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Abstract
This dissertation consists of three essays. The first chapter proposes a model life table to investigate the human
mortality at early ages. The model was estimated from the vital records, observing the experiences of 24
countries, which in some cases are at end of the nineteenth century and much of the twentieth century. Using
few input values, the model predicts a mortality schedule for the first days, weeks, months, and years of life.
Furthermore, the model is flexible to represent age patterns in conditions of either low or high mortality. Thus,
the main application is as a method for indirect estimation, in contexts where vital records are incomplete,
imperfect, or non-existent. In this direction, the second chapter takes advantage of the model to investigate
the mortality patterns and the quality issues of the mortality estimates from self-reported data. To this end, a
total of 252 Demographic and Health Surveys were analyzed in light of the predictions of the model, in order
to identify particular characteristics of these populations. These comparisons lead to the conclusion that
populations with high levels of mortality are more likely to show late patterns of under-five mortality. The
model was also used to examine data quality issues regarding misreported ages at death. Particularly, this
chapter proposes a simple solution to the problem of heaping at the age of 12 months and the
underestimation of the infant mortality. The third chapter investigates the relationship between health status
and survival expectations on a sample of mature adults aged 45+, who participated in the Malawi Longitudinal
Study of Families and Health between 2006 and 2012. In particular, structural equation models were
estimated assuming intertemporal relationships between physical health, mental health, and the formation of
survival expectations. These models identify different pathways that have been discussed from theoretical and
empirical approaches showing evidence of the concomitancy of physical and mental health issues, and the
relevance of the expectations about life. This paper quantifies a significant impact of mental health on the
prospective physical health and provides evidence on the differentiated adaptation pathways for men and
women.
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ABSTRACT 

 

DEMOGRAPHIC MODELS OF HEALTH AND MORTALITY AT BOTH 

EXTREMES OF THE LIFESPAN 

Julio E. Romero Prieto 

Hans-Peter Kohler 

 

This dissertation consists of three essays. The first chapter proposes a model life table to 

investigate the human mortality at early ages. The model was estimated from the vital 

records, observing the experiences of 24 countries, which in some cases are at end of the 

nineteenth century and much of the twentieth century. Using few input values, the model 

predicts a mortality schedule for the first days, weeks, months, and years of life. 

Furthermore, the model is flexible to represent age patterns in conditions of either low or 

high mortality. Thus, the main application is as a method for indirect estimation, in 

contexts where vital records are incomplete, imperfect, or non-existent. In this direction, 

the second chapter takes advantage of the model to investigate the mortality patterns and 

the quality issues of the mortality estimates from self-reported data. To this end, a total of 

252 Demographic and Health Surveys were analyzed in light of the predictions of the 

model, in order to identify particular characteristics of these populations. These 

comparisons lead to the conclusion that populations with high levels of mortality are 

more likely to show late patterns of under-five mortality. The model was also used to 

examine data quality issues regarding misreported ages at death. Particularly, this chapter 

proposes a simple solution to the problem of heaping at the age of 12 months and the 

underestimation of the infant mortality. The third chapter investigates the relationship 

between health status and survival expectations on a sample of mature adults aged 45+, 

who participated in the Malawi Longitudinal Study of Families and Health between 2006 

and 2012. In particular, structural equation models were estimated assuming 

intertemporal relationships between physical health, mental health, and the formation of 

survival expectations. These models identify different pathways that have been discussed 

from theoretical and empirical approaches showing evidence of the concomitancy of 

physical and mental health issues, and the relevance of the expectations about life. This 

paper quantifies a significant impact of mental health on the prospective physical health 

and provides evidence on the differentiated adaptation pathways for men and women. 
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Chapter 1 

Under-five mortality: a model life table 

approach 

Abstract 

The lack of reliable records is one of the main problems in the study of mortality at early 

ages in less developed countries. However, indirect methods are used to estimate basic 

demographic statistics. This paper proposes a model life table for under-five mortality, 

which is estimated from the vital records of 24 countries. Records included in the model 

are dated from the end of the nineteenth century and much of the twentieth century. The 

pertinence of this time period is that it encloses the pronounced decline in infant 

mortality, where prosperity, medical developments, and social transformations played a 

decisive role. The model incorporated a diversity of countries, enriching the estimation 

while adding different socioeconomic backgrounds and climate conditions, which largely 

affected mortality patterns. Using a few input values, the model allows estimating a 

complete mortality schedule: days in the first week of life, weeks to complete the first 

month, months at postneonatal ages, trimesters in the second year, and single years of age 

to complete childhood. Existing models are general and do not examine variations in the 

mortality pattern occurring at an early age. By using different mortality indexes and 

multiple quantitative methods, the model was estimated by identifying a group of input 

parameters that amplify the predictive power of the model. Finally, the paper presents a 

model open to the estimation of mortality schedules by using a set of entry values, 

predefined by the researcher. By formulating indirect estimations based on incomplete 

information, this model constitutes an essential tool in the demographic analysis.  

Key words: Infant and child mortality; under-five mortality; demographic estimation; 

indirect methods; models of mortality; historical sources of mortality data.  



2 
 

1.1. Introduction 

Model life tables constitute an essential tool for the demographic analysis. They are 

stylized representations of the force of mortality as a function of age (Coale & Demeny, 

1966), and models predict the change on the mortality pattern resulting of a change in the 

level of mortality. According to the approach involved, model life tables could be 

mathematical, relational, or demographic (Ewbank, et al., 1983). Demographic models 

are empirically constructed from a collection of life tables; tables that were calculated 

directly from the vital records whose quality is reliable. In the practice, models are used 

for validation purposes, as well as for indirect estimation (Brass, 1971; Coale & Trussell, 

1996). In the first case, models provide a standard to examine the consistency of the data. 

In the second case, models reproduce an entire mortality schedule from incomplete 

information (United Nations, 1982). The simplicity of its implementation, the 

demographic consistency, and the statistical adjustment are three aspects that should be 

guaranteed by a model life table (Murray, et al., 2003). Therefore, the purpose of a 

demographic model is to estimate the force of mortality given a reduced number of 

parameters that best represent the shape and the level of mortality. 

Model life tables do not fit in the strict definition of a model, since they imply neither 

theoretical constraints nor causal arguments (Murray, et al., 2003). However, models rely 

on the strong correlation of the mortality at different ages (Wilmoth, et al., 2012). This 

correlation emerges from the influence of the environment and the socioeconomic 

background on the risk of dying of all individuals at a particular time, regardless of their 

age and sex (Preston, 1972). When several populations at different times in history are 

put together, correlations become more evident. Taking advantage of this regularity, 

models estimate the mortality of a wide range of ages as a function of a single index, 

inasmuch as it predicts intrinsic characteristics such as the shape and level of mortality. 

Since models produce the hypothetical mortality schedule that would be inferred from a 

set of real populations (Murray, et al., 2003), empirical models are as consistent as the 

life tables used to estimate them.  

Back in 1955, the Population Branch of the United Nations Department of Social Affairs 

proposed a method to estimate the life expectancy and mortality rates for countries with 

unreliable or nonexistent vital statistics. The method was called Model Life Tables for 

Under-developed Countries, and the main objective was to infer a mortality schedule for 

all ages using the infant mortality rate as a single entry parameter. The infant mortality 

was used as the index, inasmuch as it exhibited a wide dispersion. Besides the statistical 

argument, two additional characteristics were considered (United Nations, 1955). On the 

one hand, infant mortality has been much more sensitive to changes in the socioeconomic 

background. On the other hand, infant mortality has been approached through surveys in 

countries lacking vital records, thus it would be a convenient entry value for indirect 
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estimation (United Nations, 1955; Brass, 1996). The UN model was estimated applying 

Ordinary Least Squares to a set of 158 empirical life tables. The model assumes a 

quadratic relation between the probability of dying at a particular age interval and that of 

the previous interval. Life tables were chosen in favor of the geographic and time 

dispersion, although excluding years of wars and epidemics. Criticism and improvements 

did not wait so long. One of the issues of the UN model is the lack of accuracy in 

estimating other values of a life table (those that were not used for the estimation), since 

the model overestimated the life expectancy at birth by more than two years of life 

(Gabriel & Ronen, 1958). Inasmuch as some life tables were not reliable, the main 

concern with the UN model was the prediction of probabilities of dying using already 

predicted values, something that might introduce systematic bias (Coale & Trussell, 

1996). As a second approach, Ledermann & Breas (1959) estimated a model life table 

using principal components and virtually the same database of the UN model. The three 

components of the model proposed by Ledermann & Breas explained the 93% of the 

variation in mortality rates at all ages, but an additional fourth component would had 

helped to explain the variation in infant mortality rates (Hogan, 1976). However, the 

fourth component was not included in the main model. 

Although the estimation based on factor analysis and principal components offers quite 

an interesting approach, the original idea of one single predictor and a quadratic 

specification has prevailed in the demographic estimation. In this regard, Coale & 

Demeny (1966) estimated the first version of their famous Regional Model Life Tables 

and Stable Populations, using as the index the life expectancy at the age of 10 years. One 

of the most important improvements introduced by Coale & Demeny (1966) was a 

collection of 326 empirical life tables estimated for countries with censuses and vital 

statistics. The clearest innovation was the analysis of predefined mortality families: 

North, South, West, and East models, representing different epidemiological patterns and 

leading causes of death. The family or region, and the level of mortality are the two entry 

parameters in this approach. Each family reproduces a particular composition of the 

mortality at early ages and the mortality at adult ages. The combination of region and life 

expectancy at age 10 allowed the model to represent a variety of mortality patterns that 

might illuminate the assessment of the mortality schedules of countries with nonexistent 

or unreliable data. This model was reformulated in 1989 in order to improve the fitting of 

lower mortality schedules and to provide a revisited estimation of mortality at older ages 

(Coale & Guo, 1989). Following the approach of modeling the level and the shape of 

mortality, Wilmoth et al. (2012) propose an empirical model of two entry parameters 

fitted to 719 life tables covering a broad set of mortality patterns with more geographical 

disperssion and a broad number of years. The first entry parameter is the probability of 

dying within the first five years of life (henceforth referred to as the under-five 

mortality), while the second is an adjustable value shaping the excess of mortality at adult 
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ages. The clear innovation of Wilmoth’s model is regarding the indirect estimation, since 

the shape of the mortality is tailored to the particular characteristics of the population to 

be studied. 

Despite the great strengths of previous models to describe the mortality for a complete 

lifespan, there are three limitations in the study of the age patterns of infant and child 

mortality using these models. The first limitation is regarding the composition of ages. In 

conventional models, age patterns of infant and child mortality are typically represented 

using two groups: the infant mortality which is occurring within the first year of life, and 

the child mortality ranging from 1 to 5 years. Since these are broad intervals, 

conventional models investigate mortality patterns neither at infant ages nor during the 

childhood. It is well known that the number of deaths of a birth cohort descends rapidly 

as the age of the infant increases. Nevertheless, the fall in the mortality force does not 

always occur at the same rate and intensity. The second limitation is the broad or general 

adjustment to all ages. Although infant and child mortality play a leading character in 

predicting the mortality at adult ages, less attention has received the problem to make 

predictions at early ages using limited information. Thus, country and time variations 

within the first months and years of life were not investigated as an independent problem. 

Perhaps, one exception was the Age Patterns of Infant Mortality estimated by Hogan 

(1976) using the method of principal components. However, the first 12 months of life 

are not wide enough time to examine all changes in the risk of death occurring at early 

ages; hence one of the problems of Hogan’s approach is the exclusion of the child 

mortality. The third limitation is the futility to apply the analytical or mathematical 

approach. Even though mortality is typically high at both extremes of the life span, the 

force of mortality during the first weeks and months of life does not fit a law of mortality 

that can be deduced from a single equation. Although the Gompertz Law of Mortality 

applies with some reliability to the ages 30+ (Coale & Demeny, 1966), the mathematical 

approximation proposed by Bourgeois-Pichat only describes porbabilities of dying at 

postneonatal ages and is more suitable for historical populations (Galley & Woods, 1999; 

London, A, 1993). 

This paper estimates a model life table for under-five mortality using vital records from 

historical and contemporaneous populations. The model is able to reproduce mortality 

schedules of an under-five population by detailed subintervals of age: days in the first 

week of life, weeks to complete the first month, months at postneonatal ages, trimesters 

in the second year, and single years of age to complete childhood. A database was 

constructed from the empirical life tables of 24 countries; some of them dated at the end 

of the nineteenth century and most of the twentieth century. This period is of major 

relevance since it covers the great decline in infant mortality: an epoch of economic 

progress, medical advances, and social transformations. In the same sense, the 
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heterogeneity of countries included constitutes a valuable aspect of the model, since 

socioeconomic background and environmental conditioning may produce different 

mortality patterns even if the overall mortality level would be the same. The model was 

estimated using different mortality indexes and a variety of quantitative methods. This 

comparative approach allows identifying a group of input parameters that maximize the 

predictive power of the model. However, the model is open to estimate a mortality 

schedule using a set of entry values (up to four parameters) predefined by the researcher. 

This makes the model an indispensable tool in the demographic analysis since it allows 

indirect estimations based on limited information.  

 

1.2. Background 

The relevance of the mortality pattern at early ages 

The nutritional status, the immune status, and the exposure to infections are proximate 

factors of children’s health. These factors interact with each other during the first years of 

life producing changes in the probabilities of dying (Garenne, 1982). Passive immunity is 

inherited from the mother and is often improved by breastfeeding. When breast milk 

ceases its contribution to the immune status of infants, they depend on their autonomous 

immunity. However, the weaning by itself increases the exposition to contaminated food. 

Hence, the transition to a solid diet is a period of nutritional stress that is not observed in 

other ages (Jelliffe & Jellife, 1979). However, breastfeeding also enhances birth intervals 

and increases the chances of survival in consequence (Huffman & Lamphere, 1984). In 

poor economic environments, prolonged birth intervals reduce the probability of dying as 

infants receive exclusive care and feed from their mothers (Palloni & Millman, 1986); 

and exclusive breastfeeding in the first semester of life reduces the risk of morbidity and 

mortality due to diarrheal diseases (Lamberti, et al., 2011). In historic populations, 

breastfeeding reduced the mortality in the first semester of life, although infants who 

were artificially fed had a lower mortality in the following six months of life (Knodel & 

Kintner, 1977). In modern or high-income populations vaccination and nutritive formulas 

are available, thus the benefits of breastfeeding are lower. However, the long-term effects 

of breastfeeding are associated with the intelligence performance and the prevention of 

infections and diseases related to inadequate diets such as diabetes and overweight 

(Victora, et al., 2016). In light of the foregoing, the probability of survival depends on the 

nutritional and immune status to resist infections. 

Nutritional stress can also occur during gestation. Low birth weight is associated with 

neonatal mortality (McCormick, 1985; The Lancet, 1988; Victora, et al., 1988), and the 

probabilities of survival increase as newborns gain weight (Bourgeois-Pichat, 1950). 

Regardless of height and body mass index of the mother, low birth weight is associated 
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with low protein intake at the end of pregnancy and high carbohydrate intake at the 

beginning (Godfrey, et al., 1996). In seasons of food scarcity and through situations of 

extreme poverty, food supplements for pregnant mothers increase birth weight and reduce 

early neonatal mortality (Prentice , et al., 1987; Ceesay, et al., 1997). Furthermore, 

nutritional stress during gestation and the first months of life is also associated with a 

lower probability of survival after puberty (Moore, et al., 1997; Moore, et al., 1999), and 

a higher prevalence of degenerative diseases in adult ages (Barker, 1990; Roseboom, et 

al., 2001). From this perspective, nutrition during the perinatal period has an impact on 

the health status at all ages. 

The significance of the mortality decline at early ages 

In the second half of the nineteenth century, an unprecedented decline in mortality at 

early ages is observed in most developed countries. Economic wellbeing increased and 

population had access to more nutritious diets (Beaver, 1973; McKeown & Record, 1962; 

McKeown, 1983). However, social transformations and technological innovations were 

the leading forces of change in reducing the exposure to the risk of dying. In France, the 

first regulations that sought to protect the lives of infants were promulgated in the 1870s 

and the practice of baby farming was abolished because of the excess of mortality 

(Rollet, 1997). 

The nineteenth century culminated with significant advances in the field of bacteriology, 

such as the discovery of the bacillus of tuberculosis and the cholera microorganism in the 

decade of 1880s, and antitoxins to treat diphtheria in the decade of 1890s (Preston & 

Haines, 1991). Pasteurized milk and other nutritional substitutes could have some effect 

in reducing the burden of infant deaths (Beaver, 1973). In England, the first national 

conference on infant mortality took place in 1906 and discussed the fact that many of the 

causes of death were preventable (Dyhouse, 1978). In the United States, the beginning of 

the twentieth century was the onset of the formal medical knowledge of obstetrics and 

pediatrics (Preston & Haines, 1991). Medical developments such as vaccines, introduced 

in the late nineteenth century, and antibiotics, since the mid-twentieth century, would be 

the result of a better understanding of the causes and treatment of some diseases 

(Easterlin, 2004; Preston & Haines, 1991). 

In addition to innovations in the practice of medicine, public health transformed the 

cities. Clean water, better sewage disposal, paved streets, and other sanitary measures 

were effective actions to prevent the spread of some diseases (Easterlin, 2004). 

Moreover, filtration and chlorination of water would be a leading innovation behind the 

decline of the infant mortality rates in the early twentieth century for cities in the United 

States (Cutler & Miller, 2005). Before these transformations occurred, the most effective 

ways to protect the lives of the infants and children were to be very vigilant of their 
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feeding, and to send them to the rural areas during the warmest months of the year in 

order to prevent infections. 

 

1.3. Data 

Primary sources 

A total of 1,319 life tables were calculated from the vital records of 24 countries. These 

were mostly European countries: Austria, Belgium, Denmark, England and Wales, 

Finland, France, Germany, Hungary, Ireland, Italy, Netherlands, Norway, Poland, 

Portugal, Spain, Sweden, and Switzerland; in addition to: Australia, Canada, Chile, Israel, 

Japan, New Zealand, and the United States. This is the group of countries of the Human 

Mortality Database (HMD), nevertheless excluding Iceland and Luxemburg because of 

the small population, and states from the former Soviet Union. 

Life tables were calculated after the consolidation of two sources of information: (1) 

Census enumerations, estimated population for intercensal years, and deaths (by single 

years of age) were taken from the HMD. (2) The distribution of deaths within the first 

year of life was extracted from the United Nations repository of vital statistics 

(henceforth referred to as the UN database). With a few exceptions, the standard format 

of the UN database enumerates deaths by days during the first week of age, weeks during 

the first month (28 days of life), and then months at postneonatal ages. These two sources 

alone allow calculating a total 732 life tables. However, the UN database includes 

information after 1970 and given the selection of countries, it describes a context of low 

mortality. Therefore, a total 587 additional tables were calculated directly from the 

demographic yearbooks of selected countries before 1970 (henceforth referred to as the 

historical database). Country-years included in the analysis are described in Table 1. 

The same sources of the HMD were investigated, yet were only considered those 

country-years reporting deaths by sex and subintervals of age with similar characteristics. 

