis, I start off by focusing on (re)designing small-molecule 

inhibitors for a new disease context. The vast majority of drugs inhibit protein targets that 

are found in peripheral tissues. However, many of these peripheral targets have also 

been found to be involved in the pathophysiology of different neurological disorders. A 

first attempt at inhibiting one of these proteins in the brain would be to administer the 

same drug that inhibits the target peripherally. However, due to the blood brain barrier, 

many of these compounds (which often have very polar functional groups) have poor 

brain penetrance and are ineffective. From this, two questions arise. Can one take a 

small-molecule inhibitor that is known to bind to a particular target, and modify it's 

functional groups so that now it not only crosses the blood-brain barrier, but can still 

inhibit it's target? Going one step farther, can one take a known brain-penetrant inhibitor 

that binds a particular target, and repurpose it to inhibit new targets in the brain? Using 

computational approaches (i.e. chemical enumeration to design large compound 

libraries, and molecular docking algorithms) and synthetic organic chemistry, I test these 

two hypotheses through the design of two classes of candidate Alzheimer's Disease 

inhibitors: microtubule-stabilizing agents, and inhibitors of cyclooxygenase (COX)-I and 

5-lipoxygenase (5-LOX).  
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Part II: Challenges with directly probing small-molecule/membrane protein 

interactions 

For the second part of my thesis, I explore inhibitor-target molecular interactions from 

the other direction, and focus on the drug targets themselves. For many protein targets, 

drug discovery has been accelerated due to the availability of assays that allow for the 

direct determination of drug-protein interactions (i.e., in vitro kinase assays for cancer 

drug development). However, for membrane proteins (the largest class of drug targets), 

such a direct method does not exist. Current membrane protein binding methods are 

either cell-based, competition-based, or require the use of detergents. Cell-based 

assays are expensive, time-consuming, difficult to scale up, and provide little information 

about the molecular interactions involved in drug binding. Furthermore, developing such 

an assay often requires knowledge of a protein's downstream pathway in order to obtain 

a read-out, which may not be possible for newly discovered membrane protein targets. 

Competition-based assays test whether a candidate molecule is able to displace binding 

of a radioactive or fluorescently labeled known binder in cells over-expressing the 

membrane protein, or in crude isolated membrane protein fractions. However, these 

methods are unable to identify molecules that bind outside of the labeled-protein's 

binding site, making them inappropriate for identifying compounds that target protein-

protein interactions or drug resistant mutants. Detergent-based assays are technically 

challenging, require multiple rounds of optimization of experimental conditions, and are 

prone to problems with protein stability and protein aggregation. 

 

The reason why it is difficult to obtain a quick and direct membrane protein/drug-binding 

assay is due to the inherent structural features of membrane proteins. In contrast to 

water-soluble globular proteins, which on average tend to have hydrophobic residues 

packed in the interior and hydrophilic residues on the exterior exposed to solvent, 
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membrane proteins have large numbers of exterior, lipid-contacting hydrophobic 

residues on the transmembrane region. These hydrophobic residues make them difficult 

to isolate from a protein expression system (i.e. E. coli, yeast or Sf9 cells) due to toxicity 

and the formation of inclusion bodies. In the event that one is able to isolate them, their 

solubility is poor, which makes them prone to aggregation and difficult to reconstitute in 

native forms. 

 

From these problems, a question arises: can one computationally design a membrane 

protein variant that is water-soluble, yet retains the wild-type's structural and ligand-

binding properties? Such a variant would allow for the development of cell-free, label-

free, detergent-free, solution-phase studies of protein structure and small-molecule 

binding. I test this hypothesis and illustrate this approach through the design of a water-

soluble variant of the membrane protein Smoothened, wsSMO. wsSMO stands to serve 

as a first-step towards developing membrane protein analogs of this important signaling 

protein and drug target.  
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FIGURE 0: OVERVIEW OF THIS THESIS 

In this thesis, I focus on drug design from two directions: the drug, and the drug target. I 

address the following questions in these sections: 

A. Part I: Designing a Drug: Can one take an existing drug that does not penetrate the 

brain, and redesign it so that it can not only cross the blood-brain barrier, but still inhibit 

its target there? Can one repurpose an existing drug so that it can inhibit multiple targets 

in the brain? 

B. Part II: (Re)designing a Drug Target: Can one take a membrane protein and design 

a water-soluble variant of it that retains the wild-type's structural and ligand-binding 

properties, yet can be used in solution-phase binding assays? 
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PART I: DESIGNING A DRUG 

CHAPTER I 

MOLECULAR DOCKING IN STRUCTURE-BASED DRUG DESIGN 

Molecular docking is a computational modeling tool that is widely used in both academic 

and industrial drug development programs. This approach aims to calculate the binding 

energy between a candidate compound and a target protein, using principles from 

theoretical physical chemistry and algorithmic methods from computer science. This 

approach has led to the development of several FDA-approved drugs1-4, and is the 

approach that we used to develop candidate brain-penetrant inflammation inhibitors and 

microtubule-stabilizing agents for Alzheimer's Disease (Chapter II). In the following 

sections, I will provide explain the theory behind Autodock, one of the most widely-used 

docking algorithms in the field that has been refined and improved upon since it's 

introduction over 25 years ago5. Though Autodock is one of many docking algorithms, 

understanding the basis of it can provide a good starting point for understanding these 

other approaches. First, I will describe the principals underlying structure-based drug 

design and structure-activity relationship (SAR) optimization of candidate drugs. Next, I 

will explain how docking algorithms such as Autodock attempt to automate this process, 

and describe how they calculate the free-energy of binding between a candidate drug 

and a protein's binding site. Afterwards, I will explain how Autodock represents the drug 

and the protein, and present two methods that it can use to "search" a protein's binding-

site for locations where a drug (at a specific conformation) can bind favorably. Lastly, I 

will explain how different metrics can used to determine if docking hits are "drug-like," in 

order to help prioritize compounds for synthesis.   
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1.1. MOLECULAR INTERACTIONS IN DRUG DESIGN 

Binding of a small-molecule inhibitor to a protein target is facilitated by specific attractive 

molecular interactions between atoms of the inhibitor and atoms of the protein binding 

site residues. The goal of structure-based drug design is to use structural information 

from a protein target (or a closely related homologue) to identify specific molecular 

interactions that candidate inhibitors can exploit, and to synthesize these candidates and 

test them for activity. This process is an iterative process: based on the activity data, the 

medicinal chemist will go back to the structure and attempt to understand why certain 

functional groups on the compounds worked and why certain ones did not.  

Based on this analysis, they will devise additional compounds to synthesize. This entire 

process is known as structure-activity-relationships, or SAR, optimization. Traditionally, 

the structure that is used is an x-ray crystallographic structure of the protein bound to an 

endogenous ligand, or to a previous small-molecule inhibitor that the medicinal chemist 

is trying to improve upon.  

 

This process can be illustrated by the following example. FIG 1-1 shows the x-ray 

structure of the G Protein-Coupled Receptor Smoothened (SMO) bound to the small-

molecule inhibitor taladegib6. Upon a close analysis of the structure, different molecular 

interactions between the inhibitor and the protein can be inferred:  

 - the bulky phthalazine ring is buried deep in the pocket, making hydrophobic 

 interactions with residues such as L522, W281, and I389 

 - the more polar amide and 4-fluoro-2-trifluoromethylphenyl groups exist nearer 

 to the solvent- exposed mouth of the cavity 

 - hydrogen bond interactions exist between the phtalazine nitrogens and R400, 

 and between the amide carbonyl carbon and N219 
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 - a 𝜋 − 𝜋 interaction exists between F483 and the phenyl ring of the 4-fluoro-2-

 trifluoromethylphenyl group 

                   

Using these observations, a few key principles emerge that can be used to develop 

second-line SMO inhibitors. The scaffold of the drug needs to contain two aromatic 

groups flanking a central polar nitrogen. One of the aromatic groups will be buried (to 

presumably form favorable hydrophobic interactions), and another will be more solvent 

exposed. These general principals are validated when one looks at structures of ligands 

that have been found to bind to SMO with nanomolar affinity7 (FIG 1-2). With the 

exception of sonidegib, these compounds have been crystallized with SMO. The groups 

that are buried in the cavity (orange) or more solvent-exposed near the mouth of the 

cavity (blue), together with the central nitrogen (red), have been indicated.      

 

The SAR process using structural information is powerful because it allows a medicinal 

chemist to make explore the chemical space around an inhibitor in a reasoned and 

justifiable manner. However, this process is very slow and arduous. Each functional 

group has its own unique chemical properties, requiring a plethora of reaction conditions 

that need to be optimized and, in many cases, devised from scratch for that particular 

ligand scaffold. This can involve very complex synthetic routes to make compounds 

whose potential activity is uncertain. Further difficulty comes from the process of 

inferring the molecular interactions themselves. As we saw in FIG 1-1, a plethora of 

interactions can be inferred between a structure and a ligand, but it is not clear that all of 

them are relevant for binding. For example, the fluourine group substituted on the phenyl 

ring is often added late in compound optimization to increase the lipophilicity of 

compounds that suffer from poor biodistribution in animal models, or to block liver 

metabolism and enhance absorption; it is not clear that these fluorines were placed for 
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enhance molecular interactions with Smoothened. Hence, trying to infer every single 

interaction and perform SAR optimization on each of them can quickly turn into a labor-

intensive, time-consuming and expensive process. 

 

 

FIGURE 1-1: X-ray structure of taladegib bound to Smoothened  

Molecular interactions made between the small-molecule inhibitor taladegib and the 

Smoothened binding site reveal several molecular interactions that can be used to 

develop second-line agents. From Figure 3 of Wang et al. 20136
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FIGURE 1-2: Pharmacophores of Smoothened ligands 

Known SMO compounds have several structural features in common6,7: a polar nitrogen 

group (red) flanked by an aromatic ring racing the mouth of the binding-cavity (blue) and 

a ring buried deeper into the pocket (orange). These three regions represent 

pharmacopores that can be varied to create new compounds. Note: since the x-ray 

crystal structure of sonidegib with Smoothened has not been solved, locations of the 

aromatic rings are not currently known. 
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The application of molecular docking algorithms to structure-based drug discovery has 

provided medicinal chemists with a greater amount of versatility for dealing with these 

aforementioned difficulties. Rather than using qualitative guesses about functional group 

substitution to prioritize compounds to synthesize, docking algorithms can quickly test 

whether a large number of diverse candidate ligands will bind to a protein target of 

interest (FIG 1-3). From these results, the medicinal chemist can have an idea of the 

types of ligand scaffolds or functional group replacements to use for SAR optimization. 

This can save time over the traditional method of synthesizing a diverse set of ligands 

with different substitutions in hopes of hitting upon one with a favorable binding energy. 

In essence, molecular docking allows one to automate a large part of the SAR 

optimization process that was just described. 

 

There are various types of docking algorithms that take different philosophical 

approaches to solving the protein-drug interaction problem. Despite these differences, 

there are key features that all good docking algorithms must be able to do8: 

§ Determine compounds from a library that can theoretically inhibit a protein target 

§ Identify the true pose for a known protein-drug interaction, when docking that 

drug into the apo form of the protein 

§ Output the top candidates from a ligand library 

§ Calculate the binding score rapidly 

 

To understand how these goals are achieved, we need to look inside how the algorithms 

work, and how they make use of principles from thermodynamics and apply them to the 

small-molecule inhibitors. The key questions that need to be addressed regarding these 

docking algorithms are: 
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§ How is the binding energy between a protein and a drug calculated? 

§ How are the drug and the protein represented? 

§ How does the algorithm dock drug to proteins? 

§ How does one evaluate the hits, and prioritize the ones to actually synthesize? 

 

 

FIGURE 1-3: Overview of the molecular docking process 

Starting with a protein structure of interest (usually an x-ray crystal structure, but 

alternatives include an NMR structure, cryo-EM structure or homology model), and a 

library of computationally-designed compounds, one can use docking algorithms to 

identify candidate compounds that are predicted to bind to this target. Afterwards, the 

docking hits can be filtered according to physiochemical properties that are highly 

correlated with "drug-like" chemical space (i.e. Lipinski's Rule of 5, cut-offs involving 

lipophilicity and total polar surface area, ligand efficiency) in order to come up with a final 

list of candidate drugs to synthesize. 
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1.2. BINDING FREE ENERGY MODEL FOR MOLECULAR DOCKING 

Though there are examples of drugs that make covalent bonds with their targets (i.e. 

irreversible HIV protease inhibitors9), the majority of identified drug-target interactions 

occur via non-covalent interactions such as van der Waals interactions, hydrogen bonds, 

electrostatic interactions, and hydrophobic interactions10. In this section, I will introduce 

the concept of the binding free-energy; explain the nature of these non-covalent 

interactions; and explain how Autodock mathematically represents these interactions. 

 

a. Binding free energy, enthalpy and entropy 

When a protein binds to a drug, a protein-drug complex is formed; this complex exists in 

equilibrium with the individual protein and drug components8 (FIG 1-4). 

 

 

FIGURE 1-4 Thermodynamics of drug-protein target interactions 

A: Interaction of a free protein, [Protein]aq, and a free drug, [Drug]aq, can result in the 

drug binding to the protein and a protein-drug complex, [Protein + Drug]aq, being formed 

in the event that there is a favorable free energy of binding, ΔGbind. 

B. Definition of the association constant, KA, of the protein-drug complex.  
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The free energy of binding (ΔGbind) is related to the binding affinity KA: 

 

or, equivalently, 

 

When an inhibitor is present in a protein's binding pocket, a binding event takes place 

only when it is associated with a high binding affinity and, correspondingly, a favorable 

(negative) binding free energy (ΔGbind). According to Gibb's Free Energy, this binding 

free energy is the sum of an enthalpic component an enthalpic component (ΔH) and an 

entropic component (-TΔS)11: 

 

The enthalpic component refers to the change in heat that occurs when the drug binds to 

the protein11. For example, with hydrogen bond interactions (section 1.D), the optimal 

distance and angle between the hydrogen bond donors and acceptors will lead to an 

optimal hydrogen bonding energy, which in turn will contribute favorably to the binding 

free energy. The entropic12 component refers to the change in disorder to the entire 

system (i.e. the drug, protein binding site residues, water molecules, co-factors and ions 

that are present in the binding pocket) that occurs as a result of the binding event.  

 

There are two major terms that contribute to binding entropy: the entropy change related 

to the conformations of the ligand and the protein residues (conformational entropy), and 

the entropy change related to the desolvation of the drug's polar atoms and protein's 

polar residues. Conformational entropy is related loss of rotational and translational 

degrees of freedom of both the drug and the protein upon binding. Desolvation entropy 

is related to the hydrogen bonding interactions that water molecules make with atoms of 
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the drug and protein binding site residues. If the hydrogen bond interactions between the 

protein residues and ligand are weaker than those each makes to water molecules (i.e. 

due to suboptimal distances and angles between the protein hydrogen bond donors and 

drug hydrogen bond acceptors), then the enthalpic component of hydrogen bonding will 

be unfavorable. However, if the opposite is true, then water molecules will be released 

(as hydrogen bonds form between the protein and the drug) and the entropy of the 

system increases since the waters gain rotational and translational degrees of freedom. 

In this setting, the desolvation entropy increases.  

 

The situation is different for hydrophobic groups on the drug13. These groups are 

incapable for forming hydrogen bonds with water, and when they are introduced to 

solvent a disruption occurs in the water-hydrogen bonding network. The waters will 

orient themselves along the surface of the hydrophobic groups in order to maximize their 

distance and orientation for hydrogen bonding with other waters and to minimize this 

disruption. The result will be a structured cage, or solvation shell, around the nonpolar 

surface. Unlike the prior situation where the water molecules had more conformational 

freedom to move around and hydrogen bond with different partner water molecules, the 

water molecules in this solvation shell are more ordered and have more restricted 

mobility, and have stronger bonding and ordering around the hydrophobic solute. Hence, 

there is a loss in entropy when waters are in the presence of hydrophobic groups, and 

the overall free energy is increased. However, in situations where the drug's hydrophobic 

groups go from solvent exposed to buried (as in the case of taladegib's aromatic groups 

from (FIG 1.1), the water molecules are unable to form a solvation shell around these 

groups, and the entropy of the system is increased.   
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Both the entropic and enthalpic terms of Gibb's Free Energy need to contribute favorably 

in order for high affinity binding to occur. Autodock approximates these components 

using the following additive equation14:  

 

According to this equation, a drug's biological activity is determined by the sum of its van 

der Waals interactions, electrostatic interactions, hydrogen bonding interactions, 

desolvation enthalpy, and torsional free energy. This model is known as the Bohm 

scoring function15, and it commonly used in different docking algorithms. In the following 

sub-sections, I will explain each of the terms in this equation, and describe how they are 

calculated. 

 

b. EVDW 

van der Waal (VDW) forces are the result of oscillations in an atom's electron charge 

distribution16. A non-polar atom's electron charge will, overtime, be distributed uniformly 

around its nucleus. However, there will be instances where a nonsymmetrical distribution 

of electron density will be present. These temporary dipoles of one atom can induce 

instantaneous, opposite dipoles on neighboring atoms, resulting in a temporary 

attraction between the two atoms. This process will take place amongst all of the atoms 

in a given system. Though individual VDW interactions are weak and significant only 

when atoms are close, when one considers all of the VDW interactions taking place 

between all of the atoms in a system, they can add up and contribute significantly.  

 

The VDW contacts made between atoms of the ligand and atoms of binding site 

residues is represented by a 12-6 Lennard-Jones potential17, which provides a 
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description between the attractive forces (due to instaneous dipoles) and repulsive 

forces (due to steric clashing when atoms are very close to one another): 

 

where rij is the distance between a pair of non-bonded atoms i and j, and A and B are 

atom-specific parameters obtained from the Amber force-field. According to this 

equation, the van der Waals energy between atoms i and j is determined by a balance of 

attractive forces (the rij
6 term) and repulsive forces (the rij

12 term)17. For example, when 

two atoms are very close together, the rij
6 term will be smaller than the rij

12 term, which 

will result in a large value for Eij and hence a dominating repulsive interaction. The 

Lennard-Jones potential is illustrated in FIG 1-5A. 

 

c. EElectrostatic 

At physiological pH of 7.4, basic amino acids (i.e. ARG, LYS, HIS) are protonated and 

positively charged, while acidic amino acids (i.e. ASP, GLU) are deprotonated and 

negatively charged. These charged residues can make electrostatic interactions with 

drug atoms that have the opposite charge. FIG 1.7 shows an example of an electrostatic 

interaction between the negatively-charged carboxylate of the drug Indomethacin and an 

Arginine located at the mouth of the binding cavity of cyclooxygenase (COX)-118. The 

electrostatic interaction is very strong, and is estimated to contribute ~5 kcal/mol to 

ΔGbind.10. The representation of electrostatic interactions takes the form of pair-wise 

columbic interactions19 (illustrated in FIG 1-5B) 

 

where qi and qj are the partial atomic charged on atoms i and j that are  

a distance rij from each other, and 𝜖0 is the vacuum permittivity constant.  
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FIGURE 1-5A: Electrostatic interaction energy 

Electrostatic interaction energy (Eelecrostatics) for atoms with opposite charges (blue, 

favorable interaction energy) and similar charges (red repulsive interactions), as a 

function of distance  

 

FIGURE 1-5B: van der Waals interaction energy  

The Lennard-Jones potential, for the case where the well-depth 𝜖0 = - 1, and σ = 1 (the 

distance at which the potential is zero) 
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d. EHbond 

Hydrogen bonding interactions occur when an H atom is bound to a small, 

electronegative atom with lone pairs (predominantly, N, O or F) that serves as a 

hydrogen bond donor (HBD). Since the H-F, H-O and H-N bonds are very polar, electron 

density is drawn away from H, conferring it with a partial positive charge. This positively 

charged hydrogen can interact with an atom with a partial negative charge (the hydrogen 

bond acceptor, or HBA), resulting in a stable interactions that depends on both the 

distance and the angle between the donor and the acceptors (FIG 1-6). Mathematically, 

this relationship is represented as a 12-10 potential17: 

 

where EHb is the hydrogen bonding energy between atom i and atom j that are a 

distance rij from each other; and  C and D are atom-specific parameters obtained from 

the Amber force-field. EHb will be zero when θ = +900 (when the hydrogen bond donor 

and hydrogen bond acceptor atoms are orthogonal to each other), and -1 when θ = 

+1800 (when the two groups are directly in front of each other). 
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FIGURE 1-6: Hydrogen Bond interactions 

Representation of the hydrogen bond distance r and angle θ between a hydrogen bond 

donor and a hydrogen bond acceptor. 
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FIGURE 1-7: Indomethacin in the binding pocket of COX-1 

Due to its carboxylic acid group, indomethacin exists as an anion at physiological pH 

7.4. This allows it to bind and inhibit COX-1 via an electrostatic interaction with ARG 120 

at the mouth of the binding site. Green lines indicate electrostatic interactions between 

the negatively-charged indomethacin anion (red atoms) and the positively-charged ARG 

120 nitrogen atoms (blue atoms). 
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e. EDesolvation  

As described in the binding free energy section, during a drug-protein binding event 

there is an enthalpy change associated with the desolvation of polar atoms belonging to 

both the protein and the ligand. Autodock's desolvation term20 assumes that the 

desolvation energy of a ligand atom is related to the degree by which the atom is 

exposed to solvent, which in turn is defined according to the percentage of volume 

around the atom that is "empty" (and hence, available for water to be present in). 

