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Distributed Query Execution With Strong Privacy Guarantees

Abstract
As the Internet evolves, we find more applications that involve data originating from multiple sources, and
spanning machines located all over the world. Such wide distribution of sensitive data increases the risk of
information leakage, and may sometimes inhibit useful applications. For instance, even though banks could
share data to detect systemic threats in the US financial network, they hesitate to do so because it can leak
business secrets to their competitors. Encryption is an effective way to preserve data confidentiality, but
eliminates all processing capabilities. Some approaches enable processing on encrypted data, but they usually
have security weaknesses, such as data leakage through side-channels, or require expensive cryptographic
computations.

In this thesis, we present techniques that address the above limitations. First, we present an efficient
symmetric homomorphic encryption scheme, which can aggregate encrypted data at an unprecedented scale.
Second, we present a way to efficiently perform secure computations on distributed graphs. To accomplish
this, we express large computations as a series of small, parallelizable vertex programs, whose state is safely
transferred between vertices using a new cryptographic protocol. Finally, we propose using differential privacy
to strengthen the security of trusted processors: noise is added to the side-channels, so that no adversary can
extract useful information about individual users. Our experimental results suggest that the presented
techniques achieve order-of-magnitude performance improvements over previous approaches, in scenarios
such as the business intelligence application of a large corporation and the detection of systemic threats in the
US financial network.
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ABSTRACT

DISTRIBUTED QUERY EXECUTION

WITH STRONG PRIVACY GUARANTEES

Antonis Papadimitriou

Andreas Haeberlen

As the Internet evolves, we find more applications that involve data originat-

ing from multiple sources, and spanning machines located all over the world. Such

wide distribution of sensitive data increases the risk of information leakage, and may

sometimes inhibit useful applications. For instance, even though banks could share

data to detect systemic threats in the US financial network, they hesitate to do so

because it can leak business secrets to their competitors. Encryption is an effec-

tive way to preserve data confidentiality, but eliminates all processing capabilities.

Some approaches enable processing on encrypted data, but they usually have secu-

rity weaknesses, such as data leakage through side-channels, or require expensive

cryptographic computations.

In this thesis, we present techniques that address the above limitations. First,

we present an efficient symmetric homomorphic encryption scheme, which can ag-

gregate encrypted data at an unprecedented scale. Second, we present a way to ef-

ficiently perform secure computations on distributed graphs. To accomplish this,

we express large computations as a series of small, parallelizable vertex programs,

whose state is safely transferred between vertices using a new cryptographic protocol.

Finally, we propose using differential privacy to strengthen the security of trusted

processors: noise is added to the side-channels, so that no adversary can extract use-

ful information about individual users. Our experimental results suggest that the

presented techniques achieve order-of-magnitude performance improvements over
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previous approaches, in scenarios such as the business intelligence application of a

large corporation and the detection of systemic threats in the US financial network.
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1
Introduction

Privacy concerns are often a stumbling block to using sensitive data, in domains

like healthcare [93, 52], finance [66], and social science [104, 64]. Analysis of this

type of data can provide important insights, which could be used to provide high-

quality user experiences, or to assist social life in diverse ways. However, this data

conveys information regarding people’s private lives, or corporations’ business se-

crets. erefore, it is reasonable for involved parties to hesitate to contribute their

data for analysis, at least without getting strong guarantees that their data will not

be exposed.

Consider, for instance, the detection of systemic threats in a financial network.

Economists have come up with several algorithms to measure the risk of such

threats [61, 63], and these algorithms could facilitate the early detection and pre-

vention of events similar to the 2008 financial crisis. Unfortunately, these algorithms

are difficult to use in practice because they require access to sensitive data from all

financial institutions. Since this data reflects business secrets that give individual

banks their competitive advantage, no bank is willing to share this data, and such an

1



application has yet to be realized. Similar settings emerge in other domains too; for

example, users might be hesitant to contribute their medical history, even though

this could allow medical researchers, government agencies, or even the general

public, to understand nationwide health trends [93, 52].

ese privacy concerns are often aggravated by the way data is distributed among

many different parties. For example, in the applications described above, data may be

stored at multiple locations (e.g., banks, or user devices), queries may originate from

multiple sources (e.g., researchers, agencies), and computations may be executed

using one or more third-party cloud services. e security of such a distributed

system is as good as its weakest link, so security guarantees are harder to attain: even

if one of the servers involved gets compromised by an attacker, sensitive data of all

parties can be exposed.

erefore, the key question this dissertation tries to address is how to build dis-

tributed data analytics systems, that can perform queries without leaking sensitive

data, even when the involved parties are untrusted. ese systems should have two

important properties: (1) they should provide strong privacy guarantees, and (2)

they should have practical performance by today’s standards.

1.1 Existing approaches

One of the most widely-used ways of protecting the confidentiality of data is encryp-

tion. However, encryption severely limits the ways one can process ciphertext data.

In this section, we examine four existing approaches for running computations on

encrypted data.

e first approach is to use fully homomorphic encryption (FHE) [71]. FHE can be

used to perform any desired function directly on encrypted data. Despite being very

powerful, this scheme is not appropriate for our setting yet, because computations

on FHE ciphertexts are many orders of magnitude slower than plaintext computa-

tions [73, 74].
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Encrypted databases [138, 157, 118] is the second approach one could consider

using to run computations on encrypted data. Encrypted databases combine several

partially homomorphic encryption schemes to support a subset of SQL queries directly

on encrypted data. Unlike FHE, partially homomorphic schemes cannot support

general computations, but they are efficient enough to be practical in certain settings.

However, some of the encryption schemes used in encrypted databases have some

disadvantages – some of them provide weaker security guarantees, and some others

incur costs that render them inefficient for large databases.

e third way to run computations on untrusted machines is to use secret shar-

ing [148] and multi-party computation (MPC) [77, 30]. In a secret-sharing scheme,

data is split into N random shares, and each of the shares is given to a different party.

Secret sharing provides confidentiality when at most N−1 parties can collude in the

system (non-collusion assumption) because the data requires all N shares to recon-

struct. More importantly, the parties holding the shares can use an MPC protocol

to perform any desired computation directly on the distributed shares, without ever

decrypting the original value. Unfortunately, MPC protocols prevent information

leakage during the execution of the protocol; if the result of a computation is pub-

lished, sensitive information could still leak. Additionally, MPC quickly becomes

impractical for large computations or number of parties.

e final approach for processing encrypted data is trusted hardware [116]. In this

approach, secret cryptographic keys are integrated into the circuitry of a processor

during its manufacturing, and these keys are used to establish a trusted execution

environment (TEE) on an untrusted platform. Such an environment, sometimes

called a trusted enclave, makes sure that data is always encrypted before it leaves

the CPU boundaries, and access to the plaintext data inside the CPU is explicitly

protected by the hardware itself. Assuming that adversaries do not have the expertise

to decapsulate the CPU package and mount a circuit-probe attack (trusted hardware

assumption), trusted enclaves provide the guarantee that sensitive data is never visible

3



by untrusted software running on the same machine, no matter what its privilege

level is. In spite of making a stronger assumption, trusted hardware solutions seem

unable to deliver strong privacy guarantees either; recent attacks have shown that

they suffer from side-channel attacks [162, 42, 106], that is, attacks that exploit

data-dependent differences in the execution of a trusted enclave to infer sensitive

information.

1.2 Seabed

In Chapter 2, we target the setting of encrypted databases, where data and queries

come from a single trusted party. As explained earlier, encrypted databases use sev-

eral encryption schemes to support different kinds of operations on encrypted data.

In our work, we identify that the performance bottleneck of encrypted databases

lies in the asymmetric cryptographic scheme that enables additions on encrypted

data. To overcome the bottleneck, we describe additive symmetric homomorphic en-

cryption (ASHE), a scheme which leverages symmetric cryptographic primitives to

support much faster aggregation on encrypted data. Furthermore, we observe that

the efficiency of some of the remaining cryptographic schemes comes at the cost

of weakened security guarantees. Indeed, recent work [125] has shown how to ex-

ploit these weaker schemes: one can examine certain patterns that emerge in the

encrypted database, and use them to recover sensitive information. To mitigate this

problem, we devise a scheme called SPLASHE, which transforms the database in a

way that enables a large class of queries using only semantically secure encryption

schemes. is is enough to prevent the emergence of ciphertext patterns, and the

attacks described in [125].

We implemented these techniques in Seabed, a system that supports big data an-

alytics on encrypted datasets. Seabed introduces several optimizations to efficiently

handle performance costs associated with ASHE, as well as storage costs associated

with SPLASHE. We leveraged Seabed to implement an analytics application on an
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encrypted dataset from Microsoft’s Bing-Ads infrastructure. Our evaluation showed

that encryption in Seabed incurs minimal overhead (at most 44%) compared to the

plaintext version, whereas previous approaches would incur an overhead of about

one order of magnitude. Moreover, in this application, Seabed completely avoids

the use of weaker encryption schemes, thereby providing strong semantic security.

1.3 DStress

In the second part of the dissertation (Chapter 3), we consider the general setting,

where data and queries originate from multiple sources. In particular, we focus on

performing graph computations, where graphs are distributed across multiple par-

ties, but the computations require access to the entire graph. In this setting, we

make the non-collusion assumption, and use secret sharing to distribute the sensi-

tive graph data, and MPC to run graph computations on the secret-shares. To make

MPC scale for real-world graphs, we express complex graph computations as simple

vertex programs; these small programs are very efficient in MPC, and they can be

parallelized to speed up execution. To prevent the result of the graph computation

from leaking sensitive information about the graph, we add noise to the result, and

use differential privacy [60] to select the appropriate amount of noise, so as to get

strong privacy guarantees.

To evaluate this approach, we built DStress, a system for secure graph process-

ing that supports vertex programs. One challenge that comes up after breaking up

a large MPC graph computation in smaller vertex programs is that state has to be

transferred from one vertex to another outside the MPC protocol. is means that

some communication patterns may be visible to system participants, and could be

used to infer whether an edge exists in the graph. To mitigate this problem, we de-

vised a cryptographic protocol that transfers state between vertices, without revealing

the existence of edges. We evaluated the performance of DStress by running graph

algorithms that measure systemic risk in financial networks. DStress can perform
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these computations on the entire US financial network in just a few hours, without

leaking sensitive bank data to any participant. e same computation would take

years, if banks were to perform the large graph computation in one monolithic MPC

run.

1.4 Hermetic

Finally, in Chapter 4, we consider database query processing in the multiple-data-

source setting, and under the trusted hardware assumption. In joint work with Min

Xu and Ariel Feldman from the University of Chicago, we developed two techniques

that aim at closing the side channels of trusted processors.

e fist technique is to create an oblivious execution environment inside the

trusted CPU, which eliminates side channels that may leak sensitive information

to untrusted processes running in the trusted CPU. To accomplish this, we use a

trusted hypervisor to realize a private memory abstraction, where computations can

be performed with strict isolation.

Our second technique aims at defending against traffic-analysis attacks: recent

research has shown that observing the traffic produced by a distributed application

can leak information [129]. Unfortunately, even though such attacks could be ad-

dressed by always padding the output of programs to the maximum possible size,

this approach induces worst-case performance at all times – for example, join re-

sults should always have the cartesian product’s size. To avoid this overhead, we use

differentially private padding ; with this approach, one adds just enough fake records

to the result, so that the side channel is noised. e advantage of this approach is

that, with differential privacy, we can compute exactly how much noise we need to

get strong privacy guarantees, and, in practice, this noise turns out to be much less

than the worst-case maximum. Moreover, this introduces a tradeoff between perfor-

mance and privacy: the more noise we add, the better privacy is protected, and the

greatest the performance hit in query execution. erefore, in Chapter 4, we also
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present a query planner which finds optimal query plans in terms of both privacy

and performance.

To evaluate our design, we built a system called Hermetic, which uses the above

techniques. Min implemented the Hermetic hypervisor that realizes the private

memory abstraction, and provided an initial implementation of the relational prim-

itives from [13] that we based our work on. e Hermetic runtime that executes

queries and obliviously adds differentially-private noise to intermediate results, and

the privacy-aware planner of Hermetic were implemented by myself. We evaluated

our Hermetic prototype on a relational database of taxi trips with sensitive geoloca-

tion data, and we found out that Hermetic can complete a three-way join query in

about 15 minutes, whereas the same query on a system using full padding could not

complete in 7 hours. A paper with our results is currently in submission [133].

1.5 Contributions and road map

In this dissertation proposal, we make the following contributions:

• We introduce additive symmetric homomorphic encryption (ASHE) to enable

fast aggregation on encrypted data (Section 2.3.1).

• We describe splayed additive symmetric homomorphic encryption (SPLASHE)

to support an important class of aggregation queries without leaking informa-

tion (Section 2.3.3).

• We report on the implementation and evaluation of Seabed, a system that

leverages ASHE and SPLASHE to support big data analytics on encrypted

data (Sections 2.4 and 2.6).

• We present a way to express graph algorithms as vertex programs, so that we

can optimize their execution in MPC (Section 3.3.1).

• We detail a novel cryptographic protocol that can be used to transfer MPC

state between vertices, without leaking information about the topology of the

7



distributed graph to the participants of the computation (Section 3.3.5).

• We implement DStress, a system for privacy-preserving computations on sen-

sitive graphs distributed across multiple parties (Section 3.3), and we demon-

strate that breaking up the graph computations can bring great performance

benefits in real-world applications (Section 3.5).

• We describe how one can use a thin hypervisor to realize a private memory

abstraction on modern processors (Section 4.3).

• We use this private memory to implement relational operators whose outputs

can be padded with fake records based on principles from the differential pri-

vacy literature (Section 4.4).

• We show how differentially private padding creates new challenges in query

planning, and describe a query planner that can optimize query performance

and privacy (Section 4.5).

• We present the design of a system called Hermetic which uses the private mem-

ory abstraction and differentially-private padding (Section 4.6).

• We experimentally verify the security properties of an implementation of Her-

metic, and report on its performance characteristics (Sections 4.7 and 4.8).

e work on Seabed, i.e., the first three contributions, started as part of an intern-

ship at MSR India, and in collaboration with Ranjita Bhagwan, Nishanth Chandran,

Ramachandran Ramjee, Harmeet Singh, Abhishek Modi, and Saikrishna Badri-

narayanan. e results were first published in [134]. e work on DStress, i.e.,

the next three contributions, first appeared in [135]. Finally, the work on Hermetic,

i.e., the last five contributions, resulted from joint work with Ariel Feldman and

Min Xu from the University of Chicago; a paper with the results is currently in

submission [133].

8



2
Queries on data from a single source

2.1 Introduction

Consider a retail business that has customer and sales records from various store lo-

cations across the world. e business may be interested in analyzing these records –

perhaps to better understand how revenue is growing in various geographic locations,

or which demographic segments of the population its customers are coming from.

To answer these questions, the business might rely on a Business Intelligence (BI)

system, such as PowerBI [2], Tableau [5], or Watson Analytics [6]. ese systems

can scale to large data sets, and their turnaround times are low enough to answer

interactive queries from customers. Internally, they rely on the cloud to provide the

necessary resources at relatively low cost.

However, storing sensitive business data on the cloud can raise privacy concerns,

which is why many enterprises are reluctant to use cloud-based analytics solutions.

ese concerns could be mitigated by keeping the data in the cloud encrypted, so

that a data leak (e.g., due to a hacker attack or a rogue administrator) would cause
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little or no damage. Systems like CryptDB [138] and Monomi [157] can accom-

plish this by using a mix of different encryption schemes, including deterministic

encryption schemes [28] and partially homomorphic cryptosystems; this allows cer-

tain computations to be performed directly on encrypted data. However, this ap-

proach has two important drawbacks. First, these cryptosystems have a high com-

putational cost. is cost is low enough to allow interactive queries on medium-size

data sets with perhaps tens of gigabytes, but many businesses today collect terabytes

of data [31, 94, 105, 156]. Our experimental results show that, at this scale, even on

a cluster with 100 cores, it would take hundreds of seconds to process relatively sim-

ple queries, which is too slow for interactive use. Second, deterministic encryption

is vulnerable to frequency attacks [125], which can cause some data leakage despite

the use of encryption.

is Chapter makes two contributions towards addressing these concerns. First,

we observe that existing solutions typically use asymmetric homomorphic encryption

schemes, such as Paillier [132]. is is useful in scenarios where the data is produced

and analyzed by different parties: Alice can encrypt the data with the public key and

upload it to the cloud, and Bob can then submit queries and decrypt the results

with the private key. However, in the case of business data, the data producer and

the analyst typically have a trust relationship – for instance, they may be employees of

the same business. In this scenario, it is sufficient to use symmetric encryption, which

is much faster. To exploit this, we construct a new additively symmetric homomorphic

encryption scheme (or, briefly, ASHE), which is up to three orders of magnitude more

efficient than Paillier.

Our second contribution is a defense against frequency attacks based on auxiliary

information – a type of attack that has recently been demonstrated in the context of

deterministic encryption [125]. For instance, suppose the data contains a column,

such as gender, that can take only a few discrete values and that has been encrypted

deterministically. If the attacker knows which gender occurs more frequently in the
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data, she can trivially decode this column based on which ciphertext is the most

common. We introduce an encryption scheme called Splayed ASHE (SPLASHE),

that protects against such attacks by splaying sensitive columns to multiple columns,

where each new column corresponds to data for each unique element in the orig-

inal column. For columns with larger cardinality, SPLASHE uses a combination

of splaying and deterministic encryption padded with spurious entries to defeat fre-

quency attacks while still limiting the storage and computational overhead.

We also present a complete system called Seabed that uses ASHE and SPLASHE

to provide efficient analytics over large encrypted datasets. Following the design

pattern in earlier systems, Seabed consists of a client-side planner and a proxy. e

planner is applied once to each new data set; it transforms the plain-text schema into

an encrypted schema, and it chooses suitable encryption schemes for each column,

based on the kinds of queries that the user wants to perform. e proxy transparently

rewrites queries for the encrypted schema, it decrypts results that arrive from the

cloud, and it performs any computations that cannot be performed directly on the

cloud. Seabed contains a number of optimizations that keep the storage, bandwidth,

and computation costs of ASHE low, and that make it amenable to the hardware

acceleration that is available on modern CPUs.

We have built a Seabed prototype based on Apache Spark [4]. We report re-

sults from an experimental evaluation that includes running both AmpLab’s Big

Data Benchmark [1] and a real, advertising-based analytics application on the Azure

cloud. Our results show that, compared to no encryption, Seabed increases the query

latency by only 8% to 45%; in contrast, state-of-the-art solutions that are based on

Paillier (such as Monomi [157]) would cause an increase by one to two orders of

magnitude in query latency.

To summarize, we make the following four contributions in this Chapter:

• ASHE, an additive symmetric homomorphic encryption scheme that is three

orders of magnitude faster than Paillier (Section 2.3.1);
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Figure 2.1: Motivating scenario.

• SPLASHE, an encryption scheme that protects against frequency-based attacks

for fields that require deterministic encryption (Sections 2.3.3+2.3.4);

• Seabed, a system that supports efficient analytics over large-scale encrypted

data sets (Section 2.4); and

• a prototype implementation and experimental evaluation of Seabed (Sec-

tion 2.6).

2.2 Overview

Figure 2.1 shows the scenario we are considering in this Chapter. A data collector

gathers a large amount of data, encrypts it, and uploads it to an untrusted cloud plat-

form. An analyst can issue queries to a query processor on the cloud. e responses

will be encrypted, but the analyst can decrypt them with a secret key she shares with

the data collector.

e workload we wish to support consists of OLAP-style queries on big data

sets. As our analysis in Section 2.5 will show, these queries mostly rely on just a few

simple operations (sum, sum-of-squares, etc.), so we focus on these in our server-

side design. Our goal is to answer typical BI queries on large data sets within a few

seconds – that is, quickly enough for interactive analysis.
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2.2.1 Background

One common approach to solving the above problem is to use homomorphic encryp-

tion. For instance, there are cryptosystems with an additive homomorphism, such as

Paillier [132], which means that it is possible to “add” two ciphertexts C(x) and C(y)

to obtain a ciphertext C(x+ y) that decrypts to the sum of the two encrypted val-

ues. is feature allows the cloud to perform aggregations directly on the encrypted

data. ere are other systems with different homomorphisms, and even fully homo-

morphic systems [71] that can be used to compute arbitrary functions on encrypted

data (Section 2.7).

Homomorphic encryption schemes are typically randomized, that is, there are

many different possible ciphertexts for each value. ese schemes enjoy standard

semantic (or CPA) security, which informally means that no adversary can learn any

information about the plaintext, even given the ciphertext.

However, there are situations where it is useful to let the cloud see some property

of the encrypted values (property-preserving encryption). For instance, to compute

a join, the cloud needs to be able to match up encrypted values, which randomiza-

tion would prevent. In this case, one can use deterministic encryption [28], where

each value v is mapped to exactly one ciphertext C(v). However, such schemes are

susceptible to frequency attacks [125]: if a column can only take a small number of

values (say, country), and the cloud knows that some value (say, Canada) will be the

most common in the data, it can look for the most common ciphertext and infer

that this ciphertext must decrypt to that value. Another example of an operation

achievable by a property-preserving encryption scheme is selecting rows based on a

range of values (say, timestamps) in an encrypted column. Here, one can use an

order-preserving encryption (OPE) [36], which can be used to decide whether x < y,

given only C(x) and C(y). Obviously, if the cloud can perform the comparison, then

so can the adversary, so in these schemes, there is a tradeoff between confidentiality,

performance, and functionality.
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2.2.2 Threat Model

In this part of the dissertation, we resolve the above tradeoff in favor of confidentiality

and performance. We assume an adversary who is honest but curious (HbC), that is,

the adversary will try to learn facts about the data but will not actively corrupt data

or otherwise interfere with the system. We do, however, assume that the adversary

will attempt to perform frequency attacks as discussed above; this is motivated by

recent work [125], and it is the reason we developed SPLASHE.

We are aware that there are much stronger threat models that would prevent the

adversary from learning anything at all about the data. However, current solutions

for these models, such as using oblivious RAM [131, 76] and fully homomorphic

encryption, tend to have an enormous runtime cost (fully homomorphic encryp-

tion [71] causes a slowdown by nine orders of magnitude [73]). Our goal is to

provide a practical alternative to today’s plaintext-based systems (which offer very

little security), and this requires keeping the runtime overhead low.

2.2.3 Alternative approaches

As discussed in Section 2.2.1, one possible approach to this problem is to use ho-

momorphic encryption. is approach is taken by systems like CryptDB [138]

and Monomi [157], which use Paillier as an additive homomorphic scheme. While

Paillier is much faster than fully homomorphic encryption, it is still expensive. For

example, a single addition in Paillier on modern hardware takes about 4 µs (Sec-

tion 2.4), so the latency for operations on billions of rows can easily reach several

minutes.

An alternative approach is to rely on trusted hardware, such as Intel’s SGX [116]

or ARM’s TrustZone [15]. is approach has a much lower computational overhead,

but it introduces new trust assumptions that may not be suitable for all scenarios [49,

53]. It would be good to have options available that offer a low overhead without

relying on trusted hardware.
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2.2.4 Our approach

In Seabed, we solve this problem by replacing Paillier with a specially designed addi-

tively symmetric homomorphic encryption (ASHE) scheme. Since symmetric encryp-

tion schemes tend to be much more efficient than asymmetric schemes, this yields

a big performance boost (Section 2.4). Symmetric encryption imposes a restriction

that the encrypted data can only be uploaded by someone who has the secret key but

this is not a constraint for the typical BI scenario. us, the additional protections

of asymmetric cryptography are actually superfluous, and the performance gain is

essentially “free”.

Additionally, in order to protect against frequency attacks that occur when using

deterministic or order preserving encryption, we construct a randomized encryption

scheme − SPLayed ASHE, or SPLASHE that can still enable us to perform many

queries on encrypted data that in prior work required deterministic encryption, but

without leaking any information on frequency counts. Finally, for those queries that

SPLASHE cannot support (e.g., joins), we support deterministic and OPE schemes

that leak (a small amount of ) information about the underlying plaintext values; we

take this decision with the performance of the system in mind.

2.3 Seabed Encryption Schemes

In this section, we describe the ASHE and SPLASHE schemes in more detail. ASHE

and the basic variant of SPLASHE satisfy the standard notion of semantic security

(IND-CPA, that leaks no information about plaintext values) while the enhanced

variant of SPLASHE provably leaks no more information than the number of di-

mension values that occur frequently and infrequently in the database. A formal

security proof is available in Appendix A.1.
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2.3.1 ASHE

ASHE assumes that plaintexts are from the additive group Zn := {0,1, . . . ,n−1}. It

also assumes that the entities encrypting and decrypting a ciphertext (the sender and

the recipient, respectively) share a secret key k, as well as a pseudo-random function

(PRF) Fk : I → Zn that takes an identifier from a set I and returns a random number

from Zn.

One possible choice for the PRF is Fk := H(i ||k)modn for i ∈ I, where H is a

cryptographic hash function (when modeled as a random function), || denotes con-

catenation and the size of the range of H is a multiple of n. Another choice is AES,

when used as a pseudo-random permutation.

Suppose Alice wants to send a value m ∈ Zn to Bob. en Alice can pick an

arbitrary, unique, number i ∈ I – which we call the identifier – and encrypt the

message by computing:

Enck(m, i) := ((m−Fk(i)+Fk(i−1))modn,{i})

In other words, the ciphertext is a tuple (c,S), where c is an element of the group Zn

and S is a multiset of identifiers. Note that the ciphertext c consists of the plaintext

value m plus some pseudo-random component, hence it appears to be random to

anyone who does not know the secret key k.

To create the additive homomorphism, we define a special operation ⊕ for

“adding” two ciphertexts:

(c1,S1)⊕ (c2,S2) := ((c1 + c2)modn,S1 ∪S2)

at is, the group elements are added together and the multisets of identifiers are

combined. To decrypt the ciphertext, Bob can simply compute

Deck(c,S) := (c+∑
i∈S

(Fk(i)−Fk(i−1)))modn

us, after the homomorphic operation,

Deck(Enck(m1, i1)⊕Enck(m2, i2)) = (m1 +m2)modn
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Figure 2.2: Seabed components and the ASHE scheme.

Figure 2.2 gives a high-level overview of ASHE in the context of Seabed. We show

that the above scheme satisfies the standard notion of semantic (CPA) security in

Appendix A.1.1.

2.3.2 Optimizations for ASHE

e reader may wonder why the first element of the ciphertext is computed as (m−

Fk(i)+Fk(i− 1))modn and not simply as (m−Fk(i))modn. e reason is that we

have optimized ASHE for computing aggregations on large data sets. Suppose, for

instance, that Alice wants to give Charlie a large table of encrypted values, with the

intention that Charlie will later add up a range of these values and send them to Bob.

en Alice can simply choose the identifiers to be the row of numbers (1,2, . . . ,x).

Later, if Bob receives an encrypted sum (c,S) with S = {i, . . . , i+ t} (i.e., the sum of

rows i to i+ t), he can decrypt it simply by computing (c+Fk(i+ t)−Fk(i−1))modn,

since the other Fk values will cancel out. us, it is possible to decrypt the sum of a

range of values by evaluating the PRF only twice, regardless of the size of the range.

Other optimizations including managing ciphertext growth and use of AES en-

cryption support in hardware for efficient PRF computation are discussed in Sec-

tion 2.4.
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Figure 2.3: SPLASHE instead of deterministic encryption.

2.3.3 Basic SPLASHE

SPLASHE is motivated by frequency attacks on deterministic encryption [125]. Re-

call that, unlike ASHE, in deterministic encryption, there is only one possible ci-

phertext value for each plaintext value. is enables the server to perform equality

checks but also reveals frequency of items. e attacker combines the frequency of

ciphertexts with auxiliary information to decode them.

We begin by describing a basic version of our approach. Consider a column C1

that can take one of d discrete values and let the value of C1 in row t be C1[t]. If

we anticipate counting queries of the form SELECT COUNT(C1) WHERE C1=x, we can

replace the column C1 with a family of columns C1,1, . . . ,C1,d. When the value of

C1[t] is v, we set C1,v[t] = 1 and set C1,w[t] = 0 for w ̸= v. If the resulting columns are

encrypted using ASHE, the ciphertexts will look random to the adversary, but it is

nevertheless possible to compute the count: we can simply rewrite the above query

to SELECT SUM(C1,x) and then compute the answer using homomorphic addition.

A similar approach is possible for aggregations. Consider a pair of columns C1

andC2, whereC1 again takes one of d discrete values andC2 contains numbers that we

might later wish to sum up using a predicate on C1 (and possibly other conditions).

In other words, we anticipate queries of the form SELECT SUM(C2) WHERE C1=x.

In this case, we can split C2 into d columns C2,1, . . . ,C2,d. When C1[t] = v, we set
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C2,v[t] :=C2[t] and set C2,w[t] := 0 for w ̸= v. C1 and C2 can then be omitted. us, the

above query can be rewritten into SELECT SUM(C2,x), which can be answered using

homomorphic addition. An example of SPLASHE is shown in Figure 2.3 for C1 as

Gender and C2 as Salary.

2.3.4 Enhanced SPLASHE

Basic SPLASHE increases a column’s storage consumption by a factor of d, which is

expensive if d is large. Next, we describe an enhancement that addresses this.

Consider again a pair of columns C1 (say, country) and C2 (say, salary), where

C1 takes one of d discrete values and C2 contains numbers that we might later wish

to sum up using a predicate on C1. Suppose k of the d values are common (e.g.,

a Canadian company with offices worldwide but with most employees located in

USA or Canada; k = 2, d = 196). en we can replace C2 by k+1 columns – one for

each of the common values (salaryUSA and salaryCanada) and a single column for

the uncommon values (salaryOther). Figure 2.4 shows an example. As before, for

each row, we place the ASHE encrypted value of salary from C2 in the appropriate

salary column, while we fill the other k salary columns with ASHE-encrypted zeros.

We then encrypt C1 deterministically for each of the uncommon countries to enable

equality checks against encrypted values.

At this point it is possible to compute aggregations on C2 for all values v of C1:

if the value v is common (USA or Canada), we can compute a sum over the special

column for v; otherwise we can select the rows where country in C1 equals the de-

terministically encrypted value of v and compute the sum over salaryOther.

However, C1 now is susceptible to frequency attacks. To prevent this, in C1, we

ensure that all ciphertexts occur at the same frequency. How is this possible? Note

that the cells corresponding to common countries in C1 were so far unused. We

can reuse these cells to normalize the frequency count of the uncommon countries.