Considering that the historical sources report some figures collected at the end of the 

nineteenth century, the addition of historical data enriches the model so it is able to 

reproduce the mortality pattern of high infant and child mortality. Additional life tables 

have two advantages. In the first place, they cover the historical period of the infant 

mortality decline. In the second place, historical data provide more detailed information 

of the distribution of deaths at early ages. In some cases (Belgium, Netherlands, Norway, 

and Sweden), historical data also include the number of deaths within the second year of 

life by trimesters of age. These additional life tables were calculated using the same 

methods applied to the UN life tables. 
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Table 1: Country-years included in the analysis 

Country Years Historical UN database 

Australia 1970-71, 1973-2009 - 39 
Austria 1970-2010 - 40 
Belgium

1
 1841-60, 1861-70(average), 1878-84, 1970, 1972-

83, 1986-87, 1992, 2007-09 28 19 
Canada 1970-75, 1977-86, 1988-90, 1992, 1995-97, 1999-

2006 - 31 
Chile 1992-2005 - 14 
Denmark

2
 1890-94, 1896-69, 1970-93, 1997, 2000-10 79 36 

England and Wales
3
 1905-45, 1970-1985 41 16 

Finland
4
 1881-85(a), 1886-90(a), 1891-95(a), 1896-1900(a), 

1901-27, 1928-29(a), 1930-36, 1937-39(a), 1948, 

1970-90, 1994, 1996-98, 2000-06, 2008-09 41 35 
France

5
 1885-88, 1893-19, 1926-29, 1931, 1933, 1935-36, 

1942, 1947, 1970-72, 1974-92, 1994-99, 2001-09 41 37 
Germany 1991-94, 1996-97, 2001-07, 2010 - 14 

Federal Republic
6
 1956-65, 1970-90 10 21 

Democratic 

Republic
7
 

1956-89 
34 - 

Hungary 1970-94, 1996-09 - 39 
Ireland 1970-88, 1990-99, 2001-06, 2008 - 36 
Israel 1983-98, 2000-09 - 26 
Italy 1970-72, 1974-85, 1988-94, 2001-08 - 30 
Japan

8
 1947-50, 1954-56, 1958-60, 1962-64, 1970-94, 

1996-2000, 2002-09 13 38 
Netherlands

9
 1850-64, 1970-94, 1996, 1998, 2000-01, 2004-08 15 34 

Norway
10

 1876-1900, 1901-05(a), 1906-26, 1927-30(a), 

1931-75, 1976-1992, 1995-2001, 2003-09 93 31 
New Zealand 1970-75, 1977-2008 - 38 
Poland 1970-99, 2001-09 - 39 
Portugal

11
 1940, 1942-59, 1962, 1970-93, 1996-97, 2001-09 20 35 

Spain 1976-83, 1987-91, 1995-98, 2000-09 - 26 
Sweden

12
 1891-2001, 2002, 2004-2010 111 8 

Switzerland 1970-82, 1984-94, 1996, 1998-2010 -  38 
United States

13
 1933-1993, 1995-2003, 2007-09 61 12 

Total -  587 732 
 

                                                 
1
Ministre de l'Intérieur, Statistique Générale de la Belgique - Exposé de la Situation du Royaume 1841, 

1851, 1861, Bruxelles: TH. Lesigne. Annuaire Statistique de la Belgique 1879-90, Bruxelles: Imprimerie 

Félix Callewaert Père – Imprimerie Veuve Monnon – Imprimerie & Lithographie Ad. Mertens. 
2
 Danmarks Statistik, Statistisk Tabelværk - Vielser, Fødte og Døde 1890, 1895, 1901, 1906, 1911, 1916, 

1921, 1926, 1931, 1941, 1956, København (Copenhague): Statens Statistiske Bureau. 
3
 The Registrar General, Annual Report, Births, Deaths and Marriages 1905-1919, Annual Report 1920, 

Statistical Review (Text) 1921-38, Statistical Review (Medical) 1930-37, 1940, London: His Majesty’s 

Stationery Office. 
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The sample of country-years included in the analysis is not random in the sense that were 

selected those cases reporting deaths by sex and subintervals of age within the first year 

of life. In addition, there were selected the cases with consistent values comparing the 

cumulative number of deaths, by years of life, reported on the UN database with the 

effective number of deaths informed on the HMD for each single age. In other words, 

data collected from the UN repository were validated using information from the HMD 

as a standard of completeness. Since both datasets, the historical and UN database, were 

reported by calendar years, life tables are considered period data. Thus, mortality rates 

and empirical life tables were calculated using the assumption of synthetic cohort. 

Moreover, it is assumed that the empirical life tables used in this paper are of good 

quality as they permit the direct estimation of the age-specific mortality rates within 

neonatal and postneonatal ages. Therefore, mortality patterns calculated from reliable 

                                                                                                                                                 
4
 Statistiska Centralbyrån, Statistisk Årsbok för Finland 1904-08, 1911-14, 1921, 1923, 1925, Helsingfors 

(Helsinki): Kejserliga Senatens Tryckeri – Statsrådets Tryckeri. Tilastollisen Päätoimiston, Suomen 

Tilastollinen Vuosikirja 1922, 1924, 1926-29, 1932-37, 1941-44, 1950, Helsinki: Valtioneuvoston 

Kirjapaino – Statistiska Centralbyrån. 
5
 Service de la Statistique Générale de France, Annuaire Statistique de la France 1888-89, Nancy: 

Imprimerie Berger-Levrault et Cie. 1890-91, Paris: Imprimerie Nationale. Bureau de la Statistique 

Générale, Annuaire Statistique de la France 1898, Annuaire Statistique 1900-04. Statistique Générale de la 

France, Annuaire Statistique 1905-07, 1911-12, 1928-35. Direction de la Statistique Générale et de la 

Documentation, Annuaire Statistique 1936-39. Institut National de la Statistique et des Études 

Économiques, Annuaire Statistique 1940-45, Statistique du Mouvement de la Population 1946-47, Paris: 

Imprimerie Nationale. 
6
 Statistisches Bundesamt (Wiesbaden), Statistisches Jahrbuch für die Bundesrepublik Deutschland 1952-

88, Stuttgart – Köln – Mainz: W. Kohlhammer GmbH.  
7
 Staatlichen Zentralverwaltung für Statistik, Statistisches Jahrbuch der Deutschen Demokratischen 

Republik 1962, 1967-89, Berlin: Van Deutscher Zentralverlag – Staatsverlag der Deutschen 

Demokratischen Republik.  
8
 Statistics Bureau of the Prime Minister’s Office, Japan Statistical Yearbook 1950-52, 1957-58, 1961, 

1965, 1967, Tokyo: Nihon Statistical Association. 
9
 Departement van Binnenlandsche Zaken, Statistisch jaarboekje voor het koningrijk der Nederlanden 

1851-55, 1857-60, 1863, 1865, 1867-68, ś-Gravenhage (The Hague): Algemeene Landsdrukkerij – Van 

Weelden en Mingelen. 
10

 Det statistiske Centralbureau, Folkemængdens Bevægelse 1876-1975, Kristiania (Oslo): Norges 

Officielle Statistik. 
11

 Instituto Nacional de Estadistica, Annuario Demografico 1940-62, Lisboa: Instituto Nacional de 

Estadistica. 
12

 Sveriges Officiella Statistik, a) Befolkningsstatistik 1891-1910, Befolkningsrörelsen 1911-60, 

Folkmängdens Förändringar 1961-66, Befolknings Förändringar 1967-90, Befolkningsstatistik, 1991-

2001, Stockholm: Statistiska Centralbyråns. 
13

 US Department of Commerce – Bureau of Census, Birth, Stillbirth, and Infant Mortality Statistics 1931-

36, Vital Statistics of the United States (Natality and Mortality Data) 1937-44, Federal Security Agency – 

United States Public Health Service, Vital Statistics of the United States (Natality and Mortality Data) 

1945-49. US Department of Health, Education, and Welfare – Public Health Service, Vital Statistics of the 

United States (Marriage, Divorce, Natality, Fetal Mortality, and Infant Mortality Data) 1950-59, 

(Mortality) 1960-75. UD Department of Health and Human Services – Public Health Service, Vital 

Statistics of the United States(Mortality) 1976-93, Washington, DC – Rockville and Hyattsville, MD: 

United States Government Printing Office. 
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sources are not affected by errors introduced by procedures used to collect and to report 

mortality data. In absence of data problems, changes in the mortality schedule would 

respond to subjacent epidemiological patterns. 

Age intervals 

The analysis of data from historical sources is desirable, but has one clear limitation: 

tabulations of deaths at premature ages were reported using heterogeneous formats. The 

UN data is consistently reported by days and weeks within the first month of age, and 

months at postneonatal ages. However, some specifics deserve attention. Swedish 

yearbooks reported neonatal deaths by days of age, postneonatal deaths by months of age, 

and second-year deaths by trimesters of age. However, second-year deaths were no 

longer detailed since 1968. Norwegian yearbooks have a similar format, but neonatal 

deaths were reported by days for the firsts two weeks of life, and then grouped to 

complete the first month of life (1876-1935). Since 1936, deaths occurring during the 

third and fourth week of life were reported individually. This is the same format of 

Finnish yearbooks, although second-year deaths were not tabulated in detail. 

Yearbooks of England and Wales reported neonatal deaths by weeks of age, and 

postneonatal deaths by months of age. Since 1906, deaths occurring the first day of life 

were tabulated individually. More details were introduced in 1931, when deaths 

occurring in the first week were reported by days of age and the report also included the 

number of deaths occurring in the first hour of life. However, postnatal deaths were 

grouped in trimesters of age since 1926. Demographic yearbooks of the United States 

have a similar format. Neonatal deaths were tabulated by days of age only for the first 

week, and then by weeks of age to complete the first month. However, postneonatal 

deaths were consistently reported by months of age. The number of deaths occurring in 

the first hour of life was reported since 1952. 

In some cases, fewer details were reported regarding the neonatal deaths and the 

postneonatal deaths were not tabulated by months of age. Statistical yearbooks of the 

Federal Republic of Germany reported neonatal deaths by days of age for the first two 

weeks of life, and then by weeks of age. Postneonatal deaths were reported in months of 

life (1956-1965). However, postneonatal deaths were no longer detailed since 1966 and 

most of the details at neonatal ages discontinued in 1970. Thus, the database was 

truncated in 1965 and the period 1970-1990 relies on data from the UN repository. 

Statistical yearbooks of the Democratic Republic of Germany reported neonatal deaths at 

0-3, 4-10, and 11 or more days of age, while postneonatal deaths were tabulated by 

months of age (1956-1967). Although postneonatal deaths continued to be reported in 

months of age, no more details were provided for neonatal deaths (1968-1989). 
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Statistical yearbooks of the Netherlands reported infant deaths by months of age, and 

second-year deaths by trimesters of age (1850-1864). Thus, no details were provided for 

the distribution of neonatal deaths. This is the same format of the statistical yearbooks of 

Belgium (1841-1870). However, more details were provided when neonatal deaths were 

reported by groups of five days and by individual days for the first five (1878-1884).  

The only detail of Danish yearbooks at neonatal ages is in the number of deaths in the 

first day of life, with the exception of the period 1896-1900 when no details were 

provided. Postneonatal deaths were reported by months of age for the second and third 

month of life, and then by trimesters of age. However, more details were later introduced. 

Postneonatal deaths were reported by months of age since 1910, and neonatal deaths 

included tabulations for the first day and the first week of life since 1921. Similarly, 

statistical yearbooks of Portugal reported deaths occurring in the first trimester of life by 

months of age, and then by trimesters of age to complete the first year of life (1940-

1954). Since 1955, neonatal deaths were reported by days of age for the first week, and 

weeks to complete the first month of life; while postneonatal deaths were tabulated by 

months of age.  

French yearbooks reported neonatal deaths at 0-7, 8-14, and 15 or more days of age. 

Postneonatal deaths were reported grouping the second and the third month of life, and 

tabulating the deaths occurring the second trimester and the second semester of life 

(1885-1887). This format changed from 1888, when neonatal deaths were reported at 0-4, 

5-9, 10-14 and 15 or more days of life; and the deaths occurring during the second and 

third month of life were tabulated independently. Likewise, postneonatal deaths were 

tabulated by months of age since 1947. Statistical yearbooks of Japan have a similar 

format. Neonatal deaths were reported at 0-5, 6-10, 11-15, and 16 or more days. 

Postneonatal deaths were tabulated for the second and the third months of life, as well as 

the total number of deaths occurring in the second trimester, and the second semester of 

life (1947-1950). This format changed and neonatal deaths were reported by weeks of age 

(1954-1959). However, in 1960, 1962, and 1964 no further details were given on the 

distribution of neonatal deaths. 

Given the characteristics of the sources of data, there were imposed the following age 

intervals in the model life table: (1) days within the first week; (2) weeks to complete the 

first month of life of 28 days longer; (3) months of age to complete the first year of life, 

with a second month unusually longer in order to include deaths occurring after the 28
th

 

day of life; (4) trimesters of age within the second year of life; and (5) years to complete 

the first five years of life. Yet, some country-years do not fit the age intervals described; 

the problem of irregular formats is faced under the assumption of a constant force of 

mortality at each possible age interval. Although this assumption is reasonable when age 
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intervals are not longer than a year, the assumption is unsuitable at early ages, ever since 

the most detailed data show a rapid decline of the mortality force at neonatal and 

postneonatal ages. In this regard, specific observations lacking a direct report by days of 

life within the first week or by weeks during the first month were excluded from the 

estimations. 

 

1.4. Methods 

Mortality rates and cumulative probabilities of dying 

Life tables were calculated directly from death registrations. Usually, this information is 

tabulated by calendar years; thus, life tables were computed as period estimates. From 

this perspective, data describe the mortality experience of a particular year (a synthetic 

cohort), instead of an actual cohort. Compared to cohort life tables, period life tables can 

be calculated with no concern about migration. Life tables were calculated from age-

specific mortality rates; for each sex individually. Mortality rates were estimated from the 

number of deaths at each age interval, and the population at risk of dying, as shown in the 

following equation: 

 𝑚𝑛 𝑥 [𝑡, 𝑡 + 1) =
𝐷𝑛 𝑥 [𝑡,𝑡+1)

𝑁𝑛 𝑥 [𝑡,𝑡+1)
.       (1) 

Using a conventional notation in demography, equation (1) shows that a mortality rate at 

the age interval [𝑛, 𝑛 + 𝑥) is equal to the number of deaths, of those individuals whose 

age at death was at the age interval; divided by the population at risk of mortality at the 

same age interval. While the number of deaths was extracted from vital statistics, the 

population at risk of dying was estimated from the number of people at the same age. 

Demographic yearbooks tabulate mortality data at early ages by subintervals, such as 

days, weeks, and months of age, but the population is usually tabulated by years of age. 

Therefore, the exposure to the risk of mortality was assumed to be proportional to the 

length of the age interval 𝑛, as shown in equation (2), for the population less than 1 year-

old. 

 𝑁𝑛 𝑥 [𝑡, 𝑡 + 1) = 𝑛 ∙ 𝑁1 0 [𝑡, 𝑡 + 1),   0 < 𝑥 + 𝑛 ≤ 1. (2) 

Under the assumption of proportionality, the exposure to the risk of mortality was 

calculated for all infants bellow one year of age; and then, it was distributed according to 

the convenient age intervals by days, weeks, and months. The same approach was used 

for the second year of life, using population older than one year but younger than two 

years of age, 𝑁1 1 [𝑡, 𝑡 + 1). In this case, the risk of mortality was scattered by trimesters 

of age for those selected countries-years that reported death distributions at the second 
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year of life. For each country-year in the sample, the exposure was estimated from the 

population reported by single years of age under the assumption of linear growth, and 

using the mean of the initial and final population sizes, as shown in equation (3): 

 𝑁1 𝑦 [𝑡, 𝑡 + 1] =
1

2
∙ [ 𝑁1 𝑦 (𝑡 + 1) + 𝑁1 𝑦 (𝑡)],  𝑦 = 0, 1, … , 4. (3) 

Figure 1 shows the age-specific mortality rates for males, calculated from equation (1), 

from a selection of country-years. The flat segments represent the assumption of constant 

mortality rates at each age interval. Once the mortality rates were calculated, the next step 

was to estimate the cumulative probability of dying using the equation (4): 

 𝑞(𝑥) = 1 − 𝑒− ∫ 𝑚(𝑦)𝑑𝑦
𝑥

0 .       (4) 

For each life table, a total of 28 values were calculated given the age intervals used in the 

model. At neonatal ages, 10 cumulative probabilities of dying were calculated for the first 

seven days of life, and then by weeks to complete the first 28 days of life. At 

postneonatal ages, 11 values were calculated for each month to complete the first year of 

life. At the second year of life, 4 values were calculated by trimesters of age, and then 3 

additional values to complete the fifth year of live by single years of age. These 

cumulative probabilities of dying were the input of the model life table. Figure 2 plots the 

association of the cumulative probabilities of dying at different ages using the sources 

described in Table 1. In particular, the model exploits the fact that they are strongly 

correlated at different ages. 
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Figure 1: Age-specific mortality rates for males from selected country-years 

Male 

  

  
  

 

 

0,001

0,010

0,100

1,000

10,000

0 12 24 36 48 60

Age (months) 

lo
g
[n

M
x]

 

Sweden, 1899 

0,001

0,010

0,100

1,000

10,000

0 12 24 36 48 60

Age (months) 
lo

g
[n

M
x]

 

England & Wales, 1907 

0,001

0,010

0,100

1,000

10,000

0 12 24 36 48 60

Age (months) 

lo
g
[n

M
x]

 

Democratic Republic of Germany, 1957 

0,001

0,010

0,100

1,000

10,000

0 12 24 36 48 60

Age (months) 

lo
g
[n

M
x]

 

Portugal, 1959 



15 
 

Figure 2: Cumulative probabilities of dying 𝑞(𝑥) vs. under-five mortality 𝑞(60𝑚) 
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The level of mortality 

The model life table was estimated from a set of equations using one equation per age, 

and exactly the same predictor for all equations. This is, in summary, the main intuition 

of the empirical model: to use the same predictor at different ages and to exploit the 

strong correlation of the probabilities of dying at different ages. Cumulative probabilities 

of dying at all ages were used as the response variable, and the explanatory variable was 

defined as the probability of dying that best predicts the cumulative probabilities of dying 

at all other ages. Hence, the model produces a hypothetical mortality schedule given one 

single entry value. Inasmuch as the explanatory variable is related to the mortality at all 

ages, it works as an index of the level of mortality. 

Following a matrix notation, a column vector 𝑦 was defined, consisting of cumulative 

probabilities of dying at different ages within the first five years of life. For convenience, 

this vector is sorted by age, and then by country and year. Therefore, the probabilities of 

dying at earlier ages are located at the top of the vector, and the probabilities of dying at 

older ages are located at the bottom: 

𝑦 = [𝑞(1𝑑)′, ⋯ 𝑞(28𝑑)′, 𝑞(2𝑚)′, ⋯ 𝑞(60𝑚)′]′. Hence, 𝑞(28𝑑) is a column 

vector comprising the probability of dying within the first month of age for each country-

year included in the analysis, and for construction all vectors 𝑞( ) are sorted equally. 

Since the model was estimated from 1,319 empirical life tables, the length of each 𝑞( ) 

vector is 1,319. Similarly, given that the model includes of 28 age intervals, then the 

length of the response variable is 28 × 1,319.  

Although the dependent variable varies by age, country, and year, independent variables 

must be the same for all ages. Then, the right hand of the equation can be defined as: 

𝐼𝑟⨂𝑍; where 𝐼𝑟 is an identity matrix of dimension 𝑟 = 28, which is the number of ages in 

the model; 𝑍 is a matrix of explanatory variables depending on the level of mortality; and 

⨂ is the Kroeneker product. Following a conventional approach in model life tables, the 

dependent variable is assumed to be a log-quadratic function of the level of mortality. 

Hence, the right hand of the equation is defined as: 𝑍 = [𝜄 𝑙𝑛(H) 𝑙𝑛(H)2]; where 𝜄 is a 

vector of ones that will measure the constant term for each equation; and H is a vector of 

mortality levels. Thus, each element of the vector H represents the level of a particular 

country-year in the sample. Given the above description, the model life table model was 

the result of estimating equation (5).  

𝑙𝑛(𝑦) = [𝐼𝑟⨂𝑍] ∙ β + 𝜖.       (5) 

Considering that this is a quadratic model with 28 age intervals, the vector of coefficients 

β has 84 elements to be estimated. For a given level of mortality ℎ, the coefficients of the 

model predict the cumulative probabilities of dying at different ages. Separate models 
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were estimated for men and women, using different explanatory variables and various 

quantitative methods. If equation (5) were to be estimated by Ordinary Least Squares 

(OLS), the vector of coefficients is consistently estimated using the equation: β𝑂𝐿𝑆 =

[𝐼𝑟⨂(𝑍′𝑍)−1] ∙ [𝐼𝑟⨂𝑍′] ∙ 𝑙𝑛(𝑦). Since the dependent variable is a natural logarithm, the 

model minimizes the relative error incurred in trying to predict cumulative probabilities 

of dying. 

