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High Redshift Galaxies As Probes Of The Epoch Of Reionization

Abstract
Following the Big Bang, as the Universe cooled, hydrogen and helium recombined, forming neutral gas.
Currently, this gas largely resides between galaxies in a highly diffuse state known as the intergalactic medium
(IGM). Observations indicate that the IGM, fueled by early galaxies and/or accreting black holes,
``reionized'' early in cosmic history--the entire volume of the Universe refilling with ionized gas. This thesis
analyzes and develops several ways to use observations of high redshift galaxies to probe this period, the
Epoch of Reionization (EoR).

We examine the redshift evolution of the Ly-alpha fraction, the percentage of Lyman-break selected galaxies
(LBGs) that are Lyman-alpha emitting galaxies (LAEs). Observing a sharp drop in this fraction at z ~ 7, many
early studies surmised the z ~ 7 IGM must be surprisingly neutral. We model the effect of patchy reionization
on Ly-alpha fraction observations, concluding that sample variance reduces the neutral fraction required.

We quantify the prospects for measuring the enhanced spatial clustering of LAEs due to reionization with
upcoming observations from the Hyper Suprime Cam. LBGs from that survey provide a useful comparison
sample. We consider the effect of foreground ``interlopers'' on the clustering signal. We conclude that if HSC
observes back into the EoR, the abundance and spatial clustering of galaxies and the size distribution of void
regions evolve more strongly with redshift for LAEs than LBGs. Moreover, measuring the cross-power
spectrum between LAEs and LBGs reduces the interloper effect.

We examine line intensity mapping experiments which trace large scale structure by measuring spatial
fluctuations in the combined emission, in some convenient spectral line, from individually unresolved
galaxies. We develop a technique to separate ``interloper'' emissions, which these surveys are vulnerable to, at
the power spectrum level, based on distortions introduced when the interloper emissions are (incorrectly)
assumed to originate from the target redshift. Applying this to a hypothetical [CII] emission survey at z ~ 7,
we find the distinctive interloper anisotropy can be used to separate strong foreground CO emission
fluctuations.
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ABSTRACT

HIGH REDSHIFT GALAXIES AS PROBES OF THE EPOCH OF REIONIZATION

Jessie Taylor

Adam Lidz

Following the Big Bang, as the Universe cooled, hydrogen and helium recombined,

forming neutral gas. Currently, this gas largely resides between galaxies in a highly dif-

fuse state known as the intergalactic medium (IGM). Observations indicate that the IGM,

fueled by early galaxies and/or accreting black holes, “reionized” early in cosmic history–

the entire volume of the Universe refilling with ionized gas. This thesis analyzes and de-

velops several ways to use observations of high redshift galaxies to probe this period, the

Epoch of Reionization (EoR).

We examine the redshift evolution of the Lyα fraction, the percentage of Lyman-break

selected galaxies (LBGs) that are Lyman-α emitting galaxies (LAEs). Observing a sharp

drop in this fraction at z∼ 7, many early studies surmised the z∼ 7 IGM must be surpris-

ingly neutral. We model the effect of patchy reionization on Lyα fraction observations,

concluding that sample variance reduces the neutral fraction required.

We quantify the prospects for measuring the enhanced spatial clustering of LAEs due

to reionization with upcoming observations from the Hyper Suprime Cam. LBGs from

that survey provide a useful comparison sample. We consider the effect of foreground

“interlopers” on the clustering signal. We conclude that if HSC observes back into the

EoR, the abundance and spatial clustering of galaxies and the size distribution of void

regions evolve more strongly with redshift for LAEs than LBGs. Moreover, measuring

the cross-power spectrum between LAEs and LBGs reduces the interloper effect.

We examine line intensity mapping experiments which trace large scale structure by

measuring spatial fluctuations in the combined emission, in some convenient spectral line,

from individually unresolved galaxies. We develop a technique to separate “interloper”

v



emissions, which these surveys are vulnerable to, at the power spectrum level, based on

distortions introduced when the interloper emissions are (incorrectly) assumed to orig-

inate from the target redshift. Applying this to a hypothetical [CII] emission survey at

z ∼ 7, we find the distinctive interloper anisotropy can be used to separate strong fore-

ground CO emission fluctuations.
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resulting in an absorption line. By the time the light reaches the next
cloud of neutral the light has redshifted and the previous absorption line
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Chapter 1

Introduction

This thesis focuses on the Epoch of Reionization (EoR). We begin in §1.1, by describing

reionization and by placing it within the larger cosmic context, discussing how this period

fits into the history of the Universe as a whole. We follow that in §1.2, with a brief

discussion of some of the ways of observing the EoR, both current and planned. In §1.3,

we summarize our current understanding of the EoR as informed by the observational

probes of §1.2. This motivates the work carried out in the rest of this thesis, as described

in the subsequent chapters. In §2 and §3, we consider current and future measurements of

high redshift galaxies and the implications of these measurements for our understanding

of the reionization history of the Universe. In these sections, we consider two prominent

techniques for selecting high redshift galaxies: narrow band surveys for Lyα Emitting

galaxies (LAEs) and dropout selected Lyman-Break Galaxies (LBGs). Specifically, in

§2, we consider the effects of cosmic variance on measurements of the Lyα fraction,

fLyα , the fraction of LBGs that are LAEs. In §3, we make predictions for observations

of galaxy clustering by the Hyper-Suprime Cam (HSC), a new instrument on the Subaru

Telescope, and discuss how the clustering signal can be used to trace reionization. Then,

in §4, we consider intensity mapping surveys, which provide another promising approach

for mapping out large scale structure during the EoR. Here we develop a new method to

circumvent contamination from interloper populations in these measurements. In §5, we
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conclude.

1.1 A Very Good Place to Start

Looking at optical images of galaxies or the Hubble Ultra Deep field (Fig. 1.1) might

convince you that the space between galaxies is empty and uninteresting. However, such

an understanding could not be farther from the truth. In reality, the space between galaxies

occupies most of the volume of the Universe, and contains most of its matter. Currently,

roughly half of the dark matter exists in intergalactic structures, such as dark matter halos

too small to host galaxies (McQuinn 2016). The situation is even starker as we peer

further back into the Universe: by z∼ 6, 95% of the dark matter exists between galaxies

(McQuinn 2016). Baryonic matter exhibits similar patterns. By z & 1.5, 90% of the

baryonic matter in the Universe resides in the space in between galaxies (Ferrara and

Pandolfi 2014). This region is known as the intergalactic medium (IGM). And it is out

of the IGM that the structure we observe around us formed. So the IGM is an intriguing

area of study.

Interest in the EoR arises when one tries to harmonize observations of the early Uni-

verse with observations of the present day IGM. Observations of the Cosmic Microwave

Background (CMB) (discussed in §1.2.2) tell us that by roughly 400,000 years after the

Big Bang (z∼ 1100) the cosmic gas “recombined” forming neutral hydrogen and helium.

However, when we examine the present day IGM, via, for example, the spectra of quasars

(discussed in §1.2.3), we see that that hydrogen and helium are almost completely ion-

ized. Clearly, at some point in the last 13 Gyrs the IGM was ionized. We believe that the

IGM was gradually photoionized by star-forming galaxies and/or accreting black holes in

a process termed “reionization”. The time period over which this takes place is referred

to as the “Epoch of Reionization" (EoR).

Technically, reionization was a multistep process. The threshold energy to ionize

a hydrogen atom is 13.6 eV. Helium requires 24.6 eV to singly-ionize and 54.4 eV to
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Figure 1.1: The Hubble Ultra Deep Field, spanning roughly 1/10th the diameter of the

full moon, appears largely empty in groundbased photos. However, a long exposure of the

field, with the Hubble Space Telescope, shows 10,000 galaxies, some from the end of the

EoR. We are interested in the space between these galaxies. (Photo credit: NASA/ESA/S.

Beckwith(STScI) and The HUDF Team)
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doubly-ionize. Due to the similarities in energy required, it is believed that hydrogen

ionization and helium single ionization happened at the same time, while helium double

ionization was a much later process. Here we limit our focus to the former and refer to

that period exclusively as “reionization" or the EoR.

In Fig. 1.2, we see a schematic of the history of the Universe with significant periods,

particularly as they relate to reionization, delineated. Immediately following recombina-

tion we enter a period known as the cosmic dark ages: light-emitting objects, such as stars

and accreting black holes, had not yet formed; the only light consisted of freely stream-

ing CMB photons and 21-cm line photons from neutral hydrogen. At z ∼ 20− 30, the

first stars form in dark matter halos of ∼ 106M�. The halos are just big enough to host

these stars but are too small for sustained star formation. The gas in the halo cools and

condenses, ultimately forming stars, due to the presence of molecular hydrogen. How-

ever, molecular hydrogen is fragile and easily disassociated by the UV radiation from

surrounding stars. Further, a single supernova would be energetic enough to unbind the

cool and condensing gas out of which the stars were forming (Barkana and Loeb 2001).

While these early stars provided some ionizing photons, the bulk of reionization required

halos with total mass & 108M� to form. These halos were large enough to allow atomic

line cooling and host the galaxies which in turn fueled reionization (McQuinn 2010). The

first galaxies formed in abundance around z ∼ 10 (Barkana and Loeb 2001; Bromm and

Yoshida 2011). And reionization took place between roughly z∼ 6 and z∼ 12; so by & 1

billion years after the Big Bang, the Universe was fully ionized.

1.1.1 Ionizing Sources

In the above, we have assumed that galaxies drove reionization. And, indeed, that is the

general consensus (see, for example, Faucher-Giguère et al. (2008); Becker and Bolton

(2013)). Historically, both galaxies and quasars were considered good candidates for

fueling reionization. However, high redshift galaxy observations suggest that galaxies

alone may reionize the Universe, provided that the escape fraction, fesc is sufficiently
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Figure 1.2: Schematic of the history of

the Universe, from the Big Bang to the

present day, including reionization and

the end of the cosmic dark ages. (Image

from NAOJ)
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Figure 1.3: Figures from McQuinn (2016). (Left) Originally published in Bouwens et al.

(2015). The luminosity functions of LBGs (for more information on this selection tech-

nique see §1.2.4.1) observed by the Hubble Space Telescope, for a range of redshifts

covering much of reionization. (Right) Based off of luminosity functions, an estimate

of whether galaxies can provide enough ionizing photons to maintain reionization. This

figure shows an estimate of the emissivity of ionizing photons at z∼ 6, based both on the

observed galaxy population and the integration of luminosity functions to include fainter

galaxies, as a function of fesc. These values are compared with the emissivities needed

to maintain reionization using model values according to Kuhlen and Faucher-Giguère

(2012). Becker and Bolton (2013) have concluded that emissivities several times those

shown above are allowed.
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large (Robertson et al. 2010; Finkelstein et al. 2012a). The escape fraction quantifies the

average fraction of ionizing photons that escape each galaxy’s host halo and are available

to ionize atoms in the IGM. Further, we have a growing number of luminosity function

measurements – the average abundance of galaxies as a function of their luminosity – for

dropout-selected galaxies at z > 6 from the Hubble Space Telescope (HST) (Finkelstein

et al. 2012b; Bouwens et al. 2012; Ellis et al. 2013; McLure et al. 2013) (for a more

detailed discussion of luminosity functions, see §1.2.4.3). The left panel of Fig. 1.3

shows some current luminosity function measurements for a range of redshifts. As can

be seen, the abundance of galaxies declines with increasing redshift. This behavior is

expected since it parallels a drop in the halo mass function.

In order to estimate the ionizing flux provided by galaxies from the observed luminos-

ity functions, one must make assumptions about the escape fraction, fesc. If fesc & 0.2,

observed galaxies can maintain reionization at z∼ 6. However, if fesc . 0.2, then fainter,

and currently unobserved, galaxies are required to contribute to the ionizing budget. In-

deed, measurements of the high redshift galaxy luminosity function indicate a steep faint

end slope (Kuhlen and Faucher-Giguère 2012; McLure et al. 2013; Bouwens et al. 2015),

implying that faint galaxies emit roughly twice as many ionizing photons as those emit-

ted from currently observed galaxies. Of course, fesc may scale with luminosity and there

is a limit below which halos are not massive enough to host galaxies (McQuinn 2016).

Better knowledge of fesc will be necessary to more fully understand which galaxies drove

reionization.

While we can estimate the number of ionizing photons based on the number of sources,

we can also infer the total emissivity of ionizing photons – that is, the number of ionizing

photons per volume per units time – based on quasar absorption lines. Miralda-Escude

(2003) find that at z = 4, the ionizing emissivity is only slightly greater that that required

to ionize hyrdrogen. To push this measurement to higher redshifts, we can turn to Bolton

and Haehnelt (2007) who estimate that at z ∼ 6, 1− 3 ionizing photons per hydrogen

atom are emitted each Gyr. Since the age of the Universe at z ∼ 6 is 0.94 Gyr, there
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are just barely enough photons to ionize the Universe by this redshift. This model is

called “photon-starved reionization." Of course, in this calculation, they have made as-

sumptions about the evolution of the ionizing emissivity; a higher ionizing emissivity in

the past would soften this conclusion. Becker and Bolton (2013) revisit their work with

higher redshift data and more rigorous calculations and find that at z≈ 5, there can be up

to 3-10 photons per hydrogen atom per Gyr. These higher limits would result in a less

photon-starved reionization process. All of this is shown in the right panel of Fig. 1.3.

While galaxies are the generally assumed source of reionization, this still remains

something of an open question. For example, Giallongo et al. (2015) claim to have de-

tected enough quasars at z ≈ 6 to reionize the Universe. Relying on quasars as the only

source of reionization, however, is not without its own complications. Quasars provide a

hard ionizing spectrum which would doubly-ionize helium by z = 4 (Madau and Haardt

2015). This conflicts with observations that support a later date for He II reionization; for

instance, patchy absorption in the He II Lyα forest supports He II reionization completing

only at z∼ 2.7 (Shull et al. 2010). Nonetheless, quasars certainly ionized their local envi-

ronment. While galaxies are most likely the dominant source of reionization, a complete

picture would have to include the effects of other ionizing sources, such as quasars.

In any case, once the Universe is ionized, a meta-galactic ionizing background main-

tains reionization. At high redshifts, this background is most likely maintained by those

stars and galaxies which fueled reionization (McQuinn 2016). However, by z ∼ 2− 3,

there are enough quasars to maintain it (Haardt and Madau 1996; Faucher-Giguère et al.

2008; Haardt and Madau 2012).

1.1.2 The Ionization State of the IGM

Interpreting almost all observations of reionization, such as those we will be discussing

in §1.2, requires a model of the reionization process. Thus, accurate and precise models

are crucial and have been the subjects of much work (see, for example, Furlanetto and

Oh (2005); McQuinn et al. (2007b)). Here we focus on describing the broad contours
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of the reionization process as it is currently understood. We follow Ferrara and Pandolfi

(2014) in dividing the reionization process into three phases: “pre-overlap,” “overlap”

and “post-overlap.”

Models for reionization generally assume a galaxy-fueled reionization. In the pre-

overlap phase, galaxies ionize the gas surrounding them, creating an ionized bubble cen-

tered on the galaxy itself. Here, the IGM is essentially a two-phase medium; the gas is

either ionized or neutral with a sharp transition between the two phases. Thus, reioniza-

tion is extremely inhomogeneous. We can describe it as a “patchy” process. The ioniza-

tion of a specific region is dependent only on its distance to the ionizing source and the

efficiency of the ionization process. At these redshifts, the ionizing photons have a short

mean free path so radiation can be treated locally, meaning that we can ignore the history

of the ionizing emissivity and focus only on its instantaneous value when calculating the

intensity of the ionization field (Lidz 2016).

Over time these bubbles grow and eventually begin to overlap and merge. This is the

overlap phase. The stage should occur very rapidly as the bubble growth rate will acceler-

ate as they merge. There is general agreement that the bubbles grow faster around groups

of galaxies, due to the greater proximity of ionized regions. Thus, overdense regions ion-

ized first and the ionized bubbles spread from there into the underdense regions. On large

scales, reionization was an “inside out” process. This remains true even though dense re-

gions are somewhat harder to ionize than less dense ones. In the dense regions, electrons

and photons collide more often, recombining, and then need to be ionized again. Even

so, the abundance of ionizing sources in the overdense regions is enough to overcome this

(Barkana and Loeb 2004).

There will remain some small, dense clumps of neutral gas that do not contain an

ionizing source. These clumps are self-shielding and ionize during the final phase. In

this, the post-overlap phase, the ionized regions steadily push their way into the neutral

gas ionizing them from the outside in (Barkana and Loeb 2007).

Fig. 1.4 shows this expected patchy reionization process in a map of 21-cm emission
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Figure 1.4: Figure from Mellema et al. (2006). A 21-cm map of the IGM based on

numerical simulations showing the process of reionization. They plot here log10(Tb),

where Tb is the 21-cm temperature (in mK) relative to the CMB. This signal is discussed

further in §1.2.1; for now, it is instructive to note the extended and patchy nature of the

reionization process. The redshift range shown here is somewhat arbitrary and based

on the details of their simulation. At early times, the Universe is smooth and neutral.

However, as early ionizing sources turn on, bubbles of ionized gas appear. Those bubbles

grow with time, eventually merging with other bubbles which accelerates their growth

until the entire Universe is fully ionized.
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from simulations. Ionized regions start as discrete patches and as we move to lower

redshifts, the patches grow and merge, eventually ionizing the whole Universe.

In our discussion of the reionization process, we have only briefly mentioned why this

field is significant and interesting. It is worthwhile to discuss this more explicitly here.

First, as mentioned above, most of the matter in the Universe resides in the IGM. Thus, the

IGM traces the underlying density field (Bond et al. 1996), and the structure we observe

grew out of the IGM. The process of reionization impacts almost all of the baryonic

matter in the Universe. Second, several important transitions occur during the EoR, and

so it is a key period in the history of the Universe. During the EoR, the first galaxies

formed. Prior to reionization, dark matter dominated structure formation. The EoR is the

transition point where baryonic matter, in the form of gas in the IGM, became important

in the formation and evolution of structure (Zaroubi 2013). Third, and this is related to the

previous point, reionization heats the IGM to 104 K which has significant effects on latter

galaxy formation. This may help in explaining the missing satellite problem, which can

be described as follows: according to cold dark matter models of structure formation, the

Milky Way halo should contain an abundance of small dark matter subhalos, yet relatively

few satellite galaxies are actually observed (McQuinn 2016). Typically, for a cool IGM,

galaxy formation is simply a matter of whether the gas in the halo had enough time to cool

and condense. But after reionization, the heated IGM produces a pressure that opposes

condensing and ultimately suppresses galaxy formation. This IGM pressure can force

halos to be larger than they would otherwise be before accreting and forming stars (Quinn

et al. 1996; Bullock et al. 2001; Bovill and Ricotti 2009). This results in fewer satellite

galaxies than might be expected for the same underlying dark matter halo distribution.

Finally, observations are just beginning to reach into the midst of reionization. This

is a period in the history of the Universe we are still working to understand. And that is

exciting!
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1.2 Observational Signatures of Reionization

As we have touched on above, observations of reionization are very important both in

shaping our current understanding and in addressing the many open questions in this field.

However, observing reionization is not a straightforward task. We are trying to study

the gas in between galaxies roughly 13 billion years ago. Unlike galaxies or quasars,

hydrogen gas is not highly luminous. Therefore, cosmologists have had to develop a

variety of creative and clever ways to study the high redshift IGM. Broadly, these methods

can be divided into two groups. The first group consists of direct observations of the

neutral gas itself, primarily emission from neutral hydrogen due to hyperfine splitting of

its ground state, which we discuss in §1.2.1. The second group relies on observations of

objects formed either before or during reionization and the effect that neutral hydrogen

(or free electrons, in the case of the CMB) along the line of sight to these objects has on

our observations of them. Observations of CMB (§1.2.2), high redshift quasars (§1.2.3)

and high redshift galaxies (§1.2.4) fall into this group.

1.2.1 21-cm Observations

As alluded to above, the most natural way of studying the EoR would be to observe the

neutral hydrogen gas itself. Nature, fortunately, has provided a mechanism by which we

might do so, thanks to the hyperfine splitting in the ground state of the hydrogen atom.

When the spins of the proton and the electron in the hydrogen atom are aligned, the atom

is in a higher energy state than when the spins are anti-aligned. Eventually the atom will

transition into the lower energy, anti-aligned, state, emitting a photon with a wavelength

of λ = 21 cm in the atom’s frame. While this transition is forbidden, and thus has the

extremely low transition rate of 2.9× 10−15 s−1, the amount of neutral hydrogen in in

the Universe is significant enough to make this a promising observational probe (Zaroubi

2010). Because 21-cm emission undergoes cosmological redshift, observations of it will

not just map the distribution of neutral hydrogen across the (2-dimensional) sky but in-
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stead probe the full 3-dimensional distribution of the gas. In fact, 21-cm observations

are an intriguing probe of not just the EoR, but also of the matter distribution during the

cosmological dark ages. Furthermore, the redshifted 21-cm signal can be used to study

the distribution of neutral gas left over after reionization completes, at which point neu-

tral hydrogen remains only in galaxies and their circumgalactic media. Here, of course,

we are interested in the 21-cm signal from hydrogen during the EoR. That signal will be

redshifted to λ = 21 cm (1+ z), i.e., to a couple meters in wavelength at the redshifts of

interest.

The key quantity in characterizing 21-cm emission is the spin temperature, TS. The

spin temperature is defined based on the ratio of the populations in the two hyperfine

states:
n1

n0
= 3exp

(
−T∗
TS

)
, (1.1)

where n1 and n0 are the number densities of hydrogen atoms in the excited triplet state

and the ground singlet state, respectively; T∗ = 0.068 K, the transition energy between the

two states.

The spin temperature can be calculated as the weighted average of a number of differ-

ent temperatures. This method is instructive as the interactions between these terms drive

the emission that we are seeking to observe.

TS =
TCMB + yk Tk + yα Tk

1+ yk + yα

, (1.2)

where TCMB is the temperature of the CMB, Tk is the gas kinetic temperature, and yk and

yα are the kinetic and Lyα coupling terms, respectively. Here, following Zaroubi (2010),

we have assumed that the Lyα color temperature is equal to the gas kinetic temperature,

Tα = Tk. This is a reasonable assumption for the cases in which we are interested (Field

1958; Madau et al. 1997; Furlanetto et al. 2006). The three terms in this equation are

the three competing processes that shape TS: 1) absorption of CMB photons (TCMB);

2) collisions with other particles (Tk); and 3) scattering of UV photons (Tα ) (Loeb and

Furlanetto 2013). This last term is also know as the Wouthuysen-Field effect (Field 1958,
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1959; Wouthuysen 1952). TS is influenced by different ionizing sources through these

various processes; thus, observations of the spin temperature should help to clarify exactly

which sources drove reionization (Thomas and Zaroubi 2008). As a general rule, since all

observations must, by necessity, be of TS against the background of the CMB, TS is only

visible when it differs from TCMB.

Fig 1.5 shows how these temperatures change with redshift and which terms dominate

TS at various redshifts. TCMB consistently decreases as (1+ z). At z > 200, Tk is coupled

to the temperature of the CMB via Compton scattering off of free electrons left over from

recombination. Here, due to the high density, TS equilibrates with Tk. Thus, TS = TCMB

and there is no 21-cm signal. As the redshift drops, these temperatures begin to uncouple.

From z ∼ 30 to 200, Tk no longer follows TCMB, since the density and ionized fraction

are too low to couple them together. Instead, Tk cools as (1+ z)2, faster than the CMB is

cooling. However, the density does remain high enough for TS to continue to be coupled to

Tk; thus, TS is cooler than the CMB and the 21-cm signal may be observable in absorption

(Carilli 2006). Somewhere in that range of redshifts, the density has dropped enough that

collisions can no longer couple TS to Tk and TS again begins to follow TCMB. From z∼ 20

to 30, the first ionizing sources begin to form, which again couples TS and Tk. This is due

to the Wouthuysen-Field effect. Continuum photons from these early sources excite the

hydrogen atom from the 1s to the 2p; the atom then spontaneously decays back to 1s. In

this process, the atom can change hyperfine states. Eventually Tk and TS outstrip TCMB

and the 21-cm signal will be visible in emission (Zaroubi 2010). This transition happens

before the Universe is significantly ionized and is due to X-ray heating which heats Tk

above TCMB, although the details here vary depending on the strength and efficiency of

early X-ray sources. Once reionization is complete and the neutral hydrogen is ionized,

the 21-cm signal will disappear.

The observable quantity is the brightness temperature contrast between a neutral hy-

drogen cloud and the CMB. Since the entire sky is glowing with CMB background radia-

tion, we are specifically interested in the differential brightness temperature between the
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Figure 1.5: Figure from Zaroubi (2010). This figure illustrates the global evolution of

the CMB temperature (blue), the gas temperature, Tk in the text, (green) and the spin

temperature (red). The CMB temperature follows (1 + z). The dashed and solid red

lines depict two different histories for TS. The other temperatures have more complicated

evolutions as discussed in the text.
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21-cm emission and the CMB background. This brightness temperature can be calculated

as follows:

δTb = 28mK(1+δ )xHI

(
1− TCMB

TS

)(
Ωbh2

0.0223

)√(
1+ z
10

)(
0.24
Ωm

)
, (1.3)

where δ is the mass density contrast, xHI is the neutral fraction, TCMB and TS are as we

discussed them above, h is the Hubble constant in units of 100 km s−1 Mpc−1, and Ωb

and Ωm are the normalized baryonic matter and matter densities, respectively. Closer

examination of this formula shows how the 21-cm signal can be used to study a diversity

of topics. At z . 15, for plausible assumptions regarding the efficiency of X-ray heating

and production, we can approximate TS� TCMB and so
(
1− TCMB

TS

)
≈ 1. Thus, variations in

δ and xHI become much more significant. In the early stages of reionization, xHI is close

to 1, so variations in Tb should probe the underlying density field. However, variations

in the spin temperature will also play a role in these early stages, at least after the first

sources turn on. Of course, as reionization progresses, xHI takes on a larger role and Tb

should be able to tell us about the process of reionization (Zaroubi 2010). Fig 1.6 shows

how Tb varies with redshift and how it corresponds to various stages in the Universe’s

history.

So far we have discussed the promise of 21-cm observations. The challenges, how-

ever, are many. While we want to observe the signal coming from the high redshift Uni-

verse, that signal must be untangled from foregrounds and noise. For studying the EoR,

we are interested in frequencies of ∼ 100 MHz. In that regime, bright foregrounds dom-

inate the sky; the neutral hydrogen emission is expected to be only 10−4 times as bright

as the foreground emission (Carilli 2006). That is, the foregrounds are several orders of

magnitude brighter than the signal of interest. Galactic synchrotron emission is by far

the strongest foreground contaminant, contributing roughly 75%. The remaining 25%

of foreground emission comes from a combination of other galactic sources (supernovae

remnants and free-free emission) and extragalactic sources (radio galaxies and galaxy

clusters). Extensive theoretical work has gone into studying the foregrounds of EoR mea-

surements (Shaver et al. 1999; Di Matteo et al. 2002, 2004; Cooray 2004; Santos et al.
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Figure 1.6: Figure from Pritchard and Loeb (2010). The upper panel (a) shows the evolu-

tion of fluctuations in the 21-cm signal. This timeline is pieced together from simulation

slices. The cool colors (purple and blue) indicate absorption phases, black is no signal,

and red is an emission phase, here due to reionization. The bottom panel (b) shows vari-

ation in Tb over roughly this same timescale.
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2005; Jelić et al. 2008; Gleser et al. 2008; Wilman et al. 2008; de Oliveira-Costa et al.

2008; Sun et al. 2008; Waelkens et al. 2009; Sun and Reich 2009; Bowman et al. 2009).

Shaver et al. (1999); Jelić et al. (2008, 2010); Bernardi et al. (2009) and Bernardi et al.

(2010) have shown that these signals tend to be smooth along the frequency direction,

in contrast to the high redshift signal which fluctuates along that direction. Thus, fitting

these foregrounds and then subtracting them could allow us to recover the EoR signal

(Zaroubi 2013).

Our ability to separate these signals has been enhanced by the development of the

foreground wedge cleaning technique. 21-cm instruments measure the full power spec-

trum of spatial fluctuations across the sky. We can, however, when using interferometers,

separate this signal into two components: k‖, along the line of sight, and k⊥, in the plane

of the sky. It has been discovered that in k⊥− k‖ space, the foreground contaminates are

confined to a specific wedge shaped region, while the EoR signal dominates the rest of the

space. The precise dimension of the wedge and the sharpness of the boundary between

the two regions is determined by a number of instrument parameters, such as antenna

separation, signal reflection, angular response of the beam, and bandwidth. All this is

based on a combination of theoretical and observational work (Datta et al. 2010; Morales

et al. 2012; Parsons et al. 2012; Vedantham et al. 2012; Thyagarajan et al. 2013; Hazelton

et al. 2013; Pober et al. 2013; Liu et al. 2014a,b). The promise of this technique is that

observations in the right region of k⊥−k‖ space are essentially free from foreground con-

tamination, leaving the EoR signal clearly, if faintly, visible (DeBoer et al. 2016). This

technique has already been used to good effect by the Precision Array to Probe the Epoch

of Reionization (PAPER), who, although they do not have the required sensitivity to actu-

ally detect the 21-cm signal due to reionization, were able to place a tight upper bound on

it (Ali et al. 2015). Further, the Hydrogen Epoch of Reionization Array, which promises

deeper observations than PAPER, is designed to use this technique to avoid many of the

complications of foreground emission (DeBoer et al. 2016).

In addition to foregrounds several other effects can complicate observations. Iono-
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spheric fluctuations, due to fluctuations in the index of refraction in the ionized plasma,

are particularly insidious over large fields of view. Any calibration techniques are compli-

cated by rapids variations in the ionosphere, due to storms or other disturbances. Thermal

noise, either sky noise or receiver noise, is another complication. Finally, one of the

more challenging problems in these observations, and in low-frequency radio astronomy

in general, is man-made interference. The radio bands needed to observe the EoR are not

protected ones, and, thus, are used for a variety of allocations. In an effort to avoid this

problem, many of these instruments are built in remote areas (Carilli 2006).

Despite all this, multiple instruments are seeking to detect the 21-cm signal. Instru-

ments such as the Giant Metrewave Telescope (GMRT) in India, the Low Frequency

Array (LOFAR) in the Netherlands, the Murchinson Widefield Array (MWA) in west-

ern Australia, the Precision Array to Probe the Epoch of Reionization (PAPER) in South

Africa are trying to detect 21-cm signals for z . 12. For these instruments, the signal-

to-noise is too low for detailed images of the EoR; instead, they should be able to detect

the signal statistically. The Hydrogen Epoch of Reionization Array (HERA), currently

being built in South Africa, should provide still greater sensitivity. And, in the future, the

Square Kilometer Array (SKA) will hopefully add to these efforts. We look forward to

their observations in the coming years.

1.2.2 Cosmic Microwave Background

The CMB is our earliest view of the Universe; as such, the CMB photons stream through

the EoR on the their way from the surface of last scattering to us. The reionization process

imprints signals on these photons, allowing us to calculate constraints on both the timing

of reionization, from the mean optical depth, and the duration of reionization, from the

kinetic Sunyaev-Zel’dovich effect (kSZ). Both of these effects rely on scattering of the

CMB photons off of free electrons. Thus, CMB observations will compliment well 21-cm

observations; the former probes the distribution of ionized gas, the later the distribution

of neutral gas.
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1.2.2.1 Mean Optical Depth

By definition, ionization separates electrons from their atoms, resulting in an increase in

the number of free electrons. This boost in the number density of free electrons causes an

increase in Thomson scattering of the CMB photons, producing a detectable signal. This

signal is parametrized by τ , the effective optical depth to reionization:

τe =
∫

ne(z)σT (cdt/dz)dz, (1.4)

where ne is the number density of free electrons, σT = 6.65×10−25 cm2 is the Thomson

cross section and c, of course, is the speed of light. The integral is over the line of sight

distance the photons travel. Only periods in the history of the Universe when there are

significant numbers of free electrons contribute to this integral. Thus, the period from

recombination to reionization has little effect on τe. This calculation is dominated by the

free electrons produced in the ionization of hydrogen and the single ionization of helium;

the double ionization of helium contributes only a few percent of the total value of τe

(Reichardt 2016)

Because of the integral nature of this calculation, τe is insensitive to the precise details

of reionization. It is, however, sensitive to shifts in the number density of free electrons.

If we assume reionization is an instantaneous process, there is only one such seismic shift.

This is the simplest approximation, and following Loeb and Furlanetto (2013), equation

1.4 can be solved analytically for a flat universe:

τe = 4.44×10−3 × {[ΩΛ +Ωm (1+ zreion)
3]1/2−1}. (1.5)

In this calculation, it has been assumed that helium singly-ionizes at the same time as

hydrogen. zreion is the redshift of instantaneous reionization which corresponds roughly

to the midpoint of an extended reionization period. It is often reported alongside τe.

This Thomson scattering has two general effects on the CMB. First, it washes out

small scale anisotropies in the CMB. After a moment’s reflection on the scattering pro-

cess, this is somewhat intuitive. Photons traveling along a line of sight to the observer
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may be scattered out of that path; conversely, photons may be scattered into that line of

sight from other directions. Together, these effects work to suppress the CMB anisotropy

power. Unfortunately, this effect is highly degenerate with the amplitude of the primordial

power spectrum of scalar perturbations as shown in Fig. 1.7 (Reichardt 2016).

Second, Thomson scattering can also produce polarization in the CMB. This process

is slightly more complicated. Consider light scattering off of a free electron as shown in

Fig. 1.8. While the incident light may have any polarization, only certain polarizations

will be scattered. Specifically, the polarization of the scattered light must be perpendicular

to its direction of travel. Thus, if we examine Fig. 1.8, for light incident from the left,

only the vertically polarized photons will be scattered into the observer’s line of sight,

which points out of the page in the illustration. Similarly, for light incident from above,

only the horizontally polarized light will be scattered into the line of sight. Since the

electrons scatter light from all directions, the result is a mixture of horizontal and vertical

polarizations. Now, if the incident light is not symmetric, specifically if the light is more

intense coming from one direction than the other, the resulting scattered beam will be

polarized. More precisely, if the incident field has a quadrupole anisotropy between the

initial intensities along the horizontal and vertical axises, the resulting scattered light will

have a net polarization (Loeb and Furlanetto 2013).

