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Abstract
Hematopoietic stem cells (HSCs) are able to self-renew and to differentiate into all blood cells. HSCs reside in
a low-perfusion niche and depend on local signals to survive and to maintain the capacity for self-renewal.
HSCs removed from the niche can survive if they receive hematopoietic cytokines, but they then lose the
ability to self-renew. However, we showed previously that simultaneous inhibition of glycogen synthase
kinase-3 (GSK-3) and mammalian target of rapamycin complex 1 (mTORC1) maintains HSC function ex
vivo without the need for exogenous cytokines. As these experiments were initially done in heterogeneous cell
populations, I then showed that purified HSCs can also be maintained under these conditions, demonstrating
a direct effect of GSK-3 and mTORC1 inhibition on HSCs. Although Wnt/β-catenin signaling downstream of
GSK-3 is required for this response, the downstream effectors of this network remained otherwise undefined.
I therefore explored targets downstream of GSK-3 and mTORC1. I found that HSCs express a pro-autophagic
gene signature and accumulate LC3 puncta only when both mTORC1 and GSK-3 are inhibited, identifying
autophagy as a signature for a signaling network that maintains HSCs ex vivo. In contrast, I did not find
evidence to support a role for other downstream targets of mTORC1, such as protein translation and
mitochondrial biogenesis. I also report a significant reduction in total RNA content in cultured HSCs and
describe a method to perform transcriptional profiling of these cells. Together, these findings provide new
insight into the relative contributions of various mTORC1 outputs toward the maintenance of HSC function
and build upon the growing body of literature implicating autophagy and tightly controlled protein synthesis
as important modulators of diverse stem cell populations.
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ABSTRACT 

CHARACTERIZING A SIGNALING NETWORK 

THAT MAINTAINS HEMATOPOIETIC STEM CELLS 

Michelle Nguyen-McCarty 

Peter Klein 

Hematopoietic stem cells (HSCs) are able to self-renew and to differentiate into all blood 

cells. HSCs reside in a low-perfusion niche and depend on local signals to survive and to 

maintain the capacity for self-renewal. HSCs removed from the niche can survive if they 

receive hematopoietic cytokines, but they then lose the ability to self-renew. However, we 

showed previously that simultaneous inhibition of glycogen synthase kinase-3 (GSK-3) 

and mammalian target of rapamycin complex 1 (mTORC1) maintains HSC function ex 

vivo without the need for exogenous cytokines. As these experiments were initially done 

in heterogeneous cell populations, I then showed that purified HSCs can also be 

maintained under these conditions, demonstrating a direct effect of GSK-3 and mTORC1 

inhibition on HSCs. Although Wnt/β-catenin signaling downstream of GSK-3 is required 

for this response, the downstream effectors of this network remained otherwise 

undefined. I therefore explored targets downstream of GSK-3 and mTORC1. I found that 

HSCs express a pro-autophagic gene signature and accumulate LC3 puncta only when 

both mTORC1 and GSK-3 are inhibited, identifying autophagy as a signature for a 

signaling network that maintains HSCs ex vivo. In contrast, I did not find evidence to 

support a role for other downstream targets of mTORC1, such as protein translation and 

mitochondrial biogenesis. I also report a significant reduction in total RNA content in 

cultured HSCs and describe a method to perform transcriptional profiling of these cells. 

Together, these findings provide new insight into the relative contributions of various 

mTORC1 outputs toward the maintenance of HSC function and build upon the growing 
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body of literature implicating autophagy and tightly controlled protein synthesis as 

important modulators of diverse stem cell populations. 
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CHAPTER 1: INTRODUCTION 

Introduction to hematopoietic stem cells (HSCs) 

 Somatic stem cells are rare populations of cells found in a range of tissues 

throughout the majority of post-natal life. Distinguished by their unique capacity to both 

self-renew and give rise to differentiated cell types, stem cells are essential for lifelong 

tissue maintenance, both under homeostatic conditions and in response to stress or injury. 

This critical function endows stem cells with vast potential therapeutic value, yet to date 

their application in the clinic remains limited due in part to an incomplete understanding 

of the molecular mechanisms and niche interactions that regulate stem cell function. 

 HSCs, which maintain the blood, are generally considered the best-characterized 

stem cell population, owing to their relative accessibility and early identification in 

landmark work by Till and McCulloch (1961) and others during and shortly after World 

War II. Sixty years later, the HSC transplant (HSCT) is the current standard of care for a 

variety of congenital and acquired hematological diseases, with over 50,000 performed 

per year globally (Gratwohl et al., 2010). 

However, the therapy remains plagued by rates of complications and mortality as 

high as 40-50%, depending on factors such as patient age and disease stage at time of 

treatment (Copelan, 2006; Juric et al., 2016). One major limitation to the success of 

HSCTs is the limited availability of suitable donor cells. While it is now established that a 

high level of histocompatibility matching is essential to transplant success, less than 30% 

of potential transplant recipients have an HLA-matched sibling (Copelan, 2006), and 

adult bone marrow donor registries currently fail to meet remaining demand. 

Transplantation of umbilical cord blood (UCB) from unrelated donors has therefore 

become a strategy to increase the pool of potential donors. An additional benefit of UCB 
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transplantation is that less stringent HLA-matching is necessary between donor and 

recipient compared to transplantation of adult peripheral blood or bone marrow. 

However, immune reconstitution is slower following UCB transplant compared to adult 

HSCT (Juric et al., 2016). In addition, the number of HSCs transplanted directly correlates 

with the probability of successful engraftment, and a single UCB unit contains a 

suboptimal number of HSCs to reconstitute the hematopoietic system of a full-sized adult 

(Hagedorn et al., 2014). Double-UCB unit transplantation accelerates neutrophil 

engraftment, improves overall engraftment, and post-transplant survival compared to 

single-unit transplantation. However, this strains cord blood bank resources and increases 

transplant costs, and ultimately a single unit dominates engraftment (Barker et al., 2005). 

The advent of targeted genome editing, such as by CRISPR/Cas9 technology, has 

made gene therapy a powerful potential application for HSCTs. Gene-corrected HSCs 

could be used for autologous HSCT in the treatment of monogenic hematopoietic 

disorders such as sickle cell anemia, Diamond-Blackfan anemia, and severe combined 

immunodeficiency. However, the relatively low efficiency of gene editing necessitates the 

availability of more HSCs (Watts et al., 2011). The ability to expand and maintain HSCs ex 

vivo would moreover be a powerful tool for deeper investigation of the molecular 

regulation of HSCs, as well as for disease modeling and drug screening. There remains 

thus a tremendous need for the ability to generate expanded numbers of HSCs. 

Approaches to expand HSCs 

 Multiple approaches are being pursued to produce or expand HSCs. The most 

direct scheme, ex vivo expansion of preexisting UCB HSCs, has yielded mixed success. 

Cytokine cocktails, either alone (Zhang et al., 2008) or in combination with small 

molecules (Boitano et al., 2010; Delaney et al., 2010; Chaurasia et al., 2014; Fares et al., 
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2014), appear to achieve expansion of phenotypic and functional HSCs. Non-cell-

autonomous feedback signaling likely limits this expansion, as factors inhibiting HSC self-

renewal are secreted during UCB cell culture (Kirouac et al., 2010). Zandstra and 

colleagues (Csaszar et al., 2012) have overcome the impact of this paracrine signaling by 

demonstrating expansion of serially transplantable UCB HSCs following “fed-batch” 

culture, in which culture volume is gradually, continuously increased to dilute secreted 

inhibitory factors. These results are collectively promising, but cytokine-based culture 

protocols likely promote expansion at the expense self-renewal, multilineage, and/or 

homing function (Szilvassy et al., 2001; Hofmeister et al., 2007; Chou et al., 2010). How 

robustly these advances hold true in the clinic remains to be seen. 

 A fundamental change in potential approaches to expand HSCs occurred when 

Yamanaka and colleagues reported transcription factor (TF)-mediated reprogramming of 

mouse and human fibroblasts to induced pluripotent stem cells (iPSCs) (Takahashi and 

Yamanaka, 2006; Takahashi et al., 2007). Significant effort has since been invested in 

directed differentiation of embryonic stem cells (ESCs) or iPSCs into HSCs. If successful, 

this approach would have the additional benefit over UCB HSC expansion of allowing for 

de novo generation of patient-specific HSCs for autologous transplant, thus removing the 

barrier of finding an HLA-matched donor for prospective transplant recipients. 

Endeavors to generate HSCs from pluripotent cells have been heavily guided by 

current knowledge of embryonic development of the hematopoietic system. In the 

vertebrate embryo, blood development occurs in two waves, termed primitive and 

definitive hematopoiesis. The primitive program, which originates in the yolk sac, is 

transient and gives rise to cells with myeloid, but not lymphoid, potential (Palis et al., 

1999). Definitive hematopoiesis is defined by the production of HSCs with full 

multilineage engrafting function and arises from hemogenic endothelium of the aortic-
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gonado-mesonephros (AGM) after primitive hematopoiesis (Medvinsky and Dzierzak, 

1996). Hematopoietic cells derived from iPSCs are transplantable, but chimerism is very 

low and/or restricted to the myeloid lineage (Lu et al., 2009; Gori et al., 2015). The limited 

multilineage potential of ESC/iPSC-derived hematopoietic cells indicates a failure to 

achieve definitive hematopoiesis in vitro and thus reveals incomplete recapitulation of 

complex embryonic developmental signals. 

Recent work by Daley and colleagues (Lu et al., 2016) achieves exciting progress 

on this front. Ectopic expression of HoxB4, a TF important in early embryonic patterning 

and HSC self-renewal, confers ESCs with long-term, multilineage hematopoietic 

engraftment potential (Kyba et al., 2002). However, these cells exhibit a myeloid bias, 

revealing the need for more robust induction of lymphoid potential. As Notch activation 

provided by the AGM during definitive hematopoiesis promotes HSC specification 

(Hadland et al., 2015), they added Notch ligand to their differentiation protocol and 

derived HSCs with robust lymphoid as well as myeloid potential (Lu et al., 2016). This 

modular approach to generating HSPCs represents a novel strategy in ongoing efforts to 

engineer clinically usable HSCs. 

 Another approach to generate HSCs de novo has been to reprogram somatic cells 

to HSCs. Bypassing a pluripotent intermediate would be an advantage because it avoids 

the risk of generating HSCs contaminated with potentially teratoma-generating cells. 

Successful direct conversion from one cell type to another has already been reported in 

numerous therapeutically relevant cell types (Yechoor et al., 2009; Ieda et al., 2010; Son 

et al., 2011), as well as between hematopoietic cell types (Xie et al., 2004; Laiosa et al., 

2006; Taghon et al., 2007). Such approaches have generally been based on combinations 

of TF expression, miRNA expression, and hematopoietic cytokine exposure (Daniel et al., 

2016). This strategy led to early success in reprogramming mouse fibroblasts, revealing 
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expression of Etv6, Fos, Gata2, and Gfi1b is sufficient to induce an HSC-like identity 

(Pereira et al., 2013). 

 From a developmental perspective, endothelial cells have been an attractive 

starting cell type for reprogramming to HSCs due to their close ontogenetic relationship. 

Enforced expression of four TFs (FOSB, GFI1, PU.1, and RUNX1) in human umbilical-vein 

endothelial cells reprograms them to a self-renewing HSC-like population capable of 

multilineage engraftment in serial transplant (Sandler et al., 2014). Importantly, this 

reprogramming additionally requires co-culture on an endothelial cell type that mimics 

the embryonic niche. Although the reprogrammed cells possess limited lymphoid 

potential, the relative success of this approach highlights the essential role of inductive 

cues supplied by the niche from which HSCs arise during development. 

 Committed hematopoietic cells have been another promising starting point for 

inducing conversion to HSCs, as in theory their hematopoietic identity may reduce the 

epigenetic barriers to reprogramming. Transient expression of six TFs (Hlf, Lmo2, Pbx1, 

Prdm5, Runx1t1, and Zfp37) imparts multilineage, long-term engraftment potential onto 

committed mouse myeloid and lymphoid progenitors (Riddell et al., 2014). Importantly, 

following transduction, the authors transplanted the cells for reprogramming to be 

completed in vivo. This strategy has the dual advantage of circumventing the need to 

maintain prospective induced HSCs ex vivo while also allowing the niche to provide 

additional inductive cues to further promote reprogramming. One drawback to partially 

in vivo induction, however, is that it impedes further characterization of the 

reprogramming process. 

 Many hurdles remain before these substantial advances are translated into the 

clinic. Each of these TF cocktails for HSC conversion bears little overlap with the others, 

likely reflecting the different species and starting cell types used in each study. Whether 



6 
 

these combinations of TFs are also effective in reprogramming other cell types will be an 

important question to answer. For example, fibroblasts could be preferable to blood cells 

as a starting point in autologous transplant of patients with acquired hematological 

disorders, as this would circumvent the need for corrective gene editing on top of 

reprogramming to HSCs. Leukemogenic transformation upon reprogramming poses an 

additional risk, as several of the TFs identified in the above studies are potent oncogenes. 

Finally, the preservation of HSC function ex vivo has posed a notoriously difficult 

challenge to the field. Maintaining HSCs once stem cell identity is achieved will therefore 

not be a trivial task. The recent development of a fully-defined recombinant serum that 

supports HSC culture may reduce experimental variability in these efforts (Ieyasu et al., 

2017). Combined, the outstanding questions highlight the continued need for a deeper 

understanding of the mechanisms behind HSC emergence, reprogramming, and 

maintenance. 

Cellular characterization of the HSC niche 

HSCs are capable of massive expansion in vivo, with a single stem cell able to 

reconstitute the hematopoietic system long-term in a mouse (Osawa et al., 1996). The 

number of transplantable HSCs in mouse bone marrow moreover increases 10-fold upon 

injection into lethally irradiated recipients (Iscove and Nawa, 1997). Yet despite this 

enormous potential in vivo, robust amplification of HSCs ex vivo without loss of self-

renewal capacity remains an elusive and challenging goal. The inability to induce their 

expansion or generation ex vivo highlights our insufficient identification of the signals that 

induce self-renewing proliferation in vivo. In-depth characterization of the HSC niche, the 

local tissue microenvironment in which HSCs reside, will be a major contribution toward 

defining the molecular network that regulates HSC maintenance and expansion. 
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Although developmentally HSCs arise from the AGM, the bone marrow is the 

primary site of postnatal hematopoiesis. Defining the precise niche that directly maintains 

and regulates HSCs has been challenging due to the difficulty of preserving structural 

integrity of the bone during sectioning, combined with the extensive panel of markers 

currently required to identify HSCs. Complex biological interactions between prospective 

niche cells compound these technical obstacles: genetic perturbation of multiple cell types 

in the bone marrow alters HSC number, function, and retention (Calvi et al., 2003; Zhang 

et al., 2003), yet an effect on HSCs does not necessarily indicate a direct relationship. 

Moreover, the niche is not defined by a single cell type; rather, the niche is the cumulative 

environment created by the integration of growth factors, cytokines, oxygen tension, and 

other factors presented directly and indirectly to resident HSCs by a range of neighboring 

cell types. Recent advances in lineage tracing, high-resolution microscopy, and cell type-

specific conditional deletion animal models have contributed significantly to our 

understanding of the complex cellular and molecular network responsible for HSC 

quiescence, proliferation, retention, and mobilization in vivo. 

The bone marrow contains both hematopoietic and non-hematopoietic cells. Bone-

forming osteoblasts reside at the endosteum, the interface between bone and bone 

marrow. Genetic manipulations that increase osteoblast number in mice also increase 

HSC number (Calvi et al., 2003; Zhang et al., 2003), and HSCs are observed next to 

osteoblasts that express angiopoietin-1, which promotes retention of quiescent HSCs to 

the bone marrow (Arai et al., 2004). Although subsequent studies have found these 

interactions to be indirect (Kiel et al., 2005; Kiel et al., 2007), these early results 

nonetheless provided initial evidence for an endosteal niche. 

The bone marrow is highly vascularized, with a particular enrichment of sinusoids 

near the endosteum (Nombela-Arrieta et al., 2013). Sinusoids are fenestrated venules that 
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allow passage of cells in and out of circulation. Evidence for a perivascular niche came with 

the identification of the SLAM family of markers as a means of visualizing in situ a 

population enriched for HSCs (45%) using a simple two-color stain (Kiel et al., 2005). This 

made it possible to localize most HSCs adjacent to sinusoids, but less frequently near the 

endosteum (Kiel et al., 2007). A possible link between these two potential niches was 

suggested by the discovery that most HSCs are in direct contact with cells expressing high 

levels of the chemokine CXCL12 (Sugiyama et al., 2006), which is required for HSC 

retention to the niche (Broxmeyer et al., 2005) and for engraftment following 

transplantation (Peled et al., 1999). Importantly, CXCL12-expressing cells either surround 

sinusoidal endothelial cells or are near the endosteum, suggesting a common mechanism 

for HSC retention to two niches (Sugiyama et al., 2006). 

As the HSC niche remained poorly defined, Morrison and colleagues (Ding et al., 

2012) aimed to identify the cellular source(s) of stem cell factor (SCF), a cytokine required 

non-cell-autonomously for HSC maintenance in vivo (Heissig et al., 2002; Czechowicz et 

al., 2007). They thus systematically induced deletion of Scf from candidate niche cell types 

and found that loss of Scf from hematopoietic, osteoblastic, and Nestin+ mesenchymal 

cells did not affect HSC frequency or function. HSCs were depleted from the bone marrow, 

however, when Scf was deleted either from endothelial cells or from Lepr+ mesenchymal 

cells surrounding sinusoids, and nearly all HSCs disappeared when both cell types lacked 

Scf (Ding et al., 2012). Intriguingly, the perivascular mesenchymal cells also expressed 

Cxcl12, supporting previous work reporting contact between HSCs and CXCL12-

producing cells surrounding sinusoidal endothelium (Sugiyama et al., 2006). Subsequent 

identification of Hoxb5 as a highly specific marker of long-term HSCs and in situ imaging 

of these cells in mouse bone marrow further confirmed the existence of a perivascular HSC 

niche (Chen et al., 2016). 
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 Accumulating evidence suggests that the perivascular niche may not be restricted 

solely to sinusoids. Silberstein and colleagues (Nombela-Arrieta et al., 2013) used three-

dimensional reconstruction of bone sections to perform high-resolution imaging of entire 

mouse femurs. They acquired high-throughput information on the positioning of HSCs 

(which authors defined as lineage-cKit+CD48-CD41-) throughout the bone marrow, 

revealing that most HSCs lie directly adjacent to the bone marrow vasculature. Contrary 

to previous work, however, these direct in situ imaging studies found most HSCs localized 

near the endosteum (Nombela-Arrieta et al., 2013; Kunisaki et al., 2013). Computer 

modeling further revealed that the apparently high association of HSCs with sinusoids that 

had been previously described is statistically random when accounting for the density of 

the sinusoidal vasculature. Instead, HSCs preferentially associate with endosteal 

arterioles, which comprise a smaller volume of the bone marrow. Strikingly, quiescent 

HSCs localize to arterioles, while HSC activation or mobilization promotes their 

redistribution to sinusoids (Kunisaki et al., 2013). Thus, the arteriolar milieu appears to 

represent an additional HSC niche, and this work more broadly supports a model in which 

HSC subsets reside in distinct niches (Boulais and Frenette, 2015). 

