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Tree Stochastic Processes

Abstract
Stochastic processes play a vital role in understanding the development of many natural and computational
systems over time. In this thesis, we will study two settings where stochastic processes on trees play a
significant role. The first setting is in the reconstruction of evolutionary trees from biological sequence data.
Most previous work done in this area has assumed that different positions in a sequence evolve independently.
This independence however is a strong assumption that has been shown to possibly cause inaccuracies in the
reconstructed trees \cite{schoniger1994stochastic,tillier1995neighbor}. In our work, we provide a first step
toward realizing the effects of dependency in such situations by creating a model in which two positions may
evolve dependently. For two characters with transition matrices $M_1$ and $M_2$, their joint transition
matrix is the tensor product $M_1 \otimes M_2$. Our dependence model modifies the joint transition
matrix by adding an `error matrix,' a matrix with rows summing to 0. We show when such dependence can be
detected.

The second setting concerns computing in the presence of faults. In pushing the limits of computing hardware,
there is tradeoff between the reliability of components and their cost (e.g. \cite{kadric2014energy}). We first
examine a method of identifying faulty gates in a read-once formula when our access is limited to providing an
input and reading its output. We show that determining \emph{whether} a fault exists can always be done,
and that locating these faults can be done efficiently as long as the read-once formula satisfies a certain balance
condition. Finally for a fixed topology, we provide a dynamic program which allows us to optimize how to
allocate resources to individual gates so as to optimize the reliability of the whole system under a known input
product distribution.
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ABSTRACT

STOCHASTIC TREE PROCESSES

Kevin Tian

Sampath Kannan

Stochastic processes play a vital role in understanding the development of many natural

and computational systems over time. In this thesis, we will study two settings where

stochastic processes on trees play a significant role. The first setting is in the reconstruction

of evolutionary trees from biological sequence data. Most previous work done in this area

has assumed that different positions in a sequence evolve independently. This independence

however is a strong assumption that has been shown to possibly cause inaccuracies in the

reconstructed trees [76, 83]. In our work, we provide a first step toward realizing the effects

of dependency in such situations by creating a model in which two positions may evolve

dependently. For two characters with transition matrices M1 and M2, their joint transition

matrix is the tensor product M1⊗M2. Our dependence model modifies the joint transition

matrix by adding an ‘error matrix,’ a matrix with rows summing to 0. We show when such

dependence can be detected.

The second setting concerns computing in the presence of faults. In pushing the limits of

computing hardware, there is tradeoff between the reliability of components and their cost

(e.g. [46]). We first examine a method of identifying faulty gates in a read-once formula

when our access is limited to providing an input and reading its output. We show that

determining whether a fault exists can always be done, and that locating these faults can

be done efficiently as long as the read-once formula satisfies a certain balance condition.

Finally for a fixed topology, we provide a dynamic program which allows us to optimize

how to allocate resources to individual gates so as to optimize the reliability of the whole

system under a known input product distribution.
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Chapter 1

Introduction

The study of natural and computational processes requires us to understand the influence

of random events that are often a part of them. In biology, a central question is inferring

the details of the evolutionary process that has given rise to all the extant species. The

biomolecular approach to the study of evolution is to analyze the variation of biological se-

quences over time and across species. For example, genes are encoded in DNA by sequences

of nucleotides, and over time, mutations affect these sequences by substituting certain nu-

cleotides for others, or adding or deleting nucleotides, or more complex operations. This

is modeled by having a random variable associated with each index of the sequence, with

states corresponding to nucleotides. We can then model the evolution of these random

variables over time.

In computing, a question of renewed interest is how reliable circuits can be built from

unreliable components. Applications for modern computing devices often push on hardware

boundaries, whether due to power constraints for devices operating in hostile environments,

or continued miniaturization even in mainstream computers. These applications are some-

times forced to use components which function in the given environments, but give up

reliability in exchange. This unreliability manifests as errors that occur during computa-

tion, and errors in even just parts of a circuit can cause the output of the entire circuit to

be wrong. We model this process by representing the values transmitted by wires between

components as random variables. These variables capture the random faults occurring in

faulty components, and we study the interactions of the variables and the faults over the
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course of a computation. This process as well as the biomolecular process for evolution are

examples of stochastic processes.

A stochastic process is a set of time-dependent random variables. In evolution, the

sequence is the set of random variables, and in computing with unreliable components,

the values transmitted along wires which are subjected to random failures at gates are the

random variables. Stochastic processes are studied in a variety of contexts, such as machine

learning and artificial intelligence. They are also studied outside computer science, for

example physics, where stochastic processes model thermodynamic and dynamical systems

[44, 70], and finance, where stochastic processes are used as predictors for markets.

One classical example of a stochastic process is a branching process, which models a

population where each individual in a generation randomly yields a number of offspring for

the next generation. The number of offspring generated by each individual is represented

by a random variable. The main question is the probability of extinction – is there a point

in time when the population reaches zero?

A related process is the random walk; a random walk describes the path taken by a

randomly-moving object. The process describes how the initial position x0 of the object is

(randomly) chosen, and then how the object moves, choosing a location xi+1 based on its

previous location xi. A branching process in which individuals are considered to be identical

is a random walk, which tracks the movement of the size of the population over successive

generations. There is a significant body of work studying properties of random walks, such

as the average time taken to reach a specific state: the minimum i for which xi is a specific

state s (for example, when the population size reaches 0 in a branching process), how often

the walk reaches a certain state: the limit over time of the fraction of times i for which xi

is a specific state s, or for finite settings, the time taken to have visited every state at least

once.

A specific case is the random walk on a graph. At each time step, we are at some vertex

v of the graph, and we choose one of the neighbors of v uniformly at random, and move to

that vertex. This is also an example of a finite Markov chain, a stochastic process which

transitions between a set of states. The distinguishing feature of a Markov chain is that

the distribution of the next state, xi+1, depends only on the current state xi and not any
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preceding states xi−1, xi−2, . . . , x0. Observe in the random walk on a graph that this is true:

the next vertex we choose depends only on the current vertex v, in that it is a neighbor of

v, but the history of where the random walk has already been does not factor in at all. This

property is called the Markov property, or sometimes ‘memorylessness’ since once we reach

a state we can forget the previous states. Markov chains in the general literature can be

continuous-time or discrete-time. In this dissertation, we will focus only on discrete-time

Markov chains. Evolution in particular is generally viewed as a continuous-time process,

but we will examine the process from an angle that makes it discrete-time.

A Markov chain can be viewed as a stochastic process with the Markov property on a

path, where each vertex represents a discrete point in time. The vertices in one direction

are the points in time occurring earlier, and the vertices in the other direction occur later.

We can generalize from paths to trees, where multiple distinct paths from the past can

contribute to a current state, and where a current state influences multiple distinct future

paths. These represent two operations occurring on trees: the merging of past paths, and

branching into future paths. Abstractly, the Markov property now says that for any vertex

v, its removal separates the tree into components whose values are independent given the

value of v (observe how this lines up with the path version when the tree does not branch

or merge). This combines the Markov chain intuition of the present state capturing all the

relevant information about the future evolution of the system, along with simply enforcing

that the distinct past processes or distinct future processes are actually distinct.

Evolution is an example of a branching tree stochastic process. An ancestor species

yields multiple modern species. In addition, the model of evolution we use will exhibit

memorylessness – the sequence at a node is generated from its immediate parent. Its ances-

tors further up the tree do not affect its sequence, except for how they have already affected

the sequence of the parent. We will consider another stochastic process, of computation in

the presence of faulty components on read-once formulas. Read-once formulas are formulas

for which each input appears only once, leading to a tree-like structure for the formula.

This is an example of a tree stochastic process with merging paths. In a read-once formula,

we see another manifestation of memorylessness: the output of a node is the totality of the

relevant information to its parent. How the node came to reach this output is irrelevant to
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the parent.

1.1 Evolutionary Trees

Reconstructing the phylogeny or evolutionary tree of a set of organisms is a very important

problem in bioinformatics ([30], [77]). The general formulation of the problem is the follow-

ing: data corresponding to the species alive today is observed at the leaves of an (unknown)

tree that models the evolutionary history of these species. The goal is to find the best tree

‘fitting the data’ under some specified objective function. Nowadays, the most common

type of data we observe is biomolecular sequences, such as DNA or protein sequences.

Let σi be the sequence obtained from the i-th species. These input sequences are taken

to be aligned, that is if each σi are written down in a table, one in each row, then each

column represents the same location in a sequence. Formally, for all i, i′ and for any position

j, σi[j] and σi′ [j] come from a common process1, where σi[j] represents the j-th symbol

in the i-th sequence σi. The most principled method of finding a phylogeny is to view the

evolution of each position of the aligned sequences as a stochastic process, more specifically,

a tree Markov random field, whose parameters are chosen from a rich family of possible

parameters.

Let T be a rooted tree underlying an evolutionary process. The internal vertices of the

tree represent speciation events, and are points where the process branches into separate

and distinct future paths. A character on such a tree is a stochastic process that takes

on a value at each point of the tree from a set of finitely many states (for example, the

4 nucleotides or 20 amino acids). At the root of T , the value is assumed to be selected

from some initial distribution over the states. Each parent then attempts to pass its state

to its children. However, the state is mutated along each edge with probabilities given by

a Markov transition matrix corresponding to the edge. Every position in a set of aligned

molecular sequences is regarded as a character evolving in this manner, and we observe the

states of the leaves for each character.

1This might sound circular, since alignment seems to require knowledge of the evolutionary process which
we have stated as our goal. However, biologists have implemented this process so successfully that is it a
standard technique now in building phylogenies.
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All commonly-studied families of stochastic models of evolution are tree stochastic pro-

cesses. Among the simplest are two-state symmetric models, called the Cavender-Farris-

Neyman (CFN) ([9], [23], [64]) models, where on any edge e, all characters have a symmetric

2× 2 transition matrix Me. The Jukes-Cantor model is a 4-state model where for any tran-

sition matrix there is a parameter ε that is the probability of any change of state ([45]). The

Kimura model is another 4-state model, where the 4 states are paired (like the base pairs

in DNA), and the probability of change to the paired state is lower than the probability of

change to a state in the other pair ([49]).

In this field, the tree itself is considered to be fixed, but unknown. There are three

main approaches to computational phylogenetics: distance-matrix methods, maximum par-

simony, and maximum likelihood. We will give a brief overview of these methods; for a

more complete discussion, we refer the reader to [32]. Distance-matrix methods, as the

name suggests, are methods that attempt a reconstruction using a matrix of distances be-

tween species, which are often defined as the fraction of mismatches in the aligned sequences.

The general idea of distance-matrix methods is to create clusters of species, which would

ideally correspond to the species in a subtree of the true evolutionary tree. Variations oc-

cur in details like how distances involving clusters are treated. The main such methods

are neighbor-joining, introduced by Saitou and Nei [74], Unweighted Pair Group Method

with Arithmetic Mean (UPGMA) and Weighted Pair Group Method with Arithmetic Mean

(WPGMA), attributed to Sokal and Michener [79], and the Fitch-Margoliash method [33].

The advantage of distance-matrix methods was in the computational efficiency, but they

are not resilient to the sorts of errors which occur in distance measurements.

Authors such as Edwards, Cavalli-Sforza, Camin, and Hendy and Penny considered

maximum parsimony methods [8, 16, 41, 78]. Parsimony methods are those which attempt

to minimize the number of mutations which occur in the tree. Felsenstein also considered

parsimony in his 1973 paper [25], but found in 1978 that parsimony could perform very

poorly and ultimately converge to the wrong tree [26]. As parsimony minimized the number

of mutations that occurred, it suffered when the number of mutations was not small, as is

the case in many biologically-realistic scenarios [28].

Instead, Felsenstein proposed the use of a Maximum Likelihood objective function in
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1981 [28] to find the most likely values of the parameters given the observed data at the

leaves. Chang continues this line in his 1995 paper, and shows that maximum likelihood,

unlike parsimony is consistent for reconstructing evolutionary trees [11]. In addition, he

considers the question of reconstructing the remaining parameters of the evolutionary tree,

in addition to its topology. He shows that maximum likelihood is in fact consistent when it

is able to also recover the transition matrices on the edges. The shortcoming of these works

leveraging Maximum Likelihood Estimations was computational intractability. Farach and

Kannan address this in their 1998 paper [22]. In this paper, they provide the first algorithm

which provably converges to the correct tree while also running in polynomial time.

A second question often considered is how many sample species are required for recon-

structing the tree. Erdos showed that a number of characters which is polylog in the number

of leaves is sufficient in ‘almost’ all trees [18, 19]. The question of how many samples are

required is particularly well-studied in the CFN model. Steel, in 2001, conjectured that

O(log n) characters would suffice if the probability of transition ε on each edge of the tree

were upper bounded by ε∗ = (
√

2 − 1)/23/2 [81]. Mossel, in 2004, proved that this is true

for balanced trees, and also showed that if the transition probability exceeded this critical

value, that some trees required at least a polynomial number of characters [60]. The full

conjecture was then proved by Daskalakis, Mossel, and Roch in a 2006 paper [13]. The

result is of particular interest because the number of characters required exhibits a ‘phase

transition’ at the critical error value ε∗, where below this value only O(log n) characters are

required, but above this value, we require nΩ(1) characters.

In all of these works however, there is an underlying assumption that the stochastic

processes governing each character are independent and identically distributed. We take

aim at the first portion of this assumption, the independence. This assumption is too

strong. Dependence between characters arises because changes at one position of a DNA

sequence or amino acid sequence are likely to be correlated with changes at other positions

because of such constraints as size, charge, and hydrophobicity on the molecules involved

([59], [58]). For example, the double-helical structure of the DNA and the fact that each

turn of the double helix corresponds to roughly 7 nucleotides means that there are likely to

be dependencies between a character and another that is 7 positions away.
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There is some previous work concerning dependence in characters, in both detection and

in studying its effect on the methods we have presented above. Schoniger (1994) showed

through experiments that due to independence assumptions, methods for reconstructing

evolutionary trees tended to underestimate edge lengths. He also provides a procedure

for accounting for these underestimates [76]. Tillier (1995) also studied how dependencies

would affect algorithms that assumed independence of characters. His computer simulations

suggested that while Maximum Likelihood Estimates did not suffer significantly, neighbor-

joining methods did not fare well in the presence of dependence [83]. As dependence can have

a real effect on algorithms for reconstructing evolutionary trees which assume independence

of characters, it is important to understand how to detect dependence, so we are at least

aware of when our algorithms may be performing suboptimally.

Previous work also exists directly for the question of detecting independence. In 1994,

Pagel used a likelihood ratio test to provide a statistical method for detecting independence

[66]. His methods have the property that they do not rely on any prior knowledge of

ancestral states or the tree topology, but his methods were limited to rate-based evolutionary

models. Felsenstein (1996) used methods on Hidden Markov models and a likelihood test

to detect a different type of dependence in rate-based evolutionary models, one where the

rates themselves were correlated [31]. However, once rates were fixed, the changes were

taken to occur in uncorrelated fashion.

In our work, we consider specifically the question of detecting dependence in the changes

of states in pairs of characters. Like Pagel, we will separate the detection process from the

reconstruction question completely, and aim solely to detect dependence. Our result looks

at a particular dependence model that modifies a baseline stochastic model of evolution.

