
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2017

Canonical Correlation Analysis And Network Data
Modeling: Statistical And Computational
Properties
Zhuang Ma
University of Pennsylvania, kop.mazhuang@gmail.com

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Statistics and Probability Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2460
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Ma, Zhuang, "Canonical Correlation Analysis And Network Data Modeling: Statistical And Computational Properties" (2017).
Publicly Accessible Penn Dissertations. 2460.
https://repository.upenn.edu/edissertations/2460

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/219377883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2460&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=repository.upenn.edu%2Fedissertations%2F2460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2460?utm_source=repository.upenn.edu%2Fedissertations%2F2460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2460
mailto:repository@pobox.upenn.edu


Canonical Correlation Analysis And Network Data Modeling: Statistical
And Computational Properties

Abstract
Classical decision theory evaluates an estimator mostly by its statistical properties, either the closeness to the
underlying truth or the predictive ability for new observations. The goal is to find estimators to achieve
statistical optimality. Modern "Big Data" applications, however, necessitate efficient processing of large-scale
("big-n-big-p'") datasets, which poses great challenge to classical decision-theoretic framework which seldom
takes into account the scalability of estimation procedures. On the one hand, statistically optimal estimators
could be computationally intensive and on the other hand, fast estimation procedures might suffer from a loss
of statistical efficiency. So the challenge is to kill two birds with one stone. This thesis brings together
statistical and computational perspectives to study canonical correlation analysis (CCA) and network data
modeling, where we investigate both the optimality and the scalability of the estimators. Interestingly, in both
cases, we find iterative estimation procedures based on non-convex optimization can significantly reduce the
computational cost and meanwhile achieve desirable statistical properties.

In the first part of the thesis, motivated by the recent success of using CCA to learn low-dimensional feature
representations of high-dimensional objects, we propose novel metrics which quantify the estimation loss of
CCA by the excess prediction loss defined through a prediction-after-dimension-reduction framework. These
new metrics have rich statistical and geometric interpretations, which suggest viewing CCA estimation as
estimating the subspaces spanned by the canonical variates.

We characterize, with minimal assumptions, the non-asymptotic minimax rates under the proposed error
metrics, especially how the minimax rates depend on the key quantities including the dimensions, the
condition number of the covariance matrices and the canonical correlations. Finally, by formulating sample
CCA as a non-convex optimization problem, we propose an efficient (stochastic) first order algorithm which
scales to large datasets.

In the second part of the thesis, we propose two universal fitting algorithms for networks (possibly with edge
covariates) under latent space models: one based on finding the exact maximizer of a convex surrogate of the
non-convex likelihood function and the other based on finding an approximate optimizer of the original non-
convex objective. Both algorithms are motivated by a special class of inner-product models but are shown to
work for a much wider range of latent space models which allow the latent vectors to determine the
connection probability of the edges in flexible ways. We derive the statistical rates of convergence of both
algorithms and characterize the basin-of-attraction of the non-convex approach. The effectiveness and
efficiency of the non-convex procedure is demonstrated by extensive simulations and real-data experiments.
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ABSTRACT

CANONICAL CORRELATION ANALYSIS AND NETWORK DATA MODELING:

STATISTICAL AND COMPUTATIONAL PROPERTIES

Zhuang Ma

Dean P. Foster

Zongming Ma

Classical decision theory evaluates an estimator mostly by its statistical properties, either

the closeness to the underlying truth or the predictive ability for new observations. The

goal is to find estimators to achieve statistical optimality. Modern “Big Data” applications,

however, necessitate efficient processing of large-scale (“big-n-big-p”) datasets, which poses

great challenge to classical decision-theoretic framework which seldom takes into account

the scalability of estimation procedures. On the one hand, statistically optimal estimators

could be computationally intensive and on the other hand, fast estimation procedures

might suffer from a loss of statistical efficiency. So the challenge is to kill two birds with

one stone. This thesis brings together statistical and computational perspectives to study

canonical correlation analysis (CCA) and network data modeling, where we investigate both

the optimality and the scalability of the estimators. Interestingly, in both cases, we find

iterative estimation procedures based on non-convex optimization can significantly reduce

the computational cost and meanwhile achieve desirable statistical properties.

In the first part of the thesis, motivated by the recent success of using CCA to learn low-

dimensional feature representations of high-dimensional objects, we propose novel metrics

which quantify the estimation loss of CCA by the excess prediction loss defined through

a prediction-after-dimension-reduction framework. These new metrics have rich statistical

and geometric interpretations, which suggest viewing CCA estimation as estimating the

subspaces spanned by the canonical variates. We characterize, with minimal assumptions,
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the non-asymptotic minimax rates under the proposed error metrics, especially how the

minimax rates depend on the key quantities including the dimensions, the condition number

of the covariance matrices and the canonical correlations. Finally, by formulating sample

CCA as a non-convex optimization problem, we propose an efficient (stochastic) first order

algorithm which scales to large datasets.

In the second part of the thesis, we propose two universal fitting algorithms for networks

(possibly with edge covariates) under latent space models: one based on finding the exact

maximizer of a convex surrogate of the non-convex likelihood function and the other based

on finding an approximate optimizer of the original non-convex objective. Both algorithms

are motivated by a special class of inner-product models but are shown to work for a

much wider range of latent space models which allow the latent vectors to determine the

connection probability of the edges in flexible ways. We derive the statistical rates of

convergence of both algorithms and characterize the basin-of-attraction of the non-convex

approach. The effectiveness and efficiency of the non-convex procedure is demonstrated by

extensive simulations and real-data experiments.
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CHAPTER 1 : Introduction

The age of “Big Data” features cheap and easy availability of large quantities of

massive, high-dimensional, complex datasets, the analysis of which interlaces statistics,

machine learning and numerical optimization. The challenge/goal is to extract low-

dimensional structures from high-dimensional complex objects in a statistically optimal and

computationally efficient manner. This thesis brings together statistical and computational

perspectives in the study of canonical correlation analysis (CCA) and network data

modeling. We aim to answer questions such as:

What are the proper error metrics to quantify the estimation/prediction loss?

Under such metrics, what are the quantities that characterize the fundamental

statistical limits (e.g. the minimax rates)? To achieve the optimal error rates

on large datasets, what are the efficient algorithms?

1.1. Canonical Correlation Analysis

Canonical correlation analysis (CCA), first introduced by Hotelling (1936), is a fundamental

statistical tool to characterize the relationship between two groups of random variables and

finds a wide range of applications across many different fields. In recent years, CCA has

been successfully applied to learning low dimensional representations of high dimensional

objects like images (Rasiwasia et al., 2010), text (Dhillon et al., 2011) and speeches (Arora

and Livescu, 2013). Meanwhile, a parallel line of research builds up the theoretical fundation

for CCA to achieve sufficient dimension reduction (Kakade and Foster (2007); Foster et al.

(2008); Sridharan and Kakade (2008); Fukumizu et al. (2009); Chaudhuri et al. (2009) and

many others), especially under a popular multi-view setup.

Motivated by such empirical and theoretical success of CCA, we revisit CCA with a new

statistical and computational perspective. Theoretical understanding of the estimation
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of CCA dates back to the study of the asymptotic distribution of the sample canonical

coefficients and sample canonical vectors like Hsu (1941), Izenman (1975), Anderson (1984,

1999) and many others. More recently, Chen et al. (2013) and Gao et al. (2014, 2015b)

established the non-asymptotic minimax rates of sparse CCA in a high dimensional setup.

Furthermore, there has been a surge of interest in developing scalable algorithms for

estimating CCA, to name a few, Avron et al. (2013) Lu and Foster (2014) (before the

proposed algorithm was published), Ge et al. (2016a), Wang et al. (2016) and Allen-Zhu

and Li (2016) (after the proposed algorithm was published).

Compared with previous work, our major contributions are as follows:

1. We propose novel metrics to quantify the estimation loss of CCA by the excess

prediction loss defined through a prediction-after-dimension-reduction framework.

These new metrics have rich statistical and geometric interpretations, which suggest

viewing CCA estimation as estimating the subspaces spanned by the canonical

variates.

2. We characterize, with minimal assumptions, the non-asymptotic minimax rates under

the proposed error metrics, especially how the minimax rates depend on key quantities

including the dimensions, the condition number of the covariance matrices and the

canonical correlations. To the best of our knowledge, this is the first finite sample

result that fully captures the effect of the canonical correlations on the minimax rates.

3. We propose an efficient (stochastic) first-order algorithm to compute the leading-

k dimensional sample canonical vectors. Compared with the well-known closed form

solution, the proposed iterative algorithm avoids multiplying/inverting/factoring large

matrices and only requires minimal memory space.

2



1.2. Network Data Modeling

Network produces a prevalent form of data for quantitative and qualitative analysis in

many areas, including but not limited to sociology, engineering and neuroscience. Real-

world networks exhibit complex characteristics such as degree heterogeneity, transitivity,

homophily and community structure. These pose significant challenges to statistical

modeling. To date, researchers have proposed a collection of network models in various

fields. These models aim to catch different subsets of the foregoing characteristics, and

Goldenberg et al. (2010) provides a comprehensive overview. An important class of network

models are latent space models (Hoff et al., 2002). Suppose there are n nodes in the

observed network. The key idea underlying latent space modeling is that each node i

can be represented by a vector zi in some low dimensional Euclidean space (or some other

metric space of choice) that is sometimes called the social space, and nodes that are “close”

in the social space are more likely to be connected. Hoff et al. (2002) considered two

types of latent space models: distance models and projection models. In both cases, the

latent vectors {zi}ni=1 were treated as fixed effects. Later, a series of papers (Hoff, 2003;

Handcock et al., 2007; Krivitsky et al., 2009) generalized the original proposal in Hoff et al.

(2002) for better modeling of other characteristics of social networks, such as clustering,

degree heterogeneity, etc. In these generalizations, the zi’s were treated as random effects

generated from certain multivariate Gaussian mixtures. Model fitting and inference in these

models has been carried out via Markov Chain Monte Carlo, and it is difficult to scale these

methodologies to handle large networks (Goldenberg et al., 2010). Moreover, one needs to

use different likelihood function based on choice of model and there is little understanding

of the quality of fitting when the model is mis-specified. Albeit these disadvantages, latent

space models are attractive due to their friendliness to interpretation and visualization.

We make progress on tackling the foregoing two issues simultaneously in this thesis, which

we summarize as the following main contributions:

1. We propose a special class of latent space models, called inner-product models, which

3



are able to characterize degree heterogeneity, transitivity, homophily and community

structure. We design two fitting algorithms: one based on finding the exact maximizer

of a convex surrogate of the non-convex likelihood function and the other based on

directly finding an approximate optimizer of the non-convex objective. We derive high

probability error bounds for both algorithms and characterize the basin-of-attraction

of the non-convex optimization approach.

2. We show that these two fitting algorithms are “universal” in the sense that we are able

to establish their high probability error bounds for a wide range of latent space models

beyond the inner-product model class. For example, they work simultaneously for the

distance model and the Gaussian kernel model. Thus, the class of inner-product

models as well as the proposed fitting algorithms are indeed flexible and can be used

to approximate other latent space models of interest.

3. We demonstrate the effectiveness and efficiency of the model and algorithms on real

data examples for several different tasks, including visualization, community detection

and network-assisted learning. In particular, we obtain state-of-art performance for

the task of community detection on three benchmark datasets.

1.3. Thesis Outline

The reminder of the thesis is organized as follows. In Chapter 2, we propose new error

metrics which quantify the estimation loss of CCA by the excess prediction loss defined

through a prediction-after-dimension-reduction framework. This framework suggests

viewing CCA estimation as estimating the subspaces spanned by the canonical variates.

We also characterize, with minimal assumptions, the non-asymptotic minimax rates under

the proposed error metrics, especially how the minimax rates depend on the key quantities

including the dimensions, the condition number of the covariance matrices and the canonical

correlations. In Chapter 3, we propose a novel first-order algorithm and its stochastic variant

to compute the sample CCA. This algorithm scales to large datasets. We also show the

4



local linear convergence of the proposed algorithm.

In Chapter 4, we switch to the second part of the thesis: network data modeling. We propose

a special class of latent space models, called inner-product models, which could capture

typical characteristics of real-world networks. Then we propose two fitting algorithms based

on convex and non-convex optimization respectively. We further establish the statistical

rates of convergence of both algorithms and characterize the basin-of-attraction of the non-

convex approach. Finally, simulations and real-data experiments are provided to support

the proposed models and algorithms.

Chapter 2 and Chapter 3 are based on the paper Ma and Li (2016) and Ma et al. (2015)

respectively. Chapter 4 is based on the unpublished manuscript Ma and Ma (2017). My

research on shrinakge estimation (Ma et al. (2014a), Weinstein et al. (2015)) and reduced

rank regression (Ma et al. (2014b)) is not included in this thesis.

5



CHAPTER 2 : Canonical Correlation Analysis: Subspace Perspective and Minimax

Rates

2.1. Introduction

Canonical correlation analysis (CCA), first introduced by Hotelling (1936), is a fundamental

statistical tool to characterize the relationship between two groups of random variables and

finds a wide range of applications across many different fields. For example, in genome-wide

association study (GWAS), CCA is used to discover the genetic associations between the

genotype data of single nucleotide polymorphisms (SNPs) and the phenotype data of gene

expression levels (Witten et al., 2009; Chen et al., 2012). In information retrieval, CCA is

used to embed both the search space (e.g. images) and the query space (e.g. text) into

a shared low dimensional latent space such that the similarity between the queries and

the candidates can be quantified (Rasiwasia et al., 2010; Gong et al., 2014). In natural

language processing, CCA is applied to the word co-occurrence matrix and generates vector

representations of the words which capture the semantics (Dhillon et al., 2011; Faruqui and

Dyer, 2014). Other applications, to name a few, include fMRI data analysis (Friman et al.,

2003), computer vision (Kim et al., 2007) and speech recognition (Arora and Livescu, 2013;

Wang et al., 2015).

The enormous empirical success motivates us to revisit the estimation problem of canonical

correlation analysis. From a decision-theoretic point of view, two questions are naturally

posed: What is the proper error metric to quantify the discrepancy between the population

CCA and its sample estimates? And under such a metric, what are the quantities that

characterize the fundamental statistical limits?

The justification of loss functions, in the context of CCA, has seldom appeared in the

literature. From the first principle that the proper metric to quantify the estimation loss

should depend on the specific purpose of using CCA, we find that the applications discussed

above mainly fall into two categories: identifying variables of interest and dimension

6



reduction. The first category, mostly in genomic research (Witten et al., 2009; Chen

et al., 2012), treats one group of variables as responses and the other group of variables

as covariates. The goal is to discover the specific subset of the covariates that are most

correlated with the responses. Such applications are characterized by low signal-to-noise

ratio and the interpretability of the results. The other category is investigated extensively

in statistical machine learning and engineering community where CCA is used to learn

low dimensional latent representations of complex objects such as images (Rasiwasia et al.,

2010), text (Dhillon et al., 2011) and speeches (Arora and Livescu, 2013). These scenarios

are usually accompanied by a relatively high signal-to-noise ratio and prediction accuracy,

using the learned low dimensional embeddings as a new set of predictors, is of primary

interest. In recent years, a series of publications has established fundamental theoretical

guarantees for CCA to achieve sufficient dimension reduction (Kakade and Foster (2007);

Foster et al. (2008); Sridharan and Kakade (2008); Fukumizu et al. (2009); Chaudhuri et al.

(2009) and many others), especially under a multi-view setup as will be discussed in detail

in Section 2.2.4.

In this thesis, we aim to address the problems raised above by treating CCA as a tool for

dimension reduction.

2.1.1. Linear Invariance of Canonical Variates

On the population level, CCA extracts the most correlated directions between two sets of

random variables: x ∈ Rp1 and y ∈ Rp2 . To be specific, CCA recursively finds the pairs of

vectors φi ∈ Rp1 ,ψi ∈ Rp2 , 1 ≤ i ≤ p := min{p1, p2} such that

(φi,ψi) = arg max
φ>Σxφ=1,ψ>Σyψ=1

φ>Σxyψ

subject to φ>Σxφj = 0, ψ>Σyψj = 0, ∀ 1 ≤ j ≤ i− 1.

