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Abstract
My dissertation research has focused on identifying host cellular factors required by the bunyavirus Rift Valley
fever virus (RVFV), an RNA virus that causes disease in humans and animals, and the secreted Toxin B
(TcdB) from Clostridium difficile, a bacterial pathogen that causes severe antibiotic-associated diarrheal
disease. In 2015, the WHO named the ten emerging diseases most likely to cause severe outbreaks in the near
future, and three are caused by bunyaviruses (including RVFV). Concern is likewise mounting about the
increasing incidence, virulence, and antibiotic-resistance of C. difficile infection worldwide. A better
understanding of the molecular details of the pathogenesis of these diseases is urgently needed in order to
inform the development and application of therapeutic interventions. The data presented in this thesis
summarize the results of two independent screening projects, each utilizing a strategy of forward genetic
screening in a mutagenized human haploid cell library. Our RVFV screen identified a suite of enzymes
involved in glycosaminoglycan biogenesis and transport, including several components of the cis-oligomeric
Golgi (COG) complex. In addition, we identified the gene PTAR1, disruption of which led to RVFV
resistance and reduced heparan sulfate surface levels. Biochemical and genetic approaches were utilized to
show that both pathogenic and attenuated RVFV strains require GAGs for efficient infection in some cell
types, with the block to infection being at the level of virion attachment. Our TcdB screen identified the
Wiskott–Aldrich syndrome protein and SCAR homologue (WASH) complex as a host cellular factor
supporting TcdB intoxication. Involvement of the WASH complex in TcdB entry was validated by
pharmacologic inhibition of recycling endosomes and the use of mouse fibroblasts lacking a functional WASH
complex due to genetic ablation of the core WASH1 gene. The host factors supporting TcdB internalization
and transport are largely unknown, and our data help to elucidate the mechanism of intoxication of this
important and poorly-characterized virulence factor.
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ABSTRACT 

FORWARD GENETIC SCREENING IN HUMAN HAPLOID CELLS 

TO IDENTIFY HOST FACTORS REQUIRED FOR VIRUS AND TOXIN ENTRY 

Amber M. Riblett 

Dr. Robert W. Doms 

 

 My dissertation research has focused on identifying host cellular factors required 

by the bunyavirus Rift Valley fever virus (RVFV), an RNA virus that causes disease in 

humans and animals, and the secreted Toxin B (TcdB) from Clostridium difficile, a 

bacterial pathogen that causes severe antibiotic-associated diarrheal disease.  In 2015, 

the WHO named the ten emerging diseases most likely to cause severe outbreaks in the 

near future, and three are caused by bunyaviruses (including RVFV).  Concern is 

likewise mounting about the increasing incidence, virulence, and antibiotic-resistance of 

C. difficile infection worldwide.  A better understanding of the molecular details of the 

pathogenesis of these diseases is urgently needed in order to inform the development 

and application of therapeutic interventions.  The data presented in this thesis 

summarize the results of two independent screening projects, each utilizing a strategy of 

forward genetic screening in a mutagenized human haploid cell library.  Our RVFV 

screen identified a suite of enzymes involved in glycosaminoglycan biogenesis and 

transport, including several components of the cis-oligomeric Golgi (COG) complex.  In 

addition, we identified the gene PTAR1, disruption of which led to RVFV resistance and 

reduced heparan sulfate surface levels.  Biochemical and genetic approaches were 

utilized to show that both pathogenic and attenuated RVFV strains require GAGs for 

efficient infection in some cell types, with the block to infection being at the level of virion 
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attachment.  Our TcdB screen identified the Wiskott–Aldrich syndrome protein and 

SCAR homologue (WASH) complex as a host cellular factor supporting TcdB 

intoxication.  Involvement of the WASH complex in TcdB entry was validated by 

pharmacologic inhibition of recycling endosomes and the use of mouse fibroblasts 

lacking a functional WASH complex due to genetic ablation of the core WASH1 gene.  

The host factors supporting TcdB internalization and transport are largely unknown, and 

our data help to elucidate the mechanism of intoxication of this important and poorly-

characterized virulence factor. 
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CHAPTER 1: INTRODUCTION 

 

INVESTIGATING HOST-PATHOGEN INTERACTIONS 

Our bodies are constantly assailed by disease-causing microorganisms wielding 

a diverse arsenal of molecular weapons that they employ to gain entry into our tissues, 

break down our defenses, and reprogram our cellular machinery.  The foot soldiers 

carrying out these attacks - such as viruses, bacteria, and their secreted toxins - rely on 

a large number of host cellular factors and pathways as they enter, traffic through, and 

exert various pathophysiological effects upon the host cell.  From the initial interactions 

between the pathogen’s surface proteins and the host cell’s plasma membrane to the 

apoptosis, lysis, or takeover of the host cell, a pathogen uses its limited protein reservoir 

to co-opt the much more extensive machinery found within the host.  A virus can use this 

cellular infrastructure to carry out its genome replication, assemble new virions, and 

move throughout the host cell.  Bacterial toxins hitchhike along host endocytic pathways, 

rely on host cell proteases for cleavage, and trigger signaling cascades to modify host 

cell function in a way that benefits the bacteria.  This manipulation of the resources 

offered by the host with which it has coevolved is a defining trait of our microscopic 

invaders, and identification of those host factors upon which the pathogen relies (such 

as cell surface receptors) has provided invaluable information about the lifecycles and 

mechanisms of action of the causative agents of many important human diseases.   

Traditionally, relatively reductionist approaches have been taken to identify 

specific interactions between pathogen and host cell molecules.  More recently, rapid 

advances in high-throughput screening technologies based upon small molecules, loss-
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of-function libraries, and interactome characterization have informed our understanding 

of nearly every stage of host-pathogen interaction and identified targets for therapeutic 

intervention.  The study of how pathogens co-opt cellular machinery has also yielded 

tremendous insight into the function of human biological pathways, such as the 

discovery of RNA splicing in adenovirus-infected cells that led to the subsequent 

understanding of this as a normal cellular function (1, 2).  I was extremely interested in 

the power of high-throughput screening techniques to identify novel aspects of pathogen 

entry and infection, and also in the ability of such studies to teach us about fundamental 

cell biology.  Of particular interest to me was the application of these screens to 

emerging and poorly-characterized diseases.  My dissertation research has therefore 

focused on optimizing a forward genetic screening strategy to identify host cellular 

factors that are required by bunyaviruses, a family of RNA viruses that can cause 

disease in humans and animals, and the secreted Toxin B from Clostridium difficile, a 

bacterial pathogen that causes a severe antibiotic-associated diarrheal disease in 

humans.   

VIRAL INFECTION OF HOST CELLS 

Viruses that cause human disease package their DNA or RNA genomes into 

nucleocapsid complexes that are sometimes surrounded by a lipid bilayer membrane 

called the viral envelope.  Structural proteins known as the viral glycoproteins stud the 

membranes of these enveloped viruses and are available to access and interact with the 

surface of the host cell.  A myriad of other proteins, such as viral RNA-dependent RNA 

polymerases, reverse transcriptases, and matrix proteins may or may not be present 

inside of the virion, depending on the type of virus.    
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During the first step of virus entry, one or more viral proteins that are exposed 

(glycoproteins in the case of enveloped viruses) interact with attachment factors and 

receptors on the host cell surface.  There is a tremendous diversity of both the type of 

host factors used by the virus during this stage of entry as well as the nature of the 

interactions that occur.  Virions have been shown to interact with proteins, 

carbohydrates, and lipids – and these interactions vary greatly in their strength and 

duration [reviewed in (3)].  These components at the cell surface may serve as 

attachment factors that concentrate the virus particles in two dimensions, such as 

heparan sulfate proteoglycans that interact with the E2 glycoprotein of hepatitis C virus 

(HCV) during the initial binding of the virus to the cell (4).  They may also induce 

conformational changes that allow the virus to directly fuse with the cell membrane.  

During entry of human immunodeficiency virus type 1 (HIV-1), for example, its 

glycoprotein Env first binds to the CD4 receptor, and this binding induces a 

conformational change that allows Env to bind its coreceptor (CCR5 or CXCR4), which 

leads to membrane fusion [reviewed in (5)].  Cell surface components may also function 

as entry receptors that facilitate uptake of the virus particle into the host cell’s endocytic 

pathway, as is the case for GD1a-mediated uptake of polyomavirus into early 

endosomes (6-8).  The interaction between the virus and cell surface proteins might also 

serve to transduce signals that in some way reprogram the cell to make it more 

susceptible to infection, such as the actin rearrangement triggered by tyrosine kinase 

activation following binding of simian virus 40 (SV40) to its receptor [reviewed in (3)].  

  To enter the cell, viruses are able to utilize a range of available existing endocytic 

pathways.  Pinocytic uptake mechanisms, such as clathrin-mediated endocytosis, 

macropinocytosis, and caveolae-mediated endocytosis are the most commonly used, 
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but use of other pathways, such as phagocytosis, has been demonstrated, as well as 

variations on each of these pathways, and indication of entry via novel or 

uncharacterized pathways.  Interestingly, it has also been found that some viruses are 

capable of entering host cells via multiple routes, often in a cell-dependent manner.  For 

example, influenza A virus, which usually enters through clathrin-coated pits, can in 

some cases utilize macropinocytosis as an alternative entry pathway (9-11).  Following 

their endocytosis, virions find themselves in the lumen of a primary endocytic vesicle, 

such as an early endosome, macropinosome, or a caveosome.  From there, the virus 

must penetrate through its vacuole to deliver its genome into the host cell cytosol.  For 

enveloped viruses, this process involves viral glycoprotein-mediated fusion of viral and 

vesicular membranes.  Cues from the maturing endosomes, such as a lowering of pH, 

trigger conformational changes in the glycoproteins, which are then able to effect fusion 

of the membranes.   

After gaining access to the cytosol, the virus needs to uncoat its genome in order 

to begin the process of replication. For RNA viruses, this typically takes place in the 

cytoplasm (often in intimate association with organelle membranes) whereas most DNA 

viruses replicate in the nucleus.  As a general rule, viral capsids remain intact until they 

have trafficked to their site of replication.  Viruses that replicate in the nucleus utilize 

many different strategies of gaining entry to this organelle.  HSV-1 and adenovirus 

nucleocapsids traffic to the nucleus and then dock at the nuclear pore complex (NPC), 

where they uncoat and deliver their genomes directly into the nucleus (12-14).  Some 

other DNA viruses move either fully or partially through the NPC before uncoating their 

genome.  Regardless of the eventual site of replication, to reach it, the incoming virion 

(or trafficking capsid) is reliant upon the transport machinery of the cell.  For example, 
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viruses have been shown to depend upon actin and related proteins (including the 

Arp2/3 complex and Rho GTPases) or movement along microtubules by dyneins and 

kinesins, as well as other accessory proteins that act to coordinate transport, such as 

Rab GTPases, tethering complexes, etc. [reviewed in (15)].   

At the site of replication, many viruses induce the formation of virus factories, 

dramatic rearrangements of organelle-derived membranes that serve to facilitate the 

efficient replication of viral genomes and proteins.  Membranes for virus factories have 

been shown to be derived from lysosomes, smooth and rough ER, the Golgi apparatus, 

and even autophagosomes.  Virus factories can be formed by enveloped as well as non-

enveloped viruses, can be located in many different subcellular locations, and can take a 

variety of shapes.  For example, adenoviruses and polyomaviruses (both non-enveloped 

DNA viruses) set up aggresome-like virus factories in the nucleus, whereas flaviviruses 

and coronaviruses (enveloped RNA viruses) generate virus factories that take the shape 

of double-membrane vesicles in association with the ER.  These virus factories can help 

to shield viral components from host cell immune detection, act as a scaffold for 

replication complexes, and recruit cellular factors such as mitochondria [reviewed in 

(16)].  Once a sufficient number of viral proteins and genome copies have been 

generated, they assemble into virions and are released from the infected cell.  For 

enveloped viruses, this step involves the theft of host membrane at the site of budding 

with the assistance of recruited cellular membrane deformation machinery.  As this 

deformation must occur in a “reverse topology,” such that the virion buds away from the 

cytoplasm, a number of enveloped viruses have been shown to recruit the host ESCRT 

(endosomal sorting complexes required for transport) proteins, the only cellular pathway 

yet identified that performs membrane deformation in this direction.  The first described 
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and best characterized example of virus hijacking of ESCRT machinery for virion 

budding is the recruitment by retroviral Gag polyproteins of ESCRT and associated 

proteins to the plasma membrane by means of amino acid sequences that mimic those 

used by cellular adaptor proteins (17-20).  Some enveloped viruses, such as influenza A 

and Semliki Forest virus, have evolved mechanisms of ESCRT-independent membrane 

deformation during virion release (21, 22).  Viruses that bud intracellularly (for example, 

into the Golgi apparatus) must use the host cell’s exocytic machinery to traffic in vesicles 

to the plasma membrane to be released.  Other viruses spread within the infected host 

by means of cell-to-cell transmission, bypassing the need for release of infectious virions 

and cell-free dissemination.   

Our ability to glean insight into the mechanistic detail of these later stages of 

virus replication has been hampered by a lack of assays to detect viral assembly and 

release that are amenable to the most commonly used high-throughput screening 

techniques.  Traditionally, screening for cellular factors that impact virus replication has 

employed reporter genes or cytotoxicity as a read-out of viral infection.  However, for 

most viruses, this places the temporal limit of phenotype detection at the stage of 

translation of viral proteins, and does not allow for the detection of meaningful and 

interesting defects in assembly or release of virions.  For this reason, our understanding 

of the entry pathways utilized by many viruses is often more extensive than our 

understanding of the details of their assembly and release processes. 

THE BUNYAVIRIDAE 

Bunyaviruses are enveloped single-stranded negative-sense RNA viruses that 

comprise five genera: Phlebovirus, Orthobunyavirus, Nairovirus, Tospovirus, and 
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Hantavirus.  Within these genera are more than 350 viruses, making the Bunyaviridae 

the largest family of RNA viruses in the world (23).  Most of these viruses infect 

arthropods, although some can infect plants or rodents.  Of the bunyaviruses that infect 

arthropods and rodents, a number can be borne by these vectors into human hosts 

where they cause a wide range of diseases.  Notable human pathogens within the 

Bunyaviridae family include Crimean Congo Hemorrhagic Fever virus (CCHFV), a 

Nairovirus, which is endemic to regions of Africa, Europe, and Asia, and causes a febrile 

illness characterized by joint pain and vomiting that can progress to uncontrolled 

bleeding (24).  The Hantavirus genus includes the causative agents of Hemorrhagic 

Fever with Renal Syndrome (HFRS) in Europe and Asia and Hantavirus pulmonary 

syndrome (HPS) in the Americas.  The emergence and spread of newly-identified 

bunyaviruses, as well as important progress in recent years toward a more detailed 

understanding of bunyavirus structure and genetics, has renewed interest in this large 

and diverse family of viruses.    

The bunyavirus that was the focus of much of my doctoral work is the 

phlebovirus Rift Valley fever virus (RVFV), named for the disease that was first 

described during an epidemic in 1931 at a sheep farm in the Rift Valley of Kenya (25, 

26).  Rift Valley fever is a viral zoonosis that passes into livestock and human 

populations via a number of mosquito vector species. In livestock, the disease is fatal to 

newborn animals and causes spontaneous abortions in pregnant animals; in humans it 

is a febrile illness which progresses, in approximately 8% of patients, to a severe 

disease characterized by encephalitis, retinitis, or hemorrhagic syndrome (27).  Rift 

Valley fever remained confined to sub-Sahran Africa until 1977, when 18,000 people 

became ill during an outbreak in Egypt; in 2000, it spread beyond the African continent 
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into Saudi Arabia and Yemen (28).  Because of the broad host tropism of this virus and 

the ease with which it moves into the dominant mosquito species in a given region, there 

is great concern that climate change will expand the geographical range of its current 

vectors, allowing the virus to move into naive populations (29, 30). This is particularly 

alarming as recent outbreaks have seen mortality rates increase - an outbreak in 2007 in 

Kenya reported a 29% case fatality rate, compared to the historical average of 0.5-1.0% 

mortality (28). As there are currently no FDA-approved vaccines or therapeutics, a better 

understanding of how the virus that causes Rift Valley fever replicates within its host will 

be of great benefit. 

BUNYAVIRUS STRUCTURE AND ENTRY  

The bunyavirus genome comprises a small (S), medium (M), and large (L) 

segment that encode, respectively, the nucleocapsid protein (N), the two glycoproteins 

(Gn and Gc), and the viral RNA-dependent RNA polymerase (L). Three nonstructural 

proteins are also encoded: two on the M segment, termed NSm1 and NSm2; and one on 

the S segment, termed NSs.  These nonstructural proteins play important roles during 

pathogenesis, such as suppressing apoptosis and limiting the IFN-mediated antiviral 

response, but they are dispensable for growth in tissue culture (31).  Bunyaviruses have 

broad tropism and enter mammalian cells via receptor-mediated endocytosis.  Entry of 

RVFV into dendritic cells has been shown to be mediated by the C-type lectin Dendritic 

Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN) but as 

this lectin is not expressed on most of the cell types that RVFV productively infects, the 

receptor (or receptors) used by the virus to enter other cells remains unidentified (32).  It 

is also unclear precisely what cellular endocytic machinery is required for RVFV entry.  A 
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study using non-replicating RVFV virus-like particles (VLPs) reported that the entry of 

these particles into BHK-21 and A549 cells was both dynamin- and clathrin-dependent 

(33).  The same year, Harmon and colleagues demonstrated that the MP-12 attenuated 

vaccine strain of RVFV enters HepG2 and HeLa cells in a caveolae-mediated, clathrin-

independent manner (34).  Our lab has shown that MP-12 infection of 293T and 

Drosophila S2 cells was blocked by inhibitors of macropinocytosis (35).   

Following endocytosis, the bunyavirus envelope membrane undergoes 

glycoprotein-driven fusion with the endosomal membrane.  See Figure 1-1 for an 

overview of the bunyavirus replication cycle.  The Gc glycoprotein of RVFV is a Class II 

fusion protein (36), and acidification of the endosomal compartment triggers a 

conformational change that exposes hydrophobic residues that insert into the host 

membrane and mediate fusion.  For RVFV Gc, the pH threshold at which this occurs has 

been reported to be around 5.5 - 5.7, which is consistent with fusion from within the late 

endosome (33).  However, Rab7, which is the Rab GTPase primarily responsible for late 

endosomal maturation, is not required for the entry of many bunyaviruses, including the 

nairovirus CCHFV (37, 38), the orthobunyavirus La Crosse virus (39), and the 

phlebovirus Uukuniemi virus (40).   

Once membrane fusion has occurred, the ribonucleoproteins (RNPs), comprising 

the three genome segments encapsidated by the nucleocapsid protein N, are released 

into the cytoplasm.  The viral RNA-dependent RNA polymerase then transcribes viral 

mRNAs, and viral proteins are translated in association with ER-derived membranes.  

