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Rna

Abstract
Breast cancer is the most common cancer type amongst women in the United States and will account for
approximately 7% of all cancer-related deaths each year. For most breast cancer patients, conventional
genotoxic therapy is the standard of the care. Unfortunately, as breast cancer progresses it becomes treatment
resistant and incurable. Therefore, understanding mechanisms of treatment response and resistance are of
paramount importance. Stromal communication with cancer cells is a major determinant of progression and
treatment response. We show that stromal and breast cancer (BrCa) cells utilize paracrine and juxtacrine
signaling to drive progression and conventional therapy resistance. Upon heterotypic interaction, exosomes
are unidirectionally transferred from stromal to breast cancer cells. Breast cancer cells stimulate stromal cell
upregulation of RNA polymerase III through activation of stromal NOTCH1 and MYC. This results in a
subsequent increase in stromal 5’triphosphate RN7SL1, an SRP RNA, in exosomes. Unlike cytoplasmic
RN7SL1 that is shielded by RNA binding proteins (RBPs), RN7SL1 in exosomes produced after breast
cancer cell interaction lack RBPs like SRP9 and SRP14. Consequently, unshielded stromal RN7SL1 in
exosomes, which is also found in cancer patients, is transferred to breast cancer cells to stimulate the pattern
recognition receptor RIG-I and activate STAT1-dependent anti-viral signaling.

In parallel, stromal cells also activate NOTCH3 on breast cancer cells. The paracrine anti-viral and juxtacrine
NOTCH3 pathways converge as STAT1 facilitates transcriptional responses to NOTCH3 and expands
therapy resistant tumor-initiating cells. Primary human and mouse breast cancer analysis support the role of
anti-viral and NOTCH3 pathway crosstalk in maximal activation of NOTCH signaling and stromal-mediated
resistance. Stromal-mediated therapy resistance can be overcome by combination of conventional therapy
with γ-secretase inhibitors. Thus, RBPs shield endogenous POL3-driven RNA from RIG-I, a process
circumvented when breast cancer cells coerce stromal cells to propagate anti-viral signaling through exosomes.
Anti-viral and NOTCH3 signaling then converge to enhance tumor growth, metastasis, and therapy
resistance.
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ABSTRACT 

EXOSOMES FROM THE TUMOR MICROENVIRONMENT PROMOTE BREAST 

CANCER PROGRESSION AND THERAPY RESISTANCE THROUGH UNSHIELDED 

NON-CODING RNA 

Barzin Y. Nabet 

Andy J. Minn 

 

Breast cancer is the most common cancer type amongst women in the United 

States and will account for approximately 7% of all cancer-related deaths each year. For 

most breast cancer patients, conventional genotoxic therapy is the standard of the care. 

Unfortunately, as breast cancer progresses it becomes treatment resistant and incurable. 

Therefore, understanding mechanisms of treatment response and resistance are of 

paramount importance. Stromal communication with cancer cells is a major determinant 

of progression and treatment response. We show that stromal and breast cancer (BrCa) 

cells utilize paracrine and juxtacrine signaling to drive progression and conventional 

therapy resistance. Upon heterotypic interaction, exosomes are unidirectionally 

transferred from stromal to breast cancer cells. Breast cancer cells stimulate stromal cell 

upregulation of RNA polymerase III through activation of stromal NOTCH1 and MYC. This 

results in a subsequent increase in stromal 5’triphosphate RN7SL1, an SRP RNA, in 

exosomes. Unlike cytoplasmic RN7SL1 that is shielded by RNA binding proteins (RBPs), 

RN7SL1 in exosomes produced after breast cancer cell interaction lack RBPs like SRP9 

and SRP14. Consequently, unshielded stromal RN7SL1 in exosomes, which is also found 

in cancer patients, is transferred to breast cancer cells to stimulate the pattern recognition 

receptor RIG-I and activate STAT1-dependent anti-viral signaling.  
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In parallel, stromal cells also activate NOTCH3 on breast cancer cells. The 

paracrine anti-viral and juxtacrine NOTCH3 pathways converge as STAT1 facilitates 

transcriptional responses to NOTCH3 and expands therapy resistant tumor-initiating cells. 

Primary human and mouse breast cancer analysis support the role of anti-viral and 

NOTCH3 pathway crosstalk in maximal activation of NOTCH signaling and stromal-

mediated resistance. Stromal-mediated therapy resistance can be overcome by 

combination of conventional therapy with γ-secretase inhibitors. Thus, RBPs shield 

endogenous POL3-driven RNA from RIG-I, a process circumvented when breast cancer 

cells coerce stromal cells to propagate anti-viral signaling through exosomes. Anti-viral 

and NOTCH3 signaling then converge to enhance tumor growth, metastasis, and therapy 

resistance. 
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CHAPTER 1: INTRODUCTION 

Breast Cancer is the Leading Cause of Female Cancer-Related Deaths 

Cancer is a significant global public health problem and is the leading cause of 

death for adults aged 40 to 791. As populations age, it is increasingly important to 

understand mechanisms of cancer treatment resistance and develop novel tools to meet 

these challenges. In the United States, breast cancer is the most common cancer type 

amongst women and will account for approximately of 15% of all new cancer cases and 

7% of all cancer-related deaths each year. One in eight women will be diagnosed with 

breast cancer in her lifetime, meaning over three million women will be living with breast 

cancer each year. Advances in the implementation of screening technologies has resulted 

in earlier detection of disease; thus, relative survival rates for breast cancer are high for 

early stage disease. However, advanced breast cancer can be treatment resistant and 

incurable2. Conventional therapies are the current standards of care for the large majority 

of breast cancers3.   

Breast cancer is classified into three heterogeneous subtypes: hormone receptor 

(HR) positive, epidermal growth factor (HER2) positive, and triple negative breast cancer 

(TNBC), which lacks estrogen receptor (ER), progesterone receptor (PR), and HER2 

expression. These subtypes currently form the basis for diagnosing and treating the 

disease4. Targeted therapies have allowed for incremental advances in the treatment of 

HR and HER2 positive breast cancers. In the case of ER positive breast cancers, adjuvant 

therapies targeting either ER itself, or effector pathways such as mTOR and CDK4/6 have 

demonstrated significant advances in treatment5–7. For HER2 positive disease, a 

monoclonal antibody approach has resulted in significant improvements in patient 

survival8,9. Unfortunately, the majority of patients treated with these targeted therapies will 

develop resistance. Basal-like and TNBC are the most heterogeneous subtype of breast 
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cancer with the highest rate of relapse and shortest overall survival4. Further, no targeted 

therapy has been approved for its treatment and conventional treatments remain the only 

viable options. Therefore, elucidation of conventional therapy resistance mechanisms in 

TNBC and biomarkers to classify this heterogeneous disease is of chief importance.  

The Tumor Microenvironment is a Major Determinant of Cancer Progression and 

Treatment Resistance 

The tumor microenvironment is an active participant of all stages of cancer 

initiation and progression. All hallmarks of cancer such as sustaining proliferative signals, 

evading growth suppression, avoiding immune recognition, activation of the invasion and 

metastatic cascades, resisting cell death, inducing angiogenesis, and deregulation of 

cellular energetics are directly and indirectly influenced by the tumor microenvironment10. 

Further, the tumor microenvironment is being increasingly appreciated to participate in 

therapy resistance. For example, conventional chemo- and radiation therapy induce 

stromal cells to increase production of canonical Wnt ligands. These Wnt ligands can then 

signal in a paracrine fashion to cancer cells to promote their survival and ultimate disease 

progression11. Similar resistance mechanisms have been identified in response to 

targeted therapies. For example, tumor and stromal production of distinct growth factors 

that bypass the initial target have been demonstrated to overcome initial sensitivity to 

inhibitors targeting a wide range of receptor tyrosine kinases12–14. In total, the tumor 

microenvironment can amplify critical oncogenic pathways in cancer cells to promote 

tumor progression, metastasis, and resistance15. Thus, it is imperative to account for 

stromal contribution to therapy resistance in the design of novel and combinatorial 

strategies to target tumors.  

The tumor microenvironment is a complex ecosystem of several cell types. A 

dominant component of the cancer microenvironment are fibroblasts, known as cancer-
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associated fibroblasts (CAFs)16. Fibroblasts are well-suited to actively supporting cancer 

cells due to their resistance to stress, plasticity, and function in wound healing and fibrosis. 

In the context of wound healing, fibroblasts function in concert with immune cells to 

implement an inflammatory response to promote angiogenesis and deposition of 

extracellular matrix (ECM)17. Should these insults be prolonged, this repair response may 

continue unabated and result in tissue fibrosis. The role of fibroblasts in these processes 

is remarkably similar in the initiation and progression of cancer. In cancer, fibroblasts can 

be tumor-promoting as well as tumor-restrictive. Fibroblasts can promote tumorigenesis 

by altering the microenvironmental secretome18,19. The CAF secretome can mediate 

immune reprogramming to suppress immune activation, sustain fibroblast activation, and 

directly engage cancer cells sustain their proliferation and enhance their invasiveness. 

Moreover, CAFs promote invasiveness of cancer cells by producing matrix 

metalloproteinases that reshape the ECM of the tumor microenvironment20. The tumor-

restrictive properties of fibroblasts are less understood, but they may function by reducing 

hypoxia and modulating the innate and adaptive immune system21,22. Moreover, 

fibroblasts critically influence cancer therapy response and resistance. CAFs can alter 

therapy response by directly altering cancer cell-ECM interactions, stromal cell-ECM 

interactions, cytokine and chemokine release, enhancement of cancer cell resistance 

pathways, and indirectly by increasing intratumoral interstitial fluid pressure to such a high 

degree that drugs can no longer be delivered effectively23. Specifically in the case of 

TNBC, a gene signature indicative of fibroblast activation is predictive of tumor relapse 

after conventional therapy24. In total, CAFs are a crucial component of both tumorigenesis 

and resistance to conventional and targeted therapies.  



4 
 

Notch Pathway Activation Underlies Breast Cancer Tumorigenesis and Progression 

One pathway that allows for breast cancer cells to survive in harsh environments 

is the Notch pathway. Originally discovered in Drosophila melanogaster, the mammalian 

Notch receptor family consists of four type I transmembrane receptors (NOTCH1-4)25. This 

family of proteins are synthesized and activated in a similar fashion. First, Notch proteins 

are synthesized in a precursor form that are cleaved to generate the mature receptor, 

which is comprised of two subunits, an extracellular domain and an intracellular domain. 

The extracellular domains prevent ligand-independent signaling. Generally, Notch 

signaling is initiated by engagement of a Notch ligand to a Notch receptor in the event of 

cell-to-cell contact26. Notch ligands include jagged 1 (JAG1), JAG2, Delta-like 1 (DLL1), 

DLL3, and DLL4. Once bound to the Notch receptor, the ligand induces a conformational 

change, exposing a cleavage site in the extracellular domain to for cleavage by the 

metalloproteinase tumor necrosis factor-α-converting enzyme (ADAM17). After this 

cleavage, the intracellular domain of Notch is cleaved by the presenilin-γ-secretase 

complex. This final cleavage allows for the release of the intracellular domain of Notch 

and subsequent nuclear translocation. There, Notch recruits its transcriptional co-activator 

protein mastermind-like 1 (MAML1). Notch proteins exert their wide-ranging functions by 

initiating a transcriptional cascade. Notch transcriptional targets include Notch receptors, 

Notch ligands, cyclins, and MYC. In total, Notch activation regulates tumorigenesis, 

progression, and therapy resistance in a context and cell-type dependent manner.  

In different cancers, Notch pathway activation can have oncogenic or tumor 

suppressive roles27. In breast cancer, Notch pathway activation has long been implicated 

as an oncogenic driver. Early work found that the Notch locus is a common integration site 

in MMTV-induced tumors and expression of Notch4 in the mammary epithelium results in 

mammary tumor formation28. Notch activation in breast cancer has been further implicated 
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in various stages of tumor progression. Notch signaling can promote transformation of 

mammary epithelial cells by transcriptionally regulating Cyclin D129. Similar to the role of 

the Notch pathway in stem cell maintenance, it has been demonstrated that Notch 

signaling can regulate the stemness of breast cancer tumors and result in therapy 

resistance30–32. Interestingly, Notch can also cooperate with other oncogenic signaling 

pathways such as RAS to enhance proliferative capacity and transformation33. Expression 

of active forms of Notch results in the activation of the phosphoinositide 3-kinase/Protein 

kinase B (PI3K-AKT) signaling axis, to further amplify tumorigenic capacity by suppressing 

apoptosis34. Interestingly, in developmental systems, crosstalk between Notch signaling 

and janus kinase signal transducer and activator pathway (JAK-STAT) results in a 

proliferative response that is responsible for stem cell self-renewal and differentiation35. 

Therefore, we hypothesize that in breast cancer cells, Notch pathway activation by the 

tumor microenvironment may cooperate with existing oncogenic pathways to maximize 

their oncogenic potential. Due to the necessity for proteolytic cleavage for activation, 

inhibition of the presenilin-γ-secretase complex with small molecule inhibitors (GSI) is an 

attractive therapeutic target for Notch-driven cancers36. However, clinical application of 

GSIs has yet to find success due to a lack of a companion biomarker that would identify 

patients that would benefit from Notch pathway inhibition37. Therefore, we expect that in 

certain conditions, treatment with GSIs will be able to reverse the oncogenic potential 

conferred by Notch pathway activation.  

Interferon-Stimulated Genes Are Effectors of Cancer Progression and Viral Defense 

Another pathway that has been implicated in tumorigenesis, progression, and 

therapy resistance in a variety of cancers are interferon-stimulated genes (ISGs). ISGs 

are best studied in the context of viral infection; however, cancer therapies induce ISGs 

through previously undefined mechanisms. Conventional radiation therapy is known to 
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induce ISGs in many cancers, including breast cancer, and contribute to resistance. 

Previously, through in vivo selection for resistance to radiation therapy, our lab 

demonstrated the biological relevance of an experimentally derived gene program. This 

gene network consists of a network of ISGs that clinically predict chemotherapy and 

radiation resistance across multiple human cancers38,39. Functionally, several of these 

ISGs were shown to influence treatment resistance in cell lines and mouse tumor models. 

For breast cancer, high ISG expression is the strongest predictor of resistance to 

chemotherapy or RT. These results suggest that ISGs may be a major determinant of 

clinical breast cancer treatment resistance.  Further, chemotherapy40 and DNA 

methylation inhibitors also induce ISGs in cancer and stromal cells41,42. In these studies, 

it is suggested that DNA methylation inhibitors can de-repress endogenous double-

stranded RNA (dsRNA) species that are recognized by cellular pathogen-sensing 

machinery to activate an ISG response. In addition to therapy resistance, ISG induction in 

breast cancer cells and the brain metastatic microenvironment aids in the establishment 

of metastases by enhancing colonization capabilities43. Here, breast cancer cells that are 

colonizing the brain transfer cyclic GMP-AMP (cGAMP) to resident astrocytes via 

connexion junctions. cGAMP can then directly activate stimulator of interferon genes 

(STING) in the recipient astrocytes, which leads to tumor necrosis factor (TNF) and 

interferon production, which then activate ISGs in the breast cancer cells in a paracrine 

fashion. While the induction of ISGs in breast cancer cells appears to be a crucial element 

of cancer progression and therapy resistance, both the mechanisms of their activation and 

their effector functions in cancer have remained elusive.  

Activation of ISGs is best studied in the context of viral infection. The first line of 

defense to any pathogen is detection. In mammalian cells this is accomplished by pattern 

recognition receptors (PRRs) that are fine-tuned to detect pathogen-associated molecular 

patterns (PAMPS) and trigger intracellular signaling cascades that result in the 
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upregulation of ISGs44. PRRs include Toll-like receptors (TLRs), RIG-I-like receptors 

(RLRs), NOD-like receptors (NLRs), and C-type lectin receptors (CLRs). Toll-like 

receptors include 12 transmembrane receptors that localize to either the plasma 

membrane or endolysome and can detect lipoproteins, lipopolysaccharides, flagellin, 

DNA, and RNA of viral, bacterial, protazoal, and self-origin. NOD-like receptors are 

cytoplasmic and recognize bacterial peptidoglycans, while CLRs are plasma membrane 

localized and recognize microorganismal carbohydrates. RLRs are near-ubiquitously 

expressed in all cell types, localize to the cytoplasm, and include RIG-I, MDA-5, and LGP2. 

RLRs are canonically activated by viral RNA originating from DNA and RNA viruses. RIG-

I is best characterized to be activated by short, double-stranded, 5’triphosphorylated RNA 

of viral origin45. Pathogenic DNA has been implicated to indirectly activate RIG-I by is 

transcription by RNA polymerase III46,47. In this context, viral DNA can be recognized by 

RNA polymerase III and transcribed. Based on its sequence, these transcripts will form 

double-stranded structure, and consistent with all RNA polymerase III transcripts, maintain 

a 5’triphosphorylated (5’ppp) moiety. Therefore, this endogenously-produced RNA can 

activate RIG-I and ISGs. 

Interferon-stimulated genes include PRRs, interferon regulator factors (IRFs), and 

several signal transducing proteins involved in the JAK-STAT signaling pathway48. These 

proteins are present as baseline, but their expression markedly enhances upon 

pathogenic insult. Downstream of JAK-STAT signaling, many ISGs function to restrict viral 

activity, reinforce ISG expression, and promote cell survival. ISGs such as the interferon-

induced Mx family of proteins restrict viral entry49, while interferon-induced proteins with 

tetratricopeptide proteins (IFITs) and protein kinase R (PKR) can directly inhibit viral 

translation. Furthermore, the ubiquitin-like protein, interferon-stimulated gene 15 (ISG15), 

can function to both directly destabilize viral proteins while also promoting or repressing 

other ISG expression and function50. Other ISGs such as the OAS/RNaseL pathway can 
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function to amplify ISG expression by nondiscriminate cleavage of endogenous RNAs to 

serve as RIG-I ligands and further enhance RIG-I activation51. Collectively, in the case of 

viral infection, a multi-tiered signaling cascade that initiates with nucleic acid recognition 

by PRRs, such as RIG-I, and results in the enhanced expression of effector ISGs 

culminates in the restriction of viral activity and cell survival.  

RIG-I Discrimination of Self from Non-Self RNA 

The initiators of any host response to pathogenic insults are PRRs. RIG-I and other 

PRRs are maintained in an inactive state until contact with a ligand52. For maximal 

activation, a strict set of requirements must be met for sensing of a nucleic acid as foreign, 

or non-self. Broadly, these requirements include availability of the ligand, localization of 

the ligand, and the structure of potential nucleic acid ligands. All three aspects contribute 

to the reliable recognition of pathogenic nucleic acids as foreign and restrict inappropriate 

recognition of self nucleic acids. In the context of RIG-I, many of these aspects are well 

studied. First, RIG-I is exclusively localized to the cytoplasm; therefore, any nucleic acid 

ligand must also be present in the cytoplasm53. Other cytoplasmic RNA sensors include 

melanoma differentiation-associated protein 5 (MDA5), IFIT1, PKR, and 2'-5'-

oligoadenylate synthase (OAS) family members, which can recognize discrete and 

overlapping structural RNA elements54. Endosomal RNA sensors include the TIR-domain-

containing adapter-inducing interferon-β (TRIF) dependent TLR, TLR3, and the myeloid 

differentiation primary response gene 88 (MYD88) dependent TLRs, TLR7 and TLR8. 

Second, for RIG-I activation after encountering an RNA ligand in the cytoplasm, the ligand 

must be present at a high local concentration. Many endogenous nucleic acid ligands can 

be present at high levels, but are recognized and degraded by endogenous nucleases to 

prevent inappropriate activation of anti-viral signaling55,56. RIG-I and other PRRs recognize 

a restricted set of structural features to discriminate self from non-self RNA. RIG-I is best 
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characterized to recognize short, dsRNA, with a 5’ppp end. However, recent quantitative 

structural studies have demonstrated that RIG-I can recognize a wide array of end 

modifications, albeit with lower affinity. For example, RNA modifications such as 2-O-

methylation are determinants of RIG-I recognition, irrespective of a 5’ppp or capped 

ends57,58. These structural preferences illuminate the necessity for a variety of RNA PRRs. 

In the cytoplasm, RIG-I and MDA5 function in concert to recognize short (<300bp) and 

long (>300bp) dsRNA, respectively, with similar downstream ISG outcomes. In 

endosomes, TLR3 largely recognizes dsRNA, while TLR7 and TLR8 recognize ssRNA. In 

total, these guiding principles allow for efficient recognition of non-self RNA, while 

restricting inappropriate immune activation.  

While studies assessing RNA features and requirements for optimal RIG-I 

activation have been extensive, they are based on synthetic and/or artificial RNAs. 

Therefore, the requirements for sensing endogenous RNA may be more nuanced. Various 

cellular RNA transcripts are present in the cytoplasm, at high levels, and have all the 

structural features capable inducing RIG-I. However, these transcripts do not ubiquitously 

induce ISG responses. These potential RIG-I ligands are largely RNA polymerase III 

transcripts which are generally short, double stranded, and contain 5’ppp moieties59,60 and 

include SRP RNAs, Y RNAs, tRNAs, and certain snRNA species. Therefore, other 

characteristics must govern their relative innocuousness. Similar to shielding of viral 

genomes by viral RNA binding proteins (RBPs) is shielding of endogenous RNA by cellular 

RBPs. The vast majority of RNA polymerase III transcripts that are best suited to act as 

endogenous RIG-I ligands function in ribonucleoprotein (RNP) complexes; thus, they are 

likely entirely shielded from recognition by RIG-I61. Whether protein shielding of RNA is a 

major determinant of PRR activation remains unclear. While PRRs can recognize a wide-

array of distinct nucleic acid ligands, their purpose remains unified, to serve as the 

initiators of an anti-viral response within infected cells.  
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Exosomes are Mediators of Cell-Cell Communication 

Recent evidence reveals that in addition to cell intrinsic anti-viral responses that 

occur after viral infection, mechanisms exist to propagate an anti-viral response from 

infected to uninfected cells via exosomal transfer of anti-viral cargo62,63. Exosomes are 

small (<150nm), extracellular vesicles of endosomal origin that are implicated in a myriad 

of biological and pathological processes64. Exosomes form by a dynamic endocytic 

process. First, early endosomes mature into late endosomes and begin accumulating 

intraluminal vesicles (ILVs) via ESCRT-dependent and independent processes. These 

late endosomes containing ILVs are referred to as multivesicular endosomes, or MVBs. 

The ILVs that form from this double invagination are lipid-bilayered in the same orientation 

as the plasma membrane and contain directly sorted and stochastically acquired 

cytoplasmic contents. Under most cellular contexts, MVBs will fuse with lysosomes and 

their contents will be degraded and/or recycled. Some MVBs will fuse with the plasma 

membrane and release their vesicular content. These vesicles are known as exosomes. 

The processes that regulate this secretion are not well understood; however, several 

exosome secretion-stimulating conditions have been identified. For example, dendritic 

cells increase exosome secretion after interaction CD4 T lymphocytes65. Neurons will 

secrete exosomes after depolarization and stimulation by neurotransmitters66,67. 

Exogenous stimuli such as irradiation can also stimulate exosome release68,69. Once 

secreted, exosomes are stable both in and ex vivo and can then be internalized by 

recipient cells by endocytosis, phagocytosis, or fusion to the plasma membrane70. Several 

receptor-ligand pairings have been implicated in the targeting of exosomes to recipient 

cells such as cell adhesion molecules, integrins, and tetraspanins. Exosomes can then 

elicit responses in recipient cells simply by their adherence to recipient cells or 

transference of their cellular content after endocytosis or fusion.  
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Exosomes contain DNA, RNA, lipids, and proteins and harbor evidence of directed 

sorting of their contents64. Exosomes are classically identified by their protein markers of 

their biogenesis such as endosomal tetraspanins such as CD9, CD81, and TSG101. 

Beyond exosome proteins that result from their shared origins, cell-type specific exosomal 

proteins of largely cytoplasmic origins can also be found, including adhesion molecules, 

cytoskeletal proteins, enzymes, and other transmembrane proteins. Lipids are also a key 

component of exosomes. Specifically, sphingomyelin, phosphatidylserine, cholesterol, 

and saturated fatty acids have been demonstrated to be enriched in exosomes when 

compared to cells71–73. Collectively, the enrichment of specific lipid and protein contents in 

exosomes suggests a targeted mechanism of content sorting.  

Exosomes are also enriched in nucleic acids. While, genomic and mitochondrial 

DNA has been reported to be found in exosomes74–76, best characterized are the vast 

complexity of RNA species in exosomes. Exosomal RNA differs from cellular RNA in that 

is largely bereft of full-length ribosomal RNA (rRNA) that makes up greater than 95% of 

the human transcriptome77. While functional mRNAs are present in exosomes, they make 

a small fraction of the total exosomal RNA contents, which are largely non-coding RNA 

(ncRNA). These RNAs are resistant to RNase digestion, suggesting they are contained 

within exosomes, rather than on the surface. The advent of next-generation sequencing 

(NGS) technologies has allowed for an explosion of reports of exosomal RNA contents, 

but, few unifying properties other than a general enrichment for ncRNA have been 

identified to date. In total, the functional of content of exosomes is context specific and 

remains unclear.  

Exosomes in Viral Infection and Cancer 

In the context of propagation of anti-viral signals and amplification of ISG 

responses, exosomal RNA is crucial to this process. Secretion and transfer of exosomes 
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to uninfected bystander cells can result in exosome-transferred viral RNA by PRRs. For 

example, in cells infected with an Hepatitis C virus (HCV) strain that is incapable of 

producing virions, HCV genomic RNA is transferred via exosomes to uninfected cells78. 