 Multiple biological and technical factors may resolve outstanding conflicting 

characterizations of the HSC niche. There is an increasing recognition of the functional 

heterogeneity of HSCs (Goodell et al., 2015). Complex panels of surface markers are 

moreover still required to enrich for putative HSCs. The relationship between various 

surface marker combinations and true functional output remains poorly understood, so 

seemingly conflicting results may reflect real differences between distinct HSC 

populations. HSCs observed at distinct sites within the bone marrow may moreover 

represent cells carrying out discrete functions, such as self-renewing versus mobilizing 

into circulation. The method of observation moreover has clear effects, as contradictory 
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results have been obtained from transplantation (Xie et al., 2009), induced deletion (Ding 

et al., 2012), and in situ visualization (Kunisaki et al., 2013) experiments. The tools 

available to characterize the niche have until recently been relatively crude, limited in large 

part by the difficulty in analyzing the rare HSC population among large cell numbers in 

tissue sections. Such technical limitations likely compound real biological variability. 

Despite dense vascularization, the hematopoietic niche is hypoxic (1-5% O2). 

Hypoxia limits aerobic respiration and reactive oxygen species (ROS) production and thus 

protects stem cells and their progeny from oxidative stress (Suda et al., 2011). The lowest 

oxygen tension has been measured in peri-sinusoidal regions of the bone marrow cavity, 

while the endosteum is less hypoxic due to a locally higher density of arterioles (Spencer 

et al., 2014). While local gradients in oxygen tension therefore exist within the bone 

marrow, it remains a suitably hypoxic setting in keeping with existing general models of 

the somatic stem cell niche. 

An additional factor in interpreting studies defining the HSC niche is that local 

oxygen tension changes dramatically following irradiation or chemotherapy due to 

damage to the vasculature (Spencer et al., 2014). Conditioning treatments prior to 

transplants therefore likely destroy the prospective niches to which HSCs might 

preferentially home upon transplantation. Such constraints may explain why HSCs are 

more frequently localized to the endosteum in irradiated transplant recipients but 

distribute randomly in non-irradiated recipients (Xie et al., 2009). This context-specific 

niche selection thus illustrates the need to characterize the niche employing assays that 

induce minimal perturbation of the gross tissue architecture. 

Significant questions persist about the HSC niche. The increasingly recognized 

biological heterogeneity of HSCs (Goodell et al., 2015), combined with remaining technical 

limitations to identifying pure HSC populations, likely contribute to some of the 
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inconsistent results reported. Distinct cues and microenvironments are likely required to 

support a range of functional outputs. Therefore, distinct niches may exist for HSCs of 

different cell cycle status or lineage bias (Ding and Morrison, 2013; Kunisaki et al., 2013). 

Additional niche-regulatory signaling from other cell types, including macrophages (Chow 

et al., 2011) and Schwann cells (Yamazaki et al., 2011), remains only superficially 

characterized. Future development of finer-resolution techniques will help resolve 

outstanding conflicting reports and further refine current understanding of the HSC niche. 

Finally, most progress in this aspect of HSC biology has been necessarily driven by studies 

in mouse. Parallel studies using human cells and humanized mouse models have 

contributed to our understanding of the human HSC niche, but significant additional work 

is required to identify the unique regulatory network in this setting and translate it to the 

clinic. 

The regulatory signaling network of HSCs 

 The role of the niche is to provide the signals to promote HSC quiescence, self-

renewal, mobilization, and differentiation as necessary to support lifelong blood 

production. A complex combination of cytokines, adhesion molecules, and other factors 

regulates intracellular signaling pathways to direct HSC fate decisions. Thus a thorough 

understanding of how these signaling pathways converge into a coherent regulatory 

network would significantly support efforts to drive HSC generation de novo or expansion 

ex vivo. 

 Early efforts to drive HSC expansion ex vivo with extrinsic factors focused largely 

on the addition of combinations of hematopoietic cytokines, commonly including SCF, 

thrombopoietin, and Flt3-ligand. Multiple cytokine cocktails have been reported to 

promote expansion of long-term HSCs from human UCB (Conneally et al., 1997; Zhang et 
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al., 2008; Wohrer et al., 2014), but none has yet translated into clinical use. Even currently 

reported small molecule-based expansion schemes still rely on the addition of a cocktail 

of cytokines (Boitano et al., 2010; Delaney et al., 2010; Chaurasia et al., 2014; Fares et al., 

2014). Such conditions are suboptimal for defining an HSC regulatory network because 

cytokines have complex, non-additive effects on HSC survival, proliferation, and selection 

of self-renewal versus differentiation (Knapp et al., 2017a). Different cytokine cocktails 

correspondingly activate or inhibit distinct signaling pathways (Knapp et al., 2017b). 

Cytokine culture is thus a complex system in which to deconstruct HSC fate decisions at 

the molecular level, highlighting the need for in-depth characterization of the influence of 

individual pathways on HSC fate decisions in a variety of contexts. 

 In addition to sensitivity to a range of cytokines, HSCs express receptors that can 

activate developmental signaling pathways, including Notch (Varnum-Finney et al., 1998), 

TGF-β (Yamazaki et al, 2011), Hedgehog (Bhardwaj et al., 2001), and Wnt (Austin et al., 

1997). However, how these pathways integrate into a coherent network that regulates HSC 

homeostasis remains unclear. 

An overview of canonical Wnt signaling 

Extensive evidence indicates a role for canonical Wnt/β-catenin signaling in 

development, adult stem cells, and cancer (Clevers, 2006; Wend et al., 2010; Bhavanasi 

and Klein, 2016). Wnts are a family of secreted glycoproteins that regulate multiple cell 

processes, including cell fate, proliferation, and polarity.  In the absence of Wnts, a large 

complex scaffolded by Axin facilitates glycogen synthase-3 (GSK-3) phosphorylation of β-

catenin and targets it for proteasomal degradation (Kitagawa et al., 1999) (Figure 1.1A). 

Upon Wnt binding to its cell surface receptor Frizzled (Fzd), GSK-3 is inhibited, allowing 

unphosphorylated β-catenin to accumulate and translocate to the nucleus, where it 
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activates the TFs TCF/LEF-1 to drive expression of target genes (Behrens et al., 1996) 

(Figure 1.1B). Canonical Wnt target genes include cell proliferation promoters Ccnd1 

(which encodes cyclin D1; Tetsu and McCormick, 1999) and Myc (He et al., 1998), as well 

as negative feedback regulators of the pathway Axin2 (Jho et al., 2002) and Dkk1 (Bafico 

et al., 2001). 

Canonical Wnt signaling regulates multiple pathways independently of β-catenin. 

The same Wnt/Fzd cascade that stabilizes β-catenin also activates the mammalian target 

of rapamycin complex 1 (mTORC1; Inoki et al., 2006), Hippo (Azzolin et al., 2014), and 

Wnt stabilization of proteins (Wnt/STOP; Acebron et al., 2014) pathways. These divergent 

outputs of Wnt signaling are less well characterized, but there is growing recognition of 

their role in normal and malignant physiology (Bhavanasi and Klein, 2016). 

mTORC1 is an evolutionarily conserved nutrient sensor that regulates cell 

metabolism, growth, and proliferation. GSK-3 enhances the activity of tuberous sclerosis 

complex 2 (TSC2), a negative regulator of mTORC1. Thus, Wnt inhibition of GSK-3 

relieves GSK-3 inhibition of mTORC1, promoting translation and cell proliferation 

independently of β-catenin-mediated transcription (Inoki et al., 2006). Correspondingly, 

pharmacologic or genetic inhibition of GSK-3 activates mTORC1 in multiple cell types, 

including HSCs (Huang et al., 2009) and ESCs (Mansi Shinde and Peter Klein, 

unpublished). This has particularly significant functional consequences for HSCs, as 

described below. 

Wnt signaling also regulates the Hippo pathway, a conserved regulator of organ 

size. Like Wnt/β-catenin signaling, Hippo signaling is regulated by the degradation or 

stabilization of transcriptional activators based on the activity of the destruction complex. 

Thus upon activation of the Wnt pathway, the Hippo transcriptional activators YAP/TAZ 

are released from the destruction complex and translocate to the nucleus to drive 
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transcription of Hippo target genes (Azzolin et al., 2014). Aberrant Wnt regulation of 

Hippo signaling contributes to tumorigenesis in multiple tissues, including small intestine 

(Cai et al., 2010), breast (Lim et al., 2016), and liver (Kim et al., 2017). 

Finally, β-catenin-independent Wnt/STOP has been recently identified as an 

important mechanism in cell division. Wnt-dependent phosphorylation targets many 

GSK-3 substrates for proteasomal degradation (Kim et al., 2009; Xu et al., 2009; Taelman 

et al., 2010). In proliferating cells, Wnt signaling peaks during the transcriptionally silent 

G2/M phase of the cell cycle (Olmeda et al., 2003). Over 100 candidate proteins have been 

identified whose polyubiquitylation depends on GSK-3 and that are stabilized upon 

mitotic Wnt signaling, increasing cellular protein content and size in preparation for 

division (Acebron et al., 2014). Wnt/STOP is additionally required for mitotic spindle 

assembly and faithful chromosome segregation (Stolz et al., 2015). 

Canonical Wnt signaling in HSCs 

Stem cells are defined by their dual capacity to both self-renew and give rise to 

differentiated cells. The balance between these two processes is essential to lifelong stem 

cell function, and by extension tissue maintenance and repair. Extensive evidence 

demonstrates a key role for Wnt/β-catenin signaling in embryonic, somatic, and cancer 

stem cells (Bhavanasi and Klein, 2016). While many reports support a role for Wnt 

signaling in the maintenance of HSCs, substantial unresolved contradictory evidence has 

accumulated, and the true role of Wnt signaling in HSC maintenance remains 

controversial. Given the range of distinct cascades downstream of canonical Wnt 

signaling, combined with the variety of approaches employed to investigate its role in HSC 

function, the key likely lies in a highly context-dependent role for the pathway. 
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Weissman and colleagues (Reya et al., 2003) demonstrated that Wnt/β-catenin 

signaling contributes to hematopoiesis with the finding that constitutively activated β-

catenin promotes HSC self-renewing proliferation and upregulates expression of HoxB4 

and Notch1, both of which had been previously implicated in HSC self-renewal 

(Antonchuk et al., 2002; Varnum-Finney et al., 2000). Transplantation of wild-type HSCs 

into Sfrp-null hosts (which lack the Wnt antagonist secreted frizzled-related protein 1) 

leads to a progressive decrease in HSC numbers (Renstrom et al., 2009), demonstrating a 

requirement for niche-mediated regulation of Wnt signaling. Endogenous HSCs moreover 

activate a TCF/LEF-1 reporter, indicating that HSCs respond to Wnt signaling in vivo 

(Reya et al., 2003). HSC culture with purified Wnt3a (combined with low doses of 

cytokines) induces proliferation of cells with multilineage engraftment potential, as 

demonstrated by competitive transplant (Willert et al., 2003), suggesting potential clinical 

applications for manipulation of Wnt signaling in HSCs. However, reconstitution was 

followed only up to six weeks post-transplant, and thus chimerism may have reflected 

engraftment by progenitors rather than by true HSCs. Nonetheless, these studies 

collectively provided early evidence for the Wnt pathway promoting HSC self-renewal. 

Some corresponding studies inhibiting Wnt signaling have yielded consistent 

results. Wnt3a-knockout mice die at embryonic day 12.5, but have reduced numbers of 

fetal liver HSCs which possess impaired repopulating function in serial transplant (Luis et 

al., 2009). Mice with embryonic deletion of Ctnnb1 (which encodes β-catenin) from the 

hematopoietic system are viable, but also have HSCs with severely impaired regenerative 

capacity (Zhao et al., 2007). Osteoblast overexpression of the secreted Wnt inhibitor Dkk1 

moreover results in loss of HSC quiescence and a progressive decline in regenerative 

capacity upon transplantation (Fleming et al., 2008), further supporting a role for Wnt 

signaling in HSC self-renewal and maintenance. 
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However, multiple studies have reported no hematopoietic phenotype upon 

deletion of β-catenin, either alone (Cobas et al., 2004) or in combination with deletion of 

the functionally related γ-catenin (Jeannet et al., 2008; Koch et al., 2008). Deletion of 

Porcn, which encodes an acyltransferase required for Wnt secretion and function (Tanaka 

et al., 2000), similarly has no effect on steady-state or regenerative hematopoiesis (Kabiri 

et al., 2015). Moreover in contrast to Reya et al. (2003), others observe that expression of 

a constitutively active β-catenin leads to a differentiation block in HSCs (Kirstetter et al., 

2006; Scheller et al., 2006). Such findings are difficult to reconcile with a requirement for 

Wnt signaling in HSC self-renewal. 

Potentially resolving some of the reported inconsistencies, Staal and colleagues 

(Luis et al., 2011) have elegantly proposed that Wnt signaling may regulate HSCs in a dose-

dependent manner. They used combinations of two hypomorphic alleles and conditional 

deletion of Apc, a negative regulator of Wnt signaling, to generate varying degrees of 

Wnt/β-catenin activation. This demonstrated that low levels of Wnt signaling promote 

HSC self-renewal and expansion in vivo, while moderate and high levels of Wnt signaling 

promote myeloid and T cell differentiation, respectively. Importantly, the highest level of 

Wnt activation leads to total loss of repopulating function in transplant. 

A nuanced review of the existing literature further clarifies some of the conflicting 

reports. Reya et al. (2003) reported self-renewal in HSCs sorted and transduced with a 

stabilized β-catenin construct. Importantly, to induce cell cycle entry for transduction 

while limiting differentiation, the authors used HSCs overexpressing the anti-apoptotic 

factor Bcl2 (Domen and Weissman, 2000). This study thus employed a tractable but 

highly artificial system in which the response to Wnt pathway activation may not 

necessarily reflect a biologically relevant response. In contrast, Scheller et al. (2006), who 

observed a differentiation block with constitutively active β-catenin, induced expression 
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of a stabilized β-catenin on top of endogenous Wnt/β-catenin signaling in adult mice in 

vivo. Careful characterization of the extent of Wnt pathway activation in distinct contexts 

may thus resolve these conflicting observations and perhaps lend further support to the 

dose-dependence model of Wnt regulation of HSC function. 

An additional factor likely contributing to the divergent observations reported is 

the developmental time point at which the Wnt pathway is manipulated. A self-renewal 

defect in HSCs is described when Ctnnb1 is excised prenatally (Zhao et al., 2007), but not 

when deletion is induced in adult mice (Cobas et al., 2004; Jeannet et al., 2008; Koch et 

al., 2008). Importantly, Wnt reporter activity is observed even in the absence of β-catenin 

and γ-catenin (Jeannet et al., 2008), suggesting a potential catenin-independent 

mechanism for transduction of Wnt signaling. As β-catenin establishes poised chromatin 

architecture at Wnt-responsive regulatory elements in development (Blythe et al., 2010), 

it is possible that β-catenin is required during HSC ontogeny to initially define responsive 

chromatin architecture, but it is dispensable in adult life provided β-catenin-dependent 

epigenetic marks are maintained. 

Canonical Wnt signaling is implicated in the regulation of self-renewal and 

differentiation of a variety of stem cell populations during homeostasis, tissue 

regeneration, and oncogenesis. The extensive literature on the role of Wnt/β-catenin 

signaling specifically in HSC function demonstrates the need for highly systematic, 

context-specific investigation and nuanced interpretation of new results. Yet despite this 

already-detailed characterization of the effects of Wnt pathway manipulation on HSCs, 

precisely how the Wnt pathway instructs HSC fate decisions remains relatively poorly 

defined.  Identifying the downstream effectors that direct distinct HSC programs will yield 

important insights into how the Wnt pathway contributes to the signaling network 

underlying HSC homeostasis. 
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An overview of mTORC1 signaling 

As introduced above, mTORC1 is an essential nutrient sensor and regulator of 

metabolism that is regulated in part through GSK-3 activation of the TSC1/2 complex. 

Cells rely on a complex signaling network that includes mTORC1 to integrate nutrient and 

energy availability with the production or digestion of cellular components such as 

proteins, lipids, and nucleic acids. mTORC1 regulates transcription of a broad metabolic 

gene network (Duvel et al., 2010), but plays an especially central role in regulation of 

cellular metabolism at the level of protein synthesis and catalysis. Dysregulation of this 

vital process can have disastrous consequences in development, homeostasis, and disease. 

In addition to GSK-3, the phosphoinositide 3-kinase (PI3K)/Akt pathway is a 

major regulator of mTORC1. Signals such as growth factors, nutrients, and appropriate 

oxygen tension recruit PI3K to the plasma membrane, where it phosphorylates PIP2 to 

PIP3 (Vanhaesebroeck and Waterfield, 1999), which itself recruits PDK1 and Akt to the 

plasma membrane (Kandel and Hay, 1999). This process is inhibited by phosphatase and 

tensin homolog (Pten), which dephosphorylates PIP3 to PIP2 (Vazquez et al., 2006). PDK1 

phosphorylates Akt, promoting Akt inhibition of the TSC1/2 complex (Kandel and Hay, 

1999). TSC1/2 is one of the primary inhibitors of mTORC1, and thus PI3K/Akt signaling 

activates mTORC1 to promote cell survival, growth, and proliferation (Figure 1.2). 

mTORC1 promotes cell growth largely through stimulation of translation. The 

best-characterized substrates of mTORC1 are thus the 40S ribosomal protein S6 kinases 

(S6Ks) and the eukaryotic translation initiation factor 4E-binding proteins (4E-BPs), both 

important regulators of translation initiation (Hay and Sonenberg, 2004). mTORC1 

phosphorylation of S6K promotes S6K activation of multiple translation initiation factors, 

including ribosomal protein S6 (Isotani et al., 1999). mTORC1/S6K signaling also induces 

ribosomal gene transcription (Hannan et al., 2003; Xiao and Grove, 2009), further 
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promoting ribosomal biogenesis and increasing translational capacity. Under conditions 

of low mTORC1 activation, hypophosphorylated 4E-BP competes with eukaryotic 

translation initiation factor 4G (eIF4G) to bind and inhibit eukaryotic translation 

initiation factor 4E (eIF4E). Activated mTORC1 phosphorylates 4E-BP residues Thr37 and 

Thr46. These phosphorylation events are not sufficient to induce 4E-BP dissociation from 

eIF4E. However, they are required priming events for subsequent additional 

phosphorylation events that ultimately lead to 4E-BP release, allowing eIF4E-eIF4G 

interaction and recruitment of the complex to the 5’ cap structure of mRNA (Gingras et 

al., 1999; Gingras et al., 2001). 