(2.1)

For 1 ≤ i ≤ p, (φi,ψi) is the ith pair of canonical coefficients (loading vectors), (φ>i x,ψ
>
i y)

is the ith pair of canonical variates and λi := φ>i Σxyψi is the ith canonical correlation.
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Define Φ := [φ1, · · · ,φp], Ψ := [ψ1, · · · ,ψp] and Λ := diag(λ1, · · · , λp). Then by definition,

Σ
1/2
x Φ,Σ

1/2
y Ψ have orthonormal columns and Λ = Φ>ΣxyΨ, which further implies that

Σ
1/2
x Φ,Σ

1/2
y Ψ are respectively left and right singular vectors of Σ

−1/2
x ΣxyΣ

−1/2
y . With these

notations, the first type of applications discussed above can be understood as identifying the

support of the top-k canonical vectors: Φ1:k and Ψ1:k, where Φ1:k ∈ Rp1×k and Ψ1:k ∈ Rp2×k

consist of the first k columns of Φ and Ψ respectively. Dimension reduction, which motivates

this paper, is concerned with the leading k canonical variates: Φ>1:kx and Ψ>1:ky (k is assumed

to be pre-specified).

What distinguishes CCA from other dimension reduction methods like principal component

analysis or partial least squares is its linear invariance. As highlighted in Hotelling (1936)

when canonical correlation analysis was first developed:

The relations between two sets of variates with which we shall be concerned

are those that remain invariant under internal linear transformations of each set

separately.

Among all the population parameters, Hotelling (1936) noticed that the canonical

correlations λ1, · · · , λp and the functions of these quantities are the only linear invariants

of the system. On the contrary, the canonical coefficients Φ and Ψ will change accordingly

either with rotation of axes or scaling of the variables, which diminishes the rationale for

using an error metric built directly upon the loadings. If extending Hotelling’s notion

of invariants to include random vectors, the canonical variates are actually invariant

under linear transformations of each set separately. To illustrate, let T1, T2 be any pair

of nonsingular matrices and define the new random vectors a = T>1 x, b = T>2 y. As

will be shown in Section 2.3.1, T−1
1 Φ1:k, T

−1
2 Ψ1:k are the top-k canonical coefficients of

(a, b). Therefore, the top-k canonical variates of (a, b) will be (T−1
1 Φ1:k)

>a = Φ>1:kx and

(T−1
2 Ψ1:k)

>b = Ψ>1:ky, which are the same as those of (x, y). This fact substantiates our

interest in the canonical variates instead of the loadings. Let (Φ̂1:k, Ψ̂1:k) be any generic

estimator of the loadings. Then the two questions that we aim to answer can be recast as:
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What is the proper error metric to quantify the discrepancy between (Φ>1:kx,Ψ
>
1:ky) and the

sample counterparts (Φ̂>1:kx, Ψ̂
>
1:ky)? And under such a metric, what are the quantities that

characterize the fundamental statistical limits?

For the rest of the paper, we will focus on the relationship between Φ̂>1:kx and Φ>1:kx since

similar results can be obtained for the other pair by symmetry.

2.1.2. Subspace Estimation and Subspace Loss

In Section 2.2, we show that when CCA is used for dimension reduction, it is the difference

between the predictive power of Φ>1:kx and Φ̂>1:kx that matters, rather than the Euclidean

distance between Φ>1:kx and Φ̂>1:kx. Specifically, we characterize the discrepancy between the

predictive power by the excess prediction loss induced by replacing the population canonical

variates Φ>1:kx with the sample estimates Φ̂>1:kx. When linear prediction is concerned, such

discrepancy is reduced to the difference between the linear span of the population and

sample canonical variates, denoted by span(x>Φ1:k) and span(x>Φ̂1:k), which are subspaces

of span(x>) := {x>w, w ∈ Rp1}. This suggests that CCA estimation can be viewed as

subspace estimation, that is, estimating the subspace spanned by the leading-k canonical

variates: span(x>Φ1:k). From this perspective, the error metric L(·, ·) we pursue could be

rewritten as

L(Φ>1:kx, Φ̂
>
1:kx) = L(span(x>Φ1:k), span(x>Φ̂1:k)). (2.2)

Interestingly, the error metrics derived through the excess prediction loss is closely related

to the principal angles (defined in Section 2.2.3) between span(x>Φ̂1:k) and span(x>Φ1:k).

Suppose θ = (θ1, · · · , θk)> is the vector of such principal angles. As elaborated in

Theorem 1,

Worst case excess prediction loss '
∥∥∥P

Σ
1/2
x Φ̂1:k

− P
Σ

1/2
x Φ1:k

∥∥∥2
= ‖sin(θ)‖2∞

Bayesian excess prediction loss '
∥∥∥P

Σ
1/2
x Φ̂1:k

− P
Σ

1/2
x Φ1:k

∥∥∥2

F
/2k = ‖sin(θ)‖22 /k

(2.3)
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where ' means ‘equal up to an absolute constant’, sin(θ) = (sin(θ1), · · · , sin(θk)) and P(·)

denotes the projection matrix w.r.t. the column space of the matrix in the subscript.

2.1.3. Minimax Rates

In section 2.3, we characterize the non-asymptotic minimax estimation rates for CCA

under the error metrics proposed in (2.3), especially how the minimax rates depend on

the key quantities, including the dimensions, the condition number of the covariance

matrices and the canonical correlations. Informally, with operator norm error as an

example, in Theorem 2 and Theorem 3, we show that under certain a sample size condition

(n ≥ Cλk,λk+1
(p1 + p2)), the minimax rate is characterized by

inf
Φ̂1:k

sup
Σ∈F

E
[∥∥∥P

Σ
1/2
x Φ̂1:k

− P
Σ

1/2
x Φ1:k

∥∥∥2
]
�

(1− λ2
k)(1− λ2

k+1)

(λk − λk+1)2

p1

n
.

To the best of our knowledge, this is the first finite sample result that captures the factor (1−

λ2
k)(1−λ2

k+1). This term is not negligible because λk, λk+1 are parameters depending on the

dimensions and should not be treated as constants. In practice, as the number of variables

increases, one should expect the canonical correlations to increase as well (e.g. considering

the case that the variables are gradually added to the two groups). The other important

feature is the independence of the dimension p2. If only interested in the ‘estimation’ of the

canonical variates of x, then even when p2 � p1, as long as the sample size is large enough,

the minimax rate of ‘estimating’ Φ>1:kx does not depend on p2. This phenomenon was also

revealed in Gao et al. (2014) and Cai and Zhang (2016) with the additional assumption that

all the residual canonical correlations are zero: λk+1 = · · · = λp1 = 0. Finally, the minimax

rates are independent of the condition number of the covariance matrices: κ(Σx), κ(Σy).

This is due to the linear invariance of the canonical variates as illustrated in Section 2.3.1.

We hope our theoretical findings could provide some guidance for the practical use of CCA

because in real applications, these factors matter both computationally and statistically

(Ma et al., 2015).
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The upper bound of the minimax rates is achieved by sample CCA which is defined

in the same manner as (2.1) by replacing the population covariance matrices with the

corresponding sample estimates. The sample canonical variates are also linear invariant,

which is crucial in reducing the estimation error of sample CCA to the “standard form”, as

spelled out in Section 2.3.1, in which Σx and Σy are identity and Σxy = [Λ, 0] (p1 ≤ p2).

Theoretical understanding for the estimation of CCA dates back to the study of the

asymptotic distribution of sample CCA, in the low dimensional regime with fixed dimensions

and sample size going to infinity, for both sample canonical coefficients and sample canonical

correlations (Hotelling, 1936; Hsu, 1941; Izenman, 1975; Anderson, 1984, 1999) (and many

others). More recently, Chen et al. (2013) and Gao et al. (2014, 2015b) have studied the

non-asymptotic minimax rates of sparse CCA in a high dimensional setup. We defer the

detailed comparison between these results and ours to Section 2.3.2.

2.1.4. Notations

Throughout this chapter, we use lower-case and upper-case letters to represent vectors

and matrices respectively. For any matrix U ∈ Rn×p and vector u ∈ Rp, ‖U‖, ‖U‖F

denotes operator (spectral) norm and Frobenius norm respectively, ‖u‖ denotes the vector

l2 norm, U1:k denotes the submatrix consisting of the first k columns of U , and PU

stands for the projection matrix onto the column space of U . Moreover, we use σmax(U)

and σmin(U) to represent the largest and smallest singular value of U respectively, and

κ(U) = σmax(U)/σmin(U) to denote the condition number of the matrix. We use Ip for the

identity matrix of dimension p and Ip,k for the submatrix composed of the first k columns

of Ip. Further, O(m,n) (and simply O(n) when m = n) stands for the set of m × n

matrices with orthonormal columns and Sp+ denotes the set of p×p strictly positive definite

matrices. For a random vector x ∈ Rp, span(x>) = {x>w,w ∈ Rp} denotes the subspace of

all the linear combinations of x. Other notations will be specified within the corresponding

context.
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2.2. Subspace Perspective: Excess Prediction Loss and Subspace Angles

In this section, we propose a prediction-after-dimension-reduction framework to quantify

the loss of any generic dimension reduction algorithm (including CCA). This framework

suggests two error metrics, one induced by the worst case excess prediction loss and the

other induced by the average excess prediction loss. For CCA, these two error metrics are

closely related to the principal angles between the subspaces spanned by the population

and sample canonical variates, respectively.

2.2.1. Linear Prediction Revisited

First, we review the basics of linear model theory under the random design setup. Suppose

given

x1, . . . , xp, z ∈ L2(Ω,F ,P),

where L2(Ω,F ,P) is the set of random variables with mean zero and finite second moment,

and the goal is to predict the response z with the random vector x := (x1, . . . , xp)
>. We

measure the prediction loss by

loss(z|x) := min
β∈Rp

E[(z − x>β)2].

We further assume that (x, z) has joint covariance matrix:

Cov


x
z


 =

Σx σxz

σ>xz σ2
z

 .
By classical linear model theory

β∗ := arg min
β∈Rp

E[(z − x>β)2] = Σ−1
x σxz,

loss(z|x) = σ2
z − σ>xzΣ−1

x σxz = σ2
z(1− ‖rxz‖2)
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where rxz := Σ
−1/2
x σxz(σ

2
z)
−1/2 and ‖rxz‖2 is the population R2 which characterizes the

proportion of the variability in the response z explained by the predictor x. One notable

feature of such prediction loss is its linear invariance. Define the linear subspace spanned

by the coordinates of x as

span(x>) := {x>w : w ∈ Rp} ⊂ L2(Ω,F ,P).

If for another set of random variables {v1, . . . , vp} ∈ L2(Ω,F ,P) with span(v>) = span(x>)

and v := (v1, . . . , vp)
>, then by definition, loss(z|x) = loss(z|v). Therefore, we can rewrite

loss(z|x) = loss(z| span(x>)).

These two notations will be used interchangeably throughout the paper. The linear

invariance property can be revealed by noticing that ‖rxz‖2 = E[(Pspan(x)z)
2]/E[z2] where

P(·) is the projection operator defined in the Hilbert space L2(Ω,F ,P) with covariance

operator as the inner product.

2.2.2. Competing with Oracles

Consider the scenario where the predictor x is in a high dimensional space and many

directions in span(x>) are redundant for predicting the response z. Practitioners usually

perform certain kind of dimension reduction on x before applying supervised learning

algorithms. Suppose U ∈ Rp×k is a reduction matrix obtained by some generic dimension

reduction method. The subspace perspective of the prediction loss discussed in the previous

section suggests loss(z| span(x>U))−loss(z| span(x>)), or simply loss(z| span(x>U)) as the

measure of goodness for dimension reduction algorithms.

Given any pair of reduction matrices U1, U2 ∈ Rp×k, the discrepancy between their
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prediction loss can be quantified by:

loss(z| span(x>U1))− loss(z| span(x>U2)) = E[(Pspan(x>U2)z)
2 − (Pspan(x>U1)z)

2]

= σ2
z

(
r>xz

(
P

Σ
1/2
x U2

− P
Σ

1/2
x U1

)
rxz

)
. (2.4)

The first equality is geometrically straightforward, measuring the proportion of the

variability in response z explained by the two subspaces: span(x>U1) and span(x>U2).

The algebraic expression in the second equality (proved in Theorem 1) is less obvious but

decouples the loss into an interaction between a supervised learning factor rxz and an

unsupervised learning factor P
Σ

1/2
x U2

−P
Σ

1/2
x U1

. To shed more light on this excess prediction

risk, we parametrize the joint covariance matrix of (x, z) in terms of separate covariance

matrices Σx, σ
2
z and the vector rxz, that is

Cov


x
z


 =

Σx σxz

σ>xz σ2
z

 =

Σ
1/2
x 0

0 σz


 Ip rxz

r>xz 1


Σ

1/2
x 0

0 σz

 . (2.5)

Considering the worst case discrepancy across all possible correlation structures, as proved

in Theorem 1,

sup
rxz :‖rxz‖2=R2

{
loss(z| span(x>U1))− loss(z| span(x>U2))

}
= σ2

zR
2
∥∥∥P

Σ
1/2
x U1

− P
Σ

1/2
x U2

∥∥∥ ,
which suggests the right hand side of the equation as a sensible metric to quantify the

difference between the two reduction matrices. Actually, it is more informative to replace

the competitor U2 with an oracle reduction matrix, denoted by U?. As suggested by (2.4),

we say that a reduction matrix U? is an oracle reduction matrix if P
Σ

1/2
x U?

rxz = rxz. Define

A := {r : P
Σ

1/2
x U?

r = r, ‖r‖2 = R2} as the set of ‘correlation’ vectors such that U? is

an oracle reduction matrix with fixed population R2. If considering the worst case excess
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prediction loss within A, then according to Theorem 1,

sup
rxz∈A

{
loss(z| span(x>U))− loss(z| span(x>U?))

}
= σ2

zR
2
∥∥∥P

Σ
1/2
x U
− P

Σ
1/2
x U?

∥∥∥2
. (2.6)

Interestingly, the operator norm is replaced by its square when the competitor is an oracle

reduction matrix. On the other hand, from a Bayesian perspective, considering the prior

that the vector rxz is sampled with respect to the uniform measure (Haar measure) on A,

denoted by π, then the average excess prediction loss will satisfy (also refer to Theorem 1):

Erxz∼π
{
loss(z| span(x>U))− loss(z| span(x>U?))

}
=
σ2
zR

2

2k

∥∥∥P
Σ

1/2
x U
− P

Σ
1/2
x U?

∥∥∥2

F
. (2.7)

The analysis above connects the prediction loss for the generic response z with the

estimation loss for the oracle reduction matrix U? under the metrics derived in (2.6) and

(2.7). Therefore, when CCA is used for dimension reduction, it is natural to quantify the

discrepancy between Φ̂>1:kx and Φ>1:kx by the excess prediction loss:

∥∥∥P
Σ

1/2
x Φ̂1:k

− P
Σ

1/2
x Φ1:k

∥∥∥2
,
∥∥∥P

Σ
1/2
x Φ̂1:k

− P
Σ

1/2
x Φ1:k

∥∥∥2

F
.

2.2.3. Measuring Subspace Distance by Principal Angles

In this section, we show that the loss defined in (2.6) and (2.7) are closely related to the

principal angles between the two subspaces spanned by the reduced predictors. For any

p dimensional random vector x with mean zero and bounded second moments, define the

Hilbert space

H = span(x>) = {X|X = x>w,w ∈ Rp}

with covariance operator as the inner product, that is, for any X1, X2 ∈ H, 〈X1, X2〉

:= Cov(X1, X2) = E(X1X2). Suppose we have a pair of full column rank matrices

U1, U2 ∈ Rp×k and consider the canonical correlation analysis between the two subspaces

of H: span(x>U1) and span(x>U2). Let (W1, Ŵ1), (W2, Ŵ2), . . . , (Wk, Ŵk) be the first,
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second, ..., and kth pair of canonical variates between span(x>U1) and span(x>U2).