This HCV RNA is then recognized as PAMP by recipient cells and ISGs are activated in 

the absence of direct virus infection. Similarly, adenoviruses can cause an increase in 

exosome transfer containing PRR activating cargo that results in ISG upregulation and a 

short-range anti-viral response79. In the case of latent Epstein-Barr virus (EBV) infection, 

exosomal transfer of EBV RNA can alert neighboring cells of an infection80. Here, latent-

infected cells can trigger an anti-viral ISG response in neighboring cells by the transfer of 

EBV 5’ppp RNA that is bereft of any shielding RNA-binding proteins. Together, these 

studies demonstrate that exosomes can mediate ISG induction within uninfected cells and 

tissue-level amplification of the anti-viral response.  

Exosomes and exosomal contents have been implicated in a host of processes 

related to the progression of various cancer types. In the initial stages of glioma 

tumorigenesis, cells bearing the activated EGFRvIII receptor can transfer this protein to 

wild-type cells to aid in their transformation81. Notably, exosomes derived from patients 

and breast cancer cell lines containing RNA-induced silencing complex-associated (RISC-

associated) miRNAs can also induce tumor formation by the non-tumorigenic mouse 

mammary cells82. In established tumors, glioblastoma exosomes can transport functional 

mRNA that are able enhance tumor growth83. Exosomes have been best characterized to 

enhance the metastatic potential of cancer cells by various mechanisms. First, exosomes 

reshape the pre-metastatic niche through mobilization of various stromal subtypes at 

distant metastatic sites84,85. Moreover, these processes can specify organ-specific 

metastatic potential through integrin interactions86. Exosomes can also enhance invasion 

of cells into vasculature by destruction of endothelial cell junctions87. Stromal-derived 

exosomes can also increase breast cancer cell invasion by activating Wnt-planar cell 
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polarity signaling to dramatically induce metastases88. Lastly, exosomes can enhance 

colonization of distant sites after extravasation by augmenting the surrounding ECM to 

better support metastatic outgrowth89. Exosomes of stromal and cancer origin have been 

implicated in resistance to conventional therapies, largely by transfer of functional 

miRNAs90,91. Further, exosomes can also impact therapy response by shuttling 

chemotherapeutics out of target cells92,93. In total, exosomes of cancer and stromal origin 

can have profound impacts on all stages of cancer progression.  

Host Mimicry in Viral Infection and Virus Mimicry in Cancer 

Besides transferring viral RNA, the ability to horizontally transfer damage-

associated molecular patterns (DAMPs) may also be an important feature of virus 

infection. As described, host cells utilize exosomal machinery to transport viral nucleic 

acids to propagate anti-viral signals. Virions have also been described to contain an 

abundance of host RNA polymerase III transcripts in the absence of canonical RBP 

partners94–97. The role of these non-viral RNAs in virions has not been well characterized; 

however, it has been postulated that they might stimulate innate immune signaling98. 

Therefore, whether in virions or in exosomes, cells under viral attack ensure a broad anti-

viral response by packaging endogenous DAMPs alongside viral RNA PAMPs. In support 

of this concept, recent studies show that cells infected by certain viruses can package the 

nucleoside second-messenger cGAMP into secreted virions and extracellular vesicles to 

trigger a STING-dependent ISG response in recipient cells99,100. Altogether, these 

observations suggest that horizontal transfer of DAMPs to promulgate anti-viral signaling 

as a means of host mimicry by virions. 

Cancer cells may also utilize a process of virus mimicry, whereby they can provoke 

an anti-viral response in surrounding cancer and stromal cells. For example, stromal PRRs 

have been demonstrated to recognized exosomal RNA (exoRNA) in the tumor 
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microenvironment101,102. Here, exosome-derived miRNAs can function as PRR ligands 

and help establish pre-metastatic and maintain post-metastatic niches. Moreover, under 

stress conditions such as chemo and radiation therapy, it has been demonstrated that 

endogenous nucleic acids can act as endogenous PRR ligands and elicit an ISG 

response. As described, DNA methylation inhibitors can de-repress endogenous dsRNA 

species to activate stromal and cancer cell PRRs41,42. Chemotherapeutic anthracyclines 

may also induce endosomal localization of dsRNA for recognition by TLR340. Radiation 

therapy may also induce endogenous RNA for PRR recognition103,104. Finally, in 

autoimmune states, endogenous RNAs are also de-repressed and recognized as foreign, 

further amplifying autoimmunity55,105. These studies have illuminated a common theme of 

virus mimicry and ISG activation across multiple cancer types; however, the nature and 

identity of the PRR activating nucleic acid ligand, functional consequences of ISG 

activation, and the mechanisms by which endogenous DAMPs are mobilized have yet to 

be delineated.  

Project Aims and Summary 

The central aims of this project were to demonstrate why and how the tumor 

microenvironment propagates anti-viral signaling in cancer cells and to further elucidate 

how anti-viral signaling influences cancer progression and response to therapies. We 

hypothesized that stromal cells could be responsible for ISG activation in breast cancer 

cells by the transfer of exosomes containing endogenous ncRNA that act as RIG-I ligands. 

In turn, activation of ISGs can then aid in tumor progression and therapy resistance. While 

others have demonstrated that endogenous RNA can act as DAMPs, the identity of 

specific RNA and mechanism by which they are available for recognition is unknown. 

Further, there has been extensive work characterizing the functional effects of exosomes; 

however, few studies have identified a specific mechanism by which exosomal cargo 
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exerts its effects in recipient cells. In total, our work aimed to understand specific 

mechanisms for tumor-stromal signaling cascades initiated by exosomal contents that 

result in cancer progression and therapy resistance.  

In Chapter 2, we examined the role of fibroblasts in inducing anti-viral responses 

in a subset of basal-like and triple negative breast cancers. Utilizing in vitro and in vivo 

breast cancer models as well as primary patient data, we identified a complex signaling 

cascade that was reminiscent of tissue-level propagation of anti-viral signals in viral 

infection. To do so, breast cancer cells induce exosome secretion by stromal fibroblasts. 

These exosomes are enriched in 5’ppp RNA, which when taken up by breast cancer cells, 

activate RIG-I and induce ISGs. In parallel, this heterotypic interaction induces a juxtacrine 

signaling pathway centering on NOTCH3. These pathways converge, as STAT1 and 

NOTCH3 transcriptionally cooperate to achieve maximal activation of NOTCH target 

genes that mediate stemness capabilities in breast cancer cells. In total, activation of the 

paracrine anti-viral and juxtacrine NOTCH pathways results in breast cancer progression 

and therapy resistance. In Chapter 3, we delved deeper into the virus mimicry occurring 

in the breast cancer tumor microenvironment. Here, we identified an abundant RNA 

polymerase III transcript, RN7SL1, as a potent RIG-I ligand that is transferred from stromal 

cells to breast cancer cells via exosomes. The major determinant of RN7SL1 function as 

a DAMP in stroma-derived exosomes was its relative lack of shielding; whereas, in all cells 

examined, RN7SL1 is entirely shielded as part of the signal recognition particle (SRP). 

Moreover, we demonstrate that deployment of RN7SL1 as an unshielded RNA DAMP 

results from breast cancer mediated activation of stromal NOTCH1 and subsequent MYC 

and RNA polymerase III activation. In vivo, unshielded RN7SL1 can function to enhance 

tumor progression and metastasis. Further, many of the above findings were validated 

with human breast tumor-derived CAFs and found in patient-derived exosomes harvested 
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from serum. In total, our work delineates a mechanism and function of endogenous RNAs 

as DAMPs in the breast cancer tumor microenvironment.  
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CHAPTER 2: EXOSOME TRANSFER FROM STROMAL TO BREAST CANCER 

CELLS REGULATES THERAPY RESISTANCE PATHWAYS 

Sections of this chapter have been adapted from the following manuscript with permission 

from Elsevier: Boelens, M.C.*, Wu, T.J*, Nabet, B.Y.*, Xu, B., Qiu, Y., Yoon, T., Azzam, 

D.J., Twyman-Saint Victor, C., Wiemann, B.Z., Ishwaran, H., ter Brugge, P.J., Jonkers, J., 

Slingerland, J., Minn, A.J. Exosome Transfer from Stromal to Breast Cancer Cells 

Regulates Therapy Resistance Pathways. Cell 159, 499–513 (2014).  

*Co-first author 
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Introduction 

The elucidation of resistance mechanisms to chemotherapy and radiation is an 

important goal in improving cancer survival. Previously, we characterized a gene signature 

for radiation (RT) and chemotherapy (chemo) resistance that was discovered through in 

vivo selection for RT resistant tumors38,39. Because the majority of the genes identified 

were interferon-stimulated genes (ISGs), which normally are activated as part of an anti-

viral response, we termed this signature the Interferon-Related DNA Damage Resistance 

Signature (IRDS). Several IRDS genes, including the transcription factor STAT1, influence 

RT/chemo resistance in cell lines and mouse tumor models. Interrogation across the most 

common human cancers revealed that a large proportion of untreated primary tumors 

express the IRDS. In breast cancer, IRDS expression measured by a clinical classifier 

comprised of seven IRDS genes (STAT1, MX1, ISG15, OA2, IFIT1, IFIT3, IFI44) identifies 

patients whose cancers are resistant to chemo and RT. Thus, the IRDS may represent a 

common and inherent mechanism of resistance across various human cancers. How the 

IRDS is regulated and how ISGs can protect against RT/chemo is unclear. 

A common way that ISGs are activated is through pattern recognition receptors 

(PRRs) that are triggered by pathogen-associated molecular patterns such as viral nucleic 

acids44. PRRs include toll-like receptors (TLRs) and RIG-I-like receptors. Typically, RIG-I 

is activated by 5’-triphosphate viral RNA after viruses gain entry into immune and non-

immune cells. However, PRRs can also be activated through alternative routes by 

exosomes, which are small membrane vesicles capable of transferring contents between 

cells to function in cell-cell communication106. Exosomes can transfer viral RNA from 

infected cells to trigger an interferon response in immune cells, presumably through TLRs, 

to enhance viral suppression78,79. In cancer, exosomes secreted by tumor cells can 

increase metastasis through interaction with cells of the microenvironment84,101. 
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Alternatively, exosomes from mesenchymal cells can be transferred to cancer to promote 

metastasis88. Thus, these recent data suggest that PRRs and exosomes orchestrate 

heterotypic cell-cell communication to regulate anti-viral responses or to aid cancer 

progression. Whether cross-talk between cancer and the tumor microenvironment can use 

exosomes and PRRs to similarly control ISG/IRDS expression or influence treatment 

resistance is unknown. 

The importance of the tumor microenvironment in dictating treatment response is 

increasingly evident. Stromal cells, which are primarily fibroblasts but can also be other 

cell types, can promote survival after genotoxic and targeted therapy through the secretion 

of paracrine factors13. Many of these interactions between stromal cells and tumor cells 

may support the maintenance of cancer stem-like cells (i.e., tumor-initiating cells) 

analogously to how normal stem cells depend on a niche107. Since tumor-initiating cells 

are resistant to RT/chemo, and their survival would allow efficient tumor regrowth, 

understanding how the stromal microenvironment can influence these therapy resistant 

cells may provide promising new drug targets. 

The NOTCH family of receptors activates developmental signaling pathways that 

have multiple roles in cancer, including drug resistance108,109 and the regulation of tumor-

initiating cells110. Activation requires cell-cell contact and engagement of NOTCH ligands, 

such as JAGGED proteins. Given the properties of the NOTCH pathway in cancer, there 

is a significant interest in targeting the pathway as a cancer therapeutic. Activation of 

NOTCH occurs through the cleavage of its intracellular domain and can be blocked by a 

gamma secretase inhibitor (GSI). Currently, there are multiple clinical trials testing GSIs 

combined with other targeted agents and conventional chemotherapy37. However, 

challenges exist that include lack of a companion biomarker to identify patients who will 

benefit from NOTCH inhibition. Understanding how NOTCH can be activated in subsets 

of cancers may facilitate their utilization as drug targets. 
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In this study, we integrate experimental and computational models to investigate 

how stromal cells communicate with breast cancer to regulate expression of ISGs. In so 

doing, we define an anti-viral pathway that is activated by exosomes and RIG-I, and 

cooperates with NOTCH3 to regulate stroma-mediated expansion of therapy resistant 

cells. 
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Results 

Stromal cells induce the IRDS and increase breast cancer radiation resistance 

Previous reports indicate that ISGs can be modulated by the microenvironment111. 

To examine if the microenvironment can influence IRDS expression and contribute to 

RT/chemo resistance, we utilized metastatic MDA-MB-231 breast cancer cells (1833)112 

expressing a GFP-luciferase reporter and xenografted them with or without non-

transformed MRC5 human diploid fibroblasts used as stromal cells. Tumors containing 

admixed fibroblasts exhibited high expression of several IRDS genes including STAT1 

(Figure 1A), particularly from breast cancer cells (Figure 1B). In contrast, tumors arising 

from breast cancer cells alone had lower STAT1/ISG expression and remained primarily 

comprised of human breast cancer cells, suggesting poor stromalization by mouse cells. 

The presence of admixed fibroblasts enhanced the growth rate of breast cancer cells 

(Figure 1C), which is a defining property of carcinoma-associated fibroblasts (CAFs), as 

measured by the rate of change in bioluminescence signal at each time point. After RT, 

breast cancer cells from tumors without admixed fibroblasts promptly stopped growing and 

showed regression by day 24. In contrast, breast cancer admixed with fibroblasts showed 

dramatically reduced cell death (Figure 1D) and maintained significant growth even after 

RT (Figure 1C). In total, these observations suggest a relationship between tumor and 

stromal cell interaction, anti-viral signaling, and survival of cells adept at resisting DNA 

damage and sustaining tumor growth. 
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Table 1: IRDS Responder (IRDS-R) and IRDS Nonresponder (IRDS-NR) Breast 

Cancer Cells and Stromal Cell Lines 

Cell Line Subtype ER HER2 IRDS 
Induction 

Stromal Protection Microarray 

IRDS-R       

MDA-MB- 
231 (1833) 

Basal B (-)  + + + 

MDA-MB- 
231 

Basal B (-)  + + + 

HS578T Basal B (-)  + ND  

MDA-MB- 
436 

Basal B (-)  + +  

MDA-MB- 
157 

Basal B (-)  + +  

HCC1937 Basal A (-)  + + + 

       

IRDS-NR       

SKBR3 Luminal (-) (+) - -  

T47D Luminal (+)  - -  

MCF7 Luminal (+)  - - + 

HCC70 Basal A (-)  - -  

MDA-MB- 
468 

Basal A (-)   - + 

       

       

Cell Line Type   IRDS 
Induction 

Stromal 
Protection 

Microarray 

Stroma       

MRC5    + + + 

CAF61a    + +  

BJ    + +  

Hs27a    + +  

Hs5    + ND  

THP-1    - -  

 

Subtype, ER, and HER2 status were determined by other groups113. ND refers to not 

determined. In the case of Hs578T, difficulty separating breast cancer from stromal cells 

did not allow for accurate measurements of breast cancer cell death. Cell lines used for 

microarray and microarray-based studies are also indicated.  
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Figure 1. Stromal cells induce ISGs and protect basal-like breast cancer cells 

against radiation in a STAT1-dependent manner. A) Human MDA-MB-231 metastatic 

breast cancer cell (BrCa) line (1833) was admixed with or without MRC5 normal human 

fibroblasts (Stroma) and expression of IRDS genes was determined by qRT-PCR. B) 

GFP-labeled 1833 breast cancer cells with and without MRC5 fibroblasts were 

xenografted subcutaneously into nude mice and tumors imaged (20X) at day 14. STAT1 

intensity in breast cancer cells is quantitated for representative field shown. Scale bar is 

100 microns. C) Bioluminescence imaging (BLI) response of 1833 breast cancer cells with 

a luciferase reporter gene after xenografting with and without MRC5 fibroblasts. Tumors 

were irradiated with 8 Gy (day 0). Shown is change in photon flux over time (first derivative, 

mean ± SEM, n=5-10). Positive first derivative indicates growth, zero indicates no growth, 

and negative values denote regression. Data are a separate analysis of the control groups 

from Figure 9M. D) 1833 breast cancer cells were stained with GFP and TUNEL (red) 10 

days after RT. Percent TUNEL positive is shown. Scale bar is 100 microns. E) Breast 

cancer cells (Table 1) were classified as IRDS responders (IRDS-Rs) or IRDS non-

responders (IRDS-NRs). Heat map and scale shows breast cancer IRDS genes after 

mono-culture (M) or MRC5 co-culture (C). F) Cell death of IRDS-Rs and IRDS-NRs four 

days after 10 Gy RT in mono- (Mono) and co-culture (Co-cx) (n=3-10). G) Cell death of 

1833 IRDS-R after cisplatin chemotherapy (n=3) and after dose response. H) Gene Set 

Analysis shows changes in IRDS genes 48 hrs after co-culture vs mono-culture of IRDS-

Rs (left, also see Table 1), or after STAT1 knockdown in 1833 IRDS-R in co-culture (right). 

Top graph plots individual and overall gene scores, and bottom graph shows fold-change. 

I) Cell death of 1833 IRDS-R four days after 10 Gy RT using three independent siRNAs 
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to STAT1. J) BLI-based survival assay after 10 Gy RT (day 0) using luciferase-labeled 

1833 cells with shSTAT1 or control knockdown (shCont). Photon flux (x106) for each well 

is indicated. Shown is representative experiment (n=5). *p < 0.05. Unless noted, all bar 

plots in figure are mean ± SD of n biological replicates. 

 

Stroma-mediated IRDS induction and protection are STAT1-dependent and specific for 

basal-like breast cancers 

To better examine the relationship between IRDS expression and stroma-

mediated protection across different breast cancer and stromal cell combinations, we co-

cultured both cell types in vitro to model stroma-mediated resistance (referred to as co-

culture) and discovered that breast cancer cells can be divided into two groups. The first 

group, called “IRDS responders” (IRDS-Rs), is enriched in the basal-like subtype (Table 

1) and upregulated IRDS genes after interaction with MRC5 fibroblasts (Figure 1E). The 

second group, called “IRDS non-responders” (IRDS-NRs), is comprised of non-basal-like 

and some basal-like subtypes and failed to induce IRDS genes. Importantly, only IRDS-

Rs were protected by fibroblasts after RT (Figure 1F) or after chemotherapy (Figure 1G). 

Multiple other stromal cell lines (CAFs, bone marrow, fibroblasts) able to induce the IRDS 

were also able to promote resistance against RT (Figure 2A); however, not all stromal 

cells were protective, as illustrated by a macrophage cell line that neither induced the 

IRDS nor protected (Figure 2B). Genome-wide transcriptomic analysis from co-culture of 

IRDS-R compared to mono-culture (Table 1) demonstrated upregulation of nearly all IRDS 

genes in breast cancer (Figure 1H, Figure 2C, Table 2). Stroma-mediated induction of 

IRDS was specific to IRDS-R breast cancer (Table 3). Knockdown of STAT1 in 1833 

IRDS-R prior to co-culture with MRC5 fibroblasts depressed nearly all IRDS genes 

compared to control (Figure 1H) and also inhibited stroma-mediated resistance (Figure 

1I), a result observed with multiple different siRNAs targeting STAT1 (Figure 2D-E). Stable 

STAT1 knockdown (Figure 2D-E) also selectively inhibited the protective effects of MRC5 

fibroblasts as measured by an in vitro luciferase-based assay (Figure 1J). In the absence 
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of RT, disruption of STAT1 had negligible effects on growth with or without fibroblasts 

(Figure 2F). Thus, a subset of basal subtype breast cancers can interact with multiple 

stromal cell types to increase IRDS genes and RT/chemo resistance in a STAT1-

dependent manner. 

Figure 2. The ability of stromal cells to protect breast cancer cells against radiation 

is coupled to upregulation of IRDS genes. A) The 1833 IRDS-R cell line was grown in 

mono-culture (Mono) or co-cultured (Co-cx) with the indicated stromal cell line or with B) 

the macrophage cell line THP-1. CAF61a is a carcinoma-associated fibroblast cell line. 

Shown is a heat map of IRDS genes showing relative upregulation (red shades) or 

downregulation (blue shades). Grey is expression in mono-culture, which was used to 

normalize each gene. White indicates no data. On the right of each heat map is cell death 

four days after treatment with 10 Gy RT in either mono-culture or co-culture with the 

indicated cell lines (n=2). H10 stromal cells were not tested for stroma-mediated protection 

but is shown to allow for comparison in Figure 4K. C) Transcriptomic changes in breast 

cancer after co-culture with MRC5 fibroblasts reveal induction of IRDS genes. After co-

culture, breast cancer and MRC5 stromal cells were sorted by flow cytometry. Volcano 

plot shows microarray gene expression changes (x-axis) versus significance by q-value 

(y-axis). Horizontal black line represents a false discovery rate of 10%. Orange is high 

density of genes and yellow is low. Blue dots are IRDS genes. Green dashed line 

represents 1.5-fold change. See Table 2. D) Multiple independent siRNAs and an shRNA 
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to STAT1 were each introduced into the 1833 IRDS-R breast cancer cell line and analyzed 

for knockdown by qRT-PCR. Shown are knockdown levels compared to cells transfected 

with a control si/shRNA. E) Knockdown was also confirmed by immunoblotting for STAT1 

after transfection with siSTAT1 or shSTAT1. F) 1833 IRDS-R transfected with shSTAT1 

or control shRNA (shCont) were seeded in either mono-culture or co-culture with MRC5 

fibroblasts. At days 0, 4 and 6, cell growth was measured by luciferase-based 

luminescence. All bar plots in figure are mean ± SD. All gene expression assays were 

performed after 24-48 hrs of culture. 
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Table 2: Genes Upregulated in IRDS-R Breast Cancer Cells after Co-culture 

Gene ID Score(d) Fold Change 

TNFSF10 9.51175075 2.39654789 

PAPPA 9.50811651 1.73625789 

EGR1 9.15391015 2.33440593 

EDNRA 8.929463 5.42601126 

PAPPA 8.72827447 7.87175655 

CDH6 8.56804829 8.20739467 

CFB 8.55320523 2.11443065 

IFI44L 7.73843143 34.198318 

TMEM176A 7.49882318 2.26668984 

NA 7.49831933 2.37487425 

STAT2 7.20634429 1.84069078 

CCL2 7.19144971 5.28689347 

PAMR1 7.17076079 7.80477608 

OAS2 6.7050865 9.72737688 

MEIS1 6.67907311 5.14952985 

LTBP1 6.55554459 2.00106414 

MSC 6.5523153 1.8778532 

DKK3 6.49077312 7.20767782 

MIR21 6.39875367 1.60805803 

PIEZO2 6.39867122 5.20369927 

HGF 6.39818891 15.3752323 

IFI6 6.38646998 8.87480621 

IRF9 6.2546392 2.75398143 

XAF1 6.22233223 4.34260997 

TRIM22 6.13241982 6.31148865 

MMP2 6.11930698 10.5044086 

IFI16 6.10845758 1.71835165 

WNT5A 6.07738868 9.22868664 

STAT1 6.05976298 3.39204979 

SLFN11 6.02630643 3.49634883 

TCF21 6.01469106 2.76236241 

CFB 6.00374702 3.0328043 

ANGPTL2 5.98683165 4.1110645 

LRP1 5.98262926 2.76064673 

TRPA1 5.96005598 16.6919472 

TCF4 5.92808361 4.2274197 

ECM1 5.91936933 1.52084958 

GPC6 5.903451 1.85379347 

BDKRB1 5.89985196 10.3602752 

IFITM1 5.87899966 4.34361694 

VCAN 5.87813333 14.6981149 

CD248 5.75363674 3.9813116 

SGIP1 5.7515508 6.1586101 

FAP 5.74804294 5.72581044 

PARP9 5.73893329 5.19915479 

JAM3 5.71704795 3.30444238 
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IRDS induction is controlled by RIG-I 

Stroma-mediated IRDS induction and resistance requires live stromal cells and 

does not associate with expression and/or function of interferons or interferon receptors 

(Figure 4A-E). To explore alternative pathways to IRDS induction, we examined the 

transcriptome of IRDS-R breast cancer cells in MRC5 co-culture compared to mono-

culture. Among the upregulated genes (Table 2) were several PRRs known to activate 

ISGs. Random forest (RF) multivariable regression analysis114 of these and other similar 

PRRs demonstrated that increasing expression of RIG-I best explains the upregulation of 

IRDS genes by fibroblasts (Figure 3A). Accordingly, knockdown of RIG-I in 1833 IRDS-R 

inhibited IRDS gene induction after co-culture, while disruption of MYD88, which is 

required for signaling by multiple TLRs not predicted to regulate the IRDS, had no effect 

(Figure 3B, Figure 4F). Disruption of RIG-I by shRNA (Figure 4F) also partially reversed 

stroma-mediated resistance, as measured by short- and long-term survival (Figure 3C), 

without influencing general cell proliferation (Figure 4G). Concomitant disruption of the 

type one interferon receptor with RIG-I had no additive effect. Thus, STAT1/IRDS 

induction and stromal protection are primarily initiated through RIG-I rather than interferon 

receptors. 
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Figure 3. Stromal cell interaction increases exosomes that upregulate ISGs through 

a RIG-I anti-viral pathway. A) Importance scores (higher is more predictive) of PRRs 

from a multivariable random forest (RF) regression model to predict induction of IRDS 

after MRC5 co-culture with IRDS-Rs. The model explains 60.8% of the total variance. 

