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Abstract
Receptors expressed on the surface of neurons during development direct cell migration, axon guidance,
dendrite morphogenesis, and synapse formation by responding to cues in the neuron’s environment. The
expression levels and the activity of cell surface receptors must be tightly controlled for a neuron to acquire its
unique identity. Transcriptional mechanisms are essential in this process, and many studies have identified
requirements for specific transcription factors during the different steps of neural circuit assembly. However,
the downstream effectors by which most of these factors control morphology and connectivity remain
unknown. In Chapter 1, I highlight recent work that elucidated functional relationships between transcription
factors and the cellular effectors through which they regulate neural morphogenesis and synaptogenesis in
multiple model systems. In Chapters 2 and 3, I present data demonstrating that the homeodomain
transcription factors Hb9 and Islet control motor axon guidance in Drosophila embryos through distinct
effectors: Hb9 regulates the (Roundabout) 2 receptor in a subset of motor neurons, while Islet acts in the
same cells to regulate the Frazzled/DCC receptor. Genetic rescue experiments indicate that these
relationships are functionally important for the guidance of motor axons to their muscle targets. In addition,
Islet regulates motor neuron dendrite targeting in the central nervous system (CNS) through Frazzled,
demonstrating how an individual transcription factor can control multiple aspects of neuronal connectivity
through the same effector. In Chapter 4, I characterize a non-canonical function for the Robo2 receptor
during midline crossing, and present data suggesting that this activity requires Robo2 to be expressed in
midline cells, providing an example of how mechanisms that regulate guidance receptor gene expression are
key to regulating receptor function and nervous system formation. In Chapter 5, I explore the implications of
these findings, and propose future directions of research to build upon them.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Cell & Molecular Biology

First Advisor
Greg J. Bashaw

Keywords
Axon guidance, Frazzled, Homeodomain proteins, Motor neurons, Roundabout

Subject Categories
Developmental Biology | Genetics | Neuroscience and Neurobiology

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2568

https://repository.upenn.edu/edissertations/2568?utm_source=repository.upenn.edu%2Fedissertations%2F2568&utm_medium=PDF&utm_campaign=PDFCoverPages


REGULATION OF AXON GUIDANCE RECEPTOR EXPRESSION AND ACTIVITY 

DURING NEURONAL MORPHOGENESIS  

Celine Santiago 

A DISSERTATION 

in 

Cell and Molecular Biology 

Presented to the Faculties of the University of Pennsylvania 

in 

Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 

2016 

Supervisor of Dissertation 

___________________________________ 

Greg J. Bashaw, Professor of Neuroscience 

 

Graduate Group Chairperson 

_______________________ 

Daniel Kessler, Associate Professor of Cell and Developmental Biology 

Dissertation Committee: 

Stephen DiNardo, Professor of Cell and Developmental Biology  

Wenqin Luo, Assistant Professor of Neuroscience 

Jonathan Raper, Professor of Neuroscience 

Meera Sundaram, Associate Professor of Genetics 



ii 

 

ACKNOWLEDGMENTS 

 

I would like to thank the members of the Bashaw lab for their mentorship, 

support, and friendship throughout the years. In particular, I thank Greg for having 

created a stimulating research environment where curiosity and critical thinking are 

always encouraged. Our many conversations over the years helped me communicate 

more clearly and think more deeply about science, and were a major part of my growth 

and of the joy of working in the lab. I am also very grateful for all his encouragement, 

which gave me the confidence to get past disappointments, and to push myself to try new 

things, and for his relentless advocacy and support for me as I prepare to move on to the 

next stage of my career. 

I thank Alexandra and Mike for having been such great mentors and friends. I am 

a better scientist for having worked by their side, and they continue to inspire me to be 

more ambitious and thoughtful. A special thank you to Alexandra for her wisdom and 

thoughtful words every time I needed advice. Thanks to Melissa for having shared all the 

milestones of graduate school with me, from the early days of our rotation to proof-

reading each other’s papers. I thank Tim and Elise for a productive collaboration on the 

Robo2 pro-crossing project, and all the other members of the Bashaw lab for having 

made it such a fun place to work. 

I would also like to thank the members of my thesis committee for their advice 

and mentorship, both about experiments and about my career. I am also grateful for the 

guidance of mentors from before grad school: Daniel Wagner, for a wonderful 



iii 

 

undergraduate research experience that led me down this path; and Robert Dennison and 

Deborah Crawford, for sharing their passion and curiosity about the natural world with 

their students.  

Last but not least I would like to thank all of my other friends and family, 

especially Julie, for having been by my side through all the adventures of the past six 

years, and Michael, for his unwavering support and sense of humor. I thank my brother 

and my sister in law for their friendship and advice, especially during interviews in the 

past year. Finally, I thank my parents, to whom I dedicate this thesis. They did everything 

they could to help me and my brother find our paths, and their perseverance and courage 

in difficult moments throughout their own lives showed me how important it is to always 

keep trying. 

 

 

 
 

 

 

 

 

 

 

 



iv 

 

ABSTRACT 

 

REGULATION OF AXON GUIDANCE RECEPTOR EXPRESSION AND ACTIVITY 

DURING NEURONAL MORPHOGENESIS 

Celine Santiago 

Greg J. Bashaw 

Receptors expressed on the surface of neurons during development direct cell 

migration, axon guidance, dendrite morphogenesis, and synapse formation by responding 

to cues in the neuron’s environment. The expression levels and the activity of cell surface 

receptors must be tightly controlled for a neuron to acquire its unique identity. 

Transcriptional mechanisms are essential in this process, and many studies have 

identified requirements for specific transcription factors during the different steps of 

neural circuit assembly. However, the downstream effectors by which most of these 

factors control morphology and connectivity remain unknown. In Chapter 1, I highlight 

recent work that elucidated functional relationships between transcription factors and the 

cellular effectors through which they regulate neural morphogenesis and synaptogenesis 

in multiple model systems. In Chapters 2 and 3, I present data demonstrating that the 

homeodomain transcription factors Hb9 and Islet control motor axon guidance in 

Drosophila embryos through distinct effectors: Hb9 regulates the (Roundabout) 2 

receptor in a subset of motor neurons, while Islet acts in the same cells to regulate the 

Frazzled/DCC receptor. Genetic rescue experiments indicate that these relationships are 

functionally important for the guidance of motor axons to their muscle targets. In 
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addition, Islet regulates motor neuron dendrite targeting in the central nervous system 

(CNS) through Frazzled, demonstrating how an individual transcription factor can control 

multiple aspects of neuronal connectivity through the same effector. In Chapter 4, I 

characterize a non-canonical function for the Robo2 receptor during midline crossing, 

and present data suggesting that this activity requires Robo2 to be expressed in midline 

cells, providing an example of how mechanisms that regulate guidance receptor gene 

expression are key to regulating receptor function and nervous system formation. In 

Chapter 5, I explore the implications of these findings, and propose future directions of 

research to build upon them. 
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PREFACE 

 

All experiments in Chapters 2 and 3 were performed by the author, with the exception of 

the genome-wide DAM ID data in Figure 3.2. Experiments in Chapter 4 that were 

performed by Tim Evans or Elise Arbeille are indicated in the figure legends.  
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CHAPTER 1 

INTRODUCTION: TRANSCRIPTION FACTORS AND EFFECTORS THAT 

REGULATE AXON GUIDANCE, DENDRITE MORPHOLOGY, AND 

SYNAPTOGENESIS IN THE DEVELOPING NERVOUS SYSTEM  

 

Introduction 

The formation of a functional nervous system requires that the cells that compose 

it find the appropriate synaptic partners. The position of a neuron and the shape of its 

axonal and dendritic extensions are therefore fundamental aspects of its identity. Genetic 

analyses have confirmed that the initial pattern of neural connections in the embryo is 

intrinsically specified, and a wealth of studies has identified requirements for specific 

transcription factors in regulating cell migration, axon guidance, dendritic branching, and 

synaptic partner selection (Chédotal and Rijli, 2009; Dalla Torre di Sanguinetto et al., 

2008; Jan and Jan, 2010; Polleux et al., 2007). In parallel, the identification of many 

guidance receptors and their downstream signaling partners over the last two decades has 

allowed for a molecular understanding of how neuronal connections are formed 

(Huberman et al., 2010; Kolodkin and Tessier-Lavigne, 2011; O’Donnell et al., 2009). 

However, one central challenge that remains is to characterize the relationships between 

transcriptional regulators and the cell surface proteins or cytoskeletal modifiers that 

mediate their effects on neural morphogenesis and connectivity. 

Correlative data identifying targets of transcription factors have accumulated in 

multiple neurodevelopmental contexts. However, until recently, few studies validated the 

observed changes in gene expression with experiments to demonstrate the functional 

relevance of these relationships. Here, we highlight research that places transcription 



2 

 

factors upstream of identified cellular effectors in the contexts of axon guidance in the 

motor system and during midline crossing, as well as during the acquisition of dendritic 

morphology in sensory neurons, and synaptogenesis in motor neurons.  

 

Transcription factors and effectors regulating motor axon guidance  

Studies of the embryonic motor systems of invertebrates and vertebrates paved 

the way for understanding the transcriptional control of axon pathfinding. In mouse, 

chick, zebrafish, C.elegans, and Drosophila, correlations between the transcription 

factors expressed in motor neurons and the target areas of their axons were documented 

over a dozen years ago (Appel et al., 1995; Thor and Thomas, 2002; Tsuchida et al., 

1994). Subsequent studies demonstrated that these correlations are functionally 

significant, as many of these factors are required for the trajectory of motor axons and 

can redirect axons to abnormal territories when ectopically expressed (reviewed in Thor 

and Thomas, 2002). Below, we discuss recent work that has identified downstream 

effectors of transcription factors during motor axon guidance in vertebrates and in 

Drosophila. 

 

LIM homeodomain transcription factors and their effectors in vertebrate motor axon 

guidance 

In mice and chick embryos, a transcriptional cascade regulates motor neuron 

development (reviewed in Catela et al., 2015). Motor neuron progenitors, which express 

the basic helix loop helix (bHLH) transcription factor Olig2 (oligodendrocyte 

transcription factor 2) and the homeodomain transcription factor Nkx6.1 (NK6 homeobox 
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1), are generated in the ventral spinal cord in response to Sonic hedgehog (Shh) secreted 

from the notochord and floor plate. The homeodomain transcription factors Hb9 (Mnx1), 

Islet 1 (Isl1), Nkx6.1, and Lhx3 (LIM homeobox protein 3) are initially expressed in all 

post-mitotic motor neurons whose axons exit the spinal cord ventrally, and are required 

for early events in their development, but their expression patterns subsequently become 

more restricted. Along the rostro-caudal axis, motor columns are specified by homeobox 

(Hox) transcription factors, whose expression domains are established by gradients of 

retinoic acid (RA) and fibroblast growth factor (FGF), and reinforced by cross-repressive 

interactions. Limb-specific domains of Hox gene expression further differentiate limb 

motor neuron pools from each other, allowing them to acquire distinct cell body positions 

and innervate specific muscles. Once motor axons reach their targets, retrograde signals 

induce the expression of ETS (E26 transformation specific) transcription factors, which 

control the final stages of axonal and dendritic arborization and partner matching.  

Two examples of transcription factor effectors that act in spinal motor neurons, 

the Eph receptor tyrosine kinases EphA4 and EphB1, were identified in elegant studies of 

mouse and chick embryonic lateral motor column (LMC) neurons (Fig. 1.1). LMC axons 

fasciculate together as they exit the spinal cord and separate into a dorsal branch and a 

ventral branch at the base of the limb. Dorsal-ventral pathway selection is controlled by 

the LIM homeodomain transcription factor Lhx1 (Lim1) and Isl1. Lhx1 and Isl1 are 

expressed in a mutually exclusive pattern, with Lhx1 restricted to the dorsally-projecting 

LMC-lateral (LMC-l) neurons, and Isl1 to the ventrally-projecting LMC-medial (LMC-

m) neurons (Kania et al., 2000). Although they can repress each other when over-

expressed, there is no indication that Lhx1 and Isl1 establish the expression domains of 
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one another (Kania and Jessell, 2003; Kania et al., 2000; Luria et al., 2008). Recent 

studies indicate that Lhx1 and Isl1 regulate LMC guidance through Eph receptors, which 

are conserved regulators of axon guidance (reviewed in Klein, 2012) that have been 

shown through in vitro experiments to mediate repulsion in motor axons in response to 

ephrin ligands (Kao and Kania, 2011). In LMC-l neurons, EphA4 is expressed in an 

Lhx1-dependent manner, whereas EphB1 is expressed in LMC-m neurons in an Isl1-

dependent manner (Kania and Jessell, 2003; Luria et al., 2008). In the limb mesenchyme, 

ephrin-A ligands are enriched ventrally, whereas ephrin-Bs are enriched dorsally (Kania 

and Jessell, 2003; Luria et al., 2008). Over-expression of Lhx1 induces EphA4 expression 

in LMC neurons and redirects them dorsally, phenocopying EphA4 over-expression, 

whereas loss of Lhx1 causes LMC-l axons to misproject ventrally, phenocopying EphA4 

mutants (Eberhart et al., 2002; Helmbacher et al., 2000; Kania and Jessell, 2003). 

Similarly, over-expression of Isl1 induces EphB1 expression and redirects LMC axons 

ventrally, while loss of Isl1 or EphB function causes LMC-m axons to misproject 

dorsally (Kania and Jessell, 2003; Luria et al., 2008). Importantly, the Isl1 loss of 

function phenotype can be rescued by EphB1 over-expression, providing strong evidence 

that EphB1 acts downstream of Islet1 (Luria et al., 2008).  

The ephrin-A and ephrin-B expression patterns in the limb are established by 

another LIM homeodomain protein, Lmx1b (LIM homeobox transcription factor 1-beta), 

which is restricted to the dorsal limb mesenchyme, where it induces ephrin-B2 expression 

and represses the expression of ephrin-A ligands (Kania and Jessell, 2003; Luria et al., 

2008). Lmx1b also regulates the expression of the guidance molecule Netrin in the dorsal 

limb, and is essential for the correct pathfinding of LMC neurons (Kania et al., 2000; 
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Krawchuk and Kania, 2008). Interestingly, a recent study found that LMC-m axons 

express the repulsive Netrin receptor Unc5c and misproject dorsally in the absence of 

either Netrin or Unc5c (Poliak et al., 2015). Thus, a LIM homeodomain factor in target 

tissues regulates the expression of molecules that influence the trajectory of motor axons, 

which also carry out the instructions of a LIM homeodomain code, raising the possibility 

that these relationships coordinately evolved to ensure the fidelity of axon targeting. 

Other cell surface receptors that regulate the guidance of subsets of LMC neurons 

include Ret, GFRalpha1 (glial cell line derived neurotrophic factor family receptor alpha 

1), and neuropilin-2 (Bonanomi et al., 2012; Huber et al., 2005; Kramer et al., 2006). It 

remains to be determined whether Lhx1 and Isl1 control the expression of these 

receptors, of Unc5c, or of ephrins, which act in motor neurons to control guidance 

through reverse signaling and cis-inhibition (Bonanomi et al., 2012; Dudanova et al., 

2012; Kao and Kania, 2011). Moreover, Lhx1 and Islet1 are required for the medio-

lateral positioning of LMC cell bodies, and although EphA4 regulates the rostro-caudal 

position of a subset of LMC neurons, Eph receptors do not appear to contribute 

significantly to mediolateral settling position, suggesting that LIM transcription factors 

regulate these two aspects of neuronal morphology through distinct downstream 

programs (Coonan et al., 2003; Palmesino et al., 2010). Indeed, a recent study found a 

requirement for Lhx1 in specifying the mediolateral position of LMC-l cell bodies 

through upregulation of the Reelin signaling protein Dab1 (disable-1) (Palmesino et al., 

2010). As it is not known whether Lhx1 and Islet1 directly bind to their target genes, 

elucidating the mechanisms through which these transcription factors regulate their 

effectors remains a major challenge for the future. Another important question that 
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remains unresolved is how subsets of neurons within the major motor nerves are 

differentiated from each other. A recent study on forelimb-innervating motor neurons 

begins to dissect this problem, and demonstrates that subset-specific patterns of Hox 

genes establish the fates and trajectories of different motor neuron pools in part by 

regulating the expression levels of Ret and GFRalpha3 (Catela et al., 2016). Ret/GDNF 

signaling is required for the target-dependent expression of the ETS factor Etv4/Pea3, 

which is important for axon branching within target muscles, as well as for soma 

positioning and dendrite targeting in the spinal cord (Catela et al., 2016; Livet et al., 

2002; Vrieseling and Arber, 2006). The downstream effectors by which Pea3 regulates 

axonal branching and dendrite patterning remain unknown. In addition, how specific 

codes of Hox and LIM homeodomain proteins work together to result in specific 

transcriptional programs, and to what extent these co-expressed factors act through 

distinct or overlapping effectors, presents an important problem for future work. 

 

Transcriptional regulation of motor axon guidance in spinal accessory motor neurons 

The downstream effectors of transcription factors in other subsets of vertebrate 

motor neurons are beginning to be identified. Spinal accessory motor neurons (SACMNs) 

are dorsally-exiting neurons found at cervical levels of the spinal cord that innervate neck 

and back muscles (Dillon et al., 2005). SACMNs are derived from an Nkx2.9+ progenitor 

domain and retain Nkx2.9 expression post-mitotically. In the absence of Nkx2.9, SACMN 

axons fail to exit the spinal cord (Dillon et al., 2005; Pabst et al., 2003). A recent study 

found that Nkx2.9 likely regulates spinal cord exit through the Slit receptor Roundabout 
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(Robo) 2 (Bravo-Ambrosio et al., 2012). Robo receptors have been well studied in the 

context of midline crossing, where Robo1 and Robo2 signal repulsion in response to 

floorplate-derived Slit (Dickson and Zou, 2010; Long et al., 2004). More recently, Robo1 

and Robo2 were shown to regulate motor axon pathfinding and fasciculation in ventrally-

exiting spinal motor neurons (Jaworski and Tessier-Lavigne, 2012). Robo2 mutants and 

Slit1, Slit2 double mutants display SACMN exit defects that resemble those of Nkx2.9 

mutants, and Robo2 levels are decreased in the absence of Nkx2.9 (Bravo-Ambrosio et 

al., 2012). Slit is enriched at the site of SACMN exit, and Slit treatment causes outgrowth 

of SACMN axons in vitro, suggesting that Robo2-Slit interactions may facilitate exit by 

promoting growth through the Slit-expressing zone. This model would be further 

confirmed by determining if the Nkx2.9 mutant phenotype is rescued upon Robo2 over-

expression in SACMNs, and how Slit-Robo2 signaling promotes outgrowth in these 

axons. 

Transcriptional regulation of motor axon guidance in Drosophila 

Many of the same principles involved in motor neuron development and axon 

guidance in vertebrates are observed in Drosophila, although there are some interesting 

differences. Motor neurons that innervate the body wall muscles required for larval 

crawling arise from multiple embryonic neuroblast lineages that express distinct 

combinations of transcription factors and are found at stereotyped positions within a 

segment (Landgraf et al., 1997). There are no known early-acting factors that act in 

progenitors to specify a general motor neuron fate, although the zinc finger 

homeodomain factor zfh1 is expressed in all motor neurons and regulates axon guidance 
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(Layden et al., 2006). There are 36 motor neurons in each hemisegment, forming six 

major nerves that target different muscle regions. Unlike in vertebrates, the position of 

motor neuron cell bodies in the Drosophila nerve cord does not necessarily correlate with 

the targeting of their axons in the periphery, as neurons that innervate adjacent muscles 

can often be found far apart within a segment (Landgraf et al., 2003; Mauss et al., 2009). 

Instead, recent studies have shown that both the larval and the adult Drosophila 

neuromuscular systems use a myotopic map in which the position of motor neuron 

dendrites, rather than their somas, correlates with the position of their target muscles 

(Brierley et al., 2009; Mauss et al., 2009). This may be a well conserved feature of motor 

systems across phyla, as the dendritic patterning of at least four motor neuron pools in the 

spinal cord correlates with muscle target identity in mouse, but whether this is broadly 

true across motor neuron classes in vertebrates remains to be determined (Vrieseling and 

Arber, 2006). 

In the Drosophila neuromuscular system, as in vertebrates, the transcription factor 

profile of motor neurons correlates with the projection pattern of their axons. Motor 

neurons that innervate the dorsal-most muscles of the body wall fasciculate along the 

intersegmental nerve (ISN) and express the homeodomain transcription factor Even-

skipped (Eve) and the GATA family transcription factor Grain (Fig. 1.2). Motor neurons 

that co-express the transcription factors Hb9 (exex), Nkx6 (Hgtx), Islet (Tailup), Lim3, 

Oli (Olig family) and Drifter form the ISNb nerve, which innervates a group of ventral 

muscles (Fig 1.2). Each of these genes is required for motor axon guidance in a subset-

specific manner (reviewed in Landgraf and Thor, 2006).  
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Eve and Grain are restricted to motor neurons that innervate dorsal muscles, and 

are required for their correct trajectory (Fujioka et al., 2003; Garces and Thor, 2006; 

Landgraf et al., 1999). Two recent studies found that Eve and Grain act in part through 

the Netrin receptor Unc-5 (Labrador et al., 2005; Zarin et al., 2012). In the absence of eve 

or grain, unc-5 expression is reduced in the dorsally-projecting ISN pioneer neurons RP2 

and aCC. Loss of unc-5 results in stalling of the ISN nerve, similar to the defects 

observed in eve or grain mutants. Moreover, Unc-5 over-expression partially rescues the 

CNS exit defects in eve mosaic mutants, as well as ISN stalling in grain mutants, 

providing strong evidence that Unc5 acts downstream of both Eve and Grain. 

A recent genome-wide study of mRNA isolated from FACs-sorted dorsally-

projecting motor neurons (d-MNs) identified additional downstream effectors of Eve 

(Zarin et al., 2014). Candidate targets include four cell surface receptors of the 

immunoglobulin superfamily (IgSF): unc-5, beat1a (beaten-path 1a), fasciclin 2 (fas2) 

and neuroglian (nrg), all of which are positively regulated by Eve. The authors of this 

study present a model in which Eve specifies the trajectory of d-MNs through the 

combinatorial regulation of guidance receptors and adhesion molecules. Although unc-5, 

beat1a, nrg, or fas2 single mutants only weakly phenocopy eve mutants, simultaneous 

removal of these genes produces an additive phenotype that more closely resembles the 

loss of eve. Moreover, restoring the expression of the four targets in an eve mutant 

significantly rescues the CNS exit and dorsal targeting defects, once again in an additive 

manner. Finally, ectopic expression of eve in a subset of interneurons induces the 

expression of unc-5, beat1a, nrg, and fas2, and causes their axons to leave the CNS and 

assume a motor axon-like trajectory. Co-misexpression of these target genes reproduces 
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this effect. Altogether, these results strongly argue that Unc-5, Beat1a, Nrg, and Fas2 act 

downstream of Eve to regulate motor axon guidance. 

Zfh1 and Grain are co-expressed with Eve in dorsally-projecting motor neurons, 

and Zarin et al. found that they also contribute to the expression of unc-5, beat1a, and 

fas2 (Zarin et al., 2014). Moreover, ectopic expression of Zfh1 can induce unc-5, beat1a, 

and fas2 in interneurons and redirect their axons peripherally, and co-expression of Zfh1 

and Eve results in an additive effect. Similarly, co-expression of Grain and Eve produces 

stronger unc-5 induction than mis-expression of either alone. Although previous studies 

identified a requirement for Eve in promoting grain and zfh1 expression (Zarin et al., 

2012), over-expression of Eve can induce the expression of its targets without inducing 

zfh1 or grain. In addition, eve; grain double mutants have a greater decrease in unc5 

expression than either single mutant (Garces and Thor, 2006; Zarin et al., 2012). Thus, a 

coherent narrative emerges in which Eve, Grain, and Zfh1 function in parallel to promote 

the expression of a shared set of downstream effectors (Fig. 1.2). Additional effectors of 

Eve likely ensure that dorsal motor axons reach their target muscles, as the strongest 

phenotype produced by triple unc-5, beat1a, and nrg mutants does not recapitulate the 

effect of loss of eve. Nevertheless, by demonstrating a functional connection between 

upstream regulatory factors and target genes, this study provides insight into how 

transcriptional regulators exert their activities through a battery of effectors (Zarin et al., 

2014). 

One major challenge will be to identify the cis-acting elements to which these 

transcription factors bind, to allow for a mechanistic understanding of how combinations 

of transcription factors impinge on common targets. For example, if multiple factors bind 
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to the same site, this might suggest that they form higher-order complexes that affect 

their target specificities, as was recently shown for Islet1/Lhx3 and Islet1/Phox2a (paired-

like homeobox 2a) in cultured cells (Mazzoni et al., 2013; Thaler et al., 2002). In 

Drosophila d-MNs, Grain might activate unc5 directly, as the unc5 promoter contains 

consensus GATA sequences, but the relevance of these motifs to the expression pattern 

of unc5 has not been tested (Zarin et al., 2012). In contrast, Eve likely acts as a repressor, 

because its conserved repressor domain is required for rescue of motor axon guidance 

(Fujioka et al., 2003). Eve may regulate guidance through Hb9, as hb9 is de-repressed in 

eve mosaic mutants, and rescue experiments suggest a correlation between the extent of 

motor axon guidance rescue and the extent of hb9 de-repression (Fujioka et al., 2003). 

Moreover, grain was identified as a down-regulated target of Hb9 and Nkx6 in a recent 

microarray analysis, and a DAM-ID (DNA adenine methyltransferase identification) 

analysis of the binding sites for Hb9 revealed that it is enriched near the unc5 and fas2 

loci (Lacin et al., 2014; Wolfram et al., 2014). Thus, one can propose a model in which 

Eve represses hb9 in RP2 and aCC, to allow for the expression of d-MN genes. In the 

absence of eve, hb9 is de-repressed in these cells, which might in turn lead to repression 

of grain, unc5, and fas2, but future experiments will be necessary to confirm this.  

A different combination of transcription factors regulates the trajectory of a subset 

of ventrally-projecting motor neurons (v-MNs). The RP motor neurons 1, 3, 4, and 5 

form the ISNb nerve and innervate several ventral muscles (Fig. 1.2). They co-express 

the homeodomain transcription factors Hb9, Nkx6, Lim3, and Islet. Unlike their 

vertebrate orthologs, these factors are not required for early aspects of motor neuron 

development or survival; instead, they play subset-specific roles during late stages of 
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motor neuron differentiation, including axon guidance (Broihier and Skeath, 2002; 

Broihier et al., 2004; Thor and Thomas, 1997; Thor et al., 1999). Interestingly, although 

Islet1, Nkx6.1, and Lhx3 are initially broadly expressed in motor neurons in the mouse 

and chick spinal cord, their expression patterns subsequently become more restricted, and 

they act at later stages of development to regulate axon guidance and target selection in a 

subset-specific way, suggesting that this late role in motor neuron differentiation and 

axon guidance may reflect an ancient and well-conserved function for these genes (De 

Marco Garcia and Jessell, 2008; Luria et al., 2008; Shirasaki et al., 2006). 

Until recently, it was not known how these transcription factors regulate axon 

guidance. In the following chapters, I present data showing that Drosophila Hb9 and 

Nkx6 act in parallel to promote the expression of the Roundabout family receptor Robo2, 

whereas Islet regulates a distinct downstream effector, the Netrin receptor Frazzled/DCC 

(Santiago et al., 2014 and Santiago and Bashaw, in preparation). Hb9 and islet are 

sufficient to ectopically induce their respective target genes when over-expressed, and 

genetic rescue experiments demonstrate that these regulatory relationships are important 

for the guidance of ventrally-projecting motor axons to their target muscles. Interestingly, 

Hb9 regulates the medio-lateral position of a different subset of axons within the CNS 

through robo2 and the closely related gene robo3 (Santiago et al., 2014). Islet, in turn, 

coordinates dendrite targeting of motor neurons in the neuropile through frazzled. 

Together, these data suggest that the relationships we have identified during motor axon 

guidance are reused in multiple contexts during nervous system development, including 

during axon and dendritic guidance at the midline. 
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Transcription factors and effectors regulating midline crossing 

In bilaterian animals, commissural axons cross the midline to innervate targets on 

the opposite side of the body, allowing for the left-right coordination of sensory input and 

behavior (reviewed in Dickson and Zou, 2010). In the vertebrate spinal cord, the secreted 

ligands Netrin and Shh promote the extension of axons toward the floor plate by 

signaling through the DCC and Boc [bi-regional cell-adhesion molecule-

related/downregulated by oncogenes (Cdon) binding protein] receptors, respectively. 

Midline-derived Slits, Semaphorins, and Ephrins engage their respective receptors to 

ensure that commissural axons do not stall or recross the midline. These repulsive cues 

are also detected by ipsilateral axons, which never cross the midline. The complement of 

guidance receptors expressed by growth cones as they approach the midline thus 

determines whether they will acquire a commissural or ipsilateral trajectory. In particular, 

recent studies in the spinal cord and in retinal ganglion cells (RGCs) of mice embryos 

have revealed the importance of the transcriptional regulation of Robo and Eph receptors 

in this process (Fig. 1.3). 

 

Transcriptional control of midline crossing through the regulation of Robo3 expression  

In mice, Robo1 and Robo2 prevent the inappropriate crossing of axons by 

signaling repulsion in response to Slit secreted from the floor plate (Long et al., 2004). 

Robo1 and Robo2 mRNA are detected in both commissural and ipsilateral neurons in the 

spinal cord, suggesting that their transcriptional regulation is not instructive in this 

system. The divergent Robo family member Robo3 (previously Rig-1) promotes midline 

crossing by antagonizing Robo1 and Robo2 by an unknown mechanism (Sabatier et al., 
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2004). In Robo3 mutants, commissural axons are prematurely responsive to Slit and fail 

to cross the midline. The Robo3 phenotype in the spinal cord is partially rescued by loss 

of Robo1 and Robo2, suggesting that Robo3 acts in part by inhibiting repulsive Robo 

signaling (Jaworski et al., 2010; Sabatier et al., 2004). Analyses of the expression pattern 

of Robo3 in the spinal cord reveal that it is restricted to commissural neurons, and that its 

mis-expression causes ipsilateral axons to ectopically cross the midline, demonstrating 

that one key feature of commissural identity involves turning on Robo3 (Chen et al., 

2008; Escalante et al., 2013; Inamata and Shirasaki, 2014). 

In the dI1c interneurons, a subset of contralateral interneurons in the dorsal spinal 

cord, the LIM homeodomain transcription factors Lhx2 and Lhx9 are required for 

midline crossing and Robo3 expression (Wilson et al., 2008) (Fig. 1.3). The dI1 

interneurons receive proprioceptive information from sensory neurons and relay it to the 

brain. After neurogenesis, they segregate into dI1c neurons, which settle at a medial 

position and are commissural, and dI1i neurons, which are found more laterally and are 

ipsilateral. In Lhx2/Lhx9 double mutants, dI1c axons fail to cross the midline, and Robo3 

mRNA and protein levels are reduced (Wilson et al., 2008). Other dI1 transcription 

factors are expressed at normal levels, as are DCC and Robo1, and the initial ventral 

trajectory of dI1c axons is unaffected, indicating that Lhx2 and Lhx9 do not regulate all 

aspects of dI1c differentiation. The severity of the dI1c midline crossing phenotype in the 

Lhx2/Lhx9 double mutants resembles that of Robo3 mutants, suggesting that Robo3 is a 

downstream effector of Lhx2 and Lhx9. Moreover, Lhx2 binds in vitro to a Robo3 

genomic fragment containing two LIM homeodomain binding sites, and chromatin 

immunoprecipitation (ChIP) experiments found that Lhx2 binds to the Robo3 promoter in 
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spinal cord extracts (Marcos-Mondéjar et al., 2012). Together, these data strongly argue 

that Lhx2 and Lhx9 promote midline crossing by directly activating the expression of 

Robo3 in dI1c neurons. Of note, midline crossing and Robo3 expression are not affected 

in other classes of commissural neurons, implying that multiple programs activate Robo3 

in a subset-specific manner. Furthermore, although both dI1c and dI1i neurons initially 

express Lhx2 and Lhx9, Lhx2 is subsequently down-regulated in dI1i neurons. In the 

absence of the Bar-class homeobox gene Barhl2, dI1i neurons ectopically express Lhx2 

and Robo3 and aberrantly cross the midline, suggesting that down-regulation of Lhx2 is 

critical for maintaining an ipsilateral trajectory in these cells (Ding et al., 2011).  

 

Zic2 regulates an ipsilateral trajectory through Eph receptors 

Recent studies have demonstrated an instructive role for the zinc homeodomain 

transcription factor Zic2 in promoting ipsilateral guidance through the regulation of Eph 

receptors. In the brain and spinal cord, EphA4 regulates midline crossing by signaling 

repulsion in response to midline-localized ephrins (Dottori et al., 1998; Kullander et al., 

2001). EphA4 mutant mice have a hopping gait caused by ectopic midline crossing of a 

subset of ventral interneurons that contribute to the central pattern generator (Kullander et 

al., 2003). EphA4 is also required in a group of dorsal interneurons to prevent crossing at 

the dorsal midline (Escalante et al., 2013; Paixão et al., 2013). Zic2 is required for EphA4 

expression and ipsilateral guidance in dILB neurons, which are distinct from dI1i neurons 

and do not express Barhl2, Lhx2, or Lhx9 (Escalante 2013) (Fig. 1.3). ChIP experiments 

demonstrate that Zic2 binds to the EphA4 promoter in spinal cord extracts. In addition, 

Zic2 can induce EphA4 and repress Robo3 and Lhx2 when ectopically expressed, 
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suggesting it may regulate midline crossing through multiple effectors, although an 

endogenous requirement for Zic2 in repressing Robo3 and Lhx2 was not demonstrated. 

Finally, EphA4 is expressed in many neurons in the brain and spinal cord that do not 

express Zic2, suggesting that distinct transcription factors act in a subtype-specific 

manner to activate EphA4, reminiscent of the manner by which Robo3 is regulated.  

Zic2 also regulates midline guidance at the optic chiasm by promoting the 

expression of EphB1 in retinal ganglion cells, demonstrating how the regulatory 

relationship between Zic2 and Eph receptors is reused in multiple contexts (García-

Frigola et al., 2008; Herrera et al., 2003; Lee et al., 2008b). In mice, most retinal ganglion 

cell (RGC) axons project across the midline to innervate targets on the opposite side of 

the brain, and a small subset of ipsilateral projections allows for binocular vision (Herrera 

et al., 2003). EphB1 is exclusively expressed in ipsilateral RGCs and regulates their 

trajectory by signaling repulsion in response to midline-localized ephrin-B2 (Williams et 

al., 2003). Zic2 is also restricted to ipsilateral RGCs, where it is required for EphB1 

expression and for ipsilateral guidance (Fig. 1.3). Over-expression of Zic2 causes an 

increase in EphB1 mRNA and a decrease in midline crossing, and this phenotype is 

partially suppressed in an EphB1 mutant. Interestingly, in a subset of contralateral RGCs, 

Islet2 is required to promote midline crossing and to repress Zic2 and EphB1 expression 

(Pak et al., 2004) (Fig. 1.3). Although direct binding data for these transcription factors to 

their targets has yet to be demonstrated, a model emerges in which a transcriptional 

repressor specifies the trajectory of one class of retinal axons by restricting the expression 

of another transcription factor, which itself impinges on an axon guidance receptor, 
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similar to what occurs with Barhl2 and Lhx2 in spinal interneurons (Ding et al., 2011), 

and with Eve and Hb9 in Drosophila motor neurons (Fujioka et al., 2003). 