Then span(W1, . . . ,Wk) = span(x>U1), span(Ŵ1, . . . , Ŵk) = span(x>U2) and 〈Wi,Wj〉 =

〈Wi, Ŵj〉 = 〈Ŵi, Ŵj〉 = 0, for any i 6= j and Var(Wi) = Var(Ŵi) = 1, for i = 1, . . . , k.

The ith principal angle is defined as θi := ∠(Wi, Ŵi). Without loss of generality we assume

θ1 ≥ · · · ≥ θk and define the distance between the two subspaces as:

L2(span(x>U1), span(x>U2)) :=
k∑
i=1

sin2 θi =
k∑
i=1

(
1−

∣∣∣〈Wi, Ŵi

〉∣∣∣2) .
This is a valid metric because the principal angles are uniquely defined though the canonical

variates need not be. Since x>Σ
−1/2
x is an orthonormal basis ofH under the covariance inner

product, it is convenient to represent the elements in H by this basis. Let

(W1, . . . ,Wk) = x>Σ−1/2
x B, and (Ŵ1, . . . , Ŵk) = x>Σ−1/2

x B̂,

where B := [b1, . . . , bk], B̂ := [̂b1, . . . , b̂k] ∈ Rp×k are the coordinate representations under

x>Σ
−1/2
x . Notice that by definition, {W1, . . . ,Wk} and {Ŵ1, . . . , Ŵk} are orthonormal bases

of span(x>U1) and span(x>U2), respectively. Then B, B̂ are p×k basis matrices. Moreover,

we have b>i b̂j = 〈Wi, Ŵj〉 = 0, for all i 6= j.

Let’s now represent L2(span(x>U1), span(x>U2)) in terms of B and B̂. In fact, since

1−
∣∣∣〈Wi, Ŵi

〉∣∣∣2 = 1−
∣∣∣b>i b̂i∣∣∣2 =

1

2

∥∥∥bib>i − b̂ib̂>i ∥∥∥2

F
,

we have

L2(span(x>U1), span(x>U2)) =
1

2

k∑
i=1

∥∥∥bib>i − b̂ib̂>i ∥∥∥2

F

=
1

2

∥∥∥∥∥
k∑
i=1

(
bib
>
i − b̂ib̂>i

)∥∥∥∥∥
2

F

=
1

2

∥∥∥BB> − B̂B̂>∥∥∥2

F
,
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where the second equality is due to b>i bj = b̂>i bj = b̂>i b̂j = 0, for all i 6= j.

Finally, notice that span(x>U1) = span(W1, . . . ,Wk), x
>U1 = (x>Σ

−1/2
x )(Σ

1/2
x U1), and

(W1, . . . ,Wk) = x>Σ
−1/2
x B. Then B and Σ

1/2
x U1 have the same column space. Since

B ∈ Rp×k is a basis matrix, we have BB> = P
Σ

1/2
x U1

, which is the orthogonal projector to

the column space of Σ
1/2
x U1. Similarly, we have B̂B̂> = P

Σ
1/2
x U2

, which implies

L2(span(x>U1), span(x>U2)) =
1

2

∥∥∥P
Σ

1/2
x U1

− P
Σ

1/2
x U2

∥∥∥2

F
.

On the other hand, we can also define the distance through the largest principal angle:

L1(span(x>U1), span(x>U2)) := sin2 θ1 = 1−
∣∣∣〈W1, Ŵ1

〉∣∣∣2 .
Let θ = (θ1, · · · , θk), then BB>B̂B̂> = Bdiag(cos(θ))B̂>, and by Lemma 2.18,

∥∥∥P
Σ

1/2
x U1

− P
Σ

1/2
x U2

∥∥∥2
=
∥∥∥BB> − B̂B̂>∥∥∥2

= 1− σ2
min

(
BB>B̂B̂>

)
= sin2(θ1) = L1(span(x>U1), span(x>U2))

We summarize the results into the following theorem of which the proof is deferred to

Section 2.4.

Theorem 1. Suppose (x, z) ∼ P for some unknown distribution P with covariance structure

specified in (2.5) and subspace angles defined above. For any pair reduction matrices U,U? ∈

Rp×k,

loss(z| span(x>U))− loss(z| span(x>U?)) = σ2
z

(
r>xz

(
P

Σ
1/2
x U?

− P
Σ

1/2
x U

)
rxz

)
sup

rxz : ‖rxz‖2=R2

loss(z| span(x>U))− loss(z| span(x>U?))

= σ2
zR

2
∥∥∥P

Σ
1/2
x U
− P

Σ
1/2
x U?

∥∥∥ = σ2
zR

2 ‖sin(θ)‖∞ .
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Let A = {r : P
Σ

1/2
x U?

r = r, ‖r‖2 = R2}. By treating U? as an oracle reduction matrix,

sup
rxz : rxz∈A

{
loss(z| span(x>U))− loss(z| span(x>U?))

}
= σ2

zR
2
∥∥∥P

Σ
1/2
x U
− P

Σ
1/2
x U?

∥∥∥2
= σ2

zR
2 ‖sin(θ)‖2∞ .

By treating U? as a Bayes oracle, that is rxz ∼ π where π is the uniform measure (Haar

measure) on A, then

Erxz∼π
{
loss(z| span(x>U))− loss(z| span(x>U?))

}
=
σ2
zR

2

2k

∥∥∥P
Σ

1/2
x U
− P

Σ
1/2
x U?

∥∥∥2

F
=
σ2
zR

2

k
‖sin(θ)‖22

2.2.4. CCA for Multi-view Dimension Reduction

In the research and applications of multi-media analytics, data of the same object, is often

collected from multiple sources and exhibit heterogeneous properties. Features obtained

from different domains are referred to as different ‘views’. Usually each view summarizes a

specific aspect of the studied object and different views are complementary to one another.

For example, in web-page classification, the hyperlink structure and the words on the page

are two different views (Chaudhuri et al., 2009). In video surveillance, images of cameras

from different angles constitute different views (Loy et al., 2009). For more recent results,

see the survey paper of Xu et al. (2013) and references therein.

Although multiple views provide more potential discriminative information to distinguish

the patterns of different classes, the feature vector of each view usually lies in a high

dimensional space. It is critical, both statistically and computationally, to perform

dimension reduction before applying any supervised learning algorithm. It has been shown

by many researchers that canonical correlation analysis can achieve sufficient dimension

reduction under certain multi-view assumptions (Kakade and Foster (2007); Foster et al.
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(2008); Sridharan and Kakade (2008); Fukumizu et al. (2009); Chaudhuri et al. (2009) and

many others)

Suppose the input variable x can be split into two views x(1), x(2) and the goal is to predict

the response z based on the two views. Let (Φ1:k,Ψ1:k) be the top-k population canonical

coefficients between x(1) and x(2). Foster et al. (2008) proved the following proposition.

Proposition 2.1. (Sufficient Dimension Reduction by CCA Foster et al. (2008)) Under

certain multi-view assumptions1,

loss(z|x(1)) = loss(z| span((x(1))>Φ1:k))

loss(z|x(2)) = loss(z| span((x(2))>Ψ1:k))

This proposition shows that the predictive power of the original high-dimensional predictors

x(1) and x(2) is fully captured by the top k canonical variates. However, the proposition

focuses on the population level and does not take into account the estimation error induced

by substituting the population canonical coefficients with the sample estimates. Such

sample-population discrepancy can be quantified by

loss(z| span((x(1))>Φ̂1:k))− loss(z| span((x(1))>Φ1:k)),

loss(z| span((x(2))>Ψ̂1:k))− loss(z| span((x(2))>Ψ1:k)),

or equivalently, the proposed loss functions according to Theorem 1.

2.3. Minimax Upper and Lower Bounds

In this section, we introduce our main results on non-asymptotic upper and lower bounds

for estimating CCA under the proposed loss functions. Specifically, the upper bound is

achieved by sample CCA.

1See Theorem 3 of Foster et al. (2008) for details
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2.3.1. Reduction for Sample CCA

In this section, we show that the linear invariance of both population and sample canonical

variates enables us to reduce the estimation error of sample CCA to the special case that

Σx = Ip1 ,Σy = Ip2 and Σxy = [Λ 0] (we assume p1 ≤ p2 without loss of generality).

Let X = (x1, · · · , xn)> be the data matrix where x1, · · · , xn
i.i.d∼ N (0,Σx) and similarly we

define Y . It is well known that the top-k sample canonical coefficients can be defined as a

solution to the following optimization problem:

(Φ̂1:k, Ψ̂1:k) ∈ arg max
Wx,Wy

tr(W>x Σ̂xyWy)

subject to W>x Σ̂xWx = Ik, W>y Σ̂yWy = Ik.

(2.8)

where Σ̂x, Σ̂y, Σ̂xy are sample variance and covariance matrices defined as

Σ̂xy =
1

n
X>Y, Σ̂x =

1

n
X>X, and Σ̂y =

1

n
Y >Y.

Coming back to the definition of population CCA in (2.1), Ψ is a p2 × p1 matrix such

that Σ
1/2
y Ψ ∈ O(p2, p1). In this section, we abuse notation and redefine Ψ as the p2 × p2

matrix by arbitrarily padding the rest p2 − p1 columns such that Σ
1/2
y Ψ ∈ O(p2). Let

ai = Φ>xi and bi = Ψ>yi. Then we will have ai
i.i.d∼ a = Φ>x with distribution N (0, Ip1)

and bi
i.i.d∼ b = Ψ>y with distribution N (0, Ip2). Moreover,

Σab := Eaib>i = Φ>ΣxyΨ = (Σ1/2
x Φ)>Σ−1/2

x ΣxyΣ
−1/2
y (Σ

1
2
y Ψ) = [Λ 0].

where the last equality is due to the fact that Σ
1/2
x Φ,Σ

1/2
y Ψ are respectively left and right

singular vectors of Σ
−1/2
x ΣxyΣ

−1/2
y . This implies

a
b

 i.i.d∼ N

0,

Ip1 Σab

Σba Ip2


 ,
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and their top-k population canonical coefficients (Φa
1:k,Ψ

b
1:k) = (Ip1,k, Ip2,k). Let A =

(a1, · · · , an)> = XΦ and B = (b1, · · · , bn)> = YΨ. Then

Σ̂a =
1

n
A>A = Φ>Σ̂xΦ,

Σ̂b =
1

n
B>B = Ψ>Σ̂yΨ,

Σ̂ab =
1

n
A>B = Φ>Σ̂xyΨ.

(2.9)

Since (Φ̂1:k, Ψ̂1:k) is a solution to the sample CCA (2.8), then

(Φ−1Φ̂1:k,Ψ
−1Ψ̂1:k) ∈ arg max

Wx,Wy

tr(W>x Φ>Σ̂xyΨWy)

subject to W>x Φ>Σ̂xΦWx = Ik, W>y Ψ>Σ̂yΨWy = Ik,

or, by (2.9), equivalently,

(Φ−1Φ̂1:k,Ψ
−1Ψ̂1:k) ∈ arg max

Wx,Wy

tr(W>x Σ̂abWy)

subject to W>x Σ̂aWx = Ik, W>y Σ̂bWy = Ik.

Therefore, (Φ−1Φ̂1:k,Ψ
−1Ψ̂1:k) are the sample canonical coefficients for (a, b), which we

denote by (Φ̂a
1:k, Ψ̂

b
1:k). Then a>Φ̂a

1:k = x>Φ̂1:k and a>Φa
1:k = x>Φ1:k (linear invariance of

canonical variates). Hence,

∥∥∥P
Σ

1/2
x Φ1:k

− P
Σ

1/2
x Φ̂1:k

∥∥∥2
= L1(span(x>Φ̂1:k), span(x>Φ1:k))

= L1(span(a>Φ̂a
1:k), span(a>Φa

1:k))

=
∥∥∥PΦa1:k

− P
Φ̂a1:k

∥∥∥2
.

By the same argument, with L1 replaced by L2,

∥∥∥P
Σ

1/2
x Φ1:k

− P
Σ

1/2
x Φ̂1:k

∥∥∥2

F
=
∥∥∥PΦa1:k

− P
Φ̂a1:k

∥∥∥2

F

To sum up, it suffices to consider the special covariance structure Σx = Ip1 ,Σy = Ip2 ,Σxy =
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[Λ 0] to analyze the estimation error of sample CCA.

Remark 2.2. As a byproduct, the reduction argument reveals that the estimation error

of sample CCA is independent of the condition numbers of the covariance matrices: κ(Σx)

and κ(Σy). This is not obvious because the separate estimation errors, ‖Σx − Σ̂x‖, ‖Σy −

Σ̂y‖, ‖Σxy − Σ̂xy‖, are in fact proportional to κ(Σx) and κ(Σy).

2.3.2. Upper and Lower Bounds

In this section, we assume x ∈ Rp1 , y ∈ Rp2 are jointly normal with mean zero and joint

covariance matrix Σ specified by

Σ =

Σx Σxy

Σ>xy Σy


where Σx and Σy are nonsingular. Recall that λ1, · · · , λp1∧p2 are the canonical correlations

and (Φ,Ψ) are the canonical coefficient matrices (loadings) as defined in (2.1). For any

1 ≤ k < p1 ∧ p2, define the kth eigen-gap as ∆ = λk − λk+1.

Theorem 2. (Upper bound) There exists universal positive constants C,C1, C2 independent

of n, p1, p2 and Σ such that if n ≥ C(p1 +p2), the top-k sample canonical coefficients matrix

Φ̂1:k satisfies

E
[∥∥∥P

Σ
1/2
x Φ̂1:k

− P
Σ

1/2
x Φ1:k

∥∥∥2
]
≤ C1

(1− λ2
k)(1− λ2

k+1)

∆2

p1

n
+ C2

(
p1 + p2

n∆2

)2

E
[∥∥∥P

Σ
1/2
x Φ̂1:k

− P
Σ

1/2
x Φ1:k

∥∥∥2

F
/k

]
≤ C1

(1− λ2
k)(1− λ2

k+1)

∆2

p1 − k
n

+ C2

(
p1 + p2

n∆2

)2

The upper bounds for Ψ̂1:k can be obtained by switching p1 and p2.

This theorem exhibits several notable features:

1. The multiplicative factor (1 − λ2
k)(1 − λ2

k+1)/∆2 appears in the principal term. The

inverse dependence on the eigen-gap ∆2 is inherent for spectral estimations. The

factor (1−λ2
k) reveals that the estimation error decreases with increasing correlations
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between the two sets of random variables. When there is perfect correlation, that

is λk = 1, we can recover the CCA directions errorlessly because the observed data

along those directions are perfectly co-linear. The factor (1−λ2
k+1) comes as surprise

and appears in our lower bound as well. When λk is close to 1 and the eigen-gap ∆

is close to 0, for example, in the regime that λk = 1− C∆, as ∆→ 0,

(1− λ2
k)(1− λ2

k+1)/∆2 � constant

which indicates that consistency might still be achieved. In contrast, without the

factor (1 − λ2
k+1), the principal term will explode since (1 − λ2

k)/∆
2 � 1/∆. We

remark that λk, λk+1 are parameters depending on the dimensions and should not be

treated as constants. As the number of variables increases, one should expect the

canonical correlations to increase as well (e.g. considering the case that the variables

are gradually added to the two groups).

To the best of our knowledge, this is the first finite sample result to capture the

factors: (1−λ2
k) and (1−λ2

k+1). This is achieved by a careful Taylor expansion of the

estimating equations for Φ̂1:k and Ψ̂1:k, inspired by the classical multivariate theory

of Anderson (1963, 1984, 1999) and Birnbaum et al. (2013), while the analysis of Gao

et al. (2014, 2015b) and Cai and Zhang (2016) does not yield this factor.