Adjusted effect of RIG-I on IRDS metagene expression is shown on right (red dashes are 

± two SE). B) Expression of IRDS genes after siRNA to RIG-I (top row) or MYD88 (bottom 

row) in 1833 IRDS-R. Shown is a representative experiment (n=3). C) Cell death of 1833 

IRDS-R after RT (n=4) and a representative BLI-based survival assay (n=2) after the 

indicated knockdown (RT on day 0). Photon flux (x106) for each well is shown. The control 

is same as Fig. 1J. D) Expression of IRDS genes in 1833 IRDS-R (middle) or MCF7 IRDS-

NR (right) after addition of conditioned media (CM) from MRC5 fibroblasts (Stroma), IRDS-

R or IRDS-NR (BrCa), or MRC5 co-culture with IRDS-Rs or IRDS-NRs (Co-cx). See 

schematic (left). E) CM collected after 48 hrs or the soluble fraction from CM (Soluble) 

was applied to 1833 IRDS-R and expression of IRDS genes was examined (n=4).  F) Fold 

induction of IRDS genes in 1833 IRDS-R after addition of co-culture CM or purified 

exosomes (n=5). G) NanoSight quantification of exosomes (left) from 1833 IRDS-R, 

MRC5 fibroblasts (Stroma), and MRC5 co-culture using either 1833 IRDS-R or IRDS-NR 

(MDA-MB-468 or MCF7). Immunoblot for TSG101 (right) using 1833 IRDS-NR and MDA-

MB-468 IRDS-NR. H) MRC5 fibroblasts (Stroma) or 1833 IRDS-R were labeled with green 

or red lipophilic dye in mono-culture (left and middle). For co-culture (right), MRC5 

(arrows) were labeled red and breast cancer cells green. Scale bar is 40 microns. I) 

Representative flow cytometry of DiD dye transfer from MRC5 stroma to 1833 IRDS-R or 

MDA-MB-468 IRDS-NR. J) Exosome transfer from co-culture after TSG101 knockdown 
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(left) and after addition of the co-culture CM cleared of debris and apoptotic bodies (right) 

(n=4). K) IRDS gene induction by co-culture CM after TSG101 knockdown in 1833 IRDS-

R, MRC5 stroma, or both (n=3). Gene expression and significance levels are relative to 

siControl. *p < 0.05. Unless noted, all bar plots in figure are mean ± SD of n biological 

replicates. 

Exosomes are transferred from stromal cells to breast cancer to increase IRDS 

Conditioned media (CM) from co-culture of IRDS-Rs with stromal fibroblasts, but 

not from stromal co-culture of IRDS-NRs or from mono-culture, upregulates IRDS genes 

when applied to mono-cultured IRDS-Rs (Figure 3D). Interestingly, CM from co-culture of 

IRDS-Rs also upregulates IRDS when applied to IRDS-NRs. These results suggest that 

stromal cell interaction with IRDS-Rs produces a secreted factor capable of activating 

RIG-I. Recent evidence suggests that some PRRs can be activated by exosomes. 

Consistent with a role for exosomes in IRDS activation, the exosome-depleted soluble 

fraction of CM poorly induced the IRDS (Figure 3E). Conversely, addition of purified 

exosomes, which were confirmed by electron microscopy and by analyses of size 

properties and markers (Figure 4H), was sufficient to induce IRDS genes (Figure 3F). 

To examine how co-culture with IRDS-Rs influences exosome secretion and 

possible transfer to breast cancer cells, exosomes were quantified by particle counting 

and by the exosome marker TSG101. Both methods indicated that more exosomes were 

present after co-culture of IRDS-Rs compared to either IRDS-NRs or mono-culture (Figure 

3G). To examine exosome transfer, stromal cells and/or breast cancer cells were 

differentially labeled with either red or green fluorescent lipophilic dye to mark exosomes. 

For both cell types, dye transfer in mono-culture appeared minimal (Figure 3H). In co-

culture, microscopy and flow cytometry revealed an apparent unidirectional transfer of 

exosomes from fibroblasts preferentially to IRDS-Rs but not to IRDS-NRs (Figure 3H-I, 

Figure 4I-J). Multiple stromal cell types capable of inducing the IRDS were also able to 

transfer exosomes to IRDS-Rs (Figure 4K). Transfer was also observed upon addition of 

co-culture CM cleared of debris and apoptotic bodies (Figure 3J). With both assays, 
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transfer was mitigated by knockdown of TSG101 (Figure 3J, Figure 6C), which is a 

regulator of exosome biogenesis. Accordingly, TSG101 disruption in fibroblasts, but not in 

breast cancer cells, also inhibited IRDS induction without affecting elevation in non-IRDS 

genes such as MMP1 and CXCL1 (Figure 3K, Figure 6D). Thus, IRDS-Rs, but not IRDS-

NRs, coerce an increase in secretion of exosomes by stromal cells that results in transfer 

to breast cancer cells and subsequent IRDS induction. 

Figure 4. Exosome transfer from stromal to breast cancer cells rather than direct 

interferon signaling is associated with resistance and IRDS induction in breast 

cancer. A) Induction of IRDS genes requires live stromal cells. 1833 IRDS-R breast 

cancer cells were grown in mono-culture (Mono) or cultured with MRC5 fibroblasts 

(Stroma), fibronectin (Fn), MatriGel (MG), or fixed MRC5 stromal cells (Fixed). Shown is 

expression of the indicated IRDS genes. B) Expression of interferons and IFN receptor 

genes do not change after stromal cell interaction. Shown is a heat map of microarray 

data from IRDS-R in mono- or co-culture. C) Type one and two interferons are not 

significantly increased after co-culture. Conditioned media from mono-culture of either 

1833 IRDS-R (BrCa), mono-culture of MRC5 cells (Stroma), or co-culture of both cells 

(BrCa + Stroma) was collected at the indicated days. Shown is protein concentration by 

ELISA for IFN-beta or IFN-gamma. D) Type one and type two interferon receptors are not 
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necessary for stroma-mediated protection. Shown is relative cell death four days after 10 

Gy RT for 1833 IRDS-R grown in either mono-culture or co-culture with MRC5 stromal 

cells. Either the type one (IFNAR1 or IFNAR2, top), type two (IFNGR1, bottom), or 

combination of receptors were disrupted by siRNA. E) Knockdown of type one interferon 

receptor inhibits MX1 gene induction by exogenous IFN-beta. Indicated units of IFN-beta 

were added to mono-culture of 1833 IRDS-R and MX1 expression was measured. F) 

Knockdown levels for IFN receptors, MYD88, and RIG-I. Shown are knockdown levels by 

qRT-PCR for each si/shRNA relative to cells transfected with a control si/shRNA. 

Knockdown of RIG-I by shRNA was confirmed by protein (inset). G) 1833 IRDS-R 

transfected with shRIG-I or control shRNA (shCont) were seeded in either mono-culture 

or co-culture with MRC5 stromal cells. At days 0, 4 and 6, cell growth was measured by 

luciferase-based luminescence. H) Purified exosomes (Exo) from co-culture conditioned 

media were confirmed by electron microscopy (EM), the presence of exosome markers 

(-actin, CD81, TSG101), and the absence of cytoplasmic (RIG-I) and nuclear (H2A.X) 

markers (top right). Total cell lysates (Cells) were used as comparison. Size distribution 

of exosomes from co-culture as measured from electron microscopy (bottom). I) 

Exosomes are primarily unidirectionally transferred from stromal cells to breast cancer. 

MRC5 stromal cells were labeled with DiD and 1833 IRDS-R were labeled with DiI lipid 

dyes. Shown is transfer from breast cancer to stromal cells (top row) and stromal to breast 

cancer cells (bottom row) in co-culture as measured by flow cytometry. Gates are based 

on fluorescence intensity in mono-culture. J) Exosomes are preferentially transferred to 

IRDS-R breast cancer cells. Breast cancer cells labeled with green lipid dye and stromal 

cells labeled with red dye were co-cultured. Shown are representative fluorescent 

microscopy images of the IRDS-R cell lines 1833 (top left) and MDA-MB-436 (top right), 

and the IRDS-NR cell lines SKBR3 (bottom left) and T47D (bottom right). White scale is 

40 microns. K) Transfer of exosomes from stromal to breast cancer cells is associated 

with stromal cells capable of inducing IRDS in breast cancer cells (IRDS Inducers). 

Conditioned media from co-cultures of 1833 IRDS-R with the indicated dye-labeled 

stromal cells was added to 1833 IRDS-R. Transfer was measured by percent dye positive 

cells using flow cytometry. All bar plots in figure are mean ± SD. Unless indicated, gene 

expression and exosome assays were performed after 24-48 hrs of culture or stimulation. 

 

Table 3: Genes Upregulated in IRDS-NR Breast Cancer Cells after Co-culture 

Gene ID Score(d) Fold Change 

PLAC8 14.5431909 28.09085581 

PRKCDBP 9.221590661 10.49678396 

XAF1 9.159420594 13.45391224 

IFI44L 8.630966681 52.79939189 

ADAMTS12 8.547922704 6.182649282 

SHC3 8.391804719 6.000001542 

HERC6 8.122650409 5.840422724 

ETV5 7.578174981 5.279498594 

GSTT2 7.445394817 5.44163875 

MX2 7.428942679 22.31605842 
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HERC5 7.021381942 8.603379553 

SLCO1B3 7.014907663 44.95708011 

CD68 6.801351721 8.175324573 

IFIT1 6.532348154 19.99911081 

STEAP1 6.396327872 13.63207023 

GFPT2 6.325927538 6.596892255 

VEGFC 6.062694438 7.596177013 

ACSL5 6.056073217 25.66990472 

TOX 5.911402089 3.777452313 

IRAK2 5.795246 4.7055435 

ITGA2 5.671427672 4.184668772 

OAS2 5.627284315 25.60423273 

CAPRIN2 5.607531074 6.306708439 

PTPRM 5.542675403 7.712387813 

EPSTI1 5.518995316 4.742798949 

IFI44 5.391417455 22.67533361 

DDX58 5.369773655 6.200664535 

IFIT2 5.352961567 11.83396763 

LY96 5.330794588 5.867075852 

SEMA7A 5.229840311 4.422835934 

MX1 5.189096757 14.92523243 

LARP6 5.143833741 2.879853859 

PLOD1 5.13750488 2.498201037 

IFI35 5.130687365 4.925987347 

TGM2 5.129137707 9.920706701 

EREG 5.084580087 11.83108307 

NDRG1 5.070357658 3.781942991 

BST2 5.037302933 11.83570251 

RAB34 5.029463527 4.773447437 

MYEOV 5.026889174 3.876167147 

CD22 5.012080297 3.640705892 

FLNB 4.972676373 2.248621915 

CDA 4.939545817 8.832433405 

PAQR5 4.912789473 4.724677753 

EPHA2 4.867721559 4.229377246 

CHST11 4.839302013 5.026698939 
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Exosome transfer is regulated by stromal RAB27B 

To determine whether the increased production of exosomes in co-culture primarily 

originated from stromal or breast cancer cells, we used a protein array of well-known 

exosome markers. This revealed that co-culture exosomes were much more similar to 

exosomes from fibroblasts compared to those from breast cancer cells (Figure 5A), 

arguing that enhanced exosome production in co-culture is primarily from stromal cells. 

Interrogation of stromal RAB GTPases commonly implicated in exosome secretion115 

revealed that stromal RAB27B transcript and protein were consistently induced after 

fibroblasts were co-cultured with IRDS-Rs but not with IRDS-NRs (Figure 5B, Figure 6A). 

Indeed, of all RAB GTPases on the microarray, RAB27B was elevated the most in 

fibroblasts after interaction specifically with IRDS-Rs (Figure 6B). Knockdown of RAB27B 

in fibroblasts (Figure 6C) inhibited the ability of CM from co-culture to stimulate IRDS 

genes (Figure 5C) but had no effect on non-IRDS genes such as MMP1 and CXCL1 

(Figure 6D). Accordingly, knockdown of RAB27B also interfered with exosome transfer 

from fibroblasts to IRDS-Rs (Figure 5D), a result observed with multiple siRNAs to 

RAB27B (Figure 6E). In contrast, inhibition of RAB27A, which was not differentially 

expressed in fibroblasts, had no effect (Figure 6F). In total, these data argue that exosome 

transfer from stromal to breast cancer cells and subsequent IRDS induction is regulated 

by stromal RAB27B.  
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Figure 5. Stromal exosomes are regulated by RAB27B and transfer 5’-triphosphate 

RNA to activate RIG-I in breast cancer cells. A) Exosomes were isolated from mono-

culture of MRC5 fibroblasts (Stroma) or 1833 IRDS-R (right) or from co-culture (left) and 

profiled by antibody array for the indicated exosome markers. GM130 is a check for 

cellular contamination. Positive (+) and negative (-) controls are labeled. B) Averaged 

microarray expression of the indicated RABs from MRC5 in mono-culture (Stroma) or after 

co-culture with IRDS-R or IRDS-NR are shown as a heat map. Immunoblot (right) for 

RAB27B protein expression in MRC5 after co-culture with MDA-MB-157 or 1833 IRDS-R 

(Figure 6A) compared to MRC5 mono-culture. C) IRDS expression in 1833 IRDS-R after 

addition of CM isolated from co-culture using MRC5 transfected with siRAB27B compared 

to siControl (n=3). D) Exosome transfer to 1833 IRDS-R after co-culture with or without 

RAB27B knockdown (left) or addition of co-culture CM cleared of debris and apoptotic 

bodies (right). E) Average IRDS gene expression (mean expression of IFIT1, MX1, and 

STAT1) in response to exosomes (Exo, n=5) or co-culture CM (n=6) plotted against RIG-

I levels after knockdown in 1833 IRDS-R. F) IRDS gene expression from two 

representative data points used to generate plot in Figure 3E are shown relative to 

siControl. G) IRDS gene expression after RNA from exosomes (ExoRNA), cellular RNA, 

or a positive control HCV RNA was transfected into 1833 IRDS-R with or without RIG-I 

knockdown (n=4). IFI16 is a non-IRDS gene used as a negative control. H) Expression of 

IRDS genes IFIT1 and MX1 resulting from transfection of ExoRNA after RNase treatment, 

or I) removal of 5’-monophosphate (5’-p) and/or 5’-triphosphate (5’-ppp) (n=3). An in vitro 

transcribed 5’-ppp RNA (IVT5’ppp) is used as a positive control. Shown are RNA motifs 

remaining after enzyme modification with alkaline phosphatase (AlkPase), Terminator 
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exonuclease (Term), and tobacco acid pyrophosphatase (TAP). IVT5’ppp serves as a 

control for RNA enzyme modification by AlkPase and TAP. J) Distribution of known gene 

transcripts and intergenic transcripts from rRNA-depleted exoRNA and cellular RNA from 

1833 IRDS-R co-culture (left). Distribution of major repetitive elements and transposable 

element classes for intergenic transcripts are shown on right. K) ExoRNA enrichment for 

major subfamilies of transposable elements and satellite sequences compared to cellular 

RNA. *p < 0.05. Unless noted, all bar plots in figure are mean ± SD of n biological 

replicates.  

 

5’-triphosphate exosome RNA activates RIG-I to induce the IRDS 

Since exosomes and RIG-I both influence the effects of stromal cells, we focused 

on a potential relationship between the two. When RIG-I was disrupted in 1833 IRDS-R, 

IRDS gene induction by co-culture CM and by purified exosomes was similarly inhibited 

(Figure 5E-F). RIG-I activation typically results from binding to viral RNA through 

recognition of specific motifs such as 5’-triphosphates rather than through sequence 

specificity45. To investigate if exosome RNA (exoRNA) can induce IRDS through RIG-I, 

exoRNA from co-culture exosomes was re-encapsulated into synthetic lipid vesicles and 

transfected into mono-culture 1833 IRDS-R. While total cellular RNA from co-culture failed 

to induce IRDS genes, exoRNA upregulated IRDS genes in a RIG-I-dependent manner to 

levels that were comparable to a viral HCV RNA used as a positive control (Figure 5G). In 

contrast, HCV RNA or exoRNA did not significantly increase non-IRDS genes such as 

IFI16, which normally responds to cytosolic DNA. Treatment with RNase but not DNase 

eliminated the ability of exoRNA, as well as an in vitro transcribed 5’-triphosphate control 

RNA (IVT5’ppp), to elevate IRDS genes (Figure 5H). Removal of 5’-phosphates revealed 

that the active RNA contains exposed 5’-phosphate ends and is not a typical protein-

coding mRNA with a 5’-cap (Figure 5I). Consistent with the known specificity of RIG-I for 

5’-triphosphates, IRDS induction was inhibited after specific removal of 5’-triphosphate 

from exoRNA or from the IVT5’ppp, while digestion of RNA containing 5’-

monosphosphates had no effect. Thus, exoRNA containing 5’-triphosphate activates RIG-

I to induce IRDS genes.  
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Sequencing of exoRNA isolated from co-culture of 1833 IRDS-R revealed no 

apparent match to viral genomes from 19 different viruses known to activate RIG-I. 

Instead, enrichment for human intergenic and non-coding transcripts was observed in 

exoRNA compared to total cellular RNA from co-culture (Figure 5J). In both cellular RNA 

and exoRNA, repetitive sequences accounted for a significant fraction of these intergenic 

transcripts; however, while snRNA-like repeats were the predominant class of repetitive 

elements in cellular RNA, transposable elements represented the largest class within 

exoRNA. Specifically, SINEs, LINEs, and LTR retrotransposons were markedly enriched 

among exoRNA repetitive elements, with the most prevalent subclasses augmented by 

10-fold or more (Figure 5K). Other repetitive sequences such as telomeric and centromeric 

satellite sequences were present at lower frequencies but demonstrated 100 to 1000-fold 

enrichment in exoRNA. Since transposable elements are one category of RNA 

polymerase III transcripts, which can have 5’-triphosphate motifs116,117, their enrichment 

suggests that they may contribute to exoRNAs capable of stimulating RIG-I. 
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Figure 6. Stromal cells capable of inducing breast cancer IRDS specifically 

upregulate RAB27B to control exosome transfer. A) RAB27B is increased in stromal 

cells after co-culture with IRDS-R breast cancer cells. Shown is a representative 

immunoblot for RAB27B expression in either MRC5 mono-culture (Mono) or co-culture 

with 1833 IRDS-R (Co-cx). Numbers indicate fold increase determined by densitometry. 

B) RAB27B is preferentially increased in MRC5 fibroblasts (Stroma) after co-culture with 

IRDS-R but not IRDS-NR breast cancer cells. Shown is heat map of relative expression 

of all RAB GTPases and similarly related RABs annotated on the microarray. Scale is 

shown. Values are normalized to mono-culture of MRC5.  RAB27B is marked by the arrow. 

C) Knockdown levels of TSG101 and RAB27B are shown by qRT-PCR relative to cells 

transfected with a control siRNA. D) Knockdown of TSG101 and RAB27B do not influence 

the ability of co-culture conditioned media to induce metastasis genes. Co-culture 

conditioned collected after knockdown of either TSG101 or RAB27B by siRNA was used 

to induce expression of CXCL1 or MMP1 in 1833 IRDS-R mono-culture. E) Knockdown 

levels of various siRNAs for RAB27B are shown by qRT-PCR relative to cells transfected 

with a control siRNA. On the right is exosome transfer using conditioned media from 1833 

IRDS-R co-cultured with dye-labeled MRC5 fibroblasts transfected with the indicated 

siRNAs to RAB27B. Conditioned media was added to 1833 IRDS-R and transfer 

measured flow cytometry. F) Knockdown of RAB27A does not affect exosome transfer to 

1833 IRDS-R.  
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Stroma-mediated paracrine anti-viral signaling and juxtracrine NOTCH3 signaling 

enhance transcription of NOTCH target genes 

Although RIG-I and STAT1 are necessary for stroma-mediated resistance, 

separation of breast cancer cells from stromal fibroblasts using a transwell filter large 

enough for exosome passage resulted in retained IRDS induction but loss of RT 

resistance (Figure 7A). This suggests that the anti-viral pathway may work with an 

additional juxtacrine pathway to control stroma-mediated protection. To explore this, we 

computationally constructed a juxtacrine interactome between IRDS-Rs and fibroblasts 

using differentially expressed genes from each cell type combined with protein-protein 

interaction data (Figure 8A). This revealed that NOTCH3 expression was increased in 

IRDS-R breast cancer cells after co-culture, and its membrane-bound ligand JAG1 was 

both induced in fibroblasts and constitutively elevated in IRDS-Rs. Protein analysis 

confirmed that NOTCH3 was expressed at low levels in 1833 IRDS-R, but both its 

expression and its cleaved intracellular domain increased after fibroblast interaction 

(Figure 7B). In contrast, expression of NOTCH1, 2, and 4 did not change.  
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Figure 7. STAT1 enhances the transcriptional response to juxtacrine NOTCH3 

signaling that is required for stroma-mediated protection. A) Cell death of 1833 IRDS-

R in co-culture after RT. MRC5 fibroblasts were separated by a transwell filter large 

enough to allow exosome passage (n=3). B) Immunoblot of the indicated NOTCH family 

members in 1833 IRDS-R after mono-culture (M) or co-culture (C). Arrow indicates 

cleaved intracellular domain. C) Expression of NOTCH target genes in IRDS-R and IRDS-

NR after co-culture, and D) after STAT1 knockdown in 1833 IRDS-R after co-culture. 

NOTCH targets were experimentally defined by GSI washout (Table 4) and used in Gene 

Set Analysis. E) Expression of the indicated NOTCH target gene primary transcript (PT) 

in 1833 IRDS-R (n=3). F) Expression of HEY1 PT in response to doxcycyline (Dox) 

induced NICD3 in 1833 IRDS-R with or without addition of co-culture CM (mean  SEM, 

n=6-8). Inset shows NICD3 levels after Dox addition (µg/ml). G) Expression of the 

indicated primary transcripts to NICD3 after addition of co-culture CM or CM depleted of 

exosomes (Exo dep). CM compared to CM depleted of exosomes is used for significance 

levels (mean  SEM, n=4-6). H) ENCODE ChIP data for STAT1 occupancy of the HEY1 

proximal promoter region is shown along the indicated genomic coordinates. Bar plots 

show STAT1 ChIP from 1833 IRDS-R with and without addition of CM (left) and after 

mono- or co-culture (right). Relative position upstream of the transcriptional start site 

(TSS) is labeled on the x-axis for each bar plot. Shown are two representative experiments 

(mean ± SD) out of four total. I) Expression of HEY1 and HES1 mRNA or primary 

transcripts in response to NICD3 and co-culture CM in 1833 IRDS-R with and without 

STAT1 knockdown (mean  SEM, n=4-7). p<0.10, *p < 0.05. Unless noted, all bar plots 

in figure are mean ± SD of n biological replicates.   
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To investigate how anti-viral signaling and NOTCH3 might interact, we explored 

whether STAT1 facilitates transcription of NOTCH-dependent genes. Gene set 

enrichment analysis of NOTCH target genes, which we defined by GSI washout 

experiments (Table 4), confirmed upregulation of NOTCH targets in IRDS-Rs but not 

IRDS-NRs after co-culture (Figure 7C). Knockdown of STAT1 not only inhibited stroma-

mediated upregulation of NOTCH target mRNAs (Figure 7D) but also blunted the primary 

transcripts for canonical NOTCH targets HE2 and HEY1 (Figure 7E), consistent with 

STAT1 exerting transcriptional control over these genes. To better characterize this, we 

utilized doxycycline inducible NOTCH3 intracellular domain (NICD3) to constitutively 

activate NOTCH3 in 1833 IRDS-R and added exosome-containing CM to initiate anti-viral 

signaling. As measured by the HEY1 primary transcript, CM augmented responsiveness 

to NICD3 (Figure 7F). Depletion of exosomes from CM inhibited this effect on the HEY1 

primary transcript (Figure 7G) and mRNA (Figure 8B), and similar results were noted for 

HE2. The exosome-dependent increase in HEY1 and HE2 transcripts in the absence of 

NICD3 induction is likely due to baseline NOTCH and/or leakiness of the inducible system. 

Table 4: Notch Target Genes Defined by GSI Washout 
 
 
 
  

Gene Symbol Average Fold Change 

HES1 17.46 

NOTCH3 10.94 

HEY2 5.86 

CDKN1A 3.53 

HES7 3.21 

HEYL 3.19 

HEY1 3.07 

MFNG 2.84 

DLL1 2.78 

HES2 2.55 

HES3 2.49 

DLK1 2.39 

JAG1 2.29 

HES4 1.75 

MAML1 1.61 

HES5 1.55 

DTX2 1.44 
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Interrogation of ENCODE data revealed STAT1 occupancy at several locations 

within active proximal promoters of multiple NOTCH targets, including HEY1 and HE2 

(Figure 7H, Figure 8C). Chromatin immunoprecipitation (ChIP) for STAT1 demonstrated 

that activation of anti-viral signaling by CM or by co-culture increased STAT1 occupancy 

in the HEY1 promoter, particularly between the TSS and -2kB where the ENCODE data 

were the most significant (Figure 7H). STAT1 ChIP analysis for HE2 was similar (Figure 

8C). Despite high constitutive NICD3, knockdown of STAT1 in 1833 IRDS-R decreased 

primary transcript and mRNA levels for HE2 and HEY1 after activation of anti-viral 

signaling, consistent with the functional importance of at least some of the STAT1 sites in 

cooperating with NICD3 (Figure 7I). In contrast, although NOTCH3 itself is a NOTCH 

target (Table 4), the proximal promoter of NOTCH3 appears devoid of STAT1 sites by 

ENCODE. Accordingly, CM had no effect on the NOTCH3 primary transcript (Figure 8D), 

suggesting that STAT1 affects transcription of NOTCH targets, rather than the NOTCH3 

gene. Thus, paracrine-activated STAT1 can cooperate with juxtacrine-activated NOTCH3 

to augment the transcriptional response of multiple NOTCH targets. 
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Figure 8. Juxtacrine NOTCH3-JAG1 cooperates with STAT1 to transcriptionally 

enhance NOTCH target genes in breast cancer. A) Computational construction of 

extracellular interactome between IRDS-R breast cancer and MRC5 stromal cells 

identifies NOTCH3 and JAG1. See Extended Experimental Procedures for details. Degree 

of gene expression after co-culture is color-coded (increasing shade of red is higher) in 

the directed interaction graph that displays either heterotypic or homotypic interactions. 

