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Abstract
Current chemotherapy causes a host of side effects and better delivery of drugs to tumors is required to reduce
this. Nanocarriers have been proven to not only deliver better to tumors but also solubilize more drugs in the
core, with flexible ‘filomicelles’ being particularly effective. They are still open to improvements and one
obvious way is to increase drug loading and hence drug dosage delivered to tumors. In the first part, the core
of filomicelles was modified by the integration of aromatic groups into the hydrophobic block of a degradable
di-block copolymer with the aim of improving delivery of aromatic drugs. Formed by self-assembly of
amphiphilic di-block copolymer PEG-PBCL, flexible worm-like micelles with an aromatic core loaded more
Paclitaxel than analogous aliphatic systems. The death of cancer cells and ploidy in surviving cells were higher
followed by tumor shrinkage in vivo.

When cancer cells are treated with single drugs alone during chemotherapy, development of drug resistance
has been commonly noted, eventually leading to relapse. Retinoic acid (RA) induces differentiation and
proliferation arrest in many cell types. With carcinoma lines, we find dual drug treatment with RA and
Paclitaxel increases ploidy and cell death beyond those achieved by either drug single-handedly, with effects
being durable. A month after treatment, relapse rates are low for RA-TAX treated cells (15%), compared to
almost all (92%) for cells treated with Paclitaxel alone. Reduction in levels of key cell cycle factor Cyclin-D1
and proliferation marker Ki-67 help clarify the basis for this synergy. These effects are greatly enhanced by
loading the drugs into filomicelles. Co-loading the drugs into filomicelles lead to a more potent system
compared to separate loading, with no loss in the integration efficiency of drugs. Notably, relapse rates were
~2% three months after treatment, highlighting the improvement offered by filomicelles. The combination
retains its potency across multiple cell lines despite their varying responsiveness to RA alone. Drug loaded
filomicelles are able to shrink subcutaneous lung and liver tumors in vivo. Tumor shrinkage was also observed
with orthotopic liver tumors, leading to a survival benefit. These results highlight the irreversible synergy of
killing cancerous cells while driving differentiation.
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ABSTRACT 

 

FILOMICELLES DELIVER A CHEMO-DIFFERENTIATIVE THERAPY TO 

DURABLY CONTROL CARCINOMA CELL FATE 

 

Praful R. Nair 

Dennis E. Discher 

 

Current chemotherapy causes a host of side effects and better delivery of drugs to tumors 

is required to reduce this. Nanocarriers have been proven to not only deliver better to 

tumors but also solubilize more drugs in the core, with flexible ‘filomicelles’ being 

particularly effective. They are still open to improvements and one obvious way is to 

increase drug loading and hence drug dosage delivered to tumors. In the first part, the 

core of filomicelles was modified by the integration of aromatic groups into the 

hydrophobic block of a degradable di-block copolymer with the aim of improving 

delivery of aromatic drugs. Formed by self-assembly of amphiphilic di-block copolymer 

PEG-PBCL, flexible worm-like micelles with an aromatic core loaded more Paclitaxel 

than analogous aliphatic systems. The death of cancer cells and ploidy in surviving cells 

were higher followed by tumor shrinkage in vivo.  

When cancer cells are treated with single drugs alone during chemotherapy, development 

of drug resistance has been commonly noted, eventually leading to relapse. Retinoic acid 
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(RA) induces differentiation and proliferation arrest in many cell types. With carcinoma 

lines, we find dual drug treatment with RA and Paclitaxel increases ploidy and cell death 

beyond those achieved by either drug single-handedly, with effects being durable. A 

month after treatment, relapse rates are low for RA-TAX treated cells (15%), compared 

to almost all (92%) for cells treated with Paclitaxel alone. Reduction in levels of key cell 

cycle factor Cyclin-D1 and proliferation marker Ki-67 help clarify the basis for this 

synergy. These effects are greatly enhanced by loading the drugs into filomicelles. Co-

loading the drugs into filomicelles lead to a more potent system compared to separate 

loading, with no loss in the integration efficiency of drugs. Notably, relapse rates were 

~2% three months after treatment, highlighting the improvement offered by filomicelles. 

The combination retains its potency across multiple cell lines despite their varying 

responsiveness to RA alone. Drug loaded filomicelles are able to shrink subcutaneous 

lung and liver tumors in vivo. Tumor shrinkage was also observed with orthotopic liver 

tumors, leading to a survival benefit. These results highlight the irreversible synergy of 

killing cancerous cells while driving differentiation.  
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CHAPTER 1. INTRODUCTION 

 

1.1. Current problems of cancer 

Cancer is the uninhibited proliferation of once healthy cells, which hijack resources 

meant for healthy tissues (Figure 1.1). Eventually, they grow and displace nearby cells, 

compromising the proper functioning of the organ. Invasion of cells and metastasis to 

distant organs along the way leads to the development of more tumors, leading ultimately 

to death (Fidler, 2003). It ranks amongst the leading causes of mortality globally, with 

~13 million new cases and 8 million deaths annually. In the United States, there were an 

estimated 1.7 million new cases in 2017 and 600 thousand mortalities (Siegel et al., 2017) 

and was the second leading cause of death, behind heart diseases. It has existed 

throughout the history of mankind, with the earliest recorded tumors dating back to 1600 

BCE. More recently, over 500 billion dollars has been spent cumulatively since President 

Nixon declared the 'War on Cancer' in 1971. Not only is it a massive healthcare burden, 

but also a financial one, and the National Cancer Institute receives more than six billion 

dollars annually and has spent over 90 billion dollars since 1971 (Marshall, 2011). 

Despite all this financial input, the mortality rate has barely declined, unlike most other 

diseases whose death rate has plummeted with time, money, and research. While 

mortality rates have fallen 25% from its peak in 1991 (Siegel et al., 2017), this has been 

attributed largely to preventive measures rather than advances in treatment. Of the 

various subtypes of cancers, lung, colorectal, prostrate and breast dominate overall (Ries 

et al., 2006) (Ferlay et al., 2007). While prostrate, lung, and colorectal led to most cases 
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in men (~42% of all newly diagnosed cases), breast, lung, and colorectal was dominant in 

women (~30% of all new cases). 

As mentioned above, preventive measures underlie the reason behind the drop in most 

cancer deaths. A rapid decline in the number of lung cancer cases followed (decades) 

after anti-smoking awareness campaigns. Routine Prostate Specific Antigen (PSA) 

screenings has led to a drop in new cases of prostate cancer (Schroder et al., 2009) 

(Andriole et al., 2009). In the same vein colorectal cancer rates have declined following 

colonoscopies to detect and remove polyps, abnormal growths that progress to cancers.  

However, not all cancers are on the decline. Incidences of liver cancers, main focus of 

this thesis, along with certain types of leukemia, pancreas, tongue, small intestine, kidney 

and myeloma have increased in the last decade (Siegel et al., 2015). Another 

complicating factor comes from the fact that different ethnicities have different rates for 

each type of cancer. All the above factors contribute to complicate the treatment of a 

disease, which is already made complex by the fact that it's the patient's own cells that 

have run amok. 

 

1.2. Chemotherapy and other current treatments 

Cancer cells have mutations that enable it to survive in very difficult conditions and are, 

hence, a lot more resilient than normal cells (Greaves and Maley, 2012). As a result, the 

drugs developed for chemotherapy are extremely lethal. While chemotherapeutics 

encompass a large group of drugs (such as DNA damaging agents, anti-mitotics, anti-

metabolites, topoisomerase inhibitors and cytotoxic antibiotics) (Marzo and Naval, 2013), 
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they rely on the rapid proliferation rate of neoplastic cells to take effect. Traditional 

cytotoxic chemotherapy (which includes these 'poisons') can be distinguished from 

targeted therapy in that the latter contains inhibition of growth promoting signals (such as 

RTK inhibitors, Leamon and Reddy, 2004) and antibody-drug conjugates (Zolot et al., 

2013). Targeted therapies often target proteins that are mutated or overexpressed in 

cancers compared to normal cells, and in some cases, novel proteins that do not exist in 

healthy cells. The poster child of the latter case is Gleevec, which targeted the fusion 

protein of BCR-Abl in Chronic Myelogenous Leukemia (Drucker, 2002). The fusion 

protein tyrosine-kinase, when blocked, either induces apoptosis or reduces growth rate. 

Inhibitors of mutant B-raf are an example of this strategy (Flaherty et al., 2010). Gefitinib 

and Erlotinib, that target Epidermal Growth Factor Receptor (EGFR), are further 

examples (Feld et al., 2006). However, despite being 'targeted', side effects to this therapy 

exists in the form of anemia, thrombocytopenia, neutropenia, edema and increased risk of 

infection (Robert et al., 2005). It can be instantly noted that the side-effects are much less 

severe than conventional chemotherapy, and that cases of overdose are rare.  

 

Other common modes of treatment include radiation, surgery and immunotherapy.  

 Radiation therapy utilizes ionizing radiation to induce DNA damage (similar to some of 

the chemotherapeutics mentioned above) (Green et al., 2001). Superficial tumors such as 

melanomas can be treated by low energy X-rays, while for deeper tumors, higher energy 

rays are used.  
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 For localized solid tumors, surgical resection of the tumors along with its surrounding 

tissue may be an option (Simmonds et al., 2006). As lymph nodes one of the main 

destinations for metastases, in some cases, they are removed as well. This technique 

works best for earlier stage cancers, and as the first sentence implies, is incompatible 

with leukemias and lymphomas. 

 Immunotherapy stimulates the immune cells (cytotoxic T cells, macrophages etc.) to 

eliminate malignant cells (Rosenberg et al., 2004). Common strategies involve use of 

antibodies that target overexpressed surface proteins (Mellman et al., 2011), checkpoint 

blockades (Pardoll, 2012), and modified T-cell transfers (Restifo et al., 2012). 

 

Radiation therapy and surgery (which constitute local therapy) are often used in 

conjunction with each other, and frequently in combination with chemotherapy (Kaiser 

and Ellenberg, 1985) (Trotti et al., 2003) (Zitvogel et al., 2008). The principle here is 

similar to that behind combination chemotherapy (discussed below). Tissue of origin, 

stage of cancer and location (depth) of tumor form the key dictating factors in deciding 

which therapies are ultimately used. These can further be used in conjunction with 

hyperthermia Chua et al., 2009), which utilizes heat to either directly kill cells, or 

increase blood flow to tumors, which results in increased dose of chemotherapeutics to 

the tumors. 
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1.3. Limitations of chemotherapy and current problems 

Both traditional and targeted therapies are injected intravenously. However, the body also 

contains healthy cells that have a rapid proliferation rate, that get affected by 

chemotherapeutics (particularly traditional chemotherapy). These include cells in the 

bone marrow (that undergo massive amounts of division to generate blood cells), 

digestive tract (which renews its epithelial cells rapidly, and hence divides rapidly) and 

hair follicles (that leads to apoptosis in keratinocytes). Hence, the same toxicity that anti-

cancer agents depend on to take effect, limit the Maximum Tolerated Dose (MTD) 

(Chidambaram et al., 2012). Time scales for these side-effects to become apparent range 

from hours to years. The deleterious effects on cells in the bone marrow manifest itself in 

the form of immunosuppression and myelosuppression (Penn and Starzl, 1973). This 

drastically increases the chance of contracting an infection, which puts additional strain 

on a fatigued body. Severe myelosuppression might even require a bone marrow 

transplant. Immune suppression may also lead to anemia (Groopman and Itri, 1999) and 

neutropenic enterocolitis, which is an inflammation of the large intestine that may be 

associated with infection. Fatigue, nausea, vomiting, gastrointestinal distress, hair loss, 

and infertility are other common side-effects (Griffin et al., 1996). Finally, DNA damage 

induced and production of free radicals following chemotherapy often leads to toxicity in 

heart (Simbre et al., 2005), liver (King and Perry, 2001) and kidneys (Ries and 

Klastersky, 1986), eventually leading to organ failure.  

 

This toxicity complicates the determination of optimal dosage. While higher doses lead to 

serious side-effects (as mentioned above), low dosages are ineffective (Frei and Canellos, 
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1980). Currently, dosage is calculated based on the patient's body surface area (Pinkel, 

1958), which sacrifices precision for simplicity, and often leads to incorrect dosages. 

Adding to this complexity is the fact that free drugs have been plagued by problems such 

as poor tumor penetration and resistance (Trédan et al., 2007). The development of stiffer 

fibrotic tissues as well as the presence of barriers to delivery such as the blood brain 

barrier (BBB) reduces the final dose that is delivered (Deeken and Löscher, 2007).  

 

However, after treatment with a single drug alone, over several periods of the normal cell 

cycle, cancer cell populations revert back to the original proliferative state, consistent 

with resistance and relapse commonly seen after conventional chemotherapy (Komarova 

and Wodarz, 2005). Further, development of a secondary neoplasm, often at the site of 

the first one has been frequently reported. Frequently, different chemotherapeutics are 

administered together (called combination chemotherapy) which have different modes of 

action and side-effects (Deng et al., 2015). This approach seeks to exploit two different 

pathways to minimize the survival of cancer cells.  Combination Paclitaxel and 

Oxaliplatin, for example, have been administered to patients with germ-cell tumors 

(Bokemeyer et al., 2008). Anti-mitotics may be co-administered with alkylating agents 

(Frei and Eder, 2003). Actively diving cells are targeted by anti-mitotics, while cells in 

rest phase or G1 phase suffer DNA damage by alkylating agent, both eventually leading 

to apoptosis. Another strategy is to use a drug that synchronizes all populations of cells in 

the tumor (by controlling cell cycle or DNA synthesis), which are then vulnerable to the 

second drug (Lippman et al., 1984). This not only reduces the chances of resistance 

development, it also leads to lesser side effects as drugs can be used in lower doses. The 
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various mutations in cancer cells necessitates the use of combination chemotherapy, as 

the diversity caused by those mutations make it unlikely that one drug alone will be 

effective. On the flip side, more mutations lead to increased aberrations compared to 

healthy tissues, and hence more targeting opportunities and druggability. 

 

Targeted therapies have not been completely spared from these side effects (Fang et al., 

2011). Their clinical trials have been disappointing, and have provided little extension in 

patient survival. While some drugs (like Gleevec) have faced success, numerous cases of 

resistance after months of use have been reported. In the end, the cause for their failure is 

the same as that for conventional chemotherapy: genetic diversity between clones in the 

tumor. Additionally, cancer stem cells (CSCs) which are primarily responsible for tumor 

growth are relatively resistant to conventional chemotherapy, and hence all but guarantee 

the regrowth of tumors after treatment (Ginestier et al., 2009). Breast cancer stem cells 

were found to increase after chemotherapy (Li et al., 2008), which highlights the need for 

more specific therapies that target CSCs. 

 

1.4. Increased angiogenesis in tumors and the EPR effect 

Solid tumors have a higher vascular density than normal tissues and have blood vessels 

that are much altered structurally than those in the rest of the body (Fang et al., 2011). 

This is a result of the angiogenic signaling arising to sustain tumor growth (Folkman, 

1971) (Folkman, 1995). The newly (and hastily) formed vasculature is structured poorly 

and is often leaky, with gaps in endothelial cells ranging from 200 nm to 2 µm. This is 
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caused by irregular vascular alignment, wider lumen and lack of smooth muscle layers 

(Suzuki et al., 1987). The defective architecture of tumoral blood vessels alter the 

permeability (and hence accumulation of larger molecules). As a result tumors see 

increased extravasation and accumulation of sub-micron sized particles (Torchilin, 2011) 

and some large molecules above 40 kDa in size. Proteins in this size range were retained 

24 hours after injection, and increase in half-lives for polymeric micelles were 10-200 

fold. An example of this effect is shown in Figure 1.2, where Evans blue dye was 

conjugated with albumin injected intravenously led to accumulation of the dye in tumors. 

Normal tissue did not exhibit significant dye accumulation. This constitutes the 

'Enhanced Permeation' part of the EPR effect.  

 

Additionally, tumors lack effective lymphatic drainage from the tissue. Hence, particles 

that penetrate the tumor get stuck and accumulate in the tumor, leading to the 'Retention' 

part of the EPR effect. Another critical role of lymphatic drainage in the context of tumor 

cells is that it is their main route of metastasis. Polymeric particles that accumulate in the 

tumor via EPR have also been reported to accumulate in the lymph nodes, potentially 

decreasing number of metastases (Maeda et al., 1979). Subcutaneously injected 

nanoparticles are especially suited for lymphatic targeting (Brigger et al., 2002). 

 

First described in 1986 (Matsumara and Maeda, 1986), this effect has been an integral 

part of tumor targeting using larger molecules. Promoting selectivity to tumors, this effect 

is absent in normal tissues (Maeda et al., 2006) (Seki et al., 2009). The EPR effect has 
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accelerated the development of liposomal (Barenholz, 2012) and micellar drugs (Vincent 

et al., 2009). While polymeric formulations are in early phase of clinical trials (phase I or 

II), Doxil, which is a liposomal formulation is used in the treatment of Kaposi's sarcoma, 

breast and ovarian cancer. Accumulation in tumors not only increases the efficiency of 

delivery, but also increases the half-life of drugs in the tumor. Both these effects combine 

to increase the efficacy of the treatment and reduce side-effects.  

 

Extending from chemotherapy, the EPR effect has been utilized in imaging and gene 

delivery as well (Torchilin, 2011). The EPR effect can be further enhanced by elevating 

blood pressure, causing increased circulation to the tumors. Methods of achieving this 

range from using Nitric Oxide (NO) releasing agents (Fukumura and Jain, 1998) or its 

generation in tumors (Yoshimura et al., 1996). Angiotensisn II has also been used that 

increases blood perfusion by contracting vessels and producing hypertensive conditions 

(Suzuki et al., 1981). The increased pressure pushes the blood (along with the drug) into 

the interstitial space. Additionally, as mentioned above, tumor blood vessels lack the 

smooth muscle layer which is needed for vessels to contract. This leads to lower pressure 

in tumor vessels and more blood flow towards it, and further increases accumulation. 

 

EPR effect is most apparent in small tumors as larger tumors have a hypoxic core that 

contains necrotic parts. The hypoxia is a direct result of the lack of blood supply to these 

parts, and affects the delivery of drugs to the core. EPR effect is not spared from this, and 

the dependence of EPR effect on the vascularity is demonstrated by the fact that is more 
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dye accumulation in the periphery of the tumors (where angiogenic signals predominate), 

while the core does not see significant accumulation (Figure 1.2 B). Additionally, when 

drugs are delivered via conjugation to proteins, the accumulated proteins are susceptible 

to denaturation depending on their biocompatibility. This problem is partially resolved by 

PEGylating the protein (Sawa et al., 2000), a strategy used extensively with nanoparticles 

and will be described later. Finally, it has to be mentioned that while the hypervascularity 

of tumors augment drug delivery, their main function (which is to supply nutrients to 

tumor cells) is to sustain tumor growth. Hence, reducing angiogenesis can, in principle, 

starve the tumor of nutrients, and reduce growth. With this aim in mind, anti-angiogenic 

drugs and Vascular Endothelial Growth Factor (VEGF) inhibitors have been used in 

clinic (Ferrara et al., 2004)(Ferrara and Kerbel, 2005). These treatments however make it 

very difficult to penetrate and deliver drugs to the tumors again.  

 

1.5. Nanoparticles for cancer drug delivery and other applications 

Nanoparticles are sub-micron sized particles, which exhibit better tumor selectivity by 

exploiting the EPR effect. Their larger size permits them to accumulate in tumors via 

EPR effect described above (Figure 1.3). This kind of targeting is often called passive 

targeting to distinguish it from active targeting, which involves the 'active' recognition of 

targets by nanoparticles via ligands on its surface. Active targeting may be carried out via 

antibodies, antibody fragments (such as scFvs), DNA, and receptor ligands.  
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Dosage of chemotherapeutics through intravenous injections is often limited by the low 

solubility of the compounds, as three-quarters of all chemotherapeutics are hydrophobic. 

In nanocarriers, the drug is often 'loaded' into their core which is often hydrophobic as 

well (although particles such as liposomes and polymersomes can have an aqueous pool 

in the centre) (Figure 1.4). Hence, they solubilize more drugs in their core, which 

increases the delivery of hydrophobic chemotherapeutics and allows them to act as drug 

reservoir. Additional drugs that are prone to inactivation or degradation under 

physiological conditions may be protected in the core. The final drug distribution is thus, 

not just dictated by properties of the drug (molecular weight, hydrophobicity, charge etc.) 

but also by those of the polymer and the assembled nanoparticle: weight (and hence, 

size), hydrophobicity and hydrophilicity, degradation rate. Increasing number of 

parameters make it hard to more precisely control every aspect of the delivery. However, 

kinetic analysis suggests that endocytosis dominates over degradative drug release.  

 

Nanoparticle formulations are often injected intravenously. The submicron size range 

makes it a prime target for the immune system. Particles of smaller size don't take full 

advantage of the immune system and get cleared via the kidneys. Larger particles (>5 

µm) get stuck in the capillaries and may result in suffocation and death. Clearance by the 

mononuclear phagocytic system (MPS) causes the drugs to get opsonized and cleared by 

the macrophages. These drugs eventually end up in the liver and spleen, contributing to 

off-target toxicity. On the flip side, the task of delivery to hepatic tumors is made much 

easier and increased efficiency has been demonstrated in these cases using nanoparticles 

(Chiannilkulchai et al., 1989). In delivery to liver tumors, loaded drug (Doxorubicin) was 
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first transferred from nanoparticles to Kupffer cells, which are macrophages in the liver. 

The drug was then transferred from the Kupffer cells to the malignant tissue 

(Chiannilkulchai et al., 1990), and no nanoparticles were detected in tumor cells. This 

mode of delivery in the case of hepatic tumors is one that is intimately connected with 

this manuscript and will be revisited in Chapters 4, 5, and 6 where delivery of Retinoic 

Acid and Paclitaxel will be discussed. At sufficiently high dosage, loaded 

chemotherapeutics can cause apoptosis of Kupffer cells and decrease in efficiency in the 

above mentioned process as well reduced immune surveillance. However, the side-effects 

experienced are much lower than with conventional chemotherapy (Brigger et al., 2002). 

Cardiotoxicity and hepatotoxicity, in particular, is highly reduced. 

 

Addition of stealth coatings to the particle or increasing the curvature helps it circulate a 

lot longer. Decreased curvature leads to reduced size, which might be unsuitable for some 

applications. These coatings reduce the opsonization on the nanoparticles and make them 

invisible to macrophages and prolong the half-life of injected particles (Stolnik et al., 

1995), increasing the circulation time, probability that the particle will accumulate in the 

tumors and increasing the efficacy of the treatment. These particles are suitable for 

treatment of tumors outside those in the MPS regions (Moghimi et al., 2001). Providing a 

coating of polyethylene glycol (PEG) on the surface is the most common method of 

imparting the stealth coating (Storm et al., 1995). This can either be done by adsorption 

of PEG or surfactants or using polymers with a PEG block at the hydrophilic end (Stolnik 

et al., 1995). 
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The use of active targeting increases the efficacy by delivering drugs to the target 

selectively. Most commonly, surface receptors that are overexpressed in cancer cells are 

the target of these nanoparticles. For example, folate receptors are overexpressed in 

cancer cells and they were targeted by folate-conjugated nanoparticles (Stella et al., 

2000). These nanoparticles were selectively taken up by folate-receptor-bearing cells 

compared to passively targeted nanoparticles. Similar to folate receptor, transferrin (an 

iron binding glycoprotein) receptor has been targeted by paclitaxel loaded PLGA 

particles (Sahoo and Labhasetwar, 2005) and liposomes for transfection of p53 (Xu et al., 

1999). Nanoparticles have also been used to target lectins in colon cancers (Minko, 2004) 

 

Nanoparticles can also be loaded with contrast agents for imaging and diagnostic 

purposes. Superparamagnetic nanoparticles have been used as contrast agents in magnetic 

resonance imaging (MRI) (Bonnemain, 1998). Delivery by nanoparticles is not restricted 

to drugs or imaging agents, but can be extended to antisense oligonucleotides (Juliano et 

al., 1999) (Fattal et al., 1998). Application of polymeric systems for this application will 

be described in the next chapter.   

 

1.6. Different types of Nanoparticles 

Nanoparticles can be constructed from a host of materials including lipids, polymers, 

metals, metal oxides, silica, carbon nanotubes and other macromolecules (Figure 1.5).  
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1.6.1. Polymers 

These can include both synthetic (polyethylene glycol polybutadiene and polyethylene 

glycol polyethylethylene) and natural (albumin, heparin etc.) polymers (Figure 1.5, A). 