2. The dimension parameter p2 only appears in the high order term, which implies that

even when p2 � p1, as long as the sample size is large enough (see Corollary 2.4), the

‘estimation’ error of Φ>1:kx will not depend on p2. This phenomenon was first revealed

by Gao et al. (2014) through multi-stage estimation and sample splitting. The recent

work of Cai and Zhang (2016) directly proved such a result for sample CCA without

splitting the samples. The results of both Gao et al. (2014) and Cai and Zhang (2016)

are based on the artificial assumption that all the residual canonical correlations are

zero: λk+1 = · · · = λp1 = 0 (or equivalently, the rank of Σxy is k).
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3. The upper bound does not depend on the condition number of the covariance matrices:

κ(Σx) and κ(Σy). It is directly implied by the reduction argument but not obvious

because the separate estimation errors, ‖Σx − Σ̂x‖, ‖Σy − Σ̂y‖, ‖Σxy − Σ̂xy‖, are in

fact proportional to these condition numbers. The success of the reduction argument

relies on the linear invariance of both population and sample canonical variates. For

loss functions directly based on the loadings (Chen et al., 2013; Gao et al., 2015b),

the upper bounds will be proportional to κ(Σx) and κ(Σy).

4. The only assumption made in Theorem 2 is that Σx,Σy are invertible. Anderson

(1999) assumes the canonical correlations are distinct because the argument requires

the asymptotic convergence of each individual canonical vector and coefficient.

Moreover, the result is asymptotic without finite sample guarantee. Gao et al. (2014)

and Cai and Zhang (2016) assume λk+1 = · · · = λp1 = 0, and Gao et al. (2014, 2015b)

assume the condition number κ(Σx) and κ(Σy) are bounded.

To establish the minimax lower bound, we define the parameter space

F(p1, p2, k, λk, λk+1, κ1, κ2)

as the collection of joint covariance matrices Σ satisfying

Σx,Σy are nonsingular, κ(Σx) = κ1, κ(Σy) = κ2

0 ≤ λp1∧p2 ≤ · · · ≤ λk+1 < λk ≤ · · · ≤ λ1 ≤ 1

We deliberately set κ(Σx) = κ1, κ(Σy) = κ2 to demonstrate that the lower bound is

independent of the condition number. For the rest of the paper, we will use the shorthand

F to represent this parameter space for simplicity.

Theorem 3. (Lower bound) There exists a universal constant c independent of n, p1, p2
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and Σ such that

inf
Φ̂1:k

sup
Σ∈F

E
[∥∥∥P

Σ
1/2
x Φ̂1:k

− P
Σ

1/2
x Φ1:k

∥∥∥2
]
≥ c2

{(
(1− λ2

k)(1− λ2
k+1)

∆2

p1 − k
n

)
∧ 1 ∧ p1 − k

k

}

inf
Φ̂1:k

sup
Σ∈F

E
[∥∥∥P

Σ
1/2
x Φ̂1:k

− P
Σ

1/2
x Φ1:k

∥∥∥2

F
/k

]
≥ c2

{(
(1− λ2

k)(1− λ2
k+1)

∆2

p1 − k
n

)
∧ 1 ∧ p1 − k

k

}

where ∆ = λk − λk+1. The lower bounds for Ψ̂1:k can be obtained by switching p1 and p2.

The proof of the lower bound is deferred to Section 2.6.

Remark 2.3. The upper and lower bounds together imply that the condition numbers of

Σx and Σy are neither cursing nor blessing when subspace estimation is concerned.

Gao et al. (2015b) obtained minimax lower bounds for sparse CCA in high dimensional

regime. Rephrasing their results without sparsity assumptions, they essentially proved

E
{

inf
Q∈O(p1)

E
[∥∥∥x>Φ1:k − x>Φ̂1:kQ

∥∥∥2

F
/k

]}
≥ c2

{(
1− λ2

k

κ1λ2
k

p1 − k
n

)
∧ 1 ∧ p1 − k

k

}
,

with the parameter space λp1∧p2 = · · · = λk+1 = 0 < λk ≤ · · · ≤ λ1 ≤ 1. The inner

expectation is with respect to an independent sample x and the outer expectation is with

respect to the data from which Φ̂1:k is constructed. The inverse dependency on the condition

number in their results can be removed by noticing that

inf
Q∈O(p1)

E
[∥∥∥x>Φ1:k − x>Φ̂1:kQ

∥∥∥2

F

]
≥ 1

2

∥∥∥P
Σ

1/2
x Φ̂1:k

− P
Σ

1/2
x Φ1:k

∥∥∥2

F
.

(see Section 2.7.9 for the proof) and applying Theorem 3 with λk+1 = 0.

Corollary 2.4. When p1 ≥ 2k and

p1 + p2

n∆2
≤ c

(1− λ2
k)(1− λ2

k+1)

(1 + p2/p1)
, (2.10)

25



for some universal positive constant c, the minimax rates can be characterized by

inf
Φ̂1:k

sup
Σ∈F

E
[∥∥∥P

Σ
1/2
x Φ̂1:k

− P
Σ

1/2
x Φ1:k

∥∥∥2
]
�

(1− λ2
k)(1− λ2

k+1)

∆2

p1

n
,

inf
Φ̂1:k

sup
Σ∈F

E
[∥∥∥P

Σ
1/2
x Φ̂1:k

− P
Σ

1/2
x Φ1:k

∥∥∥2

F
/k

]
�

(1− λ2
k)(1− λ2

k+1)

∆2

p1

n
.

where ∆ = λk − λk+1.

Remark 2.5. For consistency, we only need the left hand side of (2.10) to converge to zero.

However in order for the high order term to be dominated by the principal term, the left

hand side of (2.10) is required to converge to zero faster than the right hand side.

2.4. Proof of Theorem 1

For any U1, U2 ∈ Rp×k, from classical linear model theory,

βi := arg min
β

E
[∣∣∣z − β>(U>i xi)

∣∣∣2] = (U>i ΣxUi)
−1U>i σxz, i = 1, 2,

and

loss(z| span(x>Ui)) = E[z2]− E[(β>i (U>i xi))
2]

= σ2
z − σ>xzUi(U>i ΣxUi)

−1U>i ΣxUi(U
>
i ΣxUi)

−1U>i σxz

= σ2
z

(
1− r>xz(Σ1/2

x Ui)(U
>
i ΣxUi)

−1(Σ1/2
x Ui)

>rxz

)
.

Notice that (Σ
1/2
x Ui)(U

>
i ΣxUi)

−1/2 has orthonormal columns with column space

span(Σ
1/2
x Ui), then

loss(z| span(x>Ui)) = σ2
z

(
1− r>xzPΣ

1/2
x Ui

rxz

)
.

Therefore,

loss(z| span(x>U1))− loss(z| span(x>U2)) = σ2
zr
>
xz

(
P

Σ
1/2
x U2

− P
Σ

1/2
x U1

)
rxz.
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By the variational definition of the leading eigenvalue,

sup
rxz : ‖rxz‖2=R2

loss(z| span(x>U1))− loss(z| span(x>U2)) = σ2
zR

2λmax

(
P

Σ
1/2
x U2

− P
Σ

1/2
x U1

)
= σ2

zR
2
∥∥∥P

Σ
1/2
x U2

− P
Σ

1/2
x U1

∥∥∥ ,
where the second equality is by the characterization of the difference between two projection

matrices due to Wedin (1983). This proves the first claim of the theorem. For the second

part, since rxz ∈ A,

loss(z| span(x>U))− loss(z| span(x>U?))

= σ2
zr
>
xz

(
P

Σ
1/2
x U?

− P
Σ

1/2
x U

)
rxz

= σ2
zr
>
xzPΣ

1/2
x U?

(
P

Σ
1/2
x U?

− P
Σ

1/2
x U

)
P

Σ
1/2
x U2

rxz

= σ2
zr
>
xzPΣ

1/2
x U?

(
Ip − PΣ

1/2
x U

)
P

Σ
1/2
x U?

rxz

≤ σ2
zR

2
∥∥∥P

Σ
1/2
x U?

(
Ip − PΣ

1/2
x U

)
P

Σ
1/2
x U?

∥∥∥
= σ2

zR
2
∥∥∥P

Σ
1/2
x U?

(
Ip − PΣ

1/2
x U

)∥∥∥2

= σ2
zR

2
∥∥∥P

Σ
1/2
x U?

− P
Σ

1/2
x U

∥∥∥2
.

Notice that P
Σ

1/2
x U?

(
Ip − PΣ

1/2
x U

)
P

Σ
1/2
x U?

is positive definite. Let u1 be the leading singular

vector of this matrix and define r∗xz = Ru1. Then r∗xz ∈ A and with such choice of r∗xz, the

inequality above will become equality and this implies that

sup
r∗xz∈A

{
loss(z| span(x>U))− loss(z| span(x>U?))

}
= σ2

zR
2
∥∥∥P

Σ
1/2
x U
− P

Σ
1/2
x U?

∥∥∥2
.

For the last part of the theorem, let P
Σ

1/2
x U?

= QQ>. Then the set A can be rewritten as

A = {r : r = RQr̃, r̃ ∈ Sk−1}.
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The uniform measure (Haar measure) π on A can be defined through the uniform measure

(Haar measure) π̃ on the sphere Sk−1. Because π̃ is uniform on the sphere Sk−1, then

Var(π̃) = Ik/k (by symmetry) and

E
rxz∼π

[
loss(z| span(x>U))− loss(z| span(x>U?))

]
=σ2

zR
2 Er̃∼π̃

[
r̃>Q>

(
P

Σ
1/2
x U?

− P
Σ

1/2
x U

)
Qr̃
]

=σ2
zR

2 tr
(
Q>

(
P

Σ
1/2
x U?

− P
Σ

1/2
x U

)
Q
)
/k

=σ2
zR

2 tr
((
P

Σ
1/2
x U?

− P
Σ

1/2
x U

)
QQ>

)
/k

=σ2
zR

2 tr
((
Ip − PΣ

1/2
x U

)
P

Σ
1/2
x U?

)
/k

Notice that P
Σ

1/2
x U?

= P 2

Σ
1/2
x U?

,

E
rxz∼π

[
loss(z| span(x>U))− loss(z| span(x>U?))

]
=σ2

zR
2 tr
(
P

Σ
1/2
x U?

(
Ip − PΣ

1/2
x U

)
P

Σ
1/2
x U?

)
/k

=σ2
zR

2
∥∥∥P

Σ
1/2
x U?

(
Ip − PΣ

1/2
x U

)∥∥∥2

F
/k

=σ2
zR

2
∥∥∥P

Σ
1/2
x U
− P

Σ
1/2
x U?

∥∥∥2

F
/2k,

where the last equality is due to Lemma 2.18.

2.5. Proof of Theorem 2

Throughout the proof, we assume p1 = p2 for the ease of presentation and the same

argument works for any p1 and p2 at the cost of heavier notations (when p1 6= p2, in

the definition (2.14), Λ2, Λ̂2 will be rectangular instead of square matrices. As a result, the

subsequent places where Λ2 appears in the current proof should be understood as either Λ2

or Λ>2 according to the dimensions in the specific context). We will still use p1, p2 (p1 ≤ p2)

to denote the dimension of x and y separately such that the results will be interpretable

when p1 6= p2.
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By the reduction argument in Section 2.3.1, it suffices to consider

Σx = Ip1 , Σy = Ip2 , Σxy = Λ

where Λ = diag(λ1, λ2, . . . , λp1) ∈ Rp1×p1 is the diagonal matrix with 1 ≥ λ1 ≥ . . . ≥ λp1 ≥

0. Under this setup

Φ1:p1 = Ip1 , Ψ1:p1 = Ip2,p1 .

and λ1, λ2, · · · , λp1 are the canonical correlations. Then the error metric is reduced to

∣∣∣∣∣∣∣∣∣P
Σ

1/2
x Φ̂1:k

− P
Σ

1/2
x Φ1:k

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣PΦ̂1:k

− PΦ1:k

∣∣∣∣∣∣∣∣∣
where |||·||| denotes either operator or Frobenius norm. Divide Φ̂1:k into two blocks such that

Φ̂1:k =

Φ̂u
1:k

Φ̂l
1:k

 where Φ̂u
1:k and Φ̂l

1:k are the upper k× k and lower (p1− k)× k sub-matrices

of Φ̂1:k respectively. Let U =

Φ̂u
1:k

0

 ∈ Rp1×k. Then PΦ1:k
= PU and by Wedin’s sin θ law

(Wedin, 1972), there exists universal constant C such that

∣∣∣∣∣∣∣∣∣PΦ̂1:k
− PΦ1:k

∣∣∣∣∣∣∣∣∣2 =
∣∣∣∣∣∣∣∣∣PΦ̂1:k

− PU
∣∣∣∣∣∣∣∣∣2 ≤ C

∣∣∣∣∣∣∣∣∣Φ̂1:k − U
∣∣∣∣∣∣∣∣∣2(

σk(Φ̂1:k)− σk+1(U)
)2 =

C
∣∣∣∣∣∣∣∣∣Φ̂l

1:k

∣∣∣∣∣∣∣∣∣2
σ2
k(Φ̂1:k)

(2.11)

The denominator in (2.11) is close to 1 with high probability when n ≥ C(p1 +p2) for some

constant C. The remaining proof will focus on obtaining upper bounds for the numerator.

The upper bound in terms of operator norm is involved and we will present detailed proof.

The Frobenius norm bound can be obtained in a very similar (but simpler) manner of which

the proof is only sketched. The proof mainly contains 3 parts:

1. Express explicitly (principal term + high order term) each cell of the matrix Φ̂l
1:k by

a careful Taylor expansion of the estimating equations.
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2. Derive two separate deterministic upper bounds for the principal part of ‖Φ̂l
1:k‖. One

of the them is tight when λk+1 is bounded away from 1 and the other one is tight

when λk+1 is bounded away from 0.

3. Upper bound the high order term and put pieces together.

Throughout the proof, the constants c, C, · · · might change from line to line.

2.5.1. Taylor Expansion for Φ̂l
1:k

Recall that Φ̂ ∈ Rp1×p1 , Ψ̂ ∈ Rp2×p1 are the sample canonical coefficients. By definition, the

sample canonical coefficients satisfy the following two estimating equations (because Σ̂
1/2
x Φ̂

and Σ̂
1/2
y Ψ̂ are left and right singular vectors of Σ̂

−1/2
x Σ̂xyΣ̂

−1/2
y respectively),

Σ̂xyΨ̂ = Σ̂xΦ̂Λ̂ (2.12)

Σ̂yxΦ̂ = Σ̂yΨ̂Λ̂ (2.13)

Divide the matrices into blocks,

Σ̂x =

Σ̂11
x Σ̂12

x

Σ̂21
x Σ̂22

x

 , Σ̂y =

Σ̂11
y Σ̂12

y

Σ̂21
y Σ̂22

y

 , Σ̂xy =

Σ̂11
xy Σ̂12

xy

Σ̂21
xy Σ̂22

xy

 , Σ̂yx =

Σ̂11
yx Σ̂12

yx

Σ̂21
yx Σ̂22

yx


where Σ̂11

x , Σ̂
11
y , Σ̂

11
xy, Σ̂

11
yx are k × k matrices. Similarly, we define

Λ =

Λ1

Λ2

 , Λ̂ =

Λ̂1

Λ̂2

 , (2.14)

where Λ1, Λ̂1 are also k × k matrices. Finally, we define Ψ̂u
1:k ∈ Rk×k, Ψ̂l

1:k ∈ R(p2−k)×k in

the same way as Φ̂u
1:k, Φ̂

l
1:k. With these notations, we can write the lower left (p1 − k) × k
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sub-matrix of (2.12) and (2.13) explicitly as

Σ̂21
xyΨ̂

u
1:k + Σ̂22

xyΨ̂
l
1:k = Σ̂21

x Φ̂u
1:kΛ̂1 + Σ̂22

x Φ̂l
1:kΛ̂1, (2.15)

Σ̂21
yxΦ̂u

1:k + Σ̂22
yxΦ̂l

1:k = Σ̂21
y Ψ̂u

1:kΛ̂1 + Σ̂22
y Ψ̂l

1:kΛ̂1. (2.16)

Similarly, the upper left k × k sub-matrix of (2.12) and (2.13) can be written explicitly as

Σ̂11
xyΨ̂

u
1:k + Σ̂12

xyΨ̂
l
1:k = Σ̂11

x Φ̂u
1:kΛ̂1 + Σ̂12

x Φ̂l
1:kΛ̂1, (2.17)

Σ̂11
yxΦ̂u

1:k + Σ̂12
yxΦ̂l

1:k = Σ̂11
y Ψ̂u

1:kΛ̂1 + Σ̂12
y Ψ̂l

1:kΛ̂1. (2.18)

Manipulate the terms in (2.17),

Λ1Ψ̂u
1:k + (Σ̂11

xy − Λ1)Ψ̂u
1:k + Σ̂12

xyΨ̂
l
1:k = Φ̂u

1:kΛ̂1 + (Σ̂11
x − Ik)Φ̂u

1:kΛ̂1 + Σ̂12
x Φ̂l

1:kΛ̂1.