Within the ER, the bunyavirus Gc and Gn proteins form heterodimers after which a Golgi 

localization signal within the Gn protein causes these heterodimers to traffic to the Golgi 

apparatus.  Viral factories are formed that function as scaffolds for genome replication 
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and formation of new RNPs.  These RNPs then traffic to the Golgi membranes where 

the Gc-Gn heterodimers have accumulated, and interaction between RNPs and Gc-Gn 

heterodimers is thought to trigger assembly and budding of bunyavirus virions into the 

Golgi membranes.  The nascent virions traffic in exocytic vesicles from the TGN to the 

plasma membrane, where these vesicles fuse and release the virions.  Evidence for 

most of these steps of the bunyavirus replication cycle consists of immunofluorescence 

or electron microscopy visualization of virus proteins or particles within infected cells, 

and the viral and host factors responsible for these processes remain largely undefined.   
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Figure 1-1.  Bunyavirus replication cycle.  Binding of the viral glycoprotein to a 
cellular receptor induces endocytosis and entry into an early endosome. Acidification of 
the endosome causes Gn and Gc to dissociate and RNPs are released following Gc-
mediated fusion. Viral tubes form in close association with the Golgi apparatus, rough 
endoplasmic reticulum, and mitochondria and serve as a hub for viral transcription and 
translation. Gn-Gc heterodimers accumulate in the Golgi, the site of virus assembly and 
budding. Infectious virions traffic in vesicles to the plasma membrane, where they fuse 
and are released. 
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TOXIN ENTRY OVERVIEW 

 The strategies used by bacterial toxins to enter mammalian cells share many 

common themes with the entry of viruses.  Many bacterial species that cause human 

disease secrete toxins that modify host cellular function to benefit the pathogen, and 

most of these secreted toxins must access the cytosol to interact with their host target.  

Common cellular targets of secreted bacterial toxins include those that regulate host 

protein synthesis, immunomodulatory functions, and cell morphology. 

 Some bacterial species have evolved dedicated secretion systems to inject 

toxins through both the bacterial membranes as well as the host plasma membrane and 

deliver them directly to the cytosol, such as Helicobacter pylori, which uses its type IV 

secretion system (a large needle-like structure expressed by some Gram-negative 

bacteria) to inject effector proteins and DNA into the host cell (41). Intracellular bacteria 

that reside in phagosomes or other compartments are able to instead secrete toxins into 

the cytosol via translocation across that compartment’s membrane.  A number of 

species of extracellular bacteria secrete toxins that enter the surrounding host cells 

independent of such systems, however.  Many of these secreted toxins (such as C. 

difficile TcdB, diphtheria toxin, Shiga toxin, pertussis toxin, and cholera toxin)  belong to 

the general class termed AB toxins, so named for their two-component structure.  The A 

subunit is the active component that interferes with host cell function (typically 

enzymatically) and the B subunit is the binding component responsible for attachment 

and entry into the host cell.  Stoichiometry varies amongst the AB toxins: some (like 

TcdB and diphtheria toxin) are single-chain toxins, while others are organized into AB5 
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structures (Shiga toxin and cholera toxin), binary structures (anthrax toxin), or tripartite 

structures (cytolethal distending toxin)  [reviewed in (42)]. 

For these secreted toxins, just as with infectious virions, the first step of gaining 

access to the host cell is to bind to the cell surface via attachment factors and/or 

receptors, and to then either directly enter by forming a pore in the plasma membrane or 

hitch a ride on its receptor and be endocytosed.  Like viral fusion proteins, toxins rely on 

a “trigger” from the host cell in order to effect a change in the toxin that enables it to gain 

access to the host cytosol.  This is often accomplished in the acidifying endosomes via 

proteolytic cleavage of the toxin and/or pH-induced conformational changes, which can 

then form a pore through the endoplasmic membrane.  The other main route of entry is 

to “reverse traffic” through the host secretory pathway to gain access to the ER, where 

the toxin can take advantage of pre-existing protein channels in order to bypass the 

need for pore-forming capabilities (42).  Those toxins that utilize retrograde transport 

through the Golgi into the ER lumen often have evolved domains with sequences similar 

to ER retrieval (KDEL) sequences in order to hitchhike along the cell’s existing pathway 

for ER retrieval. Once they’ve arrived at the ER lumen, there are multiple strategies for 

escape that have been described.  One is the use of the Sec61 translocon, a channel in 

the ER membrane that can function bidirectionally.  Another strategy (used by cholera 

toxin) is to “disguise oneself” as a misfolded protein and be transported out of the ER via 

the ER-associated degradation (ERAD) machinery (43).   

 The specific cellular entry route of toxins varies depending upon the identity of 

the receptor to which the toxin has initially bound at the cell surface.  Therefore, these 

toxins can enter through clathrin-mediated endocytosis (as anthrax toxin does after 

binding to its receptors), through multiple pathways, including caveolae-dependent and -
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independent, as well as clathrin-dependent and -independent endocytic routes (as 

cholera toxin does after binding to its receptor, the ganglioside GM1), or even utilize all 

of the cell’s available endocytic pathways, as ricin toxin does by binding to terminal 

galactose residues on a variety of glycoproteins and glycolipids (44–50).  For those 

toxins that gain access to the cytosol by forming pores in endosomes, the pH change as 

the endosome is acidified can trigger proteolytic cleavage of the toxin and/or 

conformation changes within toxin subunits.  These pore-forming domains of the toxins 

then form channels within the vesicle membrane, allowing the catalytic domains to pass 

through and access the cytosol.  The conformation of these catalytically active domains 

of the toxin may change (back) within the more neutral pH of the cytosol.   

 Once bacterial toxins, via any of these mechanisms discussed, have gained 

access to the host cell cytosol, they efficiently target a huge variety of host cellular 

processes with the overall goal of increasing pathogenesis and survival of the bacteria. 

For example, pertussis toxin has been shown to modulate the host immune and 

inflammatory responses via mechanisms such as inhibition of chemokine release 

[reviewed in (51)].  Because the activity of these secreted toxins are often so critical to 

the pathology of their bacteria of origin, understanding (and blocking) their route of entry 

is a major objective of medical research and is key to our ability to effectively treat many 

bacterial diseases.  

CLOSTRIDIUM DIFFICILE TOXIN B 

 The anaerobic bacterium Clostridium difficile causes severe antibiotic- and 

hospital-associated diarrhea and pseudomembranous colitis.  C. difficile infection can 

lead to septic shock, perforation of the intestine, and toxic megacolon, and is fatal for 
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about 9% of patients (52).  Rates of C. difficile colitis have been increasing: from 2005 to 

2010 there was a 47% increase compared to the five years prior (53) and the CDC 

estimated in 2011 that there were 500,000 cases of C. difficile infection in the United 

States (54).  Spore formation by the bacterium and worsening resistance to treatment 

have hindered sterilization, prevention, and treatment efforts. 

    C. difficile secretes two main virulence factors that are responsible for its 

pathogenesis: TcdA and TcdB, both large toxins of the general AB class organization.  

TcdB has been shown to be approximately 100-1000 times more cytotoxic than TcdA, 

and is believed to be responsible for most of the severe disease symptoms associated 

with C. difficile infection (55–57).  TcdB is 270 kDa and comprises four domains, as 

schematized in Figure 1-2A.  These four domains are a glucosyltransferase domain 

(located at the N-terminus of the protein), a cysteine protease domain (responsible for 

auto-cleavage), a translocation domain (including a hydrophobic region), and a receptor 

binding domain containing a combined repeat oligopeptides (CROP) region, which is 

involved in binding and attachment at the cell surface. 

 The current model of TcdB entry into mammalian cells (see Figure 1-2B) involves 

initial attachment at the cell surface (mediated by the receptor binding domain) followed 

by endocytosis.  Acidification of endosomes is thought to induce a conformational 

change in the toxin, leading to pore formation and translocation of the 

glucosyltransferase and cysteine protease domains into the cytosol (58).  Autocatalytic 

cleavage of the glucosyltransferase domain by the protease domain (in response to host 

cell cofactors) then allows the toxic glucosyltransferase domain to interact with its target 

Rho GTPases in the cytosol (59).  TcdB has been shown specifically to glucosylate 

RhoA (at Thr-37), Rac1 (at Thr-35), and Cdc42 (at Thr-35), although this varies by 
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bacterial strain (60).  Glucosylation of these Rho GTPases disrupts the numerous cell 

processes that they control, including cell polarity, vesicle trafficking, and microtubule 

and actin cytoskeletal regulation.  TcdB-treated cells rapidly lose their mophology (round 

up) and eventually undergo apoptosis.   
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Figure 1-2.  Structure and entry of TcdB toxin.  (A) The structure of TcdB toxin.  GTD: 
glucosyltransferase domain, CPD: cysteine protease domain, PFR: pore-forming region, 
TMD: translocation domain, RBD: receptor binding domain, CROPs: combined repetitive 
oligopeptides.  (B) The intoxication process of TcdB: binding at the cell surface (1) is 
followed by receptor-mediated endocytosis (2).  Acidification of the endosome induces a 
conformational change in the toxin that results in formation of a pore (3).  Autocatalytic 
cleavage and release of the GTD (4) leads to glucosylation of Rho GTPases (5) which 
are thereby inactivated.  
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 At the time of my TcdB screen, no receptors had been identified and the host 

factors involved in the early entry steps of the toxin were very poorly characterized.  

Toxin entry was shown to be blocked by pre-treatment with dynasore (a dynamin 

inhibitor) as well as expression of dominant-negative Eps15 (a component of clathrin-

coated pits) and by pre-treatment with chlorpromazine (an inhibitor of clathrin-mediated 

endocytosis), but not by expression of plasmids encoding dominant-negative Caveolin-1, 

indicating that toxin entry is both dynamin- and clathrin-dependent (61).  However, most 

published work looking at TcdB entry has focused on describing mutations or truncations 

of the toxin that block its activity.  The readout for toxin entry / activity in most literature is 

a visual cell-rounding assay, or sometimes detection of glycosylation of Rac1 in cell 

lysates.  A detailed understanding of the endocytic route of TcdB entry, its trafficking 

within the cell, its site of translocation, and the host factors upon which it relies during 

these processes is still badly needed. 

SCREENING INTRODUCTION 

 High-throughput and unbiased screening techniques are a powerful tool for 

identifying host cellular factors that are required by viruses and toxins.  In recent years, 

such screening techniques have been employed successfully to better characterize 

many different aspects of host-pathogen interactions.  Here follows an overview of the 

primary screening strategies and examples of their use in identifying host factors 

impacting bunyavirus infection and toxin entry.  
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SMALL MOLECULE SCREENING  

The lack of vaccines and therapeutics for many emerging viral and bacterial 

diseases has renewed interest in the screening of small molecule inhibitors, including 

the repurposing of clinically-approved pharmacologics.  In 2016, Islam and colleagues 

used a high-throughput drug screen to identify compounds which potently inhibited 

RVFV infection, based upon a replication-competent recombinant virus lacking the NSs 

gene and bearing a fluorescent reporter (62).  This study yielded six compounds (out of 

approximately 28,000 screened) that exhibited inhibitory activity at low concentrations 

with minimal cytotoxicity.  Follow-up studies will be required to determine the mechanism 

of action of these compounds and their potential suitability as therapeutic agents against 

RVFV and perhaps other bunyaviruses.  Bender et al. used the National Institutes of 

Health Clinical Collection as well as a library of non-FDA-approved bioactive compounds 

that are considered to be clinically safe in order to screen for an inhibitor of C. difficile 

TcdA and TcdB toxins (63).  Their screen identified the compound ebselen (currently in 

clinical trials for unrelated conditions) as a potent inhibitor of the cysteine protease 

domain of both toxins, and verified in a mouse model that it decreases pathology of C. 

difficile infection.   

Advances in inhibitor drug screening have also included methods to study the 

interactions between compounds that may be able to synergistically restrict viral 

infection.  In 2012, Tan and colleagues described multiplex screening for interacting 

compounds (MuSIC), an analysis of all of the possible pairs of 1,000 commercially 

available compounds that were FDA-approved or clinically tested (64).  The authors 

identify anti-inflammatory drugs as a group that synergistically enhanced anti-HIV activity 



20 

 

and informed drug-interaction network formation.  Such screening methods may uncover 

previously uncharacterized therapeutic options within the pool of clinically-tested or -

approved drugs.  

BIOCHEMICAL APPROACHES 

Valuable insight into the host-pathogen relationship can also be gleaned from 

interrogating physical interactions between pathogen and cellular proteins.  The most 

widely-used applications for probing protein-protein interactions are yeast two-hybrid 

(Y2H) and affinity purification followed by mass spectrometry (AP/MS) techniques.  Y2H 

screens utilize a reporter gene whose expression depends upon the activity of a 

transcription factor whose modular binding and activation domains have been fused, 

respectively, to bait and prey proteins.  The protein of interest whose interacting partners 

are to be probed is the bait, and the prey proteins are typically libraries of proteins (or 

protein fragments) covering the genome of the organism of interest.  These hybrid 

proteins are then introduced into cells, and if the bait and prey proteins interact, the 

binding and activation domains come into close enough proximity to reconstitute 

transcription factor activity and effect the expression of the reporter gene.  During 

AP/MS, a bait protein of interest is pulled down via affinity for an antibody against either 

the protein itself or a tag to which it has been fused. One specialized type of such a tag 

is the two-part tag used in tandem affinity purification (TAP) techniques.  The TAP tag 

comprises a Protein A tag and calmodulin binding peptide (CBP) tag separated by a 

recognition sequence that is specific to the Tobacco etch virus (TEV) protease.  Protein 

complexes are purified by first capturing with the terminal Protein A tag, then using the 

TEV protease to cleave and release bound complexes and expose the CBP, followed by 
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a second affinity purification step of immobilization on calmodulin. This dual-affinity 

approach reduces the possibility of co-purification resulting from non-specific 

interactions. 

Bunyavirus proteins have been used in protein-protein interaction screens to find 

interacting partners, particularly for the nonstructural protein NSs, which is known to be 

critical for viral defense against the host’s type I interferon response.  Leonard and 

colleagues performed yeast two-hybrid screening of a HeLa cDNA library using the 

BUNV NSs protein as bait (65).  They identified MED8, a component of the Mediator 

complex, as a target of NSs during infection.  Mediator is a key regulator of RNA 

polymerase II transcriptional activity, and the domain of NSs responsible for this MED8 

interaction contains a motif that is highly conserved among orthobunyaviruses, 

suggesting that this interaction represents an important defense mechanism used by the 

virus to dismantle the host interferon response.  In 2012, Rönnberg et al. used yeast 

two-hybrid screening with a mouse embryo cDNA library with the hantaviruses Puumala 

virus (PUUV) and Tula virus (TULV) NSs proteins as bait (66).  From these two screens, 

65 total host cellular proteins were identified as hantavirus interacting partners, with 

considerable overlap between the lists of partners for the two hantaviruses.  This dataset 

provided insight into potential, previously-undescribed roles for NSs during infection, 

including regulation of apoptosis and interaction with proteins of the integrin complex.   

An extensive survey of viral-host protein-protein interactions by Pichlmair and 

colleagues in 2012 used as bait a panel of 70 viral open reading frames (ORFs) selected 

for their roles in defending against the host innate immune response (67).  The 

bunyavirus ORFs included in the panel were the NSs of RVFV, LACV, and Sandfly fever 

Sicilian virus (SFSV).  These 70 viral ORFs were expressed within a HEK293 cell line 
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and then TAP followed by liquid chromatography tandem mass spectrometry (LC-

MS/MS) was used to identify 579 interacting host proteins.  Within these hits, there was 

an overrepresentation of proteins known to be involved in innate immunity, and 

specifically they noted an enrichment within the interacting partners of the negative-

sense single-strand RNA for host proteins that may promote processing of viral RNA 

transcripts or prevent detection and degradation of these transcripts.  In 2014, a follow-

up study was published by Kainulainen et al. examining the interaction between RVFV 

NSs and the host F-box protein FBXO3 (68).  FBXO3, which is a component of an E3 

ubiquitin ligase, was shown to be recruited by NSs to effect the degradation of p62, a 

subunit of the general transcription factor TFIIH.  Depletion of FBXO3 was unable to fully 

rescue interferon induction in RVFV-infected cells, did not affect the ability of NSs to 

degrade the interferon-induced antiviral effector dsRNA-dependent protein kinase R 

(PKR), and did not significantly impact viral replication.  The authors therefore concluded 

that this FBXO3-mediated degradation of p62 is partially, though not completely, 

responsible for the ability of NSs to suppress the host interferon response.  These 

findings highlight the capacity of protein-protein interaction studies for uncovering host 

factors that might not have been detected by gene-disruption or gene-depletion 

screening strategies, which usually depend upon robust viral replication or host cell 

survival phenotypes. 

To my knowledge, no protein-protein interaction screens have been performed 

using any clostridial toxins.  However, the Helicobacter pylori cytotoxin VacA was used 

as bait in a yeast two-hybrid screen to identify its interaction with the cellular protein 

receptor for activated C-kinase (RACK1), demonstrating the potential of such 

approaches to identify host protein interacting partners of bacterial toxins (69). 
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GENETIC APPROACHES 

RNA interference (RNAi) technology was the first of a new generation of high-

throughput screening approaches applied to the study of host-pathogen interactions.  

Examples of its use include the pioneering screens by Cherry, et al. to uncover a role for 

host organelle-reshaping and ribosomal proteins in Drosophila C virus replication (70, 

71), a series of 2008 studies from multiple labs that identified many host factors 

necessary for human immunodeficiency virus (HIV)-1 replication (72–74), and the 

characterization in 2009 by Brass and colleagues of IFITM proteins as restriction factors 

for influenza, West Nile, and dengue viruses (75).  For this screening technique, the 

incorporation of small interfering RNAs (siRNAs) into the RNA-induced silencing 

complex (RISC) effects the cleavage of target cellular mRNA and consequent 

knockdown of gene product expression.  These siRNAs can be either directly introduced 

into the cell, or derived from supplied precursors: long double-stranded RNAs (dsRNAs) 

or short hairpin RNAs (shRNAs) that are then processed by cellular machinery. The 

availability of increasingly robust genome-wide libraries for RNAi screening has greatly 

increased its popularity as a high-throughput, unbiased screening platform. 

Within the bunyavirus field, a 2013 RNAi screen by Hopkins et al. in Drosophila 

cells used dsRNAs targeting more than 13,000 genes, identifying 124 that restricted 

infection by the phlebovirus Rift Valley Fever virus (RVFV), with genes involved in DNA 

replication, the cell cycle, and mRNA metabolic processing being significantly enriched 

(76). Among these were the catalytic component of the mRNA decapping machinery 

(Dcp2) as well as two decapping activators, DDX6 and LSM7.  Bunyaviruses “cap-

snatch” by cleaving nucleotide sequences from the 5′ ends of host mRNAs in order to 
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prime the viral genome for transcription, and the authors showed that RVFV specifically 

cap-snatches the 5′ ends of Dcp2-targeted mRNAs, as did La Crosse virus (LACV), a 

member of the Orthobunyavirus genus.  The year after, Meier and colleagues performed 

a screen using Uukuniemi virus (UUKV) in HeLa cells expressing the surface lectin 

CD209, which is an attachment factor for UUKV in dendritic cells (77).  Two independent 

genome-wide siRNA libraries were used from two manufacturers: one library with four 

unpooled siRNAs per gene and one library with four unpooled siRNAs per gene.  In both 

screens the v-SNARE VAMP3 was identified as a host factor required for the entry of 

UUKV.  The importance of VAMP3 was also indicated by virtue of its being a target for 

the endogenous microRNA miR-142-3p, a microRNA identified as impacting infection 

after analysis of the seed sequences of the siRNAs used for screening. The authors 

examined incoming UUKV virions trafficking through the endocytic pathway and noted 

increasing colocalization of virions with VAMP3 as they moved within vesicles through 

the cytoplasm. At 20 min after internalization, maximum colocalization between UUKV 

virions and VAMP3 was observed within vesicles positive for lysosomal-associated 

membrane protein 1 (LAMP1), a marker for late endosomes and lysosomes. In VAMP3-

depleted cells, incoming virions failed to reach these LAMP1-positive vesicles, indicating 

that their trafficking was arrested at an earlier endosomal compartment. These data 

informed our understanding of the host cellular machinery required for maturation of 

endosomal compartments and for the fusion of late-penetrating viruses within the acidic 

environment of late endosomes. 

