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Topics In Multivariate Statistics

Abstract
Multivariate statistics concerns the study of dependence relations among multiple variables of interest.
Distinct from widely studied regression problems where one of the variables is singled out as a response, in
multivariate analysis all variables are treated symmetrically and the dependency structures are examined,
either for interest in its own right or for further analyses such as regressions. This thesis includes the study of
three independent research problems in multivariate statistics.

The first part of the thesis studies additive principal components (APCs for short), a nonlinear method useful
for exploring additive relationships among a set of variables. We propose a shrinkage regularization approach
for estimating APC transformations by casting the problem in the framework of reproducing kernel Hilbert
spaces. To formulate the kernel APC problem, we introduce the Null Comparison Principle, a principle that
ties the constraint in a multivariate problem to its criterion in a way that makes the goal of the multivariate
method under study transparent. In addition to providing a detailed formulation and exposition of the kernel
APC problem, we study asymptotic theory of kernel APCs. Our theory also motivates an iterative algorithm
for computing kernel APCs.

The second part of the thesis investigates the estimation of precision matrices in high dimensions when the
data is corrupted in a cellwise manner and the uncontaminated data follows a multivariate normal
distribution. It is known that in the setting of Gaussian graphical models, the conditional independence
relations among variables is captured by the precision matrix of a multivariate normal distribution, and
estimating the support of the precision matrix is equivalent to graphical model selection. In this work, we
analyze the theoretical properties of robust estimators for precision matrices in high dimensions. The
estimators we analyze are formed by plugging appropriately chosen robust covariance matrix estimators into
the graphical Lasso and CLIME, two existing methods for high-dimensional precision matrix estimation. We
establish error bounds for the precision matrix estimators that reveal the interplay between the dimensionality
of the problem and the degree of contamination permitted in the observed distribution, and also analyze the
breakdown point of both estimators. We also discuss implications of our work for Gaussian graphical model
estimation in the presence of cellwise contamination.

The third part of the thesis studies the problem of optimal estimation of a quadratic functional under the
Gaussian two-sequence model. Quadratic functional estimation has been well studied under the Gaussian
sequence model, and close connections between the problem of quadratic functional estimation and that of
signal detection have been noted. Focusing on the estimation problem in the Gaussian two-sequence model,
in this work we propose optimal estimators of the quadratic functional for different regimes and establish the
minimax rates of convergence over a family of parameter spaces. The optimal rates exhibit interesting phase
transition in this family. We also discuss the implications of our estimation results on the associated
simultaneous signal detection problem.
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ABSTRACT

TOPICS IN MULTIVARIATE STATISTICS

Xin Lu Tan

Andreas Buja

Zongming Ma

Multivariate statistics concerns the study of dependence relations among multiple

variables of interest. Distinct from widely studied regression problems where one

of the variables is singled out as a response, in multivariate analysis all variables are

treated symmetrically and the dependency structures are examined, either for interest

in its own right or for further analyses such as regressions. This thesis includes the

study of three independent research problems in multivariate statistics.

The first part of the thesis studies additive principal components (APCs for short),

a nonlinear method useful for exploring additive relationships among a set of variables.

We propose a shrinkage regularization approach for estimating APC transformations

by casting the problem in the framework of reproducing kernel Hilbert spaces. To

formulate the kernel APC problem, we introduce the Null Comparison Principle, a

principle that ties the constraint in a multivariate problem to its criterion in a way

that makes the goal of the multivariate method under study transparent. In addition

to providing a detailed formulation and exposition of the kernel APC problem, we

study asymptotic theory of kernel APCs. Our theory also motivates an iterative

algorithm for computing kernel APCs.
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The second part of the thesis investigates the estimation of precision matrices in

high dimensions when the data is corrupted in a cellwise manner and the uncon-

taminated data follows a multivariate normal distribution. It is known that in the

setting of Gaussian graphical models, the conditional independence relations among

variables is captured by the precision matrix of a multivariate normal distribution,

and estimating the support of the precision matrix is equivalent to graphical model

selection. In this work, we analyze the theoretical properties of robust estimators

for precision matrices in high dimensions. The estimators we analyze are formed by

plugging appropriately chosen robust covariance matrix estimators into the graphical

Lasso and CLIME, two existing methods for high-dimensional precision matrix esti-

mation. We establish error bounds for the precision matrix estimators that reveal the

interplay between the dimensionality of the problem and the degree of contamination

permitted in the observed distribution, and also analyze the breakdown point of both

estimators. We also discuss implications of our work for Gaussian graphical model

estimation in the presence of cellwise contamination.

The third part of the thesis studies the problem of optimal estimation of a quadratic

functional under the Gaussian two-sequence model. Quadratic functional estimation

has been well studied under the Gaussian sequence model, and close connections be-

tween the problem of quadratic functional estimation and that of signal detection have

been noted. Focusing on the estimation problem in the Gaussian two-sequence model,

in this work we propose optimal estimators of the quadratic functional for different

regimes and establish the minimax rates of convergence over a family of parameter

spaces. The optimal rates exhibit interesting phase transition in this family. We

also discuss the implications of our estimation results on the associated simultaneous

signal detection problem.
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1
Introduction

In the past decades, advances in technology have enabled collection of massive amounts

of data, opening the door to a new approach to understanding the world and making

decisions. Despite the wealth of data available, the ability to unlock the value in data

rests on our ability to summarize the data and provide interpretation of the summary

quantities computed. Such summaries and corresponding interpretations can rarely

be produced by just looking at the raw data, and a careful scientific scrutiny and

statistical analysis are crucial for the generation of valuable insights from data.

Often times, the data collected involves measurements of multiple variables on

the same unit, rendering the variables correlated and univariate analyses insufficient

for deriving conclusion and guiding next steps. In these cases, a statistical analysis

of the dependencies structure of the variables is essential. The study of dependence

relations among multiple variables of interest is at the heart of multivariate statistics,

and is the focus of this thesis. There are three main chapters within the body of this

thesis, each of which is a single, self-contained paper. While the topics studied in

these chapters fall under the general realm of multivariate statistics, they also come

with interesting twists by having connections to nonlinear statistics, robust statistics,

as well as high-dimensional statistics.

A brief summary of the contents in subsequent chapters is provided below.
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Kernel Additive Principal Components

In Chapter 2, we study additive principal components (APCs for short), a nonlinear

generalization of linear principal components. We focus on smallest APCs to describe

additive nonlinear constraints that are approximately satisfied by the data. Thus, an

APC analysis fits data with implicit equations that treat the variables symmetrically,

as opposed to regression analyses which fit data with explicit equations that treat the

variables asymmetrically by singling out a response.

APCs were initially proposed by Donnell et al. (1994), where a subspace restric-

tion regularization approach was introduced for estimating APC transformations. In

this chapter, we cast APCs in the context of penalized least squares and reproduc-

ing kernel Hilbert spaces (RKHSs), and take advantage of the extensions offered by

kernelizing. In contrast to the existing subspace restriction approach, kernelizing

approaches achieve regularization through shrinkage and therefore grant distinctive

flexibility in APCs estimation by allowing the use of infinite-dimensional function

spaces while retaining computational feasibility. Furthermore, the interpretation of

regularization kernels as similarity measures makes possible the exploration of im-

plicit additive redundancies in non-Euclidean data, a flexibility not available in the

original APC proposal.

Introducing kernelizing into a multivariate method is not a mechanical exercise.

We motivate our formulation of kernel APCs by the Null Comparison Principle, a

principle that ties the constraint in a multivariate problem to its criterion in a way

that makes the goal of the multivariate method under study transparent. This sim-

ple yet powerful principle is potentially useful for devising generalizations of other

multivariate methods and thus can be of independent interest.

On the other hand, kernel canonical correlation analysis (CCA) is a special case

of kernel APCs with two variables, and the statistical convergence of kernel CCA was

2



first established in Fukumizu et al. (2007). In this chapter, we establish the statistical

convergence of kernel APCs under a decay rate for regularization parameters involved

that is less stringent than that in Fukumizu et al. (2007). Our proof of convergence

is built on an elegant RKHS-based theory we develop for APCs, which covers general

RKHSs not studied in Fukumizu et al. (2007) and do not require the population

targets to lie in RKHSs a priori. Our theory also motivates an iterative algorithm for

computing finite-sample kernel APCs. Lastly, we provide data examples, simulated

and real, to illustrate the kernel APC methodology. Supplementary materials for this

chapter can be found in Appendix A.

This chapter is joint work with Andreas Buja and Zongming Ma.

High-dimensional Robust Precision Matrix Estima-

tion: Cellwise Corruption under ε-Contamination

In Chapter 3, we analyze theoretical properties of robust estimators for precision ma-

trices, when data are contaminated in a cellwise manner: each element of the data

matrix is independently corrupted according to a certain proportion. Such contami-

nation mechanisms may be used to model various phenomena in real-world scientific

data, including measurement error in DNA microarray analysis and dropouts in sensor

arrays.

When data follows an uncontaminated multivariate normal distribution, the graph-

ical Lasso (GLasso) (Yuan & Lin, 2007; Banerjee et al., 2008; Friedman et al., 2008)

and the constrained `1-minimization for inverse matrix estimation (CLIME) (Cai

et al., 2011) estimators are known to possess rigorous theoretical guarantees for the

estimation of precision matrices in high dimensions; however, their performance may

be compromised severely when data are contaminated by even a single outlier.
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The estimators we study are inspired by techniques in robust statistics and are

constructed by plugging appropriately chosen robust covariance matrix estimators

into the GLasso and CLIME. We derive high-dimensional error bounds that reveal

the interplay between the dimensionality of the problem and the degree of contami-

nation permitted in the observed distribution, and also analyze the breakdown point

of both estimators. Our results show that although the graphical Lasso and CLIME

estimators perform equally well from the point of view of statistical consistency, the

breakdown property of the graphical Lasso is superior to that of CLIME. We also dis-

cuss implications of our work for gaussian graphical model estimation in the presence

of contamination, where the goal is to estimate the support of the graph associated

with the clean distribution. Our results apply to arbitrary contaminating distribu-

tions and allow for a nonvanishing fraction of cellwise contamination. Finally, we

examine the performance of our estimators in comparison to that of other (possibly

non-robust) estimators through simulation studies. Supplementary materials for this

chapter can be found in Appendix B.

This chapter is joint work with Po-Ling Loh.

Optimal Estimation of A Quadratic Functional un-

der the Gaussian Two-Sequence Model

While Chapters 2 and 3 focus on the analysis of covariance structure of multiple vari-

ables, Chapter 4 involves an analysis of mean structure of the variables. Specifically,

we study in Chapter 4 the problem of optimal estimation of the quadratic functional

Q(µ, θ) = 1
n

∑n
i=1 µ

2
i θ

2
i under the gaussian two-sequence model. The mean vectors

µ = (µ1, . . . , µn) and θ = (θ1, . . . , θn) are assumed to be sparse.

In addition to being of significant theoretical interest in its own right, this es-

4



timation problem is motivated by the problem of simultaneous signal detection in

integrative genomics, which, under our simplified framework, is equivalent to the

detection of locations i where µi and θi are simultaneously non-zero. We propose

optimal estimators of Q(µ, θ) and establish the minimax rates of convergence over a

family of parameter spaces. Interestingly, the optimal rates exhibit different phase

transitions in three regimes, each characterized by the sparsity of simultaneous non-

zero means relative to that of non-zero entries in individual mean vectors. Along

with the establishment of the minimax rates of convergence, we explain the intuition

behind the construction of the optimal estimators in each regime. A simulation study

is included to complement the theoretical results in the chapter. We also give a brief

discussion on the application of quadratic functional estimators to the problem of si-

multaneous signal detection. Supplementary materials for this chapter can be found

in Appendix C.

This chapter is joint work with T. Tony Cai, and will appear in Statistica Sinica.
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2
Kernel Additive Principal Components∗

2.1 Introduction

Linear principal component analysis (PCA) is a tool commonly used to reduce the

dimensionality of data sets consisting of several interrelated variables X1, X2, . . . , Xp.

PCA amounts to finding linear functions of the variables,
∑
ajXj, whose variances

are maximal or, more generally, large and stationary under a unit norm constraint,∑
a2
j = 1. These linear combinations, called largest linear principal components

(largest LPCs for short), are thought to represent low-dimensional linear structure of

the data. The reader is referred to Jolliffe (2002) for a comprehensive review of PCA.

One can similarly define the smallest linear principal component (smallest LPCs)

as linear functions of the variables whose variances are minimal or small and sta-

tionary subject to a unit norm constraint on the coefficients. If these variances are

near zero, Var (
∑
ajXj) ≈ 0, the interpretation is that the data lie near the hyper-

plane defined by the linear constraint
∑
ajXj = 0 (assuming that the variables Xj

are centered). Thus the purpose of performing PCA on the lower end of the princi-

∗Joint work with Andreas Buja and Zongming Ma
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pal components spectrum is quite different from that of performing it on the upper

end: largest principal components are concerned with structure of low dimension,

whereas smallest principal components are concerned with structure of low codimen-

sion. Largest LPCs provide projections to low dimensions, whereas smallest LPCs

provide implicit equations to approximate linear dependencies among variables.

The topic of this chapter is a generalization of smallest linear principal compo-

nents in function spaces, called “smallest additive principal components” (“APCs”

for short). APCs were initially proposed by Donnell et al. (1994) before kernelizing

became a well-understood methodology. The goal of this chapter is to cast APCs in

the context of penalized least squares and reproducing kernel Hilbert spaces (RKHSs),

and take advantage of the extensions offered by kernelizing.

Before proceeding, here is a brief summary of additive approaches to multivariate

function fitting: The step from a linear method to an additive method consists of

replacing linear terms ajXj with nonlinear terms φj(Xj), thereby allowing nonlinear

marginal transformations of the coordinate variables Xj, each to be estimated by

some nonlinear fitting method. It is known that additive approaches avoid the curse

of dimensionality that fully nonlinear function fitting φ(X1, X2, ..., Xp) would entail.

Historically the generalization from linear to additive approaches first appeared in the

context of regression, where fitting linear equations Y ∼
∑

j ajXj was extended to

fitting additive equations Y ∼
∑

j φj(Xj) to a response Y , as documented by Breiman

& Friedman (1985), Buja et al. (1989), culminating in the classical book by Hastie

& Tibshirani (1990). Additive extensions were enabled at the time by the emergence

of fast smoothing technology that allows estimation and computation of suitably

regularized transformations φj(Xj) with an iterative algorithm called “backfitting”,

whereby each φj(Xj) is updated in turn by a smoothing step of partial residuals on

Xj: Y −
∑

k 6=j φk(Xk) ∼ φj(Xj). The main output is a series of plots, φj(Xj) against
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Xj, that reveal the nonlinearities graphically, while relative variable importances are

measured by the standard deviations of the transforms φj(Xj).

Similar to the additive extension of linear regression, the additive extension of

LPCs implies the replacement of the linear terms ajXj with nonlinear terms φj(Xj),

hence an additive principal component is of the form
∑
φj(Xj). In additive regression

it is approximation of the response variable that produces non-trivial transformations;

in additive principal components it is a normalizing constraint resulting in an eigen-

value problem that achieves the same. In generalizing LPCs to APCs, one therefore

needs to find a suitable way to generalize the LPC constraint
∑
a2
j = 1. Donnell et al.

(1994) proposed to use the constraint
∑

Varφj(Xj) = 1, their justification being that

for φj(Xj) = ajXj we have Var (φj(Xj)) = a2
j for real-valued Xj with Var (Xj) = 1, re-

sulting in the conventional constraint
∑
a2
j = 1. A smallest APC can then be defined

as a p-tuple of marginal transformations φ1, φ2, . . . ,φp that minimizes Var (
∑
φj(Xj))

subject to
∑

Var (φj(Xj)) = 1.

The interpretation of a smallest APC is that the additive constraint represented

by the implicit additive equation
∑
φj(Xj) = 0 defines a nonlinear or, more precisely,

an additive manifold that approximates the data. Smallest APCs can have multiple

methodological uses:

• APCs can be used as a generalized collinearity diagnostic for additive regression

models. Just as approximate collinearities
∑
αjXj ≈ 0 destabilize inference in

linear regression Y ∼
∑
βjXj, additive approximate “concurvities” (Donnell

et al., 1994) of the form
∑
φj(Xj) ≈ 0 destabilize inference in additive regression

Y ∼
∑
ψj(Xj). Such concurvities can be found by applying APC analysis to

the predictors of an additive regression.

• APCs can also be used as a symmetric alternative to additive regression as well

as to ACE regression (Breiman & Friedman, 1985) when it is not possible or not
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desirable to single out any one of the variables as a response. Additive implicit

equations estimated with APCs will then freely identify the variables that have

strong additive associations with each other.

• Even when there is a specific response variable of interest in the context of

an additive regression, an APC analysis of all variables, including predictors

as well as response, can serve as an indicator of the strength of the regression,

depending on whether the response variable has a strong presence in the smallest

APC. If the response shows up only weakly, it follows that the predictors have

stronger additive associations among each other than with the response.

Examples of applications of smallest APCs will be given in Section 2.9, and simulation

examples in Section 2.10.

Estimation of APCs and their transforms φj(Xj) from finite data requires some

form of regularization. There exist two broad classes of regularization in nonparamet-

ric function estimation, namely, subspace regularization and shrinkage regularization.

Subspace regularization restricts the function estimates φ̂j to finite-dimensional func-

tion spaces on Xj. Shrinkage regularization produces function estimates by adding a

penalty to the goodness-of-fit measure in order to impose the spatial structure of Xj

on φ̂j. Commonly used are generalized ridge-type quadratic penalties (also called the

“kernelizing approach”) and lasso-type `1-penalties. The original APC proposal in

Donnell et al. (1994) only uses subspace regularization for estimation, and it does not

provide asymptotic theory for it. In the present chapter we investigate APCs based on

shrinkage/kernelizing regularization and provide some asymptotic consistency theory.

It should be pointed out that introducing a shrinkage/kernelizing approach into a

multivariate method is not a mechanical exercise. It is not a priori clear where and

how the penalties should be inserted into a criterion of multivariate analysis, which

in the case of PCA is variance subject to a constraint. The situation differs from
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regression where there is no conceptual difficulty in adding a regularization penalty

to a goodness-of-fit measure. In a PCA-like method such as APC analysis, however,

it is not clear whether penalties should be added to, or subtracted from, the variance,

or somehow added to the constraint, or both. An interesting and related situation

occurred in functional multivariate analysis where the same author (B. Silverman) co-

authored two different approaches to the same PCA regularization problem (Rice &

Silverman, 1991; Silverman, 1996), differing in where and how the penalty is inserted.

Our approach, if transposed to functional multivariate analysis, agrees with neither

of them. One reason for our third way is that neither of the approaches in Rice &

Silverman (1991) or Silverman (1996) generalize to the low end of the PCA spectrum.

In contrast, the regularized criterion proposed in this chapter can be applied to the

high and the low end of the spectrum, and hence to the discovery of low dimension

as well as low co-dimension. Our more specific interest is in the latter.

An immediate benefit of injecting penalty regularization into multivariate anal-

ysis stems from recent methodological innovations in kernelizing. These include the

possibility of using infinite-dimensional function spaces, the interpretation of regular-

ization kernels as positive definite similarity measures, and the kernel algebra with

the freedom of modeling it engenders. Two decades ago, when Donnell et al. (1994)

was written, it would have been harder to make the case for penalty regularization.

In what follows we first describe the mathematical structure of APCs and give a

review on population APCs that constitute our targets of estimation (Section 2.2).

Section 2.3 introduces the Null Comparison Principle that guides the derivation of

our kernel APC problem in Section 2.4. Section 2.5 poses the kernel APC problem

in the framework of reproducing kernel Hilbert spaces. Although our focus on the

lower end of the spectrum seems to have found little precedence in the literature, the

criterion we use for kernel APC turns out to be equivalent to that of kernel canonical
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correlation analysis (kernel CCA) (Bach & Jordan, 2003), a nonlinear extension of

canonical correlation analysis, when there are only two variables of interest. The

statistical convergence of kernel CCA was first established in Fukumizu et al. (2007).

In Section 2.6, we establish the statistical convergence of kernel APCs under a decay

rate for regularization parameters involved that is less stringent than that in Fuku-

mizu et al. (2007). Our proof of convergence is built on an elegant RKHS-based

theory we develop for APCs in Section 2.5, which covers general RKHSs not studied

in Fukumizu et al. (2007) and do not require the population targets to lie in RKHSs a

priori. Section 2.7 presents the power algorithm for computing kernel APCs, whereas

Section 2.8 contains a brief discussion on the selection of penalty parameters. In

Section 2.9 we present the kernel APC methodology in terms of two data examples.

Section 2.10 contains simulation studies to complement our theoretical results. A

discussion on the relation of kernel APC with kernel PCA (Schölkopf et al., 1998;

Schölkopf & Smola, 2002) and kernel CCA is given in Section 2.11. Section 2.12 con-

cludes. To deal with the generality of RKHSs considered in Section 2.5, we need some

technical results whose proofs are collected in Appendix A.1. Proofs of the consis-

tency results stated in Section 2.6 are given in Appendix A.2, whereas proofs related

to the power algorithm of Section 2.7 are given in Appendix A.3. Appendix A.4 con-

tains implementation details for the power algorithm, while Appendix A.5 contains

an alternative linear algebra method for computing sample kernel APCs. Details on

the comparison of kernel APC with kernel PCA is given in Appendix A.6.

The following notations and concepts in functional analysis are useful for the

discussion that follows.

Notation: Let H, H1, H2 be Hilbert spaces. In this chapter, a Hilbert space always

means a separable Hilbert space. We denote the norm of a bounded linear operator

T : H1 → H2 by ‖T‖ := sup‖φ‖H1
≤1 ‖Tφ‖H2 . The null space and the range of T
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are denoted by N (T) and R(T), respectively, where N (T) = {φ ∈ H1 : Tφ = 0}

and R(T) = {Tφ ∈ H2 : φ ∈ H1}. We denote by T∗ the Hilbert space adjoint of

T. We say that T : H → H is self-adjoint if T∗ = T, and that a bounded linear

self-adjoint operator T is positive if 〈φ,Tφ〉 ≥ 0 for all φ ∈ H. We write T � 0 if T

is positive, and T1 � T2 if T1−T2 is positive. If T is positive, we denote by T1/2 the

unique positive operator B satisfying B2 = T. On the other hand, a bounded linear

operator T : H1 → H2 is compact if T takes bounded sets in H1 into precompact

sets in H2. One nice property of a compact operator is the availability of singular

value decomposition: for some N ∈ N ∪ {∞}, there exist (not necessarily complete)

orthonormal sets {φν}Nν=1 ⊂ H1 and {ψν}Nν=1 ⊂ H2 and positive real numbers {λν}Nν=1

called singular values, such that

T =
N∑
ν=1

λν〈φν , ·〉H1ψν .

If N = ∞, then λν → 0 and the infinite series in the equation above converges in

norm. We say that a bounded linear operator T : H1 → H2 is Hilbert-Schmidt

if
∑∞

k=1

∑∞
l=1〈ψl,Tφk〉2H2

=
∑∞

k=1 ‖Tφk‖2
H2

< ∞ for a complete orthonormal basis

system (CONS) {φk}∞k=1 of H1 and {ψl}∞l=1 of H2. It is known that this sum is

independent of the choices of CONS. For two Hilbert-Schmidt operators T1 and T2,

the Hilbert-Schmidt inner product is defined by

〈T1,T2〉HS =
∞∑
k=1

∞∑
l=1

〈ψl,T1φk〉H2〈ψl,T2φk〉H2 =
∞∑
k=1

〈T1φk,T2φk〉H2 ,

with which the set of all Hilbert-Schmidt operators from H1 to H2 form a Hilbert

space. The Hilbert-Schmidt norm ‖T‖HS is again given by ‖T‖2
HS = 〈T,T〉HS =∑∞

k=1 ‖Tφk‖2
H2

. Obviously, if T is Hilbert-Schmidt, then ‖T‖ ≤ ‖T‖HS. Moreover, a

Hilbert-Schmidt operator is compact, whereas a compact operator is Hilbert-Schmidt
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iff the singular values satisfy
∑
λ2
ν < ∞. For other standard functional analysis

concepts, see Reed & Simon (1980).

2.2 Population APCs

In this section, we give a review on population APCs (Donnell et al., 1994) which

forms the foundation for RKHS-based theory of APCs in later sections.

2.2.1 Transformations and Their Interpretations

Let X1, . . . , Xp be random variables taking on values in arbitrary measurable spaces

(X1,BX1), . . ., (Xp,BXp), each of which can be continuous or discrete, temporal or

spatial, high- or low-dimensional. The only assumption at this point is that they

have a joint distribution P1:p(dx1, . . . , dxp) on X1 × · · · × Xp. Quantitative random

variables φj(Xj) can be obtained by applying real-valued functions φj : Xj → IR to

the arbitrarily-valued Xj. The functions φj are often interpreted as “scorings” or

“scalings” or “quantifications” of the underlying spaces Xj. If Xj is already real-

valued, then φj is interpreted as a variable transformation.

Donnell et al. (1994) considers functions φj that belong to some closed subspace

Hj of square-integrable functions with regard to their marginal distributions Pj(dxj):

φj ∈ Hj ⊂ L2(Xj, Pj) := {φj : E(φ2
j(Xj)) <∞}.

The role of the coefficient vector a = (a1, . . . , ap)
T in LPCs is taken on by a vector of

transformations:

Φ := (φ1, . . . , φp) ∈ H := H1 × · · · ×Hp. (2.1)
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Similarly, the role of the linear combination
∑
ajXj in LPCs is taken on by an

additive function
∑
φj(Xj). APCs contain LPCs as a special case when all Xj are

real-valued with unit variances and Hj = {φj : φj(xj) = ajxj, aj ∈ IR}. A smallest

APC (associated with H) is now defined as a solution to

min
Φ∈H

Var (

p∑
j=1

φj(Xj)) subject to

p∑
j=1

Var (φj(Xj)) = 1. (2.2)

When H = L2(X1, P1) × · · · × L2(Xp, Pp), a solution to (2.2), if it exists, is said to

be a population APC. We will use population APCs as targets of estimation, and

in this we differ, for example, from Fukumizu et al. (2007) who assume their targets

of estimation to be in RKHSs. In the present work, the role of RKHS theory is to

provide regularization devices for estimation, but the targets of estimation may fall

outside and will be reached in the limit in the L2 sense. RKHS theory appropriate

for APCs is the subject of Sections 2.4−2.6.

2.2.2 A Note on the Role of Constants

A particular nuisance in the context of APCs is the non-identifiability of constants in

additive functions
∑
φj. For example, φ̃k = φk + c, φ̃l = φl − c for some k 6= l (and

φ̃j = φj else) result in the same additive function,
∑
φ̃j =

∑
φj. Donnell et al. (1994)

deal with this issue by taking Hj to be closed subspaces of centered transformations,

Hj = L2
c(Xj, Pj) := {φj : E(φj(Xj)) = 0, E(φ2

j(Xj)) < ∞}. This approach raises

unnecessary questions because strictly speaking estimates φ̂j of the transformations

φj cannot be centered at the population mean (which is not known) and hence cannot

be in Hj. Yet it is obvious that this should a non-issue if viewed appropriately.

Our preferred solution is to consider L2(Xj, Pj) as consisting of equivalence classes

of functions where two elements are equivalent if they differ almost surely by a con-
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stant. This may be expressed as L2(Xj, Pj)/IR, but for notational simplicity we

continue writing L2(Xj, Pj) with the understanding that its elements are intended

modulo constants. It is then straightforward to check that L2(Xj, Pj) is a Hilbert

space wrt covariance as the inner product:

〈φj, ψj〉Pj := Cov(φj(Xj), ψj(Xj)), (2.3)

where φj and ψj are any functions in their respective equivalence classes modulo

constants. Our framework therefore says that differences by constants are irrelevant

and should be ignored. We will have to make sure that quantities of interest defined

on L2(Xj, Pj) are invariant under φj 7→ φj + cj.

2.2.3 Population APCs — Review

We adapt a few facts about population APCs from Donnell et al. (1994) which prefig-

ure some of the steps that will be required for RKHS-based theory of APCs. The first

fact is the reformulation of APCs in terms of function spaces and operators between

them. The second fact is the existence of APC solutions under suitable assumptions,

here chosen a little stronger than in Donnell et al. (1994), namely, the Hilbert-Schmidt

property rather than compactness of operators. The operator representation was in-

spired by a natural power algorithm (Section 2.7) which in turn was inspired by the

ACE algorithm of Breiman & Friedman (1985).

We first introduce the natural inner product and associated norm for p-tuples of

functions, Φ,Ψ ∈ H∗ := L2(X1, P1) × · · · × L2(Xp, Pp), turning H∗ into a Hilbert

space:

〈Φ,Ψ〉P :=

p∑
j=1

〈φj, ψj〉Pj =

p∑
j=1

Cov(φj(Xj), ψj(Xj)),
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‖Φ‖2
P :=

p∑
j=1

‖φj‖2
Pj

=

p∑
j=1

Var (φj(Xj)).

The APC constraint can now be expressed by ‖Φ‖2
P = 1. To do likewise for the APC

criterion, we introduce operators to express

Var (
∑

j φj(Xj)) =
∑

j Var (φj(Xj)) +
∑

i,j Cov(φi(Xi), φj(Xj))

in terms of inner products 〈·, ·〉Pi . Let ψi(Xi) = E(φj(Xj)|Xi). We note that

Cov(φi(Xi), φj(Xj)) = Cov(φi(Xi), E(φj(Xj)|Xi)) = 〈φi, ψi〉Pi .

Thus the required operators are the conditional expectations between the L2 spaces:

Pij : L2(Xj, Pj)→ L2(Xi, Pi), φj 7→ Pijφj = ψi.

These are also the orthogonal projections between the respective subspaces: Pijφj =

argminf∈L2(Xi,Pi) Var (φj(Xj)−f(Xi)) (leaving constants undetermined; see Section 2.2.2.)

Finally, we collect the operators Pij in a matrix to act as an operator on H∗:

P = (Pij)i,j, where the ith component mapping is given by

(PΦ)i :=
∑

j Pijφj ∈ L2(Xi, Pi). (2.4)

Thus the population APC problem can be stated as

minΦ∈H∗ 〈Φ,PΦ〉P subject to ‖Φ‖2
P = 1. (2.5)

This statement is suggestive of power algorithms based on the operator matrix P.
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The existence of solutions to (2.5) can be granted under certain conditions. We

are not striving for generality but for simplicity, hence we adopt the technically con-

venient condition that the conditional expectation operators Pij (i 6= j) have the

Hilbert-Schmidt property. Assuming that the spaces L2(Xi, Pi) and L2(Xj, Pj) are

separable and hence have countable orthonormal bases (φik)k and (φjl)l, the Hilbert-

Schmidt property can be stated as the following requirement, which can be shown to

be independent of the particular bases:

‖Pij‖2
HS :=

∑
k,l 〈φik, Pijφjl 〉2Pi < ∞.

Such Hilbert-Schmidt operators form a Hilbert space with ‖ · ‖HS as the norm. For

Pij the property amounts to a condition on the covariance functional on L2(Xi, Pi)×

L2(Xj, Pj):

‖Pij‖2
HS =

∑
k,l Cov(φik(Xi), φjl(Xj) )2 < ∞,

which is equivalent to the following condition on the joint distribution:

∫∫
p2
Xi,Xj

(xi, xj)

pXi(xi) pXj(xj)
dxidxj = EPi⊗Pj

(
p2
Xi,Xj

(xi, xj)

p2
Xi

(xi) p2
Xj

(xj)

)
< ∞.

The Hilbert-Schmidt property limits the strength of the association between Xi

and Xj by limiting how far the actual joint distribution pXi,Xj(xi, xj) can be from

independence, pXi(xi) pXj(xj). It precludes, for example, X1 = · · · = Xp. See Buja

(1990) for context.

To calculate the Hilbert-Schmidt norm for operator matrices such as P, we embed

the bases (φjl)l of L2(Xj, Pj) in H∗ through φjl 7→ Φj,l = (0, . . . , 0, φjl, 0, . . . , 0)′, so

(Φj,l)j,l forms an orthonormal basis of H∗. Now, the Hilbert-Schmidt norm of P is

infinite because Pjj = IdL2(Xj ,Pj), but P− IdH∗ is Hilbert-Schmidt if all Pij for i 6= j
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are Hilbert-Schmidt:

‖P− IdH∗‖2
HS =

∑
i 6=j;k,l

〈Φi,k,PΦj,l〉2P =
∑
i 6=j

∑
k,l

〈φik,Pijφjl〉2Pi

=
∑
i 6=j

‖Pij‖2
HS < ∞.

Because P−IdH∗ is Hilbert-Schmidt and self-adjoint wrt 〈·, ·〉P (Donnell et al. (1994),

Lemma 4.1), it has an eigen expansion:

(P− IdH∗)Φ =
∑

ν λ
′
ν〈Φ,Φν〉P Φν ,

∑
ν λ
′ 2
ν = ‖P− IdH∗‖2

HS < ∞,

where (Φν)ν form a complete orthonormal system of eigenvectors for P− IdH∗ , and

(λ′ν)ν is the set of corresponding eigenvalues with 0 as the only possible accumulation

point. This translates to an eigen expansion of P:

λν := λ′ν + 1 ⇒ PΦ =
∑

ν λν〈Φ,Φν〉P Φν ,
∑

ν(λν−1)2 <∞. (2.6)

It can be shown that 0 ≤ λν ≤ p (Donnell et al., 1994). Since the only possible

accumulation points of λν is +1, we will use +1 as a natural dividing lines between

small and large APCs. To relate the expansion (2.6) back to the population APC

problem (2.5), form the inner product with Φ assuming unit norm:

‖Φ‖2
P = 1 ⇒ 〈Φ,PΦ〉P =

∑
ν λν〈Φ,Φν〉2P and

∑
ν 〈Φ,Φν〉2P = 1. (2.7)

From (2.7) follows that the APC minimization problem (2.5) has the following solu-

tion:

min‖Φ‖2P=1 〈Φ,PΦ〉P = minν λν . (2.8)
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Any eigenvector Φν with minimizing eigenalue λν is therefore a smallest population

APC.

For an understanding of APCs, it is important to know the situation in which

APCs are unable to discover association among variables. The following equivalent

statements from Donnell et al. (1994), Proposition 4.8, characterize the “null situa-

tion” for APCs:

minν λν = 1 ⇔ maxν λν = 1 ⇔ λν = 1 ∀ν ⇔ Pij = 0 ∀i 6= j

⇔ L2(Xi, Pi) ⊥ L2(Xj, Pj) ∀i 6= j ⇔ Xi, Xj independent ∀i 6= j

Pairwise independence is not the same as full independence. Thus APCs can only find

association that is detectable through pairwise association, which is natural because

APCs rely on covariances Cov(φi(Xi), φj(Xj)). This, however, should be a “limited

limitation” as in practice multivariate associations are unlikely to hide behind pairwise

independence.

2.3 Criterion and Constraint — A Null Compari-

son Principle

Donnell et al. (1994) chose the constraint
∑

Var (φj) = 1 for APCs because it gener-

alizes the contraint of LPCs. Generalization is a convenient justification but, as will

be seen, it is insufficient to guide us in kernelizing APCs. Without a guiding princi-

ple, attempts at kernelizing multivariate methods end up relying on ad hoc proposals,

some of which we discuss in Section 2.4.2. Even for LPCs we may ask: what is it that

makes
∑
a2
j = 1 “natural” as a constraint? When variables are heterogeneous with

incompatible units, one tends to standardize the variables before using the constraint
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∑
a2
j = 1. This, on the other hand, is equivalent to using

∑
a2
j Var (Xj) = 1 as

the constraint on the unstandardized variables. Thus practioners have been aware

of issues surrounding the constraint since the inception of LPCs. Constraints seem

like separate choices, detached from the criteria. To show that this is not so and

that there exists a tight coupling between criteria and constraints, we introduce the

following:

Null Comparison Principle for multivariate analysis: The quadratic

form to be used for the constraint is the optimization criterion evaluated under

the null assumption of vanishing correlations of interest.

Here are a number of illustrations of the principle, three for extant linear multivariate

methods, and three for their additive analogs.

• For LPCs the criterion is Var (
∑
ajXj), and the null assumption of interest is

Cov(Xj, Xk) = 0 ∀j 6= k.

The evaluation of the criterion under the null assumption results in

Var (
∑
ajXj) =

∑
Var (ajXj) =

∑
a2
j Var (Xj),

which evaluates to the familiar
∑
a2
j if the variables are standardized.

• For Canonical Correlation Analysis (CCA), one divides the variables into two

blocks, X1, . . . , Xp and Y1, . . . , Yq. The criterion is still the variance of a linear

combination of all variables: Var (
∑
aiXi+

∑
bjYj). The correlations of interest

are only those between Xi and Yj variables:

Cov(Xi, Yj) = 0 ∀i, j.
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Under this “null assumption” the criterion evaluates to Var (
∑
aiXi)+Var (

∑
bjYj).

Thus the CCA problem is seen to be

maxai,bj Var (
∑
aiXi +

∑
bjYj) subject to Var (

∑
aiXi) + Var (

∑
bjYj) = 1,

which is algebraically equivalent to the more familiar form

maxai,bj Cov(
∑
aiXi,

∑
bjYj) subject to Var (

∑
aiXi) = Var (

∑
bjYj) = 1.

• Multi-block versions called “Generalized Canonical Analysis” (GCA) can be

obtained by expanding from two to three or more blocks. Here is for three

blocks of variables, X1, . . . , Xp, Y1, . . . , Yq and Z1, . . . , Zr: The criterion is

Var (
∑
aiXi +

∑
bjYj +

∑
ckZk), and the null assumtion is vanishing corre-

lations between the blocks, that is,

Cov(Xi, Yj) = Cov(Xi, Zk) = Cov(Yj, Zk) = 0 ∀i, j, k.

Under this null assumption the criterion evaluates in the familiar way, and the

three-block GCA problem can be stated as

maxai,bj ,ck Var (
∑
aiXi +

∑
bjYj +

∑
ckZk) subject to

Var (
∑
aiXi) + Var (

∑
bjYj) + Var (

∑
ckZk) = 1.

LPC is then GCA with p blocks and every block containing only one variable.

• Turning from linear to additive methods, for APCs the criterion is Var (
∑
φi(Xi)),
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and the null assumption of interest is

Cov(φi(Xi), φj(Xj)) = 0 ∀φi, φj, i 6= j. (2.9)

The evaluation of the criterion results in Var (
∑
φj(Xj)) =

∑
Var (φj(Xj)),

hence the null comparison principle leads to the familiar form of the APC prob-

lem:

minφj Var (
∑
φj(Xj)) subject to

∑
Var (φj(Xj)) = 1.

• To further illustrate the null comparison principle we show how additive CCA

can be devised, without further pursuing it later on: Again, the variables are

divided into two blocks as in linear CCA, but the criterion is Var (
∑
φi(Xi) +∑

ψj(Yj)). The null assumption is

Cov(φi(Xi), ψj(Yj)) = 0 ∀φi, ψj

The evaluation of the criterion under the null assumption leads to the following:

maxφi,ψj Var (
∑
φi(Xi) +

∑
ψj(Yj)) subject to

Var (
∑
φi(Xi)) + Var (

∑
ψj(Yj)) = 1.

When the Y -block contains just one variable, additive CCA amounts to the

ACE method of Breiman & Friedman (1985).

• It is now obvious how a multi-block version of additive GCA can be devised,

and we may simply skip to its final form for three blocks:

maxφi,ψj ,ξk Var (
∑
φi(Xi) +

∑
ψj(Yj) +

∑
ξk(Zk)) subject to
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Var (
∑
φi(Xi)) + Var (

∑
ψj(Yj)) + Var (

∑
ξk(Zk)) = 1.

Again, APC amounts to additive GCA with p blocks, each block with just one

variable.

These examples illustrate how the null comparison principle ties the constraint to

the criterion, thereby making it less an arbitrary choice. The choice is no longer that

of a constraint but of a null assumption that identifies the correlations of interest and

assumes them to vanish. The constraint is then derived by evaluating the criterion

under the null assumption. We thus arrive at a powerful and principled way of

devising generalizations of multivariate methods, a way whose real power will be

revealed when we introduce penalized APCs.

2.4 Penalized APCs

In this section, we derive the penalized APC problem using the null comparison prin-

ciple introduced previously. We also give a brief discussion on alternative approaches

to penalizing APCs.

2.4.1 Introducing Penalties in APCs Using the Null Com-
parison Principle

Estimation of APCs from finite data requires some form of regularization. The estima-

tion procedure of Donnell et al. (1994) can be characterized as using finite-dimensional

subspaces Hj (possibly adapted to the data, as for regression splines with knots placed

at empirical quantiles) and replacing the population distribution with the empirical

distribution of the data. Regularization necessary for estimation is achieved by choos-

ing a suitably low dimensionality of the spaces Hj.
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In this chapter we will consider APC estimation based on kernelizing whereby

regularization is achieved through additive quadratic penalties Jj(φj) that are scaled

versions of (squared) semi-norms derived from reproducing kernels. While estimation

is again based on the empirical distribution, a regularized population version based

on the actual distribution P1:p exists also and is useful for bias-variance calculations.

For simplicity of notation we continue the discussion using the population case. The

natural optimization criterion for kernel APCs is penalized variance:

Var (

p∑
j=1

φj) +

p∑
j=1

Jj(φj). (2.10)

This choice forces the transformations φj not only to generate small variance but

also regularity in the sense of the penalties. A concrete example is the cubic spline

penalty Jj(φj) = αj
∫

(φ′′j (xj))
2dxj for a quantitative variable Xj (where we absorbed

the tuning constant αj in Jj), but the reader versed in kernelizing will recognize the

generality of modeling offered by penalties derived from general reproducing kernels.

The question is next what the natural constraint should be. Informed by the null

comparison principle of Section 2.3, we will not naively carry
∑

Var (φj) = 1 over to

the kernelized problem. Instead we evaluate the criterion (2.10) under the assumption

of absent correlations between the transformations φj, resulting in

p∑
j=1

Var (φj) +

p∑
j=1

Jj(φj) = 1. (2.11)

As it turns out, this formulation produces meaningful results both for minimization

and maximization. It therefore serves both for estimating smallest APCs, hence im-

plicit additive equations (structure of low co-dimension), and for estimating largest

APCs, hence additive dimension reduction (structure of low dimension). In the

present chapter we pursue the former goal, but we take the well-posedness of both
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the minimization and maximization problems as evidence that the approach based

on the null comparison principle is sound. As is shown in Sections 2.4.2 and 2.11.1,

some generalizations of PCA are not sound in this regard, one of them being kernel

PCA.

On data we will replace the population quantities in equations (2.10) and (2.11)

with their sample counterparts. As is usual, the penalties will be expressed in terms

of quadratic forms of certain kernel matrices.

2.4.2 Alternative Approaches to Penalized APCs

A brief historic digression is useful to indicate the conceptual problem solved by the

null comparison principle: As mentioned in the introduction, in the related but dif-

ferent field of functional multivariate analysis, Silverman co-authored two different

approaches to the same PCA regularization problem where largest principal com-

ponents are sought for dimension reduction. These can be transposed to the APC

problems as follows:

max
φj

Var (
∑

φj)−
∑

Jj(φj) subject to
∑

Var (φj) = 1, (2.12)

max
φj

Var (
∑

φj) subject to
∑

Var (φj) +
∑

Jj(φj) = 1, (2.13)

where (2.12) is due to Rice & Silverman (1991) and (2.13) is due to Silverman (1996).

The first approach (2.12) subtracts the penalty from the criterion, which does what

it should do for regularized variance maximization. It is unsatisfactory for reasons of

mathematical aesthetics: a difference of two quadratic forms can result in negative

values, which may not be a practical problem but “does not seem right”. The second

approach (2.13) solves this issue by adding a penalty to the constraint rather than

subtracting it from the criterion, which again does what it should do for variance
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maximization. Both approaches can be criticized for resulting in non-sense when

the goal is regularized variance minimization. Here the first approach (2.12) is more

satisfying because it is immediately clear how to modify it to work for regularized

variance minimization:

min
φ1,...,φp

Var (
∑

φj) +
∑

Jj(φj) subject to
∑

Var (φj) = 1,

whereas for the approach (2.13) it is not clear how it could be modified to work in this

case. Subtracting the penalty from the constraint variance,
∑

Var (φj)−
∑
Jj(φj) =

1, is clearly not going to work.

Eschewing these problems, we propose the following kernel APC problem:

min
φ1,...,φp

Var (
∑

φj) +
∑

Jj(φj) subject to
∑

Var (φj) +
∑

Jj(φj) = 1.

(2.14)

The merits of this proposal are that (1) it has no aesthetic issues, (2) it works for both

ends of the variance spectrum, and (3) it derives from a more fundamental principle

rather than a mathematical ad hoc choice.

2.5 Penalized APCs in Reproducing Kernel Hilbert

Spaces

A preliminary note on vocabulary: Because there will be many occasions to use the

clumsy term “squared norm”, we will simplify by using sloppy language whereby the

term “norm” stands for both “norm” and “squared norm” according to the context.

In this section, we introduce suitable RKHSs for APCs, one per variable. We

then formalize the statement of the kernel APC problem (2.14) and establish the

existence of solutions. The complications addressed in this section have to do with
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the frequent occurrence of penalties that are not norms but semi-norms, such as the

cubic spline penalty J(φ) = α
∫
φ′′(x)2dx. The relevant quadratic form needed for

APC constraints, however, is Var (φ)+J(φ). In Section 2.5.1, we establish conditions

under which Var (φ)+J(φ) is an RKHS norm. These conditions would be unnecessary

if interest were limited to penalties that are actual RKHS norms, but the practical

importance of penalties that are semi-norms mandates the mundane elaborations of

the present section.

2.5.1 RKHS for APC Variables

Let X be a non-empty set, and let H be a Hilbert space of functions φ : X → IR,

endowed with the inner product 〈·, ·〉H. The space H is a (real-valued) reproducing

kernel Hilbert space if all evaluation functionals (the maps δx : f 7→ f(x), where

x ∈ X ) are bounded. Equivalently, H is an RKHS if there exists a symmetric function

k : X × X → IR that satisfies (a) ∀x ∈ X , kx = k(x, ·) ∈ H, (b) the reproducing

property: ∀x ∈ X ,∀f ∈ H, 〈f, kx〉H = f(x). Such a k is called the reproducing kernel

of H. There is a one-to-one correspondence between an RKHS H and its reproducing

kernel k. Thus, specifying k is equivalent to specifying H, and we may write 〈·, ·〉k

for 〈·, ·〉H and ‖ · ‖k for ‖ · ‖H. Also, ‖kx‖2
k = k(x, x).

In principle, regularization through kernelizing can be achieved by taking J(φ) =

α‖φ‖2
k after having specified a kernel (and hence, the corresponding RKHS H). On

the other hand, textbook examples of RKHS include those based on Sobolev type

norms such as ‖φ‖2
k = φ(a)2 + φ′(a)2 +

∫
φ′′(x)2dx (a∈ IR fixed). A pecularity here

is that the finite-rank part of the norm, φ(a)2 + φ′(a)2, is arbitrary and not used for

penalization; only the infinite-rank part is: J(φ) = α
∫
φ′′(x)2dx, which is the cubic

spline penalty. Characteristically, this penalty alone is not an RKHS norm, only a

semi-norm. To accommodate this situation we introduce the following definitions:
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Definitions: Let ‖φ‖2
1 = J(φ) on H be a non-negative semi-definite quadratic form

derived from a bilinear form 〈·, ·〉1 defined on a function space H, and let

H0 := {φ ∈ H | ‖φ‖1 = 0}

be its null space. We say ‖ · ‖2
1 is a kernel semi-norm if there exists a complement

H1 ⊂ H of H0 that is an RKHS with regard to the restriction of ‖ · ‖2
1 to H1. We call

H1 an RKHS complement for ‖ · ‖2
1.

We now combine the RKHS structure for regularization with the distributional

structure of the data, focusing still on one variable. Consider a measurable space

(X ,BX ) and a random variable X with values in X and distribution P (dx) on X . We

assume a space H of functions that are BX -measurable, with a kernel semi-norm ‖ ·‖1

with RKHS complement H1 ⊂ H. The structure that expresses kernelized APCs is

given by a combination of the L2(X , P ) inner product and the RKHS inner product

based on the penalty kernel k1:

〈φ, ψ〉α = Cov(φ, ψ) + α〈φ, ψ〉1, ‖φ‖2
α = Var (φ) + α‖φ‖2

1 (α > 0), (2.15)

where of course Cov(φ, ψ) is understood to mean Cov(φ(X), ψ(X)). To avoid con-

fusion in notation, we denote the alpha inner product and norm for the special case

α = 1 by 〈φ, ψ〉? and ‖φ‖2
?, respectively. For (2.15) to represent an RKHS we will

make the following more restrictive assumptions, which, however, suffice to cover the

case of Sobolev semi-norms:

Lemma 1. On the linear space H ⊂ L2(X , PX), let ‖φ‖2
1 be a kernel semi-norm with

null space H0 and RKHS complement H1. Suppose that H0 is finite-dimensional and

the covariance matrix of a basis of H0 is of full-rank, so that Var (·) turns H0 into an

RKHS. Assume further that the reproducing kernel k1 of H1 satisfies E(k1(X,X)) <
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∞. Then the alpha inner products and norms of (2.15) turn H into an RKHS.

A concern left over by the lemma is that the construction of the RKHS structure

on H depends on the specific choice of the space H1. While the null space H0

is unique, the complement H1 is not, as evidenced again by the example of cubic

splines: H1 can be defined by a host of different conditions, such as φ(a) = φ′(a) = 0

for an arbitrary location a, or φ(a) = φ(b) = 0 for two arbitrary locations a < b, or∫ b
a
φ(x)dx = 0 and φ(a) = φ(b) again for two arbitrary locations a < b. Different

choices of a and a < b result in different spaces H1. Now the question is how two

different RKHS complements H1 and H̃1 for the same kernel semi-norm somehow

affect the construction of ‖φ‖2
α. It is evident that the choice of H1 does not affect the

construction as such:

Lemma 2. Let ‖ · ‖1 be a semi-norm, and let H1 and H̃1 be two complements of its

null space H0. Then there exists an isometry between the two complements wrt ‖ · ‖1.

Proof: Because H̃1 is a complement of H0, there exists for any φ1 ∈ H1 unique

φ0 ∈ H0 and φ̃1 ∈ H̃1 such that φ1 = φ̃1 +φ0. Then φ1 7→ φ̃1 defines a linear bijection

H1 → H̃1. It is an isometry, ‖φ1‖1 = ‖φ̃1‖1 because ‖φ1 − φ̃1‖1 = ‖φ0‖1 = 0. �

The lemma is about two arbitrary algebraic complements without requiring them

to be RKHS. This, however, is of little help for the issues on hand:

• The RKHS property of bounded evaluation functionals does not transfer from

H1 to arbitrary algebraic complements H̃1.

• The property E(k1(X,X)) < ∞ does not transfer to arbitrary choices of alge-

braic complements H̃1 either.

Both points can be understood by analyzing the proof of Lemma 2: In φ̃1 = φ1 − φ0

the term φ0 prohibits us from controlling evaluations φ̃1(x) as well as Var (φ̃1) without

further assumptions.
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Some intuitions can be gained by working through the example of cubic splines:

If the original constraint to form H1 was φ(a) =φ′(a) = 0 and the new constraint to

form H̃1 is φ(a)=φ(b)=0 (a 6=b), then there is a simple mapping φ1 7→ φ̃1 = φ1−φ0,

where in this instance φ0(x) = aφ1(b)/(a − b) − (φ1(b)/(a − b))x, which is a linear

function and hence an element of H0. Thus the change of space from H1 to H̃1 is

obtained through a mapping T0 : H1 → H0, φ1 7→ φ0 that produces the new subspace

H̃1 = {φ1 − T0(φ1) : φ1 ∈ H1}. Important in the cubic spline example is that the

linear forms φ1 7→ φ1(a) and φ1 7→ φ1(b) are both continuous. This observation

provides the critical condition for forming alternative RKHS complements:

Lemma 3. Under the same assumptions as in Lemma 1, let T0 : H1 → H0 be a linear

map that is bounded with regard to the norms ‖ · ‖2
1 on H1 and Var (·) on H0. Then

the space H̃1 = {φ1 − T0(φ1) : φ1 ∈ H1} is an RKHS under ‖ · ‖2
1 that is isometric to

H1 and its reproducing kernel k̃1 satisfies E(k̃1(X,X)) <∞.