We consider two characters, each evolving following a baseline stochastic model of evo-

lution (for example, CFN, though we are certainly not restricted to rate-based models of

evolution). The dependence model modifies their joint probability distribution. In the case

that the two characters evolve independently, their joint transition matrix is simply the

tensor product of the marginal transition matrices. If they are dependent, then the joint

transition matrix is modified by adding an ‘error’ matrix. In the simplest model, the error

matrix is a rank-1 matrix, where each row is some vector ~d> whose entries sum to 0. The
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matrix is the same across all edges of the tree. We call this the ‘uniform rank-1’ model of

dependence. We also consider a more complex model in which the error matrix consists of

rows which are vector that generally point in the same direction. More precisely, there is a

unit vector (~v∗)> for which each row ~v> of each error matrix satisfies that the dot product

of ~v> with (~v∗)> is at least some fixed constant δ. This model also allows the error matrix

to vary from edge to edge. We call this a ‘directional-drift’ model of dependence.

Since we are looking to determine the nature of the joint transition matrices of a pair

of characters, this question is one of determining hidden variables in a stochastic process.

As in previous work, both the tree and the transition matrices are hidden from us, and all

we observe are the states of characters for various modern species. We are able to show

that under many classical stochastic models of evolution, along with some more general

theoretical models, one can distinguish between a joint process which evolves as the tensor

product of the marginal distributions, and a joint process in which the tensor product has

been modified by an error matrix.

1.2 Computation in the presence of faults

The problem of reliably computing functions using circuits with unreliable components was

first studied by von Neumann [86]. He considered a probabilistic failure model where the

failure was per gate. Each failing gate would produce an output that is the complement

of the correct output, relative to the inputs it is given. Other failure models also exist, for

example a gate can be ‘stuck at’ a value, and always output that value [37, 52].

In von Neumann’s original paper [86] in 1956, he showed that if the probability ε of

failure satisfies ε < .0073, then it is possible to construct a formula where the output is

correct with probability strictly greater than 1
2 . His techniques could be extended slightly

to allow for errors with ε < .09471. Von Neumann’s result suggested that careful use of

majority gates could improve this bound. An easy check shows that a formula consisting

only of majorities copying a single node will have a correctness probability bounded above

1
2 as long as ε < 1

6 . It was not until 1991 however, that Hajek and Weller [39] showed

that if each gate fails with probability ε < 1
6 , then it is possible to construct a formula to
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compute a boolean function with correctness probability strictly more than 1
2 . In addition,

they show that if ε ≥ 1
6 that computation can not be done reliably. In 2003, Evans and

Schulman extended this result (with different bounds) to formulas with gates of any fixed

odd arity [21].

In a different direction, Dobrushin and Ortyukov showed in 1977 both that for a formula

of size L, reliable computation could be done with a formula of size at most O(L logL) [15].

They also attempted to show that if a formula has sensitivity s that a formula of size s log s

is required for reliable computation [14]. However, their proof contained a flaw, which was

fixed by Gács and Gál in their 1994 paper [1]. In spite of these, Pippenger showed in 1985

that almost all boolean functions can be computed with only constant overhead – that is

O(L), rather than O(L logL) [67, 68].

We can view a faulty gate as one whose output is fed through a binary symmetric

channel, with noise ε. The second eigenvalue of the transition matrix representing this

channel is 1 − 2ε. Evans and Schulman (1993) were able to use this eigenvalue to bound

the mutual information between the inputs and the output in formulas. This allowed them

to improve lower bounds in all arities except for the arity 3 case (which Hajek and Weller

had already solved at this point) [20].

Assaf and Upfal took a different direction for faulty computation [4]. A comparator is

a gate which takes 2 inputs, and then places the smaller of the two on the first output and

the larger on the second. They showed that in a very general error model, where failures

could be that the outputs were switched, or the same input is copied on both outputs, that

they could still use these faulty 2-input comparators to construct circuits which would sort

their n inputs.

While earlier results focused on general formulas, our work involves only read-once

formulas. A read-once formula is a formula where each variable appears exactly once. This

makes the topology of the formula a tree, unlike general formulas, where there can be

many nodes connected to each input. Due to this property, read-once formulas are often

studied in place of general formulas, where repeated availability of inputs causes complex

interconnectivity. Read-once formulas are necessarily the smallest formulas that depend on

each of their variables.
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For the personal computers we use today, faults do not occur nearly as often as the rates

von Neumann originally showed feasible in 1956. However, with continued miniaturization

for consumer products to embedded systems designed to run on minimal power, there is a

significant amount of computing we would like to be able to do in environments that are

not as lenient as the environments of our personal computers. In such contexts, everything

comes with a cost: miniaturization requires an increase in voltage to maintain reliability,

but this comes with a cost in energy usage [65]. Of course, power use itself is something

we aim to minimize. The results above concerning the history of fault-tolerant computing

suggest that we can construct our formula to be slightly larger, and this would improve

reliability. However, increasing the number of gates also costs us in energy. Kadric et al.

consider this regime and show a result that allows an improvement of reliability, which

costs less energy than having a larger circuit or improving the reliability of each gate [46].

Their result works with ‘components’ which are generally multiple gates. However, we will

abstract this to be single gates.

We will deal with circuits where errors occur on a per-gate basis. We approach this

problem under the significant constraint that we are not looking to redesign circuits. We

consider two questions in this regime. Under the topology restriction, we solve the following

problems: 1. diagnosis of faults in a given formula, and 2. determining an optimal allocation

of resources to a formula where the topology is fixed, but we can improve or sacrifice gate

quality for a cost. In the von Neumann line of literature, the read-once requirement does

not appear, but we can show for example in the diagnosis problem that diagnosing a read-

once formula both exactly and efficiently is information-theoretically impossible. On the

other hand, for the allocation problem, the dependencies that arise in different parts of the

formula when inputs occur in multiple places complicates the problem greatly. Thus, we

will focus on read-once formulas.

Faulty computation on read-once formulas is an example of a stochastic process where

distinct past paths are merged into a current state. The distinctness of the paths comes

from the fact that we consider only read-once formulas, otherwise multiple occurrences of

inputs would cause multiple paths to be influence by the same inputs. The computation of

the value at a node v depends on the computation of the values of children of v. Once the
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value of v is known, however, the values of the children are not needed for determining the

value of the parent of v. We consider two problems in this regime.

In the diagnosis problem, we are given an explicit formula, which we call the blueprint,

and a real implementation of the formula. This implementation, which we will call the

‘real formula’ may have any number of faulty gates. In this problem, however, we will

have deterministic faults. A faulty gate will always output the complement of the correct

answer 2. We have input-output access to the real formula: we are allowed to provide it

with any n-bit boolean input (called a probe) and observe the 1-bit output it produces. We

seek necessary and sufficient conditions on the formula that allow us to determine if the

blueprint and real formulas are the same using polynomially many queries. In addition,

when they are not the same, we aim to identify exactly which gates are faulty, also within

polynomially many probes.

We will show that determining whether there is a difference between the blueprint and

the real formula is always possible. We also show that we can pinpoint exactly which

gates are at fault in the diagnosis problem using a randomized algorithm under a ‘balance’

condition we will properly define later. On the other hand, we can also show that if the

real formula is not balanced, then diagnosis cannot be done in polynomially many probes.

In addition, we show that our result can be viewed as a sort of learning result in a PAC-

like world. If our queries are instead drawn from a product distribution, we can learn the

locations of significant errors with high probability. Our work on this problem can also be

seen as a special case of the general theory of fault diagnosis defined by Reiter in 1987 [72].

As with phylogenies, this problem focuses on inferring the values of hidden variables from

visible data.

In the optimization problem, we again are confronted with a read-once formula of some

fixed topology. We are now in charge of building the formula. Each gate can be one of two

qualities, which we call ‘good’ and ‘bad’. We can consider good gates to be perfect for now,

while bad gates fail in the von Neumann model with some fixed probability ε. In addition

to the blueprint for this read-once formula, we are given a product distribution over its

2We found that deterministic or probabilistic made little difference in the result that we present. How-
ever, there may be options available to an algorithm with a probabilistically failing real formula that are not
available to us.
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inputs. Our goal is to allocate good and bad gates across the formula so as to maximize

the probability that the output of the constructed formula is correct relative to its inputs.

We exhibit a dynamic program which is able to solve this problem approximately.

The spirit of this problem is that in an energy-constrained world, not all gates are

of equal value. The question then is which gates are most important to the output of

the formula, which we attempt to answer by seeing which gates are assigned to be good.

Additionally, unlike the previous two problems, this problem considers the question of

designing a stochastic process under constraints, rather than learning hidden variables.

1.3 Outline

In Chapter 2, we will first introduce the relevant mathematical background.

In Chapter 3, we will discuss our work on dependency in evolutionary trees. The result

essentially states conditions under which a census performed at the leaves is sufficient for

determining whether two characters are dependent. This requires two pieces: we first

prove a concentration bound by bounding the variance of these censuses. We follow up by

proving that the gap between the expected values of these censuses is linear in the number

of leaves, where the coefficient will depend on the ‘size’ of the deviation at each step due to

dependence. This latter result spans a varying set of conditions on the base evolutionary

model as well as the precise error model used. This work will appear in the Journal of

Computational Biology[10].

Then in Chapter 4, we provide a method of diagnosing read-once formulas where the

gates may be individually faulty. We will show an abstract result where a black box, which

provides an input that causes the formula to output 0 and an input that causes the formula

to output 1, can be used to solve this problem. We then use a notion of the ‘balance’

of a formula and show that if a formula is balanced, then random sampling can produce

the desired black box, yielding a randomized algorithm for this problem under a balance

condition. In addition, we show that there are formulas that lack this balance condition

which cannot be learned in any polynomial number of queries. Finally, we re-frame the

problem as a learning problem, and briefly adapt our results to this new framework. This
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manuscript is in preparation [48].

Then in Chapter 5, we will consider the optimization angle of faulty read-once formulas

with some in-progress work. We provide a dynamic program which can find a configuration

which is approximately optimal (within 1 + ε factor for any ε > 0). These ideas have been

discussed in private correspondence[47].

In each of these chapters, we will also state some directions that future research related

to each of these problems might take.
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Chapter 2

Preliminaries

In this dissertation, we will assume familiarity with basic concepts of probability theory, such

as random variables, state spaces, and the expectations and variances of random variables.

We now state, without proof, three standard inequalities in probability theory1.

Theorem 1 (Union bound). Let A1, . . . , Ak be a set of events, then

Pr[A1 ∪ · · · ∪A2] ≤
k∑
i=1

Pr[Ai]

Theorem 2 (Chebyshev’s Inequality). Let X be a random variable with expected value

E[X] and variance Var[X]. Then for any real number k > 0,

Pr[(X − E[X])2 ≥ k2Var[X]] ≤ 1

k2

Theorem 3 (Chernoff bound). Suppose X1, . . . , Xn are independent random variables. Let

X =
∑

iXi, and let µ = E[X]. Then

• Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3, for 0 < δ < q

• Pr[X ≥ (1 + δ)µ] ≤ e−δµ/3, for 1 < δ

• Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2, for 0 < δ < 1

The main use of these inequalities in our work will be to show that repeated experiments

allow us to estimate the expectation of random variables sufficiently closely to the true

expectation.
1Proofs can be found in most textbooks, such as [63]
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2.1 Stochastic Processes

We will generally represent a distribution over states as a row vector ~q> whose entries are

non-negative and sum to 1. We emphasize that we denote row vectors with the transpose

>, as standard vectors are column vectors.

We discuss briefly some concepts in stochastic processes, but a more thorough treatment

can be found in [54].

Discrete-time Markov chains consist of an initial state drawn from an initial distri-

bution ~q>0 , and subsequent states drawn from subsequent distributions ~q>1 , ~q
2>, . . .. The

distribution at time i + 1, given by ~q>i+1 is determined from the distribution at time i by

a transition matrix Pi: ~q
>
i+1 = ~q>i Pi. A homogeneous Markov chain is one where the tran-

sition matrices Pi are all equal – that is Pi = P = (pij) for all i. Note that in this case,

~q>i+k = ~q>i P
k = ~q>0 P

i+k.

We are interested first in the long-term behavior of homogeneous Markov chains. A

stationary distribution of a homogeneous Markov chain is a distribution π> such that π>P =

π>. We are interested in the conditions under which a Markov chain has a unique stationary

distribution, and the rate of convergence of a Markov process to its stationary distribution.

A subset S of the state space is closed if there are no transitions from the state space

out of the state space: for all i ∈ S,
∑

j∈S pij = 1. If there is no proper subset of the state

space of a Markov chain, then the Markov chain is called irreducible.

The period of a state i of a Markov chain is defined as the greater common divisor of

{n > 0 | (Pn)ii > 0}, provided the set is non-empty. A state is aperiodic if its period is 1,

and a Markov chain is aperiodic if every state is aperiodic.

A state i is called positive recurrent if the expected number of visits to the state is

infinite:
∑∞

n=1(Pn)ii = ∞ ((Pn)ii is the probability of transition from i to i in exactly n

steps). A Markov chain is positive recurrent if every state is positive recurrent.

Theorem 4 (Fundamental Theorem of Markov Chains). For any irreducible, aperiodic,

positive recurrent Markov chain, there exists a unique stationary distribution π> satisfying

π>P = π>.

Note that a Markov chain on finitely many states which is irreducible and aperiodic
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is necessarily positive recurrent. We will not deal with Markov chains on infinitely many

states, and the finite-state Markov chains we do consider will be irreducible and aperiodic.

As a result, they will have unique stationary distributions.

The next question is how quickly a Markov chain converges to its stationary distribution.

In the literature, this is measured by the mixing time: the time t after which for any initial

distribution ~q>0 , we have that |~q>t 0π>| ≤ 1
4 .

Let λ1, . . . , λn be the eigenvalues of the transition matrix P arranged such that |λ1| ≥

|λ2| ≥ · · · ≥ |λn|. Note that the existence of a unique stationary distribution from Theorem

4 implies both that λ1 = 1 and that |λ2| < 1. The rate of convergence is then controlled

by λ2 in the following sense. Let ~v>1 , . . . , ~v
>
n be the eigenvectors corresponding the the

eigenvalues λ1, . . . , λn. If we write ~q>0 =
∑
ai~v
>
i , then we have

~q>t =
∑

aiλ
t
i~v
>
i

As we are interested in the distance of ~q>t from the stationary distribution π>, we

consider

‖~q>t − π>‖2 = ‖(
n∑
i=1

aiλ
t
i~v
>
i )− π>‖2 = ‖

n∑
i=2

aiλ
t
i~v
>
i ‖2 ≤ λt2‖

n∑
i=2

ai~v
>
i ‖2 = λt2(

n∑
i=2

‖ai~v>i ‖2)

So we see that the smaller λ2 is, the more quickly the Markov chain converges to its

stationary distribution in `2-distance2. In our work in phylogenies, we will also use the

second eigenvalue λ2 in a similar capacity, ensuring that deviations from the stationary

distribution are diminished quickly in successive steps of the process.