As mTORC1 activity is coupled to cellular energetic availability and demand, 

mTORC1 additionally promotes mitochondrial biogenesis and oxidative phosphorylation 

activity, through both translation-dependent and -independent mechanisms. mTORC1 

inhibition of 4E-BP stimulates mitochondrial biogenesis by selectively promoting 

translation of nuclear-encoded mitochondrial protein genes (Morita et al., 2013). 

mTORC1 is moreover required for activation of PGC1α, a major transcriptional coactivator 

of nuclear-encoded mitochondrial genes (Cunningham et al., 2007; Blattler et al., 2012). 

The mTORC1 inhibitor rapamycin correspondingly reduces mitochondrial gene 

expression, membrane potential, and oxygen consumption (Paglin et al., 2005; 

Cunningham et al., 2007). 

In addition to promoting cell growth and metabolism under nutrient-replete 

conditions, mTORC1 supports survival during starvation by activating autophagy. 

Autophagy also serves as an intracellular quality control mechanism for the turnover of 

damaged proteins and organelles. The general process of macroautophagy is the cellular 

recycling mechanism whereby autophagic vesicles (autophagosomes) envelop cytoplasmic 

proteins and organelles and fuse with the lysosome. Autophagosome contents are thus 
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degraded to free amino acids and lipids to support the ongoing biosynthetic needs of the 

cell in the absence of exogenous or de novo-produced building blocks (Rabinowitz and 

White, 2010). Selective autophagy of mitochondria, ribosomes, and endoplasmic 

reticulum (termed mitophagy, ribophagy, and reticulophagy, respectively) has been 

described, but how specific cargoes are targeted to the pathway remains poorly 

characterized (Cebollero et al., 2012; Joshi and Kundu, 2013). mTORC1 inhibition of 

autophagy is twofold:  it phosphorylates Ulk1, preventing autophagosome assembly (Jung 

et al., 2009), and it phosphorylates the master TF of lysosomal biogenesis TFEB, 

sequestering it in the cytosol and preventing transcription of genes required for autophagy 

(Roczniak-Ferguson et al., 2012; Settembre et al., 2012). 

As translation is considered one of the most energy-consuming processes in the 

cell (Hay and Sonenberg, 2004), the rate at which it proceeds must be tightly coupled with 

nutrient availability. Control of mitochondrial biogenesis and lipid synthesis is similarly 

essential to enacting a stimulus-appropriate metabolic program. Conversely, autophagy 

serves in part to generate biosynthetic materials in the absence of sufficient extracellular 

supply. Combined, these major regulatory targets of mTORC1 signaling exert reciprocal 

control on cellular energy consumption and production. 

mTORC1 signaling in HSCs 

As described above, HSCs reside in a low-perfusion, reduced-nutrient niche in the 

bone marrow. This localization underscores nutrient-sensing and more broadly metabolic 

adaptation to this microenvironment as a vital function. HSCs must additionally maintain 

a primarily quiescent state to prevent proliferation-induced exhaustion. Consistently, 

multiple lines of evidence suggest that mTORC1 signaling is low in HSCs under 

homeostatic conditions. A thorough understanding of mTORC1 pathway regulation of 
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HSC function and fate decisions will be instrumental in the clinic to induce HSC expansion 

without concomitant loss of long-term repopulating function. 

Consistent with HSC residence in a hypoxic niche (Parmar et al., 2007; Spencer et 

al., 2014), HSCs stably express the oxygen-sensitive TF HIF1α (Takubo et al., 2010). HIF1α 

promotes expression of hypoxia-inducible genes, including those related to glycolysis 

(Semenza, 2013). HSCs correspondingly exhibit a glycolysis-dependent metabolic profile 

(Simsek et al., 2010), as well as low mitochondrial mass and membrane potential (Mantel 

et al., 2010) compared to more committed progenitor populations and whole bone 

marrow. mTORC1 promotes HIF1α translation (Duvel et al., 2010) and may thus partially 

mediate HIF1α regulation of HSC metabolism. Notably, HSCs retain their distinct 

metabolic profile for hours after isolation from the bone marrow (Simsek et al., 2010). 

This suggests that this reduced metabolism may not be simply an adaptation to the niche, 

but rather an intrinsic property of HSCs. 

More direct evidence for low mTORC1 signaling in HSCs at homeostasis comes 

from loss-of-function studies of multiple negative regulators of mTORC1. Deletion of Pten 

(Lee et al., 2010), GSK-3 (Huang et al., 2009), or Tsc1 (Chen et al., 2008; Gan et al., 2008) 

leads to HSC proliferation, followed by exhaustion and in some cases leukemia (Lee et al., 

2010; Guezguez et al., 2016). HSCs expressing a constitutively activated Akt similarly 

exhibit transient expansion that ultimately leads to impaired engraftment potential and 

leukemia (Kharas et al., 2010). Loss of Tsc1 additionally increases mitochondrial 

biogenesis and intracellular levels of ROS, consistent with mTORC1 activation. In vivo 

administration of an antioxidant, however, preserves HSC number and engraftment 

potential, indicating that the TSC/mTORC1 pathway maintains HSC function at least in 

part through restricting ROS levels (Chen et al., 2008). 
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Although these results collectively establish a clear requirement for low mTORC1 

signaling in the maintenance of HSC function, full inactivation of mTORC1 signaling also 

causes significant hematopoietic defects. Deletion of Raptor, a regulatory component of 

mTORC1 that is required for the complex to function, causes accumulation of immature 

progenitors and non-lethal pancytopenia. Although HSC frequency is not affected, 

Raptor-knockout cells fail to regenerate the hematopoietic system following transplant or 

sub-lethal irradiation (Kalaitzidis et al., 2012). Akt1/2 double-knockout HSCs are 

consistently more quiescent and have lower levels of ROS than wild-type and fail to 

reconstitute transplant recipients. Pharmacological restoration of ROS levels rescues the 

differentiation defect, indicating that some level of Akt activation and ROS is required for 

HSC function (Juntilla et al., 2010). 

Extensive evidence demonstrates a role for mTORC1 signaling in HSC 

maintenance and regenerative capacity. The defects in hematopoiesis observed in 

response to either hyperactivation or inhibition of the pathway reveal differential 

requirements for it at distinct stages of hematopoiesis. Low mTORC1 signaling appears to 

be required for maintenance of quiescent HSCs, in part through promoting a glycolytic 

metabolism and restricting mitochondrial content and ROS production in the hypoxic 

niche. mTORC1 activation may be necessary, however, to promote the extensive 

proliferation that progenitors must undergo to regenerate the hematopoietic system 

following injury and to support long-term blood production. The correct level of mTORC1 

signaling must therefore be achieved to balance HSC maintenance and proliferation. 

Convergence of the GSK-3 and mTORC1 pathways 

 TSC1/2, a GTPase-activating factor that inhibits mTORC1 (Shaw and Cantley, 

2006), is sequentially phosphorylated by AMP-activated protein kinase (AMPK) and GSK-
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3 (Inoki et al., 2006). This phosphorylation maintains TSC1/2 suppression of mTORC1 

activity, and inhibition of either AMPK or GSK-3 activates mTORC1. Although Wnts 

inhibit GSK-3, GSK-3 regulation of mTORC1 is independent of β-catenin (Inoki et al., 

2006). 

 The convergence of the Wnt and mTORC1 pathways has considerable implications 

for stem cells, which must balance signals promoting self-renewal (such as Wnts) and 

proliferation (mTORC1) to minimize mutation acquisition and exhaustion. This crosstalk 

between the Wnt and mTORC1 pathways has likely contributed to some of the inconsistent 

observations reported regarding the effect of Wnt signaling on stem cells, and supports a 

nuanced characterization of how both pathways regulate stem cell function. Transient 

GSK-3 inhibition and consequent mTORC1 activation may enhance stem cell function in 

the short-term. In vivo pharmacological inhibition of GSK-3 in murine HSC transplant 

recipients significantly increases donor-derived chimerism. Notably, this treatment 

expands the progenitor fraction, but HSC numbers remain constant, and correspondingly 

no enhanced reconstitution potential is observed in secondary transplant (Trowbridge et 

al., 2006). 

In contrast, persistent mTORC1 activation from longer-term loss of GSK-3 leads to 

stem cell proliferation followed by exhaustion. Primary recipients of Gsk3-depleted HSCs 

show expansion in the HSC fraction of BM. Secondary recipients, however, exhibit 

progressive depletion of HSCs (Huang et al., 2009).  Importantly, recipient bone marrow 

shows both stabilization of β-catenin and increased phosphorylation of S6.  These results 

are consistent with a role for Wnt/β-catenin signaling in maintenance of the HSC pool, 

but also demonstrate that mTORC1 is activated in Gsk3-depleted cells. Administration of 

rapamycin to transplant recipients preserves Gsk3-depleted HSCs, confirming that this 

exhaustion is mTORC1-dependent. This two-step phenotype has also been demonstrated 
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in epidermal stem cells (Castilho et al., 2009), suggesting that the mechanism may exist 

more broadly in additional stem cell populations. 

Proposed model for GSK-3 and mTORC1 regulation of HSC maintenance 

These results indicate a dual role for GSK-3 in HSC homeostasis: GSK-3 inhibition 

of Wnt/β-catenin inhibits self-renewal, while GSK-3 inhibition of mTORC1 inhibits 

lineage commitment. Inhibition of GSK-3 alone is therefore predicted to activate both 

pathways, yielding the observed initial expansion and ultimate depletion of HSCs. The 

Klein laboratory has proposed a model in which simultaneous inhibition of GSK-3 and 

mTORC1 may inhibit lineage commitment while promoting self-renewal (Figure 1.3). If 

this is the case, then this model deconstructs the aggregate network that maintains HSCs 

down to the minimal signals required to sustain HSC function. This would be a significant 

advance, as the complex and incompletely defined niche in which HSCs reside in the bone 

marrow has constrained efforts to define this network in vivo. The development of a model 

system that could maintain HSCs ex vivo under defined conditions would allow further 

identification of specific targets that mediate HSC maintenance. More precise definition 

of the signaling network that maintains HSCs will moreover provide rationale for ongoing 

efforts to expand HSCs ex vivo for both research and clinical applications. 

Conclusion 

 The clinical potential of HSCs has been recognized for over a half century, yet 

substantial barriers remain before this full potential is achieved. One such barrier has been 

an incomplete characterization of the signaling network that generates, maintains, and 

expands HSCs throughout life. The Wnt/β-catenin and mTORC1 pathways are central 

components of this network, although their functional consequences are complex and 

context-specific. More precise identification of the targets of these pathways in the 
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regulation of HSC function will yield important insights toward expanding their successful 

use in the clinic.  
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Figure 1.1: The Wnt/β-catenin pathway. (A) In the absence of Wnts, Axin, CK-1a, 

GSK-3, and APC form the β-catenin destruction complex. Sequential phosphorylation of 

β-catenin by CK-1a and GSK-3 in the destruction complex targets β-catenin for 

proteasomal degradation. (B) On Wnt binding to the Fzd/LRP co-receptors, Axin is 

recruited to LRP and the complex is inactivated. Unphosphorylated, stabilized β-catenin 

accumulates and translocates to the nucleus, where it activates TFs TCF/LEF to promote 

transcription of Wnt target genes. 

 

  



27 
 

Figure 1.2: The PI3K/Akt/mTORC1 pathway. Signals including growth factors and 

nutrients recruit PI3K to the plasma membrane. PI3K phosphorylates PIP2 to PIP3, which 

recruits PDK1 and Akt to the plasma membrane. Pten inhibits this process by 

dephosphorylating PIP3 to PIP2. PDK1 activation of Akt promotes Akt inhibition of 

TSC1/2, relieving TSC1/2 inhibition of mTORC1 signaling. mTORC1 promotes cell growth 

and metabolism through a variety of effector pathways. 
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Figure 1.3: Proposed model for GSK-3 and mTORC1 regulation of HSCs. GSK-

3 regulates two antagonistic pathways in HSCs. GSK-3 inhibition of Wnt/β-catenin 

signaling inhibits self-renewal, while GSK-3 inhibition of mTORC1 inhibits lineage 

commitment. Inhibition of GSK-3 activates both pathways. Simultaneous inhibition of 

GSK-3 and mTORC1 may therefore block HSC lineage commitment while promoting self-

renewal. 
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CHAPTER 2: HSC MAINTENANCE VIA GSK-3 AND MTORC1 INHIBITION 

The data presented in this chapter were published in Nature Medicine (Huang et al., 

2012). 

Introduction 

 HSCs support lifelong maintenance of the blood at homeostasis and following 

injury. They are an important model system in the study of stem cells and widely used in 

the clinic to treat hematopoietic malignancies and bone marrow failure (Purton and 

Scadden, 2007). Extensive effort has been invested in promoting HSC expansion ex vivo, 

both to facilitate further characterization in basic research and to improve clinical 

outcomes and broaden potential therapeutic applications. However, HSCs in vivo rely on 

a panoply of signals from their microenvironment to sustain their function. An incomplete 

understanding of the signaling network that maintains HSCs has significantly constrained 

the ability to maintain or expand HSCs beyond the niche (Lymperi et al., 2010). 

 HSCs reside in a hypoxic, low-perfusion niche (Parmar et al., 2007; Spencer et al., 

2014), emphasizing the importance of nutrient-sensing in HSC homeostasis. The 

evolutionarily conserved nutrient sensor mTORC1 integrates diverse signals including 

nutrient availability, mitogenic stimuli, and oxygen tension, and the mTORC1 signaling 

pathway is correspondingly vital to HSC maintenance. Loss of function of multiple 

negative regulators of mTORC1, including Pten (Lee et al., 2010), Gsk3 (Huang et al., 

2009), and Tsc1 (Chen et al., 2008), leads to HSC proliferative exhaustion and in some 

instances leukemia (Lee et al., 2010; Guezguez et al., 2016). These observations identify 

low mTORC1 signaling as an essential component of the network that maintains HSCs. 

 Extensive literature additionally implicates the Wnt/β-catenin pathway in the 

regulation of HSCs, particularly in promoting self-renewal (Reya et al., 2003; Willert et 
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al., 2003), although this role remains controversial. Embryonic deletion of Wnt3a (Luis et 

al., 2009) or of Ctnnb1 (which encodes β-catenin) (Zhao et al., 2007) impairs HSC self-

renewal. However, deletion of Ctnnb1 in adult mice produces no hematopoietic phenotype 

(Cobas et al., 2004; Jeannet et al., 2008; Koch et al., 2008), and expression of a 

constitutively active β-catenin causes a differentiation block (Kirstetter et al., 2006; 

Scheller et al., 2006). The effect of Wnt/β-catenin signaling on HSCs is thus context-

dependent. 

 Interpretation of the effect of Wnt signaling on HSCs is complicated in part by 

crosstalk with other pathways. For example, Wnt signaling activates mTORC1 

independently of β-catenin (Inoki et al., 2006). The dual activation of β-catenin and 

mTORC1 by Wnts may therefore explain why GSK-3 inhibition leads to transient 

expansion (Trowbridge et al., 2006) followed by mTORC1-dependent depletion of HSCs 

(Huang et al., 2009). The Klein laboratory therefore tested the hypothesis that activating 

Wnt/β-catenin signaling and mimicking restricted nutrient availability would together 

promote the self-renewal pathway while blocking the lineage commitment pathway. In 

support of this model, we found that simultaneous inhibition of GSK-3 and mTORC1 

supports the maintenance of long-term HSC function ex vivo in the absence of serum or 

exogenous cytokines (Huang et al., 2012). This work identifies a signaling network that 

maintains HSCs and describes the first method to maintain HSCs beyond the niche under 

completely defined conditions. This method therefore represents a valuable tool to 

interrogate the signals that maintain HSC function, as well as a potential platform to 

screen for compounds that induce expansion ex vivo. 
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GSK-3 and mTORC1 inhibition maintains HSC multilineage potential 

 Previous work from the Klein laboratory (Huang et al., 2009) reported a two-step 

phenotype in bone marrow depleted of Gsk3a/b: primary recipients of these cells exhibit 

enhanced donor-derived chimerism compared to wild-type, but secondary and tertiary 

recipients experience a progressive decline in HSC function. Donor-derived cells display 

increased S6 phosphorylation, indicating mTORC1 activation in the absence of GSK-3. 

Administration of the mTORC1 inhibitor rapamycin to secondary transplant recipients 

preserves HSC function, demonstrating that the progressive hematopoietic failure is 

mTORC1-dependent. mTORC1 inhibition therefore sustains HSC function in the context 

of Wnt pathway activation in vivo (Huang et al., 2009). 

 As these studies were performed in vivo, we could not rule out the possibility that 

additional factors from the microenvironment may have contributed to HSC maintenance 

in the context of dual GSK-3 and mTORC1 inhibition. To address this question, we tested 

whether combined inhibition of GSK-3 and mTORC1 was sufficient to maintain HSCs ex 

vivo under completely defined conditions. We cultured cKit+ bone marrow cells, which are 

enriched for hematopoietic stem and progenitor cells (HSPCs), for 7 days in serum-free, 

cytokine-free medium supplemented only with the GSK-3 inhibitor CHIR99021 and 

rapamycin (CR), followed by functional assessment (Figure 2.1A). Induction of the Wnt 

target gene Axin2 in CHIR99021-treated cKit+ cells (with or without rapamycin) 

confirmed activation of Wnt/β-catenin signaling under these conditions (Figure 2.1B). 

As a preliminary test of hematopoietic potential after cytokine-free culture, we 

seeded cKit+ cells at three concentrations onto stromal cells that support hematopoietic 

differentiation (Holmes and Zuniga-Pflucker, 2009). Each concentration was co-cultured 

in triplicate wells. After two serial passages over 21 days in this stromal co-culture, we 

performed flow cytometry for hematopoietic lineage markers. This analysis revealed that 



32 
 

CR-cultured HSPCs retained multilineage potential, while vehicle-cultured cells did not 

(Figure 2.1C,D). 

 The cKit+ fraction of the bone marrow is a highly heterogeneous population, so we 

repeated these experiments in Lin-Sca1+cKit+ (LSK) cells, which are more highly enriched 

for HSPCs. We cultured LSK cells for 7 days in CR without serum or cytokines, and then 

transferred the cells to stromal co-culture for 21 days. Flow cytometric analysis again 

demonstrated both myeloid and lymphoid potential of CR-cultured HSPCs, which was 

absent from vehicle-cultured cells (Figure 2.1E). 

