Penn

Libraries I, University of Pennsylvania
UNIMERSITY of PENNSYLVANIA ScholarlyCommons

Publicly Accessible Penn Dissertations

2016

Metric Representations Of Networks

Santiago Segarra
University of Pennsylvania, santiagosegarra@gmail.com

Follow this and additional works at: https://repositoryupenn.edu/edissertations

b Part of the Computer Sciences Commons, Electrical and Electronics Commons, and the

Mathematics Commons

Recommended Citation

Segarra, Santiago, "Metric Representations Of Networks" (2016). Publicly Accessible Penn Dissertations. 2575.
https://repositoryupenn.edu/edissertations/2575

This paper is posted at ScholarlyCommons. https://repositoryupenn.edu/edissertations /2575

For more information, please contact repository@pobox.upenn.edu.


https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F2575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=repository.upenn.edu%2Fedissertations%2F2575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=repository.upenn.edu%2Fedissertations%2F2575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2575?utm_source=repository.upenn.edu%2Fedissertations%2F2575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2575
mailto:repository@pobox.upenn.edu

Metric Representations Of Networks

Abstract

The goal of this thesis is to analyze networks by first projecting them onto structured metric-like spaces --
governed by a generalized triangle inequality -- and then leveraging this structure to facilitate the analysis.
Networks encode relationships between pairs of nodes, however, the relationship between two nodes can be
independent of the other ones and need not be defined for every pair. This is not true for metric spaces, where
the triangle inequality imposes conditions that must be satisfied by triads of distances and these must be
defined for every pair of nodes. In general terms, this additional structure facilitates the analysis and algorithm
design in metric spaces. In deriving metric projections for networks, an axiomatic approach is pursued where
we encode as axioms intuitively desirable properties and then seek for admissible projections satisfying these
axioms. Although small variations are introduced throughout the thesis, the axioms of projection -- a network
that already has the desired metric structure must remain unchanged -- and transformation -- when reducing
dissimilarities in a network the projected distances cannot increase -- shape all of the axiomatic constructions
considered. Notwithstanding their apparent weakness, the aforementioned axioms serve as a solid foundation
for the theory of metric representations of networks.

‘We begin by focusing on hierarchical clustering of asymmetric networks, which can be framed as a network
projection problem onto ultrametric spaces. We show that the set of admissible methods is infinite but
bounded in a well-defined sense and state additional desirable properties to further winnow the admissibility
landscape. Algorithms for the clustering methods developed are also derived and implemented. We then shift
focus to projections onto generalized g-metric spaces, a parametric family containing among others the
(regular) metric and ultrametric spaces. A uniqueness result is shown for the projection of symmetric
networks whereas for asymmetric networks we prove that all admissible projections are contained between
two extreme methods. Furthermore, projections are illustrated via their implementation for efficient search
and data visualization. Lastly, our analysis is extended to encompass projections of dioid spaces, natural
algebraic generalizations of weighted networks.
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ABSTRACT

METRIC REPRESENTATIONS OF NETWORKS

Santiago Segarra
Alejandro Ribeiro

The goal of this thesis is to analyze networks by first projecting them onto structured
metric-like spaces — governed by a generalized triangle inequality — and then leveraging this
structure to facilitate the analysis. Networks encode relationships between pairs of nodes,
however, the relationship between two nodes can be independent of the other ones and
need not be defined for every pair. This is not true for metric spaces, where the triangle
inequality imposes conditions that must be satisfied by triads of distances and these must
be defined for every pair of nodes. In general terms, this additional structure facilitates the
analysis and algorithm design in metric spaces. In deriving metric projections for networks,
an axiomatic approach is pursued where we encode as axioms intuitively desirable properties
and then seek for admissible projections satisfying these axioms. Although small variations
are introduced throughout the thesis, the axioms of projection — a network that already
has the desired metric structure must remain unchanged — and transformation — when
reducing dissimilarities in a network the projected distances cannot increase — shape all
of the axiomatic constructions considered. Notwithstanding their apparent weakness, the
aforementioned axioms serve as a solid foundation for the theory of metric representations
of networks.

