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Development Of A Scintillation Detector And The Influence On Clinical
Imaging

Abstract
The detector is the functional unit within a Positron Emission Tomography (PET) scanner, serving to convert
the energy of radiation emitted from a patient into positional information, and as such contributes
significantly to the performance of the scanner. While modern whole-body scanners use detectors composed
of very many (i.e., 20000-30000) small pixels, typically ~4x4x20mm3 in size, several groups are actively
investigating the performance of continuous crystals coupled to position sensitive photodetectors as an
alternative detector design with a number of potential advantages, including improved spatial resolution and
position sampling. This work in particular focuses on thick (≥14mm) continuous crystals in order to maintain
the sensitivity of modern scanners. Excellent spatial resolution in continuous detectors that are thick,
however, has proven difficult to achieve using simple positioning algorithms, leading to research in the field to
improve performance. This thesis aims to investigate the effect of modifications to the scintillation light spread
within the bulk of the scintillator to improve performance, focusing on the use of laser induced optical barriers
(LIOBs) etched within thick continuous crystals, and furthermore aims to translate the effect on detector
performance to scanner quantitation in patient studies.

The conventional continuous detector is first investigated by analyzing the various components of the detector
as well as its limitations. It is seen that the performance of the detector is affected by a number of variables that
either cannot be improved or may be improved only at the expense of greater complexity or computing time;
these include the photodetector, the positioning algorithm, and Compton scatter in the detector. The
performance of the detectors, however, is fundamentally determined by the light spread within the detector,
and limited by the depth-dependence of the light spread and poor performance in the entrance region,
motivating efforts to modify this aspect of the detector.

The feasibility and potential of LIOBs to fine-tune this light spread and improve these limitations is then
studied using both experiments and simulations. The behavior of the LIOBs in response to optical light is
investigated, and the opacity of the etchings is shown to be dependent on the parameters of the etching
procedure. Thick crystals were also etched with LIOBs in their entrance region in a grid pattern in order to
improve the resolution in the entrance region. Measurements show an overall improvement in spatial
resolution: the resolution in the etched region of the crystals is slightly improved (e.g., ~0.8mm for a 25mm
thick crystal), though in the unetched region, it is slightly degraded (e.g., ~0.4mm for a 25mm thick crystal).
While the depth-dependence of the response of the crystal is decreased, the depth-of-interaction (DOI)
performance is degraded as well. Simulation studies informed by these measurements show that the
properties of the LIOBs strongly affect the performance of the crystal, and ultimately further illustrate that
trade-offs in spatial resolution, position sampling, and DOI resolution are inherent in varying the light spread
using LIOBs in this manner; these may be used as a guide for future experiments.

System Monte Carlo simulations were used to investigate the added benefit of improved detector spatial
resolution and position sampling to the imaging performance of a whole-body scanner. These simulations
compared the performance of scanners composed of conventional pixelated detectors to that of scanners
using continuous crystals. Results showed that the improved performance (relative to that of 4-mm pixelated
detectors) of continuous crystals with a 2-mm resolution, pertinent to both the etched 14mm thick crystal
studied as well as potential designs with the etched 25mm thick crystal, increased the mean contrast recovery
coefficient (CRC) of images by ~22% for 5.5mm spheres.
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Last, a set of experiments aimed to test the correspondence between quantification in phantom and patient
images using a lesion embedding methodology, so that any improvements determined using phantom studies
may be understood clinically. The results show that the average CRC values for lesions embedded in the lung
and liver agree well with those for lesions embedded in the phantom for all lesion sizes. In addition, the
relative changes in CRC resulting from application of post-filters on the subject and phantom images are
consistent within measurement uncertainty. This study shows that the improvements in CRC resulting from
improved spatial resolution, measured using phantom studies in the simulations, are representative of
improvements in quantitative accuracy in patient studies.

While unmodified thick continuous detectors hold promise for both improved image quality and quantitation
in whole-body imaging, excellent performance requires intensive hardware and computational solutions.
Laser induced optical barriers offer the ability to modify the light spread within the scintillator to improve the
intrinsic performance of the detector: while measurements with crystals etched with relatively transmissive
etchings show a slight improvement in resolution, simulations show that the LIOBs may be fine-tuned to
result in improved performance using relatively simple positioning algorithms. For systems in which DOI
information is less important, and transverse resolution and sensitivity are paramount, etching thick detectors
with this design, fine-tuned to the particular thickness of the crystal and application, is an interesting
alternative to the standard detector design.
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ABSTRACT 
DEVELOPMENT OF A SCINTILLATION DETECTOR AND THE INFLUENCE ON 

CLINICAL IMAGING 
Joseph V. Panetta 

Joel S. Karp 
The detector is the functional unit within a Positron Emission Tomography (PET) 

scanner, serving to convert the energy of radiation emitted from a patient into positional 
information, and as such contributes significantly to the performance of the scanner.  
While modern whole-body scanners use detectors composed of very many (i.e., 20000-
30000) small pixels, typically ~4x4x20mm3 in size, several groups are actively 
investigating the performance of continuous crystals coupled to position sensitive 
photodetectors as an alternative detector design with a number of potential advantages, 
including improved spatial resolution and position sampling.  This work in particular 
focuses on thick (≥14mm) continuous crystals in order to maintain the sensitivity of 
modern scanners.  Excellent spatial resolution in continuous detectors that are thick, 
however, has proven difficult to achieve using simple positioning algorithms, leading to 
research in the field to improve performance.  This thesis aims to investigate the effect of 
modifications to the scintillation light spread within the bulk of the scintillator to improve 
performance, focusing on the use of laser induced optical barriers (LIOBs) etched within 
thick continuous crystals, and furthermore aims to translate the effect on detector 
performance to scanner quantitation in patient studies.  

The conventional continuous detector is first investigated by analyzing the various 
components of the detector as well as its limitations. It is seen that the performance of the 
detector is affected by a number of variables that either cannot be improved or may be 
improved only at the expense of greater complexity or computing time; these include the 
photodetector, the positioning algorithm, and Compton scatter in the detector.  The 
performance of the detectors, however, is fundamentally determined by the light spread 
within the detector, and limited by the depth-dependence of the light spread and poor 
performance in the entrance region, motivating efforts to modify this aspect of the 
detector. 

The feasibility and potential of LIOBs to fine-tune this light spread and improve 
these limitations is then studied using both experiments and simulations.  The behavior of 
the LIOBs in response to optical light is investigated, and the opacity of the etchings is 
shown to be dependent on the parameters of the etching procedure. Thick crystals were 
also etched with LIOBs in their entrance region in a grid pattern in order to improve the 
resolution in the entrance region. Measurements show an overall improvement in spatial 
resolution: the resolution in the etched region of the crystals is slightly improved (e.g., 
~0.8mm for a 25mm thick crystal), though in the unetched region, it is slightly degraded 
(e.g., ~0.4mm for a 25mm thick crystal).  While the depth-dependence of the response of 
the crystal is decreased, the depth-of-interaction (DOI) performance is degraded as well. 
Simulation studies informed by these measurements show that the properties of the 
LIOBs strongly affect the performance of the crystal, and ultimately further illustrate that 
trade-offs in spatial resolution, position sampling, and DOI resolution are inherent in 
varying the light spread using LIOBs in this manner; these may be used as a guide for 
future experiments.   
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System Monte Carlo simulations were used to investigate the added benefit of 
improved detector spatial resolution and position sampling to the imaging performance of 
a whole-body scanner.  These simulations compared the performance of scanners 
composed of conventional pixelated detectors to that of scanners using continuous 
crystals.  Results showed that the improved performance (relative to that of 4-mm 
pixelated detectors) of continuous crystals with a 2-mm resolution, pertinent to both the 
etched 14mm thick crystal studied as well as potential designs with the etched 25mm 
thick crystal, increased the mean contrast recovery coefficient (CRC) of images by ~22% 
for 5.5mm spheres.   

Last, a set of experiments aimed to test the correspondence between quantification 
in phantom and patient images using a lesion embedding methodology, so that any 
improvements determined using phantom studies may be understood clinically. The 
results show that the average CRC values for lesions embedded in the lung and liver 
agree well with those for lesions embedded in the phantom for all lesion sizes. In 
addition, the relative changes in CRC resulting from application of post-filters on the 
subject and phantom images are consistent within measurement uncertainty.  This study 
shows that the improvements in CRC resulting from improved spatial resolution, 
measured using phantom studies in the simulations, are representative of improvements 
in quantitative accuracy in patient studies.   

While unmodified thick continuous detectors hold promise for both improved 
image quality and quantitation in whole-body imaging, excellent performance requires 
intensive hardware and computational solutions.  Laser induced optical barriers offer the 
ability to modify the light spread within the scintillator to improve the intrinsic 
performance of the detector: while measurements with crystals etched with relatively 
transmissive etchings show a slight improvement in resolution, simulations show that the 
LIOBs may be fine-tuned to result in improved performance using relatively simple 
positioning algorithms.  For systems in which DOI information is less important, and 
transverse resolution and sensitivity are paramount, etching thick detectors with this 
design, fine-tuned to the particular thickness of the crystal and application, is an 
interesting alternative to the standard detector design. 
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CHAPTER 1 

INTRODUCTION 
1.1 Imaging 

1.1.1 Medical Imaging: Foundations 

An image is the representation of the mass and energy of some object or scene as 

a function of spatial position, and is the result of a transformation of the object in real 

space to an image in a transformed version of real space. The measurements needed to 

form an image ultimately involve the detection of some type of radiation (e.g., x-rays, 

gamma rays, sound) that is transported from the object to the imager; in the case of 

electromagnetic radiation, this detection is in turn fundamentally a result of the 

photoelectric interaction. 

 Medical imaging allows for the noninvasive assessment of a patient, but adds the 

additional constraints that the radiation being imaged must penetrate tissue, and that the 

practical ability to achieve such images as well as any dangers associated with the 

imaging must be weighed against the benefit of the imaging.  The images that are 

produced are therefore evaluated technically to determine their utility, with common 

metrics including spatial resolution, contrast, linearity of response, and uniformity.  

 The usefulness of a medical imaging modality is based on the relation of the 

information obtained from the image to a clinical parameter of interest.  The utility of the 

modality is often framed within the context of either detectability, the ability to reliably 

discern objects of interest within the image, or quantitative capability, the ability to 
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quantify metrics accurately based on the computed values at each point of the image.  

Therefore, improvements in a medical imaging device can be made by three general 

means: increasing the signal that creates the image, decreasing the noise inherent in the 

image, or improving the accuracy and precision of the object properties being imaged.  

The last is of particular concern for this thesis; while an ideal imaging system may be 

viewed mathematically as a (noiseless) linear, shift invariant system that maps points in 

real space to points in image space, real imaging systems deviate from this.  These 

imperfections result in a number of problems for the system, including nonlinearities in 

response, finite resolution, and artifacts that all limit the capability of the imaging system 

[1-5].    

1.1.2 Nuclear Imaging 

Nuclear imaging is distinguished from most other forms of medical imaging in 

that it constitutes the subcategory of emission imaging, which aims to detect and image 

gamma radiation that originates within the subject.  This is in contrast to transmission 

imaging (e.g., x-rays), in which gamma radiation outside the subject is directed through 

the body and detected.  An important consequence is that although the form of the data 

collected by both systems is very similar, modeled roughly as line integrals of 

nonnegative functions, the two types of imaging provide different information.  

Specifically, while transmission imaging aims to measure the attenuation coefficient of 

the subject at the gamma energy of interest as a function of spatial position, emission 

imaging operates by measuring the source distribution within the subject, and treats 

attenuation as undesirable.  
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Nuclear imaging designed for whole-body imaging and imaging of large organs, 

such as the brain or heart, takes the form of either Single Photon Emission Computed 

Tomography (SPECT) or Positron Emission Tomography (PET).  SPECT involves the 

imaging of tracers that emit single gamma photons of interest that are detected and 

localized using mechanical collimators, while PET involves the imaging of tracers that 

emit positrons, which annihilate with electrons in tissue to produce a pair of 511-keV 

photons that generally travel in opposite directions.  

1.2 Positron Emission Tomography 

Positron emission tomography begins with administration to a patient of a radiotracer 

with relevant physiologic characteristics.  The spatial, and perhaps temporal, properties of 

the radiotracer distribution are then measured by the PET detector and a map of the 

radiotracer distribution is produced for clinical interpretation.   

1.2.1 Clinical Utility 

Nuclear medicine in general has grown in recent decades in the United States, as a 

result of advances in technology and radiopharmaceuticals, with the United Sates 

accounting for about half of nuclear medicine procedures worldwide. While most nuclear 

medicine procedures in the United States are SPECT scans, and mostly consist of nuclear 

cardiology and bone scintigraphy, there were ~1.5 million PET procedures each year, as 

of 2011.  In particular, the advent of PET/CT, and more recently PET/MRI, has spurred 

its growth in popularity (>80% of PET facilities in the United States have PET/CT 

systems). Worldwide, nuclear medicine, which consists mostly of bone and thyroid scans, 

has increased overall, with PET in particular increasing in popularity. Additionally, while 
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costs of advanced imaging procedures have in general grown disproportionately 

compared to rising health costs, nuclear medicine procedures have been shown to be cost 

effective [6-9].   

PET has become an established imaging modality for diagnosis, staging, 

recurrence detection, and therapeutic monitoring, particularly in oncology, which 

accounts for 90% of procedures, in addition to cardiology and neurology, which account 

for 4% each [10-16].  In all of these procedures, 18F-fluorodeoxyglucose (18F-FDG) is the 

most common radiotracer used, though there are other notable tracers used as well (Table 

1.1).  In addition to qualitative comparisons of tumor size and number, the quantitative 

ability of PET may be invoked in its clinical uses, by calculating some metric of interest 

related to tracer uptake. While standards exist to analyze tumors anatomically (e.g., 

World Health Organization (WHO) criteria, the Response Evaluation Criteria in Solid 

Tumors (RECIST)), PET therefore allows for the addition of quantitative information in 

clinical decisions, as reflected in the PET Response Criteria in Solid Tumors (PERCIST) 

standard [17].   

As an example, PET has been proven to be very sensitive for the early detection 

and staging of lung cancer, with an overall sensitivity of >95% and a specificity of ~80%, 

limited by the accumulation of 18F-FDG in nonmalignant areas.  In particular, PET has an 

important use in preoperative staging, with the potential to result in potentially curative 

surgeries or to avoid potentially futile surgeries.  PET similarly may be used for staging 

lymphomas and melanomas, and may additionally be used to monitor therapy for 

lymphomas, by indicating the potential for relapse or predicting progression-free 

survival.  PET also holds an advantage over other imaging modalities in the detection and 
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staging of recurrent tumors in colorectal cancer and head and neck cancer, where changes 

in the tumor may be difficult to distinguish from the effects of treatment and changes in 

anatomy can affect the interpretation of anatomical images.  Additionally, PET has found 

a use in nuclear cardiology, for which SPECT is still the most common modality, when 

absolute quantification is desired, or when detection of viable myocardium is important.  

The myriad uses for PET, which are based on the quantitative capability of the modality, 

highlight the importance of improved quantification.  The clinical uses for PET are 

dependent on the accuracy and precision of the measurements, which in turn are a 

function of both the performance of the system, as well as the ability to extract 

information using proper quantification metrics [10-11, 18-19]. 

1.2.2 Radiotracers 

The radiation distribution imaged by a PET scanner is administered using a 

radiotracer, which couples a compound used as a marker for natural biologic activity to a 

radioactive compound that can be imaged.  While there are a number of β+ emitting 

radiotracers, by far the most popular has been 18F-fluorodeoxyglucose (FDG), because it 

acts as a natural analog to glucose but is not fully metabolized, and thus is trapped in 

tissue until radioactive decay; FDG has therefore found a key role in measuring 

metabolism, particularly in oncology. The utility of nuclear imaging is dependent on the 

radiotracers that they image.  The ability to tag molecules that migrate into regions of 

biological interest with radioactivity, and the versatility of the molecules that may be 

tagged, give nuclear medicine its unique power to image biologic activity. Table 1.1 lists 
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some of the most widespread as well as new radiotracers and how they are used to image 

a wide range of biologic function [2, 20-31]. 

 

Table 1.1: Examples of radiotracers used for PET imaging, illustrating the wide variety of 
biologic activity that may be imaged. 

 

 

Radioisotope	 Radiotracer/	
Administra1on	

Half-life	 Use	

F-18	 FDG	
Florbetapir	
FLT	
FMISO	

110	min	 Glucose	metabolism	
Alzheimer’s	Disease	
Cell	ProliferaEon	
Tumor	hypoxia	

C-11	 11C-choline	
11C-methionine	
11C-acetate	

20	min	 Prostate	cancer	relapse	
Protein	metabolism	
Lipid	synthesis	

Ga-68	
	

Ga-DOTA	
Ga-PSMA	

68	min	 SomatostaEn	imaging	
PSMA	targeEng	

Zr-89	 AnEbody	 78	hr	 Monoclonal	anEbody	
monitoring	
	

Y-90	 RadioembolizaEon	 64	hr	 Liver	therapy	
monitoring	

Rb-82	 Potassium	analog	 75	sec	 Myocardial	perfusion	
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1.2.3 Positron Decay and Annihilation 

 PET imaging relies on the production of positrons by the radiation administered to 

the patient.  After decaying by β+ emission, the positron will travel a short distance within 

the patient, ranging from tenths of a millimeter to several millimeters (< 1ns in travel 

time), depending on its kinetic energy, as it loses this energy in collisions with atomic 

electrons within tissue.   The positron will eventually annihilate with an electron; because 

the probability of annihilation increases as its speed decreases, this usually happens near 

to its stopping point.  By conservation of linear momentum, annihilation usually results in 

the production of two coincident photons, each nearly 511 keV in energy (production of 

more than two photons is much less likely), which travel nearly opposite to one another; 

small deviations from this, usually within 1o, are the result of the nonzero linear 

momentum of the positron-electron pair immediately prior to annihilation.  

 The 511-keV photons that are produced may interact within the tissue by being 

absorbed or elastically scattering.  Coincidence photons that are detected are therefore 

placed into one of three categories (Figure 1.1).  The first are true coincidences that 

consist of two photons from the same annihilation event that do not interact with tissue; 

the second are scattered coincidences that result when one or both photons have scattered 

in the patient prior to detection, and the last are random coincidences that result when 

single photons from two different annihilation events are detected in coincidence. While 

true coincidences contain useful information that is desired in an image, random and 

scattered events do not and add bias to the image that may be removed using corrections, 

at the cost of increased noise.  Because scattered photons deposit less energy in the 

photodetector, an energy gate is used after detection to reduce these events, particularly 
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those that scatter at large angles and that lose a large fraction of their energy, from the 

total set of events that are processed [4].  PET imaging requires detection of both 

coincidence photons to define a line-of-response (LOR) that connects the two 511-keV 

photon positions for image reconstruction.  Each pair of coincident gammas therefore 

carries the information used to form an image, specifically regarding: the LOR along 

which the positron annihilation event occurs within the patient; the difference in the 

arrival times of the photons, known as the time-of-flight (TOF); and the energy of the 

photons that are detected by the scanner.   

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Diagram illustrating true, scattered, and random coincidence events. 
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1.2.4 Signal Detection  

While the information of interest in PET imaging is the distribution of positrons that are 

emitted by the patient, these cannot be imaged directly.  Instead, the signal that is 

detected is composed of the annihilation photons that are created by the positrons; 

information carried by these photons is then used to determine the positron distribution 

within the patient. 

 

Annihilation Photon Detection  

 The emitted coincident photons must be detected by the PET scanner and further 

processed to determine positioning and timing information. Detection of the 511-keV 

photons in commercial scanners takes place using scintillators that convert the energy of 

the annihilation photons into scintillation photons that may be detected by a 

photodetector, which then converts the scintillation photons into electrical current.  

Importantly, scintillators and photodetectors both perform their conversion such that their 

output is proportional to the input energy.  The photons involved in nuclear medicine 

may interact with the scintillator in essentially two different manners.  The photons may 

undergo Compton scatter, by which they scatter off of free electrons, with the Klein-

Nishina formula describing the scattering cross section as a function of scattering angle.  

Photons may also be totally absorbed by bound electrons through photoelectric 

absorption, leaving a photoelectron with most of the photon energy.  Because all of the 

photon energy is deposited in the photoelectric interaction, and the energy is delivered in 

a single location, these interactions are more useful for PET imaging.  Figure 1.2 shows 

the attenuation coefficients of LSO, which is a common scintillator in commercial PET 
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scanners that will be discussed later. Photoelectric interactions are more likely for lower 

energies and materials with higher atomic number; at 511 keV, Compton interactions are 

more prevalent, and play a large role in the performance of the detector. 

 

  

 

 

 

 

 

 

 

 

Figure 1.2: Plot of attenuation coefficient vs. photon energy for LSO.  At 511 keV, 
Compton interactions are more likely than photoelectric interactions for this scintillator 
(Source: [32]). 
 

Coincidence Detection 

 PET imaging uses timing information to differentiate coincidence events.  Once 

an event is triggered in one detector, the electronics determine if another event has been 

registered within a fixed time difference from the first event; if so, the events are 

considered to be coincidence events, and are kept and further processed.  A typical PET 

detector diameter is ~80-90cm with a 60cm field-of-view, so that detected photons may 

arrive at their opposing detectors as much as ~2ns apart from one another; because 

A. Generation of gamma pairs and intersection with the 
detector. 

 The transition matrix simulator uses voxel-based activity 
distributions placed in the field of view (FOV). The voxels can 
be cubic, spherical or cylindrical shaped with optional 
overlapping. They are located in a uniform cubic grid, 
although with the object oriented programming technique 
used, other configurations like polar grids, blobs, etc. can 
easily be included.  
 Both positron range and non-collinearity are simulated. 
 Photon pair non-collinearity is modeled by means of a 
direction deflection with a Gaussian distribution having a zero-
mean and 0.5 degrees FWHM. Deflections greater than a user 
selected value are discarded, in order to maintain the 
sparseness of the transition matrix.  
 The positron range is object and radioisotope dependent. 
The proposed model approximates fluorine-18 (F18) in water 
as a sum of two three-dimensional Gaussian distributions [5]. 
As a result, the activity is smoothed in the voxel edges. 
 In order to reduce computing, the gamma rays can be 
generated uniformly solely in directions within the solid angle 
of coincidences allowed. For tomographs with axial symmetry, 
only the voxels of the central slice need to be modeled in 
detail. The values for the rest of the voxels can be calculated 
based on 2-fold axial symmetries and axial parallel line 
redundancies [6] 
 The annihilation photons are followed up to their 
intersection with the crystal surface. Then, the N crystals with 
the highest detection probability, according to a previously 
calculated crystal LUT, are retained generating N2 weighted 
lines of response and binned into the corresponding sinogram 
positions. This method allows to simulate relatively few 
photons per voxel to obtain statistically significant transition 
matrix probabilities, instead of tracking individual photons 
along the crystals which would lead to large simulation times.  

B. Crystal LUT simulation. 
For incident high energy gamma rays, the detection 

probability is modeled as a function of the angle of incidence 
and intersection point. The photon tracking has been modeled 
using the Klein-Nishina [7] formula and the National Institute 
of Standard and Technology (NIST) photon cross section 
tables [8]. 
 The depth of iteration is modelled with the exponential 
attenuation in crystal 0

x
xI I e µ−= , where the absorption 

coefficient µ is defined as the total cross section σ , 
multiplied by the density ρ . The total cross section is the sum 
of the photoelectric, pair production, coherent and incoherent 
(Compton) scattering. Only Compton and photoelectric effects 
are significant for 511 keV gamma rays (Figure 1). Using 
NIST tables, LSO crystals can be approximated as 2 5L SiO  

with a density of 7.4 g/cm3, and constituents fractions by 
weight: 17.466% oxygen, 6.132% silicon, and 76.4021% 
Lutetium. The MC algorithm of Compton and photoelectric 
crystal interaction has been modeled as follows.  
 
1. Initialize incident direction 0φ , position 0p ,  energy 0E and 

absorption coefficient 0µ . 
2. Generate a travel distance, log(1 ) / id ν µ= − − , withν being 

 a random number uniformly distributed on ( )0,1  
3. Calculate interaction position 1 ( , , )i i i ip f d pφ+ = ; if it is 
 located outside the crystal, go to 5. 
4. Determine the probability of photoelectric or Compton 

 interaction (photofraction at iE ) 
  If photoelectric, sum energy iE in position 1ip + . Go to 4. 
  If Compton: sum energy ( )if E in position 1ip + . Determine 

 new 1 ( )i i iE E f E+ = − , 1iµ + and 1iφ + ; go to 2. 
5. If the total energy is higher than the energy resolution, keep 

 data. If eventsi N< , go to 1. 
 

 
Figure 1.  Left: Attenuation coefficient and photofraction for LSO. Right: 
Photofraction, total and without coherent scatter (dotted line). 
 
 The density of the detected energy distribution is obtained 
for an incident direction 0φ . The incident energy oE is 
constant (511 keV) and the direction is discretized in spherical 
coordinates as function of azimutal angle in the detector plane 

, 0 2ϕ ϕ π≤ <  and polar angle max, 0θ θ θ≤ < . Where maxθ  is 
the maximum angle between a LOR and the line normal to the 
detector plane. 
 In order to obtain the pixelated crystal iteration 
probabilities, density distributions ( , )i jd ϕ θ are integrated 
over pixelated crystal volumes. The probabilities depend on 
the relative position of the incident crystal (Figure 2). 
 To speed up the process, only the crystals assigned with the 
M  highest probability values are stored in the LUT. A 
discretization of 1 degree in ϕ  and θ , 256 positions in the 
pixelated crystal surface, and 16M =  (using floating point 
values) results in 30 million values in the LUT. 

C. Scatter simulation 
The differential cross section of Compton scattering is given 
by the Klein-Nishina formula [7]: 

0-7803-8701-5/04/$20.00 (C) 2004 IEEE0-7803-8700-7/04/$20.00 (C) 2004 IEEE 3047
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detectors have a finite timing resolution, the measured timing distance τ is larger than this 

value.  The total timing gate in a commercial PET scanner is typically given by 2*τ  = 

~5-6ns, to ensure that all true coincidences may be collected [33].  Recent developments 

in photon detection (e.g., on the Philips Vereos scanner [34]) or the use of faster 

scintillators (e.g., on the experimental LaPET scanner [35]) allow for shorter (4-ns) 

timing windows. 

1.2.5 Modern PET/CT Scanners 

 The vast majority of clinical PET scanners are PET/CT scanners, in which the 

PET scanner and CT scanner are located next to one another (i.e., they are not concentric) 

and use a single bed, so that the two scans may be performed sequentially with the patient 

in the same position.  This modality has the advantage that the PET image may be easily 

registered with the CT image, combining the metabolic information of PET with the 

anatomic information of CT; additionally, the CT scan serves as a relatively fast 

transmission scan for attenuation correction. The PET scanner is typically composed of 

several rings of detectors, with a patient bore ~70-90 cm, and an axial field-of-view ~15-

22 cm, depending on the system; the CT scanner features a patient port similar in size to 

that of the PET scanners.  Each ring of the PET scanner consists of dozens of detector 

modules, each of which is composed of scintillator pixels coupled to a photodetector 

(discussed later).  Modern scanners operate exclusively in 3D mode, where the modules 

are not separated by septa axially and oblique LORs are collected, because of the vastly 

improved sensitivity.  A typical whole-body PET/CT scan will last 15s-1min for the CT 

scan and 10-20 minutes for the PET scan. 
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 Additionally, PET/MR scanners have been recently introduced into the clinical 

market, in which the MR scanner has replaced the CT scanner as the anatomical scanning 

modality.  In these systems, the MR scanner is axially adjacent to the PET scanner, as in 

PET/CT scanners, or the PET scanner is located within the MR scanner, allowing for 

simultaneous acquisition of data.  These systems hold a number of potential advantages, 

including: 

1.  The combination of the excellent soft tissue contrast of MR scanners with the 

metabolic information of PET scanners. 

2.  The elimination of the dose inherent in CT scanning. 

3.  The potential for simultaneous acquisition of the PET scan and MR scan, 

eliminating discrepancies caused by the delay between the long PET scan and the 

relatively quick CT scan. 

4.  The opportunity to use the unique information offered by MR scans, including 

functional information and dynamic (e.g., blood flow) [36]. 

1.3. Image Quality in PET: Challenges in Scanner Design 

1.3.1 Spatial Resolution 

Spatial resolution describes the ability of an imaging system to distinguish two 

objects from one another, or the smallest object that may be imaged clearly.  A more 

rigorous definition for the resolution is the point spread function (PSF): the response of 

the imaging modality to an infinitesimally small source, approximated experimentally by 

a small drop of radiation. This response may be mathematically described in a number of 

different ways, though the most common is the full width at half maximum (FWHM), 
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defined to be the width of the PSF at one half of the maximum value, and the full width at 

tenth maximum (FWTM).  While the most fundamental limit for resolution for any 

imaging modality is set by the wavelength of the light being imaged, there are a number 

of other factors that further limit the resolution for PET scanners [2-5].  The overall 

spatial resolution is often approximated by combining the various effects in quadrature 

[37]. 

 

Detector Resolution  

 For pixelated detector systems that consist of arrays of small crystals, the most 

important factor in the overall resolution of the scanner is the width of the crystal, which 

limits the intrinsic detector resolution at the center of the scanner to ~d/2, where d is the 

width of the pixel; this resolution degrades away from the center, in part because of the 

geometry of the ring of detectors, as well as for other reasons discussed below.  In current 

scanners, the pixel width is ~4mm, leading to an intrinsic resolution of ~2mm at the 

center of the scanner.  This resolution may only be achieved if the 511-keV photons only 

deposit their energy at one location in the detector; however, Compton scatter is an 

inevitable source of blurring, since it leads to the deposition of energy in more than one 

location.  For most modern scanners, which typically employ Anger logic to position 

events, scattered events that deposit enough energy in the detector will be positioned by 

essentially averaging the positions of the primary and scattered interactions, weighted by 

the energy deposited, thereby mispositioning the coincidence event.  Figure 1.3 shows the 

result of a simulation study in which a gamma beam was directed normal to and at the 

center of a 50x50x25mm3 detector, and an ideal Anger position along one transverse 
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dimension (i.e. the x-direction in the figure) calculated by averaging the positions of the 

interaction locations in the crystal (scattered and photoelectric), weighting by the energy 

deposited.  While ~60% of incident 511-keV photons will Compton scatter in common 

clinical scintillators [38-39], most events are still positioned within 2mm of the center, so 

that Compton scatter primarily affects the tails of the point spread function, quantified by 

the FWTM.  The effect of scatter on the PSF degrades contrast in images, and will limit 

the gains achieved by using smaller pixels, although simulation studies show that 

decreasing the size of the pixels from 4mm to smaller sizes results in an improvement in 

resolution, as measured by the FWHM [40]. 

 

Figure 1.3: Logarithmic histogram (left) of calculated Anger position along a transverse 
axis (i.e. x-direction), for events of a simulation in which a gamma beam was directed 
normal to a 50x50x25mm3 crystal surface (right). Because most events are still 
positioned within 2mm, Compton scatter primarily affects the tails of the PSF. 
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Position sampling 

According to the Shannon-Whittaker sampling theorem, a function may be 

faithfully represented if sampled at twice the bandwidth of the function.   For PET, this 

translates to representing an image from the scanner by including enough LORs to 

sample the imaging space [41-42]; roughly, three samples for FWHM (empirically 

determined) are required to fully recover the resolution.  For pixelated detectors, each 

LOR connects two pixels, so that the sampling density for a pixelated detector is 

determined by the pixel size.  The pixel size therefore imposes additional limitations on 

the spatial resolution of the system than the intrinsic resolution discussed earlier.  First, 

the maximum detector resolution of one half the pixel width cannot be achieved, even in 

the absence of other resolution degrading effects, because images may only be sampled in 

discrete increments of d/2 (Figure 1.4 left).  Second, because the numbers of LORs that 

pass through an image voxel varies depending on the location and size of the voxel 

(Figure 1.4 right), the overall resolution of the system is degraded, depending on the 

crystal geometry; sensitivity corrections are performed during image reconstruction to 

correct for the variations in the density of LORs.  Because the size of the basis function 

(voxels or blobs) may not be too small given the sampling density of the LORs, the 

position sampling also imposes a limit on the smallest size of the basis function that may 

be used, without introducing aliasing artifacts into the image [37, 41].  While early 

systems implemented a wobbling technique, by which the detector rings were shifted 

slightly to improve the sampling capability, this is no longer implemented in favor of 

simpler and faster scans in which the scanner is stationary.  The sampling density may 

instead be improved for pixelated systems by decreasing the pixel size or adding 
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information regarding the depth at which the events interact, in order to increase the 

number of distinct LORs measured. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Impact of discrete position sampling. Left: Limited sampling prevents the 
scanner from achieving the maximum detector resolution at the center of the scanner.  
Right: Lines of response connecting the crystals (represented by dark spots at the 
perimeter) for a PET scanner; these lines sample the image space non-uniformly (Source: 
[37]).  
 

Physics Limitations 

 There are two limitations imposed by the physics of positron annihilation on the 

resolution in PET scanners.  The first is the positron range effect, which results from the 

non-zero kinetic energy of a positron after ejection from the nucleus.  The positron 

therefore travels a short distance before annihilating with an electron, with the probability 

distribution of the distance traveled determined by the maximum kinetic energy of the 

Figure 3.
Sampling Error. The lines of response (lines connecting all detector–detector pairs). The
dark spots at the perimeter are the locations of the 24 crystals. The sampling depends
strongly on the position in the field of view, especially near the center. While the pixel at the
exact center is very well sampled (has many LORs going through it), nearby pixels are very
poorly sampled (only a few LORs go through them).
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positron, which in turn is specific to the isotope; note that this distribution is not Gaussian 

(Figure 1.5).  For a lower energy isotope such as 18F, the effect of the positron range is 

relatively small, with a distribution of ~0.1mm FWHM and ~1.0mm FWTM; for a source 

such as 68Ga, with a higher maximum kinetic energy, the positron range has a larger 

effect on the achievable resolution.  The second limitation is acollinearity, which results 

from the nonzero momentum of the positrons before annihilation: conservation of 

momentum implies that the pair of 511-keV photons produced will be emitted at slightly 

less than 180o from one another.  For 18F, the distribution of the deviation from perfect 

collinearity is ~0.2o in FWHM, and has been found empirically to result in a blurring of  

     FWHM=0.0044*R,                            (1.1) 

where R is the radius of the scanner [43-44]; for a typical scanner radius, the FWHM is 

~1.8mm. 

 

Figure 1.5: Energy of emitted positrons and effect on spatial resolution. Left: Histogram 
of positron energy after decay for two isotopes (Source: [44]). Right: Distribution of total 
distance traveled by 18F positrons in water, leading to a spatial blurring (Source: [43]). 
 

 



	 18	

Depth-of-Interaction  

Events that occur radially offset from the center of the detector will interact with 

pixels at an oblique angle, as depicted in Figure 1.6.  Without knowledge of the depth at 

which the 511-keV photon interacts in the detector, known as the depth-of-interaction 

(DOI), the event is inaccurately assumed to have interacted at a fixed depth (i.e., front 

face of the detector), resulting in another source of uncertainty in the measured LOR, 

which is described by a Gaussian of width equal to 

FWHM = !".! !
!!!!!

, [37]   (1.2) 

with r equal to the radial offset and R the radius of the scanner. 

The blurring that results from parallax therefore increases with radial distance and 

decreases as scanner radius increases.  For a scanner with 4-mm pixels, the resolution can 

degrade by ~40% at 20cm from the center of the scanner (Figure 1.6 right) [45-46].  

While this effect is large enough for small animal scanners (diameter ~10-20cm) that 

efforts are made to correct for it, no commercial whole-body scanner measures and 

corrects for this effect.  
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Figure 1.6: Parallax error and effect on spatial resolution. Left: Diagram depicting 
parallax error resulting from LORs radially offset from the center of scanners. Right: 
Simulation study, showing degradation of spatial resolution with radial distance (red 
curve) and improvement in resolution after correcting for DOI (Source: [46]). 
 

Multiplexing 

Scanners using block detectors typically employ more pixels than photodetectors, 

in order to reduce the complexity and cost in the electronic readout.  The effect of this on 

resolution has not been quantified, but is close to a Gaussian of width equal to one third 

of the pixel width, depending on the geometry of the detector [37].  Scanners employing 

one-to-one coupling avoid this additional source of resolution loss [34]. 

1.3.2 Signal-to-Noise Ratio  

Noise is another important aspect of an image, which may be quantified using 

metrics such as the signal-to-noise (SNR) ratio or contrast-to-noise ratio; noise may arise 

in different manners, including in the form of structured noise, resulting from imaging 

artifacts, or statistical noise, resulting from the Poisson nature of radioactive decay and 

5449

Gaussian fitting, was determined to be a better metric since the shape of the response function 
was found to have longer tails than the Gaussian shape for the large axial acceptance angle. 
Transverse resolution is defined as the average FWHM from two orthogonal directions in the 
transverse plane (x and y directions) and axial resolution is defined as the FWHM from the 
line profile in the axial direction. The simulation output was divided into three independent 
list files, each reconstructed separately, for analysis of error. Error bars in figures show  ±1 
standard deviation.

