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Deciphering Chronometabolic Dynamics Through Metabolomics, Stable
Isotope Tracers, And Genome-Scale Reaction Modeling

Abstract
Synchrony across environmental cues, endogenous genetic clocks, sleep/wake cycles, and metabolism evoke
physiological harmony for organismal health. Perturbation of this synchrony has been recently correlated with
a growing list of pathologies, which is alarming given the ubiquity of sleep deprivation, mistimed light
exposure, and altered eating schedules in modern society. Deeper insights into clocks, sleep, and metabolism
are necessary to understand these outcomes. In this work, extensive metabolic profiles of circadian systems
were obtained from the development of new liquid chromatography mass spectrometry (LC-MS)
metabolomics methods. These methods were applied to Drosophila melanogaster to discern relative
influences of environmental and genetic drivers of metabolic cycles. Unique sets of metabolites oscillated with
24-hour circadian periods under light:dark (LD) and constant darkness (DD) conditions, and ultradian
rhythms were noted for clock mutant flies under LD, suggesting clock-independent metabolic cycles driven by
environmental inputs. However, this metabolomic analysis does not fully capture the inherently dynamic
nature of circadian metabolism. These LC-MS methods were adapted to analyze isotope enrichments from a
novel 13C6 glucose injection platform in Drosophila. Metabolic flux cycles were noted from glucose carbons
into serine, glutamine and reduced glutathione biosynthesis, and altered under sleep deprivation,
demonstrating unique energy and redox demands in perturbed sleep/wake cycles. Global isotopolome shifts
were most notable in WT flies after lights-on, suggesting a catabolic rush from glucose oxidation early in the
active phase. As the scope of these isotope tracer-based metabolomic analyses expand, attributing labeling
patterns to specific reactions requires consideration of genome-scale metabolic networks. A new
computational approach was developed, called the IsoPathFinder, which uncovered biosynthetic paths from
glucose to serine, and extends to glycine and glutathione production. Carbon flux into glutamine was
predicted to occur through the TCA cycle, supported by enzyme thermodynamics and circadian expression
datasets. This tool is presented as a new mechanism to simulate additional isotope tracer experiments, with
broad applicability beyond circadian research. Collectively, a new set of analytical and computational tools are
developed to both produce dynamic metabolomic data and improve data interpretability, with applications to
uncover new chronometabolic connections.
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ABSTRACT 
 

DECIPHERING CHRONOMETABOLIC DYNAMICS THROUGH METABOLOMICS, STABLE 

ISOTOPE TRACERS, AND GENOME-SCALE REACTION MODELING 

Seth D. Rhoades 

Aalim M. Weljie, Ph.D. 

 Synchrony across environmental cues, endogenous genetic clocks, sleep/wake cycles, 

and metabolism evoke physiological harmony for organismal health. Perturbation of this 

synchrony has been recently correlated with a growing list of pathologies, which is alarming given 

the ubiquity of sleep deprivation, mistimed light exposure, and altered eating schedules in modern 

society. Deeper insights into clocks, sleep, and metabolism are necessary to understand these 

outcomes. In this work, extensive metabolic profiles of circadian systems were obtained from the 

development of new liquid chromatography mass spectrometry (LC-MS) metabolomics methods. 

These methods were applied to Drosophila melanogaster to discern relative influences of 

environmental and genetic drivers of metabolic cycles. Unique sets of metabolites oscillated with 

24-hour circadian periods under light:dark (LD) and constant darkness (DD) conditions, and 

ultradian rhythms were noted for clock mutant flies under LD, suggesting clock-independent 

metabolic cycles driven by environmental inputs. However, this metabolomic analysis does not 

fully capture the inherently dynamic nature of circadian metabolism. These LC-MS methods were 

adapted to analyze isotope enrichments from a novel 13C6 glucose injection platform in 

Drosophila. Metabolic flux cycles were noted from glucose carbons into serine, glutamine and 

reduced glutathione biosynthesis, and altered under sleep deprivation, demonstrating unique 

energy and redox demands in perturbed sleep/wake cycles. Global isotopolome shifts were most 

notable in WT flies after lights-on, suggesting a catabolic rush from glucose oxidation early in the 

active phase. As the scope of these isotope tracer-based metabolomic analyses expand, 

attributing labeling patterns to specific reactions requires consideration of genome-scale 

metabolic networks. A new computational approach was developed, called the IsoPathFinder, 
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which uncovered biosynthetic paths from glucose to serine, and extends to glycine and 

glutathione production. Carbon flux into glutamine was predicted to occur through the TCA cycle, 

supported by enzyme thermodynamics and circadian expression datasets. This tool is presented 

as a new mechanism to simulate additional isotope tracer experiments, with broad applicability 

beyond circadian research. Collectively, a new set of analytical and computational tools are 

developed to both produce dynamic metabolomic data and improve data interpretability, with 

applications to uncover new chronometabolic connections. 
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CHAPTER 1 - Introduction 
 

1.1 Intersection of circadian rhythms, sleep, and metabolism in health and disease 

History and characterization of circadian rhythms 

The ancient Greek philosopher Heraclitus famously coined the phrase ‘panta rhei’, or 

‘everything flows’, which has since been expounded into the aphorism ‘the only thing constant is 

change’. Indeed, life is flux for all organisms on this planet, encountering daily changes in light, 

temperature, and food availability. Amidst a complex external environment, emergent patterns 

arise from which most organisms have adapted mechanisms to internally anticipate and 

synchronize with predictable environmental changes, ultimately conferring a survival advantage. 

At the heart of these internal timekeeping mechanisms lie the circadian clock. This intrinsic 

biological clock was deduced experimentally after the observations of daily leaf movements in 

heliotrope plants under constant darkness by Jean-Jacques d’Ortous de Mairan in 1729 (de 

Marian, 1729), leading to the development of the basic tenants of biological clocks by Pittendrigh 

and Aschoff, namely persistent cyclic periods under constant conditions, entrainment to 

environmental signals, and robustness against temperature changes (Pittendrigh, 1960, Aschoff, 

1965). Strictly circadian processes refer to those which take place over a roughly 24-hour period 

(Latin “circa diem” – about a day), although shorter periods are also known to exist (termed 

ultradian rhythms). In higher organisms, molecular clocks consist of a hierarchy structure, where 

input pathways receive and transmit environmental cues to a central oscillator, which in turn 

generates rhythmic outputs to govern many metabolic, physiological, and behavioral processes at 

an organismal level. For instance, mammals harbor a set of light-responsive retinal ganglion cells, 

which project to the central pacemaker, the suprachiasmatic nucleus (SCN), via the 

retinohypothalamic tract (Moore, 1982). Upon activation, the SCN expresses arginine 

vasopressin (AVP) and vasoactive intestinal peptide (VIP), which are thought to be the main 

synchronizing agents which correspond to a robust cyclic output, with projections to numerous 

nuclei in the hypothalamus and thalamus (Maywood et al., 2011). These rhythmic outputs can 
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synchronize circadian oscillators in other parts of the organism, commonly called the peripheral 

clocks. The SCN can thus act as the conductor to the orchestra of cells and organs across both 

the central nervous system and the periphery, evoking physiologic harmony during times of 

organismal synchrony. 

Our current understanding in the molecular basis of clocks originated from mutagenesis 

studies in Drosophila melanogaster (Konopka and Benzer, 1971), fueling the discovery of 

autoregulatory transcription-translation feedback loops (Glossop and Hardin, 2002). The 

functional orthologs to Drosophila clocks have since been discovered in mammals, and have 

been reviewed extensively (Lowrey and Takahashi, 2011, Figure 1.1). At the core of the 

mammalian clock, proteins CLOCK and BMAL1 dimerize and bind to E-box promoter elements to 

activate numerous clock-controlled genes (CCGs). Repressor proteins such as cryptochrome and 

period (CRY1-2 and PER1-3) translocate back into the nucleus to suppress the CLOCK:BMAL1 

complex, thus completing the feedback loop. Parallel loops also exist to control Bmal1 

transcription. In particular, BMAL1 drives expression of Rev-Erbα/β and retinoic acid receptor-

related orphan receptors (RORs) which compete for binding to ROR elements to repress or 

activate Bmal1 expression, respectively. Beyond these core loops, there exists a remarkable 

complexity of additional inputs to the clock, including a plethora of post-translational modifications 

(PTMs), protein degradation pathways, nuclear hormone receptors, metabolism, and epigenetics, 

which can all couple to our most basic phenotypes of sleep and wake cycles. 
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Figure 1.1 Transcription-translation feedback loops of the core mammalian (A) and Drosophila 
(B) circadian clocks. Mammalian circadian clock reprinted with permission from Yang et al., 2013; 
Drosophila circadian clock reprinted with permission from Hardin, 2002. 
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Circadian clocks and sleep 

 Sleep, broadly defined as a period of inactivity with an increased arousal threshold, 

stereotypical body positions, and sleep rebound following periods of disruption or deprivation 

(Hendricks et al., 2000), is a highly conserved process with two major regulatory mechanisms. 

One mechanism, the S process, is a homeostatic drive for sleep which increases throughout the 

active phase (i.e. the light phase for diurnal organisms) and is alleviated upon sleep onset 

(Borbely, 1982). This process is empirically observed and understood, albeit with little 

mechanistic underpinning. The other major mechanism, the C process, is the circadian control 

over sleep/wake behaviors. Melatonin exhibits a robust diurnal secretion from the pineal gland, 

driven by SCN and paraventricular nucleus (PVN) projections to elicit sleep (Teclemariam-

Mesbah et al., 1999), which is countered by cortisol rhythms, from pulsatile secretions of 

corticotropin-releasing hormone (CRH) out of the PVN to elicit morning arousal (Spencer et al., 

1998). Perturbations in these cycles, whether from suppressed melatonin production by light 

exposure at night, or a perturbed hypothalamic-pituitary-adrenal (HPA) axis from stress or 

pathologies, result in fragmented or lost sleep (Balbo et al., 2010). 

Mutagenesis studies have yielded few genes which exert a dominant control on sleep 

quality and quantity, implying a complex genetic sleep architecture (Yamamoto et al., 2008). 

However, some notable polymorphisms in core clock genes impact sleep, including associations 

of Per variants with sleep timing (Carpen et al., 2006, Archer et al., 2003). Additionally, genetic 

mouse models of Clock, Bmal1, and Cry1/2 display altered sleep duration (Naylor et al., 2000, 

Wisor et al., 2002, Laposky et al., 2005). These tantalizing connections of sleep phenotypes and 

circadian clocks warrant deeper mechanistic experimentation, wherein lies an inextricable 

connection of clocks with hormone production and metabolism. 

 

Circadian clocks and metabolism 

 Circadian clocks and metabolism exhibit a complex bidirectional control, and has recently 

been a subject of intense research in the circadian field. Transcriptomics in mice have 
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demonstrated a striking enrichment of rhythms in rate-limiting enzymes across major metabolic 

pathways, including glucose, fatty acid, amino acid, and bile acid metabolism (Panda et al., 

2002). Intriguingly, expression of many of these metabolic enzymes can display ultradian rhythms 

of 8 or 12 hours (Hughes et al., 2009), which may align with shorter temporal patterns of feeding 

and behavior. In addition to these extrinsic factors, there is also evidence that the cell-

autonomous circadian clocks drive metabolic oscillations. For example, corticosterone rhythms 

were abolished in SCN-lesioned rats (Moore and Eichler, 1972), and circulating glucose, 

triglycerides, and fatty acids have been shown to oscillate under fasting or fixed conditions such 

as forced wakefulness or constant light (Scheer et al., 2009, la Fleur et al., 1999 and Dallmann et 

al., 2012). Additionally, nicotinamide phosphoribosyl-transferase (NAMPT), the rate-limiting step 

in the nicotinamide adenine dinucleotide (NAD+) salvage pathway, exhibits a strong circadian 

rhythm, particularly in the liver (Ramsey et al., 2009). This clock-metabolism connection has 

several critical effects, including an intracellular oscillation in redox potential, noted in 

NAD+/NADH cycles. Redox rhythms can also exist as part of a highly conserved and ancient 

clock mechanism, independently of transcription and translation. The peroxiredoxin proteins, 

noted across eukaryotes and Archaea, produce an autonomous redox rhythm and suggest a 

mechanism to deal with an increasingly oxidizing environment billions of years ago (Edgar et al., 

2012).  

NAD+ also serves a critical role in reciprocal regulation of circadian clocks by metabolic 

status. Sirtuin1 (SIRT1), an NAD+-dependent deacetylase, regulates clock function through 

deacetylation of PER2 (Asher et al., 2008), while NAD+ levels themselves are intimately tied to 

mitochondrial function and dictates AMP and ATP concentrations. Steady-state ATP 

concentrations have been shown to oscillate in multiple tissues (Yamazaki et al., 1994), which 

regulates AMP-dependent protein kinase (AMPK) activity. AMPK also impacts clock function by 

phosphorylating CRY (Lamia et al., 2009), and can itself control NAMPT expression (Cantó et al., 

2009). Other metabolite-responsive effectors include SIRT6, peroxisome proliferator-activated 

receptors (PPARs), and glycogen synthase kinase 3 beta (GSK3β), among others, which 
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collectively comprise a diverse set of sensors to reciprocally impact the core clock (reviewed in 

detail by Oosterman et al., 2015). It follows then that both diet and temporal feeding patterns may 

have a profound impact on circadian rhythms. Animals fed a high fat diet (HFD) ad libitum display 

dampened rhythms in core clock and metabolic genes, perturbed temporal feeding rhythms, and 

lengthened free-running activity periods under constant darkness (Gill et al., 2015, Hatori et al., 

2012). Interestingly, limiting the window of HFD feeding, thus enforcing a feeding pattern, 

restored physiological rhythms and improved metabolic outcomes. This time-restricted feeding 

(tRF) paradigm has proved salubrious even when switching feeding to the normal resting phase, 

and is sufficient to restore rhythms of many liver transcripts in Cry1/2 knockout mice (Vollmers et 

al. 2009). While the phenotypes are convincing, the mechanism behind tRF is largely unclear. 

Future studies need to consider why certain times of feeding seem more healthful than others, 

how nutrients are processed differently vis-à-vis the clock, and whether the metabolic benefits are 

simply a result of interspersed fasting periods. One emerging consensus from these experiments 

is that while altered feeding rhythms can reset circadian clocks in the peripheral tissues, 

particularly metabolically active tissues and nutrient-sensing regions of the brain, the SCN 

remains largely unaffected by food and ultimately results in organismal desynchrony (Iwanaga et 

al., 2005). Whether or not chronically desynchronized, but consistent, light and feeding rhythms 

can still promote health remains to be rigorously demonstrated (Katewa et al., 2016), which is 

particularly important when considering the proper management of altered sleep schedules, e.g. 

shift work. 

The selective advantage of circadian clocks, particularly for metabolic homeostasis, 

resides in anticipation (Edery, 2000). To best allocate nutrients effectively, organisms must 

prepare for anticipated bouts of feeding and fasting during active and rest phases respectively. 

Reflected in both metabolite and enzyme analyses, glucose synthesis and release from glycogen 

stores increase at the onset of the active phase, coupled with rhythmic insulin secretion and 

pancreatic function (Bolli et al., 1984, Kida et al., 1980, Peschke and Peschke, 1998). Digestive 

processes also increase at the beginning of the active phase, including lipid uptake, enzyme 
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upregulation, gastrointestinal motility, and gastric blood flow (Pan and Hussain 2007, Kumar et 

al., 1986). Conversely, organisms prepare for a fasting period by switching from oxidative 

metabolism to nutrient storage towards the end of the active phase (la Fleur et al., 2001), which 

may partly explain findings that postprandial glucose levels are higher after dinner than breakfast 

(Jakubowicz et al., 2013). These sweeping shifts in major metabolic processes have begun to 

paint a picture of how organisms adapt to their environment and food availability, and may 

address some uncertainties in the mechanisms of tRF. Amidst the complex interplay of clocks, 

feeding, and behavior, perhaps the most important role the clock can play in metabolism is to 

temporally separate anabolic and catabolic processes, hypothesized as a mechanism to maintain 

metabolic efficiency (Bass, 2012). While logical, this hypothesis needs further experimentation 

through subcellular metabolite analysis and primary metabolic measurements, including 

metabolic flux (McGinnis and Young, 2016). Our understanding of circadian metabolism has 

grown tremendously in recent years, although secondary metabolic measures such as steady 

state transcript or metabolite levels are inadequate to fully capture these dynamic systems. 

Additional work is required to truly understand the pathological phenotypes that arise out of 

perturbed circadian and sleep cycles, and to harness the ubiquitous nature of the clock in a 

therapeutic manner. 

 

Pathologies, modern lifestyles, and therapeutic opportunities 

A temporal distribution in disease symptoms has been observed for hundreds of years, 

dating back to daily fluctuations of asthmatic symptoms in the medieval times (Lemmer, 2009). 

More recently, diurnal variation is known to exist for inflammatory response, infection 

susceptibility, stroke, and myocardial infarctions (Kalsbeek et al., 2012, Reilly et al., 2007). These 

patterns largely stem from normal clock functioning, considering the rhythms noted in immune 

cells, circulating cytokines, blood pressure, and heart rate. Conversely, perturbing the clock 

system has been implicated in numerous pathologies. Clock disruption has been reciprocally 

implicated as both a driver and a consequence of tumorigenesis (Altman et al., 2015, Masri et al., 
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2016). Additionally, the amplitude of circadian cycles dampens with age and is associated with 

increased activity at night and fragmented sleep in older individuals (Van Someren et al., 1997). 

These findings have been corroborated by an accelerated aging phenotype in Bmal knockout 

mice, although clock-specific versus clock-independent roles of circadian genes are difficult to 

ascertain with one animal model (Kondratov et al., 2006). Age-dependent declines in clocks and 

physiology may be additionally fueled by increased reactive oxygen species (ROS), which build 

up in greater quantities as sleep becomes increasingly fragmented and redox balance 

mechanisms decay (Inoué et al., 1995). 

Perhaps more alarming and consequential to human health is the ubiquity of circadian 

and sleep disruption in modern society. Around the beginning of the 19th century, affordable 

artificial lights ushered in a shift in human lifestyles (Fouquet and Pearson, 2006). Light exposure 

is now common around the clock, and social interactions can act as a non-photic timing cue at 

any given moment through social media platforms (Wyse et al., 2014). In addition to increased 

light-at-night, many human activities today are based indoors. Artificial light does not recapitulate 

natural sunlight, leaving us with with brighter nights and dimmer days, further dampening 

circadian clocks. Coupled with longer work hours and/or shift work, humans are largely 

desynchronized with sunrise and sunset, particularly in urban settings. The recent National Health 

Interview Survey reported roughly 30% of the American workforce obtain 6 hours of sleep or less 

per night, with roughly 20% of workers engaging in some form of shift work (Luckhaupt et al., 

2010). Shift workers tend exhibit lower sleep quality and quantity (Esquirol et al., 2011, Jay et al., 

2006), and are likely to receive less sun exposure than day workers (Puttonen et al., 2010). While 

causal links are not established, shift workers are also prone to fragmented feeding patterns and 

less healthy eating, which likely contributes to correlations with metabolic syndrome and obesity 

beyond already established connections of sleep deprivation and impaired glucose tolerance 

(Scheer et al., 2009, Esquirol et al., 2011). While constant food availability has generally been 

viewed as a boon for those with atypical work schedules, the aforementioned tRF studies 

highlight the need to reconsider eating schedules. Adiposity, bodyweight, glucose, and lipid 
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metabolism are the most common alterations in a recent meta-analysis of animal studies which 

model feeding and sleep disruptions (Opperhuizen et al., 2015). Additionally, not all shift workers 

develop sleep disorders, but such pathologies do exist, such as delayed and advanced sleep 

phase disorders (Ando et al., 2002, Regestein and Monk, 1995), with relatively little information 

on metabolic consequences of phase-shifted circadian clocks. More detailed mechanisms of 

nutrient processing are required in the burgeoning fields of chrononutrition and 

chronopharmacology to mitigate the metabolic detriments in shift work and habitual sleep 

disruption. 

 

1.2 Drosophila melanogaster as a model in chronometabolic studies 

Clock mechanisms in Drosophila 

 The transcription-translation feedback loop in Drosophila exhibits similar features to the 

mammalian clock, and has served as a vital model to delineate molecular mechanisms of clock 

structures (reviewed in Hardin, 2011, Figure 1.1). The CLOCK/CYCLE (CLK/CYC) complex binds 

to E-box elements to drive expression of many gene products, including period and timeless. 

These protein products (PER and TIM) dimerize and translocate to the nucleus to repress 

CLK/CYC activity. Phosphorylation of PER/TIM by GSK3B (known as shaggy in Drosophila) and 

CASEIN KINASE 2 (CK2) promotes translocation back to the nucleus, however phosphorylation 

of PER will by DOUBLETIME (DBT) promotes its binding to the E3 ubiquitin ligase 

SUPERNUMERARY LIMBS (SLIMB), which leads to ubiquitination and proteolysis by the 

proteasome, breaking the repressive arm of the clock. Although the molecular mechanisms of the 

clock are similar, the two-stage mammalian process of SCN entrainment, followed by peripheral 

clock entrainment, operates differently in flies. Most Drosophila cells which contain an oscillator 

can either directly detect light or receive inputs from photoreceptor cells, demonstrated by light-

entrainment of isolated wings and antennae (Plautz et al., 1997). Light rapidly resets the clock in 

flies through the CRY photoreceptor, resulting in TIM degradation within 30 minutes of exposure 

(Hunter-Ensor et al., 1996, Myers et al., 1996).  
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150 cells in the fly brain contain a molecular clock, and some of these are known to 

control locomotor activity rhythms (Taghert and Shafer, 2006). These cells are clustered into 

lateral and dorsal neurons (LNs and DNs), of which the small ventral LNs (s-LNv) are necessary 

for sustained locomotor activity in constant darkness (Helfrich-Förster, 1998). This central 

oscillator has been shown to modulate the phase of oenocyte clocks, which regulate pheromone 

production and lipid mobilization, and prothoracic gland clocks, which drive eclosion (Krupp et al., 

2008, Myers et al., 2003). However, clocks in the Malpighian tubules, which operates much like 

the kidneys, and the fat body, exhibiting functions akin to the liver and adipose, can entrain to 

light and food respectively, independent of the central clock (Giebultowicz 2000, Xu et al., 2011). 

Thus, while the hierarchy of the clock in flies differs from mammals, circadian clocks ultimately 

drive rhythms in most major physiological processes, including eclosion, olfaction, courtship, 

locomotion, and sleep. 

 

Drosophila in sleep research 

 Much like mammalian characteristics of sleep, flies display periods of behavioral 

quiescence, sleep rebound following deprivation, and increased arousal thresholds (Hendricks et 

al., 2000). Flies are diurnal, sleeping during darkness, and sleep itself is defined by periods of 

quiescence lasting at least five minutes, and can enter deeper sleep phases lasting more than 15 

minutes with electrophysiological patterns analogous to slow wave sleep in mammals (van 

Alphen et al., 2013). Given these similarities, and the rapidity and relative accessibility of genetic 

manipulation, Drosophila are a mainstay in sleep genetics research. Sleep/wake cycles form as a 

complex integration of inputs, including hormones, neuropeptides, neurotransmitters, and 

physiological perturbations such as feeding or starvation (Keene et al., 2010). Like mammals, 

sleep homeostasis in flies largely stems from a balance of the monoamines dopamine, serotonin, 

and octopamine (the invertebrate analogue of norepinephrine) (Livingstone and Tempel, 1983). 

Drosophila genetics has augmented our understanding in the role of these monoamines to 

regulate sleep and behavior. For instance, impaired dopamine reuptake in the synapse via a 
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mutated dopamine transporter results in short-sleeping and hyperactive flies (Kume et al., 2005). 

These fumin mutants display similar behavior to increased dopamine signaling via cocaine or 

methamphetamine, and are countered by inhibitors in dopamine biosynthesis pathways to 

increase sleep duration (Andretic et al., 2005). Dopaminergic pathways in the fly brain are under 

control of light and circadian clocks through regulation of inhibitory dopamine receptors in the LNs 

(Shang et al., 2011). Additional genetic manipulations in monoamine signaling have 

demonstrated interactions with behavioral patterns to regulate learning, feeding, and metabolic 

processes, corroborating the utility of Drosophila models to understand mammalian sleep 

networks (reviewed in Nall and Sehgal, 2014). Additionally, Drosophila offers some insights into 

the interaction of sleep and circadian processes with aging, as aged flies demonstrate perturbed 

dopaminergic signaling and increasingly fragmented sleep with age (Kayser et al., 2014). 

Circadian and aging physiology may also couple with metabolism, as clock mutants lose cycling 

in ROS and antioxidant-defense enzymes (Krishnan et al., 2008). Drosophila may yet provide 

much insight into the circadian-sleep-metabolic connection as our elucidation of conserved 

metabolic mechanisms in flies grows. 

 

Metabolism and nutrient response in Drosophila 

 Drosophila were among the earliest model organisms to demonstrate links between 

metabolism and lifespan (Loeb and Northrop, 1917), and have recently regained interest in 

dissecting mechanisms of metabolic homeostasis vis-à-vis diabetes and obesity (Leopold and 

Perrimon, 2007). In addition to the major metabolic organs such as fat bodies, Malpighian 

tubules, and oenocytes, flies also harbor the pars intercerebralis-corpora cardiac system, which 

exhibits similar functions to the hypothalamus-pituitary system and pancreas (Bharucha, 2009). 

Flies digest food through the crop and midgut, analogous to the stomach and intestine (Pitsouli 

and Perrimon, 2008), although nutrients are then released into the hemolymph as part of an open 

circulatory system, thus demanding unique mechanisms of nutrient distribution. Flies maintain 

efficient nutrient transport by harboring a tubular heart structure and circulating trehalose, a 
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disaccharide of glucose, to effectively increase sugar concentrations while maintaining osmolality 

(Klowden, 2007). Flies respond to the presence of nutrients through secretion of insulin 

(commonly referred to as Drosophila insulin-like-peptides, or dILPs) for glycogen and triglyceride 

storage (Barbieri et al., 2003). Unlike mammals, flies express 8 dILPs, which vary in tissue 

distribution but bind to one ubiquitous insulin-like receptor (Fernandez et al., 1995). dILP6 is most 

notable, activating insulin-signaling pathways in the fat body to promote fat storage, similar to 

mammalian systems (Saltiel and Kahn, 2001). Additional controls on dILP release include TOR-

dependent sensing of amino acids and trehalose, and Mio/Mondo-dependent sensing of glucose, 

a homolog to ChREBP (Geminard et al., 2009, Postic et al., 2007). The fat body also contains 

insulin-responsive AKT pathways (Garofalo 2002). Conversely, the neurosecretory cells of the 

corpora cardiaca secrete adipokinetic hormone (AKH), which acts much like glucagon to activate 

fat body cells and promote glycogenolysis, trehalose production, and AMPK-dependent lipolysis 

(Kim and Rulifson, 2004, Rayne and O’Shea, 1994, Staubli et al., 2002). 

Conserved nutrient response mechanisms in flies have recently prompted efforts to 

model diet-induced pathologies. Both genetic manipulation of dILPs and a high-fat diet can 

disrupt glucose homeostasis and produce similar phenotypes to metabolic syndrome and 

diabetes (Zhang et al., 2009, Birse et al., 2010, Musselman et al., 2011). These genetic and 

dietary manipulations have also yielded cardiomyopathies, which was recently expounded to 

demonstrate the benefits of tRF on diet-induced cardiac decline (Gill et al., 2015), implying 

additional synergy of metabolic and circadian processes which can be modeled in Drosophila. 

 

Clock and metabolic interactions in Drosophila 

Circadian research greatly benefited from the advent of accessible and affordable 

oligonucleotide arrays in the early 2000s. Multiple microarray analyses were performed in both 

heads and bodies of flies, and later expanded into tissue-specific circadian analyses (Claridge-

Chang et al., 2001, McDonald and Rosbash, 2001, Ceriani et al., 2002, Lin et al., 2002, Xu et al., 

2011). The complexity of these datasets prompted a meta-analysis to glean overlapping transcript 
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oscillations, although at the time most of these hits were either part of the core clock or 

uncharacterized (Keegen et al., 2007). Some annotated metabolic genes emerged as overlaps in 

at least a subset of these studies, including histidine decarboxylase, aldolase, and UDP-

glycoslytransferase. Transcripts implicated in glucose metabolism and transport, as well as 

neurotransmitter biosynthesis, also emerge across multiple studies, however the time of peak 

expression is inconsistent. Additionally, fat body transcriptomics depicts an even more 

complicated picture, where many genes peaked at different times from whole-body analyses 

(unpublished). Unsurprisingly, the fat body responded to an enforced feeding pattern in the 

background of a clk mutant strain much like liver transcripts in Cry1/2 knockout mice (Vollmers et 

al., 2009), highlighting the possibility of conserved mechanisms of feeding entrainment. Although 

phases differed across studies, multiple enzymes involved in reduced glutathione (GSH) 

production oscillate, which serve to maintain levels of intracellular antioxidants and counter ROS 

oscillations (Krishan et al., 2008, Beaver et al., 2012). GSH itself displays a temporal pattern, 

though not as strongly as the biosynthetic enzymes, which may reflect an intracellular objective to 

maintain steady-state concentrations. Clock mutant strains display impaired transcript oscillations 

in GSH enzymes, and may explain increased ROS, peroxidated lipids, and accelerated aging and 

neurodegeneration in these flies (Krishnan et al., 2009, Krishnan et al., 2012). While focused on 

aging, a recent review highlights the role of peroxiredoxins in Drosophila to combat oxidative 

stress and maintain ATP levels, creating a vital link to redox cycles which requires further 

investigation (Orr et al., 2013). With a resurgence of metabolic studies in Drosophila, many 

postulations can be made in the chronometabolic connections, however analyses commensurate 

with these complex and dynamic systems must be employed to truly understand these 

phenotypes. 

 

Current methodology in Drosophila metabolism studies 

 Metabolic homeostasis is a complex process in any living system, which is difficult to 

experimentally ascertain with experimental techniques in genetics, transcriptomics, and hormone 
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assays. Assessing bulk changes in lipids and sugars can aid interpretation of metabolic response 

to nutrient intake, which have been employed in Drosophila using colorimetric glycogen and 

triglyceride (TAG) assays (Tennessen et al., 2012). Additional separations of lipid groups, for 

example fatty acids and diacylglycerols (DAG) can be further measured using thin-layer 

chromatography (TLC), which is particularly relevant for flies as DAGs comprise the major 

circulating form of lipids in hemolymph (Hildebrandt et al., 2011). These assays, if done 

meticulously, can be performed in dissected flies to discern tissue-specific lipid contents. Analysis 

of sugars is typically confined to glucose and trehalose assays, which require careful enzyme-

based assays to separate glucose before and after trehalose digestion (Teleman et al., 2005). 

Analysis of circulating sugars can be performed through isolation of the hemolymph, although 

tissue-specific analyses likely fall out of accurate detection (Lee and Park, 2004). While still 

considered a secondary metabolic analysis, measurements of energetics through steady-state 

NAD+ or ATP concentrations can provide valuable information to infer the dynamics of fuel 

oxidation and nutrient-switching. ATP assays do exist, but given chemical instability, has proven 

difficult to measure accurately (Park et al., 2006). 

 More sophisticated technologies are required to detect specific sugars, lipids, and other 

metabolites such as amino acids. Mass spectrometry (MS) and nuclear magnetic resonance 

(NMR) are common analytical strategies in the burgeoning field of metabolomics. Coupling MS 

techniques to chromatographic separation, including gas (GC-MS) or liquid (LC-MS), can 

additionally broaden the scope of metabolite analysis. These approaches have largely remained 

in the dark in Drosophila chronometabolic studies, however metabolomics has been employed in 

aging and developmental biology (Thuy An et al., 2014, Hoffman et al., 2014, Laye et al., 2015, 

Tennessen et al., 2014), and tissue-specific analyses has been performed to create spatial maps 

of the fly metabolome (Chintapalli et al., 2013). Encouragingly, one study utilized NMR in whole 

flies across circadian time to discern cycles in amino acids and energetic metabolites, offering 

hope in a new analytical frontier to unveil the reciprocal regulation of clocks and metabolism 

(Gogna et al., 2015). As these platforms expand in scope, the overwhelming complexity of 
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rhythms in transcripts, proteins, PTMs, and epigenetics can be uprooted and replanted with a 

deeper and more accurate phenotype of metabolite dynamics. 