For these reused cells, since the corresponding values in the salaryOther column
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country salary
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Plaintext  Schema Schema  with  Enhanced  SPLASHE

Figure 2.4: Enhanced SPLASHE example.

are set to ASHE encrypted values of zero, this approach preserves correctness while

preventing frequency attacks.

When is this approach possible? Let n1 ≥ n2 . . .≥ nd be the number of occurrences

of each of the d values. en the number of splayed columns should be chosen to

be the minimum k such that ∑k
i=1 ni ≥ ∑d

i=k+1(nk+1 − ni) : this is because ∑k
i=1 ni

are enough unused cells in column C1 that can be used to make the number of

occurrences of all non-splayed values at least nk+1. Such a k will always exist; the

more heavily skewed the distribution of values is, the smaller the k will be, and the

more storage will be saved. is approach can be followed even if the exact number

of occurrences is unknown; we do, however, need to know the distribution of the

values.

Figure 2.4 shows an enhanced SPLASHE example with k = 2 and d = 9. Notice

how the first six rows of the deterministically encrypted column have been reused

to equalize the frequency of all elements in that column while still ensuring the

correctness of aggregation queries on any of the country predicates.

e reader can find a more detailed description of enhanced SPLASHE’s secu-
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rity properties in Appendix A.1.2. Briefly, enhanced SPLASHE satisfies simulation-

based security; the adversary learns only the number of rows in the database, and the

number of infrequently and frequently occurring values.

2.3.5 Limitations

ASHE: Homomorphic encryption schemes have traditionally been defined with

a compactness requirement, which says that the ciphertext should not grow with

the number of operations that are performed on it. is is done to rule out triv-

ial schemes: for instance, one could otherwise implement an additive “homomor-

phism” by simply concatenating the ciphertexts Enc(m1) and Enc(m2) and then have

the client do the actual addition during decryption. ASHE does not strictly satisfy

compactness, but the evaluator (the cloud) still does perform the bulk of the com-

putation on ciphertexts; also, the techniques in Section 2.4 ensure that the length of

ASHE’s ciphertexts does not grow too much.

In terms of performance, growing ciphertexts can create memory stress at the

workers. In the case of a system without encryption, the worker nodes only need

enough memory to hold the dataset. When using ASHE, the workers need to have

some extra memory to construct the ID lists. is should not be a big problem in

practice: as we will show in Section 2.6, the overhead is small enough for real-world

big data applications that involve billions of rows. Nevertheless, this extra memory

requirement can become a problem if workers have very limited memory, or if the

dataset is very large (e.g., if it has trillions of records).

SPLASHE: SPLASHE has three main drawbacks: (1) its requirement for a-priori

knowledge of query workload or data distribution, (2) its difficulty in handling data

with rapidly changing distribution, and (3) its storage overhead.

First, SPLASHE requires knowing what the expected query workload is. is is

because we need to confirm that the splayed column will not participate in joins or

inequality predicates – for such cases we need to fall back to deterministic encryption
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(DET). In addition, to get the storage reduction of enhanced SPLASHE, we need

to know the distribution of values that a column can take. If this information is not

available, only basic SPLASHE can be used.

Second, enhanced SPLASHE is most appropriate for columns whose distribu-

tion does not change dramatically. For columns whose distribution fluctuates sig-

nificantly, data insertions will start skewing the distribution of the DET column

(C1 in our example) away from the uniform distribution SPLASHE constructs. is

happens because a significant change in distribution will require reusing more cells

than those available in the rows that were previously common. However, even in

such an extreme case, SPLASHE is still better than using plain DET; DET reveals

the exact distribution of values, whereas SPLASHE reveals a noised version of it.

Finally, both basic and enhanced SPLASHE increase storage needs. Section 2.6.6

shows that a real-world ad analytics database can be supported with enhanced

SPLASHE at a storage overhead of about 10x.

2.4 Design

We now provide a functional overview of Seabed, and then describe each system

component in more detail. For simplicity, we describe the design using the example

of only one data source and one client. In practice, multiple data sources and users

can share the same system as long as they share trust.

2.4.1 Roadmap

Figure 2.5 shows the major components of Seabed. A user interacts with the Seabed

client proxy that runs in a trusted environment. e proxy in turn interacts with

the untrusted Seabed server. As with previous systems, Seabed is designed to hide

all cryptographic operations from users, so they interact with the system in the same

way as they would with a standard Spark system. e user can issue three kinds of

requests:
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Figure 2.5: Seabed system design

Create Plan: First, the user supplies a plaintext schema and a sample query set to the

Seabed planner. e planner uses these and the procedure specified in Section 2.4.2

to determine the encryption schemes for the columns.

Upload Data: Next, the user sends plaintext data to the Seabed encryption mod-

ule described in Section 2.4.3. e data is encrypted with the required encryption

scheme and records are appended to the table stored in the Cloud. is is a contin-

uing process; database insertions are handled in the same way.

Query Data: During analysis, the user sends a query script to the Seabed query

translator, which modifies queries to run on encrypted data before sending them to

the server (Section 2.4.5). e server runs the queries and responds to the proxy’s

decryption module (Section 2.4.6). After decryption and further processing (if any),

the results are sent back to the user.

2.4.2 Data Planner

e data planner determines how to encrypt each column in the schema, given a list

of sensitive columns by the user. e user also supplies a sample query set, which

is used by the planner to decide on the encryption algorithms. In addition, to use

enhanced SPLASHE, the user provides the number of distinct values each column
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can take and the frequency distribution of these values.

By parsing the sample query set, the planner first classifies each sensitive column

as a dimension, a measure, or both. A measure is a column (e.g., Salary) over which

a query computes aggregate functions, such as sum, average and variance. A di-

mension is a column (e.g., Country) that is used to filter rows based on a specified

predicate before computing aggregates. After the classification, the planner uses the

following strategies to determine which encryption schemes to use.

ASHE: If a sensitive measure is aggregated using linear functions, such as sum and av-

erage, we encrypt it using ASHE. If a sensitive measure is aggregated using quadratic

functions (e.g., variance), we compute the square of the values on the client side and

add it to the database as a separate column, so it can be used in computations on

the server side. Whenever we use ASHE on a column, we give a unique ID to each

row, which is used in the encryption as discussed in Section 2.3.1; to enable com-

pression, we assign consecutive row IDs. We choose a different secret key k for each

new column we encrypt.

SPLASHE: If a sensitive dimension is used in filters, and if no query uses joins on

this dimension, then the dimension is a candidate for SPLASHE. However, given

the storage costs, we determine whether to use SPLASHE for the dimension as fol-

lows. First, we determine the measure columns that are used in conjunction with

this dimension in the queries: only these measure columns need to be SPLASHE-

encrypted. Based on this subset of measure columns, the planner uses the algorithm

described in 2.3.4 to compute the storage overhead. en, if a user specifies a max-

imum storage overhead, the planner prioritizes the dimensions that use SPLASHE

based on their cardinality (lowest cardinal dimension first, in order to maximize

protection against frequency attacks). We show how this approach works with a real

dataset in Section 2.6.6.

DET orOPE: If a sensitive dimension cannot use SPLASHE – say, because it is used

as part of a join – we warn the user and then use deterministic encryption (DET). If
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Operation Time (nanoseconds)
AES counter mode 47
Paillier encryption 5,100,000

ASHE encryption/decryption 12-24
Plain addition 1

Paillier addition 3800
Paillier decryption 3,400,000

Table 2.1: Cost of operations on a 2.2 GHz Xeon core.

the dimension requires range queries in query filters, then we use order-preserving

encryption (OPE). We require an OPE scheme that works on dynamic data and

hence the OPE scheme of CryptDB [138] is not suitable in our case. We use the

recent scheme from [46], which is efficient (based on any PRF) and has low leakage:

for any two ciphertexts, in addition to the order of the two underlying plaintexts,

it reveals the first bit where the two plaintexts differ and nothing more. For more

details, please see Appendix A.1.

Note that some queries (such as averages) cannot be directly executed on the

server because they are not supported by Seabed’s encryption schemes. In such cases,

the Seabed planner borrows techniques from prior work [157] to divide the query

into a part the server can compute (e.g., a sum and a count), and a part that the

client/proxy will need to compute after decryption (e.g., the final division).

2.4.3 Encryption Module

e Encryption Module encrypts plaintext records into the encrypted schema. Note

that ASHE encryption and decryption are quite lightweight compared to Paillier

operations. As shown in Table 2.1, one AES counter operation (implemented using

hardware support on a Intel Xeon 2.2GHz processor) takes 47 ns whereas one Paillier

encryption takes 5.1 ms, a difference of five orders of magnitude. Hence, by using

ASHE instead of Paillier, we reduce the encryption load on the client significantly.

We optimize ASHE encryption and decryption further by using a single AES

operation to generate multiple ciphertexts. Each AES operation works on 128-bit
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vectors. Numeric data types are typically much smaller: 32-bit or 64-bit integers are

common. One AES operation can therefore generate two or four pseudo-random

numbers for 64-bit or 32-bit data types, respectively.

Also, note that unlike conventional cryptographic techniques, ASHE encryp-

tion and decryption are inherently parallelizable because multiple AES operations

can be computed simultaneously in a multi-core environment. We therefore run a

multi-threaded version of the encryption and decryption algorithm, and this further

reduces latency.

If the system needs a way to revoke the access privileges of individual users, the

proxy can additionally implement an access control mechanism, analogous to the

approach in CryptDB. Typically, revocation is difficult when symmetric encryption

schemes are used: once a symmetric key is shared, the only way to invalidate it is to

re-encrypt the data. However, since the proxy handles all queries, it does not need

to share the secret keys with the clients, so it can revoke or limit their access without

re-encryption.

2.4.4 Query Translator

e goal of the Query Translator is to intercept the client’s unmodified queries,

and rewrite them in a way appropriate for the schema of the encrypted dataset.

Our design follows the principles introduced by CryptDB and Monomi: we en-

crypt constants with the appropriate encryption scheme, and we replace operators

with the custom functions that implement ASHE aggregation, or DET/OPE checks.

One technical difference to the previous systems is that these operated on relational

databases, so both the source and target language of the translator was SQL. How-

ever, Seabed works on Spark, so the target language is Scala and the Spark API.

e Seabed Query Translator makes three additions to the query rewriting pro-

cess to accommodate the new encryption schemes it uses; we show examples for all

three in Table 2.2. First, the schema of the encrypted dataset in Seabed includes an

additional ID column. is column is necessary for ASHE aggregation, so the Query
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Query type Query

ID
preservation

SQL SELECT sum(tmp.a)
FROM (SELECT a FROM table WHERE b > 10) tmp

Spark API table.filter(x => x(2) > 10).
map(x =>x(1)).reduce((x,y) => x+y)

Seabed
table.filter(x => OPE.leq(x(2),EncOPE(10)).
map(x =>(x(id), x(1))).
reduce((x,y) => ASHE(x,y))

SPLASHE

SQL SELECT count(*) FROM table WHERE a = 10

Spark API table.filter(x=>x(1) == 10).count()

Seabed table.map(x=>(x(id),x(3))).
reduce((x,y)=>ASHE(x,y))

Group-by
optimization

(and ID
preservation)

SQL SELECT a, sum(b) FROM table GROUP BY a

Spark API table.map(x=>(x(1),x(2)).
reduceByKey((x,y)=>x+y)

Seabed
table.map(x=>(x(1)+":"+r.nextInt%10,(x(id),x(2))).
reduceByKey((x,y)=>ASHE(x,y))

Table 2.2: Examples of query translation. x(1) corresponds to table column a, x(2)
to b, x(3) to splayed a for value 10, and x(id) to the identifier column used by ASHE.

Translator preserves it even if the client has not explicitly done so in the projection

fields of the original SQL query. at way, Seabed can support aggregation on the

result of sub-queries. Second, for columns that use SPLASHE, Seabed follows the

rules outlined in Section 2.3 to rewrite queries. is implies that the client has to

maintain a small data structure with information about the splayed fields. Finally,

if the client enables our group-by optimization, which is described in Section 2.4.5,

the Query Translator may also modify the group-by fields of the query. is requires

that the client maintains some state about the expected number of groups in a query

result.
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Technique Example
Integer/List Encoding

Range encoding [2. . .14,19. . .23] [2-14,19-23]
Diff. encoding [2,3,4,9,23] [2,1,1,5,14]
Combination [2. . .14,19. . .23] [2-12,5-4]
VB-encoding Encoded with minimum

#bytes

Table 2.3: ID list encoding techniques used in Seabed.

2.4.5 Seabed Server

Performing aggregations using ASHE requires the server to manage growing cipher-

texts. is can result in need for large in-memory data structures and high band-

width. We now describe how we optimize these overheads.

Reducing ID list size: To keep the size of the ID list small, we evaluated several

integer list encoding techniques [107], including bitmaps [44], for good compres-

sion rates, low memory usage and high encoding speed. We eventually decided that

a combination of the techniques listed in Table 2.3 were the most appropriate for

Seabed. We begin with range encoding, which compresses contiguous sequences

of integers by specifying the lower and upper bound. Next, we apply differential

(Diff) encoding, which replaces the (potentially large) individual numbers with the

(hopefully small) difference to the previous number; the result of this second step is

labeled “Combination” in Table 2.3. Finally, we apply variable-byte (VB) encoding,

which uses fewer bytes to represent smaller numbers.

Variable-byte (VB) and differential encoding (Diff) strike a nice balance between

performance and compression and can be efficiently implemented in software.

Range encoding, i.e. describing contiguous integers by specifying the bounds of

their range, is not widely used in the literature because it can bloat up lists of

non-contiguous integers. In Seabed, though, data is uploaded to the server with

contiguous IDs, so range encoding can provide great benefits, especially for queries

that select a large portion of a dataset. In Section 2.6.4, we show how combining VB,

Diff, and range encoding reduces the size of the ID list and speeds up aggregation.
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Query set Total Purely on
Server

Client Pre-
processing

Client Post-
processing

Two
Round-trips

Ad Analytics 168,352 134,298 0 34,054 0

TPC-DS 99 69 2 25 3

MDX 38 17 12 4 5

Table 2.4: Different categories of queries that Seabed supports.

Reducing server-to-client traffic: Every Spark job consists of one driver node and

several worker nodes. e workers send their partial results to the driver which then

aggregates and sends the combined result to the client. To further reduce the size

of ID lists, we applied standard compression. However, there are two options here:

applying compression at the worker nodes or applying compression after aggregation

at the driver node. e latter can lead to higher compression rates, but we found that

this caused a bottleneck at the driver. Instead, we found that applying compression

at each of the worker nodes benefits from parallelization and results in lower overall

latency.

Handling group-by queries: Group-by queries are in general challenging for

ASHE, because all row IDs are included in the final result, which can grow quite

large. Moreover, using range encoding seems to incur unnecessary costs for group-

by queries: when the result of a group-by query contains many groups, the ID lists

of each group tend to be very sparse. As we noted earlier, range encoding is wasteful

for sparse ID lists, so we decided to use only VB and Diff encoding for group-by

queries.

Group-by queries lead to one more complication: when the number of groups

in the result is small, the traffic between mapper and reducer workers becomes a

bottleneck. ere are two underlying reasons for this. First, with few groups, the ID

list of each group becomes denser, and not using range encoding starts to show up.

Second, when the number of groups is less than the available workers, some reducers
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Dataset Rows Dimen-
sions

Measu-
res

Disk size (GB)

NoEnc Seabed Paillier

Synthetic - Large 1.75B - 1 35.4 70.4 521.1

Synthetic - Small 250M - 1 5 9.8 74.2

BDB - Rankings 90M 1 2 7.9 12 58.3

BDB - User Visits 775M 8 2 194.9 287.5 673.6

BDB - Query 4,
Phase 2

194M 2 1 35 38.3 88.3

Ad Analytics 759M 33 18 132.3 142.45 176.3

Table 2.5: Characteristics and disk size of our synthetic dataset, the Big Data Bench-
mark (BDB) and the Ad Analytics dataset (AdA).

will remain idle in the reduce phase. is means that more data (because of denser

ID lists) is shuffled between fewer workers (because of idle workers). is can create

a bottleneck for very large datasets where ID lists are large.

To make use of more worker nodes in the reduce phase and to mitigate the above

effect, we artificially increase the number of returned groups. We accomplish this by

appending a random identifier to each value of the group-by column. For example

(table 2.2), if a query returns 10 groups {g1, . . . ,g10}, and there are 100 workers

available, then we can append a random identifier to the group-by column, which

takes values from 0 to 9. is means that the result will contain 10∗10 = 100 groups

{g1:0, . . . ,g1:9, . . . ,g10:0, . . . ,g10:9}, the computation will utilize all available workers

in the reduce phase, and we will avoid the bandwidth bottleneck. Of course, the

client has to perform the remaining aggregations to compute the sum of the actual

groups (e.g., add results for groups {g1:0, . . . ,g1:9} to get the result for group g1).

As a heuristic, we inflate the number of groups to the number of available workers

when we expect fewer groups than workers.
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Dataset Rows Dimen-
sions

Measu-
res

Memory size (GB)

NoEnc Seabed Paillier

Synthetic - Large 1.75B - 1 84.7 121.9 638.6

Synthetic - Small 250M - 1 12.1 17.7 91.4

BDB - Rankings 90M 1 2 18.6 28.1 80.4

BDB - User Visits 775M 8 2 581 832.5 1269.4

BDB - Query 4,
Phase 2

194M 2 1 73.5 86.5 140

Ad Analytics 759M 33 18 1004 1027.3 1254.4

Table 2.6: Characteristics and memory size of our synthetic dataset, the Big Data
Benchmark (BDB) and the Ad Analytics dataset (AdA).

2.4.6 Decryption Module

e Decryption Module uncompresses the ID lists, uses the techniques from Sec-

tion 2.4.3 to calculate the pseudo-random numbers to add to the encrypted value,

and returns the result to the user. If the query has some part that cannot be com-

puted at the server, the Decryption Module can additionally perform that part before

presenting the final answer to the user. Since we have assumed that the adversary is

honest but curious, the Decryption Module performs no integrity checks; thus, an

active adversary could return bogus data without being detected by Seabed itself.

e decryption cost of ASHE depends on the number of aggregated elements;

this is different from Paillier, which requires only one decryption for each aggregate

result. However, Paillier decryption is five orders of magnitude slower than ASHE

decryption (Table 2.1), and the overall client decryption costs for Seabed remain

smaller than Paillier (Section 2.6).
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2.5 Applications

An important question is whether Seabed supports a wide range of big data analytics

applications. To understand this, we performed three studies. First, we systemat-

ically analyzed two common interfaces that BI applications use at the back-end:

MDX (the industry standard) and Spark. Second, we evaluated a month-long query

log made on a custom-designed advertising analytics OLAP platform to determine

how effectively Seabed can support the functionality of these systems. Finally, we

analyzed the TPC-DS query set. Detailed results of our MDX/Spark analysis can

be found in Appendix A.2. Briefly, the analysis revealed that Seabed’s functionality

support falls into four categories:

Support fully on the server: Seabed’s encryption techniques can fully support oper-

ations with no client support. Examples of such operations are computing the sum,

average, count, and min.

Support with client pre-processing: Seabed can support quadratic computation

necessary for more complex analytics such as anomaly detection, linear regression in

one dimension, and decision trees that are supported by Watson Analytics [6] and

Tableau [5]. To support this, the Seabed client has to compute squared values of the

necessary columns, and encrypt them with ASHE.

Support with client post-processing: All applications and APIs we studied allow

users to specify arbitrary functions of data. When these functions are complex,

Seabed cannot perform them at the server and data has to be post-processed at the

client. is is similar to how Monomi splits queries into server- and client-side com-

ponents.

Support with two client round-trips: Some queries require the client to com-

pute an intermediate result, re-encrypt it and send it back to the server for further

processing.

Table 2.4 shows the numbers of queries that fall into these categories for the three
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query sets we analyzed. We analyzed the MDX API/TPC-DS query set manually;

for the ad analytics query set, we used heuristics based on the query structure. For Ad

Analytics and TPC-DS, about 75-80% of the queries can be supported purely on the

server. is implies that these query sets mostly use simple aggregation functions.

About 20-25% need client-side support. e TPC-DS query set and MDX API

have a few queries (5-15%) that require two round-trips.

2.6 Evaluation

In this section, we report results from our experimental evaluation of Seabed. Ta-

ble 2.5 summarizes the datasets used in our experiments. We evaluate the system

with microbenchmarks (Synthetic), an advertising analytics data workload and query

set (AdA), and the AmpLab Big Data Benchmark (BDB).

Our evaluation has two high-level goals. First, we evaluate the performance ben-

efits of Seabed over systems that use the Paillier cryptosystem. Second, we quantify

the performance and storage overhead incurred by Seabed as compared to a system

with no encryption.

2.6.1 Implementation and Setup

We built a prototype implementation of Seabed on the Apache/Spark platform [4]

(version 1.6.0). We chose Spark because of its growing user-base and performant

memory-centric approach to data processing. e server-side Seabed library was

written in Scala using the Spark API. e Seabed client uses Scala combined with

a C++ cryptography module for hardware accelerated AES (with Intel AES-NI in-

structions). We implemented Paillier in Scala using the BigInt class. Data tables

are stored in HDFS using Google Protobuf [3] serialization. In total, our Seabed

prototype consists of 3,298 lines of Scala and 2,730 lines of C++.

Our experiments were conducted on an Azure HDInsight Linux cluster. e

cluster consists of tens of nodes, each equipped with a 16-core Intel Xeon E5 2.4
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GHz processor and 112 GB of memory. Machines were running Ubuntu (14.04.4

LTS) and job scheduling was done through Yarn. In our experiments, we compare

the following system setups:

NoEnc: Original Spark queries over unencrypted data,

Paillier: Modified Spark queries over encrypted data; measures are encrypted using

Paillier, and dimensions with DET and/or OPE, and

Seabed: Modified Spark queries over encrypted data; measures are encrypted using

ASHE, and dimensions with DET and/or OPE.

For our microbenchmarks, we generated a synthetic dataset (see Table 2.5). e

NoEnc and Paillier datasets consist of one column of plaintext integers and 2048-

bit ciphertexts, respectively. e ASHE dataset consists of two columns: an ID and

an integer value encrypted with ASHE (IDs are contiguous). In order to model

predicates that choose selected rows of a table, we use a parameter called selectivity

that varies between 0 and 1 and use it to choose each row randomly with the corre-

sponding probability. Note that this random selection model allows us to study the

various system trade-offs in these schemes, e.g., the total length of ID lists, and it

also enables us to understand the worst-case behavior. (At first glance, a query that

selects all even or odd rows may appear to be the worst case for Seabed, since range

encoding with such a non-contiguous set of IDs will double the size of the resulting

ID list. However, in this case, the ID list is in fact highly compressible because the

differences between consecutive IDs is always two, so stock compression techniques

work very well.)

All experiments, unless otherwise mentioned, used 100 cores and 1.75 billion

rows of input data. For end-to-end results, we place the client in one of the nodes

in the same cluster as the server. us, by default, the client is connected by a high-

speed, low-latency link to the server (TCP throughput of 2 Gbps). However, we

also perform experiments by varying this bandwidth (using the tc command).
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Figure 2.6: Median latency for aggregation vs data size.

2.6.2 Microbenchmark: End to End Latency

We first compare end-to-end latency for the three approaches with varying input

sizes (250 million to 1.75 billion rows). In Figure 2.6, we show the median latency

after running 10 queries for each input size. For Seabed, we show two lines: one with

selectivity 100% and the other with selectivity 50%. We shall show in Section 2.6.4

that the former gives best-case latency while the latter gives worst-case latency for

Seabed. For NoEnc and Paillier, we use a selectivity of 100% (their performance is

linear with respect to selectivity).

Figure 2.6(a) shows the results for NoEnc and Seabed. NoEnc has a constant

latency of approximately 0.6s. is is because addition is a simple operation and

the overall latency is dominated by task creation costs. Seabed’s aggregation is more

complex, so latency for both Seabed selectivity 50% and 100% increases linearly with

the dataset size. Nevertheless, the cost of aggregation in Seabed is still small even for

large datasets, varying between 1.8s to 11s in the worst-case as the number of rows

increase. On the contrary, Paillier results in a latency of over 1000s when aggregating

1.75 billion rows.

For Seabed selectivity 100%, about 80% of time is due to server-side compute,

20% is due to client-side decryption, and network latency is minimal. For Seabed
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selectivity 50%, the server-side contributes 55% of the latency, the decryption con-

tributes 35% and network transfer contributes the remaining 10%.

We observed occasional stragglers, i.e., tasks that took longer to complete and

delayed the entire job, for all three systems. e underlying cause of these stragglers

was usually garbage collection being triggered at some node in the cluster. Pail-

lier jobs took several hundreds of seconds to complete, so the comparative effect of

stragglers was small. However, NoEnc and Seabed jobs took only few seconds at the

server, so whenever there was a straggler task, the delay was more pronounced.

2.6.3 Microbenchmark: Server Scalability

One important aspect of big data systems is how they scale with larger clusters. Since

using a larger cluster can only speed up the server side, we consider server-side latency

as we evaluate Seabed’s scalability. Fixing the dataset at 1.75 billion rows, we varied

the number of cores from 10 to 100. Figure 2.7 shows how Seabed, NoEnc and

Paillier scaled with the number of cores. NoEnc reached its best latency, which is

approximately 1s, with 20 cores. Both Seabed selectivity 100% and Seabed selectivity

50% achieved their best latency of 1.35s and 8.0s respectively with only 50 cores.

Even with 100 cores, Paillier’s server latency was close to 1000s, which is more than

two orders of magnitude higher than Seabed’s. is implies that, for large datasets,

Paillier would require increasing the number of cores by orders of magnitude in order

to achieve latencies that are comparable to Seabed. Seabed’s overhead over NoEnc

primarily comes from managing the ID lists. Next, we look into this in more detail.

2.6.4 Microbenchmark: Seabed Overhead

In this section we examine the server-side overheads incurred by Seabed’s ASHE and

the use of OPE.

ASHE list construction: For ASHE, the server manages ID lists using a variety of

compression techniques (Section 2.4). In this experiment, we show how these com-

36



 0

 5

 10

 15

 20

 25

 30

 0  20  40  60  80  100

Number of workers (cores)

(a) Server-side latency (s)
(NoEnc & Seabed)

NoEnc
Seabed - sel=100%
Seabed - sel=50%

 0

 5000

 10000

 15000

 20000

 25000

 0  20  40  60  80  100

Number of workers (cores)

(b) Server-side latency (s)
(Paillier)

Paillier

Figure 2.7: Median latency for aggregation vs cores.
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Figure 2.8: Result size vs selectivity over 1.75 billion rows.

pression techniques perform. e bitmap algorithms performed poorly, so we omit

them here for brevity. We varied selectivity from 10% to 100%, and we measured

the size of the ID list and the server-side response time of the query. We report the

results in Figure 2.8 and 2.9.

Figure 2.8 suggests that range encoding is very effective in bounding the length

of the ID list: without it, the size of ID list would keep increasing as the selectivity

of a query increases, whereas with ranges the list size starts decreasing after selectivity

50%. After this, IDs start to become more dense and therefore more consecutive,

leading to best-case compression at selectivity 100%. We can also see that the com-
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Figure 2.9: Response time vs selectivity over 1.75 billion rows.
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Figure 2.10: Response time vs selectivity over 1.75 billion rows, for OPE.

bination of VB and Diff-encoding is very effective in reducing the size of the ID list,

and Deflate compression [54] further reduces the size of the list.

e performance hit incurred by each encoding method is depicted in Figure 2.9.

To our advantage, we found that, in all cases except with Deflate optimized for high

compression ratio, the better-performing algorithms also provided more compressed

ID lists. Based on the above, we picked the following combination of encodings as

the ID list construction algorithm in Seabed: Range-encoding, VB encoding, Diff-

encoding, and Deflate compression (optimized for speed). is is what we used for

all the other experiments.

OPE: e OPE scheme we use introduces some overhead because comparison be-
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Figure 2.11: Microbenchmark results for group-by queries.
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Figure 2.12: Response time for the Big Data Benchmark queries (part 1).

tween OPE ciphertexts is not as fast as comparing two plaintext integers. is is

because OPE comparison involves searching for the first bit position where two 64-

bit integers differ.

To measure the cost of OPE, we used the same synthetic dataset as for ASHE

with 1.75 billion rows, but we added one more integer column encrypted with OPE.

We repeat the selectivity experiment above, but with the query performing an OPE

comparison. Figure 2.10 indicates that OPE introduces more overhead, of about a

factor of 5s, compared to the ASHE ID list construction.
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Figure 2.13: Response time for the Big Data Benchmark queries (part 2).

2.6.5 Microbenchmark: Group-by

So far, we have evaluated only simple aggregation queries that involved minimal

network communication: each Spark worker computes a sum and a compressed ID

list per partition, and the reducers concatenate the lists into the final result. While

aggregation is a major component of analytical query workloads, many queries also

use the group-by operation, which causes more data to be shuffled across workers.

In this section, we examine how Seabed performs for queries that involve group-by.

For this experiment, we used the synthetic dataset from the previous sections,

but we added one more integer column. We then aggregated the value field while

doing a group-by on the new column. We varied the number of groups from 10 to

1 million; Figure 2.11 shows the results.

e Seabed line shows the performance we get when we use VB and Diff-

encoding for group-by queries. A very small number of groups in the result (10

in Fig. 2.11) leads to increased latency because of the bandwidth bottleneck de-

scribed in Section 2.4.5. e Seabed-optimized line shows that we can effectively

deal with this inefficiency by artificially increasing the number of groups to 100

(Section 2.4.5).
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Since all IDs are included in the result, Seabed group-by queries involve a signif-

icant amount of data shuffling. As a consequence, the benefits Seabed enjoys when

compared to Paillier are lower. Yet, Seabed (optimized) does seem to be faster than

Paillier by 5x to 10x. As the number of groups increases, Seabed’s gain over Paillier

drops from 10x to 5x. is is because the network shuffle time becomes a more

significant part of the server response time. is indicates that Seabed will be less

effective for group-by queries with a huge number of groups (hundreds of millions),

something we observe in Section 2.6.6.

2.6.6 Ad-Analytics Workload

To assess the performance of Seabed on real-world data and queries, we evaluated

it using the AmpLab Big Data Benchmark [1] and using a real-world large-scale

advertising analytics application. We begin with a discussion of the latter.