Conjugate of paclitaxel (an anti-mitotic) to albumin called Abraxane has been successful 

in the treatment of breast cancer, non-small cell lung cancer and advanced hematologic 

malignancies (Gradishar et al., 2005). Polyethylene glycol (PEG) poly-L-glutamic acid is 

a synthetic polymer that has been conjugated to traditional chemotherapeutics such as 

Doxorubicin, Paclitaxel, Camptothecin, and Mitomycin C (Li, 2002). Conjugate of N-(2-

hydroxypropyl)-methacrylamide copolymer (HPMA) with doxorubicin has been 

evaluated in a phase I clinical trial (Vasey, 1999). However, drugs don't necessarily have 

to be conjugated to the polymer. Amphiphilic diblock copolymers (polymers in which the 

hydrophobic block is attached to the hydrophilic one) self-assemble in water to generate 

micelles (Figure 1.5, B) and polymersome. Loading of these assemblies with drugs and 

their applications are discussed in depth in the next chapter. Dendrimers are polymers 

with branches emerging radially from the centre (Figure 1.5, C). They have been used as 

scaffolds as well as drug delivery, after conjugation with drugs like cisplatin (Svenson 

and Tomalia, 2012) (Malik et al., 1999).  

 

1.6.2. Lipid and lipid based 

Liposomes are vesicles self-assembled from lipids. They are spherical and have an 

aqueous pool in the centre (Figure 1.5, D) which can load aqueous drugs. Hydrophobic 
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dugs intercalate between the lipid bilayer, several of which are currently in clinic and in 

clinical trials (Hofheinz et al., 2005). Modified viruses with targeting molecules (Figure 

1.5, E) have been used for specific tumor targeting (Manchester and Singh, 2006) Carbon 

nanotubes are cylinders composed of benzene rings (Figure 1.5, F). The efficacy of 

delivery of anticancer agents such as methotrexate has been improved by conjugating 

them to the walls of the nanotube (Pastorin et al., 2006).   

 

In addition to the material of construction, the nanoparticle can also be tailored to 

response to a particular stimulus (Cho et al., 2008). This includes conditions that exist 

inside the tumor, but are different from those in physiological conditions. Altered 

metabolism in tumor cells lead to lower pH (6.5) existing in tumors compared to a 

physiological pH of 7.4. pH sensitive liposomes can be tailored to be stable in circulation 

but to release drugs at this lower pH (Yatvin et al., 1980). The altered metabolism also 

results in a much more reductive environment and the presence of unique or 

overexpressed enzymes (like matrix metalloproteinase-2), which have also been exploited 

similar to pH (Mansour et al., 2003). 
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Figure 1.1. Cancer cells proliferate at a rapid rate, hijack the resources meant for healthy 

cells, and displace its nearby cells, compromising the proper functioning of the organ. 
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Figure 1.2. Illustration of the Enhanced Permeation and Retention (EPR) effect in 

tumors. Evans blue dye was conjugated with albumin and injected at 10 mg/kg. A) 

Tumors (white circles) showed preferential accumulation of the dye 24h after injection. 

Normal tissue does not exhibit dye accumulation. B) The dependence of EPR effect on 

the vascularity is demonstrated by the fact that periphery of the tumors (where 

angiogenesis predominates) see more dye accumulation, while the hypoxic (and partly 

necrotic) core does not see significant accumulation. Reference:  Fang et al., 2011 
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Figure 1.3. Accumulation of nanoparticles in tumors via EPR effect. Nanoparticles do 

not penetrate normal endothelium, but do so in leaky vasculature found in tumors. 

Combined with poor drainage, they accumulate in the tumor interstitium, where they are 

either endocytosed by cells or release their payload by nanoparticle degradation.  

Reference: Brigger et al., 2002 

 

 

 

Figure 1.4. General structure of a nanoparticle. They have a shell with a hydrophilic 

exterior and a hydrophobic/aqueous core. Reference: Brigger et al., 2002 
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Figure 1.5. Different types of nanoparticles for drug delivery. Reference: Cho et al., 2008 
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CHAPTER 2. POLYMERIC DRUG DELIVERY 

 

(Parts of this chapter will be published as Nair, P. R., Christian D.A., and Discher, 

D. E. Polymersomes. The Giant Vesicle Book) 

 

2.1. Introduction to polymers 

Phospholipids are the defining component of a cell’s outermost plasma membrane, its 

nuclear ‘double’ membrane, and many other vesicular bodies in cells such as endosomes 

and lysosomes. Liposomes assembled from purified lipids have been utilized for several 

decades to encapsulate drugs in their lumen for drug delivery.  However, a lack of 

stability for many types of liposomes results in poor control over payload retention. This, 

in addition to other vesicle properties, provided some practical motivation nearly 20 years 

ago for the development of polymersomes, a family of liposome structures self-

assembled from block copolymers with lipid-like amphiphilicity (Discher and Eisenberg, 

2002). They have since, not only provided a platform to study the physical properties of 

the polymer bilayers, but also developed as a new class of low permeability, 

mechanically tough cell-sized vesicles that cannot be made from standard lipids. 

 

The great variety in types and sizes of polymers provides mechanisms for tuning 

membrane properties for applications in fields that range from drug delivery to devices. 

For example, in drug delivery to tumors, the high toxicity of most chemotherapeutics can 

often be better controlled with nano-carriers such as polymer vesicles (polymersomes) by 
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tuning the kinetics of drug release such that less of a toxic drug is delivered to healthy 

tissue (Chidambaram et al., 2011). Slow drug release from a nano-carrier will delay 

release into the bloodstream or to a disease site and limit drug excretion into urine, 

whereas very slow release will lead to drug accumulation in immune cells that generally 

clear nanoparticles from the bloodstream.  Such design criteria are merely illustrative of 

properties that might be tuned with polymer based nano-carriers such as polymersomes 

and micelles.  

 

2.2. Block copolymer amphiphiles and assemblies 

A hydrophobic polymer linked covalently to a hydrophilic polymer yields an amphiphilic 

diblock copolymer and, like lipids, the polymers will tend to self-assemble in aqueous 

solutions in order to minimize exposure of the hydrophobic block to water. The 

morphology of these assemblies includes among others spherical micelles, cylindrical 

micelles, and vesicles – all of which have received substantial attention for drug delivery. 

Spherical micelles have long been used for delivery of hydrophobic drugs integrated into 

the hydrophobic block to solid tumors (Kwon and Okano, 1996).  Cylindrical micelles 

have been used for similar applications, and will be discussed in detail in chapter 3. 

Polymer vesicles are more recent and have been loaded not only with hydrophobic drugs 

into the hydrophobic core of the membrane, but also with hydrophilic drugs into the 

vesicle lumen in order to deliver two anti-cancer drugs simultaneously to tumors (Ahmed 

et al., 2006a, Ahmed et al., 2006b). Vesicles have also been used for the co-delivery of 

siRNA and antisense (AON) oligonucleotides to treat genetic diseases (Kim et al., 

2009a).  
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Unlike acyl chains in lipids, a sufficiently long hydrophobic block can also contain 

oxygen among other polar or water-soluble groups.  Polyesters are one type of oxygen-

containing, medically approved polymers that are particularly useful as they degrade via 

hydrolysis. Controlled release from biodegradable materials has formed the basis for 

many types of drug delivery systems (Leong et. al., 1985) among other applications 

(Middleton and Tipton, 2000).  Polyester-based, rate-controlled release from degradable 

polymersomes have already been used to shrink tumors and treat genetic diseases 

(Ahmed et al., 2006a, Ahmed et al., 2006b, Kim et al., 2009a). 

 

2.3. General background of structures 

The self-directed assembly of amphiphilic molecules into a highly curved spherical 

micelle, a less curved cylindrical micelle, or relatively flat vesicle morphology is 

primarily dictated by the ratio of the hydrophilic and hydrophobic fractions (Blanazs et 

al., 2009). In contrast with lipids, the structure of polymeric amphiphiles can be tuned 

across a wide range of properties including molecular weight, polydispersity, charge, and 

crystallinity. Therefore, understanding the fundamental basis by which these block 

copolymers self assemble into different morphologies is crucial. 

 

2.3.1. Microphase structures:  polymersomes, worms, and spheres 

A simple calculation of amphiphile geometry sheds light into its tendency to assemble 

into different morphologies. This is often obtained in terms of a ‘packing parameter’, that 
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indicates the curvature of the molecular structure (Figure 2.1) per (Discher and 

Eisenberg, 2002). Mathematically, the packing parameter   is expressed as: 

   
 

   
     (2-1) 

where   is the volume of the hydrophobic chain,   is the cross-sectional area of the 

hydrophilic chain at the interface, and    is the hydrophobic chain length (Israelachvili, 

1991). The difference in structure from lipids leads to key differences in the calculation 

of  . The value of   is taken as the area of the chain at energetic minimum, while    is 

the average chain length over all conformations. These differences and have been the 

subject of extensive simulation and theoretical research (Smart et. al., 2008). For 

spherical micelles   < 1/3, whereas cylindrical micelles (or worms) have a   value 

between 1/3 and 1/2, and vesicles (or polymersomes) result from a value of   between 

1/2 and 1. While   values above 1 exist, their utilization in drug delivery systems has 

been limited. Differences in the shapes and sizes of assemblies or aggregates influence 

their properties as nano-carriers in vitro as well as in vivo, including properties such as 

drug loading capacity, mode of clearance from bloodstream, etc.  

Spherical micelles can be created with a wide distribution of polymer weights and block 

ratios since a suitable packing parameter allows for very large hydrophilic blocks.  

Spherical micelles are also kinetically trapped states of the larger cylindrical micelle or 

vesicles assemblies if the latter are disrupted by excess energy (such as from ultrasound, 

shearing, heat, electrical fields) (Discher and Ahmed, 2006).  For these reasons and more, 

spherical micelles are the most widely studied polymer assembly for drug delivery 
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(Kwon and Okano, 1996). However, they load only hydrophobic drugs and have lower 

drug loading capacity per particle compared to other morphologies. 

Cylindrical micelles exist only in a narrow range of the packing parameter, and it is 

challenging to synthesize block copolymers that generate such micelles.  Synthesis needs 

to be precisely controlled, and strong shear (among other physical perturbations) needs to 

be avoided to obtain cylindrical micelles. These factors make it difficult to make this 

shape, and hence, they are less commonly studied. However, benefits of this elongated 

shape for drug delivery (Geng et al., 2007) have led to significant interest in these nano-

carriers of unusual shape, as reviewed in (Oltra et al., 2013). Higher drug loading 

capacity and evasion of uptake by phagocytes (cells that eat foreign substances) of these 

particles are particularly interesting properties in the context of drug delivery, and their 

applications are discussed in the next chapter.  

Polymersomes have attracted considerable attention for their potential in drug delivery 

(Ahmed et al., 2006b, Xu et. al., 2005, Onaca et. al., 2009, Kim and Lee, 2010) among 

other applications. Unlike their micellar counterparts, polymersomes allow hydrophobic 

drugs to be loaded in the highly stable membrane core while hydrophilic therapeutics can 

be encapsulated in the aqueous lumen.  

Dual drug loading in one carrier allows the co-delivery of drugs that simultaneously 

target two different pathways (Ahmed et al., 2006a). Polymersomes have been used also 

as nanoreactors (Vriezema et al., 2007) among other diverse applications. Importantly, 

giant polymersomes (pGUVs) have been essential to measuring and understanding the 

properties of these novel polymer membranes (Discher et al. 1999, Aranda-Espinoza et 
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al. 2001, Bermudez et al., 2002, Bermudez et al., 2003, Bermudez et al., 2004, Dimova et 

al. 2002, Itel et. al., 2014).  

 

2.3.2 Other parameters that affect shape 

Whereas packing parameter is the most important factor intrinsic to the constituent block, 

physical factors such as shear force and temperature also contribute to the final shape. 

Shear force, for example, applied via sonication can fragment cylindrical micelles to 

spherical ones irreversibly. In certain cases, the method of formation also influences the 

final shape. 

 

2.3.3. Simulations on a small scale 

The chemical simplicity of block copolymers has allowed the use of simulation studies to 

lend insight into the properties of block copolymer assemblies – including bilayer 

membranes. Block copolymer simulations have been performed using parameter sets that 

have been optimized for biological systems around 300 K. Coarse-grained models (that 

group a certain number of atoms together as one sphere) sacrifice atomistic detail for 

computational efficiency and have become more complex and realistic with time. The 

first coarse-grained molecular dynamics simulations of PEG-PEE in computational water 

replicated the phase behavior experiments on PEG-PEE assemblies (Srinivas et al., 

2004a, Srinivas et al., 2004b, Srinivas and Klein, 2004, Srinivas et al., 2005). The first 

studies also matched some properties measured on polymer GUVs (pGUVs) such as the 

area expansion modulus, Ka, which proves nearly independent of polymer molecular 
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weight.  Dissipative-particle dynamics allows longer simulation time scales (Warren, 

1998, Peters, 2004, Ortiz et al.,2005), and has been used for example to understand how 

phase separated domains induced by differences in the hydrophilic block could register 

across the bilayer (Pantano et al., 2011). Finally, simulations were used to study how 

vesicles could be used for drug delivery by determining the release of drug payload 

following osmotic swelling and vesicle rupture (Ortiz et al., 2005).  

 

2.4. Motivation for polymer approaches 

While liposomes have already been used in drug delivery applications in the clinic, they 

have been limited by their low stability and rapid disintegration in vivo that prevents the 

controlled release of their cargo (Lasic and Papahadjopoulos, 1998, Semple et al., 1998). 

Liposomes are also quickly recognized and cleared by the immune system and must be 

modified to include an outer PEG brush to delay clearance in vivo. The tunability of 

block copolymer MW and chemistry while maintaining vesicle morphology allows 

polymersomes to improve on the shortcomings of liposomes (Discher et al., 2007). 

Section 2.4.3 summarizes the key advantages of polymersomes as well as some of the 

differences from liposomes. 

For drug release in vivo, the time scale for decay should be long enough for the vesicles 

to reach the target. However, if it is too long, the vesicles will be cleared by the body’s 

immune system. Liposomes exhibit limited circulation time in vivo, and the addition of a 

PEG (or PEO) to <10% of lipid head-groups creates ‘stealthy’ liposomes with circulation 

times extended from minutes or hours to 10-15 hours (Woodle, 1993; Klibanov et al., 
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1990). PEG is repulsive in interactions with cells, and is the most common hydrophilic 

fraction of block copolymers to make polymersomes inherently stealthy (Photos et al., 

2003). 

 

2.4.1. Tuning physical properties with molecular weight for given chemistry 

Liposomes are made up of constituent lipid molecules smaller than 1 kDa in size (Discher 

and Eisenberg, 2002). As mentioned above, polymersomes are made of copolymers that 

are up to 20 kDa in size, and this difference in molecular weight manifests itself in 

membrane thickness,  . Parameters such as permeability, viscosity, and elasticity, as 

measured by experiments on single pGUVs as well as on nano-vesicles, are controlled by 

membrane thickness   (Discher and Eisenberg, 2002, Hamley, 2005, Battaglia and Ryan, 

2005, Dimova et al., 2002), and pGUV composed of membranes with much more 

variance in   (8 to 21 nm) than liposomes (3 to 5 nm) were used to measure these 

membrane properties. The thinner membrane of liposomes leads to the low stability 

(leakiness) and short circulation time mentioned above. Measurement of water 

permeation through membranes confirmed that permeation rate was much higher for 

liposome membranes than polymersome membranes (Discher et al., 1999). Thus, 

liposomes are assembled such that there is much more fluidity and permeability versus 

stability in the bilayer at the expense of stability. In contrast, the fluidity, permeability, 

and stability of polymersome membranes can be tuned by controlling the molecular 

weight. 
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Although polymersome membranes are generally thicker than liposomes, the 

customizability of polymers has allowed for membranes with thicknesses more similar to 

liposomes to be made (Battaglia and Ryan, 2005, LoPresti et. al., 2009). Amphiphilic 

diblock copolymers of polyethylene glycol-b-polybutylene oxide self-assembled into 

membranes with thickness reportedly ranging from 2.4 to 4.5 nm. Triblock copolymers 

(polyethylene glycol-b-polybutylene oxide-b- polyethylene glycol) assembled into 

thicker membranes ranging from 3.4 to 6.2 nm. The authors attributed the thinner 

membranes to the higher flexibility of the polyether hydrophobic block. The permeability 

of the membrane was found to vary with pH, and was found to be higher than that of 

phosphatidylcholine membranes at lower pH (Battaglia et. al., 2006). Such thin 

membranes might be particularly useful in the reconstitution of proteins into 

polymersomes. 

 

2.4.2. Tuning properties with chemistry 

Changing the chemical properties of either the hydrophilic or hydrophobic portion of the 

block copolymer is a means to control the characteristics of polymersomes. Three 

commonly employed hydrophobic chains used to make polymersomes are, in the order of 

increasing hydrophobicity, poly-L-lactic acid (PLA), polycaprolactone (PCL) and 

polybutadiene (PBD). PLA has a high degree of hydrophilicity due to the presence of an 

ester bond, leading to a rapid rate of hydrolysis. Thus, PEG-PLA (also abbreviated as 

OL) assemblies degrade soon after they self-assemble, with vesicles stable for a few days 

(Lee et al., 2001, Lee et al., 2002, Photos et al., 2003). PBD on the other hand is very 
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hydrophobic and does not undergo any appreciable hydrolysis. Consequently, assemblies 

comprised of PEG-PBD (OB) are stable for up to years.  

PEG-PCL (OCL) assemblies have stabilities between those of OL and OB and are thus 

more suitable for applications in drug delivery when used in pure form. Blends of 

polymers that vary the percentage of degradable OL or OCL blended with inert OB were 

utilized to produce vesicles that have controllable release times (Ahmed et al., 2004). 

Such principles of blend-controlled release apply also to filomicelles (Kim et al., 2005). 

Blending of polymers with varying chemistry provides a powerful method to create nano-

vehicles with highly customizable release times. The main mode of drug release is the 

hydrolytic degradation of the copolymer, specifically, via 'end-chain cleavage' and not at 

random points in the hydrophobic block ('random scission') (Geng and Discher, 2005). 

This changes the phase from vesicles to worms, destabilizing the assembly and releasing 

the contents (Ahmed et al., 2006a).  

Environmental triggers have also been utilized to induce degradation of polymersomes, 

such as polymersomes that were designed to be sensitive to oxidative byproducts like 

H2O2 (Napoli et al., 2004). The hydrophobic core in PEG-(propylene sulfide)-PEG 

triblock copolymers was oxidized to hydrophilic groups, that destabilized the vesicle and 

favored micelles. pH responsive polymersomes from PEG-poly(2-vinylpyridine) (PEG-

P2VP) have also been created, that fall apart after protonation of the hydrophobic core at 

low pH (Borchert et al., 2006). Stimuli can also be utilized to change the size of vesicles 

(Checot et al., 2003). Vesicles assembled from poly(butadiene)-b-poly(γ-L-glutamic 

acid) were shown to reversibly change size by varying the pH and ionic strength. Further, 
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the 1,2-vinyl double bonds were crosslinked by exposure to UV, creating systems in 

which the release of encapsulated drug can be controlled.   

Such broad customization options are not available with lipids.  However, it must be 

noted that, because of polydispersity inherent to synthetic polymers, each batch can vary 

significantly, which poses a major challenge for reproducible results. This necessitates 

the introduction of an additional purification step by GPC before the formation of 

aggregates.   

 

2.4.3 Key Differences between polymersomes and liposomes 

Since liposomes are self-assembled from natural phospholipids, they are fully 

biocompatible. However, they exhibit low encapsulation efficiency and stability (Lasic 

and Papahadjopoulos, 1998). Polymersomes are tougher, and improve upon some of the 

aforementioned shortcomings. Figure 2.2 depicts the general structure of polymersomes 

and liposomes. Some of these key differences are listed below: 

 Polymer membranes are much less permeable, thus making polymersomes slow to 

deflate. One study estimated the shear viscosity of polymersome membrane to be 500 

times higher than that of lipid membranes (Dimova et. al., 2002)  

 Polymersomes relax back very slowly after deformation 

 Their membranes are generally thicker and their thickness can range in a larger interval 

(8-21 nm). This translates to higher loading of hydrophobic drugs (Ahmed et. al., 2006) 

 Molecular mobility in the polymersome membrane is much less compared to liposomes.  
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 For triblock copolymers, the bilayer (or two-leaflet) nature of the membrane may be lost 

and there could be polymers structured as loops (in one membrane half) or spanning 

across the membrane 

 Polydispersity of polymers creates variance between batches, and poses challenge to 

reproducing results. 

 

2.5. Other common block copolymers 

Assemblies made with PEG-based copolymers have been found to be ‘stealthy’ (Photos 

et al., 2003). These properties in water can be attributed to the hydrogen bonding to ether 

oxygen atoms in PEG and high mobility in water (Discher et al., 2007). This stealthiness 

imparted by the PEG brush helped to delay phagocytosis, extending circulation time in 

vivo, thus making PEG an almost universal choice for the hydrophilic block. Charged 

hydrophilic blocks like polyacrilic acid (Schmaljohann, 2006) and polymethyloxazoline 

(Kim et al., 2009b) can be mixed with PEG-based block copolymers for various 

purposes.  For example, such mixtures tune the lateral segregation of pGUV membranes 

(Christian et al., 2009, Christian et al., 2010). 

The hydrophobic block dictates a number of properties of the polymersome membrane, 

and consequently there exist a number of polymers that have been utilized. Non-

degradable membranes can be made to be fluid by using polybutadiene (Ahmed and 

Discher, 2004), polyethylethylene (Meng et al., 2009) or polydimethylsiloxane (Li et al., 

2003), or membranes can be rigid by using strongly interacting glassy or semi-crystalline 

hydrophobic polymers such as polycaprolactone (Rajagopal et al., 2010, Ahmed and 
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Discher, 2004, Cai et al., 2007). Other popular hydrophobic polymers are polylactic acid 

(Kim et al., 2005) and polystyrene (Kazunori et al., 1993). The list of polymers can be 

much longer, and block ratios as well as MW are all variables that can influence physical 

properties measured for pGUVs, which in turn often translate to application even of 

nano-vesicles. Another dimension of customization can be achieved by blending lipids 

and polymers to create hybrid GUVs (Chemin et al., 2012, Le Meins et al, 2013).  

 

2.6. Methods for synthesizing polymers 

Diblock copolymers can be created either by using one block as a macro-initiator for the 

polymerization (chain extension) of the other block, or by covalently linking the two 

block polymers after they have been formed (conjugation). Covalently linking blocks is 

particularly handy when it is desired to introduce stimuli responsive groups between the 

two blocks (Section 1.6.2). Biodegradable polyesters are synthesized by condensation 

polymerization between diacids and diols or polymerization of hydroxy acids. The 

polymerization process requires high temperatures and long reaction times. Condensation 

polymerizations lead to the formation of byproducts and the polymers formed may need 

purification prior to use. PEG-poly(ethylene succinate) and poly(tetramethylene adipate). 

Ring opening polymerizations of lactones also lead to polyesters, and an example is 

discussed in detail in the next section.  
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2.6.1. Example synthesis 

Chain extension requires a polymer block (initiator) with an end-group that can trigger 

polymerization to be reacted with precise amounts of polymer (calculated based on the 

desired molecular weight of the second block) in the presence of a catalyst and at high 

temperature. An example of this type of copolymer synthesis is the polymerization of 

caprolactone by methoxy-capped PEO to form PEO-PCL (OCL). Prior to this 'ring 

opening' polymerization, ε- Caprolactone has to be purified by distilling it under vacuum. 

This purification removes trace amounts of water in the system that also possesses 

hydroxyl group required to initiate polymerization. The reactants along with the catalyst, 

stannous octoate are then sealed under vacuum and reacted for 4 hours at 140 
o
C. A 

schematic representation of this reaction is shown in Figure 2.3. Ratio of blocks can be 

confirmed by 
1
H NMR spectroscopy and the size distribution of the polymer (or 

polydispersity index) is characterized using gel permeation chromatography. 

 

Another example of chain extension is the reaction between PEO and a mixture of ε-

Caprolactone and D, L-Lactide to form OCLA. Similar to OCL, this polymer has a 

polyester hydrophobic block, but has a faster hydrolysis time than OCL.  

The other approach (conjugation), involves functionalizing the ends of the polymer after 

synthesizing them. These end groups must be capable of reacting with each other, and 

linking the blocks together when they do so. Cerritelli et al. (2007) utilized this strategy 

to link together blocks of PEG and polypropylene sulfide (PPS), with a reduction 

sensitive disulfide bond linking the two blocks. Thiolate terminated PPS was synthesized 
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by living ring-opening polymerization of propylene sulfide using benzyl mercaptan as 

initiator. Thioacetate PEG was deprotected to form thiolate terminated PEG, which was 

reacted with PPS to obtain the final copolymer. Vesicles formed were found to be 

sensitive to various reducing agents (like cysteine, glutathione, and dithiothreitol or 

DTT), aiming to simulate conditions found early in endolysosomal processing. With the 

disulfide bridge getting reduced and the blocks no longer linked, the assemblies 

destabilize and release the encapsulated payload. Chain extension provides excellent 

control over the polydispersity (Oltra et al., 2013), which is critical for worm formation. 