3. Results

3.1. Radial parallax error from point source simulations

Scanner spatial resolution as a function of position radially offset from the center of the FOV 
is characterized in figure 4 for LSO and LaBr3 based scanners having an axial acceptance 
angle α  ±  40°. The transverse spatial resolution does not vary with axial acceptance angle at 
a radial position of 0. Compared to the LSO scanner, the transverse resolution with LaBr3 is 
slightly worse due to the lower stopping power and higher probability of inter-crystal scatter-
ing. The measured FWHM of point sources from LSO scanners was approximately 4.9 mm, 
and the point source FWHM of LaBr3 scanners measured 5.3 mm—these results are very sim-
ilar (4.8 mm with LSO and 5.2 mm with LaBr3) to previous simulations using the same scan-
ner ring diameter, crystal size, and crystal pitch but reconstructed using the analytic 3D-FRP 
algorithm with a ramp filter and without a uniform background activity (Surti et al 2013). 
Both the LSO and LaBr3 scanners showed degraded spatial resolution as the radial offset was 
increased, due to the inherent radial parallax error which blurred positioning in the transverse 
directions; the point source with the highest radial offset (23 cm) was chosen to represent a 
lesion at the edge of a very large patient. Incorporating a two-level DOI correction improved 
the transverse resolution at radial positions greater then 9 cm, however the measured resolu-
tions for DOI scanners remained slightly degraded compared to measurements at the center of 
the imaging FOV having no radial offset. A detector having three-layer DOI encoding further 
improved spatial resolution at all radial offsets, though the impact was less compared to the 

Figure 4. Calculated transverse spatial resolution for point sources with varying radial 
offsets in the center of the axial FOV. Several different 2-layer DOI encoding schemes 
were simulated and also a 3-layer (with equal lengths). The scanner axial acceptance 
angle was fixed at α  =  ±40° and the crystal size was 4  ×  4  ×  20 mm3 for both LSO 
and LaBr3.

J P Schmall et alPhys. Med. Biol. 61 (2016) 5443
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radiation detection, and the finite number of counts collected in an image.  Focusing on 

one of these metrics, SNR is dependent on the number of true counts collected by the 

scanner, and may therefore be increased by collecting more events in total, or accepting a 

larger fraction of true events (i.e., excluding more scattered and random events).  The 

SNR is therefore affected by a number of scanner parameters [2, 41].   

 

Sensitivity 

The sensitivity of the scanner describes the fraction of radioactive decays that 

occur that are detected by the scanner.  This metric is the result of a geometrical and 

intrinsic component; the true count rate is given by: 

𝑅!"#$~𝜀!𝑔, 

where Rtrue is the count rate of true events, ε is the efficiency of the detectors, and g is the 

geometric efficiency of the scanner [41]. 

The geometric efficiency is a function of the geometry of the scanner, in 

particular its diameter and axial extent.  One of the most recent research efforts in the 

field is therefore the development of a long axial field-of-view scanner, to be built with 

an axial field-of-view of 200cm (compared to ~18cm for typical clinical scanners), 

thereby potentially improving sensitivity by a factor of ~40 [45-46].   

The intrinsic sensitivity of the scanner is a function of: 

1.  The absorption efficiency and thickness of the crystals (ε), which determines how 

likely an event that traverses a pixel will be detected: ε = 1-e-µT, where µ is the 

attenuation coefficient of the crystal and T is the thickness of the detector.  Pixels 

in modern scanners are ~20mm in thickness.  
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2.  The fraction of the detector modules that are composed of crystal (packing 

fraction). 

 

At high count rates, the count rate of the system will also be affected by the dead time of 

the system, defined as the finite time after which the system detects an event during 

which it cannot process another event.  The dead time is itself a function of the crystal 

(e.g., decay time of the scintillators) as well as the number of photomultipliers that share 

light from a scintillation pixel.  Because of the finite dead time, the count rate depends on 

the activity being imaged as well.   

 The sensitivity of typical scanners is ~7-10 cps/kBq (measured using a thin line 

source near the center of the scanner); with a typical injected dose of ~600 MBq, ~90% 

of events removed by attenuation and a significant fraction of events removed by the 

energy gate, the count rate for a typical patient scan is ~100-200 kcps.  A PET scanning 

procedure consists of several individual scans of different regions of the body, acquired 

by fixing the bed at a given position in the PET bore to acquire enough counts, and then 

translating the bed to the next position for the next acquisition.  The count rate of the 

scanner allows scans at each bed position to be ~1.5-3min to be clinically useful, with the 

total scanning procedure (all bed positions) summing to ~10-20min [37, 47-49]. 

 

Energy Resolution 

Gating on the energy of the detected events allows for scattered events to be 

rejected, decreasing the bias caused by scatter and improving the SNR of the image.  A 

number of factors degrade the ability of the system to measure energy, including: the 
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statistics of the finite number of scintillation photons created and collected as well as the 

statistics associated with photoelectron production in photodetectors, noise associated 

with the photodetector, and nonuniformities in the luminosity and surfaces of the 

scintillation crystals.  The finite energy resolution leads to a broadened energy spectrum, 

forcing a wide gate around the photopeak to capture the photoelectric events; typical 

values of energy resolution for modern scanners are 10-13% at 511 keV [41, 50], and 

typical energy gates are in the range of 440-650 keV. 

1.4 Image Reconstruction 

 Reconstruction algorithms interpret the positioning and timing information 

provided by the detectors into an image, and are divided into two categories: analytic 

reconstruction algorithms and statistical reconstruction algorithms.  Analytic algorithms 

view the data as deterministic and operate by backprojecting the measured LORs, which 

are assumed to be line integrals of data, to form an image; these offer the advantages of 

simplicity and computational speed.  Iterative algorithms are capable of modeling the 

deviations from the assumption that the LORs are simple line integrals of data, including 

the spatial blurring brought about by the finite resolution of the scanner as well as 

statistical noise associated with the measurement procedure and physical effects.  

Solutions to reconstruction algorithms using these more complex models cannot be found 

analytically, however, requiring longer, iterative solutions that repeatedly update the 

image to better match the measured data [51].  Iterative algorithms are used almost 

exclusively in the clinic because of the improved signal-to-noise ratio and the capabilities 

of faster computers [4], and will be described in more detail in Chapter 5.  
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1.4.1 Data Corrections 

In order to produce images that reflect the true distribution of activity within the 

patient, the data that are acquired on a PET scanner must be corrected for various effects 

related to the physics involved in the detection of annihilation radiation within a patient 

and to the design of the scanners.  These include an attenuation correction, in order to 

correct for events that are absorbed as a function of LOR; a scatter correction, to correct 

for the 30-65% of emitted events that are scattered within the patient body; a correction 

for random coincidences; and a normalization correction, to correct for nonuniformities 

in the many scintillators and photodetectors involved in a PET scanner, as well as the 

geometrical nonuniformities in the LORs as a function of radial position [4, 33, 41] 

1.4.2 Impact of Image Reconstruction on Image Quality 

The trade-off between image spatial resolution and noise is also strongly 

dependent on the specific image reconstruction used.  Analytic algorithms employ filters 

to control noise in the images; however, the choice of cutoff frequency introduces a 

trade-off between noise and spatial resolution, as with the common Hanning and Shepp-

Logan filters that suppress high frequency noise.  Iterative algorithms similarly show an 

inherent trade-off between resolution and noise: as the algorithms are iterated longer, the 

quantitative accuracy increases (until convergence is reached) at the cost of increased 

noise.  Additionally, the models (e.g., modeling of positron range and attenuation, PSF 

modeling, the statistical model of photon detection) used in the algorithm as well as the 

post-filters applied afterwards strongly affect the resolution.  Two common examples are 

the Gaussian smoothing post-filter, which is used to control noise but which necessarily 
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degrades resolution, and the increasingly common point spread function (PSF) modeling 

and deconvolution post-filters that improve resolution at the cost of increased noise and 

the potential for edge enhancement [52-59].          

Incorporation of TOF information into the reconstruction additionally improves 

the SNR of an image, resulting in an effective increase in counts.  The TOF resolution 

describes the precision with which this measurement is made, with one common metric 

being the FWHM of the timing histogram from a point source measurement. TOF 

resolution is affected most by the scintillator (especially the light output), the 

photodetector (noise inherent in photoelectron generation), and the detector 

configuration.  Common current clinical scanners have a resolution of 500-650ps 

(compared to a maximum TOF difference for a 60cm field-of-view (FOV) of ~2ns), 

while the Philips Vereos and the experimental LaPET scanners have a TOF resolution of 

<350ps [34-35, 60].    

1.5 Quantitation in PET 

PET/CT has become an established imaging modality in part because of its 

quantitative ability.  In the context of medical imaging, quantitation refers to the use of 

quantifiable aspects of an image in order to assess normalcy, the status of a disease or 

injury, or a change in such status.  In order for an imaging modality to be sufficiently and 

usefully quantitative, it must produce images that are sufficiently accurate, precise, and 

clinically relevant; furthermore, these values (and the images from which they derive) 

must be properly acquired and interpreted.  The quantitation of PET/CT relies on the 

relation between each voxel value and the concentration of radioactivity at that location, 
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which is related to some clinically relevant feature; for 18F-FDG PET/CT, these voxel 

values are related to glucose metabolic rate.  Furthermore, the clinical utility of this 

modality derives from the unique role that metabolic information plays (e.g. this is often 

a better indicator of response to therapy than anatomic information alone) [5].   

1.5.1 Metrics 

Interpretation of the data offered by PET/CT images is accomplished by 

calculating metrics at appropriate locations within the images.  There are a number of 

such metrics that have become popular and have been studied for their utility: 

standardized uptake value (SUV), contrast recovery coefficient (CRC), metabolic tumor 

volume (MTV), total lesion glycolysis (TLG), and various textural features.  These 

metrics ultimately find use in the clinic by connecting their values to clinically relevant 

features.  Two of these metrics, SUV and CRC, are used in this thesis, and are discussed 

in more detail below. 

SUV is the most popular metric used for PET/CT and is used as a normalized 

measure of counts/voxel/min (e.g., related to glucose concentration for 18F-FDG studies) 

to help differentiate normal (SUV ~ 1) from abnormal tissue.  While the use of SUV is 

well defined for 18F-FDG, whose concentration is trapped in tissue and thus considered to 

be equilibrated after some time, for other tracers, these assumptions may not hold.  It is 

generally defined as: 

 SUV = !
!"

 ,                                  (1.3) 

where S is the radioactivity concentration in a region or voxel, A is the decay-corrected 

activity injected into the patient, and k is a normalization constant [61].  Three popular 
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normalization constants are: body-weight (the most widely used), body surface area, and 

lean body mass. A number of options exist for computation of the radioactivity 

concentration as well, often involving drawing a region of interest (ROI) around the area 

or volume of the image to be quantified; note that when the ROI is three dimensional, it 

may be termed a volume-of-interest (VOI).  The three most widely used metrics are: 

maximum SUV (SUVmax), defined as the maximum concentration of the voxels within 

the ROI; mean SUV (SUVmean), defined as the average concentration within the ROI; and 

peak SUV (SUVpeak), defined as the mean concentration of a small volume within the 

ROI (e.g., a 1-cm3 spherical volume centered on the maximum voxel).  There is no clear 

consensus regarding which metric is best for clinical assessment, as each has advantages: 

SUVmax is the easiest to implement (requiring no exact tumor delineation), is not prone to 

inter-observer variability, and does not suffer as much from the partial volume effect 

(described below); SUVmean incorporates information from the entire tumor and is less 

susceptible to noise but is affected by the partial volume effect; and SUVpeak offers a 

compromise between the two.  The usefulness and importance of accurate quantification 

of these metrics can be demonstrated by the SUV, for which a number of strategies have 

been devised to determine how best to use this metric, including PERCIST for oncologic 

imaging [61].  For example, SUVmax may be tracked to monitor treatment and to 

determine the likelihood for progression-free survival [62-66].   

CRC has found use in phantom scans, in which a known distribution of radiation 

is measured, as a means to assess the degree to which a scanner faithfully reproduces 

contrast in an image.  It is defined as: 
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CRC =
!

!!"#$!
!!

!!!
  ,                       

(1.4) 

where S is the lesion uptake (activity concentration), Blocal is average value of the local 

background, and A is the true activity ratio [67].  Note that with this definition, perfect 

contrast recovery corresponds to a CRC value of 1, while no recovery (i.e., the lesion is 

indistinguishable from background) corresponds to a value of 0.   

 In this work, S was chosen to be either the average voxel value within the lesion, 

calculated using a VOI of the same diameter as the lesion and centered over each lesion 

(for CRCmean) or the maximum voxel value within the VOI (for CRCmax). Because CRC 

requires knowledge of the true contrast ratio, it is not typically used for patient studies.  

Nevertheless, both CRC and SUV are scaled estimates of lesion uptake, so CRC is often 

an appropriate surrogate for SUV. 

1.5.2 Partial Volume Effect  

The partial volume effect (PVE) is an inherent limitation in quantitation for PET 

scanners that encompasses two separate effects (Figure 1.7).  The first results from the 

finite spatial resolution of the PET scanners: the blurring (convolution) caused by the 

finite resolution causes counts to spill out from a structure to the background and spill in 

from the background to the structure. The second effect is termed the tissue fraction 

effect and results from the finite sampling of the images that occurs when the images are 

displayed using voxels (voxelized): a given voxel at the edge of a structure will contain 

parts of the structure and parts of the background; because each voxel has only one value, 

the voxel will represent an average of the two regions.  These effects act to degrade the 

contrast of the image and cause small objects to appear more spread out and dimmer.  
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PVE therefore affects both the qualitative appearance of lesions and the quantification of 

images (e.g., SUVmean and SUVmax).  PVE is a function of the spatial resolution of the 

system, the size and shape (surface area) of the ROI, the background, and the voxel size. 

Because PVE can cause severe discrepancies in the quantification of lesions and 

detectability [68-71], a number of correction algorithms have been devised to compensate 

for this effect [54, 57, 69, 72-73]. 
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Figure 1.7: Diagram of the partial volume effect. A. Spill-over resulting from the finite 
spatial resolution that leads to counts within an ROI being placed in the background 
region. B. Tissue fraction effect resulting from voxelization of image, leading to voxels 
that are an average of the radioactive concentration in multiple regions (Source: [68]). 
 

formed by the convolution of the actual source with the 3D
point spread function of the imaging system.

The second phenomenon causing PVE is image sam-
pling. In PET, the radiotracer distribution is sampled on a
voxel grid. Obviously, the contours of the voxels do not
match the actual contours of the tracer distribution. Most
voxels therefore include different types of tissues. Figure 2
illustrates this effect in 2 dimensions, although again, it is
actually a 3D effect. This phenomenon is often called the
tissue fraction effect. The signal intensity in each voxel is
the mean of the signal intensities of the underlying tissues
included in that voxel (Fig. 2). Note that even if the
imaging system had perfect spatial resolution, there would
still be some PVE because of image sampling. This phe-
nomenon is why PVE not only is an issue in emission
tomography, which has poor spatial resolution compared
with other imaging modalities, but also is of concern in
high-resolution imaging, such as MRI or CT.

Ideally, compensation for PVE should account for both
the finite resolution effect and the tissue fraction effect.
Motion, especially respiratory motion, also introduces a
blurring effect that results in additional PVE. However, this
specific source of PVE is not covered in this article.

PRACTICAL CONSEQUENCES OF PVE

PVE can severely affect images both qualitatively and
quantitatively. For any hot lesion of a small size and embed-
ded in a colder background, PVE spreads out the signal. This
effect typically occurs whenever the tumor size is less than
3 times the full width at half maximum (FWHM) of the
reconstructed image resolution. The maximum value in the
hot tumor then will be lower than the actual maximum value
(Fig. 1). A small tumor will look larger but less aggressive
than it actually is.

PVE compensation is complicated by the fact that not
only does activity from inside the tumor spill out but also
activity from outside the tumor spills into the tumor,
partially compensating for the spilling out (Fig. 3). Obvi-
ously, the spilling out (signal from inside the tumor that
goes outside the tumor [Fig. 3]) depends on the uptake
inside the tumor. Most often, it is not balanced by the
spilling in (signal from outside the tumor that comes inside
the tumor); therefore, it is difficult to predict the overall
effect of PVE. In tumors with wholly or partially necrotic
centers, spilling in will cause one to think that there may be
more viable tumor tissue within the tumor center than there
really is. Simultaneously, the active part of the tumor will
look less aggressive than it actually is (5).

PVE also affects the apparent tumor size. This effect is
especially problematic when PET is used to assist in radio-
therapy treatment planning. The contours of a lesion as seen
on a PET image may encompass more than the real meta-
bolically active part of the tumor because of the limited
spatial resolution in PET images (;5 mm). In PET/CT, the
fusion of the PET and CT images usually clearly shows this
discrepancy between the tumor contours as displayed on the
CT image and on the PET image (Fig. 4). However, fre-
quently the contours seen on the CT image do not delineate
the metabolically active part of the tumor, as CT does not
show metabolically active tissue but rather shows only the
attenuating properties of the tissue. Only high-resolution
functional imaging provides an accurate delineation of the
metabolically active part of the tumor. The quest for higher-
resolution PET systems therefore remains highly relevant,
despite the current availability of PET/CT scanners.

In the absence of background activity, PVE does not affect
the total activity in the tumor. If a large enough region could
be drawn around the tumor, then the total activity in the tumor
could be recovered. In other words, PVE does not cause any
loss of the signal; it just displaces the signal in the image.

PARAMETERS AFFECTING PVE

The biases introduced by PVE depend on numerous
parameters, only some of which can be controlled. All of
these parameters must be kept in mind in the context of
tumor follow-up, as they may not remain constant from one
imaging session to another, making the biases introduced by
PVE vary from one imaging session to another.

FIGURE 1. Circular source (diameter of 10 mm) of uniform
activity (100 arbitrary units) in nonradioactive background yields
measured image in which part of signal emanating from source
is seen outside actual source. Maximum activity in measured
image is reduced to 85.

FIGURE 2. Influence of image sampling on PVE. Pixels on
edges of source include both source and background tissues.
Signal intensity in these pixels is mean of signal intensities of
underlying tissues. Part of signal emanating from source is seen
outside actual object and therefore is described as spilling out.
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centers, spilling in will cause one to think that there may be
more viable tumor tissue within the tumor center than there
really is. Simultaneously, the active part of the tumor will
look less aggressive than it actually is (5).

PVE also affects the apparent tumor size. This effect is
especially problematic when PET is used to assist in radio-
therapy treatment planning. The contours of a lesion as seen
on a PET image may encompass more than the real meta-
bolically active part of the tumor because of the limited
spatial resolution in PET images (;5 mm). In PET/CT, the
fusion of the PET and CT images usually clearly shows this
discrepancy between the tumor contours as displayed on the
CT image and on the PET image (Fig. 4). However, fre-
quently the contours seen on the CT image do not delineate
the metabolically active part of the tumor, as CT does not
show metabolically active tissue but rather shows only the
attenuating properties of the tissue. Only high-resolution
functional imaging provides an accurate delineation of the
metabolically active part of the tumor. The quest for higher-
resolution PET systems therefore remains highly relevant,
despite the current availability of PET/CT scanners.

In the absence of background activity, PVE does not affect
the total activity in the tumor. If a large enough region could
be drawn around the tumor, then the total activity in the tumor
could be recovered. In other words, PVE does not cause any
loss of the signal; it just displaces the signal in the image.

PARAMETERS AFFECTING PVE

The biases introduced by PVE depend on numerous
parameters, only some of which can be controlled. All of
these parameters must be kept in mind in the context of
tumor follow-up, as they may not remain constant from one
imaging session to another, making the biases introduced by
PVE vary from one imaging session to another.

FIGURE 1. Circular source (diameter of 10 mm) of uniform
activity (100 arbitrary units) in nonradioactive background yields
measured image in which part of signal emanating from source
is seen outside actual source. Maximum activity in measured
image is reduced to 85.
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1.5.3 Factors Affecting Quantitation 

Separate from PVE (i.e., spatial resolution and size/shape of ROI), a number of 

factors influence the ability to absolutely quantify images during clinical evaluation by 

introducing biases and degrading precision.  Limitations in the quantitative performance 

of the scanner in turn affect both the clinical use of metrics, such as SUV, that are 

measured from an image, as well as the statistical power of a research study that uses 

quantitative information.  These limiting factors can be broadly classified into a few 

categories [74-75].   

1.  Physiological factors related to the patient (e.g., the plasma glucose level at the   

time of scanning for 18 F-FDG PET/CT and the time interval between the FDG 

administration and scanning (uptake period)).   

2.  Technical factors related to the scanning (e.g., the method of attenuation 

correction, scan duration).   

3.  Errors in administration or scanning (e.g., improper scanner calibration).   

4.  TOF resolution, as improved resolution allows for faster convergence of the image 

reconstruction and therefore of metric quantification. 

5.  Image reconstruction factors, including:  

A. Reconstruction algorithm: many different choices exist, including filtered 

backprojection and iterative algorithms with a number of different models, 

which each have different effects on quantitative accuracy. 

B.  The number of iterations for iterative algorithms: in general, as the numbers of 

iterations increases, the accuracy of the images increases, while the noise of 
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the images increases as well.  In the clinic, reconstruction is stopped prior to 

full convergence in order to produce less noisy images. 

C. Point spread function modeling: Iterative algorithms may model the effect of 

the finite resolution of the detector during reconstruction, generally improving 

accuracy at the cost of increased noise. 

D. Post-reconstruction filter: As discussed previously, post-filters exist that may 

degrade resolution (and exacerbate the PVE) to smooth the image or may 

improve the resolution at the expense of noise.  

1.6. PET Detectors 

1.6.1 Information Measured by Detector 

 The detector serves to measure the information needed to localize the events; the 

output of the detector is information regarding the energy, position, and time-of-flight of 

the coincident photons: 

1. Energy information is used in order to minimize the fraction of scattered and 

random events that are positioned.   

2. The position that each photon event is used to determine the LOR.  

3. Given the finite timing resolution of TOF PET/CT scanners, information 

regarding the difference in the arrival times of the two photons is also used to 

reject random events, and to further localize the event (Figure 1.8) and confine 

noise to a smaller region during back-projection in image reconstruction. The end 

result is an improvement in SNR, particularly for larger patients (for whom 
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attenuation is more likely and thus fewer photons are detected), as well as an 

improvement in the speed of image reconstruction convergence for iterative 

algorithms [33, 38, 47, 76-83].   

 

  

 

  

 

 

 

 

 

 

 

Figure 1.8: Diagram depicting the improvement in the localization of events with TOF 
information (Source: [47]).  TOF information is used to improve the noise characteristics 
of an image.  
 

1.6.2 Detector Components 

Scintillators 

 A number of gamma detectors have been and continue to be investigated for PET, 

including semiconductors (e.g., CdTe and CZT), Liquid Xenon, and ceramics (e.g., 

GluGag); however, all modern detectors for whole-body PET are based on inorganic 

scintillators, and so the discussion will be focused on this technology.  Scintillators 
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function in nuclear medicine imaging to convert the energy of gamma rays into light that 

is collected by a photodetector, and may be broadly classified as either organic or 

inorganic.  Organic scintillators make up a large variety of scintillators, including liquid 

and plastic scintillators; however, because of their improved detection efficiency, all 

scintillators used for clinical scanners are inorganic, and the discussion henceforth will be 

limited to this type. For these scintillators, excited electrons result in three types of 

scintillation: 1. An electron excited from the valence band to the conduction band, 

leaving electron-hole pairs, may return to the valence band, resulting in fluorescence. 2. 

An excited electron forbidden from returning to the ground state absorbs thermal energy, 

resulting in phosphorescence, which generally has a longer wavelength and a longer 

characteristic decay time.  3. Quenching, in which a transfer of thermal energy from 

certain excited states to the ground state occurs without radiation and again with a long 

time constant, resulting in a decrease in conversion efficiency and long afterglow.  

Activator dopants are often added to these scintillators to create energy levels in the 

forbidden gap, in order to increase the efficiency of scintillation and allow the 

wavelength of the emitted photons to be in the visible range as the electrons return to the 

valence band [50]. 

 The qualities that make up an ideal scintillator are: high sensitivity (high density), 

a high light output (to improve energy and timing resolution), a large fraction of incident 

photons converted to prompt fluorescence, scintillation light that is transparent to the 

scintillator (to avoid reabsorption) and compatible with the photodetector absorption 

spectrum, an output that is proportional to the energy of the incident photons over a wide 

range, short decay time (both to limit the coincidence window and to improve TOF 
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resolution), a refractive index close to that of glass (the photodetector encasing), as well 

as good properties for commercial manufacture (i.e., cost, availability, ease of 

manufacturing). No scintillator exists that maximizes performance in each category, 

requiring a trade-off in performance; some of the most common scintillators with relevant 

characteristics are shown in Table 1.2 [21, 47, 83-84]. 

 

Table 1.2: Properties of some of the scintillators used for PET. 

 

Cerium-doped Lutetium Oxyorthosilicate (LSO) was introduced in the 1990’s, 

and Cerium-doped Yttrium Lutetium Oxyorthosilicate (LYSO) later; since then, the 

quality of their production has improved enough that they are the most common 

scintillators used in current clinical scanners, because of the good balance between high 

Scin%llator	 Rela%ve	
Light	
Output	

Density	
(g/cm3)	

Decay	
Constant		
(ns)	

A?enua%on	
Length	for	
511	keV	
(mm)	

Max	
Emission	
Wavelength	
(nm)	

NaI	(Tl)	
(Thalium-doped		
Sodium	Iodide)	

100	
(~38000	
ph/MeV)	

3.67	 230	 23	 410	

BGO	
(Bismuth		
Germinate)	

15	 7.13	 300	 10.4	 480	

LYSO	
(Cerium-doped	LuteKum	
YLrium	Oxyorthosilicate)	

75	 7.3	 40	 11.4	 420	

LaBr3	
(Lanthanum		
Bromide)	

160	 5.29	 15	 22.3	 380	

GSO	
(Gadolinium		
Oxyorthosilicate	

19	 6.71	 30-60	 14.1	 440	



	 34	

light output, fast decay time, high density, and an emission spectrum that matches the 

absorption spectrum of common photodetectors well; additionally, its emission does not 

consist of components with a slower decay time.  The performance of these two crystals 

is generally quite similar, with some studies indicating differences with regard to 

afterglow, and a slightly lower density for LYSO.  These scintillators allowed for the 

implementation of TOF in modern PET scanners in the 2000’s, because the fast 

scintillation time was paired with a high sensitivity, unlike any TOF scintillator until that 

point. 

 LYSO/LSO do exhibit a number of features that must be considered when using 

them.  Both scintillators have an afterglow (phosphorescence) when exposed to radiation, 

resulting from charge trapping within the scintillator; this afterglow gradually decays 

with time and requires that the scintillators be shielded from outside light.  At the low 

count rates typically encountered in the lab, this afterglow does not pose a problem, 

though baseline shifts have been reported at higher count rates. Additionally, because 

Lu3+ is naturally radioactive, these scintillators exhibit a natural background of ~300 

cts/s/cc, though this does not exhibit a strong effect on the coincidence rate.  The light 

output for these also exhibit a non-proportionality with respect to incident energy, driving 

their energy resolution to be slightly worse than that of GSO, despite a higher light output 

[4, 85-91]. 

 

 Photodetectors 

The photodetector converts the energy of the scintillation light into an electrical 

signal through the photoelectric effect. The SNR provided by a photodetector is a 
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function of dark (or thermal) noise in the detector as well as the quantum efficiency, 

defined as the number of electrons produced per incident photon, which determines the 

noise resulting from the statistical nature of photodetection.  The quantum efficiency is 

determined by a number of factors, including light reflection at the protective glass 

covering a photodetector; the photocathode material, which determines the absorptive 

efficiency and reflectivity of the photocathode; and the thickness of the photocathode, 

which affects both the absorptive efficiency and the number of electrons that escape the 

cathode.  The resolution allowed by the photodetector is a function of sampling width, 

determined by the sampling pitch of the detector, and the amount of signal averaging, 

determined by the detector aperture width.  The sensitivity of the photodetector is 

wavelength-dependent and largely determined by the spectral response of the 

photocathode, which is a function of its composition.  Last, another important metric is 

the pulse rise time resulting from scintillation pulses, determined by the quantum 

efficiency of the photodetector as well as the electron multiplication scheme. Through the 

years, photodetectors have evolved greatly in their method of operation, physical design, 

and performance; details on some of the important current photodetectors are given 

below [4, 57].  

Photomultiplier Tube  

The photomultiplier tube (PMT) has been the workhorse of nuclear medicine 

since its inception. Gains are typically ~4-6 electrons per dynode, resulting in an 

amplification for 10 stages of ~106-107.  The maximum quantum efficiency for those 

typically used is ~25-35%.  Some of the advantages of PMTs include their reliability and 

low noise, with thermal emission of electrons orders of magnitude lower compared to the 
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current induced by a photoelectric event.  Photocathode nonuniformities resulting from 

variations of photocathode thickness (especially in large area PMTs), result in 

nonuniform sensitivity, as well as nonuniform collection of photoelectrons at the first 

dynode depending across the photocathode area [4, 50]. 

 

Multianode PMT  

Multianode PMTs (MAPMTs), or position sensitive PMTs, offer two benefits 

compared to PMTs: compact size, with a length of ~12mm compared to the length of a 

PMT of ~150mm; and a grid of anodes that allows for positioning information (Figure 

1.9).  For the purposes of this thesis, this discussion will focus on the Hamamatsu H8500.  

A fundamental requirement of position sensitive PMTs is that the process of electron 

multiplication retains the spatial separation of the original electron cloud resulting from 

the photoelectric interaction.  MAPMTs may be constructed using a number of 

techniques to do this, including the use of a fine mesh layer to channel the electrons from 

one dynode layer to the next; the H8500 uses 12 stages of metal channel dynodes that are 

arranged to channel electrons between layers.  To retain the positional information at the 

anode, each anode is read out separately for the H8500.  Recent models are compact, with 

an active area of 49.7mm x 49.7mm (total area of 51.7mm x 51.7 mm), arranged in an 

8x8 grid of anodes (each 6mm x 6mm), and a ~2mm thick window. The cross talk 

between the anodes is ~1%, and the performance metrics for the H8500 (e.g., quantum 

efficiency, gain, timing, dark current) are comparable to standard PMTs.  The gain of the 

anodes may vary by a factor of 3 within the array, because of both nonuniformities in the 

thickness of the photocathode and variations in the efficiency in collecting photoelectrons 
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as a function of emission position; this may be corrected to some extent using gain 

correction factors.  Another disadvantage of some MAPMTs is the presence of 

nonlinearities near the edges of the detector, resulting in an unusable area that reduces the 

sensitivity of the detector [92-95].  The MAPMT was chosen for this work because its 

active area matched the size of the crystals studied in this work well and because of its 

favorable noise properties.  

 

 

 

 

 

 

 

 

 

  

 

 

Figure 1.9: Photograph and diagram of the H8500 MAPMT, used throughout this work.  
Top Left: Photograph of Hamamatsu H8500 MAPMT. Top right: Diagram of the 64-
anode layout.  Bottom: Diagram of a continuous crystal coupled to the H8500 MAPMT, 
viewed from the side. 

 

49mm	

64-channel	
grid	of	6.1-mm	
anodes 

49mm
m	

6.125mm
m	



	 38	

Silicon Photomulitplier  

 Silicon photomultipliers (SiPMs) detect radiation by using the junction between 

n-type and p-type silicon, created by doping, to create an electrical current when electron-

hole pairs are formed after a photon deposits energy in the photodetector; an electrical 

field (generated by an applied bias voltage) increases this current.  SiPMs used in 

scanners are designed as a 2D array of pixels ranging from 1-4mm, each divided into 

thousands of micropixels composed of avalanche photodiodes, which operate in Geiger 

mode.  While each micropixel registers the same output after absorbing enough energy, 

the collection of many micropixels allows for the output to be linear with total absorbed 

energy.  Since their introduction into the field a decade ago, research into their use has 

blossomed and produced detectors that offer a number of advantages: compactness, 

cheapness, insensitivity to magnetic fields (important for incorporation in a PET/MR 

scanner), high gain (up to 106), good timing performance (recent detectors have a timing 

resolution <250ps when coupled to small scintillators), and a large quantum efficiency.  

This has lead to the introduction of the Philips Digital Photon Counter, which is a fully 

digital detector, with electronics (e.g., the analog-to-digital converter) built into the 

readout chip [16].  Aside from less readout electronics, this detector offers the added 

advantages of an improved dark count rate and timing performance. The major 

disadvantages of SiPMs have been the dead area between the pixels, the temperature 

dependence of the performance, relatively large bias voltage required and the dark count 

rate, though in recent years the latter has decreased enough that they are used in clinical 

scanners with cooling [4, 38, 47, 37, 92, 96-99]. 
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1.6.3 Current Detector Designs 

 The fundamental unit of the PET scanner is the detector, consisting of a 

scintillator, a photodetector, and potentially a lightguide.  These are arranged into 

modules side by side to form a ring, and several rings are placed together to form the 

scanner.  The diameter of the scanner and the width of the FOV are therefore determined 

by the number and size of detectors in a single ring, while the axial FOV is determined by 

the number and size of the rings in the scanner.   

 The earliest version of current standard detector designs was the block detector 

[100], a small block of scintillator divided into regions using reflectors that vary in 

length, becoming longer toward the edge of the block (Figure 1.10 left).  The design of 

the reflectors controls the light spread within the scintillator, depending on which pixel 

detects an event.  There are several designs for the block detector, though one 

representative example of this detector is from the HR+ scanner from the 1990’s, which 

uses an 8x8 block of pixels and four 19mm PMTs [62].   

 All current commercial scanners use blocks of fully discrete pixels, coupled to a 

lightguide that distributes light to an array of PMTs (Figure 1.10 middle).  A single 

module for the discrete detector design would consist of many crystals (e.g., 23x44 array 

for the Philips Gemini TF and 13x13 for the Siemens mCT) coupled to an array of PMTs.  

The current standard design of scintillator detectors consists of a group of discrete 

crystals, each ~4x4x20mm3 in dimension with a ~70µm gap between the pixels filled 

with reflective material, coupled to an array of PMTs ~30mm in diameter (e.g., 39mm for 

the Philips Gemini TF and 25mm for the Siemens mCT).  The design of the PMT array is 

varied in the size and arrangement of the PMTs (e.g., rectangular for the Siemens mCT 
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vs. hexagonal for the Philips systems), and is carefully chosen since the electronics 

scheme that reads out the data is tied to this design and is an important determinant in the 

performance of the system, particularly the count rate capability.  As an example, the 

PMT layout of the LaPET scanner design is shown in Figure 1.11.  

Dozens of detector blocks form one ring of the detector, with 2-8 rings forming 

the entirety of the scanner. Both pixelated and block detector designs operate by using the 

photodetector signals to determine the pixel in which a 511-keV photon interacts and 

scintillates; for pixelated designs, the scintillation spread is restricted within the pixel, so 

that a lightguide is used to spread light to a small region of PMTs to allow for 

positioning.  Event positioning in clinical pixelated systems uses Anger logic (discussed 

in Chapter 3) [4, 82, 86, 98, 101-102]. 

 

  

 
 

 

Figure 1.10: Diagram of various block detector designs; all current scanners use fully 
pixelated arrays read out by large PMTs or arrays of silicon photomultipliers.  
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Figure 1.11: PMT layout in detector module in LaPET scanner. Left: Diagram of 
hexagonal PMT layout with crystals overlaid on top of PMTs. Right: Photograph of a 
detector module showing PMTs coupled to a lightguide and crystal array (Source: [35]).  

 

 The photodetector design has developed rapidly since the introduction of solid-

state devices (avalanche photodiodes (APDs) and, later, SiPMs).  Using these devices, the 

Philips Vereos has removed light multiplexing and brought the detector to a one-to-one 

coupling scheme (Figure 1.10 right), using LSO and a fully digital, compact detector that 

allows each pixel to be coupled to a single photodetector pixel [34].   

1.6.4 Continuous Detectors 

Advantages of pixelated systems include the relatively simple positioning scheme 

employed, a spatial resolution that decreases with pixel size, and good spatial linearity to 

the edges of the detector.  Improvements to the performance of pixelated systems require 

the use of smaller pixels to improve resolution and position sampling or sophisticated 

solutions to provide DOI information (e.g., dual sided readout), resulting in necessary 

trade-offs in complexity and cost.  Moreover, the advantages and disadvantages of 

modifying the pixel size have been studied and are well understood.  In recent years, 

however, there has been a reemergence in interest in continuous detectors, in which 
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Figure 1. LaBr3 detector module. (a) Schematic showing adjacent modules with overlapping
PMTs. (b) Photograph of a single module with PMTs and 8 mm thick light guide. There are
1620 crystals per module. Only five of the six possible axial rows of PMTs are currently used due
to limitations in the number of available electronic channels.

modules (see figure 1). A complete scanner consists of 24 detector modules with 432 PMTs:
6 PMT rows in the axial direction and 72 PMT columns around the ring. The ring diameter of
the scanner is 93 cm; the axial FOV is 25 cm, although it is currently limited to 19.35 cm by
the number of available electronic channels, with only five of the six axial PMT rows currently
being utilized. Figure 2(a) shows a two-dimensional positioning flood for four modules. This
is used to correct for positioning nonlinearities and shows the good discrimination among all
crystals in the array.

