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Fully Distributed And Mixed Symmetric Diagonal Dominant Solvers For
Large Scale Optimization

Abstract
Over the past twenty years, we have witnessed an unprecedented growth in data, inaugurating the

so-called "Big Data" Epoch. Throughout these years, the exponential growth in the power of computer

chips forecasted by Moore's Law has allowed us to increasingly handle such growing data

progression. However, due to the physical limitations on the size of transistors we have already

reached the computational limits of traditional microprocessors' architecture.Therefore, we either

need conceptually new computers or distributed models of computation to allow processors to solve

Big Data problems in a collaborative manner.

The purpose of this thesis is to show that decentralized optimization is capable of addressing our

growing computational demands by exploiting the power of coordinated data processing. In particular,

we propose an exact distributed Newton method for two important challenges in large-scale

optimization: Network Flow and Empirical Risk Minimization.

The key observation behind our method is related to the symmetric diagonal dominant structure

of the Hessian of dual functions correspondent to the aforementioned problems. Consequently, one

can calculate the Newton direction by solving symmetric diagonal dominant (SDD) systems in a

decentralized fashion.

We first propose a fully distributed SDD solver based on a recursive approximation of SDD matrix

inverses with a collection of specifically structured distributed matrices. To improve the precision of

the algorithm, we then apply Richardson Preconditioners arriving at an efficient algorithm capable

of approximating the solution of SDD system with any arbitrary precision.

vi

Our second fully distributed SDD solver significantly improves the computational performance of

the rst algorithm by utilizing Chebyshev polynomials for an approximation of the SDD matrix

inverse. The particular choice of Chebyshev polynomials is motivated by their extremal properties

and their recursive relation.

We then explore mixed strategies for solving SDD systems by slightly relaxing the decentralization
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requirements. Roughly speaking, by allowing for one computer to aggregate some particular information

from all others, one can gain quite surprising computational benefits. The key idea is to

construct a spectral sparsifier of the underlying graph of computers by using local communication

between them.

Finally, we apply these solvers for calculating the Newton direction for the dual function of Network

Flow and Empirical Risk Minimization. On the theoretical side, we establish quadratic convergence

rate for our algorithms surpassing all existing techniques. On the empirical side, we verify our

superior performance in a set of extensive numerical simulations.
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ABSTRACT

FULLY DISTRIBUTED AND MIXED SYMMETRIC DIAGONAL DOMINANT SOLVERS FOR
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Over the past twenty years, we have witnessed an unprecedented growth in data, inaugurating the

so-called ”Big Data” Epoch. Throughout these years, the exponential growth in the power of com-

puter chips forecasted by Moore’s Law has allowed us to increasingly handle such growing data

progression. However, due to the physical limitations on the size of transistors we have already

reached the computational limits of traditional microprocessors’ architecture.Therefore, we either

need conceptually new computers or distributed models of computation to allow processors to solve

Big Data problems in a collaborative manner.

The purpose of this thesis is to show that decentralized optimization is capable of addressing our

growing computational demands by exploiting the power of coordinated data processing. In partic-

ular, we propose an exact distributed Newton method for two important challenges in large-scale

optimization: Network Flow and Empirical Risk Minimization.

The key observation behind our method is related to the symmetric diagonal dominant structure

of the Hessian of dual functions correspondent to the aforementioned problems. Consequently, one

can calculate the Newton direction by solving symmetric diagonal dominant (SDD) systems in a

decentralized fashion.

We first propose a fully distributed SDD solver based on a recursive approximation of SDD matrix

inverses with a collection of specifically structured distributed matrices. To improve the precision of

the algorithm, we then apply Richardson Preconditioners arriving at an efficient algorithm capable

of approximating the solution of SDD system with any arbitrary precision.
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Our second fully distributed SDD solver significantly improves the computational performance of

the first algorithm by utilizing Chebyshev polynomials for an approximation of the SDD matrix

inverse. The particular choice of Chebyshev polynomials is motivated by their extremal properties

and their recursive relation.

We then explore mixed strategies for solving SDD systems by slightly relaxing the decentralization

requirements. Roughly speaking, by allowing for one computer to aggregate some particular infor-

mation from all others, one can gain quite surprising computational benefits. The key idea is to

construct a spectral sparsifier of the underlying graph of computers by using local communication

between them.

Finally, we apply these solvers for calculating the Newton direction for the dual function of Network

Flow and Empirical Risk Minimization. On the theoretical side, we establish quadratic convergence

rate for our algorithms surpassing all existing techniques. On the empirical side, we verify our

superior performance in a set of extensive numerical simulations.
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CHAPTER 1 : INTRODUCTION

Data analysis has become a major tool for acquiring predictive models with the goal of discovering

useful information, suggesting conclusions, and supporting decision-making in a variety of fields

including but not limited to heath-care (Zupan et al. (1997)), engineering (Spiliopoulou et al. (2014)),

marketing (Jeffery (2010)), et cetera. Before achieving a ”data product” raw information has to go

through several phases. After being acquired, data is first processed and cleaned to remove errors

and record duplication, as well as to recognize outliers that might have been incorrectly entered.

Once cleaned, it can be analyzed to arrive at mathematical models that can be used to derive

conclusions and make predictions in reality. The goal of such models is to identify relationships

among the variables, such as correlation or causation that reflect inherent properties in a particular

data set. Machine learning (ML) is a sub-field of computer science that is dedicated to deriving these

complex predictive models. In ML, computers act without being explicitly programmed. Contrary

to standard programming paradigms, in ML, a programmer designs a general architecture of a

computer code that can accept inputs and derive outputs. Rather than pre-setting all required

parameters to achieve the desired task, these are acquired with the aid of input data through a

process of self-tuning. Here the program automatically optimizes for free-parameters to minimize a

cost function that describes the task. To clarify, consider the example of classifying images of rhinos

versus elephants. A general computer program that can accept images, say in pixel format, and

output a class label, i.e., a discretized zero/one output, is first written. The program, however, is not

explicitly told how to output a class label to an input image. Rather a form of parameterized mapping

between images and class labels is assumed (e.g., logistic function, neural network, etc.). Having

acquired data, self-tuning commences to determine the ”best” parameters (i.e., those that optimize

a pre-specified cost/error on the training data) that correctly classifies rhinos from elephants.

Searching for the ”best” set of free-parameters ties machine learning to numerical optimization, which

delivers a rich literature of efficient and scalable algorithms for data analysis and machine learning.

Among these, maybe the most abundant are centralized first-order gradient techniques ( Boyd and

Vandenberghe (2004b), Ruder (2016), Andrychowicz et al. (2016a)). These algorithms come in

different flavors under different names, including gradient and steepest descent ( Andrychowicz et al.

(2016b)), or stochastic gradient descent ( Bottou (2010)). Here, parameters are tuned by iteratively
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following a scaled version of the gradient of the cost function. In the standard case, the gradient

is computed by running over all data points, while in the stochastic setting only one or a subset of

the data is considered, leading to a more appealing algorithm for large-scale applications. Though

abundant and cheap to compute, stochastic gradient-based methods are relatively slow exhibiting

sub-linear convergence of the form O
(

1√
t

)
with t being the total number of iterations ( Blair (1985),

Agarwal et al. (2012)). This performance is caused by the diminishing step size essential for the

global convergence. Adaptive Gradient (AdaGrad) is an alternative approach that removes the

step size issue by dynamically incorporating knowledge of the geometry of the data observed in

earlier iterations to perform more informative gradient-based learning. In other words, this method

gives frequently occurring features low learning rates and infrequent features high learning rates. The

intuition behind of this behavior is that each time an infrequent feature is seen, the algorithm should

take notice. Thus, the adaptation facilitates finding and identifying very predictive but comparatively

rare features ( Duchi et al. (2010)). Although the convergence properties of AgaGrad are similar to

to those of its stochastic counterpart, numerous empirical studies show significant improvement for

the sparse data set scenarios.

Aiming at improving convergence speed limitations, the authors in Boyd et al. (2011) relied on

a primal-dual decomposition technique to propose the alternating direction method of multipliers

(ADMM) that achieves linear convergence of the form O
(

1
t

)
. Despite being successful at efficiently

reducing the error function value, it has been shown in later studies ( Nishihara et al. (2015),

Kadkhodaie et al. (2015)) that ADMM requires numerous iterations to achieve accurate solutions.

Another class of algorithms with superior performance to these detailed earlier is the class of second-

order (Newton) methods. Rather than solely relying on the gradient, Newton iterates consider the

curvature of the optimization objective by taking Hessian (the matrix of second-order gradients)

into account. Here, updates are done by descending in the Newton direction. Convergence results

in Boyd et al. (2011) have shown that following the Newton direction leads to improved algorithms

with two phases of convergence being strict and quadratic decrease. Despite the fast convergence

properties, the centralized application of Newton method is restricted by the necessity to compute

and invert the Hessian matrix. This situation becomes even worse for large-scale scenarios due to

excessive memory requirements.

Recently, researchers and developers have met new computational challenges caused by a remarkable

growth of data. With such unprecedented increase, the memory and computational requirements
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are growing much faster than processing speeds, making traditional centralized solutions (such as

various first order stochastic gradient descent (SGD) algorithms) inefficient. As an example let us

consider the current state of the art deep neural networks ( Szegedy et al. (2015), Krizhevsky et al.

(2012)) operating with millions of parameters and characterizing with a very slow training time

(may take several days). The typical strategy to accelerate the training procedure is adopting it to a

parallel framework by allocating resources over many machines. (Dean et al. (2012)). This approach

not only speeds up neural network training but also allows researchers to build more sophisticated

models where different machines compute different splits of the mini-batches. Even though SGD

exhibits nice scalability with respect to the complexity of a model and the size of datasets, it does

not adopt well into a parallel setting: larger mini-batches and more parallel computations exhibit

diminishing returns for SGD algorithms.

In the past decades, distributed programming frameworks such as Open Message Passing Interface

(MPI) have endorsed rich primitives to leverage flexibility in implementing algorithms across dis-

tributed computing resources, often delivering high-performance but coming with the cost of high

implementation complexity ( Quinn (2003)). Despite the high performance and significant practical

impact, the large-scale application of MPI methods is restricted by implementation complexities. In

order to handle correctly communication and synchronization between clusters, MPI methods require

a lot of programming effort as well as deep system-level understanding. The alternative models, such

as Hadoop and SPARK, have recently emerged and formulated well-defined distributed program-

ming paradigms leading to a powerful set of APIs specially built for distributed processing ( Chu

et al. (2007)). These abstractions make the implementation of distributed algorithms more easily

accessible to researchers, but seem to come with poorly understood overheads associated with com-

munication and data management, which make the tight control of computation vs communication

cost more difficult.

Apart from serving as a computational tool for very specialized scientific purposes and companies’

operational routines, distributed optimization is strongly involved in new emerging global technolo-

gies, such as Internet of Things (IoT) ( Vermesan and Friess, Mattern and Floerkemeier (2010)).

Simply put, IoT is the concept of connecting basically any device with an on and off switch to the

Internet (and/or to each other). Cell phones, headphones, lamps, refrigerators, coffee machines and

almost any device might be a part of IoT. In other words, Internet of Things can be visualized as a
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giant network of connected intelligent components interacting with each other. The analyst company

Gartner predicts that by 2020 the number of components in this network will be over 26 billion.

According to the recent EU Commission action plan recognized the Internet of Things as a general

evolution of the Internet from a network of interconnected computers to a network of interconnected

objects” ( IoT (2009)).

From a technical point of view, the IoT is not the result of a single novel technology; instead, several

complementary technical developments provide capabilities to build a bridge between the virtual

and physical world. These capabilities include but are not limited to:

• Communication and cooperation: Different components of the IoT network have the ability

to interact with each other, to make use of data and services and update their state. Wireless

technologies such as WPAN, GSM and UMTS, Wi-Fi, Bluetooth, ZigBee and various other

wireless networking standards are currently under development.

• Distributed information processing: Intelligent objects feature a processor, plus storage capac-

ity. These resources can be used, for example, to process and interpret sensor information, or

to collectively perform more sophisticated computations.

IoTs distributed and dynamic nature, resource constraints of sensors and embedded devices as

well as the amounts of generated data are challenging even for the most advanced data analysis

methods known today. In particular, the IoT requires a new generation of distributed analysis

methods. Many surveys ( Atzori et al. (2010), Gubbi et al. (2013) Partynski and Koo (2013),

Xu et al. (2014)) have strongly focused on the centralization of data in the cloud and big data

analysis (so-called Master/Slave model), which follows the paradigm of parallel high-performance

computing. However, bandwidth and energy can be too limited for the transmission of raw data,

or it is prohibited due to privacy constraints. Such communication-constrained scenarios require

decentralized analysis algorithms which at least partly work directly on the generating devices.

In the distributed setting, central problems are split across multiple processors each having access

to local objectives. To clarify, consider our running example of classifying images of rhinos versus

elephants. Rather than searching for a centralized solution, one can distribute the optimization

across multiple processors each having access to local costs defined over random subsets of the full

data set. In such a case, each processor learns a separate ”chunk” of the latent model which is then
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unified by incorporating consensus constraints. Recently, an increasing body of research has targeted

such a setting explicitly. For instance, Google’s federated learning aims at achieving collaborative

model learning across multiple mobile devices without the need for centralized training data in the

cloud. Here, a unified model is learned collaboratively based on only local data available on each

mobile device (Konecný et al. (2016b), Konecný et al. (2016a)). Another example of the growing

trend for distributed optimization is the recent work of McMahan et al. (2016). Here, the authors

consider highly-dimensional optimization problems with billions of parameters and solve them with

the help of tens of thousands of CPU cores. They show that this approach can lead to improved

convergence allowing for algorithms that can handle such Big Data problems.

Analogous to the centralized literature, distributed optimization has also provided a rich set of al-

gorithms for determining free parameters in a decentralized fashion by relying on communication

between the involved processors. Among many approaches (e.g., distributed averaging ( Olshevsky

(2014)), coordinate descent ( Richtárik and Takác (2013), Trofimov and Genkin (2015)) and incre-

mental methods ( Bertsekas (2015), Nedic et al. (2001)), two popular classes can be differentiated.

The first is sub-gradient based, while the second relies on a decomposition-coordination procedure.

Sub-gradient algorithms are similar to centralized first-order gradient methods, where they proceed

by taking a gradient-related step, followed by an averaging with the neighbors at each iteration.

The computation of each step is relatively cheap and can easily be implemented in a distributed

fashion ( Nedic and Ozdaglar (2009)). Though cheap to compute, the best known bound on the

rate of sub-gradients is sub-linear. As such, these algorithms share the problems of their central-

ized counterparts. The second class of algorithms solve constrained problems by relying on dual

methods. Their state-of-the-art technique is a distributed version of the centralized ADMM ( Wei

and Ozdaglar (2012), Chang et al. (2015)) that achieves a linear convergence rate with low message

complexity per iteration. Apart from only achieving linear convergence, distributed ADMM has also

been shown to suffer from accuracy issues as detailed in Kadkhodaie et al. (2015).

Many rate and accuracy improvements can be gained from adopting distributed second-order (New-

ton) methods. Though a variety of techniques have been proposed (Zargham et al. (2013) Mokhtari

et al. (2015), Gurbuzbalaban et al. (2015), Eisen et al. (2016)), less progress has been made at

leveraging ADMM’s accuracy and convergence rate issues.

In a recent attempt Mokhtari et al. (2015), the authors propose a distributed second-order method
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by using the approach in Zargham et al. (2013) to approximate the Newton direction. As detailed

later, this method suffers from two problems. First, it fails to outperform ADMM and second, it

faces storage and computational deficiencies for large data sets, and thus ADMM retains state-of-

the-art status.

The alternative approach proposed by Eisen et al. (2016) calculates Newton direction by applying

a distributed version of the Sherman-Morrison formula ( Sherman and Morison (1949)). The advan-

tages of D-BFGS relative to approximate Newton methods are that they do not require computation

of Hessians, which can itself be expensive, and that they apply in any scenario in which gradients

are distributedly computable irrespective of the structure of the Hessian. In terms of convergence

properties, D-BFGS resembles the previously discussed Network Newton algorithm and empirically

surpassed by ADMM.

In scenarios where the number of local functions is large and not all of them simultaneously avail-

able, one is interested in optimization techniques that can iteratively update the estimate for an

optimal solution using partial information about component functions. The incremental Newton

method ( Gurbuzbalaban et al. (2015)) cycles deterministically through the component functions fi

and uses the gradient of fi to determine the descent direction and the Hessian of fi to construct the

Hessian of the sum of component functions. Apart from requiring a global coordinator, this method

suffers from immense computational requirements caused by sequential inversion of local Hessians

in each iteration.

Contributions: In the previous paragraphs we discussed a general distributed optimization frame-

work and presented a brief overview of existing decentralized algorithms. In the next paragraphs,

we focus on both theoretical and practical contributions of this thesis.

Though appealing, computing the Newton direction in a distributed fashion is challenging due to

the need of inverting the Hessian matrix that requires global information. In our work, a novel

connection between the Hessian of a distributed optimization problem and Symmetric Diagonally

Dominant (SDD) matrices is derived. Recently, SDD matrices have captured strong attention due to

a series of breakthrough results (Koutis and Miller (2007), Kelner and Madry (2009), Kelner et al.

(2013), Cohen et al.) starting with work of Daniel Spielman and Shang-Hua Teng ( Spielman and

Teng (2006)) who suggested the first almost linear time algorithm for solving SDD linear systems.

Although all these algorithms have been designed only for the centralized case, the diagonal domi-
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nance property gives us hope to calculate the Newton direction for a distributed problem without a

heavy computational burden by attempting fast distributed SDD solvers.

In Section 2.2 we suggested two fully distributed algorithms for solving symmetric diagonally dom-

inant systems. The first method utilizes the idea of Peng and Spielman (2013) by constructing

decentralized approximated inverse chain in a recursive fashion. This chain can be visualized as a

collection of matrices such that each cluster stores only the corresponding row of each of these ma-

trices. By traversing this chain first in forward and then in backward direction we arrive at a crude

solution of the SDD system that approximates an exact solution up to some constant accuracy. In

order to reach any given precision, we accompany the approximated inverse chain with an iterative

procedure called Richardson Preconditioners ( Axelsson (1994a)) gradually improving the accuracy.

To the moment of publishing, this method was the fastest fully distributed SDD solvers with time

complexity proportional to a condition number of an SDD matrix.

The linear dependence on a condition number is favorable for a wide range of cluster topologies

including expanders ( Hoory et al. (2006)), random graphs ( Hofstad (2008)), and grids ( Fadel et al.

(2015)). However, for configurations of clusters characterized by long diameters this behavior might

lead to a slow performance. As an example, let us consider BarBell topology for clusters ( Northup)

where two cliques of size dn3 e connected with a path graph on dn3 e nodes. Due to this bottleneck

part, the corresponding condition number for SDD matrices can be cubic in a number of clusters.

To remedy this effect consider a polynomial approximation of SDD inverse with properly scaled

Chebyshev polynomials. The particular choice of these polynomials is motivated by their extremal

properties and the fast performance of the algorithm is guaranteed by the recursive relation between

them ( Chebyshev (1853)). Eventually, we arrive at a new SDD solver capable of computing an

approximate solution with any given precision in time proportional to the square root of a condition

number of an SDD matrix.

Having introduced fully decentralized techniques, we noticed that the total number of messages (in

literature often referred to as communication complexity) is increasing with ”spreadness” of the

underlying network of clusters. To illustrate this phenomenon, let us consider Star Graph ( Shao

et al. (2000)) and previously discussed Barr-Bell models. In the former, all nodes are only con-

nected to a single master node responsible for all computational burden. As a result, the message

complexity in this case is only characterized by the number of clusters n. In the latter model, the

information exchange between the clusters is delayed by the bottleneck part, causing the overall
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message complexity to be bounded by O
(
n

7
2

)
. Therefore, the question that follows naturally from

this observation is: can we eliminate this drastic effect of cluster configuration by ”slightly” relaxing

the decentralization requirements. Please notice, that by completely removing this requirement we

arrive at a highly impractical scenario, where all input data must be stored and processed in a single

cluster. In Section 2.3, using spectral sparsifiers, we propose a mixed strategy that allows for a fixed

node to aggregate some information from all others while preserving the slightly worse bound on

the size of local memory of this cluster compared to the fully decentralized case. Surprisingly, apart

from significantly improving the message complexity, we show that the time complexity of a new

mixed algorithm is even faster than in centralized and fully decentralized scenarios.

On the practical side, we contribute by applying the proposed SDD solvers for two problems that

have been in the focus of researchers for many years: Network Flow Problems and Empirical Risk

Minimization.

Network Flow Problems are considered one of the most fundamental problems in industrial engen-

dering and theoretical computer science ( Ahuja et al. (1993b), Ford and Fulkerson (2010), Dahan

and Amin (2016), Aly and Van Vyve (2015)). The ultimate goal here is to minimize the total cost

associated with all edges connecting clusters subject to flow conservation constraints. In Section 3.1

we show that significant progress can be attained by applying primal-dual techniques and formu-

lating an unconstrained dual problem. Careful analysis of the dual function shows that its Hessian

exhibits diagonal dominant property and, therefore, concedes utilization of SDD solvers for calculat-

ing the correspondent Newton direction. As a result, we develop the first exact distributed Newton

method for Network Flow problem demonstrating a quadratic convergence rate. We empirically

validate this result on a variety of numerical simulations with real data against several methods,

including the state-of-the-art ADAL algorithm (Chatzipanagiotis et al. (2015)).

Our second practical contribution is motivated by machine and statistical learning and has a wide

range of applications in data science ( Zhang (2010)), robotics ( Cetto et al. (2013)), image pro-

cessing ( He et al. (2015)), speech recognition ( Yu and Deng (2014)) et cetera. In Empirical Risk

Minimization problem a true risk defined by the unknown probability distribution over the training

data is approximated with an empirical risk. The latter is represented as an average over loss func-
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tions computed at each data point for the chosen prediction model. In the distributed framework

the associated optimization problem is formulated as a finite sum minimization problem combined

with consensus constraints between the clusters. In Section 3.2.9, following primal-dual strategy

we constructed the corresponding dual function and recognize that its Hessian can be represented

as a product of SDD matrices. Based on this observation we calculate the Newton direction by

sequentially solving a collection of SDD systems. Our exact distributed Newton method for the

Empirical Risk Minimization problem is the first distributed algorithm achieving a quadratic con-

vergence rate. Finally, we suggest Hessian-free and stochastic variation of our algorithm by applying

automatic differentiation techniques and the Sherman-Morrison formula. In Section 3.2.9 we verify

our superior performance by conducting a series of numerical simulations:

• against traditional decentralized stochastic gradient descent method using SPARK.

• against centralized stochastic gradient descent using streaming.

• against other distributed algorithms including state-of-the-art distributed ADMM (Wei and

Ozdaglar (2012))

Finally, conclusions and future work are presented in Section 3.2.9
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CHAPTER 2 : SYMMETRIC DIAGONAL DOMINANT SOLVERS

The problem of solving a system of linear equations given by symmetric diagonally dominant ma-

trices (SDD) arises in a variety of real-world applications. For example, SDDs appear in multitude

of fields including but not limited to determining solutions of partial differential equations LeV-

eque (2007), semi-supervised learning Zhu et al. (2003), Zhou and Schlkopf (2004), computer vision

Casaca (2015), and computation of maximum flows in graphs Daitch and Spielman (2008), Madry

(2013).

Recently, much progress towards solving such problems has been made. Out of the different tech-

niques, the solution of Speilman and Teng Spielman and Teng (2006) stands out. Here, the authors

exploited three components for an efficient SDD solver. Namely, using the multi-level framework

suggested by Joshi (1996), low-stretch spanning tree preconditioners introduced by Boman et al.

(2008), and spectral graph sparsifiers Spielman and Teng (2008), they proposed a nearly linear-time

algorithm for solving SDD systems. These results were then improved by Koutis et al. Koutis et al.

(2010), Cohen et al. (2014), who developed an even faster algorithm for acquiring ε-close solutions to

SDD linear systems. Improvements have since been discovered by Kelner et al. Kelner and Madry

(2009), where their algorithm relied on only low stretch trees and eliminated the need for graph

sparsifiers and the multi-level framework.

Motivated by applications, much interest has been devoted to developing parallel versions of these

algorithms. Koutis and Miller Koutis and Miller (2007) proposed an algorithm requiring nearly-

linear work and m
1
6 depth (m is the total number of nonzero entries of SDD matrix) for planar

graphs. This result was then extended to general graphs in Blelloch et al. (2011) leading to depth

close to m
1
3 . Since then, Peng and Spielman Peng and Spielman (2013) have proposed an efficient

parallel solver requiring nearly-linear work and poly-logarithmic depth without the need for low-

stretch spanning trees.

Less progress, on the other hand, has been made in the distributed version of these solvers. Contrary

to the parallel setting, memory is not shared and is rather distributed in the sense that each unit

abides by its own memory restrictions. Current methods, e.g., Jacobi iteration Axelsson (1994b),
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Bertsekas and Tsitsiklis (1989) can be used for such distributed solutions but require substantial

complexity. In Mou et al. (2015), the authors propose a gossiping framework for acquiring a solu-

tion to SDD systems in a distributed fashion. Recent work Lee et al. (2014) considers a local and

asynchronous solution for solving systems of linear equations, where they acquire a bound on the

number of needed multiplication proportional to the degree and condition number of the graph for

one component of the solution vector.

In this chapter, we target both the theoretical investigation of distributed SDD solvers, as well

as their practical applications. The first part of the work provides basic definitions and properties

of SDD systems and then presents three fully distributed and one mixed algorithm for solving SDD

systems in a decentralized fashion. For all proposed methods we analyze the running time and

communication complexity in terms of the underlying graph topology. Finally, to provide better

intuition, we consider the following special cases for the processors’ graphs: path graph, grid graph,

ring graph, random graph, scale-free network, barbell graph, and Ramanujan expander.

The second part of the work includes interesting practical applications. In Section 3.1, we con-

sider network flow optimization - a fundamental problem with wide-ranging applicability including

but not limited to, DNA sequence alignment Ahuja et al. (1993a), scheduling on uniform parallel

machines Lawler et al. (1982), urban traffic flows Ahuja et al. (1993a), optimal energy allocation

Gurakan et al. (2015), etc. As networks grow larger, centralized approaches to network flow op-

timization underperform due to the increase in time and resource complexity needed. Distributed

methods for such network optimization problems present an alternative direction to cope with such

increased demand. Since existing distributed methods exhibit slow convergence rate (at most linear),

we propose a fully decentralized version of the Newton method using the developed SDD solvers

to arrive at quadratic convergence. On the empirical side, we demonstrate that our method out-

performs current algorithms for network flow in a broad set of experiments on a variety of network

topologies. We also show that this outperformance arrives at no increase in the local communication

exchanges between processors.
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2.1. Preliminaries

Throughout the remainder of this thesis we let G = (V,E,W) be a weighted connected undirected

graph with |V| = n nodes and E edges. We also assume that we > 0 for all e ∈ E. Each node

i ∈ V represents an agent which is capable of storing information in local memory and can perform

computations. Moreover, the size of local memory for each node is bounded by O(n) making it

impossible to gather the full topology of network G in one node. The distributed symmetric diagonal

dominant system associated with G is given as:

LGx = b (2.1)

where LG ∈ Rn×n such that

LG(ij) = 0, ∀(i, j) 6∈ E

|LG(ii)| ≥ −
n∑
j=1

|LG(ij)| ∀(i) ∈ V

Due to the sparsity pattern of LG, Equation (2.1) can be represented in distributed fashion among

the nodes of G. Particularly, each node i ∈ G stores LG(ij) for j = 1, . . . , n, as well as the ith

component, i.e., b(i), of the demand vector b. The goal is for each node to compute the corresponding

component of the solution vector by only allowing local message exchange between the nodes. As a

straightforward example of (2.1) is a Laplacian system, where

LG(ij) =


∑
e∼i we : i = j

−we : (ij) ∈ E

0 : otherwise

Following Koutis et al. (2010), we target an ε−close solution of the system in 2.1, which is defined

as:

Definition Let x∗ be the exact solution of system LGx = b. A vector x̃ is called ε approximate

solution, if

||x̃− x∗||LG ≤ ε||x∗||LG (2.2)
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where ||u||2LG
= uTLGu.

The important characteristic of system (2.1), which will be heavily used in our analysis is the

condition number, defined as:

Definition Let {µi}pi=1 be the collection of all non-zero eigenvalues of matrix LG, such that

µ1 ≤ µ2 ≤ . . . ≤ µp

The the ratio κ(LG) =
µp
µ1

is called condition number of system (2.1).

In the case of graph Laplacians κ(LG) = µn
µ2
≤ 1

2
wmax
wmin

ndmaxdiam(G), where wmax, wmin are the

maximal and minimal edge weights in G, diam(G) its diameter, and dmax is the maximal unweighted

degree.

Finally, we assume a synchronous model for distributed computation. Here, all message exchanges

between the nodes as well as local operations are directed by a global clock. The time complexity

is given in terms of the total number of time steps on the global clock needed to terminate an

algorithm. The message complexity (or communication complexity) is given in terms of the total

number of messages sent by nodes to terminate an algorithm.

2.2. Fully Distributed Methods

In this section, we describe two fully distributed algorithms for solving the system in (2.1). We

commence by describing the algorithms and then study their time and communication complexities.

2.2.1. Algorithm I: Matrix Inverse Chain Approach

The authors in Peng and Spielman (2013) developed a near-linear time solver capable of achieving

an ε− close approximation to the exact solution for any arbitrary ε > 0. In this section, we propose

a distributed implementation of the aforementioned solver. Before presenting our solver, however,

we next brief the main machinery from Peng and Spielman (2013) needed for the exposure.
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Standard Splitting and Approximations

The story of computing an approximation to the exact solution of an SDD system of linear equations

starts from the standard splitting of symmetric matrices. Given a symmetric matrix LG the standard

splitting is given by

LG = D0 −A0 (2.3)

where D0 is a diagonal matrix that consists of the diagonal elements in LG while A0 is a matrix

collecting the negate of the off-diagonal components in LG. As the goal is to determine a solution

of the SDD system, we will be interested in inverses of LG. Given the splitting in Equation 2.3, the

authors in Peng and Spielman (2013) prove that the inverse of LG can be written as

(D0 −A0)−1 =
1

2

[
D−1

0 +
(
I +D−1

0 A0

) (
D0 −A0D

−1
0 A0

)−1 (
I +A0D

−1
0

)]
(2.4)

Since D0−A0D
−1
0 A0 is also SDD we can recurse the above for the length of d = O(log n) to arrive

at the so-called inverse approximated chain, C = {Dk,Ak}dk=1 with

Dk = D0 and Ak = D0

(
D−1

0 A0

)2k
(2.5)

Hence, the inverse at the kth recursion can be written as

(Dk −Ak)−1 ≈ 1

2

[
D−1
k +

(
I +D−1

k Ak

)
(Dk+1 −Ak+1)

−1 (
I +AkD

−1
k

)]

Algorithm 1 : ”Crude” SDD Solver

1: Input: Inverse approximated chain C, demand vector b.
2: Output: A ”crude” approximation x0 to the exact solution x∗.
3: Initialize: b0 = b.
4: for k = 1 to d = O(log n) do
5: bk =

(
I +Ak−1D

−1
k−1

)
bk−1.