 

2.6.2 Aggregate phase diagram 

Although calculation of the packing parameter, p, can be useful to predicting the 

expected morphology of self-assembled amphiphilic block copolymers in water, mapping 

phase diagrams for a given polymer remains essential. These thermodynamic phase 

diagrams indicate which shapes are dominant in the indicated regions. The variables are 

hydrophilic mass fraction (f) and the MW of the hydrophobic block (MCH2) in x and y 

axis respectively. A phase diagram of OCL is shown in Figure 2.4. It is important to note 

that the temperature is held constant (25 
o
C in Figure 2.4). Another point to be noted is 

that the oxygen atoms in the hydrophobic block contribute to the hydrophilicity of the 

polymer. Hence, the MW of the hydrophobic block is calculated by subtracting the 

weight of the oxygen atoms from the PCL block and the hydrophilic mass fraction f is 

calculated by adding the weight of the oxygen atoms to that of PEO (Rajagopalan et al., 

2010). This is done because the oxygen atoms contribute to the hydrophilicity of the 

polymer, even though it is a part of the hydrophobic block. 
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One prominent point to note is that f has to be at least 0.36 for any stable colloidal 

aggregates to form in water. Below this value, the PEO chains are too short to shield the 

hydrophobic block from water and minimize the energy of the system. This region 

corresponds to the higher end of packing parameter (p > 1). At f values just above 0.36, 

the polymer exhibits low curvature (large hydrophobic block), and self-assembles into 

vesicles (polymersomes). Increasing f increases the curvature and we obtain cylinder 

micelles also called worms (Rajagopalan et al., 2010) and spherical micelles simply 

referred to elsewhere as spheres. It is interesting to note that worms exist in a narrow 

region that is embedded within the vesicle region. 

 

It is important to note that controlling polydispersity is critical to obtaining the indicated 

phases. The presence of a wide distribution of different chain lengths may destabilize 

and/or favor the formation of other morphologies. Due to the narrow region in which they 

exist, cylindrical micelles are particularly prone to this. Further, due to different value of 

parameters for different polymers, phase diagrams are unique for a given copolymer. The 

regions at given values of MCH2 and f might be different for different polymers. However, 

OCLA worms exist in a similar region as OCL worms. 

 

2.7. Formation of aggregates and drug loading 

A variety of methods have been utilized to self-assemble aggregated from diblock 

copolymers: solvent evaporation (Rajagopal et al., 2010), thin film rehydration (Kita-
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Tokarczyk et al., 2005), dialysis, and solvent injection (Kita-Tokarczyk et al., 2005) 

(Figure 2.5). Processes like extrusion and shear stress can be used to fine tune the final 

aggregate size. Of the above, solvent evaporation and thin film are the most common. 

 

In solvent evaporation, the polymer is dissolved in a volatile organic solvent which is 

immiscible in water, such as chloroform. This solution is then added to water and the 

whole system is stirred. The organic solvent gradually evaporates and the polymer is 

forced into water where it self-assembles. When the organic solvent is miscible with 

water, dialysis method is used, where the removal of solvent by dialysis leads to the 

formation of aggregates.  

 

The thin-film rehydration method starts out by dissolving the polymer in a volatile 

organic solvent. This solution is then added to a vial and the organic solvent is evaporated 

to obtain a thin film of the polymer. Water is added to the vial and at slow stirring speed 

(and often in the presence of gentle heating), aggregates are obtained. This method is 

preferred when it is desired to obtain polymersomes. Polymersomes can also be created 

by solvent injection technique, where a solution of block copolymers in an organic 

solvent is added to water slowly while stirring. During the course of aggregate formation, 

the solution turns turbid, with the final solution appearing milky due to the Tyndall effect. 
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Assemblies can be imaged using a hydrophobic dye such as PKH26 red dye. The dye 

partitions into the hydrophobic core of micelles or between the membrane for 

polymersomes (Figure 2.6). All shapes can load hydrophobic moieties, while hydrophilic 

ones can be loaded exclusively into the aqueous pool of the polymersomes. Dissolution 

of the drug in an organic solvent miscible with water followed by the solution's addition 

to the aggregates leads to diffusion of the drug to the hydrophobic core. Methods similar 

thin-film rehydration or solvent evaporation can also be utilized for drug loading. A pH 

gradient method is used for loading hydrophilic drugs like doxorubicin (Mayer et al., 

1986).  

 

2.8. Degradation of nano-carriers and drug release 

While the nanocarriers have to be stable in circulation to avoid premature drug release, 

they must release their payload once accumulated in tumor. Hydrolysis can lead to 

degradation of polyesters by chain-end cleavage and shortens the hydrophobic block, 

while PEG is inert to hydrolysis. Hydrolysis increases the curvature of the assembly and 

a decrease in packing parameter. This changes the morphology and leads to 

destabilization of nanocarriers. Hydrolysis transitions polymers forming polymersomes to 

those for cylindrical micelles to spherical micelles (Figure 2.7). The destabilization of 

polymersomes leads to pores in the membrane and loss of drugs in the aqueous pool. The 

transition from cylindrical to spherical micelles is also accompanied by release of drug 

loaded in the core (Geng and Discher, 2005) (Geng and Discher, 2006). This happens 

because assemblies with higher curvature have smaller core for drug loading. 
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Hydrolysis of polyester is acid-catalyzed, and proceeds at a higher rate in the tumors 

where pH is lower. This ensures that nanocarriers remain stable in circulation, but 

degrade rapidly upon accumulation releasing drugs. Geng and Discher (2006) further 

determined that hydrolysis proceeds via chain-end cleavage, rather than random scission. 

Incorporation of pH sensitive groups between the two blocks can trigger the collapse of 

nanocarriers (Jeong et al., 2013).  

 

2.9. Polymeric Nanocarriers for Gene and Drug Delivery 

2.9.1. Polymeric Nanocarriers for Chemotherapeutic Delivery 

Ahmed and Discher (2004) successfully controlled the release of doxorubicin from 

vesicles by blending degradable polyester copolymers (Polyethyleneglycol-poly-L-lactic 

acid, PEG-PLA or Polyethyleneglycol-polycaprolactone, PEG-PCL) with a more stable 

copolymer (Polyethyleneglycol-polybutadiene, PEG-PBD). Miscibility was verified by 

fluorescence microscopy of fluorescent copolymer. Degradation of polyester first 

produced pores of a size estimated to be around 10 nm from release profiles of 

fluorescent dextrans of different weights, which was comparable to the membrane 

thickness.  The disintegration of uniform-sized vesicles was then checked by DLS. While 

no change in vesicle populations were found with time for PEG-PBD (OB) vesicles, 

PEG-PLA (OL) blended vesicles displayed progressive decay by splitting into two peaks. 

Vesicles containing OL with bigger PEO block fraction was found to disintegrate faster. 
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A study on the release kinetics of blends proved that increasing the OL fraction in the 

blend increases the rate of encapsulant release. Furthermore, the rate constant of release 

was directly proportional to the concentration of OL in the blend. The inertness of OL 

present in the bulk of the solution was established from dilution studies which 

demonstrated only minor deviations in the measured release time scales with varying 

dilution. Longer release time for PEG-PCL (OCL) blended OB (as compared to OL-OB 

blends) pointed to slower hydrolysis rates consistent with a more hydrophobic PCL 

chemistry. A lower water activity in the PCL core as compared to OL core was identified 

as the probable factor. Thus, varying the polyester chemistry (PLA/PCL), the percentage 

of blended polyester, and/or the PEG block fraction (fEO) changed the time constant of 

disintegration providing a uniquely tunable method to regulate the release of encapsulants 

within the vesicle. Plots of release time against fEO for blends containing 25% OL or OCL 

implied that the influence of hydrophobic block weight was small in comparison to fEO. 

Ahmed and Discher (2006a and 2006b) then built on this with OL blended OB 

polymersomes were for the co-delivery of doxorubicin and paclitaxel into tumors. The 

combination of the two drugs induces a twenty-seven fold increase in apoptosis as early 

as one day after injection and shrinks tumor sizes by as much as sixty percent. 

 

Polymeric micelles can increase the solubility of the poorly-soluble drugs by solubilizing 

the drug in its core (Kipp, 2004) and reduce off-target cytotoxicity by better delivery of 

the drug to the tumors (De Jong and Borm, 2008). However, they are cleared from 

circulation by phagocytes when they are identified as foreign. The efficiency of delivery, 

which is directly related to their circulation time, can be improved by using non-spherical 
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nanocarriers, particularly the flexible worm-like ‘filomicelles’. These nanocarriers (self-

assembled from amphiphilic block copolymers) have been shown to delay clearance 

(Geng et al., 2007), causing them to circulate longer and shifting the drug load toward the 

tumor. These assemblies are uniquely customizable, with the chemical composition of the 

hydrophobic block of the amphiphilic block copolymer controlling many critical 

properties of the nano-carrier such as encapsulation efficiency and flexibility (Karthikan 

et al., 2010). Paclitaxel (TAX) is a chemotherapeutic that is used commonly in clinic 

(Wall and Wani, 1995) (Wall, 1998). It stabilizes microtubules and induces aneuploidy 

by blocking mitosis at the metaphase-anaphase transition, which greatly increases cell 

death (Long and Fairchild, 1994) (Jordan et al., 1996). Being hydrophobic, it has low 

solubility in saline, which hinders the maximum dose that can be administered (Zhang et 

al., 1997). Loading onto nanocarriers can significantly improve the amount of drug 

solubilized (Loverde et al., 2012) This combined with better delivery (via Enhanced 

Permeation and Retention, (Matsumura and Maeda, 1986) (Maeda, 2012)) leads to an 

overall safer therapy with higher MTD. Accordingly, this system has been used to shrink 

tumors in vivo, and shows higher efficacy than spherical nanocarriers (Christian et al., 

2009). This system can be further tuned to increase drug loading by chemical 

modification of the block copolymers that self-assemble to form the nanocarrier (Nair et 

al., 2016). Addition of aromatic blocks to PEG-PCL succeeded in increasing Paclitaxel 

(TAX) loading, which translated to higher cytotoxicity in vitro and in vivo. Genexol-PM, 

a polymeric micelle formulation composed of PEG-poly-(D,L-lactide)-paclitaxel was 

used in phase I study in patients with advanced refractory malignancies (Kim et al., 

2004). Polymersomes composed of PEG-PLA and PEG-PBD loaded with doxorubicin 
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and paclitaxel shrunk tumors by 60% from the initial size (Ahmed et al., 2006a) (Ahmed 

et al., 2006a). 

 

2.9.2. Polymeric Nanocarriers for siRNA and AON Delivery 

Polymersomes possess the desired delivery features of vectors, but can be cheaper to 

synthesize than viral vectors (Korobko et al., 2005 and 2006) Vesicles formed from PBD-

P4VPQI entrapped small DNA molecules such as plasmids in the aqueous lumen. These 

vesicles showed efficacy in vitro with HeLa cells within 2 hours. The cationic charge of 

the polymer, however, limited uptake by cells. Vesicles made of PEG-PLL were used to 

encapsulate DNA for gene transfer in liver and lungs (Brown et al., 2000). Polymersomes 

from blends of OL-OB and OCL-OB were also used for the co-delivery of 

oligonucleotides like siRNA and antisense oligonucleotides (AON). Both siRNAs and 

AONs are negatively charged and require complexation with cationic lipids. Kim et al. 

(2009b) showed that OL polymersome mediated knockdown was shown to be effective in 

vitro as well as in vivo in mouse model of muscular dystrophy. Combinations of siRNA 

and chemotherapeutics have gained success. Polymersomes loaded with doxorubicin and 

Bcl-xL siRNA (Kim et al., 2013) showed efficacy against gastric cancer cell lines than 

single controls. 
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Figure 2.1. Aggregation of amphiphilic block copolymers into various morphologies. 

Copolymers with different values of packing parameter ( ) form different assemblies as 

shown.  
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Figure 2.2. Structure of a liposome (left) and a polymersome (right) are similar. Both can 

be dual loaded, with hydrophobic drugs in the core of the membrane (red for 

polymersomes, top left inset for liposomes) and hydrophilic drugs in the water pool in the 

centre (blue for both). Reference: Messager et. al., 2014 

 

 

 

Figure 2.3. Reaction between PEO and ε-Caprolactone. 
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Figure 2.4. Phase diagram of OCL assemblies prepared at 25 
o
C. Three morphologies: 

vesicles (shown as circles), worms (squares) and spheres (triangles) are represented here. 

Filled gray region to the left of the diagram indicates the region where stable colloidal 

assemblies are not found:  open circles denote precipitates, while solid denote stable 

aggregates. Insets show representative images of fluorescently labeled aggregates. 

Concentration of polymer in water was 0.1 mM/mL. Reference: Rajagopalan et al., 2010 
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Figure 2.5. Aggregate formation by thin film rehydration and solvent evaporation. 

Reference: NS Oltra 
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Figure 2.6. Fluorescence microscopy of different shapes formed by the self-assembly of 

amphiphilic diblock copolymers. These are visualized using a hydrophobic dye (red 

dots). Reference: NS Oltra  
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Figure 2.7. Degradation of PEG-PLA assemblies via hydrolysis. The fraction of 

hydrophobic block decreases and the curvature increases. The morphology of the 

assembly transitions from polymersomes to cylindrical micelles to spheres. Reference: 

Ahmed et al., 2006a 
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CHAPTER 3. SHAPE ADVANTAGES OF FILOMICELLES AND ITS 

TRANSLATION TO ANTI-CANCER TREATMENTS 

 

(Parts of this chapter will be published as Nair, P. R., Christian D.A., and Discher, 

D. E. Polymersomes. The Giant Vesicle Book) 

 

3.1 Flexibility and extended circulation time of filomicelles in vivo 

The presence of stealth PEG coating on nanoparticles allows them to circulate longer. 

However, other factors such as shape also play a part in dictating circulating time. The 

non-spherical shape allows flexible filomicelles to circulate longer, based on their 

interaction with phagocytes. Injected worms circulated for up to a week in mice, while 

polymersomes circulated for three days (Figure 3.1). Another parameter that affects 

circulation time is the initial length of worms. During circulation, they exhibit 

progressive shortening in length, with worms from faster hydrolyzing polymers 

shortening faster. Long filomicelles (length greater than 18 µm) fragment rapidly to sizes 

around 8 μm (Figure 3.2). Shorter worms (length around 4 µm) shorten much more 

slowly.    

 

Experiments performed on phagocytes immobilized in a flow chamber (Figure 3.3) 

provided more insight into the nanoparticle-immune system interaction. The immune 

system attempts to clear all injected nanoparticles, and spherical micelles were 
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internalized on contact with the macrophage. When a filomicelle was captured by a 

macrophage, it flexibility allowed it to align with the shear flow of the blood, break off 

and continue circulating. A small fraction is left behind, but the majority of the 

nanocarrier is avoids clearance and continues circulating.  

 

The importance of flexibility in extending circulation time is underlined by the fact that 

rigid worms are cleared as rapidly as spheres, and do not exhibit the 'shape advantage' of 

flexible worms. Lower molecular weight polymer assembles into mostly flexible 

filomicelles, while rigid ones were observed when the hydrophobic block weight 

exceeded 9000 g/mol for PCL, when PEG weight was 2000 g/mol. higher molecular 

weight chains tend to pack closely and crystallize, while higher curvature in smaller chain 

leads to flexibility. Crystallization can be prevented by preventing regularity, i.e. by 

introducing defects that prevent crystallization. Addition of a small amount of lactide to 

caprolactone during polymerization gives PCLA, which does not form rigid worms. The 

formation of ordered structures is prevented by the methyl groups of lactide. These 

cylindrical micelles had long circulation times (increasing with higher initial length) with 

circulation half life up to five days for 8 µm length assemblies, which was a massive 

improvement over previously reported circulation times. 

 

3.2 Selective accumulation of filomicelles in tumors 

The longer circulation of filomicelles (worms) combines with preferential accumulation 

of worms in tumors to further increase efficacy. While spheres and worms both 
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accumulate in solid tumors due to the leaky vasculature, blood vessels forming normal 

vasculature are not always free of defects. In these cases, smaller spheres find it much 

easier than worms to penetrate into off-target normal organs (Figure 3.4). Filomicelles on 

the other hand continue to circulate.  

 

The above two phenomenon (faster clearance of spheres and more non-specific 

accumulation) both combine to rapidly eliminate worms from circulation, ending up 

predominantly on the liver and spleen (i.e. the MPS organs). Worms, on the other hand, 

continue to circulate until they reach a tumor where they permeate out into the tumor 

space due to the leaky vasculature. They can be loaded with hydrophobic drugs such as 

paclitaxel as described in section 2.7 (Figure 3.5) 

 

3.3 Increased drug loading capability of filomicelles  

Loverde et al. (2012) demonstrated the effect of shape on drug loading. They used 

molecular dynamics (MD) simulations to build a coarse grain (CG) model to study the 

loading of paclitaxel (TAX) into spherical and cylindrical micelles. CG-MD models were 

used because the constituent block copolymer assemblies were too large to simulate. 

Each ethylene oxide unit was mapped onto one bead, while each caprolactone unit was 

mapped onto three beads. The partitioning of TAX into the core of these nanocarriers 

formed by the self-assembly of PEG-PCL was studied using a simple octanol-water 

system (Figure 3.6). Calculation of force required to pull a single TAX molecule from the 

core of the micelle to water outside showed that cylinders load twice as much drug as 
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spheres. The free energy was found to be 2.43 times lower with worms than spheres. 

Experimentally, the logarithm of TAX partition coefficient (proportional to free energy) 

was found to be 2.42 times higher for worms, agreeing excellently with theoretical 

calculations.  

 

Quantification of PEG penetration into the core of the micelle showed increased 

penetration in the case of cylindrical micelles, which increased the loading capacity of the 

worms at the interface of hydrophobic and hydrophilic blocks. In spherical micelles 

decreased PEG penetration leads to increased water penetration into the PCL core, which 

is not the case in worms. Worms and bilayers have a denser PEG corona than spheres. 

The end result is that there is 50% more water in the core of spheres than worms. 

Additionally, the worm core is larger than that of the sphere due to stretching of chains. 

All these factors contribute to a higher loading volume and lower free energy state for 

TAX in worms. 

 

After TAX loading into micelles, it remains uniformly distributed in the PCL core. 

Conversely, it aggregates and forms a crystalline structure in water. TAX shows a 

tendency to accumulate at the hydrophobic-hydrophilic interface, with the aromatic and 

hydrophobic groups buried in PCL. This tendency to load at the interface also explained 

the observation of a burst release phase observed with micelles.  
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3.4 Active and passive targeting with filomicelles 

Worms (like other nanoparticles) exhibit passive targeting, i.e. accumulation in tumors 

via EPR effect. The effect is even more pronounced in worms as they circulate longer and 

have less non-specific accumulation. Once accumulated in the tumor, the worms degrade 

via hydrolysis, undergoing a change in morphology and releasing drugs (Figure 3.7). 

 

The worm-like shape results in more surface area per volume, and these nanocarriers can 

be used for actively targeting tumor cells just as easily as spherical shapes. Biotin-

terminated PEG containing diblock copolymers self-assemble to form biotinylated 

worms, on which antibodies conjugated to streptavidin can be displayed (Dalhaimer et 

al., 2004). These modified nanocarriers have been used to target groups displayed on the 

pulmonary endothelium (Shuvaev et al., 2011). 

 

As stated previously, the hydrolytic degradation leads to shortening and destabilization of 

worms into spheres. The rate of degradation depends on the type of polymer and the 

weight of the block. PEG-PCL with a PCL weight of 4700 g/mol took 28 hours to 

degrade, while for a weight of 11000 g/mol, 200 hours were required (Geng and Discher, 

2006). The rate of degradation in further enhanced by the observation that the terminal 

group on the PCL chain is oriented towards the hydrophilic part instead of being buried 

in the hydrophobic core (Nie et al., 2003). This makes it easier for it to get shortened by 

water molecules via chain-end cleavage. The lower pH in tumors also contributes 

towards accelerating degradation, with a drop of 2 pH units speeding the process up by 2 
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to 4 fold. At low temperatures, the degradation rate is minimal and there is no drug 

release, ruling out diffusion of drugs from core as a possibility (Ghoroghchian et al., 

2006).     

 

3.5 Drug loading of worms for anti-cancer therapy 

Filomicelles can load hydrophobic small molecule drugs, and is achieved by diffusion of 

the drug to the core. Additionally, drug loading does not affect flexibility or rate of 

degradation. Paclitaxel solubility is greatly enhanced by loading on to micelles, being 

able to load ~5 mg/ml of TAX compared to 1 µg/ml for free TAX. 

 

The cytotoxicity of paclitaxel loaded micelles was compared to that of free drug with in 

vitro tests. TAX loaded micelles were not only more effective than free drug, but they 

performed better than Cremophor EL loaded TAX (Cai et al., 2007), which is a non-ionic 

surfactant. Worms loaded with paclitaxel were able to shrink tumors in mice much more 

effectively than free drug (Figure 3.8) (Geng et al., 2007). Additionally, the tumor 

shrinkage was dependent on the length of the worms injected. For equal TAX dosage, 

tumor shrinkage increased with increasing worm length. Thus with worms, aspect ratio is 

another parameter that can be tuned to increase cell death, which is unavailable with 

polymersomes or spherical micelles.  

 



54 

 

Filomicelles also have a higher MTD of 18 mg/kg, than spheres (10 mg/kg). Both were 

better than free TAX with an MTD of 1 mg/kg. Higher drug loading translated into better 

therapeutic effect (Christian et al., 2009). TAX loaded worms injected at MTD were 

more effective in shrinking tumors, than spherical micelles at MTD (Figure 3.9). 

Consistent with the previous experiment, both were more effective than free TAX at 1 

mg/kg. Additionally, tumors treated with TAX loaded worms maintained their reduced 

size three weeks from the start of the treatment. Apoptosis was measured in five off-

target organs (liver, spleen, kidney, heart and lung) along with the tumor. While there 

was little preference towards tumor accumulation with free TAX, tumor specificity was 

observed with nanocarriers. Apoptosis in off-target organs was significantly lower with 

filomicelles compared to spherical ones. Assessment of biodistribution revealed that 

more TAX accumulation in tumors when delivered via micelles. Filomicelles led to twice 

as much TAX in the tumor compared to spherical micelles. 

 

Treatment of brain tumors is complicated by the presence of a blood-brain-barrier (BBB), 

which limits the entry of small molecules to the brain, such as drugs. Drug delivery using 

filomicelles have been combined with radiation therapy to achieve success in brain 

tumors (Baumann et al., 2013). Radiotherapy was used to disrupt the BBB, followed by 

TAX loaded worms to provide a survival benefit in mice. The survival period was more 

than doubled after the treatment, extending lifespan by more than two months. 
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Figure 3.1 Long circulation of filomicelles compared to other carriers. Filomicelles 

circulate for over a week, compared to 3 days for vesicles and 2 days for phages. 

Reference: Geng et al., 2007 
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Figure 3.2 Rate of shortening of filomicelles depend on initial length. Reference: Geng et 

al., 2007 
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Figure 3.3 Longer circulation time of worms. Reference: Geng at al., 2007 
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Figure 3.4 Selective accumulation of worms in tumors compared to spheres. Reference: 

Christian et al., 2009a 
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Figure 3.5. Paclitaxel (TAX) (blue dots) loading into the core of cylindrical micelles 

formed by the self-assembly of amphiphilic diblock copolymers. Reference: NS Oltra  
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Figure 3.6 MD of TAX across CG octanol-water interface (left). Free energy change vs. 

distance across octanol-water interface (right) shows minima at the interface that results 

in accumulation there. Reference: Loverde at al., 2012 
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 Figure 3.7 Images of PEG-PCL filomicelles showing degradation to spherical micelles 

over the course of 200 hours. The change in morphology is an integral part of drug 

release from worms. Reference: Geng and Discher, 2005 
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Figure 3.8. Tumor shrinkage in mice seven days after injection with free TAX or TAX 

worms. Loading onto worms increases the efficacy of the treatment, with the length of 

the worm influencing the final outcome as well. Reference: Geng at al., 2007 
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Figure 3.9. Tumor shrinkage in mice seven days after injection with free TAX or TAX 

worms. Loading onto worms increases the efficacy of the treatment, with the length of 

the worm influencing the final outcome as well. Reference: Christian et al., 2009 
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CHAPTER 4. AROMATIC MODIFICATION OF FILOMICELLES 

INCREASES INTEGRATION EFFICIENCY OF PACLITAXEL 

 

(This chapter was published as: Nair, P. R., Karthick, S. A., Spinler, K. R., Vakili, 

M. R., Lavasanifar, A., & Discher, D. E. (2016). Filomicelles from aromatic diblock 

copolymers increase paclitaxel-induced tumor cell death and aneuploidy compared 

with aliphatic copolymers. Nanomedicine, 11(12), 1551-1569.) 

 

Contributions: The polymer (PEG-PBCL) copolymer was provided by Alberta Research 

Chemicals Inc. (ARCI), Edmonton, AB, Canada as well as by Afsaneh Lavasanifar, 

University of Alberta. In vivo studies were performed by K.R. Spinler. Karthick S.A. 

performed the PEG-PCL worm shortening in Figure 4.4 B. 