In 2015, Yuan and colleagues transfected HeLa cells with a microRNA-adapted 

shRNA (shRNAmir) library and challenged them with TcdB toxin to screen for clones that 

were resistant to toxin-induced cell rounding (78).  Their screen identified chondroitin 
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sulfate proteoglycan 4 (CSPG4) as a cell surface receptor that was capable of mediating 

internalization of TcdB in HeLa cells.  Further, the authors demonstrated a direct 

interaction between the N-terminus of CSPG4 and the C-terminus of TcdB, at a region of 

the toxin’s receptor-binding domain immediately adjacent to the CROP domain.  Two 

important pieces of evidence from this study supported the conclusion, however, that an 

additional cellular receptor for TcdB exists.  First, the resistance of CSPG4-/- HeLa cells 

to cell rounding was only observed at low concentrations of the toxin, and even slightly 

increasing the concentration of TcdB caused a loss of phenotype.  Second, treatment of 

CSPG4 knockout mice with TcdB showed a decrease in plasma IL-8 levels (relative to 

WT mice) but no effect on animal survival.  The authors suggested that the CROP 

domain was likely responsible for binding of another receptor. 

The arrival of haploid screening in human cells, first described by Carette and 

colleagues in 2009, offered a loss-of-function forward genetic approach as a powerful 

alternative to traditional siRNA-based depletion screens (79, 80).  In these screens, null 

alleles are generated in mammalian haploid cells using insertional mutagenesis, and the 

resulting cellular library is challenged by a selective agent such as a virus or toxin.  

Surviving cells, which presumably lack a gene required by the selective agent as a 

consequence of retroviral insertion, are pooled and deep sequencing is used to map the 

insertion sites of the mutagenizing lentivirus.  Statistical analysis identifies the 

enrichment of insertion sites within the surviving (selected) population compared to the 

original mutant library, yielding a list of genes whose disruption confers a resistance 

phenotype.  This approach identified the homotypic fusion and vacuole protein sorting 

(HOPS) tethering complex and the endo/lysosomal cholesterol transporter protein 

Nieman-Pick 1 (NPC1) as essential host factors for Ebola virus (EBOV) entry, and 
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uncovered the receptor-switching process of Lassa virus (LASV) as it engages first its α-

dystroglycan receptor at the cell surface and then later its intracellular receptor, the 

lysosomal transmembrane protein LAMP1 (81–83).  These studies have provided 

potential antiviral targets, as well as insight into the molecular determinants of host 

tropism, for these important human pathogens. 

In 2014, our lab – in collaboration with the lab of Paul Bates – used a 

recombinant vesicular stomatitis virus (VSV), in which the Andes virus (ANDV) 

glycoproteins are expressed on the VSV core, to identify cellular host factors required for 

ANDV entry (84).  This rVSV-ANDV was used to challenge a human haploid mutant 

library and multiple members of the sterol regulatory pathway were identified as 

impacting ANDV entry.  This dependence upon cholesterol was validated using live wild-

type ANDV, a member of the New World hantaviruses that are causative agents of 

hantavirus pulmonary syndrome (HPS).  Cholesterol requirement during viral entry was 

verified through the use of Chinese hamster ovary (CHO) knockout cell lines, 

pharmacological inhibitors, siRNA depletion, and transcription activator-like effector 

nuclease (TALEN) disruption of members of the sterol regulatory pathway, as well as by 

direct depletion of cholesterol in the cellular membranes.  Virus binding at the cell 

surface was unaffected, but an internalization defect was observed within cells that lack 

a functional sterol regulatory pathway.  Interestingly, this exquisite dependence upon 

cholesterol is not shared by all members of the Buyaviridae family (unpublished data).  

The following year, Kleinfelter and colleagues independently confirmed these findings 

and extended the cholesterol-dependence phenotype to members of both the Old World 

and New World hantavirus clades (85).  Cholesterol depletion was shown to significantly 

delay virus internalization, and to inhibit the ability of virions to fuse with cellular 
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membranes.  This finding is intriguing, as the pH requirement for ANDV implicates it as a 

late-penetrating virus, but the liposome fusion results from Kleinfelter et al. suggest that 

ANDV may require a greater cholesterol concentration than what is present in the 

membranes of late endosomes.  Detailed mechanistic studies will be needed to 

reconcile this, and to determine whether hantaviruses somehow modulate endosomal 

cholesterol composition, fuse specifically at cholesterol-rich microdomains, or whether 

cholesterol plays some other role during virus-membrane fusion. 

Human haploid genetic screening was used in 2014 by Schorch and colleagues 

to examine the entry of Clostridium perfringens toxin TpeL, a recently-described 

glycosylating toxin that is structurally similar to TcdB but lacks the CROP domain (86).  

This screen identified low-density lipoprotein receptor-related protein 1 (LRP1) as a 

binding partner and endocytosis-mediating receptor for TpeL toxin.  However, TcdB toxin 

lacking the CROP domain was capable of entering WT MEF cells and MEFs lacking 

LRP1 with equal efficacy.  This indicate that the non-CROP region in the C-terminus 

receptor-binding domain of TcdB (which is approximately 50% similar to the 

corresponding region of TpeL) does not utilize LRP1 as a receptor for TcdB in this cell 

type. 

The following year, LaFrance et al. generated a mutagenized library of Caco-2 

cells using a retroviral gene-trap vector that confers resistance to neomycin (87).  They 

challenged this library with TcdB and identified two clones with mutations in the polio 

virus receptor-like 3 (PVRL3) gene, a cell surface protein and member of the nectin 

family of adhesion molecules.  Knockdown of PVRL3 in Caco-2 cells (by shRNA) 

conferred partial resistance to TcdB, as assayed by quantification of ATP to indicate cell 

viability.  In HeLa cells, shRNA knockdown and CRISPR-mediated disruption of PVRL3 
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also increased cell viability after TcdB challenge, but it did not protect cells from the 

rounding activity of the toxin.  Perplexingly, the authors did not show cell-rounding 

results in Caco-2 cells.  They did look at protein expression levels (by Western blot) of 

both CSPG4 and PVRL3 in Caco-2 cells and HeLa cells, and found that CSPG4 is only 

expressed in HeLa cells, whereas PVRL3 is expressed in both cell types, though at a 

higher level in Caco-2 cells.  The role of PVRL3 in TcdB entry of Caco-2 cells was 

further characterized by demonstration of direct binding of purified PVRL3 and TcdB 

proteins, as well as by increased cell ATP levels in the presence of TcdB treatment 

when the cells were pre-treated with anti-PVRL3 antibodies.  PVRL3 and TcdB were 

also shown to colocalize in human colon explant tissue.  These data indicate a role for 

PVRL3 in TcdB entry of colonic epithelial cells. 

Just recently, a TcdB screen was published using a CRISPR sgRNA library 

introduced into HeLa cells that stably express the Cas9 endonuclease (88).  The three 

top hits from this screen were UDP-glucose pyrophosphorylase (UGP2), an ezyme that 

produces the glucose required by TcdB for its glucosylation of target GTPases; CSPG4; 

and the protein frizzled class receptor 2 (FZD2), which is a member of the Frizzled family 

of Wnt signalling receptors.  HeLa cell lines lacking FZD2 (via CRISPR-mediated 

disruption) were approximately 15-fold more resistant to TcdB lacking the CROP 

domain, but were not more resistant to full-length TcdB.  However, when these cells 

were also disrupted at the loci encoding FZD1 and FZD7 proteins, the combined 

FZD1/2/7-/- HeLa cells were 10-fold more resistant to full-length TcdB than WT cells.  

The authors used truncation mutants of TcdB to show that CSPG4 functions as a 

CROP-dependent receptor, whereas Frizzled proteins act as CROP-independent 

receptors.  Rescue experiments using introduction of CSPG4 and FZD2 as well as 



29 

 

competition experiments using pre-treatment of cells with the binding domains of these 

two proteins demonstrated that CSPG4 and Frizzled proteins act as non-competetive 

receptors for TcdB and that their relative contribution to toxin entry depends upon their 

cell-type-specific expression levels. 

CONCLUSION 

 In December of 2015, the World Health Organization published its Workshop on 

Prioritization of Pathogens executive summary, which listed the emerging diseases most 

likely to cause severe outbreaks in the near future (89).  Of the ten diseases named, 

three are caused by bunyaviruses: Rift Valley fever, Crimean-Congo hemorrhagic fever, 

and severe fever with thrombocytopenia syndrome.   Concern is likewise mounting about 

the increasing incidence, virulence, and antibiotic-resistance of C. difficile infection 

worldwide (90).  Within the United States, C. difficile infects half a million people 

annually, killing 29,000 each year, is the most common cause of nosocomial infections,  

and costs $4.8 billion dollars per year in healthcare expenses for acute care facilities, 

according to the CDC.  A better understanding of the molecular details of the 

pathogenesis of these diseases is urgently needed in order to inform the development 

and application of therapeutic interventions.  Interesting questions also remain to be 

answered about many of the fundamental cell biological processes involved in the entry 

of bunyaviruses and C. difficile Toxin B.  For these reasons, my dissertation research 

applied high-throughput screening technology to interrogate the interactions of these 

fascinating and important pathogens with their mammalian host cells. 

The data that follow in Chapters 2 and 3 summarize the results of two 

independent screening projects, each utilizing a strategy of forward genetic screening in 
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a mutagenized human haploid cell library.  The first was performed with the vaccine 

strain of RVFV, and identifies glycosaminoglycans as a bunyavirus attachment factor on 

some cell types.  The second screen was done by sequential challenge of the mutant 

library with TcdB, and indicates a role for an actin polymerization-regulating complex in 

the entry of this toxin. 
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CHAPTER 2: A HAPLOID GENETIC SCREEN IDENTIFIES  

HEPARAN SULFATE PROTEOGLYCANS SUPPORTING  

RIFT VALLEY FEVER VIRUS INFECTION 

 

ABSTRACT 

Rift Valley fever virus (RVFV) causes recurrent insect-borne epizootics 

throughout the African continent, and infection of humans can lead to a lethal 

hemorrhagic fever syndrome. Deep mutagenesis of haploid human cells was used to 

identify host factors required for RVFV infection. This screen identified a suite of 

enzymes involved in glycosaminoglycan (GAG) biogenesis and transport, including 

several components of the cis-oligomeric Golgi (COG) complex, one of the central 

components of Golgi complex trafficking. In addition, disruption of the previously-

uncharacterized gene PTAR1 led to RVFV resistance as well as reduced heparan 

sulfate surface levels, consistent with recent observations that PTAR1-deficient cells 

exhibit altered Golgi complex morphology and glycosylation defects. A variety of 

biochemical and genetic approaches were utilized to show that both pathogenic and 

attenuated RVFV strains require GAGs for efficient infection on some, but not all, cell 

types, with the block to infection being at the level of virion attachment. Examination of 

other members of the Bunyaviridae family for GAG-dependent infection suggested that 

the interaction with GAGs is not universal among bunyaviruses, indicating that these 

viruses, as well as RVFV on certain cell types, employ additional unidentified virion 

attachment factors and/or receptors. 



39 

 

INTRODUCTION 

Rift Valley fever virus (RVFV) is a member of the Bunyaviridae family of viruses 

that cause emerging infections that threaten both human and livestock populations on 

several continents (1). Bunyaviruses have a tripartite, negative-sense RNA genome and 

are frequently transmitted by insects (1). RVFV can be transmitted by mosquitoes or by 

exposure to infected tissues and body fluids and is considered endemic in much of 

Africa (2). In humans, RVFV can cause an acute fever leading to complications such as 

kidney failure and, in about 1% of cases, a lethal hemorrhagic fever (3, 4). In addition, 

RVFV spreads rapidly across infected herds of livestock and can cause significant 

mortality in infected animals (5, 6).  

We took a genetic approach to identify host factors that are required for RVFV 

infection in vitro by employing an insertional mutagenesis screen using HapI cells, a 

human haploid cell line. By utilizing a retroviral gene trap, gene-inactivating insertion 

sites can be efficiently mapped with deep sequencing technology (7). This approach has 

successfully uncovered host factors required by a variety of pathogens, including 

viruses, bacteria, and bacterial toxins (8–12). When gene trap-mutagenized HapI cells 

were challenged with RVFV and the surviving cells were analyzed, there was an 

enrichment of sites of insertion into multiple genes involved in glycosaminoglycan (GAG) 

biosynthesis as well as genes for subunits of the cis-oligomeric Golgi (COG) complex 

and PTAR1. We confirmed the requirement for heparan sulfate during infection with 

RVFV isolates with a variety of genetic and biochemical perturbations, consistent with 

the findings from de Boer et al. (13). We now show that the dependency on heparan 

sulfate during RVFV infection is consistent across a representative panel of primary 
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RVFV isolates and, by employing vesicular stomatitis virus (VSV)-based pseudovirions, 

that utilization of GAGs by RVFV during infection occurs at the step of entry. We were 

able to identify, using a quantitative binding assay, virus attachment to be the specific 

entry step affected. However, the dependence of RVFV on GAGs for efficient infection 

was cell type dependent. Surfen (a small-molecule antagonist that binds to heparan 

sulfate) inhibited infection of HapI and SNB-19 cells by replication-competent RVFV, yet 

surfen did not impact infection of several other cell lines by RVFV, even though it 

efficiently blocked infection by herpes simplex virus 1 (HSV-1), a virus that depends 

upon heparan sulfate for efficient infection in vitro. Thus, while GAG interactions do 

significantly enhance RVFV infection in some contexts, other virus attachment factors 

must also exist and/or RVFV utilizes GAG structures that do not efficiently interact with 

surfen. 

MATERIALS AND METHODS 

Cells and viruses. HapI cells (7) and the derived mutant cell lines were grown in 

Iscove's modified Dulbecco's medium (IMDM) supplemented with 10% (vol/vol) fetal 

bovine serum (FBS), 2 mM l-glutamine, 1 mM sodium pyruvate, 10 units/ml penicillin, 

and 100 μg/ml streptomycin. HEK 293T, Vero E6, C6/36, L, and sog9 cells (a generous 

gift from Frank Tufaro) were grown in Dulbecco's modified Eagle medium (DMEM) 

supplemented with 10% (vol/vol) FBS, 2 mM l-glutamine, 10 units/ml penicillin, and 100 

μg/ml streptomycin. The following strains of RVFV were used in this study: MP-12, ZH-

501, Kenya 9800523, and Kenya 2007002444. MP-12 was propagated in MRC-5 cells 

(at the University of Pennsylvania) or Vero E6 cells (at USAMRIID), while the ZH-501 

and the Kenyan strains were propagated in Vero E6 cells. Viral titers on Vero E6 cells 
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were determined by plaque assay. Crimean-Congo hemorrhagic fever virus (CCHFV) 

strain IbAr10200 was propagated in CER cells, and viral titers on CER cells were 

determined. HSV-1 strain k-GFP (a generous gift from Nigel Fraser, University of 

Pennsylvania) was propagated in Vero E6 cells. Studies using RVFV ZH-501 were 

conducted in a biosafety level 3 laboratory at USAMRIID, whereas infections using the 

Kenyan RVFV strains and CCHFV were performed in a biosafety level 4 laboratory at 

USAMRIID. Appropriate safety protocols were followed, and personal protective 

equipment was worn while conducting experiments in the high-containment laboratories. 

The generation of PTAR1-deficient HapI cells was described before (14).  

Insertional mutagenesis. HapI cells were mutagenized with a retroviral gene 

trap as described in reference 11 and exposed to strain MP-12. Surviving clones were 

expanded for genomic DNA isolation. Subsequently, gene trap insertion sites were 

amplified using an inverse PCR, submitted for parallel sequencing (Illumina HiSeq 

2000), and aligned to the human genome (hg18) (10). Genes significantly enriched for 

gene-trap insertions compared to the sequences of an unselected control cell population 

were identified using a one-sided Fisher's exact test as described in reference 11.  

RVFV pseudovirion production. To assess the specific role of GAGs in RVFV 

attachment and entry, as opposed to downstream replication events, we used a VSV 

pseudovirion system (15, 16) in which the VSV glycoprotein gene G was deleted from 

the viral genome (VSVΔG) and replaced with a reporter gene, either Renilla luciferase 

(VSVΔG-rLuc) or red fluorescent protein (VSVΔG-RFP). To generate VSVΔG 

pseudovirions possessing RVFV glycoproteins (or those of other viruses), the 

glycoproteins were provided in trans via an expression vector to cells transduced with 

the VSVΔG core. HEK 293T cells seeded in 10-cm2 plates were transfected with 
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pCAGGS RVFV ZH-548 M using the Lipofectamine 2000 reagent (Invitrogen) according 

to the manufacturer's instructions. This construct is codon optimized for expression in 

human cells and contains only the coding region of the M segment starting at the fourth 

ATG start codon, which omits the NSM coding region. At between 16 and 20 h after 

transfection, cells were transduced with VSVΔG pseudovirions bearing VSV G. After 

adsorption of pseudovirions for 1 h, cells were carefully rinsed four times with warm 

phosphate-buffered saline (PBS) containing calcium and magnesium, and then the 

medium was replaced with complete DMEM supplemented with 25 mM HEPES. Cell 

culture supernatants were collected 24 h later, clarified by low-speed centrifugation for 

30 min at 4°C, filtered (pore size, 0.45 μm), and then aliquoted for storage at −80°C. 

Andes virus (ANDV) and Hantaan virus (HTNV) pseudovirions were generated in the 

same fashion.  

Virus infections. To compare the ability of diverse RVFV strains or CCHFV to 

infect HapI cells and the derived mutant cell lines, we utilized a high-content imaging-

based infection assay. Each cell line was seeded at a density of 1 × 104 cells per well in 

Greiner black well, clear-bottom 96-well plates. At 24 h after seeding of the cells, the 

culture medium was removed and the cells were infected with viruses diluted in 

complete IMDM. The virus inocula were not washed off and the plates were incubated at 

37°C until approximately 18 to 20 h postinfection. At this point, the cell culture medium 

was removed from the cells and the plates were immersed in 10% neutral buffered 

formalin for 24 h to fix the cells and render virus noninfectious prior to removal from the 

high-containment laboratories. Prior to immunostaining for viral antigens, residual 

formalin was removed from the plates, and they were then rinsed extensively with 

phosphate-buffered saline (pH 7.4). The cells were permeabilized for 15 min with a 
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solution of 0.1% (vol/vol) Triton X-100 in PBS, and then the permeabilization buffer was 

rinsed away by additional PBS washes. The cells were blocked for at least 1 h using a 

3% (wt/vol) solution of bovine serum albumin in PBS. Purified monoclonal antibodies 

specific for RVFV N (R3-1D8) or CCHFV N (9D5-1-1A) were diluted 1:1,000 in blocking 

buffer and then added to the cells for 1 h, followed by extensive washing with PBS. Anti-

mouse immunoglobulin Alexa Fluor 568-labeled secondary antibody was diluted 1:2,000 

in blocking buffer and then added to the cells for 1 h, followed by extensive washing in 

PBS. The cells were then counterstained with a solution of Hoechst 33342 (nuclei) and 

HCS CellMask deep red stain (total cell), each of which was diluted 1:10,000 in PBS. 

This counterstain solution was maintained on the plates during high-content imaging. 

Automated image acquisition was performed using an Operetta high-content imaging 

system. Three exposures (one for each of the fluorophores) in five separate fields were 

acquired in each well using a 20× air objective and a Peltier cooled 1.3-megapixel 

charge-coupled-device camera. The fluorophores were illuminated using a 300-W xenon 

arc light source and excitation (EX) and emission (EM) filters for the following: Alexa 

Fluor 568 (EX/EM), Hoechst 33342 (EX/EM), and HCS CellMask deep red (EX/EM). 