Although the OLS provide the best linear unbiased estimator, the OLS estimation could 

be improved in multiple ways. In the second method, weights were assigned to each 

observation to attenuate the effect of outliers in the model, using the equation: β𝑤 =

[(𝐼𝑟⨂𝑍′) ∙ 𝑤 ∙ (𝐼𝑟⨂𝑍)]−1 ∙ [𝐼𝑟⨂𝑍′] ∙ 𝑤 ∙ 𝑙𝑛(𝑦). Where 𝑤 is a diagonal matrix that takes 

continuous values between 0 and 1 that were iteratively calculated by the Bi-weight 

regression (Beaton & Tukey, 1974), using a scaling constant equal to 6. The third method 

is the same as the above but taking discrete values of 0 or 1, so that the extreme values 

were simply excluded from the estimation. For a particular age, as extreme observations 

were considered those with absolute errors equal or greater than six times the median 

residual. Once the model was estimated, the vector of coefficients β was conveniently 

reshaped into a matrix of dimension 28 × 3. Thus, the model life table 𝑞𝑚 would result 

from multiplying the coefficient matrix β̂28×3 by a column vector containing information 

for the only input parameter ℎ, using the equation (6):  

 𝑙𝑛(𝑞𝑚) = β̂28×3 ∙ [1, 𝑙𝑛(ℎ), 𝑙𝑛(ℎ)2]′ .     (6) 

Where 𝑞𝑚 = [𝑞(1𝑑|ℎ), ⋯ 𝑞(28𝑑|ℎ), 𝑞(2𝑚|ℎ), ⋯ 𝑞(60𝑚|ℎ)]′ is a column 

vector containing 28 cumulative probabilities of dying that can be predicted to a given 

level of mortality ℎ. Age-specific mortality rates can be recovered from the model by 

decumulating the predicted values of equation (6), under the assumption that the force of 

mortality is constant at each age interval. 

One relevant aspect of this model is the capacity to handle demographic restrictions. 

Although the statistical fitting is achieved for a given level of mortality ℎ, and this 

probability would be the preferred entry value; the model can also produce a life table 

matching a probability of dying at any other ages 𝑞𝑥𝑛 . In this case, it is possible to find 

the optimal value of ℎ∗ > 0, solving the equation (7) by numerical methods: 

 
𝑞(𝑥+𝑛|ℎ∗)−𝑞(𝑥|ℎ∗)

1−𝑞(𝑥|ℎ∗)
= 𝑞𝑥𝑛 .       (7) 

So far, the model meets the criteria of being adjusted from a statistical perspective, for a 

given value of ℎ. However, an important limitation is that it will always reproduce the 

same mortality pattern that would result from averaging all life tables used for the 
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estimation. There is a trade-off between specificity and simplicity. For the model to be 

able to represent more particular patterns, it is necessary to increase the number of 

parameters. However, the application can be useful because it allows the researcher to 

incorporate more relevant information when estimating a model life table. 

The shape of the mortality schedule 

The model was extended to include up to three additional entry values. These values can 

be adjusted in order to reproduce some particular characteristics of a population when 

there are more values to be fitted. Additional parameters resulted from extracting 

information contained in the covariance of residuals at different ages, following the same 

approach of Wilmoth, et al., (2012). The intuition is very simple: once the model is 

estimated using a predictor ℎ, the error term has everything that is unrelated to the 

predictor and perhaps the level of mortality. Thus, if some information is relevant to the 

shape of mortality that is orthogonal (or independent) to the level of mortality, that 

information would be in the error term. The covariance of errors at different ages allows 

an approximation to age patterns that systematically deviate from the general model. 

Thus, the mortality pattern is extracted from the covariance matrix of the residuals. 

Given that the error term of estimating equation (5) is a column vector containing the 

errors for all equations: 𝜖 = [𝜖(1𝑑)′, ⋯ 𝜖(28𝑑)′, 𝜖(2𝑚)′, ⋯ 𝜖(60𝑚)′]′; it can be 

conveniently reshaped into a matrix of dimension 1,319 × 28, having as many rows as 

life tables used for the estimation, and as many columns as ages in the model. This matrix 

was used to estimate the variance and covariance of the errors at different ages, and a 

singular value decomposition was made. The aim of the decomposition is to reinterpret 

the array of variances and covariances from an orthonormal matrix U, and a diagonal 

matrix Σ consisting of the eigenvalues, given that: U ∙ Σ ∙ U′ = 𝜖′ ∙ 𝜖 (𝑁 − 𝑘)⁄ , and: 

U ∙ U′ = 𝐼. The decomposition allows extracting a set of orthonormal vectors from the 

matrix U, that can be used as additional information in the model life table. Each vector 

would adjust the cumulative probabilities of dying at all ages, given an increase in the 

cumulative probability of dying at particular age and keeping constant the level of the 

mortality ℎ. 

The first three vectors of the matrix U were added to the model life table as they were 

extra coefficients, so that the model would have up to four parameters for the estimation 

and the same number of entry points that can be fitted in a life table. Considering all the 

above, the equation (6) is rewritten in the form: 

 𝑙𝑛(𝑞𝑚) = β̂28×3 ∙ [1, 𝑙𝑛(ℎ), 𝑙𝑛(ℎ)2]′ + U28×3 ∙ [𝑘1, 𝑘2, 𝑘3]′.  (8) 
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1.5. Results 

Fitting 

Table 2 shows the overall fit of the equation (5) for the three methods described and 

trying different predictors. There were considered fourteen predictors, and a single model 

was estimated for each of them. As predictors were considered some probabilities of 

dying that could be calculated from vital statistics or demographic surveys, and somehow 

related to the level of mortality at early ages. Given the multiplicity of predictors and 

regression methods, the Root Mean Square Error (RMSE) was the criterion to compare 

the predictive capacity of each model. Considering that the model consists of 28 

equations and age intervals are not uniform, the reported RMSE results from weighting 

each equation by the length of the age interval. Comparing the rows of the table, the best 

predictor is the cumulative probability of dying at the exact age of 24 months 𝑞(24𝑚) 

regardless of the estimation method, and the same result holds for both males and 

females. Table 2 also shows that most suitable adjustments are resulting from using 

probabilities of dying that include the first month of life. Nevertheless, the neonatal 

mortality by itself would not best predict the mortality at all other ages. Comparing the 

columns of the table, it is observed that once the outliers are excluded, the variance of the 

estimators is reduced considerably. So a better and more adjusted fit would be simply to 

exclude outliers. 

Table 2:Weighted root mean square error 

  Female   Male 

Predictor  (1) (2) (3)   (1) (2) (3) 

Neonatal [0 days, 28d) 0.1930 0.1840 0.1840 

 

0.1893 0.1817 0.1831 

Postneonatal [28d,12m) 0.1929 0.1902 0.1904 

 

0.2055 0.2027 0.2034 

Second year [12m, 24m) 0.2532 0.2473 0.2471 

 

0.2546 0.2512 0.2508 

Third year [24m, 36m) 0.2837 0.2783 0.2782 

 

0.2861 0.2781 0.2785 

Fourth year [36m, 48m) 0.3176 0.3049 0.3051 

 

0.3064 0.2930 0.2929 

Fifth year [48m, 60m) 0.3308 0.3227 0.3253 

 

0.3214 0.3137 0.3133 

Interval [5m, 21m) 0.2000 0.1927 0.1925 

 

0.2087 0.2055 0.2058 

Interval [3m, 24m) 0.1888 0.1837 0.1841 

 

0.2002 0.1982 0.1984 

Child Mortality [12m, 60m) 0.2242 0.2194 0.2196 

 

0.2289 0.2246 0.2244 

Infant Mortality [0d, 12m) 0.0521 0.0480 0.0470 

 

0.0492 0.0465 0.0460 

First two years [0d, 24m) 0.0394 0.0374 0.0375 

 

0.0382 0.0366 0.0367 

First three years [0d, 36m) 0.0412 0.0398 0.0398 

 

0.0399 0.0388 0.0388 

First four years [0d, 48m) 0.0448 0.0433 0.0432 

 

0.0438 0.0427 0.0427 

Under-5 mortality [0d, 60m) 0.0486 0.0469 0.0469   0.0477 0.0465 0.0465 

 Note: (1) OLS; (2) Bi-weight; (3) Outliers. 
 

  



20 
 

Table 3 and Table·4 show the estimated coefficients for females and males, using 

𝑞(24𝑚) as a predictor. The coefficients were estimated by OLS using the 1,319 life 

tables initially described, but excluding extreme observations. Bearing in mind equation 

(8), the first three columns reported in Table 3 and Table 4 correspond to the β̂28×3 

coefficients; while the three following columns correspond to the orthonormal vectors 

U28×3, which allows the life table model to adjust to particular characteristics of a 

population. 

Table 3: Coefficients for a log-quadratic model of the cumulative 

probability of dying as a function of 𝑞(24𝑚) 

Female β1 β2 β3 U1 U2 U3 
 

q(1d) -5.5867 -0.8065 -0.1896 -0.3945 0.6356 0.5241 

 q(2d) -5.8435 -1.1021 -0.2273 -0.3538 0.2868 -0.1260 

 q(3d) -5.6704 -1.0958 -0.2275 -0.3279 0.1411 -0.2051 

 q(4d) -5.5146 -1.0713 -0.2258 -0.3118 0.0518 -0.2288 

 q(5d) -5.2872 -0.9878 -0.2162 -0.3133 -0.0768 -0.2050 

 q(6d) -5.1359 -0.9393 -0.2110 -0.3089 -0.1229 -0.1912 

 q(7d) -4.9568 -0.8715 -0.2034 -0.3039 -0.1472 -0.1757 

 q(14d) -3.9775 -0.4545 -0.1548 -0.2605 -0.2686 -0.0768 

 q(21d) -3.4738 -0.2542 -0.1324 -0.2269 -0.2793 0.0140 

 q(28d) -3.0402 -0.0772 -0.1128 -0.2077 -0.2570 0.0594 

 q(2m) -2.3079 0.1984 -0.0825 -0.1561 -0.2297 0.1750 

 q(3m) -1.9135 0.3264 -0.0698 -0.1180 -0.2031 0.2266 

 q(4m) -1.6685 0.4018 -0.0624 -0.0912 -0.1756 0.2399 

 q(5m) -1.4613 0.4709 -0.0553 -0.0755 -0.1565 0.2488 

 q(6m) -1.2840 0.5305 -0.0493 -0.0631 -0.1427 0.2466 

 q(7m) -1.1454 0.5757 -0.0449 -0.0536 -0.1279 0.2313 

 q(8m) -1.0203 0.6172 -0.0409 -0.0458 -0.1138 0.2140 

 q(9m) -0.9014 0.6579 -0.0368 -0.0387 -0.0995 0.1926 

 q(10m) -0.8037 0.6910 -0.0336 -0.0328 -0.0847 0.1701 

 q(11m) -0.7102 0.7244 -0.0302 -0.0272 -0.0713 0.1458 

 q(12m) -0.6034 0.7663 -0.0257 -0.0234 -0.0686 0.1375 

 q(15m) -0.4052 0.8427 -0.0175 -0.0135 -0.0478 0.0787 

 q(18m) -0.2505 0.9027 -0.0109 -0.0074 -0.0296 0.0423 

 q(21m) -0.1205 0.9531 -0.0053 -0.0034 -0.0143 0.0182 

 q(24m) - 1.0000 - - - - 

 q(36m) 0.2192 1.0801 0.0090 0.0096 0.0213 -0.0497 

 q(48m) 0.3465 1.1245 0.0141 0.0141 0.0320 -0.0808 

 q(60m) 0.4269 1.1505 0.0172 0.0176 0.0387 -0.1041   
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Table 4: Coefficients for a log-quadratic model of the cumulative 

probability of dying as a function of 𝑞(24𝑚) 

Male β1 β2 β3 U1 U2 U3 

q(1d) -5.0766 -0.6925 -0.1892 -0.3912 0.6811 0.4734 

q(2d) -5.2752 -0.9794 -0.2275 -0.3446 0.2866 -0.1363 

q(3d) -5.2022 -1.0305 -0.2349 -0.3245 0.1253 -0.2674 

q(4d) -5.0516 -1.0071 -0.2330 -0.3103 0.0296 -0.2652 

q(5d) -4.8579 -0.9340 -0.2240 -0.3158 -0.0802 -0.2040 

q(6d) -4.6915 -0.8707 -0.2162 -0.3125 -0.1382 -0.1575 

q(7d) -4.5302 -0.8098 -0.2093 -0.3051 -0.1660 -0.1385 

q(14d) -3.6262 -0.4028 -0.1590 -0.2601 -0.2701 -0.0412 

q(21d) -3.1460 -0.1969 -0.1346 -0.2331 -0.2762 0.0401 

q(28d) -2.7424 -0.0228 -0.1141 -0.2123 -0.2555 0.1042 

q(2m) -2.0454 0.2542 -0.0819 -0.1632 -0.2136 0.1995 

q(3m) -1.6699 0.3824 -0.0683 -0.1225 -0.1881 0.2449 

q(4m) -1.4564 0.4488 -0.0614 -0.0932 -0.1533 0.2509 

q(5m) -1.2663 0.5156 -0.0540 -0.0747 -0.1289 0.2488 

q(6m) -1.0953 0.5782 -0.0472 -0.0622 -0.1151 0.2470 

q(7m) -0.9675 0.6235 -0.0423 -0.0526 -0.1008 0.2290 

q(8m) -0.8498 0.6667 -0.0376 -0.0445 -0.0882 0.2090 

q(9m) -0.7461 0.7044 -0.0337 -0.0375 -0.0737 0.1882 

q(10m) -0.6587 0.7363 -0.0303 -0.0315 -0.0624 0.1666 

q(11m) -0.5793 0.7661 -0.0271 -0.0268 -0.0538 0.1481 

q(12m) -0.5005 0.7967 -0.0238 -0.0226 -0.0475 0.1334 

q(15m) -0.3319 0.8661 -0.0158 -0.0137 -0.0359 0.0848 

q(18m) -0.2065 0.9167 -0.0099 -0.0078 -0.0237 0.0491 

q(21m) -0.0971 0.9609 -0.0047 -0.0035 -0.0117 0.0220 

q(24m) - 1.0000 - - - - 

q(36m) 0.1746 1.0646 0.0079 0.0097 0.0124 -0.0517 

q(48m) 0.2668 1.0947 0.0117 0.0156 0.0191 -0.0838 

q(60m) 0.3210 1.1093 0.0136 0.0193 0.0197 -0.1063 
 

 

Figure 3 shows the fit of the model to the cumulative probabilities of dying at some 

selected ages other than 𝑞(24𝑚), given that the model was estimated using 𝑞(24𝑚) as 

the predictor. The figure confirms the necessity of using a log-quadratic model. Although 

the relationship is almost linear after the first 12 months of life, the log-quadratic form 

produces an adequate fit at neonatal ages. Figure 3 also shows that most observations fall 

within a range of ±2 ∙ 𝑘1 on the first day of life, and ±𝑘1 when predicting the cumulative 

probability of dying at the exact ages of 7 and 28 days. 
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Figure 3: Cumulative probabilities of dying 𝑞(𝑥) vs. under-five mortality 𝑞(60𝑚) 

Log-quadratic fit using 𝑞(24𝑚) as a predictor and five values of 𝑘1 
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Figure 4: Cumulative probabilities of dying and age-specific mortality rates for different 

combinations of 𝑞(24𝑚) and ±2 ∙ 𝑘1 
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Predicting 

Figure 4 shows the cumulative probabilities of dying predicted by the model and the 

specific mortality rates that can be calculated from them. Different levels of mortality 

were combined from 𝑞(24𝑚) with three possible values of 𝑘1. Keeping constant the 

value of 𝑞(24𝑚), a positive value of 𝑘1 decreases the cumulative probabilities of dying 

below the age of two years, while increases the cumulative probability of dying from 2 to 

5 years of age. With negative values of 𝑘1, the effect is quite the opposite. However, the 

effect on the resulting specific mortality rates is ambiguous and depends on how 𝑘1 is 

distributed across ages. According to the values reported in the Table 3 and Table 4, a 

positive value of 𝑘1 produces a larger decrease in the cumulative probabilities of dying 

during the first days and weeks of life; consequently, to keep the probability of dying 

before the age of two constant, mortality rates for other ages must increase. 

The main application of a model life table is as an indirect method. Thus, a model should 

have the capacity to predict complete mortality schedules using incomplete information, 

for example, knowing just one probability of dying. Therefore, the performance and 

predictive capacity of the model were evaluated for a given probability of dying below 

the age of five, and ignoring the value of 𝑞(24𝑚). Consequently, a value of 𝑞(24𝑚) was 

calculated for each country-year solving the equation (7). In this case, numerical methods 

were used in order to match the model to the best available information. For each sex, the 

first column of Table 5 shows the resulting weighted RMSE of predicting all life tables, 

given as the only available information the probabilities of dying at selected age intervals. 

The first column shows that more uncertainty would result in predicting a complete life 

table for a given value of neonatal mortality. Similarly, more variance would result if the 

mortality during the first months of life were unknown. This means that the model is 

sensitive to the mortality at early ages. 

However, this problem could be attenuated by using a second input value. For example, 

assume that a researcher wants to estimate a mortality schedule using the coefficients 

reported in Table 3 (or Table 4) for a given value of the neonatal mortality, which is the 

best available information. Although Table 5 warns that the RMSE is too high, a 

significant improvement would result in the prediction if the model is forced to match the 

neonatal mortality and the probability of dying at the age of two years. In the case of 

females, the RMSE would be reduced from 0.1914 to 0.0281. In general, adding more 

reliable information reduces the RMSE as is shown in Table 5 for different age intervals. 

For each sex, the second column of Table 5 shows the second input value that minimizes 

the RMSE and the third column is the resulting RMSE of matching these two entry 

values. In order to match any two probabilities of dying and given the set of coefficients 

reported in Table 3 and Table 4, optimal values of 𝑞(24𝑚) and 𝑘1 were calculated for 

each country-year solving the equation (8) by numerical methods. Considering the results 
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reported in Table 5, even if the model was estimated from 𝑞(24𝑚) and this is one value 

to be matched, a better prediction would result to use the cumulative probability of dying 

at the age of three months 𝑞(3𝑚) as the second entry value. 

Table 5: The weighted RMSE of matching one entry value (1), the second entry point 

that minimizes the WRMSE (2), and the WRMSE of matching two entry values (3) 

 

Female 

 

Male 

Matching (1) (2) (3)   (1) (2) (3) 

Neonatal [0 days, 28d) 0.1914 𝑞(24𝑚) 0.0281 

 

0.1951 𝑞(24𝑚) 0.0269 

Postneonatal [28d, 12m) 0.2124 𝑞(15𝑚) 0.0414 

 

0.2221 𝑞(18𝑚) 0.0380 

Second year [12m, 24m) 0.2999 𝑞(15𝑚) 0.0590 

 

0.3214 𝑞(24𝑚) 0.0419 

Third year [24m, 36m) 0.3399 𝑞(21𝑚) 0.0556 

 

0.3317 𝑞(18𝑚) 0.0526 

Fourth year [36m, 48m) 0.3462 𝑞(18𝑚) 0.0795 

 

0.3232 𝑞(21𝑚) 0.0650 

Fifth year [48m, 60m) 0.3619 𝑞(21𝑚) 0.0829 

 

0.3374 𝑞(21𝑚) 0.0754 

Interval [5m, 21m) 0.2265 𝑞(21𝑚) 0.0285 

 

0.2380 𝑞(24𝑚) 0.0274 

Interval [3m, 24m) 0.2149 𝑞(24𝑚) 0.0270 

 

0.2273 𝑞(24𝑚) 0.0259 

Child Mortality [12m, 60m) 0.2639 𝑞(10𝑚) 0.0445 

 

0.2639 𝑞(9𝑚) 0.0428 

Infant Mortality [0d, 12m) 0.0495 𝑞2𝑚 46𝑚  0.0339 

 

0.0472 𝑞2𝑚46𝑚  0.0322 

First two years [0d, 24m) 0.0375 𝑞(3𝑚) 0.0259 

 

0.0367 𝑞(3𝑚) 0.0245 

First three years [0d, 36m) 0.0396 𝑞(3𝑚) 0.0247 

 

0.0387 𝑞(3𝑚) 0.0236 

First four years [0d, 48m) 0.0432 𝑞(3𝑚) 0.0265 

 

0.0427 𝑞(4𝑚) 0.0252 

Under-5 mortality [0d, 60m) 0.0470 𝑞(4𝑚) 0.0287   0.0467  𝑞(4𝑚) 0.0273 
 

 

The capacity of the model to predict individual life tables using few input values is 

illustrated in Figures 5-10 for some country-years: Chile (2003), Italy (1980), United 

States (1940), France (1918, during the influenza pandemic), Sweden (1891), and 

Norway (1880). Using the estimated coefficients β and the first orthonormal vector from 

the covariance matrix U1, the first four cases were fitted using only two values: the 

cumulative probability of dying at 24 months 𝑞(24𝑚), and the cumulative probability of 

dying at the age of three months 𝑞(3𝑚). In the last two cases, the model failed to 

reproduce the mortality pattern with these characteristics. They are both late patterns of 

under-five mortality. Therefore, the model was adjusted using three probabilities of 

dying. This is using the estimated coefficients and two orthonormal vectors: U1 and U3. 