The proof is in Appendix A.1. The next lemma shows that there always exists a

canonical orthogonal RKHS complement of the null space H0:

Lemma 4. Under the same assumptions as in Lemma 1, the orthogonal complement

of H0 wrt 〈·, ·〉α is an RKHS complement. This complement is also the orthogonal

complement of H0 wrt Cov(·, ·) and hence independent of any α > 0.

The usefulness of Lemma 4 is that orthogonal decompositions H = H0 ⊕ H1 of

an RKHS allow additive decompositions of kernels: k = k0 + k1. This is worth a

definition:

Definition: Under the assumptions of Lemma 1 we call the orthogonal RKHS com-

plement H̃1 of Lemma 4 the canonical complement for ‖ · ‖2
1 wrt Cov(·, ·).

Finally, we have the following fact which is useful for establishing the main results

in Sections 2.6 and 2.7.
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Lemma 5. Suppose that the conditions in Lemma 1 hold. Then the reproducing

kernel k of (H, 〈·, ·〉α) satisfies E(k(X,X)) <∞.

Remark 1. Using covariances we made implicit use of the convention that all func-

tions are really equivalence classes of functions modulo constants. This applies to

Sobolev-type RKHS for which constants are in the null space H0. RKHS based on

Gaussian kernels do not contain non-zero constants in the first place (Steinwart &

Christmann, 2008). In order to make H0 an RKHS with variance as a kernel norm,

one has to select a subspace of co-dimension 1 under a restriction such as φ(a) = 0 or

E(φ(X)) = 0 in order to remove dependence on irrelevant constants. Lemma 3 can

be leveraged to imply that if a change of restriction stems from a continuous mapping

T0 : H1 7→ H0 with regard to the alpha norm (2.15), then the RKHS structure is not

affected.

2.5.2 Penalized APCs based on RKHS

The definition of penalized/kernelized APCs requires a product structure for tuples

of functions φj in spaces that follow the framework of the preceding subsection.

Let (X1,BX1), . . ., (Xp,BXp) be measurable spaces, and consider the random vector

(X1, . . . , Xp) : Ω→ X1 × · · · × Xp with joint distribution P = P1:p(dx1, . . . , dxp). For

1 ≤ j ≤ p, the marginal distribution of Xj is denoted by Pj(dxj). Associated are

the space L2(X1× · · ·×Xp, P ) of functions φ(x1, . . . , xp) and the spaces L2(Xj, Pj) of

functions φj(xj). The former contains, but is not limited to, additive functions:

∑
φj ∈ L2(X1, P1) + · · ·+ L2(Xp, Pp) ⊂ L2(X1 × · · · × Xp, P ).

Assume spaces H1, . . . ,Hp which are RKHSs under respective alpha norms ‖φj‖2
αj ,j

=

Var (φj)+αj‖φj‖2
1,j, where αj > 0 and ‖φj‖2

1,j is a kernel semi-norm on Hj = H0
j +H1

j
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with finite-dimensional null space H0
j and RKHS complement H1

j . Further, bases of

the null spaces H0
j have full-rank covariance matrices and the reproducing kernel k1

j

of H1
j satisfies E(k1

j (Xj, Xj)) <∞.

For any α > 0, we have αj‖φj‖2
1,j = α‖φj‖2

1′,j, where ‖φj‖2
1′,j =

αj
α
‖φj‖2

1,j induces

on Hj a topology that is equivalent to that induced by ‖φj‖2
1,j. Without loss of

generality, we will set αj at a common level α in the remainder of this section and

in Sections 2.6 and 2.7. The search space for kernel APCs is now the product of the

spaces Hj:

Φ = (φ1, . . . , φp) ∈H := H1 × · · · × Hp. (2.16)

Following Section 2.4, the population kernel APC problem of (2.10) and (2.11) can

be stated in the RKHS framework as follows:

minΦ∈H Var (
∑p

j=1 φj) + α
∑p

j=1 ‖φj‖2
1,j

subject to
∑p

j=1 Var (φj) + α
∑p

j=1 ‖φj‖2
1,j = 1.

(2.17)

A solution to (2.17), if it exists, is said to be a population kernel APC. For a

discussion on the existence of population kernel APCs, see Section 2.5.5.

To obtain the second-smallest as well as higher-order smallest kernel APCs, we

require an orthogonality constraint and hence an inner product on the space H. A

natural inner product and squared norm derives from the product structure of H:

〈〈〈Φ,Ψ〉〉〉α :=
∑
j

〈φj, ψj〉α,j , ‖‖‖Φ‖‖‖2
α :=

∑
j

‖φj‖2
α,j. (2.18)

Observe that the constraint in (2.17) can be expressed as ‖‖‖Φ‖‖‖2
α = 1, hence the

natural inner product is given by (2.18). Therefore, in order to recursively define

the l’th smallest penalized APC, assume that Φ` = (φ`,1, . . . , φ`,p) encompass all the
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previous kernel APCs obtained so far (` = 1, . . . , l − 1); then solve (2.17) subject to

the additional orthogonality constraint 〈〈〈Φ,Φ`〉〉〉α = 0:

∑p
j=1 Cov(φ`,j, φj) + α

∑p
j=1〈φ`,j, φj〉1,j = 0. (2.19)

for all ` = 1, . . . , l − 1.

Similar as before, we denote the inner products and norms in (2.18) for the special

case α = 1 by 〈φj, ψj〉?,j, 〈〈〈Φ,Ψ〉〉〉? and ‖φj‖2
?,j, ‖‖‖Φ‖‖‖2

?, respectively. We will use 〈〈〈Φ,Ψ〉〉〉?

as the reference inner product when restating the kernel APC problem (2.17) in

quadratic forms, as will be detailed out in Section 2.5.5.

2.5.3 A Subspace Interpretation of Penalized APCs

The spaces Hj can be canonically embedded in H by

φj 7→ Φj = (0, . . . , 0, φj, 0, . . . , 0) (φj ∈ Hj in the j′th position),

Hj = {Φj |φj ∈ Hj}.

The spaces Hj are mutually orthogonal with regard to the inner product (2.18). If

we abbreviate the penalized APC criterion as

Q(Φ) := Var (

p∑
j=1

φj) + α

p∑
j=1

‖φj‖2
1,j,

then the squared norm ‖‖‖ · ‖‖‖2
α can be written as

‖‖‖Φ‖‖‖2
α =

∑
j

Q(Φj).
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The penalized APC problem becomes a subspace APC problem as follows:

min
Φ∈H

Q(Φ) subject to
∑
j

Q(Φj) = 1,
∑
j

Φj = Φ, Φj ∈Hj.

This is a generalizable geometric version of the null comparison principle: Given a

non-negative definite quadratic form of interest, Q(Φ), defined on a space decom-

posable into subspaces of interest, H = H1 + · · · + Hp (Hj ∩Hk = 0, ∀j 6= k),

we ask how orthogonal the subspaces Hj are as measured by the quadratic form

Q(Ψ). If they were mutually orthogonal, there would hold the Pythagorean identity,

Q(Ψ) ≡
∑

j Q(Ψj). The subspace APC problem finds the directions Φ of strongest

deviation from hypothetical orthogonality.

If B(Φ,Ψ) := 1
2
[Q(Φ + Ψ)−Q(Φ)−Q(Ψ)] is the bilinear form induced by Q(·),

we have the decomposition Q(Φ) =
∑

j Q(Φj)+2
∑

i<j B(Φi,Φj), and orthogonality

as implied by the null assumption is equivalent to B(Φi,Φj) = 0 for all Φi ∈ Hi,

Φj ∈Hj and i 6= j.

For the penalized APC criterion the Pythagorean identity Q(Φ) ≡
∑

j Q(Φj)

holds iff all φj(Xj) and φk(Xk) are uncorrelated for j 6= k, which is the null assumption

of the null comparison principle of Section 2.3.

2.5.4 Estimation of Kernel APCs

For estimation we assume that data are given as i.i.d. random vectors {(X`1, . . . , X`p) :

1 ≤ ` ≤ n} drawn from P = P1:p. The role of the data is to allow empirical

estimation of the variance of additive functions, V̂ar (
∑p

j=1 φj) and transformations

V̂ar (φj). Estimation of kernel APCs is therefore by plug-in in the population kernel
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APC problem (2.17):

minΦ∈H V̂ar (
∑p

j=1 φj) + α
∑p

j=1 ‖φj‖2
1,j

subject to
∑p

j=1 V̂ar (φj) + α
∑p

j=1 ‖φj‖2
1,j = 1.

(2.20)

Similarly, higher-order smallest kernel APCs are obtained by solving (2.20) subject

to a plug-in orthogonality constraint:

∑p
j=1 Ĉov (φ̂`,j, φj) + α

∑p
j=1〈φ̂`,j, φj〉1,j = 0. (2.21)

A solution to (2.20), if it exists, is said to be a sample kernel APC. The exis-

tence and consistency of sample kernel APCs will be discussed in Sections 2.5.5 and

2.6, respectively. Details on computing these estimators will be given in Section 2.7.

2.5.5 Existence of Kernelized APCs

In this section, we establish the existence of solutions to the population kernel APC

problem (2.17) and the sample kernel APC problem (2.20). For this, we need a

reference RKHS inner product for our kernel APC search space H. Section 2.5.2

introduces a family of RKHS inner products {〈〈〈·, ·〉〉〉α : α > 0} for H. In the following,

we take 〈〈〈·, ·〉〉〉?, the inner product corresponding to α = 1, as our reference inner

product.

By Lemma 5, the reproducing kernel kj of (Hj, 〈·, ·〉?,j) satisfies E(kj(Xj, Xj)) <

∞. Under such a condition, the RKHS Hj is continuously embedded in L2(Xj, Pj).

Note, however, that Hj is generally not a closed subspace of L2(Xj, Pj) and hence not

a Hilbert space with regard to the inner product 〈·, ·〉Pj . Following Fukumizu et al.
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(2007), under the condition E(kj(Xj, Xj)) < ∞, we can define the mean element

µj ∈ Hj with respect to a random variable Xj as

〈φj, µj〉?,j = E(〈φj, kXj〉?,j) = E(φj(Xj)) ∀φj ∈ Hj. (2.22)

On the other hand, we define the cross-covariance operator of (Xi, Xj) as a bounded

linear operator from Hj to Hi given by

〈φi,Cijφj〉?,i = E(〈φi, kXi − µi〉?,i〈φj, kXj − µj〉?,j)

= Cov (φi(Xi), φj(Xj)) ∀φi ∈ Hi, φj ∈ Hj.

The existence and uniqueness of both µj and Cij are proved by the Riesz Repre-

sentation Theorem. It is immediate that Cij = C∗ji, and it can be verified that Cij

is Hilbert-Schmidt (Fukumizu et al., 2007). When i = j, the positive, self-adjoint

operator Cjj is called the covariance operator.

Let {(X`1, . . . , X`p) : 1 ≤ ` ≤ n} be i.i.d. random vectors on X1×· · ·×Xp with joint

distribution P1:p(dx1, . . . , dxp). The empirical cross-covariance operator Ĉ
(n)
ij is de-

fined as the cross-covariance operator wrt the empirical distribution 1
n

∑n
`=1 δX`iδX`j ,

in which case

〈φi, Ĉ(n)
ij φj〉?,i =

1

n

n∑
`=1

〈
φi, kX`i −

1

n

n∑
a=1

kXai

〉
?,i

〈
φj, kX`j −

1

n

n∑
b=1

kXbj

〉
?,j

= Ĉov(φi, φj), ∀φi ∈ Hi, φj ∈ Hj.

Since R(Ĉ
(n)
ij ) and N (Ĉ

(n)
ij )⊥ are included in span{kX`i − 1

n

∑n
a=1 kXai : 1 ≤ ` ≤ n}

and span{kX`j − 1
n

∑n
b=1 kXbj : 1 ≤ ` ≤ n}, respectively, Ĉ

(n)
ij is of finite rank.
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It is known (Baker, 1973, Theorem 1) that Cij has a representation

Cij = C
1/2
ii VijC

1/2
jj , (2.23)

where Vij : Hj → Hi is a unique bounded linear operator with ‖Vij‖ ≤ 1.

In what follows, we establish the existence of solutions to the population kernel

APC problem (2.17) and the sample kernel APC problem (2.20). As a first step,

we rewrite (2.17) and (2.20) in terms of quadratic forms with respect to the RKHS

inner product 〈〈〈·, ·〉〉〉?. To this end, using the cross-covariance operators introduced

previously and setting α = αn that depends on the sample size n, we can rewrite

(2.17) and (2.20) as follows:

min
Φ∈H

〈〈〈Φ, (C + J(n))Φ〉〉〉? subject to 〈〈〈Φ, (diag(C) + J(n))Φ〉〉〉? = 1, (2.24a)

min
Φ∈H

〈〈〈Φ, (Ĉ(n) + J(n))Φ〉〉〉? subject to 〈〈〈Φ, (diag(Ĉ(n)) + J(n))Φ〉〉〉? = 1, (2.24b)

where

C = (Cij)i,j, Ĉ(n) = (Ĉ
(n)
ij )i,j and J(n) = diag(αn(IdHj −Cjj))j.

We denote the solutions to (2.24a) and (2.24b), when they exist, as Φ̃
(n)

and Φ̂
(n)

,

respectively.

Consider the following changes of variables

fj = (Cjj + αn(IdHj −Cjj))
1/2φj, (2.25a)

fj = (Ĉ
(n)
jj + αn(IdHj −Cjj))

1/2φj, (2.25b)

for 1 ≤ j ≤ p in (2.24a) – (2.24b), respectively. Then (2.24a) – (2.24b) can be further
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rewritten as

min
f∈H
〈〈〈f , Ṽ(n)f〉〉〉? subject to 〈〈〈f , f〉〉〉? = 1, (2.26a)

min
f∈H
〈〈〈f , V̂(n)f〉〉〉? subject to 〈〈〈f , f〉〉〉? = 1, (2.26b)

respectively, with

Ṽ(n) = (Ṽ
(n)
ij )i,j, V̂(n) = (V̂

(n)
ij )i,j, (2.27)

where Ṽ
(n)
jj = V̂

(n)
jj = IdHj for any j = 1, . . . , p and

Ṽ
(n)
ij = (Cii + αn(IdHi −Cii))

−1/2Cij(Cjj + αn(IdHj −Cjj))
−1/2, (2.28a)

V̂
(n)
ij = (Ĉ

(n)
ii + αn(IdHi −Cii))

−1/2Ĉ
(n)
ij (Ĉ

(n)
jj + αn(IdHj −Cjj))

−1/2, (2.28b)

for 1 ≤ i, j ≤ p, i 6= j. We need to ensure the operators (Cjj + αn(IdHj −Cjj))
−1/2

and (Ĉ
(n)
jj + αn(IdHj − Cjj))

−1/2 in (2.28a) and (2.28b) are well-defined with high

probability. This is guaranteed by the following lemma, the proof of which is given

in Appendix A.2.1.

Lemma 6. Suppose that αn → 0. Then

Cjj + αn(IdHj −Cjj) � αnIdHj , for 1 ≤ j ≤ p, (2.29)

for sufficiently large values of n. Moreover, with probability at least 1− dα−1
n n−1/2,

Ĉ
(n)
jj + αn(IdHj −Cjj) �

αn
2

IdHj , for 1 ≤ j ≤ p,

where d is a constant not depending on n.
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Next, we show that the solutions to (2.26a)−(2.26b) exist. To this end, we are

to show that the operators Ṽ(n) − IdH and V̂(n) − IdH are both compact with high

probability. Using the fact that the product of a bounded linear operator and a

compact operator is compact, and that both (Cii + αn(IdHi −Cii))
−1/2 and (Cjj +

αn(IdHj−Cjj))
−1/2 are bounded and Cij is compact, we see that Ṽ

(n)
ij is also compact.

Moreover, on the event that it is well-defined, V̂
(n)
ij is compact since it is of finite-rank.

In summary, we have the following result.

Corollary 1. On the event that the conclusions of Lemma 6 hold, the operators

Ṽ(n) − IdH and V̂(n) − IdH are well-defined and compact.

Note that compactness implies the spectra of Ṽ(n) − IdH and V̂(n) − IdH are

countable with 0 as the only possible accumulation point. Consequently, the spectra

of Ṽ(n) and V̂(n) are countable with +1 as the only possible accumulation point. It

follows that the solutions to (2.26a)−(2.26b) can be obtained as the eigenvectors f̃ (n)

and f̂ (n) corresponding to the smallest eigenvalues of Ṽ(n) and V̂(n), respectively. We

can then obtain the population kernel APC Φ̃
(n)

and the sample kernel APC Φ̂
(n)

by

inverse transforming f̃ (n) and f̂ (n) following (2.25a)−(2.25b).

In summary, we rewrite the kernel APC problems as in (2.24a)−(2.24b) and

(2.26a)−(2.26b), and we know that under the assumptions introduced in Section 2.5.2

on H, the solutions to (2.24a)−(2.24b) and (2.26a)−(2.26b) exist (with high proba-

bility for n sufficiently large).

Remark 2. It may seem natural to rewrite the population kernel APC problem (2.17)

in terms of quadratic forms wrt 〈〈〈·, ·〉〉〉α, so that we obtain an eigenproblem (rather than

a generalized eigenproblem as in (2.24a)). Indeed, the resulting expression is what

motivates the power algorithm presented in Section 2.7 for computation of kernel

APCs. Unfortunately, this approach does not extend nicely to the sample kernel APC

problem (2.20), as the definition of 〈〈〈·, ·〉〉〉α involves probability measures. Rewriting the
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kernel APC problems in quadratic forms wrt 〈〈〈·, ·〉〉〉? is not only useful for establishing

existence of kernel APC solutions, but also essential for establishing consistency of

sample kernel APCs in Section 2.6.

2.6 Consistency

In this section, we establish the existence and uniqueness of the population APC

(denoted by Φ∗ hereinafter) and also the consistency of a sample kernel APC Φ̂
(n)

as

an estimator of Φ∗ under mild conditions.

2.6.1 Main Assumptions

The following conditions guarantee the existence and uniqueness 2 of the population

APC.

Assumption 1. Let (X1,BX1), . . ., (Xp,BXp) be measurable spaces, and consider

the random vector (X1, . . . , Xp) : Ω → X1 × · · · × Xp with joint distribution P =

P1:p(dx1, . . . , dxp). Assume that

(a) the conditional expectation operators Pij are Hilbert-Schmidt for all i 6= j;

(b) Pij 6= 0 for some i 6= j;

(c) the smallest eigenvalue of the operator P, λ1, is simple.

Based on the discussion in Section 2.2.3, Assumption 1(a) ensures the existence

of population APCs, whereas Assumption 1(b) rules out the uninteresting case where

X1, . . . , Xp are pairwise independent and there exists no non-trivial additive relation-

ship among them. Moreover, under Assumption 1(b), λ1 < 1, so λ1 is an isolated

2Throughout this chapter, uniqueness of any eigenvector means uniqueness up to a sign change
and the equivalence relation in the norm ‖ · ‖P .
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eigenvalue. Assumption 1(c) ensures that Φ∗ is uniquely defined as the eigenvector

of P corresponding to λ1.

We impose the following assumptions on the kernel APC search space H = H1×

· · · × Hp:

Assumption 2. For j = 1, . . . , p, let Hj ⊂ L2(Xj, Pj) be a linear space consisting

of real-valued functions with domain Xj, and let ‖φj‖2
1,j be a kernel semi-norm on

Hj = H0
j +H1

j with null space H0
j and RKHS complement H1

j . Assume that

(a) H0
j = span{qj,1, . . . , qj,mj} with dim(H0

j ) = mj <∞;

(b) rank(Var (q1,j(Xj), . . . , qj,mj(Xj))) = mj;

(c) the reproducing kernel k1
j of H1

j satisfies E(k1
j (Xj, Xj)) <∞;

(d) Hj is dense in L2(Xj, dPj).

As discussed in Section 2.5 (see, in particular, Lemma 1), Assumptions 2(a)−(c)

guarantee that Hj is an RKHS wrt 〈·, ·〉?,j. This then allows us to establish the exis-

tence of kernel APC solutions in Section 2.5.5. On the other hand, Assumption 2(d)

is needed for consistent estimation of arbitrary functions in L2(Xj, Pj). However,

only denseness wrt ‖ · ‖Pj (as opposed to the usual L2-norm) is required/of interest.

When Xj is a compact subset of IRd, Assumption 2(d) is satisfied if Hj is the RKHS

associated with the Gaussian kernels (which do not contain non-zero constants in the

first place) or the Sobolev-type kernels (after removing irrelevant constants from the

null space, so that it does not contradict Assumption 2(c). See Remark 1 for more

details.).

2.6.2 Statement of Main Theorem

Our main results shows the convergence of individual sample kernel APC transfor-

mation to the corresponding population APC transformation in the ‖ · ‖Pj norm of
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L2(Xj, Pj), for j = 1, . . . , p.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Consider estimation of APC

transformations according to (2.20), where the penalty parameter α = αn depends on

the training sample size n. Let (αn)∞n=1 be a sequence of positive numbers such that

lim
n→∞

αn = 0, lim
n→∞

n−1/2

αn
= 0. (2.30)

Then, with probability tending to one, there exists solution Φ̂
(n)

= (φ̂
(n)
1 , . . . , φ̂

(n)
p ) to

(2.20). Moreover, the sequence (Φ̂
(n)

)∞n=1 satisfies

p∑
j=1

Var
(
φ̂

(n)
j (Xj)− φ∗j(Xj)

) P→ 0 and (2.31)

|λ̂(n)
1 − λ1|

P→ 0 (2.32)

where λ1 = Var (
∑
φ∗j) and λ̂

(n)
1 = V̂ar (

∑
φ̂

(n)
j ) + αn

∑
‖φ̂(n)

j ‖2
1,j.

Note that in (2.31), for each 1 ≤ j ≤ p, the variance Var
(
φ̂

(n)
j (Xj) − φ∗j(Xj)

)
integrates only over future observations Xj but not over the past training data from

which the estimates φ̂
(n)
j (·) are obtained. As a function of the training data, the

variance terms are random variables. Essentially, the convergence in (2.31) says that

the jth component of a sample kernel APC converges to the jth component of the

population APC in the norm of L2(Xj, Pj) in probability, for j = 1, . . . , p, while the

convergence in (2.32) says that the optimal value of the sample kernel APC criterion

converges in probability to the optimal value of the population APC criterion.

Theorem 1 parallels the consistency results for kernel CCA in Fukumizu et al.

(2007), but generalizes to p ≥ 2 and concerns the lower end of the eigenspectrum.

More importantly, our results hold for more general RKHSs with finite-dimensional

null spaces under the more relaxed condition α−1
n = o(n1/2), and do not require the
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target of estimation to lie in the RKHS a priori. Our proof techniques are inspired

by ideas in Leurgans et al. (1993) and Silverman (1996), and are much simpler and

clearer than those used in Fukumizu et al. (2007), enabling us to improve upon the

α−1
n = o(n1/3) rate in Fukumizu et al. (2007).

2.6.3 Proof of Main Theorem

We now turn to establishing the consistency of sample kernel APCs. We first define

the Rayleigh quotients

Rα(Φ) :=
Var (

∑p
j=1 φj(Xj)) + α

∑p
j=1 ‖φj‖2

1,j∑p
j=1 Var (φj(Xj)) + α

∑p
j=1 ‖φj‖2

1,j

, (2.33a)

R̂α(Φ) :=
V̂ar (

∑p
j=1 φj(Xj)) + α

∑p
j=1 ‖φj‖2

1,j∑p
j=1 V̂ar (φj(Xj)) + α

∑p
j=1 ‖φj‖2

1,j

. (2.33b)

Note that if Φ ∈ H satisfies R0(Φ) ≤ 1, then for α ≤ α′, we have Rα(Φ) ≤ Rα′(Φ).

In other words, Rα(Φ) is monotonically increasing wrt α when R0(Φ) ≤ 1. This

trivial observation turns out to be very useful in the establishment of the consistency

proof below.

Under conditions in Theorem 1, we know that the population APC Φ∗ exists

and is unique, while the population kernel APCs Φ̃
(n)

and the sample kernel APCs

Φ̂
(n)

exist with high probability for sufficiently large values of n. It follows that the

infimum of the Rayleigh quotients are attained at the corresponding APC solutions

(with high probability for n sufficiently large):

λ1 = inf
Φ∈H∗

R0(Φ) = R0(Φ∗),

λ̃
(n)
1 = inf

Φ∈H
Rαn(Φ) = Rαn(Φ̃

(n)
),
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λ̂
(n)
1 = inf

Φ∈H
R̂αn(Φ) = R̂αn(Φ̂

(n)
).

The following three key lemmas are key steps in the proof of our main theorems.

The first lemma deals with the difference between λ̂
(n)
1 and λ̃

(n)
1 which constitutes the

stochastic error.

Lemma 7. Suppose that Asusmptions 1 and 2 hold, and (αn)∞n=1 is a sequence of

positive numbers satisfying (2.30). Then, for any ε > 0,

lim
n→∞

P

(
sup
Φ∈H
|R̂αn(Φ)−Rαn(Φ)| > ε

)
= 0.

The second lemma deals with the deterministic difference between λ̃
(n)
1 and λ1

which can be viewed as approximation error.

Lemma 8. Suppose that Assumptions 1 and 2(d) hold. Then for any ε ∈ (0, 1), there

exists α(ε) > 0 and Ψ ∈H such that

Rα(ε)(Ψ) < λ1 + ε. (2.34)

The third lemma asserts the convergence of any sequence (Φ(n))∞n=1 to Φ∗ in the

form of (2.35) provided that R0(Φ(n))→ λ1.

Lemma 9. Suppose that Assumption 1 holds, and that Φ(n) = (φ
(n)
1 , . . . , φ

(n)
p ) satisfies

limn→∞R0(Φ(n)) = λ1. Then

(∑
Cov(φ

(n)
j , φ∗j)

)2(∑
Var (φ

(n)
j )
)(∑

Var (φ∗j)
) → 1, (2.35)

as n→∞.

We are now ready to present the proof of Theorem 1. For the reason of space, we
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defer the details of the proof for the three key lemmas to Appendix A.2.2.

Proof. The proof of Theorem 1 can be divided into the following four parts, which

we prove successively:

(i) λ̂
(n)
1

P→ λ1; (ii)
αn
∑
‖φ̂(n)

j ‖2
1,j∑

Var (φ̂
(n)
j ) + αn

∑
‖φ̂(n)

j ‖2
1,j

P→ 0;

(iii)

(∑
Cov(φ̂

(n)
j , φ∗j)

)2(∑
Var (φ̂

(n)
j )
)(∑

Var (φ∗j)
) P→ 1; (iv)

p∑
j=1

Var (φ̂
(n)
j − φ∗j)

P→ 0.

(i) We first show that

λ̃
(n)
1 → λ1. (2.36)

Following the remark after Assumption 1, we know that 0 ≤ λ1 < 1 under

Assumption 1. Consider ε > 0 with λ1 + ε < 1. Since Hj is dense in L2(Xj, Pj),

by Lemma 8, there exist α(ε) > 0 and Ψ ∈H sufficiently close to Φ∗ such that

Rα(ε)(Ψ) < λ1 + ε < 1. (2.37)

On the other hand, αn → 0 implies that there exists n(ε) such that for all

n ≥ n(ε), αn ≤ α(ε), in which case

λ̃
(n)
1 = inf

Φ∈H
Rαn(Φ)

(∗)
≤ Rαn(Ψ)

(∗∗)
≤ Rα(ε)(Ψ) < λ1 + ε < 1,

λ̃
(n)
1 = Rαn(Φ̃

(n)
)

(∗∗)
≥ R0(Φ̃

(n)
)

(∗)
≥ inf

Φ∈H∗
R0(Φ) = λ1. (2.38)

In (2.38), the inequalities (*) hold trivially, while the inequalities (**) hold due

to monotonicity of Rα(Ψ) and Rα(Φ̃
(n)

) wrt α. From (2.38), we conclude that

(2.36) holds.
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To this end, it suffices to show that

|λ̃(n)
1 − λ̂

(n)
1 |

P→ 0 (2.39)

to complete the proof. By Lemma 7, under condition (2.30), for any ε > 0 and

δ > 0, there exists n(ε, δ) such that for all n ≥ n(ε, δ), with probability at least

1− δ,

sup
Φ∈H
|R̂αn(Φ)−Rαn(Φ)| < ε. (2.40)

It follows that

λ̂
(n)
1 = R̂αn(Φ̂

(n)
) ≤ R̂αn(Φ̃

(n)
) < Rαn(Φ̃

(n)
) + ε = λ̃

(n)
1 + ε,

λ̃
(n)
1 = Rαn(Φ̃

(n)
) ≤ Rαn(Φ̂

(n)
) < R̂αn(Φ̂

(n)
) + ε = λ̂

(n)
1 + ε. (2.41)

Equivalently, |λ̂(n)
1 − λ̃

(n)
1 | < ε. On both lines in (2.41), the first inequality

holds trivially, whereas the second inequality holds according to (2.40). This

completes the proof.

(ii) Consider again ε > 0 with λ1 + ε < 1. By Lemma 7, with probability at least

1− δ,

sup
Φ∈H
|R̂αn(Φ)−Rαn(Φ)| < ε

3
.

for sufficiently large values of n. It follows that with probability at least 1− δ,

Rαn(Φ̂
(n)

) ≤ R̂αn(Φ̂
(n)

)+
ε

3
≤ R̂αn(Φ̃

(n)
)+

ε

3
≤ Rαn(Φ̃

(n)
)+

2ε

3
≤ λ1 + ε (2.42)

holds for n sufficiently large. The last inequality in (2.42) comes fromRαn(Φ̃
(n)

) =

λ̃
(n)
1 < λ1 + ε/3 , which holds as a consequence of (2.36) for n sufficiently large.
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Thus, with probability at least 1− δ,

λ1 ≤ R0(Φ̂
(n)

) ≤ Rαn(Φ̂
(n)

) ≤ λ1 + ε < 1 (2.43)

for sufficiently large values of n. In (2.43), the first inequality is trivial while the

second inequality follows from monotonicity of Rα(Φ̂
(n)

) wrt α. From (2.43),

we conclude that

R0(Φ̂
(n)

) =
Var (

∑
φ̂

(n)
j )∑

Var (φ̂
(n)
j )

P→ λ1,

Rαn(Φ̂
(n)

) =
Var (

∑
φ̂

(n)
j ) + αn

∑
‖φ̂(n)

j ‖2
j,1∑

Var (φ̂
(n)
j ) + αn

∑
‖φ̂(n)

j ‖2
j,1

P→ λ1. (2.44)

Since λ1 < 1, it follows that from (2.44) that (ii) holds.

(iii) From (2.44), R0(Φ̂
(n)

)
P→ λ1, so (iii) follows directly from Lemma 9.

(iv) One can show (i.e., by applying Lemma 12 in Appendix A.2) that

∑
Var (φ̂

(n)
j ) + αn

∑
‖φ̂(n)

j ‖2
j,1∑

V̂ar (φ̂
(n)
j ) + αn

∑
‖φ̂(n)

j ‖2
j,1

P→ 1.

It then follows from (ii) that

∑
Var (φ̂

(n)
j )∑

V̂ar (φ̂
(n)
j ) + αn

∑
‖φ̂(n)

j ‖2
j,1

=

(
1−

αn
∑
‖φ̂(n)

j ‖2
j,1∑

Var (φ̂
(n)
j ) + αn

∑
‖φ̂(n)

j ‖2
j,1

)
·
∑

Var (φ̂
(n)
j ) + αn

∑
‖φ̂(n)

j ‖2
j,1∑

V̂ar (φ̂
(n)
j ) + αn

∑
‖φ̂(n)

j ‖2
j,1

P→ 1. (2.45)

By definition, the sample kernel APC Φ̂
(n)

satisfies
∑

V̂ar (φ̂
(n)
j )+αn

∑
‖φ̂(n)

j ‖2
j,1 =

1, so (2.45) implies that
∑

Var (φ̂
(n)
j )

P→ 1. Combining this and
∑

Var (φ∗j) = 1
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(again, by definition) with (iii), we obtain (
∑

Cov(φ̂
(n)
j , φ∗j))

2 P→ 1. It follows

that with an appropriate choice of sign for Φ̂
(n)

, we have

p∑
j=1

Var (φ̂
(n)
j − φ∗j) =

p∑
j=1

Var (φ̂
(n)
j )− 2

p∑
j=1

Cov(φ̂
(n)
j , φ∗j) +

p∑
j=1

Var (φ∗j)

P→ 1− 2 + 1 = 0.

The proof is complete.

Remark 3. Equation (2.36) established that Rαn(Φ̃
(n)

) = λ̃
(n)
1 → λ1. On the other

hand, equation (2.38) reveals that R0(Φ̃
(n)

) → λ1. Thus, by applying arguments

similar to that in the proof of part (ii), (iii) and (iv), we can also conclude that the

population kernel APC Φ̃
(n)

satisfies
∑

Var (φ̃
(n)
j − φ∗j)→ 0.

2.7 Estimation and Computation

In this section, we motivate an iterative method for computing kernel APCs. This

involves the use of power algorithm, an iterative algorithm for extracting the first

few largest (or smallest) eigenvectors of a bounded linear operator. In addition to

detailing out the algorithm, we provide theoretical justification of the use of power

algorithm in the RKHS framework.

Consider a matrix M with the eigen-decomposition M =
∑m

i=1 λiMi, where Mi =

uiu
T
i and the eigenvalues λ1 > λ2 > · · · > λm are distinct. The power algorithm

allows us to compute the eigenvector u1 corresponding to the largest eigenvalue λ1

(see, e.g., Golub & Van Loan (2013)) by forming normalized powers Mtu0/‖Mtu0‖

which can be shown to converge to u1 as long as u0 is not orthogonal to u1.
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To compute the eigenvector um corresponding to the smallest eigenvalue λm, the

spectrum needs to be flipped and shifted by replacing M with γI−M in the power

algorithm. If 0 ≤ λ1 < λm ≤ B for some B > 0, then using γ = (B + 1)/2, we have

−B − 1

2
≤γ − λi ≤

B − 1

2
if 1 ≤ λi ≤ B,

B − 1

2
≤γ − λi ≤

B − 1

2
+ 1 if 0 ≤ λi ≤ 1.

In this case, the large eigenvalues of M, {λ : λ > 1}, are mapped to an interval

centered at 0, while the small eigenvalues {λ : λ < 1} are affixed to the right end of

this interval.

2.7.1 Eigen-characterization of Kernel APCs

To relate power algorithm to kernel APCs, we first show that the kernel APC problem

(2.17) can be reformulated as an eigenvalue problem wrt the inner product 〈〈〈·, ·〉〉〉α

defined on H. As a consequence, the smallest kernel APC can be obtained as the

eigenvector corresponding to the smallest eigenvalue of an operator S̃(α) defined on

H. Then, computation of sample kernel APC reduces to an application of power

algorithm on an empirical version of S̃(α).

Consider the following smoothing operator S
(α)
ij , defined through a “generalized”

regularized population regression problem:

S
(α)
ij : (Hj, 〈·, ·〉α,j)→ (Hi, 〈·, ·〉α,i), (2.46)

φj 7→ argmin
f∈Hi

{
Var (φj(Xj)− f(Xi)) + α‖f‖2

i,1

}
.

Note that (2.46) reduces to the population version of the usual regularized regression

problem, when φj and f are both required to have mean zero. With the establishment
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of existence and uniqueness of solution to the problem, the smoothing operator S
(α)
ij

in (2.46) mapping φj to its “smoothed” version in Hi is well-defined. In addition, it

enjoys some nice properties:

Theorem 2. For j = 1, . . . , p, let (Hj, 〈·, ·〉α,j) be RKHS as defined in Assump-

tions 2(a)−(c). Then S
(α)
ij is well-defined. In fact, S

(α)
ij is the cross-covariance oper-

ator from (Hj, 〈·, ·〉α,j) to (Hi, 〈·, ·〉α,i):

〈φi,S(α)
ij φj〉α,i = Cov (φi(Xi), φj(Xj)) , ∀φi ∈ Hi, φj ∈ Hj, (2.47)

and it follows that S
(α)
ij is compact. Moreover,

‖S(α)
ij φj‖α,i ≤

(
Var (φj(Xj))

)1/2 ≤ ‖φj‖α,j, ∀φj ∈ Hj. (2.48)

Theorem 2 says that the operator S
(α)
ij is not only well-defined, but also is the

cross-covariance operator from (Hj, 〈·, ·〉α,j) to (Hi, 〈·, ·〉α,i). In particular, we have

S
(1)
ij = Cij, where Cij is the cross-covariance operator from (Hj, 〈·, ·〉?,j) to (Hi, 〈·, ·〉?,i)

given in Section 2.5.5. Equation (2.48) states that S
(α)
ij is a contraction operation.

We are now ready to restate the kernel APC problem as an eigenvalue problem wrt

the inner product 〈〈〈·, ·〉〉〉α.

Theorem 3. Let H = H1×· · ·×Hp, where Hj is an RKHS wrt 〈·, ·〉α,j, for 1 ≤ j ≤ p.

Then the kernel APC problem (2.17) can be restated as

min
Φ∈H
〈〈〈Φ, S̃(α)Φ〉〉〉α subject to 〈〈〈Φ,Φ〉〉〉α = 1, (2.49)

where S̃(α) : H→H is defined by the component mapping

(S̃(α)Φ)i =
∑
j 6=i

S
(α)
ij φj + φi, (2.50)
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and S
(α)
ij is the smoothing operator as defined in (2.46). Moreover, S̃(α) is self-adjoint,

positive, and bounded above by p.

Remark 4. Note that (2.24a) reduces to (2.49) when α = 1. On the other hand, if we

compare (2.49) and (2.50) with the population APC correspondences (2.5) and (2.4),

we see that S
(α)
ij in the population kernel APC problem is an analogue of Pij in the

population APC problem, where L2-orthogonal projection is replaced with smoothing.

Roughly speaking, Pij defined on finite-dimensional subspaces of L2-spaces can be

viewed as a special case of Sij: if we consider the L2-spaces with orthogonal polynomial

bases, then Pij “smoothes” a function φj by taking only the leading terms in the basis

expansion.

By Theorem 2, S
(α)
ij is compact. Although this does not imply compactness of

S̃(α), one can readily verify the compactness of S̃(α) − I. Similar to the explanation

for population APCs in Section 2.2.3, this means that S̃(α)− I has an eigendecompo-

sition with eigenvalues that can only accumulate at 0, which in turn implies that the

eigenvalues of S̃(α) can only accumulate at +1. To this end, we see that the smallest

kernel APC is given by the eigenvector corresponding to the smallest eigenvalue of

S̃(α). Similarly, the lth smallest kernel APC is given by the eigenvector corresponding

to the lth smallest eigenvalue of S̃(α) (where eigenvalues are repeated according to

their multiplicity).

2.7.2 Power Algorithm for Kernel APCs

Applying the knowledge that vectors of kernel APC transformations are the eigen-

vectors of S̃(α) from a population standpoint, we execute the power algorithm on

γI− S̃(α) to solve for the (smallest) kernel APC. The pseudocode is given below. Here

γ is taken to be (p+1)/2 since the spectrum of S̃(α) is bounded above by p, as claimed
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in Theorem 3. Thus, solving for kernel APC reduces to iterative smoothing of each

component φj against Xi, for j 6= i.

Algorithm 1 Computation of kernel APCs

Let γ = (p+ 1)/2. Initialize t = 0, Φ[0] = (φ
[0]
1 , φ

[0]
2 , . . . , φ

[0]
p ).

repeat
for i = 1, . . . , p do

φi ← γφ
[t]
i − (

∑
j 6=i S

(α)
ij φ

[t]
j + φ

[t]
i ) . Update steps

end for
Standardize with c = (

∑
‖φi‖2

α,i)
−1/2

(φ
[t+1]
1 , φ

[t+1]
2 , . . . , φ

[t+1]
p )← (cφ1, cφ2, . . . , cφp)

t← t+ 1
until Var

∑
φ

[t]
i + α

∑
‖φ[t]

i ‖2
i,1 converges

To compute the lth smallest kernel APCs for l > 1, we just need to add a series

of Gram-Schmidt steps

φi ← φi −
( p∑

j=1

〈φ`,j, φ[t]
j 〉α,j

)
φ`,i, 1 ≤ ` ≤ l − 1

following the update steps in Algorithm 1, to ensure that the orthogonality require-

ments (2.19) are satisfied. Here Φ` = (φ`,1, · · · , φ`,p), 1 ≤ ` ≤ l− 1, stands for the `th

smallest kernel APC that has been obtained beforehand.

The power algorithm is guaranteed to converge under mild conditions:

Proposition 1. Suppose that the smallest eigenvalue of S̃(α) is of multiplicity one

with corresponding unit eigenvector Φ̃. If the power algorithm is initialized with Φ[0]

that has a nontrivial projection onto Φ̃, then the power algorithm converges.

For implementation details see Appendix A.4.

Remark 5. All the results in this section still hold if we allow different penalty

parameters αj for Xj, j = 1, . . . , p. In particular, Algorithm 1 can be easily modified

to incorporate different values of αj.

52



2.8 Methodologies for Choosing Penalty Parame-

ters

Any kernel calls implicitly for a multiplicative penalty parameter that controls the

amount of regularization to balance bias and variance against each other. Methods

that use multiple kernels will have as many penalty parameters as kernels. Choosing

the penalty parameters in a given problem requires some principles for systematically

selecting the values for these parameters. Such principles have been discussed at least

as long as there have existed additive models (Hastie & Tibshirani, 1990), and APCs

pose new problems only in so far as they use Rayleigh quotients as their optimization

criteria rather than residual sums of squares or other regression loss functions as

their minimization criteria. In this section, we discuss some possible ways to choose

the penalty parameters α1, . . . , αp for estimating kernel APCs. An initial division

of principles for penalty parameter selection is into a priori choice and data-driven

choice.

2.8.1 A Priori Choice of Penalty Parameters

In order to make an informed a priori choice of a penalty parameter it must be

translated into an interpretable form. The most common such form is in terms of

a notion of “degrees of freedom” which can be heuristically rendered as “equivalent

number of observations invested in estimating a transformation.” To define degrees

of freedom for kernelizing, note that in the power algorithm implementation in Sec-

tion 2.7.2, the dependence of kernel APC on the tuning parameters α is through the

smoothing operators S
(α)
ij (defined in (2.46)). Empirically, for a penalty parameter

α such a smoothing operation on regressor-response data {(xi, yi)}i=1..n is a linear

operation y = (yi)i=1..n 7→ ŷ = (f̂(xi))i=1..n, IRn → IRn, and can be represented by a
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matrix operation ŷ = Sy, where the n × n “smoother matrix” S is symmetric and

non-negative definite, and all its eigenvalues are ≤ 1. The matrix S depends on the

penalty parameter α, S = S(α), and serves as the basis for defining notions of degrees

of freedom. Several definitions exist, three of which are as follows (Buja et al., 1989):

• df = tr(S2): This derives from the total variance in ŷ, which under homoskedas-

ticity is
∑

i Var (ŷi) = tr(SS′)σ2. Variance of fitted values is a measure of how

much response variation has been invested in the fits.

• df = tr(2S − S2): This derives from the total residual variance in r = y − ŷ

under a homoskedasticity assumption:
∑

i Var (ri) = tr(I − S − S′ + SS′)σ2.

Variance of residuals, when substracted from nσ2, is a measure of how much of

the error variance has been lost to the fitted values.

• df = tr(S): This derives from a Bayesian interpretation of kernelizing under a

natural Bayes prior that results in Sσ2 as the posterior covariance matrix of ŷ.

A frequentist derivation is obtained by generalizing Mallows’ Cp statistic which

corrects the residual sum of squares with a term 2(df)σ̂2 to make it unbiased for

the predictive MSE; the appropriate generalization for smoothers is df = tr(S).

Among these, the third is the most popular version. If S is a projection, all three

definitions result in the same value, which is the projection dimension, but for kernels

whose S contains eigenvalues strictly between 0 and 1 the three definitions are mea-

sures of different concepts. For general kernels the calculation of degrees of freedom

for a ladder of penalty parameter values α may result in considerable computational

expense, which is compounded by the fact that in practice for a prescribed degree of

freedom several values of α need to be tried in a bisection search. Yet the translation

of α to a degree of freedom may be the most natural device for deciding a priori on

an approximate value of the penalty parameter. Selecting degrees of freedom sepa-
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rately for each transformation φj is of course a heuristic for APCs, as it is for additive

regression models, because what matters effectively is the total degrees of freedom

in the additive function
∑p

j=1 φ̂
(n)
j . Summing up the individual degrees of freedom

of φ̂
(n)
j is only an approximation to the degrees of freedom of

∑p
j=1 φ̂

(n)
j (Buja et al.,

1989).

In practice one often decides on identical degrees of freedom df for all transforms

φ̂
(n)
j and chooses the sum p · df to be a fraction of n, such as p · df = n/10.

2.8.2 Data-driven Choice of Penalty Parameters

The most popular data-driven method is based on cross-validation. A first question

is what the criterion should be that is being cross-validated. We use as the relevant

criterion the empirical, unpenalized sample eigenvalue:

V̂ar (
∑
φ̂j)∑

V̂ar (φ̂j)
.

This is an estimate of λ1 which, when small (�1), suggests the existence of additive

degeneracy in the data. Of course, the criterion that is actually being minimized in

sample kernel APC is the penalized sample eigenvalue:

λ̂1 =
V̂ar (

∑
φ̂j) +

∑
αj‖φ̂j‖2

j,1∑
V̂ar (φ̂j) +

∑
αj‖φ̂j‖2

j,1

.

We treat this as a surrogate quantity that is not of substantive interest. (The distinc-

tion between quantity of interest and surrogate quantity is familiar from supervised

classification where interest focuses on misclassification rates but minimization is car-

ried out on surrogate loss functions such as logistic or exponential loss; accordingly

it is misclassification rates that are used in cross-validation.)

To choose the penalty parameters in the simplest possible way, one often makes
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them identical for all variables and then searches their common value α on a grid,

minimizing the k-fold cross-validation criterion

CV(α) =
1

k

k∑
i=1

V̂ar (
∑p

j=1 φ̂{i}j)∑p
j=1 V̂ar (φ̂{i}j)

.

The variances V̂ar are evaluated on the holdout sets while the transforms φ̂{i}j are

estimated from the training sets.

Here, however, attention must be paid to the question of what “equal value of the

penalty parameters” means. The issue is that the meaning of a penalty parameter

α is very much scale dependent. For example, a standard Gaussian kernel k(x, x′) =

exp{−1
2
(x− x′)2} is very different when a variable measured in miles is converted to

a variable measured in feet. When all variables are continuous and come in different

scales, one approach to equalizing the effect of scale on the penalties and kernels is

to standardize all variables. Another approach is to calibrate all penalty parameters

to produce the same degrees of freedom.

2.9 Methodology for Kernel APCs: Data Exam-

ples

In this section, we present the kernel APC methodology in terms of two data examples.

2.9.1 University Webpages

The major benefit of formulating APCs in the kernelizing framework is the flexibility

of embedding the information contained in data objects in p different n × n kernel

matrices as opposed to an n × p feature matrix. Kernel matrices have an interpre-

tation as similarity measures between pairs of data objects. It is therefore possible
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to directly design similarity matrices (instead of features) for non-Euclidean data for

use as kernels. Just as one extracts multiple features from data objects, one similarly

extracts multiple similarity matrices to capture different topological information in

data objects. Thus topological information between data objects captured by mul-

tiple kernels can be used to directly estimate APC transforms of non-quantitative

data. APC finds associations between these kernels in terms of “implicit” redundan-

cies. On data the APC variance is evaluated on the sum of “scorings” or “scalings” or

“quantifications” (Section 2.2.1), and the penalties are obtained from the constructed

kernel matrices. This methodology was not available at the time when the first article

on APCs by Donnell et al. (1994) was written.

In this section, we consider data on university webpages from the “World Wide

Knowledge Base” project at Carnegie Mellon University. This data set was prepro-

cessed by Cardoso-Cachopo (2007) and previously studied in Guo et al. (2011) and

Tan et al. (2015). It includes webpages from computer science departments at Cor-

nell, University of Texas, University of Washington, and University of Wisconsin.

In this analysis, we consider only the faculty webpages — resulting in a subset of

n = 374 webpages and d = 3901 keywords that appear on these webpages. These

webpages are data objects whose similarity in keywords form the raw ingredients for

kernel APC analysis.

We now discuss how we constructed four similarity matrices to be used as ker-

nels. Following Guo et al. (2011), first we reduced the number of keywords from

3901 to 100 by thresholding the entropy. Let fij be the number of times the jth

keyword appears in the ith webpage. (The entropy of the jth keyword is defined as

−
∑n

i=1 gij log(gij)/ log(n), where gij = fij/
∑n

i=1 fij.) We then selected the 100 key-

words with the largest entropy values and constructed an n × 100 matrix H whose

(i, j) element is log(1 + fij). We further standardized each column to have zero mean
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group 1 group 2 group 3 group 4
activ student address acm languag advanc receiv
area teach contact algorithm method assist scienc
book work cours analysi model associ softwar
build year depart applic network center state
california email architectur parallel colleg technolog
chair fall base problem degre univers
class fax comput process director
current hall confer program educ
faculti home data public electr
graduat inform design research engin
group link develop select institut
includ list distribut structur intellig
interest mail gener studi laboratori
introduct offic high system mathemat
paper page ieee techniqu member
project phone implement theori number
recent updat investig time profession
special web journal tool professor

Table 2.1: Keywords in group 1 to group 4.

and unit variance. In order to obtain four different kernels, we applied the k-means al-

gorithm to cluster the keywords in H into k = p = 4 groups. Each group of keywords

is represented as an n×mj submatrix Hj, and we obtained the final n×n kernel ma-

trix Kj = HjH
T
j /tr(HjH

T
j ), where the normalization is to account for different group

sizes. Thus the kernel matrix Kj represents webpage-webpage similarities in terms

of keywords in group j. Although a linear kernel is used here to construct Kj, any

attempt at using the combined 100 keyword frequencies as features would hopelessly

overfit the data given that n = 374. The approach based on kernels provides in this

case four penalty parameters (one per kernel) to control overfitting, which we chose

to be αj = 0.0001 (j = 1, . . . , 4) based on exploratory plots.

Table 2.1 shows the keywords in each group. Roughly, group 1 contains keywords

related to teaching and current projects, group 2 contains keywords related to contact

information, group 3 contains keywords related to research area, and group 4 contains
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keywords related to biography of a faculty.
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Figure 2.1: Pairwise scatterplot of the smallest kernel APC scores for the university

webpages data. The eigenvalue for the APC is 0.0910.

From a kernel APC analysis using the kernel matrices K1, . . . , K4 constructed

above, we obtain score vectors φ̂1, . . . , φ̂4. We can interpret the n-vector φ̂j as the ker-

nel APC scores for individual webpages that reflect similarities based on the keywords

in group j. Figure 2.1 shows the pairwise scatterplot of kernel APC scores between
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different keyword groups. We see that φ̂3 and φ̂4 have strong negative correlation, φ̂1

and φ̂3 have moderately negative correlation, and φ̂1 and φ̂4 have weak positive cor-

relation. The unpenalized sample eigenvalue λ̂1 = (V̂ar (
∑
φ̂j)) / (

∑
V̂ar (φ̂j)), which

measures the strength of additive degeneracy, equals 0.0910, a value that is sufficiently

close to zero to indicate considerable strength of additive association among the four

kernels. (We form the ratio λ̂1 omitting the penalty terms; these are mere regulariza-

tion devices for estimation and not of substantive interest.) The scores are centered

to have zero mean and normalized to satisfy
∑4

j=1 V̂ar (φ̂j) = 1. This standardization

permits us to interpret V̂ar (φ̂j) as relative importance of group j in the kernel APC

solution. The variance of each group in the smallest kernel APC are: 0.1662 (group

1), 0.0305 (group 2), 0.5562 (group 3), 0.2471 (group 4). Ignoring group 2 which has

the smallest weight, we see that, roughly, this means that

φ̂1 + φ̂3 + φ̂4 ≈ 0, or, equivalently, φ̂4 ≈ −φ̂1 − φ̂3.