Image segmentation and analysis were performed using Harmony (version 3.0) software 

and standard scripts. These algorithms were used to first delineate nuclear and cell 

boundaries and then identify viral antigens by Alexa Fluor 568 staining. To calculate 

percent infection per image field, the number of cells exhibiting an Alexa Fluor 568 mean 

fluorescence intensity greater than the mean intensity for uninfected control wells was 

divided by the total cell number defined by Hoechst 33342 nuclear staining. For each 

well, the Harmony software reported the mean percent infection of the five fields. On 

average, 1,500 to 5,000 cells were analyzed per well. In each independent experiment, 
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at least 4 individual wells were analyzed for each cell line. Infections with VSVΔG-RFP 

pseudovirions or HSV-1 were carried out at a low volume for 1 h at 37°C, after which 

complete DMEM or IMDM was added to the wells. Twenty-four hours later, the cells 

were trypsinized, fixed in 2% paraformaldehyde and then analyzed for RFP (for VSVΔG 

pseudovirions) or green fluorescent protein (GFP) (for HSV-1) expression by 

fluorescence-activated cell sorting (FACSCalibur flow cytometer; BD Biosciences). For 

infections in the presence of surfen (5 μM; Sigma), dextran sulfate (5 μg/ml, 5 kDa; 

Sigma), or heparinase I (3 U/ml; Sigma), cells were pretreated for 1 h and, in the case of 

surfen and dextran sulfate, kept in the presence of drug for the duration of the infection. 

For soluble GAG competition experiments, heparin (10 and 100 μg/ml; Fisher 

BioReagents) and heparan sulfate (10 and 100 μg/ml; Iduron) were preincubated with 

HSV-1 or MP-12 at 25°C for 1 h. The virus and GAG solution was then allowed to 

adsorb onto cells for 1 h at 37°C, after which it was rinsed 3 times with PBS containing 

calcium and magnesium and cells were refed with fresh medium that did not contain 

either virus or GAGs. Infections were then harvested at 8 to 10 h postinfection (hpi), and 

percent infection was scored by flow cytometry, looking for either intracellular staining of 

the N protein (for MP-12) or expression of the GFP reporter protein (for HSV-1). For 

pseudovirion neutralization studies, RVFV and severe acute respiratory syndrome 

(SARS) coronavirus antisera (a generous gift from Stuart Nichol, Centers for Disease 

Control and Prevention) were preincubated with pseudovirions at the indicated dilutions 

for 30 min at 37°C. The linear range of the assay was determined by performing serial 

10-fold dilutions of each virus stock on each target cell type and for each detection 

method used. Infection assays were typically linear over at least a 2-log-unit range of 
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virus dilutions, with the virus inoculum being adjusted to achieve infection levels of 

between 1 and 30%.  

RVFV binding assay. Virus was diluted in DMEM (Gibco) and added to HapI 

cells and the derived mutant cell lines for 1 h at 37°C. The cells were then washed four 

times with PBS, and total RNA was isolated from the cells using a Qiagen RNeasy 

minikit. RNA was quantified by measuring the absorbance at 260 nm, and first-strand 

cDNA was generated from 1.5 μg of total RNA using a SuperScript VILO cDNA 

synthesis kit (Invitrogen) according to the manufacturer's instructions. Primers specific to 

the MP-12 L segment (forward L segment primer 5′-TGAGAATTCCTGAGACACATGG-

3′; reverse L segment primer 5′-ACTTCCTTGCATCATCTGATG-3′) were purchased 

from Invitrogen, and a 6-carboxyfluorescein/MGB probe specific to the MP-12 L segment 

with the sequence 5′-CAATGTAAGGGGCCTGTGTGGACTTGTG-3′ was purchased 

from Applied Biosystems. Reverse transcription-PCR (RT-PCR) was then performed 

using an ABI 7500 real-time PCR system (Applied Biosystems) with the following 

conditions: (i) denaturation at 95°C for 20 s and (ii) 40 cycles of PCR amplification with 

denaturation at 95°C for 3 s and annealing and extension at 60°C for 30 s. Data were 

analyzed using the ΔΔCT threshold cycle (CT) method by calculating the change in gene 

expression normalized to that of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) 

as a housekeeping gene (17).  

Statistical analysis. Statistical significance was calculated using a two-tailed, 

one-sample t test by comparing the fold changes to the hypothetical value of 1 in Prism 

software (version 5.0a; GraphPad Software). P values were not reported for conditions 

where only two biological replicates were performed. 
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RESULTS 

An insertional mutagenesis screen for RVFV host factors in a human 

haploid cell line. To identify the host factors needed for RVFV infection, 1 × 108 HapI 

cells were mutagenized using a retroviral gene trap vector (11). Subsequently, 

mutagenized cells were infected with the cytotoxic RVFV MP-12 strain and the surviving 

cells were expanded as a polyclonal cell population. Following isolation of genomic DNA, 

gene trap insertion sites were sequenced and aligned to the human genome. 

Subsequently, the retroviral insertions within genes in the virus-resistant population were 

counted and compared to the number of insertions within the same gene in an 

unselected cell population (11). Genes significantly enriched (P < 0.001) for insertions in 

the virus-selected cell population were identified (Fig. 2-1A). These contain multiple 

genes encoding enzymes required for synthesis of glycosaminoglycans (refer to Fig. 2-

1B), including the four enzymes needed for the tetrasaccharide linkage region (XYLT2, 

B4GALT7, B3GAT3, and B3GALT6) (18–23), two enzymes involved in proteoglycan 

chain elongation (EXT1 and EXT2) (24), and the enzyme that catalyzes both N-

deacetylation and N-sulfation during the biosynthesis of heparan sulfate (NDST1) (25). 

Genes required for the synthesis (UXS1, UGDH) or transport (SLC35B2) of critical 

moieties for heparan sulfate chain formation (26–28) were also enriched in cells resistant 

to RVFV infection (Fig. 2-1A and B). In addition to genes directly involved in heparan 

sulfate biosynthesis, several subunits of the conserved oligomeric Golgi (COG) complex 

(COG1, COG2, COG3, COG4, COG5, COG7, COG8) (29) were identified from the 

screen. It is known that perturbation of the COG complex attenuates O-linked 

glycosylation by impairing Golgi complex function (29, 30). Another hit in this screen 
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encoded UNC50, a Golgi complex-resident transmembrane protein that plays a role in 

nicotinic acetylcholine receptor trafficking in Caenorhabditis elegans (31). Finally, this 

screen identified the gene for prenyltransferase alpha subunit repeat containing 1 

(PTAR1) to be important for RVFV infection. PTAR1 was previously shown to affect 

glycosylation (11), possibly by influencing vesicular trafficking through prenylation of Rab 

GTPases (14, 32). Although genes involved in vesicular trafficking could represent more 

direct interactions with RVFV, the overlap of these results with those from a screen 

performed for cell surface GAG expression (11) suggests a function for these genes in 

the presentation of glycans at the cell surface. 
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Figure 2-1.  Human haploid mutagenesis screen for RVFV host factors. (A) Plot 
showing genes enriched in the virus-selected population compared with their levels in an 
unselected population. Each circle demarks a gene, with its y-axis coordinate 
representing the false discovery rate-corrected P value and its area reflecting the 
number of identified unique gene trap integrations. Genes that are significantly enriched 
in the virus-selected population (P < 0.001) are colored and horizontally grouped on the 
basis of their function. (B) Overview of heparan sulfate synthesis. Xyl: xylose, Gal: 
galactose, GlcA: glucuronic acid, IdoUA: iduronic acid, GlcN: N-acetylglucosamine.  
Genes involved in heparan sulfate synthesis that were significantly enriched in our RVFV 
screen are shown in parentheses. 
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GAGs are important for RVFV infection. Because the majority of genes 

identified in our screen pertained to GAG synthesis, we first focused on elucidating the 

role of GAGs during RVFV infection. We were able to obtain single-cell clones of gene-

trapped B3GAT3 (B3GAT3GT) and B4GALT7 (B4GALT7GT) and exposed these cells to 

the MP-12 strain of RVFV. As shown in Fig. 2-2A, these cells were markedly resistant to 

MP-12 infection. Importantly, reintroduction of the respective cDNAs completely restored 

sensitivity to virus infection, indicating that the observed resistance phenotype can be 

solely attributed to the gene-trapped loci (Fig. 2-2A). To determine whether the synthesis 

of the O-linked tetrasaccharide linker was required for RVFV infection, we produced a 

B3GAT3GT cell line stably expressing an enzymatically inactive point mutant of GlcAT-I 

(D194A/D195A) (33). As with the B3GAT3GT cells stably expressing an empty vector 

construct, introduction of this enzymatically inactive form of GlcAT-I into B3GAT3GT 

cells did not rescue MP-12 infection (Fig. 2-2B). B4GALT7 encodes the β-1,4-

galactosyltransferase GalT-I, which catalyzes the enzymatic step immediately upstream 

of the β-1,3-galactosyltransferase reaction in the synthesis of the GAG linker (Fig. 2-1B). 

As with the B3GAT3GT cell panel, MP-12 infection also required a catalytically active 

form of GalT-I (Fig. 2-2B), further suggesting that RVFV is dependent upon GAGs for 

efficient infection. 
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Figure 2-2.  GAGs are important for RVFV infection. (A) Expression of the B3GAT3 
and B4GALT7 gene products is required for strain MP-12 infection. B3GAT3 and 
B4GALT7 gene-trapped (GT) HapI cells transfected and selected to stably express 
empty vector (vector) or wild-type (WT) protein (rescue) were infected with MP-12, and 
surviving cells were stained with crystal violet. (B) GAGs are important for diverse strains 
of RVFV. B3GAT3GT and B4GALT7GT HapI cells that stably express the empty vector 
(vector), the wild-type protein (rescue), or a catalytically inactive point mutant (mutant) 
were infected with the MP-12, ZH-501, Kenya 980052 (Kenya 1998), and Kenya 
2007002444 (Kenya 2007) strains of RVFV, and the percentage of infected cells was 
normalized to the percentage of infected parental HapI cells. Bars indicate SEMs (n = 3 
for MP-12, ZH-501, and Kenya 980052; n = 2 for Kenya 2007002444). *, P < 0.005; **, P 
< 0.001. 
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For some viruses, the requirement for GAGs for infection of cells in culture is a 

trait acquired during in vitro passaging, often leading to attenuation (34–36). To 

determine whether this was the case with RVFV, we infected the B3GAT3GT and 

B4GALT7GT cell panels with three pathogenic strains of RVFV: ZH-501, Kenya 

9800523 (1998), and Kenya 2007002444 (2007). We found that infection by these 

primary RVFV strains was also strongly inhibited in cells lacking functional GlcAT-I and 

GalT-I. Infection was rescued by expression of the wild-type construct but not the 

enzymatically inactive constructs (Fig. 2-2B). The dependence of primary RVFV strains 

upon these enzymes indicates that the requirement of GAGs for viral infection is not due 

to cell culture adaption or attenuation.  

To further test the hypothesis that RVFV infection requires GAGs, we used 

various GAG perturbants. The small molecule surfen binds to negatively charged GAG 

species on the cell surface (37). Infection of HapI cells in the presence of surfen led to a 

10-fold reduction of MP-12 infection but not vesicular stomatitis virus (VSV) infection 

(Fig. 2-3A). Infection of the HapI cells by herpes simplex virus 1 (HSV-1), which is known 

to utilize heparan sulfate for attachment, was decreased to levels close to background 

levels by the addition of surfen. Enzymatic removal of cellular heparan sulfate with 

heparinase also greatly attenuated MP-12 infection (Fig. 2-3A). Since GAGs are highly 

negatively charged, nonspecific electrostatic effects could facilitate the interaction 

between RVFV surface glycoproteins and cellular GAGs. To address this issue, we 

infected HapI cells in the presence of dextran sulfate, a biologically inert, negatively 

charged carbohydrate polymer. In contrast to HSV-1, the presence of dextran sulfate 

had little impact on MP-12 infection (Fig. 2-3A), suggesting that the interaction with 

cellular GAGs has some degree of specificity.   
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Figure 2-3.  Perturbants of GAGs and the requirement of GAGs among 
bunyaviruses. (A) GAG perturbants reduce the MP-12 infectivity of HapI cells. HapI 
cells were pretreated with the small molecule surfen (5 μM), heparinase I (3 U/ml), or 
dextran sulfate (50 μg/ml) and infected with MP-12, VSV, or HSV-1. The percentage of 
infected cells was normalized to the percentage of infected cells treated with the vehicle 
control (dimethyl sulfoxide for surfen, PBS for heparinase I, and water for dextran 
sulfate). Bars indicate SEMs (n = 3). *, P < 0.005; **, P < 0.0001; ns, no significant 
difference; n.t., not tested. (B) Role of GAGs for various members of the Bunyaviridae 
family. B3GAT3GT and B4GALT7GT cells (see Fig. 2 legend) were infected with either 
Hantaan or Andes virus pseudovirions or replication-competent CCHFV. The percentage 
of infected cells was normalized to the percentage of infected wild-type cells rescued 
with each protein. Bars indicate SEMs (n = 3). *, P < 0.05; **, P < 0.005; ns, no 
significant difference. 
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Differential requirement for GAGs among Bunyaviridae family members. To 

examine whether the interaction of RVFV with GAGs was unique among bunyaviruses, 

we infected the B3GAT3GT and B4GALT7GT cell panels with pathogenic, replication-

competent Crimean-Congo hemorrhagic fever virus (CCHFV) and VSV pseudovirions 

bearing the Andes or Hantaan virus glycoproteins. CCHFV is a member of the Nairovirus 

genus, and both Andes and Hantaan viruses are members of the Hantavirus genus, 

which are further subdivided into New World (Andes virus) and Old World (Hantaan 

virus) hantaviruses (38, 39). Interestingly, Hantaan virus pseudovirions required 

catalytically active GlcAT-I and GalT-I for efficient infection of HapI cells, while Andes 

virus pseudovirions did not (Fig. 2-3B). Infection with CCHFV was reduced 2-fold when 

B3GAT3 or B4GALT7 were absent (Fig. 2-3B). Thus, the role of GAGs during infection 

by other members of the Bunyaviridae family varies.  

RVFV utilizes at least one surfen-resistant cellular factor in vitro. We next sought 

to characterize the role of GAGs during MP-12 infection of different cell lines using 

surfen as an inhibitor of GAG function. We observed that surfen inhibited MP-12 

infection in SNB-19 cells, a glioblastoma cell line, but did not inhibit MP-12 infection in 

HEK 293T or mouse L cells, a mouse epithelium-derived cell line (Fig. 2-4A), or in Vero 

cells (data not shown). As a positive control for surfen activity, infection by HSV-1 was 

strongly inhibited in all cells (Fig. 2-4A). As an alternative means of examining GAG 

utilization in L cells, we also tested MP-12 infection in sog9 cells, which are clonal 

isolates of L cells that are defective in the EXT1 gene (40). EXT1 is responsible for 

polymerizing disaccharide subunits from the nascent tetrasaccharide linker and was 

identified in our screen as being important for RVFV infection of HapI cells (Fig. 2-1B). In 

contrast to infection by HSV-1, infection by MP-12 was unaffected by the loss of GAGs 



54 

 

in sog9 cells (Fig. 2-4B). To further examine the variance of this GAG-dependent 

phenotype across cell types, we preincubated RVFV or HSV-1 with either heparin, 

heparan sulfate, chondroitin sulfate, or dextran sulfate for 1 h prior to infection of a panel 

of cell lines, including HEK 293T, A549, HeLa, Vero, and (with RVFV only) C6/36 cells, 

in addition to the HapI cells. Heparin and heparan sulfate inhibited infection of both 

RVFV and HSV-1 on HEK 293T, A549, HapI, and HeLa cells by at least 2-fold but not on 

Vero cells, an African green monkey cell line, or of C6/36 cells, an Aedes albopictus 

mosquito cell line (Fig. 2-4C). Similar results were obtained with dextran sulfate, 

whereas preincubation with chondroitin sulfate had only a very modest effect on the four 

human cell lines and no effect on the Vero and C6/36 cells (data not shown). Since the 

composition of GAGs varies between cell types, this suggests that the GAG species that 

facilitate RVFV infection may not be ubiquitously expressed. Alternatively, as is the case 

with HSV-1, another entry factor may also be able to compensate for the lack of GAGs 

on some cell types (41). An endocytosis-mediating receptor(s) for RVFV has not been 

identified, and these data suggest that multiple entry factors are likely involved in RVFV 

infection and that their relative importance may vary between cell types. 

 

 



55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 2-4.  Examination of GAG utilization by MP-12 during infection of various 
cell lines. (A) MP-12 infection is resistant to surfen in some cell lines. Various cell lines 
were infected with MP-12, HSV-1, and VSV in the presence of either dimethyl sulfoxide 
(DMSO) or 5 μM surfen. The percentage of infected cells was normalized to the 
percentage of infected cells in the dimethyl sulfoxide-treated group. (B) L and sog9 cells 
were infected with MP-12, HSV-1, and VSV. The percentage of infected sog9 cells was 
normalized to the percentage of infected L cells. Bars indicate SEMs (n = 3). *, P < 0.01; 
**, P < 0.0001; ns, no significant difference. (C) Preincubation of HSV-1 or RVFV (MP-12 
strain) with either soluble heparin or heparan sulfate prior to infection of HEK 293T, 
A549, HapI, HeLa, Vero, or C6/36 cells. The concentrations listed to the right of the 
graphs refer to the concentration of GAG species used during preincubation. Bars 
indicate SEMs (n = 3 for all cells except C6/36 cells, for which n = 2). *, P < 0.05; **, P < 
0.01; #, P < 0.001; ns, no significant difference.   
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GAGs are important for RVFV entry and binding.  Based on the results of the 

blocking experiments with surfen and the fact that many viruses utilize GAGs for cellular 

attachment, we hypothesized that GAGs facilitate efficient entry by enhancing binding of 

RVFV to HapI cells. To examine this, we took advantage of the VSV pseudovirion 

system that has been successfully employed for other members of the Bunyaviridae 

family (16). The RVFV surface glycoproteins GN and GC are provided in trans to 

replication-incompetent vesicular stomatitis virus lacking its glycoprotein (VSVΔG). To 

validate the antigenic specificity of RVFV pseudovirions, we pretreated RVFV 

pseudovirions with an antiserum against RVFV or the severe acute respiratory syndrome 

(SARS) virus as a control. Infection by RVFV pseudovirions but not those bearing the 

VSV G protein was inhibited in the presence of the RVFV antisera (Fig. 2-5A). Infection 

by RVFV pseudovirions was also sensitive to lysosomotropic agents (data not shown), 

consistent with the requirement for acidic endosomal pH for infection with RVFV and 

other members of the Bunyaviridae family (42–45). We then infected the B3GAT3GT 

and B4GALT7GT cell panels with both RVFV and VSV pseudovirions that express red 

fluorescent protein (RFP). As with replication-competent RVFV, infection with RVFV 

pseudovirions required catalytically active GlcAT-I and GalT-I (Fig. 2-5B). In contrast, 

infection with pseudovirions bearing the VSV G protein was relatively unaffected, thus 

directly implicating GAGs in RVFV entry. 
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Figure 2-5.  Cellular GAGs are important for RVFV entry. (A) Validation of RVFV 
pseudovirions. RVFV and VSV pseudovirions were preincubated with antiserum against 
either RVFV or the SARS virus before infection of Vero E6 cells. Infection values are 
normalized to the viral inoculum used with untreated cells. (B) B3GAT3GT and 
B4GALT7GT HapI cells that stably express the empty vector, the wild-type protein, or a 
catalytically inactive point mutant were infected with either RVFV or VSV pseudovirions. 
The percentage of infected cells was normalized to the percentage of infected wild-type 
cells rescued with each protein. Bars indicate SEMs (n = 3). *, P < 0.01; **, P < 0.005; 
ns, no significant difference.   
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To measure RVFV virion binding, we employed a quantitative reverse 

transcription-PCR (qRT-PCR) assay that detects RVFV L gene copies. We first 

confirmed the linear range of our assay by diluting MP-12 on HapI cells and measuring 

relative MP-12 binding and found that virus binding increased linearly with virus input 

over a 3-log-unit range (data not shown). When this assay was applied to the 

B3GAT3GT and B4GALT7GT cell panels, MP-12 binding strongly correlated with the 

presence of catalytically active GlcAT-I and GalT-I (Fig. 2-6). To confirm the role of 

GAGs in facilitating RVFV binding, we also measured the effect of surfen on RVFV 

binding. Consistent with its role in infection, surfen also blocked RVFV binding to a 

similar degree (Fig. 2-6). Taking these data together, we conclude that the deficiency in 

RVFV infection in the absence of GAGs is due to a defect at the level of virion 

attachment.    
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Figure 2-6.  Cellular GAGs are important for RVFV binding. B3GAT3GT and 
B4GALT7GT HapI cells that stably express the empty vector, the wild-type protein, or a 
catalytically inactive point mutant were incubated with MP-12 for 1 h at 37°C, and the 
amount of cell-associated MP-12 was normalized to the number of wild-type cells 
rescued with each protein. The amount of cell-associated MP-12 on wild-type HapI cells 
was also measured in the presence of dimethyl sulfoxide or surfen and normalized to 
that for dimethyl sulfoxide-treated samples. Bars indicate SEMs (n = 5 for HapI gene-
trapped mutant cells, n = 3 for surfen-treated cells). *, P < 0.05; **, P < 0.001; ns, no 
significant difference.   
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PTAR1 deficiency attenuates heparan sulfate expression and confers 

resistance to RVFV infection.  HapI cells lacking a functional PTAR1 (14) were largely 

resistant to RVFV infection, and this phenotype could be corrected by reintroduction of 

wild-type PTAR1 cDNA (Fig. 2-7A), indicating that the virus resistance phenotype was 

caused by the loss of PTAR1. In line with previous observations (11, 14), PTAR1-

deficient cells showed a marked decrease in cell surface heparan sulfate abundance, as 

measured by flow cytometry (Fig. 2-7B). Similar to the virus resistance phenotype, 

heparan sulfate deficiency, too, could be corrected by complementation with wild-type 

PTAR1 cDNA (Fig. 2-7A and B). Considering the requirement of heparan sulfate for 

RVFV infection, it seems plausible that improper presentation of heparan sulfate at the 

cell surface is responsible for the observed virus resistance of PTAR1-deficient cells. 