2.2 Matrix Exponential

The exponential of a square matrix X can be defined by

exp(X) =
∞∑
i=0

Xi

i!
(2.1)

2The definition of mixing time is usually given in `1-distance, but the two distances are related by a
factor of

√
n. Again, we refer the reader to [54] for a more in-depth and careful discussion.
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It may also be defined, as in the scalar exponential, by the limit

exp(X) = lim
n→∞

(
I +

X

n

)n
(2.2)

The proof of equality of these definitions follows as in the scalar case, but for a thorough

treatment of the matrix exponential, we refer the reader to [6]. Instead, we will only state

and prove a few facts about the matrix exponential pertaining to stochastic matrices. We

start with a definition.

Definition 2.1. A stochastic rate matrix is a square matrix Q which satisfies the following

conditions:

1. The rows of Q sum to 0.

2. the off-diagonal entries of Q are non-negative.

Note that a positive scalar multiple of a rate matrix is still a rate matrix. In addition,

we have the following:

Fact 2.2. Let Q be a stochastic rate matrix, then exp(Q) is a stochastic matrix.

Proof. We will make use of the second definition (equation 2.2). Note that for sufficiently

large n, (I+Q/n) is a stochastic matrix: pick n larger than each diagonal entry of Q. Then

the diagonal entry of (I + Q/n) is positive and each off-diagonal entry is the same as the

entry of Q/n which is non-negative. Since the rows of Q sum to 0, this still holds for Q/n,

and so the rows of (I +Q/n) sum to 1. Then (I +Q/n)n is also stochastic, and so the limit

exp(Q) is stochastic.

As a result, if t ≥ 0, exp(tQ) is also a stochastic matrix3 We state a few more facts.

Fact 2.3. Let Q be a stochastic rate matrix, and s, t ≥ 0.

1. exp((s+ t)Q) = exp(sQ) exp(tQ)

3The stochastic rate matrix is important in the study of continuous-time Markov chains, which feature
prominently in the study of phylogenies. However, our treatment of phylogenies will skip the continuous-time
angle and have a retrospective look, in which the process will be separated into discrete time steps.
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2. If λ and ~v are an eigenvalue and eigenvector pair of Q, then etλ and ~v are an eigenvalue

and eigenvector pair of exp(tQ).

Proof. 1. This follows as in the scalar case, using the first definition (equation 2.1)

exp((s+t)Q) =
∞∑
i=0

(s+ t)iQi

i!
=
∞∑
i=0

i∑
j=0

siQi

i!

ti−jQi−j

(i− j)!
=
∞∑
i=0

siQi

i!

∞∑
k=0

tkQk

k!
= exp(sQ) exp(tQ)

2. We again use the first definition.

exp(tQ)~v =

( ∞∑
i=0

tiQi

i!

)
~v =

∞∑
i=0

tiQi~v

i!
=

∞∑
i=0

tiλi~v

i!
= etλ~v
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Chapter 3

Detecting Dependencies in

Evolutionary Models

In this chapter we consider the question: given two characters, can we decide if they are

independent? Our answer is yes, under biologically reasonable assumptions about the tree

Markov random field (that is the model of evolution) and the type of dependence allowed.

In this work, we show a proof of concept that dependence can be detected using just census

data, though we make no claims to the statistical efficiency of this approach, compared

to the likelihood tests mentioned above. We note that there are problems such as the

reconstruction problem on trees in the Ising model, where a census is a sufficient statistic

([61]).

In addition, we introduce some simple models of dependence among characters that

seem well-suited to the biological application. If two characters are independent, then on

each edge of the tree the matrix governing their joint evolution is just the tensor product

of the marginal matrices. Two characters are dependent if this does not hold, i.e., that

there are edges where the transition matrix for the joint character differs (significantly)

from the tensor product of the marginals. Thus dependence of two characters is captured

by their joint transition matrix M deviating significantly from the tensor product T of their

marginal matrices. The difference between the i-th rows of M and T is the difference in

next-state probabilities when the process is in the joint state, i. If there is a biological
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reason that certain next-states are preferred, this reason should persist across all the rows

of the deviation matrix, M − T . Thus we expect all rows of M − T to point roughly in the

same direction. Similarly, this biological reason should persist throughout the phylogeny,

and hence we expect deviations on each edge of the tree to also point in roughly the

same direction. This is just as well because, mathematically it would be impossible to

detect dependencies when the deviations on different edges could potentially cancel out the

dependence signal. Our bounds on how well we can detect dependence are a function of

how well-aligned the deviation vectors are to some specific direction.

Another remark is in order about our restriction to detecting dependence of pairs of

characters. In biologically realistic scenarios even dependencies across sets of characters of

cardinality greater than 2 will manifest as dependencies of pairs of characters from this set.

In other words, it is hard to conceive of biological scenarios where a set of k characters (for

k > 2) are dependent, while every subset of k− 1 characters from this set are independent.

To detect dependency among characters, we have to overcome two challenges - first that

the topology of the tree imposes a confounding dependence between the states of nearby

leaves and second that the mutation process could cause the ‘dependence’ signal from higher

up in the tree to cancel with dependence signals from lower down. A technical contribution

of this work is a concentration bound for tree Markov random fields. Let Z be the random

variable counting the number of occurrences of a character in a particular state at the leaves

of a rooted tree. We show that as long as a certain natural norm of the transition matrices is

bounded away from 1 (by an arbitrarily small constant), the variance of Z is sub-quadratic

in the number of leaves, and the expectation of Z is linear in the number of leaves.

3.1 Preliminaries

Stochastic Model of Evolution. Let T rooted at r denote the underlying tree in a tree

Markov random field. With little loss of generality we assume that the root has degree 2

and every other internal node has degree 3. A character maps the nodes of the tree to a set

C of s states (for example, {0, 1}, {A,C,G, T}, {20 amino acids}, etc. A single character
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evolves ‘down’ the tree as follows. At the root r it has some distribution over its states,

which need not be uniform. However, it is sufficient to consider the initial distribution to be

uniform due to the mixing properties of the stochastic process. With every edge e = (u, v)

of T , is associated a stochastic s× s transition matrix Me that governs the evolution of the

character. More precisely, Pr[Xv = b|Xu = a] = Me(a, b).

Specific biological models assume that these matrices are drawn from special types

of stochastic matrices. For instance, the Cavender-Farris-Neyman (CFN) ([9], [23], [64])

model for binary states (s = 2) assumes that on each edge all characters have the same

symmetric transition matrices. Thus a single scalar (the probability of mutation) determines

the transition matrix on any edge; this scalar is usually a measure of the time duration

represented by the edge. The Jukes-Cantor ([45]) model is a simple generalization to 4-state

characters and the Kimura ([49]) model is determined by 2 parameters rather than 1. In our

work, we consider models of evolution at 3 levels of generality, listed below. All the above

biological models lie in the most restrictive level. One reason we consider the more general

models is because they lead to mathematically interesting problems whose solutions might

be applicable in other contexts beyond phylogenies. Note that in this work, we distinguish

between an independent case and a dependent case; the required properties listed below

apply to the transitions in the independent case. The transitions in the dependent case

differ from transitions which satisfy the listed properties by an ‘error matrix’ which we

specify below.

Shared Eigenbasis. Our most restrictive model assumes that all transition matrices are

positive semi-definite (PSD) and have the same eigenbasis on every edge; this is true

for all biological models studied so far.

PSD. At a greater level of generality, we do not require the PSD matrices for a character

to have the same eigenbases on all edges.

Doubly stochastic. In this model we only assume all transition matrices are doubly

stochastic. Thus they could be asymmetric, unlike in the previous two models.

Rate Matrix. In this biologically-motivated model, we have rate matrices Q1, Q2 corre-

sponding to the first and second characters. Each edge has a length te, and the
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transition matrices on e are exp(tQ1) and exp(tq2). Note that the matrices in this

model share eigenbases, and the eigenvalues are all positive, making this seem more

restrictive. However, this model allows for nonuniform stationary distributions over

states.

The parameter that governs our results is the following 1→ 1 norm of transition matrices:

||M || := sup06=x⊥1 ||x>M ||1/||x||1. We assume ||M || ≤ λ < 1 for some constant λ. It is

easy1 to see that ||M || is always at least the second eigenvalue (in absolute value) of M ;

our above assumption implies λ2(M) ≤ λ as well. In order to detect dependence we will

need increasingly tighter upper bounds on λ2(M) as we move to more general models of

evolution.

The Dependence Model. Let X and Y be two characters and let Xu and Yu denote the

states of these characters at node u of T . If X and Y evolve independently, then the

transition matrix governing the evolution of the joint variable (X,Y ) across edge e of the

tree is given by the matrix Me ⊗ Ne where Me and Ne are the s × s transition matrices

associated with the individual characters. Note that we allow different characters to have

different transition matrices. If X and Y are not independent, then we assume the follow-

ing dependence model. Firstly, we assume that the joint random variable (X,Y ) evolves

via a Markovian process. This is standard in biology where mutation is assumed to be

history independent. So, for every edge e there exists an s2 × s2 transition matrix Pe such

that Pr[(Xv, Yv) = (a′, b′)|(Xu, Yu) = (a, b)] = Pe((a, b), (a
′, b′)). Furthermore, we assume a

consistent preferred direction dependence model where the joint evolution of the two char-

acters tends to bias probabilities in a preferred direction in comparison to the situation

when they evolve independently. We model this by making assumptions on the ‘deviation’

matrix De := Pe −Me ⊗Ne. In the simplest, but already non-trivial case that we call the

uniform rank-1 dependence model, we assume that the deviation matrix De = D for all

edges, and furthermore, D is the outer product 1d> for some s2-dimensional vector d with

||d||1 ≥ δ > 0 for some known parameter δ. This stringently models situations where there

are preferred states and every transition biases the distribution by the same vector in favor

1v be an eigenvector corresponding to eigenvalue λ< 1. M is stochastic, so v⊥1 and Mv = λv implies
||M || ≥ |λ|.
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of the preferred states regardless of the starting state or edge. We also investigate a gen-

eralization of the uniform rank-1 dependence that we call the directional-drift dependence

model. Here we assume there exist some direction d∗ such that every row of every deviation

matrix De has an inner product of at least δ with d∗. In addition, the norm of any row of

any of these matrices is at most a constant. For ease of presentation we use the uniform

rank-1 model almost throughout this chapter, only discussing the more general model in

the last section.2

Informal Statement of Results for uniform rank-1 dependence:

1. In the shared eigenbasis model, we can detect dependence with no further assumptions.

As stated above, this includes all the major models of evolution studied so far.

2. In the PSD model, if all single-character transition matrices have λ2 < 0.797, then we

can detect dependence. However, there exists examples of trees with PSD transition

matrices with λ2 ≥ 0.832 and yet the distribution on the leaves is indistinguishable

from the case of independent evolution.

3. In the doubly-stochastic model, we can detect dependence if all transition matrices

have λ2 ≤ 1
2 . We cannot prove ‘better ’ negative results than for the PSD case.

4. In the rate matrix model, as in the shared eigenbasis model, we require no further

assumptions.

Informal Statement of Result for directional-drift dependence in the PSD model:

If each row of De has length at most δ/β, then we can allow λ2 ≤ β
1
2

+β
.

3.2 The Tester, Analysis Roadmap, and Technical

Challenges

The input to our dependency testers are the values of the characters at the leaves of the

phylogeny. For two characters X and Y , denote their leaf data as {Xr} and {Yr}, respec-

2Throughout the chapter, we are concerned with detecting dependence between a pair of characters.
However, it is straightforward to generalize our models and results to a constant subset of characters where
instead of pairs C×C, we would be dealing with random variables over a larger domain. For simplicity, we
will stick to pairs.
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tively. In addition, we take an ε as an accuracy parameter. Our tester is extremely simple:

For each ordered pair of states, we count the number of leaves that have that pair. If there

is a ‘large discrepancy’ in this number, the characters are dependent.

Algorithm 1 Dependence Detection

1: procedure DependenceDetection({Xr}, {Yr}, ε)
2: for (i, j) ∈ C×C do
3: Zi,j ← |{l | (Xl, Yl) = (i, j)}|
4: end for
5: for (i, j) ∈ C×C do
6: if |Zi,j − 1/|C|2| ≥ εn then
7: output dependent
8: end if
9: end for

10: output independent
11: end procedure

We now briefly outline the analysis and the challenges involved. The correctness of this

algorithm relies on both a concentration bound on the number of leaves in each state pair,

as well as a significant and guaranteed discrepancy of the distribution of each leaf from

uniform.

We prove a concentration bound for the overall distribution of state pairs at the leaves.

For all ordered pairs i, we need that the number of leaves Zi that have the state i, is

concentrated around its mean. This is not trivial since Zi is a sum of indicator random

variables that are not independent, because in a tree Markov random field, even the state of

one character at ‘near by’ leaves are highly correlated. We obtain concentration by upper-

bounding the second moment (Theorem 5) which is done via a coarse but sufficiently good

upper bound on the variance (Lemma 3.2). We also show that when the characters are

independent, we expect each joint state to be almost equally likely (Lemma 3.5). Since the

norms of the transition matrices are bounded away from 1, we expect rapid mixing and

the leaf state to be close to stationary distribution, which by the assumption of double-

stochasticity is uniform.

In the case of dependent characters, we show that a large discrepancy indeed occurs (in

expectation) for at least one pair of states (Lemma 3.6) . This is nontrivial since different

edges have different transition matrices, and the effect of one matrix’s deviation may cancel
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the effect of its predecessors. Indeed, in the PSD model, we show that this can happen even

when λ2 ≥ 0.832 (Lemma 3.10). However, if all matrices share the same eigenbasis, then

such a ‘bad case’ cannot occur (Lemma 3.7), and so the shared eigenbasis model doesn’t need

any further assumptions. In the doubly stochastic model, an upper bound of 0.5 suffices

(Lemma 3.11) to detect dependency. For the PSD model, an upper bound λ2 ≤ 0.797

suffices, and this is more subtle to show. To do so, we prove a lower bound on a quantity

v>Av where A is a product of k PSD matrices (and therefore, not necessarily PSD) and v is

a vector perpendicular to the all ones vector. We show (Lemma 3.9) that this quantity is at

least −(λ cos(π/k+1))k||v||22; this result may be of independent interest. We leave open the

question of finding the exact value in [0.797, 0.832] at which dependence can be detected in

the PSD model. Finally, in Theorem 7, we show that in the directional-dependence model,

we can detect dependence when λ∗ is bounded by a function of δ, β.

3.3 Bounding the Variance

Fix an i ∈ P = C×C. Let Z be the random variable counting the number of leaves of T in

state i. For a random variable X, let E[X] denote its expectation and Var(X) its variance.

Recall λ < 1 is an upper bound on the norm of any of the transition matrices Pe on the

edges e. In this section, we prove the following theorem.

Theorem 5. Given any n leaf trivalent tree T , Var(Z) = O(n2−2 log2(1/λ)).

For any vertex v in T , let Zv to be the number of leaves in the sub-tree of T rooted at v

in state in i; so Z = Zroot. Let Lv denote the leaves in the subtree rooted at v. For a leaf

` ∈ Lv, let dist(v, `) denote the number of edges on the path from v to ` in the tree. Define

Λ(v) , 2
∑
`∈Lv

λdist(v,`) (3.1)

The following claim bounds Λ(v) at any vertex.