Mathematically, desolvation is represented as:  

 

where Si is the solvation term for ligand atom i, Sj is the solvation term for are the protein 

atom j, Vi is the atomic fragmental volume for protein atom i, Vj is the atomic fragmental 

volume for protein atom j,  rij is the distance between atom i and atom j, and σ is a 

gaussian distance constant. σ is set to 3.5 angstroms due to the fact that this distance 

roughly corresponds to the VDW potential for two heavy atoms20.  

The atomic solvation parameters, Si and Sj, are specific for each atom, and are 

calculated via: 

 

where qi is the partial atomic charge of atom i, k is the charge-based atomic solvation 

parameter, and ai is the atomic solvation parameter for atom i. According to this model, 

solvation is seen as a force that pushes the polar atoms into the solvent (i.e. in the 

direction of low occupancy), and pulls non-polar atoms in towards the interior. Hence, 

there will be favorable energetics for desolvating carbon atoms and unfavorable 

energetics for desolvating polar and charged atoms.   
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f. ETorsions  

The torsional free energy21 term is related to conformational entropy (discussed in 

section a), which decreases when the drug binds to the protein due to the loss of 

torsional and rotational degrees of freedom. Mathematically, Autodock describes this 

torsional free energy as: 

 

where Ntor is the number of sp3 rotatable bonds in the drug.    

 

g. The complete free energy model 

The complete binding free energy model that Autodock14 uses is a weighted combination 

of the terms that were described in sections b-f:  

 

where the summations are performed over all pairs of ligand atoms i, and protein atoms, 

j. The free-energy of binding is a weighted-combination of the different calculated 

interaction energies described in b-f. The w coefficients were calculated via a linear 

regression analysis of a set of protein-inhibitor x-ray structures with known binding 

constants.  

 

An illustration of how the EVDW is calculated for a given drug within a binding site is 

provided in FIG 1.8.  
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FIGURE 1-8: Example of how EVDW is calculated 

According to Equation 5, the EVDW is calculated by summing the energy of interaction 

between all atoms in the compound and all of the atoms in the binding site residues. 

This figure shows a simplified example where there is only one binding site residue. In 

A, all of the ligand atoms and residue atoms are denoted. The EVDW is calculated for the 

first ligand atom and the first residue atom (B, C), and then between the first ligand atom 

and the rest of the residue atoms (D).  Repeating this process for all of the ligand atoms 

results in VDW energies being assigned to each of the ligand atoms (E), which are then 

summed up to result in the total EVDW for the ligand and the residue. 
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1.3. Protein and ligand representation 

In the last section, we went over the different molecular interactions that Autodock uses 

to calculate the binding free energy. Now, we are faced with a different problem: how 

does Autodock represent the ligand and the protein? Proteins residues and ligands are 

not static, stationary molecules; rather, they are constantly in flux, existing in many 

different conformations. Somehow, a docking algorithm needs develop a way to deal 

with the conformational dynamics of both the ligand and the protein. In this section, I will 

explain how Autodock represents them.  

 

a. Ligand degrees of freedom  

The conformational degrees of freedom of a ligand are represented by three 

parameters22 (FIG 1-9): 

 - the position in the Cartesian plane (i.e. the ligand can move in the x,y and z 

 directions in the binding site) 

 - the orientation in the binding site (i.e. rotation of the ligand about its axis), 

 defined as a quaternion (a vector having an axis of rotation, with an associated 

 angle of rotation about this axis) 

 -the ligand's torsion angles (as defined by the number of rotatable sp3 bonds)  

 

Together, the total degrees of freedom of a ligand in the protein binding site is 3 + 3 + n.  

 

A ligand structure, like a protein structure, is represented as a .pdb file, which shows the 

Cartesian coordinates of each atom, that in turn define the ligand's degrees of freedom. 

For a given drug, varying the Cartesian coordinates will result in different conformations 

of the drug (i.e. versions of the drug with unique set of position, orientation and torsion 

values), which are referred to as "poses" in Autodock. As will be described in Section V, 
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Autodock represents the conformational dynamics of a drug by generating several (i.e. 

thousands to hundreds of thousands) of poses for a drug and calculating the binding 

energy of each pose.    

 

 

FIGURE 1-9: Drug degrees of freedom 

The degrees of freedom of a drug, illustrated by the example of the SMO drug taladegib.  

 

 

 

 

 

  



	
  
`	
  

 

27 

b. Grid representation of the protein 

During a docking run, Autodock explores the binding site by varying the degrees of 

freedom of a given drug to produce different poses, and calculating the binding energy of 

each pose. However, a problem arises if the algorithm attempted to calculate the atomic 

interaction energies for every single pose. Suppose a ligand exists in one pose, and the 

VDW interactions are calculated between its atoms and the atoms of a binding site 

residue (FIG 1-10). Next, Autodock slightly varies the coordinates to create a second 

pose, and again to create a third pose. The problem here is obvious: by performing 

calculations for each pose of a drug, the algorithm ends up performing redundant 

calculations for atoms that had the same Cartesian coordinates in all three poses. This 

redundancy will add to the run time of the algorithm. To get around this problem, there 

has to be a way to get around these redundant calculations and to calculate them only 

once.  

 

Suppose that, for a given atom in a drug, rather than calculating EVDW for every single 

position that it exists in among all of the poses, one simply pre-calculated this energy at 

pre-determined points along the binding site, stored these values in a table, and simply 

looked up the EVDW from this table for the different poses. The procedure, known as the 

grid representation method23, has allowed Autodock and other docking algorithms to 

quickly calculate the interactions energies in a drug (FIG 1-11A). In this method, a 3D 

grid with equally-spaced intervals is placed over the binding site. A probe atom is then 

placed at each grid point, corresponding to one of the atoms in the ligand. The energy of 

interaction between the probe atom and the protein will be calculated, and assigned to 

that particular grid point. This will be done for the entire grid, and the resulting the matrix 

of values will then be stored in memory. This matrix, then, can be used as a lookup table 

to evaluate the interaction energy rapidly.  
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FIGURE 1-10: Possibility of redundant calculations during docking 

Redundant calculations can be made if the binding energy is calculated for every atom 

of every drug pose that a docking algorithm tests. 
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FIGURE 1-11A: Grid representation of the binding site 

For Autodock and other docking algorithms, the user defines the coordinates of a grid 

box that will serve as the search-space for the compound poses. 
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FIGURE 1-11B Grid representation of a protein binding site: energy contours 

A large 3D grid-box is placed over the binding site, and divided into small grid-boxes 

along evenly-spaced increments. At a given grid box, the total binding energy is 

measured between a probe atom (red sphere) and each of the binding site residue 

atoms (blue spheres) (A-B), resulting in a total binding energy assigned to that grid point  

(C). This process is repeated for every grid box, resulting in energy-contours (D) that 

determine the positions in the binding site where the energy is favorable (violet), 

unfavorable (red) or negligible (grey). 
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The use of the grid in docking can be illustrated as follows (FIG 1-11: B-D). Suppose 

there exists a hypothetical binding site that consists of only one residue, and a 

hypothetical ligand that consists of a sole oxygen atom.  One wants to calculate the EVDW 

between the ligand and the residue. A grid of equally-spaced points will be placed over 

this amino acid. At every small grid box, an oxygen probe atom is placed. The EVDW is 

calculated between the oxygen atom and the atoms of the amino acid; these energies 

are then summed, and the total energy between the probe atom and the atoms of the 

amino acid is then assigned to that grid box. This action is repeated for every grid box, 

until the EVDW for the entire grid is calculated.  

 

After all of these energies are calculated, energy-contours will be present (FIG 11C). 

The violet contours represent regions where the energy is negative and favorable (i.e the 

negative regions in the EVDW graph from FIG 1-5a); The areas of unfavorable energy (i.e. 

regions that are too close to the amino acid and which have steric clashing) are 

represented in red; and the areas in grey are distant regions for which the interactions 

energy is calculated as zero. This grid energy contour provides us with view of the 

different locations where the oxygen atom can placed and have favorable or unfavorable 

VDW interaction energies with the binding site. 

 

Using the above look-up table, we can now calculate the interaction energy of a 

hypothetical molecule, such as methanol, in the binding site (FIG 1-12). For the 

methanol oxygen atom at a certain position in the grid, the algorithm will use the stored 

oxygen VDW table to look-up the value of oxygen's interaction energy at its current 

position. Different algorithms use different methods to calculate this energy.  Autodock 

takes the closest eight points and performs tri-linear interpolation of these eight different 

interaction energies to produce an average score for the oxygen atom at that location. 
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This average interaction energy is then assigned to the methanol oxygen atom. This 

procedure is performed for the rest of the atoms of methanol, using precalculated look-

up tables for carbon and hydrogen. After this is performed, the interaction energies for 

the oxygen atom and the carbon atom are then summed, and a total VDW interaction 

energy is assigned to methanol for that specific orientation in the binding site.  

 

c. Caveats with the grid representation 

For Autodock, the coordinates of the grid are input by the user based on the 3D-

structure of the protein. First, the size of the pre-defined grid is important. Since the 

algorithm will only explore within the predefined grid, boxes that are to small can lead to 

false-negatives, while boxes that are too large can dramatically increase the run time. 

Second, under the grid representation, the binding site is conformationally rigid, and only 

the ligand varies. Biologically, this is not accurate, as both the drug and the protein 

residues are varying. As a result, if the x-ray crystal structure that one is using for 

docking is not appropriate for the drug that one is docking, the false-negatives will also 

be produced. 
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FIGURE 1-12: Example of EVDW calculation for a ligand, calculated via grid method 

Using the simple example of methanol (3 atom types), the binding energy for each atom 

is calculated via trilinear interpolation of the nearest 8 grid boxes. These energies are 

then summed to give the total VDW energy for the ligand at the given location in the 

binding site. 
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1.4. How Autodock docks drugs to proteins 

So far, we have seen how Autodock quantitates the interaction energy between a ligand 

and a protein, and how it uses a grid-based method to represent the protein's binding 

site in order to save valuable computational time and memory. Now, the last step is to 

determine how exactly the algorithm takes a drug and determines the location within the 

binding site, and the conformation of the drug at this location, that corresponds to the 

most favorable binding free-energy for that particular ligand-protein pair. This is a difficult 

optimization problem, due to the numerous combinations of displacement-torsion angle-

orientation values the drug can take on. The docking algorithm must find a way to 

sample enough of this vast space, without naively considering each and every possibility 

(which would make this problem computationally intractable). To achieve this goal, 

Autodock has stochastic search algorithms, which were first pioneered in the field of 

artificial intelligence. In the following sections, I will describe two such search algorithms: 

the simulated annealing algorithm, and the lamarkian genetic algorithm. 

 

a. Simulated annealing Stochastic Search 

Overview 

A protein binding site often does not have one single region where a drug can bind to 

with favorable binding energy; rather, there can be several local minima "valleys" 

separated from each other by steep energetic "hills," and one deep global minimum. FIG 

1-13 shows a visual representation of such a landscape. In simulated annealing, a ligand 

will "explore" the free-energy landscape by performing a random-walk through the 

protein binding site grid. While exploring, it will search for locations and poses that 

confer favorable binding energies. After performing this exercise, the algorithm will 

output the best poses from its search. 
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The Algorithm In-depth 

A simulated annealing24 run is broken up into different rounds, and each round consists 

of different steps. During the first step of the first round, the algorithm will assign random 

values to each of the ligand's degrees of freedom (i.e. random displacement, torsion and 

rotation), resulting in a drug pose. The binding energy of this pose is calculated. For the 

second step, small changes will be made to each degree of freedom, resulting in a new 

pose. The binding energy of this second pose will be calculated. If the current pose's 

binding energy is more favorable, then it will be accepted, and its degrees of freedom 

will be randomly changed to create a new pose for the next step. If, however, the current 

pose's binding energy is higher, it will not automatically be rejected. Rather, it will be 

accepted or rejected via a probabilistic expression of acceptance, known as the 

Metropolis criteria: 

 

where ΔE is the energy difference between the current pose and the previous pose; Kb is 

Boltzmann's constant; and T is a user-defined temperature. During each round, a 

randomly generated number between 0 and 1 is generated that serves as the 

"probability of acceptance," or P(Acceptance). If P(ΔE) > P(Acceptance), then the 

previous pose will be discarded and the current pose will be selected for the next step. If 

P(ΔE) < P(Acceptance), the current pose is rejected, and the prior pose will be send into 

the next step. Due to the randomized nature of the acceptance probability, the algorithm 

will mostly accept poses with a lower energy that the previous pose, but occasionally 

accept poses with a higher energy. This allows the algorithm to climb over high-energy 

barriers that may exist between minima, and can prevent a situation where the ligand is 

stuck in a local minima.   
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FIGURE 1-13: A hypothetical free-energy landscape of a protein binding site 

Within a protein's binding site, there are several regions where the drug can bind with a 

favorable binding energy (local minima), but one region that where the binding energy is 

the most favorable (global minimum. The goal for a docking algorithm is to search the 

binding site for the global minimum, and to avoid becoming trapped in local minima. 
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The Temperature Parameter T 

T controls the stringency of acceptance. When T is high, nearly all poses are accepted; 

as T decreases, the probability of acceptance decreases. At the beginning of each 

round, T is decreased and remains constant for the duration of that round according to 

 

where Ti is the temperature of step i and g is a constant between 0 and 1. High values of 

T during the early rounds allow the algorithm to search the binding-site grid widely along 

the free-energy landscape (FIG 1-13); in essence, it is performing a global search. As a 

result, poses can occupy high-energy regions in the binding site, and can climb over 

these "peaks" on the way to finding energetic minima "valleys". As T decreases during 

subsequent rounds, the algorithm performs more of a local search: the lower-energy 

states become more probable, and the algorithm will refine the ligand's degrees of 

freedom in the current valley (FIG 1-14). When the temperature is zero, the ligand will, 

theoretically, be in a global minimum energy pose.    

 

The Reduction factor 

In addition to T varying during each cycle, the amount by which the pose's degrees of 

freedom are randomly changed are also varied. A reduction factor between 0 and 1 is 

multiplied to the translation, and conformation values from the previous step; this factor 

can decrease at the beginning of every round. As a result, the changes in the ligand 

degrees of freedom will be subtler as the algorithm continues. For example, with regard 

to the ligand's translation coordinates, the ligand will jump to different random locations 

in the binding-energy landscape. During later rounds, as both T and the reduction factor 

decrease, the ligand will undergo local optimization.  
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Algorithm Parameters 

Typically, each simulated annealing docking run is performed with 50 rounds, with a 

maximum of 3,000 steps (poses) accepted or rejected per round. A temperature of 616 

cal/mol is used during the first round and is reduced linearly after each round so that it 

reaches 0 by the last round. For the reduction factors, the translation maximum steps 

are reduced linearly from 3.0 angstroms in the first round to 0.2 angstroms in the last 

round, and the torsion angle maximum step sizes are decreased linearly from 24 

degrees to 5 degrees.     

 

b. Genetic Algorithm and Lamarckian Genetic Algorithm 

Overview of the genetic algorithm 

A genetic algorithm14 represents the ligand's degrees of freedom (translation, orientation, 

and conformation) as genes on a chromosome, with each gene given a numerical value: 

  - three genes for ligand translation: <x,y,z> 

  - four genes for orientation (quaternion): <qx, qy, qz, qw> 

  - n genes for conformation, corresponding to each of the n torsion angles present 

 in the  

 ligand: <𝜏1,  𝜏2,  𝜏3,…  𝜏n> 

 

Together, the genes make up the ligand's "chromosome." The ligand's pose 

corresponds to its "phenotype," and the pose's calculated binding energy is referred to 

its "fitness." Each time step of the algorithm is called a "generation." During a 

generation, a population of ligand poses ("individuals") will exist, and the binding energy 

will be calculated for the entire population. Poses that have the highest fitness (i.e. the 

most favorable binding energy) will "mate" with each other to produce offspring that will 

have a combination of genes inherited from the parents. To add additional variation, a 
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percentage of the offspring will undergo random changes in their genes ("mutations"). 

The algorithm will run for several generations, and as time progresses, the poses with 

the best binding energy will be selected at higher rates, while those that don't be become 

"extinct."  

 

Algorithm In-depth 

Initially, a population of ligand individuals will be generated to form the first generation; 

the user determines the size of the population. For each individual, the genes will be 

given randomly generated values:  

  - the three translation genes will be given a uniformly distributed random value 

 between the  minimum and maximum of the binding site grid 

 - the four orientation genes will be a uniformly distributed random rotation angle 

 (θ, such that -1800 < θ < +1800), and a random unit vector 

 -the torsion angle genes, if present, will be given random values between -1800 

 and 1800 

 

During each generation, give events will occur to the individuals of the population: 

 - fitness evaluation 

 - selection 

 - crossing-over and mutation 

 - elitist selection 

 - local search 
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Fitness evaluation and selection 

First, the binding energy of every individual in the population will be calculated. During 

the selection phase, the number of offspring that an individual will be allowed to 

produce, ni, is given by 

 

where fi is the fitness of individual i; fw is the fitness of the weakest individual in the 

population (i.e. the pose with the worst binding energy) over last N generations (where N 

is usually set to 10); and <f> is average fitness of the population. According to this 

equation, individuals whose fitness fi is better than the average fitness of the population 

<f> will receive proportionally more offspring. (For individuals whose fitness is less than 

the population average, the algorithm will automatically allocate one offspring).  The 

algorithm converges when <f> = fw. 

 

Crossing-over, mutation and elitism 

During crossing-over, two individuals chosen at random will "mate" by a two-point 

cross-over of their genes. For example, suppose that individual 1's translation genes are 

given by <x1, y1, z1> and individual 2's translation genes are given by <x2,y2,z2>. If 

crossing-over occurs within the translation genes, then the resulting off-spring can be 

represented as: 

 

where the red genes indicate those that were part of the crossing-over event. 

Additionally, randomly selected off-spring produced from the crossing-over events will 

undergo genetic mutation. This is performed by adding a randomly generated real 

number drawn from a Cauchy Distribution to the numerical value of the gene: 
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where α and β are parameters that affect the mean and variance of the distribution. The 

purpose of this mutation is to add introduce a small amount of variability into the 

population: small changes to genes can be made that would not be present in the 

population by crossing-over, which inherits already existing gene values.  

 

Elitism is a user-defined parameter that defines the number of individuals, nelite, who will 

survive into the next generation. At the end of a generation, all of the individuals in the 

population (the newly produced off-spring, along with the individuals that did not mate) 

will be sorted according to their fitness binding energy, and the top nelite individuals will go 

on to the next generation. 

  

Lamarckian Genetic Algorithm 

A Lamarckian Genetic Algorithm (LGA) differs from a regular GA that, before the mating 

and mutation steps, a user-defined fraction of the population will undergo a local search 

(via changes in its degrees of freedom) around their current location in the binding site in 

order to find a local minimum. After finding this minimum, the orientation, torsion and 

rotation values that correspond to this pose will be mapped to its genotype. From here, 

the algorithm will proceed in the same manner as the GA, with crossing-over, mutation, 

and elitism. 

