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Abstract
This thesis unites three papers discussing new strategies for matched pair designs using observational data,
developed to balance the demands of various disparate design goals. The first chapter introduces a new
matching algorithm for large-scale treated-control comparisons when many categorical covariates are present.
The algorithm balances covariates and their interactions in a prioritized manner by solving a combinatorial
optimization problem, and guarantees computational efficiency through the use of a sparse network
representation. The second chapter defines a class of variables called prods which can be ignored when
matching in order to strictly attenuate unmeasured bias, if it is present. These variables can be difficult to
identify with confidence, so a multiple-control-group strategy is proposed in which investigators match once
on all variables, and once ignoring prods; the two treated-control comparisons together give stronger evidence
about treatment effects than either one individually. The final paper considers a new version of Fisher's
classical lack-of-fit test for regression models, appropriate for data that lack replicated observations. The test
uses matched pairs formed by optimal nonbipartite matching as near-replicates, and the model fit is used is
used in constructing the matching distance in order to focus attention on variables that are predictive in the
null model.
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ABSTRACT

BALANCING MULTIPLE GOALS IN

OBSERVATIONAL STUDY DESIGN

Samuel D. Pimentel

Paul Rosenbaum

This thesis unites three papers discussing new strategies for matched pair designs us-

ing observational data, developed to balance the demands of various disparate design

goals. The first chapter introduces a new matching algorithm for large-scale treated-

control comparisons when many categorical covariates are present. The algorithm

balances covariates and their interactions in a prioritized manner by solving a combi-

natorial optimization problem, and guarantees computational efficiency through the

use of a sparse network representation. The second chapter defines a class of vari-

ables called prods which can be ignored when matching in order to strictly attenuate

unmeasured bias, if it is present. These variables can be difficult to identify with con-

fidence, so a multiple-control-group strategy is proposed in which investigators match

once on all variables, and once ignoring prods; the two treated-control comparisons

together give stronger evidence about treatment effects than either one individually.

The final paper considers a new version of Fisher’s classical lack-of-fit test for re-

gression models, appropriate for data that lack replicated observations. The test

vi



uses matched pairs formed by optimal nonbipartite matching as near-replicates, and

the model fit is used is used in constructing the matching distance in order to focus

attention on variables that are predictive in the null model.
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1
Introduction

This thesis is based on three papers, all of which address the need to balance several

possibly disparate goals in forming matched pair designs using observational data.

The first paper considers a large-scale comparison of the health outcomes of patients

treated by new surgeons and those of patients treated by experienced surgeons, using

data from Medicare claims. Matching new surgeon patients to similar experienced

surgeon patients in this observational study provides a special analytic and computa-

tional challenge, because of the volume of data but also because of the large number

of complex categorical covariates measured for the patients. A new network flow

algorithm is presented for matching in this setting, incorporating novel balancing

constraints that remove pre-treatment group differences on categorical covariates and

their interactions in order of scientific priority. Furthermore, the algorithm represents

large observational studies as sparse network flow problem, allowing matches of un-

precedented size to be constructed efficiently. In the surgical study, the algorithm

produced very desirable levels of balance on interactions of many nominal covariates.

This project is joint work with Rachel Kelz, Jeffrey Silber, and Paul Rosenbaum, and

was published in 2015 in Volume 110, Issue 510 of the Journal of the American Sta-

tistical Association. It was produced with support by Grant SBS 1260782 from the

MMS Program of the US National Science Foundation, Grant AG032963 from the US
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National Institute of Aging, and by Fellowship FA9550-11-C-0028 from the Depart-

ment of Defense, Army Research Office, National Defense Science and Engineering

Graduate (NDSEG) Fellowship Program, 32 CFR 168a4.

The second paper addresses an important question, frequently arising in practice,

about which variables to use for matching in observational studies. Randomized tri-

als balance all covariates, observed and unobserved; matching analyses generally try

to balance all observed covariates (since it cannot directly balance unobserved co-

variates). However, informal arguments in the applied medical literature claim that

matched analyses would admit less bias due to unobserved covariates if certain ob-

served variables were left unbalanced. This work formalizes that argument and prove

that a certain class of variables, called “prods” to receive treatment, can be left un-

balanced in the match to strictly lower the degree of unmeasured bias. In practice

it is difficult to identify these variables, since they are defined by uncheckable condi-

tions. It is suggested the result is most useful in the computerized construction of a

second control group, where the investigator can see more in available data without

necessarily believing the required conditions. One of the two control groups controls

for the possibly irrelevant observed covariate, the other control group either leaves

it uncontrolled or forces separation; therefore, the investigator views one situation

from two angles under different assumptions. A pair of sensitivity analyses for the

two control groups is coordinated by a weighted Holm or recycling procedure built

around the possibility of slight attenuation of bias in one control group. Issues are

illustrated using an observational study of the possible effects of cigarette smoking

as a cause of increased homocysteine levels, a risk factor for cardiovascular disease.

This is joint work with Dylan Small and Paul Rosenbaum, and was published in 2015

in Volume 111, Issue 515 of the Journal of the American Statistical Association. It

was conducted with support by the Measurement, Methodology, and Statistics Pro-
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gram of the National Science Foundation and by Fellowship FA9550-11-C-0028 from

the Department of Defense, Army Research Office, National Defense Science and

Engineering Graduate (NDSEG) Fellowship Program, 32 CFR 168a4.

The final paper considers an alternative use of matching, not for formation of

comparison groups in an observational study but for use in testing the fit of a linear

regression model. Fisher’s classical lack-of-fit test uses perfectly replicated obser-

vations to produce a second estimate of the model standard error and conduct a

goodness-of-fit test, but in practice observational datasets rarely contain perfectly

replicated observations. A new test is presented, which identifies near-replicates for

use in Fisher’s testing framework via optimal nonbipartite matching. In particular,

a distance is defined for use in the matching algorithm that focuses on predictors

important in the original model, betting that model failures involve variables impor-

tant in the original fit. The test is shown to be exact, despite its use of the original

fitted model, and to have reasonable power even when the true set of predictors is

hidden within a large collection of spurious ones. This is joint work with Dylan Small

and Paul Rosenbaum, and is forthcoming in Technometrics, and was conducted with

support by National Science Foundation Grant SES-1260782 from the Measurement,

Methodology and Statistics Program of the NSF and by Fellowship FA9550-11-C-0028

from the Department of Defense, Army Research Office, National Defense Science and

Engineering Graduate (NDSEG) Fellowship Program, 32 CFR 168a4.
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2
Large, Sparse Optimal Matching with Refined

Covariate Balance

2.1 Introduction: Matching within natural blocks

2.1.1 What are natural blocks?

In observational studies of treatment effects, we often wish to compare treated and

control subjects from the same natural block. Familiar examples of natural blocks are

twins, siblings, surgical patients in the same hospital, or students in the same school.

Important unmeasured covariates may be more similar within a natural block than

between blocks: the genes of siblings; the nursing staff and intensive care unit in

the same hospital; the teaching staff and socioeconomic conditions within the same

school.

There can be a tension between the desire to compare treated and control individ-

uals within natural blocks and the desire to compare treated and control groups with

similar distributions of measured covariates. In our study in §3.1 comparing new and

experienced surgeons, there are 1252 natural blocks of a new and experienced sur-

geon performing similar types of surgery working in the same hospital. Additionally

there are many categories of measured covariates, including 176 surgical procedures,

4



ultimately nearly 2.9 million categories defined by measured covariates. With many

categories, it is difficult if not impossible to find similar patients inside the same

natural block.

Attempts to balance many covariates by pairing individuals who are nearly iden-

tical almost invariably fail because nearly identical people do not exist. This is

illustrated in Zubizarreta et al. (2011, Table 6; 2014, §2.4) where close individual

pairs are not available but covariate balance is attainable. Matching for a scalar

propensity score can balance many covariates such as age or gender, but this ap-

proach can perform poorly with sparse nominal covariates having many categories,

for instance the 176 surgical procedures and their interactions with comorbidities.

Like randomization, matching on propensity scores balances covariates stochastically

with the aid of the law of large numbers, whereas a nominal covariate with many

categories may have small sample sizes in most categories.

Our algorithm pairs patients within a natural block, trying to pick individual pairs

that are close on covariates. There is a limit to what can be achieved by finding

individually close pairs on many variables, so a separate effort is made to balance

distributions of covariates when individuals within a pair may differ. The approach

comes as close as possible to balance for a sequence of nested nominal variables,

starting with the 176 surgical procedures, gradually subdividing these 176 categories

to finally reach nearly 2.9 million categories involving comorbidities and admission

source, obtaining the best possible balance at each successive stage of the subdivision.

This new objective, “refined covariate balance,” is defined in §2.4.4, where it is proved

in Theorem 6 that our new network optimization algorithm yields a minimum distance

match subject to the constraint of refined covariate balance. This new approach is

made practical by exploiting network sparsity.

5



2.1.2 Natural blocks and network sparsity

Optimal matching in observational studies (Rosenbaum, 1989; Hansen, 2007) is often

implemented using network optimization, a collection of mathematical and compu-

tational techniques originally developed to solve problems in operations research; see

the review of network optimization in §2.4.3. A network is a set of nodes together

with a set of directed edges or ordered pairs of nodes. Think of the nodes as subjects

and the edges as candidate pairings of two subjects. A network with N nodes might

have N2 edges with loops or N (N − 1) edges if with no loops; that is, it might have

O (N2) edges as N →∞ and in this case the network is said to be dense. A network

is said to be sparse if the number of edges is O (N) rather than O (N2). Matching

within natural blocks, such as within hospital-surgeon-pairs, drastically restricts the

number of permitted pairings of patients, resulting in a sparse network. The time

and space required for optimization is much greater in dense than in sparse networks

(e.g., Korte and Vygen 2008, Theorem 9.17).

Typical uses of optimal matching in observational studies do not exploit sparsity,

in part because a network defined by measured covariates without natural blocks is

likely to be dense. A program such as Hansen’s (2007) optmatch package in R can

match thousands of individuals at once in a dense network. In current practice,

if a problem has many more than thousands of individuals, then it is divided into

smaller problems each consisting of thousands of individuals by matching exactly for

several important covariates. This strategy often works well for measured covariates.

However, with natural blocks, there may be relatively few choices within blocks, so

more of the work needs to be done through balancing covariate distributions. By

working with a network that is naturally sparse because of natural blocks, we are able

to match hundreds of thousands of individuals at once, thereby making much more

effective use of balancing techniques.

6



2.1.3 Outline: an example; a new objective; a new algorithm;
the benefits of sparsity

The surgical example is discussed in §3.1 and §2.5. The general problem is described

informally in §2.2 and developed precisely in §2.4. All new results and methods

are contained in §2.4. Notation is introduced in §2.4.1, key concepts such as refined

balance are defined in §2.4.2, and existing literature on network optimization is briefly

reviewed in §2.4.3. The matching network for refined balance is defined in §2.4.4.

The main theorem in §2.4.5 says that a minimum cost flow in the network defined in

§2.4.4 is the closest possible match that exhibits refined balance while respecting the

natural blocks. Sparsity is discussed in §2.4.7. The discussion in §2.6 considers how

the proposed methods might be applied in other contexts.

For discussion of matching, see Baiocchi et al. (2012), Hansen and Klopfer (2006);

Hansen (2007), Heller et al. (2009), Lu et al. (2011), Rosenbaum (1989, 2010), Rosen-

baum and Rubin (1985), Stuart (2010), Yang et al. (2012), and Zubizarreta et al.

(2011, 2014). For recent applications of optimal matching, see Silber et al. (2013)

and Neuman et al. (2014).

2.2 Abstract problem; intuition behind its solu-

tion; other applications

2.2.1 The abstract problem: refined balance in a sparse match

In a sparse matching problem, each treated subject has a short list of potential con-

trols. When there are natural blocks, this short list consists of controls from the

same block; however, sparse networks arise or can be produced in other ways; see

§2.6.2. As the sample size increases, the length of the list of potential controls for
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each given treated subject does not increase. As you add more and more families

or schools or hospitals or zip codes to the study, you have more and more subjects

to match, but individual families or schools or hospitals or zip codes do not become

larger. If the number of blocks increases in constant proportion to the increase in

total sample size, then block effects are not consistently estimable without assump-

tions about their form (Kiefer and Wolfowitz, 1956, p. 888); however, it is possible

to match within blocks.

In addition to picking for each treated subject a control from the short list of

candidates, the matching must balance many observed covariates. We would be

satisfied if the balance on observed covariates after matching were similar to the

balance on observed covariates in a completely randomized experiment, but this may

not be possible in an observational study. Randomization also balances unmeasured

covariates whereas matching for observed covariates cannot be expected to do this.

Because the list of candidate controls for a given treated subject is short, it is rarely

possible to find a control on the short list who is identical to the treated subject with

respect to many covariates. So the matching algorithm tolerates a mismatch in one

pair providing it can counterbalance that mismatch in another pair. If it is necessary

to match a treated male to a control female in one block, then a treated female will be

matched to a control male in another block, so the final treated and control groups

have exactly the same number of males and the same number of females. Exact

counterbalancing is called “fine balance”; see Rosenbaum et al. (2007). Fine balance

means that the marginal distribution of a categorical covariate is exactly the same in

treated and control groups, and in the surgical example the 176 surgical procedures are

finely balanced. Counterbalancing is a familiar strategy in experimental design, for

example in Latin square designs or crossover designs. Sometimes exact fine balance

is not achievable: for instance, it is not possible in the surgical example to exactly

8



balance all 2.9 million categories of patients. “Near fine balance” means that the

marginal distributions of a categorical covariate in matched samples are “as close as

possible” to fine balance given the data available; see Yang et al. (2012). In defining

near fine balance, one may define “as close as possible” in various ways, but one

natural and familiar measure is the total variation distance, the sum of the absolute

treated-minus-control differences in category percents. See Arratia et al. (1990, §3)

for several attractive equivalent definitions of the total variation distance. If the

matched treated group is 51% male and the matched control group is 49% male, then

the total variation distance in gender is |0.51− 0.49|+ |0.49− 0.51| = 0.04 reflecting

the 2% mismatch for males plus the corresponding 2% mismatch for females. One

form of near fine matching minimizes the total variation distance in matched samples,

and it achieves exact fine balance whenever this is achievable.

Refined balance is an extension of fine or near-fine balance. One defines a sequence

of nested nominal variables, ν1, . . . , νK , so νk+1 subdivides νk. Refined balance comes

as close as possible to fine balance for ν1, and among all matches that do that, it comes

as close as possible to fine balance for ν2, and so on. In the surgical example, ν1

consists of the 176 surgical procedures and these are finely balanced, ν2 interacts the

176 surgical procedures with two types of hospital to make 352 categories for which

the minimum total variation distance is 0.001 or one tenth of 1%, . . . , and vK for

K = 6 has 2.9 million categories. Among all matched samples that exhibit refined

covariate balance, the algorithm finds pairings from the short lists to minimize the

total covariate distance within pairs.

2.2.2 Intuition behind the solution

In §2.4, the matching problem is represented by a network or directed graph. For

each category of each of the nested nominal variables, νk, the network has two routes

9



to a match. One route is free of charge, and a pair can take this route if it leaves this

category balanced. The other route has a large toll or penalty, and a pair can take this

route without balancing the category but must pay the penalty. The penalty for ν1 is

much larger than for ν2, and so on. The objective function is the sum of all of these

penalties plus the sum of the within-pair covariate distances. The penalization of

certain paths is developed in detail in §2.4.4 and it involves a parameter Υ. Network

optimization minimizes this penalized objective function. If the penalties are both

sufficiently large and sufficiently different for νk and νk+1, then they override all other

considerations, producing refined balance. Among all matches that minimize the

penalties, the optimal match minimizes the sum of the covariate distances. In the

example, among matches that are equally good in terms of refined covariate balance,

the algorithm tried to pair individuals with similar ages and estimated risks of death,

two variables that were not explicitly balanced. Section 2.4 states the algorithm

precisely and proves that it works.

Refined balance and sparsity are separate ideas that work well together. In a

sparse network, it is difficult to find close individual pairs, and more of the work must

be done by covariate balancing; hence, the attraction of refined balance for sparse

problems. Conversely, balancing of rare categories is easier in very large problems,

and computations for large problems require less computer time and storage if the

problem is sparse; hence the attraction of sparsity for refined balance. Sparsity is

discussed in §2.4.7.
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2.3 Patient outcomes achieved by new and expe-

rienced surgeons

2.3.1 Background

Are the patient outcomes of newly trained surgeons comparable to the outcomes of

experienced surgeons performing the same types of surgery at the same hospitals? If

the typical patient of the typical new surgeon were instead treated by an experienced

surgeon, would the patient’s outcomes be different? The data describe patients in

Medicare in six states between 2004 and 2007 who had Medicare Part B, were not in

a Medicare HMO, and had surgery performed at a hospital rather than on an out-

patient basis at an ambulatory surgical center. Here, we look at 6260 patients of 1252

new surgeons and 6260 patients of 1252 experienced surgeons at the same hospitals,

5 patients per surgeon.

Surgical skill varies from surgeon to surgeon. Are the worst surgeons also the

new surgeons? A typical hospital might have one new surgeon and a group of experi-

enced surgeons. We expect that the performance of individual new surgeons will be

more variable, more extreme, than the average performance of a group of experienced

surgeons, simply because averages are more stable than individuals. Surgeons special-

ize, focusing on particular types of surgery, and the 30-day mortality rate following,

say, elective orthopedic surgery is much lower than for some types of cancer surgery.

These considerations, together with desire for a simple, transparent study design, led

us to pair each new surgeon with an experienced surgeon performing similar types of

surgery at the same hospital.

New surgeons gradually become experienced surgeons. As they become more

experienced, they perform more surgery. Most of the population of patients of new

surgeons are the patients of the most experienced of the new surgeons, but we are most
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interested in new surgeons when they are starting out, when most of their experience

is from surgical training. For these reasons, we decided to give equal weight to each

young surgeon, rather than weighting surgeons by the number of operations they

performed. We considered only new and experienced surgeons who had performed

at least five operations in our data. We sampled at random five surgical patients of

each new surgeon as the treated group. For many newer new surgeons, five patients

was a large part of the portion of the overlap of their surgical practice with our

data. Our analysis describes the typical patient of the typical new surgeon, not the

typical patient of new surgeons as a group, the latter being weighted towards the

most experienced new surgeons.

2.3.2 Matching the patients of new and experienced surgeons
within the same hospital

Surgical data are characterized by quite a bit of detail, much of it recorded in nom-

inal variables. Using ICD-9 codes, we distinguish 176 surgical procedures (listed in

Table 2.1 as Procedure). In addition, we distinguish among 498 hospitals, whose per-

formance varies for reasons unrelated to surgical performance. Patients often have

existing medical problems, called comorbidities, besides those treated by the current

surgery, such as congestive heart failure (CHF) or chronic obstructive pulmonary

disease (COPD), and these may increase the risk of death following surgery. We

distinguish hospitals with many new surgeons or few new surgeons (Hospital Group).

Patients are matched within surgeon pairs within the same hospital.

Table 2.1 lists covariates that structure the match, and additional covariates ap-

pear in Table 2.2. Table 2.1 includes notation that will be defined in §2.4. In

the rows of Table 2.1, there are 15 nominal covariates, making 176 × 214 or about

2.9 million categories of patients. The columns of Table 2.1 define K = 6 nominal
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covariates, ν1, . . . , ν6, where ν1 is simply the L1 = 176 procedures, ν2 is the 176

procedures crossed with Hospital Group with L2 = 176 × 2 = 352 categories, ν3 is

the 176 procedures crossed with Hospital Group, male, ER-admission, and Transfer-

admission with L3 = 176× 24 = 2816 categories, . . . , and ν6 crosses all 15 covariates

with 176× 214 .
= 2.9 million categories.

Ideally, the number of patients of new surgeons in each of 2.9 million categories

would equal the number of patients of experienced surgeons. That was not quite

possible while always also matching patients within the 498 hospitals. Subject to

that requirement of matching within hospitals, the match minimized imbalance in a

sense to be defined in a moment, and minimized the sum of a covariate distance over

6260 patient pairs.

A nominal covariate with Lk levels yields an Lk × 2 contingency table with two

columns for the patients of new and experienced surgeons. In the matched sample,

each column contains a total of 6260 patients distributed among Lk categories or

rows. How different are the distributions in the two columns? Write βk` for the

difference in counts of νk in row ` of the table; then 0 =
∑Lk

`=1 βk` and
∑Lk

`=1 |βk`| is

proportional to a standard measure of the difference between two discrete probability

distributions, namely the total variation distance. Now,
∑Lk

`=1 |βk`| could be as small

as 0 if the distributions were identical or as large as 2× 6260 = 12520 if they do not

overlap. To equalize the two distributions, one would need to switch the categories

for
∑Lk

`=1 |βk`| /2 controls or the percentage (100/6260)
∑Lk

`=1 |βk`| /2.

The lower portion of Table 2.1 shows the total imbalance in the six nominal

covariates, ν1, . . . , ν6. For procedures, ν1, the imbalance was 0, so the distribution

of the 176 procedures is identical in the new and experienced groups. The imbalance

for ν1 is as small as possible. For ν2, the imbalance was 6, meaning that there was

a total excess of 3 in some of the rows of the 2 × 352 table and a total deficit of 3
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Table 2.1: The K = 6 nominal variables νk that were balanced as closely as possible by
the matching algorithm, where ν1 consists of L1 = 176 surgical procedures, and ν6 is the
interaction of 176 surgical procedures with 14 binary covariates, making L6 = 176 × 211

categories, or about 2.9 million categories. An × indicates that the row variable contributes

to nominal variable νk. The algorithm minimized the total imbalance
∑Lk′

`=1 |βk′`| for νk′

among all matches that minimized
∑Lk

`=1 |βk`| for νk for k < k′. The balance obtained by
matching is much better than the best balance obtained in 10,000 simulated randomized
experiments with the same marginal totals.