For this series of experiments, we used data from an advertising analytics appli-

cation deployed at an enterprise. is application is used by a team of experts for

analytical tasks such as determining behavioral trends of advertisers, understanding

ad revenue growth, and flagging anomalous trends in measures such as revenue and

number of clicks. e data characteristics are shown in Table 2.5. We also ob-

tained a set of queries that were performed for this application; this set consists of

168,352 queries issued between Feb 1, 2016 and Feb 25, 2016. e queries are

all aggregations that calculate sums of various measures while grouping by times-

tamp (hour-of-day). e number of groups in a typical query is quite small, varying

between 1 and 12 in most cases.

Performance: We first evaluated Seabed’s performance on this dataset. We pick a

set of 15 queries: five queries each for groups of size 1, 4, and 8. We ran each query

ten times, and we calculated the median response time per query. All experiments

were run with 100 cores.

Figure 2.14(a) shows the cumulative distribution function of response times for

NoEnc, Seabed and Paillier. Seabed’s response time ranges from 1.08 to 1.45 times
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that of NoEnc. e median response time for Seabed is 17.8s, whereas for NoEnc

it is 13.8s. us Seabed’s response time is only 27% higher than NoEnc’s. On

the other hand, the median response time for Paillier is 6.7× that of Seabed. To

understand this result in more detail, we looked at the characteristics of the query

responses. e average number of rows aggregated for a query across all groups

was 210 million, the average size of the ID list was only 163.5KB, and the average

number of AES operations required for decryption was roughly 26,000. is shows

that there is a lot of contiguity of IDs in the ASHE ciphertext lists. erefore, while

queries could theoretically choose rows at random and thus create huge ID lists, our

real-world dataset shows that this does not necessarily happen in practice: the data

is stored in a certain order, and Seabed benefits from that order.

In all our experiments, the Seabed client used a high-bandwidth link to connect

to the server. To measure the effect of lower-bandwidth and higher-latency links,

we artificially changed the network bandwidth/latency between server and client to

100Mbps/10ms and 10Mbps/100ms. is increased the median response time by

only 1% in the former case and 12% in the latter case, as the ID lists that need to

be transferred are quite small.

Storage: We also used this dataset to quantify SPLASHE’s overall storage overhead.

rough conversations with operators, we determined that 10 out of 33 dimensions
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and 10 out of 18 measures require encryption. We used the procedure outlined in

Section 2.3.4 to calculate the storage overhead for these 10 dimensions.

Figure 2.14(b) shows the cumulative storage overhead for each of the 10 dimen-

sions in our dataset, sorted by the number of unique values in the dimension. e

graph shows that if we restrict the storage overhead to a factor of two, we can encrypt

only one dimension with Basic SPLASHE, whereas we can encrypt two dimensions

with Enhanced SPLASHE. With a storage overhead of three, we can encrypt only

three dimensions with Basic SPLASHE, whereas we can encrypt 6 with Enhanced

SPLASHE. In this case, roughly 92% of all queries involve at least one column that

uses enhanced SPLASHE.

2.6.7 AmpLab Big Data Benchmark

e AmpLab benchmark includes four types of queries (scan, aggregation, join and

external script). Some of them come in different variants based on the result/join

size, so there are ten queries in total. For this experiment we used 32 cores and

loaded the entire Big Data Benchmark dataset (table 2.5) into the workers’ memory.

We measured the time to perform the query and store the results back into cache

memory. Since the Big Data Benchmark is not designed for interactive queries, most

of the result sets are huge and cannot fit into one machine’s memory. Hence, for this

section we do not measure the client-side cost of any of the compared systems.

We had to make a few simplifications to the query set in order to support it.

Queries 2 and 4 require substring-search over a column and a text file, respectively.

Existing searchable encryption techniques do not efficiently support this operation.

Hence we simplified query 2 by matching over deterministically encrypted prefixes,

and we simplified query 4 by keeping the text file as plaintext. Query 3 involves

sorting based on aggregated values; since this can only be done on the client, and

given that we measured only server-side overhead in this experiment, we omitted the

sorting step.
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Figures 2.12 and 2.13 show the results. Query 1 does not use group-by or aggre-

gation, so all tested systems had much faster response times. Both Seabed and Pail-

lier were slower than NoEnc because of OPE overheads. On the remaining queries

Seabed was consistently faster than Paillier, though not as much as we had shown

in Sections 2.6.2 and with the Ad Analytics workload. is is because the queries

results contained millions of groups and, as we saw in Section 2.6.5, Seabed is slower

on result sets with a very small or a very large number of groups. Nevertheless, the

results show that Seabed is better than Paillier even for these workloads and is close

to NoEnc performance for most queries.

2.7 Related Work

Homomorphic Encryption. Homomorphic encryption allows computations to

be performed on encrypted data such that the computed result, when decrypted,

matches the result of the equivalent computation performed on unencrypted data.

e first construction of a fully homomorphic scheme that allows arbitrary computa-

tions on encrypted data was shown in [71]. However, fully homomorphic schemes

are far from practical even today. For example, the amortized cost of performing

AES encryption homomorphically is about 2s [74] but this is still 108 times slower

than AES over plain text (Section 2.4).

ere are also partially homomorphic schemes that allow selected computations

on encrypted data. For example, Paillier [132] allows addition of encrypted data

while BGN [37] supports one multiplication and several additions. However, these

schemes incur significant cost in terms of both computation and storage space. Al-

gorithms to reduce storage overhead by packing multiple integer values into a single

Paillier encrypted value are proposed in [70] and implemented in [157].

Encrypted databases. CryptDB [138] leverages partially homomorphic encryption

schemes to support SQL queries efficiently over encrypted data, and Monomi [138]

introduced a split client-server computation model to extend support for most of
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the TPC-H queries over encrypted data. However, as we show in this Chapter, the

partially homomorphic encryption schemes used in CryptDB and Monomi are not

efficient enough to support interactive queries when applied to large datasets.

Trusted hardware. Hardware support for trusted computing primitives, such as

Intel SGX [116], secure co-processors [87], and FPGA-based solutions [14], are

available today. ese solutions allow client software to execute in the cloud without

providing visibility of client data to the cloud OS. Several prior systems – such as

Cipherbase [14], TrustedDB [18], M2R [55] and VC3 [147] – rely on secure trusted

hardware to provide privacy-preserving database or MapReduce operations in the

cloud.

e use of trusted hardware has the potential to provide secure computations at

minimal performance overhead. However the client has to trust that the hardware

is free of errors, bugs, or backdoors. It is difficult to confirm that this is indeed

the case, since errors can be introduced in both the design of the hardware and

in the fabrication process, which is frequently outsourced [88]. In fact, hardware

backdoors have been found in real-world military-grade hardware chips [151], and

hardware trojan detection is an active research field in the hardware community [32].

We believe that it is useful to develop alternatives that rely only on cryptographic

primitives.

Frequency attacks on property-preserving encryption. Property-preserving en-

cryption schemes by definition leak a particular property of the encrypted data. For

example, deterministic encryption [28] leaks whether two ciphertexts are equal, and

order-preserving encryption [36] leaks the order between the ciphertexts. Naveed

et al. [125] used auxiliary information and frequency analysis to show that one can

infer the plain text from ciphertexts that have been encrypted using such property-

preserving encryption schemes.
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2.8 Conclusion

We have described Seabed, a system for performing Big Data Analytics over En-

crypted Data. We have introduced two novel encryption schemes: ASHE for fast

aggregations over encrypted data, and SPLASHE to protect against frequency at-

tacks. Our evaluation on real-world datasets shows that ASHE is about an order

of magnitude faster than existing techniques, and that its overhead compared to a

plaintext system is within 45%.
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3
Queries under the non-collusion assumption

3.1 Introduction

In the age of “big data”, it is well known that many interesting things can be

learned by collecting and analyzing large graphs, and a number of tools – including

GraphLab [110], PowerGraph [78], and GraphX [79] – have been developed to

make such analyses fast and convenient. Typically, these tools assume that the user

has a property graph G (that is, a graph that has some data associated with its vertexes

and/or edges) and wishes to compute some function F(G) over this graph and its

properties. A common assumption is that there is a single entity that knows the

entire graph G and is therefore able to compute F(G) directly.

However, there is another class of use cases where the graph G contains sensitive

information and is spread across multiple administrative domains. In this situation,

each domain knows only a subset of the vertexes and edges, so it cannot compute

F(G) on its own, but the domains may not be willing to share their data with each

other because of privacy concerns.
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One interesting real-world instance of this problem is the computation of systemic

risk in financial networks [8]. Motivated in part by the financial crisis of 2008, this

topic has recently seen a lot of interest in the theoretical economics literature. Briefly,

economists have discovered that one of the causes for the crisis was a “snowball effect”

in which a few initial bankruptcies caused the failure of more and more other banks

due to financial dependencies. In theory, it would be possible to quantify the risk of

such a cascading failure by looking at the graph of financial dependencies between

the banks, and in fact economists have already developed a number of metrics [61,

63] that could be used to quantify this “systemic” risk, and to ideally give some early

warning of an impending crisis.

However, in practice, the required information is extremely sensitive because it

directly reflects the business strategy of each bank. It is so sensitive, in fact, that banks

would prefer not to share it even with the government. is is why current audits

(such as the annual “stress tests” that were introduced after the crisis, e.g., by the

Dodd-Frank Act in the United States) are strictly compartmentalized, so that each

auditor is only allowed to look at the data of one particular bank. is provides some

basic security, but it is not sufficient to discover complex interdependencies, which

would require looking at data from all the banks. is is why, in a recent working

paper [66], the Office of Financial Research (OFR) has started investigating ways to

perform system-wide stress tests while protecting confidentiality.

One possible approach would be to use secure multiparty computation (MPC) [163],

which would enable the banks to collectively evaluate a function F(G) over their

combined financial data – say, one of the existing systemic risk measures [61, 63].

However, there are two challenges with this approach. e first is performance:

MPC does not scale well to large numbers of parties or complex computations. As

we will show, computing systemic risk with a straightforward application of MPC

would literally take many years.

e second, and somewhat more subtle, challenge is privacy: MPC only guar-
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antees that no one can learn the intermediate results of the computation. However,

even the final result (the value of F(G)) can reveal information about the underlying

graph G, especially in the presence of auxiliary information. To see this intuitively,

imagine using MPC to compute the average weight of the people in a room. is

will not reveal the weight of any single individual, but the adversary can still infer

the presence of a team of sumo wrestlers by looking only at the final result. A similar

concern arises in the context of financial data [66, §4.2].

In this Chapter, we present a system called DStress that can efficiently analyze

graphs that are spread across thousands of administrative domains, while giving

strong, provable privacy guarantees on both the topology of the graph G and the

data it contains. DStress supports vertex programs, a programming model that is

also used in Pregel [112] and Graphlab [110], two popular frameworks for non-

confidential graph computations. It addresses the first challenge with a special graph-

computation runtime that can execute vertex programs in a distributed fashion, us-

ing MPC and a variant of ElGamal encryption for transferring data between do-

mains, and it addresses the second challenge by keeping intermediate results en-

crypted at all times, and by offering differential privacy [60, 58] on the final result.

We have built a prototype of DStress, and we have evaluated it using two

systemic-risk models from the theoretical economics literature. Our results show

that these models could be evaluated on the entire U.S. banking system in less than

five hours on commodity hardware, using about 750 MB of traffic per bank. In

Appendix B.3, we also show that the use of differential privacy (which was already

suggested by the OFR working paper [66]) does not significantly diminish the util-

ity of the systemic risk measure. In summary, this Chapter makes the following

three contributions:

• DStress, a scalable system for graph analytics with strong privacy guarantees

(Section 3.3);

• an application of DStress to privately measuring systemic risk in financial net-
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works (Section 3.4); and

• an experimental evaluation, based on a prototype implementation of DStress

(Section 3.5).

3.2 Overview

We consider a scenario with a group of N participants Pi, i = 1, . . . ,N that each know

one vertex vi of a directed graph G, as well as a) the edges that begin or end at vi, and

b) any properties associated with vi. e participants wish to collectively compute a

function F(G), such that:

• Value privacy: e computation process does not reveal properties of vi to

participants other than Pi;

• Edge privacy: e computation process does not reveal the presence or ab-

sence of an edge (vi,v j) to participants other than i and j; and

• Output privacy: e final output F(G) does not reveal too much information

about individual vertexes or edges in G.

In the scenarios we are interested in, the number of parties N is on the order of

thousands; for instance, the number of major banks in the U.S. banking system is

about N = 1,750.

3.2.1 Background: Systemic risk

To explain how financial networks fit this model, we now give a very brief introduc-

tion to systemic risk. Since this is a complex topic, we focus on the aspects that are

most relevant to DStress; for more details, see [39, 66, 33].

Banks and other financial institutions, as part of their regular business with

clients, are exposed to risk. We can think of this risk as a specific abstract event xi –

such as a drop in house prices – that, if it happened, would cause bank b to lose a

certain amount of money yi. us, b’s balance sheet has exposure of the form: (if xi
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then −yi). To prevent a buildup of excess exposure to any single future event, b can

in advance create derivatives on event xi and sell part of this exposure to other banks

(presumably for a fee). We can think of these derivatives as “insurance contracts”

that specify that a certain sum will be due if and when a particular event occurs.

us, if b bought “insurance” against xi from another bank that pays zi, b’s exposure

would now be: (if xi then zi − yi). More complicated forms of derivatives also

exist.

Banks regularly reinsure their risk by buying additional derivatives from other

banks. e result is a network of dependencies that spans the entire financial sector.

We can think of this as a graph G that contains a vertex for each bank and an edge

(b1,b2) whenever b1 has sold a derivative to b2. Vertexes would be annotated with the

liquid cash reserves of the corresponding bank, and edges would be annotated with

the payment that is due in each event. Using this graph, it is possible to essentially

simulate what would happen if a particular event were to occur – including possi-

ble cascading failures, where the initial bankruptcy of a few critical banks causes a

“domino effect” that eventually affects a large fraction of the network. e expected

“damage” (and thus the systemic risk) can then be measured in a variety of ways –

e.g., as the amount of money the government would need to inject in order to stabi-

lize the system. In Section 3.4, we discuss two concrete models from the economics

literature in more detail.

3.2.2 Strawman solutions

One obvious way to compute the systemic risk would be to create an all-powerful

government regulator that has access to the financial data of all the banks. How-

ever, this does not seem practical, since banks critical rely on secrecy to protect their

business practices [8]. Currently, regulatory bodies that deal with less sensitive in-

formation about individual banks already have extremely restrictive legal safeguards

and multiple levels of oversight [66, §3.1].
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Another potential approach, first suggested by [8], would be to use multi-party

computation (MPC) [163]: one could design a circuit that takes each bank’s books

as inputs, executes the simulation in MPC, and finally outputs the desired measure

of risk. is approach would be more palatable for the banks, since they would not

need to reveal their secret inputs. However, the circuit would be enormous: even

the simplest models of contagion in the literature essentially require raising a N ×N

matrix to a large power, where N is the number of banks (i.e., about 1,750). Despite

recent advances in MPC, such as [35, 43, 47, 166], evaluating such a large circuit

with N = 1,750 parties is far beyond current technology.

e cost of MPC could be reduced somewhat by delegating the computation

to a smaller number of parties, as in Sharemind [35] or PICCO [166]. However,

this approach would do nothing to reduce the size of the circuit, and, given the

high stakes involved, the number of parties would still need to be large – the largest

collusion case reported in the literature involved 16 banks [144]!

As discussed earlier, none of these approaches would provide output privacy, and

this would be a serious concern, since the final output (i.e., the current level of

systemic risk) could be enough for some of the banks to make inferences about the

graph, particularly if they already know some of the other edges and vertexes.

3.2.3 Our approach

Our approach is based on two key insights. Our first observation is that much of

the enormous cost of the MPC-based strawman comes from the fact that the graph

is itself confidential and therefore must be an input to the computation. We can

get around this by formulating the function F as a vertex program – that is, as a

sequence of computations at each vertex that are interleaved with message exchanges

over the edges – and by executing it in a distributed fashion. is is safe because

each participant already knows the edges that are adjacent to her vertex; the main

challenge is to prevent information leakage through intermediate results. In DStress,
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we accomplish this with a combination of secret sharing, small MPC invocations

for the computations at each vertex, and a special protocol for transferring shares

without revealing the topology of the graph.

Our second key insight is that we can use differential privacy [60] to achieve

output privacy. Differential privacy provides strong, provable privacy guarantees,

which should be reassuring to the banks. Its main cost is the addition of a small

amount of random noise to the output, but, since we are looking for early warnings

of large problems, a bit of imprecision (e.g., a shortfall of $1 billion is reported as

$0.95 billion) should not affect the utility of the results. If a potential problem is

detected, a more detailed investigation could be conducted outside of our system.

3.3 The DStress system

We begin by briefly reviewing three technologies that DStress relies on: differential

privacy, secure multiparty computation, and ElGamal encryption.

Differential privacy: DStress is designed to provide differential privacy [60], one

of the strongest known privacy guarantees. Differential privacy has a number of

features that are attractive in our setting, such as protection against attacks based on

auxiliary data (which have been the source of several recent privacy breaches [20,

123, 26]), strong composition theorems, and a solid mathematical foundation with

provable guarantees.

Differential privacy is a property of randomized queries – i.e., the query computes

not a single value but rather a probability distribution over the range R of possible

outputs, and the actual output is then drawn from that distribution. is can be

thought of as adding a small amount of noise to the output. Intuitively, a query is

differentially private if a small change to the input only has a statistically negligible

effect on the output distribution.

More formally, let I be the set of possible input data sets. We say that two input

data sets d1,d2 ∈ I are similar (and we write d1 ∼ d2) if they differ in at most one
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element. en, a randomized query q with range R is ε-differentially private if, for

all possible sets of outputs S ⊆ R and all input data sets d1,d2 ∈ I with d1 ∼ d2,

Pr[q(d1) ∈ S]≤ eε ·Pr[q(d2) ∈ S].

at is, any change to an individual element of the input data can cause at most a

small multiplicative difference (eε) in the probability of any set of outcomes S. e

parameter ε controls the strength of the privacy guarantee; smaller values result in

better privacy. For more information on how to choose ε, see, e.g., [85].

A common way to achieve differential privacy for queries with numeric outputs is

the Laplace mechanism [60], which works as follows. Suppose q̄ : I → R is a determin-

istic, real-valued function over the input data, and suppose q̄ has a finite sensitivity s

to changes in its input, i.e., |q̄(d1)− q̄(d2)| ≤ s for all similar databases d1,d2 ∈ I. en

q := q̄+Lap(s/ε), i.e., the combination of q̄ and a noise term drawn from a Laplace

distribution with parameter s/ε, is ε-differentially private. is corresponds to the

intuition that the more sensitive the query, and the stronger the desired guarantee,

the more “noise” is needed to achieve that guarantee.

Secure multiparty computation: DStress relies on secure multiparty computation

(MPC) to perform certain steps of the graph algorithm it is running. MPC is a way

for a set of mutually distrustful parties to evaluate a function f over some confidential

input data x, such that no party can learn anything about x other than what the

output y := f (x) already implies. In the specific protocol we use (GMW [77]), each

party i initially holds a share xi of the input x such that x =⊕ixi (in other words, the

input can be obtained by XORing all the shares together), and, after the protocol

terminates, each party similarly holds a share yi of the output y = f (x). e function

f itself is represented as a Boolean circuit. GMW is collusion-resistant in the sense

that, if k+1 parties participate in the protocol, the confidentiality of x is protected

as long as no more than k of the parties collude.

ElGamal encryption: For reason that will become clear later, DStress requires an
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encryption scheme with two unusual properties: an additive homomorphism and a

way to re-randomize public keys. Both can be elegantly accomplished using a variant

of ElGamal [62]. e original ElGamal scheme consists of three functions: a key

generator, an encryption and a decryption function. ese functions are defined over

some cyclic group G. Assume G is of order q and has a generator g ∈ G. ElGamal’s

key generator function returns a random element x ∈ Zq as the secret key, and a

public key h = gx. Moreover, given a public key h and a message m, the encryption

function picks a random y ∈ Zq (sometimes called an ephemeral key) and returns the

ciphertext c = (gy,m · hy) = (gy,m · gxy). Given a ciphertext c = (c1,c2), and a secret

key x, the decryption function first computes s = cx
1 = gxy, then s−1 = c(q−x)

1 = gy(q−x)

and finally returns the recovered plaintext as c2 · s−1 = mgxygqy−xy = mgqy = m.

ElGamal itself has a multiplicative homomorphism: if we encrypt two messages

m1 and m2 and multiply the two ciphertexts together, the result decrypts to the prod-

uct m1 ·m2. However, this can be turned into an additive homomorphism using a

small trick, which is to encrypt not the message m itself but rather gm. e result-

ing scheme (exponential ElGamal [50]) ensures that the product of two ciphertexts

gm1 ·gm2 = gm1+m2 now decrypts to the sum of the underlying messages. e down-

side is that there is no easy way to go back from gm to m – but, if the number of valid

messages is small enough, the recipient can use a lookup table to decrypt: simply

precompute gc for all candidate messages c and compare the results to the gm she re-

ceived. Exponential ElGamal also satisfies our second requirement: if gx is a public

key, we can re-randomize it by raising it to some value r, yielding a new public key

gxr. If a message is encrypted with this new public key, it will not decrypt with the

original private key x; however, this can be fixed by raising the ephemeral key in the

ciphertext to r as well. Notice that both operations (re-randomizing the public key

and adjusting ciphertexts) can be performed without knowledge of the private key

x.
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3.3.1 Programming model

DStress is designed to run vertex programs. A vertex program consists of (1) a graph

G := (V,E); (2) for each vertex v ∈ V , an initial state s0
v and an update function fv;

(3) a number of iterations n; (4) an aggregation function A; (5) a no-op message ⊥;

and (6) a sensitivity s. DStress executes such an algorithm as follows. First, each

vertex v is first set to its initial state s0
v. Next, DStress performs a computation step by

invoking the update function fv for each vertex, which outputs a new state s1
v and,

for each neighbor of v in G, exactly one message. (If more messages need to be sent,

they can be included in one larger message.) When v has no data to send to some

neighbor, it outputs the no-op message ⊥ instead; this is necessary to avoid leaking

information through its communication pattern. e computation step is followed

by a communication step, in which each vertex sends its messages along the edges to

its neighbors; the recipients then use the messages as additional inputs for their next

computation step. After n computation and communication steps, DStress performs

a final computation step and then invokes the aggregation function A, which reads

the final state of each node and combines the states into a single output value. Finally,

DStress draws a noise term from a Laplace distribution Lap(s/ε) and adds it to the

output value, which yields result of the computation.

e vertex programming model is quite general; there are other systems that

implement it – such as Pregel [112] – and it can express a wide variety of graph

algorithms. Not all of these algorithms have privacy constraints, but there are many

that do; for instance, cloud reliability [165], criminal intelligence [153, 100], and

social science [104, 40, 64] all involve analyzing graphs that can span multiple ad-

ministrative domains.

3.3.2 Threat model and assumptions

DStress relies on the following five assumptions:

1. e nodes are honest but curious (HbC), i.e., they will faithfully execute
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DStress but try to learn as much about the graph as they can;

2. e nodes do not have enough computational power to break the crypto-

graphic primitives we use;

3. ere is an upper bound k on the number of nodes that will collude;

4. ere is a (publicly known) upper bound D on the degree of any node in the

graph; and

5. ere is a trusted party (TP) that knows the identities of all the nodes in the

system and can perform some simple setup steps. (e TP can be offline and

never sees any private information.)

Assumption 1 may seem counterintuitive at first, especially in our systemic-risk case

study, which involves valuable financial data. However, recall that banks are already

heavily audited and inspected in most countries. ese audits are compartmental-

ized, so they cannot be used to measure systemic risk directly; however, they could

certainly be used to verify that each bank has input the correct data and has executed

DStress correctly.

Assumption 2 is standard for virtually all protocols that use cryptography; it

implies that DStress offers computational differential privacy [120]. Assumption 3

seems plausible for the banking scenario because of antitrust laws that prevent large-

scale collusion between banks; for other applications, the bound k could be chosen

based on the largest observed instance of collusion, plus a safety margin. Assump-

tion 4 is in accordance to economic incentives described in [48], which suggest that

the financial network is not fully connected. An example of an institution that sat-

isfies assumption 5 is the Federal Reserve.

3.3.3 Basic operation

When executing an algorithm, DStress runs on a distributed set of nodes, and it maps

each vertex in the graph to a specific node that will provide the initial state for that

vertex and that will coordinate the corresponding computation and communication
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steps. Unlike the (logical) vertexes, which communicate over edges in the graph,

the (physical) nodes can communicate directly over a network, such as the Internet.

We expect that, for privacy reasons, each participant would want to operate its own

node, so that it does not have to reveal its initial state to another party.

To prevent privacy leaks, DStress must not allow any node to see intermediate

states of the computation – not even that of their own vertex, since it may have

changed based on messages from other vertices. Hence, DStress associates each node

i with a set Bi of other nodes that we refer to as the block of i. e members of the

block each hold a share of the vertex’s current state, and they use MPC to update

the state based on incoming messages. To prevent colluding nodes from learning

the state of a vertex, each block contains k+1 nodes, where k is the collusion bound

we have assumed.

A key challenge is to enable vertices to communicate without weakening security

or revealing the structure of the graph. If (i, j) is an edge in the graph and i wants to

send a message m to j, then the members of block Bi, who would each hold a share

of m after the MPC that generated it, cannot simply send their shares of m to the

members of block B j, since that would reveal the existence of the edge (i, j) to both

blocks. To avoid this problem, DStress redirects all communication between blocks

Bi and B j through the nodes i and j, who already know that an edge exists between

them. To prevent i and j from reconstructing m, all shares are encrypted, and we

use ElGamal’s key re-randomization feature to prevent the senders from learning the

identities of the recipients through their public keys.

3.3.4 One-time setup step

Before DStress can be used with a new graph, it is necessary to perform a one-time

setup step. is step has two different purposes. First, it associates each node i

with a block Bi that contains k+1 different nodes, including i. is is necessary to

prevent curious nodes from filling their own blocks with Sybil identities or with mul-

58



tiple instances of the same node, which would weaken DStress’s collusion-resistance.

Second, it equips each block Bi with D different sets of public keys. is is necessary

to prevent colluding neighbors of i from identifying members of Bi based on their

public keys.

e setup step is coordinated by the trusted party (TP). e TP begins by asking

each node i for a) i’s public ElGamal key, and b) D different neighbor keys ni
1, . . . ,n

i
D,

which i can choose arbitrarily from Zq. e TP then randomly picks a list of members

for i’s block Bi and publishes σTP({(k,Bk)}k=1..|V |,BA) – that is, a list of nodes and their

blocks that is signed with the TP’s private key. (Note that this list does not contain

information about edges and thus reveals nothing about the structure of the graph.)

BA is a special block that is used for aggregation (Section 3.3.6); its k+ 1 members

are also chosen randomly by the TP.

Next, the TP generates D block certificates for each block Bi. A block certificate

is a tuple Ci, j := σTP(g
x1ni

j ,gx2ni
j , . . . , gxDni, j), that is, it contains one public key for

each member of the corresponding block, but the keys in the j.th certificate for

node i are re-randomized using the j.th neighbor key from node i. e TP signs

each of the D block certificates and then sends them to node i, who forwards each

certificate to a different neighbor. (If i has fewer than D neighbors in the graph, it

simply discards the leftover certificates.) Finally, each node i distributes the block

certificates it has received from its neighbors to the members of its own block Bi,

but without identifying the specific neighbor – i only tells the members of Bi which

certificate is for its first neighbor, its second neighbor, and so on.

Once this step is completed, the TP is no longer needed and can leave the system.

Notice that the TP has never learned the topology of the graph.

3.3.5 Message transfer protocol

Next, we describe how the block certificates can be used to securely send messages

along edges of the graph. Since the details of the full protocol are somewhat com-
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Figure 3.1: A message transfer example between two blocks of three nodes. [. . . ] j′x
denotes a ciphertext encrypted with the randomized public key of jx, and [. . . ] jx
denotes a ciphertext encrypted with the original key.

plicated, we start with a simple but flawed strawman protocol and then derive the

full protocol in several steps.

Recall that, at the end of each computation step, each node i sends a message

mi, j (possibly the no-op message ⊥) to each neighbor j in the graph. Since the

computation step is performed in MPC, at the end of the step each member of

i’s block Bi holds one share of mi, j, such that the message can be reconstructed by

XORing all the shares together. ese shares must be transferred to the members of

B j, who then use them as inputs to j’s’ next computation step.

Strawman #1: Each x ∈ Bi picks a different public key from j’s block certificate and

encrypts its share sx of mi, j with this key. en the members of Bi forward their encrypted

shares to i, who forwards them to j. j adjusts the ephemeral keys in the ciphertexts using

the neighbor key ni, j and then forwards them to the members of B j, who decrypt them

and thus each obtain one share of mi, j.

is approach prevents the members of Bi and B j from learning about each other

directly: all communication is via i and j, and the members of Bi only see the re-

randomized public keys of the members of B j, so they cannot identify the latter by

recognizing their public keys. However, this approach weakens collusion resistance:

if the same node n happens to be a member of both Bi and B j, or if two nodes n1 ∈ Bi
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and n2 ∈ B j collude, they can potentially learn two shares. To prevent this, we make

the following change:

Strawman #2: Like strawman #1, except that each x ∈ Bi splits its share sx into k+ 1

subshares sx,1, . . . ,sx,k+1 such that sx =⊕y=1..k+1sx,y and then encrypts a different subshare

for each member of B j.