6: end for
7: xd = D−1

d bd.
8: for k = d− 1 to 0 do
9: xk = 1

2

[
D−1
k bk +

(
I +D−1

k Ak

)
xk+1

]
.

10: end for

Given the above, the approximate solution to the SDD system can be achieved using a two-step

procedure detailed in Algorithms 1 and 2.
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Algorithm 1 describes a set of instructions used to acquire a crude approximation to the real solution

of the SDD system. The algorithm runs a forward and a backward loop with the number of steps

equal to the length of the inverse approximate chain d1. In the forward loop (lines 4-6) intermediate

vectors are constructed and used in the backward loop (lines 8-10) to determine a constant error (see

2.1) solution to the exact solution of the SDD system. Since the approximation incurs a constant

error to the real inverse L−1
G , the authors in Peng and Spielman (2013) then introduce the Richardson

preconditioning scheme detailed in Algorithm 2 to arrive at any arbitrary precision

Algorithm 2 : ”Exact” SDD Solver

1: Input: Inverse approximated chain C, demand vector b, precision parameter ε.
2: Output: ε−close approximation x̃, to the exact solution x∗.
3: Initialize y0 = 0.
4: Set χ to be the crude solution returned by Algorithm 1.
5: for k = 1 to d = O

(
log 1

ε

)
do

6: Set u
(1)
k = LGyk−1.

7: Set u
(2)
k by calling Algorithm 1 with b = u

(1)
k .

8: Update yk = yk−1 − u
(2)
k + chi

9: end for
10: Set x̃ = yq.

Algorithm 2 uses Algorithm 1 as a sub-routine to drive the ”crude”-solution to ε−close approximate

one for any ε > 0 in O
(
log 1

ε

)
iterations.

The authors in Peng and Spielman (2013) show that the above iteration scheme can be parallelized

across multiple processors leading to an algorithm which can acquire ε-approximate solutions in

nearly linear time. As our goal is to determine the Newton direction of network flow problems in a

distributed fashion, i.e., using only local information exchange, we next present a distributed version

of Algorithms 1 and 2. Our strategy is similar to that in Peng and Spielman (2013) with crucial

differences related to the type and length of the inverse approximate chains as detailed below.

Distributed SDD Solvers: Methodology

A key ingredient enabling efficient solvers for SDD systems is the introduction of the inverse approx-

imate chain which rendered a parallelized implementation. Since our interest lies in a distributed

solution for determining the Newton direction, the first step needed for the development of our SDD

solver is an inverse chain which can be computed in a distributed fashion using only local commu-

1The exact length of d is given below
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nication exchange among the nodes of G. As noted in Peng and Spielman (2013), a collection of

matrices C = {D0,A0 . . . ,Dd,Ad} is an inverse approximate chain to LG if there exist positive real

numbers ε0, . . . , εd such that the following three conditions are satisfied:

1. Dk −Ak ≈εk−1
Dk−1 −Ak−1D

−1
k−1Ak−1, for all k = {1, . . . , d}.

2. Dk ≈εk−1
Dk−1 and

3. Dd ≈εd Dd −Ad.

The ”≈ε” defines the notion of approximation for matrices previously introduced in Peng and Spiel-

man (2013) where X ≈ε Y is written to indicate

exp(−ε)X � Y � exp(ε)X

where X � Y reflects that X − Y is positive semidefinite.

Starting from LG = D0 − A0, and defining the inverse chain as in Equation 2.5, it is easy to

verify that C is an inverse approximate chain to LG as it satisfies all three of the above conditions.

Hence, it can be used for computing a crude solution to an SDD system. To derive the distributed

algorithm, we further examine the update equations of Algorithm 1. Studying the forward loop, the

intermediate vectors bk are constructed according to

bk =
(
I +Ak−1D

−1
k−1

)
bk−1 = bk−1 +A0D

−1
0 A0D

−1
0 . . .A0D

−1
0︸ ︷︷ ︸

a product of 2kmatrices

bk−1

Examining each product of the 2k matrices, e.g., A0D
−1
0 A0b0, we recognize that such a product

can be computed locally by each node. This is true as the first part of the product, i.e., z = D−1
0 b0

is a simple scaling, while the second, i.e., A0z can be performed completely in a distributed fashion

due to the sparsity pattern of A0. Consequently, the overall product of the 2k terms can be also

distributed across the network provided the usage of a recursive update rule. Therefore, for a node

i, the first part (i.e., forward loop) of the distributed solver can be concisely summarized using the

set of instructions detailed in Algorithm 3.

Clearly, lines 6-8 are executing the distributed computation of the product of the 2k terms above,

while line 9 of the algorithm is computing the ith component of bk based on the recursive scheme de-
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scribed above. After running for a total of d iterations, Algorithm 3 returns the ith component of in-

termediate vectors b1, . . . , bd. Further, since the length of the chain d = dlog
(

2 ln
(

3√2
3√2−1

)
wmax
wmin

n3
)
e

with wmax and wmin denoting the largest and smallest edge weights, each node needs to have memory

size of O(max{d, dmax}) = O(n).

Algorithm 3 : Forward Loop: Distributed ”Crude” Solver

1: Input: The ith row of matrices A0,D0, the ith component of vector b, the length d =

dlog
(

2 ln
(

3√2
3√2−1

)
wmax
wmin

n3
)
e of approximated inverse chain.

2: Output: The ith components of vectors b1, . . . , bd.
3: for k = 1 to d do
4: Set l = 2k−1.
5: Update

[
u

(k−1)
1

]
i

=
[
A0D

−1
0 bk−1

]
i
.

6: for j = 2 to l do

7: Update
[
u

(k−1)
j

]
i

=
[
A0D

−1
0 u

(k−1)
j−1

]
i
.

8: end for
9: Set [bk]i = [bk−1]i −

[
u

(k−1)
l

]
i
.

10: end for

1

Analogous to Algorithm 1, the distributed solver commences by running a backward loop to compute

the ith component of the crude solution [x0]i. Using a similar analysis to that of the forward rule, the

recursive update equations are represented in Algorithm 4. Algorithm 4 distributes the computations

of the products involved in determining the ith component of x0 using recursion. Furthermore, it

uses the same chain length as that in Algorithm 3.

Algorithm 4 : Backward Loop: Distributed ”Crude” Solver

1: Input: The ith row of matrices A0,D0, the ith component of vector b, the length d =

dlog
(

2 ln
(

3√2
3√2−1

)
wmax
wmin

n3
)
e of approximated inverse chain, and [bd]i as returned by Algorithm

3.
2: Output: The ith components of ”crude” solution [x0]i.

3: Set [xd]i = [bd]i
[D0]ii

4: for k = d− 1 to 1 do
5: Set l = 2k.
6: Update

[
η

(k+1)
1

]
i

=
[
D−1

0 A0xk+1

]
i
.

7: for j = 2 to l do

8: Update
[
η

(k+1)
j

]
i

=
[
D−1

0 A0η
(k+1)
j−1

]
i
.

9: end for
10: Set [xk]i = 1

2

[
[bk]i

[D0]ii
+ [xk+1]i +

[
η

(k+1)
l

]
i

]
.

11: end for
12: Set [x0]i = 1

2

[
[b]i

[D0]ii
+ [x1]i +

[
D−1

0 A0x1

]
i

]
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Having developed an algorithm which computes a crude approximation to an SDD system of linear

equations, we now provide an exact distributed solver which can drive x0 to an ε-close solution

for any arbitrary ε > 0. Similar to the previous analysis, each node i receives the ith row of

LG, the ith component of the right-hand side vector [b]i, the length of the inverse chain d, and a

precision parameter ε as inputs. The algorithm then determines the ith component of the ε-close

approximation to the real solution x∗ as detailed in Algorithm 5. It should be noted that Algorithm

5 is a simple distributed implementation of the Exact SDD solver, where the products are computed

locally based on the sparsity pattern of LG.

Algorithm 5 : ”Exact” Distributed SDD Solver

1: Input: The ith row of matrices A0,D0, the ith component of vector b, precision parameter ε.
2: Output: The ith components of ε− approximate solution [x̃]i.
3: Initialize: [y0]i = 0 and [χ]i by running Algorithms 3 and 4 with [A0]i1, . . . , [A0]in, [D0]ii, [b]i

and d as inputs.
4: for t = 1 to q = O

(
1
ε

)
do

5: Set
[
u

(1)
t

]
i

=
[
LGyt−1

]
i
.

6: Set
[
u

(2)
t

]
i

by running Algorithms 3 and 4 with [A0]i1, . . . , [A0]in, [D0]ii, [u
(1)
t ]i and d as

inputs.

7: Update [yt]i = [yt−1]i −
[
u

(2)
t

]
i
+ [χ]i.

8: end for
9: Set [x̃]i = [yq]i

Having developed the solvers, we next illustrate the most important theoretical results attained by

our distributed SDD solver and compare to current literature.

Theoretical Guarantees

In this section, we provide theoretical justification for the correctness of Algorithm 5. Namely, we

show that the distributed solver is capable of acquiring ε-close approximations to the exact solution

of the SDD system and provide its iteration count in terms of the network’s properties. These results

are summarized in the following theorem:

Theorem 2.2.1 The distributed SDD solver described in Algorithm 5 uses local communication

exchange to compute an ε-approximate solution of the SDD system LGx = b in the following number

of rounds

O
(
κ(LG)

wmax
wmin

log

(
1

ε

))
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where κ(LG) is condition number of G, and wmax, wmin are maximal and minimum edge weights.

To arrive at such results, we require the analysis of both the crude and the exact distributed SDD

solvers. The remainder of this section is dedicated to the proof of the above theorem. It proceeds by

presenting two essential lemmas. The first shows that the distributed crude solver (i.e., Algorithms 3

and 4) returns a constant error approximation to the exact solution of the SDD system. The second

demonstrates that the exact solver in Algorithm 5 drives the crude solution to an ε-close one and

provides its iteration count.

To arrive at a crude approximation to the real solution of the SDD system, we need to show that

the procedure described in Algorithms 3 and 4 is capable of approximating the inverse of LG and

providing a good enough approximation to the exact solution. The accuracy of this approximation

and the needed iteration count has also to be quantified. We summarize these results for the case

of graph Laplacian LG in the following

Lemma 2.2.2 Let LG = D0 −A0 be the standard splitting. Let the length of the inverse chain is

defined as d = dlog
(

2 ln
(

3√2
3√2−1

)
wmax
wmin

n3
)
e. Further, let Z ′ be the operator defined by the ”crude”

solver, such that x0 = Z ′b. Then

1. εd <
1
3 ln 2.

2. Z ′ ≈εd L
−1
G , and

3. O
(
2d
)

rounds is required to arrive at the crude solution x0.

The derived bounds depend on the length of the inverse approximate chain d. The choice of d has

to be made in such a way to guarantee that εd ≤ 1
3 ln 2. As mentioned in Lemma 2.2.2 a value

satisfying the above condition is given by

d = dlog

(
2 ln

(
3
√

2
3
√

2− 1

)
wmax
wmin

n3

)
e, i.e.,D0 ≈εd D0 −D0

(
D−1

0 A0

)2d
with εd <

1

3
ln 2

After attaining a crude solution to the SDD system, our strategy was the usage of the exact solver

in Algorithm 5 to drive it to an ε-approximate one for any ε > 0. In what comes next, we show the

exact solver is capable of achieving such a solution.

Lemma 2.2.3 Let LG = D0 − A0 be the standard splitting. If εd < 1
3 ln 2, then Algorithm 5
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requires O
(
log 1

ε

)
iterations to return the ith component of the ε−close solution to x∗ and requires

O
(
2d log 1

ε

)
rounds.

Theorem 2.2.1 follows immediately from Lemmas 2.2.2 and 2.2.3. This result provides us with time

complexity O
(
dmaxκ(LG)wmaxwmin

log
(

1
ε

))
and message complexity O

(
mκ(LG)wmaxwmin

log
(

1
ε

))
.

2.2.2. Algorithm II: Chebyshev polynomials Approach

Although Algorithm 5 is at log n factor faster than other distributed solvers (see Section 2.2.3), it

suffers from linear dependency on condition number κ(LG) for both time and message complexities.

Therefore, the practical application of such technique is restricted by graphs with small condition

numbers, such as expanders (Hoory et al. (2006)).

Next, we propose a novel distributed SDD solver that acquires an ε-close solution in time and

message complexities sub-linearly dependent on the condition number of the processing graph. We

achieve such a reduction by exploiting well-known polynomial representation of the inverse of the

graph Laplacian. Our method aims at constructing a set of Chebyshev polynomials that reduce the

differential to the optimal solution as quickly as possible.

Polynomial Representation.

Similar to the previous approach, we consider the same story of computing an approximation to the

exact solution of an SDD system of linear equations that starts from standard splittings of symmetric

matrices. Given a symmetric matrix, say LG, the standard splitting is given by LG = D0−A0. The

authors in Peng and Spielman (2013) exploited the fact that the inverse of LG can be written as:

(D0 −A0)−1 = D
− 1

2
0

[
I −D−

1
2

0 A0D
− 1

2
0

]−1

D
− 1

2
0 =

D
− 1

2
0

∏
k≥0

(
I +

[
D
− 1

2
0 A0D

− 1
2

0

]2k)
D
− 1

2
0 ≈D−

1
2

0

O(log T )∏
k=0

(
I +

[
D
− 1

2
0 A0D

− 1
2

0

]2k)
D
− 1

2
0 =

p̂T (LG).

where p̂T (LG) is a polynomial of degree T = 2d ∼ κ(LG) where κ(LG) is the condition number,

chosen to guarantee accuracy properties of the approximate solution, x̃ = p̂T (LG)b, to x with respect

to definition (2.1). Our strategy for proposing a distributed SDD solver that exhibits sub-linear time
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and message dependencies on the condition number of the processing graph relies on determining a

”better” polynomial expansion2 for (D0 −A0)−1 than p̂T (LG)b. Formally, our goal is to determine

a solution vector in the following form:

xk = pk(LG)b (2.6)

where pk(LG) is a polynomial of degree k. Consequently, the differential between xk − x∗ can be

written as:

xk − x∗ = pk(LG)b− x∗ = pk(LG)LGx
∗ − x∗ = (pk(LG)LG − I)x∗ =

(LGpk(LG)− I)x∗ = −qk(LG)x∗

where qk(LG) = −LGpk(LG) +I. Notice, that between polynomials qk(LG) and pk(LG) there is one

to one correspondence. Given pk(LG) we can easily construct qk(LG). On the other hand, for any

degree k, qk(LG) polynomial, we can recover pk(LG) using3

pk(LG) = L−1
G (I − qk(LG))

Plugging the above result back in Equation 2.6, we arrive at the following representation for the

solution xk:

xk = L−1
G (I − qk(LG))b (2.7)

Hence, we recognize that instead of seeking pk(LG), one can think of trying to construct polynomials

qk(LG) that reduce the term xk−x∗ as fast as possible. This intuition can be formalized in terms of

the properties of qk(LG) by requiring the polynomial to have a minimal degree, as well as to satisfy

the following two conditions for a given precision parameter ε

qk(0) = 1 (2.8)

|qk(µi)| ≤ ε for all i = 1, . . . , p

2As shall be seen later, better here means a polynomial with a lower degree.
3Please note that for the case of singular LG, we can safely replace L−1

G by the pseudo-inverse L†G. This is true

since in such a scenario b ∈ (ker(LG))⊥ and L†GL
r
Gb = Lr−1

G b for r = 1, . . . , k
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with µi being the ith nonzero eigenvalue of LG. The first condition is a result of observing that

qk(z) = −zpk(z) + 1 (analogous to qk(LG) = −LGpk(LG) + I is unity when evaluated at z = 0. The

second, on the other hand, guarantees an ε-approximate solution to x∗:

||xk − x∗||2LG
= ||qk(LG)x∗||2LG

≤ ||qk(LG)||22||x∗||2LG
= max

i
|qk(µi)|2||x∗||2LG

≤ ε2||x∗||2LG

In other words, finding qk(z) that has minimal degree and that satisfies the conditions in Equation

2.8 guarantees an efficient and an ε-approximate solution to x∗.

Candidate Solutions & Chebyshev Polynomials.

Among other potential solutions, Chebyshev polynomials of the first kind resemble a good candidate

for determining qk(z). These forms are defined as

Tk(z) =


cos (k arccos(z)) , if z ∈ [−1, 1]

1
2

(
(z +

√
z2 − 1)k + (z −

√
z2 − 1)k

)
, otherwise

(2.9)

Interestingly, Tk(z) ≤ 1 on [−1, 1] and among all polynomials of degree k with a leading coefficient

1, the polynomial Tk(z) acquires its sharpest increase outside the range [−1, 1]. At this stage, we

are ready to consider qk(z) in terms of Tk(s). We posit that a good candidate is q∗k(z), which we

define as

q∗k(z) =
Tk

(
µp+µ1−2z
µp−µ1

)
Tk

(
µp+µ1

µp−µ1

) (2.10)

Next, we will demonstrate that q∗k(z) is indeed a good candidate since it meets the requirements

in Equation 2.8 and allows for an efficient distributed SDD solver. First, it is easy to see that the

polynomial defined in Equation 2.10 attains a unity value when evaluated at z = 0 (i.e. q∗k(0) = 1).

As such the first condition of Equation 2.8 is met. When it comes to second, we further recognize
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that for any z ∈ [µ1, µp], |q∗k(z)|2 is also bounded as

|q∗k(z)|2 ≤ T−2
k

(
µp + µ1

µp − µ1

)
= T−2

k

(
κ(LG) + 1

κ(LG)− 1

)
=

4

(√κ(LG) + 1√
κ(LG)− 1

)k
+

(√
κ(LG)− 1√
κ(LG) + 1

)k−2

≤ 4

(√
κ(LG)− 1√
κ(LG) + 1

)2k

≤

4e
− 4k√

κ(LG)+1

where κ(LG) =
µp
µ1

is a condition number of LG. Therefore, for the solution vector x̃k = L−1
G (I −

q∗k(LG))b the corresponding error is given as:

||x̃k − x∗||2LG
≤ 4e

− 4k√
κ(LG)+1 ||x∗||2LG

(2.11)

Hence, by choosing kε = d 1
2 (
√
κ(LG) + 1) ln 2

ε e the solution vector

x̃kε = L−1
G

Tkε
(
µp+µ1

µp−µ1

)
I − Tkε

(
((µp+µ1)I−2LG

µp−µ1

)
Tkε

(
µp+µ1

µp−µ1

)
 b (2.12)

satisfies the accuracy requirement (2.1).

Distributed Challenges & Solution.

Having met the requirements of Equation 2.8 and proposed an approximate solution x̃k, at this

stage we are ready to commence with the distributed implementation of our solver. However, we

recognize the following two challenges hindering its direct distributed implementation. First, we note

that computing the minimum and maximum non-zero eigenvalues of LG requires global information.

The second relates to the product with L−1
G needed in Equation 2.12 of x̃kε . In this section, we

detail the solutions to above two problems for the case when LG is graph Laplacian and derive our

distributed SDD solver, which is used later to compute the Newton direction

1. Parameters µ1 and µp. As clear from the previous section, our method requires the com-

putation of the second-minimum and maximum eigenvalues of LG. The computation of these,

however, requires global information and hence are difficult to determine in a distributed fash-

ion. As a substitute for the exact values of µ1 and µp, one can use the well-known eigenvalue
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bounds determined as

µ1 ≥ µ =
4

n2

µp ≤ µ̄ = 2n

2. Multiplication on L−1
G . We start by noting that the second issue faced relates to the

computational inefficiency when attempting to compute the coefficients of Tkε

(
µp+µ1

µp−µ1

)
I −

Tkε

(
((µp+µ1)I−2LG

µp−µ1

)
where performing it naively will potentially lead to linear dependency on

the condition number of the processing graph. To illustrate, let us, in fact, consider the naive

approach by assuming that each node i has access to the following decomposition of Tkε(z):

Tkε(z) = 1 + α1z + α2z
2 + . . .+ αkεz

kε

where α1, . . . , αkε are coefficients one for each power of the polynomial. For ease of exposition,

let us further denote

c1 =
µ̄+ µ

µ̄− µ
c2 =

2

µ̄− µ

Using the above, the numerator in Equation (2.12): can be written as

L−1
G [Tkε(c1)I − Tkε(c1I − c2LG)] b = L−1

G

[
kε∑
i=1

αic
i
1I −

kε∑
i=1

αi(c1I − c2LG)i

]
b =

L−1
G

[
kε∑
i=1

αi
[
(c1I)i − (c1I − c2LG)i

]]
b

The first term (i.e ci1I) is easily computable. The second, on the other hand, can be computed

by rewriting the term (c1I − c2LG)
i

explicitly in terms of LG for each node i. Unfortunately,

this procedure is inefficient as it boils-down to a total of )(k2
ε ) of matrix vector multiplications

of the form LGu. Taking into account the expression for kε, we end up with an algorithm

exhibiting linear dependency on the condition number κ(LG). Instead, our goal is to show

that x̃kε can be computed in fully distributed way in O(kε) rounds. The crucial property for
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us here is the recursive relation of Chebyshev polynomials:

T0(z) = 1, (2.13)

T1(z) = z,

Tk(z) = 2zTk−1(z)− Tk−2(z)

Denote by

∆k = L−1
G [Tk(c1)I − Tk(c1I − c2LG)] b

Ωk = Tk(c1I − c2LG)b

Θk = Tk(c1)

Therefore, the solution vector (2.12) can be written as x̃kε =
∆kε

Θkε
and recursive relation gives:

∆k = 2c1∆k−1 −∆k−2 + 2c2Ωk−1 (2.14)

Ωk = 2(c1I − c2LG)Ωk−1 −Ωk−2

Θk = 2c1Θk−1 −Θk−2

with initials given by:

∆1 =c2b Ω1 =[c1I − c2LG]b Θ1 =c1

∆0 =0 Ω0 =b Θ0 =1

Algorithm 6 summarizes these results and provides a fully distributed computation of vector x̃kε

in O(kε) rounds. Clearly, lines 8-10 are executing relations (2.14) in a fully distributed way. In-

deed, each matrix vector multiplication (ciI − c2LG)u can be computed locally by a single message

exchange between the neighboring nodes. Moreover, the total number of such multiplications is

bounded by O(kε) and this fact establishes the following

Theorem 2.2.4 The distributed SDD solver described in Algorithm 6 uses local communication

exchange to compute an ε-approximate solution of the SDD system LGx = b in the following number
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of rounds

O
(√

κ(LG)
wmax
wmin

log

(
1

ε

))
= O

(√
ndmaxdiam(G)

wmax
wmin

log

(
1

ε

))
where κ(LG) is condition number of G, dmax, diam(G) are its maximal degree and diameter and

wmax, wmin are maximal and minimum edge weights.

This result provides us with time complexityO
(
dmax

√
κ(LG)wmaxwmin

log
(

1
ε

))
and message complexity

O
(
m
√
κ(LG)wmaxwmin

log
(

1
ε

))
.

Algorithm 6 : Chebyshev SDD Solver

1: Input: The ith row of matrices A0,D0, the ith component of vector b, precision parameter ε.
2: Output: The ith components of ε− approximate solution [x̃]i.

3: Set µ̄ = 2n, µ = 4
n2 and c1 =

µ̄+µ

µ̄−µ , c2 = 2
µ̄−µ , κ(LG) = µ̄

µ

4: kε = d 1
2 (
√
κ(LG) + 1) ln 2

ε e.
5: [∆0]i = 0 [Ω0]i = [b]i Θ0 = 1.
6: [∆1]i = c2[b]i [Ω1]i = [(c1I − c2LG) b]i Θ1 = c1.
7: for k = 2 to kε do
8: Θk = 2c1Θk−1 −Θk−2.
9: [Ωk]i = [2(c1I − c2LG)Ωk−1]i − [Ωk−2]i.

10: [∆k]i = 2c1[∆k−1]i − [∆k−2]i + 2c2[Ωk−1]i
11: end for
12: Set [x̃]i =

[∆kε ]i
Θkε

Adaptive Method

To finalize this section, we suggest a modification of Algorithm 6 allowing us to achieve faster

implementation depending on the specific instance of the problem. One can notice, the second

condition in (2.8) can be relaxed depending of the decomposition of vector b in the basis formed by

eigenvectors of LG. Indeed, assume that b ∈ Span{up−r, . . . ,up}. Then, one can simplify condition

2.8 as follows:

qk(0) = 1

|qk(µi)| ≤ ε for all i = p− r, . . . , p

Here, the threshold r can be guessed using a binary search strategy and by testing the quality of the

solution at each round. This intuition is formalized for the case of the unweighted graph Laplacian

LG in Algorithm 7. The adjustment of vector b to the proper interval [µp−r, µp] is carried out in

lines 10-11. In other words, once the condition δ ≤ ε
√

2
n2 b is reached, the corresponding vector x̃kε
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satisfies (2.2). Indeed, using µp ≤ 2n and µ1 ≥ 4
n2 gives:

δ ≤ ε
√

2

n2
b ≤ ε

√
µ1

nµp
b ≤ ε

√
µ1

nµp
||b||2 ≤ ε

√
µ1

n

√
bTL†Gb

Since bTL†Gb = x∗TLGx
∗ and ||x̃kε − x∗||LG ≤

√
n
µ1
δ:

||x̃kε − x∗||2LG
≤ n

µ1
δ2 ≤ ε2bTL†Gb = ε2||x∗||2LG

As for the running time, the tth iteration of Algorithm 7 requires O{dmax2
t
2 ln 2

ε + diam(G)} time

steps. Consequently, in the worst case (r = p − 1) it consummates to O{dmax
√
κ(LG) ln 2

ε +

diam(G)dlog ne}. Similarly, the communication complexity in the worst case is given by

O
(
m
√
κ(LG) log

(
1
ε

))
. One can notice, these characteristics are almost identical to the guarantees

on Algorithm 6, though for special instances of vector b much faster performance can be attained.

For example, if b ∈ Span{ub p2 c, . . . ,up}, then Algorithm 7 terminates in O(n ln 1
ε ) time steps and

utilizes O(m ln 1
ε ) messages in total.

Algorithm 7 : Adaptive Chebyshev SDD Solver

1: Input: The ith row of matrices A0,D0, the ith component of vector b, precision parameter ε.
2: Output: The ith components of ε− approximate solution [x̃]i.
3: Set µ̄ = 2n and t = 1.
4: Compute b = maxi{|[b]i|} using maximum consensus protocol.

5: for t = 1 to dlog n3

2 e do

6: Set µ = µ̄
2t c1 =

µ̄+µ

µ̄−µ , c2 = 2
µ̄−µ , kε = d 1

2 (
√

µ̄
µ + 1) ln 2

ε e.
7: Using (2.14) compute the ith component of vector

x̃kε = L−1
G

[
Tkε(c1I)− Tkε(c1I − c2LG)

Tkε(c1I)

]
b (2.15)

8: Set [δ]i = [LGx̃kε ]i − [b]i.
9: Compute δ = maxi{|[δ]i|} using maximum consensus protocol.

10: if δ > ε
√

2
n2 b then t = t+ 1

11: else [x̃]i = [x̃kε ]i break.
12: end for

2.2.3. Comparisons to Existing Literature

Both our methods are faster than state-of-the-art methods used for iteratively solving linear systems.

Typical linear methods, such as Jacobi iteration Axelsson (1994b), are guaranteed to converge if the

matrix is strictly diagonally dominant. We proposed a distributed algorithm that generalizes this
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setting, where it is guaranteed to converge in the SDD scenario. Furthermore, the time complex-

ity of linear techniques is O(n1+β) log n. Hence, a case of strict diagonal dominance leading to a

complexity of O(n4) can easily be constructed. Our approaches, therefore, not only generalize the

assumptions made by linear methods, but the first and second methods are also faster by a factor

of log n and n
3
2 log n respectively. Furthermore, such algorithms require additional iterations to per-

form decentralized vector norm computations. Contrary to these methods which lead to additional

approximation errors to the real solution, our approach resolves these issues by eliminating the need

for such a consensus framework.

In centralized solvers, on the other hand, nonlinear methods (e.g., conjugate gradient descent Kaass-

chieter (1989), Nocedal and Wright (2006), etc.) typically offer computational advantages over linear

methods (e.g., Jacobi Iteration) for iteratively solving linear systems. These techniques, however,

cannot be easily decentralized. For instance, the stopping criteria for nonlinear methods require

the computation of weighted norms of residuals (e.g., ||p||LG with pk being the search direction at

iteration k). Using the approach in Olshevsky (2014), this requires the calculation of the top singular

value of LG which amounts to a power iteration on L
1
2

GL
1
2

G leading to loss of sparsity. Furthermore,

conjugate gradient methods require global computations of inner products.

Another existing technique to which we compare our results is the recent work in Lee et al. (2014),

Mou et al. (2015). The authors consider a local and asynchronous solution for solving systems of

linear equations. In their work, a complexity bound, for one component of the solution vector is de-

rived. This amounts to O
(

min{dmaxε
ln dmax
ln ||G||2 , dmaxn ln ε

ln ||G||2 }
)

with ε being the precision parameter, dmax

the maximal degree of G, and G is defined as x = Gx+z which can be directly mapped to LGx = b.

The relevant scenario to our work is when LG is positive semi-definite and G is symmetric. Here,

the bound on the number of multiplications is given by O
(

min{d
κ(LG)+1

2 ln 1
ε

max , κ(LG)+1
2 ndmax ln 1

ε }
)

with κ(LG) being the condition number of LG. In the general case, when the degree depends on

the number of nodes (i.e., dmax = dmax(n)), the minimum in the above bound will be the result of

the second term
(
κ(LG)+1

2 ndmax ln 1
ε

)
leading to O(dmax(n)nκ(LG) ln 1

ε ). Hence, in such a general

setting, our techniques outperform Lee et al. (2014) by a factor of n and n
5
2 respectively.

Finally, Rebeschini and Tatikonda (2016) suggested a notably new approach for solving distributed

Laplacian linear systems based on the message passing model. The key idea here was to establish
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a connection between Laplacian linear systems and the min-sum algorithm which is a popular dis-

tributed routine to optimize a cost function that has a graph structure (Moallemi and Van Roy

(2009), Moallemi and Van Roy (2010)). This was achieved by constructing a particular factor graph

that encoded the topology of the underlying graph of processors defined by a given Laplacian lin-

ear system. As a result, authors suggested a general framework to analyze the convergence of the

min-sum paradigm, which goes beyond the typical assumption of scaled-diagonal dominance. In

particular, it was shown that the convergence rate of the algorithm for some classes of graphs, such

as d
2−connected cycles and d

2−dimensional tori, where d is even, is characterized as O
(

1√
t

)
, where

t is the iteration time. Using this empirical evidence it was shown that in these graphs, potentially

under some additional assumptions on the problem inputs (depending on the norm used for the

analysis), the min-sum algorithm could yield ε−approximate solutions for both Laplacian linear

systems with running time O( nε2 ), i.e. linear in n. The obvious drawback of this complexity result is

related to quadratic dependence on 1
ε term preventing us from computing highly accurate solutions.