 

Output of the GA/LGA 

The algorithm will run until either the maximum number of pre-defined generations is 

met, or until fitness convergence is reached via <f> = fw. The algorithm will continue 

according to the number of generations that the user has pre-defined. In the end, the 
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genetic algorithm will output the genotype (coordinates), phenotype (3D structure) and 

calculated free-energy of binding for the top performing pose.  

 

Algorithm parameters 

Typically, LGA is set-up to perform a local search on a small percentage of the 

population (i.e. 7%). The average worse value, fw, is taken over ten generations. One run 

consists of X generations, and for one ligand, 20 runs are performed (resulting in 20 

different ligand poses). 

 

c. Differences between the Simulated Annealing and Genetic Algorithm  

Ligand complexity 

Though simulated annealing was used in the earliest versions of Autodock, it was found 

that it only performs well in cases where the ligand has 8 or less rotatable bonds.  

 

Comparing multiple poses during each round 

In a simulated annealing round, a ligand poses undergoes random changes, and the 

new pose is compared to the old pose. In LGA, an entire population of poses are 

compared to each other through the via the selection (EQUATION 1-14) and elitism 

steps. In doing so, it is comparing poses that exist in different regions across the free-

energy landscape. This allows it to traverse greater space in the free-energy landscape 

during each round, and hence allow it to discover a global minimum. With the exception 

of early rounds where both T and the reduction factor are high, simulated annealing 

compares poses that exist in the same free energy location.  

 

Finding global minima 
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As described by FIG 1-13, there are multiple locations in the binding site where ligand 

can bind, and multiple conformations that the drug can exist in within these binding sites. 

Since these minima are separated by very steep hills in the free-energy landscape, a 

global search method that coarsely changes the ligand's values and quickly traverse 

these high-energy hills is better-suited for finding the global minimum that a local search 

algorithm. However, once global search finds the global minimum, the question now 

turns to the ligand conformation that fits as well as possible within this location. In this 

case, local search subtly tunes and refines the ligand's pose within this region, in order 

to come up with the best geometric fit and optimize the molecular interactions that are 

being made. Hence, a local search performed in on a ligand that exists in an energy 

minima can output its best conformation for that location.   

 

LGA has an advantage over the Simulated Annealing because it performs both a global 

search (due to different individuals present in different regions of the free-energy 

landscape) and a local search (performed on a subset of individuals during the 

beginning of each generation) during each round. Simulated Annealing, on the other 

hand, performs global search during the beginning rounds and local search in later 

rounds; during the later rounds, it is unable to make large jumps across the free-energy 

landscape. It is for this reason that the LGA has, over the years, been the default search 

algorithm: it can sample distant regions of the binding pocket, and once a minimum is 

found, use local search to further refine the ligand.     

 

d. Caveats with stochastic search methods 

There are two main caveats with the use of stochastic search methods in docking. The 

first is related to protein dynamics. As previously mentioned, a ligand stabilized a subset 

of conformations that the receptor is sampling. An x-ray crystal structure that is used for 
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docking is a single snap-shot of one conformation that the ligand stabilized. The big 

assumption with performing docking on a single x-ray is that this conformation is one of 

the best conformations for a drug-target interaction, and that if a ligand is theoretically 

able to bind favorably into the same conformation as the ligand in the crystal structure, 

then it represents a structure that, with high probability, will be successful. However, this 

is not always a correct assumption: the x-ray structure is stabilizing an very specific set 

of interactions with specific atoms. A new ligand, with the same scaffold as the x-ray 

structure but with different functional groups, may have different interactions and hence 

may not be stabilizing the particular conformation that is present in that x-ray snapshot. 

 

One way around this protein dynamics problem is to vary the side-chains of the binding 

site in addition to varying the conformation of the ligand. This is known as flexible 

docking26, and has recently been incorporated into current iterations of Autodock and 

other commonly used docking algorithms such as Glide27. The trade-off is time: the 

algorithm needs to explore different conformational states of both the ligand and the 

receptor, which can exponentially increase the running time. However, such a method 

will be necessary for cases where the ligand library contains ligands that are 

dramatically different than the ligand that the protein structure is crystallized with; or in 

cases where the binding site has been structurally solved without a ligand; or, in the 

most complicated cases, when a structure has been solved but the binding site has not 

been determined, and the researcher wants to search the entire structure for a new 

binding site or allosteric site. 

  

The second caveat with the use of stochastic search involves water molecules28. Like 

receptor side-chains that exhibit conformational flexibility, many binding sites have 

buried water molecules that make hydrogen bonding interactions with the ligand that 
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serve as "bridges" with the binding site residues. These water molecules, like the ligand, 

are present in different locations in the binding site at different times. For interactions 

that depend on these water molecules, it would be necessary to take into account these 

interactions with water molecules.  

 

1.5. Determining whether docking hits are "drug-like" 

Thus far, I have described how Autodock can take a library of ligands and predict 

whether a subset of them can bind favorably to a drug target. However, once theoretical 

candidates emerge, another question arises: would these candidates be actually good 

drugs if they were given to a person? Would they be absorbed into the bloodstream? 

Would they be stable in the bloodstream, and make it into the target tissues they are 

intended for (i.e. would they be bioavailable?)  Would they be toxic?  

 

The properties of bioavailable small-molecule drugs tend to be confined in a small, 

narrow range of physiochemical space called the "drug-like" space29. A little over twenty 

years ago, 39% of clinical trial drugs were halted due to poor bioavailability and 

pharmacokinetics; hence, much attention is currently given to developing drugs that exist 

within this drug-like space as early in the drug discovery pipeline as possible30. This is 

relevant to not only large-scale screening libraries performed in pharmaceutical 

companies, but to docking screens as well: after obtaining a series of Autodock hits, the 

medicinal chemist needs to first determine if the hits can conceivably function as drugs 

before taking the time to synthesize and test them.   

 

Though there are a large numbers of physiochemical properties that one can calculate 

for a candidate drug, those that are related to size, polarity, lipophilicity and the number 

of hydrogen bonds have been found to correlate the best with bioavailability. In this 
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section, I will review criteria that take these properties into account: Lipinski's Rule of 5, 

and Ligand Efficiency. First, I will discuss an important property that plays a role in both 

of these metrics: lipophilicity.  

 

a. Lipophilicity, logP and logD  

Lipophilicity of a drug refers to its property of being dissolved in hydrophobic solvents 

such hexane and toluene31. In a sense, every drug candidate that targets an intracellular 

process needs to be lipophilic to some degree in order to pass through the cell 

membrane. For example, though indomethacin's carboxylic acid group exists as a 

carboxylate at physiological pH18 (FIG 1-6); however, it also possesses a hydrophobic 

aromatic ring that confers lipophilicity and allows it to cross the lipid membrane on its 

way to the COX binding site. Without this hydrophobic group, the anionic group would 

block it from entering cells. The opposite problem arises for drugs that are too lipophilic. 

Such compounds have been associated with increased toxicity and promiscuity31; 

increased liver metabolism and plasma-protein binding (limiting the chances that the 

drug can make it out of the systemic circulation to its target tissues); and decreased 

water-solubility, a limiting factor for GI absorption. Hence, lipophilicity is a property that 

needs to be strongly considered when optimizing a lead compound.  

 

The common method of measuring lipophilicity is through a calculation of logP32, the 

solubility of a compound in the organic solvent 1-octanol (which simulates the cell 

membrane) relative to water:  
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Experimentally, P is calculated by placing a compound in a separatory funnel with 1-

Octanol and water, mixing the two components, and determining the concentration of the 

compound in each layer via HPLC. If the compound is more soluble in water than in 1-

octanol, P<1 and logP will be negative. Hence, the larger the value of log P, the more 

lipophilic the compound.   

 

Since many drugs have ionizable groups that cause them to be charged at physiological 

pH, it would be inappropriate to measure the logP at pH 7.4 due to the fact that the 

charged form would not enter the 1-Octanol layer during the mixing experiment. For 

these cases, the distribution coefficient, logD33, describes the logP of the compound 

where the aqueous phase is adjusted to a specific pH:  

  

 

b. Lipinski's Rule of Five 

Lipinski's Rule of 534 focuses on the drug-like space related to bioavailability: will a 

compound likely have absorption problems because of poor solubility and/or 

permeability? For his analysis, Lipinski and colleagues analyzed the physiochemical 

properties of ~2,000 drugs and clinical trial candidates that were orally active. After this 

analysis, they concluded that 90% of these compounds four properties in common that 

could be used to predict if they would be membrane permeable and easily absorbed in 

the body: 

 - molecular weight < 500 daltons 

 - log P < 5 (octanol-water partition coefficient) 
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 - H-bond donors < 5 (i.e. the total number of nitrogen-hydrogen and oxygen-

 hydrogen bonds) 

 - H-bond acceptors < 10 (all nitrogen and oxygen atoms) 

 

These properties emphasize the synthesis of compounds that are not too large, floppy 

and polar, but that are also not too lipophilic. Of note, these rules only apply to drugs that 

are meant to be bioavailable that undergo passive diffusion through cell membranes; 

compounds that are actively transported, for example, are exempt from these criteria. 

 

In 2002, Veber et al.35 made two additions to the Lipinski’s Rules in 2002. In their work, 

they analyzed rat bioavailability data of over 1100 clinical candidates. From there 

analysis, they found that the best predictors of bioavailability, independent of molecular 

weight, are: 

 - less than 10 rotatable bonds (due to reduced molecular flexibility of the ligands) 

 - polar surface area < 140 Å2 (defined as the area on the surface of the drug that 

 is contributed by polar atoms, calculate via an atom-based method)  

  

One of the caveats with using the Lipinski/Veber rules is that they have been used as 

strict deterministic rules instead of guidelines in many drug discovery programs36. This 

has resulted in many promising drug discovery candidates to be shelved. Strictly 

interpreting these rules has questionable value. Undesirable drugs can barely pass all of 

these cut-offs and be considered success with respect to physiochemical properties yet 

fail in actual clinical testing, while a desirable drug can barely miss just one of the cut-

offs and not even make it into the clinical testing phase. It is estimated that 16% of orally 

available, approved drugs violate at least one of these criteria, and 6% violate two or 

more16. Notably, one of the all-time biggest drug sellers, atorvastatin, fails the Lipinski's 
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Rules, and would never have been advanced into the clinical if these guidelines were in 

place during its development.  

 

A second caveat with the Lipinski's Rules is that they do not apply to natural products or 

natural product derivatives38. In the original Lipinski paper, it was notes that these drugs 

are often bioavailable despite violating the Rule of Five. Evolutionary, this makes sense: 

these compounds were carefully developed over millions of years of evolutionary history 

for specific biological purposes. Many of these compounds bind to extracellular 

membrane receptors and cell transporters. Despite violating the rule of 5, natural 

products make up over 30% of all approved small-molecule drugs; within oncology 

drugs, this percentage raises to 47%.  

 

A last caveat that I will raise with the Rule of 5 is that it was obtained for drugs that 

inhibit targets that are different often different from the targets that we are going after 

now. It has been argued that most of the "low-hanging fruit" drug discovery has been 

taken up; what we are left with are very difficult drug targets (i.e. large transcription 

factor complexes, protein-protein interactions) that do not have traditional binding pocket 

grooves that a small-molecule inhibitor can neatly fit into. Hence, blindly obeying the 

Rule of 5 may cause drug discovery programs to abandon promising, unconventional 

approaches. Many drugs under development have a molecular weight over 500 daltons, 

have been designed to form large macrocycle complexes.  

 

c. Ligand Efficiency 

Over the past twenty years, the mean molecular weight and lipophilicity of experimental 

compounds have risen over 100 Daltons, but these values for newly-approved drugs 

have not. This trend is concerning, given that (as discussed in section a) these two 
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properties have been found as having a higher probability of failure in clinical trials. One 

reason that can account for this trend is that large, highly lipophilic compounds are more 

likely to be detected during HTS screening due to the having the ability to form more 

interactions with the target. Large-scale screens are identifying them as hits, leading to 

their subsequent SAR optimization and experimental testing. This same principal holds 

for molecular docking screening as well: as we have seen in EQUATION 1-5, VDW 

interactions are calculated by summing across all of the atoms in a ligand. A large, 

bulky, lipophilic molecule will then have a higher chance of having a favorable VDW 

energy and hence a favorable free energy of binding, just in lieu of its size.    

 

To overcome screening biases towards large lipophilic compounds, two metrics have 

been proposed. The first metric argues that during the clinical development of a 

molecule, one needs to look at not only the binding energy of the ligand, but instead the 

binding energy relative to the number of atoms (ligand efficiency, or LE) or the 

lipophilicity (LLE)39. Ligand efficiency metrics quantify how effectively the ligand is 

binding to the target. It is argued that this combined metric, rather than just potency, is 

what should be optimized rather than just potency alone.  

 

The simpest LE metric is to take the molecule's calculated free binding energy and 

dividing it by the number of heavy atoms: 

 

One caveat of this approach is that is it treats different atom types (i.e. carbon, nitrogen, 

oxygen, sulfur, halogens) in the same manner, despite the fact that there are marked 

differences in size and polarity between them. Furthermore, this equation assumes that 

all of the atoms in the ligand are involved in binding the target. This is often not the case 
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for halogens such as Cl and F, which are often placed on benzene rings to aid increase 

logD and permeability.  

   

The Lipophilic Ligand Efficiency Index (LElipo) is given by: 

 

Data has shown that using LElipo during the process of drug optimization has led to 

compounds with increases binding affinity without increased lipophilicity.   

 

d. Conclusion 

Thus far, we have seen how to design a library of ligands, calculate their theoretical 

binding energy, and, once candidates have been revealed, use guidelines to determine if 

the candidates have physiochemical properties that would confer a high failure rate. 

Now, I am going to discuss how these principles were used in the computational design 

and synthesize of brain-penetrant inflammation inhibitors for Alzheimer's Disease. 
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CHAPTER II: APPLICATIONS OF DOCKING TO ALZHEIMER'S 

DISEASE DRUG TARGETS 

 

2.1. BACKGROUND 

a. Neuroinflammation in Alzheimer's Disease 

In normal settings, microglial cells have a protective function in the brain: they surround 

neurons and involved in maintenance or tissue homeostasis; synaptic remodeling; 

secretion of neurotropic factors, and the scavenging for infectious pathogens40. 

However, during certain adverse situations (i.e. systemic inflammation, brain trauma, 

and presence of amyloid plaques), microglia become activated and release pro-

inflammatory molecules (eicosanoids) in an attempt to clear damaged cells and amyloid 

plaques. While this may be beneficial in the short-term for clearing away damaging 

molecules in the brain, in the long-term this response can become uncontrolled. The 

sustained neuroinflammation from microglia themselves result in neuronal damage and, 

subsequently, the formation of amyloid-beta (Aβ) peptide-containing senile plaques that 

are associated with Alzheimer's Disease (AD).    

 

The eicosanoids released by microglia are produced by the membrane protein 

cyclooxygenase-1 (COX-1) and the cytosolic protein 5-lipoxygenase (5-LOX) (FIG 2-1). 

In AD patients, COX-1 (and COX-derived PGE2 and TXA2 metabolites) is increased in 

the brain relative to age-matched, non-AD brains. PGE2 is also elevated in the 

cerebrospinal fluid of AD patients41. Experimental work from the Lee and Trojanowski 

labs has provided additional evidence in support of the role of inflammation in AD42,43. 

First, knockout of the PGE2-binding receptors (EP1, EP2, EP3 or EP4) in transgenic 

mice expressing the human amyloid precursor protein (from which Aβ is derived) results 
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in a reduction of senile plaque formation. Second, genetic or pharmacologic modulation 

of 5-LOX activity results in a reduction of senile plaque burden in amyloid precursor 

protein transgenic mouse models. Third, activation of the thromboxane receptor by 

TXA2, the EP1 and EP3 receptors by PGE2, and the CysLT1 receptor by LTD4, all 

result in increased amyloid precursor protein expression and amyloid beta release. 

Collectively, these clinical findings and experimental results suggest that therapeutic 

strategies to reduce the levels of inflammatory eicosanoids in the brain via direct 

inhibition of COX and 5-LOX can lead to a decrease in Aβ release and senile plaque 

formation.  

 

Due to the possible role of neuroinflammation in AD onset and progression, our goal was 

to develop brain penetrant compounds that could inhibit both COX-1 and 5-LOX. 

Currently, dual 5-LOX/COX inhibitors are being investigated for peripheral inflammation. 

Notably, the compound licofelone is in Phase III clinical trials for osteoarthritis44 (FIG 1-

2). Licofelone was found to have similar efficacy as other COX inhibitors, but improved 

side-effect profile. The drawback with attempting to use licofelone as an AD treatment, 

however, is that it has limited blood-brain barrier permeability due to its carboxylic acid 

group. At physiological pH, this group exists as a carboxylate and cannot cross the 

blood-brain barrier. The carboxylate is responsible for the mechanism of action of not 

only licofelone, but all of the FDA-approved COX-1 inhibitors45: it makes a strong 

electrostatic with ARG 120 in the mouth of the COX-1 binding cavity, locking it into an 

inactive state and preventing it from metabolizing Arachidonic Acid (FIG 1-6). Hence, our 

goal was to replace this carboxylic acid with a functional group that could still maintain 

COX/LOX inhibition (presumably through hydrogen bonding interactions rather than 

electrostatic interactions), but would be lipophilic enough to confer brain penetrance. To 



	
  
`	
  

 

54 

move towards this goal, we made use of the concept in medicinal chemistry known as 

bioisosterism.   

 

FIGURE 2-1: Overview of the COX and LOX pathways 

The 5-lipoxygenase (5-LOX) leads to the production of leukotrienes (i.e. LTB4 and LTD4) 

that are involved in the recruitment of innnate immune system cells that release pro-

inflammatory cytokines, resulting in inflammation and ischemia (via vasoconstriction). 

The cyclooxygenase (COX) pathways result in the production of prostaglandins (i.e. 

PGE2 and TXA2), which also result in inflammation in addition to the sensation of pain. 

Both pathways have been found to be hyperactive in Alzheimer's Disease patients, 

leading to the hypothesis that inhibiting them cause decrease neuroinflammation and 

decrease Alzheimer's Disease progression. 
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FIGURE 2-2: A dual COX/LOX inhibitor, Licofelone  

Though, systemically, licofelone has been found to be an effective dual COX/LOX 

inhibitor, its carboxylic acid group is negatively charged at physiological pH. This limits 

its ability to cross the blood-brain barrier and inhibit COX and LOX in the brain. Our goal 

is to perform isosteric replacement of this carboxylic acid group, in order to synthesize a  

brain-penetrant licofelone analogue.
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b.  Bioisosterism in medicinal chemistry 

Bioisosteres are functional groups that have similar physical and chemical properties 

and which produce similar biological effects46. In medicinal chemistry, bioisosteres are 

commonly used to modify the biological activity, pharmokinetic profile (i.e. absorption of 

the compound, transport through the bloodstream, excretion), and toxicity of a 

compound during SAR optimization. Bioisosteric replacement can have profound effects 

on a drug's structural parameters (i.e. size, shape and electronic distribution of charge) 

and pharmacokinetic parameters (i.e. water solubility, pKa, polarizability). Historically, 

there are two groups of bioisosteres: classical and non-classical. Classical isosteres 

(FIG 2-3) are groups that have the same number of valence electrons (they may, 

however, have different numbers of atoms). Nonclassical bioisosteres often produce the 

same biological effects, but do not have the same number of valance electrons (FIG 2-

4). An example where bioisosterism can dramatically change the activity or potency of a 

compound is shown for the example of an angiotensin II receptor antagonist (ARB)47 

(FIG 2-5). When the lead compound has a carboxylic acid group, the Ic50 is 275 nM. 

However, isosteric replacement with tetra-fluoryl sulfonamide, squaric acid, and tetrazole 

groups resulted in gradually increasing potency.   