Black box shows NOTCH3/JAG1 interaction. Breast cancer and MRC5 genes can be 

either induced or expressed at higher levels in IRDS-R vs. IRDS-NR breast cancer cells 

in co-culture, as indicated in the label below each directed graph. Arrows go from genes 

expressed in cell listed first in the label to cell listed second. B) Depletion of exosomes 

inhibits the ability of co-culture conditioned media (CM) to enhance HEY1 and HES1 after 

NICD3 induction in 1833 IRDS-R. Relative expression of the indicated mRNA is shown 

(n=4-6, mean ± SEM). CM compared to CM depleted of exosomes (Exo dep) is used for 

significance levels (*p < 0.05, two-sample, one-tailed, t-test). C) STAT1 binds to the 

proximal promoter of HES1 after activation of anti-viral signaling. ENCODE ChIP data for 

STAT1 occupancy of the HES1 proximal promoter region is shown along the indicated 

genomic coordinates. Bar plots show STAT1 ChIP from 1833 IRDS-R with and without 

addition of co-culture CM. Relative position upstream of the transcriptional start site (TSS) 

is labeled on the x-axis. D) Anti-viral signaling does not influence the transcriptional 

response of NOTCH3 to NICD3. Relative expression of NOTCH3 primary transcript (PT) 

in response to increasing levels of NICD3 by doxycycline induction (µg/ml) with or without 

co-culture CM (n=6). Unless noted, all bar plots in figure are mean ± SD. Gene expression 

and ChIP assays were performed after 24-48 hrs of culture or stimulation. 
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STAT1 and NOTCH3 control stroma-mediated resistance through the expansion of 

therapy resistant breast cancer cells 

Both anti-viral and NOTCH signaling have roles in controlling normal and cancer 

stem cells109,118. Indeed, NOTCH and its target genes were previously shown to help 

maintain a subpopulation of CD44+CD24low+ cells that have tumor-initiating properties 

(e.g., increased mammosphere and tumor formation)110. Since tumor-initiating cells (TICs) 

are known to be resistant to RT/chemo, we investigated if stromal cell interaction might 

lead to the expansion of such therapy resistant cells (TRCs). Indeed, co-culture resulted 

in the upregulation of a gene signature associated with TICs119 (Figure 9A) and in the 

expansion of the CD44+CD24low+ subpopulation of 1833 IRDS-R (Figure 9B). This 

CD44+CD24low+ population is resistant to both RT and chemotherapy compared to 

CD44+CD24neg counterparts (Figure 9C) and enriches after genotoxic damage (Figure 

10A). Co-culture with fibroblasts prior to seeding increased mammosphere formation 

(Figure 9D), and knockdown of STAT1 or inhibition of NOTCH3 with either RNAi or GSI 

inhibited both mammosphere formation (Figure 9E) and enhancement of the TIC gene 

signature (Figure 9A). Similar STAT1-dependent stromal cell activation of NOTCH3 and 

expansion of mammospheres were observed in other IRDS-Rs as well (Figure 10B-D). 

Constitutive activation of NOTCH3 in mono-culture also led to modest expansion of both 

mammospheres and CD44+CD24low+ cells (Figure 9F, Figure 10E). In accordance with an 

expansion of CD44+CD24low+ TRCs, the proportion of surviving mammospheres was 

higher after irradiation of cells seeded from co-culture compared to mono-culture (Figure 

9G). Thus, these results suggest that STAT1 and NOTCH3 can drive expansion of breast 

cancer TRCs. 

Like with STAT1, knockdown of NOTCH3 with multiple different siRNAs inhibited 

both stroma-mediated expansion of breast cancer TRCs and resistance (Figure 9H, Figure 
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10F-G). Inhibiting JAG1 also inhibited RT resistance after co-culture with the greatest 

effect occurring after disruption in both 1833 IRDS-R and fibroblasts (Figure 9I, Figure 

10H), consistent with the interactome results showing JAG1 upregulation in both cell 

types. Expression of NICD3 in mono-culture 1833 IRDS-R partially recapitulated the 

protective effect of stromal cells (Figure 9J). Similarly, ectopic NICD3 partially rescued the 

effect of STAT1 knockdown on stromal cell protection (Figure 9K). These partial effects 

on resistance parallel the partial transcriptional responses of NOTCH target genes when 

only STAT1 or NOTCH3 were fully engaged. Together, these data suggest that stroma-

mediated resistance results from cooperation between STAT1 and NOTCH3 to expand 

and/or maintain breast cancer TRCs. 

Figure 9. Stromal cells drive the expansion of a subpopulation of therapy resistant 

breast cancer cells through anti-viral STAT1 and NOTCH3 signaling. A) Gene Set 

Analysis comparing IRDS-R in mono-culture versus co-culture with MRC5 fibroblasts, or 

comparing 1833 IRDS-R in co-culture transfected with siSTAT1 vs. siControl. B) 

Percentage of CD44+CD24low+ 1833 IRDS-R after co-culture with MRC5. All CD24low+ cells 
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are also CD44+. C) Survival of sorted CD44+CD24low+ and CD44+CD24neg cells after 10 Gy 

RT or 4 M doxorubicin (chemo). Number of mammospheres from 1833 IRDS-R after D) 

co-culture, or E) co-culture following knockdown of STAT1 (siS1), NOTCH3 (siN3), or 

control (siCt), or after treatment with the GSI DAPT. F) Number of mammospheres after 

NICD3 induction by doxycycline in mono-culture. G) Proportion of surviving 

mammospheres relative to untreated control in mono- or co-culture after 3 Gy RT. Cell 

death after 10 Gy RT following H) knockdown of NOTCH3 in 1833 IRDS-R, I) knockdown 

of JAG1 in 1833 IRDS-R, MRC5 (Stroma), or both (n=4), J) expression of NICD3 (n=7), 

or K) STAT1 knockdown with and without NICD3 expression (n=3-4). L) Cell death of 

IRDS-Rs and IRDS-NRs after 10 Gy RT and treatment with the GSI DAPT or DMSO (n=5-

10). M) Photon flux from mice xenografted subcutaneously with luciferase-labeled 1833 

IRDS-R with or without MRC5 fibroblasts (Stroma) and treated 7 days later with 8 Gy RT, 

the GSI DAPT, both, or untreated. Mean values (black “X”) are connected by blue line. 

Representative tumors after treatment are inset. In presence of stroma, tumor response 

was associated with RT (p < 0.001) and GSI (p=0.004). Without stroma, RT (p=0.019) but 

not GSI (p=0.79) was associated with response. N) Percentage of CD44+CD24low+ cells in 

tumors from mice xenografted with 1833 IRDS-R with and without MRC5 stroma 7 days 

after the indicated treatment. O) Survival of these mice, which are independent cohorts 

from that used in Fig. 5M. *p < 0.05. Unless noted, all bar plots in figure are mean ± SD of 

n biological replicates. 

 

NOTCH inhibition reverses stroma-mediated resistance of IRDS responders and improves 

survival in vivo 

Considering that the NOTCH3 and STAT1 pathways are necessary for stroma-

mediated resistance in IRDS-Rs, we investigated whether a GSI could selectivity reverse 

the protective effects of stromal cells. For IRDS-Rs, treatment with the GSI DAPT 

completely or partially reversed the protective effects of fibroblasts and had only small 

effects in mono-culture (Figure 9L). In contrast, for IRDS-NRs neither co-culture nor GSI 

discernibly affected cytotoxicity after RT. In vivo, admixing fibroblasts with luciferase-

labeled 1833 IRDS-R resulted in the upregulation of NOTCH targets (Figure 10I). 

Treatment with GSI alone decreased NOTCH targets (Figure 10J) but had only a mild or 

insignificant effect on breast cancer growth in the presence (p=0.083) or absence (p=0.67) 

of admixed fibroblasts (Figure 9M). With RT, the presence of fibroblasts protected breast 

cancer (p=0.026); however, three consecutive doses of GSI starting from the day of RT 

reversed this protection. Moreover, GSI prevented the in vivo enrichment of 

CD44+CD24low+ TRCs observed after RT (Figure 9N), and the combination of RT and GSI 
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rendered nearly 30% of mice tumor-free compared to 0% with RT or GSI alone (Figure 

9O). Thus, for IRDS-R basal-like breast cancers the combination of GSI and genotoxic 

therapy prevents stroma-mediated expansion of TRCs adept at tumor re-initiation. 

Figure 10. NOTCH3 expands therapy resistant tumor-initiating cells and can be 

targeted by GSI. A) CD44+CD24low+ subpopulation is enriched among surviving cells after 

RT. The 1833 IRDS-R breast cancer cells were irradiated with 10 Gy and the proportion 

of CD44+CD24low+ cells (blue) and CD44+CD24neg cells (grey) were measured by flow 

cytometry. The percentage of lives cells relative to an untreated control is also shown 

(red). B) In response to MRC5 stromal cells, MDA-MB-436 IRDS-R breast cancer cells 

induce NOTCH3 protein, and C) upregulate NOTCH target genes in a STAT1- and 

NOTCH3-dependent manner. Irrelevant lanes in the immunoblot were deleted. Relative 

expression of indicated NOTCH targets genes with and without knockdown of STAT1 or 

NOTCH3 is shown (n=3). D) Number of mammospheres from MDA-MB-436 IRDS-R after 

mono- or co-culture (left), or after co-culture following treatment with the GSI DAPT (right). 

E) Increase in CD44+CD24low+ subpopulation after ectopic NICD3 expression. Shown are 

results from flow cytometry using 1833 IRDS-R transfected with a control vector or a 

doxycycline-inducible NICD3 after addition of doxycycline (n=3). F) Knockdown of 

NOTCH3 using multiple different siRNAs inhibits stroma-mediated protection in co-culture. 

Knockdown was performed in 1833 IRDS-R. Shown is relative cell death four days after 

10 Gy RT (n=2). G) Knockdown levels of NOTCH3 using the individual siRNAs are shown 
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by immunoblot. H) Knockdown levels of JAG1 by qRT-PCR relative to cells transfected 

with a control siRNA. I) NOTCH target genes defined by GSI washout are elevated by 

MRC5 fibroblasts in vivo. Shown is a heat map of relative expression from xenografted 

1833 IRDS-R tumors with or without admixed MRC5 stromal cells. Expression is relative 

to values observed in tumors comprised of 1833 IRDS-R alone. J) On-target effects of 

GSI treatment in vivo. 1833 IRDS-R were xenografted with or without MRC5 fibroblasts 

and mice were treated with or without the GSI DAPT. After 48 hours, tumors were 

harvested and expression of the indicated genes was examined (n=3). In vitro protein and 

gene expression assays were performed after 48 hrs of culture. 

 

Expression of anti-viral and NOTCH3 pathways in primary human and mouse basal-like 

breast cancer 

To investigate potential disease relevance, we examined whether basal subtype 

primary human breast cancers show expression and activation of anti-viral/NOTCH3 

pathways in ways predicted by our experimental models. We first analyzed protein 

expression of RAB27B, STAT1 and NOTCH3 in primary human triple-negative breast 

cancers (TNBC), which overlap with the basal subtype. RAB27B showed strong stromal 

staining in 71% of TNBC tumors (Figure 11A). By image analysis, the intensity of STAT1 

preferentially exhibited a strong tumor-stroma border pattern also in 71% of TNBC 

samples. For NOTCH3, this tumor-stroma border pattern was more subtle, possibly 

because NOTCH3 and JAG1 are themselves NOTCH targets, but was discernible in 29% 

of TNBC cases. Examination of tumors from TNBC patient-derived xenografts (PDX) also 

demonstrated strong tumor-stroma border patterns for STAT1 and NOTCH3 (Figure 11B). 

Moreover, breast tumors from the K14cre;BRCA1F/F;p53F/F mice, which is a model of basal 

subtype breast cancer120, revealed patterns of staining similar to primary human TNBC 

(Figure 11B). In contrast, a distinct tumor-stroma border pattern was rarely observed in 

ER+ primary tumors for either STAT1 (14%) or NOTCH3 (0%) and was not observed in 

ER+ PDX tumors (Figure 12A). Thus, in both human and mouse basal-like tumors, key 

drivers of anti-viral/NOTCH3 signaling can show preferential localization around sites of 

tumor-stroma interaction. 
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Figure 11. Expression of anti-viral and NOTCH3 pathway predict IRDS and NOTCH 

target gene expression in primary human and mouse tumors. A) Expression of 

RAB27B, STAT1, and NOTCH3 in primary human triple negative breast cancer (TNBC), 

or B) in TNBC patient-derived xenografts (PDX) and basal-like tumors from 

K14Cre;BRCA1F/F;p53F/F conditional knockout mice. Arrows show representative areas of 

stroma. Insets for TNBC images show darker staining regions (red) segmented from 

lighter regions. Semi-quantitation of expression in stroma (S), tumor (T), or tumor-stroma 

borders (B) is indicated. Vertical bar is 200 microns. A total of seven primary TNBC tumors 

were scored. Two out of 2 PDX and 3 out of 3 mouse tumors gave similar results. Shown 

are representative images and semi-quantitation.  C) Box-and-whisker plots of expression 

values for the indicated RABs from primary human breast cancer stroma (Tumor) or 

normal stroma (Norm) using the Stroma series. D) Importance scores (higher is more 

predictive) from a RF regression model (variance explained: 55.1%) to predict breast 

cancer IRDS expression using the NKI295 series. Adjusted effect of RIG-I on IRDS 

expression (right). E) Heat map and scale showing expression of all available NOTCH 

receptors in breast cancer (brown) and NOTCH ligands in stroma (green) from the LCMD 

series. These were used to predict the average expression of NOTCH target genes in 

breast cancer (variance explained: 30.2 ± 1.1%) defined by GSI washout (NOTCH Meta). 

On the right are importance scores from Monte Carlo replications. 

 

To investigate whether similarities in localization of anti-viral and NOTCH3 proteins 

between in vivo tumors and in vitro models are accompanied by expected gene expression 
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changes in IRDS and NOTCH target genes, we used three distinct sets of gene expression 

data from primary human breast cancer. The Stroma series is a 53-sample set of breast 

cancer stroma and adjacent normal stroma, the NKI295 series is comprised of 295 primary 

human breast tumors confirmed to be largely cancer cells, and the LCMD series contains 

28 paired primary tumor and stroma samples that were separated by laser-capture 

microdissection. Consistent with breast cancer inducing stromal RAB27B, the Stroma 

series revealed higher RAB27B expression in tumor stroma compared to adjacent normal, 

while other RABs on average had similar or decreased expression (Figure 11C). Using 

the NKI295 series, RIG-I was the best predictor of IRDS status compared to other PRRs 

and interferon-related genes (Figure 11D). Of all available NOTCH family receptors and 

ligands on the LCMD series array (Figure 11E), breast cancer NOTCH3 and stromal JAG1 

were the best at predicting expression of breast cancer NOTCH targets (Table 4) as 

measured by their average expression (metagene). Moreover, when breast cancer 

NOTCH3 was paired with breast cancer RIG-I, and stromal JAG1 was paired with stromal 

RAB27B, high expression of the two pairs cooperatively predicted high NOTCH metagene 

expression (Figure 12B-C). In total, these data indicate that gene expression changes 

attributed to the anti-viral and NOTCH3 pathways can be observed in primary tumors.  
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Figure 12. Stromal RAB27B and JAG1, and breast cancer RIG-I and NOTCH3, 

cooperate to predict expression of breast cancer NOTCH target. A) STAT1 and 

NOTCH3 do not preferentially localize to tumor-stroma borders in ER-positive breast 

cancer. PDX tumors are on the top row and primary human tumors are on the bottom row. 

Black arrow marks a myoepithelial layer (non-cancer cells) that shows NOTCH3 staining. 

Black bar is 200 microns. For primary human tumors, 7 samples were analyzed. Shown 

are representative images. B) The mechanistic interactions between stroma and breast 

cancer genes can be inferred by statistical interactions. Statistical interactions are 

detected when the joint importance score of multiple genes is greater than the sum of 

individual importance scores. Stromal genes, RAB27B and JAG1, and breast cancer 

genes, RIG-I and NOTCH3, were used in a RF regression model to predict breast cancer 

NOTCH activation (model explains 35.3 ± 1.0% (SD) of the total variance). Top graph 

shows importance scores of each gene (blue dots). Middle plot shows model error rate 

(lower is better) for all pathway genes (blue dot). Bottom graph displays importance scores 

(blue dots) for the stromal genes, breast cancer genes, the sum of these values (Additive), 

and the joint importance score for all genes (Joint). For comparison, distribution of 

importance scores (grey) or error rates (yellow) for random genes is shown using box-

and-whisker plots with the 5% and 95% quantiles marked (red X). C) Adjusted effects of 

stromal and breast cancer genes on breast cancer NOTCH metagene expression from 

the RF model. Red dashed lines are ± two standard errors. D) NOTCH3 together with 

either breast cancer JAG1 or stromal JAG1 predicts NOTCH metagene expression. The 

LCMD series was used to predict breast cancer NOTCH metagene expression. NOTCH3 

and JAG1 in breast cancer (BrCa) and NOTCH ligands in stroma were used as x-variables 
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in a RF regression model. Gene expression is displayed in the heat map. Below the heat 

map is a plot of the distributions of importance scores from 100 Monte Carlo replications 

(used to obtain better estimates from a small sample size). The RF model explains 26.7 ± 

1.2% (SD) of the total variance.  

 

Because STAT1 enhances the transcriptional response to NOTCH3 in IRDS-R 

breast cancer, high NOTCH target gene expression is expected to associate with high 

NOTCH3/JAG1 and high STAT1 activity in basal subtype tumors. To examine this, we 

used the NKI295 series and substituted stromal JAG1 with breast cancer JAG1, as stromal 

genes cannot be evaluated and breast cancer JAG1 was comparable to stromal JAG1 at 

predicting NOTCH target gene expression (Figure 12D). For STAT1 activity, we used the 

clinical IRDS classifier since it includes STAT1, and STAT1 both regulates (Figure 1H) 

and correlates with IRDS status (Spearman’s correlation coefficient 0.79, p < 0.001). As 

expected, increasing NOTCH3 resulted in higher likelihood of NOTCH pathway activation 

(Figure 13A). The probability was highest when NOTCH3, JAG1, and IRDS were all high, 

particularly for basal subtype tumors (red dots, upper right plot), a result that was 

recapitulated in basal-like tumors from the K14cre;BRCA1F/F;p53F/F mouse model (Figure 

13B). Thus, these results suggest that anti-viral signaling preferentially facilitates the 

transcriptional response to NOTCH3 in primary human and mouse basal subtype tumors. 
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Figure 13. NOTCH3 and STAT1/IRDS cooperate to predict NOTCH target genes and 

clinical resistance to chemotherapy and RT preferentially in basal-like breast 

cancers. Prediction of NOTCH target gene expression by IRDS and NOTCH3/JAG1 in A) 

primary human tumors and in B) basal-like tumors from the K14Cre;BRCA1F/F;p53F/F 

conditional knockout mice. For human tumor analysis, the NKI295 series was used. The 

probability of NOTCH pathway activation as measured by the NOTCH metagene is shown 

on the y-axis with probabilities for basal (red dots) or non-basal (blue dots) tumors 

displayed separately. The percentage of tumors with greater than 80% probability of 

NOTCH activation is inset. A LOWESS regression line (black dashed line) is shown. IRDS 

and JAG1 were equally divided into low, intermediate, and high values. For mouse tumor 

analysis, IRDS, NOTCH3, and JAG1 expression were dichotomized into only high and low 

due to smaller sample size. Mean value is marked by red line. C) Heat map showing 

probabilities of NOTCH activation and NOTCH3 expression for each patient (columns) in 

the NKI295 series. All values are scaled between 0 and 1. Hatches below the heat map 

show status for IRDS(+), NOTCH3(hi), and the indicated molecular subtypes. On the right 

is Gene Set Analysis for the same TIC signature used in Fig. 5A and compares 

NOTCH3(hi)/IRDS(+) tumors to those that are NOTCH3(lo) and/or IRDS(-). D) Survival 

after adjuvant chemotherapy of patients from the NKI295 series stratified by NOTCH3 and 

IRDS. Overall p-value is shown. E) Hazard ratios and 95% confidence intervals from Cox 

regression analysis for breast cancer survival using NOTCH3 as a continuous variable, 

IRDS status (positive vs. negative), and MammaPrint (Mamma) metastasis signature 

status (positive vs. negative). All patients received adjuvant chemotherapy. Hazard ratio 

for NOTCH3 is per unit increase in expression. Analyses are also stratified by IRDS status 
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and basal vs. non-basal subtype tumors. Values are not shown if there are too few patients 

in the group. F) Relapse in irradiated region (local-regional control) after adjuvant RT. G) 

Hazard ratio from Cox regression for relapse in the Stroma series using stromal RAB27B 

as a continuous variable. H) Model of the tumor-stroma anti-viral/NOTH3 pathways 

controlling RT/chemo resistance. 

 

Anti-viral/NOTCH3 pathway genes predict clinical resistance to chemotherapy and RT 

Having shown that NOTCH3 and the IRDS contribute to predicting NOTCH 

activation in the NKI295 series, we examined whether both pathways function together to 

predict clinical resistance to chemotherapy and RT. NOTCH3 was dichotomized using a 

mean cut-point, and for consistency, IRDS status was defined using our original seven-

gene clinical classifier. Interestingly, 31% of NOTCH3(hi)/IRDS(+) tumors belonged to 

either the basal or claudin-low subtype (Figure 13C; p < 0.01 by chi-squared test), two 

basal-like subtypes that are enriched in cancer stem cell-like features121. Consistent with 

this, NOTCH3(hi)/IRDS(+) tumors showed enrichment of the same breast cancer TIC 

signature upregulated in IRDS-R cells after co-culture (Figure 13C and 9A), suggesting 

these tumors could also contain TRCs. Indeed, among the patients who received 

chemotherapy, those with the highest risk of breast cancer-specific death were 

NOTCH3(hi)/IRDS(+) (Figure 13D). Cox regression using continuous values rather than 

arbitrary cut-offs for NOTCH3 demonstrated that higher NOTCH3 augmented risk only 

among patients with tumors that were IRDS(+) and/or basal subtype (Figure 13E). The 

effect of both pathways on survival was distinct from metastasis risk as both were 

independent of the MammaPrint metastasis signature122, and neither were predictive 

among patients not receiving chemotherapy (Figure 14A). NOTCH3(hi)/IRDS(+) patients 

were also the most likely to fail RT (Figure 13F). Finally, using the Stroma series, we found 

that high stromal RAB27B predicted poor survival, while other RABs showed no 

association (Figure 13G and Figure 14B). In total, the anti-viral/NOTCH3 pathways predict 

clinical resistance, particularly for basal subtype tumors. 
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Figure 14. Breast cancer survival is neither predicted by IRDS and NOTCH3 in the 

absence of chemotherapy nor by multiple RABs. A) NOTCH3 and IRDS do not predict 

survival in patients who do not receive chemotherapy. Cox regression for breast cancer 

survival using NOTCH3 as a continuous variable, IRDS status (positive vs. negative), and 

MammaPrint (Mamma) metastasis signature status (positive vs. negative). Shown are 

hazard ratios (red dot), 95% confidence intervals (blue line), and p-values for patients who 

did not receive chemotherapy. Since NOTCH3 is a continuous variable, its hazard ratio is 

per unit increase in NOTCH3 expression. Analyses are also stratified by IRDS status and 

basal vs. non-basal subtype. B) Other RABs besides RAB27B that have been implicated 

in the regulation of exosome secretion do not predict breast cancer relapse. The indicated 

RAB gene from the Stroma series was used as a continuous variable in Cox regression. 
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Discussion 

We demonstrate that interaction of stromal cells with breast cancer cells results in 

paracrine and juxtacrine signaling events to drive stroma-mediated resistance (Figure 

13H). First, stromal cells increase RAB27B and transfer 5’-triphosphate RNA in exosomes 

to activate RIG-I anti-viral signaling in breast cancer cells. Second, breast cancer cells 

induce NOTCH3 to make the receptor available for engagement with JAG1. The paracrine 

and juxtacrine pathways converge as STAT1 facilitates the transcriptional response to 

NOTCH3, resulting in the expansion of therapy resistant TICs. Consistent with this, 

stromal cells mediate both decreased cell death and continued tumor growth after RT. 

Blocking the NOTCH pathway re-sensitizes tumors to RT, rendering mice tumor-free. 

These biological interactions between anti-viral and NOTCH3 signaling are mirrored by 

statistical evidence that they jointly influence NOTCH activation and treatment resistance 

in primary human basal-like breast cancers.  

The role of exosomes in cancer as mediators of cell-cell communication with the 

microenvironment has gained increasing attention. Functionally, exosomes have 

intriguing and elaborate roles in cancer progression and can transfer a variety of proteins, 

DNA, and RNA that can explain some of their effects84,123. Our data suggests that RNA 

contained within exosomes is enriched in non-coding transcripts and can activate RIG-I. 

Consistent with the known properties of RIG-I stimulatory viral RNA45, 5’-triphosphates are 

similarly required for exoRNA to activate RIG-I. Sequencing exoRNA revealed no 

evidence of viral transcripts, rather exoRNA was enriched in transposable elements and 

other repetitive sequences, many of which are known or putative RNA polymerase III 

transcripts. RNA polymerase III transcripts can contain 5’-triphosphates and likely are 

largely non-coding117. Although the quantity and diversity of non-coding human transcripts 

is large124 and RIG-I is not known to overtly show sequence-specific binding, the 
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enrichment for transposable elements and other repetitive elements in exosomes is 

interesting given the viral origins of some of these sequences116. Despite prolific 

incorporation into the genome, it is notable that these elements are normally 

transcriptionally silenced but can be de-repressed to high levels in cancer125. When 

expressed, these elements can also exhibit subcellular partitioning into the nucleus and 

the cytoplasm126. Accumulation of transposable elements can result in autoimmunity with 

elevated ISGs in normal tissue56. Thus, our results suggest that non-coding RNA found in 

exosomes and similar microvesicles127,128 may coax anti-viral responses to influence 

treatment resistance, potentially adding to the increasing evidence that atypical RNA 

transcripts can contribute to human disease.  