Thus, our screen has identified host factors required for RVFV infection. These factors 

are involved in various steps of the heparan sulfate biosynthesis pathway and include 

PTAR1, which constitutes a novel RVFV host factor affecting heparan sulfate expression 

at the cell surface.   
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Figure 2-7.  The loss of PTAR1 renders cells resistant to RVFV infection and leads 
to decreased heparan sulfate levels on the cell surface. (A) Infection of wild-type and 
PTAR1 mutant (PTAR1mut) cells with MP-12. Surviving cells were visualized by crystal 
violet staining. (B) Flow cytometric analysis of heparan sulfate (HS) levels, using a 
specific antibody (10E4), on the surfaces of nonpermeabilized wild-type cells, PTAR1 
mutant cells, and PTAR1 mutant cells complemented with either an empty vector or 
PTAR1 cDNA. The percentage of cells above and below a signal threshold (horizontal 
line) is indicated. In line with previous observations (11, 14), the loss of PTAR1 reduces 
the levels of heparan sulfate present on the cell surface, and these levels can be 
corrected by introduction of PTAR1 cDNA.    
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DISCUSSION 

Cell surface carbohydrates can affect virus entry at the stage of virion 

attachment, but the importance of this interaction varies among viruses and cells. For 

example, sialic acid is thought to be sufficient for influenza virus attachment and entry, 

while the role of GAGs during HSV-1 entry is more complex (41, 46, 47). The 

herpesviruses are thought to first engage heparan sulfate on the surface of cells before 

engaging specific receptors (48). Heparan sulfate greatly facilitates HSV-1 attachment 

and infection under many conditions but is not essential for infection in all contexts (41, 

49). For example, CHO cell mutants deficient in GAG synthesis can be rendered 

permissive by expressing either of the HSV-1 entry receptors nectin-1 (PVRL1) or HVEM 

(TNFRSF14) (50). The expression levels of viral receptors can therefore determine 

whether GAGs are required for efficient viral entry.  

The cellular receptor(s) for RVFV is currently not known, and since a 

nonpermissive cell line is yet to be described, it is possible that more than one molecule 

may serve as a receptor for RVFV. The C-type lectin DC-SIGN has been shown to 

promote the binding and internalization of RVFV on dermal dendritic cells, although this 

protein is not expressed in most of the tissues which the virus has been shown to infect 

(51). A genome-wide RNA interference screen performed by Hopkins and colleagues did 

not identify glycosaminoglycans among their list of genes that impacted RVFV infection 

(52). We have shown that several perturbations of GAGs inhibited RVFV entry and 

attachment on some cell types, but the relative contribution of other RVFV entry factors 

remains unknown. Because we observed differential sensitivities of RVFV to surfen, it is 

possible that the requirement for GAGs across cell types is a function of the relative 
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expression levels of an uncharacterized RVFV receptor(s), GAG structures to which 

surfen binds inefficiently, or unidentified attachment factors. Indeed, the composition of 

cellular GAGs between cells is highly variable (53). While heparan sulfate is the best-

studied variant, there are at least four other species, each consisting of a unique 

disaccharide unit. Several enzymes are involved in modifying the different glycan side 

chains following polymerization. For example, HSV-1 interacts with 3-O-sulfated heparan 

sulfate, which is catalyzed by the 3-O-sulfotransferase family of enzymes (49). Our data 

suggest that RVFV may require a specific enzymatic variant of a GAG species or cellular 

proteoglycan. Further work is needed to elucidate the role of specific GAG-modifying 

enzymes and cellular glycoproteins during RVFV infection.  

Heparan sulfate has previously been implicated as playing a role in RVFV 

infection. A study by de Boer et al. employed a replication-incompetent virus-like particle 

(VLP) system and found that CHO cells with genetic deficiencies in GAG synthesis were 

highly resistant, though not immune, to RVFV infection (13). This is in line with our 

observation that HapI cells incapable of producing GAGs are approximately 10-fold more 

refractory to RVFV infection than their parental (wild-type) HapI cells. Infection by 

Toscana virus, another member of the genus Phlebovirus of the family Bunyaviridae, 

has been shown to be inhibited by bovine lactoferrin through competition for GAGs on 

the cell surface (54). These results and our finding that the importance of GAGs and 

heparan sulfate for RVFV infection exhibited cell type dependence suggest that these 

molecules serve as virus attachment factors that can enhance but that are not absolutely 

required for virus infection and therefore do not represent indispensable viral receptors.  

By employing RVFV-VSVΔG pseudovirions and an RVFV binding assay, we 

definitively linked GAGs to RVFV entry and, more specifically, to virus binding. It remains 
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to be determined whether the impact of heparan sulfate on RVFV infection of some cell 

types reflects the inefficiencies of cell-free virus attachment in vitro or whether these 

interactions are important in vivo as well, though the fact that primary RVFV strains 

behaved similarly to the MP-12 vaccine strain shows that these interactions are not the 

result of in vitro virus adaptation. Interestingly, the tissue tropism of adeno-associated 

virus 2 (AAV2) to the liver and kidney, organs in which RVFV also establishes productive 

infection, is exquisitely linked to interactions with GAGs (55–58). Infections with RVFV in 

pregnant livestock are devastating, and pathological studies of infected pregnant 

livestock reported extremely high virus titers in the placenta, an organ whose cells 

express high levels of surface GAGs (59, 60). Interactions with placental GAGs may 

explain the mechanism by which RVFV localizes to the placenta from the bloodstream.  

The haploid genetic screen utilized here identified multiple genes involved in 

GAG synthesis or transport, including PTAR1. Whereas we cannot formally exclude the 

possibility that PTAR1 affects virus susceptibility by other means, it is most likely also 

involved in mediating GAG-dependent viral entry. Cells deficient for PTAR1 displayed 

decreased levels of heparan sulfate at their cell surface, which is in agreement with the 

observations obtained with cells with PTAR1 mutations in previous genetic screens (11, 

14). Additional experiments examining the precise role of PTAR1 in heparan sulfate 

biogenesis and trafficking are needed to shed light on the mechanism of PTAR1-

dependent RVFV infection. Finally, the ability of this screening approach to identify 

additional host factors that are important for RVFV infection may be enhanced by 

employing cell types where virus attachment occurs in a GAG-independent manner.  

The interaction of primary pathogenic RVFV isolates with GAGs suggests that 

this interaction might be an attractive pharmacological target in humans or other 
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animals. Heparan sulfate has indeed been shown to be important in human 

papillomavirus infection of mouse female genital tracts (61), and administering anti-

heparan sulfate peptides as a prophylactic eye drop was shown to inhibit the spread of 

HSV-1 in the mouse cornea (62, 63). Although we need to further characterize the exact 

role of GAGs during RVFV infection in vitro and in vivo, our current study suggests that 

disruption of virus-GAG interactions could be a viable antiviral therapy or prophylactic 

measure. 
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CHAPTER 3: THE WASH COMPLEX IS REQUIRED FOR  

INTOXICATION OF CLOSTRIDIUM DIFFICILE TOXIN B 

 

ABSTRACT 

 Clostridium difficile infection causes a severe diarrheal disease that is increasing 

in incidence and becoming more resistant to treatment.  Its secreted virulence factor 

Toxin B (TcdB) is internalized into host cells, where it inactivates Rho GTPases and 

causes significant cytotoxicity.  The host factors supporting TcdB internalization and 

transport are largely unknown.  We report here a forward genetic screen in human 

haploid cells that identified the Wiskott–Aldrich syndrome protein and SCAR homologue 

(WASH) complex as a host cellular factor supporting TcdB intoxication.  The involvement 

of the WASH complex in TcdB entry was validated by pharmacologic inhibition of 

recycling endosomes and the use of mouse fibroblasts lacking a functional WASH 

complex due to genetic ablation of the core WASH1 gene.  Our data help to elucidate 

the mechanism of intoxication of this important and poorly-characterized virulence factor. 

INTRODUCTION 

The anaerobic bacterium Clostridium difficile causes severe antibiotic- and 

hospital-associated diarrhea and pseudomembranous colitis.  C. difficile infection can 

lead to septic shock, perforation of the intestine, and toxic megacolon, and is fatal for 

about 9% of patients (1). In the United States, the CDC estimates 500,000 cases of C. 

difficile infection annually (2) and rates of C. difficile colitis have been increasing: from 

2005 to 2010 there was a 47% increase compared to the five years prior (3).  Spore 
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formation by the bacterium and worsening resistance to treatment have hindered 

sterilization, prevention, and treatment efforts. 

C. difficile secretes two large multidomain toxins, TcdA and TcdB, that are the 

virulence factors primarily responsible for its pathogenesis.  TcdB has been shown to be 

approximately 100-1000 times more cytotoxic than TcdA, and is believed to cause most 

of the severe disease symptoms associated with C. difficile infection (4-6).  TcdB is 270 

kDa and comprises the following domains: a glucosyltransferase domain (GTD) located 

at the N-terminus of the protein, a cysteine protease domain (CPD) responsible for auto-

cleavage, a translocation domain (TMD) that includes a pore-forming region (PFR), a 

receptor binding domain (RBD) containing a combined repeat oligopeptides (CROP) 

region involved in binding and attachment at the cell surface, and newly-identified 

secondary RBD adjacent to the first.  See Figure 3-1A for a schematic of the TcdB 

domain organization.   

After binding to the cell surface via either of the RBDs, the toxin is internalized 

into an endosome.  Acidification of endosomes is thought to induce a conformational 

change in the toxin, leading to pore formation and translocation of the CPD and GTD 

into the cytosol (7).  The CPD then cleaves the GTD, freeing it to interact with its target 

Rho GTPases in the cytosol.  TcdB has been shown specifically to glucosylate RhoA, 

Rac1, and Cdc42, although this varies by bacterial strain (8).  Glucosylation of these 

Rho GTPases disrupts the numerous cell processes that they control, including cell 

polarity, vesicle trafficking, and microtubule and actin cytoskeletal regulation.  It is this 

inactivation of the Rho GTPases that are thought to be responsible for the cytotoxic 

effects of TcdB.  The current model of the TcdB intoxication is shown in Figure 3-1B.   
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Recent studies have demonstrated that chondroitin sulfate proteoglycan 4 

(CSPG4) and Frizzled proteins can act as non-competitive receptors for TcdB but that 

their relative contributions to toxin entry depend upon their cell-type-specific expression 

levels (9,10).  The host factors involved in the remaining entry steps of the toxin have not 

been well characterized.  TcdB entry was shown to be blocked by pre-treatment with 

dynasore or chlorpromazine, but not by expression of plasmids encoding dominant-

negative Cav-1 or Eps15, indicating that toxin entry is both dynamin- and clathrin-

dependent (11).  The endocytic route utilized by TcdB as it traffics within the cell, its site 

of translocation, and the host factors upon which it relies during these processes have 

yet to be described. 

 To identify host factors required for intoxication by TcdB, we have employed an 

unbiased forward genetic screening strategy using human haploid cells.  We report here 

a role for the Wiskott–Aldrich syndrome protein and SCAR homologue (WASH) complex, 

which mediates membrane-cytoskeleton interactions and is important for cargo sorting at 

endosomes, in the entry of TcdB toxin.  These data help to elucidate the mechanisms of 

intracellular transport of TcdB in mammalian cells.   
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Figure 3-1.  TcdB entry and structure.  (A) The structure of TcdB toxin.  GTD: 
glucosyltransferase domain, CPD: cysteine protease domain, PFR: pore-forming region, 
TMD: translocation domain, RBD: receptor binding domain, CROPs: combined repetitive 
oligopeptides.  (B) The intoxication process of TcdB: binding at the cell surface (1) is 
followed by receptor-mediated endocytosis (2).  Acidification of the endosome induces a 
conformational change in the toxin that results in formation of a pore (3).  Autocatalytic 
cleavage and release of the GTD (4) leads to glucosylation of Rho GTPases (5) which 
are thereby inactivated. 
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MATERIALS AND METHODS 

Haploid mutant library generation and screening.  Approximately 1x109 HAP1 

cells were mutagenized as previously described (12).  Briefly, HAP1 cells were enriched 

for haploid status and then mutagenized with a retroviral pLentiET gene trap virus.  

Parental (WT) HAP1 cells (3x106 cells total) and the mutant library (8x107 cells total) 

were challenged in parallel with TcdB at a concentration of 0.5 nM.  Three sequential 

toxin selections were performed.  After the first and second selections, surviving cells 

were allowed to expand for approximately 8 days before being trypsinized and re-

seeded at 30% confluency prior to subsequent challenge.  After the third selection, all 

WT HAP1 cells were dead, and the surviving cells from the mutant library were allowed 

to recover for 10 days and then pooled for genomic DNA isolation. 

Integration site mapping.  DNA from the mutant library as well as the TcdB-

selected population was isolated and gene trap insertion – host junction sites were 

amplified and then submitted for sequencing on either 454 or Illumina platforms, followed 

by alignment to the human genome (hg18).  Significance of enrichment of the integration 

sites identified within the TcdB-selected pool relative to the unselected library was 

calculated using one-sided Fisher’s exact test. 

Cell culture.  WASH1flox/flox and WASH1-/- mouse embryonic fibroblasts (MEFs) 

were a kind gift from Dan Billadeau (Mayo Clinic) and were generated as described in 

(13).  Vero C1008 cells and HeLa cells were obtained from ATCC.  All cell lines were 

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented by 10% fetal 

bovine serum (FBS).   
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Reagents and antibodies.  Toxin B (TcdB) from Clostridium difficile was 

purchased from List Biological Laboratories, catalog number 155L.  Primaquine was 

purchased from Sigma-Aldrich, catalog number 160393.  The following antibodies were 

used: chicken anti-TcdB (List Biological Laboratories 754A), mouse anti-Rac1 clone 

23A8 (EMD Millipore 05-389), mouse anti-Rac1 clone 102 (BD Biosciences 610650), 

rabbit anti-FAM21C (Abcam 184131), rabbit anti-EEA1 (Cell Signaling Technology 

2411S), rabbit anti-LRP1 (Abcam 92544), rabbit anti-CSPG4 (Abcam 139406), and 

rabbit anti-FZD7 (Abcam ab51049). 

Cell-rounding assay.  Cells were plated at 25% confluency 15-20 hr prior to 

treatment with TcdB.  Toxin was diluted in DMEM + 10% FBS and applied to cells at the 

indicated concentrations.  After 6 hours, cells were imaged on a Nikon Eclipse TE300 

inverted microscope and scored by visualization of rounded cells (minimum of 100 cells 

per image).  Percent cell rounding was calculated for each sample as follows: [(number 

rounded cells / number of total cells analyzed) * 100]. 

Immunoblotting.  Cells were trypsinized and cell pellets were rinsed with PBS, 

flash frozen, and then resuspended in 2X lysis buffer (0.1M Tris with 20% glycerol and 

5% SDS).  Lysates were heated at 95°C for 5 min, passed through a 28-guage needle 3 

times, heated again at 95°C for 5 min, and total protein was quantified using the Pierce 

BCA Protein Assay Kit.  Samples were run through 4-12% Bis-Tris gradient gels at 100V 

in 1X MES buffer, and then transferred to PVDF membranes using the iBlot 2 Dry 

Blotting System.  Membranes were blocked in a milk solution for 1 hr at room 

temperature and then probed with primary antibodies (diluted in blocking buffer) 

overnight at 4°C.  Membranes were then washed and probed with HRP-conjugated 

secondary antibodies.  HRP was detected using SuperSignal West Pico or Femto 
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Chemiluminiscent Substrate (Fisher Scientific 34095 or 34080) and developed on the 

GE Amersham Imager 600. 

RESULTS 

 An insertional mutagenesis screen in human haploid cells identifies host 

cell factors required for TcdB toxin.  To identify host factors used by TcdB, we 

employed an unbiased forward genetic screening strategy in the human haploid cell line 

HAP1, which was derived from KBM7 cells (14).  Approximately one billion HAP1 cells 

were mutagenized with a lentiviral gene trap vector to generate a library of loss-of-

function clones harboring inactivating viral insertions.  This library, as well as parental 

(unmutagenized) HAP1 cells, was thrice challenged with TcdB toxin at 0.5 nM 

concentration.  After the third challenge, there were no surviving cells within the parental 

population, and the surviving clones from the mutant library were pooled for DNA 

sequencing and mapping of the lentiviral integration sites.  A profile of insertion sites 

within the selected population was determined and compared to that of the original 

mutant library.  We determined the integration-site containing genes that were 

significantly (p value < 0.05) enriched within the selected cells relative to the library to 

yield a hit list of genes whose disruption confers a resistance phenotype, as shown in 

Figure 3-2. 