We begin by focusing on hierarchical clustering of asymmetric networks, which can be
framed as a network projection problem onto ultrametric spaces. We show that the set of
admissible methods is infinite but bounded in a well-defined sense and state additional desir-
able properties to further winnow the admissibility landscape. Algorithms for the clustering
methods developed are also derived and implemented. We then shift focus to projections
onto generalized g-metric spaces, a parametric family containing among others the (reg-
ular) metric and ultrametric spaces. A uniqueness result is shown for the projection of
symmetric networks whereas for asymmetric networks we prove that all admissible projec-
tions are contained between two extreme methods. Furthermore, projections are illustrated
via their implementation for efficient search and data visualization. Lastly, our analysis
is extended to encompass projections of dioid spaces, natural algebraic generalizations of

weighted networks.
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Chapter 1

Introduction

Data is getting big, but more than big it is getting pervasive. As our lives integrate with the
digital world, larger traces of our actions get recorded. Such pervasive collection leads to the
emergence of information structures for which analytical tools are not yet well-developed.
Networks, i.e., structures encoding relationships between pairs of elements, belong in this
category and, at the same time, play a main role in our current scientific understanding of
a wide range of disciplines including biology [7,53], sociology [46,61], and medicine [88].
An evident obstacle in understanding large scale complex networks is their massive size,
with popular information networks — such as the World Wide Web — and online social
networks — such as Facebook — containing more than a billion nodes. Our contention,
however, is that a substantial part of the difficulty in analyzing and efficiently managing
complex networks comes from the lack in structure that networks present. This loose nature
contrasts with the rigidity of a closely related construction: the metric space. In a nutshell,
the main goal of this thesis is to analyze networks from an alternative perspective where
we first project them onto structured metric-like spaces and then leverage this structure to

facilitate the analysis.

1.1 Motivation and context

A point cloud in Euclidean space is a simpler object than a weighted network of equal
dimension because the triangle inequality endows the cloud with a structure the network
lacks. Determining, say, whether a is more similar to b than it is to d in the metric network
in Fig. 1.1(b) is straightforward — node a is closer to b than to d. However, answering the
same question in the (non-metric) dissimilarity network in Fig. 1.1(a) is not as immediate.
The direct dissimilarity between a and b is registered as 5 which we could use to conclude
that a is closer to d than to b since the direct dissimilarity between a and d is reported as

4. Yet, we still have that a is close to ¢, which is in turn close to b, and this intuitively



(a) (b) (c)

Figure 1.1: Examples of a general weighted, a metric, and an ultrametric network. (a) Network
of (non-metric) dissimilarities. Even simple questions are difficult to answer. E.g., is a closer to d
than to b as the direct dissimilarities indicate or is the mutual proximity of a and b to ¢ sufficient to
claim the opposite? (b) Metric network. Similarity comparisons between nodes are straightforward.
E.g. it is immediate to see that a is closer to b than it is to d. Nevertheless, node groupings are not
obvious. Is node d at a distance of 3 or 4 from the cluster {a,b,c}? (c) Ultrametric network. The
structure imposed by the strong triangle inequality induces a hierarchy of clusters in the network.

seems to imply that a and b are not that different after all. We can interpret nodes as social
agents, edge dissimilarities as representing the frequency with which two nodes exchange
opinions, and our goal as the study of the propagation of opinions in the network. In that
case we know that a and b do not interact frequently but they will be highly influenced by
each other’s opinions through their mutual frequent interaction with node c¢. Arguably, this
indirect frequent interaction with b has a larger effect on the opinion of a than the direct
but somewhat infrequent interaction with d.

This simple example illustrates the very fundamental fact that questions that are difficult
to answer for arbitrary weighted networks become simple, or at least simpler, when the
network has a metric structure. E.g., consider a problem of proximity search in which we
are given a network and an element whose dissimilarity to different nodes of the network
can be determined and are asked to find the element that is least dissimilar to the given
one. Finding the least dissimilar node in an arbitrary network requires comparison against
all nodes and incurs a complexity that is linear in the number of nodes. In a metric space,
however, the triangle inequality encodes a transitive notion of proximity. If two points are
close to each other in a metric space and one of them is close to a third point, then the
other one is also close to this third point. This characteristic can be exploited to design
efficient search methods using metric trees whose complexity is logarithmic in the number of
nodes [83,84,91]. Likewise, many hard combinatorial problems on graphs are known to be
polynomial-time approximable in metric spaces but not approximable in generic networks.
The traveling salesman problem, for instance, is not approximable in generic graphs but is

approximable in polynomial time to within a factor of 3/2 in metric spaces [20]. In either



case, the advantage of the metric space is that the triangle inequality endows it with a
structure that an arbitrary network lacks. It is this structure that makes network analysis
and algorithm design tractable.