Conclusion 

 These results provided initial proof of principle that GSK-3 and mTORC1 

inhibition is sufficient to sustain at least some hematopoietic function ex vivo. CR-

cultured HSPCs gave rise to both myeloid and lymphoid cells, indicating multilineage 

potential. However, stromal co-culture may allow non-physiological lineage commitment 

of hematopoietic cells (Richie Ehrlich et al., 2011) and is not a definitive test of HSC 

function. In addition to multilineage differentiation, HSC function must also be 

demonstrated by the capacity to self-renew. As the current gold standard to confirm these 

dual properties is bone marrow transplantation, the first author subsequently performed 

serial transplantation of cultured cKit+ cells into irradiated recipients. CR-cultured HSPCs 

gave rise to multilineage chimerism and engrafted primary, secondary, and tertiary 

recipients, demonstrating robust self-renewal capacity (Huang et al., 2012). The first 

author additionally identified β-catenin as an essential mediator of this signaling network, 

as Ctnnb1-knockout cKit+ cells cultured in CR failed to generate hematopoietic cells in 

stromal co-culture. Importantly, human UCB CD34+ cells cultured in CR also gave rise to 

multilineage chimerism in serial transplant, indicating that this signaling network 
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supports both murine and human HSC maintenance. Taken together, this work shows that 

the combination of Wnt pathway activation and mTORC1 inhibition supports the 

maintenance of long-term, self-renewing HSCs in defined, cytokine-free conditions. 

 These findings identify a minimal set of signals required to maintain HSC function 

beyond the niche. The defined conditions described here thus establish a novel system in 

which to interrogate the signals that mediate HSC maintenance. Hematopoietic cytokines 

seem to be essential for the survival of HSPCs beyond the niche, but they likely promote 

proliferation at the expense of self-renewal (Hofmeister et al., 2007; Chou et al., 2010). 

Combinations of cytokines additionally interact in often synergistic (non-additive) ways 

(Ahsberg et al., 2010; Knapp et al., 2017b), confounding interpretations of molecular and 

functional responses to cytokine treatment. The finding here that GSK-3 and mTORC1 

inhibition maintains HSCs in the absence of cytokines provides a novel platform that 

allows the culture of HSCs under defined conditions, substantially simplifying in-depth 

characterization of the signaling network that regulates HSC function. 

 In summary, we reported that simultaneous Wnt activation and suppressed 

nutrient-sensing by mTORC1 is sufficient to maintain HSC function in the absence of 

serum or exogenous cytokines. This model culture system identifies a minimal signaling 

network required to maintain HSCs and lays the groundwork for testing additional 

compounds that, in combination with GSK-3 and mTORC1 inhibition, might promote HSC 

expansion while preserving self-renewal. A thorough understanding of the mechanism of 

GSK-3/mTORC1-inhibition-mediated maintenance will yield substantive insight toward 

additional pathways to target in the search for conditions that will promote such 

expansion. Although Wnt/β-catenin signaling is required for this maintenance, defining 

additional downstream effectors by which GSK-3 and mTORC1 inhibition maintains HSC 

function is an important goal of follow-up work.  
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Figure 2.1: Multilineage potential of HSPCs cultured with GSK-3 and mTORC1 

inhibitors. 
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Figure 2.1: Multilineage potential of HSPCs cultured with GSK-3 and mTORC1 

inhibitors. (A) Experimental design. Mouse cKit+ or LSK cells were cultured in cytokine-

free medium with vehicle or CR for 7 days and then either plated on OP9 or OP9-Dl1 

stromal cells or transplanted into lethally irradiated mice. Flow cytometry was performed 

after 3 weeks of co-culture or 4 months after transplantation. Hematopoietic cells were 

distinguished from OP9 cells (which are GFP+) by gating on the CD45.2+GFP- population. 

(B) Mouse cKit+ cells were harvested and treated for 12 hours with DMSO, CHIR99021, or 

CR. Expression of the Wnt target gene Axin2 was measured by RT-PCR. (C) Effect of CR 

on cKit+ cells after 7 days in culture. After 7 days of cytokine-free culture, cKit+ cells were 

serially diluted and plated on OP9 stromal cells. After 3 weeks of co-culture, flow 

cytometry for hematopoietic cells was performed, and number of positive wells out of total 

wells was counted. Wells with >1% myeloid lineage out of the total number of viable cells 

were scored as positive. (D,E) Representative flow cytometry data (left panels) and 

quantification of myeloid, B, and T lineages (right panels) from cKit+ (D) or LSK (E) cells 

that were cultured for 7 days, plated on OP9 or OP9-DL1 cells, and assessed for myeloid 

(OP9), B, and T (OP9-Dl1) lineage markers. Cultured hematopoietic cells were plated on 

stromal cells in triplicate wells. Histograms represent the mean value from three wells 

(error bars, S.D.). (The overall experiment was performed twice.) 
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CHAPTER 3: TRANSCRIPTION PROFILING IN HSC MAINTENANCE 

Introduction 

 HSCs rely on a range of cues from the niche to sustain their function and to instruct 

cell fate decisions. Parsing out individual contributions of these stimuli in vivo to define 

the signaling network that maintains HSCs has therefore presented a major challenge to 

the study of HSC biology, moreover compounded by interactions between these stimuli. 

An incomplete understanding of these cues has furthermore precluded development of 

controlled conditions ex vivo to characterize these pathways. A deeper characterization of 

this network will inform the investigation of signals regulating HSC homeostasis both in 

vivo and in the context of ex vivo expansion for research and clinical applications. 

 We showed previously that simultaneous inhibition of GSK-3 and mTORC1 

maintains HSC function ex vivo without the need for serum or exogenous cytokines 

(Huang et al., 2012). This is the first time HSCs have been maintained ex vivo in the 

absence of cytokines. Cytokines historically have been used to culture HSCs, but at the 

expense of concomitant lineage commitment (Hofmeister et al., 2007; Chou et al., 2010). 

The novel culture conditions we described therefore represent a defined system in which 

to interrogate a signaling network that maintains HSCs. Although β-catenin is required 

for this maintenance, the mechanism by which GSK-3 and mTORC1 inhibition maintains 

HSCs remains otherwise unclear. I therefore proposed transcriptional profiling of HSCs 

preserved under these conditions as a means to characterize this maintenance program in 

a defined setting, isolated from complex and interacting inputs from the niche. 

Specifically, I aimed to compare the gene expression profiles of freshly isolated HSCs and 

of HSCs cultured with vehicle, GSK-3 inhibitor CHIR99021, mTORC1 inhibitor 

rapamycin, or both (CR). I predicted that CR-maintained HSCs would have a 
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transcriptional profile that was distinct from vehicle- or single-treated cells, and that 

components of this profile would be required for the maintenance of HSC function. 

Reduced RNA content in cultured HSCs 

 Quiescent (G0) cells can be identified in part by a lower RNA content compared to 

actively cycling cells (Holyoake et al., 1999; Challen et al., 2009). HSCs correspondingly 

contain less total RNA than progenitors (Signer et al., 2014). Quiescent murine HSCs 

(Huttmann et al., 2001) and satellite cells of the skeletal muscle (Fukada et al., 2007) 

additionally contain less RNA than their activated counterparts, as measured by staining 

for the RNA dye pyronin Y. Aged human HSCs, which are less quiescent than young HSCs, 

are also correspondingly more frequently in the pyronin Y-high fraction than young 

human HSCs (Pang et al., 2011). Consistent with these reports, I observed that freshly 

isolated HSCs contain less total RNA per cell than hematopoietic progenitor cells (Lin-

Sca1-cKit+ [LK]; HPCs), as measured by nanofluidic electrophoresis (Figure 3.1A). I 

additionally discovered that RNA was undetectable in cells after 3 days of culture (as 

described in greater detail in Chapter 4), regardless of treatment. Importantly, cellular 

RNA was undetectable despite recovery of up to 70% of an mRNA spiked into each sample 

at the time of cell lysis (Figure 3.1B), indicating that RNA was stable during isolation. 

CR-cultured cells were moreover viable, as they excluded Trypan blue and engrafted in 

transplant recipients (as detailed in Chapter 4). I therefore conclude that the lack of RNA 

recovery from cultured HSCs does not represent a technical limitation, but rather an 

intriguing biological process associated with hematopoietic cells in cytokine-free culture. 

RNA-seq on HSCs maintained ex vivo 

To overcome the limitation of vanishingly small quantities of RNA in cultured 

HSCs, I adapted an aRNA amplification protocol designed to permit transcriptome 
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analysis of single cells (Morris et al., 2011). Briefly, polyadenylated RNAs serve as the 

template to generate double-stranded cDNA into which a T7 RNA polymerase promoter is 

incorporated. An in vitro transcription reaction with T7 RNA polymerase then produces 

antisense transcripts (aRNA). This process is performed for two to three rounds, with 

slight technical modifications following the first round to use the aRNA as template. In 

theory, the method produces linear amplification of polyadenylated transcripts, 

preserving the relative abundance of components of the transcriptome and generating 

sufficient material for RNA-seq analysis. With a potential solution to the limited quantity 

of RNA in cultured HSCs, I performed gene expression profiling in these cells. 

 I sorted HSCs for RNA isolation either immediately after sorting or following 3 

days in culture under defined conditions as described (Huang et al., 2012). Cultured cells 

were treated with vehicle, CHIR99021, rapamycin, or both. Following RNA isolation, all 

samples underwent three rounds of aRNA amplification, and aRNA was provided to the 

Perelman School of Medicine Next-Generation Sequencing Core for library preparation 

and RNA-seq. I completed five biological replicates of this analysis. 

 As an initial assessment of the gene expression profiles, I assessed principal 

component analysis (PCA). Although most samples clustered closely together, PCA 

showed several experimental outliers (Figure 3.2A). I excluded those outliers from 

further analyses. PCA on the remaining samples revealed tight clustering of uncultured 

HSCs (Figure 3.2B), demonstrating that the starting populations sorted were similar 

across experimental replicates. Cultured samples formed a second, looser cluster, but they 

did not generally group by drug treatment (Figure 3.2B). This suggested that further 

analysis may not reveal substantial differences in gene expression between CR- and 

control-cultured HSCs. 



39 
 

 I nonetheless analyzed transcription profiles for genes that fulfilled two criteria: 1) 

expression level was <1.2-fold different in CR-cultured HSCs compared to uncultured 

HSCs, and 2) expression level was ≥1.5-fold different in CR-cultured HSCs compared to 

control-cultured HSCs (with a false discovery rate <25%). One hundred forty-three genes 

fulfilled these criteria. Based on their reported functions, about half of these genes grouped 

into recurrent categories (Figure 3.3A). Notably, this analysis identified 18 genes related 

to the ribosome, including 12 ribosomal protein genes. A more systems-level analysis of 

the full 143-gene list using Ingenuity Pathway Analysis (IPA) suggested enhanced eIF2 or 

Myc signaling in CR-cultured HSCs could be responsible for the observed expression 

patterns, primarily due to the presence of the ribosomal genes. 

 I next attempted to validate some of these RNA-seq results by RT-PCR. I 

performed RT-PCR for four of the ribosomal protein genes that fulfilled the initial criteria 

for defining genes of interest. Although neither Myc nor Mycn was on this list, I assessed 

their expression levels as well, based on the suggestion from the IPA that Myc signaling 

may be uniquely enhanced in CR-cultured HSCs compared to controls. In the RNA-seq, 

Myc expression decreased over 10-fold in all cultured cells compared to uncultured 

(Figure 3.3B, top panel). Mycn expression was also substantively lower in all cultured 

cells compared to uncultured, although the magnitude of reduction varied. Two biological 

replicates of RT-PCR reproduced the reduction in Myc expression in cultured cells, but 

were less consistent in Mycn expression (Figure 3.3B, top panel). Ribosomal protein 

gene expression by RT-PCR varied even more from the RNA-seq and revealed a consistent, 

substantial decrease in detected expression in cultured versus uncultured cells (Figure 

3.3B, middle and bottom panels). This result was particularly problematic given that 

I selected these genes based on their similar expression levels in uncultured and CR-
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cultured cells according to the RNA-seq. Taken together, I conclude that the RNA-seq 

dataset may be unreliable. 

Testing aRNA amplification method 

  The extensive RNA processing necessary to generate sufficient material for RNA-

seq, combined with the inability to confirm RNA-seq results by RT-PCR, led me to test 

whether any observed differences in gene expression represented true biological 

differences, or if they might simply be technical artifacts of the amplification technique. 

In particular, if there were any measurable bias in amplification (such as for short versus 

long transcripts), then the multiple rounds of amplification required would magnify this 

bias. I therefore did a serial dilution of total RNA isolated from 650 HPCs, followed by 

aRNA amplification. If amplification was linear, then I would predict that diluting the 

input RNA would yield a stepwise decrease in the total amount of RNA at the end of the 

amplification process. However, more dilute samples yielded only modest decreases in 

final RNA yield (Figure 3.4A). It is noteworthy that the technique was originally 

optimized for amplification of RNA from single cells (Morris et al., 2011), while the 

linearity test described here used RNA from hundreds of cells. It is therefore possible that 

I failed to obtain a reduction in yield at the higher input RNA concentrations (undiluted, 

1:5, 1:20) due to saturation of the system. However, the more dilute samples (1:100, 1:500) 

also failed to yield a magnitude of decrease in aRNA generation that reflects the amount 

of input material. I therefore conclude that aRNA amplification is only approximately 

linear at best. 

 I next tested whether individual transcripts were uniformly amplified across 

samples subjected to this method. I used a fixed amount of aRNA from each of the serially 

diluted RNA samples described above for cDNA synthesis and performed RT-PCR for five 
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genes. All samples originated from a single RNA sample, ensuring that the relative 

abundance of each transcript was equivalent prior to amplification. If amplification was 

uniform, then these relative abundances would be preserved following amplification. 

Instead, I observed a distinct effect of initial input RNA dilution on the amount of each 

transcript detected by RT-PCR (Figure 3.4B), indicating that the technique does not 

reliably preserve relative transcript abundance. Based on the observations that the aRNA 

amplification method amplified RNA in a manner that was neither linear nor uniform, I 

conclude that the technique was not an appropriate solution to resolve the significant 

reduction in cellular RNA content observed in cultured HSCs and thereby perform 

transcriptomic analysis of these cells. 

Normalizing expression data from samples with distinct amounts of RNA 

 In addition to the exceptionally small amount of RNA in cultured cells, the 

differing amounts of total RNA in uncultured and cultured cells (Figure 3.1) presented a 

further challenge in performing expression profiling on HSCs maintained ex vivo. 

Standard practice in global gene expression analysis introduces equivalent amounts of 

RNA from samples to be compared and normalizes the total signal (Mortazavi et al., 

2008). This approach relies on the assumption that the cellular sources being analyzed 

produce similar amounts of RNA. However, two groups have reported that cells expressing 

high levels of the transcription factor c-Myc are larger and contain two to three times more 

total RNA than their wild-type counterparts (Lin et al., 2012; Nie et al., 2012). Rather than 

defining specific c-Myc target genes, this work therefore identifies c-Myc as an amplifier 

of the global transcriptional program that is already active in cells. More broadly, however, 

these findings indicate that the conventional normalization approach is not appropriate 
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for samples that contain different amounts of RNA, as this can both distort apparent 

relative expression levels across samples and mask true changes in global transcription. 

 To resolve this limitation, Young and colleagues (Loven et al., 2012) have proposed 

spiking in a fixed amount of standard RNAs per cell in samples to be subjected to global 

transcription profiling, permitting normalization to cell number per sample and thus 

detection of changes in gene expression at the level both of individual genes and of the full 

transcriptome. Although Loven et al. (2012) spike in the RNA standards following cellular 

RNA isolation, the method can additionally control for variability in RNA isolation 

efficiency across samples if the standards are spiked in at the time of cell lysis. In light of 

these factors, spiking in RNA standards is an attractive strategy to overcome some of the 

unique challenges presented by my efforts to perform transcription profiling in uncultured 

and cultured HSCs. This approach will additionally prove important as future gene 

expression analyses factor in differences in total RNA content under more physiological 

settings, such as in quiescence (Bulut-Karslioglu et al., 2016), differentiation (Signer et al., 

2016), and cancer (Percharde et al., 2017). 

Proposed method for transcription profiling in HSCs maintained ex vivo 

 Based on my observations in early attempts to perform gene expression profiling 

in HSPCs, I present here a detailed workflow describing how such analysis could be 

completed to define the transcriptional profile of HSCs maintained ex vivo. The 

techniques outlined below account for the obstacles presented by the differing and low 

RNA quantities encountered in my samples of interest. (The RNA content in cultured cells 

is so low that simply starting the experiment with more cells is not sufficient to address 

the obstacles encountered, due to the number of mice that would be required.) This 
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analysis would allow identification of a gene expression signature in cultured HSCs that is 

specific to cells that retain self-renewal and multilineage repopulating functions. 

 Due to the panel of multiple markers currently required to isolate high-purity 

HSCs, flow cytometric sorting of cells is necessary to perform any analysis on HSCs. 

However, the shear stress of flow cytometric sorting has been reported to modestly but 

measurably reduce post-sort viability in a variety of cell types (Mollet et al., 2007; Zaitoun 

et al., 2010). The mechanical stress of sorting additionally influences gene expression 

(Avvisato et al., 2007; Beliakova-Bethell et al., 2014). Although these factors apply to 

sorted cells in all samples and the magnitude of these changes is relatively small, they 

should be minimized where possible. All of the experiments described in this dissertation 

were performed using HSPCs sorted on a FACSARIA II (BD Biosciences). However, for 

future experiments involving highly sensitive analyses, such as gene expression profiling, 

sorting cells on an INFLUX may be a more appropriate choice. Compared to standard 

sorters such as the FACSARIA, the INFLUX combines a distinct nozzle shape and low 

sheath pressure to accelerate cells more smoothly and under lower shear stress following 

stream interception with the lasers, improving cell viability (BD Biosciences) and 

potentially minimizing changes in gene expression induced by the mechanical force of 

sorting. 

 Following HSC isolation, I initially cultured cells in vehicle, CHIR99021, 

rapamycin, or both inhibitors for 3 days before RNA extraction for gene expression 

profiling. In choosing this length of culture, I aimed for the shortest period that would 

yield a transcriptional profile in CR-maintained HSCs that was distinct from that of HSCs 

cultured in only one or neither inhibitor. In particular, I predicted that rapamycin-

dependent transcriptional changes would take time to accumulate, as mTORC1 influences 

transcription in part through regulating translation and activation of TFs (Laplante and 
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Sabatini et al., 2013; Showkat et al., 2014). However, Manning and colleagues treated 

Tsc1- or Tsc2-null mouse embryonic fibroblasts with rapamycin and observed mTORC1-

dependent changes in transcription in as little as 6 hours (Duvel et al., 2010). The dramatic 

reduction in total RNA content observed in cultured cells by day 3 (Figure 3.1B) 

additionally suggests that a shorter culture period (perhaps 1 day) would be sufficient to 

identify a unique transcriptional profile in maintained HSCs. This observation moreover 

reveals a robust effect of culture itself, independent of maintenance of function. A shorter 

culture period would therefore minimize artifacts of the culture while likely still yielding 

informative differences in gene expression. 