If we plot φ̂4 against φ̂1 + φ̂3, we obtain the scatterplot in Figure 2.2.

-3 -2 -1 0 1

0
1

2
3

φ̂1 + φ̂3

φ̂ 4

Figure 2.2: Plot of φ̂4 against φ̂1 + φ̂3 in the smallest kernel APC for the university

webpages data.
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Recalling that the kernels were constructed to reflect similarity in terms of key-

words related to (1) teaching and current projects, (2) contact information, (3) re-

search area, and (4) biography, we obtain two results: contact information is related

to neither of teaching and projects nor research, whereas biography is well predicted

by teaching, projects and research. This is of course highly plausible for faculty web-

pages and academic biographies. — This example demonstrates the ability of kernel

APCs to reveal associations among different topological representations encoded by

multiple kernel matrices.

2.9.2 Air Pollution

In this section, we apply kernel APC analysis to a data set consisting of quantitative

variables, where the purpose is to find nonlinear transformations that reflect additive

redundancies among the variables. We analyze the NO2 data that is publicly avail-

able on the StatLib data sets archive http://lib.stat.cmu.edu/datasets/NO2.dat. It

contains a subsample of 500 observations from a data set collected by the Norwegian

Public Roads Administration for studying the dependence of air pollution on traffic

volume and meteorological condition. The response variable consists of hourly val-

ues of the log-concentration of NO2 particles, measured at Alnabru in Oslo, Norway,

between October 2001 and August 2003. Because the posted data is only a subset

of the original data, the middle chunk of observations is missing. To avoid artifacts,

only the second half of the data (roughly November 2002 to May 2003) is used in

the kernel APC analysis. Given below are descriptions for individual variables in the

data:
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NO2: hourly values of the logarithm of the concentration of NO2 particles;

Cars: logarithm of the number of cars per hour;

TempAbove: temperature 2 meters above ground (degree C);

Wind: wind speed (meters/second);

TempDiff: temperature difference between 25 and 2 meters above ground (degree C);

WindDir: wind direction (degrees between 0 and 360);

HourOfDay: hour of day;

DayNumber: day number from October 1, 2001.

For each j = 1, . . . , p, we use a Sobolev kernel corresponding to a cubic spline

penalty Jj(φj) = αj
∫

(φ′′j (xj))
2dxj. We first standardize all variables to unit variance

and then choose the penalty parameters αj to achieve “degrees of freedom” = 4 (for

ways of selecting penalty parameters in terms of “degrees of freedom,” see Section 2.8).

Figure 2.3 shows the transformations for each variable in the smallest kernel

APC. As in Section 2.9.1, the transformed data points are centered to zero mean

and normalized to satisfy
∑

V̂ar (φ̂j) = 1. The variables Cars and HourOfDay are

the strongest variables with respective variances 0.51 and 0.304 under such a nor-

malization. Holding other variables fixed, the approximate estimated constraint is

φ̂2(Cars) + φ̂7(HourOfDay) ≈ 0. Since φ̂2 is monotone decreasing and the transfor-

mation of HourOfDay peaks around 4pm, we infer that the largest number of cars on

the roads is found in the late afternoon, which is consistent with the daily experience

of commuters.

In the second-smallest kernel APC, shown in Figure 2.4, the variables TempAbove

and DayNumber play the dominant roles, and we have φ̂3(TempAbove)+φ̂8(DayNumber)

≈ 0. Since φ̂3 is monotone decreasing it follows that TempAbove decreases and then

increases with respect to DayNumber. This relationship makes sense because our data

span the period from November 2002 to May 2003, with the transition from fall and
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Figure 2.3: The smallest kernel APC transformations for the NO2 data, using Sobolev

kernel of order 2 for each variable. The eigenvalue for the APC is 0.0621. The black

bars at the bottom of each panel indicate the location of data points for that variable.
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Figure 2.4: The second-smallest kernel APC transformations for the NO2 data, using

Sobolev kernel of order 2 for each variable. The eigenvalue for the APC is 0.0827.

The black bars at the bottom of each panel indicate the location of data points for

that variable.
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Figure 2.5: The third-smallest kernel APC transformations for the NO2 data, using

Sobolev kernel of order 2 for each variable. The eigenvalue for the APC is 0.189. The

black bars at the bottom of each panel indicate the location of data points for that

variable.

winter to early summer.

The response variable of interest in the original study, NO2, does not appear until

the third-smallest kernel APC, shown in Figure 2.5. We have φ̂1(NO2)+φ̂5(TempDiff)+

φ̂7(HourOfDay) ≈ 0. From the shape of φ̂7 we see that the highest NO2 occurs during

lunch time, which makes sense as this is the time of greatest sun exposure. Note that

surprisingly there is no interpretable association with Cars as its transformation has

little variance and is not monotone (more cars should create more NO2). However, the

strong association between Cars and HourOfDay in the smallest kernel APC creates

an approximate non-identifiability between them, allowing HourOfDay to be a proxy

for Cars in associations with other variables such as NO2. This explains the absence

of association between Cars and NO2.

In summary, kernel APC analysis suggests a rich set of associations among the
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variables. It also suggests that if an additive model had been fitted with NO2 as the

response and all other variables as predictors, the estimated transforms of the predic-

tors might suffer from interpretation problems due to the strong additive degeneracies

discovered with the smallest and second-smallest kernel APCs.

2.10 Simulation

In this section, we evaluate the finite-sample performance of kernel APC on a simu-

lated data for which the optimal transformations are known. We construct a simu-

lated example consisting of four univariate random variables X1, . . . , X4 with known

population APC transformations φ1(X1), . . ., φ4(X4). This will be achieved by con-

structing them in such a way that the joint distribution of these transformations will

be multivariate normal and highly collinear. The reason for this construction is that

the extremal APCs of multivariate normal distributions are linear. (They also have

APCs with non-extremal eigenvalues consisting of systems of Hermite polynomials;

see Donnell et al. (1994).) This implies that if transformations φj(Xj) exist that

result in a jointly multivariate normal distribution, they will constitute a population

APC.

A simple procedure for simulating a situation with well-defined population APC is

to first construct a multivariate normal distribution and transform its variables with

the inverses of the desired transformations. APC estimation is then supposed to find

approximations of these transformations from data simulated in this manner.

We start by constructing a multivariate normal distribution by using two inde-

pendent variables W1,W2 ∼ N (0, 1) to generate the underlying collinearity and four
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independent variables Z1, Z2, Z3, Z4 ∼ N (0, 0.12) to generate noise:

Y1 = W1 + Z1, Y2 = W2 + Z2, Y3 = −W1 −W2 + Z3, Y4 = Z4.

Thus the joint distribution features a collinearity of co-dimension 1 in the first three

variables, and the fourth variable is independent of the rest. The correlation matrix

of these four variables has a smallest eigenvalue of 0.007441113..., which will be the

smallest population APC eigenvalue. The associated eigenvector is (1/2, 1/2, 1/
√

2, 0),

which indicates that the fourth transform will be zero, whereas the first three trans-

forms will have variances 1/4, 1/4 and 1/2, respectively. The “observed” variables

are constructed as marginal transformations Xj = fj(Yj) using the following choices:

X1 = exp(Y1), X2 = −Y 1/3
2 , X3 = exp(Y3)/(1 + exp(Y3), X4 = Y4,

hence the APC transformations are

φ∗1(x) ∼ log(x), φ∗2(x) ∼ −x3, φ∗3(x) ∼ log(x/(1− x)), φ∗4(x) = 0.

As noted above the last transformation vanishes, and the other transformations are

given only up to irrelevant additive constants as well as scales to achieve Var (φ1) =

Var (φ2) = 1/4 and Var (φ3) = 1/2.

Figure 2.6 shows the sample kernel APC for this data set (n = 250), with a

common penalty parameter chosen by 5-fold cross-validation. As discussed at the end

of Section 2.8.2, we standardized all variables to have unit variance before applying a

standard Gaussian kernel k(x, x′) = exp{−1
2
(x−x′)2} for each variable Xj. The solid

red line denotes the true transform φ∗j , while the dashed blue line denotes estimated

transform φ̂j. We see that for each variable, the two lines are almost indistinguishable,
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though estimation performance worsens near the boundaries and on regions with few

data points (location of data points are indicated by the black bars at the bottom of

each plot). The transformed data points are centered to zero mean and normalized

to
∑4

j=1 V̂ar (φ̂j) = 1, so that V̂ar (φ̂j) indicates the relative importance of φ̂j in the

estimated APCs. In fact, we see that V̂ar (φ̂j) is close to Var (Yj)/[
∑4

i=1 Var (Yi)] in

the data generating steps.
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Figure 2.6: Plot of population APC transformations ( ) and sample kernel APC

transformations ( ). The eigenvalue for the sample kernel APC is 0.014. The black

bars at the bottom of each panel indicate the location of data points for that variable.

2.11 Relation of APCs to Other Kernelized Mul-

tivariate Methods

2.11.1 Kernel PCA is NOT Kernel APC Analysis

Kernel principal component analysis (KPCA, Schölkopf et al. (1998), Schölkopf &

Smola (2002)) is a well-known family of methods that begs the question of the rela-

tionship with kernel APC analysis. It can be shown (see, e.g., Appendix A.6) that,

on a population level, the KPCA problem is equivalent to

max
φ

Var (φ(X1, . . . , Xp)) subject to J(φ) = 1. (2.51)
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In a (futile) attempt to reconstruct kernel APCs as a special case of KPCs, one would

specialize φ to an additive functional form, φ(X1, . . . , Xp) =
∑
φj(Xj), and similarly

for the penalty: J(φ) =
∑
Jj(φj). Thus the optimization problem (2.51) becomes

max
φ1,...,φp

Var (
∑

φj(Xj)) subject to
∑

Jj(φj) = 1. (2.52)

Contrasting (2.52) with the kernel APC problem in (2.14), it becomes clear that ad-

ditive KPCA and kernel APC analysis correspond to substantially different problems.

Furthermore:

• As a maximization problem, (2.52) produces results that respond in an opaque

way both to variance terms Var (φj) and to covariance terms Cov(φj, φk). By

comparison, kernel APCs are designed to respond solely to terms Cov(φj, φk)

and hence to association between variables alone.

• Converted to a minimization problem, (2.52) is meaningless because it is equiv-

alent to maximizing the penalty
∑
Jj(φj) subject to a constraint on the variance

Var (
∑
φj(Xj)). KPCA is intrinsically meaningful only for the upper end of the

spectrum.

If the goal of PCA-related methods is to analyze associations among a set of variables,

then kernel APC analysis represents a more limited yet more principled approach than

KPCA. The limitations are due to APCs’ focus on additivity, while a solid foundation

for APCs is provided by the null comparison principle (Section 2.3). (We refer the

reader to Appendix A.6 for further details on the comparison between KPCA and

kernel APC analysis.)
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2.11.2 Kernel CCA is a Special Case of Kernel APC Analysis

Although the focus on the lower end of the spectrum seems to have found little atten-

tion in the literature, the criterion we use for kernel APC can be related to existing

proposals even if their focus is on the upper end of the spectrum. A special situa-

tion with precedent in the literature occurs for p = 2, in which case the kernel APC

problem (2.14) reduces to the kernel canonical correlation analysis (CCA) problem

discussed by Fukumizu et al. (2007). To see the equivalence, one may start with the

simplified Rayleigh problem

min/max/stationary
φ1,φ2

Var (φ1 + φ2) + J1(φ1) + J2(φ2)

Var (φ1) + Var (φ2) + J1(φ1) + J2(φ2)
. (2.53)

It can be shown that stationary solutions satisfy

Var (φ1) + J1(φ1) = Var (φ2) + J2(φ2), (2.54)

and it follows that the problem (2.53) is equivalent to

min/max/stationary
φ1,φ2

Cov(φ1, φ2)

(Var (φ1) + J1(φ1))1/2 (Var (φ2) + J2(φ2))1/2
,

where the normalization (2.54) can be enforced without loss of generality. This is

recognized as a penalized form of CCA. It has been rediscovered several times over,

in the machine learning literature by Bach & Jordan (2003), and earlier in the context

of functional multivariate analysis by Leurgans et al. (1993).

Interesting is the work of Bach & Jordan (2003) which generalizes CCA to the case

p > 2 but shows no interest in the results of such an analysis other than this becoming

the building block in a method for independent components analysis (ICA), where

the input variables Xj are projections of multivariate data onto frames of orthogonal

69



unit vectors. Bach & Jordan (2003) correctly build up a finite-sample version of what

amounts to APCs for p > 2 without a guiding principle other than the appearance of

it being a “natural generalization”. A population version and associated consistency

theory is missing as their focus is on ICA and associated computational problems.

2.12 Concluding Remarks

APCs are a useful tool for exploring additive degeneracy in data. In this chapter, we

propose the estimation of APCs using a regularization approach through kernelizing,

and we establish the consistency of the resulting kernelized sample APCs. We also

discuss computation of kernel APCs using power algorithm, and provide a theoretical

justification for this.

It would be interesting to generalize our study of APCs in several directions.

Due to the nonparametric nature of APC estimation, we have implicitly assumed

that the sample size n is large relative to the total number of variables p. It would be

interesting to extend APCs to the high-dimensional setting where p can be comparable

to n. It would then be natural to impose additional structure such as sparsity in a

flavor similar to the sparse additive models proposed by Ravikumar et al. (2009)

in the regression framework. It would also be interesting to study the largest APCs

and to examine whether it provides meaningful interpretation through dimensionality

reduction as in conventional PCA.

Estimation of APCs is non-trivial due to its unsupervised learning nature. We

have left open the problem of optimally and differentially select smoothing parameters

for different variables within an APC and much less across different APCs, but this

problem is unsolved even for additive regression, which is why such choices are usually

made in terms of “degrees of freedom.”
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3
High-dimensional Robust Precision Matrix

Estimation: Cellwise Corruption under

ε-Contamination∗

3.1 Introduction

Covariance matrix estimation has long taken center stage in multivariate analysis (An-

derson, 2003). The sample covariance estimator, which originates as the maximum

likelihood estimator under a multivariate normal model, is optimal in many respects:

It is unbiased, consistent, efficient under various distributional assumptions, and eas-

ily computable. Despite its positive traits, however, the sample covariance matrix

is also highly non-robust when data are contaminated. Hence, various procedures

in robust statistics have been derived to obtain a covariance matrix estimator that

behaves well even in the presence of contaminated data (Huber, 1981; Hampel et al.,

2011).

In other areas of multivariate analysis, the precision matrix Ω∗ := (Σ∗)−1 is

∗Joint work with Po-Ling Loh
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of significant interest. Examples include computing Mahalanobis distances, linear

discriminant analysis, and Gaussian graphical models. In the setting of graphical

models, a random vector X is associated with an undirected graph G = (V,E) that

encodes conditional independence relations between components of X (Lauritzen,

1996). The vertex set V contains {1, . . . , p}, while the edge set E consists of pairs

(i, j), where (i, j) ∈ E if Xi and Xj are connected by an edge. For each non-edge

(i, j) 6∈ E, the variables Xi and Xj are conditionally independent given all other

variables. When X ∼ N(µ,Σ∗), pairwise conditional independence holds if and

only if Ω∗ij = 0. Thus, recovering the support of the precision matrix is equivalent

to graphical model selection. The aforementioned observations have been used for

network reconstruction in many scientific fields, including genetics and neuroscience

(e.g., see Werhli et al. (2006); Smith et al. (2011) and the references cited therein).

When the dimensionality p is small compared to the number of samples n, a reasonable

method for robust precision matrix estimation could consist of computing a robust

estimate of the covariance matrix and then taking a matrix inverse.

With the recent deluge of high-dimensional data, however, a need has arisen to

devise high-dimensional analogs of classical procedures that are both computable

and possess rigorous theoretical guarantees. Although several methods, notably the

graphical Lasso (GLasso) (Yuan & Lin, 2007; Banerjee et al., 2008; Friedman et al.,

2008) and the constrained `1-minimization for inverse matrix estimation (CLIME)

(Cai et al., 2011) estimator, have been proposed for high-dimensional precision matrix

estimation, robust estimation of high-dimensional precision matrices has only recently

emerged in the literature. The GLasso and CLIME estimators tend to perform poorly

under contaminated data, since they take as input the sample covariance matrix that

is sensitive to even a single outlier.

Popular classical robust covariance estimators are applicable in settings where less
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than half the observation vectors are contaminated. Such an assumption is closely

connected to the Tukey-Huber contamination model that underlies much of the ex-

isting robustness theory (Tukey, 1962; Huber, 1964). In the Tukey-Huber model, a

mixture distribution with a dominant nominal component (such as a multivariate

normal distribution) and a minority unspecified component are posited, and each

observation vector is either completely clean or completely contaminated. Classical

robust covariance estimators then involve downweighting contaminated observations

in order to reduce their influence. When the dimension p is large, however, the frac-

tion of perfectly observed data vectors may be rather small: If all components of an

observation vector had an independent chance of being contaminated, most obser-

vation vectors would be contaminated. Thus, downweighting an entire observation

would waste the information contained in the clean components of the observation

vector. This describes the setting of the cellwise contamination model, which was

developed by Alqallaf et al. (2002). It generalizes the classical Tukey-Huber contam-

ination model, which may be viewed as a case of rowwise contamination of the data

matrix, and is fairly realistic for applications involving measurement error in DNA

microarray analysis (Troyanskaya et al., 2001) or dropout measurements in sensor

arrays (Swanson, 2000).

On the other hand, most existing approaches for robust covariance estimation

focus on affine equivariance. These include the M -estimators (Maronna, 1976), Min-

imum Volume Ellipsoid (MVE) and Minimum Covariance Determinant (MCD) esti-

mators (Rousseeuw, 1984, 1985), and Stahel-Donoho (SD) estimator (Stahel, 1981;

Donoho, 1982). Although affine equivariance may be a desirable property under row-

wise contamination, it is less appropriate in the setting of cellwise contamination, since

linear combinations of observation vectors lead to a propagation of outliers (Alqal-

laf et al., 2009). In addition, the MVE, MCD, and SD estimators all require heavy
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computational effort, rendering them impractical for high-dimensional datasets. To

deal with cellwise contamination, Van Aelst (2016) proposed a modified SD estimator

that adapts winsorization (Huber, 1981; Alqallaf et al., 2002) and a cellwise weighting

scheme. Similar to the original SD estimator, however, computation is only feasible

for small p. A recent approach by Agostinelli et al. (2015) is capable of dealing with

both rowwise and cellwise outliers. The procedure consists of two steps: (1) flag-

ging cellwise outliers as missing values; and (2) applying a rowwise robust method to

the incomplete data. However, computation is again infeasible in high dimensions.

Other recent proposals for robust high-dimensional covariance matrix estimation in-

clude those suggested by Chen et al. (2015) and Han et al. (2015), but both methods

treat different contamination models and are not suitable to handle data with cellwise

contamination: Han et al. (2015) study robust high-dimensional scatter matrix esti-

mation when data are drawn from heavy-tailed distributions, and Chen et al. (2015)

study a method based on “matrix depth” designed for handling rowwise contamina-

tion that is computationally intractable in high dimensions. However, note that our

proposed estimators are computationally feasible.

In fact, relatively few approaches exist for robust high-dimensional precision ma-

trix estimation under any form of contamination. One method is supplied by the

TLasso estimator of Finegold & Drton (2011), which builds upon the GLasso and

models the data as coming from the multivariate t-distribution, a long-tailed surrogate

for the multivariate normal distribution. The “alternative multivariate t-distribution”

is used to model a case where different coordinates of the distribution are obtained

from the latent multivariate normal distribution using different weights. Although

the TLasso demonstrates a higher degree of robustness than the GLasso under both

rowwise and cellwise contamination in simulations, however, a theoretical analysis

from the point of view of robust statistics has not been derived.
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More recently, Oellerer & Croux (2014) and Tarr et al. (2015) propose a promising

new method for high-dimensional precision matrix estimation, designed specifically

for cellwise contamination. The method consists of combining a robust covariance

estimator that may be computed efficiently with a suitable high-dimensional preci-

sion matrix estimation procedure. Similar plug-in estimators based on rank-based

correlation matrix estimates were previously proposed by Liu et al. (2012) and Xue

& Zou (2012) for model selection and parameter estimation in nonparanormal graph-

ical models. However, a significant difference is that Liu et al. (2012) and Xue &

Zou (2012) focus on establishing consistency when the observations are drawn cleanly

from a nonparanormal model. Other follow-up work (Han & Liu, 2013, 2014; Fan

et al., 2014, 2015; Wegkamp & Zhao, 2016) again focuses on establishing statistical

consistency under transformational or heavy-tailed variants of the high-dimensional

Gaussian model. In contrast, Oellerer & Croux (2014) and Tarr et al. (2015) study

the behavior of robust estimators when a fraction of the data are contaminated, which

is also the focus of this chapter. However, a rigorous high-dimensional analysis from

the point of view of statistical consistency is absent from this line of work.

Our main contributions are to derive statistical error bounds in elementwise `∞-

norm for robust precision matrix estimation procedures according to the proposals of

Oellerer & Croux (2014) and Tarr et al. (2015). We study the setting of the cellwise

ε-contamination model, where at most an ε fraction of entries in the data matrix are

corrupted by outliers. Our work thus fuses two threads of research involving classical

robust statistics and high-dimensional estimation in a novel and rigorous manner.

The bounds we derive match standard high-dimensional bounds for uncontaminated

precision matrix estimation, up to a constant multiple of ε. Furthermore, they are of a

complementary nature to the theoretical results supplied by Oellerer & Croux (2014),

since we are primarily concerned with robustness as measured from the viewpoint of
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statistical consistency, rather than breakdown behavior.

More generally, our results reveal an interesting interplay between bounds for sta-

tistical error under ε-contamination and classical measures of robustness such as the

influence function (Hampel, 1974) and breakdown point (Donoho & Huber, 1983).

Estimators with bounded influence have long been favored in classical robust statis-

tics, as the rate of change in the statistical functional associated with the estimator is

controlled when the nominal distribution is contaminated by an arbitrary point mass

distribution. Our results show that a variety of bounded influence estimators, includ-

ing Kendall’s and Spearman’s correlation coefficients, give rise to (inverse) covariance

estimators with statistical error rates that depend linearly on the degree of contami-

nation; the converse relationship may be seen to hold more generally as a result of our

proof arguments. On the other hand, our discussion of the breakdown point of the

precision matrix estimators, building upon the analysis of Oellerer & Croux (2014),

emphasizes the significant differences between the notions of breakdown point and sta-

tistical consistency. Whereas our analysis shows that the robust CLIME and GLasso

procedures have comparable behavior from the point of view of high-dimensional

statistical consistency, the CLIME estimator has a substantially smaller breakdown

point than the GLasso, due to its constrained feasibility region. Rather than advo-

cating one measure of robustness over another, our discussion emphasizes the value

of weighing different measures of robustness in selecting an appropriate estimator.

The remainder of this chapter is organized as follows: Section 3.2 furnishes the

mathematical background for the cellwise contamination model and the robust co-

variance and precision matrix estimators to be considered in this chapter. Section 3.3

presents our main theoretical contributions, providing bounds on the statistical error

of the covariance and precision matrix estimators under the cellwise contamination

model, as well as concrete consequences in the presence of outliers and/or missing
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data. Section 3.4 provides a discussion of the breakdown point for the robust GLasso

and CLIME estimators. Section 3.5 contains simulation results that are used to

validate the theoretical results of this chapter. We conclude with a discussion in Sec-

tion 3.6, including some avenues for future research. The proof of main results in this

chapter are relegated to Appendix B.

Notation: For a vector a = (a1, . . . , ap)
T ∈ Rp, we denote by ‖a‖1 =

∑p
i=1 |ai|

and ‖a‖2 = (
∑p

i=1 a
2
i )

1/2 the `1-norm and `2-norm of a, respectively. For a ma-

trix A = (aij) ∈ Rp×q, we define the elementwise `1-norm ‖A‖1 =
∑p

i=1

∑q
j=1 |aij|,

the Frobenius norm ‖A‖F = (
∑p

i=1

∑q
j=1 a

2
ij)

1/2, the elementwise `∞-norm ‖A‖∞ =

max1≤i≤p,1≤j≤q |aij|, the spectral norm ‖A‖2 = sup‖x‖≤1 ‖Ax‖2, the matrix `1-norm

‖A‖L1 = max1≤j≤q
∑p

i=1 |aij|. We use λ1(A) ≥ λ2(A) ≥ · · · ≥ λp(A) to denote the

ordered eigenvalues of A, and we write A � 0 (respectively, A � 0) to indicate that

A is positive definite (respectively, positive semidefinite). We write I for the identity

matrix and 0 for the vector of all zeros (the respective dimension of which will be

clear from context). The binary operation ⊗ denotes the tensor product.

3.2 Background and Problem Setup

We begin with a description of the cellwise contamination model, followed by a rigor-

ous formulation of the robust covariance and precision matrix estimators to be studied

in this chapter.

Following the notation of Alqallaf et al. (2002, 2009), we write the cellwise con-

tamination model in the following form:

Xk = (I−Bk)Yk + BkZk, ∀k = 1, . . . , n. (3.1)
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Here, we observe the contaminated random vector Xk ∈ Rp. The unobservable ran-

dom vectors Yk,Zk, and Bk are independent, and Yk ∼ G (a nominal distribu-

tion) and Zk ∼ H∗ (an unspecified outlier generating distribution). Furthermore,

Bk = diag(Bk1, . . . , Bkp) is a diagonal matrix, where Bk1, . . . , Bkp are independent

Bernoulli random variables with P (Bki = 1) = εi, for all 1 ≤ i ≤ p.

When ε1 = · · · = εp = ε, the probability of an observation vector having no con-

tamination in any component is (1 − ε)p, a quantity that decreases exponentially as

the dimension increases. This probability goes below the critical value 1/2 for p ≥ 14

at ε = 0.05, and for p ≥ 69 at ε = 0.01. Equation (3.1) is a special case of a more

general model, where we allow other joint distributions for Bk1, . . . , Bkp. For instance,

if Bk1, . . . , Bkp were completely dependent (i.e., P (Bk1 = · · · = Bkp) = 1), we would

obtain the rowwise contamination model. In that case, the probability of an observa-

tion vector being totally free of contamination would be 1− ε, which is independent

of the dimension. Alqallaf et al. (2009) also use the terms fully independent contam-

ination model (FICM) and fully dependent contamination model (FDCM) to denote

the cellwise and rowwise contamination settings, in order to distinguish the pattern

of contamination across rows of the data matrix.

Throughout, we will work under the cellwise contamination model (3.1), and as-

sume that G is a multivariate normal distribution N(µ,Σ∗). Our goal is to estimate

the matrices Σ∗ and Ω∗ = (Σ∗)−1 from the (uncontaminated) normal component.

3.2.1 Covariance Matrix Estimation

When ε = 0 (i.e., the data are uncontaminated), we may use the classical sample

covariance matrix estimator Σ̃, defined pairwise as

Σ̃ij =
1

n− 1

n∑
k=1

(Xki − X̄i)(Xkj − X̄j), ∀1 ≤ i, j ≤ p,
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where X̄i = 1
n

∑n
k=1 Xki and X̄j = 1

n

∑n
k=1 Xkj. When n� p, the sample covariance

is an efficient estimator for Σ∗. However, when ε > 0, the performance of Σ̃ may be

compromised depending on the properties of H∗: Under the cellwise contamination

model, for i 6= j, we have

(Σ∗X)ij = (1− εi)(1− εj) (Σ∗Y )ij + εiεj (Σ∗Z)ij

= (Σ∗Y )ij − (εi + εj − εiεj) (Σ∗Y )ij + εiεj (Σ∗Z)ij .

When no restrictions are placed on the covariance Σ∗Z of the contaminating distri-

bution, the elementwise deviations between Σ∗X and Σ∗Y (and consequently, also the

sample covariance Σ̃X := Σ̃ and Σ∗Y ) will in general behave arbitrary badly. Further-

more, note that even when Σ∗Z is constrained to lie in a space where the deviations

between Σ∗X and Σ∗Y are suitably bounded, we would require the contaminating dis-

tribution to have properties such as sub-Gaussian tails in order to ensure consistency

of the sample covariance estimator on the order of O
(√

log p
n

)
. When a procedure

based on covariance estimation is used to estimate the precision matrix, the errors

incurred during the covariance estimation step would propagate to the next step. For

instance, this issue would arise in using the CLIME or GLasso estimator. In contrast,

our theory for robust covariance estimators will not require any assumptions on either

Σ∗Z or the tail behavior of the contaminating distribution.

To deal with cellwise contamination in the high-dimensional setting, we therefore

take the pairwise approach suggested by Oellerer & Croux (2014), where a robust

covariance or correlation estimate is computed for each pair of variables. Early pro-

posals of robust procedures are of this type (Bickel, 1964; Puri & Sen, 1971), where

a coordinatewise approach is taken for robust estimation of location. In addition to

having relatively low computational complexity, the pairwise approach is appealing

because a high breakdown point of the pairwise estimators translates into a high
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breakdown point of the overall covariance matrix. For 1 ≤ i, j ≤ p, we write

Σ∗ij = σiσjρij, (3.2)

where σi = [Var (Xki)]
1/2, σj = [Var (Xkj)]

1/2, and ρij = Corr (Xki, Xkj). We will

take suitable robust estimators of σ̂i, σ̂j, and ρ̂ij, to obtain the covariance matrix

estimator Σ̂, with (i, j) entry Σ̂ij = σ̂iσ̂jρ̂ij.

To estimate σi, we consider the median absolute deviation from the median

(MAD), a robust measure of scale. The MAD estimator was popularized by Hampel

(1974), who attributes the concept to Gauss. It has a breakdown point of 50%. Let

X(1),i ≤ · · · ≤ X(n),i denote the ordered values of X1i, . . . , Xni. The sample median

m̂i and the sample MAD d̂i are defined, respectively, as m̂i = X(k∗),i and d̂i = W(k∗),i,

where Wki = |Xki−m̂i|, for all k = 1, . . . , n, and k∗ = dn/2e. Expressed another way,

d̂i = median
1≤k≤n

(∣∣∣Xki −median
1≤`≤n

(X`i)
∣∣∣). (3.3)

We then estimate σi by σ̂i = [Φ−1(0.75)]−1d̂i, where the constant [Φ−1(0.75)]−1

is chosen in order to make the estimator consistent for σi at normal distribution.

The population-level median of a distribution with cdf F is defined to be m(F ) :=

F−1 (0.5), where F−1(c) = inf{x : F (x) ≥ c}, for c ∈ [0, 1]. Similarly, we may define

the population-level MAD d(F ) to be the median of the distribution of |X −m(F )|,

where X has cdf F .

To estimate ρij, we consider the classical nonparametric correlation estimators,

Kendall’s tau and Spearman’s rho:
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Kendall’s tau This statistic is given by

rKij =
2

n(n− 1)

∑
k<`

sign(Xki −X`i)sign(Xkj −X`j), (3.4)

where sign(X) = 1 if X > 0, sign(X) = −1 if X < 0, and sign(0) = 0.

Spearman’s rho This statistic is given by

rSij =

∑n
k=1[rank(Xki)− (n+ 1)/2][rank(Xkj)− (n+ 1)/2]√∑n

k=1[rank(Xki)− (n+ 1)/2]2
∑n

k=1[rank(Xkj)− (n+ 1)/2]2
, (3.5)

where rank(Xki) denotes the rank of Xki among X1i, . . . , Xni.

The population versions of the estimators are given, respectively, by

ρKij = E[sign(X1i −X2i)sign(X1j −X2j)], (3.6a)

ρSij = 3E[sign(X1i −X2i)sign(X1j −X3j)]. (3.6b)

When ε1 = · · · = εp = 0, we have Xk ∼ N(µ,Σ∗); in this case, it is known that

(Kendall, 1948; Kruskal, 1958)

ρij = sin
(π

2
ρKij

)
= 2 sin

(π
6
ρSij

)
.

Hence, for asymptotic consistency at normal distribution, our estimator for ρij is

the transformed version of Kendall’s tau and Spearman’s rho, given by sin(π
2
rKij ) and

2 sin(π
6
rSij), respectively. We then define as Σ̂ our robust covariance matrix estimator,

with

Σ̂
K

ij = σ̂iσ̂j sin
(π

2
rKij

)
, and Σ̂

S

ij = 2σ̂iσ̂j sin
(π

6
rSij

)
. (3.7)
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3.2.2 Precision Matrix Estimation

A long line of literature exists for precision matrix estimation in the high-dimensional

setting. We will focus our attention on sparse precision matrix estimation; i.e., Ω∗

contains many zero entries. In this section, we review two techniques, the GLasso

and CLIME, which produce a sparse precision matrix estimator based on optimizing

a function of the sample covariance matrix. As proposed by Oellerer & Croux (2014)

and Tarr et al. (2015), these methods may easily be modified to obtain robust ver-

sions, where the sample covariance matrix estimator is simply replaced by a robust

covariance estimator Σ̂ as described in the previous section.

The graphical lasso (GLasso) estimator (Yuan & Lin, 2007; Banerjee et al., 2008;

Friedman et al., 2008) is defined as the maximizer of the following function:

Ω̃ = argmin
Ω�0

{
tr(Σ̃Ω)− log det(Ω) + λ‖Ω‖1

}
.

Here, λ > 0 is a tuning parameter that controls the sparsity of the resulting precision

matrix estimator.

In this chapter, we replace the sample covariance matrix Σ̃ by the robust alter-

native Σ̂, and consider a variant where only the off-diagonal entries of the estimator

are penalized:

Ω̂ = argmin
Ω�0

{
tr(Σ̂Ω)− log det(Ω) + λ‖Ω‖1,off

}
. (3.8)

Note that although the program (3.8) is convex for any choice of Σ̂ ∈ Rp×p, several

state-of-the-art algorithms for optimizing the GLasso require the matrix Σ̂ to be

positive semidefinite (Friedman et al., 2008; Zhao et al., 2012; Hsieh et al., 2011). We

will first derive statistical theory for the robust GLasso without a positive semidefinite

projection step, and then discuss properties of the projected version in Section 3.4.

A popular alternative to the GLasso is the method of constrained `1-minimization
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for inverse matrix estimation (CLIME) proposed in Cai et al. (2011). The CLIME

routine solves the following convex optimization problem by linear programming:

Ω̃ = argmin
Ω∈Rp×p

‖Ω‖1 subject to ‖Σ̃Ω− I‖∞ ≤ λ.

Note that here, no symmetry condition is imposed on Ω, and the solution is not

symmetric in general. If a symmetric precision matrix estimate is desired, we may

perform a post-symmetrization step on Ω̃ = (ω̃1
ij) to obtain the symmetric matrix

Ω̃sym, defined by

Ω̃sym = (ω̃ij), where

ω̃ij = ω̃ji = ω̃1
ij1(|ω̃1

ij| ≤ |ω̃1
ji|) + ω̃1

ji1(|ω̃1
ij| > |ω̃1

ji|). (3.9)

In other words, between ω̃1
ij and ω̃1

ji, we pick the entry with smaller magnitude.

Similar to the GLasso case, we will robustify the CLIME estimator by solving

Ω̂ = argmin
Ω∈Rp×p

‖Ω‖1 subject to ‖Σ̂Ω− I‖∞ ≤ λ, (3.10)

and then apply post-symmetrization (3.9) to obtain the robust CLIME estimator

Ω̂sym.

We remark that the same estimators (3.8) and (3.10), based on plugging in a

robust rank-based surrogate of the correlation matrix, also appeared in Liu et al.

(2012) and Xue & Zou (2012). However, the focus of both papers was to derive

consistency of the estimators under a nonparanormal model, rather than quantifying

the effect of deviations from normality, which is the primary objective of the present

chapter.
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3.3 Main Results and Consequences

We now provide rigorous statements of the main results of this chapter. We first

derive bounds for robust covariance matrix estimation, which are used to obtain

bounds on the error incurred by the precision matrix estimator. Note, however, that

the statistical error bounds presented in Section 3.3.1 are of independent interest;

we believe they are the first bounds appearing in the literature that quantify the

robustness of covariance matrix estimators under a cellwise contamination model.

3.3.1 Covariance Matrix Estimation

Throughout this section, we will assume that the standard deviations of the uncon-

taminated distributions are bounded as follows:

0 < min
1≤i≤p

σi ≤ max
1≤i≤p

σi ≤Mσ. (3.11)

We also define the expression

c(σi) =
15

64
√

2πσi
exp

(
−(1.1σi + 0.5)2

2σ2
i

)
, ∀1 ≤ i ≤ p. (3.12)

Our first theorem provides a bound on the statistical error of the robust covariance

estimator Σ̂
K

based on Kendall’s tau correlations. Note that our result does not

involve any assumptions on the contaminating distribution H. Thus, the distribution

H may contain point masses, and we do not require a probability density function of

H to even exist.

Theorem 4. Under the cellwise contamination model (3.1), suppose inequality (3.11)

is satisfied, and ε = max1≤i≤p εi ≤ 0.02. Let C > π
√

2 and C ′ > 1
Φ−1(0.75) min1≤i≤p c(σi)

√
2
,
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and suppose

max

{
C

√
log p

n
+ 26πε, C ′

√
log p

n
+ 7.2Mσε

}
≤ 1, (3.13)

and Φ−1(0.75)C ′
√

log p
n

< 1. Then with probability at least

1− 2p
−
(
C2

π2
−2
)
− 6p−{2[Φ−1(0.75)]2C′2 min1≤i≤p c

2(σi)−1},

the robust covariance estimator satisfies

∥∥∥Σ̂K
−Σ∗

∥∥∥
∞
≤
(
C(M2

σ +Mσ + 1) + C ′(2Mσ + 1)
)√ log p

n
(3.14)

+
(
97M2

σ + 89Mσ + 82
)
ε.

The proof of Theorem 4 is provided in Section B.1.1.

Remark 6. Theorem 4 clearly illustrates the effect of ε-contamination on the esti-

mation error of the covariance matrix estimator. Note that when ε = 0, we recover

the minimax optimal rate for covariance matrix estimation in `∞-norm (Cai & Zhou,

2012); although the estimator Σ̂
K

is not equal to the sample covariance estimator in

the uncontaminated case, the robust covariance estimator nonetheless converges to the

true covariance matrix at the optimal rate. On the other hand, cellwise contamination

introduces an extra term that is linear in ε.

Another way to interpret the bound (3.14) is that if the level of contamination

ε is bounded by a constant times
√

log p
n

, then the robust covariance estimator Ω̂
K

will enjoy the same statistical error rate as the optimal covariance estimator in the

uncontaminated case. As we will see in Theorems 6 and 7 below, the sample size

requirements for precision matrix estimation are such that the condition ε ≤ C
√

log p
n

still allows for a nonvanishing fraction of contamination. Furthermore, note that
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although the restriction ε ≤ 0.02 may seem somewhat prohibitive, the proof of Theo-

rem 4 reveals that the specific bound on ε is an artifact of the proof technique, and a

more careful analysis would allow for a larger degree of contamination, at the expense

of slightly looser constants in the covariance estimation bound (3.14), as long as ε is

bounded by some constant in [0, 1).

The following theorem is an analog of Theorem 4, derived for the robust covariance

estimator Σ̂
S

based on Spearman’s correlation coefficient. We assume that the ranks

of variables between samples are distinct; note that this happens almost surely when

the contaminating distribution has continuous density. The proof of Theorem 5 is

provided in Section B.1.2.

Theorem 5. Under the cellwise contamination model (3.1), suppose the variable

ranks are distinct. Also suppose inequality (3.11) is satisfied and ε = max1≤i≤p εi ≤

0.01. Let C > 8π and C ′ > 1
Φ−1(0.75) min1≤i≤p c(σi)

√
2
, and suppose

max

{
5C

2

√
log p

n
+ 51πε, C ′

√
log p

n
+ 7.2Mσε

}
≤ 1,

and the sample size satisfies Φ−1(0.75)C ′
√

log p
n

< 1 and n ≥ max
{

15, 16π2

C2 log p

}
. Then

with probability at least

1− 2p
−
(
C2

32π2
−2
)
− 6p−{2[Φ−1(0.75)]2C′2 min1≤i≤p c

2(σi)−1},

the robust covariance estimator satisfies

∥∥∥Σ̂S
−Σ∗

∥∥∥
∞
≤
(

5C

2
(M2

σ +Mσ + 1) + C ′(2Mσ + 1)

)√
log p

n
(3.15)

+
(
175M2

σ + 168Mσ + 161
)
ε.
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Remark 7. The conclusion of Theorem 5 is very similar to that of Theorem 4, except

for constants and an additional requirement on the size of n. However, note that when

log p
n

= o(1), implying the statistical consistency of the robust covariance estimator,

the requirement n ≥ max
{

15, 16π2

C2 log p

}
is essentially extraneous.

Although the high-dimensional error bounds derived in Theorems 4 and 5 are

substantially different from the canonical measures analyzed in the robust statistics

literature, our bounds are somewhat related to the notion of the influence function of

an estimator. The influence function (Hampel, 1974), defined at the population level,

measures the infinitesimal change incurred by the statistical functional associated

with an estimator when the underlying distribution is contaminated by a point mass.

Thus, an estimator has a bounded influence function if the extent of the deviation

in its functional representation due to contamination remains bounded, regardless of

the location of the point mass. The error bounds (3.14) and (3.15) also reveal that

the extent to which the error deviation between the robust covariance estimator and

the true covariance grows is bounded by a constant depending only on Mσ. The

two notions do not match precisely; for instance, our theorems allow contamination

by an arbitrary distribution rather than simply a point mass, and we are comparing

finite-sample deviations of an estimator from Σ∗ rather than population-level devi-

ations of a statistical functional under a contaminated distribution. However, note

that by sending n → ∞ in the finite-sample bounds and taking the contaminating

distribution to be a point mass, we may conclude that the influence function of the

robust covariance estimator is bounded when deviations are measured in the elemen-

twise `∞-sense. Furthermore, the arguments in our proofs (cf. Lemmas 24 and 25

in Appendix B.4) may be used to derive the fact that the corresponding correlation

estimators have a bounded influence function, the precise forms of which appear in

Croux & Dehon (2010). The reverse implication, that a correlation estimator with
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bounded influence (together with a bounded-influence scale estimator) gives rise to

high-dimensional deviation bounds of the form in inequalities (3.14) and (3.15), is

elaborated upon in Section 3.3.4 below.

Finally, note that although Theorems 4 and 5 have been derived under the as-

sumption that the uncontaminated data follow a normal distribution, the same proof

techniques may be applied to settings where the uncontaminated data are drawn

from a different underlying distribution, as long as the uncontaminated distribution

is suitably well-behaved. Since our primary goal is precision matrix estimation, we

have focused only on the scenario where the uncontaminated data are drawn from a

Gaussian distribution, in which case the structure of the precision matrix is of great

interest in the statistical community.

3.3.2 Precision Matrix Estimation

Using the novel statistical error bounds derived in the previous section, we now pro-

vide statistical error bounds on the precision matrix estimators attained by plugging

the robust covariance matrix estimates into the CLIME and GLasso. We provide

explicit statements in the case of the covariance estimate based on Kendall’s tau;

analogous statements hold for Spearman’s rho, assuming unique ranks.

We begin with the CLIME estimator. Consider the following uniformity class of

matrices:

U(q, s0(p),M) =

{
Ω : Ω � 0, ‖Ω‖L1 ≤M, max

1≤i≤p

n∑
j=1

|ωij|q ≤ s0(p)

}
, (3.16)

for 0 ≤ q < 1, where Ω := (ωij) = (ω1, . . . ,ωp). The following result provides an

elementwise error bound on the estimation error between the CLIME output and

the true precision matrix, provided the true precision matrix lies in the class (3.16)
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defined above:

Theorem 6. Under the cellwise contamination model (3.1), suppose inequality (3.11)

is satisfied, and ε = max1≤i≤p εi ≤ 0.02. Let C > π
√

2 and C ′ > 1
Φ−1(0.75) min1≤i≤p c(σi)

√
2
,

and suppose inequality (3.13) also holds and Φ−1(0.75)C ′
√

log p
n

< 1. If

λ ≥M
(
C(M2

σ +Mσ + 1) + C ′(2Mσ + 1)
)√ log p

n
+M

(
97M2

σ + 89Mσ + 82
)
ε,

(3.17)

then with probability at least

1− 2p
−
(
C2

π2
−2
)
− 6p−{2[Φ−1(0.75)]2C′2 min1≤i≤p c

2(σi)−1},

the CLIME estimator (3.10) satisfies ‖Ω̂−Ω∗‖∞ ≤ 4‖Ω∗‖L1λ.

The proof of Theorem 6 is contained in Section B.1.3.

Remark 8. Clearly, the optimal choice of λ to minimize the estimation error bound

in Theorem 6 is λ = C1

√
log p
n

+ C2ε, where C1 and C2 are the constant prefactors

appearing on the right-hand side of inequality (3.17). In this case,

‖Ω̂−Ω∗‖∞ ≤ 4‖Ω∗‖L1

(
C1

√
log p

n
+ C2ε

)
≤ 4M

(
C1

√
log p

n
+ C2ε

)
.

For the GLasso, we focus on precision matrices satisfying the following assumption:

Assumption 3 (Incoherence). There exists some 0 < α ≤ 1 such that

max
e∈Sc
‖Γ∗eS(Γ∗SS)−1‖L1 ≤ 1− α, (3.18)

where Γ∗ := Σ∗ ⊗Σ∗ and S = supp(Ω∗) is the true edge set.

We then have the following result, which is stated in terms of the population-level

quantities κΣ∗ = ‖Σ∗‖L1 and κΓ∗ = ‖(Γ∗SS)−1‖L1 , as well as k, the maximum number

90



of nonzero elements in each row of Ω∗. The theorem also involves constants C0, C1,

and C2, which are independent of ε and the problem instances n, p, and k.

Theorem 7. Under the cellwise contamination model (3.1), suppose inequality (3.11)

is satisfied, and ε = max1≤i≤p εi ≤ 0.02. Also suppose the sample size satisfies the

scaling

n ≥ C2τ log p ·
(

1

6(1 + 8/α)kmax{κΣ∗κΓ∗ , κ3
Σ∗κ

2
Γ∗}
− C0ε

)−2

, (3.19)

and suppose Assumption 3 holds. Suppose λ = 8
α

(
C0ε+ C1

√
τ log p
n

)
. Then with

probability at least 1−p2−τ , the GLasso estimator (3.8) satisfies supp(Ω̂) ⊆ supp(Ω∗),

and

‖Ω̂−Ω∗‖∞ ≤ 2‖(Γ∗SS)−1‖L1

(
1 +

8

α

)(
C0ε+ C1

√
τ log p

n

)
.

The proof of Theorem 7 is contained in Section B.1.4. Theorem 7 implicitly

assumes that ε ≤ C
k

, so the expression in parentheses on the right-hand side of

inequality (3.19) is positive.

Remark 9. Comparing the results of Theorems 6 and 7, we see that as in the tradi-

tional uncontaminated setting, the GLasso delivers slightly stronger guarantees, at the

expense of more stringent assumptions. In particular, the GLasso requires the sample

size to scale as n ≥ Ck2 log p, whereas the CLIME requires n ≥ C ′‖Ω∗‖2
L1

log p in or-

der to achieve consistency. When the parameter M defining the precision matrix class

scales more slowly than k2, the CLIME thus requires a weaker scaling. In addition, the

GLasso result supposes Assumption 3, which posits an incoherence bound on subma-

trices of Γ∗. On the other hand, Theorem 7 establishes that the supp(Ω̂) ⊆ supp(Ω∗)

for the GLasso estimator, whereas Theorem 6 only guarantees consistency for the

CLIME estimator in terms of `∞-norm. In the case of the CLIME estimator, how-

ever, the true support of Ω∗ may be obtained via thresholding, assuming the nonzero
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elements of Ω∗ are of the order Ω

(√
log p
n

)
.

Focusing on the level of contamination ε in relation to the problem dimensions,

note that Theorems 6 and 7 both imply an O
(√

log p
n

)
+ O(ε) error bound on

the precision matrix estimator, under the corresponding assumptions. Hence, when

ε ≤ C
√

log p
n

, the estimation error matches the error of the optimal precision matrix

estimator in the uncontaminated case, up to a constant factor (Ren et al., 2015).

Further note that when ε ≤ C
√

log p
n

, the condition ε = O
(

1
k

)
required by the condi-

tion (3.19) in Theorem 7 clearly holds when the sample size satisfies n ≥ Ck2 log p.

Note that although the level of contamination tolerated by the estimator decreases

as the level of sparsity increases, it is not required to decrease as n and p increase, as

long as the ratio
√

log p
n

remains fixed. Thus, the conclusions of Theorems 6 and 7 are

truly high-dimensional. As in the case of the robust covariance matrix estimators, a

nice feature is that when the data are uncontaminated (ε = 0), the estimation error

of the robust precision matrix estimator agrees with the optimal rate.

Lastly, note that since the inverse of the correlation matrix has the same sup-

port as the precision matrix, we could also estimate supp(Ω∗) using the Kendall’s or

Spearman’s correlation matrices ρ̂K , ρ̂S, defined by

ρ̂Kij = sin
(π

2
rKij

)
, and ρ̂Sij = 2 sin

(π
6
rSij

)
, (3.20)

respectively, as inputs to the CLIME (3.10) or GLasso (3.8). Indeed, Liu et al. (2012)

and Xue & Zou (2012) proposed to plug in the correlation matrix estimators (3.20)

into regularization routines for precision matrix estimation under the nonparanor-

mal graphical model; in their case, the model under study is only identifiable up to

centering and scaling, so a scale estimate is not necessary. In our setting, the same

derivations as in Theorems 6 and 7, omitting the concentration bounds on the MAD
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estimates of scale, would show convergence of ρ̂K and ρ̂S to the population correlation

matrix ρ∗ in `∞-norm, with the additional linear term in ε. However, note that the

conditions imposed for support recovery would need to hold for the correlation matrix

ρ∗, rather than for the precision matrix Ω∗. In particular, a minimum signal strength

requirement on ρ∗ is stronger than the same requirement imposed on Ω∗, since the

latter can scale inversely with the standard deviations of individual variables in the

joint distribution. We have therefore chosen to focus our attention in this chapter on

the output of the CLIME and GLasso when applied to an estimate of the covariance

instead of the correlation matrix.

3.3.3 Consequences for Robust Estimation

We now interpret the conclusions of our theorems in some concrete settings of interest.

Constant fraction of outliers We first briefly discuss the most basic setting of

cellwise contamination, to emphasize the generality of our results. Following the

model (3.1), suppose each entry of the data matrix X is contaminated independently

with probability ε. Furthermore, either all contaminated entries may be drawn in-

dependently from a fixed contaminating distribution, or the contaminated entries in

each row may be drawn jointly from a fixed contaminating distribution. In each case,

Theorems 4 and 5 provide elementwise error bounds on the robust covariance estima-

tors, and Theorems 6 and 7 provide elementwise error bounds on the robust precision

matrix estimators constructed from the CLIME and GLasso. The strength of the

theorems lies in the fact that we do not make any side assumptions about the outlier

distribution; it may be heavy-tailed and/or contain point masses. Hence, whereas

statistics such as the sample covariance and sample correlation will have slower rates

of convergence due to a constant fraction of outliers drawn from an ill-behaved dis-
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tribution, their robust counterparts are agnostic to the outlier distribution.