Among these hits, we identified LDL receptor related protein 1 (LRP1), which 

was recently reported to be a receptor for the Clostridium perfringens toxin TpeL, a 

closely-related clostridial glycosylating toxin that lacks the CROPs region (15).  The 

authors examined the entry of CROP-deficient truncated C. difficile TcdB toxin into 

MEFs that lack LRP1, and saw no difference compared to parental (wild-type) MEFs, so 
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there has not yet been any evidence that LRP1 acts as either a receptor or attachment 

factor for TcdB, although this may depend on cell type.  We also identified WASHC5 

(KIAA1096) and WASHC4 (KIAA1033), which encode the proteins Strumpellin (also 

called WASHC5) and Strumpellin and WASH-interacting protein (SWIP, also called 

WASHC4), two of the five core members of the WASH complex.  Additional hits included 

COMMD8, COMMD10, C16orf62, and CCDC63, all of which encode members of the 

COMMD/CCDC22/CCDC93 (CCC) complex, a recently-identified multisubunit protein 

complex that interacts with the WASH complex and participates in cargo transport at 

endosomes (16).  The screening hits also included multiple genes encoding proteins that 

have established or putative roles in membrane trafficking and endocytosis.   
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Figure 3-2.  Human haploid screen for TcdB host factors.  Genes whose disruption 
was significantly enriched (p value > 0.05 indicated by red line) in the TcdB-selected 
population relative to the unselected mutant library.  Each circle denotes a gene, with y-
axis position showing the false discovery rate-corrected p value, and distribution along 
the x-axis corresponding to chromosomal position.  Circle colors indicate genes 
encoding members of the Wiskott–Aldrich syndrome protein and SCAR homologue 
(WASH) complex, the COMMD/CCDC22/CCDC93 (CCC) complex, or the function of the 
gene product.   
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 Because our screen identified multiple members of the WASH complex as well 

as the interacting CCC complex, and because the host machinery required for transport 

of TcdB through the cellular endocytic pathway has not been well described, we decided 

to investigate the involvement of the WASH complex in TcdB entry.  The WASH complex 

is a Type I nucleation-promoting factor that has been shown to interact with the retromer 

cargo-selective complex (CSC) at the endosomal membrane, where it activates the 

Arp2/3 complex in order to drive formation of branched actin patches that define 

microdomains of the tubular endosomal network.  These actin patches are critical for 

cargo transport back to the plasma membrane as well as to the Golgi apparatus, and 

may also play a role in signaling processes [reviewed in (17)]. 

TcdB cytotoxicity is blocked by inhibition of recycling endosomes.  An 

important role for the WASH complex has been defined during the process of 

endosome-to-cell surface recycling.  Driven by its association with the retromer CSC and 

sorting nexin 27 (SNX27), the WASH complex can be recruited to sites of cargo that 

contain a PDZ domain-interacting motif, where its actin patch-forming activity is required 

for the recycling of these cargoes, such as β2 adrenergic receptors, from EEA1-positive 

endosomes back to the plasma membrane (18).  We therefore used the recycling 

inhibitor primaquine to interrogate the involvement of this pathway during TcdB 

intoxication.  Primaquine has been shown to interfere with the function of recycling 

endosomes in a manner that is independent of pH neutralization or osmotic swelling 

(19).   

Vero cells (derived from African green monkey kidney) or HeLa cells were plated 

at approximately 25% confluency and then pre-treated for one hour with 100 uM 

primaquine prior to addition of TcdB toxin at 0.2 or 0.8 pM, or a vehicle control of 
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equivolumetric DMSO.   Cell rounding was scored (at six hours post intoxication) as a 

read-out for TcdB activity.  Figures 3-3A and 3-3B show the imaging and quantification, 

respectively, for primaquine’s inhibition of TcdB-induced rounding in Vero cells, and 

Figures 3-3C and 3-3D show the same for HeLa cells.  In both cell lines, pre-treatment 

with primaquine greatly decreased the cell-rounding phenotype, though this effect was 

more pronounced in the Vero cells, perhaps due to the fact that they are more sensitive 

to the effect of toxin (nearly all Vero cells rounded with treatment of 0.8 pM TcdB, 

compared to ~ 50% rounding of HeLa cells at the same concentration; Fig. 3-3C versus 

3-3D).  This supports a role for recycling endosomes in the trafficking of TcdB toxin. 

 

  



83 

 

 

 

 
Figure 3-3.  Primaquine treatment blocks cytotoxicity of TcdB toxin.  Vero cells 
(A,B) and HeLa cells (C,D) were pre-treated with primaquine and then intoxicated with 
TcdB for six hours at the indicated concentrations.  Brightfield imaging of treated cells 
(A,C) and quantification of cell rounding (B,D). Shown are representative images for 
selected concentrations; a minimum of 100 cells per sample were imaged and 
quantified; N=2 independent experiments. 
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The WASH complex is required for TcdB cytotoxicity.  To more directly test 

the involvement of the WASH complex in TcdB entry, we utilized WASH1-/- mouse 

embryonic fibroblasts (MEFs) bearing a deletion within the WASH1 gene that results in 

dysfunction of the entire WASH complex (13).  In these WASH1-/- MEFs, the central 

WASH1 component of the complex (see Figure 3-4A) is depleted and expression of the 

other subunits is greatly decreased, leading to trafficking defects and a collapsed 

endosomal network (13).   

We first sought to characterize the cell surface expression of proteins that might 

be involved in TcdB binding and attachment, to see whether changes in their levels 

might account for the decreased toxin entry.  As the WASH complex is required for 

recycling of many proteins to the cell surface, it was possible that this type of indirect 

effect may have been responsible for the resistance phenotype of WASH-deficient 

clones in our screen, rather than a direct impact on toxin intracellular trafficking.  We 

stained non-permeabilized cells with antibodies raised against CSPG4 and FZD7, two 

proteins that have been shown to act as receptors for TcdB in some cell types (9,10).   

Fluorescence staining profiles of the WASH1-/- and WASH1flox/flox MEFs, shown in 

Figure 3-4B, show no obvious differences in expression of CSPG4 between the cell 

lines.  Cell surface presentation of FZD7 and LRP1 was slightly increased in the 

WASH1-/- MEFs, indicating that these potential receptor or attachment factors are still 

present at the cell surface in this WASH-deficient cell line.  
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Figure 3-4.  Characterization of WASH-deficient fibroblasts.  (A) The WASH 
complex shown with its key interacting partners and adaptor proteins at the tubular 
endosomal network.  WASH complex components: Strumpellin, SWIP, WASH1, 
CCDC53, and FAM21 (also called VPEF).  Interacting partners and adaptor proteins: the 
retromer cargo-selective complex (CSC) comprising VPS26, VPS29, and VPS35, which 
mediates cargo selection; RME-8 (also called DNAJC13) that coordinates association of 
the WASH complex with the retromer sorting nexin (Snx-BAR) dimer; FKBP15 (also 
called WAFL), which interacts with the FAM21 tail; SNX27 that helps direct this 
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machinery to recycle its PDZ domain-interacting cargo via interaction with the CSC and 
FAM21; the COMMD/CCDC22/CCDC93 (CCC) complex, which is involved in 
endosomal sorting and interacts with FAM21; and the heterodimer capping protein (CP, 
also called CapZ) that caps the barbed ends of actin filaments.  (B) Cell surface staining 
of WASH1flox/flox and WASH1-/- MEFs. 
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 We then tested the susceptibility of the WASH1flox/flox and WASH1-/- MEFs to 

TcdB intoxication.  The WASH1flox/flox and WASH1-/- cells were plated at approximately 

25% confluency 15-20 hours prior to intoxication and then TcdB (at 0, 0.2, 0.4, 0.8, and 

1.6 pM) or DMSO (as an equivolumentric vehicle control) was applied to the cells for 6 

hours.  The cells were then imaged (Figure 3-5A) and quantified for cell rounding (Figure 

3-5B).  Cytotoxicity of the toxin was decreased in the WASH-deficient MEFs 

approximately 2-fold, though not completely blocked.  This resistance phenotype 

supports a role for the WASH complex in the entry of TcdB toxin into mammalian cells. 
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Figure 3-5.  Cell-rounding of TcdB-treated WASHflox/flox and WASH-/- fibroblasts.  (A) 
Representative images of cell-rounding activity of TcdB on WASHflox/flox and WASH-/- 
MEFs at selected concentrations.  (B)  Quantification of the percent cells rounded.  A 
minimum of 100 cells per sample were imaged and quantified; N=2 independent 
experiments. 
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Rac1 glycosylation by TcdB in the absence of a functional WASH complex.  

To further probe the involvement of the WASH complex in TcdB intoxication, we treated 

WASHflox/flox and WASH-/- MEFs with the toxin and then lysed cells after 30 or 45 minutes 

of toxin treatment in order to examine the kinetics of TcdB glucosylation of its target 

GTPase Rac1.  We took advantage of two mouse antibodies against Rac1: clone 102, 

which detects only non-glysocylated Rac1 protein, and clone 23A8, which detects both 

glycosylated and non-glycosylated Rac1 protein.  Whole cell lysates were separated by 

SDS-PAGE gel electrophoresis, transferred to PVDF membranes, and then probed with 

the aforementioned antibodies.  Western blots of these two timepoints are shown in 

Figure 3-6A and 3-6B.  The gel analysis tool of ImageJ was used to quantify the density 

of bands and we then calculated the fraction of non-glycosylated Rac1 for each sample 

as [density of the band detected by the clone 102 antibody) / (density of band detected 

by clone 23A8 antibody)] and this fraction (normalized to untreated cells) is plotted in 

Figure 3-6C and 3-6D. 

After 30 minutes of TcdB treatment at the lower concentration, the majority of 

cellular Rac1 in both the WASHflox/flox and the WASH-/- MEFs was still non-glycosylated, 

with a greater degree of Rac1 glycosylation by 0.02 pM TcdB than 0.005 pM, but levels 

were comparable between the WASH-deficient cells and the control cells.  After 60 

minutes of TcdB treatment, both concentrations of toxin we tested produced significantly 

more glycosylation of Rac1 compared to the 30-minute treatment.  The degree of Rac1 

glycosylation in the WASHflox/flox MEFs was slightly greater than that of the WASH-/- 

MEFs at this timepoint, but the phenotypic effect of WASH-deficiency was more modest 

than that observed with the cell-rounding assay.  Interestingly, the concentrations of 

toxin we used for this assay (both of which were able to glycosylate significant fractions 
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of cellular Rac1 by 60 minutes) were equal to or less than 0.02 pM, a concentration of 

toxin which was only able to produce a cell-rounding phenotype in fewer than 20% of 

cells for both WASH-deficient and control MEFs.  These data therefore indicate that 

glycosylation of Rac1 cannot necessarily be used as a read-out for the full spectrum of 

cytotoxic activity of the toxin, and that the WASH complex may be required during a 

stage of TcdB intoxication that only slightly impacts its ability to glycosylate Rac1.   
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Figure 3-6.  Western blot analysis of Rac1 glycosylation by TcdB in WASH1flox/flox 
and WASH1-/- fibroblasts.  WASH1flox/flox and WASH1-/- MEFs were treated with TcdB 
for either 30 minutes (A,C) or 60 minutes (B,D) after which cells were lysed and 
subjected to immunoblot against either non-glycosylated Rac1 (using anti-Rac1 clone 
102) or total Rac1 (using anti-Rac1 clone 23A8).  Western blots (including a loading 
control, alpha-tubulin) are shown in (A) and (B) and quantification of the above Western 
blots (done in ImageJ) are shown in (C) and (D). 
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DISCUSSION 

 We report here a forward genetic screen in human haploid cells that identifies 

host factors involved in TcdB intoxication.  These screening hits were enriched for genes 

encoding proteins involved in endocytosis and membrane trafficking, in particular the 

WASH complex and its interacting partner the CCC complex.  We pharmacologically 

inhibited endosomal recycling to show that this process is required for TcdB intoxication 

of mammalian cells, and used WASH-deficient fibroblasts to show that TcdB cytotoxicity 

is diminished in the absense of a functional WASH complex.  These fibroblast cell lines 

also showed a modest decrease in levels of glycosylation of Rac1, a target GTPase of 

TcdB toxin when it enters the cytoplasm, although the concentration of TcdB required to 

glycosylate the majority of cellular Rac1 was much lower than the concentration required 

to induce a cell-rounding phenotype in the majority of cells. 

 Since its initial characterization less than a decade ago, the WASH complex has 

emerged as a key regulator of multiple aspects of cargo sorting and membrane 

trafficking at endosomes (20,21).  There are several possible ways in which the WASH 

complex may function to support TcdB intoxication.  Its nucleation of actin branching at 

the tubular endosomal network has been shown to be involved in cargo recycling to the 

plasma membrane, as well as to the trans-Golgi network (TGN), depending upon its 

interactions with adapter proteins, particularly sorting nexins (18, 21-23).  A role for the 

WASH complex has also been demonstrated in the maturation of endosomes and 

delivery of cargo to lysosomes (24).  As the endocytic route used by TcdB toxin has not 

been fully characterized, it is possible that the WASH complex could be supporting TcdB 

entry at any of the aforementioned locations.  Elucidation of the endosomal 
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compartments through which TcdB traffics will help to inform our understanding of its 

potential reliance upon the WASH complex. 

 Other hits from our screen are also suggestive of the involvement of particular 

arms of the host endocytic machinery in TcdB entry and therefore warrant investigation.  

SNX17, for example, has been shown to be important for cargo to escape a lysosomal 

fate, although the authors found that it did not co-precipitate WASH complex proteins 

(25).  HOOK2 is a relatively uncharacterized microtubule-binding protein that’s been 

shown to recruit cargo to the centrosome (26).  We also did not directly test the 

involvement of the CCC complex, which interacts with the WASH complex and has been 

shown to regulate recycling of Notch, LDLR, and the copper transporter ATP7A (16, 27, 

28).  It would be very interesting to see whether the CCC complex may be acting to 

support TcdB entry in a manner that is either independent of its established partnership 

with the WASH complex, or whether it is able to partially rescue the trafficking defect that 

results from WASH complex dysfunction. 

 Our screen also identified the gene FBXO11, which encodes a member of the F-

box protein family that interacts with the TGFβ signalling pathway.  This gene was the 

top hit in the recent CRISPR screen that identified Frizzled proteins as TcdB receptors 

(10), suggesting quite strongly that it may be required for TcdB intoxication.  One of our 

top hits was the gene LRP1, which encodes a receptor for the closely-related clostridial 

toxin TpeL.  Although the authors concluded that LRP1 did not play a role in CROP-less 

TcdB entry, it may be worthwhile to re-examine the possibility that LRP1 supports TcdB 

entry in some way.  Since the use of CSPG4 and Frizzled proteins as receptors for TcdB 

has been shown to depend upon the relative expression levels of these proteins at the 
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cell surface, it is certainly possible that LRP1 facilitates entry of TcdB in our screening 

cell line, HAP1, and not in the MEFs used by Schorch, et al. (15). 

 Together, our data indicate a novel role for the WASH complex in the intoxication 

of mammalian cells by the C. difficile virulence factor TcdB.  This sheds light on the array 

of host cellular factors that are utilized by the toxin as it enters and traffics through the 

cell, and it furthers our understanding of the function of this recently-characterized 

nucleation-promoting machinery.  Future work is needed to define the precise endocytic 

compartments occupied by TcdB within the cell, and to characterize the mechanism by 

which the host’s cargo trafficking infrastructure interacts with and supports the entry of 

this clinically important toxin. 
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CHAPTER 4: DISCUSSION AND FUTURE PERSPECTIVES 

 

THE COMPLEMENTARITY OF DIVERSE SCREENING APPROACHES 

 High-throughput loss-of-function screening techniques have provided 

tremendous insights into host-pathogen interactions, and one of the most widely-used 

and efficacious of these has been the stalwart RNAi screening approach.  RNAi screens 

have been performed in a wide range of cell lines, spanning multiple species, and have 

interrogated aspects of cell biology as diverse as organelle morphology and 

mechanisms of resistance to drug toxicity [reviewed in (1)].  As RNAi screening became 

more popular, though, it also became evident that the technology suffered from issues of 

reproducibility and a high rate of false discovery.  Results of the three genome-wide 

siRNA screens performed with HIV in 2008 (2–4), each of which had generated a list of 

approximately 300 genes supporting HIV infection in 293T or HeLa-derived cells, were 

subjected to in-depth meta-analysis by Bushman and colleagues in 2009, who reported 

that the percentage of overlap in gene hits between any two of the three screens was 

6% at most (5).  Two genome-wide RNAi screens were performed in 2009 to uncover 

host factors required for hepatitis C virus (HCV) replication in human cells.  Tai et al. (6), 

using an HCV subgenomic replicon, reported the identification of 96 genes that support 

HCV replication, and Li et al. (7), using infectious virus, then identified 262 genes 

impacting infection, only 15 of which overlapped with the previous screen’s findings.  In 

the last five years, two genome-wide RNAi screens using Sindbis virus (SINV) have 

been performed, one in Drosophila cells (8, 9), and one in human cells (10).  The screen 

in Drosophila cells identified 57 genes supporting and 37 genes that restricted SINV 
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infection, while the screen in human cells identified 56 genes supporting and 62 genes 

restricting infection – but there was very little overlap between the genes identified 

[compare (10) Tables S2 and S3 with human homologues of (9) Table S1]. 

Much of the reason for this lack of overlap between seemingly similar RNAi 

screens has been ascribed to the off-target effects of siRNAs and differences between 

technical aspects of the screening conditions.  In a recent analysis of three genome-wide 

RNAi screens (one with UUKV and two with bacterial pathogens), Franceschini and 

colleagues concluded that the phenotypic effects of siRNA oligos were in fact 

predominantly due to off-target microRNA activity conferred by the seed region 

sequence, rather than the intended siRNA activity (11).  They found significantly higher 

phenotypic correlations when siRNA oligos from different vendors were grouped by seed 

sequence (nucleotides 2-8) than when they were grouped by intended target (full-length 

complementarity of all 21 nucleotides).  The authors confirmed these findings by 

designing custom oligos containing seed sequences predicted to impact infection that 

were flanked by arbitrary sequences outside of the seed region, and demonstrated that 

overexpression of known human microRNAs phenocopied the effect of siRNA oligos 

with corresponding seed sequences.  These findings beg a reexamination of the raw 

data that have been generated by previous RNAi screens, as well as an attentive 

consideration of microRNA effects during analysis of any future screens.  In addition to 

the off-target activities of the oligos themselves (which can cause both false positive and 

negative results), differing gene expression levels between cell types, variable 

efficiencies of transfection protocols, and discordance between knockdown timing and 

the half-life of the target protein can all contribute to a high false-negative rate.  Recent 

improvements in both design and analysis of RNAi screens have sought to address 
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these problems, such as the Minimum Information About an RNAi Experiment (MIARE) 

reporting guidelines (http://miare.sourceforge.net) that have been established, and the 

utilization of the multiple orthologous RNAi reagents coupled with RNAi gene enrichment 

ranking (MORR-RIGER) method, which helps to reduce false negatives and filter off-

target effects (12).  For a detailed discussion about the factors impacting RNAi screen 

success, recent technical updates, and current design and analysis strategies, see 

reference (1) and the references therein. 

Like RNAi, haploid screening is a forward genetic approach, allowing for 

discovery of novel host factors in the absence of a presumed or suspected mechanism 

of action.  Although the technique is relatively new and comparatively few studies 

employing this approach to study virus-host interactions have been published, it is clear 

that haploid screening offers some important advantages over RNAi screening.  A 

significant advantage is the fact that the insertional mutagenesis strategy employed to 

generate the haploid libraries usually results in complete disruption of the gene product, 

rather than the transient partial depletion that results from RNAi targeting.  This in turn 

greatly increases the signal-to-noise ratio of the data that are obtained.  Generation of 

many independent mutants within the library that each bear separate integrations into 

the same gene locus also allows for rigorous statistical analysis to identify genes whose 

absence was selected for within the surviving mutant pool.  The fact that this selection is 

occurring in a cell line of human origin is also attractive because it increases the 

likelihood of finding biologically meaningful factors that participate in the host-pathogen 

interaction during the course of human disease. 