On the one hand, the neonatal mortality 𝑞(28𝑑), the infant mortality 𝑞(12𝑚), and the 

child mortality 𝑞12𝑚 48𝑚  were used to predict Sweden in 1891. On the other hand, 

𝑞(28𝑑), 𝑞(12𝑚), and the probability of dying in the second, third or fourth year of life 

𝑞12𝑚 36𝑚  were used to predict Norway in 1880. Figures 5-10 show that the model 

effectively reproduces the cumulative probabilities of dying and the specific mortality 

rates calculated from them. 
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Figure 5: Chile, 2003 

Cumulative probabilities of dying and age-specific mortality rates  
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Figure 6: Italy, 1980 

 Cumulative probabilities of dying and age-specific mortality rates 
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Figure 7: United States, 1940 

Cumulative probabilities of dying and age-specific mortality rates 
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Figure 8: France, 1918 

Cumulative probabilities of dying and age-specific mortality rates 
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Figure 9: Sweden, 1891 

 Cumulative probabilities of dying and age-specific mortality rates 
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Figure 10: Norway, 1880 

 Cumulative probabilities of dying and age-specific mortality rates 
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1.6. Discussion 

Using vital registrations and census enumerations, a model life table is estimated to study 

the age patterns of under-five mortality. From a few input values, the model allows the 

prediction of a cumulative probability of dying by subintervals of age. A general solution 

is proposed, since patterns of high and low mortality can be reproduced from incomplete 

information and using the same set of equations. Critical aspects of model life tables were 

addressed in this paper: the use of historical sources, the statistical fitting, and the 

prediction of actual mortality schedules. Inasmuch as the model is statistically adjusted 

and flexible to admit input information at different age intervals, it is a useful method for 

validation or indirect estimation.  

Given an empirical life table and keeping constant at least one probability of dying, the 

model can be used to test whether the deaths of a population are more concentrated at the 

beginning or the end of an age interval. This allows to infer if a population has an early or 

late pattern of mortality using the model as a standard for comparison. Previous research 

has conducted a similar analysis by applying the biometric model of BP (Bourgeois-

Pichat, 1950): late patterns of infant mortality have been associated to breastfeeding 

whereas early patterns to the artificial feeding (Knodel & Kintner, 1977). However, no 

inferences can be drawn from the biometric model after the first year of life. This is an 

important limitation considering that late patterns of under-five mortality are a substantial 

characteristic of high mortality populations. In this regard, the model life table proposed 

in this paper is a relevant material for the demographic analysis of early patterns of 

mortality. 

The model can be used as an indirect estimation method in contexts with limited data 

where direct estimation is not an option. Kingkade & Arriaga (1997), and Guillot et al. 

(2013) propose methods for estimating infant mortality from the probabilities of dying at 

those age intervals in which direct estimation is more reliable. This paper contributes to 

the discussion of the indirect estimation of mortality at early ages proposing a more 

general approach: several age intervals were considered, and the model was estimated 

using an extended set of country-years. In addition, the model follows the approach 

proposed by Wilmoth et al. (2012), allowing to adjust a hypothetical life table for more 

than one input value by extracting relevant information from the covariance of the errors. 

More than one input parameter not only improves the predictions of the model but also 

allows to represent particular characteristics of the population under study when more 

information is available. Consequently, a mortality schedule can be estimated from a few 

probabilities of dying and be compared with the empirical distribution of deaths, in order 

to detect biases and omissions from unreliable statistics or that require validation such as 

those estimated from demographic surveys. 
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Chapter 2 

Age patterns of under-five mortality and the 

quality assessment of the Demographic and 

Health Surveys 
 

Abstract 

Under-five mortality is still a major problem in many areas of the world lacking reliable 

records for a proper monitoring. Therefore, indirect estimation has been the keystone of 

the demographic analysis in countries with incomplete, imperfect, or nonexistent vital 

records. Specifically, complete maternity histories are used to estimate mortality at early 

ages and the Demographic and Health Survey (DHS) is the main source of data. 

However, given its self-reported nature, this information is susceptible to some errors: 

underreported children ever born and misreported ages at death. Age misreporting 

obscures the study of mortality patterns based on survey data. Yet, errors are most 

evident when many populations are analyzed together and are compared to model life 

tables. This paper examines 252 public-domain surveys and proposes an empirical 

strategy to study mortality patterns at early ages. When survey estimates are contrasted to 

a model life table, particular characteristics can be identified. For a given level of 

mortality, deaths could be more concentrated in the early days and months of life (early 

pattern), or after the first year of age (late pattern). This paper shows that populations 

with high levels mortality are more likely to show late patterns of under-five mortality. 

Data quality issues regarding misreported ages at death are also analyzed. Particularly, 

this paper proposes a simple solution to the problem of heaping at the age of 12 months 

and the consequent underestimation of the infant mortality.      

 

Key words: Infant and child mortality; under-five mortality; complete maternity histories; 

Demographic and Health Survey; demographic estimation; indirect methods; model life 

tables; age patterns of mortality at early ages.  
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2.1. Introduction 

One of the major difficulties of monitoring the progress of reducing under-five mortality 

is the lack of vital records in those areas where it remains high. In contexts where vital 

records are either unreliable or non-existent, the analysis of basic demographic statistics 

is based on indirect and retrospective methods addressed to take advantage of information 

that can be collected from censuses and surveys (Brass, 1996). Given certain 

assumptions, indirect estimates of mortality at early ages can be calculated from the 

number of children ever born and the number of survivors, both collected in population 

censuses (Brass & Coale, 1968). Similarly, surveys allow a deeper inquiry and research 

for some questions, resulting in the possibility of calculating infant and child mortality in 

greater detail and fewer assumptions using complete maternity histories (Hill, 1991). 

Considering that women at reproductive ages report the date of birth of their offspring, 

and in the case of deceased children provide the age at death, direct estimates of the 

probabilities of dying can be assessed from a Lexis diagram (Rutstein S. O., 1984; 

Somoza, 1980). This is a conventional method that was applied in the World Fertility 

Survey and has been adapted to estimate infant and child mortality in the DHS (Mahy, 

2003). However, the reliability of the estimates greatly depends on the quality of the 

reported life events. Since survey estimates are defined for extended periods of exposure 

to the risk of death, reporting bias should not be dismissed. Surveys inquire about vital 

events that occurred several years ago and the information collected may be susceptible 

to errors of recall and approximation (Hill, 1991). Not because surveys are systematically 

collected means that they are perfect data (Trussell & Menken, 1984). In addition to 

sampling errors that were not of minor importance in the first phase of the DHS (Curtis, 

1995), the impressions that could bias the estimates of mortality at early ages are the 

underreported children ever born and the misreported ages at death.  

Although census and survey estimates are practical solutions and sometimes the only 

available information, these are not a substitute for vital registration. On the one hand, 

surveys do not replace the legal character of the vital registration, thus certain benefits 

depending on proper documentation cannot be assured (AbouZahr, Savigny, Mikkelsen, 

Setel, Lozano, & Lopez, 2015). On the other hand, errors in the reporting of life events 

hinder the study of mortality patterns. Traditionally, under-five mortality patterns have 

been investigated by scattering the infant and the child mortality and making a contrast to 

models life tables (Bicego, et al., 1991; Guillot, et al., 2012; Sullivan, et al., 1994). 

Although some regions adjust to the pre-established ranges by conventional models, 

others characterize by an excess of child mortality relative to the level infant mortality 

(Guillot, et al., 2012). However, these inferences sometimes rely on values that have been 

calculated from surveys and it has been a documented fact that misreported ages at death 

could underestimate infant mortality and overestimate child mortality (Hill, 1991; 
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Rutstein, 1984). Therefore, one of the main limitations in the study of mortality patterns 

using this approach is that comparisons are concentrated only on infant and child 

mortality, without taking into consideration other relevant ages to explain the population 

differences in the level and shape of the mortality at early ages. 

Using a Lexis diagram and complete maternity histories, this paper estimates mortality 

schedules for a set of 252 Demographic and Health Surveys of public domain. Estimates 

were calculated directly under the assumption of a synthetic cohort, but due to the fact 

maternity histories are self-reported data, the reliability of the estimates was examined. 

Mortality schedules were compared to a model life table for under-five mortality fitted to 

the vital records of 24 countries and using a broad set of sub-intervals of age. These 

comparisons allowed to evaluate the consistency of the estimates made from the survey 

data. Misreported ages at death were detected when all surveys were analyzed altogether 

and compared to model predictions. This allowed the identification of some probabilities 

of dying that were not severely affected by reporting bias. Since differences in 

environment and the socioeconomic background may produce different patterns of under-

five mortality, the model life table was also used as an indirect method to study the age 

pattern of under-five mortality from the most reliable information. 

 

2.2. Data 

The main source of information is the Demographic and Health Survey (DHS). 

Particularly, the complete maternity histories of 252 public-domain surveys were 

analyzed. The countries and years of collection are listed in Table 1. In addition to other 

relevant characteristics, each record of the births recode includes the date of birth, and if 

deceased, the age at death. Dates of birth were reported by years and months. However, 

the age of death was reported in days when it occurred in the first 28 (neonatal), in 

months for the deaths of children under two years, and in years for those older than two. 

This information allows the calculation of death probabilities for different age intervals 

and at specific time periods. Records with incomplete information were not included and 

the estimates were adjusted to the expansion factors of the survey. For each survey, 

mortality schedules were calculated following the same approach of Somoza (1980) and 

Rutstein (1984), which has been specially developed for the estimation of infant and child 

mortality from retrospective sources such as the World Fertility Survey and the DHS. 

Using a Lexis diagram, the method is intended to produce period life tables of five 

calendar-years of exposure. However, if calculations are independent for each sex, the 

recommended period of exposure is ten years. 
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Table 1: DHS used for the analysis and the number of life tables per country  

Central Asia 
 Kazakhstan 1995, 1999 2 

 Kyrgyz Republic 1997, 2012 2 

 Tajikistan 2012 1 

 Uzbekistan 1996 1 

Latin America & Caribbean 

 Bolivia 1989, 1994, 1998, 2003, 2008 5 

 Brazil 1986, 1991, 1996 3 

 Colombia 1986, 1990, 1995, 2000, 2005, 2010 6 

 Dominican Republic 1986, 1991, 1996, 1999, 

2002, 2007, 2013 

7 

 Ecuador 1987 1 

 Guatemala 1987, 1995, 1998-99 3 

 Guyana 2005, 2009 2 

 Haiti 1994-95, 2000, 2005-06, 2012 4 

 Honduras 2005-06, 2011-12 2 

 Nicaragua 1998, 2001 2 

 Paraguay 1990 1 

 Peru 1986, 1991-92, 1996, 2000, 2007-08, 2009, 

2010, 2011, 2012 

9 

 Trinidad and Tobago 1987 1 

North Africa/West Asia/Europe 
 Albania 2008-09 1 

 Armenia 2000, 2005, 2010 3 

 Azerbaijan 2006 1 

 Egypt 1988, 1992, 1995, 2000, 2003, 2005, 2008, 

2014 

8 

 Jordan 1990, 1997, 2002, 2007, 2009, 2012 6 

 Moldova 2005 1 

 Morocco 1987, 1992, 2003-04 3 

 Tunisia 1988 1 

 Turkey 1993, 1998, 2003 3 

 Ukraine 2007 1 

 Yemen 1991-92, 2013 2 

South & Southeast Asia 
 Bangladesh 1993-94, 1996-97, 1999-00, 2004, 

2007, 2011, 2014 

7 

 Cambodia 2000, 2005, 2010, 2014 4 

 India 1992-93, 1998-99, 2005-06 3 

 Indonesia 1987, 1991, 1994, 1997, 2002-03, 2007, 

2012 

7 

 Maldives 2009 1 

 Nepal 1996, 2001, 2006, 2011 4 

 Pakistan 1990-91, 2006-07, 2012-13 3 

 Philippines 1993, 1998, 2003, 2008, 2013 5 

 Sri Lanka 1987 1 

 Thailand 1987 1 

 Timor-Leste 2009-10 1 

 Vietnam 1997, 2002 2 
 

Sub-Saharan Africa 
 Angola 2011 1 

 Benin 1996, 2001, 2006, 2011-12 4 

 Burkina Faso 1993, 1998-99, 2003, 

2010 

4 

 Burundi 1987, 2011 2 

 Cameroon 1991, 1998, 2004, 2011 4 

 Central African Republic 1994-95 1 

 Chad 1996-97, 2004, 2014-15 3 

 Comoros 1996, 2012 2 

 Congo 2005, 2012 2 

 Congo Democratic Republic 2007, 

2013-14 

2 

 Cote d'Ivoire 1994, 1998-99, 2005, 

2011-12 

4 

 Ethiopia 2000, 2005, 2011 3 

 Gabon 2000, 2012 2 

 Gambia 2013 1 

 Ghana 1988, 1993, 1998, 2003, 2008, 

2014 

6 

 Guinea 1999, 2005, 2012 3 

 Kenya 1989, 1993, 1998, 2008-09, 2014 5 

 Lesotho 2004, 2009, 2014 3 

 Liberia 1986, 2007, 2009, 2013 4 

 Madagascar 1992, 1997, 2003-04, 2009 4 

 Malawi 1992, 2000, 2004, 2010 4 

 Mali 1987, 1996, 2001, 2006, 2013 5 

 Mozambique 1997, 2003, 2011 3 

 Namibia 1992, 2000, 2006-07, 2013 4 

 Niger 1992, 1998, 2006, 2012 4 

 Nigeria 1990, 2003, 2008, 2010, 2013 5 

 Rwanda 1992, 2000, 2005, 2007-08, 

2010, 2014-2015 

6 

 Sao Tome and Principe 2009 1 

 Senegal 1986, 1992-93, 1997, 2005, 

2008-09, 2010-11, 2012-13, 2014, 2015 

9 

 Sierra Leone 2008, 2013 2 

 South Africa 1998 1 

 Sudan 1989-90 1 

 Swaziland 2006-07 1 

 Tanzania 1991-92, 1996, 1999, 2004-

05, 2007-08, 2010 

6 

 Togo 1988, 1998, 2013-14 3 

 Uganda 1988-89, 1995-96, 2000-01, 

2006, 2009, 2011 

6 

 Zambia 1992, 1996, 2001-02, 2007, 

2013-14 

5 

 Zimbabwe 1989, 1994, 1999, 2005-06, 

2010-11 

5 

Total 252 
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Using the births reported in the last fifteen years and the deaths reported in the last ten 

years before the survey was conducted, two life tables were computed form each survey. 

This is one for each sex. Life tables were calculated in months of age during the first two 

years of life and in years after the age of two. Since neonatal deaths were reported in days 

of age, probabilities of death were calculated in days for the first week of life and in 

weeks for the first 28 days of life. These values were calculated from the cumulative 

probability of dying in the first month of life and using proportionality assumptions. First, 

it was assumed that exposure to the risk of dying is proportional to the length of the age 

interval. Second, it was assumed that the specific mortality rate is proportional to the 

number of deaths reported in that subinterval. 

A general feature of the country-years included in the study sample is the wide range of 

mortality levels. For example, Figure 1 shows that in the first quintile of under-five 

mortality, the probability of dying in the first five years of life is less than 0.05, whereas 

in the fifth quintile of the distribution this probability is not less than 0.15, and in extreme 

cases it is higher than 0.30. 

 

Figure 1: Cumulative probabilities of dying using all life tables sorted by 𝑞(60𝑚) 

   

For a selection of country-years, Figure 2 shows age-specific mortality rates that were 

calculated from the complete maternity histories assuming that the force of mortality is 

constant at each subinterval of age. The fluctuations and discontinuities of age-specific 

mortality rates draw attention. These are characteristics that are not observed in the 
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mortality patterns calculated from vital records, which is the main limitation in the study 

of mortality patterns using self-reported data. 

Figure 2: Age-specific mortality rates for males from selected country-years 

  

   

0,000

0,001

0,010

0,100

1,000

10,000

0 12 24 36 48 60

Age (months) 

lo
g
[n

M
x]

 

Colombia, 2010 

0,000

0,001

0,010

0,100

1,000

10,000

0 12 24 36 48 60

Age (months) 

lo
g
[n

M
x]

 

Yemen, 2013 

0,001

0,010

0,100

1,000

10,000

0 12 24 36 48 60

Age (months) 

lo
g
[n

M
x]

 

Senegal, 2015 

0,000

0,001

0,010

0,100

1,000

10,000

0 12 24 36 48 60

Age (months) 

lo
g
[n

M
x]

 

Ghana, 2014 



43 
 

Complete maternity histories are self-reported data, thus errors in the calculation of 

probabilities of dying could be related to underreported births and the inaccuracy in 

reporting the age at death. Even more, these sources of errors can also be interdependent: 

respondents who experienced the early death of their children might be less likely to 

report their birth. A similar aversion would also exist in reporting the children not living 

with the mother at the time of the survey. These errors affect estimations in two ways. On 

the one hand, the underreporting of births due to early mortality creates bias in the 

estimates of the probability of dying during the first months of life. On the other hand, 

misreported ages at death also introduce bias in the calculation of the probability of dying 

by heaping the distribution of deaths at some specific ages while diminishing the number 

of deaths at adjacent ages. This possibility was examined comparing all life tables. Figure 

3 shows the distribution of deaths at specific age intervals. In order to make them 

comparable, deaths were standardized by the total number of under-five deaths. In 

overall, life tables show a decrease in the percentage of deaths as age increases. At early 

neonatal ages (the first week of life), the proportion of deaths occurring on the first day of 

life is greater (boxplot A). During the first month of life, most deaths are grouped in the 

first week (boxplot B). The majority of under-five deaths occur in the first year of life 

(boxplot C).  

Figure 3: Boxplots for the distribution of life table deaths by days and months of age 

 

 

 
 

Note: Females and males combined assuming a 

sex ratio at birth of 105 males per 100 females. 
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However, the heaping in the proportion of deaths at the ages of 6, 12 and 18 months is a 

significant limitation of DHS estimates (boxplot D). According to Figure 3, the 

percentage of deaths at 12 months of age is unusually higher than the percentage of 

deaths at adjacent ages (11 or 13 months). In a very small magnitude, heaping also occur 

at the age of six and 18 months. These groupings could bias some results, such as the 

infant mortality. If ages at death were approximated by excess, the deaths of children 

under one year old but close to turning one, will weigh on the mortality that occurs in the 

second year of life. Improving on this limitation is the main objective of this paper. 

 

2.3. Empirical validation of the DHS estimates 

DHS estimates were compared to a model life table for under-five mortality. Given a 

probability of dying within a defined age range, the model allows to infer the 

probabilities of dying at all other ages. The implicit advantage of this comparison is to 

identifying those ages whose probabilities of dying differ systematically from a 

prediction based on vital records. These differences are explained by two competing 

arguments. On the one hand, DHS estimates might not fit the model because of the 

reporting bias. Hence, the model would provide an adequate standard to correct survey 

estimates. On the other hand, given that the model was largely based on European data, 

systematic differences might result of distinct mortality patterns. However, the model life 

table of under-five mortality has two advantages. First, the model has the capacity to 

reproduce patterns of high and low mortality, thus indirect estimations would not rely on 

extrapolations. Second, the model is flexible to adapt the mortality pattern to the 

particular characteristics of the study population. This is particularly useful when more 

reliable information is available and the model is demanded to match at least two entry 

values.  