 

4.1. Introduction 

4.1.1. Modification of nanocarriers 

Nano-carriers can increase the solubility of poorly-soluble drugs (Kipp, 2004) such as 

Paclitaxel, which is a prototypical low solubility chemotherapeutic with multiple 

aromatic structures (Demain and Vaishnav, 2011) (Vines and Faunce, 2009) (Figure 4.1 

A). TAX is an anti-mitotic aromatic chemotherapeutic. Cells that receive sub-lethal doses 

of TAX are more likely to develop drug resistance (Cheng et al., 2007), with selection of 

mutations in β-tubulin being one source of resistance (Kamath et al., 2005). Such 
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resistance strongly motivates many diverse efforts to increase drug efficacy, particularly 

by loading into nano-carriers. 

 

As stated previously, TAX prefers the interface of PEG-PCL micelles (Loverde et al., 

2012), but aromatic amino acids (e.g. tyrosine) likewise tend to localize to the interface 

of lipid bilayers unlike more aliphatic amino acids (Ulmschneider and Sansom, 2001). 

Incorporation of aromatic groups into the core of a nano-carrier could therefore increase 

the solubilization of aromatic drugs such as TAX for better delivery to tumor cells, and 

could also determine how the amphiphilic polymer or its degraded forms interact with 

and/or disrupt cell membranes (Vega-Villa et al., 2008)(Moghimi et al., 2005)( Vasir and 

Labhasetwar, 2008). Modifying the core could also affect the degradation time of 

nanocarriers, which is key to releasing the drugs if and/or when accumulated in the 

tumor. The crucial role of drug release profile on efficacy in vivo is highlighted by the 

many efforts to include moieties such as pH sensitive groups that make the nanocarrier 

fall apart under a right stimulus (Blanazs et al., 2009)(Chen et al., 2010). Filomicelles of 

different core chemistries are therefore interesting to test in vivo as well as in vitro, with a 

first couple of key unknowns being whether greater solubilization of an aromatic drug 

such as TAX impedes its release and whether changing the core chemistry alters the 

overall toxicity toward cancer cells (Vega-Villa et al., 2008). 

 



66 

 

4.1.2. Aromatic modification of PEG-PCL to incorporate more Paclitaxel 

In this chapter, the impact of incorporation of aromatic groups in PCL via an ester group 

is assessed in terms of its ability to assemble into filomicelles and safely deliver TAX. 

Assemblies of polyethylene glycol-polybenzylcaprolactone (PEG-PBCL) (Figure. 4.1 A) 

were characterized by fluorescence microscopy, evaluated for drug loading/release by 

HPLC, and assessed for cytotoxicity using two cancer cell types. PEG-PBCL filomicelles 

loaded with TAX appeared more effective than either PEG-PCL filomicelles or free drug, 

and PEG-PBCL filomicelles also caused the greatest aneuploidy of the few surviving 

cells (hallmark of TAX treatment).  Drug-free ‘empty’ PEG-PBCL filomicelles were also 

an order of magnitude less toxic than PEG-PCL filomicelles.  Initial in vivo tests of 

efficacy of PEG-PBCL filomicelles loaded with TAX illustrate an ability to safely shrink 

tumors. The findings support past evidence that microns-long filomicelles are effective in 

cancer drug delivery but also show that efficacy might be increased by safely tuning 

polymer composition. 

 

4.2. Materials and Methods 

4.2.1. Materials 

All chemical reagents were purchased from Sigma Aldrich Corp., St. Louis, Missouri, 

unless stated otherwise.  Polyethyleneglycol (PEG) -Polybenzylcaprolactone (PBCL) 

copolymer was procured from Alberta Research Chemicals Inc. (ARCI), Edmonton, AB, 

Canada as well as generously provided by Afsaneh Lavasanifar, University of Alberta. 

Ham's F-12 growth media, FBS, penicillin-streptomycin, non-essential amino acids and 
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Hoechst 33342 were purchased from Invitrogen. High glucose DMEM growth media, 12-

well plates, and 96-well plates were purchased from Corning.   

 

4.2.2. Synthesis and Characterization 

Polyethyleneglycol (PEG) -Polycaprolactone (PCL) di-block copolymer was prepared by 

the polymerization of ε-caprolactone using PEG2000 as macro-initiator. ε- Caprolactone 

was purified prior to polymerization by distilling it under vacuum at 60 
o
C. The molar 

ratios of PEG and caprolactone were adjusted to form PEG2000-PCL7500 (as indicated in 

Table 4.1), which has been shown to self-assemble into filomicelles (Rajagopalan et al., 

2010). The reactants along with the catalyst, stannous octoate, were sealed under vacuum 

and reacted for 4 hours at 140 
o
C. Synthesis of PEG5000-PBCL7500 (stoichiometry 

indicated in Table 4.2) was carried out at the same temperature, but the reaction time was 

6 hours. A schematic representation of this reaction is shown in Figure 4.1 A. The PEG-

PBCL reaction mixture was dissolved in 3 mL of dichloromethane and the solution was 

poured into 30 mL of hexane with stirring. This mixture was then decanted to remove 

hexane. The solid product was collected, washed with 5 mL diethyl ether, and stored 

under vacuum overnight. The isolated yield of the product was 72 %. Formation of the 

product was confirmed by 
1
H NMR spectroscopy (Bruker BZH 360/52, 16 scans per 

spectrum) and the size distribution of the polymer was characterized using Gel 

Permeation Chromatography (GPC). 
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4.2.3. Filomicelle formation and characterization 

Aggregates were formed in water by solvent evaporation of the copolymer dissolved in 

chloroform with the final concentration of polymer in water being 20 mg/mL. For every 

ml of aggregates, 20 mg of polymer was dissolved in 100 μl of chloroform (to give a 

polymer concentration in chloroform of 200 mg/ml), which was then added to 1 ml 

(MilliQ) water as separate phase. This mixture was then stirred for 2 days at 110 rpm 

with the cap lightly screwed on, to allow the chloroform to evaporate. For visualization 

under the microscope, 40 µl of aggregates were mixed with 0.2 μl of PKH 26 

hydrophobic red dye (which had been diluted 5 times in ethanol). This dye, with emission 

spectra at a wavelength of 567 nm (Rajagopalan et al., 2010), was then imaged using an 

Olympus IX71 microscope with a 300W Xenon lamp using a 60x objective (oil, 1.25 

NA) or 150x objective (oil, 1.45 NA) and Cascade CCD camera (Photometrics, Tucson, 

AZ). The software used was Image Pro (Media Cybernetics, Silver Spring, MD).  

 

Phase diagram based on estimations of core block hydrophobicity (MCH2) and hydrophilic 

mass fraction (fhydrophilic) was calculated as per (Rajagopalan et al., 2010). Briefly, MCH2 is 

calculated as the molecular weight of the hydrophobic block minus the weight 

contributed by Oxygen atoms. The weight of these oxygen atoms is added to the weight 

of PEG block, which is divided by the total weight of the diblock copolymer to obtain 

fhydrophilic (more detailed instructions on this calculation can be found in Rajagopalan et 

al., 2010). 
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4.2.4. Drug Loading and Quantification 

Paclitaxel dissolved in methanol (at a concentration of 20 mg/ml), was added to the 

aggregates at a final concentration of 1 mg of drug per mL of aggregate dispersion. The 

mixture was stirred for one hour at 150 rpm and let stand overnight to incorporate the 

drug into the filomicelle core. The unincorporated drug was removed by dialyzing the 

mixture through a membrane having Molecular Weight Cut-Off (MWCO) of 3500 Da 

(procured from Spectrum Laboratories, Inc., California). The dialyzed mixture was 

allowed to stand overnight and centrifuged at 2000 rpm for 8 minutes prior to usage. The 

drug loading was measured via Shimadzu prominence HPLC (High Performance Liquid 

Chromatography) with Pinnacle DBC18 Column (4.6x150 mm, 5 µm particles).  

 

4.2.5. Persistence length and Mass fraction Quantification 

Procedure for persistence length measurement was adapted from (Rajagopalan et al., 

2010). Time-lapse images of filomicelles were taken and the end-to-end distance (R) and 

contour length (L) was measured using ImageJ 1.48d software. The persistence length 

was measured by fitting the data to a worm-like chain model as described in 

(Rajagopalan et al., 2010). ImageJ was used to calculate the area occupied by filomicelles 

and spheres in abovementioned time-lapse images. Mass fraction of filomicelles = (Area 

of Filomicelles)/(Area of Filomicelles + Area of Spheres). 
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4.2.6. Release studies 

Release studies: Procedure adapted for release studies was as described in (Cai et al., 

2007). Drug loaded filomicelles and free drug were dialyzed (MWCO 3500 Da) against 

PBS at pH 7.4 and 5.5 to simulate blood and endosome, respectively. The temperature 

was maintained at 37 
o
C. Samples were taken periodically and subjected to HPLC 

analysis as mentioned above (section 4.2.4).  

 

4.2.7. Cell culture 

A549 lung cancer cell line was purchased from ATCC and grown with Ham's F12 growth 

media supplemented with 10% FBS and 1% penicillin-streptomycin at 37 
o
C and 5% 

CO2. EC4 mouse liver cancer cell line was cultured with DMEM High glucose growth 

media (4.5 g/L glucose with L-glutamine and sodium pyruvate) supplemented with 10% 

FBS, 1% penicillin-streptomycin and 1% non-essential amino acids at 37 
o
C and 5% 

CO2. The cells were passaged by dissociation with 0.05 % Trypsin-EDTA (Invitrogen) 

and plated with fresh media as per standard ATCC cell culture protocol (2014). 

 

4.2.8. In vitro filomicelle uptake 

10000 EC4 cells were seeded in 12-well plates. Filomicelles labeled with PKH26 red dye 

was prepared as described above (in section 4.2.3). The next day, old media was 

discarded and cells were incubated with 950 μL of fresh media as well as 50 μl of 20 

mg/ml labeled filomicelles. At fixed time points of 4, 24, 48 and 72 hours, cells were 

trypsinized, spun down and washed with PBS. They were then spun down and suspended 
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in 1 ml of Hoechst 33342 solution (0.01% of 10 mg/mL solution in water) for 5 minutes. 

After the incubation, cells spun down and suspended in 300 µl of flow buffer (5% FBS in 

PBS). Cells were run through a flow cytometer (BD LSR II) and data was analyzed by 

WEASEL v3.2.1 software. A subset of cells incubated with labeled PEG-PBCL 

filomicelles (one well per sample) was visualized under the microscope. The cells were 

washed with Phosphate Buffered Saline (Invitrogen) and stained with Hoechst 33342 

(0.05% of 10 mg/mL solution in water) (Molecular Probes, Invitrogen) for 10 minutes. 

Following this incubation, they were washed with PBS 3 times and visualized under an 

Olympus IX71 microscope with a 300W Xenon lamp using 60x objective (oil, 1.25 NA). 

Images were taken for DNA, PKH as well as bright field and were then analyzed by 

ImageJ software.  

 

4.2.9. In vitro cell viability assay 

Procedure for in vitro cytotoxicity assay was adapted from Cai et al., 2007. 5000 cells (at 

a concentration of 50,000 cells/ ml of media) were seeded in 96-well plates (100 μl per 

well) and incubated for a day to facilitate attachment to the bottom. The next day, old 

media was aspirated and the cells were incubated with 100 μL of different formulations 

and 100 μL of fresh media for 3 days (200 μL total volume). 100 μl of PBs was added as 

a negative control Post 3-day incubation, the supernatant was aspirated, and cells were 

incubated with 100 μL of fresh media and 11 μl of MTT solution (5 mg/mL in PBS) for 

3.5 hours at 37 
o
C and 5% CO2. The supernatant was then aspirated and MTT formazan 

crystals were then dissolved in 100 μL of DMSO per well, and absorbance was measured 

using Tecan Infinite F200 plate reader at 550 nm. Cell viability was proportional to 
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(absorbance reading of well - absorbance of blank DMSO). Curve fitting and data 

analysis was performed using OriginPro 8 software. 

 

4.2.10. Cell death quantification  

Cell death induced after treatment was measured as the number of floating cells staining 

positive for Trypan Blue (Corning). After three day treatment, media was counted for 

total number of floating cells (dead and alive) using a hemocytometer. Following this, the 

media was mixed with equal volume of Trypan Blue solution (0.4% w/v in PBS), and 

number of cells staining negative were counted. Cell death density = Total density of 

floating cells - 2 × Density of cells staining negative with Trypan Blue   

 

4.2.11. DNA content analysis 

DNA content was analyzed on fixed cells as well as by flow cytometry. Cells were fixed 

using 4% paraformaldehyde for 10 minutes followed by 3 PBS washes. Following this, 

they were stained with Hoechst solution as described above. Cells for analysis by flow 

cytometry were prepared by trypsinizing treated cells. These were then spun down, 

supernatant was aspirated and cells were suspended in 1 ml Hoechst 33342 solution 

(0.01% of 10 mg/mL solution in water) for 5 minutes. The cells were then spun down, 

Hoechst solution aspirated and cells were suspended in 300 μl flow buffer (5% FBS in 

PBS). Cells were run through a flow cytometer (BD LSR II) and data was analyzed by 

WEASEL v3.2.1 software. Recovery of DNA content was performed by washing away 

TAX containing media after 3 days of TAX treatment. The well was washed with PBS 
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and attached cells were incubated with fresh media for three more days. Following this, 

the remaining attached cells were prepped for flow cytometry and analyzed as described 

above. 

 

4.2.12. In vivo experiments 

In vivo experiments were performed on NOD-SCID mice with tumor xenografts. 200 µl 

of Paclitaxel-loaded filomicelles were administered via tail vein injection. The treatment 

consisted of four injections each, administered in regular intervals of 3 days. Tumor size 

was measured at regular intervals and the tumor area was normalized relative to the size 

at the onset of the treatment. 

 

4.2.13. Statistical analyses 

Unless indicated otherwise, mean and standard deviation are calculated for a minimum of 

n = 3 independent samples. 

 

4.3. Results 

4.3.1. Synthesis and Characterization of PEG-PCL and PEG-PBCL aggregates 

For PEG-PCL (OCL) synthesis, the relative amount of polymerization initiator was 

adjusted such that the di-block copolymer had a PEG block with a molecular weight of 

2000 g/mol and the PCL block a weight of 7500 g/mol. Molecular weights were 

confirmed by 
1
H NMR, which was used to estimate the proportion of PEG to PCL. PEG-
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PBCL (OBCL) was made per Molavi et al. (2008) with spectra verified by 
1
H-NMR. The 

samples were run through a GPC to calculate PDI. A summary of the characterization of 

the two polymers has been provided in Table 4.3. Filomicelles made by the chloroform 

evaporation method (Rajagopalan et al., 2010) were visualized after incorporating the 

biocompatible PKH 26 red dye, and imaging indicated that OBCL could form just as 

many filomicelles (perhaps more) as OCL with some spherical micelles also present in all 

samples (Figure 4.1 B). Mass fraction calculations (Figure 4.1 B, right) revealed that 7% 

of the OBCL polymer formed spheres, whereas 21% did so for OCL. Filomicelles were 

obtained with high purity from the assembly of OBCL (Figures 4.2 and 4.3) 

A phase diagram (Figure 4.4 A) based on estimations of core block hydrophobicity 

(MCH2) and hydrophilic mass fraction (fhydrophilic) per (Rajagopalan et al., 2010) suggests a 

filomicelle micro-phase dependence on PEG molecular weight rather than just 

hydrophilic fraction. Sphere micelle data for OBCL from Molavi et al. (2008) and Xiong 

et al. (2008) appears consistent with further observations here, and spherical micelles are 

consistently located to the lower right of filomicelle assemblies within this phase 

diagram.  Filomicelles generated from either copolymer also required surprisingly similar 

amounts of nominal hydrophobicity (5000 - 6000 g/mol). Synthesis of more polymers 

will certainly be critical to verifying and clarifying these trends, but the production of 

these novel OBCL filomicelles with an aromatic core raised more important questions 

about stability and ability to incorporate an aromatic drug such as TAX. 
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4.3.2. PEG-PBCL filomicelles are initially stable and efficiently load TAX, which is 

released at low pH 

The mass fraction of filomicelles in the aggregate solution at pH 7.4 and 37 
o
C was 

quantified over time in order to track the degradation of filomicelles to spheres. The 

decay in OBCL filomicelle mass fraction was exponential with a time constant of ~ 700 

hours (Figure 4.4 B). While this decay occurred at a near constant rate, OCL filomicelles 

exhibited a higher rate of degradation initially (time constant of 47 hours) which leveled 

off with time. Both polymers had similar mass fraction of filomicelles around day 25.  

HPLC analysis of OBCL and OCL filomicelles loaded with TAX in parallel revealed 

consistently more integration of drug (by ~40%) into OBCL filomicelles (Figure 4.4 

C).To quantify the time scale of drug release in different environments, dialysis release 

studies were conducted. Free drug was released efficiently (94%) and quickly in dialysis 

(time constant of 15 hours), compared to OBCL filomicelles at pH 7.4 and 5.5, which 

exhibited first order release time constants of 105 and 85 hours, respectively (Figure 4.5 

A). Just 48% of the drug was released by 14 days in pH 7.4, whereas 71% was released at 

pH 5.5 in the same timeframe. In contrast, OCL filomicelles released 62% of the drug at 

pH 7.4 and 72% at pH 5.5 (Figure 4.5 B). Exponential decay curves fitted to the release 

profiles revealed time constants of 93 and 79 hours respectively. These results support the 

expectation that drug release will be minimal while circulating in the blood for many 

hours or days, and indicate that OBCL assemblies may be able to better distinguish 

between healthy and tumor micro-environments.  
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4.3.3. Incorporation of aromatic group maintains filomicelle flexibility 

Filomicelle flexibility is important to persistent circulation since rigid filomicelles are 

rapidly cleared (Geng et al., 2007), and flexibility can be affected by core chemistry as 

well as molecular weight (Rajagopalan et al., 2010).  By imaging filomicelles of different 

contour lengths, we estimated the persistence length, lp, of OBCL filomicelles to be 6.1 

μm (Figure 4.6 A). This differs only modestly from persistence lengths of filomicelles 

formed from PEG-PCL and PEG-PBD (Figure 4.6 B) despite major differences in PEG 

and core molecular weights as well as core chemistries. 

 

4.3.4. OBCL filomicelle delivery to cancer cells suggests higher efficacy and safety 

Human lung cancer derived A549 cells were incubated with free PKH dye or the same 

amount of total dye in PKH-labeled OBCL filomicelles for up to 72 hours, and the PKH 

intensity in the filomicelle-treated cells was plotted against time as (% of free PKH 

uptake). Spots of PKH were seen throughout the cytoplasm, with a decrease near the 

nucleus (Figure 4.7), and overall dye intensity in the cells increased with first order 

kinetics, fitting a time constant of 85 hours (Figure 4.8 A). Kinetic studies conducted 

with OCL filomicelles suggests a parabolic behavior, with PKH intensity peaking at 48 

hours, and subsequently decaying. At low time scales (~ 4h), the intensities from 

internalized OCL and OBCL filomicelles (or worms) are similar, while OCL labeled 

worms accumulate more at intermediate length scales of 1 to 2 days, although the 

difference is intensities never exceed ~ 20%. At a longer length scale of 3 days, OBCL 

worms show highest intensity (20 % higher than cells incubated with OCL worms). The 

combination of release studies and uptake results suggest that TAX delivery to the cells 
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may be dominated by micellar uptake (in whole or parts of the worm) over molecular 

transfer (Lodish et al., 2000), which should lead to abnormal division, with cell death 

and/or aneuploidy (Figure 4.8 B). 

To test the model, the efficacy of OBCL filomicelles loaded with TAX was evaluated for 

two different cancer cell lines: human non-small cell lung cancer (A549) and mouse liver 

cancer cell (EC4). A549 cells were treated with free TAX, TAX loaded OCL or TAX 

loaded OBCL for 3 days (Figure 4.9 A). Nano-carriers loaded with TAX appeared more 

potent in suppressing cell numbers than free TAX, and TAX loaded OBCL filomicelles 

(OBCL-TAX) were more potent than OCL filomicelles (OCL-TAX). Importantly, the 

extreme toxicity of OBCL-TAX filomicelles did not translate to systems without drug 

(Figure 4.9 B): filomicelles of OCL and OBCL formed at the same polymer 

concentration of 20 mg/mL showed empty OBCL were an order of magnitude less toxic 

than corresponding OCL, with TAX equivalent IC50s of 109 and 13 μM, respectively. 

Efficacy of OBCL filomicelles against an EC4 liver cancer cell line produced similar 

results. Cell numbers were measured after incubations of 1, 2 or 3 days with either free 

TAX (Figure 4.10 A), OBCL filomicelles (OBCL-TAX, Figure 4.10 B) or OCL 

filomicelles (OCL-TAX, Figure 4.10 C). The latter were far more effective than free 

TAX, especially after just 1 day. At IC50 concentrations, cell death with TAX 

filomicelles was consistently higher than with free drug, although at more extreme 

concentrations (> 100 μM), cell death was higher with free TAX. Empty OBCL were 

once again non-toxic with an IC50 of 1625 μM, which is an order of magnitude less toxic 

than that found for the A549 cells. At all three time points (days 1, 2 or 3), OBCL-TAX 

worms were more potent than OCL-TAX worms. Empty OCL worms exhibited 
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significant toxicity compared to OBCL counterparts (IC50 ~ 6 μM), as seen previously in 

Figure 3B. After 3 days, the IC50 of OBCL-TAX was 3.5 fold lower than for free TAX 

(Figure 4.11 A), which highlights once again the efficacy of drug loaded nano-carriers. 

Some EC4 cells also detach and float as they die, with a small number of floating cells in 

untreated culture as well as cultures incubated with drug-free OBCL filomicelles (Figure 

4.11 B). Consistent with the above counts of viable attached EC4 cells, OBCL-TAX 

filomicelles maximized this separate metric of cell death relative to free TAX in addition 

to being ~10-fold above control cultures.  

 

4.3.5. TAX-filomicelles maximize and sustain aneuploidy 

Histograms of DNA intensity in fixed EC4 cells stained with Hoechst are used to identify 

levels of ploidy induced by TAX as either free drug or drug delivered by OBCL 

Filomicelles (Figure 4.12). Untreated cells show two major peaks for diploid cells (2N) 

and replicating cells (≤ 4N), with very few cells showing higher intensity. However, 

treatment with TAX increases DNA intensity well beyond 4N intensity, consistent with 

incomplete cell division. Such aneuploidy is prominent in cells treated with free TAX and 

with OBCL-TAX (red curve) but not with empty nano-carriers (inset), which confirms 

the lack of toxicity. Due to the limited number of cells that can be analyzed under the 

microscope, DNA content of cells was also analyzed using flow cytometry (Figure 4.13 

A). TAX filomicelles led again to the greatest aneuploidy when compared to free TAX, 

and aneuploidy was higher for OBCL-TAX compared to OCL-TAX, consistent with 

OBCL delivering more effectively than OCL (Figure 4.9 A). 



79 

 

 

Chemotherapy in the clinic typically involves a bolus injection or infusion followed by 

no delivery for a few days, and then repeated over several weeks, and so sustained effects 

of drugs are potentially important to efficacy. To measure the persistence of aneuploidy 

after TAX a treatment here, a rescue experiment was performed (Figure 4.13 B). After 

treatment (day 3), all cells showed high levels of aneuploidy, as noted previously (Figure 

4.12 and 4.13 A). Aneuploidy always decreased post-treatment, and the rate of decrease 

of DNA content versus time was similar for all TAX treatments. However, only OBCL-

TAX exhibits high aneuploidy (2-3 fold higher average DNA) at 3-4 days after an in vitro 

treatment. 

 

4.3.6. OBCL filomicelles with TAX shrink tumors in vivo 

Four injections of drug loaded filomicelles over two weeks resulted in a decrease in 

tumor size (Figure 4.14). Mice with control injections showed continued growth of 

tumors. Drug loaded filomicelles produced an immediate response as the tumor size 

shrunk 20% in 3 days, and 45% in 13 days compared to control. Tumors treated with 

OBCL-TAX filomicelles produced 30% shrinkage from initial size, which suggests 

potency greater than or equal to that of OCL-TAX filomicelles toward the same cancer 

cells in vivo (Figure 4.15 A). Also, despite the potential for any amphiphilic copolymer 

to lyse blood cells after intravenous injection, no statistically significant change in the 

number of any blood cells was measured with TAX-filomicelles (Figure 4.15 B). 

However, trends are consistent with TAX stabilization of microtubules in blood stem 
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cells and progenitors, thereby favoring (at the expense of other lineages) high 

ploidy/aneuploidy megakaryocytes, which generate more platelets. 