If some problems are challenging in generic networks but not so challenging in metric
spaces, a route to network analysis is to project networks onto metric spaces. We are then
searching for a projection operator that takes a dataset like the network in Fig. 1.1(a) as
input and generates a dataset with a metric structure like that of the network in Fig. 1.1(b).
The question that arises, then, is the design of methods — i.e., shall we replace the dissim-
ilarity between a and b of Fig. 1.1(a) by 1 as shown in Fig. 1.1(b), or by 2, 1.5, or v/2? —
and corresponding algorithms to implement these projections. One of our goals is then to
develop a mathematical theory for the metric representation of network data in order to
fundament the design of methods and algorithms to project networks onto metric spaces.

The concept of an abstract metric space, introduced in the early 20th century [28],
encompasses a wide variety of scientific and engineering constructions where the notion of
distance is present. During the first half of the past century, metric spaces were regarded as
mere presentations of underlying topological spaces and a lot of effort was put on the study
of embedding general metric spaces into more familiar ones [5]. However, in the late sixties,
there was a partial shift in the focus of analysis, and the first formal studies of metric spaces
as such — not seen as representations of some underlying topological space — appeared [42],
specifically in the field of category theory [2]. We leverage the fact that the fundamental
understanding of metric spaces is more developed than that of networks in order to gain
insight on the latter by projecting them onto the former and using analytical tools designed
for the study of metric spaces.

The traditional way of mapping a generic dissimilarity function between pairs of points
to a metric space is through multidimensional scaling (MDS) [23]. Different problem formu-
lations give rise to the definition of different types of MDS with a basic distinction between
metric MDS, where the input consists of quantitative similarities [58,82], and non-metric
MDS where dissimilarities can be ordinal [49,73]. However, all these techniques have in
common that one of the end goals is to facilitate visualization of the data [50]. Thus, unlike
the type of projections considered in this thesis, MDS embeds the input dissimilarities into
familiar and low-dimensional metric spaces such as R? or R3.

Some problems are still hard to elucidate even in metric spaces, thus requiring projec-
tions onto even more structured spaces. For example, if one is interested in grouping or
clustering the nodes in the metric network in Fig. 1.1(b), it is evident that nodes a, b, and ¢
are closer together than they are to d. However, the distance between this latter singleton
to the cluster {a,b,c} is unclear. Should it be the maximum distance 4, the minimum

distance 3, or the average distance 10/37 Notice that this ambiguity does not arise in the



Figure 1.2: Axiom of Projection. The projection method P is admissible if the set of metric spaces
M is a fixed set of P.

network in Fig. 1.1(c) where it is clear that nodes a, b, and ¢ form a cluster at a distance
— or resolution, as will be formally introduced in Chapter 2 — of 1, which is at a distance
of 3 from the remaining node d. The fact that clusters can be readily extracted from the
network in Fig. 1.1(c) is not coincidental. This network can be shown to have an ultrametric
structure, i.e., it is a metric network that satisfies a stronger version of the triangle inequal-
ity. This type of networks can be equivalently represented as dendrograms [44], which are
the outputs of hierarchical clustering methods. Putting it differently, projecting arbitrary
weighted networks onto ultrametric spaces is an alternative way of framing the problem of
hierarchical clustering in networks.

Clustering, i.e. partitioning a dataset into groups such that objects in one group are
more similar to each other than they are to objects outside the group, is a fundamental
tool for the advancement of knowledge in a wide range of disciplines such as genetics [19],
computer vision [30], sociology [35], and marketing [66]. Motivated by its relevance, literally
hundreds of methods that can be applied to the determination of hierarchical [43,51] and
non-hierarchical clusters in finite metric (thus symmetric) spaces exist [1,21,62-64,68,74,87].
Of particular relevance to our work is the case of hierarchical clustering where, instead of a
single partition, we look for a family of nested partitions indexed by a resolution parameter
and graphically represented by a tree-like structure called dendrogram. Even in the case
of asymmetric networks in which the dissimilarity from node z to node 2’ may differ from
the one from 2’ to x [70], multiple methods have been developed to extend the notion of
clustering into this less intuitive domain [6,40,55,60,65,76,79,93]. Although not as developed
as its practice [34], the theoretical framework for clustering has been developed over the last
decade for non-hierarchical [11,47,56,57,85,92] and hierarchical clustering [10,12,13,15].

Metric and ultrametric spaces are two examples of weighted networks having an added
structure induced by the triangle and strong triangle inequalities, respectively. Throughout
this thesis, a wide gamut of metric-like structures for networks will be presented and our
main goal will be the design of methods and associated algorithms to induce a desired metric
structure in a given network. In other words, our objective will be to design projections

from arbitrary weighted networks onto networks possessing a metric-like structure.