2.2. Electronics

The LaBr3 system was developed in parallel with the Philips Gemini TF, and we adapted the
commercial electronics for use in our system. However, to optimize the timing resolution we
found that we needed to modify the trigger electronics, which only allowed one trigger zone
for each detector module. We developed new trigger electronics with each trigger determined
by signals from seven PMTs added together, and the trigger time is calculated as the time that
this analog sum signal crosses a programmable trigger threshold. The seven PMTs nearest
the hit crystal collect most (80–93%) of the emitted light, and each group of seven PMTs sees
light only from a portion of the crystals in the module. The seven-PMT design is ‘local’ in
the sense that each PMT may contribute to several different sets of seven PMTs; the triggers
overlap each other, and the most light will generally be collected by the set of seven closest
to the hit crystal. The PMT in the gap between modules and the edge PMTs with only three
neighbors are not used as centers of local trigger zones. Smaller trigger zones have been found
to improve timing resolution at low count rates due to reduced noise from only seven PMTs
and at high rates due to reduced pulse pile-up from near-simultaneous events. Details on the
electronics are given in Kyba et al (2008). With these electronics, a system timing resolution
of 375 ps FWHM has been achieved, compared to 460 ps timing resolution achieved with
the original trigger electronics (Karp et al 2005). However, since we removed delay lines



	 42	

scintillation light from an event spreads within the scintillator and is measured by the 

photodetector (Figure 1.12); with the use of calibration scans, the photodetector signals 

may be decoded to determine the position of interaction [38].  The potential advantages 

offered by this design include: improved spatial resolution relative to that of the standard 

4-mm pixels in pixelated systems, without loss in sensitivity; intrinsic DOI information 

determined by the light spread within the scintillator; continuous position sampling; and 

improved TOF resolution over typical clinical scanners because of the geometry of the 

block of scintillator.  These come at the cost of more complex positioning algorithms, and 

a spatial resolution that is directly affected by the thickness of the detector, as explained 

below. 

Earlier PET detectors in the 1980’s and 1990’s included large area plates of 

NaI(Tl) (~50x30x25cm3) coupled to arrays of large PMTs; these were limited largely by 

the poor sensitivity and count rate capability of NaI(Tl) [103].  Currents detectors (Figure 

1.12) instead consist of small blocks of LSO/LYSO (e.g., ~50x50mm2 in cross section 

and 8-25mm in thickness).  The three advances that set current continuous crystal designs 

apart from the early NaI designs are: 

1.  The use of the modern scintillators LSO/LYSO, which improves the sensitivity and 

timing performance. 

2.  The use of more advanced position-sensitive photodetectors (MAPMTs and 

SiPMs). 

3.  More rapid electronics and computing, enabling the use of statistical positioning 

algorithms (described in Chapter 3).   
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Figure 1.12: Diagram depicting current designs of the continuous detector, using small 
(~50x50x25mm3) blocks of scintillator coupled to a position sensitive photodetector. 

 

While LSO-based systems allow for TOF information to be exploited, they force 

the detectors to be smaller that the NaI detectors, since LSO crystals cannot be grown in 

large slabs; these detectors are typically no larger than ~50mm in each transverse 

direction and ~25mm in thickness, leading to poor performance because of the edge 

reflections resulting from the high thickness-to-width ratio (aspect ratio).  On the other 

hand, the high light output of LSO, along with the advanced photodetectors and 

electronics, allow for more advanced statistics-based positioning algorithms, which not 

only perform better than simple Anger logic, but are required to compensate for the small 

dimensions of the detector.  Good performance in these systems relies on both good 

collection of light in the detector for high statistics and restricted light spread within the 

detector for proper positioning.  In this design, each module would consist of a single 

block detector read out by a position sensitive photodetector, or potentially several block 

detectors coupled to one another and read out by several photodetectors. For these small 

area continuous detectors, the characteristics that affect the detector performance include:  

1. The thickness of the detector, which determines the degree of light spread within 

the scintillator. 
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2. The aspect ratio of the detector. 

3. Surface treatments to the detector, which affect the optical transport within the 

detector. 

4. Scintillator light output.  

5. The geometry of the photodetector, since this determines the sampling capability of 

the photodetector. 

 While the implementation of this detector design differs vastly from that of 

pixelated systems, in essence the difference between pixelated systems and small 

continuous detectors is the extent to which light spreads within the detector: while 

pixelated systems channel light from an event onto a lightguide that spreads the light 

locally onto the photodetector array, continuous systems allow light to spread within the 

detector before reaching the lightguide/photodetector.  Continuous detectors, however, 

offer a very different spectrum of trade-offs in spatial resolution, sensitivity, and position 

sampling related to the light spread within the detector.  In particular, in order to maintain 

the sensitivity of modern whole-body scanners, thick crystals must be used, degrading the 

resolution because of increased light spreading.  Moreover, because this light spread is 

depth-dependent, the performance varies with DOI, particularly for thick crystals.  Efforts 

to improve these limitations, however, may come at the cost of a loss of DOI information 

or degraded position sampling.  This thesis is focused on these various trade-offs in the 

performance of continuous detectors associated with changes in the light spread within 

the bulk of the scintillator.
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CHAPTER 2 

Thesis 
 

 While all modern commercial PET/CT systems use pixelated detector arrays, 

current research designs of continuous detectors have demonstrated improved capability 

with regards to spatial resolution, position sampling, and DOI information.  A number of 

challenges remain, however, most prominently the degradation of spatial resolution with 

increasing crystal thickness (needed for sensitivity), the depth-dependence of the 

response of the detector, and poor edge performance.  Increased performance for purely 

continuous crystals comes at the cost of increased complexity, in the form of more 

photodetectors, increasingly long calibrations and positioning calculations because of 

more sophisticated positioning algorithms, and an increasing number of electronic 

channels to read out the data.  The fundamental performance of thick detectors, however, 

may be improved by altering the light spread within the detector, and subsurface laser 

engraving has recently emerged as a potential technology to allow for this by creating 

semi-transparent barriers within the bulk of the scintillator, termed laser-induced optical 

barriers (LIOBs).  This thesis centers on the use of this novel technology to improve the 

limitations of continuous detectors, particularly the poor performance within the entrance 

region and the depth-dependent light spread, and has two primary aims:  

1. To investigate the impact of the various aspects of the detector (e.g., properties of 

the LIOBs, crystal thickness, positioning algorithms), and ultimately explore the 

trade-offs in performance inherent in altering the light spread within this detector.  
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For this purpose, the performance of thick detectors etched with LIOBs is 

characterized and the capability of this technology to improve continuous detectors 

is studied in the laboratory.   

2. To understand the clinical implications, focusing on quantitative capability, of a 

detector with improved performance, using Monte Carlo simulations as well as 

patient data collected on clinical scanners. 

 This work therefore investigates modifications to scintillation light spread at three 

levels.  The first is the bench-top level of laboratory experiments that involve 

characterizing the performance of these detectors individually, by collecting data from an 

apparatus consisting of a small radiation source collimated and directed at these 

detectors.  The intermediate level involves system simulations of scanners composed of 

detectors with improved performance to determine the relative impact they have on 

scanner performance; in these simulations, phantoms (distributions of known activity and 

geometry) are imaged so that the simulations may be compared to similar phantom 

measurements on clinical scanners.  Last, the clinical implications of this work will be 

studied by translating the performance of scanners measured using phantoms to 

quantitation in actual patients by using a modified version of a lesion embedding 

technique previously developed by our group. 

Outline of Thesis 

 Chapter 3 expands on the discussion of continuous detectors given in the 

introduction by describing their operation and defining the major metrics that are used to 

characterize their performance.  In order to place the effect of improvements in 
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scintillator design into proper context, the significance of the major components and 

limitations that affect the performance of these detectors is investigated.  These factors 

also determine the extent to which the positioning information inherent in the detector 

may be decoded, and are therefore important to properly compare the performance 

between different detector designs.  In particular, the impact of the photodetector and the 

various positioning algorithms, as well as of Compton scatter and the depth-dependent 

light spread, is studied.  Measurements to accomplish this involved both Monte Carlo 

simulations and experiments with thick continuous crystals.  The performance of the 

detectors is shown to be fundamentally determined by the light spread within the 

detector, and limited by the depth-dependence of the light spread and poor performance 

in the entrance region, motivating efforts to modify this aspect of the detector. 

  Chapter 4 is devoted to a relatively recent technology used to alter the 

performance of continuous detectors: laser induced optical barriers (LIOBs). The concept 

of the laser etching is introduced, and a novel detector design intended to improve light 

spread within the scintillator is described.  The results of experiments that characterize 

the performance of this detector design are presented, along with those of experiments 

that explore the optical properties of the LIOBs; the results show an improved overall 

performance after etching the crystals with LIOBs.  The performance characteristics of 

most interest for this investigation are spatial, energy, and DOI resolution, along with 

position sampling. Additionally, the results of simulation studies, using the results of the 

optical experiments to model the behavior of the LIOBs, are presented.  These showed 

the effect of varying some of the parameters of the LIOBs (e.g., laser properties and the 

pattern of the LIOBs in the crystal) on the trade-offs inherent in these metrics, and 
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investigated the potential of this detector design and of sub-surface laser engraving as 

applied to detector development.  

 Chapter 5 explores the performance of improved detectors in a clinical scanner, 

using Monte Carlo system simulations.  The system simulations used to model the 

scanners is first described.  The performance of the scanners composed of various 

detectors is then determined using the simulations along with calculations that 

incorporate the other effects that affect spatial resolution (e.g., acollinearity, finite 

positron range); these are then compared to one another and against the benchmark of 

current (pixelated) clinical scanners.  Specifically, the simulations aimed to study the 

impact of improved spatial resolution and position sampling, and show the improvement 

in CRC that results from transitioning from a pixelated detector design to a continuous 

design, and by improving the resolution of the continuous designs. 

Chapter 6 translates the quantitative performance of scanners measured using 

phantoms to clinical quantitative performance, by comparing the performance of a 

clinical scanner and a research scanner using both phantom and patient data.  This study 

involves the analysis of images derived using a modified version of a method to virtually 

embed lesions into patient images.  The work elucidates the connection between phantom 

data and patient data, by comparing quantitative metrics on images of phantom data with 

embedded lesions to those of patient data with embedded lesions.  This connection is 

further made by comparing the effect of post-reconstruction filters on these phantom and 

patient images.  These studies conclude that quantitative metrics studied using phantoms 

indeed translate to patient studies, and therefore show that the improvements in CRC 

resulting from improved spatial resolution, measured using phantom studies in the 
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simulations, are representative of improvements in quantitative accuracy in patient 

studies.   
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CHAPTER 3 

Performance of Continuous Detectors 
 

3.1 Introduction  

The positioning of events using continuous detectors relies on the decoding of the 

light spread within the detector, which is unique to each position within the detector 

(Figure 3.1).  The photodetectors below the crystal sample the light distribution, so that 

for every event that is detected, there are as many data points that may be used for 

positioning as there are photodetector elements. The performance of continuous detectors 

is based on a number of factors that combine to limit the precision and accuracy with 

which an event may be localized.  In this section, the importance of some of the major 

components of the detector design will be explored.  These include the continuous 

scintillator, the photodetector, and the positioning algorithms, as well as the depth-

dependence of the light spread and an important inherent limitation of all detectors, 

Compton scatter interactions in the detector.  Because the overall performance of a 

detector is determined by the interplay of these factors, an understanding of the impact of 

each will ultimately allow for different scintillator designs to be accurately compared, 

and for the relative importance of improvements in the design to be determined in later 

sections. 
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Figure 3.1: Light spread within continuous scintillators. Left: Diagram depicting events 
that occur at different DOIs and transverse positions within the crystal.  Right: 
Histograms showing the position-dependent anode outputs; light spreads more at 
shallower depths and the anodes that detect the most light are located closest to the 
position of the event. 
 

 

3.1.1 Fundamental Limitations 

The resolution of continuous detectors is fundamentally limited by: 

1. The light spread within the detector, measured using the light response function. 

2. Compton scatter interactions in the detector.   

 

Light Response Function 

The light response function (LRF) is a useful metric to organize the data 

collected from the crystal measurements because it encapsulates the intrinsic performance 

of a given detector.  The LRF of an anode is defined to be the average output of the anode 

as a function of source position.  As an example, Figure 3.2 shows the results of an 

experimental measurement of a continuous detector irradiated along the side of the 

Shallow DOI Deep DOI 
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crystal by scanning from edge to edge in discrete increments.  The LRF is shown for one 

of the central row-column summed (discussed later) anode outputs, plotted as a function 

of the transverse position of the gamma beam.  Each data point is computed by fitting the 

histogram of the output of the anode over all of the events to a Gaussian, and taking the 

peak and FWHM to be to the mean and error bar of the LRF, respectively.  Each LRF 

therefore conveys two pieces of information: shape and precision, which ultimately 

determine the intrinsic performance of the detector, as shown later.   

 

 

Figure 3.2: Diagram depicting the LRF, defined as the light collected at a particular 
anode as a function of source position. Left: Diagram of the definition of the LRF.  
Middle: Experimentally measured LRF at a fixed depth for a 50x50x25mm3 crystal.  
Right: Histogram of anode outputs for events in a row-column summed anode, with a 
Gaussian fit; the value and uncertainty of the LRFs are equal to the peak and standard 
deviation of the Gaussian fits, respectively. 
 

Cramer-Rao Bound  

As discussed in the introduction, positioning may be viewed as a form of 

parameter estimation, in which an unknown vector of parameters, θ, is estimated after 

measuring a vector of values that functionally depends on the unknown variables, x(θ), 

with likelihood f(x|θ).  The maximum precision of this estimation may be determined 
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statistically with knowledge of only this functional dependence and the uncertainty of the 

measured values x.  Defining the Fisher information, I(θ), as  

I θ =  ! 
!!
log f x θ

!
f(x|θ) dx,       

the lower bound on the variance of an unbiased estimator, σ, may be expressed: 

σ =  !
!"(!)

 ,       

where n in the number of data points.  

The LRFs here represent the data, from which the unknown position x of the 

incident photon is to be estimated, so that a lower bound on the variance of this estimator 

may be determined by them. The distribution of photons at the anodes of the 

photodetector is most accurately described by a multivariate normal distribution.  The 

probability of the anodes measuring the set of outputs n(x) may then be written: 

L(µ(x),n(x)) = !
(!")!/! !"# (!)

exp − !
!
n x − µ(x) V!!(n(x)− µ(x)) ,     (3.1) 

where V is the covariance matrix and 𝛍 𝐱  is the vector of mean anode values. 

The Cramer-Rao bound for this scenario may therefore be approximated: 

   𝜎!"! 𝑥 ≈ !" !
!"

!
𝑉!! !" !

!"

!!
                                            (3.2)                                       

Because of the large number of anodes, the correlations between the anode signals 

are usually not large [104] and the anode signals may be approximated as independent, 

with the Cramer-Rao bound approximated as:  

𝜎!"! 𝑥 ≈  
!!! !
!"

!

!! !
!
!!!

!!

,          (3.3) 
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where N is the number of anodes and σ!(x) is the variance of the ith anode signal.  This 

form is particularly useful in demonstrating that the intrinsic performance of the detector 

is determined by:  

1. The shape of the LRFs, or the rate with which they change (dµ/dx), roughly 

encapsulated as the narrowness of the LRFs.  In particular, narrower LRFs lead to 

better positioning, because these change most rapidly; the ideal LRF would be 

triangular, with a base that spans 1.5 PMT anodes [101].  

2. The light output of the detector, which determines the uncertainty of the LRFs (σ!). 

3. The sampling of the photodetector, which determines the number of data points 

(N). 

 

Compton scatter  

As with pixelated systems, Compton scatter acts to increase the scintillator light 

spread at the photodetector, degrading the ability to decode the positional information 

(Figure 3.3).  Nevertheless, the effect of Compton scatter on positioning differs in the two 

systems because pixelated detectors sample the light output discretely within each pixel, 

while the light from scattered interactions spreads throughout the scintillator. 
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Figure 3.3: Diagram depicting Compton scatter within continuous (left) and pixelated 
(right) detectors. By scattering, the photon deposits its energy at multiple scintillation 
positions, thereby spreading the light more. 

 

3.1.2 Depth-of-interaction  

The interaction of 511-keV photons at various depths within a detector (DOI 

effect) affects all detector designs negatively by causing parallax, which degrades the 

overall spatial resolution of the scanner, and by increasing the time spread of photons 

within detectors, degrading the timing resolution of the systems.  For continuous 

detectors, it additionally harms the detector transverse resolution because the light spread 

within the detector is dependent on the DOI (i.e., deeper events spread less before 

reaching the photodetector plane, leading to narrower LRFs).  Because the light spread 

within the detector depends on the DOI, however, one of the advantages of continuous 

crystal systems over conventional pixelated systems is that intrinsic continuous DOI 
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information may be provided by the detector.  This information may be used to determine 

and correct for the DOI effect. 

DOI information derives from the same source as the transverse positional 

information – position-dependent patterns in light spread – and so this information may 

be extracted using similar algorithms as the transverse position.  In the case of DOI, 

however, calibration data must be ascertained using more complex means since there is 

no simple method to obtain data at known fixed depths.  A number of groups have 

devised clever and sometimes time-consuming methods to determine this, though these 

generally fall into two categories (Figure 3.4):  

1. Angled gamma beams: if the angle and entrance position of the gammas on the 

detector face are known, then the calculated position of the gamma may be used 

to determine the depth at which an interaction takes place.  Calibration data may 

then be obtained for each DOI [105]. 

2. Head-on data: the calibration data set consists of gamma beams oriented normal 

to the surface of the crystal.  By choosing some DOI-dependent metric (e.g., the 

standard deviation of the anode signals) and calculating this metric for each event 

in the calibration data set, events from a single gamma position may be 

histogrammed based on this metric.  The histogram of photoelectric interactions 

may then be derived by using the exponential probability of interaction (Beer’s 

law) and the functional dependence of the metric on DOI.  The histogram may 

ultimately be divided into groups based on DOI, and calibration data determined 

for each DOI.  Because of its relative simplicity, this method is more prevalent in 

the literature [106-111]. 
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Figure 3.4:  Methods to measure DOI information during calibration of continuous 
detectors. Top: Diagram depicting the calculation of DOI using angled gamma beams, in 
which the DOI is determined using the known transverse position and angle of incidence. 
Bottom: Diagram depicting the calculation of DOI using head-on scans, in which the 
probability of interaction decreases with depth (left), and a sample histogram of a DOI-
dependent metric (right), from which DOI information is derived by gating events by the 
value of this metric. 
 

3.1.3 Data Read-out 

 For each event, the position sensitive MAPMT produces a vector of numbers 

corresponding to the outputs of the anodes. For an 8x8 MAPMT, the read-out electronics 

can output data by one of two methods: 
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1. 64-anode scheme: all anodes of the photodetector are read-out and used in 

positioning the events. This method has the advantage of using all of the 

information provided by the MAPMT. 

2. Row-column summing: the 8x8 array of anodes is summed along each direction, 

as shown in Figure 3.5, resulting in 8x2=16 channels for each event.  This method 

has a number of advantages: 

A.  The channels output for each data point are reduced, thereby reducing the 

complexity of the read-out and the number of the positioning calculations 

B.  The calibration procedure is greatly simplified. 2D positioning for the 64-

anode scheme requires calibration data at regularly spaced points on the 

crystal surface (Figure 3.6), which may potentially be simplified by fan beam 

scanning, by which a thin line of radiation is irradiated at known locations 

[112].  In contrast, because of the symmetry provided by the row-column 

summing scheme, this method would in theory allow calibration data to be 

collected at points along two orthogonal lines (either point beams or fan 

beams). Because of nonuniformities within the scintillator and the MAPMT, 

calibration could not likely be reduced further (e.g., calibrating a single 

quadrant) without suffering from artifacts or poorer performance, despite the 

symmetry of the crystal.  

C.  The summed output is less noisy than the individual channel output. 
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Figure 3.5:  Diagram of row-column summing technique, by which the 64 anode signals 
are converted into 16 signals by summing along each orthogonal direction. 
	

	

 

	 

 

 

 

 

 

 

 
 
Figure 3.6: Diagram of various calibration schemes, in which data are collected using 
either point beams (depicted as points) or fan beams (depicted as lines) of gamma rays 
directed at the surface of the crystal at known, discrete positions.  The row-column 
summed read-out technique requires less calibration data because the anode outputs are 
summed in each orthogonal direction, requiring one line of calibration points for each 
direction. 
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3.1.4 Positioning Algorithms  

 Once scintillation light from a coincident event is read out by the photodetector, 

the system must use this information to position each incident photon. Positioning 

algorithms may be divided broadly into Anger positioning algorithms and statistical 

positioning algorithms, which represent a large and varied class.  The categories of 

statistical algorithms generally differ in their performance and complexity. 

3.1.4.1 Anger Logic 

Most commercial scanners use an Anger logic-based positioning algorithm. The 

simplest such positioning scheme involves computing an average of the PMT x- and y-

positions, weighting each value by a factor related to the fraction of total energy collected 

in each PMT. This calculation often includes only the PMTs within a local cluster, so that 

the centroid calculation is given by: 

                                  x = !!!!,!!
!!!

!!!
!!!

   and   y = !!!!,!!
!!!

!!!
!!!

 ,                        (3.4) 

where (x, y) are the calculated x and y-positions of the incident photon, ni is the output of 

PMTi within the local cluster of N PMTs, and px,i and py,i are the x and y-positions of 

PMTi. 

The cluster of PMTs chosen for this calculation may be determined by only 

including PMTs whose output exceeds a certain threshold or by limiting the PMTs to 

include that with the maximum light output as well as the immediate PMT neighbors, in 

order to prevent noisy PMTs from distorting the calculations and to minimize dead time 

and pile-up.  Most modern systems compute the positions after digitizing the PMT 

outputs.   
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Anger logic suffers from the nonlinear response of the PMT signal to the spatial 

position at which light interacts on the PMT, as well as from crystal nonuniformities and 

nonuniformities in PMT response, resulting in distortions such as the pincushion and 

barreling effects (Figure 3.7). The distortions that result from Anger logic may be 

corrected in pixelated systems, because the pixel in which the incident photon interacts is 

all that need be discriminated (Figure 3.7 Right); for continuous systems, however, 

nonlinearities in positioning may degrade resolution because events are positioned 

continuously.    

 

 

Figure 3.7: Flood map of an array of uniformly spaced crystals showing pincushion 
artifacts near the center and barreling artifacts near the edges of the PMTs.  The flood 
map was taken from a current commercial Philips scanner using a pixelated array coupled 
to an array of PMTs in order to illustrate the artifacts that arise from using Anger 
positioning to solve a nonlinear positioning problem, here arising from nonlinearities in 
the PMT output with respect to source position.  

 

 

 

Crystal	position	flood 
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3.1.4.2 Statistical Positioning Algorithms 

 The process of determining the position of an incident photon from the resulting 

photodetector output may also be viewed in light of statistical estimation theory, which 

broadly aims to determine the value of some unknown Nx1 vector, θ, given a vector of 

values that functionally depend on the unknown variables, x(θ).  These methods 

generally use the information provided by the photodetector as well as prior information 

involving the dependence of the data on the incident photon interaction position, obtained 

using a calibration, resulting in improved accuracy and precision in the positioning 

estimation. While statistical algorithms are not used clinically, a number of these 

algorithms have been investigated, particularly as applied to continuous systems; these 

may be divided into three categories, which generally differ in their performance and 

complexity: maximum likelihood methods, nearest neighbor methods, and neural 

network methods [113].  Because the first two are used more extensively than the others 

in the field, and were the only ones used in this thesis because of their relative simplicity, 

they are discussed in more detail below. 

 

Maximum Likelihood Methods 

Maximum likelihood (ML) methods generally determine the unknown vector θ, 

by determining the value of θ that maximizes the likelihood function of the unknown 

parameter L(θ|x).  The likelihood function is defined as: L(θ|x) = pr(x,θ), with pr(x,θ) the 

probability function of measuring values x, given the unknown values θ, so that the 

maximum likelihood equation may be written as:  

θ =  argmax
!

pr x, θ .                              
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Because the logarithm of a function increases monotonically with the function, 

and because it is often easier to solve this equation using logarithms, the maximization 

equation may also be expressed as: 

θ = argmax
!

log (pr x, θ ) .                       

To perform this estimation, therefore, the probability distribution function must be 

known prior to estimation.  Note that the measured values x may be noisy, which acts to 

limit the ability with which estimation may be performed, as described later.   

ML methods as applied to gamma positioning were introduced by Gray and 

Macovski in 1976 [114].  In this context, the unknown values may include the x-, y-, and 

z-position of the incident photon, as well as the energy of the event.  The likelihood of a 

photon being detected by a photodetector tile is given by a multinomial distribution, and 

because the number of photons emitted per scintillation event is so large, this is well 

approximated by a multivariate normal distribution: 

L(𝐌,𝐧(𝐱)) = !
(!!)!/! !"# (!)

𝑒𝑥𝑝 − !
!
𝐧 𝐱 − 𝝁(𝒙) 𝑽!!(𝐧(𝐱)− 𝝁(𝒙))  (3.5). 

where x is the incident photon position, n(x) is the vector of anode outputs, 𝝁(𝒙) is the 

mean output of each anode, and V is the covariance matrix of the anode signals.   

Simpler algorithms assume the outputs of the PMT anodes are independent, so 

that the probability function of the overall interaction may be obtained by multiplying 

each of the individual probability distributions for the anode outputs.  The likelihood of 

ith anode measuring ni photons given incident photon position x can be then be modeled 

as a Poisson likelihood:  

L(µ, x) = !!(!)!!!!!!(!)

!!!
!
!!!  .               
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By taking the derivative of the logarithm of this likelihood function with respect 

to position x and setting to zero, one obtains the equations for position estimation in this 

model: 

n!𝑤! 𝑥 ≈ 0!
!!! ,                             (3.6)  

𝑤! 𝑥 =
!!! !
!"

!! !
−

!!! !
!"

!
!!!

!! !!
!!!

   .              (3.7) 

Here, n(x) is the vector of anode outputs, 𝛍(𝐱) is the vector of mean anode outputs, and 

w(x) are weighting functions that are obtained in a separate calibration step involving the 

collection of data at known locations.  Note that during implementation, the resulting 

value in eq. 3.6 may never reach 0 because of noisy data, so that the minimum is taken 

instead.  

Similarly, a Gaussian model [115] can also be applied, for which the likelihood of 

the ith anode measuring ni photons given incident photon position x is modeled by a 

Gaussian distribution. Similar steps to the derivation for the Poisson model may be 

followed to lead to the minimization equation.  The major difference between this model 

and the previous model is that for the Gaussian model, the standard deviation of the 

output of each anode for a given incident photon position is measured and used in 

addition in the mean light output, while for the Poisson, the standard deviation is assumed 

to be equal to the square root of the mean output.  Both models assume that the PMT 

anode outputs are linear with respect to the energy deposited and that the PMT outputs 

are independent of one another. 
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Nearest Neighbor (NN) Methods 

NN methods, in contrast to ML methods, do not assume a parameter that must be 

estimated (i.e., they are non-parametric) and generally attempt to classify unknown data 

by comparing them to prior training data divided into known classes and determining the 

class that matches most closely to the unknown data.  A common version of these 

algorithms is the k-NN method, in which the class with the k closest neighbors is 

determined to be that in which the unknown data belong. 

As applied to gamma positioning, one method [111] to perform this calculation is 

to collect reference events at regularly spaced positioning points in a given detector; for 

reference event j at reference position p, the resulting N photodetector outputs are given 

by vector µj,p
 = (µj,p

1, µj,p
2, … µj,p

N).  The photodetector outputs for a given event to be 

positioned n, are compared to those of each reference event, commonly using the 

Euclidian distance D: 

𝐷!,! = 𝑛! − µ!
!,! !!

!!!   .                                                 (3.8) 

The k events with the smallest value of D are selected, and the most frequent position j 

among these events is selected as the incident photon position.  

Another version of this algorithm [116] determines the average photodetector 

output for each position p, np
ref .  The average outputs are compared to the outputs for a 

given test event using the Euclidian distance as well: 

𝐷! = 𝑛! − µ!
! !!

!!!   ,                                          (3.9)  

and the position p at which D is a minimum is chosen as the incident photon position. 
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3.2 Experimental Set-up 

3.2.1 Hardware 

To study the crystals tested in this thesis, the following apparatus was designed 

inside a light-tight box, as depicted in Figure 3.8.  Each continuous crystal was coupled 

using optical grease (BC-630) to a Hamamatsu H8500 MAPMT.  The performance of the 

crystal was measured by aiming gamma rays normal to the surface of the crystal and 

collecting data from the photodetector.  Data were acquired in two configurations (Figure 

3.8):  

1. Head-on configuration, in which the crystal was irradiated normal to its front face, 

and the beam scanned from edge-to-edge (y-axis) down the center of the crystal 

(x=0mm). 

2. Side-on configuration, in which the crystal was irradiated along one of its sides to 

fix the DOI (z-axis), and the beam scanned from edge-to-edge (y-axis) at several 

depths.   

To precisely direct gamma rays at the scintillator, a narrow beam of 511-keV 

photons must be aimed at the crystal.  For this purpose, a small (<0.5mm in diameter) and 

weak (~20 µCi) 22Na source was placed between the continuous crystal and a reference 

detector, consisting of a 4x4x20mm3 LYSO crystal wrapped in Teflon and grease 

coupled to a Photonics XP20D0 PMT.  The radiation from the source was electronically 

collimated by triggering on true coincidence events detected at both detectors, and energy 

gating on the 511-keV photons at each detector.  The coincidence triggering and energy 

gating served both to isolate the 511-keV photons from the 22Na spectrum (especially 
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important because of the presence of 1272-keV photons in this spectrum), and to 

collimate the photons into a beam ~1mm in diameter. To ensure a small beam, the 

distance of the source to the reference crystal was >6 times the distance from the source 

to the continuous crystal (Figure 3.9).  The distance from the source to the continuous 

crystal was ~5mm, to allow for an acceptably high count rate (~250 cts/min) while 

avoiding issues with pile-up. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3.8: Schematic of apparatus designed to study continuous detectors. The 
continuous crystal was coupled to a MAPMT, and a 22Na source placed between the 
continuous detector and a reference detector was used to direct a collimated gamma beam 
at the crystal.  Left: Apparatus designed to study continuous detectors in head-on and 
side-on configurations.  The reference detector was translated horizontally to vary the 
DOI in the side-on configuration, while the continuous detector was translated vertically 
in discrete increments to scan along the transverse direction of the crystal.  Right: 
Diagram depicting scanning the crystal in the head-on and side-on configurations. 

 

Head-
on	

Side-
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Figure 3.9:  Geometry of coincidence collimation.  The 22Na source was collimated into a 
~1mm beam by collecting data in coincidence with both detectors. 

 

3.2.2 Electronics 

The electronics set-up is shown in Figure 3.10.  The dynode signal of the H8500 

and the reference signal are first sent to discriminators, and the resulting output pulses are 

properly delayed so that the pulses from coincidence events overlapped in time.  These 

timing signals are then sent to a coincidence logic unit.  The 64 anode signals of the 

H8500, along with copies of the dynode and reference signals, are also sent to an analog-

digital converter, with the integration time set to 110ns, in order to integrate enough of 

the signal in both the MAPMT and the reference detector.  The integrated signals are read 

out into text files using LABVIEW. 
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Figure 3.10: Schematic of the electronics set-up used for the measurements, in which the 
dynode signal of the MAPMT is operated in coincidence with the reference signal, and 
these signals are read out along with the individual 64 anodes. 

 

3.2.3 Crystal Treatment 

The continuous crystals were each cleaned and wrapped in several (>5) layers of 

Teflon on all sides except that being coupled to the photodetector, in order to maximize 

light collection.  A layer of black tape was added after wrapping with Teflon, in order to 

hold the Teflon in place and as a precaution to minimize the light that reached the crystal 

if exposed to outside light. The exit surface of the crystal was coupled to the 

photodetector with a smooth layer of optical grease.  Because LYSO has an afterglow, 
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measurements were taken after configuring the apparatus and leaving it in the dark for at 

least 24 hours [88].  

3.2.4 Data Collection 

The gamma beam was scanned across the crystal using a computer-controlled set-

up.  The continuous detector was fixed to a motor and translated vertically in discrete 

steps, while the source and reference detector were fixed relative to one another and to a 

horizontal motor; for each horizontal and vertical position, a fixed number of events were 

collected.  Collected data from the crystals were used to both calibrate and position the 

events and were processed in MATLAB (The MathWorks Inc.) after data collection.  The 

data were collected at 25 points in 2mm intervals; calibration data were then interpolated 

to 0.25mm points.      

 To measure the energy resolution of the detector, the FWHM of the dynode signal 

was calibrated and divided by the incident radiation energy.  To perform the calibration, a 

137Cs source was used to determine the channel number of the peak at 662keV.   The 

resolution was then calculated as:  

∆E = !"#$!"#$$%&'∗!
!"" !"#

 ,        (3.10) 

where the calibration factor C was calculated as 

C = !!" !"#!!"" !"#
!"#$$%& !"#$%& !!" !"# !!"#$$%& !"#$%&(!"" !"#)

.  (3.11)    
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3.2.5 Testing Data Acquisition Count Rate 

 Because the source was not physically collimated, all photons that are emitted 

within a solid angle subtended by the detector will reach the detector and have the 

potential to be absorbed and scintillate within the detector.  This increases the random 

coincidence rate as well as the likelihood of pulse pile-up, which occurs when two events 

are absorbed close enough in time and space (e.g., in the same continuous detector) that 

the resulting scintillation light emissions are combined.  Pile-up is a fundamental 

limitation of all detectors that increases with count rate and leads to a loss in spatial 

resolution, as events will be mispositioned because of the combined light spread, as well 

as a loss in detected counts, as events are removed from the energy gate if the summed 

energy exceeds the upper gate. 

3.2.5.1 Methods and Materials 

To test for the effect of random coincidences and pile-up in this work, their 

likelihood of occurring was calculated with two measurements:   

1. The random coincidence rate was compared to the total coincident rate, to verify 

that the collected data did not consist of a significant fraction of random events.  

Here, the random coincidence rate was estimated using the delayed gate approach, 

in which one of the coincidence signals is delayed enough that the true 

coincidence events do not overlap in time; this value is theoretically given by: 

Rrandoms=2τr1r2, where r1 and r2 are the singles rates of the continuous and 

reference detector using the high threshold, 2τ is the coincidence window.  
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2.  To verify the absence of pile-up in the apparatus, an estimate of the average time 

between two uncorrelated events in the continuous detector, Tsingles, was measured 

from the singles rate at a low voltage threshold (~50 mV), Rsingles, LT, using Tsingles 

~ 1/Rsingles, LT, to verify that it was significantly larger than the coincident gate.   

3.2.5.2 Results 

 The results of the validation of the apparatus are shown in Table 3.1.  The top row 

compares the event rate for coincidence events to the singles rates for a high voltage 

threshold (to remove events below the photopeak) and for the lowest voltage threshold 

(~50 mV); note that the singles rate includes the counts from the natural background of 

Lu3+.  The last column lists the measured random coincidence rate, and shows that it is 

very low compared to the total coincidence event rate. 

 Further, the average time between two uncorrelated events (Tsingles) in the 

continuous detector is shown to be much larger than the timing window within which two 

events must be triggered to be registered as a coincidence event, so that pulse pile-up is 

shown to not impact this set-up.   
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Table 3.1: Comparison of singles and coincidence rates for detector set-up.  The low 
coincidence rate using the delayed coincidence method, compared to the normal 
coincidence rate, indicates that random coincidences are not affecting the apparatus 
significantly.  The large time between the singles events in the MAPMT (Tsingles) 
compared to the coincidence gate indicates that pile-up is not affecting the apparatus 
significantly. 

 

3.3 Simulations 

3.3.1 Monte Carlo Simulations in PET 

Monte Carlo (MC) simulations have become an invaluable tool in the field of 

nuclear medicine, as they provide a means to study properties of scanners that are 

impossible to study otherwise, serve as a quick and inexpensive method to study new 

designs and optimize detector design, and provide objective data to measure the 

performance of scanners (e.g., quantitation and detectability) and reconstruction 

correction techniques.  Because nuclear imaging is based on stochastic processes, MC 

methods are well suited for modeling the behavior of imaging.  While a number of 

different MC packages exist for modeling PET scanners, they all are fundamentally based 

on the same principles: random number generation, sampling of probability distribution 
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functions (PDFs), physical modeling of interactions of radiation with matter, and a 

method to tally the output of the simulation.   

   Detector simulations specifically model the process of scintillation photon 

generation and absorption, in order to characterize the performance of the detector.  The 

most popular codes used for this purpose include GATE/GEANT4, DETECT2000, and 

SCOUT [120-122]; the code used in this thesis was that developed at the University of 

Pennsylvania, Montecrystal, because of the ability to easily alter the parameters of the 

system, as well as its speed [101, 123-124].  Montecrystal consists of two separate codes, 

implemented after the user has specified the geometry and composition of the detector: 

the first to model the interactions of incident 511-keV photons with the detector and the 

second to track the movement of scintillation photons through the detector to the 

photodetector. 

 The photons may be introduced into the detector as a beam of chosen thickness 

oriented at a chosen angle relative to the surface of the detector, with the position of 

interaction chosen by the user; alternatively, the depth-of-interaction of the photons may 

be fixed by the user.  The distance the photons travel before interacting in the detector is 

determined using Beer’s law, with the appropriate total mass absorption coefficient 

dependent on both energy and scintillator composition.  The energy of any scattered 

photons as well as the angle at which they scatter are sampled using the Klein-Nishina 

differential cross-section.  After each interaction, scintillation photons are emitted, based 

on the energy of the detected event and the scintillator light yield (e.g., 51000 

photons/keV for LYSO).  Each incident photon is tracked until the original 511-keV 
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photon and each scattered photon have undergone photoelectric absorption or passed 

through the crystal.  