Nested nominal covariate, νk
k = 1, . . . , 6

Covariate Levels 1 2 3 4 5 6
Procedure 176 × × × × × ×
Hospital Group 2 × × × × ×
Male 2 × × × ×
ER-admit 2 × × × ×
Transfer 2 × × × ×
Paraplegia 2 × × ×
Stroke 2 × × ×
PPF 2 × × ×
CC 2 × ×
CHF 2 × ×
Dementia 2 × ×
Renal 2 × ×
Liver 2 ×
Past A 2 ×
Past MI 2 ×
# Categories 176 176× 2 176× 24 176× 27 176× 211 176× 214

Lk = 176 = 352 = 2, 816 = 22, 528 = 360, 448 = 2, 883, 584
Imbalance∑Lk

`=1 |βk`| 0 12 52 176 664 1242
% of maximum 0.0% 0.1% 0.4% 1.4% 5.3% 9.9%
Independence χ2 0.0 4.9 43.3 142.3 588.9 1158.7

Balance in 10,000 simulated randomized experiments with the same margins
Simulated χ2 statistics for independence

Mean χ2 174.9 302.9 767.5 1062.0 1946.0 2814.0
Minimum χ2 117.0 226.5 645.7 933.6 1777.0 2645.0

Simulated Total Imbalance
∑Lk

`=1 |βk`|
Mean

∑Lk

`=1 |βk`| 768 1051 1749 2086 3010 3812

Min.
∑Lk

`=1 |βk`| 540 814 1500 1826 2752 3578
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in some other rows. The imbalance for ν2 is as small as possible among matches

that minimize the imbalance in ν1. And so on. For ν6, the total absolute imbalance

is 1242 for 2 × 6260 = 12520 patients in 2.9 million categories, or about 10% of

the maximum imbalance. The imbalance for ν6 is as small as possible subject to

minimizing the imbalance in ν1, . . . , ν5 and matching within surgeon pairs. In

addition to producing a small imbalance in ν1, . . . , ν6, the matching algorithm certifies

that the imbalance attained is the smallest possible imbalance when matching new

and experienced surgeon patients within the same hospital; that is, there is no point

in trying to achieve a smaller imbalance.

The balance described in the previous paragraph is much better than randomiza-

tion would produce. We computed the usual χ2-statistic for independence in each

of the six 2 × Lk contingency tables. We created 10,000 simulated randomized ex-

periments by simple random sampling without replacement of 6260 patients from the

12520 patients, so row and column margins of the 2 × Lk are unchanged, and com-

puted 10,000 independence χ2-statistics and imbalances
∑Lk

`=1 |βk`|; see the bottom

of Table 2.1. For ν6 with 2.9 million categories, the actual matched sample had an

imbalance of 1242 and χ2 of 1158.7, and that was much better balance than the best

of 10,000 simulated randomized experiments with an imbalance of 3578 and χ2 of

2645.0.

Subject to the constraints of matching within hospital and minimizing imbalance∑Lk

`=1 |βk`| in Table 2.1, the algorithm minimized the total over 6260 patient pairs of

a covariate distance within pairs. Table 2.2 looks at the imbalance on the individual

matching variables, including age and the risk score, neither of which is in Table 2.1.

Do new surgeons treat the easiest patients? Apparently not. In Table 2.2, before

matching, the patients of new surgeons are much more likely to have entered through

the emergency room, have higher estimated risks of death based on comorbidities,
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Table 2.2: Covariate imbalance before and after matching. The table compares new
surgeons to experienced surgeons, before and after matching, in term of covariate
means, standardized differences in means as a fraction of the standard deviation
before matching, and two-sample P -values. New = new surgeon, Ex-B = experienced
surgeon, before matching, Ex-A = experienced surgeon, after matching. Standardized
differences above 1/10th of a standard deviation are in bold.

Covariate Mean Standardized Difference 2-sample P-value
Covariate New Ex-B Ex-A Before After Before After
Sample size 6,260 123,846 6,260
Age 77.883 76.992 77.926 0.116 -0.005 0.000 0.617
Male 0.345 0.358 0.346 -0.027 -0.003 0.038 0.880
ER-admit 0.538 0.323 0.537 0.444 0.003 0.000 0.886
Transfer 0.008 0.008 0.007 0.000 0.013 1.000 0.532
Risk 0.042 0.030 0.040 0.214 0.031 0.000 0.237
CHF 0.149 0.123 0.143 0.076 0.019 0.000 0.311
Liver 0.043 0.036 0.038 0.035 0.026 0.005 0.161
Cancer 0.164 0.175 0.164 -0.029 0.001 0.030 0.981
Past A 0.170 0.171 0.161 -0.002 0.024 0.880 0.178
Diabetes 0.189 0.197 0.199 -0.019 -0.024 0.145 0.198
Renal 0.069 0.058 0.064 0.046 0.020 0.000 0.282
COPD 0.167 0.147 0.160 0.055 0.019 0.000 0.298
CC 0.028 0.028 0.022 -0.006 0.031 0.691 0.075
Dementia 0.101 0.065 0.093 0.131 0.032 0.000 0.103
Paraplegia 0.019 0.011 0.015 0.063 0.031 0.000 0.114
Past MI 0.058 0.054 0.051 0.015 0.031 0.265 0.083
PPF 0.023 0.020 0.021 0.023 0.015 0.069 0.429
Stroke 0.068 0.058 0.063 0.041 0.019 0.001 0.312
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are more likely to have dementia, and tend to be older. These differences are largely

absent after matching. New surgeons are treating a challenging and vulnerable group

of patients. In §2.5, we ask: How do outcomes compare for new and experienced

surgeons when experienced surgeons treat equally challenging patients?

2.4 A network algorithm for large, sparse optimal

matching with refined balance

2.4.1 Notation: acceptable 1-to-m match; covariate imbal-
ance βk`

There are T treated subjects, T = {τ1, . . . , τT}, and C ≥ T potential controls, C =

{κ1, . . . , κC}, with ∅ = T ∩ C. In §2.3.2, T contains patients of new surgeons and

C contains patients of experienced surgeons. Write |S| for the number of elements

in a finite set S, so that T = |T |. There were T = 6260 patients of new surgeons

to be matched and C = 123846 candidate control patients of experienced surgeons.

Treated subject τt ∈ T has observed covariate xτt and potential control κc ∈ C has

covariate xκc.

There is a subset of acceptable pairings, A ⊆ T × C, such that (τt, κc) is an

acceptable pairing if and only if (τt, κc) ∈ A. In §2.3.2, we had previously paired a

new and an experienced surgeon at the same hospital performing similar procedures,

and the acceptable pairingsA are only of patients of these paired new and experienced

surgeons at the same hospital; that is, (τt, κc) ∈ A if and only if τt is a patient of

a new surgeon and κc is a patient of the experienced surgeon with whom this new

surgeon is paired. In §2.3.2, |A| = 819230 < 7.75× 108 = T × C = |T × C|.

For each (τt, κc) ∈ A there is a distance δtc between xτt and xκc, δtc = δ (xτt,xκc),

with 0 ≤ δtc <∞. We would like to pair individuals who are close on covariates. In
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§2.3.2, δtc = δ (xτt,xκc) was a robust, rank-based Mahalanobis distance (Rosenbaum,

2010, §8) based on age, sex, emergency admission, transfer admission, risk score and

clusters of procedures. There is competition for controls, so κc may be the closest

control to both τt and τt′ , and an optimal matching will minimize the total distance

for matched individuals subject to various constraints on the balance of covariates.

There are K nested nominal variables νk (·), k = 1, . . . , K; that is, νk (·) is a

function that assigns one of Lk values in Kk = {λk1, . . . , λk,Lk
} to each subject in

T ∪ C, or νk : T ∪ C → Kk. In §2.3.2 and Table 2.1, there were K = 6 nominal

variables. Importantly, νk+1 refines or subdivides νk. In other words, these K

variables are nested in the sense that all individuals who are the same on νk+1 are

the same on νk; that is, formally, if ι ∈ T ∪ C with νk+1 (ι) = λk+1,` and ι′ ∈ T ∪ C

with νk+1 (ι′) = λk+1,`, then νk (ι) = νk (ι′). Variable ν1 (·) is the coarsest and most

important variable and νK (·) is the finest and least important variable. Expressed

informally, the algorithm will do everything possible to balance ν1 (·) as closely as

possible, whereas it will merely do what it can to balance νK (·).

Definition 1 Acceptable 1-to-m match: An acceptable 1-to-m match is a subset

M ⊆ A such that every τt ∈ T appears in exactly m pairs (τt, κc) ∈ M and every

κc ∈ C appears in at most one pair (τt, κc) ∈M.

If A = T × C, then an acceptable 1-to-m match exists whenever C ≥ mT . If

A ⊂ T ×C, then an 1-to-m acceptable match may not exist even when C ≥ mT . The

algorithm finds an acceptable 1-to-m match if one exists; otherwise it reports that no

such match exists. The conditions required for the existence of an acceptable match

are stated in a famous theorem in graph theory, Hall’s theorem; see Diestel (2010,

Theorem 2.1.2, p. 38); however, the algorithm determines whether a match exists.

In addition to having an acceptable match withM⊆ A with a small total distance∑
(τt,κc)∈M δtc, we also want to balance the K nominal variables, emphasizing νk (·)
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over νk+1 (·). Write dk` for the number of treated individuals τt falling in category

` of the kth nominal variable νk (·), so dk` = |{τt ∈ T : νk (τt) = λk`}|. Ideally, an

acceptable 1-to-m matchM would have m× dk` matched controls falling in category

` of the kth nominal variable νk (·), so the distributions of νk (·) would be identical in

matched treated and control groups; however, typically, this is not possible for larger

k. That is, ideally |{(τt, κc) ∈M : νk (κc) = λk`}| would equal m × dk` for every k

and `. Because the K variables are nested, an imbalance in νk (·) is necessarily also

an imbalance in νk+1 (·).

The imbalance βk` in the `th category of the kth nominal variable is a signed

integer that is m times the number of treated subjects τt in M with level λk` of the

kth nominal variable minus the number of controls κc in M with level λk`, that is,

βk` = m× dk` − |{(τt, κc) ∈M : νk (κc) = λk`}| . (2.1)

In (2.1), βk` depends upon the matchM through |{(τt, κc) ∈M : νk (κc) = λk`}|, but

the notation does not indicate the dependence explicitly; that is, some matches M

exhibit better covariate balance than do others. Here βk` > 0 signifies that we wanted

more controls at level ` of nominal variable νk (·), and βk` < 0 signifies that we wanted

fewer. By the definition of an acceptable 1-to-m match, for each k, the total of the

signed imbalances is zero, 0 =
∑Lk

`=1 βk` (i.e., everyone has to go somewhere), but the

total of the absolute imbalances
∑Lk

`=1 |βk`| measures the degree to which matched

treated and control subjects have differing distributions of nominal variable νk (·).

In fact, (mT )−1∑Lk

`=1 |βk`| is the total variation distance between the distribution of

νk (·) in matched treated and control groups. In Table 2.1,
∑L3

`=1 |β3`| = 52. In some

sense or other, we would like to pick an acceptable 1-to-m match such that each of

the
∑Lk

`=1 |βk`| is as small as possible and the within-pair distance
∑

(τt,κc)∈M δtc is as

small as possible.
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The kth nested nominal variable is said to satisfy “fine balance” if βk` = 0 for

` = 1, . . . , Lk, so νk (·) has the same distribution in matched treated and control

groups; see Rosenbaum et al. (2007). Because the K nominal variables are nested,

nominal variable νk (·) is finely balanced whenever νk+1 (·) is finely balanced.

The kth nested nominal variable is said to satisfy “near fine balance” if matchM

minimizes
∑Lk

`=1 |βk`| among all acceptable 1-to-m matches; see Yang et al. (2012).

Because the K nominal variables are nested,
∑Lk+1

`=1 |βk+1,`| ≥
∑Lk

`′=1 |βk`′ | for each k,

as is seen in Table 2.1 where
∑L1

`=1 |β1`| = 0 ≤ 12 =
∑L2

`=1 |β2`| ≤ 52 ≤ . . . ≤ 1242 =∑L6

`=1 |β6`|.

2.4.2 Two key definitions: What is an optimal refined ac-
ceptable 1-to-m match M?

Where fine and near fine balance refer to a single nominal variable, “refined balance”

refers to a nested sequence of nominal variables, such as νk (·), k = 1, . . . , K, as in

Table 2.1. Stated informally, each of the k levels is as balanced as possible, but level

k has priority over level k+ 1. Write M for the set of all acceptable 1-to-m matches

M. Each element M ∈ M is one possible match. Each such match M ∈ M

has values for βk` in (2.1) and a value for the total distance within matched sets,∑
(τt,κc)∈M δtc. The two definitions that follow define a “best” choice of M∈M.

Definition 2 (Refined balance): An acceptable 1-to-m match M ∈ M has re-

fined balance if: (1)
∑L1

`=1 |β1`| is minimized among all acceptable 1-to-m matches

M′ ∈M , and (2) among acceptable 1-to-m matches that satisfy (1), M minimizes∑L2

`=1 |β2`|, . . . , (k) among acceptable 1-to-m matches that satisfy (k-1), M mini-

mizes
∑Lk

`=1 |βk`|, . . . , (K) among acceptable 1-to-m matches that satisfy (K-1), M

minimizes
∑LK

`=1 |βK`|.
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For example, in Table 2.1, 52 is the minimum possible value of
∑L3

`=1 |β3`| among

all acceptable 1-to-1 matches with
∑L1

`=1 |β1`| = 0 and
∑L2

`=1 |β2`| ≤ 12.

Definition 3 (Optimal refined balance): An acceptable 1-to-m match M ∈

M with refined balance is optimal if it minimizes the total distance within pairs,∑
(τt,κc)∈M δtc, among all acceptable 1-to-m matches M∈M with refined balance.

The goal is to find an optimal refined acceptable 1-to-m match M if one exists

and otherwise determine that the problem is infeasible in that no such match exists.

2.4.3 Review of minimum cost flow in a network

The minimum cost flow problem is a standard combinatorial optimization problem

with origins in operations research; see Bertsekas (1991), Cook et al. (1998), and

Korte et al. (2008). This problem is a special type of integer program which, unlike

most integer programs, can be solved with a worst-case time bound that is a poly-

nomial in the size of the problem; that is, large problems can be solved quickly. A

standard way to “solve” a combinatorial optimization problem is to show that it is

equivalent to an appropriate minimum cost flow problem and to solve this equivalent

problem. (In R, a good solver for minimum cost flow problems can be obtained as

follows. Hansen’s optmatch package calls Fortran code RELAXIV created by Bertsekas

et al. (1994) which solves minimum cost flow problems. Loading optmatch makes

RELAXIV accessible in R and callable by imitating Hansen’s calls with different calling

parameters. Documentation and code for RELAXIV are on Bertsekas’ web page at

MIT.)

Metaphorically, objects are supplied and demanded at locations called nodes and

are shipped among nodes along edges connecting pairs of nodes, and the goal is to min-

imize the total shipping cost while meeting demands subject to capacity constraints.
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Objects cannot be cut in half (e.g., TVs cannot be cut in half for shipping) so the

solution must ship integer rather than fractional objects. Companies like FedEx

solve minimum cost flow problems in a literal rather than metaphorical sense. Op-

timal matching problems are commonly reexpressed as minimum cost flow problems.

We find an optimal refined acceptable 1-to-m match M by solving an equivalent

minimum cost flow problem.

A network is a set of nodes, N , a set of edges E consisting of ordered pairs of

nodes, E ⊆ N × N , so each e ∈ E is of the form e = (n, n′) where n, n′ ∈ N . One

draws a network with a point for each node n ∈ N and an arrow connecting pairs of

nodes for which there is an edge e = (n, n′) ∈ E , where the tail of the arrow is at n

and the point of the arrow is at n′. See Figure 1, where the arrowheads are omitted

to limit clutter, but edges that are not horizontal point down and horizontal edges

point from right to left. Our network is acyclic or without cycles, so we may speak

of the early part of the network — the upper part in Figure 1 — or the late part of

the network — the lower part in Figure 1.

Each edge e ∈ E has a nonnegative, possibly infinite, integer capacity, cap (e)

with 0 ≤ cap (e) ≤ ∞, and a nonnegative real cost, cost (e) with 0 ≤ cost (e) <∞.

That is, e can carry up to cap (e) units of flow and each unit costs cost (e) to

transport over e. Each node n ∈ N has a finite integer demand, demand (n) with

−∞ < demand (n) < ∞. Node n absorbs demand (n) units of flow and passes the

rest on, and demand (n) < 0 means n creates an excess of −demand (n) units of flow

(e.g., manufactures −demand (n) TVs). A feasible flow f is a function that assigns

a nonnegative integer f (e) to each edge e = (n, n′) ∈ E , such that: (i) the flow is

within the capacity limits, 0 ≤ f (e) ≤ cap (e) for each e ∈ E , and the demand at
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each node n ∈ N is met,

∑
n′:(n′,n)∈E

f {(n′, n)} −
∑

n′′:(n,n′′)∈E

f
{(
n, n

′′
)}

= demand (n) for each n ∈ N . (2.2)

The first sum in (2.2) is the total flow into n from neighboring nodes n′ with (n′, n) ∈

E , while the second sum is the total flow out from n to neighboring nodes n′′ with(
n, n

′′) ∈ E , so the equation (2.2) says that node n absorbs demand (n) units of

flow. A feasible flow may or may not exist. The total cost of a feasible flow is∑
e∈E f (e) cost (e). An optimal feasible flow is any feasible flow that minimizes the

total cost. The problem of finding a minimum cost flow in a network has several fast

widely available solutions.

From a practical point of view, finding a minimum cost flow in a network may

be regarded by users as a standard mathematical computation, not unlike finding

the inverse of a matrix. The user specifies the network and is given a minimum

cost flow, as the user of matrix inversion software specifies a matrix and is given its

inverse. Not all matrices have inverses, and not all networks have feasible flows, and

in both cases competent software announces that the impossible has been requested.

A network is dense if O (|E|) = |N |2.

2.4.4 The network for optimal refined acceptable 1-to-m
matching

The network involves a penalization parameter, Υ > 1. Penalization will increase

the cost of a flow when that flow is behaving in a way we wish to avoid. In §2.4.5, it

will be shown that if Υ is large enough, then the solution to a certain minimum cost

flow problem yields an optimal refined acceptable 1-to-m matching.

The nodes, N , of the network contain the treated subjects T = {τ1, . . . , τT},
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Figure 2.1: A small network for refined covariate balance with treated subject
τ1, . . . , τ7, potential controls κ1, . . . , κ11, two balance layers λ1` and λ2`, and the sink
ω.

τ1 τ2 τ3 τ4 τ5 τ6 τ7

κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8 κ9 κ10 κ11

λ21 λ22 λ23

λ21’’ λ21’ λ22’’ λ22’ λ23’’ λ23’

λ11 λ12

λ11’’ λ11’ λ12’’ λ12’

ω
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the potential controls, C = {κ1, . . . , κC}, and an additional node ω called a sink.

Also the nodes contain all of the possible values of the K nested nominal variables,

Kk = {λk1, . . . , λk,Lk
}, k = 1, . . . , K. Additionally, the nodes contain a primed

copy of values of the nested nominal variables, K′

k =
{
λ

′

k1, . . . , λ
′

k,Lk

}
, k = 1, . . . , K,

and a double primed copy of all of the possible values of the nominal variables,

K
′′

k =
{
λ

′′

k1, . . . , λ
′′

k,Lk

}
, k = 1, . . . , K. That is, the nodes are N = T ∪ C ∪ {ω} ∪⋃K

k=1
Kk ∪

⋃K

k=1
K′

k ∪
⋃K

k=1
K

′′

k .

If (τt, κc) ∈ A ⊆ T ×C is an acceptable pairing in the sense of §2.4.1, then (τt, κc)

is an edge of the network, (τt, κc) ∈ E with capacity cap {(τt, κc)} = 1 and cost

cost {(τt, κc)} = δtc, where δtc is the covariate distance between τt and κc introduced

in §2.4.1. There is an edge (κc, λK`) ∈ E connecting each potential control κc to

the category λK` of the last, most refined nominal variable νK (·) that contains this

control; moreover, this edge has capacity 1 and zero cost, cap {(κc, λK`)} = 1 and

cost {(κc, λK`)} = 0.

Every category k` of every nominal variable νk (·) appears as a small triangle in E

involving λk`, λ
′

k` and λ
′′

k`. These triangles play an important role: each one makes

an effort to reduce a corresponding |βk`| in (2.1), recognizing that it may not be

possible to achieve |βk`| = 0. Every node λk` is connected to both λ
′

k` and λ
′′

k`, so(
λk`, λ

′

k`

)
∈ E and

(
λk`, λ

′′

k`

)
∈ E , and λ

′

k` is connected to λ
′′

k` so
(
λ

′

k`, λ
′′

k`

)
∈ E for

all k, `; that is, λk`, λ
′

k` and λ
′′

k` form a triangle. There is, therefore, a direct path

from λk` to λ
′′

k` and an indirect path from λk` to λ
′′

k` that passes through λ
′

k`. As

discussed in §2.4.1, we would like to have m × dk` controls in category λk` as this

would make βk` = 0 in (2.1); however, this may not be possible. The direct path(
λk`, λ

′′

k`

)
has cap

{(
λk`, λ

′′

k`

)}
= m × dk` and cost cost

{(
λk`, λ

′′

k`

)}
= 0, so that

up to m × dk` units of flow can move directly from λk` to λ
′′

k` for free, without cost.