 

2.2. DESIGNING A CARBOXYLIC ACID ISOSTERE LIBRARY 

a. Carboxylic Acid bioisosteres 

The carboxylic acid group is an important drug pharmacopore that is present is over 450 

marketed drugs48. Its ubiquity is due to its ability to make electrostatic interactions and 

hydrogen bonding interactions with protein binding site residues, and due to fact its 

solubility-conferring effects on the compound. However, drawbacks with this group 

include metabolic instability, toxicity via glucuronidation (which can lead to the 

production of metabolites that covalently bond to other proteins), and, as mentioned, 
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limited permeability across biological membranes. Our goal of identifying carboxylic acid 

isosteres that could overcome these barriers and confer brain penetrance led our group 

to synthesize 36 carboxylic acid isosteres spanning different functional group classes48 

(FIG 2-6A-B). The 3-phenylpripionic acid group (FIG 2-6C) was chosen as the scaffold 

due to its minimal molecular weight (for detection and avoidance of volatility); UV activity 

(allowing for detection via thin-layer chromatography and high-pressure liquid 

chromatography (HPLC) purification), and the presence of a spacer between the benzyl 

group and the functional group (to prevent the aromatic ring from interfering with 

physiochemical measurement of the isostere). The organic syntheses of isosteres that I 

synthesized (acylsulfonamide, hydroxamic acid, 3-Isoxazolol, and Sulfonylurea) are 

shown in FIG 2-7, and described fully in APPENDIX A-D. I was able to crystallize the 

sulfonylurea compound, and submit it for x-ray crystal structure determination 

(APPENDIX A).  

 

After synthesis of the library was completed, key physiochemical properties relevant to 

medicinal chemistry were experimentally determined (TABLE 1): lipophilicity (via logD7.4 

calculation), acidity (through pKa determination), permeability (using a Parallel Artificial 

Membrane Permeability Assay (PAMPA) to determine the permeability coefficient, Papp) 

and plasma protein binding. For brain penetrance, the most important physiochemical 

properties are logD7.4, logPapp, and pKa. These values are plotted together in FIG 2-7 for 

the library. In general, more lipophilic and less acidic compounds exhibit higher rates of 

membrane permeability. Isosteres in the right-upper quadrant (FIG 2-8) represent those 

that are more permeable (lower logPapp) and more lipophilic (higher logD7.4) than the 

reference carboxylic acid (of 3-phenylpropionic acid). These data suggested that 

isosteres in this quadrant, compared to the others that could be made, can possibly 



	
  
`	
  

 

58 

confer brain penetrance when substituted onto an NSAID scaffold. These isosteres are 

being weighted heavily for our ongoing synthesis efforts.  
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FIGURE 2-3: Examples of classical isosteres 

Table from: 

Silverman and Holladay. "The Organic Chemistry of Drug Design and Drug Action (Third 

Edition)." Chapter 2: Lead Discovery and Lead Modification. Elsevier (2014).    
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FIGURE 2-4: Examples of non-classical bioisosteres 

Table from: 

Silverman and Holladay. "The Organic Chemistry of Drug Design and Drug Action (Third 

Edition)." Chapter 2: Lead Discovery and Lead Modification. Elsevier (2014).    
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FIGURE 2-5: SAR optimization of the hypertensive drug losartan 

Beginning with the carboxylic acid scaffold, substitutions to different carboxylic acid 

isosteres led increasingly better potency. The tetrazole group ended up being the 

isostere that conferred the biggest increase in potency, and was the compound that 

subsequently cleared clinical trials and acquired FDA-approval. 
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FIGURE 2-6A: Subset of the 36 carboxylic acid isosteres that were synthesized  
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FIGURE 2-6b: Second subset of the 36 carboxylic acid isosteres that were 

synthesized  

 

FIGURE 2-6C: The 3-phenylpropionic acid scaffold 
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The 3-phenylpropionic acid scaffold was chosen because of its low molecular weight, UV 

activity, and spacer between the aromatic group and the functional group. 

 

 

Table 2-1. Experimental properties of a sub-set of synthesized isostere library48 
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FIGURE 2-7: Carboxylic acid isosteres that I synthesized 

The schemes for these syntheses are found in APPENDIX A-D.   
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FIGURE 2-8: Plot of log Papp, logD7.4, and pKA for isostere library 

This plot demonstrates the values of log Papp, logD7.4, and pKA relative to the carboxylic 

acid (centered as compound 1). 
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FIGURE 2- 9: Lipophilic and Permeable Isostereres 

Carboxlic acid isosteres that are more permeable and lipophilic than the reference 

carboxylic acid (compound 1). 
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b. Chemical enumeration to produce an NSAID isostere library 

Our goal was to develop carboxylic acid isosteres of not only licofelone, but of 11 other 

nonsteroidal anti-inflammatory drug (NSAID) scaffolds (FIG 2-12). This variation in 

scaffolds would give us a greater chance of finding a series of compounds that with both 

brain penetrance and COX/LOX activity. However, our goal of synthesizing an entire 

library of isosteres from these 12 scaffolds was challenging due to the large isostere 

chemical space that we needed to explore. In addition to using experimentally-

determined physiochemical properties as criteria for brain penetrance, we wanted 

additional criteria to predict whether a given isostere was going to be active against 

COX/LOX. Our final choice of compounds to synthesize would take into account 

promising results from both criteria. To predict activity, we used molecular docking. To 

design our compound library, we used the chemical enumeration algorithm MARVIN49 

(Chemaxon) to vary three positions of each NSAID scaffold (FIG 2-10): the carboxylic 

acid group (substituted for a wide range of carboxylic isosteres of different classes); the 

halogen substituent on the benzyl ring; and the length of the alkyl chain spacer between 

the pyrazole ring and the carboxylic acid group (to vary the conformational flexibility of 

the isostere interacting with binding site residues). Varying these positions provided us 

with an enumerated representation of all of the NSAIDS; the example of licofelone (1292 

compounds generated from enumeration) is shown in FIG 2-11. The same procedure 

was repeated for 11 other NSAID scaffolds (FIG 2-12). In the end, there were a total of 

23,851 NSAID isosteres output by the enumeration algorithm.  

 

c. Filtering compounds based on physiochemical properties 

As discussed in Chapter 1.VI, the goal is to have molecules that are as close to the 

"drug-like" space as possible. The following criteria were used to filter our compound 

libraries: 
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 - MW < 500 Daltons 

 - Total polar surface area < 20 Å2 

 - Hydrogen bond donors < 2 

After performing this filter, we ended up with 21,048 compounds for our docking library 

(TABLE 2-2, and FIG 2-12). 
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FIGURE 2-10: Chemical enumeration of three different licofelone sites  

Substituting different isosteres and changing the length of the alkyl chain spacer at 

position R3; varying the phenyl substituent R7; and adding additional variation on the R3 

substitutions led to the creation of a diverse library of licofelone isosteres (1292 

compounds) from one scaffold. This process was performed for all of the NSAID 

scaffolds in FIG 2-12 to give us a library of 23,851 NSAID isosteres. 
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FIGURE 2-11: Example output after licofelone chemical enumeration 
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FIGURE 2-12:  

The different NSAID scaffolds that chemical enumeration was performed on, resulting in 

an NSAID isostere library. 
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TABLE 2-2: NSAID isostere docking library after physiochemical property filter 

Using criteria to filter-out compounds from our isostere library that had detrimental 

properties for bioavailability, brain penetration and COX/LOX inhibition (MW < 500 

Daltons; Total polar surface area < 20 Å2; Hydrogen bond donors < 2, we were able to 

eliminate compounds from our library and decrease the number of compounds to dock 

and subsequently analyze. 
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III. MOLECULAR DOCKING OF NSAID ISOSTERES 

In the following sub-sections, I will describe the workflow used for docking the NSAID 

isostere library onto COX-1. 

 

a. Selecting a COX-1 crystal structure: general ideas 

With a large-library of NSAID isosteres on hand, our goal was to next use docking 

algorithms to determine if the compounds could theoretically inhibit COX-1. Though we 

were targeting both COX-1 and 5-LOX, studies have shown that 5-LOX inhibitors work 

by binding to the protein 5-lipoxygenase-activating protein (FLAP), and possibly to a 

complex of FLAP/5-LOX50. Because of this, and because there did not exist an x-ray 

structure of an NSAID bound to 5-LOX, we decided to focus our SAR efforts on COX-1 

inhibitors. This approach was justified by findings that isosteric replacement of NSAID 

scaffolds can convert a COX-1 inhibitor to a 5-LOX inhibitor51.   

 

First, we wanted to choose an appropriate x-ray crystal structure of COX-1 for our 

docking experiments. This task was complicated by the fact that there are 20 different x-

ray structures of COX-1, bound to various inhibitors and endogenous ligands and 

existing in a variety of conformations (FIG 2-13).  When one encounters several 

structures of the same target, selection of the proper one for docking is important. As 

discussed in Chapter 1, proteins exist in a variety of conformational states, and each x-

ray structure provides a snapshot of thousands of possibilities. The goal of structure 

selection is to select the one that is in a conformation that is best suited for the query 

compound. This principle can be illustrated by comparing the x-ray structures of COX-1 

bound to indomethacin18 and ibuprofen52 . Though indomethacin and ibuprofen differ in 

size, COX-1 binds to both of them with high affinity18,52, and x-ray crystal structures have 

been solved for both of them (PDB code 1EQG for ibuprofen, and code 1PGG for 
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indomethacin). However, if one were to remove from 1EQG and attempt to dock 

indomethacin into it, the binding energy would be -5 kcal/mol. This is in contrast to the -8 

kcal/mol that would be output if indomethacin were docked to 1PGG. The reason for this 

is that 1EQC and 1PGG represent different conformations of the binding site. 1EQC has 

a tighter binding site (presumably due to an induced fit made with Ibuprofen), and when 

indomethacin is placed there, steric clashing between the bulky aromatic rings and the 

residue side-chains contribute unfavorably to the calculated binding energy. This 

example illustrates that if an unsuitable structure is used to dock one of our scaffold 

libraries, potentially tens of thousands of potential hits would be lost due to false-

negative elimination based on poor calculated binding energies.  

 

b.  Validating the docking algorithm 

Before doing any docking experiment, the first step is to determine whether the docking 

algorithm is able to verify a known result i.e. recapitulate the binding mode of the ligand 

that it was crystallized with. To do this, a 2D SDF representation of each scaffold 

compound was generated. Next, each scaffold was docked back into its respective x-ray 

structure (that had been stripped of the compound). If the docking algorithm is 

performing its stochastic search properly, it would provide the same (or very similar) 

pose as the x-ray structure's pose. If this is not the case, then there is a technical flaw 

that needs to be addressed (i.e. the size of the user-defined grid box is not appropriate, 

or there are binding site water molecules that assist in binding that need to be 

incorporated). Using this procedure, Autodock was able to correctly output the correct 

scaffold pose as the x-ray structure's pose.  

 

c.  Selecting an x-ray crystal structure for licofelone and other NSAIDS 
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Licofelone, unlike other NSAIDs that we built enumerated libraries for, does not have an 

x-ray crystal structure with COX-1. Hence, it is important to pick the appropriate structure 

due to variation in binding site conformations that was described in a. FIG 2-12 shows 

the structure of licofelone in comparison to six other NSAIDS that were crystallized with 

COX-1. Structurally, licofelone scaffold has a central pyrazole ring with meta and para-

substituted phenyl rings, and a ortho-substituted carboxylic acid group. Compared to 

these other structures, the compound that structurally-resembles it the most is 

indomethacin. When licofelone is docked into indomethacin's structure (1PGG), it 

exhibits the same binding pose as indomethacin (FIG 2-14): its carboxylic acid group 

faces ARG 120, and its bulky aromatic rings face down towards the deep end of the 

binding pocket. 
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FIGURE 2-13: Multiple x-ray crystal structures for COX-1 

Since various structures of COX-1 had been solved (bound to various ligands small-

molecules), it was important to find the structure that was in the conformation best suited 

for the drug scaffold we were docking into it. 
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FIGURE 2-14: Licofelone docked onto the crystal structure of indomethacin 

We choose the COX-1 structure 1PGG (bound to indomethacin) for screening of the 

licofelone isosteres. This was due to the fact that (a) licofelone had a similar scaffold to 

indomethacin and (b) licofelone existed in the same general pose as indomethacin when 

it was docked in, with high calculated binding energy. 
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interaction with ARG 120, while the two aromatic rings face deep into the cavity. The 

calculated binding energy is -9.0 kcal/mol, which is not far from the calculated binding 

energy of indomethacin when it is docked into its own structure (-10.3 kcal/mol). When 

attempting to dock licofelone into the x-ray structure of ibuprofen (1EQG), the same 

result occurred as when indomethacin was docked into it, and the binding energy was 

worse than when it was docked to 1PGG (-5.0 kcal/mol). This is presumably due to the 

same issues as with indomethacin, related to the size of the ibuprofen binding size and 

the occurrence of steric clashing with licofelone's aromatic groups.  

 

d. Docking screen of NSAID isosteres 

After exploring different possibilities for a common COX-1 structure to dock the entire 

library into, I decided to dock each NSAID isostere library into it's own x-ray crystal 

structure (and licofelone into the indomethacin structure 1PGG). Two criteria were used 

to determine if a compound was a docking hit. First, compound's binding-energy had to 

be within 2 kcal/mol of the binding energy of the native ligand (when re-docked into its 

own x-ray structure). Second, the orientation of the compound had be consistent with the 

known COX-1/NSAID binding mode, such that the isosteric replacement group was 

adjacent to ARG 120, and the aromatic groups were buried into the binding cavity. 

TABLE 2-3 provides a summary of the binding energy cut-offs, and FIG 2-15 provides 

representative hits for each NSAID scaffold. 
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TABLE 2-3: Binding energy cut-offs for each of the docking scaffolds 

The binding energy when each NSAID was re-docked into its own x-ray structure was 

used as a baseline to compare the performance of a scaffold's isostere analogues. Due 

to the absence of a crystal structure with COX-1, licofelone used Indomethacin's binding 

energy cut-offs. 
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FIGURE 2-15: Representative hits for each scaffold from COX-1 docking screen 
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e. Synthesis and experimental validation of a docking hit 

To help determine if the assumptions that we made during our docking screens (i.e. 

design of enumerated library and selection of isosteres; filtering of library based on 

physiochemical values; and choice of COX-1 structure to dock), I synthesized a docking 

hit for licofelone: a hydroxamic acid isostere (CNDR-51681) that was also, from FIG 2-3, 

predicted to confer brain penetrance via its logD7.4 and logPapp values (FIG 2-16). The 

synthesis for this compound is shown in APPENDIX F.  

 

In general, the assay that provides a read-out of whether our compounds are inhibiting 

the COX or LOX pathways is a rat basophilic leukemia (RBL-1) cell-based assay for 

specific assay conditions)53. In this assay, cells are plated in 24-well plates with growth 

medium, and incubated at 370 C with either DMSO control or 10 uM of a candidate COX 

or LOX inhibitor. After 2 hours, 12 uM calcium ionopore is added, which results in the 

induction of  both the 5-LOX (leading to an increased secretion of the leukotriene LTB4) 

and COX-1 pathways (leading to the secretion of prostaglandin PGD2). The 

supernatants of these cells are then collected, spun down, and dried under vacuum. The 

dried samples are then dissolved in 50% acetonitrile and analyzed by LC-MS, to 

determine the levels of PGD2 and LTB4. Changes in these metabolite levels, when 

compared to the DMSO control, can provide a read-out of the percent inhibition of both 

pathways. 

 

This assay demonstrated that CNDR-52681 was able to inhibit COX-1 in an analogous 

manner to licofelone (96% inhibition of COX-1 metabolites, vs. 97% by licofelone). 

However, CNDR-52681 was also able to inhibit 5-LOX pathway compared to licofelone 

(91% inhibition, vs. 19% for licofelone). This data suggests our use of molecular docking 

to prioritize compounds for synthesis was sound.   
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FIGURE 2-16:  RBL cell COX/LOX assay to test activity of CNDR-51681 

10 uM of the licofelone hydroxamic acid isostere were tested in an RBL cell-based 

COX1/LOX assay. In this assay, addition of calcium ionopore induces the stimulation of 

these pathways and the corresponding production and secretion of leukotrienes and 

prostaglandins, which can be monitored by LC-MS analysis of the cell supernatant. 

Incubation of the cells with a COX or LOX inhibitor prior to calcium ionopore induction 

will result in a decrease in LC-MS signal for prostaglandins or leukotrienes, measured 

relative to a DMSO control. These data demonstrate that CNDR-51681 inhibit both COX 

and LOX pathways.  

  

Experiments and data analysis were performed by Vishruti Makani, Yuemang Yao, and 

Michael James  (labs of Dr. Virginia Lee and Dr. John Q. Trojanowski, Center for 

Neurodegenerative Disease Research).  
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IV. IDENTIFICATION OF  TRI-ACTIVE COMPOUNDS THAT STABILIZE 

MICROTUBULES AND INHIBIT COX/LOX PATHWAYS 

 

As the synthesis of docking hits continued, another question arose: can our 

computational docking approach (and the assumptions that we made) be used to predict 

if a compound can bind to a target from another class of compounds, and potentially 

inhibit multiple targets? This question is relevant in light of the pathophysiology of 

Alzheimer's disease, where multiple independent pathways have been linked to disease 

onset and progression40,54. In the following section, I will describe our attempts to use 

computational docking to develop compounds that target COX-1, 5-LOX and which 

stabilize structures in the brain called microtubules.   

 

a. Background: Microtubules in Alzheimer's Disease 

Microtubules (MTS) are hollow, 24 nm diameter tubes made up of α and β-tubulin 

heterodimers54. In the cytoskeleton of eukaryotic cells, MTs play essential structural and 

regulatory roles, such as intracellular transport, cell division, and the maintenance of cell 

shape. In the axons of neurons, the protein tau stabilizes microtubules and plays a key 

role in axonal transport. In the class of disorders called tauopathies55, tau function is lost 

(i.e due to protein misfolding, sequestration into insoluble aggregations i.e. neurofibrillary 

tangles, and hyperphosphorylation) and become detached from MTS, resulting in axonal 

transport deficiencies occur that can have been implicated in the development 

Alzheimer's Disease and fronto-temporal dementia (FTLD). Currently, brain-penetrant 

MT-stabilizing agents are developed (i.e. Epothilone D, currently in phase 1B clinical 

trials for AD) with the aim of restoring tau function in order to restore effective axonal 

transport56.   
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As discussed in section 2a, studies have shown that Alzheimer's Disease initiation and 

progression occurs through multiple co-occurring pathophysiological pathways, such as 

loss of Tau function along with neuroinflammation. Hence, one possible therapeutic 

avenue would be to target multiple pathways simultaneously, whether through a 

combination of drugs or one compound that has multiple targets. Since we identified a 

possible pipeline (through isosteric replacement, chemical enumeration, and 

computational) for prioritizing compounds to synthesize for dual COX/LOX inhibition, a 

new question arose: could we identify compounds that could not only theoretically inhibit 

COX/5-LOX, but which can also serve as microtubule-stabilizing agents?  

 

b. Using docking to identify tri-active compounds 

Our goal of developing lead compounds with microtubule stabilizing activity and with 

activity against COX and 5-LOX was motivated by an observation that many of the 

compounds that were synthesized in literature with reported microtubule-stabilizing 

activity contained a central scaffold that was similar to the COX inhibitors celecoxib57 

and SC-56058 (FIG 2-17). These two compounds contain a central pyrazole ring (with a 

trifluoryl methyl group in the 3’ position) that is flanked with hydrophobic phenyl groups in 

the 1' and 5' positions. According to the x-ray crystal structure of celecoxib bound to 

COX-157, the nitrogen of the sulfonamide makes key hydrogen bond interactions with 

GLN 192 and LEU 252 (FIG 2-18), while the 2' phenyl ring makes hydrophobic contacts 

with PHE 518 and other hydrophobic residues adjacent to it (i.e. LEU 352, ILE 517) 

deeper in the cavity. In the absence of an x-ray structure of SC-560 bound to COX-1, we 

presumed that the methoxy phenyl group of SC-560 makes similar interactions as 

celecoxib's sulfonamide group. 
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From the literature and chemical databases, we compiled 114 cases of MT-stabilizing 

agents that contained an di-phenyl-substituted imidazole or pyrazole ring 

scaffolds59(APPENDIX G). Next, we needed to choose a structure to dock our 

compounds against. Since SC-560 most closely resembled celecoxib, we first docked it 

onto the x-ray structure of celecoxib bound to COX-1 (PDB code: 3KK6). SC-560 bound 

with a calculated binding energy of -10.3 kcal/mol, close to the binding energy of 

celecoxib redocked to 3KKG (-10.0 kcal/mol). Furthermore, SC-560 was in the same 

pose as the celecoxib crystal structure pose (FIG 2-18), suggesting that it shared the 

same binding mode. Due to these results, 3KK6 was selected as the structure to dock 

our compounds onto. 
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FIGURE 2-17: Celecoxib and SC-560 structures
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For each docked compound, the poses were analyzed to determine if they were in the 

same general orientation as celecoxib, and making the same interactions with GLN 192, 

LEU 252 and PHE 518 (FIG 2-18). Those compounds were then chosen as candidates, 

and sorted according to their theoretical binding energy. After analyzing our docking 

results, we initially selected 5 compounds that we had already synthesized to test for 

COX and LOX inhibition activity. 4 of these compounds were among the docking top 

scorers with respect to calculated binding energy (FIG 2-19), while the 5th compound 

(CNDR-51665) was an attempt to perform SAR optimization on the pyrazole ring by 

removing the 1'chloro group from the pyrazole scaffold of CNDR-51735.  