The factors that regulate Robo3 and EphA4 expression in other subsets of spinal 

cord neurons remain to be identified. In addition, the mechanism by which Robo3 

promotes midline crossing is unclear, although genetic evidence suggests that Robo3 is 

required to down-regulate Robo1/2-mediated repulsive signaling, as discussed above. 

Mammalian Robo3 does not bind Slit with high affinity, suggesting that it is not likely to 

act by titrating Slit away from Robo1 and Robo2 (Zelina et al., 2014). Interestingly, a 

recent study found that Robo3 forms a complex with DCC and potentiates DCC’s 

response to Netrin during the migration of pontine nucleus neurons in the mouse brain 

(Zelina et al., 2014). Whether this mechanism is also used by spinal commissural neurons 

during midline crossing remains to be determined. The expression pattern of Robo3, 

together with analyses of the transcription factor mutants described above, strongly 

suggest that Robo3 acts cell autonomously in commissural neurons to promote midline 

crossing. In Chapter 4, I describe a new mechanism by which Drosophila Robo2 

promotes midline crossing through non cell-autonomous inhibition of Robo1. It is curious 

that Robo receptors in both insect and vertebrate lineages evolved the ability to down-

regulate Robo-mediated repulsion. This appears to be an example of convergent 

evolution, as Robo genes diversified independently through genome duplication events 

specific to each lineage (Evans and Bashaw, 2012; Zelina et al., 2014). It will be highly 

informative to obtain a more detailed understanding of the mechanisms by which 

Drosophila Robo2 and vertebrate Robo3 regulate repulsive Robo signaling, and to 
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determine how the mechanisms that control their expression patterns contributed to the 

diversification of their functions.  

 

Transcription factors and effectors regulating dendritic morphology in sensory 

neurons 

The position, size and shape of a neuron’s dendritic arbor are critical aspects of its 

identity, as they determine its sites of synaptic input. Indeed, genetic manipulations that 

disrupt dendrite morphology or position can result in defects in connectivity and function 

(Kostadinov and Sanes, 2015; Sun et al., 2013; Vrieseling and Arber, 2006). A large 

body of evidence suggests that multiple aspects of dendrite morphology are intrinsically 

programmed by cell autonomous factors (reviewed in Lefebvre et al., 2015; Puram and 

Bonni, 2013), and while many transcription factors have been shown to act in a cell-type 

specific manner to regulate dendrite development across the nervous system, the 

downstream programs by which these factors act in the CNS remain poorly characterized 

(Enriquez et al., 2015; Komiyama and Luo, 2007; Komiyama et al., 2003; Vrieseling and 

Arber, 2006). Sensory neuron dendrites of invertebrates have served as a powerful model 

for understanding how intrinsic and extrinsic factors regulate the formation of dendritic 

arbors (Jan and Jan, 2010; Lefebvre et al., 2015). Below, we discuss recent studies in 

Drosophila and C. elegans sensory neurons that identify functional effectors of 

transcription factors that control dendrite morphology. 
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Transcriptional regulation of morphology in Drosophila dendritic arborization neurons 

The dendritic arborization (da) sensory neurons of Drosophila larvae form a 

largely two-dimension array between the body wall muscles and the epidermis (Corty et 

al., 2009; Jan and Jan, 2010). There are four classes of da neurons, which can be 

distinguished by their transcription factor profile, dendritic morphology, and sensory 

function (Fig. 1.5). Class I neurons are proprioceptive and have the simplest dendritic 

arbors (Grueber et al., 2002; Hughes and Thomas, 2007). They can be identified by the 

expression of the BTB/zinc finger transcription factor Abrupt (Ab), which is both 

required and sufficient to promote their simple morphology (Li et al., 2004; Sugimura et 

al., 2004). Class II neurons respond to gentle touch and form larger and more complex 

arbors than class I neurons (Grueber et al., 2002; Tsubouchi et al., 2012). They express 

low levels of the homeodomain transcription factor Cut, which is required for their 

growth (Grueber et al., 2003a). Class III neurons respond to gentle touch and form more 

complex arbors than class I or II neurons (Grueber et al., 2002; Grueber et al., 2003b; 

Tsubouchi et al., 2012; Yan et al., 2013). They can be identified by the presence of actin-

rich filopodial spikes along their dendrites, and by the highest levels of Cut expression. 

Cut is required for the formation of these filopodia, and for dendritic growth and 

branching (Grueber et al., 2003a). Class IV neurons are polymodal nociceptive detectors 

that are activated by harsh mechanical stimuli and high temperatures (Hwang et al., 

2007). They form extensive, space-filling dendritic arbors that display self-avoidance and 

that do not overlap with dendrites from neighboring class IV neurons (Grueber et al., 

2002). Class IV neurons express intermediate levels of Cut, which is required for their 

normal growth and branching (Grueber et al., 2003a). Expression of the COE 
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(Collier/Olf-1/EBF) transcription factor Knot in da neurons is restricted to the class IV 

neurons, where it is required for the formation of their complex dendritic arbors 

(Crozatier and Vincent, 2008; Hattori et al., 2007; Jinushi-Nakao et al., 2007). Below, I 

discuss several recent studies that have identified putative downstream effectors of these 

transcription factors in regulating da neuron morphology (Fig. 1.4).  

In class IV da neurons, the microtubule severing protein Spastin may act 

downstream of Knot by creating new sites for microtubule growth (Jinushi-Nakao et al., 

2007). Spastin heterozygotes display class IV da neuron defects that resemble those of 

knot mutants, including reduced dendritic arbors and decreased branching. Furthermore, 

spastin is upregulated when Knot is over-expressed, and knocking down spastin 

suppresses the ectopic branching phenotype caused by Knot mis-expression. However, 

this model awaits evidence that endogenous spastin levels are down-regulated in da 

neurons in the absence of Knot.  

The actin-bundling protein Singed/Fascin is required for class III da neuron 

morphology, and a recent study suggests its activity may be Cut-dependent (Nagel et al., 

2012). Fascin is present in the cell bodies of all da neurons, but is not found within the 

dendrites of class I, II, or IV neurons, whereas it is enriched in the filopodial spikes of 

class III neurons, and is required for their formation. Cut over-expression produces 

ectopic Fascin-positive filopodia. To determine if Fascin is a downstream effector of Cut, 

the authors over-expressed Cut in fascin mutants, and observed reduced ectopic filopodia. 

As Fascin is expressed in all da neurons, it is unlikely that Cut regulates its expression in 

a class-specific manner; instead, high levels of Cut might promote Fascin activity 
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indirectly, by inducing the expression of programs that control Fascin sub-cellular 

localization in class III neurons.  

The guanine nucleotide exchange factor (GEF) Trio may also act downstream of 

Cut, as it is upregulated by Cut over-expression and its absence produces a similar 

phenotype to that seen in the absence of Cut (Iyer et al., 2012). Moreover, trio 

knockdown suppresses the ectopic branching phenotype generated by Cut mis-

expression, and Trio over-expression partially rescues branching defects caused by loss 

of Cut. However, Cut is not endogenously required for Trio expression in da neurons, 

suggesting that additional factors act redundantly with Cut to regulate trio. Similarly, Cut 

can induce expression of the cell surface receptor Turtle, and reducing Turtle levels 

suppresses the effect of Cut over-expression, but Cut is not required for turtle expression 

(Sulkowski et al., 2011). Thus, the main transcriptional targets of Cut that mediate its 

effects on dendritic morphology remain to be identified. 

Uemura and colleagues recently undertook an unbiased approach to identify novel 

targets of Ab and Knot (Hattori et al., 2013). They performed genome-wide DAM-ID 

analyses for Ab and Knot binding sites, as well as gene expression analyses in larvae 

over-expressing Ab or Knot in da neurons. They cross-referenced these data to identify 

genes that were bound by either factor, and that responded to changes in Ab or Knot 

levels. Candidate targets were then validated by examination of their loss of function 

phenotypes.  

One shared upregulated target of Ab and Knot that emerged from this analysis 

was the BTB/POZ transcription factor Lola, and a subsequent study by van Meyel and 

colleagues demonstrated that Lola controls dendritic morphogenesis through the actin 



22 

 

nucleating protein Spire (Ferreira et al., 2014). Lola is expressed in all classes of da 

neurons, where it is required for dendritic branching and growth. In its absence, Cut and 

Knot levels are decreased in class IV neurons, suggesting a positive feedback loop 

between Lola and Knot. In addition, Lola is required in class I and IV neurons to inhibit 

the formation of actin-rich protrusions near the cell body. Loss of lola results in increased 

levels of the actin regulator Spire, suggesting that spire misregulation may contribute to 

the lola phenotype. Indeed, heterozygosity for spire suppresses the ectopic protrusions in 

lola mutant neurons, and partially rescues dendritic growth. Moreover, lola knock-down 

in class IV neurons results in a head-turning defect that is characteristic of defective 

nociception. Strikingly, heterozygosity for spire also rescues these behavioral defects. 

Together, these data suggest that Lola regulates dendrite morphogenesis by down-

regulating spire. 

Another target of Ab and Knot identified by Uemura and colleagues that plays a 

role in regulating dendritic morphology is the cell surface receptor Teneurin-m (ten-m), 

which mediates synaptic partner selection in the adult olfactory system and larval 

neuromuscular system (Hattori et al., 2013; Hong et al., 2012; Mosca et al., 2012). Both 

Ab and Knot can upregulate ten-m, although Ab has a greater effect. Accordingly, Ten-m 

is expressed in both class I and IV da neurons, with higher levels in class I neurons. ab 

mutants have decreased Ten-m expression, and ten-m loss of function disrupts the 

directionality of the class I dendritic branches, reproducing one aspect of the ab mutant 

phenotype. Importantly, the knockdown of ten-m in class IV neurons also results in 

defects in the position of their dendrites, demonstrating an endogenous requirement for 

low levels of Ten-m in these cells. In addition to its expression in da neurons, Ten-m is 
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present in the epidermis in a non-uniform manner, and epidermal-specific ten-m 

knockdown or over-expression can change the directionality of dendritic projections, 

suggesting that homophilic Ten-m interactions between neurons and epidermal cells 

influence dendritic patterning. Following on this, Uemura and colleagues present a model 

in which Abrupt ensures that high levels of Ten-m are present in class I da neurons to 

signal repulsion and direct dendrites posteriorly, whereas Knot promotes low levels of 

Ten-m in class IV neurons to confer normal dendritic morphology (Hattori et al., 2013). 

Additional genetic experiments, such as a rescue of the ab or knot phenotypes, would 

further strengthen the model, and identifying the factors that regulate epidermal Ten-m 

expression would shed light on how its expression is coordinately regulated across 

tissues. 

  

Transcriptional regulation of dendritic morphology in the C. elegans PVD neuron 

Recent studies of the C. elegans PVD polymodal sensory neuron have 

emphasized the importance of neural-epidermal interactions during sensory dendrite 

morphogenesis, and shed light on how transcription factors establish cell-type specific 

morphologies. PVD neurons are required for the worm’s avoidance response to harsh 

touch, cold and hyperosmolarity (Chatzigeorgiou et al., 2010; Way and Chalfie, 1989). 

During larval development, the two PVD neurons form highly branched dendritic arbors 

which grow to envelop the animal on each side of the body (Fig. 1.4). These arbors 

exhibit many of the typical features of sensory neurons, including self-avoidance among 

sister branches and tiling with the functionally related FLP neuron in the head (Smith et 

al., 2010).  



24 

 

MEC-3 is a LIM homeodomain factor required for the specification of both PVD 

neurons and light touch neurons (Way and Chalfie, 1989; Zhang et al., 2002). In mec-3 

mutants, the PVD cell body position and axon are normal, but PVD dendrites display 

dramatic growth defects and fail to initiate secondary branches (Smith et al., 2010; Tsalik 

et al., 2003). These defects are rescued by PVD-specific expression of MEC-3 (Smith et 

al., 2013). A recent study identified hpo-3/claudin as a downstream effector of MEC-3 in 

regulating PVD morphology (Smith et al., 2013). Miller and colleagues compared the 

mRNA profiles of PVD neurons from wild type animals with those from mec-3 mutants, 

and identified many putative MEC-3 targets, including hpo-30/claudin. hpo-30 is 

required cell autonomously for the formation of dendritic branches in PVD neurons; in its 

absence, secondary branches initiate but are not stabilized. The similarity of the loss of 

function phenotypes of hpo-30 and mec-3, as well as the observation that mec-3 is 

required for expression of an hpo-30::GFP reporter in PVD neurons, make HPO-30 a 

likely downstream effector of MEC-3. However, HPO-30 over-expression in mec-3 

mutants does not rescue their branching defects, suggesting that additional targets of 

MEC-3 are required for normal PVD morphology (Fig. 1.4).  

MEC-3 is also expressed in light touch neurons, which have very simple dendrites 

(Way and Chalfie, 1989). How does MEC-3 regulate dendritic morphology in a cell-type 

specific manner? Smith et al. (2013) demonstrate that in the AVM light touch neuron, the 

bHLH transcription factor AHR-1 down-regulates MEC-3 targets that promote a PVD 

morphology, while simultaneously promoting expression of mec-3 itself (Smith et al., 

2013). In ahr-1 mutants, the AVM neuron is transformed into a PVD-like neuron both 

morphologically and functionally; the morphological change is mec-3-dependent. 
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Therefore, the authors hypothesize that AHR-1 is required to repress MEC-3 targets that 

promote a PVD morphology. Indeed, hpo-30/claudin is not expressed in light touch 

neurons in wild type animals, but is ectopically expressed in the AVM neuron in ahr-1 

mutants. Moreover, in ahr-1; hpo-30 double mutants, the ectopic dendritic branches in 

the AVM neuron are fully suppressed, further demonstrating HPO-30’s role as a key 

regulator of dendritic morphology.  

Another essential regulator of PVD morphology is DMA-1, a transmembrane 

receptor expressed in PVD neurons. In its absence, dendritic arbors are greatly reduced 

(Liu and Shen, 2012). Two recent studies demonstrated that DMA-1 forms a complex in 

trans with the MNR-1 and L1CAM/SAX-7 receptors expressed in the skin, and that this 

complex promotes dendritic growth (Dong et al., 2013; Salzberg et al., 2013). The dma-1 

phenotype is strikingly similar to the mec-3 and hpo-30 phenotypes. Although dma-1 was 

not identified as a MEC-3-dependent gene by Smith et al. 2013, it will be interesting to 

determine if HPO-30 converges on the same pathway as DMA-1, MNR-1, and SAX-7 to 

regulate interactions between sensory neurons and epidermal cells that promote dendritic 

growth and branching. 

 

Transcriptional effectors that instruct synaptogenesis in C. elegans motor neurons 

Axonal targeting and dendrite morphogenesis are essential for neural 

connectivity, as the position of a neuron’s axons and dendrites will restrict its choice of 

available synaptic partners. However, the neurites of neurons often extensively overlap in 

space without forming synapses, and it is therefore clear that additional cues drive partner 

selection and synaptogenesis. Many such pre- and post-synaptic molecules have been 
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identified, and have been shown to exhibit cell-type specific patterns and to act before the 

onset of neural activity, reflecting an intrinsic genetic program (reviewed in Shen and 

Scheiffele, 2010). However, how the expression of these cues is regulated remains 

largely unclear. Below, I briefly review recent studies in C. elegans motor neurons that 

shed light on the transcriptional mechanisms that regulate synapse formation during 

development.  

The DD and VD motor neurons are GABAergic motor neurons in the ventral 

nerve cord that receive input from cholinergic motor neurons. DD neurons undergo 

extensive synaptic remodeling between larval stages and adulthood: at the L1 stage, they 

receive input from dorsal motor neurons and innervate ventral muscles. By adulthood, 

this is reversed, such that mature DD neurons receive input from ventral motor neurons, 

and innervate dorsal muscles (Fig. 1.5). VD neurons develop after the L1 molt, and 

receive input from dorsal motor neurons, and innervate ventral muscles (Fig. 1.5). A pair 

of recent studies identified a transcription factor network that regulates synapse 

positioning in the DD and VD neurons, and demonstrated that these factors act at least in 

part through the regulation of the secreted immunoglobulin (Ig)-domain protein OIG-1 

(He et al., 2015; Howell et al., 2015). 

OIG-1 is a short, single Ig domain-containing protein that is highly expressed in 

VD neurons throughout adulthood, and in DD motor neurons before L1. In contrast, OIG-

1 is not expressed in mature DD neurons. Loss of function experiments indicate that 

OIG-1 organizes the synaptic inputs and outputs of DD and VD motor neurons. In oig-1 

mutants, L1 DD neurons lose their dorsal cholinergic inputs. Pre-synaptic markers are 

ectopically localized dorsally, while post-synaptic markers are ectopically localized 
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ventrally. Similarly, in oig-1 mutants, VD neurons receive fewer dorsal inputs, and form 

fewer ventral synapses and ectopic dorsal synapses. What factors regulate the expression 

of oig-1 in these neurons to direct synapse assembly? The Pitx-type homeodomain 

transcription factor UNC-30 is expressed in DD and VD neurons at all stages, and was 

previously shown to control GABAergic neurotransmitter identity (Eastman et al., 1999). 

unc-30 mutants lose oig-1 expression in both DD and VD neurons, and phenocopy the 

synaptic defects of oig-1 mutants. However, UNC-30 is expressed in mature DD neurons, 

which do not express oig-1. What, then, distinguishes young DD neurons from mature 

ones? LIN-14, a transcription factor expressed throughout the body during embryonic and 

early larval stages, is required for oig-1 expression in L1 DD neurons, and prolonged 

expression of lin-14 results in prolonged expression of oig-1 in mature DD neurons 

(Howell et al., 2015). In addition, the Iroquois homeodomain family transcription factor 

IRX-1 is expressed in mature DD neurons, where it is required for oig-1 repression. In 

VD neurons, the COUP-TF factor Unc-55 represses IRX-1, allowing for oig-1 

expression. To summarize, in L1 DD neurons, high levels of OIG-1, driven by UNC-30 

and LIN-14, promote the formation of dorsal cholinergic inputs and ventral GABAergic 

outputs (Fig. 1.5). As DD neurons mature, they lose oig-1 expression, both due to the loss 

of LIN-14 expression and the repressive activity of IRX-1; thus, synaptic remodeling 

occurs. In VD neurons, UNC-55 represses IRX-1, allowing for high levels of OIG-1, 

which drives VD neurons to receive cholinergic input on the dorsal side of the body, and 

to innervate ventral muscles (Fig. 1.5).  

How OIG-1 coordinates pre- and post-synaptic assembly remains unknown. OIG-

1 is a secreted molecule, but interestingly, both studies found that it acts cell 



28 

 

autonomously, though they differed in their reports on its protein localization (He et al., 

2015; Howell et al., 2015). Though the mechanism by which OIG-1 acts remains to be 

elucidated, these studies clearly demonstrate a novel role for this protein during synapse 

assembly in a subset of motor neurons, and show that multiple transcription factors 

operate together to ensure that this synaptic organizer is expressed in the right cells at the 

right time. 

Another recent study from Hobert and colleagues found that a transcription factor 

required for the expression of genes that confer neurotransmitter identity is also required 

for the structural assembly of synapses (Kratsios et al., 2015). The COE-type 

transcription factor UNC-3 is expressed in a subset of cholinergic motor neurons, where 

it is required for the acquisition of a cholinergic identity, as well as for axonal 

morphology (Kratsios et al., 2012; Prasad et al., 1998). It was recently found that in the 

head SAB motor neurons, UNC-3 also regulates synapse assembly, in part through madd-

4 (Kratsios et al., 2015) (Fig. 1.5). MADD-4/Punctin is a secreted protein of the Adam-

TS family (extracellular proteins related to Adam metalloproteases that lack catalytic 

activity), which was previously shown to act in cholinergic motor neurons to regulate the 

clustering of acetylcholine receptors in their post-synaptic target muscles (Maro et al., 

2015; Pinan-Lucarré et al., 2014; Tu et al., 2015). UNC-3 is required for madd-4 

expression in a subset of motor neurons, including the SAB head motor neurons and the 

DA and DB motor neurons in the ventral nerve cord, and likely acts by directly binding 

to COE sites within the madd-4 promoter, as demonstrated by in vivo experiments using 

GFP reporters fused to enhancer fragments (Kratsios et al., 2015). In unc-3 mutants, post-

synaptic acetylcholine receptors are mis-localized in the muscle cell targets of SAB 
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neurons, phenocopying the defects seen in madd-4 mutants. In addition, pre-synaptic 

components fail to localize correctly in motor neurons, a phenotype that is not observed 

in madd-4 mutants, suggesting that UNC-3 acts through distinct downstream effectors to 

coordinate pre- and post-synaptic assembly. Moreover, several other SAB markers, 

including ion channels and neurotransmitter receptors, fail to be expressed in unc-3 

mutants. Importantly, unc-3 is not required for the expression of genes that are broadly 

expressed in the nervous system, confirming previous reports that it selectively regulates 

cell-type specific gene programs (Kratsios et al., 2012). In addition, synaptic clustering 

and unc-3 expression are normal in animals in which SAB neurons are silenced, 

demonstrating that this molecular program acts independently of neural activity (Kratsios 

et al., 2015).  

Whether other transcription factors previously found to specify neurotransmitter 

identity also act in a cell-type specific manner to regulate synapse formation remains an 

open question. Interestingly, the co-regulation of genes related to morphology and neural 

function has been reported in several other instances, including some involving the 

transcription factors discussed in previous sections: Zic2 regulates the expression of the 

serotonin transporter SerT in the retina (García-Frigola and Herrera, 2010); Isl1 promotes 

cholinergic identity in motor neurons and in a subset of forebrain neurons (Cho et al., 

2014); and in Drosophila sensory neurons, Knot is required for the expression of the 

class IV da neuron gene pickpocket, which encodes a subunit of a Degenerin/epithelial 

sodium channel family protein that is required for the response to nociceptive touch 

(Crozatier and Vincent, 2008; Hattori et al., 2007; Zhong and Hwang, 2010). It will be 

informative to determine if other transcription factors that have been characterized 
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primarily for their roles during neuronal morphogenesis have broader functions in 

determining multiple aspects of neural identity and function. 

 

Conclusion 

As we begin to build a detailed map of regulatory relationships during neural 

circuit formation in diverse model systems, common themes emerge, and suggest key 

questions for future research. It is interesting that repressive interactions between 

transcription factors, which were shown many years ago to be an essential mechanism by 

which cell fates are patterned in the spinal cord (Muhr et al., 2001), continue to be 

important for later events in neuronal morphogenesis and synaptic differentiation. In 

many cases, how combinations of transcription factors result in specific cell surface 

receptor profiles remains unclear, however. In the following chapters, I show that Hb9 

and Nkx6 act in parallel to regulate axon guidance through the Robo2 receptor in a subset 

of neurons, and that Islet acts in the same cells to regulate the Frazzled receptor, thus 

demonstrating how a transcription factor code is read to produce a particular complement 

of guidance receptors that work together to direct axon pathfinding. 

Mounting evidence suggests that the co-regulation of multiple features of neural 

morphology by individual transcription factors may be a broadly used developmental 

strategy, but whether regulatory relationships between transcription factors and cellular 

effectors are redeployed during the different steps of neural circuit assembly remains an 

open question. In Chapter 3, I demonstrate that Islet coordinately regulates the targeting 

of motor axons in the periphery and of motor neuron dendrites in the CNS through fra, 
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providing an example of how a single transcription factor can specify both the inputs and 

outputs of a neuron through an effector gene involved in both processes.  

Finally, it is important to note that the regulation of cell surface receptor 

expression continues long after transcription. Mechanisms that control mRNA stability, 

processing, and translation have all been shown to contribute to achieving precise spatio-

temporal patterns of guidance receptor expression, as have post-translational mechanisms 

that regulate surface levels through trafficking or endocytosis (Allen and Chilton, 2009; 

Bai and Pfaff, 2011; Hörnberg and Holt, 2013; O’Donnell et al., 2009; Yap and 

Winckler, 2012). Moreover, once a receptor is present at the surface of a neuron, its 

activity can be silenced by antagonistic factors. In Chapter 4, I present a mechanism in 

which Drosophila Robo2 acts in a non-cell autonomous manner to down-regulate the 

activity of Robo1, demonstrating how regulatory mechanisms continue post-

transcriptionally, and how the precise expression pattern of a guidance receptor can allow 

it to exert multiple distinct activities during nervous system development.  
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Figure 1.1. Downstream effectors of transcription factors during vertebrate motor 

axon guidance.  
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Figure 1.1. Downstream effectors of transcription factors during vertebrate motor 

axon guidance.  

Cross-section of a mouse spinal cord at limb levels. In MMC-m neurons (purple), Lhx3 

promotes the expression of the FGF receptor FGFR1 and guides axons to the 

dermomyotome (dm), which expresses FGF ligands and is attractive to motor axons. In 

LMC-m neurons (blue), Islet1 directs motor axons into the ventral limb mesenchyme 

through upregulation of EphB1. In LMC-l neurons (green), Lhx1 promotes EphA4 

expression and the selection of a dorsal trajectory into the limb. EphB1 and EphA4 signal 

repulsion in response to ephrin-B and ephrin-A ligands present in the limb mesenchyme, 

respectively. Abbreviations: RP, roof plate. FP, floor plate. FGF, fibroblast growth factor. 

MMC-m, medial class of medial motor column. LMC-m, medial class of lateral motor 

column. LMC-l, lateral class of lateral motor column.  
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Figure 1.2. Downstream effectors of transcription factors during Drosophila motor 

axon guidance.  
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Figure 1.2. Downstream effectors of transcription factors during Drosophila motor 

axon guidance. A single hemisegment in a filleted late stage 17 Drosophila embryo. Not 

all motor nerves are shown. In ISNb motor neurons (blue), Hb9 and Nkx6 promote the 

expression of Robo2 and Fas3 and direct axons to the ventral muscles 6 and 7. In 

dorsally-projecting ISN motor neurons (red), Eve, Grain, and Zfh1 regulate guidance by 

promoting the expression of Unc5, Fas2, Beat1a, and Nrg receptors. Abbreviations: 

ISNb, Intersegmental nerve b. ISN, intersegmental nerve.  
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Figure 1.3. Downstream effectors of transcription factors during midline crossing in 

the mouse spinal cord and visual system.  

 

 

 

 

 

 

 

 



37 

 

Figure 1.3. Downstream effectors of transcription factors during midline crossing in 

the mouse spinal cord and visual system.  

A: Cross-section of a mouse spinal cord at E16. In dILB interneurons (blue), Zic2 

promotes the selection of an ipsilateral trajectory through the upregulation of EphA4. In 

dI1-c interneurons (green), Lhx2 and Lhx9 are required for Robo3 expression and 

midline crossing. In dI1-i interneurons (orange), Barhl2 is required for the repression of 

Lhx2 and Robo3, and for maintenance of an ipsilateral trajectory. Abbreviations: RP, 

roof plate. FP, floor plate.  

B: Schematic of the mouse visual system at E15.5. In a subset of contralateral retinal 

ganglion cells (RGCs-c, red), Islet2 is required to repress Zic2 and EphB1 expression, 

and to promote midline crossing. In ipsilateral RGCs (RGCs-I, purple), Zic2 is required 

for EphB1 expression and an ipsilateral trajectory.  
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Figure 1.4. Transcriptional regulation of dendritic morphology in Drosophila 

dendritic arborization neurons and the C.elegans PVD neuron.  
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Figure 1.4. Transcriptional regulation of dendritic morphology in Drosophila 

dendritic arborization neurons and the C. elegans PVD neuron.  

A: Camera lucida drawings of the four classes of dendritic arborization (da) neurons. 

Adapted with permission from (Grueber et al., 2003a). In class I da neurons, Abrupt (Ab) 

regulates morphology in part through up-regulation of the cell surface receptor Teneurin-

m (Ten-m) and the transcription factor Lola. Lola promotes class I neuron morphology by 

repressing the expression of the actin regulator Spire. In class II and III neurons, Lola and 

Cut act via unknown effectors to regulate dendritic morphology. Knot/Collier is restricted 

to class IV neurons, where it regulates dendritic morphology in part through Ten-m. Lola 

and Cut are also required in class IV neurons for dendritic growth, and Lola promotes 

class IV neuron morphology by repressing spire.  

B: The LIM homeodomain factor MEC-3 regulates the dendritic morphology of the 

C.elegans PVD sensory neuron. Left: Adult worm expressing a PVD::GFP reporter. 

Images adapted with permission from (Smith et al., 2010). The PVD neuron forms an 

elaborate dendritic network that wraps around the body; the insets show a higher 

magnification view of the PVD cell body, its axon, and its dendritic branches. The arrows 

indicate other neurons that express PVD::GFP. The arrowhead denotes the ventral nerve 

cord. Scale bar is 15 μm. Right: In PVD neurons, MEC-3 drives the expression of HPO-

30/claudin and other genes that promote dendritic growth and branching. In the AVM 

light touch neuron, AHR-1 promotes MEC-3 expression and represses the expression of 

MEC-3 targets that regulate branching, including HPO-30/claudin.  
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Figure 1.5. Transcriptional regulation of synaptogenesis in C. elegans motor 

neurons. 
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Figure 1.5. Transcriptional regulation of synaptogenesis in C.elegans motor 

neurons. 

A: Schematic of DD and VD synaptic inputs and outputs at different developmental 

stages. Up to the L1 larval stage, DD neurons receive cholinergic inputs from dorsal 

motor neurons, and form GABAergic synapses onto ventral muscles. UNC-30 and LIN-

14 are both required for OIG-1 expression in DD neurons, and OIG-1 is required for 

normal synapse organization. VD neurons are not present. At the L2 stage and later, DD 

neurons no longer express OIG-1, due to the absence of LIN-14, and due to repression of 

OIG-1 by IRX-1. Their synapses remodel such that they now receive input from 

cholinergic neurons on the ventral side of the body, and form outputs onto dorsal 

muscles. In VD neurons, both UNC-30 and UNC-55 are required for OIG-1 expression. 

OIG-1 drives VD neurons to form pre-synaptic structures on the ventral side, and to 

receive cholinergic input from dorsal neurons. Abbreviations: NMJ, neuromuscular 

junction. 

B: Schematic of a subset of cholinergic motor neurons in C. elegans. In the SAB head 

motor neurons, as well as the DA and DB neurons in the ventral nerve cord, UNC-3 

regulates morphology, synapse development, and functional genes, through diverse 

downstream targets. MADD-4, a direct target of UNC-3, mediates UNC-3’s function 

directing the assembly of post-synaptic structures in the targets of these motor neurons. 

Abbreviations: AChR, acetylcholine receptor. 
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CHAPTER 2 

THE HOMEODOMAIN TRANSCRIPTION FACTOR HB9 CONTROLS AXON 

GUIDANCE IN DROSOPHILA THROUGH THE REGULATION OF ROBO 

RECEPTORS 

 

Transcription factors establish neural diversity and wiring specificity; however, 

how they orchestrate changes in cell morphology remains poorly understood. The 

Drosophila Roundabout (Robo) receptors regulate connectivity in the central nervous 

system, but how their precise expression domains are established is unknown. Here we 

show that the homeodomain transcription factor Hb9 acts upstream of Robo2 and Robo3 

to regulate axon guidance in the Drosophila embryo. In ventrally-projecting motor 

neurons, hb9 is required for robo2 expression, and restoring Robo2 activity in hb9 

mutants rescues motor axon defects. Hb9 requires its conserved repressor domain and 

functions in parallel with Nkx6 to regulate robo2. Moreover, hb9 can regulate the medio-

lateral position of axons through robo2 and robo3, and restoring robo3 expression in hb9 

mutants rescues the lateral position defects of a subset of neurons. Together, these data 

identify Robo2 and Robo3 as key effectors of Hb9 in regulating nervous system 

development. 

 

Introduction 

Combinations of transcription factors specify the tremendous diversity of cell 

types in the nervous system (Dasen, 2009; Hobert, 2011; Shirasaki and Pfaff, 2002). 

Many studies have identified requirements for transcription factors in regulating different 

events in circuit formation as neurons migrate, form dendritic and axonal extensions, and 
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select their final synaptic targets (reviewed in Polleux et al., 2007; Zarin et al., 2013). In 

most cases the downstream effectors through which transcription factors control changes 

in neuronal morphology and connectivity remain unknown, although several functional 

relationships have been demonstrated (Jinushi-Nakao et al., 2007; Labrador et al., 2005; 

Luria et al., 2008; Marcos-Mondéjar et al., 2012; Nóbrega-Pereira et al., 2008; van den 

Berghe et al., 2013; Wilson et al., 2008).  

Conserved homeodomain transcription factors regulate motor neuron 

development across phyla. Studies in vertebrates and invertebrates have shown that motor 

neurons that project to common target areas often express common sets of transcription 

factors, which act instructively to direct motor axon guidance (Kania and Jessell, 2003; 

Kania et al., 2000; Landgraf et al., 1999; Thor and Thomas, 1997). In mouse and chick 

embryos, Nkx6.1/Nkx6.2 and MNR2/Hb9 are required for the specification of spinal cord 

motor neurons, and for axon pathfinding and muscle targeting in specific motor nerves 

(Arber et al., 1999; De Marco Garcia and Jessell, 2008; Sander et al., 2000; Thaler et al., 

1999; Vallstedt et al., 2001). In Drosophila, Nkx6 and Hb9 are expressed in embryonic 

motor neurons that project to ventral or lateral body wall muscles, and although they are 

not individually required for specification, they are essential for the pathfinding of 

ventrally-projecting motor axons (Broihier and Skeath, 2002; Broihier et al., 2004; Odden 

et al., 2002). Axons that project to dorsal muscles express the homeodomain transcription 

factor Even-skipped (Eve), which regulates guidance in part through the Netrin receptor 

Unc5 (Fujioka et al., 2003; Labrador et al., 2005; Landgraf et al., 1999). Eve exhibits 

cross-repressive interactions with hb9 and nkx6, which function in parallel to repress eve 

and promote islet and lim3 expression (Broihier and Skeath, 2002; Broihier et al., 2004). 
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Hb9 and Nkx6 act as repressors to regulate transcription factors in the spinal cord (Lee et 

al., 2008a; Muhr et al., 2001; William et al., 2003); however, guidance receptors that act 

downstream of Hb9 and Nkx6 have not been characterized. Interestingly, in both flies 

and vertebrates, Hb9 and Nkx6 are also expressed in a subset of interneurons, and 

knockdown experiments in Drosophila have suggested a role for hb9 in regulating 

midline crossing (Broihier et al., 2004; Odden et al., 2002; Sander et al., 2000; Vallstedt 

et al., 2001; Wilson et al., 2005). 