The indirect path is penalized as we would prefer to use it as little as possible. The
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edge
(
λk`, λ

′

k`

)
has infinite capacity, cap

{(
λk`, λ

′

k`

)}
= ∞, and severely penalized

cost of cost
{(
λk`, λ

′

k`

)}
= ΥK−k+1. The last leg of the triangle has infinite capacity

and zero cost, cap
{(
λ

′

k`, λ
′′

k`

)}
= ∞ and cost

{(
λ

′

k`, λ
′′

k`

)}
= 0. Notice that the

penalty for ν1 (·) is ΥK but this gradually declines to penalty Υ for νK (·). Because

the coarse, most important ν1 (·) is after the fine, less important νK (·), the penalties

in triangles increase from Υ for νK (·) to ΥK for ν1 (·) as we move from start to the

end of the network. Informally, this says that a one-patient imbalance in vk (·) is

worse than a one-patient imbalance in vk+1 (·).

The end λ
′′

k` of a triangle at level k is connected to the beginning λk−1,`′ of the

coarser category k − 1, `′ that contains category k`. This edge
(
λ

′′

k`, λk−1,`′

)
to a

coarsened category has infinite capacity and zero cost, cap
{(
λ

′′

k`, λk−1,`′

)}
=∞ and

cost
{(
λ

′′

k`, λk−1,`′

)}
= 0. Finally, there is an edge from λ

′′

1` to the sink ω for each `

with infinite capacity and zero cost, cap
{(
λ

′′

1`, ω
)}

=∞ and cost
{(
λ

′′

1`, ω
)}

= 0.

For each τt ∈ T , demand (τt) = −m. The sink has demand (ω) = m |T |. All other

nodes have demand (n) = 0. In words, each treated node issues m units of flow, all

nodes between the treated nodes and the sink pass on all the flow they receive, and

the sink ω collects all mT units of flow issued by the T treated units.

An important property of a feasible flow f in this network is that control node

κc ∈ C ⊂ N may receive either zero or one unit of flow, because 0 ≤ f (κc, λK`) ≤

cap {(κc, λK`)} = 1, and if f (κc, λK`) = 1 then there is only one possible sequence of

λ
′′

k`’s along which that unit of flow can pass to the sink ω. For brevity, the network

defined in this section will be called “the network (N , E),” omitting explicit reference

to the capacities, costs and demands that are also part of its definition.
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2.4.5 Main result: A minimum cost flow yields an optimal
refined match

Lemma 4 says that the match we seek exists if and only if the minimum cost flow

problem is feasible. Proofs are in Appendix A.1.

Lemma 4 There is a feasible flow f for the network (N , E) if and only if there is an

acceptable 1-to-m match M. In particular, M = {(τt, κc) ∈ A : f {(τt, κc)} = 1}.

Lemma 5 relates total cost to matching quantities, namely total covariate distance

within pairs,
∑

(τt,κc)∈M δtc, and the imbalance measures βk` in (2.1).

Lemma 5 Suppose there is a feasible flow f in (N , E), let the associated match be

M = {(τt, κc) ∈ A : f {(τt, κc)} = 1}, and let βk` be the imbalance measure (2.1) for

match M. Then the cost of this flow satisfies

∑
e∈E

f (e) cost (e) ≥
∑

(τt,κc)∈M

δtc +
K∑
k=1

ΥK−k+1

Lk∑
`=1

|βk`| /2. (2.3)

If f is a minimum cost feasible flow in (N , E), then (2.3) holds as an equality.

Theorem 6 says we may find the match in Definition 3 by solving a standard

combinatorial optimization problem. There is a finite value (see §2.4.6) of the penalty

Υ such that for that value and for all larger values, the resulting match satisfies the

constraint of refined balance and minimizes the total covariate distance subject to

that constraint.

Theorem 6 If there exists a feasible flow in (N , E), then for sufficiently large Υ, a

minimum cost flow in (N , E) yields an optimal refined acceptable 1-to-m match M

given by M = {(τt, κc) ∈ A : f {(τt, κc)} = 1}. If there exists no feasible flow in

(N , E), then there is no optimal refined acceptable 1-to-m match.
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2.4.6 Practical issues: deciding about Υ and m

Theorem 6 speaks of “sufficiently large Υ,” and in its proof Υ is very large, specifically

Υ > mTK +
∑

(τt,κc)∈A δtc. For stable computation, use a much smaller Υ, perhaps

Υ = 2 max(τt,κc)∈M δtc or smaller. Theorem 6 says that as Υ increases, eventually the

imbalances
∑L1

`=1 |β1`|, . . . ,
∑Lk

`=1 |βk`| are the best possible imbalances and further

increases in Υ do not change the imbalances, so it is reasonable to match a few times,

starting with a small Υ and gradually increasing it until the imbalances stop changing.

How many controls, m, should be matched to each treated unit? Match quality

decreases as m increases, so one might match m = 1 to 1, examine the resulting

average imbalances, (mT )−1
∑L1

`=1 |β1`|, . . . , (mT )−1
∑Lk

`=1 |βk`|, then match m = 2 to

1, and so on, stopping when the quality of the match is not acceptable.

2.4.7 Computation in sparse networks

Algorithms are standardly evaluated in terms of an upper bound on the rate of growth

of the number of arithmetic steps required to solve them as the size of the problem

increases (Cook et al. 1998, §1.2; Korte et al. 2008, §1.2). If steps =O
(
size3

)
then

the number of arithmetic steps required to solve a problem grows by at most a con-

stant multiple of the cube of the size of the problem. The point we want to make

in the current section is that: (i) the new surgeons problem, and more generally the

matching-within-natural-blocks problem, is sparse, with far fewer edges than typi-

cal matching problems, so (ii) vastly larger problems can be solved in these sparse

networks than can be solved in dense networks commonly appearing in statistical

matching problems, so (iii) we may balance covariates over an enormous number of

natural blocks.

The network (N , E) is dense if |E| = O
(
|N |2

)
and sparse if |E| = O (|N |).

Our network is sparse; see §2.4.1. One can solve the minimum cost flow problem
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in O (|E| log [|E| {|E|+ |N | log (|N |)}]) steps; see Korte and Vygen (2008, Theorem

9.17, p. 214). If |E| = |N |2, this is O
{
|N |2 log (|N |)

}
, whereas if |E| = |N | it is

O [|N | log {|N |}]. In §2.4.4, |N | > T + C = 130106 so |N |2 log (|N |) is much larger

than |N | log (|N |).

2.5 Do new and experienced surgeons differ?

2.5.1 Brief review of sensitivity analysis and attributable ef-
fects

There are I = 6260 pairs i = 1, . . . , I of two patients, j = 1, 2, matched for covariates,

xij, one treated with Zij = 1, the other control with Zij = 0, so Zi1 +Zi2 = 1. Write

Z for the event that Zi1 + Zi2 = 1 for each i. Subject ij would exhibit binary

response rT ij if treated with Zij = 1 or binary response rCij if control with Zij = 0,

so the observed response from ij is Rij = Zij rT ij +(1− Zij) rCij and the effect of the

treatment on ij, namely θij = rT ij − rCij, is not observed; see Neyman et al. (1923)

and Rubin (1974). Write θ = (θ11, θ12, . . . θI2) for the 2I-dimensional parameter and

write F = {(rT ij, rCij,xij) , i = 1, . . . , I, j = 1, 2}. In the current study, rT ij = 1

if ij would die within 30 days of surgery performed by the young surgeon in pair i,

rT ij = 0 otherwise, and rCij = 1 if ij would die within 30 days of surgery performed

by the experienced surgeon in pair i, rCij = 0 otherwise. Then (rT ij, rCij) = (1, 0) if

patient ij would die if surgery were performed by the young surgeon in pair i but not

if performed by the experienced surgeon in pair i. The notation refers to two specific

surgeons in pair i working at the same hospital.

If treatments are randomly assigned, then Pr (Zij = 1 | F , Z) = 1/2 with in-

dependent assignments in distinct pairs. The sensitivity analysis for nonrandom

treatment assignment permits measured deviations from random assignment, specifi-
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cally (1 + Γ)−1 ≤ Pr (Zij = 1 | F , Z) ≤ Γ/ (1 + Γ) for several Γ ≥ 1; see Rosenbaum

(2002a). A calculation in Rosenbaum and Silber (2009a) permits Γ to be interpreted

in terms of an unobserved covariate associated with treatment and outcome. In the

current paper, for a specified deviation from random assignment, Γ ≥ 1, the sensitiv-

ity analysis will yield an upper bound on the P -value testing some hypothesis about

treatment effects, so that, if that upper bound is at most α, then a bias of size Γ is too

small to lead to acceptance of the hypothesis at level α. A sensitivity analysis asks:

How much bias from nonrandom treatment assignment would need to be present to

alter the conclusions of a randomization test, that is, to accept a null hypothesis that

the randomization test has rejected?

Fisher’s (1935) hypothesis of no treatment effect says H0 : rT ij = rCij for all ij or

equivalently H0 : θ = 0. If H0 were false, an interesting quantity is the attributable

effect, A =
∑I

i=1

∑2
j=1 Zij (rT ij − rCij) =

∑I
i=1

∑2
j=1 Zij θij; it is the number of ad-

ditional deaths among patients of young surgeons (Zij = 1) that would not have

occurred had the experienced surgeon in the pair been picked to perform the surgery.

If H0 were true, then A = 0. If H0 were false, then A would be an integer val-

ued random variable. Of course, A is unobservable because θij = rT ij − rCij is

never observed; however, it is possible to draw inferences about A; see Rosenbaum

(2002a). This method uses a pivotal argument such that the observed number

of deaths among patients of new surgeons, namely
∑

ij ZijRij, minus the unknown

true value of A, is a random variable that satisfies the null hypothesis of no effect,∑
ij ZijRij − A =

∑
ij Zij rCij, so that, for example, in a randomized experiment∑

ij Zij rCij is a constant plus a binomial random variable, as in McNemar’s test. A

null hypothesis about A is rejected if the individual null hypotheses H0 : θ = θ0

compatible with this value of A are all rejected. The calculation involves a binomial

tail probability computed from a table of adjusted counts; see Rosenbaum (2002a, §6
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and Table 5).

2.5.2 Sensitivity analyses for three-sided tests

Perhaps new surgeons are less capable and cause excess surgical deaths, so that A > 0.

It is not inconceivable that new surgeons are more capable, having been more recently

trained, so A < 0. Recent training might be relevant to laparoscopy and related

techniques, in which a surgeon inserts a thin robotic surgical tool containing a camera,

and manipulates the tool remotely. So it is of interest to test no effect H0 against a

two-sided alternative.

Failure to reject H0 does not mean H0 is approximately true. Rather, we wish to

be assured that A is tolerably close to zero. For this, some form of equivalence test

is needed.

Building upon the work of Bauer and Kieser (1996), Goeman et al. (2010) proposed

a “three-sided test” for both difference and equivalence. It combines a two-sided test

of no effect with the two-one-sided test procedure for testing inequivalence, all tests

being done at the α-level, with no need of correction for multiple testing. Their

underlying idea is both simple and clever. Three mutually incompatible hypotheses

may be tested at level α without correction for multiple testing, because at most one

hypothesis is true, so the α-risk of falsely rejecting a true null hypothesis is incurred

at most once despite testing three null hypotheses. In brief, we may perform a two-

sided test of no effect to establish both an effect and its direction, and perform a

test of the null hypothesis of inequivalence to establish near equivalence, and do this

without adjustment for multiple testing.

For sensitivity analyses, one attraction of the three-sided test is that we may use

a standard method of sensitivity analysis three times, each time placing an upper

bound on the relevant P -value in the presence of a bias in treatment assignment of at
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most Γ ≥ 1 for several values of Γ. The standard method says: if the null hypothesis

is true and the bias in treatment assignment is at most Γ, then the chance that the

upper bound on the P -value exceeds α is at most α. Logically, because at most one

of the three null hypotheses is true, the standard method is either saying something

trivial if all three null hypotheses are false, or it is referring to the one true null

hypothesis despite our ignorance of the identity of that hypothesis. See Rosenbaum

and Silber (2009b) for related discussion.

Fisher’s H0 : θ = 0 is tested against a two sided alternative. The null hypothesis

of inequivalence in the direction of harm done by new surgeons is defined to be θ ≥ 0

(i.e., θij ≥ 0 for all ij) with A ≥ ι where ι > 0 is a standard of inequivalence. The null

hypothesis of inequivalence in the direction of benefit from new surgeons is defined

to be θ ≤ 0 with A ≤ −ι where again ι > 0. At most one hypothesis is true.

In the US in 2008, the annual mortality rate between age 75 and 76 was 3.95%;

see (Arias, 2012). Most people aged 75 in 2008 did not undergo surgery. A risk

associated with surgery in Medicare is small if it is small compared with the annual

risk faced by the Medicare population. For illustration, we consider two definitions of

inequivalence, ι, namely a quarter and a half of the annual mortality in the population

at age 75, that is ι = 62 = 6260× 0.039506/4 or ι = 124 = 6260× 0.039506/2 extra

deaths.

2.5.3 Mortality results

The overall 30-day mortality rate among the 2×6260 patients was 3.65%, made up of

3.59% for 6260 patients of experienced surgeons and 3.71% for 6260 patients of new

surgeons (see Table 2.3). So the mortality rates for new and experienced surgeons

look similar. The randomization test based on McNemar’s test has two-sided P -

value 0.7689, so the null hypothesis of no effect is plausible even in the absence of
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Table 2.3: Mortality in 6260 pairs of matched pairs of patients, one treated by a new
surgeon, the other by an experienced surgeon. The table counts pairs, not patients.

Experienced New Surgeon
Surgeon Dead Alive Total Percent

Dead 20 205 225 3.59%
Alive 212 5823 6035 96.41%
Total 232 6028 6260

Percent 3.70% 96.30% 100.00%

Table 2.4: Sensitivity analysis using the three-sided test of the null hypotheses of no
effect and substantial inequivalence with two definitions of inequivalence, ι = 62 and
ι = 124. The test of no effect is two-sided, but the equivalence tests are one-sided.
The table gives the upper bounds on the P -value for various magnitudes of bias Γ in
assignment of patients to surgeons.

No effect Definition of inequivalence
A = 0 A ≥ ι = 62 A ≥ ι = 124

Surgeon type that caused more deaths
Γ Equal Experienced New Experienced New

1.0 0.7689 0.0003 0.0033 0.0000 0.0000
1.1 1.0000 0.0065 0.0379 0.0000 0.0000
1.2 1.0000 0.0521 0.1804 0.0000 0.0000
1.3 1.0000 0.2017 0.4508 0.0000 0.0000
1.4 1.0000 0.4571 0.7276 0.0000 0.0003
1.5 1.0000 0.7147 0.9000 0.0002 0.0026
1.6 1.0000 0.8841 0.9721 0.0012 0.0131
1.7 1.0000 0.9628 0.9938 0.0061 0.0452

unmeasured biases. From §2.3.2, this comparison refers to pairs of surgeons working

at the same hospital, with identical distributions of operative procedures, and patients

with similar comorbid conditions.

Table 3.4 gives the sensitivity analysis. For Γ = 1, this is a three-sided random-

ization test, and in the third column of Table 3.4, the hypothesis that experienced

surgeons caused at least 62 extra deaths is rejected with P -value 0.0003, while in the

fourth column the hypothesis that new surgeons caused at least an extra 62 deaths is

rejected with P -value 0.0033. Biased assignment of patients to new or experienced

surgeons might mask a substantial difference in mortality, making it appear to be

no difference. In the fifth and sixth columns of Table 3.4, a bias of Γ = 1.7 is too

small to mask a difference of ι = 124 extra deaths in either direction. Using the
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calculation in Rosenbaum and Silber (2009a), a bias of Γ = 1.7 could be produced

by an unobserved covariate that more than tripled the odds of treatment by a young

surgeon and more than tripled the odds of death.

In short, in the example, there are three findings. There is no evidence that

mortality rates for new and experienced surgeons differ. A difference of 62 extra

deaths caused by either type of surgeon is rejected in a randomization test, but a

small bias of Γ = 1.2 could mask this difference, making it appear to be no difference.

A larger difference of 124 extra deaths is rejected unless the bias is larger than a

moderate Γ = 1.7, that is, the bias that could result from failing to match for an

unobserved covariate that tripled the odds of treatment by a young surgeon and

tripled the odds of death.

2.6 Discussion of other applications of the method-

ology

2.6.1 Nested nominal covariates in other applications

The priorities in Table 2.1 were based on the judgment of the surgeon on the research

team. Expert judgment is one good way to create and order ν1, . . . , vK . Are there

other ways?

Important covariates predict both treatment assignment and outcomes. Covari-

ates that predict treatment show up as important in propensity scores estimated

from the current data (Rosenbaum and Rubin, 1985), and covariates that predict

outcomes show up as important in prognostic or risk scores estimated from external

data (Hansen, 2008). The scores suggest covariates deserving priority for balancing,

with the distance δtc seeking close individual pairs on the scores. Traskin and Small
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(2011) approximate a propensity score using a regression tree, and such a tree creates

a hierarchy of nominal variables to serve as ν1, . . . , vK . Alternatively, a lasso fit

could prioritize the variables in either score.

A covariate that describes blocks or is constant for each block, such as hospital

group in Table 2.1, has a marginal distribution that is balanced simply by matching

within hospitals. However, including hospital group in Table 2.1 meant that its

interactions with 14 other covariates were also balanced. A subgroup analysis that

separately analyzed the two groups of pairs from the two types of hospitals would

exhibit covariate balance within each subgroup separately, an important consideration

for subgroup analyses.

2.6.2 Other sources of sparsity in optimal balanced matching

In the example, sparsity is created by the desire to match within natural blocks.

Sparsity also arises in other ways. If there were one or two important continuous

covariates, perhaps a propensity or risk score, then one might restrict the list of

potential controls for a given treated subject to the short list comprised of the nearest

c controls on those covariates. With fixed c, say c = 100, a sparse network is obtained.

Refined covariate balance in such a network would obtain pairs that are close on the

key covariates while balancing many nominal categories. As discussed by Zubizarreta

et al. (2014), a match that reduces the heterogeneity of matched pair differences in

outcomes, perhaps by matching closely for predictors of those outcomes, will both

increase the power of a randomization test of no effect and increase its insensitivity

to unmeasured biases.

With many nominal covariates, one might require exact matches for the most im-

portant nominal covariates, merely balancing the rest; then the short list of potential

controls is comprised of the exact matches for those most important nominal covari-
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ates. If the treatment is applied to everyone in a state or province, then one might

wish to match treated subjects near the state boundary to nearby controls just across

that boundary, and again this creates sparsity; see Keele et al. (2015) for one such

study.
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3
Constructed Second Control Groups and

Attenuation of Unmeasured Biases

3.1 Introduction: background; motivating exam-

ple

3.1.1 Is it advantageous to omit adjustments for some mea-
sured covariates?

In an observational study of treatment effects, treatments are not randomly assigned

to individuals, so treated and control groups are often visibly different in terms of

measured pretreatment covariates x, and may differ in terms of unmeasured covariates

u. Differing outcomes in treated and control groups after treatment may reflect the

lack of comparability of these groups before treatment, rather than an effect caused

by the treatment. It is common to adjust for the observed covariates x, perhaps by

matching individuals with the same x, and to examine the sensitivity of conclusions

to assumptions about unobserved covariates u.

It is sometimes argued informally that parts of x may be irrelevant, and that

there would be less bias from u if adjustments were not made for the parts of x that
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are irrelevant; see Brooks and Ohsfeldt (2013) and Ali et al. (2014) for two general

perspectives on this issue, and see Walker (2013) and Zubizarreta et al. (2012) for

discussion of a specific situations. The intuitive idea is that it is desirable that

something irrelevant decides treatment assignment — that is similar to what happens

in a randomized experiment — and if one removes every irrelevant aspect of treatment

assignment, one is left with biases from u deciding treatment assignment. Under what

circumstances does this line of reasoning have a rigorous basis?

3.1.2 Motivating example: Does smoking increase homocys-
teine levels?

To permit a tangible discussion, consider an interesting study by Bazzano et al. (2003)

concerned with the possibility that cigarette smoking causes an increase in homocys-

teine levels, a possible risk factor for cardiovascular disease. Bazzano et al. (2003)

compared smokers and nonsmokers in NHANES adjusting for certain covariates, x,

that might have a direct biological connection with homocysteine levels, such as age,

race and body mass index. They did not adjust for income and education, x̃, two co-

variates strongly related to smoking. In the US today, smoking is much less common

among more educated, higher income individuals than among less educated, lower

income individuals. Should one adjust for (x, x̃) jointly or is it better to adjust for

x alone? One might argue that income and education have no known direct biolog-

ical effect on homocysteine levels, so it makes sense to compare poor, less educated

smokers to wealthier, better educated nonsmokers, because then something irrelevant

has decided whether an individual smokes or not. Conversely, one might argue that

one should adjust for all of (x, x̃) because education and income are associated with

many aspects of daily life that could affect homocysteine levels, from exercise to diet

to the quality of health care. Our goal is to shed some light on this decision and
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related options for study design and analysis.