 As introduced above, the incorporation of spiked-in RNA standards (Loven et al., 

2012) would be essential to appropriate analysis of the gene expression profile of cultured 

HSCs.  Cultured cells contain an undetectably low amount of RNA (Figure 3.1B), 

precluding any controls at the level of inputting a constant quantity of RNA per sample to 

the library preparation and RNA-seq workflow. RNA standards added to lysates on a per-

cell basis at the time of cellular RNA isolation would therefore serve as an important 

control at normalization. The ability to normalize reads to RNA per cell would additionally 

allow accurate comparison of cellular transcript abundance between uncultured HSCs and 

HSCs maintained ex vivo, which contain different amounts of RNA. This is a robust 

phenotype that would be masked by conventional normalization methods. Notably, 

spiked-in RNA standards compose only ~1-5% of total reads, so conventional 

normalization methods can still be applied to analyze cellular transcripts. This flexibility 

of the platform therefore permits detection both of global shifts in transcription (by 

normalizing to spiked-in RNAs as a surrogate for cell number) and of extreme outlier 

genes (by conventional normalization to read depth) (Percharde et al., 2017). 
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 Finally, gene expression profiling of cultured HSCs would require RNA 

amplification to obtain a usable quantity of RNA for library preparation and transcriptome 

analysis. Although the aRNA amplification method was not reliable in my hands (Figure 

3.4), the SMARTer Pico PCR cDNA Synthesis kit (Clontech) may be a better tool. The 

method relies on SMART (Switching Mechanism at 5’ end of RNA Template) technology 

with a proprietary reverse transcriptase that generates double-stranded cDNA from 

picogram quantities of total RNA. Briefly, oligo(dT) with an added 5’ sequence primes 

reverse transcription of polyadenylated transcripts. Upon reaching the 5’ end of the 

template RNA, the reverse transcriptase adds several nucleotides to the 3’ end of each 

cDNA. A distinct SMARTer oligo then base-pairs to the extended tail and primes the 

second-strand cDNA synthesis. Standard reverse transcription is prone to interruption by 

template RNA secondary structure. As cDNAs prematurely terminated in the SMARTer 

protocol fail to incorporate the 3’ SMARTer oligonucleotide, they are not amplified by 

subsequent PCR. This approach therefore enriches for generation and amplification of 

full-length cDNAs. The method is moreover compatible with the addition of spiked-in 

transcripts, as commercially available RNA standards (such as from the External RNA 

Controls Consortium) are polyadenylated. Notably, the SMARTer kit manufacturer 

recommends a minimum starting amount of 20 pg/μl (Clontech), but success has been 

described with as little as 10 pg total RNA (Igor Antoshechkin, personal communication). 

This technology is therefore ideally suited for the amplification of RNA isolated from 

cultured HSCs. 

Together, the workflow described here presents an informed strategy broadly 

applicable to gene expression profiling in cells with differing and/or limiting quantities of 

RNA. This approach will therefore be especially valuable to define a transcriptional 

program that is specific to HSCs maintained under the Klein laboratory’s defined ex vivo 
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conditions. Further characterization of this profile may identify both novel regulators of 

HSC maintenance and rational targets to promote their expansion while preserving 

function to facilitate molecular characterization and clinical applications of HSCs. 

Conclusion 

 The HSC niche instructs HSCs with diverse signals. A long-standing challenge in 

the study of HSCs has therefore been characterizing pathways that regulate their function 

and fate. The Klein laboratory’s conditions to maintain HSCs ex vivo under defined 

conditions (Huang et al., 2012) represent a valuable tool to achieve this goal. 

Transcriptional profiling of these HSCs, and comparison to uncultured HSCs and to HSCs 

cultured under conditions that do not maintain stem cell function, could yield significant 

insight into the signaling network that maintains HSCs. 

 Given how drastically different the HSC niche is from the culture conditions we 

have reported to maintain HSCs ex vivo, it was somewhat unsurprising that the gene 

expression profile of these cells bore limited overlap with that of uncultured HSCs (Figure 

3.2B). This prediction was supported by the dramatic decrease in RNA content observed 

in cultured compared to uncultured HSCs (Figure 3.1B). The comparison may 

nonetheless be informative for two reasons. First, minimal overlap of only a handful of 

genes between these two populations would significantly filter down the total 

transcriptional program to just those genes that fundamentally drive retention of long-

term HSC function. Second, the comparison of uncultured and cultured HSCs will help 

define how HSCs maintain their function while adapting to an environment beyond the 

niche, providing valuable insight as researchers attempt to expand HSCs ex vivo to 

facilitate basic and translational research. 
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Deep sequencing could reveal a more nuanced level of transcriptional regulation 

in HSC maintenance by additionally permitting analysis of alternative splicing events. 

Gazit and colleagues recently described comprehensive mapping of splicing in mouse 

HSCs, uncovering alternative splicing throughout the transcriptome (Goldstein et al., 

2017). They furthermore observed some enrichment for multiple isoforms of genes 

preferentially expressed in HSCs, such as Hlf, HoxA9, and Prdm16, and some of these 

isoforms exhibited distinct levels of activity. GSK-3 has been identified as a regulator of 

alternative splicing (Heyd and Lynch, 2010; Mansi Shinde and Peter Klein, unpublished), 

suggesting the intriguing possibility that in addition to β-catenin-dependent transcription 

(Huang et al., 2012), altered RNA splicing could be a pathway through which GSK-3 

inhibition contributes to HSC maintenance ex vivo. 

Although all of the work presented in this dissertation was performed in mouse 

HSPCs, the ultimate goal is improved characterization and clinical application of human 

HSCs. The experimental workflow presented in this chapter is readily applicable to human 

HSCs. The identification of markers such as CD49f (Notta et al., 2011) has enabled 

isolation of highly purified human HSCs, a technical advance that will promote a more 

refined definition of the human HSC regulatory network. 

Finally, my attempts to perform transcription profiling in cultured HSCs revealed 

a dramatic decrease in total RNA content, an unexpected but highly robust response of 

HSCs to serum- and cytokine-free culture. This phenotype was accompanied by a 

remarkable decrease in cell size (as described in Chapter 4). The reduction in RNA content 

is consistent with a quiescent state, as has been recently reported in mouse blastocysts 

pharmacologically diapaused with an mTORC1 inhibitor (Bulut-Karslioglu et al., 2016). 

Notably, however, I observed this in all cultured cells, regardless of retention of HSC 

function. It may therefore not be a component of the mechanism of HSC maintenance ex 
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vivo, but rather an artifact of the culture itself. The limited quantity of RNA in all cultured 

cells highlights the possibility that HSCs maintained ex vivo under these conditions may 

exhibit only modest differences in expression levels of specific genes compared to control-

cultured HSCs. By extension, HSC maintenance may be mediated post-transcriptionally. 

For example, β-catenin recruits chromatin remodelers (Blythe et al., 2010) as well as 

promotes target gene transcription, and mTORC1 is a known regulator of translation. 

Chromatin immunoprecipitation for assessment of histone modifications is now possible 

starting with as few as 10,000 cells (Adli et al., 2010), enabling the investigation of 

chromatin remodeling that might occur in HSCs maintained ex vivo by CR culture. 

Ribosomal profiling may also eventually be informative of transcriptome-wide ribosome 

occupancy, although the technology currently requires orders of magnitude more cells 

than is possible to perform on such a rare population (Hsieh et al., 2012). 

The transcriptional profile of HSCs maintained ex vivo under defined conditions 

would be an informative resource in ongoing efforts to define the regulatory network that 

promotes retention of HSC function. Although I have not yet achieved this goal, my efforts 

so far have yielded valuable insight into the technical considerations of such an 

undertaking, allowing me to propose detailed methodology for how this might be 

completed in the future. The method described here is moreover broadly applicable to 

biologically relevant conditions that yield limiting quantities of RNA or differing 

quantities of RNA between samples.  
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Figure 3.1: Reduced RNA content in cultured HSCs. (A) RNA was isolated from 

freshly sorted HSCs and HPCs. Total RNA content was measured by nanofluidic 

electrophoresis. (B) Cellular RNA was isolated with spiked-in YFP mRNA from freshly 

sorted HSCs and from HSCs following 3 days culture. Total RNA content was measured 

by nanofluidic electrophoresis. The peak at ~900 nt indicates the spiked-in mRNA, while 

peaks at 2000 nt and 4000 nt indicate 18S and 28S rRNA, respectively (or lack thereof). 
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Figure 3.2: PCA of RNA-seq on HSCs maintained ex vivo. (A,B) RNA was isolated 

from freshly sorted HSCs and from HSCs following 3 days cytokine-free culture in DMSO, 

CHIR99021, rapamycin, or CR. RNA was amplified and RNA-seq was performed on five 

biological replicates. PCA was applied to all samples (A) and following exclusion of outlier 

samples (B). Each sphere represents an individual sample from one replicate.  
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Figure 3.3: Gene expression profile analysis. 
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Figure 3.3: Gene expression profile analysis. (A) RNA-seq was performed on RNA 

isolated from uncultured HSCs and from HSCs following 3 days cytokine-free culture in 

vehicle, CHIR99021, rapamycin, or both. Genes of interest were identified as those whose 

expression level was 1) <1.2-fold different in CR-cultured HSCs compared to uncultured 

HSCs, and 2) ≥1.5-fold different in CR-cultured HSCs compared to control-cultured HSCs. 

One hundred forty-three genes fulfilled these criteria. Based on their reported functions, 

about half of these genes grouped into the categories shown. (B) RT-PCR was performed 

on two biological replicates (right panels) to validate genes of interest identified by IPA of 

RNA-seq (left panels).  
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Figure 3.4: Verifying aRNA amplification method. (A,B) Total RNA was isolated 

from 650 HPCs, serially diluted, and subjected to three rounds of aRNA amplification. 

aRNA concentration was quantified by spectrophotometry (A), and relative transcript 

abundance of several genes following amplification was measured by RT-PCR (B).  
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CHAPTER 4: AUTOPHAGY IS A SIGNATURE OF A SIGNALING NETWORK 

THAT MAINTAINS HSCS 

The data presented in this chapter are in revision at PLoS One. 

Introduction 

 Stem cells are defined by the ability to both self-renew and generate differentiated 

cells, enabling them to regenerate tissues under steady-state conditions and in response 

to injury. This essential function in lifelong tissue maintenance endows stem cells with 

exceptional potential for clinical applications. HSCs, for example, are responsible for 

maintaining the blood, and are used for the treatment of both congenital and acquired 

hematological disorders (Purton and Scadden, 2007. While tremendous progress has been 

made toward optimizing therapeutic use of HSCs, this is a rare population. Efforts to 

expand HSCs ex vivo, for example for umbilical cord transplants or for therapeutic 

genome editing, have been hampered by an incomplete understanding of the signaling 

networks that regulate HSC fate decisions and subsequent difficulty defining conditions 

that maintain HSC function beyond the niche (Lymperi et al., 2010). 

HSCs reside in a low-perfusion niche (Parmar et al., 2007; Simsek et al., 2010; 

Spencer et al., 2014), underscoring nutrient-sensing as an essential function. The 

evolutionarily conserved nutrient sensor mTORC1 antagonizes HSC function, as 

interventions that activate mTORC1, including loss of the negative regulators Pten (Yilmaz 

et al., 2006), Gsk3 (Huang et al., 2009), and Tsc1 (Gan et al., 2008), lead to HSC 

proliferation followed by exhaustion and in some cases leukemogenesis (Yilmaz et al., 

2006; Guezguez et al., 2016). Developing a thorough understanding of mediators of 

mTORC1 signaling in this context will therefore be a critical step toward expansion of 

functional HSCs ex vivo. 
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mTORC1 regulates cell growth and proliferation through multiple effectors. The 

relative importance of each of these effectors to HSC function and fate decisions remains 

unclear. The best-characterized output of mTORC1 activation is the regulation of 

translation via activation of S6 kinase (S6K) (Isotani et al., 1999) and inhibition of eIF4E 

binding protein (4E-BP) (Gingras et al., 1999). HSCs require a precise level of translation: 

they exhibit a low basal rate of translation compared to more differentiated hematopoietic 

cell populations, and either increasing or decreasing this rate impairs their engraftment 

upon transplantation (Signer et al., 2014). mTORC1 additionally promotes mitochondrial 

biogenesis through both translation-dependent (Morita et al., 2013) and -independent 

(Cunningham et al., 2007; Blattler et al., 2012) mechanisms. HSCs have been reported to 

have lower mitochondrial mass and membrane potential than other hematopoietic 

populations, with increases in these features correlating with loss of self-renewal capacity 

(Mantel et al., 2010). 

mTORC1 also suppresses autophagy, which is both a pro-survival mechanism in 

the context of nutrient starvation and an important quality control system in the turnover 

of old or damaged proteins and organelles. Autophagy is therefore a critical component of 

stem cell maintenance, differentiation, and aging (Guan et al., 2013), and disruption of 

this pathway has been linked to loss of function of a variety of stem cell populations, 

including embryonic, epidermal (Salemi et al., 2012), skeletal muscle (Tang and Rando 

2014; Garcia-Prat et al., 2016), neural (Vazquez et al., 2012; Wu et al., 2016), and 

hematopoietic (Mortensen et al., 2011; Ho et al., 2017) stem cells. In the hematopoietic 

system, loss of the essential autophagy genes Atg7 or Atg5 impairs HSC function while 

promoting proliferation of hematopoietic progenitor cells, leading to bone marrow failure 

(Mortensen et al., 2011; Watson et al., 2015). Moreover, highlighting the essential role of 

nutrient-sensing in the reduced-perfusion HSC niche, HSCs activate autophagy to survive 
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cytokine starvation, while progenitors fail to activate autophagy and instead undergo 

apoptosis (Warr et al., 2013). These findings indicate a unique requirement for autophagy 

in the function of HSCs as opposed to other hematopoietic cell populations. 

Despite the extensive body of literature characterizing these distinct outputs of 

mTORC1 signaling in HSCs, the role of each in HSC maintenance remains unclear. The 

complexity of the HSC niche and consequent challenge maintaining HSCs ex vivo have 

constrained efforts to address this question. Previous work from our laboratory showed 

that HSCs are maintained ex vivo in cytokine-free conditions when GSK-3 and mTORC1 

are inhibited (Huang et al., 2012). Inhibition of GSK-3 activates downstream Wnt/β-

catenin signaling, and β-catenin is required for HSC maintenance in this setting, but the 

pathway(s) downstream of mTORC1 that contribute to this response have not been 

identified. We have investigated the complex signaling network downstream of mTORC1 

associated with the maintenance of long-term HSCs. We find that activation of autophagy 

is uniquely associated with conditions that maintain self-renewing HSCs. 

Cell-autonomous regulation of HSC function by GSK-3 and mTORC1 

 We previously reported that simultaneous GSK-3 and mTORC1 inhibition 

maintains HSC function ex vivo in HSPCs (Lin-Sca1+c-Kit+ [LSK]) (Huang et al., 2012). 

While this fraction is enriched for HSCs, it is a heterogeneous population composed 

primarily of progenitor cells. To address a potential indirect effect of modulating GSK-3 

and mTORC1, we sorted HSCs (LSK-CD48-CD150+ [LSK-SLAM]) and cultured them in 

serum-free, cytokine-free medium in the presence or absence of the GSK-3 inhibitor 

CHIR99021 and rapamycin (CR). Cell number did not significantly change during culture, 

and ~87% of cells remained viable after 7 d of culture (Figure 4.1A,B). To assess HSC 

function, we performed a competitive repopulation assay. CD45.1+ HSCs cultured in 
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vehicle or CR for 7 d were injected with CD45.2+ competitor whole bone marrow cells into 

lethally irradiated recipients. HSCs cultured with CR retained both multilineage and long-

term (up to 24 weeks) engraftment potential, while control cultured cells failed to engraft 

(Figure 4.1C,D). These results indicate that GSK-3 and mTORC1 inhibition maintains 

stem cell function by acting directly on HSCs. 

mTORC1 activity and global translation during HSC maintenance 

mTORC1 regulates cell growth and metabolism through multiple independent 

effectors, the best-characterized of which is promotion of translation through activation 

of S6K and inhibition of 4E-BP. As HSCs require a precise level of translation (Signer et 

al., 2014), we further explored the regulation of S6 and 4E-BP in cultured HSCs. The 

canonical readout for mTORC1 activity and regulation of translation is therefore 

measurement of phospho-S6 (pS6) and phospho-4E-BP1 (p4E-BP1) levels, which we 

assessed over time in LSK-CD48- cells. (The CD150 epitope is destroyed during fixation 

and permeabilization [Kalaitzidis and Neel, 2008].) GSK-3 suppresses mTORC1, and 

GSK-3 inhibition therefore activates mTORC1 (Inoki et al., 2006; Huang et al., 2009; 

Huang et al., 2012). Although we did not observe an effect on pS6 or p4E-BP1 using the 

inhibitors at our standard concentrations for HSC culture, CHIR99021 and rapamycin are 

typically used at three and 100 times higher concentrations, respectively. A 

correspondingly higher concentration of GSK-3 inhibitor increases phosphorylation of S6 

in LSK-CD48- cells, as shown by flow cytometric detection with a phospho-specific pS6 

antibody (Figure 4.2A,B). Rapamycin inhibits S6 phosphorylation, as expected, and 

attenuates but does not completely inhibit increased S6 phosphorylation when combined 

with CHIR99021 (Figure 4.2A,B). Rapamycin also reduces 4E-BP1 phosphorylation in 

LSK-CD48- cells. We moreover observe a trend toward a further decrease in p4E-BP1 in 
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CR-treated cells, although the difference fails to reach statistical significance (Figure 

4.2C,D). Simultaneous inhibition of GSK-3 and mTORC1 therefore achieves a level of 

mTORC1 activity that is distinct from that following inhibition of either alone. 

mTORC1 regulates translation in part via S6K promotion of ribosomal gene 

transcription (Xiao and Grove, 2009). We therefore cultured c-Kit+ cells in vehicle, 

CHIR99021 (3 µM), rapamycin (5 nM), or both for 24 h and measured the expression of 

large and small ribosomal subunit protein genes by RT-PCR. CR-treated cells consistently 

express higher levels of all ribosomal protein genes assessed when compared to control or 

rapamycin-treated cells, and in most cases compared to CHIR99021-treated cells as well 

(Figure 4.2E). Importantly, ribosomal RNA expression is equal across conditions 

(Figure 4.2F). Together, these results demonstrate a specific enrichment for expression 

of ribosomal protein genes in CR-treated HSPCs, suggesting an elevated capacity for 

protein biosynthesis. 