Both anti-viral/interferon signaling and the NOTCH pathway are known to regulate 

the maintenance of normal and cancer stem-like cells. Interestingly, inflammatory/stress 

signaling involving STAT can function with NOTCH signaling in development and in 

homeostasis to influence self-renewal35,129 (Kux and Pitsouli, 2014). For example, in 

Drosophila, inflammation and stress in the midgut leads to compensatory intestinal stem 

cell proliferation that is regulated by STAT. STAT can be activated non-cell autonomously 

by damaged cells, while distinct levels of NOTCH controls intestinal stem cell commitment 

and differentiation. Our findings that stromal fibroblasts can secrete exosomes to induce 

anti-viral signaling in breast cancer cells, and that STAT1 promotes NOTCH3-driven 

expansion of therapy resistant TICs, highlight an unexpected way that these two 

evolutionarily conserved pathways converge to influence cell fate in cancer.  

The mechanisms whereby basal-like tumors are preferentially protected by stroma 

through anti-viral/NOTCH3 signaling require further investigation. One mechanism 

indicated herein may be the capacity of basal-like breast cancer cells to coerce stromal 

cells to augment exosome secretion. RAB27B is uniquely induced in stromal cells by 

IRDS-R but not IRDS-NR breast cancer, and evidence from primary human tumors also 
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distinguishes it from other RABs. However, alternative methods to either increase 

exosome production in the microenvironment or instigate similar anti-viral signaling (e.g., 

immune cells) may also exist. Other factors that might contribute to differences in the way 

basal-like tumors respond to stroma include defects in the BRCA1 pathway, which have 

been associated with basal and claudin-low tumors121. It is notable that two of the IRDS-

R breast cancer cell lines have reported mutations in BRCA1130, and BRCA1 null mouse 

mammary tumors show evidence for the anti-viral/NOTCH3 pathway. As a cell extrinsic 

mechanism of resistance, the protective effect of stroma may be critical for certain breast 

cancers with intrinsic DNA damage sensitivity.  

Extrapolating the relevance of findings from model systems to human disease is 

often challenging. In this study, extensive statistical modeling of primary tumor expression 

data was used to support the mechanisms dissected from experimental models. 

Specifically, primary tumor data suggest that 1) RIG-I is a driver of the IRDS, 2) breast 

cancer NOTCH3 and stromal JAG1 are important regulators of NOTCH target gene 

expression, 3) NOTCH3 and STAT1 are localized to sites of tumor-stroma interaction, 4) 

STAT1 facilitates the transcriptional response to NOTCH3, 5) IRDS/STAT1 and NOTCH3 

identify patients with both high NOTCH target genes and chemo/RT resistant tumors, and 

6) high IRDS/NOTCH3 is preferentially observed in basal and claudin-low subtype primary 

tumors, which are known to be enriched in cancer stem cell-like features121. These 

observations, combined with pre-clinical studies showing that GSI can reverse the effects 

of stromal cells on TRC expansion, tumor growth after genotoxic damage, and survival 

suggest the disease relevance of our findings. Together, the anti-viral and NOTCH3 

pathways may serve as companion biomarkers and druggable targets for stroma-

mediated resistance. 
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CHAPTER 3: VIRUS MIMICRY IN THE TUMOR MICROENVIRONMENT ACTIVATES 

RIG-I THROUGH UNSHIELDING OF ENDOGENOUS RNA IN EXOSOMES 

Sections of this chapter have been adapted from the following manuscript: Nabet, B.Y., 

Qiu, Y., Shabason, J.E., Wu, T.J., Yoon, T., Kim, B.C., Marcotrigiano, J., and Minn, A.J. 

Stromal cells utilize viral mimicry to regulate breast cancer therapy resistance through 

exosomes and non-coding RNA. In revision at Cell. 
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Introduction 

The dynamic interaction and co-regulation of critical signaling pathways between 

cancer cells and stromal cells of the tumor microenvironment can significantly influence 

tumor progression and therapy response13. Through reciprocal signaling between these 

heterotypic cell types, cancer cell proliferation, cell death, and metabolism can be altered. 

Paracrine and juxtacrine signaling components that can be employed between cancer and 

stromal cells include RAS, WNT, NOTCH, STAT, and several others88,131,132. The 

importance of these tumor-stromal signaling cascades may be to help amplify critical 

oncogenic pathways in cancer cells to promote tumor progression, metastasis, and 

resistance 15. However, the mechanisms that govern how cancer and stromal cells interact 

to accomplish these events are not well understood. 

Another pathological condition that favors effective cell-cell communication to 

amplify critical signaling pathways is viral infection. Upon infection, cells induce an anti-

viral response that includes the upregulation of interferon-stimulated genes (ISGs)48. This 

response is driven by the recognition of viral RNA by pattern recognition receptors (PRRs), 

such as RIG-I 44. Recent evidence reveals that in addition to cell intrinsic anti-viral 

responses that occur after viral infection, mechanisms exist to propagate an anti-viral 

response from infected to uninfected cells. For example, viral RNAs can be packaged into 

exosomes 62,63, small extracellular vesicles that originate in multivesicular bodies and are 

also implicated in a myriad of processes related to cancer progression82,86,133. Secretion 

and transfer of exosomes to bystander cells can then result in recognition of exosome-

transferred viral RNA by PRRs78–80. This culminates in ISG induction within uninfected 

cells and tissue-level amplification of the anti-viral response. 

Across many common human cancers, a large proportion of patients have tumors 

that unexpectedly express high levels of ISGs38. A subset of breast cancer cells, which we 
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denote as ISG responders (ISG-Rs), can induce ISGs through cell-cell contact with 

stromal fibroblasts and the subsequent secretion of exosomes132. These exosomes 

contain RNA (exoRNA) that is enriched in non-coding transcripts. Upon transfer to ISG-R 

breast cancer cells, the exoRNA stimulates RIG-I, resulting in ISG induction and STAT1 

activation. STAT1 amplifies the NOTCH3 transcriptional response, resulting in expansion 

of tumor-initiating cells and therapy resistance. Consistent with these experimental 

findings, patients with tumors expressing high levels of ISGs are more likely to relapse 

after chemotherapy or radiation therapy. Thus, a subset of breast cancer cells can amplify 

oncogenic pathways through anti-viral signaling resulting from stromal cell contact. 

Activation of breast cancer RIG-I by exoRNA after encountering stromal cells is 

reminiscent of how viral infection of one cell population can propagate anti-viral responses 

to neighboring cells. Similar examples of PRRs recognizing exoRNA in the tumor 

microenvironment have been reported to influence cancer progression101,102. However, 

such potential examples of virus mimicry within a tumor raises questions on the similarities 

between cancer-associated anti-viral signaling and virus-mediated signaling. Moreover, 

given that cancer-associated anti-viral signaling is occurring in a sterile microenvironment, 

the nature of the endogenous RNA and how it activates RIG-I are unanswered questions. 

There are multiple properties that RIG-I utilizes to distinguish self from non-self 

RNA. Typically, RIG-I recognizes cytoplasmic double-stranded RNA that is 5’ 

triphosphorylated, generally short (<300bp), and has a blunt 5’ end45,52. For viral RNAs, 

polyuridine motifs can favor recognition (Saito et al., 2008), while RNA modifications such 

as 2-O-methylation can critically prevent RIG-I binding to 5’ capped cellular RNAs57,58. 

However, much of the RNA features and requirements for optimal RIG-I activation are 

based on synthetic and/or artificial RNAs in vitro. Emerging evidence indicates that 

endogenous RNA can function as a damage-associated molecular pattern (DAMP) to 

activate PRRs under a variety of pathological conditions, such as chemotherapy40–42, 
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radiation103,104, and autoimmunity55,105. How endogenous RNAs can function as DAMPs to 

activate PRRs while avoiding recognition under non-pathological conditions is not well 

understood. 

In this study, we investigate the concept of virus mimicry whereby breast cancer 

cells, like viruses, can provoke an anti-viral response in surrounding stromal cells. We 

examine how this leads to deployment of endogenous stromal RNA as a RIG-I-activating 

DAMP, resulting in the propagation of an anti-viral response to enhance tumor progression 

and therapy resistance.  

Results 

Stromal activation by breast cancer cell interaction is accompanied by an anti-viral 

response and stromal exosome transfer 

Previously, we demonstrated that breast cancer interaction with stromal fibroblasts 

increases the production of stromal exosomes. Upon transfer to breast cancer cells, the 

RNA in the exosomes (exoRNA) stimulates breast cancer RIG-I to initiate an anti-viral 

response that subsequently promotes resistance to radiation and chemotherapy. In this 

study, we sought to more closely examine similarities between this anti-viral response 

initiated by tumor and stromal cell interaction with how viruses instigate an anti-viral 

response that spreads from infected to uninfected cells. We first investigated major 

transcriptomic changes resulting from heterotypic interaction between MRC5 normal lung 

fibroblasts and ISG-R breast cancer cells, which induce ISGs upon co-culture with stromal 

cells132. This revealed that heterotypic cell interaction leads to stromal activation 

characterized by a transcriptional response dominated by upregulation (Figure 15A, left). 

Among these transcripts is an enrichment for hallmark gene sets134 for MYC and RAS 

oncogenic signaling, glycolysis, and cell cycle progression (Figure 15B, left). Stromal cells 

additionally induce multiple ISGs, and this was also observed in ISG-R breast cancer cells 

(Figure 15A). In fact, IFN signaling is among the predominant hallmark gene sets enriched 
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after co-culture in both cell types (Figure 15B). ISG-R breast cancer cells also show 

evidence for reciprocal RAS activation and enhanced expression of EMT genes expected 

to favor invasion, metastasis, and therapy resistance135. Thus, these data suggest that 

besides promoting aggressive features in breast cancer cells, heterotypic interaction leads 

to stromal activation events accompanied by a reciprocal anti-viral response. 

To examine if breast cancer interaction also mimics the ability of viruses to 

instigate exosome transfer, we labeled stromal cells with a stably expressed CD81-RFP 

exosome reporter (Figure 15C). This confirmed a high level of exosome transfer from 

stromal cells to 1833 ISG-R breast cancer cells, which is a metastatic derivative of MDA-

MB-231112. In contrast, co-culture of stromal cells with breast cancer cells that fail to induce 

ISGs, which we previously defined as ISG non-responders (ISG-NRs), show only modest 

transcriptomic changes in stromal cells, no stromal ISG induction (Figure 16A, left), and 

minimal exosome transfer to breast cancer cells (Figure 15C). Accordingly, no anti-viral 

response occurs in ISG-NR breast cancer cells after co-culture (Figure 16A, right). Thus, 

like viruses, ISG-R breast cancer cells not only can coerce an anti-viral response in 

stromal cells but can also promote exosome transfer to propagate anti-viral signaling. 
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Figure 15. Stromal cell activation and ISG induction occurs upon breast cancer cell 

interaction and results in stromal RNA transfer via exosomes. A) Gene expression of 

MRC5 fibroblasts (Stromal Cells) and ISG-R 1833 breast cancer cells (BrCa Cells) after 

co-culture versus mono-culture. Genes indicated in red are cancer-associated ISGs. 

Genes in blue are significantly upregulated either in stromal cells (left) or ISG-R breast 

cancer cells (right) after co-culture. B) Gene set analysis showing significantly enriched 

hallmark gene sets after co-culture versus mono-culture in fibroblasts and ISG-R breast 

cancer cells. Size of circles is proportional to number of genes, and circles are color-coded 

by FDR-adjusted p-value as indicated in the legend. Thickness of lines is proportional to 

genes shared between sets. Anti-viral response pathways (blue) and select stromal 

activation pathways (bold) are highlighted. C) MRC5 fibroblasts transduced with CD81-

RFP to track exosome transfer were co-cultured with CFSE-labeled ISG-R 1833 or ISG-

NR MCF7 breast cancer cells. Exosome transfer to breast cancer was quantified as 

percentage of breast cancer cells with RFP foci (right). D) Schema for measuring RNA 

transfer from stromal to breast cancer cells utilizing the uridine analog EU for fluorescence 

microscopy (green) or 4sU for streptavidin pull-down (orange). E) MRC5 fibroblasts were 

labeled with EU and co-cultured with DiD lipid-labeled 1833 breast cancer cells. Shown 

are representative images, with yellow arrows indicating EU-positive 1833 cells, and 

quantitation. F) Conditioned media (CM) from 4sU-labeled MRC5 fibroblasts grown in 

mono-culture (Stroma, orange) or co-cultured with 1833 breast cancer cells (Co-cx, blue) 

was isolated. Shown is relative 4sU RNA transfer to mono-cultured 1833 breast cancer 
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cells after addition of CM or exosome depleted CM (Co-cx Exo(-) CM) (n=5). Comparisons 

are made to DMSO control. G) Same as in (F) except CM was isolated from MRC5 or BJ 

4sU-labeled fibroblasts left in mono-culture or co-cultured with indicated ISG-R or ISG-NR 

breast cancer cells. Shown is relative 4sU RNA transfer after CM addition to each of the 

mono-cultured breast cancer cells (n=3). H) Allelic frequency of exoRNA SNPs from 

exosomes isolated from 1833 breast cancer (BrCa), MRC5 fibroblasts (Stroma), or from 

co-culture of both cell types (Co-cx). Analysis is based on SNPs present in exoRNA from 

breast cancer cells and not present in fibroblasts. Unless indicated, error bars are SEM of 

biological replicates and *p<0.05, **p<0.01, ***p<0.001. 

 

Stromal RNA is transferred to breast cancer cells by exosomes to mediate an anti-viral 

response 

After viral infection, viral RNA from infected cells can be packaged into exosomes 

for subsequent transfer to uninfected cells. To examine if RNA from stromal cells are 

similarly transferred to breast cancer cells by exosomes, we metabolically labeled MRC5 

stromal RNA with 5-ethynyl uridine (EU) prior to co-culture with ISG-R 1833 breast cancer 

cells that were fluorescently marked with lipid dye (Figure 15D). After 24 hours, over 40% 

of breast cancer cells acquired stromal cell RNA as measured by EU-modification by 

azide-linked fluorescein (Figure 15E). To assess the role of exosomes in this transfer, 

stromal cell RNA was similarly labeled with 4-thiouridine (4sU) prior to co-culture with 

breast cancer cells (Figure 15D and 16B). Application of the conditioned media (CM) from 

these co-cultures to mono-cultured breast cancer cells also resulted in stromal RNA 

transfer, as determined by streptavidin pull-down of biotinylated 4sU-labeled stromal RNA, 

but not when exosomes were depleted from the CM (Figure 15F). Exosome-mediated 

transfer of MRC5 stromal RNA was also observed using another ISG-R breast cancer cell 

line, MDA-MB-436, and from co-cultures using BJ fibroblast cells (Figure 15G). In contrast, 

markedly less stromal RNA was transferred by exosomes using CM from co-cultures with 

the ISG-NR breast cancer cell line MCF7 (Figure 15G).  

To corroborate the transfer of stromal RNA by exosomes, we also performed 

exoRNA SNP analysis using exosomes from mono-cultures of either ISG-R 1833 breast 

cancer cells or MRC5 stromal cells and compared SNP allelic frequencies to the exoRNA 
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from co-culture (Figure 15H). Multiple SNPs, primarily from mitochondrial RNA, were 

discovered to have an allelic frequency of near one in the exoRNA from breast cancer 

cells but near zero in stromal exoRNA. Examination of exoRNA from co-culture revealed 

that most of these SNPs maintained a frequency closer to zero, consistent with the 

exoRNA primarily originating from stromal cells. In total, these results suggest that similar 

to transfer of viral RNA from infected to uninfected cells, cellular RNAs are transferred 

from stromal to breast cancer cells in an exosome-dependent manner. 

 

Figure 16. ISG-NR breast cancer cells do not induce ISGs in stromal cells. A) Gene 

expression of MRC5 fibroblasts (Stromal Cells) and ISG-NR breast cancer cells (BrCa 

Cells) after co-culture versus mono-culture. Genes indicated in red are ISGs. Genes color-

coded blue are significantly upregulated in stromal cells after interaction with ISG-NR 

breast cancer cells. B) Percentage of 4sU-labeled RNA in indicated fibroblasts after 24 

hours compared to total RNA (n=3). Error bars are SEM of biological replicates. 

 

5’ triphosphate stromal exoRNA activates breast cancer RIG-I 

Classification of non-ribosomal exoRNA transcripts from stromal and breast 

cancer cell co-cultures reveals an enrichment in non-coding RNAs compared to cellular 

RNA (Figure 17A). These non-coding RNAs include repeat and transposable elements, 

snRNA, srpRNA, and others, but no viral RNAs were detected. Previously, we 

demonstrated that upon transfection this exoRNA activates the pattern recognition 

receptor RIG-I to induce ISGs in recipient breast cancer cells, and this activity requires a 
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5’ triphosphate (5’ppp) moiety. Thus, although the non-ribosomal portion of exoRNA 

demonstrates significant complexity, functional studies suggest that exoRNA ligands 

responsible for the breast cancer anti-viral response are 5’ppp exoRNA that binds to RIG-

I. To confirm this notion, we utilized CRISPR/Cas9 to knockout RIG-I in breast cancer cells 

and re-expressed either wild-type (WT) RIG-I or RIG-I with alanine substitution mutations 

in key lysine residues (K858 and K861) that make contacts with the 5’ppp motif (RIG-

IK858/861A)136 (Figure 18A-B). Co-culture-derived exosomes were purified (Figure 18C-D) 

and transfection of the exoRNA failed to induce ISGs in RIG-I KO breast cancer cells 

(Figure 17B). Re-expression of WT RIG-I rescued this defect whereas RIG-IK858/861A was 

markedly less effective at restoring activity. In contrast, cellular RNA failed to induce ISGs 

regardless of RIG-I status. Consistent with these findings, addition of exoRNA but not 

equimolar amounts of cellular RNA to recombinant RIG-I stimulates RIG-I ATP helicase 

activity as measured by ATP hydrolysis (Figure 17C). Thus, like the recognition of viral 

5’ppp RNA, these results provide evidence that 5’ppp exoRNA from stromal cells can 

directly activate RIG-I to induce an anti-viral response.  
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Figure 17. Stromal POL3-derived exoRNA activates breast cancer RIG-I in a 

5’triphosphate-dependent manner. A) Distribution of RNA classes found in cellular RNA 

and exosome RNA by RNA-seq after co-culture of 1833 breast cancer cells with MRC5 

stromal cells. Ribosomal RNA counts were removed. B) ISG expression after transfection 

of co-culture exoRNA or co-culture cellular RNA into 1833 control cells (WT), RIG-I 

knockout 1833 cells (KO), or RIG-I KO 1833 cells restored with either wild-type (KO + WT) 

or RIG-IK858/861A 5’ppp binding mutant (KO + MUT) (n=5). Baseline was established by 

mock transfection (see legend). C) ATP hydrolysis assay for RIG-I activation in response 

to increasing amounts of the indicated RNA. ExoRNA and cellular RNA are from co-culture 

of 1833 and MRC5 cells. 5’OH is a negative control and 5’ppp is a positive control (n=3). 

D) Immunoblot for RPC32 (POLR3G) and β-actin in sorted MRC5 fibroblasts after mono- 

or co-culture (top). Quantification of POLR3G protein expression relative to β-actin after 

co-culture (bottom). E) Expression of ISGs in sorted 1833 cells or F) RT-mediated cell 

death in 1833 cells after co-culture with MRC5 cells (CTL) or after siRNA knockdown of 

POLR3F in 1833 (BrCa), MRC5 (Stm), or both cell types (Co). Gene expression values 

are relative to sorted 1833 cells grown in mono-culture, and cell death was assessed 4 

days after 10 Gy RT (n=3). G) ISG expression in 1833 cells after addition of CM from 

DMSO or POL3 inhibitor (POL3i) treated co-cultures. Values are relative to 1833 cells 

grown in mono-culture (n=3). H) RT-mediated cell death of 1833 cells in mono-culture 

(Mono) or co-culture with MRC5 cells (Co-cx). Cells were grown in the presence of DMSO 

or POL3i and with (+CM) or without rescue using co-culture CM (n=3). I) ATP hydrolysis 

assay for RIG-I activation as shown in (C) except exoRNA from POL3i-treated co-cultures 
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was additionally assessed (n=3). J) Abundance (Log10) of RNA classes in 5’ppp-seq 

compared to exoRNA-seq. RNA classes depleted in 5’ppp-seq by approximately 10-fold 

or greater are shown on the left (n=4). K) Relative RNA polymerase III transcript levels in 

exosomes harvested from DMSO or POL3i-treated co-cultures (n=3). Unless indicated, 

error bars are SEM of biological replicates and *p<0.05, **p<0.01. 

 

Stromal RNA polymerase III generates 5’ppp exoRNA that activates the anti-viral 

response in breast cancer cells 

In the absence of viral infection, the main source of endogenous 5’ppp RNA is from 

RNA polymerase III (POL3) transcription59. Moreover, POL3 activity is known to be 

augmented by MYC activation137, which appeared specifically enhanced in stromal cells 

after ISG-R breast cancer cell interaction (Figure 15B, left). Therefore, we sought to 

examine if stromal POL3 generates the exoRNA that is transferred to breast cancer cells 

to activate anti-viral signaling. Indeed, the POL3 subunit POLR3G was upregulated in 

stromal cells after co-culture with breast cancer cells (Figure 17D and 18E). Knockdown 

of POL3 using an siRNA to the POLR3F subunit (Figure 18F) revealed that inhibiting POL3 

in stromal cells, but not breast cancer cells alone, significantly blunted breast cancer ISG 

induction (Figure 17E). Interrogation of functional consequences revealed that the ability 

of stromal cells to protect breast cancer cells after radiation was impaired with stromal 

POL3 knockdown, but unchanged after breast cancer POL3 knockdown (Figure 17F). 

Consistent with these findings, treatment with a POL3 small-molecule inhibitor138 also 

blunted stroma-mediated resistance and ISG induction in breast cancer cells after co-

culture (Figure 18G-H). To confirm that exoRNA is responsible for the effects resulting 

from inhibiting stromal POL3 RNA, we isolated CM from co-cultures treated with or without 

the POL3 inhibitor. CM isolated from co-cultures both induced ISGs when added to mono-

cultured breast cancer cells (Figure 17G) and re-established stroma-mediated radiation 

resistance that was abrogated by POL3 inhibition (Figure 17H). In contrast, CM from co-

cultures treated with POL3 inhibitor failed to induce ISGs, but expression of unrelated 

genes such as IFI16 was not affected (Figure 17G-H). Accordingly, exoRNA from POL3 
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inhibitor treated co-cultures also was defective in binding to recombinant RIG-I and 

stimulating ATP hydrolysis activity (Figure 17I). Thus, these results suggest that stromal 

POL3 generates exoRNA that activates breast cancer RIG-I to induce anti-viral signaling 

and stroma-mediated protection against DNA damage. 

To characterize the exoRNA generated by stromal POL3, we developed an 

approach to identify 5’ppp RNA by sequencing. For this, we utilized a set of enzymatic 

reactions to sequentially modify the 5’ end of RNA prior to library construction to deplete 

RNA lacking a 5’ppp modification (5’ppp-seq) (Figure 18I). Many coding and non-coding 

RNAs were depleted by approximately 10-fold or greater, consistent with the absence of 

a 5’ppp (Figure 17J, left). Examination of RNA classes that maintained or increased 

abundance revealed many exoRNA transcripts known to be under POL3 regulation, 

including tRNAs, srpRNA, Y RNA/snRNAs, and ALU/SINE RNAs (Figure 17J, right). As 

expected, inhibiting POL3 resulted in a decrease in the abundance of several of these 

5’ppp RNA in exosomes (Figure 17K). Thus, multiple 5’ppp exoRNAs regulated by stromal 

POL3 are present in exosomes and represent candidate RNA ligands for propagating an 

anti-viral response from stromal cells to breast cancer cells. 
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Figure 18. Stromal POL3 is required for maximal ISG induction in breast cancer 

cells. A) Immunoblot confirmation of Cas9 control (WT), RIG-I knockout (KO), and RIG-I 

KO 1833 cells restored with either wild-type (KO + WT) or RIG-IK858/861A 5’ppp binding 

mutant (KO + MUT). B) Immunoblot confirmation of RIG-I KO in ISG-R 1833 breast cancer 

cell line. RIG-I pathway activation was stimulated by Sendai virus (SeV) and assessed by 
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ISG15 induction. C) Nanosight quantification of size and quantity of a representative 

exosome purification. D) Purified exosome confirmation by electron microscopy negative 

staining. E) Gene expression of sorted MRC5 fibroblast RNA polymerase III subunit 

POLR3G after co-culture with ISG-R 1833 breast cancer. Values are relative to sorted 

MRC5 cells grown in mono-culture (n=3). F) Gene expression after indicated siRNA 

transfected in MRC5 cells (n=3). G) RT-mediated cell death in 1833 cells in mono-culture 

(Mono) or co-culture with MRC5 cells (Co-cx). Cells were grown in the presence of DMSO 

or POL3 inhibitor (Pol3i), and cell death was assessed 4 days after 10 Gy RT (n=3). H) 

ISG expression in sorted 1833 after co-culture with MRC5 cells in the presence of DMSO 

or POL3i. Gene expression values are relative to sorted 1833 cells grown in mono-culture 

(n=7). I) Schema for 5’triphosphate enriched RNA-seq (5’ppp-seq). Unless indicated, error 

bars are SEM of biological replicates and **p<0.01, ***p<0.001. 