Figure 1 displays 1536 distinct individuals in I = 512 matched triples containing

one daily smoker and two nonsmokers from NHANES 2005-2006. Smokers smoked

every day for the last 30 days and reported smoking at least 10 cigarettes per day

(median = 20). Nonsmokers did not smoke at all in the last 30 days and had smoked

fewer than 100 cigarettes in their lives. All controls were matched to smokers for

biological covariates, x, including age, gender, race (black/other), (Hispanic/other),

and body mass index (BMI). Controls labeled M were also matched for two socioe-

conomic (SES) measures, x̃, namely education on a five point scale (with 1 meaning

< 9th grade, 3 meaning high school graduate, and 5 meaning at least a BA degree)

and income recorded as the ratio of income to the poverty level capped at 5 times

poverty. Controls labeled P were pushed apart in terms of x̃, that is, they had high

levels of education and income. Notably in Figure 1, the three groups are similar

in terms of biological covariates, the smokers and M-controls are similar in terms of

SES, and the P-controls have higher education and income than the smokers. There

is an obvious sense in which the M-controls are better than the P-controls: they are

similar to smokers in terms of SES. Is there any sense in which the P-controls are

better than the M-controls?

Section 3.2 reviews definitions and notation from existing literature. Section

3.3 considers the possibility that ignoring an irrelevant covariate x̃ attenuates bias

from an unmeasured covariate u, concluding that it is possible, but the assumptions

required are heroic and even then the magnitude of the attenuation is meaningful

but not large. Also discussed is the possibility that forcing separation on x̃ can

produce greater attenuation. Section §3.3.2 examines the relationship between an

irrelevant covariate x̃ and an instrumental variable that might be used with the Wald

estimator to estimate a complier-average-causal-effect (CACE). The remainder of the
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paper concerns the construction and analysis of two control groups, one controlling

for all of (x, x̃), the other controlling for x and allowing or forcing separation on x̃.

In particular, a form of simultaneous inference is proposed in which two sensitivity

analyses are conducted for the two control groups, but the power loss for the controls

matched for (x, x̃) is small, so the second analysis adjusted for x comes at little cost.

The example uses data from NHANES 2005-2006 to examine the effects of smoking

on homocysteine levels, in parallel with Bazzano et al. (2003) who used data from an

earlier NHANES.

3.2 Review of notation and definitions

3.2.1 Treatment assignments and treatment effects

There are L individuals ` = 1, . . . , L randomly sampled from an infinite population.

Individual ` is described by (rT`, rC`, Z`,x`, x̃`, u`), ` = 1, . . . , L, where (x`, x̃`) are

observed covariates, u` is an unobserved covariate, and individual ` exhibits response

rT` if assigned to treatment, denoted Z` = 1, or response rC` if assigned to control, de-

noted Z` = 0, so the observed response from individual ` is R` = Z` rT`+(1− Z`) rC`,

and the effect rT`− rC` caused by the treatment is not observed for any individual `;

see Neyman et al. (1923), Welch (1937) and Rubin (1974). Fisher’s (1935) sharp null

hypothesis of no treatment effect H0 asserts that rT` = rC` for all `. When referring

to probability distributions in the population, the subscript ` is omitted. Following

Dawid (1979), conditional independence of A and B given C is written A | | B
∣∣∣ C.

When does it suffice to adjust for covariates v in causal inference? When may a

portion of v safely be omitted from adjustments? We recall two definitions from the

literature.
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Definition 7 (Rosenbaum and Rubin, 1983). Treatment assignment Z is said to be

strongly ignorable given covariates v if

(rT , rC) | | Z
∣∣∣ v, and 0 < Pr (Z = 1 |v) < 1, for all v. (3.1)

For brevity and without further mention, the word ignorable is used in place

of the term “strongly ignorable.” If treatment assignment is ignorable given co-

variate v, and if v were observed, then one can estimate causal effects such as

E (rT − rC) or E (rT − rC |v) or the average effect of the treatment on the treated,

namely E (rT − rC |Z = 1), by adjusting for v, for instance by matching or stratifica-

tion; see Rosenbaum and Rubin (1983).

Definition 8 (Heller et al., 2010). Covariates v2 in v = (v1,v2) are said to be

innocuous given v1 if

(rT , rC) | | (Z, v2)
∣∣∣ v1. (3.2)

It is straightforward to show that if treatment assignment Z is ignorable given

v = (v1,v2) and if v2 is innocuous, then treatment assignment is also ignorable given

v1 alone. If v = (v1,v2) were a measured covariate, if treatment assignment Z

were ignorable given v = (v1,v2), and if v2 were innocuous given v1, then causal

parameters, such as E (rT − rC), could be consistently estimated adjusting for v1,

ignoring v2.

If (3.1) and (3.2) both hold, then causal inference need not include adjustments

for v2. Is there a benefit — not merely absence of harm — from not adjusting for v2?

Claims of benefit in the literature refer to a situation with an unobserved covariate

u that cannot be controlled by adjusting for observed covariates, whether (x, x̃) or

x. If treatment assignment were ignorable given v = (x, x̃, u) but not given (x, x̃)

or x, then causal effects could not be estimated by matching for (x, x̃) or x because
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u is not controlled. In this case, ask: Is it advantageous to ignore x̃ and adjust for x

alone? Informal discussions (e.g., Brooks and Ohsfeldt 2013; Ali et al. 2014) debate

the possibility that if an innocuous x̃ is left unmatched then it decreases the role that

u plays in determining treatment assignment, thereby reducing the bias created by

our inability to adjust for an unmeasured covariate u. Is this true in any formal

sense?

3.2.2 Quantifying the impact of an unobserved covariate on
treatment assignment

If x is some observed covariate, perhaps x = (x, x̃) or x = x, then one model for

sensitivity to unmeasured bias from u is expressed in terms of the potential influence of

u on the odds Pr (Z = 1 |x, u) / {1− Pr (Z = 1 |x, u)} of treatment; see Rosenbaum

(1987; 2002b, §4; 2007). This model quantifies bias in treatment assignment in terms

of how the propensity score might be different if it took account of the unobserved

u in addition to the observed x. Consider two subjects with treatment assignments

Z and Z ′ and unobserved covariates u and u′ but the same value of the observed

covariate, x = x′, so these two subjects might be matched when matching for x.

Then the odds ratio (for Z given x and u) or density ratio (for u given x and Z)

linking treatment Z and the unobserved covariate u for these two subjects is:

ω (x, u, u′) =

Pr (Z = 1 |x, u) Pr (Z ′ = 0 |x, u′)
Pr (Z = 0 |x, u) Pr (Z ′ = 1 |x, u′)

=
Pr (u |x, Z = 1) Pr (u′ |x, Z ′ = 0)

Pr (u |x, Z = 0) Pr (u′ |x, Z ′ = 1)
, (3.3)
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where the second equality follows from Bayes theorem. The sensitivity model says

that the impact of failing to control u is at most Γ ≥ 1 in the sense that

1

Γ
≤ ω (x, u, u′) ≤ Γ for all x, u, u′; (3.4)

that is, two subjects with the same x may differ in their odds of treatment by at most

a factor of Γ because they differ in terms of u. Because ω (x, u, u′) = 1/ω (x, u′, u),

equation (3.4) is actually redundant, and it is equivalent to write

ω (x, u, u′) ≤ Γ for all x, u, u′. (3.5)

Typically, one would match a treated subject to a control with the same x, so

Z+Z ′ = 1, but they might differ in terms of u 6= u′. Conditionally given Z+Z ′ = 1,

the probability of (Z,Z ′) = (1, 0) is

Pr (Z = 1 |x, u) Pr (Z ′ = 0 |x, u′)
Pr (Z = 1 |x, u) Pr (Z ′ = 0 |x, u′) + Pr (Z = 0 |x, u) Pr (Z ′ = 1 |x, u′)

=
ω (x, u, u′)

ω (x, u, u′) + 1
,

so that (3.4) or (3.5) implies % (x, u, u′) = Pr (Z = 1 |x, u, u′, Z + Z ′ = 1) is bounded

by

1

1 + Γ
≤ % (x, u, u′) ≤ Γ

1 + Γ
, for all x, u, u′. (3.6)

The one parameter Γ may be interpreted or amplified into an equivalent formula-

tion in terms of two parameters, Λ and ∆, where Λ controls the relationship between

treatment assignment Z and u, ∆ controls the relationship between response under

control rC and u, and one sensitivity analysis at Γ is exactly equivalent to an infinite

curve of sensitivity analyses with Γ = (Λ∆ + 1) / (Λ + ∆); see Rosenbaum and Silber
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(2009a) for a precise statement using the semiparametric model introduced by Wolfe

(1974). For instance, as 1.25 = (2× 2 + 1) / (2 + 2), it follows that Γ = 1.25 is

equivalent to an unobserved covariate that doubles the odds of treatment (Λ = 2)

and doubles the odds of a positive treated-minus-control response difference (∆ = 2).

In other words, one may calculate and report a one-dimensional sensitivity analysis

in terms of Γ but have available the interpretations of a two-dimensional sensitivity

analysis in terms of (Λ,∆).

3.3 When does ignoring an observed covariate at-

tenuate the association between treatment as-

signment and an unobserved covariate?

3.3.1 Prods to receive treatment

To prod is to “goad, stimulate [or] prompt,” according to the Oxford English Dictio-

nary.

Definition 9 The observed covariates x̃ are a prod to receive treatment given (x, u)

if

x̃ | | u
∣∣∣ x, and var {Pr (Z = 1 |x, x̃, u) | x, u} > 0, for all (x, u) . (3.7)

In (3.7), the condition x̃ | | u
∣∣∣ x says that, given x, there is no information in

x̃ about u. In other words, trying to remove some bias from the unobserved u by

adjusting for (x, x̃), rather than adjusting for x alone, is not going to work, because

x̃ is unrelated to u. The requirement in (3.7) that Pr (Z = 1 |x, x̃, u) varies with x̃

for fixed (x, u) says that, although x̃ is not informative about u, nonetheless x̃ does

vary with treatment assignment.
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Proposition 10 says that not matching for a prod x̃ strictly attenuates the rela-

tionship between treatment assignment Z and the unobserved covariate u, or in the

notation of §3.2.2 that ω (x, u, u′) is strictly closer to 1 than is ω {(x, x̃) , u, u′}.

Proposition 10 Let x̃ be a prod to receive treatment given (x, u). For any fixed x,

u, u′, if

1

Γ
≤ ω {(x, x̃) , u, u′} ≤ Γ for all x̃ with Γ > 1, (3.8)

then there exists an Υ with 1 ≤ Υ < Γ such that

1

Υ
≤ ω (x, u, u′) ≤ Υ. (3.9)

Proof. Following Freedman (2008, §9), define f : (0, 1) → (0,∞) by f (p) =

p/ (1− p), so that f (·) is strictly increasing and f−1 (v) = v/ (1 + v), and write

h (p) = f−1 {Γ f (p)}. Freedman shows that h (·) is strictly concave on its domain,

the open interval (0, 1). Now the second inequality in (3.8) implies

f {Pr (Z = 1 |x, x̃, u)} ≤ Γf {Pr (Z = 1 |x, x̃, u′)}

Pr (Z = 1 |x, x̃, u) ≤ h {Pr (Z = 1 |x, x̃, u′)} .

Using this and Jensen’s inequality (e.g., Lange 2003, Proposition 3.5.1, page 61) for

a strictly concave function yields

Pr (Z = 1 |x, u) =

∫
Pr (Z = 1 |x, x̃, u) Pr (x̃|x) dx̃ (3.10)

≤
∫

h {Pr (Z = 1 |x, x̃, u′)} Pr (x̃|x) dx̃

< h

{∫
Pr (Z = 1 |x, x̃, u′) Pr (x̃|x) dx̃

}
= h {Pr (Z = 1 |x, u′)} .
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Applying the increasing function f (·) to the first and last term in (3.10) yields

f {Pr (Z = 1 |x, u)} < Γf {Pr (Z = 1 |x, u′)} or equivalently ω (x, u, u′) < Γ. Using

instead the first inequality in (3.8) and ω {(x, x̃) , u′, u} = 1/ω {(x, x̃) , u, u′} ≤ Γ,

the same argument shows ω (x, u′, u) < Γ, and hence that ω (x, u, u′) = 1/ω (x, u′, u)

satisfies ω (x, u, u′) > 1/Γ. Defining Υ = max {ω (x, u, u′) , 1/ω (x, u, u′)} com-

pletes the proof.

A few technical comments about Proposition 10 follow. First, in the definition

of a prod, the requirement that var {Pr (Z = 1 |x, x̃, u) | x, u} > 0 in (3.7) is used

to obtain the strict inequality in (3.10) by way of Jensen’s inequality (e.g., Lange

2003, Proposition 3.5.1, page 61). Proposition 10 says there is strict attenuation,

Γ > Υ, for each x, u, u′; however, the degree of attenuation Υ in (3.9) generally

depends upon x, u, u′. As a consequence, if the sensitivity model (3.4) were true

with x = (x, x̃), then (3.8) would hold uniformly in x, x̃, u, u′, but this would not

imply that there exists one Υ < Γ such that (3.9) holds uniformly in x, u, u′. That

is, Proposition 10 shows there is strict attentuation at each x, u, u′, not that there is

uniformly strict attenuation. It is clear that if one focused on the subpopulation with

x̃ ∈ C for some subset C, then essentially the same proof shows there is attenuation

in every subpopulation defined by x̃.

Proposition 10 is of no use on its own. However, if treatment assignment were

ignorable given (x, x̃, u), if x̃ were innocuous given (x, u) and if x̃ were a prod to

receive treatment given (x, u), then: (i) it is suffices to focus attention on (x, u)

ignoring x̃, because adjustments for (x, u) would permit estimation of causal effects,

and (ii) it is also advantageous to focus attention on (x, u) ignoring x̃, because the

association between treatment assignment Z and u has been attenuated.

The heavy assumptions required to use Proposition 10 are consequential. Failing

to adjust for x̃ could increase the bias for either or both of two reasons: (i) if treatment
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assignment were ignorable given (x, x̃, u) but not given (x, u), then adjusting for x̃

may reduce bias from x̃, (ii) even if x̃ itself seems to have no direct relevance, adjusting

for x̃ might possibly reduce bias from u to the extent that x̃ and u are associated and

the left side of (3.7) fails to hold.

Because Proposition 10 is of no use on its own, its actual usefulness is a matter

of speculation. The additional assumptions that would make Proposition 10 useful

are stringent assumptions about an unobserved covariate, and any investigator who

makes these assumptions can expect an argument from skeptics. Rather than argue

for or against the additional assumptions that would make Proposition 10 useful, we

suggest conducting two analyses, one with and the other without these assumptions.

A simple version of this has two control groups, one matched to treated subjects for

(x, x̃), the other matched for x alone. Heller et al. (2010) observe that if treatment

assignment were ignorable given (x, x̃) and if x̃ were innocuous given x, then these two

comparisons of treated subjects to these two matched control groups would estimate

the same parameter, the average effect of the treatment on the treated, so contrasting

these two estimates provides a test of these two assumptions. In contrast, Proposition

11 in §3.6 frames the discussion of these two control groups when they may both be

affected by bias from an unmeasured covariate u.

3.3.2 Is a prod an instrument?

So far, §3.3 has considered the possibility of comparing outcomes R in treated, Z = 1,

and control, Z = 0, groups without adjustment for a covariate x̃ that meets certain

additional, fairly speculative, conditions required of a prod. As noted in §3.1.1,

this possibility has been discussed in several recent articles concerned with health

outcomes research, including Brooks and Ohsfeldt (2013), Ali et al. (2014), Walker

(2013), and citetzubizarreta2012contrasting. The method we propose in §3.5 takes
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the analysis adjusting for (x, x̃) as the primary analysis, then adds at negligible cost

in power a secondary analysis adjusting for x but not for x̃, while controlling the

familywise error rate in these two analyses, and making use of controls who might

otherwise have been discarded. Could one, instead, view x̃ as an instrument or

instrumental variable? Viewing x̃ as an instrument might suggest a different analysis,

say the Wald estimator or two-stage least squares, aimed at estimating the so-called

“complier-average causal effect” or CACE.

By definition in the Neyman-Rubin framework, a covariate is a variable whose

value is determined prior to treatment assignment Z and hence unaffected by which

treatment an individual ultimately receives; that is, a covariate has single version

that is the same whether or not Z = 1 or Z = 0, like x or x̃ and unlike R or Z. In

this framework, an instrument (recorded in an instrumental variable) is a very special

kind of treatment that encourages an experimental subject to take a second treatment

over which the experimentor lacks direct control, but the encouragement-treatment

affects outcomes only to the extent that it alters acceptance of the second treatment;

see Angrist, Imbens and Rubin (1996), Hirano et al. (2000) and Holland (1988). The

CACE is the average effect of the second treatment on subjects who would respond

to the encouragement treatment by changing their adoption of the second treatment,

and Angrist et al. (1996) show that the CACE is the estimand of the Wald estimator.

For instance, the Vietnam War draft lottery randomly selected people for the draft, a

treatment that “encouraged” some people to serve in the military, though many men

served without being drafted and others found ways to dodge the draft; see Angrist

et al. (1996). For the draft lottery, the CACE is the average effect of military service

on the subset of men who would serve in the military only if drafted.

A substantial literature consistent with the Neyman-Rubin framework cautions

against adjusting for certain variables that, unlike x̃, are not covariates. In par-
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ticular,Rosenbaum (1984, 2015b) cautions against adjusting for other outcomes of

treatment, noting that such an adjustment can create a bias that would otherwise be

absent. Several authors wisely advise against adjusting for instruments, such as the

draft lottery used as an instrument for military service; see, for instance, Wooldridge

(2009), Myers et al. (2011), Pearl (2010, 2011), and Bhattacharya and Vogt (2012).

In §3.1.2 and §3.6.2, x̃ describes income and education. In the context of

NHANES, income and education are plausible covariates for smoking. In particu-

lar, we have a clear idea about what it means to be poor and uneducated, and we

have no difficulty imagining a person of any fixed income or education choosing to

smoke or not smoke. If treatment assignment were ignorable given (x, x̃) and if x̃

were innocuous given x, then the two matched comparisons of the treated group to

each of the two control groups would estimate the same parameter, namely the aver-

age effect of the treatment on the treated. Although smoking is, in 2015, relatively

uncommon among individuals with relatively high income and education, it would

be quite a stretch to regard income and education as “treatments” that discourage

smoking. For income and education to be instruments, the estimand in instrumental

variables estimation, the CACE, would then be the average effect of smoking on peo-

ple who would change their smoking behavior in response to a substantial change in

income and education, a nebulous estimand at best. Within the view of instruments

proposed by Angrist et al. (1996), it is not easy to think of income and education as

instruments, so within that view, a prod — a type of covariate — is not an instrument

— a type of treatment. An older view of instruments defines them in a context-free

manner purely in terms of conditional independence or moment conditions. Within

this older view, instruments of the type studied by Angrist et al. (1996) and prods

might be viewed as two nonoverlapping subsets. A general principle is that an es-

timand should be clear and intelligible before an investigator sets out to estimate
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it. Our sense is that the CACE fails that principle for income and education in the

NHANES example in §3.1.2 and §3.6.2. We do not regard the Wald estimator or

two-stage least squares as options in this example.

3.4 The magnitude of the attenuation: direct cal-

culation under a simple model

Proposition 10 says that not adjusting for a prod x̃ attenuates the bias in (3.8)

because the inequality in (3.9) is strict. How large is this attenuation? For fixed

(u, u′), how much closer to 1 is ω (x, u, u′) than ω{(x, x̃) , u, u′}? As in §3.3, Bayes

theorem permits us to think about the answer in terms of the imbalance in u in

treated, Z = 1, and control, Z = 0, groups. Table 3.1 provides an answer to how

large the attenuation is in a simple case in which there is no x, x̃ is a scalar prod with

x̃ ∼ N (0, σ2) for σ = 1/2 or 1, and treatment assignment probabilities follow a logit

model, logit {Pr(Z = 1|x̃, u)} = α + x̃ + γu, so that for u = 0 and u′ = 1, condition

(3.8) holds with equality as Γ = exp (γ) = ω(x̃, u, u′). Under this model, for fixed

u and u′, the odds of treatment are exp (2σ) times greater when x̃ is one standard

deviation above its mean than when it is one standard deviation below its mean, or

exp (2σ) = 2.71 for σ = 1/2 and exp (2σ) = 7.39 for σ = 1, so for both values of

σ the prod x̃ substantially alters the treatment assignment probabilities. Table 3.1

displays the attenuated ω (x, u, u′) with u = 0 and u′ = 1, obtained by evaluating

(3.10) by numerical integration. For example, for α = −1, for σ = 1/2, a moderate

bias of Γ = exp (γ) = 1.5 attenuates to 1.47, whereas for σ = 1 a large bias of Γ = 5

attenuates to 3.81. The impression from the simple example in Table 3.1 is that: (i)

a prod x̃ must substantially affect the treatment assignment probabilities to produce

substantial attenuation, and (ii) even when there is substantial attenuation, the bias
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that remains is far from small.

3.5 Two control groups: controlling for (x, x̃) or x

3.5.1 Using two control groups

Proposition 10 reaches an attractive conclusion — a reduction in unmeasured biases

in (3.9) — on the basis of heroic assumptions in (3.2) with v1 = (x, u) and v2 = x̃

and (3.7) — the strong influence but total irrelevance of the prod x̃. In many

applications, investigators will be understandably reluctant to rely on such strong

assumptions to achieve the modest level of attenuation seen in Table 3.1. There is,

however, a practical way to use Proposition 10 to see a little more in observational

data without committing to the strong assumptions in Proposition 10, that is, a way

to have it both ways.