Robo receptors regulate midline crossing and lateral position within the 

developing central nervous systems of invertebrates and vertebrates (Jaworski et al., 

2010; Kastenhuber et al., 2009; Kidd et al., 1998; Long et al., 2004; Rajagopalan et al., 

2000a, 2000b; Sabatier et al., 2004; Simpson et al., 2000a, 2000b). Two recent studies in 

mice have also identified a role for Robos in regulating motor axon guidance in specific 

motor neuron populations (Bravo-Ambrosio et al., 2012; Jaworski and Tessier-Lavigne, 

2012). The three Drosophila Robo receptors have diversified in their expression patterns 

and functions. Robo, hereafter referred to as Robo1, is broadly expressed in the ventral 

nerve cord and prevents inappropriate midline crossing by signaling repulsion in response 

to midline-derived Slit (Kidd et al., 1998a; Kidd et al., 1999). Robo2 is initially expressed 

in many ipsilateral pioneers, and also contributes to Slit-mediated repulsion (Rajagopalan 

et al., 2000a; Simpson et al., 2000a). Subsequently, robo2 expression is more restricted, 

and it is required to specify the medio-lateral position of axons (Rajagopalan et al., 

2000b; Simpson et al., 2000b). Robo3 is expressed in a subset of CNS neurons, and also 

regulates lateral position (Rajagopalan et al., 2000b; Simpson et al., 2000b). 
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Characterization of the expression domains of the Drosophila Robos revealed an 

intriguing pattern, in which Robo1 is expressed on axons throughout the width of the 

CNS, Robo3 is found on axons in intermediate and lateral zones, and Robo2 is enriched 

on the most lateral axons (Rajagopalan et al., 2000b; Simpson et al., 2000b). These 

patterns are transcriptional in origin, as replacing any robo gene with the coding sequence 

of another Robo receptor results in a protein distribution that matches the endogenous 

expression of the replaced gene (Spitzweck et al., 2010) (C.S., T. Evans and G.J.B., 

unpublished). A phenotypic analysis of these gene-swap alleles revealed the importance 

of transcriptional regulation for the diversification of robo gene function (Spitzweck et 

al., 2010).  Robo2 and robo3’s roles in regulating lateral position are largely dependent 

on their expression patterns, although unique structures within the Robo2 receptor are 

also important for its function in lateral position (Evans and Bashaw, 2010b; Spitzweck et 

al., 2010). In the peripheral nervous system, the atonal transcription factor regulates 

robo3 in chordotonal sensory neurons, directing the position of their axon terminals 

(Zlatic et al., 2003). In the CNS, the transcription factors lola and midline contribute to 

the induction of robo1 (Crowner et al., 2002; Liu et al., 2009). However, how the 

expression patterns of robo2 and robo3 are established to direct axons to specific medial-

lateral zones within the CNS remains unknown. 

This study identifies a functional relationship between Hb9 and the Robo2 and 

Robo3 receptors in multiple contexts. We show that Hb9 acts through Robo2 to regulate 

motor axon guidance, and can direct the medio-lateral position of axons in the nerve cord 

through robo2 and robo3. Furthermore, hb9 interacts genetically with nkx6 and requires 

its conserved repressor domain to regulate robo2. Together, these data establish a link 
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between transcriptional regulators and cell surface guidance receptors, providing an 

example of how upstream factors act through specific guidance receptors to direct circuit 

formation. 

 

Results 

Robo2 is required in neurons for motor axon pathfinding 

Hb9 regulates motor axon pathfinding across species, but its downstream 

effectors remain unknown. In Drosophila, hb9 is required for the formation of the ISNb 

nerve, which innervates a group of ventral muscles (Broihier and Skeath, 2002). In our 

hands, approximately 20% of hemisegments in hb9 mutant embryos lack innervation at 

the muscle 6/7 cleft, while these defects are rarely observed in wild type animals or hb9 

heterozygotes (Figure 2.1). To identify potential targets of hb9, we examined the 

expression patterns of axon guidance genes by in situ hybridization. We found that during 

the stages when motor axons navigate the muscle field, robo2 mRNA is enriched in 

ventrally-projecting motor neurons (Figure 2.1).  

To determine whether robo2 regulates motor axon guidance, we examined robo2 

mutant embryos for innervation defects. In robo2 mutants, the axon that normally 

innervates the muscle 6/7 cleft is either absent or stalled at the main ISNb trunk in 20% 

of hemisegments (Figure 2.1). This phenotype is similar to that of hb9 mutants, and is 

observed using multiple robo2 alleles (Figure 2.1 and data not shown). Robo2 

heterozygotes and robo2/+; hb9/+ double heterozygotes do not have significant defects 

(Figure 2.1 and data not shown). Robo2 mutants have no defects in axons forming the 

ISN, SNa, SNc, TN, or ISNd nerves. Importantly, restoring one copy of an 83.9 kb BAC 
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transgene that contains the robo2 locus and its flanking genomic sequence fully rescues 

the 6/7 innervation defects of robo2 mutants (Figure 2.1). 

Robo2 is expressed in ventral muscles and in motor neurons (Figure 2.1 and data 

not shown). To determine if robo2 acts in neurons to regulate motor axon pathfinding, we 

expressed a UAS-Robo2RNAi transgene using ftzng-Gal4, which drives expression in 

many motor neurons and their precursors (Thor et al., 1999). Expressing UAS-

Robo2RNAi with ftzng-Gal4 in an otherwise wild type background produces no effect, 

but causes significant 6/7 innervation defects when expressed in robo2 heterozygotes 

(Figure 2.1). Conversely, expressing UAS-Robo2 RNAi in robo2 heterozygotes using the 

pan-muscle driver 24bgal4 has no effect (Figure 2.1). Together, these data suggest that 

robo2 is required neuronally to regulate ISNb pathfinding.  

 

Hb9 is required for robo2 expression in the RP motor neurons 

To test if hb9 regulates robo2 in ventrally-projecting motor neurons, we examined 

robo2’s expression pattern in hb9 mutants. In Stage 16 wild type or hb9 heterozygote 

embryos, robo2 mRNA is readily detected in the RP motor neurons (Figure 2.1). In 

particular, robo2 transcript is enriched in RP3, the neuron that innervates the muscle 6/7 

cleft (Figure 2.1). In hb9 mutants, robo2 mRNA is significantly decreased in the RP 

motor neurons (Figure 2.1). An average of 83% of RP3 neurons in hb9kk30/+ embryos, 

but only 49% of RP3 neurons in hb9kk30/hb9jj154e mutants express detectable robo2 at 

Stage 16 (p<0.001, Student’s t-test) (Figure 2.1). This difference is observed as early as 

Stage 14, when robo2 mRNA begins to accumulate in RP3, and is detected using 

multiple hb9 alleles (Figures 2.1, 2.3 and data not shown). Interestingly, hb9 mutants 
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display no change in the expression of robo1, which is broadly expressed in many motor 

neurons including the RPs (data not shown). To quantify the fluorescent robo2 mRNA 

signal in RP3 neurons, we measured pixel intensity and normalized the mRNA signal to 

the myc signal from islet-tau-myc. The average relative fluorescence intensity of robo2 

mRNA in hb9 heterozygotes is more than twice the average value measured in hb9 

mutants (p<0.01, Student’s t-test) (Figure 2.1). We conclude that hb9 is an essential 

regulator of robo2 in the RP motor neurons. 

 

Robo2’s activity in motor axon guidance depends on unique features of its cytodomain 

Robo2 has multiple activities in the embryonic CNS, some of which cannot be 

substituted for by the other Robo receptors (Evans and Bashaw, 2010b; Spitzweck et al., 

2010). To determine if Robo2’s activity in motor axon guidance is a unique property of 

Robo2, we examined knock-in alleles in which the coding sequences of Robo1, Robo2, 

or Robo3 are knocked into the robo2 locus, hereafter referred to as robo2X, where X 

represents the inserted coding sequence (Spitzweck et al., 2010). Embryos homozygous 

for the robo2robo2 allele have no significant defects in motor axon pathfinding, whereas 

embryos homozygous for either robo2robo1 or robo2robo3 have as many RP3 innervation 

defects as robo2 mutants (Figure 2.2). To define the protein domains required for 

Robo2’s activity in motor axon guidance, we examined knock-in alleles encoding either 

of two chimeric receptors: Robo2-1 (Robo2’s ectodomain and Robo1’s cytodomain) or 

Robo1-2 (Robo1’s ectodomain and Robo2’s cytodomain) (Spitzweck et al., 2010) (Figure 

2.2). We found that robo2robo2-1 embryos have as strong a motor axon phenotype as robo2 

mutants, while robo2robo1-2 embryos are phenotypically normal (Figure 2.2). Together, 
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these results suggest that neither Robo1 nor Robo3 can substitute for Robo2 in motor 

axon guidance, and that this Robo2-specific activity maps to its cytodomain.  

 

Restoring Robo2 activity in hb9 mutants rescues motor axon guidance defects  

To determine if Robo2 acts as an effector of Hb9 during motor axon guidance, we 

tested whether over-expressing robo2 in hb9 mutants rescues their muscle 6/7 innervation 

defects. However, over-expressing a UAS-Robo2 transgene using hb9-Gal4 in otherwise 

wild type embryos produces severe motor axon defects, affecting RP3 innervation in 

more than 50% of hemisegments (data not shown). We therefore sought to identify a 

variant of the Robo2 receptor that retains its endogenous activity in ISNb pathfinding, but 

does not generate defects when over-expressed. As our results with the knock-in alleles 

indicate a requirement for Robo2’s cytodomain in motor axon guidance (Figure 2.2), we 

tested whether over-expression of a chimeric receptor that contains the ectodomain of 

Robo1 and the cytodomain of Robo2 (Robo1-2) results in motor axon guidance defects. 

We found that over-expression of UAS-Robo1-2 with hb9-Gal4 does not result in 6/7 

innervation defects, whereas expressing the reciprocal chimera (Robo2-1) produces 

significant errors in motor axon pathfinding (data not shown). 

We could now test if expressing a receptor that is functional in robo2’s 

endogenous context (Robo1-2) rescues motor axon guidance in hb9 mutants. We used the 

hb9-Gal4 enhancer trap to perform this experiment (Broihier and Skeath, 2002), as we 

have found that when placed over a null hb9 allele, this allelic combination results in 

nearly undetectable levels of hb9 protein, and has as strong a motor axon phenotype as 

the null itself (Figure 2.2 and data not shown). Over-expressing UAS-Robo1-2 in hb9 
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mutants using hb9-Gal4 significantly rescues RP3 innervation defects (22% to 13%, 

p=0.03, Student’s t-test) (Figure 2.2). A similar result is observed using the lim3b-Gal4 

driver (Certel and Thor, 2004) and a different hb9 allelic combination (18% to 10%, p 

=0.04, Student’s t-test) (Figure 2.2). The incomplete rescue may be a consequence of the 

timing or expression levels caused by Gal4-driven expression. Alternatively, robo2 may 

be one of multiple downstream targets of hb9, and restoring Robo2 activity might not be 

sufficient to fully rescue hb9 mutants. Nevertheless, together with the loss of function 

phenotypes and the requirement for hb9 in promoting robo2 expression, these results 

strongly suggest that Robo2 acts as a downstream effector of Hb9 during motor axon 

guidance. 

 

Hb9 requires its conserved repressor domain and functions in parallel with Nkx6 to 

regulate robo2  

Vertebrate Hb9 acts as a repressor to regulate gene expression when over-

expressed in the spinal cord, but the requirement for Hb9’s repressor activity for axon 

guidance has not been studied (Lee et al., 2008a; William et al., 2003). Two conserved 

putative repressor domains are found in Drosophila Hb9: an Engrailed homology (Eh) 

domain similar to sequences that interact with the Groucho co-repressor (Broihier and 

Skeath, 2002; Smith and Jaynes, 1996), and a domain similar to sequences that interact 

with the C-terminal binding protein (CtBP) co-repressor (William et al., 2003). To test 

the contribution of these domains to Hb9 function, we generated Hb9 transgenes in which 

either or both domains were deleted, and compared their ability to rescue hb9 mutants 

relative to full length Hb9 (Figure 2.3). All transgenes are inserted in the same genomic 
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location and are expressed at similar levels (data not shown). We found that whereas a 

full-length Hb9 transgene (Hb9 FL) fully rescues both muscle 6/7 innervation defects and 

robo2 expression in hb9 mutants, the Eh domain deletion (Hb9ΔEh) does not rescue 

motor axon pathfinding, and only weakly rescues robo2 expression (Figure 2.3). 

Conversely, the CtBP-binding domain deletion (Hb9ΔCtBP) fully rescues both guidance 

and robo2 expression (Figure 2.3). The double deletion (Hb9ΔEhΔCtBP) is not 

significantly different from Hb9ΔEh in either assay (Figure 2.3). These results suggest 

that Hb9 indirectly activates robo2, perhaps by repressing a direct regulator of robo2, 

likely through a Groucho-dependent mechanism. 

The embryonic expression patterns of hb9 and the homeodomain transcription 

factor nkx6 largely overlap, and genetic analyses suggest that Hb9 and Nkx6 act in 

parallel to regulate motor axon guidance and multiple transcription factors (Broihier et 

al., 2004). We hypothesized that robo2 might be a shared downstream target of hb9 and 

nkx6. Indeed, nkx6 mutants have a significant decrease in robo2 expression in the RP 

motor neurons (81% robo2+ RP3 neurons in nkx6 heterozygotes versus 51.4% robo2+ 

RP3 neurons in nkx6 mutants, p<0.001, Student’s t-test) (Figure 2.4). To determine if hb9 

and nkx6 function in parallel to regulate robo2, we examined robo2 expression in hb9, 

nkx6 double mutants and observed a decrease relative to either single mutant (data not 

shown). However, we were not able to quantify robo2 expression in the double mutants, 

as many cells are not labeled by hb9-Gal4 or islet-tau-myc. Therefore, we looked for an 

alternative background to address whether nkx6 regulates robo2 in parallel with hb9. 

Removing one copy of nkx6 in hb9 mutants strongly enhances the motor axon phenotype 

(from 21.6% of hemisegments with 6/7 innervation defects in hb9/hb9 embryos to 45% in 
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hb9, nkx6/hb9,+ embryos, p<0.001, Student’s t-test) without producing the changes in 

markers observed in hb9, nkx6 double mutants (Figure 2.4). In this background robo2 

expression is significantly decreased relative to hb9 mutants (from 41% robo2+ RP3 

neurons in hb9/hb9 embryos to 19% in hb9, nkx6/hb9,+ embryos, p<0.001, Student’s t-

test) suggesting that nkx6 promotes robo2 expression independently of hb9 (Figure 2.4). 

Nkx6 single mutants have a severe ISNb phenotype in which most ventrally-projecting 

motor axons fail to exit the nerve cord (Broihier et al., 2004), implying that Nkx6 

regulates downstream targets other than robo2. Nevertheless, our data argue that Hb9 and 

Nkx6 are essential regulators of robo2 in the RP motor neurons and that they act in 

parallel to regulate ISNb guidance and achieve normal levels of robo2 expression, thus 

demonstrating how a combination of transcription factors regulates axon guidance by 

impinging on a common downstream target. 

 

Hb9 regulates lateral position in a subset of neurons 

Robo2 regulates midline crossing and lateral position within the embryonic CNS 

(Rajagopalan et al., 2000a; Rajagopalan et al., 2000b; Simpson et al., 2000a; Simpson et 

al., 2000b). As hb9 is expressed in many neurons other than the RP motor neurons, we 

asked if it acts through robo2 to regulate axon guidance in other contexts. The enhancer 

trap hb9-Gal4 is expressed in all neurons that endogenously express hb9 (Broihier and 

Skeath, 2002), labeling three parallel axon tracts on either side of the midline (Figure 

2.5). These align with, but are distinct from, Fasciclin II (FasII)-expressing axons, which 

form three bundles at specific medio-lateral positions (Figure 2.5). Hb9 mutants do not 

have defects in the organization of FasII+ axons (Figure 2.5 and data not shown). 
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However, in hb9 mutants, the two outer hb9-Gal4+ bundles are often disrupted and the 

inner pathway appears thicker (Figure 2.5). The lateral-most hb9-Gal4+ pathway is 

missing or discontinuous in approximately 30% of hemisegments, and the intermediate 

pathway is missing in close to 50% of hemisegments (Figure 2.5). These defects are fully 

rescued by expression of a UAS-Hb9 transgene (Figure 2.5). No changes in the number or 

position of hb9-Gal4+ neurons are observed (data not shown). To determine if nxk6 also 

regulates the trajectory of hb9-Gal4+ axons, we examined the organization of these 

pathways in embryos with reduced nkx6 activity. Nkx6 mutants have no defects in the 

lateral position of hb9-Gal4+ axons (data not shown). However, hb9 mutants 

heterozygous for nkx6 have a significantly stronger disruption of the outer-most hb9-

Gal4+ pathway relative to hb9 mutants (25% of hemisegments with lateral pathway 

defects in hb9/hb9 embryos compared to 67% in hb9, nkx6/hb9, p<0.001), suggesting 

that nkx6 also regulates lateral position, although its requirement is only revealed in the 

absence of hb9. 

Robo2 and robo3 are essential regulators of lateral position in the developing 

CNS (Evans and Bashaw, 2010b; Rajagopalan et al., 2000b; Simpson et al., 2000b; 

Spitzweck et al., 2010). Their expression patterns mirror their requirements: Robo2 is 

expressed on axons that select a lateral trajectory, and is required for the formation of 

lateral pathways, while Robo3 is expressed in both lateral and intermediate zones and is 

required for the formation of intermediate pathways (Rajagopalan et al., 2000b; Simpson 

et al., 2000b). Gene-swap experiments underscored the importance of the transcriptional 

regulation of robo2 and robo3 for their function in lateral position (Spitzweck et al., 

2010), but upstream regulators within the CNS remain unknown. To determine if hb9 
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regulates medio-lateral position through robo2 or robo3, we first asked whether robo2 or 

robo3 regulate the position of axons labeled by hb9-Gal4. In robo2 mutants, the outer 

hb9-Gal4+ pathway is missing in approximately 30% of hemisegments (Figure 2.5). The 

intermediate pathway is mildly affected, while the medial pathway appears intact (Figure 

2.5). In robo3 mutants, the intermediate hb9-Gal4+ pathway is absent or strongly shifted 

in close to 50% of hemisegments, the outer pathway is not disrupted, and the medial 

pathway is intact (Figure 2.5). Robo2, robo3 double mutants have a stronger phenotype in 

which the outer two hb9-Gal4+ pathways are disrupted in a majority of hemisegments 

(Figure 2.5). However, the dramatic decrease in the width of the nerve cord in robo2, 

robo3 double mutants made it difficult to quantify the presence of lateral pathways. We 

conclude that loss of robo2 and robo3 reproduces the lateral position defects observed in 

hb9 mutants. 

 

Hb9 can regulate lateral position by inducing robo2 

To test whether hb9 regulates lateral position through robo2 or robo3, we 

searched for hb9-expressing neurons that also express robo2 or robo3 and project to 

intermediate or lateral zones. Several hb9+ cells co-express robo2, including a cluster of 

neurons found immediately anterior and slightly dorsal to dMP2 (Figure 2.6). We scored 

robo2 expression in these cells and observed a decrease in the percentage expressing 

robo2 mRNA in hb9 mutants compared to heterozygotes (52% to 24%, p<0.0001, 

Student’s t-test, Figure 2.6). However, we were not able to achieve the resolution 

necessary to determine whether these neurons contribute to lateral pathways. It is likely 

that most of these cells are interneurons, as few motor neuron cell bodies reside in this 
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area of the nerve cord (Landgraf et al., 1997). Together with the similarity in the lateral 

position defects of hb9 and robo2 mutants, as well as the observation that Robo2 is an 

effector of hb9 in motor neurons, these data suggest that hb9 may endogenously regulate 

the medio-lateral position of a subset of interneurons via its effect on robo2. 

To study the consequences of manipulating hb9 levels on lateral position in a 

defined group of neurons, we used the apterous-Gal4 driver, which labels ipsilateral 

interneurons that normally do not express hb9, and express little to no robo2 and robo3 

(Figure 2.8 and data not shown). In wild type embryos, the apterous (ap) axons form a 

fascicle that projects along the medial FasII bundle on either side of the midline (Figure 

2.7). Over-expressing Robo2 or Robo3 in the ap neurons causes their axons to shift 

laterally away from the midline (Evans and Bashaw, 2010b; Rajagopalan et al., 2000b; 

Simpson et al., 2000b). We found that over-expressing Hb9 produces a very similar 

phenotype, in which ap axons are shifted in more than 75% of hemisegments, now 

aligning with the intermediate or lateral FasII tracts (Figure 2.7). To determine if this 

phenotype is due to the induction of robo2 or robo3, we examined the effect of hb9 over-

expression on robo2 and robo3 mRNA levels. Over-expression of Hb9 in ap neurons 

does not result in robo3 induction (data not shown). In contrast, we observed significant 

upregulation of robo2 (Figure 2.7). In control embryos, robo2 mRNA is detected in less 

than 20% of ventral ap cells, whereas more than 60% of ventral ap neurons express robo2 

when Hb9 is present (p<0.001, Student’s t-test) (Figure 2.7). Interestingly, we do not 

observe robo2 induction in the dorsal ap neurons (data not shown) which express a 

different transcription factor profile than their ventral counterparts (Allan et al., 2005; 

Baumgardt et al., 2007). 
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To determine if the lateral shift phenotype caused by Hb9 over-expression in ap 

neurons is due to the induction of robo2, we over-expressed Hb9 in robo2 mutants. 

Strikingly, removing both copies of robo2 results in a full suppression of Hb9’s gain of 

function phenotype, and ap axons appear wild type (Figure 2.7). Together, these data 

indicate that ectopic expression of Hb9 is sufficient to induce robo2, and that Hb9-driven 

changes in robo2 expression can dramatically affect the medio-lateral position of axons. 

 

Hb9 endogenously regulates lateral position through robo3 

The requirement for hb9 in regulating the position of intermediate hb9-Gal4+ 

axons suggests it may also regulate robo3, which is expressed in neurons that project to 

intermediate regions of the nerve cord and is essential for the formation of intermediate 

pathways (Rajagopalan et al., 2000b; Simpson et al., 2000b). The peptidergic midline 

neuron MP1 expresses both hb9 and robo3 and is one of the pioneers for the intermediate 

FasII pathway (Broihier and Skeath, 2002; Hidalgo and Brand, 1997; Simpson et al., 

2000a). We used the C544-Gal4 driver (Wheeler et al., 2006) to identify MP1 neurons 

and score robo3 expression and the position of the MP1 axon. The mosaic expression of 

C544-Gal4 allowed us to score the axonal trajectory of individual cells. Whereas almost 

all MP1 neurons express high levels of robo3 mRNA and project along the intermediate 

FasII bundle in hb9 heterozygous embryos, in hb9 mutants 56 % of MP1 neurons do not 

express robo3 and 47% of MP1 axons project along the medial FasII tract (Figure 2.8). A 

strong correlation between robo3 expression and the position of a cell’s axon is detected 

in both hb9 heterozygotes and mutants, suggesting that the loss of robo3 is responsible 

for the medial shift phenotype (p<0.0001, Fisher’s exact test) (Figure 2.8). MP1 neurons 
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also express nkx6; however, we detected no significant change in robo3 expression or in 

the MP1 axonal projection in nkx6 mutants (data not shown). 

To determine if restoring Robo3 rescues the lateral position of MP1 axons in hb9 

mutants, we used C544-Gal4 to over-express a UAS-HARobo3 transgene. Robo3 over-

expression produces no effect on the lateral position of MP1 axons in hb9 heterozygous 

embryos (data not shown), but results in a robust rescue of the lateral position defects of 

hb9 mutants (50.4% of MP1 axons shifted medially in hb9 mutants versus 19% in hb9 

mutants over-expressing Robo3, p<0.0001, Fisher’s exact test) (Figure 2.8). We conclude 

that in at least one defined group of neurons, hb9 acts through robo3 to direct the 

selection of an intermediate pathway. 

Interestingly, all of the Hb9 deletion variants fully rescue the lateral position 

defects of the intermediate hb9-Gal4+ axons in hb9 mutants (data not shown). Moreover, 

they all rescue robo3 expression in MP1 neurons, and while variants lacking the Eh 

domain are slightly weaker than Hb9 FL in this assay, these differences are not 

statistically significant (data not shown). While we cannot rule out that Hb9 acts as a 

repressor to regulate robo3, the observation that its Engrailed homology domain is not 

strictly required for robo3 regulation suggests the intriguing possibility that Hb9 may 

regulate robo2 and robo3 via distinct mechanisms. 

 

Discussion 

We have demonstrated a functional relationship between Hb9 and the Robo2 and 

Robo3 receptors in multiple contexts in the Drosophila embryo. In the RP motor neurons, 

hb9 is required for robo2 expression, and genetic rescue experiments indicate that robo2 
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acts downstream of hb9. Hb9 requires its conserved repressor domain and acts in parallel 

with Nkx6 to regulate robo2 and motor axon guidance. Moreover, hb9 contributes to the 

endogenous expression patterns of robo2 and robo3 and the lateral position of a subset of 

axons in the CNS, and can redirect axons laterally when over-expressed via upregulation 

of robo2. Finally, restoring Robo3 rescues the medial shift of MP1 axons in hb9 mutants, 

indicating that hb9 endogenously acts through robo3 to regulate medio-lateral position in 

a defined subset of neurons. 

 

Robo2 is a downstream effector of Hb9 during motor axon guidance 

Hb9 and nkx6 are required for the expression of robo2 in motor neurons, and 

rescue experiments suggest that the loss of robo2 contributes to the phenotype of hb9 

mutants. However, nkx6 mutants and hb9 mutants heterozygous for nkx6 have a stronger 

ISNb phenotype than robo2 mutants, implying the existence of additional downstream 

targets. One candidate is the cell adhesion molecule Fasciclin III, which is normally 

expressed in the RP motor neurons, and appears reduced in nkx6 mutant embryos 

(Broihier et al., 2004). Identifying the constellation of effectors that function downstream 

of Hb9 and Nkx6 will be key to understanding how transcription factors expressed in 

specific neurons work together to drive the expression of the cell surface receptors that 

regulate axon guidance and target selection. 

We have identified a new activity for Drosophila Robo2 in regulating motor axon 

guidance. While Robo1 can replace Robo2’s repulsive activity at the midline (Spitzweck 

et al., 2010), Robo2’s function in motor axon guidance is not shared by either Robo1 or 

Robo3. Moreover, Robo2’s anti-repulsive activity at the midline and its ability to shift 
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axons laterally when over-expressed both map to Robo2’s ectodomain, whereas we have 

found that Robo2’s activity in motor axon guidance maps to its cytodomain (Evans and 

Bashaw, 2010b; Spitzweck et al., 2010). The signaling outputs of Robo2’s cytodomain 

remain unknown, as it lacks the conserved motifs within Robo1 that engage downstream 

signaling partners (Bashaw et al., 2000; Fan et al., 2003; Yang and Bashaw, 2006). How 

does Robo2 function during motor axon guidance? In mice, Robo receptors are expressed 

in spinal motor neurons and prevent the defasciculation of a subset of motor axons 

(Jaworski and Tessier-Lavigne, 2012). Does Drosophila Robo2 regulate motor axon 

fasciculation? The levels of adhesion between ISNb axons and other nerves must be 

precisely controlled during the different stages of motor axon growth and target selection, 

and several regulators of adhesion are required for ISNb guidance (Fambrough and 

Goodman, 1996; Huang et al., 2007; Winberg et al., 1998). Furthermore, whereas Slit can 

be detected on ventral muscles, it is not visibly enriched in a pattern that suggests 

directionality in guiding motor axons (Kramer et al., 2001), making it difficult to envision 

how Robo2-mediated repulsive or attractive signaling might contribute to ISNb 

pathfinding. Future work will determine how Robo2’s cytodomain mediates motor axon 

guidance, whether this activity is Slit-dependent, and whether Robo2 signals attraction, 

repulsion, or modulates adhesion in Drosophila motor axons. 

 

Hb9 regulates lateral position through robo2 and robo3 

Elegant gene swap experiments revealed the importance of transcriptional 

regulation in establishing the different expression patterns and functions of the 

Drosophila Robo receptors (Spitzweck et al., 2010). By analyzing a previously 
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uncharacterized subset of axon pathways, we have uncovered a requirement for hb9 in 

regulating lateral position in the CNS. While hb9 can act instructively to direct lateral 

position when over-expressed, its endogenous expression in a subset of medially-

projecting neurons suggests that its ability to shift axons laterally is cell type-dependent. 

A complex picture emerges in which multiple factors act in different groups of neurons to 

regulate robo2 and robo3. In a subset neurons, including MP1, hb9 is endogenously 

required for lateral position through the upregulation of robo3, and likely acts in a 

different subset to regulate lateral position through robo2. In neurons that do not express 

hb9, such as those that form the outer FasII tracts, the expression patterns of robo2 and 

robo3 rely on additional upstream factors. What might be the significance of a regulatory 

network in which multiple sets of transcription factors direct lateral position in different 

groups of neurons? One possibility is that hb9-expressing neurons may share specific 

functional properties, such as the expression of particular neurotransmitters or ion 

channels. Alternatively, hb9 may regulate other aspects of connectivity. Robo receptors 

have been shown to mediate dendritic targeting in the Drosophila CNS, raising the 

exciting possibility that hb9 regulates both axonal and dendritic guidance through its 

effects on axon guidance receptor expression (Brierley et al., 2009; Furrer et al., 2003; 

Mauss et al., 2009). 

 

How does Hb9 regulate robo2 and robo3? 

What is the mechanism by which Hb9 regulates the expression of robo2, robo3, 

and its other downstream effectors? We have found that Hb9 requires its conserved 

Engrailed homology domain and acts in parallel with Nkx6 to regulate robo2 and motor 
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axon guidance. It has previously been shown that hb9 and nkx6 function in parallel to 

regulate several transcription factors (Broihier and Skeath, 2002; Broihier et al., 2004). 

Hb9, nkx6 double mutants show decreased expression of islet and lim3, and upregulation 

of eve and the Nkx2 ortholog vnd (Broihier et al., 2004). Are Hb9 and Nkx6 regulating 

robo2 or robo3 through any of their previously identified targets?  Hb9 and nkx6 single 

mutants show no change in islet, lim3, or vnd expression (Broihier and Skeath, 2002; 

Broihier et al., 2004), arguing that hb9 and nkx6 do not act solely through these factors to 

regulate robo2 or robo3. Eve expression is unaffected in nkx6 mutants (Broihier et al., 

2004), and while it is ectopically expressed in two neurons per hemisegment in hb9 

mutants (Broihier and Skeath, 2002), these do not correspond to RP3 or MP1, the 

identifiable cells in which we can detect changes in robo2 and robo3 (data not shown). 

Therefore, our data do not support the hypothesis that Hb9 and Nkx6 regulate robo2 or 

robo3 primarily through their previously identified targets islet, lim3, vnd or eve. 

Gain of function experiments in vertebrates suggest that Hb9 and Nkx6 act as repressors 

to regulate gene expression in the spinal cord (Lee et al., 2008a; Muhr et al., 2001; 

William et al., 2003). Our finding that Hb9’s Engrailed homology domain is required for 

motor axon pathfinding and robo2 regulation suggests that Hb9 acts as a repressor in this 

context as well, most likely through a previously unidentified intermediate target. On the 

other hand, the Eh domain is not required for Hb9’s ability to regulate robo3 or lateral 

position in hb9-Gal4+ neurons that project to intermediate zones of the CNS. The finding 

that Hb9ΔEh retains significant activity in rescuing lateral position and robo3 expression 

indicates that Hb9 may regulate robo2 and robo3 via distinct mechanisms, perhaps 

involving different transcriptional co-factors or intermediate targets. In support of this 
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hypothesis, hb9 over-expression in the apterous neurons can induce robo2, but not robo3. 

These data raise the intriguing possibility that Hb9’s ability to regulate robo2 and robo3 

via different mechanisms contributed to the diversification of their expression patterns in 

the CNS. 

Determining how Hb9 and Nkx6 regulate their effectors will be key to achieving 

a complete understanding of how these conserved transcription factors control changes in 

cell morphology and axon pathfinding during development. Of note, Hb9 mutant mice 

exhibit defects in a subset of motor nerves, including the phrenic and intercostal nerves, 

which are also affected in Robo mutants (Arber et al., 1999; Jaworski and Tessier-

Lavigne, 2012; Thaler et al., 1999). It will be of great interest to determine if despite the 

vast divergence in the evolution of nervous system development between invertebrates 

and vertebrates, Hb9 or Nkx6 have retained a role for regulating Robo receptors across 

species. 

 

Experimental Procedures 

Genetics 

The following alleles were used: robo2x123 (Simpson et al., 2000a); robo2x33 (Simpson et 

al., 2000a); hb9kk30, hb9ad121, hb9JJ154e, hb9gal4 (Broihier et al., 2002); nkx6D25 (Broihier et 

al., 2004); apGal4 (O’Keefe et al., 1998); robo31 (Rajagopalan et al., 2000b); robo33 

(Pappu et al., 2011); Df(2L)ED108 (Ryder et al., 2007); robo2robo2, robo2robo1, robo2robo3, 

robo2robo2-1, robo2robo1-2 (Spitzweck et al., 2010); robo2F (gift from L. Zipursky). Robo2F 

is a loss of function allele generated by EMS mutagenesis on the robo33 chromosome. 

The following transgenes were used: UAS-Robo2RNAi (Vienna Drosophila Research 
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Center); C544-Gal4 (Wheeler et al., 2006); UAS-Hb9 (Broihier et al., 2002); isletH-tau-

myc (Thor et al., 1997); lim3A-tau-myc (Thor et al., 1999); lim3b-gal4 (Certel et al., 

2004); [UAS-HARobo1-2].T39, [UAS-HARobo2-1].T6, [UAS-HARobo2].T1, [UAS-

HARobo3].T15 (Evans et al., 2010); [UAS-HARobo2]86FB, [UAS-HARobo1]86FB 

(Evans et al., 2012); UAS-Tau-Myc-GFP, ftz-ngGal4, 24b-Gal4, RN2-Gal4 (Bloomington 

Stock Center); [UAS-Hb9 FL]51C, [UAS-Hb9 ΔEh]51C, [UAS-Hb9 ΔCtBP]51C, [UAS-

Hb9 ΔEhΔCtBP]51C, [22K18-robo2BAC]51C. All crosses were performed at 25°C. 

Embryos were genotyped using a combination of marked balancer chromosomes or the 

presence of tagged transgenes.   

Molecular Biology 

Hb9 constructs with an N-terminal Myc tag were cloned into a pUAST vector containing 

10xUAS and an attB site for ΦC31-mediated targeted insertion.  Hb9ΔEh (lacking amino 

acids 219-229) and Hb9ΔCtbp (lacking amino acids 336-340) were generated by serial 

overlap extension PCR. Transgenes were inserted at cytological site 51C by Best Gene 

(Chino Hills, CA, USA). The 22K18-robo2 BAC was obtained from BACPAC Resources 

(Children’s Hospital, Oakland) and inserted at 51C by Rainbow Transgenics (Carmarillo, 

CA, USA).  

Fluorescent in situ hybridization and quantification 

Fluorescent mRNA in situ hybridization was performed as described (Labrador et al., 

2005). Fluorescence quantification was performed using ImageJ as described (Yang et 

al., 2009). Briefly, max projections were obtained for embryos from the same collection. 
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A region of interest (ROI) was generated around the RP cell bodies, using the islet-tau-

myc staining as a reference. Total fluorescence intensity above a set threshold was 

obtained for each channel by multiplying the area of the ROI by the average fluorescence 

intensity within the ROI above the threshold. Relative fluorescence intensity of robo2 

mRNA was calculated as absolute robo2 mRNA fluorescence intensity divided by 

absolute myc fluorescence intensity. 