It is also important to note that the bounds in the theorems of Sections 3.3.1

and 3.3.2 continue to hold when ε > C
√

log p
n

. The difference is that in such scenarios,

the statistical error will be of the order O(ε) rather than O
(√

log p
n

)
. However, the

effect of an ε fraction of outliers nonetheless grows only linearly as a function of

ε. This emphasizes the robustness properties of the covariance and precision matrix

estimators studied in this chapter.

Missing data. Turning to a somewhat different setting, note that missing data

may also be seen as an instance of cellwise contamination. In this model, data are

missing completely at random (MCAR), meaning that the probability of missingness

is independent of the location of the unobserved entry of the data matrix (Little &

Rubin, 1986). In other words, if we observe the matrix Xmis with missing entries,

where the probability that an entry in column i is missing is equal to εi, we have

Xmis
ki =


Yki, with probability 1− εi,

missing, with probability εi,

(3.21)

where Y is the fully-observed matrix. Note that if we zero-fill the missing entries of

Xmis, the resulting matrix X exactly follows the cellwise contamination model (3.1),

with Zk = 0 for all k. The following result is an immediate consequence of our

theorems:

Corollary 2. Suppose data are drawn from the missing data model (3.21), and the

matrix X is the zero-filled data matrix. Let ε = max1≤i≤p εi. Under the same condi-

tions as in Theorem 6, we have

‖Ω̂−Ω∗‖∞ ≤ 4‖Ω∗‖L1λ,
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for the robust CLIME estimator constructed from X. Under the same conditions as

in Theorem 7, we have supp(Ω̂) ⊆ supp(Ω∗) and

‖Ω̂−Ω∗‖∞ ≤ 2‖(Γ∗SS)−1‖L1

(
1 +

8

α

)(
C0ε+ C1

√
τ log p

n

)
,

for the robust GLasso estimator constructed from X.

Note that the conclusion of Corollary 2 does not require the matrix X to be

zero-filled for missing values; in fact, we could fill the missing entries with samples

generated according to any distribution (as long as the distribution remains the same

across rows). This is because the missing entries are treated as outliers. Of course,

our bounds should only be interpreted up to constant factors, and filling missing

entries in a strategic way, e.g., filling entries in column i with the mean E(Xki), could

lead to smaller estimation error in practice.

Rowwise contamination. Although we have thus far assumed that data are con-

taminated according to a cellwise mechanism, we now show that the same results

apply for rowwise contamination, as well. Recall that each row in the data matrix

for the rowwise contamination model with contamination level ε is given by

Xk = (1−Bk)Yk +BkZk, ∀1 ≤ k ≤ n, (3.22)

where Yk is the uncontaminated row vector, Zk is the contamination vector, and

Bk ∼ Bernoulli(ε).

Although model (3.22) differs from model (3.1), a simple inspection of the proofs

of Theorems 6 and 7 shows that only Lemma 13 needs to be modified. Furthermore,
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equation (B.14) simply needs to be replaced by the equation

(Xki, Xkj)
i.i.d.∼ Fij = (1− ε)Φµ{i,j},Σ{i,j} + εHij, ∀1 ≤ k ≤ n, (3.23)

in the proof of Lemma 13. Equation (3.23) comes from the fact that the pair is

either drawn jointly from a normal distribution with probability 1 − ε, or from the

contaminating distribution with probability ε. Then the remainder of the argument

follows as before, implying that the same conclusion of Lemma 13 applies. (We could

obtain a smaller prefactor for ε in the bound (B.1), since 2ε is replaced by ε, but

we are not concerned about optimizing constants here.) We therefore arrive at the

following result:

Corollary 3. Under the rowwise contamination model (3.22), the same conclusions

as in Corollary 2 hold for the CLIME and GLasso estimators constructed from X.

We emphasize that the rowwise contamination model (3.22) is not in general a

special case of the cellwise contamination model (3.1); rather, the proof techniques

for analyzing the cellwise model may be used to handle the rowwise model, as well.

3.3.4 Extensions

In fact, our proofs reveal that the key inequalities required in establishing our theo-

rems are the following error bounds on the entrywise correlation and scale estimators:

max
1≤i,j≤p

|ρ̂ij − ρij| ≤ C1

√
log p

n
+ C2ε, and

max
1≤i≤p

|σ̂i − σi| ≤ C ′1

√
log p

n
+ C ′2ε.

The O
(√

log p
n

)
terms arise from fast concentration of the estimators ρ̂ and σ̂ to

their means E(ρ̂) and E(σ̂), respectively (via a Hoeffding inequality + union bound
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argument), whereas the O(ε) terms arise from bounding the deviations |E(ρ̂) − ρ)|

and |E(σ̂) − σ| under an ε-contamination model. This is essentially a bounded-

influence property of the robust correlation and scale estimators used to define the

robust precision matrix. We summarize these ides in the following meta-theorem:

Theorem 8 (Meta-Theorem). Suppose a robust covariance estimator is defined ele-

mentwise according to Σ̂ij = σ̂iσ̂jρ̂ij. Also suppose:

(i) The correlation and scale estimators satisfy the deviation bounds

max
1≤i,j≤p

|ρ̂ij − E(ρ̂ij)| ≤ C1

√
log p

n
, and (3.24a)

max
1≤i≤p

|σ̂i − E(σ̂i)| ≤ C ′1

√
log p

n
. (3.24b)

(ii) The correlation and scale estimators satisfy the bounded-influence inequalities

max
1≤i,j≤p

|E(ρ̂ij)− ρij| ≤ C2ε, and (3.25a)

max
1≤i≤p

|E(σ̂i)− σi| ≤ C ′2ε, (3.25b)

when samples are drawn i.i.d. from an ε-contaminated Gaussian distribution. Then

the GLasso and CLIME estimators based on Σ̂ yield precision matrix estimators sat-

isfying the error bound

‖Ω̂−Ω∗‖∞ ≤ C

√
log p

n
+ C ′ε.

Remark 10. When ρ̂ij is the Kendall’s tau correlation and σi is the MAD estima-

tor, inequalities (3.24a) and (3.25a) are essentially established in Lemmas 13 and 24,

whereas inequalities (3.24b) and (3.25b) are derived in Lemmas 14 and 22. Simi-
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larly, inequalities (3.24a) and (3.25a) are derived for Spearman’s rho correlation in

Lemmas 15 and 25.

The framework of Theorem 8 enables us to extend our analysis to other natural

robust candidates for Σ̂, composed of entrywise correlation and scale estimates. To

illustrate this point, we mention several examples below:

• Quadrant correlation estimator. The quadrant correlation estimator is

defined by

rQij =
1

n

n∑
k=1

sign

(
Xki −median

1≤`≤n
X`i

)
sign

(
Xkj −median

1≤`≤n
X`j

)
,

and is also known to have bounded influence (Shevlyakov & Vilchevski, 2002).

One can show that the quadrant correlation estimator also satisfies the inequal-

ities (3.24a) and (3.25a) appearing in Theorem 8; the derivations are similar to

those employed for Kendall’s tau and Spearman’s rho correlation, so we do not

provide the details here.

• Gnanadesikan-Kettenring estimator. Tarr et al. (2015) and Oellerer &

Croux (2014) also propose to use the following estimator for pairwise covari-

ances: Noting that

Cov(X, Y ) =
1

4αβ
[Var (αX + βY )− Var (αX − βY )] ,

the proposal is to replace the variance estimator by a robust variance estimator

(e.g., the square of the MAD estimator). The drawback of this estimator in

comparison to the covariance estimators based on Kendall’s tau and Spearman’s

rho is that the covariance estimator has a maximal breakdown point of 25%

under cellwise contamination, since the argument in the variance involves a
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sum of variables, and any robust variance estimator has a maximal breakdown

point of 50%. However, from the point of view of statistical consistency, the

Gnanadesikan-Kettenring covariance estimator may be seen to perform equally

well. Indeed, consider the covariance estimator

1

4

(
σ̂2

(i,j),+ − σ̂2
(i,j),−

)
, (3.26)

where σ̂(i,j),+ is the (rescaled) MAD statistic computed from {Xki + Xkj : 1 ≤

k ≤ n}, and σ̂(i,j),− is analogously defined to be the MAD statistic computed

from {Xki − Xkj : 1 ≤ k ≤ n}. Then our derivations showing the consistency

of the MAD estimator (cf. Lemmas 22 and 23, with minor modifications) show

that

max
1≤i,j≤p

|σ̂(i,j),+ − σ(i,j),+| ≤ C1

√
log p

n
+ C2ε, and

max
1≤i,j≤p

|σ̂(i,j),− − σ(i,j),−| ≤ C1

√
log p

n
+ C2ε,

for data from the cellwise contamination model, where σ(i,j),+ and σ(i,j),− are

the population-level standard deviations of the distributions of Xki + Xkj and

Xki −Xkj, respectively. Thus,

max
1≤i,j≤p

|σ̂2
(i,j),+ − σ2

(i,j),+|, max
1≤i,j≤p

|σ̂2
(i,j),− − σ2

(i,j),−| ≤ C ′
√

log p

n
+ C ′′ε,

as well, from which we may conclude that the pairwise covariance estima-

tor (3.26) deviates from the true covariance Cov(Xki, Xkj) by the same margin.

• Qn estimator. Finally, consider the Qn scale estimator (Rousseeuw & Croux,

1993), defined by

Qn = c{|Xk −X`| : k < `}(k∗),
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where c is a constant factor and k∗ = d
(
n
2

)
/4e. TheQn estimator is also known to

have a bounded influence property for real-valued data. Since the Qn estimator

is also based on quantiles, essentially the same types of arguments used to derive

MAD concentration (cf. Appendix B.3) may be used to establish the desired

bounds (3.24b) and (3.25b) appearing in Theorem 8.

3.4 Breakdown Point

We now turn to a brief discussion of the breakdown point of the estimators studied

in this chapter. As discussed in Donoho & Huber (1983) and Hampel et al. (2011),

breakdown analysis concerns the global behavior of a procedure, under large depar-

tures from an assumed situation. On the other hand, the theoretical analysis of statis-

tical consistency and efficiency are related to notions of infinitesimal robustness, and

quantifies the local behavior of a procedure at or near the assumed situation. Donoho

& Huber (1983) draw an analogy between the fields of material science and statistics,

where the notions of stiffness (resistance of a material to displacements caused by a

small load) and breaking strength (the amount of load required to make the material

fracture) parallel those of the influence function and the breakdown point. Ideally, a

procedure should perform well both locally and globally; optimizing either measure

alone is unwise. Our key result of this section shows that although the GLasso and

CLIME estimators both enjoy roughly the same statistical rate of estimation, the

CLIME does not perform as well as the GLasso when the breakdown point is used to

quantify the degree of robustness.

Our analysis of the GLasso estimator closely follows that of Oellerer & Croux

(2014); however, since the specific precision matrix estimators analyzed in this chapter

differ slightly, we include the full argument for the sake of completeness. We define
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the finite-sample breakdown point of the precision matrix estimator under cellwise

contamination to be

εn(Ω̂,X) := min
1≤m≤n

{
m

n
: sup

Xm

D(Ω̂(X), Ω̂(Xm)) =∞
}
, (3.27)

where

D(A,B) := max
{
|λ1(A)− λ1(B)|, |λ−1

p (A)− λ−1
p (B)|

}
,

and Xm is a data matrix obtained from X by replacing at most m entries in each

column by arbitrary elements. We also define the explosion finite sample breakdown

point of a covariance matrix estimator as follows:

ε+n (S,X) := min
1≤m≤n

{
m

n
: sup

Xm

|λ1(S(X))− λ1(S(Xm))| =∞
}

(3.28)

(cf. Maronna & Zamar (2002)). Note that the explosion breakdown point only ac-

counts for maximum eigenvalues, whereas the overall covariance matrix estimator

breaks down under explosion or implosion (i.e., arbitrarily small minimum eigenval-

ues). Also, the breakdown point under cellwise contamination is less than or equal

to the breakdown point under rowwise contamination.

We will consider the breakdown behavior of a slightly tweaked version of the

GLasso presented earlier. Consider the matrix

Σ̌(X) := argmin
M�0

‖Σ̂−M‖∞, (3.29)

where Σ̂ = Σ̂(X) is the robust covariance matrix estimator constructed from the data

matrix X. Let

Ω̌(X) := argmin
Ω�0

{
tr(Σ̌Ω)− log det(Ω) + λ‖Ω‖1,off

}
(3.30)
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be the corresponding GLasso estimator. Note that from a computational stand-

point, the projection step (3.29) is important so that fast solvers for the GLasso

program (3.30) may be applied (Friedman et al., 2008). Furthermore, the projection

step (3.29) is convex, and the additional computational time is negligible compared

to the computation required for running the GLasso. We have the following result,

proved in Section B.1.5:

Theorem 9. Consider the positive semidefinite version of the robust GLasso estima-

tor (3.30). Under the same conditions as in Theorem 7, we have supp(Ω̌) ⊆ supp(Ω∗)

and

‖Ω̌−Ω∗‖∞ ≤ 2‖(Γ∗SS)−1‖L1

(
1 +

8

α

)(
C ′0ε+ C ′1

√
τ log p

n

)
. (3.31)

Furthermore, for any data matrix X ∈ Rn×p, the breakdown point satisfies εn(Ω̌,X) =

50%.

Remark 11. Note that Theorem 9 guarantees that the robust GLasso estimator Ω̌

obtained from a semidefinite projection of the robust covariance estimator shares the

same level of statistical consistency achieved by the robust GLasso estimator Ω̂. In

addition, the precision matrix estimator Ω̌ has a breakdown point of 50%. Although

other authors also suggest projecting the robust covariance estimator onto the positive

semidefinite cone before applying the GLasso (Oellerer & Croux, 2014; Tarr et al.,

2015), they advocate a projection in terms of the Frobenius norm rather than the `∞-

norm in the optimization program (3.29). As can be seen in the proof of Theorem 9,

minimizing the elementwise `∞-norm is much more natural from the point of view

of statistical consistency, since it guarantees that the `∞-error between the precision

matrix estimate and the true precision matrix grows by at most a factor of two.

We now show that although the CLIME is as robust as the GLasso in terms of

statistical consistency under the cellwise contamination model, it has much poorer
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breakdown behavior. Consider the CLIME estimator based on corrupted data:

min ‖Ω‖1 s.t. ‖Σ̂(Xm)Ω− I‖∞ ≤ λ, (3.32)

where Σ̂(Xm) is the robust covariance estimator based on a data matrix with at most

m arbitrarily corrupted entries per column. Since the CLIME estimator arises as the

solution to a constrained linear program, the solution is undefined (infinite) when the

problem is infeasible. Indeed, we will show in the following theorem that such a case

may arise even by corrupting at most one entry in each column of the data matrix.

Theorem 10. In the case when p = 2, there exists X ∈ Rn×2 such that εn(Ω̂,X) = 1
n

,

where Ω̂ denotes the CLIME estimator.

The proof of Theorem 10, supplied in Section B.1.6, provides the construction

of a data matrix X ∈ Rn×2 where the CLIME estimator becomes infeasible after

perturbing a single entry in each column. This is in stark contrast to the result

in Theorem 9, which establishes that the breakdown point of the robust GLasso

estimator is 50%, for any data matrix X.

Remark 12. Although Theorem 10 is stated for the case p = 2, the argument used to

prove the theorem is readily generalizable to higher dimensions, as well, in which case

we would also have a matrix X ∈ Rn×p satisfying εn(Ω,X) = 1
n

. For instance, we

could construct an n× p matrix X1 such that Σ(X1) is a block matrix with upper-left

block equal to the matrix constructed in the proof of Theorem 10, lower-left block equal

to the identity, and off-diagonal blocks equal to zero.

The conclusion of Theorem 10 underscores the fact that consistency and break-

down point under cellwise contamination are in some sense orthogonal measures of

robustness. As demonstrated in the previous section, the robust CLIME and GLasso

both enjoy good rates of statistical consistency when the contamination fraction ε
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is sufficiently small relative to the problem parameters. On the other hand, the re-

sults of this section show that the CLIME is extremely non-robust in terms of its

breakdown point. Similarly, procedures such as the Gnanadesikan-Kettenring esti-

mator (3.26) may be shown to be statistically consistent under cellwise contamination

(cf. Section 3.3.4), but as discussed in Oellerer & Croux (2014), the breakdown point

of the covariance estimator Σ̂ is at most 25%, which leads to error propagation in Ω̂.

Finally, we note that the notion of breakdown point that we consider in equa-

tion (3.27) is defined with respect to a finite sample, without recourse to proba-

bility distributions. Other notions of breakdown point, defined with respect to an

ε-contaminated distribution, have also been studied in the literature (Hampel et al.,

2011). For some alternative measures of breakdown robustness, the CLIME estima-

tor may have a more controlled breakdown behavior, but we have not explored them

here.

3.5 Simulation

In this section, we perform simulation studies to examine the performance of the two

robust covariance matrix estimators introduced in Section 3.2, and also the robust

precision matrix estimators obtained using the GLasso. We will refer to the two type

of estimators as Kendall and Spearman, respectively.

For comparison, we also compute the following robust covariance matrix estima-

tors, which are similarly plugged into the GLasso to obtain robust precision matrix

estimators:

• SpearmanU: The pairwise covariance matrix estimator proposed in Oellerer &

Croux (2014), where the MAD estimator is combined with Spearman’s rho
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(without transformation):

Σ̂ij = σ̂iσ̂jr
S
ij, where σ̂i = [Φ−1(0.75)]−1d̂i.

• OGK: The OGK estimator proposed in Maronna & Zamar (2002), with scale

estimator Qn.

• NPD: The pairwise covariance matrix estimator considered in Tarr et al. (2015),

where

Σ̃ij =
1

4

(
σ̂2

(i,j),+ − σ̂2
(i,j),−

)
.

Here, σ̂(i,j),+ is the Qn statistic computed from {Xki + Xkj : 1 ≤ k ≤ n} and

σ̂(i,j),− is the Qn statistic computed from {Xki − Xkj : 1 ≤ k ≤ n}. An NPD

projection is applied to Σ̃ to obtain the final positive semidefinite covariance

matrix estimator.

Further details for the orthogonalized Gnanedesikan-Kettenring (OGK) and near-

est positive definite (NPD) procedures may be found in Maronna & Zamar (2002)

and Higham (2002), respectively. The nonrobust GLasso, which takes the sample

covariance matrix estimator as an input (SampleCov), as well as the inverse sample

covariance matrix estimator (InvCov), applicable in the case p < n, are used as points

of reference.

An implementation of the GLasso that allows the diagonal entries of the precision

matrix estimator to be unpenalized is provided in the widely used glasso package.

In this chapter, however, we use the GLasso implementation from the QUIC package

(Hsieh et al., 2011), since it does not require the input covariance matrix to be

positive semidefinite, and speeds up substantially over glasso. We select the tuning

parameter λ in GLasso by cross-validation: We first split the data into K groups,

or folds, of nearly equal size. For a given λ and 1 ≤ k ≤ K, we take the kth
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fold as the test set, and compute the precision matrix estimate Ω̂
(−k)

λ based on the

remaining K − 1 folds. We then compute the negative log-likelihood on the test

set, L(k)(λ) = − log det Ω̂
(−k)

λ + tr
(
Σ̂

(k)
Ω̂

(−k)

λ

)
, where Σ̂

(k)
is the robust covariance

estimate obtained from the test set. This is done over a logarithmically spaced grid

of 15 values between λmax = maxi 6=j |Σ̂ij| and λmin = 0.01λmax, where Σ̂ is the robust

covariance estimate computed from the whole data set. The value of λ that minimizes

1
K

∑K
k=1 L

(k)(λ) is selected as the final tuning parameter.

Simulation settings We consider the following sampling schemes, covering differ-

ent structures of the precision matrix Ω∗ ∈ Rp×p:

• Banded: Ω∗ij = 0.6|i−j|.

• Sparse: Ω∗ = B + δIp, where bii = 0 and bij = bji, with P (bij = 0.5) = 0.1 and

P (bij = 0) = 0.9, for i 6= j. The parameter δ is chosen such that the condition

number of Ω∗ equals p. The matrix is then standardized to have unit diagonals.

• Dense: Ω∗ii = 1 and Ω∗ij = 0.5, for i 6= j.

• Diagonal: Ω∗ = Ip.

For each sampling scheme and dimension p ∈ {120, 400}, we generate B = 100

samples of size n = 200 from the multivariate normal distribution N(0, (Ω∗)−1).

We then add 5% or 10% of rowwise or cellwise contamination to the data, where

the outliers are sampled independently from N(10, 0.2). We also simulate model

deviation by generating all observations from either the multivariate t-distribution,

t3(0, (Ω∗)−1), or the alternative t-distribution, t∗3(0, (Ω∗)−1), each with three degrees

of freedom. Recall that X ∼ tν(0, (Ω
∗)−1), where tν(0,Ω

∗)−1) denotes the multivari-

ate t-distribution with ν degrees of freedom, if X = Y/
√
τ , where Y ∼ N(0, (Ω∗)−1)

and τ ∼ Γ(ν/2, ν/2). The alternative t-distribution, denoted by t∗ν , is proposed in
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Finegold & Drton (2011) as a generalization of the multivariate t-distribution. We

say that X ∼ t∗ν(0, (Ω
∗)−1) if Xi = Yi/

√
τi, for all 1 ≤ i ≤ p, where the divisors

τi ∼ Γ(ν/2, ν/2) are independent. In this case, the heaviness of the tails are different

for different components of X.

Performance measures We assess the performance of the covariance and precision

matrix estimators via the deviations ‖Σ̂ − Σ∗‖∞ and ‖Ω̂ − Ω∗‖∞, respectively. We

also consider the false positive (FP) and false negative (FN) rates:

FP =
|{(i, j) : Ω̂ij 6= 0,Ω∗ij = 0}|
|{(i, j) : Ω∗ij = 0}|

, and FN =
|{(i, j) : Ω̂ij = 0,Ω∗ij 6= 0}|
|{(i, j) : Ω∗ij 6= 0}|

.

FP gives the proportion of zero elements in the true precision matrix that are incor-

rectly estimated to be nonzero, while FN gives the proportion of nonzero elements in

the true precision matrix that are incorrectly estimated to be zero. Note that if Ω∗

has no zero entries, as in the case of the banded and dense structures, the quantity

FP is undefined.

Results Tables 3.1 and 3.2 show the results for n = 200 and p = 120. We summarize

the salient points below:

• When the dataset is clean, SampleCov performs best in terms of both covariance

and precision matrix estimation, across all sampling schemes. Note that even

though the data are uncontaminated, InvCov performs poorly, due to the fact

that the sample covariance matrix has low precision when p > n/2.

• In the case of rowwise contamination, the nonrobust SampleCov has the largest

estimation error for the covariance matrix, as expected. Curiously, the precision

matrix estimation error based on SampleCov is the lowest among all estimators.

We do not have good explanation for this, but the tuning parameter selected
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for SampleCov by cross-validation tends to be smaller (as can be seen from its

relatively low FN). NPD, Kendall, Spearman, and SpearmanU have similar per-

formance in terms of both covariance and precision matrix estimation. In all

sampling schemes, OGK outperforms these four estimators for covariance estima-

tion, but not consistently so for precision matrix estimation.

• For covariance and precision matrix estimation under cellwise contamination,

the Kendall, Spearman, and SpearmanU estimators perform the best. NPD

performs the worst among all cellwise robust covariance matrix estimators.

Nonetheless, NPD still beats OGK, which is designed to work well under rowwise

contamination, and also beats the nonrobust SampleCov.

• When the data are generated from the multivariate t-distribution or alternative

t-distribution, we again see that Kendall, Spearman, and SpearmanU behave

similarly and outperform all other estimators, across all sampling schemes.

• When Ω∗ is either sparse or diagonal, FP is low for all estimators except InvCov,

under all contamination mechanisms.

• Except for InvCov, FN is high when Ω∗ is banded or dense, under all contam-

ination mechanisms. This is expected because GLasso implicitly assumes the

underlying Ω∗ to be sparse, which is not true in these cases. When Ω∗ is sparse,

the FN for Kendall, Spearman, and SpearmanU are relatively low compared to

the other estimators.

Tables 3.3 and 3.4 show the results for n = 200 and p = 400. Since p > n, the inverse

sample covariance matrix cannot be computed, hence is excluded from the analysis.

Overall, we obtain conclusions similar to those obtained in the first set of simulations:

• When the data are clean, SampleCov perform best in terms of estimation er-

ror, across all sampling schemes. Immediately following are OGK and NPD, and
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then Kendall, Spearman, and SpearmanU (the last three have nearly the same

performance).

• Under rowwise contamination, SampleCov has the worst covariance estimation

error, but also the best precision estimation error, across all sampling schemes.

OGK performs best in terms of covariance estimation, but not precision esti-

mation. NPD, Kendall, Spearman, and SpearmanU have similar performance in

nearly all cases. When Ω∗ is diagonal and the contamination fraction is 10%,

Kendall turns out to have high precision estimation error, possibly because the

selected tuning parameter in GLasso is too small (as can be seen by the high

FP).

• In terms of estimation error under cellwise contamination, OGK performs nearly

as badly as SampleCov. Kendall, Spearman, and SpearmanU perform equally

well, while NPD is slightly worse off.

• When the data are generated from the multivariate t-distribution or alternative

t-distribution, SampleCov performs badly. Kendall, Spearman, and SpearmanU

perform similarly and outperform OGK and NPD, across all sampling schemes.

• In general, under all contamination mechanisms, when Ω∗ is either sparse or

diagonal, FP is low for all estimators. On the other hand, when Ω∗ is banded or

dense, FN is high, as expected. When Ω∗ is sparse, FN is not as low as desired.

In summary, SampleCov performs best for clean data. Under rowwise contami-

nation, OGK yields the best results in terms of covariance estimation; under cellwise

contamination, Kendall, Spearman, and SpearmanU equally share the best perfor-

mance, while NPD is slightly worse off. Kendall, Spearman, and SpearmanU also

perform very well when the data are generated from a multivariate t-distribution or
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the alternative t-distribution, although these latter cases are not covered by our the-

ory. Empirical results of a similar flavor were obtained in Liu et al. (2012), although

their paper does not provide theoretical guarantees for the behavior of the estimators

under contaminated data.
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clean 5% rowwise 10% rowwise
Cov Prec FP FN Cov Prec FP FN Cov Prec FP FN

Banded

SampleCov 1.11 0.30 0.85 5.91 0.31 0.60 10.44 0.31 0.61
OGK 1.20 0.32 0.88 1.98 0.37 0.90 2.91 0.41 0.91
NPD 1.26 0.35 0.96 2.24 0.37 0.72 3.39 0.39 0.71
Kendall 1.73 0.33 0.87 2.50 0.32 0.63 3.37 0.31 0.63
Spearman 1.73 0.33 0.87 2.50 0.33 0.64 3.37 0.33 0.64
SpearmanU 1.73 0.34 0.88 2.50 0.34 0.64 3.37 0.34 0.63
InvCov 1.11 1.68 0.00 5.91 1.83 0.00 10.44 2.09 0.00

Sparse

SampleCov 0.70 0.34 0.19 0.11 5.57 0.35 0.36 0.30 10.09 0.32 0.36 0.32
OGK 0.79 0.39 0.18 0.15 1.62 0.51 0.18 0.20 2.39 0.59 0.17 0.24
NPD 0.82 0.47 0.09 0.32 1.63 0.55 0.21 0.66 2.58 0.61 0.20 0.76
Kendall 1.15 0.43 0.17 0.16 1.63 0.41 0.32 0.37 2.36 0.40 0.32 0.41
Spearman 1.15 0.43 0.17 0.16 1.64 0.43 0.32 0.37 2.38 0.43 0.31 0.42
SpearmanU 1.15 0.45 0.17 0.15 1.65 0.45 0.33 0.36 2.37 0.46 0.31 0.41
InvCov 0.70 2.83 1.00 0.00 5.57 3.14 1.00 0.00 10.09 3.54 1.00 0.00

Dense

SampleCov 0.60 0.60 0.99 5.54 0.61 0.75 10.05 0.60 0.75
OGK 0.63 0.61 0.99 1.18 0.68 0.99 1.88 0.74 0.99
NPD 0.67 0.62 0.99 1.23 0.65 0.82 1.89 0.69 0.79
Kendall 1.00 0.66 0.99 1.37 0.64 0.79 1.91 0.64 0.78
Spearman 1.00 0.66 0.99 1.37 0.64 0.79 1.91 0.64 0.77
SpearmanU 0.99 0.66 0.99 1.37 0.64 0.78 1.91 0.65 0.77
InvCov 0.60 2.63 0.00 5.54 1.28 0.00 10.05 1.48 0.00

Diagonal

SampleCov 0.30 0.31 0.00 0.00 5.31 0.26 0.24 0.00 9.84 0.28 0.24 0.00
OGK 0.32 0.33 0.00 0.00 0.55 0.35 0.00 0.00 0.80 0.44 0.00 0.00
NPD 0.33 0.35 0.00 0.00 0.63 0.31 0.18 0.00 0.98 0.39 0.21 0.00
Kendall 0.51 0.62 0.00 0.00 0.68 0.51 0.20 0.00 0.96 0.46 0.21 0.00
Spearman 0.51 0.62 0.00 0.00 0.68 0.52 0.21 0.00 0.96 0.47 0.22 0.00
SpearmanU 0.51 0.62 0.00 0.00 0.68 0.52 0.21 0.00 0.96 0.45 0.23 0.00
InvCov 0.30 2.81 1.00 0.00 5.31 3.19 1.00 0.00 9.84 3.60 1.00 0.00

Table 3.1: Simulation results for seven estimators and four sampling schemes, when n = 200 and p = 120. Performance

is measured by ‖Σ̂ − Σ∗‖∞ for covariance matrix estimation (Cov), ‖Ω̂ − Ω∗‖∞ for precision matrix estimation (Prec),

and false positive rate (FP) and false negative rate (FN) for support recovery of the true precision matrix. The results are

averaged over 100 replications.
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5% cellwise 10% cellwise multivariate t alternative t
Cov Prec FP FN Cov Prec FP FN Cov Prec FP FN Cov Prec FP FN

Banded

SampleCov 8.33 0.51 0.97 13.09 0.54 0.99 18.31 0.49 0.87 57.72 0.57 0.93
OGK 8.10 0.51 0.95 13.15 0.54 0.99 3.85 0.43 0.92 12.15 0.53 0.92
NPD 2.78 0.41 0.95 4.70 0.46 0.96 4.06 0.44 0.96 4.53 0.46 0.96
Kendall 2.43 0.40 0.92 3.67 0.45 0.92 3.32 0.41 0.90 3.60 0.42 0.90
Spearman 2.43 0.41 0.92 3.67 0.45 0.92 3.32 0.41 0.91 3.60 0.42 0.90
SpearmanU 2.43 0.41 0.93 3.67 0.45 0.93 3.32 0.42 0.91 3.60 0.43 0.90
InvCov 8.33 0.41 0.00 13.09 0.46 0.00 18.31 1.26 0.00 57.72 0.53 0.00

Sparse

SampleCov 8.39 0.90 0.05 0.81 13.25 0.93 0.01 0.91 11.47 0.77 0.14 0.43 32.95 0.94 0.12 0.44
OGK 8.18 0.90 0.06 0.77 13.71 0.94 0.01 0.90 3.38 0.65 0.16 0.23 8.67 0.86 0.16 0.34
NPD 2.15 0.61 0.06 0.45 4.04 0.73 0.05 0.59 3.17 0.69 0.08 0.45 3.31 0.71 0.07 0.49
Kendall 1.58 0.61 0.16 0.30 2.44 0.72 0.13 0.46 2.34 0.58 0.15 0.25 2.32 0.62 0.16 0.22
Spearman 1.58 0.62 0.15 0.30 2.44 0.73 0.13 0.46 2.34 0.59 0.15 0.25 2.32 0.62 0.15 0.23
SpearmanU 1.58 0.63 0.16 0.30 2.44 0.73 0.13 0.46 2.34 0.60 0.15 0.25 2.32 0.63 0.16 0.22
InvCov 8.39 0.77 1.00 0.00 13.25 0.85 1.00 0.00 11.47 2.10 1.00 0.00 32.95 0.87 1.00 0.00

Dense

SampleCov 8.39 0.90 0.99 13.25 0.93 0.99 10.06 0.88 0.98 31.24 0.95 0.99
OGK 8.02 0.90 0.99 13.14 0.93 0.99 2.14 0.76 0.99 6.82 0.89 0.99
NPD 1.51 0.71 0.99 2.64 0.78 0.99 2.21 0.76 0.99 2.50 0.78 0.99
Kendall 1.36 0.70 0.99 2.00 0.75 0.99 1.84 0.74 0.99 2.08 0.75 0.99
Spearman 1.36 0.70 0.99 2.00 0.75 0.99 1.84 0.74 0.99 2.08 0.75 0.99
SpearmanU 1.36 0.70 0.99 2.00 0.75 0.99 1.84 0.74 0.99 2.08 0.75 0.99
InvCov 8.39 0.78 0.00 13.25 0.85 0.00 10.06 1.88 0.00 31.24 0.88 0.00

Diagonal

SampleCov 8.44 0.89 0.00 0.00 13.37 0.93 0.00 0.00 5.07 0.77 0.01 0.00 15.41 0.90 0.00 0.00
OGK 7.89 0.89 0.00 0.00 13.15 0.93 0.00 0.00 1.07 0.51 0.00 0.00 3.44 0.77 0.00 0.00
NPD 0.76 0.43 0.00 0.00 1.37 0.58 0.00 0.00 1.11 0.52 0.00 0.00 1.25 0.55 0.00 0.00
Kendall 0.70 0.44 0.00 0.00 1.00 0.50 0.00 0.00 0.93 0.48 0.00 0.00 1.02 0.50 0.00 0.00
Spearman 0.70 0.44 0.00 0.00 1.00 0.50 0.00 0.00 0.93 0.48 0.00 0.00 1.02 0.50 0.00 0.00
SpearmanU 0.70 0.44 0.00 0.00 1.00 0.50 0.00 0.00 0.93 0.48 0.00 0.00 1.02 0.50 0.00 0.00
InvCov 8.44 0.76 1.00 0.00 13.37 0.85 1.00 0.00 5.07 2.12 1.00 0.00 15.41 0.92 1.00 0.00

Table 3.2: Simulation results for seven estimators and four sampling schemes, when n = 200 and p = 120. Performance

is measured by ‖Σ̂ − Σ∗‖∞ for covariance matrix estimation (Cov), ‖Ω̂ − Ω∗‖∞ for precision matrix estimation (Prec),

and false positive rate (FP) and false negative rate (FN) for support recovery of the true precision matrix. The results are

averaged over 100 replications.
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clean 5% rowwise 10% rowwise
Cov Prec FP FN Cov Prec FP FN Cov Prec FP FN

Banded

SampleCov 1.24 0.33 0.96 5.98 0.34 0.85 10.34 0.35 0.86
OGK 1.38 0.34 0.96 2.20 0.38 0.95 3.10 0.41 0.95
NPD 1.64 0.38 0.99 2.75 0.40 0.89 3.95 0.42 0.89
Kendall 2.07 0.37 0.97 2.76 0.34 0.85 3.73 0.35 0.86
Spearman 2.07 0.37 0.97 2.76 0.35 0.86 3.73 0.35 0.86
SpearmanU 2.07 0.37 0.97 2.76 0.35 0.86 3.73 0.35 0.86

Sparse

SampleCov 0.81 0.44 0.09 0.56 5.61 0.43 0.14 0.73 9.93 0.40 0.14 0.74
OGK 0.96 0.45 0.09 0.59 1.86 0.53 0.09 0.62 2.87 0.61 0.10 0.62
NPD 1.11 0.59 0.03 0.79 2.14 0.63 0.08 0.93 3.61 0.68 0.08 0.95
Kendall 1.35 0.50 0.09 0.60 1.76 0.48 0.12 0.77 2.71 0.47 0.12 0.79
Spearman 1.35 0.50 0.08 0.60 1.77 0.49 0.12 0.77 2.72 0.49 0.12 0.79
SpearmanU 1.35 0.51 0.09 0.60 1.78 0.51 0.13 0.77 2.72 0.51 0.12 0.79

Dense

SampleCov 0.69 0.62 1.00 5.53 0.62 0.91 9.90 0.60 0.91
OGK 0.78 0.64 1.00 1.29 0.69 1.00 1.92 0.74 1.00
NPD 0.89 0.65 1.00 1.54 0.68 0.93 2.24 0.72 0.91
Kendall 1.17 0.68 1.00 1.54 0.65 0.92 2.12 0.70 0.91
Spearman 1.17 0.68 1.00 1.54 0.65 0.92 2.12 0.65 0.91
SpearmanU 1.17 0.68 1.00 1.54 0.66 0.92 2.12 0.65 0.91

Diagonal

SampleCov 0.34 0.37 0.00 0.00 5.28 0.26 0.09 0.00 9.64 0.32 0.09 0.00
OGK 0.38 0.38 0.00 0.00 0.58 0.36 0.00 0.00 0.78 0.44 0.00 0.00
NPD 0.45 0.32 0.00 0.00 0.78 0.37 0.07 0.00 1.15 0.44 0.09 0.00
Kendall 0.59 0.72 0.00 0.00 0.78 0.60 0.08 0.00 1.07 4.83 0.33 0.00
Spearman 0.59 0.72 0.00 0.00 0.78 0.60 0.08 0.00 1.07 0.57 0.08 0.00
SpearmanU 0.59 0.72 0.00 0.00 0.78 0.59 0.08 0.00 1.07 0.56 0.09 0.00

Table 3.3: Simulation results for six estimators and four sampling schemes, when n = 200 and p = 400. Performance is

measured by ‖Σ̂ − Σ∗‖∞ for covariance matrix estimation (Cov), ‖Ω̂ − Ω∗‖∞ for precision matrix estimation (Prec), and

false positive rate (FP) and false negative rate (FN) for support recovery of the true precision matrix. The results are

averaged over 100 replications.
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5% cellwise 10% cellwise multivariate t alternative t
Cov Prec FP FN Cov Prec FP FN Cov Prec FP FN Cov Prec FP FN

Banded

SampleCov 8.90 0.48 0.69 13.70 0.46 0.44 22.41 0.45 0.87 137.82 0.57 0.86
OGK 8.79 0.48 0.66 13.89 0.46 0.39 3.97 0.44 0.95 18.41 0.51 0.53
NPD 4.04 0.45 0.98 7.03 0.45 0.78 5.03 0.46 0.94 5.83 0.48 0.97
Kendall 2.89 0.42 0.96 4.11 0.46 0.98 3.69 0.42 0.96 3.99 0.43 0.97
Spearman 2.89 0.42 0.96 4.11 0.46 0.98 3.69 0.42 0.96 3.99 0.43 0.97
SpearmanU 2.89 0.42 0.96 4.11 0.46 0.97 3.69 0.42 0.96 3.99 0.44 0.97

Sparse

SampleCov 8.98 0.91 0.01 0.96 13.82 0.85 0.52 0.45 13.53 0.79 0.05 0.80 79.44 0.96 0.04 0.85
OGK 8.83 0.91 0.02 0.94 14.48 0.88 0.57 0.40 3.83 0.66 0.10 0.62 12.48 0.90 0.07 0.77
NPD 3.10 0.72 0.03 0.83 6.15 0.82 0.02 0.87 4.40 0.76 0.03 0.84 4.67 0.78 0.03 0.86
Kendall 1.80 0.64 0.06 0.74 2.94 0.74 0.05 0.82 2.61 0.63 0.07 0.69 2.71 0.66 0.07 0.67
Spearman 1.80 0.65 0.06 0.74 2.94 0.74 0.05 0.82 2.61 0.64 0.07 0.69 2.71 0.66 0.07 0.67
SpearmanU 1.80 0.65 0.07 0.73 2.94 0.75 0.05 0.82 2.61 0.64 0.07 0.68 2.71 0.66 0.07 0.67

Dense

SampleCov 8.96 0.90 0.96 13.81 0.85 0.46 12.64 0.88 0.99 79.01 0.98 1.00
OGK 8.62 0.90 0.93 13.64 0.85 0.38 2.24 0.76 1.00 10.33 0.92 1.00
NPD 2.35 0.77 1.00 4.28 0.84 1.00 2.82 0.79 1.00 3.22 0.81 1.00
Kendall 1.64 0.72 1.00 2.29 0.77 1.00 2.12 0.75 1.00 2.25 0.76 1.00
Spearman 1.64 0.72 1.00 2.29 0.77 1.00 2.12 0.75 1.00 2.25 0.76 1.00
SpearmanU 1.64 0.72 1.00 2.29 0.77 1.00 2.12 0.75 1.00 2.25 0.76 1.00

Diagonal

SampleCov 9.03 0.90 0.00 0.00 13.93 0.87 0.47 0.00 6.33 0.77 0.01 0.00 39.73 0.95 0.00 0.00
OGK 8.60 0.90 0.00 0.00 13.74 0.87 0.54 0.00 1.11 0.52 0.00 0.00 5.17 0.84 0.00 0.00
NPD 1.20 0.54 0.00 0.00 2.19 0.69 0.00 0.00 1.42 0.58 0.00 0.00 1.62 0.62 0.00 0.00
Kendall 0.81 0.52 0.00 0.00 1.15 0.54 0.00 0.00 1.06 0.52 0.00 0.00 1.14 0.54 0.00 0.00
Spearman 0.81 0.52 0.00 0.00 1.15 0.54 0.00 0.00 1.06 0.52 0.00 0.00 1.14 0.54 0.00 0.00
SpearmanU 0.81 0.52 0.00 0.00 1.15 0.54 0.00 0.00 1.06 0.52 0.00 0.00 1.14 0.54 0.00 0.00

Table 3.4: Simulation results for six estimators and four sampling schemes, when n = 200 and p = 400. Performance is

measured by ‖Σ̂ − Σ∗‖∞ for covariance matrix estimation (Cov), ‖Ω̂ − Ω∗‖∞ for precision matrix estimation (Prec), and

false positive rate (FP) and false negative rate (FN) for support recovery of the true precision matrix. The results are

averaged over 100 replications.

114



3.6 Discussion

We have derived statistical error bounds for high-dimensional robust precision matrix

estimators, when data are drawn from a multivariate normal distribution and then ob-

served subject to cellwise contamination. We show that in such settings, the precision

matrix estimators that are obtained by plugging in pairwise robust covariance estima-

tors to the GLasso or CLIME routine, as suggested by Oellerer & Croux (2014) and

Tarr et al. (2015), have error bounds that match standard high-dimensional bounds

for uncontaminated precision matrix estimation, up to an additive factor involving

a constant multiple of the contamination fraction ε. Our results for precision ma-

trix estimators are derived via estimation error bounds for robust covariance matrix

estimators, which have similar deviation properties.

The results of this chapter naturally suggest several venues for future work. In

particular, it would be interesting to relate the nonasymptotic statistical error bounds

to the behavior of the sensitivity curve of the robust covariance estimator, which is

the finite-sample analog of the influence function. We have also left open the question

of calculating the breakdown point for the CLIME estimator with respect to more

general data matrices, as well as the breakdown behavior of CLIME and GLasso under

different notions of breakdown point. Although our results imply the superiority

of the GLasso over the CLIME estimator from the perspective of the finite-sample

breakdown point, this may only be part of the story.

Lastly, it would be interesting to generalize our study to other classes of distri-

butions. In one direction, it would be possible to study contaminated versions of

other distributions besides the multivariate Gaussian, for which the precision ma-

trix encodes information about the underlying graphical model (e.g., Ising models on

trees). A harder question to tackle would be the problem of robust graphical model

estimation in settings where the structure of the graph is not encoded in the preci-
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sion matrix alone. Finally, one could consider robust estimation of scatter matrices,

when the uncontaminated data are drawn from an elliptical distribution. In that

case, the proposed Kendall’s tau and Spearman’s rho correlation coefficients would

still be Fisher consistent upon taking the respective sine transformations, so similar

error bounds should hold. As demonstrated in our simulation results, the pairwise

covariance estimators based on Kendall’s tau and Spearman’s rho perform reason-

ably well when data are generated from either the multivariate t-distribution or the

alternative t-distribution. This motivates studying the convergence rates of the same

covariance matrix estimators under heavy-tailed or elliptical distributions.

The problem of estimating high-dimensional covariance matrices under various

structural assumptions has also been widely studied. Various families of structured

covariance matrices have been introduced, including bandable matrices (Cai et al.,

2010), Toeplitz matrices (Cai et al., 2013), and sparse matrices (Bickel & Levina, 2008;

Cai & Zhou, 2012). The proposed covariance matrix estimators involve regularizing

the sample covariance matrix in accordance to structural assumptions. It would be

interesting to study robust versions of these structured covariance matrix estimators

under a model such as cellwise contamination. Besides graphical models, covariance

matrix estimation is also useful for statistical methods such as linear discriminant

analysis and principal component analysis. Several high-dimensional procedures have

been proposed with proven theoretical guarantees when data are uncontaminated (Cai

& Liu, 2011; Vu et al., 2013), and it would be interesting to study robust adaptations

of these procedures, as well.
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4
Optimal Estimation of A Quadratic Functional

under the Gaussian Two-Sequence Model

4.1 Introduction

The problem of estimating the quadratic functional
∫
f 2 occupies an important posi-

tion in nonparametric statistical inference literature. In the density estimation setting

where one observes an i.i.d. sample from a distribution with density function f , Bickel

& Ritov (1988) was the first to show that there is an interesting phase transition where

the minimax rate of convergence for estimating
∫
f 2 under mean squared error is the

usual parametric rate when the Hölder smoothness parameter of the density function

is greater than 1/4, and is otherwise slower than the parametric rate. Giné & Nickl

(2008) constructed an adaptive estimator of
∫
f 2 in the density estimation setting.

Donoho & Nussbaum (1990) developed a minimax theory for estimating quadratic

functionals of periodic functions in the nonparametric regression model.

Quadratic functional estimation has been particularly well studied in the Gaussian

∗Joint work with T. Tony Cai
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sequence model:

Yi = θi + σnzi, i = 1, 2, . . . , (4.1)

where zi
i.i.d.∼ N(0, 1). The model (4.1) is equivalent to the white noise with drift

model and can be used to approximate other nonparametric function estimation mod-

els. Estimating the quadratic functional Q(θ) =
∑
θ2
i under (4.1) is the analog of

estimating
∫
f 2 in the density estimation or nonparametric regression model. Fan

(1991) and Efromovich & Low (1996) developed a minimax theory for estimating

Q(θ) =
∑
θ2
i over quadratically convex parameter spaces such as hyperrectangles

and Sobolev balls. Cai & Low (2005, 2006b) further extended this theory to minimax

and adaptive estimation over parameter spaces that are not necessarily quadratically

convex. It is shown that the problem exhibits different phase transition phenomena

in such a setting. A more recent paper by Collier et al. (2015) gave a non-asymptotic

analysis of estimation of the quadratic functional over ellipsoids and classes of sparse

vectors. The focus so far has been on the one-sequence case.

There are close connections between the problem of quadratic functional estima-

tion and that of signal detection under (4.1). Specifically, for a mean vector θ, we say

that there is a signal at location i if θi 6= 0. The problem of signal detection is then

to distinguish between θ = 0 and θ 6= 0. Since Q(θ) = 0 if and only if θ = 0, it is

not surprising that estimators of Q(θ) can be used to construct procedures that are

effective for detecting signals. See, for instance, Cai & Low (2005) and the references

therein. The results on estimating the quadratic functional Q(θ) also have impor-

tant implications on hypothesis testing and construction of confidence balls. See, for

example, Li (1989), Dümbgen (1998), Lepski & Spokoiny (1999), Ingster & Suslina

(2003), Baraud (2004), Genovese & Wasserman (2005), and Cai & Low (2006a,b).
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In this chapter, we consider the estimation of the quadratic functional

Q(µ, θ) =
1

n

n∑
i=1

µ2
i θ

2
i (4.2)

under the Gaussian two-sequence model,

Xi = µi + σz′i, Yi = θi + σzi, i = 1, . . . , n, (4.3)

where z′1, . . . , z
′
n, z1, . . . , zn

i.i.d.∼ N(0, 1) and σ is the noise level. The goal is to op-

timally estimate Q(µ, θ) based on the observed data (Xi, Yi), i = 1, ..., n. Strictly

speaking, Q(µ, θ) is a quartic functional, but we will refer to it as a quadratic func-

tional in the two-sequence case, as it is quadratic in µ given θ, and vice versa. We

are particularly interested in the case where both mean vectors µ = (µ1, . . . , µn) and

θ = (θ1, . . . , θn) are sparse.

In addition to being of significant theoretical interest in its own right, this esti-

mation problem is also motivated by the problem of simultaneous signal detection

in integrative genomics, where it is of interest to test whether there are single nu-

cleotide polymorphisms (SNPs) that are simultaneously associated with multiple hu-

man traits or disorders (Consortium, 2011; Cotsapas et al., 2011; Sivakumaran et al.,

2011; Rankinen et al., 2015; Li et al., 2015). More specifically, let Xi be the Z-score

of the association between trait 1 and the ith SNP, and let Yi be the Z-score of the

association between trait 2 and the ith SNP, for i = 1, . . . , n. When the SNPs are

chosen from different linkage equilibrium blocks, then it is approximately true that

the Xi’s are independent, as are the Yi’s. Moreover, when Xi and Yi are calculated

in independent datasets, then for each i, Xi is independent of Yi. In a simplified

statistical framework, the simultaneous signal detection problem can then be stud-

ied under the Gaussian two-sequence model (4.3), where the goal is to detect the
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presence of location i with µiθi 6= 0. Equivalently, we want to distinguish between

µ ? θ = 0 and µ ? θ 6= 0, where µ ? θ = (µ1θ1, . . . , µnθn) is the coordinate-wise product

of µ and θ. Of particular interest is the setting where the proportion of signals is

small, and the signal strengths are relatively weak. This is indeed the setting in the

genomics context, as only a small number of SNPs are expected to be associated with

both traits. Moreover, the association, if it exists, is weak. Since Q(µ, θ) = 0 if and

only if µ ? θ = 0, one might expect a connection similar to that in the single Gaus-

sian sequence model to exist between the estimation problem and the simultaneous

signal detection problem. More discussions on the application of quadratic functional

estimators to the problem of simultaneous signal detection are given in Section 4.4.

In this chapter, we focus on studying the estimation of Q(µ, θ). We propose

optimal estimators of Q(µ, θ) over a family of parameter spaces to be introduced,

and establish the minimax rates of convergence. It is shown that the optimal rate

exhibits interesting phase transitions in this family. Along with the establishment of

the minimax rates of convergence, we explain the intuition behind the construction

of the optimal estimators.

The rest of the chapter is organized as follows: Section 4.2 considers estimation of

the functional Q(µ, θ) and establishes the minimax rates of convergence. Section 4.3

complements our theoretical study with some simulation results. We conclude the

chapter with a discussion in Section 4.4. Additional results not included in this

chapter as well as the proofs of main results are relegated to Appendix C.

4.2 Optimal Estimation of Q(µ, θ)

In this section, we consider the estimation of the quadratic functional Q(µ, θ) =

1
n

∑n
i=1 µ

2
i θ

2
i of two sparse normal mean vectors µ = (µ1, . . . , µn) and θ = (θ1, . . . , θn)
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under the Gaussian two-sequence model (4.3). An additional constraint is imposed

on the number of coordinates that are simultaneously nonzero for both mean vectors.

The noise level σ in model (4.3) is assumed to be known. Estimation of the noise

level, σ, is relatively easy under the sparse sequence model (4.3) and will be discussed

in Section 4.3.

We begin by introducing some notation that will be used throughout this chapter.

Given a vector θ = (θ1, . . . , θn), we denote by ‖θ‖0 = Card({i : θi 6= 0}) the `0-quasi-

norm of θ, ‖θ‖2 =
√∑n

i=1 θ
2
i its `2-norm, and ‖θ‖∞ = max1≤i≤n |θi| its `∞-norm. For

any real numbers a and b, we set a∧ b = min{a, b}, a∨ b = max{a, b} and a+ = a∨ 0.