The possibility of using two control groups subject to different biases is much

discussed in the literature on observational studies; see, for instance, Campbell (1969),

Rosenbaum et al. (1987); Rosenbaum (2015a), Meyer (1995), Shadish et al. (2002),

Stuart and Rubin (2008), West et al. (2008), Heller et al. (2010) and Lu et al. (2011).

Typically, these two control groups are found rather than constructed; that is, the

groups existed as groups before the investigation began.

With varied motivations, several recent studies have used the computer to con-

struct two control groups, one matched for (x, x̃), the other match only for x; see

Daniel et al. (2008), Heller et al. (2010), and Silber et al. (2012, 2013). These two

control groups may be nonoverlapping, perhaps constructed using the tapered match-

ing algorithm of Daniel et al. (2008), or they may share controls. Matched control

groups that share controls may be compared to each other using a device known as
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the exterior match; see Rosenbaum and Silber (2013). Matching ensures that x has

the same distribution in the treated group and both control groups, a helpful fact if

the magnitude of the treatment effect varies with x; however, at the risk of losing this

desirable property, one could alternatively adjust for (x, x̃) or x using some form of

covariance adjustment.

Suppose that two control groups are formed, perhaps overlapping, perhaps not,

one matched for (x, x̃), the other just for x̃. In the context of Proposition 10, if there

are benefits to not matching for x̃, then we see such an analysis, but if the strong

assumptions in Definitions 8 and 9 are false or doubtful, then we see an analysis that

does not depend upon these assumptions. Moreover, we are able to compare these

two analyses.

Strict use of Proposition 10 would perform two unrelated and therefore typically

overlapping matches, one for x alone, the other for (x, x̃). In this strict use, each

match does not alter the other match: the match for (x, x̃) does not alter the dis-

tribution of x̃ in the match for x alone, so Proposition 10 speaks directly to the

consequences of leaving x̃ unmatched. An alternative approach inspired by Proposi-

tion 10 but only informally linked to it would force the two matches to use different

controls, thereby typically using more controls, with better matches for (x, x̃) going

to the match that controls (x, x̃) and worse matches for (x, x̃) going to the match for

x alone, as happens in tapered matching (Daniel et al., 2008). Because this alterna-

tive approach forces the two matched control groups to be nonoverlapping, the two

control groups compete for controls, so there is some distortion of the distribution of

the unmatched prod x̃. Another alternative also inspired by Proposition 10 but even

more informally linked to it would force the two matches to use different controls and

additionally force the controls matched for x alone to differ from the treated group

in terms of x̃. The goal in this second alternative is to achieve greater attenuation
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of bias from u by picking controls precisely because the prod x̃ pushed them into the

control group; see §3.5.2.

As noted previously, the attenuation result in Proposition 10 holds whether or

not x̃ is innocuous, but attenuation is useful in an observational study only if x̃ is

innocuous given (x, u) in the sense of Definition 8, for otherwise the attenuation of

bias from u may be more than offset by bias from failure to control x̃. In the current

paragraph, assume treatment assignment is ignorable given (x, x̃′, u). Were it true

that x̃ is innocuous given (x, u), then

Pr (rT , rC | x, u) = Pr (rT , rC | x, x̃, u)

= Pr (rT , rC | Z = z, x, x̃, u) = Pr (rT , rC | Z = z, x, x̃′, u) for all x̃, x̃′. (3.11)

We observe treated response distributions from treated subjects, say Pr (R | Z = 1, x) =

Pr (rT | Z = 1, x) or Pr (R | Z = 1, x, x̃) = Pr (rT | Z = 1, x, x̃), and control re-

sponse distributions from control subjects, say Pr (R | Z = 0, x) = Pr (rC | Z = 0, x),

or Pr (R | Z = 0, x, x̃) = Pr (rC | Z = 0, x, x̃). Treated response distributions may

differ from control response distributions either because of a treatment effect or

because of a bias. In contrast, if we compare two control response distributions,

say Pr (rC | Z = 0, x) versus Pr (rC | Z = 0, x, x̃), for controls matched to the same

treated subject, then these differ when (3.11) holds only because of bias from the

failure to control the unobserved covariate u. This is true of all three matches in

the previous paragraph when (3.11) holds, and forcing x̃ to differ in the third match

may provide a greater opportunity to check whether or not Pr (rC | Z = 0, x) and

Pr (rC | Z = 0, x, x̃) differ. If Pr (rC | Z = 0, x) and Pr (rC | Z = 0, x, x̃) do differ,

then this can indicate bias from u or it can indicate that x̃ is not innocuous given

(x, u) or both (so (3.11) does not hold), but it surely indicates that at least one control
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group cannot be trusted.

3.5.2 Attenuation with forced separation

The magnitude of attenuation is now considered under a simple method for forcing

separation on a prod, so treated and control groups are further apart on the prod than

they would be if the prod were left unmatched. In brief summary, forcing separation

increases attentuation when the initial bias is large, but the attenuated bias that

remains is still large, even when treated and control groups are widely separated on

the prod, as in the example in Figure 1. The logit-model formulation used here is

similar to §4 except treated units are matched to controls whose prod x̃ is less than or

equal to cσ for some cutoff c. The smaller c is for a given σ, the greater the separation

on the prod. By analogy with (3.3), we use Bayes theorem and measure attenuation

by comparing odds ratios of u = 1 versus u = 0 in treated, Z = 1, and control, Z = 0,

groups. Here we consider α = −1 so that there are more control units than treated

units, which is needed for matching to ensure separation on a prod; the results (not

shown) were similar for α = 0 and α = 1. Table 3.2 shows the attenuation for different

values c. The top half of Table 3.2 can be compared to the first line of Table 3.1 and

the second half of Table 3.2 can be compared to the fourth line of Table 3.1. In Table

3.2 matching to ensure separation on a prod creates greater attenuation than leaving

the prod unmatched. The differences are fairly small for moderate Γ: for Γ = 1.5

and σ = 1/2, even for c = −1, ensuring separation on the prod only increased the

attenuation from 1.47 to 1.39. The differences are more substantial for larger Γ, e.g.,

for Γ = 10 and σ = 1/2, for c = −1, ensuring separation on the prod increases the

attenuation from 8.88 to 6.42. Table 3.3 shows how much separation on the prod is

created by matching to ensure separation on the prod for different values of c. The

table reports the standardized difference on the prod when matching treated units to
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Table 3.1: Degree of attenuation of bias Γ by not matching for a Normally distributed
prod x̃ with expectation 0 and standard deviation σ.

Γ
σ α 1 1.5 2 3 4 5 10

1/2 −1 1.00 1.47 1.93 2.83 3.71 4.59 8.88
1/2 0 1.00 1.47 1.93 2.83 3.73 4.63 9.07
1/2 1 1.00 1.47 1.94 2.88 3.82 4.75 9.41
1 −1 1.00 1.40 1.78 2.49 3.16 3.81 6.82
1 0 1.00 1.40 1.78 2.50 3.19 3.86 7.11
1 1 1.00 1.41 1.81 2.58 3.34 4.08 7.75

Table 3.2: Degree of attenuation of bias Γ by matching treated units to control
units with prod ≤ cσ for a normally distributed prod with expectation 0 and stan-
dard deviation σ, where the treatment assignment probabilities follow a logit model
log{Pr(Z = 1|x̃, u)/Pr(Z = 0|x̃, u)} = α+ x̃+ γu with α = −1 and Γ = exp(γ). The
attenuation is measured by the odds ratio linking u and the group.

Γ
σ c 1 1.5 2 3 4 5 10

1/2 -1 1.00 1.39 1.77 2.40 3.07 3.62 6.42
1/2 0 1.00 1.44 1.83 2.61 3.33 4.09 7.58
1/2 1 1.00 1.45 1.88 2.74 3.60 4.43 8.48
1 -1 1.00 1.30 1.54 1.99 2.35 2.67 4.14
1 0 1.00 1.36 1.66 2.20 2.73 3.22 5.42
1 1 1.00 1.38 1.74 2.42 3.04 3.68 6.49

control units with prod ≤ cσ. For σ = 1/2, the standardized difference ranges from

about 1.8− 1.9 (depending on Γ) with c = −1 to 0.6− 0.7 with c = 1.

3.5.3 An algorithm for matching to ensure separation on a
prod

We now introduce an algorithm to create matches that exhibit balance on x and force

separation on x̃. The algorithm produced the match in Figure 1. This new algorithm

slightly extends the balanced optimal matching technique of Pimentel et al. (2015);

see Hansen and Klopfer (2006) and Stuart (2010) for other discussions of matching

algorithms in observational studies. That approach used penalized network flows

to select controls with a covariate distribution as similar as possible to the treated

group for large numbers of nominal covariates and their interactions. The extension
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Table 3.3: Standardized difference on the prod x̃ when matching treated units
to control units with prod ≤ cσ for a normally distributed prod with expec-
tation 0 and standard deviation σ, where the treatment assignment probabili-
ties follow a logit model log{ω̃(x̄, x̃, u)} = α + x̃ + γu, with α = −1 and
Γ = exp(γ). The standardized difference is {E(x̃|Z = 1)− E(x̃|Z = 0, x̃ ≤ cσ)} ·{√

1
2

[V ar(x̃|Z = 1) + V ar(x̃|Z = 0)]
}−1

.

Γ
σ c 1 1.5 2 3 4 5 10

1/2 -1 1.93 1.91 1.89 1.86 1.83 1.81 1.75
1/2 0 1.21 1.19 1.16 1.14 1.12 1.10 1.05
1/2 1 0.72 0.71 0.70 0.68 0.65 0.63 0.58
1 -1 2.31 2.28 2.24 2.19 2.15 2.11 2.00
1 0 1.56 1.53 1.50 1.45 1.41 1.39 1.30
1 1 1.09 1.07 1.05 1.01 0.98 0.96 0.87

proposed here selects controls to be similar to treated subjects in some ways and

as different as possible in others. The original algorithm has a target distribution

for the covariates in the control group, and the extension simply changes the target

distribution. In the example, this means that controls should resemble the treated

group in terms of biological quantities, age, gender, BMI, but should be as high as

possible in terms of education and income. A precise description is given in Appendix

??. To create separation on a prod x̃ while balancing x, we first define a new covariate

η(x̃i) =

 1 if x̃i ∈ X

0 otherwise

where X is a set of desired values for the prod. The target distribution for controls

has the same distribution of xi as the treated group and has η(x̃i) = 1. Running the

algorithm for this target group and with balance constraints on x and η(x̃) selects a

control group with a distribution of x very similar to that in the treated population,

but also ensures that as many of the controls as possible are chosen with x̃ values in

the region X , thereby creating separation on the prod.

56



3.6 Inference with and without a prod

3.6.1 Sensitivity analysis with two control groups controlling
the familywise error rate

Figure 2 shows homocysteine levels in blood plasma for the I = 512 matched triples in

Figure 1; see §3.1.2. The current section is concerned with the simultaneous analysis

of prodded and unprodded match sets of the type displayed in Figure 2.

Define the null hypothesis H ′Γ to be the conjunction of (i) Fisher’s hypothesis of

no effect, H0, (ii) treatment assignment Z is ignorable given v = (x, x̃, u) and (iii) a

bias in treatment assignment from u of at most Γ ≥ 1 in pairs of individuals matched

for (x, x̃), so that (3.8) holds for all x, x̃, u, u′. Define the null hypothesis H∗Υ to be

the conjunction of (i) Fisher’s hypothesis of no effect, H0, (ii) treatment assignment

Z is ignorable given v = (x, x̃, u), (iv) x̃ is innocuous given (x, u), (v) a bias in

treatment assignment from u of at most Υ ≥ 1 in pairs of individuals matched for x,

so that (3.9) holds for all x, u, u′. Obviously, rejecting H ′Γ or H∗Υ leaves open whether

Fisher’s H0 is false or whether the additional assumptions are false. Notably, H ′Γ

and H∗Υ share (i) and (ii) but H ′Γ adds (iii) while H∗Υ omits (iii) and adds (iv) and

(v), although all of assumptions (i)-(v) could be jointly true. The data used to test

H ′Γ and H∗Υ are dependent because the same treated subjects are used in both tests,

as in Figure 2, and also if the control groups are allowed to overlap or share some

controls, as is not true in Figure 2.

If H ′Γ or H∗Υ were both true, then Proposition 10 would lead us to anticipate

modest attenuation of unmeasured biases. That is, Proposition 10 leads us to be

interested in testing pairs (H ′Γ, H
∗
Υ) with Υ modestly smaller than Γ, perhaps Υ = ωΓ

for ω = 0.9, or 10% smaller based on Table 2.

We propose to use a multiple testing procedure to conduct two sensitivity analyses,
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one for H ′Γ and one for H∗Υ, correcting for multiple testing using the recycling method

of Burman et al. (2009). The recycling procedure strongly controls the familywise

error rate. Let 0 < α′ ≤ α < 1 be two fixed numbers, conventionally α = 0.05. Fix

(Γ,Υ), say (Γ,Υ) = (Γ, ωΓ), and compute the two upper bounds on P -values, say

p
′
Γ,max and p∗Υ,max, from separate sensitivity analyses for H ′Γ and H∗Υ, respectively. In

the example, the method in Rosenbaum (2007) yields p
′
Γ,max and p∗Υ,max using the R

package sensitivitymw. The recycling steps are:

Recycling procedure:

1. Test H ′Γ: Reject H ′Γ at level α in the presence of a bias of at most Γ if p
′
Γ,max ≤ α′.

2. Test H∗Υ: If H ′Γ was rejected in step 1, then reject H∗Υ at level α in the presence

of a bias of at most Υ if p∗Υ,max ≤ α. Otherwise, if H ′Γ was not rejected in step 1,

then reject H∗Υ at level α in the presence of a bias of at most Υ if p∗Υ,max ≤ α−α′.

3. Recycle to retest H ′Γ: If H ′Γ was not rejected in step 1 but H∗Υ was rejected

in step 2, then reject H ′Γ at level α in the presence of a bias of at most Γ if

p
′
Γ,max ≤ α.

For a fixed (Γ,Υ) with α′ = α/2, then this recycling procedure is easily seen to

be equivalent to the standard version of Holm’s (1979) procedure, and if 0 < α′ < α,

then it is equivalent to Holm’s (1979) weighted procedure with w′ = α′/α and w∗ =

(α− α′) /α. These equivalences are seen by considering the four possible outcomes

of steps 1-3. As noted by Benjamini and Hochberg (1997, p. 411), the weighted

Holm procedure is superior to another weighting scheme with two hypotheses, as

here. Taking α′ = α is fixed sequence testing, so rejection of H∗Υ can occur only if

H ′Γ is rejected in step 1, and step 3 is redundant. So in our case with two hypotheses,

the recycling procedure reduces to one of two other methods, but is attractive in

58



unifying them. To reject both H ′Γ and H∗Υ is to have max
(
p
′
Γ,max, p

∗
Υ,max

)
≤ α

as for intersection-union testing (Berger, 1982; Laska and Meisner, 1989); however,

intersection-union testing could reject when recycling does not if α′ < α, and recycling

could reject just one hypothesis, either H ′Γ and H∗Υ, which intersection-union testing

cannot.

Conventionally, α = 0.05. How should α′ be chosen? If an analysis that controlled

x but not x̃ would be implausible if it disagreed with an analysis that controls (x, x̃),

then α′ should be close to α, perhaps α′ ∈ [0.8α, α]. Arguably this is the case with x̃

recording income and education in the smoking example, so we take α′ = 0.04 < α =

0.05, but taking α′ = α = 0.05 would be reasonable also. In this way, little power

is lost in the analysis that adjusts for (x, x̃), yet both analyses are considered with

strong control for testing two null hypotheses.

The discussion above considered a single fixed (Γ,Υ). In fact, we consider not

a fixed (Γ,Υ) but rather a sequence (Γ,Υ) = {Γn, max (1, ωΓn)}, n = 1, 2, . . ., with

Γ1 = 1 and Γn →∞ as n→∞, where ω > 0 is fixed. In practice, reasonable values

of ω are ω = 0.9, hoping for modest attenuation, or ω = 1, preferring to handle the

two control groups symmetrically. At step n, a total of 2n hypotheses have been

tested using the recycling procedure.

Proposition 11 For fixed ω > 0, apply the recycling procedure to

(Γn,Υn) = {Γn, max (1, ωΓn)} for n = 1, 2, . . . .

The chance of falsely rejecting at least one true hypothesis, H ′Γn
or H∗Υn

, n = 1, 2,

. . . ., is at most α.

Proof. Recall that p
′
Γ,max is a valid P -value for testing H ′Γ alone and p

′
Γ,max increases

with Γ, whereas p∗Υ,max is a valid P -value for testing H∗Υ alone and p∗Υ,max increases
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with Υ. Also, the recycling procedure controls the familywise error when testing

both H ′Γ and H∗Υ with any one fixed (Γ,Υ). Let Γ = inf
{

Γn : H ′Γn
is true

}
and

Υ = inf
{

Υn : H∗Υn
is true

}
, where Γ =∞ and Υ =∞ are possible values. To avoid

a separate discussion of the infinite cases, define p
′
∞,max = p∗∞,max = 1. By definition of

the hypotheses earlier in this section, H ′Γn
is true for all Γn ≥ Γ and H∗Υn

is true for all

Υn ≥ Υ. Hence, the smallest p
′
Γn,max for a true H ′Γn

is p
′

Γ,max
and the smallest p∗Υn,max

for a true H∗Υn
is p∗

Υ,max
. We consider cases. If Γ = Υ =∞, then there is nothing to

prove, because no true hypothesis is tested. If Υ = ωΓ <∞, then to reject any true

hypothesis, one must have
(
p
′

Γ,max
≤ α′

)
∨
(
p∗

Υ,max
≤ α− α′

)
and the chance of this is

as most α. If Υ < ωΓ, then a false rejection for (Γn,Υn) with Γn < Γ and Υ ≤ Υn <

ωΓ requires rejection of the true H∗
Υ

with p∗
Υ,max

≤ α which occurs with probability

at most α, whereas false rejection for (Γn,Υn) with Γ ≥ Γ and Υ ≥ ωΓ requires(
p
′
Γn,max ≤ α′

)
∨
(
p∗Υn,max ≤ α− α′

)
, which implies

(
p
′

Γ,max
≤ α′

)
∨
(
p∗

Υ,max
≤ α− α′

)
which has probability at most α. The case Υ > ωΓ is analogous.

3.6.2 Example: Using wealthy, educated nonsmokers as a
second control group

For the data in §3.1.2, Figure 2 compares homocysteine levels among smokers to

two control groups, one (M) matched to controls for all measured covariates, the

other (P) separated from the smokers on the prod x̃ of education and income; see,

again, Figure 1 for the difference in education and income among these groups. The

smokers in Figure 2 appear to have somewhat higher homocysteine levels than both

control groups, whereas control groups M and P appear similar. We now conduct a

sensitivity analysis using the procedure in §3.6.

With I treatment-control matched pairs, Maritz (1979) used the null random-

ization distribution of Huber’s one-sample M -statistic T =
∑I

i=1 ψ (Yi/s) to test
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Fisher’s null hypothesis of no effect, where Yi is a treated-minus-control matched

pair difference in responses R, s is the median |Yi|, and ψ (·) is an odd function,

ψ (y) = −ψ (−y). Taking ψt (y) = y makes T into a constant multiple of the sample

mean, and then Maritz’s method is equivalent to the randomization distribution of

the mean, that is, the permutational t-test; see Pitman (1937) and Welch (1937).

Huber’s ψhu (·) has ψhu (y) = sign (y) ·min (|y| , κ) for some κ > 0, where sign (y) = 1,

0, −1 as y > 0, y = 0, y < 0, so ψhu (·) has the same influence function as a trimmed

mean. A sensitivity analysis for T when used in observational studies was proposed in

Rosenbaum (2007), its power and large sample properties in sensitivity analysis with

various choices of ψ (·) were examined in Rosenbaum (2013), and the method was im-

plemented in the sensitivitymv and sensitivitymw packages in R; see Rosenbaum

(2015c). In particular, taking ψin (y) = {κ/ (κ− ι)}·sign (y)·max {0,min (|y| , κ)− ι}

for some κ > ι ≥ 0 entails inner trimming and means ψin (y) is zero for |y| ∈ [0, ι], is

sign (y) ·κ for |y| ≥ κ, and rises linearly from 0 to κ on [ι, κ]. For many distributions

of Yi, the M -statistic T =
∑I

i=1 ψin (Yi/s) reports greater insensitivity to unmeasured

biases than does ψhu (·). Here, we set κ = 2 and ι = 1/2; see Rosenbaum (2013,

Table 3) and method="p" in the senmw function of the sensitivitymw package in R.