In contrast to the message passing algorithm, the distributed SDD solvers presented in this thesis

abide by log 1
ε dependence on the accuracy parameter. Indeed, using the fact that the diameter of

any d−regular graph on n nodes is bounded by O(nd ) for the fully distributed algorithm presented

in section 2.2.2, the overall time complexity is given as O(n log 1
ε ). In addition, we study the per-

formance of the proposed SDD solvers for any arbitrary graph topology, while in Rebeschini and

Tatikonda (2016) authors focused only on very special forms of d−regular graphs.

2.3. Mixed Method

In this section, we investigate a new approach for solving SDD systems based on mixing decentralized

and centralized strategies. To illustrate, let us consider the following straightforward centralized

procedure to solve system (2.1):

Algorithm 8 : Naive Centralized Algorithm

1: Input The ith row of matrices LG, the ith component of vector b, precision parameter ε.
2: Output: The ith components of ε− approximate solution [x̃]i.
3: Call a standard leader election protocol to come at leader node

ileader = LeaderElection(G)

4: Collect the whole matrix LG and vector b in node ileader.
5: Find ε−approximate solution x̃ to (2.1) at node ileader.
6: Distribute components [x̃]i among the nodes in G
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This algorithm combines both centralized and decentralized approaches to solve system (2.1). Specif-

ically, Algorithm 8 firstly identifies the leader node using any distributed leader election protocol

(Raynal (2013)), and then implements one of the fast SDD solvers ( Spielman and Teng (2006),

Cohen et al. (2014) or Blelloch et al. (2011) ) at this node. The following summarizes both pros and

cons of this approach:

1. Pros: time and communication complexities of Algorithm 8 are given by Õ(m log 1
ε ) and

O(m), respectively.4

2. Cons: to store LG in the leader node the corresponding local memory size should be at least

O(m).

Therefore, it is interesting to ask if we can design some mixed procedure that retains all strong

traits of Algorithm 8, and, at the same time, has more moderate requirements concerning the local

memory of the leader node. The following Theorem confirms the above:

Theorem 2.3.1 Let G be a weighted connected graph with n nodes and m edges. Consider the

distributed SDD system

LGx = b

associated with G. Then, there is a randomized mixed algorithm that computes ε−approximate

solution of this system in Õ(n log2 1
ε ) time steps and Õ(m log2 1

ε ) messages in total. Moreover, the

size of the local memory for the leader node is bounded by Õ(n).

Before commencing with the technicalities of the mixed technique, notice that the above theorem

establishes the existence of a mixed algorithm that actually improves the benefits of Algorithm

8 rather than just preserving them. Indeed, the time complexity is advanced to Õ(n), while the

message complexity is almost linear in m. Finally, the local memory requirement for the leader node

is reduced to Õ(n), which almost replicates the bound on the local memory for fully distributed

solvers.

Next, we introduce additional machinery needed to establish the mixed method.

4Please note that that Õ hides polylog(n) factors.
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2.3.1. Spanners and Sparsifiers

A sparsifier H of the graph G = (V,E,W) is its sparse sub-graph that is similar to G with respect

to some useful measure. A variety of sparsifiers have been considered: cut sparsifiers, spanners,

spectral sparsifiers, etc. The last play a crucial role in the new mixed approach. As such, we present

its definition below:

Definition Let G = (V,E,W) be a weighted graph and p be the path connecting two endpoints of

an edge e ∈ E. Then the stretch of e with respect to p is given by:

stp(e) =
∑
e′∈p

we
we′

Definition For a given weighted graph G = (V,E,W) its sub-graph H = (V,E′,W′) is called

log n-spanner for G if

stretchH(e) ≤ 2 log n

where stretchH(e) = minp∈H stp(e)

For two weighted graphs G1 = (V,E,W1) and G1 = (V,E,W2), denote

G1 + G2 = (V,E,W1 + W2)

βG1 = (V,E, βW1)

The following definition specifies the concept of log n spanners:

Definition Let G be a weighted graph and H1, . . . ,Ht be sub-graphs of G such that Hi is a

log n−spanner for the graph G −
∑i−1
i=1 Hj . Then sub-graph H =

∑t
i=1 Hi is called a t− bundle

spanner of G.

Finally, the concept of spectral sparsification induces the proximity measure between quadratic forms

defined by Laplacians of two graphs:

Definition For a given weighted graph G = (V,E,W) its sub-graph H = (V,E′,W′) is called

ε1-spectral sparsifier if

(1− ε1)xTLHx ≤ xTLGx ≤ (1 + ε1)xTLHx (2.16)
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for all x ∈ R|V|

Algorithm 9 : Decentralized Spectral Sparsification Koutis (2014)

1: Input Graph G = (V,E,W), sparsification parameter ε1.
2: Output: ε1−spectral sparsifier H = (V,E′,W′) with expected number of edges |E′| =

O
(

1
ε21
n logc1 n

)
, where c1 is some constant.

3: Set G0 = G and β = ε1
dlogne .

4: for i = 1 to dlog ne do

5: Compute 24 log2 n
β2 − bundle spanner Ĥ for Gi−1.

6: Set G̃ = Ĥ
7: for each edge e 6∈ Ĥ do
8: with probability 1

4 add e to G̃ with weight 4we
9: end for

10: Set Gi = G̃.
11: end for
12: Set H = Gdlogne

In Koutis (2014) the authors suggest a simple fully distributed algorithm for spectral graph spar-

sification. The key component of the algorithm is a decentralized computation of 24 log2 n
β2 − bundle

spanner using the technique proposed by Baswana and Sen (2007). The following result from Koutis

(2014) provides all necessary theoretical guarantees:

Theorem 2.3.2 The output H of algorithm 9 on input G and parameter ε1 satisfies (2.16) with high

probability. The expected number edges in H is at most O( 1
ε21
n log6 n). In the synchronous distributed

model, it can be implemented to run in O( 1
ε21

log7 n) rounds with O( 1
ε21
m log6 n) communication com-

plexity, using messages of size O(log n).

2.3.2. Fast Mixed SDD Solver

Before we proceed to the mixed solver, we need to emphasize the problem with tuning the precision

parameters for both the solver and the sparsifier routines. Notice that, although, LH is spectrally

close to LH the corresponding precision parameter should be chosen in such a way to guarantee

(2.2) for the exact solution of the original system (2.1). Second, the running time, communication

complexity, as well as the expected number of edges in H have a quadratic dependence on 1
ε1

. Hence,

an accurate spectral approximation of LG (corresponding to small values of ε1) can blow up all three

of these performance measures. Next, we present a new mixed solver (Algorithm 10) along with its

theoretical analysis and performance guarantees.

To better understand the performance of this algorithm, we further analyze its time and communi-
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Algorithm 10 : Fast Mixed SDD Solver

1: Input: The ith row of matrices LG, the ith component of vector b, precision parameter ε.
2: Output: The ith components of ε− approximate solution [x̃]i.

3: Set sparsification value ε1 = 1
16 log 1

ε+8 log 12
, precision value ε2 = ε16

128 .

4: Build ε1−spectral sparsifier H = (V,E′,W) for G using Algorithm 9.
5: Call a standard leader election protocol to come at leader node

ileader = LeaderElection(G)

6: Collect the whole matrix LH and vector b in node ileader.
7: Call the fast centralized solver for the system LHx = b in the leader node vleader with precision

parameter ε2.
8: Distribute components [x̃]i among the nodes in G.

cation complexities. The following step-by-step analysis establishes these results:

1. In line 4, Algorithm 9 constructs in O
(
log7 n log2 1

ε

)
rounds an ε1−spectral sparsifier H

with expected number of edges O
(
n log6 n log2 1

ε

)
. In each round, a node passes its adja-

cency list constant number of times. Therefore, the overall time complexity of the this line is

O
(
n log7 n log2 1

ε

)
and communication complexity is O

(
m log7 n log2 1

ε

)
. The length of each

message is bounded by O(log n).

2. In line 5, we use the standard leader election technique, which requires O(n) and O(m) time

and message complexities, respectively.

3. In line 6, the simple edge by edge passing algorithm collects the topology of H in node ileader

in O
(
n log6 n log2 1

ε

)
time steps and the same total amount of messages.

4. In line 7, we apply the fast SDD solver with precision parameter ε2 to LHx = b requires

O
(
n log6.5 n log3 1

ε

)
time steps. No message exchange is needed here because all computations

take place at the leader node.

5. In line 8, we broadcast the solution vector to other nodes requiring O(n) and O(m) time and

message complexities, respectively.

Hence, the overall time complexity is given byO
(
max{n log7 n log2 1

ε , n log6.5 n log3 1
ε }
)

= Õ(n log3 1
ε )

and the total communication complexity is bounded by O
(
m log7 n log2 1

ε

)
= Õ(m log2 1

ε ). The

length of each message is at most O(log n). The last step is to prove the correctness of Algorithm

10 as well as to validate the choice of parameters ε1 and ε2, which we show next.
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2.3.3. Theoretical Guarantees

Denote x∗G and x∗H as the exact solutions of systems LGx = b and LHx = b respectively, and x̃H be

ε2−approximate solution of LHx = b. Therefore, according to Definition 2.1:

(1− ε2)2||x∗H||2LH
≤ ||x̃H||2LH

≤ (1 + ε2)2||x∗H||2LH
(2.17)

Since H is ε1−spectral sparsifier for G:

(1− ε1)||x̃H||2LG
≤ ||x̃H||2LH

≤ (1 + ε1)||x̃H||2LG
(2.18)

Combining (2.17) and (2.18) gives:

(1 + ε1)||x̃H||2LG
≥ (1− ε2)2||x∗H||2LH

(1− ε1)||x̃H||2LG
≤ (1 + ε2)2||x∗H||2LH

or

(1− ε2)2

1 + ε1
||x∗H||2LH

≤ ||x̃H||2LG
≤ (1 + ε2)2

1− ε1
||x∗H||2LH

(2.19)

Fix some δ > 0 and denote L̂H = LH + δ11T and L̂G = LG + δ11T. Then for the inverses we have:

L̂
−1

H = L†H +
1

δ
11T

L̂
−1

G = L†G +
1

δ
11T

Moreover, for any x ∈ Rn:

(1− ε1)xTL̂Gx ≤ xTL̂Hx ≤ (1 + ε1)xTL̂Gx (2.20)

Assuming ε1 ≤ 1
2 and denoting α = ln(1 + 2ε1) gives:

e−αxTL̂Gx ≤ xTL̂Hx ≤ eαxTL̂Gx
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In other words, L̂H ≈α L̂G, and consequently L̂
−1

H ≈α L̂
−1

G . Therefore, for any x ∈ Rn:

e−αxT

(
L†G +

1

δ
11T

)
x ≤ xT

(
L†H +

1

δ
11T

)
x ≤ eαxT

(
L†G +

1

δ
11T

)
x

In particular, for b ∈ 1⊥:

e−αbTL†Gb ≤ b
TL†Hb ≤ e

αbTL†Gb (2.21)

or equivalently, using bTL†Gb = ||x∗G||2LG
and bTL†Hb = ||x∗H||2LH

e−α||x∗G||2LG
≤ ||x∗H||2LH

≤ eα||x∗G||2LG

Hence, using the above result in (2.19) gives:

(1− ε2)2

1 + ε1
e−α||x∗G||2LG

≤ ||x̃H||2LG
≤ (1 + ε2)2

1− ε1
eα||x∗G||2LG

or equivalently,

(1− ε2)√
(1 + ε1)(1 + 2ε1)

||x∗G||LG ≤ ||x̃H||LG ≤ (1 + ε2)

√
1 + 2ε1
1− ε1

||x∗G||LG (2.22)

Using ε1 = − 1
log ε0

and ε2 = ε0 equation (2.22) can be written as:

(1− ε0)√(
1− 1

log ε0

)(
1− 2

log ε0

)
︸ ︷︷ ︸

A

||x∗G||LG ≤ ||x̃H||LG ≤ (1 + ε0)

√√√√1− 2
log ε0

1 + 1
log ε0︸ ︷︷ ︸

B

||x∗G||LG

For ε0 ≤ 1
5 : A ≥ 1− 2ε

1
8
0 and B ≤ 1 + 2ε

1
8
0 , hence:

(
1− 2ε

1
8
0

)
||x∗G||LG ≤ ||x̃H||LG ≤

(
1 + 2ε

1
8
0

)
||x∗G||LG (2.23)

Equation (2.23) allows us to evaluate the quality of the solution x̃H:

||x̃H − x∗G||2LG
≤
[(

1 + 2ε
1
8
0

)2

+ 1

]
||x∗||2LG

− 2x̃T
HLGx

∗
G (2.24)
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To finalize the analysis the last term in (2.24) should be lower bounded. This can be achieved by

applying results (2.18), (2.21) and (2.23):

2x̃T
HLGx

∗
G = 2x̃T

HLHx
∗
H ≥ x̃THLHx̃H + (1− ε22)x∗TH LHx

∗
H =

(1− ε1)||x̃H||2LG
+ (1− ε22)bTL†Hb ≥

(1− ε1)||x̃H||2LG
+ (1− ε22)e−αx∗TG LGxG ≥

(1− ε1)
(

1− 2ε
1
8
0

)2

||x∗G||2LG
+

(1− ε22)

1 + 2ε1
||x∗G||2LG

=(1 +
1

log ε0

)(
1− 2ε

1
8
0

)2

+
(1− ε20)(
1− 2

log ε0

)
 ||x∗G||2LG

For ε0 ≤ 1
5 we have − 2

log ε0−2 ≤ ε
1
8
0 and − 1

log ε0
≤ ε

1
8
0 . Applying this results to (2.24) and choosing

ε0 = ε16

128 gives:

||x̃H − x∗G||2LG
≤ (2.25)(1 + 2ε

1
8
0

)2

+ 1−

(1 +
1

log ε0

)(
1− 2ε

1
8
0

)2

+
(1− ε20)(
1− 2

log ε0

)
 ||x∗G||2LG

≤

12ε
1
8
0 ||x∗G||2LG

= ε2||x∗G||2LG

In other words, x̃H is ε−approximate solution of system LGx = b. Notice, that the choice of pa-

rameters ε1 and ε2 allows to bound the time and message complexities of Algorithm 10 in terms of

poly
(
log
(

1
ε

))
avoiding computational issues mentioned before.

Finally, the local memory requirement for the leader node is dictated by the necessity to store LH

and it is characterized by the number of edges in the sparsifier H, i.e. given by O
(
n log6 n log2 1

ε

)
=

Õ(n log2 1
ε ). Ignoring log n factors, this result almost replicates the worst case bound for local

memory in fully distributed method, given by O(n).

2.4. Special Cases

To finalize the study of distributed solvers we illustrate the performance of the proposed techniques

for different graph topologies. In particular, the following cases are considered: Path Graph Pn,

Grid Graph GGk×l, Ring Graph Rn, Star graph Sn, Erdos-Renyi graph ERn,p, Scale Free Network
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SFn and Bar-Bell Graph BBGn and Ramanujan Expander REGd,n. To bound the condition number

of these graphs we use the following well-known bounds (Chung (1997), Mohar (1991)):

µn(LG) ≤ 2dmax and µ2(LG) ≥ 4

ndiam(G)

where dmax, diam(G) are maximal degree and diameter of G respectively.

1. Path graph Pn. In a path graph all nodes can be enumerated in such way that edges are

given as E = {(i, i+ 1)}n−1
i=1 . Figure 1 shows path graph P8:

Figure 1: Path graph P8

Exploiting that diam(Pn) = n− 1 for the condition number of a path graph Pn:

κ(LPn) ≤ n2

2. Grid Graph GGk×l: Let Pk,Pl be path graphs with k and l nodes respectively, such that

kl = n. The Cartesian product of Pk × Pl is called a grid graph SGk×l. In other words, the

vertex set of GGk×l is given as a collection of ordered pairs {[i, j]}i∈Pk,j∈Pl and two vertices

[i1, j1], [i2, j2] are adjacent if and only if either i1 adjacent to i2 in Pk or j1 adjacent to j2 in

Pl. The example of GG4×8 is presented in Figure 2:

Figure 2: Grid Graph GG4×8.

Being the Cartesian product allows to associate the spectrum of GGk×l in terms of spectrum

of Pk and Pl. In particular, let λi, νj be eigenvalues of Pk and Pl, then according to Mohar

(1991) we have µi,j = λi + νj is the eigenvalue of GGk×l. The reverse is also true, i.e.

37



for any eigenvalue µ of graph GGk×l there are eigenvalues λi, νj of graphs Pk and Pl such

that µ = λi + νj . Therefore, using that the spectrum of a path graph Pn is represented as

{2− 2 cos 2πr
n }

n
2
r=1 then:

κ(LGGk×l) ≤
2

π2
max{k2, l2}

In the case k = l =
√
n this result implies κ(LGG√n×√n) ≤ 2

π2n

3. Ring Graph Rn: A ring graph Rn consists of a sequence of n vertices starting and ending at

the same vertex and each two consecutive nodes in the sequence adjacent to each other. The

example of R10 is presented in Figure 3. Notice, the diameter of ring graph is given by n
2 ,

therefore, the condition number can be bounded by:

κ(LRn) ≤ n2

2

Figure 3: Ring graph R8

4. Star Graph Sn. In a star graph the edge set is given as E = {(1, j)}nj=2. In other words,

vertices 2, . . . , n are only connected to node 1. This node is called the central node. Figure 4

presents the star graph S9. The spectrum of Laplacian of Sn is given as:

Figure 4: Star graph S9

Spect(LSn) = {0, 1, . . . , 1︸ ︷︷ ︸
n−2

, n}
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Therefore, the condition number is equal to:

κ(LSn) = n

5. Erdos-Renyi graph ERn,p. In the model introduced by Erdos and Renyi (Erdos and Renyi

(1959)), all graphs are constructed on a fixed vertex set V = {1, . . . , n} where each edge has

a fixed probability p of being present or absent, independently of the other edges. Figure 5

shows the instance of ERn,p for p = 0.1 and p = 0.2:

Figure 5: Erdos-Renyi graph ERn,p with p = 0.1 and p = 0.2

The important features of Erdos-Renyi graphs strongly depend on a choice of parameter p.

For instance, if p ≥ logn
n , then with high probability graph ERn,p is an expander with a node

degree d ∼ O(log n) and a diameter diam(ERn,p) ∼ O(log n). Consequently, one can bound

the condition number of ERn,p by:

κ(LERn,p) ≤ n

2
log2 n

6. Scale Free Network SFn: This graph topology was first mentioned in de Solla Price (1965)

by analyzing the network of scientific citations. Formally speaking, a scale free network is

generated according to the following recursive procedure:

(a) Start with G(1) - the graph with one single node.
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(b) Contract G(n) from G(n−1) by adding a node n with a single undirected edge from n to

i, chosen according to Pr(i = s) =
d(s)G(n−1)

2n−1 , with d(s)G(n−1)
being the degree on node s

in graph G(n−1).

(c) SFn = G(n).

Figure 6: Scale Free Network SFn

Figure 6 presents the result of this process. In Bollobas et al. (2001) and Bollobas and Riordan

(2004) the authors achieve the bounds for a maximal degree and a diameter of a scale free

network. Precisely, with high probability

diam(SFn) ∼ O(log n)

dmax ∼ O(
√
n)

Hence, for the condition number we obtain the bound:

κ(LSFn) ≤ n
√
n

2
log n

7. Bar-Bell Graph BBGn: Bar Bell graph with n nodes consist of two cliques Kdn3 e connected

by a path graph Pdn3 e. This topology is characterized by the following features:

diam(BBGn) ∼ O(n)

dmax(BBGn) ∼ O(n)
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Therefore, for the condition number we have:

κ(BBGn) ≤ n3

2

Figure 7: Bar Bell Graph BBG8

8. Ramanujan Expander Graph REGd,n: Let d ≥ 3 and consider d− regular graph G on n

nodes. Denote {λi}ni=1 be the collection of eigenvalues of adjacency matrix AG of G arranged

in decreasing order, i.e d = λ0 > λ1 ≥ . . . ≥ λn−1 ≥ −d. The graph G is called Ramanujan

Expander graph if

max
i:|λi|6=d

|λi| ≤ 2
√
d− 1

There is a simple connection between eigenvalues of Laplacian and adjacency matrix of REGd,n.

Indeed, using LREGd,n = dI −AREGd,n :

µi(LREGd,n) = d− λi

Therefore, µ2(LREGd,n) = d− λ1, µn(LREGd,n) = d− λn−1, and for the condition number:

κ(LREGd,n) =
d− λn−1

d− λ1
≤ 2d

d− λ1
≤ 2d

d− 2
√
d− 1

Figure 8 shows the example of REG3,20:

It is worth mentioning, that the explicit construction of such graphs for a fixed d and n→∞

has only been described in the case d− 1 is prime Lubotzky et al. (1988), Margulis (1988) or a

prime power Morgenstern (1994). In the recent work by Cohen (2016), the authors proposed

the polynomial algorithm for constructing bipartite Ramanujan graphs of all degrees and all

sizes. The general construction of a Ramanujan graph for non-bipartite case is still an open

problem.

41



Figure 8: Ramanujan Expander Graph REG3,20

Time and message complexity results are presented in Tables5 1 and 2

G κ(LG) Alg 5 Alg 6 Alg 10
Pn n2 O(n2) O(n) O(n)
GG√n×√n 2

π2n O(n) O(
√
n) O(n)

Rn n2

2 O(n2) O(n) O(n)
Sn n O(n2) O(n

√
n) O(n)

ERn,p n
2 log2 n O(n2 log3 n) O(

√
n log2 n) O(n log n)

SFn n
√
n

2 log n O(n2 log n) O(n
5
4

√
log n) O(n)

BBGn n3

2 O(n4) O(n
5
2 ) Õ(n)

REGd,n 2d
d−2
√
d−1

O
(

d2

d−2
√
d−1

)
O
(
d
√

d
d−2
√
d−1

)
Õ(n)

Table 1: Time Complexity For Different Graph Topologies

G κ(LG) Alg 5 Alg 6 Alg 10
Pn n2 O(n3) O(n2) O(n)
GG√n×√n 2

π2n O(n2) O(n
√
n) O(n)

Rn n2

2 O(n3) O(n2) O(n)
Sn n O(n2) O(n

√
n) O(n)

ERn,p n
2 log2 n O(n2 log3 n) O(n

√
n log2 n) O(n log

3
2 n)

SFn n
√
n

2 log n O(n3 log n) O(n
9
4

√
log n) O(n)

BBGn n3

2 O(n5) O(n
9
2 ) Õ(n2)

REGd,n 2d
d−2
√
d−1

O
(

d2n
d−2
√
d−1

)
O
(
dn
√

d
d−2
√
d−1

)
Õ(dn)

Table 2: Message Complexity For Different Graph Topologies

5For sparse graphs with |E| ∼ Õ(n) the construction of sparsifier in Alg 10 is unnecessary
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CHAPTER 3 : APPLICATION OF SDD SOLVERS FOR LARGE SCALE

OPTIMIZATION

In the second part of this work we discuss two practical applications of the proposed SDD solvers:

Network Flow Problem and Empirical Risk Minimization. Particularly, we develop a distributed

version of an exact Newton method for these problems and establish super-linear convergence.

3.1. Network Flow Optimization

Network flow optimization is a fundamental problem with wide-ranging applicability including but

not limited to DNA sequence alignment Ahuja et al. (1993a), scheduling on uniform parallel machines

Lawler et al. (1982), urban traffic flows Ahuja et al. (1993a), optimal energy allocation Gurakan et al.

(2015), etc. As networks grow larger, centralized approaches to network flow optimization under-

perform due to the increase in time and resource complexity needed. Distributed methods for such

network optimization problems present an alternative direction to cope with such increased demand.

Conventional methods for distributed network optimization are based on subgradient descent in ei-

ther the primal or dual domains. For a large class of problems, these techniques yield iterations

that can be implemented in a distributed fashion using only local information. Their applicability,

however, is limited by increasingly slow convergence rates. The Newton method Boyd and Vanden-

berghe (2004b) is known to overcome this limitation leading to improved convergence rates.

However, computing exact Newton directions based only on local information is challenging due to

the need to invert the Hessian of the dual (distributed among the nodes of a graph) which typically

requires global information. Consequently, authors in Jadbabaie et al. (2009), Wei et al. (2010)

proposed approximate algorithms for determining these Newton iterates in a distributed fashion.

Accelerated Dual Descent (ADD) Jadbabaie et al. (2009), for instance, exploits the fact that the

dual Hessian is the weighted Laplacian of the network and uses a truncated Neumann expansion

of the inverse to determine an approximation to the Newton step. ADD allows for a trade-off be-

tween accurate Hessian approximations and communication costs through the N-Hop design, where

increased N allows for more accurate inverse approximations at the expense of increased cost, and

lower values of N reduce accuracy but improve computational times. However, the effectiveness of

these approaches highly depends on the accuracy of the truncated Hessian inverse which is used

to approximate the Newton step. In fact, as we will show, the approximation error can be large,

43



leading to an inaccurate computation of the Newton step.

3.1.1. Problem Formulation

In this section, we formalize the Network flow problem and introduce essential results which enable

distributed computation of the Newton direction. Crucially, we show the Hessian of the dual function

to be a SDD matrix. Consequently, proposed SDD solvers can be used to compute the Newton

direction in a distributed fashion up to any precision.

We consider a network represented by a directed graph G = (V,E) with node set V = {1, . . . , n}

and edge set E = {1, . . . , E}. The flow vector is denoted by x = [x(e)]e∈E, where x(e) represents the

flow on edge e. Flow conservation constraints are compactly represented by

Ax = b

where A is n× E node-edge incidence matrix of network G which is defined as

Ai,j =


−1 : if edge j leaves node i

1 : if edge j enters node i

0 : otherwise

Vector b ∈ 1⊥ denotes total sources. Consequently, [b]i > 0 (or [b]i < 0) indicates [b]i units of

external flow enters (or leaves) node i. The goal of the network flow is to minimize a sum of costs

at all edges. Hence, we define Φe : R → R+ to be the cost associated with each edge e ∈ E. Here,

Φe(x
(e)) denotes the cost on edge e evaluated at the eth edge flow x(e). We assume that these

functions are strictly convex and twice differentiable. Given the above, the minimum cost network

optimization problem can be written as

min
x
f(x) =

E∑
e=1

Φe

(
x(e)

)
(3.1)

s.t. Ax = b
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3.1.2. Newton Method for Dual Descent

Typical methods for optimizing the problem in Equation (3.1) are based on descending in the dual

function. The main difference among these techniques depends on the descent direction. Dual

subgradients, for example, optimize the above objective by taking sub-gradient steps in the dual.

Though successful, the applicability of sub-gradient descent is hindered by slow convergence rates.

This motivates the consideration of Newton-type methods, which descend along a scaled version of

the sub-gradient.

To formulate these iteration schemes, we start by defining the Lagrangian, L (·) : RE × RN → R:

L (x,λ) =

E∑
e=1

Φe(x
(e)) + λT(Ax− b)

where λ is a dual vector with each component being associated to a node. The dual function q(λ)

is then derived as

q(λ) = inf
x∈RE

L (x,λ) = inf
x∈RE

(
Φe(x

(e)) + λTAx
)
− λTb =

E∑
e=1

inf
x(e)

(
Φe(x

(e)) + (λTA)ex(e)
)
− λTb

Hence, it can be clearly seen that the evaluation of the dual function q(λ) decomposes into E one-

dimensional optimization problems. We assume that each of these optimization problems has a

unique optimal solution which is guaranteed by the strict convexity of the costs Φe. Denoting the

solutions by x(e)(λ) and using the first order optimality conditions, it can be seen that for each edge

e, x(e)(λ) is given by

x(e)(λ) = [Φ̇e]
−1([λ]j − [λ]i) (3.2)

where i, j ∈ V denote the source and destiny nodes of edge e = (i, j); see Zargham et al. (2013) for

detailed description of the above derivation. Therefore, for an edge e, the evaluation of x(e)(λ) can

be performed based on local information about the edge’s cost function and the dual variables of

the incident nodes, i and j.

Typically, the goal is to maximize the dual in terms of the dual variables. In this work, we consider
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the minimization of the negative of the dual leading to:

max
λ∈Rn

q(λ)⇐⇒ min
λ∈Rn

q̃(λ) where q̃(λ) = −q(λ)

To minimize q̃(λ), a second order method which descends along a scaled version of the gradient can

be used. Such iterates are given by:

λk+1 = λk + αkdk, for all k ≥ 0 (3.3)

with dk being the Newton direction at iteration k, and αk denoting the step size. The Newton

direction is computed as the solution to the following linear system of equations:

Hkdk = −gk (3.4)

with Hk = H(λk) = ∇2q̃(λ) being the Hessian of q̃(λ) and gk = g(λk) = ∇q̃(λk) denoting the

gradient, both evaluated at λ = λk.

3.1.3. Distributed Newton Method For Network Flow Problem

The goal of this chapter is to propose a method which can compute the Newton direction for

network flow problems in a distributed fashion. Our computational restriction is that each node, i,

can compute the ith component of the sought direction based on only local communication exchange

with its neighbors. Namely, given the ith row of Hk and the ith entry of gk, the node has to

determine the ith component, [dk]i, of dk. If such a solution can be attained, the iteration scheme

in Equation (3.3) can be fully distributed across all nodes as:

[λk+1]i = [λk]i + αk[dk]i

Having updated the dual variables, each node can perform local primal updates based on Equation

(3.27), which is in itself distributable across the nodes of the network. To avoid conflicts, we adopt a

strategy where each node i updates the flows on all of its outgoing edges based on the dual variables

of its neighbors.

A distributed computational procedure as detailed above requires the dual gradient and Hessian to
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share properties enabling decentralization. In Lemma 3.1.2, we show two such results. First, we

demonstrate that the gradient is readily distributable across the network. Secondly, we prove the

Hessian to be an SDD matrix, which we then exploit to distribute the computation of the Newton

direction. Our results in Lemma 3.1.2 are based on the following assumptions:

Assumption 3.1.1 The cost functions, Φe(·), in Equation (3.1) are

1. twice continuously differentiable, i.e., γ ≤ Φ̈e ≤ Γ, with γ and Γ are constants; and

2. Hessian Lipschitz continuous for all edges e ∈ E, i.e.,
∣∣∣Φ̈e(x)− Φ̈e(x̂)

∣∣∣ ≤ δ|x − x̂| for all

x, x̂ ∈ R

Lemma 3.1.2 The function q̃(λ) abides by the following two properties:

1. The gradient and the Hessian of q̃(λ) is given by

∇q̃(λ) = g(λ) = −Ax(λ) + b

∇2q̃(λ) = H(λ) = A
[
∇2f(x(λ))

]−1
AT

2. Denote µn(LG) be the largest eigenvalue of unweighted Laplacian of G. Then, for constant

B = δ
γ3µn(LG) and for any λ̄,λ ∈ RN :

||H(λ̄)−H(λ)||2 ≤ B||λ̄− λ||2

i.e. H(λ) is Lipschitz continuous with constant B.