Since the CMB has such a quadrupole, Thomson scattering due to reionization leads

to linear polarization. This signal peaks at large scales, leading to the reionization “bump"

as shown in Fig. 1.7. This feature cannot be produced by any other parameter in stan-

dard cosmological models, making it a clear signal of τe. However, the “bump” only

tells about optical depth; it is insensitive to changes in the duration of reionization. Cur-

rent measurements from the Planck Collaboration et al. (2016) place τe at 0.058±0.012,

corresponding to zreion ' 8.8±0.9.
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Figure 1.7: Figures from Reichardt (2016) showing the effect the Thomson optical depth

has on observations of the CMB. (Left) The effects of varying optical depth, τ , and the

amplitude of scalar perturbations, As, on the CMB temperature power spectrum. Increas-

ing τ results in a decrease in the power spectrum. Specifically, the power is reduced by

a factor of e−2τ on scales ` & 20, smaller than the horizon at EoR. However, varying As

can produce a signal that is degenerate with this decrease due to τ . Here, As, the dashed

red line, has been tuned to match τ = 0.08, the dark blue. (Right) The effects of varying

optical depth on the CMB E-mode polarization power spectrum. Increasing τ produces

a bump on large scales, ` . 20, scales greater than the horizon size at the EoR. Unlike

in the figure on the right, As, the red dashed line, cannot be tuned to mimic this bump

at large scales. The dashed blue line and the solid dark blue line have the same optical

depth, τ = 0.08, but the duration of reionization is six times longer for the dashed versus

the solid line. As is shown here, the duration of reionization has virtually no effect on

E-mode power as long as the total optical depth is not changed.
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Figure 1.8: Figure from Hu and White (1997). This cartoon illustrates how CMB polar-

ization is generated from Thomson scattering. The central electron scatters photons, here

coming in from the left and above, into the line of sight to the observer, out of the page.

Only polarizations that are perpendicular to both the line of sight and to a line connecting

the incoming emission and the scattering electron are allowed. This means that for the

light from the left, only the vertical polarization is allowed; similar, for the light from

above, only the horizontal polarization is allowed. The resulting emission along the line

of sight is a mix of those two states. However, if the incoming field is asymmetric, in par-

ticular, if it has quadrupole anisotropy between the initial intensities along the horizontal

and vertical axises, the resulting field will be polarized.
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1.2.2.2 Kinetic Sunyaev-Zel’dovich Effect

In our discussion so far, we have not yet considered the impact of the bulk velocity of the

electrons. If the electrons have a bulk velocity relative to the CMB, photons scattering off

of those electrons will experience a Doppler shift (Sunyaev and Zeldovich 1972; Phillips

1995; Birkinshaw 1999; Carlstrom et al. 2002). This shift is known as the kSZ effect:

the observed CMB temperature is colder (hotter) if the scattering electrons move away

(towards) the observer. Following Reichardt (2016), we can quantify the kSZ signal along

the line of sight as:

∆TkSZ

TCMB
(n̂) = σT n̄e,0

∫
dη a−2 e−τe(η) x̄i(η)(1+δx)(1+δb)(−n̂ ·v), (1.6)

where σT is the Thomson scattering cross section; n̄e,0 is the current mean electron den-

sity; the integral is over conformal time, η ; a is the scale factor at η ; τe(η) is the optical

depth from the observer along the line of sight to conformal time η ; x̄i(η) is the mean

ionization fraction at η ; δx and δb are perturbations in the ionization fraction and density

field, respectively; n̂ is the line of sight unit vector; and v is the peculiar velocity of free

electrons at η .

The kSZ effect, thus, has two physical components: the Ostriker-Vishniac effect (Os-

triker and Vishniac 1986), based on density perturbations (δb) in the ionized Universe and

the patchy reionization signal sourced by perturbations in the ionized faction (δx) due to

the patchiness of reionization. The Ostriker-Vishniac effect is particularly significant at

lower redshifts when the ionized IGM has the most significant fluctuations in velocity and

density. Thus, this effect hardly depends on the properties of the EoR (Loeb and Furlan-

etto 2013). In contrast, the patchy reionization effect, as the name implies, does depend

on the reionization process. The bubbles of ionized gas that make up the early stages of

reionization have peculiar velocities relative to the background. It is these velocities that

allow them to contribute to the kSZ. Qualitatively, their contribution to the kSZ depends

both on the duration of reionization, and the distribution of bubble sizes. The longer the

EoR was, and, thus, the longer the bubbles existed to contribute to the CMB fluctuations,
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the greater the amplitude of the signal. Further, the patchy reionization signal peaks at the

scale corresponding to the bubble sizes midway through reionization, at the point when

reionization was maximally patchy (Loeb and Furlanetto 2013). The Ostriker-Vishniac

effect and the patchy reionization signal are expected to have comparable power. Compli-

cating the picture still further, it is difficult to differentiate between the two effects because

they have the same spectral dependence and similar angular dependence (Reichardt 2016).

Finally, there are still other contributions to the CMB anisotropies at the angular scales

of interest, especially foreground fluctuations in the Cosmic Infrared Background (CIB),

that must be separated from the kSZ signal. Thus, using the kSZ to study reionization is

dependent on careful modeling and subtraction of the Ostriker-Vishniac effect and other

foreground contributions (see, for example, Trac et al. (2011); Shaw et al. (2012)). Using

the South Pole Telescope SZ survey data, George et al. (2015) are able to place an upper

limit on the duration of reionization, concluding that ∆z < 5.4.

1.2.3 Quasars and the Lyα Forest

Our most detailed probes of the IGM at high redshift, back into the EoR, currently come

from quasars (Becker et al. 2015a). Quasars are the emission from accretion disks orbit-

ing super massive black holes at the center of distant galaxies (Rees 1984). More relevant

here, although quasars are rare, they can be found across the entire sky with similar spec-

tra, such that absorption lines in their spectra are easy to identify. Most crucially, many

quasars formed before the end of reionization; we have a growing population of quasars

at z > 6 (Fan et al. 2006; Mortlock et al. 2011). Looking back at these quasars provides

multiple lines of sight with which to study the IGM.

1.2.3.1 Lyα Forest

Absorption lines from the Lyα transition in the spectra of quasars are a signal of neutral

gas along the line of sight to the quasar. As shown in Fig. 1.9, when the light emitted

from the quasar encounters neutral hydrogen, that light is scattered. The quasar emission
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arriving at λα = 1216 Å in the frame of an intervening cloud of neutral hydrogen may

be absorbed, exciting the hydrogen from the 1s to the 2p state. The atom eventually de-

excites, reemitting the 1216 Å photon, but that process is isotropic – with a negligibly

small chance of the photon being reemitted in the line of sight direction – and so the

net result is an absorption line in the quasar’s spectrum. Since the light from the quasar

redshifts as it travels, multiple clouds of neutral hydrogen along the line of sight to the

quasar produce multiple absorption lines. By the time the light reaches a new clump of

neutral hydrogen, the absorption lines from other clouds of neutral hydrogen will have

redshifted away from λα in the new cloud’s frame. A new part of the quasar’s spectrum

will be at the right wavelength and ready to be scattered. All light at wavelength λ in

the quasar’s frame, where λ < λα is vulnerable to this, although, of course, the exact

distribution of clouds of neutral hydrogen will determine whether a particular region of

the spectrum is absorbed.

High redshift quasar spectra generally show a full “forest” of blended absorption lines,

with each line constituting a “tree” in the Lyα forest. Fig. 1.10 shows the spectrum of

a quasar at z = 3.12; the Lyα forest is clearly visible, tracing the distribution of neutral

hydrogen along the line of sight to the quasar.

We can use the Lyα forest absorption lines to calculate the neutral fraction of hydro-

gen. In general, the optical depth τ is related to the fraction of light that passes freely

through neutral hydrogen clouds, F , by:

F = e−τ . (1.7)

τLyα , the optical depth of a uniform medium of neutral fraction xHI , can be calculated by:

τLyα ≈ 3.3×105
(

Ωm

0.3

)−1/2
Ωb

0.04

(
1+ z

7

)3/2

xHI, (1.8)

where Ωm, and Ωb are the normalized matter and baryonic matter densities, respectively.

Taking reasonable values for the matter densities, Ωm = 0.27, and Ωb = 0.046, we can

calculate just how much of the hydrogen must be neutral in order to have a significant

effect on the optical depth. For 90% of the light to be absorbed at z∼ 6, a neutral fraction
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Figure 1.9: Image from Edward Wright (www.astro.ucla.edu). This cartoon shows how

clouds of neutral hydrogen between the observer and the quasar produce the Lyα forest.

Along the line of sight from the quasar to the observer are clouds of neutral hydrogen.

As light from the quasar travels through those clouds, the light at 1216 Å in the cloud’s

frame is absorbed, resulting in an absorption line. By the time the light reaches the next

cloud of neutral the light has redshifted and the previous absorption line is no longer

at 1216 Å in the new cloud’s frame. The light is again absorbed at 1216 Å, producing

another absorption line. This process repeats with each cloud of neutral gas.
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Figure 1.10: Spectra of z = 3.12 quasar (figure from Pérez-Fournon et al. (2010) as found

in Zaroubi (2013)). Blueward of the Lyα emission feature (mostly the upper panel) is the

Lyα forest. The numerous absorption lines, due to patches of neutral hydrogen along the

line of sight to the quasar, create all of the “trees” in the Lyα forest.
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of 6× 10−6 would be sufficient, assuming the medium is uniform at the cosmic mean

density. In fact, 〈xHI〉 & 10−4 results in effectively complete absorption, assuming a

homogenous neutral fraction. The absence of strong absorption in low redshift quasars is

one line of evidence that the IGM is fully ionized (Becker et al. 2015a).

From a large population of quasars at a range of redshifts, one can measure the evo-

lution of the Lyα forest optical depth. A measurement of this quantity is shown in Fig.

1.11. The optical depth increases with increasing redshift, implying that the hydrogen

neutral faction is increasing as one peers further back into the Universe. The rise in τ at

z ∼ 6 may be a signal of an extremely rapid end to reionization (Fan et al. 2006; Gnedin

and Fan 2006). However, since low neutral fractions can result in complete absorption,

the Lyα forest is only an effective probe for the outskirts of the EoR.

1.2.3.2 Gunn-Peterson Trough

As early as 1965, Gunn and Peterson (1965) showed that a sufficient quantity of neutral

hydrogen distributed along the line of sight to a quasar can result in complete absorption

of all photons with λ < λα . While the quasar emission encountering distinct clumps of

neutral hydrogen as it travels to the observer results in the discrete “trees” of the Lyα

forest, a column of neutral gas will result in a completely absorbed trough. This trough

is known as the Gunn-Peterson trough. The presence of a clear Gunn-Peterson trough in

quasar spectra may be a signal of the end of reionization, though, of course, as shown in

equation 1.8, the neutral fraction can be very low while still producing a Gunn-Peterson

trough.

Fig. 1.12 shows the spectrum of quasars for a range of redshifts, starting at z = 5.74

and extending all the way out to z = 6.42. The low redshift quasars show the expected

Lyα forest blueward of the quasar’s own Lyα emission. However, as one looks to higher

and higher redshift, the spectra of the quasars smooths out, eventually showing clear

Gunn-Peterson troughs, suggesting that the end of reionization is approximately z ∼ 6.

Examination of individual spectra complicates this picture a bit. J1411+1217 at z = 5.93
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Figure 1.11: Evolution of the Lyα forest effective optical depth as a function of redshift

(figure from Becker et al. (2015b) as found in Becker et al. (2015a)). The measurements

in blue are from Fan et al. (2006) and in black, from Becker et al. (2015b). Increasing

optical depth corresponds to increasing neutral fraction.
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seems to have a Gunn-Peterson trough, while the quasars closest to it in redshift do not.

Similarly, J1048+4637 at z = 6.20 has somewhat more features than one would expect

in a true trough; its redshift neighbors, however, have complete absorption troughs. This

variation should serve to remind us that reionization is a patchy process and that different

lines of sight back to the same redshift will encounter different distributions of neutral

and ionized hydrogen.

Together, the Gunn-Peterson trough and the Lyα forest suggest an end to reionization

at z ∼ 6. However, the idiosyncrasies of this measurement mean that this conclusion is

somewhat open to interpretation. On the one hand, an earlier end to reionization could be

consistent with this data. Since both signals saturate at a low neutral fraction, an almost

completely ionized universe could, nevertheless, have enough neutral hydrogen at z ∼ 6

to produce this data. On the other hand, significant troughs are observed at z < 6, perhaps

indicating the presence of neutral hydrogen patches. This would argue for a later end to

reionization.

1.2.3.3 Dark Gaps

Since the Gunn-Peterson trough saturates at low neutral fraction, one alternative is dark

gap analysis, looking at the length of the troughs (Croft 1998; Barkana 2002; Songaila

and Cowie 2002). For patchy reionization, even in a mostly neutral universe, there will

be ionized regions. These comparatively small ionized regions will not produce Lyα

absorptions lines, instead they will fully transmit the quasar emission. When looking at

the quasar spectra, these regions will make their presence known in what appear to be

spikes in the otherwise smooth Gunn-Peterson troughs. The troughs in between these

spikes are the dark gaps. Analyzing their number and distribution intuitively seems like

a good probe of the IGM. However, in practice it is difficult to convert the qualitative

presence of the gaps into more quantative constraints. Indeed, statistics of the gap vary

from observation to observation even of the same quasar (Mortlock 2016). As these

statistics are not yet robust, it is difficult to use them to place actual constraints on the
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Figure 1.12: Quasar spectra from z ∼ 5.7 to z ∼ 6.4 (figure from Fan et al. (2006)).

For the lower redshift quasars (z . 6), the Lyα forest is somewhat visible at the lower

wavelengths. However, at higher redshifts, all emission in the equivalent regions in the

spectra have been absorbed; this is the Gunn-Peterson trough.
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ionized fraction.

1.2.4 Galaxies

In recent years, researchers have detected a growing number of galaxies out beyond z∼ 6.

As we discussed in §1.1, this growing population of high redshift galaxy observations pro-

vides insight into which sources fueled reionization. Many of these galaxies, certainly the

ones at z & 7, formed during the EoR. Thus, the galaxies themselves are useful as ob-

servational probes for mapping the progress of reionization. As discussed below, galax-

ies, particularly LAEs, make possible several different measurements that may constrain

reionization: in particular, LAE luminosity functions (in §1.2.4.3), the Lyα fraction (in

§1.2.4.4), observed galaxy clustering (in §1.2.4.5), and intensity mapping (in §1.2.4.6).

The obvious way to select galaxies at a specific redshift is though spectroscopic sur-

veys, using features in the galaxies’ spectrum to select galaxies at the redshift of interest.

While this has been useful at low redshift, for example the 2dF Galaxy Redshift Survey

(Colless et al. 2001) and the the Sloan Digital Sky Survey (Gunn et al. 2006; Eisenstein

et al. 2011; Dawson et al. 2013; Smee et al. 2013), such surveys require many hours

of observations, and the time required only increases for more distant objects. Further,

at high redshifts, the galaxies are too faint for wide-field, blind spectroscopic surveys

(Finkelstein 2015). Instead, observers have turned to two main ways of detecting large

populations of high redshift galaxies, both based on clever selections of filters with which

to observe a given field: the Lyman-break selection technique, discussed in §1.2.4.1; and

the narrowband Lyα selection technique, discussed in §1.2.4.2.

1.2.4.1 LBGs

We expect young, star-forming galaxies to have a strong ultraviolet continuum. Further,

they, like all UV-bright astrophysical objects, should have a drop in their spectra at the

Lyman limit, λrest = 912 Å in the rest frame. A photon of this wavelength can ionize

a hydrogen atom in its ground state. In these young galaxies, we expect the drop to be
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roughly an order of magnitude due to both the hydrogen edge in stellar photospheres, and

absorption by interstellar neutral hydrogen, which is expected to be plenteous in young

galaxies (Dunlop 2013). In addition, neutral hydrogen in the IGM will also contribute

to the drop. The presence of this step, always at 912 Å in the galaxy’s frame, gives

us a way to quickly identify galaxies at a specific redshift. The step will redshift to

λobs = 912 Å(1+ z) in our frame and so, if we observe the field with broadband filters

specifically chosen to fall on either side of the step, we should detect the galaxy in the red,

but not the blue, band. Galaxies detected in this way are called Lyman Break Galaxies

(LBGs) or dropout galaxies, often referred to as x-dropouts, where x is the name of the

filter in which the galaxy is no longer visible or “dropped-out”. Fig. 1.13 shows this

technique in action for a z ∼ 7 galaxy. This method was first used in the modern era by

Guhathakurta et al. (1990) and Steidel and Hamilton (1992), who used U and B j filters to

look for galaxies at z∼ 3. The real power of this technique is in the use of filters to select

galaxies at a specific redshift. Entire fields of view can be searched for galaxies at a target

redshift at once, as opposed to spectroscopic observations which are limited to specific

galaxies. Of course, as we will see below, this does come at some cost.

The Lyman limit, at an observed wavelength of λobs = 912 Å(1+ z), sets the location

of the observed step for low redshift galaxies. At higher redshifts, as the presence of

neutral hydrogen surges, the ever-increasing Lyα forest shifts the step to 1216 Å in the

rest frame. As we saw in §1.2.3.1, the neutral fraction does not have to be high for the

Lyα forest to completely saturate. Thus, for all redshifts of interest to this thesis, we can

consider the Lyman-break as occurring at 1216 Å. In fact, at z& 5, the neutral hydrogen is

expected to be dense enough for the break to be at least' 1.8 mag (Madau 1995), making

the Lyman-break more than twice as strong as any other intrinsic breaks in galaxy spectra

(Dunlop 2013).

For most surveys, the two filters straddling the break are not considered enough. In-

stead several more red filters are considered necessary to truly identify the galaxy as an

LBG. This can be seen in Fig 1.13 where in addition to the dropout filter, and the filter
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Figure 1.13: A z' 7 galaxy found via the Lyman-break selection technique in the Hubble

Ultra Deep Field (figure from Dunlop (2013)). Image taken with WTC3/IR on the HST

in four filters, from left to right: z850, Y, J110, H160. The galaxy is not visible in the first

image, but in the longer wavelength, redder images, the galaxy can be seen in the center

of the image. The galaxy is z-dropout galaxy, and these pictures together illustrate how

the dropout selection technique works.
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immediately redward of that, two more filters, in which the galaxy can be seen, are in-

cluded. Indeed, the general requirement is for the galaxy to dropout in the band blueward

of the break and for the galaxy to be visible in at least two bands redward of the break.

This should confirm both the existence of the break and the galaxy’s overall blue color

longward of the break, as expected for young, UV-bright galaxies (Dunlop 2013).

So far, we have depicted the Lyman-break technique as able to select galaxies at spe-

cific redshifts. This is true up to a point. Finkelstein (2015) claims that this technique

gives redshifts with a precision of ∆z∼±0.5 for galaxies at z > 6. Throughout this thesis

we have relied on Ouchi et al. (2009) who used Monte-Carlo simulations to calculate the

redshift distribution of their z-dropout (z∼ 6.9) galaxies. Their distribution, shown in Fig.

1.14, peaks at z∼ 6.9 but has tails extending out half a redshift in each direction.

It is possible to increase the redshift accuracy of broad band measurements, though it

still cannot match the accuracy of spectroscopic observations. This technique, known as

photometric redshift fitting uses data from all the filters that the field has been imaged in.

A prototypical galactic spectral energy distribution template is fit to the data from all the

filters, and that fitting is used to determine a more accurate redshift. Of course, for this

technique to be useful, images from more than 2 or 3 filters are necessary. In addition, the

redshift is dependent on the templates used to fit the data (Finkelstein 2015).

While the Lyman-break technique is a widely used and highly successful method of

detecting high redshift galaxies, its samples remain vulnerable to contamination by lower

redshift objects. We grapple with some of these implications in §3.5.1. Spectroscopic fol-

lowup has shown that Lyman Break surveys are vulnerable to three types of interlopers:

1) low redshift, dusty, red galaxies, 2) cool galactic stars and 3) post-starburst galaxies

with a strong Balmer break (Dunlop 2013). Ouchi et al. (2009) argue that for z′ dropouts,

appropriate cuts – in their case, the drop-out selection and z′− y > 1.5 – can exclude all

of the first category; thus, cool galactic stars will be the dominant source of interlopers.

These interlopers may comprise up to 40% of the sample. At the moment, this contami-

nation is one of the expected costs of Lyman-break surveys.
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Figure 1.14: A plot of the redshift distribution of z-dropout galaxies detected in the Subaru

Deep Field (top) and GOODS-N (bottom) based on observations performed by Ouchi

et al. (2009), from whom the figure is taken. The distribution is derived from Monte

Carlo simulations of their observations. The redshift of a galaxy whose redshift was

confirmed spectroscopically is indicated by the arrow. While the redshifts of these z-

dropout galaxies are ∼ 7, they are distributed over a reasonable depth in redshift, making

the precise redshift of any dropout galaxy difficult to quantify.
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1.2.4.2 LAEs

So far, we have only talked about Lyα as an absorption line. One can also observe Lyα in

emission, and use this to select high redshift galaxies. In galactic spectra, Lyα emission

is mainly powered by two mechanisms. In the first, ionizing radiation from hot young

O and B stars ionizes neutral hydrogen in the local interstellar medium. That gas will

recombine, radiatively cascading to the ground state, and a significant fraction of the re-

sulting radiation will be Lyα emission (see, for example, Johnson et al. (2009); Raiter

et al. (2010); Pawlik et al. (2011)). In the second case, neutral hydrogen within the galaxy

is collisionally excited. As the gas returns to the ground state, it may emit Lyα photons

(Dijkstra 2014). In any case, a significant population of galaxies have strong emission

lines at 1216 Å in their frame. Of course, this line is redshifted by the expansion of the

Universe as it travels to us, with the wavelength of the line telling us the redshift of the

emitting galaxy. This redshift forms the basis of the narrow band technique. The tech-

nique is as follows: observe a field in a broad continuum band and then again in a narrow

band centered on 1216 Å(1+ z), for the redshift of interest. LAEs should be brighter in

the narrow band than in the continuum band. Thus, by selecting the objects with those

properties, one can develop a sample at the redshift of interest. Galaxies selected in such

a way are called Lyα Emitters or LAEs.

LAEs are often characterized by their rest frame equivalent width, REW:

REW≡
∫

dλ (F(λ )−Fcont)/Fcont , (1.9)

integrated across the line, where the flux in the line is compared to the continuum flux

Fcont redward of the line. The REW is often used to characterize the strength of the line;

LAE surveys typically require REW > 20 or 25 Å. For a typical star forming galaxy,

a maximum physically allowed REW is 240 Å (Schaerer 2003; Laursen et al. 2013),

although reducing the metallicity of the gas can allow slightly higher REWs (Laursen

et al. 2013). Intuitively, it can be helpful to remember that REW ∼ FWHM × (relative

peak flux density). Which is to say, for our 240 Å maximum REW, if we assume a
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2 Å FWHM, which is reasonable, the flux is the line will be over 100 times that in the

continuum (Dijkstra 2014).

There are several challenges with narrow band surveys. The first is specific to ground

based surveys. Ground based narrow band surveys, particularly for high redshift objects,

are vulnerable to the night sky emission lines; these sky lines become increasingly prob-

lematic at longer wavelengths. Fig. 1.15 shows these emission lines. Fortunately, gaps

in the night sky emission lines, as indicated in the figure, allow us to search for LAEs at

specific redshifts. Thus, the redshift distribution of LAEs is grouped in discrete narrow

bands as opposed to the broader more continuous distribution of LBGs. And these sam-

ples are relatively narrower along the line of sight than the LBG samples. Because we are

trying to detect galaxies that are bright only in a narrow emission band, the filters chosen

are narrow, resulting in LAE samples with a narrow distribution in redshift, thus probing

smaller cosmological volumes for the same field of view than the more broadly distributed

drop-out samples. In yet another challenge, like LBG surveys, LAE surveys are also vul-

nerable to interlopers. In this case, lower redshift galaxies with emission lines redward of

the Lyα line can be mistaken for LAEs. In particular, galaxies with strong OII, OIII or

Hα lines can contaminate an LAE sample. We deal with some of these complications in

§3.5.1.

Line Shape On a purely qualitative level, it is tempting to think about galactic Lyα

emission as merely a featureless spike in the galactic spectra. However, in reality the

shape of the line can vary based on transmission in the galaxy and interaction with the

circumgalactic medium. Here we briefly explore these effects.

To start, we need an understanding of the Lyα absorption cross section. Following

Dijkstra (2014), the frequency dependence of the cross-section, σα , can be modeled as a

Voigt function:

σα(x) = σ0×
av

π

∫ +∞

−∞

dy
exp(−y2)

(x− y)2 +a2
v
≡ σ0×φ(x), (1.10)
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Figure 1.15: Figure, with some modifications, from Dunlop (2013) of OH night sky emis-

sion bands. Gaps in the bands, where we can observe the night sky with ground based

instruments, are labeled with both the narrow band filters that are used by Suburu to ob-

serve in that gap and the redshift of the LAEs that would be selected by that filter. As

can be seen here, ground based narrow band surveys only allow for detection of LAEs at

specific redshifts.
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where, σ0, the cross-section at line center, is given by:

σ0 =
fa√

π ∆νD

πe2

mec
= 5.88×10−14(T/104 K)−1/2 cm2. (1.11)

Here, the frequency ν is expressed in terms of x ≡ (ν −να)/∆νD, a dimensionless vari-

able. να = 2.46× 1015 Hz, the frequency of Lyα emission and the Doppler broadening

∆νD ≡ να

√
2kB T/mp c2 ≡ να vth/c. Here, kB is Boltzmann’s constant; T is the temper-

ature of the gas that scatters the photons; mp is the proton mass; me is the electron mass;

e is the electron charge; c is the speed of light, vth is the thermal speed; fα = 0.416 and

is the Lyα oscillator strength; and av = 4.7×10−4(T/104K)−1/2 is the Voigt parameter.

φ(x) is the Voigt function which can be approximated as:

φ(x)≈

e−x2
’core’, i.e. |x|< xcrit ;

av√
πx2 ’wing’, i.e. |x|> xcrit .

(1.12)

If we assume a gas temperature of 104 K, xcrit ∼ 3.2. All of this pays off when we consider

the shape of the cross section. At the core, around να , it is large and the photons are

likely to be scattered; past xcrit the cross section falls off fairly quickly in the wings. Lyα

emission can be scattered by material in the interstellar medium (ISM) and circumgalactic

medium (CGM); these interaction influence the shape of the emission line as it leaves the

galaxy. Having left the galaxy, the emission line then interacts with the IGM, where it

may be scattered and attenuated by neutral hydrogen.

Scattering from the ISM and CGM First, let us consider the Lyα emission from

a point source at the center of a uniform, static distribution of neutral hydrogen. This toy

model approximates the effects of Lyα photons that are scattered by neutral hydrogen

within their own galaxy. The photons may have their direction of travel changed, their

frequency changed or both. Photons with frequencies that fall within the core of the

scattering cross-section will be scattered more frequently than those in the wings, and,

thus, will have a harder time escaping the galaxy. It is only once their frequencies have

been shifted enough, via scattering, that the photons will escape. This results in a double
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peaked line profile for Lyα emission, with peaks in the wings of the cross-section and

almost no emission precisely at να . If we increase the optical thickness of the interstellar

medium, the photons will have to be scattered further into the wings of the cross-section

before they can escape, increasing the separation between the two peaks. This effect can

be seen in Fig. 1.16.

Now, let us consider Lyα emission from a point source inside a uniform distribution of

expanding neutral hydrogen. This will allow us to gain some intuition about the expected

emissions lines from young star-forming galaxies. These galaxies are expected to host

Lyα emission and are believed to have strong galactic winds, resulting in outflows of

neutral hydrogen. In that case, in the reference frame of the moving gas, the photons in

the blue wing of the stationary cross-section are redshifted and appear near the core of the

moving cross-section. These photons are then scattered and cannot escape unless their

frequency shifts. The photons in the red wing are even more redshifted and are free to

escape. In this case, the Lyα emission line consists only of the red peak and is no longer

symmetric. By the same logic, galaxies with strong inflows, will produce Lyα emission

with only a blue peak. The results of the these outflows on the emission lines are show in

Fig. 1.17.

In addition to changing the shape of the emission, strong galactic winds can also

enhance the Lyα signal. This can be understood by picturing the galactic winds as an

expanding shell of material. The Lyα emission traveling away from the observer can

backscatter off of the shell and into the line of sight. This Doppler boost shifts the Lyα

photons to frequencies redward of να . For a galaxy embedded within a larger region of

neutral hydrogen, this Doppler boost can move the photons out of the Lyα absorption

line and allow them to travel freely to the observer. In this case, for two galaxies that vary

only in the strength of their outflow, the galaxy with the stronger galactic wind will have

the brighter Lyα emission (Dijkstra 2011).

We can complicate this picture still further, and make it more realistic, by including

the effects of dust. Let us add a uniform distribution of dust to our uniform distribution
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Figure 1.16: Lyα emission from a static sphere at T = 10K, for varying optical depths.

Lyα emission only escapes the sphere when it has scattered from the core of the cross

section out into the wings, producing the double peaked emission line. Increasing the

optical depth broadens the core of the cross section, resulting in more widely separated

emission peaks. The solid lines are the analytical solutions from Dijkstra et al. (2006)

and the yellow histograms are the results from the Monte Carlo simulations of Orsi et al.

(2012). Figure from Orsi et al. (2012)
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Figure 1.17: Figure, from Laursen et al. (2009), shows the effects of strong inflows or

outflows of neutral hydrogen on Lyα emission. These spectra are from a simulation

T = 104 K sphere of gas, that is either static (green), expanding (red) or collapsing (blue).

The velocity at the edge of the sphere is vmax = ±200 km/s. The two panels show the

results for two different column densities of neutral hydrogen: NHI = 2×1018 cm−2 (left)

and NHI = 2×1020 cm−2 (right). Strong outflows, or inflows, result in an asymmetric line

profile.
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of neutral hydrogen. Neutral hydrogen scatters Lyα emission; dust partly absorbs and

partly scatters it. If the dust is evenly distributed, its effect will be a net reduction in Lyα

emission. As we discussed above, the Lyα photons scatter multiple times before they can

make their way into the wings and escape. Each interaction increases the path length,

making it more likely the photon will be absorbed, resulting in fainter emission.

Finally, let us consider a multiphase medium in which both the dust and neutral hy-

drogen are confined to thick, discrete clouds within a larger ionized and dust free medium.

In this case, the Lyα emission will be enhanced (illustrated in Fig. 1.18). This is due to

the difference in how line and continuum photons behave. The line photons will scatter

off the surface of the clouds; the continuum photons will travel through the clouds. Thus,

the continuum photons are more likely to be absorbed than the line photons, with the re-

sult that the continuum is depressed relative to the line, making the Lyα emission appear

stronger (Loeb and Furlanetto 2013)

While we have obviously simplified the complicated realities of radiative transfer,

these toy models have served to develop our understanding of the factors that go into

shaping galactic Lyα emission.

Scattering from the IGM Once the Lyα emission has escaped from its galaxy, it is

free to travel, interacting only with the IGM. Broadly speaking, we can divide the inter-

action with the IGM into two components: the resonant component and the red damping

wing component. These two components correspond to different frequency regions of the

Lyα emission spectra. If the Lyα photon leaves the galaxy at a frequency higher than να ,

it will eventually redshift into resonance with the line. At that point, any neutral hydro-

gen will absorb it. During reionization, we can assume that the blue side of the line is

completely absorbed.

Things become more complicated when we consider a photon with frequency lower

than να . These photons will not redshift into resonance; they only redshift farther away.

Any absorption they experience will be due to the damping wings. The amount of ab-
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Figure 1.18: Figure from Neufeld (1991) illustrating how a multiphase medium can en-

hance Lyα emission relative to the the continuum emission. If a cloud of dust blocks the

line of sight to the source, the source will be obscured and not visible in the continuum.

However, the Lyα emission from that source will scatter multiple times as it interacts with

the clouds of neutral hydrogen. Eventually, these interactions may scatter it back into the

line of sight, even if it takes a long and convoluted path to do so. Thus, we may see the

Lyα emission more strongly than the continuum emission from sources in a multiphase

medium.
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sorption they undergo, exp[−τDW ], is based on the damping wing optical depth:

τDW = 6.43×10−9
[

π e2 fα nH(zs)

me cH(zs)

][
I
(

1+ zbegin

1+ zs

)
− I
(

1+ zend

1+ zs

)]
, (1.13)

where

I(x)≡ x9/2

1− x
+

9
7

x7/2 +
9
5

x5/2 + 3x3/2 + 9x1/2 − 9
2

ln
[

1+ x1/2

1− x1/2

]
(1.14)

and zs is the redshift of the Lyα emitting source and nH(zs) is the mean hydrogen number

density of the IGM at that redshift. Here, we have summed up the contribution to the

optical depth from each patch of neutral hydrogen extending from zbegin to zend along the

line of sight. In order to have appreciable optical depth in the damping wing, one needs

a significant neutral column of hydrogen. Thus, the IGM’s contributions to this term

only become significant when sufficiently neutral regions exist (Mesinger and Furlanetto

2008).

Thus, the strength of any Lyα emission that we observe is dependent upon processes

internal to the galaxy that determine the initial strength and shape of the line. That line is

then modulated as it travels through the IGM. As we will discuss below, how the neutral

IGM interacts with LAEs can be a strong signal of the progress of reionization.

1.2.4.3 LAE Luminosity Functions

One potential signature of reionization is a decrease in the number of LAEs, due to their

Lyα emission being absorbed by neutral hydrogen in the IGM. The changing abundance

of LAEs is commonly quantified by tabulating their luminosity functions versus redshift.

These luminosity functions are frequently fit with a Schechter function (Schechter 1976):

dn
dL

= φ(L) = φ
∗
(

L
L∗

)α

e−(L/L∗), (1.15)

where φ∗ is the normalization density, L∗ is the characteristic luminosity, and α is the

power-law slope at low luminosity. A negative α , as is typically seen, implies an in-

creasing number of galaxies at low luminosities (Dunlop 2013). While Schechter fits
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are exceedingly useful, there can be degeneracies between φ∗, L∗ and α , and so care is

required when comparing these fits between research groups (Robertson 2010).

Interestingly, the Lyα luminosity function does not appear to evolve between z ∼

3 and z ∼ 5.7 to within statistical errors (for example, Hu et al. (1998); Ouchi et al.

(2008)). However, at z > 6, the Lyα luminosity function does evolve, as seen in Fig.

1.19 (Kashikawa et al. 2006a; Ouchi et al. 2010; Ota et al. 2010; Kashikawa et al. 2011).

This decrease in the luminosity function may be due to an increasing neutral hydrogen

fraction which absorbs the Lyα emission. Significantly, the UV luminosity function of

LAEs shows no evolution between z ∼ 5.7 and z ∼ 6.5; the decrease is only seen in the

Lyα luminosity function of LAEs. This strengthens the inference that the decrease is due

to a reduction in Lyα , possibly due to an increasing hydrogen neutral fraction, as opposed

to a reduction in the number density of LAEs (Kashikawa et al. 2006a; Kashikawa et al.

2011). The Lyα luminosity function decreases still further between z ∼ 6.6 and z ∼ 7.3,

as is seen in Fig. 1.19. Note, though, that the z ∼ 7.3 luminosity function has fairly

large uncertainties, partly due to the small number of galaxies they were able to detect,

complicating our interpretation of this decrease. This evolution seems to agree with the

evidence from quasars: reionization ended around z ∼ 6 and as we observe galaxies at

higher redshifts we are looking back in the EoR.