The increased expression of ribosomal protein genes in CR-cultured HSCs was 

unexpected, as we predicted that rapamycin would block mTORC1-dependent activation 

of translation. However, the effective concentration of rapamycin in our culture system is 

100-fold lower than typically used. To address translation directly, we measured the rate 

of global protein synthesis by O-propargyl-puromycin (OP-Puro) incorporation into 

nascent polypeptides and fluorescent labeling (Liu et al., 2012) followed by flow cytometric 

analysis. We find a stepwise increase in the rate of translation as HSCs differentiate into 

more committed progenitor populations (Supplementary Figure 4.1A), as previously 

reported (Signer et al., 2014). We next measured OP-Puro incorporation in LSK-CD48- 

cells after 3 h and 24 h culture with or without inhibitors. Bulk protein synthesis is elevated 

in CHIR99021-treated cells compared to cells cultured with DMSO or rapamycin alone, 

consistent with mTORC1 and S6K activation. However, protein synthesis was also 
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increased in CR-treated cells (Figure 4.2G, Supplementary Figure 4.1B); while this 

finding is consistent with the increased pS6 and increased ribosomal protein expression 

observed in CR, it is not consistent with suppression of global protein synthesis as a 

mechanism for CR maintenance of HSCs. 

Targeting S6K and eIF4E downstream of mTORC1 in HSC maintenance 

While these findings argue against suppression of protein synthesis as a 

mechanism of HSC maintenance ex vivo, we could not rule it out completely. We sought 

to address this possibility further by more specifically inhibiting S6K and/or eIF4E. To 

achieve targeted inhibition of S6 and 4E-BP, as opposed to broader inhibition of mTORC1, 

we replaced rapamycin in CR culture with the S6K inhibitor PF-4708671, the eIF4E 

inhibitor 4EGI-1, or both (Figure 4.3A). If rapamycin supports HSC maintenance by 

inhibiting translation, then an S6K or eIF4E inhibitor should substitute for rapamycin. 

PF-4709671 effectively inhibits S6K, as measured by reduced S6 phosphorylation in 

phospho-flow cytometry (Figure 4.3B, Supplementary Figure 4.1C), while 4EGI-1 

reduces the rate of bulk protein synthesis (Figure 4.3C, Supplementary Figure 

4.1D). However, it should be noted that the dose of 4EGI-1 that achieves reduced 

translation also approaches the limit of toxicity (Moerke et al., 2007). 

To test whether inhibition of either of these pathways downstream of mTORC1 is 

sufficient to maintain HSC function, we sorted HSPCs and cultured for 7 d in CHIR99021 

plus PF-4708671, 4EGI-1, or both, followed by competitive transplant. While CR-cultured 

cells engrafted, we detected no chimerism in recipients of any cells cultured without 

rapamycin (Figure 4.3D). We conclude that combined inhibition of S6K and eIF4E 

downstream of mTORC1 is not sufficient to maintain HSC function. Taken together with 

our findings that CR increases expression of ribosomal protein genes and the rate of global 
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translation, these data argue against inhibition of protein synthesis as a mechanism for 

maintaining HSCs in cytokine-free culture. 

Mitochondrial mass and activity in maintained HSCs 

 In addition to translation, mTORC1 is a known regulator of mitochondria. While 

mTORC1-driven translation contributes to mitochondrial biogenesis (Morita et al., 2013), 

mTORC1 also regulates mitochondrial membrane potential and oxidative capacity 

independently of translation (Schieke et al., 2006; Cunningham et al., 2007). As low 

mitochondrial mass and membrane potential have been correlated with HSC function 

(Mantel et al., 2010; Sukumar et al., 2016), we explored how GSK-3 and mTORC1 

inhibition might affect mitochondria in HSC maintenance. We first measured total 

mitochondrial mass by MitoTracker Green in the LSK-CD48- fraction of lineage-depleted 

bone marrow cells after 16 h culture. Cells treated with CHIR99021 either alone or in 

combination with rapamycin exhibit an increase in mitochondrial mass (Figure 4.4A), 

consistent with the CHIR99021-mediated increase in translation (Figure 4.2G, 

Supplementary Figure 4.1B). However, while mitochondrial mass is generally low in 

HSCs compared to non-self-renewing progenitors (Mantel et al., 2010; Sukumar et al., 

2016), the increase in CR-maintained HSCs argues against a role for mitochondrial mass 

in the maintenance of HSCs cultured in CR. 

In addition to increased mitochondrial mass, increased mitochondrial membrane 

potential correlates with loss of long-term repopulating capacity of HSCs (Mantel et al., 

2010). We therefore assessed mitochondrial membrane potential, which could allow for 

the observed maintenance of stemness despite elevated mitochondrial mass in CR-

cultured HSCs. Following 16 h culture, we measured mitochondrial membrane potential 

in LSK-CD48- cells using JC-1, a positively charged dye that accumulates in the negatively 
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charged matrix of polarized mitochondria in a potential-dependent manner (Reers et al., 

1991). While heterogeneous lineage-depleted bone marrow cells exhibit a distribution 

between populations of high and low membrane potential, LSK-CD48- cells in all culture 

conditions are overwhelmingly in the low membrane potential fraction (Figure 4.4B). 

Thus CR culture increases mitochondrial mass but maintains low mitochondrial 

membrane potential, compatible with the maintenance of HSC function. 

Reduced cell volume and RNA content in cultured HSCs 

mTORC1 integrates nutrient availability and mitogenic stimuli to direct activity of 

biosynthetic and catabolic pathways, and is thus a major regulator of cell size (Lloyd, 

2013). Our culture conditions lack serum or exogenous cytokines, known activators of 

mTORC1, and maintenance of HSCs depends on addition of the mTORC1 inhibitor 

rapamycin. We therefore assessed cell size following culture of purified HSCs in vehicle, 

CHIR99021, rapamycin, or CR. By 3 d in culture, all cells were visibly smaller than freshly 

isolated HSCs (Supplementary Figure 4.2A). We measured cell area on each day of 

culture using a micrometer and ImageJ software. Mean cell volume decreased 60% in 

control, rapamycin, and CR-cultured cells and 45% in CHIR99021-treated cells 

(Supplementary Figure 4.2B). 

Ribosome biogenesis and protein synthesis are among the most energy-consuming 

cellular processes. These pathways must therefore be tightly regulated based upon 

nutrient availability. As cell size generally correlates with ribosome biogenesis (Cook and 

Tyers, 2007), we measured total RNA content in HSCs by nanofluidic electrophoresis 

before and after 3 d culture. RNA was readily detected in uncultured HSCs, but 

undetectable in an equal number of cultured cells (Supplementary Figure 4.2C). The 

low RNA content was confirmed by flow cytometry. We cultured lineage-depleted bone 
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marrow cells in vehicle, CHIR99021, rapamycin, or both. After 3 d, we performed flow 

cytometric analysis for DNA content by Hoechst 33342 and for RNA content by pyronin Y 

in the HSPC fraction. While freshly isolated HSPCs display a clear distribution through 

the cell cycle, cells cultured under any condition are overwhelmingly in G0 with markedly 

reduced total RNA content (Supplementary Figure 4.2D). We therefore conclude that 

GSK-3 and mTORC1 inhibition maintains HSC function in cells that have entered a 

quiescent state. 

Autophagy as a molecular mark of HSC maintenance 

Quiescent HSCs require autophagy to maintain their capacity for self-renewal; loss 

of Atg7 stimulates proliferation of hematopoietic progenitors with a parallel loss of long-

term HSCs, leading to a marked myeloproliferative state in vivo (Mortensen et al., 2011). 

Furthermore, suppression of autophagy is a major downstream function of mTORC1, and 

inhibition of mTORC1 with rapamycin activates autophagy, although typically at 

concentrations 100 times higher than used here. To examine whether activation of 

autophagy is specifically associated with maintenance of functional HSCs in culture (e.g., 

cultured in CR), we performed RT-PCR for a pro-autophagic gene expression signature 

(Warr et al., 2013) in cKit+ cells cultured for 24 h in DMSO, CHIR99021, rapamycin, or 

CR. Compared to cells cultured under control conditions, cells cultured in CR express 

significantly higher levels of multiple markers of autophagy, including Atg4b, Bnip3, and 

Gabarap, with Prkaa2 and Sesn2 exhibiting a trend toward higher expression in CR 

(Figure 4.5A). Notably, expression of these markers is higher in CR than in cells treated 

with rapamycin alone. This gene signature is consistent with unique activation of 

autophagy under conditions (simultaneous inhibition of GSK-3 and mTORC1) that 

maintain functional HSCs in culture. 
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To confirm activation of autophagy in CR-cultured HSCs, we examined the 

formation of autophagosomes. As a transition from diffuse to punctate staining for LC3 is 

a hallmark of autophagosome assembly and activation of autophagy (Kabeya et al., 2000; 

Tang and Rando, 2014), we performed immunofluorescence staining for LC3 puncta in 

HSCs cultured for 16 h (Figure 4.5B). CR-maintained HSCs exhibited significantly more 

LC3-puncta-positive cells (Figure 4.5C) and on average more LC3 puncta per cell 

(Figure 4.5D) compared to vehicle, CHIR99021-, or rapamycin-treated controls. Taken 

together with the autophagy gene signature, these results demonstrate that activated 

autophagy is uniquely enhanced in conditions that maintain HSCs. 

Conclusion  

mTORC1 regulates cell metabolism and proliferation through multiple pathways. 

Extensive evidence suggests that mTORC1 activation promotes HSC lineage commitment 

at the expense of self-renewal (Yilmaz et al., 2006; Chen et al., 2008; Huang et al., 2009; 

Kharas et al., 2009), but the downstream pathways mediating this effect remain 

undefined. We have investigated multiple downstream mTORC1 targets to assess which 

pathways are uniquely activated or inhibited when the GSK-3 and mTORC1 pathways are 

regulated to maintain HSCs. These studies reveal that autophagy strongly and uniquely 

correlates with conditions that maintain HSC function ex vivo. 

We identified a pro-autophagic phenotype by a gene expression signature and the 

appearance of LC3+ autophagosomes. While mTORC1 is a well-characterized inhibitor of 

autophagy, the dose of rapamycin used for these studies (5 nM) is significantly below the 

100-500 nM reported to induce autophagy. Consistently, we only observe a significant 

increase in autophagy-related gene expression in the presence of rapamycin and 

CHIR99021 (Figure 4.5). GSK-3 is moreover an established negative regulator of 



64 
 

mTORC1 (Inoki et al., 2006), and GSK-3 inhibition might therefore be predicted to block 

autophagy. However, several compelling lines of evidence suggest a potential mechanism 

for synergy between the combined inhibition of GSK-3 and mTORC1 to activate 

autophagy. Recent work reports that GSK-3 inhibits lysosomal acidification 

independently of mTORC1, blocking autophagy (Azoulay-Alfaguter et al., 2015). GSK-3 

additionally inhibits autophagy independently of mTORC1 via phosphorylation and 

cytosolic sequestration of TFEB, the master transcription factor of lysosomal biogenesis 

(Parr et al., 2012; Marchand et al., 2015). Intriguingly, mTORC1 also inhibits autophagy 

in part through blocking nuclear translocation of TFEB (Roczniak-Ferguson et al., 2012; 

Settembre et al., 2012). It is therefore possible that combined inhibition of mTORC1 and 

GSK-3 allows TFEB to translocate to the nucleus and activate autophagy. 

These findings additionally build on a growing body of literature supporting an 

essential role for autophagy in the maintenance, activation, and differentiation of multiple 

stem cell populations, including embryonic, epidermal (Salemi et al., 2012), neural (Wu et 

al., 2016), skeletal muscle (Tang and Rando, 2014; Garcia-Prat et al., 2016), and 

hematopoietic stem cells (Mortensen et al., 2011; Warr et al., 2013; Ho et al., 2016). The 

current speculative model in the field is that autophagy is a vital mechanism of protein 

and organelle quality control that maintains low levels of reactive oxygen species and 

protects stem cells from oxidative stress and DNA damage over the lifetime of the 

organism (Phadwal et al., 2013; Schultz and Sinclair, 2016). As a primary purpose of 

autophagy is to degrade cytoplasmic contents and generate an internal nutrient pool to 

sustain protein synthesis during periods of nitrogen starvation (Yang et al., 2006), 

autophagic recycling may also serve as an important source of amino acids for stem cells 

residing in a low-perfusion, reduced-nutrient niche. On the other hand, autophagy can 

promote stem cell activation and differentiation by degrading multipotency factors and 
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providing biosynthetic materials to support the growth and proliferation required for 

tissue regeneration (Vazquez et al., 2012; Guan et al., 2013; Tang and Rando, 2014). Stem 

cell fate decisions may thus be directed in part by the extent or targets of autophagic 

degradation. 

In contrast, our results do not support a role for suppression of translation as a 

mechanism to maintain HSC function ex vivo. HSCs maintained in CR display increased 

ribosomal protein gene expression and an elevated rate of protein synthesis compared to 

HSCs cultured in control medium or freshly isolated HSCs (Figure 4.2G, 

Supplementary Figure 4.1B). S6K and eIF4E inhibitors correspondingly reduce S6 

phosphorylation and the rate of translation but fail to recapitulate ex vivo HSC 

maintenance when combined with GSK-3 inhibition (Figure 4.3). HSCs in vivo require 

a tightly controlled rate of protein synthesis that is regulated in part by the translation 

initiation inhibitor 4E-BP (Signer et al., 2014; Signer et al., 2016). The increase in bulk 

translation that we observe in our cytokine-free, ex vivo HSC maintenance system may 

therefore represent a homeostatic adjustment when HSCs are deprived of signals from 

their normal microenvironment. It also remains possible that restricting translation may 

be important to maintain long-term function when HSCs are stimulated to undergo self-

renewing cell divisions. However, taken together, our findings of increased global 

translation in CR medium argue against a role for suppression of protein translation as a 

mechanism for maintenance of HSCs in these ex vivo conditions. 

 We additionally observe a GSK-3-specific increase in mitochondrial mass in 

cultured HSCs (Figure 4.4A). Like the elevated rate of translation, this is a surprising 

result given that increasing mitochondrial mass has been correlated with loss of self-

renewing function in HSCs (Mantel et al., 2010). However, mitochondrial membrane 

potential similarly correlates with HSC function (Mantel et al., 2010), and we find that this 
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is maintained at low levels in functional HSCs ex vivo despite the increase in 

mitochondrial mass. Our results therefore suggest that preserving the low mitochondrial 

mass observed in uncultured HSCs is not required to maintain HSC function in CR culture.  

All tested culture conditions cause a dramatic reduction in total RNA content and 

cell size (Supplementary Figure 4.2), suggesting a global metabolic shutdown in HSCs 

upon removal from the niche. At the same time, GSK-3 inhibition (alone or in combination 

with rapamycin) induces an increase in total protein synthesis (Figure 4.2G, 

Supplementary Figure 4.1B), consistent with mTORC1 activation, whereas combined 

GSK-3 and mTORC1 inhibition uniquely activates autophagy. We speculate that 

autophagy may provide the biosynthetic material required to support the elevated rate of 

translation induced by CHIR99021. In this model, only cells that achieve the appropriate 

balance between anabolism and catabolism resolve these antagonistic metabolic cues and 

thereby retain self-renewing and multilineage repopulating capacity. 

Finally, our studies reveal a signaling network that is sufficient to maintain HSCs 

cell-autonomously. Extensive crosstalk occurs between HSCs and the microenvironment 

in vivo to contribute to regulation of HSC activity. That progenitors are dispensable in this 

model system indicates that cell-intrinsic regulation of GSK-3 and mTORC1 is sufficient 

to maintain HSC function. This finding moreover highlights the potential value of this 

culture system in characterizing the signaling network that regulates HSC fate decisions, 

as this analysis would not have been possible to perform on HSCs in situ. How HSCs 

respond to the altered environment outside of the niche is an important consideration as 

researchers seek methods to expand HSCs to improve the efficacy of HSC transplants. 

Our investigation assessed the responses of multiple mTORC1 targets in the 

context of a signaling network that maintains HSCs. We identified autophagy as a key 
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molecular marker of this signaling network. Future studies may reveal specific targets of 

these pathways in the maintenance of HSC function.  
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Figure 4.1: Cell-autonomous regulation of HSC function by GSK-3 and 

mTORC1. 
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Figure 4.1: Cell-autonomous regulation of HSC function by GSK-3 and 

mTORC1. (A) HSCs were cultured for 3 d, and cell number relative to day 0 was 

determined visually. (B) Viability of HSCs cultured in control medium or CR after 7 d 

culture, determined by Trypan Blue exclusion. (C, D) HSCs were cultured for 7 d and then 

transplanted with competitor cells into lethally irradiated hosts. Peripheral blood was 

collected at 24 weeks post-transplant, and multilineage potential of donor-derived 

(CD45.1+) cells was determined by flow cytometry for lineage-specific markers as indicated 

(C). Data shown are from one recipient representative of CR-cultured HSCs. Long-term 

engraftment of freshly isolated HSCs or of HSCs cultured in vehicle or CR was determined 

by flow cytometry for donor-derived (CD45.1+) cells following competitive transplant (D). 

Chimerism data shown were collected 24 weeks after transplant. Each symbol represents 

the results from an individual mouse. Red dotted line indicates 5% threshold defining 

recipients as positive for donor-derived engraftment. Error bars represent S.E.M. 
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Figure 4.2: mTORC1 activity and global translation during HSC maintenance.  
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Figure 4.2: mTORC1 activity and global translation during HSC maintenance. 

(A-D) Representative flow cytometry histograms of pS6 (A) and p4E-BP1 (C) from 1.5 h 

time point, and their median fluorescence intensities relative to DMSO (B, D), measured 

by phospho-flow cytometry in the LSK-CD48- fraction of lineage-depleted bone marrow 

cells at the indicated times after cells were isolated and placed into culture medium. 

Asterisks indicate statistical significance for comparison of treatment to DMSO within the 

same time point. (E, F) cKit+ cells were cultured for 24 h followed by RNA isolation for 

RT-PCR analysis. RT-PCR for ribosomal protein (E) and ribosomal RNA (F) gene 

expression relative to DMSO. (G) Lineage-depleted bone marrow cells were cultured for 

24 h, and then rate of protein synthesis relative to DMSO was measured by incorporation 

of OP-Puro followed by flow cytometric analysis of the LSK-CD48- fraction. Error bars 

represent S.E.M. Statistical significance for gene expression analyses was assessed using 

a one-way ANOVA followed by Dunnett’s test for multiple comparisons. Statistical 

significance for pS6 and p4E-BP1 median fluorescence intensities was assessed using a 

one-way ANOVA followed by Tukey’s test for multiple comparisons. * p < 0.05, ** p < 

0.005. 
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Figure 4.3: Targeting S6K and eIF4E downstream of mTORC1 in HSC 

maintenance. 
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Figure 4.3: Targeting S6K and eIF4E downstream of mTORC1 in HSC 

maintenance. (A) Strategy to test inhibition of S6K or eIF4E in HSC culture: If the 

primary effect of rapamycin in HSC maintenance is to inhibit S6K and/or eIF4E, then 

direct inhibitors of these downstream effectors should be able to replace rapamycin and 

suppress lineage commitment. (B) Flow cytometric analysis of pS6 in the LSK-CD48- 

fraction of lineage-depleted bone marrow cells treated with PF-4708671. (C) Rate of 

translation relative to vehicle in LSK-CD48- cells treated with 4EGI-1, measured by OP-

Puro incorporation. (D) HSPCs were cultured for 7 d and then transplanted with 

competitor cells into lethally irradiated hosts. Donor-derived engraftment was determined 

by flow cytometry for CD45.1+ cells in peripheral blood from recipients of cultured HSPCs 

following competitive transplant. CP, CHIR99021 + PF-4708671; C4, CHIR99021 + 4EGI-

1; CP4, CHIR99021 + PF-4708671 + 4EGI-1. Chimerism data shown were collected 8 

weeks after transplant and are representative of 4-5 recipient mice per group.  
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Figure 4.4: Mitochondrial mass and activity in maintained HSCs. 
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Figure 4.4: Mitochondrial mass and activity in maintained HSCs. (A, B) Flow 

cytometric analysis of mitochondrial mass (median fluorescence intensity of Mitotracker 

Green) relative to DMSO (A) and mitochondrial membrane potential (JC-1) (B) in the 

LSK-CD48- fraction of lineage-depleted bone marrow cells following 16 h culture. Flow 

cytometric data shown are representative results of 3 experiments. Error bars represent 

S.E.M. Vm, mitochondrial membrane potential. Statistical significance was assessed using 

a one-way ANOVA followed by Tukey’s test for multiple comparisons. * p < 0.05, ** p < 

0.005.  
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Figure 4.5: Autophagy as a molecular mark of HSC maintenance. 
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Figure 4.5: Autophagy as a molecular mark of HSC maintenance. (A) RT-PCR 

for a pro-autophagic gene signature relative to DMSO in c-Kit+ cells following 24 h culture. 