 

4.4. Discussion 

Benzyl groups linked to the polycaprolactone backbone via a hydrolysable ester group 

are similar to ester groups between caprolactone monomers, and so this cleavable linker 

should and does ensure that filomicelles are stable at physiological pH (for example, 

while circulating in the blood) while also hydrolyzing at low pH (like that found in 

endolysosomes). The same method of filomicelle formation (chloroform evaporation 

during hydration) was employed in this study as in our earlier studies (Rajagopalan et al., 

2010) in order to eliminate any impact on phase behavior due to processing, but it seems 

likely that a separate phase diagram (Figure 4.4 A) is required for different molecular 

weight PEG blocks as noted in (Rajagopalan et al., 2010). Nonetheless, spherical micelles 

tend to be favored whenever the hydrophilic fraction is increased through a decrease in 

hydrophobic mass, consistent with general ideas of micelle formation and with 

degradation of filomicelle cores generating shorter lengths and spheres. While PEG-

PBCL samples formed filomicelles (average filomicelle length was 23 μm ± 8 μm, mean 

± S.D.) which was twice as long as PEG-PCL filomicelles (Rajagopalan et al., 2010), role 

of the incorporated aromatic group in extending the length of worms would benefit from 

further study because of the different molecular weights of PEG blocks used in the two 

polymers. Importantly, higher drug loading in PEG-PBCL filomicelles justified inclusion 

of an aromatic group in the core (Figure 4.4 C) and also implied a high partition 

coefficient in the core (Loverde et al., 2012). Drug release times of many days for the 
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filomicelles (Figure 4.4 B and 4.5 A) combined with the fact that filomicelles circulate in 

vivo for up to a week (Geng et al., 2007) imply minimal release before tumor 

accumulation.  Rapid release at low pH favors not only endoslysomal escape (Varkouhi 

et al., 2011) (Miyata et al., 2011), but also release due to the lower pH prevailing in 

tumors (Lee et al., 2003) (Lee et al., 2008). The presence of a burst phase is seen 

typically with polymeric micelles at pH of 5 and 7 (Lim Soo et al., 2002), and was 

observed here as well. 

Loading TAX into PEG-PBCL filomicelles reduced the IC50 by more than an order of 

magnitude compared to free drug for both cell lines tested here (Figure 4.9 A and 4.10 

A). In addition to a two-and-a-half fold difference in IC50 between the OCL and OBCL 

filomicelles, empty OBCL filomicelles were an order of magnitude less toxic than OCL 

filomicelles (Figure 4.9 B). At high concentrations, even empty filomicelles became toxic 

to the cells, presumably due to disruption of the cell’s lipid bilayer by these detergent-like 

amphiphiles (Vega-Villa et al., 2008)(Moghimi et al., 2005).  Even slow degradation of 

the free end of the PCL block converts a cylinder-forming amphiphile to a higher 

curvature sphere-former that will be more disruptive to membranes (Cai et al., 2007). 

With free drug, cell viability decreased from day 1 to day 2, but then increased from day 

2 to day 3 (Figure 4.10 A), which is perhaps due to degradation of TAX by hydrolysis 

(Tian et al., 2008) (Nikolic et al., 2011) that occurs over days (Richheimer et al., 1992) 

(Amini-Fazl et al., 2014). Nano-carrier cores can protect against such hydrolysis, with 

PCL cores protecting cisplatin from degradation (Surnar et al., 2015), and a protective 

effect might explain the decrease in cell viability with TAX-filomicelles from day 1 to 2 

and day 2 to 3 (Figure 4.10 B). 



82 

 

A hallmark of TAX treated nuclei is higher DNA accumulation due to incomplete cell 

division, and a histogram of DNA intensities of treated cells revealed a majority of 

aneuploid cells (Figure 4.12). Moreover, cells treated with filomicelle-TAX appear in 

flow cytometry to have a narrower distribution of ploidy than free TAX (Figure 4.13 A), 

and heterogeneity in surviving cells has been thought to increase the chances of a drug-

resistant cell (Marusyk and Polyak, 2010) (Brooks et al., 2015). In particular, low ploidy 

cells with DNA content similar to untreated cells likely unaffected by free drug. 

Furthermore, OBCL filomicelles not only induce more cell death than OCL, but the 

surviving cells exhibit a higher level of aneuploidy (Figure 4.13 B). Importantly, higher 

levels of polyploidy suggest a worse prognosis for affected cells (Gordon et al., 2012). 

All three treatment groups (free, PEG-PCL and PEG-PBCL TAX) exhibited a decrease in 

polyploidy, with such cells likely dying after drug was washed away, but even after three 

days of recovery, PEG-PBCL treated cells showed the highest levels of polyploidy, 

suggesting that TAX loading onto PEG-PBCL filomicelles might be a more durable or 

potent treatment. 

Initial in vivo tests showed that PEG-PBCL filomicelles shrunk tumors in vivo in mice 

with A549 xenografts (Figure 4.14 and 4.15 A). While saline-injected controls grew 

consistently here and past studies already showed no effects of empty filomicelles, 

tumors treated with TAX loaded PEG-PBCL filomicelles (injected at 4.5 mg/kg) shrank 

by 25% or more in two weeks. For comparison, mice treated with TAX loaded PEG-PCL 

filomicelles at 4-fold higher dose (18 mg/kg) show tumor shrinkage for the first week but 

then a constant tumor size (Christian et al., 2009), and mice treated with free TAX at the 

maximum dose of 1 mg/kg exhibit only a small tumor shrinkage initially, before re-
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growing, consistent with resistance and relapse. Also noteworthy was that PEG-PCL 

spheres injected at 8 mg/kg produced tumor shrinkage for the first week (Christian et al., 

2009), as with PEG-PCL filomicelles, and then tumors re-grew. Continuous shrinkage 

obtained with PEG-PBCL suggests a more durable or potent treatment without significant 

change in hematocrit, thrombocrit, or monocyte counts in treated mice (Figure 4.15 B), 

consistent with low toxicity of PEG-PBCL filomicelles.  
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Figure 4.1. Filomicelles from different polymers A) PEG reacts with ε- Caprolactone 

(which can be functionalized with a group, R, at the alpha carbon) to form PEG-PCL 

(black) or PEG-PBCL (red) polymer. The aromatic group in PEG-PBCL may help load 

more aromatic chemotherapeutics, such as Paclitaxel. B) 60 x magnification images of 

filomicelles formed from PEG-PBCL (top left) and PEG-PCL (top right). Scale bars are 

30 μm. Assemblies from the former had a higher purity of filomicelles than the latter. 

Quantification of mass fraction of filomicelles in aggregates (right), revealed a higher 

filomicelle mass fraction of filomicelles in PEG-PBCL sample (93%) than PEG-PCL 

(79%). The rest were spheres. 
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Figure 4.2. 60x magnification image of OBCL filomicelles labeled with PKH26. 

 

 

    

Figure 4.3. 150x magnification image of OBCL filomicelles labeled with PKH26. 
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Figure 4.4. A) Phase diagram of assemblies from PEG-PBCL formed by solvent 

evaporation method. As with PEG-PCL, filomicelles from PEG-PBCL occupy a narrow 

region, with possibly different regions corresponding to the weight of the hydrophilic 

block. Filomicelle scale bars are 20 μm, while spherical micelle scale bars are 10 μm. B) 

Degradation of mass fraction of filomicelles with time. Rate of degradation is higher for 

PEG-PCL worms initially, while it remains nearly constant for PEG-PBCL. The mass 

fraction of worms from the two polymers becomes similar around day 25. The time scale 

of degradation suggests that all aggregates will be taken up by the cell as filomicelles, 

and not as spheres, as filomicelles circulate for roughly 8 days. C) Higher Paclitaxel 

loading capacity of PEG-PBCL vs. PEG-PCL. Integration efficiency of PEG-PBCL was 

40% higher than filomicelles from PEG-PCL with an aliphatic core. 
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Figure 4.5. Release studies performed with PEG-PBCL and PEG-PCL filomicelles at 

different pH as well as free drug. The rate of release from PEG-PBCL filomicelles at pH 

7.4 was much slower than that of free drug, indicating little leakage while in circulation. 

PEG-PCL worms in had higher drug release at the same pH. Rapid and similar release 

profiles at pH 5.5 for both polymers hint at rapid release after lysosomal degradation.  
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Figure 4.6. A) Model fitting during the calculation of persistence length of PEG-PBCL 

filomicelles. B) While the persistence length of PEG-PBCL is higher than that of PEG-

PCL, it is lower than PEG-PBD (also proven to form flexible filomicelles). 
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Figure 4.7. PKH, Hoechst and bright field images of cells incubated with PKH labeled 

filomicelles. Cytoplasmic spots of the dye after filomicelle uptake by EC4 cells can be 

seen after incubation for one day. Scale bars are 20 μm. 
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Figure 4.8. A) Quantification of PKH intensity within a cell after incubation with dye 

labeled filomicelles. The intensity recorded increases exponentially with time for PEG-

PBCL, while it is parabolic for PEG-PCL worms. PEG-PCL worms have higher 

accumulation initially, but are surpassed by PEG-PBCL on day 3. B) Cartoon depicting 

the uptake of filomicelles by cells. Cells, when incubated with filomicelles, come in 

contact with and capture them. The cell may then proceed to chew off a part of the 

filomicelle. Alternatively, the constituent di-block copolymers may undergo hydrolysis 

leading to its shortening. The corresponding phase transition of filomicelles to spheres 

destabilizes the filomicelles, leading to release of the encapsulated drugs. These small 

molecules are then taken up by the cell.   
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Figure 4.9. A) Effects of drug loaded micelles can be applied across various cell types. 

Cell viability of A549 (epithelial lung cancer) cells treated with free and polymer-loaded 

drugs reveal a clear advantage of loaded formulation over free drug (IC50 bar graph 

inset). B) Inertness of nano carrier (no effect of empty carriers on viability). 
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Figure 4.10. EC4 cell viability kinetics with free TAX, PEG-PBCL TAX and PEG-PCL 

TAX respectively. While both free and encapsulated drugs show similar effects, cell 

viability of free drug at day 3 is higher than that for day 2, presumably due to degradation 

of free drug in the presence of water. Encapsulated drug is protected from hydrolysis, 

which is supported by consistently decreasing viability with time. At all three time points 

(Days 1, 2 or 3), the IC50 of TAX loaded PEG-PBCL worms were lower than that of 

corresponding PEG-PCL worms. Empty PEG-PBCL micelles, were inert (IC50 >1500 
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μM). However, PEG-PCL worms exhibited significant toxicity (IC50 ~ 6 μM), as seen 

previously in Figure 3B. 
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Figure 4.11. A) Bar graph representation of the IC50 values of different formulations 

after 3 days. Less concentration of Paclitaxel is required to induce cell death in 

encapsulated form than in free form, with TAX PEG-PBCL micelles being three times 

more potent than free drug, and 1.5 times more potent than TAX loaded PEG-PCL 

worms. B) Treatment with TAX leads to a higher number of floating cells that don't stain 

negative with trypan blue, indicating cell death. Cell death is minimum with untreated 

cells or ones incubated with empty filomicelles. Free as well as encapsulated TAX 

induces significant cell death, with loading on to micelles inducing forty percent more 

cell death. 
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Figure 4.12. Quantification of Hoechst intensity per cell and plotting the corresponding 

histogram reveals aneuploidy present in TAX treated nuclei. Untreated cells reveal that a 

significant portion of the cells in replicating phase (labeled 4N), and rest in diploid state 

(2N). However, post treatment with TAX, most cells exhibit aneuploidy (i.e. number of 

chromosomes greater than 4N). This effect is further enhanced by encapsulating TAX in 

filomicelles. Empty nano-carriers do not produce an appreciable change in this 

distribution. 
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Figure 4.13. A) Quantification of aneuploidy by flow cytometry shows similar results to 

IF (Figure 4.12). B) Recovery of diploidy by EC4 cells post induction of aneuploidy after 

TAX treatment. Nano-carrier loaded TAX induce more aneuploidy after treatment (day 

3), and still has more DNA content after 3 days of recovery.  
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Figure 4.14. In vivo tumor shrinkage obtained in NOD-SCID mice with tumors 

established from A549 lung cancer cell line. 4 injections of PEG-PBCL filomicelles 

loaded with TAX were given, with each dose 3 days apart.  Tumors treated with drug 

loaded PEG-PBCL filomicelles shrink 27% in volume from initial size after 13 days, 

while the untreated control grows by 15%. 
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Figure 4.15 A) Comparison of tumor shrinkage obtained after 13 days of treatment. 

While PEG-PBCL loaded filomicelles led to lower tumor shrinkage than PEG-PCL 

counterparts, the TAX dosage was one-fourth of the latter. OCL-TAX at 10 mg/kg could 

not produce sustained shrinkage, and consequently, the final tumor size was not much 

smaller than initial size. OCL data from Christian et al., 2009. B) Mice treated with PEG-

PBCL filomicelles loaded with TAX did not exhibit adverse change in thrombocrit, 

hematocrit or monocyte numbers. The changes were not significant in all three cases, 

thus underlining the ability of these filomicelles to safely deliver drug to the tumors 
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Table 4.1: Quantities of reactants used in the synthesis of PEG2000-PCL7500. 

Chemical Polyethylene 

Glycol 

ε-Caprolactone Stannous 

Octanoate 

PEG2000-

PCL7500 

mmol 0.27 17.53 0.04 0.27 

Mass (mg) 533 2000 16 2550 

Molecular 

Weight 

2000 114.1 405.1 9500 

Density (g/ml) - 1.03 1.25 - 

Volume (μl) - 2000 13 - 
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Table 4.2: Quantities of reactants used in the synthesis of PEG5000-PBCL7500. 

Chemical Polyethylene 

Glycol 

α-benzyl 

carboxylate           

ε-Caprolactone 

Stannous 

Octanoate 

PEG2000-

PCL7500 

Mmol 0.16 4.84 0.24 0.16 

Mass (mg) 800 1200 96 2100 

Molecular 

Weight 

5000 248 405.1 12500 

Density (g/ml) - 1.03 1.25 - 

Volume (μl) - 2000 77 - 
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Table 4.3: Characterization of polymers utilized to form filomicelles. 

Polymer Composition Number 

Average 

Molecular 

Weight 

(Mn)(g/mol) 

Weight 

Average 

Molecular 

Weight 

(Mw) (g/mol) 

Polydispersity 

Index 

(PDI) 

 

Block 
Molecular 
Weights 

Block 
Repeating 
Units 

PEG2000-

PCL7500 

PEG45-PCL66 9799 15438 1.575 

PEG5000-

PBCL7500 

PEG114-PBCL30 12533 25166 2.008 
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CHAPTER 5. RETINOIC ACID DELIVERY BY FILOMICELLES 

REDUCES PROLIFERATION AND DRIVES DIFFERENTIATION 

OF MURINE HEPATOCELLULAR CARCINOMA CELLS 

 

(This chapter is a part of the manuscript being prepared for submission: Nair, P. R., 

Alvey C., Jin X., and Discher, D. E. Filomicelles deliver a chemo-differentiative 

therapy to durably control carcinoma cell fate) 

 

5.1. Retinoic Acid 

5.1.1 Synthesis of RA from retinol 

Retinoic acid (RA) is a small lipophilic molecule derived from Vitamin A or retinol 

(Figure 5.1 A). The chief sources of intake are carotinoids and retinyl esters which are 

oxidized for the production of RA in the liver, spleen and bone marrow. Upon release 

into circulation, retinol is bound by retinol binding protein (RBP), which allows it to 

enter cells via a receptor mediated interaction. Once it enters the cell, retinol binds to 

cellular retinol binding protein (CRBP) (Lawson and Berliner, 1999). This complex is the 

substrate for future dehydrogenase catalyzed oxidations, resulting in retinal which is still 

complexed to CRBP. Retinal is then oxidized by retinal dehydrogenase to All Trans RA 

which is still complexed to CRBP. RA can then be further degraded to 4-oxo-retinoic 

acid after binding to cytochrome p450. RA can induce changes in the cell, or act in a 

paracrine manner after exiting the cell. Serum concentration of RA varies between 10 nM 
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and 100 nM (De Ruyter et al., 1979). While in the cell, RA is often bound to cellular 

retinoic acid binding protein (CRABP). 

 

5.1.2 Retinoic Acid Receptors 

 RA can enter the nucleus and bind retinoic acid receptors (RARs) to modulate gene 

expression. RARs belong to a superfamily of receptors including thyroid and estrogen 

receptors. RARs possess ligand (RA) binding, activation, repression, DNA binding and 

dimerization domains. RARs are further classified into three subtypes:  α, β, and γ. There 

are eight types of RARs in total (RARα1, RARα2, RARβ1, RARβ2, RARβ3, RARβ4, 

RARγ1, and RARγ2). The general structure of RARs is depicted in Figure 5.1 A. The N 

terminus (sections A and B) contain domains that can transactivate RAR isoforms. 

Region C contains zinc finger motifs used in sequence recognition and DNA binding. 

Region E contains the ligand binding domain, which can co-operate with region A/B. 

This section is highly conserved. Regions D and F play a key role in the dissociation and 

association of co-repressors upon binding by RA, and are located close to the C terminus. 

 

RAR functioning involves the formation of heterodimers with Retinoid X receptor (RXR) 

(Figure 5.1 C) (Theodosiou et al., 2010) (Mark et al., 2006) (Leid et al., 1992). At high 

concentrations, RARs can homodimerize, but RAR-RXR heterodimers bind DNA with 

higher affinity. RXRs also exist in 3 isoforms and have a similar structure to RARs. They 

can be activated by binding to 9-cis retinoic acid. RXRs are a lot more promiscuous than 

RARs and possess many more binding partners such as vitamin D receptor (VDR), 
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thyroid hormone receptor (TR), and peroxisome proliferator activator receptor (PPAR), 

along with orphan receptors.   

 

RA target genes possess sections called Retinoic Acid Response Elements (RAREs) 

within their promoter regions which are bound by RAR-RXR heterodimers. They 

recognize and bind repeats of PuGGTCA (where Pu is purine residue: A or G). The 

binding to DNA is mediated by region C which contains the zinc finger domain. 

Knockout mice lacking isoforms of RAR have normal phenotype. However, mice with 

knockouts of RARα and RARγ exhibit mostly immature cells that do not progress past 

the myelocyte stage, further highlighting the role of retinoid signaling in driving 

differentiation.  

 

5.1.3 Repression and activation of genes 

When the RAR-RXR heterodimer is not bound to its ligand, it is bound by co-repressors 

such as NCoR1 and NCoR2 (also known as SMRT). Upon binding to its ligand the 

receptor jettisons the co-repressors (like SMRT) and undergoes a change in 

conformation. Mutations in region F makes RARs less sensitive to RA and unable to 

transactivate the target promoter. These mutants exhibit a constant association to SMRT, 

which associated with RARs at the carboxy terminal. SMRT can also interact with PPAR 

in a similar way. The interaction of RARs with SMRT varies with subtype, and RARα 

and RARγ interact with SMRT, while RARβ does not. When bound to its repressor, 

SMRT may recruit histone deacetylase 1 (HDAC1), which deacetylates histones and 
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leads to a closed chromatin structure inaccessible to transcription machinery. Unliganded 

RARs are also more susceptible to cleavage by endopeptidases compared to ligand bound 

receptors since ligand binding produces a change in conformation (Lin et al., 1998). 

 

Similar to co-repressors, RARs and RXRs can also bind to co-activators such as SRC-1. 

RARs form a ternary complex with SRC-1 and CBP, both of whom have intrinsic histone 

acetyl transferase (HAT) activity, and can open up closed chromatin configurations. 

Additionally, CBP can acetylate subunits of Transcription Factor II E which can increase 

transcriptional activity. CBP can also recruit RNA polymerase II after CBP binding to 

phosphorylated CREB.  

 

The regulation of accessibility of transcription machinery by modulating chromatin 

structures via co-repressors and activators of RARs explains how RA exerts its effects. 

When unbound to RA, RAR-RXR heterodimer is associated with HDACs leading to 

closed chromatin conformation. Upon binding to ligands, RARs undergo a change in 

conformation and associated with co-activators instead that acetylate histones and open 

up the chromatin. 

 

5.1.4 RA target genes 

RA target genes are classified based on their time of induction as early genes or 

cooperative response genes (Figure 5.1 D). Early genes are transcribed quickly, while 
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cooperate genes do not despite possibly possessing RAREs. C/EBP and p47-phox are 

examples of the former, while p21 and lactoferrin are examples of the latter. Both sets of 

genes include signaling factors that lead to activation of secondary response genes, along 

with factors required for differentiation (Wu et al., 2000). 

 

C/EBP plays an important role in neutrophil maturation, adipogenesis, and liver 

homeostasis. It is an early induction gene, and the addition of RA lead to induction of 

C/EBP transcripts one hour after incubation. p21 is another protein that is involved in 

differentiation and regulated by RA. It is a late induced gene and arrests proliferation by 

inhibiting the function of CDKs. p21 gene has a Vitamin D response element (VDRE) 

which has been shown to bind VDR-RXR heterodimers as well as a RARE in its 

promoter, making it responsive to RA. Treatment with RA leads to an increase in p21 

transcripts and a decrease in Cdk2 activity. Signaling pathways downregulated by RA 

treatment include those involved in stem cell differentiation, such as the Polycomb EZH2 

network and Wnt signaling (Ginestier et al., 2009). This suggests that RA treatment may 

play a role in addressing chemotherapy resistance mediated by CSCs. The Akt/β-catenin 

pathway, which plays a critical role in proliferation and CSC self-renewal, was also 

downregulated after RA treatment. 

 

5.1.5. Retinoic Acid signaling in cancer 

RA can induce differentiation and arrest proliferation in cells making it potentially useful 

drug against cancer cells, particularly cancer stem cells (Connolly et al., 2013). RA has 
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been implicated in several chemo-preventive roles e.g. the RARs have been observed to 

be silenced in cancer cells (Virmani et al., 2000). Additionally, RA pathway 

transcriptionally regulates the levels of nuclear lamins (specifically Lamin A) (Swift et 

al., 2013) that control nuclear softness, and hence affects 3-D migration of cells (Harada 

et al., 2014). RA is known to induce differentiation in undifferentiated cells (including 

liver cells) (Huang et al., 2009) (Breitman et al., 1980), as well as to reduce proliferation 

of cells by arresting the cell cycle in the G1 phase (Collins, 1987) (Zhu et al., 1997).  

 

5.1.6. Retinoic Acid in liver tumorigenesis 

Another key reason behind the use of RA in our treatment is its central role in liver 

function, with lower levels causing and correlating with liver diseases such as Non 

Alcoholic Fatty Liver Disease (NAFLD) (Liu et al., 2015)(Kim et al., 2014) and fibrosis 

(Lee et al., 2015). RA is synthesized in the liver by oxidation of Vitamin A and is stored 

in fat droplets by the Hepatic Stellate Cells (HSCs) also in the liver (Blaner et al., 2009). 

During the development of hepatocellular carcinoma, HSCs lose RA (Shiota et al., 2005), 

leading to de-differentiation and increased proliferation. Thus, restoring RA levels to 

these cells in order to drive differentiation and arrest their proliferation is an especially 

attractive prospect (Sell, 2004). The central role of retinoids in regulating proliferation 

and driving differentiation make this a promising approach to deal with cancer stem cells. 

However, RA binds to serum albumin (Avis et al., 1995) for wider distribution, which 

might necessitate nanocarrier delivery. Based on our previous observation (Nair et al., 

2016), encapsulation in the core of filomicelles might help shield RA from complexation 

and facilitate better delivery.  
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5.2. Materials and Methods 

5.2.1. Materials 

Retinoic acid was purchased from Sigma Aldrich Corp., St. Louis, Missouri, unless stated 

otherwise. FBS, penicillin-streptomycin, non-essential amino acids, MTT assay and 

Hoechst 33342 were purchased from Invitrogen. High glucose DMEM growth media was 

purchased from Corning.  Lamin-A and Lamin-B antibodies were purchased from Cell 

Signaling.  

 

5.2.2. Synthesis of PEG-PCL and characterization of aggregates 

Polyethyleneglycol (PEG) -Polycaprolactone (PCL) di-block copolymer was prepared as 

described previously (Nair et. al., 2016). Briefly, the diblock copolymer was prepared by 

the ring-opening polymerization of ε- caprolactone using PEG2000 as macro-initiator at 

140 
o
C in the presence of stannous octoate as catalyst. The polymer was characterized by 

1
H NMR spectroscopy and Gel Permeation Chromatography (GPC). Aggregates were 

formed in water by solvent evaporation as described in Nair et. al., 2016. Filomicelles 

were incubated with PKH 26 dye and imaged at 567 nm using aggregates were mixed 

with PKH 26 hydrophobic red dye with emission spectra at a wavelength of 567 nm 

using an Olympus IX71 microscope. RA was loaded similar to before, and the loading 

was measured as described previously (Nair et. al., 2016).  
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5.2.3. Cell culture 

EC4 mouse liver cancer cell line was cultured with DMEM High glucose growth media 

(4.5 g/L glucose with L-glutamine and sodium pyruvate) supplemented with 10% FBS, 

1% penicillin-streptomycin and 1% non-essential amino acids at 37 
o
C and 5% CO2. 