As long as the secret-sharing scheme is associative and commutative, the members of

B j can obtain valid (but different) shares of mi, j simply by combining all the subshares

they receive. is change also restores collusion resistance: as long as both Bi and

B j have at least one member that does not collude, the colluding nodes will always

miss at least one share, namely the one that is sent between the two non-colluding

nodes. However, if n1 ∈ Bi and n2 ∈ B j collude, they can still infer the presence of

edges by recognizing subshares: n1 can use some external channel to tell n2 about

the subshares it has sent, and if n2 subsequently receives one of them, they can infer

that their blocks are connected by an edge. We fix this as follows:

Strawman #3: Like strawman #2, except that each member of Bi breaks its subshare

into individual bits and encrypts each bit separately. e encrypted bits are forwarded

through i as before, but, rather than forwarding them to j directly, i uses the homomor-

phic addition in exponential ElGamal to combine the corresponding bits from different

subshares. is yields the encrypted sum of bits of the shares, which j then forwards to

B j. Members of B j decrypt the sums and set their bit share to 0 iff the sum is even.

is approach almost meets our requirements, since the recipients never see the

senders’ original subshares and thus cannot recognize them. However, because the

homomorphic operation is an addition and not an XOR, the encrypted “bits” that

arrive at B j are actually numbers that correspond to the number of ones in the orig-

inal subshares. is leaks some information about the original shares. To see why,

consider the (extreme) case where the adversary controls k of the k+1 nodes in both

Bi and B j, and wishes to learn whether the edge (i, j) exists. Suppose that, during

some particular communication step, the subshares of the adversary’s nodes in Bi for
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each of the D messages add up to S1, . . . ,SD, respectively. If the adversary’s nodes in

B j then receive only sets of shares that add up to less than Sn−1 or more than Sn+1

for all 1 ≤ n ≤ D, then the adversary knows that none of the received messages could

have come from Bi, so the edge (i, j) cannot exist. Conversely, if, over the course of

many communication steps, the adversary’s nodes in B j always receive some set of

shares that add up to Sn ±1 for some n, the adversary can be increasingly confident

(though never completely certain) that the edge (i, j) does exist. If the adversary con-

trols fewer than k of the k+1 nodes in Bi and/or B j, the risk of the adversary learning

something about (i, j) in any particular communication step diminishes, but it never

completely disappears. We mitigate this risk by making one final change:

Final protocol: Like strawman #3, except that i homomorphically adds an even random

number from 2 ·Geo(α
2

k+1 ) to each encrypted bit before forwarding it to B j via j, where

Geo is the geometric distribution1 as described in [75] and α is a parameter in (0,1).

is preserves correctness: the recipients will receive an even (but otherwise ran-

dom) number if and only if it would have received a zero bit using strawman #3.

However, the adversary’s chances of learning something useful have diminished dra-

matically: the sum of bits is now noised, and it is very hard for the adversary to

extract information from this side-channel. In fact, as [75] shows, the application

of geometric noise provides ε-differential privacy, where ε = − lnα. is way, we

can maintain a privacy budget to keep track of what the adversary learns and make

sure that the probability of an edge leaking is minimal. For details regarding the

sensitivity analysis and differential privacy guarantees of the protocol, please refer to

Appendix B.2.

e overall effect is that, for each edge (i, j) in the graph, the members of block

Bi can transfer the shares of a message to the members of block B j such that a) no

group of k or fewer colluding nodes can learn the contents of the message, and that

b) edge privacy (Section 3.2) is maintained. Appendix B.1 includes a formal proof
1e geometric distribution is a discretized version of the Laplace distribution, which is widely

used in differential privacy.
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of the first property and Appendix B.2 a detailed discussion of edge privacy.

3.3.6 Executing a program

Next, we describe how DStress executes a program. For simplicity, we focus only

on the algorithm and ignore practical challenges, such as fault tolerance; these chal-

lenges are orthogonal and can be addressed with existing techniques. Recall that each

execution has n computation and communication steps, followed by aggregation and

noising.

Initialization step. DStress maintains the invariant that, at the beginning of each

computation step, each member of a node i’s block Bi has 1) a share of the current

state of i’s vertex, and 2) shares of D input messages, which can either be messages

of i’s neighbors or instances of the no-op message ⊥. To make this invariant true at

the first step, each node i starts by loading the initial state of its local vertex, as well

as D copies of ⊥ (since there are no real messages yet), and splits each of them into

|Bi| shares, one for each member of its block Bi.

Computation step. In each computation step, the members of each block Bi use

MPC to evaluate the update function of the corresponding vertex vi. e circuit has

inputs for the D input messages and the current state of vi, as well as outputs for

D output messages and the new state of vi. (If the degree of the vertex is less than

D, some of the messages are copies of ⊥.) Note that both inputs and outputs of an

MPC step remain shared among the members of the block and are never revealed to

any individual node.

Communication step. In this step, DStress invokes the protocol from Section 3.3.5

to send each message along the corresponding edge of the graph. Because each di-

rected edge is used to send exactly one message, a node can immediately proceed

to the next computation step once it has received a message from each of its in-

neighbors; there is no need for global coordination.

Aggregation+noising step. Once n computation and communication steps have
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been performed, each block Bi holds shares of vertex vi’s final state. Next, DStress

evaluates the aggregation function A on the final states, using the special aggrega-

tion block BA. Each block sends its state shares and some random shares to BA; the

members of BA then use MPC to a) evaluate A on the states; b) combine the random

shares to get a random input seed, c) draw a noise term from Lap(s/ε) using the

seed; and d) output the sum of that term and the result of A. e simplest way to

implement this is to use a single aggregation block, but this could become a bottle-

neck for larger graphs; in this case, the aggregation can be performed hierarchically,

using a tree of aggregation blocks.

3.3.7 Limitations

DStress currently executes a fixed number of iterations. Dynamic convergence

checks are problematic from the perspective of differential privacy because the num-

ber of rounds is itself disclosive and would need to be treated as an additional output.

However, if the number of rounds is chosen conservatively, this restriction will cost

some performance but should not affect correctness.

DStress is limited to executing vertex programs that a) can be expressed as

Boolean circuits, and b) have a known, finite sensitivity bound. e first limitation

exists because DStress uses MPC to execute the computation steps; it effectively

means that the update functions cannot have dynamic loop bounds or unbounded

recursion. e second limitation currently prevents ad-hoc queries, but we speculate

that DStress could be augmented with automated sensitivity inference, e.g., using

linear type systems [82, 67] or a system like CertiPriv [21]. Sensitivity inference

for graphs is considered challenging, but the community is making progress with

systems like wPINQ [139], which can automatically derive the sensitivity for an

important class of graph algorithms. Also, one can find algorithms with known

sensitivity in the differential privacy literature (e.g., in [96]), as we did for the two

algorithms we used in section 3.4.4.
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DStress’s current design assumes a single bound D on the degree of each vertex

in the financial network. If, despite the evidence in [48], the maximum degree

was very large, this would slow down our algorithm. However, one could avoid

this by dividing the vertexes into buckets based on their approximate degree – e.g.,

one bucket for vertexes with fewer than 100 neighbors and another for the rest.

is would reveal a small amount of information about the degree of each bank

(which would probably be heavily correlated with the bank’s size), but in return,

the MPC block computations for most banks would be much faster than if a single

conservative degree bound were used for all banks.

3.4 Case studies

In this section, we describe two different models of financial contagion from the eco-

nomics literature, and we show how they can be implemented in DStress to compute

a measure of systemic risk.

3.4.1 Metrics and Privacy Guarantees

We follow a recommendation from the OFR working paper [66, §4.3] and mea-

sure systemic risk as the total dollar shortfall (TDS) – that is, the amount of extra

money that the government would need to make available to prevent failures if the

contracted event were to occur. It would perhaps be more intuitive to compute the

number of banks that fail, but TDS has two key advantages. First, it is more mean-

ingful because it can distinguish between a small shortfall such as $10,000 (which,

in a large bank, is easily fixed) and a large, more serious shortfall such as $10 billion.

Second, it is a better fit for differential privacy. It is well known that the answer to

many questions about graph-shaped data can change radically when even a single

edge is added or removed, and thus such questions cannot be answered with differ-

ential privacy. However, the TDS is an exception: adding or removing edges does

not disproportionally affect the TDS [84].
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e privacy guarantee that results when we add noise to the TDS is called dollar-

differential privacy; it was first introduced in [66]. In this model, the sensitive data

we are protecting consists of the investment portfolios of all the banks, and we con-

sider two data sets d1,d2 to be similar (d1 ∼ d2) if one can be transformed into the

other by reallocating at most T dollars in a single portfolio. is means that an ad-

versary can increase her knowledge about the contribution of financial institutions,

whose aggregate positions are under T dollars, up to a small multiplicative factor ε.

Note that dollar-differential privacy is different than edge-differential privacy,

which is the guarantee provided by the message transfer protocol of DStress. Ap-

pendix B.2.1 describes that the overall privacy guarantee of DStress is that adversaries

can increase their knowledge about individual positions with value up to T by a small

multiplicative factor.

3.4.2 The Eisenberg-Noe Model

Our first model, from Eisenberg and Noe [61], considers banks holding debt con-

tracts from and to other banks. A stress test based on this model would first, based on

some hypothetical future scenario2, compute a netted exposure graph on a bilateral

basis between the banks, as is done in per-bank stress tests today. After computing

each bank’s contractual obligations, this would result in a graph of payments be-

tween the banks. en, each bank’s liquid reserves plus incoming payments (i.e.,

debts paid by other banks) would be compared to its total debt. If the debts are

bigger, the bank would be deemed bankrupt, and its payments would be adjusted

based on what assets the bank actually has. As proven in [61], if there are n banks,

this process converges to a unique solution after at most n iterations.

Algorithms 1 to 4, show an implementation in DStress. Initially, the algorithm

assumes that each node can pay its obligations in full (prorate=1); in each update

step, each node i computes its local shortfall as a fraction of its debt, and sends a
2Regulators choose one or more hypothetical events/shocks, and they build custom models based

on those described in the economics literature [65].
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Algorithm 1: EN-INIT(i)
1 begin
2 cash[i] = Liquid reserve at i
3 debt[i][j] = Debt owed by i to j
4 credits[i][j] = Debt owed by j to i
5 totalDebt[i] = ∑ j (debt[i][j])
6 prorate[i] = 1.0
7 noOpMessage = 0
8 sensitivity = 1/r // See Section 3.4.4
9 end

Algorithm 2: EN-UPDATE(i)
1 begin
2 liquid = cash[i]
3 foreach j in neighbors(i) do
4 shortfallJ = recvFrom(j)
5 liquid += credits[i][j]-shortfallJ
6 end
7 if liquid < totalDebt[i] then
8 prorate[i] = liquid / totalDebt[i]
9 end
10 end

message to each adjacent node j that contains the amount of i’s debt to j that i is

unable to pay. e final aggregation step computes the TDS.

3.4.3 The Elliott-Golub-Jackson Model

e second model, from Elliott, Golub, and Jackson [63], describes a very different

type of contagion, using equity cross-holdings to represent inter-institutional depen-

dencies. In this model, there is a set of primitive assets, which have associated prices.

Banks own their own individual basket of these assets, as well as potentially equity in

each other. us, the valuation of a bank is a) the value of its own primitive assets,

plus b) its fraction of the primitive assets owned by other banks in which it (directly

or transitively) holds an equity stake. e latter can be computed via fixpoint itera-

67



Algorithm 3: EN-COMMUNICATE-WITH(i)
1 begin
2 foreach j in neighbors(i) do
3 sendTo(j, debts[i][j]*(1-prorate[i]))
4 end
5 end

Algorithm 4: EN-AGGREGATE(i)
1 begin
2 totalShortfall = ∑i (totalDebt[i]*(1-prorate[i]))
3 end

tion. e model has another unusual feature: when a bank’s valuation falls below a

bank-specific threshold, it is considered to have failed, and its value drops by an ad-

ditional penalty. is is different from the Eisenberg-Noe model, which is inspired

by the allocation of assets in traditional bankruptcy proceedings; the intent is to rep-

resent “distressed” institutions that may not fail to the point of actual bankruptcy

but still face sudden additional costs due to, e.g., a downgraded credit rating.

[63] also shows that the fixpoint is not unique and depends on the starting con-

ditions and on which nodes fail first; thus, there is a possibility of false negatives.

However, this is not due to our implementation in DStress – it is simply how the

algorithm works as originally proposed. e algorithm is also not guaranteed to con-

verge after n steps, as each step can cause a valuation drop even beyond the discontin-

uous drop. However, as shown in [84], it converges to its final value monotonically,

and thus a limited number of iterations provides a good approximation result.

Algorithms 5 to 8, show an implementation in DStress. Initially, each bank has

some exogenous valuation origVal; in each step, each bank computes a discount to

its own value, based on its primitive assets and the current valuation of its equity

holdings, and then propagates that discount to its neighbors in the graph. e fi-

nal aggregation step computes the TDS of all failed banks relative to their failure

threshold, as suggested by [63].
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Algorithm 5: EGJ-INIT(i)
1 begin
2 base[i] = Base assets held by i
3 origVal[i] = initial valuation of i
4 value[i] = current valuation of i
5 insh[i][j] = share of j held by i
6 threshold[i] = i’s failure threshold
7 penalty[i] = penalty if < threshold
8 noOpMessage = 0
9 sensitivity = 2/r // See Section 3.4.4
10 end

Algorithm 6: EGJ-UPDATE(i)
1 begin
2 value[i] = base[i]
3 foreach j in neighbors(i) do
4 discount = recvFrom(j)
5 value[i] += insh[i][j]*(1-discount)*origVal[i][j]
6 end
7 if value < threshold[i] then
8 value[i] = value[i] - penalty
9 end
10 end

3.4.4 Sensitivity bounds

Recall that DStress requires the programmer to provide a bound on the pro-

gram’s sensitivity to changes in its input. We rely on a proof by Hemenway and

Khanna [84], which shows that the sensitivity of the Elliott-Golub-Jackson algo-

rithm is 2/r, where r is an upper bound on the leverage ratio of the banks (that is,

the ratio between a bank’s total assets and its equity may not exceed 1 : r). is type

of constraint is already mandated by law today because leverage limits provide some

stability: they create a “cushion” that can absorb some losses. e proof does not

directly consider Eisenberg-Noe, but, using an argument analogous to [84, §5.2], it

is possible to derive a sensitivity bound of 1/r.
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Algorithm 7: EGJ-COMMUNICATE-WITH(i)
1 begin
2 foreach j in neighbors(i) do
3 sendTo(j, 1-(value[i]/origVal[i]))
4 end
5 end

Algorithm 8: EGJ-AGGREGATE(i)
1 begin
2 totalShortfall = ∑i ((value[i]<threshold[i]) ? (threshold[i]-value[i]) : 0)
3 end

3.4.5 Utility

is leaves two practical questions: 1) how frequently could these algorithms be

safely executed, and 2) how does the addition of noise affect the utility of the output?

We cannot hope to give final answers here because of the many policy decisions that

would be involved, but we can at least provide ballpark figures.

First, we need to choose the privacy parameter ε. We assume that the banks

would want to prevent an adversary from increasing their confidence in any fact

about the input data by more than a factor of two; this yields eεmax = 2 and thus a

privacy “budget” of εmax = ln2.

Next, we need to calculate the amount of noise that would be added to the out-

put. is depends on a) which input data sets would be considered similar (i.e., at

what threshold T the banks would wish to protect their financial data), and b) the

sensitivity of the program. For a), we follow an argument from Flood et al. [66] and

assume that a granularity of T = $1 billion – roughly the size of the 100th largest

bank’s equity – is reasonable. For b), we use Elliot-Golub-Jackson as an example and

set the leverage bound to r = 0.1, as mandated by the Basel III framework [19]. is

yields a sensitivity of 2/r = 20 (independent of the number of iterations); thus, the

noise would be drawn from T ·Lap(20/εquery).
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Finally, we need to decide how precise the output needs to be, which controls the

“privacy cost” εquery of the program. In 2015, the annual stress test mandated by

Dodd-Frank yielded a TDS of about $500 billion [145], which was considered safe.

We add a generous safety margin and assume that it would be sufficient to compute

the TDS to within ±$200 billion. To ensure that the noise is lower than that with

at least 95% confidence, we must choose εquery ≥ 0.23.

Since banks must retrospectively disclose their aggregate positions every year any-

way, it seems reasonable to replenish the privacy budget once per year. us, it seems

safe to execute Elliot-Golub-Jackson up to (ln2)/0.23 ≈ 3 times per year, which is

more frequent than today’s annual stress tests.

3.4.6 Threat model

Recall from Section 3.3.2 that DStress assumes that the parties are honest but curious

(HbC). At first glance, it is not obvious that this assumption holds universally in

the financial world. However, recall that banks are heavily regulated, and that they

already have to submit to audits today. It should be possible to use these audits to

verify that the banks a) contribute accurate information, and that they b) correctly

perform the steps of the DStress algorithm. For privacy reasons, today’s audits are

compartmentalized – that is, each auditor gets to see only the information from a

single bank – but this is sufficient for our purposes: each auditor only needs to verify

the steps that are taken by the specific bank she is responsible for,

3.5 Evaluation

In this section, we report results from our experimental evaluation of DStress. Our

main goal is to determine whether DStress’s costs are low enough for our application

scenario, and whether it is sufficiently scalable.
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3.5.1 Prototype and experimental setup

For our experiments, we built a prototype of DStress that consists of three compo-

nents: 1) the Wysteria MPC runtime [143], which is based on an implementation

of the GMW protocol [77] provided by Choi et al. [47]; 2) a distributed execution

engine for graph algorithms; and 3) an implementation of the communication pro-

tocol from Section 3.3.5, based on the cryptographic primitives in the OpenSSL

library. Our prototype generates Laplace noise using a circuit design from Dwork et

al. [59]. To save computation and bandwidth, we apply a widely used ElGamal opti-

mization [102] that reuses the same ephemeral key for each of the L bits in the share

but requires L different public keys. Excluding Wysteria, our prototype consists of

11,904 lines of Java and 953 lines of C.

Unless otherwise noted, we conducted our experiments on Amazon EC2. We

used up to 100 m3.xlarge instances, which each have four virtual Intel Xeon E5-

2670 v2 2.5 GHz CPUs, 15 GB of memory, and two 40GB partitions of SSD-based

storage. All the instances were located in the same EC2 region. For elliptic curves,

we selected the NIST/SECG curve over a 384-bit prime field (secp384r1); this offers

security equivalent to 192-bit symmetric cryptography, which is more than enough

to defend against current cryptanalytic capabilities. We kept the default parameters

for Wysteria and GMW: shares had a length of 12 bits (stored as 13 bytes), and the

statistical security parameter for GMW was k = 80.

3.5.2 Microbenchmarks: Computation

DStress contains two main sources of computation cost: the MPC invocations that

are used to perform the steps of the graph algorithm, and the cryptographic opera-

tions in the communication protocol. We evaluate each in turn.

MPC invocations: DStress performs four different kinds of operations in MPC: 1)

the initialization step that generates the shares of each node’s initial state; 2) the graph

algorithm’s computation step; 3) the graph algorithm’s aggregation step; and 4) the
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Figure 3.2: Computation time spent on MPC, with different block sizes (top), and
different values for D and N (bottom).

final addition of Laplace noise. To quantify the cost of each, we performed a series

of microbenchmarks in which we ran each MPC in isolation, using only Wysteria,

for different block sizes. Since the computation steps in Eisenberg-Noe (EN) and

Elliot-Golub-Jackson (EGJ) are different, we ran two separate experiments for this

step.

e left part of Figure 3.2 shows the end-to-end completion times varied with

the block size. ere is a linear dependence, which is consistent with the theoretical

complexity of GMW (the total cost is quadratic, but the nodes are working in par-

allel). We note that a block size of 20 is plausible in our setting: recall that the block

size must be greater than the collusion bound k, and, to our knowledge, the largest

known instance of collusion in the banking world was the LIBOR scandal, which

involved 16 banks [144].
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Figure 3.3: Per-node traffic generated by MPC computation steps with different
block sizes.

e bottom part of Figure 3.2 shows how the time for the initialization and com-

putation steps varied with the degree bound D, and how the time for the aggregation

step varied with the number of nodes N. Again, the dependencies are roughly linear;

this is because the corresponding MPC circuits are fairly simple, so the number of

gates depends mostly on the number of inputs.

Message transfers: To quantify the cost of the message transfer protocol from Sec-

tion 3.3.5, we measured the time needed to transfer a single 12-bit message between

two blocks of different sizes. We found that the end-to-end completion time was

roughly proportional to k, from 285 ms with an 8-node block to 610 ms with a

20-node block. is is expected because each node in the block must encrypt k+1

subshares. ere is a quadratic component as well because a single node must com-

bine the (k+ 1)2 encrypted subshares using the additive homomorphism, but this

involves simple multiplications; the cost is dominated by the exponentiations, which

are far more expensive.

3.5.3 Microbenchmarks: Bandwidth

To quantify DStress’s bandwidth cost, we measured the average amount of traffic that

each node generated during the microbenchmarks from Section 3.5.2. As before, we

examine the MPC and message transfer steps separately.
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MPC invocations: Figure 3.3 shows our results for each of the five MPC circuits we

have identified in Section 3.5.2. e traffic per node is roughly proportional to the

block size k+1. Again, this is expected: although the total amount of traffic in GMW

increases quadratically with the number of participants, the load is shared by k+ 1

nodes. We note that the absolute numbers are low and never exceed 6 MB per node,

even for the comparatively large noising circuit. is is because Wysteria’s GMW

implementation includes oblivious transfer extensions [90, 108] as an optimization.

Message transfers: e amount of traffic for message transfers varies with the roles

of the nodes. When the protocol is invoked for an edge (i, j), node i’s load is the

highest, since it receives (k+ 1)2 encrypted subshares from Bi. In our experiments,

this amounted to between 97 kB (with 8-node blocks) and 595 kB (with 20-node

blocks). e nodes in Bi each send k + 1 encrypted subshares, and j sends k + 1
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encrypted shares; thus, their traffic is linear in k and never exceeded 29 kB per node

in our experiments. e nodes in B j each receive a single encrypted share, regardless

of the block size, so they handle a constant amount of traffic, about 1.4 kB.

Since we ran our experiments on EC2, neither propagation delays nor bandwidth

constraints were major factors. is would be different in a wide-area deployment;

however, since both MPC and the message transfers use relatively little bandwidth,

we do not expect the network to become a major bottleneck in a wide-area setting.

3.5.4 End-to-end cost

To get a sense of the total cost of a DStress execution, we performed end-to-end runs

with both EN and EGJ, using a synthetic graph with N = 100 banks, a degree limit

of D = 10, and I = 7 iterations. As before, we varied the block size, and we measured

the completion time and the average amount of traffic that was sent by each node.

Figure 3.4 shows our results. Although, as we have seen, the runtime of the

individual operations is linear in k, the overall runtime varied roughly with O(k2);

this is because, if we keep the number of nodes N constant while increasing k, each

node must also participate in more blocks. (e actual dependence is not perfectly

quadratic because each node handles multiple blocks in parallel, and the correspond-

ing computations can be overlapped when one of them blocks.)

3.5.5 Scalability

In 2015, there were roughly 1,750 large commercial banks in the United States [124].

Due to our limited budget, we were unable to perform experiments with that many

nodes; instead, we estimate the cost using results from our microbenchmarks.

Given values for the degree bound D, the number of nodes N, the collusion bound

k, and the number of iterations I, it is easy to estimate the cost of the initialization,

computation, and communication steps. For aggregation, we assume a two-level

aggregation tree with degree 100 – that is, DStress would first aggregate the values
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from groups of 100 nodes (in parallel) and then further aggregate the results before

the final noising step. We conservatively use a degree bound of D = 100 and a block

size of k + 1 = 20, and we assume that nodes cannot overlap computations from

different blocks.

Obtaining realistic values for I is nontrivial because the exact structure of the

banking network is not known, and cannot be fully inferred from the public (ag-

gregate) disclosures. However, work in theoretical economics [48] has shown how

to infer at least an approximate graph from public data. We reconstructed graphs

based on this work, and found that I = log2 N is enough to allow the algorithm to

converge. e relevant details are available in Appendix B.3.

Figure 3.5 shows our estimates for different network sizes; the red circles show
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the results from actual EC2 runs (N=20 and N=100) we performed for validation.

(Recall that actual runs tend to be a bit faster than predicted because of the overlap

between different block computations.) Based on these results, we estimate that an

end-to-end run of Eisenberg-Noe for the entire U.S. banking system (N = 1,750,

D = 100) would take about 4.8 hours and consume about 750 MB of traffic. ese

costs seem low enough to be practical.

We did not compare DStress to prior work because we are not aware of any other

system that efficiently offers guarantees that are comparable to those of DStress.

However, one plausible baseline approach is to naïvely perform the entire computa-

tion as a single, monolithic MPC. If we ignore the details (such as the prorating, the

comparisons, and the final matrix inversion), the closed form of an algorithm like

EN essentially raises an N ×N matrix to the I.th power. To estimate how long this

would take, we wrote a simple Wysteria program that multiplies two square matrices,

and we ran it for different values of N. As expected, the end-to-end completion time

rose quickly, from 1.8 minutes for N = 10 to 40 minutes for N = 25. is is expected

because the asymptotic complexity of matrix multiplication is O(N3). (Note that

data-dependent optimizations cannot be applied because the data in the matrix is

private.) We were unable to run the experiment for N > 25 because Wysteria ran out

of memory, but we extrapolate that raising a 1750x1750 matrix to the I −1 = 11th

power would take (1750/25)3 ∗ 40 ∗ 11 minutes, or about 287 years. is suggests

that systemic risk detection using plain MPC would be infeasible in practice.

3.6 Related work

Differential privacy: ere is a rich body of work on differentially private analytics

for relational data [58], but there are much fewer results for graph data. [96] presents

some private algorithms that offer edge-differential privacy, including k−triangle

counting and k−star counting, but it is often difficult to give good accuracy with

this approach because many algorithms have a high sensitivity to edge changes. Re-
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stricted sensitivity [34] takes advantage of the queriers’ prior beliefs about the data

to achieve higher accuracy. Our systemic-risk case study uses a slightly different

guarantee, dollar-differential privacy, which was first proposed by Flood et al. [66,

§4.3].

Distributed query processors: e first differentially private query processors, such

as PINQ [117], Fuzz [82], and Airavat [146] assumed a centralized setting in which

the analyst has access to all the private data. Later systems added support for dis-

tributed data, but they typically focus on a specific class of queries: for instance,

PDDP [45] can build histograms, and DJoin [121] can process certain types of

joins. Narayan et al. [122] sketched a system that can run iterative graph algorithms

but offers weaker privacy guarantees than DStress – for instance, it leaks the some

information about the structure of the graph. To our knowledge, DStress is the first

practical system to support iterative graph algorithms with strong differential privacy

guarantees.

Secure Multiparty Computation: Most practical MPC implementations are ei-

ther based on the GMW protocol [77], which expresses computations as boolean

circuits [47, 29], or based on the BGW protocol [30], which expresses computa-

tions as arithmetic circuits [166, 43, 51]. A direct comparison between protocols of

the two main strands is not straightforward. In general, systems that use BGW,

such as PICCO [166] or SEPIA [43], can offer better performance for applica-

tions that mostly use arithmetic operations. However, not all applications are of

this type: for instance, Choi et. al. [47] showed that boolean-circuit systems out-

perform arithmetic-circuit systems for a specific class of matching algorithms. e

best appropriate choice of MPC protocol for systemic risk algorithms is an open

question; we selected GMW and [47] because both EGJ and EN can be expressed

as graph computations, which seem to be a closer match to the algorithms described

in [47]. In principle, our approach – breaking up a large MPC computation into

smaller computations – should be applicable to the BGW protocol as well.
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Recently, work on two-party secure computation (2PC) has started considering

graph computations as well [127, 126]. Nayak et al. [126] identifies two key chal-

lenges in extending secure computation to graphs: one needs to protect the privacy

of data as well as the graph topology. e solution described in [126] achieves the

goals by obliviously sorting a combined list of all graph vertices and edges using gar-

bled circuits. Unfortunately, full MPC is several orders of magnitude slower than

2PC; hence, this approach would face the same efficiency challenges that we detailed

in 3.2.2.

We emphasize that we are not the first to consider the use of MPC for differentially

private computations (see, e.g., [59, 25]). Our contribution is an efficient, scalable

protocol for executing graph algorithms in a distributed setting without revealing

the structure of the graph.

Message transfer protocol: Using ElGamal for its key randomization property has

been considered in the literature before [80, 72, 56]. In fact, work concurrent to

ours [56] presents an ElGamal-based construction which is similar to our message

transfer protocol. Unfortunately, that solution is not additively homomorphic and

cannot be directly used in DStress.

Distributed ledgers for financial networks: Corda [7, 119] is a distributed ledger

system designed to record transactions between financial institutions. e recorded

transactions are cryptographically verified, so the ledger could be used to provide

evidence and aid the resolution of legal disputes between banks. Since the validity

of transactions depends on other transactions, verification involves multiple parties,

and information about sensitive transactions can leak [119, §4.2]. Even though

Corda prevents nodes from seeing transactions that do not require their verifica-

tion signature, it does not provide strong privacy guarantees about what these nodes

learn [119, §4.2, §15].
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3.7 Conclusion

In this Chapter, we have presented DStress, a system that can efficiently analyze

large, distributed graphs with confidential information. DStress’s programming

model resembles that of other frameworks for graph analytics; however, DStress exe-

cutes programs in a distributed fashion, using a combination of secret sharing, small

multi-party computations, and a special protocol for transferring messages without

revealing the structure of the graph. As a result, DStress only needs a few hours

to run computations with hundreds of participants, whereas a naïve application of

multi-party computation would take many years.

We have also studied one concrete use case of DStress that we have taken from

the economics literature: the computation of systemic risk in financial networks.

We have shown that DStress can implement two state-of-the-art models of systemic

risk; our experimental results suggest that these models could be evaluated on all the

large commercial banks in the United States within about five hours, using only one

commodity machine at each bank.
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4
Queries under the trusted hardware assumption

4.1 Introduction

Recently, a number of systems have been proposed that can provide privacy-preserving

distributed analytics [147, 168]. At a high level, these systems provide functionality

that is comparable to a system like Spark [164]: users can upload large data sets,

which are distributed across a potentially large number of nodes, and they can then

submit queries over this data, which the system answers using a distributed query

plan. However, in contrast to Spark, these systems also protect the confidentiality of

the data. is is attractive, e.g., for cloud computing, where the owner of the data

may wish to protect it against a potentially curious or compromised cloud platform.

It is possible to implement privacy-preserving analytics using cryptographic tech-

niques [138, 134], but the resulting systems tend to have a high overhead and can

only perform a very limited set of operations. An alternative approach – which was

recently applied in Opaque [168] – is to rely on trusted hardware, such as Intel’s

SGX. With this approach, the data remains encrypted even in memory and is only
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accessible within a trusted enclave within the CPU. As long as the CPU itself is not

compromised, this approach can offer very strong protections, even if the adversary

has managed to compromise the operating system on the machines that hold the

data.