(B-D) HSCs were cultured for 24 h and then fixed for immunofluorescence analysis of LC3 

staining. Sample image of LC3-punctum-positive cell at 400× magnification (B). White 

arrowhead indicates LC3 punctum. Scale bar, 10 μm. Quantification of percentage of LC3-

puncta-positive cells (C) and of average number of LC3 puncta per cell (D). Data shown 

are average of 3-4 experiments. Error bars represent S.E.M. Statistical significance was 

assessed using a one-way ANOVA followed by Dunnett’s test for multiple comparisons. ** 

p < 0.005, *** p < 0.0005.  
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Supplementary Figure 4.1: HSPC populations display stepwise changes in 

rate of protein synthesis. 
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Supplementary Figure 4.1: HSPC populations display stepwise changes in 

rate of protein synthesis. (A) Rate of protein synthesis determined by incorporation 

of OP-Puro in freshly isolated HSPC populations relative to Lin+ cells. (B) Rate of protein 

synthesis relative to DMSO in the LSK-CD48- fraction of lineage-depleted bone marrow 

cells following 3 h culture. (C) Flow cytometric analysis of pS6 in the LSK-CD48- fraction 

of lineage-depleted bone marrow cells treated with PF-4708671 and/or stem cell factor 

(SCF) (100 ng/ml). (D) Flow cytometric analysis of relative rate of protein synthesis in the 

LSK-CD48- fraction of lineage-depleted bone marrow cells treated with 4EGI-1. Error bars 

represent S.E.M. Statistical significance was assessed using a one-way ANOVA followed 

by Tukey’s test for multiple comparisons. * p < 0.05, ** p < 0.005.  



80 
 

Supplementary Figure 4.2: Reduced cell volume and RNA content in cultured 

HSCs. 
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Supplementary Figure 4.2: Reduced cell volume and RNA content in cultured 

HSCs. (A,B) HSC size by phase contrast microscopy of freshly isolated cells and after 3 d 

culture (A) and corresponding volume relative to day 0 over time (B). n = 40 – 60 cells 

counted per treatment group per day; **** indicates p < 1.5 × 10-18 for all conditions 

compared to day 0 (Student’s t-test). Images 400× magnification. Scale bar, 20 μm. (C) 

RNA was isolated from fresh HSCs and from HSCs following 3 d culture. Total RNA 

content was measured by nanofluidic analysis with up to 70% recovery of spiked-in RNA. 

(D) RNA content was measured by flow cytometric analysis in the HSPC fraction of 

lineage-depleted bone marrow cells that were freshly isolated and after 3 d culture. Data 

shown are representative results of 3-5 experiments. Error bars represent S.E.M. 
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 

Introduction 

 HSCs have a long history of use in the clinic for the treatment of congenital and 

acquired hematological malignancies and disorders, yet their full clinical potential 

remains constrained by an incomplete understanding of their underlying biology (as 

reviewed in Chapter 1). Major limiting factors in the thorough characterization of the HSC 

regulatory network include the complexity of the HSC niche and the rarity of the 

population, which present significant biological and technical challenges. In this 

dissertation, I characterized a signaling network that maintains HSCs under defined 

conditions and identified enhanced autophagy as a signature of this state. 

 I contributed to the identification of a signaling network that maintains HSCs ex 

vivo through the simultaneous inhibition of GSK-3 and mTORC1 (Chapter 2). I showed 

that HSPCs cultured with inhibitors of GSK-3 and mTORC1 (CR) in the absence of serum 

or exogenous cytokines retained multilineage potential, providing initial proof of principle 

that GSK-3 and mTORC1 inhibition maintains HSC function ex vivo. I additionally 

demonstrated activation of a Wnt target gene by GSK-3 inhibition, consistent with 

subsequent work by the first author that β-catenin is required for this ex vivo maintenance 

(Huang et al., 2012). 

I followed up this work by attempting to perform transcriptional profiling of HSCs 

maintained ex vivo (Chapter 3). Initial efforts to perform this analysis revealed an 

unexpected massive decrease in RNA content of cultured compared to freshly isolated 

HSCs. I therefore investigated approaches to overcome this technical hurdle, and 

presented a detailed method suitable to perform gene expression profiling comparing 

uncultured and cultured HSCs.  If completed, this profile could serve as a valuable 

resource to identify transcriptional features that mark the state of HSC maintenance. It 
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could moreover reveal how HSCs adjust to conditions beyond the niche, providing insight 

into how one could uncouple proliferation from differentiation to drive self-renewing 

divisions. Ex vivo expansion of HSCs would both facilitate further molecular 

characterization of HSCs and accelerate broader clinical use of HSCs, such as for 

therapeutic gene editing. 

Finally, I assessed multiple outputs of mTORC1 signaling to assess which pathways 

are uniquely activated or inhibited when GSK-3 and mTORC1 activity is suppressed to 

maintain HSCs. This investigation revealed that although the rate of global translation and 

mitochondrial mass increase in a GSK-3 specific manner, enhanced activation of 

autophagy is a unique molecular signature of HSCs maintained ex vivo (Chapter 4). This 

finding is consistent with a growing body of literature describing an essential role for 

autophagy in stem cell function. As more refined tools to assess autophagic degradation 

are described, specific targets of autophagy in HSC maintenance may be identified. 

Is autophagy required for HSC maintenance ex vivo? 

 The results described in Chapter 4 identify enhanced activation of autophagy as a 

marker of HSC maintenance ex vivo, but they do not indicate whether it is required 

downstream of mTORC1. This is a complicated question to address, as knockout of any of 

several key components of the autophagy machinery leads to rapid myeloproliferation and 

HSC exhaustion (Mortensen et al., 2011; Watson et al., 2015; Ho et al., 2017). We would 

therefore predict that Atg5 or Atg7 knockdown during CR culture would not be 

informative: lack of engraftment of such cells upon transplant could indicate a 

requirement for autophagy in CR-mediated HSC maintenance, but it would also be 

consistent with autophagy acting in parallel with the mechanism of CR maintenance. 

However, if Atg5/7-knockdown HSCs cultured in CR did reconstitute the hematopoietic 
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systems of transplant recipients, it would show that autophagy is unexpectedly not 

required for GSK-3- and mTORC1-mediated maintenance of HSCs ex vivo. 

 We have observed that CR-cultured HSCs do not form colonies in colony-forming 

assays (with Dheeraj Bhavanasi; data not shown), even though they give rise to long-term 

multilineage engraftment upon transplant (Chapter 4). Accumulating evidence indicates 

that autophagy promotes HSC quiescence (Mortensen et al., 2011; Watson et al., 2015; Ho 

et al., 2017). Since CR-cultured HSCs exhibit enhanced autophagy (Chapter 4), it is 

possible that autophagy maintains cultured HSCs in a quiescent state that renders them 

incapable of forming colonies. (According to this model, the HSC niche of transplant 

recipients provides the appropriate cues to suppress autophagy and activate CR-cultured 

HSCs.) Briefly suppressing autophagy (for perhaps 1-2 days) following CR maintenance 

may therefore activate quiescent cultured HSCs. Transient inhibition of autophagy could 

be achieved pharmacologically by inhibitors of the required autophagy proteins Vps34 

(Ronan et al., 2014) or Ulk1 (Egan et al., 2015), or genetically by Atg5/7 shRNA or 

inducible CRISPR interference (Mandegar et al., 2016). If HSCs cultured in CR and then 

briefly exposed to an autophagy-inhibiting agent gave rise to colonies, then it would 

indicate that GSK-3 and mTORC1 inhibition maintains HSCs in a quiescent state that is 

dependent upon activation of autophagy. 

 Autophagy is essential to the function of diverse stem cell populations, including 

embryonic, epidermal (Salemi et al., 2012), skeletal muscle (Tang and Rando, 2014; 

Garcia-Prat et al., 2016), neural (Vazquez et al., 2012; Wu et al., 2016), and hematopoietic 

stem cells (Mortensen et al., 2011; Watson et al., 2015; Warr et al., 2013). Accumulating 

evidence specifically supports a role for autophagy in HSC quiescence (Mortensen et al., 

2011; Ho et al., 2017). Autophagy is also upregulated during induction of quiescence in 
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crustacean diapause embryos (Lin et al., 2016). The experiments proposed here will define 

a role for autophagy in HSC quiescence and activation. 

How does simultaneous GSK-3 and mTORC1 inhibition activate autophagy? 

 mTORC1 inhibits autophagy, and correspondingly, inhibition of mTORC1 by 

rapamycin is a known inducer of autophagy. However, activation of autophagy requires 

rapamycin concentrations of 100-500 nM, significantly greater than the 5 nM used in 

combination with GSK-3 inhibition to maintain HSCs ex vivo. Rapamycin at 5 nM was not 

sufficient to activate autophagy by itself (Figure 4.5), and therefore an alternative 

mechanism is necessary to explain the effects we observe. 

GSK-3 and mTORC1 both inhibit autophagy in part by promoting cytosolic 

sequestration of the lysosomal and autophagy master TF TFEB (Parr et al., 2012; 

Roczniak-Ferguson et al., 2012). As we only observe enhanced activation of autophagy in 

HSCs cultured with both inhibitors, it suggests that combined inhibition of GSK-3 and 

mTORC1 may allow TFEB to translocate to the nucleus and promote autophagy. 

Immunofluorescence analysis for the subcellular localization of TFEB would address this 

question, with the prediction that TFEB localization in the nucleus would be enhanced in 

CR-cultured HSCs compared to vehicle- or single-treated HSCs. This model also predicts 

that CR-cultured HSCs will express the highest levels of TFEB target genes, including 

Atg9b, Maplc3b, and Sqstm1 (Settembre et al., 2011), which encode components of the 

core autophagy machinery. 

Finally, hepatocytes express higher levels of TFEB target genes in response to 

treatment with the mTORC1 inhibitor Torin 1, but this effect is blunted in Tfeb-knockout 

cells (Settembre et al., 2012). This result identifies TFEB as a main mediator of this 

response. I have hypothesized that TFEB regulation may be an important mechanism by 
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which GSK-3 and mTORC1 inhibition activates autophagy in HSC maintenance. If this is 

the case, then Tfeb knockdown should block HSC maintenance in CR. Importantly, Tfeb-

knockout cells in control medium do not express significantly different levels of target 

genes compared to wild-type (Settembre et al., 2012), suggesting that Tfeb knockdown will 

not affect HSC function except under conditions that induce autophagy. 

 GSK-3 or mTORC1 regulation of TFEB has been demonstrated in diverse cell types, 

including HeLa (Settembre et al., 2012), mouse neuroblastoma (Parr et al., 2012), and 

human pancreatic cancer (Marchand et al., 2015) cell lines. However, potential co-

regulation of TFEB by GSK-3 and mTORC1 has not been explored. GSK-3 and mTORC1 

are established regulators of multiple stem cell populations (Welham et al., 2011; Ghosh 

and Kapur, 2016; Tee et al., 2016). Autophagy is also increasingly recognized as an 

essential process in stem cell function (Guan et al., 2013; Phadwal et al., 2013). If GSK-3 

and mTORC1 inhibition promotes HSC maintenance through TFEB-mediated activation 

of autophagy, a similar mechanism may function in additional stem cell populations. For 

example, epidermal stem cells with excessive Wnt signaling exhibit transient expansion 

followed by mTORC1-dependent depletion (Castilho et al., 2009), a phenotype remarkably 

like that observed in HSCs (Huang et al., 2009). Refinement to the molecular level of 

regulation of autophagy in stem cells may reveal valuable targets in senescence and 

disease. 

Does selective autophagy contribute to HSC maintenance? 

 I reported the expression of a pro-autophagic gene signature and the increased 

formation of LC3+ autophagic puncta in HSCs maintained ex vivo (described in Chapter 

4). Although this is sufficient to indicate generally that autophagy (macroautophagy) is 

uniquely enhanced in these cells, additional observations leave open the possibility that 
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forms of targeted autophagy may contribute to HSC maintenance ex vivo. The literature 

on selective autophagy is limited. However, the selective autophagic degradation of 

ribosomes and mitochondria (ribophagy and mitophagy, respectively) may play important 

roles in sustaining HSC function. 

 Cellular RNAs are subject to extensive quality controls, with mRNA turnover 

mediated primarily by ribonucleases (RNases) following removal of the 5’ cap and poly(A) 

tail (Chen and Shyu, 2011). rRNA, however, which comprises the majority of cellular RNA, 

is typically highly structured and bound in RNA-protein complexes, rendering it less 

accessible to basic RNA degradation machinery. A lysosome-dependent increase in total 

RNA turnover in serum-deprived human fibroblasts (Sameshima et al., 1981) and in 

amino acid-deprived rat hepatocytes (Lardeux and Mortimore, 1987) provided early 

evidence that autophagy might promote more large-scale RNA decay during starvation. 

Further supporting a role for autophagy-mediated RNA degradation, the evolutionarily 

conserved and broadly expressed T2 family of RNases is primarily localized to the 

lysosome, with an optimal pH of 4-5 (Irie, 1999). A requirement for the T2 family of 

RNases in RNA turnover has been described in Drosophila (Ambrosio et al., 2014), 

zebrafish (Haud et al., 2011), and human (Henneke et al., 2009). Evidence of ribophagy 

has since been reported in organisms from yeast (Kraft et al., 2008) to humans (Kristensen 

et al., 2008). Notably, ribophagy requires components both of the core macroautophagic 

machinery and of additional receptors that recognize targeted cargo and link it to 

autophagosomal membranes (Frankel et al., 2016). Evidence of activated macroautophagy 

may be therefore be consistent with activated ribophagy. 

 HSCs maintained ex vivo contain less total RNA and exhibit enhanced activation 

of autophagy. These observations suggest that ribophagy may be a component of the 

activated autophagy that marks HSCs maintained ex vivo. Ribosome biogenesis and 



88 
 

protein synthesis are among the most energy-consuming cellular processes, and must 

therefore be tightly regulated by nutrient availability. HSCs in vivo reside in a low-

perfusion niche (Parmar et al., 2007; Simsek et al., 2010; Spencer et al., 2014) and require 

a restricted rate of translation (Signer et al., 2014). Ribophagy is induced upon nutrient 

deprivation (Kraft et al., 2008; Kristensen et al., 2008), consistent with the Klein 

laboratory’s serum-free culture conditions. Combined, these observations make ribophagy 

an attractive mechanism by which HSCs might suppress anabolism under conditions of 

restricted nutrient availability, such as in ex vivo maintenance. Although I observed 

reduced RNA content in all cultured cells, the hypothesis of ribophagy induction is 

consistent with the enhanced activation of macroautophagy correlating uniquely with 

conditions that maintain HSCs. 

 Although ribophagy appears to involve proteins that do not participate in 

macroautophagy (Frankel et al., 2016), specific markers of mammalian ribophagy have 

not been identified. When they are identified, it will become possible to study ribophagy 

dynamics (e.g., through knockdown of ribophagy-specific adaptors) without interfering 

with macroautophagy. Until then, indirect readouts must be employed. Expression of the 

T2 family of RNases increases in response to nutrient deprivation (Ambrosio et al., 2014), 

and its loss leads to accumulation of undigested rRNA in lysosomes (Haud et al., 2011). 

Increased expression of Rnaset2 family members in cultured HSCs would therefore be 

consistent with enhanced ribophagy. In addition, electron microscopy has been used to 

visualize ribosomes in autophagosomes and lysosomes (Frankel et al., 2016). Although 

this observation alone can be consistent with macroautophagy without invoking 

ribophagy, analysis of protein turnover during amino acid starvation reveals distinct 

kinetics of autophagic degradation of ribosomes compared to other cellular components, 

suggesting temporal selection of cargo (Kraft et al., 2008; Kristensen et al., 2008). These 
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experiments would not definitively demonstrate activation of ribophagy, but they would 

support a role for it in the larger context of activated autophagy and reduced RNA content. 

 Cells also restrict energy needs in the context of nutrient deprivation through the 

selective autophagic degradation of mitochondria. Mitophagy additionally serves as the 

key process for mitochondrial quality control and turnover (Okamoto, 2014). Like 

ribophagy, mitophagy involves both the core autophagic machinery and receptors that 

mediate specific cargo targeting to autophagosomes, although mitophagy-specific 

markers have also not yet been identified. Increasing mitochondrial mass has been 

correlated with loss of HSC function (Mantel et al., 2010). CR culture maintains HSCs ex 

vivo despite inducing an increase in mitochondrial mass (as described in Chapter 4). 

Given the concomitant increase in autophagy in these cells, mitophagy is an attractive 

potential component of the mechanism by which CR maintains HSCs. Although CR-

cultured HSCs have higher overall mitochondrial mass compared to vehicle, activated 

mitophagy would selectively degrade dysfunctional mitochondria. The improved health of 

the remaining mitochondria may therefore permit retention of function in HSCs despite 

elevated mitochondrial content. 

 As with ribophagy, mitophagy-specific markers have not yet been identified, so 

circumstantial evidence for targeted mitophagy would need to be considered in the 

broader context of nutrient availability and cellular function. Mitochondria must undergo 

fission prior to engulfment in autophagosomes (Rimessi et al., 2013). The observation that 

mitochondrial mass is elevated in CR-cultured HSCs was based on flow cytometric 

quantification of MitoTracker staining, indicating total mitochondrial content but not the 

size of individual mitochondria. It would therefore be informative to perform 

immunofluorescence analysis of cultured HSCs to visualize the extent of mitochondrial 

fission in cultured HSCs. Mitochondria are also readily visualized in autophagosomes by 
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electron microscopy. Finally, immunofluorescence analysis could colocalize the outer 

mitochondrial membrane protein TOM20 to the lysosome. Combined, these results would 

be consistent with activation of mitophagy as a marker of HSC maintenance ex vivo and 

suggest improved mitochondrial quality control as a potential mechanism, although 

mitophagy markers will need to be identified to obtain definitive evidence. 