Therefore,

Λ1Ψ̂u
1:k − Φ̂u

1:kΛ1 = Φ̂u
1:k(Λ̂1 − Λ1) + (Σ̂11

x − Ik)Φ̂u
1:kΛ̂1 + Σ̂12

x Φ̂l
1:kΛ̂1

− (Σ̂11
xy − Λ1)Ψ̂u

1:k − Σ̂12
xyΨ̂

l
1:k := δ1. (2.19)

To give some intuition, the equation essentially implies Λ1Ψ̂u
1:k ≈ Φ̂u

1:kΛ1 because δ1 will be

proved to be a higher order term. Apply the same argument to (2.18), and we will obtain

Λ1Φ̂u
1:k − Ψ̂u

1:kΛ1 = Ψ̂u
1:k(Λ̂1 − Λ1) + (Σ̂11

y − Ik)Ψ̂u
1:kΛ̂1 + Σ̂12

y Ψ̂l
1:kΛ̂1

− (Σ̂11
yx − Λ1)Φ̂u

1:k − Σ̂12
yxΦ̂l

1:k := δ2. (2.20)

Similarly, massage the terms in (2.15),

Σ̂21
xyΨ̂

u
1:k + Λ2Ψ̂l

1:k + (Σ̂22
xy − Λ2)Ψ̂l

1:k = Σ̂21
x Φ̂u

1:kΛ1 + Σ̂21
x Φ̂u

1:k(Λ̂1 − Λ1)

+ Φ̂l
1:kΛ1 + (Σ̂22

x Φ̂l
1:kΛ̂1 − Φ̂l

1:kΛ1),
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which can be equivalently written as

Σ̂21
xyΨ̂

u
1:k + Λ2Ψ̂l

1:k − Σ̂21
x Φ̂u

1:kΛ1 − Φ̂l
1:kΛ1 = Σ̂21

x Φ̂u
1:k(Λ̂1 − Λ1)

+ (Σ̂22
x Φ̂l

1:kΛ̂1 − Φ̂l
1:kΛ1)− (Σ̂22

xy − Λ2)Ψ̂l
1:k := δ3. (2.21)

Apply the same argument to (2.16), we will obtain

Σ̂21
yxΦ̂u

1:k + Λ2Φ̂l
1:k − Σ̂21

y Ψ̂u
1:kΛ1 − Ψ̂l

1:kΛ1 = Σ̂21
y Ψ̂u

1:k(Λ̂1 − Λ1)

+ (Σ̂22
y Ψ̂l

1:kΛ̂1 − Ψ̂l
1:kΛ1)− (Σ̂22

yx − Λ2)Φ̂l
1:k := δ4. (2.22)

Consider (2.21)× (−Λ1)− Λ2 × (2.22), then

Φ̂l
1:kΛ

2
1 − Λ2

2Φ̂l
1:k + Σ̂21

x Φ̂u
1:kΛ

2
1 − Σ̂21

xyΨ̂
u
1:kΛ1 − Λ2Σ̂21

yxΦ̂u
1:k + Λ2Σ̂21

y Ψ̂u
1:kΛ1

= −(δ3Λ1 + Λ2δ4) := δ5,

that is

Φ̂l
1:kΛ

2
1 − Λ2

2Φ̂l
1:k =Σ̂21

xyΨ̂
u
1:kΛ1 + Λ2Σ̂21

yxΦ̂u
1:k

− Σ̂21
x Φ̂u

1:kΛ
2
1 − Λ2Σ̂21

y Ψ̂u
1:kΛ1 + δ5. (2.23)

The equation above indicates that, ignoring Φ̂u
1:k, Ψ̂

u
1:k and the high order term δ5, the target

is expressed as a linear function of the sample covariance matrices. Later we will show that

the sample covariance matrices and Φ̂u
1:k, Ψ̂

u
1:k can be decoupled and bounded separately.

2.5.2. Upper Bounds for ‖Φ̂l
1:k‖

In this section, we frequently use the following lemma on the Hadamard operator norm for

some structured matrices and the proof is deferred to Section 2.7.1.

Lemma 2.6. (Hadamard Operator Norm) For A ∈ Rm×n, define the Hadamard operator
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norm as

|||A||| = sup
{
‖A ◦B‖ : ‖B‖ ≤ 1, B ∈ Rm×n

}
Let α1, · · · , αm and β1, · · · , βn be arbitrary positive numbers lower bounded by a positive

constant δ. Define A1, A2, A3 ∈ Rm×n by

[A1]ij =
1

αi + βj
, [A2]ij =

min{αi, βj}
αi + βj

, [A3]ij =
max{αi, βj}
αi + βj

Then

|||A1||| ≤
1

2δ
, |||A2||| ≤

1

2
, |||A3||| ≤

3

2
.

Upper Bound I: tight for λk+1 ≤ 1/2. Multiplying both sides of (2.19) by Λ1 on the

right will yield

Λ1Ψ̂u
1:kΛ1 − Φ̂u

1:kΛ
2
1 = δ1Λ1. (2.24)

Substitute (2.19), (2.20) and (2.24) into (2.23),

Φ̂l
1:kΛ

2
1 − Λ2

2Φ̂l
1:k = Σ̂21

xyΨ̂
u
1:kΛ1 + Λ2Σ̂21

yxΦ̂u
1:k − Σ̂21

x Λ1Ψ̂u
1:kΛ1 + Σ̂21

x δ1Λ1

− Λ2Σ̂21
y Λ1Φ̂u

1:k − Λ2Σ̂21
y δ1 + δ5

= (Σ̂21
xy − Σ̂21

x Λ1)Ψ̂u
1:kΛ1 + Λ2(Σ̂21

yx − Σ̂21
y Λ1)Φ̂u

1:k

+ Σ̂21
x δ1Λ1 − Λ2Σ̂21

y δ1 + δ5

:= B1Ψ̂u
1:kΛ1 + Λ2B2Φ̂u

1:k + δ6. (2.25)

where B1 := Σ̂21
xy − Σ̂21

x Λ1, B2 := Σ̂21
yx − Σ̂21

y Λ1 and

δ6 := Σ̂21
x δ1Λ1 − Λ2Σ̂21

y δ1 + δ5.
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Further, define the (p1 − k)× k matrices A1, A2 by

[A1]ij =
1

λj + λk+i
, [A2]ij =

1

λj − λk+i
, 1 ≤ i ≤ p1 − k, 1 ≤ j ≤ k

Then we can rewrite (2.25) as

Φ̂l
1:k = A1 ◦A2 ◦ (B1Ψ̂u

1:kΛ1) +A1 ◦A2 ◦ (Λ2B2Φ̂u
1:k) +A1 ◦A2 ◦ δ6

= (A1Λ1) ◦A2 ◦ (B1Ψ̂u
1:k) + (Λ2A1) ◦A2 ◦ (B2Φ̂u

1:k) +A1 ◦A2 ◦ δ6,

where ◦ denotes the matrix Hadamard (element-wise) product. Define αj := λj , 1 ≤ j ≤ k

and βi := λk+i, 1 ≤ i ≤ p1 − k, then

[A1Λ1]ij =
λj

λj + λk+i
=

max{αj , βi}
αj + βi

, [Λ2A1]ij =
λk+i

λj + λk+i
=

min{αj , βi}
αj + βi

(2.26)

Therefore, by Lemma 2.6,

‖(A1Λ1) ◦A2 ◦ (B1Ψ̂u
1:k)‖ ≤

3

2
‖A2 ◦ (B1Ψ̂u

1:k)‖,

‖(Λ2A1) ◦A2 ◦ (B2Φ̂u
1:k)‖ ≤

1

2
‖A2 ◦ (B2Φ̂u

1:k)‖.

Observe that

[A2]ij =
1

λj − λk+i
=

1

(λj − λk + ∆/2) + (λk −∆/2− λk+i)
=

1

aj + bi
, (2.27)

where aj := λj − (λk −∆/2), 1 ≤ j ≤ k and bi := (λk −∆/2)− λi+k, 1 ≤ i ≤ p1 − k. Then

aj , bi ≥ ∆/2 and again apply Lemma 2.6,

∥∥∥A2 ◦ (B1Ψ̂u
1:k)
∥∥∥ ≤ 1

∆

∥∥∥B1Ψ̂u
1:k

∥∥∥ ≤ 1

∆
‖B1‖

∥∥∥Ψ̂u
1:k

∥∥∥ ,∥∥∥A2 ◦ (B2Φ̂u
1:k)
∥∥∥ ≤ 1

∆

∥∥∥B2Φ̂u
1:k

∥∥∥ ≤ 1

∆
‖B2‖

∥∥∥Φ̂u
1:k

∥∥∥ ,
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which further implies

∥∥∥Φ̂l
1:k

∥∥∥ ≤ 1

2∆

(
3 ‖B1‖

∥∥∥Ψ̂u
1:k

∥∥∥+ ‖B2‖
∥∥∥Φ̂u

1:k

∥∥∥)+ ‖A1 ◦A2 ◦ δ6‖ . (2.28)

In Section 2.5.4, we will show that this bound is tight and matches Theorem 2 when λk+1

is away from 1. Now we switch to deriving the other upper bound which will be tight when

λk+1 is close to 1.

Upper Bound II: tight for λk+1 ≥ 1/2. Notice that Λ1 × (2.19) + Λ1 × (2.20) yields

Λ2
1Ψ̂u

1:k − Ψ̂u
1:kΛ

2
1 = Λ1δ1 + δ2Λ1. (2.29)

Substitute (2.19), (2.20) and (2.29) into (2.23),

Φ̂l
1:kΛ

2
1 − Λ2

2Φ̂l
1:k = Σ̂21

xyΛ1Φ̂u
1:k + Σ̂21

xyδ1 + Λ2Σ̂21
yxΦ̂u

1:k − Σ̂21
x Λ2

1Φ̂u
1:k

+ Σ̂21
x (Λ1δ1 + δ2Λ1)− Λ2Σ̂21

y Λ1Φ̂u
1:k + Λ2Σ̂21

y δ2 + δ5

= BΦ̂u
1:k + δ7,

where we define

B = Σ̂21
xyΛ1 + Λ2Σ̂21

yx − Σ̂21
x Λ2

1 − Λ2Σ̂21
y Λ1,

δ7 = Σ̂21
xyδ1 + Σ̂21

x (Λ1δ1 + δ2Λ1) + Λ2Σ̂21
y δ2 + δ5.

Again with the definition of A1 and A2,

Φ̂l
1:k = A1 ◦A2 ◦ (BΦ̂u

1:k) +A1 ◦A2 ◦ δ7.

Notice that we can rewrite A1 as

[A1]ij =
1

λj + λk+i
=

1

(λj − λk/2) + (λk+i + λk/2)
=

1

αj + βi
,
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where αj := λj−λk/2, 1 ≤ j ≤ k and βi := λk+i+λk/2, 1 ≤ i ≤ p1−k. Hence αj , βi ≥ λk/2,

and apply Lemma 2.6,

‖Φ̂l
1:k‖ ≤

1

λk

(∥∥∥A2 ◦ (BΦ̂u
1:k)
∥∥∥+ ‖A2 ◦ δ7‖

)
. (2.30)

Define k∗ as the largest index i such that

k + 1 ≤ i ≤ p1, λi ≥ 2λk − 1−∆.

Divide the indexes 1, · · · , p1 − k into two sets:

I1 = {i− k : k + 1 ≤ i ≤ k∗}, I2 = {i− k : k∗ + 1 ≤ i ≤ p1},

and accordingly divide A2 and BΦ̂u
1:k into two blocks:

A2 =

A(1)
2

A
(2)
2

 , BΦ̂u
1:k =

B(1)Φ̂u
1:k

B(2)Φ̂u
1:k

 ,
where A

(1)
2 , B(1) corresponds to the rows indexed by I1 and A

(2)
2 , B(2) corresponds to the

rows indexed by I2. Then

A2 ◦ (BΦ̂u
1:k) =

A(1)
2 ◦ (B(1)Φ̂u

1:k)

A
(2)
2 ◦ (B(2)Φ̂u

1:k)

 ,
and by triangle inequality,

∥∥∥A2 ◦ (BΦ̂u
1:k)
∥∥∥ ≤ ∥∥∥A(1)

2 ◦ (B(1)Φ̂u
1:k)
∥∥∥+

∥∥∥A(2)
2 ◦ (B(2)Φ̂u

1:k)
∥∥∥ .

For the first part, by the same argument as in (2.27)

‖A(1)
2 ◦ (B(1)Φ̂u

1:k)‖ ≤
1

∆
‖B(1)‖‖Φ̂u

1:k‖. (2.31)
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For the second part, let D = diag(λk−∆/2−λk∗+1, · · · , λk−∆/2−λp1) ∈ R(p1−k∗)×(p1−k∗).

Then

A
(2)
2 ◦ (B(2)Φ̂u

1:k) = (DA
(2)
2 ) ◦ (D−1B(2)Φ̂u

1:k).

Notice that for 1 ≤ i ≤ p1 − k∗, 1 ≤ j ≤ k

[DA
(2)
2 ]ij =

(λk −∆/2− λk∗+i)
λj − λi+k

=
(λk −∆/2− λk∗+i)

λj − (λk −∆/2) + (λk −∆/2− λk∗+i)

=
bi

aj + bi
,

where aj := λj − (λk −∆/2), 1 ≤ j ≤ k and bi := (λk −∆/2) − λk∗+i for 1 ≤ i ≤ p1 − k∗.

Further observe that by definition of k∗,

bi − aj = (λk −∆/2)− λk∗+i − λj + (λk −∆/2) ≥ 2λk − 1−∆− λk∗+i ≥ 0.

This implies

[DA
(2)
2 ]ij =

max{aj , bi}
aj + bi

.

Again, by Lemma 2.6,

‖A(2)
2 ◦ (B(2)Φ̂u

1:k)‖ ≤
3

2
‖D−1B(2)Φ̂u

1:k‖ ≤
3

2
‖D−1B(2)‖‖Φ̂u

1:k‖. (2.32)

Substitute (2.31) and (2.32) into (2.30),

‖Φ̂l
1:k‖ ≤

1

λk

(∥∥∥A2 ◦ (BΦ̂u
1:k)
∥∥∥+ ‖A2 ◦ δ7‖

)
≤ 1

2λk∆
‖B(1)‖‖Φ̂u

1:k‖+
3

2λk
‖D−1B(2)‖‖Φ̂u

1:k‖+
1

λk
‖A2 ◦ δ7‖ . (2.33)
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2.5.3. Upper Bounds in Expectation for the Principal Terms

We state upper bounds for key quantities in (2.28) and (2.33) with proofs deferred to the

supplement. Both Lemma 2.8 and Lemma 2.9 are proved by a covering argument to upper

bound quadratic forms of Gaussian random variables.

Lemma 2.7. There exists a universal constant C such that

E[‖B1‖2], E[‖B2‖2] ≤ Cp1

n
(1− λ2

k).

See Section 2.7.2 for the proof of this lemma.