Proposition 3.1. For any vertex u with n leaves in its subtree, Λ(u) ≤ O(n1−η) where

η = log2(1/λ).
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Proof. Note that Λ(u) = 2
∑

i≥1 |Li|λi where Li is the set of leaves at a distance i from u.

Since λ < 1, an n leaf tree which maximizes Λ(u) will make the tree as balanced in height as

possible. (This can be proved by a “swapping” argument similar to the proof of optimality

of Huffman trees.) In particular, the maximizing tree has all leaves at distance blog nc or

blog nc+ 1. Therefore, Λ(v) ≤ 2
λ · nλ

logn = 2
λ · n

1−log(1/λ).

The next lemma bounds the variance in terms of the Λ’s. We will use the lemma to prove

the theorem.

Lemma 3.2. Var(Z) ≤ 1
2

∑
v∈V (T )\root(Λ(v))2.

Proof. For a vertex v and two states j, k ∈ P, define

∆v(j, k) , |E[Zv|Xv = j]− E[Zv|Xv = k]| (3.2)

The following claim relates ∆v with Λ(v).

Claim 3.3. For any vertex v, and for any two states j, k ∈ P, we have ∆v(j, k) ≤ Λ(v).

Proof. Fix a vertex v and a leaf ` ∈ Lv. Let e1, e2, . . . , edist(v,`) be the edges on the path

from v to `. Let P denote the matrix Pe1 · Pe2 · · ·Pedist(v,`) ; this is the transition matrix

from v to leaf `. In particular, P is row-stochastic (row entries add up to 1). We use the

following simple fact about row stochastic matrices; another proof of this can be found in

Lemma 4.12 in [55].

Claim 3.4. For any two row stochastic matrices P1 and P2, we have ||P1P2|| ≤ ||P1|| · ||P2||.

Proof. Let x be the vector with ||x||1 = 1 and x>1 = 0 such that ||P1P2|| = ||x>P1P2||1.

Note that y> = x>P1 also satisfies y>1 = 0 since P1 is row stochastic. Therefore, ||y>P2||1 ≤

||y||1 · ||P2||. Also by definition, ||y||1 = ||x>P1||1 ≤ ||P1||.

This claim implies that ||P || is at most λdist(v,`). In particular, this shows that for any

vertex v, for any leaf ` ∈ Lv at a distance dist(v, `), and for any states j, k ∈ C, we have

|Pr[X` = i|Xv = j]−Pr[X` = i|Xv = k]| ≤ ||xTP ||1 ≤ 2λdist(v,`), where x is the vector with
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xj = 1, xk = −1, and xs = 0 otherwise. The claim follows by noting

∆v(j, k) = |
∑
`∈Lv

(Pr[X` = i|Xv = j]− Pr[X` = i|Xv = k]) |

≤
∑
`∈Lv

|Pr[X` = i|Xv = j]− Pr[X` = i|Xv = k]| ≤ 2
∑
`∈Lv

λdist(v,`)

Now we can finish the proof of Lemma 3.2. Fix any vertex u. Recall that Tu denotes the

subtree of T rooted at u and Zu is the number of leaves in Lu in state i. We now show using

induction on the height of T that for any state j ∈ P, Var(Zu|Xu = j) ≤ 1
2

∑
v∈V (Tu)\u Λ2(v).

This proves the lemma with u as the root, and summing over all the conditional events.

Note that the claim is vacuously true when u is a leaf since both LHS and RHS are

0. Let u have children v1, . . . , vq (if the tree is binary, q = 2, but this lemma holds for

any tree). Assume we have proved the inductive claim for the vi’s. Note that conditioned

on Xu, the random variables Zv1 , Zv2 , ... are independent, since they count over leaves on

disjoint subtrees. Therefore, for any j ∈ P, Var(Zu|Xu = j) =
∑q

i=1 Var(Zvi |Xu = j).

We now show that for any parent-child pair e = (u, vi) and any state j ∈ P, we have

Var(Zvi |Xu = j) =
∑
k∈P

PjkVar(Zvi |Xv = k) +
1

2

∑
k 6=k′∈P

PjkPjk′∆
2
vi(k, k

′) (3.3)

where Pjk = Pr[Xvi = k|Xu = j] = Pe(j, k). (3.3) suffices to complete the proof. By

induction, the first summand in the RHS is at most 1
2

∑
w∈Tvi\vi

Λ2(w). From Claim 3.3,

we have ∆vi(k, k
′) ≤ Λ(vi) and

∑
k 6=k′ PjkPjk′ ≤ (

∑
k∈P Pjk)

2 = 1, thereby giving that the

second summand in the RHS of (3.3) is at most 1
2Λ2(vi). Together, we get Var(Zvi |Xu =

j) ≤ 1
2

∑
w∈Tvi

Λ2(w), and by adding over all vi, 1 ≤ i ≤ q, we complete the proof of

Lemma 3.2.

Proof of theorem 5. Let V(n) be a function that denotes the maximum value of
∑

v∈V (T )\r Λ2(v)

over all n-leaf binary trees. By Lemma 3.2, we want a subquadratic upper bound on V(n).

Let u be the centroid of T . That is, n/3 ≤ |Lu| ≤ 2n/3. It is easy to see this is well

defined. Let Tu denote the subtree of T rooted at u, and let T ′u denote the subtree of T

with all descendants of u deleted. Note that both Tu and T ′u are binary trees, and have
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ρn and (1 − ρ)n leaves for ρ ∈ [1/3, 2/3]. By definition,
∑

v∈V (Tu)\u Λ2(v) ≤ V(ρn) and∑
v∈V (T ′u)\r Λ2(v) ≤ V((1− ρ)n).

Suppose u = u0, u1, . . . , ur = r is the unique path from u to r in T . Note that the Λ(v)’s

in tree T ′u are the same as in tree T for all vertices except the ui’s. For each ui, Λ(ui) in

the tree T is that in T ′u plus λi · Λ(u) Thus, we have

∑
v∈V (T )\r

Λ2(v) ≤ V(ρn) + V((1− ρ)n) +
r∑
i=0

(
(Λ(ui) + 2λiΛ(u))2 − Λ2(ui)

)

= V(ρn) + V((1− ρ)n) + 4Λ(u)
r∑
i=0

λiΛ(ui) + 4Λ2(u)
r∑
i=0

λ2i

From Proposition 3.1, we can bound Λ(ui) by O(n1−η) for i = 0, ..., r. So we get the

following recurrence for V(n):

V(n) ≤ V(ρn) + V((1− ρ)n) +O(n2−2η)

which evaluates to V(n) = O(n2−2η).

3.4 Analysis of the Tester in Uniform Rank-1 Model

Let µ0 be the state at the root. Let µ be the uniform distribution over the s2 states. Let

r0 = µ0 − µ be the error vector at the root. Recall Pe is the transition matrix of the joint

random variable (X,Y ) at edge e. We write Pe = Re + D where Re = Me ⊗ Ne and D is

the zero-matrix if the characters are independent, and D = 1d> in case the characters are

dependent.

Our goal in this section is to establish the following theorem3, asserting the correctness

of the tester for the uniform rank-1-model.

Theorem 6. Under each of the following evolutionary models, under the listed assumptions

on the norm on the transition matrices Re, Algorithm Dependence Detection is correct with

1− 1/poly(n) probability.

Shared Eigenbasis. No extra assumption on Re is needed.

3Note that λ2(Re) ≤ max(λ2(Me), λ2(Ne))
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PSD. If λ2(Re) ≤ 0.797.

Doubly stochastic. If λ2(Re) ≤ 0.5.

For a leaf `, let µ` be the distribution at the leaf, and r` = µ` − µ be the error vector

at the leaf. Let (e1, e2, . . . , edist(`)) be the path from the root to the leaf `. Then, if the

characters are independent, we get

r>` = r>0

dist(`)∏
k=1

Rek

 (3.4)

and if the characters are dependent, we get

r>` = d> +

dist(`)∑
i=1

d>

dist(`)−1∏
k=i+1

Rek

+ r>0

dist(`)∏
k=1

Rek

 (3.5)

We first prove a lemma to show that when the character pair evolves independently, the

distribution of state pairs at the leaves is close to uniform.

Lemma 3.5. If the characters are independent, then for all i ∈ P, we have |E[Zi]−n/s2| ≤

O(n1−β) for some constant β depending on λ, the upper bound on the norms of all the

transition matrices.

Proof. By our assumption, ||Rei || ≤ λ for all i. Substituting in (3.4), and using Fact 3.4, we

get ||r`||1 ≤ λdist(`)||r0||1 ≤ 2λdist(`) since ||r0||1 ≤ ||µ||1 + ||µ0||1 = 2. In turn, this implies

|〈r`, ei〉| ≤ 2λdist(`). Note for any i, we have E[Zi] =
∑

`〈µ`, ei〉 = n/s2 +
∑

`〈r`, ei〉 ≤

n/s2 + Λ(root), and the lemma follows from Proposition 3.1.

Next, we prove a contrasting lemma for the dependent case, depending on the model

of evolution. In each case, we show that there is a deviation from the uniform in the

distribution at the leaves. In particular, we exhibit r∗ ∈ Rs2 whose coordinates sum up to

zero with each entry in [−1,+1] such that there is some ε > 0 satisfying

For all `, we have 〈r`, r∗〉 ≥ ε. (Deviation)

We prove the following lemma, under the assumption that this equation is satisfied. In

later subsections we demonstrate r∗ in every model of evolution.
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Lemma 3.6. If under a model of evolution we obtain an r∗ and ε satisfying (Deviation),

then there exists i, j ∈ P such that |E[Zi]− E[Zj ]| ≥ εn where ε is a constant depending on

δ and s.

Proof. Let µ̄ := 1
n

∑
` µ`. Observe that 〈µ̄, r∗〉 ≥ ε as well. Since r∗ is a convex combination

of vectors of the form {ei−ej} where ei is the indicator vector for pair i, we get there exists

(i, j) such that 〈µ̄, (ei − ej)〉 ≥ ε. But 〈µ̄, ei〉 is precisely E[Zi]/n since 〈µ`, ei〉 indicates the

probability leaf ` is in state pair i. Therefore (Deviation) implies that there exists a pair i

and j such that E[Zi]− E[Zj ] ≥ εn.

Proof of Theorem 6. These follow from Lemma 3.5 and Lemma 3.6 (with appropriate use of

Equation (Deviation)) using Lemma 3.7, Lemma 3.8, and Lemma 3.11 given below, Theo-

rem 5 and Chebyshev’s inequality.

Shared eigenbasis model

Recall in this model we assume if characters are independent, then the transition matrices

Me are PSD and share the same eigenbasis over all edges. Thus matrix Re = Me ⊗Ne also

is PSD and have the same eigenbasis across all edges.

Lemma 3.7. In the shared-eigenbasis model, for each leaf `, 〈r`, d〉 ≥ ‖d‖2(1 − λdist(`)).

Thus in (Deviation), r∗ = d and ε = ‖d‖22(1− λ) ≥ δ2(1− λ)/s2 suffices.

Proof. We can multiply both sides of (3.5) by d to get r>` d = d>d+
∑dist(`)

i=1 d>Aid+ r>0 Bd,

where Ai =
∏dist(`)−1
k=i+1 Rek while B =

∏dist(`)
k=1 Rek . The main observation is that if the Re’s

share an eigenbasis, then products of these matrices are also PSD. Thus, each Ai is PSD

implying the second sum is ≥ 0. The final term |r>0 Bd| ≤ ‖r>0 ‖∞‖Bd‖1 ≤ λdist(`), by

Cauchy-Schwarz, and the second inequality follows since ‖B‖ ≤ λdist(`). Thus,

〈r`, d〉 ≥ ‖d‖22(1− λ)

30



Positive semi-definite model

Recall that in this model each Me is PSD, and thus Re is PSD as well.

Lemma 3.8. In the PSD model, if λ2(Re) ≤ λ∗ < 0.797, then for each leaf `, 〈r`, d〉 ≥

ε(λ∗) > 0.

Proof. We expand (3.5) to get (we ignore the last term since it vanishes with dist(`).)

〈r`, d〉 = ‖d‖22 +

dist(`)−1∑
i=1

d>

dist(`)∏
k=i+1

Rek

 d (3.6)

Note that each term in the sum is correlated, since they use the same matrices Rek . To

lower bound this product, we will relax this restriction, and allow that each term choose its

own matrices. In particular, we will use the following lemma.

Lemma 3.9. Suppose A1, . . . , Ak are k positive semi-definite transition matrices, with sec-

ond eigenvalue bounded by λ∗, and let v be a vector with entries summing to 0. Then

v>(A1 · · ·Ak)v ≥ −(λ∗)k cosk+1

(
π

k + 1

)
‖v‖22 (3.7)

Proof. We note that to minimize the left-hand side, we are essentially looking to make

A1 · · ·Akv be a long vector pointing away from v. To do this, we can assume that each Ai

is a scaled projection onto a fixed vector ui. Suppose some Ai is not. Then let ui be a unit

vector in the direction of Ai · · ·Akv, and replace Ai with a projection onto ui and a scaling

by λ∗ without reducing the length of the resulting vector. Then we can let θi be the angle

between Ai · · ·Akv and Ai+1 · · ·Akv, and θ0 the angle between A1 · · ·Akv and −v. Then

we have |v>A1 · · ·Akv| = (λ∗)k
(∏k

i=0 cos(θi)
)
‖v‖22.

Finally, using the concavity and monotonicity of the cosine function in the domain

[0, π/2], and the fact that the total projections go from v to −v, so
∑
θi ≥ π, we conclude

that to minimize this, each θi should be equal and so each θi = π
k+1 .

We use this lemma to bound r>` d ≥ ‖v‖22
(

1−
∑∞

k=2(λ∗)k cosk+1
(

π
k+1

))
. Note that the

parenthesized expression in the RHS can be lower bounded, for any integer N ≥ 2, by(
1−

∑N
k=2 cosk+1

(
π
k+1

)
− (λ∗)N+1

1−λ∗
)

. For instance if N = 2, we get that if λ∗ ≤ 2/3, then
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the expression is lower bounded by 1/18. Numerically, we obtained the best tradeoff at

N = 8 where λ∗ < 0.797 implies the expression is > 0.

Note that the value 0.797 is not exact, even for this bound we have given, and better

bounds may exist. However, we cannot allow λ∗ to be arbitrarily close to 1 which is

encapsulated in the following lemma.

Lemma 3.10. In the PSD model it is not always possible to detect dependence at the leaves,

even if λ2(Re) ≤ 0.832 for all e.

If the second eigenvalue is allowed to be close to 1, then there exists a sequence of

transforms which causes the state-pair distribution at a leaf to be uniform, and thus indis-

tinguishable from the independent case. In this section, we will focus on a 2-dimensional

subspace of the error space containing ~d. It is easy to check that as long as we choose a

positive semi-definite transformation in this subspace of dimension 2, it is realizable in the

full state-pair space of s2 dimensions. We will let d = (1, 0) in this 2-dimensional subspace.