The first result in Lemma 3.1.2 shows that the gradient can be distributed across the nodes of G

which is true due to the sparsity pattern of the incidence matrix A. Namely, the ith element, [gk]i,

of the gradient g(λ) at iteration k can be computed as:

[gk]i = −
∑

e=(i,j)

x(e)(λk) +
∑
e=(j,i)

x(e)(λk) + [b]i (3.5)

The second result demonstrates that the Hessian is the weighted Laplacian of the graph G with the

ith row containing the weights of the edges corresponding to node i. Consequently, a distributed
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solution as described above is achievable as long as the pseudo inverse of the Hessian can be computed

locally. Being the weighted Laplacian of the graph, it is easy to see that the Hessian is also a SDD

matrix, where for any λ:

H(λ)ii ≥ −
∑
j 6=i

H(λ)ij

Consequently, all our solvers developed in the previous section are readily applicable to the com-

putation of ε−approximate solution to the exact Newton direction dk. Formally, we consider the

following iteration scheme

[λk+1]i = [λk]i + αk[d̃k]i (3.6)

where [d̃k]i is the ith component of the approximation to the real Newton direction dk and αk is

a step size. The following Lemma studies the change of the norm of dual gradient for the scheme

(3.6) and plays a crucial role for the convergence analysis:

Lemma 3.1.3 Let us consider iteration scheme given by (3.6) and denote

εk = Hkd̃k + gk

be the approximation error vector corresponding to d̃k. Then for any αk ∈ (0, 1]

||gk+1||2 ≤ (1− αk)||gk||2 + α2
kB

Γ2

µ2
2(LG)

||gk||22 + αk||εk||2 + α2
kB

Γ2

µ2
2(LG)

||εk||22 (3.7)

where B is defined in Lemma 3.1.2 and µ2(LG) is the smallest nonzero eigenvalue of unweighted

Laplacian of G.

3.1.4. Distributed Backtracking Line Search

To guarantee global convergence, a step size αk needs to be selected appropriately. Our new method

is inspired by the well known Armijo’s rule

||g(λk+1)||2 ≤ (1− σαk)||g(λk)||2

where σ ∈
(
0, 1

2

]
. The decentralized computation of the dual norm ||g(·)||2 can be implemented by a

distributed consensus based scheme. However, such computation suffers from two main drawbacks:
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it is inaccurate and the fastest technique requires O(n) time steps. To avoid both of these issues,

we construct a new method based on maximum consensus protocol:

Algorithm 11 : Distributed Backtracking Line Search

1: Input: The constants σ ∈
(
0, 1

2

]
and β ∈ (0, 1), parameters ε,Γ, γ, δ. The ith component of

dual gradients [gk+1]i and [gk]i.
2: Output: step size αk.
3: Set mi = 0
4: Compute maxi{[gk]i} using maximal consensus protocol.

5: while [gk+1]i > (1− σβmi)
√
nmaxi{[gk]i}+ 2εnγ

2

δΓ do
6: mi = mi + 1.
7: end while
8: Compute m̂ = maxi{mi} using maximal consensus protocol.
9: Set αk = βm̂.

Algorithm 11 requires only O(diam(G)) time steps and conducts only exact computations. The

following Lemma studies the change of step size given by the proposed backtracking line search

procedure:

Lemma 3.1.4 Let step size αk be chosen according to Algorithm 11 and let gk be the dual gradient

evaluated at λk. Then

1. If ||gk||2 ≤
µ2

2(LG)
2BΓ2 then αk = 1

2. If ||gk||2 >
µ2

2(LG)
2BΓ2 then αk ≥ β µ2

2(LG)
2BΓ2 maxi{|[gk]i|}

where B is a constant defined in Lemma 3.1.2 and µ2(LG), µn(LG) are the smallest and largest

nonzero eigenvalues of the unweighted Laplacian of G.

3.1.5. Accurate Distributed Newton Method

Given the above approximation of the Newton direction, in this section, we analyze the iteration

scheme of the distributed Newton method. We show that our method acquires super-linear conver-

gence within a neighborhood of the optimal value similar to standard Newton methods. Our main

results on the two-phase convergence guarantees are summarized in Theorem 3.1.5

Theorem 3.1.5 Let γ, Γ, δ B be the constants defined in Assumption 3.1.1 and Lemma 3.1.2,
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µ2(LG) and µn(LG) representing the smallest and largest nonzero eigenvalues of unweighted Lapla-

cian of G, ε ≤ β
8

δ
n
√
n

(
γ
Γ

) µ2
2(LG)

µn(LG) be the precision parameter for the SDD solver. Consider iteration

scheme given by [λk+1]i = [λk]i+αk[d̃k]i where the step size αk is calculated by Algorithm 11. Then,

this iteration scheme exhibits two convergence phases:

1. Strict Decreases Phase If ||gk||2 >
µ2

2(LG)
2BΓ2 , then

||gk+1||2 − ||gk||2 ≤ −
1

8

β

δ
√
n

γ3

Γ2

µ2
2(LG)

µn(LG)

where parameter β ∈ (0, 1).

2. Quadratic Decreases Phase If ||gk||2 ≤
µ2

2(LG)
2BΓ2 , then for any l ≥ 1:

||gk+l||2 ≤
1

22l BΓ2

µ2
2(LG)

+ B̃ +
Λ̂
BΓ2

µ2
2(LG)

[
22l−1 − 1

22l

]
(3.8)

where

B̃ =
1

2
ε
µ2(LG)γ2

Γδ

[√
µ2(LG)γ

µn(LG)Γ
+
ε

2

]
∼ O(ε)

Λ̂ = B̃
4BΓ2

µ2
2(LG)

[
1 + B̃

BΓ2

µ2
2(LG)

]
∼ O(ε)

The following result follows directly from (3.8) and establishes the asymptotic limit for the dual

gradient after passing strict decrease phase:

Corollary 3.1.6 Let k0 designate the first iteration such that ||gk0
||2 ≤ µ2

2(LG)
2BΓ2 . Then for the next

iterations dual gradient converges quadratically to

lim
l→∞

||gk0+l||2 = B̃ +
1

2

Λ̂

δ

µ2
2(LG)

µn(LG)

γ3

Γ2
∼ O(ε)

In other words, tuning precision parameter ε one can approximate the solution vector x∗ = x(λ∗)

with any arbitrary precision.

50



3.1.6. Experiments

This section provides empirical validation of our distributed Newton method. We performed two

sets of experiments on three different network topologies: 1) random (both small and large in sizes),

2) bar-bell, and 3) star-bar graphs. The usage of different typologies allows us to better understand

the effect of good and bad mixing times on the performance of our technique.

To ensure state-of-the-art performance, we compared the proposed algorithm to six benchmark

solvers: 1) Distributed SDD-Newton (Tutunov et al. (2016)), 2) Augmented Lagrangian for Dis-

tributed Optimization (ADAL) (Chatzipanagiotis et al. (2015)), 3) Accelerated Dual Descent (ADD)

with two different splittings (Zargham et al. (2013)), 4) dual sub-gradients, and 5) the fully dis-

tributed algorithms for convex optimization (Mosk-Aoyama et al. (2007)) (FDA).

In all experiments, we used Φe(x
(e)) = exp(x(e)) + exp(−x(e)) to represent the cost function on the

edges of the network. The flow vectors, b, were chosen so that the first component corresponded to

1 and the last to -1 with all others being 0.

Feasibility & Objective Value Results

In this section, we report the performance of all algorithms on various network typologies. The

parameter details for each of the network typologies are detailed below:

1. Small Random Graphs: We refer to a 20-node 60-edge network as a small random one. Here,

edges were generated uniformly at random. Typical, condition numbers for these networks

ranged between 8-15. For ease of exposure, random small networks are referred to as ”sRandom

Graph” in Figure 9.

2. Large Random Graphs: We refer to an 80-node 200-edge network as a large random one.

Again, edges were generated uniformly at random. Condition numbers for such networks varied

between 19-32. In Figure 10, we refer to large random networks as ”lRandom Graph”.

3. Bar-Bell Graphs: A bar-bell graph is a network consisting of two cliques connected by a

line graph. In Figure 11 we considered a bar-bell network with 30 nodes. In this network, the

condition number can resemble high values in the order of hundreds.

4. Bar-Star Graphs: A bar-star graph is a network resembling similarities to the bar-bell graphs
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with two star-shapes connected by a line graph. Here, the condition number can also resemble

high orders. In Figure 12, we refer to Bar-Star networks as ”Bar-Star Graph”.

A gradient threshold of 10−5 was used to assess convergence. For the solver in Algorithm 5, the

length of the chain d was chosen according to

d = dlog

(
2 ln

(
3
√

2
3
√

2− 1

)
κ(LG)

)
e

and for the solver in Algorithm 6 the degree of Chebyshev polynomial was set to

kε = d1
2

(
√
κ(LG) + 1) ln

2

ε
e

where κ(LG) is the condition number of the graph G and ε = 10−3 is the accuracy in approximating

the Newton direction. In our experiments, we relaxed this choice to a fixed constant step-size. We

varied its values between [0.1, 0.2, 0.4] and similar performance to that reported in Figures 9, 10, 11,

12 was observed. Step-sizes for all other algorithms were chosen as suggested per the corresponding

paper.

We assessed the performance of all methods using two evaluation criteria: 1) feasibility error ||Axk−

b||2 with k being the iteration count, and 2) objective value f(xk) =
∑
e Φe(x

(e)). Results on the

four typologies are reported in Figures 9, 10, 11, 12. We first recognize that our proposed method is

capable of outperforming others in both evaluation criteria. On small random graphs, for instance,

our distributed Newton method achieves a low feasibility error of 10−6 in 102.6 to 102.8 for the second

best being ADAL. This is also true on other typologies. For example, on bar-bell graphs we achieved

a low feasibility error in about 101.7 iterations compared to 102.5 for ADAL. Though comparable to

our performance, it is worth noting that ADAL does not adhere to the distributed framework we

detailed before due to the need for global information in computing dual updates.1

1Increased versions of these figures are presented in Appendix A.20
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Figure 9: Experimental Results for Small Random Graph

Figure 10: Experimental Results for Large Random Graph
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Figure 11: Experimental Results for Bar-Bell Graph

Figure 12: Experimental Results for Bar-Star Graph
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Figure 13: Experimental results: convergence, communication overhead, accuracy effect

Though successful, it is interesting to ask the question of whether our algorithm is capable of

retrieving the exact optimal flow x∗. We computed x∗ using the centralized Newton method running

on the large random network of 80 nodes and 200 edges. We then traced ||xk−x∗||2 for all algorithms.

Results reported in Figure 13 (a) show that our techniques are capable of achieving a 0 value of the

norm after ∼ 102 iterations compared to values > 103 for the other methods.

Communication Cost

One might argue that the improvements we achieved above arrive at high communication overhead

between the processors of the network. This can be true, since at every iteration our fully distributed

solvers require O
(
κ(LG) log 1

ε

)
and O

(√
κ(LG) log 1

ε

)
local exchanges respectively, with κ(LG)
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being the condition number of the graph. To better understand this phenomenon, we conducted

an experiment with a random graph of 20 nodes and 60 edges generated uniformly at random. We

measured the local communication exchange between processors as a function of the feasibility error

which varied from 10−1 to 10−4 These results are shown in Figure 13 (b),(c). First, it is clear that

all algorithms are relatively comparable at low error demands. As these demands increase so does

the communication cost for all approaches. Our methods’ growth, however, is slower compared to

that of others, which can become exponential for ADD and sub-gradients.

3.2. Empirical Risk Minimization

Data analysis through machine and statistical learning has become an important tool in a variety

of fields including artificial intelligence, biology, medicine, finance, and marketing. Though arising

in diverse applications, these problems share key characteristics, such as an extremely large number

(in the order of tens of millions) of training examples typically residing in high-dimensional spaces.

With this unprecedented growth in data, the need for distributed computation across multiple pro-

cessing units is ever-pressing. This direction holds the promise for algorithms that are both rich

enough to capture the complexity of modern data, and scalable enough to handle Big Data efficiently.

In the distributed setting, central problems are split across multiple processors each having access

to local objectives. We are interested in cases when the global objective is non-separable. Therefore,

when attempting to distribute the optimization of the objective, multiple copies of the minimizer

have to be created. Then, our goal is not only to minimize a sum of local costs, but also to en-

sure consensus (agreement) on the minimizer across all processors Nedić and Ozdaglar (2008). To

clarify, consider the example of linear regression in which the goal is to find a latent model for a

given data-set. Rather than searching for a centralized solution, one can distribute the optimization

across multiple processors, each having access to local costs defined over random subsets of the full

data-set. In such a case, each processor learns a separate chunk of the latent model, which is then

unified by incorporating consensus constraints.

Generally, there are two popular classes of algorithms for distributed optimization. The first is sub-

gradient based, while the second relies on a decomposition-coordination procedure. Sub-gradient
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algorithms proceed by taking a gradient-related step followed by an averaging with neighbors at each

iteration. The computation of each step is relatively cheap and can be implemented in a distributed

fashion Nedić and Ozdaglar (2008). Though cheap to compute, the best known convergence rate of

subgradient methods is relatively slow given by O
(

1√
t

)
with t being the total number of iterations

Wei and Ozdaglar (2012), Goffin (1977). The second class of algorithms solves constrained problems

by relying on dual methods. One of the well-known methods (state-of-the-art) from this class is the

Alternating Direction Method of Multipliers (ADMM) Boyd et al. (2011). ADMM decomposes the

original problem to two subproblems which are then solved sequentially leading to updates of dual

variables. In Wei and Ozdaglar (2012), the authors show that ADMM can be fully distributed over

a network leading to improved convergence rates in the order of O
(

1
t

)
.

Apart from accuracy problems inherent to ADMM-based methods Kadkhodaie et al. (2015), much

rate improvement can be gained from adopting second-order (Newton) methods. Though a variety

of techniques have been proposed Wei et al. (2010), Scheinberg and Tang (2013), less progress has

been made at leveraging ADMM’s accuracy and convergence rate issues. In a recent attempt [4], [5],

the authors propose a distributed second-order method for general consensus by using the approach

in Zargham et al. (2013) to compute the Newton direction. As detailed in our experiments, this

method suffers from two problems. First, it fails to outperform ADMM and second, it faces storage

and computational deficiencies for large data-sets, and thus ADMM retains state-of-the-art status.

3.2.1. Problem Formulation

Similar to previous setting, consider a network of n agents represented by a connected undirected

graph G = (V,E) with |V| = n and |E| = m. Each agent, i, corresponding to a node, can exchange

information among its first-hop neighborhood denoted by N(i) = {j ∈ V : (i, j) ∈ E}. The size of

such N(i) is referred to as the degree of node i, i.e., d(i) = |N(i)|. In the general form, the goal is

for each agent to determine an unknown vector xi ∈ Rp which minimizes a sum of multivariate cost

functions {fi}ni=1 distributed over the network while abiding by consensus constraints:

min
x1,...,xn

f(x1, . . . ,xn) = min
x1,...,xn

n∑
i=1

fi(xi) (3.9)

s.t. x1 = x2 = . . . = xn
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Though multiple attempts have been made at distributing the global consensus problem, the majority

of these works suffer from the following drawbacks. The first line of work is that introduced in Wei

and Ozdaglar (2012). This work mostly focuses on the univariate and separable settings and suffers

from scalability when generalized to the multivariate case. The second, on the other hand, is that

of Boyd et al. (2011), where the focus is mainly on a parallelized setting and not a distributed one.

Parallel methods assume shared memory that can become restrictive for problems with large data

sets. In this work, we focus on a true distributed setting where each processor abides by its own

memory constraints and the framework does not invoke any central node. We start by introducing

a set of vectors y1, . . . ,yp, each in Rn. Each vector yj acts as a collector for every dimension of the

solution across all nodes. In other words, each vector yi contains the ith components of x1, . . . ,xn:

y1 = [[x1]1, . . . , [xn]1]T, . . . ,yp = [[x1]p, . . . , [xn]p]
T

Clearly, each vector of the collection of y1, . . . ,yp is locally distributed among the nodes of graph G,

since each node i ∈ V needs only to have access to the ith components of such vectors. Consequently,

we can rewrite the problem of Equation (3.9) in an equivalent distributed form:

min
y1,...,yp

f(y1, . . . ,yp) = min
y1,...,yp

n∑
i=1

fi([y1]i, . . . , [yp]i) (3.10)

s.t. LGy1 = 0, LGy2 = 0, . . . ,LGyp = 0

To finalize the definition, we write the problem in Equation (3.10) in a vectorized format as:

min
y

n∑
i=1

fi([y1]i, . . . , [yp]i) (3.11)

s.t. Ip×p ⊗LG︸ ︷︷ ︸
M

y︸︷︷︸
y∈Rnp

= 0

where M = Ip×p⊗LG is a block-diagonal matrix with Laplacian diagonal entries, and y is a vector

concatenating y1, . . . ,yp. At this stage, our aim is to solve the problem in Equation (3.11)using

dual techniques. Before presenting properties of the dual problem, we next introduce a standard

assumption Boyd and Vandenberghe (2004b) on the associated functions fsi :

Assumption 3.2.1 The cost functions, fi(·), in Equation (3.9) are
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1. twice continuously differentiable, i.e., γIp×p ≤ ∇2fi(·) ≤ ΓIp×p, with γ and Γ are constants;

and

2. Hessian Lipschitz continuous for all i ∈ V, i.e.,
∣∣∣∣∇2fi(xi)−∇2fi(x̂i)

∣∣∣∣
2
≤ δ||xi − x̂i||2 for

all xi, x̂i ∈ Rp

Please note that though these assumptions seem quite restrictive, in our empirical evaluation (Section

VI) we assess our method on a broader class of functions (e.g., non-smooth L1 regularized least

squares).

3.2.2. primal-dual Technique

Following the standard primal-dual method for general consensus problem (3.11), we first introduce a

vector of dual variables λ = [λT
1 , . . . ,λ

T
p ]T ∈ Rnp, where each λi ∈ Rn are Lagrange multipliers, one

for each dimension of the unknown vector. For distributed computations, we assume that each node

i, needs only to store its corresponding components [λ1]i, . . . , [λp]i. Consequently, the Lagrangian

of Equation (3.11) can be written as follows:

L (y,λ) =

n∑
i=1

(
fi([y1]i, . . . , [yp]i) + [y1]i[LGλ1]i + . . .+ [yp]i[LGλp]i

)
Hence, the dual function is given as:

q(λ) =

n∑
i=1

inf
[y1]i,...,yp]i

(
fi([y1]i, . . . , [yp]i) + [y1]i[LGλ1]i + . . .+ [yp]i[LGλp]i

)
(3.12)

Having determined the dual variable λ, we still require a decentralized procedure which allows us to

infer about the corresponding primal y(λ) . Using the above, the primal variables are determined

as the solution to the following system of differential equations:

∂fi(·)
∂[y1]i

= −[LGλ1]i, . . . ,
∂fi(·)
∂[yp]i

= −[LGλp]i (3.13)

Clearly, Equation (3.13) is locally defined for each node i ∈ V, where for each r = 1, . . . , p:

−[LGλr]i =
∑
j∈N(i)

[λr]j − d(i)[λr]i (3.14)
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Hence, each node i can construct its own system of equations by collecting {[λ1]j , . . . , [λp]j} from

its neighbors j ∈ N(i) without the need for full communication. Denoting the solution of the partial

differential equations as:

[y1]i = φ
(i)
1 ([LGλ1]i, . . . , [LGλp]i), . . . , [yp]i = φ(i)

p ([LGλ1]i, . . . , [LGλp]i)

we can show the following essential theoretical guarantee on the partial derivatives:

Lemma 3.2.2 Let z1 = [LGλ1]i, z2 = [LGλ2]i, . . . , zp = [LGλp]i. Under Assumption 3.2.1, the

functions φ
(i)
1 , . . . , φ

(i)
p exhibit bounded partial derivatives with respect to z1, . . . , zp. In other words,

for any r = 1, . . . , p: ∣∣∣∣∣∂φ(i)
r

∂z1

∣∣∣∣∣ ≤
√
p

γ
, . . . ,

∣∣∣∣∣∂φ(i)
r

∂zp

∣∣∣∣∣ ≤
√
p

γ

for any [z1, . . . , zp] ∈ Rp.

The above result is crucial in our analysis, as an obvious corollary is that each function, φ
(i)
r , is

Lipschitz continuous, i.e., for any two vectors z̃ = [z̃1, . . . , z̃p] and z = [z1, . . . , zp]:

∣∣∣φ(i)
r (z̃)− φ(i)

r (z)
∣∣∣ ≤ √p

γ
||z̃ − z||2 (3.15)

Our method for computing the Newton direction relies on the fact that the system of equations

described by the Hessian of the dual problem can be solved using SDD solvers. We prove this

property in the following

Lemma 3.2.3 The function q(λ) = q(λ1, . . . ,λp) abides by the following properties:

1. Let y(λ) be the primal variable corresponding to dual vector λ. Then the gradient and the

Hessian of q(λ) are given by

∇q(λ) = g(λ) = My(λ)

∇2q(λ) = H(λ) = −M
[
∇2f(y(λ))

]−1
M

2. Denote µn(LG) as the largest eigenvalue of the unweighted Laplacian of G and constants δ, γ
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are given in Assumption 3.2.1. Then, for constant B = pδ
(
µn(LG)

γ

)3

and for any λ̄,λ ∈ Rnp:

||H(λ̄)−H(λ)||2 ≤ B|λ̄− λ|||2

i.e. H(λ) is Lipschits continuous with constant B.

The first result in Lemma 3.2.3 shows that the gradient can be distributed across the nodes of G

which is true due to the sparsity pattern of the incidence matrix M . Moreover, it demonstrates

the specific factorization of the Hessian, which is crucial for decentralized computation of Newton

direction.

3.2.3. Distributed Computation of Newton Direction

We solve the consensus problem using Newton-like techniques, where our method follows the ap-

proximate Newton direction in the dual: λ[k+1] = λ[k] + αkd̃
k

where k is the iteration number,

and α[k] the step-size, d̃
[k]

is the ε0−approximation to the exact Newton direction at iteration k.

For efficient operation, the main goal is to accurately approximate the Newton direction in a fully

distributed fashion. This can be achieved with the help of the SDD properties of the dual Hessian

proved earlier. Recalling that exact Newton computes2:

H [k]d[k] = −g[k]

or equivalently,

M [∇2f(y[k])]−1Md[k] = My[k] (3.16)

we notice that Equation (3.16) can be simplified to the following SDD linear system:

Md[k] = ∇2f(y[k])y[k] (3.17)

This equation is by itself SDD which can be split into p distributed SDD systems and solved in a

distributed fashion using solvers proposed in Algorithms 5 and 6. Having attained that solution,

we map the system (3.17) to p-SDD systems by introducing: d[k] =

((
d

[k]
1

)T
, . . . ,

(
d[k]
p

)T)T

with

each d[k]
r ∈ Rn. It is easy to see that this can be split to the following collection of p linear systems

2Above we used the following notation y[k] = y(λ[k]), g[k] = My[k] and H[k] = −M [∇2f(y[k])]−1M
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for r = 1, . . . , n.

LGd
[k]
1 = b

[k]
1 , . . . , LGd

[k]
p = b[k]

p (3.18)

where b
[k]
1 , . . . , b[k]

p ∈ Rn defined as:

[b
[k]
1 ]r =

p∑
l=1

∂2fr(·)
∂[y1]r∂[yl]r

[y
[k]
l ]r

...

[b[k]
p ]r =

p∑
l=1

∂2fr(·)
∂[yp]r∂[yl]r

[y
[k]
l ]r

for r = 1, . . . , n. Interestingly, the above computations can be performed completely locally by

noting that each node r ∈ V can compute the rth component of each vector b
[k]
1 , . . . , b[k]

p . This is

true as such a node stores fr as well as the variables [y
[k]
1 ]r, . . . , [y

[k]
p ]r. Before commencing to the

convergence analysis, the final step needed is to establish the connection between the approximate

solutions:

Lemma 3.2.4 Let d̃
[k]

1 , . . . , d̃
[k]

p be ε0 close solutions of systems (3.17). Then d̃
[k]

is ε−approximate

solution to system the original (3.16), with ε = ε0

√
Γ
γ
µn(LG)
µ2(LG) .

This lemma establishes the connection between accuracy of solutions for system (3.17) and the

original Hessian system (3.16) and allows us to approximate a real Newton direction with arbitrary

precision ε by properly tuning parameter ε0 in Algorithms 5 and 6.

3.2.4. Distributed Newton Method For Empirical Risk Minimization

Decentralized computation of approximate Newton direction leads us to a decentralized Newton-

type iteration scheme λ[k+1] = λ[k] + αkd̃
[k]

, or for each node i ∈ V given by a collection of the

following p updates: 

[λ
[k+1]
1 ]i = [λ

[k]
1 ]i + αk[d̃

[k]

1 ]i

[λ
[k+1]
2 ]i = [λ

[k]
2 ]i + αk[d̃

[k]

2 ]i

...

[λ[k+1]
p ]i = [λ[k]

p ]i + αk[d̃
[k]

p ]i

(3.19)
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where [d̃
[k]

r ]i is the ith component of the approximation to a part d[k]
r of a real Newton direction

and αk is a step size. The following Lemma studies the change of the norm of dual gradient for the

scheme (3.19) and plays a crucial role for the convergence analysis:

Lemma 3.2.5 Let us consider iteration scheme given by (3.19) and denote

ε[k] = H [k]d̃
[k]

+ g[k]

be the approximation error vector corresponding to d̃
[k]

. Then for any αk ∈ (0, 1]

||g[k+1]||2 ≤ (1− αk)||g[k]||2 + α2
kB

Γ2

µ4
2(LG)

||g[k]||22 + αk||ε[k]||2 + α2
kB

Γ2

µ4
2(LG)

||ε[k]||22 (3.20)

where B is defined in Lemma 3.2.3 and µ2(LG) is the smallest nonzero eigenvalue of unweighted

Laplacian of G.

3.2.5. Distributed Backtracking Line Search for Empirical Risk Minimization

To guarantee global convergence a step size αk needs to be selected appropriately. Similarly to

Section 3.1.4 we follow Armijo’s rule:

||g(λ[k+1])||2 ≤ (1− σαk)||g(λ[k])||2

where σ ∈
(
0, 1

2

]
. The inexact decentralized computation of the dual norm ||g(·)||2 can be im-

plemented by a distributed consensus-based scheme in O(np) time steps. As an exact and fast

alternative we propose the following:

Where we use that g[k] = My[k] =

((
LGy

[k]
1

)T
, . . . ,

(
LGy

[k]
1

)T)T

. Algorithm 12 requires only

O(diam(G)) time steps and conducts only exact computations. The following Lemma studies the

change of step size given by the proposed backtracking line search procedure:

Lemma 3.2.6 Let step size αk is chosen according to Algorithm 12 and let g[k] be the dual gradient

evaluated at λ[k]. Then
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Algorithm 12 : Distributed Line Search for ERM

1: Input: The constants σ ∈
(
0, 1

2

]
and β ∈ (0, 1), parameters ε,Γ, γ, δ. The ith component of

dual gradients {[LGy
[k+1]
r ]i}pr=1 and {[LGy

[k]
r ]i}pr=1 for r = 1, . . . , p

2: Output: step size αk.
3: Set mi = 0.
4: Compute ηi = maxr{|[LGy

[k]
r ]i|}.

5: Compute maxi{ηi} using maximal consensus protocol.

6: while maxr{|[LGy
[k+1]
r ]i|} > (1− σβmi)

√
nmaxi{ηi}+ 2εnγ

2

pδΓ do
7: mi = mi + 1.
8: end while
9: Compute m̂ = maxi{mi} using maximal consensus protocol.

10: Set αk = βm̂.

1. If ||g[k]||2 ≤ µ4
2(LG)
2BΓ2 then αk = 1

2. If ||g[k]||2 > µ4
2(LG)
2BΓ2 then αk ≥ β µ4

2(LG)
2BΓ2 maxi{ηi}

where B is a constant defined in Lemma 3.1.2 and µ2(LG), µn(LG) are the smallest and largest

nonzero eigenvalues of the unweighted Laplacian of G.

3.2.6. Accurate Distributed Newton Method For Empirical Minimization Problem

Given the above approximation of the Newton direction, in this section, we analyze the iteration

scheme of the distributed Newton method. Similarly as in the case of Network Flop problem, our

method acquires super-linear convergence within a neighborhood of the optimal value similar to stan-

dard Newton methods. Our main results on the two-phase convergence guarantees are summarized

in Theorem 3.2.7

Theorem 3.2.7 Let γ, Γ, δ B be the constants defined in Assumption 3.2.1 and Lemma 3.2.3,

µ2(LG) and µn(LG) representing the smallest and largest nonzero eigenvalues of the unweighted

Laplacian of G, ε ≤ β
8

γ3

Γ2pδ
µ4

2(LG)
µ3
n(LG) be the precision parameter for the SDD solver. Consider iteration

scheme given by scheme (3.19) with the step size αk is calculated by Algorithm 12. Then, this

iteration scheme exhibits two convergence phases:

1. Strict Decreases Phase If ||g[k]||2 > µ4
2(LG)
2BΓ2 , then

||g[k+1]||2 − ||g[k]||2 ≤ −
β

8
√
npδ

γ3

Γ2

µ4
2(LG)

µ3
n(LG)
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where parameter β ∈ (0, 1).

2. Quadratic Decreases Phase If ||g[k]||2 ≤ µ4
2(LG)
2BΓ2 , then for any l ≥ 1:

||g[k+l]||2 ≤
1

22l BΓ2

µ4
2(LG)

+ B̂ +
Λ̃
BΓ2

µ4
2(LG)

[
22l−1 − 1

22l

]
(3.21)

where

B̂ =
1

2
ε
µ2

2(LG)γ2

µn(LG)pΓδ

[
µ2(LG)

µn(LG)

√
γ

Γ
+
ε

2

]
∼ O(ε)

Λ̃ = B̂
4BΓ2

µ4
2(LG)

[
1 + B̂

BΓ2

µ4
2(LG)

]
∼ O(ε)

The following result follows directly from (3.21) and establishes the asymptotic limit for dual gradient

after passing strict decrease phase:

Corollary 3.2.8 Let k0 designate the first iteration such that ||g[k0]||2 ≤ µ4
2(LG)
2BΓ2 . Then for the next

iterations dual gradient converges quadratically to

lim
l→∞

||g[k0+l]||2 = B̂ +
1

2

Λ̃

pδ

µ4
2(LG)

µ3
n(LG)

γ3

Γ2
∼ O(ε)

In other words, tuning precision parameter ε one can approximate the solution vector y∗ = y(λ∗)

with any arbitrary precision.