 

1.3 LC-MS metabolomics and multivariate statistical analysis 

LC-MS metabolomics methodology 

While metabolomics is considered a relatively new member of the high-throughout ‘omic 

platforms, biofluid analysis has been performed since ancient China and the Middle ages to 

detect high glucose levels or otherwise unusual smells and colors in urine (van der Greef and 

Smilde, 2005, Nicholson and Lindon, 2008). More recently, the idea of metabolic ‘fingerprinting’ 

had been proposed by Roger Williams in the 1940s as a method to identity unique signatures 

across healthy and diseased individuals using TLC (Williams, 1951). In time, advances in GC and 

LC ushered in a new era of quantitative metabolite profiling (Horning and Horning, 1971, Pauling 

et al., 1971). This new wealth of knowledge created new perspectives on metabolism, leading to 

the first compilations of metabolic networks by Donald Nicholson (Nicholson, 1970), lauded by 

Nobel laurate Ernst Boris Chain as one of the great achievements in biochemical research 

(Chain, 1965). Continued developments in analytical chemistry have since enabled detection of 

thousands more metabolites than thought to exist at the dawn of functional biochemistry, 

revealing a yet incomplete picture of metabolic networks. Improved metabolomic analyses hold 

great promise for the fields of food science, drug development, toxicology, and translational 

medicine, as metabolites are thought to serve as a readout of both the actions of intrinsic enzyme 

activities and exposures to extrinsic environmental factors. 

 The detection methods for current metabolomics’ technologies include GC-MS, LC-MS, 

capillary electrophoresis (CE-MS), and NMR. While GC-MS analyses are still employed for 

analyzing specific subsets of the metabolome, and CE-MS improvements are rapidly expanding 

the breadth of metabolite analysis (Ramautar et al., 2009), LC-MS currently has the most 

widespread use and is typically considered to provide the deepest metabolome coverage 

(Theodoridis et al., 2012). The LC-MS metabolomics workflow considers all aspects of metabolite 
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detection, from sample preparation to chromatographic separation and detection of metabolites 

by the mass analyzer.  

The first major step, sample extraction, requires careful consideration of the experimental 

objectives (reviewed in Cajka and Fiehn, 2016). The mass or volume of the biological sample to 

be extracted must be rationalized given mass spectrometers cannot accurately quantify 

metabolites across the physiological range of concentrations, which may vary up to eight orders 

of magnitude. Extraction methods may be tailored to specific classes of metabolites in 

accordance with the predicted octanol/water partition coefficients, however this approach will 

likely preclude holistic metabolite profiling. One common tradeoff is to perform a single extraction 

to recover more metabolite classes simultaneously (e.g. lipophilic and polar metabolites), with the 

added benefit of speed and simplicity. Single-extraction approaches can include organic solvent-

protein precipitation or biphasic liquid-liquid extractions such as the Bligh-Dyer approach, which 

yields aqueous and organic layers amenable to separate LC-MS methods for small-molecules 

and lipids (Bligh and Dyer, 1959). Unfortunately, no single method can recover all metabolites 

effectively, however many options exist to suit the needs of the researcher.  

Likewise, chromatographic separations can be tailored to enhance detection of specific 

metabolites of interest. Direct-infusion MS is common, however chromatography enables the 

separation of isobaric species (compounds of identical mass) and mitigates ion-suppression, 

which refers to the competition metabolites face for ionization when simultaneously present in the 

MS source (Blanksby and Mitchell, 2010). The most common bifurcation of chromatographic 

methods in metabolomics is reverse-phase (RPLC) and hydrophilic interaction liquid 

chromatography (HILIC), for analysis of nonpolar and polar metabolites respectively. RPLC is 

typically achieved through C18 column chemistry, which binds strongly to hydrophobic 

compounds, and a gradient of polar to nonpolar mobile phases, generating a temporal elution of 

compounds off the solid phase with increasing hydrophobicity. RPLC traditionally has more 

widespread use in analytical chemistry than HILIC, and is suitable for lipid profiling (lipidomics). 

HILIC compound retention mechanisms operate slightly differently in principle, however opposing 
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conditions generally hold true: solid phases consisting of silica or derivatized silica to retain polar 

compounds, and mobile phase gradients from organic to aqueous solvents for compound elution 

off the solid phase. Many variations of these approaches exist, reviewed in Cajka and Fiehn, 

2016, including an array of mobile phase additives to enhance metabolite ionization, and 

stationary phases of smaller particle sizes to improve chromatographic separation of compounds 

with similar physiochemical properties. Workflows which utilize both RPLC and HILIC greatly 

expand metabolome coverage, albeit at additional cost and time to perform multiple analyses. 

MS detection adds another dimension of complexity to LC-MS workflows. For detection 

on a mass spectrometer, metabolites must exist as a charged species through ionization in the 

MS source. Multiple options exist for ionization, most classically through election impact (EI), 

however for smaller and labile molecules, softer ionization techniques such as electrospray 

ionization (ESI) are now common, which may operate to positively or negatively ionize molecules 

(ESI+ or ESI- modes respectively).  MS metabolomic analyses are conceptually divided into 

either targeted or untargeted approaches, where targeted approaches aim to accurately detect 

specific metabolites with greater specificity and sensitivity, and untargeted approaches aim to 

detect as many metabolites as possible, unbiasedly and without quantification. Targeted 

approaches typically employ mass spectrometers capable of fragmentation (MS/MS), such as 

triple quadrupole mass spectrometers (QqQ) or quadrupole/linear ion trap instruments. While 

mass resolution is low on these instruments, specificity can be achieved through MS/MS by 

analyzing the parent mass-to-charge ratio (m/z), followed by the daughter m/z(s) after imparting 

energy on the molecule in the collision cell. This parent-to-daughter mass transition is commonly 

called multiple reaction monitoring (MRM), and is the primary means to detect and quantify 

metabolites in these instruments (Figure 1.2). With faster scan speeds and ion-polarity switching, 

newer instruments can scan for hundreds of MRMs, increasing the scope of targeted 

metabolomic analyses (Rhoades and Weljie, 2016, Yuan et al., 2012). Time-of-flights (TOFs), 

and other high-resolution instruments such as Orbitraps, are most commonly used for untargeted 

metabolomics to detect thousands of metabolic features. While powerful, these instruments on 
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their own are typically reserved for exploratory analyses and yield many m/z values without 

metabolite identification. Extensive follow-up work, through either MS/MS or bioinformatics, is 

required to identify m/z values as known metabolites. Some instruments combine high-resolution 

and fragmentation analysis to collectively achieve selectivity, sensitivity, and mass accuracy. As 

databases continue to improve metabolite identification from high-resolution MS metabolomics 

datasets, the utility of untargeted metabolomics to probe biology is expected to grow. 

 Despite recent advancements, metabolomics invariably encounters a high diversity of 

physiochemical properties across metabolite classes. Unlike genomics, where all genes can be 

measured, metabolomics has yet to delineate the entire metabolome, which may contain tens of 

thousands of metabolites (Wishart et al., 2013). Paired with the wide range of metabolite 

concentrations found in biological samples, much work remains to develop equivalently diverse 

and accurate analytical tools, in addition to building new computational workflows for high-

throughput metabolite identification. Method development appropriated for multivariate detection, 

coupled with multifactorial design principles (e.g. choice of mobile phase, LC gradient, MS 

ionization parameters, etc.), generate a combinatorial complexity in optimization objectives. 

Commensurate multivariate workflows, such as design of experiments (DoE), can guide the 

analytical chemist to efficiently design complementary metabolomics methods with high 

metabolome coverage, sensitivity, and accuracy (Gika et al., 2012). 
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Figure 1.2 Mechanism of multiple reaction monitoring (MRM) and representation of an LC-
MS/MS chromatogram. Reprinted with permission from Domon and Aebersold, 2006. 
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Design principles and statistical approaches to process and analyze metabolomic data 

 Large-scale metabolomic analyses must consider data acquisition, processing, and 

analysis to obtain meaningful biological inference. While standardized workflows in LC-MS 

metabolomics are lacking, representative procedures reviewed by Dunn and colleagues are most 

common (Dunn et al., 2011). After sample extraction, samples are analyzed via LC-MS in a 

randomized manner to avoid biases due to analytical drift, referring to the variance exhibited by 

LC-MS methods across days or weeks of use.  Quality control samples (QCs) are interspersed in 

the run order, which can contain either a mix of metabolite standards, or consist of a pooled 

sample of all biological samples under study. QC injections can then be used to inspect both 

analytical drift and response variance. Drift can be corrected by regression fitting to the QC data 

points, metabolite by metabolite. Additionally, any metabolites which display high variance, which 

may arise if the signal-to-noise (S/N) is low, can be dropped from the dataset. Stringency in data 

correction and filtering may depend on the objectives of the experiment, for example exploratory 

preclinical analyses versus targeted and quantitative clinical analyses. 

 After data processing, multivariate or univariate methods may be used to discover 

differences across experimental groups (Kotlowska, 2014). Univariate methods, such as t-tests, 

may have utility in biomarker research, however given the dimensionality of metabolomics data, 

must consider multiple testing correction, such as Bonferroni or false discovery rate adjustments 

(Dunn, 1961, Benjamini and Hochberg, 1995). In reality, phenotypes are driven by relationships 

of multiple variables. Two of the most common multivariate approaches in metabolomics are 

principal components analysis (PCA) and orthogonal partial least squares discriminant analysis 

(OPLS-DA) (Trygg et al., 2007). PCA is an unsupervised approach which seeks the maximum 

variation among the metabolites (X variables) to derive new latent variables, or principal 

components. PCA yields global structures in metabolomic data irrespective of biological groups, 

and is often used as a preliminary analysis. OPLS-DA is a supervised approach, which aims to 

derive latent variables from maximal covariance of the metabolites with biological groups (Y 

variables). Metabolites which contribute to the largest group separation can then be used in a 
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predictive manner for diagnostic or biomarker purposes (Mapstone et al., 2014), or overlaid onto 

pathways or networks to understand metabolic mechanisms. Other approaches may be used, 

including clustering analysis or Bayesian-based methods, however the ultimate objectives in 

analyzing metabolomic datasets remain similar. 

 

LC-MS metabolomics in chronobiology studies 

 Currently, there is a dearth of metabolomic data for sleep and circadian analyses in 

Drosophila (Gogna et al., 2015), however metabolomics is quickly being adopted in other model 

organisms and humans, recently reviewed in Brown, 2016, and Rhoades et al., 2017 (Figure 1.3). 

Rhoades et al. compiled a meta-analysis of recent human studies, revealing overlapping 

metabolite hits across multiple chromatographic and MS detection methods. These hits include 

phosphatidylcholines, medium and long-chain acylcarnitines, and amino acids. Members of these 

compound classes have been shown to oscillate in murine liver and adipose, with dependency on 

a fully functional genetic clock (Eckel-Mahan et al., 2012, Castro et al., 2015). More causal links 

of the clock to targeted metabolic outputs in mice have also been discovered, including unique 

signaling roles of a specific lipid (PC 18:0/18:1) to regulate metabolic oscillations across tissues 

(Liu et al., 2013), and functional roles for polyamines to maintain robust clock function during 

aging (Zwighaft et al., 2015). The adipose clock has been shown to impact feeding behavior 

through rhythmic release of lipids in a feedback mechanism to the hypothalamus (Paschos et al., 

2012). Tissue-specific clock manipulations in genetic mouse models have simultaneously 

uncovered new connections between clocks and metabolism across tissues, while opening a 

Pandora’s box of complicated mechanisms to maintain systemic metabolic homeostasis across 

circadian time. Additional experimentation will further elucidate our understanding of this 

complexity, however new approaches are required to derive interpretable phenotypes at an 

organismal scale. Appropriate animal models are also necessary to advance this field, as in vitro 

models of circadian rhythms do not faithfully recapitulate the complex interactions of 

environmental exposures, feeding, behavior, and tissue-specific metabolism. Metabolomics holds 
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promise to uncover the true depth of rhythmic metabolic outputs, as the enrichment of rhythms in 

transcripts and their median fold-change in murine liver is 1.51 and 18.3%, respectively (Hughes 

et al., 2009), compared to 1.98 and 50% in detectable metabolites under the same experimental 

protocol (Krishnaiah et al., 2017). Overlapping metabolite rhythms to mice and humans have yet 

to be demonstrated in Drosophila, but given conserved mechanisms of sleep, circadian rhythms, 

and nutrient-sensing pathways, many opportunities exist to further explore these chronometabolic 

connections. 
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Figure 1.3 Timeline of metabolomics in chronometabolic studies, both current approaches and 
future directions. From Rhoades et al., 2017. 
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Statistical tests to discern periodicity in data 

 Assessing rhythmic patterns in time-series data requires appropriate statistical tests. True 

oscillations, resembling a sine wave, can be tested with rank-based correlations of monotonic 

sequences, most frequently performed in the circadian field using JTK_CYCLE (Hughes et al., 

2010). Wavelet tests provide additional information relevant for circadian rhythms, including the 

peak of oscillation (phase) and height (amplitude), which can directly answer both when a 

metabolic process is most active and the relative strength of the rhythm. Experimental design 

plays a critical role in deciphering periodicity with statistical significance. Ideally, sampling 

frequency would be high such that a wave can be clearly formed across time, however is rare in 

practice due to cost and resource constraints. Reasonable compromises of time resolution and 

resource allocation include sampling every two or four hours, which is sufficient to test across 24-

hour cycles. However, shorter sampling times would be required for ultradian rhythm analysis, as 

4-hour sampling resolution would be insufficient to find 8-hour cycles. Recent work has shown 

increased resolution also provides increased statistical power, as true positive rates were 

dramatically higher in one-hour sampling compared to two or four hours (Krishnaiah et al., 2017). 

JTK_CYCLE is commonly executed such that waves are either fit to replicates within one day of 

sampling, or replicates spread across multiple days. Care must be taken in testing rhythmicity to 

mitigate day-to-day biases, which may be mitigated with data permutations. Additionally, 

monotonic changes across time, for example metabolic shifts in concert with changes in cell 

culture media, must be separated from circadian-dependent temporal patterns (Sengupta et al., 

2016). Alternative approaches such as time-dependent analysis of variance (ANOVA) or pairwise 

univariate testing may also be necessary as diurnal metabolic outputs may not exhibit classic 

waveform patterns. 

 

1.4 Application of stable isotope tracers in metabolism research 

Definitions and usages of stable isotopes 



25 
 

Isotopes, most simply, refer to forms of the same element with different numbers of 

neutrons. The most commonly used element in isotope-based metabolic studies is carbon, with 

12C comprising 98.9% of all carbon on Earth, and the heavier 13C carbon comprising the roughly 

remaining 1.1%. 14C carbon also exists, and while it is unstable and radioactive, serves important 

purposes in metabolic studies. In the middle of the 20th century, radioisotopes, including 14C, were 

frequently utilized to trace metabolic networks, which Nobel laurate Ernst Boris Chain describes 

as resulting in ‘an almost explosive expansion of the field of the study of metabolic pathways’ 

(Chain, 1965). At the time, radioisotopes were effective given their ease of detection, but were 

largely nonspecific for probing larger swaths of metabolism. Today, heavy isotopes still pervade 

metabolic research, with stable 13C tracers recently entering metabolomics for pathway discovery 

on the heels of improved MS and NMR instrumentation (Giavalisco et al., 2008). Stable isotopes 

are also used for quantification of endogenous metabolites on GC and LC-MS platforms, as they 

are easily identifiable by an atomic mass unit (amu) shift of 1.00335 for each 13C atom. 

Metabolites may vary many orders of magnitude and suffer from ion suppression by coeluting 

species off the chromatographic column (Shi, 2003), therefore to obtain accurate quantitation, 

metabolites may be analyzed with a known concentration of an internal standard (most commonly 

a stable isotope form of the compound of interest). In theory, any ion suppression effects on the 

endogenous metabolite will also apply to the internal standard, thereby yielding a reference 

compound for accurate quantification. 

 A renaissance in metabolic tracers has spawned a new interest in metabolic flux analysis. 

While metabolomics itself adds a layer of understanding to biological systems, static profiling of 

metabolite levels does not provide dynamics of metabolite flow. For instance, if a metabolite 

concentration is high, one cannot be certain of either an increased flux from a producing enzyme, 

or decreased flux through a consuming reaction (Creek et al., 2012). Additionally, if one were to 

think of a metabolite as a node in a complex graph network of metabolism, the concentration 

alone would be an obfuscation of numerous metabolic processes. Fluxes are thought to be the 
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most fundamental assessment of metabolic phenotypes, and is the focus of intense research 

efforts for both basic biology and therapeutic discovery applications. 

 

Applications of stable isotopes in intracellular flux analysis 

 Isotope-tracer studies are most commonly performed in vitro, given uptake and effluxes 

of labeled metabolites are more accessible than in vivo (Figure 1.4). These experiments are 

suitable for comparative analysis of metabolic activity, for example healthy cell lines to genetic 

knockdowns or cancer (Fan et al., 2013). Although the flux of atoms through enzymes cannot be 

directly measured per se, the detection of isotope incorporation into metabolites downstream from 

a known input tracer is a viable alternative. Through repeated sampling of the cell culture media, 

the rates of change in isotopically labeled metabolites can be calculated and comprises the most 

basic form of metabolic flux modeling. The addition of intracellular isotope analysis adds 

significant biological insight, albeit with increased complexity (Sauer, 2006). 13C6 glucose, 

referring to all six carbons of glucose consisting of 13C (also called uniformly labeled glucose), is 

one common tracer for flux analysis through central energy metabolism, although other tracers 

may be used to probe secondary metabolism (Winder et al., 2011). Labeled metabolites, called 

isotopologues, are typically measured on GC or LC-MS to generate the mass distribution vector 

(MDV). The MDV describes the relative abundance of a given isotopologue, from zero to n 

labeled carbons. For instance, a 0.10 enrichment of an M+1 isotopologue implies ten percent of 

the total metabolite signal consists of that metabolite with one labeled carbon. This approach 

considers parent m/z values without positional information of the labeled carbon, which would 

require MS/MS or NMR. Isotopologues which differ in the position of the 13C atom(s) are called 

isotopomers, and can provide considerably greater reaction specificity over isotopologues alone. 

Inevitably, analytical detection of full isotopomer distributions with larger molecules becomes 

unwieldy as each parent isotopologue contains  isotopomers (Buescher et al., 2015), which is 

nontrivial in MS/MS methods but has been performed with aspartate (Choi et al., 2012). Before 

drawing biological inference from MDVs, data processing measures must be taken to correct for 
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the abundance of natural isotopes, including the 1.1% natural abundance of 13C. For more than 

one labeled carbon, these calculations become increasingly complex. Fortunately, isotope-

correction procedures have been made available and are part of routine metabolic flux workflows 

(Moseley, 2010). 

 Stationary flux analysis underlies most published flux analyses, and refers to the 

assumption that upon measurement, the isotope enrichment for a given metabolite is in 

equilibrium. This assumption holds reasonably well for pathways with high flux and turnover, 

notably glycolysis, which can reach steady-state labeling within minutes (Buescher et al., 2015). 

Isotopic steady-state is independent of the metabolite levels themselves, meaning MDV 

measurements are adequate to gauge pathway activities in a relative manner (Zamboni et al., 

2009). If the pathways contributing to an MDV are known, relative comparisons may be made 

even in situations of non-steady state, for example in amino acid metabolism, which may take 

days to reach isotopic equilibrium (Buescher et al., 2015). However, if pool sizes of a metabolite 

are dramatically different across biological conditions, the MDVs alone may yield misleading 

information. For instance, if a given isotopologue enrichment is one percent in condition A and ten 

percent in condition B, but the pool size of that metabolite is ten-fold in condition A, then the flux 

of atoms into that metabolite pool is roughly equivalent, even if the MDV differs. Quantifying the 

metabolite concentration and MDV at high temporal resolution before and after reaching isotopic 

equilibrium provides the most accurate estimation of flux, however is difficult experimentally, 

analytically, and computationally.  

Even if isotopic equilibrium is not attained, the metabolite pool sizes themselves must 

remain in steady-state to estimate metabolic flux (Zamboni et al., 2005, Weitzel et al., 2013). If 

this assumption does not hold, nonstationary flux analysis must be considered, reviewed in detail 

by Wiechert and Nöh, 2013. These analyses are additionally complex and currently out of reach 

for mammalian systems. However, the rigor required for tracer studies can be largely dictated by 

the biological question, as relative pathway activities may be adequate to discern metabolic 

differences across experimental groups. Of note, any given isotopologue likely derives from 
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multiple sources, especially in secondary metabolism, and may require positional carbon 

information to attribute labeling patterns to specific reaction activities. Some of these concerns of 

reaction specificity may be mitigated by utilizing multiple tracers, for example combinations of 

glucose, palmitate, and amino acids. Recent advances in metabolomics data processing 

algorithms can abstract isotope enrichments in high-resolution untargeted LC-MS datasets, 

opening new possibilities for discovery of active metabolic networks (Huang et al., 2014, 

Capellades et al., 2016). While great advancements have been made in the metabolic flux field, 

much work remains to rigorously derive quantitative flux measurements and understand complex 

labeling patterns. Vis-à-vis uncertainties in the interpretation of isotopologue sources, future work 

will need to focus on building reaction networks for isotope labeling patterns with atom-level 

resolution. While atom-mapping reactions exist, such as in the MetaCyc database (Caspi et al., 

2016), there are currently no methods to map isotopologues onto models of metabolism at a 

genome scale (Chokkathukalam et al., 2014). 
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Figure 1.4 Depiction of isotopologues and isotopomers, exemplified by 13C6 glucose to isotope 
enrichments in alanine. 
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Stable isotopes in vivo 

 Stable isotopes serve important roles in animal and human research, with the latter 

explained in detail by Wolfe and Chinkes, 2005. Fan et al. utilized a bolus injection of 13C6 

glucose in a mouse model of lung cancer as a proof-of-principle to track relative changes in 

isotopologue patterns across multiple tissues (Fan et al., 2011). However, repeated sampling 

from mice is difficult (Castro-Perez et al., 2011), and otherwise would require many mice to 

generate a sufficient time-series of isotopologue patterns to calculate reaction rates. Justification 

of isotope tracing in animals is questionable for exploratory analyses given the limited 

interpretability of these datasets. Conversely, for human studies, considerable effort has been 

made to correctly model reaction kinetics for well-defined pathways. Infusions are the preferred 

mechanism of isotope delivery, as obtaining isotopic equilibrium is easier than through injection 

boluses. (Suh et al., 2003). In situations where physiological steady-state is perturbed, such as 

feeding or exercise paradigms, isotopic steady-state will no longer hold, and additional 

calculations of isotopologue rates of appearance and disappearance must be considered (Steele, 

1959). These calculations generally consider the tracer to exist in a single compartment, such as 

blood, with instantaneous and homogenous mixing. Single-compartment models are useful, 

however may falter as tissues metabolize and resynthesize nutrients to be released back into the 

bloodstream. Models which consider multiple compartments do exist, but require repeated 

biopsies from each considered tissue with sufficient temporal resolution. 

 Despite tremendous advancements in modern MS and NMR metabolomics 

instrumentation, the detection of stable isotopes in vivo requires significantly higher 

concentrations than radioactive isotopes. Large doses of stable isotopes may perturb 

physiological steady-state, yielding a state of isotopic disequilibrium. Additionally, compartmental 

models may yield spurious information if physiological perturbations alter the tracer’s volume of 

distribution. Regardless, advancements in isotope detection and reaction modeling have provided 

valuable information for carbohydrate, lipid, and amino acid oxidation. Beyond glucose, palmitate 

and glycerol isotopes have uncovered lipid oxidation rates (Greenough et al., 1969), and 



31 
 

phenylalanine, tyrosine, and alanine have analyzed both amino acid catabolism and protein 

anabolism rates (Engelen et al., 2012, Hartl et al., 1990). While some assumptions in in vivo 

tracer kinetic modeling may not hold, they serve reasonably well to discern real metabolic 

phenotypes. 

 

Applications of isotope tracers in chronobiology to date 

Isotope tracer studies have widespread usage in vitro for cancer metabolism research, 

and in humans to gauge metabolic responses to exercise and feeding, however few studies exist 

which leverage stable isotopes in chronobiology. Metabolism of isotopically labeled glutamate has 

been shown to depend on the relative levels of gamma-aminobutyric acid (GABA) and glutamine 

in astrocytes and neurons, suggesting control of sleep/wake cycles through a metabolic 

mechanism (Qu et al., 2001, McKenna and Sonnewald, 2005). Pharmacological inhibition of 

GABA transaminase, which alters GABA and glutamate levels, results in a perturbed metabolic 

homeostasis of the TCA cycle and energetic metabolites (Maguire et al., 2015).  This effect 

derives in part through increased transfer of glutamate carbons to lactate, demonstrated via in 

vitro labeling analyses of cultured Drosophila neurons fed 13C5 glutamate, and likely arises from 

compensation for impaired GABA metabolism. 

One recent study reported impaired lipid synthesis in timeless mutants, measured 

through 14C incorporation into bulk lipids from 14C-glucose added to fly media (Katewa et al., 

2016). This effect is only visible under a tRF paradigm, bringing into question the clock-

dependent versus independent roles of timeless, as this effect was not tested in other clock 

mutants. Isotope-feeding studies have also been performed in flies on high-sugar diets to 

understand dietary influences on fat body metabolism (Musselman et al., 2013). Ancillary to the 

study objectives, isotope enrichments in fatty acids, triglycerides, and trehalose reached an 

isotopic equilibrium roughly 24 hours after transfer off the food containing 13C6 glucose. This 

observation is important in designing future labeling studies. Given sugars and lipids are known to 

oscillate with 24 hour periods (Scheer et al., 2009, la Fleur et al., 1999, Dallmann et al., 2012), 
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flux modeling on shorter timer scales would require nonstationary flux analysis, which is currently 

infeasible in whole organisms (Weichert and Nöh, 2013). Qualitative comparisons of isotope 

enrichments may be adequate to discern cycles in metabolic flux, however acute labeling 

experiments would be required to attain appreciate sampling resolution for rhythmicity tests. 

Forcing flies to acutely consume a large meal of a labeled nutrient would likely require starvation 

protocols, which may confound results considering perturbing the activator and repressive arms 

of the clock can have opposing effects on the starvation response (Xu et al., 2008), however 

acute feeding through e.g. an injection bolus may circumvent this concern. 

Diurnal nutrient adsorption of glucose and small peptides have been observed at 

light:dark transitions in wild-type and clock mutant mice through an in situ loop mechanism in the 

jejunum (Pan and Hussain, 2009). Decay from the 14C tracers were detected in the portal vein 

one hour after infusion to discover increased adsorption of both sugars and peptides in wild-type 

mice at the onset of the active phase. Temporal patterns in adsorption were lost in clock mutants, 

which also demonstrated an overall increased and decreased adsorption of sugars and peptides 

respectively. This study marks an important step forward to demonstrate true nutrient processing 

changes across time under control of the circadian clock, beyond secondary predictions made 

from expression or enzyme abundance. Future studies should continue to expand the scope of 

isotope tracing in defining the dynamics of circadian metabolism. As previously mentioned, many 

oscillating metabolites from previous metabolomics analyses derive from lipid and amino acid 

metabolism. Tracing experiments should be appropriated to corroborate these hits by probing 

relative activities of relevant pathways, even if non-steady state metabolic conditions prevent 

quantitative metabolic flux in vivo. Additionally, meaningful inferences must be made from 

labeling patterns in these secondary metabolic processes, which will require expanded metabolic 

models and computational approaches which operate at a genome scale. 

 

New era of genome-scale networks and in silico metabolic flux 
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 With the advent of whole-genome sequencing, comprehensive metabolic networks can 

be constructed to consider all metabolites and reactions in an organism (Feist et al., 2009). This 

compendium of reactions can be converted to a genome-scale stoichiometric matrix, 

mathematically considering all reactants and products. These network reconstruction efforts 

underlie the field of constraint-based modeling (CBM) (reviewed in Bordbar et al., 2014), which 

differs from inference-based approaches to build networks de novo from patterns in experimental 

data (reviewed in Bonneau, 2008). CBM is a computational approach to understand dynamics of 

metabolism, signaling, and transcriptional regulation by imposing constraints on the metabolic 

network and predicting a set of possible flux values for each reaction. Constraints may include 

thermodynamics, diffusion limits, and ‘omic datasets to improve flux predictions (Weisz, 1973, 

Shlomi et al., 2008). Thus, a whole genome-scale metabolic model for any given organism can 

serve as the scaffold upon which context-specific models can be generated, such as tissue-

specific networks.  

CBM is currently on the cusp of wider usage in biomedical research, and has been used 

for drug target discovery and the exploration of new reaction mechanisms (Frezza et al., 2011, 

Fischer and Sauer, 2003). One appealing development in genome-scale flux predictions is the 

objective to restore the flux vector in aberrant metabolism to a healthy state through knockout 

simulations (Yizhak et al., 2013). Additionally, individualized human kinetic models combine 

enzyme kinetics and personalized ‘omic datasets, which hold promise for tailoring personalized 

medicines to control metabolism (Bordbar et al., 2015). Genome-scale models continue to 

improve in accuracy and annotation, and our current understanding of canonical biochemistry 

pathways from mid-20th century research is already in flux as metabolic simulations continue to 

expand further from the hub of central carbon metabolism (Sauer, 2006). With the rapid 

expansion of computing power in the 21st century, probing metabolic networks through complex 

experimental designs, such as isotope tracer approaches, will become increasingly feasible and 

interpretable. One current design feature missing from CBM simulations is tracking individual 

carbon fates in metabolic networks, however metabolic simulations at atom-resolution are within 
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reach, and are expected to bring science closer to unearthing the complete cellular metabolome 

once thought to be solved in Nicholson’s early metabolic maps (Nicholson, 1970). 

 

1.5. Overview 

The associations of sleep and circadian disruption with poor metabolic outcomes warrant 

further investigations of causality. The exploration of translatable biological mechanisms hinges 

on the appropriate applications of cutting-edge technologies across model organisms. Powerful 

genetic tools and systems-level discovery platforms have provided tremendous insight into the 

basic mechanisms of clock and sleep processes in Drosophila, however chronometabolic 

connections remain largely unexplored. Drosophila provide a tractable model to separate 

environmental and endogenous clock-induced metabolomic changes, which cannot be 

adequately modeled in vitro. An underlying extension of this metabolomics approach, irrespective 

of model organism, is the hypothesis that steady-state cycles will translate to cyclic metabolic 

flux. With a resurgence in isotope tracers, in tandem with annotated genome-scale reaction 

networks, new technologies can be developed to detect transitory metabolism amidst circadian 

cycles. Improved MS instrumentation can now provide rich isotopologue datasets, however much 

work remains to process and interpret such complicated data. Specifically, tools must be 

developed to consider the possible routes through metabolic networks which produce observable 

isotope enrichments. 

 The results of these objectives are outlined in the proceeding chapters. The LC-MS 

metabolomics methods necessary to discern systems-level metabolic cycles are developed in 

Chapter 2 through a design of experiments approach. The LC-MS methods developed in Chapter 

2 are then applied to Drosophila in Chapter 3, through a collaboration with Dr. Amita Sehgal at 

the University of Pennsylvania, to separate metabolite rhythms driven by environmental cues 

from endogenous clocks. Additionally, comparisons are made to previous metabolomics 

experiments to gauge conserved metabolite cycles across species. Chapter 4 expands the LC-

MS methods developed in Chapter 2 to detect isotope enrichments from a 13C6 glucose tracer. 
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Through continued collaboration with Dr. Sehgal, a new platform is developed to introduce stable 

isotope tracers to Drosophila to uncover novel in vivo metabolic flux cycles. Herein are described 

bespoke computational workflows to process and analyze time-series isotopologue datasets, in 

addition to dissecting the impact of sleep restriction on rhythms in metabolic flux. As detailed in 

section 1.4, limitations in sampling resolution and non-steady state conditions in flies preclude 

quantitative flux analysis, however relative pathway activities can still be ascertained. To address 

the limited interpretability of isotopologue datasets, both from Chapter 4 and broadly in metabolic 

flux analysis, new computational tools are developed to model reactions in genome-scale 

networks at atomic resolution, followed by construction of paths from the glucose tracer to 

downstream isotopologues of interest, which is described in Chapter 5. This tool is also presented 

as a new approach to simulate and design isotope tracer studies, with utility beyond 

chronometabolism. 
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CHAPTER 2 - Comprehensive optimization of LC-MS metabolomics methods 
using design of experiments (COLMeD) 

 

Adapted from published work: 

Rhoades SD, Weljie AM. Comprehensive optimization of LC-MS metabolomics methods 
using design of experiments (COLMeD). Metabolomics. 2016;2:183. 