1.2.4.4 Lyα Fraction

One of the challenges with interpreting the decrease in the Lyα luminosity function of

LAEs is isolating the effects that caused the decrease. It is tempting to attribute the

decrease to changes in the IGM, particularly given our interest in it. However, the decline

may instead be due to intrinsic evolution in the galaxies themselves, whether an evolution

in their overall number density or a shift in the escape fraction of Lyα photons, with

any number of causes, or due to changes in the extrinsic properties of the galaxies, such

as the ionized fraction of the IGM. The Lyα fraction measurement, proposed by Stark

et al. (2010), works to sidestep some of these concerns about intrinsic evolution. In this
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Figure 1.19: Evolution of the Lyα luminosity function of LAEs. Figure from Konno

et al. (2014). The open red circles and squares are their luminosity function data from

fields SXDS and COSMOS, respectively, surveyed for z ∼ 7.3 LAEs. They combine

those data sets in the solid red circles. The red curve is their best-fit Schechter function

to the combined data. The blue curve is the best-fit Schechter function for z∼ 6.6 LAEs

from Ouchi et al. (2008); the teal curve, the best-fit Schechter function for z∼ 5.7 LAEs

from Ouchi et al. (2010). There is a decline in the luminosity functions, and, thus, in

the number of LAEs detected from z∼ 5.7 to z∼ 7.3 and the rate of decline seems to be

increasing with higher redshift. This may be evidence of an increasingly neutral Universe.
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method, the Lyman-break technique is used to collect a large population of galaxies at a

target redshift. Then, those galaxies are observed to see if they are LAEs; here previous

studies generally require a Lyα REW > 25 Å for an LBG to be considered as an LAE.

The Lyα fraction, fLyα , is the fraction of LBGs that are also LAEs.

Since this method was proposed by Stark et al. (2010), a number of groups have set

out to measure the Lyα fraction at a range of redshifts (Fontana et al. 2010; Vanzella

et al. 2011; Pentericci et al. 2011; Schenker et al. 2012; Ono et al. 2012; Caruana et al.

2012; Furusawa et al. 2016). The results of Fontana et al. (2010); Vanzella et al. (2011);

Pentericci et al. (2011); Schenker et al. (2012) and Ono et al. (2012) as combined by Ono

et al. (2012) are shown in Fig. 1.20. Measurements of fLyα are historically divided into

bins based on the strength of the Lyα emission and the UV continuum brightness. From

z∼ 4 to z∼ 6, fLyα steadily increases. While all bins show this general trend, it is clearest

for the faint galaxies with weak emission (bottom left panel). At these redshifts, quasar

spectra suggest that the Universe is completely ionized. Stark et al. (2010, 2011) argue

that decreasing dust levels in the galaxies, which likely happens with increasing redshift,

leads to an increasing escape fraction for Lyα photons, and, thus, the observed increase

in fLyα . If that trend continues, we would expect a still higher value for fLyα at z∼ 7, as

indicated by the grey band. However, when fLyα at z ∼ 7 is measured, it is significantly

lower than expected. And this decreasing trend continues out to z∼ 8 (Faisst et al. 2014;

Schenker et al. 2014) One possible explanation for this decrease is an increasingly neutral

IGM absorbing the Lyα emission. Based on early measurements of fLyα , Pentericci et al.

(2011); Schenker et al. (2012) argue for a neutral fraction of xHI & 0.6 at z ∼ 7. Such a

high neutral fraction would require a surprisingly rapid end to reionization, particularly

in light of the other constraints on reionization we have discussed above.

The general consensus is that this downturn is in fact a signal that we are observing

into the EoR. However, there remains some debate over how rapid an evolution of the

IGM is required to accommodate such a measurement. Bolton and Haehnelt (2013) have

argued that the decrease may be due to the increasing presence of dense self-shielding
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Figure 1.20: The Lyα fraction, the fraction of LBGs that are also LAEs, (here χLyα ,

though we refer to it as fLyα ) from z ∼ 4 to z ∼ 7. The data is from observations of

multiple fields with various instruments. This quantity is plotted for four bins of galaxies:

the top row is for brighter galaxies with −21.75 < MUV <−20.25; the bottom for fainter

galaxies with −20.25 < MUV < −18.75; the left column for galaxies with weaker Lyα

emission (EW> 25 Å); and the right column for galaxies with stronger Lyα emission

(EW> 55 Å). From z ∼ 4 to z ∼ 6, fLyα is clearly increasing; however, at z ∼ 7 there is

a sharp downturn. This trend is most clear in the bottom left panel, for the faint galaxies

with weaker Lyα emission. This downturn may be a signal of an increasingly neutral

Universe. Figure from Ono et al. (2012).
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Lyman limit systems, increasing the optical depth of Lyα photons. This effect would

be particularly pronounced in overdense regions where there are both more galaxies and

more Lyman limit systems. When including such systems in their models, they argue that

the decrease in fLyα only requires a neutral fraction of 10− 20% (see also Choudhury

et al. (2015); Mesinger et al. (2015)). We also enter into this discussion, arguing, as is

laid out more fully in §2, that the effects of sample variance due to patchy reionization

on the small fields of view may be quite large. We conclude that the drop in fLyα is due

to an increasing neutral fraction, but only require a neutral fraction of 5% (at the 95%

confidence level) to explain the decrease. These lower neutral fractions are more easily

harmonized with existing models and measurements of reionization.

1.2.4.5 Clustering

The patchy nature of reionization imprints an additional interesting signature on the

LAEs. We have described reionization as starting with ionized bubbles centered on galax-

ies. As the ionization process continues, the bubbles grow, merging with other nearby

bubbles to form still bigger bubbles. Eventually, all the bubbles have merged and the Uni-

verse is fully ionized. While the bubbles are still growing, LAEs may be preferentially

observed if they exist in large ionized bubbles. In that case, the Lyα emission has time

to redshift away from 1216 Å before it reaches the edge of the bubble; if it has redshifted

far enough, the emission line can freely travel through the neutral Universe and we will

be able to detect the LAE. For the bubbles to be large enough for this to be the case, they

would have to be fueled by multiple galaxies. Thus, during reionization, an isolated LAE

is unlikely to be observed, but a cluster of LAEs, that have jointly ionized their surround-

ing region, should be observable. In brief, patchy reionization should result in enhanced

observed clustering of LAEs (Furlanetto et al. 2004a; McQuinn et al. 2007b; Mesinger

and Furlanetto 2008; Ouchi et al. 2010; Jensen et al. 2013). Fig. 1.21, from McQuinn

et al. (2007b), shows slices through a numerical reionization simulation that illustrates

this effect. Observable LAEs should show enhanced clustering before reionization com-
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pletes, with the enhancement growing as the IGM becomes more neutral. This suggests

that a measurement of the clustering of LAEs could be a way to estimate the progress of

reionization.

To observe this clustering enhancement, one needs a survey with a field of view that

is much larger than the typical bubble size during reionization. The most likely candidate

instrument to provide such a data set is Hyper Suprime Cam (HSC), a new instrument

on the Subaru telescope. Their observations will reach out to z ' 7.3 and extend over

several square degrees. In §3, we forecast observations of galaxy clustering from this

HSC survey and predict how their measurements might place constraints on the process

of reionization.

1.2.4.6 Intensity Mapping

As we discuss in §1.1, our current best understanding of reionization is that numerous

faint galaxies fueled the reionization process. This implies that it is difficult to detect the

sources that emit most of the ionizing photons individually. One method to estimate the

collective impact of these faint sources is intensity mapping. Instead of trying to detect

each galaxy individually, one measures the large scale spatial fluctuations in the collective

emission from all luminous sources in a chosen spectral line (see, for example, Sugino-

hara et al. (1999); Righi et al. (2008); Visbal and Loeb (2010); Gong et al. (2011); Carilli

(2011); Lidz et al. (2011); Pullen et al. (2013); Breysse et al. (2014); Keating et al. (2015);

Croft et al. (2016)). The “all” here is key; intensity mapping captures the contributions

from all sources, even those too faint to be detected by traditional observations. Com-

mon emission lines used for these studies include Lyα , CO, and CII. The power of this

technique, and how it differs from traditional galaxy surveys is depicted in Fig. 1.22.

Using emission lines to map the galaxies allows this technique to be tuned to any desired

redshift.

Intensity mapping surveys of EoR galaxies should result in a 3D map of the ionizing

sources, which, naturally, will have ionized regions around them. This should comple-
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Figure 1.21: Figure from McQuinn et al. (2007b). Based on a mock survey at z = 6.5,

the top panels show the projected ionization field of the simulation, for two different

ionized fractions. The panels cover 0.36 deg2 and correspond to survey depths along

the line of sight of 31 Mpc. The middle panel shows the intrinsic distribution of the

simulated galaxies, i.e. this shows the distribution the galaxies would have if they were

not attenuated by surrounding neutral hydrogen. The bottom panel shows the distribution

of observable LAEs, after accounting for the attenuation of their Lyα emission by neutral

hydrogen along the line of sight. The clustering of the observed LAEs is enhanced relative

to their intrinsic, unattenuated distribution, with the enhancement growing as the neutral

fraction increases.
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Figure 1.22: This figure illustrates the power of intensity mapping. The left panel depicts

a numerical simulation of galaxies (bright galaxies indicated by the blue dots) and diffuse

emission (redscale web), from sources such as dwarf galaxies and intra-halo light. The

middle panel depicts what a typical galaxy survey would observe in that same field – i.e.

all galaxies above some minimum luminosity threshold, but none of the faint galaxies or

extended emission. Finally, in the right panel, we see the results of an intensity mapping

survey. The diffuse emission and light from all the galaxies is recovered. (Figure from

spherex.caltech.edu/science.)
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ment well 21-cm observations which will trace the distribution of neutral gas. The one

map should be the inverse of the other. Cross-correlating these two data sets should allow

one to extract the 21-cm signal from reionization: foreground emission should not corre-

late with the intensity mapping signal; high redshift 21-cm emission should (Furlanetto

and Lidz 2007; Lidz et al. 2009; Lidz et al. 2011). In addition, we should be able to extract

information about the size of ionized regions forming around groups of galaxies using the

scale-dependence of the cross-correlation (Lidz et al. 2009; Lidz et al. 2011; Gong et al.

2011).

While this appears to be a promising technique, one challenge is that, intensity map-

ping observations, like LAE surveys, suffers from contamination by interloper emission

(Visbal and Loeb 2010). In §4, we lay out one approach for cleaning the intensity map-

ping signal of interloper contaminates.

1.3 Putting the Pieces Together

The preceding discussion has served to sketch out the many methods contributing to our

current understanding of the EoR. In many ways, attempting to understand reionization

is like working on a giant puzzle. Each type of observation, from 21-cm emission, to

quasars, to the CMB to the whole host of galaxy observations, contributes or will con-

tribute its piece, its constraint on reionization. Fitting those pieces together into one co-

herent picture is part of the challenge. Our best current understanding is that reionization

was an extended and patchy process, ending sometime between z ∼ 6 and z ∼ 7. We ex-

pect it to have a duration, in redshift of ∆z < 5.4. Thus, around z∼ 12 patches of ionized

hydrogen became large enough to influence kSZ measurements. Studies of reionization

are poised to acquire measurements of the processes of reionization, either through 21-cm

observations or galaxy measurements.

In the following chapters, we detail our own contributions to this puzzle. Here we

explore the implications of current measurements of high redshift galaxy populations for
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our understanding the EoR, and develop strategies to learn more from upcoming high

redshift galaxy surveys.

57



Chapter 2

What Do Observations of the Lyman-α

Fraction Tell Us About Reionization?

2.1 Introduction

Recent studies have identified large samples of Lyα emitting galaxies (LAEs) back to z∼

7 (e.g. Hu et al. 2010; Ouchi et al. 2010; Kashikawa et al. 2011). In addition to providing

insight into the properties of early galaxy populations, these surveys can be used to probe

the ionization state of the surrounding intergalactic medium (IGM) and the reionization

history of the Universe. In particular, the Lyα optical depth in a significantly neutral IGM

is so large that even the red side of a Lyα emission line should be attenuated by absorption

in the damping wing of the line (Miralda-Escude 1998). This is, in turn, expected to lead

to a decline in the abundance of observable LAEs as the Universe becomes significantly

neutral. Indeed, Kashikawa et al. (2006) found evidence for a decline in the abundance of

LAEs between z = 5.7 and 6.5 from observations in the Subaru Deep Field (SDF). Recent

work has started to extend these measurements all the way out to z = 7.7 (e.g. Clément

et al. 2012); this study finds no LAE candidates, possibly indicating a further drop in the

abundance of LAEs from z = 6.5 to 7.7.

Published as Taylor and Lidz (2014)
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The declining LAE abundance may result if these observations are, in fact, probing

into the Epoch of Reionization (EoR) when the IGM is significantly neutral, but the exis-

tence of a decline (e.g. Hibon et al. 2010, 2011, 2012; Tilvi et al. 2010; Krug et al. 2012),

its statistical significance (Ouchi et al. 2010) and the interpretation of the measurements

(e.g. Dijkstra et al. 2006) are all still debated. One main challenge here is to isolate the

part of the evolution in the LAE abundance that arises from changes in the ionization

state of the IGM. The LAE abundance itself will, undoubtedly, grow with time as a result

of the hierarchical growth of the underlying LAE host halo population. Furthermore, the

intrinsic properties of the LAE populations should also evolve with time. Evolution in

the dust content, the structure of the interstellar medium, and the strength and prevalence

of large scale outflows can all impact the escape of Lyα photons from galaxies, and the

observable abundance of the LAE populations.

In recent work, Stark et al. (2010) proposed an approach that partly circumvents con-

cerns about intrinsic evolution in the underlying galaxy populations. The Stark et al.

(2010) method uses the Lyman-break selection technique to find populations of galaxies

at the redshift of interest, taking advantage of that technique’s power in efficiently finding

many galaxies within a given redshift range. Then, follow-up spectroscopy is done to

determine which of those Lyman break galaxies (LBGs) have strong enough Lyα emis-

sion to be classified as LAEs. Since reionization should produce little to no effect on

the observation of LBGs, but Lyα emission is attenuated by neutral hydrogen, the frac-

tion of the LBGs that are also LAEs should decrease as the IGM becomes significantly

neutral. With this technique, evolution in the abundance of the underlying population of

star-forming galaxies ‘divides out’. Evolution in the Lyα fraction induced by changes

in the intrinsic LAE properties can be extrapolated from lower redshift measurements of

this fraction at z ≤ 5 or so, which clearly probe the post-reionization epoch. Moreover,

the spectroscopic samples obtained in this approach allow one to search for spectroscopic

signatures of intrinsic evolution in the LAEs’ properties.

Several groups have recently applied this method for the first time; our focus here
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will be on the theoretical interpretation of these new measurements. First, Stark et al.

(2010, 2011) measured the Lyα fraction ( fLyα )1 in several redshift bins, centered around

z = 4,5, and 6. The Universe should be completely ionized in this case, at least in the

former two redshift bins, and so this measurement describes the redshift evolution in the

intrinsic LAE properties towards high redshift. These authors find evidence that fLyα

increases steadily from z = 4− 6. They explain this trend by noting that dust levels in

these galaxies tend to decrease with increasing redshift; this should likely facilitate the

escape of Lyα photons and so fLyα should grow with increasing redshift. Having noted

this trend, they make predictions for fLyα at z ∼ 7, assuming there is no evolution in the

ionized fraction. A lower measurement of fLyα than predicted would hence suggest that

z∼ 7 observations are probing the significantly neutral era.

Very recently, several groups have extended these measurements out to z∼ 7, includ-

ing Schenker et al. (2012), Pentericci et al. (2011), Ono et al. (2012) and Caruana et al.

(2012). As we discuss in more detail subsequently, both Schenker et al. (2012) and Pen-

tericci et al. (2011) see evidence for a decline in fLyα near z ∼ 7. Both Ono et al.’s and

Caruana et al.’s results are consistent with little evolution from Stark et al. (2011)’s lower

redshift measurements to within their error bars. Although these measurements are still in

their infancy, and come from≤ 50 LBGs in total, the strong decline seems to suggest that

the IGM is surprisingly neutral at z ∼ 7. In particular, Pentericci et al. (2011) argue that

the low fLyα indicated by their z ∼ 7 measurement requires a volume-averaged neutral

fraction of 〈xHI〉 ≥ 0.6. Schenker et al. (2012) quote a fairly similar constraint, although

somewhat more tentatively.

Interestingly, the large neutral fractions suggested by this test are surprising given

other constraints on reionization. In particular, the relatively large optical depth to Thom-

son scattering implied by Wilkinson Microwave Anisotropy Probe (WMAP) observations

(Larson et al. 2011) and the low emissivity – only a few ionizing photons per atom per

Hubble time at z∼ 5 – inferred from the mean transmission in the Lyα forest after reion-

1Throughout we denote the Lyα fraction by fLyα , although some other works use XLyα .
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ization (Miralda-Escude 2003; Bolton and Haehnelt 2007) suggest that reionization is a

fairly prolonged and extended process.2 Furthermore, the absence of prominent Gunn–

Peterson absorption troughs in z ≤ 6 quasar spectra (Fan et al. 2006) is commonly taken

to imply that the IGM is completely ionized by z≤ 6, a mere 175 Myr after the time pe-

riod probed by the z = 7 Lyα fraction measurements. Hence the Lyα fraction test results,

when combined with z ≤ 6 quasar absorption spectra measurements, are hard to recon-

cile with other observational constraints – as well as theoretical models for the redshift

evolution of the ionized fraction – which all prefer a more extended reionization epoch.

One possibility is that reionization is sufficiently inhomogeneous to allow transmission

through the Lyα forest before the process completes (Lidz et al. 2007; Mesinger 2010),

potentially relaxing the requirement that reionization needs to complete by z ≥ 6 (Mc-

Greer et al. 2011). Nevertheless, collectively current constraints on reionization prefer a

significantly higher ‘mid-point’ redshift at which 50 percent of the volume of the IGM is

neutral, z50. For example, Kuhlen and Faucher-Giguère (2012) (see also Pritchard et al.

2010) combine measurements of the Thomson scattering optical depth, high redshift LBG

luminosity functions, and measurements from the post-reionization Lyα forest, finding

that the preferred redshift at which 〈xHI〉= 0.5 is z50 = 10 for a variety of models.

However, as we look back into the EoR we expect both the average abundance of

LAEs to decrease and for there to be increasingly large spatial fluctuations in the abun-

dance of observable LAEs (Furlanetto et al. 2006; McQuinn et al. 2007a; Mesinger and

Furlanetto 2008; Jensen et al. 2013). This should result from the patchiness of the reion-

ization process: LAEs that reside at the edge of ionized regions, or in small ionized

bubbles, will have significant damping wing absorption from nearby neutral hydrogen,

while those at the center of large ionized bubbles will be less attenuated. Ultimately,

measuring these spatial variations is a very promising approach for isolating the impact

2However, a very recent analysis by Becker and Bolton (2013) favours a somewhat higher emissivity

from the Lyα forest data. The higher inferred emissivity would help accommodate more rapid reionization

models.
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of the IGM and studying reionization, with existing data already providing some interest-

ing constraints (McQuinn et al. 2007a; Ouchi et al. 2010). Presently, the important point

is that these fluctuations imply that one must survey a rather large region on the sky to

obtain a representative sample of the Lyα fraction. Perhaps existing z∼ 7 measurements

in fact probe later stages in reionization than previously inferred, but are sampling regions

on the sky with above average attenuation and correspondingly lower than average Lyα

fractions. Here we set out to explore this sample variance effect, quantify its impact on

existing measurements, and to understand the requirements for future surveys to mitigate

its impact.

The significance of the observed drops in the Lyα fraction also depends on the re-

lationship between LAE and LBGs; therefore, we examine a variety of models in an

attempt to span some of the uncertainties in the properties of the galaxies themselves. We

use simulations to explore the effects of small fields of view and various models for LBG

luminosity and Lyα emission on fLyα and, thus, what can be confidently said about the

ionized fraction of the Universe.

Throughout this chapter, we assume a Λ cold dark matter (ΛCDM) model with ns = 1,

σ8 = 0.8, Ωm = 0.27, ΩΛ = 0.73, Ωb = 0.046 and h = 0.7. These parameters are broadly

consistent with recent results from the Planck collaboration (Planck Collaboration et al.

2014).

2.2 Observations

First, we describe all of the current z ∼ 7 Lyα fraction measurements. We subsequently

compare these measurements with theoretical models. The main properties of the current

observations are summarized in Table 2.1.

Pentericci et al. (2011) describe observations they obtained over three fields of view:

the Great Observatories Origins Deep Surey (GOODS)-South field (Giavalisco et al.

2004), the New Technology Telescope Deep Field (NTTDF; Arnouts et al. (1999); Fontana
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et al. (2000)) and the BDF-4 field (Lehnert and Bremer 2003). Altogether, these fields

span 200 arcmin2 [roughly 700 (Mpc h−1)2]. Within these fields, they did follow-up

spectroscopy on galaxies that were selected as z-dropouts. As we will discuss, in practice

their spectroscopic sample probes the Lyα attenuation across only a fraction of these full

fields-of-view. Although these results are summarized and combined by Pentericci et al.

(2011), they also published the initial measurements in stages. In Fontana et al. (2010),

they report their observations on GOOD-S. In Vanzella et al. (2011), they do the same for

galaxies in BDF-4. Finally, in Pentericci et al. (2011), they discuss their observations of

NTTDF. In these fields combined, they found 20 LBGs, two of which had strong enough

Lyα emission for them qualify at LAEs.

They bin these galaxies based both on ultraviolet (UV) magnitude and on the rest-

frame equivalent widths of the Lyα lines, REWs. Since none of the faint galaxies (−20.25<

MUV <−18.75) that they observe has strong Lyα emission, for the faint case they are only

able to put upper limits on fLyα . For the galaxies with stronger Lyα emission (REW > 55

Å), their results are consistent within error bars with the projections from lower redshifts

by Stark et al. (2011). It is only for the weaker, but UV bright (MUV < −20.25), LAEs

(REW > 25 Å) that they directly detect a significant drop.

Schenker et al. (2012) do spectroscopic follow-up on LBGs with z > 6.3 observed

in the Hubble Space Telescope (HST) Early Release Science (ERS) field by Hathi et al.

(2010) and McLure et al. (2011), 36.5 arcmin2 [119 (Mpc h−1)2]. In addition to the eight

galaxies they observed in ERS, they also included 11 galaxies drawn from a variety of

other surveys. From this sample of 19 galaxies, they found two that were LAEs. In

order to boost their sample size, they also considered galaxies studied by Fontana et al.

(2010) in their calculation of fLyα . Note that since Fontana et al. (2010) is part of the

sample sets from both Pentericci et al. (2011) and Schenker et al. (2012), these two sets

of observations are not completely independent. Fontana et al. (2010) detected seven

LBGs none of which was clearly LAEs. Thus, Schenker et al. (2012) worked from a total

sample of 26 LBGs, two of which they identified as LAEs.
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Combining these data sets and taking into account the various limits of the observa-

tions, they find that fLyα for the brighter galaxies (−21.75<MUV <−20.25) is consistent

with the lower redshift measurements. It is only for the faint galaxies (−20.25 < MUV <

−18.75) that they see a significant drop.

Ono et al. (2012) observed the SDF and GOODS-N, a total of 1568 arcmin2 [roughly

5100 (Mpc h−1)2]. However, their survey is much shallower than either Schenker et al.

(2012) or Pentericci et al. (2011), only observing down to y' 26.0 mag (MUV =−20.9).

Because of this shallowness, even though they are observing a relatively large area, they

only identified 22 z-dropout candidates (Ouchi et al. 2009). From that sample, they took

spectroscopic observations of 11 of them; three of those they identified as LAEs. Their

study only goes as deep as the brightest of two MUV bins (−21.75 < MUV <−20.25). In

that bin, their results are consistent with the projections of Stark et al. (2011) from lower

redshifts.

Caruana et al. (2012) did spectroscopy for five z-band dropouts (z ∼ 7) found in the

Hubble Ultra Deep Field, 11 arcmin2 [36 (Mpc h−1)2], selected from earlier surveys.

They observed no Lyα emission from the z-band dropouts, and, thus, only placed upper

limits on the fLyα at z ∼ 7; their upper limits are consistent with the projections from

lower redshifts (Stark et al. 2011).

One might wonder, for all of these surveys, about the presence of low redshift inter-

lopers. If the fraction of low redshift interlopers is larger near z∼ 7 than at lower redshifts,

one might erroneously infer a drop-off in the Lyα fraction. For instance, in the simplest

version of the Lyman break selection technique a lower redshift red galaxy may be mis-

taken for a higher redshift LBG. However, these groups have used a variety of techniques

to ensure that the samples are truly from a redshift near z∼ 7, preferring to discard those

galaxies that are likely, but not definitively, at the redshift of interest in order to obtain an

uncontaminated sample. In particular, Pentericci et al. (2011), as discussed in Castellano

et al. (2010), use multiple filters and a number of colour selection criteria, to ensure that

low-redshift interlopers are excluded. Similarly, the sample used by Ono et al. (2012),
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drawn from Ouchi et al. (2009), applies a variety of colour cuts to only select high red-

shift galaxies. Schenker et al. (2012) derive their main sample from McLure et al. (2011).

McLure et al. (2011) fit the photometric redshifts of all potential candidates and required

the ones that they retained to have both statistically acceptable solutions for z > 6 and to

exclude lower redshift solutions at the 95 percent confidence level. Based on all of these

techniques, interloper contamination appears not to be a significant worry.

Since only Pentericci et al. (2011) and Schenker et al. (2012) report significant de-

creases in fLyα , the rest of the chapter will focus on their observations. As detailed in

Table 2.1, it is notable that the typical comoving dimension of all but the shallower Ono

et al. (2012) survey is ∼ 10 Mpc h−1. This scale is comparable to the size of the ionized

regions during much of the EoR (see e.g. McQuinn et al. 2007b), suggesting that sample

variance may be significant on these scales. Furthermore, as we detail subsequently, the

LBGs identified for follow-up spectroscopy in these fields only sparsely sample sub re-

gions of the full field, and so the surveys do not, in fact, sample Lyα attenuation across

the entire field of view.
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Table 2.1: Summary of published measurements of fLyα

Field Area Shortest side
Limiting Faintb Brightc

Sourced
maga LBGs LAEs LBGs LAEs
Pentericci et al. (2011)

BDF-4 ∼ 50 arcmin2 13.6 Mpc h−1 26.5 1 0 5 2
Vanzella et al. (2011)

Pentericci et al. (2011)
GOODS-S ∼ 90 arcmin2 13.6 Mpc h−1 26.7 1 0 6 0 Fontana et al. (2010)

NTTDF ∼ 50 arcmin2 13.6 Mpc h−1 26.5 0 0 7 0 Pentericci et al. (2011)
Schenker et al. (2012)

GOODS-S ∼ 90 arcmin2 13.6 Mpc h−1 26.7 1 0 6 0 Fontana et al. (2010)
ERS 36.5 arcmin2 7.7 Mpc h−1 27.26 8 0 0 0 Schenker et al. (2012)

Other fieldse – – – 7 2 4 0 Schenker et al. (2012)
Ono et al. (2012)

GOODS-N ∼ 150 arcmin2 18.1 Mpc h−1 26.0 0 0 1 1 Ono et al. (2012)
SDF ∼ 1400 arcmin2 48.9 Mpc h−1 26.0 0 0 7 2 Ono et al. (2012)

Caruana et al. (2012)
HUDF ∼ 11 arcmin2 6.0 Mpc h−1 – f 3 0 2 0 Caruana et al. (2012)

a y band limiting magnitude bFaint galaxies are ones with −20.25 < MUV <−18.75 cBright galaxies are ones with −21.75 < MUV <−20.25 dMay not

have originally observed these galaxies, but did the spectroscopic follow up and reported which ones had Lyα emission e Schenker et al. (2012) included

several galaxies from a variety of other surveys and fields in their spectroscopic sample. These have been grouped together here. d Caruana et al. (2012)

did spectroscopic follow up on galaxies drawn from several surveys. Thus, there is no consistent y-band limiting magnitude.

Summary of observations for the main papers we are discussing. The Fontana et al. (2010) sample is included in both the observa-

tions of Pentericci et al. (2011) and Schenker et al. (2012). This is because both groups used that data in their calculation of fLyα .

Galaxies were only counted as LAEs if their Lyα emission was greater than some minimum threshold (usually an equivalent width

threshold of 25 Å). In compiling this table, summaries in Ono et al. (2012) were essential.
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2.3 Method

Next we describe the various ingredients that enter into our simulated models of the

Lyα fraction. Our calculations start from the reionization simulations of McQuinn et al.

(2007a); these simulations provide realizations of the inhomogeneous ionization field and

surrounding neutral gas, which in turn modulate the observable abundance of the simu-

lated LAEs. In post-processing steps, we further populate simulated dark matter haloes

with LBGs and LAEs, finally attenuating the LAEs based on the simulated neutral hy-

drogen distribution. A completely self-consistent approach would vary the reionization

history jointly with variations in the properties of the LBGs and LAEs, but our post-

processing approach offers far greater flexibility for exploring a wide range of models.

In addition, most of the ionizing photons are likely generated by much fainter, yet more

abundant, sources than the LBGs that are detected directly (thus far) and so the ionization

history is somewhat decoupled from the LBG properties relevant here. Our philosophy

for modeling the LAEs is to focus our attention on the impact of reionization and its

spatial inhomogeneity. As a result, we presently ignore the complexities of the Lyα line

transfer internal to the galaxies themselves; we will comment on their possible impact on

our main conclusions.

2.3.1 Reionization Simulations

The reionization simulations used in our analysis are described in McQuinn et al. (2007b,a);

here we mention only a few pertinent details. These simulations start from a 10243 parti-

cle, 130 comoving Mpc h−1 dark matter simulation run with GADGET-2 (Springel 2005)

and treat the radiative transfer of ionizing photons in a post-processing step. The calcu-

lation resolves host haloes down to ∼ 1010M�, and so the simulation directly captures

the likely host haloes of both LBGs and LAEs (smaller mass haloes host ionizing sources

and are added into the simulation as described in McQuinn et al. (2007a)). We adopt the

fiducial model of these authors in which each halo above the atomic cooling mass (on the
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order of M ∼ 108M�, Barkana and Loeb 2001) hosts a source with an ionizing luminos-

ity that is directly proportional to its halo mass. We consider simulation outputs with a

range of ionized fractions, 〈xi〉, in effort to explore how the Lyα fraction and its spatial

variations evolve throughout reionization. In each case, we take the host haloes from a

simulation output at z = 6.9, very close to the redshift of interest for the current Lyα

fraction measurements. In the fiducial model of McQuinn et al. (2007a) studied here, the

volume-averaged ionization fraction is 〈xi〉 = 0.82 at this redshift. In practice, when we

explore smaller ionized fractions, we use slightly higher redshift outputs of the ionization

field in the same model. This approximation was also adopted in McQuinn et al. (2007a)

and should be adequate since – at fixed 〈xi〉 – the properties of the ionization field depend

little on the precise redshift at which the ionized fraction is reached (tests of this are given

in McQuinn et al. 2007b).

2.3.2 LBG Model

The next step in our model is to populate the simulated dark matter haloes with LBGs.

Here we follow the simple approach described in Stark et al. (2007). In this model, the

star formation rate, Ṁ?, is connected to the halo mass, Mhalo, by

Ṁ? =
f?(Ωb/Ωm)Mhalo

tLT
, (2.1)

where f? is the efficiency at which baryons are converted into stars and tLT is the time-

scale for star formation, which is itself the product of the star formation duty cycle (εDC)

and the age of the Universe which – in the high-z approximation – is t(z) = 2/(3H(z)).

We assume here that stars form at a constant rate in the haloes that are actively forming

stars. We adopt Stark et al. (2007)’s best-fitting values of f∗ = 0.16 and εDC = 0.25,

for LBGs at z ' 6. We further assume the conversion from star formation rate to UV

luminosity (at a rest-frame wavelength of λ = 1500 Å) given in Madau et al. (1998):

L1500 = 8.0×1027 erg
Hz s

[
Ṁ?

1M�/yr

]
. (2.2)
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The conversion factor here assumes a Saltpeter initial mass function and solar metallicity,

but we do not expect our results to be sensitive to the precise number here. In the simple

model described here, εDC also gives the fraction of host haloes that are UV luminous at

any given time. However, we find that the observed number density of LBGs at z ∼ 7

from Bouwens et al. (2011) is better reproduced if instead 1/6th of simulated dark matter

haloes host LBGs with the above luminosity. In practice we randomly select 1/6th of our

dark matter haloes as active LBG hosts and give them UV luminosities according to the

above formulas (with εDC = 0.25). This also allows us to reproduce the bias factor found

from large samples of LBGs (Overzier et al. 2006). The assumption here of a one-to-one

relation between UV luminosity and host halo mass for the active hosts is undoubtedly

a simplification, but we have experimented with adding a 20 percent scatter to the UV

luminosity–halo mass relation above and found little difference in our results.

2.3.3 Properties of the LAEs

Next, we give each LBG a random amount of Lyα emission, as characterized by the

REW of each emission line. Our main interest is to explore the impact of inhomogeneous

damping-wing absorption on the Lyα fraction, and so we do not attempt a detailed mod-

eling of each emission line. In addition to the complex impact of the Lyα line transfer

internal to each galaxy, the resulting line will be modified by resonant absorption within

the IGM (in addition to the damping wing absorption that we do explicitly model). It is

sometimes assumed that each emission line is symmetric upon leaving the galaxy, and

that the blue side of each line is removed by resonant absorption in the surrounding IGM

while the red side is fully transmitted. The reality is of course more complicated, and

even the resonant absorption in the IGM may have a wide range of effects depending on

the strength of large-scale infall motions towards LAE host haloes (which can lead to

resonant absorption on the red side of the line), the local photoionization state of the gas,

outflows, and other factors (see e.g. Santos 2004; Dijkstra et al. 2007; Zheng et al. 2010;

Verhamme et al. 2012; Yajima et al. 2012; Duval et al. 2014). We will assume that these
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variations are captured by drawing the REW of each LBG from a random distribution. We

will refer to this loosely as the intrinsic REW, and that the observed REW results from

simply multiplying this intrinsic REW by a damping wing attenuation factor described

below. In this sense, our intrinsic REW is intended to include resonant absorption from

the IGM, and we implicitly assume that this distribution does not vary strongly from z∼ 6

to z∼ 7. We additionally neglect any spatial variations – induced by e.g., large scale infall

motions – in the intrinsic REW distribution.