 The second code tracks each scintillation photon from the position at which it is 

emitted until it is absorbed by the photodetector, absorbed by the crystal, or passes 

through the crystal. Montecrystal, like other detector MC methods used for nuclear 

medicine, ignores electron transport because of the short ranges of the electrons involved 

(because of their low energies).  The photon may interact with a number of surfaces along 

its path, including: the walls of the crystal, any reflector within the crystal or wrapped 

around the crystal, a lightguide between the scintillator and the photodetector, the glass 

wall of the photodetector, and the photocathode.  The model for photon interactions with 

these surfaces is common to similar simulation codes, and includes three types of 

interactions (Figure 3.11): 

1. Mirror-like (specular spike) reflections off of smooth surfaces. 

2. Specular reflections off of a rough surface (specular lobe), described as a surface 

whose local surface (modeled as microfacets) is angled relative to the normal of 

the surface as a whole, with the PDF of the angle given by a Gaussian with user-

defined width. 

3. Diffuse (Lambertian) reflections off of rough surfaces, with the PDF for 

reflections at angle θ given by cos(θ), relative to normal. 
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Figure 3.11: Model of interactions of photons within detector. Top: Diagram of the 
various interactions of incident photons and scintillation photons within the detector. 
Bottom: Diagram of the model of reflections used in the simulations, in which surface 
reflections are modeled using specular spike distributions, specular lobe distributions, or 
diffuse distributions. 
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 In order to better match experimental conditions, the Montecrystal MC code 

previously developed by this group was modified in two ways: 

1.  The photodetector was modeled as reflective.  Previous versions of the code 

described the detector as absorptive and transmissive; however, studies [125-128] 

have measured the index of refraction and reflectivity of bialkali photocathodes.  

Based on these measurements, the index of refraction of the H8500 was chosen to 

be 3.3; because a well-defined model for the PDF of reflection has not been 

measured, the photocathode was modeled as a diffuse reflector, based on visual 

observation of light reflected from the cathode.  

2.  Reflections at the polished walls of the crystals were modeled as ~99% specular 

and ~1% diffuse, based on measurements described in chapter 4; previous 

versions of the simulation modeled these walls as 100% specular.  

As before, an air gap was modeled between the crystal surface and the Teflon 

wrapping, and reflections from the Teflon wrapping were modeled as Lambertian, based 

on measurements of the reflectivity profile from this surface [129-132].  Each interaction 

was modeled as one of these three, while interactions with a given surface as a whole 

could be described as a combination of these, with the probability of each type of 

interaction specific to each surface [117-119]. 

The number and position of photons absorbed by the photocathode are tallied for 

each detected event.  After all events have been simulated, the output of the simulation 

includes the output of each photodetector anode for each detected event, as in actual 

radiation experiments, and can also include information unavailable to actual 

experiments, such as the exact position of interaction of the incident photon. 
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3.3.2 Validation of Detector Simulations 

3.3.2.1 Methods and Materials 

The simulations were tested by comparing them to experimental measurements 

for two crystals that were studied experimentally: a 50x50x25mm3 crystal, polished on all 

sides, and a 48x48x14mm3 crystal, roughened on the entrance surface.  

3.3.2.2 Results 

Comparisons of the LRFs for the simulations and experiments are shown in  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3.12: Comparison of the LRFs resulting from the simulations and experimental 
measurements for the 25mm (left) and 14mm thick (right) crystals, and for both a central 
(top) and near-edge (bottom) row-column summed anode.  LRFs are shown for three 
depths (z-direction).  The LRFs from the simulations and experimental measurements do 
not match exactly, but the simulations reflect the general effects of the DOI and 
reflections from the walls in the light spread. 
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 The simulations do not exactly match the experimental measurements, indicating 

that the model of photon interactions in the continuous detector is incomplete.  This is 

largely a consequence of the approximations that are made for the interactions of the 

photons with the walls of the crystal, Teflon, and the photodetector (Figure 3.11), 

because of the difficulty in precisely measuring these for this system.  Research has 

shown that these interactions may be complex and difficult to model [129, 131], leading 

to inevitable discrepancies when using a simple model; more realistic models therefore 

will likely require measurements of the optical interactions at the surfaces of the specific 

crystals, photodetector, and reflective wrapping used and incorporation of the empirically 

derived surface interactions.  Nevertheless, the simulations accurately reflect the general 

effects of DOI and reflections from the walls in the light spread, so that keeping the 

limitations of the model in mind, the simulations are useful for understanding the relative 

effects of the various parameters in the continuous detector, and invaluable for isolating 

certain effects within the detection process (e.g., depth, Compton scatter). 

3.4 Continuous Crystal Light Spread 

3.4.1 Impact of Light Spread  

 The LRFs for all of the row-column summed anodes, and for a central row-

column summed anode at several depths, are shown in Figure 3.13 for a 25mm and a 

14mm thick crystal.  Several fundamental properties of continuous crystals are displayed 

here.  The LRFs on one side of the crystal are seen to be fairly symmetric with those on 

the other side, so that the performance of the crystal may be characterized with half of the 

crystal.  Additionally, the light spread is more restricted as the depth of interaction 
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increases because the incident photons are closer to the photodetector, both allowing the 

photodetector to receive more direct (i.e., unreflected) light as well as resulting in less 

light spread before reaching the photodetector (as indicated in Figure 3.1).  The 

corresponding spatial resolution is shown here as well, illustrating that narrower light 

spread indeed leads to improved spatial resolution, as predicted by the Cramer-Rao 

bound (eq. 3.3). Similarly, the 14mm thick crystal is seen to have improved spatial 

resolution compared to the 25mm thick crystal at each depth, because of the more 

restricted light spread within the crystal; note that the spatial resolution also improves 

with depth for the thinner crystal.   

These data also illustrate one of the fundamental limitations of thick continuous 

detectors: light reflections from the sides of the detector broaden the LRFs, particularly 

near the edges and at shallow depths, thereby degrading the resolution and linearity close 

to the walls of the detector.  This effect ultimately leads to a loss in the sensitive area for 

the detector (i.e., the area with acceptable spatial resolution) and a loss in sensitivity for 

the scanner overall.   

 The positioning measurement is shown to be quite linear until the edges of the 

crystal (Figure 3.14).  This linearity is a result of the smooth, monotonic change of the 

LRFs with respect to position, as well as the use of a statistical positioning algorithm 

(here, the nearest neighbor algorithm).  While non-linearities in the positioning (i.e., 

measured beam position vs. actual beam position) may be corrected prior to 

reconstruction, non-monotonic changes cannot, because the one-to-one correspondence 

of measured position to actual position is lost.   
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Figure 3.13: LRFs for a single row-column summed anode and spatial resolution at 
various fixed depths for a 50x50x25mm3 crystal and a 48x48x14mm3 crystal. Top: LRFs 
for the 8 row-column summed anodes for a middle DOI; Middle: Central row-column 
summed LRFs at various DOIs. Bottom: Spatial resolution at various DOIs using the NN 
algorithm.  These data show the depth-dependence of the light spread and the 
improvement in resolution that results from more restricted light spread. 
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Figure 3.14: Positioning linearity for a 50x50x25mm3 crystal for three fixed DOIs, 
showing the linearity in the central region of the crystal and monotonic change of the 
measured beam position with actual beam position. 
	

3.4.2 Head-on LRFs  
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expected from the attenuation of LYSO (0.87 cm-1), which results in ~57%, 28%, and 

15% of detected events interacting within [0-8mm], [8-16mm], and [16-25mm], 

respectively (Figure 3.15).  The magnitude of the uncertainty, however, is larger because: 

1.  Events from a head-on scan interact at various depths within the crystal, acting to 

combine the LRFs at the various depths within the crystal.  

2.  Compton scatter within the crystal that leads to events that interact at multiple 
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Figure 3.15: LRFs for a side-on and head-on scan for a 50x50x25mm3 crystal. Left: LRFs 
from side-on scans taken at various fixed depths, for a central row-column summed 
anode. Right: Head-on LRF for a central row-column summed anode, showing that in 
shape, head-on LRFs fall between the shallow and middle depths, and have larger 
uncertainty.  

3.5 Interactions at the Crystal Walls 

Continuous detector designs operate by decoding the position of the detected 

annihilation photon from the scintillation light spread.  An understanding of the manner 

in which the positional information of the incident photon is conveyed by the scintillation 

photons is therefore useful for analyzing detector designs, to determine how best to 

modify the continuous crystal to improve performance.  Each scintillation event results in 

the isotropic emission of photons at the point of interaction, and the information carried 

by a photon in a continuous crystal is affected by: 

1. The distance traveled by the photon before being absorbed by the photocathode, 

because greater distances result in PSFs at the photodetector plane that are more 

spread out. 
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2. Reflections at the walls and Teflon wrapping of the crystal, because these extend 

the distance of the photons to the photocathode and (in the case of diffuse 

reflections) randomize their direction, both acting to spread out the PSFs at the 

photodetector plane.   

3. Absorption of photons within the crystal or Teflon layer and loss of photons 

through the Teflon layer. 

 

In order to clarify the effect of interactions at the side surfaces and entrance 

surface, the photons that are emitted from a scintillation event may be grouped into three 

categories, based on their original direction of travel (Figure 3.16).  The photons traveling 

in each direction carry different amounts information regarding the position of 

interaction; the information carried by photons from each category, as well as the fraction 

of total photons that fall into each category, depends on the DOI, resulting in an overall 

dependence of positional information with DOI.  
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Figure 3.16: Diagram depicting the division of scintillation photons by direction.  
Photons were divided into those directed at the entrance surface, exit surface (toward the 
photodetetctor), and side surfaces of the crystal.  
	

 
A.  Photons directed toward the exit surface (toward the photodetector) 

The photons that carry the most information are those that are directed toward the 

photodetector, since these will travel the shortest distance before being absorbed by the 

photodetector and will on average reflect less than the other photons, resulting in a PSF 

that is most narrow.  

B. Photons directed toward the entrance surface 

The photons emitted toward the entrance surface must reflect from the top 

surface or Teflon wrapping at least once before reaching the photodetector, increasing 

light spread relative to those directed toward the exit surface.   
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C. Photons directed toward the side surfaces 

The photons emitted toward the side surfaces will likely reflect many times before 

reaching the photodetector, if at all.  Because of the air gap between the crystal (index of 

refraction ~1.85) and Teflon wrapping, the probability of transmitting through the crystal 

to the Teflon layer is large.  Moreover, because of the diffuse reflections from the Teflon 

layer, as well as refraction occurring at the air-crystal interface when reentering the 

crystal, photons reentering the crystal will most likely be directed to another side surface, 

leading to a greater light spread at the photodetector and increasing the probability that 

the photons will be absorbed by the crystal or transmitted through the Teflon wrapping 

before being detected. 

3.5.1 Methods and Materials  

To determine the relative information carried by these photons, simulations were 

run in which a gamma beam was scanned down the center (x=0mm) of a 50x50x25mm3 

crystal at two fixed depths (with only photoelectric interactions), z=4mm and z=20mm 

(Figure 3.17).  For each simulation, photons from each category were isolated and their 

resulting LRFs measured.  Additionally, histograms of the position at which the 

scintillation photons are detected were plotted for the categories of scintillation photons; 

here, the scintillation position was fixed in the center of the crystal in the transverse 

directions and at a shallow and deep depth. 
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Figure 3.17: Diagram of scan positions for simulation studies of the information carried 
by photons directed toward the exit surface, entrance surface, and side surfaces of the 
crystal.  Data were collected using gamma beams scanned along the transverse direction 
at two depths.  
 

3.5.2 Results 

The LRFs for the photons directed toward the various surfaces are plotted in 

Figure 3.18 for two fixed depths, for a 25mm thick continuous crystal; the fraction of 

photons detected at the photodetector for each group of photons is shown in Table 3.2 for 

a central and edge transverse position and for the two depths.  The LRFs for the photons 

emitted toward the exit surface are the most narrow, while those directed toward the 

entrance surface are slightly wider.  Those directed toward the side surfaces are the most 

wide and do not carry positioning information.  The positioning histograms reflect these 

results, with the photons directed toward the photodetector spread out the least, followed 

by those directed toward the entrance surface and the side surfaces.  In the center, as the 

incident photon position nears the exit surface, the fraction of photons directed to the exit 
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surface increases, while at positions near the edge walls, most of the detected photons are 

directed to the side surfaces. 

The deleterious effect of the photons that are emitted towards the side surfaces 

has prompted research into the value of painting the walls of continuous crystals black in 

order to improve performance, particularly at the edges [133-139].  This treatment indeed 

results in improved spatial resolution, despite the loss of photons, and a larger usable 

field-of-view.  The disadvantage of this treatment, however, is a degradation in energy 

resolution: if all photons directed at the side surfaces were absorbed, this would result in 

a minimum loss of 25%-70% of photons (Table 3.2), depending on the location of the 

detected event, which (based on Poisson statistics) would degrade energy resolution by 

15-40%; this is a lower estimate because photons that interact with the entrance and exit 

surfaces first may reflect and interact with the sides later.    Similarly, the entrance 

surface of continuous crystals is rarely painted black, because photons directed to this 

surface carry enough positional information that the improvement in resolution, if any, 

would not warrant the loss in energy resolution.   
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Figure 3.18: Simulated LRFs and positioning histograms for photons emitted in various 
directions for a 50x50x25mm3 crystal. Top: LRFs for photons emitted in various 
directions. Bottom: Histograms, normalized by the sum of the counts, of the position 
along a transverse axis of the detection point at the photodetector, for photons emitted in 
various directions (colors match those in top plot); the gamma interaction was fixed at the 
center of the crystal in the transverse direction.   These data show that photons directed 
toward the exit surface carry the most information, while those toward the entrance 
surface carry less, and those directed at the side surfaces carry no information. 
 

 

 

 

z=4mm (only photoelectric) z=20mm (only photoelectric) 

Position (mm)
-25 -20 -15 -10 -5 0 5 10 15 20 25

N
or

m
al

iz
ed

 L
ig

ht
 R

es
po

ns
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exit Surface
Entrance Surface
Side Walls
All Directions

Position (mm)
-25 -20 -15 -10 -5 0 5 10 15 20 25

N
or

m
al

iz
ed

 L
ig

ht
 R

es
po

ns
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exit Surface
Entrance Surface
Side Walls
All Directions

Position (mm)
-25 -20 -15 -10 -5 0 5 10 15 20 25

N
or

m
al

iz
ed

 C
ou

nt
s

0

0.015

0.03

0.045

0.06

0.075

0.09

0.105

0.12

0.135

0.15

Position (mm)
-25 -20 -15 -10 -5 0 5 10 15 20 25

N
or

m
al

iz
ed

 C
ou

nt
s

0

0.015

0.03

0.045

0.06

0.075

0.09

0.105

0.12

0.135

0.15



	 90	

Table 3.2: Fraction of photons detected by photodetector for photons directed toward 
each crystal surface at two depths and two transverse positions. 

  

3.6 Impact of Photodetector 

3.6.1 Methods and Materials 

 Research in photodetectors is an active field because of their impact on the overall 

performance of a PET detector; the primary features of a photodetector that affect the 

performance of the continuous detector are its quantum efficiency, noise, and sampling 

(size of pixels). To study the effect of the photodetector on continuous detector 

performance, and in particular the effect of varying the quantum efficiency and noise, the 

performances of the continuous crystals using two photodetectors were compared: 

1. The Hamamatsu H8500, discussed in section 1.4.1.  
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2. An early model of a SiPM fabricated by Radiation Monitoring Devices (RMD) and 

termed a solid-state photomultiplier (SSPM), consisting of an 8x8 array of readout 

chips, divided into 16 quadrants (~12800 pixels/quadrant), with ~19% photon 

detection efficiency for blue light.  

The detector was operated using a power supply that set a bias voltage of 35V, in 

excess of the breakdown voltage of 27.2V, and using preamplifiers mounted close to the 

SSPM to increase the signal.  In order to measure the temperature dependence of this 

detector and to maximize its performance, the detection apparatus was set up in a freezer, 

and measurements were taken at several temperatures between -35oC and 24oC for the 

14-mm crystal. 

3.6.2 Results 

The results of experiments with the SSPM are shown in Figure 3.19 for the 14-

mm crystal and at various temperatures, showing improved performance as temperature 

decreases.  For reference, the resolution measured with the H8500 is also shown, showing 

improved performance with the H8500 at room temperature over the SSPM at the lowest 

temperature used.  As an indication of the noisiness of the detectors, the energy resolution 

of the detectors as a function of temperature is shown in Table 3.3, and the RMS noise of 

the SSPM is plotted as a function of temperature in Figure 3.20. The noise and energy 

resolution decrease sharply as the temperature is lowered from room temperature, with a 

modest improvement in lowering from -17o to -35o.  The excellent energy resolution at 

room temperature further indicates that the H8500 is indeed relatively noise-free. 
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Figure 3.19: LRFs for a central row-column summed anode, spatial resolution, and 
uncertainty for measurements using the 14mm thick crystal coupled to the SSPM. Top: 
Spatial resolution and LRFs as a function of temperature. Bottom: Uncertainty of the 
central row-column summed LRF; the dip near x=3mm is the point at which this row-
column summed anode receives the most light.  The performance of the SSPM is seen to 
improve as the temperature is lowered. 
	

   
 

 

 

 

 

 

 
 
Figure 3.20: RMS noise of the SSPM as a function of temperature, showing that the RMS 
decreases with temperature.  
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Table 3.3: Energy resolution of three crystals coupled to the SSPM as a function of 
temperature.  Energy resolution improves as temperature is lowered, because the SSPM 
noise decreases. 

 

  

 

 

 

 

 

 

	

3.7 Impact of Photodetector Read-out 

The size and arrangement of the photodetector elements determine how finely the 

light spread at the photodetector face is sampled, and represents an example of the 

inherent compromise between resolution and noise, as smaller pixels also lead to less 

light collection.  This compromise in turn results in a functional dependence of spatial 

resolution on the read-out of the data (eq. 3.3): while the increase in the number of data 

points allowed by using all of the anodes that sample the light distribution (i.e., 64-anode 

read-out) is expected to improve spatial resolution, the increase in the noise inherent in 

the data points may degrade resolution compared to schemes that sum the anodes (i.e., 

row-column summing read-out).  While the number of anodes used by a photodetector is 

limited by the number of available position-sensitive photosensors, the method of 
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analyzing the data output by the photosensors may thus be varied to adjust the sampling 

of the data.  

3.7.1 Methods and Materials 

To determine the effect that limited sampling has on the row-column summing 

scheme, the 64-anode and row-column summing read-out schemes were compared using 

the H8500 and the experimental SSPM device, as well as crystals of two different 

thicknesses (25mm and 14mm), to measure the effect that noise and light spread has on 

the positioning schemes. 

3.7.2 Results 

Comparisons of the row-column summed and 64-anode read-out schemes (Figure 

3.21) show a consistent improvement in resolution by <0.5mm when using the 64-anode 

read-out scheme for both the 14mm and 25-mm crystal when using the H8500.  The 64-

anode scheme results in degraded performance when using the SSPM, however, because 

of the increased noise of this photodetector.  
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Figure 3.21:  Comparison of spatial resolution using the NN algorithm with the 64-anode 
and row-column summed read-out schemes for: the 25mm thick crystal and H8500 (left), 
14mm thick crystal and H8500 (middle), and 14mm thick crystal and SSPM at -35oC 
(right).  Using all 64 anodes improves the performance with the H8500, but shows 
degraded performance with the SSPM due to noise in the photodetector. 
	

3.8 Impact of Positioning Algorithms 

3.8.1 Methods and Materials 

A number of statistical algorithms were tested in this work.  These algorithms 

differ from one another in the way in which they use the known information encapsulated 

by the light response functions in order to position unknown events.  The precision of the 

algorithms must be weighed against computational efficiency: more precise algorithms 

are computationally more intensive, and may thus be impractical. An exhaustive study of 

positioning algorithms is outside the scope of this work; for the purposes of this study, a 

number of relatively practical algorithms were compared against one another and to the 

simple Anger logic algorithm in their positioning performance.  These tests are 

additionally important to determine the suitability of these algorithms for accurate 

comparisons of different detector designs. 
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 A. ML Algorithms 

Three ML algorithms were investigated, differing only in the PDFs that were 

maximized:  

1. Multivariate-based: while this algorithm is the most accurate, it is more 

computationally demanding, and requires many more variables (the covariance 

matrix) to be measured, potentially allowing for more noise to enter into the 

position estimate. 

2. Gaussian-based: this algorithm eliminates the covariances from the computation 

(assuming they are zero), but still takes into account the variances of the light 

response 

3.  Poisson-based: this is the simplest algorithm, which assumes that the light output 

at each anode follows a Poisson distribution. 

 

 B. NN Algorithms 

Two NN algorithms were investigated: 

1. The average NN method, in which each test event is compared to an average 

reference set, and the distance calculated according to equation 3.9. 

2. A weighted NN method, in which each event (with anode outputs n) is compared 

to an average reference set µp at position p, and the distance Dp to each anode is 

weighted by the uncertainty of the LRF, 𝛔𝐢, according to:  

𝐷!(𝑥) =
(!! ! !!!

! ! )

!!(!)

!
!
!!!  .      (3.12) 
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 These algorithms were compared to one another and to the theoretical Cramer-

Rao lower bound, using both experimental measurements and simulations; in order to 

determine the effect of scintillation photon statistics on the performance of the 

algorithms, these simulations were run using both the normal scintillation light output, as 

well as with a large (>5x) the number of scintillation photons; note that these algorithms 

are expected to be asymptotically efficient in the limit of very large statistics. 

Because of the electronic collimation scheme, the radiation beam used to collect 

the data spreads with depth.  To minimize the effect of beam spreading, events were 

gated (Figure 3.22) to include only those whose maximum row-column summed output 

in the x-direction (perpendicular to scanning) is the anode located immediately beneath 

the incident gamma beam for the head-on configuration (anode 4) and closest to the point 

of entry for the side-on configuration (anode 1).  This gating scheme was validated by 

comparing to the performance of the positioning algorithms without gating and by gating 

on the anode one removed from that closest to the incident position for the side-on scan 

(anode 2).  
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Figure 3.22: Gating on row-column summed anodes (red) for head-on (left) and side-on 
(right) scans.  Gating was performed in order to minimize the effect of the beam spread 
within the crystal. 
 

3.8.2 Results 

3.8.2.1 Gating Events on Maximum Anode 

 The effect of gating the events by the maximum anode is shown in Figure 3.23, 

which also shows the resolution for events gated on anode 2.  Though the beam width is 

not Gaussian, the overall resolution of the crystal will be a convolution of the PSF 

resulting from the detector resolution and the beam width:  

∆𝑥!"#$ = PSF!"# !"# ⨂ PSF!"#$ ≈ 𝜎!"# !"#! + 𝜎!"#$!  
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For the side-on scan, events whose maximum anode is one removed from that closest to 

the surface are ~6mm deeper in the crystal, leading to a larger beam width. Therefore, to 

minimize the effect of the beam width, only results for gated events will be included in 

further comparisons. 

 

 

 

 

 

 

Figure 3.23:  Diagram of gating schemes (left) and spatial resolution (right) for 50x50x25 
mm3 crystal at z=12mm for different gating strategies.  Gating on anode 1 was therefore 
performed for all experiments to minimize the effect of the beam spread within the 
crystal. 
 

3.8.2.2 Positioning Algorithms 

The effect of the variations in the ML positioning algorithm are shown in Figure 

3.24 for both the row-column summed and the 64-anode read-out schemes. All ML 

models show similar performance, and are superior to Anger logic, particularly at the 

edges of the crystal. 
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Figure 3.24: Comparison of performance of the ML positioning algorithms. Top: 
Comparison of Anger logic and Poisson ML algorithms. Bottom: Comparison of ML 
algorithms for row-column summed (left) and 64-anode read-out schemes (right).  Data 
are shown for a 25mm thick crystal at z=12mm, but are representative of other depths and 
crystal thicknesses.  The ML algorithms show similar performance to one another and 
improved performance relative to that of Anger logic. 

 

The results of comparisons of the NN algorithms are shown in Figure 3.25; the average 

model and the weighted model are seen to perform equivalently to one another.  

Comparisons of the mean NN algorithm and Poisson-based ML algorithm, for both the 

row-column summed and 64-anode read-out schemes, are shown in Figure 3.26, showing 

comparable performance between the two and indicating that either algorithm may be 

used to decode the information from continuous crystals.   These algorithms are also 
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compared to the Cramer-Rao lower bound, showing that both algorithms are statistically 

inefficient, with a resolution that is ~1-1.5mm larger than the lowest possible bound.  The 

simulations indicate that with a larger scintillation light output, the Cramer-Rao lower 

bound is much closer to being reached using these algorithms, showing that low statistics 

is the main cause for the underperformance of the positioning algorithms. 

 

 

 

 

 

 

 

 

 
 
Figure 3.25: Comparison of NN positioning algorithms that do and do not incorporate the  
uncertainty of the LRFs, for z=4mm (left) and z=12mm (right) for the row-column 
summed read-out scheme. Data are shown for a 25mm thick crystal, but are 
representative of other depths and crystal thicknesses.  The NN algorithms show similar 
performance.  
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Figure 3.26: Comparison of NN algorithm, ML algorithm, and Cramer Rao bound for 
row-column summed (left) and 64-anode read-out schemes (right). Top: Experimental 
measurements. Middle: Simulations with normal scintillation statistics. Bottom: 
Simulations with high scintillation statistics.  The NN and ML algorithms show similar 
performance to one another, but are shown to underperform relative the Cramer-Rao 
lower bound, because of insufficient photon statistics. 
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3.9 Impact of Compton scatter 

3.9.1 Methods and Materials 

Compton scatter limits the performance of all detector designs, by blurring the 

scintillation light spread of the 511-keV events (Figure 3.2).  To compare the effect of 

Compton scatter on both systems, simulations were run for each detector, both with and 

without Compton scatter, and analyzed using the same positioning algorithm, to 

determine the effect of Compton scatter on positioning in continuous detectors.  

3.9.2 Results 

Figure 3.27 compares the results of head-on and side-on simulation scans with 

and without Compton scatter, using the row-column summed NN algorithm, for a 25mm 

thick crystal.  It is seen that for both side-on and head-on scans, Compton scatter 

degrades the spatial resolution by blurring the transverse light spread.  For head-on scans, 

Compton scatter additionally acts to spread the light distribution among several depths. 

 

 

 

 

 

 

 

 

 



	 104	

 

Figure 3.27: Simulated spatial resolution for side-on (left) and head-on (right) 
configurations for the 50x50x25mm3 crystal, with and without Compton scatter.  
Compton scatter is shown to degrade the resolution of the continuous detectors.  

 

3.10 Impact of DOI 

3.10.1 Methods and Materials 

 While this thesis was not focused on a rigorous investigation of algorithms to 

measure DOI, an estimate of the performance of continuous systems in measuring DOI is 

important to compare to modified detector designs.  Because DOI algorithms feature an 

added level of complexity beyond transverse positioning algorithms, practicality was 

weighed against precision when choosing the positioning algorithm to perform DOI.  

Therefore, row-column summed data were used and the head-on calibration was 
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chosen as the depth-dependent metric used to divide the head-on data into depth-specific 

data, by dividing this histogram into regions spaced according to Beer’s law.  The depth-

gated events may then be used to implement a 3D version of the NN algorithm described 

previously, by correlating the 3D positioning to each set of anode signals.   

The use of head-on data to obtain depth-gated data was first verified by 

comparing LRFs from depth-gated head-on data and side-on scans at known depths, 

using the row-column summed outputs.  While the LRFs for the two data sets are 

hypothesized to be similar near the center of the crystal, the behavior of the side-on and 

head-on data were expected to differ near the edge of the detector because the side-on 

data will be directed near the corners of the detector, where light loss is more likely, 

unlike the head-on data (Figure 3.8).  To estimate the DOI resolution, therefore, this 

algorithm was implemented using side-on data for both the calibration and positioning, to 

avoid artifacts resulting from these differences; in a real detector, head-on data would be 

used to calibrate the head-on (or near head-on) events that would be positioned.   

The impact of the DOI on head-on performance was measured by comparing the 

spatial resolution and positioning linearity of a head-on scan before and after 

implementation of the DOI algorithm.  It was further investigated by comparing the 

performance of the side-on scans using both side-on and head-on calibration weights to 

determine the impact of using a single head-on calibration for positioning. 

3.10.2 Results 

 A histogram of the standard deviation of the 64 anode signals for a beam 

positioned near the center and near the edge of the 50x50x25-mm3 crystal is shown in 
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Figure 3.28.  LRFs for events gated at particular depths are plotted for a central and near-

edge row-column summed anode and compared to the side-on LRFs, showing good 

similarity for the central anodes and more discrepancy near the edges for the edge anodes 

(Figure 3.29); this is likely a result of light loss near the corners of the crystal.  Figure 

3.30 shows the impact of using a single set of head-on calibration weights to position 

events at three representative depths: the resolution and positioning linearity is shown to 

degrade at the edges at deeper depths, where the LRFs differ significantly from the head-

on weights (Figure 3.15).  Use of the head-on weights is shown to have less of an impact 

at z=4mm and z=12mm because the LRFs at these DOIs are more similar to the head-on 

LRFs than at deeper DOIs.  The effect of using a 3D positioning algorithm that uses the 

DOI information from the head-on calibration scan is an improvement in the edge 

performance of the crystal, resulting in an extension of the useable field of view in one 

dimension by ~8mm (4mm in each direction), increasing the overall field of view in both 

directions by ~30% (Figure 3.31 Top). The DOI resolution as a function of transverse 

position for the three depths shows that the DOI resolution degrades at the edges and 

improves with depth, as with the transverse resolution.  
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Figure 3.28: Histogram of the standard deviation of the 64 anode outputs for a head-on 
scan for a central beam position and a beam position near the edge of the detector.  These 
are used to determine DOI information by gating events appropriately on the standard 
deviation. 

Figure 3.29: Comparison of LRFs from side-on scans and head-on scans gated by the 
standard deviation of the anode signals.  Top: Central row-column summed anode.  
Bottom: Row-column summed anode near edge.  The central row-column LRFs match 
closely, while those near the edge show more of a discrepancy, likely because of light 
loss at crystal corners for side-on scans. 
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Figure 3.30: Spatial resolution (top) and positioning linearity (bottom) of side-on scans 
using side-on and head-on calibration data for three different DOI.  Better agreement is 
seen at z=4mm and z=12mm, where the side-on and head-on LRFs are more similar. 

 

 

 

 

 

 

 

 

 

Figure 3.31: DOI information in continuous systems. Top: Spatial resolution (left) and 
positioning linearity (right) of head-on scan with and without DOI information for the 
25mm thick crystal.  DOI is shown to improve to extend the usable field of view by 4mm 
in each direction.  Bottom: DOI resolution for three depths for the 25mm (left) and 14mm 
(right) thick crystals.  
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3.11 Discussion 

 This section introduced the important factors in the performance of continuous 

detectors and illustrated the performance of continuous detectors, along with the many 

factors that affect this performance.  The depth dependence of the spatial resolution was 

shown, and the improvement in resolution with decreasing crystal thickness shown as 

well by comparing the 14mm and 25mm thick crystal results.  The major disadvantage in 

the use of the 14mm thick crystal is decreased coincidence sensitivity; this decrease is 

~34% for LYSO (attenuation coefficient ~.087mm-1).  Note that modern whole body 

scanners use crystals of thickness ~22mm for this reason.  This trade-off in spatial 

resolution and sensitivity/noise is one of the fundamental limitations of continuous 

detectors; the challenge of achieving good performance with thick detectors is 

investigated in this work because of the need for adequate sensitivity.  Additionally, the 

degradation of the resolution and positioning linearity at the edges of the crystal are seen.  

These studies did not seek to optimize the field-of-view of the detector; however, 

improved performance at the edges is possible [111, 139] and would be a target of future 

studies.   

 

Effect of Scintillation Photon Direction 

Simulations show that the LRFs for the photons directed toward the 

photodetector and the entrance surface are narrower than those for photons emitted in all 

directions, and that these photons therefore carry the most information.  The photons 

directed towards the sides of the crystal carry no information because of reflections with 

the crystal wall and Teflon wrapping, however, and act to degrade the overall resolution, 
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particularly near the edges of the crystal.  The trade-off in spatial and energy resolution 

that results from painting the surfaces black is outside the scope of this work, but is an 

interesting problem involving the optimization of resolution and noise characteristics of 

the detector, brought about by the selective painting of parts (or all) of the side surfaces.  

The overall resolution degrades at the edges because reflections from the side surfaces 

become more predominant as the detected event location nears the edges. The overall 

LRFs narrow with depth because the LRFs of the photons directed toward the 

photocathode become narrower and more predominant as the DOI increases.  Any 

modifications made to the bulk of continuous detectors should therefore be evaluated in 

the context of the effect on the spread of photons emitted in each direction, since the 

direction of emission strongly affects the contribution to the LRF. 

 

Effect of Photodetector 

Results showed that the preliminary SSPM tested in this work became less noisy 

as temperature decreased, as expected.  Nevertheless, comparisons of the energy 

resolution, used to compare the noise inherent in the photodetectors (section 1.3.2), 

showed that the SSPM is noisier than the H8500 even at the lowest temperature studied.  

While the noise of the photodetector cannot be improved much beyond the H8500, the 

quantum efficiency can, with both the H8500 and the SSPM studied here having a QE 

~19%.  Indeed, SiPMs are attracting a great deal of interest, with recent scanners built 

using these, because state-of-the-art SiPMs are much less noisy and feature a QE ~40%.  

Much of the current research with continuous detectors uses SiPMs, for this reason [139-
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143].  A comparison with this preliminary model of SSPM nevertheless illustrates the 

effect of photodetector noise on detector performance. 

 

Effect of Photodetector Read-out 

The improvement in performance with the 64-anode read-out schemes may be 

understood as a consequence of using more data: using the 64-anode read-out schemes, 

unknown data are compared against calibration data in two dimensions, instead of one. 

While positioning with the H8500 improved with the 64-anode scheme for both crystals, 

data from the SSPM are noisy enough that using data sampled this finely to position the 

events degrades the performance.  The major disadvantages of this algorithm were 

detailed in section 3.1.2; the results show that for the crystals used in this work, an 

improvement of <0.5mm may be obtained at the expense of 8 times more data read out, 

and an order of magnitude increase in the number of computations and calibration time.  

While this improvement is smaller than that offered by the more sophisticated algorithms 

(e.g., k-NN) discussed previously, the increase in complexity is less as well.  Because of 

the improved performance, comparisons made in the remainder of this work use the 64-

anode NN algorithm (unless otherwise noted), in order to best estimate any differences in 

performance between scintillators by maximizing the information read-out by the 

photodetector. 

 

Effect of Positioning Algorithms 

The statistical algorithms were shown to have superior performance to Anger 

logic, particularly at the edges; this is expected because statistical algorithms are able to 
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include non-linearities in their model, while Anger logic uses a simple weighted mean, 

which relies on a linear change in the anode outputs with respect to position.  The 

statistical algorithms require many more computations, however: while Anger logic 

requires a weighted mean in each direction for all local anodes, statistical algorithms 

require calibration scans over the face of the detector (25 points for each direction in this 

study), as well as a calculation for every interpolated point on the calibration grid 

(~.25mm in this study) for each direction.  While the multivariate distribution most 

accurately represents the likelihood of photon detection by the PMT anodes, the 

correlation among the anodes is small enough that this model does not lead to a better 

positioning than those that assume independent distributions. Between the simpler ML 

algorithms studied, the Gaussian model most closely reflects the statistics of photon 

detection, both because of the finite energy resolution of the crystal, and because the 

large number of photons emitted per scintillation event and the 8x8 photodetector used 

results in a binomial distribution for each anode that is better approximated by the normal 

distribution.  

To understand the effect of the deviance of the uncertainty from the Gaussian 

model, the derivative of the likelihood with respect to x may be taken:   

𝑃 𝑥 = !
!!"

𝑒!
!!!!! !

!

! ! !!
!!!   

!"
!"
= !

!!
+ 2 !!!!! !

!

! !
𝜎! 𝑥 + 2 !!!!! !

! ! ! 𝑙!
! 𝑥!

!!! 𝑃(𝑥)  

The maximum of the likelihood corresponds to the point at which dP/dx is 

minimized.  Because the factor (ni - l(x)) will approach zero at the point of minimization, 

these terms will dominate the minimization of dP/dx.  As long as the shape of σ(x) does 
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not change drastically at the point at which it is a maximum, deviations of σ(x) from the 

Gaussian model will be relatively insignificant. Because the Gaussian model does not 

improve the resolution, the FWHM of the PDFs of each anode represents a parameter that 

may add noise to the estimation of the position. The Poisson model is therefore favored 

for the ML algorithms. 

The similar performance of the NN algorithms may be understood using similar 

logic to that applied to the ML algorithms.  Describing the function to be minimized, 

De(x): 

𝐷! 𝑥 =
𝑛!,! 𝑥 − 𝑙! 𝑥

𝜎! 𝑥

!!

!!!

,     

and taking the derivative with respect to x, shows that the dDe/dx, which must be 

minimized, obeys the relation: 

𝐷! 𝑥
𝑑𝑥 ≈

𝑛!,! 𝑥 − 𝑙! 𝑥
𝜎! 𝑥

𝑛!,!! (𝑥)− 𝑙!!(𝑥)+
𝜎!′ 𝑥
𝜎! 𝑥

!