 

2.1. Abstract 

Both reverse-phase and HILIC chemistries are deployed for LC-MS metabolomics 

analyses, however HILIC methods lag behind reverse-phase methods in reproducibility and 

versatility. Comprehensive metabolomics analysis is additionally complicated by the 

physiochemical diversity of metabolites and array of tunable analytical parameters. Our aim was 

to rationally and efficiently design complementary HILIC-based polar metabolomics methods on 

multiple instruments using Design of Experiments (DoE). We iteratively tuned LC and MS 

conditions on ion-switching triple quadrupole (QqQ) and quadrupole-time-of-flight (qTOF) mass 

spectrometers through multiple rounds of a workflow we term COLMeD (Comprehensive 

optimization of LC-MS metabolomics methods using design of experiments). Multivariate 

statistical analysis guided our decision process in the method optimizations. LC-MS/MS tuning for 

the QqQ method on serum metabolites yielded a median response increase of 161.5% 

(p<0.0001) over initial conditions with a 13.3% increase in metabolite coverage. The COLMeD 

output was benchmarked against two widely used polar metabolomics methods, demonstrating 

total ion current increases of 105.8% and 57.3%, with median metabolite response increases of 

106.1% and 10.3% (p<0.0001 and p<0.05 respectively). For our optimized qTOF method, 22 

solvent systems were compared on a standard mix of physiochemically diverse metabolites, 

followed by COLMeD optimization, yielding a median 29.8% response increase (p<0.0001) over 

initial conditions. The COLMeD process elucidated response tradeoffs, facilitating improved 

chromatography and MS response without compromising separation of isobars. COLMeD is 
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efficient, requiring no more than 20 injections in a given DoE round, and flexible, capable of class-

specific optimization as demonstrated through acylcarnitine optimization within the QqQ method. 
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2.2 Introduction 

An ideal metabolomics platform would profile all the metabolites in a living system. 

Complementary approaches such as GC-MS, LC-MS, and NMR can be employed to enhance 

analytical coverage of the metabolome, however the high physiochemical diversity in metabolites 

and technological limitations confine any individual analyses to a relatively small subset of the 

metabolome. Within LC-MS, multiple column chemistries are also increasingly incorporated into 

metabolomics workflows to further enhance coverage (Want et al. 2010). Hydrophilic interaction 

chromatography methods hold significant promise for comprehensive analysis of polar 

metabolites, however reverse-phase methods are routinely used for small polar molecules (New 

and Chan, 2008), in part due to a longer history of reproducible chromatography. The choice of 

MS detection is also critical for augmenting metabolome coverage. For instance, untargeted high-

resolution instruments can provide good coverage and sensitivity (Want et al. 2010), while 

modern triple quadrupole or ion-trap instruments provide ion-switching and fast-scanning 

capabilities for targeted metabolite identification and quantification (Yuan et al. 2012; Gika et al. 

2012; Lv et al. 2011). Holistic improvement of both chromatography and detection parameters 

requires bespoke methods to address a large multivariate problem space (Gika et al. 2014). This 

problem has been previously addressed using genetic algorithms and large-scale Bayesian 

networks (Napoles and Steenbergen, 2014; Correa and Goodacre, 2011), however these 

approaches do not concurrently optimize numerous parameters inherent in the comprehensive 

LC-MS methodology, nor have they been applied to HILIC, which is often sensitive to small LC 

parameter adjustments (Nguyen and Schug, 2008; Hao et al. 2008). An alternative approach for 

complex method optimization is DoE, which incorporates multivariate modeling of many response 

variables simultaneously (Eriksson et al. 2006). DoE allows for the manipulation of several factors 

concurrently and efficiently searches for interaction effects, as opposed to simply changing one 

factor at a time. Typical DoE workflows start with screening objectives, where the most important 

factors and their appropriate ranges are chosen and subsequently optimized iteratively. DoE has 

been used in optimizing other steps of the typical metabolomics workflow, including sample 
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preparation and data processing (A et al. 2005; Eliasson et al. 2012; Zheng et al. 2013). LC-MS 

methods have also been improved in this manner, however the response of interest has typically 

been targeted to one metabolite or a single class of compounds (Zhou et al. 2009; Székely et al. 

2012; Kostić et al. 2013; Riter et al. 2005). 

Here we demonstrate that a DoE-driven approach has potential for large-scale 

metabolomics method development by improving metabolome coverage without overtly 

sacrificing individual metabolite chromatography and MS response. Our main objective was to 

design and optimize a polar metabolomics platform, while addressing the idiosyncrasies of 

targeted and untargeted LC-MS metabolomics. We coin this method comprehensive optimization 

of LC-MS methods through DoE (COLMeD) as a workflow procedure and assess the capability of 

DoE to improve responses on a diverse set of polar metabolites. We find this workflow is robust 

to method development across MS detection methods, tailoring the COLMeD approach to an LC-

MS ESI+ method using high-resolution qTOF detection subsequent to the initial polarity-switching 

QqQ optimization. We show that the results are robust to multiple sample types and can be 

tailored in a class-specific manner by specifically optimizing acylcarnitines from the 

comprehensive QqQ method. We note improvements over commonly used methods (Yuan et al. 

2012; Paglia et al. 2012), and our workflow informed parameter decisions to limit response 

tradeoffs. Moreover, we describe a generalized procedure, bearing in mind the utility of this 

approach for efficiently optimizing other facets of analytical method development. 

 

2.3 Methods 

Chemicals 

All chemical standards used in this study were minimally analytical grade and obtained 

from commercial sources (Table 2.1). Optima grade acetonitrile and methanol were purchased 

from Fisher Scientific (Fair Lawn, NJ) for the mobile phase and standard solutions. Optima 

LC/MS ammonium acetate and formic acid and TraceMetal grade ammonium hydroxide were 
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used as mobile phase additives and also obtained from Fisher Scientific. All water used in this 

study was deionized and filtered (18.2MΩ, 0.22µm). 

 

Preparation of standard solutions and biological samples 

Standard solutions for positive mode qTOF DoE were prepared as 1mg/mL stocks in 

100% methanol and diluted to 1µg/mL in 3:1 acetonitrile:methanol. All samples were centrifuged 

at 18787g for 5 minutes before LC-MS injection. Gibco horse serum (Invitrogen, Grand Island, 

NY) and homogenized Drosophila melanogaster samples were prepared using a modified Bligh-

dyer extraction (Bligh and Dyer, 1959). Briefly, 120µL of 2:1 methanol:chloroform was added to 

20µL of serum or 40mg of fly tissue, followed by a brief vortex and 15 minute sonication. 40µL of 

both chloroform and water were added to the solution, followed by centrifugation at 18787g for 7 

minutes to form the bilayer. The top layer, containing the aqueous fraction, was isolated and dried 

down overnight. The dried pellet was resuspended in either 100µL or 400µL of 50:50 

water:acetonitrile for serum and fly respectively before LC-MS injection. 

 

LC-MS conditions 

Chromatographic separations for the ion-switching DoE were performed on an XBridge 

BEH Amide column (2.1x100mm, 2.5µm, Waters Corporation, Milford, MA) with a 2.1x5mm 

Vanguard pre-column. DoE chromatography for untargeted qTOF analysis was performed on an 

ACQUITY UPLC BEH Amide column (2.1x150mm, 1.7µm), with a 0.2µm in-line filter. Both 

methods utilized an ACQUITY H-Class UPLC (Waters Corporation). The mobile phases for the 

ion-switching analysis were initially taken from Yuan et al., where the aqueous mobile phase 

consisted of 95:5 water:acetonitrile with 20mM ammonium acetate and ammonium hydroxide, pH 

9, with the organic mobile phase as 100% acetonitrile. Mobile phase A for the qTOF LC-MS 

method was comprised of 95:5 water:acetonitrile with 2mM ammonium acetate and 0.2% formic 

acid, while mobile phase B consisted of 90:10 acetonitrile:water with 2mM ammonium acetate 

and 0.2% formic acid, which was determined through experimental testing as described later in 
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the text. Mass spectrometry was performed on either a Waters TQD or Waters G2-S qTOF in 

positive ion mode using ESI+, using Leucine-enkephalin for the lock-mass calibration. As a basis 

of comparison for our approach, the LC-MS methods described by Yuan et al. (Method 1) and 

from a Waters HILIC Application Note (Paglia et al. 2012, Method 2) were followed as published. 

Chromatograms were processed using TargetLynx under MassLynx version 4.1. Statistical 

analyses and plotting was performed in R version 3.2, and comparisons between DoE rounds 

were made via paired Wilcoxon signed-rank tests. 

 

Model generation, design, and optimization in the COLMeD process 

DoE serves to discover important predictor variables which contribute to one or many 

desired responses to determine optimal factor tuning (Eriksson et al. 2006). To deal with the 

complexity of tuning multiple factors to manipulate the many responses in our metabolomics 

methods, our DoE-driven COLMeD approach employs a partial least squares (PLS) fitting 

algorithm. Specifically, PLS fits a model to the variation of all responses with the variation of the 

factors by accounting for their covariance. This method of fitting is more efficient than multiple 

linear regression (MLR), which is also common in multivariate optimization problems, since MLR 

fits separate regression models for each response. MLR also suffers when handling missing data 

points, which we had encountered in our response matrix, given some chromatographic peaks 

were not always present depending on the LC-MS factor settings. In our case, dependent 

variables are the original analytical responses (e.g. metabolite peak area and chromatographic 

values), which are tuned to independent LC-MS factors by transformation into latent variables. 

The number of latent variables, or PLS components, were determined through the default 

mechanism in MODDE v11 (Umetrics, Umeå, Sweden), whereby components were added to 

improve goodness of fit (R2) until the goodness of prediction (Q2) was compromised by overfitting 

the model. The predictive performance of the model was computed via 7-fold cross validation. A 

major advantage of this approach is the ability to weigh one response more than another across 

DoE rounds, which we utilize heavily in our COLMeD process. For example, responses with 
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significant peak area under the curve (AUC) after the first round were downweighted in the 

predictive modeling to favor LC-MS settings which improve other features with lower responses. 

AUC responses were set to be maximized in the modeling, while the peak widths were tailored 

such that peak width objectives were either 4 seconds for the untargeted qTOF method or 15 

seconds for the QqQ method, which benefits from slightly wider peaks due to tradeoffs of 

scanning over hundreds of MRMs. Additionally, the response objectives can be adjusted round 

over round to achieve iterative improvement. After modeling, a new set of experiments are 

generated, in the form of LC-MS settings. This process constitutes one round of DoE, which 

would be repeated until optimal conditions are met (specific COLMeD processes listed in Table 

2.2). 

In a regularly shaped design region, central composite or full factorial designs are 

typically chosen to explore the edges of the design space. However, D-Optimal designs 

generated in MODDE can accommodate experiments with irregular design regions (Eriksson et 

al. 2006), which allowed us to impose constraints on our LC-MS settings which were not feasible 

or desirable, for example long LC gradients coupled with high flow rates. We tested the edges of 

the irregular design space in addition to replicate LC-MS injections in the center of the space to 

gauge reproducibility and model validity. In addition, we performed a conserved triplicate injection 

at the end of each DoE round as a quality control measure across batches. To rationalize the LC-

MS parameters for the next round of experiments, we utilized both visual representations of 

optimal regions within the design space and a quantitative optimizer function which generated a 

list of parameters to yield an optimized solution using the PLS model. In addition to the model 

statistics and predictive functions of the PLS model, we also evaluated the VIP value, which is a 

multivariate metric used to identify the relative importance of an original predictor variable (i.e. 

before transformation) to the model (Eriksson et al. 2006). These values identify non-significant 

contributions of LC-MS parameters to the metabolite responses, which allowed us to assign fixed 

values and simplify the design space for the next DoE round. We chose to use MODDE software 

due to integrated cross-validated model fitting, model fit visualizations, and predictive capabilities. 
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Open-source platforms for each of the steps in the COLMeD process could be alternatively used 

to build an in-house workflow. 

 

Ion-Switching COLMeD 

While the ultimate goal was to optimize both LC and MS conditions, the initial 

experimental design space including LC gradients was too large to combine with MS parameters 

and therefore required a two-stage approach, outlined in Table 2.2. A screening linear objective 

design of LC-only tuning was chosen for this initial round, omitting interaction effects and 

requiring only 13 LC-MS injections. Response measurements were taken on multiple sample 

types, horse serum and homogenized fly samples, which provided an added measure of 

confidence in designing the next round of experiments. The total initial response optimization 

consisted of a set of 33 responses in horse serum (Table 2.3), as well as unique responses found 

in fly tissue but uncommon in serum in order to enhance overall coverage in the initial screen 

(Table 2.4). Measured response variables were chosen based on criteria designed to elucidate a 

broad physiochemical range of metabolites and the presence of marginally detectable 

metabolites, in addition to measures of peak quality. We tailored the responses to reflect 

particular considerations of MRM-based analysis. For example, glutamine and lysine have 

overlapping MRMs, thus we fit the PLS model to predict maximal retention time separation. MRM 

transitions and voltages were optimized by using pure standards or from the METLIN and HMDB 

mass spectrometry databases (Smith et al. 2005; Wishart et al. 2013). For AUC response 

optimization, the objective defined in the PLS fitting was set by using the mean AUC from the LC-

MS injections of that DoE round as a threshold, from which the optimizer and design space plots 

were used to find conditions predicted to increase AUC for the subsequent DoE round. 

Factors considered for the LC optimization included the initial LC flow rates (0.1-

0.25mL/min, continuous variable) and gradient types (1-4, Figure 2.1, discrete). The gradients 

were rationalized from both published (Yuan et al. 2012) and unpublished work. The LC-MS 

parameters proposed by Yuan et al. (Gradient 1) served as a starting point to build our 
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metabolomics platform, however we felt the COLMeD process could improve response within the 

QqQ method as well as and LC solvents as Yuan et al. for the QqQ method, we relaxed the LC 

parameters in an exploratory manner before refined tuning in later rounds. The MS parameters 

were initially set as close to the published settings as possible while aligned with vendor-specific 

voltage parameters. Initial gradient times (10-16min) were purposefully imposed to achieve 

reasonably high throughput. The gradient time refers to the time of injection until the wash step. 

 

Modular workflow optimization 

After Rounds 2 and 3, we sought to further optimize the method for a specific class of 

compounds with shared chemical properties, in which case the parent method could be used to 

tune the response for specific compounds, such as carnitines. The analytical factors were 

analogous to other rounds of QqQ DoE, but the responses were limited to peak AUCs and peak 

widths for carnitine, acetylcarnitine, propionylcarnitine, and butrylcarnitine. The data from DoE 

rounds 2 and 3 were combined and used as inclusions in a D-Optimal quadratic design, whereby 

only an additional six test runs were needed to finish out the model design. The experimental 

space in which the method optimum predictions from Rounds 2 and 3 overlapped with predictions 

based off of these additional test runs with good model statistics confirmed the optimized method 

and thus completed the class-specific DoE. 

 

Untargeted qTOF COLMeD 

Optimizing chromatography for an untargeted method requires additional considerations 

due to the large number of unknown responses. Rather than optimizing responses on a serum 

sample, which would contain many unknown features, we initially developed the qTOF method on 

a standard mix of 48 diverse polar metabolites injected at 1µg/mL (Table 2.1). Prior to DoE, 22 

LC solvent systems were compared using the standard mix. These solvents were based on a 

literature search and are listed in Table 2.5 (Want et al. 2010; Kivilompolo et al. 2013; Ivanisevic 

et al. 2013; Zhou et al. 2013). Mass spectrometry settings were based on data from the ion-
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switching method development, where desolvation temperature and gas flow were set to 500°C 

and 1000L/Hr respectively. Unless specified by a particular published method, the gradients were 

aligned across each solvent system, with 45°C column temperature. Given the solvents used in 

the QqQ method are pH 9, new solvents were required for a qTOF method in positive ionization. 

Aggregate measures of peak capacity, peak skew, peak resolution between any two pairs of 

peaks, number of peaks, MS response, and peak widths were all compared to choose the initial 

LC solvents (Table 2.6). These metrics were used in addition to inspection of chromatography to 

choose the best solvents manually. We found that some solvents yielded split peaks and 

prohibited detection of all the metabolites in our mix, thus we felt the need to inspect these results 

and choose accordingly before proceeding to strictly quantitative optimization of the method using 

DoE. After selecting the LC solvents, the COLMeD approach was divided into two parts to 

optimize LC and MS settings separately, which was in large part guided by our QqQ COLMeD 

findings. Three rounds of DoE were performed for the LC factors (Table 2.7), which included 

responses for isobar separations of leucine/isoleucine and alanine/sarcosine, with fixed MS 

parameters. For ease of comparison, peak response (AUC), peak width, and peak skew were 

converted to rank-based values, whereby each injection was ranked in each of these metrics 

across every injection from a given DoE round. The holistic peak metrics used as responses in 

the qTOF COLMeD are more amenable to peak-picking methods used in untargeted data 

processing algorithms. Our objective with the initial LC DoE was to heavily favor optimization of 

chromatography, which naturally derives from the variety of peak quality metrics (peak shape, 

width, separation, etc..) chosen compared to a singular readout of pure metabolite response on 

the MS. In addition, automated integration of peaks can be difficult when flow rates and gradients 

are tuned, which does not change during MS factor tuning. AUC was thus one of several 

responses optimized in the LC DoE, but subsequently the sole response variable used in the MS 

DoE after chromatography was fixed.  

Thus we maintained a similar workflow to the QqQ COLMeD procedure, with additional 

fit-for-purpose modifications to the developmental process. After LC optimization, two rounds of 
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DoE were performed for the MS parameters in ESI+. Similar to the polarity switching design, the 

LC factors consisted of flow rate (0.2-0.5mL/min), gradient slope (4-9, which was calculated by 

percent change in solvent B divided by gradient time), and column temperature (30-60°C). By 

having a simpler design space with only three factors, we could employ a more complex a D-

Optimal quadratic model (20 runs). We were able to further simplify the design by eliminating 

non-significant factors and perform rounds 2 and 3 as full factorial designs (12 runs each, in a 

2x2x3 design). A full factorial design allows for simultaneously testing three levels of each factor 

and support a quadratic model. While typically experimentally costly, with only two factors, this 

design space can be tested with only 12 injections, including center point replicate injections. This 

design is thus identical to the central composite face-centered (CCF) analysis, which is 

recommended for full scale investigations and optimization after elimination of less important 

factors from earlier DoE rounds (Eriksson et al. 2006). Our criteria for removing factors included 

both analysis of coefficient plots and displaying a VIP score below 1. The detailed models 

informed tradeoffs in analyte response, while also considering conditions providing sufficient 

chromatographic resolution between isobars. The MS factors consisted of sampling cone voltage 

(20-40V), desolvation temperature (400-550°C), source temperature (90-150°C), cone gas flow 

(20-80L/Hr), and source offset (60-100V). The sole response optimized for the MS DoE was 

average AUC rank for each injection on the 48 standards. DoE was completed when we were 

able to identify the LC-MS parameters that met our response thresholds, the elucidation of 

tradeoffs in the method, and weak PLS model statistics, which indicated a tightly constrained 

design space with minimal gains for further improvement. 

2.4 Results and Discussion 

Round 1: Initial LC screening for polarity-switching method 

The initial screening batch for the comprehensive quadrupole method LC conditions 

consisted of 13 injections, repeated for both horse serum and fly samples. Predictive design 

space plots and optimizer analysis of both data sets yielded similar trends for all three factors 
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(Figure 2.2). Notably, lower flow rates and/or longer gradients were predicted to improve 

response, with gradients 3 and 4 yielding predicted design space regions with the most response 

criteria met. Some differences in the predicted gradient time optimum likely result from slightly 

different response lists across sample types. However, given both flow rate and gradient time had 

significant impact (VIPs of 1.43 and 1.08 respectively), also supported by analysis of PLS 

loadings plot (Figure 2.3), our initial estimates of factor ranges based on a priori rationale and 

desirability of run time and flow rates needed to be expanded. The model statistics from Round 1 

serum analysis gave us confidence in obtaining the method optimum via expanding these factor 

ranges (Table 2.8). 

 

Continued DoE with LC and MS factors 

After adjusting the LC factors from Round 1, the MS factors and column temperature 

were added to the design. While displaying a relatively weak effect compared to other factors, 

gradient 4 slightly outperformed gradient 3 (nonsignificantly), and was arbitrarily selected and 

fixed in future designs. Running multiple optimizations predicted flow rates above 0.15mL/min to 

improve results. To some degree this prediction contradicts the predictions from Round 1, which 

may be resolved with increased sampling. Given that flow rate maintained an important 

contribution to the PLS model (VIP = 1.09), the flow rate was restricted to regions of the design 

space where the predictive plots and optimization functions overlapped in optimum predictions 

(0.15-0.3mL/min). Desolvation temperature also had a large effect on response as demonstrated 

by the largest VIP value (1.19) amongst LC-MS factors. Consequently, this factor was restricted 

to 300-500°C for Round 3 based on the predictive plots and optimizer function.  The predicted 

optimal gradient times were variable, however given the desire to increase throughput, 12-18 

minute gradients were set for Round 3. Column temperature had less effect on the model 

compared to the other factors (VIP=0.89), and these temperatures were restricted to 40-55°C for 

Round 3 based on the predictions. Desolvation gas flow was retained as a factor in the 

subsequent model despite a minimal contribution (VIP=0.8), albeit restricted to maintain 
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compatibility with the desolvation temperatures according to the manufacturer’s 

recommendations. 

 

Further refinement of design space 

The updated factor ranges were used for the fractional factorial design in Round 3, 

necessitating 17 runs. Predictions from the model yielded slightly shifted but generally consistent 

results with Round 2. Flow rate and desolvation temperature again were the most significant 

factors, (VIP of 1.88 and 1.37, respectively). Optimal flow rates gravitated towards the low end of 

the 0.15-0.3mL/min range. Conversely, higher desolvation temperatures were predicted to 

perform better. Gradient times were consistent from predictions from Round 2, likewise, column 

temperature and desolvation gas flow were largely irrelevant, with the factor ranges being 

unaffected by the updated predictions. Over the course of the three rounds we noticed marked 

improvement in multiple endpoints, including MS response, peak width (towards our goal of 

15sec widths at half height), and number of metabolites (Figure 2.4A). 

 

Acylcarnitine-specific DoE 

To explore the notion of targeting subsets of metabolites from the comprehensive parent 

method, data from rounds 2 and 3 of the polarity switching DoE were combined to generate 

predictions for increased AUC and optimized peak width of carnitine, acetylcarnitine, 

propionylcarnitine, and butrylcarnitine. Based on this data, lower flow and longer gradients were 

expected to improve response and peak width. Analysis of the acylcarnitine-specific LC-MS runs 

generated from modeling the data in rounds 2 and 3 revealed consistencies in the predictions and 

improved AUC response and peak width with strong PLS fitting (Table 2.8), demonstrating 

successful confirmation of the predictions and optimization of a compound class specific method 

(Figure 2.5). 

 

Refinement and validation of comprehensive method 
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We primarily attributed improvements in the acylcarnitines across Rounds 2 and 3 to 

adjustments in desolvation temperature. Given this information, we then evaluated the original 33 

responses chosen in the comprehensive method with the acylcarnitine-specific experimental 

design to observe tradeoffs between response improvement of the carnitines, which exhibit 

positive ionization, versus other metabolites in both ESI+ and ESI- modes (labeled as Round 4 in 

Figure 2.4B). While not a true round 4 DoE design for the comprehensive method, we can 

leverage this extra information to refine our final COLMeD output. We found that between Round 

4 and Round 1, which contained the maximal spread of desolvation temperatures, the median 

carnitine AUC increase was 82.2% compared to 54.9% for all other metabolites. We 

subsequently adjusted desolvation temperature to 450°C as a final tuning of the comprehensive 

method which contains both ESI+ and ESI- metabolites. The final parameters for the 

comprehensive QqQ method were 0.15mL/min flow rate, 20 minute gradient time (Mobile phase 

B changed from 85-30% over the first 5 minutes and held until the wash step at 20 minutes), 

950L/Hr gas flow and 45°C column temperature. The overall COLMeD progression of LC-MS 

parameters is listed in Table 2.9. Manufacturer’s notes from Waters suggest 400°C and 800L/Hr 

desolvation settings for a 0.15mL/min flow rate, corroborating optimized and safe conditions. 

Although the flow rate is below the optimum efficiency for a 2.5µm particle size, the COLMeD 

approach optimized our methods to be fit-for-purpose. Additional injections of horse serum were 

analyzed at these conditions as a validation measure of the final method (labeled as ‘COLMeD 

Final’ in Figure 2.4B). Improvements were noted over Round 1 in both the percent AUC increase 

(median increase of 161.5%, p=7.76e-16, Figure 2.4B) and the number of metabolites detected, 

from 163 to 188. 

 

Benchmarking the COLMeD result 

We compared our final method to two other well utilized methods: a polarity-switching 

method utilizing the same solvents and column from Yuan et al., (Method 1) as well as a vendor 

published method optimized for high-resolution untargeted qTOF analysis compatible with our 
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instrumentation (Waters) used in several metabolomics studies (Want et al. 2010; Paglia et al. 

2012; Bruce et al. 2009, Method 2). We observed a total ion current increase in measured 

metabolite channels of 105.8% and 57.3% over these two methods respectively, (Figure 2.4C), 

with a median 106.1% increase in metabolite response over Method 1 (paired comparison, 

p=1.46e-13) and a median 10.3% increase over Method 2 (p=0.042). We were also able to 

maintain broad metabolite coverage with the COLMeD output method, yielding 188 metabolites 

compared to 181 and 190 in Methods 1 and 2 respectively, meeting our overall objective of 

developing sensitive and deep polar metabolomics methods. The coefficient of variation across 

replicate injections also decreased for a given metabolite compared to Methods 1 and 2 

(p=6.27e-03 and p=7.16e-04 respectively, Figure 2.6), suggesting improved method precision. 

 

Untargeted qTOF DoE 

Given the difference between triple quadrupole and untargeted qTOF-based 

metabolomics, we employed a modified COLMeD approach. Ranked-based metrics (Table 2.6) 

and visual inspection of chromatography were used to choose the initial LC solvents between 22 

solvent combinations in ESI+ mode before further DoE optimization of chromatography (Table 

2.5, 2mM ammonium acetate with 0.2% formic acid chosen as the final additives). Of the six 

interaction variables for LC and MS factors in the PLS model for the Round 4 QqQ DoE, only 

gradient time with desolvation temperature yielded a VIP score over 1, while four of these six 

factors had a VIP score below 0.8. Thus we felt the interaction of LC and MS factors were small 

enough to optimize LC and MS on the qTOF separately (Table 2.10). After the first round of DoE, 

optimizing LC parameters only, predicted response optimums resided around 0.3-0.4mL/min with 

3-5 gradient slope. Both of these factors contributed significantly to the data (VIP values of 1.9 

and 1.65), unlike column temperature (VIP=0.62). Consequently, column temperature was fixed 

at 40°C for Rounds 2 and 3, which facilitated full factorial designs for optimizing flow rate and 

gradient slope (Figure 2.7). Results were consistent after Round 2, and flow rates were focused 

to 0.35-0.4mL/min with a gradient slope between 4 and 5. In this process, important tradeoffs 
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were noted. For example, 0.35mL/min was the minimum flow rate to maintain a 

Leucine/Isoleucine and Alanine/Sarcosine resolution of at least 1.2. Peak capacity also improved 

with higher flow rates, but AUC ranks improved towards 0.3mL/min, thus 0.35mL/min was 

considered a good compromise for these responses (with a 5 gradient slope as defined in the 

methods and 40°C column temperature chosen as the final conditions, Figure 2.8A). The PLS 

fitting to data from the Round 1 LC dropped significantly by Round 3, informing us of a highly 

constrained design space where there existed little room for improvement (Table 2.8). 

Chromatographic parameters improved with minimal sacrifice to response, particularly in regards 

to decreasing the spread of peak widths and peak skews (Figure 2.8B). These settings also 

closely follow the UPLC linear velocity for the 1.7µm column while maintaining safe 

backpressures. Thus for the final LC conditions, the gradient was changed from 100-20.6% B 

over 15 minutes at 0.35mL/min, followed by a wash of 100% A for 5 minutes. Mobile phase B was 

changed from 0-100% from 20-22 minutes and held for column equilibration until 30 minutes. For 

the MS parameters, analysis of the initial linear screening batch produced a compelling model 

(Table 2.8) with desolvation temperature as the dominant factor (VIP=2). Positive correlation of 

AUC and desolvation temperature is also in line with the QqQ method optimization. Desolvation 

temperature was then fixed for Round 2 to reduce design complexity. Source offset was the only 

other factor which weighed significantly in the PLS models (VIP=1.75), improving AUC rank at 

minimum voltages. The other factors had low VIP scores (all below 0.9) and nonsignificant 

coefficient values, though the trends in improving response were consistent in both rounds. Two 

rounds of DoE were considered sufficient to improve response to complete the LC-MS 

optimization of the untargeted method in a highly efficient manner. Round 2 yielded an average 

response increase of 29.8% (p=3.016e-05), while the chosen parameters within the Round 2 

factor settings only yielded a 2.9% increase over the average AUC for the entire round, indicating 

minimal room for further improvement. Final conditions were 550°C desolvation temperature, 25V 

cone voltage, 60V source offset, 120°C source temperature, and 50L/Hr cone gas flow (Figure 

2.9). 
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2.5 Concluding Remarks 

In this study, the COLMeD approach is demonstrated as an efficient and flexible tool to 

optimize multiple LC-MS metabolomics methods with different objectives. This may be particularly 

useful due to differences between results an individual lab compared to literature parameters. 