When the flasks were confluent, the cells were passaged by dissociation with 0.05 % 

Trypsin-EDTA (Invitrogen) and re-plated with fresh media at a density of 10%. 

 

5.2.4. In vitro cell viability assay 

Procedure for in vitro cytotoxicity assay was adapted from Cai et al., 2007. Briefly, 5000 

cells were seeded in 96-well plates and treated with (different drug concentrations) the 

next day. Post three day incubation, the media was aspirated cells were incubated with 

media and MTT solution (5 mg/mL in PBS) for 3 hours. The MTT formazan crystals 

were dissolved in DMSO, and absorbance was measured at 550 nm.  Additional cell 

death quantification was done by counting the number of floating cells staining positive 

for staining positive for Trypan Blue stain.  

 

5.2.5. Cell fixing and immunofluorescence 

Cells in 6-well plates were treated with drugs as indicated above. After the desired time-

point, cells were fixed using 4% paraformaldehyde for 10 minutes followed by 3 PBS 

washes. Then, they were permeabilized with 0.5% Triton-X for 10 minutes, followed by 

3 PBS washes. After 30 minutes of blocking with 5% BSA, the cells were incubated 

overnight with the primary antibody at 4 
o
C. The next day, the cells were incubated with 
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secondary antibody at room temperature for 1.5 hours and then washed 3 times with PBS. 

The cells were then stained with Hoechst 33342 solution (0.01% of 10mg/mL solution in 

water) for 10 minutes, followed by 3 more washes with PBS. The cells were fixed again 

and stored in PBS at 4 
o
C. The stained cells were visualized under an Olympus IX71 

microscope with a 300W Xenon lamp using 40x objective (0.60 NA). Images were 

analyzed by ImageJ software.  

 

5.2.6. Curve fitting and statistical analyses 

All curve fitting and data analysis was performed with OriginPro 8 software. Unless 

indicated otherwise, mean and standard deviation are calculated for a minimum of n = 3 

independent samples. 

 

5.3. Results and discussion 

The influence of RA on cell proliferation and differentiation revealed that free RA as well 

RA loaded worms arrested proliferation in cells (Figure 5.2). RA loaded micelles (red 

curve) dip at lower concentration than free RA (black curve). Quantification of IC50 

reveals that RA worms are 200 times more potent than free RA (bar graph inset), possibly 

due to the encapsulated RA being protected from albumin complexation. Empty micelles 

are inert at physiological concentrations, with cell numbers close to that for untreated cell 

numbers (represented by the empty green triangle). Kinetics of cell numbers treated with 

free and encapsulated RA shows that free RA requires 3 days for the anti-proliferative 

effects to show (Figure 5.3). Cell numbers with free RA at 50 μM is the same irrespective 
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of treatment time (1, 2, or 3 days) and might point to increasing cell death at these high 

concentrations. However, encapsulated RA is more successful at stopping cell growth at 

physiologically relevant concentrations (~1 μM).  

Arrested proliferation is reflected by a decrease in average DNA content per cell. 

Average intensity decreases monotonically with increasing concentrations of RA (Figure 

5.4). RA loaded onto worms (red circle) were an order of magnitude more effective than 

that administered in free. DNA histograms after treatment with free RA show a 

suppression of the replicating peak (labeled 4N) (Figure 5.5). Lower number of cells with 

twice the DNA content leads to a decrease in average DNA intensity seen previously. 

While, the suppression level did not correlate with RA concentrations, RA-loaded worms 

suppressed the proliferating fraction more, consistent with a lower DNA content per cell 

seen in Figure 5.4. The effect of RA worms can be attributed to the drug alone as empty 

worms do not appreciably alter the DNA histogram (Figure 5.5 B, inset).  

 

Back-calculation from cell numbers permits the estimation of percentage of cells 

differentiated (Figure 5.6). Differentiation follows a hill curve and reaches near 

maximum values after day 2, as was reflected with cell number kinetics. The monotonous 

increase in cell number after treatment with RA is consistent with RA not killing cells, 

just differentiating them. Back-calculation from the cell number data puts the 

proliferating fraction at ~5 % (Figure 5.6). However, it must be noted that these are 

binary state calculations, where the cell is assumed to either differentiate or be 



112 

 

unaffected. In reality, the cells would individually exhibit a wide range of division times 

that is extremely challenging to track with a collection of cells. 

 

RA-induced differentiation, was also assessed through changes in levels of Lamin-A. RA 

initially decreases levels of Lamin-A which then rise (Figure 5.7 A). Untreated nuclei 

(left) are rounded with uniform Lamin-A distribution on the edges. When treated with 10 

μM RA in free form, the nuclei become more elongated (right) with patchy Lamin-A 

distribution. Nuclear aspect ratio increases monotonously with higher concentration of 

RA and eventually plateaus (Figure 5.7 B), and the trend fits a hyperbolic curve well. 

Nuclear surface area and volume follow similar trend to Lamin-A (Figure 5.8 A and C 

respectively). Lamin-A levels normalized to either surface area or volume (Figure 5.8 B 

and D respectively) increase linearly with RA concentration. In all plots, RA in worms 

was an order of magnitude more effective than free drug.  

 

To purpose behind these calculations was to estimate how much of the change in Lamin-

A levels could be attributed to change in nuclear morphology. Since Lamin-A forms a 

meshwork at the periphery of the nucleus (Shimi et al., 2015) (Gruenbaum and Medalia, 

2015), we normalized levels of the protein to the nuclear surface area (Figure 5.8 B). In 

order to account for the decreased DNA content (which could possibly lead to lower 

amount of transcripts), Lamin-A was normalized to volume as well (Figure 5.8 D). Both 

of these quantities scaled linearly with RA concentration, indicating that the change in 
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Lamin-A levels cannot be explained entirely by changing nuclear geometry, consistent 

with RA transcriptionally altering levels of the protein.  

 

Finally, scatter plots of Lamin-A, Lamin-B, and DNA were plotted to figure out the trend 

with increasing nuclear area (Figure 5.9). All three increase linearly with increasing 

nuclear area, but the slope changes with treatment condition. Similar linear trends were 

obtained after plotting scatter plots of Lamin-A and Lamin-B vs. DNA content (Figure 

5.10). Ratio of Lamin-A to B was found to be constant for a given treatment condition 

(Figure 5.10 C), but was found to vary with different concentrations of RA.   
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Figure 5.1. A) Structures of All trans retinoic acid (ATRA or RA), vitamin A (or retinol) 

B) General structure of retinoic acid receptors. Reference: Lawson and Berliner, 1999 C) 

Cartoon depicting effect of RA on cells. Once internalized, the worms release RA, which 

binds to Retinoic Acid Receptors (RARs). The activated RARs heterodimerize with 

RXRs, which in turn binds to Retinoic Acid Response Elements (RARE). This leads to 

the synthesis of transcription factors (primary and secondary), ultimately leading to 

proliferation arrest, differentiation and altered nuclear morphology D) RA binds to RAR-

RXR heterodimers that bind to RAREs. The timing of response allows the genes to be 

split into two categories: early genes and cooperative response genes. Reference: Lawson 

and Berliner, 1999 
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Figure 5.2. Comparison of free and encapsulated RA (bar graph IC50 inset). RA loaded 

micelles (red curve) are 200 times more potent than free RA (black curve). Empty 

micelles, in comparison, are inert. Empty green triangle represents untreated cell number 

after 3 days. 
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Figure 5.3. Kinetics of cell numbers treated with free and encapsulated RA. Free RA 

stops cell proliferation at 50 μM irrespective of treatment time. However, encapsulated 

RA is more successful at stopping cell growth at physiologically relevant concentrations 

(~1 μM). 
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Figure 5.4. RA arrests proliferation of cells and decreases average DNA content per cell. 

Average intensity decreases monotonically with increasing concentrations of RA. RA 

loaded onto worms (red point) was more effective than that administered in free (black 

points). 
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Figure 5.5. DNA histograms after treatment with free RA show a suppression of the 

replicating peak (labeled 4N). However, the suppression level did not correlate with RA 

concentrations. Worms with loaded RA suppressed the proliferating fraction even more 

(2N refers to normal complement of chromosomes, while 4N refers to duplicated 

chromosomes, acquired before cell division). 
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Figure 5.6. Estimation of fraction of EC4 cells differentiated by RA into a quiescent, 

non-proliferative state follows a hill curve. Most cells get differentiated around day 2 (2-4 

cell cycles) after incubation with the drug (bottom), consistent with necessitation of 

secondary transcription factors to enforce the decisions. Note that this is a simple 

estimation by back-calculation from cell number data.  
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Figure 5.7. RA induces differentiation of cells A) RA affects levels of Lamin-A (a 

marker of differentiation), with RA in nanocarriers being an order of magnitude more 

effective than free drug. While levels of Lamin-A initially decrease before increasing, 

Lamin-A normalized to DNA content increases with RA concentration. Comparison of 

images of treated and untreated nuclei clearly reveal changes in morphology. Untreated 

nuclei (left) are rounded with uniform Lamin-A distribution on the edges. When treated 

with 10 μM RA in free form, the nuclei become more elongated (right) with patchy 

Lamin-A distribution. Treatment with RA increases levels of Lamin-A (normalized to 

DNA), hinting at differentiation. B) Nuclear aspect ratio increases hyperbolically with 

RA concentrations. As with Lamin-A levels, encapsulated RA is an order of magnitude 

more effective than free RA. 
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Figure 5.8. A) and C) RA has a parabolic effect on nuclear surface area and volume. As 

with previous plots, encapsulated RA is an order of magnitude more effective than free 

RA. B) and D) Levels of Lamin-A normalized to either nuclear surface area or volume 

increase linearly with RA concentration, indicating that changes in protein level are not 

solely due to change in nuclear shape (morphology).  
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Figure 5.9. Scatter plots of Lamin-A, Lamin-B, and DNA vs. area. All three increase 

linearly with increasing nuclear area, but the slope changes with treatment condition 
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Figure 5.10. Scatter plots of Lamin-A, Lamin-B, and Lamin-A/B vs. DNA. Both increase 

linearly with DNA content, but the slope changes with treatment condition 

 



125 

 

CHAPTER 6. CHEMO-DIFFERENTIATIVE THERAPY SHRINKS 

TUMORS WHILE REDUCING RESISTANCE 

 

(This chapter is a part of the manuscript being prepared for submission: Nair, P. R., 

Alvey C., Jin X., and Discher, D. E. Filomicelles deliver a chemo-differentiative 

therapy to durably control carcinoma cell fate) 

 

Contributions: X. Jin established orthotopic liver models in vivo. C. Alvey performed in 

vivo imaging with IVIS Spectrum for data shown in Fig. 6.19 A. 

 

6.1. RA as a part of chemo-differentiative therapy 

6.1.1. PML-RAR fusion in acute promyelocytic leukemia (APL) 

APL is characterized by a block in differentiation at the promyelocytic stage, and is a 

subtype of AML. Translocation t(15; 17) is found commonly in APL cells (Nasr et al., 

2008) (Soignet et al., 1998). The involved genes are RARα (at chromosome 17) which 

fuses with PML (Promyelocytic leukemia protein) located on chromosome 15. PML is a 

tumor suppressor protein involved in the formation of nuclear structures like PML-

nuclear bodies. Similar to RARs, PML is involved in differentiation, specifically, 

hematopoietic differentiation. PML is also required for RA induction of target genes.  
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Due to its vital role, RA is already being used in clinics for treating acute promyelocytic 

leukemia (APL) (Tallman et al., 1997) (Weis et al., 1994). Combination of RA and 

arsenic trioxide have induced complete remission in majority (>90%) of APL cases (Jing 

et al., 2001) (Soignet et al., 1998). Treating the leukemic cells with superphysiological (1 

µM, 10 times the maximum serum concentration) caused them to differentiate into 

neutrophils, leading to complete remissions in 23 of 24 patients. Treatment with RA also 

restores PML localization in the nucleus, which is disrupted by the fusion protein. The 

RARα part of the fusion lacks the transactivation domain (regions A and B in Figure 5.2) 

at the N terminus. The remaining domains are intact, which permits it to bind to RA and 

RAREs and exert its effect. Conversely, the PML part is truncated at the C terminus, 

losing a part which is a phosphorylation target. The fusion protein, however, retains the 

region that binds to the co-repressors of RARα such as SMRT and NCoR. 

 

To summarize, retinoid signaling can induce differentiation, and blocking it can lead to a 

block in differentiation likely due to the repression of RA target genes. RA exerts its 

effect through RARs, which is diminished in fusion proteins, leading to incomplete 

differentiation and leukemia. 

 

6.1.2. Development of chemo-differentiative therapy (Paclitaxel and Retinoic Acid) 

Combination of RA with a conventional chemotherapeutic such as Cisplatin (Zhang et 

al., 2013) Paclitaxel (Hong et al., 2011) has been shown to be a promising option. 

However a detailed study of the underlying mechanisms as well as the optimal dosage 
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remains unclear, with the function of RA in regulating multiple pathways (Connolly et 

al., 2013) adding to the complexity of the challenge. As with previous chapter, delivery 

using filomicelles will be attempted in order to increase efficacy of treatment. 

 

Keeping this strategy in mind we decided to combine Paclitaxel with Retinoic Acid (RA), 

which is a derivative of vitamin A. Herein, we report a chemo-differentiation therapy that 

is an improvement over conventional chemotherapy, when drug resistance and relapse are 

considered (Figure 6.1). Filomicelles dually loaded with TAX and RA display higher 

potency in vitro and in vivo. Dual drug treatments led to the most cell death as well as 

highest cell size and DNA content in surviving cells (hallmark of TAX treatment). 

Additionally, Lamin-A (marker of differentiation) levels were highest with combination 

treatment, indicating probable synergy between the two drugs. Crucially, the fraction of 

resistant cells arising after treatment was massively reduced. This combination had 

significantly more impact on the reduction of key proliferation proteins, particularly Ki-

67. Despite the central role of RA in liver function, we were able to extend the efficacy of 

the combination to cell lines derived from lung, bone and muscle. Finally, the treatment 

was translated in vivo, shrinking subcutaneous xenografts as well as orthotopic liver 

tumor models with effects being durable. The results demonstrate two major avenues of 

chemotherapy improvement: drug combinations and the use of nanocarrier systems to 

increase potency and efficacy of drug delivery.  
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6.2. Materials and Methods 

6.2.1. Materials 

All chemical reagents were purchased from Sigma Aldrich Corp., St. Louis, Missouri, 

unless stated otherwise. Ham's F-12 growth media, FBS, penicillin-streptomycin, non-

essential amino acids, MTT assay and Hoechst 33342 were purchased from Invitrogen. 

High glucose DMEM growth media and Dispase were purchased from Corning.  Lamin-

A, Cyclin D1 and Ki67 antibodies were purchased from Cell Signaling.  

 

6.2.2. Synthesis of PEG-PCL and characterization of aggregates 

Polyethyleneglycol (PEG) -Polycaprolactone (PCL) di-block copolymer was prepared as 

described previously (Nair et. al., 2016). Briefly, the diblock copolymer was prepared by 

the ring-opening polymerization of ε- caprolactone using PEG2000 as macro-initiator at 

140 
o
C in the presence of stannous octoate as catalyst. The polymer was characterized by 

1
H NMR spectroscopy and Gel Permeation Chromatography (GPC). Aggregates were 

formed in water by solvent evaporation as described in Nair et. al., 2016. Filomicelles 

were incubated with PKH 26 dye and imaged at 567 nm using aggregates were mixed 

with PKH 26 hydrophobic red dye with emission spectra at a wavelength of 567 nm 

using an Olympus IX71 microscope. Paclitaxel and RA were loaded and the loading was 

measured as described previously (Nair et. al., 2016).  
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6.2.3. Cell culture 

A549 lung cancer, Huh7 liver cancer, U2OS bone sarcoma, and RH30 human 

rhabdomyosarcoma cell lines were purchased from ATCC and grown as per as per 

standard ATCC cell culture protocol (ATCC Animal Cell Culture Guide 2014). EC4 

mouse liver cancer cell line was cultured with DMEM High glucose growth media (4.5 

g/L glucose with L-glutamine and sodium pyruvate) supplemented with 10% FBS, 1% 

penicillin-streptomycin and 1% non-essential amino acids at 37 
o
C and 5% CO2. When 

the flasks were confluent, the cells were passaged by dissociation with 0.05 % Trypsin-

EDTA (Invitrogen) and re-plated with fresh media at a density of 10%. 

 

6.2.4. In vitro cell viability assay 

Procedure for in vitro cytotoxicity assay was adapted from Cai et al., 2007. Briefly, 5000 

cells were seeded in 96-well plates and treated with (different drug concentrations) the 

next day. Post three day incubation, the media was aspirated cells were incubated with 

media and MTT solution (5 mg/mL in PBS) for 3 hours. The MTT formazan crystals 

were dissolved in DMSO, and absorbance was measured at 550 nm.  Additional cell 

death quantification was done by counting the number of floating cells staining positive 

for staining positive for Trypan Blue stain.  

 

6.2.5. Rescue experiments to determine RA-TAX durability 

50000 cells were plated in 6-well plates and allowed 24 hours for attachment. After 1 

day, the media was exchanged with fresh one, and cells were incubated with free RA-
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TAX combination (1 µM and 10 nM) or PBS (negative control). Free RA (1 µM) and 

free TAX (10 nM) were the positive controls. After the 3-day incubation, the drug 

containing media was aspirated, wells were washed with PBS and surviving cells were 

incubated with fresh media. After this, the old media was replaced with fresh media twice 

a week until the cells were analyzed by flow cytometry. At fixed time intervals, 3 wells 

of each control as well as treatment group were detached from the plate by trypsinization, 

stained for DNA (with Hoechst 33342 solution (0.01% of 10mg/mL solution in water) for 

5 minutes) and run through a flow cytometer to record cell number. 

 

6.2.6. In vitro 'relapse' studies 

As with cell viability studies, 5000 cells were seeded in each well of 96-well plates, with 

each well representative of a tumor. As was done with the abovementioned durability 

studies, cells were treated with different formulations (free RA-TAX, free TAX, TAX 

loaded worms or RA-TAX loaded worms) for 3 days, after which media was washed out 

and cells were incubated with fresh media. The cell numbers were monitored in each 

well, as were the number of wells with a resistant colony. For every time point, the 

number of wells with a resistant colony were recorded and a plot of percentage of wells 

relapsed vs. time was plotted.  

 

6.2.7. Cell fixing and immunofluorescence 

Fixing and immunofluorescence was carried out similar to that in previous chapter. Cells 

in 6-well plates were treated with drugs as indicated above. After the desired time-point, 
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cells were fixed and permeabilized, followed by blocking with 5% BSA. The cells were 

incubated overnight with the primary antibody, and then secondary antibody. The cells 

were then stained with Hoechst 33342 solution and fixed again. The stained cells were 

visualized under an Olympus IX71 microscope with a 300W Xenon lamp using 40x 

objective (0.60 NA). Images were analyzed by ImageJ software.  

 

6.2.8. Intracellular protein staining and flow cytometry analysis 

The cells were detached with 0.05% Trypsin, spun down and washed with PBS. They 

were fixed with 1.6% paraformaldehyde for 10 minutes and permeabilized with 0.1% 

saponin for 10 min. The cells were then spun down, resuspended with the conjugated 

antibodies and incubated for 1.5 hours and stained for DNA with Hoechst 33342 solution 

(0.01% of 10mg/mL solution in water) for 5 minutes. After this incubation, cells spun 

down and suspended in flow buffer (5% FBS in PBS). Cells were run through a flow 

cytometer (BD LSR II) and data was analyzed by WEASEL v3.2.1 software.  

 

6.2.9. Establishment of Xenograft Model for Liver Metastasis of Tumor 

All animal experiments were approved by Institutional Animal Care and Use Committee 

of the University of Pennsylvania and in accordance with NIH publication No. 86-23. 

Eight to ten-week-old NOD-SCID-IL-2Rgc null mice (NSG) were purchased from the 

Stem Cell and Xenograft Core of University of Pennsylvania (Philadelphia, PA) and 

housed in a specific-pathogen-free facility. Mice were anesthetized using 4% isoflurane 

in 3 L/min O2, after which isoflurane percentage was maintained 2%. To examine the 
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therapy for liver metastasis of tumor, 10
6
 of A549 human lung cancer cells labeled with 

tdTomato were injected into the murine liver. Briefly, the anesthetized mouse was placed 

supine, maintaining inhalational isoflurane anesthesia (2% (v/v) in 2 L/min O2) with a 

nose cone. For analgesia, buprenorphine SR (1 mg/kg, ZooPharm, Fort Collins, CO) was 

subcutaneously injected on the animal's flank. The skin was shaved and the skin on the 

ventral abdomen and partial thorax was sterilized with chlorhexidine swab (Professional 

Disposables International, Inc. Orangeburg, NY. Cat. # B10800). Using sterile sharp 

scissors (Roboz Surgical Instrument Co., Inc. Gaithersburg, MD. cat. # RS-5916), a 

15mm of mid-line abdominal incision was made and the linea alba was opened to enter 

the peritoneal cavity. 25 µl of tumor cells suspension (10
6
 /25 µl of 25% Matrigel in 

PBS) was loaded into an insulin syringe with 30 G 1/2 inch needle (MHC Medical 

Products, LLC, Fairfield, Ohio. cat. # 08496-3035-11). The left lateral lobe of liver was 

then exposed using forceps (Roboz Surgical Instrument Co., Inc. Gaithersburg, MD. cat. 

# RS-8254). The liver was stabilized with a cotton-tip applicator (Fischer Scientific, cat. 

# 23-400-125), and the syringe was positioned inserting the needle into the liver and 

advancing the tip along the subserosal plane for a few millimeters. The tumor cell 

suspension in the syringe was gently discharged and the needle was removed from the 

liver. The puncture site was gently pressed with a cotton-tipped applicator to prevent 

leakage of the tumor cell suspension and to achieve complete hemostasis. Finally, the 

incision was closed with an absorbable 4-0 sutures (Ethicon Inc. Somerville, NJ. cat. # 

VR494).  
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6.2.10. In vivo experiments 

In vivo experiments were performed on NOD-SCID mice with subcutaneous tumor 

xenografts or a xenograft model for liver metastasis of tumor (as described above). RA-

Paclitaxel loaded filomicelles were administered using tail vein injection (250 µl per 

injection). The treatment consisted of four, six, or eight injections each, administered in 

regular intervals over 2 to 3 weeks. Tumor size was measured at regular intervals using 

calipers and Perkin Elmer IVIS Spectrum located at Penn Small Animal Imaging Facility 

(SAIF). The tumor area was normalized relative to the size at the onset of the treatment. 

Caliper measurements (for subcutaneous tumors) as well as mouse body weight were 

recorded twice a week. 

 

6.2.11. Tumor disaggregation and anti-human staining 

After the mice were euthanized, the tumors were excised and diced into pieces no larger 

than 1 mm
3
. These chunks were then incubated with digestion buffer (containing 9 mg 

collagenase, 3 ml dispase and 200 µl of 1 mg/ml DNAase solution) for 20 minutes at 37 

o
C. The digested mix was passed through a 70 µm filter and the filtrate was spun down to 

obtain a cell pellet. Any RBCs present were lysed with RBS lysis buffer (Corning) and 

Fc-blocked with CD32/CD16 antibody (Cell Signaling) for 10 minutes to prevent non-

specific staining. The cells were then incubated with primary and secondary antibodies 

for 30 minutes each. The cells were then washed with 5% FBS, stained with Hoechst (10 

min) and run through a flow cytometer (BD LSR II). 
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6.2.12. Curve fitting and statistical analyses 

All curve fitting and data analysis was performed with OriginPro 8 software. Unless 

indicated otherwise, mean and standard deviation are calculated for a minimum of n = 3 

independent samples. 

 

6.3. Results 

6.3.1. Combination of RA with chemotherapeutics 

Three chemotherapeutics (Paclitaxel, Oxaliplatin, and 5-Fluorouracil) were combined 

with RA and the cell viabilities were studied on EC4 cell line to identify the best 

candidate to form a combination with RA (Figure 6.2 A, B and C). IC50 values were 

calculated from the cell viability curves (Figure 6.2 D). Paclitaxel exhibited the most 

improvement upon the addition of RA (more than a 2.5 fold decrease from free TAX), 

while the IC50 of Oxaliplatin was reduced 1.5 fold. Addition of RA had minimal effect 

on the potency of 5-fluorouracil. To evaluate a sample combination chemotherapy, we 

investigated the combination of Paclitaxel (TAX) and 5-Fluorouracil (5FU) on A549 

cells (Figure 6.3 A). Combination of the two drugs were not as potent as TAX (black 

curve), as indicated by a rightward shift. They were however more effective than 5FU 

(dashed red curve). Further, the potency of the combination was dictated by TAX 

content, i.e., mixtures with higher amount of TAX were more successful than those 

having higher 5FU. All this pointed to the lack of synergy between the two drugs. 