 

These 5 compounds were tested in the RBL COX/LOX LC-MS assay53 (described in the 

previous section) (FIG 2-19). With the exception of CNDR-51672, all five compounds 

exhibited decreases in LTB4 synthesis (indicating 5-LOX inhibition). With respect of 

COX inhibition, four out the 5 compounds conferred decreases in PGD2 synthesis, 

indicating COX inhibition (CNDR 51672 had no change with respect to vehicle). Hence, 

four out of the five compounds that we tested directly from the docking output were 

experimentally validated in both assays. One short-coming of our approach was based 

on the performance of CNDR-51665 in the COX inhibition assay: despite that its docking 

energy was -7.9 kcal/mol, it featured the best inhibition of PGD2 synthesis out of the 

entire series.  
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FIGURE 2-18: Celecoxib interactions in the COX-1 binding site 

Celecoxib's sulfonamide nitrogen makes key hydrogen bond interactions with GLN 192 

and LEU 252, while the 2' phenyl ring makes hydrophobic contacts with PHE 518 and 

other hydrophobic residues adjacent to it (i.e. LEU 352, ILE 517) deeper in the cavity. 
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FIGURE 2-19: SC560 docked in Celecoxib-COX-1 x-ray structure 

Docked pose of SC560 (in grey, overlayed with celecoxib, in yellow) in 3KKG COX-1 x-

ray structure 
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FIGURE 2-20: COX and LOX activity data for selected docking hits 

A: Compounds initially selected for testing, with Autodock binding energies 

B: Experimental activity results for both COX and LOX inhibition. 

 

Experiments and data analysis were performed by Vishruti Makani, Yuemang Yao, and 

Michael James  (labs of Dr. Virginia Lee and Dr. John Q. Trojanowski, Center for 

Neurodegenerative Disease Research).  



	
  
`	
  

 

92 

Based on our initial results, we synthesized 38 additional compounds (FIG 2-21). 27 of 

these were directly from the docking screen (red compounds were docking hits because 

they met our binding energy criteria, while the pink compounds, despite not meeting our 

binding energy requirements, were synthesized because they were easily derived from 

the precursors of the red compounds). The other 11 compounds (blue) were slightly 

modified analogues of the docking hits. FIG 2-22 and FIG 2-22 demonstrate the activity 

results of these compounds in the LOX and COX inhibition assays.  

 

When combining these results from the initial results in FIG 2-20, we found that there 

were 11 experimentally-validated COX/LOX hits. Seven of these hits came directly from 

the docking screen (with no optimization), while three of these hits were slightly modified 

from the docking hits. These results demonstrate the power of the molecular docking 

approach for identifying candidate compounds from a large set of possibilities, and 

provide a starting point for tri-active Alzhimer's Disease drugs. 
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FIGURE 2-21: Additional microtubule-stabilizing agents synthesized from docking 

hits 

Red compounds were hits directly from the docking screen. Pink compounds were 

compounds that were not hits (i.e. did not make our binding energy cut-off), but which 

were easily obtained from the synthetic schemes of other compounds. Blue 

compounds were slight modifications of the docking hits. 
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FIGURE 2-22: Results of COX/LOX activity experiments of additional microtubule-

stabilizing agents from FIGURE 2-21 
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FIGURE 2-23: Results of COX/LOX activity experiments of additional microtubule-

stabilizing agents from FIGURE 2-21 
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PART II: (RE)DESIGNING A DRUG TARGET 

CHAPTER III. COMPUTATIONAL DESIGN OF WATER-SOLUBLE 

VARIANTS OF MEMBRANE PROTEINS 

 

3.1. MOTIVATION 

As discussed in the main introduction, many of the barriers to membrane protein drug 

discovery are due to the lack of a simple, direct method for testing the interactions 

between a small-molecule inhibitor and a membrane protein. This is largely due to 

hydrophobic residues found on the exterior of membrane proteins, which make them 

difficult to express, isolate, and perform experimental assays with. Ideally, a given 

membrane protein could be isolated and its interactions with small-molecules probed 

directly. Our goal for this project is develop a cell-free, label-free, detergent-free solution 

phase binding assay for membrane proteins (FIG 3-1). We want this assay to serve as a 

quick and simple way for the drug discovery community (in both academia and in the 

pharmaceutical industry) to test compounds for activity. To achieve this goal, we devised 

a general algorithm for designing water-soluble variants of membrane proteins. Our 

hypothesis is that a designed water-soluble variant would retain the wild-type protein's 

and ligand-binding properties, and would allow for the direct testing of biological 

interactions and drug-binding events. 

 

 In the past, our group has used a combination of computational and rational protein 

design approaches to develop water-soluble variants of the bacterial potassium channel 

KscA60, the nicotinic acetylcholine receptor61, and the mu-opioid receptor62. However, 

these past studies required multiple rounds computational design and experimental 

testing, and ultimately required the proteins to be isolated and refolded from bacterial 
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inclusion bodies. In the end, this was a very time-consuming and labor-intensive 

process. Our goal was to take everything that we learned about membrane protein 

solubilization in our past attempts, and to develop method that could produce a water-

soluble variant in one attempt that could be isolated directly from the soluble fraction of 

E. coli. 

 

 

FIGURE 3.1 Computational design of water-soluble variants of membrane proteins 

Our goal is to develop an algorithm that can modify an input membrane protein so that it 

can be used for cell-free, label-free, drug binding studies.  
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In the following section, I will describe the development of a computational approach that 

(i) identifies solvent-exposed, transmembrane hydrophobic residues and (ii) mutates 

these residues so as to confer water-solubility while retaining the protein’s overall 3D-

folded structure. This approach implements molecular mechanics force fields and 

statistical energy functions inferred from a library of water-soluble globular proteins. As 

proof-of-concept of this approach, we designed a water-soluble variant of the G Protein-

Coupled Receptor Smoothened. Smoothened was selected based on the depth and 

breadth of knowledge that was available for it. There were five x-ray crystal structures in 

a variety of conformations6,7, bound to a different agonists and antagonists. Several tool 

compounds existed for it (antagonists and agonists)63. Multiple parts of its intracellular 

pathway were deconvoluted over the past forty years in multiple model systems, from 

Drosophila to mammalian cells64. Lastly, it is deeply relevant to human health, as several 

clinical trials are underway for various SMO-driven cancer types65.   

 

3.2. BACKGROUND: SMOOTHENED AND THE HEDGEHOG SIGNALING PATHWAY 

The Hedgehog signaling pathway is involved in cell proliferation, including the regulation 

of stem cell proliferation, during development and tissue repair during adulthood64. This 

pathway consists of four main components: the Hedgehog extracellular ligands (Sonic 

Hedgehog, Indian Hedgehog and Desert Hedgehog); the twelve-membrane spanning 

Patched Receptors (PTCH1 and PTCH2), which negatively regulate the pathway; 

Smoothened (SMO), the seven-transmembrane G Protein-Coupled Receptor that serves 

as the key transducer of this pathway; and the GLi transcription factors (which regulate 

target genes via a specific consensus sequence). Though the mechanism of SMO 

inactivation via PTCH1 has been the subject of much controversy, it is generally 

accepted that PTCH1 inhibits SMO by transporting small-molecule SMO agonists out of 

the cell7,8. Upon binding of Hedgehog to PTCH1, PTCH1 becomes internalized, resulting 



	
  
`	
  

 

99 

in the intracellular build-up of SMO agonists subsequent SMO activation. Subsequently, 

via a still undetermined mechanism, SMO activated GLi1, which in turn expresses target 

genes that are involved in cell proliferation and survival.  

 

Aberrant activity of the Hedgehog pathway has been implicated in a variety of cancer 

types64,65. One of the first links between this pathway and cancer came from the 

inherited disease Gorlin’s syndrome (also known as basal cell nevus syndrome). 

Patients with this disease are highly predisposed to the development of basal cell 

carcinomas (skin), medulloblastomas (brain), meningiomas (brain) and 

rhabdymyosarcomas (muscle). It was later discovered that Gorlin's syndrome patients 

had either loss-of-function mutations of PTCH1 or activating mutations in SMO. 

Activating mutations in SMO were later found to be implicated in other cancer types, 

notably medulloblastoma (MB) and basal cell carcinoma (BCC), leading to the 

development of several SMO inhibitors. In 2009, one such inhibitor, vismodegib, was 

found to be effective in phase II clinical trials for locally advanced and metastatic basal 

cell carinoma66-68. In this trial, 30% of patients with locally advanced basal cell carcinoma 

responded to treatment (21% of whom had a complete response) and 43% of patients 

with metastatic basal carcinoma responded. Since then, there have been 24 clinical 

trials for SMO inhibitors in a variety of cancer types. In 2012, vismodegib was approved 

by the FDA for treatment of BCC based on its favorable outcomes compared to 

chemotherapy. Despites vismodegib’s promise, a subset of patients who initially respond 

to treatment subsequently relapse69. One mechanism of vismodegib resistance is via 

mutations in the drug’s binding site. This phenomenon has been observed with other 

clinical trial compounds and represents a huge challenge to the development and 

widespread clinical use of SMO inhibitors. 
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One approach for developing second-line agents to counteract SMO drug resistant 

mutations is to develop compounds that target sites that are distinct from the main 

binding site that all of the clinical trial drugs bind to. These interactions, once identified, 

could serve as potential targets for drugs with novel mechanisms of action (i.e. protein-

protein interactions, novel allosteric sites regulatory sites). However, this is challenging 

in SMO because, as discussed in the previous section with membrane proteins, many of 

the key direct intracellular and extracellular interactions that allow SMO to transduce 

signals are not clearly understood. For example, the hypothesized endogenous SMO 

agonist has not been discovered, and it is not known whether SMO activates oncogenic 

transcription factors through a direct interaction or indirectly through other proteins. The 

lack of a simple experimental system for testing SMO binding has prevented progress in 

our understanding of these key molecular interactions.  

 

To facilitate the study of SMO and the identification of small molecules that impact its 

activity, we hypothesize that a computationally-designed water-soluble variant of SMO 

(wsSMO) can be developed and used in simple solution-phase biophysical ligand-

binding assays to test SMO drug-binding events. This variant would retain key structural 

and functional features of wild-type SMO, yet will be readily isolatable from a 

heterologous protein expression system (i.e. E. coli). wsSMO and the associated 

biophysical assays will represent a first-step toward developing membrane protein 

analogs that stand to accelerate drug development. In the following sections, we will 

describe our efforts to develop wsSMO. First, I will provide an overview of the Saven 

protein design methology, which uses principles from theoretical physical chemistry to 

calculate the site-specific probabilities of sites in a protein structure, subject to different 

constraints imposes on the sequence. Afterwards, I will describe the development of an 
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algorithm that, for an input membrane protein structure, can select the exterior 

hydrophobic residues that, if mutated, can confer solubility to the protein as a whole.   

 

III. COMPUTATIONAL DESIGN OF MEMBRANE PROTEINS 

a. Overview of protein design and membrane protein design  

The field of protein design aims to identify the physical properties that dictate protein 

folding and to synthesize novel proteins from theoretically designed target structures. 

These tasks are challenging due to the sheer complexity of protein folding. A protein can 

contain tens to thousands of amino acid residues, and for a single protein sequence 

there are a plethora of available conformations due to variation in backbone and side-

chain degrees of freedom72,73. The possibilities are even greater when the non-covalent 

interactions that stabilize a protein’s folded state (i.e. van der Waals, hydrophobic 

interactions, electrostatic interactions, and hydrogen-bonding interactions) are taken into 

account. Furthermore, there is complexity with respect to the number of candidate 

sequences a target protein structure can take: for example, a 100 amino acid protein 

made up of the 20 naturally occurring amino acids would have more than 10130 possible 

sequences72,73. The protein design field has made great strides to overcome these 

challenges via computational methods (guided by statistical mechanical theory) for 

predicting how a linear amino acid sequence will fold and, conversely, the possible 

amino acid sequences that will form a target structure of interest. These methods have 

resulted in many recent breakthroughs, such as the creation of enzymes to catalyze 

chemical reactions not performed by naturally occurring proteins (i.e. the Retro-aldol 

reaction74, the Kemp elimination75, and the Diels-Alder reaction76), and the reengineering 

of macromolecular interaction interfaces (i.e. the DNA-binding interface of the 

endonuclease I-MsoI77).  
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The goal of work in the following sections is to "redesign" a membrane protein so that it 

is now water-soluble. There are two main steps needed to solubilize a membrane 

protein. First, one has to identify the solvent exposed, hydrophobic residues that exist on 

the transmembrane domain of the protein. Second, these residues need to be mutated 

in such a way that the protein as a whole is now hydrophilic, and in such a way that the 

total conformation of the wild-type protein is conserved (one wouldn’t want to introduce 

mutations that would alter fundamental characteristics of the protein’s structure). Though 

this seems like a simple process, there is a tremendous amount of complexity involved 

in these two steps. How does one identify the hydrophobic residues to mutate? Do all of 

them get mutated, or do we let some of them remain? Once we have identified sites to 

mutate, what residues do we mutate them to? Does everything get changed to lysine, or 

to glutamic acid?  

 

To redesign membrane proteins, we devised an algorithm that can take an input protein 

structure and identify solvent-exposed hydrophobic residues. Once a set of residues has 

been identified for redesign, the next step is to determine what mutations to make at 

each variable site. The Saven group has developed a probabilistic approach to 

computational protein design and redesign that I will explain in the next section. 

 

b. Saven’s computational design methodology 

The computational design methodology is an entropy-based, probabilistic approach for 

designing proteins. It takes two inputs: a target three-dimensional structure (i.e. the 

protein to be redesigned), and energy functions that will be used to quantify sequence-

structure compatibility. The site-specific probabilities of amino acids at variable positions 

in a protein are calculated as those that maximize an effective entropy function, subject 

to constraints on the sequences. To determine these probabilities, the methodology 
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makes use of the theoretical chemistry concept of Effective Sequence Entropy78,79. 

Entropy refers to the amount of “microstates” in a system (i.e. a particular microscopic 

arrangement of atoms or molecules of the system that corresponds to the given state of 

the system). For example, if one has a glass jar full of gas molecules and heats it up, the 

gas molecules will move around more, will occupy more positions in space, and hence 

will occupy more microstates in the jar. The greater number of microstates that the 

molecules occupy results in a greater the entropy of the system. This equation is given 

by the following equation: 

 

where W is the number of microstates and k is Boltzmann’s constant. This equation 

shows that entropy is proportional to the number of microstates in a system. For our 

purposes, we are factorizing the probabilities of amino acid sequences at every site in a 

protein into this form of the entropy equation. This provides us with an Effective 

Sequence Entropy function: 

 

where i is the site in the protein; α is the amino acid and k is a conformation (rotamer) 

that this amino acid can take on. wi(α,rk(α)) is the probability of a specific amino-

acid/rotamer pair at some site i in the protein.  

 

Our goal is to maximize the Effective Sequence Entropy function, which will in turn 

maximize the probability of certain amino acids (at certain rotameric states) at each site. 

However, we want our Effective Entropy to be maximized such that it provides tolerable 

amino acid changes in the protein; for example, we would not want to mutate the exterior 

residues in such a way that the water-soluble protein folds in a different way than the 
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wild-type, or introduce mutations. In order to do this, we use the mathematical method of 

Lagrange multipliers to constrain two key quantities: the Conformational Energy (Ec)78,79 

and the Environmental Energy (Eenv). Using these two Lagrange multiplier constraints, 

the calculated amino acid probabilities at each variable site in the protein will be used to 

determine mutations at that site that retain the wild type structure while increasing the 

water-solubility of the protein.  

  

(1) The Conformational Energy constraint (Ec): the overall energy calculated using a 

molecular potential energy, e.g., the Amber force-field parameters, to approximate the 

energy of all of the amino acid interactions (i.e. van der Waals interactions, electrostatic 

interactions and hydrogen bonds) and recover the chemical and shape complementarity 

usually observed in folded proteins. Mathematically, it is expressed as: 

 

where ε is the energy of interaction. The first term of the equation is the “one-body” term: 

it quantifies the energy εi of an amino acid side-chain α at site i interacting with its own 

backbone. The second term of the equation is the “two-body” term: it quantifies the 

interaction energy εij that an amino acid i has with amino acid j. The summations in the 

two-body term are pair-wise across all protein sites (i and j), amino acids at these sites 

(α and α'), and rotameric states of these amino acids (k and k'). These one-body 

energies and two-body energies are calculated using the AMBER force-field parameters.  

 

(2) Total Environmental Energy score constraint (EEnv): This constraint will be 

described fully in section III. Briefly, due to the presence of solvent-exposed 

hydrophobic residues, the total EEnv score of a membrane protein will differ significantly 

from that of a water-soluble protein of the same size. While maximizing the total 
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Effective Entropy, the total EEnv score will be constrained to have a value consistent with 

a soluble protein at the same size of the input membrane protein.  

 

c. Total Environmental Energy score (EEnv): The Parameters 

The Environmental Energy is used to quantify the hydrophobicity of a given site in a 

protein. The key parameters for calculating it are the local beta carbon density (Cβ) and 

the solvent-accessible surface area of an amino-acid side-chain80,81 (Vaccess) 

 

I. Cβ Density   

The local beta carbon density, ρ , approximates how buried a particular residue is given 

its location within the protein: 

  

In this equation we are taking a given amino acid side-chain and placing it within a 

theoretical 8 Å sphere that is centered at the side-chain’s geometric center of mass (FIG 

3-2). This sphere represents that amino acid’s “local environment.” Beta Carbons 

belonging to nearby residues in the proteins will be contained within this sphere. Hence, 

the density of beta carbons within this sphere provides a quantitative readout for how 

buried or exposed a given residue is. 
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FIGURE 3-2: The CB Density of an amino-acid side-chain 

The CB Density, ρ , of an amino-acid side-chain (represented in blue) is calculated by 

dividing the number of beta carbons (nβ, represented in green) in it's local environment 

(defined as Vsphere, an arbitrary 8 Å sphere centered at α's geometric center) by the 

volume of the sphere that is taken up by α itself (accessible volume, or Vaccess).  
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d. Calculation of solvent-accessible surface area (Vaccess) 

The volume of an amino-acid side-chain will vary according to its different rotameric 

states. To approximate the volume, we made use of a grid-approximation method that 

was pioneered by Lee and Richards. In this method, a small methyl-probe "rolls around" 

the surface of a side-chain. The volume that the probe is not able to access is used to 

approximate the total volume of the side-chain. To calculate Vaccess, we take our amino-

acid side chain and place it in the center of a large grid with sides of length A (FIG 3-3). 

This grid consists of M voxels placed in uniformly-spaced grid points. Since the total 

volume of the grid is A3, the volume of one voxel, denoted by 𝛿v, is given by !!
!

. 