It may be premature to attempt to evaluate the reproducibility of haploid genetic 

screens as published applications of this screening technique have utilized a diverse 
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array of pathogens, including Ebola virus, Lassa virus, RVFV, enterovirus D68, and 

adeno-associated virus serotype 2 (13–18).  Diphtheria and anthrax toxins, Clostridium 

perfringens TpeL toxin, Pseudomonas aeruginosa exotoxin A, and Staphylococcus 

aureus α-toxin (19–22) have also been investigated with this approach.  To our 

knowledge, ANDV is the only selective agent to have been used in two completely 

independent haploid genetic screens performed by different labs.  The degree of overlap 

between these two screens, however, was striking.  In the 2014 study by Petersen and 

colleagues, four genes encoding members of the sterol regulatory pathway (SREBF2, 

S1P, S2P, and SCAP) were enriched for disrupting integrations well above any other 

genes (23) and the 2015 screen performed by Kleinfelter et al. reported that these exact 

same four genes were also their top hits, and that three other genes involved in 

cholesterol biosynthesis (LSS, SQLE, and ACAT2) were the next most frequently 

disrupted (24).  This identification of multiple members of a biological pathway has been 

seen in many of the aforementioned haploid screens, and it not only demonstrates the 

high level of mutagenesis coverage in the libraries that have been generated thus far, 

but it also increases the confidence that screening hits are biologically relevant.    

The haploid screening technique is not without drawbacks.  Due to the nature of 

disrupting mutagenesis in a haploid genetic background, this screening strategy is 

unlikely to identify host factors that are required for cell viability.  Additionally, most 

haploid screens have relied upon cell death as a phenotypic read-out, a decision that 

greatly increases the throughput of the screen but that may prevent the identification of a 

gene whose disruption produces an intermediate phenotype in which virus infection is 

delayed or partially suppressed. We find it interesting that in a number of the published 

screens a single biological pathway is clearly identified by virtue of multiple retroviral 
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gene insertions to the near exclusion of other hits. In the two Andes virus haploid 

screens (23, 24), cells that survived the viral challenge almost invariably had one of 

several genes involved in cholesterol biosynthesis disrupted, and in the RVFV haploid 

cell screen we performed, genes contributing to glycosaminoglycan synthesis and Golgi 

complex function were mutated in the surviving pool almost to the exclusion of any other 

mutations.  In contrast, RNAi screens often implicate several biological pathways as 

being important for viral replication, as did the RVFV RNAi screen published by Hopkins 

et al. Variables that could impact the results of haploid cell screens could include the 

multiplicity and timing of infection as well as the length of time cells are cultured after 

virus challenge. Finally, most haploid screens have utilized mutant libraries generated in 

the human haploid cells HAP1, a line derived from the KBM-7 chronic myeloid leukemia 

cell line, which restricts its use to pathogens that are capable of entering these cells, as 

well as introducing an element of complexity due to cell-type-specific variations that have 

been observed in entry mechanisms and pathway use of viruses and toxins.  

Interrogating host-pathogen protein-protein interactions through Y2H, AP/MS, or 

proximity labeling makes it possible to identify host factors based upon the a priori 

association of a pathogen protein and a cellular protein within the biological context of 

the host cellular environment.  Many of the common phenotypic read-outs used during 

viral screening techniques, such as production of a reporter protein or host cell death, 

have the distinct disadvantage of restricting host factor discovery to those which impact 

a specific subset of stages during the viral replication cycle.  High-throughput screens to 

identify cellular factors required for viral assembly and egress, for example, have proven 

difficult to design, and screens to identify host factors required for viral infections have 

largely focused on the rate-limiting stages of entry and replication.  Another important 
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advantage to protein-protein interaction screening is that it allows for the identification of 

host factors whose depletion or disruption may be cytotoxic, or even lethal.  On the other 

hand, antibodies to affinity purify a pathogen protein are not always available, and the 

introduction of a tag or the precipitation conditions may perturb protein function or have 

other unforeseen consequences. 

The use of multiple complementary screening techniques can serve to address 

and overcome the varying advantages and disadvantages presented by using each of 

the techniques on their own.  Performing multiple screens in parallel can help eliminate 

false-positive hits, even if the differences between the screens are relatively subtle 

technical changes such as use of different viral strains, cell types, or siRNA libraries.   

With each new published screen, the pool of datasets available to draw from also 

increases, which will allow for valuable comparisons of one’s screening results with the 

reported hits from other related screens.    

HAPLOID GENETIC SCREENING: LESSONS LEARNED 

 Many factors influence the outcome of haploid screens, and during the projects 

described here, as well as other screens done in our lab or in collaboration with the 

Bates lab, I have learned some lessons about the design of these screens.  The 

generation of the mutant library is the first point of strategy, as care should be taken to 

limit expansion of the cells after lentiviral mutagenesis.  The reason for this is that 

mutations introduced by this process can have dramatic effects on the growth rate of the 

cells, and this leads to an outgrowth of fast-growing mutants and a loss of slow-growing 

mutants. 
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 Another factor that greatly impacts screen design is the nature of the selective 

agent being used to challenge the library.  I have used toxins, pseudoviruses, and live 

viruses for screening, and different screening strategies are required for each.  Toxins 

and pseudoviruses are both replication-incompetent, meaning that multiple challenges 

may be necessary in order to obtain sufficient selection.  Challenge dose must be 

carefully titrated ahead of time, in order to be able to screen efficiently (without needing 

to apply too many rounds of selection).  Screening with live virus offers a mix of 

advantages and disadvantages.  The primary advantage is that live virus screening 

allows you to probe all steps of the viral life cycle, as opposed to just the early entry 

events that are mediated by the viral glycoprotein (which is what screening with a 

pseudovirus does).  Additionally, live viruses give you greater confidence that hits are 

biologically meaningful, and not an artifact of the pseudovirus structure.  One major 

disadvantage to live virus screening, though, is the lack of control over multiplicity of 

infection (MOI) during the screen.  For example, if you apply virus to your library of 109 

mutant cells at an MOI of 0.1 plaque-forming units (PFU) / cell initially, you can expect to 

infect and kill ~ 10% of your cells.  Then, if your virus replicates in 12 hours, with a burst 

size of 1000 new virions per infected cell, that means that by the time your screening 

plates have been allowed to sit in selection overnight, the MOI has changed from 0.1 

PFU/cell to 1000 PFU/cell – quite a different challenge being encountered by the cells! 

 This idea of carefully controlling the MOI during the screen is important because 

if the MOI is too high (such as the MOI of 1000 PFU/cell that can result after one round 

of viral replication, as mentioned above) then you will lose intermediate phenotypes that 

may be biologically meaningful and interesting.  A gene whose disruption renders that 

cell resistant to virus at a 10-fold higher level than wild-type cells, for example, could 
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have a meaningful impact during viral infection, but this cell would succumb to viral 

challenge at the MOI of 1000 PFU/cell, and would therefore not be pulled out as a hit in 

such a screen. 

 On the other hand, if your MOI (or challenge concentration, in the case of toxins) 

is too low, then the result is a decrease in the signal-to-noise ratio due to mutant cells 

that survive challenge in a non-specific manner (that is to say, they never actually 

encountered the selective agent).  This is of particular concern due to the differences in 

growth rate among the cells in the mutant library.  There are many genes (often well-

described oncogenes) that encode nuclear proteins whose loss results in a 

hyperproliferative phenotype, and these genes have appeared as “hits” across multiple 

screens.  Although I have not formally tested this, I suspect that the reason we pull these 

genes out as hits from unrelated screens is that their disruption increases the survival of 

these mutant cells in a manner unrelated to the selective agent, owing merely to their 

increased rate of replication (and resultant over-enrichment in the selected pool).  This is 

supported by the fact that I have seen a greater representation of such genes among the 

hits from screens done with toxin (which lasted almost a month) than with screens done 

with live virus (which last a week at most) because the longer screening duration would 

allow for a greater over-representation of these hyperproliferative mutants.  For this 

reason, it’s incredibly important to balance completeness of selection with minimizing the 

duration of selection. 

RECENT ADVANCES IN GENETIC SCREENING TECHNIQUES 

The hunt for host-pathogen interactions going forward will be greatly aided by 

many exciting developments in loss-of-function screening technology.  In addition to the 
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human HAP1 cell line, haploid cell lines have been generated from fish, mouse, monkey, 

and rat embryonic stem cells (25–29).  A fully haploid human cell line has also been 

derived by genome editing using the clustered regularly interspaced short palindromic 

repeats (CRISPR) RNA-guided endonuclease Cas9 to excise the fragment of 

Chromosome 15 that was integrated onto Chromosome 19 and was preventing the 

HAP1 cell line from being fully haploid (30).  This updated cell line, termed eHAP, will 

likely replace the HAP1 line in the generation of new mutagenesis libraries. 

 CRISPR technology has now also been applied to high-throughput functional 

genomic screening.  This DNA-editing technique was adapted from the type II CRISPR 

bacterial adaptive immune system in which the endonuclease Cas9 is recruited to the 

DNA of invading pathogens by two RNA components: a CRISPR RNA (crRNA) that 

contains a DNA fragment complementary to the foreign target, and a trans-activating 

CRISPR RNA (tracrRNA) which acts as a scaffold.  The crRNA and tracrRNA can be 

fused to form a single guide RNA (sgRNA), greatly simplifying the process of 

synthesizing and delivering custom CRISPR/Cas9 machinery in order to disrupt a gene 

of interest.  The Cas9-induced cleavage triggers the cell’s double-strand break repair 

response, leading either to indel mutations, or (if supplied) the introduction of a 

sequence of interest.  For a detailed technical review of CRISPR/Cas systems and their 

utility for genome engineering, see reference (31).   

 Generation of sgRNA libraries providing genome-wide targeting by 

CRISPR/Cas9 has opened the door to a new method of high-throughput screening to 

identify host factors required by pathogens.  In one recent study, a CRISPR sgRNA 

library was used to identify genes required for the induction of cell death by West Nile 

virus (32).  In another, the Staphylococcus aureus toxin α-hemolysin was used to 
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challenge a genome-wide CRISPR sgRNA library, and uncovered a role for 

sphingomyelin synthase 1 (SGSM1), which regulates lipid raft formation (33).  Lentiviral 

vector delivery of the sgRNAs and the Cas9 endonuclease have been developed, and 

are being optimized for efficient delivery (34). 

THE NEXT GENERATION OF BIOCHEMICAL SCREENING TECHNIQUES 

To identify potential cellular interacting partners of viruses and toxins, it is now 

also possible to circumvent the requirement that proteins associate strongly enough with 

the bait protein that they can be pulled down by the (T)AP/MS techniques.  Martell and 

colleagues introduced in 2012 a new genetically-encoded reporter molecule that can be 

used for both electron microscopy as well as proximity labeling followed by MS to detect 

nearby proteins (35, 36).  The authors engineered a monomeric variant of ascorbate 

peroxidase, which they have termed APEX, that is active in all cellular compartments 

(including the cytosol), a major advantage over the horse radish peroxidase (HRP) tag 

typically used.  This APEX tag can oxidize biotin-phenol (in the presence of a hydrogen 

peroxide catalyst) into phenoxyl radicals, and these short-lived radical species react with 

electron-rich amino acids present in proteins that are fewer than 20 nm away.  This 

results in the biotin-labeling of endogenous proteins adjacent to the APEX-tagged 

protein of interest, and these can be identified by streptavidin purification followed by 

digestion and MS analysis.  An improved version of this peroxidase, termed APEX2, was 

recently obtained by yeast display evolution and exhibits increased activity, stability, and 

sensitivity (37). 

Another proximity-labeling approach developed in 2012 by Roux et al. is named 

proximity-dependent biotin identification (BioID) and it employs a promiscuous mutant of 
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the E. coli biotin ligase BirA fused to a bait protein of interest (38).  As with the APEX 

labeling technique, neighboring proteins that have been biotinylated within the cell can 

be affinity purified and identified.  BioID has been used to better characterize the 

constituents and architecture of the nuclear pore complex and to identify the interactome 

of the Ewing sarcoma fusion oncoprotein EWS-Fli-1 (39, 40).  This approach has also 

been used to study host-pathogen interactions during bacterial and viral infection.  

Mojica and colleagues fused the BioID BirA to SINC, a type III secreted effector from 

Chlamydia psittaci, and showed that it targets the nuclear envelope of both infected and 

neighboring cells (41).  In 2015, Le Sage et al. used HIV-1 Gag protein fused to BioID to 

identify 47 associated proteins that were biotinylated by the fusion protein when it was 

transfected into Jurkat cells (42).  Two of the putative host factors identified, DDX17 and 

RPS6, were validated as interacting partners of Gag by co-immunoprecipitation 

experiments.  A substantially smaller biotin ligase, BioID2, was recently described to 

have higher activity and to improve the function and localization of the resultant fusion 

protein (43).  These new proximity-labeling technologies represent exciting additions to 

the screening toolbox. 

NEW BUNYAVIRUS TECHNICAL RESOURCES 

Recent advances in bunyavirus research have greatly expanded the options 

available for generating bunyavirus reporter systems to enable high-throughput or 

automated screening.  Among orthobunyaviruses, a replication-competent recombinant 

BUNV has been generated bearing a fluorescent or V5 tag on either Gc or L, 

respectively (44, 45).  In 2013, reverse genetics was described for Schmallenberg virus 

(SBV) and in 2015 a BHK cell line was developed that constitutively expressed the SBV 
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N protein and a minigenome system was described for Oropouche virus (46–48).  

Efficient reverse genetics has also now been established for Akabane virus, further 

expanding the options for bunyavirus screening approaches (49).  For the phlebovirus 

RVFV, there exists both a reverse genetics toolset as well as a BHK replicon cell line 

expressing the S and L segments of the genome (50, 51).  We and others have also 

utilized pseudovirion systems, described in (52) and (53), in order to screen for host 

factors required during entry of bunyaviruses.  These pseudotyped virions can be used 

at the BSL2 level and allow for the convenient use of either cell death or a genetically-

encoded reporter (e.g. luciferase or a fluorescent protein) to facilitate high-throughput, 

cell-based screening approaches.   

EXPANDING CELLULAR TARGETS 

 In addition to the screening techniques focused on genes and proteins, there has 

been renewed interest in developing high-throughput approaches to identify metabolites 

and lipids that are involved in viral infection.  Analysis with LC-MS can be used to 

quantify changes in the metabolomic profile of infected cells relative to uninfected cells, 

providing insight into pathogen alteration of host metabolism as well as yielding potential 

therapeutic targets.  This approach was used to quantify the levels of known metabolites 

at different time points during infection with human cytomegalovirus (HCMV), herpes 

simplex virus type-1 (HSV-1), and influenza A (IAV), demonstrating each virus’s ability to 

differentially remodel the host’s metabolism during infection (54–56).  In the case of 

HCMV and IAV, pharmacological inhibition of fatty acid biosynthesis was shown to 

effectively restrict viral replication, demonstrating the power of such screens to inform 

the development (or re-purposing) of therapeutics.  In 2013, Morita and colleagues 



110 

 

tested a library of bioactive lipids for an effect on IAV replication, and observed potent 

inhibition with the lipid mediator protectin D1 (PD1) (57).  Treatment with PD1 was able 

to protect against influenza in a mouse model, even if it was not supplied until severe 

disease had developed.   

Another important aspect of host-pathogen dynamics that could be examined is 

that of interactions between RNA and proteins during viral infection.  Yeast three-hybrid 

screening provides a powerful tool for identifying proteins that bind to a specific RNA 

sequence.  This technique, first described by SenGupta and colleagues (58), detects 

RNA-protein interactions by utilizing two hybrid proteins whose proximity activates a 

reporter gene when both proteins bind to a hybrid RNA molecule.  Yeast three-hybrid 

screening was used to identify human ribosomal proteins that bind to the 3' untranslated 

region of hepatitis C virus (HCV) using a human cDNA library as prey and the viral RNA 

sequence as bait (59).  Covalent UV crosslinking during infection could also be used to 

capture and characterize the RNA-protein interactome in a manner similar to the 

technique described by Castello et al. in 2012 (60).   

COMMON THEMES OF VIRUS AND TOXIN ENTRY 

Haploid genetic screening, as well as most of the other screening modalities 

discussed in this thesis, can be used to probe for host factors utilized by a variety of 

pathogens.  Although our lab historically has studied interactions between viruses and 

host cells, I decided to do a screen using C. difficile’s TcdB toxin because early entry 

events during virus and toxin invasion of host cells share many common themes.   

The initial attachment of the bunyavirus glycoprotein to a cell-surface receptor, 

the internalization of the virion as a result of this interaction, and the entry of the virion 
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into the endocytic pathway of the cell are mechanistically similar to the binding and 

internalization of many bacterial toxins.  Bunyavirus glycoproteins likewise mediate 

fusion of viral and cellular membranes within acidified endosomes, in a manner that 

echoes the pore formation activity of TcdB toxin.  Indeed, many virus entry studies 

employ virus-like particles (VLPs), often containing only the glycoprotein, to examine 

early entry events.  This highlights the parallels between glycoprotein-driven virus entry 

and entry of toxins.   

Studies of virus entry and toxin entry can inform each other on both the host as 

well as the pathogen side.  Characterization of the cellular endocytic machinery, for 

example, informs (and is informed by) our understanding of host factors required by the 

viruses and toxins that hitchhike within the endolysosomal pathway as they enter the 

cell.  Many technical tools used for virus entry assays also have the potential to be 

applied to toxin entry studies.  For example, the fusion of β-lactamase protein to HIV Vpu 

provides an excellent tool to assay fusion of the virus at the plasma membrane.  In this 

assay, the cell is loaded with a fluorescent dye cleavable by the β-lactamase protein, 

and cleavage of the dye therefore indicates that the virion contents have gained access 

to the cytosol (aka fusion has occurred).  I have adapted this assay in our lab to look at 

fusion of bunyavirus pseudovirions from within endosomes, and it could be nicely 

applied to study TcdB toxin pore formation.  For this purpose, the β-lactamase protein 

would need to be fused to the N-terminus of the toxin, as it is the glucosyltransferase 

domain that is translocated through the endosomal membrane and then cleaved off into 

the cytosol. 

Other classical virus entry assays could be useful when looking at entry of toxins, 

such as acid-bypass experiments in which the pH is lowered in order to drive fusion at 
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the plasma membrane and bypass the requirement for receptor-mediated endocytosis.  

Likewise, many of the reagents that we learn about when studying virus entry have also 

been used to look at toxin entry, especially those that inhibit endocytosis pathways.  

These tools include lysosomotropic agents; inhibitors of clathrin-mediated endocytosis, 

dynamin, macropinocytosis, and caveolae; expression of dominant-negative versions of 

cellular proteins such as Rab and Rho GTPases; and cytoskeletal drugs targeting actin 

and microtubules; as well as many others.  Because viruses and toxins rely on much of 

the same cellular machinery to enter the host cell, studies looking at the early entry 

events of viruses and toxins are really not so philosophically disparate at all, especially 

in their roles as probes to uncover novel elements of these fundamental cell biology 

processes. 

FUTURE PERSPECTIVES 

The screens presented here demonstrate the utility of unbiased forward genetic 

screening to identify host cellular factors used by the bunyavirus Rift Valley fever virus 

(RVFV) and the large clostridial glucosylating toxin TcdB.  The pathways hit by these 

screens include heparan sulfate biosynthesis, which is required for attachment of RVFV 

at the cell surface, and endosomal transport protein complexes, which play a role in the 

cytotoxicity of TcdB.  Many important questions remain about the exact role of the 

WASH complex and the CCC complex in TcdB entry, as well as the possible 

significance of other hits from the TcdB screen such as SNX17, HOOK2, and RAB10.  

These factors all have demonstrated roles in the regulation of endosomal transport, but it 

is unclear how their known functions may (or may not) impact TcdB entry and trafficking.  