However, even though SGX-style hardware can prevent an adversary from ob-

serving the data itself, the adversary can still hope to learn facts about the data by

monitoring various side channels. e classic example is a timing channel [103]:

suppose a query computes the frequency of various medical diagnoses, and the ad-

versary knows that the computation will take 51µs if Bob has cancer, and 49µs

otherwise. en, merely by observing the amount of time that is spent in the en-

clave, the adversary can learn whether or not Bob has cancer. Other common side

channels that have been exploited in prior work include the sequence of memory

accesses from the enclave [162], the number and size of the messages that are ex-

changed between the nodes [129], the contents of the cache [42], and the fact that

a thread exits the enclave at a certain location in the code [106, 161].

Today, system designers have basically two options for dealing with side channels,

and neither of them is particularly attractive. e first option is to simply exclude

some or all of these channels from the threat model: for instance, Opaque [168]

explicitly declares timing channels to be out of scope. is is not very satisfying:

while timing channels intuitively “do not leak very much”, prior work shows that

they can in fact leak quite a bit, such as entire cryptographic keys [167]. e second

option is to plug the channels by enforcing complete determinism, e.g., by using

oblivious algorithms [13] and by padding computation time and message size all the

way to their worst-case values. is approach is safe but even less satisfying: as we

will show experimentally, full padding can drive up the overhead by several orders

of magnitude.

In this Chapter, we propose a more principled approach, which consists of three

parts. e first is a primitive that can perform small computations safely, by exe-
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cuting them in a core that is completely “locked down” and cannot be interrupted

or access uncached data during the computation. is primitive, which we call an

oblivious execution environment (OEE), protects against most realistic side channels

and yet improves efficiency, since there is no need to use oblivious algorithms while

the core is locked. e second element is a set of enhanced oblivious operators that

plug not only the memory access channel – like traditional oblivious operators –

but also plug or limit the three other side channels we discussed above. e third

element is a query planner that combines several of these smaller computations to

answer larger queries. To avoid high overheads, our query planner is allowed to

release some information about the private data, but only in a carefully controlled

fashion, using differential privacy [60]. By combining these three elements, it is

possible to answer queries efficiently, while at the same time giving strong privacy

guarantees.

We have implemented our approach in a system we call Hermetic. Since the

current SGX hardware is not yet able to fully support the “lockdown” primitive we

propose, we have implemented the necessary functionality in a small hypervisor that

can be run on commodity machines today. Our results from a detailed experimental

evaluation of Hermetic show that our approach is indeed several orders of magni-

tude more efficient than full padding (which is currently the only approach that can

reliably prevent side channels). e overheads are comparable to those of existing

SGX-based distributed analytics systems.

We note that Hermetic is not a panacea: like all systems that are based on trusted

hardware, it assumes that the root of trust (in the case of SGX, Intel) is not com-

promised. Also, there are physical side channels that even Hermetic cannot plug:

for instance, an adversary could use power analysis [99] or electromagnetic emana-

tions [101], or simply depackage the CPU and attack it with physical probes [152].

However, these attacks are much harder to carry out, require specialized equipment,

and may be impossible to eliminate without extensive hardware changes. Our con-
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Figure 4.1: Example scenario. Analyst Alice queries sensitive data that is distributed
across multiple machines, which are potentially owned by multiple participants. An
adversary has complete control over some of the nodes, except the CPU.

tributions are as follows:

• e OEE primitive, which performs simple computations privately, using a

locked-down core (Section 4.3);

• A new set of oblivious operators that prevent or limit four different side chan-

nels (Section 4.4);

• A novel privacy-aware query planner (Section 4.5);

• e design of the Hermetic system (Section 4.6);

• A prototype implementation of Hermetic (Section 4.7); and

• A detailed experimental evaluation (Section 4.8)

4.2 Overview

Figure 4.1 illustrates the scenario we are interested in. ere is a group of participants,

who each own a sensitive data set, as well as a set of nodes on which the sensitive

data is stored. An analyst can submit queries that can potentially involve data from

multiple nodes. Our goal is to build a distributed database that can answer these

queries efficiently while giving strong privacy guarantees to each participant. We

assume that the queries themselves are not sensitive – only their answers are – and

that each node contains a trusted execution environment (TEE) that supports secure
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enclaves and attestation, e.g., Intel’s SGX.

Note that this scenario is a generalization of the scenario in some of the earlier

work [147, 168], which assumes that there is only one participant, who outsources

a data set to a set of nodes, e.g., in the cloud.

4.2.1 Threat model

We assume that some of the nodes are controlled by an adversary – for instance, a

malicious participant or a third party who has compromised the nodes. e adver-

sary has full physical access to the nodes under her control; she can run arbitrary

software, make arbitrary modifications to the OS, and read or modify any data that

is stored on these nodes, including the local part of the sensitive data that is being

queried. We explicitly acknowledge that the analyst herself could be the adversary,

so even the queries could be maliciously crafted to extract sensitive data from a par-

ticipant.

4.2.2 Background: Differential privacy

One way to provide strong privacy in this setting is to use differential privacy [60],

one of the strongest known privacy guarantees. Differential privacy is a property

of randomized queries; that is, queries do not compute a single value but rather a

probability distribution over the range R of possible outputs, and the actual output

is then drawn from that distribution. is can be thought of as adding a small

amount of random “noise” to the output. Intuitively, a query is differentially private

if a small change to the input only has a statistically negligible effect on the output

distribution.

More formally, let I be the set of possible input data sets. We say that two data

sets d1,d2 ∈ I are similar if they differ in at most one element. A randomized query

q with range R is ε-differentially private if, for all possible sets of outputs S ⊆ R and
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all similar input data sets d1 and d2,

Pr[q(d1) ∈ S]≤ eε ·Pr[q(d2) ∈ S].

at is, any change to an individual element of the input data can cause at most

a small multiplicative difference in the probability of any set of outcomes S. e

parameter ε controls the strength of the privacy guarantee; smaller values result in

better privacy. For more information on how to choose ε, see, e.g., [85].

Differential privacy has strong composition theorems; in particular, if two queries

q1 and q2 are ε1- and ε2-differentially private, respectively, then the combination

q1 ·q2 is ε1 + ε2-differentially private. Because of this, it is possible to associate each

data set with a “privacy budget” εmax that represents the desired strength of the

overall privacy guarantee, and to then keep answering queries q1, . . . ,qk as long as

∑i εi ≤ εmax. (Note that it does not matter what specifically the queries are asking.)

4.2.3 Strawman solution with TEEs

At this point, it may appear that the problem we motivated above could be solved

roughly as follows: each node locally creates a secure enclave that contains the

database runtime, and the participants use attestation to verify that the enclaves

really do contain the correct code. Each participant Pi then opens a secure connec-

tion to her enclave(s) and uploads her data di, which is stored in encrypted form,

and then sets a local privacy budget εmax,i for this data. When the analyst wishes

to ask a query, he must create and submit a distributed query plan, along with a

proof that the query is εi-differentially private in data set di; the enclaves then verify

whether a) they all see the same query plan, and b) there is enough privacy budget

left – that is, εmax,i ≥ εi for each di. If both checks succeed, the enclaves execute the

query plan, exchanging data via encrypted messages when necessary, and eventually

add the requisite amount of noise to the final result, which they then return to the

analyst.
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is approach would seem to meet our requirements: differential privacy ensures

that a malicious analyst cannot compromise privacy, and the enclaves ensure that

compromised nodes cannot get access to data from other nodes or to intermediate

results.

4.2.4 Problem: Side channels

However, the strawman solution implicitly assumes that the adversary can learn noth-

ing at all from the encrypted data or from externally observing the execution in the

enclave. In practice, there are several side channels that remain observable; the most

easily exploitable are:

• Timing channel (TC) [103]: e adversary can measure how long the com-

putation in the enclave takes, e.g., by reading a cycle-level timestamp counter

in the CPU before entry and after exit;

• Memory channel (MC): e adversary can observe the locations in memory

that the enclave reads or writes (even though the data itself is encrypted!), as

well as their timing, e.g., by inspecting the page tables or by measuring the

contents of the cache; and

• Instruction channel (IC): e adversary can see the sequence of instructions

that are being executed, e.g., by looking at instruction cache misses; and

• Object size channel (OC): e adversary can see the size of any intermediate

results that the enclave stores or exchanges with other enclaves.

At first glance, these channels may not reveal much information, but this intuition

is wrong: prior work has shown that side channels can be wide enough to leak entire

cryptographic keys within a relatively short amount of time [167]. To get truly

robust privacy guarantees, it is necessary to close or at least mitigate these channels.
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4.2.5 State of the art

Prior work has generally approached side channels in one of three ways. e first is

to simply exclude side channels from the threat model, as, e.g., in [168]. is seems

fine if the work primarily focuses on some other challenge, but the effective privacy

guarantees remain weak until the solution is combined with some defense against

side channels (such as the one we propose here). e second is to use heuristics

to reduce the bandwidth of some of the channels, as, e.g., in [16, 86, 95]. is

approach is stronger than the first, but it remains somewhat unsatisfying, since it is

difficult to formally reason about the true strength of the guarantee.

e third, and most principled, approach is to remove the dependency between

the sensitive data and the signal that the adversary can observe. For instance, obliv-

ious algorithms [13] can close the memory channel by accessing the data in a way

that depends only on the size of the data, but not on any specific values, and full

padding can close the timing channel by padding the computation time to its worst-

case value. ese approaches work well, but they have two important drawbacks: 1)

to our knowledge, all prior solutions close only some subset of our four channels, but

not all four; and 2), as we will show experimentally in Section 4.8, these approaches

can have an enormous overhead, sometimes by several orders of magnitude. We are

not aware of an efficient, principled solution that can close all four of our channels

simultaneously.

4.2.6 Approach

Our goal in this Chapter is to get the “best of both worlds”: we want to reliably

close the four side channels from Section 4.2.4 while preserving reasonably better

performance. Our approach is based on the following three ideas:

Oblivious execution environments: We provide a primitive called OEE that can

perform small computations out := f (in) entirely in the CPU cache, and such that

both the execution time and the instruction trace depend only on |in|, |out|, and f ,
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but not on the actual data. is completely avoids all four channels.

New oblivious operators: We present several oblivious operators that can be used

to compose OEE invocations into larger query plans. In addition to avoiding the

memory channel – like all oblivious algorithms – our operators also have a deter-

ministic control flow (to avoid the instruction channel), they use only timing-stable

instructions (to avoid the timing channel), and the size of their output is either con-

stant or noised with “dummy rows” to ensure differential privacy (to avoid the object

size channel). Notice that there is an efficiency-privacy tradeoff: more noise yields

better privacy but costs performance.

Privacy-aware query planner: We describe a query planner that optimizes for both

efficiency and privacy, by carefully choosing the amount of noise that is added by

each oblivious operator.

4.3 Oblivious Execution Environments

e first part of Hermetic’s strategy to mitigate side channels is hardware-assisted

oblivious execution, using a primitive we call an oblivious execution environment

(OEE).

4.3.1 What is oblivious execution?

e goal of oblivious execution is to compute a function out := f (in)while preventing

an adversary from learning anything other than f and the sizes |in| of the input

and |out| of the output - even if, as we have assumed, the adversary can observe the

memory bus and the instruction trace, and can precisely measure the execution time.

Some solutions for oblivious execution already exist. For instance, Arasu et

al. [13] use special oblivious sorting algorithms that perform a fixed set of compar-

isons (regardless of their inputs) and thus perform memory accesses in a completely

deterministic way; also, compilers have been developed that emit code without data

dependent branches [142], and thus have a perfectly deterministic instruction trace.
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However, the existing approaches have three key limitations. First, they are very

inefficient – largely because they must perform numerous dummy memory accesses

to disguise the real ones or employ expensive oblivious RAMs [76, 155, 154]. Sec-

ond, they tend to focus on one or two specific side channels; for instance, even if the

memory trace is deterministic, the execution time can still vary if the code includes

instructions whose execution time is data-dependent. ird, the existing solutions

all implicitly assume that the adversary cannot interrupt the execution and inspect

the register state of the CPU.

4.3.2 Oblivious execution environments

To provide a solid foundation for oblivious execution, we introduce a primitive 

(f,in,out) that, for a small set of predefined functions f , has the following three

properties:

1. Once invoked,  runs to completion and cannot be interrupted or interfered

with;

2.  loads in and out into the cache when it starts, and writes out back to memory

when it terminates, but does not access main memory in between;

3. e execution time, and the sequence of instructions executed, depend only

on f , |in|, and |out|; and

4. e final state of the CPU depends only on f .

A perfect implementation of this primitive would plug all four side channels in our

threat model: e execution time, the sequence of instructions, and the sizes of the

in and out buffers are constants, so no information can leak via the TC, IC, or OC.

Also, the only memory accesses that are visible on the memory bus are the initial and

final loads and stores, which access the entire buffers, so no information can leak via

the MC. Finally, since the adversary cannot interrupt the algorithm, she can only

observe the final state of the CPU upon termination, and that does not depend on

the data.
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Note, however, that  is allowed to perform data-dependent memory accesses

during its execution. Effectively,  is allowed to use a portion of the CPU cache

as a private, un-observable memory for the exclusive use of f . is is what enables

Hermetic to provide good performance.

4.3.3 Challenges in building an OEE today

Some of the properties of an OEE can be achieved through static transformations:

for instance, we can (and, in our implementation, do) achieve property #3 by elim-

inating data-dependent branches and by padding the execution time to an upper

bound via busy waiting. We can also disable hardware features such as hyperthread-

ing that would allow other programs to share the same core, and thus potentially

glean some timing information from the OEE. Properties #2 and #4 can be achieved

through careful implementation. Finally, by executing the OEE in a SGX enclave,

we can ensure that the data is always encrypted while in memory.

However, today’s SGX unfortunately cannot be used to achieve property #1. By

design, SGX allows the OS to interrupt an enclave’s execution at any time, as well as

flush its data from the cache and remove its page table mappings [49]. Indeed, these

limitations have already been exploited to learn the secret data inside enclaves [162,

42, 106].

4.3.4 The Hermetic hypervisor

To overcome these limitations, we use a small hypervisor. Before an OEE can ex-

ecute, the hypervisor (1) completely “locks down” the OEE’s core by disabling all

forms of preemption – including IPIs, IRQs, NMIs, and timers; (2) prevents the OS

from observing the OEE’s internal state, by mapping or flushing any of its memory

pages, or by accessing hardware features such as performance monitoring or hard-

ware breakpoints; and (3) returns control to the enclave, so it can prefetch in and

perform dummy writes to out and to the stack, so that both are in the cache and the
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cache lines of the latter are already in the Modified state. When the OEE completes,

the cache is flushed, and the hypervisor re-enables preemption.

If the OEE’s core shares a last-level cache with other cores, the hypervisor must

take care to prevent cache timing attacks. One way to do this would be to simply

lock down these other cores as well; however, this would severely limit concurrency

while an OEE is executing. Instead, we can use Intel’s Cache Allocation Technology

(CAT) [97] to partition the cache between the OEE’s core and the other cores at the

hardware level. In Section 4.7, we present further details of the hypervisor’s design

and its use of the CAT.

We view the hypervisor as interim step that makes deploying Hermetic possible

today. Its functionality is constrained enough that it could be subsumed into future

versions of SGX. We believe that this Chapter and other recent work on the impact

of side channels in TEEs demonstrates the importance of adding OEE functionality

to TEEs.

4.4 Oblivious operators

OEEs provide a way to safely execute simple computations on small amounts of

data, without side channels. However, to answer complex queries over larger data,

Hermetic also needs higher-level operators, which we describe next.

4.4.1 Background

Prior work [13, 130] has already developed a number of oblivious operators, which

are guaranteed to access the data in a deterministic way. A simple example would be

a projection operator that performs a linear scan over all the input tuples and extracts

a particular column of interest. is already addresses a subset of the MC, since the

data is accessed in a deterministic, data-independent order, so we use these operators

as a starting point. However, note that there are other kinds of memory accesses (to

code, to the stack, etc.), and that the timing of the accesses can be disclosive as well;
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we will discuss how we address these shortly.

Previous work includes some operators that are relatively standard; for instance,

project, rename, union, and cartesian-product are similar to the operators found

in any standard DBMS, and they are oblivious by nature, e.g., cartesian-product

considers all different pairs of tuples from two relations in a data-independent way.

However, there are some additional primitives that are needed for oblivious oper-

ation. e linchpin of oblivious query processing is an oblivious sort primitive.

Classical sorting algorithms, such as Quicksort, would leak the ordering of the data

elements, so this requires special algorithms, such as Batcher’s odd-even mergesort

(batcher-sort) [22], that access the data in a deterministic order.

Building on oblivious sorting, one can implement a variety of low-level oblivious

primitives. augment adds a new column to a relation and sets it to the value of a

particular expression; grsum (group-running sum) adds up the values in a column

for fields that share the same key; filter discards all tuples that do not satisfy a

predicate; semijoin-aggregation counts the occurrences of one relation’s attribute

in another relation; expand creates k clones of each tuple, where k is a value that is

taken from a special column; and stitch linearly “stitches together” two relations

of the same size by combining their columns.

Higher-level operators can be implemented by combining the above primitives.

For instance, to implement a join, one first uses semijoin-aggregation on each

relation to compute how many matches each tuple has in the other relation, then

performs an expand to create as many clones of each tuple, and applies stitch to

create the result. Similarly, a groupby would first sort the relation by the group

key, then apply grsum to add up the values in the column that is being aggregated,

and finally use filter to leave only the last tuple for each key, which contains the

total sum. ese primitives, as well as the algorithms for building larger query plans

from these smaller primitives, are fairly standard, so we do not discuss them in detail;

instead, we focus on the points where Hermetic differs from prior work.
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4.4.2 Challenges

ere are three key reasons why the existing operators are not sufficient for our pur-

poses. e first and simplest one is that prior work tends to specify the operators

in pseudocode, whereas the TC and IC very much depend on the finer details of

the implementation. For instance, some x86 instructions, such as floating-point in-

structions and integer division, have data-dependent timing, and must be avoided to

prevent the TC; similarly, to prevent the IC, we must avoid data-dependent branches

(e.g., by using the cmov instruction) and preload the code and the stack. e neces-

sary steps are known, and we do not claim them as a contribution.

e second reason is that some prior work [13] often assumes a client-server

model: the data is stored on the server and queries are processed on the client, which

can issue read and write requests to the server. e threat model typically limits the

adversary to observing the sequence of reads and writes, which excludes the TC and

IC entirely and limits the MC to only data accesses. In other words, accesses to code

or the stack are not considered, and it is assumed that the adversary cannot observe

the precise timing of the accesses. In Hermetic, we make use of the OEE to block

these channels; however, since the OEE is limited to small data sets, we also need

operators to handle larger workloads.

e third reason is that, to our knowledge, prior work pays almost no attention to

the OC: a select either reveals the exact number of rows that match the predicate,

which is disclosive, or massively pads the output to the worst-case size, which is

inefficient. To address this, we introduce a new technique, which we discuss next.

4.4.3 Dummy rows

To address the OC, Hermetic can pad relations with dummy tuples, so they appear

larger (to the adversary) than the actual data tuples they contain. In essence, we add

a special isDummy column to each relation, which is set to 1 for dummy tuples and

to 0 otherwise, and we augment all the oblivious operators to ignore tuples that have
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isDummy set to 1. e latter is necessary to maintain correctness: for instance, we

must prevent the dummy tuples from appearing in the output of a select, and we

achieve this by adding an && !isDummy to each predicate in the filter.

Hermetic also needs a way to introduce dummy tuples in all the operators that

have a variable-size output (i.e., whose output size is not a deterministic function of

their input size) – specifically, select, groupby, and join. We modified the above

three operators to take an extra parameter that specifies the number of dummy tuples

to add. For details please refer to Appendix C.2.

4.4.4 Differential privacy

To ensure differential privacy, the number of dummy tuples that a given operator

must add needs to be drawn from a Laplace distribution with parameter λ = s/ε,

where ε is the privacy parameter (Section 4.2.2) and s is the sensitivity of the output

size to the input data – the maximum change in the output size that can result from

adding or removing one input tuple. e sensitivity can be determined by the query

planner (Section 4.5), but the actual Laplace value has to be drawn in the enclave,

when the query is being executed. It is critical that this draw be immune to our four

side channels as well: if the adversary can learn the value that is being drawn, she can

compute the actual number of data tuples in the output and thus potentially learn

facts about the input data.

To guard against this, we developed a special operator that can draw values from

a Laplace distribution in constant time, with a deterministic control flow and with-

out accessing main memory. To some degree, this involves only careful program-

ming, e.g., to ensure that only static loop bounds are used; however, one important

challenge is that the floating-point instructions on x86 cannot be used because they

have data-dependent timing [12]. We instead used a fixed-point math library based

on [12], which uses integer instructions.
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Figure 4.2: Different plans for query ”SELECT count(*) FROM C, T, P
WHERE C.cid=T.cid AND T.location = P.location AND C.age≤27 AND
P.category='hospital'”.

4.4.5 New primitives

Finally, Hermetic needs three additional oblivious primitives. e first two are

histogram, which computes a histogram over the values in a given column, and

multiplicity, which computes the multiplicity of a column – that is, the num-

ber of times that the most common value appears. ese operators are used by the

query planner to compute statistics about the input data that it needs to find the

best privacy-efficiency tradeoff. We discuss these more in Section 4.5.

e third new primitive is hybrid-sort, which can obliviously sort large relations

by repeatedly invoking  to sort smaller chunks of data using a fast, non-oblivious

sorting algorithm (mergesort), and to combine the results by merging chunks of data

using a non-oblivious merging algorithm (linear-merge). hybrid-sort is essentially

a block-based variant of batcher-sort that takes advantage of the OEE, so the

obliviousness properties of batcher-sort trivially apply to hybrid-sort as well.

4.5 Privacy-aware Query Planning

Next, we describe how Hermetic assembles the operators from Section 4.4 into query

plans that can compute the answer to SQL-style queries. Query planning is a well-

studied problem in databases, but Hermetic’s use of differential privacy adds an in-

teresting twist: Hermetic is free to choose the amount of privacy budget ε it spends

on each noised operation. us, it is able to make a tradeoff between privacy and

performance: smaller values of ε result in stronger privacy guarantees but also add
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more dummy tuples, which slows down the downstream operators.

4.5.1 Computing operator sensitivities

For any query plan it considers, Hermetic must first derive upper bounds on the

sensitivities of all the operators Oi in the plan. To do this, Hermetic derives sub-

queries that compute the number of tuples in each operator’s output; we call these

query the leakage queries of the operators. Figure 4.2 illustrates how this is done for a

simple example query (shown in the caption): the number of tuples that are output

by the selection operator in Figure 4.2(a) is simply the number of customers who

are at most 27 years old.

Once an operator’s leakage query is known, Hermetic applies an algorithm

from [121] to compute an upper bound on its sensitivity si. If the leakage query con-

tains joins, the algorithm needs to know the multiplicities of the joined attributes;

Hermetic obtains these using the multiplicity operator from Section 4.4.5. Once

si is known, Hermetic annotates the operator accordingly. If each operator adds a

number of dummy tuples that is drawn from Lap(si/εi), the overall query plan is

(∑i εi)-differentially private.

However, drawing from Lap(si/εi) can return negative values, but the padding

must be positive to avoid deleting useful results. Hence, Hermetic actually adds oi+

Lap(si/εi) dummy tuples, where oi is a tunable parameter. If the value drawn from

Lap(si/εi) at runtime is smaller than −oi, the query fails and has to be retried. Notice

that this means that Hermetic technically provides (ε,δ )-differential privacy [59], a

standard generalization of differential privacy.

4.5.2 Cost estimation

As discussed earlier, choosing the εi values in a query plan involves a tradeoff between

privacy and performance. e privacy cost of a query plan is simply ∑i εi, so we

focus on estimating the performance. To obtain a performance model, we derived
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Operator Cost

HybridSort h(n) = n · log(c)+n · log2(n/c)
Select h(n)

Group-by 3 ·h(n)
Join 4 ·h(n+m)+2 ·h(m)+3 ·h(n)+2 ·h(k)

Table 4.1: Performance model for the main relational operators in Hermetic.

the complexity of the Hermetic operators as a function of their input size; the key

results are shown in Table 4.1. To estimate the size of intermediate results, we used an

established histogram-based approach from the database literature [137]. According

to this approach, the output size of selections is NR · sel(R.a = X) and of joins is

NR1 ·NR2 · sel(R1.a ▷◁ R2.b), where NRi is the size of input relation Ri, and sel(R.a = X)

and sel(R1.a ▷◁ R2.b) correspond to the estimated selectivities of selection and join,

respectively. As shown in [83], the selectivities can be estimated from simple statistics

that Hermetic computes using the histogram operator from Section 4.4.5.

To enable the planner to assess the performance implications of the dummy

tuples, Hermetic takes them into account when estimating relation sizes. Since

Lap(si/εi) has a mean of zero, the expected number of dummy tuples added by

operator Oi is simply the offset oi.

4.5.3 Query optimization

Hermetic’s query planner uses relational algebra rules to generate all possible plans,

and then picks an optimal plan based on the estimated privacy and performance

costs. Since, in the applications we consider, privacy is usually more important than

performance, we designed our optimizer to select the fastest plan whose privacy cost

does not exceed a budget εB, which can be set by the analyst.

Figure 4.2 illustrates some of the decisions the query planner makes. e first

decision has to do with choosing the εi parameter of each operator, which affects

both performance and privacy cost. Plans (a) and (b) show two plans that have the

same structure but use a different ε parameters; plan (a) achieves better performance
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Figure 4.3: Hermetic’s workflow.

because the larger εi implies smaller intermediate results, whereas plan (b) consumes

less privacy budget because the ∑i εi is smaller.

Another decision of the planner is illustrated by plans (b) and (c). ese plans

use the same ε, but the order of joins is different, and this affects how much ε is

consumed from the budget of each relation (e.g., plan (b) uses 0.003 from C’s budget,

but (c) uses 0.002). Finally, plan (d) uses Cartesian products, which do not consume

any ε; thus, the plan achieves the smallest total ε consumption.

Notice that εi can be chosen independently for each operator, which gives rise to

an interesting optimization problem. Our current implementation just tries a few

standard values, but a more sophisticated optimizer could potentially find plans that

are more private and/or more efficient.

4.6 The Hermetic System

Next, we describe Hermetic’s design and how it combines the techniques described

in the previous sections to execute relational queries on sensitive data.

4.6.1 Overview

Hermetic consists of a master node, and several worker nodes. Each node runs the

trusted hypervisor (Section 4.3), and the trusted runtime that performs the Hermetic

operators (Section 4.4) inside a secure enclave. e last component of Hermetic is
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the query planner from Section 4.5. Figure 4.3 shows the workflow of Hermetic,

which consists of the following steps:

1. Initially, the master node launches the Hermetic hypervisor and runtime, and

the users contact the runtime to setup a master encryption key and upload

their data (Section 4.6.2). Users are convinced of the authenticity of both the

hypervisor and the runtime by using attestation (Section 4.6.3).

2. After initialization, users can submit queries to the Hermetic optimizer, which

generates a concrete query plan and sends it to the runtime for execution (Sec-

tion 4.6.4).

3. Since the optimizer is outside Hermetic’s trusted code base, the runtime ver-

ifies incoming plans to make sure that all operators are annotated with the

appropriate sensitivity and epsilon (Section 4.6.4).

4. e runtime asks Hermetic worker nodes to execute the operators of the query

plan using Hermetic’s oblivious operators. Afterwards, the results are returned

to the user who submitted the query (Section 4.6.5).

Next, we describe these steps in greater detail.

4.6.2 Initialization

Hermetic is initialized after the users setup a master encryption key and upload their

sensitive data to the server. Since no party in Hermetic is completely trusted, the

master key is created inside the trusted runtime using randomness contributed by

the users. After that, the key is encrypted using a hardware-based key and persisted

to secondary storage using, e.g., Intel SGX’s sealing infrastructure [91].

With the master key in place, users send their data to the runtime, which encrypts

it with the key and stores it to the disk. Since the size of the sensitive data can reveal

sensitive information too, we assume that users will pad the initial relations with

noise before uploading them to the runtime. At the same time, the privacy budget

of each uploaded relation is initialized and stored to the disk.
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To protect from replay attacks [24, 114, 41], where an old version of the pri-

vacy budget is reused by the system, Hermetic uses a trusted non-volatile hardware

counter to add a monotonic value to the privacy budget, which is then checked to

confirm the budget is fresh. Such a counter is available in trusted hardware solu-

tions, including the current version of SGX [89]. To enable the query optimizer to

calculate the privacy and performance cost of query plans, some basic statistics are

also computed during initialization.

4.6.3 Attestation

A prerequisite for uploading sensitive data is that users can be convinced that they

are sending the data to a correct instantiation of the Hermetic system. is means

that they need to make sure that the Hermetic hypervisor is running on the remote

machine, and that the trusted hardware runs the Hermetic runtime. We achieve

this level of trust as follows. Upon launch, the Hermetic runtime uses Intel’s trusted

execution technology (TXT) [92] to get an attestation of the boot process and the

hypervisor loaded at the time. If the Hermetic runtime is started on a machine

without the hypervisor, it halts and performs no processing. In addition to that,

users leverage enclave attestation, e.g., Intel SGX attestation [91], to get a signed

measurement that the correct codebase has been loaded to the trusted hardware.

4.6.4 Query submission and verification

Users write their queries in a subset of SQL that supports selections, projections,

joins, and group-by aggregations. Users can supply arbitrary predicates, but they

cannot run arbitrary user-defined functions. User submit queries to the optimizer,

which is outside Hermetic’s TCB and can reside either at the client or at the server.

e optimizer then prepares a query plan to be executed by the runtime.

As explained in Section 4.5, query plans are annotated with the sensitivity of each

relational operator, as well as with the epsilon to be used to add noise to the inter-
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mediate results. Since the optimizer is not trusted, these privacy parameters have to

be verified before the plan is executed: Hermetic has to check that the sensitivities

are correct, and that the total ε annotations do not exceed the privacy budgets. Sen-

sitivities are verified by computing them from scratch based on the query plan, and

comparing them against the ones attached to the incoming plan.

4.6.5 Query execution

If a plan is verified to be correct, it proceeds to be executed by the runtime. Before

execution starts, the privacy budget is decreased based on the epsilons in the plan,

and the runtime generates the Laplace noise which determines the number of fake

records to pad intermediate results with. To execute a query plan, the Hermetic

runtime sends all the individual operators of the plan to different Hermetic worker

nodes, which in turn use the appropriate operators from Section 4.4 to perform the

computation.