 

 

FIGURE 3-3 Structure of the grid used for Vaccess calculation 

The protein-side chain is placed in a large grid, that that is used to for the calculation of 

the side-chain's solvent-accessible surface area, Vaccess 
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The procedure for calculating Vaccess is illustrated in FIG 3-4. In this figure, 𝑟α are the 

coordinates for voxel α, 𝑟i  are the coordinates for side-chain atom i, and 𝑟b  are the 

coordinates of the methyl probe b that will "roll-around" the side-chain to determine it's 

solvent accessible surface area. The distance between α and i is then given by  

  

If σi is the radius of atom i, and σβ is the radius of the methyl probe, then the distance 

between the center of the methyl probe and the center of the side-chain atom i is given 

by  

  

Total number of voxels interior to the residue, Nint, will then be given by the step function: 

  

If the distance between the Cβ probe and the side-chain atom i is greater than the 

distance between the voxel α to atom i, then the voxel will count as being interior to the 

residue. By multiplying Nint with the volume of one voxel, δv, an estimate of the interior 

volume of the residue is given.  
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FIGURE 3-4: Grid approximation method for calculating Vaccess 

Grid-approximation method for calculating a side-chain solvent accessible surface area, 

Vaccess 

 

The distance between a probe atom and a given amino-acid side-chain atom is 

calculated. If the distance between one of the small boxes (voxels) on the grid and the 

side-chain atom is less than the distance between the probe and the side-chain atom, 

then the voxel can be considered to occupy space within the side-chain. By repeating 

this procedure for all of the side-chain atoms, and adding up the volumes of the voxels 

that occupied space within the side-chain, the side-chain's total volume can be 

approximated. 
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3.4. DEVELOPMENT OF THE ENVIRONMENTAL ENERGY (EENV) MODEL 

Using the Cβ density as the key parameter for estimating whether a residue is buried or 

exposed, we wanted to determine if there existed quantifiable differences between each 

of the twenty amino acids with respect to there location in a water-soluble globular 

protein’s structures. If we were somehow able to analyze the structures of every single 

water-soluble globular protein in existence, would there be amino acids that we would 

almost always observe to be buried, or almost always observe to be exposed to solvent? 

Our sample for water-soluble globular proteins is a training set of 423 water-soluble 

globular proteins. This training set consists of x-ray crystallographic structures from the 

protein classes that are known to function in the cytosol (hydrolases, transferases, 

isomerases, ligases, oxidoreductases); which have only one chain; which have < 2 

Angstrom resolution; and which have a chain length > 40 (FIG 3-5). Furthermore, to 

prevent one family of proteins from biasing our model, we stipulated that the maximum 

sequence identity between any two sequences as  < 30%. I calculated ρ for every amino 

acid in this training set, and used these values to generate 

 corresponding Environmental Energy scores via 

 

Here, ε(α,ρ) is the environmental energy score ε for an amino acid α that has a beta 

carbon density ρ. ε is  calculated by dividing the frequency of times α and ρ are 

observed together, f(α,ρ), by the frequency of times they are observed independently 

(given by the product of f(α) and f(ρ)). f(α,ρ), f(α) and f(ρ) were calculated from the 

training-set. A visual explanation of ε(α,ρ) is given in FIG 3-6. A negative score indicates 

that the amino acid has a strong preference for a particular value of ρ .  
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FIGURE 3-5: Learning from a set of globular proteins 

To ensure that our EEnv model was not biased by one family of proteins (which would 

have similar structural features), we carefully selected a diverse array of proteins 

meeting the following critiera: containing chain; < 2 Angstrom resolution; chain length > 

40; and percent similarity between any two structures as < 30%. Using this training set of 

423 protein structures, we sought to determine (a) the statistical propensity for each 

amino acid type to be found at a specific location in water-soluble protein; and (b) the 

amino acid types that are, statistically, more likely to be found exposed on the exterior 

and buried on the interior. 
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FIGURE 3-6: Example of EEnv  

The EEnv is the logarithm of the ratio between the frequency by which one would 

observe an amino acid alpha at some solvation state, and the frequency by which one 

would observe that amino acid and that solvation state independently. For example, 

suppose that there are only two solvation states, buried and exposed, and two amino 

acids, LYS and LEU. If one looked across the training set of globular proteins, they 

would find that frequency of LYS in solvent-exposed areas is greater than the product of 

the frequency of observing LYS and observering a solvent-exposed site; due to the 

negative logarithm, this value for the (LYS,solvent exposed) pair will be negative. The 

opposite will be said for LEU in solvent-exposed regions: we would expect the 

(LEU,solvent-exposed) pairing to be a rare occurance. Hence, f(LEU,solvent-exposed) < 

f(LEU)f(solvent-exposed), and the corresponding EEnv(LEU,Solvent-exposed) will be 

positive.  
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For each amino acid in the training set, we generated scoring values for every value of ρ  

that was observed from the training set and fit these data to polynomial regression 

curves (FIG 3-7). This yielded site-specific scoring functions for amino acids and their 

propensities to be in particular local environments, where the propensities are derived 

from the protein training set. These regression curves demonstrate that for the 

“hydrophobic” residues (green), maxima are obtained at low Cβ Densities (i.e. when the 

residues are exposed to solvent), and minima are observed at high Cβ densities (when 

the residues are buried in the protein core). The reverse holds true for the “hydrophilic 

residues.” Our Eenv models for each amino acid (taken at a value of ρ that indicates a 

buried state) correlated well with two widely-used amino-acid hydrophobic scales (FIG 3-

8). Mean fractional area loss (MFAL)82 measures the volume of an amino-acid side-chain 

R that is buried when it goes from a standard-state (calculated from a theoretical GLY-R-

GLY tripeptide) to a folded-protein state, while the Fauchere83 hydrophobic scale 

measures the partitioning of R (within an N-acetyl-amino acid amide, CH2CO-NH-CH(R)-

CONH2) between octanol and water. The graphs in FIG 3-7, and the correlation with 

known hydrophobic scales, validate our choice of Cβ Density as a parameter, and 

demonstrate that the Environmental Energy model provides a sensitive approach for 

quantifying the propensity of an amino acid to exist in a particular location in a protein. 
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FIGURE 3-7 The Eenv model for all 20 amino acids 

By calculating the environmental energy score for every amino acid across a range of 

beta carbon densities, and fitting these data polynomial regression curves, we observe 

that the residues that we conventionally consider to be hydrophobic (TRP, PHE, MET, 

ILE, LEU, VAL) have their environmental energy minima when they are present in local 

environments that have a high beta carbon density (i.e. in "buried" states); the inverse is 

true for the hydrophilic residues (ARG, LYS, ASN, GLN, GLU). 
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FIGURE 3-8: EEnv vs Mean Fractional Area Loss and the Fauchere hydrophobic 

scale 



	
  
`	
  

 

116 

From the training set, we can quantify the total EEnv score for a protein by summing up 

the EEnv scores at every site. These summed scores can then be plotted against the 

protein’s chain-length (FIG 3-9). A linear relationship was found between the protein's 

chain length and its Environmental Energy score. As we will demonstrate in Section 3.V, 

this graph and the preceding Environmental Energy vs. CB Density regression curves 

graph will be pivotal for our membrane protein redesign efforts. 

 

 

FIGURE 3-9: EEnv vs Chain Length for the training set proteins 

Using the EEnv models for every amino acid, one can calculate the total EEnv score for a 

protein by calculating the environmental score for every residue in the protein and 

summing the scores up. For the training set protein structures, these values were plotted 

against the total chain length. In globular proteins, most of the hydrophilic residues tend 

to be solvent exposed and most of the hydrophobic residues tend to buried at the core, 

resulting in a total EEnv that will be negative for a given protein (a trend that scales 

linearly with the size of the protein in the training set). 
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3.5. Identifying candidate sites to mutate to confer water-solubility 

The following described an algorithm for identifying solvent-exposed, hydrophobic 

residues in a membrane protein that we want mutate in order to confer solubility to the 

entire protein. This algorithm takes as input a membrane protein PDB structure, and 

locations of the transmembrane domain residues, and outputs candidate solvent-

exposed hydrophobic sites to mutate to confer water-solubility. These sites are then 

input into the Saven lab protein design methology to output an amino-acid sequence that 

is consistent with a water-soluble structure. In this section, this process will be illustrated 

with the GPCR Smoothened.    

 

a. Cβ Density criteria for solvent-exposure criterion 

The Cβ density was used to determine solvent-exposed residues. To determine the CB 

density cut-off to use, GETAREA84 was used to determine the solvent accessible surface 

area (SASA) for each residue in the training set of 423 water-soluble globular proteins. 

This algorithm determines the residues that are buried and the residues that are solvent 

exposed based on a method that geometrically approximates the solvent accessibility of 

an atom based on the surface area of adjacent atoms that overlap it (where the atoms 

are represented as spheres). This analysis provided a set of residues that the 

GETAREA algorithm determined as “solvent exposed” (f >50%). f obtained by 

calculating the SASA score for a given amino acid α within the reference structure, and 

dividing it by the calculated SASA score of α that is contained within a Glycine-α-Glycine 

tripeptide reference structure (an isolated, capped amino acid). f can be formulated 

mathematically as: 
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Using this ratio, a set of residues were determined as “buried” (f < 30%). For each of 

these sets, histograms were developed of the GETAREA SASA score as a function of 

the Cβ density. These histograms show that there is a range of Cβ densities, 0.004 < ρCβ 

< 0.008, that is shared and intermediate between the distributions of buried residues and 

the distribution of solvent exposed residues (FIG 3-10). We decided to use a ρCβ < 

0.0061 value as our criteria for solvent exposure; this choice subtends most of the 

residues classified as solvent exposed. Hence, residues with Cβ density < 0.0061 were 

considered as solvent-exposed. 

  

 

FIGURE 3-10: Relationship between calculated Cβ density and GETAREA score. 

 The set of amino-acid residues that were defined as solvent-exposed by GETAREA are 

colored in blue, while the set of residues defined by GETAREA as buried are colored in 

orange. 



	
  
`	
  

 

119 

b. EEnv Criteria 

Based on Equation 4, a site in a protein with a positive EEnv(α) > 0 value contains an 

amino acid residue (α) that is statistically unlikely to be present at that location if that 

protein were a water-soluble, globular protein. Of the residues that were identified as 

solvent-exposed via the Cβ value cut-off in Criterion 1, we selected the residues in this 

set that had positive EEnv(α) > 0 scores.  

 

c. Amino Acid Identify Criteria 

Though the criteria 1 and 2 provided us with solvent-exposed hydrophobic residues, 

there are certain residues that we did not want to mutate for structural reasons, given 

our goal of retaining as much of the wild-type protein’s inherent structure as possible. 

For example, Proline and Glycine form structurally important kinks in helices, and 

mutating those residues may cause structural alterations in the core transmembrane-

region. Alanine is found at a high frequency in α-helices, and hence which may confer a 

degree of helicity to the transmembrane regions.  For this reason, we excluded sites with 

these residues as candidate sites to mutate for our solubilization efforts. 

 

d. Consistent Residues in different conformations criteria 

To date, there exist four SMO x-ray crystal structures in complex with the small-

molecules LY2940680 (4JKV)6; SANT (4N4W)7; SAG (4QIN)7; and ANT (4QIM)7. These 

small-molecules bound to different sites in SMO and were found to stabilize different 

conformations. We felt that the information from these four structures would be 

informative for our efforts to identify solvent-exposed, hydrophobic residues. It could be 

the case that a residue is solvent-exposed in one conformation, yet buried in another 

conformation. We wanted to avoid a situation where we mutated a residue that appeared 

to be innocuous and solvent-exposed in one case, but which actually was involved in the 
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protein’s conformational dynamics. Hence, we applied the criteria from Steps 1 to 3 to all 

four structures individually. Residues that met these criteria in all four structures were 

chosen as candidates sites to mutate. 

 

e. Transmembrane domain criterion 

We initially limited our candidate sites to those that are located in the literature-

annotated transmembrane domain of SMO (as referenced in the Uni-ProtK website). 

Applying this criteria to the sites that we identified in steps 1-4 narrowed down our 

candidate sites to 32. However, upon visually identifying the structure, we noted that 

there existed solvent-exposed hydrophobic residues that were close to the 

transmembrane domain boundaries. We identified an additional 12 sites that, while not 

in the transmembrane domain, met all of the above criteria from steps 1-4. This yielded a 

total of 44 candidate sites. All of the candidate sites that we identified using Criteria 1-5 

were independently identified by the GETAREA algorithm as solvent-exposed 

hydrophobic sites. This validated our algorithm’s selection of these candidate sites. 

 

f. Computational redesign of protein exterior to confer solubility 

We selected the above sites for mutation and a protein with all of the 44 sites selected 

for mutation (FIG 3-11). For these designs, the β value was constrained to a value of 

0.5; the EEnv score was constrained to a value of -35.0, consistent with the size of a 

water-soluble protein with the same size as SMO (FIG 3-12); and the total net charge of 

the protein was constrained to a value of 0 and the total net charge of the protein was 

constrained to a value of 0. The calculated amino acid probabilities at each variable site 

in the protein were used to determine mutations at that site that retain the wild type 

structure while increasing the water-solubility of the protein. The specific identified 

sequence is shown in FIG 3-13, with their alignment to the wild-type structure. A 



	
  
`	
  

 

121 

rendering of SMO in the wild-type form (left) and the computationally designed water-

soluble (wsSMO), is given in FIG 3-14. 

 

 

FIGURE 3-11 : Candidate solvent-exposed hydrophobic sites to mutate that were 

output by our criteria 
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FIGURE 3-12: Total EEnv score of Wild-type SMO 

Wild-type SMO protein is 346 residues, and the Total EEnv score of a training set water-

soluble protein with this size is -44.276. Due to SMO's exterior hydrophobic residues, its 

Total EEnv score is 0.921.  
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FIGURE 3-13: wsSMO and wild-type SMO protein sequence alignment 
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FIGURE 3-14 Comparison of wild-type SMO and wsSMO 

A summary of what all the sites were mutated to by the Saven protein design 

methodology is shown in the left table, along with a rendering of both the wild-type and 

the water-soluble variant. 
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CHAPTER IV: EXPERIMENTAL-CHARACTERIZATION OF WSSMO 

In this section, I will describe our efforts to experimentally characterize wsSMO. First, I 

will the scheme that we used to clone express and purify wsSMO protein. Next, I explain 

the techniques that we used to verify our protein's identity. Lastly, I will describe the 

biophysical techniques that we are using to test for wsSMO's ability to bind to ligands 

that are known to bind to wild-type SMO.  

 

4.1. CLONING, EXPRESSION AND PURIFICATION OF WSSMO 

 

a. Preliminaries: FPLC, and the different columns that were used 

Protein purification is performed using a fast-pressure liquid chromatography (FPLC) 

system. There are four main protein columns that I used: 

 

- Affinity columns: Maltose-Binding Protein, Histidine-Tag, and Anion-exchange 

columns  

A maltose-binding protein (MBP) column is used to isolate proteins that have a maltose-

binding protein affinity tag. This column consists of packed dextrin sepharose beads that 

are coated with amylose resin. When cell lysate is introduced to the column, non-MBP 

tagged protein will flow-through, and the MBP-tagged species will stick to the amylose. 

Elution with 10 mM maltose, which will outcompete with amylose resin for binding to the 

MBP-binding site, will result in the release of MBP-tagged protein from the column. The 

Histidine-tag column works in the same way, except that its sepharose beads are coated 

with Nickle ions that will bind to a 6X-Histidine protein tag; elution of the bound protein 

occurs with 500 mM imidazole. An Anion-exchange column has positively-charged 

tertiary amine molecules bound to its beads that will bind to negatively-charged proteins; 

elution takes place along an NaCl gradient (usually from 0 M NaCl to 75 mM NaCl over a 
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50 mL range). Proteins will elute from the column according to their net negative charge 

at the pH of the elution buffer (pH 8.0): positively charged species will pass through the 

column and end up in the flow-through.  

   

- Size-exclusion Chromatography 

Size-exclusion chromatography separates proteins via their ability to move through a 

series of porous beads. Small species will be able to fit into these porous locations, and 

will take longer to come out that a larger protein. Hence, proteins will elute from the 

column in decreasing order. Due to the sensitivity of this column, a volume less than 12 

mL needs to be injected. 

 

The pipeline for cloning, protein expression and FPLC purification is shown in FIG 4-1. 

These steps will be fully-explained in the forthcoming sections. 

 

 

FIGURE 4-1: Pipeline for pMAL-MBP-wsSMO protein purification 
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b. Selection of expression vector, cell-line, and growth conditions 

Selection of affinity tag 

In previous water-solubilization efforts, expression and purification was difficult, and the 

final proteins needed to be refolded from the insoluble pellets of the E.coli protein 

expression systems we were using. For wsSMO, the maltose-binding affinity tag (MBP) 

was chosen due to its ability to increase the solubility, rate-of-folding, and yield of 

recombinant proteins in protein expression systems. The presence of the affinity tag 

would also us to isolate the protein from the lysate via an MBP column. 

 

Selection of cell-line 

Though there are various E. coli protein expression systems, we had to be careful about 

the one we chose due to the presence of disulfide bonds. For many proteins, disulfide 

bonds have been found to be critical for stability, activity, and proper folding. The 

structure of Smoothened is notable because it contains 4 extracellular disulfide bonds 

that have been functionally implicated in SMO activation. In E. coli, disulfide bond 

formation is challenging due to the presence of thiol oxidative proteins in the cytoplasm 

(i.e. thioredoxin reductase and glutathione reductase); for endogenous E. coli proteins, 

disulfide bond formation takes place in the periplasm. This feature makes it problematic 

for using E. coli to produce proteins with multiple disulfide bonds, as recombinant 

proteins are expressed in the cytoplasm. As a result, a portion of proteins that contain 

disulfide-bonds end up being misfolded or poorly expressed in E. coli. Misfolded proteins 

can result in insoluble aggregates that are toxic to E. coli cells, leading to their death and 

effectively decreasing protein yield. In the case where E. coli are able to survive after the 

formation of these aggregates, these aggregates will become part of inclusion bodies 

upon cell lysis.   
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To help overcome the hurdles associated with over-expressing proteins with disulfide 

bonds, an E. coli cell line was engineered to overexpress disulfide bond isomerase C 

(DsbC), a protein found in E. coli periplasm that catalyzes disulfide bond formation, and 

which contained mutated and inactive forms of the cytoplasmic thioredoxin reductase 

(trxB) and glutathione reductase (gor) proteins. This cell line was subsequently 

commercialized (Shuffle T7 cells, New England Biolabs). We selected this cell line for 

our large-scale protein purification efforts in order to give us the best chance of obtaining 

a high-yield of MBP-wsSMO protein in the soluble fraction.   

 

c. Recombinant DNA cloning and pilot protein expression experiment  

The cDNA for the designed wsSMO sequence from Chapter III was obtained  (DNA 2.0, 

Menlo Park, CA)  and cloned into a pMAL-c5X expression vector via the NdeI and Hind 

III restriction sites (FIG 4-2A). pMAL-c5x contains an isopropyl β-d-1-

thiogalactopyranoside (IPTG) inducible promoter flanking the multiple cloning site; the 

malE gene encoding an N-terminal maltose-binding protein (MBP) tag; and the ampr 

drug selection marker. Theoretically, pMAL-MBP-wsSMO expression in E. coli would 

result in the production of MBP-wsSMO fusion protein (FIG 4-2B), which can be isolated 

via an MBP column. The MBP tag can be cleaved by Factor Xa protease (FXa), due to a 

FXa recognition site in the linker region between MBP and wsSMO in the fusion protein. 

 

Before attempting to purify protein MBP-wsSMO on a large scale, the optimal isopropyl 

β-d-1-thiogalactopyranoside (IPTG) concentration needed to induce expression of 

pMAL-MBP-wsSMO in E. coli needed to be determined. NEB Turbo Express competent 

E. coli cells were transformed with the pmAL-MBP-wsSMO construct, and the 

transformants were grown on LB Ampicillin plates at 370 C for 12 hours. Resulting 

colonies were then inoculated into 5mL LB-Amp starter cultures and grown for 12 hours. 
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200 uL of each culture were then inoculated into a 20 mL culture of LB-Ampicillin. These 

cultures were grown with 250 RPM shaking at 370 C to an optical density of 0.6, and 

then induced with a range of IPTG concentrations for 3 hours. After the induction period, 

the cultures were centrifuged, filtered and sonicated.  