3.2.7. Do We Need Hessians?

Despite the fast convergence rates, the traditional Newton method is often regarded skeptically for

many practical large-scale applications. There are two main reasons for such skepticism. These

drawbacks are related to the space and computational demands for storing and operating with

Hessian matrices. In this section, we discuss several techniques that can be used to address these

issues. We focus on the distributed framework presented earlier and present the precise step of the

Distributed Newton Method involving local Hessian operations. Next, we present two Hessian-free

approaches.
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Problem with Hessian Calculations:

In Section 3.2.3, we discussed the computation of the Newton direction dk =

((
d

[k]
1

)T
, . . . ,

(
d[k]
p

)T)T

for dual function and reduced this problem to a collection of p systems:

LGd
[k]
1 = b

[k]
1 , . . . ,LGd

[k]
p = b[k]

p ,

where p is the dimensionality of the unknown parameter and k indicates the current iteration of the

algorithm, which will be dropped for simplicity. We showed that each vector bj on the right hand

side is distributed across the nodes of graph G and can be locally computed, i.e., for i = 1, . . . , n:

[b1]i =

p∑
r=1

∂2fi
∂[y1]i∂[yr]i

[yr]i

...

[bp]i =

p∑
r=1

∂2fi
∂[yp]i∂[yr]i

[yr]i

Let Yi = ([y1]i, . . . , [yp]i)
T be a vector stored in node i and collecting the ith components of vectors

y1, . . . ,yp. According to the above equations, each node i ∈ V computes the following Hessian-vector

product:


[b1]i

...

|bp]i

 =


∂2fi
∂2[y1]i

· · · ∂2fi
∂[y1]i∂[yp]i

...
. . .

...

∂2fi
∂[yp]i∂[y1]i

· · · ∂2fi
∂2[yp]i




[y1]i
...

|yp]i

 = ∇2fi(Yi)Yi,

where ∇2fi(Yi) is the Hessian of local function fi evaluated at Yi. In other words, component-wise

computation of vectors b1, . . . , bp can be attained by locally calculating the following Hessian-vector

products:

∇2f1(Y1)Y1, . . . , ∇2fn(Yn)Yn (3.22)

The straightforward computation of these products requires O(p2) space for the local memory of each

node. The situation with time complexity is even worse. With a certain pre-processing requiring

O(p2+ε), the Hessian-vector product can be computed inO
(

p2

(ε log p)2

)
time, with ε being the accuracy

parameter Williams (2007). These characteristics restrict our method from being applied on high-
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dimensional problems. In the next sections we address this issue and present three Hessian-free

approaches for the Distributed Newton Method.

The Method of Finite Differences:

The first method computes a Hessian-vector product ∇2fi(Yi)Yi using the well-known finite differ-

ence formula:

∇2fi(Yi)Yi =
∇fi((1 + t)Yi)−∇fi((1− t)Yi)

2t
+ o(t2) (3.23)

Given a precision parameter t, this result speeds up the computation of∇2fi(Yi)Yi by evaluating the

local gradient of function fi at points (1+t)Yi and (1−t)Yi. In practice, parameter t requires careful

consideration, which restricts the application of finite differences. On one hand, the truncation

error in (3.23) reduces quadratically with t and, therefore, prefers smaller values. On the other

hand, choosing parameter t too small implies taking the ratio over t in equation (3.23), and hence,

magnifying the rounding errors in the nominator of (3.23). In other words, a lower value of parameter

t reduces the truncation error but increases the rounding error, and a higher value of t has the

opposite effect. The next lemma establishes the optimal value for parameter t balancing the trade-

off between truncation and rounding errors:

Lemma 3.2.9 Let ∂fi
∂[yr]i

be the partial derivative of local function fi with respect to rth component

on its argument and ∂̃fi
∂[yr]i

its numerical representation. Then, the total error in approximation

(3.23) is minimized at

t∗ ≈ O( 3
√
εmachine) (3.24)

where εmachine is the machine precision parameter (usually εmachine ≈ 10−16).

Proof See Appendix.

Automatic Differentiation:

Previously, we considered finite differences for Hessian-vector multiplications and discussed the main

drawback of this technique caused by the interplay between truncation and rounding errors. Here, we

illustrate the second approach for computing Hessian-vector products based on Automatic Differenti-

ation (AD) Baydin et al. (2015). In a nutshell, AD exploits the fact that all numerical computations
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can be decomposed into compositions of a finite collection of elementary operations. The derivative

of a complex function then can be computed by applying a chain rule to the derivatives of these

elementary operations. The first step of AD is representing the input function fi : Rp → R in the

form of its computational graph:

Definition Let fi(x) : Rp → R be the input function. Then its computational graph G(fi) =

(Vfi , Efi) is constructed recursively as follows:

1. For each component [x]j of the argument vector, add node v to Vfi . These nodes are referred

to as input nodes

2. Let u,w ∈ Vfi and val(u), val(w) be the corresponding numerical values. Then repeat the

following steps:

(a) For each elementary arithmetic operation val(u)•val(w) where • ∈ {+,−,×, /} add node

v to Vfi and directed edges (u, v), (w, v) to Efi .

(b) For any fundamental elementary function 3 g(val(u)) add node v to Vfi and directed edge

(u, v) to Efi

3. The process finishes when no more computation is left.

In other words, a computational graph is a representation of a composite function as a network

of connected nodes, where each node is an elementary operation or elementary function. Let us

illustrate this definition with a simple example fi(x1, x2) = ex1 + x1x2 − cos(x2).

Node Set Vfi Operation Edge Set Efi
v1 x1

v2 x2

v3 ex1 (v1, v3)
v4 x1x2 (v1v4), (v2, v4)
v5

π
2

v6 x2 + π
2 (v2, v6), (v5, v6)

v7 sin
(
x2 + π

2

)
(v6, v7)

v8 ex1 + x1x2 (v3, v8), (v4, v8)

v9 ex1 + x1x2 − sin
(
x2 + π

2

)
(v7, v9), (v8, v9)

Table 3: Decomposition of f(x1, x2) = ex1 +x1x2−cos(x2) into elementary operations and functions

3There are eight fundamental elementary function: g1(x) = c, g2(x) = x, g3(x) = 1
x
, g4(x) = r

√
x, g5(x) =

sin(x), g6(x) = ex, g7(x) = ln(x), g8(x) = arccos(x)
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In the first and second columns, Table 3 collects the set of nodes Vfi of a computational graph Gfi

with corresponding elementary arithmetic operations and fundamental elementary functions4. The

third column maintains the edge set Efi following the relation between numerical operations. Figure

14 presents the computational graph for function fi(x1, x2).

AD can operate in two modes: forward and reverse. In the forward mode, for given vectors

Figure 14: Computational graph for f(x1, x2) = ex1 + x1x2 − cos(x2)

a, b ∈ Rp, one can compute a directional derivative ∇Tfi(a)b by traversing the computational

graph Gfi in a forward way and applying a chain rule. The formal description of the AD method in

forward mode is given in Algorithm 13:

Algorithm 13 : Forward Mode

1: Input: Function fi : Rp → R, computational graph Vfi , vectors a, b ∈ Rp.
2: Output: ∇Tfi(a)b.
3: Set val(vi) = [a]i for all input nodes v1, . . . , vp.
4: Compute val(vl) for the rest nodes using Gfi .

5: Set derivative
•

val(vi) = [b]i for all input nodes v1, . . . , vp.

6: Compute derivative
•

val(v) recursively for the rest of the nodes using a chain rule.

7: Output
•

val(w) = ∇Tfi(a)b, where w is the last node in Vfi .

To illustrate the forward mode of AD, let us consider fi(x1, x2) again. Namely, let us consider the

computation of ∇Tfi(a)b with a = (1, 1)T and b = (2, 5)T in Table 4. The time and space complex-

ity of Algorithm 13 are characterized by the size of the computational graph, i.e O(|Vfi |+ |Efi |).

4The term cos(x2) is written in the equivalent form sin
(
x2 + π

2

)
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Computation of values Computation of derivatives

val(v1) = a1 = 1
•

val(v1) = b1 = 2

val(v2) = a2 = 1
•

val(v2) = b2 = 5

val(v3) = eval(v1) = e
•

val(v3) = eval(v1)
•

val(v1) = 2e

val(v4) = val(v1)val(v2) = 1
•

val(v4) = val(v1)
•

val(v2) + val(v1)
•

val(v2) = 7

val(v5) = π
2

•
val(v5) = 0

val(v6) = val(v2) + val(v5) = 1 + π
2

•
val(v6) =

•
val(v2) +

•
val(v5) = 5

val(v7) = sin(val(v6)) = cos(1)
•

val(v7) = cos(val(v6))
•

val(v6) = −5 sin(1)

val(v8) = val(v3) + val(v4) = e+ 1
•

val(v8) =
•

val(v3) +
•

val(v4) = 2e+ 7

val(v9) = val(v8) + val(v7) = e+ 1− cos(1)
•

val(v9) =
•

val(v8) +
•

val(v7) = 2e+ 7 + 5 sin(1)

Table 4: Computation of a directional derivative ∇Tfi(a)b for f(x1, x2) = ex1 +x1x2− cos(x2) with
a = (1, 1)T, b = (2, 5)T using AD in forward mode.

In the reverse mode, for a given vector a ∈ Rp, the AD method calculates the whole gradient vector

∇fi(a) evaluated at a. It starts with the final node w ∈ Vfi with a corresponding value val(w) = fi

and then computes derivatives with respect to each sub-expression recursively using a chain rule

and computational graph Gfi . As a result, AD in backward mode traverses the graph in the reverse

direction and constructs a collection of variables referred to as adjoin and defined:

−
val(v) =

∂fi
∂val(v)

where v ∈ Vfi . Algorithm 14 presents the detailed description of AD in backward mode:

Algorithm 14 : Backward Mode

1: Input: Function fi(x) : Rp → R, computational graph Vfi , vector a ∈ Rp.
2: Output: Vector ∇fi(a).

3: Set the first adjoint variable
−

val(w) = ∂fi
∂val(w) = 1.

4: Compute adjoint variables
−

val(v) for all v ∈ Vfi recursively using
−

val(v) = ∂fi
∂val(v) |a and depen-

dency given in computational graph Gfi .

5: Output ∂fi
∂[x]j

(a) =
−

val(vj) for j = 1, . . . , p.

To illustrate the backward mode of AD, we calculate the gradient of function fi(x1, x2) at point

a = (1, 1)T in Table 5. Similarly to the forward mode, the time and space complexity of Algorithm

14 are characterized by the size of the computational graph, i.e O(|Vfi |+ |Efi |).
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Computation of variables Computation of adjoin variables

val(v1) = a1 = 1
−

val(w) = 1

val(v2) = a2 = 1
−

val(v9) = ∂fi
∂val(v9) = ∂fi

∂val(w)
∂val(w)
∂val(v9) =

−
val(w) = 1

val(v3) = e
−

val(v8) = ∂fi
∂val(v8) = ∂fi

∂val(v9)
∂val(v9)
∂val(v8) =

−
val(v9) = 1

val(v4) = 1
−

val(v7) = ∂fi
∂val(v7) = ∂fi

∂val(v9)
∂val(v9)
∂val(v7) = −

−
val(v9) = −1

val(v5) = π
2

−
val(v6) = ∂fi

∂val(v6) = ∂fi
∂val(v7)

∂val(v7)
∂val(v6) =

−
val(v7) cos(val(v6)) = sin(1)

val(v6) = 1 + π
2

−
val(v5) = ∂fi

∂val(v5) = ∂fi
∂val(v6)

∂val(v6)
∂val(v5) = val(v6) = sin(1)

val(v7) = cos(1)
−

val(v4) = ∂fi
∂val(v4) = ∂fi

∂val(v8)
∂val(v8)
∂val(v4) =

−
val(v8) = 1

val(v8) = e+ 1
−

val(v3) = ∂fi
∂val(v3) = ∂fi

∂val(v8)
∂val(v8)
∂val(v3) =

−
val(v8) = 1

val(v9)e+ 1− cos(1)
−

val(v2) = ∂fi
∂val(v2) = ∂fi

∂val(v6)
∂val(v6)
∂val(v2) + ∂fi

∂val(v4)
∂val(v4)
∂val(v2) =

−
val(v6) +

−
val(v4)val(v1) = sin(1) + 1

−
val(v1) = ∂fi

∂val(v1) = ∂fi
∂val(v4)

∂val(v4)
∂val(v1) + ∂fi

∂val(v3)
∂val(v3)
∂val(v1) =

−
val(v4)val(v2) +

−
val(v3)eval(v1) = 1 + e

∂fi
∂x1

(a) =
−

val(v1) = 1 + e ∂fi
∂x2

(a) =
−

val(v2) = sin(1) + 1

Table 5: Computation of gradient ∇f(a) for f(x1, x2) = ex1 + x1x2 − cos(x2) at vector a = [1, 1]T

using AD in backward mode.

The application of AD methods for computing Hessian-vector products ∇2fi(Yi) is based on the

following observation:

∇2fi(Yi)Yi = ∇x[∇T
xfi(x)Yi]|x=Yi

Therefore, using the forward mode for computing directional derivatives, one can construct function

gi(x) = ∇Tfi(x) Yi and then calculate gradient ∇gr (Yi) by calling backward mode on gi(x). We

describe these steps formally in Algorithm 15:

Algorithm 15 : Hessian-vector Product Algorithm via AD

1: Input: Function fi(x) : Rp → R, its computational graph Gfi , vector Yi.

2: Output: Vector ∇2fi(Yi)Yi.

3: Construct gi (x) = ∇Tfi(x)Yi using Algorithm 13.

4: Compute gradient ∇gi (Yi) using Algorithm 14.

5: Set ∇gi (Yi) = ∇2fi(Yi)Yi.

71



As was mentioned, the time and space complexity of AD in forward or backward modes are char-

acterized by the size of the corresponding computational graph Gfi . Therefore, to guarantee the

efficient computation, one needs to ensure graph Gfi has size O(p1+δ) for some δ < 1. Although for

an arbitrary function fi this cannot be assured, many loss functions used in machine learning (lin-

ear/logistic regression) have computational graphs of size O(p)5. To illustrate this, in the Appendix,

we construct the computational graphs for two popular machine learning objectives:

Linear Regression Loss:

fi(x) =
(
a− ΦT(b)x

)2
+ µi||x||22

Logistic Regression Loss:

fi(x) = −
[
a log

1

1 + e−ΦT(b)x
+ (1− a) log

(
1− 1

1 + e−ΦT(b)x

)]
+ µi||x||22

where (b, a) represents input/output pair,Φ(b) is a feature representation of the input vector b,

and µi is a regularization coefficient. In Figure 15 we demonstrate the effect of dimensionality on

the time complexity of one iteration of Distributed Newton method and standard gradient descent

applied for the linear regression model. For the former method, the slope of the constructed line is

characterized by the square root of the condition number of the local objective.

Figure 15: The effect of dimensionality using Automatic Differentiation

5For Neural Network, the computational graph is proportional to O(p2). In this case, the complexity of Hessian-
vector computation is equal to the complexity of gradient computation and bounded by O(p2)
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3.2.8. Too Many Training Points

Earlier in Section 3.2.1, we considered empirical risk minimization where the total number of additive

terms in the risk objective is equal to the number of processors, i.e. nodes of graph G = (V,E).

Consequently, this objective function is distributed across the nodes such that each receives exactly

one local function fi(·). However, in this section we focus on the large-scale setting, where each node

i ∈ V accumulates a collection of N functions {`ij(·)}Nj=1 from the risk objective. We would like to

understand the effect of the parameter N on the performance of the Distributed Newton Method

and discuss efficient methods to cope with a large number of additive terms.

Large-scale Setting for Empirical Risk Minimization

We start with the formulation of empirical risk minimization motivated by a machine learning setup.

For a given collection of data points D = {a, b}Nk=1 and loss functions l(·) : R×R→ R+ the associated

empirical risk is defined as:

R[D,`](x) =
1

N

N∑
k=1

`(h(bk,x), ak) =
1

N

N∑
k=1

`k(x)

where h() is a prediction model parameterized by x and `k(x) = `(h(bk,x), ak) + η||x||22 is a reg-

ularized loss imposed by model h() on a training point (ak, bk). The next step is to distribute the

empirical risk among n computational units (i.e. processors) such that each receives N = N
n training

examples 6. As a result, we achieve a large-scale form of empirical risk minimization:

min
x∈Rp

R[D,`](x) ⇐⇒ min
x∈Rp

N∑
k=1

`k(x)

and the corresponding global consensus problem has the following form:

min
x1,...,xn

f(x1, . . . ,xn) = min
x1,...,xn

n∑
i=1

N∑
j=1

`ij(xi) (3.25)

s.t. x1 = . . . = xn ∈ Rp

6For simplicity we assume that N
n
∈ N
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It is easy to see that the above formulation can be converted to the original global consensus problem

(3.9) by simply denoting the local objective for node i ∈ V as:

fi(xi) =

N∑
j=1

`ij(xi) (3.26)

This structure of the local objective will have two effects on the performance of the proposed Dis-

tributed Newton Method. First of all, the time for computation of vectors b1, . . . , bp will scale

linearly with N . Indeed, following the discussion in the previous section, each node i computes N

Hessian-vector products ∇2`ij(Yi)Yi due to:

∇2fi(Yi)Yi =

N∑
j=1

∇2`ij(Yi)Yi

Therefore, using the Hessian-free techniques discussed in Section 3.2.7, the total time complexity for

each node i ∈ V increases by factor N . The second effect is related to a primal-dual computation

and will be discussed in detail in the next paragraphs.

Primal Variable Computation

Our proposed Distributed Newton Method is formulated for the dual problem; however, it is crucial

for the consecutive iterations to maintain the ”bridge” between primal and dual variables. This

relation was established in Section 3.2.2 by posing for the given dual vectors λ1, . . . ,λp. the following

local optimization problems:

min
[yj ]1,...,[yp]i

fi([yj ]1, . . . , [yp]i) +

p∑
j=1

[LGλj ]i[yj ]i i = 1, . . . , n

Therefore, using the form of local function fi(·) from (3.26), the connection between primal and

dual variables is given as:

min
[yj ]1,...,[yp]i

N∑
j=1

`ij([yj ]1, . . . , [yp]i) +

p∑
j=1

[LGλj ]i[yj ]i i = 1, . . . , n (3.27)

This is a collection of unconstrained optimization problems with strongly convex objectives for-

mulated as finite sum minimizations. It is worth mentioning that for some prediction models
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h optimization problem (3.27) has a closed-form solution. For example, let us consider a regu-

larized linear regression case with h(b,x) = ΦT(b)x and quadratic loss function `(h(b,x), a) =

(a− h(b,x))
2

+ η||x||22. Therefore, primal-dual dependence is given by quadratic optimization:

min
Yi

N∑
j=1

(
aij − ΦT(bij)Yi

)2
+Nη||Yi||22 + cTi Yi

with ci = ([LGλ1]i, . . . , [[LGλp]i)
T

. Applying simple derivation one can obtain a closed-form expres-

sion for the minimizer of the above least square problem:

Y∗i = −1

2

 N∑
j=1

Φ(bij)Φ
T(bij) +NηIp×p

−1

ci

Further, we discuss techniques to compute optimal vector Y∗i efficiently without computing and

storing the Hessian inverse. Unfortunately, only a few prediction models allow a closed-form solution

for primal-dual dependence. For instance, there is no explicit relation between primal and dual

variables for logistic regression models. To address these cases, in the next paragraphs we describe

both deterministic and stochastic methods to solve the optimization problem (3.27).

Approximate Newton Method

As mentioned in the previous section, the ”bridge” between primal and dual variables can be estab-

lished by locally solving the optimization problem (3.27) in each node i ∈ V. Let

f̂i(Yi) =

N∑
j=1

`ij(Yi) +

p∑
j=1

[LGλj ]i[yj ]i

be a local objective for the optimization problem (3.27). Then one can rewrite (3.27) simply as a

strongly convex problem:

min
Yi

f̂i(Yi) (3.28)
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Moreover, due to Assumption 3.2.1, the above objective function satisfies standard premises for a

centralized Newton method Boyd and Vandenberghe (2004a):

γI � ∇2f̂i(·) � ΓI (3.29)∣∣∣∣∣∣∇2f̂i(Yi)−∇2f̂i(Ỹi)
∣∣∣∣∣∣

2
≤ δ||Yi − Ỹi||2, ∀ Yi, Ỹi ∈ Rp

Therefore, considering its fast convergence rate, it is reasonable to apply Newton’s method to solve

the optimization problem (3.28):

Y [t+1]
i = Y [t]

i + αit∆Y [t]
i (3.30)

where αit is a step-size computed by a backtracking line search, and ∆Y [t+1]
i is a Newton direction

at iteration t given as:

∆Y [t]
i = −[∇2f̂i(Y [t])]−1∇f̂i(Y [t]) (3.31)

The main challenge now is to efficiently compute the Newton direction from both time and memory

perspectives. To achieve this goal, let us first introduce the following notations:

Hij , ∇2`ij , Hi , ∇2f̂i =

N∑
j=1

Hij ,

hij , ∇`ij , hi , ∇f̂i =

N∑
j=1

hij + ci

Therefore, for Newton direction we can immediately write (for clarity reasons we drop further

iteration index t):

∆Yi = −H−1
i hi

Following the polynomial approximation scheme proposed in Section 2.2.2 and using Chebyshev

polynomials with guarantees (3.29), the ζ− approximate solution7 of the above system can be

7Recall, ζ−approximate solution implies ||∆̃Yi −∆Y∗i ||Hi
≤ ζ||∆Y∗i ||Hi
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computed as follows:

∆̃Yi = −H−1
i

Tkζ
(

Γ+γ
Γ−γ

)
I − Tkζ

(
(Γ+γ)I−2Hi

Γ−γ

)
Tkζ

(
Γ+γ
Γ−γ

)
hi (3.32)

with kζ = d1
2

(√
Γ

γ
+ 1

)
ln

2

ζ
e

Similar to Section 2.2.2, the fast computation of vector (3.32) can be performed by exploiting the

recursive relation of Chebyshev polynomials (2.13). Denote by

∆i,k = H−1
i

[
Tk

(
Γ + γ

Γ− γ

)
I − Tk

(
(Γ + γ)I − 2Hi

Γ− γ

)]
hi

Ωi,k = Tk

(
(Γ + γ)I − 2Hi

Γ− γ

)
hi

Θk = Tk

(
Γ + γ

Γ− γ

)

Therefore, the solution vector (3.32) can be written as ∆̃Yi = −
∆i,kζ

Θkζ
and the recursive relation

gives:

∆i,k = 2
Γ + γ

Γ− γ
∆i,k−1 − 2∆i,k−2 +

4

Γ− γ
Ωi,k−1

Ωi,k = 2

[
Γ + γ

Γ− γ
I − 2

Γ− γ
Hi

]
Ωi,k−1 −Ωi,k−2

Θk = 2
Γ + γ

Γ− γ
Θk−1 −Θk−2

with initials given by:

∆i,1 =
2

Γ− γ
hi Ωi,1 =

Γ + γ

Γ− γ
hi −

2

Γ− γ
Hihi Θ1 =

Γ + γ

Γ− γ

∆i,0 =0 Ωi,0 =hi Θ0 =1

As a result we arrive at Algorithm 16 that computes ζ−approximation of Newton direction for

iteration scheme (3.30) and executes O (kζ) matrix vector multiplications of the form Hiv:

Each such multiplication can be further decomposed into a summation of Hessian-vector products:

Hiv = Hi1v +Hi2v + . . .+HiNv
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Algorithm 16 : Approximate Newton Direction Computation

1: Input: Functions {`ij(·)}Nj=1, current iteration vector Yi, vector ci = ([LGλ1]i, . . . , [[LGλp]i)
T

,
parameters Γ, γ and ζ

2: Output: ζ−approximation of Newton direction ∆̃Yi.

3: Set w1 = Γ+γ
Γ−γ and w2 = 2

Γ−γ , and kζ = d 1
2

(√
Γ
γ + 1

)
ln 2

ζ e

4: Compute hi =
∑N
j=1∇`ij(Yi) + ci and Hihi =

∑N
j=1Hij(Yi)hi(Yi)

5: Set ∆i,0 = 0, Ωi,0 = hi and Θ0 = 1.
6: ∆i,1 = w2hi, Ωi,1 = w1hi − w2Hihi and Θ1 = w1.
7: for k = 2 to kζ do
8: Θk = 2w1Θk−1 −Θk−2.
9: Ωi,k = 2 [w1I − w2Hi] Ωi,k−1 −Ωi,k−2.

10: ∆i,k = 2w1∆i,k−1 − 2∆i,k−2 + 2w2Ωi,k−1

11: end for
12: Set ∆̃Yi = −

∆i,kζ

Θkζ

Therefore, the total running time of Algorithm 16 can be bounded by O
(
N
√

Γ
γ T ln 1

ζ

)
where T is

a running time for computing Hessian-vector product ∇2`ij(·)v. In particular, for a wide range of

machine learning objectives `ij(·), including linear and logistic regression models, etc., this bound

boils down to O
(
Np
√

Γ
γ ln 1

ζ

)
by exploiting Hessian-free methods from Section 3.2.7.

Next, we study the effect of the precision parameter ζ on the convergence properties of the Newton

method (3.30). Our first result explores the change of local gradient f̂i(·) between two consecutive

iterations of the Approximated Newton Method:

Y [t+1]
i = Y [t]

i + αit∆̃Yi

[t]
(3.33)

where the approximated Newton direction vector ∆̃Yi

[t]
computed by Algorithm 16 and αit is a

step size chosen according to the approximated backtracking line search procedure, presented in

Algorithm 17

Lemma 3.2.10 For each node i ∈ V consider iteration scheme given by (3.33) and denote8

ε
[t]
i = H

[t]
i ∆̃Yi

[t]
+ h

[t]
i

8We denote H
[t]
i = Hi(Y [t]

i ) and h
[t]
i = hi(Y [t]

i ).
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be the approximation error vector corresponding to ∆̃Yi

[t]
. Then for any αit ∈ (0, 1]

||h[t+1]
i ||2 ≤ (1− αit)||h[t]

i ||2 + α2
itδ

1

γ2
||h[t]

i ||
2
2 + αit||ε[t]

i ||2 + α2
itδ

1

γ2
||ε[t]
i ||

2
2 (3.34)

Proof See Appendix.

Algorithm 17 : Approximated Backtracking Line Search

1: Input: The constants σ ∈ (0, 1
2 ], β ∈ (0, 1), parameters Γ, γ, δ and ζ, gradients ||h[t+1]

i ||2,

||h[t]
i ||2.

2: Output: αit− the step size for Approximated Newton Method
3: Set mi = 0.

4: while ||h[t+1]
i ||2 > (1− σβmi)||h[t]

i ||2 + ζ
√

Γ
γ
γ2

δ do

5: mi = mi + 1
6: end while
7: Set αit = βmi

Next, we establish guarantees on step size αit computed by the approximated backtracking line

search procedure:

Lemma 3.2.11 Let step size αit is chosen according to Algorithm 17 and let h
[t]
i be the gradient of

f̂i evaluated at Y [t]
i . Then,

1. If ||h[t]
i ||2 ≤

γ2

2δ , then αit = 1.

2. If ||h[t]
i ||2 >

γ2

2δ , then αit ≥ β γ2

2δ||h[t]
i ||2

.

where parameters Γ, γ, δ are given in (3.29)

Proof See Appendix.

The next theorem studies the convergence properties of the Approximated Newton Method given in

(3.33):

Theorem 3.2.12 Consider the iteration scheme Y [t+1]
i = Y [t]

i + αit∆̃Yi

[t]
where αit is a step size

defined by Algorithm 17. Let parameters Γ, γ, δ be given according to conditions (3.29) and accuracy

parameter for Algorithm 16 satisfies ζ ≤ 2
√

γ
Γ . Then, this iteration scheme exhibits two convergence

phases:
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1. Strict Decrease Phase: If ||h[t]
i ||2 >

γ2

2δ , then

||h[t+1]
i ||2 − ||h[t]

i ||2 ≤ −
βγ2

8δ

2. Quadratic Decrease Phase: If ||h[t]
i ||2 ≤

γ2

2δ , then

||h[t+m]
i ||2 ≤

1

22m δ
γ2

+ B̃i +
Λ̂i
δ
γ2

[
22m−1 − 1

22m

]
(3.35)

where:

B̃i = ζ

√
Γ

γ

γ2

2δ

[
1 +

ζ

2

√
γ

Γ

]
∼ O(ζ)

Λ̂i = 4
δ

γ2
B̃i

[
1 +

δ

γ2
B̃i

]
∼ O(ζ)

Proof See Appendix.

The following result follows directly from (3.35) and establishes the asymptotic limit for gradient

h
[t]
i after passing the strict decrease phase:

Corollary 3.2.13 Let t0 designate the first iteration such that ||ht0i ||2 ≤
γ2

2δ . Then for the next

iterations the norm of the gradient hi converges quadratically to

lim
l→∞

||ht0+l
i ||2 = B̃i +

1

2

Λ̂iγ
2

δ
∼ O(ζ)

In other words, tuning precision parameter ζ, one can approximate the solution vector Y∗i with any

arbitrary precision.

Stochastic Method

Next, we relax the deterministic nature of the local Newton method and consider its stochastic coun-

terpart. Recall that the primal-dual relation is established by the following optimization problem:

min
Yi

f̂i(Yi) =

N∑
j=1

`ij(Yi) +

p∑
j=1

[LGλj ]i[yj ]i
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or equivalently:

min
Yi

f̃i(Yi) =
1

N

N∑
j=1

`ij(Yi) +

p∑
j=1

[LGλj ]i[yj ]i

 (3.36)

Following the properties in (3.29), it is easy to see that function f̃i is twice differentiable with:

Γ

N
I � ∇2f̃i �

Γ

N
I∣∣∣∣∣∣∇2f̃i(Yi)−∇2f̃i(Ỹi)

∣∣∣∣∣∣
2
≤ δ

N
||Yi − Ỹi||2, ∀ Yi, Ỹi ∈ Rp

Previously, we suggested a deterministic approximated Newton method for the above problem. No-

tice that, in each iteration of this method, one has to calculate N gradients and Hessians. Hence,

as N grows large, the application of such technique becomes problematic. To remedy this problem,

stochastic Quasi-Newton methods proposed in Byrd et al. (2016) can be used. The algorithm oper-

ates in epochs by updating the solution vector Y [t]
i using Newton iteration. The crucial component

of this method is an approximate computation of the Hessian inverse based on the BFGS formula

given in Algorithm 19. This approximation is achieved by collecting a set of correction pairs {sj , zj}

throughout the most recent m̃ epochs. Such approach allows operating only with the sampled gra-

dient and Hessians of function f̃i. The full description of the SQN method for problem (3.36) is

presented in Algorithm 18:

The convergence guarantees for the SQN method is based on spectral properties of the Hessian

inverse approximation given by Algorithm 19. Next, we present a slight modification of Lemma 3.1

in Byrd et al. (2016) proving bounds for the spectrum of Hessian inverse approximation:

Lemma 3.2.14 Let H̃i

[r]
be the output of Algorithm 19, then

ν1I � H̃i

[r]
� ν2I

where constants ν1 = N
Γ(m̃+p) and ν2 = N

[(
p
γ + 1

Γ

)(
1 + Γ

γ

)m̃
− 1

Γ

]
.