Lemma 2.8. There exist universal constants c, C1 such that the following inequality holds

with probability at least 1− 2e−ct
2
,

‖D−1B(2)‖ ≤

√
(1− λ2

k)(1− λ2
k+1)

∆2
max{δ, δ2} δ = C1

(√
p1

n
+

t√
n

)
.

As a corollary, there exists constant C2,

E‖D−1B(2)‖2 ≤ C2

(1− λ2
k)(1− λ2

k+1)

∆2

p1

n
.

See Section 2.7.3 for the proof of this lemma.

Lemma 2.9. There exists universal constants c, C1 such that the following inequality holds

with probability at least 1− 2e−ct
2
,

‖B(1)‖ ≤
√

(1− λ2
k)(1− λ2

k+1) max{δ, δ2} δ = C1

(√
p1

n
+

t√
n

)
.

As a corollary, there exists constant C2,

E‖B(1)‖2 ≤ C2

(1− λ2
k)(1− λ2

k+1)p1

n
.
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See Section 2.7.4 for the proof of this lemma.

2.5.4. Upper Bound for Operator Norm

For the ease of presentation, we introduce z = (x>, y>)> as the concatenation of x and y.

Then the population and sample covariances of z can be written as,

Σz =

 Ip1 Σxy

Σyx Ip2

 , Σ̂z =

 Σ̂x Σ̂xy

Σ̂yx Σ̂y

 .
The advantage of introducing z is that the sample-population discrepancy for x and y can

be simultaneously bounded by that of z.

Lemma 2.10. There exists a universal constant C such that the following inequality holds

deterministically,

‖A1 ◦A2 ◦ δ6‖, ‖A2 ◦ δ7‖ ≤
C‖Σz − Σ̂z‖2

∆2
(2 + ‖Σ̂z‖)2(‖Φ̂1:k‖+ ‖Ψ̂1:k‖)(1 + ‖Σz − Σ̂z‖),

where ∆ = λk − λk+1 is the eigen-gap.

See Section 2.7.5 for the proof.

Lemma 2.11. There exists universal constant c, C1, C2 such that when n ≥ C1(p1 + p2),

the following inequality holds

σ2
k(Φ̂1:k) ≥ 1/2,

(2 + ‖Σ̂z‖)2(‖Φ̂1:k‖+ ‖Ψ̂1:k‖)(1 + ‖Σz − Σ̂z‖) ≤ C2,

with probability at least 1− e−cn.

See Section 2.7.6 for the proof.

Let G be the event that the inequalities in Lemma 2.11 hold. Notice that for any pair of
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projection matrices (P1, P2), ‖P1−P2‖ ≤ ‖P1‖+‖P2‖ ≤ 2. Substitute into equation (2.11),

E
∥∥∥PΦ̂1:k

− PΦ1:k

∥∥∥2
≤ 4P(Gc) + E

[∥∥∥PΦ̂1:k
− PΦ1:k

∥∥∥2
IG

]
≤ 4 exp(−cn) + 2E

[
‖Φ̂l

1:k‖2IG
]
.

Now we plug in the upper bounds of ‖Φ̂l
1:k‖ obtained in (2.28) and (2.33) respectively. On

event G, (2.28) can be reduced to

‖Φ̂l
1:k‖2 ≤

C

∆2

(
‖B1‖2 + ‖B2‖2

)
+ C ‖A1 ◦A2 ◦ δ6‖2 .

Further, by Lemma 2.10 and Lemma 2.11, on event G,

‖Φ̂l
1:k‖2 ≤

C

∆2

(
‖B1‖2 + ‖B2‖2

)
+

C

∆4
‖Σz − Σ̂z‖4.

Therefore,

E
[
‖Φ̂l

1:k‖2IG
]
≤ C

∆2
E
(
‖B1‖2 + ‖B2‖2

)
+

C

∆4
E‖Σz − Σ̂z‖4.

By Lemma 2.7 and Lemma 2.20 (notice that ‖Σz‖ ≤ 2),

E
[
‖Φ̂l

1:k‖2IG
]
≤
C(1− λ2

k)p1

∆2n
+ C

(
p1 + p2

n∆2

)2

. (2.34)

This upper bound implies the result in Theorem 2 when λk+1 is bounded away from 1, for

instance, when λk+1 ≤ 1/2. Now, we use (2.33) for the case that λk+1 ≥ 1/2. On event G,

with λk+1 ≥ 1/2, (2.33) can be reduced to

‖Φ̂l
1:k‖2 ≤ C

(
1

∆2
‖B(1)‖2 + ‖D−1B(2)‖2 + ‖A2 ◦ δ7‖2

)
.
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Apply Lemma 2.10 and Lemma 2.11, on event G,

‖Φ̂l
1:k‖2 ≤ C

(
1

∆2
‖B(1)‖2 + ‖D−1B(2)‖2 +

1

∆4
‖Σz − Σ̂z‖4

)
.

By Lemma 2.8, Lemma 2.9 and Lemma 2.10,

E
[
‖Φ̂l

1:k‖2IG
]
≤
C(1− λ2

k)(1− λ2
k+1)p1

∆2n
+ C

(
p1 + p2

n∆2

)2

. (2.35)

Combine the results of (2.34) and (2.35),

E
∥∥∥PΦ̂1:k

− PΦ1:k

∥∥∥2
≤ 4 exp(−cn) +

C(1− λ2
k)(1− λ2

k+1)p1

∆2n
+ C

(
p1 + p2

n∆2

)2

≤ C
(1− λ2

k)(1− λ2
k+1)p1

∆2n
+ C2

(
p1 + p2

n∆2

)2

2.5.5. Upper Bound for Frobenius Norm

A quick upper bound in terms of Frobenius norm can be obtained by noticing that P
Φ̂1:k
−

PΦ1:k
has rank at most 2k and therefore,

1

k
E
∥∥∥PΦ̂1:k

− PΦ1:k

∥∥∥2

F
≤ 2E

∥∥∥PΦ̂1:k
− PΦ1:k

∥∥∥2

≤ C
(1− λ2

k)(1− λ2
k+1)p1

∆2n
+ C

(
p1 + p2

n∆2

)2

.

In fact, the factor p1 in the main term can be reduced to p1−k by similar (but much simpler)

arguments as done for the operator norm. We state the corresponding results in this section

without proof. Specifically, the following Frobenius norm counterparts for (2.28) and (2.33)

can be obtained.
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Lemma 2.12. Let D̃ = diag(λk − λk+1, · · · , λk − λp1), then

∥∥∥Φ̂l
1:k

∥∥∥
F
≤ 1

2∆

(
3 ‖B1‖F

∥∥∥Ψ̂u
1:k

∥∥∥+ ‖B2‖F
∥∥∥Φ̂u

1:k

∥∥∥)+ ‖A1 ◦A2 ◦ δ6‖F ,∥∥∥Φ̂l
1:k

∥∥∥
F
≤ 1

λk
‖D̃−1B‖F‖Φ̂u

1:k‖+
1

λk
‖A2 ◦ δ7‖F .

For the second inequality, the divide-and-conquer analysis used in Section 2.5.2 is no longer

necessary due to the observation that

‖A ◦M‖F ≤ ‖M‖F, ∀A satisfying max
i,j
|Aij | ≤ 1

while the inequality is not true for the operator norm. Similarly, parallel results to the

lemmas in Section 2.5.3 can be derived as follows (see Section 2.7.7 for the proof of the

second inequality in the lemma as illustration).

Lemma 2.13. There exists a universal constant C such that

E[‖B1‖2F], E[‖B2‖2F] ≤ C
(1− λ2

k)(p1 − k)k

n
,

E
[∥∥∥D̃−1B

∥∥∥2

F

]
≤ 2

(1− λ2
k)(1− λ2

k+1)(p1 − k)k

n∆2
,

‖A1 ◦A2 ◦ δ6‖F, ‖A2 ◦ δ7‖F ≤
C
√
k‖Σz − Σ̂z‖2

∆2
(2 + ‖Σ̂z‖)2(‖Φ̂1:k‖+ ‖Ψ̂1:k‖)(1 + ‖Σz − Σ̂z‖).

Substituting these lemmas into the procedure of Section 2.5.4 will yield

E
∥∥∥PΦ̂1:k

− PΦ1:k

∥∥∥2

F
/k ≤

C(1− λ2
k)(1− λ2

k+1)(p1 − k)

∆2n
+ C

(
p1 + p2

n∆2

)2

.

2.6. Proof of Theorem 3

2.6.1. On Kullback-Leibler Divergence

The construction in equation (2.36) of the following lemma is crucial to prove the lower

bound. The proof of the lemma can be found in Section 2.6.4.
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Lemma 2.14. For i = 1, 2 and p2 ≥ p1 ≥ k, let

[
U(i), W(i)

]
∈ O(p1, p1),

[
V(i), Z(i)

]
∈

O(p2, p1) where U(i) ∈ Rp1×k, V(i) ∈ Rp2×k. For 0 ≤ λ2 < λ1 < 1, let ∆ = λ1 − λ2 and

define

Σ(i) =

 Σx Σ
1/2
x (λ1U(i)V

>
(i) + λ2W(i)Z

>
(i))Σ

1/2
y

Σ
1/2
y (λ1V(i)U

>
(i) + λ2Z(i)W

>
(i))Σ

1/2
x Σy

 i = 1, 2,

Let P(i) denote the distribution of a random i.i.d. sample of size n from N(0,Σ(i)). If we

further assume

[U(1),W(1)]

V >(1)

Z>(1)

 = [U(2),W(2)]

V >(2)

Z>(2)

 , (2.36)

Then one can show that

D(P(1)||P(2)) =
n∆2(1 + λ1λ2)

2(1− λ2
1)(1− λ2

2)
‖U(1)V

>
(1) − U(2)V

>
(2)‖

2
F.

See Section 2.6.4 for the proof.

2.6.2. Packing Number and Fano’s Lemma

The following result on the packing number is based on the metric entropy of the

Grassmannian manifold G(k, r) due to Szarek (1982). We use the version adapted from

Lemma 1 of Cai et al. (2013) which is also used in Gao et al. (2015b).

Lemma 2.15. For any fixed U0 ∈ O(p, k) and Bε0 = {U ∈ O(p, k) : ‖UU>−U0U
>
0 ‖F ≤ ε0}

with ε0 ∈ (0,
√

2[k ∧ (p− k)] ). Define the semi-metric ρ(·, ·) on Bε0 by

ρ(U1, U2) = ‖U1U
>
1 − U2U

>
2 ‖F.

Then there exists universal constant C such that for any α ∈ (0, 1), the packing number
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M(Bε0 , ρ, αε0) satisfies

M(Bε0 , ρ, αε0) ≥
(

1

Cα

)k(p−k)

.

The following corollary is used to prove the lower bound.

Corollary 2.16. If we change the set in Lemma 2.15 to B̃ε0 = {U ∈ O(p, k) : ‖U −U0‖F ≤

ε0}, then we still have

M(B̃ε0 , ρ, αε0) ≥
(

1

Cα

)k(p−k)

.

Proof. Apply Lemma 2.15 to Bε0 , there exists U1, · · · , Un with n ≥ (1/Cα)k(p−k) such that

‖UiU>i − U0U
>
0 ‖F ≤ ε0, 1 ≤ i ≤ n, ‖UiU>i − UjU>j ‖F ≥ αε0, 1 ≤ i ≤ j ≤ n.

Define Ũi = arg min
U∈{UiQ, Q∈O(k)}

‖U − U0‖F, by Lemma 2.25,

‖Ũi − U0‖F ≤ ‖ŨiŨ>i − U0U
>
0 ‖F ≤ ε0.

Therefore, Ũ1, · · · , Ũn ∈ B̃ε0 and

‖ŨiŨ>i − ŨjŨ>j ‖F = ‖UiU>i − UjU>j ‖F ≥ αε0.

which implies,

M(B̃ε0 , ρ, αε0) ≥ n ≥
(

1

Cα

)k(p−k)

.

Lemma 2.17 (Fano’s Lemma Yu (1997)). Let (Θ, ρ) be a (semi)metric space and {Pθ : θ ∈

Θ} a collection of probability measures. For any totally bounded T ⊂ Θ, denote M(T, ρ, ε)

the ε-packing number of T with respect to the metric ρ, i.e. , the maximal number of points
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in T whoese pairwise minimum distance in ρ is at least ε. Define the Kullback-Leibler

diameter of T by

dKL(T ) = sup
θ,θ′∈T

D(Pθ||Pθ′).

Then,

inf
θ̂

sup
θ∈Θ

Eθ
[
ρ2(θ̂, θ)

]
≥ sup

T⊂Θ
sup
ε>0

ε2

4

(
1− dKL(T ) + log 2

log M(T, ρ, ε)

)

2.6.3. Proof of Lower Bound

For any fixed

[
U(0), W(0)

]
∈ O(p1, p1) and

[
V(0), Z(0)

]
∈ O(p2, p1) where U(0) ∈

Rp1×k, V(0) ∈ Rp2×k,W(0) ∈ Rp1×(p1−k), V(0) ∈ Rp2×(p2−k), define

Hε0 =
{(
U,W, V, Z

)
:

[
U, W

]
∈ O(p1, p1) with U ∈ Rp1×k,

[
V, Z

]
∈ O(p2, p1)

with V ∈ Rp2×k, ‖U − U(0)‖F ≤ ε0, [U,W ]

V >
Z>

 = [U(0),W(0)]

V >(0)

Z>(0)

}.
For any fixed Σx ∈ Sp1+ ,Σy ∈ Sp2+ with κ(Σx) = κx, κ(Σy) = κy, consider the parametrization

Σxy = ΣxΦΛΨ>Σy, for 0 ≤ λk+1 < λk < 1, define

Tε0 =
{

Σ =

 Σx Σ
1/2
x (λkUV

> + λk+1WZ>)Σ
1/2
y

Σ
1/2
y (λkV U

> + λk+1ZW
>)Σ

1/2
x Σy

 ,
Φ = Σ−1/2

x [U,W ],Ψ = Σ−1/2
y [V,Z],

(
U,W, V, Z

)
∈ Hε0

}
.

It is straightforward to verify that Tε0 ⊂ F(p1, p2, k, λk, λk+1, κx, κy). For any Σ(i) ∈ Tε0 , i =

1, 2, they yield to the parametrization,

Σ(i) =

 Σx Σ
1/2
x (λkU(i)V

>
(i) + λk+1W(i)Z

>
(i))Σ

1/2
y

Σ
1/2
y (λkV(i)U

>
(i) + λk+1Z(i)W

>
(i))Σ

1/2
x Σy

 ,
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where
(
U(i),W(i), V(i), Z(i)

)
∈ Hε0 and the leading-k canonical vectors are Φ

(i)
1:k =

Σ
−1/2
x U(i),Ψ

(i)
1:k = Σ

−1/2
y V(i). We define a semi-metric on Tε0 as

ρ(Σ(1),Σ(2)) =
∥∥∥P

Σ
1/2
x Φ

(1)
1:k

− P
Σ

1/2
x Φ

(2)
1:k

∥∥∥
F

=
∥∥∥PU(1)

− PU(2)

∥∥∥
F
.

By Lemma 2.14,

D(PΣ1 ||PΣ2) =
n∆2(1 + λkλk+1)

2(1− λ2
k)(1− λ2

k+1)
‖U(1)V

>
(1) − U(2)V

>
(2)‖

2
F.

Further by the definition of dKL(T ),

dKL(T ) =
n∆2(1 + λkλk+1)

2(1− λ2
k)(1− λ2

k+1)
sup

Σ(1),Σ(2)∈Tε0
‖U(1)V

>
(1) − U(2)V

>
(2)‖

2
F. (2.37)

To bound the Kullback-Leibler diameter, for any Σ(1),Σ(2) ∈ Tε0 , by definition,

[U(1),W(1)]

V >(1)

Z>(1)

 = [U(2),W(2)]

V >(2)

Z>(2)

 ,
which implies that they are singular value decompositions of the same matrix. Therefore,

there exists Q ∈ O(p1, p1) such that

[U(2),W(2)] = [U(1),W(1)]Q , [V(2), Z(2)] = [V(1), Z(1)]Q. (2.38)

Decompose Q into four blocks such that

Q =

Q11 Q12

Q21 Q22

 .
Substitute into (2.38),

U(2) = U(1)Q11 +W(1)Q21, V(2) = V(1)Q11 + Z(1)Q21.