 

The soluble fractions and the insoluble fractions (obtained via incubation of the bacterial 

pellet with 8M urea for 2 hours) corresponding to each IPTG concentration were run on 

an SDS-PAGE denaturing gel (FIG 4-3). The coomassie-stained gel demonstrates that a 

concentration of 1 mM IPTG results in the highest expression of protein species near the 

theoretical MBP-wsSMO fusion protein size of 85 kDA. However, there was also an 

increase in the expression of protein at ~42 kDA, the size of the MBP tag, as well as 

other proteins at various sizes. These other proteins could represent native E. coli 

proteins or MBP-wsSMO degradation products. 
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FIGURE 4-2: pMAL expression system 

a. Using NdeI and HindIII restriction sites, wsSMO was cloned into the pMAL-c5x vector. 

Upstream of the cloning site is a malE gene that encodes for MBP protein, resulting in 

an N-terminal MBP tag on wsSMO connected by a short linker sequence. 

 

b. Expressed of pMAL-MBP-wsSMO in an E. coli expression system can theoretically 

result in the production of MBP-wsSMO protein. In addition to being used an an affinity 

tag, MBP has been also reported to aid with protein-folding.  
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FIGURE 4-3. IPTG induction experiment for optimal MBP-wsSMO expression 

A pilot experiment was performed to determine the proper concentration of IPTG for 

MBP-wsSMO protein expression. We found that 1 mM IPTG gave high signal of protein 

expression in the region between 100 kDA and 75 kDA, where we expected MBP-

wsSMO to be present (theoretical size: 85 kDA). We found protein species that 

corresponded to this theoretical size in both the soluble and insoluble fractions. 
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d. Protein Purification and Expression of wsSMO 

From the pilot experiment, it appeared that 1mM IPTG was the optimal concentration for 

protein expression. From here, a scale-up experiment to 2 L cultures was performed. 

pMAL-MBP-wsSMO DNA was transformed into Shuffle T7 competent E. coli cells and 

incubated on LB-Ampicillin plates at 370 C for 24 hours. Individual colonies were then 

isolated and inoculated into 10 mL Terrific Broth-Ampicillin liquid starter cultures at 300C 

with 250 rpm shaking for 16 hours. These starter cultures were then inoculated into 2 L 

Terrific Broth-Ampicillin flasks and grown with shaking at 300 C to an optical density of 

0.6. MBP-wsSMO protein expression was induced with 1 mM IPTG for 4 hours. The 

bacteria were then pelleted and lysed via sonication. To prevent the potential formation 

of insoluble aggregates from forming due to disulfide-bonds via surface-exposed 

cysteines, 1 mM DTT was added to the sonication buffer to keep these cysteines in a 

reduced state. 

 

After sonication, the cell lysate was filtered and run through an FPLC MBP-column (FIG 

4-4A). Bound protein was eluted with 10 mM maltose, resulting in a prominent elution 

peak. Running the eluted protein on an SDS-PAGE denaturing gel revealed multiple 

protein species (FIG 4-4B). To separate these species, the MBP column eluted protein 

was run through a Superdex 75 size-exclusion column, resulting in a two peaks (FIG 4-

5). Fractions corresponding to the first peak (C11-D14) contained protein that was near 

the expected size of MBP-SMO (85 kDA), while the fractions corresponding to the 

second peak (fractions E1-F2) contained protein near the size of the MBP tag (43 kDA). 

To separate the fusion protein band from Peak 1 from the other protein bands below it, 

its fractions were collected and injected into an anion-exchange column (FIG 4-6). 

Individual peaks were then run on SDS-PAGE. Fractions C4-C12 were found to pure 

protein at the size of MBP-SMO. The range of salt concentrations in this collection was 
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534 mM NaCL to 750 nM NaCl. UV-VIS determination of the collected fractions revealed 

a yield of 283.61 ug of protein from 2 L of bacteria. Notably, combining fractions B9-C3 

(which contained a mixture of our suspected MBP-wsSMO fusion and a contaminant 

around 60 kDA) revealed a yield of 2.3 mg.   
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FIGURE 4-4: MBP column purification 

A) Results of the MBP column chromotography demonstrate a strong protein signal 

upon elution with 10 mM maltose, indicating the presence of MBP-tagged protein 

species. 

B) SDS-Page gel of the injection, flow-through and elution peaks. Lane C indicates 

multiple isolated protein species from MBP column elution, with the top species near to 

the theoretical size of MBP-SMO (85 kDA)   
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FIGURE 4-5: Size-exclusion column purification of MBP column elution 

A: Size-exclusion chromatography of the MBP elution fractions from FIGURE 4-6 

reveals two peaks. 

B: SDS-Gel of all the frations reveals that the first peak contains the two larger species, 

while the second peak contains what is likely the MBP tag (43 kDA) 
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FIGURE 4-6: Anion exchange column of size-exclusion void peak 

A: Anion-exchange chromatography to the size-exclusion peak 1 from FIGURE 4-5 

reveals two peaks that are not that well-resolved. 

B-E: SDS-PAGE of individual anion-exchange fractions; pure MBP-wsSMO fusion 

protein was detected in fractions C4-D12 

E: SDS-Page of the suspected MBP-wSMO fusion protein, after fractions C4-C12 were 

collected and centrifuge-concentrated 
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e. Primary and Secondary Structure verification  

Secondary structure verification by circular dichroism 

Chiral molecules absorb left-handed circularly polarized and right-handed circularly 

polarized light to different extents, an effect that can be measured as a function of 

wavelength known circular dichroism (CD). CD can be used to determine the secondary 

structural elements of proteins, such as alpha helices and beta sheets86. The 

percentages of secondary structural elements in a protein can be detected by observing 

the far-UV range (190-260 nm). For example, alpha-helical structures exhibit negative 

signal at 222 and 208 nm, while proteins with anti-parallel beta-sheets have negative 

bands at 218 nm and positive bands at 105 nm. CD spectra of the isolated fusion protein 

exhibited strong 209 and 222 minima, consistent with the presence of α-helical content 

(FIG 4-7). This spectra indicates that the protein is folded properly. If it were not folded 

properly, it would have CD spectra that is consistent with random coil. 
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FIGURE 4-7: CD spectra of the isolated protein from FIGURE 4-6 

The CD spectra of the isolated MBP-wsSMO protein indicates minima at 209 nm and 

222 nm, indicating alpha-helical structure and suggesting that the protein had folded 

properly. MBP tag's CD spectra is shown for reference. 
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Primary structure verification by M/S proteomic sequencing 

We attempted to obtain M/S sequencing on purified, untagged wsSMO. First, Factor XA 

cleavage was performed directly on the MBP column elution fractions. Factor XA 

cleavage was performed directly on the MBP column elution fractions (12 hours, 30 

degrees celsius), and the resulting cleavage products were injected into the MBP 

column (FIG 4-8). This resulted in prominent flow-through (possible untagged wsSMO) 

and elution (possible MBP tag) peaks. The flow-through products were then loaded them 

onto a size-exclusion column, resulting in four distinct peaks (FIG 4-9A). 

 

An SDS-gel of these four peaks (FIG 4-9B), along with the MBP flow-through and elution 

products after Factor XA cleavage, revealed the size-exclusion Peak 2 and Peak 4 size-

exclusion bands were close to the theoretical size of wsSMO (41.5 kDA). Peak 1 was 

the void peak, and Peak 3 was likely to be a degradation product. A CD analysis of the 

size-exclusion Peak 2 and Peak 4 protein samples demonstrated that both species had 

strong α-helical signal, indicating that both are properly folded. 
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FIGURE 4-8: FXA cleavage products run on the MBP column 

FXA cleavage of the MBP-wsSMO fusion protein will theoretically result in two proteins: 

an isolated MBP tag and an isolated wsSMO. We performed FXA cleavage on the MBP-

wsSMO protein, and ran the cleavage products on an MBP column. Theoretically, the 

wsSMO protein should be found in the flow-through, while the MBP tag will be eluted 

from the column. 
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FIGURE 4-9: Size-exclusion run of FXA cleavage products 

A: Running the MBP column flow-through from FIGURE 4-8 through a size-exclusion 

column results in four peaks; Peak 1 was an injection bubble peak and was cut-off from 

the chromatograph for clarity purposes. 

B: SDS-Page of the different peaks reveals that Peak 4 is close to the theoretical size of 

untagged wsSMO (41.5 kDA), while Peak 2 is a larger product. 
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To confirm if Peak 2 or Peak 4 was wsSMO, both samples were submitted to Dr. Ben 

Garcia for M/S protein identification. Using this technique, M/S fragments can be 

mapped to different regions of the MBP-wsSMO protein sequence.The MBP-wsSMO 

fusion protein is 763 amino acid longs, with residue 378 representing the division 

between MBP and wsSMO. For Peak 2, only peptide fragments corresponding to MBP 

(before residue 378) were found, amounting to a 10.22% total coverage of the MBP-

wsSMO protein sequence. Subsequently, the Peak 4 sample was analyzed. Initial 

digestion with chymotrypsin did not reveal any wsSMO signal; there was only 19.92% 

coverage of the entire MBP-wsSMO protein, with all of signal corresponding the MBP 

region (FIG 4-10A). However, this M/S spectra was not consistent with the size of the 

protein on the SDS-gel: it was giving a clean band at ~42 kDA. It was reasoned that, due 

to inherent structural characteristics of wsSMO, it was not being digested properly by 

chymotrypsin (Dr. Garcia had observed this in past attempts to sequence membrane 

proteins). Next, the  Peak 4 protein sample was digested with trypsin instead of 

chymotrypsin, and subjected M/S (FIG 4-10B). This digestion resulted in ion fragments 

that mapped to the wsSMO region. This verified that the size-exclusion Peak 4 sample 

was indeed wsSMO, and that the MBP-wsSMO fusion was being expressed. 
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FIGURE 4-10 Peak 4: M/S Protein Identification 

The MBP-wsSMO fusion protein is 763 amino acids. Residue 378 (dotted line) 

represents the division between MBP and wsSMO. Peak 4 sample from Figure 4-9 was 

subjected to M/S protein identification through digestion of either chymotrypsin or 

trypsin.  

9A: Chymotrypsin digestion of Peak 4 resulted in 19.92% coverage of the entire fusion, 

with all of the fragments (red) mapping to the MBP region of the sequence (left of the 

dotted line) 

9B: 63.83% coverage of the entire MBP-wsSMO sequence was obtained when Peak 4 

was digested with trypsin, with fragments mapping to the wsSMO portion of the 

sequence (right of the dotted line) 
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The difficulty with trypsin in digesting wsSMO can be accounted for by its high 

hydrophobic content. In the data, the sequence corresponding to the first 150 residues 

was not represented by ion fragments. A structural analysis of the designed wsSMO 

indicates that this region belongs to helix I of the transmembrane domain, and has a 

high content of hydrophobic residues. Hence, Dr. Garcia believes that chymotrypsin was 

unable to adequately cleave this region and product ionizable fragments. 

 

A second inconsistency in the M/S data is the presence of MBP ion fragments. The Peak 

4 protein sample was subjected to the MBP column, and all of the cleaved off MBP tag 

should theoretically have stuck to the column. Furthermore, it is not the case that the full 

MBP-wsSMO was the species that was sequenced, because a strong 85 kDA band was 

not present in the SDS-gel. This led me to hypothesize that there was a subset of MBP 

protein that, after cleavage, was not binding to the MBP column and hence was entering 

the flow-through. This can occur if the MBP tag itself was aggregating or was not 

properly folded after Factor Xa cleavage, due to the fact that MBP needs to be properly 

folded in order to bind to the column. From this data, it was concluded that a secondary 

tag was needed to purify wsSMO from the MBP tag after Factor Xa cleavage. 

 

Western Blots with Anti-MBP Antibody 

To test the hypothesis that residual cleaved MBP-tag was mixed with untagged-wsSMO 

after Factor Xa cleavage and MBP column purification, I performed a western blot 

analysis using rabbit anti-MBP antibody (New England Biolabs; 1:10,000 dilution in BSA 

overnight; 1:2000 dilution for 20 rabbit antibody, one hour incubation at room 

temperature) (FIG 4-11). This western blot demonstrates that, as expected, there is a 

band in the MBP elution column (lane 4) after Factor Xa cleavage that is running at the 
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same size as the MBP control (lane 6); both are running at approximately the expected 

size of MBP, 42 kDA. This is consistent with the MBP tag being separated from the 

untagged protein species. However, there is also residual MBP found in the MBP-

column flow-through (lane 3) and the HIS column flow-through (lane 5). This western 

blot verifies the M/S sequencing results, which reported a mixture of MBP and wsSMO. 
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FIGURE 4-11: Western Blot analysis of the MBP-wsSMO before and after FXA 

cleavage 

Lane 1 and 2 correspond to MBP-wsSMO fusion protein that is eluted from an MBP 

column. MBP-wsSMO protein after FXA cleavage (Figure 4-9) and injection into the 

MBP column is shown in Lane 3 (MBP column flow-through) and Lane 4 (MBP column 

eluted). Theoretically, Lane 3 should be pure untagged protein and Lane 4 should be 

pure MBP. Using an anti-body against MBP protein (NEB, rabbit primary antibody, 

1:10,000 dilution), MBP signal was found in the MBP column's eluted fractions 

(consistent with MBP-wsSMO protein). However, when MBP signal was also detected in 

the MBP flow-through fractions of Lane 3. This indicates that the MBP column was not 

separating the MBP tag from the wsSMO untagged protein after FXA cleavage. Pure 

MBP protein is shown for reference in Lane 6. 
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4.2. TERTIARY STRUCTURE VERIFICATION VIA BIOPHYSICAL LIGAND-BINDING 

STUDIES 

To test whether wsSMO is in its proper tertiary structure within the MBP-wsSMO fusion 

construct, we tested its ability to bind three small-molecule inhibitors that are known to 

bind to wild-type Smoothened (vismodegib, taladegib, sonidegib, and SANT-1)(FIG 1-2) 

using three biophysical approaches: circular dichroism thermal melt, CPM dye thermal 

melt, and nuclear magnetic resonance (NMR) 1H and 19F spectroscopy. As of writing, the 

CPM dye and NMR studies are still in progress.     

 

a. Circular Dichroism thermal shift assay 

Thermal shift assays are used to monitor protein unfolding as a function of temperature89 

(usually, across a range of 20C- 980C). There are several variations of this assay. One 

variant monitors the protein's circular dichroism signal at 222 nm during the temperature 

range; loss of signal corresponds to a loss of helicity as the protein unfolds90. Another 

variant of this assay uses a fluorescent dye91 (i.e. SYPRO orange, 1-anilinonaphthalene-

8-sulfonic acid (ANS), 7-diethylamino-3-(40-maleimidylphenyl)- 4-methylcoumarin 

(CPM)) that binds to hydrophobic residues in the protein. As a protein unfolds and 

interior hydrophobics become more exposed, the dye molecules will bind and an 

increase in fluorescent signal can be detected. In addition to being used to determine the 

melting temperature (Tm) of a protein, these approaches are used to as a read-out for 

ligand binding. When a ligand binds to a protein and stabilizes it, a shift in melting 

temperature relative to the apo protein is expected. 

 

For our initial experiments, we used a ratio of 2.35 uM MBP-wsSMO (purified from 

Anion-Exchange, as described in section b) to 200 uM SANT-1. This ratio is used in the 

pharmaceutical industry as a starting point in high-throughput drug screening using 
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thermal shift assays 92. First, a 20 mM ethanol stock solution of SANT-1 was made, and 

this stock was added to MBP-wsSMO in 20 mM Tris-200 mM NaCl (pH 7.4) buffer to a 

final volume of 250 uL (1% ethanol). This mixture was incubated at 230C for two hours, 

with gentle mixing every 30 minutes, and then subjected to CD thermal shift analysis. 

These results, compared to Apo 2.35 uM MBP-wSMO in 1% ethanol (obtained from the 

same batch of protein earlier in the day), are shown in FIG 4-12. These data 

demonstrate that Apo MBP-wsSMO appears to be more thermostable than the MBP tag 

alone: while MBP undergoes a dramatic unfolding event starting at ~500C, MBP-wsSMO 

unfolding occurs more gradually over a longer temperature range. Furthermore, the 

comparison of Apo and 200uM MBP-wsSMO samples demonstrates that drug 

incubation appears to stabilize MBP-wsSMO at temperatures above 700C. To test if 

SANT was binding non-specifically to the MBP tag, 10 uM of MBP was incubated with 

200 uM SANT (under the aforementioned incubation conditions) and subjected to a 

thermal shift assay (FIG 4-13). These results indicate that MBP incubated with SANT is 

not more thermostable than Apo MBP during the temperature range it unfolds (between 

500C and 600C).  
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FIGURE 4-12: Tmelt spectra of the isolated protein from FIGURE 5 (vs. MBP) 

The CD thermal profile of 2.35 uM MBP-wsSMO vs. 20 uM MBP demonstrate that MBP-

wsSMO is more thermally-stable than MBP, and has a melting/unfolding period over a 

longer temperature range. Comparison of Apo MBP-wsSMO with MBP-wsSMO 

incubated with 200 uM SANT-1 drug indicate a shift in melting temperature and 

stabilization of helicity in the presence of drug. 
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FIGURE 4-13: MBP and MBP-SANT 

To verify that SANT was not binding to MBP, a thermal melt was performed with 10 uM 

MBP in the absence (blue points) and presence of 200 uM SANT (red points). These 

data indicate that 200 uM SANT does not induce a melting temperature shift in MBP, nor 

cause an increase in helical character over the range where MBP melts. 

  

b. NMR-based binding experiments 

In this section, I describe how 19F and 1H NMR were used to determine if known SMO 

inhibitors can bind to MBP-wsSMO: SANT-T, Vismodegib, and Taladegib.     

 

NMR-based ligand-binding methods are currently being used in the pharmaceutical 

industry in drug screening assays and, in particular, fragment-based screening assays93. 

An example of this is shown in FIG 4-14. Here, a 19F-NMR spectra was obtained for 

small-fragments that contain fluorine groups (top panel, in black). After 10 uM of protein 

target of interest, BACE-1, is added to the fragment mixture, the resulting NMR spectra 
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demonstrates a broadening and intensity decrease of one of the peaks (bottom panel, in 

red). The same type of experiment has been shown with 1H NMR as well94 (FIG 4-15)  

 

The explanation for the NMR-spectra differences in peak width and peak intensity 

between the free drug and bound drug states can be explained as follows. The peak 

broadening is caused by differences in the small-molecule's local environment. When 

the unbound molecule is in solution, its molecular tumbling rate (i.e. its rotations and 

translations about its axis) is high95.Since a molecule's NMR spectra represents a 

population-weighted average of the different electronic environments for each functional 

group, a molecule with a high tumbling rate will have sharp, narrow peaks. In contrast to 

small-molecules, proteins are much larger and have lower molecular tumbling rates. 

When a small-molecule associates with a protein's binding site, its tumbling rate will be 

equivalent to the protein's tumbling rate. The resulting NMR spectra will reflect a 

population-weighted average of the free and bound forms. As a result, during a binding 

event, one will observe peak broadening (due to the averaging of the bound molecules' 

low tumbling rate and the unbound molecule's high tumbling rate) in the NMR spectra 

that for the functional groups that are bound to the protein. The decreases in peak 

intensity can be attributed to the fact that, when the compound is bound to the ligand, 

some of its functional groups are buried and not as exposed to the magnetic field versus 

if it were free in solution.   
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FIGURE 4-14: 19F NMR Fragment Screen Spectra 

A) Black panel (above) demonstrates NMR spectra of multiple 19F fragments. The red 

panel (below) demonstrates the NMR spectra of the fragments incubated with 10 uM of 

a target protein of interest, BACE-1.  

B) Zoom-in and overlap of the spectra before and after protein incubation can allow for 

the determination of fragments that are binding to the protein, via decrease in peak 

intensity and a peak shift. 

 

From the paper: 

Jordan et al. Fragment-based Drug Discovery: Practical Implication Based on 19F 

Spectroscopy. Journal of Medicinal Chemistry 2012, 55, 678-687    
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FIGURE 4-15: 1H NMR fragment screen spectra for BCL-XL inhibitors 

Top panel demonstrates 1H NMR spectra of compound library without protein target 

(top), and incubated with Bcl-xL protein (bottom). A decrease in intensity of portions of 

the NMR spectra in the presence of protein (arrow) allows one to determine the 

compound that is binding to Bcl-xL. 