Now consider k scaled projections A1, . . . , Ak where

Ai = λ∗

 cos2
(
iπ
k

)
cos
(
iπ
k

)
sin
(
iπ
k

)
cos
(
iπ
k

)
sin
(
iπ
k

)
sin2

(
iπ
k

)


is a scaled projection onto a vector making an angle iπ/k with ~d, the x-axis.

To make the deviation ~r = 0 after the last transform (~r> 7→ ~r>M + ~d>), we will first

apply a large number of transforms where one of the eigenvectors is in the direction of

~d, with a corresponding eigenvalue of λ∗. This will allow us to get our deviation ~r to be

arbitrarily close to 1
1−λ∗

~d. Then we will apply A1, . . . , Ak. We claim that if λ∗ is sufficiently

large, this will be 0. Note that Ak is a projection onto the x-axis, so we only have to

examine the x coordinates.

Before A1, we have ~r = 1
1−λ∗

~d. After applying the transforms for A1, . . . , Ak, we have

r>A1 · · ·Ak + d>(A2 · · ·Ak + . . .+Ak + I2)
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where I2 is the 2-dimensional identity. We will examine the x coordinates of these terms.

For the first term, we see that each Ai is a projection over an angle π/k and includes a

scaling λ∗, thus the x coordinate of the first term is

−1

1− λ∗
(λ∗ cos(π/k))k

We will split the next part into two, as some of them will be negative and some will be

positive. For i = 1, . . . , dk/2e − 2, these will contribute negatively the amount

−(λ∗ cos(π/k))n−i−1 cos((i+ 1)π/k)

For i = dk/2e − 1, . . . , k − 1, this will contribute positively the amount

(λ∗ cos(π/k))n−i−1 cos((n− i− 1)π/k)

Finally, ~d>I2 contributes 1. In total, this gives

−

 1

1− λ∗
(λ∗ cos(π/k))k +

dr/2e−2∑
i=1

(λ∗ cos(π/k))n−i−1 cos((i+ 1)π/k)


+

1 +
k−1∑

i=dr/2e−1

(λ∗ cos(π/k))n−i−1 cos((n− i− 1)π/k)


Finally, for a fixed k we can solve for this to be 0 to get an upper bound on allowable

λ∗. For k = 9, this gives λ∗ < 0.832.

Doubly-stochastic model

In this model we simply assume the transition matrices are doubly stochastic. We show

that if λ2(Re) < 1/2, then we can detect dependence.

Lemma 3.11. In the doubly-stochastic model, each leaf ` has that r` satisfies 〈r`, d〉 ≥(
1− λ∗

1−λ∗
)
‖d‖22. Thus (Deviation) is satisfiable for constant ε > 0 if λ∗ < 1/2.
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Proof. We will use a similar approach to Lemma 3.8. We will again use (3.6), and write

〈r`, d〉 =

‖d‖22 +

dist(`)−1∑
i=1

d>

dist(`)∏
k=i+1

Rek

 d ≥ ‖d‖22

(
1−

∞∑
i=1

(λ∗)i

)
= ‖d‖22

(
1− λ∗

1− λ∗

)

where we lower bounded d>Rei+1 · · ·Redist(`)d by −(λ∗)dist(`)−i−1‖d‖22, since all eigenvalues

in the space of error vectors are bounded in absolute value by λ∗.

3.5 Directional-drift Dependence Model

Here, we generalize the error model, in the PSD evolution model, using the directional-drift

dependence model which we now describe. We recall that PSD model generalizes the Shared

Eigenbases model, which in turn generalizes all stochastic models studied in the literature.

In this model, there is a fixed direction d∗, such that every row of each error matrix has the

following properties: (1) ‖d>‖ ≤ δ/β, and (2) 〈d, d∗〉 ≥ δ for a significant δ and a constant

β.

Theorem 7. In the PSD evolutionary model with the directional-drift dependence model

above, if all transition matrices have norm bounded by λ∗(β) = β
1
2

+β
, then Dependence

detection is correct.

This theorem will again follow from Lemmas 3.6 and 3.5, through the use of Equation

(Deviation), with r∗ = d∗ and ε(β, λ).

Let us first examine now what happens in one step, when we start with a vector ~µ+ ~r,

and apply the transform Pe = Re +De,

(µ+ r)> 7→ µ> + r>Re + (µ+ r)>De

When De = 1dT , we see the last term is precisely d>. Now, however, we get some vector

de which has ‖~d‖2 ≤ δ/β and 〈~de, ~d∗〉 ≥ δ. We will use primarily the fact that this added

vector has these properties. As before, we will view the transform in the error space, where

the transform is
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r> 7→ r>Re + de

Our approach to show that the detection of dependence is possible here will be by

induction. In particular, we will show that for each node other than the root, there is some

x∗ = x∗(β) such that if the distribution at the node v is µ + rv, then 〈rv, d∗〉 ≥ x∗δ. This

is true for the direct children of the root, as the distribution is precisely µ + de where e is

the edge connecting to the root. By hypothesis, 〈de, d∗〉 ≥ δ. This gives us the base case

for induction.

Before we prove the general case, we will first observe that ‖r‖2 ≤ 1
1−λ∗

δ
β . This is clear

since every transform Re reduces the length by a factor λ∗, and then we add a vector of

length at most δ/β. The length bound then is just a geometric series.

To prove the general case of the induction, we first show that it suffices to examine

the problem in 2 dimensions. So suppose that we have a deviation r which satisfies that

〈r, d∗〉 ≥ x∗ for some constant x∗ to be determined later. We want to show that for any

positive semi-definite R with all eigenvalues at most λ∗ and any ~d satisfying the length and

inner product requirements above, that 〈R>r + d, d∗〉 ≥ x∗.

It is clear that we only need to concern ourselves with the space of at most 3 dimensions

spanned by d∗, r, R>r, since the added d will add some fixed amount in the direction of d∗.

We are concerned with how negative 〈R>r, d∗〉 can be. We know that for any direction z,

if R>r is in the direction z, the largest length it can have is ‖r‖2 cos θ where θ is the angle

between z and r. Then in taking the inner product with d∗, we gain another factor φ where

φ is the angle between z and r. So if R>r is not in the same plane as d∗ and r, then since

cos is increasing in the range [0, π/2), we can replace z with z′ which is the projection of z

into the plane of d∗ and r then both θ and φ increase, and the resulting 〈R>r, d∗〉 is more

negative. Since we are concerned here with the worst case, it suffices here to consider only

when R>r lies in the plane of r and d∗, thus reducing the induction step to 2 dimensions.

Now we prove the general step of the induction. We know that we can view this in 2

dimensions, so let us take d∗ to be the x-axis (recall that we defined it to be unit length,

so we can do this without distorting lengths). Again, we are concerned with minimizing

〈R>r, d∗〉. As we have seen, we can assume R is a scaled projection. So if it is onto a vector
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z which forms an angle θ with r and φ with the negative x-axis, then

〈R>r, d∗〉 ≥ λ∗‖r‖2 cos(θ) cos(φ) ≥ λ∗‖r‖2 cos2(ψ/2)

where ψ is the angle between r and the negative x-axis. Let r = (x, y) now. Our

inductive hypothesis is that x ≥ x∗δ. We also have φ = tan−1(y/x). Standard trigonometric

manipulations (and careful choice of sign) give us that

‖r‖2 cos2(ψ/2) ≥ 1

2
(x−

√
x2 + y2) ≥ 1

2

(
x∗δ − δ

1− λ∗

)
Our goal is to get 〈R>r + d, d∗〉 ≥ 1

2

(
x∗δ − δ

1−λ∗
)

+ x∗δ to be ≥ x∗δ Thus, to see what x∗

works, we solve for x∗ and get this is true if

x∗ ≥
β − (1

2 + β)λ∗

(1− λ∗)(1− 1
2λ
∗)

The expression on the right is positive when λ∗ < β
1
2

+β
. In other words, when λ∗

satisfies this equation, an x∗ exists satisfying what we want. This proves (Deviation) for

this generalized error model, using positive semi-definite matrices, and completes the proof

of Theorem 7

3.6 Biological Rate Matrix Model

Whereas previous sections were focused on mathematically-motivated definitions in order

to prove general statements, our goal in this section is to apply our results and methods

in a more biologically-motivated setting. In particular, previous sections used evolutionary

models where the transition matrices were ‘positive semi-definite’ or ‘double-stochastic’,

terms which rarely arise in the biological literature. We will instead focus on rate-based

evolutionary models. In these models, a stochastic rate matrix Q encodes a stationary

distribution, as well as the transition rates between each pair of states. Although our

motivation in this section is to state explicit results in models favored by biologists, we will

also provide results in this section which apply even when the stationary distribution is

nonuniform.
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Recall that a stochastic rate matrix Q (definition 2.1) satisfies that each row sums to

0 and each off-diagonal entry is non-negative. Of particular interest is the general time-

reversible rate matrix proposed by Tavare in 1986 [82]. We will reproduce his four-state

rate matrix here as a concrete example. Let (π1, π2, π3, π4) be the stationary probabilities

of the four states, and let x1, x2, x3, x4, x5, x6 be non-negative parameters. The rate matrix

is given by

Q =


∗ x1 x2 x3

π1x1/π2 ∗ x4 x5

π1x2/π3 π2x4/π3 ∗ x6

π1x3/π4 π2x5/π3 π3x6/π4 ∗


where the diagonal entries are determined by the necessity of each row summing to

0. It can be checked that this rate matrix produces transition matrices with stationary

distribution given by π = (π1, π2, π3, π4). It can also be checked that this results in a time-

reversible transition matrix (that is, at equilibrium, you will see a transition from state i to

state j as often as a transition from state j to state i), with the rates governed by the xi.

Although biologists prefer to consider such time-reversible instances, our following result

will not make use of time-reversibility.

The rate-matrix model that we work with is the following: each character exhibits a rate

matrix, which we label Q1 and Q2. We do not necessarily need to know these rate matrices,

but we must know the stationary distribution π = (π1, . . . , πC) for each character. These

may differ between the two characters in question, but for simplicity, we will suppose they

are identical – generalizing to different stationary distributions is straightforward. Note

that this does not deviate significantly from our previous models; our previous models had

implicit knowledge of the stationary distributions as all the stationary distributions were

uniform. We now allow for non-uniform stationary distributions, but we will require them

to be known. Note that in this evolutionary model, the transition matrices all share their

eigenbases, and all eigenvalues are positive (both a consequence of Fact 2.3).

We first modify our algorithm.

The difference now is that we are also given the stationary distribution of the underlying
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Algorithm 2 Dependence Detection 2

1: procedure DependenceDetection2({Xr}, {Yr}, ε, π = (π1, . . . , π|C|))
2: for (i, j) ∈ C×C do
3: Zi,j ← |{l | (Xl, Yl) = (i, j)}|
4: end for
5: for (i, j) ∈ C×C do
6: if |Zi,j − nπiπj | ≥ εn then
7: output dependent
8: end if
9: end for

10: output independent
11: end procedure

biological model. Consequently, the main test of the algorithm compares the counts of state-

pairs against the expected counts from the underlying biological models if the two characters

evolved independently, instead of against the counts of other state-pairs. The latter made

sense in the earlier iteration because all state pairs had the same expected count due to the

stationary distributions being necessarily uniform.

We prove the following analogue of Theorem 6.

Theorem 8. Algorithm Dependence Detection 2 is correct with 1− 1/poly(n) probability in

the rate matrix model, with the uniform rank-1 dependence model.

As before, we will need that in the independent case, the counts are close to the expected

products πiπj of the marginal stationary distributions.

Lemma 3.12. If the characters are independent, then for all (x, y) ∈ C ×C, |E[Z(x,y)] −

nπxπy| ≤ O(n1−β) for some constant β depending on λ, the upper bound on the norms of

all the transition matrices.

The proof is identical to the one of 3.5.

We will similarly need that in the dependent case, the counts deviate in a significant

manner. In particular,

Lemma 3.13. If the characters are dependent under the uniform rank-1 dependence model,

then there exists (x, y) ∈ C×C such that |E[Z(x,y)]− nπxπy| ≥ εn.
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Proof. Let d> be the row for the uniform rank-1 dependence model. Let r` be the distribu-

tion of state pairs at leaf ` in the dependent case. We will show that 〈r`, d〉 ≥ ‖d‖22(1− λ),

so ε = ‖d‖22(1− λ)/s2 is sufficient.

Recall that

r>` = d> +

dist(`)∑
i=1

d>Ai + r>0 B

where, as before, Ai =
∏dist(`)
k=i+1Qek and B =

∏dist(`)
k=1 Qek . Since the Qek share an eigenbasis,

and their eigenvalues are all non-negative, we see that d>Aid for any i is positive. d>d =

‖d‖22 is clear. And as before, |r>0 Bd| ≤ ‖r>0 ‖∞‖Bd‖1 by Cauchy-Shwartz and the norm

bound of our transition matrices. Thus,

〈r`, d〉 ≥ ‖d‖22(1− λ)

The proof of Theorem 8 is then identical to the proof of Theorem 6, substituting Lemmas

3.12 and 3.13 for Lemmas 3.5 and 3.6, respectively.

3.7 Discussion and Future Research

In the previous sections, we have shown both positive and negative results for detecting a

specific form of dependence of characters. However, there is a gap between the positive and

negative results in the positive semi-definite world. In fact, both are approximate numerical

results, and having an analytic solution in either case would be more satisfying.

As noted in the preliminaries, we use a very primitive test. There are few instances

where a census is really as good as a likelihood method. As mentioned in the background

information, works on likelihood exist [31, 66], and another direction is to actually apply

their techniques in our models to see how we do comparatively.

There are also new directions to consider on the bigger picture. In this chapter, we have

considered testing the dependence of two characters. As mentioned at the beginning of

the chapter, dependency across more than two characters in biologically realistic scenarios

will still be visible as a dependency of two characters. From a purely theoretic standpoint
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though, we might ask if there is an efficient way to detect dependency in large sets. It is

trivial to extend the result further to any constant number of characters, and thus to solve

the following problem by brute force: given a collection of characters, find all the sets up

to some constant size which are dependent.

Other directions could involve other error models. In particular, one could hope to solve

an issue with our error model: the errors are in some sense blind to the ‘edge lengths’ of

the underlying tree. In biology, the edges are often given a length which reflects the time

between events. Our upper bound on the second eigenvalue becomes a lower bound on this

length. We wonder if there is an adaptation of our model to better mesh with short edge

lengths.

One attempt at a treatment that allows for short edge lengths, is to consider the rate

matrix transitions that we addressed in the last section, and instead of altering the transition

matrices, alter the joint rate matrix. Since we deal with joint-transition matrices, the rate

matrix Q is replaced by a joint rate matrix of the form Q ⊗ In + In ⊗ Q′, and an error is

considered on top of this joint rate matrix. However, detection in the manner we have used

in this chapter becomes trivial in that the dependence either manifests obviously in the

stationary distribution or is undetectable by our census methods. A more in-depth analysis

which attempts to analyze tree structure would be required.
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Chapter 4

Identifying and Diagnosing Faults

in Read-Once Formulas

We now consider the question of diagnosing a read-once formula. In this problem, we are

given a read-once formula F , as well as access to an implementation of F which may be

faulty. First, we would like to know if we can efficiently detect errors in any blackbox

implementation of a blueprint. Second, we would like to know where the errors occur

when the implementation and the blueprint differ. In this chapter, we will give algorithms

to answer both of these questions, though the efficiency of the algorithm for the second

depends on a balance condition on the implementation. These algorithms will show that

the ability to diagnose a formula is dependent only on the ability to diagnose the gates

which comprise the formula, and not specifics of the formula itself.