Immunostaining and imaging 

Embryo fixation and staining were performed as described (Kidd et al., 1998a). The 

following antibodies were used: mouse MAb 1D4/Fasciclin II [Developmental Studies 

Hybridoma Bank (DSHB); 1:100], mouse anti-ßgal (DSHB; 1:150), mouse anti-HA 

(Covance #MMS-101P; 1:250), rabbit anti-GFP (Invitrogen #A11122; 1:500), rabbit anti-

c-Myc (Sigma #C3956; 1:500), chick anti- ßgal (Abcam #9361; 1:1000), guinea pig anti-

Hb9 (gift from J. Skeath; 1:1000), Cy3 goat anti-mouse (Jackson #115-165-003; 1:1000), 

Alexa-488 goat anti-rabbit (Molecular Probes #A11008; 1:500), Cy3 goat anti-chick 

(Abcam #97145; 1:500), Alexa-647 goat anti-Guinea Pig (Molecular Probes #A-21450; 

1:500). Images were acquired with Volocity using a spinning disk confocal (Perkin 

Elmer) using a Nikon 40x objective with a Hamamatsu C10600-10B CCD camera and 

Yokogawa CSU-10 scanner head. Images were processed using ImageJ. 

Phenotypic quantification 

Phenotypes were scored on Volocity imaging software. For scoring robo2 and robo3 

expression, if the cell body of a neuron could be detected by the in situ signal, that neuron 
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was scored as positive. RP3 neurons were identified by using islet-tau-myc and their 

position; ventral apterous neurons were identified by using ap-Gal4 and their position; 

MP1 neurons were identified by using C544-Gal4 and FasII. For motor axon phenotypes, 

hemisegments in A2-A6 of late stage 17 embryos in which a FasII+ axon could not be 

detected between the ventral muscles 6 and 7 were scored as lacking the innervation. For 

hb9-Gal4+ axon phenotypes, the presence of the medial, intermediate, or lateral hb9-

Gal4+ axon bundles was scored for hemisegments in A1-8 in Stage 17 embryos. If a 

bundle was visibly shifted to another lateral zone, it was scored as absent. For ap axon 

phenotypes, if a hemisegment in A1-8 of stage 17 embryos contained an ap axon that 

projected along the intermediate or lateral FasII tracts, it was scored as shifted. For MP1 

axon phenotypes, the lateral position of MP1 axons was scored relative to the FasII 

pathways. A1-A7 were scored in Stage 16 embryos.  
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Figure 2.1. Robo2 and hb9 mutants have similar motor axon guidance defects, and 

hb9 is required for robo2 expression in the RP motor neurons.  
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Figure 2.1. Robo2 and hb9 mutants have similar motor axon guidance defects, and 

hb9 is required for robo2 expression in the RP motor neurons.  

A: Stage 17 embryos stained for Fasciclin II (FasII). Anterior is left. Arrows point to the 

muscle 6/7 innervation, which is often absent in hb9 or robo2 mutants (asterisks). B: The 

percentage of hemisegments lacking the 6/7 innervation is shown; asterisks indicate a 

significant difference (Student’s t-test, p<0.01). Error bars = s.e.m. C: Fluorescent in situ 

for robo2 mRNA in Stage 16 embryos. Anterior is up. The RP3 motor neurons are 

labeled by the islet-tau-myc transgene, and circled in the single-channel images. Most 

RP3 neurons express robo2 in hb9 heterozygotes (filled arrowheads), whereas many RP3 

neurons do not express robo2 in hb9 mutants (empty arrowheads). YZ and XZ cross-

sections are shown; hash marks indicate the planes of the sections. D, Left: RP3 neurons 

were scored as positive or negative for robo2. Hb9 mutants have significantly fewer 

robo2+ RP3 neurons than heterozygous siblings (Student’s t-test, p<0.001). Error bars = 

s.e.m. D, Right: The mean gray value of the robo2 mRNA signal in RP3 neurons was 

normalized to the mean gray value of the myc signal. The average relative fluorescence 

intensity of robo2 mRNA is significantly lower in hb9 mutants than in hb9 heterozygotes 

(Student’s t-test, p<0.01). Error bars = s.e.m. Numbers of embryos and neurons analyzed 

are shown in parentheses. Scale bars represent 10 μm. Robo2 -/-  robo2 BAC rescue 

denotes robo2123, 22K18robo2BAC/ robo233. Hb9 +/- denotes hb9kk30, isl-taumyc/TM3. 

Hb9 -/- denotes hb9kk30, isl-taumyc/hb9jj154e. 
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Figure 2.2. Restoring Robo2 activity in hb9 mutants rescues motor axon guidance 

defects. 
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Figure 2.2. Restoring Robo2 activity in hb9 mutants rescues motor axon guidance 

defects. 

A: Schematic of the Robo receptors analyzed for their ability to replace endogenous 

Robo2. B: Embryos homozygous for knock-in alleles in which the coding sequences of 

Robo2, Robo3, Robo1, Robo2-1, or Robo1-2 are inserted in the robo2 locus were 

analyzed for motor axon guidance defects. Only Robo2 and Robo1-2 can restore muscle 

6/7 innervation. Asterisks indicate a significant difference (Student’s t-test, p<0.01). 

Error bars = s.e.m. B: Hb9 mutant embryos over-expressing UAS-HARobo1-2 have fewer 

defects than mutants lacking the transgene (Student’s t-test, p<0.05). All hb9 mutants 

were scored blind to genotype. Error bars = s.e.m.  
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Figure 2.3. Hb9’s Eh domain is required for its activity in motor axon guidance and 

for robo2 regulation. 
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Figure 2.3. Hb9’s Eh domain is required for its activity in motor axon guidance and 

for robo2 regulation. 

A: Schematic of the Hb9 variants analyzed for their ability to rescue hb9 mutants. B: 

Muscle 6/7 innervation was quantified in late Stage 17 embryos; asterisks indicate a 

significant difference (Student’s t-test, p<0.01). Hb9 transgenes lacking the Eh domain 

failed to rescue motor axon guidance defects in hb9 mutants. C: The percentage of 

robo2+ RP3 neurons per embryo is shown; asterisks indicate a significant difference 

(Student’s t-test, p<0.01). Hb9’s Eh domain is required for rescue of robo2 expression. 

Error bars = s.e.m. Hb9 +/- denotes hb9gal4/TM3. Hb9 -/- denotes hb9gal4/hb9kk30. Hb9 -/- 

Hb9 (variant) denotes UAS-Hb9 (variant)/+; hb9gal4/hb9kk30. 
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Figure 2.4. Hb9 and Nkx6 function in parallel to regulate motor axon guidance and 

robo2. 
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Figure 2.4. Hb9 and Nkx6 function in parallel to regulate motor axon guidance and 

robo2. 

A: Fluorescent in situ for robo2 mRNA (green) in Stage 16 embryos. Anterior is up. The 

RP motor neurons are labeled by the lim3a-taumyc transgene (magenta). Filled 

arrowheads point to robo2+ RP3 neurons; empty arrowheads indicate robo2- neurons. B: 

Nkx6 mutants have fewer robo2+ RP3 neurons than nkx6 heterozygotes (p<0.001, 

Student’s t-test). Removing one copy of nkx6 enhances the loss of robo2 in hb9 mutants 

(p<0.001, Student’s t-test). Error bars = s.e.m. C: Stage 17 embryos stained for FasII. 

Anterior is left. The arrows point to the muscle 6/7 innervation, while asterisks indicate 

its absence. D: The percentage of hemisegments lacking the 6/7 innervation was 

quantified; asterisks indicate a significant difference (p<0.001, Student’s t-test). Loss of 

nkx6 dominantly enhances the 6/7 innervation defects of hb9 mutants. Error bars = s.e.m. 

Scale bars represent 10 μm. Nxk6/+ denotes nkx6D25/TM6B. Nkx6/nkx6 denotes 

nkx6D25/nkx6D25. Hb9/+ denotes hb9kk30/TM3. Hb9, nxk6/+,+ denotes hb9gal4, 

nkx6D25/TM3. Hb9/hb9 denotes hb9gal4/hb9kk30. Hb9, nkx6/hb9,+ denotes hb9gal4, nkx6D25/ 

hb9kk30. 
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Figure 2.5. The lateral position of hb9-Gal4-expressing axons is disrupted in the 

absence of hb9, robo2, or robo3. 
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Figure 2.5. The lateral position of hb9-Gal4-expressing axons is disrupted in the 

absence of hb9, robo2, or robo3. A: Stage 17 embryos, anterior is up. FasII staining is 

shown in magenta. Hb9-Gal4> UAS-TauMycGFP (green) labels axons that form three 

bundles on each side of the midline in hb9 heterozygotes. In hb9 mutants, the outer hb9-

Gal4+ pathways are disrupted or shifted medially (arrowheads). Robo2 and robo3 

mutants partially phenocopy these defects (arrowheads). B: The percentage of 

hemisegments containing hb9-Gal4+ axons in the medial, intermediate, or lateral 

positions is shown. Asterisks indicate a significant difference (Student’s t-test, p<0.001). 

Error bars = s.e.m. Numbers of embryos and hemisegments scored are shown in 

parentheses. Scale bars represent 10 μm. Hb9 +/- denotes hb9gal4/TM6B. Hb9 -/- denotes 

hb9gal4/hb9kk30. Hb9 -/- + HB9 denotes UAS-Hb9/+; hb9gal4/hb9kk30. Robo2 -/- denotes 

robo2123/ robo233; hb9gal4/+. Robo3 -/- denotes robo31 / robo33; hb9gal4/+. Robo3, robo2 

Df/ robo33, robo2F denotes Df(2L)ED108/ robo2F, robo33; hb9gal4/+. 
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Figure 2.6. Hb9 is required for robo2 expression in a subset of neurons.  
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Figure 2.6. Hb9 is required for robo2 expression in a subset of neurons.  

A: Fluorescent in situ hybridization for robo2 mRNA (green) in Stage 15 embryos; 

anterior is up. Hb9-Gal4>UAS-TauMycGFP (magenta) labels a V-shaped cluster of 

neurons, outlined in yellow in the single-channel images. In hb9 heterozygotes, most of 

these cells are positive for robo2 mRNA, whereas there are fewer robo2+ neurons in this 

cluster in hb9 mutants. B: The percentage of robo2+/hb9-Gal4+ neurons in the region of 

interest was quantified for hb9 heterozygous and mutant embryos. Hb9 mutants have a 

significant decrease compared to heterozygous siblings (p<0.0001, Student’s t-test). Error 

bars = s.e.m. 
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Figure 2.7. Hb9 gain of function in ap neurons induces robo2 expression and a 

robo2-dependent lateral shift. 

 

 

 

 

 

 

 



80 

 

Figure 2.7. Hb9 gain of function in ap neurons induces robo2 expression and a 

robo2-dependent lateral shift.  

A, Left: Fluorescent in situ for robo2 mRNA (green) in Stage 15 embryos. Anterior is up. 

The ventral ap neurons are labeled in magenta and circled in the single channel images. 

Wild-type embryos express little robo2 in the ap neurons, whereas many ventral ap 

neurons express robo2 when Hb9 is present (arrowheads). A, Right: The percentage of 

ventral ap neurons expressing robo2 is shown. Hb9 gain of function results in a 

significant increase compared to controls (p<0.001, Student’s t-test). Error bars = s.e.m. 

B, Left: Stage 17 embryos stained for FasII (magenta) and GFP (green), which labels the 

ap axons. Over-expression of robo2 or hb9 in ap neurons shifts their axons laterally 

(arrows). Hb9 over-expression in robo2 mutants does not induce a lateral shift phenotype. 

B, Right: The percentage of hemisegments in which ap axons project along the 

intermediate or lateral FasII tracts is shown. Numbers of hemisegments scored are 

indicated in parentheses. Scale bars represent 10 μm. apTMG/+ denotes apGal4,UAS-

TauMycGFP/CyO. Robo2 G.O.F. denotes UAS-HARobo2.T1/apGal4, UAS-TauMycGFP. 

Hb9 G.O.F denotes UAS-Hb9/apGal4,UAS-TauMycGFP. Hb9 G.O.F. in robo2 -/- 

denotes robo2123,UAS-Hb9/robo233, apGal4; UAS-TauMycGFP/+. 
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Figure 2.8. Robo3 acts downstream of Hb9 to direct the lateral position of MP1 

axons.  
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Figure 2.8. Robo3 acts downstream of Hb9 to direct the lateral position of MP1 

axons.  

A, Top: Fluorescent in situ for robo3 mRNA (green) in Stage 16 embryos. Anterior is up. 

MP1 neurons are labeled by C544-Gal4 in magenta and circled in the single-channel 

images. Many MP1 neurons do not express robo3 in hb9 mutants (empty arrowhead). A, 

Bottom: MP1 axons project along the intermediate FasII bundle in hb9 heterozygotes 

(arrow), but are often shifted to the medial pathway in hb9 mutants (arrow with an 

asterisk). B: MP1 neurons were scored as robo3+ or robo3- and as projecting along the 

medial or intermediate (Int.) FasII tract. A significant correlation was detected between 

robo3 expression and lateral position in both hb9 +/- and hb9-/- embryos (Fisher’s exact 

test, p<0.001). C: Over-expressing robo3 rescues the medial shift phenotype of MP1 

axons in hb9 mutants (p<0.001, Fisher’s Exact Test). Arrows point to MP1 axons in the 

correct position; arrows with asterisks point to medially shifted axons. All mutants were 

scored blind to genotype. Scale bars represent 10 μm.  Hb9 +/+ denotes C544-Gal4/+; 

UAS-TauMycGFP/+. Hb9 +/- denotes C544-Gal4/+; hb9ad121, UAS-TauMycGFP/TM3. 

Hb9 -/- denotes C544-Gal4/+; hb9ad121, UAS-TauMycGFP/hb9kk30. Hb9 -/-  HARobo3 

G.O.F. denotes C544-Gal4/UAS-HARobo3.T15; hb9ad121, UAS-TauMycGFP/hb9kk30. 
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CHAPTER 3 

THE LIM HOMEODOMAIN FACTOR ISLET COORDINATELY REGULATES 

AXON GUIDANCE AND DENDRITE TARGETING IN DROSOPHILA 

THROUGH THE FRAZZLED/DCC RECEPTOR 
 

In Drosophila, motor axon targeting in the periphery correlates with the position 

of motor neuron dendrites in the CNS, but intrinsic programs that direct the formation of 

this myotopic map are unknown. Here we show that the LIM homeodomain factor Islet 

controls targeting of axons and dendrites in ventrally projecting motor neurons through 

regulation of the Frazzled (Fra)/DCC receptor. Islet is required for fra expression in RP3 

neurons, and islet and fra mutants have similar axon guidance defects. Single-cell 

labeling indicates that islet and fra are required for RP3 dendrite targeting, and that fra 

expression in different subsets of motor neurons correlates with dendrite position. 

Finally, over-expression of Fra rescues muscle targeting and the position of RP3 

dendrites in islet mutants. These results indicate that Fra acts downstream of Islet in the 

periphery and in the CNS, demonstrating how a regulatory relationship is reused in 

multiple cellular compartments to coordinate neural circuit wiring. 

 

Introduction 

The vast diversity of neuronal cell types is one of the nervous system’s most 

remarkable features, and understanding how this diversity is achieved remains a major 

challenge. Many studies have shown that combinations of transcription factors act in a 

cell type specific manner to specify a neuron’s morphological and functional properties 

(reviewed in Corty et al., 2009; Hobert, 2015; Polleux et al., 2007). The regulation of 
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axon and dendrite targeting is key to determining a neuron’s initial pattern of 

connectivity, and is controlled through the combined action of guidance receptors, 

adhesion molecules, and cytoskeletal regulators (Lefebvre et al., 2015; O’Donnell et al., 

2009). While recent studies have begun to delineate relationships between cellular 

effectors and the transcription factors that control their expression, it remains unclear to 

what extent individual transcription factors regulate multiple aspects of morphogenesis 

(reviewed in Santiago and Bashaw, 2014). In particular, several factors have been shown 

to control both axon and dendrite development, but whether they do so through shared or 

distinct targets is unknown. In mice, the target-induced ETS factor Pea3 (Etv4) is 

required for axonal branching in a subset of limb-innervating neurons, and for the 

position and connectivity of motor neuron dendrites in the spinal cord (Livet et al., 2002; 

Vrieseling and Arber, 2006). In Drosophila, the POU factor Acj6 is required in olfactory 

projection neurons both for axonal branching in the lateral horn and for dendrite targeting 

in the antennal lobe (Komiyama et al., 2003). However, in these and other examples, the 

downstream programs that mediate the effects of these transcription factors on axon and 

dendrite targeting remain unidentified (Baek et al., 2013; Enriquez et al., 2015).  

In the Drosophila larval and adult nervous systems, motor neuron dendrites form 

within stereotyped medio-lateral regions in the CNS that correlate with cell identity and 

with the position of motor axons in the periphery (Brierley et al., 2009; Mauss et al., 

2009). Slit-Robo and Netrin-Frazzled signaling are key regulators of dendrite targeting, 

and manipulating the levels of Robo or Fra by either loss or gain of function experiments 

causes shifts in dendrite position, suggesting that these receptors act in a cell autonomous 

manner (Brierley et al., 2009; Mauss et al., 2009). 
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Dendritogenesis initiates simultaneously in medial and lateral regions of the CNS, 

and time-lapse experiments do not reveal a major contribution from pruning or space-

filling mechanisms. In adult motor neurons, birth order correlates with dendrite position, 

suggesting the involvement of a temporal code of transcription factors (Brierley et al., 

2009). There is no indication that birth order plays a role in dendrite targeting in the 

embryo (Mauss et al., 2009); instead, the correlation between the dorsal-ventral position 

of axons and the medio-lateral position of dendrites suggests the intriguing hypothesis 

that the same factors that specify axon guidance may also regulate dendrite position. 

Taken together, these data suggest that subset-specific transcription factors are likely to 

regulate dendrite targeting through their effects on fra, robo, or genes in those pathways 

in Drosophila motor neurons. However, this model remains uncorroborated. 

The well-conserved transcription factors Even-skipped (Eve), Hb9/exex, 

Islet/tailup, and Lim3 are expressed in restricted subsets of embryonic motor neurons, 

and have been extensively studied in the context of axon guidance, but whether the same 

transcriptional regulators specify dendrite development is not known (Broihier and 

Skeath, 2002; Fujioka et al., 2003; Labrador et al., 2005; Landgraf et al., 1999; Thor and 

Thomas, 1997; Thor et al., 1999; Zarin et al., 2014). We have previously shown that Hb9 

acts through the Roundabout (Robo) receptor Robo2 to regulate axon guidance in RP3 

neurons, a subset of ventrally-projecting motor neurons (Santiago et al., 2014). Here, we 

describe a parallel pathway by which Islet regulates fra expression in the same neurons, 

and demonstrate through genetic rescue experiments that this pathway is important for 

muscle target selection. We also characterize a novel requirement for isl in regulating the 

medio-lateral position of RP3 dendrites, and show that the dendrite targeting defects in isl 
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mutants can be rescued by cell-type specific over-expression of Fra. These results 

provide an example of how a single transcription factor specifies neural map formation 

by coordinately regulating the guidance of axons to their peripheral targets, and of 

dendrites to their final positions in the central nervous system, through a single 

downstream effector. 

 

Results 

Islet is required for fra expression in RP motor neurons 

The RP3 motor neurons innervate the NetrinB-expressing muscles 6 and 7 and are 

enriched for fra mRNA during the late stages of embryonic development, and it was 

previously reported that in the absence of fra or Netrins there are significant defects in 

the innervation of muscles 6 and 7 (Kolodziej et al., 1996; Labrador et al., 2005; Mitchell 

et al., 1996). This phenotype is also detected in the absence of hb9/exex or islet/tailup, 

two transcription factors expressed in RP3 as well as in other ventrally-projecting motor 

neurons, suggesting that hb9 or islet may be upstream regulators of fra (Broihier and 

Skeath, 2002; Thor and Thomas, 1997). Interestingly, Hb9, Islet, and the LIM 

homeodomain factor Lim3 were all recently shown to bind directly to the fra locus in 

vivo, as determined by a genome-wide DNA adenine methyltransferase identification 

(DAM-ID) analysis performed in Drosophila embryos (Wolfram et al., 2014) (Figure 

3.2). However, DAM-ID results do not provide information about the functional 

significance of the detected binding events, or the cell types in which they occur. To 

determine if Hb9, Islet, or Lim3 regulate the expression of fra in embryonic motor 

neurons, we performed in situ hybridization experiments and analyzed fra mRNA 
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expression with single-cell resolution in embryos mutant for these factors (Figure 3.1 and 

Figure 3.4). We found that only islet (isl) is required for fra expression in the RP3 motor 

neurons at stage 15, when RP motor axons have reached the ventral muscle field but have 

not yet selected their final targets. 80% of RP3 neurons in abdominal segments A2-7 in 

isl/+ embryos are positive for fra transcript versus 38% in isl mutant embryos (p<0.001, 

Figure 1D, see Methods for quantification procedure). We also observed a significant 

difference in the average fra mRNA levels in RP3 neurons between mutants and 

heterozygotes when quantifying pixel intensity from the fra in situ, whereas we detect no 

difference in the signal of the isl-H-tau-myc transgene used to label the RPs (p<0.01, 

Figure 3.1B). We detect no change in the number or position of RP3 neurons in isl 

mutants, consistent with previous data demonstrating that Islet is not required for the 

generation or survival of Drosophila motor neurons (Thor and Thomas, 1997). 

Importantly, we did not find a requirement for either hb9 or lim3 in regulating fra mRNA 

expression in any of the RP motor neurons, demonstrating that the regulatory relationship 

between islet and fra is highly specific, and could not have been predicted simply by 

similarities in loss of function phenotypes, or by transcription factor binding data (Figure 

3.4). 

We previously found that Hb9 is required for robo2 expression in RP3 (Santiago 

et al., 2014). Interestingly, just as hb9 is not required for fra expression in the RP 

neurons, islet is not required for robo2 expression (Figure S2). A previous study reported 

that isl; hb9 double mutants have a stronger ISNb phenotype than either single mutant, 

but muscle 6/7 innervation defects were not quantified (Broihier et al., 2002). To further 
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investigate this, we scored motor axon guidance defects in isl; hb9 double mutants and 

found that the double mutants display significantly more muscle 6/7 innervation defects 

than either single mutant (38% of hemisegments with 6/7 innervation defects in isl; hb9 

double mutants compared to 20% in isl mutants and 17% in hb9 mutants, p<0.01 in both 

cases, Figure 3.2). Similarly, embryos mutant for both robo2 and fra have a stronger 

motor axon phenotype than either robo2 or fra single mutants (44% in robo2ex123, 

fra3/robo2ex135, fra4 mutants versus 20% in fra3/fra4 mutants and 21% in 

robo2ex123/robo2ex33 mutants; p<0.001 in both cases, Figure 3.4. Note that as robo2, fra 

double mutants have severe defects in midline crossing, motor axon phenotypes should 

be interpreted with caution; see Evans et al., 2015). These results suggest that Hb9 and 

Islet act in parallel to regulate distinct downstream programs in RP3 neurons, 

demonstrating how combinations of transcription factors are read by the cell to result in 

specific cell surface receptor profiles and axon trajectories.  

 

Restoring frazzled expression in islet mutants rescues ventral muscle innervation 

To determine to what extent isl and fra act in the same genetic pathway during 

RP3 guidance, we first examined embryos mutant for both genes. In isl null mutants, 

20% of hemisegments lack muscle 6/7 innervation, whereas fra3 null mutants have a 

stronger phenotype (34% of hemisegments, Figure 3.3B). Embryos mutant for both isl 

and fra do not have significantly more muscle 6/7 innervation defects than fra single 

mutants (40% Figure 3.3B), consistent with isl and fra acting in the same pathway to 

regulate this process. If fra acts downstream of Islet during motor axon targeting, we 



90 

 

reasoned that restoring Fra levels in isl mutant neurons might rescue muscle 6/7 

innervation. Indeed, we found that pan-neural over-expression of Fra in isl mutants 

partially but significantly rescues the defects in muscle 6/7 innervation (Figure 3.3D). 

The difference between genotypes was most striking when we counted hemisegments in 

which a growth cone stalls at the 6/7 cleft, as well as those in which it fails to reach it (all 

embryos were scored blind to genotype; see Methods). In isl mutants, a growth cone fails 

to reach the 6/7 cleft or stalls near it in 27% of hemisegments, compared to 15% of 

hemisegments in sibling mutants over-expressing Frazzled (p=0.003, Figure 3.3D). We 

also analyzed the data by comparing the number of embryos with stalled or missing 6/7 

innervations. We observed that in isl mutants, 0% of embryos have no 6/7 innervation 

defects in A2-A6, 44% have 1 defect, and 56% have 2 or more defects (n=16 embryos). 

In contrast, in isl mutants over-expressing Frazzled, 29% of embryos have 0 innervation 

defects, 29% have 1 defect, and 41% have 2 or more defects (n= 24 embryos, p=0.03 by 

Fisher’s exact when comparing the number of embryos with no defects). The incomplete 

rescue could be due to differences in the timing or levels of GAL4/UAS mediated 

expression of Fra compared to its endogenous regulation, or could indicate that Islet 

regulates additional downstream effectors important for motor axon pathfinding. 

Nevertheless, these data strongly suggest that Fra is an essential downstream effector of 

Islet during the guidance of the RP3 axon to its target muscles, and that Hb9 and Islet 

coordinately regulate this process through distinct effectors. 
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Over-expression of Islet in ipsilateral neurons induces fra expression and fra-dependent 

midline crossing  

To further investigate the functional relationship between isl and fra, we asked 

whether ectopic expression of isl is sufficient to induce fra expression. For these 

experiments we used the apterous (ap) neurons, a subset of interneurons that normally 

form a single fascicle on either side of the midline and that are labeled by the enhancer 

trap ap-Gal4. The ap neurons express low levels of fra (see below), do not express isl 

(Thor et al., 1997 and data not shown), and do not cross the midline. Fra over-expression 

has been shown to cause ectopic midline crossing of ap axons (Neuhaus-Follini and 

Bashaw, 2015a; O ’Donnell and Bashaw, 2013).  

We found that over-expression of Islet with ap-Gal4 produces high levels of 

midline crossing, phenocopying the effect of Fra over-expression (Figure 3.5). In stage 

17 control embryos, ap axons cross the midline in 12% of segments, whereas in embryos 

over-expressing UAS-Islet with ap-Gal4, ap axons cross the midline in 60% of segments 

(Figure 3.5). This phenotype is dose-dependent, as embryos over-expressing Islet from 

two copies of an UAS-Islet insertion display significantly more ectopic midline crossing 

than embryos with one insert (84%, n=19 embryos, p<0.001). 

To determine if isl over-expression results in fra induction, we analyzed the 

expression of fra mRNA in ap neurons (Figure 3.5). We found that in stage 15 wild-type 

embryos, a low percentage of ap neurons express fra (25% of ventral ap clusters were 

scored as fra+). In contrast, in embryos over-expressing isl from two UAS-Islet inserts, 

37% of the ventral ap clusters were scored as fra+ (p<0.01 when compared to controls).  
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The frequency at which we detect increased fra expression in embryos over-expressing 

Islet relative to controls is lower than expected based on the ectopic crossing phenotype. 

Fra might be transiently induced in ap neurons and therefore difficult to detect by in situ. 

Alternatively, the midline crossing phenotype may be partly due to Islet’s effects on other 

genes. To determine whether the ectopic crossing phenotype depends on fra induction, 

we over-expressed Islet in embryos homozygous for a null allele of fra. Strikingly, over-

expression of Islet in fra mutants results in a complete suppression of the midline 

crossing phenotype (15% of segments with ap midline crossing in fra3/fra3 embryos over-

expressing UAS-Islet, p<0.0001 compared to 1x GOF in controls, Figure 3.5). While we 

cannot rule out that Islet is affecting the expression of other genes in the Fra pathway to 

cause midline crossing, these results demonstrate that ectopically expressing Islet in a 

subset of interneurons causes a detectable increase in fra expression, and a fra-dependent 

phenotype, and suggest that the functional relationship between islet and fra may be 

reused in multiple contexts. 

 

Islet is not essential for early fra expression or for RP axon midline crossing  

fra mutants have defects in RP axon midline crossing, as shown by retrograde 

labeling of single motor neurons (Furrer et al., 2003). In addition, Netrin/Fra signaling 

controls the medio-lateral position of dendrites in several groups of motor neurons, 

though the targeting of RP3 dendrites in Netrin or fra mutants was not reported in this 

study (Mauss et al., 2009). Therefore, we asked if isl regulates midline crossing or the 

position of RP3 dendrites through fra. To score both phenotypes, we used a genetic 

strategy to label single motor neurons by the mosaic expression of a membrane-tagged 
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GFP transgene under the control of lim3b-GAL4, which labels the RP motor neurons, 

sensory neurons, and several other motor and interneurons (Certel and Thor, 2004). We 

identified RP3 neurons in control embryos by the stereotyped position of the RP3 cell 

body, and by the targeting of its axon to muscles 6 and 7. Due to the axon targeting 

defects observed in isl and fra mutants, we relied upon cell body position to identify RP3 

neurons in mutant embryos (see Methods). By this approach, we detect significant defects 

in RP3 axon midline crossing in fra mutants, as previously reported (17/22 axons fail to 

cross the midline in fra/fra embryos, versus 0/13 axons in fra/+ embryos). To our 

surprise, however, we observed no defects in RP axon midline crossing in isl mutants 

(33/33 RP3 axons cross the midline in isl/isl embryos).  

Isl and fra expression both initiate earlier than stage 13, the time at which RP 

axons cross the midline (Broadie et al. 1993, Thor et al. 1997, data not shown). 

Therefore, we examined whether isl is required for fra expression during the early stages 

of commissural axon guidance. Interestingly, we found that isl is not required for fra 

expression at stage 13 in any of the ventrally-projecting RPs (Figure 3.6). In contrast, in 

stage 15 isl mutant embryos from the same collection, we observed a decrease in fra 

expression in RP1 and RP3 (Figures 3.1 and 3.11). The temporal pattern of fra expression 

in RP motor neurons is dynamic, such that a larger proportion of RP1 and RP3 neurons 

express fra mRNA during the late stages of embryogenesis than during the stages of 

midline crossing (Figures 3.1, 3.6, and 3.11). We detect a requirement for isl in regulating 

fra in RP1 and RP3 as early as stage 14, when the RP motor axons have exited the CNS 

(58% of RP3 neurons are fra+ in isl/+ embryos; 42% of RP3 neurons are fra+ in isl/isl 

embryos, p=0.01; 72% of RP1 neurons are fra+ in isl/+ embryos; 22% of RP1 neurons 
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are fra+ in isl/isl embryos, p<0.001, Figure 3.6). Taken together, these results suggest 

that isl is not essential for early fra expression or for midline crossing in RP neurons, but 

is required for fra expression during the late stages of motor neuron differentiation in a 

subset of RP neurons, including RP3. The stages at which we detect a requirement for isl 

in regulating fra correspond to the stages when RP3 axons are exploring their ventral 

muscle targets, consistent with the loss of function phenotypes we observe, and with a 

model in which Islet instructs the final stages of RP3 axon targeting through Frazzled. 

 

A difference in dendritic targeting between RP3 and RP5 neurons correlates with a 

difference in fra expression  

Another essential feature of Drosophila larval motor neurons that is established 

during late stages of embryogenesis is the morphogenesis and targeting of their dendrites 

in the ventral nerve cord. Motor neuron dendrites begin to form as extensions off the 

primary neurite at stage 15 (Kim and Chiba, 2004), which corresponds to a time period 

when we detect a requirement for isl in regulating fra (Figure 1). By early stage 17 (15 

hours after egg laying, AEL), RP3 has assumed its stereotyped morphology, consisting of 

a small ipsilateral projection extending from the soma, and a large dendritic arbor 

forming off the contralateral primary neurite (Mauss et al., 2009). Putative sites of 

synaptic contact have been detected on the contralateral arbor, identified by the overlap 

between UAS-bruchpilot expression in pre-synaptic cholinergic neurons and the signal 

from lipophilic dye fills of RP3 (Couton et al., 2015).  
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We used the FLP-out genetic labeling strategy to visualize individual late-stage 

RP motor neurons and analyze the development of their dendrites. We focused on the 

large contralateral arbor of the RP motor neurons, which spans the width of one side of 

the nerve cord in wild type embryos and forms branches that extend into several medio-

lateral zones (Mauss et al., 2009) (Figure 3.7A-B). Analyses using islet-tau-myc and 

lim3a-tau-myc transgenes confirmed that the RP cell bodies retain their stereotyped 

positions in isl mutants, and that the relative dorsal-ventral positions of RPs 1/4, 3, and 5 

are preserved, allowing us to identify specific classes of motor neurons (Landgraf et al., 

1997) (Figure 1 and data not shown).  

We found that almost all RP3 neurons in late stage isl/+ embryos neurons form 

contralateral arbors that send projections into the zone between the medial FasII+ axon 

pathways and the intermediate FasII+ axons, hereafter referred to as the “intermediate 

zone”, consistent with previously published images of RP3 neurons from wild type 

embryos (89%, n=18, Figure 3.7A-B, see also Mauss et al., 2009). Interestingly, the 

dendritic morphology of RP3 was distinct from that of a related neuron, RP5, which also 

expresses Islet and Lim3b-Gal4, and which can be unambiguously identified in both wild 

type and mutant embryos as its cell body is found in a more ventral plane than the other 

RP neurons (Landgraf et al., 1997 and data not shown). In wild type embryos, the RP5 

axon targets muscles 12 and 13 (VL1 and VL2) as well as other ventral muscles 

(Landgraf et al., 1997, Mauss et al., 2009, and data not shown). Interestingly, most RP5 

dendrites in isl/+ embryos are found exclusively in the lateral zone of the neuropile, and 

do not target the intermediate zone (80%, n=20) (Figure 3.7A). Furthermore, the 
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difference we observe in the dendritic targeting of RP3 and RP5 neurons correlates with a 

difference in fra expression. While fra expression in RP3 and RP5 neurons in control 

embryos is comparable at stage 13 (Figure 3.6), by stage 15 significantly fewer RP5 than 

RP3 neurons express fra (Figure 3.7). Islet is not required for the low levels of fra 

expression in late-stage RP5 neurons, in contrast to its role in promoting high levels of 

fra in late-stage RP3 neurons (Figure 1 and Figure 3.7C). Furthermore, when we monitor 

endogenous Netrin expression in late-stage nerve cords using a Myc-tagged NetB knock-

in allele (Brankatschk and Dickson, 2006), we detect enrichment of NetrinB protein in 

the area between the intermediate and medial FasII+ axon bundles, corresponding to the 

intermediate zone where we detect contralateral dendritic projections from RP3 neurons 

(Figure 3.7D), and suggesting that high levels of Fra in RP3 neurons may instruct the 

formation of dendritic extensions in this region. 