!!!

𝐷!!!(𝑥),     

Because of the factor (ni - l(x)), the inclusion of the uncertainty does not alter the solution 

greatly, as long as it is relatively smooth.   

Comparisons of the results to the Cramer-Rao bound indicate that the ML and NN 

algorithms implemented here have not reached full efficiency.  A thorough investigation 

and optimization of positioning algorithms is outside the scope of this thesis, though in 

general, the positioning algorithms discussed in this work could be expanded by 

exploiting more of the calibration data by, for example, dividing the calibration data into 

subsets based on their similarity in light distribution. The major disadvantage to 
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algorithms that use more of the calibration data is increased complexity and computing 

time for both calibration and positioning.  These algorithms may be compared to one of 

the most computationally intensive algorithms used in the field, the k-NN algorithm, for 

which every calibration is used to position the events.  The number k is determined by 

empirically optimizing the performance of the algorithm.  The k-NN algorithm therefore 

uses as much of the information from the calibration data sets as possible, and research 

has shown improved performance with these algorithms, with reported transverse 

resolution measurements of ~1.7mm for a 32x32x20mm3 crystal, polished on all sides 

and wrapped in Teflon [139].  The computational demands of this algorithm, however, 

are intensive and involve several orders of magnitude of more calculations, challenging 

the feasibility of these algorithms, since the ability of these algorithms to process events 

in real-time at clinical count rates has yet to be demonstrated.   

Compton Scatter 

The effect of Compton scatter on continuous crystals is dependent on a number of 

factors, including the thickness of the crystal, since the likelihood of detecting Compton 

scattered photons (and therefore the likelihood of scattered events passing the energy 

gate) increases with crystal thickness.  For the 25mm thick crystal studied in this work, 

Compton scatter was seen to degrade the FWHM resolution for head-on scans by ~0.5-

1.0mm. 

DOI 

The estimated DOI resolution was measured to be ~4-6mm in the central 

transverse 30mm of the crystal for the 25mm thick crystal.  Use of a 3D algorithm using 

this information led to an increase in the field of view for a head-on scan of ~8mm in one 
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transverse dimension.  This result highlights the effect of the depth-dependent light 

spread, which requires that the positioning be made more complex in order to compensate 

for it and maximize the sensitivity of the detector.   

 As with the transverse resolution, more intensive algorithms may be devised to 

improve the DOI resolution, leading to reported values of ~3.7mm with crystals of 

similar dimension, at the cost of greater complexity with calculations occurring for all 3 

dimensions [139]; in general, crystals of various thicknesses have shown good DOI 

performance with the use of sophisticated algorithms [140-142].  Use of DOI information 

has been shown through simulation studies to lead to improved quantitative performance 

for scanners near the edges of the field-of-view [45-46]; however, because of the use of 

pixelated detectors, no commercial whole-body scanner implements a DOI correction.  

Nevertheless, the algorithm described here illustrates the DOI information inherent in 

continuous detectors and allows for a comparison to modified detectors.   

3.12 Conclusions 

 This section investigated some of the factors that affect the properties of 

continuous crystals, allowing for a baseline against which to compare any changes made 

to the crystals.  A transverse resolution of ~3mm and ~5mm near the center of the 25mm 

thick crystal for shallow DOI and deep DOI, respectively, and 1.5-2.5mm for the 14mm 

thick crystal, is attained.  The 64-anode positioning schemes were shown improve 

resolution by <0.5mm compared to the row-column summed algorithms, though the 

former algorithms require more data to be read-out; this algorithm is used later to 

compare detectors because of its improved performance. While more intensive 
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algorithms exist that improve the performance of positioning, the NN and ML algorithms 

investigated here show similar performance with the use of the H8500 MAPMT, which 

was shown to be relatively noise-free and suitable for these detector studies. A DOI 

resolution of 4-6mm and 2-6mm is attained for the 25mm and 14mm thick crystals, 

respectively, within the central region of the crystal, using a row-column summed NN 

algorithm.   

The major limitations to the thick continuous detector design were also shown, 

most notably the depth-dependence of the light response, the poor spatial resolution in the 

entrance region of the crystal, and the poor edge performance.  While the performance 

may be improved with intensive computational solutions and improved photosensors, the 

detector is fundamentally limited by the nature of the light spread within the scintillator.  

This light spread is responsible for the improvement in spatial resolution as crystal 

thickness decreases and DOI increases; here, a difference of ~2.5mm between the 25mm 

thick crystal at shallow DOI and the 14mm thick crystal at deep DOI was shown. This 

motivates efforts to modify this light spread in order to explore the trade-offs in 

performance in continuous crystals associated with this aspect of the detector and to 

ultimately improve the performance. 

 

 

 

 

 

 



	 117	

CHAPTER 4 

Modifying Scintillation Light Spread with 
Laser Induced Optical Barriers 

 

4.1 Introduction 

 The performance of a continuous crystal may be improved by several means.  

Alterations to the bulk of the crystal may be made in addition to other methods to 

improve performance (e.g., different configurations of the crystal and photodetector), or 

they may be made in their place as a potentially more practical alternative. In this section, 

the effect of modifications to the scintillation light spread on the performance of 

continuous crystals is explored, by investigating the impact of laser induced optical 

barriers (LIOBs) etched within the crystals.  The optical properties of the LIOBs were 

studied to generally characterize the LIOBs and the effect of varying the parameters of 

the etching process on their properties, and to improve the Monte Carlo simulation model 

of their behavior.  The overall performance of a detector etched with LIOBs in a grid 

pattern was characterized as well, by etching several thick continuous detectors.  Monte 

Carlo simulations, informed by the optical measurements, were then used to explore the 

impact of altering the light spread on crystal performance, by varying the properties of 

the LIOBs; these results may additionally be used to guide next steps regarding the 

etching parameters for this detector design.   
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4.1.1 Improving the Performance of Continuous Systems 

Chapter 3 showed that thick continuous crystals are limited by poor spatial 

resolution in the entrance region of the crystal, as well as a depth-dependent light spread.  

While improvements in the intrinsic capability of the scintillator (e.g., light output, 

crystal dimensions) or the photodetector would certainly improve the performance of 

continuous detectors, these are dependent on current technology.  Many attempts have 

thus been made in the field to improve the performance of continuous detectors by 

modifying the design of the detector.  These can generally be classified into one of three 

categories, described below.  Small blocks of LYSO coupled to either a position-sensitive 

MAPMT or SiPM are used in these works.  

4.1.1.1 Variations in Scintillator/Photodetector Configuration  

 All current clinical scanners are arranged so that for each detector module, the 

scintillator faces the patient and the coupled photodetector is behind the scintillator, 

coupled to the exit side (Figure 4.1).  This is known as back-sided readout, and is chosen 

primarily because of its practicality: this configuration allows incident photons to interact 

with the scintillator without passing through the photodetector, and more easily allows 

the readout wires from the photodetector to exit the scanner.  Because the performance of 

continuous detectors strongly depends on the light spread measured by the photodetector, 

the readout configuration affects the performance of these detectors.  There are two 

alternative configurations that have been studied: 

1. Front-sided readout: The photodetector is placed on the entrance side of the 

scintillator.  This configuration is advantageous because of the attenuation 
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coefficient of LYSO, which results in more detected events interacting within the 

entrance half of the crystal than the exit half for thick crystals.  The light spread of 

events in the entrance region of the crystal is narrower at the entrance surface, and 

photodetection at this surface thus leads to better spatial resolution.  Studies have 

shown improvements in transverse resolution of ~20-25% and in DOI resolution 

of ~20% with front-sided read-out compared to back-sided readout [115].  

2. Dual-sided readout: Two photodetectors are used for each scintillator, one on the 

entrance side, and the other on the exit side of the crystal.  This configuration uses 

information from both sides of the scintillator to result in better light collection, 

better and more uniform transverse performance, and improved DOI capability.  

Studies have reported an improvement in transverse resolution of ~10% compared 

to front-sided readout [143]. 

The major disadvantages to these designs are: 

A. Designs with the photodetector coupled to the entrance surface of the scintillator 

are more complex because the cables that read out the photodetector signals must 

be designed to exit the scanner in some way. 

B. Dual-sided readout suffers from the additional burden of twice as many readout 

cables and twice as much data to read out and process. 

C. Detectors on the entrance region must not significantly attenuate the incident 

photons to be detected, and the photodetectors must be radiation resistant.  For 

these reasons, SiPMs must be used for these designs. 
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Figure 4.1: Various configurations of the scintillator and photodetector used to decode 
the light spread within the continuous scintillator. 

 

4.1.1.2 Surface Treatments  

The continuous crystal itself may be modified to improve performance by 

restricting the light spread within the scintillator.  The simplest method to achieve this is 

to treat the surface to alter the reflections of photons.  The surface polish is one example 

of these surface treatments.  Studies most often use polished side surfaces because 

roughening the side surfaces has been shown to lead to a worse spatial resolution.  There 

are advantages to both surface finishes for the entrance surface, however: a polished 

entrance surface results in a narrower light spread and better spatial resolution, while a 

roughened entrance surface leads to improved light collection and a slightly better energy 

resolution; most detectors in current continuous detector studies use a polished entrance 

surface because of the better spatial resolution.  As discussed in Chapter 3, studies have 

investigated painting the sides of the crystal surface black, to limit the reflections at the 

side surfaces that degrade the resolution [133-138], at the expense of degraded energy 

resolution. Last, almost all studies wrap the crystals with a reflector to greatly improve 
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light collection; usually, this consists of either Enhanced Specular Reflector (ESL) or 

Teflon (used in these studies). 

4.1.1.3 Alterations in the Bulk of the Crystal  

The scintillator may be more substantially altered as well, by introducing interfaces 

that control the amount of light spread within the scintillator.  Studies that have attempted 

this are limited.  For example, the University of Washington has investigated a novel type 

of detector, dMiCE, in which pixels are separated by tapered reflectors that allow light to 

transmit through to other pixels in a depth-dependent manner.  The studies showed that 

individual pixels could be resolved, while DOI information could be inferred by 

measuring the degree of light spread within the detector [144, 145].  At the University of 

Pennsylvania, Kaul et al. [138] investigated the performance of a thick block of LYSO, in 

which mechanical cuts were introduced partly into the entrance surface of the crystal, and 

demonstrated improved spatial resolution at shallow depths within the scintillator, in 

which interactions are most likely to occur, leading to an overall improvement in spatial 

resolution in the detector.  More recently, groups have investigated a novel method to 

alter the crystal that involves using a laser to etch barriers, known as laser induced optical 

barriers (LIOBs), into the detector; these are discussed later. 

4.1.2 Fundamentals of Laser Etching 

 In general, methods that use lasers to create barriers may be divided into two 

categories: ablation and sub-surface laser engraving.  Ablation involves the use of a 

focused laser beam to melt the crystal material from the surface of the crystal inward; the 

resulting barrier within the crystal consists of a crystal-air interface.  This process is 
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analogous to physical cutting of the crystal, in that crystal material is destroyed and 

barriers may only be introduced by disturbing the surface of the crystal.  Sub-surface 

laser engraving (SSLE) involves the use of a laser beam that is focused inside the crystal; 

if the crystal is transparent to the frequency of laser light used, the laser may disturb the 

crystal locally at the focal spot.  Here, the barrier that is created consists of small 

disruptions in the crystal structure known as microcracks.  The crystal is therefore etched 

from the inside outward, allowing for the introduction of barriers within the crystal.  

Because of the flexibility afforded by internal etching, SSLE was chosen to etch the 

crystals in this work. 

 SSLE represents a very broad class of etching, because of the large number of 

parameters that may be varied in the etching process.  Some of the important parameters 

are discussed below.   

1. Laser type: a number of options exist (e.g., CO2 lasers, excimer lasers) for this 

process, but solid-state lasers are common for the purposes of etching into solid 

materials, because they represent a good balance between edge quality, which is 

dependent on the duration of the laser pulse, and cost.  Among solid-state lasers, a 

number of choices exist for both the active medium and the host material, which 

both act to determine many of the properties of the laser.  Nd:YAG lasers are the 

most commonly used solid-state lasers, and were chosen for this work because 

they provided good etching quality. The energy diagram of the lasing process 

with Nd3+ lasers is shown in Figure 4.2.    

2. Laser frequency: the laser frequency is generally determined by the active 

medium and host, though one of the advantages of solid-state lasers is harmonic 
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generation, in which integer multiples of the primary frequency laser light may be 

created and isolated.  

3. Mode of Operation: Nd lasers are capable of being run in either pulsed mode, in 

which the active medium is lased in short pulses, or continuous mode.  The 

advantage of running the laser in pulsed mode is that a large amount of energy 

may be delivered in a short time period to deliver a cleaner (i.e., no crystal 

melting) etching. 

4. Repetition rate: The rate at which the laser is pulsed is limited by the lifetime of 

the upper state during the lasing process.   

5. Pulse length: the duration of each laser pulse, often characterized by the FWHM, 

is also important to the quality of the LIOB and is dependent on a number of 

factors, including the active medium, the cavity length, and the repetition rate.  

Shorter pulses are preferred for etching and micromachining for two reasons:   

A. The pulse length must be compared to the characteristic time of heat 

dissipation in the material, determined by the characteristic time for the 

transfer of heat between the crystal lattice and the free electrons in the 

crystal.  If the length of the pulse is longer than this time, heat will spread 

within the crystal, leading to a heat-affected zone and imprecise etching.  

In particular, ultrashort pulses (<1ns) allow for photon absorption by 

valence electrons -- which allows for the breakage of bonds -- before heat 

is absorbed by the material. 

B. Shorter pulses allow for larger peak powers, which allow for high enough 

photon intensities that multiphoton absorption occurs, leading to 
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disruption of transparent media, such as crystal, without substantial 

heating.  

The major disadvantages of shortening the pulse length is that in general, pulse 

energy decreases and the cost of the laser increases [146-151]. 

 

 

 

 

 

 

Figure 4.2: Energy level diagram for Nd3+ laser.  

4.1.3 Laser-induced Optical Barriers  

In recent years, the etching of LIOBs within continuous scintillators using highly 

focused lasers has been studied for its applicability to alter the bulk of the crystal [152-

160]. One of the advantages of this technique is the number of possibilities afforded by 

the range of depths within the crystal and the range of optical properties with which the 

etchings may be made.  Some of these research efforts are described below: 

1. Pixelation 

Some groups have investigated using this technology to replace the mechanical 

pixelation currently performed for pixelated detector designs.  Advantages to using 

LIOBs instead of physical reflectors include less material loss with each barrier, and 

therefore the possibility of a more finely spaced grid of etchings, as well as potential cost 



	 125	

savings, since the cost per pixel increases dramatically as the pixel size becomes smaller.  

Research in the field has shown that pixels may be discriminated with thin detectors 

etched very finely (e.g., 6.5:1 cross-talk ratio for a 20x20x5-mm3 crystal with pixels with 

a 0.8-mm pitch) [152-154].  

2. Light-sharing 

Research has also been conducted to exploit the ability to etch these barriers in 

patterns difficult or impossible to achieve with the physical cuts. The University of 

Washington has investigated using LIOBs to replace the physical reflectors in their 

dMiCE detector design [155], because one of the major drawbacks of this detector was 

the complicated reflector design.  The goal of this work was a continuous crystal etched 

with barriers that transmit light in a depth-dependent manner. The University of Chiba 

similarly used this light-sharing concept to design a crystal segmented with LIOBs into a 

3D grid with a pitch of 2mm in each direction [156-157], to be coupled on all six sides by 

a photodetector; the LIOBs in this case replaced the air gaps from a previous design of 

this detector in which individual crystal segments were coupled together without a 

reflector [158].    

The work in this thesis intends to use the semi-transparency of the barriers to 

modify the light spread within the detector, using the unique effect they have on the light 

spread within the scintillator.  The flexibility afforded by the etching process is also 

exploited, so that both the physical pattern (including depth) of the etching design and the 

optical properties of the barriers are important variables to the functioning of this 

detector.  This technology is ultimately used to explore the trade-offs associated with 
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altering the light spread in thick continuous detectors in ways that are impossible 

otherwise. 

4.2 Optical Properties of LIOBs 

4.2.1 Details on Laser Etching 

 This work was performed in collaboration with Radiation Monitoring Devices, 

Inc. using two ND:YAG lasers operated by Photomachining, Inc.  The lasers were run at 

double the frequency to produce green light (532 nm), with a repetition rate of 100-200 

kHz, a pulse length of 12ps, and a scan speed ~70µm/s.  Each of the LIOBs used in this 

work consisted of two passes.  To etch a single pass LIOB (Figure 4.3 A), the laser is 

focused at a particular depth to create a microcrack, and the crystal translated horizontally 

(perpendicularly to the direction of the beam) with the laser etching to create a thin line at 

that depth.  The crystal is then translated vertically (along the direction of the beam) by a 

small amount (~10µm) and the crystal translated horizontally again with the laser etching 

to etch above the first line.  This raster scan is repeated until an etching of the desired 

height is reached.  In contrast, to etch a double pass LIOB, the raster scan is altered such 

that after the first line of the etching is made, the crystal is translated vertically at half of 

the previous height, as well as horizontally (perpendicularly to the length of the etching) 

by a small amount (~10µm), so that lines are etched in the crystal in a ladder pattern until 

the desired depth is reached (Figure 4.3 B).  The double pass LIOB is therefore thicker 

and more opaque because the crystal is etched at two horizontal positions.   
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Figure 4.3: Diagram of etching procedure.  A: Diagram of single pass LIOB etching.  
Here, a laser is directed at a particular depth and scanned horizontally along the desired 
length of the LIOB. The laser is then incremented vertically and scanned across again; 
this process is repeated until the desired height of the LIOB is reached. B: Diagram of 
double pass LIOB.  This process differs from that of the single pass LIOB because the 
laser is incremented both vertically and horizontally (perpendicularly to the scanning) 
before scanning horizontally.  
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4.2.2 Optical Measurements: Model 

The optical behavior of the LIOBs was modeled according to reflection [117-119, 

161] and transmission models described in the literature; this model is diagrammed in 

Figure 4.4.  Here, incident light is hypothesized to interact with the LIOBs by one of 

three mechanisms: transmission, reflection, and absorption, each with a separate 

probability of occurrence.  

1. The transmitted light is modeled as consisting of light directly transmitted, in 

which the direction of light is unchanged, and diffuse transmission, in which 

the direction of transmitted light in given by a Lambertian probability 

distribution.   

2. The reflected light is modeled as consisting of light specularly and diffusely 

reflected (Figure 4.4).   

3. Absorption is neglected in this model, because the etched crystals do not show 

a decrease in light output, as discussed later in the results. 

 

The interactions of light with the etchings are therefore described by the following 

equations: 

            LT = T * LI = LS  + LD          (4.1) 
LS = fs * LT          (4.2) 
LD = (1-fs) * LT        (4.3) 
LR = R * LI = LRS  + LRD          (4.4) 
R + T = 1,         (4.5) 
 

where: LI, LT, LS, LD are the intensity of the incident beam of light, transmitted light,  

  directly transmitted light, and diffusely transmitted light, respectively. 
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      LR, LRS, LRD is the intensity of the reflected light, specularly reflected light, and  

  diffusely reflected light, respectively. 

            T, R are the transmission and reflection coefficients of the LIOB, respectively. 

            fs is the fraction of transmitted light that directly transmits through the LIOB.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Model of the interaction of light with the LIOBs.  Reflected light is modeled 
as consisting of specularly reflected light (specular spike and specular lobe) and diffusely 
reflected light.  Transmitted light is modeled as consisting of directly and diffusely 
transmitted light.   
 

4.2.3 Optical Measurements: Samples 

The optical characteristics of the LIOBs were explored using small samples of 

LYSO that were prepared by cutting one block of LYSO into several small cubes, each 

~10x10x7mm3 in dimension, so that the composition of each of the LYSO cubes was the 
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same; the size of the cubes was chosen so that a large number of samples could be 

obtained.  The cubes were then polished, so that light could be transmitted through the 

crystals. The cubes were etched with double pass LIOBs in the center of one of the 

10x10mm2 faces of the crystal, extending ~3mm from the surface into the crystal (Figure 

4.5).  The crystals were etched on two different dates by 2 different lasers, a Lumera and 

a Lumentum laser: the Lumera was run at 100 kHz up to 4W in power to avoid cracking 

the crystal, while the Lumentum was run at 200 kHz up to 6W in power to avoid cracking 

the crystal.  The laser parameters were based on recommendations from technical experts 

to balance our goals of etching semi-opaque barriers partially into thick crystals, while 

mitigating the risk of cracking the crystal. The parameters of the etchings were varied for 

each of the crystals etched by a particular laser.  On the Lumera, two laser powers were 

used for 3 cubes each, 3W and 4W, while three different settings were chosen for the 

distance between the two passes, ranging from 5µm to 20µm.  On the Lumentum, several 

laser powers ranging from 3W – 6W were used, while the settings for the distance 

between the passes ranged from 5µm to 20µm.  In order to explore the effect of larger 

gaps between the microcracks, the spacing between the microcracks in the vertical 

direction was increased as the spacing in the horizontal direction increased.  These 

settings resulted in LIOBs that were ~20-40µm in thickness.  A summary of the various 

settings used is given in Table 4.1. 
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Figure 4.5: Etched LYSO cubes. Top: Diagram and photograph of an etched LYSO cube.  
Bottom Left: Microscopic images of a single pass LIOB and a double pass LIOB, 
showing two darkened regions (laser etching) separated by a lighter region, with total 
thickness ~30µm.  Bottom Right: Diagram of the etching parameters for the LIOBs.  

 

Table 4.1: Summary of LIOB parameters used for the cubes. 

.  

  

Single pass Double pass 
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4.2.4 Optical Measurements: Apparatus 

The apparatus designed to study the response of the LIOBs to optical light is 

diagrammed in Figure 4.6.  A beam collimator was fixed to be parallel with the optical 

table, very close (<1mm) to the small cube (to minimize the diameter of the beam), which 

was held fixed to a vertical translation stage, with a PMT located behind the crystal and 

fixed to a horizontal translation stage.  Each motor could translate in increments < 

0.1mm.  A 5mm blue LED was fixed in place at one end of the two-piece collimator.  

The first piece consisted of two 1.0mm pinholes fixed to either end of a 320-mm tube that 

was ~5mm in diameter; the inner walls of the tube were painted black to minimize 

reflections of light within the tube.  A 75-mm tube that was 0.84-mm in diameter was 

inserted into one of the pinholes, with 10 mm protruding from the tube, to further 

collimate the beam and allow for close positioning of the collimator to the crystals. The 

collimation resulted in a ~1-mm beam at 5mm from the tube.  Light was pulsed using a 

square wave generator, so that the peak-to-valley of the signal was used as a measure of 

the amount of light detected, in order to eliminate the effect of any background light. The 

light was measured with a Hamamatsu R1635 PMT (diameter=10mm), which was either 

uncollimated or collimated so that light could only pass through a narrow vertical slit of 

width ~0.5mm.  
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4.2.5 Optical Measurements: Experiments 

4.2.5.1 Transmitted Light 

To determine the overall transmission coefficient (T) and the fraction of light that is 

directly transmitted (fs), two experiments were conducted, depicted in Fig 4.6.  

1. The PMT was positioned far from the crystal, so that only the directly transmitted 

light would be measured; to isolate the effect of the LIOBs, the measurement of 

light passing through the etched portion of the crystal was divided by the 

measurement when passing through the unetched portion:  

     Vetched/Vunetched = fs * T,              (4.6) 

with Vetched and Vunetched equal to the voltage when light passed through etched and 

unetched regions of crystal, respectively.  The collimator was attached to the PMT 

to verify the profile of the beam.  

2. Another experiment positioned the PMT very close to the crystal, so that both the 

directly transmitted light and a large fraction of the diffusely transmitted light 

would be measured by the PMT:  

Vetched/Vunetched = fs * T + (1-fs) * T * F,           (4.7) 

where F is the fraction of diffusely scattered light collected by the PMT, 

calculated with simulations (described below).  

 

The results of these experiments were used to solve the two equations 

simultaneously to determine T and fs.  Each of these experiments is described in 

more detail below.  
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A.  

 

 

 

 

B. 

 

 

 

C. 

 

 

 

 

 

Figure 4.6: Experimental design to measure the optical properties of the LIOBs. A: 
Diagram of the apparatus used to measure the optical properties of the LIOBs.  A blue 
LED is collimated into a beam that is directed into the crystal, which may be translated 
vertically, and detected by a PMT, which may be translated horizontally.  B: Experiment 
designed to measure directly transmitted light.  C: Experiment designed to measure 
directly and diffusely transmitted light.   
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1.  Isolate Direct Transmission 

The crystal was fixed normal to the beam and oriented so that the beam of light 

passed perpendicularly to the etching (Figure 4.7).  The PMT was collimated and moved 

far (~100mm) from the crystal, to isolate the directly transmitted light.  The crystal was 

translated vertically in discrete increments, and the PMT translated horizontally in 

increments <0.1mm to measure the profile of light when passing through air and both the 

unetched and etched regions of the crystal. 

The profile of the directly transmitted light was validated by scanning the 

collimated PMT across the transmitted beam, and comparing the profile of the beam 

through the etched region to that through the unetched region and through air.  When 

passing through the unetched crystal, the beam in air will pass through the both walls of 

the crystal.  Because such small angles are subtended by the collimated PMT, the effect 

of refraction is neglected, and the angular profile of the light transmitted through the 

etched region of the crystal, PSF!"#$,!"#$% θ , is described by:    

 

PSF!"#$!% θ = PSF!"#$,!"#$% θ  ⨂  PSF!"#$%&#'(θ)  (4.8), 

where PSFetched, PSFunetched, and PSFLIOB, trans are the point spread functions resulting from 

light passing through the etched region of the crystal, unetched region of the crystal, and 

the LIOB. 

 If the PMT is located far from the source of the beam, the profile of the beam may 

be approximately derived from the measured voltage as a function of scanning position, 

V(y), by y=L*tan(θ).  The measured profile V(y) is a convolution of the actual profile 

and a box filter of width equal to the collimator width (<0.5mm); because the beam width 
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is larger than the collimator width, this effect was not deconvolved to avoid noisier 

results.  The PSFs of the LIOBs were deconvolved from the PSFs of the crystal wall and 

the profile of the beam in air using Weiner deconvolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Diagram of the measurements of the profile of the directly transmitted light 
using the set-up diagrammed in Figure 4.6 B, in which the beam is transmitted through 
air, the unetched region of the crystals, and the etched region of the crystals. A PMT 
collimated on its front face measures light at discrete points to determine the profile of 
the beam. 
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2.  Direct and Diffuse Transmission 

 The PMT was fixed normal to the direction of the light and positioned close 

(~1mm) to the exit surface of the crystal to measure the total flux of light passing through 

the cube (Figure 4.6 C).  The beam collimator was again ~1mm from the crystal to 

minimize the size of the beam. The position of the beam was fixed in the middle of the 

crystal in the horizontal direction, and the crystal was translated vertically in increments 

of 0.5mm to vary the position on the crystal through which the beam passed.  The 

fraction of light passing through the etchings was taken to be the average over the central 

2mm of each LIOB (described later).  For several of crystals, this measurement was 

repeated four times, after removing the crystal and setting it back in place, in order to 

estimate the uncertainty of the optical measurements. 

 Because of the solid angle subtended by the PMT as well as internal reflection 

within the cube, a large fraction of the diffusely transmitted light will not reach the PMT.  

The fraction of diffusely transmitted light collected by the PMT in this configuration was 

estimated using Monte Carlo simulations of the partly etched crystal, in which the 

scintillation light was directed normal to and at the center of the LIOBs (Figure 4.8).  

With the transmitted light modeled as purely diffuse, the fraction of transmitted light that 

passed through the crystal and reached the PMT was calculated.  These simulations 

include the effects of reflections from the crystal walls, and therefore implicitly correct 

for this effect as well.  
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Figure 4.8: Diagram of the simulation used to determine the fraction of diffusely 
transmitted light measured by the PMT.  A beam of scintillation light is directed through 
the LIOB at a fixed point; the LIOB is modeled as purely diffusely transmissive in order 
to isolate the diffusely transmitted light. 

4.2.5.2 Reflected Light 

Reflections from the wall of the crystal are expected to consist primarily of 

mirror-like specular reflections, while the reflective properties of the LIOBs are modeled 

as both specular and diffuse.  To measure the profile of the reflected light, the crystal was 

fixed at an angle θ~55o relative to the beam and close to the beam collimator, while the 

PMT was angled normal to the light reflected from the crystal wall, and ~5mm from the 

surface of the crystal at its closest point (Figure 4.9).  The crystal was translated 

vertically and the PMT translated horizontally to measure the profile of light when 

reflecting from the crystal surfaces and the etchings. 

The profile of light reflected from the unetched region of the crystal is 

hypothesized to consist of two specular peaks, one for each surface of the crystal, with 

the peak corresponding to reflection from the back surface lower in amplitude than the 
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first peak by the square of the transmission probability of the light.  The profile of light 

reflected from the LIOBs may be derived from the measured profile of the light reflected 

from the etched region of the crystal by subtracting the profiles of the light reflected from 

the crystal surfaces. This profile is examined to determine the presence of a specular peak 

or lobe between the two peaks measured in the unetched region, while diffuse reflections 

are not expected to result in a significant change between the peaks.  

  

 

 

 

 

 

 

 

 

 

Figure 4.9: Design to measure the reflectivity profile of the LIOBs.  The collimated beam 
of light was placed close to the crystal at an angle (θ~55o), and the profile of the reflected 
beam was measured by scanning the PMT perpendicularly to the direction of the beam 
reflected from the crystal wall.  The crystal was translated vertically to vary the position 
on the crystal at which the beam was directed. 

   

4.2.5.3 Transmission as a Function of Vertical and Horizontal Position 

To measure the transmission of light as a function of horizontal position along the 

LIOBs, the cube was oriented so that the etching extended vertically down the crystal.  
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The PMT was positioned close to the crystal and left uncollimated, and the voltage 

measured at discrete points as the crystal was translated vertically.  Similarly, to measure 

the transmission of light as a function of vertical position along the LIOBs, the cube was 

oriented so that the etching extended horizontally across the crystal, and measurements 

were taken as the crystal was translated vertically (Figure 4.10).  

 

 

 

 

 

Figure 4.10: Diagram of experiment to measure the behavior of the LIOBs as a function 
of vertical (left) and horizontal (right) position on the LIOB.  The crystal was translated 
vertically so that the beam passed through different points on the LIOB. 
 

4.2.6 Results 

4.2.6.1 Transmitted Light 

Figure 4.11 shows sample profiles of the beam measured with the PMT 

positioned far from the crystals, when the beam passed through air, the unetched region 

of the crystals, and the etched regions of the crystals (Figure 4.7); these profiles are 

normalized by the sum of the light in order to compare the profiles.  The PSFs of the light 

spread from two of the LIOBs are shown as well.  The profiles of the beam through the 

unetched and etched regions of the crystal are very similar to that of the profile in air, 
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with the PSF in each case subtending an angle of <1o, indicating the crystal wall and 

LIOBs do not act to spread the beam greatly.  

 

 

Figure 4.11: Measurements of directly transmitted light for sample cubes with high and 
low reflectivity. Top: Profiles of light transmitted through air and the unetched and 
etched regions of the crystals, both unnormalized and normalized by the sum of the 
collected light. Bottom: PSFs of the light spread through the crystal wall and LIOBs. 

 

Figure 4.12 shows a plot of the fraction of light directly transmitted through the 

LIOBs as a function of average reflectivity coefficient, for the various etched cubes.  

Note that for the unetched crystal studied, fs is measured to be ~1%, expectedly low 
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because of the smooth polish of the crystals.  In general, the fraction of directly 

transmitted light increases as reflectivity decreases.  

 

 
 
 
 
 
 
 
	

	

	

	

Figure 4.12: Scatter plot of the fraction of transmitted light that is directly transmitted (fS) 
vs. average reflectivity (R) for the various crystals.  
 

Comparisons of the reflectivity of the crystals etched using both lasers shows 

that the opacity of the etchings generally increases with laser power, particularly for the 

wide spacing, and that among these, the etchings made with a medium and wide spacing 

between the passes are the most opaque (Table 4.2).  The trends observed among the 

etched crystals are consistent between the two lasers used, and the total reflectivity of all 

of the etched crystals ranged from ~20% to ~50%.  The standard deviation of these 

measurements was <5%, although the reproducibility of the etching process was not 

tested (e.g. by etching several crystals with the same parameters). 

 

	

0 10 20 30 40 50 60 70 80 90 1000
10
20
30
40
50
60
70
80
90

100

Reflectivity (R) (%)

Fr
ac

tio
n 

of
 d

ire
ct

ly
 tr

an
sm

itt
ed

 li
gh

t (
fs

) (
%

)
*Blank	crystal:	
R=*5,	fs=1%	



	 143	

	

	

Table 4.2: Reflectivity (R) for crystals etched using the lasers.  The crystals used to 

characterize the profile of transmitted light are highlighted in red.  

	

	

	

4.2.6.2 Reflected Light 

The measured distribution of light reflected from the unetched regions of the 

crystal (Figure 4.13) indeed consists of two peaks; the distance between the peaks is 5.6 ± 

0.1mm, which agrees with the expected difference of 6.6mm ± 0.9mm, based on the 

angle of the beam and size of the crystal.  The reflection profiles from the etched region 

of the crystals are clearly seen to lack a peak corresponding to the specular reflection at 

the LIOB, and to have behavior consistent with that of a diffuse reflector.   
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Figure 4.13: Profiles of light reflected from the unetched and etched regions of the 
crystals for two crystals.  The two peaks shown are the result of reflections from the 
crystal front and back surfaces. 

 

4.2.6.3 Transmission as Function of Vertical and Horizontal Position 

 Figure 4.14 plots the PMT voltage as a function of horizontal beam position, 

normalized to the voltage at a middle position, for four of the LYSO cubes.  The PMT 

voltage is relatively constant along its horizontal position, indicating that transmission is 

constant along this axis.  Along the vertical axis of the etching, the PMT voltage 

undergoes a steep change as the beam of light passes from the unetched region of the 

crystal to the etched region, as expected (Figure 4.14 bottom).  The more opaque LIOBs 

are more variable in opacity along the depth of the etching, with the measured voltage 

varying as much as 30% within the etched region, indicating the etching is less opaque 

toward the edges.  An average over a range of depths was taken to characterize the 

reflectivity of each LIOB.  Because the beam was ~1mm in diameter and the etchings 

were ~3mm deep, averages were taken at beam positions spanning 2mm, to avoid 

positions in which the beam was partially beyond the etched region.   
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Figure 4.14: Normalized voltage of PMT as a function of horizontal position along 
etching length (top) and etching depth (bottom).  The plots show the relative constancy of 
the transmission coefficient along the length of the etchings, and the variation along the 
depth. 
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4.3 Position Measurements with Etched Continuous Crystals 

4.3.1 Etched Crystal Designs 

The goals in designing a detector involving continuous crystals etched with 

LIOBs were: 

1.  To improve the spatial resolution of the detector, particularly in the entrance 

region, where it is worst. 

2.  To reduce the depth-dependent light response of the detector, while retaining as 

much DOI information as possible. 

3.  To allow for the continuous sampling inherent in continuous detectors. 

The last requirement precludes etching the continuous crystal into discrete pixels.  

In order to achieve these goals, a design similar to that in [138], in which the thick 

continuous crystals were etched partly into the entrance region in a grid pattern, was 

explored.  While experiments with this design using mechanical cuts were successful, the 

major disadvantages were the crystal loss associated with cutting the crystal with a 

physical blade and the limitations in the placement and characteristics of the barriers. 

Informed by preliminary simulations with this design using LIOBs, the semi-

transparency of the barriers was expected to affect the light spread differently than the 

mechanical cuts did, and in particular to allow for LRFs that changed monotonically with 

depth, if transmissive enough; moreover, these barriers were thinner than achievable with 

a blade, and could be etched within the crystal.  To determine the feasibility and 

performance of this detector design, several thick LYSO detectors were etched in this 
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pattern and their performance characterized.  These crystals are listed below and 

diagrammed in Figure 4.15: 

1. 50x50x25-mm3 crystal, polished on all sides and etched twice, each with a set of 

8mm deep etchings in a grid pattern, with a pitch of 2mm: the first set extended 

from the entrance surface inward (single layer of LIOBs), and the second set 

began ~1mm below the end of the first set and extended ~17mm inward (double 

layer of LIOBs); the second set of etchings was offset from the first layer in each 

direction by ~1mm in order to improve the sampling capability of the detector.  

To etch the second set of LIOBs, the laser was focused through the exit surface 

(beginning ~16mm within the crystal) because the laser cannot focus through 

previously etched LIOBs. Each set of etchings used a 4W laser power on the 

Lumera (only laser available at this time), with a wide spacing between the two 

LIOB passes, because these parameters led to the most reflective LIOBs, based on 

the samples studied (Table 4.2).  After the single layer of LIOBs was etched, the 

crystal was studied in two configurations: with the etched region serving as the 

entrance region and reversed, so that the etched region served as the exit region 

(coupled to the MAPMT), to further study the effect of the LIOBs.   