We will call the tree underlying a read-once formula its topology. The classical model

of read-once formulas uses a basis consisting of AND, OR, and NOT gates, leading to the

use of the term ‘AND-OR trees.’ In this chapter, however, we will not necessarily use this

basis (although it is a clean example basis to keep in mind). We will permit more general

bases, consisting of a set of ‘identifiable’ gates, a notion we make more precise in Section

4.1. The intuition is that the allowable gates are those for which we can solve our problem

on a depth-1 formula consisting only of that gate.

Our error model in this chapter will be deterministic: a ‘faulty’ or ‘bad’ gate will always
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output precisely the wrong answer, relative to the inputs received from its children. One

may think of the fault as adding a NOT gate to the output of the bad gate. On the other

hand, a ‘good’ gate will always output the correct answer relative to the inputs received

from its children. Note that the output of a gate is dependent upon errors occurring in its

descendents, and errors themselves may cancel out, as in [39][86]. In addition, we will permit

the inputs themselves to be faulty – they are negated consistently in the same manner.

Our model and problem can be stated as follows. Suppose we are given a read-once

formula, which we will refer to as the blueprint. This corresponds to an intended design for

the formula. In addition, we are given an implementation of the formula, where some of the

gates of the blueprint are replaced with faulty versions as described above. We are given

only black box access to the implementation – if we set all the inputs, we are allowed to see

the output, but we are given full access to the blueprint – we can see exactly its topology

and its gates. Our goal is to use our knowledge of the blueprint to determine first if the

implementation is faithful to the blueprint, and if it is not, diagnose or locate the faults in

the implementation.

We recall that the implementation has an identical topology to the blueprint. Fur-

thermore, we are armed with knowledge of the gate in the corresponding position of the

blueprint.

In Section 4.1, we will prove our two positive results. The first is that we can always

determine whether the implementation is identical to the blueprint – that is, every gate in

the implementation behaves identically to its corresponding gate in the blueprint.

Theorem 9. Given a blueprint read-once formula f and an implementation f̂ , it is always

possible to test equality, f = f̂ , in a number of probes linear in the sizes of the formulas.

We will also show a matching lower bound.

Proposition 4.1. There exists a blueprint read-once formula and an implementation of

this blueprint, such that testing equality requires a number of probes linear in the size of the

formulas.

The second goal is to diagnose the errors. Suppose that we are promised there is

some constant bound c on the number of errors. Then there are only O(nc) possible im-
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plementation. Treating each of these as an ‘blueprint’, we can compare it to the actual

implementation using the same method as testing equality. Thus in O(nc+1) it is possible

to diagnose the formulas, if there is a constant bound c on the number of errors.

However, if the number of errors is not so bounded, then our positive result requires the

existence of a {0, 1}-oracle for the implementation. This oracle will, given a partial setting

of the inputs, produce two inputs, each extending the given partial setting, one which causes

the implementation to output 0 and one which causes the implementation to output 1, if

such inputs exist.

Theorem 10. Given a blueprint read-once formula f , an implementation f̂ , and a {0, 1}-

oracle for f̂ , we can exactly identify the erroneous gates in f̂ in a number of probes and

oracle queries linear in the sizes of the formulas.

To actually make use of this result, we provide a probabilistic method for implementing

this oracle, under a ‘balance’ condition, whose formal definition is given later in the paper.

Informally, an implementation is balanced if at every gate, the probability of computing a 1

and the probability of computing a 1 are lower bounded by an inverse polynomial, where the

probability is over uniformly random choices for the input bits. Using the theorem above, we

provide a probabilistic method of exact diagnosis when the balance of the implementation

is at least 1/poly.

However, we will show in Section 4.2 a negative result that we essentially require 1/poly

balance. One could hope first that a 1/poly balance of the blueprint is sufficient as we

have no effective control over the balance of the implementation, or even that no balance

condition is necessary. We provide a blueprint which has 1/poly balance, for which we can

get an implementation using just O(log n) errors that has worse than 1/poly balance, and

in fact requires 2Ω(n) probes to diagnose exactly.

Theorem 11. There exists a blueprint read-once formula with 1/poly balance and an im-

plementation that has only O(log n) errors, which requires 2Ω(n) queries to locate all the

errors.

In Section 4.3, we will view this problem as a learning problem, and adapt our results

as learning problems.
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4.1 Testing Equality and Diagnosis of Errors

We define a notion of identifiability for a family of read-once formulas.

Definition 4.2. Let F be a family of read-once formulas with the same topology. F is

identifiable if for every two formulas f1, f2 ∈ F that are different, there exists an input x

such that f1(x) 6= f2(x).

Definition 4.3. For a formula f define the neighborhood, E(f) to be the set of read-once

formulas that are constructed by modifying f by doing an arbitrary subset of the modification

operations listed below:

• For an input x to f , replace x with x

• For a gate g in f , replace g with NOT-g.

We can only expect to diagnose the errors of a formula f exactly if E(f) is identifiable.

We now define the same notion of identifiability for gates.

Definition 4.4. Let g be an arbitrary gate with input arity r. Let fg be the depth-one

read-once formula on r inputs, containing just the gate g. We will say g is identifiable if

E(fg) is identifiable.

We note a few facts about identifiable gates. First, every identifiable gate depends on

all of its inputs – if it does not depend on some input, then there is no way to distinguish

between negating that input or not. Second, for any even arity r, all threshold gates are

identifiable (a threshold gate is one which counts the number of inputs which are 1, and

outputs 1 if it exceeds some fixed threshold). For any odd arity r, all non-trivial threshold

gates, except the (r+1)/2-threshold gate, are identifiable. In particular, AND and OR gates

of any arity are identifiable. Finally, if g is an identifiable gate, then ĝ given by negating

one or more of the inputs to g and possibly the output to g, is also identifiable. NOT-gates

are not identifiable, but if the output of a NOT-gate f , feeds into an identifiable gate g,

then the formula with gates f and g is identifiable.
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On the other hand, XOR gates are not identifiable. The set E(XOR) realizes just two

truth tables, corresponding essentially to the parity of the number of faults surrounding the

XOR gate, while there are 2r+1 possible formulas in E(XOR).

A basis consists of a set of allowed types of gates. For example, a standard basis consists

of AND, OR, and NOT gates; Another consists of just NAND gates.

Definition 4.5. A basis G of gates will be called identifiable if every read-once formula f

over the basis G is identifiable.

We observe that an easy consequence of this definition is that if a basis G is identifiable,

then each gate g ∈ G must be identifiable, as there is a formula consisting of just the gate g

over that basis. Conversely, we will show (Theorem 13) if a read-once formula f consists of

only identifiable gates, then E(f) is identifiable. Thus, a basis G is identifiable if and only if

each gate in G is identifiable – that identifiability of a set of gates means that any formula

constructed from those gates is also identifiable.

While our results hold for an arbitrary basis, it may be helpful for intuition to regard

the gates in the formula as AND, OR, NAND, and NOR. In the remainder of this paper,

we will fix a finite basis consisting of identifiable gates G.

Testing Equality of the Implementation

Let r∗ be the maximum input arity of a gate in G. We begin by showing that for any

blueprint read-once formula f over an identifiable basis G, and an implementation f̂ ∈ E(f),

it is always possible to test equality of f and f̂ in O(2r
∗ |f |) probes to the blackbox. Recall

that equality here means that every gate of f̂ behaves identically to the corresponding gate

in f̂ .1

Theorem 12 (Restatement of Theorem 9). Let f be a blueprint read-once formula, and

f̂ ∈ E(f) an implementation. Then there exists an algorithm to determine the equality of f

and f̂ in O(2r
∗ |f |) probes.

1It is possible to modify the algorithm in this result to test equality of f and f̂ as boolean formulas
instead and drop the identifiability requirement.
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Proof. The algorithm begins at the root of f , verifies that the root is correct, and then

recurses on each subformula.

Let g be the gate at the root of f , and suppose g has input arity r. Let f1, . . . , fr be

the subformulas of the children of g in the blueprint, and let F1, . . . , Fr be the subformulas

of the children of g in the implementation.

Choose vectors ~xi,b for 1 ≤ i ≤ r and b ∈ {0, 1} such that fi(~xi,b) = b, where ~xi,b is

a setting of exactly those variables in the subformula fi. Since the blueprint f is known,

we can work backwards from each fi to find such inputs. Then perform all 2r probes of

f̂(~x1,b1 , . . . , ~xr,br) for b1, . . . , br ∈ {0, 1}.

We will now show that if all 2r probes of f̂ agree with their corresponding evaluations

on f , then the gate g at the root is correct. First, based on the fact that the probes agree

with f , we infer some conditions on the values at the Fi’s, which we cannot observe directly.

First, for every i, Fi(~xi,0) 6= Fi(~xi,1). Suppose otherwise. Since g is identifiable, it

depends on each input. Thus, there is some setting of the inputs other than its i-th input

such that g is either the identity or negation on its i-th input. So if Fi(~xi,0) = Fi(~xi,1), then

g will appear to not depend on its i-th input in f̂ , where we know it does in f , proving that

f and f̂ are not equal, but our assumption here is that all 2r probes of f̂ agree with the

corresponding evaluation on f .

Now we know that for each i, Fi(~xi,b) is equal to either b or 1 − b, which is effectively

saying the i-th input to g is negated or not. And g itself is possibly negated. However,

by hypothesis, g is identifiable, and so we can determine now if g has been replaced by its

negation in the implementation. If it has, we can stop and say they are not equal. If has

not been negated, then we can also apply the identifiability of g to claim that for all i and

b, Fi(~xi,b) = b.

Now we can recurse on each subformula Fi. Since we know that g is correct and we have

inputs ~xj,b for j 6= i to control the other inputs to g, we can effectively isolate and look at

the subformula Fi on its own.

It is clear that for each gate g of the read-once formula f , we perform one set of 2r

probes where r is the input arity of g. Thus, the total number of probes is linear in the size

of f and 2r
∗

where r∗ is the maximum arity of a gate in G.
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Note that in the algorithm we have given, all the probes are chosen only on the assumption

that the previous tests have not proven that the implementation differs from the blueprint.

In fact, we can choose for each subformula f ′, the inputs ~xf ′,i ahead of time, and use these

inputs any time they are needed in the algorithm above. Thus, the algorithm we have given

is non-adaptive. In addition, we note that testing a node g in the formula actually tests

both g and its children, so in a model containing both high and low arity gates, we may

not need to pay the full cost for isolated high-arity gates.

We now state a proposition, showing that we cannot in general solve this problem in a

sublinear number of probes.

Proposition 4.6 (Restatement of Proposition 4.1). There exists a read once formula f

using only arity-2 OR gates such that given an unknown implementation f̂ , Ω(|f |) probes

are required to test equality of f̂ with f .

Proof. Define a ‘caterpillar’ as follows: a caterpillar on 1 gate is simply a formula of one

gate. A caterpillar on n gates is a tree where the left subtree of the root is a caterpillar on

n− 1 gates, and the right child of the root is an input. Let f be a caterpillar on n arity-2

OR gates.

Consider the subset F ⊂ E(f) of possible implementations, consisting of read-once

formulas with exactly two errors. Label the nodes from the root down the caterpillar as

v1, . . . , vn. For 1 ≤ i < n, denote by F i, the implementation that contains errors exactly at

vi and vi+1. Let F = {F i|i = 1, . . . , n− 1}.

We may assume that any algorithm for testing equality is non-adaptive – if we examine

the computational tree based on the probe responses, we see that for every probe, one

branch rejects and one branch continues (or accepts). Thus, we may consider an algorithm

for equality as a set of probes S.

We note that the only input on which f outputs 0 is the all 0’s input – each F i ∈ F

also outputs 0 on this input.

Thus to find a difference, for each F i ∈ F , S must contain an input on which F i outputs

0, and f outputs 1. Fix an F i. The errors in F i are at vi and vi+1. We know that an input

distinguishing F i from f must contain a 1, otherwise both of these will output 0. If an
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input attached to a gate above vi is set to 1, then both formulas will output 1. Thus some

input below vi must be set to 1. In addition, if the right child input of vi is set to 0, then

some input below vi+1 is set to 1. In this case, vi+1 (being in error) will output 0, leading

to vi (again being in error) outputting 1. Thus, in order for an input to cause F i to output

1, the probe must have a 1 at the input that is the right child of vi, and have no 1’s at

inputs above vi.

Thus, each fi ∈ F requires a different input to distinguish it from f , and so the set S

contains at least F probes.

Exact Diagnosis of Errors in the Implementation

Now we approach the main question, of exact diagnosis of the errors in the implementation.

Here, we are not only interested in whether there are any errors, but also identifying exactly

where the errors occur. Precisely, we are again given a blueprint f and an implementation

f̂ . Our aim is to identify exactly which gates in f̂ are faulty compared to their counterparts

from f .

We define a {0, 1}-oracle for the implemented read-once formula f̂ . The rough idea is

that the oracle is given a partial assignment to the inputs of f̂ , and returns two inputs both

matching this partial assignment, one causing the implementation to output 0, and the

other causing it to output 1. The definition below restricts the class of partial assignments

that are allowed.

Definition 4.7. A {0, 1}-oracle for a read-once formula f̂ is an oracle that does the follow-

ing: it takes as input a node g in f̂ , and a set C of the children of g. In addition, it receives

a partial assignment fixing exactly those inputs that are not in the subtrees rooted at nodes

in C. Given these, it outputs two settings of the inputs under C such that combined with

the given partial setting: one setting causes the formula f̂ to output 0, and the other causes

the formula f̂ to output 1. If one or the other such setting does not exist, then it outputs

which one does not exist.

We now show how to use such an oracle to exactly diagnose an implementation f̂ .
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Theorem 13 (Restatement of Theorem 10). Let f be a blueprint read-once formula, and

f̂ be an implementation. Let A be a {0,1}-oracle for f̂ . Then there exists an algorithm to

exactly diagnose the errors of f̂ , using O(n2r
∗
) probes and O(nr∗2r

∗
) oracle calls.

Proof. The key point to our algorithm will be that the identifiability of a node allows us to

determine the faultiness of each of its children.

Suppose that ~x and ~y are partial assignments to the inputs of f such that each input is

given an assignment in at most one of ~x or ~y. Then let ~x ◦ ~y denote the partial assignment

that assigns the values of ~x and the values of ~y. If ~x and ~y exactly partition the inputs,

then ~x ◦ ~y is a full assignment.

In order to apply identifiability at a node g, we will need the following partial assign-

ments:

1. A partial assignment ~yg for all inputs not under g such that either, for every partial

assignment ~x for exactly the inputs under g, f(~yg ◦ ~x) = g(~x), or for every partial

assignment ~x for exactly the inputs under g, f(~yg ◦ ~x) = 1− g(~x).