Although the model was estimated using 𝑞(24𝑚) as a predictor, the probability of dying 

at the age interval [5𝑚, 21𝑚) was chosen as the input value to be matched using the 

model as standard for comparison. This probability of dying, which in conventional 

notation is defined as: 𝑞16 05, is independent of the deaths occurring during the first 5 

months of life, thus not affected by potential biases in the report of early mortality. In 

addition, the age interval includes the probabilities of dying at 6, 12 and 18 months of age 

which are affected by misreported ages at death, but also the probabilities of dying at 

adjacent ages. Therefore, 𝑞16 05 is less conditioned to the inaccuracy in reporting ages at 

dying. Using all the surveys, Figure 4 shows the dispersion between the probability of 

dying in the interval [5𝑚, 21𝑚) and the probabilities of dying at some relevant age 

intervals: the early neonatal mortality (first week), the neonatal mortality (first month), 

the infant mortality (all children under one year), and the under-five mortality (children 
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younger than 5 years). Figure 4 also shows log-quadratic estimates from a model life 

table based on vital records, using as a predictor the cumulative probability of dying at 

the age of two years 𝑞(24𝑚), and a flexible second parameter 𝑘1 modeling the shape of 

the mortality. Four deductions can be made from Figure 4. First, early neonatal mortality 

calculated from the surveys could be greater than the one predicted by the model. Second, 

with few exceptions, neonatal mortality is estimated at a feasible range of data, 𝑘1 = ±2. 

Third, given the clustering of points below the 𝑘1 = +2 line, it might be possible that 

surveys underestimate infant mortality. Fourth, surveys allow a reasonable calculation of 

the under-five mortality. 

Although a surveys based analysis allows a reasonable estimate of neonatal mortality, 

and under-five mortality, some biases occur at other age intervals. Figure 5 shows that the 

probabilities of dying in the fourth trimester [9𝑚, 12𝑚), are systematically lower than 

those predicted by the model. However, these are partially compensated with higher 

probabilities in the fifth quarter [12𝑚, 15𝑚). Biases continue as age increases and 

mortality decreases, and the most prominent discrepancies are observed in the second 

year of life. Figure 5 shows that the probability of dying at ages [15𝑚, 18𝑚) and 

[21𝑚, 24𝑚), are underestimated in most surveys. This suggests that the probabilities of 

dying calculated from the DHS might have some bias when the age at death is reported 

inaccurately or approximately. Considering the misreported ages at death, the 

conventional approach to calculate the infant mortality, the child mortality, and the 

under-five mortality is to use broad age intervals: first month of age, 1-2 months, 3-5 

months, 6-11 months, 12-23 months, 24-35 months, 36-47 months, and 48-59 months. By 

doing this, it is possible to reduce the variability in the number of deaths reported by 

single months of age. However, these intervals do not avoid that some deaths that 

occurred just before the first year of life were counted as early child mortality (second 

year of life), when the ages were reported by making an approximation by excess. 
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Figure 4: Cumulative probabilities of dying 𝑞(𝑥) vs. the probability of dying at the age 

interval [5𝑚, 21𝑚). Log-quadratic estimates are from vital records using 𝑞(24𝑚) as a 

predictor, and five values of 𝑘1 
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Figure 5: Probability of dying at selected age intervals vs. the probability of dying at the 

age interval [5𝑚, 21𝑚). Log-quadratic estimates are from vital records using 𝑞(24𝑚) as 

a predictor, and five values of 𝑘1 
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2.4. Estimation of the mortality patterns at early ages 

A conventional approach to study mortality patterns using DHS estimates is to contrast 

the dispersion of infant mortality and child mortality with model life tables. In particular, 

DHS estimates are compared to the North, South, East, and West families of the regional 

model proposed by Coale & Demeny (1966). From these comparisons, it is usually 

established if the countries investigated in the DHS follow similar patterns to those pre-

established from the empirical life tables. This allows the graphical assessment of late 

mortality patterns (early), meaning those where child mortality is higher (lower) than the 

predicted by a given level of mortality, for example infant mortality. However, in 

complete maternity histories, infant mortality may be underestimated due to the fact that 

ages of death are self-reported data. In consequence, there is a need to study mortality 

patterns from the probabilities of dying operating at different ages.  

This paper aims to an alternative approach, in which estimates made from DHS are 

compared to a model life table for under-five mortality. The model includes the following 

age intervals: (1) days within the first week; (2) weeks to complete the first month of life 

of 28 days longer; (3) months of age to complete the first year of life; (4) trimesters of 

age within the second year of life; and (5) years to complete the first five years of life. 

The first advantage to use a model like this is to consider some ages that are relevant to 

the mortality patterns, but not contemplated in conventional models; for example, the 

neonatal mortality. The second advantage is the possibility to adjust additional 

parameters in order to reproduce observable characteristics of the population to be 

studied, and make an indirect estimation of a complete mortality schedule at early ages. 

Considering that the complete maternity histories allow a reasonable calculation of the 

neonatal mortality 𝑞𝑠(28𝑑) and the under-five mortality 𝑞𝑠(60𝑚) as shown in Figure 4, 

a model life table was adjusted using as the most reliable information these two 

probabilities of dying. In addition to the fitness of the neonatal mortality estimates, there 

are also some other arguments for choosing this probability of dying as an input value. 

Inasmuch as the first month of life is the one with the highest mortality rate regardless of 

the historical context or the economic background, neonatal deaths are a more frequent 

event. Hence, compared to other ages of equal length, survey estimates of the neonatal 

mortality are less affected by problems related to sample size.   

From equation (1) and using numerical methods, the optimal values of ℎ and 𝑘1 (the level 

and shape of the mortality) were calculated in order to match the DHS estimates.  

 [
𝑙𝑛(𝑞𝑠(28𝑑))

𝑙𝑛(𝑞𝑠(60𝑚))
] = [

β̂1,28𝑑 β̂2,28𝑑 β̂3,28𝑑

β̂1,60𝑚 β̂2,60𝑚 β̂3,60𝑚

] ∙ [

1
 𝑙𝑛(ℎ)

𝑙𝑛(ℎ)2
] + [

U1,28𝑑

U1,60𝑚
] ∙ 𝑘1. (1) 
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The panel A from Figure 6 shows boxplots of the neonatal and the under-five mortality, 

grouping the data according to the regions defined by the DHS program. The 

distributions of the country-years used to fit the log-quadratic model are also shown. 

Although the model was estimated using records from 24 low-mortality countries, the use 

of historical statistics allows a wide range of data. Thus, estimates from populations with 

higher mortality levels, such as those observed in Sub-Saharan Africa or South and 

Southeast Asia, are based on true experiences rather than extrapolations. 

The distribution of the key parameters modeling the level and shape of the mortality for a 

given values of the neonatal and the under-five mortality are shown on panel B of Figure 

6. On the one hand, the parameter ℎ allows to compare the level of mortality of different 

populations, assuming that they follow the same mortality pattern. Thus, on average, the 

level of mortality estimated from DHS is higher than the mortality level of the country-

years used to estimate the life table model. On the other hand, the parameter 𝑘1 allows to 

compare the mortality pattern of different populations, assuming that they have the same 

level of mortality. Hence, a positive value of 𝑘1 decreases the cumulative probabilities of 

dying before the age of two, while it increases the cumulative probabilities of dying from 

2 to 5 years of age. As shown in the boxplots, negative values of 𝑘1were estimated in the 

majority of surveys from South and Southeast Asia. This indicates that, compared to the 

model, the cumulative probabilities of dying are higher before the second year of life, 

although lower than those predicted by the model after this age. This result is assuming 

that the entire mortality pattern could be inferred from neonatal mortality and under-five 

mortality alone. 
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Figure 6: Boxplots for the matching values and the key parameters of the model 

Panel A: neonatal mortality and under-five mortality 

  

  
 

Panel B: key parameters of the model 

  

  
Note: Central Asia (6 life tables); Latin America and the Caribbean (46); North Africa, West Asia, and 

Europe (30); South and Southeast Asia (39); Sub-Saharan Africa (131); and the empirical model (1,319). 
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Figure 7: Cumulative probabilities of dying for males from selected country-years 

DHS estimates vs. model life table predictions using 𝑞(28𝑑) and 𝑞(60𝑚) as matching 

values 
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Using the equation (2) and given the optimal values of the parameters ℎ and 𝑘1, 

cumulative probabilities of dying were calculated for each survey in the analysis. The 

DHS estimates 𝑞𝑠(𝑥) were then contrasted with those resulted from the model 

𝑞𝑚(𝑥|ℎ∗, 𝑘1
∗), as shown in Figure 7 for selected populations. Keeping constant the 

neonatal and the under-five mortality, the contrast allows to identify those populations 

that are characterized by late patterns of under-five mortality, such as Senegal in 2015, 

and Ghana in 2014; in contrast to others that are satisfactorily adjusted to the model such 

as Colombia in 2010; or those exhibiting early patterns, such as Yemen in 2013.  

 𝑙𝑛(𝑞𝑚) = β̂28×3 ∙ [1, 𝑙𝑛(ℎ), 𝑙𝑛(ℎ)2]′ + U28×1 ∙ 𝑘1.    (2) 

Differences in mortality patterns were quantified as the difference in the logarithm of the 

area under the curve 𝑞𝑠(𝑥) and the area under the curve 𝑞𝑚(𝑥|ℎ∗, 𝑘1
∗), as shown in 

equation (3). The logarithmic function produces relative differences between the DHS 

estimates and the model predictions. Thus, populations having different levels of 

mortality can be compared. 

 𝐺(60𝑚) = 𝑙𝑛 [
∫ 𝑞𝑠(𝑥)𝑑𝑥

60𝑚
0

∫  𝑞𝑚(𝑥|ℎ∗,𝑘1
∗)𝑑𝑥

60𝑚
0

].      (3) 

The intuition behind the equation (3) is quite simple. For a given level of mortality, 

negative values of 𝐺(60𝑚) indicate late patterns and suggest a lower mortality within the 

first months of life that is compensated with an excess of mortality during childhood. 

While the positive values of 𝐺(60𝑚) indicate an early pattern and suggest that, compared 

to the model, there is a higher mortality within the first months of life. In light of the 

foregoing, the level and shape of the mortality schedule are somehow related. Using all 

surveys and ignoring clusters by country or region, the correlation between the parameter 

ℎ and the function 𝐺(60𝑚) is estimated to be −0.497 for females and −0.609 for males. 

This result suggests that some populations with high mortality are characterized by late 

patterns. 

Figure 8 shows boxplots for the differences in mortality patterns, i.e. 𝐺(60𝑚). The 

results suggest regional differences in the pattern of under-five mortality. Keeping 

constant the neonatal and the under-five mortality, there are substantial differences 

between the model and the DHS estimates. Compared to the model, in most of the 

country-years conforming South and Southeast Asia, and Sub-Saharan Africa, not only 

high levels of mortality were observed (Figure 6, panel B), but also late patterns were 

estimated (Figure 8). Conversely, the majority of country-years from the regions of 

Central Asia, North Africa, West Asia, and Europe (DHS) exhibited early patterns of 
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under-five mortality. Whereas in Latin America and the Caribbean there was observed an 

even distribution of late and early patterns of under-five mortality. 

 

Figure 8: Boxplots for the differences in mortality patterns 

  
Note: Central Asia (6 life tables); Latin America and the Caribbean (46); North Africa, West Asia, and 

Europe (30); South and Southeast Asia (39); Sub-Saharan Africa (131); and the empirical model (1,319). 
 

Although the model was not intended to estimate a mortality pattern for each DHS 

survey, it was used to quantify significant departures from a standard mortality schedule. 

For a given value of the neonatal and the under-five mortality, this comparison allows to 

infer the concomitance of the level and the pattern of mortality. 

 

2.5. Smoothing the heaping at the age of 12 months 

As a method of indirect estimation, the model was used to estimate infant mortality 

𝑞(12𝑚) from the cumulative probabilities of dying at 9 and 18 months of age. This is by 

solving equation (4) for the values of ℎ and 𝑘1, and assuming that these probabilities, 

𝑞𝑠(9𝑚) and 𝑞𝑠(18𝑚), are both reliable and reasonably calculated from the DHS.  

 [
𝑙𝑛(𝑞𝑠(9𝑚))

𝑙𝑛(𝑞𝑠(18𝑚))
] = [

β̂1,9𝑚 β̂2,9𝑚 β̂3,9𝑚

β̂1,18𝑚 β̂2,18𝑚 β̂3,18𝑚

] ∙ [

1
 𝑙𝑛(ℎ)

𝑙𝑛(ℎ)2
] + [

U1,9𝑚

U1,18𝑚
] ∙ 𝑘1. (4) 

Once the parameters of the model were calculated, infant mortality was projected from 

equation (5). Similarly, the model was used to predict the cumulative probability of dying 

at all other ages adjacent to the 12 months of life in order to smooth the data around. 

𝑙𝑛(𝑞𝑚(12𝑚)) = [β̂1,12𝑚 β̂2,12𝑚 β̂3,12𝑚] ∙ [

1
 𝑙𝑛(ℎ)

𝑙𝑛(ℎ)2
] + U1,12𝑚 ∙ 𝑘1. (5) 
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Nevertheless, the bias of the DHS is assumed to depend on the punctual estimation of the 

infant mortality and was calculated by equation (6). 

 𝐵𝑖𝑎𝑠 = ln[𝑞𝑠(12𝑚)] − ln[𝑞𝑚(12𝑚)]     (6) 

Figure 9 shows boxplots for the bias of the infant mortality estimates. In most cases, the 

model predicts a higher value than that calculated directly from surveys. This indicates 

that the DHS estimates might underestimate the value of infant mortality, regardless of 

gender and for the majority of countries-years included in the analysis. Figure 9 also 

allows determining the magnitude of the bias. Although there are extreme observations 

and cases of overestimation, in most cases the bias does not exceed the 5 percent of infant 

mortality. Consequently, there would be a greater concern in the measurement of infant 

mortality in the region of Sub-Saharan Africa, where the level of infant mortality and the 

size of the bias are the highest. However, it should also be considered that this difference 

might be exacerbated by the already mentioned differences in the age-patterns of 

mortality of Sub-Saharan populations and those used to estimate the empirical model. 

 

Figure 9: Boxplots for the bias of the infant mortality estimates 

  
Note: Central Asia (6 life tables); Latin America and the Caribbean (46); North Africa, West Asia, and 

Europe (30); South and Southeast Asia (39); Sub-Saharan Africa (131); and the empirical model (1,319). 
 

For a selection of countries-years, Figure 10 shows the cumulative probability of dying at 

ages adjacent to the 12 months of age. For each case, DHS estimates were compared to 

model predictions. In order to assess the bias of survey estimates, model predictions help 

to smooth the cumulative probability of dying and provide an indirect estimation of the 

infant mortality. The Figure 10 shows the discontinuity in the cumulative probability of 

dying at the age of 12 months. In particular, the discontinuity is a result of ages at death 

which are rounded by excess, diminishing the number of deaths occurring in the eleventh 

and twelfth month of life. Therefore, misreported ages at death lead to an underestimation 

of infant mortality and an overestimation of mortality in the second year of life. However, 

the indirect estimation based on model life tables is a relevant method to detect and 

correct the bias of survey estimates. 
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Figure 10: Cumulative probabilities of dying for females from selected country-years 

DHS estimates vs. model life table predictions using 𝑞(9𝑚) and 𝑞(18𝑚) as matching 

values 
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2.6. Discussion 

This paper analyzes the age patterns of under-five mortality estimated from the 

Demographic and Health Survey by retrospective methods. The resulting mortality 

schedules were compared to model predictions, by taking advantage of an empirical 

model life table. The model includes relevant ages for the indirect estimation of the level 

and shape of the mortality at early ages. The analysis shows that DHS estimates of 

neonatal and under-five mortality fall on a range of feasible values that were estimated 

from vital records. Hence, these probabilities were used to infer the probabilities of dying 

at other ages. For a given level of neonatal and under-five mortality, a complete mortality 

schedule was estimated for each survey allowing to contrast the cumulative probabilities 

of dying. Although this approach is not intended to correct the possible errors of the DHS 

estimates, it was used to quantify the relative differences between model predictions and 

survey estimates. These differences help to illustrate how different are the mortality 

patterns that characterize each of the regions defined in the DHS. In this regard, this 

paper also provides evidence of the concomitance of late patterns and high levels of 

mortality at early ages. Hence, this paper contributes to the discussion in Guillot, et al. 

(2012) on the need to examine DHS estimates using detailed age groups and model life 

tables with the same age intervals. 

This paper also examines quality issues of the DHS regarding early mortality estimates. 

At some ages, disparities could be more related to reporting bias and not necessarily to 

actual mortality patterns. In particular, ages at death are affected by rounding errors in 

retrospective sources, resulting in some heaping, for example, at the age of 12 months. 

This finding is consistent with the results of early assessments that conclude in a possible 

underestimation of the infant mortality and a likely overestimation of the child mortality. 

In this regard, this paper contributes to the discussion by proposing an indirect method to 

assess the bias of surveys estimates.  
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Chapter 3 

Health dynamics and survival expectations 

of mature adults in rural Malawi1
 

This chapter is co-authored with Hans-Peter Kohler
2
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3
 

Abstract 

This paper investigates the reciprocal interaction of physical and mental health using a 

sample of mature adults aged 45+, who participated in the Malawi Longitudinal Study of 

Families and Health between 2006 and 2012. Four continuous assessments of a 12-item 

Short-Form Health Survey were administrated to measure the physical and mental health 

of the participants. This information was supplemented by survival expectations, that 

were elicited from the self-reported distribution of probabilities of dying, using numerical 

scales and different lengths of exposure. Structural equation models were estimated 

assuming intertemporal relationships between physical health, mental health, and the 

formation of survival expectations. These models identify different pathways that have 

been discussed from theoretical and empirical approaches showing evidence of the 

concomitancy of physical and mental health issues, and the relevance of expectations 

about life. As an identification strategy, the effect of mental health on physical health was 

assumed to be lagged by two years, while it requires some adaptation and the adjustment 

of behaviors. Given these characteristics, this paper quantifies a significant impact of 

mental health on the prospective physical health, and provides evidence on the 

differentiated adaptation pathways for men and women.  

Key words: Malawi Longitudinal Study of Families and Health; physical and mental 

health; subjective expectations; Short-Form Health Survey; longitudinal panel; Structural 

Equation Models.  
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3.1. Introduction 

Chronic, progressive, and debilitating forms of physical illness have psychosocial 

consequences affecting the quality of life and wellbeing. Although physical limitations 

can cause some interference with physical activities, work, and income; physical 

limitations also affect mental health domains such us the perception of the self and the 

future; the interaction with the others; and the satisfaction with life (de Ridder, et al., 

2008; Powdthavee, 2009; Jokela, et al., 2014). Individuals suffering of physical illness 

also report a diminished quality of life (Connell, et al., 2014). Given that physical 

problems impose an additional deal of stress, some psychological disorders, such as 

depression, are expected to be more prevalent in individuals suffering of physical illness 

and disability (Sharpe & Curran, 2006). Indeed, longitudinal studies have shown 

evidence of the linking pathways from physical to mental health through the 

inflammation hypothesis of depression: persistently high levels of inflammation markers 

are significant predictors of depressive symptoms 5 to 10 years later (Kivimäki, et al., 

2014). 

Since physical illness may have psychological impacts, a process of adaptation is 

desirable. This process implies a behavioral response that will depend on the individual 

perception of a poor health, the expected gains to maintain a health status, and the 

barriers to adapt behaviors (Sharpe & Curran, 2006). To preserve the functional status, 

the psychological balance, and the satisfaction about life are three of the multiple aspects 

for an adaptive process to be successful (Stanton, et al., 2007; de Ridder, et al., 2008). 

Although permanent and disabling forms of physical illness would have a minimal 

impact on mental health, failure in adapting to the disease has a negative effect on the 

prospective status of physical health by making the course of the disease even worse. 

This effect would be exacerbated by a poor adherence or a complete lack of treatment, 

and the adoption of unhealthy behaviors that might result of a lack of optimism and 

negative expectations about life. 