As in Dijkstra et al. (2011), we draw an REW for each simulated galaxy from an ex-

ponential distribution, P(REW) = exp[−REW/REWc]/REWc. This exponential model

provides a good fit to the distribution of REWs found in lower redshift galaxies (Gron-

wall et al. 2007; Blanc et al. 2011). We further allow the REW to be either uncorrelated,

correlated, or anti-correlated with the UV luminosity of each simulated LBG. In our fidu-

cial model, the REW and UV luminosity are anti-correlated since this trend appears to

best reproduce existing observations. In order to produce REW distributions that are anti-

correlated with UV luminosity, we draw REWs from the exponential distribution (with

REWc = 125 Å in our fiducial model), and place them into various REW bins that are then

populated with LBGs according to their UV luminosity. Specifically, we divide REWs

into 10 bins based on width: the first bin is from 0 to 32 Å, the second from 32 to 110 Å

and the remaining eight are 80 Å wide. The LBGs are then divided into 10 bins based on

UV luminosity, and the most luminous galaxies are randomly assigned REWs from the

first (smallest REW) REW bin, the next most luminous from the first and second bins,

and so forth, until all the LBGs have REWs. Although the details of this procedure are

somewhat arbitrary, it matches both the observed values of fLyα at z ∼ 6 (for both UV

bright and UV faint sources), as well as the correlation coefficient, ρ , between REW and

UV luminosity. This is defined as

ρ =

n
∑

i=1
(REWi−REW)(Li−L)√

n
∑

i=1
(REWi−REW)2

√
n
∑

i=1
(Li−L)2

. (2.3)
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The sum here is over the LAEs in the observed or simulated sample, with n LAEs in

total, REWi denotes the rest frame equivalent width of the ith LAE in the sample, Li is

the UV luminosity of the ith LAE, while REW and L denote the sample-averaged rest

frame equivalent width and UV luminosity, respectively. The correlation coefficient in

our fiducial model is ρ = −0.23, while from Fig. 12 of Stark et al. (2010), we infer

ρ = −0.41; since the variance of the observational estimate is likely still sizeable, we

consider this simple model to be broadly consistent with observations.

This negative correlation model is also physically plausible, as discussed in §2.4.2.

Of course, our fiducial description of this correlation is only a toy model. Nevertheless,

we believe that it captures the relevant features of the lower redshift observations, and,

thus, should be a useful guide as we consider the fLyα measurements.

In addition to our fiducial model, we discuss three other models that seem both phys-

ically plausible and show a diversity of results: (1) the REWs are assigned randomly; (2)

there is a weak positive correlation between the REW and continuum luminosity of the

galaxy and (3) there is a weak negative correlation between the REW and the continuum

luminosity of the galaxy – weaker than in our fiducial case. For the second and third

cases, the REWs are assigned in a fashion similar to that in our fiducial case, except the

galaxies, and REWs, are only divided into three bins, not 10. Thus, the correlation is

weaker than in the fiducial case. For the weak positive correlation, the correlation coef-

ficient is ρ = 0.10; for the weak negative correlation, ρ = −0.11. While these models

are unlikely to perfectly capture the relationship between LAEs and LBGs, they suffice to

explore how our results depend on the precise relationship between LBGs and LAEs.

2.3.4 Attenuated LAE Emission and Mock Surveys

The intrinsic emission from each LAE is then attenuated according to the simulated dis-

tribution of neutral hydrogen. We do this following McQuinn et al. (2007a) and Mesinger

and Furlanetto (2008). Specifically, we shoot lines of sight through the simulation box

towards each LAE and calculate the total damping wing contribution to the Lyα opti-
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cal depth, summing over intervening neutral patches. As in this previous work, we cal-

culate the damping wing optical depth τDW (according to e.g., equation 1 of Mesinger

and Furlanetto 2008, equation 1.13 of this thesis) only at the center of each emission

line, i.e. at an observed wavelength of λobs = λα(1+ zs) for a source at redshift zs, with

λα = 1215.67 Å denoting the rest-frame line center of the Lyα line. We ignore the impact

of peculiar velocities and neglect any redshift evolution in the properties of the ionization

field across our simulation box – we use snapshots of the simulated ionization field at

fixed redshift. Calculating the optical depth at the center of each line, rather than the

full profile, should be a good approximate indicator of which sources will be attenuated

below observational REW cut-offs (see McQuinn et al. 2007a for a discussion and tests).

The ‘observed’ REW of each simulated LBG is then an attenuated version of the initial

intrinsic REW according to REWobs = e−τDWREW.

Armed with galaxy positions, UV luminosities and observed REWs, we produce

mock realizations of the Schenker et al. (2012) and Pentericci et al. (2011) observations,

and measure their statistical properties. We slice the simulation cube into strips with the

perpendicular dimensions mimicking the geometry and field of view of the observations.

In order to approximately mimic the survey window functions in the redshift direction, we

assume each strip has a length of 100 comoving Mpc h−1. We adopt this value based on

the estimated redshift distribution of z’-band dropouts in Ouchi et al. (2009) (their Fig. 6,

reproduce here as Fig. 1.14), which those authors determined from the SDF and GOODS-

N fields. For simplicity, we assume a top-hat window function and find that a top-hat of

width 100 Mpc h−1 reproduces the area under the redshift distribution curve of Ouchi

et al. (2009) and so use this width throughout. While all three of these surveys (Ouchi

et al. 2009; Pentericci et al. 2011; Schenker et al. 2012) use slightly different filters, they

all peak at roughly the same wavelength and Ouchi et al. (2009)’s have the largest full

width at half maximum (FWHM). Thus, this should be a reasonable approximation, al-

though it may slightly overestimate the depth of the field.

Within these strips, we then select the galaxies that would be observable to the two
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groups, based on the limiting magnitudes and REW limits they reported (see Table 2.1).

One subtlety here is that the galaxies observed by both groups are not distributed across

their entire fields. This likely occurs partly because the LBGs are clustered, and partly

because their efficiency for detecting LBGs and performing spectroscopic follow-up is not

uniform across each field. Because of the latter effect, we may underestimate the sample

variance if we draw the simulated LBGs from the full field of view. To roughly mimic this,

we draw our LBGs from randomly placed cylinders with diameters matching the largest

separation between galaxies in each set of observations: 9.99 Mpc h−1 for Schenker

et al. (2012) and 8.04 Mpc h−1 for Pentericci et al. (2011). We only consider observable

galaxies that fall within each cylinder, effectively limiting the size of the observed fields

and making them still closer to the size of the ionized bubbles in the simulation.

Furthermore, comparing to the z ∼ 7 LBG luminosity function from (Bouwens et al.

2011), it is clear that the existing measurements perform spectroscopic follow-up on only

a small fraction of the total number of LBGs expected in each survey field. This likely

owes mostly to the expense of the spectroscopic follow-up observations. However, this

implies that the Lyα fraction measurements only sparsely sample the Lyα attenuation

across the entire field-of-view, and enhances the sample variance effect. To mimic this,

in each mock survey we randomly select LBGs to match the precise number spectro-

scopically observed, and consider the Lyα emission and attenuation around only these

galaxies. In the case of Schenker et al. (2012)’s ERS field, they actually do not observe

any bright LBGs. To loosely consider this case – which will turn out to be less constrain-

ing – we randomly select four simulated LBGs, which matches their bright sample in the

other fields and also corresponds to the number one would expect based on the size of

their field of view and the follow-up capabilities in Pentericci et al. (2011).

One caveat here is that our simulation does not capture Fourier modes that are larger

than our simulation box size (130 comoving Mpc h−1), and so the sample variance we

estimate is only a lower bound. We do not expect the ‘missing variance’ to be large,

however. Although the full fields of view of some of the existing surveys correspond to
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a decent fraction of our simulation volume (see Table 2.1), the effective volume probed

by the observations is significantly smaller, as a result of the sparse sampling discussed

previously. In addition, it is important to note that our simulation box size is large com-

pared to the size of the ionized regions during most of the reionization epoch, and so it

does suffice to capture a representative sample of the ionization field.

Since both teams did follow up spectroscopy on already identified LBGs, we look for

Lyα emission in the selected LBGs that is strong enough to exceed the observed REW

cuts. The field-to-field fluctuations in fLyα arise from both the sample variance we aim to

study and from discreteness fluctuations. In our model, the latter arise because the REW

of the Lyα emission from each LBG is drawn from a random distribution. This scatter

is, of course, non-vanishing even in the absence of reionization-induced inhomogeneities,

and moreover, it is already included in the error budget of the existing measurements

(while the sample variance contribution has not been included). Hence we must separate

the discreteness and sample variance contributions to the simulated variance in order to

avoid double counting the discreteness component. To do this, we keep track of which

LBGs fluctuate above and below the observational REW cuts as a result of an upward

or downward fluctuation in the IGM attenuation. Some LBGs in the simulated sample

are observable as LAEs only because of downward fluctuations in the IGM attenuation,

while some are pulled out of the LAE sample because of upward fluctuations in the IGM

attenuation. Finally, in some cases – depending on the LBG’s intrinsic REW and IGM

attenuation – the IGM attenuation does not impact the LBG’s observability as an LAE.

Monitoring which LBGs are pulled into or out of the sample owing to fluctuations in the

IGM attenuation allows us to measure the scatter in fLyα arising from sample variance

alone.

Schenker et al. (2012) combine observations from a variety of surveys. Their obser-

vations focus on galaxies selected from an LBG survey on the ERS field. To increase

their sample size, Schenker et al. (2012) include observations from Fontana et al. (2010)

and several other LBGs from a variety of fields in their analysis. Since Fontana et al.
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(2010) is included in Pentericci et al. (2011)’s analysis and the other LBGs were not all

detected in well defined drop-out surveys of the corresponding fields, we only model the

observations of the ERS field of view when we analyse Schenker’s results.

Pentericci et al. (2011) observed with four pointings of the High Acuity Wide Field K-

Band Imager (HAWK-I; two in GOODS-S, one at BDF-4 and one at NTTDF). Although

the two fields in GOOD-S are next to each other, for ease of calculation we treated each

pointing as independent, and scaled the confidence regions accordingly. This may lead us

to underestimate the sample variance from these observations slightly.

2.4 Discussion

2.4.1 Is a Large Neutral Fraction Required?

Before we present a detailed comparison between the Lyα fraction measurements and

our simulated models and explore their implications for understanding reionization, a

qualitative illustration of the main effect discussed here may be helpful. This is provided

by Fig. 2.1, which shows a representative slice through the simulation volume, when

the volume-averaged ionization fraction is 〈xi〉 = 0.82. The dimension into and out of

the page has been averaged over the size of an ERS field. The two red regions show

example mock survey volumes that have the same size as an ERS field. Clearly the top

field is fairly well covered by intervening neutral hydrogen, although it is still has patches

of ionized hydrogen. On the other hand, the bottom cylinder is almost entirely clear of

neutral hydrogen. Lyα emission of galaxies residing in the top cylinder will be much

more attenuated than in the bottom panel.

Quantitatively, in the faint UV luminosity bin of Schenker et al. (2012), the simulated

fLyα in the first simulated field is fLyα = 0.30, while the Lyα fraction is almost twice as

large in the second simulated field, fLyα = 0.58. These numbers can be compared to the

average across the entire simulation volume at this neutral fraction, which is fLyα = 0.51.

Using our fiducial model and supposing (incorrectly) that these fractions are represen-
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Figure 2.1: A slice through the simulation cube for an output with a volume-averaged ion-

ization fraction of 〈xi〉= 0.82. The slice is averaged over one (perpendicular to the line of

sight) dimension of the ERS field of view. Clouds of neutral gas are shown in grey-scale;

the white areas being completely neutral. The dashed lines mark two potential mock ERS

observations. The significant difference between these two fields illustrates that small re-

gions on the sky may not provide representative samples of the overall average ionization

state of the IGM.
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tative, one would infer an ionized fraction of 〈xi〉 = 0.54 for the first field, compared to

〈xi〉= 1.0 for the second field. Neither inference correctly returns the true ionized fraction

of the field, 〈xi〉 = 0.82. This suggests that a rather large area survey is indeed required

to obtain representative measurements of the Lyα fraction. Perhaps the existing fields

are more like the top cylinder, and the LBGs in these fields suffer above average attenu-

ation. Assuming a survey like the top cylinder is representative of the volume averaged

neutral fraction could clearly bias one’s inferences of the neutral fraction. The chance of

obtaining a biased estimate of the neutral fraction is enhanced if spectroscopic follow-up

is done on only a few LBGs – effectively, a sparse sampling of each survey region – as is

often the case for the existing measurements.

With this intuitive understanding, we turn to a more detailed comparison with the

observations. Schenker et al. (2012) report a decline in fLyα at z ∼ 7. This decline is

particularly pronounced when compared to their observed fLyα values at lower redshifts.

For 4 < z < 6, they report an increase in the Lyα fraction with increasing redshift (Stark

et al. 2011). At z ∼ 7, fLyα is lower than the projected trend and lower than measured

at z ∼ 6. This decline suggests that that the observations may be probing into the EoR.

Using Monte Carlo simulations of their full data sample, Schenker et al. (2012) conclude

that in order to explain their results they require an ionized hydrogen fraction of at most

〈xi〉 ≤ 0.51.

Note that the low redshift measurements (4 < z < 6) come mainly from observa-

tions of the GOODS fields, both North and South. Some additional galaxies from other

sources are also included. Altogether, Stark et al. (2011) observed 351 B-dropouts, 151

V -dropouts, and 67 i’-dropouts. Given the large sky coverage of these surveys, sample

variance should not be a significant source of error for the low-redshift measurements.

However, the same may not be true at higher redshift where the measurements come from

smaller fields of view. In addition, if the high redshift measurements probe into the EoR,

this should enhance the sample variance as we will describe.

In Fig. 2.2 we show simulated Lyα fractions for mock surveys mimicking the z ∼ 7
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Figure 2.2: Comparison between mock Lyα fraction ( fLyα ) measurements and the obser-

vations of Schenker et al. (2012), as a function of the volume-averaged ionization fraction,

〈xi〉. The solid lines show the average value of fLyα across the simulation volume in our

fiducial model, while the dotted and dashed lines indicate the field-to-field spread in the

simulated Lyα fraction, i.e. the sample variance. The dashed lines enclose the values of

fLyα for 68 percent of the mock ERS fields, while the dotted lines enclose 95 percent of

the simulated fields. The shaded regions show the 68 percent confidence interval reported

by Schenker et al. (2012) (which neglect the sample variance contribution). The hori-

zontal line near the center of the shaded bands gives their best-fitting value for the Lyα

fraction. The top panel is for the UV faint bin of Schenker et al. (2012), while the bottom

panel is for the UV bright bin.
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measurements of Schenker et al. (2012) for the ERS field. In particular, we plot the

average Lyα fraction across the entire simulation box (solid line), as well as 68 percent

(dotted lines) and 95 percent (dashed lines) confidence intervals, as a function of the

volume-averaged ionization fraction (〈xi〉) in the models. The lines reflect the field-to-

field variance (i.e. the sample variance) in the simulated fLyα values. The probability

distribution of simulated fLyα values is somewhat non-Gaussian, and so we account for

this in determining the confidence intervals. In order to compare with Schenker et al.

(2012) we divide the simulated LBGs into UV bright (−21.75 < MUV <−20.25) (bottom

panel) and UV faint (−20.25 < MUV < −18.75) (top panel) bins. The shaded region in

each panel gives the allowed range in fLyα at 68 percent confidence reported by Schenker

et al. (2012), while the horizontal line shows their best-fitting fLyα value. In calculating

the 68 percent confidence range, Schenker et al. (2012) include LBGs from several fields.

As discussed earlier, we only calculate the sample variance for the ERS field. The sample

variance may thus be slightly overestimated when compared to the rest of the error budget.

The shaded region neglects the sample variance contribution, and so a better estimate of

the total error budget is the quadrature sum of the shaded regions and the dashed lines.

Focusing first on the UV faint bin (top panel), the first conclusion we draw from this

comparison is that the best-fitting ionized fraction is indeed 〈xi〉 ≈ 0.5. This is consistent

with the conclusions of Schenker et al. (2012). Note, however, that Schenker et al. (2012)

infer the neutral fraction from the same McQuinn et al. (2007a) simulations used here,

and so their constraint is not independent of the results here, although our present cal-

culations adopt a different model for the LAE/LBG populations. The next conclusion to

draw from the top panel is that the spread from sample variance is generally comparable

to (although a little smaller than) the reported error budget, and so it is not in fact negli-

gible, aside from the fully ionized case where it vanishes in this model. Here the sample

variance describes spatial variations in the damping wing attenuation, which vanish in the

fully ionized model. In reality, spatial variations in the resonant absorption likely lead

to additional contributions, neglected here, which would make the sample variance non-
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vanishing in the fully ionized case. Accounting for sample variance somewhat reduces

the neutral fraction required by these observations; for instance an 〈xi〉 ≈ 0.85 model is

just outside of the allowed 68 percent confidence range.

The bottom panel shows that the UV bright case is still easier to accommodate in

a highly ionized IGM, at least in our fiducial LAE model. In this case, Schenker et al.

(2012) found little evidence for redshift evolution. Since our fiducial model is constructed

to give a lower fLyα fraction for UV bright LBGs after reionization, the Lyα fraction

remains small at z ∼ 7 in a highly ionized IGM. In fact, since the UV bright galaxies

tend to have smaller intrinsic REWs in our fiducial model, these galaxies are particularly

susceptible to attenuation: that Schenker et al. (2012) detect some Lyα emission from UV

bright galaxies in this model then actually slightly disfavours more neutral models. At the

68 percent confidence level, 〈xi〉 ≈ 0.42 or smaller is disfavoured. The relatively small

number of LBGs spectroscopically followed up in each field (only four) contributes to the

size of the error bars. Recall that our sampling of four model galaxies here is somewhat

arbitrary, as Schenker et al. (2012) did not in fact follow up any bright LBGs in the ERS

field. Further, the trend of LAE fraction with ionization fraction depends somewhat on

our particular model for the anti-correlation between intrinsic REW and UV luminosity,

as we describe in §2.4.2.

Similarly, we can compare our mock Pentericci et al. (2011) observations with their

actual measurements. This is shown in Fig. 2.3. Their survey is not as deep as Schenker

et al. (2012), but covers a larger area on the sky. In the faint UV luminosity bin, they

search for Lyα emission around two LBGs (see Table 2.1), and find no significant Lyα

emission from either galaxy. This allows them to place only an upper limit on fLyα in this

luminosity bin. Their quoted upper limit none the less implies a drop-off towards high

redshift in fLyα , when compared to the lower redshift measurements of Stark et al. (2011).

However, the sample variance in our simulated samples is significant. In particular, the

top panel shows that the upper limit on fLyα translates into a lower limit on the neutral

fraction of 0.2 at the 68 percent confidence level. The spread in fLyα values is large
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Figure 2.3: Comparison between mock Lyα fraction ( fLyα ) measurements and the obser-

vations of Pentericci et al. (2011) as a function of the volume-averaged ionization fraction,

〈xi〉. This is similar to Fig. 2.2 expect here the shaded bands are the measurements from

Pentericci et al. (2011), with UV faint measurements in the top panel, and UV bright ones

in the bottom panel. Likewise, the simulated observations in this figure mimic those of

Pentericci et al. (2011).
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because only two LBGs are studied spectroscopically, and there are large variations in the

amount of damping wing attenuation suffered by these two LBGs, depending on whether

they reside towards the center of large ionized regions, at the edge of an ionized region,

or in the center of a smaller ionized bubble.

For the UV bright galaxies, they do detect some Lyα emission; in this luminosity

bin their Lyα fraction is lower for small REW (REW > 25 Å) lines than expected from

extrapolating the lower redshift Stark et al. (2011) measurements out to z∼ 7. However,

in our fiducial model the decline in the Lyα fraction for the UV bright sample is not

especially constraining. As discussed previously, these sources tend to have smaller in-

trinsic REWs, and so even a small amount of attenuation from the IGM attenuates them

out of the observable sample. Indeed the bottom panel of Fig. 2.3 shows that the Lyα

fraction in the UV bright Pentericci et al. (2011) bin is compatible with a fully ionized

universe in our fiducial model. As with the case of Schenker et al. (2012), this bin actually

(slightly) disfavours too large a neutral fraction, 〈xHI〉< 0.52 at the 68 percent confidence

level. Once the neutral fractions is less than 0.4, fLyα is consistent with zero; thus, that

Pentericci et al. (2011) observe any Lyα disfavours a highly neutral universe.

Of course, that both Pentericci et al. (2011) and Schenker et al. (2012) observe ev-

idence for a drop in fLyα near z ∼ 7 strengthens the case that these observations probe

back into the EoR. In order to quantify this, we combine the probability distributions for

the separate observations shown in Figs 2.2 and 2.3. The results of this calculation are

shown in Fig 2.4. Here the shaded regions show the 68 and 95 percent confidence inter-

vals after combining the two measurements, assuming that the reported error distributions

obey Gaussian statistics. For the combined UV faint case, we used directly the combined

uncertainty calculated in Ono et al. (2012) which took into account that Fontana et al.

(2010) was included in the calculations of both Pentericci et al. (2011) and Schenker

et al. (2012). As before, the lines show the sample variance contributions calculated from

our simulated models (and not included in the shaded error budgets).

We do not consider the observations of Ono et al. (2012) or Caruana et al. (2012)
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Figure 2.4: Confidence intervals on fLyα from combining the measurements of Schenker

et al. (2012) and Pentericci et al. (2011). These constraints are compared to our fiducial

model, as a function of 〈xi〉. Similar to Figs 2.2 and 2.3, except here the results reflect the

constraints from combining the separate Lyα fraction measurements. The shaded regions

reflect the combined reported errors, while the lines indicate the simulated average and

sample variance contributions to the error budget. The top panel is for the UV faint

luminosity bin, while the bottom panel is for the UV bright bin.
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here since we do not expect them to have a significant effect on the combined constraints.

While Ono et al. (2012) observed a large field, their survey was fairly shallow and fo-

cused on a small number of galaxies–only following up on 11 galaxies in the bright bin.

Since the faint galaxies place the greatest constraints on the ionized fraction in our fidu-

cial model, a shallow survey, focusing on the bright galaxies, is unlikely to increase the

constraints. Further, Ono et al. (2012)’s observations are consistent with the increasing

trend in fLyα seen in Stark et al. (2011); Ono et al. (2012) do not see a drop in fLyα at

z ∼ 7. Together, these characteristics of their observations, mean that not considering

their observations does not significantly affect our results. Further, by only observing 11

galaxies, Ono et al. (2012) greatly reduce their survey’s effective volume. Of course, a

deeper survey, with more galaxies sampling the entire large field, would greatly reduce the

effects of sample variance and could place significant constraints on the ionized fraction.

Caruana et al. (2012), on the other hand, focused on an extremely small field of view.

The size of their field makes them particularly vulnerable to sample variance. Their ob-

servations are consistent with the trend from Stark et al. (2011). Thus, their observations

would not place any further constraint on the sample variance.

The constraints in the combined case follow the trends found for each separate survey,

but the overall significance is somewhat tightened. As before, the low Lyα fraction in the

UV bright case is consistent with a fully ionized model. The UV faint case does, however,

prefer a partly neutral IGM, but a very large neutral fraction is not required. For example,

a model with 〈xi〉 ∼ 0.9 lies within the 95 percent confidence range.

2.4.2 Model Dependance

It is also interesting to explore how the simulated Lyα fractions depend on the underlying

model for the Lyα emission from LBGs. In particular, our fiducial model assumes that

the intrinsic Lyα REW is anti-correlated with UV luminosity. A variety of studies seem

to support this relationship. At z ' 3, Shapley et al. (2003) report an increase in the

mean REW with fainter luminosity. Stark et al. (2010) extend this out to higher redshift;
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for their sample of LBGs with Lyα emission at 3 . z . 6, they find that the largest

REWs tend to correlate with fainter UV continuum magnitudes. These observations are

supported by a host of others (Ando et al. 2006; Ouchi et al. 2008; Vanzella et al. 2009;

Balestra et al. 2010) that suggest that among the brightest sources, large REWs are scarce.

Such a correlation has a plausible explanation; the fainter galaxies may be less dusty than

their brighter counterparts, allowing more of the Lyα emission to be transmitted.

While this model does seem to match observations, there is still not widespread agree-

ment on this point, see, for instance, Kornei et al. (2010). For LBGs at z ∼ 3, Kornei

et al. (2010) do not see a significant correlation between continuum luminosity and Lyα

emission. Nilsson et al. (2009) argue that a flux or magnitude-limited survey, like the

ones cited above, will generally observe both fewer instances of strong Lyα emission

and fewer instances of bright LBGs since those are both rare. Thus, in order to conclude

that continuum luminosity and Lyα REWs are anti-correlated one would need very large

sample sizes, on the order of 1000 LBGs with measured REWs. In addition, note that

our fiducial model was tuned to match the observations of Stark et al. (2011) in a fully

ionized universe. However, there is still some uncertainty in the post-reionization Lyα

fractions, even for UV bright sources. For example, Curtis-Lake et al. (2012) find a z∼ 6

Lyα fraction that is roughly two times as large as that of Stark et al. (2011) for UV bright

sources, and comparable to that of the UV fainter sources from Stark et al. (2011).

Given the uncertainties in the relationship between LBGs and their intrinsic Lyα emis-

sion, we generate combined constraints along the lines of Fig. 2.4 for three additional

LAE models. These additional models are described in §2.3.3 and correspond to cases

with: a weaker negative correlation between intrinsic REW and UV luminosity than in

our fiducial model (with ρ = −0.11 from Equation 2.3 compared to ρ = −0.23 in our

fiducial model); a model where REW and UV luminosity are uncorrelated and a model

with a weak positive correlation (ρ = 0.10).

The combined constraints in these additional models are shown in Fig. 2.5. It is reas-

suring that the results in the UV faint bin appear only weakly dependent on the underlying
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Figure 2.5: Dependence of fLyα on the LAE model. Similar to Fig. 2.4, but here we

consider three different models for assigning Lyα REWs to LBGs. (Top) there is a weak

negative correlation between the continuum luminosities and the Lyα REWs; the fainter

galaxies have stronger Lyα emission, but the trend is less strong than in our fiducial

model. (Middle) the Lyα REWs are assigned randomly to the LBGs, following the dis-

tribution in Dijkstra et al. (2011). (Bottom) there is a weak positive correlation between

the continuum luminosities and the Lyα REWs; the brighter galaxies have stronger Lyα

emission. The left panels are for UV faint bins, while the right panels show UV bright

LBGs.
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model for Lyα emission from LBGs. The UV bright case is, on the other hand, quite sen-

sitive to the underlying LAE model. In particular, in these models the UV bright Lyα

fractions are intrinsically larger than in our fiducial case, and so significant attenuation

is required to explain the lower Lyα fractions measured in the high UV luminosity bin.

However, the same qualitative behaviour is expected in the post-reionization Universe,

and so each of these models is in conflict with the post-reionization (z∼ 4−6) measure-

ments of Stark et al. (2011) which do show a significant drop in the Lyα fraction from

UV faint to UV bright LBGs.

Our model does not consider the effects of galactic winds on Lyα emission. Backscat-

tering of Lyα emission off of the far side of a galactic outflow can promote the escape

of Lyα photons by shifting them redward of line center, and strong winds may therefore

make Lyα emission more visible even in a highly neutral universe. Thus, explaining the

drop in fLyα reported in these surveys would require a more neutral universe than we have

argued (Dijkstra et al. 2011), strengthening the conclusions of Schenker et al. (2012) and

Pentericci et al. (2011). However, while strong winds are observed from LBGs at z ∼ 3

(e.g. Shapley et al. 2003), the outflow speed – and hence the redshift imparted to Lyα

photons – may be substantially smaller around the smaller mass galaxies typical near

z∼ 7. It is presently unclear how prevalent strong winds are from z∼ 7 LBGs.

Clearly, a better understanding of the relationship between LBGs and LAEs should

help in interpreting current and future Lyα fraction measurements. Along these lines,

Dayal and Ferrara (2012) have simulated LBGs and LAEs at z ∼ 6, 7 and 8. They con-

clude that LAEs are a diverse subset of LBGs. While the faintest LBGs do not have Lyα

emission, LAEs are found distributed throughout all other categories of LBGs. Similarly,

Forero-Romero et al. (2012) model the relationship between LBGS and LAEs in the range

5 ≤ z ≤ 7, concluding that, in order to match the observations of Stark et al. (2011), the

Lyα escape fraction must be inversely correlated with galaxy luminosity. Further ob-

servational and theoretical work should help strengthen our understanding of the precise

relationship between these two galaxy populations.
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2.5 Conclusions

In order to summarize our findings and put them in the larger context of our current

understanding of the EoR, we use the results of Fig. 2.4 to compute the likelihood function

for 〈xi〉(z∼ 7) given the results of both Schenker et al. (2012) and Pentericci et al. (2011).

Fig. 2.6 shows the resulting 68 and 95 percent confidence regions for 〈xi〉, as compared

to constraints from Kuhlen and Faucher-Giguère (2012), which combine recent WMAP-7

measurements of the Thomson scattering optical depth, along with observations of the

z ∼ 2− 5 Lyα forest, and UV galaxy luminosity function measurements. Although the

central value of 〈xi〉(z ∼ 7) we infer from the fLyα observations is outside of the range

implied by the other measurements, accounting for sample variance and other sources

of uncertainty in the fLyα measurements, we find that these various observations are in

fact in broad agreement with each other. Interestingly, we conclude that a fully ionized

IGM is disfavoured by the fLyα measurements, although a highly neutral IGM (〈xi〉 ≤∼

0.5) is not required. Taken together with spectroscopic observations of a z = 7.1 quasar

from Mortlock et al. (2011), the case that existing measurements probe into the EoR is

strengthening.

It is also interesting to note that recent and improved measurements of the UV galaxy

luminosity function from the Ultra Deep Field (UDF) survey and Cosmic Assembly Near-

Infrared Deep Extragalactic Survey (CANDELS) favour somewhat later reionization than

in the Kuhlen and Faucher-Giguère (2012) analysis (Oesch et al. 2013; Robertson et al.

2013). For instance, extrapolating the measured luminosity functions down to MUV <

−13, Robertson et al. (2013) favours z ∼ 7.5 for the redshift at which the Universe is 50

percent neutral by volume (see their Fig. 5). These results are more easily harmonized

with the preferred (central) value of 〈xi〉(z∼ 7) inferred from the fLyα observations.

We also find that the constraints from the Lyα fraction measurements depend some-

what on the model relating the properties of the LBGs and LAEs. In our fiducial model

(shown here in Fig. 2.6), the intrinsic REW of Lyα emission from LBGs is anti-correlated

with UV luminosity. In models without this anti-correlation, the lower Lyα fractions
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Figure 2.6: The reionization history inferred from a variety of observations. The shaded

band shows constraints on the ionization fraction as a function of redshift from Kuhlen

and Faucher-Giguère (2012), which come from combining WMAP-7 measurements of

the optical depth to Thomson scattering, the intensity of the UV background inferred

from the z∼ 2-5 Lyα forest, and measurements of the UV galaxy luminosity function at

high redshift. The luminosity functions are extrapolated down to faint luminosities; the

different shaded bands show the dependence on the limiting UV magnitude (Mlim) out to

which this extrapolation is carried out. The point with error bars shows the constraint we

infer from the Lyα fraction measurements of Schenker et al. (2012) and Pentericci et al.

(2011). The lower vertical error bar shows the 68 percent confidence interval, while the

upper vertical error bar shows the 95 percent confidence interval. The horizontal error bar

gives the redshift uncertainty for the LBGs used in these measurements.
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Figure 2.7: The impact of improved sampling of the Pentericci et al. (2011) fields on the

sample variance error. Pentericci et al. (2011) looked for Lyα emission from two faint

LBGs. This leads to the large sample variance, shown in the black dashed and dotted

lines, at 68 and 95 percent, respectively (identical to the lines in the top panel of Fig. 2.3).

The blue dashed and dotted lines show that the sample variance would dramatically shrink

if a survey was done to search for Lyα emission from all of the LBGs in their fields.
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among UV bright galaxies at both z ∼ 7 and at lower redshifts (z ∼ 4− 6) are hard to

understand.

Bolton and Haehnelt (2013) recently pointed out another effect that may also help

reconcile the Lyα fraction measurements with other constraints on reionization. These

authors suggest that the observed drops in the Lyα fraction towards high redshift may be

driven mostly by strong evolution in the number of dense, optically thick absorbers in the

vicinity of the observed LBGs, rather than reflecting prominent changes in the ionization

state of the diffuse IGM. This effect would not be well captured in the simulations used

in our analysis, since these dense absorbers are notoriously difficult to resolve in large

volume reionization simulations. This effect would also, however, presumably show large

field-to-field variations, similar to the spatial variations in the attenuation from the diffuse

gas studied here. More detailed models will likely be necessary to disentangle the relative

impact of optically thick, circumgalactic absorbers and the more diffuse IGM considered

here.

More importantly, the prospects for improved observations are very good, and es-

pecially tantalizing given the current hints that z ∼ 7 observations may probe into the

EoR. Larger and deeper surveys for LBGs and LAEs should help clarify the interpre-

tation of current observations. In particular, as shown in Fig. 2.7, observing down to

MUV = −18.75 over an area as large as that observed by Pentericci et al. (2011) would

be enough to greatly reduce the effects of sample variance. Fully sampling such an area,

however, would mean spectroscopically observing on the order of 100s of LBGs, looking

for Lyα emission. However, even just sampling five galaxies per field (20 galaxies total)

is enough to ‘fill in’ the sparse sampling and reduce the sample variance by a factor of 2.

Alternatively, the use of narrow band filters to select the LBGs that are also LAEs should

make observing 100s feasible.

The spatial fluctuations in the Lyα fraction studied here are presently a nuisance;

however, they should ultimately provide a very interesting and distinctive signature of

reionization, provided they can be mapped out over large volumes of the Universe. Map-
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ping these fluctuations will require both larger fields of view and more fully sampled fields

than currently available. This should, nonetheless, be possible using upcoming observa-

tions from the Hyper Suprime-Cam on the Subaru telescope, which will observe LAEs

out to z = 7.3 over more than 5 deg2.
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Chapter 3

Probing Reionization with Upcoming

Observations of Lyman-α Emitters and

Lyman-break Galaxies from the

Hyper-Suprime Camera

3.1 Introduction

The Epoch of Reionization (EoR) is the time period during which early generations of

galaxies and accreting black holes form and gradually photoionize neutral hydrogen in

the surrounding intergalactic medium (IGM). Since the EoR marks the birth of the first

galaxies, it is important for our understanding of the history of structure formation, and

has been the focus of much work over the past decade. This has led to significant progress

in determining when reionization took place. Although a wide range of models are still

viable, recent observations broadly suggest a later end to reionization than previously

thought. For example, measurements of the polarization of the cosmic microwave back-

ground on large angular scales determine the probability that a CMB photon scatters off

of free electrons during and after reionization. While measurements from nine years of
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the Wilkinson Microwave Anisotropy Probe (WMAP) found an optical depth to elec-

tron scattering of τe = 0.088± 0.014 (Hinshaw et al. 2013), the most recent determi-

nation using data from the Planck High Frequency Instrument gives τe = 0.058± 0.012

(Planck Collaboration et al. 2016). In the unrealistic, but nevertheless illustrative case

of instantaneous reionization, these measurements translate into reionization redshifts of

zreion ' 10.5± 1.1 and zreion ' 8.8± 0.9, respectively. In the more physically plausible

case that reionization is gradual, the process should complete at lower redshift than these

instantaneous values. While the polarization data determine mostly just an integral over

the entire ionization history, and systematic uncertainties in the Planck measurements are

still large, the implied later end to reionization is supported by other observations. For

example, spectra of the highest redshift quasar found to date, at z = 7.1, show evidence

for damping wing absorption just redward of the Lyα line, possibly indicating signifi-

cantly neutral gas in the IGM at this redshift (Mortlock et al. 2011; Simcoe et al. 2012).