Quantification of IC50 values (plotted in bar graph representation in Figure 6.3 B) 
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underlined the same message. All plots in Figures 6.2 and 6.3 were generated with free 

drug data, and the primary purpose was to evaluate synergies between drugs. 

 

6.3.2. Combination of RA with Paclitaxel 

Experiment similar to that conducted in Figure 6.3 A was performed to evaluate the 

performance of TAX-RA combination (Figure 6.4 A), and to find the optimal drug ratio. 

Three molar ratios were tested: 3:100, 1:100, and 1:300 (TAX:RA) on A549 cells, and all 

combinations were found to be more potent than either single drug. 1:100 was found to 

have the lowest IC50 (3 nM, quantified in Figure 6.4 B), ~30 fold lower than free TAX 

(95 nM). The other two combinations had comparable IC50s (15 and 18 nM), despite an 

order of magnitude difference in TAX content, which might hint at synergy between RA 

and TAX. RA was comparably cytotoxically inert, with an IC50 of 72 µM. Hence, a 

molar ratio of 1:100 between TAX and RA was chosen and adhered to in future in vitro 

experiments. To further confirm the efficacy of the combination and to assess its 

performance when loaded onto worms, EC4 cells were treated with RA, TAX or RA-

TAX encapsulated in worms. Drug loaded worms led to a lower IC50 (and hence, more 

potency) than free drugs (Figure 6.5 A). RA-TAX worms were synthesized by loading 

RA and TAX separately into worms, and then mixing them to obtain desired 

concentrations. This method was chosen to make it easier to control final drug 

concentration, and the combination was three times more potent than free form, as were 

TAX worms when compared to free TAX. RA benefitted the most from loading into 

worms, as observed earlier. A bar graph depicting the IC50s is shown in Figure 6.5 B, 

with RA-TAX exhibiting the lowest IC50 among all tested formulations. Empty worms 
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were inert at desired physiological concentrations, and cells incubated with empty worms 

did not show any abnormal nuclear morphology when stained for nuclear lamin-A 

(Figure 6.5 A, top). Cells treated with RA were more elongated (Figure 5.7 A), and cells 

treated with TAX or RA-TAX displayed massive blebbed nuclei (a hallmark of TAX 

treatments that will be revisited later). To further confirm the potency of this 

combination, cell survival and death were directly measured by flow cytometry and 

Trypan blue staining respectively (Figure 6.6 A and B). Cell numbers were similar for 

untreated and empty worms, while they were much lower for drug treatments, especially 

for TAX and RA-TAX treatments. As expected, cell density was lowest and cell death 

was highest for RA-TAX worms treatment. To gain further insight into the kinetics of the 

treatment, we studied cell viabilities after days 1, 2 and 3 following treatment with free 

RA-TAX (Figure 6.7 A). While the curve is largely flat for day 1 with free RA-TAX, a 

dip in cell numbers is observed after day 2. The response curve for day 3 exhibits a bi-

phasic behavior. Similar kinetics study with RA-TAX loaded worms (Figure 6.7 B) led to 

similar curves that increased in steepness with passing time. Finally, the difference in 

performance between separately loading RA and TAX (as was done previously) and 

loading both drugs together (co-loading) was assessed (Figure 6.8 A and B). While there 

is no difference between the curves at very low or high concentrations, co-loading worms 

(perhaps unsurprisingly) is more effective at the desired intermediate concentrations. 

Quantification of IC50 revealed a four-fold decrease in co-loaded worms from separate 

loading. Quantification of integration efficiency revealed no loss for RA, while loading 

efficiencies were higher for TAX with co-loaded worms than separately loaded (Figures 

6.8 C and D). Although separate loading allows the precise control of final drug 
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concentration, the absence of any loss in integration efficiency made co-loaded worms 

the system of choice for all following experiments.     

 

6.3.3. Durability of RA-TAX treatment and reduction in vitro 'relapse' studies 

Even though the combination leads to a more potent treatment, as mentioned earlier, the 

aim of this study was to seek a more durable cure. This 'durability' was assessed by a 

simple rescue experiment (Figure 6.9), where cells were treated with drugs and incubated 

with fresh media post-treatment. The cells treated with RA consistently increase in 

number (red curve), and the difference in slopes indicate that a fraction of the cells 

exposed to RA have been differentiated and have lower proliferation. The slope decreases 

sharply from day 1 to day 2, consistent with the differentiation data in Figure 5.6. In 

accord, there is little change in the proliferation rate past day 2. TAX treated cells decline 

in number initially (black curve), but cell death plateaus after a week. Inset figure shows 

a typical frame at this time point with TAX affected cells among normal-looking 

'resistant' cells. After more time, proliferating cell numbers overtake dying ones, leading 

to cell numbers rising. RA-TAX treated cells (green), on the other hand, consistently 

decrease in number, indicating a more durable treatment and all cells die-off around day 

30. A larger scale quantification of in vitro 'relapse' (Figure 6.10), showed that most cells 

treated with free TAX relapse (92%), consistent with the observation of resistance in 

Figure 6.9. This rate is much lower for RA-TAX treated cells (15%), 22 days after 

treatment, indicating that in around 85% of wells treated with free RA-TAX, all cells die-

off, indicating a much more durable treatment than single drug like TAX. Loading TAX 

onto micelles (Figure 6.10, right) might decrease IC50, but only manage to slightly delay 
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the relapse by a couple of days. 89% of TAX treated wells still experience relapse, 

highlighting the limitation of a single drug. The efficacy of RA-TAX was greatly 

improved via loading onto micelles, with no relapses in cells observed after 30 days. 

 

6.3.4. Potential Synergy of RA with Paclitaxel 

To comprehend the influence of one drug on the other, we visited the hallmark of TAX 

treatment i.e. increased cell size and DNA accumulation (measured by forward scatter 

and Hoechst intensity respectively). As expected, both TAX (1.5 times the untreated size) 

and RA-TAX (2.7 times the untreated size) showed increased cell size (Figures 6.11 A 

and 6.12 A). However, cell sizes for TAX treated cells had returned back to normal by 

day 9 (1.06), while it was 3.1 for RA-TAX treated cells after 29 days. Similar to cell size, 

DNA content (Figure 6.11 B) was also increased for TAX (2.8 times relative to 

untreated) and RA-TAX (3.8). Similar to cell size, DNA content was back to normal after 

day 9 (1.09), while it was still high for RA-TAX treated cells after day 13 (5.8). By day 

29, it had declined to 1.2, which combined with the increased cell size suggested that 

DNA synthesis was hindered after treatment. DNA content decreases for RA due to lower 

number of proliferating cells (0.7), but similar to TAX, returned to normal (1.08) within 9 

days. Normalization of DNA to area (Figure 6.12 B) showed that cells treated with TAX 

(single drug or as a part of the combination) had lowest values, suggesting that DNA 

synthesis might be affected after treatment. Histogram of DNA content (Figure 6.12 C) 

further shed light on the DNA content in surviving cells and reaffirmed that drug loaded 

worms induced the most polyploidy.  
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As the initial role of RA was to increase levels of differentiation in surviving cells, we 

measured levels of Lamin-A (Figure 6.13). Levels of the protein (normalized to DNA 

content) increased with drug treatments from RA only to RA-TAX, as well as from free 

drug to drug-loaded worms. Highest values were obtained with RA-TAX worms (3.6, 

normalized to untreated), which was an improvement over free RA-TAX (2.8). Both 

values were higher than those for free RA (1.27) and RA loaded worms (3.3). Flow 

cytometry scatter plots of Lamin-A vs. DNA reveal a shift in population of cells staining 

high for both proteins and provide a more detailed insight onto the different populations 

of cells existing after treatment (Figure 6.14 A). 

 

6.3.5. Effect of RA-TAX on key proliferation proteins 

While the combination treatment greatly reduces the proliferation of surviving cells 

(Figures 6.9 and 6.10), the basis for this remains unclear and cannot be fully attributed to 

differentiation and mitosis block. Measurement of levels of Ki-67 and Cyclin D1 (Figure 

6.15 A) provided more insight into this. Measurement of absolute protein levels revealed 

a decrease in levels of both proteins (Ki-67:1.1 and Cyclin D1:1.6, normalized to 

untreated) compared to TAX treated cells (Ki-67:1.7 and Cyclin D1:1.9). The levels were 

presumably higher than untreated due to the greatly increased cell size (Figure 6.11 A), 

with affected nuclei up to 4 times larger in size than that for untreated cells. Cells treated 

with RA had the lowest Cyclin D1 levels (0.9). The effect of dual drug treatment on Ki-

67 levels is further highlighted in Figure 6.15 B. Images (40x magnification) of cells 

treated with TAX alone (top) and with RA-TAX combination (bottom) reveal larger 

nucleus (as expected). However, cells treated with TAX alone still stain positive for Ki-
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67 (top right), while those treated with RA-TAX are null to low for the same (bottom 

right). These effects are further improved by using worms for delivery (Figure 6.16 A), 

with Ki-67 levels 62% of that for free drug treatment. Cyclin D1 levels show a modest 

decrease too (6%) compared to free drug. A histogram of Ki67 and Cyclin D1 levels after 

treatment (Figure 6.16 B) reveals a much larger fraction of cells staining null for these 

proteins. This progressively increases from no treatment to free drug to micellar drug 

delivery. Flow scatter-plots of Ki-67 v. DNA and Cyclin D1 vs. DNA show a shift in 

populations towards cells with higher DNA and lower proliferation proteins (Figures 6. 

14 B and C).  

 

6.3.6. Resistance to RA-TAX treatment and expansion of the treatment across 

different cell lines 

During the course of the study, cell colonies acquiring resistance to RA-TAX worms 

were isolated and expanded to better study the characteristics of resistant cells. The 

doubling times were measured, and all resistant cells were found to have higher doubling 

time (and hence slower rate of replication) than EC4 cells (Figure 6.17 A). The resistance 

was evident in the dose response curves (Figure 6.17 B), with more resistant cells 

displaying a rightward shift and higher IC50 than normal EC4 cells.  This data along with 

cell doubling times were used to calculate the degree of resistance.  The resulting scatter 

plot of proliferation rate against the degree of resistance displayed an anti-correlative 

trend (Figure 6.17 C). The colony with the slowest replication rate (denoted as RTMR2), 

had the highest fraction of resistant cells. As expected, untreated EC4 cells had the fastest 
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replication and lowest resistant fraction. All other colonies lied between these two 

extremes. 

 

The efficacy of RA-TAX on c-myc driven EC4 cells might be representative of its effect 

on an aggressive tumor. However, the central role of RA in liver tumorigenesis would 

imply the applicability of this treatment to other hepatocellular carcinoma cell lines. With 

Huh7 cell line, the combination was found to be more effective than either of the free 

drug alone (Figure 6.18 A, RA-TAX IC50: 3 nM, TAX IC50: 13nM). Another point to 

note is that this was despite the lack of responsiveness to RA (IC50: 5µM) compared to 

EC4 cells (IC50: ~10 nM). This efficacy despite varying response to RA raises the 

question of applicability of this combination outside of liver cancer, and tests on A549, 

U2OS and RH30 cell lines do confirm this (Figures 6.18 B, C, and D). RA-TAX worms 

exhibit a much lower IC50 (1 nM), than TAX loaded worms (25 nM) in A549 cells, and 

this theme was repeated with U2OS (RA-TAX IC50: 3 nM, TAX IC50: 8 nM) and RH30 

cells (RA-TAX IC50: 1 nM, TAX IC50: 4 nM). Dose responses of all cell lines to free 

drugs also reveal higher efficacy of free RA-TAX over single drugs (Figure 6.19).    

 

6.3.7. RA-TAX potency can be translate in vivo to shrink subcutaneous xenografts 

The efficacy of dual drug delivery in vitro was replicated with in vivo models. As a 

preliminary experiment, free RA-TAX injections (TAX: 1.4 mg/kg, RA: 0.002 mg/kg) 

were administered via tail vein injections to NOD-SCID mice with subcutaneous A549 

xenografts (Figure 6.20 A). Four injections over the course of 11 days led to a modest 
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(15%) shrinkage in tumor size, while the growth of the tumor was arrested for ~25 days. 

RA-TAX worms led to a more durable shrinkage in a similar model (Figure 6.20 B). Six 

injections of RA-TAX loaded worms (administered at TAX: 1.5 mg/kg, RA: 0.1 mg/kg) 

led to a 25% shrinkage of tumors, and most importantly, the tumors did not resume an 

upward trend nearly 45 days from the start of the treatment. Additionally, there was no 

decrease in mice body weight with either of the above treatment (Figures 6.27 A and B). 

 

Efficacy of RA-TAX worms could be extended to in vivo xenografts with other tumor 

lines. Injections in NOD-SCID mice with HepG2 subcutaneous tumors suppressed the 

growth of tumors (Figure 6.21 A). In mice treated with RA-TAX worms, the tumors grew 

by 30%, while untreated tumors more than tripled in size during the same time frame (3.2 

times from the start of treatment). Unlike A549 xenografts, free RA-TAX produced 

minimal retardation in tumor growth, with final size 2.5 times from the onset of 

treatment. The dosage of RA and TAX was similar to that from previous experiments. 

The rapid growth of untreated tumors (compared to A549 xenografts), prompted the 

isolation of tumor from mice, disaggregation and staining of tumor cells with anti-human 

antibody to stain the HepG2 cells (and distinguish them from mouse cells). The non-

homogenous composition of the tumor was evident upon plotting a histogram of anti-

human stain and comparing it with that for pure HepG2 cells (Figure 6.21 B). Only 0.2% 

of the tumor cells stained positive for HepG2 (Figure 6.21 C) for untreated, while 0.14% 

cells stained from RA-TAX worms treated tumor. While the effect of free RA-TAX 

treatment was not reflected in tumor size, only 0.1% cells from those tumors were HepG2 

cells. To better comprehend the question of optimal dosage in vivo, mice with 
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subcutaneous A549 xenografts were administered with altered drug dosage. The TAX 

dosage was increased (2.2 mg/kg) from previous experiments, while the dosage of RA 

was halved (0.05 mg/kg) (Figure 6.22 A). As seen previously, RA-TAX worms 

suppressed the growth of tumors, with effects lasting ~25 days after the last injection. 

However, the lowered RA dosage was evident in that the tumors failed to shrink. A 

second round of treatment with triple the RA dosage (0.15 mg/kg) was much more 

successful in shrinking tumors. Mice previously treated with RA-TAX worms as well as 

untreated were injected with RA-TAX worms, while those injected with free drug in the 

first round remained untreated. Injected mice exhibited tumor shrinkage, while (now) 

untreated mice experienced an increase in tumor burden. The higher dosage led to a drop 

in body weight (indicating toxicity), however these mice bore orthotopic liver tumors 

(next section), which hinder the normal functioning of liver and might lead to weight 

loss, especially ~80 days post tumor establishment (Figure 6.27 C). It should also be 

noted that mice who were treated with RA-TAX worms previously tolerated the second 

round of injections better than mice that were previously untreated, calculated by rate of 

loss in body weight. 

 

Finally, mice were injected with a higher dose of RA (0.35 mg/kg) and TAX (2 mg/kg) 

during an extended round of injections (8) in attempt to figure out the maximum drug 

dosage that could be withstood (Figure 6.22 B). RA-TAX worms shrunk subcutaneous 

A549 tumors by ~50%, with tumors remaining shrunk 20 days after the completion of 

treatment. Single drug controls arrest the growth of tumors 15-20 days after treatment, 

but fail to produce shrinkage in size. During the same time frame, untreated tumors more 
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than double in size. Despite bearing liver tumors as well, the mice treated with RA-TAX 

show little loss in body weight (Figure 6.27 D) and were alive the longest. All other 

groups exhibited weight loss. 

 

6.3.8. RA-TAX efficacy can be extended to shrink orthotopic liver tumors in vivo 

In order to test the delivery potential of worms to orthotopic tumors, mice were injected 

with HepG2 cells in the liver to form an orthotopic tumor mimicking a 'metastasis' model. 

Liver tumors excised from mice treated with RA-TAX worms were much smaller, and 

showed ~60% shrinkage compared to untreated (Figure 6.23 A and quantified in 6.23 B). 

Disaggregation of an adjacent 'normal' liver lobe was then performed to comprehend the 

effect of RA-TAX worms on metastasis of cells from established liver tumor to adjacent 

lobes. A much larger population of cells in normal liver lobes stained positive for anti-

human stain (2.18%) compared to RA-TAX worms (0.87%) treated, and this is evident in 

the histogram of anti-human stain intensities, which reveals a small peak with untreated 

liver lobe (inside red box) (Figures 6.24 A and 6.24 B). To further elucidate the efficacy 

of RA-TAX worms on liver tumors, mice bearing orthotopic A549 tumors (also bearing 

A549 subcutaneous tumors that were shrunk in Figure 6.22 B) were injected with either 

the dual drug therapy (RA-TAX worms, green curve) or single drug controls (RA worms, 

red curve, or TAX worms, blue curve). As with previous experiments, untreated mice 

were the negative control (black curve). As observed previously, dual drug treatment was 

the most efficient, initially shrinking liver tumors but failing to immediately arrest the re-

growth. The tumors did not exhibit any re-growth once the treatment was finished, and 

remained so for ~20 days. The final tumor size was similar to that during the start of the 
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treatment. Tumors grew with single drug controls and untreated mice. Quantification of 

total (subcutaneous plus liver) tumor burden in mice recapitulates and reaffirms the 

previous observations (Figure 6.25 B). Dual drug treatments produced the only shrinkage, 

with TAX loaded worms being the next best treatment but producing only a minor 

improvement over untreated tumors (large data point indicates average for data points 

with horizontal trend line). This led to a survival benefit as depicted by the Kaplan-Meier 

curve in Figure 6.25 C. RA worms were ineffective in arresting tumor growth, consistent 

with previous results. Quantification of the above data (Figure 6.26) indicated that RA-

TAX worms shrunk total tumor load by 18% compared to start of treatment and was 45% 

the size of final untreated tumor, while TAX treated tumors grew by 52%. Final tumor 

sizes for untreated and TAX treated tumors were similar, with latter 84% the size of the 

former, and only the combination succeeded in shrinking tumors compared to the start of 

the treatment.  

 

6.4. Discussion 

The emergence of drug resistance in clinic and the subsequent relapse of tumors often 

lead to death. A simple solution in clinic has been to use combination chemotherapy, 

either with two different drugs (often acing though perpendicular pathways in the cell) or 

combining a drug with radiotherapy. As explained above, RA is an essential molecule 

derived from vitamin A, and is an attractive option as a part of a combination. As seen in 

figures 6.2 A to C, addition of RA decreases (even if it is minimal for 5-FU) the IC50, 

and this may be attributed to RA working through an independent pathway from the 

chemotherapeutics. Oxaliplatin and 5-FU damage DNA and induce apoptosis, while TAX 
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stabilizes microtubules and induces aneuploidy by blocking mitosis at the metaphase-

anaphase transition, leading to bigger and blebbed nuclei (Figure 6.5 A inset). This 

eventually causes the affected cells to apoptose. RA, in contrast does not induce cell 

death at physiological concentrations (~ 1µM), simply arrests the proliferation and drives 

the differentiation of cells. This can be inferred from Figure 6.6, where RA is a negative 

control and has low density as well as low cell dea-th.  This manifests itself in similar 

trends when cell viability is plotted against drug concentration. Figures 6.2 and 6.3 were 

performed with free drug, and its sole purpose was to select the best candidate. It 

highlights an advantage of chemo-differentiative therapy over combination chemotherapy 

that was examined in Figure 6.3. Despite TAX and 5FU being used in clinic for advanced 

gastric cancer (Kim et al., 1999)(Murad et al., 1999) and breast cancer (Buzdar et al., 

2007),they failed to synergize, consistent with previous reports (Kano et al., 

1996)(Johnson et al., 1997). While the combination of Paclitaxel and RA has received 

limited exploration in colon (Hong et al., 2011), brain (Karmakar et al., 2008) and breast 

cancers (Pratt et al., 2006), it has not (to the best of our knowledge) been studied with 

liver cancer, despite RA being synthesized and stored in the liver.  

 

But as mentioned above, RA complexes with albumin and binds to it tightly at 

concentrations above 0.5% albumin (Avis, 1995). Additionally, TAX is susceptible to 

hydrolysis, reducing its activity (Nikolic et. al., 2011) (Amini-Fazl et. al., 2014), and 

loading TAX into nanocarriers may protect it (Nair et. al., 2016). This is confirmed by 

the decrease in IC50 upon loading drugs, especially for RA. Similar improvements in 

IC50 for TAX and RA-TAX hinted that majority of the loss in cell numbers was dictated 



147 

 

by the action of TAX. The inertness of empty worms attributed the potency of drug-

loaded worms solely to the drugs (and not the carriers themselves) and further outlined 

the inertness of polymeric nanoparticles. The lipids forming the cell membrane and the 

amphiphilic diblock copolymers that self-assemble to form the worms are structurally 

similar. This may allow the worms to destabilize the cell membrane, leading to the 

toxicity and cell death observed with high concentrations of empty worms. This claim is 

backed up by higher cell density and lowest cell death in figure 6.6. Higher cell density 

on plates with RA, free or worm loaded, supports the claim of different mechanism and 

induction of minimal cell death. It should be noted that even though RA and TAX lead to 

similar trends, they work by completely different ways different mechanisms. TAX 

blocks cell division at metaphase-anaphase stage, leading to cell death, while RA arrests 

proliferation and is Lamin-A regulator (Swift et al., 2013).  

 

Cell viability kinetics (Figure 6.7) is consistent with the hypothesis that TAX might first 

kill susceptible cells, and suggests that the anti-proliferative effect of RA may not 

interfere with the anti-mitotic action of TAX. The timeframe for action (~2 days) agrees 

with that for RA to take effect (RA exerts its effects through secondary response proteins 

(Wu et al., 2000) (Lawson and Berliner 1999)). Higher integration efficiency of TAX in 

the presence of RA (Figure 6.8 C) may suggest that the presence of RA might help load 

TAX into the core of the worms, possibly by increasing the hydrophobicity of the core. 

However, there was no benefit in the reverse case, and loading of RA was similar with or 

without TAX. However, concentration of RA was 100 fold higher than that of TAX, 

which might obscure any cooperativeness. The higher efficiency of co-loaded worms 
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(Figure 6.8 A and B) suggests that the simultaneous presence of both RA and TAX is 

required. Further supporting this hypothesis is the inadequacy of separately-loaded RA-

TAX worms. While they do produce a better performance in dose response tests in vitro, 

their performance is no better than that of TAX alone during the rescue/relapse studies 

(data not shown). When separately-loaded RA-TAX worms are injected in vivo, their 

performance was found to be worse than free RA-TAX. While free RA-TAX produced 

15% shrinkage in Figure 6.20 A, separately-loaded RA-TAX worms produced ~7% 

shrinkage (data not shown). As has been proven subsequently, co-loading permits the 

successful translation of the potency of RA-TAX to worm loaded systems in vitro and in 

vivo, suggesting that both RA and TAX need to be present together while being taken up 

by the cell.  

 

The plateauing and subsequent re-growth of almost all wells containing TAX treated cells 

explains the acquisition of resistance and subsequent re-growth observed in tumors and is 

observed frequently in vivo as well as in clinic (Hattinger et al., 2016)(Alkema et al., 

2016). The above experiment was with free drugs, and the benefits of loading on to 

micelles could be evident as either lower relapse rates or delay in relapse among treated 

cells or a combination of the two. While loading the drug onto nanocarriers decreases the 

IC50, the relapse rate was not significantly different from free drug treatment, indicating 

a contradiction between in vitro potency and long term prognosis. TAX-loaded worms 

may delay the onset of relapse by a couple of days in vitro compared to free TAX, but the 

final outcome does not change. It is also interesting to note that irrespective of being 

worm-loaded or free form, relapse rates peak around day 10 (20 cell cycles) and remains 
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mostly constant after 15 days (30 cell cycles) in vitro. This transient nature of single drug 

treatment is further highlighted by tracking the cell size and DNA content with time, 

which return to normal within a week after the drugs are washed off. The inability of RA-

TAX treated cells to continue synthesizing DNA may just be one of the mechanism that 

prevent the rise of resistant clones. Combined with highest levels of Lamin-A achieved 

after RA-TAX treatment (suggestive of differentiation of surviving cells), this indicates 

that either drug enhances the effect of other drug, and as seen with RA on TAX, makes 

the effects durable. This might suggest some sort of synergy between the two drugs and 

further supports the observations from Figures 6.2 C and D as well as 6.4.  