4.7 Implementation

To confirm our design and measure the performance implications of our approach,

we implemented a prototype of Hermetic, which we describe next.

4.7.1 Hermetic hypervisor

We based the Hermetic hypervisor on Trustvisor [115], a compact extensible hyper-

visor that has been formally verified [159]. To support the functionality needed for

establishing an OEE, we extended Trustvisor with two hypercalls, named LockCore

and UnlockCore, respectively. e LockCore hypercall performs the following ac-

tions: (1) it checks that hardware hyperthreading and prefetching are disabled (these

can be done by checking the number of logical and physical cores using CPUID, and

using techniques from [160]), (2) it disables interrupts and preemption (3) it dis-

ables the RDMSR instruction for non-privileged instructions to prevent snooping on
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Data lL1 lL3 l∗L1 l∗L3 l̂L1 l̂L3

Random
4 34

0.68 3.34
0.74 5.0Ordered 0.6693 3.8032

Reverse 0.6664 4.263

Table 4.2: L1 hit and miss latencies for merge-sort, as reported by Intel’s specifi-
cations (lL1, lL3), and as measured on different datasets (l∗L1, l∗L3). e last columns
show the values we used in our model. All values are in cycles.

package-level performance counters of the Hermetic core, (4) it flushes all cache

lines (with WBINVD), (5) it uses CAT to assign a part of the LLC exclusively to the

core running Hermetic (by writing to several model-specific registers [98]), and (6)

it returns control to the Hermetic runtime that called the hypercall. After calling

LockCore, the Hermetic runtime can proceed with the remaining steps required to

establish an OEE (Section 4.7.2). UnlockCore reverts actions (2) to (5) in the reverse

order. Overall, we modified 300 SLoC within the Trustvisor code.

4.7.2 Oblivious execution environment

Memory-access obliviousness: To ensure that all memory accesses from within

the OEE are served from the cache, we disabled hardware prefetching, as discussed

in Section 4.7.1, and we pre-loaded all data and instructions to the cache. For the

former we used the prefetcht0 instruction, which instructs the CPU to keep the

data cached, and we performed dummy writes to prevent leakage through the cache

coherence protocol. For the latter, we adjusted our algorithms so that they could be

run in a “shortcut mode” that exercises all the code (and thus loads it into the icache)

but does not touch any actual data. We also carefully aligned all buffers in memory

to avoid cache collisions.

Timing obliviousness: To prevent the data-dependent memory accesses inside OEE

from causing variations in the execution time, we pad the execution time to a safe

upper bound. In principle, this could be done by adding up the worst-case latencies

of all instructions and the LLC hit latency lL3 for all memory accesses, but this would
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be wildly conservative. To get a tighter bound, we carefully analyzed the two algo-

rithms (mergesort and linear-merge) that Hermetic needs to run inside the OEE;

fortunately, because of the way these algorithms access the data, it is easy to prove

for many memory accesses that they will be served from the L1 cache, which allows

us to substitute the L1 hit latency lL1 for lL3 in these cases. However, due to the su-

perscalar execution in modern CPUs, the resulting bound is still 10x larger than the

actual execution time. To further improve the bound, we performed a large number

of experiments in which we measured the L1 hit and miss rates using the CPU’s per-

formance counters, and we used regression to learn effective L1 and L3 hit latencies

l∗L1 and l∗L3. Table 4.2 shows the effective latencies we estimated for mergesort, as well

as those of the specification. Since we could not be sure that we have observed the

worst case in our experiments, we added generous safety margins to obtain bounds

l̂L1 and l̂L3, which our prototype uses to determine how much to pad the execution

time. e resulting times are roughly twice the actual execution times, and they

were never exceeded in our experiments. For extra security, the bounds from the

specification could be used instead, at the expense of somewhat lower performance.

For more details please refer to Appendix C.1.

Hermetic’s trusted codebase consists of the runtime, which had 3,995 SLoC in

our prototype, and the trusted hypervisor, which had 14,095 SLoC. e former

seems small enough for formal verification, and the latter has, in fact, been formally

verified [159] prior to our modifications. (We have not yet updated the proof, but

it should not be difficult.) Notice that the hypervisor would no longer be necessary

with a future revision of SGX that natively supports OEEs.

4.8 Evaluation

Next, we report results from our experimental evaluation of Hermetic. Our exper-

iments try to answer the following questions: (1) Does Hermetic’s OEE satisfy the

security properties outlined in Section 4.3? (2) What is the overhead of time padding
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Relation Rows Multiplicities

Trips 107 m(cid)=32,
m(location)=1019

Customers 4 ·
106

m(cid)=1

Poi 104 m(location)=500
Synthetic * *

Table 4.3: e schema and statistics of the relations used for our end-to-end experi-
ments. e synthetic relation was generated for a variety of rows and multiplicities.

Configuration Sort Join MC IC TC OC

NonOblivious MS SMJ 7 7 7 7

OblMem-NoOEE BS [13, 130] 3 7 7 7

Full-Padding BS CP 3 7 7 3

Hermetic I HS [13, 130]* 3 3 3 7

Hermetic II HS [13, 130]* 3 3 3 3

Table 4.4: Experimental configurations and their resilience to different side chan-
nels. MS stands for merge-sort, BS for batcher-sort, HS for hybrid-sort, CP for
cartesian product, and SMJ for sort-merge join. * denotes that the primitive was
modified as described in Section 4.4.

inside the OEE? (3) How does having a OEE affect the performance of oblivious

sorting? (4) What are the performance characteristics of Hermetic relational oper-

ators for data with different statistics? (5) Can Hermetic scale to realistic datasets

and queries? (6) Can we get good performance even if we want very strong privacy

guarantees?

4.8.1 Experimental setup

Since no existing CPU supports both SGX and CAT, we chose to experiment on

an Intel Xeon E5-2600 v4 2.1GHz machine, which supports CAT, has 4 cores that

share a 40 MB LLC, and features 64GB of RAM. is means that the numbers

we report do not reflect any overheads due to encryption in SGX, but, as previous

work [168] reports, the expected overhead of SGX in similar data-analytics appli-

cations is usually less than 2.4x. We installed the Hermetic hypervisor and Ubuntu
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(14.04LTS) with kernel 3.2.0. We disabled hardware multi-threading, turbo-boost,

and HW prefetching because they can cause timing variations.

Table 4.4 shows the different system configurations we compared, and the

side channels they defend against. NonOblivious corresponds to commodity sys-

tems that take no measure against side-channels; OblMem-NoOEE uses memory-

oblivious operators from previous work [13, 130], without any un-observable mem-

ory; Full-Padding performs all joins by computing the Cartesian join, which pro-

duces outputs equal to the maximum possible size of joins; and Hermetic I and

Hermetic II implement the techniques described in this Chapter – the only differ-

ence being that the former does not add noise to the intermediate results.

Table 4.3 lists all the relations we used in our experiments. e Trips relation has

5-days-worth of records from a real-world dataset with NYC taxi-trip data [128].

is dataset has been previously used to study side-channel leakage in MapRe-

duce [129]. Since the NYC Taxi and Limousine Commission did not release data

about the Customers and points of interest (Poi) relations, we synthetically gen-

erated them. To allow for records from the Trips relation to be joined with the

other two relations, we added a synthetic customer id column to the trips table,

and we used locations from the Trips relation as Poi’s geolocations. To examine

the performance of Hermetic for data with a variety of statistics, we use synthetic

relations with randomly generated data in all fields, except those that control the

statistics in question.

4.8.2 OEE security properties

Our first experiment is designed to verify that our implementation of the OEE prim-

itive really does have stable timing and does not access main memory during the

computation. To test the behavior of merge-sort and linear-merge on a wide

range of input data sets, we created synthetic relations, with randomly-generated

values and as many rows as needed to completely fill the available cache (187,244
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Figure 4.4: Cycle-resolution measurements of the actual timing of merge-sort and
linear-merge inside the OEE, and their padded timing, respectively.

rows of 24 bytes each).

As an initial sanity check, we used the Pin instrumentation tool [111] to record

instruction traces and memory accesses; as expected, these depended only on the

size of the input data. We also used Intel’s performance counters to read the num-

ber of LLC misses1 and the number of accesses that were served by the cache2; as

expected, we did not observe any LLC misses in any of our experiments. Finally, we

used objdump to inspect the compiler-generated code for instructions with operand-

dependent timing; as expected, there were none.

Next, we used the CPU’s timestamp counter to get cycle-level measurements of

the execution time within the OEE, with and without padding. Figure 4.4 shows our

results: as expected, the execution time without padding varied somewhat between

data sets, but with padding, the difference between the maximum and minimum

execution times was only 44 and 40 cycles, respectively. As Intel’s benchmarking

manual [68] suggests, this residual variation can be attributed to inherent inaccura-

cies of the timing measurement code.
1Using the LONGEST_LAT_CACHE.MISS counter.
2Using the MEM_UOPS_RETIRED.ALL_LOADS and MEM_UOPS_RETIRED.ALL_STORES counters.
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4.8.3 Overhead of time padding

Next, we examine the overheads of padding time for mergesort and linear-merge

in the OEE, and how they depend on the size of the un-observable memory.

Analogous to Section 4.8.2, we generated random data and created relations with

enough rows to fill up a cache of 1MB to 27MB. On this data, we measured the

time required to perform the actual computation of the two primitives, and the

time spent busy-waiting to pad the execution time. We collected results across 10

runs and report the average in Figure 4.5(a). e overhead of time padding ranges

between 34.2% and 61.3% for merge-sort, and between 95.0% and 97.9% for

linear-merge. Even though the padding overhead of merge-sort is moderate, it

is still about an order of magnitude faster than batcher-sort. is performance

improvement over batcher-sort is enabled by having an OEE, and it is the main

reason why Hermetic is more efficient than OblMem-NoOEE, even though Her-

metic provides stronger guarantees.

4.8.4 Performance of hybrid-sort using OEE

Running merge-sort in the OEE is crucial for the good performance of hybrid-sort,

which is the basic primitive on which all of the operators are built. To understand

how these benefits depend on the size of the un-observable memory, we conducted

the following experiment. We generated several synthetic relations of 2, 4, and

8 million random rows, and we measured the time required to sort them using

batcher-sort and hybrid-sort. We repeated this experiment for un-observable

memory sizes that ranged from 1MB to 27MB, and we report the results in Fig-

ure 4.5(b).

e results show that the larger the un-observable memory, the greater the bene-

fits hybrid-sort provides. Also, as expected, the speedup compared to batcher-sort

increases with the size of the relation. is illustrates the benefits of un-observable

memory for efficient oblivious sorting.
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Figure 4.5: Latency of merge-sort (MS), linear-merge (LM) and hybrid-sort
(HS) with increasing un-observable memory size, compared to the batcher-sort
(BS).

4.8.5 Performance of Hermetic’s relational operators

Next, we examined the performance of Hermetic’s relational operators: select,

groupby and join. For this experiment we used three simple queries (S1−S3), whose

query execution plans consist of a single relational operator. S1 selects the rows of a

relation that satisfy a predicate, S2 groups a relation by a given column and counts

how many records are per group. S3 simply joins two relations. To understand the

performance of the operators based on a wide range of parameters, we generated

relations with different statistics (e.g., selection and join selectivities, join attribute

multiplicities) and used NonOblivious, OblMem-NoOEE, and Hermetic to execute

queries S1 −S3 on these relations.

Figure 4.6(a) shows the results for queries S1 and S2 for relations of different

size. In terms of absolute performance, one can observe that Hermetic I can scale

to relations with millions of records, and that the actual runtime is in the order of

minutes. is is definitely slower than NonOblivious, but it seems to be a acceptable

price to pay, at least for some applications that handle sensitive data. In comparison

to OblMem-NoOEE, Hermetic I achieves a speedup of about 2x for all data sizes.

S3 displays similar behavior for increasing database sizes.

We also examined the performance of Hermetic II for query S3 on relations of
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Figure 4.6: Performance of select (S1), groupby (S2) and join (S3) for different
data sizes and join attribute multiplicities.

different multiplicities. e amount of noise added to the output in order to achieve

the differential privacy guarantee is proportional to s/ε, and sensitivity s is equal to

the maximum multiplicity of the join attribute in the two relations. is means

we expect to see a point for large multiplicity and small ε where the noise become

large enough to affect the performance considerably. Figure 4.6(b) shows that this

threshold point is reached only for very small ε and large multiplicity (around 200).

However, the overhead of padding in Hermetic II is small for most combinations of

multiplicity and epsilon.

4.8.6 Performance on realistic datasets and queries

Finally, we compared the different system configurations on complex query plans,

each of which consists of at least one select, groupby, and join operator. To per-

form this experiment, we used the relations described in Table 4.3, as well as three

queries that perform realistic processing on the data. Q4 groups the Customer rela-

tion by age and counts how many customers gave a tip of at most $10. Q5 groups

the points of interest relation by category, and counts the number of trips that cost

less than $15 for each category. Q6 counts the number of customers that are younger
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Figure 4.7: (a) e performance of all experimental configurations for queries Q4-Q6.
(b) e performance of Hermetic II for Q4-Q6, but for plans with different privacy
cost ε.

than 30 years old and made a trip to a hospital.

We measured the performance of all systems on these three queries, and the

results are shown in Figure 4.6. Full-Padding was not able to finish, despite the

fact that we left the queries running for 7 hours. is illustrates the huge cost of

using full padding to combat the OC. In contrast, Hermetic II, which pads us-

ing differential privacy, has only a small overhead relative to non-padded execu-

tion (Hermetic I). is suggests that releasing a controlled amount of information

about the sensitive data can lead to considerable savings in terms of performance.

Also, note how hybrid-sort helps Hermetic be more efficient than previous oblivi-

ous processing systems (OblMem-NoOEE), even though it offers stronger guarantees.

Overall, the performance results of Hermetic are consistent with results presented in

Opaque [168], where the authors assumed the existence of an un-observable mem-

ory, and reported an average of 22x and a maximum of 63x overhead compared to

NonOblivious. Even though Hermetic actually implements a real OEE and pads

the OC, our results are in the same ballpark.
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4.8.7 Performance-privacy tradeoff

e last question we answer is whether we can get good performance even if we need

very strong privacy guarantees.

To answer this, we used our optimizer from Section 4.5 to identify the fastest

query plans for Q6 given three different bounds on the privacy consumption ε of

the query (0.1, 0.01, and 0.004). Figure 4.7 shows the time taken by Hermetic II to

perform these optimal plans. We can see that increasing the amount of noise added

to the intermediate results, i.e., decreasing epsilon the epsilon consumption of Q6,

has only a limited effect on performance for all queries, and the total time remains

better than the time required by OblMem-NoOEE. is suggests that, even when

dealing with realistic queries and data, Hermetic can achieve strong privacy guaran-

tees by adjusting ε to small values (larger noise), at only a reasonable performance

cost.

4.9 Related Work

Analytics on encrypted data: In principle, privacy-preserving analytics could be

achieved with fully homomorphic encryption [71] or secure multiparty computa-

tion [23], but these techniques are still orders of magnitude too slow to be practi-

cal [73, 23]. As a result, many systems use less than fully homomorphic encryp-

tion that enables some queries on encrypted data but not others. is often lim-

its the expressiveness of the queries they support [134, 136]. In addition, some

of these systems [138, 118, 141] have been shown to leak considerable informa-

tion [125, 57, 81].

Alternatively, several systems [14, 17, 147] rely on TEEs or other trusted hard-

ware. As in Hermetic, sensitive data is protected with ordinary encryption, but query

processing is performed on plaintext inside enclaves. But, due to the limitations of

TEEs discussed earlier, these systems do not address side channels.
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Oblivious data analytics: Recent work has begun to focus on these side channels,

but so far existing systems only address one or two, often incompletely. M2R [55]

and Ohrimenko et al. [129] aim to mitigate the OC in MapReduce. Both systems

reduce OC leakage, but they use ad hoc methods that still leak information about

the most frequent keys. By contrast, Hermetic’s OC mitigation, based on differential

privacy, is more principled.

To address the MC in databases, Arasu et al. introduce a set of data-oblivious al-

gorithms for relational operators, some based on sorting networks [13]. Ohrimenko

et al. extend this set with oblivious machine learning algorithms [130]. Hermetic

enhances these algorithms by making them resistant to IC, TC, and OC leakage and

by speeding them up significantly using an OEE.

Opaque by Zheng et al. [168] is the system most similar to Hermetic. It combines

TEEs, oblivious relational operators, and a query planner. Interestingly, Zheng et

al. also recognize that performance gains are possible when small data-dependent

computations can be performed entirely in the CPU cache (i.e., an OEE).3 But,

unlike Hermetic, they not describe how to realize an OEE. Furthermore, Opaque

does not mitigate the IC or TC, and its mitigation for the OC relies on adding

padding up to a bound determined a priori. Choosing this bound would be difficult

for users: one that is too low risks privacy whereas one that is too high creates high

overhead. By contrast, Hermetic computes noise automatically.

Mitigating side channels: It is well known that SGX does not handle most side

channels [49], and recent work has already exploited several of them. ese include

side channels due to cache timing [42], the BTB [106], and page faults [162].

Many techniques have been proposed to mitigate so-called digital side channels

that can be monitored by malware running on the target system. ese include

both new hardware designs and code transformations. For example, T-SGX uses

transactional memory to let enclaves to detect malicious page fault monitoring [150].
3In fact, Zheng et al. report performance results assuming the existence of an OEE with 8MB of

memory.
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CATalyst uses Intel’s CAT to mitigate cross-VM LLC side channels [109]. Raccoon

is a compiler that rewrites programs to eliminate data-dependent branches [142]. Its

techniques inspire the manual code modifications that Hermetic uses to mitigate the

IC and TC. Hermetic also uses libfixedtimefixedpoint [12], a math library that

replaces Intel’s native floating point instructions, which suffer from data-dependent

timing.

Hermetic cannot fully mitigate physical side channels, such as power analysis [99]

or electromagnetic emanations [101] because the underlying CPU does not guaran-

tee that its instructions are data-independent with respect to them.4 However, these

channels are most often exploited to infer a program’s instruction trace. us, by

making queries’ instruction traces data-independent, Hermetic likely reduces these

channels’ effectiveness.

Oblivious RAMs [76, 155, 154] can eliminate memory access pattern leakage in

arbitrary programs, but they suffer from poor performance in practice [142]. More-

over, ORAMs only hide the addresses being accessed, not the number of accesses,

which could itself leak information [168].

4.10 Conclusion

In this Chapter, we have presented a principled approach to closing the four most

critical side channels: memory, instructions, timing, and output size. Our approach

relies on a new primitive, hardware-assisted oblivious execution environments, as

well as a number of new oblivious operators and a novel privacy-aware query planner.

We have presented a system called Hermetic that uses this approach; our experimen-

tal evaluation shows that Hermetic is competitive with previous privacy-preserving

systems, even though it provides stronger privacy guarantees.

4e.g., Intel claims that AES-NI is resilient to digital side-channels, but does not mention oth-
ers [149].
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5
Discussion

Even though all the systems presented in Chapters 2 to 4 are designed to perform

computations on sensitive data with privacy guarantees, they have different prop-

erties that make them applicable in different situations. is Chapter discusses the

differences of the three systems, in order to help interested readers decide which of

them is more appropriate for a particular use case. e three systems are compared

in terms of (1) their threat model, (2) the kind of computation they support, and

(3) the security guarantees they provide.

5.1 Threat model

Selecting an appropriate threat model is very important for the design of a system

that seeks to provide security and privacy guarantees. Undoubtedly, it would be great

if all systems could provide the strongest available security guarantees, for instance,

perfect security against multiple colluding malicious adversaries. However, this is

rarely possible because of the computational cost such solutions involve.
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System Cryptographic
assumptions

Adversarial
behavior

Additional
assumptions

Seabed ✓ HbC Single data source
DStress ✓ HbC Up to k untrusted parties

Hermetic ✓ Malicious Trusted hardware

Table 5.1: A comparison of the threat models of Seabed, DStress, and Hermetic.

To overcome this problem, system designers often make simplifying assumptions

about the capabilities and behavior of the adversaries. e idea is that, when the

system defends against weaker adversaries, the designer can use weaker, but more

efficient, cryptographic schemes and optimizations. Of course, this means that users

should be very careful to use these systems only if the simplifying assumptions make

sense in their specific use case; for example, a system that implements access control

using a single four-digit passcode, would not be appropriate to protect the banking

account of a billionaire.

Table 5.1 summarizes the different assumptions made by Seabed, DStress, and

Hermetic, about the number of colluding adversaries the system can defend against,

their behavior during system operation, and their computational capabilities.

Not surprisingly, all three systems make the standard cryptographic assumption

that the adversary does not have the computational power to break the cryptographic

schemes used. is is generally considered to be acceptable - adversaries need to use

machines to mount their attacks, so it is reasonable to assume that they are bounded

by the limitations of current technology. In practice, this implies that the designer

should carefully chose the appropriate security parameters (i.e., secret key length)

for any encryption scheme used in the system.

Seabed and DStress assume that the behavior of the adversary will be Honest-

but-Curious (HbC), i.e., the adversary will try to learn as much as possible, but

will not actively corrupt the execution of the system protocols. On the contrary,

Hermetic assumes that the adversary will try to subvert the system using arbitrarily

malicious ways. Clearly, systems that defend against malicious adversaries provide
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stronger security, but this comes at either an increased performance cost, or making

additional assumptions that limit the capabilities of the adversary (e.g., Hermetic

assumes CPUs are trusted). erefore, the HbC model is sometimes used to achieve

practical performance. As always, users should make sure that the HbC assumption

makes sense in their use case. is usually means that they should examine whether

adversaries would have the incentives to behave maliciously. Malicious behavior is

usually much easier to detect than simple eavesdropping, so it is reasonable to assume

that entities like a heavily regulated bank, or a curious cloud administrator, will try

to remain under the radar.

Finally, all three systems make additional assumptions regarding the number of

parties that can act adverserially in the system. Seabed assumes that data and queries

originate from parties that trust each other and share a secret key. is might make

sense in database outsourcing scenarios, but it is clearly not true when an analytics

application involves data from multiple distrustful parties.

DStress follows a different approach: any party in the system can be compro-

mised, but in total up to k parties can collude in their attempts to extract sensitive

information from the system. k is a tunable parameter, and, if users are willing to

pay the increased performance cost, DStress can be configured with an arbitrarily

large value of k. erefore, the decision whether this assumption is reasonable is

equivalent to correctly choosing the k parameter: assuming no more than 20 banks

will collude might be reasonable, but someone could argue that assuming no more

than 20 Facebook users will collude is absurd.

Hermetic can protect the sensitive data no matter the number of colluding adver-

saries (given at least one is legitimate). Of course, as mentioned earlier, this comes

at the cost of making the assumption that the CPU package of each system machine

cannot be compromised. is assumption may not hold against very powerful ad-

versaries with the resources and expertise to extract data from a CPU; for instance,

a user trying to defend against the NSA, or similar overseas agencies, should not

118



assume that adversaries do not know of any hardware vulnerability that can expose

sensitive information.

5.2 Programming model

Choosing the programming model a system supports has similar tradeoffs. Ideally,

we would like our systems to perform arbitrary computations on sensitive data, with

strong privacy guarantees. However, this is not always possible, so system designers

often settle with efficiently supporting a reduced class of computations.

Seabed and Hermetic support relational queries, and in particular, a subset of

SQL. Out of this supported set, Seabed can only support an even smaller subset

with strong privacy guarantees. Even though there are many analytics that cannot

be computed using these restricted subsets of SQL, many useful analytics can; in-

deed, Section 2.6 shows that Seabed can support an entire real-world ad analytics

application from Microsoft using only strong encryption techniques. Extending the

supported SQL subsets is possible but not entirely straightforward: even though we

believe that extending Hermetic would be mostly a matter of carefully applying the

principles described in Chapter 4 to additional SQL operators, extending Seabed

would be harder as it would require novel cryptographic techniques.

DStress supports vertex programs which are very powerful and can express most

graph computations an analyst user would want to execute. However, DStress as-

sumes that there is an upper bound D on the number of edges that a vertex can have.

Even though D can be set to a value large enough to accommodate any graph, do-

ing so will probably have adverse effects in the performance of the system, so users

should choose wisely.
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System Direct access
prevention

Leakage during
execution

Differential privacy
guarantee

Seabed ✓
Columns encrypted with

OPE or DET, when
SPLASHE is not used.

7

DStress ✓
e existence of edges may

be revealed during
message transfer

Adversaries cannot learn
whether edges exist1.

Hermetic ✓
Sensitive data can be

exposed through
intermediate result sizes.

Adversaries cannot learn
exact information about

individual database
records.

Table 5.2: Security guarantees provided by Seabed, DStress, and Hermetic.

5.3 Security guarantees

All three systems provide basic security by preventing untrusted parties from directly

accessing plaintext sensitive data. is is a very important part of any secure data

processing system, but there are many ways it can be achieved - indeed, the three

systems use different encryption techniques to implement this. However, large part

of this work focuses on defending against more subtle ways of leakage, and Table 5.2

summarizes the sources of leakage and the privacy guarantee provided by the system.

Seabed can leak sensitive information when it executes queries that use order-

preserving encryption (OPE) or deterministic encryption (DET). Even though

Seabed does not limit the amount of information that can leak in these cases, it

introduces techniques that can perform more queries without requiring OPE or

DET. As noted in the previous Section, this approach can provide strong guarantees

to some important applications, but it limits the types of analytics these security

guarantees extend to.

DStress may leak sensitive information during message transfer between graph

vertices. However, this leakage is carefully tracked using a privacy budget, so users get
1In the banking scenario, the existence of edges that represent contracts of value larger than T

dollars may leak (Appendix B.2.1).
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a guarantee that the existence of individual edges will not be revealed to an adversary.

Note, though, that this guarantee does not extend to the existence of entire vertices.

is is reasonable in many applications, e.g., in the banking system, because the

participation in the graph is public knowledge. Nevertheless, this might not be

reasonable in scenarios where even the participation in a graph may also disclose

sensitive information, e.g., in a graph that contains intelligence information about

the members of criminal organization in the US.

Finally, Hermetic may leak sensitive data via side channels like the size of in-

termediate results, and the execution time of relational operators. As we argued in

Chapter 4, approaches like full padding that completely prevent such leakage can

incur performance overheads of several orders of magnitude. erefore, Hermetic

chooses to substitute the perfect hiding of full padding for the differentially-private

guarantee of DP-padding. Even though this is much weaker than perfect hiding, it

does provide a strong mathematical guarantee that an adversary will not be able to

increase her knowledge about individual rows in the database by more than the avail-

able privacy budget. As with choices made in the design of Seabed and DStress, this

sacrifice in privacy brings huge performance benefits. Again, users should make sure

that protecting the privacy of individual rows makes sense in the particular scenario

they are considering: e.g., protecting the rows corresponding to individual patients

at a hospital might make sense, but protecting individual transactions in a person’s

banking account might not be enough to hide sensitive financial information.
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6
Conclusion

6.1 Summary

In this dissertation, we examined several privacy challenges that arise in applica-

tions which use sensitive data distributed across several distrustful parties. As use

cases, we considered three applications: database outsourcing to untrusted servers,

systemic risk computations in financial networks, and distributed database queries

on machines with trusted hardware. Based on these applications, we showed how

current technology is either too expensive, or it fails to prevent sensitive information

leakage. To overcome these challenges, we developed novel techniques that focus on

performing computations on sensitive data, while providing strong privacy guaran-

tees and practical performance. We build three systems that use these techniques,

and we evaluated their effectiveness and their performance characteristics.

In Chapter 2, we presented Seabed, a system for outsourcing analytics on sensi-

tive data to untrusted servers. Unlike previous systems that use expensive asymmetric

cryptography and deterministic encryption, which may in certain cases leak infor-
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mation, Seabed uses two novel techniques called additive symmetric homomorphic en-

cryption (ASHE) and Splayed ASHE (SPLASHE). ASHE achieves fast aggregation on

encrypted data because it uses only symmetric cryptographic primitives. SPLASHE

provides stronger security because it supports a class of queries without using deter-

ministic encryption. Our experimental evaluation showed that Seabed is efficient

enough to enable analytical queries on billions of rows, and that it can support an

ad analytics application from Microsoft without using weaker encryption schemes.

In Chapter 3, we described DStress, which can be used to perform graph com-

putations on sensitive and distributed graphs with strong privacy guarantees. To

achieve practical performance, DStress runs complex computations as vertex pro-

grams on graphs. To protect sensitive information during the computation, DStress

runs the vertex functions in secure multi-party computation (MPC), and it lever-

ages a novel cryptographic protocol to transfer MPC state between vertices, without

revealing the existence of edges. Finally, DStress uses differential privacy to prevent

adversaries from inferring sensitive information by looking at the result of the graph

computation. e evaluation of a prototype of DStress showed that it would take

just a few hours to compute the systemic risk of financial networks the size of the

US banking system.

In Chapter 4, we introduced Hermetic, a system that can perform database

queries on machines with trusted hardware, without leaking sensitive information

via software side channels. To achieve this, we used two different techniques. First,

we used a thin trusted hypervisor to provide strong isolation between trusted and

untrusted code running on the trusted CPU, and, therefore, to preclude informa-

tion leakage through shared CPU resources. Second, we replaced full padding, a

technique used to hide data-dependent patterns in the timing and output sizes of

relational operators, with differentially-private padding, which carefully adds noise to

the patterns instead of hiding the completely. is lets Hermetic obtain great perfor-

mance benefits, without compromising the privacy of individual database records.
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Our evaluation showed that Hermetic takes just a few minutes to perform join

queries on tables with millions of records, as opposed to several hours that a sys-

tem using full-padding would require.

6.2 Future work

e three systems presented in this dissertation make a step forward towards the goal

of performing analytics with privacy guarantees. However, this is by no means the

end of the road; ideally, we would like to have privacy-preserving ways to perform

any computation safely, with very strong guarantees, and performance comparable

to systems that provide no security.

Encrypted database systems like Seabed have the disadvantage that they require

several weaker encryption schemes to support complex functionality. Seabed used

SPLASHE to provide select-aggregate queries on encrypted data without using

weaker encryption, but for other important classes of queries, like joins, the system

has to revert to weaker schemes. erefore, a useful direction would be to develop

new cryptographic techniques that enable such operations with strong security.