In addition, measurements of the Lyα fraction fLyα , the fraction of Lyman Break Galax-

ies (LBGs) that are also Lyα emitters (LAEs), show a gradual rise from z ∼ 2 to z ∼ 6,

followed by a pronounced drop from z ∼ 6 to z ∼ 7 (Pentericci et al. 2011; Schenker

et al. 2012; Ono et al. 2012; Caruana et al. 2012), and a continued decline out to z ∼ 8

(Schenker et al. 2014). The decreasing Lyα fraction may also indicate that much of the

z∼ 7 IGM volume is filled with neutral hydrogen (e.g Mesinger et al. 2015). Furthemore,

UV galaxy luminosity function measurements show declines toward high redshift (e.g.

Bouwens et al. 2015). Although the precise implications depend on the escape fraction

of ionizing photons, on extrapolations to fainter luminosities than observed, and on the

spectrum of the ionizing galaxies, these results are more comfortable with a late end to

reionization (Robertson et al. 2015). On the other hand, observations of transmission

through the Lyα forest toward high redshift quasars and gamma ray bursts indicate that

reionization completed by z≤ 6 (Fan et al. 2006; Bolton et al. 2011; Chornock et al. 2013;

McGreer et al. 2015), although a small fraction of the IGM volume at 5.5 < z < 6 may

still contain remaining islands of significantly neutral hydrogen (Malloy and Lidz 2015).
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Taken together, the observations suggest that reionization completed sometime between

5.5 < z < 7.

This redshift range is nicely bracketed by observations of LAEs which target narrow

redshift windows (in between bright night sky emission) at z ∼ 5.7, 6.6, and z ∼ 7.3,

and significantly expanded LAE data sets are forthcoming. These new observations may

allow more definitive determinations of the evolution of the volume-averaged ionization

fraction over this interesting redshift range. Of particular interest are measurements of

the spatial clustering of LAEs. Current theoretical models predict that reionization is

a patchy process: ionized regions form first, and grow more quickly, around large-scale

overdensities, while less dense regions contain smaller ionized regions and also remaining

neutral gas (e.g. Furlanetto et al. 2004b; McQuinn et al. 2007b). The Lyα photons from

an LAE at the center, or far edge, of a large ionized region redshift significantly before

reaching neutral gas at the bubble wall, and thereby avoid scattering in the Lyα line. On

the other hand, Lyα photons from LAEs in smaller ionized regions are unable to redshift

out of the line before reaching neutral gas; they tend to be scattered out of the line of sight

and rendered unobservable. In other words, observable LAEs should preferentially live in

large ionized regions, and show strong clustering since these regions trace rare, overdense

peaks in the density field. Consequently, as LAE observations probe back into the EoR,

the observed clustering of LAEs should show a distinctive enhancement (Furlanetto et al.

2004a; McQuinn et al. 2007a; Mesinger and Furlanetto 2008; Ouchi et al. 2010; Jensen

et al. 2013). The enhanced LAE clustering signature should be accompanied by a decline

in the average abundance of LAEs, but the clustering enhancement can be dramatic and

harder to mimic with evolution in the intrinsic properties of the galaxies themselves (e.g.

McQuinn et al. 2007a).

The first precise measurements of LAE clustering at plausible EoR redshifts will soon

be enabled by the Hyper Suprime Cam (HSC), a new instrument on the Subaru telescope.

These observations will reach out to z ' 7.3 and, crucially, extend over several square

degrees on the sky. The primary goal of the present chapter is to forecast the statistical
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precision of these measurements, and to consider the resulting constraints on the ioniza-

tion state of the IGM. The same survey will also detect many LBGs, and we demonstrate

that this provides a useful comparison sample to contrast with the detected LAE popula-

tions. In particular, following the redshift evolution of both LAEs and LBGs should help

isolate evolution caused by changes in the ionization state of the IGM from variations in

the intrinsic properties of the galaxy populations. Furthermore, we explore a few different

possible statistics; their combination may be used to most cleanly extract any signatures

of incomplete reionization from the HSC observations. Specifically, we consider mea-

surements of the abundance, power spectra, and void distribution of the LAEs and LBGs

at different redshifts, as well as LAE-LBG cross spectra. Finally, we explore the impact

of contamination from foreground interlopers and develop some strategies to mitigate this

contamination. Our detailed statistical forecasts, comparisons between LAEs and LBGs,

and consideration of foreground interlopers distinguish this work from previous theoreti-

cal studies that also considered the prospects for HSC’s measurements (Jensen et al. 2014;

Sobacchi and Mesinger 2015; Hutter et al. 2015).

This chapter is structured as follows. §3.2 lays out our method, while §3.3 describes

the relevant HSC survey specifications. In §3.4 we construct mock HSC observations and

measure the statistical properties of our simulated galaxy populations. §3.5 considers the

impact of additional practical complications that may impact the HSC data sets. Finally,

§3.6 summarizes our conclusions. Throughout this chapter, we assume a Λ cold dark

matter (ΛCDM) model with ns = 1, σ8 = 0.8, Ωm = 0.27, ΩΛ = 0.73, Ωb = 0.046 and

h = 0.7. These parameters are broadly consistent with recent results from the Planck

collaboration (Planck Collaboration et al. 2014). We report all magnitudes in the AB

system (Oke 1974).
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3.2 Method

In order to forecast the ability of HSC to make these measurements, we start with the

reionization simulations of McQuinn et al. (2007a,b). These simulations provide models

of the spatial distribution of neutral gas during the EoR, as well as the underlying matter

distribution and dark matter halo populations. The reionization calculations are post-

processed on top of a 10243 particle, 130 co-moving Mpc h−1 dark matter simulation

run with GADGET-2 (Springel 2005). In a further post-processing step, we populate a

fraction of the dark matter halos in the simulation with LBGs and LAEs. We attenuate the

Lyα emission based on the surrounding neutral hydrogen. These post-processing steps

are described in more detail below and in Taylor and Lidz (2014), §2 of this work.

In order to populate our simulated dark matter halos with LBGs, we start from a very

simple model connecting host halo mass, Mhalo, and star formation rate, Ṁ?, as in Stark

et al. (2007):

Ṁ? =
f?(Ωb/Ωm)Mhalo

tLT
. (3.1)

Here f? is the efficiency with which baryons are converted into stars and tLT is the time

scale for star formation. We use Stark et al. (2007)’s best fit values of f? = 0.16 and

tLT = 0.25 ∗ t(z), where t(z) is the age of the Universe, for LBGs at z ' 6. Adopting a

Salpeter Initial Mass Function, the star formation rate is connected to the UV luminosity

by (Madau et al. 1998):

L1500 = 8.0×1027 erg
Hz s

[
Ṁ?

1M�/yr

]
, (3.2)

at a rest frame wavelength of λ = 1500 Å. Provided star formation occurs mostly in

short, constant bursts, only a fraction of the halos will host LBGs at any given cosmic

time. It is common to fix the fraction of dark matter halos that are actively forming stars

according to the duty cycle of star formation implied by Equation 3.1, tLT/t(z). However,

we find a better match to the observed abundance and clustering of z∼ 7 LBGs (Bouwens

et al. 2011), and the observed Lyα fraction (Schenker et al. 2012; Pentericci et al. 2011;

Ono et al. 2012; Caruana et al. 2012), if we adopt a slightly different fraction of host
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halos that are “active” as LBGs. We therefore fix this fraction to be 1/6, which is in any

case similar to the star formation duty cycle of tLT/t(z) = 0.25 in the model of Equation

3.1. By varying which halos we (randomly) choose to host LBGs, we produce six non-

overlapping samples, which can be used to reduce the modeling uncertainty introduced

from the finite size of our simulated samples.

Each simulated galaxy is assigned Lyα emission, as characterized by the Rest-frame

Equivalent Width (REW) of the emission line. Following Dijkstra et al. (2011), we draw

the REWs from an exponential distribution: P(REW) = exp[−REW/REWc]/REWc with

a central REW of REWc = 50 Å. This choice is motivated by measurements of REW dis-

tributions from lower redshift galaxy samples (Gronwall et al. 2007; Blanc et al. 2011),

which are well fit by exponential distributions. In assigning REWs to simulated galaxies,

we further assume that the REW and galaxy UV luminosity are anti-correlated. Specif-

ically, the UV luminosities and REWs of the galaxies are divided into ten, rank-ordered

bins, and the weakest Lyα lines are assigned to the UV-brightest galaxies. As detailed in

§2, we choose an anti-correlation model because it is physically plausible–fainter galaxies

may have less dust, allowing more Lyα emission to escape–and because it is supported

by a host of observational studies (Shapley et al. 2003; Stark et al. 2010; Ando et al. 2006;

Ouchi et al. 2008; Vanzella et al. 2009; Balestra et al. 2010).

In this work, we forego constructing detailed models for the Lyα emission line pro-

files emerging from each of our mock LAEs. In reality, the Lyα emission line profiles

depend on a variety of factors including the distribution of neutral hydrogen and dust in

the LAEs’ interstellar and circumgalactic media, on large scale infall and outflows to-

wards the LAEs, and on enhancements to the background photoionization rate near the

host galaxy (see, for example, Santos 2004; Dijkstra et al. 2007; Zheng et al. 2010; Ver-

hamme et al. 2012; Yajima et al. 2012; Duval et al. 2014). A number of recent works

have developed multi-scale simulation techniques in effort to adequately model both the

intrinsic Lyα line profile leaving the galaxy, as well as the subsequent scattering in the

IGM (e.g. Zheng et al. 2010; Jensen et al. 2013; Choudhury et al. 2015; Mesinger et al.

98



2015; Kakiichi et al. 2015). Although refinements along these lines will be necessary

to compare with the actual HSC data, the simplified approach considered here should

be adequate in forecasting the precision of upcoming measurements, while including the

main effects of patchy reionization. Here we assume that the complexities of Lyα trans-

fer intrinsic to each source are captured by sampling from the REW distribution. We

assume that resonant absorption in the IGM is also captured in this sampling. In the ab-

sence of outflows and infalling material, resonant absorption would absorb the blue half

of each line, without impacting the photons initially redward of Lyα , but reality may

be significantly more complex, as explored in the references above. The most signifi-

cant limitations of our approach are that we assume the intrinsic REW distribution does

not itself evolve with redshift and ionization state, and we ignore any large scale spatial

variations in this distribution (see e.g. Zheng et al. 2010).

The intrinsic REWs and LAE luminosities are then attenuated based on the distribu-

tion of surrounding neutral hydrogen as modeled in the McQuinn et al. (2007a) reioniza-

tion simulations. For simplicity, we calculate only the damping wing optical depth at the

center of the Lyα line, τDW, and attenuate each mock LAE according to e−τDW . Using

the center of the line, rather than the full line profile, should allow us to model the im-

pact of patchy reionization and determine which simulated LAEs are attenuated out of

the sample; McQuinn et al. (2007a) discusses this approximation further. Note that, as

in §2, we consider a range of ionization fraction models by drawing the ionization fields

from different redshift outputs of the same reionization simulation, rather than running

new calculations for each different reionization history we aim to study. As discussed in

McQuinn et al. (2007b), this should be a good approximation for our present purposes.

3.3 HSC details

Now that we have a recipe for populating simulated data cubes with LBGs and LAEs, we

can further tailor the mock data to match the specifications of upcoming HSC surveys.
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HSC has a very large field of view, 1.5 degrees in diameter, and their survey plan is

structured as a tiered or wedding cake approach. It is their deepest level, the Ultradeep

layer, with which we concern ourselves. This tier, covering 3.5 deg2 – which is just

two fields of view across – is observed in 5 broadband filters (grizy) and 3 narrow band

filters (NB816, NB921, NB101). The broad band filters will allow detection of LBGs out

to z ∼ 7 (z-dropouts) down to a limiting magnitude of 26.3. The narrow band filters are

selected to detect LAEs at z∼ 5.7, 6.6, 7.3. The limiting magnitude for detecting LAEs at

these redshifts are 26.5, 26.2, and 24.8, respectively (HSC Science Collaborations 2012).

Since the HSC survey spans 3.5 deg2 or 206 co-moving Mpc h−1 on a side at z ∼ 7, it

should be able to detect thousands of LAEs and LBGs across its wide survey area and

is therefore well-suited for measuring the abundance and clustering of these galaxies.

Provided the survey probes into the EoR, this survey area should be sufficient to span

many different ionized and neutral regions, probing inhomogeneities in the reionization

process.

3.3.1 Modeling HSC Observations

The total luminosity in the Lyα line for each galaxy may be determined from its REW

and specific UV luminosity, according to (Dijkstra and Wyithe 2012):

Lα =C×REW×LUV,ν , (3.3)

where LUV,ν is the continuum UV luminosity density, and C ≡ να

λα
(λUV

λα
)−β−2, in which

να = 2.47∗1015 Hz, λα = 1216 Å, and λUV = 1700 Å, the wavelength at which the UV

continuum flux density is measured. For β , we use Dijkstra and Wyithe (2012)’s best

fit value of −1.7, which is broadly consistent with Stark et al. (2010); Furusawa et al.

(2016); Jiang et al. (2016).

In order to model the HSC observations, we implement the HSC limiting magnitude

cuts specified above and further require that for a galaxy to be considered a bona-fide

LAE, it must have a minimum rest frame equivalent width of REW≥ 20 Å (as is common
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practice, e.g. Stark et al. 2011). As we will discuss further in §3.5.1, this serves to screen

out low redshift line-emitting galaxies that may be mistaken for higher redshift LAEs.

HSC’s use of narrow and broad bands to detect galaxies means that LAEs and LBGs

are detected over different depths. In order to best mimic their observations, we limit the

depth of the simulation cube to match the depth of the observations. The LAE narrow

band depth, calculated from the width of the filter, is roughly 20 Mpc h−1 at each of the

redshifts of interest. The broad bands are more complicated. From other surveys (Ouchi

et al. 2009) we expect z-dropouts to be distributed over a range of redshifts, from z∼ 6.4

to z∼ 7.3, peaking at z∼ 6.9 (see their Fig. 6, reproduced here as Fig. 1.14). We simplify

this by assuming a top-hat window function, and find that a top-hat of width 100 Mpc h−1

at z∼ 7 reproduces the area under the observed redshift distribution. We use this width as

the depth of the LBG survey field. Note that their dropout out filter, z′, is different from

the z band used by HSC; they are similar enough, however, for this to be a reasonable

approximation.

3.4 Mock Observations

We now turn to analyze the statistical properties of the mock galaxy populations in our

simulated samples. We discuss several different statistical measurements that may be

performed by the HSC and consider their utility for constraining the ionization history.

3.4.1 Galaxy Abundance

The first observable to consider is the redshift evolution in the average abundance of both

LAEs and LBGs. As the observations probe into the EoR, one expects the observed abun-

dance of LAEs to drop: neutral hydrogen leftover in the surrounding IGM will scatter Lyα

photons out of the line of sight and attenuate galaxies out of the observed sample. As the

neutral fraction increases, progressively fewer LAEs should be observed. For example, if

reionization is complete by z ∼ 5.7, but incomplete at z ∼ 6.6 and z ∼ 7.3, then one ex-
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pects a steady decline in the average abundance of LAEs across HSC’s three narrow band

filters. One would expect less redshift evolution in the detected LBG populations since

these galaxies will be less influenced by the ionization state of the surrounding IGM (see

§3.5 for further discussion). As these measurements are sharpened, one should compare

the observed luminosity functions – i.e., abundance as a function of observed luminos-

ity – with model predictions, but here we instead consider only the overall abundance of

galaxies above the anticipated survey flux limits. A more refined star formation model

than considered here is likely required to make robust predictions of the full LAE and

LBG luminosity functions.

Fig. 3.1 shows our model predictions for the average abundance of LAEs and LBGs

as a function of redshift as observed by HSC. The expected abundance of LAEs depends

on the model volume-averaged ionization fraction. For illustration, the grey band in the

figure indicates the model LAE abundance for a range of plausible values of the ionized

fraction at different redshifts: the band assumes 〈xi〉= 1 at z∼ 5.7, and spans 〈xi〉= 0.7

to 1 at z ∼ 6.6, and 〈xi〉= 0.3 to 1 at z ∼ 7.3. The red squares show the LAE abundance

for a fiducial ionization history in which 〈xi〉 = 1 at z ∼ 5.7, 〈xi〉 = 0.82 at z ∼ 6.6 and

〈xi〉 = 0.71 at z ∼ 7.3. The figure shows that our LBG and LAE models are broadly

consistent with current measurements, although the LBG model somewhat underproduces

the observed abundance from Bouwens et al. (2015). Although we adjusted the LBG

duty cycle in part to match these observations, we also aim to match the observed LBG

clustering and the observed Lyα fraction: the best overall match we found underproduces

the abundance a little bit.

Considering the redshift evolution, first note that there is a small drop-off towards

high redshift in both galaxy populations even in fully ionized models; this mostly arises

because the surveys are shallower at high redshift. More interesting, however, is the ex-

pected decline in the LAE abundance that occurs in models in which the IGM is partly

neutral at z ∼ 6.6 and z ∼ 7.3. This decline can be compared with the present mea-

surements from Konno et al. (2014) and Matthee et al. (2015). These LAE abundance
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measurements are consistent with the IGM being fully ionized at z∼ 6.6 and z∼ 7.3, but

also with reionization being incomplete at these redshifts. In the context of our model,

the Konno et al. (2014) measurements imply 1−σ lower limits on the ionized fraction of

0.84 at z∼ 6.6 and 0.46 at z∼ 7.3. Fortunately, the error bars should tighten considerably

with HSC, due to expected higher number of galaxies detected. Of course, this number

depends on the ionized fraction, but we should expect the error bars to tighten by an order

of magnitude for LAEs at z∼ 6.6.

In terms of the overall total number of LBGs and LAEs that HSC should observe

(over their Ultradeep 3.5 deg2 field), we anticipate around 2,400 LBGs in the broad band

around z∼ 5.9, and 1,100 LBGs near z∼ 6.9. For the range of ionized fractions spanned

by the grey bands, we expect 3,000 LAEs at z∼ 5.7, between 1,500 and 2,500 at z∼ 6.6

and between 5 and 330 at z∼ 7.3.

Of course, evolution in the intrinsic properties of LAEs over the redshift range spanned

by the HSC narrow bands may also lead to evolution in their average abundance. For ex-

ample, the abundance of neutral hydrogen in the outskirts of the LAE host halos – that is,

in the circumgalactic medium – may evolve and become more prominent at high redshift

if the ionizing background is small just after reionization and increases towards lower

redshift. This could lead to evolution in the average LAE abundance even if the diffuse

gas in the low-density IGM remains highly ionized throughout the redshift range spanned

by the HSC (e.g. Bolton and Haehnelt 2013). We consider this evolution to be “intrinsic”

as it relates to changes in the properties of gas in the LAE host halos, rather than in the

surrounding diffuse IGM. Our simple model for the LAEs does not capture the complex

problem of Lyα scattering in the circumgalactic medium. Even if the interpretation of the

abundance evolution may be somewhat subtle, it should nevertheless be part of the body

of evidence regarding the ionization state of the z≥ 6 IGM, especially when paired with

other clustering-based tests where evolution into the EoR should be less easily mimicked

by intrinsic variations in a completely ionized IGM.
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Figure 3.1: The number density of LAEs and LBGs that are observable by HSC. The black

stars show the abundance of model LBGs above the limiting magnitudes in the HSC broad

band filters, centered near z∼ 5.9 and z∼ 6.9, while the magenta stars and error bars show

the expected abundance from recent UV luminosity function measurements (Bouwens

et al. 2015). The grey band shows the abundance of LAEs above the HSC narrow band

limiting magnitude cuts at z ∼ 5.7,6.6, and 7.3 for a range of different ionized fraction

models. The band assumes 〈xi〉= 1 at z∼ 5.7, 〈xi〉= 0.7 to 1 at z∼ 6.6, and 〈xi〉= 0.3 to

1 at z∼ 7.3. The red squares show the abundance for a fiducial ionization model in which

〈xi〉 = 1 at z ∼ 5.7, 〈xi〉 = 0.82 at z ∼ 6.6, and 〈xi〉 = 0.71 at z ∼ 7.3. The orange points

with error bars show current LAE abundance measurements from Konno et al. (2014).

The figure illustrates both broad consistency of our model with current measurements,

and it also quantifies how the average abundance of LAEs may evolve as the observations

probe into the EoR.
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3.4.2 Lyα Fraction

HSC can also perform a modified version of the Lyα fraction test discussed in the intro-

duction (Pentericci et al. 2011; Schenker et al. 2012; Ono et al. 2012; Caruana et al. 2012;

Schenker et al. 2014; Furusawa et al. 2016). This has the advantage of being less sensitive

to intrinsic evolution in the underlying galaxy populations than the luminosity functions

themselves; intrinsic evolution should in part divide out when taking the ratio of the abun-

dance of the two populations. As mentioned in the introduction, current measurements

show a gradual rise in the Lyα fraction from z ∼ 2− 6 – this is perhaps a consequence

of a declining dust abundance across this redshift range – followed by a sharp drop above

z ≥ 6. An important virtue of HSC here is its large field of view, which is much larger

than the size of the ionized regions during the EoR. This helps guard against sample vari-

ance, which may impact previous Lyα fraction measurements (Taylor and Lidz (2014),

reproduced here as §2) since these surveys were conducted over relatively small fields.

Previous Lyα fraction test studies have performed follow-up spectroscopy on photo-

metric LBG candidates. Here we consider a variant, which does not require follow-up

spectroscopy. Specifically, we consider the projected distribution of LAEs and LBGs and

their ratio across a mock HSC field of view ( NLAE
NLBG

), where the LAEs and LBGs are se-

lected solely on the basis of the HSC narrow and broad band filters. We can consider

this fraction both for LAEs selected from the z∼ 5.7 and z∼ 6.6,7.3 narrow band filters,

when combined with LBGs selected from the z ∼ 5.9 and z ∼ 6.9 broad band filters re-

spectively. Since the broad and narrow band filters only partially coincide in wavelength,

the selected LAE and LBG populations only partly overlap in redshift. That is, only

a fraction of the galaxies selected by the two techniques are the same sources, and the

two populations only partly trace the same large scale structure. Nevertheless, the ratio

should show interesting redshift evolution as one probes back into the EoR. In addition,

this fraction should be modulated by the patchiness of the reionization process. Essen-

tially, the sample variance that was previously a nuisance for Lyα fraction measurements

(Taylor and Lidz (2014), reproduced here as §2) in fact provides an interesting signature
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of reionization, accessible to LAE/LBG surveys with large fields of view like the HSC. In

principle, the scale-dependence of these variations provides information about the patch-

iness of reionization and the physical processes that drive it. Although the NLAE
NLBG

fraction

considered here is less direct than the pure Lyα fraction test which considers only Lyα

emission from previously detected LBGs, it can be measured from the upcoming data

without expensive spectroscopic follow-up.

To illustrate, we use our mock projected z ∼ 6.6 LAE and z ∼ 6.9 LBG samples,

and tabulate the number of LAEs and LBGs across each of 2562 simulation cells. We

estimate the fraction NLAE
NLBG

in each cell, and smooth this with a 2D Gaussian of width

σ = 6.09 Mpc h−1, corresponding to 24 simulation cells, and comparable to the size of

the ionized regions in the simulation. In the event that there are no LBGs in a cell, the

fraction is set to zero (before smoothing). The results of this calculation are shown in Fig.

3.2 for a model with an ionized fraction of 〈xi〉 = 0.71. In order to understand how this

fraction is modulated by patchy reionization, we also estimate the fractional attenuation

of the LAEs in each simulated cell, δN/N, where δN is the number of LAEs that fall

below the HSC limiting magnitude cut after IGM attenuation. The attenuation fraction is

shown by the grayscale in the left hand side of the figure, while the colored contours in

the same panel show the abundance fraction, NLAE
NLBG

. For further comparison, we show the

projected ionization field from the same slice in the right hand panel of the figure. Visual

comparison suggests that NLAE
NLBG

is a reasonable tracer of the relative LAE attenuation, with

areas of high Lyα fraction having little attenuation, while low Lyα fraction regions trace

heavily attenuated regions. The attenuation fraction is, in turn, a reasonable proxy for the

projected ionization fraction.

The fraction shows interesting variations and is a good tracer of the underlying ioniza-

tion field, but we caution that this is imperfect. First, note that the HSC LBG sample will

have a significantly lower abundance than the LAE sample (at least for the ionized frac-

tion assumed here). Since regions with no LBGs are assigned zero fraction, there will be

some ionized regions that host LAEs but have zero fraction because no LBGs are detected

106



Figure 3.2: Spatial variations in the the ratio of the projected abundance of LAEs to LBGs.

(Left) The grayscale shows variations in the fraction of LAEs in a region that are attenu-

ated out of the mock LAE sample by scattering from neutral hydrogen in the surrounding

IGM. The white regions correspond to zero attenuation, while the dark regions show at-

tenuation fractions of 0.97 and so the LAEs are almost completely attenuated in these

regions. The model is at z∼ 6.6 and 〈xi〉= 0.71. The depth of the simulated slice corre-

sponds to the width of the z∼ 6.6 HSC narrow band filter, while the other dimensions are

130 co-moving Mpc h−1 on a side, slightly smaller than the HSC Ultradeep field of view

(206 Mpc h−1). The colored contours show the smoothed fractional abundance of LAEs

to LBGS, NLAE
NLBG

, with the contours starting at 0.31 and increasing towards brighter colors

with a step size of 1.25. This ratio can be larger than unity, because some of the LAEs

are not also LBGs. This ratio traces fairly well, but imperfectly, the regions where LAEs

are less attenuated. (Right) For comparison, this shows the projected ionization field in

the same region and averaged over the depth of the LAE narrow band. The fraction NLAE
NLBG

is a reasonably good proxy for the ionized fraction, but there are some differences owing

to our random draws from the REW distribution and clustering in the LBG populations.
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in the region. Next, partly neutral patches can have high fractions: this is especially the

case because of the empirically-motivated anti-correlation assumed in our model between

REW and UV luminosity. Some low UV luminosity galaxies in partly neutral regions

have sufficiently strong Lyα emission to escape complete attenuation, even though much

of their Lyα emission is scattered by surrounding neutral gas. This effect is most promi-

nent in more neutral models than considered in Fig. 3.2. In these alternate more neutral

models, only very strong Lyα emission lines suffice to escape being attenuated out of the

sample. In the more likely case that a significant, yet incomplete, fraction of the IGM

volume is ionized at z ∼ 6.6, this diagnostic appears quite interesting, and may allow an

estimate of the typical size of the ionized regions.

3.4.3 Galaxy Clustering

We turn now to consider the clustering of the LAEs and LBGs in our mock HSC survey, as

quantified by their 2D power spectra. The 2D power spectrum is the Fourier transform of

the angular two-point correlation function which is sometimes considered. As mentioned

previously, the clustering should be modulated on large scales by patchy reionization,

and these fluctuations are hard to mimic with intrinsic variations which will mostly be

coherent on smaller spatial scales.

Fig. 3.3 shows the 2D power spectrum, plotted as ∆2
2D(k⊥) =

k2
⊥

2π
P2D(k⊥), where

P2D is the two dimensional power spectrum (with units of (Mpc h−1)2), for LBGs and

LAEs at z ∼ 6.6 and for a range of ionization fraction models. Here ∆2
2D(k⊥) is the

usual contribution to the variance per logarithmic interval in transverse wavenumber, k⊥.

The results are averaged over six independent sets of mock galaxies from our simulation

cube, in an effort to reduce noise in the estimates. For the fully ionized scenario, the

amplitude and shape of the LBG and LAE power spectra are fairly similar. This is partly a

consequence, however, of the differing depth of the window functions of the two surveys.

The broader window function of the LBGs dilutes their clustering more than in the case of

the LAEs, which have a narrower window function. More interesting, however, is that the
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LAE clustering amplitude increases strongly in the more neutral models. This is the LAE

EoR clustering enhancement, mostly driven by the patchy ionization effects mentioned

previously (e.g. McQuinn et al. 2007a). Here we consider the statistical precision at

which HSC can measure these effects.

Towards this end, we calculate the power spectrum error bars assuming Gaussian

statistics for simplicity:

σPS,2D(k⊥) =
[

1
n̄g

+Pgg(k⊥)
]√

2
Nm(k⊥)

, (3.4)

where n̄g is the average number of galaxies per unit survey area (with units of (Mpc

h−1)−2), and Nm(k⊥) is the number of Fourier modes that fit into the survey. This may

be calculated as Nm(k⊥) =
k⊥∆k⊥A

2π
, where A is the survey area in units of (Mpc h−1)2 and

∆k⊥ gives the width of a wavenumber bin centered on wavenumber k⊥. Here Pgg(k⊥) is

the two dimensional, shot-noise subtracted power spectrum Pgg(k⊥) = P2D(k⊥)− 1
n̄g

. The

first term, 1
n̄g

√
2

Nm(k⊥)
, is the error due to shot-noise; the second term, Pgg(k⊥)

√
2

Nm(k⊥)
, is

due to sample or cosmic variance. In the case of the 3.5 degree2 Ultradeep HSC survey,

Nm(k⊥) is 30 on the largest scales spanned by our simulation for the binning shown,

while it reaches 1,500 on the smallest simulated scales. In practice, most of the signal

to noise comes from values of k⊥ . 2.0 h Mpc−1. For LAEs and LBGs, the shot-noise

term dominates on all except the largest spatial scales. For reference, Fig. 3.3 shows

the anticipated statistical error bars on the LBG measurements: we anticipate HSC to

return precise measurements of the power spectra (or equivalently the angular correlation

function) for the LAEs at z∼ 6.6 and for the LBGs at z∼ 6.9.

As an alternate description of the clustering, we can divide out by the density power

spectrum (after shot-noise subtraction) and calculate the (scale-dependent) bias factor:

b(k⊥) =

√
Pgg(k⊥)
Pδδ (k⊥)

, (3.5)

where Pgg(k⊥) is the shot-noise subtracted 2D galaxy power spectrum, Pgg(k⊥)=P2D(k⊥)−
1
n̄g

with n̄g is the projected number density of galaxies, and Pδδ (k⊥) is the windowed, 2D
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Figure 3.3: The 2D power spectra for LAEs and LBGs at z∼ 6.6 for a range of ionization

fraction models. Here we plot ∆2
2D(k⊥) and show our forecast for the LBG error bars from

the 3.5 degree2 HSC survey. The LBG clustering is independent of the ionized fraction

(see text), while the LAE clustering increases steeply as the ionized fraction drops. In

comparing the LAE and LBG clustering it is important to keep in mind that the LBG

window function is broader than the LAE one.
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auto power spectrum of the density field, which we calculate directly from the simula-

tions. This is calculated separately for each of the LAE and LBG windows: in order to

keep our notation compact, we have not made this distinction explicit in Equation 3.5,

but it is important to keep in mind that the windowed density power spectra for the LAE

and LBG bias differ. In fact, an important advantage of b(k⊥) over the power spectrum

itself is that the bias factor divides out the impact of the differing window functions, and

so allows a more direct comparison between the LAEs and LBGs. In order to determine

the bias factors from actual data, a model for the density power spectra will be required.

As with our power spectrum measurements, we average over six independent mock re-

alizations of the galaxy sample to reduce noise in the estimated bias factors. In order to

account for scale-dependent biasing, we fit a quadratic function, bo +α1
k⊥
ko
+α2(

k⊥
ko
)2 to

b(k⊥) – which provides a good description of the scale dependence of the simulated bias

factors – for each LBG and LAE model. Using the anticipated statistical error bars on the

power spectrum from Equation 3.4, we can further calculate the expected error bars on

each of the bias parameters, bo, α1, and α2.

The results of these calculations are shown in Fig. 3.4. Here we have fixed the redshift

to HSC’s middle redshift bin at z ∼ 6.6, perhaps the most promising bin for observing

signatures of reionization, and varied the ionization fraction. The enhanced clustering

with decreasing ionization fraction is clearly visible here, most prominently through the

strong dependence of the constant biasing term, bo, on the ionization fraction. In a fully

ionized model, we expect the LAEs to be somewhat less clustered than the LBGs, with

a smaller linear bias factor. This is the expected post-reionization behavior and reflects

in part the observed anti-correlation between REW and UV luminosity. A number of

studies have found that more luminous LBGs are more highly clustered than their lower

luminosity counterparts (Kashikawa et al. 2006b; Lee et al. 2006; Overzier et al. 2006;

Yoshida et al. 2008; Barone-Nugent et al. 2014), and that this holds true for a range of

redshifts, from at least z ∼ 3 to z ∼ 7. Given the observed anti-correlation, the narrow

band survey mostly selects LAEs that are faint LBGs, and are therefore less clustered
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Figure 3.4: Model bias parameters with

HSC statistical error bars, as a function

of the volume-averaged ionization frac-

tion at z∼ 6.6. The top, center, and bot-

tom panels show constant, linear, and

quadratic terms in our scale-dependent

biasing model. The red points are for

LAEs, while the blue points are for

LBGs. The constant bias term shows

strong evolution with decreasing ion-

ized fraction. The linear and quadratic

terms show gentler evolution with ion-

ized fraction and are larger for the LBGs

than the LAEs.
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than the bright LBGs. However, the patchy reionization enhancement leads to the LAEs

being more clustered than the HSC selected LBGs; in our model this occurs for ionization

fractions 〈xi〉 ≤ 0.62. In practice, this might be observed as a strong evolution in the linear

bias factor, with bo increasing sharply from z ∼ 5.7 to z ∼ 6.6, while the LBG bias may

evolve only modestly between the redshift bins centered on z ∼ 5.9 and z ∼ 6.9. If the

LAE bias even surpasses that LBG bias, this would indicate a significant neutral fraction

(〈xHI〉 ≥ 0.38 in our model). We also find that the LAE bias develops a slightly stronger

scale dependence as the neutral fraction increases (center and right panels of Fig. 3.4),

but the scale dependence is never as strong as in the simulated LBG populations.

While not shown here, we also calculate the bias for LAEs at z ∼ 7.3. Since the

survey is not as deep at this higher redshift, we anticipate a significantly smaller sample,

ranging from a few (for 〈xi〉 = 0.21) to a couple hundred (for the fully ionized case).

We see a similar increase in bias with decreasing ionized fraction. However, the error

bars are at least four times larger. And due to the small sample size, the results become

more and more uncertain as we examine more neutral models. Nevertheless, clustering

measurements at z ∼ 7.3 might help to cement trends observed between z ∼ 6.6 and z ∼

5.7, although the utility of this will depend on the precise ionization history.

3.4.4 Void Probability Function

Another complementary measurement to the bias factor is the void probability function, as

discussed in previous LAE work by Kashikawa et al. (2006) and McQuinn et al. (2007a).