 

RN7SL1 5’ppp exoRNA generated from tumor-stromal interaction demonstrates extensive 

protein unshielding 

As part of a strategy to identify a specific 5’ppp exoRNA from stromal cells that 

activates breast cancer RIG-I, we sought to examine differences in 5’ppp exoRNA 

abundance that correlate with differences in the ability of exosomes to induce anti-viral 

signaling. Toward this end, we took advantage of the observation that exosomes from co-

culture, but not stromal cell mono-culture, induce ISGs (Figure 19A). Because 5’ppp-seq 

may not be quantitative, we first performed RNA-seq from exosomes (exoRNA-seq) 

isolated from co-culture versus stromal mono-culture. Using these data, we specifically 

examined transcripts that were also identified by 5’ppp-seq. This revealed that most 5’ppp 

exoRNA does not or only modestly varies in abundance in exosomes from co-culture 

compared to stromal mono-culture (Figure 19B). In contrast, RN7SL1, or srpRNA, and 

RN7SL1 pseudo-genes stood out as abundant transcripts that markedly increase in 

exosomes from co-culture compared to stromal mono-culture (Figure 19B-C and 20A, 

Table 5). Accordingly, exoRNA derived from stromal mono-culture was less effective than 

co-culture exoRNA at eliciting an ISG response in breast cancer cells (Figure 20B). 
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Figure 19. 5’ppp RN7SL1 exoRNA generated by tumor-stromal interaction is 

unshielded. A) ISG expression in 1833 breast cancer cells after addition of exosomes 

from MRC5 stromal cell mono-culture (Strm) or co-culture of 1833 and MRC5 cells (Co-

cx) (n=3). Values are relative to mock control. B) ExoRNA and 5’ppp exoRNA enriched in 

co-culture exosomes. Shown is average expression (Log2) by exoRNA-seq in co-culture 

versus fold-change in co-culture compared to MRC5 stromal cell mono-culture (n=2). 

Transcripts identified by 5’ppp-seq are shown in red. ExoRNA was rRNA-depleted. C) 

Differentially expressed exoRNA from MRC5 mono-culture (Stroma) compared to co-

culture of 1833 and MRC5 cells (Co-cx) (n=2). D) Expression of co-culture cellular RNA 

(left) or co-culture exoRNA (right) versus degree of RNA binding protein (RBP) 

unshielding. RBP unshielding (y-axis) is determined by fold change in RNA expression 

after MNase treatment with or without detergent (n=2). Smaller y-axis values indicate more 

unshielding. Transcripts identified by 5’ppp-seq are denoted by solid circles and color-

coded based on normalized minimum free energy (MFE) to predict extent of double 

stranded RNA folding (lower MFE indicates more extensive double-stranded folding). E) 

Extent of RBP-shielding of 5’ppp RN7SL1 in cells (Cellular RNA) or exosomes (ExoRNA) 

isolated from either MRC5 stromal mono-culture (Strm) or co-culture of 1833 and MRC5 

cells (Co-cx). Proportion shielded is determined by MNase treatment with and without 

detergent followed by qRT-PCR (MNase-qRT-PCR) (n=3). Also shown are other RNAs 

with the indicated 5’ modification. F) Extent of RBP-shielding for cellular RNA (Cell) or 

exoRNA (Exo) isolated from co-cultures of the indicated ISG-R and ISG-NR breast cancer 

cells (labeled on right) with MRC5 fibroblasts. Proportion shielded is determined by 
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MNase-qRT-PCR (n=3). Unless indicated, error bars are SEM of biological replicates and 

*p<0.05, **p<0.01, ***p<0.001.  

 

Although high levels of RN7SL1 in co-culture exosomes appeared to be a 

candidate RIG-I ligand based on differential expression, it was unclear why the presence 

of this 5’ppp RNA in the cytoplasm or in exosomes produced by stromal mono-culture 

would not activate RIG-I. Moreover, RN7SL1 and possibly other 5’ppp exoRNAs contain 

extensive double-stranded regions, an important feature given that RIG-I efficiently 

recognizes dsRNA. Based on these considerations, we reasoned that alterations in 

binding by RNA binding proteins (RBPs) might influence the ability of endogenous RNA 

to activate anti-viral signaling. To examine this, we treated cells or exosomes with 

micrococcal nuclease (MNase) with or without membrane permeabilization prior to 

sequencing (MNase-seq) (Figure 20C). This revealed that exoRNAs are generally less 

susceptible to MNase-dependent degradation compared to cellular RNAs, suggesting that 

exoRNA is relatively more “shielded” by RBPs than their cellular counterparts (Figure 

19D). However, examination of 5’ppp RNA shielding combined with predicted RNA 

secondary structure as measured by normalized minimum free energy (MFE), 

demonstrated that RN7SL1 stands out as a 5’ppp exoRNA with extensive double-stranded 

structure (low MFE) that is extensively shielded in cells but highly unshielded in co-culture 

exosomes (Figure 19D and 20D, Table 5). In contrast, most other 5’ppp exoRNA has less 

predicted double-stranded structure and/or is significantly more shielded in exosomes 

compared to RN7SL1. Other 5’ppp RNA or RNA without a 5’ppp (i.e., 5’ cap mRNA and 

5’-monophosphate rRNA) generally are equally unshielded in cells and exosomes (Figure 

19D and 20D), while RN7SL1 exoRNA from stromal mono-culture shows comparable 

shielding compared to cells (Figure 19E). Unshielding of RN7SL1 exoRNA was also 

observed when other ISG-R breast cancer cells and stromal fibroblasts were co-cultured 

(Figure 19F), and when primary mouse lung fibroblasts were co-cultured with 
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K14cre;p53F/F;Brca1F/F murine breast cancer cells that also have hallmarks of ISG-R 

breast cancers (Figure 20E-H). In contrast, exosomes from co-culture of MCF7 ISG-NR 

breast cancer cells with stromal cells demonstrated significantly less unshielding (Figure 

19F). This, along with diminished exosome transfer (Figure 15C), correlates with the 

relative inability of ISG-NR breast cancer cells to induce anti-viral signaling after co-

culture. In total, these results suggest that after interaction with ISG-R breast cancer, 

stromal cells selectively deploy unshielded RN7SL1 in exosomes, an endogenous 5’ppp 

RNA with double-stranded structure.  
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Table 5: Differential Expression of 5'ppp-seq Identified Transcripts in Co-cx 

ExoRNA-seq vs. Stroma ExoRNA-seq 

GeneID Symbol log2FoldChange pvalue 

ENSG00000278771   6.36343356 3.40E-32 

RN7SL1 RN7SL1 5.954339049 0 

ENSG00000274012   5.766305089 4.26E-58 

ENSG00000274585 RNU2-1 1.473067514 0.000256183 

ENSG00000210194 MT-TE 0.788711237 0.445398803 

ENSG00000210107 MT-TQ 0.567573134 0.581029076 

ENSG00000200090   0.238632644 0.816585329 

ENSG00000198695 MT-ND6 -0.050443096 0.942091596 

RMSK1848423 tRNA-Val-GTY -0.289504941 0.781427256 

RMSK4489775 tRNA-Leu-CTA -0.399615749 0.675564238 

RMSK2896852 tRNA-Gly-GGA -0.451640769 0.661698379 

RMSK4094422 HY3 -0.543342632 0.626965648 

RMSK1903167 tRNA-Leu-TTG -0.647165683 0.399143989 

RMSK0284494 tRNA-Glu-GAG_ -0.711842908 0.133137812 

ENSG00000252316 RNY4 -0.713159963 0.014826978 

RMSK1848200 tRNA-Leu-CTY -0.75997998 0.45907332 

RMSK1898352 tRNA-Lys-AAG -0.786930354 0.235743198 

ENSG00000202354 RNY3 -0.788798711 0.019543371 

RMSK1900244 tRNA-Asp-GAY -0.844448884 0.0020408 

ENSG00000201098 RNY1 -0.904999318 0.000490539 

RMSK0444065 tRNA-Glu-GAG_ -0.907348767 0.002631367 

RMSK3874632 tRNA-Asp-GAY -0.960878858 0.003912964 

ENSG00000197958 RPL12 -0.99099727 0.246632743 

RMSK3556856 tRNA-Val-GTA -1.065156761 0.008702102 

RMSK1900901 tRNA-Val-GTY -1.077724916 0.323350684 

RMSK4003721 tRNA-Glu-GAG_ -1.078693607 0.202938517 

RMSK2406652 HY5 -1.081991716 0.016164226 

RMSK0254000 tRNA-Glu-GAG_ -1.138725411 0.071260176 

RMSK4629380 tRNA-Lys-AAA -1.153250435 0.216004512 

RMSK4442186 tRNA-Lys-AAG -1.254216659 0.002243703 

RMSK1899770 tRNA-Val-GTG -1.260921498 0.0174855 

RMSK0284470 tRNA-Leu-CTG -1.27201565 0.23295901 

RMSK2705056 tRNA-His-CAY_ -1.377096393 0.176061556 

RMSK5186324 tRNA-Gly-GGY -1.787469268 0.06272545 
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Figure 20. RN7SL1 is unshielded after tumor-stromal interaction. A) Relative 

expression of transcripts identified by 5’ppp-seq in exosomes from MRC5 mono-culture 

(Stroma) or MRC5 and 1833 co-culture (Co-cx). Values are relative to exoRNA from 

MRC5 mono-culture (n=3). B) ISG expression in 1833 cells after transfection of exoRNA 

or cellular RNA from MRC5 mono-culture (Strm) or co-culture of 1833 and MRC5 cells 

(Co-cx) (n=3). Values are relative to mock transfection. C) Schema for MNase-seq or 

MNase-qRT-PCR to analyze degree of RNA binding protein (RBP) shielding. D) Extent of 

RBP-shielding of 5’ppp RN7SL1 in cells (Cell) or exosomes (Exo) isolated from co-culture 

of 1833 and MRC5 cells. Proportion shielded is determined by MNase treatment with and 

without detergent followed by qRT-PCR (MNase-qRT-PCR) (n=3). Also shown are other 

RNAs with the indicated 5’ modification. E) Exosome transfer to ISG-R 

K14cre;p53F/F;Brca1F/F (KB1P) mouse breast cancer cells by differential lipid labeling of 

two populations of KB1P cells (Mono) or co-culture with primary mouse adult lung 

fibroblasts (ALFs) (Co-cx) (n=3). F) ISG expression in sorted ISG-R KB1P cells after co-

culture with ALFs. Gene expression values are relative to sorted KB1P cells grown in 

mono-culture (n=3). G) RT-mediated cell death in KB1P cells in mono-culture (Mono) or 

co-culture with ALFs (Co-cx). Cell death was assessed 4 days after 10 Gy RT (n=3). H) 

Extent of RBP-shielding of cellular RNA (Cell) or exoRNA (Exo) isolated from co-culture 

of KB1P cells and ALFs. Proportion shielded is determined by MNase-qRT-PCR (n=3). 

Unless indicated, error bars are SEM of biological replicates and *p<0.05, **p<0.01, 

***p<0.001. 

 

 



78 
 

Unshielded RN7SL1 exoRNA is transferred by stromal cells and stimulates breast cancer 

RIG-I 

To establish that unshielded RN7SL1 exoRNA generated by stromal cells can 

serve as a RIG-I ligand, we metabolically labeled stromal cell RNA with 4sU and assayed 

for transfer to breast cancer cells. This demonstrated that RN7SL1, but not other 5’ppp 

exoRNAs or exoRNA without 5’ppp, is transferred to breast cancer cells from multiple 

different stromal cells but only in the context of ISG-R breast cancer cell co-culture (Figure 

21A). Moreover, like exoRNA but not cellular RNA, transfection of ribozyme-cleaved in 

vitro transcribed RN7SL1 induces ISGs in breast cancer cells specifically in a RIG-I-

dependent manner (Figure 21B). As expected, the ability of RN7SL1 to stimulate RIG-I 

requires 5’ppp. Alkaline phosphatase treatment prior to transfection abolished ISG 

induction (Figure 22), and reconstitution of RIG-I KO cells with WT RIG-I but not RIG-

IK858/861A, which abolishes amino acid interactions with 5’ppp, restored anti-viral signaling 

after RN7SL1 transfection (Figure 21B). In vitro RIG-I ATP hydrolysis assay confirmed 

that RN7SL1, but not equimolar and a similarly sized GAPDH-derived RNA (GAPDH300), 

directly binds recombinant RIG-I (Figure 21C). Activation of recombinant RIG-I by RN7SL1 

was comparable to an equimolar amount of Sendai virus-derived RNA (DVG396). Thus, 

RN7SL1 is transferred from stromal cells to ISG-R breast cancer and can directly activate 

RIG-I. 
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Figure 21. Unshielded RN7SL1 exoRNA is transferred by stromal cells and 
recognized by breast cancer RIG-I. A) Conditioned media (CM) from 4sU-labeled MRC5 
fibroblasts co-cultured with either ISG-R (orange) or ISG-NR (blue) breast cancer cells. 
Shown is relative 4sU RNA transfer to breast cancer cells in mono-culture after addition 
of CM (n=3). B) ISG expression in 1833 breast cancer cells after transfection of co-culture 
exoRNA, cellular RNA, or RN7SL1 RNA.  RIG-I status of 1833 cells was wild type (WT), 
knocked out (KO), or knocked out and restored with either wild-type RIG-I (KO + WT) or 
RIG-IK858/861A (KO + MUT) (n=3). Values are relative to mock control. C) ATP hydrolysis 
assay for RIG-I activation by RN7SL1. Shown are increasing concentrations of RN7SL1 
or the indicated RNA ligands. 5’ppp and DVG396 are positive controls. 5’OH and 
GAPDH300 are negative controls (n=3). D) Schema to measure 4sU-labeled stromal RNA 
bound to breast cancer RIG-I after co-culture (Cell, top schema) or after addition of co-
culture conditioned media (CM bottom schema). E) Representative immunoprecipitation 
of FLAG-RIG-I, and F) quantitation of indicated 4sU-labeled MRC5 stromal RNA 
transferred and then bound to 1833 breast cancer RIG-I. Shown is relative binding to 
reconstituted wild type RIG-I (KO + WT, blue) or RIG-IK858/861A (KO + MUT, orange) after 
co-culture (Cell) or addition of co-culture CM (CM). Binding of 5’cap mRNAs are shown 
on the left and 5’ppp RNAs on the right (n=3). Unless indicated, error bars are SEM of 
biological replicates and *p<0.05, **p<0.01.  

 

To directly examine whether stromal RN7SL1 is transferred by exosomes and 

binds to breast cancer RIG-I, stromal cells were labeled with 4sU prior to co-culture with 

breast cancer cells. This was followed by tandem pull-down of stromal RNA bound to 
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breast cancer RIG-I by first immunoprecipitating FLAG-tagged breast cancer RIG-I and 

then isolating biotinylated 4sU-labeled stromal RNA with streptavidin beads (Figure 21D, 

top; Figure 21E). This sequential procedure revealed that stromal-derived RN7SL1, but 

not RNA without 5’ppp (i.e., capped mRNAs), specifically bound to WT RIG-I compared 

to RIG-IK858/861A (Figure 21F, top row). Moreover, other 5’ppp RNA found in exosomes such 

as RMRP showed markedly less binding. To assess if this transfer of stromal RN7SL1 is 

mediated by exosomes, CM isolated from 4sU-labeled stromal cells co-cultured with 

breast cancer cells was added to breast cancer cell mono-cultures (Figure 21D, bottom). 

Again, tandem pull-down demonstrated that stromal-derived RN7SL1, but not capped 

RNAs or RMRP 5’ppp RNA, specifically bound to breast cancer RIG-I when compared to 

RIG-IK858/861A, consistent with exosome-mediated transfer (Figure 21F, bottom row). Thus, 

after breast cancer interaction, stromal cells can transfer unshielded RN7SL1 in exosomes 

to directly activate RIG-I. These results suggest that similar to how viral RNA in exosomes 

can propagate an anti-viral response from infected to uninfected cells, stromal cells can 

disseminate an anti-viral response to breast cancer cells by deploying unshielded 

endogenous RN7SL1 in exosomes. 

 

Figure 22. RN7SL1 activity is 5’ppp dependent. ISG expression in 1833 breast cancer 

cells after transfection of in vitro transcribed RN7SL1 RNA or RN7SL1 RNA treated with 

alkaline phosphatase (+AlkPh) (n=3). TSG101 is a non-ISG not expected to change. 

Values are relative to mock control. Error bars are SEM of biological replicates and 

*p<0.05, **p<0.01. 
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SRP9 and SRP14 control RN7SL1 shielding and anti-viral stimulatory activity 

RN7SL1 is an abundant cellular RNA that complexes with signal recognition 

particle (SRP) proteins to control co-translational protein translocation139. Two SRP 

proteins, SRP9 and SRP14 normally bind the 5’ end of RN7SL1, potentially obscuring the 

5’ppp. Thus, to investigate whether SRP9 and/or SRP14 might influence recognition of 

RN7SL1 by RIG-I through RBP shielding, we examined the expression of SRP9/14 in 

exosomes. In contrast to cellular extracts, which showed relatively high levels of SRP9 

and SRP14, these proteins were not detectable in exosomes (Figure 23A). Therefore, we 

transiently overexpressed GFP-tagged SRP9 and SRP14 in stromal cells prior to co-

culture to determine if this could drive these SRP proteins into exosomes and potentially 

partially shield exosome RN7SL1 from recognition by breast cancer RIG-I (Figure 23B 

and 24A-C). Indeed, transiently increasing SRP9 and SRP14 in stromal cells was 

sufficient to direct expression of both tagged SRP proteins into exosomes (Figure 23C). 

This led to a significant increase in shielding of RN7SL1 exoRNA but not in 18S rRNA 

(Figure 23D). Consequently, stroma-mediated ISG induction in breast cancer cells was 

reduced, while expression of non-ISGs such as MMP1 and TSG101 was not affected 

(Figure 23E). We were also able to purify recombinant SRP9 (attempts to purify SRP14 

were not successful). Addition of SRP9 to in vitro transcribed RN7SL1 partially inhibited 

ATP hydrolysis by recombinant RIG-I but did not influence Sendai virus-derived RNA 

(DVG396) or unrelated 5’ppp or 5’OH control RNAs (Figure 23F). These results suggest 

that RBP shielding of cellular RN7SL1 by its SRP proteins may restrict inappropriate 

recognition by RIG-I in the cytoplasm. However, the absence of these RBPs in exosomes 

allows the transfer of unshielded RN7SL1 to neighboring cells, resulting in RIG-I 

activation. Thus, in a sterile tumor microenvironment, differential RBP shielding in cells 
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versus exosomes can enable endogenous RNAs to function as DAMPs and propagate 

anti-viral signaling. 
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Figure 23. Stromal SRP9 and SRP14 regulate RN7SL1 shielding and activation of 
breast cancer RIG-I. A) Immunoblot for the indicated proteins in co-culture cells and 
exosomes. Lysates used were normalized to absolute levels of RN7SL1 RNA. B) Flow 
cytometry (left) and fluorescence microscopy (right) for GFP expression after transfection 
of GFP-SRP9 and GFP-SRP14 in MRC5 fibroblasts. C) Immunoblot for the indicated 
proteins in co-culture cells and exosomes after GFP-SRP9 and GFP-SRP14 transfection 
in MRC5 fibroblasts. D) Extent of RBP-shielding for the indicated exoRNAs isolated from 
1833 breast cancer cells co-cultured with control (CTRL) or GFP-SRP9 and GFP-SRP14 
(SRP) transfected MRC5 fibroblasts. Proportion shielded is determined by MNase-qRT-
PCR (n=3). E) Relative expression of ISGs in sorted 1833 cells after co-culture with MRC5 
cells transfected with GFP-SRP9 and GFP-SRP14 (n=3). TSG101 and MMP1 are non-
ISGs not expected to change. F) Immunoblot for SRP9 pre-cleavage (lane 2) and post-
cleavage (lane 1) of the GST tag with TEV protease. RN7SL1 binding to RIG-I was 
measured by ATP hydrolysis assay with or without addition of equimolar amounts of 
recombinant SRP9 (n=3). 5’ppp and DVG396 are positive controls. 5’OH is a negative 
control. Unless indicated, error bars are SEM of biological replicates and *p<0.05, 
**p<0.01.  

 

 

Figure 24. Confirmation of SRP9/14 overexpression in stromal cells. Immunoblot for 

A) SRP9, B) SRP14, or C) GFP after transfection of GFP-SRP9 and GFP-SRP14 in MRC5 

fibroblasts. 

 

RN7SL1 unshielding is regulated by RNA-protein imbalance 

SRP9 and SRP14 regulate RN7SL1 shielding; therefore, we hypothesized that 

excess RN7SL1 RNA produced after tumor-stroma interaction may result in unshielded 

stromal RN7SL1. To examine if increased stromal POL3 activity after co-culture resulted 
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in increased RN7SL1, we isolated stromal cells from co-culture and analyzed relative RNA 

expression. As expected, stromal cells in co-culture with ISG-R breast cancer cells had 

elevated ISGs and increased levels of several POL3 transcripts, including RN7SL1 (Figure 

25A). Further, protein isolated from the same co-cultures showed no concomitant increase 

in stromal SRP9 or SRP14, suggesting that increase of RN7SL1 without simultaneous 

increase of SRP proteins could lead to unshielded RN7SL1 (Figure 25B). To assess if the 

converse was true, we utilized siRNA to knockdown SRP9 and SRP14 levels in stromal 

cells (Figure 25C). This lead to a specific ISG induction stromal cells with siSRP9/14 

(Figure 25C/D). To interrogate whether this knockdown resulted in the production of 

exosomes with unshielded RN7SL1 and ISG stimulatory activity, we added conditioned 

media from these stromal cells to breast cancer cells. Conditioned media isolated from 

siSRP9/14 stromal cells induced ISGs in recipient breast cancer cells (Figure 25E). 

Exosomes isolated from these same co-cultures were subjected to RN7SL1 unshielding 

assays and consistent with having lower levels of SRP9 and SRP14, both cellular and 

exosomal RN7SL1 were largely unshielded (Figure 25F). In total, unshielding of RN7SL1 

and its ability to propogate anti-viral signals results from a RNA to protein imbalance. 
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Figure 25. RN7SL1 unshielding is regulated by RNA-protein imbalance. A) Gene 

expression of MRC5 fibroblasts after co-culture with indicated ISG-R or ISG-NR breast 

cancer cells. Values are relative to sorted mono-culture MRC5 fibroblasts and TSG101 is 

a non-ISG not expected to change (n=3). B) Immunoblot for the indicated proteins in 
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MRC5 fibroblasts after co-culture. C) Immunoblot for the indicated proteins in MRC5 

fibroblasts after the indicated siRNA knockdown. D) Gene expression in MRC5 fibroblasts 

after the indicated siRNA knockdown (n=3). E) Gene expression in 1833 breast cancer 

cells after addition of conditioned media isolated from MRC5 fibroblasts with the indicated 

siRNA knockdown. TSG101 is a non-ISG not expected to change (n=3). F) Extent of RBP-

shielding for the indicated cellular and exosomal RNAs isolated from MRC5 fibroblasts 

after the indicated siRNA knockdown. Proportion shielded is determined by MNase-qRT-

PCR (n=3). Error bars are SEM of biological replicates and *p<0.05. 

 

MYC is responsible for POL3 output and subsequent RN7SL1 unshielding. 

The POL3 transcriptional machinery relies heavily on MYC for maximal 

activity137,140. Furthermore, it is hypothesized that areas of high POL2 transcriptional 

output, such as those under MYC control, result in concomitant POL3 output by providing 

an epigenetically favorable environment141. To assess if MYC is activated in stromal cells 

after interaction with breast cancer cells we co-cultured fibroblasts with GFP-tagged ISG-

R breast cancer cells. MYC activation as assessed by nuclear localization demonstrated 

that upon co-culture MYC is activated in a significant percentage of stromal cells; whereas, 

there is almost no activation in mono-culture (Figure 26A/B). To assess if RN7SL1 

unshielding and ISG stimulating capacity was MYC dependent, we utilized siRNA against 

MYC (Figure 26C). Addition of conditioned media isolated from co-cultures of ISG-R 

breast cancer cells and stromal cells with stroma-specific siRNA knockdown of MYC was 

no longer able to stimulate ISGs in recipient breast cancer cells to the same degree as 

those with a control siRNA (Figure 26D). Further, exosomes isolated from these 

experiments demonstrated a significant increase in RN7SL1 shielding after siRNA 

knockdown of MYC in fibroblasts prior to co-culture (Figure 26E). To assess if activation 

of MYC alone can result in production of ISG stimulating exosomes containing unshielded 

RN7SL1, we utilized mouse embryonic fibroblasts stably expressing a MYC-ER construct 

that allows for 4OHT-inducible activation of MYC (MYC-ER MEFs)142. Addition of 4OHT 

results in robust MYC expression and nuclear localization (Figure 26F). Further, 

exosomes isolated from MYC-ER MEFs after the addition of 4OHT induce ISGs in 



87 
 

recipient breast cancer cells (Figure 26G). Addition of 4OHT results in a significant 

increase in unshielded RN7SL1 in exosomes, whereas exosomes isolated from ethanol 

treated MEFs have significantly more shielded RN7SL1 (Figure 26H). To evaluate if these 

MYC-dependent changes were also POL3 dependent, MYC was activated in the presence 

of a POL3 inhibitor. Addition of a POL3 inhibitor to MYC activated MEFs reduced the ISG 

inducing capacity of equal amounts of exosomes added to recipient breast cancer cells 

(Figure 26I). As expected, RN7SL1 in exosomes isolated from MYC activated MEFs 

cultured with a POL3 inhibitor remained largely shielded (Figure 26J). Thus, MYC is both 

necessary and sufficient to enhance POL3 transcriptional output and produce unshielded 

RN7SL1 to function an anti-viral signal propagating DAMP.   
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Figure 26. MYC regulates POL3 activity and RN7SL1 output. A) MRC5 fibroblasts 

were co-cultured with GFP-tagged ISG-R breast cancer cells. Stromal MYC activation is 
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denoted by strong nuclear staining and absence of GFP signal and designated by the 

yellow arrows. B) Quantification of MYC activation in breast cancer and stromal cells 

before or after co-culture (n=3). C) Immunoblot for the indicated proteins after the indicated 

siRNA knockdown in MRC5 fibroblasts. D) ISG expression after addition of co-culture 

conditioned media with MRC5 fibroblasts harboring the indicated siRNA knockdown. 