Figure 1.3: Axiom of Injective Transformation. If nodes can be mapped injectively to a network
with smaller dissimilarities, the distances in the projection of the latter cannot be larger than the
corresponding distances in the projection of the original one.

Devising methods to create metric structure is not difficult. Indeed, if one is interested
in inducing regular metric spaces, it can be shown that it suffices to replace each arc by
the minimum norm among all paths that link the given nodes. Using the 1-norm this is
equivalent to the shortest path distance between the adjacent nodes, but an infinite number
of methods are possible since the choice of norm for the path is arbitrary. It therefore seems
that the important question is rather the opposite of devising projection methods: Out
of the many ways of inducing metric structure, which method is most desirable? Inspired
by the success of axiomatic approaches in the study of clustering [10,11,47], we adopt an
axiomatic strategy in answering this question. Desirable properties are stated as axioms and
we proceed to search for methods that are admissible with respect to them. In particular,

the core of the theory is built on the following two axioms:

(AA1) Aziom of Projection. If the projection method is applied to a network that already
possesses the desired metric structure, the outcome is identical to the original network;

see Figure 1.2.

(AA2) Aziom of Injective Transformation. Consider a network and reduce some pairwise
dissimilarities but increase none. The respective outcomes of the projection method are
such that distances in the projection of the transformed network are not larger than

distances in the projection of the original network; see Figure 1.3.

Axioms (AA1) and (AA2) state very reasonable conditions for admissibility of a projection
method P. The Axiom of Injective Transformation (AA2) simply requires that smaller
networks have smaller projections. The Axiom of Projection (AA1) is a minimal condition
for a method to be interpreted as a projection. If a network already belongs to the set
of metric spaces, a projection onto this space cannot alter the given network. Given their
apparent weakness, one should question the wisdom of attempting to build a theory of metric
representations supported on axioms (AA1l) and (AA2). However, as we show throughout

the thesis, the joint consideration of the aforementioned axioms induces more structure that



what can be grasped at first sight.

1.2 Thesis outline and contributions

Under the general formulation of projecting networks onto metric structures, this thesis
contributes to the current understanding of different problems. Among these, the most
popular is hierarchical clustering of networks which, although not always stated in these
terms, corresponds to the projection of networks onto ultrametric spaces. This is the focus
of Part I. Due to the existence of previous axiomatic approaches for the hierarchical clus-
tering of symmetric networks [10,11], we emphasize the clustering of possibly asymmetric
networks, thus, extending and generalizing existing works. The principal contributions of
this first part include: i) laying the main and alternative axiomatic frameworks for the study
of hierarchical clustering in asymmetric networks; ii) describing the landscape of admissible
methods satisfying such axioms; iii) stating additional desirable clustering properties and
finding a complete characterization of methods satisfying these properties; and iv) deriving
and implementing algorithms for the clustering methods developed.

Part I of this thesis reveals that the admissible projections onto ultrametric spaces are
few, does the same hold true for more general metric representations? The affirmative
answer to this question is developed in Part II, where we present a theory of metric rep-
resentations built on minimal assumptions and rooted on the Axioms of Projection (AA1)
and Injective Transformation (AA2). In this case, the landscape of existing works is more
barren even for the case of symmetric networks, thus, we begin by studying the projection
of symmetric networks onto generalized g-metric spaces to then move into the richer do-
main of asymmetric networks. In this second part we also depart from the classical concept
of a weighted network to work with more abstract constructions founded on the algebraic
concept of dioids. The main contributions of this second part include: i) stating the first
axiomatic framework for the metric representation of networks; ii) characterizing a unique
canonical projection method for symmetric networks and describing the bounded set of
admissible methods for asymmetric networks; and iii) extending the analysis to encompass
more general constructions via the incorporation of dioid spaces. A detailed explanation of
the contributions of each chapter is presented next.

Chapter 2 opens Part I of the thesis by presenting the mathematical concepts needed
for the study of hierarchical clustering in asymmetric networks. In particular, dendrograms
are introduced and their equivalence with ultrametric spaces — fundamental for the theory
developed — is formally stated. As already mentioned, a dendrogram is a graphical tree-like
representation of a nested collection of partitions indexed by a resolution parameter; see e.g.
Fig. 2.2. Even though the Axioms of Projection (AA1) and Injective Transformation (AA2)

constitute the backbone of the axiomatic framework considered throughout the thesis, in



this first part we utilize two minor variations on these that best suit the existing clustering
literature. These are the Axioms of Value (A1) and Transformation (A2), formally stated

in Section 2.2, that correspond to the following intuitions:

(A1) Aziom of Value. For an asymmetric network with t