Throughout, the notation an � bn means that there exists some numerical constants

c and C such that c ≤ an
bn
≤ C when n is large. By “numerical constants” we usually

mean constants that might depend on the characteristics of the problem but whose

specific values are of little interest to us. The precise values of the numerical constants

c and C may also vary from line to line.

Adopting an asymptotic framework where the vector size n is the driving variable,

we parameterize the signal strength, sparsity, and simultaneous sparsity of µ and θ

as functions of n. Specifically, we consider the family of parameter spaces

Ω(β, ε, b) = {(µ, θ) ∈ Rn × Rn : ‖µ‖0 ≤ kn, ‖µ‖∞ ≤ sn, ‖θ‖0 ≤ kn, ‖θ‖∞ ≤ sn,

‖µ ? θ‖0 ≤ qn}, (4.4)

indexed by three parameters β, ε, and b. We have the sparsity parameterization

kn = nβ, 0 < β <
1

2
, (4.5)
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the simultaneous sparsity parameterization

qn = nε, 0 < ε ≤ β, (4.6)

and the signal strength parametrization

sn = nb, b ∈ R. (4.7)

In principle, β can take any value between 0 and 1. We are primarily interested in the

estimation problem for the range 0 < β < 1
2
, as it is well-known that this corresponds

to the case of rare signals (Donoho & Jin, 2004).

Our goal is to derive the minimax rate of convergence for Q(µ, θ) over Ω(β, ε, b):

R∗(n,Ω(β, ε, b)) = inf
Q̂

sup
(µ,θ)∈Ω(β,ε,b)

E(µ,θ)(Q̂−Q(µ, θ))2.

We will show that R∗(n,Ω(β, ε, b)) satisfies

R∗(n,Ω(β, ε, b)) � γn(β, ε, b), (4.8)

where γn(β, ε, b) is a function of n indexed by β, ε and b. There are two main tasks

in establishing the minimax rate of convergence. For each triple (β, ε, b) satisfying

0 < ε ≤ β < 1
2

and b ∈ R, we construct an estimator Q̂∗ that satisfies

sup
(µ,θ)∈Ω(β,ε,b)

E(µ,θ)(Q̂
∗ −Q(µ, θ))2 ≤ Cγn(β, ε, b),

and show that R∗(n,Ω(β, ε, b)) ≥ cγn(β, ε, b), where C and c are numerical constants

that depend only on β, ε, b, and σ. Combining these upper and lower bounds yields

the minimax rate of convergence (4.8). In this case, we say that the estimator Q̂∗
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attains the minimax rate of convergence over the parameter space Ω(β, ε, b).

Interestingly, the estimation problem exhibits different phase transitions for the

minimax rate γn(β, ε, b) in three regimes: the sparse regime where 0 < ε < β
2
, the

moderately dense regime where β
2
≤ ε ≤ 3β

4
, and the strongly dense regime where

3β
4
< ε ≤ β. Collectively, we call β

2
≤ ε ≤ β the dense regime. In the sparse

regime, the simultaneous signal is sparse in the sense that qn �
√
kn, while in the

dense regime, the simultaneous signal is dense in the sense that qn �
√
kn. This

is analogous to the terminology used in the one-sequence model, where the signal is

called sparse if 0 < β < 1
2

(kn �
√
n), and dense if 1

2
≤ β ≤ 1 (kn �

√
n). The

key distinction is that, in the two-sequence case, sparseness or denseness is used to

describe the relationship between simultaneous sparsity qn and sparsity kn, as opposed

to between kn and the vector size n. We remark that our use of the terminology is

not superficial — a detailed analysis of lower and upper bounds for the estimation

problem does reveal an intimate connection to the corresponding regimes in the one-

sequence case. In particular, when the signal is moderately strong, the hardness of

the two-sequence estimation problem is essentially characterized by an underlying

one-sequence problem that displays different behavior in the sparse and the dense

regimes. On the other hand, we construct optimal estimators for Q(µ, θ), borrowing

intuition from optimal estimators for Q(θ) in respective regimes.

Intuitively, when b is very small (i.e., signal is very weak), we are better off esti-

mating Q(µ, θ) by

Q̂0 = 0, (4.9)

since any attempt to estimate Q(µ, θ) will incur a greater estimation risk. On the

other hand, when b is sufficiently large (i.e., signal is strong), it is desirable to estimate

Q(µ, θ) based on the observed data (Xi, Yi), i = 1, . . . , n. With a slight abuse of

terminology, we say that the signal is weak if it corresponds to the region where Q̂0 is
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optimal, and we say that the signal is strong otherwise. In Sections 4.2.1 and 4.2.2,

we construct two estimators of Q(µ, θ) that respectively attain the minimax rates of

convergence over the sparse and dense regimes when the signal is sufficiently large.

It is possible to generalize our parametrization to the case where µ and θ have

different levels of both sparsity and signal strengths. This amounts to estimating

Q(µ, θ) over the parameter space

Ω(α, β, ε, a, b) = {(µ, θ) ∈ Rn × Rn : ‖µ‖0 ≤ jn, ‖µ‖∞ ≤ rn, ‖θ‖0 ≤ kn, ‖θ‖∞ ≤ sn,

‖µ ? θ‖0 ≤ qn}, (4.10)

where jn = nα, kn = nβ, qn = nε with 0 < ε ≤ α ∧ β < 1
2
, and rn = na, sn = nb

with a, b ∈ R. In this section, however, we will focus on the simplest case where

jn = kn = nβ and rn = sn = nb, since the technical analysis is similar to that for

the more general case (4.10), but less tedious. We did derive the minimax rates of

convergence for the case where jn = kn = nβ but rn and sn are allowed to differ. As

the phase transitions for the minimax rates of convergence in this case are much more

sophisticated, but also are less easily digestible, we opt to defer its presentation to

Appendix C. The analysis for the general case (4.10) where no equality constraint is

imposed on either the sparsity or signal strength of µ and θ follows similarly, provided

that the magnitude of the simultaneous sparsity ε is compared to α if a ≥ b, and to

β if b ≥ a, for the determination of sparse and dense regimes.

4.2.1 Estimation in the Sparse Regime

We begin with the estimation of Q(µ, θ) = 1
n

∑
µ2
i θ

2
i over the parameter space

Ω(β, ε, b) in the sparse regime, where qn is calibrated as in expression (4.6) with

0 < ε < β
2
.
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To construct an optimal estimator for Q(µ, θ), we base our intuition on the esti-

mation of the quadratic functional Q(θ) = 1
n

∑
θ2
i , in the case where we only have

one sequence of observations Yi, i = 1, . . . , n, from model (4.3). Consider the family

of parameter spaces indexed by kn = nβ, 0 < β < 1 and sn = nb, b ∈ R:

Θ(β, b) = {θ ∈ Rn : ‖θ‖0 ≤ kn, ‖θ‖∞ ≤ sn}. (4.11)

It can be shown that for 0 < β < 1
2
, the minimax rate of convergence for Q(θ) over

Θ(β, b) satisfies

R∗(n,Θ(β, b)) := inf
Q̂

sup
θ∈Θ(β,b)

Eθ(Q̂−Q(θ))2 � γn(β, b), (4.12)

where

γn(β, b) =


n2β+4b−2 if b ≤ 0,

n2β−2(log n)2 if 0 < b ≤ β
2
,

nβ+2b−2 if b > β
2
.

(4.13)

When 0 < β < 1
2
, we have kn �

√
n. Thus, we anticipate only very few coordi-

nates of θ to be nonzero. If, in addition, b < 0, then the signal is both rare and weak,

and one can do no better than simply estimating Q(θ) by Q̂0 = 0. Nonetheless, when

b > 0, the signal is rare but sufficiently strong, and the estimator

Q̂1 =
1

n

n∑
i=1

[(Y 2
i −σ2τn)+−θ0], where θ0 := E(Z2−σ2τn)+, Z ∼ N(0, σ2), (4.14)

that performs coordinate-wise thresholding on Y 2
i with choice of tuning parameter

τn = 2 log n is optimal. Each term θ2
i is estimated independently by (Y 2

i −σ2τn)+−θ0,

since the sparsity pattern is unstructured. The estimator (4.14) involves a threshold-

ing step, (Y 2
i − σ2τn)+, for denoising, and a de-bias step by subtracting θ0 from the
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thresholded term so that we estimate the zero coordinates of θ unbiasedly. This is

important because the proportion of zero entries in this case is relatively large, and a

biased estimator for these coordinates will unnecessarily inflates the estimation risk.

The results on the estimation of one-sequence quadratic functional over classes

of sparse vectors in (4.11)-(4.14) (and that over classes of dense vectors in (4.19)-

(4.20)) are new, though we were made aware of the appearance of similar results in

the concurrent work of Collier et al. (2015). The focus and main contribution of this

chapter is on the estimation of the quadratic functional Q(µ, θ) in the two-sequence

case.

We now return to the sparse regime in the two-sequence setting, where 0 < ε < β
2

and 0 < β < 1
2
. In this case, kn �

√
n, so the signal of individual sequences is rare.

Moreover, the simultaneous sparsity qn �
√
kn implies that we rarely have signals

occurring simultaneously at the same coordinate of each sequence. This means that

if we know for sure that µi is nonzero, it is unclear if θi is nonzero unless |θi| is large

enough (and vice versa). Such an intuition motivates the estimator

Q̂2 =
1

n

n∑
i=1

[(X2
i − σ2τn)+ − µ0][(Y 2

i − σ2τn)+ − θ0], (4.15)

where µ0 = θ0 := E(Z2 − σ2τn)+ with the threshold level τn = log n, where Z ∼

N(0, σ2). The construction of Q̂2 is a straightforward extension of the construction

of Q̂1: each term µ2
i θ

2
i is estimated independently by the product [(X2

i − σ2τn)+ −

µ0][(Y 2
i −σ2τn)+−θ0]. Since qn �

√
kn, following our previous argument, thresholding

X2
i and Y 2

i independently at a common threshold level is natural.

We now present a theorem on the upper bound of the mean squared error of Q̂2.

Theorem 11 (Sparse Regime: Upper Bound). For b > 0, the estimator Q̂2, as in
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(4.15) with τn = log n, satisfies

sup
(µ,θ)∈Ω(β,ε,b)

E(µ,θ)(Q̂2 −Q(µ, θ))2 ≤ C
[
n2ε+4b−2(log n)2 + nε+6b−2

]
. (4.16)

Straightforward calculation shows that for the estimator Q̂0 = 0,

sup
(µ,θ)∈Ω(β,ε,b)

E(µ,θ)(Q̂0 −Q(µ, θ))2 = sup
(µ,θ)∈Ω(β,ε,b)

(
1

n

n∑
i=1

µ2
i θ

2
i

)2

= q2
ns

8
nn
−2 = n2ε+8b−2, (4.17)

for 0 < ε ≤ β < 1
2

and b ∈ R. We now show that the combination of Q̂0 (when b < 0)

and Q̂2 (when b ≥ 0) is optimal, by providing a matching lower bound.

Theorem 12 (Sparse Regime: Lower Bound). Let 0 < ε < β
2

and 0 < β < 1
2
. Then

R∗(n,Ω(β, ε, b)) ≥ cγn(β, ε, b),

where

γn(β, ε, b) =


n2ε+8b−2 if b ≤ 0,

n2ε+4b−2(log n)2 if 0 < b ≤ ε
2
,

nε+6b−2 if b > ε
2
.

(4.18)

Crucial to the derivation of the lower bound is the Constrained Risk Inequality

(CRI) given in Brown & Low (1996). To apply CRI, it suffices to construct two priors

supported on Ω(β, ε, b) that have small chi-square distance but a large difference in

the expected values of the resulting quadratic functionals. The cases b ≤ ε
2

and b > ε
2

correspond to choices of distinct pairs of priors. For b > ε
2
, the CRI boils down to the

standard technique of inscribing a hardest hyperrectangle, with the Bayes risk for a

simple prior supported on the hyperrectangle being a lower bound for the minimax

risk. Nevertheless, the case b ≤ ε
2

requires the use of a rich collection of hyperrect-
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angles and a mixture prior which mixes over the vertices of the hyperrectangles in

this collection. Mixing increases the difficulty of the Bayes estimation problem and

is needed here to attain a sharp lower bound.

Remark 13. Combining (4.16), (4.17) and (4.18), we see that when 0 < ε < β
2

and

0 < β < 1
2
, Q̂2 attains the optimal rate of convergence over Ω(β, ε, b) when b > 0.

On the other hand, Q̂0 attains the optimal rate of convergence over Ω(β, ε, b) when

b ≤ 0.

Remark 14. So far, we have implicitly assumed that β is fixed and we characterize

each regime by the relative magnitude of ε to β. It is possible to turn this view the

other way around, to assume that ε is fixed and to characterize each regime by the

relative magnitude of β to ε. We then see from (4.18) that within the sparse regime

where 0 < 2ε < β < 1
2
, the minimax rate of convergence γn(β, ε, b) for a fixed ε does

not involve β. Such a lack of dependency on β is also highlighted in the two plot

panels in the bottom row of Figure 4.1.

4.2.2 Estimation in the Dense Regime

We now consider estimating Q(µ, θ) in the dense regime, where qn is calibrated as in

expression (4.6) with β
2
≤ ε ≤ β. The dense regime is subdivided into two cases: the

moderately dense case with β
2
≤ ε ≤ 3β

4
and the strongly dense case with 3β

4
< ε ≤ β.

In the dense regime, the estimator Q̂2 defined in (4.15) is suboptimal, as the

thresholding step in both X2
i and Y 2

i ends up thresholding too many coordinates

when the signal is weak. Note that the simultaneous sparsity qn �
√
kn suggests that

for each coordinate i with µi 6= 0, it is more often the case that θi 6= 0 (compared

to when qn �
√
kn), and vice versa. Therefore, it is no longer reasonable to perform

thresholding on X2
i and Y 2

i independently. The additional knowledge of relatively
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high proportion of simultaneous nonzero entries suggests that whenever we observe a

large value of X2
i (an implication of µi 6= 0), then even if Y 2

i is small, we should still

estimate µ2
i θ

2
i rather than setting it equals zero. The same reasoning applies to the

case where X2
i is small but Y 2

i is large.

To construct an optimal estimator in the dense regime, we again borrow some

intuition from the estimation of the quadratic functional Q(θ) = 1
n

∑
θ2
i in the one-

sequence case. We consider the family of parameter spaces given in (4.11), but for

1
2
≤ β < 1. The minimax rate of convergence once again satisfies (4.12), but with

γn(β, b) =


n2β+4b−2 if b ≤ 1−2β

4
,

n−1 if 1−2β
4

< b ≤ 1−β
2
,

nβ+2b−2 if b > 1−β
2
.

(4.19)

When 1
2
≤ β < 1, we have kn �

√
n, meaning that θ contains a relatively large

number of non-zero coordinates compared to the case when 0 < β < 1
2
. The char-

acterization of weak and strong signal is no longer b < 0 versus b ≥ 0 as in the

case of 0 < β < 1
2
, but b ≤ 1−2β

4
versus b > 1−2β

4
. That is, given the same signal

strength b, the relatively large number of nonzero coordinates of θ when kn �
√
n

collectively represents a stronger signal as compared to the case when kn �
√
n.

Thus, the threshold of “strong” signal as encoded by b is lowered when kn �
√
n. It

is not surprising that for the range of weak signal b ≤ 1−2β
4

, the estimator Q̂0 = 0 is

optimal. On the other hand, when b > 1−2β
4

, the optimal estimator for Q(θ) is the

unbiased estimator

Q̂3 =
1

n

n∑
i=1

(Y 2
i − σ2). (4.20)

An optimal estimator is often one that strikes an appropriate balance between

bias and variance in its mean squared error. The estimators Q̂0 and Q̂3 represent two

extremes in terms of bias-variance tradeoff. We see that the Q̂0 that is optimal for
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exceedingly weak signal has zero variance, while the Q̂3 that is optimal for sufficiently

strong signal has zero bias. Due to the denseness of nonzero coordinates when kn �
√
n, one could not afford to introduce bias to the estimator in the hope of achieving

smaller variance. Without additional information about the sparsity structure, the

unbiased estimator Q̂3 is necessary for optimal estimation of Q(θ).

We now return to the two-sequence setting for the estimation of Q(µ, θ), for the

case β
2
≤ ε ≤ β and 0 < β < 1

2
. Although the signal for individual sequences is

sparse (kn �
√
n), the simultaneous signal is dense in the sense that qn �

√
kn. The

intuition garnered from the one-sequence case motivates the estimator

Q̂4 =
1

n

n∑
i=1

[
(X2

i − σ2)(Y 2
i − σ2)1(X2

i ∨ Y 2
i > σ2τn)− η

]
, (4.21)

where

η = E[(Z2
1 − σ2)(Z2

2 − σ2)1(Z2
1 ∨ Z2

2 > σ2τn)], Z1, Z2
i.i.d.∼ N(0, σ2).

From Q̂4, we see that each term µ2
i θ

2
i is estimated unbiasedly (modulo η) by (X2

i −

σ2)(Y 2
i − σ2) whenever at least one of X2

i and Y 2
i is sufficiently large. This is in

accordance with our previous argument that estimation should be done whenever we

have at least one large value of X2
i or Y 2

i . The threshold τn is a tuning parameter

whose value is yet to be determined during the analysis of the mean squared error

of Q̂4, though it turns out that τn = c log n for any c ≥ 4 attains the optimal rate

of convergence. The subtraction of η from (X2
i − σ2)(Y 2

i − σ2)1(X2
i ∨ Y 2

i > σ2τn) is

needed because the majority of coordinates i has µi = θi = 0. A biased estimator

for these coordinates unavoidably inflates the estimation risk. The naive unbiased

estimator

1

n

n∑
i=1

(X2
i − σ2)(Y 2

i − σ2)
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does not seem to perform well when 0 < β < 1
2

due to the rarity of nonzero coordinates

in individual sequences. A thresholding step 1(X2
i ∨ Y 2

i > σ2τn) is needed to guard

against estimating entries with µi = θi = 0 with noise.

Note that Q̂2 defined in (4.15) can be written as

1

n

n∑
i=1

[(X2
i − σ2τn)1(X2

i > σ2τn)− µ0][(Y 2
i − σ2τn)1(Y 2

i > σ2τn)− θ0].

Comparing this expression with Q̂4, we see that when both X2
i and Y 2

i are large,

the term µ2
i θ

2
i is roughly estimated as (X2

i − σ2τn)(Y 2
i − σ2τn). Moreover, (X2

i −

σ2τn)(Y 2
i − σ2τn) is a biased estimator of µ2

i θ
2
i when τn > 1.

We present an upper bound on the mean squared error of Q̂4 in the following

theorem.

Theorem 13 (Dense Regime: Upper Bound). For b > 0, the estimator Q̂4, as in

(4.21) with τn = 4 log n, satisfies

sup
(µ,θ)∈Ω(β,ε,b)

E(µ,θ)(Q̂4 −Q(µ, θ))2 ≤ C max
{
n2ε−2(log n)4, nε+6b−2, nβ+4b−2

}
. (4.22)

We now provide a matching lower bound to complement the upper bound in the

dense regime.

Theorem 14 (Dense Regime: Lower Bound). Let β
2
≤ ε ≤ β and 0 < β < 1

2
. Then

R∗(n,Ω(β, ε, b)) ≥ cγn(β, ε, b),
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where

γn(β, ε, b) =



n2ε+8b−2 if b ≤ 0,

n2ε−2(log n)4 if 0 < b ≤ 2ε−β
4
,

nβ+4b−2 if 2ε−β
4

< b ≤ β−ε
2
,

nε+6b−2 if b > β−ε
2
,

(4.23)

when β
2
≤ ε ≤ 3β

4
, and

γn(β, ε, b) =


n2ε+8b−2 if b ≤ 0,

n2ε−2(log n)4 if 0 < b ≤ ε
6
,

nε+6b−2 if b > ε
6
,

(4.24)

when 3β
4
< ε ≤ β.

The minimax rates of convergence display different phase transitions within the

two subdivisions of the dense regime. In the moderately dense regime where β
2
≤

ε ≤ 3β
4

, there are phase transitions at b = 2ε−β
4

and b = β−ε
2

, given in (4.23). Note

that 2ε−β
4
≤ β−ε

2
if and only if ε ≤ 3β

4
. In the strongly dense regime where ε > 3β

4
,

the phase 2ε−β
4

< b ≤ β−ε
2

is non-existent, and we only have one intermediate phase,

0 < b ≤ ε
6
, given in (4.24).

We establish the lower bound by constructing least favorable priors and applying

CRI. Except for the rate nε+6b−2, which is obtained through the inscription of a

hardest hyperrectangle, all other cases require some forms of mixing over the vertices

of a rich collection of hyperrectangles.

Remark 15. Combining (4.17), (4.22), (4.23), and (4.24), we see that for the param-

eter space Ω(β, ε, b) with β
2
≤ ε ≤ β < 1

2
, Q̂4 attains the minimax rate of convergence

when b > 0. On the other hand, Q̂0 = 0 attains the minimax rate of convergence

when b ≤ 0.

Remark 16. Following Remark 14, we see that similar to the sparse regime, the
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minimax rate of convergence γn(β, ε, b) for a fixed ε does not involve β in the strongly

dense regime where ε ≤ β < 4ε
3

. In contrast, γn(β, ε, b) for a fixed ε depends explicitly

on β in the moderately dense regime where 4ε
3
≤ β ≤ 2ε. The dependency or lack of

dependency of γn(β, ε, b) on β within each regime is also illustrated in the two plot

panels at the bottom of Figure 4.1.

Interestingly, in the two-sequence case, the regions {b : b ≤ 0} and {b : b >

0} appear to constitute the regions of weak signal and strong signal, respectively,

regardless of the level of simultaneous sparsity. This is in contrast to the one-sequence

case where the dividing line is b = 0 when kn �
√
n, and b = 1−2β

4
when kn �

√
n.

We caution that this apparent “reconciliation” in the two-sequence case is simply

because the signal strengths are taken to be the same for both sequences µ and θ in

the simplified results presented above.

Remark 17. When the signal strengths rn = na and sn = nb of µ and θ are allowed

to differ, it turns out that {(a, b) : a ∧ b ≤ 0} characterizes the region of weak signal

when qn �
√
kn, while {(a, b) : a ∨ b ≤ 0} ∪ {(a, b) : a ∧ b ≤ β−2ε

4
} comprises the

region of weak signal when qn �
√
kn. We refer the readers to Appendix C for more

details.

4.2.3 Phase Transitions in the Minimax Rates of Conver-
gence

We see from Sections 4.2.1 and 4.2.2 that within each regime, the minimax rates of

convergence exhibit several phase transitions. In addition, each transition is governed

by a change in the relative magnitudes of the sparsity parameter β, the simultaneous

sparsity parameter ε, and the signal strength parameter b. In fact, it is the way phase

transitions occur within each regime that characterizes the regime itself. Furthermore,
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the phase transitions actually display “continuity” across the boundaries of different

regimes.

To depict what we meant graphically, first note that from Sections 4.2.1 and 4.2.2,

the minimax rates of convergence

γn(β, ε, b) � nr(β,ε,b), (4.25)

modulo a factor involving log n when applicable. In Figure 4.1, we plot the rate

exponent r(β, ε, b) against b for the sparse, moderately dense, and strongly dense

regimes.

Specifically, in the top row of Figure 4.1, we fix β = 0.45 and plot r(β, ε, b) against

b for a range of ε values in (0, β). The top left panel of Figure 4.1 provides a continuum

view of r(β, ε, b), as ε increases from 0 to β. Each piecewise straight line corresponds

to an ε value in the considered range. To highlight the discrepancy among the three

regimes, we color the sparse regime (0 < ε < β
2
) in red, the moderately dense regime

(β
2
≤ ε ≤ 3β

4
) in green, and the strongly dense regime (3β

4
< ε ≤ β) in blue. We see

that the three regimes have somewhat different behaviors for small positive values

of b. In particular, the sparse regime and the strongly dense regime experience two

transitions (three different slopes), while the moderately dense regime experiences

three transitions (four different slopes). Note that the difference in the number of

transitions is restored at the intersection of the blue region and the red region. Thus,

the phase transition is in some sense “continuous” across the regime boundaries —

the piecewise straight lines corresponding to r(β, ε, b)’s exhibit smooth transition as

ε increases from 0 to β. The top right panel of Figure 4.1 provides a static view for

each regime. We plot r(β, ε, b) against b for three values of ε corresponding to three

different regimes: ε = 0.12 (sparse regime), ε = 0.28 (moderately dense regime), and

ε = 0.4 (strongly dense regime). The knots on each dashed line indicate the transition
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Figure 4.1: Plot of the rate exponent r(β, ε, b) against the signal strength b. In the

sparse regime ( ), r(β, ε, b) changes in the order 2ε+ 8b− 2, 2ε+ 4b− 2, ε+ 6b− 2.

In the moderately dense regime ( ), r(β, ε, b) changes in the order 2ε+ 8b− 2, 2ε−

2, β + 4b− 2, ε+ 6b− 2. In the strongly dense regime ( ), r(β, ε, b) changes in the

order 2ε+ 8b− 2, 2ε− 2, ε+ 6b− 2. Top row, left panel: a continuum view of r(β, ε, b)

as ε increases from 0 to β = 0.45 (color changes from red to blue). Top row, right

panel: a static view of each regime: sparse (ε = 0.12), moderately dense (ε = 0.28),

and strongly dense (ε = 0.4). Transition points are indicated by the knots on the

dashed lines. Bottom row, left panel: a continuum view of r(β, ε, b) as β increases

from ε = 0.2 to 0.5 (color changes from blue to red). Grey vertical lines indicate b = 0

and b = ε
2
. Bottom row, right panel: a static view of each regime: strongly dense

(β = 0.25), moderately dense (β = 0.35), and sparse (β = 0.45).
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points for the slope of the line.

On the other hand, in the bottom row of Figure 4.1, we fix ε = 0.2 and plot

r(β, ε, b) against b for a range of β values in (ε, 0.5). The bottom left panel of Figure 4.1

provides a continuum view of r(β, ε, b), as β increases from ε to 0.5. Again, the the

strongly dense regime (ε ≤ β < 4ε
3

) is colored in blue, the moderately dense regime

(4ε
3
≤ β ≤ 2ε) in green, and the sparse regime (β > 2ε) in red, with each piecewise

straight line corresponding to a β value in the considered range. The two grey vertical

lines indicate the locations b = 0 and b = ε
2
. Note that all the red lines overlap (so

do all the blue lines), indicating that r(β, ε, b) for a fixed ε is independent of β in

the sparse regime and the strongly dense regime. In the moderately dense regime,

r(β, ε, b) only depends on β when 0 < b < ε
2
. The bottom right panel of Figure 4.1

provides a static view for each regime. We plot r(β, ε, b) against b for three values

of β: β = 0.25 (strongly dense regime), β = 0.35 (moderately dense regime), and

β = 0.45 (sparse regime). Due to the overlap of all lines in the range b ≤ 0 and

b > ε
2
, we shift the dashed lines corresponding to β = 0.45 and β = 0.25 (in red and

in blue, respectively) slightly to aid distinguishing the changes of r(β, ε, b) in different

regimes.

4.3 Simulation

In this section, we report on simulation studies to compare the performance of the

three estimators Q̂0 = 0, Q̂2 as in (4.15), and Q̂4 as in (4.21), under different scenarios.

We computed the mean squared error (MSE) of the three estimators to show that our

simulation results are compatible with the theoretical results given in Section 4.2.

So far, we have assumed that the noise level σ is known. In practice, σ is typically

unknown and needs to be estimated. Under the sparse setting of the present chapter,
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σ is easily estimable. Let M ∈ R2n have M2i−1 = Xi and M2i = Yi for i = 1, . . . , n. A

simple robust estimator of the noise level σ can be obtained from the median absolute

deviation (MAD) of the combined sample:

σ̂ =
medianj|Mj −mediank(Mk)|

0.6745
.

Such an estimator has been used in Donoho & Johnstone (1994) for wavelet estima-

tion.

We considered simulation studies over a range of sample size n, sparsity kn = nβ,

simultaneous sparsity qn = nε, and signal strength sn = nb. More specifically, we

took n ∈ {103, 104, . . . , 107}, β = 0.45 for individual sequences, b ∈ {−0.1, 0.15, 0.2},

and three values of simultaneous sparsity, one for each regime: ε = 0.02 (sparse

regime), ε = 0.3 (moderately dense regime) and ε = 0.44 (strongly dense regime).

For each (n, β, ε, b), we generated data from the Gaussian two-sequence model (4.3)

with µ, θ ∈ {0,±nb}n, ‖µ‖0 = ‖θ‖0 = [nβ], and ‖µ ? θ‖0 = [nε], where [·] denotes

rounding to the nearest integer. Figure 4.2 is the plot of the MSE (averaged over 200

replications) of the three estimators against sample size in the log-log scale, for each

combination of simultaneous sparsity and signal strength.

The theoretical results in Section 4.2 indicate that for Q̂ = Q̂0, Q̂2, or Q̂4,

sup
(µ,θ)∈Ω(β,ε,b)

E(Q̂−Q(µ, θ))2 � nr(β,ε,b)

for some rate exponent r(β, ε, b) (modulo a logarithmic factor when applicable). Thus,

it is not surprising that the results in Figure 4.2 (mostly) exhibit a linear pattern.

When the signal is weak with b = −0.1 (see the first row of Figure 4.2), we see

that Q̂0 (wide-dashed line) and Q̂4 (dotted line) have the lowest mean squared error.

Note that we expect Q̂0 to be optimal when the signal is weak. We observe that Q̂4

137



-2
0
-1
8
-1
6
-1
4
-1
2
-1
0

-8
-6

b = -0.1, ε = 0.02

n

lo
g 1
0(
M
S
E
)

103 104 105 106 107

-2
0
-1
8
-1
6
-1
4
-1
2
-1
0

-8
-6

b = -0.1, ε = 0.3

n

lo
g 1
0(
M
S
E
)

103 104 105 106 107

-2
0
-1
8
-1
6
-1
4
-1
2
-1
0

-8
-6

b = -0.1, ε = 0.44

n

lo
g 1
0(
M
S
E
)

103 104 105 106 107

-6
-5

-4
-3

-2
-1

0

b = 0.15, ε = 0.02

n

lo
g 1
0(
M
S
E
)

103 104 105 106 107

-6
-5

-4
-3

-2
-1

0

b = 0.15, ε = 0.3

n

lo
g 1
0(
M
S
E
)

103 104 105 106 107

-6
-5

-4
-3

-2
-1

0

b = 0.15, ε = 0.44

n

lo
g 1
0(
M
S
E
)

103 104 105 106 107

-4
-2

0
2

b = 0.2, ε = 0.02

n

lo
g 1
0(
M
S
E
)

103 104 105 106 107

Q̂0
Q̂2
Q̂4
optimal

-4
-2

0
2

b = 0.2, ε = 0.3

n

lo
g 1
0(
M
S
E
)

103 104 105 106 107

-4
-2

0
2

b = 0.2, ε = 0.44

n

lo
g 1
0(
M
S
E
)

103 104 105 106 107

Figure 4.2: Plot of MSE for the estimators Q̂0, Q̂2, and Q̂4 over different sample sizes

n ∈ {103, . . . , 107}, in the log-log scale. Fixing β = 0.45, the columns are ordered

from left to right as ε = 0.02 (sparse regime), ε = 0.3 (moderately dense regime),

and ε = 0.44 (strongly dense regime). The rows are ordered from top to bottom in

increasing signal strength: b ∈ {−0.1, 0.15, 0.2}. Solid line has a slope equal to that

of the optimal rate exponent r(β, ε, b).
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is nearly as good as Q̂0 from Figure 4.2. This is because when the signal is weak,

the thresholding step 1(X2
i ∨ Y 2

i ≥ σ2τn) thresholds both noise and weak signals,

and the de-bias term η is extremely small when n is moderately large, resulting in

Q̂4 ≈ Q̂0 = 0. As the signal becomes sufficiently strong (b ∈ {0.15, 0.2}), Q̂2 starts

to dominate in the sparse regime (ε = 0.02) while Q̂4 dominates in the moderately

dense and strongly dense regimes (ε ∈ {0.3, 0.44}). When the signal is sufficiently

large (b ∈ {0.15, 0.2}), Q̂0 is clearly suboptimal. In particular, in the case where

signal is both dense and strong (b = 0.2, ε ∈ {0.3, 0.44}), the MSE of Q̂0 diverges to

infinity, as indicated by the positive slope of the wide-dashed line. Note also that as

either ε or b increases, MSE increases, as can be seen by the flattening or reversing

of slopes towards the right end or bottom of the plot panel. This is compatible with

the fact that r(β, ε, b) increases with respect to both ε and b.

For each combination (β, ε, b), the solid line has a slope equal to the optimal rate

exponent r(β, ε, b), and an intercept deliberately selected so that it lies close to the

line corresponding to the optimal estimator. We see from Figure 4.2 that for all

combinations of (b, ε) except b = 0.15, ε ∈ {0.3, 0.44}, the slope of the solid line aligns

well with that of the optimal estimator, confirming the validity of our theoretical

results. We conjecture that in the case b = 0.15, ε ∈ {0.3, 0.44}, the worst case rate of

the optimal estimator Q̂4 in Ω(β, ε, b) is not attained at the configuration of location

and magnitude of nonzero entries in µ, θ considered in the simulation. This can be

seen from the fact that Q̂4 has a steeper slope than the optimal one (i.e., faster rate

of convergence) for sufficiently large n.
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4.4 Discussion

In this chapter, we discuss the estimation of the quadratic functional Q(µ, θ) =

1
n

∑
µ2
i θ

2
i over a family of parameter spaces where µ and θ are constrained in terms

of the magnitude, sparsity, and simultaneous sparsity. Similar to the one-sequence

estimation problem, we show that the minimax rates of convergence display different

phase transitions over the sparse regime and the dense regime. Different from the

one-sequence estimation problem, in the two-sequence case, the dense regime can be

further subdivided into the moderately dense regime and the strongly dense regime.

Despite the similarity in terminology, we emphasize that denseness and sparseness

refer to the relationship between simultaneous sparsity and individual sparsity in the

two-sequence problem, rather than that between sparsity and vector size as in the

one-sequence problem. The construction of the optimal estimators Q̂2 and Q̂4 are in-

spired by their one-sequence correspondence in respective regimes, with appropriate

modification that accounts for the structure of the two-sequence problem.

Our study of the two-sequence estimation problem can be generalized in several

aspects. In Appendix C, we show that the optimal rates of convergence for estimation

of Q(µ, θ) continue to subsume the aforementioned regimes, when µ and θ are allowed

unequal signal strengths. Moreover, the optimal rates are attained by the same

estimators in respective regimes. Nonetheless, the distinction between the sparse and

dense regimes is more apparent in this setting. In the sparse regime, estimation is

only desirable when the signal strengths of both sequences are sufficiently strong. In

contrast, in the dense regime, estimation is desirable whenever at least one sequence

admits a sufficiently strong signal (and the signal strength of the other sequence is not

too weak). Throughout this chapter, we assume that the sequences {Xi : 1 ≤ i ≤ n}

and {Yi : 1 ≤ i ≤ n} have a common noise level σ. Our analysis can be easily

extended to the case where σX 6= σY , by appropriately replacing the threshold levels
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in the proposed estimators Q̂2 and Q̂4 with ones that involve σX or σY . Such a

modification yields estimators which attain minimax rates of convergence that are

identical to that given in this chapter. When σX and σY are unknown, we can

use MAD to estimate the noise level of each sequence and plug in to the modified

estimators.

The focus of this chapter is on minimax rates of convergence for the estimation of

Q(µ, θ). Adaptive estimation of Q(µ, θ) is an interesting but technically challenging

problem. Cai & Low (2005) introduced a block thresholding estimator for adaptive

estimation of the quadratic functional in the one-sequence setting. It would be in-

teresting to explore whether a similar idea could be used for adaptively estimating

the quadratic functional in the two-sequence setting. In this chapter, we consider the

estimation of Q(µ, θ) over the parameter space defined in (4.4), where signal strengths

are incorporated through the `∞-norm. For future work, it would also be interesting

to study the behavior of the estimation problem under an `p-norm constraint on the

signal strengths, where p ∈ (0,∞).

A problem that is closely related to the estimation of the quadratic functional

Q(µ, θ) is the simultaneous signal detection problem, where the goal is to distinguish

between µ ? θ = 0 and µ ? θ 6= 0. In the single Gaussian sequence setting where one

observes Yi ∼ N(θi, σ
2), i = 1, . . . , n, it is of interest to test θ = 0 against θ 6= 0,

and there are two natural approaches: the sum of squares type test statistic
∑
Y 2
i

and the max-type test statistic max |Yi|. Simultaneous signal detection generalizes

the one-sequence testing problem and arises frequently in the context of integrative

genomics. In genetics, for instance, it is often of interest to identify polymorphisms

that are associated with multiple related conditions (Rankinen et al., 2015; Li et al.,

2015). The problem of simultaneous signal detection has been studied by Zhao et al.

(2012) under a mixture model framework, and a max-type statistic, max(|Xi| ∧ |Yi|),
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is proposed for detecting sparse simultaneous signals. On the other hand, in this

chapter we study the estimation of quadratic functional under the sequence model

framework. The proposed estimators Q̂2 and Q̂4 can be applied to the simultane-

ous signal detection problem as well. Similar to the problem of quadratic functional

estimation, it turns out that the simultaneous signal detection problem behaves dif-

ferently over two regimes. In the dense regime, a signal is detectable provided the

signal strength of at least one of the sequences is sufficiently strong and the signal

strength of the other sequence is not too weak. In contrast, in the sparse regime,

a signal is only detectable when both sequences admit sufficiently strong signals. A

crude analysis shows that the test procedures based on the statistics Q̂2 and Q̂4 are

effective in detecting simultaneous signals over the respective detectable regions. A

complete analysis of the optimality and adaptivity of such a test procedure is an

interesting but challenging problem which we leave for future work.
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A
Supplement for Chapter 2

This chapter contains supporting materials for Chapter 2. We present in Section A.1

the proofs for technical results given in Section 2.5. Proofs of the consistency results

stated in Section 2.6 are given in Section A.2, whereas proofs related to the power

algorithm of Section 2.7 are given in Section A.3. Section A.4 contains implementa-

tion details for the power algorithm, while Section A.5 contains an alternative linear

algebra method for computing sample kernel APCs. A comparison of kernel APC

with kernel PCA is given in Section A.6.

A.1 Proofs for Section 2.5

Proof of Lemma 1

Proof. Since H0 is finite-dimensional and the covariance matrix of a basis of H0 is

of full-rank, Var (·) induces a norm on H0, thereby turns it into a Hilbert space. It

is easy to check that any finite-dimensional Hilbert space is also an RKHS, so H0 is

an RKHS with respect to Var (·). To simplify notation, in below we will write ‖φ‖2
0

for Var (φ). We now show boundedness of evaluation functionals on H wrt ‖φ‖2
α =

‖φ‖2
0 +α‖φ‖2

1, where α > 0. Let φ = φ1+φ0 be uniquely decomposed into φ0 ∈ H0 and
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φ1 ∈ H1, and note ‖φ1‖2
1 = ‖φ‖2

1 because φ0 is in the null space of ‖ · ‖1. To express

statements such as ‖φ1‖2
0 ≤ c‖φ1‖2

1 for some constant c not depending on φ1, we use

the simplifying notation ‖φ1‖2
0
<∼ ‖φ1‖2

1. Under the assumption E(k1(X,X)) < ∞,

we do have ‖φ1‖2
0 = Var (φ1(X)) ≤ E(φ1(X)2) = E(〈φ1, k1

x〉21) ≤ E(‖φ1‖2
1‖k1

x‖2
1) =

‖φ1‖2
1E(k1(X,X)) <∼ ‖φ1‖2

1. Facts such as ‖φ+ψ‖2 ≤ 2(‖φ‖2+‖ψ‖2) can be expressed

as ‖φ+ψ‖2 <∼ ‖φ‖2+‖ψ‖2. In the following derivation, explanations in parens describe

the action needed to step to the next line:

|φ(x)|2 <∼ |φ0(x)|2 + |φ1(x)|2 (apply RKHS assumptions)

<∼ ‖φ0‖2
0 + ‖φ1‖2

1 (use φ0 = φ−φ1, ‖φ1‖2
1 = ‖φ‖2

1)

<∼ (‖φ‖2
0 + ‖φ1‖2

0) + ‖φ‖2
1 (use ‖φ1‖2

0
<∼ ‖φ1‖2

1)

<∼ (‖φ‖2
0 + ‖φ1‖2

1) + ‖φ‖2
1 (use ‖φ1‖2

1 = ‖φ‖2
1)

<∼ (‖φ‖2
0 + ‖φ‖2

1) + ‖φ‖2
1 (use α > 0)

<∼ ‖φ‖2
0 + α‖φ‖2

1

= ‖φ‖2
α

We show next completeness of H wrt ‖φ‖2
α: Assume the sequence φ0(n) +φ1(n) is

Cauchy, i.e., ‖(φ0(n)+φ1(n))− (φ0(m)+φ1(m))‖2
α → 0 as m,n→∞. We then note:

‖(φ0(n)+φ1(n))−(φ0(m)+φ1(m))‖2
α = ‖(φ0(n)+φ1(n))−(φ0(m)+φ1(m))‖2

0 + α‖φ1(n)−φ1(m)‖2
1

It follows that both terms on the right hand side converge to zero as m,n → ∞.

Convergence of the term ‖φ1(n) − φ1(m)‖2
1 implies that the sequence φ1(n) is Cauchy

in H1 wrt ‖ · ‖1. By assumption H1 is RKHS, hence complete, granting that the

sequence has a limit φ1(∞).

To address the existence of a limit for the sequence φ0(n), we start by using the

fact ‖φ1‖0
<∼‖φ1‖1, which implies that ‖φ1(n)−φ1(m)‖0 also converges to zero. We use
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next the following bound:

‖(φ0(n)+ φ1(n)) − (φ0(m)+ φ1(m))‖0 = ‖(φ0(n)− φ0(m)) + (φ1(n)− φ1(m))‖0

≥
∣∣ ‖φ0(n)− φ0(m)‖0 − ‖φ1(n)− φ1(m))‖0

∣∣
The left hand term on the first line converges to zero by assumption, and we just

showed that the term ‖φ1(n)− φ1(m))‖0 also converges to zero, implying together that

‖φ0(n)− φ0(m)‖0 must converge to zero as well. Hence the sequence φ0(n) is Cauchy in

H0 under ‖ · ‖0 and has a limit φ0(∞) since H0 is an RKHS under ‖ · ‖0.

We still need to show that the sequences φ0(n) and φ1(n) converge to their limits

in the norm ‖ · ‖α, but this follows from ‖φ0(n) − φ0(∞)‖0 = ‖φ0(n) − φ0(∞)‖α and

‖φ1(n)−φ1(∞)‖α <∼‖φ1(n)−φ1(∞)‖1. It is finally proven that φ0(n)+φ1(n) → φ0(∞)+φ1(∞)

in the norm ‖ · ‖α.

Proof of Lemma 3

Proof. Isometry follows from ‖φ̃1‖1 = ‖φ1−T0(φ1)‖1 = ‖φ1‖1 because T0(φ1) ∈ H0.

Boundedness of evaluation functionals is seen as follows, abbreviating φ0 = T0(φ1):

|φ̃1(x)|2 <∼ |φ1(x)|2 + |φ0(x)|2 (apply RKHS assumptions)

<∼ ‖φ1‖2
1 + ‖φ0‖2

0 (use continuity of T0 : ‖φ0‖0
<∼‖φ1‖1, )

<∼ ‖φ1‖2
1 + ‖φ1‖2

1

<∼ ‖φ1‖2
1

= ‖φ̃1‖2
1

We now check that E(k̃1(X,X)) < ∞. Since H0 is a finite-dimensional RKHS

with respect to Var (·), it is easy to check that its reproducing kernel k0 satisfies
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E(k0(X,X)) <∞. On the other hand,

|φ̃1(x)| ≤ |φ1(x)| + |φ0(x)| (by reproducing property)

= |〈φ1, k1
x〉1| + |〈φ0, k0

x〉0| (by Cauchy-Schwarz Inequality)

≤ ‖φ1‖1‖k1
x‖1 + ‖φ0‖0‖k0

x‖0 (use continuity of T0 : ‖φ0‖0
<∼‖φ1‖1)

<∼ ‖φ1‖1‖k1
x‖1 + ‖φ1‖1‖k0

x‖0 (use ‖φ1‖1 = ‖φ̃‖1)

= ‖φ̃1‖1‖k1
x‖1 + ‖φ̃1‖1‖k0

x‖0

Plugging in φ̃1 = k̃1
x, we obtain ‖k̃1

x‖2
1 = k̃1

x(x) <∼ ‖k̃1
x‖1‖k1

x‖1 + ‖k̃1
x‖1‖k0

x‖0, and

therefore, ‖k̃1
x‖1

<∼ ‖k1
x‖1 + ‖k0

x‖0. It follows that E(k̃1(X,X)) <∼ E(k1(X,X)) +

E(k0(X,X)) <∞.

Proof of Lemma 4

Proof. If H1 is an RKHS complement granted by the assumptions of Lemma 1, let T0

be the orthogonal projection ofH ontoH0 restricted toH1, where orthogonality is wrt

‖ · ‖2
α = Var (·) + α‖ · ‖2

1. Then T0 : H1 → H0 is bounded, and the associated RKHS

complement H̃1 = {φ1 − T0(φ1) |φ1 ∈ H1} granted by Lemma 3 is the orthogonal

complement of H0 wrt ‖·‖α. That is, H̃1 = {φ ∈ H : 〈φ, φ0〉α = 0 ∀φ0 ∈ H0}. Finally,

H̃1 does not depend on ‖ · ‖1 because 〈φ, φ0〉α = Cov(φ, φ0) due to 〈φ, φ0〉1 = 0 for all

φ0 ∈ H0.

Proof of Lemma 5

Proof. We first decompose H as H = H0⊕H̃1, where H̃1 is the canonical complement

ofH0 wrt 〈·, ·〉α. Let k, k0, k̃α denote the reproducing kernel ofH,H0, H̃1, respectively,

wrt 〈·, ·〉α, and let k̃1 denote the reproducing kernel of H̃1 wrt 〈·, ·〉1. Then k = k0+k̃α.

That H0 is a finite-dimensional RKHS wrt Cov(·, ·) implies that E(k0(X,X)) < ∞,
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so it suffices to show that E(k̃α(X,X)) <∞. For this, we need to connect k̃α with k̃1.

By Lemma 3, E(k̃1(X,X)) < ∞. This in turn implies that the covariance operator

C : H̃1 → H̃1 given by 〈φ,Cψ〉1 = Cov(φ, ψ) exists and is bounded (Fukumizu et al.,

2007). Given φ ∈ H̃1, we then have

φ(x) = 〈φ, k̃1
x〉1 = 〈φ, k̃αx 〉α = Cov(φ, k̃αx ) + α〈φ, k̃αx 〉1

= 〈φ,Ck̃αx 〉1 + α〈φ, k̃αx 〉1 = 〈φ, (C + αIdH̃1)k̃αx 〉1.

It follows that 〈φ, k̃αx 〉α = 〈φ, (C + αIdH̃1)k̃αx 〉1 ∀φ ∈ H̃1, and k̃1
x = (C + αIdH̃1)k̃αx .

Therefore,

k̃α(x, x) = 〈k̃αx , k̃αx 〉α = 〈k̃αx , (C + αIdH̃1)k̃αx 〉1 = 〈k̃αx , k̃1
x〉1

= 〈(C + αIdH̃1)−1k̃1
x, k̃

1
x〉1 ≤ ‖(C + αIdH̃1)−1‖k̃1(x, x).

Since ‖(C + αIdH̃1)−1‖ ≤ α−1 <∞, we obtain E(k̃α(X,X)) <∞.

A.2 Consistency Proof of Section 2.6

In this section, we give the consistency proof for sample kernel APCs. We begin by

presenting in Section A.2.1 some basic properties of the operators Ĉ
(n)
jj + αn(IdHj −

Cjj) and Cjj +αn(IdHj −Cjj), which forms the building blocks for the proof of three

key lemmas in Section A.2.2.

A.2.1 Proofs of Supporting Lemmas

We consider some lemmas that will be directly useful for establishing the proofs in

Section A.2.2. The following lemma corresponds to Lemma 5 in Fukumizu et al.
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(2007), and bounds the Hilbert-Schmidt norm of the difference between the empirical

cross-covariance operator and the (population) cross-covariance operator.

Lemma 10. The cross-covariance operator Cij is Hilbert-Schmidt, and

E‖Ĉ(n)
ij −Cij‖HS = O(n−1/2),

where ‖ · ‖HS denotes the Hilbert-Schmidt norm of a Hilbert-Schmidt operator.

Corollary 4 is an immediate consequence of Lemma 10.

Corollary 4. The cross-covariance operator Cij satisfies

P (‖Ĉ(n)
ij −Cij‖ > ε) ≤ dε−1n−1/2,

where d is some constant that does not depend on n.

Proof. Since the operator norm of an operator is dominated by its Hilbert-Schmidt

norm, it follows from Lemma 10 that

P (‖Ĉ(n)
ij −Cij‖ > ε) ≤ P (‖Ĉ(n)

ij −Cij‖HS > ε) ≤ ε−1E‖Ĉ(n)
ij −Cij‖HS ≤ dε−1n−1/2.

Proof of Lemma 6

Since Cjj � 0, it is easy to see that Cjj+α(IdHj−Cjj) = (1−α)Cjj+αIdHj � αIdHj

for 0 < α ≤ 1. On the other hand, by Corollary 4, there exist constants dj not

depending on n such that

P (‖Ĉ(n)
jj −Cjj‖ > ε) ≤ djε

−1n−1/2, 1 ≤ j ≤ p. (A.1)
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Since αn → 0, for sufficiently large values of n, we have

Ĉ
(n)
jj + αn(IdHj −Cjj) =

(
Ĉ

(n)
jj −Cjj

)
+
(
Cjj + αn(IdHj −Cjj)

)
�
(
Ĉ

(n)
jj −Cjj

)
+ αnIdHj

=
(
Ĉ

(n)
jj −Cjj +

αn
2

IdHj

)
+
αn
2

IdHj ,

and it follows that

P

(
Ĉ

(n)
jj + αn(IdHj −Cjj) �

αn
2

IdHj

)
≥ P

(
Ĉ

(n)
jj −Cjj +

αn
2

IdHj � 0

)
= P

(
Cjj − Ĉ

(n)
jj �

αn
2

IdHj

)
≥ P

(
‖Cjj − Ĉ

(n)
jj ‖ ≤

αn
2

)
≥ 1− 2djα

−1
n n−1/2,

where the last inequality is due to (A.1). Applying a union bound, we obtain

P

(
Ĉ

(n)
jj + αn(IdHj −Cjj) �

αn
2

IdHj for 1 ≤ j ≤ p

)
= 1− P

(
Ĉ

(n)
jj + αn(IdHj −Cjj) �

αn
2

IdHj for some j

)
≥ 1−

p∑
j=1

P

(
Ĉ

(n)
jj + αn(IdHj −Cjj) �

αn
2

IdHj

)
≥ 1− δ,

where δ = 2(
∑p

j=1 dj)α
−1
n n−1/2.

Lemma 11. Suppose that Assumption 2 hold, and αn → 0. Then, for sufficiently

149



large values of n,

inf
‖‖‖Φ‖‖‖?=1

{
〈〈〈Φ, diag(C)Φ〉〉〉? + 〈〈〈Φ,J(n)Φ〉〉〉?

}
≥ αn.

Proof. By Lemma 6,

Cjj + αn(IdHj −Cjj) � αnIdHj , 1 ≤ j ≤ p,

for sufficiently large values of n. Hence,

inf
‖‖‖Φ‖‖‖?=1

{
〈〈〈Φ, diag(C)Φ〉〉〉? + 〈〈〈Φ,J(n)Φ〉〉〉?