TSG101 is a non-ISG not expected to change (n=3). E) Extent of RBP-shielding for the 

indicated exosomal RNAs isolated from co-cultures with MRC5 fibroblasts harboring the 

indicated siRNA knockdown. Proportion shielded is determined by MNase-qRT-PCR 

(n=3). F) MYC expression and localization in MYC-ER MEFs after treatment with 4OHT 

or vehicle control (ethanol). G) ISG expression in recipient breast cancer cells after the 

addition of purified exosomes from MYC-ER MEFs with or without 4OHT activation. 

TSG101 is a non-ISG not expected to change (n=3). H) Extent of RBP-shielding for the 

indicated exosomal RNAs isolated from MYC-ER MEFs after 4OHT activation. Proportion 

shielded is determined by MNase-qRT-PCR (n=3). I) ISG expression in recipient breast 

cancer cells after exosomes from 4OHT-activated MYC-ER MEFs with or without Pol3i 

were added. TSG101 is a non-ISG not expected to change (n=3). J) Extent of RBP-

shielding for the indicated exosomal RNAs isolated from MYC-ER MEFs after 4OHT 

activation with or without Pol3i. Proportion shielded is determined by MNase-qRT-PCR 

(n=3).   Error bars are SEM of biological replicates and *p<0.05.    

 

NOTCH1 regulates stromal MYC expression and activation 

Cell-cell contact is required for stromal activation mediated by ISG-R breast cancer 

cells132. Therefore, we interrogated a known cell-cell contact-dependent regulator of MYC 

signaling, the Notch pathway. NOTCH1 is a strong transcriptional regulator of MYC 

expression in various cancers143. Interestingly, we found that NOTCH1 is specifically 

activated by release of its Notch intracellular domain (NICD1) in stromal cells after co-

culture with ISG-R breast cancer cells, while NOTCH2-4 did not change in their expression 

or activation (Figure 27A). Moreover, this activation was γ-secretase dependent as 

treatment with a γ-secretase inhibitor (GSI) completed abrogated this activation (Figure 

27A). To assess NOTCH1 activation in human cancers, we utilized a panel of cancer-

associated fibroblasts (CAFs) isolated from breast cancer patients. We termed CAFs with 

the ability to induce ISGs in breast cancer cells ‘ISG-inducers’ (ISG-I), and those that could 

not induce ISGs in breast cancer cells ‘ISG-noninducers’ (ISG-NI). We find that ISG-I 

breast cancer cells induce NOTCH1 activation (Figure 27B). Moreover, treatment with a 

GSI to block NOTCH1 activity in co-culture significantly reduces stromal MYC expression 
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and activation (Figure 27C/D). To evaluate the role of these signaling pathways in breast 

cancer patients we interrogated breast cancer and stromal gene expression patterns in 28 

paired primary tumor and stroma samples that were separated by laser-capture 

microdissection (LCMD). Strikingly, those patients with highest breast cancer ISG 

signature expression also had highest stromal ISG signature expression, MYC signature 

expression, and NOTCH signature expression (Figure 27E). ISG signature expression in 

both cell types were highly correlated (Figure 27F, left). Stromal NOTCH and MYC 

signaling were highly correlated, suggesting their co-regulation (Figure 27F, middle). As 

expected based on our results, expression of the stromal MYC signature was highly 

correlated with expression of the breast cancer ISG signature (Figure 27F, right). Thus, 

our results suggest that stromal MYC activation in co-culture and cancer patients in 

NOTCH1 dependent.  



91 
 

Figure 27. Heterotypic tumor-stroma interaction induces stromal NOTCH1 and 

subsequent MYC expression and activation. A) Immunoblot of the indicated proteins 

in MRC5 fibroblasts or 1833 ISG-R breast cancer cells before or after co-culture and with 

or without GSI. B) GFP-tagged 1833 ISG-R breast cancer cells were co-cultured with ISG-

I or ISG-NI CAFs and NOTCH1 activation was denoted by increased NICD1 nuclear and 

cytoplasmic signal and designated by the yellow arrows. C) MRC5 fibroblasts were co-

cultured with GFP-tagged ISG-R breast cancer cells with or without GSI treatment. 
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Stromal MYC activation is denoted by strong nuclear staining and absence of GFP signal 

and designated by the yellow arrows. D) Quantification of MYC activation in breast cancer 

and stromal cells before or after co-culture (n=3). E) Expression of a ISG signature, 

NOTCH signature, or MYC signature primary tumor and stroma samples that were 

separated by laser-capture microdissection. F) Correlation of these signatures in patients 

from the same data set. Error bars are SEM of biological replicates and *p<0.05.    

 

Unshielded stromal RN7SL1 exoRNA promotes breast cancer progression and is present 

in the serum of cancer patients 

A cardinal feature of stromal fibroblasts in the tumor microenvironment is the ability 

to promote cancer progression and metastasis. Indeed, the ability of stromal cells to 

induce anti-viral signaling in breast cancer contributes to metastasis43 and/or the 

expansion of tumor-initiating cells132, which would be expected to favor breast cancer 

progression. To examine whether unshielded RN7SL1 in exosomes can contribute to 

tumor growth, we isolated exosomes from co-culture and from stromal mono-culture and 

performed direct intratumoral injections into subcutaneous 1833 ISG-R breast cancer 

xenografts. Consistent with having higher levels of unshielded RN7SL1, exosomes from 

co-culture accelerated tumor growth compared to exosomes isolated from stromal cells 

alone (Figure 28A). To directly assess if unshielded RN7SL1 can enhance tumor 

progression, RN7SL1 or GAPDH300 control RNA was encapsulated into liposomes and 

similarly delivered intratumorally. Only RN7SL1 could enhance tumor growth in a RIG-I-

dependent manner as no effect was observed with RIG-I KO or with GAPDH300 control 

RNA (Figure 28B). Examination of the tumor confirmed an increase in ISG expression, but 

not in unrelated genes like TSG101, specifically in tumors injected with RN7SL1 and 

expressing WT RIG-I (Figure 28C). Thus, these results suggest that unshielded RN7SL1 

transferred by exosomes can promote breast cancer progression. 
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Figure 28. Unshielded stromal RN7SL1 exoRNA promotes breast cancer 
progression and is present in the serum of cancer patients. A) 1833 breast cancer 
cells were xenografted subcutaneously into athymic mice and 10µg of exosomes from 
MRC5 stromal cell mono-culture or 1833 and MRC5 co-culture were injected 
intratumorally 3 times a week (n=5 per group). Shown are tumor growth curves. B) 1833 
breast cancer cells with (RIG-I KO) or without (RIG-I WT) knockout of RIG-I were 
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xenografted subcutaneously into athymic mice and 50ng of the indicated liposome-
encapsulated RNA was injected intratumorally 3 times a week (n=5 per group). Shown 
are tumor growth curves. C) Expression of ISGs measured by qRT-PCR with human 
specific primers from the indicated tumors from (B). TSG101 and MMP1 are non-ISGs not 
expected to change (n=5). D) Normalized photon flux from the lungs of athymic mice (left) 
tail-vein injected with luciferase-labeled 4175 ISG-R breast cancer cells (LM2) engineered 
with one of two independent shRNAs to RIG-I or a control shRNA (n=5 per group). 
Hematoxylin and eosin stain of mouse lung sections at experimental endpoint (right). E) 
Extent of RBP-shielding of mouse RN7SL1 or 18S rRNA from serum exosomes 2 weeks 
after mice were tail-vein injected for lung metastasis induction with 4175 breast cancer 
cells (LM2) or injected with PBS. Proportion shielded is determined by MNase-qRT-PCR. 
Mouse-specific primers were validated for specificity. F) Average distribution of exoRNA 
in each RNA class (left) or by POL3 regulation (right) from serum exosomes of breast 
cancer patients (n=2).  Only the top 200 highest expressed non-ribosomal RNA transcripts 
were considered. G) Extent of RBP-shielding of RN7SL1 or 18S rRNA from serum 
exosomes of cancer patients or normal volunteers without cancer (NM). Legend indicates 
samples from normal volunteers and cancer patients with or without tumor resection. 
Proportion shielded is determined by MNase-qRT-PCR. Unless indicated, error bars are 
SEM of biological replicates and *p<0.05, **p<0.01.  

 

 

Figure 29. Confirmation of RIG-I shRNA activity. Gene expression in 1833 breast 

cancer cells after transduction of control shRNA (CTL) or two independent RIG-I targeting 

shRNA (RIG-I #1 and RIG-I #2) (n=3). Error bars are SEM of biological replicates and 

**p<0.01. 

 

To study whether metastatic progression is associated with breast cancer RIG-I 

signaling and unshielded RN7SL1 exoRNA from stromal cells, we utilized 4175 human 

breast cancer cells, which are an ISG-R lung metastatic derivative of MDA-MB-231144. 

Inhibiting RIG-I expression in 4175 cells using two independent shRNAs (Figure 29) 
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resulted in a significant defect in lung metastatic colonization, indicating the importance of 

RIG-I signaling in breast cancer cells (Figure 28D). Compared to non-tumor bearing mice, 

interrogation of exoRNA from serum of mice with wild-type 4175 lung metastases revealed 

more unshielding of mouse RN7SL1 but not 18S rRNA as measured using mouse-specific 

primers (Figure 28E). These data suggest that lung metastases from human breast cancer 

cells can result in greater amounts of circulating unshielded RN7SL1 in exosomes 

originating from mouse stromal cells. To corroborate these findings, we also examined 

exoRNA from the serum of a small cohort of cancer patients (Table 6). To the extent 

possible, we mimicked the analysis in mice by examining RN7SL1 in patients after tumor 

resection. This facilitated assessment of RN7SL1 exoRNA from stromal cells and allowed 

better comparison to normal controls without cancer. ExoRNA-seq from two patients 

confirmed that RN7SL1 and POL3 transcripts are present at high levels and among the 

predominant non-rRNA transcripts in exosomes from cancer patients (Figure 28F). 

Compared to healthy controls, this RN7SL1 exoRNA was significantly less shielded in 

cancer patients having had tumor resection, suggesting that RN7SL1 from remaining 

cancerized stroma is more unshielded than from normal cells (Figure 28G). Although 

cellular origin could not be determined, RN7SL1 exoRNA from two available patients with 

gross tumors prior to any therapy also showed similar results, arguing that RN7SL1 

unshielding was not solely due to confounding factors related to tumor resection. 

Together, these findings suggest that unshielded stromal RN7SL1 in exosomes can 

propagate anti-viral signaling in the tumor microenvironment to enhance breast cancer 

progression or metastasis. 
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Table 6: Characteristics of patients analyzed for exosome RN7SL1 shielding 

ID Sex Status Age Cancer Type Resection 

H1 Female Healthy 42 None N/A 

H2 Female Healthy 77 None  N/A 

H3 Female Healthy 24 None N/A 

H4 Female Healthy 52 None  N/A 

H5 Female Healthy 27 None N/A 

H6 Male Healthy 27 None  N/A 

H7 Male Healthy 27 None N/A 

H8 Male Healthy 44 None  N/A 

H9 Male Healthy 49 None N/A 

H10 Male Healthy 57 None  N/A 

C1 Female Cancer 52 Breast Yes 

C2 Female Cancer 49 Breast Yes 

C3 Female Cancer 49 Breast Yes 

C4 Female Cancer 72 Breast Yes 

C5 Female Cancer 55 Breast Yes 

C6 Female Cancer 49 Breast Yes 

C7 Male Cancer 82 Pleomorphic undifferentiated sarcoma No 

C8 Female Cancer 33 Cervical squamous cell carcinoma  No 

 

 

Discussion 

In this study, we describe a phenomenon of virus mimicry whereby the interaction 

between breast cancer cells and stromal fibroblasts share several similarities with how 

virus infected cells relay anti-viral signals to surrounding cells. First, upon encounter with 

breast cancer cells, stromal cells mount an anti-viral response analogous to virally infected 

cells by upregulating ISGs and other genes associated with anti-viral signaling. In fact, 

interferon and anti-viral signaling are dominant pathways induced among hundreds of 

upregulated transcripts. Second, like virally infected cells that can package viral 5’ppp 

RNA into exosomes to function as pathogen-associated molecular patterns (PAMPs), 

stromal cells that have encountered breast cancer cells increase the abundance of 

endogenous POL3-derived and RBP-devoid 5’ppp RN7SL1 in exosomes to function as 



97 
 

DAMPs. Moreover, after interaction between stromal cells and ISG-R breast cancer cells, 

production of DAMP-laden exosomes can increase ten-fold132. After paracrine transfer, 

the PAMP/DAMPs stimulate PRRs to propagate the anti-viral response. In the case of 

cancer, RIG-I activation in breast cancer cells by stromal RN7SL1 can result in STAT1-

mediated amplification of the NOTCH3 pathway, as previously described132. 

Consequently, this interaction favors tumor progression, resistance to therapy, and tumor-

initiation capacity. In total, these data demonstrate how cancers can employ virus mimicry 

in the tumor microenvironment to coerce stromal cells to disseminate anti-viral signals that 

amplify oncogenic signaling pathways (Figure 30). 

 

Figure 30. Model of virus mimicry and unshielding of stromal RN7SL1 to activate 

breast cancer RIG-I through exosome transfer. 

 

Viral PAMPs are under selective pressure to avoid immune recognition, while 

endogenous RNA DAMPs must avoid recognition by PRRs under non-pathological 

conditions. Thus, our discovery that RN7SL1 is a cancer-associated DAMP presented a 

conceptual problem. Specifically, given its abundance in the cytoplasm, it was unclear 

how RN7SL1 could both function as a DAMP in exosomes but at the same time avoid 

recognition by RIG-I while in the cytoplasm. Indeed, it has long been recognized that RNA 
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modification and subcellular localization may be insufficient to prevent inappropriate 

activation by endogenous and abundant POL3 5’ppp transcripts, arguing that unknown 

mechanisms must exist145. Our findings on how differential RBP shielding of endogenous 

RN7SL1 can control DAMP activity and PRR activation provide an explanation for how 

this discrimination can be achieved. In the cytoplasm, RN7SL1 is nearly completely 

shielded by RBPs, presumably SRP proteins. In particular, SRP9 and SRP14 are known 

to interact with the 5’ end of RN7SL1 and we show that these RBPs interfere with RIG-I 

recognition and activation. In exosomes generated from stromal activation by ISG-R 

breast cancer cells, SRP9/14 are absent and results in unshielding of RN7SL1 and 

recognition by RIG-I in recipient cells. These data also indicate that the stimulatory effects 

of high affinity RNA ligands for RIG-I measured in vitro, may be superseded in vivo by 

RBP shielding. Thus, control of RBP shielding may be a critical regulatory layer that 

prevents inappropriate PRR activation, especially of abundant RNAs, while concurrently 

allowing for a readily available and rapidly deployable DAMP. 

When stromal cells encounter breast cancer cells, the initiating event that mimics 

viral infection and leads to the deployment of RN7SL1 as a DAMP is currently unknown. 

Cell-cell contact between stromal and breast cancer cells is required as conditioned media 

from breast cancer cells does not induce ISGs in stromal cells. Indeed, abnormal cell-cell 

contact between epithelial cells and fibroblasts, which are often separated by a basement 

membrane, typically occurs under pathological situations such as wounding or with 

invasive carcinoma. Thus, one possibility is that this heterotypic interaction itself may 

represent a “damage” signal that initiates DAMP release by the stromal compartment. 

Although the mechanism for this potential damage signal is unknown, recent evidence 

demonstrates that oncogenic signals involved in cell-cell regulation such as the Hippo 

pathway can lead to the secretion of extracellular vesicles containing RNA DAMPs146. 

Consistent with a role for oncogenic signaling, we show that there is a pronounced 
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transcriptional upregulation characteristic of cellular activation in stromal cells after contact 

with ISG-R breast cancer cells, as well as an increase in hallmark genes associated with 

MYC and RAS activation. Interestingly, POL3 activity is augmented by MYC137 and by 

nearby RNA polymerase II (POL2) occupancy141. This suggests that high MYC and POL2 

transcriptional output resulting from interaction with ISG-R breast cancer cells may 

enhance POL3-driven RN7SL1 levels in stromal cells. If binding by RBPs such as 

SRP9/14 are limiting, an ensuing increase in unshielded RN7SL1 may lead to its export 

into exosomes. We find that NOTCH1-mediated MYC activation is able to enhance 

RN7SL1 RNA output without a concomitant increase in SRP protein production, resulting 

in an excess of RN7SL1 that is unbound by RBPs. Thus, unshielded RN7SL1 may be a 

consequence of stromal activation after inappropriate interaction with epithelial cells. This 

aberrant stromal activation may be a trigger for virus mimicry. 

Besides transferring viral RNA, the ability to horizontally transfer DAMPs may also 

be an important feature of virus infection, further illustrating how tumor-supporting stromal 

cells may borrow queues from virally infected cells. Consistent with this, virions have been 

described to contain not only RN7SL1 in the absence of SRP proteins but multiple other 

endogenous non-viral RNAs94–97. The role of these non-viral RNAs in virions has not been 

well characterized; however, it has been postulated that they might stimulate innate 

immune signaling98. Our results would support this notion and suggest that RN7SL1 in 

virions may act as a potent activator of RIG-I like it does in exosomes. Alternatively, in 

addition to containing viral RNA, exosomes secreted by infected cells may also package 

unshielded RN7SL1 capable of RIG-I activation. Therefore, whether in virons or in 

exosomes, cells under viral attack may help to ensure a broad anti-viral response by 

packaging endogenous DAMPs alongside viral RNA PAMPs. In support of this concept, 

recent studies show that cells infected by viruses can package the nucleoside second-

messenger cGAMP into secreted virions to trigger a STING-dependent interferon 
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response in recipient cells99,100. In total, these observations suggest that horizontal transfer 

of DAMPs to promulgate anti-viral signaling is a key feature of virus mimicry. Moreover, 

RBP unshielding of endogenous RNAs may have broad implications for innate immune 

sensing not only for cancer but also during host-virus interactions. 

In the context of cancer, this study, together with previous work, demonstrates that 

unshielded RN7SL1 activates RIG-I to amplify NOTCH3 signaling, resulting in expansion 

of tumor-initiating cells. Accordingly, tumor growth, metastasis, and therapy resistance are 

augmented. Consistent with how horizontal dissemination of DAMP signals can influence 

metastasis, cell-cell interaction between breast cancer and astrocytes have been shown 

to facilitate breast cancer brain metastasis through transfer of cGAMP via gap junctions43. 

Other instances of exoRNA activating stromal or host cell PRRs to enhance metastasis 

have also been described101,102. This includes non-coding RNAs such as microRNAs that 

activate toll-like receptors. In the case of the ISG-R breast cancer cells used in this study, 

MYD88-dependent TLRs do not have an appreciable role in stromal-mediated anti-viral 

signaling132. Moreover, of all 5’ppp transcripts identified in exosomes, only RN7SL1 was 

highly abundant, strongly unshielded, and predicted to have extensive double-stranded 

folding. Nonetheless, we do not rule out contributions from other exoRNAs as DAMPs in 

our study or in other cellular contexts. Similar to how defense against different viruses may 

rely on distinct PRRs to optimally engage different viral PAMPs, diverse forms of virus 

mimicry in cancer may sense different, altered, or inappropriately expressed endogenous 

RNAs using various innate immune sensors. The extent to which differential RBP shielding 

impacts these DAMP-PRR combinations remains unknown but is likely an important 

determinant for activation. 

 

  



101 
 

CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS 

Exosomes and ncRNA are Mediators of Cell-to-Cell Communication in the Tumor 

Microenvironment 

In these studies, we detail a complex mechanism of breast cancer tumor-stromal 

interaction that enhances tumor progression and therapy resistance. This interaction is 

characterized by both paracrine anti-viral signals and juxtacrine Notch pathway activation 

that converge at various stages. Here, we find that heterotypic interaction of basal-like 

breast cancer cells and stromal fibroblasts activates NOTCH1 in the stroma, which results 

in the activation stromal MYC. Consequently, MYC enhances stromal POL3 transcriptional 

output of RN7SL1, a highly structured, short, 5’ppp ncRNA. This POL3 transcriptional 

activity in not matched with an upregulation of canonical RN7SL1 RBP binding partners, 

SRP9 and SRP14, and results in an excess of unbound RN7SL1 transcript. Thus, stromal 

RN7SL1 is found in its unshielded form in the exosomes produced after tumor-stromal 

interaction and acts as a DAMP. Recipient breast cancer cells directly recognize 

unshielded RN7SL1 as a pathogenic nucleic acid through the PRR, RIG-I. This initiates 

an anti-viral signaling cascade resulting in the upregulation of ISGs.  

Concomitantly, paracrine signals originating from presentation of stromal JAG1 to 

activate breast cancer NOTCH3, result in the release of the NOTCH3 intracellular domain, 

NICD3. The anti-viral and Notch pathways converge as STAT1 and NICD3 

transcriptionally cooperate to maximize Notch pathway output that is responsible for 

therapy resistance. These seemingly distinct pathways overlap at the initiation and effector 

stages of tumor-stromal interaction to promote tumorigenicity. In vivo, we find that 

combining radiation therapy with a GSI reverses the breast cancer therapy resistance 

conferred by stromal cells. Further, breast cancer patients harbor evidence of circulating 

unshielded RN7SL1, while healthy donor exosomal RN7SL1 is largely shielded. 
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Expression of these pathways is also predictive of conventional treatment failure, as those 

patients with high ISGs and high NOTCH pathway expression have significantly worse 

prognosis. In total, we identify and characterize a conserved pathway by which co-

expression networks in breast cancer cells and the surrounding stroma can drastically 

influence tumor progression, metastasis, and therapy resistance.  

Figure 31. Model of tumor-stromal juxtacrine and paracrine pathway activation in breast 

cancer.  

 

Shielding of Nucleic Acids Regulates PRR Activation 

The characteristics of RNA required for RIG-I activation are well studied147. 

Typically, RIG-I is maximally activated by short, double-stranded, and 5’triphosphorylated 

RNA. These are all hallmark features of viral RNA that RIG-I is best characterized to bind. 

Under normal conditions many cellular RNA that match these characteristics are present; 

however, RIG-I does not bind to them at baseline. The authors of the initial study that 

identified 5’ppp RNA as a RIG-I ligand highlighted that many cellular RNA species are 

also 5’ppp and abundant in the cytoplasm; therefore, they speculated these RNA must 

avoid recognition by unknown mechanisms145. Therefore, we hypothesized that protein 

shielding may be a mechanism of avoiding RIG-I recognition. Viruses often shield their 
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5’ppp and double-stranded RNA regions with nucleocapsid proteins to avoid RIG-I 

recognition148,149. The largest source of double-stranded, 5’ppp cellular RNA is RNA 

polymerase III. Much of the POL3 transcriptome functions in RNPs for a variety of 

essential cellular process and are largely shielded under normal conditions.  

We found that if properly presented, a POL3 transcript, RN7SL1, can act as a 

potent RIG-I ligand. Normally, RN7SL1 is bound by SRP proteins as part of the RNP 

known as the signal recognition particle. In exosomes originating from tumor-stromal co-

culture, SRP proteins are absent and RN7SL1 is unshielded and can act as a DAMP to 

activate RIG-I and ISGs. We demonstrate this by metabolically labeling stromal RNA and 

observing its interaction by breast cancer RIG-I upon co-culture and exosome transfer. 

Unshielded RN7SL1 in exosomes is reminiscent of how many retrovirus virions package 

unshielded RN7SL1 and other POL3 transcripts98. While the function of these host 

transcripts in virions is unknown, our data suggests that RN7SL1 may also act as a DAMP 

in these viral infections. This is likely a host defense mechanism to activate ISGs and 

achieve tissue-level amplification of anti-viral responses. Similar instances of DAMP 

packaging in virions have been described where the STING activator cGAMP traffics in 

virions and extracellular vesicles after viral infection99,100. It is thought that cGAMP traffics 

in virions as a specific and potent DAMP to prime uninfected cells of impending infection. 

We propose that RN7SL1 may function in a similar fashion; however, due to its highly 

abundant and cytoplasmic nature, it is only available for deployment as a DAMP if it is 

unshielded. In total, our results suggest that protein shielding is a major determinant of 

RIG-I recognition of both self and non-self nucleic acids.   
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Unshielded RN7SL1 as a Regulator and Biomarker of Treatment Resistant Breast 

Cancer 

The clinical management of cancer requires increasingly requires personalized 

treatment strategies. These treatment strategies often require an understanding of the 

individual patient’s cancer mutational and expression profile. At present, interrogating this 

complex landscape is achieved by tissue-based methods after surgery or biopsy150. These 

methods have several drawbacks: 1) they are unable to capture the heterogeneity of tumor 

and tumor microenvironment, 2) they require a detectable tumor in an area that can be 

biopsied or surgically removed, and 3) they often cannot be obtained repeatedly over the 

course of disease and treatment progression. Therefore, there is considerable interest in 

the development of tools to interrogate blood-based biomarkers for cancer detection, 

prognosis, and monitoring of treatment efficacy151. There have been significant advances 

in developing and implementing technology for the detection of circulating tumor DNA 

(ctDNA), which, can accurately diagnose and monitor treatment progression in certain 

cancers152,153.  Further, enrichment for cancer-derived exosomes with protein markers and 

identification of KRas mutations can accurately diagnose pancreatic cancer at early 

stages75. While these approaches have extensive capabilities to detect ctDNA with 

exquisite sensitivity and specificity, they are limited by the assessment of mutational 

status. In order to further increase the power of liquid biopsy approaches it would be 

valuable to develop methods that facilitate novel applications, such as identification of 

therapeutic vulnerabilities not based on mutational status, enumeration of cancer specific 

mRNA isoforms, and interrogation of cancer gene expression networks.  