2. 48x48x14-mm3 block, polished on the 4 side surfaces and the exit surface, and 

etched with 5-mm deep LIOBs that extended from the entrance surface inward, in 

a grid pattern with a pitch of 2mm.  Because the entrance surface was roughened, 

the crystal was etched by focusing the laser through the exit surface.  These 

LIOBs were made with the Lumentum using a 5W laser power, with a wide 

spacing between the two LIOB passes. 
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To estimate the opacity for the sets of LIOBs introduced into the thick crystals, 

optical measurements were performed in which the small beam of blue light was 

transmitted through the crystals perpendicular to the side surfaces, and the voltages 

compared to that measured in the unetched regions (Figure 4.16).  The PMT was close to 

the crystal to measure both directly and diffusely transmitted light.   

 

Figure 4.15:  Diagram of the etched thick continuous crystals studied in this work.  Left: 
Single layer of LIOBs. Etching in the entrance region of the crystals was intended to 
improve the resolution in this region, while retaining the continuous sampling of the 
crystal and reducing the depth-dependence of the LRFs.  Right: Double layer of LIOBs. 
Etching the second layer of LIOBs was intended to improve the resolution at middle 
DOIs, while allowing for fine position sampling of the crystal. 
 
 
 
 
 

 

 

Single Layer of LIOBs Double Layer of LIOBs 



	 149	

 

 

 

 

 

 

 

 

Figure 4.16:  Diagram of the measurement to estimate the relative opacity of the LIOBs 
etched in the thick crystals: a beam of blue light is directed through the etched layer of 
the crystals and the output compared among the various crystals to determine the relative 
transmission through the crystals. 
 

4.3.2 Comparison of Etched Crystals to Unetched Crystals: Single 

Layer of LIOBs 

Figure 4.17 displays photos of the etched crystals, showing that the crystals were 

successfully etched without cracking (the chipping shown in the 14-mm crystal was 

sustained during transport).  The precision with which these barriers are made is also 

clear; each LIOB is ~30µm in thickness, so that they are quite thin and do not occupy a 

large fraction of the crystal volume.  The spatial resolution, calculated using the 64-anode 

NN algorithm, is shown for the 14mm and 25mm thick crystals at three representative 

depths before and after etching in the entrance region in Figure 4.18.  The three depths 

are located in different regions of the crystal: a shallow depth near the entrance surface 

(within the etched region), a deep depth near the photodetector (outside the etched 

PMT 
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region), and a middle depth between the two (outside the etched region). In each case, the 

single set of LIOBs improved the spatial resolution in the etched depths of the crystal: for 

the 14-mm crystal, the resolution improved by ~0.3mm, while for the 25-mm crystal, it 

improved by ~0.8mm.  The resolution outside of the etched region, however, is 

unchanged for the 14-mm crystal and slightly degraded for the 25-mm crystal, where the 

resolution degraded by ~0.4mm for each depth.  Similarly, the etching procedure results 

in more restricted LRFs at the shallow depths, as desired, but they also lead to wider 

LRFs at deeper depths, resulting in a degraded spatial resolution at these depths.  This 

may be compared to the mechanical cuts introduced earlier [138], which resulted in a 

narrower light spread (and improved resolution) at all but the deepest depths, particularly 

in the entrance region (Figure 4.19).  

The values of spatial resolution averaged over a central region of the crystal 

extending 12mm from the center of the crystal in each direction are also summarized in 

Table 4.3.  The averaged resolution, calculated by weighting by the probability of 

interaction for a head-on incident beam, represents an upper limit on the performance 

achievable with the detectors.  Here, the resolution within the central transverse region of 

the etched detectors improved by ~0.2mm and ~0.3mm for the 14mm and 25mm thick 

crystals, respectively, showing a slight improvement with the etched crystals.  
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Figure 4.17: Photographs of etched and mechanically cut crystals. Top: Photographs of 
the 14mm thick etched crystal (left) and 25mm thick crystal etched with a single layer 
(middle) and double layer (right) of LIOBs.  Bottom: Photograph of the 25mm thick 
crystal mechanically cut in the entrance region with 8mm deep cuts in a grid with a 2mm 
pitch (Source: [162]). 

 

 

 

 

 

 

 

 

 

! 63!

!

Figure.20:!(From!left!to!right!on!top)!46!x!46!x!8!mm3!LYSO!crystal,!H8500!multi=anode!PMT,!46!x!
46!x!14!mm3!LYSO!crystal,!(bottom)!the!48!x!48!x!25!mm3!LYSO!crystal.!The!25!mm!thickness!of!
the!crystal!is!the!total!height!including!the!thickness!of!the!cut!slots!as!shown!in!this!picture. 

5.1. Measurement.Setup.

 The LYSO crystals were coupled to a Hamamatsu H8500 multi-anode PMT with 

a clear, silicone optical grease, which has an index of refraction of 1.465. The multi-

anode PMT has an 8 x 8 array of photosensors with a combined effective area of 49 x 49 

mm2. All measurements were made in coincidence with a 4 x 4 x 30 mm3 LYSO crystal 

mounted on a Photonis XP20D0 PMT, using a 22Na source that was mounted on the same 

stage as the reference PMT to allow them to move together. The source was 

geometrically collimated to provide an incident beam width of 1 mm on the continuous 
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Figure 4.18: Comparison of etched crystal to continuous crystal for the 25mm thick 
crystal (etched with 8mm deep LIOBs) (left) and the 14mm thick crystal (etched with 
5mm deep LIOBs) (right).  Curves of spatial resolution (top) and LRFs for a central row-
column summed anode (bottom), are shown for three depths: within the etched region 
(z=4mm/2mm for the 25mm/14mm thick crystals), within a middle region 
(z=12mm/8mm for the 25mm/14mm thick crystals), and within a deep region 
(z=20mm/12mm for the 25mm/14mm thick crystals).   

 

 

 

 

 

 

25mm	Thick	Crystal	 14mm	Thick	Crystal	
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Figure 4.19: Comparison of the 25mm thick etched crystal (etched with 8mm deep 
LIOBs) to continuous crystal (left) and mechanically cut crystal (right), using curves of 
spatial resolution (top) and LRFs for a central row-column summed anode (bottom), for 
three depths: within the etched region (z=4mm/2mm for the 25mm/14mm thick crystals), 
within a middle region (z=12mm/8mm for the 25mm/14mm thick crystals), and within a 
deep region (z=20mm/12mm for the 25mm/14mm thick crystals). 

 

 

 

 

25-mm crystal 
etched with LIOBs 

25-mm crystal 
mechanically slotted [142] 

KAUL et al.: COMBINING SURFACE TREATMENTS WITH SHALLOW SLOTS 49

Fig. 11. Slotted 25 mm thick crystal: LRF of row-summed channel near the
PMT center (centered at mm) at 3 depths: , 12, 20 mm. The
gammas were incident on the crystal side to control the DOI.

overall spatial resolution performance of the crystal. In order to
improve the resolution the scintillation light in the entrance half
of the crystal has to be channeled towards the PMT to sharpen
the LRF in addition to removing the DOI dependency of the ML
weights.

D. Impact of LRF Width on Spatial Resolution and Using Slots
to Sharpen the LRF in a 48 48 25 mm LYSO Crystal

Fig. 11 shows the LRF for a single summed column near the
center of the PMT (row-summed column 5) measured for three
different depths in the 25 mm thick crystal with 8 mm deep slots
using the fixed depth measurement setup. Comparing Fig. 11 to
9 it is seen that the depth-dependent variation in the LRF has
been reduced, although, the LRF is still widest in the central
region of the crystal volume ( mm) because the slots have
the greatest effect on the LRF for small z (nearest the slots).
Note that the LRF at mm has some irregularity in its
shape due to imperfections in the slots, particularly those near
the edges. This is then manifested in the spatial resolution at that
depth (Fig. 12). This has little effect for the head-on incidence
measurements, which represent an average of all DOI within the
crystal.

Fig. 12 shows the spatial resolution at the three depths and
we see that the resolution at mm is the poorest. Using
a single set of weights with no DOI information, the spatial
resolution of a head-on measurement is 4 mm (Fig. 13) in the
crystal center and although it degrades near the edges, it is an im-
provement over the unslotted crystal resolution (Fig. 6). The en-
ergy resolution is 13.5% on average for 511 keV gammas (min.
12.6%, max. 14%).

E. Mitigation of Edge Effects in a Slotted 48 48 25
mm LYSO Crystal

To reduce the number of reflections off the Teflon wrapped
crystal sides we used low reflectivity paint in an 8 mm band
around the crystal sides below the slots ( mm). The
region from mm is Teflon wrapped. As seen from

Fig. 12. Spatial resolution of 48 48 25 mm LYSO crystal with 8mm deep
slots cut with a pitch of 2 mm in x-y. For 3 fixed depth scans, mm,
the gammas were incident on the crystal side to control the DOI.

Fig. 13. Head-on spatial resolution of 48 48 25 mm LYSO crystal with
8 mm deep slots cut with a pitch of 2 mm in x-y, calculated using ML posi-
tioning. The crystal was scanned at incremental x positions across the center of
the crystal face from the center ( mm) to the edge ( mm).

the LRF of the fixed depth measurements made at mm
in Fig. 11, the scintillation light coming from events interacting
near the PMT does not spread widely. The widest light spread
is in the crystal center. Therefore, the 8 mm dark band was put
around the center of the crystal sides, and it created three equal
sized zones with different surface treatments. Painting the lower
sides of the crystal (near the PMT) would result in a loss of
scintillation photons, adversely affecting the energy and timing
resolution, without having any positive effect on the LRF.

We see from Fig. 14 that we were successful in sharpening
the LRF at all depths in the crystal. Although the average en-
ergy resolution is degraded from 13.5% in the case of the Teflon
wrapped crystal to 16% with the dark strip (min 14.5%, max.
17%), the sharply changing LRF at the crystal edges provides
better positioning information.

Another consequence of the dark strip is that it reduces the
depth-dependent change in LRF and, consequently, at each of
the fixed-depth measurements the spatial resolution is similar
and shows a marked improvement near the crystal edges, as seen
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Table 4.3: Spatial resolution (mm) of the etched crystals averaged over a large central 
region of the crystal (12mm in each direction from the center).  The first three rows of 
values are computed at a fixed depth, while the last row is the average of the three fixed 
depth values, weighted by the probability of interaction for a normally incident beam. 

  

 

4.3.3 Light Spread in Etched Region 

The LRFs for more depths are shown in Figure 4.20 for the 14mm thick crystal 

etched with 5mm deep LIOBs and the 25mm thick crystal etched with a single layer of 

8mm deep LIOBs.  The LRFs are equivalent within one standard deviation within the 

first 5mm for the 14mm thick crystal, and the first 8mm for the 25mm thick crystal; at 

deeper DOIs, the LRFs are narrower still, resulting in an essentially monotonic change in 

LRF.  
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Figure 4.20: LRFs and spatial resolution as a function of depth for the 14mm thick crystal 
etched with 5mm deep LIOBs (left) and the 25mm thick crystal etched with 8mm deep 
LIOBs (right).  The LRFs generally change monotonically with depth, and do not change 
greatly within the etched region. 
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4.3.4 DOI Performance 

 The DOI resolution of the 25mm thick etched crystal is shown in Figure 4.21.  

The resolution is seen to be degraded in the entrance region of the crystal, where the 

LRFs are very similar: at the depths z<16mm, the DOI histograms do not change 

adequately with beam depth for DOI information to be ascertained.  The DOI resolution 

is still good outside of this etched region, however.  This reduction in the depth-

dependence of the LRFs has therefore degraded the resolution, though it is still good 

enough to separate events in the first part of the crystal (~16mm).  This may be compared 

to the DOI resolution of the crystal before etching of 4-6mm throughout the depths. 

 

  

 

 

 

 

 

 

 

 
 
Figure 4.21: DOI resolution of the 25mm thick crystal etched with a single layer of 
LIOBs.  For the depths z<16mm, the DOI histograms do not change adequately with 
beam depth for DOI information to be ascertained; for the other depths, DOI information 
is retained.  
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4.3.5 Etched Region Coupled to MAPMT 

With the etched region of the crystal coupled to the MAPMT (and serving as the 

exit surface), the LRFs at each depth are degraded (Figure 4.22), serving as further 

evidence that the LIOBs act to spread light that impinges upon them from outside the 

etched region.  This includes within the etched region, where the light spread is degraded 

because the photons that are emitted toward the entrance surface lose information.  

Because of the degraded performance, this configuration was not investigated further. 

 

Figure 4.22: Comparison of central row-column summed LRFs for the 25mm thick 
continuous crystal and the etched crystal (8mm deep LIOBs), with the etched region 
coupled to the MAPMT.  Coupling in this configuration leads to a broader light spread 
and degraded performance, and so was not investigated further.  
 

Continuous 
Etched Side Coupled to MAPMT 

      z=4mm 

  x  z=12mm 

      z=20mm 
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4.3.6 Double Layer of LIOBs 

While the second layer of LIOBs was expected to improve performance, 

particularly in the middle DOI, the two sets of LIOBs did not significantly affect spatial 

resolution or the LRFs.  The negligible effect is likely because of the low opacity of the 

LIOBs (discussed below) (Figure 4.23).  

 

 

 

 

  

 
 
 
 
Figure 4.23:  LRFs and spatial resolution for the 25mm thick crystal etched with a single 
layer and double layer of LIOBs.  The second layer of LIOBs did not significantly affect 
the performance of the crystals. 
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supported by the results of the optical measurements (Figure 4.16) on the LIOBs etched 

within the crystals (Table 4.4), which show that the first layer of LIOBs in the 25mm 

thick crystal is opaque enough that the PMT measured a value consistent with 

background when passing through the LIOBs, while the second set of LIOBs, as well as 

the set within the 14mm thick crystal, registered a value significantly larger.  While these 
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results cannot be used to measure an absolute value of reflectivity for the LIOBs, because 

of reflections within the various etchings, they may be used to compare the opacity of the 

various sets of LIOBs 

Table 4.4: Ratio of PMT voltage through the etched region to the PMT voltage through 
the unetched region, for various thick etched crystals.  The reflectivity of the LIOBs in 
the various thick crystals are thus compared. 

 

 

 

 

 

 

 

	

	

4.3.8 Position Sampling 

The effect of the etchings on the position sampling is shown in Figure 4.24, 

which shows plots of the measured position as a function of actual beam position at 

various depths for the 14mm and 25mm (single layer) thick etched crystals for scans in 

which data was gathered in increments of 0.5mm, instead of the usual 2mm, in order to 

sample the response of the crystal between the LIOBs.  For both crystals, at shallow 

depths, positioning information between the LIOBs is lost as the plot of measured 

position flattens within the 2mm gaps (i.e., deviations from linear response).  This is 
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reflected in the LRFs, which also flatten in these gaps.  In the unetched regions of the 

crystals, however, the positioning information remains continuous, resulting in smooth 

plots of position.  The plots of positioning for head-on scans show the overall sampling 

provided by the detector, and show that positioning information is not completely lost 

between the LIOBs, as the position plots change in slope in these regions, but do not 

flatten completely.  The sampling is therefore found to be intermediate between that of a 

pixelated detector and a continuous detector.  In an actual detector, this change in slope 

would have to be corrected using a bias correction. 
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Figure 4.24: LRFs and positioning plots for etched crystals for side-on scans (fixed 
depths) and for a head-on scan.  Positioning information is discretized within the etched 
region of the etched crystals, but is retained within the etched crystals for the head-on 
scan. 
	

14mm Head-on 

14mm Shallow DOI 

25mm Shallow DOI  

25mm Middle DOI  

25mm Head-on  

Position (mm)
-25 -20 -15 -10 -5 0 5 10 15 20 25

N
or

m
al

iz
ed

 L
ig

ht
 R

es
po

ns
e

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Actual Position (mm)
0 5 10 15 20 25

M
ea

su
re

d 
Po

si
tio

n 
(m

m
)

0

5

10

15

20

25

Actual Position (mm)
0 5 10 15 20 25

M
ea

su
re

d 
Po

si
tio

n 
(m

m
)

0

5

10

15

20

25

Actual Position (mm)
0 5 10 15 20 25

M
ea

su
re

d 
Po

si
tio

n 
(m

m
)

0

5

10

15

20

25

Position (mm)
-25 -20 -15 -10 -5 0 5 10 15 20 25

N
or

m
al

iz
ed

 L
ig

ht
 R

es
po

ns
e

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Position (mm)
-25 -20 -15 -10 -5 0 5 10 15 20 25

N
or

m
al

iz
ed

 L
ig

ht
 R

es
po

ns
e

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Actual Position (mm)
0 5 10 15 20 25

M
ea

su
re

d 
Po

si
tio

n 
(m

m
)

0

5

10

15

20

25

Position (mm)
-25 -20 -15 -10 -5 0 5 10 15 20 25

N
or

m
al

iz
ed

 L
ig

ht
 R

es
po

ns
e

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Actual Position (mm)
0 5 10 15 20 25

M
ea

su
re

d 
Po

si
tio

n 
(m

m
)

0

5

10

15

20

25



	 162	

4.3.9 Light Output 

 A summary of the light output and energy resolution for the 25mm and 14mm 

thick crystals used in this work is shown in Table 4.5.  Each etched crystal showed a 

slightly greater light output after etching; the 25-mm crystal had an energy resolution of 

~12%, while the 14-mm crystal had a resolution of ~10%.  The improvement in light 

output indicates that the etchings act to prevent light from escaping from the entrance 

surface of the crystal, and do not absorb a significant fraction of the impinging light. 

 

Table 4.5: Light output and energy resolution of various crystals.  Note that the energy is 
measured in arbitrary units of channels that may be used to compare the relative light 
output of the various crystals. 

 

  

4.4 Simulations 

 The measurements of the optical properties of the LIOBs were used to model 

them in the Montecrystal simulations in order to explore the performance of the general 

detector design involving thick crystals etched partly in a grid pattern.   
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4.4.1 Model 

The optical experiments were used to model the optical behavior of the LIOBs.  

Because the response of the LIOBs to light directed at steep angles with respect to the 

etchings was difficult to measure with the small crystals used in the optical 

measurements, and because of the diffuse reflectivity and partially diffuse transmission, 

the response of the LIOBs was modeled as independent of angle.  The overall model used 

in the simulations is as follows (Figure 4.4):  

1. The reflection distribution was modeled as completely Lambertian and 

independent of angle.  

2. The diffuse transmission distribution of the LIOBs was modeled as Lambertian 

and independent of angle, while the angle of directly transmitted light was 

modeled as unchanged, regardless of angle of incidence. 

3. The fraction of directly transmitted light was linearly related to the reflection 

coefficient, using a linear fit based on the data in Figure 4.12. 

 

4.4.2 Methods and Materials 

 The experimental measurements of these detectors were first compared to 

simulations of the same detector designs, in order to measure the properties of the LIOBs 

used in the thick crystals.  In particular, the measurements of the 25mm thick crystal 

etched with a single layer and double layer of LIOBs and of the etched 14mm thick 

crystal were used for these comparisons.  The simulations were then used to test the 
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impact of two of the parameters of this detector design, focusing on the effect on 

resolution and position sampling: 

1. Opacity: the reflectivity was varied from 0% (continuous) to 100% (fully opaque). 

2. Grid depth: the depth of the etchings was varied from 4mm to 12mm for the 25mm 

thick crystal.  

4.4.3 Simulations of Etched Crystals 

 The LRFs resulting from the simulations again match those of the experiments in 

trend, and differ from the experimental measurements in a similar fashion as with the 

unetched crystals (Figure 3.12).  Although a reflectivity of ~40% was expected based on 

the crystal measurements, simulations using a reflectivity of 5-10% better match the 

experimental results for the 25mm and 14mm thick crystals.  The second layer of LIOBs 

is shown to have very little impact if the reflectivity of the LIOBs is low (Figure 4.26).  If 

the etchings are more opaque, the second layer is seen to improve the LRFs at all depths. 
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Figure 4.25: Comparison of simulations to experimental measurements, showing LRFs 
for a central row-column summed anode for the 25mm and 14mm thick crystals etched 
with a single layer of LIOBs.  While a value of ~40% reflectivity was expected based on 
optical measurements, the values of 5-10% lead to better matching.  
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Figure 4.26: Comparisons of simulated LRFs for a central row-column summed anode 
for a single and double layer of LIOBs etched into the 25mm thick continuous crystal.  
Use of more reflective (e.g., reflectivity=40%) LIOBs in the second layer is seen to show 
more of a difference when compared to the crystal etched with a single layer. 
 

4.4.4 Light Spread Caused by LIOBs 

 Within the etched region, the photons directed toward the exit and side surfaces 

are slightly narrower, resulting in narrower overall LRFs.  Outside of the etched region, 

however, the photons directed toward the entrance and exit surfaces are more spread out 

in the etched crystal, because of the diffuse nature of the transmission and reflection from 

the LIOBs, leading to scattering within the LIOBs (Figure 4.27).  The overall LRFs in 

this region are therefore wider after etching. 
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Figure 4.27: Positioning histograms for photons directed toward the entrance surface, exit 
surface, and side surfaces of the etched and continuous crystals for two DOIs for the 
25mm thick crystal.  Within the etched region (z=4mm), photons directed toward the exit 
and side surfaces show a narrower distribution in the etched crystal, leading to narrower 
overall LRFs for all photons in this region.  Outside the etched region (z=20mm), 
photons directed toward the entrance and exit surfaces are wider after etching, leading to 
wider overall LRFs.  
	

4.4.5 Varying Etching Parameters 

 Figures 4.28-4.29 shows the LRFs at two DOIs, as well as the LRFs and 

positioning linearity for head-on scans, for a 25mm thick crystal with varied etching 

properties.  As expected, the LRFs become narrower as the reflectivity and depth of the 

LIOBs increase, while the positioning transitions from a continuous system to a 

discretized system for a large enough opacity or depth. If either of these parameters is 

large enough, the light spread within the etched region will become more restricted than 
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outside the etched region, similar to the mechanically cut crystal (Figure 4.19), resulting 

in a non-monotonic change of LRF with depth.  Moreover, these LRFs will be 

comparable to those of the 14mm thick crystal (Figure 3.12), indicating the spatial 

resolution attainable will similarly improve. This non-monotonic change would have 

implications on the DOI capability of the detector, as continuous DOI information would 

no longer be present, although two-layer DOI information would still be possible, as in 

[162].   
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Figure 4.28: LRFs for the 50x50x25-mm3 crystal etched with LIOBs of varying opacity 
and depth.  Top: The reflectivity was varied, while the LIOB depth was fixed at 8mm for 
two DOIs: z=4mm (within etched region) and z=12mm (outside etched region).  Bottom 
Left: The reflectivity was varied, while the LIOB depth was fixed at 8mm for a head-on 
irradiation. Bottom Right: The LIOB depth was varied, while the reflectivity was fixed at 
20% for a head-on irradiation. 
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Figure 4.29: Positioning linearity for the 50x50x25-mm3 crystal etched with LIOBs of 
varying opacity and depth.  
  

4.5 Discussion 

1.  The optical measurements indicated that the LIOBs generally behave as semi-

transparent barriers that widely disperse reflected light and transmit light both directly 

and diffusely.  The fraction of transmitted light that is directly transmitted increases as 

the reflection coefficient decreases; this result is reasonable since in the limit of 0% 

reflectivity, the LIOBs are expected to have a negligible impact on the scintillation light.  

While the exact profile of the reflected light was not measured because very little 

reflected light was collected through the PMT collimator at each position, the LIOBs 
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were shown to reflect the light widely, consistent with the hypothesized Lambertian 

distribution.  Among the etched cubes, those with a wider spacing between the passes 

were the most opaque and varied most with laser power.  This result is possibly because 

etching over the same region of the crystal does not disrupt the crystal structure more 

than a single pass, so that a wider spacing between the passes leads to greater thickness 

(and therefore greater opacity) in each LIOB; these thicker LIOBs may therefore also be 

more sensitive to laser power.  Although the range of reflectivity measured among the 

LYSO cubes was ~20% to ~50%, there is no reason to expect that more opaque etchings 

could not be obtained, possibly with more passes or greater laser power. 

 

2.  The etchings act to spread light that impinges upon them from outside the etched 

regions of the crystal, while acting to restrict light spread within the etched region.  

Additionally, the LIOBs etched within the thick crystals were transmissive enough that 

the resulting LRFs changed monotonically with depth, in contrast to the mechanical cuts 

described earlier, in which the shallow depths had narrower LRFs than the deepest 

depths.  More opaque etchings generally act to restrict the light spread more, but these 

gains must be weighed against any loss of positional or DOI information within the 

etchings.   

 

3.  The thick crystals investigated in this work all sustained etching without cracking, 

resulting in a grid-like pattern of very thin LIOBs. The crystals etched with a single layer 

of LIOBs showed improved performance in their etched regions, and the weighted 

average of the spatial resolution for the continuous crystals improved after etching, 
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although the impact of the LIOBs differed from that seen with the mechanical cuts; this is 

a consequence of the greater opacity of the mechanical cuts, as well as their likely 

different optical properties.  This average resolution is difficult to achieve because of 

Compton scatter, though it can be used to compare the overall performance of the two 

detector designs.  The LRFs were seen to be less depth-dependent after etching; while 

this result is beneficial because the depth-dependency of the LRFs was shown to limit the 

field of view of the continuous detector in the previous section, the resulting DOI 

information inherent in the detector was also shown to be degraded.  The results of this 

investigation demonstrate the feasibility of etching both a single layer and two layers of 

LIOBs, and encourage further experiments with this design, using etchings with different 

parameters. 

 

4.  The simulations of the etched crystals matched the experiments in trend, similar to the 

results with the continuous crystal.  A reflectivity of ~5-10% in the simulations resulted 

in a better match of the LRFs with the experimental measurements for the 25mm and 

14mm thick crystals than the value expected from the laser parameters used in the etching 

(40%). There are a number of possible sources of the discrepancy seen here: 

A. It is possible that the performance of the laser varied over the long periods of time 

(~10 hr.) required to etch the thick crystals.  Indeed, the reflectivity of the more 

opaque LIOBs demonstrated a variation with depth, which was not modeled in the 

simulations for the sake of simplicity. 

B. While the crystals studied in the optical experiments were etched through shallow 

distances because the only available samples were ~7mm thick, several of the 
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LIOB sets were etched deep within the crystals (~17mm deep for the second set 

of LIOBs on the 25mm thick crystal, and ~9mm deep for the 14mm thick crystal).  

The properties of the etchings may differ when etching very deeply into the 

crystal. 

C. Several months had elapsed between the etching of the first set of LIOBs on the 

25mm thick crystal and the measurement of the crystals.  It is possible that the 

performance of the laser varied between these times. 

 

Nevertheless, the optical measurements were useful to generally characterize the 

behavior of the LIOBs and to determine a range of LIOB properties that could be etched.  

Although limitations in the model used by the simulations precluded their being used to 

predict the exact performance of an etched crystal, the model of the optical behavior of 

the LIOBs was shown to be predictive of the general behavior of the etched crystals.   

 

5.  While the etched crystals show only modest improvement in performance, more 

opaque or deeper LIOBs were seen in simulations to be one option to increase the impact 

of the etchings.  Varying these parameters, however, involves a trade-off between 

improved spatial resolution, continuous position sampling, and LRFs that vary 

monotonically with depth.  For example, using the methods described here, the spatial 

resolution may be improved to be comparable to that of the 14mm thick crystal, although 

this may only be possible by sacrificing continuous position sampling.  Additionally, an 

improvement in spatial resolution and a decrease in the depth-dependence of the light 

spread come at the cost of continuous DOI information, though this may be retained 
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discretely.  One option to retain fine sampling was seen to be etching two layers of 

LIOBs, offset from one another by half of the grid pitch; using LIOBs that are opaque 

enough, this is a potentially more feasible alternative to discretizing the crystal into 1-mm 

pixels, since etching a 1-mm grid of LIOBs may not be possible without cracking the 

crystal.   

 

6. Future experiments must be conducted to determine if a crystal could withstand 

etching with more opaque LIOBs or a denser grid of LIOBs without cracking, though the 

success of the experiments that were conducted are encouraging. In addition to testing the 

spatial performance of these designs, the full TOF performance of these crystals must be 

characterized, although preliminary experiments with small pixels etched with LIOBs 

only showed a slight decrease in timing performance, and so the etching treatment is not 

expected to significantly impact timing resolution. With added data against which to 

validate and fine-tune the model of the simulations (e.g. measurements of the behavior of 

the LIOBs as function of incident angle), the simulations may be used to optimize the 

etching parameters for a given task (e.g., minimizing spatial resolution while allowing for 

adequate DOI information). 

4.6 Conclusions 

 This chapter investigated the optical behavior of the laser induced optical barriers, 

as well as the feasibility and potential of a detector design consisting of a continuous 

crystal etched partly into the entrance region.  Optical measurements showed that the 

etchings behave as diffuse reflectors and display both direct and diffuse transmission, 
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with the fraction that directly transmits increasing as reflectivity decreases.  The LIOBs 

investigated showed a range of reflectance ranging from 20% to 50%, with the fraction 

that directly transmits ranging from 50% to 80%.  Etching thick crystals in a grid pattern 

with LIOBs improved the performance of the crystals within the etched region, but 

degraded the performance outside of this region, ultimately resulting in an average 

improved spatial resolution of ~0.2mm for the 14mm thick crystal and the ~0.3mm for 

the 25mm thick crystal; the second set of LIOBs did not improve the performance 

greatly.   

Compared to the mechanical cuts introduced earlier, the LIOBs investigated were 

much thinner, but resulted in less of an impact on the light spread; however, the 

feasibility of etching the crystals successfully in this manner has been shown with an 

improvement in performance using etching parameters that were not optimized to 

minimize spatial resolution.  Furthermore, simulations demonstrated the trade-offs in 

performance that may be obtained by altering the light spread with these etchings.  With 

fairly transmissive etchings, continuous position sampling is retained while DOI 

information is decreased, though this may also be viewed as desirable because the depth-

dependence of the light spread has been largely decreased.  By either increasing the 

opacity or the depth of the LIOBs, the light spread in the entrance region may be 

decreased, improving the resolution and allowing for a two-level DOI scheme, though 

this may come at the cost of decreased position sampling.  The experiments showed the 

feasibility of etching a second set of LIOBs as well; while these did not significantly 

improve the performance, more opaque etchings are seen as another alternative to 

achieve good resolution with good position sampling. Nevertheless, the relative gain in 
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overall scanner performance associated with each of these variables is crucial to 

understanding their importance; these may be explored by simulating scanners composed 

of detectors that vary some of these characteristics. 
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CHAPTER 5 

System Simulation Study of the Impact of 
Improved Detectors 

 

5.1 Introduction 

While an improvement in spatial resolution for the detectors that comprise a 

scanner is clearly advantageous, the overall performance of a scanner is determined by 

many interrelated variables. In order to explore the impact of improved detector 

performance on the overall quantitative performance of scanners, simulations of complete 

scanners composed of a number of different detectors were performed using system 

simulations.  These simulations were designed to isolate the detector performance from 

the other factors that degrade resolution (section 1.3), before calculating the effects of 

these factors on overall performance. 

5.1.1 System Simulations: EGS4 

 System simulations of imaging systems are designed to model the overall 

performance of scanners.  These codes use information regarding the geometry and 

composition of the object being imaged, the geometry of the scanner, and the 

performance of the detector and the positioning algorithm, in order to track annihilation 

photons from the object and ultimately output positioning, timing, and energy 

information for each event.  There are a number of popular codes, including 

GATE/GEANT, SIMSET, EGS4, and SIMIND; these have been used in the field to study 
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a number of different aspects of PET scanners (e.g., spatial resolution, dead time, scatter, 

correction algorithms) [163-165]. The work in this thesis used EGS4 for system 

simulations; this code and its implementation are described below (Figure 5.1).  

The electron gamma shower (EGS) code is a general code that models the 

transport of electrons and photons.  Advantages to this code include its widespread use 

and flexibility. Furthermore, previous work at the University of Pennsylvania has adapted 

this code to simulate imaging with PET scanners, and has tested the validity of the code 

by comparison to data from actual scanners [101-102, 166].  The code consists of two 

parts: simulation of the gamma events/gamma tracing, and conversion of the gamma 

event locations in the detectors to relevant information for reconstruction.  Simulation of 

a gamma photon begins by sampling from the radiation distribution of the object being 

imaged to determine the location of the gamma event.  Here, two 511-keV photons are 

emitted 180o from one another at this location (acollinearity and the positron range effect 

are not modeled). Each photon is tracked through the object being imaged, modeling 

Compton scatter within the object with the Klein-Nishina cross section.  The gamma-

tracing component of Montecrystal is then used to track the incident photons within the 

detector, and determine the positions of interaction in all three dimensions.   

For the second component of the simulation, the individual scintillation photons 

are not tracked, and instead the positioning, energy, and timing information of the 

detected photon is sampled using the PSF as well as the energy and timing response of 

the detector.  Energy and timing gating are included in the simulation to determine the 

events that are accepted.  The output of the simulation includes information regarding 

positioning, timing, and energy for all events, as well as specifically for true coincidence 
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events, scattered events, and random coincidence events; this information is output in the 

form of list-mode data that may be reconstructed.  Corrections (e.g., scatter, attenuation) 

may be applied as in clinical scanners using an analytical transmission image for simple 

objects, such as cylindrical phantoms [166].   

5.1.2 Image Reconstruction 

As discussed in the introduction, iterative algorithms are used most prevalently in the 

field, and are used exclusively in this work because of their advantages.  Iterative 

algorithms comprise a large collection of algorithms, which represent different methods 

of using the information gathered from the detected events to form a useful image. Of 

those used in the field, the most common group of algorithms is the maximum likelihood 

expectation maximization algorithm (MLEM), which operates by modeling the 

probability of measuring the image data with a Poisson likelihood function, and 

maximizing this function.  Of these, the most popular is the ordered subsets expectation 

maximization (OSEM) [167-168] algorithm, which is a faster version of the MLEM 

algorithm.    Additionally, images that are reconstructed using iterative methods are 

defined using a superposition of basis functions, which may also be varied; two of the 

more popular basis functions are non-overlapping cubic voxels and Kaiser-Bessel 

functions, known as blobs, which are chosen because of their favorable properties for 

reconstruction (e.g., the smoothness and symmetry of the functions) [167-168].  The 

image is then represented by effectively interpolating the blob images into discrete pixels 

(voxelizing the image), typically using pixels 4x4x4mm3 in dimension. 
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Figure 5.1: Diagram of model used in EGS4 system simulations. A. Diagram depicting 
gamma generation and detection in EGS4 simulations.  B. Block diagram of model used 
in simulations. C. Models of detectors used in the EGS4 simulations, for which the 
continuous detectors are modeled using arrays of 1-mm pixels and the positions blurred 
using Gaussian filters of varying widths. 
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5.2 Methods and Materials 

5.2.1 Systems and Phantoms 

 Several systems were compared, each composed of a different LYSO detector, 

including a standard clinical pixelated detector and very finely pixelated detectors with 

varying spatial resolution.  The clinical pixelated detector was modeled using 

4x4x20mm3 crystals with a pitch of 4.07mm, to match that of current scanners, while 

continuous detectors were approximated using a finely pixelated detector with 

1x1x20mm3 pixels with a 1-mm pitch; to vary the resolution of the continuous detectors, 

the measured position of interaction for each event was convolved with a Gaussian kernel 

of various widths prior to image reconstruction.  The 1-mm sampling resulting from the 

finite pixel size was considered fine enough to have a negligible impact on the overall 

resolution and was chosen to avoid excessively long reconstructions, since the 

reconstruction time increases as the number of LORs increases.  The FWHM of the 

kernels were chosen to be ~{1mm, 2mm, 3mm, and 4mm}; the value of 2mm 

approximates the best-reported performance of an unetched continuous detector as well 

as the performance of the etched 14mm thick crystal, while the value of 3mm 

approximates the measured performance of the 25mm thick crystal etched with 8mm 

LIOBs, chosen for the simulation as an initial reference.  Moreover, the detector 

simulation studies (Figure 4.26) indicate that with an appropriately chosen opacity and 

etching depth, the resolution may be improved (albeit with the potential loss of 

continuous sampling), warranting an investigation into improved resolution.  All scanners 
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had an axial length of 180mm and a diameter of ~84cm, as well as a TOF resolution of 

600ps.   

 Two studies were designed to characterize these scanners: 

1. An image quality phantom of diameter 20cm, consisting of a warm background 

and hot spheres (contrast ratio ~10:1) ranging from 2.5-37mm in diameter.  For 

each scanner, two simulations were run, simulating a phantom with six hot 

spheres in each: spheres ranged from 2.5-10mm in one simulation and ranged 

from 10-37mm in the other. This models the NEMA/Electrotechnical 

Commission (IEC) image quality (IQ) phantom.  The images were quantified 

using the mean CRC, defined by National Electrical Manufacturers Association 

(NEMA) [93] in equation 1.4, as would be done clinically.  CRCmean was chosen 

here as one image quality metric to study because it is affected strongly by the 

system spatial resolution (Figure 5.2). 

2. A phantom consisting of point sources, approximated as spheres of 

radius=0.5mm, embedded within a warm background.  The ratio of the point 

source activity to background activity was chosen to be ~100:1, though because 

of the partial volume effect, the measured peak-to-valley is much lower.  The 

points were located slightly off-center from the axis of the scanner and extended 

radially from the center of the scanner to 230mm.  This study was designed to 

measure the spatial resolution as a function of radial distance for each scanner.  