Table 3.4 performs a sensitivity analysis with (Γ,Υ) = (Γ, 0.9× Γ) for an increas-

ing sequence of values of Γ, as discussed in §3.6.1, reporting the upper bounds, p
′
Γ,max

and p∗Υ,max, on the marginal P -values testing H ′Γ and H∗Υ, respectively. Table 3.4

does not control for testing two hypotheses. Using the method in §3.6.1 to con-

trol for testing two hypotheses and testing in a fixed sequence with α = α′ = 0.05

leads to rejection of H ′Γ and H∗Υ for (Γ,Υ) = (1.640, 1.476), and no rejections at

(Γ,Υ) = (1.650, 1.485). Recycling with α = 0.05 and α′ = 0.04 rejects H ′Γ and H∗Υ

for (Γ,Υ) = (1.640, 1.476), tests H ′Γ at the 0.05 level for Γ = 1.650 but fails to reject,

and barely rejects H∗Υ for Υ = 1.575. To put this in context, Γ = 5/3 = 1.667 cor-
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Table 3.4: Sensitivity analysis in the example with two control groups, one matched
(M) for x̃ with sensitivity parameter Γ, the other using x̃ as a prod (P) with sensitivity
parameter Υ = 0.9 × Γ. The tabled values are upper bounds on marginal P -values
using M -statistics with inner trimming, ψin with ι = 0.5, κ = 2.

Sensitivity parameters
Γ 1.000 1.250 1.500 1.600 1.640 1.650 1.750
Υ = 0.9× Γ 1.000 1.125 1.350 1.440 1.476 1.485 1.575

Upper bounds on P -values testing no effect
M-controls (p′Γ,max) 0.000 0.000 0.009 0.031 0.047 0.051 0.119

P-controls (p∗Υ,max) 0.000 0.000 0.000 0.001 0.002 0.002 0.009

responds with an unobserved covariate that triples the odds of treatment and triples

the odds of a positive pair difference in outcomes, while Γ = 1.5 corresponds with

an unobserved covariate that doubles the odds of treatment and doubles the odds

of positive pair difference in outcomes; see Rosenbaum and Silber (2009a) and the

amplify function in the sensitivitymv package in R.

If, as may be, it is important to adjust for socioeconomic factors x̃, then Table 3.4

does this, finding that the results are not sensitive to small unmeasured biases. If, as

may be, socioeconomic factors introduce a biologically irrelevant source of variation

in smoking behavior, so that comparing people differing in x̃ attenuates bias from

unmeasured covariates u, then Table 3.4 does this also, finding again that the results

are not sensitive to small unmeasured biases. Whether you compare people with the

same or different education and income, smokers tend to have higher homocysteine

levels than nonsmokers. These two analyses bracket the one analysis in Bazzano et

al. (2003), where x̃ was neither controlled nor separated.

Arguably, Table 3.4 allows us to see more in an observational study than we would

have seen with either comparison alone, yet it avoids committing us to one or another

set of assumptions about unmeasured covariates, assumptions that are easy enough

to state but difficult if not impossible to justify. Moreover, in this example, the

M-controls were tested at level 0.05, yet the familywise error rate for two tests was

also controlled at α = 0.05, so the addition of the P-controls came without cost. The
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simulation in §3.6.3 asks whether this pattern is expected in general.

3.6.3 Simulation: power of the recycling procedure in a sen-
sitivity analysis

Ideally, a sensitivity analysis would reject the null hypothesis of no effect when there

is no unmeasured bias and there is a treatment effect, and the power of a sensitivity

analysis is the probability that this will happen; see Rosenbaum (2004, 2013). More

precisely, the power of an α-level sensitivity analysis allowing for bias Γ is the prob-

ability that the upper bound on the P -value leads to rejection when computed with

this Γ. The simulation contrasts testing in a fixed sequence, α = α′ = 0.05, and

recycling with α = 0.05 and α′ = 0.04. The simulation also contrasts exploring the

(Γ,Υ) sequence along (Γ,Υ) = (Γ,Γ) with equal sensitivity parameters and along

(Γ,Υ) = {Γ, max (1, 0.9× Γ)}. The latter sequence makes sense if the investiga-

tor included the prodded controls anticipating moderate attenuation of unmeasured

biases.

Table 3.5 simulates a simple situation in which all treated-minus-control pair dif-

ferences in both control groups are Normal with expectation τ and variance 1. The

correlation between the pair-differences in the two control groups is 1/2 because the

same treated subject is matched to two different controls, as in §3.1.2. The effect

size is either τ = 1/4 or τ = 1/2. Of course, the results are less sensitive with a

larger effect, and Γ is adjusted accordingly, Γ = 1.5 for τ = 1/4, Γ = 2.8 for τ = 1/2.

Columns a and b, labeled α′ = 0.05, refer to testing in a fixed sequence. Columns c

and d, labeled α′ = 0.04, refer to recycling. The final column is for comparison only:

column e gives the power if H∗Υ were tested at the α = 0.05 level with no correction

for testing two hypotheses. Although a part of fixed sequence testing, column a for

α′ = 0.05 and H
′
Γ analogously gives the power when testing H

′
Γ without correction
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Table 3.5: Simulated power of an α = 0.05 level sensitivity analysis with I = 500
matched triples, Normal errors, and an additive constant treatment effect that is τ
standard deviations of a treated-minus-control matched pair difference. For α′ = 0.05,
there is fixed-sequence testing, whereas for α′ = 0.04 there is recycling or equivalently
a weighted Holm procedure. Either Υ = 0.9 × Γ or Υ = Γ. Two ψ-functions are
compared. Estimated from 50000 independent replicates.

Γ Υ α′ = 0.05 α′ = 0.04
Column Label a b c d e

H ′Γ H∗Υ H ′Γ H∗Υ H∗Υ Alone
τ = 1/4 with ψhu

1.50 1.35 0.47 0.44 0.46 0.66 0.82
1.50 1.50 0.47 0.30 0.44 0.35 0.47

τ = 1/4 with ψin

1.50 1.35 0.66 0.63 0.65 0.80 0.90
1.50 1.50 0.66 0.50 0.63 0.56 0.66

τ = 1/2 with ψhu

2.80 2.52 0.32 0.28 0.31 0.47 0.68
2.80 2.80 0.32 0.17 0.29 0.20 0.32

τ = 1/2 with ψin

2.80 2.52 0.77 0.75 0.77 0.87 0.94
2.80 2.80 0.77 0.65 0.75 0.69 0.77

for multiple testing, because in fixed sequence testing the first hypothesis in the se-

quence is tested without correction. Table 3.5 also compares the power when using

ψhu (·) and ψin (·) with κ = 2 and ι = 1/2 and, as expected from Rosenbaum (2013),

the power is greater with ψin (·). Each situation is replicated 50,000 times, so the

standard error of an estimated power is at most
√

0.25/50000 = 0.0022.

With fixed sequence testing, adding a second comparison does not reduce the

power of the first comparison, but it affects the power of subsequent comparisons.

For instance, in Table 3.5 with (Γ,Υ) = (1.5, 1.5), τ = 1/4, ψhu (·), the power is 0.47

for H
′
Γ alone, for H

′
Γ as first in sequence, and for H∗Υ alone in the last column, but

H∗Υ tested in fixed sequence after testing H
′
Γ has power of only 0.30. In contrast,

with (Γ,Υ) = (Γ,Γ), recycling with α′ = 0.04 slightly reduces the power for H
′
Γ and

somewhat increases the power for H∗Υ.

There is some attraction to conducting the sensitivity analysis through a sequence

of the form (Γ,Υ) = {Γ, max (1, 0.9× Γ)}, as was done in the example in Table 3.4.
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That sequence is interesting because the prod, if it actually works, is intended to

attenuate bias, as in Proposition 10, so values of Υ somewhat below Γ are not without

interest. At the same time, in the simulated situation, recycling of unused α is much

more likely to occur when Υ = 0.9 × Γ, so the power loss is smaller. Specifically,

when Υ = 0.9 × Γ in Table 3.4, the power for H
′
Γ is only slightly lower in column c

than in column a, typically about 1% lower, whereas the power for H∗Υ is much higher

in column d than in column b. The combination of α′ = 0.04 and Υ = 0.9 × Γ is,

therefore, attractive: despite correction for performing two tests, the M-controls are

tested at nearly the power of a single test, while the smaller value of Υ = 0.9× Γ for

the P-controls means the second comparison also has high power.

3.7 Summary: Prefer additional analyses to addi-

tional assumptions

It has been argued in the literature that leaving a measured covariate x̃ uncontrolled,

say unmatched, may attenuate biases from an unmeasured covariate u. Although this

is formally true, the argument requires very strong, typically doubtful, assumptions

about both observed and unobserved covariates, and even when those assumptions

are true the magnitude of the attenuation is modest. We suggest that one should not

conduct a single analysis that presumes these doubtful assumptions are true. Rather,

we suggest building two control groups, with two analyses, one that controls for x̃

and one that leaves x̃ uncontrolled. Often, the second control group uses individuals

who would otherwise be excluded from the analysis because they are so different from

treated subjects in terms of x̃. A second control group entails a second hypothesis

test, hence a correction for testing two hypotheses; however, by careful organization of

the analyses, there is only a slight loss of power in the primary comparison controlling
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x̃, so the second control group is nearly without cost.
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4
An Exact Test of Fit for the Gaussian Linear Model

using Optimal Nonbipartite Matching

4.1 Notation and review

4.1.1 The Gaussian linear model

The familiar Gaussian linear model assumes that an n-dimensional stochastic outcome

y and an n× p dimensional fixed matrix X, with p < n, are related by

E (y|X) = Xβ, ε = y −Xβ ∼ Nn

(
0, σ2I

)
, (4.1)

where β and σ2 are unknown parameters, 0 and I are, respectively, the n-dimensional

zero vector and identity matrix, andNn (·, ·) is the n-dimensional multivariate Normal

distribution. A test of fit of (4.1) is a test of the null hypothesis H0 that (4.1) is

true, and such a test is said to be exact, as opposed to asymptotic — that it, the

test has exact level α — if the probability that the test rejects H0 when it is true

is ≤ α. Generally, we assume that X has full column rank p, so the least squares

estimate of β under (4.1) is β̂ =
(
XTX

)−1
XTy, the fitted values are ŷ = Xβ̂ =
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X
(
XTX

)−1
XTy = Hy where H = X

(
XTX

)−1
XT , the residuals are e = y− ŷ, and

the unbiased estimate of σ2 is σ̂2 = eTe/ (n− p).

4.1.2 Tests of fit based on replicates and near-replicates

Fisher (1922) proposed testing the Gaussian linear model in experiments by including

replicates of design points, thereby providing an estimate of pure error unaffected by

misspecification of the linear model, yielding an exact F -test of H0. This device is

commonly used in central composite designs in response surface experiments, with

the center-point replicated several times, and the factorial and axial points appearing

only once in isolation; see Box and Draper (1982) and Draper (1982).

Outside of designed experiments, exact replicates occur sporadically if at all. Sev-

eral investigators have proposed an analogous test based on near-replicates; see, for

instance, Christensen (1989; 1991; 2011, §6.6.2), Daniel and Wood (1971, §7.5), Green

(1971), Joglekar et al. (1989), Neill and Johnson (1985), Shillington (1979), and Su

and Yang (2006). This work emphasizes certain options in the choice of test statis-

tic, whereas our contribution emphasizes the construction of the near-replicates. In

particular, we use optimal nonbipartite matching, reviewed in §4.1.3, and the device

that Tukey (1949) introduced in constructing his “one degree of freedom for nonad-

ditivity” test in the unreplicated row-by-column design. For different approaches to

constructing near-replicates, see Miller et al. (1998, 1999) and Miller and Neill (2008).

4.1.3 Optimal nonbipartite matching

Given L points with L even and an L×L symmetric matrix of nonnegative distances

between pairs of points, an optimal nonbipartite match divides the L points into L/2

nonoverlapping pairs of two points so that the total of the L/2 within-pair distances
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is minimized. This combinatorial optimization problem may be solved in polynomial

time by a suitable algorithm; see Jungnickel (2013, §14.4). In R, the nbpMatching

package of Lu et al. (2011) makes available the algorithm of Derigs (1988), and we

used it in the current paper.

Nonbipartite matching has been used to solve various problems in observational

studies, including matching with time-dependent propensity scores (Lu, 2005) and

strengthening instrumental variables (Baiocchi et al., 2010; Zubizarreta et al., 2013).

See Lu et al. (2011) for a survey of statistical applications of nonbipartite match-

ing. Here, we use optimal nonbipartite matching as one aspect of constructing near

replicates. For general discussion of optimal matching in observational studies, see

Rosenbaum (2010, Part II) and Stuart (2010).

In the statistical applications described above, it is common to form pairs using

only some of the available observations, with the algorithm itself deciding which

observations to leave unpaired. This is done using so-called “sinks”. Suppose that

there are n observations with an n × n distance matrix and we want m pairs, with

specified m ≤ n/2. Then n− 2m observations are not paired. If the n× n distance

matrix contains any zeros off the diagonal, then we add a constant, say 1, to all of

the off-diagonal entries, so they are all strictly positive. Introduce n − 2m sinks

that are at 0 distance to all observations and at infinite distance to one another.

That is, expand the distance matrix with 3 blocks, a block of extra columns of 0’s of

dimension n× (n− 2m), a block of extra rows of 0’s of dimension (n− 2m)× n, and

a square lower-right-corner block of ∞’s of dimension (n− 2m) × (n− 2m). One

then calculates an optimal nonbipartite match with this expanded distance matrix,

regarding any observation paired with a sink as unpaired. This strategy forms m

pairs of observations in such a way that the total of the m within pair distances is

minimized over two choices: (i) which n−2m observations to leave unpaired, and (ii)
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how to best pair the 2m observations that are paired.

In central composite experimental designs, only central points are replicated. In

nonexperimental data, there are often many points that have no near-replicate. Mo-

tivated by these considerations and some preliminary simulations, we leave approxi-

mately (n− p) /3 observations unpaired, pairing the rest. When n is large compared

to p, nearly a third of the observations are unpaired and two thirds are paired, leav-

ing nearly n/3 degrees of freedom within-pairs to estimate error from near replicates.

Stated precisely, we form m pairs where m is n/2− (n− p) /6 rounded to the nearest

integer, and we leave exactly n−2m observations unpaired using n−2m sinks. Here,

n− 2m is approximately (n− p) /3.

4.1.4 Tukey’s device and its extensions

A well-known problem with techniques that rely on near-neighbors or near-replicates

is that, unless the number of predictors is very small, we will rarely see two individuals

who are nearly the same on all of the predictors. In light of this, we need to define the

distance with some guidance from the data about which predictors actually matter

for prediction. At the same time, we need to prevent this double use of the y’s

from invalidating the test. For this purpose, a device introduced by Tukey (1949) is

helpful.

Tukey (1949) proposed a test for interaction in the unreplicated row-by-column

design using the following clever device. The device has been generalized several

times, and we describe the generalized form for Gaussian linear models here; see, for

instance, Mandel (1959), Scheffé (1959, Problem 4.19), Milliken and Graybill (1970),

Andrews (1971), Rao (1973, §4e.1), St. Laurent (1990), Christensen and Utts (1992)

and Christensen (2011, §9.5). A basic fact about the distribution of ε in (4.1) is

that projections of ε onto orthogonal subspaces are independent; this fact is the key
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element in the Fisher-Cochran theorem. In particular, the fitted values ŷ = Hy and

residuals e = y−ŷ = (I−H) y are independent in (4.1). Write ρ (M) for the rank

of a matrix M. Let L be any matrix with n rows that is a function of X and ŷ such

that ρ ([X, L]) < n. It is easily seen that

β̂ =
(
XTX

)−1
XTy

=
(
XTX

)−1
XTX

(
XTX

)−1
XTy

=
(
XTX

)−1
XTHy

=
(
XTX

)−1
XT ŷ, (4.2)

so that β̂ is a function of X and ŷ, and in particular, L can be a function of β̂, as

in Tukey (1949). Milliken and Graybill (1970, §2) observe that if (4.1) is true and

y is regressed on [X, L], then the usual F -test of the hypothesis that the coefficients

of L are simultaneously zero has a central F -distribution with degrees of freedom

ρ ([X, L]) − p and n − ρ ([X, L]). Here, [X, L] need not have full column rank,

but must have rank less than n. As discussed by Milliken and Graybill (1970),

the distribution of this F -statistic under the alternative that (4.1) is false is not, in

general, a noncentral F -distribution and is typically intractable.

4.2 An exact test of fit for the Gaussian linear

model

4.2.1 General procedure

Starting with a suitable distance matrix, we round n/2 − (n− p) /6 to the nearest

integer to obtain m, as in §4.1.3, and we use optimal nonbipartite matching in §4.1.3
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to build m pairs of two observations and n−2m unpaired observations so that the total

distance within the m pairs is minimized. This match is intended to find the closest

m pairs of near replicates and n − 2m individuals who are further away, yielding

roughly m degrees of freedom from near replicates to estimate an error variance

less affected by any misspecification of model (4.1). Define L to be a matrix with

m + n− 2m = n−m columns, where the first m columns of L each contain exactly

two ones and n − 2 zeros, the two ones in column k indicating the two individuals

paired in pair k, k = 1, . . . ,m. The last n−2m columns of L each contain a one and

n−1 zeros, the 1 indicating the `th individual who was not paired, ` = 1, . . . , n−2m.

Notice that the n − 2m unpaired individuals each have their own column and will

be fitted exactly, somewhat in parallel with the proposal of Utts (1982); see also

Christensen (2011, p. 153). The n −m columns of L have rank ρ (L) = n −m − 1

because each row of L sums to 1. In general, the rank of ρ ([X, L]) will depend on

X.

The test of fit of (4.1) is simply an F -test of H0 : γ = 0 in the Gaussian linear

model

y = [X, L]

 β

γ

+ ζ, ζ ∼ Nn

(
0, ω2I

)
(4.3)

with degrees of freedom ρ ([X, L]) − p and n − ρ ([X, L]). In our proposed test,

the residual degrees of freedom, n − ρ ([X, L]), will approach n/3 as n → ∞ with p

fixed. Because [X, L] is not of full column rank, a little care, of a conventional sort,

is needed in computing the F -test.

Christensen (1991) proposed an alternative modified test, no longer the standard

F -test of H0 : γ = 0, with a view to gains in power. Our limited simulation

(not shown) comparing the standard F -test to this modified test suggests that the

dimension reduction devices we describe later have large effects on power, while the
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choice of test statistic has a smaller effect, so we adhere to the standard F -test in our

discussion here, rather than add an extra dimension to our simulated comparisons.

If the distances were based on X alone, then [X, L] would be a function or trans-

formation of X, and the test of (4.1) against (4.3) is simply a comparison of two

nested Gaussian linear models. If the null hypothesis, namely (4.1), were true, then

H0 : γ = 0 is true in (4.3) and, in the standard way, the corresponding F -statistic has

a central F -distribution; see, for instance, Rao (1973, §4b.2) or Christensen (2011,

§3.2). In §4.2.2, we permit L to depend upon both X and ŷ; then, the corresponding

F -statistic is no longer a standard test of a general linear hypothesis, but it still has

a central F -distribution when the null hypothesis (4.1) is true using the generaliza-

tion of Tukey’s device; see Milliken and Graybill (1970), Rao (1973, pp. 251-252) or

Christensen (2011, §9.5).

For instance, the distance matrix could be the Mahalanobis distance between

pairs of rows of X. The usual Mahalanobis distance can perform oddly when a

column of X is either long tailed or a rare binary variable. An alternative robust

Mahalanobis distance addresses both issues: it replaces the columns of X by column

ranks before computing the distances, with average ranks for ties; however, it uses

untied variances and covariance of ranks, thereby reducing the role of rare binary

variables; see Rosenbaum (2010, §8). As is commonly done, we speak of the quadratic

form as the Mahalanobis distance (or the robust Mahalanobis distance), whereas

technically it is its square root that is a norm.

The estimate of ω2 in (4.3) may be smaller than the estimate of σ2 in (4.1) for

two reasons. First, the estimate of ω2 only reflects differences in y’s between paired

individuals, and paired individuals are as close as possible on the predictors. Second,

the n − 2m individuals who were not paired do not contribute to the estimate of

ω2 because they are fitted exactly in (4.3). These n − 2m unpaired individuals are
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each far from all other individuals. If some of these n− 2m unpaired individuals are

poorly fit by (4.1), eliminating them from the estimate of ω2 may aid in recognizing

this lack of fit.

Model (4.3) creates an estimate ω̂2 from neighbors that may be less affected by

model misspecification than σ̂2 obtained from fitting model (4.1). The parameter γ

is of high dimension and is not typically of interest, so one may use computational

simplifications with the highly structured matrix L to obtain the F -test without

estimating γ.

When the number of predictors is not small, close matches on all predictors will

be rare. An alternative distance matrix is discussed in §4.2.2: it emphasizes the

predictors that appear to matter in the fit of model (4.1), but avoids double use of

the y by employing Tukey’s device from §4.1.4.

4.2.2 Using y in the construction of the distance matrix

In principle, failures of model (4.1) could involve any of the predictors in the model.

With just a few predictors, all of them could be used to define the distance. In other

cases, it will often seem reasonable to bet that failures of model (4.1) involve predictors

that exhibit some predictive power in the fit of model (4.1). For instance, this might

be true if either y or a predictor requires a monotone increasing transformation, or if

two important predictors require inclusion of their interaction.

Tukey’s method in §4.1.4 permits the matrix L to be any function of X and ŷ.

In particular, Tukey’s method yields a central F -distribution for the test statistic

if L is built from an optimal nonbipartite match using a distance matrix that is

itself a function of X and ŷ. One such very simple distance matrix has as a distance

between individuals i and i′ the absolute difference in their predicted values, |ŷi − ŷi′|.

However, in addition to matching for ŷ, it makes sense to also match for several of
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the most important predictors.