46



Then,

‖U(2) − U(1)‖2F = ‖U(1)(Q11 − Ik) +W(1)Q21‖2F

= ‖U(1)(Q11 − Ik)‖2F + ‖W(1)Q21‖2F

= ‖Q11 − Ik‖2F + ‖Q21‖2F.

The second equality is due to the fact that U(1) and W(1) have orthogonal column space

and the third equality is valid because U(1),W(1) ∈ O(p1, k). By the same argument, we

will have

‖V(2) − V(1)‖2F = ‖Q11 − Ik‖2F + ‖Q21‖2F.

Notice that

‖U(1)V
>

(1) − U(2)V
>

(2)‖
2
F = ‖(U(1) − U(2))V(1) + U(2)(V(1) − V(2))‖2F

≤ 2‖U(1) − U(2)‖2F + 2‖V(1) − V(2)‖2F

= 4‖(U(1) − U(2))‖2F

≤ 8
(
‖(U(1) − U(0))‖2F + ‖(U(0) − U(2))‖2F

)
≤ 16ε20.

Then, substitute into (2.37)

dKL(T ) ≤ 8n∆2(1 + λkλk+1)

(1− λ2
k)(1− λ2

k+1)
ε20. (2.39)

Let Bε0 = {U ∈ O(p1, k) : ‖U − U(0)‖F ≤ ε0}. Under the semi-metric ρ̃(U(1), U(2)) =

‖U(1)U
>
(1) − U(2)U

>
(2)‖F, we claim that the packing number of Hε0 is lower bounded by the

packing number of Bε0 . To prove this claim, it suffices to show that for any U ∈ Bε0 ,

there exists corresponding W,V,Z such that (U,W, V, Z) ∈ Hε0 . First of all, by definition,

‖U − U0‖F ≤ ε0. Let W ∈ O(p1, p1 − k) be the orthogonal complement of U . Then
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[U,W ] ∈ O(p1, p1) and therefore there exists Q ∈ O(p1, p1) such that

[U,W ] = [U(0),W0]Q.

Set [V,Z] = [V(0), Z0]Q ∈ O(p2, p1), then

[U,W ]

V >
Z>

 = [U(0),W(0)]

V >(0)

Z>(0)

 ,
which implies (U,W, V, Z) ∈ Hε0 . Let

ε = αε0 = c

√k ∧ (p1 − k) ∧

√
(1− λ2

k)(1− λ2
k+1)

n∆2(1 + λkλk+1)
k(p1 − k)

 ,

where c ∈ (0, 1) depends on α and is chosen small enough such that ε0 = ε/α ∈

(0,
√

2[k ∧ (p1 − k)] ). By Corollary 2.16,

M(Tε0 , ρ, αε0) =M(Hε0 , ρ̃, αε0) ≥M(Bε0 , ρ̃, αε0) ≥
(

1

Cα

)k(p1−k)

.

Apply Lemma 2.17 with Tε0 , ρ, ε,

inf
Φ̂1:k

sup
Σ∈F

E
[ ∥∥∥P

Σ
1/2
x Φ̂1:k

− P
Σ

1/2
x Φ1:k

∥∥∥2

F

]
≥ sup

T⊂Θ
sup
ε>0

ε2

4

(
1− 8c2k(p1 − k) + log2

k(p1 − k)log 1
Cα

)
.

Choose α small enough such that

1− 8c2k(p1 − k) + log2

k(p1 − k)log 1
Cα

≥ 1

2
.
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Then the lower bound is reduced to

inf
Φ̂1:k

sup
Σ∈F

E
[ ∥∥∥P

Σ
1/2
x Φ̂1:k

− P
Σ

1/2
x Φ1:k

∥∥∥2

F

]
≥ c2

8

{
(1− λ2

k)(1− λ2
k+1)

n∆2(1 + λkλk+1)
k(p1 − k) ∧ k ∧ (p1 − k)

}

≥ C2k

{(
(1− λ2

k)(1− λ2
k+1)

∆2

p1 − k
n

)
∧ 1 ∧ p1 − k

k

}

By symmetry,

inf
Ψ̂1:k

sup
Σ∈F

E
[ ∥∥∥P

Σ
1/2
y Ψ̂1:k

− P
Σ

1/2
y Ψ1:k

∥∥∥2

F

]
≥ C2k

{(
(1− λ2

k)(1− λ2
k+1)

∆2

p1 − k
n

)
∧ 1 ∧ p1 − k

k

}

The lower bound for operator norm error can be immediately obtained by noticing that

P
Σ

1/2
y Ψ̂1:k

− P
Σ

1/2
y Ψ1:k

has at most rank 2k and

∥∥∥P
Σ

1/2
x Φ̂1:k

− P
Σ

1/2
x Φ1:k

∥∥∥2
≥ 1

2k

∥∥∥P
Σ

1/2
x Φ̂1:k

− P
Σ

1/2
x Φ1:k

∥∥∥2

F

2.6.4. Proof of Lemma 2.14

By simple algebra, the Kullback-Leibler divergence between two multivariate gaussian

distributions satisfies

D(PΣ(1)
||PΣ(2)

) =
n

2

{
Tr
(

Σ−1
(2)(Σ(1) − Σ(2))

)
− log det(Σ−1

(2)Σ(1))
}
.

Notice that

Σ(i) =

Σ
1/2
x 0

0 Σ
1/2
y

Ω(i)

Σ
1/2
x 0

0 Σ
1/2
y

 ,
where

Ω(i) =

 Ip1 λ1U(i)V
>

(i) + λ2W(i)Z
>
(i)

λ1V(i)U
>
(i) + λ2Z(i)W

>
(i) Ip2

 .
Then,

D(PΣ(1)
||PΣ(2)

) =
n

2

{
Tr(Ω−1

(2)Ω(1))− (p1 + p2)− log det(Ω−1
(2)Ω(1))

}
.
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Also notice that

Ω(i) =

Ip1 0

0 Ip2

+
λ1

2

U(i)

V(i)

[U>(i) V >(i)

]
− λ1

2

 U(i)

−V(i)

[U>(i) −V >(i)
]

+
λ2

2

W(i)

Z(i)

[W>(i) Z>(i)

]
− λ2

2

W(i)

−Z(i)

[W>(i) −Z>(i)
]
.

Therefore Ω(1),Ω(2) share the same set of eigenvalues: 1 + λ1 with multiplicity k, 1 − λ1

with multiplicity k, 1 + λ2 with multiplicity p1 − k, 1 − λ2 with multiplicity p1 − k and 1

with multiplicity 2(p2 − p1). This implies log det(Ω−1
(2)Ω(1))) = 0. On the other hand, by

block inversion formula, we can compute

Ω−1
(2) =

Ip1 +
λ21

1−λ21
U(2)U

>
(2) +

λ22
1−λ2W(2)W

>
(2) − λ1

1−λ21
U(2)V

>
(2) −

λ2
1−λ2W(2)Z

>
(2)

− λ1
1−λ21

V(2)U
>
(2) −

λ2
1−λ2Z(2)W

>
(2) Ip2 +

λ21
1−λ21

V(2)V
>

(2) +
λ22

1−λ2Z(2)Z
>
(2)

 .
Divide Ω−1

(2)Ω(1) into blocks such that

Ω−1
(2)Ω(1) =

J11 J12

J21 J22

 where J11 ∈ Rp1×p1 , J22 ∈ Rp2×p2 ,

and

J11 =
λ2

1

1− λ2
1

(U(2)U
>
(2) − U(2)V

>
(2)V(1)U

>
(1)) +

λ2
2

1− λ2
2

(W(2)W(2) −W(2)Z
>
(2)Z(1)W

>
(1))

− λ1λ2

1− λ2
1

(U(2)V
>

(2)Z(1)W
>
(1))−

λ1λ2

1− λ2
2

(W(2)Z
>
(2)V(1)U

>
(1))

J22 =
λ2

1

1− λ2
1

(V(2)V
>

(2) − V(2)U
>
(2)U(1)V

>
(1)) +

λ2
2

1− λ2
2

(Z(2)Z(2) − Z(2)W
>
(2)W(1)Z

>
(1))

− λ1λ2

1− λ2
1

(V(2)U
>
(2)W(1)Z

>
(1))−

λ1λ2

1− λ2
2

(Z(2)W
>
(2)U(1)V

>
(1)).
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We spell out the algebra for tr(J11), and tr(J22) can be computed in exactly the same

fashion.

tr(U(2)U
>
(2) − U(2)V

>
(2)V(1)U

>
(1)) =

1

2
tr(U(2)V

>
(2)V(2)U

>
(2) + U(1)V

>
(1)V(1)U

>
(1) − 2U(2)V

>
(2)V(1)U

>
(1))

=
1

2
‖U(1)V

>
(1) − U(2)V(2)‖2F.

Similarly,

tr(W(2)W(2) −W(2)Z
>
(2)Z(1)W

>
(1)) =

1

2
‖W(1)Z

>
(1) −W(2)Z(2)‖2F.

By the assumption, U(1)V
>

(1) +W(1)Z
>
(1) = U(2)V

>
(2) +W(2)Z

>
(2), which implies

tr(W(2)W(2) −W(2)Z
>
(2)Z(1)W

>
(1)) =

1

2
‖U(1)V

>
(1) − U(2)V(2)‖2F.

Further,

tr(U(2)V
>

(2)Z(1)W
>
(1)) = tr

(
U(2)V

>
(2)(U(2)V

>
(2) +W(2)Z

>
(2) − U(1)V

>
(1))
>
)

= tr
(
U(2)V

>
(2)(U(2)V

>
(2) − U(1)V

>
(1))
>
)

=
1

2
‖U(1)V

>
(1) − U(2)V(2)‖2F,

and by the same argument,

tr(W(2)Z
>
(2)V(1)U

>
(1)) =

1

2
‖U(1)V

>
(1) − U(2)V(2)‖2F.

Sum these equations,

tr(J11) =
1

2

{
λ2

1

1− λ2
1

+
λ2

2

1− λ2
2

− λ1λ2

1− λ2
1

− λ1λ2

1− λ2
2

}
‖U(1)V

>
(1) − U(2)V(2)‖2F

=
∆2(1 + λ1λ2)

2(1− λ2
1)(1− λ2

2)
‖U(1)V

>
(1) − U(2)V(2)‖2F.
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Repeat the argument for J22, one can show that

tr(J22) = tr(J11) =
∆2(1 + λ1λ2)

2(1− λ2
1)(1− λ2

2)
‖U(1)V

>
(1) − U(2)V(2)‖2F.

Therefore,

D(PΣ(1)
||PΣ(2)

) =
n

2
tr(Ω−1

(2)Ω(1)) =
n

2
(tr(J11) + tr(J22))

=
n∆2(1 + λ1λ2)

2(1− λ2
1)(1− λ2

2)
‖U(1)V

>
(1) − U(2)V(2)‖2F.

2.7. Proof of Technical Lemmas

The proofs in this section rely on the following supporting lemmas.

Lemma 2.18. (Subspace Angles Wedin (1983)) For Ui ∈ O(p, k) and Pi = UiU
>
i , i = 1, 2,

‖P1 − P2‖2F = 2‖(Ip − P1)P2‖2F = 2‖(Ip − P2)P1‖2F,

‖P1 − P2‖2 = ‖(Ip − P1)P2‖2 = ‖(Ip − P2)P1‖2 = 1− σ2
min (P1P2)

Lemma 2.19. (Covariance Matrix Estimation, Remark 5.40 of Vershynin (2010)) Assume

A ∈ Rn×p has independent sub-gaussian random rows with second moment matrix Σ. Then

there exists universal constant C such that for every t ≥ 0, the following inequality holds

with probability at least 1− e−ct2,

‖ 1

n
A>A− Σ‖ ≤ max{δ, δ2}‖Σ‖ δ = C

√
p

n
+

t√
n
.

Lemma 2.20. Assume A ∈ Rn×p, n ≥ p has independent sub-gaussian random rows with

second moment matrix Σ. Then there exists universal constant C such that

E‖ 1

n
A>A− Σ‖4 ≤ C p

2

n2
‖Σ‖4.
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Proof. Without loss of generality, we can assume ‖Σ‖ = 1 or else we can scale A by 1/
√
‖Σ‖.

Let J = ‖ 1
nA
>A− Σ‖ and by Lemma 2.19, there exists positive constants c1, C1 such that

P (J ≥ max{δ, δ2}) ≤ e−c1t2 , δ = C1

√
p

n
+

t√
n
.

Notice that J ≥ 0, then

E[J4] =

∫ +∞

0
P (J ≥ x1/4)dx

=

∫ C2
1p

2/n2

0
P (J ≥ x1/4)dx+

∫ 1

C2
1p

2/n2

P (J ≥ x1/4)dx+

∫ +∞

1
P (J ≥ x1/4)dx

≤ C2
1p

2/n2 +

∫ 1

C2
1p

2/n2

e−(
√
nx1/4−C1

√
p)2dx+

∫ +∞

1
e−(
√
nx1/8−C1

√
p)2dx

= C2
1p

2/n2 +

∫ 1

C2
1p

2/n2

4e−y
2

(
y + C1

√
p

√
n

)3 1√
n
dy +

∫ +∞

1
8e−y

2

(
y + C1

√
p

√
n

)7 1√
n
dy.

There exists a large constant C2 such that

E[J4] ≤ C2
1p

2/n2 +
4

n2

∫ 1

C2
1p

2/n2

4e−y
2
C2(y3 + p2/3)dy +

8

n4

∫ +∞

1
C2e

−y2(y7 + p7/2)dy

≤ C2
1p

2/n2 +
4

n2

∫ +∞

0
4e−y

2
C2(y3 + p2/3)dy +

8

n4

∫ +∞

0
C2e

−y2(y7 + p7/2)dy.

Notice that
∫ +∞

0 e−y
2
ykdy is bounded for any k ∈ Z+ and n ≥ p. There exists a large

constant C3 such that

E[J4] ≤ C3
p2

n2
.

Lemma 2.21. (Bernstein inequality, Proposition 5.16 of Vershynin (2010)) Let X1, · · · , Xn

be independent centered sub-exponential random variables and K = maxi ‖Xi‖ψ1. Then for
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every a = (a1, · · · , an) ∈ Rn and every t ≥ 0, we have

P

{
|
n∑
i=1

aiXi| ≥ t

}
≤ 2exp

{
−cmin

(
t2

K2‖a‖22
,

t

K‖a‖∞

)}
.

Lemma 2.22. (Hanson-Wright inequality, Theorem 1.1 of Rudelson and Vershynin (2013))

Let x = (x1, · · · , xp) be a random vectors with independent components xi which satisfy

Exi = 0 and ‖xi‖ψ2 ≤ K, Let A ∈ Rp×p. Then there exists universal constant c such that

for every t ≥ 0,

P
{
|x>Ax− Ex>Ax| ≥ t

}
≤ 2exp

{
−cmin

(
t2

K4‖A‖2F
,

t

K2‖A‖

)}
.

Lemma 2.23. (Covering Number of the Sphere, Lemma 5.2 of Vershynin (2010)). The

unit Euclidean sphere Sn−1 equipped with the Euclidean metric satisfies for every ε > 0 that

|N (Sn−1, ε)| ≤ (1 +
2

ε
)n,

where N (Sn−1, ε) is the ε-net of Sn−1 with minimal cardinality.

The following variant of Wedin’s sin θ law (Wedin, 1972) is proved in Proposition 1 of Cai

et al. (2015).

Lemma 2.24. For A,E ∈ Rm×n and Â = A+ E, define the singular value decomposition

of A and Â as

A = UDV >, Â = ÛD̂V̂ >.