In this paper, structural equation models are used to investigate the reciprocal interaction 

of physical and mental health, as an intertemporal process that is linked to survival 

expectations. Individuals form expectations about future life events and adapt behaviors 

in consequence. Expectations might have an impact on the prospective status of physical 

health, but the perception of the self and the future is related to the mental health of 

individuals as depressed individuals tend to be more pessimistic about their lives. The 

empirical exercise was implemented from the Malawi Longitudinal Study of Families and 

Health. In particular, the analysis is focused on the cohort of mature adults (45+ in 2012) 

who participated between 2006 and 2012. Four assessments of a 12-item Short-Form 

Health Survey (SF12) were administrated, using a formulary adapted to the context of 

Sub-Saharan Africa. Participants also reported subjective expectations about cumulative 
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death probabilities for different lengths of exposure: 1, 5, and 10 years; and using 

numerical scales. The self-report of these events allows the elicitation of survival 

expectations. Subjective expectations about the length of life or survival probabilities are 

measurements of the wellbeing of the individuals, as healthy individuals are more 

confident about the future and expect to live more years. 

The cohort of mature adults in rural Malawi is a relevant case to the study health 

dynamics and the expectations about life. Compared to other age groups, mature adults in 

Malawi are projected to grow faster and the number of years lived with limitations is 

expected to increase, given that the process of epidemiological transition will rise the 

prevalence of non-communicable diseases (Payne, et al., 2013). Indeed, chronic 

conditions increase the chances to develop mental disorders (Prince, et al., 2007), and 

mental disorders have a considerable impact on the Global Burden of Disease (Collins, et 

al., 2013; Whiteford, et al., 2013). Specifically, symptoms of depression constitute a 

major cause for disability and severe depression is associated with higher risk of 

mortality (Prince, et al., 2007; Roiser, et al., 2012). This is not a problem of less 

importance since mental disorders are equally affecting developed and less developed 

societies through a loss of productivity and job absenteeism (Lim, et al., 2000; Dewa & 

Lin, 2000; Dewa, et al., 2007; Canavan, et al., 2013). However, much worse is the 

problem in less developed societies that have precarious mechanisms of social security 

and health care. 

 

3.2. Theory and evidence 

To some extent, the association of physical and mental health can be more reciprocal than 

causal. Research based on semi-structured interviews suggest that mental disorders have 

a potential negative effect on physical health due to insomnia, eating disorders, and the 

side effects of some medications (Connell, et al., 2014). One leading argument explaining 

the reciprocal interaction of physical and mental health domains is the comorbidity of 

physical and psychological disorders. In a sample of mature adults, negative perceptions 

of the health status predict a short-term increase in depressive symptoms, although 

depressive symptoms only have a moderated effect on the reported health status (Meeks, 

et al., 2000). A second argument is the linking pathways from mental to physical health 

through behavioral responses and cognitive distortions, as they can increase the risk of 

mortality and reduce the length of life (Cohen & Rodriguez, 1995). On the other hand, 

major depression has been linked to viral infections through a decreased immunity and 

delays in seeking for an appropriate medical help (Coughlin, 2012). 

Not all individuals adapt in the same way to the changes in their health status, hence 

background characteristics are also important. A longitudinal study supports the fact that 
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symptoms of depression at older ages are associated with a higher risk of mortality 

through cardiovascular disease in the case of males; while females report higher scores of 

depression but cope with a lower risk of mortality (Scafato, et al., 2012). Selection is also 

a plausible mechanism in explaining the different pathways of adaptation. For example, 

given that patients with schizophrenia are less likely to use health services, lower 

detection rates of cancer and ischemic heart disease are the leading explanation behind 

the early mortality associated to this mental health condition (Crump, et al., 2013). 

However, this is also evidence of the significance of behaviors, individual characteristics, 

and social support that is behind the health dynamics. In a three-year window after a 

cardiac transplant, a prospective study found lower mortality rates in a group of patients 

that scored higher in a prescreening assessment of health behaviors and psychosocial 

support, compared to a group of patients with lower scores but similar scores of mental 

health and the same severity of the disease (Chacko, et al., 1996). These evidences 

suggest a complex interaction between physical and mental health.  

Depressive symptoms are related to pessimistic views about future life events. The higher 

the symptoms of depression are, the larger is the negative bias in predicting future 

outcomes (Strunk, et al., 2006; Strunk & Adler, 2009). The cognitive model of depression 

establishes that depressed individuals give dedicated attention and more efficient 

processing to negative information. Thus, the negative bias leads to the reinforcement of 

maladaptive attitudes and behaviors. For example, evaluating graphical material, 

depressed individuals have an inaccurate perception of emotions as they show more 

sensitivity in recognizing sad faces compared to happy faces (Roiser, et al., 2012). The 

cognitive model of depression has an underlying neurobiological mechanism explaining 

how individuals process their emotions and adapt their behaviors in response to negative 

life experiences: i) negative stimuli produce more and lasting reactivity of the amygdala 

of depressed individuals; ii) an abnormal response of the nucleus accumbens of depressed 

individuals imposes more difficulties in adapting to positive rewarding behaviors (Disner, 

et al., 2011). 

Negative experiences are also related to symptoms of depression. A twin study shows 

that stressful life events cause major depression, although emphasizes that some 

individuals predisposed to depression also have a greater propensity to cope with stressful 

situations (Kendler, et al., 1999). One of the issues associated with stress and depression 

is the potential effect on the physical health of individuals. Psychological stress induces 

to an adjustment process of the body, commanded by two interacted mechanisms, and 

producing two outcomes: the release of epinephrine and norepinephrine, and the release 

of glucocorticoids (Gunnar & Quevedo, 2007). Epinephrine and norepinephrine conduct 

the immediate and necessary response for survival (flight-or-fight response), whereas one 

of the functions of glucocorticoids is to suppress the stress response (Sapolsky, et al., 
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2000). A constant activation of the stress response makes the cost of the suppressive 

mechanism to exceed its benefit, producing a physical suboptimal adaptation: the 

allostatic load, which is related to abnormal levels of basal cortisol (Gunnar & Quevedo, 

2007). The allostatic load has been associated to other physiological responses such as 

hypertension, hypercholesterolemia, and the accumulation of adipose tissue in arms and 

hips. At mature ages, the allostatic load is related to a decline in the physical and 

cognitive functioning of individuals, and increases the risk of mortality due to 

cardiovascular diseases (Seeman, et al., 1997). 

From a demographic perspective, there is more concern about the age and sex differences 

related to the association of depression and stressful life events. On the one hand, it has 

been conjectured that risks of anxiety and depression decrease with age, as negative 

emotions become less frequent at older ages, individuals gain more control over stressful 

events, or early life events induce to psychological immunization (Jorm, 2000). On the 

other hand, based on neurobiological arguments and considering that stressful life events 

accumulate over the lifespan, it has been hypothesized that the risk of depression is an 

increasing function of age. However, some empirical evidence shows no substantial 

correlation between age and hospital admissions to treat a severe depression (Kessing, et 

al., 2003). Under normal conditions, the stress-sensitivity of humans shows important 

changes over the lifespan. Minimal levels of cortisol are detected in newborns that 

increase within the first months of life, followed by a period of hyposensitivity during the 

early childhood and most of the childhood, and then a transition to the adult-patterns of 

sensitivity at the puberty (Gunnar & Quevedo, 2007). Therefore, negative experiences 

might be related to the age-specific responsiveness. In this regard, a study based on a 

retrospective inventory of stressful events reported by adults aged 55-85 shows that early 

life events are associated with lower levels of basal cortisol, whereas late life events with 

higher levels (Gerritsen, et al., 2010). Sex differences in depression have been also 

examined. The empirical evidence of experimental designs has shown that the association 

of depressive symptoms and the negative bias anticipating undesirable life events is 

higher in the case of women (Strunk, et al., 2006; Strunk & Adler, 2009). The 

neurobiological mechanism has been the leading argument conceptualizing age 

differences; the adaptive behavior, on the other hand, has been one explanation of the 

different pathways of men and women. 

The perceptions of the self and future life events are linked to mental health. Although 

the classical model of mental health assumes a neutral balance (objective evaluation) of 

positive and negative results, it is a normal human condition that future oriented 

individuals give more attention to desirable outcomes (Taylor & Brown, 1988). Since 

failure and frustration are emotions that individuals want to avoid, it has been 

hypothesized that the lack of optimism and lower expectations are rational strategies to 
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prevent disappointment (van Dijk, et al., 2003). Indeed, illusion and false expectation are 

particularly deleterious in situations of powerlessness and uncertainty. However, 

optimism is a valuable feature of individuals when they have the chance to control and to 

affect future outcomes (Peterson, 2000). An adaptive behavior would be behind the 

formation of positive expectations, as healthy individuals reinforce their optimism and 

adjust their perceptions after the realization of wanted outcomes (Korn, et al., 2014). 

From a biological perspective, the optimism bias is a result of information that is 

asymmetrically updated because desirable outcomes prevail. In this process, the 

dopamine has some influence on positive expectations by diminishing the effect of 

unexpected negative information (Sharot, et al., 2012).  

Expectations about future life events would also be related to how individuals internalize 

the experiences of the others, and their relative position in a society. From a sociological 

perspective, the optimism bias in reporting a longevity expectation is influenced by the 

socioeconomic status through the self-confidence about the future (Mirowsky & Ross, 

2000). As decision-makers, individuals face uncertainty about their prospective health 

status and use available information to infer future outcomes (Hurd, 2009). This 

information might include beliefs, past experiences, and the experience of other 

individuals. But also the self-confidence that wealth can provide, thus the hypothesis of 

the socioeconomic status has been one leading explanation of the differences of men and 

women. 

Empirical evidence shows that a negative health shock, such as a new diagnosis, has an 

impact on mortality expectations and the self-reported health status, whereas a mortality 

shock, such as the death of a close relative, modifies mortality expectations only (Hurd & 

McGarry, 2002). Although the perception about health and longevity is as subjective 

expectation, it is relevant when behaviors and choices are adjusted in consequence (Hurd 

& McGarry, 1995). In the context of the HIV epidemic, a theoretical model of the 

optimal choice of sexual partners indicates that pessimistic expectations about the 

likelihood of being infected increase risky sexual behaviors (Auld, 2003). Furthermore, 

empirical evidence shows that individuals modify the expectations of being infected after 

they were informed about their seropositive status and the seropositive status of their 

spouses (Delavande & Kohler, 2012).  

Since optimism emerges from the fulfillment of expectations, positive expectations about 

longevity are highly beneficial when individuals have the autonomy to adopt behaviors 

that extend the length of life. Indeed, perceptions and emotional states about health 

problems guide behaviors that finally affect the health status (Salovey, et al., 2000). 

Consequently, survival expectations are related to physical and mental health. On the one 

hand, healthy individuals have a positive perception of the self and are more optimistic 
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about things that they actually have the control to change (Taylor & Brown, 1994). On 

the other hand, the illusion of control and positive expectations might have an impact on 

the behaviors and choices related to the individual’s wellbeing. Inasmuch as some 

symptoms have a psychological origin (are psychogenic), the placebo effect is one 

example of how positive expectations about the treatment might have an impact on the 

prospective health status (Eknoyan, et al., 2013). Given that expectations might adjust 

behaviors before affecting final outcomes, the association is more likely to be 

intertemporal rather than simultaneous. Furthermore, the linking mechanism of 

expectations and behaviors, that reinforce the optimism of individuals, is also relevant for 

the adaptation to the disease. 

 

3.3. Data 

The sample used for the analysis comes from the Malawi Longitudinal Study of Families 

and Health (MLSFH; formerly, Malawi Diffusion and Ideational Change Project). This 

longitudinal cohort study began in 1998 with a random sample of 1,745 ever-married 

women aged 15-49, and 1,519 spouses, who were living in the rural area of three major 

districts: Balaka in the south, Mchinji in the center, and Rumphi in the north. Initially, the 

target population of the MLSFH has been extended to incorporate changes in the family 

composition of the original sample. In 2001, participants were interviewed again, and 331 

new spouses were added to the study (254 females - 77 males). Back in 2004, the original 

sample was extended to include 1,531 adolescents (731 - 800), and 198 new spouses (21 - 

177). For the first time in the study, participants interviewed in 2004 were voluntarily 

tested for HIV. Blood tests to detect HIV were also administrated in 2006, 2008, and 

2012. In 2006, the sample was extended to include 529 new spouses (295 - 234). Ever 

since 2006, the SF12 questionnaire (12-Item Short-Form Health Survey) has been 

administered. In 2008, the sample was extended to include 826 parents of participants 

interviewed in previous rounds (559 - 267), and 350 new spouses (234 - 116). The 

follow-up of 2010 included 299 new spouses (193 - 106). In 2012, the MLSFH defined as 

a target population of mature adults, aged 45 and above, who were eligible in 2008 and 

2010 or added in 2008; thus no additional participants were included in 2012 and 2013. 
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Table 1: Cohort profile of mature adults in the MLSFH 

  2006 2008 2010 2012 2013 

Eligible Individuals 956  1,002  1,455  1,455  1,324  

(-) Temporarily Absent / Refusal 145  7  6  78  51  

(-) Dead -  -  -  39  23  

(-) Lost of Follow-Up -  -  -  92  0  

(+) New Additions 46  453  -  0  0  

Total Interviewed 857  1,448  1,449  1,246  1,234  
Note: New additions in 2010 are not part of the cohort profile of mature adults since they were not 

interviewed in 2008.  
 

 

The analysis was focused in four consecutive assessments with equal time intervals from 

2006 to 2012. It was selected a subsample of 1,455 eligible adults, aged 45+ in 2012, 

who were interviewed in 2008 and 2010, as is shown in Table 1. For each round of data 

collection, the number of eligible individuals is equal to the actual number of interviews 

in the previous round in addition to the number of missing interviews, when individuals 

refused to participate or were temporarily absent. Due to lack of follow-up, a total of 92 

respondents were not included for the analysis. Although these 92 individuals were 

interviewed in 2008 or 2010, follow-ups were neither conducted in 2012 nor in 2013; 

thus, they were classified as attrition. However, individuals who were not interviewed in 

2012, but in 2008, 2010, and 2013, were included in the analysis and their data in 2012 

are assumed to be missing at random. 

The analysis is conditional to survivors living in the areas of data collection. In 

consequence, 39 cases were not included due to mortality of the participant, and 16 

additional cases due to permanent migration, as they were documented in the rounds of 

2012 and 2013. Similarly, some cases were not included in the analysis due to incomplete 

information: 15 cases were excluded because GPS location of the respondent was 

unknown, 8 cases were excluded because the HIV status was unknown, and 11 cases 

were excluded because incomplete information. In sum, the sample analyzed in this paper 

consists of 542 males and 732 females; this is a total of 1,274 participants. Major concern 

would exist with 366 respondents added in 2008 who are included in the analysis and 

whose information in 2006 is missing. However, if these new additions in 2008 were 

missed at random in 2006, no significant differences would exist in the estimations if the 

data collected in 2006 where completely excluded from the models (According to Table 

1, the total number of new additions in 2008 is equal to 453. However, 87 respondents 

were excluded because incomplete information, selection, or attrition.) 
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Table 2: General descriptive statistics of the sample 

 

Male 

 

Female 

  Included Excluded   Included Excluded 

Age 60.43 63.25 

 

59.09 65.92 

 0.46 1.42  0.42 1.28 

Widowed (at least once) 0.05 0.05 

 

0.31 0.56 

 0.01 0.02  0.02 0.05 

Divorced (at least once) 0.05 0.10 

 

0.23 0.21 

 0.01 0.03  0.02 0.04 

Years of schooling 4.35 3.76 

 

2.50 1.81 

 0.14 0.39  0.10 0.21 

HIV prevalence 0.06 0.20 

 

0.05 0.11 

 0.01 0.05  0.01 0.04 

      Observations 542 84   732 106 
Mean/standard error of the mean     

 

 

On average, respondents included in the analysis at the time of the last interview were 

59.66 years old, reported 3.28 years of formal education, and had a prevalence of HIV 

estimated to be 5.47%. Other individual characteristics indicate that about 20.01% of the 

participants had reported to be widowed at least once, and the 15.38% had reported at 

least one divorce. Given the initial characteristics of the MLSFH, as well as the addition 

of new participants in the study, the group of females is overrepresented in the sample. 

As it can be deduced from Table 2, males excluded from the analysis have, on average, a 

higher prevalence of HIV (significant at 95% level of confidence) compared to males 

included in the analysis. Considering the potential effect of the HIV infection on the 

overall mortality rate, the difference in prevalence is related to the selection of the 

survivors. On the other hand, females excluded from the analysis are, on average, 

significantly older and have reported a higher prevalence of widowhood, and less years of 

formal education compared to the group of females included in the analysis. Table 2 also 

leads to infer that the group of males included in the analysis is significantly older 

compared to their female counterparts, reports more years of formal education, and shows 

less prevalence of marital experiences ending in divorce or widowhood. 

The items used to measure the physical health of the respondents are directly related to 

the degree of physical limitation and the interference of pain to work and to perform 

typical activities. Similarly, the items used to measure the mental health are related to 

symptoms of depression, anxiety, lack of energy, lack of motivation, and the interference 

of emotions to work and to perform typical activities. Although these measurements do 

not replace the clinical diagnosis of depression or physical disability, they are convenient 
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measurements for a general population as they encompass a variety of related symptoms. 

Physical health and mental health were measured using the inventory of a 12-item Short-

Form Health Survey (SF12). Specifically, the analysis is concentrated on 10 items of the 

SF12 questionnaire that were used to compute six scales of the SF12 methodology: 

Physical Functioning, Bodily Pain, Role Physical, Mental Health, Vitality, and Role 

Emotional. For the purposes of the analysis, the scales of General Health and Social 

Functioning were not included, as they can be equally related to physical and mental 

health issues. Scales were computed from self-reported data and have a range that goes 

from 0 to 100. Henceforth, a value equal to zero in one of the six dimensions is indicative 

of a severe compromise, and is potentially associated with a diminished health status. 

Two additional variables were used to measure survival expectations within the next ten 

years: the probability of surviving the first five-year term, and the probability of 

surviving the second five-year term given that no mortality would occur in the first term. 

These probabilities were calculated directly from the subjective expectations of mortality. 

Participants of the MLSFH reported the increase on the cumulative probability of dying, 

in response of an increase in the time of exposure to the risk of mortality of one, five, and 

ten years after the date of the survey. Data were collected empirically, asking the 

participants to report an additional number of beans on a scale from 0 to 10. Once the 

length of time has been defined, a reported value equal to 10 indicates that the chance of 

dying is very likely, or above 95%, thus the survival expectation must be minimal and 

lower than 5% (Kohler, et al., 2015). For the purpose of the analysis, the variables of 

survival expectations were adjusted to a scale of 0 to 100.  

Table 3 shows the mean values and the standard errors for each round of data by gender. 

Compared to males, females report lower scores in the group of variables describing 

health, and lower scores of survival expectations. Inasmuch as females report lower 

scores of the mental health domain and survival expectations, gender differences in rural 

Malawi are consistent with the literature of depression and pessimist bias in the 

anticipation of stressful life events. Although almost all differences in mean values are 

significant at a level of 5%, there are three exceptions: the survival expectations in 2006 

and 2008, and the score of the role emotional in 2006. 

Since data summarized in Table 3 correspond to an unbalanced panel, changes on mean 

values from one round to another might be affected by the composition of the sample. If 

that were the case, the most substantial change is expected to happen from 2006 to 2008 

with the addition of the new sample of parents. However, data collected in 2010 draw 

particular attention. Compared to 2008 and 2012, data reported in 2010 show a drastic 

decline regardless of the gender. Given that the cohort of study has been defined as all 

mature adults interviewed in 2008 and 2010, this break cannot not be related to changes 
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in the sample composition. Even if the drastic decline of 2010 would be explained by the 

extraordinary conditions of this particular year, these conditions did not produce a similar 

disruption in the case of survival expectations, which decreased round after round of data. 