Define dj to be the square root of the jth diagonal element of
(
XTX

)−1
. The

usual t-statistic testing the hypothesis that the jth coordinate βj of β in (4.1) is 0

is β̂j/ (dj σ̂) where β̂j is the jth coordinate of β̂. This t-statistic depends on σ̂, so

it depends on the residuals e = y − ŷ and not just on the fitted values, ŷ, so the

generalization of Tukey’s method in §4.1.4 does not permit the use of this t-statistic.

In contrast, the quantity β̂j/dj is a function of X and ŷ because of (4.2). Because

σ̂ in the t-statistic β̂j/ (dj σ̂) is the same for all predictors, we may identify the r

predictors with the largest absolute t-statistics as the r predictors with the largest∣∣∣β̂j/dj∣∣∣, which is a function of X and ŷ. To emphasize, we can use the generalization

of Tukey’s method if we select a fixed number, r, of variables with the largest t-

statistics because we can identify those variables using X and ŷ, but we cannot select

all variables with, say,
∣∣∣β̂j∣∣∣ / (dj σ̂) ≥ 2, because that makes use of σ̂.

The proposed test computes the robust Mahalanobis distance from ŷ and the r

predictors with the largest
∣∣∣β̂j/dj∣∣∣. Here, ŷ depends upon all predictors. Because

this distance is a function of X and ŷ, as noted above, L too is a function of X and

ŷ, so the generalization of Tukey’s (1949) method yields a null F -distribution for the

F -statistic comparing models (4.1) and (4.3).

4.3 Simulation study of the power of the test

Tables 4.1 and 4.2 report simulated power of a 0.05-level test for five nonlinear func-

tions with Gaussian errors. In additional simulations not shown in Tables 4.1 and

4.2, we found that a 0.05-level test did indeed reject a linear model in close to 5%

of simulated samples. In the simulation, the model (4.1) is fit with a constant term

included in X, so there are p′ = p−1 predictors aside from the constant term. There
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are p′ = 10, 30 or 50 predictors and n = 100 or 500 observations; however, we do not

consider the combination of p′ = 50 predictors and n = 100 observations. In all cases,

a linear model with p′ predictors is mistakenly fit to various nonlinear surfaces, and

the question is whether the test can recognize this mistake.

Each sampling situation is replicated 3000 times, so the standard error of a sim-

ulated power is at most
√

0.25/3000 < 0.01. For p′ = 30 or p′ = 50, many of the

predictors xj, j = 1, . . . , p′, do not affect the response surface, but the investigator

does not know this, so the fitted model mistakenly uses all p′ predictors. When

p′ = 30 or p′ = 50, the test is looking for genuine model failures involving a few

predictors amid distraction from many irrelevant predictors.

The test is performed in nine variations, 9 = 2 × 5 − 1. In five of the nine

variations, the optimal nonbiparitite matching paired for ŷ, and in four variations

it did not. The optimal nonbiparitite matching paired for the r predictors with

the largest absolute t-statistics, for r = 0, 3, 5, 10 and p′. One needs to pair for

something, so the case of not pairing for ŷ and pairing for r = 0 predictors does not

occur, making 9 variations in total. When p′ = 10, the last two columns of Tables

4.1 and 4.2 are identical for r = 10 and r = p′. Two consecutive rows of Tables 4.1

and 4.2 — the first with 5 estimated powers, the second with 4 estimated powers —

constitute one sampling situation in which 9 methods are competing to produce the

largest power. In each sampling situation, the largest power or powers are in bold.

In matching, we use the robust Mahalanobis distance described in §4.2.1. As a

consequence in Tables 4.1 and 4.2, matching for all predictors, r = p′, and matching

for all predictors plus ŷ are slightly different. With the conventional Mahalanobis

distance, ŷ would be linearly dependent on the constant plus p′-predictors and hence

redundant, not affecting the distance.

The five nonlinear response surfaces will now be described. In Table 4.1, the
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true nonlinear regression is y = x1 + x2 + x3 + x4 + x3x4 + x4x5 + x2
5 + ε and the

predictors are multivariate Normal with covariances indicated in the table. Three of

the response surfaces in Table 4.2 were discussed and depicted by Friedman (1991)

and have been used in the literature before and after 1991 as test cases of nonlinear

regression surfaces. In Table 4.2, the predictors are independent uniform random

variables, with standard Normal errors, and response surfaces given by:

Exponential: y = exp
(∑10

j=1 xj

)
+ ε

Friedman (1991), equation (56): y = 0.1e4x1+4/
{

1 + e−20(x2−0.5)
}

+3x3+2x4+

x5 + ε

Friedman (1991), equation (61): y = 10sin (() πx1x2) + 20 (x3 − 0.5)2 + 10x4 +

5x5 + ε

Friedman (1991), equation (66):

y = 40
exp {8 [(x1 − 0.5)2 + (x2 − 0.5)2]}
exp {8 [(x1 − 0.2)2 + (x2 − 0.7)2]}

+ e8[(x1−0.7)2+(x2−0.2)2] + ε.

All five models involve 10 or fewer variables, so that, when p′ > 10, many of the

variables are simply distractions, as noted above.

Consider, now, the estimated powers. The strongest pattern in Tables 4.1 and 4.2

is the least interesting: the power is higher when the sample size n is larger. Setting

that aside, within a sampling situation or pair of rows, the power varies dramatically

among nine methods.

Should one try to match for all p′ variables? When p′ = 30 or p′ = 50, trying

to match for all p′ variables usually reduces power: it is better to use the mistaken

linear fit to reduce the number of variables employed in the matching, even though

the mistaken fit need not be a reliable guide to the importance or role of particular

77



Table 4.1: Simulated power of a 0.05-level test with p′ = p−1 predictors and n observations,
y = x1 + x2 + x3 + x4 + x3x4 + x4x5 + x2

5 + ε, where (x1, . . . , xp, ε) is multivariate Normal,
with E(xj) = 0, var(xj) = 1 and, except as noted below, cov(xj , xj′) = 0, and with E(ε) = 0
var(ε) = 1, cov(ε, xj) = 0. The matching either matched for ŷ, case 1, or did not, case 0,
and it matched for r = 0, 3, 5, 10, or all p′ predictors with the largest absolute t-statistics.
Each situation was replicated 3000 times. A sampling situation is two consecutive rows,
and the highest power in a sampling situation is in bold.

Nonzero Matched for r predictors
Covariances p′ n Matched for ŷ 0 3 5 10 p′

None 10 100 1 0.10 0.25 0.48 0.50 0.50
10 100 0 0.19 0.48 0.48 0.48

Predictors are 10 500 1 0.13 0.64 0.87 1.00 1.00
independent 10 500 0 0.40 0.81 1.00 1.00

30 100 1 0.07 0.11 0.13 0.14 0.10
30 100 0 0.09 0.14 0.14 0.08
30 500 1 0.12 0.56 0.79 0.81 0.74
30 500 0 0.40 0.72 0.75 0.68
50 500 1 0.13 0.50 0.74 0.71 0.49
50 500 0 0.38 0.65 0.68 0.42

cov(x1, x5) = 0.8 10 100 1 0.20 0.49 0.63 0.55 0.55
10 100 0 0.34 0.62 0.45 0.45

Nonlinear x5 10 500 1 0.47 0.99 1.00 1.00 1.00
is highly correlated 10 500 0 0.73 1.00 1.00 1.00
with linear 30 100 1 0.09 0.16 0.18 0.14 0.10
predictor x1 30 100 0 0.12 0.18 0.13 0.08

30 500 1 0.42 0.96 1.00 0.98 0.83
30 500 0 0.68 1.00 0.96 0.62
50 500 1 0.36 0.93 1.00 0.95 0.55
50 500 0 0.64 0.99 0.93 0.35

cov(x5, x6) = 0.8 10 100 1 0.11 0.28 0.47 0.53 0.53
10 100 0 0.23 0.41 0.51 0.51

Nonlinear x5 10 500 1 0.17 0.75 0.99 1.00 1.00
is highly correlated 10 500 0 0.47 0.97 1.00 1.00
with irrelevant x6 30 100 1 0.08 0.12 0.15 0.14 0.10

30 100 0 0.10 0.15 0.13 0.09
30 500 1 0.16 0.68 0.98 0.95 0.88
30 500 0 0.44 0.96 0.91 0.79
50 500 1 0.14 0.62 0.96 0.91 0.60
50 500 0 0.41 0.94 0.87 0.45

cov(xj , xj′) = 0.5 10 100 1 0.57 0.52 0.59 0.57 0.57
for all j 6= j′ 10 100 0 0.52 0.57 0.49 0.49

10 500 1 0.99 0.96 1.00 1.00 1.00
All predictors 10 500 0 0.93 0.99 1.00 1.00
are correlated. 30 100 1 0.20 0.22 0.21 0.16 0.12

30 100 0 0.20 0.18 0.15 0.10
30 500 1 0.97 0.94 0.99 0.95 0.91
30 500 0 0.92 0.99 0.93 0.81
50 500 1 0.94 0.93 0.99 0.93 0.70
50 500 0 0.91 0.98 0.90 0.55
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Table 4.2: Simulated power of a 0.05-level test with p′ = p−1 predictors and n observations,
for four nonlinear functions. The matching either matched for ŷ, case 1, or did not, case
0, and it matched for r = 0, 3, 5, 10, or p′ predictors with the largest absolute t-statistics.
Covariates are independent uniform random variables. Each situation was replicated 3000
times. A sampling situation is two consecutive rows, and the highest power in a sampling
situation is in bold.

Function Matched for r predictors
p′ n Matched for ŷ 0 3 5 10 p′

Exponential 10 100 1 0.60 0.71 0.65 0.99 0.99
10 100 0 0.36 0.53 0.69 0.69

10 active 10 500 1 0.90 0.99 0.97 1.00 1.00
predictors 10 500 0 0.41 0.74 1.00 1.00

30 100 1 0.38 0.48 0.40 0.67 0.56
30 100 0 0.18 0.25 0.40 0.16
30 500 1 0.93 1.00 0.99 1.00 1.00
30 500 0 0.38 0.74 1.00 0.78
50 500 1 0.93 1.00 0.99 1.00 1.00
50 500 0 0.36 0.70 1.00 0.56

Friedman (1991, 56) 10 100 1 0.05 0.31 0.21 0.09 0.09
10 100 0 0.38 0.22 0.09 0.09

5 active 10 500 1 0.05 0.99 0.95 0.56 0.56
predictors 10 500 0 0.98 0.96 0.48 0.48

30 100 1 0.05 0.13 0.09 0.07 0.05
30 100 0 0.15 0.10 0.07 0.05
30 500 1 0.05 0.98 0.89 0.47 0.11
30 500 0 0.97 0.94 0.42 0.09
50 500 1 0.05 0.97 0.82 0.38 0.08
50 500 0 0.94 0.89 0.37 0.07

Friedman (1991, 61) 10 100 1 0.06 0.46 0.47 0.34 0.34
10 100 0 0.50 0.48 0.32 0.32

5 active 10 500 1 0.08 1.00 1.00 1.00 1.00
predictors 10 500 0 0.99 1.00 1.00 1.00

30 100 1 0.06 0.16 0.15 0.10 0.06
30 100 0 0.18 0.15 0.11 0.06
30 500 1 0.06 1.00 1.00 0.90 0.51
30 500 0 0.99 1.00 0.88 0.43
50 500 1 0.07 1.00 0.99 0.82 0.25
50 500 0 0.99 0.99 0.81 0.21

Friedman (1991, 66) 10 100 1 0.41 0.91 0.93 0.93 0.93
10 100 0 0.80 0.74 0.52 0.52

2 active 10 500 1 0.54 1.00 1.00 1.00 1.00
predictors 10 500 0 0.97 0.96 0.85 0.85

30 100 1 0.41 0.77 0.69 0.75 0.79
30 100 0 0.62 0.59 0.60 0.22
30 500 1 0.60 1.00 1.00 1.00 1.00
30 500 0 0.97 0.97 0.91 0.61
50 500 1 0.71 1.00 1.00 1.00 1.00
50 500 0 0.97 0.97 0.93 0.50
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variables. Also, matching for ŷ alone with r = 0 is not the best procedure in any

sampling situation, and it often has low power.

How many variables should be used in the matching? In Table 4.1, only 5 variables

affect the response surface, and good power often occurs when matching for either

the r = 5 variables or r = 10 variables with the largest t-statistics. The situation

is slightly more complicated in Table 4.2, where the first response surface involves 10

variables and r = 10 is best, while the last response surface involves just 2 variables

and r = 3 or r = 5 is better than r = 10.

Should one match just for the r variables with the largest t-statistics or should one

additionally match for ŷ? In each sampling situation, this is the comparison of two

adjacent rows in the same column. There is no uniform winner here, but including

ŷ in a match for r = 5 or r = 10 variables rarely does much harm and sometimes

greatly increases power. For instance, consider in Table 4.2 the Exponential model

with r = p′ = 10 where including ŷ yields power 0.99 and excluding ŷ yields power

0.69. Also in Table 4.2, consider Friedman’s equation (66) model with r = 10,

where again including ŷ in the matching distance increases power. In Table 4.1,

five variables affect the response surface, so matching for r = 3 variables must omit

relevant variables: in the r = 3 column of Table 4.1, matching also for ŷ often yields

meaningful gains in power.

The Exponential response surface in Table 4.2 is interesting. In this case, E (y|x)

is an increasing but nonlinear function of x1, . . . , x10, whereas x11, . . . , xp are irrele-

vant. As might be expected, the highest powers occur with r = 10 including ŷ in

the match. Even when p′ = 10, so there are no irrelevant variables, it is still helpful

to include ŷ, presumably because a very high ŷ means most of x1, . . . , x10 are high.

For many values of r, omitting ŷ from the match for the Exponential surface can ruin

the power. Matching for ŷ and r = 5 variables has lower power for the Exponential
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surface than matching for ŷ and r = 3 variables for reasons that are not completely

clear, but perhaps because ŷ gets more attention in the Mahalanobis distance with

r = 3 variables than with r = 5 variables.

How close are the “near replicates” produced by matching? Before matching,

there were
(
n
2

)
distances in the distance matrix, whereas after matching there were

m
.
= n/2 − (n− p) /6 distances within m pairs. For n = 500 observations with

p′ = 50 predictors, p = p′ + 1, there were initially
(

500
2

)
= 124, 750 pairwise distances

and m = 175 within pair distances. How does the average distance within m pairs

compare to the average of
(
n
2

)
distances before matching? We computed the two

averages, averaging also over 3000 simulations, and took the ratio. If we match for ŷ

and r predictors, then the distance is computed among n points in r+ 1 dimensional

space. Not surprisingly, if r is larger, the average distance after matching is a

larger fraction of the average distance before matching: it is hard to find similar

observations in high dimensions. Consider the case of n = 500 observations with

p′ = 50 predictors, matching for ŷ and r predictors in Tables 4.1 and 4.2. Among

the eight such situations in Tables 4.1 and 4.2, the average distance within m = 175

pairs was never more than 2% of the average distance with
(

500
2

)
= 124, 750 pairs if

r = 3, was never more than 7% if r = 5, was never more than 19% if r = 10, and

ranged from 54% to 57% for r = p′ = 50. In other words, when trying to match for

r + 1 = 51 variables, the matched pairs were closer than two observations picked at

random, but the distance was reduced by less than half. This may partly explain

why the power in Tables 4.1 and 4.2 is often higher when matching for ŷ and r = 5

predictors than when matching for ŷ and r = 50 predictors.

In brief, there is no uniformly best choice among our nine methods. We must

choose a test in ignorance of the true response surface. For the admittedly limited

situations we have considered, matching for ŷ plus the r = 5 variables with the largest
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t-statistics would have been a tolerable choice in most cases given our ignorance of

the true response surface, but ŷ plus the r = 10 variables is competitive, winning in

many cases.

4.4 Example: testing fit without replicates in an

experiment

Nelson (1981) discusses an experiment involving degradation of electrical insulation

measured as y = dialectic strength in kV. There are two factors, duration of aging

x1 as 1, 2, 4, 8, 16, 32, 48, or 64 weeks, and the temperature x2 as 180, 225, 250,

275 degrees Celsius. Nelson makes a physical argument for a particular nonlinear

relationship, but for the purpose of illustrating our test of fit, we assume the investi-

gator is unaware of this argument and ask whether our test will help the investigator

discover this mistake. Each of the 8× 4 factor combinations was replicated 4 times,

making 8 × 4 × 4 = 128 observations. Although the relationship between y and

(x1, x2) is highly nonlinear, this is only very slightly apparent in the two bivariate

plots of y versus x1 and y versus x2, so a careless investigator could fail to notice a

serious problem. If one fits a Gaussian linear model, y = β0 + β1x1 + β2x2 + ε, and

uses the four replicates to perform Fisher’s test with exact replicates, then the linear

model is rejected with a very small P -value. We adapted this example for illustration

in two ways.

First, we created a smaller unreplicated design by randomly picking one replicate

from each condition. This meant that each of the (x1, x2) combinations occurred

once in an unreplicated design with n = 8× 4 = 32 observations. Here X has n = 32

rows and p = 3 columns, namely a constant and p′ = 2 predictors . We then used an

optimal nonbipartite matching based on (ŷ, x1, x2) to form m = bn/2− (n− p) /6c =

82



b32/2− (32− 3) /6c = 11 pairs and n− 2m = 10 isolated observations, so that 21 =

11+10 predictors in L were added to the linear model, and [X, L] had 24 = 3+11+10

columns. We did this 10 times, randomly picking one replicate from the 4 available

each time. In 8 of the 10 tests, the linear model y = β0 +β1x1 +β2x2 + ε was rejected

at the 0.05 level, despite the reduction in sample size from 128 to 32 and the absence

of exactly replicated observations.

Second, we added 10 independent Gaussian noise predictors to the original n = 128

observation design so that the revised design was now unreplicated in terms of all 12

predictors, and X had n = 128 rows and p = 13 columns. We then used an optimal

nonbipartite matching based on ŷ and the five predictors with the largest t-statistics

to create 45 pairs and 38 isolated observations, adding 83 = 45+38 predictors in L to

the model, so [X, L] had 96 = 13+83 columns. Again, we did this 10 times, creating

10 different sets of noise predictors. All ten tests rejected y = β0+β1x1+. . .+β12x12+ε

at the 0.05 level.

4.5 Discussion: Summary; Alternative methods

for selecting variables

We have been testing the fit of the Gaussian linear model (4.1) with n observations

and p′ = p − 1 predictors by: (i) determining ŷ and the r predictors xj with the

largest
∣∣∣β̂j/dj∣∣∣, (ii) creating a distance matrix using these variables, (iii) using optimal

nonbipartite matching to form roughly n/3 pairs and n/3 isolated observations, and

(iv) determining whether these 2n/3 additional predictors enhance the fit of model

(4.1). Here, the r predictors xj with the largest
∣∣∣β̂j/dj∣∣∣ are also the r predictors

xj with the largest t-statistics, but
∣∣∣β̂j/dj∣∣∣ does not yield the numerical value of the

t-statistic; that is, one cannot select the predictors with absolute t-statistics above 2.
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This is an exact test: when (4.1) is true, the probability of false rejection at nominal

level α is ≤ α (in fact, the test has size α). A key element is the generalization of

Tukey’s device in which functions of ŷ and X may be used in test of fit of (4.1). We

have been using functions of ŷ and X to create near-replicate observations, yielding an

estimate of error based on paired observations less affected by model misspecification.

In simulations, matching for both ŷ and r = 5 or r = 10 predictors with large
∣∣∣β̂j/dj∣∣∣

gave good results for several nonlinear response surfaces with either few or many

irrelevant predictors.

The proposed test of fit is not a substitute for other diagnostic checks of (4.1).

In particular, one should check for outliers and for non-Gaussian errors. A single

outlier, if sufficiently severe, can greatly reduce the power of an F -test, including

specifically the test of (4.1) against (4.3).

There are many related methods that might be considered. For instance, if the p′

predictors in (4.1) are highly correlated, it might not be wise to select r predictors xj

for the distance using
∣∣∣β̂j/dj∣∣∣ from the full p′ variable model, because an important

predictor might have a small value of
∣∣∣β̂j/dj∣∣∣ due to its high correlation with other

predictors. Could we, instead, use Mallows’ CP to select r variables xj for the dis-

tance? As with t-statistics, the numerical value of CP depends on σ̂2, so one cannot

use the numerical value of CP , as one cannot use the numerical value of the t-statistic,

if one is going to employ the Tukey-Milliken-Graybill device to obtain an exact test.

Consider the
(
p′

r

)
submodels P ⊆ {1, . . . , p′} of (4.1) that involve exactly r of the p′

predictors. Write XP for the n × (r + 1) matrix obtained from X by retaining the

constant and the r columns in P , and write HP = XP

(
XT
PXP

)−1
XP so the predicted

values from model P are ŷP = HPy. It is readily checked that ŷP is a function of X

and the predicted values ŷ = Hy from the full model (4.1); specifically, ŷP = HP ŷ.
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Also, the usual CP may be rewritten (Mallows, 1973, §1) as:

CP =
(ŷP − ŷ)T (ŷP − ŷ)

σ̂2
− p+ 2 (r + 1) . (4.4)

Now, (4.4) depends in a fundamental way upon σ̂2 to compare models with different

numbers of variables. However, if one restricts attention to models with exactly r

predictors, then the model P with the smallest CP and r predictors is the model with

the smallest (ŷP − ŷ)T (ŷP − ŷ) and r predictors, so this model can be determined

from ŷ and X alone, so the Tukey-Milliken-Graybill device may be used. In brief,

instead of selecting for the distance the r variables with the largest
∣∣∣β̂j/dj∣∣∣, we may

select the r variables in the r-variable model with the smallest (ŷP − ŷ)T (ŷP − ŷ), or

equivalently in the r-variable model with the smallest CP . The identification of this

model may be based on the algorithm of Furnival and Wilson (1974), as implemented

in the R package leaps.