Improvements from the starting points of the LC-MS design space were noted for metabolite 

responses and their chromatography using a limited number of injections. We also noted 

improvements in these responses over other established polar metabolomics methods. We do 

acknowledge that while all columns tested in this study and the benchmarked methods have an 

amide chemistry, the column dimensions vary which may impact the data. A subset of 

metabolites with similar chemical properties were further optimized within the comprehensive 

method, which could allow for acylcarnitine-specific analyses without needing to switch solvents 

or columns. We feel this modular approach can efficiently optimize analyses of other particular 

metabolite groups of interest. Tailoring the COLMeD approach for untargeted metabolomics on 

the qTOF also yielded improved chromatography and response while maintaining sufficient isobar 

separation. Consequently, it is important to note that there are many ways to optimize these 

methods within the COLMeD framework. One could optimize only LC factors, using more 

thorough designs after the screening round to add confidence in obtaining the method optimum, 

followed by a similar workflow for the MS factors, which was the route was taken for the 

untargeted qTOF method development. This approach may require more injections and time, but 

has the advantage of being amenable to more automated methods for peak analysis once the 

chromatography is fixed. Conversely, we felt our combined LC-MS linear model approach for the 

polarity-switching method could yield our desired output while minimizing injections, given most of 

the coefficients for the interaction variables to be among the lowest in both rounds 3 and 4 of the 

QqQ COLMeD process (Table 2.10). A combination of more detailed model designs, along with a 

smaller initial design space, will likely yield a stronger predictive model, as we had found with the 

separated LC and MS optimizations (Table 2.8). We generally recommend separating LC and MS 

optimizations if time allows and additional rigor is required, however without parallel analysis of 
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combined versus sequential LC-MS optimizations, we cannot definitively say if the response 

gains would be significant. In addition, broader assessments of peak quality and response are 

more suitable for optimizing untargeted metabolomics methods. In our case, optimizing these 

aggregated metrics met our objective of developing comprehensive metabolomics methods, as 

opposed to more focused and quantitative metrics such as limits of detection and response 

variance. Others have recently used a Derringer function approach to comprehensively assess 

peak characteristics in a multi-analyte mixture (Sampsonidis et al. 2015), similar to what we 

employed here. We stress that during optimization of complex methods over many responses, 

not every response can be maximally improved and thus requires analysis of tradeoffs. However, 

one benefit in utilizing these statistical models is the ability to stress the optimization of more 

important metabolites or responses. We also note that in method development for LC-MS 

metabolomics, the method optimum is largely defined by the user, and thus the response 

selection must be fit for the experimental purpose. Future studies will further validate these 

methods with different sample types and responses, such as the compounds found in our 

homogenized fly samples but not horse serum. More importantly, we have laid out a thorough 

description of the COLMeD workflow from which we hope can be useful in not only LC-MS 

metabolomics but other complex method types which require adjusting multiple factors to 

optimize multiple responses. 
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Table 2.1 Metabolite standards used in qTOF method development, with associated HDMB and 
KEGG identifiers 

Metabolite Human Metabolome Database KEGG Source 

Glycine HMDB00123 C00037 Fisher Scientific 

Taurine HMDB00251 C00245 Fisher Scientific 

Sucrose HMDB00258 C00089 Fisher Scientific 

Alanine HMDB00161 C00041 Sigma 

Serine HMDB00187 C00065 Sigma 

Proline HMDB00162 C16435 Sigma 

Valine HMDB00883 C00183 Sigma 

Threonine HMDB00167 C00188 Sigma 

Aspartate HMDB00191 C00049 Sigma 

Lysine HMDB00182 C00047 Sigma 

Glutamine HMDB00641 C00064 Sigma 

Glutamate HMDB00148 C00025 Sigma 

Histidine HMDB00177 C00135 Sigma 

Phenylalanine HMDB00159 C02057 Sigma 

Citrulline HMDB00904 C00327 Sigma 

Tyrosine HMDB00158 C00082 Sigma 

Guanosine HMDB00133 C00387 Sigma 

Glutathione-reduced HMDB00125 C00051 Sigma 

Adenosine monophosphate HMDB00045 C00020 Sigma 

Adenosine disphosphate HMDB01341 C00008 Sigma 

Adenosine triphosphate HMDB00538 C00002 Sigma 

Folic acid HMDB00121 C00504 Sigma 

Choline HMDB00097 C00114 Acros Organics 

Betaine HMDB00043 C00719 Acros Organics 

Cysteine HMDB00574 C00097 Acros Organics 

Leucine HMDB00687 C00123 Acros Organics 

Isoleucine HMDB00172 C00407 Acros Organics 

Asparagine HMDB00168 C00152 Acros Organics 

Acetylcholine HMDB00895 C01996 Acros Organics 

Methionine HMDB00696 C01733 Acros Organics 

Hypoxanthine HMDB00157 C00262 Acros Organics 

Carnitine HMDB00062 C00318 Acros Organics 

Arginine HMDB00517 C00062 Acros Organics 

Glucose HMDB00122 C00031 Acros Organics 

Fructose HMDB00660 C10906 Acros Organics 

Acetylcarnitine HMDB00201 C02571 Acros Organics 

Tryptophan HMDB00929 C00078 Acros Organics 

Pantothenate HMDB00210 C00864 Acros Organics 



55 
 

cyclic AMP HMDB00058 C00575 Acros Organics 

Cortisol HMDB00063 C00735 Acros Organics 

NAD+ HMDB00902 C00003 Acros Organics 

Sarcosine HMDB00271 C00213 Acros Organics 

Phosphocreatine HMDB01511 C02305 Acros Organics 

Creatine HMDB00064 C00300 Acros Organics 

Malonylcarnitine HMDB02095 Not Found Cambridge Isotopes 

Hydroxyisovalerylcarnitine HMDB13132 Not Found Cambridge Isotopes 

Acetyl-CoA HMDB01206 C00024 Cambridge Isotopes 

Octanoylcarnitine HMDB00791 C02838 Tocris Biosciences 

Palmitoylcarnitine HMDB00222 C02990 Tocris Biosciences 
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Table 2.2 COLMeD Workflow for both QqQ and qTOF Methods 
 

Workflow QqQ qTOF 

Initial factor range and response 

selection 

Factors: LC only (round 1), 

followed by LC-MS 

Responses: Metabolites from 

horse serum (Table S2) 

Factors: LC and MS optimization 

separate 

Responses: Standard mix, both 

LC and MS response (Tables S5 

and S6) 

Pilot LC-MS batch 
D-Optimal linear screening 

design: 13 runs 

D-Optimal quadratic design for 

LC: 20 runs 

D-Optimal linear for MS: 13 runs 

Data processing and fitting to 

PLS models 
Main effect plots and PLS loadings for data assessment 

Model analysis and optimum 

predictions 

Predictive design space plots, and optimizer function for optimum 

predictions, VIP > 1 for important factors 

Update factor settings and 

constrain design space for next 

round; change design as needed 

1 round for LC (13 runs) 

3 rounds for LC-MS (13, 17, 9 

runs) 

3 rounds for LC (20, 12, 12 runs) 

2 rounds for MS (13, 12 runs) 

 

 



57 
 

Table 2.3 List of Responses Optimized in Horse Serum 

AUC Response
a 

(maximize) 

Peak Width
b 

(15sec) 

Peak Presence
c 

(maximize) 

Acetoacetate 

Acetylcarnitine 

Aconitate 

Butrylcarnitine 

Carnitine 

Choline 

Citrulline 

Disaccharide 

Glucose 

Glycine 

Hypoxanthine 

Malate 

Ornithine 

Propionylcarnitine 

Urea 

Acetylcarnitine 

Arginine 

Butrylcarnitine 

Carnitine 

Choline 

Disaccharide 

Glycerophosphocholine 

Histidine 

Lactate 

Ornithine 

Propionylcarnitine 

Serine 

Tyrosine 

Citrate 

Fumarate 

 

Peak Quality
d 

(maximize) 

Histidine 

Succinate 

 

RT Differencee 

(maximize) 

Glutamine/Lysine 

aAUC represents area under the curve of integrated peak. bWidth defined by full width half height of the peak. 
cResponse given 0 or 1 based on peak presence. dPeak quality defined qualitatively, whereby 0 is nonexistant peak, 1 is 

noisy signal, 2 is defined peak, 3 is Gaussian peak. eRT = Retention Time. Brackets in headings indicate the objective 

criteria used in the optimization functions 
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Table 2.4 List of Responses Optimized in Fly 

AUC Response
a
 Peak Width

b
 

Acetoacetate Acetylcarnitine 

Acetylcarnitine Arginine 

Aconitate Butrylcarnitine 

ADP Carnitine  

ATP Choline  

Butrylcarnitine Disaccharide  

Carnitine Glycerophosphocholine  

Choline Histidine  

Disaccharide Lactate  

Fumarate Ornithine  

Glucose Propionylcarnitine  

Glycine Serine 

Glutathione-Reduced Tyrosine 

Hexose-6-Phosphate  

Histidine Peak Quality
c
 

Malate Hypoxanthine 

Ornithine  

Propionylcarnitine RT Differenced 

Ribulose-5-Phospahte Glutamine/Lysine 

Succinate  

aAUC represents area under the curve of integrated peak. bWidth defined by full width half height of the peak cPeak 

quality defined qualitatively, whereby 0 is nonexistant peak, 1 is noisy signal, 2 is defined peak, 3 is Gaussian peak. 
dRT = Retention Time 



59 
 

Table 2.5 Twenty-two solvent combinations used in the qTOF LC method development 

Method Aqueous Solvent Organic Solvent 

1 100% water, 0.1% formic acid 100% acetonitrile, 0.1% formic acid 

2 100% water, 10mM ammonium acetate, 

0.2% formic acid 

95:5 acetonitrile:water, 10mM 

ammonium acetate, 0.2% formic acid 

3 100% water, 5mM ammonium formate, 

5mM ammonium acetate, 0.2% formic 

acid 

95:5 acetonitrile:water, 5mM 

ammonium formate, 5mM ammonium 

acetate, 0.2% formic acid 

4 100% water, 10mM ammonium formate, 

0.1% formic acid 

90:10 acetonitrile:water, 10mM 

ammonium formate, 0.1% formic acid 

5 100% water, 10mM ammonium formate, 

0.2% formic acid 

90:10 acetonitrile:water, 10mM 

ammonium formate, 0.2% formic acid 

6 100% water, 10mM ammonium formate, 

10mM ammonium acetate, 0.2% formic 

acid 

90:10 acetonitrile:water, 10mM 

ammonium formate, 10mM 

ammonium acetate, 0.2% formic acid 

7 100% water, 0.2% formic acid 100% acetonitrile, 0.2% formic acid 

8 100% water, 5mM ammonium acetate, 

0.2% formic acid 

90:10 acetonitrile:water, 5mM 

ammonium acetate, 0.2% formic acid 

9 100% water, 5mM ammonium formate, 

5mM ammonium acetate, 0.1% formic 

acid 

90:10 acetonitrile:water, 5mM 

ammonium formate, 5mM ammonium 

acetate, 0.1% formic acid 

10 100% water, 10mM ammonium formate, 

10mM ammonium acetate, 0.1% formic 

acid 

90:10 acetonitrile:water, 10mM 

ammonium formate, 10mM 

ammonium acetate, 0.1% formic acid 

11 100% water, 10mM Ammonium Acetate, 

0.2% formic acid 

90:10 acetonitrile:water, 10mM 

ammonium acetate, 0.2% formic acid 

12 100% water, 10mM ammonium acetate, 

0.1% formic acid 

90:10 acetonitrile:water, 10mM 

ammonium acetate, 0.1% formic acid 

13 100% water, 5mM ammonium formate, 

0.2% formic acid 

90:10 acetonitrile:water, 5mM 

ammonium formate, 0.2% formic acid 

14 100% water, 1mM ammonium acetate, 

0.2% formic acid 

90:10 acetonitrile:water, 1mM 

ammonium acetate, 0.2% formic acid 

15 100% water, 2mM ammonium formate, 

0.1% formic acid 

90:10 acetonitrile:water, 2mM 

ammonium formate, 0.1% formic acid 

16 100% water, 2mM ammonium formate, 

2mM ammonium acetate, 0.2% formic 

acid 

90:10 acetonitrile:water, 2mM 

ammonium formate, 2mM ammonium 

acetate, 0.2% formic acid 

17 100% water, 2mM ammonium acetate, 

0.1% formic acid 

90:10 acetonitrile:water, 2mM 

ammonium acetate, 0.1% formic acid 

18 100% water, 1mM ammonium formate, 

0.2% formic acid 

90:10 acetonitrile:water, 1mM 

ammonium formate, 0.2% formic acid 

19 100% water, 1mM ammonium formate, 

1mM ammonium acetate, 0.1% formic 

acid 

90:10 acetonitrile:water, 1mM 

ammonium formate, 1mM ammonium 

acetate, 0.1% formic acid 

20 100% water, 2mM ammonium formate, 

2mM ammonium acetate, 0.1% formic 

acid 

90:10 acetonitrile:water, 2mM 

ammonium formate, 2mM ammonium 

acetate, 0.1% formic acid 

21 100% water, 5mM ammonium acetate, 

0.1% formic acid 

90:10 acetonitrile:water, 5mM 

ammonium acetate, 0.1% formic acid 
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22 100% water, 2mM ammonium acetate, 

0.2% formic acid 

90:10 acetonitrile:water, 2mM 

ammonium acetate, 0.2% formic acid 
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Table 2.6 Metrics used to choose the optimal starting LC solvent composition among 22 solvent 
possibilities for untargeted qTOF LC-MS optimization prior to DoE 

Metric Description Objective 

Percentage of peaks under 

retention 2 

The percentage of total peaks detected that had a retention 

index under 2, calculated using k=tR-t0/t0, where tR is the 

peak retention time and t0 is the void volume 

Minimize 

Percentage of peaks under 

resolution 1.5 

Using a combinations function, all possible peak 

resolutions were calculated between two peaks, defined by 

Rs=2(tR2-tR1)/(wb2+wb1), where R2 and R1 are retention 

times of two peaks, and b2 and b1 are base peak widths of 

two peaks 

Minimize 

Average peak resolution Average of all possible peak resolutions between two peaks Maximize 

Average peak skew Average skew of all peaks, calculated using MassLynx Minimize 

Average peak kurtosis Average kurtosis of all peaks, calculated using MassLynx Maximize 

Peak capacity using base width Number of peaks theoretically to separate in a method, 

defined by Pc=1+(tg/wb), where tg is gradient time and wb 

is peak width 

Maximize 

Average AUC Average AUC for all peaks Maximize 

Number of peaks Total number of peaks detected for the standard mix of 48 

metabolites 
Maximize 

Average FWHH Average peak width at half height Target at 4 seconds 
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Table 2.7 Metrics used in the LC qTOF DoE optimization. The objective refers to the objective 
criteria used in the optimizer functions 

Metric Description Objective 

AUC Rank Ranks were given to each injection in the DoE round for 

every metabolite’s response, then averaged to give a 

composite AUC rank for each injection 

Maximize 

Average FWHH Peak width at half height averaged Target at 4 seconds 

Average peak skew rank Peak skew ranks given to each injection in the DoE round 

for every metabolite’s peak, then averaged to give a 

composite skew rank for each injection (skew calculated 

using MassLynx) 

Maximize 

Average peak width rank Peak width at half height ranks given to each injection in 

the DoE round for every metabolite’s peak by finding the 

difference from the 4 second width objective, then averaged 

to give a composite width rank for each injection 

Maximize 

Leucine/Isoleucine Resolution Resolution between leucine and isoleucine peaks Target at 1.5 

Alanine/Sarcosine Resolution Resolution between alanine and sarcosine peaks Target at 1.5 

Percentage of peaks under 

Resolution 1.5 

Using a combinations function, all possible peak 

resolutions were calculated between two peaks, defined by 

Rs=2(tR2-tR1)/(wb2+wb1), where R2 and R1 are retention 

times of two peaks, and b2 and b1 are base peak widths of 

two peaks 

Minimize 

Percentage of peaks under 

retention 2 

The percentage of total peaks detected that had a retention 

index under, calculated using k=tR-t0/t0, where tR is the 

peak retention time and t0 is the void volume 

Minimize 

Peak capacity using base width Number of peaks theoretically to separate in a method, 

defined by Pc=1+(tg/wb), where tg is gradient time and wb is 

peak width 

Maximize 
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Table 2.8 Model parameters across both QqQ and qTOF COLMeD processes. The number of 
inputs corresponds to the predictor variables, while the outputs are the response variables to be 
optimized using COLMeD. PLS components indicates the number of components fit to the data 
for that DoE round. R2 is the variance explained for the predictor variables in the model, while Q2 
tests the goodness of fit 

DoE Round Inputs Responses LC and/or MS 

Parameters 

PLS 

Components 

R2 Q2 

Round 1 Horse Serum 

(QqQ) 

37 34 3 5 0.727 0.35 

Round 1 Fly (QqQ) 38 35 3 3 0.583 0.242 

Round 2 Horse Serum 

(QqQ) 
39 33 6 6 0.722 0.112 

Round 3 Horse Serum 

(QqQ) 

38 33 5 10 0.781 0.163 

Carnitines Horse Serum 

(QqQ) 

13 8 5 7 0.812 0.381 

Round 4 Horse Serum 

(QqQ) 

38 33 5 9 0.671 0.293 

LC Round 1 (qToF) 12 8 3 7 0.946 0.658 

LC Round 2 (qToF) 11 8 2 5 0.857 0.312 

LC Round 3 (qToF) 11 8 2 2 0.592 0.185 

MS Round 1 (qToF) 6 1 5 2 0.932 0.709 

MS Round 2 (qToF) 5 1 4 2 0.68 0.298 
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Table 2.9 COLMeD factor settings for comprehensive ion-switching analysis. 

Factor Round 1 Round 2 Round 3 Final 

Flow rate (mL/min) 0.1-0.25 0.05-0.3 0.15-0.3 0.15 

Gradient 1-4 3-4 4 4 

Time (min) 10-16 12-20 12-18 20 

Desolvation temp (°C) Not tested 200-650 300-500 450 

Desolvation gas (L/Hr) Not tested 750-1100 800-1100 950 

Column temp (°C) Not tested 30-60 40-55 45 
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Table 2.10 VIP scores for all factors after Round 4 of the QqQ COLMeD process, including 
interaction variables. 

Factor VIP Score 

Flow Rate (LC) 1.61 

Desolvation Temperature (MS) 1.43 

Gradient Time (LC) 1.37 

Gradient Time*Desolvation Temperature (LC*MS) 1.23 

Flow Rate*Gradient Time (LC*LC) 1.14 

Flow Rate*Desolvation Temperature (LC*MS) 0.97 

Desolvation Temperature*Desolvation Flow (MS*MS) 0.86 

Column Temperature (LC) 0.83 

Gradient Time*Desolvation Flow (LC*MS) 0.79 

Flow Rate*Desolvation Flow (LC*MS) 0.74 

Flow Rate*Column Temperature (LC*LC) 0.70 

Desolvation Flow (MS) 0.69 

Desolvation Flow*Column Temperature (MS*LC) 0.64 

Desolvation Temperature*Column Temperature (MS*LC) 0.63 

Gradient Time*Column Temperature (LC*LC) 0.61 
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1 2

3 4
 

Figure 2.1 Depiction of initial LC gradients, blue indicates organic solvent, yellow indicates 
aqueous. 
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Figure 2.2 (A) Predictive plots displaying design space regions with predicted optimal response, 
based on initial LC screening (round 1) with horse serum and fly samples. Green indicates design 
space where a maximal number of endpoint response thresholds are predicted to be met. Red 
boxes indicate regions predicted to improve responses for the next round. (B) Factor settings 
before and after analysis of serum and fly samples using the optimizer function. These 
complementary approaches rationalize LC–MS parameters for the next round of experiments. 
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Figure 2.3 PLS Loadings plot after Round 1 of the ion-switching DoE, demonstrating the 
predicted response improvement by decreasing flow rate and increasing gradient time for 
subsequent rounds. In reference to Figure 2.1, 1StepShallow is gradient 2, 1StepSteep is 
gradient 3, and the Flat gradient is number 4. 
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Figure 2.4 (A) Chromatographic improvement in selected metabolites after three rounds of DoE 
in the QqQ COLMeD process. Signal-to-noise (S/N) and peak width (full width half height) 
measurements were generated from vendor software after limited peak smoothing and 
integration. (B) Percent response increase by metabolite across each round. (C) Cumulative AUC 
plots for QqQ COLMeD benchmarking. 
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Figure 2.5 (A) Predictive design space plot with optimal response regions for short-chain 
acylcarnitines, based on combined results of rounds 2, 3, and acylcarnitine-specific batch. Green 
indicates predicted optimal conditions, while the red box represents overlap of optimal prediction 
based on only data from rounds 2 and 3, suggesting a well-validated design space. (B) AUC 
improvement (in millions of counts) in the acylcarnitine-specific DoE round, in addition to peak 
width nearing the objective set at 0.25min. (C) Design space plots depicting regions of improved 
acylcarnitine response at 550°C desolvation temperature, and across multiple column 
temperatures. Column temperature did not have a significant effect on the model, as shown when 
varied from 40-50°C. (D) Factor ranges predicted to yield optimal acylcarnitine response before 
and after class-specific DoE. The final conditions were overlaps between predictive design space 
plots and optimizer function results. 
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Figure 2.6 Density plot comparing the coefficient of variation for a given metabolite across 
replicate injections. 
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Figure 2.7 Visualization of the design space changes across each LC qTOF DoE round, 
including the reduction of 3-D to 2-D design spaces formed after fixing column temperature. The 
black plane within the box depicts an initial constraint on the space. The black, blue, and green 
spheres represent the parameter settings tested for each round. The final conditions were chosen 
within the plane of the green dots. 
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Figure 2.8 (A) Response contour plots after round 3 of LC DoE for untargeted qTOF 
metabolomics, demonstrating the tradeoffs to be considered in finding a method optimum. (B) 
Decreased spread of peak widths and peak skews (with a target objective of 4sec widths and 
minimized skews) across three rounds. These improvements are without compromising the MS 
response (depicted here as log-transformed AUC values). 
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Figure 2.9 4D response contour plot demonstrating design space regions of optimal average 
AUC rank for qTOF MS DoE. 
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CHAPTER 3 – Circadian- and light-driven metabolic rhythms in Drosophila 
melanogaster 

 

Submitted As: 

Rhoades, SD, Nayak, K, Zhang, S, Sehgal, A, Weljie, AM. Circadian and light-
dependent metabolic rhythms in Drosophila melanogaster using high-resolution 

metabolomics. 

 

3.1 Abstract 

Complex interactions of environmental cues and transcriptional clocks drive rhythmicity in 

organismal physiology. Light directly affects the circadian clock, however little is known about its 

relative role in controlling metabolic variations in vivo. Here we employ high time-resolution 

sampling in Drosophila to uncover over 14% of detected metabolites with circadian periodicity 

under light:dark (LD) cycles. Many metabolites peak shortly after lights-on, suggesting 

responsiveness to feeding rather than anticipation as seen in transcriptomics analyses. Roughly 

9% of metabolites uniquely oscillate under constant darkness (DD), suggesting clock-driven 

metabolite rhythms. Strikingly, metabolome differences between LD and DD were only observed 

during the light phase, highlighting the importance of photic input. Clock mutant flies exhibited 

only strong ultradian rhythms, including four carbohydrates with circadian periods in wild-type 

flies. Additionally, conserved rhythms in amino acids, keto-acids, and sugars across species 

provide a basis for exploring the chronometabolic connection with powerful genetic tools in 

Drosophila. 
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3.2 Introduction 

Diurnal patterns in organismal physiology arise from a complex interaction of 

environmental inputs, such as light and food, with endogenous circadian clocks. Synchrony of 

these clocks with predictable environmental patterns confers a selective advantage, particularly to 

maintain metabolic homeostasis amidst anticipatory activity and feeding behaviors (Edery, 2000). 

The intersection of metabolism and circadian rhythms is of increasing interest (reviewed by Bass, 

2012), especially in light of the pathological correlations with perturbed endogenous clock 

function. Major metabolic organs display rhythmic physiology, which includes cyclic insulin 

secretion from the pancreas (Perelis et al., 2015), therefore it is perhaps not surprising to find 

clock disruptions associated with diabetes, obesity, and metabolic syndrome in genetic mouse 

models (Marcheva et al., 2010, Turek et al., 2005). These associations are alarming given the 

ubiquity of circadian disruption in modern society, including the high prevalence of shift work and 

increased light exposure at all hours of the night. Adiposity, weight, lipid and glucose metabolism 

are the most common alterations found in animal studies modeling disruptions in sleep, light, and 

feeding (Opperhuizen et al., 2015), although much work remains to delineate impacts of 

environmental cues on metabolic variations. Specifically, while the impact of light on 

transcriptional clocks is understood (Emery et al., 1998), metabolic variations due to light 

exposure have not been directly addressed.  

The mechanisms of the core endogenous circadian clock were first described in 

Drosophila melanogaster, where the core clock consists of a transcription-translation feedback 

loop very similar in structure to mammalian clocks (Glossop and Hardin, 2002). The CLK/CYC 

complex binds to E-box elements to drive expression of many gene products, including period 

and timeless (reviewed in Hardin, 2011). These protein products (PER and TIM) dimerize and 

translocate to the nucleus to repress CLK/CYC activity. Timely degradation of TIM is followed by 

turnover of PER, which breaks the repressive arm of the clock and allows CLK-CYC-mediated 

transcriptions to resume. This clock mechanism exists across most fly tissues, including 

metabolically active organs such as the fat body (functionally similar to the mammalian liver and 
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adipose). While flies have served well to uncover the architecture of circadian processes, 

relatively few studies have utilized flies as a model organism in chronometabolic studies. The 

interaction of the core clock with metabolic homeostasis has been established through analysis, 

including comparative transcriptomics, of the fat body (Xu et al., 2011). Oscillations of transcripts 

in the fat body are controlled by clocks in the fat body or the brain (Xu et al., 2011; Erion et al., 

2016; Barber et al., 2016) and most are also influenced by the time of feeding, however the 

extent of circadian control on metabolism has not yet been established. 

Circadian transcriptomics in mice have shown a striking enrichment of oscillating 

transcripts for rate-limiting metabolic enzymes (Panda et al., 2002). Many of these metabolic 

enzymes also display ultradian patterns of 8 or 12-hour periods, which may reflect the impact of 

feeding and behavior on metabolism superimposed on the canonical 24-hour pattern. Circadian 

and ultradian metabolite cycles have recently been discovered in mouse liver using LC-MS 

metabolomics with high sampling resolution (Krishnaiah et al., 2017). Metabolomics is an 

increasingly popular approach to uncover metabolic rhythms through holistic analysis of 

metabolites by MS or NMR (Rhoades et al., 2017). While informative, previous studies have not 

incorporated key experimental design considerations in understanding circadian processes. Most 

circadian metabolomics studies in animals have employed 4 or 6-hour sampling resolution 

(Abbondante et al., 2015, Chaix et al., 2014, Eckel-Mahan et al., 2013), which is adequate to 

discern 24-hour periods, but may not be sufficient to discover ultradian metabolic patterns 

(Krishnaiah et al., 2017). Additionally, in these studies, tissues or blood are harvested under 

light:dark conditions, which does not allow for separation of light and clock-driven metabolic 

patterns. True circadian patterns can be ascertained only in constant environmental conditions, 

such as DD. 

In this study, we sought to profile small polar metabolites with 2-hour resolution in 

Drosophila under both LD and DD. Additionally, per mutant flies were analyzed to assess the 

importance of the genetic clock in driving metabolite rhythms. To provide a broad spectrum of 

metabolites, we used LC-MS, and chose to analyze fly bodies to reduce confounding effects from 
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the brain and eyes. Univariate periodicity algorithms and multivariate statistical models were 

employed to discern both metabolite oscillations under a functional clock and broader metabolic 

shifts in the context of both light cues and the per mutation. The metabolite rhythms we report 

here are conserved across species, suggesting that flies will serve an important role in deriving 

mechanistic understanding of the chronometabolic connection. 

 

3.3 Materials and Methods 

Drosophila strains 

Both fly strains (Drosophila melanogaster), which included Iso31 (isogenic w1118 stock) 

and per01 mutants (Konopka and Benzer, 1971), were maintained at 25°C in 12:12hr LD 

conditions on standard cornmeal/molasses medium. 

 

Fly entrainment and collection 

Male flies were sorted shortly after eclosion and entrained in LD incubators for a 

minimum of 3 days before circadian collection, by which all flies were 5-10 days of age. Wild-type 

flies were either maintained in LD conditions (WT-LD), or placed in constant darkness for a 

minimum of 24 hours before collection to assess light-independent rhythms (WT-DD), while per01 

flies were maintained in LD cycles (Per-LD). 12 flies were collected at each time point, in 

duplicate. Zeitgeber time (ZT) 0 corresponds to lights on, with lights-off at ZT12. 

 

Metabolite extraction and LC-MS/MS metabolomics 

Fly heads and bodies were separated before metabolite extraction. Adapted from the 

Bligh-dyer extraction (Bligh and Dyer, 1959), 600µL of cold 2:1 methanol:chloroform was added 

to the fly body samples and homogenized in a bead-based tissue homogenizer at 25Hz for 4 

minutes (TissueLyser II, Qiagen, Hilden, Germany). 200µL of both water and chloroform was then 

added, followed by centrifugation at 18787xg for 7 minutes at 4°C. 350µL of the upper layer, 

comprising the aqueous layer, was separated and dried down overnight under vacuum. Samples 
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were resuspended in 100µL of 50:50 water:acetonitrile for LC-MS injection. Liquid 

chromatography conditions and mass spectrometer parameters for HILIC analysis for small polar 

metabolites were executed as previously reported (Rhoades and Weljie, 2016). 5µL injections 

were performed for each sample in duplicate on a Waters ACQUITY H-Class UPLC coupled to a 

Waters TQ-S micro mass spectrometer (Milford, MA), utilizing an XBridge BEH Amide column for 

chromatographic separation (2.1 x 150mm, 2.5µm).  The LC solvents consisted of 95:5 

water:acetonitrile with 20mM ammonium acetate at pH 9 (mobile phase A) and acetonitrile for 

mobile phase B. The gradient was changed from 15 to 70% A over 5 minutes at 0.15 mL/min, 

followed by an isocratic hold for 10 minutes. The column was washed in 98% A, then re-

equilibrated in starting conditions for 5 minutes before the next injection. The MS operated in ion-

switching mode with a capillary voltage of 3kV for ESI+ mode and 2kV for ESI-. The desolvation 

gas flow was set to 900L/Hr and desolvation temperature at 450°C , with the source temperature 

set at 150°C. Metabolites were detected using MRMs, with mass transitions and voltages 

optimized as previously described. 

 

Data processing and analysis 

LC-MS chromatograms were processed using TargetLynx under MaxxLynx version 4.1. 

Ion counts were exported and processed in R (version 3.3). QC samples, which consisted of a 

pooled sample of all biological samples, were injected at the beginning of the batch for LC column 

equilibration and every 8 injections during the analysis to account for instrumental drift. For every 

metabolic feature, LOESS was fit to the QC data, which was then used as a normalization factor 

for the samples as a function of run order. Additionally, metabolic features which appeared in less 

than 50% of the QC samples and displayed a relative standard deviation (RSD) greater than 30% 

were dropped from the final dataset. PCA was performed in SIMCA 14.0 (UMetrics, Umeå, 

Sweden) to observe data integrity through balanced scores and loadings plots. This criteria 

guided additional data normalization measures, which we addressed through total sample 

intensity normalization after LOESS correction. Technical replicate values were than averaged 
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and analyzed for rhythmicity using the ARSER algorithm (Yang et al., 2010) in the MetaCycle R 

package (version 1.1, Gang et al., 2016). Missing values were imputed through mean-imputation 

within a single metabolite’s observed values, and each circadian time replicate was spread out 

across 48 hours for rhythmicity testing, which was performed twice through shuffling the 

replicates to guard against replicate bias. These two ARSER results were then averaged before 

filtering lists of significant cyclers, testing period lengths of 20-28, 12, and 8 hours. 

For block-testing, values in each of the 3 biological groups were further divided into four 

windows, consisting of values from ZT0-6, ZT6-12, ZT12-18, and ZT18-24. These groups were 

then tested in a univariate manner, metabolite by metabolite, both across time blocks and 

biological groups. The resulting p-values from two-sided t-tests were adjusted through a 

Benjamini-Hochberg False Discovery Rate correction using the stats R package (version 3.3, 

Benjamini and Hochberg, 1995). For multivariate assessment of global metabolic shifts within and 

across biological groups, orthogonal partial least squares discriminant analysis (OPLS-DA) 

models were fit in SIMCA 14.0, with model validity assessed through a cross-validation Q2 value 

and CV-ANOVA p-value (Eriksson et al., 2006). Plots were made using VennDiagram v1.6, 

heatmap3 v1.1, and ggplot2 v2.2. 

 

3.4 Results 

Circadian and light-induced rhythms identified in wild-type flies 

Rhythmicity tests in WT flies under LD conditions revealed 34 metabolites with period 

lengths between 20-28 hours, which represents 14.4% of detected metabolites and contains an 

abundance of sugars and acylcarnitines (p<0.05 and q<0.3, Figure 3.1A, Table 3.1). Seven 

metabolites exhibited a 12-hour period and eleven exhibited an 8-hour period in this WT-LD. 29 

metabolites yielded true circadian patterns in the WT-DD condition, with seven metabolites 

overlapping the WT-LD group (fructose, 3-hydroxybutyrate, acetyl-amino sugars, gluconate, an 

unknown monosaccharide, ribitol/xylitol, riboflavin) (Figure 3.1B, Figure 3.1C). We were thus able 

to identify sets of metabolite rhythms driven by endogenous clocks, LD cycles, or both. 
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Ultradian metabolites enriched in per mutants 

No circadian metabolites, nor ultradian metabolites of 8-hour periods, were detected in 

per flies, however we noted an abundance of metabolites with 12-hour periods (Table 3.1). 

Interestingly, the amplitudes for these cyclers were significantly higher than 12-hour cyclers in the 

WT-LD condition (p=0.001, Figure 3.2). While no overlapping metabolites arose across 12-hour 

cyclers in WT-LD and Per-LD conditions, ten out of fourteen 12-hour cyclers in the Per-LD 

condition were found in the 20-28 hour list for WT-LD (2-oxovalerate, fructose, acetyl-amino 

sugars, gluconate, ribitol/xylitol, inositols, N6-acetyllysine, cAMP, acetylcholine, and 

aminobenzoates/trigonelline), and cGMP additionally overlapped with WT-DD (Figure 3.3). Thus, 

of these fourteen 12-hour cyclers, only three did not also oscillate in WT-LD or WT-DD 

(imidazole, bisphosphoglycerate, aconitate). Four metabolites overlapped across all three lists; 

these consisted only of carbohydrates (fructose, acetyl-amino sugars, ribitol/xylitol, gluconate) 

and may reflect a consequence of complex interactions of light and clock-driven feeding behavior. 