One potential approach for facilitating these novel applications would be analysis 

of cell-free RNA. While circulating cell-free RNA has been difficult to assess, exosomal 

RNA provides a readily available and tractable source of circulating RNA. We identified 
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unshielded RN7SL1 as both a regulator of breast cancer tumor progression as well as a 

biomarker of disease. In cancer patients compared to healthy donors we find an 

abundance of unshielded RN7SL1. In TNBC, where no liquid biomarker has been 

described, unshielded RN7SL1 provides a potential opportunity for clinical translation4. 

Exosomes and exosomal RNA is readily purified from less than 500µL of serum or plasma 

in less than four hours. Our MNase-based shielding assays take less than 24 hours from 

start to finish and produce consistent results. While much work remains to be done to bring 

these shielding assays to the clinic, it represents a promising avenue to consider. 

Tumor-Stroma Co-Expression Networks are a Promising Drug Target 

The tumor microenvironment is a driver of cancer initiation, progression, 

metastasis, and therapy resistance. Therapies that account for these complex interactions 

must be developed and implemented. Strategies to target the tumor microenvironment 

have been attempted with varied success. Most prominently, the tumor vasculature can 

be targeted by blocking the predominant proangiogenic molecule,  vascular endothelial 

growth factor (VEGF), with monoclonal antibodies154. Such blocking antibodies were 

approved by the FDA in for the treatment of metastatic colon cancer in 2004 and 

subsequently for many other cancers alone or in combination with other therapies. While 

it presents a mild clinical benefit for many cancers, VEGF blockade in breast cancer is 

ineffective. The FDA withdrew approval of VEGF blocking antibodies for patients with 

HER2-negative cancers due to its lack of therapeutic benefit and significant toxicity155. 

Targeting cancer-associated inflammation by inhibition of tumor-associated macrophages 

(TAM) has found significant preclinical success156. Additionally, targeting of 

microenvironmental signaling pathways such as cyclooxygenase-2 (COX2), transforming 

growth factor beta (TGFβ), JAK-STAT, TNF-α, and nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) have been both preclinically and clinically 
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successful157,158. While these successes are promising, drawbacks include toxicity due to 

broad targeting of nonpathogenic stroma, acquisition of resistance mechanisms by both 

the tumor stroma and cancer cells, and lack of sufficient biomarkers to optimally treat 

patient subsets.   

The most clinically beneficial strategies to target the tumor microenvironment may 

be to target pathways of tumor-stromal crosstalk. Combinatorial therapy in cancer has 

proven to be an efficacious treatment strategy in most cancers159,160. Rational combination 

of conventional cytotoxic therapies with targeted therapy, immunotherapy, and distinct 

cytotoxic therapies is the current standard of care in many cancers. Targeting of tumor-

stroma interactions provides an opportunity to target both subsets with a single agent. Our 

data would suggest that specific therapies that target co-expression pathways can serve 

as a combinatorial single-agent therapy. For example, ISG and NOTCH pathway 

activation in both stromal and breast cancer cells supports tumorigenesis, progression, 

and therapy resistance. We have demonstrated that the activation of these pathways is 

intimately intertwined; therefore, we would predict that targeting of one pathway should 

cripple the other. Indeed, we find that the combination of radiation therapy and GSI results 

in remarkable tumor regression in xenograft models of breast cancer. We posit that this is 

due to simultaneous targeting of tumor and stromal ISG and NOTCH pathways. Therefore, 

it is imperative to expand these findings to other tumor-stromal interaction networks, such 

as RAS pathway activation and cGAS/STING pathway activation43,131.    

Exosomal Activation or Suppression of Anti-Tumor Immune Responses 

We have identified exosomes and exosomal RNA as a conduit for tumor-fibroblast 

crosstalk that influence and accelerate various stages of breast cancer tumor progression. 

While fibroblasts are the predominant stromal subtype in breast cancer, infiltrating myeloid 

and lymphoid cells may also play a significant role. The immunogenic role of exosomes 
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are well-characterized106. Exosomes can be immune activating by directly and indirectly 

activating dendritic cells by modulation of antigen presentation. They may also directly 

activate natural killer (NK) cells, macrophages, B cells, and T cells. Recently, it was also 

demonstrated that activation of canonically oncogenic signals can result in the release of 

immune activating exosomes that results in robust tumor clearance146. Exosomes can also 

be immune suppressive by inhibiting cytotoxic activity of effector CD4 and CD8 T cells, 

and NK cells. They can further suppress immune activation by inhibiting DC differentiation 

and promotion of myeloid-derived suppressor (MDSC) differentiation. In total, there is a 

clear interaction with exosomes and the immune system. The role of RNA-sensing 

pathways in the activation or suppression of innate and adaptive immune system is 

understudied. It is unclear whether activation of these pathways in the tumor 

microenvironmental milieu would activate or suppress anti-tumor immune responses. How 

exosomes contribute to this balance in breast cancer is not yet understood. Generally, 

fibroblast activation in breast cancer is thought to be immune suppressive161; therefore, 

exosomes containing unshielded RN7SL1 may function to maintain an immunologic 

environment that is favorable to tumor progression.  

Clinical trials utilizing antibody-based blockade of immune checkpoints such as 

CTLA4 and PD1/PDL1 have resulted in remarkable and durable responses. Unfortunately, 

the majority of patients do not respond to these therapies alone due to adaptive and 

acquired resistance mechanisms162. Therefore, there is considerable interest in the 

combination of immunotherapies and targeted or conventional cytotoxic therapies for the 

treatment of solid cancers163,164. Understanding the immune suppressive or activating role 

of exosomes present in the tumor microenvironment can ultimately lead to the rational 

combination of therapies. In particular, breast cancer can be largely immunologically 

silent. If exosomes containing unshielded RN7SL1 are demonstrated to be 

immunosuppressive, then it would suggest patients harboring evidence of circulating 
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unshielded RN7SL1 not be treated with immune checkpoint blockade alone, but in 

combination with GSI to cripple tumor-stroma interactions. If the converse is true, then 

those patients may be promising candidates for single agent immune checkpoint 

blockade. Beyond biomarkers, exosomes are emerging as candidates for delivery of 

therapeutics165. RNA lipoplexes have shown promise in activation of antigen presenting 

cells and mediating rejection of murine tumors in combination with immunotherapy166. 

However, systemic autoimmune responses may result from potent delivery of nonspecific 

synthetic   RNA and liposomes. Therefore, endogenous unshielded RN7SL1 

encapsulated into autologous exosomes may result in safer treatment strategies. In total, 

exosomes provide another opportunity to personalize and adapt conventional and 

emerging therapies for breast cancer patients.  
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CHAPTER 5: MATERIALS AND METHODS 

Cell Culture and Cell Sorting 

Cell culture and cell sorting were completed as previously described132. All cell lines were 

confirmed to be mycoplasma-free with repeated testing. All human breast cancer and 

stromal cell lines were cultured at 37oC in DMEM supplemented with 10% FBS, 100U/ml 

penicillin and 100µg/ml streptomycin, and 2mM l-glutamine. The KB1P mouse breast 

cancer cell lines from K14cre;p53F/F;Brca1F/F mice120 were cultured in RPMI. All co-culture 

experiments were performed in DMEM with exosome-depleted FBS. Breast cancer cells 

were labeled with 7.5µM 5-(and-6)-carboxyfluorescein diacetate, succinimidyl ester 

(CFSE) and mixed 1:1 with stromal cells. Cell populations with a purity of at least 98% 

were used for RNA or protein isolation.   

Cell Death Assays 

Sytox cell death assays were completed as previously described132. In brief, mono- or co-

cultures were irradiated after 48 hours with 10 Gy using a Cs-137 Gammacell 40 

EXACTOR. Cell death of CFSE-labeled breast cancer cells was measured at 96 hours 

post-radiation by flow cytometry using Sytox-Red (Invitrogen). Relative cell death was 

calculated by comparing mono and co-culture cell death.  

Cell Culture Exosome Isolation 

Cell cultures used to isolate exosomes were grown in exosome-depleted media prepared 

by ultracentrifugation of FBS for 3 hours at 100,000xg. Exosomes were isolated from 

conditioned media collected at 48-72 hours by serial high speed ultracentrifugation as 

previously described167 or using 10% final concentration of polyethylene-glycol and low 

speed centrifugation, as previously described168. Purity was examined by electron 

microscopy by negative staining, protein analysis by immunoblotting, and quantified by 

NanoSight N1000 analysis. For exosome injection experiments, protein was quantified by 
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Lowry method, and equivalent volume of 10µg of exosomes were injected. For exosome 

depletion, conditioned media was ultracentrifuged for 8-16hours.  

Serum Exosome Collection 

Serum from patients with cancer were obtained through the UPENN RadOnc Biosample 

Repository. Blood was collected using yellow top Vacutainer (BD) and centrifuged at 

3000rpm for 10 minutes. The samples were then frozen at -80oC until use. Serum from 

healthy donors was obtained commercially (Innovative Research). For exosomes from 

human or mouse serum, 500µl of serum was spun at 2000xg for 15 minutes, filtered 

through a 0.22µm filter, and then purified by serial high speed ultracentrifugation. 

EU Labeling and Quantification 

Stromal cells were labeled with 100µM 5-Ethynyl Uridine (EU) for 24 hours, and breast 

cancer cells were labeled with DiD (1:200) for 10 minutes at 37oC. Both cells types were 

then washed and co-cultured for 8 or 24 hours on glass coverslips. EU was then visualized 

by Alexa Fluor 488 azide (Alexa Fluor® 488 5-carboxamido-(6-azidohexanyl), 

bis(triethylammonium salt))169. Percentage of double positive cells that matched breast 

cancer cell morphology were scored as EU+ breast cancer cells.  

4sU RNA Transfer Quantification 

Stromal cells were labeled with 200µM 4sU (4-Thiouracil) for 24 hours, washed, and either 

left in mono-culture or co-cultured with breast cancer cells. Conditioned media was 

isolated after 24 hours and added to mono-cultured breast cancer cells. Breast cancer 

cells were harvested 24 hours later and RNA extracted. 4sU-labeled RNA was specifically 

biotinylated with HPDP-Biotin and enriched with streptavidin-conjugated magnetic beads, 

as previously described170. Transfer of stromal-derived RNA was determined by 

quantification of total 4sU-labeled RNA in recipient breast cancer cells compared to total 

RNA or by qRT-PCR.  
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4sU-FLAG-RIP 

Stromal cells were labeled with 200µM 4sU (4-Thiouracil), washed, and co-cultured with 

breast cancer cells with RIG-I CRISPR KO, RIG-I KO with re-expression of FLAG-tagged 

RIG-I or RIG-IK858/861A for 48 hours. Co-cultures were harvested and 100mg of wet cell 

pellet was lysed by sonication (five, one-second bursts, medium output) in RSB-200 buffer 

(20mM Tris pH 7.5, 200mM NaCl, 2.5mM MgCl2, 0.5% NP-40, 0.1% Triton X-100, 0.2 

U/uL RNase Inhibitor, and one tablet of protease inhibitors). Post-lysis, FLAG-RIG-I was 

immunoprecipitated with prebound and washed FLAG-M2 beads (Sigma) using 30uL of 

beads per 100mg of wet cell pellet for 2-3 hours at 4oC. Beads were then washed three 

times with RSB-200. RNA was extracted with TRIzol reagent utilizing linear acrylamide as 

a carrier. 4sU-labeled RNA was then enriched as described above.  

Gene Targeting and Expression 

Gene knockdown by siRNA was completed using SMARTPool siRNAs (Thermo) and 

transfected using 20nM siRNA and RNAiMax (Invitrogen) transfection reagent. For stable 

knockdowns, shRNAs were cloned into the pGIPZ vector and transduced by virus using 

pCMV-VSV-G and pHR8.2ΔR envelope and packaging vectors in HEK293T cells. 

Transduced cells were selected using 1-2µg/ml of puromycin. Wild-type and 

K858A/K861A binding mutant of RIG-I was cloned into the pOZ-N vector (a kind gift from 

Roger Greenberg). Transduced cells were then selected with IL-2 receptor magnetic 

beads and expression was confirmed by Western blot for FLAG, HA, and RIG-I. RIG-I 

restoration was functionally confirmed by RIG-I pathway activation in response to Sendai 

virus infection. SRP9 and SRP14 were transiently transfected with pGFH-9 (Addgene 

plasmid # 39538) and pGFH-14c (Addgene plasmid # 39541), both gifts from Katharina 

Strub. Gene knockout by CRISPR was accomplished using pSpCas9(BB)-2A-GFP 

(PX458), a gift from Feng Zhang (Addgene plasmid # 48138). RIG-I was knocked out 

utilizing the protocol described171. In brief, two distinct guide RNAs cloned into the 
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pSpCas9(BB)-2A-GFP backbone were transiently transfected into breast cancer cells. 

After 48 hours, single cells were sorted into 96 well single cell clones based on highest 

GFP expression. Clones were confirmed to have no RIG-I expression by immunoblot and 

pooled. RIG-I KO in the pooled clones were functionally confirmed by RIG-I pathway 

activation in response to Sendai virus infection.   

Recombinant Protein Production and Purification 

Recombinant SRP9 was produced by subcloning the SRP9 cDNA from pGFH-9 plasmid 

into the pET Hi12 GST TEV LIC cloning vector (1G), a gift from Scott Gradia (Addgene 

plasmid # 29655). Recombinant protein was produced in BL21 competent E. coli and 

captured with Glutathione Sepharose beads (GE Healthcare). GST-tagged TEV Protease 

(Sigma) was used to cleave GST-SRP9.  

In Vivo Mouse Studies 

All mouse studies were completed in accordance with ULAR and IACUC regulations. For 

exosome injection studies, 1 x 106 1833 breast cancer cells were injected with Matrigel 

(Corning) into the flanks of 6-8 week old athymic nude mice and 10µg of mono- or co-

culture exosomes were directly injected into the tumors 3 times a week. For RNA injection 

studies, 50ng of 7SL or GAPDH300 RNA encapsulated into RNAiMax liposomes were 

directly injected into the tumors 3 times a week.  Subcutaneous tumor growth was 

measured by caliper. For lung colonization studies, 2 x 105 luciferase-labeled 4175 breast 

cancer cells were injected in the tail vein. Injections were confirmed by immediate imaging 

using a Xenogen IVIS 100 system. Serum was isolated from mice by cardiac puncture. 

Exosome RNA Sequencing 

Exosome RNA was extracted with TRIzol and library preparation was completed using the 

NEBNext Ultra Directional RNA Library Prep Kit for Illumina (NEB) modified so that the 

RNA was not fragmented prior to library preparation.  ERCC controls (Invitrogen) were 
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added into all exosome RNA samples. Libraries were sequenced on Illumina HiSeq 2500 

with 100 base paired end reads.  

Microarray Data Processing and Normalization 

Gene expression data for ISG-R and ISG-NR breast cancer cells co-culture with MRC5 

fibroblasts have been described132 and available at the GEO (GSE60998). ISG-R cell lines 

included: MDA-MB-231, MDA-MB-231 (1833), and HCC1937.  ISG-NR cell lines included: 

MCF7 and MDA-MB-468. Pre-processing, filtering, and differential gene expression 

analysis were performed as previously described132. Gene set analysis was performed 

using the piano R package and Reactome gene sets downloaded from the Molecular 

Signatures Database v5.1 (http://software.broadinstitute.org/gsea/msigdb). The gene set 

for upregulated cancer associated ISGs has been previously described 38. 

MNase qRT-PCR and RNA Sequencing 

Either whole cells or whole exosomes were incubated at 37oC for 30 minutes in MNase 

Buffer (25mM Tris-HCl, 2.5mM CaCl2, 50mM NaCl, 1X PBS), with or without MNase and 

with or without 0.1% Triton X-100. Pre-MNase treatment, 10ng of DVG396 RNA was 

spiked-in to control for differences in MNase activity with or without detergent. Post-MNase 

treatment, TRIzol LS reagent was used to purify RNA using linear acrylamide as a carrier, 

and ERCC Controls (Invitrogen) were spiked-in to account for differences in efficiency of 

RNA extraction. For RNA sequencing studies, libraries were prepared from purified RNA 

using the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (NEB) without 

further RNA fragmentation. Libraries were sequenced on Illumina HiSeq 2500 with 100 

base paired end reads. For qRT-PCR studies, percent shielded was quantified by ΔΔCt 

method normalizing to DVG396 spike-in and MNase without detergent.  

RNA-seq data analysis 
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For exosome RNA-seq and MNase RNA-seq analysis, reads were trimmed first using 

cutadapt v1.9172 with parameters -q 10 -m 30 -O 4. Trimmed reads were then aligned to 

ERCC controls, rRNAs sequences as well as RN7SL1 by using bowtie2173.  The remaining 

reads were aligned to the GRCh38 reference genome using STAR v2.4.0k174 with 

parameters --outFilterMultimapNmax 100 --outFilterMismatchNmax 999 --

outFilterMismatchNoverLmax 0.06. Primary aligned reads were counted against 

GENCODE annotation v21175 and RepeatMasker annotation (UCSC Genome Browser) 

using Subread v1.4.6176 with parameters -s 2 -minReadOverlap 10. The DESeq2 R 

package version 1.10177 was used for differential gene expression analysis. ERCC 

controls were used for inter-sample normalization.  

5’ triphosphate RNA Sequencing 

To enrich for 5’triphosphate RNA, 0.1-2 µg of exosomal RNA was prepared by first 

degrading 5’monophosphate RNA with Terminator 5´-Phosphate-Dependent 

Exonuclease (Epicentre), then converting 5’triphosphate to 5’p with RNA 5’ 

Polyphosphatase (Epicentre), to allow for specific ligation of RNA adaptor P5_RNA to 

RNAs that originally have 5’ triphosphate. Then, cDNAs were synthesized by using a 

primer with 5’ random 9mer (P7_N9), and amplified with NEBNext PCR reagents (NEB) 

by using the same protocol as other RNA-seq libraries. Libraries were sequenced on 

Illumina HiSeq 2500 with 100 base paired end reads. Only the first reads of the paired end 

reads were used in data analysis.  Reads were trimmed and aligned the same as RNA-

seq analysis.  Primary reads that matched the 5’ end of annotated features were counted.  

In Vitro Transcription 

In vitro transcription was performed using of PCR amplified cDNA templates that 

contained Hepatitis Delta Virus Ribozyme to ensure homogenous 3’ ends of the transcripts 

of interest178. In vitro transcription was completed with the MEGAshortscript T7 

Transcription Kit (ThermoFisher) according to manufacturer’s instructions. RNA was 
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DNase treated and phenol/chloroform purified. After thermocycling to ensure ribozyme 

cleavage, correct size transcripts were gel purified. 

RIG-I ATPase Assays 

RIG-I ATPase assays were performed as previously described57. In brief, increasing 

amounts of RNA (10-60nM) were added to a constant quantity of RIG-I (5nM) in the 

presence of 1mM ATP. ATP hydrolysis was measured with the EnzChek Phosphate Assay 

Kit (ThermoFisher) after 60-90 minutes at 37oC. ATP hydrolysis was then measured by 

absorbance of 360nm compared to background. A 19-mer 5’triphosphate dsRNA 

(Invivogen) and DVG396 were used as positive controls and a 19-mer 5’OH dsRNA 

(Invivogen) and an in vitro transcribed 300bp ssRNA stretch of GAPDH (GAPDH300) were 

used as negative controls. 

Protein Analysis 

Protein was extracted using 2X SDS lysis buffer, separated by 4%–12% SDS-PAGE, 

transferred to a PVDF membrane, blocked with 5% nonfat milk in PBS-Tween (0.01%), 

and probed with the antibodies described. Protein was visualized using ECL (SuperSignal 

West Pico, Thermo). 

qRT-PCR Gene Expression Analysis 

Total RNA was isolated and purified from cells using TRIzol reagent (Invitrogen). cDNA 

was synthesized using the High Capacity RNA-to-cDNA kit (ABI) according to 

manufacturer’s instructions. qRT-PCR was performed using Power SYBR Green PCR 

MasterMix (ABI) on the TaqMan 7900 (ABI). Relative expression levels were defined using 

the ΔΔCt method and normalizing to 18S rRNA, β-Actin and GAPDH. 

 

Cell Lines Used in All Studies  

The cell lines used are provided in the table below: 
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Human Mouse 

ISG-R ISG-NR Fibroblast ISG-R Fibroblast 

MDA-MB-231 (1833) MCF7 MRC5 KB1P ALF 

MDA-MB-231 (4175) MDA-MB-468 BJ   

MDA-MB-436     

HCC1937     
 

Primers Used in qRT-PCR 

The primers used in qRT-PCR are provided in the tables below: 
Human:  

  Forward Reverse 

GAPDH GCTCAGACACCATGGGGAAGG TTCCCGTTCTCAGCCTTGAC 

18S GTTCAGCCACCCGAGATTGA CCCATCACGAATGGGGTTCA 

ACTB GCCCTGAGGCACTCTTCCA CGGATGTCCACGTCACACTTC 

IFIT1 GGCTGCCTAATTTACAGCAACC GGCATTTCATCGTCATCAATGG 

MX1 CGACACGAGTTCCACAAATG AAGCCTGGCAGCTCTCTACC 

ISG15 GAGAGGCAGCGAACTCATCT CTTCAGCTCTGACACCGACA 

RIG-I CACCTCAGTTGCTGATGAAGGC GTCAGAAGGAAGCACTTGCTACC 

POLR3G GATGACGATGATGCCGCAGA GGTTGCCTCATCCATGTTGT 

POLR3F AGGCTCCACCAGTCACAGAC TGCCATTAACAGAAATCAACAAA 

STAT1 TTACTCCAGGCCAAAGGAAG TTCAGCTGTGATGGCGATAG 

7SK GGGTTGATTCGGCTGATCT GGGGATGGTCGTCCTCTT 

RN7SL1 GTGTCCGCACTAAGTTCGG TATTCACAGGCGCGATCC 

hsRN7SL1 GCTACTCGGGAGGCTGAGGCT TATTCACAGGCGCGATCC 

RMRP AAAGTCCGCCAAGAAGCGTA CTGCCTGCGTAACTAGAGGG 

RPPH1 AGCTTGGAACAGACTCACGG AATGGGCGGAGGAGAGTAGT 

RNU2 CGTCCTCTATCCGAGGACAAT CGGAGCAAGCTCCTATTCCA 

TSG101 AGAAGGGGCGTGATAGACCT CACTGAGACCGGCAGTCTTT 

MMP1 TGTGGTGTCTCACAGCTTCC TTTTCAACTTGCCTCCCATC 

 
Mouse: 

  Forward Reverse 

GAPDH AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA 

18S CCCCATGAACGAGGGAATT GGGACTTAATCAACGCAAGCTT 

STAT1 ACAACATGCTGGTGACAGAGCC TGAAAACTGCCAACTCAACACCTC 

ISG15 CCAGTCTCTGACTGTGAGAGC GCATCACTGTGCTGCTGGGAC 

MX1 GACCATAGGGGTCTTGACCAA AGACTTGCTCTTTCTGAAAAGCC 

mmRN7SL1 GCTACTCGGGAGGCTGAGACA TATTCACAGGCGCGATCC 

 
Spike-In Controls 

 Forward Reverse 

DVG396 ACTGGGTCATTCCCTGACCA CCCTCAGGTTCCTGATCTCAC 
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ERCC04 TGGGGCGAGTATTCCCAATG TGGGGAAATTTGGGAAGCAGT 

ERCC95 CTTGCCTGCTGCATGTTGTG GAGCGATAGCGGTTAAGCCA 

ERCC108 GCCGCTGTTGCGTAAATCAA AGCCGACTGCTGCTCATATC 

ERCC130 GTACTGACCAGCGTCACACA GCGTGCGGTCAATCATCTTC 

 
Adaptors for 5’ Triphosphate RNA Sequencing 

P5_RNA ACACUCUUUCCCUACACGACGCUCUUCCGAUCU 

P7_N9 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNN 

 
Antibodies Used for Immunoblotting  
The primers for immunoblotting are provided in the table below: 

 Company Catalog Number Dilution 

β-actin Cell Signaling 4970 1:10000 

SRP9 Proteintech 11195-1-AP 1:500 

SRP14 Proteintech 11528-1-AP 1:500 

GFP Abcam ab6673 1:500 

RPC32 Santa Cruz sc-21754 1:200 

RIG-I Cell Signaling 3743 1:500 

ISG15 Santa Cruz sc-50366 1:200 

FLAG Sigma F1804  1:2000 

HA Santa Cruz sc-7392 1:500 

 
Gene Targeting Sequences  
The sequences for siRNA, shRNA and CRISPR gRNA are listed in the tables below:  
siRNA: 

  Sequence Catalog Number 

CTRL Non-Targeting #1 D-001810-01-20 

POLR3F SMARTpool L-019240-01-0005 

 
shRNA:  

  Sequence Catalog Number 

CTRL GIPZ Non-Silencing shRNA  RH8346 

RIG-I #1 TTAAATTTGTCGCTAATCC V2LHS-199776 

RIG-I #2 TAAAGTCCAGAATAACCTG V2LHS_197176 

 
CRISPR: 

  gRNA Sequence 

RIG-I #1 GGGTCTTCCGGATATAATCC 

RIG-I #2 GGATTATATCCGGAAGACCC 
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