 Selective autophagy is a conserved mechanism of organelle quality control and 

metabolic regulation during development, homeostasis, and regeneration (Okamoto, 

2014). One of the most dramatic described examples of this is the elimination of ribosomes 

and mitochondria during red blood cell maturation, which occurs in a manner dependent 

on selective autophagy but not macroautophagy (Kundu et al., 2008). Characterization of 

such targeted autophagic pathways in HSCs maintained ex vivo would offer a more refined 

definition of a metabolic program that HSCs activate to retain their function.  

When is restricted translation important for HSC maintenance? 

 Morrison and colleagues have reported that HSCs require a low rate of translation 

in vivo compared to more differentiated hematopoietic cells, and that this is mediated in 

part by the 4E-BPs (Signer et al., 2014; Signer et al., 2016). GSK-3 and mTORC1 inhibition 

reduces 4E-BP phosphorylation and maintains HSCs ex vivo despite elevating the rate of 

translation compared to controls (as detailed in Chapter 4). These findings therefore argue 

for a context-dependent requirement for restricted protein synthesis in HSCs. 

 One possibility is that HSCs may rely on low levels of specific proteins rather than 

on a globally low rate of translation. The extent to which the 4E-BPs restrict translation 

appears to be context-dependent. The 4E-BPs generally have only a modest effect on the 

rate of bulk translation (Lynch et al., 2004; Tahmasebi et al., et al., 2014) and specifically 

restrict translation of mRNAs related to survival, proliferation (Topisirovic and 
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Sonenberg, 2011), mitochondrial structures, and oxidative phosphorylation (Morita et al., 

2013). In HSCs, however, 4E-BP1/2 double knockout leads to ~25% increased global 

protein synthesis compared to wild type (Signer et al., 2016). As simultaneous GSK-3 and 

mTORC1 inhibition leads to reduced 4E-BP phosphorylation without a corresponding 

reduction in the rate of bulk translation, it is possible that HSC maintenance under these 

conditions is mediated by restricted translation of specific transcripts, but that this is not 

detectable at the level of total protein synthesis. Immunoblotting for known targets of 4E-

BP-restricted translation would help address this question. On a proteomic scale, 

ribosomal profiling may eventually identify 4E-BP-regulated transcripts in HSCs under 

physiological and artificial settings, although this technology currently requires orders of 

magnitude more cells than is possible to perform on such a rare population. 

 An additional possibility, which is not mutually exclusive with 4E-BP-restricted 

translation of selected mRNAs, is that a low rate of translation may be important for 

maintenance of long-term HSC function in the context of proliferation, such as in cytokine 

culture. In support of this hypothesis, a small molecule screen was recently completed for 

compounds that, in combination with CR and a limited cytokine cocktail (no serum), could 

promote UCB HSC expansion ex vivo (Dheeraj Bhavanasi and Peter Klein, unpublished). 

Under these conditions, the inhibitor of eIF4E-eIF4G interaction 4E1RCat induced 8- to 

10-fold HSC expansion by immunophenotypic analysis and by limiting dilution analysis 

in immunocompromised mice. It will therefore be important to measure the rate of 

translation in these cells to explore what role protein synthesis may play in the 

maintenance of HSCs undergoing cytokine-induced self-renewing division. 

Restricted translation is an important mechanism of maintenance or quiescence in 

embryonic stem cells (Sampath et al., 2008), satellite cells (Zismanov et al., 2016), 

epidermal stem cells (Blanco et al., 2016), and diapaused blastocysts (Bulut-Karslioglu et 
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al., 2016). HSCs in vivo additionally require a controlled rate of protein synthesis (Signer 

et al., 2014). My findings do not, however, support a role for suppression of translation as 

a mechanism to maintain HSCs in cytokine-free culture. Future studies may identify the 

molecular mediators and functional contexts that determine when restricted protein 

synthesis affects HSC function. 

Revised model for GSK-3 and mTORC1 regulation of HSC maintenance 

 Autophagy is essential for restricting ROS accumulation and consequent DNA 

damage, in part through mitochondrial quality control. Maintaining genomic integrity is 

particularly consequential in quiescent stem cells, given their function in lifelong tissue 

maintenance and their limited capacity to dilute cellular waste by division (Guan et al., 

2013). Loss of autophagy in HSCs leads to rapid accumulation of mitochondria, ROS, and 

DNA damage, followed by myeloproliferation and loss of regenerative potential 

(Mortensen et al., 2011). This is accompanied by increased glucose uptake, NADH and 

ATP levels, and a shift from glycolysis to oxidative phosphorylation, metabolic features 

indicating HSC activation (Ho et al., 2017). Mice lacking the mTORC1 inhibitor Tsc1 

exhibit a similar phenotype (Chen et al., 2008). Antioxidant treatment restores HSC 

quiescence and function, identifying ROS as an important regulator of HSC quiescence.  

Considering these reports, the work in this dissertation describes the ex vivo 

maintenance of HSCs exhibiting a seemingly paradoxical metabolic profile: these cells are 

smaller and contain less total RNA than uncultured HSCs, consistent with a quiescent 

state, yet they also translate more mRNA into protein and have higher mitochondrial 

content, suggesting stem cell activation. I hypothesize that the enhanced activation of 

autophagy in maintained HSCs resolves these antagonistic metabolic cues, achieving the 

balance between biosynthetic and degradative processes necessary to preserve stem cell 
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function. GSK-3 (Parr et al., 2012; Marchand et al., 2015) and mTORC1 (Roczniak-

Ferguson et al., 2012; Settembre et al., 2012) each inhibit nuclear translocation of TFEB. 

TFEB is therefore an attractive potential mediator of the autophagy uniquely enhanced in 

CR-cultured HSCs (Figure 5.1). More thorough analyses of the metabolic profile of HSCs 

maintained ex vivo, such as those described above, would provide further evidence that 

GSK-3 and mTORC1 inhibition maintains HSC function in cells that have entered a 

quiescent state. 

Conclusion 

 In this dissertation, I investigated a signaling network that maintains HSCs. in 

attempting to perform gene expression profiling on these cells, I discovered that they 

exhibit a significant reduction in total RNA content, leading to the description of a detailed 

protocol that can be used to characterize the transcriptional profile of cells with limited or 

differing quantities of RNA. My investigations additionally identified enhanced activation 

of autophagy as a marker of this network. This work both reinforces the essential role 

autophagy plays in stem cell maintenance and raises compelling questions about the 

contribution of metabolism to stem cell function. 
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Figure 5.1: Revised model for GSK-3 and mTORC1 regulation of HSCs. GSK-3 

regulates two antagonistic pathways in HSCs. GSK-3 inhibition of Wnt/β-catenin 

signaling inhibits self-renewal, while GSK-3 inhibition of mTORC1 promotes lineage 

commitment. Inhibition of GSK-3 activates both pathways. Simultaneous inhibition of 

GSK-3 and mTORC1 may therefore block HSC lineage commitment while promoting self-

renewal. GSK-3 and mTORC1 each independently inhibit TFEB. As autophagy activation 

is uniquely enhanced in HSCs in which both GSK-3 and mTORC1 are inhibited, TFEB may 

mediate of this effect.  
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CHAPTER 6: METHODS AND MATERIALS 

Mice 

 C57BL/6 wild-type (CD45.2+) and SJL (CD45.1+) congenic mice were obtained 

from the Jackson Laboratory. Mice were bred in-house in a pathogen-free mouse facility 

at the University of Pennsylvania. Transplant recipients were 8- to 10-week-old CD45.2+ 

females. Donor mice were 6- to 8-week-old CD45.1+ males. Animal experiments were 

performed in accordance with guidelines approved by the Institutional Animal Care and 

Use Committee (IACUC) at the University of Pennsylvania (IACUC protocol #80317). 

Flow cytometric sorting and analysis of HSCs 

Bone marrow cells were flushed from the tibias and femurs of mice with PBS 

without calcium or magnesium. For detection of LSK cells, whole bone marrow cells were 

incubated with biotin-conjugated monoclonal antibodies to the following lineage markers: 

B220 (6B2), CD4 (GK1.5), CD8 (53-6.7), Gr1 (8C5), Mac1 (M1/70), Ter119 (Ter119), and 

interleukin-7 receptor (IL-7R) (A7R34); FITC-conjugated antibody to Sca1 (Ly6A/E; D7) 

and APC-conjugated antibody to c-Kit (ACK2). CD48 and CD150 were measured with PE-

conjugated antibody to CD48 (HM48-1) and PE Cy7-conjugated antibody to CD150 (TC15-

12F 12.2). All antibodies were purchased from eBioscience except for antibody CD150, 

which was purchased from Biolegend. Biotin-conjugated lineage marker antibodies were 

detected using streptavidin-conjugated PE Texas Red (ThermoFisher). Antibodies to 

B220, CD4, CD8, Gr1, Mac1 and IL-7R were diluted 1:550. Antibodies to Ter119 and Gr1 

were diluted 1:275. Antibodies to Sca1, c-Kit, CD48, and CD150 were diluted 1:80. Non-

viable cells were excluded using the viability dye DAPI (1 μg ml−1). Cells were sorted with 

a FACSAria (Becton Dickinson) automated cell sorter. Analyses were performed on a 
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FACSCanto or LSR II flow cytometer (Becton Dickinson). Data were analyzed using 

FlowJo software (Tree Star). 

Cytokine-free HSC and HSPC culture 

 HSPCs were cultured as described previously [27]. Briefly, mouse bone marrow 

cells were harvested and distributed into a single-cell suspension by gently drawing 

through a 22-gauge needle. Red blood cells were lysed in ammonium chloride–potassium 

(ACK) buffer. Lineage-depleted bone marrow cells were isolated by incubating whole bone 

marrow with biotin-conjugated lineage marker antibodies indicated above followed by 

incubation with Dynabeads M-280 Streptavidin (ThermoFisher) and separation with the 

EasySep magnet (Stem Cell Technologies). c-Kit+ cells were purified with the MACS cell 

separation kit (Miltenyi Biotec). Isolated HSCs and HSPCs were cultured in X-VIVO 15 

(BioWhittaker) supplemented with 1% penicillin and streptomycin (Sigma). CHIR99021 

and rapamycin (Cayman Chemical) reconstituted in DMSO were added to final 

concentrations of 3 μM (CHIR99021) and 5 nM (rapamycin) for all experiments unless 

otherwise indicated. For inhibition of S6K and eIF4E, cells were cultured in 3 μM 

CHIR99021 combined with 10 μM PF-4708671 (Tocris Bioscience) reconstituted in 

ethanol, 50 μM 4EGI-1 (Tocris Bioscience) reconstituted in DMSO, or both. Sorted cells 

were distributed into 96-well plates with 100 μl medium. One-half volume of medium and 

full drug volume were replaced every other day. 

Long-term competitive repopulation assays 

C57BL/6 (CD45.2+) recipient mice were lethally irradiated with a cesium-137 

irradiator in two equal doses of 500 rads separated by at least 2 h. SJL (CD45.1+) donor 

cells were mixed with 3 × 105 competitor C57BL/6 bone marrow cells and injected into the 

retro-orbital venous sinus of anesthetized recipients. Transplanted mice were given 
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antibiotic-containing water for four weeks following irradiation. Beginning 4 weeks after 

transplantation and continuing for 24 weeks, blood was collected from the tail veins of 

recipient mice and analyzed by flow cytometry for the lineage markers Gr1 (8C5), Mac1 

(M1/70), B220 (6B2), CD4 (L3T4), CD8 (Ly-3) (eBioscience) to monitor engraftment. 

RNA-seq 

 HSCs were sorted and cultured as described above, and RNA was isolated as 

described below. Ten microliters of RNA per sample was input to three rounds of the 

aRNA amplification method (Morris et al., 2011). Following amplification, aRNA product 

quality and quantity was checked by nanofluidic electrophoresis with the RNA 6000 Pico 

kit on a 2100 Bioanalyzer (Agilent Technologies). aRNA was delivered to the Perelman 

School of Medicine Next-Generation Sequencing core for library preparation and RNA-

seq. One-hundred-base-pair single read sequencing was performed on a HiSeq4000 

(Illumina). Genome alignment and differential expression analysis was performed by the 

Penn Molecular Profiling Facility. 

RNA isolation and RT-PCR 

 Cultured c-Kit+ or LSK-SLAM cells were centrifuged, lysed in 350 μl RLT Plus Lysis 

buffer with Reagent DX (Qiagen) and beta-mercaptoethanol (Sigma-Aldrich), and RNA 

was isolated using the RNeasy Plus Micro kit (Qiagen) as indicated by the manufacturer. 

For spike-in confirming successful RNA isolation from cultured cells, 150 ng YFP mRNA 

was added at the time of lysis. RNA concentration was quantified on a NanoDrop 1000 

(ThermoFisher). 50 ng total RNA per sample was used for first-strand cDNA synthesis 

using SuperScript III reverse transcriptase (Invitrogen) as indicated by the manufacturer. 

Relative gene expression was quantified on a 7900HT Fast Real-Time PCR System 

(Applied Biosystems) using Power SYBR Green PCR Master Mix (Applied Biosystems). 
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Expression levels of genes of interest were normalized to β-actin expression. RT-PCR 

primers were designed using NCBI Primer-BLAST, and sequences are available upon 

request. 

RNA content analysis and cell size measurement 

 Lineage-depleted bone marrow cells were isolated for analysis of RNA content and 

cell size on day 0 or after 3 d of culture. At the time of analysis, cells were washed with PBS 

and stained in LIVE/DEAD Fixable Near IR Dead Cell Stain (ThermoFisher) as directed 

by the manufacturer, washed, and stained for surface markers indicated. For RNA content 

analysis by flow cytometry, cells were then washed, resuspended in 20 μg ml-1 Hoechst 

33342 (Cell Signaling Technologies) with 50 μg ml-1 verapamil (Calbiochem) in PBS 

supplemented with 3% fetal bovine serum (FBS; GE Healthcare Life Sciences), vortexed 

briefly, and incubated covered at 37°C for 45 min. Pyronin Y (Sigma-Aldrich) was added 

directly to a final concentration of 1 μg ml-1 and cells were briefly vortexed and incubated 

covered at 37°C for an additional 15 min. Cells were washed and immediately analyzed by 

flow cytometry. 

 For size measurement, HSCs were sorted and cultured as described above. Each 

day, cells were imaged on a Nikon Diaphot microscope equipped with a Nikon DS-Fi1 

camera and NIS-Elements F imaging software (Nikon). Cell cross-sectional area was 

measured in ImageJ (NIH) calibrated to a micrometer, and volume was calculated 

assuming that cells are spherical. 

Assessment of pS6 and p4E-BP1 

 To measure phosphorylated S6 and 4E-BP by intracellular flow cytometry, lineage-

depleted bone marrow cells were treated with DMSO, 30 μM CHIR99021, 500 nM 

rapamycin, or both at 37°C for times indicated. Cells were fixed and permeabilized as 
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indicated by Cell Signaling Technology. Cells were stained for the surface markers 

indicated and for pS6 conjugated to Pacific Blue (Ser235/236 [D57.2.2E], rabbit mAb, 

final concentration 1:50, Cell Signaling Technology) and p4E-BP1 conjugated to PE 

(Thr37/46 [236B4], rabbit mAb, final concentration 1:50, Cell Signaling Technology), 

then analyzed by flow cytometry. 

Assessment of rate of translation 

 Lineage-depleted cells were cultured as described above for 3 or 24 h, and then O-

propargyl-puromycin (OP-Puro; Click-iT Plus OPP AlexaFluor 488 kit, Life Technologies) 

was added (10 μM) to the medium for an additional 30 min. Cells were washed with PBS 

and stained with LIVE/DEAD Fixable Near IR Dead Cell Stain (ThermoFisher) as directed 

by the manufacturer. Cells were fixed in 0.5 ml of 1% paraformaldehyde (Electron 

Microscopy Sciences) in PBS for 15 min covered on ice. Cells were washed in PBS, then 

permeabilized in 200 μl PBS supplemented with 3% FBS and 0.1% saponin (Sigma) for 

5 min at room temperature. The azide-alkyne cycloaddition was performed using the kit 

as directed by the manufacturer. After the 30-min reaction, cells were washed in PBS 

supplemented with 3% FBS, then stained for surface markers indicated and analyzed by 

flow cytometry. 

Mitochondrial analyses 

 Lineage-depleted cells were cultured as described above for 16 h and stained for 

surface markers indicated. Mitochondrial mass and membrane potential were then 

measured using MitoTracker Green FM (20 nM; Life Technologies) and MitoProbe JC-1 

Assay Kit for Flow Cytometry (0.2 μM in X-VIVO 15; Life Technologies), respectively, as 

indicated by the manufacturer and analyzed by flow cytometry. 
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Immunofluorescence microscopy 

 LSK-SLAM cells were sorted as described above. Cells were cultured for 24 h as 

described above, then fixed in 4% paraformaldehyde in PBS on glass slides for 30 min at 

room temperature. Cells were washed twice in PBS, then permeabilized in 0.5% Triton X-

100 (ThermoFisher) in PBS for 10 min at room temperature. Cells were then washed twice 

in PBS and blocked in 10% bovine serum albumin (BSA; Sigma-Aldrich) in PBS. Cells were 

stained with rabbit anti-LC3 (1:500; MBL) in 5% BSA in PBS supplemented with 0.1% 

TWEEN 20 (Sigma-Aldrich) for 1 h at room temperature and then overnight at 4°C. After 

primary stain, cells were washed four times in PBS with 0.1% TWEEN 20. Secondary stain 

was donkey anti-rabbit IgG conjugated to Alexa Fluor 555 (1:500; ThermoFisher) in 5% 

BSA in PBS supplemented with 0.1% TWEEN 20, incubated for 1 h at room temperature 

and protected from light, followed by four washes in PBS with 0.1% TWEEN 20. Cells were 

counterstained with DAPI (1μg ml-1) in PBS for 5 min at room temperature and then 

washed twice in PBS. Slides were mounted with ProLong Gold antifade reagent 

(Invitrogen) and cured at room temperature for at least 24 h. Slides were imaged on an 

Olympus IX81 fluorescent microscope setup with a Hamamatsu Camera Controller 

C10600. Images were recorded and analyzed using the MetaMorph for Olympus Advanced 

software. 

Statistical methods 

 All data are depicted as mean +/- standard error of the mean (S.E.M.). Statistical 

significance was assessed by one-way ANOVA, followed by post-hoc Tukey’s test or 

Dunnett’s test for multiple comparisons as indicated. For pairwise comparisons, 

significance was assessed by Student’s t-test.  
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