These images were reconstructed using the same OSEM reconstruction 

algorithms as used to reconstruct the image quality phantoms, in order to directly 

relate the results of the two experiments (Figure 5.2). 
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Figure 5.2: Images of the simulated IEC phantom and point source simulation used to 
characterize the various scanners.  Left: Central slice of the cylindrical IEC phantom 
consisting of a warm background region with hot spheres (~10:1 activity ratio).  For each 
scanner, two simulations were run, simulating a phantom with six hot spheres on each: 
spheres ranged from 2.5-10mm on one simulation and ranged from 10-37mm on the 
other.  Right:  Image of a point source simulation, in which point sources were simulated 
in a warm background, with the source located near the center of the scanner axially, and 
beginning at the center of the scanner and extending radially to near the edge of the field-
of-view. 
 

5.2.2 Experiments 

 Initially for these studies, only true events were simulated (i.e., events scattered 

within the object were not included), acollinearity and the positron range effect were not 

included, while Compton scatter within the detector was modeled.  These simulations 

were therefore designed to isolate the effect of the detector performance, including the 

effect of the crystal pitch/resolution of the detector as well as the effect of DOI.  

Attenuation correction of the IEC phantom was performed by mathematically creating an 

image of the phantom composed of water and calculating an attenuation correction 

230mm 
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sinogram, using the attenuation coefficient of water.   Attenuation correction was not 

performed for the other study, since it was not concerned with contrast, so that the results 

were unaffected by attenuation correction.  Normalization correction was not performed, 

because this is expected to have a minor effect on the results because of the high stopping 

power of LYSO, as well as the symmetry of the geometry and crystal properties in the 

simulated scanners (which in actual scanners is not fully realized because of 

nonuniformities among the many crystals); the minor impact of the normalization 

correction is supported by previous simulation studies.  All images were reconstructed 

using an ordered subset expectation maximization algorithm, using either voxel or blob 

basis functions [168].  The type and size of the basis functions varied with the scanner 

being simulated and were chosen to optimize the values of CRCmean based on the size of 

the detector pixels used in the scanner: for the continuous systems, 1-mm basis voxels 

were used to reconstruct the images, which were displayed using 1-mm voxels; for the 4-

mm pixelated system, blobs on a 6-mm grid were used to reconstruct the images, which 

were displayed using 2-mm voxels.  

 The experiments that were conducted using the simulations are listed below: 

Improved Detector Spatial Resolution and Position Sampling   

The improvement in scanner performance achieved using a scanner with 

continuous detectors was studied by comparing the scanner with 4-mm pixelated 

detectors to that with the various continuous (1-mm pixelated) detectors.  The effect of 

continuous sampling was measured by comparing the 4-mm pixelated scanner to a 

continuous detector with a 4-mm Gaussian blurring. 
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PSF Estimation 

 In order to determine the relationship of point source resolution to contrast 

recovery, a calculation was performed using MATLAB, in which a sphere of variable 

radius and with uniform activity, located in a background of uniform activity at a contrast 

ratio of ~10:1, was convolved with Gaussian filters of varying width (Figure 5.3).  The 

CRCmean of the resulting image was then measured by calculating the average voxel value 

in a VOI of diameter equal to the sphere, as in clinical studies.  The CRCmean values 

calculated by using the measured PSFs of the point source simulations were then 

compared to those of the IEC phantom simulations; the calculation was also used to 

determine the PSFs that lead to good agreement with the simulated CRCmean values, 

denoted as PSFCRC. 
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Figure 5.3: Diagram illustrating calculation in which a uniform sphere in a uniform 
background is blurred with a Gaussian PSF, and the CRC of the resulting blurred image 
is calculated using a VOI of diameter equal to the sphere diameter.  Here, one slice 
through the sphere is shown for simplicity. 

 

 

Overall Scanner Resolution 

To determine the overall quantitative performance of the scanners composed of 

these detectors, the impact of the various effects that act to degrade the performance of 

the scanners was estimated.  Many of these effects may be estimated to combine in 

quadrature to determine the overall spatial resolution of the scanners [37].  
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1.  Scatter: To estimate the impact on CRC of only simulating true coincidences, the 

effect of Compton scatter in the object being imaged was measured by comparing 

simulations with scatter to those without scatter.  When scatter was included, 

scatter correction was performed using Single Scatter Simulation [169-170], as 

would be done clinically. 

2.  The effect of the basis function size and image voxel size were measured by 

comparing the results of images reconstructed with varying basis function sizes 

and voxelized using both 2-mm and 1-mm voxels. 

3.  The effect of photon acollinearity and the positron range effect were measured by 

estimating the point source resolution of the various scanners using the known 

distribution of these effects.  While photon acollinearity leads to a Gaussian 

blurring (eq. 1.1), the positron range effect is non-Gaussian; its distribution was 

modeled as a sum of two exponential functions: 

𝑃 𝑥 = 𝐶𝑒!!!! + (1− 𝐶)𝑒!!!!,       (5.1) 

where C, k1, and k2 are constants related to the isotope.  For 18F, the values used 

were C=0.516, k1=0.379 mm-1, and k2=0.31mm-1 [43, 171].   

 

 To estimate the overall blurring, a random number generator was used to sample 

from the various distributions and convolve the measured PSFCRC of the simulations with 

these two effects.  Note that in order to separate the resolution of the scanner from the 

effect of voxelizing the image, a Gaussian function with the measured FWHM of the 

point source simulations was voxelized in MATLAB, and the effect on the measured 

FWHM was calculated prior to the convolution.  The resulting PSFs were then applied to 
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the CRC calculations, with specific attention paid to the 5.5mm sphere, since this size is 

near the limit of detectability for current scanners. 

5.3 Results 

Figure 5.4 shows sample images of the IEC phantom with spheres ranging from 

2.5mm to 10mm, obtained from the 4-mm pixelated and continuous (1-mm pixelated) 

systems.  The images show that each of the spheres may be discerned and that the images 

are free from artifacts.  Note also that the smaller spheres are better visualized with the 

continuous scanner, because of the improved spatial resolution.  Figure 5.5 shows a plot 

of CRCmean vs. sphere size for the 4-mm pixelated system for three trial simulations.  The 

results show good agreement between the trials, while the random uncertainty of the 

CRCmean measurements increases as sphere size decreases, and is ~7% for the smallest 

sphere included in the study.  The CRCmean values of the images converge quickly 

(Figure 5.6); for these studies, iteration 10 was used throughout to ensure convergence.   

 

 

 

 

 

 

 

Figure 5.4: Central slice of the simulated IEC phantom for the 4-mm pixelated and 
continuous (1-mm pixelated) systems.  Each of the spheres may be distinguished from the 
background and the images are free from artifacts. 

4-mm Pixelated System Continuous System 
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Figure 5.5: CRCmean of the 4-mm pixelated system for three independent trials (left) and 
standard deviation of the measurements (right), showing the low uncertainty of the 
measurements made with the simulations.   
 

 

 

 

 

 

Figure 5.6: CRCmean for two spheres as a function of reconstruction iteration for the 
continuous system.  Iteration 10 was used for these measurements to ensure convergence. 

 

Figure 5.7 shows that CRCmean for the continuous system increases as the 

reconstruction basis function (blob/voxel) size decreases, and the size of the image voxel 

decreases.  In order to maximize the resolution of these systems, the smallest basis 

function and image voxel size that avoided undersampling (aliasing) artifacts were used 

for each system.  A comparison of the point source resolution and curves of CRCmean for 

the various detectors are shown in Figure 5.8. The plots show an improvement in point 
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source resolution, and a corresponding improvement in CRCmean, in moving from a 4-mm 

pixelated system to a 4-mm continuous system, because of the smaller reconstruction 

basis functions that the improved position sampling allows. Further improvements are 

seen as the resolution of the continuous systems improves.  Although not shown, the 

values of point source resolution were converged by iteration 10, so that this iteration was 

used for all values shown. 

 

 

 

 

 

 

 

Figure 5.7: Point source resolution (left) and curves of CRCmean (right) for the continuous 
system, reconstructed using various basis function grids and voxelized using 1-mm and 
2-mm voxels. Both the point source resolution and the CRCmean improve as the basis 
function decreases in size and the image is displayed using smaller voxels. 
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Figure 5.8: Point source resolution as a function of radial source position (left) and 
CRCmean as a function of sphere diameter (right) for the 4-mm pixelated system and the 
various continuous systems.  For the continuous systems, 1-mm basis voxels were used to 
reconstruct the images that were displayed using 1-mm voxels; for the 4-mm pixelated 
systems, blobs on a 6-mm grid were used to reconstruct the images that were displayed 
using 2-mm voxels. 

  

Object scatter does not affect point source resolution or CRCmean for these 

phantom studies if corrected for properly, as shown by the low percent difference in 

Figure 5.9, and so was neglected in order to expedite the simulations and reconstructions.  

 

 

 

 

 

 

Figure 5.9: Percent difference between the CRCmean measured in simulation for the 4-mm 
pixelated system when excluding and including object scatter (with scatter correction).  
The small difference between the CRCmean measurements after correcting for scatter 
justifies the use of simulations in which only true coincidences were simulated. 
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The accuracy of the calculation in MATLAB translating the measured point 

source resolution to CRCmean is shown in Figure 5.10. The predicted CRCmean for the 4-

mm pixelated system agrees with the simulation results within 12% for all spheres; the 

PSF of the point source simulations for the 4-mm pixelated system was therefore taken to 

be the PSFCRC.  Greater discrepancy is seen for the continuous systems, indicating that 

the effect of scanner resolution on image quality cannot be fully modeled using a 

convolution with a Gaussian PSF. The 3-mm resolution continuous system is shown as an 

example: the best agreement for this system at sphere sizes between 5.5mm and 10mm 

resulted from a PSF of 3.3mm, rather than the measured resolution of 2.7mm; this factor 

of ~1.2 discrepancy was found for each of the continuous systems with resolution >2mm, 

and is possibly a function of the LOR sampling space (1-mm pixels) and reconstruction 

algorithm used. 

 
 

 

 

 

 

 

 

 

 

Figure 5.10: Comparison of CRCmean curves measured using IEC phantom simulations 
and when calculating using the PSFs measured in the point source simulations.  Note that 
for the continuous system, the best agreement was made using a PSF of 3.3mm. 
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The result of convolving the measured values of resolution in these simulations 

with the effects of acollinearity and finite positron range are shown in Figure 5.11.  The 

measured distributions were fit well by a Gaussian, so that the measured point spread 

functions were estimated using a Gaussian fit.  Note that the effect of acollinearity on the 

overall scanner resolution is larger for the 1-mm pixelated scanners, because the intrinsic 

resolution is lower for these systems. The range in resolution for the continuous systems 

near the center of the scanner was ~3-4.5mm after including these effects.  The 

corresponding CRCmean curves calculated analytically also decreased after inclusion of 

these effects (Figure 5.12).  CRC is increased by ~19% and ~14% for the 5.5-mm and 10-

mm spheres, respectively, in moving from a 4-mm pixelated system to a 3-mm 

continuous system.  In moving to a 2-mm continuous system from the 4-mm pixelated 

system, CRC is increased by ~22% and ~19% for the 5.5-mm and 10-mm spheres, 

respectively.   

 

 

 

 

  

 

 

Figure 5.11: PSFs for the various factors that affect system spatial resolution for the 4-
mm pixelated system and the continuous system.  Acollinearity was shown to have a 
greater effect with the continuous system than with the 4-mm pixelated system because 
of the lower intrinsic spatial resolution of the continuous system.   
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Figure 5.12: Point source resolution as a function of radial source position and CRCmean 
as a function of sphere diameter for the 4-mm pixelated system and the various 
continuous systems after convolving all resolution effects.  Top: Point source resolution 
(FWHM) (left) and curves of CRCmean (right) for the various systems after convolving all 
resolution effects. Bottom: CRCmean values for 5.5-mm and 10-mm spheres for the 
various systems.  
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to a 4-mm continuous system.  The pixel size of the detector in general limits the number 

of LORs that sample an image; the finite number of LORs ultimately limits the basis grid 

spacing used for reconstruction, since use of too fine a grid will result in the LOR space 

undersampling the image, which leads to aliasing artifacts.   

These results may be compared to the simulation study in Tabacchini et al. [172], 

which demonstrated an average CRCmean for 5-mm lesions of ~0.3 for a similar 

continuous detector (back-sided readout); note that in their work, the effects of 

acollinearity were modeled into the simulation, which acts to degrade the resolution, 

while images were reconstructed with 2-mm voxels.  Their work showed that a pixelated 

detector with ~3mm pixels would be required to match the CRCmean and lesion 

detectability performance of such a detector. Surti et al. [45] similarly showed a CRCmean 

of ~23% for 5-mm spheres near the center of a scanner with 4-mm pixels and a TOF 

resolution of 600ps, without including the effects related to the physics of positron 

annihilation.  This value increased to ~34% using a detector with 2.6-mm pixels, similar 

to the value for the 2.9-mm pixelated system in [172] and the value for the 3-mm 

resolution continuous system studied in this work. 

The positioning histograms were well fit by a Gaussian when including all effects 

because many of the effects were Gaussian; of the two that were not – the detector width 

and the positron range effect – the width of the detector contributed much more 

significantly to the blurring.  Even after including all of the factors that degrade spatial 

resolution, a statistically significant improvement in resolution and CRCmean is made 

when transitioning to a continuous system with 4-mm resolution and then again when the 
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resolution is improved to 3mm.  The impact of this improved resolution on quantification 

is greater for smaller lesions, as expected. 

The simulations also showed that the CRCmean values for small sphere sizes for 

the scanner with continuous detectors lie between those of the clinical pixelated system 

and the finely pixelated system, matching the trend in spatial resolution among the 

detectors.  The improvement in CRCmean provides motivation for efforts to improve the 

spatial resolution of continuous detectors, and highlights the potential difference in 

performance between 25mm and 14mm thick continuous crystals, as well as the potential 

difference between continuous and etched crystals.  The resolution of the etched 25mm 

thick detector was ~3.5mm in this work, while that of the etched 14mm thick crystal was 

~2.2mm, resulting in an increase in CRC of ~10% for small sphere sizes.   

CRCmean was studied to estimate the improvement in image quality because this 

metric is directly affected by spatial resolution, though other metrics may be used as well, 

particularly metrics to quantify noise.  Both spatial resolution and noise are important in 

describing the detectability of the imaging system, quantified by metrics such as the 

contrast-to-noise ratio.  Similarly, while the bias of the measurement of CRCmean was 

studied, the precision was not vigorously investigated in this study. While this study 

serves as an exploratory study of the benefit of improved detector performance, further 

studies should therefore evaluate both aspects of image quality, and describe the 

compromise between the two inherent in using the various detectors. 
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5.5 Conclusions 

 Monte Carlo system simulations were used to estimate the effect of improved 

detector performance on the overall performance of the scanner.  Initial simulations 

modeled the effect of the detector performance and showed a steady improvement in 

system performance with improved detector resolution.  An analytical calculation was 

used to convolve other resolution effects as well, and showed an overall improvement in 

scanner resolution and CRCmean when transitioning from a pixelated system to a 

continuous system (e.g., 11% for 5.5-mm spheres) and further improvement when the 

detector resolution improves from 4mm to 2mm (e.g., 11% for 5.5-mm spheres). 

 These results place into context the detector measurements and simulations 

discussed in the previous chapter.  While the presence of other effects decreases the 

improvement in resolution seen with modified continuous crystals, the quantitative 

performance is still measurably improved with a detector resolution of ~3mm and ~2mm, 

similar to that attained with the 25mm and 14mm thick etched crystals, respectively.  

Moreover, the results demonstrated the increase in CRC that may potentially be achieved 

using appropriately designed LIOBs. Use of CRCmean in this study was used to show an 

improvement in contrast recovery achievable with the improvements in detector 

performance that have been investigated using laser induced optical barriers.  For these 

studies, phantom measurements were used to quantify the performance of the simulated 

scanners, as is done on clinical scanners.  The relevance of this work to clinical 

performance with patient studies, however, was not shown; this is discussed in the 

following chapter. 
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CHAPTER 6 

Translation of Phantom-based 
Quantitation to Patient Quantitation 

 

6.1 Introduction 

The previous sections described the impact of detector performance on overall 

scanner performance and quantitation using bench-top experiments and simulation 

studies of phantoms.   The quantitative performance of scanners in patient studies, 

however, is the important end result for both clinical and research studies, and must be 

related to performance measured using standardized objects.  Moreover, the impact of the 

reconstruction strategy (e.g., reconstruction algorithm and post-filter) must be considered 

as well as the scanner detector design, because the wide range of choices available lead to 

differences in quantitative performance.  The following study is accepted for publication 

[173] and was conducted as part of the larger NCI-funded Harmonization Initiative, 

which uses phantom scans to measure scanner performance and allow for scanner-

specific reconstruction parameters to be determined.  The primary goal of this study was 

to test the correspondence between quantification in phantom and patient images and 

validate the use of phantoms for the characterization of patient images.  This study 

ultimately allows conclusions to be drawn regarding clinical scanner performance based 

on the phantom studies discussed earlier, drawing a connection between the detector 

performance studied in the laboratory setting and clinical scanner performance.  
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Additionally, this work highlights the impact of the reconstruction strategy in 

determining image quality, placing improvements in scanner performance into better 

context.  

6.1.1 Connection between System Simulations and Clinical Scanners 

The system simulations were validated by comparing the IEC phantom 

measurements made on the 4-mm pixelated system simulations, after including all of the 

resolution degrading effects, with the values from IEC phantom measurements on a 

Philips Healthcare Vereos system, chosen because this system has similar specifications 

regarding crystal size and pitch to that used in the simulations [34].  The measured 

phantom data from the Ingenuity TF system were collected in 3 separate runs and 

averaged, in order to minimize uncertainty; each run was reconstructed using a similar 

algorithm as the simulated data.  Figure 6.1 shows good agreement for all sphere sizes 

between the simulated and clinical data.  This study therefore connects the simulation 

phantom studies and the phantom studies on clinical scanners, motivating a study to 

further connect the clinical phantom studies to patient studies.   
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Figure 6.1: Comparison of CRC resulting from phantom scans on the Philips Healthcare 
Vereos and from simulations of a 4-mm pixelated system; similar image reconstruction 
and data corrections are applied for each scanner.  
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scanner and reconstruction performance: calibration, patient preparation, FDG 

administration, and scanning procedure [81-82, 174]. 

Differences in reconstruction protocol as well as scanner hardware, however, lead 

to variations in performance, not only among the many models of scanners available, but 

also within the same scanner operated at different institutions [175].  Moreover, 

improvements in performance brought about by improved detector performance, as seen 

in the previous chapter, are expected to exacerbate these differences. These findings have 

prompted a number of organizations (e.g., the North American Quantitative Imaging 

Biomarker Alliance, European Association Research Ltd accreditation program, and 

Clinical Trials Network of the Society of Nuclear Medicine and Molecular Imaging) to 

undertake efforts to harmonize scanners through standardization of image reconstruction 

and image analysis methods.  Previous work in the field [176] developed a protocol that 

determined Gaussian post-reconstruction filters that harmonized the performance of 

various scanner makes and models to that with the worst performance.  Because the 

resulting measurements of uptake are degraded, however, other harmonization strategies 

are needed.  

The University of Pennsylvania and the University of Washington are currently 

part of a multi-institutional National Cancer Institute (NCI)-funded harmonization study 

led by the University of Iowa. The NCI harmonization project aims to determine the 

reconstruction parameters and post-filtering necessary for harmonization of oncologic 

studies and to assess the impact of harmonization on multicenter studies [177]. These 

various organizational efforts all use standardized measurements with the NEMA IQ 

phantom [93] (Figure 6.2), which consists of 6 fillable plastic spheres, chosen from a 
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range of 8.5-44mm in diameter, and a central non-radioactive cylinder filled with foam 

beads to approximate lung matter, immersed in a plastic container with a background 

volume of 9.7L.  The background and sphere compartments of the phantom are filled 

with liquid radioactive material (e.g., 18F) and then used to measure the contrast recovery 

coefficient as a function of sphere size, sampling at the finite number of sphere sizes, and 

at two sphere:background contrast ratios: 9.7:1 and 4.85:1.  The measurements are 

acquired on the various systems to determine scanner-specific acquisition and 

reconstruction protocols to achieve harmonization, defined here as minimizing in some 

sense (e.g., root mean square difference) the distance between the curves of CRC as a 

function of sphere diameter. It has been found that an overall harmonization between 

different scanners is possible through a choice of reconstruction parameters that may 

include a post-filtering procedure, but that it may not provide the same agreement for all 

sphere sizes [177].  
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Figure 6.2: NEMA image quality phantom used to quantify the performance of scanners.  
The phantom consists of 6 fillable spheres, chosen from a range of 8.5-44mm, and a 
central cylinder non-radioactive “lung” filled with foam beads, immersed in a 
background region.  

 

The NCI harmonization project uses a broader range of sphere sizes than other 

efforts, in order to impose stricter requirements on the harmonization.  The project is 

designed to further study the trade-off between harmonization and optimization (CRC 

values closest to their ideal value of 1), as well as to characterize the penalty incurred in 

increased noise resulting from efforts to improve the CRC. To this end, the project 

involves the collection of phantom data among many different scanners and institutions 

and the measurement of CRC for many versions of reconstruction algorithms and 

parameters.  Additionally, it aims to test the use of post-filters that increase the measured 

value of uptake as a method of harmonization.    

While harmonization using phantom scans has been shown, its consistency when 
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applied to patient studies for the various harmonization strategies has yet to be 

demonstrated. Several studies have undertaken this task and made important progress 

[178-180]. Lasnon et al. [178] studied the use of Gaussian filters during reconstruction, 

optimized using phantom images, to harmonize the SUV values of patient lesions in 

various organ locations; data from patient images reconstructed using list-mode OSEM 

without PSF modeling were harmonized to the same data reconstructed with PSF 

modeling. Quak et al. [179] followed this study with an investigation into the use of a 

proprietary post-filter, EQ.PET, to harmonize patient lesions from three different 

scanners and concluded that harmonization of patient SUV values using phantom scans 

was possible with suitable post-filters. Armstrong et al. [180] studied the impact of using 

time-of-flight (TOF) information on the ability to harmonize scanners and assessed two 

harmonization strategies: matching the maximum SUV (SUVmax) in a lesion and 

matching the voxel variance (i.e., image noise) of images from a single scanner 

reconstructed with different methodologies.   

The primary goal of the work described here was to test the correspondence 

between quantification in phantom and patient images and validate the use of phantoms 

for harmonization of patient images.  The study is distinguished from previous work in its 

aim to directly measure the impact of phantom harmonization on patient harmonization 

by comparing quantification metrics for phantom and human subject studies where 

lesions of known uptake have been embedded synthetically into the subjects.  This work 

also explores the use of a post-reconstruction deconvolution filter as a tool to harmonize 

by increasing the CRC of one scanner, in addition to the use of post-reconstruction 

smoothing filters that decrease the CRC of scanners, as these are proposed methods of 
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harmonization being adopted by some clinical trials.  While the work is part of the larger 

Harmonization Initiative, it also serves to illustrate the effect of improved scanner 

performance on quantitation, by the comparing the performance of different scanners, as 

well as the strong effect of the reconstruction algorithm, which is separate from that of 

the detector performance discussed previously.  

6.1.3 Post-filters 

 Two filters were used in this work, because they are proposed methods of 

harmonization being adopted by some clinical trials.  The first is the common Gaussian 

post-filter, used generally in order to smooth images and specifically for the 

harmonization effort to reduce the values of CRC and SUV in the images to a common 

value for a given sphere size.  This filter involves the 3D convolution of a Gaussian 

function, characterized by its FWHM, resulting in an effective decrease in spatial 

resolution. 

 The second filter studied was a deconvolution post-filter, because such filters 

allow the user to improve the image resolution without additional reconstruction and are 

computationally efficient.  In general, deconvolution methods are used to correct for the 

blurring brought about by the finite spatial resolution of imaging devices, and are based 

upon mathematically calculating the original input image given the final image and 

information regarding the PSF of the imaging device.  Any attempt at image restoration is 

limited by the available data in an image: while blurring acts to attenuate low or mid-

frequency components of data, higher frequencies in the data are lost, so that image 

restoration can never fully recover the original.  Moreover, the nature of the restoration 
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problem that deconvolution attempts to solve is ill-conditioned, so that deconvolution that 

acts to restore these higher frequency components of the image tends to amplify noise 

and may lead to artifacts (e.g., edge enhancement and ringing artifacts); for this reason, 

these operators are often applied using some type of regularization that smoothes images 

[54, 68].   

The deconvolution filter studied in this work is the Lucy-Richardson (LR) 

deconvolution post-filter [181-183]; this filter is analogous to the methodology 

implemented by Philips for point spread function (PSF) modeling.  The LR iterative 

algorithm is based on the MLEM algorithm and assumes Poisson statistics; as applied for 

this work, it used a spatially variant PSF model, based upon point source measurements 

at various points in the field of the view of the relevant scanner.  It has been previously 

investigated for PET applications, using the method of sieves to control noise.  This 

regularized algorithm is given by:  

𝑓!!! =
!!
!∗!

ℎ ∗ 𝑠 ∗ !
!!⨂!⨂!

, 

where fk is the original image, g the distorted image, h is the scanner PSF, s is the sieve-

kernel, ⨂ is the convolution operation and * the correlation operator [184-186].  

6.1.4 Phantom Studies  

 Figure 6.3 shows CRCmean and CRCmax as a function of sphere diameter from the 

Philips Ingenuity TF PET/CT scanner for a phantom scan; here, a single 30 minute scan 

was divided into ten 3-minute scans, and the average value plotted with the error bar 

given by the standard deviation of the ten measurements to estimate the statistical 

uncertainty. Although CRCmean varies smoothly with diameter, CRCmax is less predictable 
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and illustrates the benefit of using the additional spheres of intermediate size. CRCmax 

also shows greater variability over the 10 replicate scans (larger error bars); for CRCmean 

the error bars are smaller than the symbol sizes.  Last, CRCmax is seen to exceed 1 

(perfect recovery) at times, because it is calculated as the value of the voxel with 

maximum intensity, and therefore subject to a measurement bias that increases with 

image noise. 

 An example of using the NEMA IQ phantom to harmonize two whole-body PET 

scanners from different vendors is shown in Figure 6.4. Note that for this study, and for 

all subsequent phantom measurements, all spheres are hot, in contrast to the prescribed 

NEMA measurement in which the two largest spheres are cold. Here we see a 

comparison of the Siemens mCT [187] and Philips Ingenuity TF PET/CT scanners, both 

used clinically in the PET Center at the University of Pennsylvania. Both scanners use 

TOF reconstruction, but the default reconstruction used for the mCT is with PSF 

modeling, whereas the default reconstruction used for the Ingenuity is without PSF 

modeling. It is seen that in order to achieve a high degree of harmonization of the 

CRCmean, the Siemens images need to be filtered with a Gaussian post-filter (with kernel 

of 4-mm FWHM), whereas CRCmax values match best without any PSF or post-filtering 

applied to either scanner.  

 This comparison is shown to demonstrate the effect that the reconstruction 

algorithm has on the performance of the scanner, as well as some of the pitfalls in the use 

of algorithms to compensate for spatial resolution, including the bias introduced into the 

CRCmax; reconstruction algorithms therefore cannot be used to compensate completely 

for inherent differences in scanner performance.  Moreover, an overall harmonization 
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between different scanners is seen to be possible through a choice of reconstruction 

parameters that may include a post-filtering procedure, although it may not provide the 

same agreement for all sized spheres or for all clinical metrics.  To illustrate the 

complexity of the harmonization effort, Figure 6.5 shows curves of CRCmax for many 

scanner makes and models using standard scanner reconstruction parameters, along with 

the average CRC curve; the distance of the individual CRC curves to the average CRC 

curve is minimized in the effort to achieve harmonization.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Curves of CRCmean and CRCmax versus sphere diameter for the NEMA IQ 
phantom scanned on the Ingenuity TF. One acquisition included the standard NEMA 
sphere sizes (10, 13, 17, 22, 28, and 37 mm); a second acquisition used the intermediate-
sized spheres (8.5, 11.5, 15, 25, 32, and 44 mm). There were 10 replicate studies of 3min 
for each acquisition, and the sphere/background activity ratio was 9.7:1. The error bars 
are the standard deviations over the 10 replicate studies. 
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A. 

 

B. 

 

Figure 6.4: Comparison of (A) CRCmean and (B) CRCmax values as a function of 
sphere size for NEMA IQ phantom data on the Siemens mCT and Philips Ingenuity 
TF scanners. The Siemens mCT data were reconstructed without and with PSF 
modeling; the data without PSF modeling were also post-filtered with a 4-mm 
Gaussian to better harmonize the CRCmean results with those from the Ingenuity. 
 

 
 

 
Figure 6.5: Curves of CRCmax collected for the Harmonization Initiative for several 
makes and models of PET scanners, before harmonization.  The average value of the 
CRC curves (solid yellow curve) and the ideal CRC curve (i.e., y=1) (solid orange line) 
are given as well. (Adapted from: [177]).  
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6.2 Materials and Methods 

6.2.1 Phantom Studies  

 The phantom used was the NEMA IQ phantom, and the filling and acquisition 

protocol prescribed by the NCI Harmonization Initiative were used. The phantom was 

filled with ~20MBq of 18F in the background. The standard set of glass-walled spheres 

from the NEMA IQ study (diameters: 10, 13, 17, 22, 28, and 37 mm) were all filled with 

activity at a sphere:background ratio of 9.7:1, as prescribed by the NCI harmonization 

protocol. While the NCI Harmonization Initiative calls for plastic-walled spheres, we 

have measured no appreciable difference in contrast recovery results with the different 

wall materials. For this project, we focus only on the 10-, 17-, and 28-mm diameter 

spheres for later comparison with patient data. The phantom data were acquired in list-

mode for ten 3-min acquisitions. For this study, one of the 3-min scans was used in the 

lesion embedding studies for comparison with subject data, while the ten 3-min scans on 

the Ingenuity TF were merged to form a 30-min dataset for validation of the lesion 

embedding technique.   

6.2.2 Scanners and Reconstruction Algorithm 

 Two scanners were used for the comparison of the phantom and human subject 

studies in this investigation: the Philips Ingenuity TF and a prototype time-of-flight 

(TOF) scanner developed at the University of Pennsylvania, LaPET [16, 188]. These 

scanners were chosen because they use a common framework for generating list-mode 

data, thereby enabling the same methodology of lesion embedding to be applied. Their 

intrinsic performance characteristics also differ sufficiently to result in different CRC 
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performance. The Ingenuity TF uses 4x4x22-mm3 lutetium oxyorthosilicate (LYSO) 

pixels and has a spatial resolution of 4.9mm at a radial offset of 1cm, an energy 

resolution of 11.6%, and an intrinsic timing resolution of 495ps. LaPET uses 4x4x30-

mm3 LaBr3 crystals with a modified electronics design and has a measured spatial 

resolution of 5.8mm, an energy resolution of 7%, and an intrinsic timing resolution of 

375ps. To control the reconstruction of the data sets, data from both scanners were 

reconstructed using an off-line list-mode TOF OSEM algorithm without resolution 

modeling, using 5 iterations with 25 chronological subsets, which approximates the 

clinical reconstruction protocol on the Ingenuity TF. The same reconstruction parameters 

(“default reconstruction”) were deliberately chosen rather than separately optimizing the 

reconstruction for the two scanners, so differences in performance between the systems 

and the need for harmonization would be evident. All corrections for physical effects 

(e.g., scatter, attenuation, randoms) were applied during reconstruction. All images were 

reconstructed using blob basis functions and interpolated to 2-mm voxels in the final 

image. 

6.2.3 Lesion Embedding Technique 

 Embedding lesions of known uptake into subject data allows for quantification of 

lesion uptake under clinical conditions, since the ground truth is known. The lesion 

embedding technique [77-78, 189] involves scanning spheres filled with 18F in air at 

known locations in the field-of-view of the scanner. List-mode events from a particular 

sphere are randomly interspersed with the subject’s list-mode data to create a fused data 

set, with the number of added events chosen to achieve a desired activity ratio, where this 
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calculation takes into account events already present in the subject’s background in the 

region of the sphere, as well as geometric factors related to the specific location of the 

sphere.  The number of added events to insert a lesion of known uptake ratio relative to 

the local background may be described by: 

N! = a! ∗ B!" ∗ V!"# − B!" ∗ V!"# ∗
!!"#$
!!"!

, 

where N+ is the number of sphere events to be added, ao is the desired uptake ratio (e.g., 

~10:1), BLB is the local background of the patient in the volume where the spheres are to 

be inserted, Vsph is the volume of the sphere to be inserted, and Nlist and Atot are the 

number of list events and total activity, respectively, in the entire sphere data set; the 

factor of !!"#$
!!"!

 corrects for the geometric factors as a function of sphere position. 

 In order to include the effects of attenuation by the subject that were not present 

during the sphere-in-air acquisition, events from the sphere’s list-mode data are randomly 

removed according to the probability of attenuation along the line of response of each 

event prior to merging the datasets, using the subject’s attenuation sinogram. The 

resulting number of sphere events approximates that which would have been detected 

from a lesion inside the subject. The lesion-embedding technique implicitly includes 

partial volume blurring of the sphere as well as spill-in of activity from the neighboring 

background of the subject into the region of the sphere.  

 Because sphere data are collected in air, events from the spheres could not scatter 

outside the sphere (e.g., in the phantom/patient background).  Since the embedded sphere 

events accounted for <1% of the total events in the merged datasets, no attempt is made 

to model the very small additional scatter that would have been introduced if the lesion 
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had been present in the subject. Data with embedded lesions are therefore corrected using 

the same scatter and randoms corrections as the original data without lesions.  

 The lesion embedding algorithm was updated from previous versions to 

compensate for self-attenuation of the sphere filled with water, which impacts the 

calculation of the number of sphere events to embed. While this effect is small for the 10-

mm lesions used in previous studies, self-attenuation within larger spheres is non-

negligible. Reconstructing spheres with attenuation correction leads to an average change 

in the reconstructed sphere image counts and a corresponding reduction in the number of 

sphere events to be embedded of 3.7%, 9.1%, and 17%, compared to reconstructing 

without attenuation, for the 10-, 17-, and 28-mm spheres, respectively.  

For this study, data were collected with three spheres that were identical to those 

used in the NEMA IQ measurement, with diameters of 10, 17, and 28mm, spanning a 

range of sphere sizes where the curves of CRC vs. sphere diameter change most rapidly 

(Fig. 6.3). The spheres were filled with 18F and scanned on each scanner, with 10 million 

events per position collected (acquisitions were ~30s) to ensure that a sufficient number 

of events were collected to allow for lesions to be embedded at the desired activity ratio 

with respect to background. Approximately 50 positions per sphere were collected on 

each scanner, with each position separated from the others by at least 3cm center-to-

center to avoid overlap.  

The lesion insertion methodology was tested on the Ingenuity TF using the 

summed 30-min scan of the NEMA IQ phantom. The longer scan duration was chosen to 

minimize variability in the results caused by statistical noise, so any discrepancies 

between embedded spheres and those measured in the phantom could be discerned. This 
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measurement was repeated on three separate days to determine the uncertainty of the 

measurement including all sources of measurement error, including those due to human 

error. Eight spheres of each of the three sizes were embedded into the background region 

of one of the 30-min phantom scans, in locations that did not overlap with the NEMA 

spheres. To avoid overlap between the embedded lesions, separate fused phantom data 

sets were created for each sphere size. Because the spheres measured in the phantom 

(“measured spheres”) have a cold wall (thickness = 1mm) that reduces the spill-in of 

activity from the background into the volumes of interest [190], while embedded lesions 

do not displace background activity and are thus wall-less, a numerical correction was 

performed on the measured sphere results to account for the cold wall. The correction 

factors for volumes of interest (VOIs) with diameters equal to the inner diameter of the 

spheres ranged from 1.01 for the 28-mm sphere to 1.06 for the 10-mm sphere, which has 

a larger ratio of surface area to volume inside the sphere and thus shows a greater effect 

of the cold wall on VOI results. The cold wall correction was applied to all measured 

sphere CRCmean results; a cold wall correction was not applied to CRCmax results, since 

the location of the voxel with maximum uptake relative to the center of the sphere is not 

known (i.e., the maximum voxel is not necessarily at the exact center of the sphere). The 

CRC values for the embedded lesions were then compared to the average corrected CRC 

values of the measured spheres in the phantom. A similar comparison was performed for 

the LaPET scanner, although only a single 3-min phantom study was available.  
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6.2.4 Clinical Metrics 

 The CRC was used in this study as a proxy for the SUV used clinically, as other 

groups have done [77, 189]. CRC is the metric used in the NCI harmonization project, 

defined by NEMA [67] as in eq. 1.6. In this study, S was chosen to be equal to the 

average voxel value within the lesion, calculated using a VOI of the same diameter as the 

lesion (the measured inner diameter of the sphere) and centered over each lesion (for 

CRCmean), or to the maximum value within the VOI (for CRCmax). Blocal was calculated 

for each sphere by averaging the voxel value of the same (single) VOI as that used to 

calculate S for CRCmean but drawn on the phantom or subject image without lesions 

embedded. Unlike clinical studies, in this work we know the true size and uptake of the 

lesions.  Mean, maximum, and peak values of CRC were determined; because the 1-cm3 

VOI is larger than a 10-mm sphere, CRCpeak was not calculated for the 10-mm spheres.  