Here one considers the probability that a circle of radius R, placed randomly in the survey

area, contains zero galaxies. This defines the void probability function, denoted here as

VPF(R,0); McQuinn et al. (2007a) considers generalizations of this statistic where the

circle of radius R encloses N galaxies (VPF(R,N) in our notation), but here we confine

ourselves to pure voids with zero enclosed galaxies, As the IGM becomes more neutral,

LAE voids should grow as progressively more emitters are attenuated out of the sam-

ple. In this case, observable LAEs are left only in the rare, high density peaks that are
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surrounded by large ionized bubbles. As with the bias factors, HSC can measure the evo-

lution in the VPF from z ∼ 5.7 to z ∼ 6.6 and then to z ∼ 7.3, and contrast this with the

LBG evolution across their two broad bands centered around z ∼ 5.9 and z ∼ 6.9. Note

that the comparison between the VPFs of the LAEs and the LBGs is somewhat subtle

in that the two populations are drawn from different depths. (This was also the case for

the power spectrum, but not the bias factors.) The difference in the redshift evolution of

the LAEs and LBGs should nevertheless show distinctive signatures if the LAE samples

probe into the EoR, as we will see.

In order to measure this from our simulations, we randomly place 1,000 points across

the area of our projected galaxy samples. We then calculate the probability that circles

of various radii centered on these points do not contain any galaxies. We calculate error

bars on the measurements by taking the standard deviation across six independent mock

surveys drawn from the simulation cube, and scale these to the larger survey area of the

HSC assuming Poisson statistics in performing this scaling. Our results are shown in Fig.

3.5. Here we have restricted ourselves to ionized fractions where n̄gπR2� 1. Large voids

can be due to either observing only a small number of galaxies or an enhanced clustering

of those galaxies. In order to study the later, we are careful only to examine ionized

fractions where the number density of galaxies is sufficient. Also, note that it is somewhat

complicated to compare these measurements across different filters; the different survey

depths, both in luminosity and in width of the field, mean that the number density and

perceived clustering vary from narrowband filter to narrowband filter. As expected, the

probability of large voids grows as the IGM becomes more neutral, while the redshift

evolution of the LBGs is generally weaker, reflecting only the relative shallowness of the

higher redshift broad band sample. If the IGM is indeed partly neutral at z ∼ 6.6 and

z ∼ 7.3, the trends should be observable at a high statistical significance. For example,

the probability of having an R = 15 Mpc h−1 LAE void is almost an order of magnitude

larger in a 〈x〉 = 0.71 model than in the fully ionized case at z ∼ 7.3. Likewise, such

large voids should not be visible in the z ∼ 6.9 LBG sample. The VPF appears to be a
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Figure 3.5: The void probability func-

tion (VPF) for LAEs and LBGs for a

range of redshifts and ionization frac-

tions. The top panel shows LAEs at

z∼ 5.7 and LBGs in the broad band cen-

tered at z ∼ 5.9, while the center panel

shows LAEs at z∼ 6.6 and LBGs in the

z ∼ 6.9 broad band. The bottom panel

shows LAEs at z ∼ 7.3 and LBGs near

z ∼ 6.9. In each case, the error bars

are forecast for HSC’s 3.5 degree2 Ul-

tradeep field. The voids in the LAE dis-

tribution become more prominent as the

IGM becomes more neutral. Note that

the depths of the LAE and LBG samples

are different, and so the comparison be-

tween LAE and LBG voids is not a per-

fect apples-to-apples comparison. Nev-

ertheless, the stronger redshift evolution

in the LAE VPF is a distinctive indica-

tor of incomplete reionization. In order

to ensure adequate sampling, we have

restricted our plots to ionized fraction

where n̄gπR2� 1. If, in reality, the Uni-

verse is significantly neutral at z ∼ 7.3,

HSC’s survey may be too shallow in that

band to make full use of this measure-

ment.
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promising statistic for studying reionization with the HSC.

3.5 Practical Complications

Thus far, we have considered highly idealized LAE and LBG surveys. Here we set out to

explore some potential complications. First, we aim to quantify the impact of foreground

interlopers on the LBG and LAE measurements. Next, we consider how Lyα emission

may impact the LBGs detected by HSC; that is, we quantify the extent to which HSC’s

LBG selection may preferentially detect galaxies with strong Lyα emission lines.

3.5.1 Interlopers

The narrow band LAE selection will inevitably suffer at some level from line confusion:

galaxies emitting in other lines may be confused for Lyα , especially lower redshift galax-

ies emitting in the OII, OIII, or Hα lines. One recent illustration is provided by the study

of Pénin et al. (2015), who performed spectroscopic follow-up of three z∼ 7.7 (NB1060)

narrow band selected LAE candidates, finding instead that they are most likely all low

redshift OIII emitters. Similarly, the broad-band LBG selection may also potentially be

contaminated by lower redshift galaxies or even red stars (Ouchi et al. 2009). The pres-

ence of these interlopers can bias measurements of the abundance, clustering, and void

distributions. To explore this quantitatively, we have added interlopers into our simulated

models.

3.5.1.1 Narrow Band Interlopers

First, we consider narrow band interloper contaminants. Since the narrow band inter-

lopers arise from galaxies emitting in specific lines at common redshifts, the interlopers

may themselves be spatially clustered. We focus on interlopers emitting in [OII], [OIII],

and Hα emission lines, which are the most common Lyα interlopers (e.g. Dressler et al.

2011). We find, as detailed below, that the HSC can screen out many of these interlopers
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through a judicious application of cuts. Some will nevertheless remain, and have some

impact, so we consider this quantitatively in what follows.

We start with an expression to describe the apparent clustering of galaxies in our

mock HSC sample, which consists of a mixture of high redshift LAEs, and low redshift

interlopers. For brevity, our expression below assumes that the interlopers consist of a

single dominant line-emitting population, although it is straightforward to generalize this

to the case of several different interlopers. The total 2D power spectrum of the observed

galaxies is then (e.g. Lidz and Taylor 2016, reproduced as §4 here):

Pcombined(k⊥) = (1− fint)
2 PLyα(k⊥)+

f 2
int b2

int

α2
⊥

Pint(
k⊥
α⊥

), (3.6)

where fint describes the fraction of observed galaxies that are interlopers, and PLyα(k⊥) is

the 2D LAE power spectrum. The second term involves the interloper clustering power

spectrum, which we evaluate assuming linear biasing. Here bint is the linear bias factor of

the interlopers and Pint(k⊥) is the 2D linear matter power spectrum at the redshift of the

interlopers, while α⊥ ≡ DA,co(zint)/DA,co(zLyα) is a distortion factor that arises because

the redshift of the Lyα emitters is assumed in mapping from observed angle on the sky

to transverse co-moving distance (Lidz and Taylor (2016), or §4 of this thesis). Here α⊥

is defined by the ratio of the co-moving angular diameter distance to the redshift of the

interloper divided by that to the LAEs.

In order to calculate the interloper term, we require the 2D linear matter power spec-

trum. To evaluate this, we start from the 3D linear power spectrum using the transfer

function determined by CAMB (Lewis et al. 2000; Lewis and Bridle 2002; Howlett et al.

2012). We then calculate the 2D power spectrum according to:

Pint(k⊥) =
1

2π

∫
|W (k‖)|2 P3D(k⊥,k‖)dk‖. (3.7)

Here W (k‖) is the Fourier transform of the top-hat window function that describes the

narrow band filter, and the filter width is converted to co-moving units according to the

redshift of the interloper lines. In order to estimate the clustering of the interlopers, we

use the linear bias factors measured from the near-infrared spectroscopic sample of de la

117



Torre et al. (2007) since their sample is drawn from similar redshifts to the z ∼ 6.6 LAE

interlopers. Here we assume that galaxies with strong OII emission, for example, have

similar clustering to other galaxies at the same redshift. In making this assumption, we

have chosen to focus on the redshift evolution of interloper clustering. To generalize to a

few interloper lines, the second term in Equation 3.6 simply becomes a weighted sum over

interloper lines, each with a separate interloper fraction, bias factor, distortion factor, and

linear matter power spectrum. The first term maintains the form in Equation 3.6, except

that fint is now determined by the sum total fraction of the different interloper lines.

Next, we must estimate the interloper fraction itself. In order to determine the abun-

dance of the Hα and OIII emitters, we use the luminosity function from Pirzkal et al.

(2013), while we take the OII luminosity function from Comparat et al. (2015). In each

case, we adopt the luminosity function at the redshift bin into which the desired inter-

loper redshift falls. We then determine the limiting luminosity in each interloper line

from HSC’s narrow band flux limits, and the luminosity distance to the interloper. The

minimum luminosities in the interloper lines are: 2.0× 1039 erg s−1 for Hα; 4.8× 1040

erg s−1 for OII; and 1.2× 1040 erg s−1 for OIII. These are roughly one to two orders of

magnitude fainter than L∗ for Pirzkal et al. (2013) and Comparat et al. (2015) luminosity

functions. Integrating over Schecter function fits to the observed luminosity functions,

we determine the number density of emitters above the HSC flux limits in each line. The

total number of interlopers across the HSC field then follows from multiplying the abun-

dance by the co-moving volume of the HSC survey at the redshift of each interloper. The

co-moving volume at the redshift of the interlopers is determined from the solid angle

covered by the HSC, and the observed wavelength interval of the narrow band. These es-

timates are in rough agreement with the number of OII, OIII, and Hα interlopers reported

in a survey of z∼ 5.7 LAEs by Dressler et al. (2011).

Thus far, we have determined the total number of foreground emitters in the HSC with

flux above the survey limits, but additional steps can be made to distinguish interlopers

and LAEs (using only the filter sets available to the HSC.) First, one can use the fact that
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Lyα tends to be a stronger emission line than the interlopers, and apply an equivalent

width cut to improve the purity of the sample. Specifically, we can use the traditional

requirement that to be considered an LAE a galaxy need have an REW ≥ 20 Å (REW ≥

25 Å is also frequently used, e.g. Schenker et al. 2012). Second, the LAE flux should be

completely attenuated blueward of Lyα at the redshift of the galaxy (from the thick Lyα

forest at the redshifts of interest, and further blueward from other Lyman line transitions

and continuum opacity.) In contrast, the continuum spectra of the interlopers is relatively

flat around the emission lines of interest. Consequently, one can use the HSC broad bands

to help separate interlopers and LAEs. Specifically, an LAE should not be detected in gr,

while many interlopers will be observable in gr if they are also visible in the z or y band.

To assess how effective these cuts may be, we use spectroscopic data from the Sloan

Digital Sky Survey (SDSS) (Gunn et al. 2006; Eisenstein et al. 2011; Dawson et al. 2013;

Smee et al. 2013), as detailed in their latest data release paper (Alam et al. 2015). The

SDSS includes hundreds of thousands of galaxies emitting in the lines of interest, out

to z . 1.9. All the interlopers fall within the redshift range probed by SDSS, although

the OII interlopers, at z = 1.408 are at the far end. We assume that the properties of the

SDSS line emitters over the entire redshift range are representative of the interlopers at

the narrow redshift bands relevant for HSC. We also ignore any trend in the interloper

properties with luminosity, which may be important since the SDSS emitters are more

luminous than most of the HSC interlopers.

With these caveats in mind, we calculate the fraction of SDSS line emitters that exceed

the minimum REW requirement mentioned previously and are also faint enough to avoid

detection in r:

REW ≥ 20 Ȧ and

r < 26.1 mag.
(3.8)

Note that this REW cut is in the rest frame of the LAEs. For our interlopers, who are at

their own redshifts, this cut becomes REWi ≥ 20 Å λi/λα .

Indeed, the vast majority of the SDSS [OIII], [OII], and Hα line emitters have rela-
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tively weak emission lines with low REWs. Thus, the REW cut is able, on its own, to

screen out a significant number of interlopers. To take a representative case, the SDSS

sample of OII emitters considered here contains 905,847 galaxies: only 2,690 (or 0.296%)

of these have REW ≥ 20 Å. After both cuts, our estimate is that 94 OII interlopers, 10

OIII and 23 Hα interlopers will remain in the HSC Ultradeep 3.5 degree2 survey for

z∼ 6.6 LAEs. The interloper fraction, fint, depends, of course, on how many LAEs there

are at this redshift: in our models, the interloper fraction ranges from 5% in a fully ion-

ized universe to as much as 80% if the universe is only 21% ionized at this redshift. The

results for a range of ionized fractions are shown in Fig. 3.6, and discussed further below.

3.5.1.2 Broad Band Interlopers

The HSC LBG sample will also include some foreground interloper contamination. Here

the broad band selection is vulnerable to contamination from intermediate redshift red

galaxies such as ellipticals and dusty starburst galaxies, and also to L/T dwarf stars.

However, Ouchi et al. (2009) and HSC Science Collaborations (2012) show that with

appropriate y and z band cuts and comparisons with lower redshift galaxy SEDs, one can

effectively exclude the intermediate redshift red galaxies from the sample. Following

Ouchi et al. (2009), we hence assume that most, if not all, interlopers in HSC’s LBG

survey are galactic late-type stars. Their estimate is that between 36− 40% of the HSC

z-dropout sample will be dwarf stars rather than z∼ 7 LBGs. In order to incorporate these

interlopers, we add L/T dwarf stars to our mock survey data (at an interloper fraction of

38%). We assume that these interlopers are randomly distributed.

3.5.2 Preferential Selection of LBGs with Strong Lyα Lines

For simplicity, we have thus far ignored any impact of Lyα emission on the observability

of an LBG. However, an LBG’s Lyα emission line will fall into the red-side broad band

and a strong line may boost the detectability of the LBG. This effect may be enhanced

by the observed anti-correlation between REW and UV luminosity: faint LBGs, most
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Figure 3.6: Estimates of the foreground interloper fraction for HSC surveys for z ∼ 6.6

LAEs and z ∼ 6.9 LBGs. The results are plotted as a function of ionization fraction

(at fixed redshift). The red squares show the LAE interloper fraction, which is a strong

function of 〈xi〉: although the cross-correlation interloper abundance is independent of

ionization, the abundance of observable LAEs drops off rapidly as the neutral fraction

increases, and so the interloper fraction increases strongly towards low 〈xi〉. The LBG

interloper fraction (blue diamonds) is mostly set by the abundance of red L/T dwarf stars.

The green triangles account for the additional effect that LBGs with strong Lyα emission

are more likely to be observed, and so the LBG interloper fraction depends slightly on the

ionization fraction.
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in need of a boost in order to be detected, have the strongest Lyα emission. In princi-

ple, this selection bias could be reduced by having additional redward filters but this is

probably impossible for ground based observations given the sensitivity required at long

wavelengths. In any case, y is HSC’s reddest band.

In order to consider this boost in our mock data, we enhance the luminosity of each

mock LBG according to a simple prescription. By definition, the total luminosity in the

Lyα line is related to the observed specific UV continuum luminosity (i.e., units of ergs

sec−1 Å−1) at the wavelength of the Lyα line by Lα = EWLUV,λ . Here all quantities

are expressed in the observed frame, so EW is the observed equivalent width. The total

UV luminosity in the broad band, including the Lyα line, is then: L′UV = LUV,λ BBW +

LUV,λ EW , where BBW is the wavelength extent of the broad band in the observed frame

and we have approximated the continuum as flat over the extent of this band. We further

assume that the Lyα line is completely contained within the broad band filter, so that the

entire line luminosity is observed in that filter. The specific UV luminosity per rest frame

frequency interval, which is the input for our LBG calculations (Equation 3.2) is therefore

boosted by the Lyα emission line according to L′UV,ν = LUV,ν(1+ EW
BBW ). Quantitatively,

we find that 26% more LBGs are visible in the fully ionized case owing to the Lyα

emission boost, while this boost is only 3% in a highly neutral model with 〈xi〉= 0.21.

3.5.3 More Realistic Results

Fig. 3.6 summarizes our estimates of the HSC LAE and LBG interloper fractions. The

figure also shows the impact of the preferential selection of LBGs that have strong Lyα

emission lines. Since the number of observable LAEs drops with decreasing ionization

fraction, while the number of narrow band interlopers is independent of ionization frac-

tion, the LAE interloper fraction varies strongly with 〈xi〉 and can be as large as 80% in

the most neutral case shown (with 〈xi〉 = 0.21.) The LBG interloper fraction is a con-

stant 38% in the absence of the Lyα boost, but becomes a weakly increasing function of

ionization fraction when we account for this.
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Figure 3.7: Void Probability Function

for LAEs and LBGs, after accounting

for foreground interlopers. This is simi-

lar to Fig. 3.5, except here we have ac-

counted for the narrow band and broad

band interlopers and the Lyα emis-

sion boost for the LBGs. Here we

fix the narrow band redshift at z ∼ 6.6

and the broad band redshift to z ∼ 6.9,

and consider three representative ion-

ization fractions: 〈xi〉 = 1 (top) 〈xi〉 =

0.71 (center) and 〈xi〉 = 0.54 (bottom).

Including these complications acts to

shrink the size of the voids, but the LAE

voids remain larger than the LBG ones

and increasing the neutral fraction still

enhances the differences.
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We can now quantify the impact of interloper contamination, and the Lyα boost, on

our mock HSC statistical measures, starting with the VPF. For assessing the impact on

this quantity, we assume for simplicity that the interlopers are randomly distributed. The

interlopers act to fill in the voids in the LAE and LBG distributions. In reality, at least

the narrow band interlopers should be clustered, and contain larger voids than expected

in a random distribution. These voids may by chance overlap with the LAE voids and

reduce the contaminating effect on the VPF, which must then be more severe for the case

of a random interloper distribution assumed here. The results of the more realistic VPF

calculations are shown in Fig. 3.7. The interlopers lead to significant reductions in the

probability of finding large voids, but there are nevertheless robust trends in the evolution

of the VPF with neutral fraction. In addition, we still expect to see stronger redshift

evolution in the LAE VPF than in the LBG VPF, provided the HSC LAE samples start to

probe back into the EoR.

Fig. 3.8 shows the impact of the complications considered in this section on the LAE

and LBG bias parameters and the expected HSC Ultradeep field error bars on these quan-

tities. This plot fixes z∼ 6.6, and considers a range of ionization fractions at this redshift.

It is identical to Fig. 3.8, except that here we have included our estimated interloper con-

tamination and the Lyα boost. Unsurprisingly, the main effect is to dilute the clustering

of the LAEs and LBGs. For the LAEs, this dilution is due to two processes, as detailed

in Equation 3.6. First, the clustering signal from the LAEs is reduced by (1− fint)
2; this

reduction is due to merely the presence of interlopers and occurs without regard to the

interloper clustering. Second, a clustering signal from the interlopers is included, which

distorts the total clustering measurement. This term is only significant because the LAE

interlopers are drawn from specific line-emitting populations. The impact is strongest in

the more neutral models, where the interloper fraction is largest. Indeed, the distinctive

and strong enhancement of the constant bias term with decreasing ionization fraction is

modified: the apparent bias turns over at 〈xi〉 = 0.40 and decreases towards larger neu-

tral fractions in the presence of interloper contamination. Interloper contamination may
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Figure 3.8: Model bias parameters for

LAEs and LBGs at z ∼ 6.6 for a range

of ionized fractions, after accounting for

practical complications. This is iden-

tical to Fig. 3.4, except here we have

included the narrow and broad band in-

terlopers and the impact of boosted Lyα

emission. The interlopers make the Lyα

clustering enhancement harder to dis-

cern, and boost the error bars. The ef-

fects are more prominent in highly neu-

tral models.
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therefore be an important systematic, especially if the z ∼ 6.6 and/or z ∼ 7.3 IGM are

significantly neutral. One approach might be to fit jointly for the interloper contamina-

tion and the neutral fraction, using measurements of the abundance, VPF, and clustering,

while anchoring the fits to post-reionization measurements.

3.5.4 Retrieving Clean Measurements

Another powerful approach, however, is to measure the cross power spectrum between

the LBGs and LAEs. This has the important virtue that it should not be impacted by the

clustering of the interlopers and can be carried out in conjunction with the other measure-

ments to test consistency. In particular, note that the broad and narrow band interlopers are

two completely different populations: the narrow band (LAE) interlopers are low redshift

galaxies, while the broad band (LBG) interlopers are red galactic stars. Consequently,

the clustering of the interlopers will not impact the ensemble-averaged cross-correlation

between the LAEs and LBGs. Moreover, on large scales we expect the correlation coef-

ficient between LAEs and LBGs to be unity to a very good approximation.

If we further assume linear biasing, we can estimate the Lyα emitter bias according

to:

bα(1− fint,α) =
Pgα(k⊥)

bLBG (1− fint,LBG)PW
δδ
(k⊥)

, (3.9)

where bα and bLBG are the bias factors for LAEs and LBGs, respectively; and fint,α

and fint,LBG are the interloper fractions for the LAEs and LBGs, respectively. bLBG (1−

fint,LBG) can be measured from the LBG auto spectrum. fint,α , however, is harder to

estimate. Pgα(k⊥) is the cross power spectrum of the LBGs and LAEs; and PW
δδ
(k⊥) is a

windowed auto power spectrum of the density field. Because the window functions for

the LAEs and LBGs are different, the projected density power spectrum here is related to

the 3D density power spectrum according to:

PW
δ ,δ (k⊥) =

∫ dk‖
2π

[
Wα(k‖)W

?
g (k‖)+ c.c.

]
P3D(k‖,k⊥), (3.10)

where Wα denotes the Fourier space window function for the LAEs, and Wg is the same

126



for the LBGs, while c.c. denotes complex conjugation, and P3D is the 3D density power

spectrum. In practice, the windowed density field will have to be modeled, and we extract

it here directly from the simulations.

In summary, we can estimate the product of bαbLBG(1− fint,α)(1− fint,LBG) from the

measured LAE-LBG cross spectrum without concern for interloper clustering (on aver-

age), although there is some general attenuation of the signal. Since bLBG is less sensitive

to the ionization fraction, we can likely model it using post-reionization observations as

input and the HSC-measured LBG auto spectrum (with a reasonable guess as to the broad

band interloper fraction). We can then determine bα(1− fint,α) itself according to Equa-

tion 3.9, and use this to search for any clustering enhancement from reionization. For

high ionized fractions, fint,α is small and the cross spectrum allows us to measure bα . For

lower ionized fractions, fint,α becomes significant; however, if HSC can estimate their

LAE interloper fraction, they can divide out this term. Even if Equation 3.9 does not re-

turn bα itself, due to a high interloper fraction, it still allows us to sidestep concerns about

interloper clustering, making this a cleaner measurement than Equation 3.5.

We can calculate the error-bars for an HSC measurement of Pgα(k⊥) according to:

σ
2
gα(k⊥) =

1
Nm(k⊥)

[
P2

gα(k⊥)

+

(
Pgg(k⊥)+

1
n̄g

)(
Pαα(k⊥)+

1
n̄α

)]
, (3.11)

where Nm(k⊥) =
k⊥∆k⊥A

2π
is the number of modes enclosed in the survey area, Pgα(k⊥) is

as above, Pgg(k⊥) is the auto power spectrum of the LBGs, Pαα(k) is the auto power of

the LAEs, and n̄g and n̄α are the the projected number density of the LBGs and LAEs,

respectively. Here the auto spectra include the interloper contamination, along the lines

of Equation 3.6. Here we neglect any Poisson contribution to the first term, which is

appropriate if there is no overlap between the LBG and LAE samples.

If the LBG bias had no scale dependence, in other words, bLBG(1− fint,LBG) is a

constant as a function of 〈xi〉, we should be able to divide it out from Equation 3.9 and

retrieve the values show in Fig. 3.4, modulated by (1− fint,α). As that figure shows that
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is a reasonable first order approximation; we are only ignoring some small scale depen-

dance. Nonetheless, if we divide bαbLBG(1− fint,α)(1− fint,LBG) by a constant across all

ionized fractions, we can recover bα(1− fint,α), at least to first order, as shown in the

right panel of Fig. 3.9. There we have have held z∼ 6.6 and are varying the ionized frac-

tion. For the more ionized universe, the cross-correlation points (green) match well the

clean LAE measurement (red). However for more neutral cases (〈xi〉. 0.5, they diverge

as (1− fint,α) begins to play a significant role. Nonetheless, for all ionized fractions,

the cross-spectrum (Equation 3.9) better estimates the true LAE bias than Equation 3.5

once interlopers are included, since it is not effected by interloper clustering. If HSC can

estimate their interloper fraction, even without knowing which galaxies are themselves

interlopers, they will be still better able to calculate the LAE bias.

Although the LAE bias recovered from the cross spectrum has larger errors than that

determined from the auto spectrum, we should keep in mind that we fixed the REW cut

(REW ≥ 20 Å) in this comparison. However, this is in part motivated by a desire to

limit interloper contamination; since the cross spectrum is immune (on average) to the

interloper clustering, one could presumably get away with a lower REW cut. While such

a cut would increase the interlopers numbers, as long as it similarly boosts the observed

sample, it could still result in reduced error bars on the cross spectrum estimate.

Fig. 3.10 quantifies how well the HSC can constrain the ionization fraction, given

the expected statistical precision of its LAE-LBG cross spectrum based determinations

of the constant LAE bias term. We estimate the expected error on the volume-averaged

ionization fraction according to:

σ〈xi〉 =
σb

∂b/∂ 〈xi〉
, (3.12)

where σb is the error on the bias factor and ∂b/∂ 〈xi〉 is the derivative of the bias factor

with respect to ionization fraction, evaluated assuming some underlying “true” or “real”

value of 〈xi〉. In order to test the dependence on the true value of 〈xi〉 we evaluate the

derivative for several different values of 〈xi〉. The results of Fig. 3.10 suggest that the

HSC cross spectrum measurement should allow a determination of 〈xi〉 to within about
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Figure 3.9: Estimates of the LAE bias from the LAE-LBG cross spectrum. (Top) This

shows the first panel of Fig. 3.8, the constant bias term as a function of ionization fraction

for LAEs and LBGs after accounting for interlopers and the Lyα emission boost. (Bot-

tom) The green points and expected error bars show the constant bias term for the LAEs

inferred from a measurement of the LAE-LBG cross spectrum. The error bars show our

forecasts for an HSC Ultradeep 3.5 degree2 survey measurement of the LAE-LBG cross

spectrum. The red and blue points and error bars show, respectively, the LAE and LBG

bias and errors estimated from their auto power spectra (ignoring foreground interlopers

and the Lyα boost), as in Fig. 3.4. The cross spectrum allows a better recovery of the

LAE bias.
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Figure 3.10: Forecasts for HSC constraints on the volume-averaged ionization fraction.

(Top) The constant bias term and the expected error bars at z ∼ 6.6 from an LAE-LBG

cross spectrum measurement in the HSC 3.5 degree2 Ultradeep field. To guide the eye,

the grey band shows the bias and error bar for a fiducial model with 〈xi〉= 0.82. (Bottom)

The range of allowed 〈xi〉s anticipated for a future cross spectrum measurement (y-axis)

as a function of the true underlying value of 〈xi〉 (x-axis). Note that unphysical values

with 〈xi〉 are allowed in these estimates. The forecasts fix our model for the intrinsic LAE

parameters and vary only over the ionized fraction. The large error bars at < xi >∼ 0.5

are due to the turnover in the bias at the same ionized fraction in the top plot. Simply put,

an observed LAE bias ∼ 11 corresponds to a range of ionized fractions.
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0.1. Note that the estimate of Equation 3.12 allows unphysical values of 〈xi〉 ≥ 1. The

precision of the 〈xi〉 constraint does not depend strongly on the assumed ionization frac-

tion; this is because the error bar on the bias parameter increases towards high neutral

fractions as the observed LAE abundance falls, but this is compensated by the stronger

clustering enhancement at high neutral fractions. An important caveat here, however, is

that these forecasts vary only 〈xi〉, while fixing the parameters describing the intrinsic

LAE and LBG emission. In future work, it will be important to marginalize over pa-

rameters describing the intrinsic properties of the LAEs and LBGs, although it is unclear

how to be parameterize the problem. It would also be interesting to consider fitting the

abundance, VPFs, auto and cross spectra jointly, but this is again beyond the scope of the

present chapter.

3.6 Conclusions

We have forecast the ability of the HSC to detect LAEs and LBGs over their 3.5 degree2

Ultradeep field, and considered a variety of different statistics to characterize these popu-

lations and extract information about the EoR. We found that the redshift evolution of the

abundance, clustering, and void distributions for each of the LAEs and LBGs are interest-

ing diagnostics for determining the ionization state of the surrounding IGM. In addition,

spatial variations in the relative abundance of LAEs to LBGs may allow one to extract in-

formation regarding the typical sizes of ionized regions during the EoR. Furthermore, we

proposed that the LAE-LBG cross spectrum as a useful quantity to measure since it is on

average immune to interloper clustering contamination. The large HSC Ultradeep field

should allow significant improvements beyond existing LAE and LBG clustering mea-

surements. For example, the best current LAE clustering measurement at z ∼ 6.6 comes

from the Subaru analysis of Ouchi et al. (2010). We forecast that the error bars on the

LAE bias will improve by a factor of three at this redshift with the HSC Ultradeep field

observations. The LBG survey can also improve significantly on current state-of-the-art
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clustering measurements from Barone-Nugent et al. (2014), which come from 743 z∼ 7

LBGs over a 300 arcmin2 field. In our fiducial model, the improved HSC clustering statis-

tics will allow one to determine the ionization fraction to within about 0.1 for 〈xi〉 & 0.5

from the measured LAE-LBG cross spectrum alone.

In order to best interpret the upcoming measurements, more sophisticated models

for LAEs and LBGs are required. One challenge is the vast range of spatial scales that

are relevant for understanding the Lyα emission from high redshift galaxies during the

EoR. However, multi-scale simulation approaches are underway to meet this challenge

(e.g. Zheng et al. 2010; Jensen et al. 2013; Choudhury et al. 2015; Mesinger et al. 2015;

Kakiichi et al. 2015). These models may partly be calibrated with post-reionization mea-

surements. This can then be combined with the diverse range of statistical measurements

considered here to determine the ionization state of the IGM over the interesting redshift

range of z∼ 5.7−7.3 using the HSC.
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Chapter 4

On Removing Interloper

Contamination from Intensity Mapping

Power Spectrum Measurements

4.1 Introduction

Intensity Mapping (IM) is an appealing approach for studying the large scale structure

of the Universe and for characterizing the bulk properties of galaxy populations emitting

in various spectral lines across cosmic time. IM observations forego detecting galaxies

individually. Instead, one measures the large-scale spatial fluctuations in the collective

emission from all of the luminous sources emitting in some convenient spectral line or

lines (see e.g. Suginohara et al. 1999; Chang et al. 2008; Righi et al. 2008; Visbal and

Loeb 2010; Gong et al. 2011; Carilli 2011; Lidz et al. 2011; Pullen et al. 2013; Uzgil et al.

2014; Breysse et al. 2014; Croft et al. 2016; Li et al. 2016; Mashian et al. 2015; Keating

et al. 2015). This complements traditional galaxy surveys which target individual objects

Published as Lidz and Taylor (2016)
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in that IM surveys are sensitive to the collective emission from all luminous sources, while

traditional observations are limited to detecting only those sources that lie above survey

flux limits. IM also probes line emission across a range of large-scale environments, and

is sensitive to the emission from galaxies in underdense voids as well as sources in high

density peaks. This is often impossible in a traditional survey, where spanning large-scale

environmental variations requires capturing an enormous volume at high sensitivity.

One potentially powerful application is to the Epoch of Reionization (EoR). Cur-

rent evidence suggests that the Universe is reionized largely by numerous low-luminosity

sources (e.g. Robertson et al. 2015), and so it is extremely challenging to detect most of

the ionizing sources individually. However, it may nevertheless be possible to study their

collective impact using IM. In addition, by spanning a large field-of-view at coarse an-

gular resolution while retaining redshift information, IM surveys would be well-matched

to redshifted 21-cm observations of the EoR. The cross-correlation of IM measurements

with redshifted 21-cm data sets could then be used to confirm the high redshift origin of

a putative 21-cm signal from the EoR (Furlanetto and Lidz 2007; Lidz et al. 2009; Lidz

et al. 2011). Only the high redshift portion of the redshifted 21-cm signal, and not residual

foreground emission, should correlate with the IM data (asides for shared foregrounds).

Furthermore, the scale-dependence of the cross-correlation between the two signals pro-

vides a powerful probe of the size of the ionized regions that form around groups of

galaxies during reionization (Lidz et al. 2009; Lidz et al. 2011; Gong et al. 2011).

One systematic concern with IM measurements relates to foreground interloper emis-

sion (Visbal and Loeb 2010). This interloper emission arises from sources residing at

lower (or possibly higher) redshifts – and emitting in different lines – than targeted by

the IM survey, with the interlopers nevertheless contributing to the specific intensity at

the observed wavelengths of interest. Explicitly, suppose the survey targets an emission

line with a rest-frame wavelength of λr,t and a target redshift around zt . The observed

wavelength of this emission is λobs = λr,t(1+ zt). Clearly an interloper source, emitting

in a line with rest wavelength λr,i, can emit at the same observed wavelength provided its
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redshift, zi, satisfies 1+ zi = λr,t(1+ zt)/λr,i. One approach to avoid bias from interloper

emission is to probe two different emission lines from gas at the same redshift. The cross-

correlation between the emission at the two corresponding observed wavelengths will, on

average, only pick up contributions from gas at the target redshift (e.g. Visbal and Loeb

2010). Although each of the two observed wavelengths will contain interloper emission,

the interlopers will be at widely separated redshifts and so uncorrelated. It will likely,

however, be valuable to have additional handles to discriminate interloper emission. For

one, it may not be feasible for the IM surveys to capture multiple bright lines from the

same emitting gas, since this requires high sensitivity over a broad range of wavelengths.

Moreover, it is necessary to clean interloper contamination to measure the auto spectrum

of the emission fluctuations in a line of interest; this quantity contains information that is

not available from the cross spectrum between two lines. Explicitly, as we will describe

(see Equations 4.10 and 4.27), the large scale cross spectrum between two lines depends

(mostly) on the product of the specific intensity and luminosity-weighted bias factor in

each line while the auto spectrum depends on the product of the specific intensity and

luminosity-weighted bias in the single emission line of interest. On small scales, the shot-

noise term in the cross spectrum depends on the degree of overlap between the galaxy

populations emitting in each line, while the shot-noise contribution to the auto spectrum

is determined solely by the second moment of the luminosity function in the line. Put

more generally, the auto spectrum depends only on the emission in a single line while the

cross spectrum depends on the emission properties in two lines and therefore has a less

direct interpretation.

Another possible approach is to mask out regions suspected of containing bright in-

terloper emission, but this may require an additional survey to identify which regions to

mask (e.g. Silva et al. 2015). The second survey must span the redshift range of all promi-

nent interloper lines, and trace some quantity that is a good proxy for the interloper line

emission. Furthermore, redshift information is required for all of the tracer galaxies. For

some applications, it may be necessary to mask a significant fraction of the observed pix-
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els. Finally, the resulting mask will reflect the clustering of the interloper sources; it must

be deconvolved carefully to avoid introducing any bias in the inferred target emission

fluctuations.