}
= inf∑p

j=1 ‖φj‖2?,j=1

(
p∑
j=1

〈φj, (Cjj + αn(IdHj −Cjj))φj〉?,j

)

= min
1≤j≤p

inf
‖φj‖2?,j=1

〈φj, (Cjj + αn(IdHj −Cjj))φj〉?,j

≥ αn.

Lemma 12. Suppose that Assumption 2 hold, and αn → 0. Then, for sufficiently

large values of n,

P

(
sup
Φ∈H

∣∣∣∣∣〈〈〈Φ, diag(Ĉ(n))Φ〉〉〉? + 〈〈〈Φ,J(n)Φ〉〉〉?
〈〈〈Φ, diag(C)Φ〉〉〉? + 〈〈〈Φ,J(n)Φ〉〉〉?

− 1

∣∣∣∣∣ > ε

)
≤ dε−1α−1

n n−1/2,

where d is a constant not depending on n.

Proof.

sup
Φ∈H

∣∣∣∣∣〈〈〈Φ, diag(Ĉ(n))Φ〉〉〉? + 〈〈〈Φ,J(n)Φ〉〉〉?
〈〈〈Φ, diag(C)Φ〉〉〉? + 〈〈〈Φ,J(n)Φ〉〉〉?

− 1

∣∣∣∣∣ = sup
‖‖‖Φ‖‖‖?=1

∣∣∣∣∣〈〈〈Φ, (diag(Ĉ(n))− diag(C))Φ〉〉〉?
〈〈〈Φ, (diag(C) + J(n))Φ〉〉〉?

∣∣∣∣∣
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≤ sup
‖‖‖Φ‖‖‖?=1

|〈〈〈Φ, (diag(Ĉ(n))− diag(C))Φ〉〉〉?|
αn

≤ max
1≤j≤p

sup
‖φj‖2?,j=1

|〈φj, (Ĉ(n)
jj −Cjj)φj〉?,j|
αn

= max
1≤j≤p

‖Ĉ(n)
jj −Cjj‖
αn

,

where the first inequality is due to Lemma 11. By Corollary 4, there exist constants

dj not depending on n such that

P (‖Ĉ(n)
jj −Cjj‖ > ε) ≤ djε

−1n−1/2, 1 ≤ j ≤ p.

Applying a union bound, it follows that with probability at most (
∑p

j=1 dj)ε
−1α−1

n n−1/2,

max
1≤j≤p

‖Ĉ(n)
jj −Cjj‖
αn

≥ sup
Φ∈H

∣∣∣∣∣〈〈〈Φ, diag(Ĉ(n))Φ〉〉〉? + 〈〈〈Φ,J(n)Φ〉〉〉?
〈〈〈Φ, diag(C)Φ〉〉〉? + 〈〈〈Φ,J(n)Φ〉〉〉?

− 1

∣∣∣∣∣ > ε.

A.2.2 Proofs of Main Lemmas

We are now ready to prove the three key lemmas given in Section 2.6.

Proof of Lemma 7

Proof. By Lemma 12,

R̂αn(Φ) =
〈〈〈Φ, Ĉ(n)Φ〉〉〉? + 〈〈〈Φ,J(n)Φ〉〉〉?

〈〈〈Φ, diag(Ĉ(n))Φ〉〉〉? + 〈〈〈Φ,J(n)Φ〉〉〉?

=
〈〈〈Φ, Ĉ(n)Φ〉〉〉? + 〈〈〈Φ,J(n)Φ〉〉〉?
〈〈〈Φ, diag(C)Φ〉〉〉? + 〈〈〈Φ,J(n)Φ〉〉〉?

(1 +Op(α
−1
n n−1/2)),
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where Op(α
−1
n n−1/2) is a quantity that, when divided by α−1

n n−1/2, is bounded in

probability uniformly over all Φ ∈H.

On the other hand, by Corollary 4, there exists a constant d not depending on n

such that

P (‖Ĉ(n)
ij −Cij‖ > ε) ≤ dε−1n−1/2, 1 ≤ i, j ≤ p.

Combined with Lemma 11, we obtain

sup
Φ∈H

∣∣∣∣∣ 〈〈〈Φ, Ĉ(n)Φ〉〉〉? + 〈〈〈Φ,J(n)Φ〉〉〉?
〈〈〈Φ, diag(C)Φ〉〉〉? + 〈〈〈Φ,J(n)Φ〉〉〉?

−Rαn(Φ)

∣∣∣∣∣
= sup

Φ∈H

∣∣∣∣∣ 〈〈〈Φ, (Ĉ(n) −C)Φ〉〉〉?
〈〈〈Φ, diag(C)Φ〉〉〉? + 〈〈〈Φ,J(n)Φ〉〉〉?

∣∣∣∣∣
≤ sup
‖‖‖Φ‖‖‖?=1

|〈〈〈Φ, (Ĉ(n) −C)Φ〉〉〉?|
αn

=
‖Ĉ(n) −C‖

αn

≤
p2 max1≤i,j≤p ‖Ĉ(n)

ij −Cij‖
αn

=
p2Op(n

−1/2)

αn

= Op(α
−1
n n−1/2).

Under condition (2.30), α−1
n n−1/2 → 0, so we conclude that

R̂αn(Φ) = (Rαn(Φ) +Op(α
−1
n n−1/2))(1 +Op(α

−1
n n−1/2)) = Rαn(Φ) + op(1),

where op(1) is a quantity to converges to 0 in probability uniformly over all Φ ∈ H.

The proof is complete.

We now turn to the proof of Lemma 8.
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Proof of Lemma 8

Proof. To simplify notation, we write ‖φ‖2 for Var (φ). The probability measure for

which variance is taken should be clear from context.

Given ε ∈ (0, 1) and Ψ ∈H, let α(ε) = (ε
∑
‖ψj‖2)/(2

∑
‖ψj‖2

j,1). Then

Rα(ε)(Ψ) =
‖
∑
ψj‖2 + α(ε)

∑
‖ψj‖2

j,1∑
‖ψj‖2 + α(ε)

∑
‖ψj‖2

j,1

≤
‖
∑
ψj‖2 + α(ε)

∑
‖ψj‖2

j,1∑
‖ψj‖2

≤ ‖
∑
ψj‖2∑
‖ψj‖2

+
ε

2
.

Hence, to establish (2.34), it suffices to show that there exists Ψ ∈H such that

‖
∑
ψj‖2∑
‖ψj‖2

< λ1 +
ε

2
. (A.2)

To this end, let δ = ε/(6λ1/
√
p+4
√
λ1+3ε/

√
p+2) ∈ (0, 1). Under the assumption

that Hj is dense in L2(Xj, dPj), there exists ψj ∈ Hj such that ‖ψj − φ∗j‖ < δ/p, for

j = 1, . . . , p. It follows that

∣∣∣∥∥∥∑ψj

∥∥∥− ∥∥∥∑φ∗j

∥∥∥∣∣∣ < ∥∥∥∑ψj −
∑

φ∗j

∥∥∥
=
∥∥∥∑(ψj − φ∗j)

∥∥∥ ≤∑ ‖ψj − φ∗j‖ ≤ p · δ
p

= δ. (A.3)

To establish (A.2) for such a choice of Ψ, we want to find an upper bound for

‖
∑
ψj‖2 and a lower bound for

∑
‖ψj‖2. By definition, the population APC Φ∗

satisfies
∑
‖φ∗j‖2 = 1. Hence,

∣∣∣∑ ‖ψj‖2 − 1
∣∣∣ =

∣∣∣∑ ‖ψj‖2 −
∑
‖φ∗j‖2

∣∣∣
≤
∑∣∣‖ψj‖2 − ‖φ∗j‖2

∣∣
=
∑∣∣‖ψj‖ − ‖φ∗j‖∣∣ · ∣∣‖ψj‖+ ‖φ∗j‖

∣∣
=
∑ δ

p

(
2‖φ∗j‖+

δ

p

)
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=
2δ

p

∑
‖φ∗j‖+

δ2

p

≤ 2δ
√
p

+
δ2

p
≤ 3δ
√
p
, (A.4)

where the second to the last inequality follows from the fact that
∑
‖φ∗j‖ ≤ (p

∑
‖φ∗j‖2)1/2

=
√
p, and the last inequality follows from 0 < δ < 1.

On the other hand, given that the population APC Φ∗ satisfies ‖
∑
φ∗j‖2 = λ1,

we have

∣∣∣∣∥∥∥∑ψj

∥∥∥2

− λ1

∣∣∣∣ =

∣∣∣∣∥∥∥∑ψj

∥∥∥2

−
∥∥∥∑φ∗j

∥∥∥2
∣∣∣∣

=
∣∣∣∥∥∥∑ψj

∥∥∥− ∥∥∥∑φ∗j

∥∥∥∣∣∣ · ∣∣∣∥∥∥∑ψj

∥∥∥+
∥∥∥∑φ∗j

∥∥∥∣∣∣
≤ δ

(
2
∥∥∥∑φ∗j

∥∥∥+ δ
)

= δ(2
√
λ1 + δ) ≤ 2

√
λ1δ + δ, (A.5)

where the first inequality is due to (A.3).

Note that 0 < 3δ/
√
p < 1. Combining (A.4) and (A.5), we obtain

‖
∑
ψj‖2∑
‖ψj‖2

≤ λ1 + 2
√
λ1δ + δ

1− 3δ√
p

= λ1 +

3λ1√
p
δ + 2

√
λ1δ + δ

1− 3δ√
p

≤ λ1 +
ε

2
,

where the last inequality follows from the definition of δ. This completes the proof.

Proof of Lemma 9

Proof. Based on the discussion in Section 2.2.3, the operator P : H∗ → H∗ can be

expressed as follows:

P =
∞∑
ν=1

λν〈〈〈·,Φν〉〉〉PΦν ,

where {λν} is the set of eigenvalues with +1 as the only possible accumulation point,

and {Φν} is the corresponding eigenfunctions so that {Φν} forms a complete or-

154



thonormal basis system of H∗.

Let λ1 and λ2 denote the smallest and the second smallest eigenvalue of P, respec-

tively. Under Assumptions 1(a)−(c), λ1 < 1 is not an accumulation point and it has

multiplicity one, so λ1 < λ2. It follows that the smallest population APC Φ∗ = Φ1.

By definition, ‖‖‖Φ∗‖‖‖2
P =

∑
Var (φ∗j) = 1.

Let Φ
(n)
N = Φ(n)/‖‖‖Φ(n)‖‖‖P , and let δn = 〈〈〈Φ(n)

N ,Φ∗〉〉〉P . Then

〈〈〈Φ(n)
N ,PΦ

(n)
N 〉〉〉P =

∞∑
ν=1

λν〈〈〈Φ(n)
N ,Φν〉〉〉2P

≥ λ1〈〈〈Φ(n)
N ,Φ∗〉〉〉2P + λ2

∞∑
ν=2

〈〈〈Φ(n)
N ,Φν〉〉〉2P

= λ1δ
2
n + λ2(1− δ2

n)

≥ λ1. (A.6)

Hence,

R0(Φ(n)) =
Var (

∑
φ

(n)
j )∑

Var (φ
(n)
j )

=
〈〈〈Φ(n),PΦ(n)〉〉〉P
‖Φ(n)‖2

P

= 〈〈〈Φ(n)
N ,PΦ

(n)
N 〉〉〉P ≥ λ1. (A.7)

By assumption, R0(Φ(n)) → λ1, so all the inequalities in (A.6) becomes equalities,

and we conclude that

δ2
n = 〈〈〈Φ(n)

N ,Φ∗〉〉〉2P =
〈〈〈Φ(n),Φ∗〉〉〉2P
‖‖‖Φ(n)‖‖‖2

P‖‖‖Φ
∗‖‖‖2
P

=

(∑
Cov(φ

(n)
j , φ∗j)

)2(∑
Var (φ

(n)
j )
)(∑

Var (φ∗j)
) → 1. (A.8)

A.3 Proofs for Section 2.7

This section contains proofs for theorems in Section 2.7.
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Proof of Theorem 2

Proof. To see that S
(α)
ij is well-defined, we need to show the existence and uniqueness

of solution to the regularized population regression problem.

First, note that for a given φj ∈ Hj, the operator Cov(φj(Xj), ·(Xi)) : Hi → IR

is a bounded linear functional on Hi. By the Riesz Representation Theorem, there

exists a unique h ∈ Hi such that Cov(φj(Xj), f(Xi)) = 〈h, f〉α,i for all f ∈ Hi. It

then follows that

argmin
f∈Hi

{
Var (φj(Xj)− f(Xi)) + α‖f‖2

i,1

}
= argmin

f∈Hi

{
−2Cov(φj(Xj), f(Xi)) + Var (f(Xi)) + α‖f‖2

i,1

}
= argmin

f∈Hi

{
−2〈h, f〉α,i + ‖f‖2

α,i

}
= h.

That is, we have S
(α)
ij φj = h, where h is unique and satisfies Cov(φj(Xj), f(Xi)) =

〈h, f〉α,i for all f ∈ Hi. Equivalently,

Cov(φi(Xi), φj(Xj)) = 〈φi,S(α)
ij φj〉αi , ∀φi ∈ Hi, φj ∈ Hj.

Thus, we see that S
(α)
ij is the cross-covariance operator from Hj to Hi. It follows that

S
(α)
ij is Hilbert-Schmidt (Fukumizu et al., 2007), hence compact.

To show (2.48), recall that Riesz Representation Theorem says that if ` is a

bounded linear functional on H with representer h` ∈ H, i.e. `(f) = 〈h`, f〉α for

all f ∈ H, then ‖`‖ = ‖h`‖α. In the case that `(f) = Cov(φj(Xj), f(Xi)) = 〈h, f〉α,i
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for all f ∈ Hi, we have

‖S(α)
ij φj‖α,i = ‖h‖α,i = ‖Cov(φj(Xj), ·(Xi))‖ = sup

‖f‖α,i≤1

|Cov(φj(Xj), f(Xi))|

≤ sup
‖f‖α,i≤1

(
Var (φj(Xj))Var (f(Xi))

)1/2

≤ sup
‖f‖α,i≤1

(
Var (φj(Xj))

)1/2‖f‖α,i =
(
Var (φj(Xj))

)1/2 ≤ ‖φj‖α,j.

Proof of Theorem 3

Proof. First, note that we can rewrite the optimization criterion in the population

kernel APC problem as

Var

(∑
i

φi(Xi)

)
+ α

∑
i

‖φi‖2
i,1

=
∑
i

Var (φi(Xi)) + α
∑
i

‖φi‖2
i,1 +

∑
i

∑
j 6=i

Cov(φi(Xi), φj(Xj))

=
∑
i

‖φi‖2
α,i +

∑
i

∑
j 6=i

〈φi,S(α)
ij φj〉α,i

=
∑
i

〈
φi,
∑
j 6=i

S
(α)
ij φj + φi

〉
α,i

= 〈〈〈Φ, S̃(α)Φ〉〉〉α ≥ 0.

Hence, S̃(α) is positive. That the constraint
∑

Varφi(Xi) + α
∑
‖φi‖2

i,1 = 〈〈〈Φ,Φ〉〉〉α

follows by definition.

To see that S̃(α) is self-adjoint, we need to show that 〈〈〈Φ, S̃(α)Ψ〉〉〉α = 〈〈〈S̃(α)Φ,Ψ〉〉〉α.

Since

Cov(φi(Xi), ψj(Xj)) = 〈φi,S(α)
ij ψj〉α,i = 〈S(α)

ji φi, ψj〉α,j, ∀φi ∈ Hi, ψj ∈ Hj,
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we see that (S
(α)
ij )∗ = S

(α)
ji . It follows that

〈〈〈Φ, S̃(α)Ψ〉〉〉α =
∑
i

〈φi, (S̃(α)Ψ)i〉α,i =
∑
i

〈
φi,
∑
j 6=i

S
(α)
ij ψj + ψi

〉
α,i

=
∑
i

∑
j 6=i

〈φi,S(α)
ij ψj〉α,i +

∑
i

〈φi, ψi〉α,i

=
∑
j

∑
i 6=j

〈S(α)
ji φi, ψj〉α,j +

∑
j

〈φj, ψj〉α,j

=
∑
j

〈∑
i 6=j

S
(α)
ji φi + φj, ψj

〉
α,j

=
∑
j

〈(S̃(α)Φ)j, ψj〉α,j

= 〈〈〈S̃(α)Φ,Ψ〉〉〉α,

so S̃(α) is self-adjoint.

To check that S̃(α) is bounded above by p, by (2.48), we have ‖S(α)
ij φj‖α,i ≤ ‖φj‖α,j.

Therefore,

‖‖‖S̃(α)Φ‖‖‖2
α =

p∑
i=1

∥∥∥∥∑
j 6=i

S
(α)
ij φj + φi

∥∥∥∥2

α,i

≤
p∑
i=1

(∑
j 6=i

‖S(α)
ij φj‖α,i + ‖φi‖α,i

)2

(use ‖S(α)
ij φj‖α,i ≤ ‖φj‖α,j)

≤
p∑
i=1

( p∑
j=1

‖φj‖α,j
)2

(use (
∑p

j=1 aj)
2 ≤ p

∑p
j=1 a

2
j)

≤ p · p
p∑
j=1

‖φj‖2
α,j

= p2‖‖‖Φ‖‖‖2
α,

so ‖S̃(α)‖ = sup‖‖‖Φ‖‖‖α=1 ‖‖‖S̃(α)Φ‖‖‖α ≤ p.
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Proof of Proposition 1

Proof. Let M = γIdH − S̃(α), where γ = (p + 1)/2. Then Φ̃ is the unit eigenfunc-

tion corresponding to the largest eigenvalue λ of M, and it is assumed that λ has

multiplicity one. By assumption, the power algorithm is initialized with Φ[0] that

satisfies

Φ[0] = a0Φ̃ + Ψ[0], where Ψ[0] ⊥ Φ̃ and a0 > 0.

Let

Φ[t+1] =
MΦ[t]

‖‖‖MΦ[t]‖‖‖α
,

and suppose that

Φ[t] = atΦ̃ + Ψ[t], where Ψ[t] ⊥ Φ̃.

Then

Φ[t+1] =
MΦ[t]

‖‖‖MΦ[t]‖‖‖α
=

M(atΦ̃ + Ψ[t])

‖‖‖MΦ[t]‖‖‖α
=

atλ

‖‖‖MΦ[t]‖‖‖α
Φ̃ +

MΨ[t]

‖‖‖MΦ[t]‖‖‖α
.

Matching the coefficients, we see that

at+1 =
atλ

‖‖‖MΦ[t]‖‖‖α
, Ψ[t+1] =

MΨ[t]

‖‖‖MΦ[t]‖‖‖α
, (A.9)

and it follows that a0 > 0 implies at > 0 for all t ∈ N. Now note that for Ψ ⊥ Φ̃,

‖‖‖MΨ‖‖‖α ≤ r‖‖‖Ψ‖‖‖α, where r < λ, (A.10)

so by (A.9) and (A.10),

‖‖‖Ψ[t+1]‖‖‖α
at+1

=
‖‖‖MΨ[t]‖‖‖α

atλ
≤
(
r

λ

)
‖‖‖Ψ[t]‖‖‖α
at

,
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which in turn implies

‖‖‖Ψ[t]‖‖‖α
at

≤
(
r

λ

)t‖‖‖Ψ[0]‖‖‖α
a0

→ 0 as t→∞. (A.11)

To show that Φ[t] → Φ̃, note that ‖‖‖Φ[t]‖‖‖α = 1 implies that

‖‖‖atΦ̃ + Ψ[t]‖‖‖α = 1⇔ a2
t + ‖‖‖Ψ[t]‖‖‖2

α = 1⇔ 1 +
‖‖‖Ψ[t]‖‖‖2

α

a2
t

=
1

a2
t

.

From (A.11), we conclude that a2
t → 1 and ‖Ψ[t]‖‖‖2

α → 0, hence

‖‖‖Φ[t] − Φ̃‖‖‖2
α = (1− at)2 + ‖‖‖Ψ[t]‖‖‖2

α → 0.

A.4 Implementation Details of the Power Algo-

rithm

We justified the use of a smoothing-based power algorithm in computing population

kernel APCs in Section 2.7. In this section, we give a detailed description of its

empirical implementation.

A.4.1 The Representer Theorem for Kernel APCs

We first need to resolve the issue that the spaces Hj in H = H1 × · · · × Hp in the

sample kernel APC problem

min
Φ∈H

V̂ar (

p∑
j=1

φj) +

p∑
j=1

αj‖φj‖2
1,j subject to

p∑
j=1

V̂ar (φj) +

p∑
j=1

αj‖φj‖2
1,j = 1

(A.12)
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is (almost always) infinite-dimensional, which can pose challenges computationally.

As will be shown, the beauty of the RKHS framework for APCs estimation is that for

suitable RKHSs H, the solution to (A.12) always lie in a finite-dimensional subspace

of H and thus can be computed in closed form.

To begin, consider the smoothing splines problem

min
f∈H

{
1

n

n∑
i=1

(yi − f(xi))
2 + α‖f‖2

1

}
, (A.13)

where H is an RKHS with semi-norm ‖ · ‖1. To be more concrete, we suppose that

H is associated with reproducing kernel k and inner product 〈·, ·〉k. Moreover,

H = H0 ⊕H1, (A.14)

where H0 is a finite-dimensional linear subspace of H with basis {q1, . . . , qm}, m =

dim(H0) < n, and H1 is the orthogonal complement of H0. With the decomposition

(A.14), the reproducing kernel k can also be uniquely decomposed into k = k0 + k1,

where k0(x, ·) = P0k(x, ·), k1(x, ·) = P1k(x, ·), and P0 and P1 denote the orthogonal

projection of H onto H0 and H1, respectively. One can check that H0 and H1 are

RKHSs with reproducing kernels k0 and k1, respectively (Aronszajn, 1950). Denote

the respective RKHS inner products on H0 and H1 by 〈·, ·〉0 and 〈·, ·〉1. Then the

inner product 〈f, g〉k on H bears the decomposition

〈f, g〉k = 〈f 0, g0〉0 + 〈f 1, g1〉1, f, g ∈ H, (A.15)

with f = f 0 + f 1, g = g0 + g1, and f 0, g0 ∈ H0, f 1, g1 ∈ H1, the decomposition is

again unique. In this case, we define the penalty term

‖f‖2
1 := ‖P1f‖2

k = ‖f 1‖2
k = ‖f 1‖2

1, f ∈ H,
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and it goes without saying that H0 is the null space of the semi-norm ‖ · ‖1, so the

functions in H0 are not penalized in (A.13). RKHSs constructed as above are covered

by the general spaces discussed in Section 2.5.1, and the Sobolev space is an example

of such RKHSs.

It is known (Wahba, 1990) that the solution f̂ of (A.13) must lie in a finite-

dimensional subspace of H. Specifically, write f̂ = f̂ 0 + f̂ 1 with f̂ 0 ∈ H0, f̂ 1 ∈ H1,

then

f̂ 1 ∈ span{k1(xi, ·) : 1 ≤ i ≤ n}.

In essence, this means that to solve (A.13), only the representers of the evaluation

functionals (projected to H1) at the locations of the observed data matters. This is

known as the Representer Theorem for smoothing splines. A more general version of

this Representer Theorem, adapted to the case of kernel APCs, states that for any

probability measure Pj(dxj), not necessarily an empirical measure, only the represen-

ters of the evaluation functionals at the locations that belong to the support of Pj

matters.

Theorem 15 (Representer Theorem for Kernel APCs). Let H = H1 × · · · × Hp,

where Hj = H0
j ⊕ H1

j is an RKHS with reproducing kernel kj = k0
j + k1

j . Then,

the solution to the kernel APC problem (A.12), if exists, is taken on the subspace

HP := HP1 ×HP2 × · · · × HPp, where

HPj := H0
j ⊕ span{k1

j (x, ·)− µ1
j : x ∈ supp(Pj)},

and µ1
j is the mean element of H1

j with respect to the marginal probability measure Pj.

Proof. Let µj be the mean element of Hj with respect to Pj:

〈φj, µj〉kj = E(〈φj, kXj〉kj) = E(φj(Xj)) ∀φj ∈ Hj,
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and suppose that µj = µ0
j + µ1

j , and µ0
j ∈ H0

j , µ
1
j ∈ H1

j . For ψj ∈ Hj, we have

ψj ⊥ HPj ⇒ ψj(x)− E(ψj) = 0, for x ∈ supp(Pj).

This is because ψj(x)−E(ψj) = 〈ψj, kj(x, ·)−µj〉kj = 〈ψj, k0
j (x, ·)−µ0

j〉kj+〈ψj, k1
j (x, ·)−

µ1
j〉kj and k0

j (x, ·)− µ0
j ∈ H0

j . So given ψj ⊥ HPj and φj ∈ HPj , we have Var (ψj) = 0

and ‖φj + ψj‖2
j,1 = ‖φj‖2

j,1 + ‖ψj‖2
j,1, which implies that

Var

p∑
j=1

(φj + ψj) = Var (

p∑
j=1

φj),

p∑
j=1

αj‖φj + ψj‖2
j,1 ≥

p∑
j=1

αj‖φj‖2
j,1,

and the inequality is strict when ψi 6≡ 0 for some 1 ≤ i ≤ p.

Now, suppose on the contrary that (φ∗1 +ψ∗1, . . . , φ
∗
p+ψ∗p) is the optimal solution of

the kernel APC problem, where φ∗j ∈ HPj , ψ
∗
j ⊥ HPj and ψ∗i 6≡ 0 for some 1 ≤ i ≤ p.

Let

δ =

p∑
j=1

αj‖φ∗j + ψ∗j‖2
j,1,

then (φ∗1 + ψ∗1, . . . , φ
∗
p + ψ∗p) is also an optimal solution of the following optimization

problem:

min
Φ∈H

Var (

p∑
j=1

φj) +

p∑
j=1

αj‖φj‖2
j,1 subject to

p∑
j=1

Var (φj) = 1− δ. (A.16)

But as argued before we have Var
∑

(φ∗j +ψ∗j ) = Var (
∑
φ∗j) and

∑
αj‖φ∗j +ψ∗j‖2

j,1 >∑
αj‖φ∗j‖2

j,1. Also, subject to the constraint that
∑

Var (φ∗j + ψ∗j ) = 1 − δ, we have∑
Var (φ∗j) = 1−δ. This gives the desired contradiction since in this case (φ∗1, . . . , φ

∗
p)

is a better solution of (A.16) comparing to the optimal solution (φ∗1 +ψ∗1, . . . , φ
∗
p+ψ∗p).

Therefore, we must have ψ∗j ≡ 0 for 1 ≤ j ≤ p. This completes the proof.

Note that in the case where Pj denotes the empirical probability measure with
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only finitely many values {x1j, . . . , xnj} in its support, Theorem 15 specializes to the

finite-sample version of the Representer Theorem for kernel APCs:

Corollary 5. Let H = H1 × · · · × Hp, where Hj = H0
j ⊕ H1

j is an RKHS with

reproducing kernel kj = k0
j + k1

j . Given data xi = (xi1, . . . , xip), 1 ≤ i ≤ n, the

solution to the sample kernel APC problem (2.20), if exists, is taken on the finite-

dimensional subspace Hn := Hn,1 × · · · × Hn,p, where

Hn,j := H0
j ⊕ span

{
k1
j (xij, ·)−

1

n

n∑
a=1

k1
j (xaj, ·) : 1 ≤ i ≤ n

}
.

One can similarly show that other higher-order sample kernel APCs, if exists, also

lie in the finite-dimensional subspace Hn.

A.4.2 Smoothing in RKHSs with Null Spaces

To implement the power algorithm presented in Algorithm 1, it follows from Corol-

lary 5 that it suffices to work with the coefficients of the basis of Hn,i. Specifically,

let

φi =
n∑
`=1

β`if`i +

mi∑
`=1

βn+`,iq`i,

where f`i = k1
i (x`i, ·)− 1

n

∑n
a=1 k

1
i (xai, ·) for 1 ≤ ` ≤ n and {q`i}mi`=1 forms a basis for

H0
i . Then the update steps φi ← γφ

[t]
i − (

∑
j 6=i S

(α)
ij φ

[t]
j +φ

[t]
i ) in Algorithm 1 becomes

β`i ← (γ − 1)β
[t]
`i − c`i, 1 ≤ ` ≤ n, (A.17)

βn+`,i ← (γ − 1)β
[t]
n+`,i − d`i, 1 ≤ ` ≤ mi,

where {c`i}n`=1 and {d`i}mi`=1 are two sets of coefficients obtained from the smoothing

step
∑

j 6=i S
(α)
ij φ

[t]
j , to be derived shortly.

Let βi = (β1i, . . . , βni) ∈ IRn, and let Gi be the n × n centered kernel matrix
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associated with k1
i , with (j, `) entry

(Gi)j` = 〈fji, f`i〉i,1 (A.18)

= k1
i (xji, x`i)−

1

n

n∑
b=1

k1
i (xji, xbi)−

1

n

n∑
a=1

k1
i (xai, x`i) +

1

n2

n∑
a=1

n∑
b=1

k1
i (xai, xbi).

Then the normalizing constant c in Algorithm 1 can be obtained upon computation

of the variance of the transformed data points {φi(x`i)}n`=1 and the penalty term

‖φi‖2
i,1 = βTi Giβi, for 1 ≤ i ≤ p.

We now consider the smoothing step
∑

j 6=i S
(α)
ij φj, which by linearity of smoothing

is empirically the regularized least squares regression of
∑

j 6=i φj(Xj) on Xi. This

amounts to solving the following optimization problem:

min
f∈Hi

{
V̂ar

(∑
j 6=i

φj(Xj)− f(Xi)

)
+ αi‖f‖2

i,1

}
, (A.19)

where V̂ar (
∑

j 6=i φj(Xj)− f(Xi)) evaluates to

1

n

n∑
`=1

[∑
j 6=i

(
φj(x`j)−

1

n

n∑
b=1

φj(xbj)
)
−
(
f(x`i)−

1

n

n∑
a=1

f(xai)
)]2

.

We see that (A.19) is essentially the smoothing splines problem (A.13) (modulo cen-

tering), hence it is not surprising that its solution lies in Hn,i as well.

Following Wahba (1990) (page 11-12), let the closed form solution of (A.19) be

f =
n∑
`=1

c`if`i +

mi∑
`=1

d`iq`i.

Then, (A.19) can be restated as

min
c∈IRn,d∈IRmi

{
1

n
‖y − (Gic + Qid)‖2 + αic

TGic

}
, (A.20)
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where cT = (c1i, . . . , cni), dT = (d1i, . . . , dmii), yT = (y1, . . . , yn) with y` =
∑

j 6=i(φj(x`j)−
1
n

∑n
b=1 φj(xbj)) for 1 ≤ ` ≤ n, Gi is as given in (A.18), and Qi is the column-centered

version of

Q̃i =


q1i(x1i) · · · qmii(x1i)

...
...

...

q1i(xni) · · · qmii(xni)

 .

It then follows that the solution of (A.20) is

d = (QT
i M−1

i Qi)
−1QT

i M−1
i y, c = M−1

i (y −Qid),

where Mi = Gi + nαiI, I being the n × n identity matrix. Plugging c and d into

(A.17) completes the update steps.

A.5 A Direct Approach for Computing Kernel APCs

In this section, we give a direct approach for computing kernel APCs.

From Corollary 5, we know that the solution Φ̂ = (φ̂1, . . . , φ̂p) of the sample kernel

APC problem (2.20) lies in the finite-dimensional function space Hn = Hn,1 × · · · ×

Hn,p. In the following, we derive the resulting linear algebra problem in terms of the

coefficients with respect to the basis of Hn,j’s. We will focus on the case where there

are no null spaces, i.e. Hj = H1
j and kj = k1

j , for 1 ≤ j ≤ p. The case with null spaces

requires the use of the additional basis {q1j, . . . , qmjj} for H0
j , 1 ≤ j ≤ p, which is

tractable but with slightly more tedious derivation. We recommend the use of power

algorithm described in Section 2.7 when dealing with cases involving null spaces. The

power algorithm is computationally more attractive than the direct linear algebra

approach given below, when the interest is only in extracting a few eigenfunctions.
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For each 1 ≤ j ≤ p, we express φj ∈ Hn,j as φj =
∑n

i=1 βijfij, where

fij(·) := kj(xij, ·)−
1

n

n∑
a=1

kj(xaj, ·), 1 ≤ i ≤ n.

Then

p∑
j=1

φj =

p∑
j=1

n∑
i=1

βijfij =

p∑
j=1

βTj fj

where βTj = (β1j, . . . , βnj), fTj = (f1j, . . . , fnj)

= βTF where βT = (βT1 , . . . ,β
T
p ), FT = (fT1 , . . . , f

T
p ).

The penalty term associated with φj evaluates to

‖φj‖2
kj

=

〈 n∑
i=1

βijfij,
n∑
`=1

β`jf`j

〉
kj

=
n∑
i=1

n∑
`=1

βijβ`j〈fij, f`j〉kj = βTj Gjβj,

where Gj is the centered kernel matrix associated with kj, with (i, `) entry

(Gj)i` = 〈fij, f`j〉kj

= kj(xij, x`j)−
1

n

n∑
b=1

kj(xij, xbj)−
1

n

n∑
a=1

kj(xaj, x`j) +
1

n2

n∑
a=1

n∑
b=1

kj(xaj, xbj).

Therefore, we can rewrite the penalty term as

p∑
j=1

αj‖φj‖2
kj

=

p∑
j=1

αjβ
T
j Gjβj.

The variance term in the sample kernel APC criterion evaluates to

V̂ar (

p∑
j=1

φj) = V̂ar (βTF) =
1

n
βTGGTβ,
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where GT = (G1, · · · ,Gp). Meanwhile, the variance term in the sample kernel APC

constraint is
p∑
j=1

V̂ar (φj) =

p∑
j=1

V̂ar (βTj fj) =
1

n

p∑
j=1

βTj G2
jβj.

Hence, the optimization problem (2.20), expressed in linear algebra notation, becomes

min
β∈IRpn

1

n
βTGGTβ + βTdiag(α1G1, . . . , αpGp)β (A.21)

subject to
1

n
βTdiag(G2

1, . . . ,G
2
p)β + βTdiag(α1G1, . . . , αpGp)β = 1.

Equivalently, we want to solve the following generalized eigenvalue problem:



G2
1 + nα1G1 G1G2 · · · G1Gp

G2G1 G2
2 + nα2G2 · · · G2Gp

...
...

. . .
...

GpG1 GpG2 · · · G2
p + nαpGp


β (A.22)

= λ



G2
1 + nα1G1 0 · · · 0

0 G2
2 + nα2G2 · · · 0

...
...

. . .
...

0 0 · · · G2
p + nαpGp


β.

Following Bach & Jordan (2003), we can approximate the diagonal blocks G2
j+nαjGj

in (A.22) by (Gj +
nαj

2
I)2. Letting γj = (Gj +

nαj
2

I)βj allows the reformulation of

the generalized eigenproblem above as an eigenproblem, in which case we just need
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to perform eigendecomposition on

R =



I RT
1 R2 · · · RT

1 Rp

RT
2 R1 I · · · RT

2 Rp

...
...

. . .
...

RT
p R1 RT

p R2 · · · I


,

where Rj = Gj(Gj +
nαj

2
I)−1 and I is the n×n identity matrix, to get its eigenvector

γ̂ = (γ̂1, . . . , γ̂p) (corresponding to the smallest eigenvalue). The desired (approxi-

mate) solution of (A.21) can then be obtained as β̂j = (Gj +
nαj

2
I)−1γ̂j, while the

(mean-centered) estimated transform evaluated at the data points is

φ̂j = Gjβ̂j = Gj

(
Gj +

nαj
2

I
)−1

γ̂j.

The second-smallest and subsequent higher order sample kernel APCs can be ob-

tained similarly by extracting the eigenvector corresponding to the second-smallest

and subsequent smallest eigenvalue of R.

We remark that the linear algebra problem (A.21) is often numerically ill-conditioned

due to low-rankness of Gj, so one has to make adjustment in order to solve for APCs.

This, however, introduces undesirable arbitrariness to the resulting optimization prob-

lem.

A.6 A Comparison of Kernel APC with Kernel

PCA

Kernel PCA (KPCA) provides a nonlinear generalization of standard PCA though

kernelizing. By the use of the kernel trick, KPCA enables one to perform PCA in a
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high-dimensional feature space (usually taken to be an RKHS) that is related to the

original input space by some nonlinear mapping (Schölkopf et al., 1998; Schölkopf &

Smola, 2002).

To compare kernel APCs with KPCs, we first set up some notations. Let (X1,BX1),

. . ., (Xp,BXp) be measurable spaces, and consider a random vector X = (X1, . . . , Xp)

taking values in X = X1 × · · · × Xp with distribution P1:p. Let H be the RKHS

associated with a reproducing kernel k : X ×X → IR. Then H consists of real-valued

functions with common domain X and has an inner product 〈·, ·〉k. Consider the

mapping X → H, X 7→ kX(·) := k(X, ·). To perform PCA in H, we solve

max
φ∈H

Var (〈φ, kX〉k) subject to ‖φ‖2
k = 1. (A.23)

By the reproducing property, 〈φ, kX〉k = φ(X) = φ(X1, . . . , Xp), so (A.23) is equiva-

lent to

max
φ

Var (φ(X1, . . . , Xp)) subject to ‖φ‖2
k = 1.

To compare KPCA and kernel APC, we consider using an additive kernel in the

KPCA problem. A kernel k : X ×X → IR is additive if it can be written as a sum of

the kernel function of each dimension:

k(x,x′) =

p∑
j=1

kj(xj, x
′
j).

Then each φ ∈ H has a decomposition φ(x) =
∑
φj(xj), where φj ∈ Hj and Hj is the

RKHS associated with kj, endowed with an inner product 〈·, ·〉kj . Hence, the KPCA

problem with an additive kernel reduces to

max
φ1∈H1,...,φp∈Hp

Var (

p∑
j=1

φj) subject to

p∑
j=1

‖φj‖2
kj

= 1. (A.24)
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Using the notation in Section 2.5.5, we can rewrite (A.24) in terms of quadratic

forms in H = H1 × · · · × Hp:

max
Φ∈H

〈Φ,CΦ〉k subject to 〈Φ,Φ〉k = 1, (A.25)

where Φ = (φ1, . . . , φp), C = (Cij)i,j, and Cij is the cross-covariance operator of

(Xi, Xj). Contrast (A.25) with the population kernel APC problem in (2.24b), we see

that KPCA and kernel APC are substantially different. Even if we try to match the

objective function and compare (A.25) with (2.24a) instead, KPCA is still different

from APC since (A.25) is an eigenproblem in H whereas (2.24a) is a generalized

eigenproblem in H.

Another distinctive difference between kernel APC and KPCA is that kernel APC

focuses on minimization for concurvity detection, whereas KPCA focuses on maxi-

mization for dimension reduction and minimization does not even make sense. To see

this, note that solving the following minimization version of the KPCA problem

min
φ1∈H1,...,φp∈Hp

Var (

p∑
j=1

φj) subject to

p∑
j=1

‖φj‖2
kj

= 1 (A.26)

is equivalent to solving

max
φ1∈H1,...,φp∈Hp

p∑
j=1

‖φj‖2
kj

subject to Var (

p∑
j=1

φj) = 1.

Since the penalties ‖φj‖2
kj

are usually considered as a measure of regularity (i.e.,

“smoothness”) of a function φj, it makes no sense that one is interested in obtaining

transformations that have maximum “wiggliness”.

While one might argue that (A.26) still yields a solution with small Var (
∑
φj) that

could potentially be interesting, an issue concerns computation arises: the empirical
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solution of the minimization version of KPCA (with or without additive structure)

does not necessarily lie in a finite-dimensional subspace of H (i.e., there is no Rep-

resenter Theorem such as Theorem 15 for kernel APC), renders the use of RKHS

unappealing from a computational standpoint. To see this, consider the following

unconstrained minimization version of KPCA:

min
φ∈H

Var (φ(X))

‖φ‖2
k

. (A.27)

Let µX ∈ H be the mean element that satisfies 〈φ, µX〉k = E(φ(X)) for all φ ∈ H.

For any function φ + ψ, φ ∈ HPX
:= span{k(x, ·) − µX : x ∈ supp(PX)} and ψ ⊥

HPX
, ψ 6≡ 0, we have Var (ψ(X)) = 0 since ψ(x)− E(ψ(X)) = 〈ψ, k(x, ·)− µX〉k = 0

for x ∈ supp(PX). Hence,

Var (φ(X) + ψ(x))

‖φ+ ψ‖2
k

=
Var (φ(X))

‖φ‖2
k + ‖ψ‖2

k

<
Var (φ(X))

‖φ‖2
k

.

So the minimum in (A.27), if attained, is not in HPX
.
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B
Supplement for Chapter 3

This chapter contains the proofs of main theorems presented in Chapter 3. Section B.1

contains an outline of the proofs of the main theorems, whereas Sections B.2-B.4

contain proofs of the more technical supporting lemmas.

B.1 Proofs for Main Results in Section 3.3

B.1.1 Proof of Theorem 4

The proof is based on Lemma 13, which gives an error bound for the pairwise terms

sin(π
2
rKij ), and Lemma 14, which gives an error bound for the scale estimates σ̂i. Note

that we require the bound ε ≤ 0.02 on the level of contamination in Lemma 13, but

the requirement could be relaxed with a more refined proof technique. The proofs of

Lemmas 13 and 14 are provided in Sections B.2.1 and B.2.2.

Lemma 13. Under model (3.1), let ε = max1≤i≤p εi ≤ 0.02. For any constant C >

π
√

2, we have

max
1≤i,j≤p

∣∣∣∣ sin(π2rKij)− ρij
∣∣∣∣ ≤ C

√
log p

n
+ 26πε, (B.1)

with probability at least 1− 2p−(C2/π2−2).
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Lemma 14. Under model (3.1), suppose 0 < min1≤i≤p σi ≤ max1≤i≤p σi ≤ Mσ, and

the maximum contamination error satisfies ε = max1≤i≤p εi ≤ 1
16

. Let c(σi) be defined

as in equation (3.12), and suppose C ′ > 1
Φ−1(0.75) min1≤i≤p c(σi)

√
2

and Φ−1(0.75)C ′
√

log p
n

<

1. Then with probability at least 1− 6p−{2[Φ−1(0.75)]2C′2 min1≤i≤p c
2(σi)−1}, we have

max
1≤i≤p

|σ̂i − σi| ≤ C ′
√

log p

n
+ 7.2Mσε.

By the triangle inequality, we may decompose |σ̂iσ̂j sin(π
2
rKij )−Σ∗ij| as follows:

∣∣∣∣σ̂iσ̂j sin
(π

2
rKij

)
− σiσjρij

∣∣∣∣
≤ |σ̂i − σi||σ̂j − σj|

∣∣∣∣ sin(π2rKij)− ρij
∣∣∣∣+

∣∣∣∣σi sin(π2rKij)
∣∣∣∣|σ̂j − σj|

+ |σ̂iσj|
∣∣∣∣ sin(π2rKij)− ρij

∣∣∣∣+ |σ̂jρij||σ̂i − σi|

(i)

≤ |σ̂i − σi||σ̂j − σj|
∣∣∣∣ sin(π2rKij)− ρij

∣∣∣∣+ σi|σ̂j − σj|

+ |σ̂iσj|
∣∣∣∣ sin(π2rKij)− ρij

∣∣∣∣+ σ̂j|σ̂i − σi|

≤ |σ̂i − σi||σ̂j − σj|
∣∣∣∣ sin(π2rKij)− ρij

∣∣∣∣+ σi|σ̂j − σj|

+ (|σ̂i − σi|+ σi)σj

∣∣∣∣ sin(π2rKij)− ρij
∣∣∣∣+ (|σ̂j − σj|+ σj)|σ̂i − σi|,

where (i) uses the facts that | sin(x)| ≤ 1 for all x, and |ρij| ≤ 1, since it is a correlation

coefficient. Using Lemmas 13 and 14 and the assumption (3.13), we obtain the overall

bound

(
C

√
log p

n
+ 26πε

)(
C ′
√

log p

n
+ 7.2Mσε

)2

+Mσ

(
C ′
√

log p

n
+ 7.2Mσε

)
+(

Mσ + C ′
√

log p

n
+ 7.2Mσε

){(
C

√
log p

n
+ 26πε

)
Mσ +

(
C ′
√

log p

n
+ 7.2Mσε

)}
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≤ (Mσ(Mσ + 1) + 1)

(
C

√
log p

n
+ 26πε

)
+ (2Mσ + 1)

(
C ′
√

log p

n
+ 7.2Mσε

)
,

implying inequality (3.14).

B.1.2 Proof of Theorem 5

The proof is based on Lemma 15, which gives an error bound for 2 sin(π
6
rSij), and

Lemma 14, which gives an error bound for σ̂i. Note that we require the bound

ε ≤ 0.01 on the level of contamination in Lemma 15, but the requirement could again

be relaxed with a more refined proof technique. The proof of Lemma 15 is contained

in Section B.2.3.

Lemma 15. Under model (3.1), let ε = max1≤i≤p εi ≤ 0.01. Suppose C > 8π and the

sample size satisfies n ≥ max
{

15, 16π2

C2 log p

}
. Then

max
1≤i,j≤p

∣∣∣∣2 sin
(π

6
rSij

)
− ρSij

∣∣∣∣ ≤ 5C

2

√
log p

n
+ 51πε, (B.2)

with probability at least 1− 2p
−
{

C2

32π2
−2
}

.

Using a similar decomposition as in the proof of Theorem 4, we have

∣∣∣∣2σ̂iσ̂j sin
(π

6
rSij

)
− σiσjρij

∣∣∣∣
≤ |σ̂i − σi||σ̂j − σj|

∣∣∣∣2 sin
(π

6
rSij

)
− ρij

∣∣∣∣+ σi|σ̂j − σj|

+ (|σ̂i − σi|+ σi)σj

∣∣∣∣2 sin
(π

6
rSij

)
− ρij

∣∣∣∣+ (|σ̂j − σj|+ σj)|σ̂i − σi|.

Using Lemmas 14 and 15, we then obtain the overall upper bound

(
5C

2

√
log p

n
+ 51πε

)(
C ′
√

log p

n
+ 7.2Mσε

)2

+Mσ

(
C ′
√

log p

n
+ 7.2Mσε

)
+
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(
Mσ + C ′

√
log p

n
+ 7.2Mσε

){
Mσ

(
5C

2

√
log p

n
+ 51πε

)
+

(
C ′
√

log p

n
+ 7.2Mσε

)}

≤ (Mσ(Mσ + 1) + 1)

(
5C

2

√
log p

n
+ 51πε

)
+ (2Mσ + 1)

(
C ′
√

log p

n
+ 7.2Mσε

)
,

which is easily simplified to obtain the prescribed bound.

B.1.3 Proof of Theorem 6

Clearly, it suffices to prove the elementwise deviation bound for the unsymmetrized

matrix Ω̂. A version of the following result appears in Cai et al. (2011); the proof is

provided in Section B.2.4 for completeness.

Lemma 16. Suppose Ω∗ ∈ U(q, s0(p),M). If Ω̂ is the output of the CLIME estima-

tor (3.10) with λ ≥M‖Σ̂−Σ∗‖∞, then ‖Ω̂−Ω∗‖∞ ≤ 4‖Ω∗‖L1λ.

Combining Lemma 16 with Theorem 4, we obtain the desired result.

B.1.4 Proof of Theorem 7

Our proof is based on the following result:

Lemma 17 (Theorem 1 in Ravikumar et al. (2011)). Suppose Ω∗ satisfies the inco-

herence condition (3.18), and that for all 1 ≤ i, j ≤ p, the tail condition

P
(
|Σ̂ij −Σ∗ij| ≥ δ

)
≤ 1

f(n, δ)
, ∀δ > 0, (B.3)

holds, for some function f that is monotonically increasing in n. Also suppose

n > n̄f

(
1

6(1 + 8/α)kmax{κΣ∗κΓ∗ , κ3
Σ∗κ

2
Γ∗}

, pτ
)
,
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where n̄f (δ; r) = argmax{n : f(n, δ) ≤ r} and δ̄f (n; r) := argmax{δ : f(n, δ) ≤ r}.

Then with probability at least 1 − p2−τ , for the choice λ = 8
α
δ̄f (n, p

τ ), the GLasso

estimator satisfies supp(Ω̂) ⊆ supp(Ω∗) and

‖Ω̂−Ω∗‖∞ ≤ 2κΓ∗

(
1 +

8

α

)
δ̄f (n, p

τ ).

Inspecting the proofs of the technical lemmas employed in proving Theorem 4,

inequality (B.3) holds with the function f(n, δ) = c1 exp(c2n(δ − c0ε)
2), defined for

δ > c0ε, where c0, c1, and c2 are appropriately chosen constants. An easy calculation

shows that δ̄f (n, r) = c0ε +

√
1
c2n

log
(
r
c1

)
, so δ̄f (n, p

τ ) = c0ε + C1

√
τ log p
n

. Similarly,

we may easily verify that n̄f (δ, p
τ ) = C2

τ log p
(δ−c0ε)2 . Lemma 17 then implies the desired

conclusions.

B.1.5 Proof of Theorem 9

Note that Σ̌ is the projection of the robust covariance estimator Σ̂ onto the posi-

tive semidefinite cone, where the distance is measured in the elementwise `∞-norm.

Furthermore, note that ‖Σ̌− Σ̂‖∞ ≤ ‖Σ∗ − Σ̂‖∞, since Σ∗ � 0. Hence,

‖Σ̌−Σ∗‖∞ ≤ ‖Σ̌− Σ̂‖∞ + ‖Σ̂−Σ∗‖∞ ≤ 2‖Σ̂−Σ∗‖∞. (B.4)

This implies that the bound (B.3) in Lemma 17 holds with Σ̂ replaced by Σ̌, and

f(n, δ) replaced by f(n, δ/2). Proceeding as in the proof of Theorem 7, we arrive at

the bound (3.31).

Turning to the derivation of the breakdown point, note that by Theorem 1 of

Oellerer & Croux (2014), we have

εn(Ω̌(X),X) ≥ ε+n (Σ̌(X),X). (B.5)
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Consider the estimator Σ̌(Xm), based on corrupted data. We have

‖Σ̌(Xm)−Σ∗‖∞ ≤ 2‖Σ̂(Xm)−Σ∗‖∞ ≤ 2‖Σ̂(Xm)‖∞ + 2‖Σ∗‖∞, (B.6)

where the first inequality follows from the bound (B.4), and the second inequality

comes from the triangle inequality. Furthermore, note that since Σ̌(Xm) � 0 by

construction,

λ1(Σ̌(Xm)) = ‖Σ̌(Xm)‖2 ≤ ‖Σ̌(Xm)−Σ∗‖2 + ‖Σ∗‖2

≤ p‖Σ̌(Xm)−Σ∗‖∞ + ‖Σ∗‖2, (B.7)

where we have used the bound ‖A‖∞ ≤ ‖A‖2 ≤ p‖A‖∞, for all A ∈ Rp×p, in the last

inequality. Combining inequalities (B.6) and (B.7), we then obtain

λ1(Σ̌(Xm)) ≤ 2p‖Σ̂(Xm)‖∞ + 2p‖Σ∗‖∞ + ‖Σ∗‖2,

so

∣∣λ1(Σ̌(Xm))− λ1(Σ̌(X))
∣∣

≤ λ1(Σ̌(X)) +
(

2p‖Σ̂(Xm)‖∞ + 2p‖Σ∗‖∞ + ‖Σ∗‖2

)
. (B.8)

Finally, since the correlation estimators are bounded in magnitude by 1, we have

‖Σ̂(Xm)‖∞ ≤ max
1≤i,j≤p

σ̂i(X
m)σ̂j(X

m), (B.9)

where {σ̂i(Xm)}1≤i≤p are the robust scale estimators based on Xm, given by the MAD

estimators calculated from the corresponding columns. Furthermore, the breakdown

point of the MAD is 50% (Huber, 1981), so the quantity on the right-hand side of
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inequality (B.9) is finite when m
n
< 50%. Then by inequality (B.8) and the defini-

tion of the explosion breakdown point, we conclude that ε+n (Σ̌(X),X) ≥ 50%. By

inequality (B.5), we therefore have εn(Ω̌(X),X) ≥ 50%, as well.