6.2.5 Subject Studies  

 Whole-body data were acquired for four subjects on each scanner using ~550 

MBq of [18F]-FDG (3 min / bed position); scanning was performed 60 min post-injection 

for the Ingenuity TF subjects and ~100 min post-injection for the LaPET subjects, which 

were acquired sequentially following a clinical scan on a different system. Since this 

study used lesion-free patient data and looked only at lesions embedded at a known 

uptake with respect to the local background, the variation in post-injection time has little 

impact on the results. The Ingenuity TF subject data were obtained retrospectively and 

were anonymized before being included in this study. The LaPET subject studies were 

performed as part of a research study [77]; the institutional review board of the University 
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of Pennsylvania approved this study, and all subjects signed a written informed consent 

before the study. The four subjects had values of body mass index(BMI) ranging from 

25-38 (Ingenuity TF) and 25-36 (LaPET) and were free of any lung or liver lesions; 

different subjects were scanned on the two systems. For the Ingenuity TF scanner, the 

transmission image was derived from a low-dose CT scan. For the LaPET scanner, a 

transmission image acquired using a rotating 137Cs point source was used for attenuation 

correction [191].  

 For each subject, 3-8 lesions of each size were embedded into both the right lung 

and liver background regions. Lesions were added such that no two lesions overlapped on 

the same image. The range in number of lesions used reflects the fact that the larger 

lesions could not always fit in the same, non-overlapping places as the smaller lesions, 

and organ sizes varied among the subjects. Lesions were embedded at a constant ratio of 

lesion uptake to local background (ao) of 9.7:1 to achieve constant CRC. To reduce the 

statistical variability of the LaPET results, which had fewer spheres measured at locations 

that overlapped with the subjects’ lung and liver regions, five different sets of events for 

each sphere location were embedded in the lung and liver, and the results averaged. The 

CRC values were then averaged over all lesion locations in all four subjects for each 

organ studied (lung and liver). 

6.2.6 Effect of Post-filtering on Phantom and Subject Measurements 

Harmonization of scanners may be performed using post-filters on one or both of 

the scanners to achieve agreement between the curves of CRC vs. sphere size for the 

scanners. The post-filters were first applied to phantom and subject data from the 
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Ingenuity TF to assess how well subject and phantom results track. Two post-filtering 

methods were investigated for this study. (1) To decrease the CRC of the lesions, a 

Gaussian post-filter, as has been used in previous investigations [176-177], was applied; 

for this study, the post-filter was applied to the images using MATLAB. Two Gaussian 

filters with a full-width at half-maximum (FWHM) of 4mm and 6mm were used. These 

filter widths were found to provide the degree of change needed to harmonize CRCmean 

results from the Ingenuity TF with those from the LaPET scanner, as described below. (2) 

The CRC of the lesions was also increased using a Lucy-Richardson (LR) deconvolution 

post-filter; for this study, one iteration was used with a 6-mm sieve blur; these were 

determined empirically based on the favorable compromise between the improvement in 

resolution and noise. While the LR filter was not applied to the Ingenuity TF data during 

harmonization to the LaPET (next section), LR post-filtering is the method of resolution 

modeling available on the Ingenuity TF and was used here to study how well the subject 

and patient data tracked for both image blurring and sharpening. The changes in 

measured CRC with these post-filters relative to no post-filtering were compared between 

phantom and subjects to determine how well the phantom and subject results tracked. A 

similar analysis was performed separately for the LaPET data for the LR filter. 

6.2.7 Harmonization of Scanners 

 Harmonization of the CRC values of the Ingenuity TF and LaPET scanners was 

accomplished with phantom scans by applying various post-filters to the images from 

both scanners, using a Gaussian filter to systematically reduce CRC and the LR post-filter 

to increase CRC. No standard metric yet exists to characterize how different (or 
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harmonized) scanners are; the root mean squared percent difference (RMSpd) over the 3 

lesion sizes between the CRC values was used in this study as a metric to characterize the 

overall difference between the scanners. The RMSpd conceptually acts in a similar way to 

a least squares harmonization performed on the entire CRC vs. diameter curves (e.g., as 

in [174]), but this metric measures the relative differences in CRC, unlike the least 

squares difference, which measures absolute differences in CRC. The percent difference 

of CRC values between the scanners for a given sphere size i (%diff(i)) was defined as 

%diff i = !"!!!!"!!
(!"!!!!"!!)/!

∗ 100
, 
                                 (6.1) 

where the CRC values were averages over all spheres of a given diameter for each 

scanner. For this study, subscript 1 refers to the Ingenuity TF, and subscript 2 refers to 

the LaPET system. The RMSpd of the CRC values was calculated over the 3 sphere sizes 

as 

RMS!" =
!
!

%diff(i)!!
!!! .                                 (6.2) 

Because the optimal harmonization strategy will depend on the imaging situation 

(e.g., several different scanners at one institution, the same scanner model at multiple 

sites, or multiple different scanners at different sites), three harmonization strategies were 

studied, two based on minimizing the differences between the CRCmean values and one 

chosen to minimize the differences between CRCmax values of the three spheres. One of 

these strategies used only Gaussian post-filtering on one scanner, while the other two 

strategies used a hybrid approach of LR post-filtering on one system with Gaussian post-

filtering on the other. Several strategies were chosen, since it may not be possible to 

harmonize both metrics simultaneously for certain combinations of scanners using a 
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single strategy given that the curves of CRCmean and CRCmax as a function of diameter 

can have different shapes, as seen in Figure 6.4. The strategies were as follows: (1) The 

LaPET images had no post-filtering applied, while the CRC values for the Ingenuity TF 

were decreased using a 6-mm FWHM Gaussian post-filter applied to the reconstructed 

images; the 6-mm width was empirically determined to be optimal by filtering with a 

range of Gaussian filters to minimize the RMSpd between the CRCmean values measured 

in the phantom on the two scanners. (2) The CRC values for the LaPET scanner were 

increased using the LR post-filter with 1 iteration and a 6-mm sieve blur, while the CRC 

values of the Ingenuity TF were simultaneously decreased using a 4-mm FWHM 

Gaussian post-filter that was determined empirically to minimize the RMSpd of the 

CRCmean values between the Ingenuity TF scanner and LaPET system with LR filtering, 

since the LR post-filter alone provided suboptimal harmonization. (3) The CRC values 

for the LaPET scanner were increased using the LR post-filter, as in strategy 2, while the 

CRC values of the Ingenuity TF were simultaneously decreased using a 2.5-mm FWHM 

Gaussian post-filter that was determined empirically to minimize the RMSpd of the 

CRCmax values between the Ingenuity TF scanner and LaPET system with LR filtering. 

The same filters were then applied to the subject scans.  

6.3 Results 

6.3.1 Measured vs. Embedded Spheres in Phantom 

 Table 6.1 shows a comparison of CRCmean and CRCmax values for the measured 

spheres and embedded lesions in the NEMA IQ phantom for the 30-min scans on the 

Ingenuity TF scanner. Table 6.2 shows a similar comparison for a single 3-min scan on 
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the LaPET scanner. The uncertainties of the embedded lesion CRC values were 

calculated as the standard error of the mean (SEM) of the 8 embedded lesion values. The 

individual results for the three replicates of measured spheres on the Ingenuity TF are 

shown in parentheses in Table 6.1 rather than calculating the SEM because of the limited 

number of measurements. Based on the agreement between the measured and embedded 

CRC values, particularly for the 17- and 28-mm spheres, and the reduced variability seen 

for the embedded lesions compared with the variability of the measured spheres, lesions 

embedded in the phantom were used for the remainder of this work in the comparisons 

with the subject data. 

Table 6.1: Comparison of CRCmean (top) and CRCmax (bottom) on the Ingenuity 
TF scanner for measured spheres and lesions embedded into the NEMA IQ 
phantom. 

 10 mm 17 mm 28 mm 
CRCmean    
Measured 0.35  

(0.41, 0.33, 0.31)a 
0.58  
(0.58, 0.59, 0.58) 

0.69  
(0.68, 0.68, 0.70) 

Embedded  0.390 ± 0.005b 0.59 ± 0.01 0.684 ± 0.003 
    
CRCmax    
Measured  0.64  

(0.78, 0.58, 0.56) 
0.95  
(0.96, 0.94, 0.95) 

1.00  
(0.96, 1.00, 1.04) 

Embedded  0.69 ± 0.01 1.00 ± 0.02 1.02 ± 0.01 
a Results are shown in parentheses for the 3 separate phantom measurements. 
b Uncertainties shown are the standard error of the measurement (SEM) of the 8 

embedded lesion values. 
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Table 6.2: Comparison of CRCmean (top) and CRCmax (bottom) on the LaPET 
scanner for measured spheres and lesions embedded into the NEMA IQ 
phantom. 

 10 mm 17 mm 28 mm 
CRCmean    
Measured 0.25 0.45 0.58 
Embedded  0.253 ± 0.003a 0.446 ± 0.002 0.58 ± 0.01 
    
CRCmax    
Measured  0.46 0.84 1.01 
Embedded  0.43 ± 0.02 0.81 ± 0.02 0.99 ± 0.03 
a Uncertainties shown are the SEMs of the 8 embedded lesion values. 

 

A.             B.         C. 

 

 

 

 

 

 

Figure 6.6: Average CRCmean and CRCmax values for (A) 10-mm, (B) 17-mm, and 
(C) 28-mm lung and liver lesions for each of the patients on the Ingenuity TF. 8-16 
lesions were embedded in each subject’s lung and liver for a total of 34 and 55 
lesions in the lung and liver, respectively, in all subjects. The error bars are the 
standard deviations over the lesions in each patient and organ. The BMI values for 
subjects 1-4 were 25, 28, 28, and 38 kg/m2, respectively.  
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6.3.2 Embedded Spheres in Phantom vs. Subjects 

 Figure 6.6 shows the average CRCmean and CRCmax values for the 10-, 17-, and 

28-mm lung and liver lesions in each of the patients on the Ingenuity TF. The results 

demonstrate that the CRC values do not vary significantly among the patients. The 

average CRC (both mean and maximum values) for each subject were within 10% of the 

overall average values over all 4 subjects for all sphere sizes. For that reason, the subject 

results were averaged over all subjects and all lesions in each organ in the rest of the 

study. Table 6.3 shows the CRCmean and CRCmax values for the embedded lesions in the 

3-min phantom scan and the subjects’ lung and liver regions for the Ingenuity TF and 

LaPET scanners without any post-filtering. Results shown for the lung and liver regions 

are averages over all of the lesions of a given size in the four subjects. The uncertainties 

listed in Table 6.3 are the SEMs of the lesion values (8 lesions embedded in the phantom 

and a total of 24-34 lesions in the lung and 49-57 lesions in the liver for the Ingenuity TF 

and 12-14 lesions in the lung and 15-20 lesions in the liver for the LaPET). The average 

CRCmean values of lesions embedded in the lung and liver were well correlated with those 

for the lesions of the same size in the phantom; all values for lesions in the lung and liver 

were within 5% for the Ingenuity TF (range: -2.5% to 5.0%) of the respective phantom 

values and 5% for the LaPET (range: -4.4% to 0.0%). The percent differences of the 

average CRCmax values for lesions embedded in the lung and liver were also within 5% of 

those in the phantom for the Ingenuity TF (range: -1.4% to 4.2%) and ~6% for the LaPET 

(range: 2.3% to 6.1%). There was no systematic correlation in the difference between 

phantom and subject results with sphere size.  



	 223	

Table 6.3: Comparison of CRCmean and CRCmax on the Ingenuity TF (top) and LaPET 
(bottom) scanners without post-filtering for lesions embedded in the phantom and lung and 
liver regions in the subjects. 
 CRCmean CRCmax 
 10 mm 17 mm 28 mm 10 mm 17 mm 28 mm 
Ingenuity TF: 
Phantom 0.40 ± 0.007a 0.59 ± 0.003 0.68 ± 0.004   0.71 ± 0.02 1.07 ± 0.01 1.18 ± 0.02 
Lung 0.39 ± 0.005 0.59 ± 0.009 0.69 ± 0.009 0.70 ± 0.01 1.12 ± 0.02 1.23 ± 0.02 
Liver 0.42 ± 0.005 0.61 ± 0.004 0.70 ± 0.006 0.74 ± 0.01 1.10 ± 0.01 1.20 ± 0.01 
LaPET: 
Phantom 0.25 ± 0.003 0.45 ± 0.002 0.58 ± 0.01 0.43 ± 0.02 0.81 ± 0.02 0.99 ± 0.03 
Lung 0.24 ± 0.003 0.43 ± 0.005 0.56 ± 0.01 0.44 ± 0.01 0.85 ± 0.02 1.05 ± 0.01 
Liver 0.25 ± 0.007 0.45 ± 0.007 0.58 ± 0.01 0.45 ± 0.01 0.83 ± 0.02 1.05 ± 0.02 
a Uncertainties shown are the SEMs of the lesion values. 
 
 

6.3.3 Effect of Post-filtering on Phantom and Subject Measurements 

Figure 6.7 (left) shows the average CRCmean and CRCmax values on the Ingenuity 

TF for the phantom and lung and liver regions without any post-filter and after 

application of 4-mm Gaussian, 6-mm Gaussian, and LR post-filters; the percent changes 

in these values with respect to the results without post-filtering (Table 6.3) are listed in 

Table 6.4. Results are also shown in Figure 6.7 (right) for the LaPET scanner without 

post-filtering and with the LR post-filter, with the corresponding percent changes listed in 

Table 6.4. The uncertainties shown in the table were determined by error propagation of 

the SEMs of the CRC values with and without post-filtering. Differences between the 

changes with post-filtering for lesions embedded in the phantom and those in the subjects 

are within measurement uncertainty. However, the relative impact of the filters on the 

CRC metrics is dependent on the size of the lesion, as expected.  
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        A.              B. 
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Figure 6.7: Comparison of average (top) CRCmean and (bottom) CRCmax values 
for 10-, 17-, and 28-mm lesions before and after application of various post-
filters on the (left) Ingenuity TF and (right) LaPET scanners for the lesions 
embedded in the phantom and lung and liver regions in the subjects. The post-
filters on the Ingenuity TF included 4-mm FWHM Gaussian, 6-mm FWHM 
Gaussian, and Lucy-Richardson (LR) deconvolution post-filters; only the LR 
post-filter was applied to LaPET images. The results shown are averages over 
multiple lesions embedded in the phantom and lung and liver of each subject: 
8 lesions in the phantom and 3-8 lesions in each subject’s lung and liver; the 
results for the four subjects were averaged together for these comparisons. 
Error bars shown are the standard deviations of the measurements.  
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Table 6.4: Percent changea in CRCmean and CRCmax on the Ingenuity TF 
scanner after application of various post-filters for lesions embedded in the 
phantom and lung and liver regions in the subjects. Results are also shown for 
LR post-filtering on the LaPET scanner. 

 CRCmean  CRCmax 
4-mm 
Gaussian 

10 mm 17 mm 28 mm  10 mm 17 mm 28 mm 

Phantom -21 ± 2b -10 ± 1 -5 ± 1  -28 ± 3 -12 ± 1 -13 ± 2 
Lung  -20 ± 2 -10 ± 2 -6 ± 2  -29 ± 2 -13 ± 2 -12 ± 2 
Liver  -20 ± 2 -10 ± 1 -5 ± 1  -27 ± 1 -11 ± 1 -11 ± 2 
6-mm 
Gaussian 

   

Phantom  -38 ± 2 -20 ± 1 -11 ± 1  -48 ± 3 -22 ± 1 -19 ± 2 
Lung -38 ± 1 -20 ± 2 -11 ± 2  -49 ± 2 -24 ± 2 -19 ± 2 
Liver -37 ± 1 -20 ± 1 -11 ± 1  -47 ± 1 -21 ± 1 -17 ± 1 
Lucy-Richardson   
Phantom 29 ± 3 19 ± 1 10 ± 1  39 ± 5 33 ± 2 18 ± 3 
Lung 32 ± 3 20 ± 4 11 ± 2  41 ± 4 35 ± 3 20 ± 3 
Liver 30 ± 3 19 ± 1 10 ± 1  40 ± 2 33 ± 2 18 ± 2 
Lucy-Richardson 
(LaPET)   

 
   

Phantom 27 ± 3 19 ± 1 10 ± 3  35 ± 10 31 ± 6 12 ± 4 
Lung  25 ± 3 18 ± 2 10 ± 3  33 ± 6 31 ± 4 17 ± 2 
Liver 28 ± 6 21 ± 2 10 ± 3  37 ± 6 33 ± 4 18 ± 3 
a The percent changes were calculated for the values shown in Figure 6.7 with 
respect to the corresponding values without filtering (Table 6.3). 
b Uncertainties shown were determined by error propagation of the SEMs of 
the CRC values with and without post-filtering.   

 
 

6.3.4 Harmonization of Scanners 

 Figure 6.8 shows CRCmean, CRCpeak, and CRCmax values for the different sphere 

sizes in the phantom for the Ingenuity TF and LaPET scanners with the default 

reconstruction for each scanner and for the harmonization strategies described earlier. 

Tables 6.5 and 6.6 show the percent differences between CRCmean and CRCmax values, 
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respectively, for lesions in the phantom and subjects for the two scanners before and after 

harmonization. The uncertainties reported in the tables were determined by error 

propagation of the SEMs of the CRC measurements for the multiple lesions in the 

phantom, lung, and liver of the 4 subjects on the two scanners. The RMSpd of the 

CRCmean values for lesions in the phantom and in the lung and liver exceeded 30% before 

harmonization. Using strategy 1, the RMSpd values for CRCmean were reduced to <8% for 

both the phantom and subjects; with strategy 2, the RMSpd values for CRCmean were 

reduced to <5%. The corresponding harmonization of the CRCmax values was not as 

good, with RMSpd reduced from >30% to only <12% with strategy 1 and <15% with 

strategy 2, although the results are consistent between phantom and subject 

measurements. Using strategy 3, which was based on harmonization of CRCmax values 

from the phantom measurements, the RMSpd of CRCmax was reduced to <6% in the 

subject data, with the corresponding RMSpd of CRCmean reduced to <14%, demonstrating 

slightly more variation between phantom and patient measurements, especially for the 

10-mm sphere.  

6.4 Discussion 

The average CRCmean values for the lesions embedded in the phantom on the 

Ingenuity TF (Table 6.1) were within 1.7% (range: -0.9% to 1.7%) of those for the 

measured spheres in the phantom for the 17- and 28-mm spheres; a larger difference 

(11.4%) was observed between the embedded and measured 10-mm spheres. Similar 

results were seen for the LaPET scanner (Table 6.2), although there was only one 

phantom measurement. The measured results for CRCmax on the Ingenuity TF also show 
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more variation for the smallest 10-mm sphere. We have measured little statistical 

variation in shorter replicate phantom scans (standard error of the mean over 10 3-min 

scans: <3% for CRCmean and <4% for CRCmax); therefore, the larger variability observed 

in the 30-min scans for the measured 10-mm sphere in Table 6.1 is likely a result of non-

statistical or human errors (e.g., small air bubbles during filling), despite our best efforts 

to carefully fill the spheres for each acquisition. The results illustrate the trade-offs 

associated with harmonization based on measured uptake in small spheres: small spheres 

are important to measure differences in CRC related to spatial resolution but are more 

susceptible to non-statistical errors. The good overall agreement in CRC values between 

the embedded lesions and the physical spheres and the small variability of CRC values 

for the embedded lesions in the phantom demonstrate the utility of the lesion-embedding 

technique as a proxy for actual lesions in patient studies.  
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A.              B. 

 

C. 

 

D. 

  

Figure 6.8: Comparison of CRCmean, CRCpeak, and CRCmax values as 
a function of sphere diameter for phantoms on the Ingenuity TF and 
LaPET scanners (A) without harmonization and using (B) 
harmonization strategy 1 (6-mm Gaussian post-filter applied to the 
Ingenuity TF), (C) harmonization strategy 2 (4-mm Gaussian post-
filter applied to the Ingenuity TF and LR deconvolution post-filter 
applied to LaPET), and (D) harmonization strategy 3 (2.5-mm 
Gaussian post-filter applied to the Ingenuity TF and LR 
deconvolution post-filter applied to LaPET). Error bars shown are the 
standard deviations of the measurements. 
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Table 6.5: Percent differencesa between CRCmean on the Ingenuity TF 
and LaPET scanners for lesions embedded in the phantom and lung and 
liver regions in the subjects before and after harmonization. 
Unharmonized 10 mm 17 mm 28 mm RMSpd (%) 
Phantom -45 ± 2 -28 ± 1 -16 ± 2 32 
Lung  -49 ± 2 -31 ± 2 -21 ± 2 36 
Liver  -51 ± 3 -30 ± 2 -19 ± 2 36 
Strategy #1      
Phantom  1 ± 3b -6 ± 1 -4 ± 2 5 
Lung -3 ± 2 -9 ± 2 -9 ± 2 8 
Liver -6 ± 3 -9 ± 2 -8 ± 2 8 
Strategy #2      
Phantom 1 ± 3 -1 ± 1 -1 ± 2 1 
Lung  -5 ± 2 -4 ± 2 -6 ± 2 5 
Liver -5 ± 3 -2 ± 1 -4 ± 2 4 
Strategy #3      
Phantom -13 ± 2 -8 ± 1 -2 ± 3 9 
Lung  -19 ± 2 -11 ± 2 -10 ± 2 14 
Liver -19 ± 3 -8 ± 1 -8 ± 2 13 
a % Difference was calculated using equation (6.1). 
b Uncertainties shown were determined by error propagation of the 
SEMs of the CRC values for the two scanners. 
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Table 6.6: Percent differencesa between CRCmax on the Ingenuity TF 
and LaPET scanners for lesions embedded in the phantom and lung and 
liver regions in the subjects before and after harmonization. 
Unharmonized 10 mm 17 mm 28 mm RMSpd (%) 
Phantom -48 ± 5b -27 ± 3 -18 ± 3 34 
Lung  -46 ± 4 -28 ± 3 -16 ± 2 32 
Liver  -49 ± 3 -28 ± 2 -14 ± 2 33 
Strategy #1     
Phantom  16 ± 6 -2 ± 3 3 ± 3 9 
Lung 20 ± 4 0 ± 3 6 ± 2 12 
Liver 13 ± 3 -4 ± 2 5 ± 2 9 
Strategy #2     
Phantom 14 ± 6 12 ± 3 7 ± 3 11 
Lung  17 ± 4 14 ± 3 13 ± 2 15 
Liver 13 ± 4 12 ± 2 15 ± 2 13 
Strategy #3     
Phantom -6 ± 6 5 ± 3 2 ± 4 5 
Lung  -4 ± 4 5 ± 3 6 ± 2 5 
Liver -6 ± 3 5 ± 2 8 ± 2 6 
a % Difference was calculated using equation (6.1).  
b Uncertainties shown were determined by error propagation of the 
SEMs of the CRC values for the two scanners. 
 
 Figure 6.6 indicates that CRC is consistent across subjects and also shows that 

CRC is relatively insensitive to differences in background uptake (i.e., lung vs. liver). 

The lack of inter-subject variation supports our treatment of the lesions in all subjects as a 

single ensemble for each organ. As seen in Table 6.3, CRCmean values for the lung and 

liver for all lesion sizes were within 5% of the values for lesions embedded in the 

phantom for both scanners, indicating that phantom CRC values with cold wall correction 

represent patient CRC values well. In addition, the variability of CRC values for lesions 

embedded in all subjects is of similar magnitude as that observed in the phantom for all 

sphere sizes.  Figure 6.7 and Table 6.4 show that all post-filters studied led to changes in 

CRCmean and CRCmax that were consistent across the phantom and subject organs and 

indicate that phantom measurements can predict the effect of post-filters (e.g., as may be 
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utilized for harmonization) on patient CRC measurements. In addition, application of the 

LR post-filter on the two scanners led to consistent changes in uptake measurement, 

especially for CRCmean. This result is further supported by the results of harmonization 

between the Ingenuity TF and LaPET scanners in Figure 6.8, and Tables 6.5 and 6.6.  

Both the CRC metrics and quantitative techniques studied, therefore, are seen to 

generally translate well from phantom studies to patient studies for the two background 

regions studied. 

The Ingenuity TF has systematically higher CRC values than the LaPET scanner 

using the unharmonized reconstruction. This is due primarily to the better spatial 

resolution of the Ingenuity (4.9mm vs. 5.8mm), illustrating the effect of improved 

detector resolution; the better TOF resolution of the LaPET scanner (375ps vs. 495ps) has 

little effect on the CRC and more impact on the precision of the measurement, not 

explicitly measured in this study. The approach demonstrated in this work for two 

systems with different spatial and TOF resolutions is general, however, and the results 

will apply to other scanners, including future generation systems with better spatial 

and/or TOF resolution.  While the deconvolution filter studied here did not degrade the 

precision of the metrics studied, deconvolution operators in general are associated with 

an increase in noise, as noted earlier, resulting in trade-offs in accuracy and precision that 

limit the extent to which they can be applied.   

 Both strategies 1 and 3 resulted in good harmonization of both CRCmean and 

CRCmax between the two scanners; strategy 2 resulted in the closest harmonization of 

CRCmean but poorer harmonization of CRCmax. For CRCpeak, the results after 

harmonization using the three strategies were in between those for CRCmean and CRCmax, 
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with strategy 2 showing the poorest harmonization. Although the particular strategies 

chosen to harmonize CRCmean for the scanners did not lead to perfect harmonization of all 

CRC values between the two systems, especially CRCmax, they nonetheless tracked well 

between phantom and subjects over the range of sphere sizes studied. The strategy 

selected to harmonize CRCmax (strategy 3) similarly resulted in suboptimal harmonization 

of CRCmean values while the phantom and subjects tracked well. The results for CRCpeak 

also tracked well between the phantom and subjects (not shown).  

The ability to harmonize two scanners depends on a number of factors, including 

the dependence of measured CRC on sphere diameter [177]. Application of the post-

filters to images from the two scanners significantly reduced differences between the two 

CRC curves, as measured by the RMSpd, although the differences for the 10-mm CRCmean 

values were not as close for the phantom, lung, and liver lesions. These results indicate 

that optimal harmonization over a range of lesion sizes (10-28 mm) can be difficult to 

achieve. In addition, none of the strategies chosen completely harmonized CRCmean, 

CRCpeak, and CRCmax metrics together. Although the RMSpd values for CRCmean and 

CRCmax were reduced with all strategies studied, different strategies led to better 

agreement (lower RMSpd), depending on which metric was used for harmonization. This 

result suggests that harmonization should be done using the clinical metric of interest 

(i.e., maximum vs. peak vs. mean uptake value).  

Figure 6.8 also shows the impact of harmonization on the accuracy of the uptake 

measured in the phantom. While harmonization strategy 1 led to better agreement of 

CRCmean between the two scanners, the CRCmean values of the Ingenuity TF dropped by 

38, 20, and 11% for the 10-, 17-, and 28-mm spheres, respectively. Strategies 2 and 3 
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used Lucy-Richardson deconvolution post-filtering of the LaPET data, so those values 

increased (+35% for CRCmean of the 10-mm sphere) with a decrease (28% for the 10-mm 

sphere) in the Ingenuity TF values, due to the use of a Gaussian post-filter. These results 

show that caution is needed in developing harmonization strategies, since scanner 

harmonization can be achieved in many ways but with different effects on bias. In 

addition, different harmonization strategies will also influence the precision of uptake 

measurements (not studied in this work), and both accuracy and precision will play a role 

in determining the optimal harmonization strategies.   

 While only a single activity ratio was used in this study, phantom studies with 

different activity ratios have shown only small differences in CRC values, and using a 

different activity ratio would not have affected the choices of strategies for harmonization 

or the resultant comparisons made in this study between phantom and subject data. 

Embedded lesions were placed in both the lung and liver organs in multiple patients, 

since multiple lesions could reliably be placed in these organs and these two organs 

represent different background environments. No systematic differences between lung 

and liver results were observed and the results are expected to be representative of lesions 

in other organs. The variability of the measured sphere results in the phantom, 

particularly for the 10-mm sphere, indicates that multiple measurements are critical for 

phantom-based harmonization efforts although many phantom measurements can become 

impractical.  

In this work lesions embedded in subject data were used to demonstrate how well 

phantom quantitative metrics translate to patient studies. The embedded lesions used as 

surrogates for clinical lesions differ from actual tumors that may not be spherical and do 
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not necessarily have uniform uptake. However, this study represents an important first 

step towards validating the use of phantoms in the development of harmonization 

strategies, and illustrates the close connection between phantom results and patient 

results. Furthermore, based on the good agreement between phantom and subject data in 

this study, no need is seen to perform similar patient studies for future harmonization 

efforts.  

6.5 Conclusions 

 This study used a lesion embedding technique to insert lesions into a phantom and 

lung and liver regions of subjects scanned on two TOF-PET scanners to determine the 

validity of basing scanner harmonization on phantom measurements. The validity of the 

lesion embedding technique for this study was demonstrated by comparing embedded 

lesions to measured spheres in a phantom and showed good correlation. The viability of 

using a phantom to track the expected changes with post-filtering in subjects was also 

shown. Our results demonstrate that the phantom CRC performance predicts patient CRC 

performance with and without post-filtering strategies; simultaneously achieving good 

harmonization (i.e., RMSpd under 5% over a range of lesion sizes) of both the CRCmean 

and CRCmax metrics using the same post-filters, however, was shown to be difficult.  

 These results support the further development of harmonization protocols using 

phantom studies as their basis, as they are predictive of clinical performance. The study 

therefore draws an important connection between the phantom measurements studied in 

the previous chapter, and allows the conclusions regarding improved detector 

performance to be extended to quantification in clinical studies. Moreover, this work 
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highlights the importance of both scanner resolution (and detector resolution) and image 

reconstruction in determining quantitative performance shown in the previous chapter. 

Because of the limitations of post-filtering as a means to improve image resolution, 

improvements in scanner performance are seen to hold important implications in the use 

of PET for clinical studies.  Moreover, the improved performance brought about by the 

use of improved detectors will lead to interesting new challenges in the overall 

Harmonization Initiative. 
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Thesis Summary and Conclusions 

 This thesis investigated a novel detector model for improved spatial resolution as 

well as the effect of its potentially improved spatial resolution and position sampling on a 

clinical quantitative task. It studied the effect of modifying the light spread within 

continuous detectors in order to improve upon the limitations of poor performance in the 

entrance region and depth-dependent light spread within the scintillator that result from 

the use of thick detectors, used to retain good sensitivity.  To achieve this, it used laser 

induced optical barriers to alter the performance of these detectors, and further studied 

the resulting impact on the quantitative performance of a whole scanner, and connected 

the improvements measured by objective phantom-based measurements to clinical 

metrics of interest.  The major conclusions from this work are: 

1. Continuous crystals offer the potential for improved spatial resolution compared 

to conventional 4-mm pixelated systems, and offer the benefit of continuous 

position sampling and DOI information.  Nevertheless, they are limited by a 

depth-dependence in their performance, as well as relatively poor resolution in 

their entrance region. Statistical positioning algorithms offer vastly improved 

performance over conventional Anger logic for continuous detectors, although 

this comes at the cost of increased complexity and time (e.g., two orders of 

magnitude greater number of computations for the algorithms studied here).  

Further improvements in the positioning algorithm, by increasing the number of 

channels, using more complex statistical models, and exploiting more of the 

calibration information, require even more complexity.  This warrants efforts to 
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alter the fundamental light spread within the detector in order to improve 

performance.  

2. The LIOBs reflect light diffusely, and transmit light both directly and diffusely.  

Measurements on small cubes that were etched with a variety of laser settings 

ranged from ~20% to 50% in reflectivity, though the full range of possibilities 

was not explored.  Continuous detectors were successfully etched with a grid of 

LIOBs that extended partly into the entrance region of the crystals and with a 

pitch of 2mm; the 25mm thick crystal was also etched with a second set of LIOBs 

in the central depths of the crystal.  Measurements with these crystals were 

encouraging: etching led to a slight improvement in performance in the etched 

regions, as desired, and unchanged or slightly degraded performance outside these 

regions.  The depth-dependence of the LRFs was decreased, at the expense of less 

DOI information.  Nevertheless, simulation studies indicated that these LIOBs 

were not optimized to minimize spatial resolution, and furthermore that varying 

the laser parameters or etching design results in a compromise between resolution, 

DOI performance, and position sampling.  Specifically, increasing the opacity or 

depth of the LIOBs results in a further narrowing of the overall light spread, and 

allows for a fine-tuning of the resolution at the potential cost of discretized 

position sampling and a loss of DOI information.  The laser induced optical 

barriers are therefore a feasible method to modify the light spread within the 

detector, and the grid pattern investigated is one option to improving the overall 

resolution, although further optimization is needed. 
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3. Simulation studies showed that after including the resolution degrading effects 

present in a whole-body scanner, the use of 2mm resolution continuous detectors 

instead of 4mm pixelated detectors results in an improvement in CRC by ~22% 

and ~19% for sphere sizes of 5.5mm and 10mm, respectively.  Improvements in 

detector resolution therefore result in a measurable improvement in image quality. 

4. Studies using the lesion embedding technique with actual patient and phantom 

data show that the CRC of embedded lesions is equivalent in patient and phantom 

background regions, and that the effect of post-filters track well between the two.  

The quantitative results obtained using the simulation studies of the phantom data 

may therefore be extrapolated to patient studies, showing that improved detector 

performance indeed leads to improved clinical performance. 

 

 There remains work to be done before continuous detectors of any type would be 

implemented in a clinical scanner. While recent scanners are built with arrays of SiPMs, 

the electronics in a continuous system would be made more complex by reading out all 

the channels (or at least a fraction of them using row-column summed readout) prior to 

applying the positioning algorithm, unless the position is read out in real time (e.g., using 

an FPGA); the ability to implement the more complex positioning algorithms in real time 

must then be demonstrated.  Additionally, a robust and feasible calibration scheme must 

be demonstrated on a clinical system, although the demonstration of the use of fan beams 

will likely prove useful for this (Chapter 3).  

 The laser induced optical barriers studied in this work are a potential method to 

improving the performance of continuous detectors and allowing for improved resolution.  
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LIOBs show great promise because of the precision with which they can be made, the 

unique characteristics that they offer as a reflector in the bulk of the crystal, and because 

of the great flexibility they offer in fine-tuning the performance of continuous detectors.  

While the impact of the scintillation light spread using this technology was demonstrated 

in this work using this technology both theoretically and on the level of the bench-top, the 

robustness and cost of this detector on a large scale have yet to be demonstrated.  In 

particular, the reproducibility of continuous crystals grown in mass quantity and of the 

laser etching process must be investigated. 

 The specific performance measured for the detectors studied in this work are also 

a function of the materials used.  LYSO was chosen because LSO/LYSO are currently 

the most popular scintillators used today; however, there are alternative scintillators.  

LaBr3 has been a scintillator of interest for some time and is used in the experimental 

LaPET scanner because of its improved timing resolution and greater (>2x) light output.  

The major disadvantage to this detector is its lower sensitivity, which is particularly 

important in PET scanners.  This requires thicker crystals to compensate, which comes at 

the cost of increased parallax error and an increased depth-dependence to the light spread.  

While a continuous crystal could allow for DOI information to be measured, the 

degradation in spatial resolution with crystal thickness is problematic.  Moreover, the 

advantage of the greater light output when using the statistical positioning algorithms 

must be weighed against the increased Compton scatter fraction (>2X) entailed in this 

scintillator: while the increased light output would decrease the uncertainty of the anode 

measurements (by ~40%), Compton scatter was shown to be an important factor of the 

resolution of the detector, resulting in a degradation in spatial resolution of ~1mm in 
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25mm thick LYSO crystals.  Preliminary simulation studies have been conducted 

studying the performance of this scintillator in a continuous detector.  The design with 

LIOBs could potentially be useful in this instance, if the design were fine-tuned to offer 

improved spatial resolution with the potential for enough DOI information to offset the 

added parallax error brought about by the thicker crystals. At the other end of the 

spectrum, thinner crystals could potentially be used in a longer scanner to offer 

comparable sensitivity with much improved spatial resolution and DOI information.  

Again, the etchings offer another option to improve upon the resolution even more, at the 

cost of degraded DOI resolution. 

 Similarly, while the H8500 MAPMT was useful for this work, SiPMs offer 

potentially improved quantum efficiency, the ability to be used in the PET/MR scanner, 

as well as significantly reduced cost.  A finer anode grid than the 6-mm 8x8 grids seen 

most often is also a possibility, though the increase in hardware and computational 

complexity must be warranted.  Additionally, high quantum efficiency MAPMTs are now 

available, with quantum efficiencies as high as 43% [192], that would lead to less noisy 

measurements and improved spatial resolution.   

 Continuous detectors therefore represent a broad class of detectors with inherent 

trade-offs in performance (e.g., spatial resolution, sensitivity, position sampling, DOI) 

that may be explored by varying the properties of the detector (e.g., scintillator, 

photodetector, thickness, surface properties).  This work focused on some of these trade-

offs by modifying the scintillation light spread within the detector through the use of laser 

induced optical barriers, and investigated the effect on overall scanner performance.  

Ultimately, the choice of parameters is dependent on the application: thin unetched 
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crystals may suffice for a scanner that requires excellent resolution along with DOI 

information without a large sensitivity, while scanners for which improved resolution is 

desired without the need for DOI information would benefit from LIOBs etched into the 

entrance region. Whole-body systems without the need (or computational capability) for 

DOI information would gain from the improved resolution of the designs studied for the 

25mm thick crystal, using more opaque LIOBs; in contrast, using the barriers to optimize 

the trade-off in spatial resolution and DOI resolution for a given crystal thickness in a 

whole-body scanner is an interesting and worthwhile study as well.  The results in this 

work demonstrated the use of this technology to affect light spread and explored the 

potential of the barriers to improve and fine-tune the performance of these detectors.  
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