 

Islet and fra regulate the targeting of RP3 motor neuron dendrites in the CNS 

We next analyzed RP motor neuron dendrites in isl/isl embryos to determine 

whether Islet regulates dendritic position or morphogenesis through Fra or other 

effectors. We did not observe a significant difference in the morphology or medio-lateral 

position of RP5 dendrites in isl/isl embryos (data not shown). In striking contrast, many 

RP3 neurons in isl/isl embryos fail to target their contralateral dendrites to the 

intermediate zone (48%, n=33, p=0.01 compared to isl/+ embryos, Fisher’s exact test, 

Figure 3.8A-B). Instead, the medial-most dendrites in these RP3 neurons remain 

fasciculated with the intermediate FasII+ axon pathways, and do not send extensions 
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toward the midline, a phenotype that was rarely seen in control RP3 neurons (Figure 

3.8A-B). To more quantitatively measure the lateral shift and to address the possibility 

that defects in targeting were secondary to defects in outgrowth, we traced RP3 neurons 

from isl/+ and isl /isl embryos using the Imaris software and measured total contralateral 

dendrite lengths and total number of contralateral dendrite tips (see Methods) (Figure 

3.8C; see Figure 3.10 for additional examples of traces). We also measured the total 

length of contralateral dendrites in the intermediate zone of the neuropile (Figure 3.8C-

D). There was no significant difference in the average total length or tip number of RP3 

dendrites between isl mutants and heterozygotes, suggesting that targeting defects in isl 

mutants are not caused by reduced outgrowth (Figure 3.8E-F). However, the ratio of the 

length of dendrites in the intermediate zone over total dendrite length was significantly 

reduced in isl mutants, confirming that isl mutant RP3 dendrites are shifted laterally 

relative to controls, independent of any change in arbor size (p=0.014, Figure 3.8C-D).  

We next analyzed the dendrites of RP3 neurons in fra/+ and fra/fra embryos. As 

with isl mutants, we relied upon cell body position to identify RP3 neurons, and excluded 

neurons with ambiguous positions (see Methods). In fra mutant RP3 neurons whose 

axons fail to cross the midline, a single large dendritic arbor forms off the ipsilateral 

primary neurite, and we traced this arbor to measure its size and medio-lateral position. 

We observed a significant lateral shift in the position of RP3 dendrites in fra mutants, 

both by scoring for the presence of dendrites in the intermediate zone, and by quantitative 

analysis of the dendrite extensions of traced neurons (Figure 3.9A-C). The lateral shift in 

fra mutants was more pronounced than in isl mutants, consistent with our observation 
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that some RP3 neurons retain fra expression in the absence of isl (Figure 1). Of note, the 

lateral shift phenotype did not correlate with whether the RP3 axon had crossed the 

midline, as we detected it at similar frequencies in both contralateral and ipsilateral arbors 

(Figure 3.9A). Curiously, several RP3 contralateral dendritic arbors appeared reduced in 

size in fra mutants (Figure 3.9A, right-most panel), whereas this phenotype was not seen 

in control embryos. However, as in the case of isl mutants, there was no significant 

change in the total dendrite tip number or total dendrite length in fra mutants compared to 

heterozygous embryos, though the distribution of these data was broader in the mutants, 

and there was a trend toward a decrease (Figure 3.9D,F). These findings are consistent 

with previous reports that Netrin-Fra signaling does not play a major role in regulating 

the outgrowth of motor neuron dendrites in the nerve cord (Brierley et al., 2009; Mauss et 

al., 2009).  

We next asked whether isl and fra regulate dendrite development in other classes 

of motor neurons. RP1 and RP4 also express islet, fra, and lim3b-Gal4. We detect a 

requirement for isl in regulating fra expression in RP1, but not in RP4, at stage 15 (Figure 

3.11C). Interestingly, most RP1 neurons, like RP3 neurons, retain high levels of fra at 

this stage, whereas few RP4 neurons are fra+ in late stage control embryos (Figure 

3.11C). Previous descriptions of RP1 and RP4 indicate that they form contralateral 

dendritic arbors of distinct morphologies: RP1’s is taller, and found more medially 

(Mauss et al., 2009). However, as the axons of RP1 and 4 target adjacent muscles 

external to muscles 6 and 13, and their cell bodies are both found close to the midline at a 

similar dorsal-ventral position, we could not unambiguously distinguish between them in 
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our single-cell labeling experiments. Nevertheless, when we scored RP1 and RP4 

neurons together, we observed a significant lateral shift in the position of RP1 and 4 

dendrites in isl mutants compared to their heterozygous siblings: 3/22 RP1 and 4 neurons 

were excluded from the intermediate zone in isl/+ embryos (14%) compared to 16/22 in 

isl/isl embryos (73%) (p=0.0002, Fisher’s exact test) (Figure 3.11A-B). Although 

additional work will be necessary to determine if the defects in lateral position we detect 

in RP1 and/or RP4 correlate with changes in fra expression, these data demonstrate that 

Islet regulates the medio-lateral position of dendrites in multiple motor neuron subsets. 

Together, these results indicate that isl is required for the high levels of fra in late stage 

RP1 and RP3 neurons, as well as for dendrite targeting in this class of motor neurons. 

 

Axon and dendrite targeting defects are not correlated in individual RP3 neurons 

Our single cell labeling method allows us to precisely describe the axon targeting 

defects in isl and fra mutants, and to determine whether they correlate with defects in 

dendrite position. Axon and dendrite targeting occur at approximately the same 

developmental stage, and to date there is no evidence that one process depends on the 

other (Kim and Chiba 2004; Landgraf et al., 2003). A strong correlation in our single-cell 

genetic analyses could indicate that the two processes could be linked. Importantly, 

previous studies using retrograde labeling of motor neurons in mutant embryos were not 

able to test this hypothesis, as they relied upon motor axons reaching the correct muscles 

in order to be visualized (Mauss et al., 2009).  
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To address this question, we scored axon and dendrite targeting of single labeled 

RP3 neurons in embryos with muscles fully preserved following dissection. All of the 

RP3 axons that we were able to score in isl/+ embryos innervated the muscle 6/7 cleft 

(n=14) (Figure 3.8G). In contrast, 18/26 isl/isl RP3 axons innervated muscles 6/7, and 8 

stalled at the 6/7 cleft or earlier along RP3’s trajectory, or bypassed the choice point 

entirely (31% have defects, n=26) (Figure 3.8G). In fra/fra embryos, 10/21 RP3 neurons 

failed to innervate the muscle 6/7 cleft, and stalled at or bypassed the choice point (48% 

have defects, not shown). This phenotype is stronger than the frequency at which we 

detect a complete loss of muscle 6/7 innervation in isl or fra mutants by scoring with anti-

FasII (Figure 2). To determine if this enhancement was due to the heat shock (H.S.) step 

that is required for the genetic labeling protocol, we scored muscle innervation using anti-

FasII in isl/isl embryos heat shocked for either 5 minutes or 1 hour (see Methods), and 

found that the 1 hour heat shock mildly enhances muscle innervation defects in isl 

mutants (to 30.4%), whereas a 5 minute heat shock does not (24.7% of hemisegments 

have defects, not shown). Importantly, the two heat shock protocols did not result in any 

difference in the frequency of dendrite targeting defects in isl mutants (7/17 RP3 

dendrites in isl/isl mutants are shifted laterally in embryos treated with 1 hour H.S, and 

9/16 dendrites are shifted after 5 min H.S). 

Surprisingly, we did not detect a correlation between axon and dendrite defects in 

isl mutant RP3 neurons (Figure 3.8G). While 5/26 mutant RP3 neurons displayed defects 

in both axons and dendrites, 12/26 neurons showed defects in one process but not the 

other (Figure 3.8G). A similar analysis in fra mutants revealed that 8/21 RP3 neurons 



101 

 

displayed defects in both muscle 6/7 innervation and dendrite position, whereas 7/21 

displayed normal targeting in one process but not the other (data not shown). These data 

suggest that axon and dendrite targeting can occur independently within an individual 

RP3 neuron, and that the central targeting defects we observe in isl mutants are not likely 

to be secondary to defects in muscle innervation. 

 

Islet regulates dendrite development in RP3 neurons through fra  

To directly test whether isl regulates RP3 dendrite position through its effect on 

fra expression, we over-expressed a UAS-HA-Frazzled transgene using lim3b-GAL4 in isl 

mutants, and used the hsFLP technique to sparsely label RP motor neurons, as described 

above (Figure 8). Strikingly, in isl mutant embryos over-expressing Fra, 0/21 RP3 

contralateral dendritic arbors were excluded from the intermediate zone, compared to 

8/22 (36%) in sibling mutants lacking the UAS-Frazzled transgene (p<0.01, Fisher’s 

exact test) (Figure 8B). To more quantitatively measure dendrite position, we obtained 

traces of contralateral RP3 dendrites by using Imaris. We detected a robust rescue of the 

lateral shift phenotype in isl mutants, as measured by the summed lengths of dendrites in 

the intermediate zone over the total dendrite length (p<0.001, Student’s t-test) (Figure 

8C). Indeed, the ratio of dendrites in the intermediate zone in rescued mutants was higher 

than in heterozygous controls (compare to Figure 5), perhaps reflecting a gain of function 

effect caused by artificially high levels of Fra from transgenic over-expression. 

Importantly, Fra over-expression did not affect total dendritic arbor lengths or tip 

numbers (Figure 8D-E), consistent with our observation that Fra regulates the distribution 
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of dendrites rather than their growth, and strongly arguing that the rescue we observe is 

not caused by an increase in the total size of the dendritic arbor. While we cannot rule out 

that Islet regulates dendrite position in part through additional downstream effectors, our 

observation that cell-type specific over-expression of Fra in isl mutants rescues dendrite 

targeting provides compelling support for the model that fra acts downstream of isl to 

control RP3 dendrite morphogenesis. Together with our demonstration that isl directs 

motor axon targeting through the regulation of fra, we conclude that isl coordinately 

regulates the targeting of axons in the periphery and of dendrites in the CNS through a 

common downstream effector. 

 

Discussion 

Identifying the cellular effectors that act downstream of subset-specific 

transcription factors during the different steps of neural morphogenesis remains a major 

challenge, as does understanding how individual transcription factors coordinately 

establish multiple aspects of cell fate. In this study, we show that Islet is required for 

frazzled/DCC expression in a subset of Drosophila motor neurons, and that this is 

important for two key aspects of motor neuron identity. Loss of function and genetic 

rescue experiments indicate that fra acts downstream of isl in motor neurons both during 

axon guidance in the periphery and dendrite targeting in the central nervous system. 

These data describe a mechanism by which a single transcription factor establishes neural 

map formation by controlling multiple aspects of cell morphology through an identified 

downstream effector.  
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A role for a cell-type specific transcription factor in controlling myotopic map formation 

From the onset of their development, Drosophila larval and adult motor neuron 

dendrites target stereotyped medio-lateral positions in the central nervous system 

(Brierley et al., 2009; Mauss et al., 2009). Slit-Robo, Netrin-Frazzled, and Sema-Plexin 

signaling have all been shown to control motoneuron dendrite targeting in Drosophila, 

and rescue experiments suggest that guidance receptors act cell autonomously in this 

process (Brierley et al., 2009; Mauss et al., 2009; Syed et al., 2016). In addition, the 

initial targeting of motoneuron dendrites in the embryo is largely unaffected by 

manipulations that affect the position or the activity of pre-synaptic axons or the presence 

of muscles, suggesting this process is likely to be under the control of intrinsic, cell 

autonomous factors (Landgraf et al., 2003; Mauss et al., 2009) 

We address several key questions about how motor neuron dendrite targeting is 

specified in the embryonic nervous system. First, we show that fra expression in two 

classes of motor neurons (RP3 and RP5) correlates with the medio-lateral position of 

their dendrites. Second, we demonstrate that Islet, a LIM homeodomain transcription 

factor previously shown to regulate axon targeting in a subset-specific way, also regulates 

dendrite targeting. Third, we find that Islet regulates both of these processes through its 

effect on fra expression. Surprisingly, we did not detect a significant correlation between 

axon and dendrite phenotypes in isl mutants, perhaps because Islet regulates both 

processes in part through additional targets. The absence of a correlation suggests that the 

dendrite positioning defects are not secondary to defects in target selection, consistent 

with a previous study in which the general patterning of motor neuron dendrites was not 

disrupted in muscle-less embryos (Landgraf et al., 2003). However, additional 
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experiments that disrupt axon targeting and monitor the medio-lateral position of 

dendrites will be necessary to confirm that the two processes occur independently. 

Future work will also be necessary to identify additional transcription factors that 

regulate dendrite development in motor neurons. In particular, the factors regulating 

Robo signaling during this process remain unknown. We previously identified a role for 

Hb9 in regulating robo2 and robo3 expression, but it is not known whether these 

receptors regulate motor neuron dendrite development (Santiago et al., 2014). We detect 

no change in robo1 mRNA levels in RP3 neurons in either hb9 or isl mutants (data not 

shown). Robo signaling could be regulated post-transcriptionally. The endosomal sorting 

protein Comm is required for midline crossing of motor neuron dendrites, and may also 

regulate their medio-lateral position (Furrer et al., 2003; Furrer et al., 2007). The 

temporal pattern of comm expression does not support a role in dendrite targeting, 

however, as comm is not expressed in RP motor neurons at late stages of embryogenesis 

(Keleman et al., 2002; data not shown).  

The functional consequences of dendrite targeting defects remain to be explored. 

It is likely that shifting the position of motor neuron dendrites alters their connectivity, 

but testing this hypothesis will require identifying the pre-synaptic neurons that impinge 

on the RP neurons during locomotive behavior. Forcing a lateral shift of the dendrites of 

dorsally-projecting motor neurons does not abolish their connectivity with known pre-

synaptic partners, but does change the number of contacts established (Couton et al., 

2015). In mice, the ETS factor Pea3 is required for the dendritic patterning of a subset of 

limb-innervating motor neurons, and electrophysiological recordings reveal changes in 

connectivity in Pea3 mutant spinal cords (Vrieseling and Arber, 2006). It will be of high 
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interest to investigate whether analogous defects are detected in isl or fra mutant 

embryos. 

 

Islet is an essential regulator of multiple features of RP3 identity 

Drosophila Islet was initially described as a subset-specific regulator of axon 

guidance, as it is required in ventrally-projecting motor neurons for their axons to reach 

the correct muscles, and can affect the guidance of dorsally-projecting axons when mis-

expressed (Landgraf et al., 1999; Thor and Thomas, 1997). More recently, Baines and 

colleagues demonstrated that Islet also acts instructively to establish the 

electrophysiological properties of RP motor neurons through repression of the potassium 

ion channel Shaker (Wolfram et al., 2012). In addition, DAM-ID data shows Islet binding 

near the acetylcholine receptor genes nAcRalpha-7E (CG2302), nAcRalpha-30D 

(CG4128), and nAcRalpha-34E (CG32975), though it remains to be determined whether 

Islet regulates their expression (Wolfram et al., 2014). Our data shows that in addition to 

regulating the axonal trajectory and the physiological properties of the RP3 neuron, Islet 

also establishes its dendritic position. Thus, Islet is essential for at least three late-arising 

features of RP3 identity. Hobert and colleagues have defined terminal selectors as 

transcription factors that coordinately regulate gene programs conferring multiple aspects 

of a cell’s identity, including its neurotransmitter phenotype, ion channel profile, and its 

connectivity (Hobert, 2015). Unlike the early acting factors that act transiently to specify 

cell fate, terminal selectors are expressed throughout the life of an animal, and are 

required for the maintenance of neural identity. While there are several described 

examples of transcription factors that act this way from studies in both invertebrates and 
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vertebrates, it remains unclear how widespread a phenomenon it is (Allan et al., 2005; 

Eade et al., 2012; Hobert and Flames, 2009; Kratsios et al., 2012; Kratsios et al., 2015; 

Lodato et al., 2014). Does Islet fit the criteria for a terminal selector? Islet is not required 

for all aspects of RP3 identity, as RP motor neurons retain expression of other motor 

neuron transcription factors in isl mutants, and their axons successfully exit the nerve 

cord (Thor et al., 1997, and data not shown). Future work will be necessary to determine 

whether Islet is required throughout larval life for the maintenance of RP3’s 

physiological and morphological features. It will also be interesting to determine whether 

the other motor neuron transcription factors that have been primarily studied in the 

context of axon guidance are also involved in the establishment of other subset-specific 

properties, including dendrite targeting and morphogenesis. 

 

Hb9 and Islet act in parallel to regulate axon guidance through distinct downstream 

effectors 

Co-expressed transcription factors could act synergistically to regulate specific 

downstream programs, in parallel through completely distinct effectors, or by some 

combination of the two mechanisms. Indeed, examples of all of the above scenarios have 

been described. Both in vitro and in vivo studies demonstrate that in vertebrate spinal 

motor neurons, Isl1 forms a complex with Lhx3, and that the Isl1-Lhx3 complex binds to 

and regulates different genes than Lhx3 alone, or than a complex composed of Isl1 and 

Phox2b, a factor expressed in hindbrain motor neurons (Cho et al., 2014; Mazzoni et al., 

2013; Thaler et al., 2002). In a subset of spinal commissural neurons, Lhx2 and Lhx9 act 

in parallel to promote midline crossing through upregulation of Rig-1, as Lhx2; Lhx9 
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double mutants display strong midline crossing defects and decreased Rig-1 expression, 

whereas Lhx2 or Lhx9 single mutants do not (Wilson et al., 2008). In Drosophila 

dorsally-projecting motor neurons, Eve, Zfh1 and Grain act in parallel to promote the 

expression of unc5, beat1a, and fas2, though Eve also regulates additional targets 

important for axon guidance that not shared by Zfh1 or Grain (Zarin et al., 2014). 

Here we show that Islet and Hb9 act in parallel through at least two distinct effectors, and 

propose that they regulate their targets by different mechanisms. Hb9 likely indirectly 

promotes robo2 expression by repressing one or multiple intermediate targets, as its 

conserved Engrailed homology domain is required for its function in Drosophila motor 

axon guidance and for robo2 regulation (Santiago et al., 2014). In vertebrate motor 

neurons, Isl1 forms a complex with Lhx3 to directly activate several of its known targets  

(Cho et al., 2014; Lee et al., 2016; Thaler et al., 2002). A recent genome-wide DAM-ID 

analysis found that Islet binds to multiple regions within and near the fra locus in 

Drosophila embryos, suggesting it may directly activate fra (Wolfram et al., 2014). Our 

finding that lim3 is not required for fra expression in the RP motor neurons, together with 

evidence that Islet can alter the electrical properties of muscle cells independently of 

Lim3, suggest that Drosophila Islet does not need to form a complex with Lim3 for all of 

its functions (Wolfram et al., 2014). Future research will be necessary to detect Islet 

binding events in embryonic motor neurons, though these experiments are particularly 

challenging if binding occurs transiently or in a small number of cells (Agelopoulos et al., 

2014). The generation of many large-scale datasets for transcription factor binding sites 

in vitro and in vivo presents the field with the task of reconciling these data with clearly 

defined genetic relationships during a specific biological process (Lacin et al., 2014; Lee 



108 

 

et al., 2008a; Mazzoni et al., 2013; Wolfram et al., 2014). Our study and others have 

initiated this effort, but it will be important to investigate other potential transcription 

factor-effector relationships, in order to achieve a better understanding of how 

transcriptional regulators control cell fate (Cho et al., 2014; Hattori et al., 2013; Lodato et 

al., 2014; Wolfram et al., 2012). 

 

Experimental Procedures 

Genetics 

The following Drosophila mutant alleles were used: tup1, tupisl (Tao et al., 2007); 

Df(2L)Exel 7072 (Boukhatmi et al., 2012); hb9kk30, hb9ad121(Broihier et al., 2002); 

lim3Bd7, lim3Bd6 (Thor et al., 1999), fra3, fra4; robo2x33, robo2x123, robo2x135 (Simpson et 

al., 2000a); apGal4 (O’Keefe et al., 1998). The following transgenes were used: P{isl-H-

tau-myc}II (Thor et al., 1997); P{lim3a-tau-myc} (Thor et al., 1999); P{GAL4-lim3b} 

(Certel and Thor, 2004); P{GAL4-elav}III; P{ UAS-Tau-MycGFP}III; P{hsFLP}12 

(Bloomington stock # 1929); P{hsFLP}122 (gift from A. Ghabrial); 

[P{UAS(FRT.stop)mCD8-GFP.H}14, P{UAS(FRT.stop)mCD8-GFP.H}21B] 

(Bloomington # 30032); P{10UAS-HAFrazzled}86Fb (Neuhaus-Follini and Bashaw, 

2015a); P{10UAS-Islet5xMyc}86Fb. Transgenic UAS-Islet5xMyc flies were generated by 

BestGene Inc (Chino Hills, CA) using ΦC31-directed site-specific integration into 

landing sites at cytological position 86Fb. All crosses were carried out at 25°C. Embryos 

were genotyped using balancer chromosomes carrying lacZ markers or by the presence of 

epitope-tagged transgenes. 

http://flybase.org/reports/FBti0131167.html
http://flybase.org/reports/FBti0131168.html
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Molecular Biology 

Islet-5Xmyc was cloned into a pUAST vector containing 10xUAS and an attB site for 

PhiC31-mediated targeted insertion (p10UAST-attB). Full-length tailup isoform A cDNA 

was amplified from UAS-Islet flies (Thor et al., 1997) and cloned in frame to a C-

terminal 5xMyc tag into p10UAST-attB.  All constructs were fully sequenced. 

Immunofluorescence and Imaging 

Dechorionated, formaldehyde-fixed, methanol-devittellinized embryos were fluorescently 

stained using standard methods. The following antibodies were used: Mouse anti-

Fasciclin-II/mAb 1D4 [Developmental Studies Hybridoma Bank, (DSHB), 1:100], mouse 

anti-βgal (DSHB, 1:150), chick anti-ßgal (Abcam #9361; 1:1000), mouse anti-HA 

(Covance, 1:500) rabbit anti-GFP (Invitrogen #A11122, 1:250), rabbit anti-c-Myc (Sigma 

C3956, 1:500), Cyanine 3-conjugated goat anti-mouse (Jackson #115-165-003, 1:1000), 

Cyanine-5-conjugated goat anti-mouse (Jackson #), Alexa-488-conjugated goat anti-

rabbit (Molecular Probes #A11008, 1:500), Cyanine-3 goat anti-chick (Abcam #97145; 

1:500). Embryos were mounted in 70% glycerol/PBS. Fluorescent mRNA in situ 

hybridization and quantification were performed as previously described (Santiago et al., 

2014).  fra antisense probe was transcribed from linearized cDNA cloned into 

pBluescript. Images were acquired using a spinning disk confocal system (Perkin Elmer) 

built on a Nikon Ti-U inverted microscope using a Nikon OFN25 60× objective with a 

Hamamatsu C10600-10B CCD camera and Yokogawa CSU-10 scanner head with 

Volocity imaging software. Max projections were generated, cropped and processed 

using ImageJ.   
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Single Cell Labeling 

Embryos containing hsFLP, UAS-FRTstopFRT-mCD8-GFP, and lim3b-Gal4 transgenes 

were collected overnight at 25°C in standard cages. Embryos were heat-shocked at 37°C 

the next morning for 3-5 minutes (FLP.122) or 45-60 minutes (FLP.12), and fixed 9 

hours after heat shock using standard procedures. RP neurons were identified by the 

positions of their cell bodies; in mutant embryos, neurons with ambiguous cell body 

positions were excluded. Staining with isl-H-tau-myc and lim3-tau-myc transgenes 

confirmed that all RPs are found close to the midline and that the relative dorsal-ventral 

positions of RPs1/4, 3, and 5 are preserved in isl mutants (Landgraf et al., 1997).  

Phenotypic quantification 

Phenotypes were scored using Volocity and Imaris. For scoring fra and robo2 expression, 

if the cell body of a neuron could be detected by the in situ signal, that neuron was scored 

as positive. RP3 neurons were identified by using islet-tau-myc or lim3a-tau-myc and 

their position; ventral apterous neurons were identified by using ap-Gal4 and their 

position. All embryos were scored blind to genotype. For motor axon FasII phenotypes, 

Stage 17 embryos were filleted and imaged. Hemisegments in A2-A6 in which a FasII+ 

axon could not be detected between muscles 6 and 7 were scored as lacking the 6/7 

innervation. In the elavGal4>UAS-Fra rescue experiment, hemisegments in which a 

FasII+ axon could be detected near muscles 6 and 7 but failed to innervate the cleft were 

scored as stalled. All embryos were scored blind to genotype. For RP3 dendrite scoring, 

Stage 17 embryos were filleted and imaged. Dendritic arbors were traced using the 

filament tool on Imaris software (Bitplane). Filaments were created using the GFP 
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channel, and then overlaid onto the FasII channel to score the presence of dendrites in the 

intermediate region of the neuropil (defined as the area in between the medial and the 

intermediate FasII+ paths). For filament length quantification, dendrites of the 

contralateral arbor found in the intermediate zone were selected on the Imaris program, 

and the measurements of their lengths were exported and summed. Then, all dendrite 

segments were selected; their lengths were exported and summed. The primary neurite 

and axon were excluded from length measurements. For RP1,4, and 5 dendrite scoring, 

Stage 17 embryos were filleted and imaged. Z stacks were examined on Volocity 

software, and the presence of a dendritic projection in the intermediate zone was scored. 

Statistics 

For statistical analysis, comparisons were made between genotypes using the Student’s t-

test or Fisher’s exact test, as appropriate. For multiple comparisons, a post-hoc 

Bonferroni correction was applied. For statistical analysis, comparisons were made 

between genotypes using the Student’s t-test or Fisher’s exact test, as appropriate. For 

multiple comparisons, a post-hoc Bonferroni correction was applied. Outliers were not 

excluded from statistical analyses. Sample sizes are indicated in the figures or in figure 

legends, and were selected based on values in previous studies in the field that allow for 

reproducible detection of statistically significant differences between genotypes.  
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Figure 3.1. Islet is required for fra expression in the RP3 motor neurons. 
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Figure 3.1. Islet is required for fra expression in the RP3 motor neurons. 

 

A, C: Fluorescent in situ hybridization for fra in stage 15 embryos. Anterior is up. In 

isl/+ embryos, fra mRNA (green) is enriched in the cell bodies of the RP3 motor neurons 

(arrows in A, circles in C), which are labeled by the isl-H-tau-myc transgene (magenta). 

isl mutants display reduced fra signal in RP3 motor neurons (arrows with asterisks in A). 

B: Quantification of the fra in situ and isl-tau-myc signal in RP3 neurons by measuring 

pixel intensity. isl mutants have decreased fra expression but no difference in isl-tau-myc 

signal (*p<0.001, Student’s t-test). N=number of images analyzed. Error bars indicate the 

standard error of the mean. D: Box and whisker plot of the % of RP3 neurons positive for 

fra (see Methods for details on scoring). The mean is indicated by the x. Inner points and 

outlier points are displayed. An exclusive median method was used to calculate quartiles. 

Isl/isl mutants have a significant decrease in the percentage of fra+ RP3 motor neurons 

compared to isl/+ embryos (**p<1x10-5, Student’s t-test). N=number of embryos. isl/+ 

denotes tupisl/CyO,Wgβg or Df(2L)Exel7072/ CyO,Wgβg. isl/isl denotes tupisl/ 

Df(2L)Exel7072.  Similar results were observed with a different isl allelic combination 

(data not shown).  
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Figure 3.2. Islet, Hb9 and Lim3 bind to the fra locus in embryos (Wolfram et al., 

2014).  
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Figure 3.2. Islet, Hb9 and Lim3 bind to the fra locus in embryos (Wolfram et al., 

2014).  

DAM-ID data indicates that Islet, Hb9, and Lim3 bind to regions immediately upstream 

of fra, and within fra’s first intron, in Drosophila embryos (Wolfram et al., 2014, GEO 

accession # GSE53446). fra was identified as a putative target for these factors using a 

False Discovery Rate (FDR) value <0.1% (Wolfram et al., 2014). The transcription unit 

of fra is highlighted; the arrow indicates the direction of transcription. Exons are 

represented below as black boxes. The average of normalized log2-transformed ratios 

from multiple biological replicates of Islet-DAM binding relative to the DAM-only 

control are plotted in green; the analogous values are shown below for Lim3 (red) and 

Hb9 (blue).  
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Figure 3.3. Islet and hb9 act in parallel to regulate RP3 guidance to its target 

muscles; islet acts through fra. 
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Figure 3.3. Islet and hb9 act in parallel to regulate RP3 guidance to its target 

muscles; islet acts through fra. 

A: Schematic of two hemisegments; dorsal is up and anterior is left. The asterisk 

indicates the absence of muscle 6/7 innervation by RP3. B: Quantification of muscle 6/7 

innervation defects. isl; hb9 double mutants have an additive phenotype compared to the 

single mutants, whereas isl, fra double mutant embryos are not enhanced relative to fra 

mutants (**p<0.001). C: fra or isl mutant embryos stained for FasII, which labels all 

motor axons. Asterisks indicate an absence of muscle 6/7 innervation. D: Quantification 

of 6/7 defects in isl mutants over-expressing HA-Frazzled in all neurons, compared to 

sibling mutants. E: Model for how Islet and Hb9 act through distinct downstream 

effectors to regulate RP3 axon guidance (see also Santiago et al 2014). In B, isl/+ denotes 

Df(2L)Exel7072/CyO,Wgβg. isl/isl denotes Df(2L)Exel7072/ Df(2L)Exel7072. hb9/hb9 

denotes hb9kk30/hb9ad121. isl/isl; hb9/hb9 denotes Df(2L)Exel7072/Df(2L)Exel7072; 

hb9kk30/hb9ad121. fra/fra denotes fra3/fra3. isl,fra/isl,fra denotes Df(2L)Exel7072,fra3/ 

Df(2L)Exel7072,fra3. In D, isl/isl denotes tupisl/Df(2L)Exel7072. N=number of embryos. 

Error bars indicate the standard error of the mean.   
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Figure 3.4. Hb9 and Lim3 are not required for fra expression in RP3 neurons; Islet 

is not required for robo2 expression; robo2 and fra act in parallel to regulate RP3 

axon guidance.  
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Figure 3.4. Hb9 and Lim3 are not required for fra expression in RP3 neurons; Islet 

is not required for robo2 expression; robo2 and fra act in parallel to regulate RP3 

axon guidance.  

A: Quantification of fra in situ in A2-A7 of stage 15-16 hb9/+ and hb9/hb9 embryos. 

RP3 neurons were labeled by hb9Gal4 and scored as positive or negative for fra mRNA, 

blind to genotype. There is no significant difference in the number of RP3 neurons 

positive for fra in hb9/hb9 embryos (p=0.8). B: Quantification of fra in situ in A2-A7 of 

stage 15 lim3/+ and lim3/lim3 embryos. RP3 neurons were labeled by lim3a-tau-myc and 

scored as positive or negative for fra, blind to genotype. There is no significant difference 

in the number of RP3 neurons positive for fra in lim3/lim3 embryos (p=0.27). C: 

Quantification of robo2 in situ in stage 15 isl/+ and isl/isl mutant embryos. RP3 neurons 

were labeled by lim3a-tau-myc and scored as positive or negative for robo2, blind to 

genotype. isl/isl embryos displayed a slight increase in the % of robo2+ RP3 neurons 

(*p<0.05). D: Quantification of muscle 6/7 innervation defects in A2-A6 of late stage 17 

embryos. robo2; fra double mutants have an additive phenotype compared to the single 

mutants (**p<0.001). hb9/+ denotes hb9Gal4/+. hb9/hb9 denotes hb9Gal4/hb9ad121. lim3/+ 

denotes lim3bd6/CyO,Wgβg or lim3bd7/ CyO,Wgβg. lim3/lim3 denotes lim3bd6/ lim3bd7 . 

isl/+ denotes tup1/CyO,Wgβg or Df(2L) Exel7072/CyO,Wgβg. isl/isl denotes 

tup1/Df(2L)Exel7072. fra/+ denotes fra3/CyO,Wgβg or fra4/CyO,Wgβg. robo2/robo2 

denotes robo2123/ robo233 . fra3,robo2/fra4,robo2 denotes fra3,robo2123/ fra4,robo2135. 

N=number of embryos. Error bars indicate the standard error of the mean. 
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Figure 3.5 Islet gain of function in a subset of interneurons induces fra expression 

and a fra-dependent midline crossing phenotype. 
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Figure 3.5. Islet gain of function in a subset of interneurons induces fra expression 

and a fra-dependent midline crossing phenotype. 

A: Stage 17 embryos in which the apterous (ap) neurons are labeled with apGal4>UAS-

TauMycGFP. Islet over-expression causes a strong ectopic crossing phenotype (asterisk), 

which is fully suppressed when Islet is over-expressed in fra mutants. B: Quantification 

of fra+ ventral ap neurons in wild type embryos, and embryos over-expressing Islet, 

following fluorescent in situ for fra mRNA. Over-expression from two copies of UAS-

Islet causes significant upregulation of fra in ventral apterous neurons (*p<0.005, 

Student’s t-test). C: Quantification of ap axon crossing. Islet gain of function causes a 

strong ectopic crossing phenotype (**p<0.001, Student’s t-test) which is fully suppressed 

when Islet is over-expressed in fra mutants. fra/fra denotes fra3,apGal4/fra3,UAS-TMG. isl 

g.o.f. denotes apGal4,UAS-TMG/+; UAS-Islet5xMyc/+. isl g.o.f. in fra -/- denotes 

fra3,apGal4/fra3,UAS-TMG; UAS-Islet5xMyc/+. 2x isl g.o.f. denotes apGal4, UAS-TMG/+; 

UAS-Islet5xMyc/UAS-Islet5xMyc. N=number of embryos. Error bars indicate the 

standard error of the mean. 
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Figure 3.6. Islet is not required for fra expression in ventrally-projecting RP 

neurons during the stage when RP axons cross the midline, but by stage 14 is 

required for fra expression in RP1 and RP3 neurons. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



123 

 

 

Figure 3.6. Islet is not required for fra expression in ventrally-projecting RP 

neurons during the stage when RP axons cross the midline, but by stage 14 is 

required for fra expression in RP1 and RP3 neurons. 

Quantification of fra in situ in stage 13 and 14 isl +/- and isl -/- mutant embryos. RP 

neurons were labeled by isl-H-tau-myc and scored as positive or negative for fra mRNA 

in A2-A7, blind to genotype. isl mutants do not display reduced fra expression in RP1, 

RP3, or RP5 neurons compared to heterozygote controls at stage 13, which corresponds 

to a stage when RP axons are navigating the midline. By stage 14, which corresponds to a 

stage when RP axons have exited the nerve cord, isl mutants display reduced fra 

expression in RP3 and RP1 neurons, but not in RP4 or RP5. Too few RP4 neurons were 

labeled by isl-H-tau-myc at stage 13 to score fra expression. isl/+ denotes 

tupisl/CyO,Wgβg or Df(2L) Exel7072/CyO,Wgβg. isl/isl denotes tupisl/Df(2L)Exel7072. 

N=number of embryos. Error bars indicate the standard error of the mean.  
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Figure 3.7. A difference in the dendritic positions of two classes of motor neurons 

correlates with a difference in fra expression; Netrin protein is detected in the 

intermediate zone of the neuropile. 
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Figure 3.7. A difference in the dendritic positions of two classes of motor neurons 

correlates with a difference in fra expression; Netrin protein is detected in the 

intermediate zone of the neuropile. 