 

Table 3: Descriptive statistics of the items used to measure physical health, mental health, 

and survival expectations (by sex) 

 

Male 

 

Female 

  2006 2008 2010 2012   2006 2008 2010 2012 

Physical Functioning (PF) 91.43 90.46 80.50 85.40 

 

87.12 82.49 71.64 74.01 
 1.05 0.95 1.25 1.16  1.13 1.00 1.17 1.15 

Bodily Pain (BP) 91.10 84.70 80.26 80.89 

 

86.07 77.18 72.20 71.18 
 1.06 1.12 1.16 1.21  1.11 1.00 1.11 1.17 

Role Physical (RP) 88.20 84.00 72.50 84.81 

 

79.06 74.64 59.05 71.57 
 1.68 1.60 1.88 1.49  1.90 1.59 1.80 1.65 

          Mental Health (MH) 86.69 82.15 76.93 80.35 

 

81.05 73.23 69.76 72.73 
 0.98 0.93 0.92 0.92  1.04 0.85 0.85 0.89 

Vitality (VT) 84.90 81.98 74.33 75.99 

 

78.98 71.74 66.83 66.45 
 1.14 1.01 1.12 1.09  1.12 0.95 1.00 0.99 

Role Emotional (RE) 89.89 92.32 83.82 88.98 

 

86.77 83.52 73.83 81.33 
 1.55 1.14 1.54 1.30  1.61 1.36 1.58 1.39 

 

         

Probability of surviving at 

the time interval [𝑡, 𝑡 + 5) 
59.34 58.58 54.26 46.86 

 

56.09 56.44 49.66 39.96 
1.27 1.14 1.11 1.16  1.15 1.02 0.96 0.94 

Probability of surviving at 

the time interval [𝑡 +
5, 𝑡 + 10) 

56.84 60.52 55.12 42.85 

 

55.53 58.74 49.09 36.06 
1.68 1.48 1.43 1.53  1.51 1.37 1.31 1.30 

          

Observations 356 541 541 531   429 729 731 707 
Mean/standard error of the mean 

 

 

The self-perception of the probability of surviving decreases as the individual becomes 

older. However, compared to a life table, subjective expectations of mortality usually 

overestimate the probabilities of dying in rural Malawi (Delavande & Kohler, 2009; 

Kohler, et al., 2015). Although reported data of survival expectations are underestimated 

on the aggregated, subjective probabilities are informative of the individual differences in 

the perception of future life events. In this regard, a positive expectation about longevity 

would be relative to all individuals in sample. Insofar as subjective expectations were 

collected in multiple rounds and using exactly the same questions, data are also 
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informative of the intertemporal changes in responding to the questionnaire. If individual 

idiosyncrasies are controlled for as a fixed term, for example, being always optimistic 

about life; then, longitudinal data allow to investigate the response of survival 

expectations to changes on health. One particular aspect of the self-reported data of 

mortality expectations is that once the probabilities of survival are decreased in two 

independent time intervals, individuals tend to be more pessimistic about the near future. 

 

3.4. Measuring physical health, mental health, and expectations 

A conventional approach to the measurement of physical and mental health using 

population surveys is to calculate the Physical Composite Score (PCS12), and the Mental 

Composite Score (MCS12). In the practice, the scores are calculated as two different 

linear combinations of the eight scales defined by the SF12 survey. As latent variables, 

PCS12 and MCS12 are calculated through analytic rotation, thus a covariance structure 

between physical health and mental health is dictated by the method: it can be equal to 

zero in the case of orthogonal algorithms, or a maximum value in the case of oblique 

algorithms of analytic rotation. Subject to this caveat, the choice of the method would 

respond to the necessity to assume physical and mental health as independent or 

endogenous covariates. Since previous assessments of data are not relevant for this 

estimation, the conventional approach is not suitable to model dynamic interactions when 

individuals have been interviewed for several years. A second caveat in the calculation of 

PCS12 and MCS12 is the dilemma of using estimated coefficients from a standard 

population, for example, the US general population; and then, applying these coefficients 

to investigate males and females aged 45+ in rural Malawi. In spite of the implicit 

advantage of comparability of using pre-estimated coefficients, there is a trade-off 

between comparability and accuracy of the results. Since errors in predicting key 

parameters should be minimized for an estimation to be fitted, the specificity of the 

mature adults in rural Malawi is also a desirable condition. Moreover, if these parameters 

have to be calculated for a study population and multiple rounds of data are available, 

there is an opportunity to assess the complex interactions between physical and mental 

health that has been documented in the literature. 

An alternative approach to the measurement of health status using the items of a SF12 

survey and multiple rounds of data should consider the endogenous but also dynamic 

nature of physical and mental health. Furthermore, for a better understanding of how this 

complex interaction works, other domains affecting the health and wellbeing of 

individuals, such as the expectation of future life events, should also be considered. In 

order to avoid a prior imposition of any correlation between physical and mental health, 

independent items were used to measure each health domain. 
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Physical health is measured using three items: the scales of Physical Functioning (PF), 

Bodily Pain (BP), and Role Physical (RP). Particularly, for each assessment of data there 

was defined a latent variable of physical health 𝑝, that is not observed directly but 

through its effect on the scales of PF, BP, and RP, as shown by equations 1.1-1.3. As an 

identification restriction, the latent variable was always assumed to have a standard 

normal distribution, hence 𝑝𝑡~𝑁(0,1) for all 𝑡. From this perspective, the variable of 

physical health is related to the degree of physical limitation while performing moderate 

and strenuous physical activities in a typical day of activity, the degree of physical 

limitation and difficulty while performing work-related activities, and the interference of 

pain in work-related activities and household duties. If these symptoms were entirely 

absent, the scales of PF, BP, and RP would be equal to 100, and the score of the physical 

health would be the highest.  

  PF𝑖,𝑡 = 𝛼PF,𝑡 + 𝛽PF ∙ 𝑝𝑖,𝑡 + 𝑒PF,𝑖,𝑡,  𝑒PF,𝑡~𝑁(0, 𝜎PF,𝑡
2 ).  (1.1) 

  BP𝑖,𝑡 = 𝛼BP,𝑡 + 𝛽BP ∙ 𝑝𝑖,𝑡 + 𝑒BP,𝑖,𝑡,  𝑒BP,𝑡~𝑁(0, 𝜎BP,𝑡
2 ).  (1.2) 

  RP𝑖,𝑡 = 𝛼RP,𝑡 + 𝛽RP ∙ 𝑝𝑖,𝑡 + 𝑒RP,i,𝑡,  𝑒RP,𝑡~𝑁(0, 𝜎RP,𝑡
2 ).  (1.3) 

Mental health is approached through the scales Mental Health (MH), Vitality (VT), and 

Role Emotional (RE). As is shown by equations 2.1-2.3, for each assessment included in 

the analysis, there was defined a latent variable of mental health 𝑚𝑡~𝑁(0,1), which is 

affecting the scales of MH, VT, and RE. According to the questions of the SF12-form 

used to calculate these items, the latent variable of mental health is a proxy of the 

difficulties finding moments of calm and peace, the lack of energy to perform daily 

activities, the feelings of discouragement and depression, and the degree of emotional 

limitation to perform work-related activities and duties during a typical day of activity. 

  MH𝑖,𝑡 = 𝛼MH,𝑡 + 𝛽MH ∙ 𝑚𝑖,𝑡 + 𝑒MH,𝑖,𝑡, 𝑒MH,𝑖,𝑡~𝑁(0, 𝜎MH,𝑡
2 ).  (2.1) 

  VT𝑖,𝑡 = 𝛼VT,𝑡 + 𝛽VT ∙ 𝑚𝑖,𝑡 + 𝑒VT,𝑖,𝑡,  𝑒VT,𝑖,𝑡~𝑁(0, 𝜎VT,𝑡
2 ).  (2.2) 

  RE𝑖,𝑡 = 𝛼RE,𝑡 + 𝛽RE ∙ 𝑚𝑖,𝑡 + 𝑒RE,𝑖,𝑡,  𝑒RE,𝑖,𝑡~𝑁(0, 𝜎RE,𝑡
2 ).  (2.3) 

Participants of the MLSFH reported cumulative probabilities of dying starting from the 

date of the interview, and considering three periods of exposure to the risk of dying: one 

year, five years, and ten years. Given that data were collected using a bounded numerical 

scale, this is relevant information to calculate the probabilistic expectation of staying 

alive at two independent time intervals of five-year length each: the probability of 

surviving the first five-year term (SEI), and the probability of surviving the second five-

year term (SEII). A latent variable of survival expectations was defined 𝑠𝑡~𝑁(0,1), as a 
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continuous latent variable affecting the self-perception of survival within the next ten 

years of life, using two subintervals of time as is shown by equations 3.1 and 3.2. 

  SE𝑖,𝑡
I = 𝛼SEI,𝑡 + 𝛽SEI ∙ 𝑠𝑖,𝑡 + 𝑒SEI,𝑖,𝑡,  𝑒SEI,𝑖,𝑡~𝑁(0, 𝜎

SEI,𝑡
2 ).   (3.1) 

  SE𝑖,𝑡
II = 𝛼SEII,𝑡 + 𝛽SEII ∙ 𝑠𝑖,𝑡 + 𝑒SEII,𝑖,𝑡, 𝑒SEII,𝑖,𝑡~𝑁(0, 𝜎

SEII,𝑡
2 ).  (3.2) 

Described measurements entail specifying assumptions to be discussed. On the one hand, 

there was assumed that intercepts 𝛼, and the variance of the measurement errors 𝜎2, vary 

over time; whereas factor loadings 𝛽, are constrained to be the same values from 2006 to 

2012. This condition implies a constant covariance between observed and latent 

variables, as long as the variance of the latent variables will not change over time. On the 

other hand, latent variables 𝑝, 𝑚, and 𝑠, are assumed to be standard: expected values are 

always equal to zero and variances are constant over time. Consequently, latent variables 

show the health status of an individual compared to other individuals in the sample. In 

summary, although measurement errors are free to change at each round of data, the 

effect of the latent variables in predicting survey items is always the same. Insofar as 

uncorrelated errors reduce the number of parameters to be estimated, measurement errors 

𝑒, are assumed to be independently and normally distributed; hence: 𝐶𝑜𝑣[𝑒H,𝑡, 𝑒K,𝑟] =

0 ∀ H ≠ K, 𝑡 ≠ 𝑟. Arguably, a parsimonious solution can be relaxed in order to reach a 

better fit; nevertheless this possibility is not explored in the paper. 
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Table 4: Reliability coefficients of physical health, mental health, and survival 

expectations  

 

Cronbach’s alpha 
 

Spearman–Brown coefficient 

Physical Health 2006 2008 2010 2012 
 

2006 2008 2010 2012 

All mature adults 0.841 0.764 0.805 0.818 

 

0.874 0.794 0.833 0.832 

Male 0.823 0.746 0.806 0.812 

 

0.853 0.770 0.833 0.821 

Female 0.848 0.763 0.797 0.811 

 

0.883 0.798 0.826 0.829 

          Mental Health 2006 2008 2010 2012 
 

2006 2008 2010 2012 

All mature adults 0.716 0.729 0.708 0.774 

 

0.757 0.753 0.757 0.803 

Male 0.687 0.727 0.697 0.728 

 

0.732 0.735 0.735 0.755 

Female 0.729 0.709 0.701 0.787 

 

0.769 0.746 0.758 0.820 

          Survival 

Expectations 
2006 2008 2010 2012 

 

2006 2008 2010 2012 

All mature adults 0.771 0.789 0.826 0.785 

 

0.789 0.807 0.846 0.806 

Male 0.783 0.795 0.827 0.807 

 

0.801 0.811 0.843 0.825 

Female 0.761 0.783 0.822 0.760   0.779 0.802 0.845 0.785 
 

 

Since an alternative approach is proposed, the internal consistency of key measurements 

is therefore examined. Table 4 shows the Cronbach’s alpha and the Spearman-Brown 

coefficient of physical health, mental health, and survival expectations. Theoretical 

values of positive correlated items lie between zero and one. The higher is the item 

correlation or the number of items, the greater is the value of the reliability coefficients. 

The Cronbach’s alpha has been defined as a lower-bound estimate of the reliability 

(Cronbach, 1951), and the Spearman-Brown coefficient is a particular case of the 

Cronbach’s alpha under the assumption of standardized items. Table 4 shows adequate 

values of internal consistency. Considering the reduced number of items used for each 

health domain, reliability coefficients show that the content of the items is homogeneous. 

Similar results were found in individual estimates by sex and year of data collection.  

 

3.5. Estimation of health dynamics 

Three models were estimated in order to assess health dynamics in rural Malawi, 

assuming that changes in physical health have a direct effect on mental health, while the 

reciprocal effect is lagged by two years. The intuition behind the assumption is that 

changes in mental health might have an effect on physical health after a process of 

adaptation in which individuals make subjective evaluation of future life events, and 

adjust their behaviors in consequence. Thus, the formation of survival expectations could 
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play a leading role in the health dynamics. Some possible pathways were addressed on 

each model. 

Measurements and health dynamics were estimated simultaneously through Maximum 

Likelihood (ML), using the statistical package Mplus7.4. In particular, the scales of 

Physical Functioning (PF), Bodily Pain (BP), Role Physical (RP), Mental Health (MH), 

Vitality (VT), Role Emotional (RE), and Survival Expectations (SEI and SEII), were 

assumed to be continuous variables. Although some of them have a broad number of 

categories that would not make it possible to estimate the model as one of multiple 

categorical variables, the dispersion of the data shows important discontinuities. In this 

case, some sacrifice of efficiency is expected to happen on the estimation. The ML 

estimation of a Structural Equation Model (SEM) has some advantages: reported 

variables might have some degree of measurement error; and the model is estimated 

without sacrificing the observations that have missing values in the endogenous variables 

(Alison, 2003). This means that no imputation is necessary and the model simply 

maximizes over the conditional expectation of the endogenous variables. 

Model 1: survival expectations depend on mental health status 

This model assumes that survival expectations are part of the health dynamics, as they 

depend directly on the mental health of individuals. This specification allows to 

investigate the pass-through of the health status to the subjective expectations of future 

life events, controlling (somehow) for fixed characteristics. Although this model assumes 

a one-way effect from health to expectations, it addresses the question of to what extent 

healthy (unhealthy) individuals are more optimistic (pessimistic) about their length of 

life. 

The identification strategy suggests that shocks affecting each domain are independent, 

but physical health and mental health are linked dynamically. As is shown by equations 

4.1-4.3, negative shocks of physical health 𝜀𝑝, may have some direct effect on mental 

health that is attenuated or intensified by a proportion 𝛾1; nevertheless, the shocks that 

affect mental health 𝜀𝑚, have an effect on physical health after a process of adaptation. 

This response is captured by the coefficient 𝛾2. Additionally, all shocks affecting mental 

health also affect expectations in a 𝛾3 proportion. The effect of fixed characteristics of 

individuals is modeled from a latent variable v, which is time invariant but changes each 

equation in a fixed proportion 𝛿. For convenience, this variable follows a standard normal 

distribution, hence: v~𝑁(0,1). 

  𝑚𝑖,𝑡+2 = 𝛾1 ∙ 𝑝𝑖,𝑡+2 + 𝛿𝑚 ∙ v𝑖 + 𝜀𝑚,𝑖,𝑡+2,  𝜀𝑚~𝑁(0, 𝜎𝑚
2 ).  (4.1) 

  𝑝𝑖,𝑡+2 = 𝛾2 ∙ 𝑚𝑖,𝑡 + 𝛿𝑝 ∙ v𝑖 + 𝜀𝑝,𝑖,𝑡+2,  𝜀𝑝~𝑁(0, 𝜎𝑝
2).  (4.2) 
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  𝑠𝑖,𝑡+2 = 𝛾3 ∙ 𝑚𝑖,𝑡+2 + 𝛿𝑠 ∙ v𝑖 + 𝜀𝑠,𝑖,𝑡+2,  𝜀𝑠~𝑁(0, 𝜎𝑠
2).  (4.3) 

The system of equations 4.1-4.3 has a path diagram shown in Figure 1 and has the 

following interpretation: on the one hand, individuals with diminished physical health 

due to disability and bodily pain would also experience some level of frustration and 

emotional discomfort in their lives, which are related to symptoms of depression and 

feelings of discouragement. This association is mainly explained by the concomitancy of 

physical illness and mental health disorders. On the other hand, individuals who reported 

lower scores of mental health were also more likely to report a diminished physical health 

two years later. The path diagram shows the effect of individual fixed characteristics and 

the effect of mental health on the survival expectations.  

Additional restrictions were imposed to reach identification. These restrictions are shown 

in equations 4.4- 4.6. They are the result of assuming the same variance for all latent 

variables. The implicit advantage of the assumption is to estimate standardized 

coefficients. 

  1 = 𝛾1
2 + 𝛿𝑚

2 + 𝜎𝑚
2 .        (4.4) 

  1 = 𝛾2
2 + 𝛿𝑝

2 + 𝜎𝑝
2.        (4.5) 

  1 = 𝛾3
2 + 𝛿𝑠

2 + 𝜎𝑠
2.        (4.6) 

Considering that the latent variable that meets all fixed characteristics of individuals is 

not correlated with exogenous variables, since they are not included in the model; then, 

the estimated coefficients are interpreted as a random effects model rather than one of 

fixed effects. Hence, the model does not corrects the bias of omitting other variables, 

having a substantial effect on the health of individuals and survival expectations. 

However, as in a model of random effects, a significant value of 𝛿 allows to evaluate the 

relevance of modeling individual heterogeneity from the error term; and the proportion 

resulting from: 𝛿2 (𝛿2 + 𝜎2)⁄  is indicative of the fraction of the error term that is 

explained by fixed characteristics not included in the model. 
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Figure 1: Health dynamics and survival expectations 

 
According to the path diagram, physical health 𝑝 has a contemporaneous effect on mental health 𝑚, 

while mental health has a lagged effect on physical health. In addition, survival expectations 𝑠 are 

affected by mental health. Following a convention in SEM, the latent variables are denoted by ovals, 

whereas the directly observed are shown in rectangles. Males and females combined. Physical 

Functioning (PF), Bodily Pain (BP), Role Physical (RP), Mental Health (MH), Vitality (VT), Role 

Emotional (RE), and Survival Expectations (SEI and SEII). 

 

Table 5 shows the estimated coefficients of the model described in equations 4.1-4.6. 

According to some indicators, the model is adequately fitted to the data: Comparative Fit 

Index 𝐶𝐹𝐼 =  0.935, Tucker-Lewis Index 𝑇𝐿𝐼 = 0.933, Root Mean squared Error of 

Approximation 𝑅𝑀𝑆𝐸𝐴 = 0.042. Although it is not possible to satisfy the Chi-square 

test 𝜒(481)
2 = 1,564.348 (𝑝 = 0.000), this could be a result of using a numerous sample 

𝑁 = 1,274. In general, the effect of physical health on mental health is strong and 

significant. For the population in sample, an increase in one standard deviation (𝑠𝑑) in 

physical health has an impact of 0.913 𝑠𝑑 on the mental health status. While the 

reciprocal effect, which is expected to occur two years later is estimated to be 0.243 𝑠𝑑. 

In addition, it is estimated that an increase of one 𝑠𝑑 on mental health, would increase 

survival expectations in 0.147 𝑠𝑑, given that survival expectations do affect physical and 

mental health. 

Table 5 also reports independent coefficients for men and women. In this case, the model 

was re-estimated assuming the same factor loadings of the measurement component and 

the same distribution of errors. Thus, health assessments were measured equally and both 

groups responded to similar health shocks. Identifying restrictions resulted from the 
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weighted average of males and females, using the size of each group in the sample. 

Considering that women are overrepresented in the sample, the weighted average 

guaranties the core assumption of the model, that all latent variables are distributed as a 

normal standard; which is a condition that should be satisfied individually for each group 

in the analysis. Given the assumptions of the model, the six coefficients involved in the 

health dynamic were statistically different for men and women, as the null hypothesis of 

equal coefficients was rejected by a Wald test, 𝑤 = 44.262 (6 𝑑𝑓, 𝑝 =  0.0000). 

However, individual testing did not rejected the null hypothesis that mental health has the 

same effect on survival expectation, 𝑤 = 0.008 (1 𝑑𝑓, 𝑝 =  0.9299), and physical health 

has the same effect on mental health regardless of the gender, 𝑤 = 0.071 (1 𝑑𝑓, 𝑝 =

 0.7900). Nevertheless, significant differences do exist between men and women in how 

mental health affects the prospective status of physical health, 𝑤 = 16.964 (1 𝑑𝑓, 𝑝 =

 0.0000). 