Proof See Appendix.

The following theorem in Byrd et al. (2016) establishes the convergence properties of the SQN

algorithm:
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Algorithm 18 : Stochastic Quasi Newton Method Byrd et al. (2016)

1: Input: Initial value Y [0]
i , sampling sizes bg, bH , number of iterations T = SL, the length of the

epoch L, number of epochs S = dTL e.
2: Output Y [T ]

i .

3: Set epoch count r = −1 and average vector Y [r]

i = 0;
4: for t = 1 to T do
5: Sample u.r. with replacement subset Sg,t ⊂ {1, . . . , N} and:

∇̃f̃i(Y [t]
i ) =

1

|Sg,t|
∑
j∈Sg,t

∇`ij(Y [t]
i ) +

p∑
j=1

[Lλj ]iej


at point Y [t]

i .

6: Set Y [t]

i = Y [t]

i + 1
LY

[t]
i .

7: if t ≤ 2L then
8: Set Y [t+1]

i = Y [t]
i − βt∇̃f̃i(Y

[t]
i ).

9: else

10: Compute inverse hessian approximation H̃
[r]

i using Algorithm 19.

11: Set Y [t+1]
i = Y [t]

i − βtH̃
[r]

i ∇̃f̃i(Y
[t]
i ).

12: end if
13: if mod {t, L} = 0 then
14: Set r = r + 1.
15: if r > 0
16: Sample u.r. with replacement subset SH ⊂ {1, . . . , N} and:

∇̃2f̃i(Y
[r]

i ) =
1

|SH |
∑
j∈Sh

[
∇2`ij(Y

[r]

i )
]

at point Y [r]

i .

17: Compute s[r] = Y [r]

i −Y [r−1]

i , z[r] = ∇̃2f̃i(Y
[r]

i )s[r]

18: end if
19: Set Y [r]

i = 0.
20: end if
21: end for
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Algorithm 19 : Hessian Inverse Approximation Byrd et al. (2016)

1: Input:Epoch count r, memory parameter M , collection of correction pair {s[j], z[j]} for j =
r − m̃+ 1, . . . , r with m̃ = min{r,M}.

2: Output H̃
[r]

i .

3: Set H̃
[r]

i = s[r]Tz[r]

z[r]Tz[r] I
4: for j = r − m̃+ 1, . . . , r do
5: Set ρj = 1

z[j]Ts[j] and

H̃
[r]

i =
(
I − ρjs[j]z[j]T

)
H̃

[r]

i

(
I − ρjz[j]s[j]T

)
+ ρjs

[j]s[j]T

6: end for

Theorem 3.2.15 Consider the iteration procedure given in Algorithm 18 with step size βt =
γν1bg
(ν2Γ)2

where bg is the size of gradient samplings. Then the SQN algorithm exhibits linear convergence rate

ESg,t−1

[
f̃i(Y [t]

i )− f̃i(Y∗i )
]
≤
(

1− δ̃
)t [

f̃i(Y [0])− f̃i(Y∗i )
]

where Sg,t−1 is random sampling from {1, . . . , N} for computing the subsampled gradient at t − 1

iteration, Y [0]
i and Y∗i are initial and optimal values for (3.36), and

δ̃ =

(
γν1

Γν2

)2
bg
N

Proof See Appendix.

To finalize, let us make two important remarks distinguishing the proposed analysis from the original

one in Byrd et al. (2016):

• Convergence rate: We improve the convergence rate O
(

1
k

)
achieved in Byrd et al. (2016) to a

linear rate.

• Step-size: A linear convergence rate is obtained by using a constant step size βt = γν1

(ν2Γ)2 bg

rather than diminishing step size βt ≈ 1
t given in the original paper. This makes the method

more attractive from a practical point of view, because diminishing step size in practice quickly

stagnates the iteration scheme Y [t+1]
i = Y [t]

i − βtH̃
[r]

i ∇̃f̃i(Y
[t]
i ) at some non-optimal value.
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3.2.9. Experiments

We analyze our numerical performance in three different scenarios: against the centralized stochas-

tic gradient descent (SGD) method using streaming model, against the decentralized SGD using

SPARK model, and against other fully distributed approaches on different graph topologies.

Comparison with the centralized stochastic gradient descent in a streaming model

For the first scenario, we simulate a distributed network according to the Erdos-Renyi model

with 50 nodes and 100 edges. The synthetic data for the linear regression model consists of

N = 105 data points, each represented as p = Nα dimensional vector with α ∈ [0.25, 0, 5]. An

ε of 1/10 was provided to the distributed solver for determining the approximate Newton direction.

Step sizes were determined separately for each algorithm using a grid-search-like technique over

{0.01, 0.1, 0.2, 0.3, 0.5, 0.6, 0.9, 1} to ensure best operating conditions.

In this experiment, for each value of the dimensional parameter p we measure the time needed for

both approaches to reach the stopping criteria. The latter is chosen as a threshold for the norm

of the gradient of the primal objective and it is formulated according to the upper bound on the

empirical risk error given by O( 1
N ) (as was shown in Shalev-Shwartz et al. (2009)). The results

are represented in Figure 17 and demonstrate that the distributed Newton method outperforms

stochastic gradient descent (SGD) for the chosen values of α.

Interestingly, we noticed that for smaller values of the parameter α, controlling the dimensional

complexity of the problem, the major effect on the performance is imposed by the condition number

of the objective function. In other words, if the ratio Γ
γ of parameters from Assumption 3.2.1 is

high, then gradient descent methods are more favorable. We believe this behavior is caused by

the local Hessian inversion procedure called the Distributed Newton Method in each iteration and

implemented according to Approximated Newton Algorithm 16. As was shown in Section 3.2.8 the

performance of this algorithm scales linearly with
√

Γ
γ . For low dimensional setups, this ratio plays

a major role in the performance of the Distributed Newton Method.
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Figure 16: The effect of dimensionality

Comparison with the decentralized SGD on SPARK model

For this experiment, we implement both the Distributed Newton Method and the stochastic gradient

descent (SGD) in a SPARK computational model. In particular, we split the data set among n = 9

computational clusters connected to a central master node.

For the stochastic gradient method, the central node collects the sampled gradients from peripheral

clusters and then formulates the unbiased estimate ∇̂f(x) for the total gradient over all finite sum.

This estimate is used by the central cluster to perform gradient descent update:

x[k+1] = x[k] − β[k]∇̂f(x[k])

with

∞∑
k=1

β[k] =∞ &

∞∑
k=1

(
β[k]
)2

<∞

which is distributed then to all peripheral clusters. In this experiment, we consider the logistic

regression model applied to synthetic data sets with N = 106 and number of features given by

p = Nα with α ∈ [0.25, 0, 5]. For each value of the dimensional parameter p, we measure the
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Figure 17: SPARK computational model

time needed for both approaches to reach the stopping criteria. As in the previous experiment, the

stopping criteria is chosen as a threshold for the norm of the gradient of the primal objective given

by the upper bound on the empirical risk error.

The central node connected with a collection of peripheral clusters forms a star graph topology Sn,

described as a special case in Section 2.4. As reported in Table 1, the time complexity of our fully

distributed Chebyshev solver is given as O(n
√
n), with n being the total number of clusters. The

additional factor n caused by the aggregation and processing information from peripheral clusters

in the central node. Next, we present an acceleration technique tailored specifically for unweighted

Laplacians of a star graph Sn allowing us to solve a Laplacian system

LSnx = b (3.37)

in O(n) time. This new technique is based on the spectrum of the unweighted Laplacian LSn of a

star graph given as:

Spectr (LSn) = {0, 1, 1 . . . , 1︸ ︷︷ ︸
n−2

, n}

Moreover, the eigenvector un corresponding to the largest eigenvalue allows a closed-form expression:

un =
1√

(n− 1)n



n− 1

−1

...

−1


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Therefore, using spectral decomposition for LSn =
∑n−1
j=2 uju

T
j + nunu

T
n and L†Sn =

∑n−1
j=2 uju

T
j +

1
nunu

T
n we immediately arrive at the closed-form expression for the exact solution of system (3.37):

x∗ = L†Snb = LSnb+
1− n2

n
(uT

nb)un (3.38)

One can see that the computational complexity of this technique is restrained by the matrix vector

LSnb and the inner uT
nb products and both these operations can be performed in O(n) time.9

We apply this accelerated technique in the distributed computation of the Newton direction for

SPARK model experiments. The results are represented in Figure 18 and demonstrate that the

Distributed Newton Method outperforms stochastic gradient descent for the chosen values of α.

Figure 18: The effect of dimensionality for the SPARK model

Similarly to the previous experiment, for smaller values of the parameter α, controlling the dimen-

sional complexity of the problem the major effect on the performance is imposed by the condition

number of the objective function. In other words, if the ratio Γ
γ of parameters from Assumption

3.2.1 is high, then SGD methods are more favorable.

Comparison with Fully Distributed Approaches

Finally, we evaluate our method against five other approaches: 1) distributed Newton ADD, an

adaptation of ADD (Zargham et al. (2013)) that we introduce to compute the Newton direction

of general consensus, 2) distributed ADMM (Wei and Ozdaglar (2012)), 3) distributed averaging

(Olshevsky (2014)), an algorithm solving general consensus using local averaging, 4) Network Newton

1 and 2 (Mokhtari et al. (2015)), and 5) distributed gradients (Nedic and Ozdaglar (2009)). We

9Notice, this approach is only suitable for unweighted Laplacian LSn of a star graph, because of the specific
structure of the spectrum of LSn as well as the known expression for the largest eigenvector un.
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are chiefly interested in the convergence speeds of both the objective value and the consensus error.

The objective value plots demonstrate whether our method is capable of reducing the value of the

objective/cost function, while consensus plots allow us to comprehend the violation of the constraints.

Furthermore, comparison against ADMM positions us with respect to the state-of-the-art, while

comparisons against ADD and Network Newton sheds light on the accuracy of our Newton direction

approximation.

To simulate a real-world distributed environment, we used the Matlab parallel pool running on an

8-core server. After generating the processors’ graph structure with random edge assignment (see

below for specifics on the node-edge configuration), we split nodes equally across the 8 cores. Hence,

each processor was assigned a collection of nodes for performing computations.

Benchmark Data Sets We performed three sets of experiments on standard machine learning

problems: 1) linear regression, 2) logistic regression, and 3) reinforcement learning. We transformed

centralized problems to fit within the distributed consensus framework. This can be easily achieved

by factoring the summation running over all the available training examples to partial summations

across multiple processors while introducing consensus. We considered both synthetic as well as

real-world data sets:

Synthetic Regression Task: We created a data set for regression with 108 data points each

being an 80-dimensional vector. The task parameter vector was generated as a linear combination

of these features. The training data set D was generated from a standard normal distribution in

80 dimensions. The training labels were given as y = Dx + ξ, where each element in ξ was an

independent univariate Gaussian noise.

MNIST Data The MNIST data set is a large database of handwritten digits which has been

used as a benchmark for classification algorithms Lecun and Cortes. The goal is to classify among

10 different digits amounting from 0 to 9. After reading each image, we perform dimensionality

reduction to reduce the number of features of each instance image to 150 features using principle

component analysis and follow a one-versus-all classification scheme.

London Schools Data The London Schools data set consists of examination scores from 15,362

students in 139 schools. This is a benchmark regression task with a goal of predicting examination

scores of each student. We use the same feature encoding used in Kumar and Daume (2012), where

four school-specific categorical variables along with three student-specific categorical variables are
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encoded as a collection of binary features. In addition, we use the examination year and a bias term

as additional features, giving each data instance 27 features.

Reinforcement Learning We considered the policy search framework to control a double cart-pole

system (DCP). As detailed in Bou-Ammar et al. (2015), the DCP adds a second inverted pendulum

to the standard cart-pole system, with six parameters and six state features. The goal is to balance

both poles upright. We generated 20,000 rollouts each with a length of 150 time steps.

Figure 19: Double Cart Pole System

Benchmark Results

1. Linear Regression Results:In this section, we report regression results on the synthetic and

London school data-sets. Synthetic Data: We randomly distributed the regression objective

over a network of 100 nodes and 250 edges. The edges were chosen uniformly at random. An

ε of 1/10 was provided to the distributed solvers for determining the approximate Newton

direction. Step sizes were determined separately for each algorithm using a grid-search-like-

technique over {0.01, 0.1, 0.2, 0.3, 0.5, 0.6, 0.9, 1} to ensure best operating conditions. We used

the local objective and the consensus error as performance metrics. Results shown in Fig-

ure 20 demonstrate that our method (titled Distributed SDD Newton) outperforms all other

techniques in both objective value and consensus error. Namely, distributed SDD Newton con-

verges to the optimal value in about 40 iterations compared to about 200 for the second-best

performing algorithm. It is also interesting to recognize that the worst performing algorithms

were distributed gradients and Network Newton 1 and 2 from Mokhtari et al. (2015). Fur-

thermore, it is worth noting that although some algorithms appear similar to ours in terms of

objective values, the solution derived by SDD-Newton is more accurate in terms of feasibility,
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a criterion essential for achieving consensus.

Figure 20: Experimental Results on Linear Regression with a synthetic data set.

Figure 21: Experimental Results on Linear Regression with a real data set.

London Schools Data: We repeated the above experiments on the London Schools data-set.

The same parametric setting for the SDD solver and for the step sizes was used. The graph

topology, however, was set to 50 nodes and 150 edges generated uniformly at random. Results

depicted in Figure 21 confirm previous conclusions showing the SDDNewton outperforms other

techniques by a significant margin (in the order of 1000 iterations)

2. Logistic Regression Results We chose the most successful algorithms from previous experiments

to perform image classification. We considered both smooth (L2 norms) and non-smooth (L1
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norms) regularization forms on latent parameters. The processor graph was set to 10 nodes and

20 edges generated uniformly at random. Results depicted in Figures 22 and 23 demonstrate

that our algorithm is again capable of outperforming state-of-the-art methods.

Figure 22: Experimental Results on Logistic Regression with L2 regularization.

Figure 23: Experimental Results on Logistic Regression with L1 regularization.

3. Reinforcement Learning Results: Finally, the above were repeated for controlling the DCP

task. We split 20,000 trajectories across a graph of 120 processors and 250 edges. Results

shown in Figure 24 demonstrate that our method again outperforms state-of-the-art where it

is capable of achieving low consensus error after a couple of iterations.
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Figure 24: Experimental Results on Reinforcement Learning.

fMRI Experiment Having shown that our approach outperforms others on relatively dense

benchmark data-sets, we are now interested in the performance on sparse data sets where the num-

ber of features is much larger than the number of inputs. To do so, we used the functional Magnetic

Resonance Imaging (fMRI) data set from Singh et al. (2007). The goal in these experiments is to

classify the cognitive state (i.e., whether looking at a picture or a sentence) of a subject based on

fMRI data. Six subjects were considered in total. Each had 40 trials that lasted for 27 seconds

attaining in total 54 images per subject. After preprocessing as described in Singh et al. (2007),

we acquired a sparse data-set with 240 input data points, each having 43,720 features. We then

performed logistic regression with an L1 regularization and reported objective values and consensus

errors. Figure 25 demonstrates the objective value and consensus errors on the fMRI data-set. First,

it is clear that our approach outperforms others on both criteria. It is worth noting that the second-

best performing algorithm to ours is Distributed ADDNewton, an alternative approach we propose

in this paper for computing the Newton direction. Distributed ADMM and Distributed Averaging

perform the worst on such a sparse problem. Second, Figure 25(b) clearly manifests the drawback

of ADMM which requires substantial numbers of iterations for converging to the optimal feasible

point. Due to the size of the feature set (i.e., 43,720), even small deviations from the optimal model

can lead to significant errors in the value of the objective function. This motivates the need for the

accurate solutions as acquired by our method.
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Figure 25: Experimental Results on fMRI images.

Communication Overhead & Running Times Similar to the Network Flow Problem, it

could seem that the speed and accuracy of the proposed approach come at the expense of a higher

communication overhead since our approach utilizes distributed solvers while other approaches allow

only a few message exchanges. To test this, we conducted a final experiment measuring local com-

munication exchange with respect to accuracy requirements. For that, we chose the London Schools

data set as all algorithms performed relatively well. Results reported in Figure 26(a) demonstrate

that this increase is negligible compared to other methods. Clearly, as accuracy improves so does the

communication overhead of all other algorithms. Distributed solvers proposed in Algorithms 5 and

6 have a growth rate proportional to the condition number and square root of the condition number

of the graph respectively, which is much slower compared to the exponential growth observed with

other techniques. Finally, Figure 26(b) reports running times till convergence on the same data set.
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Figure 26: Experimental results: communication overhead, CPU running times
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CHAPTER 4 : CONCLUSION

In this chapter, we emphasize the contributions of this thesis and present future directions that

could be taken to extend these results.

4.1. Thesis Summary

The purpose of this thesis was to develop new algorithmic tools that can be applied in a distributed

setting and improve the performance of decentralized optimization methods. The developed algo-

rithms target the problem of solving symmetric diagonal dominant linear systems in a fully dis-

tributed and mixed way.

The first fully distributed algorithm in Section 2.2 was based on the recursive preconditioning of

the original SDD matrix with a collection of matrices called an approximated inverse chain. This

method can be considered as a decentralized version of the parallel SDD solver proposed by Peng

and Spielman (2013). The distributed adaptation of their technique allows us to kill two birds with

one stone: to construct a short approximated chain, reducing the overall computational burden and

allowing nodes to operate only with their local information without any need for a global coordina-

tor. As a result, we arrive at a fully distributed SDD solver with time complexity characterized by

the condition number of matrix of the system.

The linear dependence on the condition number restricted the application range of the first solver

to graphs with ”small” diameters. To remedy this issue and cover arbitrary graph topologies, we

proposed the second fully distributed SDD solver. The key idea for improving the performance of

the previous algorithm was a better approximation of the SDD inverse by carefully scaled Chebyshev

polynomials. Due to their extremal properties and recursive relation connecting them we were able

to design a fully distributed SDD solver with performance characterized by a square root of the

condition number. We further optimized this algorithm by designing a distributed binary search

procedure to adjust the computation for a structure of the right-hand side vector of a system.
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It was observed that fully decentralized models have unavoidable drawbacks in comparison to their

centralized counterparts. In particular, the message communication between the clusters charges

additional costs on the behavior of distributed algorithms. Moreover, we noticed that this message

exchange directly related to the topology of the underlying graph of clusters. In Section 2.3 we care-

fully studied this relation and introduced a new mixed algorithm based on distributed construction

of a spectral sparsifier. The size of this sub-graph allowed us to collect its full topology in one single

node previously chosen by applying leader election protocols. Finally, we applied the centralized

SDD solver to a sparsified SDD system with carefully chosen precision parameters. As a result,

our new mixed SDD solver not only improved the communication complexity of fully distributed

techniques but surprisingly surpassed central SDD solvers in terms of time complexity.

In Sections 3.1 and 3.2 based on the proposed SDD solvers we designed an exact distributed Newton

method for the Network Flow problem and Empirical Risk Minimization. The particular choice of

these applications was motivated by their importance for practical interest. On the theoretical side,

we showed that the introduced algorithms exhibited quadratic convergence rates and outperformed

all existing methods. On the practical side, we verified this behavior on a wide range of numerical

simulations including various graph topologies, a different number of features and different forms of

regularization terms.

4.2. Future Work

4.2.1. Non-Convex Case

Due to the recent success of Deep Learning techniques in speech recognition, computer vision, and

artificial intelligence, it is interesting to extend our work for these methods and to address the

immense computational scale of deep neural networks. Despite the non-convex nature of the ac-

tivation function, we hope to develop second order distributed techniques based on higher order

Taylor approximation. In particular, in a recent work (Agarwal et al. (2017)), the authors exploit

the curvature information by considering the cubic approximation of a non-convex function. The

descent direction then is computed as a solution of a symmetric system of linear equations abiding

by the diagonal dominant property. Interestingly, in contrast with a convex case, this cubic regu-

larized Newton method attains only linear convergence rate to a local minimum of the activation
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function. From the practical point of view, training of multi-layered neural networks implies serious

computational challenges for researchers. Therefore, adopting distributed models promises to reduce

the complexity of the problem.

4.2.2. Experiments with SPARK

On the implementation side, the interesting direction is to consider large cluster configurations

with hundreds or even thousands of computational units. As was shown in Section 2.4, the size

of the network does not necessarily decrease its computational power (for instance, with sparse

Ramanujan graphs). Collecting these units into ”efficient” network configurations could potentially

lead to significant acceleration of the proposed techniques.
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APPENDIX

A.1. Proof of Lemma 2.2.2

Proof For a better exposure each statement is proved separately:

1. The proof of the first part will be given as a collection of claims:

Claim: Let κ be the condition number of LG = D0 −A0, and {λi}ni=1 denote the eigenvalues

of D−1
0 A0. Then, |λi| ≤ 1− 1

κ , for all i = 1, . . . , n

Proof See Proposition 5.3 in Peng and Spielman (2013).

Notice that if λi represented an eigenvalue ofD−1
0 A0, then λri is an eigenvalue of

(
D−1

0 A0

)r
for

all r ∈ N. Therefore, for the spectral radius of matrix (D−1
0 A0)2d we have: ρ

((
D−1

0 A0

)2d) ≤(
1− 1

κ

)2d
.

Claim: Let M be an SDD matrix and consider the splitting M = D −A, with D being non

negative diagonal and A being symmetric non negative. Further, assume that the eigenvalues

of D−1A lie between −α and β. Then:

(1− β)D �D −A � (1 + α)D

Proof See Proposition 5.4 in Peng and Spielman (2013).

Combining the above results, gives

[
1−

(
1− 1

κ

)2d
]
Dd �Dd −Ad �

[
1 +

(
1− 1

κ

)2d
]
Dd.

Hence, to guarantee that Dd ≈εd Dd −Ad, the following system must be satisfied:

e−εd ≤ 1−
(

1− 1

κ

)2d

, and eεd ≥ 1 +

(
1− 1

κ

)2d

.
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Introducing γ for
(
1− 1

κ

)2d
, we arrive at:

εd ≥ ln

(
1

1− γ

)
, and εd ≥ ln(1 + γ).

Hence, εd ≥ max
{

ln
(

1
1−γ

)
, ln(1 + γ)

}
= ln

(
1

1−γ

)
. Now, notice that if d = dlog cκe then,

γ =
(
1− 1

κ

)2d
=
(
1− 1

κ

)cκ ≤ 1
ec . Hence, ln

(
1

1−γ

)
≤ ln

(
ec

ec−1

)
. This gives c = d2 ln

(
3√2

3√2−1

)
e,

implying εd = ln
(

ec

ec−1

)
< 1

3 ln 2.

2. In Algorithms 3 and 4, each node i computes [b1]i, [b2]i, . . . , [bd]i and [xd]i, [xd−1]i, . . . , [x0]i,

respectively. These are determined using the inverse approximated chain as follows

bk = (I + (Ak−1D
−1
k−1)bk−1 = bk−1 + (A0D

−1
0 )2k−1

bk−1. (A.1)

xk =
1

2
[D−1

k bk + (I +D−1
k Ak)xk+1] =

1

2
[D−1

0 bk + xk+1 + (D−1
0 A0)2kxk+1].

Hence, Lemma 4.3 from Peng and Spielman (2013) gives Z ′ ≈εd L
−1
G .

3. Considering the computation of [b1]k, . . . , [bd]k in (A.9) we have:

[bk]i = [bk−1]i + [(A0D
−1
0 )2k−1

bk−1]i = [bk−1]i + [C0 . . .C0︸ ︷︷ ︸
l

bk−1]i

= [bk−1]i + [C0 . . .C0︸ ︷︷ ︸
l−1

u
(k−1)
1 ]i = [bk−1]i +

[
u

(k−1)
l

]
i
.

with C0 = A0D
−1
0 , l = 2k−1, and u

(k−1)
j+1 = C0u

(k−1)
j for j = 1, . . . , l − 1. Due to the

sparsity of C0, node i computes [u
(k−1)
j+1 ]i based on the components of u

(k−1)
j attained from

its neighbors. For each k, the computing [bk]i requires O
(
dmax2k−1

)
time steps, where dmax

is a maximal degree in G. Therefore, the overall computation of the values [b1]i, [b2]i, . . . , [bd]i

is O
(
dmax2d

)
. Similar analysis can be applied to determine the computational complexity of

[xd]i, [xd−1]i, . . . , [x1]i, in Algorithm 4. We arrive that the total time complexity of Algorithms

3 and 4 is O
(
dmax2d

)
.
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A.2. Proof of Lemma 2.2.3

Proof Note that the iterations of Algorithm 5 correspond to a distributed version of the precondi-

tioned Richardson iteration scheme

yt = [I −Z ′LG]yt−1 +Z ′b0.

with y0 = 0 and Z ′ being the operator defined by Algorithms 4 and 5. From Lemma 3.3 it is clear

that Z ′ ≈εd L
−1
G . Applying Lemma 4.4 from Peng and Spielman (2013) , provides that Algorithm

5 requires O
(
log
(

1
ε

))
iterations to return the ith component of the ε−close approximation to x?.

Finally, since Algorithm 5 uses Algorithms 3 and 4 as subroutines, it follows that for each node i

only communication between neighbors is allowed. Consequently, the time complexity of Algorithm

5 is given by O
(
dmax2d log

(
1
ε

))
.

A.3. Proof of Theorem 2.3.2

Proof The proof can be found in Koutis (2014).

A.4. Proof of Lemma 3.1.2

Proof We study each statement separately:

1. Instead of Network Flop Problem (3.1) we consider more general optimization problem:

min
x
f(x) (A.2)

s.t. Ax = b, A ∈ Rn×p, b ∈ Rn

where f(x) twice differentiable strongly convex function, and unknown variable x ∈ Rp. One

can see, that problem (3.1) is a special case of (A.2) with A being an incidence matrix of graph

G. Let q(λ) be the corresponding dual for (A.2), with dual variable λ ∈ Rn. We will show
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that:

∇2q(λ) = −A[∇2f(x(λ))]−1AT (A.3)

∇q(λ) = Ax(λ)− b

where x(λ) = argminxf(x) + λT(Ax − b) minimizes the Lagrangian of problem (A.2). Let

us denote x(λ) = x+

A =



a11 · · · a1p

a21 · · · a2p

...
. . .

...

an1 · · · anp


, x+ =



x+
1 (λ)

x+
2 (λ)

...

x+
p (λ)


,∇f(x+) =



z1(x+)

z2(x+)

...

zp(x
+)


(A.4)

The optimal primal variable x(λ) satisfies:

∇f(x(λ)) +ATλ = 0. (A.5)

Using Fenchel’s conjugate, the dual function can be written as:

q(λ) = −bTλ− f∗(−ATλ) (A.6)

Therefore,

∇q(λ) = −b−∇f∗(−ATλ) (A.7)

Denoting u = −ATλ, then the kth component of vector ∇f∗(−ATλ) can be written as:

[∇f∗(−ATλ)]k =

p∑
j=1

∂f∗

∂uj

∂uj
∂λk

= −
[
ak1 ak2 · · · akp

]
×



∂f∗

∂u1

∂f∗

∂u2

...

∂f∗

∂up


−ATλ

Applying result (A.5) and the relation between the gradients of function and its Fenchel’s

101



conjugate:

∇f∗(−ATλ) = −A∇uf∗(u)|−ATλ = −A∇uf∗(−ATλ) = (A.8)

−A∇uf∗(∇f(x+)) = −Ax(λ)

Therefore, the result (A.7) gives:

∇q(λ) = −b+Ax(λ) (A.9)

which establishes the claim for the dual gradient.

Taking the gradient in (A.9) gives:

∇2q(λ) = A



∂x+
1 (λ)
∂λ1

∂x+
1 (λ)
∂λ2

· · · ∂x+
1 (λ)
∂λn

∂x+
2 (λ)
∂λ1

∂x+
2 (λ)
∂λ2

· · · ∂x+
2 (λ)
∂λn

...
. . .

...

∂x+
p (λ)

∂λ1

∂x+
p (λ)

∂λ2
· · · ∂x+

p (λ)

∂λn


︸ ︷︷ ︸

F (x+)

(A.10)

Hence, we target matrix F (x+) to obtain the form of dual Hessian. Equation (A.5) gives:

∇f(x+) = −ATλ

On the next step, we take partial derivative ∂
∂λj

for both sides of the above equation for
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j = 1, . . . , n. For simplicity, consider ∂
∂λ1

:

∂

∂λ1
∇f(x+) =



∂
∂λ1

z1(x+)

∂
∂λ1

z2(x+)

...

∂
∂λ1

zp(x
+)


=



∂z1(x+)

∂x+
1 (λ)

∂x+
1 (λ)
∂λ1

+ ∂z1(x+)

∂x+
2 (λ)

∂x+
2 (λ)
∂λ1

+ · · ·+ ∂z1(x+)

∂x+
p (λ)

∂x+
p (λ)

∂λ1

∂z2(x+)

∂x+
1 (λ)

∂x+
1 (λ)
∂λ1

+ ∂z2(x+)

∂x+
2 (λ)

∂x+
2 (λ)
∂λ1

+ · · ·+ ∂z2(x+)

∂x+
p (λ)

∂x+
p (λ)

∂λ1

...

∂zp(x+)

∂x+
1 (λ)

∂x+
1 (λ)
∂λ1

+
∂zp(x+)

∂x+
2 (λ)

∂x+
2 (λ)
∂λ1

+ · · ·+ ∂zp(x+)

∂x+
p (λ)

∂x+
p (λ)

∂λ1


=



∂z1(x+)

∂x+
1 (λ)

∂z1(x+)

∂x+
2 (λ)

· · · ∂z1(x+)

∂x+
p (λ)

∂z2(x+)

∂x+
1 (λ)

∂z2(x+)

∂x+
2 (λ)

· · · ∂z2(x+)

∂x+
p (λ)

...
. . .

...

∂zp(x+)

∂x+
1 (λ)

∂zp(x+)

∂x+
2 (λ)

· · · ∂zp(x+)

∂x+
p (λ)


︸ ︷︷ ︸

∇2f(x+)



∂x+
1 (λ)
∂λ1

∂x+
2 (λ)
∂λ1

...

∂x+
p (λ)

∂λ1


= ∇2f(x+)



∂x+
1 (λ)
∂λ1

∂x+
2 (λ)
∂λ1

...

∂x+
p (λ)

∂λ1


=

∂

∂λ1
(−ATλ) = −



a11

a12

...

a1p


Repeating this for ∂

∂λ2
, . . . , ∂

∂λp
gives:

∇2f(x+)



∂x+
1 (λ)
∂λ1

∂x+
1 (λ)
∂λ2

· · · ∂x+
1 (λ)
∂λn

∂x+
2 (λ)
∂λ1

∂x+
2 (λ)
∂λ2

· · · ∂x+
2 (λ)
∂λn

...
. . .

...

∂x+
p (λ)

∂λ1

∂x+
p (λ)

∂λ2
· · · ∂x+

p (λ)

∂λn


︸ ︷︷ ︸

F (x+)

= −



a11 a21 · · · an1

a12 a22 · · · an2

...
. . .