Tables 1 and 2 consider matching for ŷ and/or r predictors. To avoid focusing

on r individual predictors, one might match for a few functions of ŷ. For instance,

let P ⊆ {1, . . . , p′} be the model in the previous paragraph determined using CP for

some fixed r < p′, and let P = {1, . . . , p′} − P be the p′ − r variables left out of this

model. One could match for three variables, namely ŷ, ŷP = HP ŷ, and ŷP = HP ŷ.

This would avoid the impossible task of matching in high dimensions while permitting

the ostensibly less important variables in P to contribute meaningfully to the match

distance.

The proposed method forms roughly n/3 pairs and n/3 isolated observations,

yielding roughly n/3 degrees of freedom for the within-pair estimate of error. With

this structure, the simulation found good power when matching for r = 5 or r = 10

predictors with n = 100 or n = 500 observations. If n were much larger than 500, say

n = 30, 000 for data from an administrative database, then one might reconsider these
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choices. In particular, one might prefer fewer than n/3 pairs that match for more

than r = 10 predictors. There is little value in having 30, 000/3 = 10, 000 degrees

of freedom for error, rather than a much smaller number of degrees of freedom; that

is, we might be happy with fewer than n/3 pairs. On the other hand, think about

cutting r = 20 predictors each at their median to form two categories per variable;

then, there would be 220 or about a million very coarse categories, and 30,000 people

would be thinly spread among a million categories. In brief, having n = 30, 000 rather

than n = 500 has a big impact on degrees of freedom, but only a small impact on our

ability to match for r = 20 predictors, so we might wish to have far fewer than n/3

pairs that are more closely matched for additional predictors. For instance, for large

n, one might set a requirement for the distance, letting that requirement determine

the number of pairs. If two multivariate observations are drawn independently from

the same r-dimensional multivariate Gaussian distribution, then the Mahalanobis

distance between them is distributed as two-times a chi-square random variable with

r degrees of freedom; hence, the expected distance is 2r. If κ is the ζ-quantile

of the chi-square distribution on r degrees of freedom, then with probability ζ this

Mahalanobis distance is less than 2κ. For r = 20 predictors and ζ = 0.05, the

expected Mahalanobis distance is 2r = 40 and the 5% point is 2κ = 21.7. One

strategy for very large n would be to solve the maximum cardinality matching problem

(Korte et al., 2008, §10.5): find the maximum number of disjoint pairs such that the

Mahalanobis distance within every matched pair is at most 2κ.

It is virtually impossible to find many observations that are very close on many

predictors; see Giraud (2015, §1.2). In light of this, the proposed procedure bets that

lack of fit will involve predictors that appear to matter when the possibly mistaken

model (4.1) is fitted, and, as the discussion above indicates, there are several if not

many options for identifying these predictors. In all cases, the test has its nominal
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level α, because the level is computed assuming model (4.1) is true. However, the

power of the test is affected by whether the bet is correct. It is easy to construct

examples in which the bet is mistaken, and the power is low, because subtle nonlin-

earity in some predictor gives the false impression that the predictor is unimportant,

hence not included in the matching algorithm. In light of this, the test should be seen

as a test of fit of (4.1) against alternatives in which the ostensibly active predictors

enter the model in a misspecified form. This is a practical and interesting class of

alternatives to (4.1), but it is far from exhaustive.
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5
Conclusion

The three papers composing this thesis each highlight a different set of design goals

and resulting strategies for forming matched sets from observational data. The first

paper considers a setting in which it is possible to match individuals exactly on only

a few of the many measured categorical covariates. However, as demonstrated in this

chapter, when matching exactly within a small set of variables it may still possible

to achieve a high level of marginal balance on the remaining measured covariates and

their interactions, meaning that matched groups have similar overall distributions

even when individual pairs do not share identical values. A new matching algorithm

is presented which allows investigators to request marginal balance on variables in a

prioritized manner, giving more attention to the most important variables first be-

fore addressing those of secondary importance. This is achieved by representing pair

matching as a minimum-cost network flow optimization problem and defining a new

set of constraints which can be imposed on the problem. In addition, the algorithm

enjoys very attractive computational properties, due to the sparsity of the underlying

network, and scales well to large problems. In the large-scale performance comparison

between new and experienced surgeons that motivated the work, the matching algo-

rithm succeeds admirably well in forming comparable matched samples of Medicare

patients, achieving levels of balance on high-order interactions of categorical vari-
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ables. In this case relaxing the impossible goal of matching exactly on all variables

to an appropriate combination of some exact matching with marginal balance allows

for efficient construction of attractive matches. Future methodological development

of these matching techniques could include techniques to assess possible conflicts or

tradeoffs between the two objectives (exact matching and balance), as well as an

asymptotic analysis to clarify the effectiveness of marginal balance for categorical

variables as sparse matches grow larger and larger.

The second paper considers the question of bias due to unmeasured confounding

variables. In particular, it identifies a class of observed variables, called “prods” to re-

ceive treatment, which explain variance in treatment assignment but obey certain con-

ditional independence relationships with unobserved confounders, and demonstrates

that choosing not to match on these variables strictly reduces unmeasured bias when

it is present. However, applying this result in practice is non-trivial, since it is often

difficult to assess whether a particular variable satisfies the necessary conditions to

be a prod. If an observed confounding variable is incorrectly labeled as a prod and ig-

nored, the net result may actually be an increase in bias. This uncertainty introduces

a tension between two different design goals: should an investigator aggressively ig-

nore potential prods in the hope of reducing unmeasured biases, or should she instead

match on any variable that is not absolutely known to be a prod to avoid biases due

to observed discrepancies? A way of doing both, by forming two matched control

groups with different criteria, is suggested. One control group is selected for similar-

ity to the treated group on all observed variables, while the other is constructed with

similarity on certain variables but in a way that either ignores or explicitly prioritizes

substantial differences on potential prod variables. A multiple testing strategy is used

in assessing evidence about the presence or absence of effects of treatment from the

two treated-control comparisons, producing stronger evidence than would be derived
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from either of the two individual comparisons alone. Here the use of multiple control

groups offers a way to work with multiple design goals without needing to make an

ad hoc a priori decision about which is most important. Further research could in-

clude the derivation of formulae for the degree of attenuation under specific models

for treatment and outcome, and generalizations of the multiple-testing strategy to

larger numbers of treated-control comparisons.

The third and final paper uses matching in a very different setting. Here matches

are not treated-control pairs to be used for measuring effects of a treatment, but

groups of similar observations to be treated as near-replicates in a lack-of-fit test for

regression. Matched pairs are formed using an optimal nonbipartite matching routine

which takes in a matrix of distances between all observations in the problem and

minimizes the sum of within-pair distances. The main design challenge in this problem

is selecting an appropriate covariate distance for the matching routine to optimize.

The lack-of-fit test tends to perform best when observations are paired so that their

expected outcomes under the true model are near-identical, but since the true model is

not in general known this is a non-trivial objective to optimize. While distances such

as the Mahalanobis distance attempt to pair individuals similar on all covariates with

minimal modeling assumptions, they tend to perform poorly when many covariates

are present, not forming pairs close on any individual covariate. To address these

challenges, a guess is made that the important predictors in the true model are also

important predictors in the null model, and that similarity in expected mean outcome

under the null model predicts similarity in expected mean outcome under the true

model. Guided by this assumption, variable selection is conducted before forming

matching distances, selecting the covariates most predictive in the null model, and

the fitted values from the null model are also incorporated into the matching distance.

The resulting test is exact despite the use of the old fit in constructing the test
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statistics, and simulations bear out its effective performance under a wide variety

of model misspecification settings. Principled choices about which variables to use

for matching in this setting result in important improvements in test performance,

much as judicious focus and careful design in the previous two chapters enhanced the

extraction of evidence about treatment effects from observational data. Extensions

to this work could include the consideration of more general nonbipartite grouping

algorithms that form not just pairs but potentially larger clusters of observations, or

the use of more sophisticated dimension reduction techniques on the covariates prior

to matching.
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A
Appendices

A.1 Proofs of main results in Chapter 2

Proof of Lemma 4: Suppose there is a feasible flow f for the network (N , E)

and define M = {(τt, κc) ∈ E : f {(τt, κc)} = 1}. By the definition of E in §2.4.4,

if (τt, κc) ∈ E then (τt, κc) ∈ A. There is only one edge exiting from control κc ∈

C ⊂ N , namely (κc, λK`) for the category K` to which κc belongs, and because f is

feasible we have 0 ≤ f (κc, λK`) ≤ cap {(κc, λK`)} = 1, so either f (κc, λK`) = 0 or

f (κc, λK`) = 1. If f (κc, λK`) = 1 then κc received its one unit of flow from a unique

treated node τt ∈ T ⊂ N . Moreover, because f is feasible and demand (τt) = −m, it

follows that m =
∑

κc∈C f (τt, κc) for each τt ∈ T , soM is indeed an acceptable 1-to-m

matchM such that (τt, κc) ∈M implies (τt, κc) ∈ A. Conversely, suppose there is an

acceptable 1-to-mmatchM. Then, by the definition in §2.4.1 of an acceptable 1-to-m

match, (τt, κc) ∈ M implies (τt, κc) ∈ A. For τt ∈ T and κc ∈ C define f (τt, κc) = 1

if (τt, κc) ∈M and f (τt, κc) = 0 otherwise. By the definition of an acceptable 1-to-m

match, each treated unit τt ∈ T issues m units of flow, m =
∑

κc∈C f (τt, κc), so (2.2)

is satisfied for n = τt. By the definition of an acceptable 1-to-m match, each control

κc is matched to at most one treated unit τt, so 1 ≥
∑

τt∈T f (τt, κc) for each κc ∈ C,

92



and the zero or one unit of flow leaving κc may be passed through (κc, λK`) ∈ E

with its capacity of cap {(κc, λK`)} = 1. The indirect paths in triangles,
(
λk`, λ

′

k`

)
and

(
λ

′

k`, λ
′′

k`

)
, have infinite capacity, so all of the flow reaching λk` may feasibly be

passed on to the corresponding λk−1,`′ and on to the sink ω, so a feasible flow f may

be completed by passing flow along indirect paths. �

Proof of Lemma 5: Compute βk` in (2.1) for match M recalling that 0 =∑Lk

`=1 βk` for k = 1, . . . , K. Write β+
k` = max (0, βk`) ≥ 0 and β−k` = max (0,−βk`) ≥ 0

so that
∑Lk

`=1 β
+
k` =

∑Lk

`=1 β
−
k` and

∑Lk

`=1 |βk`| =
∑Lk

`=1 β
+
k` +

∑Lk

`=1 β
−
k` = 2

∑Lk

`=1 β
−
k` or

equivalently
∑Lk

`=1 β
−
k` =

∑Lk

`=1 |βk`| /2. The total cost of f is the sum of the costs in

two disjoint subsets of edges of (N , E); namely,

∑
e∈E

f (e) cost (e) =
∑
e∈A

f (e) cost (e) +
∑
e∈E−A

f (e) cost (e) .

The total cost of f over A ⊂ E , namely
∑

(τt,κc)∈A f {(τt, κc)} cost {(τt, κc)} is

precisely
∑

(τt,κc)∈M δtc by the definition of f . The remaining cost of the flow

f is
∑

e∈E−A f (e) cost (e), and in E − A there is nonzero cost only from edges

of the form
(
λk`, λ

′

k`

)
in the indirect paths in triangles because cost

(
λk`, λ

′′

k`

)
=

cost
(
λ

′

k`, λ
′′

k`

)
= 0. The number of units of flow entering the triangle defined by

λk`, λ
′

k`, and λ
′′

k` (through node λk`), is given by |{(τt, κc) ∈M : νk (κc) = λk`}|. Since

cap
{(
λk`, λ

′′

k`

)}
= m×dk` also, we know from (2.1) that at least β−k` units of flow pass

through
(
λk`, λ

′

k`

)
with total cost f

(
λk`, λ

′

k`

)
cost

(
λk`, λ

′

k`

)
= f

(
λk`, λ

′

k`

)
ΥK−k+1.

This yields the inequality (2.3). In a minimum cost feasible flow, f
(
λk`, λ

′

k`

)
= β−k`

as f
(
λk`, λ

′

k`

)
> β−k` pointlessly increases the cost. This proves the case of equality

in (2.1) for a minimum cost flow. �

Proof of Theorem 6: Because the specific value of Υ > 1 is not relevant for

feasibility, the parts of the proposition that discuss existence merely restate Lemma 4.

Fix Υ > mTK+
∑

(τt,κc)∈A δtc. With this Υ, let f be a minimum cost feasible flow in
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(N , E), and letM = {(τt, κc) ∈ A : f {(τt, κc)} = 1} be the corresponding acceptable

1-to-m match. Let βk` be the imbalances (2.1) for the matchM. The triangle defined

by λk`, λ
′

k`, and λ
′′

k` receives |{(τt, κc) ∈M : νk (κc) = λk`}| units of flow entering λk`,

and so from the proof of Lemma 5, f
(
λk`, λ

′

k`

)
= β−k` = max (0,−βk`) ≥ 0 with a

cost of f
(
λk`, λ

′

k`

)
cost

(
λk`, λ

′

k`

)
= f

(
λk`, λ

′

k`

)
ΥK−k+1 = β−k` ΥK−k+1. The cost of

f is
∑

(τt,κc)∈M δtc +
∑K

k=1 ΥK−k+1
∑Lk

`=1 |βk`| /2 by Lemma 5. Because the total flow

is only mT , for each k we have
∑Lk

`=1 f
(
λk`, λ

′

k`

)
≤ mT . Because M ⊂ A, we have∑

(τt,κc)∈M δtc ≤
∑

(τt,κc)∈A δtc. We now use these to bound the total cost of f strictly

before all of the triangles defined by λk`, λ
′

k`, and λ
′′

k`, that is,

∑
(τt,κc)∈M

δtc +
K∑

j=k+1

ΥK−j+1

Lj∑
`=1

|βj`| /2

=
∑

(τt,κc)∈M

δtc +
K∑

j=k+1

ΥK−j+1

Lj∑
`=1

f
(
λj`, λ

′

j`

)
≤

∑
(τt,κc)∈A

δtc +mTK ΥK−k (A.1)

≤

 ∑
(τt,κc)∈A

δtc +mTK

ΥK−k < Υ×ΥK−k = ΥK−k+1, (A.2)

where (A.1) uses the two upper bounds, the first inequality in (A.2) simply uses

ΥK−k ≥ 1, and the second inequality in (A.2) uses Υ > mTK +
∑

(τt,κc)∈A δtc. The

cost of each single unit of flow passing through any edge
(
λk`, λ

′

k`

)
is ΥK−k+1, and

from (A.2) it exceeds the total cost of everything before
(
λk`, λ

′

k`

)
in (N , E). Using

(A.1)-(A.2) with k = 1 shows that it is not possible to further reduce
∑L1

`=1 |β1`|,

because if any feasible flow f ′ had a lower value of
∑L1

`=1 |β1`| then f ′ would have a

lower total cost than f , and this is not possible because f is a minimum cost flow.

Similarly, it is not possible to further reduce
∑L1

`=1 |β1`|, . . . ,
∑Lk

`=1 |βk`| for the same

reason: even a 1 unit reduction in any of these quantities would reduce the cost by

at least ΥK−k+1, and this is greater than the total cost of all flow routing decisions
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made before the λk` ∈ N , so this would (impossibly) reduce the cost of a minimum

cost flow. In short, the match M from a feasible minimum cost flow f exhibits

refined balance in the sense of Definition 2. A match achieving refined balance in

Definition 2 must, by virtue of this definition, have achieved the smallest possible

value of
∑K

k=1 ΥK−k+1
∑Lk

`=1 |βk`| /2, and in particular M has done this; moreover,

M has minimized
∑

(τt,κc)∈M δtc +
∑K

k=1 ΥK−k+1
∑Lk

`=1 |βk`| /2, so it has minimized∑
(τt,κc)∈M δtc among all 1-to-m acceptable matches with refined balance. �
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A.2 Formal description of matching algorithm in

Chapter 3

A.2.1 Introduction

In Section 3.5.3 above, we briefly describe an algorithm that can balance treated and

control groups closely on certain covariates x while separating them on others x̃. This

supplement provides a full technical specification of this algorithm. In Section A.2.2

below, the general algorithm is described and its optimality is proven, using concepts

and notation from Chapter 2. In Section A.2.3, further detail is given about how

the general algorithm can be fine-tuned to create better separation on a prod. This

section also gives specifics about how the second control group was created in the

NHANES example given in Chapter 3.

A.2.2 Matching to a different target distribution

The large, sparse matching algorithm of Chapter 2 requires that balance covariates

ν1, ν2, . . . , νK (given in decreasing order of importance) be nested within each other,

i.e. all categories of νj are finer subdivisions of the categories of νj−1. In practice

the covariates νi are often interactions of many nominal covariates measured in the

dataset. The algorithm computes an optimal match by formulating the task as a

network flow problem. Flow constraints in certain edges of the network are set based

on the empirical covariate distribution of the treated units, and require the covariate

distribution of the controls to be as close as possible to this distribution. In this

technical sense the treated group provides the “target distribution” to which the

selected control will be made similar. We wish to modify this algorithm so that a

different target distribution can be used.
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Formally, we transform the algorithm as follows. Here we adopt the notation of

Section 2.4.1. In the original algorithm there was a treated group T and a control

group C. Define a third group T ′ = {τ ′1, τ ′2, . . . , τ ′T} where T = |T | and call it the

target group. We also extend the domain of each nested covariate νk to include T ′

so now νk : T ∪ C ∪ T ′ −→ Kk; in other words, the units in the target group take

values for each of the nested covariates. We now alter the algorithm by changing the

definition of the quantities dk` for ` = 1, . . . , Lk and k = 1, . . . , K. In the original

algorithm, these are defined as:

dk` = |{τt ∈ T : νk(τt) = λk`}|

In short, dk` counts the number of individuals in category ` of covariate k in the

treated group T . We change the definition so that instead dk` is equal to the number

of individuals in category ` of covariate k in the target group T ′:

dk` = |{τ ′t ∈ T ′ : νk(τ
′
t) = λk`}|

This mainly affects the algorithm through the quantities βk`, which give the covariate

imbalance at a particular category and are defined as follows:

βk` = m× dk` − |{(τt, κc) ∈M : νk(κc) = λk`}|

These βk` terms are used in Definition 2 of Section 2.4.2 to define refined covariate

balance. So in changing the dk` values we not only transform the algorithm but

broaden the definition of refined covariate balance, so that balance is now with respect

to a particular target distribution T ′. This leads to the following proposition;

Proposition 12 Given a target group T ′, if we alter the dk` values and associated
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βk` values as outlined above to obtain a new algorithm and a new definition of refined

covariate balance, then the new algorithm produces an optimal match with refined

covariate balance with respect to T ′.

Proof. The proof is identical to the optimality proof for the original algorithm,

except that we use the new definition for dk` and the resulting new definition of βk`.

Notice that the new version of the proof includes the old version as the special

case when T = T ′. However, it also shows the optimality of the modified algorithm

for matching under refined covariate balance with respect to any empirical covariate

distribution generated by T observations on ν1 × ν2 × . . .× νK .

A.2.3 Creating better separation on a prod

The balance constraints for the large, sparse optimal matching algorithm are de-

scribed by the decreasingly-important, increasingly-fine nominal covariates ν1, ν2, . . . ,

νK . When matching to create separation, these covariates could be formed by rele-

vant functions and interactions of x and η(x̃) (where η is defined as in Section 5.3

of the main paper). As in the original version of large, sparse matching with re-

fined covariate balance, the best choice of K and of the nested covariates ν1, . . . , νK

is highly application- and data-dependent, and researchers may need to experiment

with several different configurations to obtain acceptable balance results.

To improve observed separation on x̃, the researcher may find it useful to define

balance constraints not just in terms of the single function of x̃ described by η but in

terms of a series of such constraints η1, . . . , ηJ . For example, one might define a series

of J sets X ′j ⊂ X such that X ′1 ⊂ X ′2 ⊂ . . . ⊂ X ′J where X ′1 is the region from which

the researcher would most like controls to be selected and X ′2, . . . ,X ′J are regions from

which to select the controls if this is not possible, in decreasing order of preference.
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Then one could define new covariates

ηj(x̃i) =

 1 if x̃i ∈ Xj

0 otherwise

for j = 1, . . . , J and set the values of each ηj(x̃i) to 1 in the target distribution. These

covariates and their interactions with x would grant the researcher greater flexibility

in defining the balance constraints ν1, . . . , νK and might lead to better combinations

of x̃-separation and x-balance.

In the NHANES example of Section 3.1.2, we used the 5-level ordinal measure of

education and the continuous measure of socioeconomic status to define the following

desirable regions from which to draw controls:

X1 = income-to-poverty ratio above 2

X2 = income-to-poverty ratio above 2, high school graduate

X3 = income-to-poverty ratio above 4, some college

X4 = income-to-poverty ratio above 4, college graduate

We then enforced balance on a series of interactions of the resulting variables η1(x̃),

. . . , η4(x̃) with the balance covariates x. We controlled for η1 at an early, coarse

level in the balance hierarchy (to ensure most controls had at least a moderate level

of income) and added the other more stringent variables ηj at finer, less-prioritized

levels in the hierarchy (to ensure better-educated and wealthier controls were chosen

when available).
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