Considering all the above, this model provides some evidence about how men and 

women in rural Malawi have different health pathways, although they respond to health 

shocks that are similar. The difference is mainly explained by the lagged effect from 

mental to physical health. Additionally, this model shows that the formation of 

expectations is not different when it plays no role in determining the health status of 

individuals. However, this model does not explain to what extent survival expectations 

affect their health status. As a robustness check, alternative specifications were also 

considered. In particular, those in which survival expectations would affect the current or 

prospective status of mental health. However, controlling by physical health, survival 

expectations have no significant effect. Although the mental health status can determine 

the formation of survival expectations, this result suggests that pessimism about future 

life events does not necessarily imply a diminished mental health status. A completely 

different approach would be to argue that survival expectations affect the physical health 

of individuals to the extent that pessimism (optimism) about life may affect some 

behaviors, which is the purpose of the following model. 
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Table 5: Survival expectations depend on the mental health status 

      Male Female 

𝛾1 0.913  

 

0.926  0.916  

 0.011  0.026 0.020 

𝛾2 0.243  

 

0.382  0.145  

 0.035  0.049 0.038 

𝛾3 0.147  

 

0.172  0.167  

 0.028  0.040 0.033 

𝛿𝑚 0.102  

 

0.092  0.070  

 0.030  0.039 0.038 

𝛿𝑝 0.410  

 

0.207  0.549  

 0.039  0.061 0.037 

𝛿𝑠 0.155  

 

0.258  0.049  

 0.047  0.050 0.053 

𝜎𝑚
2  0.156  

 

0.147  

  0.017  0.017  

𝜎𝑝
2 0.773  

 

0.734  

  0.021  0.020  

𝜎𝑠
2 0.954  

 

0.942  

  0.010  0.011  

𝑉𝑎𝑟[𝜀𝑚,2006] 0.990  

 

0.994  

  0.006  0.004  

𝑉𝑎𝑟[𝜀𝑝,2006] 0.832  

 

0.809  

  0.032  0.028  

𝐶𝑜𝑣[𝜀𝑚,2006, 𝜀𝑝,2006] 0.812  

 

0.813  

  0.024  0.022  

Observations 1,274   542 732 
Coefficient/standard error. General model: 𝐶𝐹𝐼 =  0.935, 𝑇𝐿𝐼 = 0.933, 

𝑅𝑀𝑆𝐸𝐴 = 0.042, and 𝜒(481)
2 = 1,564.348 (𝑝 = 0.000). Model of independent 

coefficients for males and females: 𝐶𝐹𝐼 =  0.909, 𝑇𝐿𝐼 = 0.913, 𝑅𝑀𝑆𝐸𝐴 =

0.047, and 𝜒(1035)
2 = 2,506.410 (𝑝 = 0.000).  
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Model 2: Survival expectations as a predictor of future health 

The direct effect of physical health on mental health 𝛾1 remains, but the reciprocal effect 

is assumed to materialize through the survival expectations 𝛾3 × 𝛾4. This model accounts 

for the effect of subjective expectations as a predictor of the prospective health status 𝛾4, 

giving that mental health still has a contemporaneous effect on survival expectations 𝛾3. 

Everything else works as in the first model: physical and mental health are assumed to be 

correlated at the first round of data since no prior information was available; the shocks 

affecting each health domain are independent; and fixed characteristics where assessed as 

a latent variable. Hence, the system of equations that describe the structure of the model 

is:  

  𝑚𝑖,𝑡+2 = 𝛾1 ∙ 𝑝𝑖,𝑡+2 + 𝛿𝑚 ∙ v𝑖 + 𝜀𝑚,𝑖,𝑡+2,  𝜀𝑚~𝑁(0, 𝜎𝑚
2 ).  (5.1) 

  𝑝𝑖,𝑡+2 = 𝛾4 ∙ 𝑠𝑖,𝑡 + 𝛿𝑝 ∙ v𝑖 + 𝜀𝑝,𝑖,𝑡+2,   𝜀𝑝~𝑁(0, 𝜎𝑝
2).  (5.2) 

  𝑠𝑖,𝑡+2 = 𝛾3 ∙ 𝑚𝑖,𝑡+2 + 𝛿𝑠 ∙ v𝑖 + 𝜀𝑠,𝑖,𝑡+2,  𝜀𝑠~𝑁(0, 𝜎𝑠
2).  (5.3) 

  1 = 𝛾1
2 + 𝛿𝑚

2 + 𝜎𝑚
2 .        (5.4) 

  1 = 𝛾4
2 + 𝛿𝑝

2 + 𝜎𝑝
2.        (5.5) 

  1 = 𝛾3
2 + 𝛿𝑠

2 + 𝜎𝑠
2.        (5.6) 

The system of equations 5.1-5.6 has a path diagram representation shown in Figure 2. 
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Figure 2: The effect of survival expectations on physical health 

 
Males and females combined. Physical Functioning (PF), Bodily Pain (BP), Role Physical (RP), Mental 

Health (MH), Vitality (VT), Role Emotional (RE), and Survival Expectations (SEI and SEII). 
 

Table 6 shows the estimated coefficients from equations 5.1-5.6. This model shows 

similar goodness of fit: 𝐶𝐹𝐼 =  0.931, 𝑇𝐿𝐼 = 0.929, 𝑅𝑀𝑆𝐸𝐴 = 0.043. Estimated values 

indicate that an increase of one 𝑠𝑑 in survival expectations is associated to an increase of 

about 0.012 𝑠𝑑 in the physical health two years later. This is a minimal and insignificant 

amount, when the model is fitted for males and females combined. Thus, negative 

perceptions about the self and the future would not have a deleterious effect on physical 

health of mature adults in rural Malawi. However, another conclusion can be reached 

when estimated coefficients are independent for men and women. In particular, Table 6 

shows that survival expectations could itself have an effect on the physical health of men. 

An increase of one 𝑠𝑑 on expectations would increase physical health in 0.062 𝑠𝑑 after 

two years. This is a very small effect that is different than zero only at the 10% level of 

significance. For women, the same coefficient is estimated to be −0.028 𝑠𝑑, but it is not 

statistically different from zero. Overall, the six coefficients involved in the dynamics of 

health were statistically different for men and women in the sample, 

𝑤 = 41.531 (6 𝑑𝑓, 𝑝 =  0.0000). However, individual testing suggested that the effect 

of survival expectations on physical health might not be the source of pronounced 

differences between men and women in rural Malawi, 𝑤 = 3.740 (1 𝑑𝑓, 𝑝 =  0.0531); 

given that, as is shown in Table 6, the effect of mental health on survival expectations is 

virtually the same. 
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With all the above, this model also provides evidence on the differences in health 

pathways of mature men and women in rural Malawi. These differences could be related 

to the role of survival expectations as a predictor of future health. However, the effect of 

expectations on health is not of a considerable extent. Given this result, an alternative 

specification was considered assuming that survival expectations do not have a direct 

effect on the health status of individuals, but are correlated through the error term. This 

specification implies that negative (positive) shocks not only diminish (increase) the 

health status, but also turn individuals to be more pessimistic (optimistic) about their 

lives. This is the leading argument of the following model. 
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Table 6: Survival expectations as a predictor of future health 

      Male Female 

𝛾1 0.889  

 

0.853  0.921  

 0.120  0.027 0.020 

𝛾3 0.145  

 

0.144  0.145  

 0.028  0.045 0.034 

𝛾4 0.012  

 

0.062  -0.028 

 0.024  0.034 0.032 

𝛿𝑚 0.167  

 

0.213  0.108  

 0.018  0.033 0.034 

𝛿𝑝 0.577  

 

0.471  0.661  

 0.025  0.031 0.025 

𝛿𝑠 0.130  

 

0.203  0.080  

 0.040  0.056 0.052 

𝜎𝑚
2  0.182  

 

0.180  

  0.017  0.017  

𝜎𝑝
2 0.667  

 

0.658   

 0.020  0.020  

𝜎𝑠
2 0.962  

 

0.957  

  0.006  0.007 

 𝑉𝑎𝑟[𝜀𝑚,2006] 0.972  

 

0.976  

  0.008  0.008  

𝑉𝑎𝑟[𝜀𝑝,2006] 0.668  

 

0.657  

  0.020  0.020  

𝐶𝑜𝑣[𝜀𝑚,2006, 𝜀𝑝,2006] 0.696  

 

0.700  

  0.022  0.021  

Observations 1,274   542 732 
Coefficient/standard error. General model: 𝐶𝐹𝐼 =  0.931, 𝑇𝐿𝐼 = 0.929, 

𝑅𝑀𝑆𝐸𝐴 = 0.043, and 𝜒(481)
2 = 1,625.253(𝑝 = 0.000). Model of independent 

coefficients for males and females: 𝐶𝐹𝐼 =  0.905, 𝑇𝐿𝐼 = 0.909, 𝑅𝑀𝑆𝐸𝐴 =

0.048, and 𝜒(1035)
2 = 2,574.874 (𝑝 = 0.000). 
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Model 3: Survival expectations as an endogenous covariate 

Physical health and survival expectations are assumed to be correlated through the error 

term, and both depend on the previous assessment of mental health. This implies that 

shocks that improve or worsen the physical health of individuals, also affect expectations 

regarding the length of their lives and vice versa. As a new feature of the structure, 

survival expectations are also assumed to depend on previous assessments of the same 

variable, allowing to investigate the persistence of negative (or positive) evaluations of 

the self and the future. At the first round of data, all variables are assumed to be 

correlated through the error term, and everything else has the same definitions of 

previous models. Equations 6.1-6.4 describe the general characteristics of the model, 

which estimation relies on identifying restrictions 6.5-6.7. These result of assuming 

normalized latent variables.  

  𝑚𝑖,𝑡+2 = 𝛾1 ∙ 𝑝𝑖,𝑡+2 + 𝛿𝑚 ∙ v𝑖 + 𝜀𝑚,𝑖,𝑡+2,  𝜀𝑚~𝑁(0, 𝜎𝑚
2 ).  (6.1) 

  𝑝𝑖,𝑡+2 = 𝛾2 ∙ 𝑚𝑖,𝑡 + 𝛿𝑝 ∙ v𝑖 + 𝜀𝑝,𝑖,𝑡+2,  𝜀𝑝~𝑁(0, 𝜎𝑝
2).  (6.2) 

  𝑠𝑖,𝑡+2 = 𝛾4 ∙ 𝑠𝑖,𝑡 + 𝛾5 ∙ 𝑚𝑖,𝑡 + 𝛿𝑠 ∙ v𝑖 + 𝜀𝑠,𝑖,𝑡+2, 𝜀𝑠~𝑁(0, 𝜎𝑠
2).  (6.3) 

𝐶𝑜𝑣[𝜀𝑝, 𝜀𝑠] ≠ 0        (6.4) 

  1 = 𝛾1
2 + 𝛿𝑚

2 + 𝜎𝑚
2 .        (6.5) 

  1 = 𝛾2
2 + 𝛿𝑝

2 + 𝜎𝑝
2.        (6.6) 

  1 = 𝛾4
2 + 𝛾5

2 + 𝛿𝑠
2 + 𝜎𝑠

2.       (6.7) 

In addition to the intertemporal dynamics between physical and mental health that was 

suggested in the previous two approaches, the intuition behind this model suggests that 

expectations can be persistent at a coefficient 𝛾4; or may respond to the past experiences 

of the mental health at a coefficient 𝛾5. The system of equations 6.1-6.7 have a path 

diagram shown in Figure 3.  

Table 7 shows the estimated coefficients from equations 6.1-6.7. The goodness of fit is 

similar to the previous models: 𝐶𝐹𝐼 =  0.936, 𝑇𝐿𝐼 = 0.933, 𝑅𝑀𝑆𝐸𝐴 = 0.042. The 

estimated values suggest that, physical health and survival expectations have an estimated 

covariance of 0.127 units. If the variance of the residuals are estimated at 0.763 and 

0.971 respectively, then they have an estimated correlation of 0.147 units. Given the 

assumptions of the model, this value is a measure of the concomitance between physical 

health and survival expectations of mature adults in rural Malawi. Regarding the other 

parameters, the persistence of expectations was estimated to be 0.079 𝑠𝑑; while the 
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lagged effect of mental health on expectations was estimated to be 0.051 𝑠𝑑, an amount 

that is no different from zero at 5% significance. 

Figure 3: Survival expectations as an endogenous covariate 

 
Males and females combined. Physical Functioning (PF), Bodily Pain (BP), Role Physical (RP), Mental 

Health (MH), Vitality (VT), Role Emotional (RE), and Survival Expectations (SEI and SEII). 
 

Table 7 also shows independent coefficients for men and women. After this model it 

could be established that the seven coefficients involved in the dynamics of health were 

statistically different for men and women, 𝑤 = 34.149 (7 𝑑𝑓, 𝑝 =  0.0000). However, 

this result was addressed by the difference in only three of the coefficients: the effect of 

mental health on physical health 𝛾2, 𝑤 = 18.253 (1 𝑑𝑓, 𝑝 =  0.0000); the unobserved 

individual variation in the equation of physical health 𝛿2
2, 𝑤 = 25.937 (1 𝑑𝑓, 𝑝 =

 0.0000); and, the unobserved individual variation in the equation of survival 

expectations 𝛿3
2, 𝑤 = 4.215 (1 𝑑𝑓, 𝑝 =  0.0401). One noticeable characteristic of this 

model is how expectations are formed differently in men and women. Although previous 

assessments of the mental health were the most important for males; in the case of 

females, survival expectations are persistent, to some extent, and seem to be uncorrelated 

to previous assessments of mental health. However, these differences were only 

significant at levels above 5%, given that, 𝑤 = 5.735 (2 𝑑𝑓, 𝑝 =  0.0568). The other 

variables did not show significant differences for men and women, 𝑤 = 0.809 (2 𝑑𝑓, 𝑝 =

 0.6674). 

With all the above, this model also provides evidence of the different health pathways of 

males and females in Rural Malawi. These differences are related to the effect of mental 



84 
 

health on the prospective physical health status, given that shocks affecting physical 

health also impact the survival expectations, and vice versa. This model includes two 

mechanisms by which expectations are formed. Is not dismissed the fact that there are 

differences between men and women on what is the most prevalent mechanism. The 

evidence suggests that for women survival expectations are persistent, thus lasting effects 

are observed after two years, while for men expectations respond to changes in mental 

health. 
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Table 7: Survival expectations as an endogenous covariate 

      Male Female 

𝛾1 0.916  

 

0.932  0.914  
 0.011  0.025 0.020 

𝛾2 0.242  

 

0.396  0.148  
 0.034  0.050 0.039 

𝛾4 0.079  

 

0.004  0.101  
 0.024  0.045 0.031 

𝛾5 0.051  

 

0.118  0.017  
 0.029  0.044 0.035 

𝛿𝑚 0.083  

 

0.082  0.067  
 0.035  0.040 0.038 

𝛿𝑝 0.422  

 

0.191  0.546  
 0.034  0.071 0.037 

𝛿𝑠 0.143  

 

0.267  0.111  
 0.045  0.065 0.045 

𝜎𝑚
2  0.154  

 

0.145   

 0.017  0.017  

𝜎𝑝
2 0.763  

 

0.734  

  0.020  0.021  

 0.011  0.016  

𝐶𝑜𝑣[𝜀𝑝, 𝜀𝑠] 0.127  

 

0.124   

 0.024  0.022 

 𝑉𝑎𝑟[𝜀𝑚,2006] 0.993  

 

0.995  

  0.006  0.004  

𝑉𝑎𝑟[𝜀𝑝,2006] 0.822  

 

0.814  

  0.029  0.029  

𝑉𝑎𝑟[𝜀𝑠,2006] 0.980  

 

0.963  

  0.130  0.016  

𝐶𝑜𝑣[𝜀𝑚,2006, 𝜀𝑝,2006] 0.818  

 

0.819  

  0.025  0.022  

𝐶𝑜𝑣[𝜀𝑚,2006, 𝜀𝑠,2006] 0.241  

 

0.240  

  0.046  0.046  

𝐶𝑜𝑣[𝜀𝑝,2006, 𝜀𝑠,2006] 0.180  

 

0.189  

  0.047  0.046  

Observations 1,274   542 732 
Coefficient/standard error. General model: 𝐶𝐹𝐼 =  0.936, 𝑇𝐿𝐼 = 0.933, 

𝑅𝑀𝑆𝐸𝐴 = 0.042, and 𝜒(481)
2 = 1.547.021(𝑝 = 0.000). Model of 

independent coefficients for males and females: 𝐶𝐹𝐼 =  0.910, 𝑇𝐿𝐼 = 0.913, 

𝑅𝑀𝑆𝐸𝐴 = 0.047, and 𝜒(1035)
2 = 2,487.797 (𝑝 = 0.000). 
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3.6. Discussion 

Structural equation models were used to assess the reciprocal interaction of physical 

health, mental health and survival expectations. This paper provides evidence on the 

different health pathways of men and women in rural Malawi. Differences greatly rely 

upon the effect of changes in mental health over physical health. A higher value was 

estimated for men, which means they are more vulnerable to changes in their mental 

health status; a result that is related to the different ways men and women form survival 

expectations. If survival expectations are correlated to the physical health, expectations of 

men are more related to the previous assessment of the mental health while women’s 

expectations are persistent and rely on past expectations. 

There has been concern about whether or not individuals can make accurate judgments 

about the lethal risks they are exposed to (Lichtenstein, et al., 1978). The problematic is 

even bigger when it comes to ask about probabilities to a population with low levels of 

schooling. However, a variety of methods and protocols have shown consistency, 

especially if they allow the elicitation of ranges and distributions rather than precise 

values (Attanasio, 2009; Delavande, et al., 2011). If possible, using scales that allow 

arithmetic calculation and asking for expectations about issues that concern to individuals 

(Manski, 2004). The MLSFH is one of those successful cases that have elicited subjective 

expectations using methods that allow quantifying probabilities. Although participants 

often overestimate the mortality risk, being a longitudinal study, more consistency is 

achieved in identifying how the participants have changed their expectations over time. 

These changes may be associated with changes in health status and that is one of the 

effects that this paper tries to quantify.  

The differences between men and women may respond to variables that were not 

included in the model; for example, the socioeconomic status. That would be an 

important omission considering that it is related to confidence in the future (Mirowsky & 

Ross, 2000), and a better physical and mental health (Link & Dohrenwend., 1993; 

Phelan, et al., 2010). Nevertheless, the estimates presented in this paper attempted to 

discount for the effect ascribed to unobserved fixed characteristics. This effect keeps 

some relation to the individual endowments that did not changed in the years analyzed. 

Indeed, considering the age group and the schooling levels of the participants, less 

concern would exist in the potential effect of socioeconomic status. However, other 

individual characteristics did change; for example, the experience of divorces and the 

mortality of loved ones. Such events could affect both the health of the participants and 

their expectations about future life events. This concomitant effect was incorporated into 

the model as a residual correlation between physical health and survival expectations. 

However, they could be incorporated explicitly in a future analysis, using an inventory of 
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catastrophic events that, besides the death of household members, include unanticipated 

changes in employment or loss of economic support. 

Deprivation, as a lack of economic resources, produces psychological stress, which 

finally has a negative impact on the overall wellbeing. Thus, individuals living in poor 

economic conditions are expected to report poor health outcomes (Das, et al., 2007; 

Tampubolon & Hanandita, 2014). Paradoxically, people living in poverty get sick with 

more frequency, but are less liable to report sickness; indeed, there is less complain about 

life and health, nevertheless a consistent report of a heavy burden of psychological stress 

(Banerjee & Duflo, 2007). The particular context of less developed areas would provide a 

complementary perspective to help to identify the deep causes of non-communicable 

diseases (Ebrahim, et al., 2013). Since mental health is related to poverty and wellbeing, 

special attention should be paid to the evidence from less developed countries. Thus, the 

analysis of health dynamics related to non-communicable diseases in less developed 

areas of the world has scientific significance. Most dynamic approaches on health and 

mortality use evidence from developed countries, where longitudinal data allowing to 

investigate these perspectives are available. Conversely, the evidence from low-and-

middle income countries is limited, and hence this paper makes an important contribution 

to understand the link between physical and mental health. 
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