2. For each child ci of g, two partial assignments to the inputs under ci, ~zci,0 and ~zci,1,

such that ci(~zci,0) = 1−ci(~zci,1) (that is, one will lead to ci outputting 0 and the other

to outputting 1, though we will not need to know which is which at this point).

We will implement a recursive approach involving both a top-down phase and a bottom-

up phase. In the top-down phase, we will maintain the following entry condition: when the

recursion reaches a node g, we will have a partial assignment ~yg as described above. And

in the bottom-up phase, we will maintain the following exit condition: when we finish at g,

we will have diagnosed the errors at every node in the subtree of g, except for g itself.

Note that if we have diagnosed a subtree, then we know exactly where the errors occur

and thus have full knowledge of the subtree. As a result, we can generate inputs under

those subtrees as needed.

The base case for the entry condition is clear – the first node we reach is the root, and

every input is under the root, so an empty ‘partial assignment’ suffices.

Now we show how we satisfy the entry condition for nodes other than the root. Let g be

the current node, for which we already have ~yg as a partial assignment to satisfy the entry
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condition to g. Let c1, . . . , cr be the children of g. Suppose we have already completed

the exit conditions at some (possibly empty subset) of the children of g. For notational

convenience, let us say the completed children are c1, . . . , ck. For each completed child ci,

we can generate ~zci,0 and ~zci,1 as described above because the exit condition applies. Note

that we can only guarantee that ci(~zci,0) and ci(~zci,1) are different but not exactly their

values since the exit condition at ci does not require us to know whether ci itself is faulty.

For each choice of b1, . . . , bk ∈ {0, 1}, we provide A, the oracle, with the following

arguments: the node g, a subset of its children {ck+1, . . . , cr}, and the partial assignment

~yg ◦ ~zc1,b1 ◦ · · ·~zck,bk which assigns to all inputs not under ck+1, . . . , cr. Note that when we

explore the first child under a node g, the partial assignment will just be ~yg.

Since g is identifiable and thus depends on all of its inputs, there is some choice of

b1, . . . , bk for which the oracle succeeds and returns two inputs ~x0 and ~x1 compatible with

the given partial assignment. In fact, we can find two such inputs that have Hamming

distance 1 using the oracle. If ~x0 and ~x1 are at distance greater than 1, simply query

the oracle on every input on a shortest path between them on the hypercube and we will

find two successive points where the answers change. For notation, assume this input on

which ~x0 and ~x1 differ occurs under ck+1. Then let ~yck+1
be a partial assignment agreeing

with both ~x0 and ~x1, assigning to all inputs not under ck+1. ~yck+1
must satisfy the entry

condition for ck+1 since f(~x0) and f(~x1) differ. (Note, therefore that the oracle’s answers

control the order in which the children of g are explored in the top-down phase.)

The base case for the exit condition is also simple: if g is an input (a leaf), then the

exit condition is vacuous and is thus satisfied automatically.

In general, suppose again that we are at a node g, with children c1, . . . , cr, where we

have now satisfied the exit condition for all the children. Then we are able to construct

the partial assignments ~zci,bi for each 1 ≤ i ≤ r and bi ∈ {0, 1}. We also have the partial

assignment ~yg from the entry condition to g. For each choice of b1, . . . , br ∈ {0, 1}, we query

the implementation f̂(~yg ◦~zc1,b1 ◦ · · · ◦~zcr,br) to construct a truth table for g, on the bi’s and

the output value f . Identifiability then applies and tells us exactly which of the children

are faulty. Since the exit conditions at the children were already satisfied, the nodes in each

of their subtrees were already diagnosed. We have now diagnosed the children of g, which
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completes the exit condition for g.

Observe that at if g is not the root, we cannot distinguish between a fault at g and a

fault between g and the root, so we do not yet diagnose g. However, at the root, we can

exactly diagnose g since any error appearing to occur at g must occur at there since there

is nothing above g. This allows us to complete the diagnosis at the root.

To analyze oracle and query complexity, we see that we use at most 2r
∗

oracle calls for

the entry condition to each node, and at most 2r
∗

probes for the exit condition at each

node.

Optimizations can be made in this recursion. We do not need to re-find the inputs for

each child in C ′ every time, and we do not need to iterate over all 2|C
′| possibilities each

time. If c was the last child we recursed on, then we have a setting which already works for

C ′ \ {c}, and thus only need to test the two values of c. This reduces the number of oracle

calls to 2r∗ per node, from r∗2r
∗
, so we use only O(nr∗) oracle calls overall.

Now we provide a probabilistic implementation of this oracle, under an additional as-

sumption on the implementation read-once formula f̂ . To state this assumption, we define

a notion of balance.

Definition 4.8. The balance of a gate g in a read-once formula is the lesser of the prob-

abilities that the value of the gate is 0 or 1, when the inputs below that gate are chosen

uniformly at random. The balance of a read-once formula is the minimum of the balances

of all of its gates.

If the implementation f̂ has balance which is lower bounded by an inverse polynomial

1/p(n), then the following lemma will provide a probabilistic algorithm for a {0, 1}-oracle

for f̂ .

Lemma 4.9. If f̂ is an implementation with balance lower bounded by an inverse poly-

nomial 1/p(n), then there is a probabilistic implementation of a {0, 1}-oracle for f̂ using

(p(n))r
∗

log (2/ε) probes, which fails with probability at most ε.
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Proof. The implementation is simple. On input g, C and some partial setting ~x of the

inputs not under C, we will randomly choose values for the inputs under C until we have

a setting that has f̂ output 0 and a setting that has f̂ output 1, or until we have tried

(p(n))r log (2/ε) inputs.

To prove correctness, it suffices to show that when such settings of the inputs under C

exist, we find them with high probability. We will lower bound the probability of finding

each such setting in a single probe. For simplicity, let us speak of finding a setting of the

inputs under C which causes f̂ to output 0 (the other case is obviously identical). Since

such a setting exists, there exists at least one setting of the specified children C of g such

that f̂ would output 0 if we just shortcut the formula and forced the specified children to

take certain values.

Then the probability when choosing the inputs under C at random of causing the speci-

fied children C to take those values is at least 1/(p(n))r
∗
. Thus, the probability of success of

one probe is at least 1/(p(n))r
∗
, and the probability of failure after (p(n))r

∗
log (2/ε) probes

is at most ε/2. A union bound over failing to find the inputs to produce 0 and the inputs

to produce 1 yields an error probability of at most ε..

Finally, we note that a modification of this algorithm may also be used to test equality

of the blueprint and implementation. The oracle simply uses the blueprint to pick inputs

that yield 0 and 1, and if either disagrees in the implementation, then we stop and reject.

4.2 Lower bounds for Diagnosis

In this section, we show that it is not always possible to locate all errors, or even one error,

in polynomially-many queries if the balance of the implementation is not polynomially-

bounded, even if there are only log n errors in the implementation and even if we assume

that we start from a blueprint that is balanced. In addition, we will use only the arity-2

AND and OR gates. In particular, we now construct a blueprint of polynomial balance,

and show a corresponding class of implementations with logn errors which can not be

distinguished in any polynomial number of queries.
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The tree for our formula f on n nodes will be a complete binary tree. The top log n−

log logn layers will be all AND nodes, and the lower log log n layers will be all OR nodes.

Proposition 4.10. f has polynomial balance.

Proof. Let r be a node in the lower log log n layers. Then r outputs 0 if and only if all

inputs under it are 0. Since it is in the lower log log n layers, it has at most 2log logn = log n

inputs under it, and thus 1
n of its inputs output 0, and all other inputs output 1. Thus it

has polynomial balance.

Now let r be a node in the upper log n−log logn layers. Let s1, . . . , sk be its descendents

at level log log n. Then r is 0 if any of s1, . . . , sk is 0. This is thus with probability at least

1/n. So we need to guarantee the probability r is 1 is high enough. r is 1 if and only if all

of s1, . . . , sk are 1. Thus the probability that r is 1 is (1− 1/n)k. k < n, so the probability

r is 1 is at least 1
e .

Let r1, . . . , rk for k = n/ log n be the nodes at height log log n (the maximal height OR

nodes). The class of implementations will be those where log n errors are located in the set

{r1, . . . , rk}. Note there are

 n
logn

log n

 such formulas, which is super-polynomial.

Proposition 4.11. The class E(f) of implementations can not be distinguished in polyno-

mially many queries.

Proof. We allow the distinguishing algorithm more power. In particular, we also permit the

algorithm to set the values of r1, . . . , rk (before being modified by errors), instead of the

inputs. The only way the algorithm can gain information is if the algorithm can set each

of the faulty ri’s to 0 (so that after fault, they output 1), and the non-faulty ri’s to 1. Any

other values at the ri will cause the implementation to output 0, and offer no information.

Then the best that an algorithm can do to try to diagnose the implementation is to try

every possibility – but there are super-polynomially many.
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4.3 Error Diagnosis as Learning

Work by Angluin et al.[3] and Bshouty et al.[7] provide algorithms for learning read-once

formulas in a general sense. However, their results rely on the use of equivalence queries.

This allows them to compare to a constant circuit to produce an input which causes the

implementation to output a specific value. In particular, this allows them to seek inputs

which yield an output of 0, and inputs which yield an output of 1.

In our model, equivalence queries would have to be between the implementation and an-

other read-once formula in E(f), since our concept class is no longer any read-once formula,

but a read-once formula in E(f). This would appear to be much less powerful. In fact, we

can simulate such equivalence queries using a linear number of membership queries in our

model. The algorithm is simple – run the algorithm of Theorem 12 on the two formulas.

Either the algorithm will complete, affirming equivalence, or it will halt at some point where

we have an input which causes the formulas to have differing outputs. Instead of equivalence

queries, we rely on a {0, 1}-oracle which gives us inputs that cause the implementation to

output specific outputs.

PAC Learning under a Product Distribution

Schapire [75] shows that it is possible to learn read-once (arithmetic) formulas under a

PAC model, if the inputs are drawn from a product distribution. Note that Pitt and

Valiant established that unless RP=NP, even read-once formulas cannot be learned in a

distribution-free model. We adapt to provide a PAC-like-learning algorithm for inputs

drawn from a product distribution, under our model. This yields a more combinatorial

alternative to the algorithm given by Schapire, that functions in our setting.

The intuitive idea to our adaptation is that we can approximately learn the product

distribution over the inputs, and then we can implement a probabilistic oracle like the one

in Lemma 4.9. Now the balance will be dependent upon the product distribution, instead of

uniform. If there are no unbalanced nodes, then this oracle and the algorithm in Theorem

13 simply complete. If there are unbalanced nodes however, we will take advantage of the

fact that we only need to learn approximately. So instead of diagnosing under unbalanced
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nodes, we will simply guess an unbalanced implementation, which will be approximately

close to the actual implementation because both will have low balance.

Proposition 4.12. Suppose we are given an error parameter δ and an accuracy parameter

ε, along with black box access to a real formula f̂ as before, and P a product distribution on

the inputs. Then with probability at least 1− δ, we can output a real formula f̃ ∈ E(f) for

which Prx P [f̃(x) 6= f̂(x)] ≤ ε.

Proof. First we draw from P to learn the product distribution using standard techniques,

until our hypothesis P̃ is with probability at least 1 − δ/2, within variational distance

ε/(8n2/ε · log(2n/δ) · 2r∗) of the P.

Define a node to be balanced if its balance is at least ε/4n, and unbalanced otherwise.

Each time we need to use the {0, 1}-oracle, we will use the parameters of P̃ to generate

samples as needed.

We define a conditional balance of a node to be the balance of the node, when we have

fixed some of its inputs. We will say a node is conditionally balanced under some setting

of some of its inputs, if its conditional balance when those inputs are fixed is at least ε/4n,

and conditionally unbalanced otherwise.

We now describe the changes to the algorithm. Suppose we are at a gate g with children

C, and have diagnosed some of its children C ′ ⊂ C. Instead of querying the oracle 2|C
′|

times, we will skip the role of the oracle. We will sample 4n/ε · log (2n/δ) inputs for the

inputs under C \C ′. Fix one of the settings of the inputs under C ′, and see if the sampled

inputs under C \C ′ will produce both a 0 and a 1. If yes, we proceed as before. Otherwise,

we simply pick one of the sampled inputs arbitrarily, fix those as the inputs under C \ C ′.

Now note that we can still pick inputs setting g to 0 and to 1 by using the fact that C ′ is

non-empty and is diagnosed (so we must have been able to find inputs setting g to 0 and

to 1). If C ′ were empty, then we would never have recursed to g.

Note that we have not diagnosed C \ C ′ and their descendents at this point. Instead,

at the end, we will simply pick a distribution of faults under each C \C ′ so as to minimize

the balance at each node of C \ C ′ and by deciding whether the root is in error or not we

can determine which input is biased against.
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We note that the balance of a node can be written as the minimum of the probability

a node is 0 and the probability a node is 1. Each is linear in the probabilities of each of

its children being 0 or 1. Thus, a dynamic program which for each node remembers an

arrangement of errors under that node which minimizes the probability of the node being

0, and an arrangement which minimizes the probability of the node being 1, will also allow

us to minimize the balance of each node.

First, we analyze the probability of failure. The first source of failure is a probability

δ/2 of failure from learning the product distribution. The other source is if some node g

with children C, and some subset C ′ ⊂ C of diagnosed children, was conditionally balanced

but we decided it was not. Since it is conditionally balanced, we should find an output for

0 and for 1 in each trial with probability at least ε/4n. Since we run 4n/ε · log (2n/δ) trials,

the probability of failure is at most δ/2n. Since we can fail at at most n gates, the total

probability of this type of failure is δ/2. A union bound gives us an overall probability of

failure of at most δ.

Second we analyze the quality of approximation in the absence of failure. Note that

the approximation comes from two sources: our approximating the product distribution

P, and the replacing of subformulas with computed minimum balance formulas. Since our

distribution is variational distance ε/(8n2/ε · log (2n/δ)) and we use the learned distribution

at most 4n2/ε · log (2n/δ) times (each set of 4n/ε · log (2n/δ) trials either lets us diagnose

a node or lets us skip diagnosing a node, since the conditional balance was bad, and there

are n nodes), the total error caused by approximating P is at most ε/2.

Now at each node g for which we could not diagnose some of its children C \ C ′, the

conditional balance for all settings of C ′ was at most ε/4n, so the distribution on C \ C ′ is

ε/4n-close to constant. Since our choice of a guess for the nodes under C \ C ′ minimizes

balance, it must also be ε/4n-close to constant, so the distance between the implementation

and our guess is at most ε/2n. Since there are at most n nodes, the probability that for some

input we are wrong at one or more of them is at most ε/2, giving us an overall probability

of ε of being incorrect.
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4.4 Discussion and Future Research

In the previous sections, we showed how we can diagnosis the faulty gates in a read-once

formula when the gates are wrong in a deterministic version of the von Neumann model.

We also showed how we can adapt it into a learning result. This gives two overall directions

for further research.