Here we develop an alternative approach for separating-out interloper contamination

at the power spectrum level. Our starting point is to note that the mappings between ob-

served wavelength/frequency and angle on the sky to co-moving length scales/wavenumbers

are redshift dependent. If we assume the target redshift in converting between the ob-

served frequencies and angles and co-moving coordinates, the interloper fluctuations will

be mapped to the wrong wavenumbers. Since the remapping is different for the line

of sight and transverse wavenumbers, the interloper contribution to the observed power

spectrum will have a distinctive anisotropy. This is analogous to the Alcock-Paczynski

(AP) effect (Alcock and Paczynski 1979; Ballinger et al. 1996), except in the case of the

AP test a warping arises from assuming the wrong cosmology, while here the distortion

results from adopting the incorrect redshift. We will show that this transfer of power and

warping can be used to separate out the interloper contamination. This basic idea is men-

tioned in previous work by Visbal and Loeb (2010) and Gong et al. (2014), but we develop

the technique further here and apply it to quantify the prospects for cleaning interloper

lines from future z ∼ 7 [CII] surveys. Although we focus on the illustrative example of

IM with the [CII] line, our approach should be broadly applicable to IM surveys in other

lines such as Lyα and CO transitions, and may also be of interest for traditional surveys

detecting line-emitting galaxies.

The outline of this chapter is as follows. In §4.2, we describe and quantify the in-

terloper distortion. This is then applied to the example case of a futuristic z ∼ 7 [CII]

emission survey (§4.3). §4.4 forecasts the constraints on [CII] and CO emission line prop-

erties that may be achieved by this survey. We further consider combining our technique

with additional tracers of large-scale structure at the redshifts of prominent foreground

interlopers (§4.5). We also discuss the prospects for cross-correlating with other emission

lines at z ∼ 7 (§4.6). We conclude in §4.7. Throughout we adopt a cosmological model
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with Ωm = 0.27, ΩΛ = 073, Ωb = 0.046, h = 0.7, σ8(z = 0) = 0.8, and ns = 1, broadly

consistent with recent Planck measurements (Planck Collaboration et al. 2014).

4.2 Interloper Coordinate Mapping Distortions

In order to illustrate the technique, let us first suppose that our data cube contains only two

sources of line emission: our target line of interest at redshift zt , and a single dominant

interloper line at redshift zi. We will soon generalize to the case that several interloper

lines contribute. We denote the observed frequency at the center of the data cube by νobs

and consider emission offset by a small frequency interval ∆νobs from the cube center.

Further, let ∆θθθ be the angular separation from the center of the cube; the vector describes

the two directions transverse to the line of sight and we work in the flat sky approximation.

In order to convert from the observed ∆νobs and ∆θθθ to co-moving coordinates, we need

to assume a cosmological model and a redshift for the emission.

Adopting the target redshift for this mapping will cause the interloper emission to be

mapped to the wrong co-moving coordinates. Let us denote the apparent line of sight

coordinate for the interloper emission by x̃‖ and the apparent transverse coordinate by

x̃⊥. Further suppose that the true line of sight and transverse coordinates at the interloper

redshift are x‖ and x⊥. The apparent coordinates are related to the observable frequency

interval and angles by incorrectly assuming the emission is at the target redshift:

x̃‖ =
c

H(zt)
(1+ zt)

∆νobs

νobs
, (4.1)

and

x̃⊥ = DA,co(zt)∆θθθ , (4.2)

where H(zt) is the Hubble parameter at the target redshift and DA,co(zt) is the co-moving

angular diameter distance to the target redshift. (For a flat universe, DA,co(zt)= χ(zt) with

χ(zt) being the co-moving distance to redshift zt .) The relations between the apparent
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coordinates, x̃‖ and x̃⊥, and the true coordinates, x‖ and x⊥, are then:

x̃‖ =
H(zi)

H(zt)

1+ zt

1+ zi
x‖, (4.3)

and

x̃⊥ =
DA,co(zt)

DA,co(zi)
x⊥. (4.4)

Since we are ultimately interested in the power spectrum, we also consider the line of

sight and transverse components of the co-moving wavenumbers. The relevant factors

here are just the inverse of the coordinate mappings:

k̃‖ =
H(zt)

H(zi)

1+ zi

1+ zt
k‖ = α‖k‖, (4.5)

and

k̃⊥ =
DA,co(zi)

DA,co(zt)
k⊥ = α⊥k⊥. (4.6)

Here we have defined “distortion” factors, α‖ and α⊥. These describe the remapping that

occurs when the incorrect redshift is used to convert angles and observed frequencies to

wavenumbers for the interloper population.

Turning now to power spectrum, we consider the fluctuations in the specific intensity

field, Itot(x). Note that throughout we will work with this quantity rather than with the

power spectrum of δI(x) = (Itot(x)−〈Itot〉)/〈Itot〉 – i.e., we don’t divide out by 〈Itot〉. The

apparent power spectrum of the interloper emission is then:

P̃i(k̃‖, k̃⊥) =
1

α‖α
2
⊥

Pi

(
k̃‖
α‖

,
k̃⊥
α⊥

)
. (4.7)

Here P̃i is the apparent interloper power spectrum, while Pi is the true interloper power

spectrum. This equation reflects how the power spectrum transforms under a change of

coordinates; the 1/(α‖α2
⊥) factor is the ratio of the apparent to actual volume surveyed

at the interloper redshift (see Ballinger et al. 1996 for a related discussion in the context

of the AP effect, and Visbal and Loeb 2010; Gong et al. 2014; Pullen et al. 2016 for

earlier work on interloper contamination). With this transformation law in hand – to

make our description more compact – we will generally drop the (k̃‖, k̃⊥) notation and
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use (k‖,k⊥), nevertheless assuming the target redshift to map between wavelength/angle

and co-moving units.

The total power spectrum of fluctuations in the specific intensity is then:

Ptot(k‖,k⊥) = Pt(k‖,k⊥)+
1

α‖α
2
⊥

Pi

(
k‖
α‖

,
k⊥
α⊥

)
. (4.8)

The first term on the right hand side is the underlying “target” power spectrum that we

seek to determine while the second term arises from the distorted interloper contamina-

tion. In the case that the target and interloper line redshifts are quite different – as will

often be the case for high redshift intensity mapping observations – the distortion factors

α‖ and α⊥ will differ significantly from unity and from each other. Interestingly, pro-

vided the target line is at higher redshift than the interloper lines, α‖ will be larger than

unity, while α⊥ will be smaller than unity. In other words, the interloper fluctuations that

appear at a given k‖,k⊥ arise from modes that have smaller line of sight wavenumber and

larger transverse wavenumber than supposed. Provided Pi(k‖/α‖,k⊥/α⊥) is a decreasing

function of k‖ and k⊥, the distortion then enhances the power for line of sight wavemodes

relative to the transverse modes. As we will see, the shifting of power and the anisotropy

induced from these coordinate re-mappings may potentially be used to separate out the

target and interloper emission at the power spectrum level.

To provide quantatative information, Fig. 4.1 plots the distortion factors as a function

of the interloper redshift for a few example target redshifts. Clearly the distortion factors

are quite different from unity and from each other in the case that the target and interloper

redshifts are widely separated.

Naturally, in the more general case that N important interlopers contribute to the

power spectrum of fluctuations Equation 4.8 generalizes to:

Ptot(k‖,k⊥) =Pt(k‖,k⊥)

+
N

∑
j=1

1
α‖(z j)α2

⊥(z j)
Pj

(
k‖

α‖(z j)
,

k⊥
α⊥(z j)

)
. (4.9)

Here the index j denotes the jth of the N interloper lines, z j is the redshift of the jth
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Figure 4.1: Interloper distortion mapping factors, as a function of the interloper redshift,

zi. The solid lines show the line-of-sight distortion factor, α‖(zi), while the dashed lines

show the transverse factor, α⊥(zi). The black, red, and blue lines show target redshifts of

zt = 6,7, and 8 respectively.
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interloper emission line, Pj is the specific intensity power spectrum of this emission, and

α‖(z j), α⊥(z j) are the distortion factors which depend on both the redshift of the inter-

loper z j and the target redshift zt . (We suppress the dependence on the target redshift

here to make the notation less cumbersome.) This equation assumes the interlopers and

targets are all widely separated in redshift and so independent of each other (otherwise

there would be cross-terms), which should be an extremely good approximation in the

case considered below.

4.3 Example Application

Although this technique may have a range of applications, we illustrate it through the

interesting example case of a hypothetical survey for [CII] emission at zt = 7. Before pro-

ceeding further, we very briefly comment on the physics and phenomenology of the [CII]

emission line. Recall that the ground state configuration of the five electrons in singly-

ionized Carbon is 1s22s22p1, and so the ground state has total orbital angular momentum

L = 1 and total spin angular momentum S = 1/2. The [CII] line is emitted in transitions

from the higher energy fine structure level with total – orbital plus spin – angular momen-

tum J = 3/2 to the lower energy state with J = 1/2, i.e. it is a 2P3/2→ 2P1/2 transition.

The rest-frame wavelength of the transition is λr = 157.7µm, the excitation temperature

of [CII] is 91 K, and the energy required to ionize CI to CII is 11.2 eV. Since the ionization

potential is less than that of neutral hydrogen (13.6 eV) the [CII] emission traces – in part

– neutral phases of the interstellar medium (ISM), while the low excitation temperature

allows emission from warm/cool regions of the ISM. Consequently, [CII] emission may

arise from diverse phases of a galaxy’s ISM including photo-dissociation regions at the

boundary between molecular clouds and HII regions; from the cold neutral medium; and

from HII regions and diffuse ionized gas, provided the local UV radiation field is insuf-

ficiently hard to doubly-ionize carbon (see e.g. the recent review by Carilli and Walter

2013).
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In low redshift galaxies, the [CII] line is a strong cooling line with a luminosity that

is 0.1−1% of the total far-infrared luminosity from the galaxy (Stacey et al. 1991). De-

spite the diverse set of conditions that can give rise to [CII] emission, the line luminosity

is fairly well correlated with the star formation rate, at least at low redshift where there

are currently good measurements. This is the case even for low-metallicity dwarf galax-

ies nearby, although the relation shows larger scatter towards low metallicity (De Looze

et al. 2014). Recent observations have started to detect [CII] emission from Lyman-break

selected galaxies and quasar host galaxies at z & 6, although there are also a handful of

upper limits tentatively suggesting that high redshift galaxies may mostly lie below local

[CII] luminosity star-formation rate correlations (e.g. Knudsen et al. 2016 and references

therein). It is hence unclear how luminous reionization-era galaxies will be in the [CII]

line. Naturally, one of the main goals of IM is to provide a census of the total [CII] emis-

sion: while we have much to learn here, this also makes our forecasts uncertain. In this

work we adopt a simplistic approach and assume that local correlations between [CII]

luminosity and star-formation rate apply also at high redshift. Likewise, we adopt local

correlations to assess the plausible level of interloper contamination. Future targeted ob-

servations of individual galaxies using ALMA will be important for refining estimates of

the target and interloper line luminosities. It may also be instructive to construct mod-

els of the interstellar media of high redshift galaxies to try and predict the correlations

between line luminosity and star formation rate directly (see e.g. Munoz and Furlanetto

2013).

The central observed wavelength and frequency for our zt = 7 [CII] survey are λobs =

1.26× 103µm, and νobs = 238 GHz, respectively. The same observed frequencies will

be polluted with emission from CO molecules at lower redshift undergoing rotational

transitions. A CO molecule transitioning between rotational states J and J− 1 emits a

photon of rest-frame frequency νJ = J×115 GHz. As we will see, several different CO

transitions may be significant interlopers for a zt = 7 [CII] emission survey. In addition

to the CO lines, additional atomic fine structure lines may also provide non-negligible
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interloper emission but, as we detail below, these are subdominant to the CO interlopers

in our models.

4.3.1 Target and Interloper Model Power Spectra

To proceed, let us first discuss the general form of the model intensity power spectra for

both the target and interloper emission. Incorporating anisotropies from redshift space

distortions, our model for the target power spectrum is (Lidz et al. 2011):

Pt(k‖,k⊥) =〈It〉2〈bt〉2
(
1+βt µ

2)2
D [µkσp(zi)]Pρ(k,zt)

+Pshot,t. (4.10)

Here µ = k‖/k is the cosine of the angle between the wavevector k and the line of

sight direction, 〈It〉 is the average specific intensity of the target emission, and 〈bt〉 is the

average luminosity-weighted bias of the emitting galaxies. The factor
(
1+βt µ

2)2 comes

from the Kaiser effect (Kaiser 1987), while D(µkσp) quantifies the small scale reduction

of redshift-space power from the finger-of-god effect. The parameter βt = fΩ/〈bt〉 with

fΩ = dlnD
dlna denoting the usual logarithmic derivative of the growth factor, which is well

approximated by fΩ ≈ [Ωm(z)]
0.55 (Linder 2005). For the finger-of-god suppression, we

assume a Lorentzian form:

D(µkσp) =
1

1+σ2
p µ2k2 , (4.11)

and approximate the pairwise velocity dispersion by σp(z) = σv(z)/
√

2 with σ2
v (z) being

the variance of the line-of-sight component of the velocity field according to linear theory.

In our model, we assume pure linear biasing so that Pρ(k,zt) denotes the matter power

spectrum according to linear theory. Finally, Pshot,t is a shot-noise term that arises because

the [CII] emitting galaxies are discrete objects. This term is assumed to be independent

of scale. Note that we are taking a somewhat simplified model for the redshift-space

emission power spectrum: for the most part we work on scales much larger than that of

individual halos, but we nevertheless include a finger of god term (owing to virialized

motions within halos). Although this is a bit inconsistent, the measurements we consider

143



are mostly confined to large scales where the finger-of god suppression and halo profile

have negligible impact. In future work, it may be interesting to refine this model (see e.g.

Cooray and Sheth 2002).

The above equation (Equation 4.10) also highlights another potential benefit of mea-

suring the angular dependence of the power spectrum. Although the first term in this

equation depends mostly on the product of 〈It〉 and 〈bt〉, there is an additional separate

dependence on 〈bt〉 through the parameter βt . If the angular dependence of the power

spectrum may be measured well enough, this should help in breaking the otherwise per-

fect degeneracy between 〈It〉 and 〈bt〉, and allow one to constrain each of these quantities

separately (Lidz et al. 2011).

Similarly, the true interloper power spectrum for the jth interloper (see Equation 4.9)

may be written as a function of the true underlying wavenumber components, k‖ and k⊥,

as:

Pj(k‖,k⊥) =〈I j〉2〈b j〉2
(
1+β jµ

2)2
D
[
µkσp(z j)

]
Pρ(k,z j)

+Pshot,j (4.12)

The apparent interloper power is 1/(α‖α2
⊥)Pj(k‖/α‖,k⊥/α⊥), where we momentarily

suppress the j indices on the distortion factors. Note that under the coordinate transfor-

mation of Equations 4.1–4.6 µ maps to µ → (k‖/α‖)/
√
(k‖/α‖)2 +(k⊥/α⊥)2.

Our model for the total power is then specified by the average specific intensity of the

target and interloper emission, 〈It〉 and 〈I j〉, the luminosity-weighted average bias factors,

〈bt〉 and 〈b j〉, and the shot-noise terms, Pshot,t and Pshot,j. For simplicity, we generally fix

〈bt〉= 3 and 〈b j〉= 2 (for each interloper j) in what follows. In the case explored here, the

important interlopers are at lower redshift than the target line galaxies and so one expects

the interlopers to be less clustered. This should be the case unless the interloper galaxies

live in especially massive halos. In some other applications of our method, the interlopers

may instead be mostly at higher redshift than the target line emitters. In this case, the

interlopers would likely have a higher bias factor than the target line emitters. This would

go in the direction of making the interloper emission harder to clean, but this should be
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offset in part by the smaller linear growth factor at high redshift. In any case, the impact

of the interlopers will depend also on their average specific intensities relative to that in

the target line.

In order to determine plausible values for the average specific intensity and shot-

noise terms, we seek guidance from empirical correlations between the luminosity in

the emission lines of interest and galactic star formation rates. These correlations can

be combined with Schechter function fits to the abundance of galaxies as a function of

their star formation rate to estimate the remaining quantities of interest, as in Pullen et al.

(2013). The Schechter form for the star formation rate function is (Schechter 1976):

φ(SFR)dSFR = φ?

(
SFR
SFR?

)α

exp
[
− SFR

SFR?

]
dSFR
SFR?

, (4.13)

with α denoting the faint-end slope, and SFR? and φ? giving, respectively, the character-

istic star-formation rate and number density.

The average specific intensity in each line can be estimated from the co-moving emis-

sivity in the line according to (Lidz et al. 2011; Pullen et al. 2013):

〈IL〉=
εL

4πνrest,L

c
H(z)

, (4.14)

where νrest,L is the restframe emission frequency, εL is the co-moving emissivity of the

line emission, and the line profile has been approximated as a delta function in frequency.

We further approximate the luminosity as a linear function of the star formation rate:

L = L0
SFR

1M�yr−1 . (4.15)

Using the Schechter form for the star-formation rate function, it follows that the co-

moving emissivity in each line L is (Pullen et al. 2013):

εL = φ?L0
SFR?

1M�yr−1 Γ(2+α). (4.16)

We adopt the values of LCII
0 = 6× 106L� and the luminosity of the CO transitions

given in Visbal and Loeb (2010) (see also Righi et al. 2008). For reference, LCO(3−2)
0 =
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7.0× 104L�, while nearby higher order rotational transitions have slightly higher lumi-

nosities until the luminosity declines again above CO(7-6). The CO luminosities are

based on correlations between the strength of these emission lines and galactic star for-

mation rates, as measured at low redshift, while the [CII] luminosity-SFR relation is nor-

malized to M82. Using the SFR functions from Smit et al. (2012) (adopting their nearest

redshift bin for each interloper redshift), we can then estimate the emissivity and average

specific intensity according to Equations 4.13–4.16. This gives 〈It〉 = 5.7×102 Jy str−1

for [CII] emission at zt = 7. Likewise, summing over interloper transitions, we find a

combined average interloper intensity of 〈Ij,combined〉= 7.0×102 Jy str−1, after including

all non-negligible CO lines. Interestingly, the interloper and target contributions are com-

parable and so it will indeed be important to disentangle these two contributions. The top

panel of Fig. 4.2 gives further information, quantifying which interloper lines contribute

most prominently to the total average intensity. According to our estimate, several distinct

lines contribute significantly with the CO(4-3) at z = 0.88, CO(5-4) at z = 1.4, CO(6-5)

at z = 1.8, and CO(7-6) at z = 2.3 transitions each contributing more than 102 Jy str−1.

While these simple estimates provide a useful guide, we caution that they adopt simplistic

assumptions about the relationship between star-formation and luminosity, and extrapo-

late empirical correlations beyond the redshifts at which they have been determined. (See

also the discussion in the beginning of this section.) Our results are nevertheless broadly

consistent with previous estimates in Silva et al. (2015), but differ in the details of the

modeling and the empirical constraints adopted. Given the uncertainties in the signal and

interloper strengths, we aim to devise a flexible approach for separating the interloper and

target emission signals.

We also checked the impact of interloper emission from additional fine structure lines:

[CI] 610µm at z = 1.1, [CI] 371µm at z = 2.4, [NII] 205µm at z = 5.2, and [OI] 145µm

at z = 7.71. In our model, the strongest of these lines is [CI] 371µm which has an average

1The latter line is at slightly higher redshift than the target line, and so might instead be referred to as

an “extraloper” line.
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specific intensity of 〈ICI,371µm〉 = 54 Jy str−1, and so it contributes less than 10% of the

target emission. As justified further in the next paragraph, we neglect these potential

interlopers in this work.

In order to quantify the relative importance of the interloper transitions to the power

spectrum of intensity fluctuations, which is ultimately the signal we are after, we need

to consider more than just the average specific intensity. Equations 4.12 and 4.10 imply

that the relative strengths of the fluctuations depend mostly – asides for the shifting of

power in wavenumber – on Pj ∝ 〈b j〉2〈I j〉2D2(z j)/
[
α‖(z j)α

2
⊥(z j)

]
, with D(z j) being the

linear growth factor at redshift z j. This applies on large scales where shot-noise contri-

butions are negligible. We plot the relative strength of fluctuations, as characterized by

this one number, in the bottom panel of Fig. 4.2. In comparison to the average specific

intensity, this number is enhanced for the lower J transitions because the distortion factor

1/
(
α‖(z j)α

2
⊥(z j)

)
and the growth factor D(z j) increase towards lower redshift. For the

power spectrum of fluctuations, the dominant emission comes from the CO(4-3) line in

this model, and the fluctuations in this line are more than a factor of two larger than in the

target [CII] line. Fluctuations from CO(3-2), CO(5-4), and CO(6-5) each contribute be-

tween 5−20% of the total interloper fluctuations. Higher order transitions contribute less

than several percent to the interloper fluctuations, and we will assume they contribute neg-

ligibly in what follows. The same is true of the [CI], [NII], and [OI] interloper/extraloper

lines discussed above, and so we neglect them as well. We will discuss relaxing this as-

sumption where appropriate; it is straightforward to include additional interloper lines in

our calculations, but this adds additional parameters to the modeling.

In addition to the clustering term, we should also consider the shot-noise contribution

to the power spectrum from the target and interloper lines. This contribution may also

be estimated from the L−SFR correlation, and the observed SFR Schechter function fits.

Specifically, we expect the shot-noise from galaxies emitting in line L to be (e.g. Uzgil

et al. 2014):

Pshot,L =
〈IL〉2

φ?

2+α

Γ(2+α)
. (4.17)
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Figure 4.2: Relative importance of interloper lines to the average specific intensity and

to the power spectrum of intensity fluctuations. (Top) The estimated intensity of different

interloper transitions, CO(J→ J−1) as a function of J, relative to the model [CII] target

emission intensity. (Bottom) The y-axis shows a factor that determines the relative con-

tribution of different interloper lines to the total power spectrum of intensity fluctuations

(see text). The normalization has been set here so that the factor sums (over all lines) to

unity. The black horizontal line shows the same factor for the target line, [CII] at z = 7.
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Using the numbers from Smit et al. (2012) for φ? and α , we find Pshot,t = 2.9× 105

Jy2 str−2 (Mpc h−1)3 for the target emission line. Summing over all of the interlop-

ers, up to and including the CO(6-5) transition gives Pshot,j,combined = 1.2×107 Jy2 str−2(
Mpc h−1)3, after including the distortion factors. The shot-noise from the interlopers is

hence almost 50 times that in the target emission. In this work we will consider the com-

bined target plus interloper shot-noise as a single “nuisance” term that we aim to subtract

out.

4.3.2 Apparent Interloper and Signal Power Spectra

We now turn to examine the model signal and interloper power spectra. As a first conve-

nient way of characterizing the target and interloper power spectra, we expand the spectra

in terms of Legendre polynomials and calculate the monopole and quadropole moments.

The quadropole-to-monopole ratio may be written as

Q(k) =
5
2
∫ 1
−1 dµ

[
3µ2/2−1/2

]
P(k,µ)

1
2
∫ 1
−1 dµP(k,µ)

. (4.18)

We can calculate the intrinsic target quadropole to monopole ratio, as well as that for

the apparent interloper power spectra, incorporating the distortions as described by Equa-

tions 4.8–4.12.

The spherically averaged (monopole) power spectra are shown in the left panel of

Fig. 4.3. The solid black line shows the target [CII] emission power spectrum at zt = 7,

k3Pt(k)/(2π2). In this model, the [CII] power spectrum has a strength of about ∆2 ≈ 102

Jy2 str−2 at k ∼ 0.01 h Mpc−1, ∆2 ≈ 3× 105 Jy2 str−2 at k ∼ 1 h Mpc−1, and reaches

∆2≈ 1.5×107 Jy2 str−2 at k∼ 10 h Mpc−1. The clustering term dominates on large scales

at k . 3 h Mpc−1 or so, while the shot-noise term is more important on smaller scales.

The blue-dashed and red-dotted lines show the interloper contamination power, with and

without coordinate distortions, respectively. For each interloper line, the coordinate dis-

tortions shift power from k‖→ k‖/α‖(z j) and from k⊥→ k⊥/α⊥(z j), while boosting the

fluctuation power by the overall 1/(α‖(z j)α
2
⊥(z j)) factor. After spherical averaging, this
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Figure 4.3: Monople and quadropole to monopole ratios for the interloper and signal

power spectra. (Left) The power spectrum monopole, multiplied by k3/(2π2) so that

each line shows the usual spherically-averaged contribution to the variance per ln(k). The

lower black solid line shows our model for the target [CII] intensity fluctuation power at

zt = 7. The blue dashed line shows our model for the total CO(J→ J−1) contamination

including the impact of the coordinate distortions. The red dotted line shows the true

total interloper power spectrum monopole, neglecting the remapping effects. (Right) The

quadropole to monopole ratio of the power spectra in each case. The true power spectra

are anisotropic only because of the Kaiser and finger-of-god effects, while incorporating

the remapping distortions boosts the interloper quadropole to monopole ratio on large

scales. These ratios turn over on small scales (high k) due to the finger-of-god effect and

shot-noise contamination.
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leads to a shift and boost in the apparent interloper power, as may be discerned by com-

paring the blue dashed and red dotted lines in Fig. 4.3. As anticipated in the previous

section, the combined CO interloper power exceeds the target [CII] emission power by a

factor of several on large scales – the precise excess depends on scale because of the co-

ordinate distortions – and so it is crucial to remove this contamination. On smaller scales

the target and interloper power differ because of the larger Poisson noise from the inter-

loper populations: we expect the interloper shot-noise to swamp that in the [CII] target

emission. The larger interloper shot-noise mostly results because star-formation occurs

in lower mass, yet more abundant systems at high redshift and so the Poisson noise in the

high redshift target line is relatively low. As mentioned previously, in this work we will

be content to extract only the [CII] clustering term and forego trying to separate out the

[CII] shot-noise term in the presence of this large interloper contamination.

Although the shape of the target and interloper monopole power differ only subtly, the

angular dependence of the target and interloper power is quite different. For example, the

right panel of Fig. 4.3 shows the quadropole to monopole ratio for both the target and in-

terloper emission power spectra. For illustration, we show the CO interloper quadropole

to monopole ratio both with and without coordinate mapping distortions. The quadropole

to monopole ratio for the target emission, and the interloper emission without coordinate

mapping distortions, have the usual form expected from redshift space distortions. On

sufficiently large scales, Q→ (4β/3+4β 2/7)/(1+2β/3+β 2/5) – the Kaiser effect re-

sult (Kaiser 1987) – while the quadropole anisotropy diminishes on smaller scales owing

to the finger-of-god effect and the isotropic shot-noise term. The intrinsic interloper Q(k)

turns over on larger scales (smaller k) than the target Q(k) because the interloper shot-

noise term is bigger and because the finger-of-god suppression is stronger at the (lower)

redshifts of the interloper lines. The blue dashed line shows the quadropole to monopole

ratio after incorporating the coordinate mapping distortion. This reaches much larger

values than expected from the Kaiser effect, with the model Q peaking near Q = 2.6 at

k = 0.2 h Mpc−1 before gradually turning over on smaller scales owing to the finger-of-
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god effect and shot-noise. This is a direct consequence of the difference between the

mapping factors, α‖(z j) and α⊥(z j), and the shape of the linear power spectrum of den-

sity fluctuations. The increasing Q(k) from k ∼ 0.01−1 h Mpc−1 reflects the steepening

of the power spectrum spectral index towards small scales. This can be verified by calcu-

lating the quadropole to monopole ratio for a pure power law power spectrum (of varying

spectral index) under the coordinate warping transformation. The steeper k dependence at

small scales enhances the difference between the line of sight and transverse power after

applying the warping. Note that on scales larger than the co-moving horizon size at mat-

ter radiation equality, k≤ keq ∼ 0.015 h Mpc−1, the net interloper distortion is sub-Kaiser

because the linear matter power spectrum is an increasing function of k on these scales.

In order to further characterize and visualize the target and interloper power spectrum

anisotropies, we plot contours of constant power in the k⊥− k‖ plane (Fig. 4.4, see also

Gong et al. 2014). The left panel illustrates the redshift space distortion in the target

emission. As mentioned earlier, if the large scale anisotropy shown here can be measured

accurately, we can determine the luminosity-weighted bias of the emitters in the target line

(from the dependence on βt), as well as the average specific intensity of the target emis-

sion (from the overall amplitude of fluctuations). The contours in the right panel show

a strong elongation in the k‖ direction from the coordinate mapping distortion, which

sources the strong quadrupole moment shown in Fig. 4.3 as discussed previously. Note

that the total interloper power spectrum in our model is the sum of four separate inter-

loper lines from different redshifts, CO(3-2) at z = 0.407, CO(4-3) at z = 0.877, CO(5-4)

at z = 1.35, CO(6-5) at z = 1.82. The total anisotropy of the interloper emission, illus-

trated in Fig. 4.3 and Fig. 4.4 hence reflects a weighted average of these four interloper

lines, with the CO(4-3) line having the strongest weight in our model (see the bottom

panel of Fig. 4.2).

It is also worth noting that while the Kaiser effect produces vanishing multipole mo-

ments beyond the octupole, this is not the case for the interloper mapping distortion.

In principle, then, it may be possible to separate the interloper emission by measuring
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Figure 4.4: Anisotropy of the target and interloper power spectra from redshift space

and coordinate mapping distortions. (Left) Contours of constant power in the k⊥− k‖

plane for the target [CII] power spectrum at zt = 7. The blue contours neglect redshift

space distortions, while the black contours and color-scale incorporate them. On large

scales, the power spectra show the Kaiser enhancement for wave numbers in the line of

sight direction. This effect turns around and the contour just past k∼ 1 h Mpc−1 is nearly

isotropic, with the finger-of-god effect dominating at slightly higher k until isotropic shot-

noise dominates. The colorbar is in units of (Jy str−1)2(Mpc h−1)3. The lowest contour is

at P(k) = 5×105(Jy str−1)2 (Mpc h−1)3 and the contours increase inwards as dlnP = 1.

(Right) The black contours and color-scale show the anisotropy of the total interloper

emission power spectrum including the coordinate mapping distortion. The lowest con-

tour is at P(k) = 1.3× 107(Jy str−1)2(Mpc h−1)3 and the contours increase inwards as

dlnP = 1. The interloper anisotropy is much stronger than that in the target line; this can

be used to separate-out the interloper contamination.
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higher multipole moments which should reflect only the interloper contamination. Here

we instead consider fitting the full angular dependent power spectrum using parameter-

ized models.

4.4 Forecasts

Having quantified the power spectrum anisotropy, we now forecast the prospects for using

this to separate out the interloper and target contributions to the power spectrum. Here

we assume that Equtations 4.9–4.12 provide a perfect description of the measured power

spectra. We then investigate how well the parameters of the model may be determined by

hypothetical [CII] surveys. The shortcoming of this approach is that it relies on simple

models for the power spectra of intensity fluctuations, which may be imperfect. In future

work, it will be important to develop consistency checks of this model, and/or to develop

a more sophisticated description. We discuss some possible observational tests in §4.5

and §4.6.

In general, we consider a seven-dimensional parameter space described by a vector,

q, with seven components: {q1,q2, .....,q7} = {〈It〉,〈bt〉,〈I32〉,〈I43〉,〈I54〉,〈I65〉,Pshot,tot}.

The parameters describe the specific intensity of the target emission, the average bias of

this emission, the specific intensity of each of the four important interloper lines (indexed

by the rotational states of the CO transitions with J,J− 1 as subscripts: e.g., 〈I32〉 is the

average specific intensity in the J = 3→ 2 transition), and the total (target plus all inter-

lopers) shot-noise. Here we implicitly fix the bias of the fluctuations in each interloper

line to 〈b j〉= 2. Since the interloper power is determined mostly by the overall product of

specific intensity and bias (asides for the additional dependence on β through the Kaiser

effect which is small relative to the anisotropy induced by assuming an incorrect redshift),

one can think of the specific intensity constraints derived as confidence intervals on the

product 〈b j〉〈I j〉.

Our main goal then is to determine whether the target emission fluctuations, charac-
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terized by the parameters 〈It〉 and 〈bt〉, may be determined accurately in the presence of

the interloper fluctuations. We investigate this by calculating Fisher matrices for futuristic

[CII] surveys. The components of the Fisher matrix for parameters qi and q j are given by:

Fi j =
∫

µmax

µmin

dµ

×
∫ kmax

kmin

dkk2Vs

4π2
∂P(k,µ)

∂qi

∂P(k,µ)
∂q j

1
var[P(k,µ)]

, (4.19)

where we have approximated the discrete sum over modes in the survey by a continu-

ous integral. Here the integral over angle runs over the upper half-plane, between some

(k-dependent) limits µmin and µmax that we will describe below, and the integral over

wavenumber ranges between the limits kmin and kmax. The quantity Vs is the co-moving

volume of the survey. This expression depends on that variance of the total power spec-

trum of fluctuations for each k-mode, var[P(k,µ)]. We compute this, neglecting non-

Gaussian contributions to the variance, as:

var[P(k,µ)] = [Ptot(k,µ)+PN(k,µ)]
2 . (4.20)

Here Ptot(k,µ) is the total signal plus interloper emission power spectrum, including the

shot-noise contribution, and PN(k,µ) is the detector noise power spectrum.

It is also instructive to consider the number of Fourier modes in the upper-half plane

in a bin of k and µ , Nm(k). For a survey of co-moving volume Vs, the number of modes

contained within the survey volume in a wavenumber bin of thickness ∆ln(k)∆µ is:

Nm(k) =
k3Vs

4π2 ∆ln(k)∆µ. (4.21)

Note that this is just included for illustration, since the mode-counting is already handled

implicitly in the Fisher matrix calculation (Equation 4.19).

4.4.1 Survey Parameters

It will be challenging to measure the power spectrum and its angular dependence pre-

cisely enough to separate the faint interloper and target signals using this methodology.
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Nevertheless, experiments are already underway to detect the reionization-era [CII] sig-

nal (e.g. the TIME-Pilot experiment, Crites et al. 2014); we anticipate that the sensitivity

of these measurements will increase rapidly, fueled by advances in detector technology.

As a convenient baseline, we consider the “CII-Stage II” survey described in Silva et al.

(2015). Unfortunately, we find that even this is less sensitive than we require and so we

generally consider a still more sensitive experiment, as specified subsequently.

Our baseline survey is described in Silva et al. (2015) and consists of a single 10 meter

dish, with 16,000 bolometers and an Nsp = 64-beam spectrometer with a frequency res-

olution of ∆ν = 0.4 GHz. The hypothetical survey spans 100 deg2 on the sky for a total

observing time of tsurvey =2,000 hours. We consider a B = 20 GHz bandwidth of obser-

vations near z = 7, which is small enough for us to neglect evolution in the signal across

the survey bandwidth. The angular resolution of the survey is ∆θ = 0.43 arcminutes. In

co-moving coordinates, the pixels span x⊥,res = 0.790 Mpc h−1 in the transverse direction

and x‖,res = 3.42 Mpc h−1 in the line of sight direction. In the line of sight direction, the

survey length is L‖ = 171 Mpc h−1, while the transverse dimension is L⊥ = 1.09× 103

Mpc h−1. The total survey volume is Vs = 2× 108(Mpc h−1)3. For reference, the num-

ber of modes surveyed is Nm(k) = 5.2× 103(k/0.1 h Mpc−1)3∆ln(k)∆µ in a bin around

k = 0.1 h Mpc−1.