We now establish that εn(Ω̌(X),X) = 50%. Note that if we are allowed to corrupt

more than 50% of the entries in each column of the data matrix, the columnwise MAD

estimates may be made arbitrarily small (say, smaller than some value a); indeed, we

may simply replace more than half of the entries in each column by values in (0, a).

Consequently, the overall covariance estimator Σ̂(Xm) will have all entries bounded

in magnitude by [Φ−1(0.75)]−2a2. We claim that the diagonal elements of Σ̌(Xm)

must therefore be bounded in magnitude by 2[Φ−1(0.75)]−2a2. Indeed, note that the

matrix diag(Σ̂(Xm)) is feasible for the projection (3.29). Hence, we must have

‖Σ̂(Xm)− Σ̌(Xm)‖∞ ≤ ‖Σ̂(Xm)− diag(Σ̂(Xm))‖∞ ≤ [Φ−1(0.75)]−2a2,

implying in particular that

‖diag(Σ̌(Xm))‖∞ ≤ ‖diag(Σ̂(Xm))‖∞ + ‖diag(Σ̂(Xm))− diag(Σ̌(Xm))‖∞

≤ 2a2

[Φ−1(0.75)]2
,

as claimed. Now note that the first-order optimality condition for the GLasso is given

by

Σ̌(Xm)−
(
Ω̌(Xm)

)−1
+ λ · sign{Ω̌(Xm)− diag(Ω̌(Xm))} = 0,

where the sign function is computed entrywise, omitting the diagonal elements of

Ω̌(Xm). In particular, this implies that the diag(Σ̌(Xm)) = diag
{(

Ω̌(Xm)
)−1
}

, so

the diagonal elements of
(
Ω̌(Xm)

)−1
are bounded in magnitude by 2[Φ−1(0.75)]−2a2
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as well. Hence,

λp

((
Ω̌(Xm)

)−1
)

= min
‖v‖2=1

vT
((

Ω̌(Xm)
)−1
)

v ≤ min
1≤j≤p

eTj

((
Ω̌(Xm)

)−1
)

ej

≤
∥∥∥diag

{(
Ω̌(Xm)

)−1
}∥∥∥
∞
≤ 2[Φ−1(0.75)]−2a2,

where the ej’s are the canonical basis vectors, and we have used the variational repre-

sentation of eigenvalues of a Hermitian matrix to show that the minimum eigenvalue

is bounded by the minimum diagonal entry. This allows us to conclude that

1 = λp

(
Ω̌(Xm)

(
Ω̌(Xm)

)−1
)
≤ λ1

(
Ω̌(Xm)

)
λp

((
Ω̌(Xm)

)−1
)

≤ λ1

(
Ω̌(Xm)

)
· 2a2

[Φ−1(0.75)]2
,

where we have used the inequality λp(AB) ≤ λ1(A)λp(B), for A,B � 0, in the first

inequality (Zhang, 2011). Hence, λ1

(
Ω̌(Xm)

)
≥ [Φ−1(0.75)]2

2a2
. However, we may choose

a to be arbitrarily close to 0, implying that the maximum eigenvalue of Ω̌(Xm) may

be made arbitrarily large, and the estimator breaks down. This concludes the proof.

B.1.6 Proof of Theorem 10

Clearly, εn(Ω̂,X) ≥ 1
n

for any X, by the definition of the breakdown point. To show

equality, we now provide a data matrix X and a corrupted data matrix X1, where

X1 differs from X in at most one element per column, and the CLIME problem is
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feasible for Σ̂(X) but infeasible for Σ̂(X1). Let

X1 =



a1 −a1

a2 −a2

...
...

an −an


,

where the ak’s are all distinct. Note that the columns of X1 are perfectly negatively

correlated; hence, the correlation matrix (computed from either Kendall’s tau or

Spearman’s rho, for instance) is

 1 −1

−1 1

. Furthermore, we have σ̂1 = σ̂2 := σ̂,

since the data in the two columns are negatives of each other. It follows that Σ̂(X1) =

σ̂2

 1 −1

−1 1

. Clearly, the problem

β1 :

∥∥∥∥∥∥∥Σ̂(X1)β1 −

 1

0


∥∥∥∥∥∥∥
∞

≤ λ

is infeasible for λ < 1
2
. Hence, the CLIME estimator based on Σ̂(X1) is infeasible.

On the other hand, we may construct an initial data matrix X such that the

CLIME program based on Σ̂(X) is feasible, simply by altering the last row of X1.

Suppose we change the last row of X1 to (an, an). Then the columns are no longer

perfectly negatively correlated, and it is easy to check that the correlation matrix

of X will take the form

 1 a

a 1

, for some |a| < 1. Denoting the corresponding
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estimates of scale as σ̂1 and σ̂2, we then have

Σ̂(X) =

 σ̂2
1 aσ̂1σ̂2

aσ̂1σ̂2 σ̂2
2

 .

Note that det{Σ̂(X)} = σ̂2
1σ̂

2
2(1 − a2) > 0. It follows that Σ̂(X) is invertible. In

particular, the matrix
(
Σ̂(X)

)−1

is always a feasible point for the CLIME program

based on Σ̂(X).

Hence, we conclude that the CLIME program breaks down when even one cor-

ruption per column is allowed. It follows that εn(Ω̂,X) = 1
n

for the constructed value

of X.

B.2 Supporting proofs for Section 3.3

In this section, we provide the proofs of the technical lemmas used to establish the

theorems in Section 3.3.

B.2.1 Proof of Lemma 13

When i = j, we have

rKii =
2

n(n− 1)

∑
k<`

sign2(Xki −X`i)

=
2

n(n− 1)

∑
k<`

(1− 1(Xki = X`i))

= 1− 2

n(n− 1)

∑
k<`

1(Xki = X`i).
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Hence,

∣∣∣∣ sin(π2rKii )− ρii
∣∣∣∣ =

∣∣∣∣ sin(π2 − π

n(n− 1)

∑
k<`

1(Xki = X`i)
)
− 1

∣∣∣∣
=

∣∣∣∣ cos
( π

n(n− 1)

∑
k<`

1(Xki = X`i)
)
− cos(0)

∣∣∣∣
≤ π

2
qi,

where

qi =
2

n(n− 1)

∑
k<`

1(Xki = X`i)

is a U -statistic, and the last inequality follows from the fact that cos(x) is 1-Lipschitz.

By Hoeffding’s inequality for U -statistics, we have

P

(∣∣∣∣ sin(π2rKii )− ρii
∣∣∣∣ ≥ t

)
≤ P

(
qi ≥

2t

π

)
≤ exp

(
− 4nt2

π2

)
. (B.10)

Now, consider the case where i 6= j. Note that

∣∣∣∣ sin(π2rKij)− ρij
∣∣∣∣ ≤ ∣∣∣∣ sin(π2rKij)− sin

(π
2
ρKij

)∣∣∣∣+

∣∣∣∣ sin(π2ρKij)− ρij
∣∣∣∣, (B.11)

where ρKij = E(rKij ) and the expectation is with respect to the distribution under

model (3.1). Since rKij is a U -statistic with kernel bounded between −1 and 1, Ho-

effding’s inequality and the fact that sin(x) is 1-Lipschitz implies that the first term

on the right-hand side of inequality (B.11) satisfies

P

(∣∣∣∣ sin(π2rKij)−sin
(π

2
ρKij

)∣∣∣∣ ≥ t

)
≤ P

(
|rKij−ρKij | ≥

2

π
t

)
≤ 2 exp

(
−nt

2

π2

)
. (B.12)

Combining inequalities (B.10) and (B.12) and taking t = C
√

log p
n

, we conclude that
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with probability at least 1− 2p−(C2/π2−2),

max
1≤i≤p

∣∣∣∣ sin(π2rKii )− ρii
∣∣∣∣ ≤ C

√
log p

n
, and (B.13a)

max
i 6=j

∣∣∣∣ sin(π2rKij)− sin
(π

2
ρKij

)∣∣∣∣ ≤ C

√
log p

n
. (B.13b)

For the second term on the right-hand side of equation (B.11), we have under

model (3.1) that for any pair i 6= j,

(Xki, Xkj)
i.i.d.∼ Fij = (1− γij)Φµ{i,j},Σ{i,j} + γijHij, ∀1 ≤ k ≤ n, (B.14)

where Φµ{i,j},Σ{i,j} = N(µ{i,j},Σ{i,j}) is the marginal distribution of (Yki, Ykj), Hij is

a mixture of the distributions of Yki, Ykj, Zki, and Zkj, and 1− γij = (1− εi)(1− εj).

By Lemma 24, we have ρKij = 2
π

sin−1 ρij+Rij, where |Rij| ≤ 12γij+17γ2
ij. Setting

R′ij = π
2
Rij, we then have

∣∣∣sin(π
2
ρKij

)
− ρij

∣∣∣ =
∣∣sin ( sin−1(ρij) +R′ij

)
− ρij

∣∣
=
∣∣sin(sin−1(ρij)) cos(R′ij) + cos(sin−1(ρij)) sin(R′ij)− ρij

∣∣
=
∣∣∣ρij cos(R′ij) +

√
1− ρ2

ij sin(R′ij)− ρij
∣∣∣

≤
∣∣ρij (1− cos(R′ij)

)∣∣+
∣∣∣√1− ρ2

ij sin(R′ij)
∣∣∣

≤
[
1− cos(R′ij)

]
+
∣∣ sin(R′ij)

∣∣.
Note that γij = εi + εj − εiεj ≤ 2ε, so

|R′ij| ≤
π

2
(12γij + 17γ2

ij) ≤
π

2

(
12 · 2ε+ 17(2ε)2

)
= 12πε+ 34πε2.

In particular, this bound is less than 1 when ε ≤ 0.02. Then using the fact that
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| sin(x)− x| ≤ |x|3
3!

and |1− cos(x)| ≤ x2

2!
for |x| ≤ 1, we conclude that

max
1≤i,j≤p

∣∣∣sin(π
2
ρKij

)
− ρij

∣∣∣ ≤ max
1≤i,j≤p

[
|R′ij|+

(R′ij)
2

2
+
|R′ij|3

6

]
≤ 2 max

1≤i,j≤p
|R′ij| ≤ 26πε. (B.15)

Combining inequalities (B.13) and (B.15) then proves the desired result.

B.2.2 Proof of Lemma 14

Under model (3.1), we have the marginal distributions

Xki
i.i.d.∼ Fi = (1− εi)Φµi,σi + εiHi, ∀1 ≤ k ≤ n,

for each 1 ≤ i ≤ p, where Φµi,σi = N(µi, σ
2
i ) is the marginal distribution of Yki and

Hi is the marginal distribution of Zki.

Let d(Fi) and d(Φµi,σi) denote the population MADs corresponding to Fi and

Φµi,σi , respectively. Since σ̂i = [Φ−1(0.75)]−1d̂i and σi = [Φ−1(0.75)]−1d(Φµi,σi), with

d̂i defined as in equation (3.3), it suffices to bound the term |d̂i− d(Φµi,σi)|, which we

decompose as follows:

|d̂i − d(Φµi,σi)| ≤ |d̂i − d(Fi)|+ |d(Fi)− d(Φµi,σi)|.

By Lemma 23, for 0 < t < 1,

P
(

max
1≤i≤p

|d̂i − d(Fi)| > t
)
≤

p∑
i=1

P
(
|d̂i − d(Fi)| > t

)
≤ 6p max

1≤i≤p

{
exp(−2nc2(σi)t

2)
}

= 6p exp

(
−2n min

1≤i≤p
c2(σi)t

2

)
.
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Let t = Φ−1(0.75)C ′
√

log p
n

< 1. With probability at least

1− 6p−{2[Φ−1(0.75)]2C′2 min1≤i≤p c
2(σi)−1},

we then have

max
1≤i≤p

|d̂i − d(Fi)| ≤ Φ−1(0.75)C ′
√

log(p)

n
.

On the other hand, by Lemma 22, we have

max
1≤i≤p

|d(Fi)− d(Φµi,σi)| ≤ 4.8 max
1≤i≤p

σiεi ≤ 4.8Mσε.

Thus, with probability at least 1− 6p−{2[Φ−1(0.75)]2C′2 min1≤i≤p c
2(σi)−1},

max
1≤i≤p

|d̂i − d(Φµi,σi)| ≤ Φ−1(0.75)C ′
√

log(p)

n
+ 4.8Mσε.

It follows that with the same probability,

max
1≤i≤p

|σ̂i − σi| = [Φ−1(0.75)]−1 max
1≤i≤p

|d̂i − d(Φµi,σi)| ≤ C ′
√

log(p)

n
+ 7.2Mσε.

B.2.3 Proof of Lemma 15

When i = j, we have 2 sin(π
6
rSii) = ρii = 1; hence, we only need to consider the case

when i 6= j. First, note that

∣∣∣∣2 sin
(π

6
rSij

)
− ρij

∣∣∣∣ ≤ 2

∣∣∣∣ sin(π6rSij)− sin
(π

6
E(rSij)

)∣∣∣∣
+

∣∣∣∣2 sin
(π

6
E(rSij)

)
− ρij

∣∣∣∣, (B.16)
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where the expectation is taken with respect to the distribution under model (3.1).

By Lemma 26, we have rSij = n−2
n+1

Uij + 3
n+1
rKij , where Uij is a U -statistic with kernel

bounded between −3 and 3, and rKij is the Kendall’s tau correlation. Using the fact

that sin(x) is 1-Lipschitz, we then have

P

(
2

∣∣∣∣ sin(π6rSij)− sin
(π

6
E(rSij)

)∣∣∣∣ ≥ t

)
≤ P

(
|rSij − E(rSij)| ≥

3t

π

)
= P

(∣∣∣∣n− 2

n+ 1
(Uij − E(Uij)) +

3

n+ 1
(rKij − ρKij )

∣∣∣∣ ≥ 3t

π

)
≤ P

(
|Uij − E(Uij))|+

6

n+ 1
≥ 3t

π

)
≤ P

(
|Uij − E(Uij)| ≥

3t

2π

)
,

where the last inequality follows from the choice t = C
√

log p
n

and the fact that

6
n+1
≤ 3t

2π
when n ≥ 16π2

C2 log p
. Furthermore, Hoeffding’s inequality implies

P

(
|Uij − E(Uij)| ≥

3t

2π

)
≤ 2 exp

(
−2
⌊n

3

⌋( 3t

2π

)2
1

62

)
≤ 2 exp

(
− nt2

32π2

)
.

Plugging in t = C
√

log p
n

and using a union bound, we then have

P

(
max

1≤i,j≤p
2

∣∣∣∣ sin(π6rSij)− sin
(π

6
E(rSij)

)∣∣∣∣ ≥ C

√
log p

n

)
≤ 2p2 exp

(
− C2 log p

32π2

)
= 2p

−
{

C2

32π2
−2
}
. (B.17)

For the second term on the right-hand side of equation (B.11), we have under model (3.1)

that for any pair i 6= j,

(Xki, Xkj)
i.i.d.∼ Fij = (1− γij)Φµ{i,j},Σ{i,j} + γijHij, ∀1 ≤ k ≤ n,
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where Φµ{i,j},Σ{i,j} = N(µ{i,j},Σ{i,j}) is the marginal distribution of (Yki, Ykj), Hij is

a mixture of the distributions of Yki, Ykj, Zki, and Zkj, and 1− γij = (1− εi)(1− εj).

By Lemma 25, we have E(rSij) = 6
π

sin−1
(ρij

2

)
+Rij, where |Rij| ≤ 48γij +129γ2

ij +

88γ3
ij + 12

n+1
. Setting R′ij = π

6
Rij, we then have

∣∣∣∣2 sin
(π

6
E(rSij)

)
− ρij

∣∣∣∣
=
∣∣2 sin

(
sin−1(ρij/2) +R′ij

)
− ρij

∣∣
=
∣∣2 sin(sin−1(ρij/2)) cos(R′ij) + 2 cos(sin−1(ρij/2)) sin(R′ij)− ρij

∣∣
=
∣∣∣ρij cos(R′ij) + 2

√
1− ρ2

ij/4 · sin(R′ij)− ρij
∣∣∣

≤
∣∣ρij (1− cos(R′ij)

)∣∣+ 2
∣∣∣√1− ρ2

ij/4 · sin(R′ij)
∣∣∣

≤
[
1− cos(R′ij)

]
+ 2
∣∣ sin(R′ij)

∣∣.
Note that γij = εi + εj − εiεj ≤ 2ε, so

|R′ij| ≤
π

6

(
48γij + 129γ2

ij + 88γ3
ij +

12

n+ 1

)
≤ π

6

(
48 · 2ε+ 129(2ε)2 + 88(2ε)3 +

12

n+ 1

)
≤ 16πε+ 86πε2 + 118πε3 +

2π

n+ 1
.

In particular, this bound is less than 1 when ε ≤ 0.01 and n ≥ 15. Then using the

fact that | sin(x)− x| ≤ |x|3
3!

and | cos(x)− 1| ≤ x2

2!
for |x| ≤ 1, we conclude that

max
1≤i,j≤p

∣∣∣2 sin
(π

6
E(rSij)

)
− ρij

∣∣∣ ≤ max
1≤i,j≤p

[
2|R′ij|+

(R′ij)
2

2
+
|R′ij|3

3

]
≤ 3 max

1≤i,j≤p
|R′ij|

≤ 48πε+ 258πε2 + 354πε3 +
6π

n+ 1
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≤ 51πε+
3C

2

√
log p

n
,

where the final inequality uses the assumption n ≥ 16π2

C2 log p
once more. Combining this

bound with inequality (B.17) implies the desired result.

B.2.4 Proof of Lemma 16

We have

‖I− Σ̂Ω∗‖∞ = ‖(Σ̂−Σ∗)Ω∗‖∞ ≤ ‖Ω∗‖L1‖Σ̂−Σ∗‖∞ ≤ λ, (B.18)

the first inequality is due to ‖AB‖∞ ≤ ‖A‖∞‖B‖L1 , and the second inequality follows

by assumption. Then

‖Σ̂(Ω̂−Ω∗)‖∞ ≤ ‖Σ̂Ω̂− I‖∞ + ‖I− Σ̂Ω∗‖∞ ≤ 2λ.

For 1 ≤ i ≤ p, let ei be the canonical vector with 1 in the ith coordinate and 0 in

all other coordinates, and let β̂i be the solution of the following convex optimization

problem:

min
β∈Rp
‖β‖1 subject to ‖Σ̂β − ei‖∞ ≤ λ.

Note that Ω̂ = (β̂1, . . . , β̂p) (cf. Lemma 1 in Cai et al. (2011)). It follows that

‖β̂i‖1 ≤ ‖Ω∗‖L1 , for 1 ≤ i ≤ p, so ‖Ω̂‖L1 ≤ ‖Ω∗‖L1 . Hence,

‖Σ∗(Ω̂−Ω∗)‖∞ ≤ ‖Σ̂(Ω̂−Ω∗)‖∞ + ‖(Σ̂−Σ∗)(Ω̂−Ω∗)‖∞

≤ 2λ+ ‖Ω̂−Ω∗‖L1‖Σ̂−Σ∗‖∞

≤ 2λ+ ‖Ω̂‖L1‖Σ̂−Σ∗‖∞ + ‖Ω∗‖L1‖Σ̂−Σ∗‖∞

≤ 4λ.
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Finally,

‖Ω̂−Ω∗‖∞ = ‖Ω∗Σ∗(Ω̂−Ω∗)‖∞ ≤ ‖Ω∗‖L1‖Σ∗(Ω̂−Ω∗)‖∞ ≤ 4‖Ω∗‖L1λ.

B.3 Lemmas for MAD concentration

In this section, we prove several lemmas that are needed in deriving consistency of

the MAD estimator. We begin with some results concerning the concentration of

sample medians from an arbitrary distribution. A version of Lemmas 19 and 20 is

also contained in Serfling & Mazumder (2009).

Lemma 18. Let X1, . . . , Xn be a random sample from a distribution with cdf F , and

let m̂ be the sample median. If m̂ < c, then |{Xi : Xi ≤ c}| ≥ n
2
. If m̂ > c, then

|{Xi : Xi ≤ c}| ≤ n
2
.

Proof. This result follows easily from the definition of the sample median.

Lemma 19. Let X1, . . . , Xn be a random sample from a distribution F . Let m be the

population median and let m̂ be the sample median. Then

P

(
|m̂−m| > t

2

)
≤ 2 exp(−2nb2(t)),

where b(t) = min
{
F (m+ t

2
)− 1

2
, 1

2
− F (m− t

2
)
}

.

Proof. By Lemma 18,

P

(
m̂ > m+

t

2

)
≤ P

(∣∣∣{Xi : Xi ≤ m+
t

2

}∣∣∣ ≤ n

2

)
= P

( n∑
i=1

1

{
Xi ≤ m+

t

2

}
≤ n

2

)
= P

( n∑
i=1

(Yi − EYi) ≤
n

2
− np1

)
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= exp

[
− 2n

(
p1 −

1

2

)2
]
, (B.19)

where Yi = 1
{
Xi ≤ m+ t

2

}
and p1 = F (m+ t

2
), and the last inequality follows from

Hoeffding’s inequality. Similarly, we have

P

(
m̂ < m− t

2

)
≤ P

(∣∣∣{Xi : Xi ≤ m− t

2

}∣∣∣ ≥ n

2

)
= P

( n∑
i=1

1(Xi ≤ m− t

2
) ≥ n

2

)
= P

( n∑
i=1

(Zi − EZi) ≥
n

2
− np2

)
≤ exp

[
− 2n

(
p2 −

1

2

)2
]
, (B.20)

where Zi = 1
{
Xi ≤ m− t

2

}
and p2 = F (m− t

2
). Combining expressions (B.19) and

(B.20), we then obtain

P

(
|m̂−m| > t

2

)
≤ exp

[
−2n

(
p1−

1

2

)2
]

+exp

[
−2n

(
p2−

1

2

)2
]
≤ 2 exp(−2nb2(t)).

Lemma 20. Let X1, . . . , Xn be a random sample from a distribution with cdf F . Let

m and d denote the population median and MAD, respectively, and let m̂ and d̂ denote

the sample median and MAD. Let G be the distribution of |Xi −m|. Then

P (|d̂− d| > t) ≤ 6 exp(−2na2(t)), (B.21)

where

a(t) = min

{
F

(
m+

t

2

)
− 1

2
,

1

2
−F

(
m− t

2

)
, G

(
d+

t

2

)
− 1

2
,

1

2
−G

(
d− t

2

)}
.
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Proof. Let Wi = |Xi − m̂|. By the definition of the sample MAD, Lemma 18 gives

P (d̂ > d+ t) ≤ P

(
|{Wi : Wi ≤ d+ t}| ≤ n

2

)
= P

(
|{Xi : |Xi − m̂| ≤ d+ t}| ≤ n

2

)
≤ P

(
|{Xi : |Xi − m̂| ≤ d+ t}| ≤ n

2
, and |m̂−m| ≤ t

2

)
+ P

(
|m̂−m| > t

2

)
≤ P

(∣∣∣{Xi : |Xi −m| ≤ d+
t

2

}∣∣∣ ≤ n

2

)
+ P

(
|m̂−m| > t

2

)
= P

( n∑
i=1

1

{
|Xi −m| ≤ d+

t

2

}
≤ n

2

)
+ P

(
|m̂−m| > t

2

)
= P

( n∑
i=1

(Yi − EYi) ≤
n

2
− np3

)
+ P

(
|m̂−m| > t

2

)
,

where Yi = 1
{
|Xi −m| ≤ d+ t

2

}
and p3 = G(d+ t

2
). Then by Hoeffding’s inequality

and Lemma 19, the last quantity is bounded by

exp

[
− 2n

(
p3 −

1

2

)2
]

+ 2 exp(−2nb2(t)). (B.22)

Similarly,

P (d̂ < d− t) ≤ P

(
|{Wi : Wi ≤ d− t}| ≥ n

2

)
= P

(
|{Xi : |Xi − m̂| ≤ d− t}| ≥ n

2

)
≤ P

(
|{Xi : |Xi − m̂| ≤ d− t}| ≥ n

2
, and |m̂−m| ≤ t

2

)
+ P

(
|m̂−m| > t

2

)
≤ P

(∣∣∣{Xi : |Xi −m| ≤ d− t

2

}∣∣∣ ≥ n

2

)
+ P

(
|m̂−m| > t

2

)
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= P

( n∑
i=1

1

{
|Xi −m| ≤ d− t

2

}
≥ n

2

)
+ P

(
|m̂−m| > t

2

)
= P

( n∑
i=1

(Zi − EZi) ≥
n

2
− np4

)
+ P

(
|m̂−m| > t

2

)
,

where Zi = 1
{
|Xi −m| ≤ d− t

2

}
and p4 = G(d− t

2
). By Hoeffding’s inequality and

Lemma 19, the last quantity is upper-bounded by

exp

[
− 2n

(
p4 −

1

2

)2
]

+ 2 exp(−2nb2(t)). (B.23)

Combining expressions (B.22) and (B.23) then yields

P (|d̂− d| > t) ≤ 4 exp(−2nb2(t)) + exp

[
− 2n

(
p3 −

1

2

)2
]

+ exp

[
− 2n

(
p4 −

1

2

)2
]

≤ 6 exp(−2na2(t)).

Next, we prove two population-level lemmas for the ε-contamination model. As

remarked in the introduction, we use the notation F−1(c) = inf{x : F (x) ≥ c}, which

is defined even if the cdf F is not surjective on the interval [0, 1]. Note that Lemmas 21

and 22 do not impose any conditions on the contaminating distribution H.

Lemma 21. Let F = (1− ε)Φµ,σ + εH, where Φµ,σ denotes the N(µ, σ2) distribution

and H is an arbitrary distribution. Let Φ := Φ0,1 be the standard normal cdf and

suppose that 0 ≤ ε < 1. Then

µ+ Φ−1
( c− ε

1− ε

)
σ = Φ−1

µ,σ

(
c− ε
1− ε

)
≤ F−1(c) ≤ Φ−1

µ,σ

(
c

1− ε

)
= µ+ Φ−1

( c

1− ε

)
σ.

(B.24)
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Proof. Let F = (1− ε)Φµ,σ + εH. Then

F
(

Φ−1
µ,σ

( c

1− ε

))
= (1− ε)Φµ,σ

(
Φ−1
µ,σ

( c

1− ε

))
+ εH

(
Φ−1
µ,σ

( c

1− ε

))
≥ (1− ε) · c

1− ε
= c, (B.25)

where by a slight abuse of notation, we use F and H to denote the cdfs of the

corresponding distributions. In addition,

1− F
(

Φ−1
µ,σ

( c− ε
1− ε

))
= (1− ε)

[
1− Φµ,σ

(
Φ−1
µ,σ

( c− ε
1− ε

))]
+ ε

[
1−H

(
Φ−1
µ,σ

( c− ε
1− ε

))]
≥ (1− ε)

(
1− c− ε

1− ε

)
= 1− c. (B.26)

Combining equations (B.25) and (B.26), and using the facts that F is monotonically

increasing, we then obtain the desired bound (B.24). Note that the outer equalities

hold since Φ−1
µ,σ(x) = µ+ Φ−1(x)σ.

Lemma 22. Let F = (1− ε)Φµ,σ + εH, where Φµ,σ denotes the N(µ, σ2) distribution

and H is an arbitrary distribution. Suppose 0 ≤ ε ≤ 1
16

. Let d(F ) and d(Φµ,σ) denote

the population MADs corresponding to F and Φµ,σ, respectively. Then

|d(F )− d(Φµ,σ)| ≤ 4.8σε.

Proof. By an abuse of notation, we also use F to denote the cdf of the contaminated

distribution. Then F−1 is the quantile function. Note in particular that the following

statements hold, where X ∼ F , as an easy consequence of the definition of F−1:

(i) d(F ) ≤ a if P (|X − F−1(0.5)| ≤ a) ≥ 0.5,

(ii) d(F ) > a if P (|X − F−1(0.5)| ≤ a) < 0.5.
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Furthermore, we may write

P (|X − F−1(0.5)| ≤ a) ≥ (1− ε) · P (|Z − F−1(0.5)| ≤ a)

= (1− ε)
{

Φµ,σ

(
F−1(0.5) + a

)
− Φµ,σ

(
F−1(0.5)− a

)}
,

where Z ∼ N(µ, σ2). By Lemma 21, the last expression is further lower-bounded by

(1− ε)
{

Φµ,σ

(
Φ−1
µ,σ

(
0.5− ε
1− ε

)
+ a

)
− Φµ,σ

(
Φ−1
µ,σ

(
0.5

1− ε

)
− a
)}

.

We will take

a = Φ−1
µ,σ

(
0.75

1− ε

)
− Φ−1

µ,σ

(
0.5− ε
1− ε

)
= Φ−1

µ,σ

(
0.5

1− ε

)
− Φ−1

µ,σ

(
0.25− ε

1− ε

)
,

where the second inequality comes from the fact that Φ−1
µ,σ(b) = −Φ−1

µ,σ(1 − b). Then

the lower bound becomes

(1− ε)
(

0.75

1− ε
− 0.25− ε

1− ε

)
≥ 0.5.

Putting the bounds together, we have

P (|X − F−1(0.5)| ≤ a) ≥ 0.5,

so by the implication (i) above, it follows that

d(F ) ≤ Φ−1
µ,σ

(
0.75

1− ε

)
− Φ−1

µ,σ

(
0.5− ε
1− ε

)
. (B.27)
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Similarly, we may derive a lower bound on d(F ) by writing

P (|X − F−1(0.5)| > a) ≥ (1− ε) · P (|Z − F−1(0.5)| > a),

where Z ∼ N(µ, σ2). Furthermore,

P (|Z − F−1(0.5)| ≤ a) = Φµ,σ

(
F−1(0.5) + a

)
− Φµ,σ

(
F−1(0.5)− a

)
≤ Φµ,σ

(
Φ−1
µ,σ

(
0.5

1− ε

)
+ a

)
− Φµ,σ

(
Φ−1
µ,σ

(
0.5− ε
1− ε

)
− a
)
,

using Lemma 21. Taking

a = Φ−1
µ,σ

(
0.75− 2ε

1− 2ε

)
− Φ−1

µ,σ

(
0.5

1− ε

)
= Φ−1

µ,σ

(
0.5− ε
1− ε

)
− Φ−1

µ,σ

(
0.25

1− 2ε

)
,

we then have the bound

P (|Z − F−1(0.5)| ≤ a) ≤ 0.75− 2ε

1− 2ε
− 0.25

1− 2ε
=

0.5− 2ε

1− 2ε
,

implying that

P (|X − F−1(0.5)| > a) ≥ (1− ε) ·
(

1− 0.5− 2ε

1− 2ε

)
> 0.5.

It follows that

P (|X − F−1(0.5)| ≤ a) < 0.5,

so by implication (ii) above,

d(F ) > Φ−1
µ,σ

(
0.75− 2ε

1− 2ε

)
− Φ−1

µ,σ

(
0.5

1− ε

)
. (B.28)

Using the fact that d(Φµ,σ) = Φ−1
µ,σ(0.75) and Φ−1

µ,σ(0.5) = 0, inequality (B.27)

196



implies that

d(F )− d(Φµ,σ) ≤
{

Φ−1
µ,σ

(
0.75

1− ε

)
− Φ−1

µ,σ(0.75)

}
+

{
Φ−1
µ,σ(0.5)− Φ−1

µ,σ

(
0.5− ε
1− ε

)}
≤ 3.6σ

{(
0.75

1− ε
− 0.75

)
+

(
0.5− 0.5− ε

1− ε

)}
= 3.6σ · 1.25ε

1− ε

≤ 4.8σε,

where the second inequality comes from Lemma 28 and the observation Φ−1
µ,σ(x) =

µ + σΦ−1
0,1(x), along with the assumption ε ≤ 1

16
. Similarly, inequality (B.28) implies

that

d(F )− d(Φµ,σ) ≥
{

Φ−1
µ,σ

(
0.75− 2ε

1− 2ε

)
− Φ−1

µ,σ(0.75)

}
+

{
Φ−1
µ,σ(0.5)− Φ−1

µ,σ

(
0.5

1− ε

)}
≥ −3.6σ

{(
0.75− 0.75− 2ε

1− 2ε

)
+

(
0.5

1− ε
− 0.5

)}
= −3.6σ

(
0.5ε

1− 2ε
+

0.5ε

1− ε

)
≥ −3.98σε.

Thus, we have the desired result.

We conclude with the main lemma of this section, which establishes the consis-

tency of the sample MAD to its population-level version.

Lemma 23. Let X1, . . . , Xn be a random sample from F = (1− ε)Φµ,σ + εH, where

0 ≤ ε ≤ 1
16

, Φµ,σ denotes the N(µ, σ2) distribution, and H is an arbitrary distribution.

Let d := d(F ) be the population MAD corresponding to F , and let d̂ be the sample

MAD. Then for 0 < t < 1, we have

P (|d̂− d| > t) ≤ 6 exp(−2nc2(σ)t2), (B.29)
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where c(σ) = 15
64
√

2πσ
exp

(
− (1.1σ+0.5)2

2σ2

)
.

Proof. By Lemma 20, it suffices to show that

a(t) ≥ c(σ)t,

for the ε-contaminated distribution, with a(t) as defined in the lemma. With an abuse

of notation, let F,Φµ,σ, and H denote the cdfs of the respective distributions. Let

G(c) = P (|Xi −m| ≤ c),

where m denotes the median of the contaminated distribution. Note that by the

definition of the median, we have F (m) ≥ 1
2

and G(d) ≥ 1
2
. Define

b1 = F
(
m+

t

2

)
− 1

2
≥ F

(
m+

t

2

)
− F (m),

b2 =
1

2
− F

(
m− t

2

)
≥ F

(
m− t

4

)
− F

(
m− t

2

)
,

b3 = G
(
d+

t

2

)
− 1

2
≥ G

(
d+

t

2

)
−G(d), and

b4 =
1

2
−G

(
d− t

2

)
≥ G

(
d− t

4

)
−G

(
d− t

2

)
,

where we have used the fact that F
(
m− t

4

)
< 1

2
and G

(
d− t

4

)
< 1

2
in the second

and fourth inequalities. Then a(t) = min{b1, b2, b3, b4}.

Note that

b1 ≥ (1− ε)
(

Φµ,σ

(
m+

t

2

)
− Φµ,σ(m)

)
+ ε

(
H

(
m+

t

2

)
−H(m)

)
≥ (1− ε)

(
Φµ,σ

(
m+

t

2

)
− Φµ,σ(m)

)
.

198



Similarly, we can check that

b2 ≥ (1− ε)
(

Φµ,σ

(
m− t

4

)
− Φµ,σ

(
m− t

2

))
,

b3 ≥ (1− ε)
(
GΦ

(
d+

t

2

)
−GΦ(d)

)
, and

b4 ≥ (1− ε)
(
GΦ

(
d− t

4

)
−GΦ

(
d+

t

2

))
,

where GΦ(c) := Φµ,σ(m + c) − Φµ,σ(m − c). By the mean value theorem, we have

c1, c2, c3, and c4 such that

b1 ≥ (1− ε)Φ′µ,σ(c1)
t

2
, m ≤ c1 ≤ m+

t

2
,

b2 ≥ (1− ε)Φ′µ,σ(c2)
t

4
, m− t

2
≤ c2 ≤ m− t

4
,

b3 ≥ (1− ε)G′Φ(c3)
t

2

= (1− ε)
(
Φ′µ,σ(m+ c3) + Φ′µ,σ(m− c3)

) t
2
, d ≤ c3 ≤ d+

t

2
,

b4 ≥ (1− ε)G′Φ(c4)
t

4

= (1− ε)
(
Φ′µ,σ(m+ c4) + Φ′µ,σ(m− c4)

) t
4
, d− t

2
≤ c4 ≤ d− t

4
.

Note in particular that

c1, c2, m+ c3, m− c3, m+ c4, m− c4 ∈
[
m− d− t

2
, m+ d+

t

2

]
.

Let d(Φµ,σ) = Φ−1(0.75)σ be the MAD estimator corresponding to Φµ,σ. By

Lemma 21, for 0 ≤ ε ≤ 1
16

, the median m = F−1(0.5) satisfies

µ+ Φ−1

(
7

15

)
σ ≤ µ+ Φ−1

(1− 2ε

2− 2ε

)
σ ≤ m ≤ µ+ Φ−1

( 1

2− 2ε

)
σ ≤ µ+ Φ−1

(
8

15

)
σ.
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In addition, Lemma 22 implies that for 0 ≤ ε ≤ 1
16

, we have

d ≤ d(Φµ,σ) + 4.8σε ≤ Φ−1(0.75)σ + 0.3σ ≤ σ.

Therefore, for c ∈ [m− d− t
2
,m+ d+ t

2
] and 0 < t < 1, we have

c ≥ m− d− t

2
≥ µ+ Φ−1

(
7

15

)
σ − σ − 0.5 ≥ µ− 1.1σ − 0.5, and

c ≤ m+ d+
t

2
≤ µ+ Φ−1

(
8

15

)
σ + σ + 0.5 ≤ µ+ 1.1σ + 0.5.

Hence,

min

{
Φ′µ,σ(c) : m− d− t

2
≤ c ≤ m+ d+

t

2

}
≥ min{Φ′µ,σ(c) : |c− µ| ≤ 1.1σ + 0.5}

=
1√
2πσ

exp

(
− (1.1σ + 0.5)2

2σ2

)
.

It follows that

a(t) = min{b1, b2, b3, b4} ≥ (1− ε) · 1√
2πσ

exp

(
− (1.1σ + 0.5)2

2σ2

)
t

4

≥ 15

16
√

2πσ
exp

(
− (1.1σ + 0.5)2

2σ2

)
t

4
= c(σ)t.

B.4 Auxiliary lemmas

We begin with a lemma describing the behavior of the mean of the Kendall’s tau

statistic under a contaminated normal distribution. Note that the statement of the

lemma does not depend on the variances of the uncontaminated marginals, or the

contaminating distribution H.
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Lemma 24. Let (Xk1, Xk2), for k = 1, . . . , n, be a random sample from

F = (1− γ)Φρ + γH,

where Φρ is a bivariate normal distribution with correlation ρ and H is an arbitrary

bivariate distribution. Let ρK = EF (rK), where rK is Kendall’s tau statistic. Then

ρK =
2

π
sin−1(ρ) +R,

where |R| ≤ 12γ + 17γ2.

Proof. Define a(X) = 1(X > 0), and let sign(X) = 2a(X)− 1. In particular,

sign(X) = 1(X > 0)− 1(X < 0) = 2a(X)− 1− 1(X = 0) = sign(X)− 1(X = 0).

We may rewrite ρK as

ρK = E [sign(X11 −X21)sign(X12 −X22)]

= E
[
sign(X11 −X21)sign(X12 −X22)

]
− E[1(X11 = X21)sign(X12 −X22)]

− E
[
sign(X11 −X21)1(X12 = X22)

]
+ E [1(X11 = X21)1(X12 = X22)]

:= A+B + C +D.

In particular,

|B| =
∣∣E[1(X11 = X21)sign(X12 −X22)]

∣∣
≤ E[1(X11 = X21)] = P (X11 = X21), (B.30)

201



using the fact that |sign(X)| = 1. Furthermore, we have

P (X11 = X21) ≤ γ2,

since the normal distribution is absolutely continuous, so we can only have P (X11 =

X21) with positive probability when both X1 and X2 are drawn from the contaminat-

ing distribution. Similarly,

|C| =
∣∣E[sign(X11 −X21)1(X12 = X22)]

∣∣
≤ E[1(X12 = X22)] = P (X12 = X22) ≤ γ2. (B.31)

We also have

|D| = |E[1(X11 = X21)1(X12 = X22)]|

≤ (E[1(X11 = X21)])1/2 (E[1(X12 = X22)])1/2 ≤ γ2. (B.32)

Turning to the final term, we have

A = E
[
sign(X11 −X21)sign(X12 −X22)

]
= E

[
(2a(X11 −X21)− 1)(2a(X12 −X22)− 1)

]
= 4E[a(X11 −X21)a(X12 −X22)]− 2E[a(X11 −X21)]− 2E[a(X12 −X22)] + 1

=
(
4E[a(X11 −X21)a(X12 −X22)]− 1

)
+ 2
(
1− E[a(X11 −X21)]− E[a(X12 −X22)]

)
:= A1 + A2.

Here, the expectation is with respect to the joint distribution of (X11, X12, X21, X22),
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with density

f = [(1− γ)φ1 + γh1][(1− γ)φ2 + γh2]

= (1− γ)2φ1φ2 + γ(1− γ)φ1h2 + γ(1− γ)φ2h1 + γ2h1h2. (B.33)

This follows from the fact that the pairs (X11, X12) and (X21, X22) are independently

drawn from the mixture distribution, where φ is the joint density of (Xk1, Xk2) under

Φρ, and h is the joint density of (Xk1, Xk2) under H. Now, let U = X11 − X21 and

V = X12 − X22. Under the product distribution φ1φ2, the distribution of (U, V ) is

bivariate normal with mean 0 and correlation ρ. Hence,

Eφ1φ2 [a(U)] = Eφ1φ2 [a(V )] =
1

2
, (B.34)

and by Lemma 27,

Eφ1φ2 [a(U)a(V )] =
1

4

[
1 +

2

π
sin−1(ρ)

]
. (B.35)

Combining equations (B.33) and (B.34), we then have

Ef [a(U)]

= (1− γ)2Eφ1φ2 [a(U)] + γ(1− γ)Eφ1h2 [a(U)] + γ(1− γ)Eφ2h1 [a(U)] + γ2Eh1h2 [a(U)]

=
1

2
− γ +

1

2
γ2 + γ(1− γ)Eφ1h2 [a(U)] + γ(1− γ)Eφ2h1 [a(U)] + γ2Eh1h2 [a(U)]

=
1

2
+ {−1 + Eφ1h2 [a(U)] + Eφ2h1 [a(U)]} γ

+

{
1

2
− Eφ1h2 [a(U)]− Eφ2h1 [a(U)] + Eh1h2 [a(U)]

}
γ2.
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Noting that Eφ1h2 [a(U)], Eφ2h1 [a(U)] and Eh1h2 [a(U)] are between 0 and 1, we have

∣∣∣∣Ef [a(U)]− 1

2

∣∣∣∣ ≤ γ +
3

2
γ2, and

∣∣∣∣Ef [a(V )]− 1

2

∣∣∣∣ ≤ γ +
3

2
γ2.

It follows that

|A2| = 2|1− Ef [a(U)]− Ef [a(V )]| ≤ 4γ + 6γ2. (B.36)

On the other hand, combining equations (B.33) and (B.35), we have

A1 = 4Ef [a(U)a(V )]− 1

= 4
{

(1− γ)2Eφ1φ2 [a(U)a(V )] + γ(1− γ)Eφ1h2 [a(U)a(V )]

+ γ(1− γ)Eφ2h1 [a(U)a(V )] + γ2Eh1h2 [a(U)a(V )]
}
− 1

= (1− γ)2

[
1 +

2

π
sin−1(ρ)

]
− 1

+ 4
{
γ(1− γ)Eφ1h2 [a(U)a(V )] + γ(1− γ)Eφ2h1 [a(U)a(V )] + γ2Eh1h2 [a(U)a(V )]

}
=

2

π
sin−1(ρ) + (−2γ + γ2)

[
1 +

2

π
sin−1(ρ)

]
+ 4
{
γ(1− γ)Eφ1h2 [a(U)a(V )] + γ(1− γ)Eφ2h1 [a(U)a(V )] + γ2Eh1h2 [a(U)a(V )]

}
=

2

π
sin−1(ρ) +

{
− 2− 4

π
sin−1(ρ) + 4Eφ1h2 [a(U)a(V )] + 4Eφ2h1 [a(U)a(V )]

}
γ

+

{
1 +

2

π
sin−1(ρ)− 4Eφ1h2 [a(U)a(V )]− 4Eφ2h1 [a(U)a(V )] + 4Eh1h2 [a(U)a(V )]

}
γ2.

Noting that the quantities

−2− 4

π
sin−1(ρ) + 4Eφ1h2 [a(U)a(V )] + 4Eφ2h1 [a(U)a(V )]

and

1 +
2

π
sin−1(ρ)− 4Eφ1h2 [a(U)a(V )]− 4Eφ2h1 [a(U)a(V )] + 4Eh1h2 [a(U)a(V )]
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are both bounded in magnitude by 8, we obtain

∣∣∣∣A1 −
2

π
sin−1(ρ)

∣∣∣∣ ≤ 8γ + 8γ2. (B.37)

Combining inequalities (B.30), (B.31), (B.32), (B.36) and (B.37) then gives

∣∣∣∣ρK − 2

π
sin−1(ρ)

∣∣∣∣ =

∣∣∣∣A1 + A2 +B + C +D − 2

π
sin−1(ρ)

∣∣∣∣
≤
∣∣∣∣A1 −

2

π
sin−1(ρ)

∣∣∣∣+ |A2|+ |B|+ |C|+ |D|

≤ 12γ + 17γ2.

The second lemma provides an analogous result to Lemma 24, this time for the

Spearman’s rho statistic.

Lemma 25. Let (Xk1, Xk2), for k = 1, . . . , n, be a random sample from

F = (1− γ)Φρ + γH,

where Φρ is a bivariate normal distribution with correlation ρ, and H is an arbitrary

bivariate distribution. Let rS be the Spearman’s rho statistic, and suppose the samples

{Xki : k = 1, . . . , n} are unique. Then

EF (rS) =
6

π
sin−1

(ρ
2

)
+R,

where |R| ≤ 48γ + 129γ2 + 88γ3 + 12
n+1

.

Proof. Let ρK = EF (rK) be the population version of Kendall’s tau correlation. By
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Lemma 26, we have

EF (rS) =
3(n− 2)

n+ 1
· E [sign(X11 −X21)sign(X12 −X32)] +

3

n+ 1
ρK

= 3E [sign(X11 −X21)sign(X12 −X32)]

+
3

n+ 1
(ρK − 3E [sign(X11 −X21)sign(X12 −X32)]). (B.38)

Note that the second term is clearly bounded in magnitude by 12
n+1

. Now define

a(X) = 1(X > 0), and let sign(X) = 2a(X)−1. Then sign(X) = sign(X)−1(X = 0).

It follows that

E [sign(X11 −X21)sign(X12 −X32)]

= E
[
sign(X11 −X21)sign(X12 −X32)

]
− E[1(X11 = X21)sign(X12 −X32)]

− E
[
sign(X11 −X21)1(X12 = X32)

]
+ E [1(X11 = X21)1(X12 = X32)]

:= A+B + C +D.

A similar argument as in the proof of Lemma 24 yields

max{|B|, |C|, |D|} ≤ γ2, (B.39)

and

A =
(
4E[a(X11 −X21)a(X12 −X32)]− 1

)
+ 2
(
1− E[a(X11 −X21)]− E[a(X12 −X32)]

)
:= A1 + A2.

Here, the expectation is with respect to the joint distribution of (X11, X12, X21,
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X22, X31, X32), with density

f = [(1− γ)φ1 + γh1][(1− γ)φ2 + γh2][(1− γ)φ3 + γh3]

= (1− γ)3φ1φ2φ3 + γ(1− γ)2[φ1φ2h3 + φ1φ3h2 + φ2φ3h1]

+ γ2(1− γ)[φ1h2h3 + φ2h1h3 + φ3h1h2] + γ3h1h2h3. (B.40)

Now let U = X11 −X21 and V = X12 −X32. Under the product distribution φ1φ2φ3,

the distribution of (U, V ) is bivariate normal with mean 0 and correlation ρ/2. Hence,

Eφ1φ2φ3 [a(U)] = Eφ1φ2φ3 [a(V )] =
1

2
, (B.41)

and by Lemma 27,

Eφ1φ2φ3 [a(U)a(V )] =
1

4

[
1 +

2

π
sin−1

(ρ
2

)]
. (B.42)

Combining equations (B.40) and (B.41), and noting that E[a(U)] is between 0 and

1, we then have

Ef [a(U)]

= (1− γ)3Eφ1φ2φ3 [a(U)] + γ(1− γ)2
{
Eφ1φ2h3 [a(U)] + Eφ1φ3h2 [a(U)] + Eφ2φ3h1 [a(U)]

}
+ γ2(1− γ)

{
Eφ1h2h3 [a(U)] + Eφ2h1h3 [a(U)] + Eφ3h1h2 [a(U)]

}
+ γ3Eh1h2h3 [a(U)]

=
1

2
− 3

2
γ +

3

2
γ2 − 1

2
γ3 + γ(1− γ)2

{
Eφ1φ2h3 [a(U)] + Eφ1φ3h2 [a(U)] + Eφ2φ3h1 [a(U)]

}
+ γ2(1− γ)

{
Eφ1h2h3 [a(U)] + Eφ2h1h3 [a(U)] + Eφ3h1h2 [a(U)]

}
+ γ3Eh1h2h3 [a(U)]

=
1

2
+ cγ + dγ2 + eγ3,
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where |c| ≤ 3
2
, |d| ≤ 9

2
, and |e| ≤ 7

2
. It follows that

∣∣∣∣Ef [a(U)]− 1

2

∣∣∣∣ ≤ 3

2
γ +

9

2
γ2 +

7

2
γ3, and

∣∣∣∣Ef [a(V )]− 1

2

∣∣∣∣ ≤ 3

2
γ +

9

2
γ2 +

7

2
γ3,

so

|A2| = 2|1− Ef [a(U)]− Ef [a(V )]| ≤ 6γ + 18γ2 + 14γ3. (B.43)

Furthermore, combining equations (B.40) and (B.42), we have

A1 = 4Ef [a(U)a(V )]− 1

= 4

{
(1− γ)3Eφ1φ2φ3 [a(U)a(V )]

+ γ(1− γ)2
{
Eφ1φ2h3 [a(U)a(V )] + Eφ1φ3h2 [a(U)a(V )] + Eφ2φ3h1 [a(U)a(V )]

}
+ γ2(1− γ)

{
Eφ1h2h3 [a(U)a(V )] + Eφ2h1h3 [a(U)a(V )] + Eφ3h1h2 [a(U)a(V )]

}
+ γ3Eh1h2h3 [a(U)a(V )]

}
− 1

= (1− γ)3

[
1 +

2

π
sin−1

(ρ
2

)]
− 1

+ 4

{
γ(1− γ)2

{
Eφ1φ2h3 [a(U)a(V )] + Eφ1φ3h2 [a(U)a(V )] + Eφ2φ3h1 [a(U)a(V )]

}
+ γ2(1− γ)

{
Eφ1h2h3 [a(U)a(V )] + Eφ2h1h3 [a(U)a(V )] + Eφ3h1h2 [a(U)a(V )]

}
+ γ3Eh1h2h3 [a(U)a(V )]

}
=

2

π
sin−1

(ρ
2

)
+ (−3γ + 3γ2 − γ3)

[
1 +

2

π
sin−1

(ρ
2

)]
+ 4

{
γ(1− γ)2

{
Eφ1φ2h3 [a(U)a(V )] + Eφ1φ3h2 [a(U)a(V )] + Eφ2φ3h1 [a(U)a(V )]

}
+ γ2(1− γ)

{
Eφ1h2h3 [a(U)a(V )] + Eφ2h1h3 [a(U)a(V )] + Eφ3h1h2 [a(U)a(V )]

}
+ γ3Eh1h2h3 [a(U)a(V )]

}
=

2

π
sin−1

(ρ
2

)
+ c′γ + d′γ2 + e′γ3,
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where |c′| ≤ 10, |d′| ≤ 22, and |e′| ≤ 46
3

. Hence, we obtain

∣∣∣∣A1 −
2

π
sin−1

(ρ
2

)∣∣∣∣ ≤ 10γ + 22γ2 +
46

3
γ3. (B.44)

Combining inequalities (B.38), (B.39), (B.43) and (B.44), we then obtain

∣∣∣∣EF (rS)− 6

π
sin−1

(ρ
2

)∣∣∣∣ ≤ 3

∣∣∣∣A1 + A2 +B + C +D − 2

π
sin−1

(ρ
2

)∣∣∣∣+
12

n+ 1

≤ 3

{ ∣∣∣∣A1 −
2

π
sin−1

(ρ
2

)∣∣∣∣+ |A2|+ |B|+ |C|+ |D|
}

+
12

n+ 1

≤ 48γ + 129γ2 + 88γ3 +
12

n+ 1
.