Another example of a useful research direction is to extend DStress so it can pro-

vide guarantees even when adversaries behave in a malicious way. As we explained

in Section 3.3.2, DStress assumes that adversaries behave in an Honest-but-Curious

(HbC) way, and this makes sense in the banking scenario because of regulations

that are already in place. However, DStress is designed to perform general vertex

programs, so it could be used in other domains where such regulations do not exist.

To make DStress secure against malicious parties, one may think that it suffices to

replace the secure multi-party protocol used in DStress with one from the cryptog-

raphy literature that is secure against malicious adversaries. But this is not enough,

because the message transfer protocol is not designed to defend against such adver-

saries.

Hermetic revealed that database query execution faces many interesting trade-
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offs between privacy and performance. e planner described in Section 4.5 makes

several simplifying choices, like selecting εi for each operator from a vector of stan-

dard values (Section 4.5.3). However, there are many ways that the query optimizer

could become smarter. First, since no privacy budget is consumed the second time

the same operator is used on the same data, the planner could leverage this fact to

optimize across several queries. It is not inconceivable that there might be some good

selection of plans for the first few queries, that consume more budget, but reduce the

total privacy consumption of the entire query trace. Second, the current Hermetic

planner can miss some optimal solutions because it does not support a free choice for

the εi parameters. Hermetic could use more advanced optimization techniques, like

LP-optimization, to choose an optimal value for εi from the domain of real numbers.

Finally, the planner uses noised statistics to estimate the cost of queries. Even though

we have not studied the effects of noise on the accuracy of the planner’s performance

estimation formulas, we suspect that there is a tradeoff: the less noise we add, the

more information we reveal, and the more accurate the performance estimation will

be. We believe it would be worth-while examining these tradeoffs in detail.
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A
Seabed

A.1 Encryption Schemes

A.1.1 Additive Symmetric Homomorphic Encryption (ASHE)

is is a symmetric encryption scheme that is additively homomorphic. We work

over any additive group (for example, Zn, the integers mod n, for a positive integer

n). e plaintext space is Zn. We shall make use of a pseudorandom function (PRF)

Fk drawn from a function family F : {0,1}ℓ×{0,1}t → Zn. Fk is a keyed function

(with key k ∈ {0,1}ℓ). It maps strings of length t to elements in Zn. e security

of PRFs guarantee that, given oracle access to Fk, no probabilistic polynomial time

(PPT) adversary can distinguish the outputs of Fk from a truly random function

(from {0,1}t → Zn).
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Scheme Description

e encryption scheme is stateful and must pick a unique identifier id ∈ {0,1}t for

every ciphertext created1. We now describe the three algorithms: KeyGen,Enc, and

Dec associated with ASHE. λ is the security parameter.

• KeyGen(1λ ): e symmetric key for the encryption scheme is k, a key to the

PRF.

• Enck(m): To encrypt m ∈ Zn, pick a unique id ∈ {0,1}t . Set the ciphertext

c = (id,m−Fk(id)+Fk(id−1)), where +,− denote group addition/subtraction

respectively.

• Deck(c): To decrypt c = (id,v), output m = v+Fk(id)−Fk(id−1).

We first observe that the scheme is additively homomorphic (where the ci-

phertext length grows with the number of additive operations performed). If

c1 = (id1,m1 −Fk(id1)+Fk(id1 − 1)), and if c2 = (id2,m2 −Fk(id2)+Fk(id2 − 1)), then

c1+c2 = (id1, id2,m1+m2−Fk(id1)−Fk(id2)+Fk(id1−1)+Fk(id2−1)). An important

observation is that if we add w ciphertexts c1, · · · ,cw such that ci encrypts mi with

identifier idi and idi+1 = idi + 1, for all 1 ≤ i ≤ w− 1, then the resultant ciphertext

has the form: (id1, · · · , idw,Σw
i=1mi − Fk(idw) + Fk(id1 − 1)). In this special case, the

ciphertext size does not grow with w, the number of additive operations performed,

as the list id1, · · · , idw can be represented compactly.

Proof of Security

Lemma 1. ASHE is a semantically secure encryption scheme.

Proof. Define F ′ to be a new function as follows: F ′
k(id) = Fk(id)−Fk(id−1). We will

first prove that F ′ is a secure pseudorandom function.
1We can easily make the scheme stateless by picking id randomly from a large enough space, which

will ensure that the value will be unique except with negligible probability.
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Claim 1. If F is a pseudorandom function, then F ′ is also a pseudorandom function.

Proof. Given a PPT adversary A that can distinguish the outputs of F ′ from random,

we will construct an adversary B that can distinguish the outputs of F from random.

B plays the role of the challenger in the security game against adversary A that breaks

the security of the pseudorandom function F ′. B takes part in a security game to

break the security of the pseudorandom function F by interacting with a challenger

C .

For every query id made by the adversary A , B responds as follows: it queries the

challenger C with (id) and gets as output Rid where Rid is chosen by the challenger C

either uniformly at random or as the output of the pseudorandom function Fk(id) for

some key k. en, A queries the challenger with (id−1) and gets as output R(id−1)

where again R(id−1) is either equal to Fk(id−1) or chosen uniformly at random. Now,

A sends (Rid −R(id−1)) as output to B. Note that if the same query is asked again,

C (and subsequently B) give the same response. Observe that if the response of

C was the output of the pseudorandom function F with key k, then the response

of B to A is the output of the function F ′ with the same key k. On the other

hand, if the response of C is chosen uniformly at random, then the response of

B is also chosen uniformly at random. Notice that for every id, we rely only on

the fact that Fk(id) is pseudorandom to argue thatF ′
k(id) is pseudorandom. at

is, the pseudorandomness of Fk(id− 1) is not used to argue that F ′
k(id) is random.

Analogously, the pseudorandomness of Fk(id) is used only once - to argue that F ′
k(id)

is pseudorandom and not to argue about the pseudorandomness of F ′
k(id+1) as well.

erefore, if A breaks the security of the pseudorandom function F ′ by correctly

guessing whether B responds with the output of F ′ or random with probability 1/2+

ε (where ε is non-negligible), then B makes the same guess to the challenger C and

breaks the security of the pseudorandom function F with probability 1/2+ ε.

Given Claim 1, the proof of Lemma 1 follows in a straightforward manner from

the fact that for every ciphertext, we choose a unique identifier id. at is, given

144



a PPT adversary A that can break the semantic security of the encryption scheme,

we will construct a PPT adversary B that can distinguish the outputs of F ′ from

random (thereby contradicting Claim 1). B plays the role of the challenger in the

security game against adversary A that breaks the semantic security of the encryption

scheme. B takes part in a security game to break the security of the pseudorandom

function F ′ by interacting with a challenger C .

For every message m queried by the adversary A , B chooses an identifier id at

random (this identifier can also be chosen by adversary A as long as it is uniquely

chosen for every ciphertext). en, it queries the challenger with id and gets as a

response Rid where Rid is chosen by the challenger C either uniformly at random or

as the output of the pseudorandom function F ′
k(id) for some key k. B then sends

the pair (id,m−Rid) to A as the ciphertext for message m. Finally, A sends two

messages m0 and m1 not queried earlier. Now, B has to send back a ciphertext for

one of them. B chooses an identifier id∗ at random and queries the challenger with

id∗. It gets a response Rid∗. B then chooses a bit b ∈ {0,1} uniformly at random and

sends the pair (id∗,mb −Rid∗) to A . Now, A has to output a bit b′ indicating that

the ciphertext encrypts m′
b. If A outputs b′ = b, B tells the challenger C that his

responses are pseudorandom and if A outputs b′ ̸= b, B tells the challenger C that

his responses are random. Suppose A guesses b′ = b correctly. at is, A breaks

the semantic security of the encryption scheme with probability (1/2+ε) where ε is

non-negligible. Note that if the response of the challenger Rid∗ was chosen uniformly

at random, then no matter how powerful A is, he cannot guess whether b = 0 or

b = 1 with probability better than 1/2. erefore, if the response of C is random,

then the probability that A guesses b′ = b is 1/2. However, if Rid∗ is the output of

the pseudorandom function F ′, then A can guess b′ = b correctly with probability

1/2+ ε. e different events are shown below:

Here, Rid∗ ∈ R means that Rid∗ is random while Rid∗ ∈ PRF means that it is the

output of the pseudorandom function F ′. Since the output of the challenger is
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b′ = b b′ ̸= b
Rid∗ ∈ R 1/2+ ε 1/2− ε

Rid∗ ∈ PRF 1/2 1/2

either the output of F ′ or is uniformly random each with probability 1/2, we can

observe that the adversary B breaks the security of the pseudorandom function with

probability ((1/2∗1/2)+1/2∗ (1/2+ ε)) = (1/2+ ε/2) (where ε/2 is non-negligible

if ε is non-negligible). us, the encryption scheme is semantically secure.

A.1.2 SPLayed Additive Symmetric Homomorphic Encryption

(SPLASHE)

Databases, whose columns are encrypted with deterministic encryption are subject

to frequency attacks, as illustrated by Naveed et al. [125]. In more detail, let D be

a dimension in the database - for example, D could be a column such as gender,

country, or zipcode. Let M be a measure in the database - for example, M could

be revenue, salary, or number of customers. Now, suppose we are likely to make

queries of the form “select SUM(revenue) where gender = Male”. One way

to allow such queries to be made over encrypted data, is to encrypt the dimension

gender using a deterministic encryption (this would map all encryptions of male

to the same ciphertext and all encryptions of female to the same ciphertext), and

encrypt the measure revenue using an additively homomorphic encryption scheme

(such as ASHE described in the previous section). en, one can filter the rows in

the database by the ciphertext corresponding to male and then use the additively

homomorphic property of the encryption scheme to compute an encrypted copy of

SUM(revenue). While this is a meaningful method of achieving this query, it leaks

information about the dimension column, since deterministic encryption is used.

For example, simply by looking at the database, a malicious attacker can tell how

many entries are there with gender = male/female. Mapping the ciphertext to

either male or female can, in many cases, be done easily as the distribution of males
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and females is quite often known.

Scheme Description

SPLASHE is a specialized encryption method that is designed to defeat frequency

attacks on dimensions in databases. Our method leaks no information on frequency

counts of dimension values and achieves full semantic security. It is efficient when

the number of distinct values that the dimension could take is low (or when the

number of distinct frequently occurring values that the dimension takes is low). We

first describe the basic version of SPLASHE (that is efficient only when the number

of distinct values that the dimension could take is low) and then show an enhanced

version.

Basic SPLASHE. e idea is as follows: we will expand both the dimension and

measure columns by a factor of d, where d denotes the number of unique values

that the dimension could take. Denote the expanded columns by D1, · · · ,Dd and

M1, · · · ,Md. In our example above, the dimension (gender) could take d = 2 values

and hence we expand the gender and revenue columns to get D1 = Gendermale,D2 =

Genderfemale and M1 =Revenuemale,M2 =Revenuefemale. Now, suppose we want to en-

crypt the t th row that has gender = male and revenue = 100, we set Gendermale[t] =

1,Genderfemale[t] = 0,Revenuemale[t] = 100,Revenuefemale[t] = 0, and encrypt all the four

columns using an additively homomorphic encryption scheme. Note that we use

a semantically secure encryption scheme and hence no frequency counts are re-

vealed here. Now, if the client wishes to execute the query “select SUM(revenue)

where gender = Male”, he can do so by simply executing the query “select

SUM(Revenuemale)”, which results in the same value (since the value Revenuemale = 0

for all rows with gender = female). Furthermore, if the client wishes to hide

the dimension value on which the query was made, he can execute both “select

SUM(Revenuemale)” as well as “select SUM(Revenuefemale)” and decrypting whichever

value he is interested in.
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Enhanced SPLASHE. However, if the dimension was let’s say “country”, then the

size of the database grows significantly since the number of countries is large. We

now describe a technique to reduce the size blow up in such a scenario. Suppose

we knew apriori that the most frequently occurring countries in the database were

going to be USA and Canada. We now create 4 columns for the dimension country

and 3 columns for each measure (here we consider revenue to be one measure).

We get D1 =CountryUSA,D2 =CountryCanada,D3 =Countryothers,D4 =CountryDet, and

M1 = RevenueUSA,M2 = RevenueCanada,M3 = Revenueothers. For entries with Country

= Canada and Country = USA, we encrypt similar to the method described earlier

in Basic SPLASHE (i.e., for the t th row, if country = USA and revenue = 100,

we encrypt D1[t] = 1,D2[t] = 0,D3[t] = 0,M1[t] = 100,M2[t] = 0,M3[t] = 0, all using

ASHE). For entries which have a country other than USA or Canada, we do the

following: we encrypt D1[t] = 0,D2[t] = 0,D3[t] = 1 and the entry in the field D4 =

CountryDet is deterministically encrypted with the name of the country. Also we

encrypt M1[t] = 0,M2[t] = 0, and M3[t] = 100 (if the revenue of this row was 100).

Note, that at this point, we have not specified what to encrypt in the field D4 =

CountryDet, when country = USA/Canada. If we place a deterministic encryption of

0 (or some other fixed value), then the adversary can a) Learn whether a particular

row’s country was USA/Canada or some other country; and b) Launch frequency

attacks as in [125] on the more infrequently occurring countries.

In order to overcome these security vulnerabilities, we carefully choose how to

encrypt these elements. First, observe that what we need is the following: for every

country apart from USA and Canada, we need to deterministically encrypt that

country a fixed number of times in D4, with this number being independent of the

number of times that country actually appeared in the database. is will ensure

that, even given a frequency count of every country, the adversary cannot launch

any attack using the deterministically encrypted entries of the third column.

To ensure this, we will use the “dummy” entries in D4 corresponding to rows
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that have either USA or Canada as their country. We will deterministically encrypt

(other) country values in the rows where “country” = USA/Canada and choose the

country to be encrypted in such a way that the frequency counts are balanced. For

example, suppose we had a total of 2500 entries in the database with USA occurring

1000 times, Canada occurring 1000 times and a total of 50 other countries each

occurring lesser than 50 times each. Let’s consider one of these countries, say In-

dia. Suppose it occurred 30 times. Since we have a total of 50 other (other than

USA/Canada) countries and 2500 entries to be deterministically encrypted in D4,

each country has to be encrypted 50 times in D4. For India, out of the 50 times

that we must deterministically encrypt India, the database already has country =

India in 30 rows. Hence, we choose 20 of the rows corresponding to country =

USA/Canada uniformly at random and corresponding to these rows, we encrypt the

column D4 = CountryDet with the value country = India using deterministic en-

cryption. Now, in order to preserve correctness of computing revenue aggregates,

note that the false entries encrypting “India” would already have the value in the

field Revenueothers set to be an additively homomorphic encryption of 0. erefore,

when we sum up the revenue of all rows with country as India, we will be adding 0

for every false entry and this will not affect the final sum. Once the frequency counts

of all countries (other than USA/Canada) have been equally balanced, if there are

any remaining rows to deterministically encrypt (this would be the case, for exam-

ple if there were 2510 rows in our example above), then for each of the remaining

rows, we pick a country (not USA/Canada) uniformly at random, and encrypt that

country deterministically in column D4.

Of course, this was possible in the example we outlined above, because the coun-

tries that did not get columns of their own all occurred infrequently, and in particular,

there were enough rows with country = USA/Canada where we could put in dummy

deterministic encryptions of other countries. In order to ensure that this condition

is indeed met, we will choose the number of countries that get separate columns,
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based on the apriori estimate we have of the number of times each different value of

the dimension occurs in the database. More concretely, we use a parameter t such

that for all values of the dimension that occur more than t times in the database,

that value gets a separate column. For all values that occur infrequently (less than t

times), in the column corresponding to all these values, we encrypt enough dummy

values such that each value is encrypted t times. For each remaining row, we choose

an infrequently occurring value uniformly at random and encrypt that value. Note

that t is picked suitably so as to allow for enough “dummy” entries.

Proof of Security

First, observe that for a given dimension (let’s say country), the only column for

which we have to argue security is the CountryDet column. is is because, the en-

tries in the remaining columns are already secure by the security of the underlying

additively homomorphic encryption scheme. In order to prove the security of En-

hanced SPLASHE, we make a simplifying assumption that the input/storage order of

the rows of the database are uniformly distributed (essentially, we require that the

order is independent of the dimension under consideration). If this is not true of the

data itself, then one can achieve this by randomly permuting the rows of the database

when storing it (either truly randomly or through the use of a secure pseudorandom

permutation).

Quantifying information leakage in Enhanced SPLASHE. We now quantify the

information that is already known to the adversary. We assume that the adversary has

access to the number of rows in the database - n, and hence this is public information.

Now, consider a dimension D that takes k unique values v1, · · · ,vk. Let us say each vi

occurs xi times in the database and that x1, . . . ,xk are sorted in non-decreasing order.

Let t be a threshold. at is, for each vi, if xi > t, we create a separate column for vi.

Let us say the first j entries have xi > t. erefore, we will have ( j+1) columns in total

− the first j columns for each vi with i ≤ j and the last column for “other”. Notice
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that in the last column, by design, each value vi with i > j will be deterministically

encrypted an equal number of times. erefore, the adversary can count how many

distinct deterministic encryptions are there in this column, which is the number of

infrequently occurring values (k− j). Let’s call (k− j) as c. Also, just by counting, the

adversary knows that there are j columns for the most frequently occurring countries.

We assume that we are willing to leak to the adversary the threshold t. e reason

being, our scheme is designed such that we encrypt all values vi for i > j, a total of t

times and then for the remaining rows, we sample a value vi for i > j, uniformly at

random.

We now analyze the condition that should be satisfied by the threshold t in order

for the scheme to be realizable and secure. Each infrequently occurring value will be

encrypted t times. erefore, the number of dummy entries we need must be lesser

than the number of dummy entries we have available (the rows corresponding to the

more frequently occurring values).

i=k

∑
i= j+1

(t − xi)≤
j

∑
i=1

xi

Adding ∑xi for j+1 ≤ i ≤ k, to both sides, we get

i=k

∑
i= j+1

t ≤
k

∑
i=1

xi

e right hand side is n. e left hand side is (t×c)where (c= k− j) is the number of

countries that don’t have a column for themselves. erefore, the condition is t ≤ n
c .

To summarize, the adversary gets the following information : the number of rows

n, the number of infrequently occurring values c, and the number of frequently

occurring values, j. We remark here that we need not leak the threshold t to the

adversary (of course, the adversary does know that t ≤ n
c .)
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Security Definition. We now outline the definition of security that Enhanced

SPLASHE satisfies. We shall work with the simulation-based security framework.

Informally, we will require that the real distribution of the encrypted database is

indistinguishable (to any probabilistically polynomial time (PPT) adversary) from

the ideal distribution of a simulated encrypted database created by a simulator that

knows only n,c and j. is will prove that any adversary can learn only n,c and j

from the encrypted database. More formally,

Definition 1. (Simulation-Based Security) An encryption scheme E is said to be secure

with respect to the simulation-based security, if, for any database D with n rows, c infre-

quently occurring dimensions such that t ≤ (n/c), and j frequently occurring dimensions,

the view of any probabilistic polynomial time adversary A in the real world (where the

database is encrypted as described in Enhanced SPLASHE) is computationally indis-

tinguishable from the view in the ideal world where a polynomial time simulator Sim

produces a (simulated copy) of an encrypted database, given only public information n,c

and j. Notationally, E.Enc(D)≈c Sim(n,c, j).

Lemma 2. Assuming ideal security of the deterministic encryption scheme, Enhanced

SPLASHE is secure with respect to the simulation-based security (as in Definition 1).

Proof (Sketch). e strategy for the simulator Sim(n,c, j) to output a simulated

copy of an encrypted database is as follows. e simulator creates j columns

Dimension1, · · · ,Dimension j for the j frequently occurring dimension values and the

column Dimensionothers. e simulator (probabilistically) encrypts all values in these

columns with zeroes. Similarly, for all measure columns Measure1, · · · ,Measure j,

Measureothers, the simulator probabilistically encrypts all values in these columns

with zeroes. Now, for the column DimensionDet, note that there are c values that

infrequently occur. e simulator picks a key for the deterministic encryption

scheme. Call this key kS. Now, for each value i in the range 1 to c, Sim(n,c, j) does

the following: i) Pick n
c empty rows uniformly at random; ii) For each of these n

c
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rows, deterministically encrypt the value i (with key kS) and store this in the di-

mension column. If there are any remaining empty rows, then for each remaining

empty row, pick a value 1 ≤ i ≤ c at random and deterministically encrypt this value

to store. Queries to the database are handled in a natural manner by the simulator.

In the ideal world, for each infrequently occurring value v of the dimension, the

adversary can only see (n/c) rows chosen uniformly at random with the deterministic

encryption of some index i in the dimension column. In the real world, for each

infrequently occuring value v of the dimension, the adversary can only see (n/c)

rows with the deterministic encryption of value v in the dimension column. Based

on the assumption about the rows of our database, we know that these (n/c) rows are

distributed uniformly at random. us, through a reduction to the ideal security of

the deterministic encryption scheme [28, 140] (which can be attained in the random

oracle model [27]), the view of the adversary in the real world is computationally

indistinguishable from his view in the ideal world.

A.1.3 Order Preserving/Revealing Encryption

Order Preserving Encryption (OPE) allows the encryption of messages, with the

property that given c1 = OPEEnc(m1) and c2 = OPEEnc(m2), c1 < c2 if and only

m1 < m2 (if m1 = m2, then c1 = c2). OPE was first introduced by Agrawal et al. [10],

and it was cryptographically first defined by Boldyreva et al. [36]. In many OPE

schemes, it is hard to quantify the information that the adversary can learn about

the plaintext, given the ciphertext (and hence security is defined for specific distribu-

tion of messages, such as messages chosen uniformly at random). Popa et al. [138]

presented an OPE scheme with ideal security− given n ciphertexts c1, · · · ,cn, the only

thing that the adversary can learn is the relative ordering of the plaintexts. However,

the scheme of Popa et al. is stateful and needs to know the set of messages m1, · · · ,mn

being encrypted all at once. is is undesirable for many application and especially

in our case while dealing with large volumes of data. e related notion of Order
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Revealing Encryption (ORE) was introduced by Boneh et al. [38]; informally, in an

ORE, there exists an algorithm Compare that takes as input two ciphertexts c1 and c2

and outputs which of the underlying plaintexts is greater (this algorithm is simply the

comparison function in the case of OPE). Recently, Chenette et al. [46] presented a

construction of an ORE scheme with precise quantifiable leakage. Moreover, their

construction is based only on cryptographic pseudorandom functions (PRFs) and is

practical. We use this construction in our system.

e ORE scheme of Chenette et al. for the set of n bit messages, has the following

leakage function L : L (m1, . . . ,mk) = {(mi < m j, inddiff(mi,m j)) : 1 ≤ i ≤ j ≤ t}. Here,

inddiff(mi,m j) refers to the index of the most significant bit at which the two messages

differ. at is, for every pair of messages, the leakage is which message is larger and

which bit do they first differ at. We now briefly describe their scheme here. Fix a

security parameter λ . Let F : K × ([n]×{0,1}n−1)→ Z3 be a secure pseudorandom

function (PRF).

• Setup(1λ ): Choose a PRF key k ∈ K uniformly at random and set this as the

secret key sk.

• Encrypt(m,sk): Let b1 . . .bn be the binary representation of m. For each i ∈ [n],

compute ui = (F(k,(i,b1b2 . . .bi−1||0n−i))+bi) mod 3, where F is the PRF. e

ciphertext ct is (u1, . . . ,un).

• Compare(ct1,ct2): Let ct1 = (u1, . . . ,un) and ct2 = (u′1, . . . ,u
′
n). Find the smallest

index i such that ui ̸= u′i. If no such i exists, both messages are equal. If ui =

(u′i +1) mod 3, output that ct1 encrypts the larger message. Else, output that

ct2 encrypts the larger message.

A.2 Analysis of MDX queries supported by Seabed

An important question to ask is whether Seabed supports a wide range of Big Data

Analytics applications. We address this question in this section. We analyzed the
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main interface that these applications use at the back-end: MDX (the industry stan-

dard). From this analysis, we have determined that Seabed’s support of the func-

tionality falls into the four categories listed below. Table A.1 shows the numbers of

queries that fall into these categories for MDX queries.

Support completely on server: Seabed’s encryption techniques can support oper-

ations such as computing sum, average, count, min, and max with no client-side

support. is type of query is denoted by S in Table A.2.

Support with client pre-processing: Seabed can also support quadratic computa-

tion necessary for more complex analytics such as variance, standard deviation, and

covariance. is is supported in Seabed by the client pre-processing certain quadratic

terms and uploading them (in encrypted format using ASHE) as well. is type of

query is denoted by CPre in Table A.2.

Support with client post-processing: All applications and APIs we studied allow

users to specify arbitrary functions of data. When these functions are complex,

Seabed requires support for post-processing and compute on the client-side. is

is akin to how Monomi splits queries into server- and client-side components. is

type of query is denoted by CPost in Table A.2.

Support with two client round-trips: Some queries require the client to compute

an intermediate result, encrypt it, and send it back to the server. We believe Seabed

can support a single client round-trip time. is type of query is denoted by 2R in

Table A.2.

We now present a more detailed analysis of the individual MDX queries and how

Seabed supports these queries.
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Query set Total Purely
on

Server

Client
Pre-

processing

Client
Post-

processing

Two
Round-
trips

MDX 38 17 12 4 5

Table A.1: Aggregate details of MDX queries that Seabed supports.
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S. No Query Type Description How Seabed supports it Seabed Type
1 Aggregate Aggregates of measures ASHE for Sum, Count; S

OPE for Max, Min
2 Avg Average of measures ASHE for Sum, Count; S

Client does division
3 CalculationCurrentPass Current calculation pass of cube Independent of Seabed S
4 CalculationPassValue Returns MDX expression Independent of Seabed S

value after current pass
5 CoalesceEmpty Updates empty value Can be done with extra CPre

to numeric/string counter with identity
6 Correlation Correlation Coefficient ASHE & precomputation CPre

of two series X, Y of XY; Client does division
7 Count(Dimensions) Number of dimensions in cube Independent of Seabed S
8 Count(Hierarchy Levels) Number of levels in hierarchy Independent of Seabed S
9 Count(Set) Number of elements in a set Using DE or SPLASHE S
10 Count(Tuple) Number of dimensions in tuple Independent of Seabed S
11 Covariance Covariance of X, Y Same as Correlation CPre
12 CovarianceN Covariance of X, Y Same as Correlation CPre

(with division by N-1)
13 DistinctCount Counts distinct elements Using DE or SPLASHE S
14 IIf One of two values Two values sent back CPost

based on logical test to the client
15 LinRegIntercept Intercept in the Regression Data sent back to 2R

Line using Least Squares Method client for every iteration
16 LinRegPoint y in the regression line Same as LinRegIntercept 2R
17 LinRegR2 Coefficient of Determination Same as LinRegIntercept 2R
18 LinRegSlope Slope of the regression line Same as LinRegIntercept 2R
19 LinRegVariance Var. associated with regression line Same as LinRegIntercept 2R
20 LookupCube MDX expression over a cube Data sent back to client CPost

for computation
21 Max Maximum value in set Using OPE S
22 Median Median value in set Using OPE S
23 Min Minimum value in set Using OPE S
24 Ordinal Zero-based ordinal value Using OPE S
25 Predict Value of expression Data sent back to client CPost

over data mining model for computation
26 Rank One-based rank of set Using OPE S
27 RollupChildren Value generated by rolling Data sent back to client CPost

up values of children for computation
28 Stddev Standard deviation of a set X ASHE when Client uploads CPre

encrypted X2 terms
29 StddevP Std. Dev. using biased pop. formula Same as Stddev CPre
30 Stdev Alias for Stddev Same as Stddev CPre
31 StdevP Alias for StddevP Same as Stddev CPre
32 StrToValue Value of MDX-formatted string Independent of Seabed S
33 Sum Sum over a set Using ASHE S
34 Value Value of a measure as a string Independent of Seabed S
35 Var Variance of a set X Same as Stddev CPre
36 Variance Alias for Var Same as Stddev CPre
37 VarianceP Alias for VarP Same as Stddev CPre
38 VarP Var. using biased pop. formula Same as Stddev CPre

Table A.2: Number of MDX queries that Seabed supports.
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B
DStress

B.1 Proof of Message Privacy

In this section we prove the message privacy property of our share transfer protocol.

Before we do so, we define what a share transfer scheme is and what it means for a

transfer scheme to provide message privacy.

B.1.1 Definitions

Share transfer scheme: Suppose we are given two blocks Bu and Bv with k + 1

nodes each. Also, suppose a secret value V is secret shared among the nodes in Bu. A

share transfer scheme Π is specified by the following randomized algorithms Setup,
Encrypt, Aggregate, RandomizeKey, Adjust, Decrypt, Recover:

Setup: takes a security parameter l, a block Bv and a block size k+1. It returns a list

of k+1 private and public key pairs {(SK0,PK0), . . . ,(SKk,PKk)}, one for each node

in Bv.
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RandomizeKeys: takes a set of k+ 1 public keys {PK0, . . . ,PKk} and randomness r,

and returns a set of re-randomized public keys {PKr
0, . . . ,PKr

k}.

Encrypt: takes as input k+ 1 single bit shares {bu
0, . . . ,b

u
k} from block Bu and a set

of k+1 re-randomized public keys {PKr
0, . . . ,PKr

k} from block Bv. It returns (k+1)2

ciphertext values {cr
i, j} for i ∈ Bu and j ∈ Bv.

Aggregate: takes as input an aggregation function f and (k+1)2 ciphertexts {cr
i, j},

corresponding to plaintexts {bu
i, j}, for i ∈ Bu and j ∈ Bv . It returns (k+1) ciphertexts

cr
j, each corresponding to the aggregation f (br

i, j),∀i ∈ Bu.

Adjust: takes as input randomness r and a set of k+ 1 ciphertexts {cr
0, . . . ,c

r
k} en-

crypted using re-randomized public keys {PKr
0, . . . ,PKr

k}. It returns a set of k + 1

adjusted ciphertexts {c0, . . . ,ck} which is can be decrypted using the original secret

keys {SK0, . . . ,SKk}.

Decrypt: takes as input (k + 1) ciphertexts {c0, . . . ,ck} and (k + 1) secret keys

{SK0, . . . ,SKk}. It returns (k+1) messages {m j = f (br
i, j)}.

Recover: takes as input (k+ 1) messages {m j = f (br
i, j)} and a block Bv. It sets Bv’s

(k+1) bit shares bv
j to zero or one, based on the actual value of message m j.