Toxin resistance phenotypes of mutations in these genes may be due to indirect effects, 
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such as loss of expression of a receptor at the cell surface.  Since TcdB has been shown 

to use multiple receptors in a cell-type-dependent manner, it is possible that there exists 

an as-yet-unidentified proteinaceous receptor that plays a role in its entry into HAP1 

cells, and whose expression (e.g. via recycling) is dependent upon the proteins and 

complexes that were hit in this screen.  Preliminary immunofluorescence imaging studies 

suggest that there is a toxin trafficking defect in WASH-deficient cells, and that toxin may 

remain associated with EEA1-positive endosomes in the absense of a functional WASH 

complex, but this remains to be conclusively demonstrated.  One intriguing possibility is 

that the WASH complex is required for pore formation of TcdB due to a role in lysosomal 

maturation, which has been observed in amoeba cells (61).  Because an acidic pH 

triggers the conformational change in the toxin that allows for translocation of the 

glucosyltransferase and cysteine protease domains, a defect in endosomal acidification 

is a likely explanation for the cytotoxicity defect observed in WASH-deficient cells.  

Introduction of a fluorescent tag to track the subcellular localization of the 

glucosyltransferase domain of the toxin would be a logical next step in this study, and I 

am very interested in performing these and other follow-up experiments to see where 

this project will lead. 

The haploid genetic screening techniques used for the studies presented in this 

thesis, as well as the other screening approaches discussed, are powerful tools for the 

investigation of host-pathogen interactions.  As we grapple with emerging viral diseases 

and enter the age of antibiotic-resistance, it is becoming increasingly important to 

identify factors required by viruses and toxins as they invade the host cell.  Dramatic 

innovations in recent years of high-throughput screening techniques promise to push 
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forward our understanding of how pathogens interact with their host cells, and will help 

us to develop targeted therapeutics.    

COPYRIGHT INFORMATION 

Portions of the text in this chapter were modified from: 

Riblett, A.M.; Doms, R.W. Making Bunyaviruses Talk: Interrogation Tactics to Identify 

Host Factors Required for Infection. Viruses 2016, 8, 130 

REFERENCES 

1. Mohr SE, Smith JA, Shamu CE, Neumüller RA, Perrimon N. 2014. RNAi screening comes of 

age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol 15:591–600. 

2. Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strulovici B, 

Hazuda DJ, Espeseth AS. 2008. Genome-scale RNAi screen for host factors required for HIV 

replication. Cell Host Microbe 4:495–504. 

3. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ. 

2008. Identification of host proteins required for HIV infection through a functional genomic 

screen. Science (80- ) 319:921–926. 

4. König R, Zhou Y, Elleder D, Diamond TL, Bonamy GMC, Irelan JT, Chiang C, Tu BP, De Jesus 

PD, Lilley CE, Seidel S, Opaluch AM, Caldwell JS, Weitzman MD, Kuhen KL, Bandyopadhyay S, 

Ideker T, Orth AP, Miraglia LJ, Bushman FD, Young JA, Chanda SK. 2008. Global analysis of 

host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135:49–60. 

5. Bushman FD, Malani N, Fernandes J, D’Orso I, Cagney G, Diamond TL, Zhou H, Hazuda DJ, 

Espeseth AS, Konig R, Bandyopadhyay S, Ideker T, Goff SP, Krogan NJ, Frankel AD, Young 

JAT, Chanda SK. 2009. Host cell factors in HIV replication: meta-analysis of genome-wide 

studies. PLoS Pathog 5:e1000437. 

6. Tai AW, Benita Y, Peng LF, Kim S, Sakamoto N, Xavier RJ, Chung RT. 2009. A functional 

genomic screen identifies cellular cofactors of hepatitis C virus replication. Cell Host Microbe 

5:298–307. 

7. Li Q, Brass AL, Ng A, Hu Z, Xavier RJ, Liang TJ, Elledge SJ. 2009. A genome-wide genetic 

screen for host factors required for hepatitis C virus propagation. Proc Natl Acad Sci U S A 

106:16410–5. 



115 

 

8. Rose PP, Hanna SL, Spiridigliozzi A, Wannissorn N, Beiting DP, Ross SR, Hardy RW, 

Bambina SA, Heise MT, Cherry S. 2011. Natural resistance-associated macrophage protein is a 

cellular receptor for Sindbis virus in both insect and mammalian hosts. Cell Host Microbe Microbe 

10:97–104. 

9. Panda D, Rose PP, Hanna SL, Gold B, Hopkins KC, Lyde RB, Marks MS, Cherry S. 2013. 

Genome-wide RNAi screen identifies SEC61A and VCP as conserved regulators of Sindbis virus 

entry. Cell Rep 5:1737–1748. 

10. Ooi YS, Stiles KM, Liu CY, Taylor GM, Kielian M. 2013. Genome-wide RNAi screen identifies 

novel host proteins required for alphavirus entry. PLoS Pathog 9:e1003835. 

11. Franceschini A, Meier R, Casanova A, Kreibich S, Daga N, Andritschke D, Dilling S, Rämö P, 

Emmenlauer M, Kaufmann A, Conde-Álvarez R, Low SH, Pelkmans L, Helenius A, Hardt W-D, 

Dehio C, von Mering C. 2014. Specific inhibition of diverse pathogens in human cells by synthetic 

microRNA-like oligonucleotides inferred from RNAi screens. Proc Natl Acad Sci 111:4548–53. 

12. Zhu J, Davoli T, Perriera JM, Chin CR, Gaiha GD, John SP, Sigiollot FD, Gao G, Xu Q, Qu H, 

Pertel T, Sims JS, Smith JA, Baker RE, Maranda L, Ng A, Elledge SJ, Brass AL. 2014. 

Comprehensive identification of host modulators of HIV-1 replication using multiple orthologous 

RNAi reagents. Cell Rep 9:752–766. 

13. Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, 

Kranzusch PJ, Griffin AM, Ruthel G, Dal Cin P, Dye JM, Whelan SP, Chandran K, Brummelkamp 

TR. 2011. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 

477:340–3. 

14. Jae LT, Raaben M, Riemersma M, van Beusekom E, Blomen V, Velds A, Kerkhoven RM, 

Carette JE, Topaloglu H, Meinecke P, Wessels MW, Lefeber DJ, Whelan SP, van Bokhoven H, 

Brummelkamp TR. 2013. Deciphering the Glycosylome of Dystroglycanopathies Using Haploid 

Screens for Lassa Virus Entry. Science 340:479–83. 

15. Jae LT, Raaben M, Herbert AS, Kuehne AI, Wirchnianski AS, Soh TK, Stubbs SH, Janssen 

H, Damme M, Saftig P, Whelan SP, Dye JM, Brummelkamp TR. 2014. Lassa virus entry requires 

a trigger-induced receptor switch. Science 344:1506–10. 

16. Riblett AM, Blomen VA, Jae LT, Altamura LA, Doms RW, Brummelkamp TR, Wojcechowskyj 

JA. 2016. A haploid genetic screen identifies heparan sulfate proteoglycans supporting Rift Valley 

fever virus infection. J Virol 90:1414–1423. 

17. Baggen J, Jan H, Staring J, Jae LT, Liu Y, Guo H, Slager JJ, Bruin JW De, Vliet ALW Van, 

Blomen VA, Overduin P, Sheng J. 2015. Enterovirus D68 receptor requirements unveiled by 

haploid genetics. Proc Natl Acad Sci 113:1–6. 



116 

 

18. Pillay S, Meyer NL, Puschnik AS, Davulcu O, Diep J, Ishikawa Y, Jae LT, Wosen JE, 

Nagamine CM, Chapman MS, Carette JE. 2016. An essential receptor for adeno-associated virus 

infection. Nature 530:108–112. 

19. Carette JE, Guimaraes CP, Varadarajan M, Park AS, Wuethrich I, Godarova A, Kotecki M, 

Cochran BH, Spooner E, Ploegh HL, Brummelkamp TR. 2009. Haploid genetic screens in human 

cells identify host factors used by pathogens. Science 326:1231–5. 

20. Schorch B, Song S, van Diemen FR, Bock HH, May P, Herz J, Brummelkamp TR, 

Papatheodorou P, Aktories K. 2014. LRP1 is a receptor for Clostridium perfringens TpeL toxin 

indicating a two-receptor model of clostridial glycosylating toxins. Proc Natl Acad Sci U S A 

111:6431–6436. 

21. Tafesse FG, Guimaraes CP, Maruyama T, Carette JE, Lory S, Brummelkamp TR, Ploegh HL. 

2014. GPR107, a G-protein-coupled receptor essential for intoxication by Pseudomonas 

aeruginosa exotoxin a, localizes to the Golgi and is cleaved by furin. J Biol Chem 289:24005–

24018. 

22. Popov LM, Marceau CD, Starkl PM, Lumb JH, Shah J, Guerrera D, Cooper RL, Merakou C, 

Bouley DM, Meng W, Kiyonari H, Takeichi M, Galli SJ, Bagnoli F, Citi S, Carette JE, Amieva MR. 

2015. The adherens junctions control susceptibility to Staphylococcus aureus α-toxin. Proc Natl 

Acad Sci U S A 112:201510265. 

23. Petersen J, Drake MJ, Bruce E a., Riblett AM, Didigu C a., Wilen CB, Malani N, Male F, Lee 

F-H, Bushman FD, Cherry S, Doms RW, Bates P, Briley K. 2014. The Major Cellular Sterol 

Regulatory Pathway Is Required for Andes Virus Infection. PLoS Pathog 10:e1003911. 

24. Kleinfelter LM, Jangra RK, Jae LT, Herbert AS, Mittler E, Stiles KM, Wirchnianski AS, Kielian 

M, Brummelkamp TR, Dye JM. 2015. Haploid Genetic Screen Reveals a Profound and Direct 

Dependence on Cholesterol for Hantavirus Membrane Fusion 6:1–14. 

25. Yi M, Hong N, Hong Y. 2009. Generation of medaka fish haploid embryonic stem cells. 

Science (80- ) 326:430–433. 

26. Elling U, Taubenschmid J, Wirnsberger G, O’Malley R, Demers SP, Vanhaelen Q, Shukalyuk 

AI, Schmauss G, Schramek D, Schnuetgen F, Von Melchner H, Ecker JR, Stanford WL, Zuber J, 

Stark A, Penninger JM. 2011. Forward and reverse genetics through derivation of haploid mouse 

embryonic stem cells. Cell Stem Cell 9:563–574. 

27. Leeb M, Wutz A. 2011. Derivation of haploid embryonic stem cells from mouse embryos. 

Nature 479:131–134. 



117 

 

28. Yang H, Liu Z, Ma Y, Zhong C, Yin Q, Zhou C, Shi L, Cai Y, Zhao H, Wang H, Tang F, Wang 

Y, Zhang C, Liu XY, Lai D, Jin Y, Sun Q, Li J. 2013. Generation of haploid embryonic stem cells 

from Macaca fascicularis monkey parthenotes. Cell Res 23:1187–1200. 

29. Li W, Li X, Li T, Jiang MG, Wan H, Luo GZ, Feng C, Cui X, Teng F, Yuan Y, Zhou Q, Gu Q, 

Shuai L, Sha J, Xiao Y, Wang L, Liu Z, Wang XJ, Zhao XY, Zhou Q. 2014. Genetic modification 

and screening in rat using haploid embryonic stem cells. Cell Stem Cell 14:404–414. 

30. Essletzbichler P, Konopka T, Santoro F, Chen D, Gapp B V., Kralovics R, Brummelkamp TR, 

Nijman SMB, Bürckstümmer T. 2014. Megabase-scale deletion using CRISPR/Cas9 to generate 

a fully haploid human cell line. Genome Res 24:2059–2065. 

31. Wright A V, Nunez JK, Doudna JA. 2016. Biology and Applications of CRISPR Systems: 

Harnessing Nature’s Toolbox for Genome Engineering. Cell 164:29–44. 

32. Ma H, Dang Y, Wu Y, Jia G, Anaya E, Zhang J, Abraham S, Choi JG, Shi G, Qi L, Manjunath 

N, Wu H. 2015. A CRISPR-based screen identifies genes essential for west-nile-virus-induced 

cell death. Cell Rep 12:673–683. 

33. Virreira Winter S, Zychlinsky A, Bardoel BW. 2016. Genome-wide CRISPR screen reveals 

novel host factors required for Staphylococcus aureus α-hemolysin-mediated toxicity. Sci Rep 

6:24242. 

34. Sanjana NE, Shalem O, Zhang F. 2014. Improved vectors and genome-wide libraries for 

CRISPR screening. Nat Methods 11:6726. 

35. Martell JD, Deerinck TJ, Sancak Y, Poulos TL, Mootha VK, Sosinsky GE, Ellisman MH, Ting 

AY. 2012. Engineered ascorbate peroxidase as a genetically encoded reporter for electron 

microscopy. Nat Biotechnol 30:1143–8. 

36. Rhee H, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, Ting AY. 2013. Proteomic 

Mapping of Mitochondria in Living Cells via Spatially Restricted Enzymatic Tagging. Science (80- 

) 339:1328. 

37. Lam SS, Martell JD, Kamer KJ, Deerinck TJ, Ellisman MH, Mootha VK, Ting AY. 2014. 

Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods 12:51–

54. 

38. Roux KJ, Kim DI, Raida M, Burke B. 2012. A promiscuous biotin ligase fusion protein 

identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196:801–810. 

39. Kim DI, KC B, Zhu W, Motamedchaboki K, Doye V, Roux KJ. 2014. Probing nuclear pore 

complex architecture with proximity-dependent biotinylation. Proc Natl Acad Sci 111:E2453-61. 



118 

 

40. Elzi DJ, Song M, Hakala K, Weintraub ST, Shiio Y. 2014. Proteomic Analysis of the EWS-Fli-

1 Interactome Reveals the Role of the Lysosome in EWS-Fli-1 Turnover. J Proteome Res 

13:3783–3791. 

41. Mojica SA, Hovis KM, Frieman MB, Tran B, Hsia R -c., Ravel J, Jenkins-Houk C, Wilson KL, 

Bavoil PM. 2015. SINC, a type III secreted protein of Chlamydia psittaci, targets the inner nuclear 

membrane of infected cells and uninfected neighbors. Mol Biol Cell 26:1918–1934. 

42. Le Sage V, Cinti A, Valiente-Echeverría F, Mouland AJ. 2015. Proteomic analysis of HIV-1 

Gag interacting partners using proximity-dependent biotinylation. Virol J 12:138. 

43. Kim DI, Jensen SC, Noble KA, KC B, Roux KH, Motamedchaboki K, Roux KJ. 2016. An 

improved smaller biotin ligase for BioID proximity labeling. Mol Biol Cell mbc.E15-12-0844. 

44. Shi X, van Mierlo JT, French A, Elliott RM. 2010. Visualizing the replication cycle of 

bunyamwera orthobunyavirus expressing fluorescent protein-tagged Gc glycoprotein. J Virol 

84:8460–9. 

45. Shi X, Elliott RM. 2009. Generation and analysis of recombinant Bunyamwera 

orthobunyaviruses expressing V5 epitope-tagged L proteins. J Gen Virol 90:297–306. 

46. Elliott RM, Blakqori G, van Knippenberg IC, Koudriakova E, Li P, McLees A, Shi X, Szemiel 

AM. 2013. Establishment of a reverse genetics system for Schmallenberg virus, a newly emerged 

orthobunyavirus in Europe. J Gen Virol 94:851–859. 

47. Zhang Y, Wu S, Song S, Lv J, Feng C, Lin X. 2015. Preparation and characterization of a 

stable BHK-21 cell line constitutively expressing the Schmallenberg virus nucleocapsid protein. 

Mol Cell Probes 29:244–253. 

48. Acrani GO, Tilston-Lunel NL, Spiegel M, Weidmann M, Dilcher M, Da Silva DEA, Nunes MRT, 

Elliott RM. 2015. Establishment of a minigenome system for oropouche virus reveals the S 

genome segment to be significantly longer than reported previously. J Gen Virol 96:513–523. 

49. Takenaka-Uema A, Sugiura K, Bangphoomi N, Shioda C, Uchida K, Kato K, Haga T, 

Murakami S, Akashi H, Horimoto T. 2016. Development of an improved reverse genetics system 

for Akabane bunyavirus. J Virol Methods. 

50. Ikegami T, Won S, Peters CJ, Makino S. 2006. Rescue of Infectious Rift Valley Fever Virus 

Entirely from cDNA , Analysis of Virus Lacking the NSs Gene , and Expression of a Foreign Gene 

Rescue of Infectious Rift Valley Fever Virus Entirely from cDNA , Analysis of Virus Lacking the 

NSs Gene , and Expr 80:2933–2940. 

51. Kortekaas J, Oreshkova N, Cobos-Jimenez V, Vloet RPM, Potgieter C a., Moormann RJM. 

2011. Creation of a Nonspreading Rift Valley Fever Virus. J Virol 85:12622–12630. 



119 

 

52. Ray N, Whidby J, Stewart S, Hooper JW, Bertolotti-Ciarlet A. 2010. Study of Andes virus 

entry and neutralization using a pseudovirion system. J Virol Methods 163:416–23. 

53. Higa MM, Petersen J, Hooper J, Doms RW. 2012. Efficient production of Hantaan and 

Puumala pseudovirions for viral tropism and neutralization studies. Virology 423:134–42. 

54. Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD. 2006. Dynamics of the cellular 

metabolome during human cytomegalovirus infection. PLoS Pathog 2:1165–1175. 

55. Munger J, Bennett BD, Parikh A, Feng X-J, McArdle J, Rabitz HA, Shenk T, Rabinowitz JD. 

2008. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral 

therapy. Nat Biotechnol 26:1179–86. 

56. Vastag L, Koyuncu E, Grady SL, Shenk TE, Rabinowitz JD. 2011. Divergent effects of human 

cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS Pathog 7. 

57. Morita M, Kuba K, Ichikawa A, Nakayama M, Katahira J, Iwamoto R, Watanebe T, Sakabe S, 

Daidoji T, Nakamura S, Kadowaki A, Ohto T, Nakanishi H, Taguchi R, Nakaya T, Murakami M, 

Yoneda Y, Arai H, Kawaoka Y, Penninger JM, Arita M, Imai Y. 2013. The lipid mediator protectin 

D1 inhibits influenza virus replication and improves severe influenza. Cell 153:112–125. 

58. SenGupta DJ, Zhang B, Kraemer B, Pochart P, Fields S, Wickens M. 1996. A three-hybrid 

system to detect RNA-protein interaction in vivo. Proc Natl Acad Sci 93:8496–8501. 

59. Wood J, Frederickson RM, Fields S, Patel AH. 2001. Hepatitis C virus 3’X region interacts 

with human ribosomal proteins. J Virol 75:1348–1358. 

60. Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, 

Humphreys DT, Preiss T, Steinmetz LM, Krijgsveld J, Hentze MW. 2012. Insights into RNA 

Biology from an Atlas of Mammalian mRNA-Binding Proteins. Cell 149:1393–1406. 

61. Carnell M, Zech T, Calaminus SD, Ura S, Hagedorn M, Johnston SA, May RC, Soldati T, 

Machesky LM, Insall RH. 2011. Actin polymerization driven by WASH causes V-ATPase retrieval 

and vesicle neutralization before exocytosis. J Cell Biol 193:831–839. 


	University of Pennsylvania
	ScholarlyCommons
	2017

	Forward Genetic Screening In Human Haploid Cells To Identify Host Factors Required For Virus And Toxin Entry
	Amber Michelle Riblett
	Recommended Citation

	Forward Genetic Screening In Human Haploid Cells To Identify Host Factors Required For Virus And Toxin Entry
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories


	tmp.1519418526.pdf.G3mqw