The survey noise power spectrum may be written as (e.g. Uzgil et al. 2014):

PN(k‖,k⊥) =
σ2

N
tobs

Vpixe(k‖x‖,res)
2+(k⊥x⊥,res)

2
, (4.22)

where σ2
N/tobs is the noise per pixel in specific intensity units (squared), Vpix is the pixel

volume, and the exponential factor accounts for the finite angular and spectral resolu-

tion of the instrument. We can extract plausible numbers for the noise power spectrum

from Table 8 of Silva et al. (2015), converting from the Noise Equivalent Flux Den-

sity (NEFD) to the specific intensity noise(× square-root of time in seconds), using σN =

NEFD/(∆Ωpix). Note also that the observing time per pixel is tobs = tsurvey Nsp ∆Ωpix/∆Ωsurvey,

where Nsp is the number of spatial pixels and tsurvey is the total survey observing time.
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This resulting noise power spectrum is:

σ2
N

tobs
Vpix =8.7×108 Jy2

str2

(
Mpc

h

)3[
σN

3.1×105Jy/str
√

sec

]2

×
[

Vpix

2.13(Mpc/h)3

][
64
Nsp

][
2,000 hrs

tsurvey

]
. (4.23)

Since we find that even this sensitivity is insufficient for our purposes, we consider a

still more sensitive experiment with (σ2
NVpix)/tobs = 4.3×107Jy2 str−2(Mpc h−1)3. This

value represents our fiducial noise level in what follows. We caution that the noise power

here is approximately twenty times smaller than in the Stage-II experiment considered by

Silva et al. (2015), and so the rms noise in our fiducial case is 4− 5 times smaller than

in this previous work. Naturally, it will be important to see if this sensitivity is in fact

achievable. Improvements may be possible by going to space, in which case the CMB

would set the photon background noise rather than emission from the Earth’s atmosphere.

Rapid progress in detector development may also help to increase sensitivity beyond what

is assumed here, e.g. it may be possible to increase the number of spatial pixels, Nsp. We

will describe how the results depend on this somewhat arbitrary choice of noise power.

It may also be possible to make progress with noisier survey data by masking bright

pixels suspected of containing CO interloper emission, while using the anisotropy of the

residual fluctuation power spectrum to further clean interloper contamination. In other

words, the masking approach advocated in previous work may be combined with the

technique developed here. Further work is required to explore whether the two tech-

niques may indeed be combined fruitfully. If one masks pixels suspected of interloper

contamination, this should reduce the interloper fluctuation power and make it harder to

fit-out interloper contributions. Nevertheless, applying our approach after masking might

provide a valuable cross-check: if distinctive anisotropic emission remains, this suggests

residual interloper contamination. We expect this combination of techniques to be most

valuable in the case that the interloper contamination is stronger than assumed here. Fi-

nally, there may be some benefit to a spare-sampling survey strategy to build up a large

field-of-view quickly – rather than mapping contiguous regions on the sky – although this
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will lead to aliasing from high-k modes (Kaiser 1998; Chiang et al. 2013).

We are almost ready to calculate the Fisher matrix elements using Equation 4.19,

but we need to comment first on one additional complication. The issue relates to the

continuum foreground, which is significantly larger than the line interloper emission. The

continuum emission at the frequencies of interest is dominated by the Cosmic Infrared

Background (CIB), produced by dust grains in galaxies at a range of redshifts, and has an

average specific intensity of a ∼ a few ×105 Jy str−1 (Silva et al. 2015). Although this is

two to three orders of magnitude larger than the expected [CII] emission, the continuum

foreground should nevertheless be separable using the fact that it is spectrally smooth,

i.e., one can use exactly the same strategy as advocated for cleaning foregrounds from

redshifted 21-cm fluctuation measurements (e.g Zaldarriaga et al. 2004). In order to sepa-

rate the spectrally smooth foreground, however, one inevitably sacrifices measuring long

wavelength modes along the line of sight. Additional modes will likely be lost as well,

since the frequency dependence of the beam, calibration errors, and instrument imper-

fections can also produce spurious spectral structure in the foregrounds, as observed by

the instrument. Here we will ignore this “mode-mixing” problem (e.g. Liu and Tegmark

2011; Ali et al. 2015), and take a simplistic approach: we simply remove line-of-sight

modes with wavelength smaller than the bandwidth of the measurement, i.e. modes with

line-of-sight wavenumber smaller than k‖,min = 2π/L‖ = 0.037 h Mpc−1. Further work is

required to determine whether measuring the angular dependence of the power spectrum

is feasible in the presence of realistic levels of mode-mixing. Mode-mixing should be

significantly less bad here than in the case of 21-cm; in part this is because the continuum

to line emission ratio is smaller, and also because the instrumental beam is simpler for

this single dish experiment.

Before exploring forecasts for marginalized constraints on the parameters q, it is in-

structive to explicitly examine some of the derivatives that enter the Fisher matrix calcu-

lation of Equation 4.19. Fig. 4.5 compares the derivatives of the total power spectrum

with respect to each of the specific intensity parameters as a function of angle, µ , for
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Figure 4.5: Derivatives with respect to average specific intensity in different lines as

a function of angle. Here the power spectrum derivatives are computed for k = 0.5 h

Mpc−1. The derivatives are much stronger functions of angle for the interloper line –

owing to the coordinate distortions – than for the target [CII] emission, which depends

on angle only through the Kaiser effect. The low order CO transitions show a stronger

dependence on angle because their coordinate distortions are larger.
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fixed k = 0.5 h Mpc−1. The range of µ accessible is limited slightly by removing the

spectrally smooth modes with k‖ ≤ 2π/L‖ to µ ≥ µmin = k‖,min/k = 0.074 for k = 0.5 h

Mpc−1. The derivatives with respect to the interloper line intensities show a steeper an-

gular dependence than the target emission, as expected. This is because the interlopers

are subject to the coordinate distortion, while the target line depends on angle primarily

through the Kaiser effect (at the wavenumber considered, the finger of god effect is sub-

dominant). A simple way to understand the angular dependence of the interloper power

is to note that, approximating the power spectrum at the wavenumber of interest by a

power-law of spectral index k−neff , the ratio of the power at µ = 1 to that at µ = 0 is sim-

ply (α‖(z j)/α⊥(z j))
neff . This rough estimate ignores the Kaiser effect, which will further

enhance this ratio. For k = 0.5 h Mpc−1, neff =−dlnP/dlnk = 2.12 , and this ratio is 110

for the strongest case of the CO(3-2) interloper distortion. The derivative shown is pro-

portional to the square of this number and so the ratio reaches four orders of magnitude,

and the result in Fig. 4.5 is still slightly larger because it includes the Kaiser distortion.

In any case, Fig. 4.5 further motivates that the angular dependence can be used to

separate the target and interloper contributions to the power spectrum if it can be mea-

sured with small enough error bars. In addition, comparing the angular dependence of the

derivatives with respect to the intensity in the various lines gives some sense for which

lines will be most degenerate with each other. For example, the weaker angular depen-

dence of the target line derivative suggests that 〈ICII〉 should not be strongly degenerate

with the intensities in the interloper lines, provided the full angular range shown is well-

measured. This should be especially so in comparison to the low-order transitions that

show the strongest angular variation. On the other hand, we expect the intensity in the

CO(4-3) and CO(5-4) lines to be more degenerate given their relatively similar redshifts

and distortion factors.

We now turn to calculate the Fisher matrix of Equation 4.19, and invert this matrix

2A more detailed estimate would also take into account that the local spectral index should really be

evaluated separately at each of k/α‖ and k/α⊥.
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Figure 4.6: Forecast of constraints in the 〈It〉−〈bt〉 plane, marginalized over the interloper

contamination and shot-noise parameters for two noise levels. Note that the range of

values shown along the x and y-axes differ significantly between the two panels. The red,

blue, and green contours show 1,2, and 3−σ confidence intervals, while the “x” marks

the assumed central value. (The contours and “x”s have the same meaning in subsequent

plots.) The specific intensity, 〈It〉, has been expressed in units of the our fiducial model

value, 〈It〉= 5.7×102 Jy str−1. (Left) In this case, a sample-variance limited experiment

is shown, i.e., the noise power spectrum is taken to be negligibly small. (Right) Here the

noise power spectrum instead follows Equation 4.23, as expected for the “stage-II” [CII]

survey. Evidently, the target fluctuations can be extracted using the angular dependence

of the emission power spectrum but greater sensitivity is required than in the hypothetical

stage-II survey. Note that we allow regions in parameter space where the parameters are

negative. In practice, one might invoke a prior to exclude such regions as unphysical.
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to find the constraints on the various parameters. We first consider the constraints on the

target signal, contrasting the results for the stage-II survey with noise power at the level of

Equation 4.23 and a sample-variance (also known as “cosmic-variance”) limited survey,

with negligibly small noise power, over the same volume. The left panel of Fig. 4.6 shows

the projected errors in the 〈It〉− 〈bt〉 plane, marginalized over the interloper parameters.

The contours show that the hypothetical sample-variance limited survey is capable of

constraining 〈It〉 and 〈bt〉, even in the presence of strong interloper contamination. Quan-

titatively, we forecast ∼ 3% level 1−σ marginalized constraints on these parameters in

the sample variance limit. The ellipse shows the expected strong degeneracy between

increasing 〈It〉 and decreasing 〈bt〉; nevertheless, the Kaiser effect allows separate con-

straints on the two parameters although they are highly correlated. However, it is hard

to achieve the requisite sensitivity given the bright night sky at these frequencies. If we

instead incorporate noise at the level of Equation 4.23, the marginalized errors blow up

considerably, as illustrated by the right panel of Fig. 4.6. In this case the marginalized

constraints on the average specific intensity and the bias only give 1−σ detections – i.e.,

without attempting to mask interloper emission, a significant detection is not possible for

this survey.

For now, we simply consider a more sensitive experiment with (σ2
NVpix)/tobs = 4.3×

107Jy2 str−2(Mpc h−1)3. The 〈It〉− 〈bt〉 results, marginalized over the interloper param-

eters, are shown for this level of noise in Fig. 4.7. Unless otherwise noted, we adopt this

value for the noise power spectrum in what follows. In this case, 20% level constraints

on the target emission parameters are achievable (at 1−σ ) and the target and interloper

emission fluctuations can indeed be separated.

The [CII] emission signal at z∼ 7 may also be stronger than in the model considered

here, which could relax the stringent requirements on the noise power spectrum found

here. Indeed, as we were finalizing this manuscript we learned of similar work by Cheng

& Chang (2016, in prep).3 These authors’ model gives a z = 6 [CII] emission signal

3Thanks to the “Opportunities and Challenges in Intensity Mapping Workshop” held at Stanford.
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Figure 4.7: Forecast of constraints in the 〈It〉−〈bt〉 plane, marginalized over the interloper

contamination and shot-noise parameters for our fiducial noise power spectrum. Identical

to Fig. 4.6, except for our fiducial noise level (see text).
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that is more than an order of magnitude larger than our z = 7 predictions, and so they are

more optimistic about the prospects of applying this method using upcoming datasets. For

the most part, the difference stems from the larger bias factor in their model, with 〈bt〉2

almost six times as large as in our calculations. Their bias factor comes from relating

the line luminosity to the CIB and from empirically-calibrated models connecting CIB

luminosity and halo mass. Since most of the CIB emission comes from lower redshift, the

z = 6−7 predictions are still, however, uncertain. In any case, this further illustrates the

uncertainties in forecasting the expected signal. Improved constraints on the relationships

between line-luminosity, star formation rate, and halo mass, will be needed to refine our

predictions for the target and interloper emission fluctuations.

It is also helpful to examine the constraints on the interloper emission parameters.

Some example confidence intervals are shown in Fig. 4.8. The left hand panel shows the

joint forecasted constraints in the 〈ICII〉− 〈ICO(4−3)〉 plane. This plane is of special in-

terest because our model predicts that emission in the CO(4-3) line actually provides the

largest contribution to the total power spectrum (Fig. 4.2). Interestingly, the constraints

on the CO(4-3) intensity and the [CII] intensity show little degeneracy. This is actually

unsurprising given the differing angular dependence of the Fisher matrix derivatives il-

lustrated in Fig. 4.5, and the sensitive hypothetical survey we consider. However, the

different interloper lines themselves are rather degenerate with each other. This higher

level of degeneracy results because the pairs of interloper lines are much closer together

in redshift than the interloper-target pairs. As a result, the interloper pairs have similar

distortion factors, α‖ and α⊥, and their power spectra hence show almost the same angu-

lar dependence. For example, the right hand panel of Fig. 4.8 gives confidence intervals

in the 〈ICO(4−3)〉− 〈ICO(5−4)〉 plane, and this reveals the expected strong anti-correlation

between the emission in these two lines. Quantitatively, the correlation coefficient in this

plane is ρ = −0.81. After marginalizing over all of the interloper parameters, the error

bars on the average intensity of each interloper line are large: in our fiducial case, we

only expect a greater than 2−3−σ detection of 〈ICO(4−3)〉, even though we obtain a sig-
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Figure 4.8: Forecasted constraints on the average specific intensity of two of the interloper

emission lines. (Left) Constraints in the 〈ICII〉− 〈ICO(4−3)〉 plane. The fractional error is

larger for the interloper emission than for the target emission. This is because the average

specific intensity of the target line is larger, and because the intensity of this interloper

line is highly degenerate with that of other interloper lines. (Right) Constraints in the

〈ICO(4−3〉 − 〈ICO(5−4)〉 plane. The constraint ellipses show a strong degeneracy, since

increasing the strength of one interloper line may be mostly compensated by reducing the

strength of another line. As in Fig. 4.6, we allow unphysical regions where the parameters

are negative.
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nificant detection (≥ 5−σ ) of the [CII] target emission line. For reference, our fiducial

survey numbers forecast detections of the specific intensity in the CO(3-2) and CO(5-4)

lines at only slightly better than 1−σ , while the CO(6-5) specific intensity is still less

detectable.

In summary, the angular dependence of the emission fluctuations can be used to sep-

arate the target and interloper emission fluctuations if the noise power spectrum is suffi-

ciently small. Since the main goal is to extract information about the target [CII] emission,

perhaps it is not a big concern that the individual CO interlopers are themselves somewhat

degenerate, and the constraints on these parameters are weaker. However, further checks

seem valuable given that our approach relies on having a good model for each source of

emission fluctuations.

4.5 Cross-Correlating with LSS Tracers

Fortunately, there are other approaches we can pursue as further cross checks on the

analysis of the previous section, some of which should enable separate constraints on each

interloper line. First, we can correlate the intensity mapping data cubes with spectroscopic

galaxy and/or quasar catalogues at the interloper redshift (Silva et al. 2015). We expect

that by the time [CII] intensity mapping experiments are underway, there will be other

extensive large-scale structure surveys, spanning large fields of view and overlapping in

redshift with the prominent CO interloper transitions. We can use cross-correlations with

LSS tracers at different redshifts to separately constrain the parameters of each of the

various CO interloper lines.

For instance, consider the cross power spectrum between interloper line j and the

abundance of spectroscopic galaxies at the same redshift, z j. Suppose the average bias

of these tracer galaxies is 〈bgal〉. In order to extract the cross spectrum of interest, it

is convenient to convert from angles and wavelengths to co-moving units assuming the

interloper redshift z j, rather than the target [CII] redshift, zt . The target line and the other
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interloper lines will not contribute on average to the cross spectrum with the LSS tracer

at z j since these lines originate at significantly different redshifts, but they will contribute

to the variance of the cross spectrum, as we will describe. For this purpose, the total

power spectrum of intensity fluctuations from line emission is computed along the lines

of Equation 4.9, except that the warping is now relative to the coordinates of an interloper

at redshift z j. The cross power spectrum with the galaxy tracer field is then:

Px(k,µ) =〈I j〉〈b j〉〈bgal〉
(
1+β jµ

2)(1+βgalµ
2)

×D
[
µkσp(z j)

]
Pρ(k,z j), (4.24)

where β j = fΩ(z j)/〈b j〉 and βgal = fΩ(z j)/〈bgal〉 are the Kaiser parameters for the in-

terloper line and the galaxy density field, respectively. We have assumed here that the

finger-of-god suppression has an identical form for the IM galaxies and for the LSS tracer

population at the same redshift; although this is unlikely true in detail, we expect this sim-

plification to have little impact on our results. Here for simplicity we have also assumed

that the CO emitting populations and the tracer galaxies are largely disparate populations;

otherwise, there should be an additional shot-noise term in Equation 4.24. In any case, if

the cross spectrum can be measured accurately enough we can infer constraints on 〈I j〉,

〈b j〉, and 〈bgal〉, or at least their overall product. One final caveat here, however, is that we

have not included a stochasticity parameter “r” in the above equation and so we are im-

plicitly assuming that the galaxies and interloper populations are perfect tracers of large

scale structure on the scales of interest for this measurement. In addition, the auto spec-

trum of the tracer galaxies may be used to measure 〈bgal〉. Ideally, future LSS surveys

will provide tracer galaxy or quasar samples at the redshifts of each of the prominent CO

interlopers. These measurements can then be combined with the angular dependence of

the intensity auto spectrum, to further separate the interloper contaminants from the target

emission fluctuations.
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Figure 4.9: Constraints on the parameters of an interloper line (CO(4-3)) from cross-

correlating with a large-scale structure tracer at the relevant redshift (z j = 0.88). A 10%

prior on 〈bgal〉 has been incorporated since this parameter will be constrained from mea-

suring the auto spectrum of the tracer galaxies. Here 〈ICO(4−3)〉 is in units of 〈ICII(z = 7)〉,

and our fiducial IM noise power spectrum has been assumed.

168



The variance (per mode) of the cross-spectrum is given by:

var [Px(k,µ)] =

[
P2

x +

(
Ptot(k,µ)+PN(k,µ)

)

×
(

Pgal(k,µ)+
1

ngal

)]
, (4.25)

where Ptot(k,µ) is the total line intensity power spectrum, except computed here with

the distortion factors considered relative to the coordinates at the interloper redshift z j,

PN(k,µ) is the noise power spectrum for the intensity mapping survey (Equation 4.22),

while Pgal and 1/ngal are the clustering and shot-noise terms for the tracer galaxies. Af-

ter specifying the properties of our tracer galaxies and the survey parameters, the cross

spectrum Fisher matrix, Fx
i j, may be computed along the lines of Equation 4.19:

Fx
i j =

∫
µmax

µmin

dµ

×
∫ kmax

kmin

dkk2Vs

4π2
∂Px(k,µ)

∂qi

∂Px(k,µ)
∂q j

1
var[Px(k,µ)]

. (4.26)

Here the parameter vector is specified by just three components: qα = {〈I j〉,〈b j〉,〈bgal〉}.

As an example of the cleaning that may be feasible with future data sets, we con-

sider surveys for narrow emission-line galaxies using the Dark Energy Spectroscopic In-

strument (DESI) (Levi et al. 2013). We suppose that the entire volume of the intensity

mapping survey is contained within the DESI narrow emission line galaxy survey, which

is plausible given that DESI will cover a large-fraction of the full sky. In this case, the

number of modes surveyed and the spatial and spectral resolution of the cross spectrum

measurement are entirely limited by the intensity mapping survey specifications and the

only additional relevant parameters for our Fisher matrix forecasts are the tracer galaxy

bias parameters (this fixes Pgal(k,µ) in our linear biasing model), and the abundance ngal

which determines the shot-noise contribution to the variance for the DESI galaxies. We

adopt the abundance of narrow emission-line galaxies that may be observed by DESI as

reported in Levi et al. (2013). In this case, near the redshift of the CO(4-3) interloper

emission, we expect a number density of ngal = 5.2× 10−4 h3 Mpc−3. The expected
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abundance of DESI tracer galaxies at the redshifts of the other prominent interlopers are

comparable. Finally, we would like to account for the constraint that will be possible on

〈bgal〉 from a measurement of the auto-spectrum of the tracer galaxy survey. Note that the

DESI emission line galaxies will themselves suffer from interloper contamination (e.g.

Pullen et al. 2016) and this will need to cleaned in order to measure the auto-spectrum

and bgal. Rather than investigate this in detail here, for simplicity we suppose that bgal

is measured to 10% fractional accuracy. We believe this is conservative. This is then

incorporated as a prior in the cross-spectrum Fisher matrix calculation (Equation 4.26).

For the bias of the tracer galaxies, we adopt a central value of bgal = 2.5.

Fig. 4.9 shows an example of the constraints that may be obtained for the case of

CO(4-3) interloper line emission. Evidently, the cross spectrum with the DESI narrow

emission line galaxy sample should allow significantly tighter constraints on 〈ICO(4−3)〉

than from the total intensity mapping auto spectrum. For our fiducial assumptions, the

1−σ fractional error bar on 〈ICO(4−3)〉 improves by a factor of more than four. Similar

measurements should be possible for each of the other CO interloper transitions. These

cross spectrum measurements should be useful both as a consistency check on the inter-

loper modeling, and can be used in combination with the total intensity mapping auto

spectrum to reduce error bars on the target emission parameters. Quantitatively, we can

incorporate the DESI-like cross spectrum constraints on the specific intensity of the inter-

loper lines as (1−σ ) priors in our auto-spectrum Fisher matrix calculations. Doing this,

we find that the error bars on the [CII] specific intensity and bias shrink by a factor of 1.5

and 1.4 respectively. Although these numbers are indicative, the precise gain will depend

on the noise power spectrum in the IM experiment and on how accurately the auto-spectra

of the DESI galaxies are measured.
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4.6 Cross Spectrum with Other Lines

Finally, an additional approach to help confirm the presence of target [CII] emission fluc-

tuations is to cross-correlate with a data cube centered on a different frequency that con-

tains emission from another line at the same redshift (e.g. Visbal and Loeb 2010). Indeed,

this measurement may potentially be done with the same data set. For example, the hy-

pothetical [CII] survey discussed in Silva et al. (2015) spans 200-300 GHz. In addition

to the [CII] 158µ m line at z = 7, the same survey should include [OI] emission at z = 7

with a rest frame wavelength of 146µ m, at an observed frequency of νobs = 259 GHz.

Further, just outside the fiducial range spanned by this hypothetical survey is an [NII]

122µ m emission line at z = 7, νobs = 308 GHz. The cross spectrum between the [CII]

and [OI] data cubes, for example, should follow

Px,CII−OI(k,µ) =〈It〉〈IOI〉〈bt〉〈bOI〉
(
1+βt µ

2)(1+βOlµ
2)

×D [µkσp(zt)]Pρ(k,zt)+Pshot,CII−OI (4.27)

where 〈IOI〉 and 〈bOI〉 denote the specific intensity and linear bias factor of the [OI] emit-

ters that lie at the same redshift as the [CII] emission, and the other symbols have their

usual meanings. Similar to Equation 4.24, we assume that the finger-of-god suppression

has an identical form for each set of emitters. In what follows, we neglect the shot-noise

term, Pshot,CII−OI. Strictly speaking, this is only correct in the limit that disparate popu-

lations of sources produce the [CII] and [OI] emission. However our sensitivity here is

coming from large scales where the shot-noise contribution should be small, so we don’t

expect neglecting it to impact our estimates.

Here we consider using the cross-spectrum between [CII] and [OI] as a test of the

high redshift origin of a potential [CII] contribution to the intensity mapping data cube.

For this purpose, we define A = 〈It〉〈IOI〉〈bt〉〈bOI〉 and consider the significance at which
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A can be shown to be non-zero. Here the relevant variance is:

var [Px,CII−OI(k,µ)] =

[
P2

x,CII−OI

+

(
Ptot,CII(k,µ)+PN,CII(k,µ)

)
×
(

Ptot,OI(k,µ)+PN,OI(k,µ)
)]

, (4.28)

where Ptot,OI(k,µ) is the total [OI] signal auto spectrum, including the interlopers for this

line. For simplicity, we approximate the interloper power contamination to the [OI] line

as identical to that of the [CII] line. This should be a good but imperfect approximation,

since the two lines lie at fairly similar observed frequencies. Likewise, we approximate

the noise power spectrum as identical at the observing frequencies centered around each

of the [CII] and [OI] lines. Based on the local relation between line luminosity and star-

formation rate in Visbal and Loeb (2010) and using Equation 4.14, we infer that 〈IOI〉(z=

7) = 0.05〈ICII〉(z = 7). We can then estimate the total signal to noise at which the single

parameter, A, may be detected using Equations 4.27 and 4.28. For our fiducial numbers

we find that the cross spectrum may be detected at 8.6−σ significance, and so considering

the cross spectrum between the two lines seems promising. If the frequency range can be

extended somewhat, the cross spectrum between [CII] and [NII] might be detectable. In

fact, based on the local line-luminosity star formation rate correlation tabulated in Visbal

and Loeb (2010) we expect this correlation to be more detectable than that between [CII]

and [OI]: using the numbers in Visbal and Loeb (2010) gives a 17−σ detection forecast.

However, assuming the local relation is especially suspect for [NII]: there is unlikely to

be enough prior star formation to build up a significant nitrogen abundance at the high

redshifts of interest here (Suginohara et al. 1999).

Unfortunately – for our fiducial survey numbers – we don’t expect significant detec-

tions of the auto spectra in [OI] or [NII] given the large interloper “noise” and the lower

expected specific intensity in these lines. Consequently, a measurement of the cross-

spectrum between [CII] and [OI] and/or [NII] can help establish the high redshift origin
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of a possible [CII] signal, but it won’t provide a full check on the values of 〈It〉, 〈bt〉 in-

ferred from the [CII] auto spectrum, since the bias and intensity of the [OI] and/or [NII]

emission will remain uncertain.

4.7 Conclusions

Line confusion provides an important systematic concern for many intensity mapping

surveys and for some traditional surveys targeting emission-line galaxies. Interloper line

emission will likely be especially strong in future intensity mapping surveys aimed at

detecting reionization-era signals in the [CII] and Ly-α lines. Here we developed an

approach to fit-out interloper contamination at the power spectrum level, using the fact

that the interloper contribution to the emission power spectrum will have a distinctive

anisotropy that results when the target redshift is assumed in mapping from frequency

and angle to co-moving units.

We applied this to the case of a z = 7 [CII] intensity mapping experiment, in which

the z∼ 7 signal fluctuations are expected to be smaller than the combined emission fluc-

tuations from several CO interloper lines. In the limit of low noise power, the interloper

fluctuations can be separated from the [CII] power spectrum signal. A more sensitive

instrument than currently planned is however required. In the near term, it would be in-

teresting to investigate whether the power spectrum anisotropy technique advocated here

may be fruitfully combined with a masking approach. Additional careful work is required

to study this; in this context, it is crucial to examine optical and infrared tracers to quantify

whether they may serve as faithful proxies for the CO interloper emission. We therefore

defer this to future work.

We also explored how the intensity mapping data cube may be cross-correlated with

large scale structure tracers to extract the properties of likely interloper lines. We showed

that emission-line galaxy samples from DESI will be a good data set for cross-correlations,

allowing one to extract CO interloper properties for z∼ 7 [CII] emission surveys. Finally,
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we briefly considered the cross-correlation between two different fine structure lines at the

same redshift; this can help verify the high redshift origin if a possible signal is seen in the

z∼ 7 [CII] auto spectrum. For all of these studies, it will be important to further consider

foreground contamination systematics. Specifically, additional work is needed to quan-

tify the impact of mode-mixing on efforts to measure the angular dependence of the [CII]

power spectrum. It will also be important to quantify how correlated the foregrounds for

different tracer lines – such as [CII] and [OI] – are.

In any case, intensity mapping is a potentially powerful approach for tracing large-

scale structure at early times and may capture the collective impact of sources that are

undetectable using traditional means. Although interloper contamination is a concern for

many of these measurements, it may be circumvented using a combination of techniques,

including the power spectrum anisotropy approach considered here.
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Chapter 5

Conclusion

We began this thesis by discussing our best understanding of the reionization process

and some of the observational methods and theories by which we developed that under-

standing. We saw that reionization is expected to be an extended, patchy process fueled

by galaxies. Our best current constraints on the EoR come from quasars and the CMB.

Quasar spectra suggests that reionization is over by z ∼ 6. The CMB, via constraints on

the Thomson optical depth, puts zreion ' 8.8± 0.9. It also places an upper bound on the

duration of reionization though the kSZ: ∆z < 5.4. Together, these observations paint

an extremely broad-stroked picture of reionization as a process that took place between

z ∼ 6 and z ∼ 12. However, these observations do not tell us much about how reioniza-

tion proceeded. For example, we have very limited observational constraints on how the

ionization fraction evolves with redshift. In addition, we have yet to determine the size

distribution of the ionized regions at different stages of the reionization process. Observa-

tions that will be able to provide that, such as those using high redshift galaxies, are still

coming into their own. In the other chapters of this thesis, we have focused on exactly

that, the use of high redshift galaxies as tools with which to understand the EoR.

We began in §2 by reconsidering measurements of fLyα , the fraction of LBGs that are

also LAEs. Measurements of this quantity (Pentericci et al. 2011; Schenker et al. 2012;

Ono et al. 2012; Caruana et al. 2012), showed a significant decrease at z ∼ 7 compared
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to the increasing trend in fLyα from z∼ 4 to z∼ 6. fLyα is designed to highlight extrinsic

evolution of galaxy properties, i.e. changes in the IGM; thus, this sudden decrease is a

strong signal of an increasing neutral fraction, indicating that they were observing back

into the EoR. However, when they attempted to estimate the ionized fraction at z ∼ 7,

they concluded that xi . 0.4. Harmonizing this with the other constraints on the EoR re-

quires a very rapid end to reionization. This end is more rapid than other models suggest.

Motivated by this discordance, we set out to consider the effect of sample variance on the

measurements of fLyα .

The measurements of the Lyα fraction were performed over small fields of view, with

typical dimensions on the order of 10 Mpc h−1 at z∼ 7, comparable to the expected size

of ionized bubbles. These fields are too small to provide a representative sample of the

Universe at that redshift. Further, we found that the selected galaxies do not sample the

entire field. While they selected LBGs via broad band surveys, they chose only a fraction

of those galaxies to follow-up on with spectroscopic observations, thus, further reducing

their fields of view. Therefore, even though multiple fields of view were observed, the

total area covered remained small enough that sample variance made a significant contri-

bution to their the error budget. This was unaccounted for by the error budgets given in

previous work.

We used simulations to model the observations of fLyα . We calculated the mock Lyα

fraction for a range of ionization histories and several models describing the relationship

between LAEs and LBGs. We found that the drop in fLyα , while most likely due to

an increasingly neutral Universe, only required a neutral fraction xHI ∼ 0.05 at the 95%

confidence level.

In §3, we considered how the spatial fluctuations that obscured the Lyα fraction mea-

surements could actually be used as a signal of reionization. We did this by examining

how the patchy nature of reionization will enhance the clustering of LAEs, due to their

preferential selection in large ionized bubbles. We focused here on HSC’s prospects for

measuring this signal. HSC, a new instrument on Subaru, will, via a combination of
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broad band and narrow band observations, detect thousands of LBGs and LAEs at z∼ 7.

Working from simulations, we modeled potential HSC observations. We considered the

effects of reionization on galaxy abundance, a modified version of the Lyα fraction, and

on galaxy clustering. In all these cases, we compared LAEs to LBGs and concluded that,

provided HSC observations are reaching back into the EoR, the signal from LAEs should

evolve more strongly with redshift than that from LBGs.

We used several methods to quantify the enhanced LAE clustering, specifically void

probability functions, the probability that a random circle of radius R contains zero galax-

ies in the survey, and measurements of the bias factor. In both cases, we found that the

LAE clustering was enhanced, either via larger voids or a larger bias factor, as the neutral

fraction grew. LBG clustering, on the other hand, remained constant, making it a good

comparison sample.

We also set out to quantify the effect of foreground interlopers on these calculations.

LBG interlopers, likely red galactic stars, are not clustered in these observations, so their

effect on the LBG clustering signal is to reduce it slightly. LAE interlopers, on the other

hand, are drawn from specific emission lines and may themselves be clustered. If the ion-

ization fraction is sufficiently high, the LAE interlopers will not be a problem. However,

in more neutral cases, the observed LAE abundance declines, and so the interloper frac-

tion increases. These interlopers can obscure the very signal in which we are interested.

We find, however, that the cross spectrum of LAEs and LBGs is not effected by the in-

terloper clustering and, thus, provides a better estimate of the bias factor of the LAEs. In

our fiducial model, in which the universe is ∼ 20% neutral at z = 6.6, we forecast that the

HSC can measure the linear bias of the LAEs at 11% accuracy and that this determines

the volume-weighted neutral fraction to within about 0.1.

In §4, we turned our attention to intensity mapping, a technique that is sensitive to the

emission from all sources in a given emission line, even ones too faint to be detected by

other methods. Intensity mapping targeting the EoR should allow the spatial fluctuations

of ionizing sources to be mapped and the collective impact of faint sources on the ionizing
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process to be quantified. One significant concern for intensity mapping is the presence of

foreground interloper emission which can dilute or obscure the signal.

We developed an approach for separating out the interloper contamination from the

intensity mapping power spectrum. Since intensity mapping is based on emission lines,

the interlopers are foreground galaxies with emission lines redward of the target emission

line. Thus, the interlopers all come from the same redshift or redshifts, depending on

the number of lines that can be contaminants for the target line. Projecting the interloper

onto the target redshift will cause the interlopers to be mapped to the wrong co-moving

coordinates. Specifically, in Fourier space, along the line of sight, the interlopers will

be mapped to larger wavenumbers; in the transverse direction, the interlopers will be

mapped to smaller wavenumbers. This results in a distinctive anisotropy, which can be

used to cleanly fit out the interloper contribution.

We applied this technique to a hypothetical z = 7 [CII] intensity mapping experiment

and showed that, provided the noise power is small enough, the interloper fluctuations can

be separated out from the [CII] signal; this is true even though the interloper fluctuations

are larger than the target signal. However, the low noise power requirement necessitates

instruments more sensitive than currently planned.

We also considered two cross-correlation measurements. First, we considered cross-

correlating the intensity mapping with a three dimensional map of large scale structure

at the redshift of the interlopers. This cross-correlation selects the interloper contribution

and should allow properties of the interloper lines to be calculated. Second, we considered

the cross-correlation between intensity maps of two different lines at the same (high)

redshift. While both lines are vulnerable to interlopers, they would draw their interlopers

from different redshifts. The cross-correlation should select only the signals from the

same redshift, allowing the high redshift signals to be isolated.

The future observations considered here, from the HSC and intensity mapping sur-

veys, will access new information about reionization. Both observations should tell us

about the distribution of ionized bubbles. LAEs are preferentially observed in ionized
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bubbles so clusters of LAE should trace the distribution of large bubbles. Intensity map-

ping will map the spatial distribution of the ionizing sources, allowing the bubble distribu-

tion to be inferred. These observations, particularly if combined with 21-cm observations

which will trace the neutral gas, should allow us to understand on an observational level

the spatial fluctuations of reionization and, hopefully, the evolution of the neutral faction

as a function of redshift. The next years, as these future observations become reality,

should be an exciting time to be studying the EoR.
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