 

Unique phases in significant metabolites across experimental groups 

Of the significant cyclers with a 20-28 period in WT-LD, we noted major phases of 

metabolites in the morning (ZT4-6) and at the end of the active phase (ZT12).  Peak expression 

of cycling metabolites in DD was, on the other hand, largely condensed towards the end of the 

active phase (Figure 3.4A). The abundance of 12-hr cyclers in Per-LD also had highly condensed 

phases, with antiphasic peaks in the early light and dark phases and an absence of the evening 

rush seen in the WT-LD (Figure 3.4B). Additionally, the seven metabolites that overlap with WT-

LD and WT-DD display dramatically different phases under these two conditions and is most 

strikingly the case for the sugar compounds (Figure 3.4C). 

 

Light and clock driven alterations in global metabolite profiles  



82 
 

As expected, the per mutants displayed large global metabolite differences from WT, 

irrespective of time, through principal components analysis, while WT-LD and WT-DD samples 

had general overlap in their metabolic signatures (Figure 3.5). To gauge global time-dependent 

shifts in metabolite signatures, the time points were binned into four blocks of ZT0-6, ZT6-12, 

ZT12-18, and ZT18-24. Using univariate testing, the metabolic separation between WT-LD and 

WT-DD could only be found during the ZT6-12 window (p<0.05 and q<0.3, Table 3.2), suggesting 

a set of metabolites that are driven by light. Within the WT-LD group, strong diurnal patterns were 

noted in amino acid and nitrogen metabolism (Figure 3.6A), while medium- to long-chain 

acylcarnitines comprised the majority of time-dependent metabolite changes in WT-DD (Table 

3.2). Differences between the WT-LD and Per-LD groups were noted across each time block, 

driven mostly by changes in amino acid and nitrogen metabolism (Figure 3.6B). These diurnal 

pathway enrichments in WT-LD were lost in the per flies, as no metabolites were found to 

significantly change within the per dataset across the blocked times. As an additional measure of 

global metabolite shifts, OPLS-DA scores plots demonstrated a convergence of WT-LD and WT-

DD profiles during the dark phase (Figure 3.7). The strongest discriminant model with the most 

predictive power across the three groups occurred at ZT6-12 (R2X=0.585, R2Y=0.874, Q2=0.654, 

p=0.003), while a significant model could not be fit at ZT18-24 (p=0.24). 

 

Conserved rhythms across published circadian metabolomic datasets 

We compared our list of significantly diurnal metabolites from WT-LD to the only currently 

published fly metabolomics study, which analyzed small polar metabolites in whole flies under 

conditions of cycling light and temperature, and found overlaps in alanine, tryptophan, AMP, 

creatine, and lactate (Gogna et al., 2015). Of these metabolites, the phases for alanine and 

creatine aligned closely across studies (ZT15 and ZT18 for creatine, ZT13 and ZT16 for alanine), 

however the phases of other metabolites generally differed. 

For a comparison of significantly circadian metabolites conserved across species, we 

separated datasets that utilized LD and constant darkness paradigms (Table 3.3). A majority of 
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prior circadian metabolomics studies have employed LD, and we found 15/35 of the WT-LD 20-28 

hour cyclers in our study to oscillate in other species, including zebrafish, mice, and humans (Li et 

al., 2015, Zwigahft et al., 2015, Giskeodegard et al., 2015, Davies et al., 2014, Chaix et al., 2014, 

Hatori et al., 2012, Eckel-Mahan et al., 2012, Dallmann et al., 2012, Ang et al., 2012). These 

metabolites include glutamate (found in all 4 species), 2-hydroxyglutarate, 2-aminoadipate, 

fructose, 3-hydroxybutyrate, 4-guanidinebutanoate, threonine, citrate/isocitrate, carnitine, inositol, 

hydoxyhexadecenoylcarnitine, aminobenzoates/trigonelline, acetylcarnitine, UDP-glucose, and 

riboflavin. Only one other study has performed high-resolution small polar metabolite analysis 

under constant darkness in mice (Krishnaiah et al., 2017), which yielded 3-hydroxybutyrate, 

adenine, and fructose as overlaps to this study. However, many of these studies in mice and 

humans sample liver and blood respectively, which will likely differ from systemic metabolic 

rhythmicity in the whole fly body. 

 

3.5. Discussion 

To our knowledge this is the first report of high resolution circadian metabolomics which 

tested key hypotheses regarding the separation of circadian and environmentally-driven 

metabolic processes using both genetic clock mutants and constant darkness paradigms. First, 

we discovered a unique set of metabolites that continue to oscillate in constant darkness, 

clarifying the complex interactions of our endogenous clocks and environmental cues. In our 

experimental design, DD sampling did not occur until the flies were exposed to a minimum of 24 

hours of darkness, which may have dampened the rhythms but allowed further separation of 

metabolite patterns from the impact of light. We suspect that, given many of the overlapping 

metabolites with 20-28hr periods across LD and DD were carbohydrates, a continued feeding 

rhythm is a major driver in metabolite rhythms, as has been noted in proteomics profiles in mouse 

liver (Mauvoisin et al., 2014). These sugars were uniformly increased during the light phase in 

WT-LD compared to WT-DD, perhaps as a result of a heightened feeding rhythm under the 

presence of light. In addition, we demonstrate a set of light-induced metabolites with large 
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enrichments in amino acid and nitrogen metabolism, which is likely correlated to light-induced 

locomotor behavior and overlaps with a large enrichment of amino acid rhythms in mice (Minami 

et al., 2009). Interestingly, indoleacetic acid and kynurenine were among the few metabolites that 

decreased in the presence of light, suggesting an effect of light on dampening certain 

neurotransmitter processes. Only one study previously discovered 14 diurnal polar metabolites 

with 2-hour resolution in whole adult flies using NMR (Gogna et al., 2015), with one additional 

experiment employing lipid profiling at 4-hour resolution (Katewa et al., 2016). Gogna et al. 

sought to maximize metabolite rhythmicity by entraining flies in both LD and temperature cycles, 

which may establish a control baseline metabolite rhythm, but is insufficient to discern 

endogenous circadian processes. Despite adequate sampling resolution, this study did not 

employ statistical algorithms to discern periodicity, such as JTK_CYCLE or ARSER (Hughes et 

al., 2010, Yang and Su, 2010). We note some overlaps of rhythmic but non-circadian metabolites, 

however the phases generally differed, and the relative insensitivity of NMR compared to LC-MS 

yielded fewer possible comparisons. Given the impact of environmental cues on metabolite 

phases and rhythmicity noted here, the relatively low overlap with Gogna et al. is perhaps not 

surprising, and future studies will need to tease out the relative contributions of additional 

environmental cues such as temperature and humidity. Additionally, this report analyzed whole 

flies, rather than bodies in our study. Contributions of metabolites in the eye and brain may impart 

some additional effects to the detected metabolome. 

We were surprised to find how many metabolites uniquely oscillated in WT-DD compared 

to WT-LD. We can partly attribute this disparity to the fact that six metabolites did not meet our 

significance threshold (0.05 < p < 0.10) in the WT-DD but were significant in WT-LD; additional 

work will be required to separate statistical power versus biological variance. Within the WT-DD 

group, diurnal patterns in acylcarnitines were observed, which corroborates nicely with some 

existing metabolomics studies in humans under constant or highly controlled conditions (Ang et 

al., 2012, Dallmann et al., 2012, Davies et al., 2014). We speculate that under constant 

environmental conditions, rhythms in lipid metabolism may persist but are largely transformed 
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under the presence of light, and may partly explain our set of unique rhythms in constant 

darkness. Previous transcript analyses in Drosophila heads have also noted close to half of 

significantly cyclic transcripts in DD were not found in LD conditions (Wijnen et al., 2006). This 

alignment with our metabolomic findings suggests transcriptional and metabolic programs are 

largely transformed in the presence of light cycles. Interestingly, this study also uncovered a 

similarly large number of cycling transcripts in clock mutants under LD relative to WT flies in LD, 

further demonstrating the substantial impact of light on rhythmic processes. However, the light-

driven transcripts displayed 24-hour periods instead of the 12-hour enrichment we report here for 

metabolites, which may be a consequence of statistical testing in 2-hour versus 4-hour sampling 

resolution. We can confidently speak to the impact of light on the global metabolome given that 

metabolite profiles were indistinguishable during the dark phases of the WT-LD and WT-DD 

groups by both univariate and multivariate testing.  

One drawback in LC-MS is relatively high variance, which may explain a rhythmicity of 

over 14% of detected metabolites in our study, compared to upwards of 50%, as reported in 

mouse liver (Krishnaiah et al., 2017). However, given peripheral clocks tend to oscillate with 

unique phases (Zhang et al., 2014), we would not expect such a high enrichment of circadian 

metabolites in whole bodies. In addition, the age of flies in our study ranged from 5-10 days, 

which may add some additional variance in the dataset. The mouse liver metabolomics study 

incorporated 1-hour sampling resolution, which greatly augments power in circadian testing 

algorithms, even over the 2-hour resolution employed here, and may additionally explain 

relatively lower enrichment in cyclic metabolites. Given our experimental design and biological 

variance, we felt ARSER analysis was more suitable to discern periodicity in the data, although it 

has been reported to yield a higher false-positive rate for transcriptomics analyses (Wu et al., 

2016). Future experiments may require higher sampling density and/or replicates, while 

remaining mindful of resource allocation for large-scale LC-MS experiments (Dunn et al., 2011). 

The abundance of 12-hour cyclers in Per-LD likely derive from light and activity patterns, 

which would be otherwise dampened or overridden by an intact clock and may in part explain the 
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strong amplitudes of these ultradian rhythms. A dampened secondary peak of feeding in per 

mutants (Barber et al., 2016) may explain the uniquely biphasic phase enrichments of circadian 

metabolites in WT-LD compared to a strong enrichment of antiphasic phases for Per-LD at ZT4 

and ZT16 in Figure 3.4. Previous transcriptomics studies found large phase enrichments in WT 

flies at ZT8 and ZT20, which differ slightly from metabolite phases (Ceriani et al., 2002). For WT 

flies in constant darkness, the feeding rhythm loses much of its biphasic nature (Barber et al., 

2016), which would corroborate our speculation that the second feeding peak persists without 

light and accounts for the condensed metabolite phases towards the end of the subjective day in 

WT-DD. These changes in feeding patterns are consistent with alterations in locomotor activity, 

which also tends to lose bimodality in DD (Helfrich-Förster, 2000). The large overlap of Per-LD 

12-hour cyclers and circadian WT-LD metabolites suggest a complex synergy of circadian and 

light-driven processes, with a conserved surge of metabolite phases in the morning. We posit that 

while clocks serve an evolutionary advantage in anticipating environmental cues like light, these 

cues can themselves trigger adaptive responses in activity and feeding, which would confer an 

additional survival advantage in for e.g. seasonal changes of LD cycles. 

Drosophila can serve as a practical model to develop mechanistic detail from these 

metabolomics studies, with the depth of genetic tools, ease of environmental manipulations, low 

cost, and high throughput experimentation. Encouragingly, some conserved circadian metabolites 

were found across multiple species, potentially expanding the utility of Drosophila as a powerful 

model for chronometabolic studies. A sizable number of human circadian and sleep 

metabolomics studies have been performed, which has yielded some conserved metabolite hits 

even across analytical platforms (Rhoades et al., 2017). We hope expanded experimental 

designs for flies will yield a similar result. 
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Table 3.1 Significant metabolites (p<0.05, q<0.3) from ARSER results for each group and period 

WT-LD 20-28hr WT-LD 12hr WT-DD 20-28hr 

Glutamate Adenine cGMP 

2-Hydroxyglutarate 2-Aminopimelic Acid Hydroxytetradecanoylcarnitine 

Imidazoleacetic Acid 3-Indoleacetic Acid Hydroxybutrylcarnitine 

2-Aminoadipate Unknown_360.50->85.03_7.04 Lipoamide 

2-oxovalerate Disaccharide LPC 20:1 

Fructose Thiamine Riboflavin 

3-Hydroxybutyrate Hydroxytetradecanoylcarnitine Fructose 

Hydroxydecenoylcarnitine  Unknown_154.07->137.01_4.11 

Acetyl-amino Sugars WT-LD 8hr Unknown_516.30->184.00_6.07 

4-Guanidinobutanoic Acid Cystathionine Gluconate 

Gluconate Unknown_342.50->85.03_7.00 alpha-Ketoglutarate 

Threonine Unknown_137.03->93.95_4.10 Phenylalanine 

Unknown_358.50->85.03_4.58 Unknown_203.15->70.07_6.78 Lauroylcarnitine 

Cytosine Xanthine Acetyl-amino Sugars 

Citrate/Isocitrate Unknown_152.00->110.00_5.76 Unknown_152.00->135.00_5.27 

Unknown_166.05->74.02_5.93 CDP-Choline  

Unknown_198.00->181.00_5.29 Oxypurinol WT-DD 12hr 

Carnitine Unknown_112.00->95.00_7.60 Spermine 

Ribitol/Xylitol Citrulline  

Inositols Lysine WT-DD 8hr 

Asparagine  Hexose-6-Phosphates 

N6-Acetyllysine WT-DD 20-28hr  

Hydroxyhexadecenoylcarnitine Stearoylcarnitine Per-LD 12hr 

cAMP Ribitol/Xylitol cAMP 

Dodecenoylcarnitine 3-Indoleacetic Acid Fructose 

Acetylcholine Acetyl-CoA N6-Acetyllysine 

Hydroxytetradecenoylcarnitine Tryptophan Gluconate 

SAM Unknown_137.03->93.95_4.10 Aminobenzoates/Trigonelline 

Riboflavin 3-Hydroxybutyrate cGMP 

Aminobenzoates/Trigonelline Choline Acetylcholine 

Itaconic Acid NADPH Imidazole 

UDP-Glucose Deoxyguanosine Acetyl-amino Sugars 

N-Acetyl-L-Tyrosine Deoxyinosine 2-oxovalerate 

Acetylcarnitine Adenine Inositols 

 NADH Bisphosphoglycerates 

 Unknown_198.00->181.00_5.29 Aconitate 

  Ribitol/Xylitol 
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Table 3.2 Univariate metabolite comparisons between WT-LD and WT-DD or within WT-DD 
across time. Direction refers to either relative to WT-LD, or relative to the first of two time blocks 
within WT-DD 

WT-LD to WT-DD Comparison 

   

 

Metabolite Comparison P-Value Q-Value Direction 

Dimethylarginine ZT6-12 3.78E-05 0.008929 ↓ 

Unknown_282.12->150.00_6.38 ZT6-12 0.000187 0.022123 ↓ 

Threonine ZT6-12 0.000789 0.062044 ↑ 

Deoxyguanosine ZT6-12 0.005291 0.228265 ↑ 

Unknown Monosaccharide ZT6-12 0.006958 0.228265 ↑ 

3-Indoleacetic Acid ZT6-12 0.006966 0.228265 ↓ 

Asparagine ZT6-12 0.007666 0.228265 ↑ 

Fructose ZT6-12 0.009898 0.228265 ↑ 

Ribitol/Xylitol ZT6-12 0.012777 0.228265 ↑ 

Cytosine ZT6-12 0.014432 0.228265 ↑ 

Unknown_184.07->86.10_4.22 ZT6-12 0.015219 0.228265 ↑ 

Aminobenzoates/Trigonelline ZT6-12 0.015475 0.228265 ↑ 

N6-Acetyllysine ZT6-12 0.01598 0.228265 ↑ 

Gluconate ZT6-12 0.016001 0.228265 ↑ 

2-Aminoadipate ZT6-12 0.016172 0.228265 ↑ 

Kynurenine ZT6-12 0.016193 0.228265 ↓ 

2-oxovalerate ZT6-12 0.016443 0.228265 ↑ 

cGMP ZT6-12 0.022034 0.274692 ↑ 

3-Hydroxybutyrate ZT6-12 0.022115 0.274692 ↑ 

    

 

Within WT-DD Comparison by Time 

  

 

Acetyl-CoA ZT0-6 to ZT6-12 0.000114 0.026987 ↑ 

Unknown_282.12->150.00_6.38 ZT0-6 to ZT6-12 0.000474 0.055991 ↑ 

Hydroxyhexadecenoylcarnitine ZT12-18 to ZT18-24 0.001167 0.151773 ↑ 
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Unknown_342.50->85.03_7.00 ZT12-18 to ZT18-24 0.001494 0.151773 ↑ 

Stearoylcarnitine ZT12-18 to ZT18-24 0.001929 0.151773 ↑ 

Lauroylcarnitine ZT12-18 to ZT18-24 0.003638 0.175813 ↑ 

Hydroxytetradecanoylcarnitine ZT12-18 to ZT18-24 0.004489 0.175813 ↑ 

Hydroxyhexadecanoylcarnitine ZT12-18 to ZT18-24 0.00517 0.175813 ↑ 

cis-5-Tetradecenoylcarnitine ZT12-18 to ZT18-24 0.005835 0.175813 ↑ 

2-Aminoadipate ZT12-18 to ZT18-24 0.00596 0.175813 ↓ 

Unknown_245.08->113.03_5.56 ZT12-18 to ZT18-24 0.007294 0.191273 ↓ 

Glutamate ZT12-18 to ZT18-24 0.009185 0.216764 ↓ 

Xanthine ZT12-18 to ZT18-24 0.012658 0.271562 ↑ 
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Table 3.3 Circadian metabolite hits across studies under WT-LD paradigm 

Metabolite Overlapping Studies 

Glutamate Fly1, Zebrafish1, Mouse4, Human3 

2-Hydroxyglutarate Fly1, Mouse4 

2-Aminoadipate Fly1, Mouse2, Mouse4 

Fructose Fly1, Mouse2, Human3 

3-Hydroxybutyrate Fly1, Mouse4 

4-Guanidinobutanoic Acid Fly1, Mouse5 

Threonine Fly1, Zebrafish1, Mouse2 

Citrate/Isocitrate Fly1, Mouse4, Human3 

Carnitine Fly1, Zebrafish1 

Inositol Fly1, Mouse4, Mouse5 

Aminobenzoates/Trigonelline Fly1, Mouse4 

Acetylcarnitine Fly1, Mouse2, Human4 

UDP-Glucose Fly1, Mouse2 

Riboflavin Fly1, Mouse2 

Adenine Fly1, Mouse4 

Citrulline Fly1, Mouse2, Mouse4 

Lysine Fly1, Fly2, Mouse2, Mouse4, Human4 

Xanthine Fly1, Mouse2 

  Legend 

 Fly1 - Rhoades 

 Fly2 - Gogna 

 Zebrafish1 - Li 

 Mouse1 - Zwighaft 

 Mouse2 - Abbondante 

 Mouse3 - Chaix 

 Mouse4 - Hatori 

 Mouse5 - Eckel-Mahan 

 Human1 - Giskeodegard 

 Human2 - Davies 

 Human3 - Dallmann 

 Human4 - Ang 
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Figure 3.1 Identification of metabolites expressed rhythmically in fly bodies. (A) Metabolites that 
significantly cycle with 20-28hr periods in WT-LD (p<0.05, q<0.3, ARSER algorithm). (B) 
Metabolites that significantly cycle with 20-28hr periods in WT-DD (p<0.05, q<0.3, ARSER 
algorithm). (C) Density of circadian periods by group, whereby ARSER testing occurred at 8, 12, 
or 20-28hr searches. 
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Figure 3.2 Amplitudes for each significant metabolite within each tested period and group. 
Amplitude values were derived from ARSER calculations. Per-LD 12hr cyclers displayed a 
significantly higher fold change than WT-LD 12hr cyclers (p=0.001). 
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Figure 3.3 Effects of light and the clock on the pattern of cycling metabolites (A) Time-course 
concentrations of the four carbohydrate species which oscillate with 20-28hr periods in WT and a 
12hr period in per. (B) Overlapping cycling metabolites across all three groups with unique 
periods. 
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Figure 3.4 Radial plot indicating phases for significant 20-28hr cyclers in WT-LD and WT-DD (A) 
and 12hr cyclers in all three groups (B), as calculated by ARSER. C. Phases of the seven 
circadian overlaps in WT-LD and WT-DD. 
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Figure 3.5 Principal components scores plot for all samples. Variance explained for the first two 
components were 27.7% and 10.5% respectively. 
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Figure 3.6 (A) Metabolite set enrichment analysis for metabolites which altered significantly in 
WT-LD across time-block testing (p<0.05, q<0.3) (B) Metabolite set enrichment analysis for 
metabolites which altered significantly across WT-LD and Per-LD, considering all four time-
blocks. 
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Figure 3.7 OPLS-DA scores for discriminant analysis of all three groups in each of the four time 
windows. Significant models were fit to ZT6-12 (B, R2X=0.585, R2Y=0.874, Q2=0.654, p=0.003) 
and ZT12-18 samples (C, R2X=0.458, R2Y=0.488, Q2=0.265, p=0.02) but not ZT0-6 (A, p=0.12) 
nor ZT18-24 (D, p=0.24), noting the convergence of metabolite profiles in WT-LD and WT-DD at 
the end of the dark phase in ZT18-24. 
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CHAPTER 4 – In vivo circadian isotopolomics platform uncovers unique diurnal 
flux patterns perturbed under sleep deprivation 

 

4.1 Abstract 

Basic research in circadian rhythms has recently benefitted from a diversity of high-

throughput systems-level approaches, however they invariably describe snapshots of a dynamic 

process. Furthermore, the metabolic connections to sleep are largely undefined, and new 

approaches are necessary to unearth the impact of sleep perturbation on diurnal reaction 

kinetics. Here, a novel in vivo platform is developed to detect stable isotope labeling patterns in 

Drosophila across circadian time. The impact of perturbed sleep/wake cycles on metabolic flux is 

observed using fumin flies, a genetic model of hyperactivity and sleep deprivation. Microcapillary 

injections of 13C6 glucose into flies at a safe and tolerable dose provide a unique method to study 

acute metabolic flux in downstream oxidative pathways using bespoke liquid-chromatography 

mass spectrometry (LC-MS) metabolomics methodology. Carbon tracing from glucose into serine 

displayed a robust circadian rhythm, which is lost under sleep deprivation. Glutamine labeling 

patterns, likely reflective of TCA cycle activity, demonstrated an ultradian cycle in wild-type flies 

but gained circadian rhythmicity in fumin mutants. Labeled glutathione displayed a striking 8-hour 

ultradian pattern that is lost under sleep deprivation, which may stem from altered redox defense 

mechanisms in response to perturbed sleep/wake cycles. Global changes in isotopolome patterns 

in wild-type flies were most noticeable in the morning hours, suggesting a catabolic rush to meet 

the requirements of energy production during the active phase. Herein a new means of analyzing 

circadian flux is presented, overcoming limitations in interpretability of chronometabolic processes 

from prior ‘omic analyses. 
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4.2 Introduction 

Research in circadian rhythms and sleep has recently benefitted from a diversity of 

systems-level approaches, including transcriptomics, proteomics, and metabolomics (Zhang et 

al., 2014, Mauvoisin et al., 2014, Krishnaiah et al., 2017, Rhoades et al., 2017). Metabolite 

concentrations are particularly promising to derive the phenotypic outputs of the clock and sleep 

status, as metabolites are viewed as products of active physiological processes, and 

interpretations from other ‘omics technologies can be confounded by the variable lag between 

transcription and translation of a given gene product and circadian cycles in post-translational and 

epigenetic modifications (Krishnaiah et al., 2017, Lamia et al., 2009, Feng et al., 2011). However, 

while metabolites may couple more closely to organismal phenotypes than other systems-level 

approaches, any of these techniques are inherently snapshots of a dynamic system. Much like 

taking a picture of a highway versus measuring the cars’ velocities, static metabolic profiling may 

give clues into differential pathway activities, but cannot be used to truly ascertain metabolic flux 

(Zamboni et al., 2015). Flux is a more cogent assessment of the metabolic phenotype, and is 

highly conserved across species to maintain enzymatic efficiency under thermodynamic and 

osmotic constraints (Park et al., 2016). Despite the inherently transitory nature of circadian and 

sleep processes, few studies have focused on analyzing the rates of metabolic reactions or 

pathways with respect to time. New approaches must be employed to add this kinetic dimension 

to our understanding of the chronometabolic connection. 

Metabolic flux cannot be directly observed in an active biological system, however one 

common approach to infer flux is to analyze metabolism of stable isotope tracers to downstream 

products over specified time intervals. The objectives in isotope-tracer experimentation have 

largely shifted from biochemical discovery in the mid-20th century towards characterizing 

metabolic phenotypes, particularly in recent comparative analyses of cancer metabolism. 

Observation of the Warburg effect has driven numerous isotope labeling studies which 

incorporate glucose and analyze isotope enrichments in the pentose phosphate pathway (PPP) 

and TCA cycle (Fan et al., 2014, Fan et al., 2013). Some tracer studies have been recently 
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extended to one-carbon metabolism and amino acid and lipid synthesis as ancillary metabolic 

networks become increasingly apropos to disease phenotypes (Ducker et al., 2016, Munger et 

al., 2008), which are now also understood as important pathways in sleep and circadian 

physiology (Rhoades et al., 2017). However, no sleep and circadian studies have studies have 

employed isotope tracing analysis to corroborate static measurements of metabolites and 

transcripts in these pathways. In addition, labeling studies are typically performed in vitro, given 

the costs and complexity of in vivo experiments in mice and humans (Fan et al., 2011). 

Realistically, sleep and circadian processes are a complex integration of internal oscillators with 

external environmental cues, including light and feeding, which cannot be adequately modeled in 

vitro. While quantitative flux modeling is considerably more difficult in vivo, and currently 

infeasible in non-steady state eukaryotic systems (Wiechart and Noh, 2013), comparative 

analysis of qualitative labeling patterns across experimental conditions may still yield fruitful 

insight into metabolic phenotypes, while maintaining appreciable temporal resolution to discern 

metabolic cycles.  

Drosophila are a boon to sleep and circadian research given their classical sleep 

characteristics, highly conserved genetic clock mechanism, and relative ease of high-throughput 

genetic screens (Hendricks et al., 2000). While metabolomic analyses in flies are sparse, many 

major nutrient sensing pathways and insulin signaling mechanisms found in mammals are also 

found in flies (Geminard et al., 2009, Fernandez et al., 1995). We therefore reasoned that flies 

would serve as a good model to assess dynamic metabolic processes across circadian time and 

under sleep deprivation. Previous studies have added isotope tracers to fly media (Musselman et 

al., 2013, Katewa et al., 2016), however these studies cannot discern flux at the acute timescale 

required for circadian analysis. Fortunately, these previous experiments informed us of the 

tradeoffs in our experimental design. Quantitative flux modeling in eukaryotes typically assumes 

isotopic equilibrium (Wiechert and Nöh, 2013), which was not obtained in flies until 24 hours of 

feeding (Musselman et al., 2013). This observation restricted our objectives to gauging relative 

flux changes acutely across circadian time, as quantitative flux modeling would not be feasible. 
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Nonetheless, our hypothesis is that we could develop a new platform for isotope tracing in flies, 

which would uncover relative changes in both core and secondary metabolic activity downstream 

from glucose. In addition, the metabolic consequence of sleep loss around the circadian cycle is 

assessed by comparison to a fumin mutant fly strain, an established genetic model of sleep loss 

through dopamine-driven hyperactivity. In these experiments, new tracer incorporation 

mechanisms are developed and validated, existing LC-MS methods are expanded to analyze 

numerous labeling possibilities in amino acid metabolism, and data processing pipelines are built 

to deal with both high-dimensionality datasets and periodic patterns common in large-scale 

circadian metabolomics experiments (Rhoades et al., 2017). 

 

4.3 Materials and Methods 

Drosophila strains  

Both fly strains (Drosophila melanogaster), which included Iso31 (isogenic w1118 stock) 

flies and fumin mutants as characterized previously (Kume et al., 2005), were maintained at 25°C 

in 12:12 LD conditions on standard cornmeal/molasses medium. 

 

Entrainment and tracer injection design  

Within one day after eclosion, 15 males were sorted into a new vial for entrainment to LD 

rhythms for a minimum for 3 days. All flies were between 5-7 days old at the time of injection. 

One vial was taken every four hours under LD conditions (ZT0, 4, 8, 12, 16, 20) and placed on ice 

for anesthetization 15 minutes prior to injections. The injection solution consisted of 1M 13C6 

glucose with a 50x dilution of a blue dye (McCormick, FD&C Blue Dye No. 1), for visualization of 

uptake and signal normalization, in PBS and injected into the thorax using glass capillaries (3.5” x 

1.14mm diameter, Drummond Scientific, Broomall, PA). After injection flies were moved to empty 

vials without food and placed back in the appropriate light or dark 25°C incubator to metabolize 

the glucose tracer. After one hour, flies were snap-frozen before metabolite extraction. Five 
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separate days of injections were performed as biological replicates for both WT and fumin 

mutants. Any flies which died after the injections were discarded. 

 

Geotaxis and locomotion assays  

For geotaxis climbing assays, after three days under LD entrainment, 5-7 day-old WT or 

fumin flies were anesthetized on ice for 15 minutes at ZT0 or ZT12, followed by a control (no 

injection), PBS, or 1M glucose injection. Flies were then placed in new vials without food for one 

hour. Climbing activity was measured by timing an individual fly’s time to climb 4cm, measured in 

triplicate. 5-8 flies were used per group. For locomotion assays, the same procedure was taken, 

except flies were placed in 5 x 65mm glass tubes with 5% sucrose immediately after injections 

and monitored under Activity Monitoring System devices (DAMS) from Trikinetics (Waltham, MA) 

for a minimum of 24 hours in 25°C LD incubators. Locomotion data was analyzed using custom 

MATLAB (Mathworks, Natick, MA) scripts (Yuan et al., 2006), and plotting and statistics were 

performed in R (version 3.3). Comparisons were made using a Student’s one-sided or two-sided 

t-test when appropriate with FDR adjustments for multiple testing in the locomotion data, using 

p<0.05 and q<0.2 as a threshold for significance (Benjamini and Hochberg, 1995). One-sided 

tests were performed with an assumption that injections would decrease locomotion activity or 

climbing rate compared to sham control. 

 

Metabolite extraction and LC-MS/MS measurements  

Fly heads and bodies were separated before metabolite extraction. Adapted from the 

Bligh-dyer extraction (Bligh and Dyer, 1959), 600µL of cold 2:1 methanol:chloroform was added 

to the fly samples and homogenized in a bead-based tissue homogenizer at 25Hz for 4 minutes 

(TissuLyser II, Qiagen, Hilden, Germany). 200µL of both water and chloroform was then added, 

followed by centrifugation at 18787xg for 7 minutes at 4°C. 350µL of the upper layer, comprising 

the aqueous layer, was separated and dried down overnight under vacuum. Samples were 

resuspended in 80µL of 50:50 water:acetonitrile for injection onto the mass spectrometer. Two 
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LC-MS/MS analyses were performed to consider both positive and negative ionizing metabolites 

in ESI. Chromatographic separations for both methods were performed on a Waters ACQUITY H-

Class UPLC coupled to a Waters TQ-S Micro MS (Milford, MA), utilizing an ACQUITY UPLC BEH 

Amide column (2.1 x 150mm, 1.7µm). LC conditions for the positive-ionizing method were 

performed as described previously (Rhoades and Weljie, 2016), where the solvents consisted of 

95:5 water:acetonitrile with 2mM ammonium acetate and 0.2% formic acid (mobile phase A), and 

90:10 acetonitrile:water with 2mM ammonium acetate and 0.2% formic acid (mobile phase B). 

The gradient was changed from 100 to 20.6 % B over 15 min at 0.35 mL/min, followed by a wash 

of 100 % A for 5 min. Mobile phase B was changed from 0 to 100 % from 20 to 22 min and held 

for column equilibration until 30 min. For the negative-ionizing method, solvents consisted of 95:5 

water:acetonitrile with 20mM ammonium bicarbonate, pH 9 (mobile phase A) and 90:10 

water:acetonitrile with 20mM ammonium bicarbonate, pH 9 (mobile phase A). The gradient was 

changed from 100 to 20.6 % B over 15 min at 0.4 mL/min, followed by a wash of 100 % A for 5 

min. Mobile phase B was changed from 0 to 100 % from 20 to 22 min and held for column 

equilibration until 30 min. 