...

a1p a2p · · · anp


︸ ︷︷ ︸

AT

Therefore, for matrix F (x+) = −[∇2f(x+)]−1AT and combining this result with (A.10) gives:

∇2q(λ) = −A[∇2f(x+)]−1AT
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2. Recall that:

||A||2 = sup
v:v 6=0

||Av||2
||v||2

Fix arbitrary v 6= 0, then using the first claim:

||[H(λ̄)−H(λ)]v||22 =

vTA
(
[∇2f(x(λ̄))]−1 − [∇2f(x(λ))]−1

)
ATA

(
[∇2f(x(λ̄))]−1 − [∇2f(x(λ))]−1

)
ATv ≤

µn(LG)vTA
(
[∇2f(x(λ̄))]−1 − [∇2f(x(λ))]−1

)2
ATv ≤

µ2
n(LG)µ2

n

(
[∇2f(x(λ̄))]−1 − [∇2f(x(λ))]−1

)
||v||22

Hence,

||H(λ̄)−H(λ)||2 ≤ µn(LG)µn
(
[∇2f(x(λ̄))]−1 − [∇2f(x(λ))]−1

)
(A.11)

Due to Assumption 3.1.1:

µn
(
[∇2f(x(λ̄))]−1 − [∇2f(x(λ))]−1

)
≤ max

e∈E

∣∣∣∣ 1

Φ̈e(x(e)(λ̄))
− 1

Φ̈e(x(e)(λ))

∣∣∣∣ ≤
δ

γ2
|x(e)(λ̄)− x(e)(λ)|

To analyze the last term, notice that
∣∣∣ ∂∂λi [Φ̇e]−1(λ)

∣∣∣ = 1

Φ̈e([Φ̇e]−1(λ))
≤ 1

γ . Therefore, function

[Φ̇e]
−1(λ) is Lipschitz continuous with constant 1

γ . Using x(e)(λ) = [Φ̇e]
−1(λi− λj) it implies:

|x(e)(λ̄)− x(e)(λ)| ≤ 1

γ
||λ̄− λ||2

Combining these results gives:

||H(λ̄)−H(λ)||2 ≤
µn(LG)δ

γ3
||λ̄− λ||2 = B||λ̄− λ||2.
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A.5. Proof of Lemma 3.1.3

Proof Using definition of εk for the dual gradient we have:

g(λk + αkd̃k) = g(λk) +

∫ 1

0

H(λk + tαkd̃k)αkd̃kdt =

g(λk) +

∫ 1

0

[
H(λk + tαkd̃k)−H(λk)

]
αkd̃kdt+ αk

∫ 1

0

H(λk)d̃kdt =

g(λk) +

∫ 1

0

[
H(λk + tαkd̃k)−H(λk)

]
αkd̃kdt+ αk(εk − g(λk))

Applying gk+1 = g(λk + αkd̃k), gk = g(λk) and Lemma 3.1.2:

||gk+1||2 ≤ (1− αk)||gk||2 + αk||εk||2 +
1

2
α2
kB||d̃k||22 =

(1− αk)||gk||2 + αk||εk||2 +
1

2
α2
kB||H

†(λk)(gk − εk)||22 ≤

(1− αk)||gk||2 + αk||εk||2 + α2
kB||H

†(λk)||22(||gk||22 + ||εk||22)

Investigating the explicit form of dual Hessian gives ||H†(λk)||2 ≤ Γ
µ2(LG) . Hence,

||gk+1||2 ≤ (1− αk)||gk||2 + α2
kB

Γ2

µ2
2(LG)

||gk||22 + αk||εk||2 + α2
kB

Γ2

µ2
2(LG)

||εk||22.

A.6. Proof of Lemma 3.1.4

Proof Combining ||gk||2 ≤
µ2

2(LG)
2BΓ2 with Lemma 3.1.3 implies:

||gk+1||2 ≤
(

3

2
− αk

)
||gk||2 + αk||εk||2 + α2

kB
Γ2

µ2
2(LG)

||εk||22
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Since ||εk||2 ≤ ε
√

µn(LG)
µ2(LG)

√
Γ
γ ||gk||2, ||gk||2 ≤

µ2
2(LG)
2BΓ2 and αk ≤ 1, then

||gk+1||2 ≤
(

3

2
− αk

)
||gk||2 + αkε

√
µn(LG)

µ2(LG)

√
Γ

γ
||gk||2 + α2

kε
2B

Γ3

µ3
2(LG)

µn(LG)

γ
||gk||22 ≤(

3

2
− αk

)
||gk||2 + ε

√
µn(LG)

µ2(LG)

√
Γ

γ
||gk||2 + ε2B

Γ3

µ3
2(LG)

µn(LG)

γ
||gk||22 ≤(

3

2
− αk

)
||gk||2 +

1

2
ε
µ2(LG)γ2

Γδ

[√
µ2(LG)γ

µn(LG)Γ
+
ε

2

]
=

(
3

2
− αk

)
||gk||2 + B̃

where we denote B̃ = 1
2ε
µ2(LG)γ2

Γδ

[√
µ2(LG)γ
µn(LG)Γ + ε

2

]
≤ 2εnγ

2

Γδ for ε ≤ 2
n

√
2γ
nΓ . Since ||gk+1||2 ≥ |[gk+1]i|

and ||gk||2 ≤
√
nmaxi{|[gk]i|}, then

|[gk+1]i| ≤
(

3

2
− αk

)√
nmax

i
{|[gk]i|}+ 2ε

nγ2

Γδ

Notice that if mi = 0 the 3
2 − β

mi ≤ 1− σβmi Therefore, for mi = 0 we have

|[gk+1]i| ≤ (1− σβmi)
√
nmax

i
{|[gk]i|}+ 2ε

nγ2

Γδ

In other words, Algorithm 11 returns αk = β0 = 1.

For the case ||gk||2 >
µ2

2(LG)
2BΓ2 consider ᾱk =

µ2
2(LG)

2BΓ2
√
nmaxi{|[gk]i|}

. Because ||gk||2 ≤
√
nmaxi{|[gk]i|}
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and ||gk||2 >
µ2

2(LG)
2BΓ2 then ᾱk < 1. Hence, applying ᾱk with ε ≤ 2

n

√
2γ
nΓ for (3.7) gives:

||gk+1||2 ≤ (1− ᾱk)||gk||2 + ᾱ2
kB

Γ2

µ2
2(LG)

||gk||22 + ᾱk||εk||2 + ᾱ2
kB

Γ2

µ2
2(LG)

||εk||22 =

||gk||2 + ᾱk||εk||2 + ᾱ2
kB

Γ2

µ2
2(LG)

||εk||22 − ᾱk||gk||2
[
1− ᾱkB

Γ2

µ2
2(LG)

||gk||2
]
≤

||gk||2 + ᾱkε

√
µn(LG)

µ2(LG)

√
Γ

γ
||gk||2 + ᾱ2

kε
2B

Γ2

µ2
2(LG)

µn(LG)

µ2(LG)

Γ

γ
||gk||22−

ᾱk||gk||2
[
1− ||gk||2

2
√
nmaxi{|[gk]i|}

]
≤ ||gk||2 + ᾱkε

√
µn(LG)

µ2(LG)

√
Γ

γ
||gk||2+

ᾱ2
kε

2B
Γ2

µ2
2(LG)

µn(LG)

µ2(LG)

Γ

γ
||gk||22 −

1

2
ᾱk||gk||2 =

(
1− ᾱk

2

)
||gk||2+

ε

√
µn(LG)

µ2(LG)

Γ

γ

||gk||2
2BΓ2

µ2
2(LG)

√
nmaxi{|[gk]i|}

+ ε2
µn(LG)

µ2(LG)

Γ

γ

1

4 BΓ2

µ2
2(LG)

||gk||22
nmaxi{[gk]2i }

≤

(
1− ᾱk

2

)
||gk||2 + B̃ ≤

(
1− ᾱk

2

)
||gk||2 + 2ε

nγ2

δΓ

In other words, we establishes:

||gk+1||2 ≤ (1− σᾱk)||gk||2 + 2ε
nγ2

δΓ

Applying again ||gk+1||2 ≥ |[gk+1]i| and ||gk||2 ≤
√
nmaxi{|[gk]i|} gives:

|[gk+1]i| ≤ (1− σᾱk)
√
nmax

i
{|[gk]i|}+ 2ε

nγ2

δΓ

Therefore, Algorithm 11 returns αk ≥ βᾱk = β
µ2

2(LG)
2BΓ2 maxi{|[gk]i|} .

A.7. Proof of Theorem 3.1.5

Proof We will proof the above theorem by handling each of the cases separately. We start by

considering the case when ||gk||2 >
µ2

2(LG)
2BΓ2 . Then, according to Lemma 3.1.4: αk ≥ β µ2

2(LG)
2BΓ2 maxi{|[gk]i|}

and Equation (3.7) we have:

||gk+1||2 ≤ (1− 1

2
βᾱk)||gk||2 + 2ε

nγ2

δΓ
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Choosing ε ≤ β
8

δ
n
√
n

(
γ
Γ

) µ2
2(LG)

µn(LG) implies 2εnγ
2

δΓ ≤
1
4βᾱk||gk||2 and

||gk+1||2 − ||gk||2 ≤ −
1

4
βᾱk)||gk||2 ≤ −

1

4
β

||gk||2
2 BΓ2

µ2
2(LG)

√
nmaxi{|[gk]|i}

≤

− 1

8
β

1
BΓ2

µ2
2(LG)

√
n

= − β

8
√
nδ

γ3

Γ2

µ2
2(LG)

µn(LG)

The the quadratic decrease phase we use the result of Lemma 3.1.4 and induction:

1. For m = 1 applying αk = 1 in Equation (3.7):

||gk+1||2 ≤
BΓ2

µ2
2(LG)

||gk||22 + B̃ ≤ 1

4 BΓ2

µ2
2(LG)

+ B̃

This result validates the claim for m = 1.

2. Assume (3.8) is correct for some m > 0.

3. Using αk+m+1 = 1 in Equation (3.7) and denoting u = 22m gives :

BΓ2

µ2
2(LG)

||gk+m+1||2 ≤
[
BΓ2

µ2
2(LG)

||gk+m||2
]2

+
BΓ2

µ2
2(LG)

B̃ ≤[
1

u
+ B̃

BΓ2

µ2
2(LG)

+ Λ̂
1
2u− 1

u

]2

+
BΓ2

µ2
2(LG)

B̃ =

1

u2
+

BΓ2

µ2
2(LG)

B̃ + Λ̂
1
2u

2 − 1

u2
− Λ̂

1
2u

2 − 1

u2
+ Λ̂

u− 2

u2
+ B̃

2BΓ2

µ2
2(LG)

1

u
+

(
BΓ2

µ2
2(LG)

)2

B̃2 + 2B̃Λ̂
1
BΓ2

µ2
2(LG)

(u− 2)

u
+ Λ̂2 1(

BΓ2

µ2
2(LG)

)2

(u− 2)2

4u2


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Since B̃ + BΓ2

µ2
2(LG)

B̃2 = Λ̂

4 BΓ2

µ2
2(LG)

, then

BΓ2

µ2
2(LG)

||gk+m+1||2 ≤

1

u2
+

BΓ2

µ2
2(LG)

B̃ + Λ̂
1
2u

2 − 1

u2
− Λ̂

1
2u

2 − 1

u2
+ Λ̂

u− 2

u2
+ B̃

2BΓ2

µ2
2(LG)

1

u
+

(
BΓ2

µ2
2(LG)

)2

Λ̂
1

4
(

BΓ2

µ2
2(LG)

)2 −
B̃
BΓ2

µ2
2(LG)

+
2B̃Λ̂
BΓ2

µ2
2(LG)

(
1

2
− 1

u

)
+

Λ̂2(
BΓ2

µ2
2(LG)

)2

(u− 2)2

u2

 =

1

u2
+

BΓ2

µ2
2(LG)

B̃ + Λ̂
(u2 − 2)

2u2
+

Λ̂

u2

[
−1

2
u2 + u− 1

]
+

Λ̂

4
+ B̃

BΓ2

µ2
2(LG)

2

u
+

B̃Λ̂
BΓ2

µ2
2(LG)

[
1− 2

u

]
+ Λ̂2

(
u− 2

2u

)2

=
1

u2
+

BΓ2

µ2
2(LG)

B̃ + Λ̂
(u2 − 2)

2u2
−

Λ̂

u2

(u
2
− 1
)2

+ Λ̂2

(
1

2
− 1

u

)2

+ B̃
BΓ2

µ2
2(LG)

[
−1 +

2

u
+ Λ̂− 2

u
Λ̂

]
=

1

u2
+

BΓ2

µ2
2(LG)

B̃ + Λ̂
(u2 − 2)

2u2
−
(

1

2
− 1

u

)2 (
Λ̂− Λ̂2

)
− B̃ BΓ2

µ2
2(LG)

(1− Λ̂)

(
1− 2

u

)
≤

1

u2
+

BΓ2

µ2
2(LG)

B̃ + Λ̂
(u2 − 2)

2u2
=

1

22m+1 + B̃
BΓ2

µ2
2(LG)

+ Λ̂

[
22m+1−1 − 1

22m+1

]

The last step follows due to u > 2 and Λ̂ < 1 (choosing ε small enough).

Hence, claim (3.8) is correct.

A.8. Proof of Lemma 3.2.2

Proof Using the definition of z1, . . . zp system (3.13) can be written as:



∂fi

∂φ
(i)
1

= −z1

∂fi

∂φ
(i)
2

= −z2

...

∂fi

∂φ
(i)
p

= −zp

(A.12)
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Taking the derivative with respect to z1 in each equation of system (A.12) gives:



∂2fi

∂(φ
(i)
1 )2

∂φ
(i)
1

∂z1
+ ∂2fi

∂φ
(i)
1 ∂φ

(i)
2

∂φ
(i)
2

∂z1
+ . . .+ ∂2fi

∂φ
(i)
1 ∂φ

(i)
p

∂φ(i)
p

∂z1
= −1

∂2fi

∂φ
(i)
2 ∂φ

(i)
1

∂φ
(i)
1

∂z1
+ ∂2fi

∂(φ
(i)
2 )2

∂φ
(i)
2

∂z1
+ . . .+ ∂2fi

∂φ
(i)
2 ∂φ

(i)
p

∂φ(i)
p

∂z1
= 0

...

∂2fi

∂φ
(i)
p ∂φ

(i)
1

∂φ
(i)
1

∂z1
+ ∂2fi

∂φ
(i)
p ∂φ

(i)
2

∂φ
(i)
2

∂z1
+ . . .+ ∂2fi

∂(φ
(i)
p )2

∂φ(i)
p

∂z1
= 0

Let u1 = [
∂φ

(i)
1

∂z1
,
∂φ

(i)
2

∂z1
, . . . ,

∂φ(i)
p

∂z1
]T then the above result can be written in matrix vector form:

[∇2fi]u1 = −e1

where e1 = [1, 0 . . . , 0] ∈ Rp. Similarly we have:

[∇2fi]u2 = −e2 [∇2fi]u3 = −e3, . . . [∇2fi]up = −ep

with ur = [
∂φ

(i)
1

∂zr
,
∂φ

(i)
2

∂zr
, . . . ,

∂φ(i)
p

∂zr
]T. Combining all these equations gives:

[∇2fi]U = −Ip×p (A.13)

where

U =



∂φ
(i)
1

∂z1

∂φ
(i)
1

∂z2
· · · ∂φ

(i)
1

∂zp

∂φ
(i)
2

∂z1

∂φ
(i)
2

∂z2
· · · ∂φ

(i)
2

∂zp
...

. . .
...

∂φ(i)
p

∂z1

∂φ(i)
p

∂z2
· · · ∂φ(i)

p

∂zp


Notice, Equation (A.13) implies:

U = −[∇2fi]
−1

Hence, using Assumption 3.2.1: ||U ||2 ≤ 1
γ , and:

|Uij | ≤ ||U ||F ≤
√
p||U ||2 ≤

√
p

γ
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A.9. Proof of Lemma 3.2.3

Proof The proof of the first claim can be found in the proof of Lemma 3.1.2.

Following the strategy as in Lemma 3.1.2 and using M � µn(LG)I:

||[H(λ̄)−H(λ)]v||22 = ||[M([∇2f(y(λ̄))]−1 − [∇2f(y(λ))]−1)Mv]||22 =

vTM([∇2f(y(λ̄))]−1 − [∇2f(y(λ))]−1)M2([∇2f(y(λ̄))]−1 − [∇2f(y(λ))]−1)Mv ≤

µ2
n(LG)vTM([∇2f(y(λ̄))]−1 − [∇2f(y(λ))]−1)2Mv ≤

µ2
n(LG)µ2

max(|[∇2f(y(λ̄))]−1 − [∇2f(y(λ))]−1|)vTM2v ≤

µ4
n(LG)µ2

max(|[∇2f(y(λ̄))]−1 − [∇2f(y(λ))]−1|)||v||22

Therefore,

||H(λ̄)−H(λ)||2 ≤ µ2
n(LG)µmax(|[∇2f(y(λ̄))]−1 − [∇2f(y(λ))]−1|) (A.14)

To bound the term µmax(|[∇2f(y(λ̄))]−1− [∇2f(y(λ))]−1|) we study study the properties of primal

Hessian more carefully:

Claim: For primal Hessian ∇2f(y(λ)) the following properties are true

γ � ∇2f(y(λ)) � Γ (A.15)

µmax(|[∇2f(y(λ̄))]−1 − [∇2f(y(λ))]−1|) ≤ (A.16)

δmax
i∈V

√√√√ p∑
k=1

(
[yk]i(λ̄)− [yk]i(λ)

)2

for any λ̄,λ ∈ Rp.

Proof Firstly, notice that for any j 6= i and any r = 1 . . . , p:

∂2f

∂[y1]i∂[yr]j
=

∂2f

∂[y2]i∂[yr]j
= . . . =

∂2f

∂[yp]i∂[yr]j
= 0

Hence, the sparsity pattern of primal Hessian allows the symmetric reordering of rows and columns
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such that ∇2f(λ) is transformed into the block diagonal matrix:

W (λ) =



∇2f1(λ) 0 · · · 0

0 ∇2f2(λ) · · · 0

...
. . .

...

0 0 · · · ∇2fp(λ)


The matrix W (λ) preserves the important properties of ∇2f(λ). Particularly, the spectrum of

these two matrices are the same. Indeed, let T ij is the operator that swaps ith and jth rows of some

arbitrary matrix A and let Ā be the result of such transformation. Then, Ā = T ijAT ij , and using

T 2
ij = I:

det(Ā− µI) = det(T ijAT ij − µI) = det(T ij(A− µI)T ij) =

det(A− µI)det(T 2
ij) = det(A− µI)

Since W (λ) is constructed from ∇2f(y(λ)) by symmetric reordering rows and columns, then

Spectrum(W (λ)) = Spectrum(∇2f(y(λ))). Using the Assumption 3.2.1 it implies:

γ �W (λ) � Γ

To prove (A.16), notice that if Ā = T ijAT ij and A is invertible, then so Ā and using T−1
ij = T ij :

det(Ā
−1 − µI) = det(T−1

ij A
−1T−1

ij − µI) = det(T ij(A
−1 − µI)T ij) =

det(A−1 − µI)

Denote {T 1, . . . ,T l} is a collection of operators that swaps the rows of matrix ∇2f(y(λ)) to trans-

form it to W (λ), i.e.

W (λ) = T 1 · · ·T l∇2f(y(λ))T l · · ·T 1

112



Then [∇2f(y(λ))]−1 = T l · · ·T 1W
−1(λ)T 1 · · ·T l, and using the Assumption 3.2.1:

µmax(||[∇2f(y(λ̄))]−1 − [∇2f(y(λ))]−1||) =

µmax(T l · · ·T 1|W−1(λ̄)−W−1(λ)|T 1 · · ·T l) ≤ µmax(|W−1(λ̄)−W−1(λ)|) ≤

max
i∈V

µmax(|[∇2fi([y1]i(λ̄), . . . [yp]i(λ̄))]−1 − [∇2fi([y1]i(λ), . . . [yp]i(λ))]−1|) =

max
i∈V
|||[∇2fi([y1]i(λ̄), . . . [yp]i(λ̄))]−1 − [∇2fi([y1]i(λ), . . . [yp]i(λ))]−1|||2 ≤

δ

γ2
max
i∈V
||([y1]i(λ̄), . . . [yp]i(λ̄))− ([y1]i(λ), . . . [yp]i(λ))||2 =

δ

γ2
max
i∈V

√√√√ p∑
k=1

(
[yk]i(λ̄)− [yk]i(λ)

)2
which establishes (A.16).

Consider the term
(
[yk]i(λ̄)− [yk]i(λ)

)
. Using the result (3.15) we can write:

∣∣yk(i)(λ̄)− yk(i)(λ)
∣∣ = |φ(i)

k ([LGλ̄1]i, . . . , [LGλ̄p]i)− φik([LGλ1]i, . . . , [LGλp]i)| ≤

√
p

γ

√√√√ p∑
r=1

(
[LGλ̄r]i − [LGλr]i

)2
=

√
p

γ

√√√√ p∑
r=1

[
LG(λ̄r − λr)

]2
i
≤
√
p

γ

√√√√ p∑
r=1

||LG(λ̄r − λr)||22 =

√
p

γ

√√√√ p∑
r=1

(λ̄r − λr)TL2
G(λ̄r − λr) ≤

√
p

γ

√√√√µ2
n(LG)

p∑
r=1

(λ̄r − λr)T(λ̄r − λr) =

= µn(LG)

√
p

γ
||λ̄− λ||2

where
p∑
r=1

(λ̄r − λr)T(λ̄r − λr) = ||λ̄− λ||22

is used. Hence, (
[yk]i(λ̄)− [yk]i(λ)

)2 ≤ µ2
n(LG)

p

γ2
||λ̄− λ||22

Combining this result with (A.16) gives:

µmax(||[∇2f(y(λ̄))]−1 − [∇2f(y(λ))]−1||) ≤ δ

γ2
µn(LG)

p

γ
||λ̄− λ||2
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and applying it to (A.14) gives:

||H(λ̄)−H(λ)||2 ≤ δp
(
µn(LG)

γ

)3

||λ̄− λ||2 = B||λ̄− λ||2

A.10. Proof of Lemma 3.2.4

Proof Let d∗[k] =

((
d
∗[k]
1

)T
, . . . ,

(
d∗[k]
p

)T)T

be the exact solution to system (3.17). One can see

that d∗[k] is also exact solution of the original system (3.16). Indeed, Md∗[k] = [∇2f(y[k])]y[k]

implies:

[∇2f(y[k])]−1Md∗[k] = y[k] =⇒ M [∇2f(y[k])]−1Md∗[k] = My[k].

Due to the definition of vectors d̃
[k]

1 , . . . , d̃
[k]

p and using H [k] � Γ
µ2(L)M :

||d̃
[k]
− d∗[k]||2

H[k] = (d̃
[k]
− d∗[k])TM [∇2f(y[k])]−1M(d̃

[k]
− d∗[k]) ≤

1

γ
(d̃

[k]
− d∗[k])TM2(d̃

[k]
− d∗[k]) ≤ µn(L)

γ
||d̃

[k]
− d∗[k]||2M ≤ ε20

µn(L)

γ
||d∗[k]||2M ≤

ε20
µn(L)

γ

Γ

µ2(L)
||d∗[k]||2

H[k]

Hence, we have:

||d̃
[k]
− d∗[k]||H[k] ≤ ε0

√
µn(L)

µ2(L)

Γ

γ
||d∗[k]||H[k] = ε||d∗[k]||H[k] (A.17)

This finishes the proof of the second statement of the lemma.

A.11. Proof of Lemma 3.2.5

Proof Using definition of ε[k] for the dual gradient we have:

g(λ[k] + αk
˜
d[k]) = g(λ[k]) +

∫ 1

0

H(λ[k] + tαkd̃
[k]

)αkd̃
[k]
dt =

g(λ[k]) +

∫ 1

0

[
H(λ[k] + tαkd̃

[k]
)−H(λ[k])

]
αkd̃

[k]
dt+ αk

∫ 1

0

H(λ[k])d̃
[k]
dt =

g(λ[k]) +

∫ 1

0

[
H(λ[k] + tαk

˜
d[k])−H(λ[k])

]
αkd̃

[k]
dt+ αk(ε[k] − g(λ[k]))
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Applying g[k+1] = g(λ[k] + αkd̃
[k]

), g[k] = g(λ[k]) and Lemma 3.2.3:

||g[k+1]||2 ≤ (1− αk)||g[k]||2 + αk||ε[k]||2 +
1

2
α2
kB||d̃

[k]
||22 =

(1− αk)||g[k]||2 + αk||ε[k]||2 +
1

2
α2
kB||H

†(λ[k])(g[k] − ε[k])||22 ≤

(1− αk)||g[k]||2 + αk||ε[k]||2 + α2
kB||H

†(λ[k])||22(||g[k]||22 + ||ε[k]||22)

Investigating the explicit form of dual Hessian gives ||H†(λ[k])||2 ≤ Γ
µ2

2(LG)
. Hence,

||g[k+1]||2 ≤ (1− αk)||g[k]||2 + α2
kB

Γ2

µ4
2(LG)

||g[k]||22 + αk||ε[k]||2 + α2
kB

Γ2

µ4
2(LG)

||ε[k]||22.

A.12. Proof of Lemma 3.2.6

Proof Combining ||g[k]||2 ≤ µ4
2(LG)
2BΓ2 with Lemma 3.2.5 implies:

||g[k+1]||2 ≤
(

3

2
− αk

)
||g[k]||2 + αk||ε[k]||2 + α2

kB
Γ2

µ4
2(LG)

||ε[k]||22

Since ||ε[k]||2 ≤ εµn(LG)
µn(LG)

√
Γ
γ ||g

[k]||2, ||g[k]||2 ≤ µ4
2(LG)
2BΓ2 and αk ≤ 1, then

||g[k+1]||2 ≤
(

3

2
− αk

)
||g[k]||2 + αkε

µn(LG)

µn(LG)

√
Γ

γ
||g[k]||2 + α2

kε
2B

Γ3

µ6
2(LG)

µ2
n(LG)

γ
||g[k]||22 ≤(

3

2
− αk

)
||g[k]||2 + ε

µn(LG)

µn(LG)

√
Γ

γ
||g[k]||2 + ε2B

Γ3

µ6
2(LG)

µ2
n(LG)

γ
||g[k]||22 ≤(

3

2
− αk

)
||g[k]||2 +

1

2
ε
µ2

2(LG)γ2

µn(LG)pΓδ

[
µ2(LG)

µn(LG)

√
γ

Γ
+
ε

2

]
=

(
3

2
− αk

)
||g[k]||2 + B̂

where we denote B̂ = 1
2ε

µ2
2(LG)γ2

µn(LG)pΓδ

[
µ2(LG)
µn(LG)

√
γ
Γ + ε

2

]
≤ 2εnγ

2

pΓδ for ε ≤ 4
n3

√
γ
Γ . Since ||g[k+1]||2 ≥

maxr{|[LGy
[k+1]
r ]i|} and ||g[k]||2 ≤

√
nmaxi{ηi}, then

max
r
{|[LGy

[k+1]
r ]i|} ≤

(
3

2
− αk

)√
nmax

i
{ηi}+ 2ε

nγ2

pΓδ

Notice that if mi = 0 the 3
2 − β

mi ≤ 1− σβmi Therefore, for mi = 0 we have

max
r
{|[LGy

[k+1]
r ]i|} ≤ (1− σβmi)

√
nmax

i
{ηi}+ 2ε

nγ2

pΓδ
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In other words, Algorithm 12 returns αk = β0 = 1.

For the case ||g[k]||2 > µ4
2(LG)
2BΓ2 consider ᾱk =

µ4
2(LG)

2BΓ2
√
nmaxi{ηi}

. Because ||g[k]||2 ≤
√
nmaxi{ηi} and

||g[k]||2 > µ4
2(LG)
2BΓ2 then ᾱk < 1. Hence, applying ᾱk with ε ≤ 4

n3

√
γ
Γ for (3.20) gives:

||g[k+1]||2 ≤ (1− ᾱk)||g[k]||2 + ᾱ2
kB

Γ2

µ4
2(LG)

||g[k]||22 + ᾱk||ε[k]||2 + ᾱ2
kB

Γ2

µ4
2(LG)

||ε[k]||22 =

||g[k]||2 + ᾱk||ε[k]||2 + ᾱ2
kB

Γ2

µ4
2(LG)

||ε[k]||22 − ᾱk||g[k]||2
[
1− ᾱkB

Γ2

µ4
2(LG)

||g[k]||2
]
≤

||g[k]||2 + ᾱkε
µn(LG)

µn(LG)

√
Γ

γ
||g[k]||2 + ᾱ2

kε
2B

Γ2

µ4
2(LG)

µ2
n(LG)

µ2
2(LG)

Γ

γ
||g[k]||22−

ᾱk||g[k]||2
[
1− ||g[k]||2

2
√
nmaxi{ηi}

]
≤ ||g[k]||2 + ᾱkε

µn(LG)

µn(LG)

√
Γ

γ
||g[k]||2+

ᾱ2
kε

2B
Γ2

µ4
2(LG)

µ2
n(LG)

µ2
2(LG)

Γ

γ
||g[k]||22 −

1

2
ᾱk||g[k]||2 =

(
1− ᾱk

2

)
||g[k]||2+

ε
µn(LG)

µn(LG)

√
Γ

γ
||g[k]||2

||g[k]||2
2BΓ2

µ2
2(LG)

√
nmaxi{ηi}

+ ε2
µ2
n(LG)

µ2
2(LG)

Γ

γ

1

4 BΓ2

µ4
2(LG)

||g[k]||22
nmaxi{η2

i }
≤

(
1− ᾱk

2

)
||g[k]||2 + B̂ ≤

(
1− ᾱk

2

)
||g[k]||2 + 2ε

nγ2

pδΓ

In other words, we establishes:

||g[k+1]||2 ≤ (1− σᾱk)||g[k]||2 + 2ε
nγ2

pδΓ

Applying again ||g[k+1]||2 ≥ maxr{|[LGy
[k+1]
r ]i|} and ||g[k]||2 ≤

√
nmaxi{ηi} gives:

max
r
{|[LGy

[k+1]
r ]i|} ≤ (1− σᾱk)

√
nmax

i
{ηi}+ 2ε

nγ2

pΓδ

Therefore, Algorithm 12 returns αk ≥ βᾱk = β
µ4

2(LG)
2BΓ2 maxi{ηi} .