Correctness: A transfer scheme Π is correct if it the value secret shared in block

Bv at the end of the protocol is equal to the value secret shared in block Bu in the

beginning of the protocol. More concretely, suppose block Bu initially holds shares

{bu
i } such that V =⊕i∈Bubu

i . If {PK0, . . . ,PKk} and {SK0, . . . ,SKk} are the public and

private keys returned by Setup, then we say that Π is correct if the following is true:

{PKr
j}= RandomizeKey(r,{PK j})

{cr
i, j}= Encrypt({bu

i },{PKr
j})

{cr
j}= Aggregate( f ,{cr

i, j})

{c j}= Ad just(r,{cr
j})
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{m j}= Decrypt({c j},{SK j})

{bv
j}= Recover({m j})

⊕ j∈Bvb
v
j =V

Defining the power of the adversary: We consider honest-but-curious (HbC),

probabilistic polynomial time (PPT) adversaries, that can corrupt a set A of up to k

members from each block Bu and Bv. We denote such adversaries as Advk.

Message privacy definition: Informally, a share transfer scheme provides message

privacy if it is infeasible for an adversary to learn information about the transferred

secret shares by participating in the transfer.

More formally, we say that a share transfer scheme Π produces indistinguishable

message transcripts in the presence of an eavesdropper, if no Advk adversary has a non-

negligible advantage against the challenger in the TransferAdvk,Π(l,Bu,Bv,A,Advk,keys):
game described below. Suppose Advk,keys = {(SK j,PK j)| j ∈ A∩Bv} are the key pairs

of nodes in Bv that are controlled by the adversary. en:

TransferAdvk,Π(l,Bu,Bv,A,Advk,keys):
Challenger: e challenger generates the remaining key pairs {(SK j,PK j)| j ∈

Bv −A} and gives the adversary the private keys in Advk,keys and all the public keys.

Adversary: Advk selects bit shares {bu
i |i ∈ A∩Bu} for the nodes it controls in Bu

and sends them to challenger.

Challenger: e challenger picks a random bit b and sets the secret transferred

value V to b. It then applies all the functions of Π and records all intermediate

outputs. At the end, the challenger gives Advk all the ciphertexts {cr
i, j|i ∈ Bu, j ∈ Bv},

{ci, j|i ∈ Bu, j ∈ Bv} and {c j| j ∈ Bv}.

Adversary: Advk inspects the ciphertexts and outputs a decision bit b′. We say

that the adversary succeeds if b′ is equal to b.

e fact that the keys of the adversary’s nodes in Bv are an input to the above game
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reflects our HbC assumption; all keys are selected according to the prescribed proto-

col. Also, the game gives Advk access to all the information (transcript of messages)

it can observe by participating in a transfer.

B.1.2 Construction

At this point we present DStress’s message transfer protocol as a share transfer

scheme. We denote the construction we use in 3.3.5 as DStressTransfer and we list

its functions in accordance to the definitions of the previous section. For a more

detailed description of how DStressTransfer works, please refer to section 3.3.5. Let

g be a generator of a cyclic group G of prime order q. en DStressTransfer is defined

by the following functions:

Setup(l,k+1)→{(x j,gx j)| j ∈ Bv,x j ∈ Zq}

RandomizeKey(r,{gx j | j ∈ Bv})→{grx j | j ∈ Bv,r ∈ Zq}

Encrypt({bu
i |i ∈ Bu},{grx j | j ∈ Bv})→

{(gyi, j ,gbu
i grx jyi, j)|i ∈ Bu, j ∈ Bv,yi, j ∈ Zq}

Aggregate(sum,{(gyi, j ,gbu
i grx jyi, j)|i ∈ Bu, j ∈ Bv})→

{(g∑i∈Bu yi, j ,g∑i∈Bu bu
i +R jgrx j ∑i∈Bu yi, j)| j ∈ Bv,R j ∈ [R1,R2]}

Ad just(r,{(g∑i∈Bu yi, j ,g∑i∈Bu bu
i +R jgrx j ∑i∈Bu yi, j)| j ∈ Bv})→

{(gr ∑i∈Bu yi, j ,g∑i∈Bu bu
i +R jgrx j ∑i∈Bu yi, j)| j ∈ Bv}
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Decrypt({(gr ∑i∈Bu yi, j ,g∑i∈Bu bu
i +R jgrx j ∑i∈Bu yi, j)| j ∈ Bv},

{x j| j ∈ Bv})→{ ∑
i∈Bu

bu
i +R j| j ∈ Bv}

Recover({ ∑
i∈Bu

bu
i +R j| j ∈ Bv})→

{i f ( ∑
i∈Bu

bu
i +R j) mod 2 = 0,

then bv
j = 0, else bv

j = 1| j ∈ Bv}

B.1.3 Correctness and security proofs

eorem 1: DStressTransfer is a correct share transfer scheme.

Proof: We will prove that DStressTransfer is correct by showing that the secret value

shared at the beginning of the protocol in block Bu is equal to the one shared in

block Bv at the end of the protocol, i.e. Vu =Vv.

Initially, we know that Vu is equal to the XOR of all shares {bu
i }, i.e. Vu = ⊕ibu

i .

Because of the way subshares are created in Encrypt, the same holds for the subshares

bi = ⊕ jbi, j. Additionally, from the Encrypt, Aggregate and Decrypt functions of the

DStressTransfer protocol, we know that the value arriving at each member j of Bv is

equal to ∑i bu
i, j +R j. Since R j is chosen to be even, this value is even if and only if

∑i bu
i, j is even. But in Recover, the shares {bv

j} in block Bv are set to 0 if and only if

the received value is even. Hence, {bv
j}= 0 if and only if ∑i bu

i, j is even. is means

that {bv
j} takes the same value as ⊕ibu

i, j. By definition, Vv =⊕ jbv
j, i.e. Vv =⊕ j ⊕i bu

i, j.

But the XOR operation is associative and commutative, and Vv can be written as

Vv =⊕i ⊕ j bu
i, j or equivalently Vv =⊕ibu

i =Vu.

eorem 2: If the decisional Diffie-Hellman (DDH) problem is hard, then

DStressTransfer provides message privacy under the definition of the previous sec-
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tion.

Proof: We assume there is an algorithm A that has a non-negligible advantage in

the TransferAdvk,Π game. We will construct an algorithm B which uses A to gain a

non-negligible advantage in solving the DDH problem.

To solve the DDH problem, B takes as input (g,ga,gb,T ) and tries to guess

whether T = gab or T = gc, for some random c ∈ Zq. Upon receipt of (g,ga,gb,T ), B

invokes A as a challenger in a TransferAdvk,Π game, with security parameter l, blocks

Bu = {ui|i = 0 . . .k} and Bv = {v j| j = 0 . . .k}, and a set A of nodes controlled by the

adversary. Without loss of generality, assume that nodes k1 ∈ Bu and k2 ∈ Bv are not

controlled by the adversary. In the first step of the game, B chooses key pairs as

prescribed, with the exception that it sets k2’s public key to be ga. In the next step,

A picks its bit shares and sends them to challenger B. en B picks random bit

b and sets V = b. Moreover, it sets all the remaining bit shares in a way that makes

V = b if and only if share bk1,k2 = b. (One way to achieve this is to set all shares

randomly and the final one to be the value required so that ⊕i, jbi, j =V .) Finally, B

sets all the ciphertexts as prescribed in the game, apart from ciphertext cr
k1,k2

, which

is set to (gb,gV T r). After that, A outputs its decision bit b′ and B guesses T = gab

iff A succeeds, i.e. b = b′.

We will show that B has a non-negligible advantage in guessing T . Since k1 and

k2 are not controlled by the adversary, A never gets to see plaintext bk1,k2 =V . So the

only way to find V is from either cr
k1,k2

, cr
k2

or ck2. If T = gab, then cr
k1,k2

= (gb,gV gabr)

is a valid ciphertext of TransferAdvk,Π and so are cr
k2

and ck2). Because the ciphertexts

are valid, A can guess V with non-negligible probability 1/2+ ε. If T = gc, then

we will argue that cr
k1,k2

= (gb,gV gcr) cannot possibly reveal anything about V , so A

can only guess with probability 1/2. is is indeed true, because there exist exactly

two elements c1 and c2 for which g0gc1r = g1gc2r. Since c is randomly chosen from

Zq, c1 and c2 are equally likely to be chosen as c, with probability 1/2. With a

similar reasoning, we can show the same about cr
k2

and ck2. So, given A that has
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non-negligible advantage in game TransferAdvk,Π, B has non-negligible probability

P(B : succeeds) = P(T = gab)P(B : succeeds|T = gab)+

P(T = gc)P(B : succeeds|T = gc) =

=1/2 · (1/2+ ε)+1/2 ·1/2 = 1/2+ ε/2

to succeed in guessing whether T = gab or T = gc, which is a contradiction because

we have assumed that DDH is hard.

B.2 Edge privacy in DStress

In this section we show how our our message transfer protocol from section 3.3.5

preserves edge differential privacy. e main idea is that we can treat the information

leakage during the protocol execution as the result of a query on the graph. Since we

add noise from the geometric distribution to the revealed information, we can use

differential privacy to track the amount of leakage and make sure it does not exceed

the threshold defined by the privacy budget of the system. In the following we prove

that our protocol satisfies ε-DP, and show how much privacy budget is used for a

concrete instantiation of DStress.

Treating message transfer as a query: Given a graph G, there are many bit-share

transfers during an iteration of DStress. Each bit-share transfer from block Bi to B j

has the potential of revealing a small amount of information about the existence of

the underlying edge (i, j). is leakage happens because members of B j receive the

sum of the bit-shares sent from Bi, instead of just the XOR of the shares. We can

treat every bit-share transfer as a query Q(i, j)(G) on the graph G; the query is indexed

by edge (i, j) because each transfer reveals information about one edge only.

Sensitivity: Suppose we have two graphs G and G′ that differ on at most one edge,

say edge (i, j). e sensitivity of Q(i, j) can be easily derived. Q(i, j) returns the sum of

bit-shares in Bi and all nodes in DStress are HbC (section 3.3.2). is means their
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shares can be 0 or 1, so the global sensitivity is ∆ = maxG,G′ |Q(i, j)(G)−Q(i, j)(G′)| =

k+1, that is, equal to the number of nodes in a single block.

Release mechanism: Remember from section 3.3.5 that, during a bit transfer from

Bi to B j, i homomorphically adds noise to the transferred sum. We will denote this

noising mechanism as Mech(G,Q(i, j),α); the mechanism can be described with the

following equation:

Mech(G,Q(i, j),α) = Q(i, j)(G)+2 ·Y,

where Y ∼ Geo(α
2
∆ ), where Geo is the geometric distribution as described in [75].

Privacy guarantee: e above mechanism provides ε-differential privacy. e ge-

ometric distribution has range over all integers, and is described by the following

probability density function:

Pr[Y = d] =
α −1
α +1

·α |d|,

where α is a parameter in (0,1). For discrete distributions, the traditional differen-

tial privacy definition (section 3.3) is equivalent to proving that the ratio between

Pr[Mech(G,Q(i, j),α) = d] and Pr[Mech(G′,Q(i, j),α) = d] lies in the interval [α ,1/α ]

(see [75], section 2.1). Adding geometric noise with parameter α to a query with

sensitivity 1 provides α-differential privacy [75]. Here, we will show that release

mechanism Mech provides α-differential privacy when we sample Y from the geo-

metric distribution with parameter α
2
∆ . α corresponds to e−ε from the traditional

definition of differential privacy, therefore ε =− lnα.

Consider any two graphs G and G′ that differ in at most one edge, say (i, j), and

any integer d from the output range of Mech.

Pr[Mech(G,Q(i, j),α
2
∆ ) = d]

Pr[Mech(G′,Q(i, j),α
2
∆ ) = d]

=
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=
Pr[Q(i, j)(G)+2 ·Y = d]
Pr[Q(i, j)(G′)+2 ·Y = d]

=
Pr[Y =

d−Q(i, j)(G)

2 ]

Pr[Y =
d−Q(i, j)(G′)

2 ]
=

=
α

2
∆ ·

|d−Q(i, j)(G)|
2

α
2
∆ ·

|d−Q(i, j)(G
′)|

2

= α
|d−Q(i, j)(G)|−|d−Q(i, j)(G

′)|
∆

which is in [α,1/α] for all integers d, and graphs G and G′, such that |Q(i, j)(G)−

Q(i, j)(G′)| ≤ ∆.

Utility: e sums revealed during DStress execution are not intended to be out-

puts of the system – we just treat them as such to keep track of information leakage.

Hence, we don’t care about the utility of the output; in fact we would like it to be as

inaccurate as possible to any eavesdropping adversary. is suggests that we could

add as much noise as possible. However, there is a technical limitation regarding the

amount of noise we add: the total noised sum is transferred on the exponent of an El-

Gamal ciphertext, and we cannot recover exponents that are too large (section 3.3).

But the geometric distribution can return, albeit with exponentially small probabil-

ity, arbitrarily large noise. erefore, there is some probability that the system will

not be able to recover the ElGamal exponent – we call this the failure probability Pf ail

of the system. Suppose we define failure to be when the system cannot decrypt an

ElGamal ciphertext using a lookup table of Nl entries (from −Nl
2 to Nl

2 ), then Pf ail is

equal to the probability that the geometric distribution returns a value outside those

boundaries. We can compute this probability by using the formula for the sum of

the first Nl
2 terms of a geometric series (scaled by two to account for both terms from

0 to Nl
2 and from 0 to −Nl

2 ):

Pf ail = 1−Psuccess = 1−2 · 1−α
Nl
2

1+α
=

2α
Nl
2 +α −1
1+α

So, if we want Pf ail to be less than once in Nq transfers, we can compute the maximum
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αmax we can use by solving the inequality:

2α
Nl
2 +α −1
1+α

≤ 1
Nq

(B.1)

Privacy budget: To determine exactly how much of the privacy budget is used with

every iteration of DStress, we need to figure out how many sums are revealed to the

adversary during that iteration. Even though a great number of message transfers

take place during DStress execution, an adversary, who is trying to distinguish be-

tween two graphs G and G′ that differ in at most one edge (i, j), will only be able to

extract information from the transfers that happen over that edge. Over the course

of an iteration, each member of B j receives (k+1) ·L bit-share sums because each of

the (k+1) members of Bi sends one bit-share to each member in B j, for every single

bit of the L bits of the DStress datatype. Since block B j can have at most k colluding

nodes, the adversary observes a total of k · (k+1) ·L sums. erefore, each iteration

uses k · (k+1) ·L ·αmax of the α-privacy budget.

Concrete example: For a concrete instantiation of DStress where each block consists

of k+1= 20 nodes, the sensitivity of each bit-share transfer will be ∆= 20. Moreover,

if we have 8GB of RAM for decryption lookup tables (i.e., 8 ·8589934592 bits) and

384-bit ciphertexts, then the lookup table will have about Nl ≃ 230 million entries.

e total number of share transfers Nq in DStress is Y ·R ·I ·N ·D ·L ·(k+1)2, where k is

the collusion parameter, L is the bit-length of transferred messages, D is the number

of neighbors of every node, N is the number of nodes in the network, I is the number

of iterations in a DStress run, R is the number of DStress runs per year, and Y is the

number of years of DStress execution. Suppose we want DStress to fail once every

ten years (Y = 10). en, for a setting of R = 3, I = 11, N = 1750, D = 100, L = 16,

and k = 19, we get that Nq ≃ 370 billion.

With the parameters above and an ε equal to 2.34 ·10−7, that is α = 0.999999766,
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every iteration would use k · (k+1) ·L ·ε = 0.0014 of the privacy budget1. Since each

year has R · I = 33 iterations, DStress’s message transfer protocol would use 0.0469 of

the privacy budget, before it gets replenished (section 3.4.5).

B.2.1 Merging different privacy definitions

e message transfer protocol of DStress provides edge differential privacy, no matter

what kind of graph analytics we want to compute. However, in some cases, it may

be necessary to compute the analytics with a different kind of privacy guarantee.

For instance, the noise DStress adds to the output of the systemic risk computations

from Chapter 3.4 provides dollar differential privacy, instead of edge differential

privacy. In such cases, we need to reconcile the different privacy definitions and

keep a single privacy budget. In this Section, we show how one can merge the two

privacy definitions and understand the exact privacy guarantee that DStress provides

in the systemic risk scenario.

Dollar differential privacy differs from edge differential privacy on the defini-

tion of its neighboring relation. A neighboring relation determines the granularity

of privacy protection: an adversary cannot use the output of the computation to

identify the underlying sensitive graph among a set of neighboring graphs. e two

neighboring relations are as follows:

Dollar-privacy (D1): Two graphs G1 and G2 are considered to be neighbors with

respect to D1, if and only if the graphs are identical, except for the edge values of one

vertex in G2, which are a reallocation of at most T dollars from the corresponding

edges in G1.

Edge-privacy (D2): Two graphs G1 and G2 are considered to be neighbors with

respect to D2, if and only if they differ in at most 1 edge.

Note that none of the two definitions implies the other. To see why, consider

two counter-examples. First, suppose that G1 has a vertex with T edges, one with
1Note that these values of α, Nl , and Nl satisfy the Pf ail inequality B.1 above.
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value T and the rest with 0, and the same vertex in G2 has T edges of value 1. en,

the two graphs are neighbors based on D1, but non-neighbors based on D2. Second,

suppose G1 has an edge of value 2T , and G2 does not have that edge. en, the two

are not neighbors based on D1, but they are neighbors based on D2.

DStress uses both definitions: edge privacy for share transfers, and dollar privacy

for the output. To correctly limit the amount of information leaked through the

entire execution of DStress, we need to keep a single budget. But to do so, we need

to merge the two definitions into a new definition. is definition is based on a new

neighboring relation, which is the conjunction of D1 and D2:

EN/EGJ-privacy (D3): Two graphs G1 and G2 are considered to be neighbors with

respect to D3, if and only if they are neighbors both with respect to D1 and D2, i.e.,

if they differ in at most one edge whose value is less or equal than T dollars.

In what follows, we will show that we can deduct the epsilon values used for

share transfers and the dollar-output from a single privacy budget based on D3. is

is possible because a mechanism that provides either edge-privacy or dollar-privacy,

provides EN/EGJ privacy too. We prove this in the following lemma.

Lemma: Suppose mechanism M provides ε-DP with respect to D1. en, it pro-

vides ε-DP with respect to D3 as well.

Proof. Suppose two graphs G1 and G2 are neighbors with respect to D3. We need

to show that the definition of differential privacy (Chapter 3.3) holds. But, by the

definition of D3, if G1 and G2 are neighbors, they are also neighbors with respect to

D1. But M provides ε-DP based on D1, so the definition of differential privacy holds:

Pr[M(G1) ∈ S] = eε ·Pr[M(G2) ∈ S]

And M provides ε-DP with respect to D3 too.

We can use similar reasoning to prove that this is true for D2 too. is means

that the share transfers and the systemic risk output of DStress are protected with
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ε-DP with respect to D3 and, therefore, we can keep a single privacy budget.

D3 corresponds to a privacy guarantee where all individual contracts of value less

or equal than T dollars are hidden during the DStress computation. is is a sensible

and clearly defined guarantee, which could be used to protect banks. However,

readers should be reminded that this is an active research area in economics, and

further research might be necessary to find out whether this privacy guarantee would

be enough to facilitate collaboration between the different banks.

B.3 Evaluating Models of Contagion

Ideally, we would be able to test DStress on a dataset of financial interlinkages be-

tween institutions. However, for the exact privacy reasons that motivate the creation

of DStress, there are no publicly available datasets on interbank linkages.

is lack of data is reflected throughout the economics literature on financial

contagion. For instance, [63][§5] illustrate their model of contagion using nation-

level debt cross-holdings, consisting of just 7 Eurozone nations. In their own words,

“we include this as a proof of concept, and emphasize that the crude estimates which

we use for cross-holdings make this noisy enough that we do not see the conclusions

as robust, but merely as illustrative of the methodology.” e remaining economics

literature follows one of two paths. e first type, such as [9, 11], use stylized exam-

ples to highlight how their model of contagion behaves in that setting. e second,

and by far most common, use aggregate bank liability data. Given the informational

weakness of using aggregate data, these models are less precise. [158][§2] provides

a comprehensive overview of the literature in this setting.

Other work, such as [69], takes as established that the actual banking network is

not fully connected, but instead exhibits known properties consistent with two simi-

lar but distinct models: a core-periphery model [113] and a scale-free model. In the

core-periphery model, there is a densely connected but small core set of institutions

that have large aggregate assets and liabilities, surrounded by a larger set of smaller
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institutions that are each individually linked to the network through one or two core

institutions. In the scale-free model, banks closer to the “center” have exponentially

more linkages than banks farther away from the center.

e existing work shows strong evidence that there are central institutions with

dense interconnections, surrounded by a large number of less institutions that are

more loosely connected. However, the exact topology is not readily inferable.

To estimate the number of iterations that our contagion detection algorithms

need to be run, we looked at some hypothetical scenarios based on the empirical

work we discussed above. Following [48] and [113], we performed experiments to

see how our algorithms performs on simulated networks with a two-tiered structure.

We created a synthetic network comprising of 50 banks. e network was stylized,

with a central core of 10 banks that were densely interconnected, with the remaining

banks being regional banks that were linked to one or two central banks, following

the structure described in [48]. e network was designed to generate two synthetic

datasets: the first where a set of regional banks failed, with the shock being absorbed

by the core banks, and the second, where it led to cascading failures taking down

the entire core. As with [63], we emphasize that these results should be taken as

speculation based on the existing economics literature, and not definitive evidence

of the structure of real world banking networks. We used this network solely to

estimate the number of iterations we would need to run our algorithms for.

e core-periphery structure of the banking network ensures that shocks are

transmitted to the core quickly (as all peripheral banks are within a few hops of

some core bank), and, due to the densely interconnected core means that shocks

that hit a single core bank transmit quickly to all the core banks, and rapidly are

absorbed or trigger sizable contagion effects. Since the core banks are almost fully

connected, any shortfalls spread faster than linearly within the core. Since under

the core-periphery model the peripheral banks are linked to some core bank within

1− 2 hops, we only require a few additional hops for a shock to transmit through
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the core itself. In our simulations, we found that shocks either escalate rapidly or

not at all, and are clearly visible if the shock takes down a single core bank (because

a core bank’s assets and liabilities are so large). Conservatively, we estimate a bound

of log2 n in the worst case where the periphery model has a binary tree form, giving

us the maximal path length before a shock reaches a core bank.

We reiterate that, due to the closed-form sensitivity proof of [84], the number of

iterations does not dictate the privacy cost of the queries — only the running time of

the algorithm. us, if set conservatively, it should detect contagion scenarios in all

but the most contrived of network structures, which, according to publicly available

data, clearly do not exist in practice.
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C
Hermetic

C.1 Determining the timing bound of an OEE

e discussion in Section 4.7.2 mentions two main techniques we used to derive

a safe and efficient upper bound on the time required to execute merge-sort and

linear-merge in the OEE: (1) analyzing the two algorithms to count how many

accesses are guaranteed to be served by the L1 cache, and (2) computing the effective

cache-access latency for L1 and LLC on superscalar CPUs. Here, we elaborate on

our techniques.

Cache-hit analysis e obvious upper bound one can derive for merge-sort and

linear-merge is to count all their memory accesses M, assume that all of them will

be served by the LLC, and multiply the number of accesses by the latency of LLC

accesses from the specification, i.e., M · lL3. However, this bound is very conservative

because locality of reference suggests only a small fraction of accesses is served by the

LLC.

To find a more accurate upper bound, we examined the structure of the two
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primitives and found a number of accesses that are certain to be served by the L1

cache. In our analysis, we assumed that the primitives are to be run on a machine

with an 8-way associative cache and that local variables are memory-aligned in a way

that each variable falls in a different cache set, so that they never evict each other.

Our analysis yielded the following insights:

1. Both input relations are scanned linearly;

2. All accesses to local variables are served from L1;

3. In every merging iteration, one input data access is the same as the previous

iteration and, hence, served from L1;

4. Memory is fetched at cache line granularity, so each L1 miss is followed by

scl/stuple L1 hits, where scl = 64 is the cache line size in bytes, and stuple is the

size of sorted tuples.

(1) is clearly true because of the way the two primitives work. (2) is true be-

cause of the memory alignment of local variables and the fact that there are fewer

local variables than there are cache sets, so all of them can fit in L1 and no cache set

uses more than one position for local variables. Moreover, since the main loops of

merge-sort and linear-merge touch all local variables, at most two data locations

are accessed before the local variables are touched again, and this means no data can

evict a local variable in an 8-way associative cache. (3) holds because merging in-

volves two running pointers, and only one of the pointers advances at each iteration.

(4) data is aligned in memory, so each L1 miss fetches one cache line to L1, i.e., ex-

actly scl/stuple data items. Moreover, both input relations are scanned linearly, and,

therefore, for each miss, the following scl/stuple −1 accesses will be L1 hits.

Our analysis helped us identify ML1, i.e., a number of accesses that are certain

to be fetched from L1. Having that, we updated our timing bound model to be

ML1 · lL1 +(M −ML1) · lL3. In practice, we found out that a large portion of accesses

are certain to be fetched from L1 (about 89.06% and 79.73% of M for merge-sort
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and linear-merge, respectively). e bound given by our cache-hit analysis is a safe

bound, in the sense that the actual execution time cannot ever exceed the estimated

bound.

Calculating effective latencies Even though the upper bound derived by the cache-

hit analysis is much better that our initial approach, it turned out that the estimated

execution time was still about an order of magnitude slower than the actual execu-

tion. is can be attributed to the fact that modern processors have a highly efficient

and parallel pipeline.

To better estimate the execution time of the two primitives, we decided to mea-

sure the effective latency l∗L1 and l∗L3 of L1 hits and misses respectively, and plug

them into the formula derived by our cache-hit analysis. To measure these effective

latencies we preformed several runs of the primitives for different randomly gen-

erated input data and collected a series of measurement tuples (mi
L1,m

i
L3,c

i), where

mi
L1 was the number of L1 hits and mi

L3 was the number of L1 misses, as reported

by the CPU’s performance counters, and ci was the observed execution time in cy-

cles. Given these tuples, we assumed a linear model mi
L1 · l∗L1+mi

L3 · l∗L3 = ci, and used

regression to derive values for l∗L1 and l∗L3.

e above model assumes that l∗L1 and l∗L3 are constant across all measurements,

but this is not necessarily true. In an effort to account for outlier data that cause

significantly different effective latencies, we repeated the same experiment for input

data that was already sorted, and data that a was in reverse order. e results (Ta-

ble 4.2) showed that, even though there is some variation in the measured latencies,

it is not more than 0.02 cycles for l∗L1, and 0.9 cycles for l∗L3.

To make sure that our regression-based timing estimate will indeed be an upper

bound of real executions, we used l̂L1 = 0.74 and l̂L3 = 5 as effective latencies, which

are upper bounds on l∗L1 and l∗L3, respectively. e resulting estimates were much

closer to the real execution time (at about 1.96x) than the estimates we got through

the cache-hit analysis alone. Experimental results showed that the estimated bounds
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were never exceeded by the actual execution time, so we believe that they can be

considered a safe upper bound. However, for extra security, users of DStress could

specify the timing bound to be the one from the cache-hit analysis, at some perfor-

mance cost.

C.2 Oblivious primitives with fake rows

Section 4.4 briefly mentions that we had to modify the oblivious primitives from [13]

to achieve two goals: (1) allow the primitives to compute the correct result on rela-

tions that have fake rows, and (2) provide an oblivious ways of adding a controlled

number of fake rows to the output of certain primitives. is Section lists the

modifications we had to perform.

C.2.1 Supporting fake rows

Fake rows in DStress are denoted by their value in the isDummy field. Below we list

all the primitives we had to modify to account for this extra field. Keep in mind that,

whenever our description involves logic with some kind of branch, we take care to

replace branches with the CMOV instruction.

groupid: is primitive groups the rows of a relation based on a set of attributes,

and adds an incremental id column, whose ids get restarted for each new group. In

order for this to work correctly in the face of dummy records, we need to make sure

that dummy records do not get grouped with real records. To avoid this, we expand

the set of grouping attributes by adding the isDummy attribute. e result is that real

records get correct incremental and consecutive ids.

grsum: Grouping running sum is a generalization of groupid, and as such, we were

able to make it work with dummy records by applying the same technique as above.

union: Union expands the attributes of each relation with the attributes of the

other relation, minus the common attributes, fills them up with nil values, and

then appends the rows of the second relation to the first. To make union work
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with fake rows, we make sure the isDummy attribute is considered common across all

relations. is means that the output of unions has a single isDummy attribute, and

its semantics are preserved.

filter: To make filter work with fake rows, we need to make sure that user predi-

cates select only real rows. To achieve this, we rewrite a user-supplied predicate p as

“(isDummy = 0) AND p”. is is enough to guarantee that no fake rows are selected.

join: What we want for join is that real records from the one relation are joined only

with real records from the other relation. To achieve this, we include the isDummy

attribute to the set of join attributes of the join operation.

groupby: For the groupby primitive, we apply the same technique as for the groupid

and grsum - we expand the grouping attributes with isDummy.

cartesian-product: Cartesian product pairs every record of one relation with

every record of the other, and this happens even for fake rows. However, we need

to make sure that only one instance of isDummy will be in the output relation, and

that it will retain its semantics. To do this, we keep the isDummy attribute of only

one of the relations, and we update its value to be 1 if both paired rows are real and

0 otherwise.

multiplicity and histogram: ese two primitives need to return the correspond-

ing statistics of the real records. erefore, we make sure to (obliviously) exclude

dummy records for the computation of multiplicities and histograms.

C.2.2 Adding fake rows to the primitive outputs

To enable the introduction of fake records, we alter the primitives filter, groupby,

and join. e filter primitive normally involves extending the relation with a

column holding the outcome of the selection predicate, obliviously sorting the rela-

tion based on that column, and finally discarding any records which do not satisfy

the predicate. To obliviously add N records, we keep N of the previously discarded

records, making sure to mark them as fake. groupby involve several stages, but their
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last step is selection; therefore, one can add fake rows in the same way. join queries

involve computing the join-degree1of each record in the two relations. To add noise,

we modify the value of join-degree: instead of the correct value, we set the join-

degree of all fake records to zero, except one, whose degree is set to N. By the way

that joins work, this is enough to eliminate all previous fake records, and create

exactly N new fake records.

1In a join between relations R and S, the join-degree of a record in R corresponds to the number
of records in S whose join attribute value is the same with this row in R.
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