Given the nature of LC-MS/MS, MRMs were used to measure metabolites of interest. To 

observe isotopologues of a given metabolite, whether it be glucose or downstream products of 

glucose metabolism, MRMs were set up to include the multiple daughter isotopomers of a given 

parent isotopologue. For example, alanine M+1 MRMs were set up to consider that an M+1 

parent isotopolgue could yield an M0 or M+1 daughter ion, depending on the carbon lost in 

fragmentation. Alanine M+1+1 and alanine M+1+0 (i.e. an alanine with one labeled carbon in the 

parent compound, with one or zero carbons labeled in the daughter ion respectively) signals were 

then summed to yield a parent alanine M+1 isotopologue signal. 

 

Data processing and normalization  

Chromatograms were processed using TargetLynx under MassLynx version 4.1 and 

exported as ion counts to be processed in R (version 3.3). For each sample, technical duplicates 
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were injected, along with QC samples every 10 injections, which was comprised of a pool of all 

samples and used to correct for analytical drift. Before QC-based corrections, a ratio matrix was 

derived from the raw data. For every metabolite, the ratio of each isotopomer to the unlabeled 

(M0) metabolite was stored, such that natural abundance isotope correction could be performed 

after QC correction. For every metabolic feature, a linear regression function fit to the QC data 

was used as a normalization factor for the samples as a function of run order (Dunn et al., 2011). 

Technical replicates were then averaged, and each sample was normalized to the injected blue 

dye (MRMs for unique m/z’s found in the dye were tuned for ESI+ and ESI- analyses, Table 4.1), 

after which daughter isotopomer values were then summed to yield single parent isotopologues 

(e.g. alanine M+1+1 and alanine M+1+0 to form alanine M+1) in both the processed data matrix 

and the ratio matrix. The processed matrix was then rescaled back to ‘raw’ isotopologue 

distributions through division by the ratio matrix, so that natural 13C abundance isotope correction 

could be performed, based on previous methods (Moseley, 2010). Values were then converted to 

relative abundance by dividing an individual isotopologue value to the sum of all detected 

isotopologues for a given metabolite. 

 

Rhythmicity analysis and statistics  

PCA was performed using SIMCA-P v14 (Umetrics AB, Umeå, Sweden) as a 

visualization of successful QC-based data correction (i.e. tight clustering of QC samples around 

the origin in Principal Component space) and to remove any outlier observations residing outside 

the Hotellings’ T2. Supervised clustering was performed using OPLS-DA with 7-fold cross 

validation as performed in SIMCA-P. 

Rhythmicity testing of isotopologue relative abundances or metabolite pool sizes was 

performed with JTK_CYCLE under the MetaCycle package in R (Hughes et al., 2010, Wu et al., 

2016) to test for 12 or 24-hour period lengths. Given the biological replicates consisted of 

separate days of injection and sacrificed flies (as opposed to resampling the same flies), 

JTK_CYCLE was modified to run 500 permutations of the data to guard against day-to-day bias. 
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Of the four or five replicate days of injections, for each injection ZT, two replicates were randomly 

chosen to serve as duplicates, while two of the remaining data points were randomly selected as 

a second day of testing, yielding a 48-hour dataset for circadian wave-fitting. In this way, a 

distribution of adjusted p-values could be derived from JTK_CYCLE analysis to mitigate daily 

technical variance. The default cosine function was used to assess significance, reported as the 

median p-value of the 500 permutations. 

To test for non-circadian time-dependent changes in relative abundances or pool sizes, 

univariate tests were performed in a pairwise manner. A Bartlett’s test was first used to decide 

between parametric (Student’s T-Test, F>0.05) or nonparametric (Wilcoxon text, F<0.05) tests of 

means. A single time point was either tested to all other time points within genotypes, or 

compared across genotypes at the equivalent time point. A Benjamini-Hochberg (Benjamini and 

Hochberg, 1995) correction was performed to account for multiple testing using the ‘stats’ 

package in R. 

 

4.4 Platform Rationale 

Aligning technical approach with biological objectives 

The workflow for the in vivo isotope tracer platform is outlined in Figure 4.1. Each step in 

this process required careful consideration of separating biological variance from unwanted 

technical and analytical variance, all with the prevailing objective of understanding dynamic 

metabolic processes across circadian time. The injections serve to mimic a both pulse-chase 

experiment and acute feeding bout, through injection of an isotope tracer and collection of the 

flies after a fixed time interval. Feeding flies a tracer through their food source with respect to 

circadian time would require enforcing appreciable feeding at the time point of interest, most likely 

through a fasting paradigm, which may confound interpretation of the results. A feeding approach 

may still be useful to answer questions regarding control of fasting/refeeding responses by the 

circadian clock but is outside the scope of this project. In order to remove the influence of 

continued feeding, these flies were placed in vial without food during the glucose incubation 
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period. Of note, these flies were anesthetized on ice, rather the preferred method of carbon 

dioxide. Initial anesthetizations under carbon dioxide revealed increased lactate M+3 compared 

to ice, which most likely reflects increased glycolysis under hypoxic conditions. While cold 

exposure may also exhibit some confounding metabolic influences, hypoxic conditions likely alter 

physiology more quickly than ice exposure. The duration of tracer exposure is critical to 

understand the acute response to nutrients under circadian cycles. One hour of incubation with 

the labeled glucose was considered a tradeoff between sufficient sampling resolution for 

circadian analysis and obtaining appreciable isotopic enrichments for LC-MS detection. Given the 

genetic clock can respond quickly to environmental stimuli (Myers et al., 1996), shorter incubation 

times would be ideal, but come at a cost of fewer detectable isotopologues. In time, with 

improved metabolomics technologies, shorter incubation periods with higher time resolution can 

provide additional clarity to metabolite flux cycles. 

 

Analytical strategy 

LC-MS metabolomics has traditionally been bifurcated into untargeted analyses on a 

high-resolution mass spectrometer and targeted analyses on a quadrupole or ion-trap instrument 

(Cajka and Fiehn, 2016). This untargeted versus targeted chasm has been crossed with recent 

advancements in MS instrumentation, facilitating analysis of hundreds of small polar metabolites 

on quadrupole instruments with an MRM approach (Rhoades and Weljie, 2016, Yuan et al., 

2012). The difficulties of metabolite identification are substantially alleviated with fragmentation 

information, leading to faster biological interpretations of these datasets. These analytical 

advancements can also provide deeper analyses of isotope labeling patterns, but encounter 

some unique limitations under this current study design. Isotope enrichment analyses on GC-MS 

benefit from increased chromatographic separation, and thus only the parent isotopologue mass 

is required to uniquely identify metabolites. However, fragmentation is required for sufficient 

specificity of a given metabolite on LC-MS operating at unit mass resolution.  
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A glucose tracer with only one 13C produces significantly fewer uniquely labeled products 

than from 13C6 glucose. While fewer labeled carbons entails a simpler LC-MS analysis, singly 

labeled glucose will not probe metabolism as deeply as 13C6 glucose. However, with fully labeled 

glucose, many more MRMs must be considered. For instance, to analyze serine M+2, MRMs 

must be incorporated to consider 12C or 13C carbons in the daughter ion. The possibilities scale 

considerably with an increasing number of carbons, thus requiring hundreds of MRMs for even 

tens of metabolites (Choi et al., 2012). During this method development process, MRMs were 

trimmed based on both realistic expectations of labeling patterns from 13C6 glucose and trial and 

error. For example, one may expect to find AMP M+5 from 13C6 glucose, but not M+10. 

Additionally, some isotope enrichments were undetectable in e.g. lysine from pilot labeling studies 

and were removed from the LC-MS analysis to improve S/N for other observable metabolites. 

However, future experiments which utilize other tracers will need to test for new enrichment 

possibilities, especially if one is to design these experiments as an “untargeted” isotopolomics 

approach. 

 

Data processing and correction measures 

Reducing unwanted variance in large-scale circadian metabolomics experiments is a 

nontrivial endeavor (Dunn et al., 2011).  Preparation and run order should be randomized to 

reduce bias, and QC samples incorporated to account for analytical drift, which typically comprise 

of a pool of the biological samples or a standard mix. The QCs can be used to both correct for 

drift and remove spurious metabolites with highly response variance. This approach is common in 

metabolomics, including large circadian metabolomic experiments with high sampling resolution 

(Krishnaiah et al., 2017). These procedures can be integrated into large-scale isotope enrichment 

analyses but must be tailored to address unique challenges. Analytical drift correction requires 

fitting regression curves to the quality control samples, after which correction factors are imputed 

and applied to the non-QC samples. Since this approach is performed for each metabolic feature 

individually, every variable will then be normalized to a scale that centers around 1. For 
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downstream multivariate statistical analysis, this approach is acceptable, however isotope 

enrichments must account for naturally occurring 13C and undergo natural abundance correction 

(Moseley, 2010). If every isotopologue is treated as a separate metabolic feature and corrected to 

its own QC values, the scale of the isotopologue signal to the unlabeled metabolite is lost. One 

method to correct for natural abundance would be to use the ratio of the raw ion counts of a given 

isotopomer to the unlabeled M0 signal as a rescaling factor after QC correction. Once 

isotopomers are summed to form the isotopologue data matrix, natural abundance correction 

could be performed to arrive at a final normalized concentration.  

An obvious criticism of this platform is the intentional disregard of the fragment labeling 

information embedded in the isotopomer MRM analysis. Positional labeling information is 

significantly more specific to reaction activities than parent isotopologues, however can only be 

obtained from NMR analysis or extensive MS/MS methods, for example the 47 tandem mass 

isotopomers which were used to obtain complete isotopomer distribution analysis in aspartate 

(Choi et al. 2012). Prodigious additional work will be required to extend the labeling platform 

described here and translate fragment labeling formation into significant biological inference.  

 

Relative abundance as unique variables for periodic and multivariate statistical analysis 

Under this platform, every isotopologue is treated as a unique variable for statistical 

analysis. However, the endogenous pool size of a given metabolite likely varies across both 

circadian time and experimental conditions. We observed that when plotting the corrected 

isotopologues against their M0 signals, the values generally moved in tandem, implying that 

metabolite pool size changes drove the variance in isotopologue signals. Additional scaling was 

necessary to account for the pool size fluctuation and treat each isotopologue as a unique 

variable. Each isotopologue was converted to a relative abundance metric by dividing the 

isotopologue signal by the sum of all the given metabolite’s isotopologues (Buescher et al., 2015). 

This approach seemed reasonable to gauge qualitative flux comparisons across time and 

genotypes, however may suffer from some inaccuracy if full isotopologue distributions are not 
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detectable. For example, while it is unreasonable to expect large AMP M+10 signals, if appreciate 

labeling collectively occurs in M+6 though M+10 isotopologues, and only AMP M0 through M+5 is 

analyzed, the relative abundance calculation will not completely account for pool size, but is still 

likely to be reasonably accurate for this particular experimental design. 

After extracting relative abundances, each isotopologue can be tested for significant 

rhythmicity. A unique design feature in this Drosophila injection platform is the replicated 

sampling across multiple days. Rather than a continuous collection interval, which is common in 

cell or mouse experiments, replicate injections were performed on separate days, as five 

replicates on a single day of injections is infeasible (15 flies were injected at each time point for 

each replicate, which would take roughly 15 minutes). To guard against false positives and day-

to-day variance, replicates were randomly permuted, while maintaining the circadian time order, 

and subsequently retested for periodicity. This approach is not common practice in the circadian 

field, but should be considered given the same animal is not typically resampled continuously and 

is instead sacrificed as a replicate data point. In addition, these statistical algorithms benefit from 

replicates across multiple days of testing, thus replicates data points were sampled to produce a 

time-series of two replicates across two days. 

Metabolomic data analysis benefits from dimensionality reduction approaches such as 

PCA and OPLS-DA (Kotlowska, 2014). PCA is particularly useful to assess the quality of data 

normalization measures and outlier detection, and served similar functions in this high-

dimensional isotopolomic dataset. Additionally, OPLS-DA has not been used in isotope analysis, 

but is particularly useful here to compare isotope enrichment profiles across genotypes and 

circadian time. As a dimensionality reduction technique, OPLS-DA can also guard against the 

influence of collinear X variables, which is inherent in the analysis of relative abundances.  Given 

the influence of feeding and light on behavior and metabolism, isotope patterns which exhibit 

diurnal but noncircadian patterns would be otherwise unnoticed without these additional analyses. 
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4.5 Results 

Glucose injection does not alter activity patterns 

Supraphysiological doses of glucose may have unintended consequences on behavior 

and activity, thus we sought to inject a glucose bolus which would strike a balance between 

analytical detection and normal physiological response. After testing a range of concentrations 

(up to 3M), 1M glucose injections were deemed an adequate tradeoff of detectable isotope 

enrichment and animal safety, as flies empirically recovered at roughly the same rate from 

anesthetization as non-injected controls. Post-injection climbing assays did not reveal any 

significant changes between sham, PBS, and glucose injections in WT flies at ZT0 nor ZT12 

(Figure 4.2). The only observable changes in climbing ability occurred across genotypes, at ZT0 

between WT and fumin flies for PBS injections (p=0.003), and at ZT12 for PBS and glucose 

injections (p=0.027 and p=0.014 respectively). The locomotion activity of the WT flies decreased 

within the first half hour time bin for both PBS and glucose injections at ZT0 (p<0.001) and for 

glucose injections at ZT12 compared to the sham injection (p=0.001), however was not significant 

between PBS and glucose injections (Figure 4.3). All comparisons were additionally insignificant 

in the fumin mutants. These locomotion assays revealed an expected consequence of the 

injection injury when compared to a sham injection, however glucose did not impart any 

significant changes compared to the PBS injection control, demonstrating an appropriate dose for 

our experimental objectives. The injections were well tolerated, as less than one percent of all 

injected flies in the circadian experiments were killed. 

 

Amino acid metabolism demonstrates significant rhythmicity is and perturbed with sleep 

loss 

Serine M+3 relative abundance displayed significant circadian rhythmicity in WT flies 

(p=0.02) with a 24-hour period and a peak at ZT4, which was lost in fumin mutants (p=1, Figure 

4.4A). Additionally, the relative abundance was significantly higher at ZT4 in WT over fumin flies 

(p=0.005), reflecting increased morning flux into serine from glucose carbons. The serine pool 
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size was also significantly circadian (p=0.01, Figure 4.4B) in WT flies and dampened in fumin 

flies. Of note, the serine pool size did not significantly change between ZT0, ZT4, and ZT8, 

supporting the notion of increased carbon flux into serine amidst a stable pool size during the 

active phase. Glutamine M+2 displayed a significant 12-hour period in WT flies (p=0.03) and a 

24-hour circadian cycle in fumin mutants (p=0.004, Figure 4.5A), however no significant genotype 

comparisons could be made as peak phases were in the morning hours for both genotypes. 

Interestingly, the glutamine pool demonstrated a 24-hour period in WT (p=0.001) but tested 

insignificant in fumin (Figure 4.5B). The glutamine pool size in WT flies did not increase from ZT0 

to ZT4, unlike glutamine M+2 relative abundance (p=0.01), suggesting increased flux into 

glutamine carbons under steady-state metabolite levels. 

 

Glutathione M+2 exhibits ultradian patterns in WT that are lost in short-sleep mutants 

GSH M+2, a product of glutathione biosynthesis from amino acid precursors, exhibited a 

clear ultradian pattern in WT flies but not fumin mutants (Figure 4.6A). Since 4-hour sampling 

resolution is inadequate to test 8-hour ultradian periods, pairwise time comparisons were made 

within WT samples, revealing significant relative abundance changes between ZT4-8, ZT8-12, 

and ZT12-16 (p<0.02). GSH pool sizes yielded a similar time course, however dropped 

significantly at ZT12, as ZT0-12, ZT4-12, and ZT8-12 pairwise comparisons were significant 

(p<0.02). We reason the source of the M+2 signal comes from glycine, as the WT glycine pool 

size also displayed significant changes between ZT0-12, ZT4-12, and ZT8-12 (p<0.02). The 

glycine M+2 signal was too weak and variable to yield statistically significant results, but also 

aligns temporally with GSH M+2 relative abundance (Figure 4.6B). 

 

Isotopolome yields unique profile in the early active phase 

Univariate pairwise comparisons across genotype revealed 40 significant isotopologues 

(p<0.05, q<0.2, Table 4.2), with 38 occurring at ZT4. Unique metabolites in this list consisted of 

AMP, erythrose-4-phosphate, malate, glucose-6-phosphate, citrate, GSH, glutamate, ribose-5-
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phosphate, glucose, serine, alanine, asparagine, fructose-1,6-bisphosphate, succinate, 

leucine/isoleucine, ornithine, proline, and lactate. Although a significant model could not be fit for 

discriminant analysis of all time points as unique Y variables, a scores plot from an OPLS-DA 

model to the WT samples visually confirmed a unique isotopolome at ZT4 (Figure 4.8A). 

Additionally, discriminant analysis of ZT4 observations to all other time points in the WT samples 

yielded a significant model (R2X=0.175, R2Y=0.938, Q2=0.426, p=0.016), as well as discriminant 

analysis by genotype (R2X=0.178, R2Y=0.809, Q2=0.51, p=1.29e-06, Figure 4.8B). As this LC-MS 

platform predominantly features smaller molecules as products of carbohydrate oxidation, rather 

than anabolic fates to glycogen and lipids, this data suggests a unique fluxomic profile in 

oxidative pathways early in the active phase under LD and normal sleep/wake cycles. 

 

4.6 Conclusions 

The amalgamation of systems-level oscillations in transcripts, proteins, and metabolites 

presents a formidable degree of complexity in the circadian systems. Theoretical constructs 

which aim to decipher metabolic flux rhythms based on phase offsets of key metabolic enzymes 

have recently been published (Thurley et al., 2017), but do not experimentally measure 

metabolite fluxes. Although tracer studies have been performed in cell models of circadian 

disruption (Papagiannakopoulos et al., 2016), stable isotope metabolomics has yet to be 

performed in a model that incorporates both the environmental and genetic drivers of the clock. 

Herein a novel platform is established to inject stable isotope tracers into Drosophila, and 

subsequently analyzed using custom LC-MS methodology and data-processing procedures. The 

injections were well-tolerated, and yielded insignificant changes in activity between glucose and 

PBS injections, suggesting a reasonable dose to study circadian physiology. 

Flux into amino acid metabolism from glucose carbons exhibited a significant circadian 

pattern in WT flies, with a higher morning flux compared to sleep-deprived flies. Serine M+3 

represents a new circadian biometric variable and likely results from a branch point from 

glycolysis (Pizer, 1963). Previous studies have analyzed steady-state pools of serine across 
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circadian time (Dallmann et al., 2012), however could not state the source of the constituent 

carbons. Serine has recently garnered attention in cancer metabolic studies, as it sits at the 

nexus of lipid biosynthesis, one-carbon metabolism, amino acid biosynthesis, and redox defense 

(Mattaini et al., 2016). Interestingly, these major metabolic processes have all been implicated in 

circadian rhythms or sleep (Katewa et al., 2016, Krishnaiah et al., 2017, Rhoades et al., 2017, 

Inoue et al., 1995), suggesting serine production from carbohydrates may be an important 

preceding step under circadian control. Future studies should consider tracking the fate of serine 

carbons into downstream products to clarify a particular role for rhythmic serine flux. This analysis 

may further elucidate if cyclic serine labeling derives from a temporal offset of downstream 

branch points, or cyclic rediversion of upstream carbohydrate carbons. Additionally, novel tracer 

designs have recently been developed to define compartmentalized reactions in glycine/serine 

metabolism and may add additional interpretability to the results noted here (Lewis et al., 2014). 

Serine is currently of interest in cancer metabolism, serving as precursor for biomass production. 

While adult flies may not require the same degree of anabolism as cancer cells, rhythms in 

oxidative and reductive metabolism have been noted elsewhere (Peek et al., 2013, Katewa et al., 

2016), and support a hypothesis that circadian clocks serve to temporally separate catabolic and 

anabolic processes to promote metabolic efficiency (Bass, 2012).  

Serine M+3 lost rhythmicity in fumin flies, suggesting altered diurnal demands in amino 

acid metabolism. WT flies under LD and functional clocks can anticipate energetic demands and 

nutrient availability and may consequently shuttle the carbohydrates consumed in the morning 

into secondary pathways such as amino acid anabolism. With perturbed sleep/wake patterns, the 

fumin mutants may require additional energy from amino acid catabolism, thus breaking the 

possible roles of cyclic serine production for anabolic purposes. Isotopically-labeled amino acid 

injections would further elucidate cycles of amino acid catabolism and anabolism under sleep 

deprivation. Glutamine M+2 also marks a previously undiscovered ultradian output. Given 12-

hour cycles are likely driven through LD entrainment, noted for steady-state metabolite levels in 

Chapter 3, glutamine M+2 may reflect to feeding and activity rhythms. Oxidative metabolism has 
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been previously shown oscillate with ultradian cycles in cells and liver ex vivo (Peek et al., 2013), 

thus glutamine M+2 could serve as an alternate readout of metabolic flux through central energy 

and amino acid metabolism. A circadian rhythm was noted for glutamine M+2 in fumin mutants. 

This finding may suggest an ultradian profile in central energy metabolism regulated by clocks, 

sleep/wake patterns, and feeding cycles, however in the absence of normal activity cycles, shifts 

towards a circadian profile aligned with an intact genetic clock.   

Glutathione levels and glutathione biosynthetic enzymes were previously reported to 

exhibit a diurnal pattern in Drosophila heads (Beaver et al., 2012), but did not demonstrate 

periodicity in active glutathione biosynthesis. GSH M+2 displayed a stark ultradian pattern in WT 

flies, however the glutathione pool size demonstrated a similar temporal pattern, which may 

suggest a steadier flux of carbons into a transient steady-state level than would be suggested by 

M+2 relative abundance alone. Nonetheless, glutathione pool sizes did not alter significantly in 

the light phase, suggesting a degree of rhythmic flux. Although glycine M+2 enrichments were too 

low to accurately detect at every time point, the temporal overlap between glycine and glutathione 

supports the hypothesis that the glycine addition via glutathione synthetase represents the 

ultradian step in glutathione biosynthesis, as glutamate and cysteine isotopologues did not 

display a similar pattern. Of note, glycine M+2 did not temporally overlap with serine M+3. While 

glycine M+2 may still form from serine M+3, rhythmicity in substrate rediversion may be 

responsible for the temporal offset of these isotopologues. Interestingly, Beaver et al. reported 

rhythms in fly heads for glutamate cysteine ligase activity, and found no temporal pattern in 

glutathione synthetase, however head and body mechanisms of glutathione biosynthesis and 

redox defense may differ. Additionally, GSH M+2 cycles were lost in fumin mutants, which likely 

stems from altered ROS production under sleep deprivation, perhaps consistent with the loss of 

ROS cycling noted in clock mutants (Krishnan et al., 2008). 

A global isotopolome shift at ZT4 in WT flies suggests increased carbohydrate 

metabolism, which may stem from increased feeding and activity after lights-on. Given many of 

the metabolites detected in this method comprise small compounds instead of larger anabolic 
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products, these results may reflect a role for glucose in a morning ‘catabolic rush’. Anabolic 

products, including glycogen, lipids, and proteins, would likely be formed towards the onset of 

dusk in anticipation of fasting and decreased activity, as has been previously noted (Tsai et al., 

2010). Additional analytical methods would be required to analyze anabolic fates for glucose 

carbons. Alternatively, the results from Chapter 3 highlight the importance of light-induced 

metabolome profiles, which may be mirrored here in a LD paradigm. Future experiments should 

consider isotopolome analysis under constant conditions to separate environmental and clock-

driven flux profiles. 

 The stark difference in the ZT4 isotopolomes across genotypes may reflect altered 

metabolic demands after sleep deprivation. Locomotor activity in fumin mutants is considerably 

higher than WT at night rather than after lights-on, mirrored by high nighttime dopamine levels 

(Kume et al. 2005). Additionally, light has been shown to inhibit dopamine’s wake-promoting 

effects through upregulation of inhibitory dopamine receptors (Shang et al., 2011), further 

promoting the notion that altered glucose metabolism may stem from a response or 

compensation to nighttime hyperactivity. Additional models of sleep perturbation will clarify the 

relative importance of high dopamine levels versus alternative means of sleep deprivation. 

This platform has unearthed a new dimension of circadian clock outputs, however may 

be confounded by some aspects of the current experimental design. Considering the diurnal 

activation of stress pathways (Spencer et al., 1998), the cyclic metabolic outputs noted here may 

be influenced by stress responses to the injection injury. Additionally, this experiment subjected 

flies to cold, followed by a light exposure necessary to perform the injections. These additional 

stressors and cues may not only influence metabolism, but reset the clock, mitigating the effect 

size on diurnal flux. The clock itself may also gate the degree of response to environmental 

signals, which has been observed by differential photic induction of gene expression in subjective 

morning versus night (Sutin and Kilduff, 1992). One hour of labeling may be sufficiently long to 

alter the clock phase after a brief light exposure, however likely did not completely reset the clock 

given the significantly circadian isotopologues observed here. The hour incubation period 
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ultimately stemmed from a tradeoff of isotope enrichment with acute flux analysis. Many of the 

isotopologues included in the LC-MS analysis yielded relatively high variance and low S/N, thus 

additional advancements in instrumentation would be required to shorten the label incubation 

period to alleviate concerns of stress and light exposure while maintaining broad coverage of the 

isotopolome. 

While unprecedented in scope, this current analysis cannot detect particular 

isotopologues of interest. Given glycine M+2 does not temporally align with serine M+3, other 

downstream metabolites from serine carbons would likely also oscillate with a 24-hour period, 

including one-carbon metabolites and lipid synthesis products such as sphingosines and 

phosphatidylserines. Substantially more sensitive methodology will be needed to detect these 

isotopologues, as the serine M+3 relative abundance in this study never exceeded 12%. MRMs 

for GSH only considered M0 through M+5, rather than the full isotopologue distribution, in an 

effort to increase MS dwell times and decrease analytical variance in other isotopologues. 

Dedicated methods which account for all possible MRMs of glutathione may further elucidate the 

source of glutathione labeling patterns and corroborate previous enzyme expression data. 

The open-circulatory system in Drosophila provides a unique advantage in the 

interpretation of this study design. While mammalian physiology is highly compartmentalized, the 

bathing of the fly’s organs in the hemolymph likely leads to a more rapid mixing of tracer and 

subsequent exposure to the periphery, and may be amenable to single-compartment kinetic 

models in future study designs (Wolfe and Chinkes, 2005). In mammals, glucose labeling 

patterns may be largely driven by glucose uptake, rather than intracellular reaction rates. In this 

Drosophila paradigm, this concern is mitigated by an assumed mixing of glucose through the 

hemolymph, however rhythms in glucose uptake would need to be validated through tissue-

specific enrichment analysis. The fat body is the largest and most metabolically active organ in 

the fly, and is likely responsible for much of the observed labeling patterns. However, fat body 

transcripts do not necessarily align temporally with whole-body or head transcripts (Keegan et al., 

2007, Xu et al., 2011), which will likely decrease the number of observable circadian 
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isotopologues from body analysis. A combination of new LC-MS methodology and fly preparation 

and extraction protocols will be required to discern tissue-specific labeling patterns, as many 

isotopologues noted even in body analysis displayed low S/N. Additionally, the metabolic source 

of a given isotopologue is poorly understood. While serine M+3 likely derives from glycolysis 

branching, metabolic paths leading to glutamine M+2 are less clear, and realistically may have 

many sources when one considers the complex network-structure of metabolism 

(Chokkathukalam et al., 2014). Additional bioinformatic approaches which track carbon flow 

throughout genome-scale metabolic networks will be required to understand the possible 

metabolic paths which lead to these experimental results, and is the subject of Chapter 5. These 

uncertainties may also be alleviated through additional MS/MS platforms which effectively utilize 

fragmentation labeling patterns. Ultimately, our current understanding of biochemistry has not 

kept pace with the advances in systems-level technologies, particularly in secondary metabolism 

(Hackett et al., 2016). Regardless, this acute labeling platform opens new doors for 

understanding circadian, sleep, and nutrient processing mechanisms. Apropos, a recent interest 

in the benefits of time-restricted feeding vis-à-vis the circadian clock raises questions regarding 

the temporal distribution of nutrient processing (Longo and Panda, 2016). Experimental designs 

which consider feeding paradigms, alternative isotope tracers, and clock disruptions have 

pragmatic applications in nutrition, therapeutics, and social determinants of health, and may 

improve the management of altered feeding and sleep schedules common in e.g. shift work. 
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Table 4.1 MRM transitions for injection dye used in signal normalization 

Compound Parent Mass Daughter Mass(es) 

Dye1 (ESI+) 453.00 217.00, 326.00 

Dye2 (ESI+) 579.00 288.00 

Dye3 (ESI-) 225.00 200.00 

Dye4 (ESI-) 373.20 170.00, 333.00 
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Table 4.2 Significant isotopologues (p<0.05, q<0.2) across genotype 

Isotopologue Time Comparison P-Value Q-Value 

AMP M0 4hr 4.74E-06 0.000783 

AMP M+1 4hr 1.35E-05 0.001113 

Erythrose-4-Phosphate M0 12hr 4.97E-05 0.008204 

Malate M+1 20hr 5.42E-05 0.008939 

Glucose-6-Phosphate M+6 4hr 0.000503 0.027657 

Glucose-6-Phosphate M0 4hr 0.000976 0.040243 

Citrate M+1 4hr 0.001445 0.047686 

GSH M0 4hr 0.002447 0.062446 

Ribose-5-Phosphate M0 4hr 0.0029 0.062446 

Hexose M+6 4hr 0.003028 0.062446 

AMP M+2 4hr 0.003663 0.067158 

Serine M+3 4hr 0.005092 0.08402 

Asparagine M+1 4hr 0.005982 0.08973 

Hexose M0 4hr 0.006779 0.093208 

Alanine M+3 4hr 0.009335 0.118477 

Ribose-5-Phosphate M+4 4hr 0.010308 0.121487 

Asparagine M0 4hr 0.013238 0.139188 

Asparagine M+4 4hr 0.014246 0.139188 

AMP M+5 4hr 0.014341 0.139188 

Serine M+2 4hr 0.016467 0.150951 

Glutamate M+4 4hr 0.018159 0.157693 

Fructose-1,6-Bisphosphate M+3 4hr 0.021071 0.163972 

GSH M+5 4hr 0.021837 0.163972 

Alanine M0 4hr 0.021863 0.163972 

Hexose M+3 4hr 0.02347 0.164591 

Glucose-6-Phosphate M+3 4hr 0.02394 0.164591 
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Succinate M+2 4hr 0.025768 0.168292 

Leucine/Isoleucine M+5 4hr 0.026519 0.168292 

Asparagine M+2 4hr 0.028571 0.168367 

Glucose-6-Phosphate M+5 4hr 0.028571 0.168367 

AMP M+3 4hr 0.029997 0.169458 

Ornithine M+1 4hr 0.031106 0.169458 

Ornithine M0 4hr 0.031838 0.169458 

Proline M+4 4hr 0.037125 0.187679 

Proline M+5 4hr 0.038418 0.187679 

Lactate M+1 4hr 0.038673 0.187679 

Lactate M+3 4hr 0.04137 0.194402 

Serine M0 4hr 0.044428 0.194402 

Hexose M+5 4hr 0.044693 0.194402 

Succinate M+4 4hr 0.044771 0.194402 
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Figure 4.1 Workflow for in vivo circadian isotopolomics platform. After Drosophila injections and 
LC-MS analysis, data is normalized to QC samples and injection dye signal, followed by 
isotopomer summation to yield the isotopologue matrix. These values are then scaled according 
to ratios of individual isotopologue ion counts to the unlabeled M0 metabolite before natural 13C 
abundance correction. Data is exported as relative abundance to the total metabolite signal. 
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Figure 4.2 Geotaxis assay at ZT0 (A) and ZT12 (B), measured in time to climb 4cm one hour 
after injections (n=5-8). Boxplots are colored by genotype (Fmn – fumin; WT – wild-type). No 
significant changes were noted within genotype at either time point. 
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Figure 4.3 Locomotion assay by genotype and time. Glucose and PBS injections decreased 
activity compared to sham injection in WT at ZT0 (A, p<0.001), and for glucose at ZT12 (B, 
p=0.001), while no differences were noted in fumin mutants at either time point (C, D). 
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Figure 4.4 Relative abundance for serine M+3 (A) and normalized concentration of serine pool 
size (B) by genotype across time. Serine M+3 exhibited a significant 24-hour period in WT 
through JTK_CYCLE analysis (p=0.02) and significantly increased over fumin (Fmn) flies at ZT4 
(p=0.005). Serine pool size did not significantly change between ZT0 and ZT8 in WT, 
demonstrating an increased flux of glucose carbons into serine. 
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Figure 4.5 Relative abundance for glutamine M+2 (A) and normalized concentration of glutamine 
pool size (B) by genotype across time. Glutamine M+2 exhibited a significant 12-hour period in 
WT (p=0.03) and 24-hour period in fumin (Fmn) flies (p=0.004) through JTK_CYCLE analysis. 
Glutamine pool sizes displayed a significant 24-hour period in WT (p=0.001). 
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Figure 4.6 Relative abundance for GSH M+2 (A) and glycine M+2 (B) by genotype across time. 
GSH M+2 relative abundances significantly altered for WT in pairwise comparisons of ZT4-8, 
ZT8-12, and ZT12-16 (p<0.02), while relative abundances did not significantly change at any 
pairwise timepoint comparison for fumin flies. Glycine M+2 did not yield any significant changes, 
however displays an ultradian pattern which overlaps with GSH M+2 and suggests glycine as the 
carbon source for flux into GSH biosynthesis. 
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Figure 4.7 OPLS-DA scores plots. All time points were modeled as Y variables within WT 
samples to demonstrate unique ZT4 isotopolomic profile (A, ns), and a pairwise model by 
genotype, with all timepoints considered (B, R2X=0.178, R2Y=0.809, Q2=0.51, p=1.29e-06). 
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CHAPTER 5 – In silico isotopologue-mapping to trace metabolic pathways at 
genome-scale 

 

5.1 Abstract 

 Isotope tracers have greatly enhanced metabolic research, however as metabolomic 

analyses probes deeper into secondary metabolism, the interpretability of increasingly complex 

isotope enrichment patterns remains limited. Herein is described a novel computational approach, 

termed the IsoPathFinder, which considers all possible paths from the input isotope tracer to the 

isotopologue of interest through atom-resolved reaction networks at a genome scale. This 

algorithm is flexible, capable of rebuilding tracer-based metabolic networks from any tracer of 

interest and subsequently searching for any user-specified isotopologue. As a proof of concept, 

this approach uncovered possible routes to rhythmic isotopologues observed in Chapter 4. 