A: Single-labeled neurons from Stage 17 isl/+ embryos. RP3 and RP5 neurons are 

labeled with anti-GFP (green), and FasII+ axons (magenta) are stained to distinguish 

medio-lateral zones. The intermediate zone (arrow) is innervated by RP3 dendrites, but 

not by RP5 dendrites (arrow with asterisk). B: Cartoon of an RP motor neuron (red), with 

the soma, contralateral dendrites, and axon labeled. FasII+ axon pathways are drawn in 

black. The intermediate zone refers to the space in between the medial and FasII+ axon 

tracts. C: Quantification of the percentage of RP3 or RP5 neurons scored as positive for 

fra in isl/+ and isl/isl embryos at stage 15. Significantly more RP3 neurons than RP5 

neurons express fra in isl/+ embryos (*p<0.001). isl is not required for fra expression in 

RP5 (p=0.26). N=number of embryos. Error bars indicate the standard error of the mean. 

isl/+ denotes tupisl/CyO,Wgβg or Df(2L)Exel7072/ CyO,Wgβg. isl/isl denotes tupisl/ 

Df(2L)Exel7072. D: Stage 17 embryo expressing myc-tagged NetrinB (green) from its 

endogenous locus and stained with anti-Fas II (red), to delineate medio-lateral zones, and 

anti-HRP (blue) to label all axons. NetrinB is highly expressed in midline glia, and is also 

detected on axons in the neuropile, including in the zone in between the medial and 

intermediate FasII+ pathways. 
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Figure 3.8. Islet regulates the medial-lateral targeting of RP3 dendrites in the 

central nervous system. 
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Figure 3.8. Islet regulates the medio-lateral targeting of RP3 dendrites in the central 

nervous system. 

A: Single-labeled RP3 neurons from Stage 17 embryos of the indicated genotypes. Top 

row: RP3 neurons are labeled with anti-GFP (green), and FasII axons (magenta) are 

stained. Arrows point to dendrites in the intermediate zone; arrows with asterisks point to 

dendrites that do not detach away from the intermediate FasII+ axons. Bottom row: 

Contralateral dendrites were traced on Imaris using the Filament plugin; traces are shown 

as skeletons (white) against the FasII+ axons (red). B: Percentage of RP3 neurons that 

target their contralateral dendrites to intermediate and lateral regions of the nerve cord. 

Fewer RP3 dendrites are present in the intermediate zone in isl/isl embryos (*p<0.05, 

Fisher’s exact test). C: Representative examples of dendrite skeletons in isl/+ and isl/isl 

embryos in which intermediate and lateral dendrites are artificially color-coded in cyan 

and yellow, respectively. FasII+ axons are in red. D: Box and whisker plots of the total 

length of RP3 contralateral dendrites in the intermediate zone divided by the total length 

of RP3 contralateral dendrites. isl/isl neurons display a reduction in the fraction of 

dendrites found in the intermediate zone (p=0.014, Student’s t-test). E: Box and whisker 

plots of the total length of contralateral RP3 dendrites. There is no significant difference 

between isl/+ and isl/isl neurons (p=0.75). F: Box and whisker plots of the total number 

of contralateral dendrite tip endings. There is no significant difference between isl/+ and 

isl/isl embryos (p=0.67). G: Summary of axon and dendrite defects detected in isl/+ and 

isl/isl RP3 neurons. N=number of neurons. isl/+ denotes tupisl, lim3b-Gal4/CyO,elavβg. 

isl/isl denotes tupisl
, lim3b-Gal4/Df(2L)Exel7072. 
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Figure 3.9. Fra regulates the medio-lateral targeting of RP3 dendrites. 
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Figure 3.9. Fra regulates the medio-lateral targeting of RP3 dendrites. 

 

A: RP3 neurons from Stage 17 fra/+ or fra/fra embryos. RP3 neurons are labeled with 

anti-GFP (green), and FasII+ axons are stained (magenta). Many dendritic arbors fail to 

target the intermediate zone in fra/fra mutants (arrows with asterisks); this phenotype 

does not correlate with defects in midline crossing. Arrows point to dendrites in the 

intermediate zone. Images in which the labeled RP3 neuron was on the right side of the 

nerve cord were flipped horizontally for ease of visualization. B: Quantification of the 

percentage of RP3 neurons that target their dendrites to intermediate and lateral regions 

of the nerve cord; significantly fewer RP3 dendrites are present in the intermediate zone 

in fra/fra embryos (*p<0.05, Fisher’s exact test). C: Box and whisker plots showing the 

length of RP3 dendrites in the intermediate zone divided by the total length of RP3 

dendrites in fra/+ and fra/fra neurons. There is a significant reduction in the fraction of 

intermediate dendrites in fra mutants (**p<0.001, Student’s t-test). D: Box and whisker 

plot of total dendrite lengths; there is no significant change between fra/+ embryos and 

fra/fra mutants, although the mutants displayed a trend toward a decrease (p=0.07). E: 

Representative examples of RP3 dendrite skeletons in which intermediate and lateral 

dendrites are color-coded in cyan and yellow, respectively. F: Box and whisker plot of 

total dendrite tip numbers; there is no significant change between fra/+ embryos and fra 

mutants, although the mutants displayed a trend toward a decrease (p=0.06). In C, D, and 

F, the mean is indicated by the x. Inner points and outlier points are displayed. An 

exclusive median method was used to calculate quartiles. N=number of neurons. fra/+ 

denotes fra3, lim3b-Gal4/CyO,elavβg. fra/fra denotes fra3
, lim3b-Gal4/fra3. 
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Figure 3.10. Additional examples of RP3 neuron traces in isl/+, isl/isl, fra/+, and 

fra/fra embryos. 
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Figure 3.10. Additional examples of RP3 neuron traces in isl/+, isl/isl, fra/+, and 

fra/fra embryos. 

Cropped images of RP3 neuron skeletons (white) that were generated by the Filament 

tool on Imaris software (Bitplane) were selected as representative examples of each 

genotype (see Methods). The blue dot indicates the position of the cell body. To facilitate 

visualization, images were flipped so that the contralateral dendritic arbor is always on 

the right side of the image, and the ipsilateral arbor on the left. FasII antibody staining 

(red) labels three sets of axons on each side of the midline. isl/+ denotes tupisl, lim3b-

Gal4/CyO,elavβg. isl/isl denotes tupisl
, lim3b-Gal4/Df(2L)Exel7072. 
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Figure 3.11. RP1 and 4 dendrites are shifted laterally in isl/isl embryos; RP1 

neurons require isl for fra expression at stage 15. 
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Figure 3.11. RP1 and 4 dendrites are shifted laterally in isl/isl embryos; RP1 

neurons require isl for fra expression at stage 15. 

A: RP1 and 4 neurons from Stage 17 isl/+ or isl/isl embryos (green). Anti-FasII staining 

is in magenta. As their cell bodies are found at similar dorsal and medial positions, we 

could not distinguish between RP1 and 4 in our single cell labeling experiments, and 

scored them together. The majority of RP1/RP4 neurons target their dendrites to the 

intermediate and lateral region of the nerve cord in isl/+ embryos (arrow), whereas many 

avoid the intermediate zone in isl mutants (arrow with asterisk). B: Quantification of the 

percentage of RP1 and RP4 neurons that target their dendrites to intermediate or lateral 

regions of the nerve cord. isl mutants display a significant reduction in the percentage of 

RP1 and RP4 dendritic arbors found in the intermediate zone (*p<0.001, Fisher’s exact 

test). C: Quantification of percentage of RP neurons positive for fra mRNA at stage 15 in 

isl/+ and isl/isl embryos. In control embryos, fewer RP4 neurons than RP1 neurons 

express fra. isl is not required for fra expression in RP4 neurons (p=0.2), but is required 

for fra expression in RP1 neurons (**p<1x10-5, Student’s t-test). Error bars indicate the 

standard error of the mean. N=number of embryos. isl/+ denotes tupisl/CyO,Wgβg or 

Df(2L)Exel7072/ CyO,Wgβg. isl/isl denotes tupisl/ Df(2L)Exel7072.   
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Figure 3.12. Cell-type specific over-expression of Frazzled in isl RP3 motor neurons  

rescues the medio-lateral position of their dendrites. 
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Figure 3.12. Cell-type specific over-expression of Frazzled in isl RP3 motor neurons 

rescues the medio-lateral position of their dendrites. 

A: Single-cell labeled RP3 neurons from Stage 17 embryos of the indicated genotypes. 

Top row: RP3 neurons are labeled with anti-GFP (green), and FasII+ axons (magenta) are 

stained to distinguish medio-lateral zones. Arrows point to dendrites in the intermediate 

zone. Images in which the contralateral dendrites were oriented to the left were flipped to 

facilitate visualization and comparison of neurons. Bottom row: Contralateral dendrites 

were traced on Imaris; traces are shown as skeletons (white) against FasII+ axons (red). 

B: Percentage of RP3 neurons that target their dendrites to intermediate and lateral 

regions of the nerve cord. All RP3 dendrites are present in the intermediate zone in isl/isl 

embryos over-expressing Frazzled, whereas many dendrites in sibling isl/isl embryos 

lacking the transgene fail to target the intermediate zone (**p<0.01, Fisher’s exact test). 

C: Box and whisker plots of the lengths of RP3 contralateral dendrites in the intermediate 

zone divided by the total length of RP3 contralateral dendrites. isl/isl neurons over-

expressing Frazzled display an increase in the fraction of intermediate dendrites 

compared to isl/isl neurons (***p<0.001, Student’s t-test). D: Box and whisker plots of 

total lengths of contralateral RP3 dendrites. There is no significant difference between 

isl/isl neurons and isl/isl neurons over-expressing Fra (p=0.95). E: Box and whisker plots 

of the total number of contralateral dendrite tip endings. There is no significant difference 

between isl/isl embryos and isl/isl embryos over-expressing Fra (p=0.5). N=number of 

neurons. isl/isl denotes tupisl
, lim3b-Gal4/Df(2L)Exel7072. isl/isl+ HAFra denotes tupisl

, 

lim3b-Gal4/Df(2L)Exel7072; UAS-HAFrazzled 86fb/+. 
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CHAPTER 4 

ROBO2 ACTS IN TRANS TO INHIBIT SLIT-ROBO1 REPULSION IN PRE-

CROSSING COMMISSURAL AXONS 
 

During nervous system development, commissural axons cross the midline 

despite the presence of repellant ligands. In Drosophila, commissural axons avoid 

premature responsiveness to the midline repellant Slit by expressing the endosomal 

sorting receptor Commissureless, which reduces surface expression of the Slit receptor 

Roundabout1 (Robo1). Here, we describe a distinct mechanism to inhibit Robo1 

repulsion and promote midline crossing, in which Roundabout2 (Robo2) binds to and 

prevents Robo1 signaling. Unexpectedly, we find that Robo2 is expressed in midline cells 

during the early stages of commissural axon guidance, and that over-expression of Robo2 

can rescue robo2-dependent midline crossing defects non-cell autonomously. We show 

that the extracellular domains required for binding to Robo1 are also required for 

Robo2’s ability to promote midline crossing, in both gain-of-function and rescue assays. 

These findings indicate that at least two independent mechanisms to overcome Slit-

Robo1 repulsion in pre-crossing commissural axons have evolved in Drosophila.  
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Introduction 

The secreted Slit repellents and their Roundabout (Robo) receptors constitute a 

repulsive axon guidance system whose function is conserved across a wide range of 

animal taxa including vertebrates, planarians, nematodes, and insects (Brose and Tessier-

Lavigne, 2000; Evans and Bashaw, 2012). Slits are normally expressed at the midline of 

the central nervous system (CNS), and axons expressing Robo receptors are thus repelled 

from the midline (Battye et al., 1999, Brose et al., 1999, Kidd et al., 1999). Prior to 

crossing the midline, commissural neurons in vertebrates and insects prevent premature 

responsiveness to Slit by regulating the expression and activity of Roundabout (Robo) 

receptors through a variety of mechanisms (Evans and Bashaw, 2010a; Neuhaus-Follini 

and Bashaw, 2015b). For example, the divergent Robo receptor Robo3/Rig-1 in 

vertebrates negatively regulates the activity of the Robo1 and Robo2 receptors in pre-

crossing commissural axons in the spinal cord, thereby allowing midline crossing 

(Sabatier et al., 2004). In Drosophila, Commissureless (Comm) antagonizes Slit-Robo1 

repulsion by preventing the trafficking of the Robo1 receptor to the growth cone, instead 

diverting newly synthesized Robo1 into the endocytic pathway (Keleman et al., 2002; 

Keleman et al., 2005; Kidd et al., 1998a). As commissural axons approach the midline, 

Comm expression is high, allowing axons to cross the midline (Keleman et al., 2002). 

Once the midline is reached, Comm is down regulated, restoring Robo1-dependent Slit 

sensitivity and ensuring that commissural axons do not re-cross the midline. Accordingly, 

loss of Robos or Slits can cause axons to ectopically cross the midline, while loss of 

Comm or Robo3/Rig1 prevents commissural axons from crossing (Kidd et al., 1998b; 

Kidd et al., 1999; Long et al., 2004; Sabatier et al., 2004; Tear et al., 1996).  
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In Drosophila, the three members of the Roundabout (Robo) receptor family 

(Robo1, Robo2, and Robo3) cooperate to control multiple aspects of axon guidance 

during embryonic development, including midline repulsion of axons and the formation 

of longitudinal axon pathways at specific mediolateral positions within the nerve cord.  

Although Robo2 contributes to promoting midline repulsion, gain-of-function genetic 

experiments suggest that in some contexts Robo2 can also promote midline crossing 

(Rajagopalan et al., 2000a; Simpson et al., 2000a). More recently endogenous roles for 

robo2 in promoting midline crossing were identified during the guidance of foreleg 

gustatory neurons in the adult, as well as during the guidance of interneurons in the 

embryonic CNS (Mellert et al., 2010; Spitzweck et al., 2010). Robo2’s pro-crossing role 

in the embryo is highlighted in frazzled and Netrin mutant backgrounds, in which midline 

attraction is partially compromised (Spitzweck et al., 2010).  In the absence of Netrin-

dependent midline axon attraction, loss of robo2 (but not robo1 or robo3) leads to a 

dramatic disruption in midline crossing that is far more severe than the complete loss of 

Netrins, indicating that robo2 likely acts in parallel to Netrin-Fra to promote midline 

crossing (Spitzweck et al., 2010).   

In a complementary series of gain-of-function experiments using a panel of 

chimeric receptors comprising different regions of Robo1 and Robo2 fused together, we 

have previously shown that Robo2’s ability to promote ectopic midline crossing 

correlates with the presence of the first and second immunoglobulin-like domains (Ig1 

and Ig2) within its extracellular domain (Evans and Bashaw, 2010b). Consistent with 

these observations, replacing endogenous Robo2 by homologous recombination with 

chimeric receptors, in which the cytoplasmic domains of the Robo1 and Robo2 receptors 
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were exchanged, reveals that the Robo2-1 chimeric receptor (containing the extracellular 

region of the Robo2 receptor) can rescue the commissural guidance defect observed in 

Netrin, robo2 mutants more effectively than the reciprocal chimeric receptor (Spitzweck 

et al., 2010). However, the mechanism by which Robo2 promotes midline crossing 

remains unclear. Two alternative models could account for Robo2’s role in promoting 

midline crossing of commissural axons. First, Robo2 may act as an attractive receptor to 

signal midline attraction in response to a ligand produced by midline glia, analogous to 

Frazzled/DCC’s role in Netrin-dependent midline attraction. Indeed, a role for Robo2 in 

mediating attractive responses to Slit has been described in the context of muscle cell 

migration (Kramer et al., 2001). Alternatively, Robo2 may antagonize Slit-Robo1 

repulsion by preventing Robo1 from signaling in response to midline-derived Slit, similar 

to the proposed role of Robo3/Rig-1 in pre-crossing commissural axons in the vertebrate 

spinal cord (Figure 4.1). Although Comm is an essential regulator of Robo1 activity in 

Drosophila, low levels of Robo1 escape Comm-dependent sorting and can be detected on 

commissural axons, raising the question of whether and how the activity of these Robo1 

receptors is regulated (Kidd et al., 1998b). 

Here we show that in addition to its cell-autonomous role in midline repulsion, 

Robo2 acts non-autonomously to promote midline crossing by inhibiting canonical Slit-

Robo1 repulsion, and offer insights into the molecular and cellular mechanisms 

underlying this activity of Robo2. We find that the cytoplasmic domain of Robo2 is 

dispensable for its pro-crossing role, suggesting that Robo2 does not transduce a midline 

attractive signal, and that Robo2 over-expression can suppress comm mutants, supporting 

a model in which Robo2 antagonizes Slit-Robo1 repulsion. Moreover, Robo2 can bind to 
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Robo1 in Drosophila embryonic neurons, and this biochemical interaction, like Robo2’s 

pro-crossing role, correlates with the presence of Ig1 and Ig2. Surprisingly, we observe 

that Robo2 is able to promote midline crossing of axons non-cell autonomously when 

mis-expressed in midline cells, and we further show that Robo2 is expressed in midline 

glia and neurons during the early stages of commissure formation. Finally, we find that 

restoring Robo2 expression in midline cells can rescue midline crossing of axons in 

robo2, fra double mutants and that this rescue activity is dependent on Ig1 and Ig2. 

Together, our results indicate that Robo2 acts non-autonomously to bind to Robo1 and 

prevent Slit-Robo1 repulsion in pre-crossing commissural axons. This model accounts for 

Robo2’s seemingly paradoxical roles in both promoting and inhibiting midline crossing, 

and explains how the small amount of Robo1 present on pre-crossing commissural axons 

might be prevented from responding to Slit. 

 

Results 

The midline attractive ligand Netrin and its receptor Frazzled (Fra) are the only 

known attractive ligand-receptor pair in Drosophila, yet many commissural axons still 

cross the midline in the absence of attractive Netrin-Frazzled signaling (Kolodziej et al., 

1996, Mitchell et al., 1996). It has recently been demonstrated that the Robo family 

receptor Robo2 acts independently of Netrin and Fra to promote midline crossing, 

through an as yet unknown mechanism (Spitzweck et al., 2010). In robo2, fra double 

mutants, midline crossing of commissural axons is severely compromised, leading to thin 

or absent commissures, a phenotype that is qualitatively and quantitatively more severe 

than loss of fra alone (Figure 4.1). This phenotype can be observed by staining the entire 
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axon scaffold with anti-HRP antibodies (Figure 4.1 A-D) or by labeling a subset of 

commissural axons using eg-GAL4 in robo2, fra double mutants (Figure 4.1 F-I). To 

quantify the midline crossing defects, we scored the number of segments in which the 

EW axons, which normally cross the midline in the posterior commissure, fail to cross 

(Figure 4.1). We find that in robo2, fra double mutants approximately 70% of EW axons 

fail to cross the midline, compared to around 30% in fra mutants. Analysis of cell fate 

markers including Eg, even-skipped and zfh1 revealed no gross differences in 

segmentation and neuronal differentiation in robo2, fra double mutants, and although the 

cell bodies of the EW neurons were sometimes displaced, they were easily identifiable 

(data not shown). Importantly, restoring Robo2 expression by introducing one copy of an 

83.9 kb robo2 BAC transgene that includes the entire 40 kb robo2 transcription unit in 

this background significantly rescues the EW axon crossing defects (Figure 4.1 E, J), 

confirming that this is a robo2-dependent phenotype.  

 

Robo2’s pro-crossing activity does not require its cytoplasmic domain 

If Robo2 were to act as a midline attractive receptor (Figure 4.1, model 1), its 

cytoplasmic domain would likely be required for midline attraction. To test whether the 

Robo2 cytoplasmic domain contributes to its pro-crossing activity, we tested whether a 

truncated Robo2 receptor lacking its cytoplasmic domain (Robo2∆C) could promote 

midline crossing when mis-expressed in embryonic neurons. We found that, as with full-

length Robo2, pan-neural mis-expression of Robo2∆C (with elav-GAL4) produced strong 

ectopic crossing of FasII-positive axons in the embryonic CNS (Figure 4.2). Indeed, the 

Robo2∆C mis-expression phenotype was stronger than full-length Robo2. In contrast, 
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pan-neural over-expression of Robo1 did not generate ectopic crossing (Figure 4.2). In 

these experiments, all UAS-Robo transgenes are expressed from the same genomic 

insertion site in order to ensure that they are expressed at similar levels. Importantly, the 

pro-crossing activity of Robo2∆C is unlikely to be caused solely by a dominant-negative 

effect of the truncated receptor, as a similarly truncated form of Robo1 (Robo1∆C) has a 

qualitatively weaker ectopic crossing phenotype when combined with elav-GAL4 (Figure 

4.2).  Robo2∆C expression, unlike Robo1∆C, leads to ectopic crossing of all of the 

ipsilateral FasII axon bundles and also results in many segments exhibiting a Slit-like 

phenotype (Figure 4.2). Due to the strong phenotypic effects of the targeted insertion 

lines of Robo1∆C and Robo2∆C, we also compared the phenotypes generated by lower 

levels of expression of the two truncated receptors using standard UAS inserts and 

observed that Robo2∆C is significantly more potent at driving ectopic midline crossing 

than comparable levels of the Robo1∆C receptor (Figure 4.3). Together, these 

observations indicate that the pro-crossing activity of Robo2 is independent of the 

cytoplasmic domain and argue against the idea that Robo2 promotes midline crossing by 

signaling attraction. 

 

Robo2’s pro-crossing activity does not strictly depend on Slit binding 

Slit is the canonical ligand for Robo family receptors, and all three Drosophila 

Robos can bind to the single Drosophila Slit (Howitt et al., 2004). To test whether 

Robo2’s pro-crossing activity depends on its ability to bind Slit, we deleted the canonical 

Slit-binding domain (the first immunoglobulin-like domain: Ig1) from Robo2. As 

predicted by previous in vitro binding studies using Drosophila Robo1 (Brose et al., 
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1999; Fukuhara et al., 2008) we found that deleting Ig1 from Robo2 prevented Slit 

binding in cultured Drosophila cells (Figure 4.4). Pan-neural over-expression of Robo2 

produces a phenotype in which some axons are repelled from the midline, and some 

axons ectopically cross the midline, reflecting Robo2’s two opposing activities in 

regulating midline crossing. As expected, deleting the Ig1 domain prevents Robo2 from 

signaling midline repulsion in vivo, both broadly in all neurons (Figure 4.5) and in a 

subset of commissural neurons (the EW neurons, labeled by eg-GAL4) (Figure 4.4), 

confirming that Slit binding is required for Robo2-mediated repulsion. In contrast, we 

found that the Robo2 receptor lacking Ig1 retained a partial ability to promote ectopic 

midline crossing of FasII-positive axons, indicating that the pro-crossing activity of 

Robo2 does not strictly depend on its ability to bind Slit (Figure 4.5). Notably, the ectopic 

crossing phenotype produced by Robo2∆Ig1 mis-expression was significantly weaker 

than that caused by mis-expression of full-length Robo2 (Figure 4.5). This result suggests 

that the Ig1 domain contributes to, but is not strictly required for, promotion of midline 

crossing by Robo2.  

  

Robo2’s Ig2 domain is required for its pro-crossing activity 

We have previously shown that Robo2’s pro-crossing activity is conferred at least 

in part by its Ig2 domain: replacing the Ig1-Ig2 region of Robo1 with the equivalent 

region from Robo2 (Robo1R2Ig1+2) confers Robo2-like pro-crossing activity to Robo1 

(Evans and Bashaw, 2010b). Further, replacing Ig1-Ig2 of Robo2 with Robo1 Ig1-Ig2 

(Robo2R1Ig1+2) abolishes its pro-crossing activity (Evans and Bashaw, 2010b).  To 

directly test whether Ig2 is necessary for Robo2 to promote midline crossing, we 
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generated a Robo2 receptor lacking Ig2 but with all other Ig domains intact (Robo2∆Ig2). 

We found that deleting Robo2’s Ig2 domain did not interfere with Slit binding (Figure 

4.4), nor did it affect Robo2’s ability to signal repulsion in commissural neurons (Figure 

4.4). However, deletion of Robo2’s Ig2 domain strongly disrupted its ability to promote 

ectopic midline crossing (Figure 4.5). These results contrast with those observed with 

Robo2∆Ig1, which lacks Slit-dependent midline repulsive activity but retains some pro-

midline crossing activity (Figures 4.4 and 4.5). These data indicate that Robo2’s Ig2 

domain is essential for promoting midline crossing when Robo2 is mis-expressed in all 

neurons. In these experiments, all UAS-Robo transgenes are expressed from the same 

genomic insertion site in order to ensure that they are expressed at similar levels. In 

addition, we assayed the protein localization and expression levels of Robo2 and its 

deletion variants and observed comparable surface expression in cultured S2R+ cells in 

vitro, as well as comparable expression levels and localization in CNS axons in vivo 

(Figure 4.6). 

 

Robo2 can promote crossing non-autonomously 

Midline crossing is strongly reduced in robo2, fra double mutants, and pan-neural 

mis-expression of Robo2 can promote ectopic midline crossing. However, it is unclear 

whether Robo2 acts autonomously or non-autonomously to promote midline crossing. 

The ectodomain-dependent nature of Robo2’s pro-crossing activity and our pan-neural 

mis-expression assays do not distinguish between these possibilities. Notably, we have 

never observed a clearly cell-autonomous pro-crossing phenotype caused by Robo2. In 

contrast to the very different phenotypes caused by pan-neural mis-expression of these 



146 

 

two truncated receptors (where Robo2∆C is much more potent at inducing midline 

crossing than Robo1∆C), Robo1∆C and Robo2∆C induce similar low levels of ectopic 

crossing when expressed in a subset of ipsilateral neurons, the apterous neurons (Figure 

4.7A). We interpret this as a cell-autonomous dominant-negative effect of these truncated 

receptors. In contrast, full-length Robo2 is unable to autonomously promote midline 

crossing of the apterous axons (Evans and Bashaw, 2010b). Instead, Robo2 mis-

expression redirects apterous axons to lateral regions of the neuropile. In the course of 

examining this lateral positioning activity of Robo2, we mis-expressed Robo2 in a second 

class of longitudinal interneurons: those labeled by hb9-GAL4. Intriguingly, we observed 

two distinct phenotypes in embryos where hb9-GAL4 drives Robo2 expression. First, 

hb9-positive axons were shifted to more lateral positions within the neuropile. Second, 

hb9-negative FasII-positive axons ectopically crossed the midline (Figure 4.7B). These 

results suggest that Robo2 can autonomously specify the lateral position of hb9-positive 

axons, while non-autonomously instructing FasII axons to cross the midline. We note that 

hb9-GAL4 expression initiates earlier than ap-GAL4 and includes a larger number of 

neurons, including some located near the CNS midline (such as the RP motor neurons), 

suggesting the possibility that early midline-proximal expression of Robo2 accounts for 

the non-autonomous effect observed with hb9-GAL4.  

To more explicitly test whether Robo2 can promote midline crossing non-

autonomously, we used slit-GAL4 to drive Robo2 expression in midline glia and neurons.  

We found that mis-expression of Robo2 or Robo2∆C in midline cells caused many FasII-

positive axons which do not express slit-GAL4 to ectopically cross the midline, 

confirming that Robo2 can act non-autonomously to promote midline crossing of axons, 
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and that this effect does not depend on the cytoplasmic domain (Figure 4.8). We observed 

a significantly milder effect with mis-expression of Robo1, suggesting that Robo2’s non-

cell autonomous activity is not solely a consequence of Slit titration (Figure 4.8). 

Moreover, the non-cell autonomous activity of Robo2 appears to be Ig1/Ig2-dependent, 

as Robo1R2Ig1+2 but not Robo2R1Ig1+2 promoted strong ectopic midline crossing when 

expressed using slit-GAL4 (Figure 4.8). In addition, expression of Robo2 variants missing 

either Ig1 or Ig2 with slit-Gal4 did not result in any ectopic midline crossing (Figure 4.8). 

The requirement for both Ig1 and Ig2 in this context contrasts with our findings with pan-

neural mis-expression, in which Robo2 ∆Ig1 retained some pro-crossing activity. 

However, it is worth noting that the phenotype generated by elav-GAL4 mis-expression 

of Robo2 is stronger than that generated by slit-GAL4, perhaps because slit-GAL4 is 

expressed in a much smaller number of cells. 

 

Robo2 is expressed in midline glia and neurons during commissure formation  

Robo2 can promote midline crossing when expressed in a subset of embryonic 

neurons and glia, and endogenous robo2 contributes to midline crossing of commissural 

axons.  During embryogenesis, robo2 expression is dynamically regulated: it is broadly 

expressed in neurons during early stages of CNS development, including transient 

expression in a number of ipsilateral pioneer neurons, and later becomes restricted to 

neurons whose axons form longitudinal pathways in the lateral regions of the neuropile 

(Simpson et al., 2000a). To gain additional insight into Robo2’s role in promoting 

midline crossing of commissural neurons, we examined robo2 mRNA and protein 

expression in embryos during the early stages of axon pathfinding, when the first 
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commissural axons are crossing the midline (stages 12-13). Using fluorescent mRNA in 

situ hybridization, we were able to detect robo2 mRNA expression in cells labeled by 

slit-GAL4 in late stage 12 embryos, when pioneer commissural axons are crossing the 

midline (Figures 4.9 and 4.10). Robo2 mRNA expression persists through the end of 

stage 13, but is no longer detectable by stage 14; thus, midline expression of robo2 

coincides with the time when most commissural axons are crossing the midline (Figure 

4.10). Moreover, a robo2-GAL4 enhancer-trap insertion is expressed in midline glia at 

this time, as detected by anti-GFP staining in robo2-GAL4, UAS-TauMycGFP embryos 

(Figure 4.9A). Expression of UAS-HARobo2 with robo2-Gal4 and detection of 

transgenic Robo2 with anti-HA reveals an expression pattern that closely resembles the 

endogenous pattern of Robo2 protein (data not shown). In addition, we could detect weak 

expression of Robo2 protein produced by an HA-tagged knock-in allele of robo2 

(Spitzweck et al., 2010) in a subset of slit-GAL4 expressing cells at stage 12, confirming 

that Robo2 protein is produced in midline cells during the stages of commissural axon 

pathfinding, and raising the possibility that Robo2 endogenously acts in these cells to 

promote midline crossing of commissural axons (Figure 4.9B). 

 

Midline expression of Robo2 rescues the commissural defects in fra, robo2 mutants 

Robo2 can promote midline crossing non-autonomously, and endogenous robo2 

expression can be detected in slit-GAL4-expressing cells as well as in contralateral and 

ipsilateral neurons during the initial stages of commissure formation (Figure 4.9 and data 

not shown). Our ability to partially rescue midline crossing in robo2, fra double mutants 

with the robo2 BAC confirms that this is a robo2-specific phenotype, but does not 
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address in which cells robo2 acts to instruct commissural axons to cross the midline. To 

address this question, we attempted to rescue robo2’s endogenous pro-crossing activity 

by restoring robo2 expression in restricted subsets of cells in robo2, fra double mutants.  

We first expressed Robo2 in the commissural EW neurons (using eg-GAL4). We found 

that neither full-length Robo2 nor Robo2ΔC can rescue midline crossing when expressed 

autonomously in the EW neurons, suggesting that Robo2 does not act cell autonomously 

to promote midline crossing (Figure 4.11). We next attempted to rescue midline crossing 

in robo2, fra double mutants by expressing Robo2 using slit-GAL4. Strikingly, we found 

that driving Robo2 expression in these cells significantly restores posterior commissure 

formation (Figure 4.9C-G). Furthermore, this effect is dependent on Ig1 and Ig2 (Figure 

4.9C-G). Cell-type specific loss of function experiments will be necessary to confirm the 

site of Robo2’s endogenous activity, and our attempts to recapitulate the robo2, fra 

phenotype by over-expression of RNAi transgenes have so far been unsuccessful, likely 

because of the difficulty of achieving sufficient knockdown in embryonic stages. 

Nevertheless, our results suggest that Robo2 promotes midline crossing non-cell 

autonomously, and may act in midline glia and neurons, where it is expressed during the 

stages of commissural axon pathfinding. 

 

Robo2 can antagonize Slit-Robo1 repulsion 

Robo2 can promote midline crossing of axons independently of its cytoplasmic 

domain, suggesting that Robo2 does not promote crossing by acting as an attractive 

signaling receptor. Does Robo2 antagonize Slit-Robo1 repulsion? In order to test this 

hypothesis, we took advantage of comm mutants, which provide a genetic background in 
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which hyperactive Slit-Robo1 signaling prevents midline crossing. In comm mutants, 

endogenous Robo1 is inappropriately trafficked to the growth cone plasma membrane in 

pre-crossing commissural axons, triggering premature Slit repulsion and preventing 

commissure formation. We reasoned that if Robo2 antagonizes Slit-Robo1 repulsion, 

then Robo2 mis-expression might restore midline crossing in comm mutant embryos. 

Indeed, pan-neural mis-expression of Robo2 with elav-GAL4 significantly restored 

commissure formation in comm mutant embryos (Figure 4.12). To specifically test the 

Ig1/Ig2-dependence of Robo2’s pro-crossing activity in this assay, we mis-expressed the 

Ig1+2 chimeric receptors (Robo1R2Ig1+2 and Robo2R1Ig1+2) with elav-GAL4 in comm 

mutant embryos. We found that pan-neural mis-expression of Robo1R2Ig1+2 in comm 

mutant embryos strongly suppressed the commissureless phenotype and restored midline 

crossing of many axons, as assayed by anti-HRP antibody staining, while mis-expression 

of Robo2R1Ig1+2 had a much milder effect (Figure 4.12). These results suggest that Robo2 

promotes midline crossing in an Ig1/Ig2-dependent manner by antagonizing canonical 

Slit-Robo1 repulsion.  

We were also able to suppress the comm mutant phenotype by over-expressing 

Robo2 using slit-GAL4, and this effect was fully dependent on both Ig1 and Ig2 of Robo2 

(Figure 4.12). This is consistent with our observations that Robo2 can act non-cell 

autonomously to promote ectopic midline crossing (Figure 4.8) and rescue midline 

crossing defects (Figure 4.9) in an Ig1/2-dependent manner. Of note, the suppressive 

effect of Robo2 expression in comm mutants is much greater when expressed in midline 

cells than when expressed pan-neurally (Figure 4.12). This is likely because when 

expressed pan-neurally, in addition to its pro-crossing activity, full-length Robo2 also has 
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repulsive activity. In contrast, when expressed in midline cells, Robo2 would be unable to 

act as a repulsive receptor.  

 

Robo2 binds to Robo1 in vivo and the interaction depends on Ig1 and Ig2 

As shown above, Robo2 is able to antagonize Slit-Robo1 repulsion in an Ig1/Ig2-

dependent manner. One possibility is that Robo2 may form an inhibitory receptor-

receptor complex with Robo1 to prevent it from signaling midline repulsion. If this is the 

case, we reasoned that we might be able to detect a physical interaction between Robo2 

and Robo1 in embryonic protein extracts. To test this idea, we mis-expressed epitope-

tagged forms of Robo1 and Robo2 in Drosophila embryonic neurons with elav-GAL4 and 

looked for physical interactions by co-immunoprecipitation (Figure 4.13). We found that 

Robo1-myc and HA-Robo2 co-immunoprecipitated from embryonic lysates when both 

were expressed in embryonic neurons (Figure 4.13A). Interactions were also observed 

between Robo1 and the closely related Robo3 receptor, but not with a similarly tagged 

and structurally related Fra receptor (Figure 4.13A). As we would predict from our gain 

of function experiments, Robo2’s ability to bind to Robo1 is independent of its 

cytoplasmic domain (Figure 4.14). Strikingly, however, Robo2’s ability to bind Robo1 

depends on the Ig1-Ig2 region of Robo2, as Robo1R2Ig1+2 was readily co-

immunoprecipitated with Robo1, while binding between Robo1 and the reciprocal 

receptor Robo2R1Ig1+2 was only weakly detected (Figure 4.13B). Consistently, deleting 

both of the Ig1 and Ig2 domains from Robo2 results in a diminished interaction with 

Robo1 in vivo and in vitro (Figures 4.13 and 4.14). Thus, we see a correlation between 

the presence of the Ig1 and Ig2 domains, a biochemical interaction with Robo1, and pro-
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crossing activity in the Robo2 receptor. These observations suggest that Robo2 may 

promote midline crossing through inhibitory interactions with Robo1, likely mediated at 

least in part by the Robo2 Ig1 and Ig2 domain. Of note, the Ig2 domain is essential for 

Robo2’s pro-crossing activity, but is not required for the interactions with Robo1 or with 

Slit, suggesting the existence of an Ig2-specific activity that is distinct from the ability to 

bind Robo1 or Slit. One possible mechanism that could explain how receptor-receptor 

interactions could prevent Robo1 signaling is through blocking the access of Slit to the 

Ig1 region of Robo1. Deleting Robo1’s Ig1 domain does not significantly attenuate the 

interaction with Robo2, but further experiments will be necessary to determine if Robo2 

interferes with Robo1’s interaction with Slit (Figure 4.14). 