 

From the paper: 

Meyer and Peters. NMR Spectroscopy Techniques for Screening and Identifying Ligand 

Binding to Protein Receptors. Angew. Chem. 2003, 42, No.8 
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1H binding studies with SANT-1 and Vismodegib 

To determine if SANT-1 binds to MBP-wsSMO via 1H NMR, we first performed a buffer 

exchange of pure MBP-wsSMO from its storage buffer (20 mM Tris-HCl, 200 mM NaCl, 

pH 7.4) to the equivalent deuterated buffer (20 mM deuterated- Tris, 200 mM NaCl, pH 

7.4 in deuterated H20) using Amicon centrifugal filters. For this experiment, protein 

sample in the storage buffer were placed in the filter and centrifuged for 15 minute 

cycles at 6000 rpm (5450 rcf). After each cycle, a volume of deuterated buffer was 

added to the protein that was equivalent to the volume of normal buffer that passed 

through the filter. These volume changes were used to track the volume percent of H2O 

in solution. After seven cycles, the H20 percentage was reduced to < 0.5% by volume, 

which was adequate performing 1H NMR experiments without water contaminating the 

spectra.  

 

Next, we wanted to determine if there were differences in the 1H NMR spectra of SANT-

1 alone and SANT-1 incubated with MBP-wsSMO. First, we obtained the 1H spectra of 

200 uM SANT-1 (FIG 4-16, aromatic group between 7-8 ppm circled in red). A series of 

titrations were performed, from a 200:1 ratio of SANT-1: MBP-wsSMO down to 20:1 (FIG 

4-17). For these experiments, the appropriate volume of MBP-wsSMO protein and 200 

uM drug were added together to a total volume of 600 uL, and incubated at 230C for 1 

hour. Next, the incubation mixture was transferred to an NMR tube, and 1H spectra 

acquisition was obtained. The data in FIG 4-17 demonstrate that, as MBP-wsSMO 

protein is titrated into 200 uM SANT-1 at increasing concentrations, the peaks that 

correspond to the SANT-1 aromatic groups exhibit widening and a decrease in intensity; 

the extent of these changes increases with increasing protein concentration. Taken 

together, these data indicate that SANT-1 is binding to MBP-wsSMO. We next 

performed a 20:1 (drug : protein) experiment with MBP-wsSMO and the SMO inhibitor 
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vismodegib (FIG 4-18), an FDA-approved compound that is currently indicated for 

treatment of basal-cell carcinoma. Incubation of 200 uM vismodegib with 10 uM MBP-

wsSMO resulted in a dramatic intensity decrease of the aromatic peaks (FIG 4-19), 

indicating that vismodegib is binding to MBP-wsSMO.  
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FIGURE 4-16: 1H NMR Spectra of 200 uM SANT-1 

A) Predicted 1H NMR spectra for SANT-1 (ChemDraw) 

B) Actual 1H NMR spectra for 200 uM SANT-1. Aromatic region of interest is circled in 

red. 
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FIGURE 4-17: 1H NMR spectra of SANT-1 incubated with MBP-wsSMO Protein 

A) 1H NMR spectra for 200 uM SANT-1 incubated with various concentrations of MBP-

wsSMO protein: SANT-1 alone, 200:1 (1 uM MBP-wsSMO), 100:1 (2 uM MBP-

wsSMO), 40:1 (5 uM MBP-wsSMO), 20:1 (10 uM MBP-wsSMO), Apo Protein (10 uM 

MBP-wsSMO). A dose-dependent decrease in peak intensity, and peak broadening, is 

observed. 
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FIGURE 4-18: 1H NMR spectra of Vismodegib 

A) Predicted 1H NMR spectra for vismodegib (ChemDraw) 

B) Actual 1H NMR spectra for 200 uM vismodegib. Aromatic region of interest is circled 

in red. 
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FIGURE 4-19: 1H NMR spectra of Vismodegib incubated with MBP-wsSMO Protein 

1H NMR spectra of 200 uM vismodegib (blue) and 200 uM incubated with 10 uM 

MBP-wsSMO. Upon incubation with the drug, there is a loss of signal of the aromatic 

region, suggesting that the aromatic region is bound within the pocket of MBP-wsSMO. 
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19F binding studies with Taladegib 

The biggest drawback of the 1H NMR binding experiment is the buffer exchange step 

where MBP-wsSMO is placed in deuterated-Tris/deuterated-H20 solvent. At the end of 

the seven centrifuge cycles needed to get H20 percentage down to 0.5%, we 

experienced a protein loss of ~50%. This was problematic because (1) it took several 

time-consuming FPLC steps to obtain purified MBP-wsSMO from one bacterial pellet, 

and (2) one would ideally want to have enough MBP-wsSMO protein available to test 

several compounds at several different concentrations.  

 

One way to avoid these buffer exchange steps would be to perform a 19F NMR binding 

experiment instead of a 1H NMR binding experiment. These experiments do not require 

the use of deuterated solvents, which would allow for ligand-binding studies to be 

performed in the regular storage buffer and prevent the dramatic loss of MBP-wsSMO 

protein that we experienced. As with 1H NMR binding studies, binding events with 19F-

NMR are indicated by broadening of peaks, decreased peak intensity, or peak shifts93. 

For this experiment, we used the SMO inhibitor Taladegib (FIG 4-20) (currently in clinical 

trials), which has two aromatic-ring fluorine substituents (a -CF3 and an -F). The 19F 

NMR spectra of 200 uM Taladegib was obtained, demonstrating two peaks that 

correspond to the two fluorinated groups. To determine if non-specific binding was 

occurring, 200 uM of Taladegib was incubated with 10 uM of purified MBP, resulting in a 

subtle decrease in peak intensity and a slight broadening of peak width; this suggests 

that there is a degree of non-specific binding to Taladegib to the MBP tag. However, 

when 200 uM of Taladegib was incubated with 10 uM MBP-wsSMO, a larger degree of 

peak broadening and peak intensity decrease was observed compared to the spectra 

with Taladegib-MBP, in addition to a shift of these peaks. These data suggest that 
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Taladegib is binding to MBP-wsSMO, and that these observed NMR changes are not 

due to non-specific binding to the MBP tag.  
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FIGURE 4-20: 19F NMR spectra of Taladegib incubated with MBP-wsSMO Protein 

200 uM Taladegib was incubated with 10 uM of MBP (negative control) and 10 uM of 

MBP-wsSMO. A slight peak broadening, as well as a slight decrease in peak intensity, is 

observed for the Taladegib/MBP sample. However, the Taldegib/MBP-wsSMO sample 

shows a larger amount of peak broadening (as indicated the peak half-width) and peak 

intensity. These data suggest that Taladegib is making transient interactions with MBP 

(likely non-specific binding), but making stronger and deeper interactions with MBP-

wsSMO.  
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d. Summary of findings thus far 

Based on the experiments described in sections c-f, I conclude the following about the 

MBP-wsSMO fusion protein: 

 - it is expressed in a soluble form in E. coli. We did not have to isolate it from the 

 insoluble fraction, and did not have to refold it using a variety of buffer conditions. 

 -  It exhibits α-helical character upon a CD wavelength scan, and does not exhibit 

 random-coil character that is consistent with an unfolded protein 

 - It has been sequence-verified by M/S protein identification. 

 -  It has a CD wavelength and thermal melt profile that differ from isolated MBP 

 tag, indicating that this is not the case that all of the signal is coming from the 

 MBP portion of the fusion protein 

 -  It is more thermal stable than the isolated MBP tag, and has a longer period of 

 unfolding (over a longer temperature range) than the MBP tag 

 - It appears to be stabilized upon incubation with the known SMO ligand 200 uM 

 SANT, over a  temperature range of 700C to 900C. The MBP tag alone, however, 

 exhibits no change in helicity or stabilization upon incubation with the same drug. 

 - It appears to bind to compounds that are known to bind to the wild-type SMO, 

 as assessed by 1H and 19F NMR binding studies 

 

e. Experiments in progress 

As of writing, we are performing the following experiments: 

Negative control experiment: The above experiments suggest that 1) MBP-wsSMO is 

binding to the known SMO inhibitors taladegib, vismodegib and SANT-1, and 2) As 

demonstrated by 19F NMR and circular dichroism thermal shift assay, binding of MBP-

wsSMO to the these inhibitors is not due to non-specific binding of these inhibitors to the 

MBP tag. A negative control would determine if the NMR binding assay is specific for 
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binding to SMO inhibitors versus molecules that bind to other GPCRS. The binding study 

with drug maraviroc, which binds to the GPCR CCR5 and which has a 19F-group, will be 

used for this negative control experiment. First, the 19F NMR spectra will be determined 

for maraviroc, and for maraviroc incubated with 10 uM MBP-wsSMO and 10 uM MBP. If 

this binding assay is specific, there should be no (or minimal) change in the NMR 

spectra between the maraviroc 19F spectra alone and maraviroc incubated with MBP or 

MBP-wsSMO. 
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CONCLUSIONS 

In this thesis, I addressed three key problems in medicinal chemistry and drug discovery 

using a combination of computational and experimental approaches. I will conclude my 

thesis by providing a summary of the methodologies that I used to address these 

problems, as well discussing how my methodologies provide a practical improvement 

over the approaches that are currently used in the field. 

 

PART I. DESIGNING A DRUG 

 

Problem 1. Designing brain penetrant inhibitors    

Many protein targets that are important in the pathophysiology of neurological disorders 

are expressed in peripheral tissues. Many of these targets are also involved in other 

diseases, and already have effective drugs that inhibit them. However, the majority of 

these drugs have a mechanism of action that involve very polar or charged functional 

groups (i.e. electrostatic interactions, multiple hydrogen bonds) that prevent them from 

passing through the blood brain barrier. Because of this problem, developing brain 

penetrant inhibitors has been a huge challenge in the medicinal chemistry community. In 

Chapter I of my thesis, I posed the following question: can one use computational 

approaches to determine the ways to modify an inhibitor of a known protein target so 

that the modified compound can not only get into the brain, but can still inhibit its target 

once there?  

 

The case that I focused on is the carboxylic acid group, which is found in a plethora of 

drugs yet which forms carboxylate at physiological pH. The traditional method that has 

been used in medicinal chemistry over the past ~50 years (which is still being used 

today) has been to randomly replace the carboxylic acid group with a multitude of 
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derivatives, and to test them all individually in assays for brain penetration (i.e. partioning 

of the compounds between water and octanol, or through a PAMPA artitifial membrane). 

However, the chemical space around which the carboxylic acid group can be modified is 

vast (see FIG 2.6 for a subset of isosteres). For chemistry academic labs, it would take 

one post-doc working for close to a decade to synthesize the all of the common 

carboxylic acid isosteres (and sub-derivatives of these compounds) necessary to make a 

screening library. In larger drug development programs in the pharmaceutical industry, 

teams of organic chemists can work for years a decade produce thousands of 

derivatives. There are two main problems with this approach. First, even with an x-ray 

crystal structure of the target, there are an immense number of changes that can be 

made at several sites of the inhibitor that can influence its ability to bind the target. 

Second, the approach of randomly making compound analogs and screening them 

against the target to find a hit has historically had a very low success rate, akin to finding 

a needle in a haystack. Third, even if it is the case that an analog turns out to be a hit 

from the screen, it must now have the physiochemical properties that are amenable to 

brain penetration. Hence, there does not exist a straightforward procedure for predicting 

whether a given carboxylic acid analog can 1. still inhibit the target and 2. has the 

physiochemical properties that would allow for brain penetration.  

 

In Chapter I, I addressed these problems using tools from computational chemistry and 

synthetic organic chemistry. A brief summary of the approach I used is as follows. Our 

group made several model compounds that, historically in the medicinal chemistry field, 

have been used to as replacements of the carboxylic acid group. We then 

experimentally determined different physiochemical properties of these isosteres, and 

came up with a subset of isosteres that had a high probability of penetrating the brain 

(based on their logPapp and logD7.4 values). Next, I used a chemical enumeration 
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algorithm to place these isosteres onto the scaffolds of drugs that were known to bind to 

my target, resulting in ~24,000 candidate compounds. Afterwards, I used a molecular 

docking algorithm to screen these compounds against the x-ray crystal structure of my 

drug target, in order to determine those candidate compounds that had a high likelihood 

of inhibiting the target even after the carboxylic acid group was replaced. Lastly, to 

demonstrate that my computational strategy worked, I synthesized a number of these 

screening hits. A collaborator experimentally determined that these synthesized 

compounds did indeed inhibit the target in an LC-MS based assay that is the standard 

for testing drug activity.  

 

The isosteric replacement/molecular docking/organic synthesis strategy I put forth in 

Chapter I provides a practical improvement over the approach that is currently used in 

the field. For brain penetrant inhibitors, chemists can use the physiochemical property 

data that we determined to guide the types of compounds that they want to make for 

their screening libraries. The molecular docking approach can be used to further limit the 

number of compounds to make and test, which would not only save a substantial 

amount of time and money, but increase the likelihood that a synthesized compound will 

be a true hit. This strategy does not need to be limited to carboxylic acid isosteres: there 

are several functional group classes that are widespread in medicinal chemistry (i.e. 

amide bond isosteres), and this approach can easily be translated into drug discovery 

programs involving these different classes. 

 

Problem 2. Designing drugs to inhibit two targets simultaneously 

Many pathophysiological processes are driven by multiple protein targets that work 

together synergistically to promote a disease state. These proteins are often in different 

biological pathways and have different functions. One therapeutic strategy would be to 
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administer multiple drugs that inhibit these protein targets: this is a common strategy 

used in infectious diseases (i.e. H.A.A.R.T therapy in HIV, and antibiotic combinations 

for serious drug-resistant bacterial strains such as methicillin-resistant Staph aureus). 

This strategy is useful when all of the protein targets are known, and there already exist 

inhibitors for each of them. However, it is not feasible when one or more of the targets 

does not already have an inhibitor. A different strategy would be to take a known 

inhibitor of one of these targets, and to modify it so that it now not only still inhibits its 

targets, but now inhibits a second target. This strategy is difficult for many of the reasons 

explained for Problem 1. Designing brain penetrant inhibitors: since there are an 

immense number of chemical changes that can be made at several sites of an inhibitor, 

a very large number of analogs will need to be made and screened against both targets. 

In Chapter II of my thesis, I posed the following question: can one use computational 

approaches predict which changes can lead to compounds that can inhibit both targets? 

 

I illustrated my methodology using the example of Alzheimer's Disease. Experimental 

evidence from our group demonstrated that both the neuroinflammation pathway (driven 

by the proteins COX and LOX) and microtubule destabilization are involved in 

Alzheimer's Disease onset and progression. Hence, COX, LOX and microtubules 

represent potential drug targets. For my approach, I first identified known microtubule-

stabilizing agents that structurally resembled the COX inhibitor celecoxib. Next, I took 

these compounds and performed molecular docking using the x-ray structure of COX-1 

with celecoxib. Celecoxib does not have the classic carboxylic acid-ARG120 interaction 

that the other COX inhibitors have; because of this, other molecular interactions had to 

be identified (i.e. GLN 192 hydrogen bond with the amide of the inhibitor that is present 

deeper in the binding cavity). I used these alternative interactions to determine if the 

candidate microtubule-stabilizing agents were binding in the COX-1 site in the proper 
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orientation, and that they were making similar interactions to that of celecoxib with COX-

1. In the end, 11 candidate inhibitors were from the screen were initially synthesized. 7 

of these inhibitors came directly from the docking screen (without modification), while 3 

were subtle modifications of these hits. In the end, 10/11 of these compounds were hits 

in both the LC-MS COX assay and the LC-MS LOX assays. These results provide a 

starting point for tri-active Alzheimer's Disease drugs. 

 

The strategy that I put forth in this chapter represents an advancement in drug 

development programs for not only Alzheimer's Disease, but with other diseases that are 

driven by multiple protein targets. If it is the case that one such protein target has an x-

ray crystal structure, molecular docking can be used to identify compounds that have a 

higher probability than binding to other targets. 

 

PART II. (RE)DESIGNING A PROTEIN TARGET 

Problem 3. Membrane proteins are involved in a plethora of disease processes 

spanning multiple organ systems. However, developing drugs against them is difficult 

because there does not exist a straightforward method for testing whether a ligand can 

bind to a membrane protein of interest. This is due to the plethora of hydrophobic 

residues that exist on the exterior of membrane proteins. Because of these residues, 

membrane proteins are difficult to isolate and incorporate into ligand-binding studies. 

The goal of Part II of my thesis was to develop a computational approach for designing a 

water-soluble variant of a membrane protein that retains the wild-type's key structural 

and ligand-binding properties. Such a variant could then be incorporated into a ligand-

binding assay that does not require detergents or labeling (either of the protein or of the 

drug).  
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How my method can advance our understanding of a specific membrane protein: 

the cancer-associated GPCR SMO 

 

Aberrant Hedgehog (Hh) pathway activation been implicated in a variety of cancer types. 

Attempts to target this pathway via SMO inhibition have yielded promising clinical trial 

results. Over the past several years, key structural features of SMO have been 

elucidated. Various synthesized compounds have been used to identify extracellular 

binding sites, and x-ray structures have been obtained of SMO in different 

conformations. Despite this progress, many of SMO’s direct extracellular and 

intracellular interactions are not known. For example, it has been proposed that the 

membrane protein Patched represses SMO by actively pumping out its endogenous 

agonist; however, this agonist has not been discovered. Furthermore, it has not known 

whether SMO activates oncogenic transcription factors through a direct interaction or 

indirectly through other proteins. The lack of a simple experimental system for testing 

SMO binding has prevented progress in our understanding of these key molecular 

interactions. One commonly used SMO binding assay tests whether a candidate 

molecule is able to displace binding of radioactive or fluorescently-labeled cyclopamine 

(a SMO antagonist) from cells that are over-expressing SMO. However, this method is 

unable to identify molecules that bind outside of the cyclopamine binding site. Another 

method involves over-expressing SMO in a cell line (i.e. HEK 293T) and performing 

binding studies on isolated membrane fractions. In addition to being a technically 

challenging and low-yield experiment, this approach is problematic due to the presence 

of non-SMO proteins in the fraction that could bind to the candidate molecule. 

 

The development of wsSMO was incorporated into a cell-free NMR-based binding 

assay. This assay was used to test whether known candidate molecules were binding to 
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wsSMO via a changes in the NMR spectra of the compounds. In the future, I foresee 

wsSMO itself serving as a useful experimental tool for large- scale discovery 

experiments such as the proteomics assay SILAC, which can be used to discover 

proteins and peptide ligands that bind to wsSMO via a mass spectrometry read-out. 

Hence, both wsSMO and the wsSMO-NMR assay will provide researchers with much-

needed experimental tools for obtaining new biological insights into how activated SMO 

leads to tumorigenesis. This information can potentially lead to novel methods for 

therapeutically attacking the Hh pathway, via inhibiting newly discovered SMO binding 

sites or the proteins it interacts with. 

 

How my method can advance drug development efforts for membrane proteins in 

general 

Membrane proteins are the targets of over 60% of all pharmaceutical drugs on the 

market. Drug resistance due to membrane protein binding-site mutations is a 

widespread challenge in medicine and has been identified in other cancer types (i.e. 

EGFR in lung cancer) and in a variety of infectious diseases such as HIV (CCR5), 

Influenza (M2 channel) and methicillin-resistant Staph Aureus (penicillin-binding site). 

Though this proposal is focused on SMO drug-resistance, the technologies I am 

developing can be applied generally to the study of disease-associated membrane 

proteins. For a membrane protein that is difficult to purify in quantities needed for 

structural or experimental studies, the membrane protein solubilization approach can be 

used to develop a water-soluble variant that can be isolated in large amounts from a 

protein expression system and used in a variety of experiments. Incorporating a water-

soluble variant into an NMR assay can provide a quick and simple method for testing 

hypotheses about molecular interactions and drug binding.  
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APPENDIX A. SYNTHESIS OF SULFONYLUREA ISOSTERE 
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APPENDIX B. SYNTHESIS OF 3-ISOXAZOLOL ISOSTERE 
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APPENDIX C. SYNTHESIS OF HYDROXAMIC ACID ISOTERE 
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APPENDIX D. SYNTHESIS OF ACYLSULFONAMIDE ISOSTERE 
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APPENDIX E. SYNTHESIS OF LICOFELONE HYDROXAMIC ACID ISOSTERE 
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