Canonical serine biosynthesis paths were calculated alongside two thermodynamically-favorable 

alternative paths through pyruvate M+3, which utilize an oscillating pyruvate kinase enzyme and 

confirm a glycolytic contribution to serine flux. 7246 paths were discovered for glutamine M+2, 

thus requiring a trimming procedure based on physiological relevance, expression datasets, and 

thermodynamics, to yield a subset of the eight likeliest paths. Most of these paths contained the 

TCA cycle, which confirms suspected cataplerotic feeding of the TCA cycle into amino acid pools. 

The shortest paths to GSH M+2 derived from glycine M+2, as expected. Additional routes via 

cysteine M+2 were discovered at longer path lengths, and may be driven from cyclic activity in 

glutamate cysteine ligase. This approach is presented as a proof of concept to confirm known 

biochemistry and propose new metabolic mechanisms, and opens doors for additional 

experimentation and metabolic discovery through simulation of alternative isotope tracers. 
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5.2 Introduction 

The isotopologue data presented in Chapter 4 presents a set of novel findings regarding 

diurnal patterns in metabolic flux, generated from a bespoke technical and analytical 

metabolomics platform. On its own, this approach provides a clearer assessment of metabolic 

phenotypes over static measurements such as transcriptomics and steady-state metabolomics. 

However, we are far from fully understanding the enzymatic processes which produce observable 

isotopologues amidst the complex network of metabolism. Only a small fraction of the vast 

possibilities in metabolism are ever considered with current implementations of experimental 

designs and analytical assays, and subsequent interpretations on the scaffolds of restricted 

canonical biochemical pathways. While glucose tracing experiments have revealed glycolysis is 

in fact a major active hub of metabolic flux networks (Park et al., 2016), there remains vastly 

unexplored territory in alternative fates of isotope tracers. Bioinformatic tools have been recently 

developed to abstract labeling patterns from high-resolution MS metabolomics data (Huang et al., 

2014, Capellades et al., 2016), however considerable work remains in metabolite identification 

and biological interpretation. Additionally, attributing labeling information to specific reaction 

activities is difficult without atomic detail, which would require NMR or extensive MS 

fragmentation (Choi et al., 2012). The rapid growth of reaction annotation and metabolite 

identification presents a unique opportunity in systems-level biomedical research to unbiasedly 

explore all enzymatic possibilities in silico. Only recently has computing power been 

commensurate to predict fluxes to scale (Ebrahim et al., 2013), however these computational 

platforms do not yet exhibit the granularity of atomic resolution. No tool currently exists to track 

carbon transfers for every reaction in large metabolic networks and subsequently reconstruct all 

possible metabolic routes which lead to observable isotopologues. These two objectives served 

as the motivating factors for development of a new computational approach for in silico metabolic 

reaction modeling described here. 

The findings in rhythmic amino acid and glutathione metabolism highlighted in Chapter 4 

would benefit from such an approach. For example, carbon flow into glutamine M+2, serine M+3, 
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and GSH M+2 may have many sources, and while glycolysis and TCA cycle are likely 

contributors to these isotopologues, other possibilities are yet unexplored. In addition to 

developing a novel approach to explore alternative routes, a means to predict the most likely 

routes is presented through the incorporation of previously published datasets (Xu et al., 2011, 

Gill et al., 2015, Tepper et al., 2013), This new platform has shed light on the immensely complex 

nature of metabolism, however can generate hypotheses with heightened probabilities of the 

metabolic paths which contribute to observable data. This algorithm is designed with the intention 

of flexibility to both build sets of labeling possibilities from any input tracer of interest and search 

for paths to any isotopologue of interest, and is presented here as a proof of principle to both 

corroborate prior biochemical knowledge and provide novel alternative paths to significantly cyclic 

isotopologues from Chapter 4. 

 

5.3 Algorithm and Workflow 

Materials 

All in silico reaction modeling and path searches were developed within Jupyter 

notebooks (v4.2.3) in Python v3.5.  Scripts were run under a Ubuntu 15.10 virtual machine on an 

Intel Xeon E5-2650 system (24 cores, 2.1GHz) with 64GB of memory. Files which include the 

simplified molecular-input line-entry system (SMILES) formatted atom-mapping reaction 

solutions, fly-specific metabolic models, and reaction links from MetaCyc ‘RXN’ format to enzyme 

commission (EC) numbers were obtained from MetaCyc (Caspi et al., 2016). Conversions of 

SMILES format to common names for metabolites were generated from the PubChemPy Python 

module (v1.0.3) using a custom script, which ultimately sources information from the PubChem 

database (Kim et al., 2016). Additional metabolite naming mechanisms were manually changed 

to user-defined names for ease of interpretation, for example 617-45-8 to Aspartic acid (listed by 

chemical abstracts service (CAS) as the first synonym entry for the SMILES conversion of 

Aspartic acid in PubChem). Additional SMILES atom-mapping reactions were manually added or 

curated for completeness of central energy metabolism, including glycolytic and TCA cycle 
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reactions. Results from the in silico reaction modeling were converted into queriable dictionaries 

and used to construct metabolic paths under the IsoPathFinder algorithm. The list of all possible 

labeling paths was trimmed using multiple data sources: significantly circadian enzymes from 

Drosophila transcript studies were derived from Xu et al., 2011 and Gill et al., 2015, and 

estimated Gibbs free energies for each enzyme were based on calculations from Tepper et al., 

2013. 

 

Enumerating all possible isotope transfers 

The general workflow for isotope reaction modeling, followed by reconstruction of 

metabolic routes, is outlined in Figure 5.1. Reactions which contain atom-mapping solutions of 

metabolites in SMILES formats, from the MetaCyc database of annotated Drosophila enzymes, 

were used to compile the starting metabolic network. Atom-mapping solutions consist of 

annotated reactions where atoms are numbered for all reactants and matched to atoms in all 

products, for example the 1’ carbon of glucose to the 1’ carbon of glucose-6-phosphate from the 

hexokinase reaction. Some enzyme and metabolite annotations were manually curated for 

accuracy and interpretability, including glycolysis and TCA cycle. While the objectives here 

included holistic and unbiased reaction modeling, given the 13C6 glucose tracer employed in 

Chapter 4, any metabolite routes which fan out from central carbon metabolism would not be 

accurate without thorough curation of these core reactions. All possible carbon transfers were 

executed in an iterative round-by-round fashion, where the user specifies the labeled metabolite 

of interest (e.g. 13C6 glucose), followed by a trimming procedure of the model to produce the 

starting set of reactions which contains the tracer. As the input tracer is defined by a SMILES 

string, the user may additionally specify positional labeling, such as 1,2-13C glucose. The carbons 

from the tracer are then matched to the carbons in the products of the starting reaction set, and 

subsequently ‘labeled’. These simulations are then stored as a Python-formatted dictionary, 

where the keys for the first round of reactions are the newly labeled products, and the values 

contain both the labeled reactants and the enzyme(s) which catalyzed the reaction (Figure 5.2). 
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These results can then be queried in the IsoPathFinder algorithm to build metabolic routes which 

originate from the input tracer and are exported as a .csv file (Figure 5.2C). The list of newly 

labeled products is then used to seed the second round of reactions. As in the first round, all 

reactions which contain any of these newly labeled compounds are selected from the network, 

followed by mapping all labeled carbons onto new products. In this way, the process can be 

repeated until the desired number of reactions is calculated. Initially, 30 rounds of reactions were 

deemed sufficient, especially given the possibility of glycolysis and multiple cycles through the 

TCA cycle. While 30 rounds may produce experimentally observable labeling patterns, the 

possible routes calculated in the IsoPathFinder algorithm quickly became computationally 

intractable, for example the more than 100,000 path possibilities for glutamine M+2 after 15 

reactions. Consequently, all 30 rounds were never considered, as extensive code optimization 

and removal of many unrealistic reactions were necessary to even reach path lengths of 15. For 

instance, many reactions contained carbon dioxide, which is unlikely to appreciably contribute to 

observable labeling patterns in Chapter 4, and was thus excluded from the list of labeled 

compounds. Additionally, labeled compounds which did not have a match of SMILES format to a 

common name in the PubChem database were dropped. Future implementations of this 

approach may benefit from simulating reactions which contain multiple labeled reactants, 

however would present both a more difficult computational problem to solve and a substantially 

greater set of possible labeling reactions to interpret. 

  

IsoPathFinder algorithm 

 After simulating all possible isotope transfers and rebuilding a new isotopically-labeled 

metabolic network, routes are built working backwards from the user-defined isotopologue of 

interest to the initial input tracer in round one. For example, if serine M+3 were found in round 

ten, all reactants which mapped to serine M+3 in round nine would be returned, followed by a 

search for all reactants which led to those product metabolites in round eight, etcetera. These 

routes were then appended to a repeated construction of paths for serine M+3 starting in round 
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nine, followed by starting from each of the preceding rounds until serine M+3 was not produced 

(for example, no reactions catalyze glucose M+6 to serine M+3 in round one). Currently this 

algorithm is capable of building paths for a maximum length of 15, however shorter paths can be 

defined by the user. Code optimization and/or computing clusters will be required to run longer 

path searches, as path searches of length 15 could take hours on a single computer. Some 

routes contained metabolites repeatedly across multiple reactions, which were removed to both 

further trim the number of possibilities and remove futile cycling. As a broader objective to 

achieve widespread usage, this program is designed to take a user input and build paths on any 

commonly observed isotopologue of interest, whether it be derived from experimental data or for 

purely in silico experimentation. 

 

Reaction trimming 

 Given the number of possibilities, unlikely metabolite routes were trimmed using 

additional rationale and prior datasets. Some PubChem identifiers did not match to common 

names or other databases, such as metabolite ‘AC1N7ZT6’. Paths which contained these IDs 

were manually trimmed if no alternative naming mechanism could be found. Additional steps 

were suited to meet the experimental objectives of deriving significantly rhythmic metabolic flux 

possibilities. Routes were trimmed which did not contain a circadian enzyme from two previous 

Drosophila transcriptomics studies (Xu et al., 2011, Gill et al., 2015). This approach may yield 

misleading results, as cyclic enzymes are not necessary to generate rhythms in metabolic flux 

(Thurley et al., 2017). However, this approach removed an appreciable number of paths and 

eased the interpretation of these results. Gibbs free energies were previously calculated for all 

annotated reactions (Tepper et al., 2013), based on an expanded formulation of the group 

contribution method (Mavrovounioitis, 1990). While these estimates may not be identical to in vivo 

enzyme kinetics for flies, these estimates were found to hold reasonably true when compared 

across other databases of enzyme thermodynamics (Goldberg et al., 2004). In addition, metabolic 

flux and enzyme efficiency are highly conserved processes under strong evolutionary pressure 
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(Park et al., 2016), which alleviates the concern of inaccurate free energies across species. 

These estimated Gibbs free energies were summed across all enzymes for each of the 

IsoPathFinder paths, and subsequently sorted by thermodynamic favorability. Future 

improvements to this algorithm may consider incorporating reaction irreversibility to further trim 

possibilities a priori. Unfortunately, even these steps cannot trim the possible routes to down to 

one, however by significantly reducing the possibilities and shifting probabilities towards a subset 

of paths, validation experiments can be designed to test relatively fewer hypotheses. 

 Separate Jupyter notebooks perform each aspect of this approach: enumeration of all 

possible isotope transfers from any input tracer of interest, path-building towards the isotopologue 

of interest, and reaction trimming based on the research objectives. These three scripts are 

available upon request. 

 

5.4 Results 

IsoPathFinder uncovers shortest set of paths from 13C6 glucose to serine M+3 through 

glycolysis 

 The shortest path length to serine M+3 from fully labeled glucose consisted of nine 

reactions, with sixteen total unique paths. After trimming two paths which contain a carbon-

carbon lyase of bacterial or plant origin (EC 4.1.1.39), eleven paths with a net positive ΔG, and 

one additional path without a circadian enzyme, two paths remained (Table 5.1). These paths 

included glycolysis, followed by conversion of pyruvate M+3 to serine M+3. Pyruvate kinase (EC 

2.7.1.40), discovered to transcriptionally oscillate in fly bodies by Gill et al., was contained in both 

of these paths, thus providing predictions for the shortest thermodynamically favorable path to a 

rhythmic flux into serine carbons (Figure 5.3). Notably, the canonical serine biosynthesis pathway 

did not contain a cyclic enzyme, nor yielded a negative ΔG, and was removed from the initial set 

of paths. No unique paths of ten reactions were calculated with this algorithm, which may stem 

from a requirement of an additional intermediate before an eleventh reaction step. A path search 

of eleven reactions yielded 2262 unique paths. After trimming procedures, 61 paths remained. 
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Whereas the preceding metabolite in the four paths of length nine was pyruvate M+3, now 3-

hydroxypyruvate, alanine, acetyl-serine, and cystathionine M+3 were alternative isotopologue 

sources. Interestingly, alanine M+3 demonstrates similar a similar temporal pattern to serine M+3 

(Figure 5.4), providing additional evidence these paths may be relevant for the rhythmic flux 

noted in Chapter 4. However, isotopologues for hydroxypyruvate, acetyl-serine, and cystathionine 

were not included in this LC-MS analysis, but are discovered here from the IsoPathFinder 

algorithm as additional targets for future analyses. Most of these paths use glycolysis, however 

ten of these paths included the gluconeogenic enzyme phosphoenolpyruvate carboxykinase, 

catalyzing phosphoenolpyruvate M+3 to oxaloacetate M+3. Pyruvate M+3 was formed from 

oxaloacetate M+3 from the cyclic enzyme pyruvate carboxylase (EC 6.4.1.1). 

 

Likeliest paths to glutamine M+2 derive from TCA cycle 

 Path lengths of fourteen steps were the shortest routes which yielded feasible routes to 

glutamine M+2 after trimming procedures, and produced 7426 paths. After trimming procedures, 

including removal of paths with non-physiological isotopologues such as ethylene and methyl-

aspartate M+2, eight paths remained. For all paths, the preceding isotopologue to glutamine 

consisted of glutamate M+2, formed by alpha-ketoglutarate M+2. While glutamate M+2 did not 

significantly oscillate, the labeling pattern followed closely to glutamine M+2, corroborating these 

paths (Figure 5.5). The net ΔG in these paths ranged from -273kJ to -297kJ (Table 5.2), which 

were considerably more favorable than the highest value observed for serine M+3 paths (-68kJ), 

and contained upwards of seven cyclic enzymes. Half of these paths contained the TCA cycle, 

which included the most favorable path with a relatively high number of cyclic enzymes 

(glucosamine 6-phosphate synthase, pyruvate kinase, aconitase, isocitrate dehydrogenase, 

ornithine transaminase, and citrate synthase). The remaining paths did not include the TCA cycle, 

but instead formed alpha-ketoglutarate M+2 from 2-hydroxy-4-oxopentadioic acid M+2. However, 

given relatively fewer circadian enzymes in these remaining paths, we speculate the most likely 

paths to glutamine M+2 include the TCA cycle (Figure 5.6). 
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Glutathione biosynthesis likely an extension of rhythmic flux into serine M+3 

 A path search for GSH M+2 yielded 23 paths of eleven steps, which was trimmed down 

to two unique paths (Table 5.3). Each of these paths were a direct extension of the four shortest 

paths found for serine M+3, which now included a formation of glycine M+2 before GSH M+2 

production via glutathione synthase. A path search up to twelve steps yielded an additional 24 

paths after trimming, which all utilized glycolysis and contained glycine M+2 as the only preceding 

isotopologue (from serine M+3). Thirteen steps were necessary to find cysteine M+2 as an 

alternative source for GSH M+2 synthesis, which utilized a cyclic gamma-glutamylcysteine 

synthetase enzyme not found in glycine M+2 paths. GSH M+2 production from glycine were the 

shortest and most thermodynamically favorable paths, and represent the most likely paths to 

GSH M+2 (Figure 5.7). 

 

5.5 Conclusions 

The rapid expansion of stable isotope applications in recent years can greatly benefit 

from a commensurate tool which reconsiders all possible enzymatic processes now annotated in 

the post-genomic era. The approach outlined here represents the first attempt to map 

isotopologue data onto genome-scale metabolic networks at atomic resolution through a two-step 

bioinformatic approach. The first step calculates every carbon-transfer from an input tracer of 

interest in an iterative round-by-round manner. These simulations require a database with an 

extensive set of atom-mapping reaction solutions, which has only recently been developed and 

annotated (Caspi et al., 2016). Fortunately, while there exists room for improvement, MetaCyc 

represents a substantial effort by an active research community to compile such detail. To 

address the uncertainties described in Chapter 4, MetaCyc reactions were additionally curated 

around central energy metabolism to ensure proper tracking of glucose carbons, and reactions 

which did not appear likely to contribute to observable metabolic flux in Drosophila were removed, 

including bacterial enzymes. The microbiome connection to host physiology is of intense interest, 
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including flies (Shin et al., 2011), however given the bolus injection paradigm employed in 

Chapter 4, likely does not contribute appreciably to the observed isotope enrichments. Thus, with 

minimal additional work, existing databases can be effectively leveraged to explore new aspects 

of metabolism. Once all carbon transfers were simulated, both for all atom-mapping solutions 

from MetaCyc for general use and all fly-specific reactions for this study, this new scaffold of 

‘labeled’ metabolism can be probed to discover all possible connections of the input tracer to the 

isotopologue of interest. This path-building step is designed to receive user input to calculate 

paths towards any commonly detected isotopologue, and can have broad applicability in isotope-

based research. The IsoPathFinder produced many more possible paths through this new 

metabolic network than expected and ran into computational and interpretability constraints. The 

extent of this complexity is simultaneously exciting and humbling, but unfortunate given a 

metabolic path length of even 20 reactions seems physiologically feasible but cannot be achieved 

with this method. Additional algorithmic improvements will be necessary with a concurrent means 

to trim unlikely paths to alleviate the computational burden. 

This algorithm uncovered a set of paths which trace carbons from glucose to serine 

through the shortest and most thermodynamically favorable paths. These paths utilize glycolysis 

and pyruvate kinase to form serine M+3 via serine deaminase (EC 4.3.1.17), however, some 

notable alternatives were trimmed. Serine biosynthesis is known to occur through 3-

phosphoglycerate, catalyzed by phosphoglycerate dehydrogenase (Pizer, 1963). These paths 

were discovered with the IsoPathFinder, however were trimmed given a lack of circadian enzyme 

expression and a positive ΔG. Transcription may not necessarily correlate with reaction activities, 

and circadian enzyme expression may not be necessary for rhythms in metabolic flux (Thurley et 

al., 2017), especially considering the possibility that a cyclic pyruvate kinase enzyme may 

produce rhythmic flux upstream in glycolysis. An additional twelve paths were calculated without 

cyclic enzymes and thermodynamic trimming, which included the canonical serine biosynthetic 

pathway. Phosphoserine M+3 is the immediate precursor to serine in this pathway, but was not 

analyzed in the LC-MS platform described in Chapter 4. Additional experiments with expanded 



139 
 

LC-MS analyses may provide additional evidence for the relative sources of cyclic carbon to 

serine. Akin to metabolite pools, any given isotopologue is likely the product of multiple reactions, 

thus we can speculate that both these major paths may contribute to the findings in Chapter 4, 

especially given pyruvate M+3 did not yield a similar temporal pattern to serine M+3. Additional 

precursor isotopologues were discovered at paths of eleven reactions, including alanine M+3, 

which does resemble serine M+3 patterns. However, these paths may not provide significant 

additional biological insight, as the alanine M+3 is derived from pyruvate M+3 and would likely 

produce a similar metabolic phenotype to the shorter paths which do not contain alanine.  

Gluconeogenic reactions were contained in some of these extended serine M+3 paths, 

which is not compatible with active glycolysis but may have interesting biological explanations. 

Organisms mobilize energy stores in anticipation of active states (McGinnis and Young, 2016), 

and likewise produce sugar via gluconeogenesis to further meet this energetic demand (Kida et 

al., 1980). The isotopologues representative of gluconeogenic flux, such as glucose-6-phosphate 

M+2, M+3, and M+4 (Wolfe and Chinkes, 2005), did not exhibit significant diurnal variance. 

However, with a supraphysiological glucose bolus, gluconeogenic flux may be overridden by 

glycolysis. Interestingly, glucose-6-phosphate M+2 and M+3 relative abundances were 

significantly increased during the light phase in WT compared to fumin flies (p<0.03), implying 

altered energetic demands in central energy metabolism. This computational approach thus 

provided evidence for cyclic serine flux through glycolysis, and revealed new alternatives to 

canonical biochemistry serine biosynthesis. Understanding both source and fate of serine 

carbons is important given its connection to numerous metabolic processes, and warrants 

additional experimentation through expanded LC-MS analyses and computational flux predictions 

(Mattaini et al., 2016). 

Paths to glutamine M+2 which passed the trimming procedures were not observed until 

path lengths of fourteen reactions, and consequently produced numerous possibilities. These 

paths were rationally trimmed to predict glutamine production through the TCA cycle. Notably, 

these paths were very thermodynamically favorable compared to those for serine M+3 and GSH 
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M+2, and contained a series of circadian enzymes in the TCA cycle, which further increases the 

likelihood of these paths exhibiting cyclic activity in vivo. This approach also provided a link to 

overlapping isotopologue patterns from glutamate to glutamine M+2, which is particularly striking 

given 15 separate enzymes catalyze this last step in the glutamine M+2 paths. Alpha-

ketoglutarate M+2 preceded glutamate M+2 in all these paths, however did not cycle. Alpha-

ketoglutarate M+2 does exhibit significant but non-circadian diurnal changes in WT flies, thus 

raising the possibility of a cyclic contribution to glutamate and glutamine carbons through 

alternative mechanisms such as substrate rediversion. Paths which do not utilize the TCA cycle 

still utilize carbons through glycolysis and pyruvate, suggesting an important role for central 

carbon metabolism to downstream amino acid pools. Alternative paths uniquely contained 2-

hydroxy-4-oxopentanedioic acid M+2, which was not detected on this LC-MS platform. As noted 

with serine M+3 paths, glutamine M+2 sources may not require cyclic enzymes, and alternative 

possibilities should not necessarily be omitted without additional experimentation. This procedure 

nonetheless trimmed a substantial number of possibilities, providing a more tractable set of 

hypotheses and shifting the probabilities towards more likely paths through the TCA cycle. 

Steady-state glutamate pools robustly oscillate in flies (Chapter 3), with conserved 

rhythms in mice and humans (Hatori et al., 2012, Dallmann et al., 2012). Given the large pools of 

glutamine and glutamate, cyclic M+2 patterns may reflect a sink of carbons from upstream 

reactions in nitrogen and central energy metabolism. However, glucosamine-6-phosphate 

(GlcN6P) synthase, one enzyme which catalyzes the final step in glutamate M+2 to glutamine 

M+2, has been shown to oscillate in flies (Gill et al., 2015), and may reflect more active biological 

roles of amino acid flux. Hexosamine synthesis triggers protein modifications by N-

acetylglucosamine (GlcNAc), which produces a circadian pattern of Bmal and Clock 

GlcNAcylation (Li et al., 2013). Manipulating GlcNAc levels can perturb both glucose homeostasis 

and circadian period length, perhaps serving as a metabolic sensor to coordinate with core clock 

functions (Kaasik et al., 2013, Kim et al., 2012). Additional experiments may consider the 

interaction of hexosamine and amino acid flux in relation to the core clock protein modifications. 
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Acetyl-CoA M+2 was featured in the TCA-dependent paths to glutamine M+2. Acetyl-CoA 

sits at the nexus of numerous intracellular processes, serving roles in both oxidative and 

reductive metabolism and epigenetic regulation as an acetyl source. As both oxidative 

metabolism and macromolecule biosynthesis have been shown to oscillate (Peek et al., 2013, 

Katewa et al., 2016), one may expect to find cyclic acetyl-CoA production. Additional LC-MS 

analyses would be required (Basu et al., 2011), as acetyl-CoA M+1 and M+2 were not detectable 

on the platform described in Chapter 4. Tracking acetyl-CoA carbon fates could shed light on the 

dynamic epigenome which has been previously observed through cycles in histone deacetylase 3 

activity (Feng et al., 2011). A dependency on the clock would also be expected, as livers from 

Clock knockout mice show significantly altered acetylation profiles for enzymes in glycolysis, TCA 

cycle, and amino acid metabolism (Masri et al., 2013). 

As expected, glutathione biosynthesis is most likely driven by glycine M+2 addition to 

glutamyl-cysteine via glutathione synthetase. This enzyme has not been found to oscillate in flies, 

however may still yield rhythmic glutathione synthesis through rhythmic substrate availability, as 

this last step in glutathione biosynthesis is rate-controlling. Glycine M+2 yielded a similar ultradian 

pattern to GSH M+2, however serine M+3 demonstrated a decoupled rhythm. As serine carbons 

feed other major metabolic pathways, temporal offsets in substrate rediversion likely produce the 

uniquely ultradian glycine and glutathione patterns. An extended path search revealed alternative 

paths to glutathione biosynthesis through cysteine M+2. While these paths were less 

thermodynamically favorable than glycine M+2 paths, they may be worth considering as 

glutamate cysteine ligase has been shown to not only oscillate transcriptionally, but also display 

diurnal patterns in enzyme activity (Beaver et al., 2012). Both glycine and cysteine exhibit 

relatively high variance on this LC-MS platform, which precludes cogent insights to glutathione 

carbon sources. Alternate metabolomic methods which accurately detect all glycine and cysteine 

isotopologues, and additional isotopologue products of serine metabolism, may further clarify the 

connection between amino acid and redox metabolism. These studies may additionally benefit 

from isotopically-labeled amino acid injections in Drosophila. The IsoPathFinder algorithm 
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ultimately provided supporting evidence to the expected source of glutathione carbons from 

glucose via glycolysis and amino acid metabolism. 

While any of these speculations regarding functions of rhythmic flux into specific 

isotopologues may be appealing, substantial additional information will be required. As labeling 

patterns provide a clearer assessment of flux than transcript and protein levels, ideally data for 

every isotopologue along each path would provide a stronger basis for path selection, however is 

currently infeasible on this LC-MS methodology. For instance, given the extensive branching 

around acetyl-CoA, labeling patterns in histone acetylation and larger lipids would be required to 

gauge possible temporal offset in flux through other major branches of metabolism. There yet 

exists a large gap in enumerating paths to e.g. rhythmic glutamine M+2 production and 

understanding what role any or all individual isotopologues along those paths serve in 

chronometabolism. Consequently, we want to stress a conservative interpretation of these 

predictions from the IsoPathFinder algorithm, given the unexpected multitude of possible paths 

after merely fifteen reaction steps. Additional datasets may support the likelihood of a subset of 

these possibilities, however are prone to false negatives without considerably more detailed 

experiments with analytical detection methods commensurate to the number of variables 

embedded in these metabolic networks. 

The significantly rhythmic isotopologues observed in Chapter 4 were processed in the 

IsoPathFinder algorithm to produce expected paths from glucose based on prior biochemical 

knowledge (Pizer, 1963, Buescher et al., 2015, Chaneton et al., 2012). Given the input glucose 

tracer, most paths utilized glycolysis, however the overabundance of glycolytic paths raises some 

concerns. During development of IsoPathFinder, glycolytic and TCA cycle atom-mapping 

solutions required manual curation. Substantial work would be required to manually curate all 

atom-mappings, however may be necessary to probe deeper into secondary metabolism. The 

objectives in the development of this new tool included unbiased assessment of isotopologue 

sources at genome-scale, however ultimately became subject to biased path-searching in central 
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energy metabolism. This current implementation has considerable room for improvement, 

however is presented here as a foundation for additional experiments and simulations.  

This algorithm, despite the sheer complexity uncovered, still represents a relatively 

simplistic purview, as only one labeled reactant is considered per reaction and does not include 

bimolecular combinations. Additionally, while the LC-MS method utilized in this platform performs 

fragmentation analysis, this data is essentially discarded given the incomplete positional carbon 

information. While isotopomer analysis would greatly specify enzyme activities over 

isotopologues and trim many of the IsoPathFinder possibilities, significant technological 

advancements are needed to observe complete isotopomer distributions at a systems-level. The 

current version of this algorithm does store results for each isotopomer separately, before 

converting labeled SMILES names to common isotopologue names. Consequently, small 

modifications to the program would allow path-tracing for any isotopomer of interest, and may 

initially serve as a purely in silico approach to simulate metabolic networks with greater 

specificity. However, positional information from LC-MS or NMR datasets will require exact 

isotopomer matching to SMILES formats before integration with the IsoPathFinder simulations. 

As an intermediate step, partial information on positional labeling can be currently incorporated 

into the IsoPathFinder program. For instance, the alanine M+2 isotopologue has three possible 

isotopomers. Under the current LC-MS platform, alanine M+2+2 represents one of these 

isotopomers, while alanine M+2+1 represents the remaining two isotopomers. The IsoPathFinder 

can be adjusted to consider any subset of isotopomer distributions.  