Our biochemical experiments examining receptor-receptor interactions when the 

Robo receptors are expressed in all neurons do not distinguish between cis and trans 

interactions. As we observed that Robo2 is able to non-cell autonomously inhibit Robo1 

repulsion and promote midline crossing, we reasoned that we might be able to detect 

physical interactions between Robo1 and Robo2 receptors when they are presented in 

trans. We tested this prediction by transfecting Drosophila cultured S2R+ cells with 

either Robo1-myc or HA-tagged Robo2 and assaying for physical interactions by co-

immunoprecipitation. Although we detected strong interactions between Robo1 and 

Robo2 in co-transfected cells, we could not detect interactions in cells that were 

transfected separately and mixed together (Figure 4.14 and data not shown). However, 

when we mixed the membrane lysates of cells that were transfected separately, we 

observed that Robo1 readily co-immunoprecipitated Robo2, in an Ig1/2 dependent 

manner (Figure 4.13). These data suggest that physical interactions can occur between 
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Robo1 and Robo2 receptors that are expressed in different cells, and are consistent with 

the possibility of a physical interaction occurring across cell membranes in vivo.  It is 

important to recognize, however, that binding detected with mixed cell lysates could 

occur in either cis or trans, and that future work should more rigorously evaluate the 

potential for trans interactions. 

 

Robo2’s Ig2 domain is required for its endogenous activity in promoting midline crossing  

Our data are consistent with a non-autonomous requirement for Ig1 and Ig2 of 

Robo2 in antagonizing Robo1 to promote midline crossing. However, the genetic data 

supporting this model arise from gain of function and rescue experiments using 

GAL4/UAS over-expression. In order to more rigorously address the endogenous 

requirement for Robo2 in promoting midline crossing, we generated modified BACs and 

evaluated the ability of either wild-type Robo2 or Robo2∆Ig2 to restore midline crossing 

in robo2, fra double mutants, when expressed under robo2’s endogenous control 

elements. As Ig1 is required for both Robo2’s pro-crossing activity and for its repulsive 

signaling output, the Robo2ΔIg2 variant provides a more specific reagent for testing our 

model. Therefore, we modified the original Robo2 BAC by recombineering to insert 

wild-type Robo2 cDNA or Robo2∆Ig2 cDNA, and introduced these BAC transgenes into 

robo2, fra double mutants. We determined the rescuing activity of each BAC through 

two assays: first, by scoring midline crossing of EW axons labeled by eg-GAL4, and 

second, by analyzing commissure formation in embryos stained with anti-HRP to label 

all axons (Figure 4.15). 
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We found that the ability of the Robo2 BAC to rescue midline crossing defects in 

robo2, fra double mutants was strongly impaired by deleting the Ig2 domain. In the EW 

crossing assay, one copy of the Robo2 FL cDNA BAC provides a significant rescue of 

robo2, fra double mutants at stage 16, whereas one copy of the Robo2 ΔIg2 BAC has no 

effect (Figure 4.15A-D). Of note, removing one allele of robo2 enhances midline 

crossing defects in fra mutants, explaining in part the incomplete rescue (Figure 4.15). In 

addition, it is likely that the Robo2 BAC does not contain all of the regulatory elements 

required for robo2’s pro-crossing function, as one copy of the BAC does not restore EW 

crossing back to the levels of fra mutants heterozygous for robo2 (Figure 4.15).  

We also assessed the ability of the BAC transgenes to rescue midline crossing 

defects when analyzing all axons using anti-HRP. By this method, we see a robust rescue 

in posterior commissure (PC) formation in robo2, fra double mutant embryos with one 

copy of the Robo2 cDNA BAC compared to controls (Figure 4.15E-H). In contrast, the 

Robo2 ΔIg2 BAC provides a much weaker rescue (Figure 4.15G). The partial rescue by 

the Robo2ΔIg2 BAC in this assay suggests that the severe fra, robo2 phenotype is due to 

the combined requirement for multiple activities of Robo2, including one that is Ig2-

independent. Nevertheless, these data unambiguously reveal an endogenous requirement 

for Robo2’s Ig2 domain during commissural axon guidance. Importantly, the Robo2∆Ig2 

BAC fully rescues Robo2’s repulsive activity at the midline (data not shown), further 

demonstrating that the Ig2 domain is specifically required for Robo2 to successfully 

promote midline crossing, but not for other known activities of the Robo2 receptor. 

Taken together, these results demonstrate a requirement for Robo2’s Ig2 domain in 
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promoting midline crossing when expressed under its endogenous control elements, and 

strongly support the model that Robo2 promotes midline crossing of commissural axons 

by antagonizing repulsion through an Ig1/Ig2-mediated inhibitory interaction with 

Robo1. 

 

Discussion 

In this manuscript we have described a role for Robo2 in promoting midline 

crossing through inhibition of Slit-Robo1 repulsion.  Loss of function experiments point 

to an endogenous requirement for Robo2 in promoting midline crossing. Additional 

genetic analyses indicate that Robo2 can antagonize Robo1 in the absence of its 

cytoplasmic domain and that this inhibitory effect can be generated by non-cell 

autonomous expression of Robo2. These observations, together with the demonstration 

that Robo2 variants that promote midline crossing are potent suppressors of comm 

mutants, supports the model that Robo2 inhibits Slit-Robo1 repulsion, rather than acting 

as a receptor that promotes midline axon attraction. Biochemical and gain of function 

genetic analyses show that Robo2 can bind to Robo1 in vivo through its Ig1 and Ig2 

domains and that this binding interaction correlates with Robo2’s pro-crossing activity.  

Furthermore, cell type specific rescue experiments and analysis of Robo2 mRNA and 

protein expression are consistent with a requirement for Robo2 in midline cells, and 

support an endogenous requirement for Robo2’s Ig2 domain in promoting midline 

crossing. Taken together, the data in this manuscript support the model that Robo2 

expressed in cells other than commissural neurons acts to inhibit Robo1 receptor activity 

through extracellular domain binding interactions, and that this activity ensures the 
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precise execution of midline guidance (Figure 4.16). Our model reconciles two 

previously confounding observations: one, that a small amount of Robo1 protein is 

detectable on commissural axons as they cross the midline, yet this pool of Robo1 is 

unable to signal midline repulsion; and two, that the single known isoform of Robo2 can 

act to both promote and inhibit midline crossing.  

 

Multiple mechanisms ensure precise and robust regulation of Robo1 repulsion  

Given the prominent role that Comm plays in regulating Robo1 receptor 

expression to prevent premature responses to Slit, it is fair to ask why it is necessary to 

invoke a second mechanism to down-regulate Robo1 receptor signaling.  Indeed, in wild-

type animals, there is no obvious requirement for Robo2’s pro-crossing activity, at least 

not at the embryonic midline in the populations of neurons that we have assayed. A 

requirement for Robo2 in promoting midline crossing in otherwise wild type animals has 

been described for the guidance of foreleg gustatory neurons in the adult nervous system, 

although it is not clear in this context if the same mechanism that we have described is at 

work (Mellert et al., 2010). Nevertheless, a clear endogenous contribution for Robo2 at 

the embryonic midline can be demonstrated in conditions where attractive guidance cues, 

such as Netrin, are compromised. One probable explanation for the existence of this 

second regulatory mechanism is that it confers robustness on the essential process of 

midline circuit formation, and that this is important to the animal when developmental 

conditions are not optimal.   
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While Comm is an efficient and potent negative regulator of Robo1 trafficking to 

the growth cone surface, it is clear that not all Robo1 is prevented from reaching the 

surface in the presence of Comm.  Low levels of Robo1 can be detected on commissural 

axons by immunostaining and immunoelectron microscopy (Kidd et al., 1998a). Data 

from surface labeling experiments indicate that Comm acts on newly synthesized Robo1, 

and the question of how Robo1 receptors already present on the plasma membrane prior 

to the initiation of comm expression might be regulated remains unresolved (Keleman et 

al., 2002). The role of Robo2 may thus be to negatively regulate the low levels of Robo1 

that escape Comm-dependent sorting. 

In addition to the complementary actions of Comm, a cell autonomous regulator 

of Robo1 trafficking (Keleman et al., 2002, Keleman et al., 2005), and Robo2, a cell non-

autonomous inhibitor of Robo1 signaling (this study), it is likely that there are additional 

levels of regulation that contribute to preventing premature response to midline Slit.  In 

particular, a recent study shows quite convincingly that Comm’s role in sorting Robo1 is 

insufficient to explain how Robo1 activity is limited in pre-crossing commissural axons.  

Specifically, embryos in which the endogenous Robo1 receptor is replaced with a variant 

of Robo1 that is insensitive to the sorting activity of Comm by homologous 

recombination show no defects in midline crossing (Gilestro, 2008). This observation is 

in marked contrast to the prediction of the sorting model, in which embryos carrying a 

Comm-resistant Robo1 receptor would be expected to resemble comm mutants.  It will be 

of great interest to obtain an explanation for this paradoxical finding and to determine 

what additional functions or targets of Comm could also ensure the regulation of Slit-

dependent repulsion. 
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Inhibitory receptor-receptor interactions in trans: a new mechanism to regulate axon 

guidance 

Our results suggest that Robo2 can inhibit Robo1 activity and that this effect is 

mediated by receptor-receptor interactions between the Robo2 and Robo1 extracellular 

domains. Cis-inhibitory interactions, such as those that occur between the transmembrane 

protein Kekkon 1 and the epidermal growth factor receptor (EGFr) (Ghiglione et al., 

2003), and between ligand and receptor pairs, as in the cases of Ephs/ephrins and 

Notch/Delta, have been well documented (Del Álamo et al., 2011; Kao and Kania, 2011; 

Yaron and Sprinzak, 2012). While we were not able to detect trans interactions by co-

immunoprecipitation or by an S2 cell aggregation assay (data not shown), our genetic 

data strongly suggest that Robo2 acts in trans to inhibit Robo1 signaling. A recent in vitro 

screen for trans interactions among Drosophila cell surface receptors did not report a 

direct interaction between Robo1 and Robo2, suggesting that if trans interactions do 

occur, they might be mediated by a cofactor (Ozkan et al., 2013). Indeed, Slit-dependent 

trans interactions between Robo1 and Robo2 have been proposed to play a role in the 

migration of sensory neurons in the Drosophila peripheral nervous system, although in 

this case Robo2 is thought to promote Slit-Robo repulsive signaling by presenting Slit to 

Robo receptors expressed in trans (Kraut and Zinn, 2004). 

Previous studies have defined growth factor and morphogen receptor regulatory 

mechanisms that bear some resemblance to the mechanism that we have described here.  

For example, epidermal growth factor receptor (EGFr) signaling and Bone 

Morphogenetic Protein receptor (BMPr) signaling can be attenuated cell non-
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autonomously by various inhibitory factors, such as Argos for EGFrs and Noggin for 

BMPrs (Klein et al., 2004; Walsh et al., 2010). In the case of EGFr, receptor signaling is 

blocked because the soluble inhibitory factor Argos binds to and sequesters the EGF 

ligand, thereby preventing receptor activation (Klein et al., 2008). The mechanism 

through which Robo2 regulates Robo1 is similar in that it acts cell non-autonomously and 

that it depends on extracellular interactions, but distinct, since Robo2 does not appear to 

act solely by binding and sequestering Slit, as the Robo2∆Ig2 receptor can still bind Slit, 

but is completely unable to inhibit Robo1 activity.   

It remains to be determined, but a closer analogy may exist with the way 

Dickkopf (DKK) family proteins antagonize Wnt receptor signaling (Niehrs, 2006).  In 

this case, secreted DKK binds to the lipoprotein related proteins (LRP5 and 6), which are 

co-receptors for Wnt, and prevents LRP interaction with the Frizzled/Wnt ligand receptor 

complex (Ahn et al., 2011; Chen et al., 2011). While Robo2 is not secreted, there is 

evidence that Robo1 receptor extracellular domains can be cleaved and shed into the 

extracellular space (Coleman et al., 2010), and we have observed that the Robo2 

ectodomain can also be shed in vitro and in vivo (Evans and Bashaw, unpublished). In the 

future, it will be interesting to investigate whether Robo2 binding prevents Robo1 from 

interacting with Slit in vivo, and whether Robo2 receptor cleavage is important for its 

ability to promote midline crossing. Alternatively, Robo2 could prevent the recruitment 

of Robo1’s downstream signaling molecules such as Enabled, Nck/Dock and Son of 

Sevenless (Bashaw et al., 2000; Fan et al., 2003; Yang et al., 2006). 
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How are the diverse axon guidance activities of the Robo2 receptor coordinated? 

In addition to its Ig1/Ig2 dependent role in inhibiting Slit-Robo1 repulsion that we 

have described here, Robo2 has at least three other distinct axon guidance activities that 

can be attributed to different structural elements of the receptor. In the context of midline 

axon repulsion, Robo2 binds Slit through its extracellular Ig1 domain and cooperates 

with Robo1 to prevent abnormal midline crossing. It is not known how Robo2 signals 

repulsion, but based on receptor swap experiments that demonstrate that Robo1 can 

substitute for Robo2’s midline repulsive activity, it seems likely that a common 

cytoplasmic signaling output shared by Robo1 and Robo2 (perhaps mediated by the 

shared CC0 or CC1 motifs) is important for repulsion (Spitzweck et al., 2010).  Robo2 

also directs the mediolateral position of axons in the CNS, an activity conferred by a 

combination of its extracellular Ig1 and Ig3 domains (Evans and Bashaw, 2010b)In this 

context, distinct biochemical properties conferred by Ig3 appear to direct Robo2 receptor 

multimerization, and this property correlates with the ability to regulate lateral position in 

vivo (Evans and Bashaw, 2010b). Finally, in addition to these activities, we have recently 

discovered a new function for Robo2 in regulating the guidance of specific populations of 

motor axons to their appropriate muscle targets. In this case, Robo2’s guidance activity 

depends on unique features of its cytoplasmic domain (Santiago et al., 2014).   

A major challenge for the future will be to understand how these diverse guidance 

activities are deployed at the right time and place to allow for appropriate guidance 

responses. One important factor that is likely to contribute to the coordination of these 

activities is the regulation of the spatial and temporal expression of Robo2. For example, 
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in late stage embryos, Robo2 protein expression is restricted to the lateral most regions of 

the longitudinal connectives where it is presumably acting to control lateral positioning, 

while in younger embryos robo2 mRNA can be detected in ipsilateral pioneer neurons 

where it is likely contributing to midline repulsion. Robo2 is also detected in midline glia 

and neurons, where we propose it may act to prevent premature responses to Slit. At 

present, little is known about how these patterns of expression are established and 

temporally regulated, although we have recently shown that the homeodomain 

transcription factors dHb9 and nkx6 are required for robo2 expression in a subset of 

motor neurons (Santiago et al., 2014).     

While controlling the time and place of Robo2 expression is no doubt part of the 

explanation for how Robo2’s diverse and sometimes opposing activities are coordinated, 

we expect that the distinct biochemical features of Robo2’s different activities, as well as 

the potential interaction with context-specific cofactors will also play an important role.  

Here, we note that Robo2 does not appear to be able to promote midline crossing cell-

autonomously, either in subsets of commissural neurons in rescue experiments, or in the 

apterous ipsilateral interneurons in gain-of-function experiments. This could be because 

Robo2 is unable to bind to Robo1 in cis in vivo, or alternatively because Robo1-Robo2 

cis interactions confer a distinct outcome from the inhibitory effect of Robo2 presented 

from other cells. This is reminiscent of the different responses produced by cis and trans 

interactions between receptors and their ligands (Yaron and Sprinzak, 2012). How 

distinct signaling responses are triggered by the different structural conformations 

resulting from cis versus trans interactions remains poorly understood. Future 

experiments to define the mechanisms that control the specific expression domains and 
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biochemical activities of Robo2 promise to continue to offer new insights into the 

molecular biology of axon guidance. 

 

Experimental Procedures  

Genetics 

The following Drosophila mutant alleles were used: fra3, fra4, robo2x33, robo2x123, 

robo2x135, commE39, P{GawB}NP6273 (robo2GAL4), egMZ360 (eg-GAL4), ap-GAL4, 

dHb9GAL4, robo2HArobo2. The following transgenes were used: P{10UAS-HARobo1}86Fb, 

P{10UAS-HARobo2}86Fb, P{10UAS-HARobo2∆Ig1}86Fb, P{10UAS-HARobo2∆Ig2}86Fb, 

P{10UAS-HARobo2∆Ig1+2}86Fb, P{10UAS-HARobo1∆C}86Fb, P{10UAS-

HARobo2∆C}86Fb, P{UAS-HARobo1R2I1+2}86Fb, P{UAS-HARobo2R1I1+2}86Fb, P{UAS-

Robo1∆Cmyc}2, P{UAS-Robo2∆Cmyc}1, P{UAS-HARobo1R2I1+2}, P{UAS-

HARobo2R1I1+2}, P{UAS-Robo1myc}, P{UAS-HARobo2}T1, P{GAL4-elav.L}3 (elav-

GAL4), slit-GAL4, P{UAS-TauMycGFP}II, P{UAS-TauMycGFP}III. Transgenic flies 

were generated by BestGene Inc. (Chino Hills, CA) or Rainbow Transgenic Flies Inc. 

(Camarillo, CA) using ΦC31-directed site-specific integration into landing sites at 

cytological position 86F (for UAS-Robo constructs) or 51C (for robo2 BAC CH321-

22K18 and modified BACs). All crosses were carried out at 25°C. Embryos were 

genotyped using balancer chromosomes carrying lacZ markers or by the presence of 

epitope-tagged transgenes. 



163 

 

Molecular Biology 

pUAST cloning: Robo coding sequences were cloned into a pUAST vector 

(p10UASTattB) including 10xUAS and an attB site for ΦC31-directed site-specific 

integration. All p10UASTattB constructs include identical heterologous 5′ UTR and 

signal sequences (derived from the Drosophila wingless gene) and an N-terminal 3×HA 

tag. Robo domain deletion variants created for this study were generated by PCR and 

include the following amino acids (numbers refer to Genbank reference sequences 

AAF46887 [Robo1] and AAF51375 [Robo2]): Robo2∆Ig1 (187-1463), Robo2∆Ig2 (84-186, 

281-1463), Robo2∆Ig1+2 (281-1463), Robo1∆C (56-950), Robo2∆C (84-1022).  

robo2 BAC and recombineering: The robo2 BAC CH321-22K18 was generated by the 

P[acman] consortium (Venken et al., 2009) and obtained from BACPAC Resources 

(bacpac.chori.org). Modified BACs were generated by replacing robo2 exons 2-14 and 

intervening introns with untagged or HA-tagged cDNAs via recombineering. Briefly, 

partial robo2 cDNAs plus a kanamycin-resistance selective marker were cloned into a 

plasmid vector flanked by 50bp homology arms matching the 3’ end of the robo2 first 

intron and the beginning of the robo2 3’ UTR. This cassette was excised by PmeI 

digestion and electroporated into DY380 cells containing the original CH321-22K18 

BAC in which expression of lambda recombination genes had been induced by heat 

shock. Potential recombinant BACs were selected on LB plates containing 

chloramphenicol (12.5 μg/ml) and kanamycin (25 μg/ml), and verified by PCR 

amplification and sequencing of the entire recombineered region. 
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Immunofluorescence and Imaging 

Dechorionated, formaldehyde-fixed, methanol-devittellinized embryos were fluorescently 

stained using standard methods. The following antibodies were used in this study: Rabbit 

anti-HA (Covance PRB-101C, 1:2000), Mouse anti beta-tubulin (E7, DSHB, 1:100), 

Mouse anti-HA (Covance 16B12, 1:250), FITC-conjugated goat anti-HRP (Jackson # 

123-095-021, 1:250), Alexa-647 conjugated goat-anti-HRP (Jackson #123-605-021 

1:500), mouse anti-Fasciclin-II/mAb 1D4 [Developmental Studies Hybridoma Bank, 

(DSHB), 1:100], mouse anti-βgal (DSHB, 1:150), rabbit anti-GFP (Invitrogen #A11122, 

1:500), rabbit anti-c-Myc (Sigma C3956, 1:500), Cyanine 3-conjugated goat anti-mouse 

(Jackson #115-165-003, 1:1000), Alexa-488-conjugated goat anti-rabbit (Molecular 

Probes #A11008, 1:500).  Embryos were mounted in 70% glycerol/PBS.  Fluorescent 

mRNA in situ hybridization was performed as described, with digoxigenin labeled probe 

(Yang et al., 2009).  Phenotypes were analyzed and images were acquired using a 

spinning disk confocal system (Perkin Elmer) built on a Nikon Ti-U inverted microscope 

using a Nikon OFN25 60x objective with a Hamamatsu C10600-10B CCD camera and 

Yokogawa CSU-10 scanner head with Volocity imaging software.  Images were 

processed using ImageJ.   

Biochemistry 

Slit binding assay: Drosophila S2R+ cells were cultured at 25ºC in Schneider’s media 

plus 10% fetal calf serum. To assay Slit binding, cells were plated on poly-L-lysine 

coated coverslips in six-well plates (Robo-expressing cells) or untreated six-well plates 

(Slit-expressing cells) at a density of 1-2×106 cells/ml, and transfected with pRmHA3-
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GAL4 and HA-tagged pUAST-Robo or untagged pUAST-Slit plasmids using Effectene 

transfection reagent (Qiagen). GAL4 expression was induced with 0.5 mM CuSO4 for 24 

hours, then Slit-conditioned media was harvested by adding heparin (2.5 ug/ml) to Slit-

transfected cells and incubating at room temperature for 20 minutes with gentle agitation. 

Robo-transfected cells were incubated with Slit-conditioned media at room temperature 

for 20 minutes, then washed with PBS and fixed for 20 minutes at 4ºC in 4% 

formaldehyde. Cells were permeabilized with PBS+0.1% Triton X-100, then stained with 

antibodies diluted in PBS+2mg/ml BSA. Antibodies used were: mouse anti-SlitC 

(c555.6D, DSHB, 1:50), rabbit anti-HA (Covance, 1:2000), Cy3 goat anti-mouse 

(Jackson Immunoresearch, 1:500), and Alexa488 goat anti-rabbit (Molecular Probes, 

1:500). After antibody staining, coverslips with cells attached were mounted in 

Aquamount. Confocal stacks were collected using a Leica SP5 confocal microscope and 

processed by NIH ImageJ and Adobe Photoshop software. 

Surface labeling: For surface labeling in S2R+ cells, cells were plated on poly-L-lysine 

coated coverslips and transfected with pRmHA3-GAL4 and HA-tagged pUAST-Robo2 

plasmids using Effectene, as described above. GAL4 expression was induced with 0.5 

mM CuSO4 for 24 hours, then cells were washed in cold PBS and blocked in PBS+5% 

normal goat serum (NGS) for 20 minutes at 4°C. Cells were incubated in primary 

antibodies diluted in PBS+5% NGS for 30 minutes at 4°C, then washed three times in 

cold PBS. Cells were fixed for 15 minutes at 4°C in 4% paraformaldehyde (PFA) in PBS, 

followed by three washes in PBS and incubation with secondary antibodies diluted in 

PBS+5% NGS for 30 minutes at room temperature. For staining with detergent, cells 



166 

 

were fixed 24 hours after GAL4 induction in 4% PFA for 15 minutes at room 

temperature, permeabilized in 0.1% Triton/PBS (PBT) for 5 minutes, blocked in 

PBT+5% NGS for 20 minutes, and incubated overnight in primary antibodies diluted in 

PBT+5% NGS. After three washes in PBT, secondary antibodies were added as described 

above. After secondary antibodies, cells were washed three times in PBS and coverslips 

were mounted in Aquamount.  

Co-immunoprecipitation: Approximately 100 μl of embryos co-expressing Myc-tagged 

and HA-tagged UAS Robo transgenes in all neurons with elav-GAL4 were lysed in 0.5 

ml of TBS-V (150mM NaCl, 10mM Tris ph8, 1mM ortho-vanadate) supplemented with 

1% Surfact-AMPS NP40 (Thermo), protease inhibitors (Roche Complete), and 1mM 

PMSF by manual homogenization using a plastic pestle.  After homogenization, embryos 

were incubated with gentle rocking at 4°C for 10 minutes and centrifuged in a pre-chilled 

rotor for 10 minutes at 14000rpm.  The soluble phase was removed and incubated with 1-

2 μg of anti-Myc antibody (Millipore) for 45 minutes with gentle rocking at 4°C.  50 μl 

of a 50% slurry of proteinA and proteinG agarose (Invitrogen) were added to the tubes 

and samples were incubated for an additional 30 minutes with gentle rocking at 4°C.  

Samples were washed three times in lysis buffer and then boiled for 10 minutes in 50 μl 

of 2X Laemmli SDS Sample Buffer.  Proteins were resolved by SDS Page and 

transferred to nitrocellulose for subsequent incubation with anti-myc (9E10, DHRSB) 

1:1000 or anti-HA (16B12 Covance) 1:1000 overnight at 4°C in PBS supplemented with 

5% dry milk and 0.1% Tween 20.  After three washes in PBS/0.1% Tween 20, HRP-

conjugated secondary antibodies were applied for 1 hour at room temperature.  Signals 
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were detected using either ECL 2 or ECL Prime (Amersham) according to 

manufacturer’s instructions.  

For co-immunoprecipitation in Drosophila S2R+ cells, 106 cells were transfected with 

pRmHA3-GAL4, HA or Myc-tagged pUAST-Robo or untagged pUAST-Slit plasmids 

and induced 24 hours after transfection, as described above. 48 hours after transfection, 

cells were lysed in TBS-V (150mM NaCl, 10mM Tris ph8, 1mM ortho-vanadate) 

supplemented with 0.5% Surfact-AMPS NP40 (Thermo), protease inhibitors (Roche 

Complete) and 1 mM phenylmethanesulfonylfluoride (PMSF). Lysates were precleared 

with Protein A/G agarose for 30 min at 4°C, followed by addition of 1-2 ug of Rabbit 

anti-Myc (Millipore 06-549) or Rabbit anti-HA (Covance) for 1 hour at 4°C. 50 μl of a 

50% slurry of proteinA and proteinG agarose (Invitrogen) were added, and samples were 

incubated for an additional 30 minutes with gentle rocking at 4°C. Samples were washed 

3x in lysis buffer and boiled for 10 min in 50 μl of 2X Laemmli SDS Sample Buffer. For 

lysate mixing experiments, Slit-conditioned media was harvested 48 hours after 

transfection, as described above. pUAST-Robo1 and pUAST-Robo2 cell lysates were 

mixed for 1 hour at 4°C with gentle agitation before immunoprecipitation. In some 

conditions, Slit-conditioned media was added at 2X concentration to pUAST-Robo1 and 

pUAST-Robo2 cell lysates. SDS electrophoresis and Western blotting were performed as 

described above, and developed using WesternSure PREMIUM Chemiluminescent 

Substrate (Li-cor) according to manufacturer’s instructions. 
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Statistics 

For statistical analysis, comparisons were made between genotypes using the Student’s t-

test. For multiple comparisons, significance was assessed by using a Bonferroni 

correction. 
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Figure 4.1. Robo2 commissural guidance defects are rescued by a Robo2 BAC 

transgene.  
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Figure 4.1. Robo2 commissural guidance defects are rescued by a Robo2 BAC 

transgene.  

A-E: Stage 17 embryos stained with anti-HRP antibodies to label all CNS axons.  F-J: 

Stage 15-16 embryos carrying eg-GAL4 and UAS-TauMycGFP transgenes, stained with 

anti-HRP and anti-GFP antibodies. Anti-GFP labels cell bodies and axons of the eagle 

neurons (EG and EW). A, F: Embryos heterozygous for both frazzled (fra) and robo2 

display a wild-type arrangement of longitudinal and commissural axon pathways, and 

axons of the EW neurons cross the midline in the posterior commissure in 100% of 

segments (arrowhead). B, G: robo2 mutants (robo2123/robo233) display a mildly 

disorganized axon scaffold, but no defects in EW crossing. C, H: fra mutants (fra3/fra4) 

display thin commissures indicative of decreased midline crossing, and the EW axons fail 

to cross the midline in 30% of abdominal segments (arrowhead with asterisk). D, I: 

Simultaneous removal of robo2 and fra (robo2123,fra3/robo2135,fra4) strongly enhances 

the midline crossing defects seen in fra single mutants. E, J: Midline crossing is partially 

restored in robo2,fra double mutants carrying one copy of an 83.9-kb robo2 BAC 

transgene. Histogram quantifies EW midline crossing defects in the genotypes shown in 

F-J. Error bars represent s.e.m. n, number of embryos scored for each genotype. Bottom 

right: Two models for how Robo2 might promote midline crossing of commissural 

axons.  Left, Robo2 may act as a midline attractive receptor to promote midline crossing 

in response to an unidentified ligand. Right, Robo2 may antagonize canonical Slit-Robo1 

repulsive signaling to down-regulate midline repulsion and thus allow Robo1-expressing 

axons to cross the midline. (Experiments were performed by T.A.E.) 
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Figure 4.2. Robo2 can promote midline crossing independent of its cytoplasmic 

domain. 
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Figure 4.2. Robo2 can promote midline crossing independent of its cytoplasmic 

domain. 

A-E: Stage 17 embryos carrying elav-GAL4 and the indicated UAS-Robo transgenes, 

stained with anti-HRP (magenta) and the longitudinal pathway marker anti-FasciclinII 

(FasII; green). A: Embryos carrying elav-GAL4 alone exhibit a wild-type arrangement of 

axon pathways, including distinct anterior and posterior commissures and three FasII-

positive longitudinal pathways that do not cross the midline. B: In elav-GAL4/UAS-

Robo1 embryos, commissure formation is strongly impaired, and no ectopic midline 

crossing of FasII-positive axons is observed. C: Mis-expression of Robo2 with elav-

GAL4 produces a biphasic phenotype, where some segments appear nearly 

commissureless (arrowhead with asterisk) while others exhibit ectopic crossing 

reminiscent of robo1 mutants (arrow). See Figure 5 for quantification of ectopic crossing 

in elav-GAL4/UAS-Robo2 embryos. D, E: Mis-expression of truncated forms of Robo1 

(Robo1∆C) or Robo2 (Robo2∆C) with elav-GAL4 induces ectopic crossing in 100% of 

segments, although the Robo2∆C mis-expression phenotype is qualitatively more severe 

than Robo1∆C. In elav-GAL4/UAS-Robo1∆C embryos (D) only the medial FasII pathway 

crosses the midline and the axon scaffold overall exhibits a robo1-like appearance, while 

in elav-GAL4/UAS-Robo2∆C embryos (E) all three FasII-positive pathways collapse at 

the midline in nearly every segment and the axon scaffold appears slit-like.  All UAS-

Robo transgenes shown here were inserted into the same genomic location (86FB) to 

ensure equivalent expression levels. (Experiments were performed by T.A.E.) 
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Figure 4.3. Comparison of Robo1∆C and Robo2∆C gain of function activities.   
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Figure 4.3. Comparison of Robo1∆C and Robo2∆C gain of function activities.   

Since the effects of expressing ∆C transgenes in the 86Fb insertion site are too potent to 

allow quantitative comparison, we used traditional UAS insertion lines that are expressed 

at lower and comparable levels (right panels, anti-Myc is shown in green and anti-FasII 

in magenta) to compare activities of Robo1∆C and Robo2∆C.  In embryos expressing 

only an elav-GAL4 transgene (top left) FasII axons appear wild-type and remain 

ipsilateral. Mis-expression of Robo2 leads to a high level of ectopic crossing.  Robo2∆C 

expression results in a much greater degree of ectopic midline crossing than does 

Robo1∆C. Segments with ectopic midline crossing of FasII axons are quantified on the 

right. Significance was assessed by multiple comparisons using the Student’s t-test and a 

Bonferroni correction (*p<0.001). Error bars represent s.e.m. n, number of embryos 

scored for each genotype. (Experiments were performed by T.A.E. and C.S.) 
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Figure 4.4. Slit binding and Robo gain of function.   
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Figure 4.4. Slit binding and Robo gain of function.   

A-E: Slit conditioned media was collected and used to treat cells expressing the indicated 

HA-tagged receptors.  Receptor expression is shown with anti-HA in the top panels 

(magenta) and anti-Slit staining is shown in the bottom panels (green).  Robo1 (A), 

Robo2 (B), and Robo2∆Ig2 (D) bind efficiently to Slit, while little to no binding is 

detected in cells expressing Robo2∆Ig1 (C) or Robo2∆Ig1+2 (E). F-J: Stage 16 embryos 

expressing the indicated transgene in the Eg commissural interneurons.  HRP labels the 

axon scaffold (magenta) and anti-GFP labels the Eg neurons.  The percentages under 

each panel indicate the percentage of EW axons that fail to cross the midline in each 

condition.  Expression of Robo1 (F), Robo2 (G) and Robo2∆Ig2 (I) all lead to strong 

disruption of midline crossing, while expression of Robo2∆Ig1 (H), and Robo2∆Ig1+2 

(J) result in little to no crossing defects. (Experiments were performed by T.A.E.) 
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Figure 4.5. Robo2’s pro-crossing activity depends on its Ig2 domain.   
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Figure 4.5. Robo2’s pro-crossing activity depends on its Ig2 domain.   

A-F: Stage 17 embryos carrying elav-GAL4 and the indicated UAS-Robo transgenes, 

stained with anti-HRP and anti-FasII. A: Embryos carrying elav-GAL4 alone exhibit a 

wild-type arrangement of axon pathways, including three FasII-positive longitudinal 

pathways that do not cross the midline. B: Robo1 does not promote midline crossing of 

FasII-positive axons when misexpressed in all neurons with elav-GAL4. C: 

Misexpression of full-length Robo2 induces ectopic midline crossing in over 80% of 

segments (arrow). D: Deleting the Ig1 domain (Robo2∆Ig1) disrupts Slit binding but does 

not completely prevent Robo2 from promoting midline crossing. E, F: Robo2 receptors 

lacking the Ig2 domain (Robo2∆Ig2) or both the Ig1 and Ig2 domains (Robo2∆Ig1+2) are 

unable to promote ectopic midline crossing above background levels (both are 

comparable to Robo3; see histogram). Schematics show domain composition of receptors 

shown in A-F. All UAS-Robo transgenes shown here were inserted into the same 

genomic location (86FB) to ensure equivalent expression levels. Histogram quantifies 

ectopic midline crossing in the indicated genotypes. Significance was assessed by 

multiple comparisons using the Student’s t-test and a Bonferroni correction (*p<0.01). 