The following lemma comes from Hoeffding (1948):

Lemma 26. Suppose the samples {Xki : k = 1, . . . , n} are unique, for i = 1, 2. The

Spearman’s rho correlation can be decomposed as

rS =
n− 2

n+ 1
U +

3

n+ 1
rK ,

where rK is the Kendall’s tau correlation, and U is a U-statistic of order 3 with

corresponding symmetric kernel

ψU(X1, X2, X3) =
1

3!

∑
(i1,i2,i3)∈perm(1,2,3)

3 · sign(Xi11 −Xi21) sign(Xi12 −Xi32),

and the summation is taken over all possible permutations of the three arguments.

The proof of the following lemma is adapted from an argument in Croux & Dehon

(2010).
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Lemma 27. Suppose (X, Y ) follows a bivariate normal distribution with mean 0 and

correlation ρ. Then

E[a(X)a(Y )] = P (X > 0, Y > 0) =
1

4

[
1 +

2

π
sin−1(ρ)

]
.

Proof. Recall that we may write

Y = ρX +
√

1− ρ2Z,

where (X,Z) ∼ N(0, I2). Furthermore, we have the polar coordinate representation

(X,Z) = (R cos θ, R sin θ),

where θ ∼ Uniform(−π, π], and R follows a Rayleigh distribution. Then

Y = R
(
ρ cos(θ) +

√
1− ρ2 sin(θ)

)
,

which has the convenient representation Y = R sin(α + θ), where α = sin−1(ρ). It

follows that

P (X > 0, Y > 0) = P (cos θ > 0, sin(α + θ) > 0)

= P

(
θ ∈

[
− α, π

2

])
=

π
2

+ α

2π
=

1

4

[
1 +

2

π
sin−1(ρ)

]
.

Finally, we have a simple lemma concerning the Lipschitz behavior of the normal

quantile function:

Lemma 28. The standard normal quantile function Φ−1 : [0, 1]→ R, when restricted
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to the domain [0.2, 0.8], is Lipschitz continuous with Lipschitz constant 3.6; i.e.,

|Φ−1(a)− Φ−1(b)| ≤ 3.6|a− b|, ∀a, b ∈ [0.2, 0.8].

Proof. It suffices to check that | d
dy

Φ−1(y)| ≤ 3.6, for y ∈ [0.2, 0.8]. Since [Φ−1]′(Φ(x)) ·

Φ′(x) = d
dx

Φ−1(Φ(x)) = d
dx
x = 1, we have

[Φ−1]′(Φ(x)) =
1

Φ′(x)
, ∀x ∈ R.

For y = Φ(x) ∈ [0.2, 0.8], we have x ∈ [−0.8416, 0.8416], and for such x’s,

[Φ−1]′(Φ(x)) =
1

Φ′(x)
=
√

2π exp

(
1

2
x2

)
≤
√

2π exp

(
1

2
· 0.84162

)
≤ 3.6.

This concludes the proof.
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C
Supplement for Chapter 4

This chapter contains supporting materials for Chapter 4. Section C.1 presents the

estimation results for the quadratic functional Q(µ, θ) when µ and θ have different

signal strengths, whereas Section C.2 presents the proofs of main theorems given in

Section 4.2.

C.1 Optimal Estimation of Q(µ, θ) with Different

Signal Strengths

We consider in Chapter 4 the estimation of Q(µ, θ) = 1
n

∑n
i=1 µ

2
i θ

2
i over the parameter

space (4.4) where jn = kn = nβ and rn = sn = nb, with 0 < ε ≤ β < 1
2

and b ∈ R. In

this section, we present the estimation result for Q(µ, θ) with jn = kn = nβ but allow

rn and sn to differ. Specifically, we consider the following parameter space

Ω(β, ε, a, b) = {(µ, θ) ∈ Rn × Rn : ‖µ‖0 ≤ kn, ‖µ‖∞ ≤ rn, ‖θ‖0 ≤ kn, ‖θ‖∞ ≤ sn,

‖µ ? θ‖0 ≤ qn}, (C.1)

where kn = nβ, qn = nε with 0 < ε ≤ β < 1
2
, and rn = na, sn = nb with a, b ∈ R.

Similar as before, the estimation problem can be divided into three regimes: the
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sparse regime (0 < ε < β
2
), the moderately dense regime (β

2
≤ ε ≤ 3β

4
), and the

strongly dense regime (3β
4
< ε ≤ β). When µ and θ have different signal strengths,

the minimax rates of convergence for Q(µ, θ) exhibit more elaborate phase transitions,

though they still bear the familiar form

R∗(n,Ω(β, ε, a, b)) := inf
Q̂

sup
(µ,θ)∈Ω(β,ε,a,b)

E(µ,θ)(Q̂−Q(µ, θ))2 � γn(β, ε, a, b),

where γn(β, ε, a, b) is a function of n indexed by β, ε, a, and b. For readability, we

summarize the corresponding γn(β, ε, a, b) in Table C.1 (sparse regime), Table C.2

(moderately dense regime), and Table C.3 (strongly dense regime), respectively. The

minimax rates of convergence are attained by the same estimators as before over the

respective regimes, as stated in Theorem 16 and Theorem 17 given below.

Although we do not present the result here due to its lengthiness, estimation of

Q(µ, θ) for the case where no equality constraint is imposed on either sparsity or

signal strength of µ and θ can be analyzed analogously provided that the magnitude

of the simultaneous sparsity ε is compared to α if a ≥ b, and to β if b ≥ a, for the

characterization of the sparse and dense regimes.

Theorem 16 (Sparse Regime). Let 0 < ε < β
2

and 0 < β < 1
2
. Then Q̂2 defined in

(4.15) with τn = log n attains the minimax rate of convergence over Ω(β, ε, a, b) for

(a, b) ∈ {(a, b) : a ∧ b > 0}. On the other hand, Q̂0 = 0 attains the minimax rate of

convergence over Ω(β, ε, a, b) for (a, b) ∈ {(a, b) : a ∧ b ≤ 0}.

Theorem 17 (Dense Regime). Let β
2
≤ ε ≤ β and 0 < β < 1

2
. Then Q̂4 defined in

(4.21) with τn = 4 log n attains the minimax rate of convergence over Ω(β, ε, a, b) for

(a, b) ∈ {(a, b) : a ∨ b > 0 and a ∧ b > β−2ε
4
}. On the other hand, Q̂0 = 0 attains the

minimax rate of convergence over Ω(β, ε, a, b) for (a, b) ∈ {(a, b) : a∨ b ≤ 0 or a∧ b ≤
β−2ε

4
}.
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The shaded regions in the three tables represent the region where Q̂0 attains the

minimax rate of convergence. Thus, {(a, b) : a ∧ b ≤ 0} is shaded in Table C.1, while

{(a, b) : a ∨ b ≤ 0 or a ∧ b ≤ β−2ε
4
} is shaded in Tables C.2 and C.3.

Note that the estimation result for the dense regime turns out to be interesting

(and more inspiring) when rn and sn can differ. It seems that estimation is desirable

whenever the signal strengths of both sequences barely exceed some small threshold

(a ∧ b > β−2ε
4

, but β − 2ε ≤ 0 in this case) and at least one sequence has sufficiently

strong signal (a ∨ b > 0). This is in contrast to the sparse regime where estimation

is desirable only when the signal strength of both sequences are sufficiently strong

(a∧b > 0). The intuitive explanation is that in the dense regime, knowing that µi 6= 0

(because of large X2
i ) most often suggests that θi 6= 0 too (even if Y 2

i is small), and

vice versa, so we cannot afford to estimate µ2
i θ

2
i by 0 with this additional information.

On the contrary, in the sparse regime, knowing that µi 6= 0 does not entail much about

whether θi 6= 0 due to the sparseness of simultaneous nonzero coordinates. Therefore

it is better to estimate µ2
i θ

2
i by 0 unless both X2

i and Y 2
i are large.

In fact, the minimax rates of convergence for the sparse regime are relatively

simple to describe, when rn is not necessarily equal to sn:

γn(β, ε, a, b) =


n2ε+4a+4b−2 if a ∧ b ≤ 0,

n2ε+4a∨b−2(log n)2 if 0 < a ∧ b ≤ ε
2
,

nε+4a∨b+2a∧b−2 if a ∧ b > ε
2
.

Unfortunately, we do not have such an easy representation for the minimax rates of

convergence in the dense regime. Nonetheless, due to the two-dimensional nature

of the estimation problem, we find tables useful not only in presenting the minimax

rates of convergence but also in illustrating the regions with weak signals (i.e., the

shaded regions).
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b ≤ 0 0 < b ≤ ε
2

b > ε
2

a ≤ 0 n2ε+4a+4b−2 n2ε+4a+4b−2 n2ε+4a+4b−2

0 < a ≤ ε
2

n2ε+4a+4b−2 n2ε+4a∨b−2(log n)2 n2ε+4b−2(log n)2

a > ε
2

n2ε+4a+4b−2 n2ε+4a−2(log n)2 nε+4a∨b+2a∧b−2

Table C.1: Minimax rates of convergence in the sparse regime: 0 < ε < β
2
.

b ≤ β−2ε
4

β−2ε
4

< b ≤ 0 0 < b ≤ 2ε−β
4

2ε−β
4

< b ≤ β−ε
2

b > β−ε
2

a ≤ β−2ε
4

n2ε+4a+4b−2 n2ε+4a+4b−2 n2ε+4a+4b−2 n2ε+4a+4b−2 n2ε+4a+4b−2

β−2ε
4

< a ≤ 0 n2ε+4a+4b−2 n2ε+4a+4b−2 max{nβ+4b−2,

n2ε+4a−2(log n)2}
nβ+4b−2 nβ+4b−2

0 < a ≤ 2ε−β
4

n2ε+4a+4b−2 max{nβ+4a−2,

n2ε+4b−2(log n)2}
n2ε−2(log n)4 nβ+4b−2 nβ+4b−2

2ε−β
4

< a ≤ β−ε
2

n2ε+4a+4b−2 nβ+4a−2 nβ+4a−2 nβ+4a∨b−2 nβ+4b−2

a > β−ε
2

n2ε+4a+4b−2 nβ+4a−2 nβ+4a−2 nβ+4a−2 nε+4a∨b+2a∧b−2

Table C.2: Minimax rates of convergence in the moderately dense regime: β
2
≤ ε ≤ 3β

4
. In this case, we have 2ε−β

4
≤ β−ε

2
.

b ≤ β−2ε
4

β−2ε
4

< b ≤ 0 0 < b ≤ β−ε
2

β−ε
2
< b ≤ 2ε−β

4
b > 2ε−β

4

a ≤ β−2ε
4

n2ε+4a+4b−2 n2ε+4a+4b−2 n2ε+4a+4b−2 n2ε+4a+4b−2 n2ε+4a+4b−2

β−2ε
4

< a ≤ 0 n2ε+4a+4b−2 n2ε+4a+4b−2 max{nβ+4b−2,

n2ε+4a−2(log n)2}
max{nβ+4b−2,

n2ε+4a−2(log n)2}
nβ+4b−2

0 < a ≤ β−ε
2

n2ε+4a+4b−2 max{nβ+4a−2,

n2ε+4b−2(log n)2}
n2ε−2(log n)4 n2ε−2(log n)4 nβ+4b−2

β−ε
2
< a ≤ 2ε−β

4
n2ε+4a+4b−2 max{nβ+4a−2,

n2ε+4b−2(log n)2}
n2ε−2(log n)4 max{n2ε−2(log n)4,

nε+4a∨b+2a∧b−2}
nε+2a+4b−2

a > 2ε−β
4

n2ε+4a+4b−2 nβ+4a−2 nβ+4a−2 nε+4a+2b−2 nε+4a∨b+2a∧b−2

Table C.3: Minimax rates of convergence in the strongly dense regime: 3β
4
< ε ≤ β. In this case, we have β−ε

2
< 2ε−β

4
.
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C.2 Proofs for Main Results in Section 4.2

This section contains the proofs of main results in Section 4.2. We present the proofs

of Theorems 12 and 14 in Section C.2.1, followed by proofs of Theorem 11 and 13 in

Sections C.2.2. The proofs of supporting lemmas are given in Section C.2.3.

To simplify notation, in the following we omit the subscripts n in kn, qn, sn and τn

that signifies their dependence on the sample size. We denote by ψµ the density of

a Gaussian distribution with mean µ and variance σ2, and we denote by `(n, k) the

class of all subsets of {1, . . . , n} of k distinct elements. We let φ(z), Φ(z) = P (Z ≤ z),

and Φ̃(z) = 1 − Φ(z) be the density, cumulative distribution function, and survival

function of a standard normal random variable Z, respectively. Finally, c and C

denote generic positive constants whose values may vary for each occurrence.

C.2.1 Proof of Theorems 12 and 14

In this section, we prove Theorems 12 and 14, which constitute the lower bound for

the estimation rate of Q(µ, θ) in the sparse and the dense regime, respectively. We

begin with some technical tools for establishing lower bounds.

General Tools

Let M be a set of probability measures on a measurable space (X ,A), and let θ :

M−→ R. For Pf , Pg ∈M, let θf = θ(Pf ), θg = θ(Pg), and let f, g denote the density

of Pf , Pg with respect to some dominating measure u. The chi-square affinity between

Pf and Pg is defined as

ξ = ξ(Pf , Pg) =

∫
g2

f
du.
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In particular, for Gaussian distributions, we have

ξ(N(θ0, σ
2), N(θ1, σ

2)) = e(θ1−θ0)2/σ2

.

Throughout, the proof of lower bounds is established by the construction of two

priors which have small chi-square distance but a large difference in the expected

values of the resulting quadratic functionals, followed by an application of the Con-

strained Risk Inequality (CRI) in Brown & Low (1996). Essentially, CRI says that

if Pf and Pg are such that θf , θg ∈ Θ, the parameter space of estimation, with

ξ = ξ(Pf , Pg) < ∞, then for any estimator δ of θ = θ(P ) ∈ Θ based on the random

variable X with distribution P , we have

sup
θ∈Θ

Eθ(δ(X)− θ)2 ≥ (θg − θf )2

(1 + ξ1/2)2
.

It follows that to establish lower bound for estimation rate, it suffices to find Pf and

Pg such that (θg − θf )2 is as large as possible subject to ξ(Pf , Pg) <∞.

Proof of Theorem 12

To prove Theorem 12, it suffices to show that for 0 < β < 1
2
,

γn(β, ε, b) ≥


n2ε+4b−2(log n)2 if b > 0, for 0 < ε < β

2
, (Case 1)

n2ε+8b−2 if b ≤ 0, for 0 < ε ≤ β, (Case 2)

nε+6b−2 if b > 0, for 0 < ε ≤ β. (Case 3)

For individual regions in {(β, ε, b) : 0 < ε < β
2
, 0 < β < 1

2
, b ∈ R}, the minimax rate

of convergence is then given by the sharpest rate among all cases in which the region

belongs. For instance, the region {(β, ε, b) : 0 < ε < β
2
, 0 < β < 1

2
, b > ε

2
} is included
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in Case 1 and Case 3, hence γn(β, ε, b) ≥ max{n2ε+4b−2(log n)2, nε+6b−2} = nε+6b−2.

To establish the desired lower bounds, for each case we construct two priors f

and g that have small chi-square distance but a large difference in the expected

values of the resulting quadratic functionals, then apply the CRI. The choice of priors

f and g is crucial in deriving sharp lower bound for the estimation problem. In

fact, the fundamental difference between different phases in the sparse regime for the

estimation of Q(µ, θ) can be seen from the choices f and g.

Proof of Case 1. Our proof builds on arguments similar to that used in Cai & Low

(2004) and Baraud (2002), who considered the one-sequence estimation problem. We

first follow the lines of the proof of Theorem 7 in Cai & Low (2004), and then apply

a result from Aldous (1985) as was done in Baraud (2002). Let

f(x1, . . . , xn, y1, . . . , yn) =
k∏
i=1

ψs(xi)
n∏

i=k+1

ψ0(xi)
n∏
i=1

ψ0(yi).

For I ∈ `(k, q), let

gI(x1, . . . , xn, y1, . . . , yn) =
k∏
i=1

ψs(xi)
n∏

i=k+1

ψ0(xi)
k∏
i=1

ψθi(yi)
n∏

i=k+1

ψ0(yi),

where θi = ρ1(i ∈ I) with ρ > 0, and let

g =
1(
k
q

) ∑
I∈`(k,q)

gI .

In both f and g, the sequence µ = (s, . . . , s, 0, . . . , 0) is taken to be the same. However,

θ is taken to be all zeros in f but is taken as a mixture in g. The nonzero coordinates

of θ are mixed uniformly over the support of µ at a common magnitude ρ, whose value

is yet to be determined. Our choice of f and g essentially reduces the two-sequence

problem to the case where we only have one Gaussian mean sequence of length k with
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q nonzero coordinates, hence explains the correspondence between the sparse regime

in the two-sequence case (q �
√
k) and the sparse regime in the one-sequence case

(k �
√
n).

We now compute the chi-square affinity between f and g,

∫
g2

f
=

1(
k
q

)2

∑
I∈`(k,q)

∑
J∈`(k,q)

∫
gIgJ
f

. (C.2)

For I, J ∈ `(k, q), let m = Card(I ∩ J). Then

∫
gIgJ
f

=
k∏
i=1

∫
ψρ1(i∈I)(yi) · ψρ1(i∈J)(yi)

ψ0(yi)
dyi

=

[ ∫
ψ0(y) dy

]k−2q+m[ ∫
ψρ(y) dy

]2q−2m[ ∫ ψ2
ρ(y)

ψ0(y)
dy

]m
= exp

(
mρ2

σ2

)
.

It follows that ∫
g2

f
= E

[
exp

(
Mρ2

σ2

)]
,

where M has the hypergeometric distribution

P (M = m) =

(
q
m

)(
k−q
q−m

)(
k
q

) . (C.3)

As shown in Aldous (1985), M has the same distribution as the conditional expec-

tation E(M̃ |B), where M̃ is a Binomial(q, q
k
) random variable and B is a suitable

σ-algebra. Coupled with Jensen’s inequality, this implies that

∫
g2

f
≤ E

[
exp

(
M̃ρ2

σ2

)]
=

(
1− q

k
+
q

k
eρ

2/σ2

)q
.
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Taking ρ = σ
√

(β − 2ε) log n gives

eρ
2/σ2

= nβ−2ε =
k

q2
,

hence ∫
g2

f
≤
(

1 +
1

q

)q
≤ e.

Since Q(µ, θ) = 0 under f and Q(µ, θ) = 1
n
qs2ρ2 under g, it follows from CRI that

R∗(n,Ω(β, ε, b)) ≥ c

(
1

n
qs2ρ2

)2

= cn2ε+4b−2(log n)2.

Proof of Case 2. Let

f(x1, . . . , xn, y1, . . . , yn) =
n∏
i=1

ψ0(xi)
n∏
i=1

ψ0(yi)

For I ∈ `(n, q), let

gI(x1, . . . , xn, y1, . . . , yn) =
n∏
i=1

ψµi(xi)
n∏
i=1

ψθi(yi),

where µi = θi = ρ1(i ∈ I) with ρ > 0, and let

g =
1(
n
q

) ∑
I∈`(n,q)

gI .

Contrast the choice of f an g here with that used in the proof of Case 1. Rather than

fixing µ and mixing nonzero coordinates of θ over the support of µ, in this case mixing

is done over all n positions using nonzero coordinates of µ and θ simultaneously.
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Similar calculation as that used in the proof of Case 1 yields

∫
g2

f
≤
(

1− q

n
+
q

n
e2ρ2/σ2

)q
. (C.4)

Now take ρ = s = nb. Since b < 0, it follows that when n is sufficiently large,

e2ρ2/σ2 ≤ n1−2ε =
n

q2
,

hence ∫
g2

f
≤
(

1 +
1

q

)q
≤ e.

Since Q(µ, θ) = 0 under f , and Q(µ, θ) = 1
n
qρ4 under g, it follows from CRI that

R∗(n,Ω(β, ε, b)) ≥ c

(
1

n
qρ4

)2

= cn2ε+8b−2.

Proof of Case 3. The priors used in this case are very different from that considered

in the proofs of Case 1 and Case 2. Let

f(x1, . . . , xn, y1, . . . , yn) =

q∏
i=1

ψs(xi)
n∏

i=q+1

ψ0(xi)

q∏
i=1

ψs(yi)
n∏

i=q+1

ψ0(yi),

g(x1, . . . , xn, y1, . . . , yn) =

q∏
i=1

ψs(xi)
n∏

i=q+1

ψ0(xi)

q∏
i=1

ψs−δ(yi)
n∏

i=q+1

ψ0(yi),

where 0 < δ < s. Note that no mixing is performed in this case. Instead, we fix the

sequence µ = (s, . . . , s, 0, . . . , 0) in both f and g, and perturb the nonzero entries of

θ by a small amount δ in g. This set of priors provides the sharpest rate for the case

when the signal is strong, i.e., s = nb is large. The intuition is that when s is large,

estimation of Q(µ, θ) is most difficult due to the indistinguishability between θi = s
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and θi = s− δ, where δ ≈ 0.

The chi-square affinity between f and g is given by

∫
g2

f
= eqδ

2/σ2

.

Let δ = σ/
√
q = σn−ε/2. Then we have

∫
g2

f
= e <∞.

Since Q(µ, θ) = 1
n
qs4 under f and Q(µ, θ) = 1

n
qs2(s − δ)2 under g, it follows from

CRI that

R∗(n,Ω(β, ε, b)) ≥ c

(
1

n
qs2
(
s2 − (s− δ)2

))2

= c

(
1

n

√
qs3

)2

(1 + o(1)) = cnε+6b−2(1 + o(1)).

Proof of Theorem 14

To prove Theorem 14, it is sufficient to show that for 0 < β < 1
2
,

γn(β, ε, b) ≥



n2ε+8b−2 if b ≤ 0, for 0 < ε ≤ β, (Case 2)

nε+6b−2 if b > 0, for 0 < ε ≤ β, (Case 3)

nβ+4b−2 if b > 0, for β
2
≤ ε ≤ β, (Case 4)

n2ε−2(log n)4 if b > 0, for 0 < ε ≤ β. (Case 5)

The proofs of Case 2 and Case 3 are included in the proof of Theorem 12, hence

we will only provide proofs of Case 4 and Case 5 below. For individual regions in
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{(β, ε, b) : β
2
≤ ε ≤ β < 1

2
, b ∈ R}, the minimax rate of convergence is obtained as

the sharpest rate among all cases in which the region belongs to. For instance, the

region {(β, ε, b) : 3β
4
< ε ≤ β < 1

2
, b > ε

6
} is included in Case 3, Case 4 and Case 5,

hence γn(β, ε, b) ≥ max{nε+6b−2, nβ+4b−2, n2ε−2(log n)4} = nε+6b−2.

Proof of Case 4. The proof of Case 4 is very similar to the proof of Case 1, besides

that a slightly different mixture prior g is employed. Let

f(x1, . . . , xn, y1, . . . , yn) =
k∏
i=1

ψs(xi)
n∏

i=k+1

ψ0(xi)
n∏
i=1

ψ0(yi).

For I ∈ `(k, q), let

gI(x1, . . . , xn, y1, . . . , yn)

=
k∏
i=1

ψs(xi)
n∏

i=k+1

ψ0(xi)
k∏
i=1

[
1

2
ψθi(yi) +

1

2
ψ−θi(yi)

] n∏
i=k+1

ψ0(yi),

where θi = ρ1(i ∈ I) with ρ > 0, and let

g =
1(
k
q

) ∑
I∈`(k,q)

gI .

Note that in constructing g, mixing is done not only over all possible subsets `(k, q)

but also over the signs of θi’s. This has largely to do with the intuition that when

signal is abundant, uncertainty about the signs of θi’s further increase the difficulty

of the estimation problem. That being said, mixing without sign flips (i.e., simply

use the priors f and g as given in the proof of Case 1) does not give us the tightest

lower bound. Similar to Case 1, keeping µ = (s, . . . , s, 0, . . . , 0) the same in both f

and g essentially reduces the two-sequence problem to a one-sequence problem. Our

choice of priors is equivalent to having only one Gaussian mean sequence of length k
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with q nonzero entries — thus the correspondence between the dense regime in the

two-sequence case (q �
√
k) and the dense regime in the one-sequence case (k �

√
n).

Again, the chi-square affinity between f and g has the form (C.2), where for

I, J ∈ `(k, q) with m = Card(I ∩ J),

∫
gIgJ
f

=
k∏
i=1

∫
[1
2
ψρ1(i∈I)(yi) + 1

2
ψ−ρ1(i∈I)(yi)][

1
2
ψρ1(i∈J)(yi) + 1

2
ψ−ρ1(i∈J)(yi)]

ψ0(yi)
dyi

=
k∏
i=1

∫
1

4

{
ψρ1(i∈I)(yi)ψρ1(i∈J)(yi)

ψ0(yi)
+
ψ−ρ1(i∈I)(yi)ψ−ρ1(i∈J)(yi)

ψ0(yi)

+
ψρ1(i∈I)(yi)ψ−ρ1(i∈J)(yi)

ψ0(yi)
+
ψ−ρ1(i∈I)(yi)ψρ1(i∈J)(yi)

ψ0(yi)

}
dyi

=
∏
i∈I∩J

1

4

[ ∫
ψ2
ρ(yi)

ψ0(yi)
+

∫
ψ2
−ρ(yi)

ψ0(yi)
+ 2

∫
ψρ(yi)ψ−ρ(yi)

ψ0(yi)

] ∏
i∈Ic∪Jc

1

=
∏
i∈I∩J

1

2

[
exp(ρ2/σ2) + exp(−ρ2/σ2)

]
= cosh(ρ2/σ2)m.

It follows that ∫
g2

f
= E[cosh(ρ2/σ2)M ],

where M follows hypergeometric distribution as in (C.3). Since M coincides in distri-

bution with the conditional expectation E(M̃ |B) where M̃ is a Binomial(q, q
k
) random

variable and B is a suitable σ-algebra (Aldous, 1985), with Jensen’s inequality, we get

∫
g2

f
≤ E[cosh(ρ2/σ2)M̃ ] =

(
1 +

q

k
[cosh(ρ2/σ2)− 1]

)q
.

Since cosh(x) = 1
2
(ex + e−x) = 1 + x2

2
+ o(x2) when x ≈ 0, taking x = ρ2/σ2 with

ρ = ( k
q2

)1/4 yields ∫
g2

f
≤
(

1 +
1

2σ4q

)q
<∞.
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Since Q(µ, θ) = 0 under f and Q(µ, θ) = 1
n
qs2ρ2 under g, it follows from CRI that

R∗(n,Ω(β, ε, b)) ≥ c

(
1

n
qs2ρ2

)2

= cnβ+4b−2.

Proof of Case 5. Let f and g be as given in the proof of Case 2, and take ρ =

σ
√

1
2
(1− 2ε) log n in (C.4). It follows that when n is sufficiently large,

e2ρ2/σ2

= n1−2ε =
n

q2
,

hence ∫
g2

f
≤
(

1 +
1

q

)q
≤ e.

Since Q(µ, θ) = 0 under f , and Q(µ, θ) = 1
n
qρ4 under g, it follows from CRI that

R∗(n,Ω(β, ε, b)) ≥ c

(
1

n
qρ4

)2

= cn2ε−2(log n)4.

C.2.2 Proof of Theorems 11 and 13

In this section, we prove Theorems 11 and 13, which constitute the upper bound for

the estimation rate of Q(µ, θ) in the sparse and the dense regime, respectively.

Proof of Theorem 11

We need a lemma from Cai & Low (2005) (Lemma 1, page 2939) for proving Theo-

rem 11.
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Lemma 29. Let Y ∼ N(θ, σ2) and let θ0 = E(Z2 − σ2τ)+, where Z ∼ N(0, σ2).

Then for τ ≥ 1 and θ̂2 = (Y 2 − σ2τ)+ − θ0,

|θ0| ≤
4σ2

√
2πτ 1/2eτ/2

,

|E(θ̂2)− θ2| ≤ min{2σ2τ, θ2},

Var (θ̂2) ≤ 6σ2θ2 + σ4 4τ 1/2 + 18

eτ/2
.

Lemma 30 is an immediate consequence of Lemma 29.

Lemma 30. Let Y ∼ N(θ, σ2) and let θ0 = E(Z2 − σ2τ)+, where Z ∼ N(0, σ2).

Then for τ ≥ 1,

(E(Y 2 − σ2τ)+ − θ0)2 ≤ max

{
6σ2θ2 + σ4 4τ 1/2 + 18

eτ/2
, 10θ4

}
. (C.5)

Proof. Let B(θ) = E(Y 2 − τσ2)+ − θ0. We first note that B(−θ) = B(θ) ≥ 0 for

θ ≥ 0. This follows from

B′(θ) = 2σ[φ(τ 1/2 − θ/σ)− φ(τ 1/2 + θ/σ)]

− 2θ[Φ(τ 1/2 − θ/σ)− Φ(−τ 1/2 − θ/σ)− 1]

≥ 0

and B(0) = 0. So we have B(θ) = E(Y 2 − τσ2)+ − θ0 ≥ 0 for all θ ∈ R. It follows

that (E[(Y 2 − τσ2)+ − θ0])2 ≤ (E(Y 2 − τσ2)+)2 ≤ E[(Y 2 − τσ2)2
+]. To bound the

term E[(Y 2 − τσ2)2
+], we consider two cases: θ ≤ σ and θ > σ. It follows from the

proof of Lemma 1 in Cai & Low (2005) that when θ ≤ σ, then

E[(Y 2 − τσ2)2
+] ≤ 6σ2θ2 + σ4 4τ 1/2 + 18

eτ/2
.
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On the other hand, when θ > σ, we have

E[(Y 2 − τσ2)2
+] ≤ E[Y 4] = θ4 + 6σ2θ2 + 3σ4 ≤ 10θ4.

If follows that (C.5) holds.

Proof of Theorem 11. We first bound the bias of the estimator Q̂2 defined in (4.15).

Using the equality

AB − ab = (A− a)(B − b) + a(B − b) + b(A− a),

the independence of Xi and Yi, and the triangle inequality, we get

∣∣∣E(µi,θi){[(X2
i − σ2τ)+ − µ0][(Y 2

i − σ2τ)+ − θ0]} − µ2
i θ

2
i

∣∣∣
≤
∣∣∣Eµi [(X2

i − σ2τ)+ − µ0]− µ2
i

∣∣∣ · ∣∣∣Eθi [(Y 2
i − σ2τ)+ − θ0]− θ2

i

∣∣∣
+ µ2

i

∣∣∣Eθi [(Y 2
i − σ2τ)+ − θ0]− θ2

i

∣∣∣+ θ2
i

∣∣∣Eµi [(X2
i − σ2τ)+ − µ0]− µ2

i

∣∣∣
≤ min{2σ2τ, µ2

i }min{2σ2τ, θ2
i }+ µ2

i min{2σ2τ, θ2
i }+ θ2

i min{2σ2τ, µ2
i }

≤ 2µ2
i min{2σ2τ, θ2

i }+ 2θ2
i min{2σ2τ, µ2

i },

the second inequality follows from Lemma 29. It follows that, for (µ, θ) ∈ Ω(β, ε, b)

and τ ≥ 1,

|E(µ,θ)(Q̂2)−Q(µ, θ)|

=

∣∣∣∣ 1n
n∑
i=1

E(µi,θi){[(X2
i − σ2τ)+ − µ0][(Y 2

i − σ2τ)+ − θ0]} − 1

n

n∑
i=1

µ2
i θ

2
i

∣∣∣∣
≤ 2

n

n∑
i=1

[
µ2
i min{2σ2τ, θ2

i }+ θ2
i min{2σ2τ, µ2

i }
]

≤ 4

n
min{2σ2qs2τ, qs4},
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the second inequality follows from the fact that, for (µ, θ) ∈ Ω(β, ε, b), there are at

most q entries that are simultaneously nonzero for µ and θ.

We now proceed to bound the variance of Q̂2. Applying the equality

Var (AB) = Var (A)Var (B) + [E(A)]2Var (B) + [E(B)]2Var (A),

for τ ≥ 1, we have

Var (µi,θi){[(X2
i − σ2τ)+ − µ0][(Y 2

i − σ2τ)+ − θ0]}

= Var µi [(X
2
i − σ2τ)+ − µ0]Var θi [(Y

2
i − σ2τ)+ − θ0]

+ [Eµi(X
2
i − σ2τ)+ − µ0]2Var θi [(Y

2
i − σ2τ)+ − θ0]

+ [Eθi(Y
2
i − σ2τ)+ − θ0]2Var µi [(X

2
i − σ2τ)+ − µ0]

≤ 3

[
6σ2µ2

i + σ4 4τ 1/2 + 18

eτ/2

][
6σ2θ2

i + σ4 4τ 1/2 + 18

eτ/2

]
+ 10µ4

i

[
6σ2θ2

i + σ4 4τ 1/2 + 18

eτ/2

]
+ 10θ4

i

[
6σ2µ2

i + σ4 4τ 1/2 + 18

eτ/2

]
,

the inequality follows from Lemma 29 and Lemma 30. Thus, for (µ, θ) ∈ Ω(β, ε, b)

and τ ≥ 1,

Var (µ,θ)(Q̂2)

=
1

n2

n∑
i=1

Var (µi,θi){[(X2
i − σ2τ)+ − µ0][(Y 2

i − σ2τ)+ − θ0]}

≤ 3

n2

n∑
i=1

[
6σ2µ2

i + σ4 4τ 1/2 + 18

eτ/2

][
6σ2θ2

i + σ4 4τ 1/2 + 18

eτ/2

]
+

10

n2

n∑
i=1

µ4
i

[
6σ2θ2

i + σ4 4τ 1/2 + 18

eτ/2

]
+

10

n2

n∑
i=1

θ4
i

[
6σ2µ2

i + σ4 4τ 1/2 + 18

eτ/2

]
≤ 3

n2

[
36σ4qs4 + 12σ6ks2

(
4τ 1/2 + 18

eτ/2

)
+ nσ8

(
4τ 1/2 + 18

eτ/2

)2]
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+
20

n2

[
6σ2qs6 + σ4ks4

(
4τ 1/2 + 18

eτ/2

)]
.

Combining the bias and variance term, we get, for τ ≥ 1,

sup
(µ,θ)∈Ω(β,ε,b)

E(µ,θ)(Q̂2 −Q(µ, θ))2

≤ C

n2

[
min{q2s4τ 2, q2s8}+ max

{
qs4, qs6, ks2

(
4τ 1/2 + 18

eτ/2

)
,

ks4

(
4τ 1/2 + 18

eτ/2

)
, n

(
4τ 1/2 + 18

eτ/2

)2}]
=
C

n2

[
min{n2ε+4bτ 2, n2ε+8b}+ max

{
nε+4b, nε+6b, nβ+2b

(
4τ 1/2 + 18

eτ/2

)
,

nβ+4b

(
4τ 1/2 + 18

eτ/2

)
, n

(
4τ 1/2 + 18

eτ/2

)2}]
.

Suppose that b > 0. Then letting τ = log n leads to

sup
(µ,θ)∈Ω(β,ε,b)

E(µ,θ)(Q̂2 −Q(µ, θ))2 ≤ C

[
n2ε+4b−2(log n)2 + nε+6b−2

]
.

Proof of Theorem 13

The proof of Theorem 13 is based on Lemmas 31 and 32 which bound, respectively,

the bias and variance of one term in the estimator Q̂4 (given in (4.21)). For clarity,

we defer the proofs of Lemma 31 and Lemma 32 to Section C.2.3.

Lemma 31. Let X ∼ N(µ, σ2) and Y ∼ N(θ, σ2) be independent. Set η = E[(Z2
1 −

σ2)(Z2
2 − σ2)1(Z2

1 ∨ Z2
2 > σ2τ)], where Z1, Z2

i.i.d.∼ N(0, σ2). Then

η = −4σ4τφ2(τ 1/2),
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and for τ ≥ 1,

∣∣E[(X2 − σ2)(Y 2 − σ2)1(X2 ∨ Y 2 > σ2τ)]− η − µ2θ2
∣∣

≤ min{µ2, 3σ2τ}min{θ2, 3σ2τ}+ 2σ2τ 1/2φ(τ 1/2) min{µ2, 3σ2τ}

+ 2σ2τ 1/2φ(τ 1/2) min{θ2, 3σ2τ}.

Lemma 32. Let X ∼ N(µ, σ2) and Y ∼ N(θ, σ2) be independent. Then for τ ≥ 1,

Var [(X2 − σ2)(Y 2 − σ2)1(X2 ∨ Y 2 > σ2τ)]

≤


2d1/2Φ̃(τ 1/2)1/2 if µ = θ = 0,

4σ2µ4θ2 + 4σ2µ2θ4 + 16σ4µ2θ2 + 2σ4µ4 + 2σ4θ4

+8σ6µ2 + 8σ6θ2 + 4σ8 + 8σ4µ2θ2τ 2 otherwise,

where d = E[(Z2
1 − σ2)4(Z2

2 − σ2)4] and Z1, Z2
i.i.d.∼ N(0, σ2).

Proof of Theorem 13. We first compute the bias of Q̂4. It follows from Lemma 31

that for all (µ, θ) ∈ Ω(β, ε, b) and τ ≥ 1, we have

∣∣E(µ,θ)(Q̂4)−Q(µ, θ)
∣∣

≤ 1

n

n∑
i=1

∣∣∣E(µi,θi)[(X
2
i − σ2)(Y 2

i − σ2)1(X2
i ∨ Y 2

i > σ2τ)]− η − µ2
i θ

2
i

∣∣∣
≤ 1

n

n∑
i=1

[
min{µ2

i , 3σ
2τ}min{θ2

i , 3σ
2τ}+ 2σ2τ 1/2φ(τ 1/2) min{µ2

i , 3σ
2τ}

+ 2σ2τ 1/2φ(τ 1/2) min{θ2
i , 3σ

2τ}
]

≤ 1

n

[
min{qs4, 3σ2qs2τ, 9σ4qτ 2}+ 4σ2τ 1/2φ(τ 1/2) min{ks2, 3σ2kτ}

]
,

the last inequality follows from the fact that for (µ, θ) ∈ Ω(β, ε, b), there are at

most k nonzero entries for either µ or θ, and there are at most q entries that are
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simultaneously nonzero for both µ and θ.

On the other hand, by Lemma 32, for all (µ, θ) ∈ Ω(β, ε, b) and τ ≥ 1, the variance

of Q̂4 satisfies

Var (µ,θ)(Q̂4)

=
1

n2

n∑
i=1

Var (µi,θi)[(X
2
i − σ2)(Y 2

i − σ2)1(X2
i ∨ Y 2

i > σ2τ)]

≤ 1

n2

[ ∑
i:µi=θi=0

2d1/2Φ̃(τ 1/2)1/2

+
∑

i:µi 6=0 or θi 6=0

(
4σ2µ4

i θ
2
i + 4σ2µ2

i θ
4
i + 16σ4µ2

i θ
2
i + 2σ4µ4

i + 2σ4θ4
i

+ 8σ6µ2
i + 8σ6θ2

i + 4σ8 + 8σ4µ2
i θ

2
i τ

2
)]

≤ 1

n2

[
2d1/2nΦ̃(τ 1/2)1/2 + 8σ2qs6 + 16σ4qs4 + 4σ4ks4 + 16σ6ks2 + 8σ8k + 8σ4qs4τ 2

]
≤ C

n2
max{nΦ̃(τ 1/2)1/2, qs4, qs6, k, ks2, ks4, qs4τ 2}.

Again, the second to the last inequality follows from the fact that for (µ, θ) ∈

Ω(β, ε, b), there are at most k nonzero entries for either µ or θ, and there are at

most q entries that are simultaneously nonzero for both µ and θ.

Combining the bias and variance term, we have

sup
(µ,θ)∈Ω(β,ε,b)

E(µ,θ)(Q̂4 −Q(µ, θ))2

≤ C

n2

[
min{q2s8, q2s4τ 2, q2τ 4}+ τφ2(τ 1/2) min{k2s4, k2τ 2}

+ max{nΦ̃(τ 1/2)1/2, qs4, qs6, k, ks2, ks4, qs4τ 2}
]

=
C

n2

[
min{n2ε+8b, n2ε+4bτ 2, n2ετ 4}+ τφ2(τ 1/2) min{n2β+4b, n2βτ 2}

+ max{nΦ̃(τ 1/2)1/2, nε+4b, nε+6b, nβ, nβ+2b, nβ+4b, nε+4bτ 2}
]
.
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Let τ = 4 log n, then we have Φ̃(τ 1/2) ≤ Cφ(τ 1/2) = O(n−2) for some constant C. It

follows that for b > 0,

sup
(µ,θ)∈Ω(β,ε,b)

E(µ,θ)(Q̂4 −Q(µ, θ))2 ≤ C max
{
n2ε−2(log n)4, nε+6b−2, nβ+4b−2

}
.

C.2.3 Proofs of Supporting Lemmas

In this section, we provide the proofs of technical lemmas that are used to establish

Theorem 13 in Section 4.2.

Proof of Lemma 31

The proof of Lemma 31 is built on Lemma 33 and Lemma 34.

Lemma 33. Let Y ∼ N(θ, σ2). Then for τ ≥ 1,

E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)] = θ2

[
Φ̃(−τ 1/2 − θ

σ

)
− Φ̃

(
τ 1/2 − θ

σ

)]
+ φ

(
τ 1/2 +

θ

σ

)
[−σ2τ 1/2 + σθ] + φ

(
τ 1/2 − θ

σ

)
[−σ2τ 1/2 − σθ].

In particular, when θ = 0,

E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)] = −2σ2τ 1/2φ(τ 1/2).

Proof. Let λ = τ 1/2. We have

E[Y 2
1(Y 2 ≤ σ2τ)] =

∫ σλ

−σλ
y2 1√

2πσ
e−(y−θ)2/2σ2

dy
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=

∫ λ−θ/σ

−λ−θ/σ
(θ + σz)2 1√

2π
e−z

2/2 dz

= θ2

∫ λ−θ/σ

−λ−θ/σ
φ(z) dz + 2σθ

∫ λ−θ/σ

−λ−θ/σ
zφ(z) dz + σ2

∫ λ−θ/σ

−λ−θ/σ
z2φ(z) dz.

Using the fact that

∫ ∞
a

φ(z) dz = Φ̃(a),

∫ ∞
a

zφ(z) dz = φ(a),

∫ ∞
a

z2φ(z) dz = aφ(a) + Φ̃(a),

we have

E[Y 2
1(Y 2 ≤ σ2τ)]

= θ2[Φ̃(−λ− θ/σ)− Φ̃(λ− θ/σ)] + 2σθ[φ(−λ− θ/σ)− φ(λ− θ/σ)]

+ σ2[(−λ− θ/σ)φ(−λ− θ/σ) + Φ̃(−λ− θ/σ)

− (λ− θ/σ)φ(λ− θ/σ)− Φ̃(λ− θ/σ)]

= (θ2 + σ2)[Φ̃(−λ− θ/σ)− Φ̃(λ− θ/σ)]

+ φ(λ+ θ/σ)[−σ2λ+ σθ] + φ(λ− θ/σ)[−σ2λ− σθ],

the last equality due to φ(−λ − θ/σ) = φ(λ + θ/σ). The proof is complete since

σ2E[1(Y 2 < σ2τ)] = σ2[Φ̃(−λ− θ/σ)− Φ̃(λ− θ/σ)].

Lemma 34. Let Y ∼ N(θ, σ2) and set θ0 = E[(Z2 − σ2)1(Z2 ≤ σ2τ)], where Z ∼

N(0, σ2). Then for τ ≥ 1,

∣∣E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]− θ0

∣∣ ≤ min{θ2, 3σ2τ}.

Proof. Let B(θ) = E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]− θ0. We first show that |B(θ)| ≤ 3σ2τ .
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Define λ = τ 1/2. Then

E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)] ≤ E[Y 2
1(Y 2 ≤ σ2τ)] ≤ σ2λ2,

and

E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)] = E(Y 2 − σ2)− E[(Y 2 − σ2)1(Y 2 > σ2τ)]

≥ θ2 − E(Y 2) = −σ2 ≥ −σ2λ2.

By Lemma 33, θ0 = −2σ2λφ(λ). It follows that

|B(θ)| ≤
∣∣E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]

∣∣+ |θ0| ≤ σ2λ2 + 2σ2λφ(λ) ≤ 3σ2λ2 = 3σ2τ.

We now show that |B(θ)| ≤ θ2. Straightforward calculation yields for θ ≥ 0,

B′(θ) = σ(1 + λ2)[φ(λ+ θ/σ)− φ(λ− θ/σ)]

+ 2θ[Φ̃(−λ− θ/σ)− Φ̃(λ− θ/σ)], (C.6)

B′′(θ) = φ(λ+ θ/σ)[−λ2(λ+ θ/σ)− λ+ θ/σ]

+ φ(λ− θ/σ)[−λ2(λ− θ/σ)− λ− θ/σ]

+ 2[Φ̃(−λ− θ/σ)− Φ̃(λ− θ/σ)]. (C.7)

It suffices to only consider θ ≥ 0 since B(θ) = B(−θ). It follows from (C.6) that for

all θ ≥ 0, B′(θ) ≤ 2θ. Since B(0) = 0, this implies that

B(θ) ≤ θ2, ∀θ ≥ 0. (C.8)

On the other hand, θ0 ≤ 0 immediately gives B(θ) ≥ −σ2 ≥ −θ2 for θ ≥ σ. For
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0 ≤ θ < σ, we have σ(1 + λ2) ≥ 2θ. For x > 0, we have Φ̃(x) < x−1φ(x), so

Φ̃(−λ − θ/σ) = 1 − Φ̃(λ + θ/σ) ≥ 1 − (λ + θ/σ)−1φ(λ + θ/σ). It then follows from

(C.6) that for 0 ≤ θ < σ,

B′(θ) ≥ 2θ[φ(λ+ θ/σ)− φ(λ− θ/σ) + Φ̃(−λ− θ/σ)− Φ̃(λ− θ/σ)]

≥ 2θ[1 + (1− (λ+ θ/σ)−1)φ(λ+ θ/σ)− φ(λ− θ/σ)− Φ̃(λ− θ/σ)]

≥ 2θ

[
1 + (1− (λ+ θ/σ)−1)φ(λ+ θ/σ)− 1√

2π
− 1

2

]
≥ 0.

Coupled with B(0) = 0, this implies that B(θ) ≥ 0 ≥ −θ2 for 0 ≤ θ < σ. Hence,

B(θ) ≥ −θ2, ∀θ ≥ 0. (C.9)

Since B(−θ) = B(θ), combining (C.8) and (C.9), we obtain |B(θ)| ≤ θ2 for all

θ ∈ R.

Proof of Lemma 31. Let Z ∼ N(0, σ2), and let θ0 = E[(Z2 − σ2)1(Z2 ≤ σ2τ)] =

−2σ2τ 1/2φ(τ 1/2), the second equality due to Lemma 33. It follows from the expression

E[(X2 − σ2)(Y 2 − σ2)1(X2 ∨ Y 2 > σ2τ)]

= µ2θ2 − E[(X2 − σ2)1(X2 ≤ σ2τ)]E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]

and

η = E[(Z2
1 − σ2)(Z2

2 − σ2)1(Z2
1 ∨ Z2

2 > σ2τ)]

= −E[(Z2
1 − σ2)1(Z2

1 ≤ σ2τ)]E[(Z2
2 − σ2)1(Z2

2 ≤ σ2τ)] = −θ2
0

235



that we have

∣∣E[(X2 − σ2)(Y 2 − σ2)1(X2 ∨ Y 2 > σ2τ)]− η − µ2θ2
∣∣

=
∣∣E[(X2 − σ2)1(X2 ≤ σ2τ)]E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]− θ2

0

∣∣. (C.10)

Using the decomposition AB − ab = (A − a)(B − b) + a(B − b) + b(A − a) and the

triangle inequality, we get

∣∣E[(X2 − σ2)1(X2 ≤ σ2τ)]E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]− θ2
0

∣∣
≤
∣∣E[(X2 − σ2)1(X2 ≤ σ2τ)]− θ0

∣∣∣∣E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]− θ0

∣∣
+
∣∣θ0

∣∣∣∣E[(X2 − σ2)1(X2 ≤ σ2τ)]− θ0

∣∣+
∣∣θ0

∣∣∣∣E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]− θ0

∣∣
≤ min{µ2, 3σ2τ}min{θ2, 3σ2τ}+ 2σ2τ 1/2φ(τ 1/2) min{µ2, 3σ2τ}

+ 2σ2τ 1/2φ(τ 1/2) min{θ2, 3σ2τ},

the last inequality follows from Lemma 34 and substitution of the value of θ0.

Proof of Lemma 32

We have

Var [(X2 − σ2)(Y 2 − σ2)1(X2 ∨ Y 2 > σ2τ)]

= E[(X2 − σ2)2(Y 2 − σ2)2
1(X2 ∨ Y 2 > σ2τ)]

−
{
E[(X2 − σ2)(Y 2 − σ2)1(X2 ∨ Y 2 > σ2τ)]

}2

= E[(X2 − σ2)2(Y 2 − σ2)2]− E[(X2 − σ2)2
1(X2 ≤ σ2τ)(Y 2 − σ2)2

1(Y 2 ≤ σ2τ)]

−
{
E[(X2 − σ2)(Y 2 − σ2)]− E[(X2 − σ2)1(X2 ≤ σ2τ)(Y 2 − σ2)1(Y 2 ≤ σ2τ)]

}2

= Var [(X2 − σ2)(Y 2 − σ2)]− E[(X2 − σ2)2
1(X2 ≤ σ2τ)]E[(Y 2 − σ2)2

1(Y 2 ≤ σ2τ)]

−
{
E[(X2 − σ2)1(X2 ≤ σ2τ)]E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]

}2
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+ 2µ2θ2E[(X2 − σ2)1(X2 ≤ σ2τ)]E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]

≤ Var [(X2 − σ2)(Y 2 − σ2)]

+ 2µ2θ2E[(X2 − σ2)1(X2 ≤ σ2τ)]E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]

≤ Var [(X2 − σ2)(Y 2 − σ2)] + 8σ4µ2θ2τ 2.

Straightforward calculation yields

Var [(X2 − σ2)(Y 2 − σ2)]

= Var (X2 − σ2)Var (Y 2 − σ2)

+ [E(X2 − σ2)]2Var (Y 2 − σ2) + Var (X2 − σ2)[E(Y 2 − σ2)]2

= [4σ2µ2 + 2σ4][4σ2θ2 + 2σ4] + µ4[4σ2θ2 + 2σ4] + θ4[4σ2µ2 + 2σ4]

= 4σ2µ4θ2 + 4σ2µ2θ4 + 16σ4µ2θ2 + 2σ4µ4 + 2σ4θ4 + 8σ6µ2 + 8σ6θ2 + 4σ8.

Let d = E[(Z2
1 − σ2)4(Z2

2 − σ2)4] <∞. Then

Var [(X2 − σ2)(Y 2 − σ2)1(X2 ∨ Y 2 > σ2τ)]

≤ E[(X2 − σ2)2(Y 2 − σ2)2
1(X2 ∨ Y 2 > σ2τ)]

≤
(
E[(X2 − σ2)4(Y 2 − σ2)4]P (X2 ∨ Y 2 > σ2τ)

)1/2

= d1/2
(

1− P (|Z| ≤ τ 1/2)2
)1/2

, where Z ∼ N(0, 1)

≤ (2d)1/2
(

1− P (|Z| ≤ τ 1/2)
)1/2

= 2d1/2Φ̃(τ 1/2)1/2,

the second inequality follows from the Cauchy-Schwarz inequality.
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