The greatest potential for metabolic discovery with this approach likely resides in synergy 

between expanded experimental designs, metabolomic analyses, and IsoPathFinder-derived 

paths from non-glucose sources. As an example, the data from Chapter 4 prompted simulations 

with a 13C3 serine input tracer to define a set of unique isotopologues which can guide additional 

experimentation to discover the fate of the cyclic carbon flux into serine M+3 (Figure 5.8). Of 

potentially greater benefit to metabolic discovery, in silico simulations of labeling possibilities can 



144 
 

rationalize novel isotope tracer experiments a priori and guide metabolomic methods towards the 

biological questions of interest. 
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Table 5.1 IsoPathFinder paths nine reactions deep from 13C6 glucose to serine M+3 after 
trimming procedures 

Reaction 1 2 

 alpha-D-Glucose M+6 alpha-D-Glucose M+6 

1 ['EC-4.3.1.17'] ['EC-4.3.1.17'] 

 Hexose-6-Phosphate M+6 Hexose-1-Phosphate M+6 

2 ['EC-2.7.1.1', 'EC-2.7.1.147'] ['EC-3.1.3.10',’EC-2.7.1.6’,’EC-2.4.1.231’] 

 1,6-di-o-phosphonohexopyranose M+6 1,6-di-o-phosphonohexopyranose M+6 

3 ['EC-2.7.1.11'] ['EC-2.7.1.10'] 

 Glycerophosphoric acid M+3 Glycerophosphoric acid M+3 

4 ['EC-4.1.2.13'] ['EC-4.1.2.13'] 

 1,3-Bisphosphoglycerate M+3 1,3-Bisphosphoglycerate M+3 

5 ['EC-1.2.1.12'] ['EC-1.2.1.12'] 

 3-Phosphoglycerate M+3 3-Phosphoglycerate M+3 

6 ['EC-2.7.2.3'] ['EC-2.7.2.3'] 

 2-phosphoglyceric acid M+3 2-phosphoglyceric acid M+3 

7 ['EC-5.4.2.12'] ['EC-5.4.2.12'] 

 phosphoenolpyruvate M+3 phosphoenolpyruvate M+3 

8 ['EC-4.2.1.11'] ['EC-4.2.1.11'] 

 Pyruvate M+3 Pyruvate M+3 

9 ['EC-2.7.1.40'] ['EC-2.7.1.40'] 

 Serine M+3 Serine M+3 

Gibbs Sum (kJ) -47.73306331 -30.18725196 

Number of Circadian ECs 1 1 

Circadian ECs ['EC-2.7.1.40'] ['EC-2.7.1.40'] 
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Table 5.2 IsoPathFinder paths fourteen reactions deep from 13C6 glucose to glutamine M+2 after 
trimming procedures. Note not all ECs are displayed for the sake of brevity 

Reaction 1 2 

 alpha-D-Glucose M+6 alpha-D-Glucose M+6 

1 ['EC-2.7.1.1', 'EC-2.7.1.147'] ['EC-2.7.1.1', 'EC-2.7.1.147'] 

 Hexose-6-Phosphate M+6 Hexose-6-Phosphate M+6 

2 ['EC-2.7.1.11'] ['EC-2.7.1.11'] 

 1,6-di-o-phosphonohexopyranose M+6 1,6-di-o-phosphonohexopyranose M+6 

3 ['EC-4.1.2.13'] ['EC-4.1.2.13'] 

 Glycerophosphoric acid M+3 Glycerophosphoric acid M+3 

4 ['EC-1.2.1.12'] ['EC-1.2.1.12'] 

 1,3-Bisphosphoglycerate M+3 1,3-Bisphosphoglycerate M+3 

5 ['EC-2.7.2.3'] ['EC-2.7.2.3'] 

 3-Phosphoglycerate M+3 3-Phosphoglycerate M+3 

6 ['EC-5.4.2.12'] ['EC-5.4.2.12'] 

 2-phosphoglyceric acid M+3 2-phosphoglyceric acid M+3 

7 ['EC-4.2.1.11'] ['EC-4.2.1.11'] 

 phosphoenolpyruvate M+3 phosphoenolpyruvate M+3 

8 ['EC-2.7.1.40'] ['EC-2.7.1.40'] 

 Pyruvate M+3 Pyruvate M+3 

9 ['EC-1.2.4.1', 'EC-1.2.1', 'EC-1.2.7.1', 'EC-

2.3.1.54'] 

['EC-2.2.1.6'] 

 Acetyl-CoA M+2 Acetohydroxybutyrate M+2 

10 ['EC-2.3.3.8','EC-2.3.3.1'] ['EC-2.2.1.6'] 

 Citrate M+2 Pyruvate M+2 

11 ['EC-4.2.1.3'] ['EC-4.1.3.16'] 

 Isocitrate M+2 2-Hydroxy-4-oxopentanedioic acid M+2 

12 ['EC-1.1.1.42', 'EC-1.1.1.41'] ['EC-2.6.1.23'] 

 alpha-ketoglutarate M+2 alpha-ketoglutarate M+2 

13 ['EC-2.6.1.39', 'EC-1.4.1.3', 'EC-1.4.1.13', 

'EC-2.6.1',...] 

['EC-2.6.1.39', 'EC-1.4.1.3', 'EC-1.4.1.13', 

'EC-2.6.1',...] 

 Glutamate M+2 Glutamate M+2 

14 ['EC-2.6.1.85', 'EC-6.3.5.4', 'EC-2.4.2.14', 

'EC-1.4.1.13',...] 

['EC-2.6.1.85', 'EC-6.3.5.4', 'EC-2.4.2.14', 

'EC-1.4.1.13',...] 

 Glutamine M+2 Glutamine M+2 

Gibbs Sum (kJ) -297.2240567 -293.8480185 

Number of 

Circadian ECs 

6 3 

Circadian ECs ['EC-4.2.1.3', 'EC-2.7.1.40', 'EC-2.3.3.1', 

'EC-2.6.1.13',...] 

['EC-2.6.1.16', 'EC-2.7.1.40', 'EC-2.6.1.13'] 
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Reaction 3 4 

 alpha-D-Glucose M+6 alpha-D-Glucose M+6 

1 ['EC-2.7.1.1', 'EC-2.7.1.147'] ['EC-2.7.1.1', 'EC-2.7.1.147'] 

 Hexose-6-Phosphate M+6 Hexose-6-Phosphate M+6 

2 ['EC-2.7.1.11'] ['EC-2.7.1.11'] 

 1,6-di-o-phosphonohexopyranose M+6 1,6-di-o-phosphonohexopyranose M+6 

3 ['EC-4.1.2.13'] ['EC-4.1.2.13'] 

 Glycerophosphoric acid M+3 Glycerophosphoric acid M+3 

4 ['EC-1.2.1.12'] ['EC-1.2.1.12'] 

 1,3-Bisphosphoglycerate M+3 1,3-Bisphosphoglycerate M+3 

5 ['EC-2.7.2.3'] ['EC-2.7.2.3'] 

 3-Phosphoglycerate M+3 3-Phosphoglycerate M+3 

6 ['EC-5.4.2.12'] ['EC-5.4.2.12'] 

 2-phosphoglyceric acid M+3 2-phosphoglyceric acid M+3 

7 ['EC-4.2.1.11'] ['EC-4.2.1.11'] 

 phosphoenolpyruvate M+3 phosphoenolpyruvate M+3 

8 ['EC-2.7.1.40'] ['EC-2.7.1.40'] 

 Pyruvate M+3 Pyruvate M+3 

9 ['EC-1.2.4.1', 'EC-1.2.1', 'EC-1.2.7.1', 'EC-

2.3.1.54'] 
['EC-6.4.1.1', 'EC-2.1.3.1', 'EC-1.1.1.38'] 

 Acetyl-CoA M+2 Oxaloacetate M+3 

10 ['EC-1.2.1', 'EC-1.2.7.1', 'EC-2.3.1.54', 

'EC-1.2.4.1'] 
['EC-2.3.3.1'] 

 Pyruvate M+2 Citrate M+3 

11 ['EC-4.1.3.16'] ['EC-4.2.1.3'] 

 2-Hydroxy-4-oxopentanedioic acid M+2 Isocitrate M+3 

12 ['EC-2.6.1.23'] ['EC-1.1.1.42', 'EC-1.1.1.41'] 

 alpha-ketoglutarate M+2 alpha-ketoglutarate M+2 

13 ['EC-2.6.1.39', 'EC-1.4.1.3', 'EC-1.4.1.13', 

'EC-2.6.1',...] 
['EC-2.6.1.39', 'EC-1.4.1.3', 'EC-1.4.1.13', 

'EC-2.6.1',...] 

 Glutamate M+2 Glutamate M+2 

14 ['EC-2.6.1.85', 'EC-6.3.5.4', 'EC-2.4.2.14', 

'EC-1.4.1.13',...] 
['EC-2.6.1.85', 'EC-6.3.5.4', 'EC-2.4.2.14', 

'EC-1.4.1.13',...] 

 Glutamine M+2 Glutamine M+2 

Gibbs Sum (kJ) -293.8480185 -290.5400044 

Number of 

Circadian ECs 

3 7 

Circadian ECs ['EC-2.6.1.16', 'EC-2.7.1.40', 'EC-

2.6.1.13'] 
['EC-4.2.1.3', 'EC-2.3.3.1', 'EC-2.7.1.40', 

'EC-6.4.1.1',...] 
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Reaction 5 6 

 alpha-D-Glucose M+6 alpha-D-Glucose M+6 

1 ['EC-3.1.3.10','EC-2.7.1.6','EC-2.4.1.231'] ['EC-3.1.3.10','EC-2.7.1.6','EC-2.4.1.231'] 

 Hexose-1-Phosphate M+6 Hexose-1-Phosphate M+6 

2 ['EC-2.7.1.10'] ['EC-2.7.1.10'] 

 1,6-di-o-phosphonohexopyranose M+6 1,6-di-o-phosphonohexopyranose M+6 

3 ['EC-4.1.2.13'] ['EC-4.1.2.13'] 

 Glycerophosphoric acid M+3 Glycerophosphoric acid M+3 

4 ['EC-1.2.1.12'] ['EC-1.2.1.12'] 

 1,3-Bisphosphoglycerate M+3 1,3-Bisphosphoglycerate M+3 

5 ['EC-2.7.2.3'] ['EC-2.7.2.3'] 

 3-Phosphoglycerate M+3 3-Phosphoglycerate M+3 

6 ['EC-5.4.2.12'] ['EC-5.4.2.12'] 

 2-phosphoglyceric acid M+3 2-phosphoglyceric acid M+3 

7 ['EC-4.2.1.11'] ['EC-4.2.1.11'] 

 phosphoenolpyruvate M+3 phosphoenolpyruvate M+3 

8 ['EC-2.7.1.40'] ['EC-2.7.1.40'] 

 Pyruvate M+3 Pyruvate M+3 

9 ['EC-1.2.4.1', 'EC-1.2.1', 'EC-1.2.7.1', 'EC-

2.3.1.54'] 

['EC-1.2.4.1', 'EC-1.2.1', 'EC-1.2.7.1', 'EC-

2.3.1.54'] 

 Acetyl-CoA M+2 Acetyl-CoA M+2 

10 ['EC-2.3.3.1','EC-2.3.3.8'] ['EC-1.2.1', 'EC-1.2.7.1', 'EC-2.3.1.54', 'EC-

1.2.4.1'] 

 Citrate M+2 Pyruvate M+2 

11 ['EC-4.2.1.3'] ['EC-4.1.3.16'] 

 Isocitrate M+2 2-Hydroxy-4-oxopentanedioic acid M+2 

12 ['EC-1.1.1.42', 'EC-1.1.1.41'] ['EC-2.6.1.23'] 

 alpha-ketoglutarate M+2 alpha-ketoglutarate M+2 

13 ['EC-2.6.1.39', 'EC-1.4.1.3', 'EC-1.4.1.13', 

'EC-2.6.1',...] 

['EC-2.6.1.39', 'EC-1.4.1.3', 'EC-1.4.1.13', 

'EC-2.6.1',...] 

 Glutamate M+2 Glutamate M+2 

14 ['EC-2.6.1.85', 'EC-6.3.5.4', 'EC-2.4.2.14', 

'EC-1.4.1.13',...] 

['EC-2.6.1.85', 'EC-6.3.5.4', 'EC-2.4.2.14', 

'EC-1.4.1.13',...] 

 Glutamine M+2 Glutamine M+2 

Gibbs Sum (kJ) -279.6782453 -276.3022071 

Number of 

Circadian ECs 

6 3 

Circadian ECs ['EC-4.2.1.3', 'EC-2.7.1.40', 'EC-2.3.3.1', 

'EC-2.6.1.13',...] 

['EC-4.2.1.3', 'EC-2.3.3.1', 'EC-2.7.1.40', 'EC-

6.4.1.1',...] 
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Reaction 7 8 

 alpha-D-Glucose M+6 alpha-D-Glucose M+6 

1 ['EC-3.1.3.10','EC-2.7.1.6','EC-2.4.1.231'] ['EC-3.1.3.10','EC-2.7.1.6','EC-2.4.1.231'] 

 Hexose-1-Phosphate M+6 Hexose-1-Phosphate M+6 

2 ['EC-2.7.1.10'] ['EC-2.7.1.10'] 

 1,6-di-o-phosphonohexopyranose M+6 1,6-di-o-phosphonohexopyranose M+6 

3 ['EC-4.1.2.13'] ['EC-4.1.2.13'] 

 Glycerophosphoric acid M+3 Glycerophosphoric acid M+3 

4 ['EC-1.2.1.12'] ['EC-1.2.1.12'] 

 1,3-Bisphosphoglycerate M+3 1,3-Bisphosphoglycerate M+3 

5 ['EC-2.7.2.3'] ['EC-2.7.2.3'] 

 3-Phosphoglycerate M+3 3-Phosphoglycerate M+3 

6 ['EC-5.4.2.12'] ['EC-5.4.2.12'] 

 2-phosphoglyceric acid M+3 2-phosphoglyceric acid M+3 

7 ['EC-4.2.1.11'] ['EC-4.2.1.11'] 

 phosphoenolpyruvate M+3 phosphoenolpyruvate M+3 

8 ['EC-2.7.1.40'] ['EC-2.7.1.40'] 

 Pyruvate M+3 Pyruvate M+3 

9 ['EC-2.2.1.6'] ['EC-6.4.1.1', 'EC-2.1.3.1', 'EC-1.1.1.38'] 

 Acetohydroxybutyrate M+2 Oxaloacetate M+3 

10 ['EC-2.2.1.6'] ['EC-2.3.3.1'] 

 Pyruvate M+2 Citrate M+3 

11 ['EC-4.1.3.16'] ['EC-4.2.1.3'] 

 2-Hydroxy-4-oxopentanedioic acid M+2 Isocitrate M+3 

12 ['EC-2.6.1.23'] ['EC-1.1.1.42', 'EC-1.1.1.41'] 

 alpha-ketoglutarate M+2 alpha-ketoglutarate M+2 

13 ['EC-2.6.1.39', 'EC-1.4.1.3', 'EC-1.4.1.13', 

'EC-2.6.1',...] 

['EC-2.6.1.39', 'EC-1.4.1.3', 'EC-1.4.1.13', 

'EC-2.6.1',...] 

 Glutamate M+2 Glutamate M+2 

14 ['EC-2.6.1.85', 'EC-6.3.5.4', 'EC-2.4.2.14', 

'EC-1.4.1.13',...] 

['EC-2.6.1.85', 'EC-6.3.5.4', 'EC-2.4.2.14', 

'EC-1.4.1.13',...] 

 Glutamine M+2 Glutamine M+2 

Gibbs Sum (kJ) -276.3022071 -272.9941931 

Number of 

Circadian ECs 

3 7 

Circadian ECs ['EC-2.6.1.16', 'EC-2.7.1.40', 'EC-2.6.1.13'] ['EC-4.2.1.3', 'EC-2.3.3.1', 'EC-2.7.1.40', 

'EC-6.4.1.1',...] 
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Table 5.3 IsoPathFinder paths eleven reactions deep from 13C6 glucose to reduced glutathione 
M+2 after trimming procedures 

Reaction 1 2 

 alpha-D-Glucose M+6 alpha-D-Glucose M+6 

1 ['EC-2.7.1.1', 'EC-2.7.1.147'] ['EC-3.1.3.10',’EC-2.7.1.6’,’EC-2.4.1.231’] 

 Hexose-6-Phosphate M+6 Hexose-1-Phosphate M+6 

2 ['EC-2.7.1.11'] ['EC-2.7.1.10'] 

 1,6-di-o-phosphonohexopyranose M+6 1,6-di-o-phosphonohexopyranose M+6 

3 ['EC-4.1.2.13'] ['EC-4.1.2.13'] 

 Glycerophosphoric acid M+3 Glycerophosphoric acid M+3 

4 ['EC-1.2.1.12'] ['EC-1.2.1.12'] 

 1,3-Bisphosphoglycerate M+3 1,3-Bisphosphoglycerate M+3 

5 ['EC-2.7.2.3'] ['EC-2.7.2.3'] 

 3-Phosphoglycerate M+3 3-Phosphoglycerate M+3 

6 ['EC-5.4.2.12'] ['EC-5.4.2.12'] 

 2-phosphoglyceric acid M+3 2-phosphoglyceric acid M+3 

7 ['EC-4.2.1.11'] ['EC-4.2.1.11'] 

 phosphoenolpyruvate M+3 phosphoenolpyruvate M+3 

8 ['EC-2.7.1.40'] ['EC-2.7.1.40'] 

 Pyruvate M+3 Pyruvate M+3 

9 ['EC-4.3.1.17'] ['EC-4.3.1.17'] 

 Serine M+3 Serine M+3 

10 ['EC-2.1.2.1', 'EC-2.1.2'] ['EC-2.1.2.1', 'EC-2.1.2'] 

 Glycine M+2 Glycine M+2 

11 ['EC-6.3.2.3'] ['EC-6.3.2.3'] 

 Glutathione Reduced M+2 Glutathione Reduced M+2 

Gibbs Sum (kJ) -82.5341937 -64.98838235 

Number of Circadian ECs 1 1 

Circadian ECs ['EC-2.7.1.40'] ['EC-2.7.1.40'] 
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Figure 5.1 Workflow for genome-scale reaction modeling to trace isotopologue paths from 13C6 
glucose. Atom-mapping solutions for Drosophila reactions in the MetaCyc database are trimmed 
to reactions which contain glucose. Those glucose carbons are then ‘labeled’ and mapped to 
carbons in the product metabolites. These results are exported, followed by an additional reaction 
round using the newly labeled metabolites, until all reactions are calculated. These results can be 
strung together to build paths from the isotopologue of interest back to the 13C6 glucose tracer in 
Round 1 in the IsoPathFinder algorithm. 
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Figure 5.2 (A) Code example to simulate the first set of reactions from 13C6 glucose, starting from 
a subset of reactions which contain glucose, to carbon-labeling of reaction products, followed by 
exporting results in a Python dictionary and a list of newly labeled compounds to seed the next 
reaction round. (B) Example dictionary, where the keys consist of product metabolites which 
received a 13C label, and the values are the reactants and enzymes which catalyzed the reaction. 
(C) Example of user input to the IsoPathFinder algorithm to build paths to serine M+3, using the 
dictionaries depicted in (B). 
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Figure 5.3 Two major paths to serine M+3 from glucose M+6, calculated by the IsoPathFinder. 
The canonical serine biosynthesis pathway (blue) did not contain any cyclic enzymes and yielded 
a positive ΔG, while the alternative path (red) through pyruvate M+3 contained a cyclic enzyme 
based on previous expression datasets, and was more thermodynamically favorable. Diagrams 
generated using iPath2 (Yamada et al., 2011). 
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Figure 5.4 Temporal overlap of alanine and serine M+3 relative abundances in WT flies, from 
isotope tracer experiments described in Chapter 4, which was revealed through exploration of 
longer paths to serine M+3. 
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Figure 5.5 Temporal overlap of glutamine and glutamate M+2 relative abundances in WT flies, 
from isotope tracer experiments described in Chapter 4. All paths to glutamine M+2 from 
IsoPathFinder analysis included glutamate M+2 in the preceding step. 
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Figure 5.6 Most likely path to glutamine M+2 from glucose M+6 through the TCA cycle, 
calculated by the IsoPathFinder and trimmed by thermodynamic favorability and circadian 
enzyme expression from previous studies. Diagrams generated using iPath2 (Yamada et al., 
2011). 
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Figure 5.7 Most likely and shortest path to GSH M+2 from glucose M+6 through glycine M+2, 
calculated by the IsoPathFinder (red). Longer paths were calculated through cysteine M+2 
(green). Note cysteine M+2 itself could not be connected to glutathione production with this 
KEGG-based visualization tool (pink). Diagrams generated using iPath2 (Yamada et al., 2011). 
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Figure 5.8 Isotopologues one reaction removed from a simulated 13C3 serine tracer (red), 
proposing additional experiments and LC-MS analyses to confirm the fate of cyclic carbon flux 
into serine from 13C6 glucose noted in Chapter 4. Diagrams generated using iPath2 (Yamada et 
al., 2011). 
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CHAPTER 6 – Overview 

 

6.1 Project Summary 

 The motivation for this work stems from our incomplete understanding of the intersection 

of clocks, sleep, and metabolism, and the realization that new tools are necessary to unearth 

these connections and track inherently dynamic physiological processes. While gross metabolic 

parameters such as glucose homeostasis have been extensively studied vis-à-vis disrupted 

circadian rhythms and sleep, mechanistic detail cannot be obtained from these measures. 

Considerably deeper and more complex analyses are required to uncover the extent of diurnal 

variance in metabolism. Metabolomics has recently emerged as an approach to holistically probe 

metabolic processes and integrate both endogenous and exogenous influences on host 

physiology. As with other high-throughput ‘omic technologies, metabolomic analyses rely on 

instrumentation with multiple tunable parameters which impacts the accurate detection of 

numerous variables, and requires efficient and rational optimization procedures. In Chapter 2, 

new LC-MS metabolomics methodology was developed in an iterative, data-driven manner. 

Design of experiments is commonly employed in process design and engineering, however has 

never been leveraged to build new LC-MS metabolomics methodology.  

These methods can facilitate holistic metabolite profiling in appropriate models of 

circadian rhythms, highlighted in Chapter 3 by metabolomic analyses in Drosophila. In this 

project, we discovered a dependency of circadian metabolite rhythms on intact genetic clocks, 

and a set of metabolite rhythms driven by environmental cues. Given cycles in physiology arise 

from a complex interaction of environmental cues and genetic factors, this study represents an 

important novel paradigm which separates the impact of daily light cycles and intrinsic clocks on 

metabolism. Additionally, metabolomic profiling in Drosophila at sufficiently high sampling 

resolution necessary for ultradian rhythm analysis had not been previously performed, and 

advances flies as a model to uncover new basic mechanisms in chronometabolism. 
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 LC-MS metabolomics methods can thus be effectively developed to discern metabolic 

cycles, however these methods do not provide clear insight into reaction kinetics, presenting an 

additional challenge in obtaining cogent metabolic mechanisms. The LC-MS methods described 

in Chapter 2 were modified to address this limitation through isotope enrichment detection from a 

novel 13C6 glucose bolus injection platform in Drosophila, described in Chapter 4. Current 

technological limitations prevent quantitative metabolic flux modeling across a circadian time-

series in vivo, however deep isotopolomic profiling provided relative pathway fluxes in amino acid 

metabolism and redox across circadian time and sleep status. This approach not only represents 

a new isotope-tracing tracing paradigm in Drosophila, but also an unprecedented scope of 

isotopologue analysis over prior metabolic flux study designs. Multivariate modeling on 

isotopologues had not been previously utilized to obtain a fluxomics assessment of an in vivo 

system, which revealed a global shift in carbohydrate oxidation early in the active phase of flies. 

This platform can have broad applicability in defining the metabolic consequence of clock and 

sleep disruption, as well as translatable experimental designs regarding nutrient processing and 

feeding paradigms to promote metabolic health. 

 The interpretability of systems-level ‘omics analyses lag behind advancements in 

instrumentation. While Chapter 4 outlines a novel approach to gauge metabolic flux, the source of 

many of these isotopologues cannot be fully explained by predefined biochemical pathways. The 

new metabolic variables discovered in Chapter 4 require a new means of interpretation, 

presenting yet another challenge in deriving true metabolic phenotypes. Fortunately, with the 

advent of genome-scale reaction annotation, all reactions can be considered which produce 

these detectable isotopologues. A new computational approach is developed which enumerates 

all possible isotope transfer events with atomic detail from an input 13C6 glucose tracer, and 

subsequently reconstructs all paths which connects the input tracer to the user-defined 

isotopologue of interest, outlined in Chapter 5. As a proof of concept, this algorithm calculated 

paths to notable isotopologues obtained in Chapter 4, including serine M+3, glutamine M+2, and 

GSH M+2. After a series of rational trimming procedures, a subset of those possible routes 
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remained, which provide supporting evidence for suspected sources of each of these 

isotopologues, as well as propose alternative mechanisms that warrant further experimentation. 

This tool simulated downstream isotopologues from a 13C3 serine tracer, as an example of the 

potential utility to guide the researcher to test specific hypotheses through appropriate tracer 

experiments and metabolomics methodology. This approach represents a new hypothesis-

generating bioinformatic tool built in an open-source platform for widespread use. Notably, the 

extent of possibilities calculated with this algorithm presents a degree of complexity which may 

require a shift in perspectives to consider metabolomic datasets in terms of updated probabilities, 

as attributing observable metabolite data to a single source or reaction is likely to be false. As 

technology and computational tools continue to improve, a new era of discovery can form to truly 

shed light on the complex nature of chronometabolism. The efforts outlined in this thesis work 

formed a logical progression of problem-solving endeavors, ultimately producing new analytical 

methodology, metabolic modeling algorithms, and most importantly, novel biological insight. Much 

work remains to improve the largely underdetermined platforms with which we probe metabolism, 

however this thesis work represents but a small effort to “make measurable what is not so.” 

 

6.2 Future Directions 

 In this work, there exist a multitude of opportunities to both improve methodologies and 

provide additional biological insight. The DoE approach outlined in Chapter 2 not only produced 

new metabolomics methodologies, which drove much of the results obtained in Chapters 3 and 4, 

but also itself addressed a need to rapidly develop new methods in a data-driven manner. This 

approach is important, as no single method is adequate to detect the entire metabolome, and 

certain subsets of metabolites which cannot be detected with our current methods may be 

necessary to test additional hypotheses. For example, improved detection methods for sugars 

and would add clarity to the results obtained in Chapter 3, while improved sensitivity of amino 

acid isotopomers would greatly enhance reaction specificity for the predictions generated in 

Chapters 4 and 5. Algorithmic improvements to the IsoPathFinder approach, alongside improved 
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database curation and LC-MS methods, can also augment this new platform of isotope-based 

metabolic discovery. 

The approaches presented in this work also provide ample space for novel 

chronometabolic insight with translatable potential. Future studies from Chapter 3 should seek to 

determine the clock-dependent role of per in circadian metabolism through analysis of other 

genetic clock models, and separate the impact of clocks and feeding rhythms on metabolite 

cycles. Perturbed metabolic homeostasis has been noted in mice with dysfunctional clocks, which 

may be alleviated through certain behavioral and feeding paradigms. Given the ease of genetic 

manipulation in flies, and the relatively low cost of experimentation, our ability to improve health 

outcomes amidst altered sleep and feeding cycles with practical benefits for human health may 

be augmented by future Drosophila metabolomic studies. Simply acquiring metabolomic data 

from the combinatorial explosion of genetic mutants, environmental influences, and feeding 

paradigms will likely lead to an uninterpretable excess of data. However, metabolomics may 

serve as a purview of underlying mechanisms for experiments that aim to improve metabolic 

outcomes under paradigms of desynchrony. These experiments may also benefit from an altered 

perspective in the utility of metabolomics and systems-biology research. One major goal in 

biomedical research is to improve outcomes. If one is to think of metabolomics as a metabolic 

fingerprint of a biological system, a prevailing objective should be to define the biometric 

fingerprint, and derive means to shift a diseased fingerprint towards a healthy one. With this 

perspective in mind, metabolomics may serve to gauge the success of efforts to restore metabolic 

homeostasis under conditions of altered feeding and activity patterns. 

 Apropos to feeding, the isotope tracer approach in Chapter 4 can more directly answer 

questions regarding diurnal variation in nutrient oxidation and reduction, and may provide detailed 

mechanisms to the consequence of dysfunctional clocks and the benefits of time-restricted 

feeding. The platform itself will benefit from additional metabolomics methods, as only a relatively 

small number of metabolites are analyzed in the current analysis given the number of isotopomer 

MRMs required per metabolite. Experiments which seek to test specific hypotheses, for example 
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cycles in isotopologue products of serine M+3, will need to modify the existing method to 

accurately detect all necessary isotopologues with greater sensitivity. Nonetheless, this platform 

lays a foundation for greatly expanded experimentation, most notably additional isotope tracer 

injections to probe pathways in amino acids and lipids relevant to circadian metabolism. 

Additionally, greater reaction specificity will be obtained with proper utilization of fragmentation 

data, although will require significant methodological improvements. The IsoPathFinder approach 

can readily assimilate isotopomer data, however would still benefit from algorithmic improvement 

to search for longer path lengths. Nonetheless, this algorithm can effectively simulate isotope 

tracer experiments to guide experimental designs in previously unexplored aspects of 

metabolism, generating a series of future directions too numerous to fully mention here. 

 

6.3 Deeper Metabolic Phenotyping 

Even with the relatively simplistic approach in the IsoPathFinder algorithm, the paths 

enumerated for serine, glutamine and GSH may not represent the full extent of possibilities, as 

longer paths are easily envisioned. Even after paring unlikely paths through the assimilation of 

previously published datasets and thermodynamic considerations, the number of possible 

metabolic routes remains humbling. While scientific efforts typically strive for absolutism in data 

interpretation, all too often alternative hypotheses are discarded or unconsidered. As we continue 

to uncover the extent of possibilities in genome-wide networks, our current analytical tools confine 

us to increasingly underdetermined observable systems. If the IsoPathFinder results remotely 

represent the extent of possibilities in metabolic systems, we are left with a considerable weight 

of uncertainty in our experimental results. Advancements in metabolomics technologies may yet 

meet this challenge, however there are benefits to shifting our philosophy from absolutism to 

probability distributions. As an example, if the 7246 initial paths to glutamine M+2 are viewed as 

equally likely, additional data can increase posterior probabilities towards a smaller subset of 

paths. Even so, attributing experimentally observed results to any one of these paths with high 

certainty is difficult and perhaps unrealistic. With this perspective in mind, I have sought to 
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maintain a relatively conservative interpretation of the results obtained in Chapters 4 and 5, as 

substantial follow-up experimentation would be required to definitively claim the contribution of a 

particular metabolic pathway to observable organismal phenotypes. Encouragingly, these 

approaches can be leveraged to test new hypotheses with greater specificity, with the hope that 

widespread usage of this tool can empower isotope-based metabolic studies in a new era of 

systems-level biomedical discovery. 

In these objectives, I have attempted to shed some light on some unmet needs, both in 

our understanding of human health, and in deficiencies to define and interpret organismal 

phenotypes. We currently live in an environment extremely disparate from our origins. Great 

minds in recent history have driven incredible innovations to enhance the quality of life in 

developed countries, across medicine, transportation, communication, and information 

technology. These advancements have ushered in an era of new societal norms, but have quietly 

come at some cost to our health. Thomas Edison likely would have never imagined the ubiquity of 

lights at all hours of the night, including those from our handheld devices. The advancements in 

communication and information technology have granted our work access to personal time early 

in the morning or late at night, and we have reached a point where sleep restriction from work 

demands is commonplace, fueling a notion that busy lives are imperative for productivity. These 

behavioral aberrations correlate closely with disrupted sleep and eating patterns, and 

consequently desensitize our perceptions of shift work, once considered unethical. Scientists are 

struggling to clearly define the consequences of these lifestyle shifts on pace with the 

advancements in technology. Even if only infinitesimally, I hope to add some understanding to the 

way in which nutrients are metabolized across circadian time, and the impact of restricted sleep 

on nutrient processing. In the field of biomedical research, tremendous developments have been 

made across analytical chemistry, mathematics, and computer science to better define ourselves, 

both in health and disease. I believe we are just scratching the surface in uncovering the 

genotype-phenotype relationship. Our definitions of human phenotypes must shift away from 

reductionism and towards systems-level fingerprinting, through a combination of ‘omics, lifestyle, 



165 
 

and real-world evidence datasets. In doing so, we need to maintain an open mind and separate 

ourselves from the concepts developed in the 20th century, particularly in defining the ‘metabolic 

phenotype’. In my work, I have attempted to remain unbiased in forging new metabolic pathway 

dynamics from systems-level datasets, and hope the analytical and computational tools 

presented in this work can be used broadly, or spark the creation of better tools. We must expand 

the scope of our search beyond what was once thought to be the solved intracellular 

metabolome, for in metabolism, as in life, ‘panta rhei’. 
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