 

Another key point that is once again highlighted is the massive improvement offered by 

loading RA into worms that lead to a 2.6 times increase in protein levels. This further 

supports our hypothesis that loading RA into worms protects it from complexation with 

albumin, and increases its efficacy. The decrease in levels of Cyclin D1, but not Ki-67 

reiterates the claim that RA arrests cell proliferation (by arresting the cell cycle regulated 

by Cyclin D1), and might have minimal effect on protein synthesis by itself. The 

durability of RA-TAX combination, however, might be better explained by its inhibitory 

role on protein synthesis (via Ki67) rather than regulation of cell cycle (Cyclin D1). This 

is most striking in the images with cells stained for Ki-67 (seen in Fig. 6.15 B). However, 

the effect on Cyclin-D1 might be underestimated here, as EC4 cells constitutively express 

c-myc (main reason behind their rapid proliferation), that is known to constitutively 

activate cell cycle via Cyclin-D pathway (CDK4/6 and Cyclin D genes) (Obaya et al., 

2002) (Liao et al., 2007) (Qu et al., 2014). Greater effect of drug-loaded worms is 
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consistent with previous experiments, as well as with the hypothesis that lower levels of 

Ki-67 dictate the loss of proliferation in surviving cells. 

 

In the scenario of acquisition of resistance, the anti-correlative trend in Figure 6.17 C 

supports the observation that this drug resistance can be a burden to cell proliferation 

(Wilson et al., 1997) (Lee, 1993). It must be mentioned here, that the resistant colonies 

were expanded and given sufficient time to recover from the stress of exposure to drugs. 

The cells were isolated, grown with fresh media and passaged for about 200-250 cell 

cycles before any measurements were conducted, suggesting that the acquired resistance 

was not transient. This observation, coupled with the rapid proliferation rate of EC4 cells, 

suggests a situation where resistant cells that may arise, would have a distinct 

proliferative disadvantage and would eventually be outcompeted by normal cells that 

escape the effect of drug. Hence, even if resistant cells may arise after RA-TAX 

treatment, they will be outcompeted, resulting in a less resistant tumor. At this point, they 

may be treated again and the whole process will be repeated. Similar rationale has been 

used to develop competitive therapies such as 'evolutionary double bind therapy' 

(Cunningham et al., 2011) (Orlando et al., 2012) (Gatenby et al., 2009), and could one 

day be an integral part of chemotherapy. 

 

Extension of durability of RA-TAX treatments to in vivo models was done with 

subcutaneous xenografts in NOD-SCID mice. Both free RA-TAX as well as RA-TAX 

worms produced tumor shrinkage, and all treatments were durable, with tumor sizes 
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remaining almost constant ~20-25 days after treatment. TAX and RA dosages used were 

low in the first three experiments, with TAX doses an order of magnitude lower than the 

MTD (Christian et al., 2009), and then gradually ramped up in future ones. This 

precaution was borne out of the in vitro dose responses that indicated that RA-TAX 

combination was more potent than TAX, and one might stand to reason, should have 

lower MTD than it. This was reflected in the later experiments (Figure 6.27 C and D), 

where mice did not gain weight like they did previously (Figure 6.27 A and B). However, 

RA-TAX treated mice lost little weight unless they were old (~8 months). 

  

Finally, having built up the entire rationale on the vitality of RA to liver function, we 

tested RA-TAX worms on mice bearing orthotopic tumors. RA-TAX treated mice had 

their liver tumors shrunk, while TAX failed to do so, validating our reasoning. However, 

mice with orthotopic liver tumors exhibited a higher mortality rate than NSG mice with 

only subcutaneous tumors, which might presumably be due to compromised liver 

function, leading to shutdown of vital processes (El-Serag et al., 2008)(Shirabe et al., 

1999). But, as seen in Figure 6.18, the efficacy of the combination can be extended to 

cells derived from tissues outside the liver. This might suggest that the success of the 

combination might hinge on a function of RA that is common to all cells. RARs and 

RAREs regulate a number of processes in all tissues and one of these might be the target 

of this combination, one that ultimately impacts at least protein synthesis (as seen by 

lower Ki67 levels). Larger scale studies, transcriptomics and proteomics might help 

elucidate the same. The focus of this study however, has been to highlight two key 

improvements over conventional chemotherapy: i) the benefits of a chemo-differentiative 
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therapy over single drug treatments or combination of chemotherapeutics, and ii) the 

improvement offered by nano-carriers, that greatly increases efficiency by better delivery, 

increased loading and may shield the payload from any unnecessary interactions 

(degradation or complexation). While the concept of chemo-differentiation has been 

demonstrated in the case of APL (Jing et al., 2001) (Soignet et al., 1998), the advantages 

of nanocarriers are yet to be fully appreciated in a clinical. 
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Figure 6.1. Durability of combined RA-TAX treatment. Each drug has its own mode of 

action, but the effects are transient with single drug. Dual drug treatment is more 

irreversible and can reduce drug resistance. 
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Figure 6.2. Synergy between different drugs tested with free drug solutions. 

Combinations of RA with A) 5-Fluorouracil, B) Oxaliplatin, and C) Paclitaxel. While all 

combination treatments had a lower IC50 on EC4 cells than the involved 

chemotherapeutic, the change in IC50 was different for each combination. Empty symbol 

represents untreated control. D) Bar graph representation of the fold change in IC50 with 

RA-drug combination. Combination of 5-fluorouracil shows negligible change in IC50, 

and oxaliplatin-RA showed a 1.6 fold change in IC50, signifying some synergy. 

However, combination of RA and Paclitaxel had a 2.5 fold reduced IC50 than parent 

chemotherapeutic (Paclitaxel), signifying maximum synergy among the three 

combinations and the best candidates for further experiments. 
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Figure 6.3. A) The combination of Paclitaxel with 5-Fluorouracil depicts combination 

chemotherapy. Curves of drug combinations (tested on A549 cells) lie between that of the 

single drugs indicating lack of synergy. B) Bar graph depiction of the IC50 quantification 

of Paclitaxel-5-Fluorouracil combinations.   
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Figure 6.4. A) Combination of a Paclitaxel (black curve) with RA (red) for a chemo-

differentiative treatment is better than that of two chemotherapeutics. Curves of 

combinations lie beyond (left) of either single drugs when tested on A549 cells, hinting at 

synergy between TAX and RA. Combination at 1:100 molar ratio (green curve) between 

TAX and RA respectively was the most potent combination. B) Bar graph depiction of 

the IC50 quantifications of the free drug combinations tested in Figure 6.4 A 
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Figure 6.5. A) Testing of RA, TAX, and RA-TAX loaded worm micelles on EC4 mouse 

liver cancer cells. TAX (black) has a much lower IC50 than RA (red) as it induces 

apoptosis instead of arresting proliferation. However the combination of RA-TAX is 

more effective than either drug alone, with its IC50 less than half of that for TAX. Empty 

micelles (blue curve) were inert at the desired concentrations. Nuclei treated with 

Paclitaxel (TAX) exhibit massive blebbed nuclei due to incomplete division (bottom). 

Untreated nuclei (top) in contrast are smooth and rounded. B) Bar graph representation of 
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IC50 of different formulations. Micellar RA-TAX had the lowest IC50 among all tested 

formulations; almost 3 times lower than that of free drug. 
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Figure 6.6. Cell density and Cell death measurements done on well plates further 

highlight the potency of the system. RA-TAX treated cells had the lowest cell density on 

plate (A) and the highest cell death (B). As with previous experiments, worms were more 

effective than free drug. 
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Figure 6.7. Kinetic studies reveal an effect as early as a day, with peak death observed 

after two days. Complexation of RA with albumin, hydrolysis of TAX, and subsequent 

recovery may limit the efficacy of the drug in free form.  These limitations may be 

overcome to certain extent by loading them onto worms. 
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Figure 6.8. A and B) Delivery systems with two payloads can be co-loaded onto the 

same micelle or on separate micelles which are then mixed. At high concentrations, both 

are equally effective. However, at therapeutic concentrations (around IC50), co-loaded 

micelles are 4 times more potent than separately loaded worms (quantified in bar graph). 

At lower concentrations, separate loading is beneficial. Co-loading of drugs does not 

decrease encapsulation efficiency of either drug (compared to separate loading C) and D) 

Quantification of drug loading efficiency with change in added drug concentration 

reveals a decrease with increasing concentrations (as expected). Vitally, there is no loss 
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in integration efficiency between single and dual drug loading for either drug. Presence of 

RA may help increase the loading efficiency of TAX, although a reciprocal effect seems 

to be absent with RA loading. 
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Figure 6.9. Cells treated with RA consistently increase in number. This is consistent with 

RA not killing cells, just differentiating them, and the difference in slopes indicate that a 

fraction of the cells exposed to RA have been differentiated and have lower proliferation. 

TAX treated cells decline in number initially (similar to initial tumor shrinkage), but cell 

death plateaus after a week when proliferating cell numbers overtake dying ones. RA and 

TAX treated cells, on the other hand, consistently decrease in number, indicating a more 

durable treatment. Around 30 days after treatment, all cells die off. 
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Figure 6.10. Consistent with previous plot, most cells treated with TAX relapse (92%), 

the rate is much lower for RA-TAX treated cells (15%) 22 days post treatment, indicating 

that around 85% of cells (and their progeny) exposed to RA-TAX die off, indicating a 

much more durable treatment than single drug like TAX. Loading TAX onto micelles 

increase efficacy, but only manage to delay the relapse (89% of TAX treated wells 

experienced relapse), highlighting the limitation of a single drug. It also interesting to 

note that loading TAX onto micelles delays relapse compared to free TAX. The efficacy 

of RA-TAX was greatly improved via loading onto micelles, with no relapses in cells 

observed after 30 days. 
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Figure 6.11. Quantification of DNA content and cell size after drug treatment. DNA 

content increases for TAX and RA-TAX due to incomplete cell division; it decreases for 

RA due to lower number of proliferating cells (and hence lower DNA replication before 

division). DNA content for cells treated with single drugs return to normal after about 6 

days (about 3 days after treatment), indicating the transient nature of single drugs, 

whereas DNA content for RA-TAX decreases much slowly. While DNA content 

decreases as cells with high accumulation die off with time, DNA synthesis might be 

inhibited after exposure to RA-TAX combination, which might prevent them from rising 

again. Increased DNA accumulation leads to bigger nucleus and hence larger cell size. 

DNA content with time for cells with rescue performed after treatment with RA, TAX 

and RA-TAX. Cell size for single drugs return to normal within 3 days, indicating the 

transient nature of single drugs that has been underlined throughout this study. But they 

remain consistently high for combination treatment. 
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Figure 6.12. A) Treatments involving TAX causes about a 3-fold increase in nuclear area 

compared to untreated nuclei. While the presence of RA decreases the area slightly as 

compared to nuclei treated exclusively with TAX, the effects of TAX are still evident in 

images and DNA distribution. B) All drug treatments decrease levels of DNA 

(normalized to area), through different mechanisms. RA halts cell-cycle, while TAX 

prevents nuclei from splitting after division, both ultimately affecting DNA synthesis. C) 

DNA histogram of treated and untreated cells show polyploidy in surviving cells as well 

as a reduction in the replicating fraction. Post treatment with RA-TAX, most cells exhibit 

DNA intensity greater than 4N, signifying polyploidy. This effect is further enhanced 

with encapsulated drugs. Empty nanocarriers do not appreciably change this distribution 

(inset histogram). 
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Figure 6.13. A) RA and TAX treated cells were found to have higher levels of lamin-A 

than untreated ones, suggesting differentiation. Lamin-A levels were higher for drugs 

delivered via nanocarriers, than for free drugs. B) As with RA, treatment with TAX or 

RA-TAX increased Lamin-A levels.  
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Figure 6.14. Flow cytometry scatter plots for A) Lamin A, B) Ki67 and C) Cyclin D1 on 

the y-axis and DNA (Hoechst) on the x-axis.  
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Figure 6.15 A) RA-TAX treated cells have lowest levels of Ki-67 (left) and Cyclin-D1 

(right) than either TAX or RA alone treated cells. Cells treated with RA have lower 

Cyclin D1 as RA decreases cell proliferation. Hence the durability of RA-TAX 

combination might be explained by its inhibitory role on protein synthesis (via Ki67) and 

to a lesser extent, the regulation of cell cycle (CyclinD1). B) Images (40x magnification) 

of cells treated with TAX alone (top) and with RA-TAX combination (bottom). While 

Hoechst intensities are similar (images on the left), cells treated with TAX alone still 
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stain positive for Ki-67 (top right), while those treated with RA-TAX are null for the 

same (bottom right). 
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Figure 6.16 A) Delivery of drugs via worms has been proven to be superior to free drugs, 

and this mode further reduces levels of these two proteins, with Ki-67 levels being halved 

compared to free drug treated. B) Histogram of Ki67 and Cyclin D1 levels after treatment 

with various drugs loaded onto worms. The fraction of cells null for these proteins 

progressively increases from no treatment to free drug to micellar drug delivery. Lower 

the levels of these proteins, lower will be cell proliferation. 
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Figure 6.17. A) Quantification of doubling time of RA-TAX micelle resistant (RTMR) 

EC4 cells. All RTMR cells proliferate slower than untreated EC4 cells. B) Quantification 

of response of RTMR cells to RA-TAX treatment. As expected, RTMR cells have higher 

IC50 than WT EC4 cells, and hence higher resistance to RA-TAX treatment. However, 

true resistance to drug treatment was been acquired by the resistant colonies. C) Resistant 

colonies arising in after RA-TAX worm treatment were expanded further. RA-TAX 

Micelle Resistant (RTMR) EC4 cells proliferate slower than untreated EC4 cells, but 
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have higher resistance to RA-TAX treatment. Plotting the proliferation rate against the 

degree of resistance gives an inverse relation, supporting the hypothesis that acquisition 

of drug-resistance occurs at the cost of proliferation. 
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Figure 6.18 A) The efficacy of RA-TAX combo is not limited to the EC4 mouse liver 

cancer cell line. It is just as effective in huh7, which is a human liver cancer cell line. 

This is despite the fact that both RA and TAX are not as effective as they were with EC4 

cells. B), C), and D) This combination was tested on A549s, U2OS, and RH30 which are 

human lung adenocarcinoma, osteosarcoma and rhabdomyosarcoma cell lines 

respectively. The dual drug treatment retained its efficacy despite varying responses to 

TAX and RA (as measured by IC50 values) across cell lines derived from different 

tissues of origin. 
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Figure 6.19: Dose response curves for free drug treatments with A) Huh7 (human 

hepatocellular carcinoma), B) A549 (human lung epithelial adenocarcinoma), C) U2OS 

(human osteosarcoma), and D) RH30 (human rhabdomyosarcoma) cell lines respectively. 

The dual drug treatment retains its efficacy despite varying responses to TAX and RA 

across different cell lines. 
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Figure 6.20 A) Free RA-TAX injections in nude mice with A549 xenografts led to a 15% 

shrinkage in tumor size after 4 injections over the course of 11 days. Treatment was 

started at day 31 and tumors shrank till day 49, after which the resumed an upward trend. 

B) Six injections of RA-TAX loaded worms led to 25% shrinkage of A549 subcutaneous 

tumors, and most importantly, the tumors did not resume an upward trend nearly 45 days 

from the start of the treatment. 
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Figure 6.21 A) Injections in NOD-SCID mice with HepG2 subcutaneous tumors 

suppressed the growth of tumors. In mice treated with RA-TAX worms, the tumors grew 

by 30%, while untreated tumors more than tripled in size during the same time frame (3.2 

times from the start of treatment). Unlike A549 xenografts, free RA-TAX produced 

minimal retardation in tumor growth, with final size 2.5 times from the onset of 
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treatment. RA-TAX worms with increased drug dosage was tested on mice with 

subcutaneous and orthotopic liver A549 xenografts. B) Histogram of anti-human staining 

intensities of HepG2 tumors to detect HepG2 cells among mouse cells. HepG2 cells from 

culture (blue curve) elicited a much higher signal than cells from tumors. C) 

Quantification of Fig. 6.21 B shows that the proportion of HepG2 cells in tumors is very 

low (<0.2%). This number decreases further with drug treatment. 
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Figure 6.22 A) Lower dosage of RA failed to shrink tumors in A549 subcutaneous 

tumors, although it did retard its growth. Second treatment at higher RA concentration 

produced shrinkage in both treated groups (previously untreated and RA-TAX worms 

treated). Mice that had been injected with free RA-TAX previously were the untreated 

controls in the second round. B) RA-TAX worms shrunk subcutaneous A549 tumors by 

~50%. Single drug controls arrest the growth of tumors 30 days from the start of the 

treatment. During the same time frame, untreated tumors more than double in size.  

 



181 

 

 

Figure 6.23. Orthotopic liver tumors established in vivo from HepG2 cells. RA-TAX 

treated tumors are 65% smaller than untreated tumors as quantified in the bar graph. 
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Figure 6.24. Liver lobe adjacent to that containing the tumor, were disaggregated and 

stained with Anti-human antibody to identify number of HepG2 cells metastasizing from 

orthotopic tumors. Untreated lobe shows a much larger peak of anti-human staining 

(black shaded region), indicating migrated cells, which is minimal in treated mice (green 

region). Quantification of cells staining positive is depicted in the bar graph. 
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Figure 6.25 A) RA-TAX worms were efficacious with orthotopic A549 liver tumors. 

They shrunk and arrested the growth of tumors, while single drugs failed to do both. 

While TAX controlled the growth of tumors, those treated with RA continue to grow.    

B) Quantification of total tumor burden in mice, bearing A549 subcutaneous and liver 

tumors, with time. RA-TAX worms were the only treatment that shrunk tumors at 

conclusion. TAX loaded worms produced a slight benefit compared to untreated, while 

there was no difference between untreated and RA treated. C) Efficacy of RA-TAX 

treatment leads to a survival benefit in mice, as depicted by the Kaplan Meier curve. 
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Figure 6.26. Quantification of total tumor size. RA-TAX worms produce the only 

shrinkage from start of treatment, and final size is less than half of the final untreated 

tumors. 
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Figure 6.27. Mouse body weight data for in vivo treatments corresponding to A) Fig. 

6.19 B B) Fig. 6.20 A C) Fig. 6.21 AF D) Fig. 6.21 B and Fig. 6.24 
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CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS 

 

7.1. Summary 

The shortcomings of current chemotherapy, highlighted in the first chapter, necessitate 

the use of nanocarriers. However, most nanocarriers are eliminated rapidly by phagocytes 

of the immune system and rarely last in circulation past three days. Flexible cylindrical 

micelles or filomicelles have been shown to circulate longer and load more drug, 

increasing the efficacy of the therapy overall. 

 

First experimental part (chapter four) focuses on changing the core chemistry to 

incorporate aromatic groups in the polymer backbone, which leads to higher loading of 

an aromatic chemotherapeutic, paclitaxel. Despite the possibility of rigidifying 

interactions such as ring-stacking (as occurs in a DNA double helix), these aromatic-

filomicelles are not rigid and readily deliver to cells. TAX-filomicelles maximized cell 

death and minimized toxicity as empty nano-carriers. These aromatic-filomicelles also 

maximized aneuploidy among surviving cells. Initial tests of in vivo treatment showed a 

continuous shrinkage with time at moderate TAX dosage. Overall, these filomicelles of 

TAX provide a more potent and potentially durable treatment in vivo as well as in vitro. 

 

However, treatment with single drugs face a number of problems including the 

development of drug resistance and relapse, as well as the ineffectiveness of conventional 
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chemotherapeutics on CSCs. While combination of chemotherapeutics can help reduce 

resistance and relapse, they have minimal effect on CSCs. RA is an essential 

physiological molecule derived after multiple oxidations of vitamin A. Chapter five 

briefly highlights the anti- proliferative and differentiative effect of RA after incubation 

with EC4 cells. Higher concentrations of RA were more effective, and RA loaded onto 

worms was an order of magnitude more effective than free drug. 

 

RA has been used in clinics for the treatment of APL. Combination of RA with arsenic 

trioxide induced complete remission in more than 80% of the patients, which highlights 

the strategy of differentiating cells irreversibly. In chapter six, a chemo-differentiative 

therapy was developed with focus on liver cancers. RA plays an important role in normal 

liver function as well as tumorigenesis, and was combined with Paclitaxel. This 

combination not only retains the potency of TAX, but improves on it. Most notably, cells 

exposed to RA-TAX combination had lower chances of proliferating post-treatment. 

They had all the hallmarks of TAX treatment such as increased cell size and DNA 

accumulation, and these effects were durable as well. This durability may be attributed to 

lower levels of Ki-67 and Cyclin D1, most importantly Ki67, which are key proliferation 

proteins. The durability of the treatment was translated to in vivo models, with tumor 

sizes staying constant almost a month after treatment. Subcutaneous tumors as well 

orthotopic liver tumors were shrunk, and in many cases was the only treatment that did 

so. This efficacy was despite using much lower doses of drugs compared to MTD.  
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Effects of single drugs are often transient, and nanocarriers have been proven to improve 

treatments. In this thesis, attempts have been made to improve nanocarrier-mediated 

chemotherapy. These efforts fall into two categories: 

 Modification of nanocarriers to improve characteristics such as drug loading 

 Addition of a differentiative drug to existing treatment in order to irreversibly 

differentiate surviving cells  

The experiments utilize drugs that are currently in clinic, and demonstrate the irreversible 

synergy of killing cells while driving differentiation. By adding different components 

(such as RA) and utilizing nanocarriers, we have demonstrated a more durable treatment 

than current existing ones.   

 

7.2. Future directions 

While a dosage that produces tumor shrinkage in vivo was determined in Chapter 6, the 

optimal dosage has not been determined. This requires extensive testing in vivo. To better 

understand the pathway affected by the synergy between the two drugs, RNA-seq is an 

attractive option.  

 

Another important question that remains to be investigated is the efficacy of this 

combination against drug resistant cell lines. Generation of drug-resistant cell lines and 

establishment of tumors in vivo provide an excellent platform for early testing. 
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Filomicelles have been shown to deliver to subcutaneous tumors and liver tumors. 

However, subcutaneous tumors are not orthotopic and delivery to livers is not surprising 

given that nanoparticles are cleared by phagocytes and end up in the liver and spleen. 

Tumors established in different parts (such as intraperitoneal tumors) are still to be tested, 

and it would be interesting to study delivery to those tumors.    

 

While nanoparticles improve delivery to tumors, they can be made more selective by 

active targeting towards groups that are selectively upregulated in tumors. First chapter 

provides some examples of suitable groups such as folate, transferrins, and lectins. These 

groups are well-established targets in their class of tumors (breast and colon), and their 

overexpression has been taken advantage of by antibody-drug-conjugates and 

nanoparticles. The presence genetic diversity between cells might optimize their fitness 

and growth, but increased mutational growth also leads to more neoantigen that are 

displayed on the cell surface. Nanoparticles with groups on the surface that recognize and 

bind to these neoantigens can, in principle, bind exclusively to cancer cells and deliver 

the drugs. This would severely reduce the off-target effects commonly associated with 

chemotherapy. 

 

Clearance by immune system (also discussed in chapter 1) is the other major barrier to 

nanoparticle delivery. While filomicelles circulate longer due to their flexibility, they do 

so by delaying their clearance and not completely avoiding them. Nanoparticles that 
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exhibit a form of 'self' signals that is also displayed by the endogenous cells in the body 

could help avoid this clearance. Proteins that signal 'self' such as CD47 have been the 

subject of attention in this regard. While the conjugation of entire protein might be too 

bulky for the nanoparticle surface, 'self' peptide which is the active part of CD47 that 

signals to the receptor has been identified computationally and synthesized. These have 

been attached to beads to prolong their circulation in vivo (Rodriguez et al., 2013). The 

display of this peptide to drug-loaded filomicelles would enable them to escape 

phagocytosis by macrophages and prolong their circulation, increasing the duration of 

treatment and its efficacy. Additionally, this would lead to lesser accumulation of the 

drug in the MPS organs (liver and spleen) and hence lesser off target effects, increasing 

the MTD. Combination of the above two strategies could lead to nanoparticles that 

circulate for very long periods in vivo (time scale of months), that accumulate sleectively 

in tumor cells and release all of their drugs in tumor cells. This is the ultimate goal of the 

nanoparticle field, and the means to achieve it is well within reach. 

 

A better understanding of main aberrations in cancer cell signaling would help identify 

druggable candidates. This could include the bolstering of tumor suppressive pathways 

(such as the administration of retinoids to induce proliferation arrest and differentiation) 

or reduction of its inhibitors (like the reduction of MDM2, which targets p53 for 

degradation). Blocking hyperactive signaling (such as EGFR and other aberrant RTK 

signaling) is the other arm of this strategy. This could lead to the development of novel 

drugs that could partner the current successful drugs in combination therapies. The 

development of chemo-differentiative therapies can be furthered by using vitamin D 
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derivatives instead of retinoids. Both bind to their receptors and drive the transcription of 

their target genes. For example, p21 (involved in regulating cell cycle and differentiation, 

discussed in Chapter 5) is responsive to vitamin D derivatives due to the presence of 

Vitamin D response Elements in its promoter.  

 

The development of effective combination therapies, which would then be loaded into the 

modified nanoparticles mentioned above, would constitute a massive improvement over 

current treatment. This would lead to higher efficacy, greatly increasing survivability and 

quality of life, while decreasing the financial burden.  
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