Error bars represent s.e.m. n, number of embryos scored for each genotype. (Experiments 

were performed by T.A.E.) 
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Figure 4.6. Robo2 transgenes are localized to axons and expressed at equivalent 

levels in vivo, and are present at the surface of S2R+ cells in vitro. 
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Figure 4.6. Robo2 transgenes are localized to axons and expressed at equivalent 

levels in vivo, and are present at the surface of S2R+ cells in vitro. 

A-E: Embryos carrying elav-GAL4 and the indicated UAS-Robo2 transgenes were stained 

with anti-HA antibodies and imaged via confocal microscopy. Staining and imaging 

conditions were identical for all samples. A-D: Representative images of embryos 

expressing each transgene and stained with anti-HA. All Robo2 variants are localized to 

axons when expressed pan-neurally. E: Quantification of pixel intensity for each 

transgenic line. Confocal max projections through the entire neuropile were collected for 

three stage 16 embryos for each line, and average pixel intensity was measured across 

five 25-pixel regions within the longitudinal axon pathways for each embryo. Bar graph 

shows average pixel intensity across the three embryos for each line. Error bars indicate 

standard deviation. Average pixel intensity values were not significantly different for any 

of the four transgenic lines by Student’s t-test. F: S2R+ cells transfected with the 

indicated Robo2 constructs were permeabilized and stained with anti-HA and anti-tubulin 

antibodies. No differences were observed in the localization or expression of the different 

HA-Robo2 variants. Staining and imaging conditions were identical for all samples. G: 

S2R+ cells transfected with the indicated Robo2 constructs were incubated with anti-HA 

and anti-tubulin antibodies at 4°C for 30 minutes, in the absence of detergent. All Robo2 

proteins were robustly detected at the cell surface by this method, with no noticeable 

differences in localization or staining intensity; no tubulin signal was detected, 

confirming that cells were not permeabilized. Staining and imaging conditions were 

identical for all samples. (Experiments in A-E were performed by T.A.E. Experiments in 

F-G were performed by C.S.) 
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Figure 4.7 Robo2 acts cell non-autonomously to promote midline crossing in 

ipsilateral neurons.  
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Figure 4.7. Robo2 acts cell non-autonomously to promote midline crossing in 

ipsilateral neurons. 

A: Stage 17 embryos stained with anti-HRP (magenta) and anti-GFP (green) antibodies.  

Anti-GFP labels the apterous (ap) cell bodies and axons, which normally project 

ipsilaterally.  Mis-expression of Robo2ΔC in ap neurons results in a mild ectopic crossing 

phenotype, which is similar to the effect of Robo1ΔC (arrowheads with asterisks).  

Segments with ectopic crossing of ap axons are quantified in the histogram. B: Stage 17 

embryos stained with anti-FasII (magenta) and anti-GFP (green) antibodies. Anti-GFP 

labels the axons of hb9-GAL4 expressing cells. Mis-expression of Robo2 with hb9-GAL4 

results in a lateral shift of hb9-Gal4+ axons, and causes FasII+ axons that do not express 

hb9-GAL4 to ectopically cross the midline.  (Experiments were performed by T.A.E.) 
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Figure 4.8. Robo2 can promote crossing non cell-autonomously.  
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Figure 4.8. Robo2 can promote crossing non cell-autonomously.  

A-D: Stage 17 embryos stained with anti-HRP (magenta) and anti-FasII (green). A, B: 

Mis-expression of Robo1 (A) in midline cells using slit-GAL4 results in a mild ectopic 

crossing phenotype. In contrast, mis-expression of Robo2 (B) produces a much stronger 

effect, as indicated by quantification of ectopic FasII crossing in the histogram (I). C, D: 

Mis-expression of either Robo2∆Ig1 (C) or Robo2∆Ig2 (D) with slit-GAL4 does not 

produce ectopic crossing of FasII axons. E, F: Consistent with requirement of Robo2’s 

first two IG domains, the chimeric protein Robo1R2IG(1+2) produces an ectopic crossing 

phenotype (E), whereas Robo2R1(IG1+2) has no effect (F). G, H: Mis-expression of 

Robo2∆C with slit-GAL4 also results in severe ectopic crossing defects (H) that are much 

stronger than those observed with Robo1∆C (G), as indicated by quantification of ectopic 

FasII crossing (I) and fused commissures observed in anti-HRP stained embryos (J).  All 

UAS-Robo transgenes were inserted into the same genomic location (86FB).  

Significance was assessed by multiple comparisons using the Student’s t-test and a 

Bonferroni correction (*p<0.001). Error bars represent s.e.m. n, number of embryos 

scored for each genotype. (Experiments were performed by T.A.E. and C.S.) 
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Figure 4.9. Robo2 is expressed in midline cells during commissural axon path- 

finding, and over-expressing robo2 with slit-GAL4 restores midline crossing in 

robo2, fra double mutants.  
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Figure 4.9. Robo2 is expressed in midline cells during commissural axon path- 

finding, and over-expressing robo2 with slit-GAL4 restores midline crossing in 

robo2, fra double mutants.  

A:  A robo2-GAL4 enhancer trap that recapitulates robo2’s endogenous expression 

pattern drives UAS-TauMycGFP expression (green) in midline cells at stages 12-13, 

when many commissural axons cross the midline. Midline glia are labeled by an anti-

wrapper antibody (magenta). B, Top: Fluorescent in situ for robo2 mRNA (green).  robo2 

is transiently expressed in midline glia and neurons (magenta) during stage 12 (arrows). 

The in situ signal is not observed in robo2 mutant embryos (right). B, bottom: Robo2 

protein is expressed in midline cells during the stages of commissural axon path finding, 

as shown by the expression pattern of a HA-tagged robo2 cDNA knock-in allele 

(robo2HArobo2). Stage 12 embryos carrying robo2HArobo2, slit-GAL4 and UAS-TauMycGFP 

show HARobo2 expression in slitGAL4-expressing cells (arrows), whereas this signal is 

not detected in control embryos (right). C-G: Stage 14 embryos stained with anti-HRP 

antibodies to label all CNS axons. The absence of posterior commissures (PC) was scored 

in A1-A8 (arrows indicate examples of missing commissures). The PC defects of robo2, 

fra double mutants (D) are significantly rescued by over-expressing UAS-Robo2 with slit-

GAL4 (E), whereas over-expression of UAS-Robo2ΔIg1 (F) or UAS-Robo2ΔIg2 (G) has 

no effect. Embryos were scored blind to genotype. Significance was assessed by one-way 

ANOVA followed by multiple comparisons using the Student’s t-test and a Bonferroni 

correction (*p<0.01). Error bars represent s.e.m. n, number of embryos scored for each 

genotype. (Experiments in A performed by T.A.E. All others performed by C.S.) 
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Figure 4.10. Robo2 mRNA is transiently expressed in midline cells.  
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Figure 4.10. robo2 mRNA is transiently expressed in midline cells.  

Fluorescent in situ for robo2 mRNA (green). Midline glia are labeled by anti-Wrapper 

(magenta) and circled in yellow in the single channel images (bottom). robo2 is 

transiently expressed in midline glia during stages 12 and 13, but is no longer detected 

there by stage 14. (Experiments were performed by C.S.) 
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Figure 4.11. Robo2 cannot rescue midline crossing cell autonomously.  
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Figure 4.11. Robo2 cannot rescue midline crossing cell autonomously.  

A-D: Stage 16 embryos of the indicated genotypes stained with anti-HRP (magenta) and 

anti-GFP (green) antibodies. Anti-GFP labels the EG and EW cell bodies and axons.  EW 

crossing defects in robo2, fra double mutants (A) are not rescued by eg-GAL4 mediated 

over-expression of UAS-Robo2 (B), UAS-Robo2 ΔIG1 (C), or UAS-Robo2ΔC (D), 

suggesting that Robo2 cannot act cell autonomously to promote midline crossing.  

Segments with non-crossing EW axons are indicated by arrowheads with asterisks.  

Significance was assessed by multiple comparisons using the Student’s t-test and a 

Bonferroni correction.  No significant differences between any of the genotypes were 

observed (p>0.3).  Error bars represent s.e.m. n, number of embryos scored for each 

genotype. (Experiments performed by T.A.E.). 
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Figure 4.12. Robo2 receptors that promote midline crossing suppress comm 

mutants. 
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Figure 4.12. Robo2 receptors that promote midline crossing suppress comm 

mutants. 

A: Schematic diagram of the two chimeric receptors shown in (B) and (C). Robo1 

sequences are depicted in blue and Robo2 sequences are depicted in yellow. B, C: Stage 

16 embryos of the indicated genotype stained with anti-HRP to visualize CNS axons and 

anti-HA to visualize the epitope tagged chimeric receptor.  Single channel images of HRP 

and HA are presented to the right of the color panels.  Expression of the HA-Robo2R1Ig1-2 

chimeric receptor in a comm mutant background (B) does not restore commissure 

formation, while expression of the reciprocal HA-Robo1R2Ig1+2 chimeric receptor (C) 

strongly suppresses the comm mutant phenotype.  D, E: Quantification of the average 

number of commissures per embryo in comm mutants expressing the indicated HA-

tagged receptor transgenes in either all neurons using elav-GAL4 (D) or in midline cells 

using slit-GAL4 (E). Significance was assessed by one-way ANOVA followed by 

multiple comparisons using the Student’s t-test and a Bonferroni correction (*p<0.0001) 

(**p<1.0 e-10). Error bars represent s.e.m. n, number of embryos scored for each 

genotype. (Experiments performed by G.J.B.) 

 

 

 

 



193 

 

Figure 4.13. Robo2 binds to the Robo1 receptor in vitro and in vivo. 
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Figure 4.13. Robo2 binds to the Robo1 receptor in vitro and in vivo.  

A-C: Protein extracts from embryos expressing Robo1-Myc and various HA-tagged 

receptors in all neurons were immunoprecipitated with anti-Myc antibodies and analyzed 

by western blot. Immunoprecipitates were probed with anti-HA (top blots) and total 

lysates were compared for HA expression and Myc expression to ensure that equal inputs 

were analyzed. Representative western blots from multiple experiments are shown. A: 

Robo1-Myc binds to HARobo1, HARobo2 and HARobo3, but not to a HA-tagged Fra 

receptor (two exposures are shown). Total lysate blots reveal comparable loading with 

the exception of the Fra negative control in which there is substantially more HA-tagged 

receptor. B: Robo1-Myc binds efficiently to HARobo2, HARobo2∆Ig1 and the 

HARobo1Robo2 (IG1-2) chimera, but not to the reciprocal chimera that has Ig1 and Ig2 

domains from Robo1 (asterisk). C: Deletion of either Robo2 Ig1 or Ig2 alone does not 

affect Robo1 binding, while deleting both domains results in reduced binding (asterisk). 

D: Cell lysates of S2R+ cells separately transfected for Robo1-Myc or HA-tagged Robo2 

variants were mixed, immunoprecipitated with anti-Myc, and analyzed by western blot. 

Robo1-Myc binds efficiently to HARobo2, HARobo2∆Ig1, and HARobo2∆Ig2, and less 

well to HARobo2∆Ig1+2 (asterisks). In lanes 1-4, cells were untreated; in lanes 5-8, cells 

were treated with Slit-conditioned media before lysing.  We note that in addition to 

detection of the predicted full-length Robo2 receptor with anti-HA, we also routinely 

detect a smaller ~80kD fragment that corresponds to an extracellular domain cleavage 

product. The size of this fragment is shifted to predictably smaller sizes when Ig1, Ig2 or 

both Ig1 and Ig2 are deleted. (Experiments performed by G.J.B. and E.A.) 
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Figure 4.14. Robo2 binding to Robo1 does not depend on its cytoplasmic domain or 

on Robo1’s Ig1 domain.   
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Figure 4.14. Robo2 binding to Robo1 does not depend on its cytoplasmic domain or 

on Robo1’s Ig1 domain.  A-C: Protein extracts from embryos expressing Robo1-Myc 

and various HA-tagged receptors in all neurons were immunoprecipitated with anti-Myc 

antibodies and analyzed by western blot.  Immunoprecipitates were probed with anti-HA 

(top blot) and total lysates were compared for HA expression and Myc expression to 

ensure that equal inputs were analyzed.  Representative western blots from multiple 

experiments are shown. A: Deletion of either Robo2 Ig1 or Ig2 alone does not 

substantially affect Robo1 binding, while deleting both domains results in reduced 

binding. B: Extracts from embryos co-expressing either HARobo1 or HARobo2, and 

either Robo1∆C-Myc or Robo2∆C-Myc were analyzed for interactions.  Both of the C-

terminal truncation receptor variants can efficiently pull down both HARobo1 and 

HARobo2 indicating that binding is independent of the cytoplasmic domain. C: Similar 

experiments to those described above and in the legend to the main Figure 11 indicate 

that Robo2 does not bind to the Slit-binding Ig1 region of Robo1. D: Lysates of S2R+ 

cells expressing HA-tagged Robo2 variants were mixed with lysates of untransfected 

cells, and immunoprecipitated with anti-Myc. Very little Robo2 protein was detected in 

the immunoprecipitates. E: S2R+ cells were co-transfected with Robo1-Myc and HA-

Robo2 and immunoprecipitated with anti-Myc (middle panel) or anti-HA (right panel). A 

strong interaction was detected between Robo1 and Robo2 when the pull-down was 

performed in either direction. (Experiments in A-D were performed by G.J.B. and E.A. 

Experiments in E were performed by C.S.) 
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Figure 4.15. Robo2’s endogenous activity in promoting midline crossing depends on 

Ig2. 
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Figure 4.15. Robo2’s endogenous activity in promoting midline crossing depends on 

Ig2. 

A-D: Stage 16 embryos stained with anti-HRP (magenta) and anti-GFP (green) 

antibodies. Anti-GFP labels the EG and EW cell bodies and axons.  Arrowheads indicate 

EW axons that have crossed the midline and arrowheads with asterisks indicate non-

crossing EW axons. A: Almost all EW axons cross the midline in robo2, fra/+, + double 

heterozygotes. B: EW crossing defects are observed in 85% of segments in robo2, fra 

double mutants. C-D: The FL Robo2 cDNA BAC transgene (C) significantly rescues EW 

crossing, to 66% of segments with defects (Student’s t-test, **p<0.001) whereas the 

Robo2ΔIG2 transgene (D) does not significantly rescue. Right: Removing one copy of 

robo2 significantly enhances midline crossing defects in fra mutants. E-H: Stage 14 

embryos of the indicated genotypes stained with anti-HRP. Posterior commissures were 

scored in abdominal segments A1-A8. Missing posterior commissures are indicated by 

arrowheads with asterisks. E-G: The posterior commissure defects of robo2, fra double 

mutants are significantly rescued by a full-length (FL) Robo2 cDNA BAC transgene 

(Student’s t-test, **p<0.001) (F), as well as by a Robo2ΔIG2 BAC (*p<0.05) (G). The 

Robo2ΔIG2 BAC does not rescue as well as FL Robo2 (p*<0.05). All embryos were 

scored blind to genotype. Significance was assessed by one-way ANOVA followed by 

multiple comparisons using the Student’s t-test and a Bonferroni correction. Error bars 

represent s.e.m. n, number of embryos scored for each genotype. (Experiments were 

performed by C.S.) 
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Figure 4.16. Model for Robo2 inhibition of Slit-Robo repulsion. 
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Figure 4.16. Model for Robo2 inhibition of Slit-Robo repulsion. 

In contralateral neurons, the endosomal sorting receptor Comm is expressed, and it 

prevents the majority of Robo1 from reaching the growth cone surface.  We propose that 

Robo2 acts non-autonomously in midline cells to bind to and inhibit the low level of 

Robo1 that escapes Comm-dependent sorting.  This mechanism is revealed in contexts 

where axon attraction to the midline is limited.  In ipsilateral neurons, Comm is not 

expressed, and Robo2 works together with Robo1 to mediate repulsion from the midline 

in response to Slit. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

My thesis research identified regulatory relationships between transcription 

factors and axon guidance receptors in multiple contexts in the Drosophila embryonic 

nervous system, and described a new mechanism by which the Robo2 receptor regulates 

midline crossing. In this chapter, I explore several directions of future research that stem 

from these findings. 

 

Mechanisms by which Hb9 and Nkx6 regulate their targets in motor neurons 

The mechanisms by which Hb9, Nkx6, and Islet regulate their targets remain to 

be determined. Our finding that Hb9’s Engrailed homology domain is essential for motor 

axon guidance and robo2 regulation suggests that Hb9 acts as a repressor. Similar 

structure-function experiments assessing the in vivo requirement for the identified 

repressor and activator domains of Nkx6 would shed insight into its mechanism in RP3 

neurons (Syu et al., 2009). In addition, fusion proteins consisting of the Hb9 or Nkx6 

homeodomains attached to strong repressor or activator domains can be used in rescue 

assays to directly test whether Hb9 and Nkx6 act as repressors or activators.  

The vertebrate orthologs of Hb9 and Nkx6 act as repressors to regulate 

transcription factor expression in the spinal cord, and Drosophila Hb9 and Nkx6 act in 

parallel to repress the transcription factors eve and vnd in the embryo (Broihier et al., 

2004; Lee et al., 2008a; Muhr et al., 2001). If Hb9 or Nkx6 are acting as repressors in 

motor neurons, candidate downstream transcription factors that impinge on robo2 or 
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robo3 can be screened. Our preliminary data does not indicate that eve, vnd, or the 

Drosophila orthologs of the vertebrate Hb9 and Nkx6 targets are the factors that regulate 

robo2 or robo3 (data not shown; see Discussion in Chapter 2). A recent microarray by 

Skeath and colleagues identified dozens of additional transcription factors that are down-

regulated upon pan-neural co-expression of Hb9 and Nkx6 (Lacin et al., 2014). As a first 

approach to test these candidates, in situs can be performed to examine their expression. 

We would expect that a factor normally repressed by Hb9 and Nkx6 in the RP3 or MP1 

motor neurons would be expressed at low levels in these cells in wild type embryos, and 

would be de-repressed upon loss of hb9 or nkx6. In addition, if Hb9 induces robo2 in 

apterous neurons by repressing an intermediate factor, this factor should be expressed at 

high levels in wild type apterous neurons, and at low levels upon hb9 gain of function. 

Second, candidate transcription factors can be screened for their ability to repress robo2 

or robo3 when over-expressed pan-neurally. An alternative strategy would be to co-

express the candidates with Hb9 in apterous neurons, and to determine whether or not 

artificial expression of the candidate suppresses the lateral shift phenotype. This approach 

would have the advantage of being more high throughput than experiments assessing 

gene expression, but the disadvantage of not reflecting the endogenous expression 

patterns of robo2 or robo3. Further genetic experiments, such as making double mutants 

between hb9 and promising candidates, would help us identify factors that act in the Hb9 

pathway. 

An open-ended approach to identify downstream targets of Hb9 or Nkx6 could be 

pursued by performing RNA sequencing of subsets of motor neurons isolated by 

fluorescent activated cell sorting (FACS) in hb9 or nkx6 mutant embryos. Our lab used a 
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similar strategy to identify targets of Eve in dorsally-projecting motor neurons in a 

recently published microarray analysis (Zarin et al., 2014). Restricted labeling of MP1 

neurons can be achieved by using C544-Gal4. dMP2, a gut-innervating hb9+ motor 

neuron that requires hb9 for expression of the insulin-like neuropeptide Ilp-7, can be 

specifically labeled using dMP2-Gal4 (Miguel-Aliaga et al., 2004; Miguel-Aliaga et al., 

2008). There are no identified Gal4 drivers that would selectively label the RP3 motor 

neurons; instead, an intersectional strategy could be used. Combining a Gal4 line and a 

LexA line whose expression patterns exclusively overlap in the ventrally-projecting RP 

motor neurons, and expressing different fluorescent proteins with each driver, would 

allow for double-positive cells to be sorted. I have obtained several islet-LexA lines for 

this purpose, and the analysis of their expression patterns is in progress. It would also be 

informative to analyze changes in gene expression shared by all cells that endogenously 

express Hb9, using hb9-Gal4. Although labor intensive, an RNA sequencing approach 

would allow us to identify novel downstream targets of Hb9 and Nkx6, including genes 

that may be important for other aspects of motor neuron identity, as discussed below.  

Could Hb9 and Nkx6 be acting as activators in Drosophila motor neurons? A 

result that demonstrates this would be surprising, as Hb9 and Nkx6 proteins have only 

been shown to act as repressors in the nervous system (Lee et al., 2008a; Muhr et al., 

2001; Nishi et al., 2015; William et al., 2003). Interestingly, Drosophila Nkx6 contains 

both activator and repressor activities that map to different residues, though these 

activities were not tested for function in vivo (Syu et al., 2009). Its mammalian ortholog 

Nkx6.1 binds to genes that are upregulated as well as to genes that are downregulated 

upon Nkx6.1 loss of function in pancreatic beta cells (Schaffer et al., 2013; Taylor et al., 
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2013). Intriguingly, neither of Hb9’s putative repressor domains are required for robo3 

expression in MP1 neurons, or for the lateral position of intermediate hb9-Gal4+ axons. 

Perhaps Hb9 and/or Nkx6 have opposing transcriptional activities that are used for 

different aspects of nervous system development, as has been shown for Hox factors in 

the spinal cord (Dasen et al., 2003). Demonstrating that Hb9 acts an activator in vivo 

would have far-reaching implications, as it is a key regulator of nervous system and 

pancreatic development. Homozygous mutations in MNX1, the human ortholog of Hb9, 

are associated with neonatal diabetes and severe neurological defects, while heterozygous 

mutations are associated with Currarino syndrome, a poorly understood disease 

characterized by anorectal malformation (Bonnefond et al., 2013; Flanagan et al., 2014).  

 

Mechanism by which Islet regulates fra in motor neurons 

Islet and its vertebrate orthologs act as transcriptional activators, and DAM-ID 

data from Drosophila embryos suggest it binds directly to the fra locus (Tao et al., 2007, 

Lee et al., 2008, Cho et al., 2014, Wolfram et al. 2014). To identify cis-regulatory regions 

within fra that drive expression in motor neurons, transgenic lines can be made in which 

putative fra enhancers are placed upstream of a reporter gene. I have generated several 

GFP reporter lines using enhancers found within fra’s first intron, and while they all 

drive expression in subsets of embryonic neurons, I have not identified enhancers that 

drive expression in the RPs (data not shown). Once a cis-regulatory element is found to 

drive expression in cells of interest, a requirement for isl can be tested by monitoring 

reporter expression in isl mutants, and by mutating the predicted Islet binding sites in the 

transgene. In addition, a modified version of chromatin immunoprecipitation (ChIP) can 
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be tried in order to enhance the signal to noise ratio of Islet binding (Agelopoulos et al., 

2014). In this approach, lacO, the DNA binding sequence for the bacterial repressor LacI, 

is inserted next to the cis-regulatory region in the reporter transgene. Cell-type specific 

expression of an epitope-tagged lacI protein allows for efficient immunoprecipitation of 

chromatin from a restricted group of cells. A second round of ChIP can then be 

performed against the transcription factor of interest. The most rigorous demonstration 

that Islet directly regulates fra would require mutating identified Islet binding sites within 

fra’s endogenous locus using genome engineering techniques, in order to determine 

whether fra expression in RP motor neurons persists. The Crispr/Cas9 method could be 

used for this purpose (Xu et al., 2015).  

 

Exploring the requirements for Drosophila motor neuron transcription factors in 

regulating neuronal identity throughout life 

Hobert and colleagues coined the term ‘terminal selector’ to describe transcription 

factors that are expressed in restricted classes of post-mitotic neurons and that 

coordinately regulate multiple late-arising features of their differentiation, including 

electrophysiological properties, neurotransmitter identity, target selection, and 

synaptogenesis (Hobert 2016). While several examples of such transcription factors have 

been described in C. elegans, and a few in vertebrates, it remains unclear how general 

this regulatory strategy is (Hobert and Flames, 2009; Kratsios et al., 2012; Lodato et al., 

2014). In Drosophila embryos, Baines et al. have shown that the intrinsic physiological 

properties of ventrally-projecting motor neurons are distinct from those of dorsally-

projecting motor neurons, and that these properties are regulated in part by Islet and Eve 
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(Pym et al., 2006, Wolfram et al., 2012). Eve represses the Slowpoke ion channel and the 

acetylcholine receptor nAcRalpha-96Aa when over-expressed, whereas Islet 

endogenously regulates the intrinsic properties of ventrally-projecting motor neurons 

through repression of the Shaker ion channel (Pym et al., 2006; Wolfram et al., 2012). 

Whether these transcription factors regulate additional genes that determine functional 

properties of motor neurons remains unknown. RNA-sequencing approaches like those 

described above would allow us to identify novel targets of Hb9, Nkx6, and Islet in 

ventrally-projecting motor neurons, and would determine if they act as general regulators 

of multiple aspects of RP identity. 

We have found that in addition to its previously known roles in regulating the 

electrical properties and the axon trajectory of ventrally-projecting motor neurons, Islet 

controls the targeting of their dendrites. Single cell-labeling experiments like those 

performed in Chapter 3 would determine whether Hb9, Nkx6, or Eve also regulate 

dendrite development in motor neurons, and whether the larval myotopic map is 

established by a group of core factors that regulate both axon and dendrite targeting. 

Subsets of interneurons that are pre-synaptic to the RP motor neurons are beginning to be 

identified, including some which can be genetically labeled, and it will be of high interest 

to determine whether disruptions in the molecular programs that regulate motor neuron 

differentiation and dendrite morphology result in defects in circuit connectivity, at both 

the anatomical and functional levels (Couton et al., 2015; Heckscher et al., 2015).   

We do not know if the Drosophila motor neuron transcription factors continue to 

be expressed throughout larval stages, but this could readily be monitored by antibody 

staining. If these factors persist, knockdown experiments could be performed to 
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determine if they are required for the maintenance of motor neuron morphology or 

function. Interestingly, Landgraf and colleagues found that the dendrites of dorsally-

projecting motor neurons grow throughout larval stages (Zwart et al., 2013), and an 

analysis of third instar larvae demonstrated that the dendrites of different classes of motor 

neurons are found within stereotyped medio-lateral zones that largely match those for 

embryonic motor neurons (Kim et al., 2009; Mauss et al., 2009). Whether motor neuron 

dendrites continuously require Netrin/Frazzled and Slit/Robo signaling for the selection 

of the appropriate medio-lateral trajectories as they grow is not known. This question 

could be answered by using the same single cell labeling strategy I developed to label 

embryonic motor neurons, combined with well-established techniques to stain larvae. 

Temporal control of gene knockdown could be achieved using the Gene Switch system, 

in which the DNA binding domain of GAL4 is fused to the activation domain of a steroid 

hormone receptor that requires ligand binding for activation (Osterwalder et al., 2001). 

Drosophila larvae can be fed or soaked in the ligand to allow for efficient induction of 

UAS target genes. Keshishian and colleagues identified approximately 50 Gene Switch 

Gal4 lines that are expressed in larval motor neurons; screening for lines expressed in 

ventrally-projecting motor neurons would allow for cell-type specific knockdown of 

genes using UAS-RNAi transgenes (Nicholson et al., 2008). If Robo or Fra receptors are 

required post-embryonically for dendrite position during larval stages, we could ask 

whether their expression in larvae requires Hb9, Nkx6 or Islet, or has become dependent 

on other factors. Indeed, if Hb9, Nkx6, Islet or Eve are expressed throughout larval 

stages, the Gene Switch system could be used to asked if they play post-embryonic roles 

in motor neuron maturation, function, or the maintenance of cell identity. 
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Transcriptional regulation of Robo2’s pro-crossing function 

Our data indicates that Robo2 acts non cell-autonomously to regulate 

commissural axon guidance, and that Robo2 over-expression in midline cells restores 

midline crossing in robo2, fra double mutants. Cell-type-specific over-expression of a 

UAS-Robo2 RNAi transgene in fra mutants would confirm that Robo2 endogenously acts 

in midline cells to promote midline crossing. Gal4 lines that vary in the localization and 

timing of their expression patterns should be tried, together with multiple UAS-Robo2 

RNAi inserts and Dicer2 over-expression. We do not have a Robo2 antibody, but can 

monitor endogenous Robo2 protein levels by using the HA-robo2 knock-in allele. 

Identifying additional upstream factors that regulate robo2 expression in different 

populations of cells would help us understand how its distinct activities are regulated. 

The Crews lab identified dozens of transcription factors that are expressed in subsets of 

midline neurons and glia (Wheeler et al., 2006). Analyses of embryos mutant for these 

genes would allow us to determine if they regulate robo2. The intriguing possibility that 

Robo2 acts in hb9+ or nkx6+ cells to promote midline crossing remains unexplored. 

Although robo2 expression in the RP3 neurons peaks at late stages of embryogenesis, 

low levels of robo2 could be acting earlier to inhibit Robo1. An enhancement of the fra 

phenotype upon removal of hb9 or nkx6 might indicate that robo2 acts in the RP neurons, 

or in other hb9+ or nkx6+ cells, to promote midline crossing, though future experiments 

would be necessary to rule out alternative explanations for such a result.  

The identification of regulatory elements within the robo2 locus that drive its 

expression in different cell types would further help us understand where robo2 acts to 

promote midline crossing, and might allow for the identification of novel factors that 
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regulate its expression. For instance, if cis-regulatory elements that drive expression in 

midline cells are identified, a bioinformatic analysis using Phylocon can be carried out to 

identify predicted conserved transcription factor binding sites, as in (Lacin et al., 2014). 

These candidates could then be tested for their roles in robo2 regulation and midline 

crossing. Finally, genome editing can be performed to mutate or delete different cis-

regulatory elements in order to disrupt endogenous robo2 expression in a cell-type 

specific manner. This would allow us to conclusively determine where robo2 is required 

to exert its different activities. 

 

Investigating the mechanism by which Robo2 promotes midline crossing  

We have found that Robo2 promotes midline crossing by inhibiting Robo1-

mediated repulsion in a non-cell autonomous manner, but the mechanism by which 

Robo2 interferes with Robo1 signaling remains to be defined. Experiments in cultured 

cells would determine if the presence of Robo2, either in cis or in trans, interferes with 

any of the known events involved in Robo1 signaling. These include Robo1 cleavage by 

the metalloprotease Kuzbanian/ADAM10 (Kuz); Robo1 internalization and association 

with early endosomal markers; Robo1’s interaction with the adaptor protein Dock; re-

localization of the downstream effector Sos to the membrane; and activation of the small 

GTPase Rac (Chance and Bashaw, 2015; Coleman et al., 2010; Fan et al., 2003; Yang 

and Bashaw, 2006). Preliminary data do not indicate that Robo2 interferes with Robo1’s 

ability to bind Slit, as determined by the S2R+ cell overlay assay (Tim Evans, personal 

communication). In addition, surface plasmon resonance experiments using purified 

Robo Ig domains demonstrate that Robo1 binds to its recognition site on Slit with higher 
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affinity than Robo2 does (Evans and Bashaw, 2010b). Similar biochemical experiments 

would allow us to more quantitatively assess whether Robo2 interferes with the Robo1-

Slit interaction in an Ig2-dependent manner, and to further characterize the interaction 

between Robo1 and Robo2, by determining if it is direct and by identifying the regions of 

Robo1 that mediate it. 

We observe cleavage of the Robo2 receptor to produce stable ectodomain 

fragments both in vitro and in vivo, but it remains unknown whether Robo2 cleavage is 

necessary for its pro-crossing function. Interestingly, both of the ectodomain cleavage 

products that are detected in lysates are pulled down by Robo1, and preliminary data 

indicate that a secreted form of Robo2 that lacks a transmembrane domain can also 

interact with Robo1 in S2R+ cells (data not shown). It will be informative to make UAS-

Robo2 ecto transgenic flies in order to test for this variant’s ability to bind and inhibit 

Robo1 in vivo. If the secreted Robo2 ectodomain does not have pro-crossing activity, this 

could indicate that Robo2 must interact with a necessary co-factor that is only present at 

the surface of the cell from which it is expressed. Alternatively, we may find that Robo2 

shedding enhances its ability to bind and inhibit Robo1. Preliminary data indicates that 

Robo2 is cleaved by the Kuz metalloprotease in vitro (Rebecca Chance, personal 

communication). It will be important to confirm that Kuz also cleaves Robo2 in vivo, and 

to try to make an uncleavable version of Robo2, for instance by using a similar strategy 

as was used to make uncleavable Robo1, another substrate of Kuz (Coleman et al., 2010). 

A better understanding of the form of Robo2 that promotes midline crossing would 

further explain how Robo2’s opposing activities are so tightly controlled in space and 

time. 
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Concluding Remarks 

It is well-established that individual axon guidance receptors have evolved to 

perform many different functions in the developing animal. Indeed, Drosophila Robo2 

might be an extreme example of such a multi-purpose receptor, as it has at least four 

distinct functions in the embryonic nervous system in addition to its roles in muscle and 

heart development (Evans, 2016; Kramer et al., 2001; Santiago-Martínez et al., 2006; 

Santiago-Martínez et al., 2008). It is less clear whether conserved regulatory factors act 

across cell types and biological processes to regulate the same target genes in different 

contexts.  

Islet’s function in regulating fra during both axon and dendrite development 

demonstrates that an individual transcription factor can control multiple aspects of 

morphogenesis through the same downstream effector. It remains to be seen if this 

strategy is conserved in other systems. In the vertebrate spinal cord, many of the cues 

present at the midline (Netrins, Semaphorins, Ephrins) are also found in the periphery, 

suggesting that their respective receptors may play multiple roles during the different 

stages of motor neuron differentiation (Huber et al., 2005; Kania and Jessell, 2003; Poliak 

et al., 2015). As the cues and receptors that regulate motor neuron dendrite positioning in 

the spinal cord are unknown, it remains to be determined whether vertebrate motor 

neuron transcription factors coordinately regulate axon and dendrite guidance through 

common effectors.  

Hb9’s ability to regulate Robo receptors is harnessed by the developing embryo in 

at least two distinct types of neurons, with very different effects, demonstrating how 

regulatory relationships can be redeployed across cell types. Could the relationships we 
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have described be conserved in tissues outside the nervous system? Islet and Fra are 

expressed in cardioblasts in the Drosophila embryo, and play key roles in the formation 

of the developing heart, though it remains to be determined whether islet regulates fra 

there (Boukhatmi et al., 2012; Macabenta et al., 2013; Mann et al., 2009; Tao et al., 2007; 

Zmojdzian and Jagla, 2013). The vertebrate orthologs of Hb9, Nkx6 and Islet are highly 

and specifically expressed in pancreatic cells, and are essential regulators of pancreatic 

development and beta cell maturation (Ahlgren et al., 1997; Harrison et al., 1999; 

Murtaugh and Melton, 2003; Pan et al., 2015; Schaffer et al., 2013). Intriguingly, 

pancreatic endocrine cells also express many cell adhesion molecules and axon guidance 

receptors, including Robos (Yang et al., 2013). It is exciting to speculate that the 

regulatory relationships we have identified in the Drosophila embryonic nervous system 

might be conserved across species and tissue types. 

In summary, my thesis work identified roles for Hb9 and Islet in specifying axon 

and dendrite morphology through the regulation of Robo and Frazzled receptors in the 

Drosophila embryo, and described a new activity for Robo2 in promoting midline 

crossing. Future work investigating the mechanisms by which these transcription factors 

and their effectors act promise to continue to shed insight into the principles that govern 

nervous system development. As activity-dependent transcriptional mechanisms will 

continuously remodel the structure and function of a neuron during late stages of 

development and adulthood, it will be of high interest to determine whether regulatory 

relationships that are used during the hard-wired stages of embryonic development, such 

as those described here, are re-deployed to allow for plasticity throughout life. 
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