A.13. Proof of Theorem 3.2.7

Proof We will proof the above theorem by handling each of the cases separately. We start by

considering the case when ||g[k]||2 > µ4
2(LG)
2BΓ2 . Then, according to Lemma 3.2.6: αk ≥ β µ4

2(LG)
2BΓ2 maxi{ηi}
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and Equation (3.20) we have:

||g[k+1]||2 ≤ (1− 1

2
βᾱk)||g[k]||2 + 2ε

nγ2

pδΓ

Choosing ε ≤ β
8

γ3

Γ2pδ
µ4

2(LG)
µ3
n(LG) implies 2εnγ

2

pδΓ ≤
1
4βᾱk||g

[k]||2 and

||g[k+1]||2 − ||g[k]||2 ≤ −
1

4
βᾱk||g[k]||2 ≤ −

1

4
β

||g[k]||2
2 BΓ2

µ4
2(LG)

√
nmaxi{ηi}

≤

− 1

8
β

1
BΓ2

µ4
2(LG)

√
n

= − β

8
√
npδ

γ3

Γ2

µ4
2(LG)

µ3
n(LG)

The the quadratic decrease phase we use the result of Lemma 3.2.6 and induction:

1. For m = 1 applying αk = 1 in Equation (3.20):

||g[k+1]||2 ≤
BΓ2

µ4
2(LG)

||g[k]||22 + B̂ ≤ 1

4 BΓ2

µ4
2(LG)

+ B̂

This result validates the claim for m = 1.

2. Assume (3.21) is correct for some m > 0.

3. Using αk+m+1 = 1 in Equation (3.20) and denoting u = 22m gives :

BΓ2

µ4
2(LG)

||g[k+m+1]||2 ≤
[
BΓ2

µ4
2(LG)

||g[k+m]||2
]2

+
BΓ2

µ4
2(LG)

B̂ ≤[
1

u
+ B̂

BΓ2

µ4
2(LG)

+ Λ̃
1
2u− 1

u

]2

+
BΓ2

µ4
2(LG)

B̂ =

1

u2
+

BΓ2

µ4
2(LG)

B̂ + Λ̃
1
2u

2 − 1

u2
− Λ̃

1
2u

2 − 1

u2
+ Λ̃

u− 2

u2
+ B̂

2BΓ2

µ4
2(LG)

1

u
+

(
BΓ2

µ4
2(LG)

)2

B̂2 + 2B̂Λ̃
1
BΓ2

µ4
2(LG)

(u− 2)

u
+ Λ̃2 1(

BΓ2

µ4
2(LG)

)2

(u− 2)2

4u2


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Since B̂ + BΓ2

µ4
2(LG)

B̂2 = Λ̃

4 BΓ2

µ4
2(LG)

, then

BΓ2

µ4
2(LG)

||g[k+m+1]||2 ≤

1

u2
+

BΓ2

µ4
2(LG)

B̂ + Λ̃
1
2u

2 − 1

u2
− Λ̃

1
2u

2 − 1

u2
+ Λ̃

u− 2

u2
+ B̂

2BΓ2

µ4
2(LG)

1

u
+

(
BΓ2

µ4
2(LG)

)2

Λ̃
1

4
(

BΓ2

µ4
2(LG)

)2 −
B̂
BΓ2

µ4
2(LG)

+
2B̂Λ̃
BΓ2

µ4
2(LG)

(
1

2
− 1

u

)
+

Λ̃2(
BΓ2

µ4
2(LG)

)2

(u− 2)2

u2

 =

1

u2
+

BΓ2

µ4
2(LG)

B̂ + Λ̃
(u2 − 2)

2u2
+

Λ̃

u2

[
−1

2
u2 + u− 1

]
+

Λ̃

4
+ B̂

BΓ2

µ4
2(LG)

2

u
+

B̂Λ̃
BΓ2

µ4
2(LG)

[
1− 2

u

]
+ Λ̃2

(
u− 2

2u

)2

=
1

u2
+

BΓ2

µ4
2(LG)

B̂ + Λ̃
(u2 − 2)

2u2
−

Λ̃

u2

(u
2
− 1
)2

+ Λ̃2

(
1

2
− 1

u

)2

+ B̂
BΓ2

µ4
2(LG)

[
−1 +

2

u
+ Λ̃− 2

u
Λ̃

]
=

1

u2
+

BΓ2

µ4
2(LG)

B̂ + Λ̃
(u2 − 2)

2u2
−
(

1

2
− 1

u

)2 (
Λ̃− Λ̃2

)
− B̂ BΓ2

µ4
2(LG)

(1− Λ̃)

(
1− 2

u

)
≤

1

u2
+

BΓ2

µ4
2(LG)

B̂ + Λ̃
(u2 − 2)

2u2
=

1

22m+1 + B̂
BΓ2

µ4
2(LG)

+ Λ̃

[
22m+1−1 − 1

22m+1

]

The last step follows due to u > 2 and Λ̂ < 1 (choosing ε small enough).

Hence, claim (3.21) is correct.

A.14. Proof of Lemma 3.2.9

Proof Using finite difference formula (3.23) the rth component of Hessian-vector product∇2fi(Yi)Yi

is given as:

[∇2fi(Yi)Yi]r ≈
∂fi
∂[yr]i

((1 + t)Yi)− ∂fi
∂[yr]i

((1− t)Yi)

2t

The total error of the this approximation consists of rounding truncation parts. Let B(Yi, t) is the

ball in Rp centered at Yi with radius t and let A = supx∈B(Yi,t)

∣∣∣ ∂fi
∂[yr]i

∣∣∣, then the rounding error

can be bounded as follows:∣∣∣∣∣∣
∂̃fi
∂[yr]i

((1 + t)Yi)− ∂̃fi
∂[yr]i

((1− t)Yi)

2t
−

∂fi
∂[yr]i

((1 + t)Yi)− ∂fi
∂[yr]i

((1− t)Yi)

2t

∣∣∣∣∣∣
≤ Aεmachine

t
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For the truncation error, using B = supx∈B(Yi,t)

∣∣∣∑p
h=1

∑p
q=1

∑p
s=1

∂3fi(x)
∂xh∂xq∂xs

∣∣∣ in the Taylor expan-

sion: ∣∣∣∣∣∣∣∣∣
∂fi
∂[yr]i

((1 + t)Yi)− ∂fi
∂[yr]i

((1− t)Yi)

2t
− [yr]i

∂fi
∂[yr]i

(Yi)︸ ︷︷ ︸
[∇2fi(Yi)Yi]r

∣∣∣∣∣∣∣∣∣ ≤
t2B

6

Hence, the total error can be bounded as

Errortotal ≤
Aεmachine

t
+
t2B

6
(A.18)

which is minimized at t∗ = 3

√
3Aεmachine

B ≈ O( 3
√
εmachine)

A.15. Proof of Lemma 3.2.10

Proof Using definition of ε
[t]
i for the gradient of function f̂i(·) we have:

hi(Y [t]
i + αit∆̃Yi

[t]
) = hi(Y [t]

i ) +

∫ 1

0

Hi(Y [t]
i + sαit∆̃Yi

[t]
)αit∆̃Yi

[t]
ds =

h
[t]
i +

∫ 1

0

[
Hi(Y [t]

i + sαit∆̃Yi

[t]
)−Hi(Y [t]

i )

]
αit∆̃Yi

[t]
ds+ αit

∫ 1

0

Hi(Y [t]
i )∆̃Yi

[t]
ds =

h
[t]
i +

∫ 1

0

[
Hi(Y [t]

i + sαit∆̃Yi

[t]
)−Hi(Y [t]

i )

]
αit∆̃Yi

[t]
ds+ αit(ε

[t]
i − h

[t]
i )

Applying h
[t+1]
i = hi(Y [t]

i + αit∆̃Yi

[t]
), h

[t]
i = h(Y [t]

i ) and guarantees (3.29):

||h[t+1]
i ||2 ≤ (1− αit)||h[t]

i ||2 + αit||ε[t]
i ||2 +

1

2
α2
itδ||∆̃Yi

[t]
||22 =

(1− αit)||h[t]
i ||2 + αit||ε[t]

i ||2 +
1

2
α2
itδ||H

†
i (Y

[t]
i )(h

[t]
i − ε

[t]
i )||22 ≤

(1− αit)||h[t]
i ||2 + αit||ε[t]

i ||2 + α2
itδ||H

†
i (Y

[t]
i )||22(||h[t]

i ||
2
2 + ||ε[t]

i ||
2
2)

Investigating the explicit form of dual Hessian gives ||H†i (Y
[t]
i )||2 ≤ 1

γ . Hence,

||h[t+1]
i ||2 ≤ (1− αit)||h[t]

i ||2 + α2
itδ

1

γ2
||h[t]

i ||
2
2 + αit||ε[t]

i ||2 + α2
itδ

1

γ2
||ε[t]
i ||

2
2
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A.16. Proof of Lemma 3.2.11

Proof Combining ||h[t]
i ||2 ≤

γ2

2δ with Lemma 3.2.10 implies:

||h[t+1]
i ||2 ≤

(
3

2
− αit

)
||h[t]

i ||2 + αit||ε[t]
i ||2 + α2

it

δ

γ2
||ε[t]
i ||

2
2

Since ||ε[t]
i ||2 ≤ ζ

√
Γ
γ ||h

[t]
i ||2, ||h[t]

i ||2 ≤
γ2

2δ and αit ≤ 1, then

||h[t+1]
i ||2 ≤

(
3

2
− αit

)
||h[t]

i ||2 + αitζ

√
Γ

γ
||h[t]

i ||2 + α2
itζ

2 δ

γ2

Γ

γ
||h[t]

i ||
2
2 ≤(

3

2
− αit

)
||h[t]

i ||2 + ζ

√
Γ

γ
||h[t]

i ||2 + ζ2 δΓ

γ3
||h[t]

i ||
2
2 ≤(

3

2
− αit

)
||h[t]

i ||2 + ζ

√
Γ

γ

γ2

2δ
+ ζ2 δΓ

γ3

γ4

4δ2
=

(
3

2
− αit

)
||h[t]

i ||2 + B̃i

where we denote B̃i = ζ
√

Γ
γ
γ2

2δ

[
1 + ζ

2

√
γ
Γ

]
and for ζ ≤ 2

√
γ
Γ it implies that B̃i ≤ ζ

√
Γ
γ
γ2

δ . Hence,

||h[t+1]
i ||2 ≤

(
3

2
− αit

)
||h[t]

i ||2 + ζ

√
Γ

γ

γ2

δ

Notice that if mi = 0 the 3
2 − β

mi ≤ 1− σβmi Therefore, for mi = 0 we have

||h[t+1]
i ||2 ≤ (1− σβmi) ||h[t]

i ||2 + ζ

√
Γ

γ

γ2

δ

In other words, Algorithm 17 returns αit = β0 = 1.

For the case ||h[t]
i ||2 > γ2

2δ consider ᾱit = γ2

2δ||h[t]
i ||2

. Because ||h[t]
i ||2 > γ2

2δ then ᾱit < 1. Hence,
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applying ᾱit with ζ ≤ 2
√

γ
Γ for (3.2.10) gives:

||h[t+1]
i ||2 ≤ (1− ᾱit)||h[t]

i ||2 + ᾱ2
it

δ

γ2
||h[t]

i ||
2
2 + ᾱit||ε[t]

i ||2 + ᾱ2
it

δ

γ2
||ε[t]
i ||

2
2 =

||h[t]
i ||2 + ᾱit||ε[t]

i ||2 + ᾱ2
it

δ

γ2
||ε[t]
i ||

2
2 − ᾱit||h

[t]
i ||2

[
1− ᾱit

δ

γ2
||h[t]

i ||2
]
≤

||h[t]
i ||2 + ᾱitζ

√
Γ

γ
||h[t]

i ||2 + ᾱ2
itζ

2 δΓ

γ3
||h[t]

i ||
2
2 −

1

2
ᾱit||h[t]

i ||2 ≤

(
1− ᾱit

2

)
||h[t]

i ||2 +
γ2

2δ||h[t]
i ||2

ζ

√
Γ

γ
||h[t]

i ||2 +
γ4

4δ2||h[t]
i ||22

δ

γ2
ζ2 Γ

γ
||h[t]

i ||
2
2 ≤

(
1− ᾱit

2

)
||h[t]

i ||2 + B̃i ≤
(

1− ᾱit
2

)
||h[t]

i ||2 + ζ

√
Γ

γ

γ2

δ

In other words, we establishes:

||h[t+1]
i ||2 ≤ (1− σᾱit)||h[t]

i ||2 + ζ

√
Γ

γ

γ2

δ

Therefore, Algorithm 17 returns αit ≥ βᾱit = β γ2

2δ||h[t]
i ||2

.

A.17. Proof of Theorem 3.2.12

Proof We will proof the above theorem by handling each of the cases separately. We start by

considering the case when ||h[t]
i ||2 >

γ2

2δ . Then, according to Lemma 3.2.10: αit ≥ β γ2

2δ||h[t]
i ||2

and

Equation (3.34) we have:

||h[t+1]
i ||2 ≤

(
1− 1

2
βᾱit

)
||h[t]

i ||2 + ζ

√
Γ

γ

γ2

δ

Choosing ζ ≤ β
8

√
γ
Γ implies ζ

√
Γ
γ
γ2

δ ≤
1
4βᾱit||h

[t]
i ||2 and

||h[t+1]
i ||2 − ||h[t]

i ||2 ≤ −
1

4
βᾱit||h[t]

i ||2 ≤ −
1

4
β
γ2||h[t]

i ||2
2δ||h[t]

i ||2
=

− βγ2

8δ

The the quadratic decrease phase we use the result of Lemma 3.2.11 and induction:
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1. For m = 1 applying αit = 1 in Equation (3.34):

||h[t+1]
i ||2 ≤

δ

γ2
||h[t]

i ||
2
2 + B̃i ≤

1

4 δ
γ2

+ B̃i

This result validates the claim for m = 1.

2. Assume (3.35) is correct for some m > 0.

3. Using αi(t+m+1) = 1 in Equation (3.34) and denoting u = 22m gives :

δ

γ2
||h[t+m+1]

i ||2 ≤
[
δ

γ2
||h[t+m]

i ||2
]2

+
δ

γ2
B̃i ≤[

1

u
+ B̃i

δ

γ2
+ Λ̂i

1
2u− 1

u

]2

+
δ

γ2
B̃i =

1

u2
+

δ

γ2
B̃i + Λ̂i

1
2u

2 − 1

u2
− Λ̂i

1
2u

2 − 1

u2
+ Λ̂i

u− 2

u2
+ B̃i

2δ

γ2

1

u
+

(
δ

γ2

)2

B̃2
i + 2B̃iΛ̂i

1
δ
γ2

(u− 2)

u
+ Λ̂2

i

1(
δ
γ2

)2

(u− 2)2

4u2


Since B̃i + δ

γ2 B̃
2
i = Λ̂i

4 δ
γ2

, then

δ

γ2
||h[t+m+1]

i ||2 ≤

1

u2
+

δ

γ2
B̃i + Λ̂i

1
2u

2 − 1

u2
− Λ̂i

1
2u

2 − 1

u2
+ Λ̂i

u− 2

u2
+ B̃i

2δ

γ2

1

u
+

(
δ

γ2

)2

Λ̂i
1

4
(
δ
γ2

)2 −
B̃i
δ
γ2

+
2B̃iΛ̂i

δ
γ2

(
1

2
− 1

u

)
+

Λ̂2
i(

δ
γ2

)2

(u− 2)2

u2

 =

1

u2
+

δ

γ2
B̃i + Λ̂i

(u2 − 2)

2u2
+

Λ̂i
u2

[
−1

2
u2 + u− 1

]
+

Λ̂i
4

+ B̃i
δ

γ2

2

u
+

B̃iΛ̂i
δ

γ2

[
1− 2

u

]
+ Λ̂2

i

(
u− 2

2u

)2

=
1

u2
+

δ

γ2
B̃i + Λ̂i

(u2 − 2)

2u2
−

Λ̂i
u2

(u
2
− 1
)2

+ Λ̂2
i

(
1

2
− 1

u

)2

+ B̃i
δ

γ2

[
−1 +

2

u
+ Λ̂i −

2

u
Λ̂i

]
=

1

u2
+

δ

γ2
B̃i + Λ̂i

(u2 − 2)

2u2
−
(

1

2
− 1

u

)2 (
Λ̂i − Λ̂2

i

)
− B̃i

δ

γ2
(1− Λ̂i)

(
1− 2

u

)
≤

1

u2
+

δ

γ2
B̃i + Λ̂i

(u2 − 2)

2u2
=

1

22m+1 + B̃i
δ

γ2
+ Λ̂i

[
22m+1−1 − 1

22m+1

]
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The last step follows due to u > 2 and Λ̂i < 1 (choosing ζ small enough).

Hence, claim (3.35) is correct.

A.18. Proof Of Lemma 3.2.14

Proof Following exactly the same strategy as in Byrd et al. (2016) instead of studying the prop-

erties of approximated hessian inverse H̃
[r]

i we will study the corresponding properties of hessian

approximation B̃
[r]

i given by BFGS formula:

B̃
[r]

i = B̃
[r],0

i =
z[r]Tz[r]

z[r]Ts[r]
I,

B̃
[r],k+1

i = B̃
[r],k

i − B̃
[r],k

i s[jk]s[jk]TB̃
[r],k

i

s[jk]TB̃
[r],k

i s[jk]
+
z[jk]z[jk]T

z[jk]Ts[jk]

for k = 0, . . . , m̃− 1 and jk = t− m̃+ 1 + k

B̃
[r+1],0

i = B̃
[r],m̃

i = B̃
[r+1]

i

For B̃
[r],0

i we have:

B̃
[r],0

i =
z[r]Tz[r]

z[r]Ts[r]
I =

s[r]T∇̃2f̃i(Y
[r]

i )2s[r]

s[r]T∇̃2f̃i(Y
[r]

i )s[r]
I =

(∇̃2f̃i(Y
[r]

i ))
1
2 s[r])T∇̃2f̃i(Y

[r]

i )(∇̃2f̃i(Y
[r]

i ))
1
2 s[r])

(∇̃2f̃i(Y
[r]

i ))
1
2 s[r])T(∇̃2f̃i(Y

[r]

i ))
1
2 s[r])

I

Hence, using γ
N I � ∇̃

2f̃i(Y
[r]

i ) � Γ
N I gives:

γ

N
I ≤ z

[r]Tz[r]

z[r]Ts[r]
I ≤ Γ

N
I (A.19)

Applying the above result for the trace of B̃
[r+1],0

i gives:

Tr(B̃
[r+1],0

i ) = Tr(B̃
[r],0

i ) +

m̃∑
k=1

||z[jk]||22
z[jk]Ts[jk]

−
m̃∑
i=1

||B̃
[r],k

i s[jk]||22
s[jk]TB̃

[r],k

i s[jk]
≤

Tr(B̃
[r],0

i ) +
Γ

N
m̃ ≤ Γ

N
(m̃+ p)

which immediately establishes the upperbound for largest eigenvalue of matrix B̃
[r+1],0

i . Therefore,

Ht � ν1I
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with ν1 = N
Γ(m̃+p) .

To establish the lower bound we study BFGS formula for hessian inverse, given in Algorithm 19:

H̃
[r]

i = H̃
[r],0

i =
z[r]Ts[r]

z[r]Tz[r]
I,

H̃
[r],k+1

i =

[
I − s

[jk]z[jk]T

z[jk]Ts[jk]

]
H̃

[r],k

i

[
I − z

[jk]s[jk]T

z[jk]Ts[jk]

]
+
s[jk]s[jk]T

z[jk]Ts[jk]

for k = 0, . . . , m̃− 1 and jk = r − m̃+ 1 + k

H̃
[r+1],0

i = H̃
[r],m̃

i = H̃
[r+1]

i

Using γ
N I � ∇̃

2f̃i(Y
[r]

i ) � Γ
N I, Tr(CD) = Tr(DTCT) and cyclic property of the trace:

Tr(H̃
[r],0

i ) =
s[r]T∇̃2f̃i(Y

[r]

i )s[r]

s[r]T∇̃2f̃i(Y
[r]

i )2s[r]
≤ N

γ
p

Tr(H̃
[r],k+1

i ) =

Tr(H̃
[r],k

i ) + Tr

(
s[jk]s[jk]T

zTjisji

)
− 2 Tr

(
H̃

[r],k

i )
z[jk]s[jk]T

z[jk]Ts[jk]

)
+ Tr

(
s[jk]z[jk]T

z[jk]Ts[jk]
H̃

[r],k

i )
z[jk]s[jk]T

z[jk]Ts[jk]

)
=

Tr(H̃
[r],k

i ) + Tr

(
s[jk]s[jk]T

z[jk]Ts[jk]

)
− 2 Tr

(
H̃

[r],k

i )
z[jk]s[jk]T

z[jk]Ts[jk]

)
+

||s[jk]||22
(z[jk]Ts[jk])2

z[jk]TH̃
[r],k

i z[jk] ≤

Tr(H̃
[r],k

i ) +
||s[jk]||22
z[jk]Ts[jk]

− 2 Tr

(
H̃

[r],k

i )
z[jk]s[jk]T

z[jk]Ts[jk]

)
+
N

γ
Tr(H̃

[r],k

i )
z[jk]Tz[jk]

s[jk]T∇̃2f̃i(Y
[r]

i )s[jk]

Tr(H̃
[r],k

i ) +
N

γ
− 2 Tr

(
H̃

[r],k

i )
z[jk]s[jk]T

z[jk]Ts[jk]

)
+

Γ

γ
Tr(H̃

[r],k

i )

Notice,

Tr

(
H̃

[r],k

i )
z[jk]s[jk]T

z[jk]Ts[jk]

)
=

1

s[jk]T∇̃2f̃i(Y
[r]

i )s[jk]
Tr

(
H̃

[r],k

i )∇̃2f̃i(Y
[r]

i )s[jk]s[jk]T

)
=
s[jk]TH̃

[r],k

i ∇̃2f̃i(Y
[r]

i )s[jk]

s[jk]T∇̃2f̃i(Y
[r]

i )s[jk]
≥ 0

The last inequality follows from the fact that H̃
[r],k

i and ∇̃2f̃i(Y
[r]

i ) are positive semi definite and,

hence, H̃
[r],k

i ∇̃2f̃i(Y
[r]

i ) is positive semi definite. Indeed,

H̃
[r],k

i ∇̃2f̃i(Y
[r]

i ) = H̃
[r],k

i ∇̃2f̃i(Y
[r]

i )
1
2 ∇̃2f̃i(Y

[r]

i )
1
2 =

∇̃2f̃i(Y
[r]

i )−
1
2

[
∇̃2f̃i(Y

[r]

i )
1
2 H̃

[r],k

i ∇̃2f̃i(Y
[r]

i )
1
2

]
∇̃2f̃i(Y

[r]

i )
1
2
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Hence, the spectrum of matrices H̃
[r],k

i ∇̃2f̃i(Y
[r]

i ) and ∇̃2f̃i(Y
[r]

i )
1
2 H̃

[r],k

i ∇̃2f̃i(Y
[r]

i )
1
2 are the same,

and the latter matrix is positive semi definite. Applying this result gives:

Tr(H̃
[r],0

i ) ≤ N

γ
p

Tr(H̃
[r],k+1

i ) ≤ Tr(H̃
[r],k

i )

[
1 +

Γ

γ

]
+
N

γ

The above recursive inequality gives:

Tr(H̃
[r],m̃

i ) ≤ Tr(H̃
[r],0

i )

[
1 +

Γ

γ

]m̃
+
N

γ

m̃−1∑
q=0

[
1 +

Γ

γ

]q
≤

N

[(
p

γ
+

1

Γ

)[
1 +

Γ

γ

]m̃
− 1

Γ

]

Hence, using that H̃
[r],m̃

i = H̃
[r+1]

i

H̃
[r+1]

i � ν2I

with ν2 = N

[(
p
γ + 1

Γ

) [
1 + Γ

γ

]m̃
− 1

Γ

]
.

A.19. Proof of Theorem 3.2.15

Proof To simplify the description we drop index i and denote Y [t]
i = Y [t], Y [r]

i = Y [r]
, Y∗i = Y∗

then:

f̃i(Y [t+1]) = f̃i(Y [t] − βtH̃
[r+1]

i ∇̃f̃i(Y [t])) ≤

f̃i(Y [t])− βt∇f̃i(Y [t])TH̃
[r+1]

i ∇̃f̃i(Y [t]) +
Γ

2N
(βtν2)2||∇̃f̃i(Y [t])||22

Taking the expectation ESg,t from both sides and using Lemma 3.2.14:

ESg,t [f̃i(Y
[t+1])] ≤ f̃i(Y [t])− βt∇f̃i(Y [t])TH̃

[r+1]

i ESg,t [∇̃f̃i(Y
[t])] +

Γ

2N
(βtν2)2ESg,t

[
||∇̃f̃i(Y [t])||22

]
=

f̃i(Y [t])− βt∇f̃i(Y [t])TH̃
[r+1]

i ∇f̃i(Y [t]) +
Γ

2N
(βtν2)2ESg,t

[
||∇̃f̃i(Y [t])||22

]
≤

f̃i(Y [t])− βtν1||∇f̃i(Y [t])||22 +
Γ

2N
(βtν2)2ESg,t

[
||∇̃f̃i(Y [t])||22

]
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To proceed, we need to bound ESg,t
[
||∇̃f̃i(Y [t])||22

]
and ||∇f̃r(Y [t])||22. Let us denote ˜̀

ij(Y [t]) =

`ij(Y [t])+
∑p
j=1[Y [t]]j [Lλj ]i then using Cauchy-Schwarz inequality and PrSg,t [1{j ∈ Sg,t}1{i ∈ Sg,t}] =

bg
N
bg−1
N :

ESg,t
[
||∇̃f̃i(Y [t])||22

]
=

1

|Sg,t|2

 N∑
r=1

N∑
j=1

∇˜̀
ij(Y [t])T∇˜̀

ir(Y [t])ESg,t [1{j ∈ Sg,t}1{i ∈ Sg,t}]

 =

1

b2g

 N∑
j=1

||∇˜̀
ij(Y [t])||22

bg
N

+ 2
bg(bg − 1)

N2

N∑
r 6=j

∇˜̀
rj(Y [t])T∇˜̀

ir(Y [t])

 ≤
1

bgN

 N∑
j=1

||∇˜̀
ij(Y [t])||22 + 2

(bg − 1)

N

N∑
r 6=j

||∇˜̀
rj(Y [t])||2||∇˜̀

ri(Y [t])||2

 ≤
1

bgN

 N∑
j=1

||∇˜̀
ij(Y [t])||2

2

≤ 1

bg

N∑
j=1

||∇l̃ij(Y [t])||22

where |Sg,k| = bg. Due to (3.29), the curvature of function ˜̀
ij satisfies:

γ

N
I � ∇2 ˜̀

ij �
Γ

N
I

and it is easy to establish the following bounds:

||∇˜̀
ij(Y [t])||22 ≥ 2

γ

N
[˜̀ij(Y [t])− ˜̀

ij(Y∗)] (A.20)

||∇˜̀
ij(Y [t])||22 ≤ 2

Γ

N
[l̂rj(Y [t])− ˜̀

ij(Y∗)]

Therefore, we establish the following bound:

ESg,t
[
||∇̃f̃i(Y [t])||22

]
≤ 2Γ

bg

[
f̃i(Y [t])− f̃i(Y∗)

]
(A.21)

The next step is to bound the term ||∇f̃i(Y [t])||22. Because γ
N I � ∇

2f̃i � Γ
N I, hence similarly as in

(A.20):

||∇f̃i(Y [t])||22 ≥ 2
γ

N

[
f̃i(Y [t])− f̃i(Y∗)

]
(A.22)

Therefore, combining results (A.21) and (A.22):

ESg,t [f̃i(Y
[t+1])− f̃i(Y∗)] ≤

[
f̃i(Y [t])− f̃i(Y∗)

] [
1 +

(ν2Γ)2

bgN
β2
t − 2

γν1

N
βt

]
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Taking expectation ESg,t−1 from both sides gives:

ESg,t [f̃i(Y
[t+1])− f̃i(Y∗)] ≤

[
(ν2Γ)2

bgN
β2
t − 2

γν1

N
βt + 1

]
ESg,t−1

[
f̃i(Y [t])− f̃i(Y∗)

]

Therefore, choosing step size βt =
γν1bg
(ν2Γ)2 immediately gives:

ESg,t [f̃i(Y
[t+1])− f̃i(Y∗)] ≤

[
1−

(
γν1

Γν2

)2
bg
N

]t+1 [
f̃i(Y [0])− f̃i(Y∗)

]

achieving linear convergence rate.

A.20. Experiments for Network Flow Problem

In this paragraph we present increased versions of Figures 9 - 13:
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Figure 27: Experimental Results for Small Random Graph
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Figure 28: Experimental Results for Large Random Graph
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Figure 29: Experimental Results for Bar-Bell Graph
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Figure 30: Experimental Results for Bar-Star Graph
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Figure 31: Experimental results: convergence, communication overhead, accuracy effect
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A.21. Experiment for Empirical Risk Minimization Problem

In this paragraph we present increased versions of Figures 20 - 26:

Figure 32: Experimental Results on Linear Regression with a synthetic data set.
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Figure 33: Experimental Results on Linear Regression with a real data set.
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Figure 34: Experimental Results on Logistic Regression with L2 regularization.
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Figure 35: Experimental Results on Logistic Regression with L1 regularization.
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Figure 36: Experimental Results on Reinforcement Learning.
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Figure 37: Experimental Results on fMRI images.
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Figure 38: Experimental results: communication overhead, CPU running times

A.22. Computational Graph For Linear Regression

In this paragraph we consider linear regression loss function fi(x) =
(
a− ΦT(b)x

)2
+ µi||x||22 and

construct computational graph Ggi for directional derivative gi(x) = ∇Tfi(x)× Yi. Our construction

139



is based on closed form expression for gi(x):

gi(x) = 2

p∑
j=1

(
(a− ΦT(b)x[Φ(b)]j) + µi[x]j

)
[yj ]i

The input nodes v1, . . . , vp correspond to components [x]1, . . . , [x]p and the rest nodes are arranged

according to Definition. We start with computational binary tree for scalar product ΦT(b)x =∑p
j=1[Φ(b)]j [x]j :

Figure 39: Computational binary tree for ΦT(b)x

Notice, that for any r, s ∈ Rp one can construct similar computational tree for computing scalar

product rTs. Moreover, the size of such tree is bounded byO(p). Using such trees, the computational

graph of directional derivative gi(x) is given as:

Figure 40: Computational graph Ggi for gi(x). Input nodes are marked by green. Last node is

marked by red.
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Easy to see that the size of graph Ggi is bounded by O(p).

A.23. Computational Graph For Logistic Regression

In this paragraph we consider linear regression loss function

fi(x) =

[
a log

1

1 + e−ΦT(b)x
+ (1− a) log

(
1− 1

1 + e−ΦT(b)x

)]
+ µi||x||22

and construct computational graph Ggi for directional derivative gi(x) = ∇Tfi(x)× Yi. Our con-

struction is based on closed form expression for gi(x):

gi(x) =

p∑
j=1

(
2µi[x]j + (a− 1)[Φ(b)]j +

[Φ(b)]j

1 + e−ΦT(b)x

)
[yj ]i

The input nodes v1, . . . , vp correspond to components [x]1, . . . , [x]p and the rest nodes are arranged

according to Definition.

Figure 41: Computational graph Ggi for gi(x). Input nodes are marked by green. Last node is

marked by red.

Similarly to linear regression case, the size of graph Ggi is bounded by O(p).
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