First, we could consider different models of faulty gates, or models where gates can fail

in different ways. The notion of identifiability that we gave is quite general though, and due

to identifiability being both necessary and sufficient, further results should relax or change

the goals. One option, which would extend our result, is to ask that faults be identified ‘as

well as possible’. That is, if there is a fault, but the cause is ambiguous, simply identify that

there is a fault and give the possibilities (to contrast, in the previous sections we assumed

there was a unique possible cause). This was a direction we considered because of XOR

gates. In our model, we can at best see the parity of the number of faults occurring at the

inputs and the output of an XOR gate. In a relaxed model, we would be happy with an

output stating that an error exists at this location, and the possible explanations. However,

we have not completed a result on this path.

The second direction involves exploring the idea of the learning version of the result,

and what we call ‘blueprint learning’ in general. In traditional PAC learning (and variants),

the aim is to learn a concept from an entire class. In blueprint learning, we no longer learn

from an entire concept class, but an unknown drawn drawn from a specific ‘local’ area

surrounding a given ‘blueprint’. Our goal is to be able to learn either more efficiently, or

learn where it is otherwise not possible.

We have examined the idea of learning DNFs under a similar model – a blueprint DNF

is given along with a black box containing a DNF which is made from the blueprint by

negating some (or none or all) of the literals in each term. The goal is to discern which

literals are negated in each term. However, our progress in this direction has been limited,

even when the DNFs are further restricted. The departure from trees is certainly a source

of the difficulty – because variables occur multiple times, we have significantly less control.

We will also note an easier version of the DNF blueprint learning problem. If instead

of having to adhere to the topology of the blueprint (as we would if our goal is only to
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discern which literals in each term are negated), we simply had to produce any DNF which

approximates the black box (the set of concepts that can be realizable by the black box

relative to the blueprint remains as above). The blueprint is a huge hint. For each term of

the blueprint DNF, we retain every set of negations of its literals which is consistent with

the drawn samples (that is, for every sample that satisfies the particular set of negations,

the result from the black box is TRUE), and the DNF we learn is the union of all of these

terms. This leads to a consistent formula, which is sufficient in blueprint learning as it is in

the traditional PAC model. The difficulty then in adhering to the given topology is deciding

which of these settings needs to be kept, as we may not be able to keep them all.

An interesting possibility here is that the blueprint allows us to output a hypothesis

which is a DNF. This is impossible in the traditional PAC model under standard hardness

assumptions. However, since we are given the blueprint, we would still like to conform to

the topology of the blueprint if it is possible to do so.
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Chapter 5

Optimizing Read-Once Formulas

with Faulty Gates

We turn our attention now to the question of optimizing a read-once formula consisting of

faulty gates. Specifically, we are given the blueprint of a read-once formula, and we are to

implement it with real gates. Each gate may be faulty as in the von Neumann fault model

– recall that this means that each gate has a probability ε of outputting the complement of

the correct answer instead of what is expected based on the inputs it has received. Note we

are dealing with a probabilistic error model rather than the deterministic fault model used

in the previous chapter.

We are given gates of two types with known failure probabilities, which we will call

‘good’ and ‘bad’. It can be assumed that the good gates fail with lower probability than

the bad gates. The good gates need not be faultless. We are given only a limited supply

of good gates, so we cannot simply cover the entire formula with good gates. Instead, we

must choose where to place them in the formula so as to optimize the average correctness

probability of the implementation over a known input product distribution.

In particular, let F be a read-once formula with n gates, and we are given k < n good

nodes. In addition, we are given a product distribution D over the inputs – that is, each

input has a probability of being 0 or 1, independent of all the other inputs. Our goal is

to use up to k good nodes, along with as many bad nodes as we need, to construct an
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implementation F̂ such that we maximize the correctness:

Pr
x←D

[F (x) = F̂ (x)]

We call this the general allocation problem. We will present an approximate algorithm

which finds an allocation with a correctness that is optimal to within factor (1 + ε) for

ε > 0 of the true maximum. Note that we do not know if there is an exact polynomial-time

algorithm, or if this problem is NP-hard.

We make some simplifications initially, and will discuss how we may remove them later.

We assume that each good gate costs the same amount, regardless of what the gate is.

In addition, we will essentially treat the input arity of each gate as a constant, though as

long as the arities are all bounded by some constant, the algorithm we present in the next

section will still work. However, it does cause us to assume that a good gate is the same

cost regardless of the actual arity of the gate.

5.1 Dynamic Program

In this section, we will provide a dynamic program to solve the general allocation problem

approximately, and prove the following theorem.

Theorem 14. There exists an algorithm which finds a (1 + ε)-approximation in time poly-

nomial in the size of the formula n and 1/ε when all gates have bounded arity.

We do not know currently if there is an exact algorithm, though any exact algorithm

will likely require a different approach than the one presented here.

The good and bad gates will have reliability pg and pb, respectively. Let r be the

maximum (input) arity of any node in the formula. We will have an exponential dependence

on r, but it is reasonable to assume in most applications that r is a constant.

We now give some terms and some notation.

Definition 5.1. An allocation to a tree (or subtree) is a map A : T → {0, 1} where for

x ∈ T , A(x) = 0 indicates we have assigned a bad gate to x and A(x) = 1 indicates we have

assigned a good gate to x. The cost of an allocation is |{x ∈ T |A(x) = 1}|, the number of
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good gates it assigns. A suballocation of A to a node y under x is the allocation A restricted

to the subtree rooted at y.

We will use the following convention, similar to the one used in the previous chapter: x

will denote both a node and its output in a perfect formula, and x̂A will denote the output

of x when the subtree Tx rooted at x is given the allocation A. We will drop the subscript

and write simply x̂ where there is no ambiguity.

For a given allocation A to a tree Tx rooted at x, let a0
x(A) (resp. a1

x(A)) denote the

probability that the output x̂ = 0 when x = 0 (resp. x̂ = 1 when x = 1). Let p0
x (resp. p1

x)

be shorthand for Pr[x = 0] (resp. Pr[x = 1]).

We are ready now to present the dynamic program. Let T be the tree representing

the read-once formula on n inputs. For each 1 ≤ i ≤ n, let pi(0) (resp. pi(1)) denote the

probability that the input i is 0 (resp. 1). Let ε be given for our approximation factor of

(1 + ε). Let δ = 1 + log 1+ε
n .

Suppose we are given k good gates. Our dynamic program will generate a large table

M [x, l, i, j]. For a node x and for each 0 ≤ l ≤ k, we will generate a table indexed by (i, j)

containing allocations to the tree rooted at x of cost at most l. Each table entry will contain

at most one allocation A, and this allocation A will satisfy that δ−(i+1) < a0
x(A) ≤ δ−i and

δ−(j+1) < a1
x(A) ≤ δ−j .

It is possible for multiple allocations to attempt to occupy the cell in the table – this is

the reason for the table and the reason this algorithm can only be approximate. We keep

only a single allocation per table cell, and are guaranteed that whichever we keep has both

parameters a0
x(A) and a1

x(A) very close to the parameters of the other potential occupants

of that cell.

We will now prove that this table suffices. The following observation follows from the

construction of the table.

Observation 5.2. Let A be an allocation to x. Let y1, . . . , ys be the s ≤ r children of x

and A1, . . . , As the suballocations to y1, . . . , ys. Then for t ∈ {0, 1}, atx(A) is a multivariate

polynomial of degree at most r, in the a0
yi(Ai) and the a1

yi(Ai). Furthermore, the exponent

for any of those is at most 1.
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The main consequence of this is that our table is polynomial in size.

Observation 5.3. Let i∗ and j∗ be the largest i and j, respectively, indexing occupied cells

in any table for any node in the tree. Then i∗, j∗ = O(n, 1/δ).

A second consequence, of the second part of Observation 5.2, is that we actually only

need to retain a convex hull on the table since the function is multilinear. This allows us

to reduce the number of cells kept per node from quadratic to linear.

In order to populate the table of a node x, we first populate the tables of its children,

y1, . . . , ys. Then to populate the table for x with cost l, we first consider all tuples (l1, . . . , ls)

with l =
∑
li – that is we take x to be a bad gate and divide the allocation of good gates

to the children of x. Consider a tuple of allocations to the children of x: (B1, . . . , Bs) ∈

M [y1, l1]× · · ·M [ys, ls]. This setup is also an allocation to x, allocating under yi as in the

allocation Bi – call this allocation A. Let aβyi [Bi] denote the probability that ŷi, the output

of yi in our faulty implementation, is β when yi, the true value of yi relative to the inputs,

is β.

Then for this tuple of allocations to the children of x, we can calculate the values a0
x(A)

as follows:

a0
x(A) =

∑
b1,...,bs |x(b1,...,bs)=0

[
s∏
i=1

pbiyi

]

·

pb ∑
c1,...,cs |x(c1,...,cs)=0

s∏
i=1

(χ(bi=ci)a
bi
yi(B) + χ(bi 6=ci)(1− a

bi
yi(Bi)))

+(1− pb)
∑

c1,...,cs |x(c1,...,cs)=0

s∏
i=1

(χ(bi=ci)a
bi
yi(B) + χ(bi 6=ci)(1− a

bi
yi(Bi)))


where χ(bi=ci) is an indicator variable, taking value 1 when its condition of bi equaling

ci is satisfied, and 0 otherwise (and similarly for χ(bi 6=ci)). The outer sum is over the correct

values b1, . . . , bs for the children y1, . . . , ys, and the inner sums deal, respectively, with when

the realized values c1, . . . , cs for ŷ1, . . . , ŷs give us the correct answer 0 and when they do

not. A similar calculation, replacing the test of x = 0 with x = 1 gives us a1
x(A). This covers

all allocations A where x is not chosen to be a good node. In order to cover allocations

62



where x is chosen to be good, we repeat the process, except we take tuples (l1, . . . , ls) with

l − 1 =
∑
li (since we have l total gates, and we use one for x, there are l − 1 left for the

children of x). We can then use the same formula, replacing occurrences of pb with pg since

we now take x to be a good gate.

It is clear that the combinations of these allocations and assigning x to be good or

bad guarantees that the cost of each allocation to Tx we consider is cost at most l. As

mentioned, we place each of the considered allocations into the table M [x, l], keeping only

one allocation per cell. This operation takes time polynomial in n and δ, but exponential

in r. We do not know how to circumvent this exponential dependence on r and suspect it

is not possible to do so in general.

Once we have populated the table at the root r, we can simply consider every allocation

left in the table at M [r, k], and calculate the average correctness probability at r as p0
ra

0
r +

p1
ra

1
r .

Theorem 15. This algorithm produces a (1 + ε)-approximation.

Proof. The intuition here is that there is some optimal allocation, but since in our algorithm

we only keep one allocation per table cell, we have made a series of mistakes and discarded

correct allocations in favor of incorrect allocations. However, each time we do so, we have

traded the correct allocation for an incorrect allocation which is very close in results.

Formally, let us first fix a post-order traversal of the nodes of the formula, v1, . . . , vn.

Now, let us construct the following sequence of allocations: A0, . . . , An. A0 will be the true

optimal allocation, and An will be the allocation that results from our dynamic program.

Ai for i ≥ 1 will be the optimal allocation, except that the available allocations at subtrees

rooted at v1, . . . , vi are limited to those which appear in the table of our dynamic program.

This does affect available allocations above these nodes, but this will not be an issue.

Now we observe that the success probability of Ai+1 is at most a factor δ off from

the success probability of Ai. Consider the suballocations selected in Ai and Ai+1 for the

subtree rooted at vi+1. If the suballocation chosen for Ai is still available, then the whole

allocation Ai is available for Ai+1. Thus, the correctness of Ai+1 is at least the correctness

of Ai. It is also not more, since every choice for Ai+1 is available for Ai.
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Now suppose that the suballocation chosen for Ai is not available for Ai+1. This oc-

curs because there is another suballocation at vi+1 which is in the same table cell as the

suballocation used by Ai. The parameters of the suballocations which are in the same cell

are within factor δ by our choice of δ. By repeated application of Observation 5.2 from

vi+1 up to the root, this implies that there is an allocation available to Ai+1 whose success

probability is within factor δ of Ai, by replacing the suballocation at vi+1 with the other

suballocation in that table cell and leaving all other allocations the same. Thus, the success

probability of Ai+1 is at least the success probability of this modified version of Ai, which

is at most factor δ off from the success probability of Ai, proving the claim.

As a result, going from A0, the optimum, to An, our output, we lose at most a factor

δn, which is

δn =

(
1 +

log (1 + ε)

n

)n
≤ elog (1+ε) = 1 + ε

5.2 Discussion and Future Research

As mentioned in the description, our algorithm seems to only be approximate, since other-

wise the number of allocations we may have to consider in this brute-force fashion is very

large. It would be interesting if there is a clever way to circumvent some portion of these

allocations to arrive at an exact solution in polynomial-time. Note that we do not know if

this problem is NP-complete, though we do not believe it is.

We noted that we only need to retain a convex hull. A natural question is why this is

necessary – perhaps a pareto-optimal curve would suffice. Perhaps the natural inclination

would indeed be that we want to make each gate as good as possible. However, an OR gate

with one input very likely to be 1 and the other very likely to be 0, would actually prefer

poor accuracy at the input likely to be 0.

Finally, this algorithm is exponential in r. This seems necessary if we follow the previous

theme of having ‘read-once’ formulas which allow for a variety of gates and not simply AND

and OR gates, as the function to calculate atx recursively could have a number of terms which

64



is exponential in r. The way we construct the possible allocations is also exponential in r

though, so we would also need to find a clever way to cut that number down.

In another direction, we can generalize beyond just two levels of gates (good and bad), to

more levels of gates. The algorithm essentially does not change, even if instead of allocations

of each gate, they are given costs. The dynamic program then has to iterate through all the

valid combinations for each cost level, but the numbers we have to consider are bounded

by the size of the overall formula and have no potential of being exponential. Indeed,

a further extension allows us to handle a spectrum of gates, for which the relationship

between cost and reliability is uniformly continuous. We turn this into a discrete set of

gates by approximation and solve as above, and correctness essentially follows from uniform

continuity of the cost function.

As mentioned at the start of the chapter, the dynamic program does not care about

the specific arity of a gate, as long as it is bounded. However, modeling the good/bad gate

world realistically with varying arities seems like it should be doable with reasonable cost

functions.

Our current goal with this research is to extend the dynamic program to work for

formulas in general (as opposed to read-once formulas). It is easy to augment the current

dynamic program to deal with the simple case where only a constant number of variables

have fan-out greater than 1. Instead of keeping a0
x and a1

x, we keep more specific versions

of these values, which condition on the specific values of all the variables of fan-out greater

than 1. So for example, if x1 and x2 were the only variables which had fan-out greater than

1, at each node we would keep analogues of a0
x and a1

x except conditioned on each possible

setting of (x1, x2) as (0, 0), (0, 1), (1, 0) or (1, 1). Clearly, this blows up the size of the grids

we keep since we must continue to consider all possibilities.

However, there are nodes which are not ancestors of any x1 or x2 values, and at these

nodes, we do not need to condition on the settings of (x1, x2). As a result, each node

conditions on some subset of the variables which have fan-out greater than 1, not necessarily

all of them. This, and the approximate nature of our dynamic program, give some hope to

the possibility of extending to formulas.
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suffice to build (almost) all trees (i). Random Structures and Algorithms, 14(2):153–

184, 1999.
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