Then the following perturbation bound holds,

∥∥∥(I − PU1:k
)P

Û1:k

∥∥∥ =
∥∥∥PU1:k

− P
Û1:k

∥∥∥ ≤ 2‖E‖
σk(A)− σk+1(A)

,

where σk(A), σk+1(A) are the kth and (k + 1)th singular values of A.
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Lemma 2.25. For any matrices U1, U2 ∈ O(p, k),

inf
Q∈O(k,k)

‖U1 − U2Q‖F ≤ ‖PU1 − PU2‖F

Proof. Since U1, U2 are orthonormal matrices,

‖U1 − U2Q‖2F = 2k − 2tr(U>1 U2Q).

Let U>1 U2 = UDV > be the singular value decomposition. Then V U> ∈ O(k, k) and

inf
Q∈O(k,k)

‖U1 − U2Q‖2F ≤ 2k − 2tr(U>1 U2V U
>)

= 2k − 2tr(UDU>)

= 2k − 2tr(D).

On the other hand,

‖PU1 − PU2‖2F = ‖U1U
>
1 − U2U

>
2 ‖2F

= 2k − 2tr(U1U
>
1 U2U

>
2 )

= 2k − 2tr(U>1 U2U
>
2 U1)

= 2k − 2tr(D2).

Since U1, U2 ∈ O(p, k), ‖U>1 U2‖ ≤ 1 and therefore all the diagonal elements of D is less

than 1, which implies that tr(D) ≥ tr(D2) and

inf
Q∈O(k,k)

‖U1 − U2Q‖2F ≤ ‖PU1 − PU2‖2F.
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Lemma 2.26. (Theorem 5.5.18 of Hom and Johnson (1991)) If A,B ∈ Rn×n and A is

positive semidefinite. Then,

‖A ◦B‖ ≤
(

max
1≤i≤n

Aii

)
‖B‖,

where ‖ · ‖ is the operator norm.

Lemma 2.27. (Theorem A of Fiedler (2010)) A symmetric Cauthy matrix

C =
( 1

ai + aj

)
1≤i,j≤n

is positive semidefinite if ai > 0, 1 ≤ i ≤ n.

2.7.1. Proof of Lemma 2.6

Define γi = βi, 1 ≤ i ≤ n and γi = αi−n, n + 1 ≤ i ≤ m + n. Consider the matrix

M1,M2 ∈ R(m+n)×(m+n) define by

[M1]ij =
1

γi + γj
, [M2]ij =

min{γi, γj}
γi + γj

.

By Lemma 2.27, M1 is positive semidefinite and by Lemma 2.26,

|||M1||| ≤
1

2 min
1≤i≤m+n

{γi}
≤ 1

2δ
.

Notice that A1 is the lower left sub-matrix of M1, therefore,

|||A1||| ≤ |||M1||| ≤
1

2δ
.

By Theorem 3.2 of Mathias (1993), M2 is also positive semidefinite. Again, apply

Lemma 2.26 and notice that A2 is the lower left sub-matrix of M2,

|||A2||| ≤ |||M2||| ≤
1

2
.
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Finally, observe that, by definition, A3 ◦B = B −A2 ◦B, hence

‖A3 ◦B‖ ≤ ‖B‖+ ‖A2 ◦B‖,

which implies,

|||A3||| ≤ 1 + |||A2||| ≤
3

2
.

2.7.2. Proof of Lemma 2.7

Divide x, y into two parts,

x =

x1

x2

 , y =

y1

y2

 ,

where x1, y1 ∈ Rk, x2 ∈ Rp1−k and y2 ∈ Rp2−k. By definition,

B1 = Ĉov(x2, y1 − Λ1x1),

where Ĉov(·, ·) denotes the sample covariance operator. When λk = 1, by definition of

CCA, y1 = x1 almost surely, which implies that B1 = 0 almost surely. When λk < 1,

B1 = Ĉov(x2, y1 − Λ1x1) =
√

1− λ2
kĈov

x2,
y1 − Λ1x1√

1− λ2
k

 =
√

1− λ2
kĈov(w1, w2),

where we define w1 = y1−Λ1x1√
1−λ2k

and w2 = x2. Let w = (w>1 , w
>
2 )> be the concatenation of

w1 and w2. Then

Σw = Var(w) = diag

(
1− λ2

1

1− λ2
k

,
1− λ2

2

1− λ2
k

, · · · ,
1− λ2

k

1− λ2
k

, 1, · · · , 1
)
.

Notice that ‖Σw‖ ≤ 1 and E[Ĉov(w1, w2)] = 0. Therefore,

‖B1‖2 ≤ (1− λ2
k)‖V̂ar(w)− Σw‖2.
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By Lemma 2.20,

E[‖B1‖2] ≤ C
(1− λ2

k)p1

n
.

The result for B2 can be derived in the same manner and we skip the proof.

2.7.3. Proof of Lemma 2.8

We use a covering argument to prove the lemma.

Step 1. Reduction. For ε > 0 and any pair of vectors u ∈ Rp1−k∗ , v ∈ Rk, we can choose

uε ∈ N (Sp1−k∗−1, ε), vε ∈ N (Sk−1, ε) such that ‖u− uε‖, ‖v − vε‖ ≤ ε. Then

u>D−1B(2)v = u>D−1B(2)v − u>ε D−1B(2)v + u>ε D
−1B(2)v − u>ε D−1B(2)vε + u>ε D

−1B(2)vε

≤ ‖u− uε‖‖D−1B(2)v‖+ ‖u>ε D−1B(2)‖‖v − vε‖+ u>ε D
−1B(2)vε

≤ 2ε‖D−1B(2)‖+ u>ε D
−1B(2)vε

≤ 2ε‖D−1B(2)‖+ max
uε,vε

u>ε D
−1B(2)vε.

Maximize over u and v, we obtain

‖D−1B(2)‖ ≤ 2ε‖D−1B(2)‖+ max
uε,vε

u>ε D
−1B(2)vε. (2.40)

Therefore, ‖D−1B(2)‖ ≤ (1 − 2ε)−1 max
uε,vε

u>ε D
−1B(2)vε. Let ε = 1/4. Then it suffices to

prove with required probability,

max
uε,vε

u>ε D
−1B(2)vε ≤

1

2
max{δ, δ2}. (2.41)
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Step 2. Concentration. Notice that for 1 ≤ j ≤ k < k∗ + 1 ≤ i ≤ p1,

[D−1B(2)]i−k∗,j =
1

λk −∆/2− λi
1

n

n∑
α=1

(λjxαiyαj − λ2
jxαixαj + λixαjyαi − λiλjyαiyαj)

=
1

λk −∆/2− λi
1

n

n∑
α=1

{
(1− λ2

j )λiλjxαixαj − λ2
j (yαi − λixαi)(yαj − λjxαj)

+ (1− λ2
j )λj(yαi − λixαi)xαj + (1− λ2

j )λi(yαj − λjxαj)xαi
}
.

Let zl = (yl − λixl)/
√

1− λ2
i , 1 ≤ l ≤ p1. Then

[D−1B(2)]i−k∗,j =
1

λk −∆/2− λi
1

n

n∑
α=1

{
(1− λ2

j )λiλjxαixαj − λ2
j

√
1− λ2

i

√
1− λ2

jzαizαj

+ (1− λ2
j )λj

√
1− λ2

i zαixαj + (1− λ2
j )λi

√
1− λ2

i zαjxαi

}
.

In this way, {xαi, zαi, 1 ≤ i ≤ p1, 1 ≤ α ≤ n} are mutually independent standard gaussian

random variables. For any given pair of vectors u ∈ Rp1−k∗ , v ∈ Rk,

u>D−1B(2)v =
1

n

n∑
α=1

p1∑
i=k∗+1

k∑
j=1

ui−kvj
λk −∆/2− λi

{
(1− λ2

j )λiλjxαixαj

− λ2
j

√
1− λ2

i

√
1− λ2

jzαizαj + (1− λ2
j )λj

√
1− λ2

i zαixαj

+ (1− λ2
j )λi

√
1− λ2

i zαjxαi

}
.
=

1

n

n∑
α=1

wα,

where w1, · · · , wn are i.i.d. quadratic forms of the concatenated vector (x>, z>) and the

quadratic form can be represented by a matrix A. In order to apply Lemma 2.22, we first
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compute,

‖A‖2F =

p1∑
i=k∗+1

k∑
j=1

u2
i−kv

2
j

(λk −∆/2− λi)2

{
(1− λ2

j )
2λ2

iλ
2
j + λ4

j (1− λ2
i )(1− λ2

j )

+ (1− λ2
j )

2λ2
j (1− λ2

i ) + (1− λ2
j )

2λ2
i (1− λ2

i )
}

=

p1∑
i=k∗+1

k∑
j=1

u2
i−kv

2
j

(λk −∆/2− λi)2

(
1− λ2

j

) (
λ2
i + λ2

j − 2λ2
iλ

2
j

)
.

By definition,
p1∑

i=k∗+1

k∑
j=1

u2
i−kv

2
j = 1.

Then ‖A‖22, ‖A‖2F can be upper bounded by

‖A‖22 ≤ ‖A‖2F ≤ max
1≤j≤k<k∗+1≤i≤p1

(1− λ2
j )(λ

2
i + λ2

j − 2λ2
iλ

2
j )

(λk −∆/2− λi)2

≤ max
1≤j≤k<k∗+1≤i≤p1

(1− λ2
k)(λ

2
i (1− λ2

j ) + λ2
j (1− λ2

i ))

(λk −∆/2− λi)2

≤ (1− λ2
k) max

1≤j≤k<k∗+1≤i≤p1

2(1− λ2
i )

(λk −∆/2− λi)2

≤ (1− λ2
k) max

1≤j≤k<k∗+1≤i≤p1

2(1− λ2
k+1)

(λk −∆/2− λk+1)2

≤ 8
(1− λ2

k)(1− λ2
k+1)

∆2

.
= K2,

where the second last inequality is due to the fact that for λ > λk+1, f(x) = 1−x2
(λ−x)2

is

increasing in the interval [0, λk+1]. Therefore, Lemma 2.22 implies that

P {|wα| ≥ t} ≤ 2exp

{
−c0 min

(
t2

K2
,
t

K

)}
. (2.42)

Observe that ∀t ≥ 0,min
(

1, 2exp
{
−c0 min

(
t2

K2 ,
t
K

)})
≤ exp

{
1− c0

t
K

}
, then

P {|wα| ≥ t} ≤ 2exp

{
−c0

(
t

K
− 1

)}
. (2.43)

By Definition 5.13 in Vershynin (2010) , wα is sub-exponential random variable with
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‖wα‖ψ1 ≤ c1K for some universal constant c1. Let δ̃ = max{δ, δ2}. Apply Bernstein

inequality (Lemma 2.21) to wα/K with ai = 1/
√
n,

P

{
| 1√
n

n∑
α=1

wα/K| ≥ δ̃/2

}
≤ 2exp

{
−c2nmin

(
δ̃2

4c2
1

,
δ̃

2c1

)}

≤ 2exp

{
− c2

1 + 4c2
1

nδ2

}
≤ 2exp

{
− c2

1 + 4c2
1

(C2p1 + t2)

}
.

Step 3. Union Bound. By Lemma 2.23, we can choose 1/4-net such that

P

{
max
uε,vε

u>ε B
(2)vε ≥ Kδ̃/2

}
≤ 9p1−k

∗
9k × 2exp

{
− c2

1 + 4c2
1

(C2p1 + t2)

}
≤ 2exp

{
− c2

1 + 4c2
1

t2
}
,

where the second inequality follows if we choose C ≥
√

(1+4c21)log9
c2

. We finish the proof by

choosing c = c2
1+4c21

. The expectation bound can be obtained using the formula

E[X] =

∫ +∞

0
P (X ≥ t)dt

where X is nonnegative random variable. The calculation is essentially the same as the

proof of Lemma 2.20 and we leave out the details.
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2.7.4. Proof of Lemma 2.9

The proof is essentially the same as the proof for Lemma 2.8 except that the term ‖A‖2F

will be different (but simpler) and is sketched as follows,

‖A‖2F =

k∗∑
i=k+1

k∑
j=1

u2
i−kv

2
j

{
(1− λ2

j )
2λ2

iλ
2
j + λ4

j (1− λ2
i )(1− λ2

j )

+ (1− λ2
j )

2λ2
j (1− λ2

i ) + (1− λ2
j )

2λ2
i (1− λ2

i )
}

=

k∗∑
i=k+1

k∑
j=1

u2
i−kv

2
j

(
1− λ2

j

) (
λ2
i + λ2

j − 2λ2
iλ

2
j

)
≤ max

1≤j≤k<i≤k∗
(1− λ2

k)(λ
2
i (1− λ2

j ) + λ2
j (1− λ2

i ))

≤ 2(1− λ2
k) max

1≤j≤k<i≤k∗
(1− λ2

i ).

Notice that by definition, for k + 1 ≤ i ≤ k∗, λi ≥ 2λk − 1−∆, then

‖A‖2F ≤ 2(1− λ2
k)(1 + λi)(2− 2λk + ∆)

≤ 2(1− λ2
k)(1 + λk+1)2(1− λk+1)

≤ 4(1− λ2
k)(1− λ2

k+1).

The other parts of the argument proceed in the same way as in the proof of Lemma 2.8.

2.7.5. Proof of Lemma 2.10

In this section, we show how to control the higher order terms δ6 and δ7. The universal

constants C,C1, c, · · · might change from line to line. To facilitate presentation, we again

introduce z = (x>, y>)> as the concatenation of x and y. Then

Σz =

Σx Σxy

Σyx Σy

 =

 Ip1 Σxy

Σyx Ip2

 , Σ̂z =

 Σ̂x Σ̂xy

Σ̂yx Σ̂y

 .
Lemma 2.28. There exists universal constant C such that the following inequalities hold
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deterministically

‖Σ̂x‖, ‖Σ̂y‖, ‖Σ̂xy‖ ≤ ‖Σ̂z‖,

‖Σx − Σ̂x‖, ‖Σy − Σ̂y‖, ‖Σxy − Σ̂xy‖ ≤ ‖Σz − Σ̂z‖,

‖Λ̂− Λ‖ ≤ ‖Σ̂−1/2
x Σ̂xyΣ̂

−1/2
y − Σxy‖ ≤ ‖Σz − Σ̂z‖

(
2 + ‖Σ̂z‖

)
,

‖Φ̂l
1:k‖, ‖Ψ̂l

1:k‖ ≤ C‖Σz − Σ̂z‖

(
2 + ‖Σ̂z‖

∆
+ ‖Φ̂1:k‖+ ‖Ψ̂1:k‖

)
,

where ∆ = λk − λk+1 is the eigen-gap.

Lemma 2.28 (proved in Section 2.7.8) and triangle inequality are frequently applied in this

proof. Notice that Σij
x ,Σ

ij
y ,Σ

ij
xy,Σ

ij
yx, 1 ≤ i, j ≤ 2 are sub-matrices of Σx,Σy,Σxy,Σyx. We

will also repeatedly use the fact that the operator norm of a matrix is no less than that of

its sub-matrices.

‖δ1‖ ≤ ‖Φ̂u
1:k(Λ̂1 − Λ1) + (Σ̂11

x − Ik)Φ̂u
1:kΛ̂1 − (Σ̂11

xy − Λ1)Ψ̂u
1:k + Σ̂12

x Φ̂l
1:kΛ̂1 − Σ̂12

xyΨ̂
l
1:k‖

≤ ‖Φ̂1:k‖‖Σz − Σ̂z‖(2 + ‖Σ̂z‖) + ‖Σz − Σ̂z‖‖Φ̂1:k‖+ ‖Σz − Σ̂z‖‖Ψ̂1:k‖

+ 2C‖Σz − Σ̂z‖2
(

2 + ‖Σ̂z‖
∆

+ ‖Φ̂1:k‖+ ‖Ψ̂1:k‖

)

≤ C1‖Σz − Σ̂z‖(2 + ‖Σ̂z‖)(‖Φ̂1:k‖+ ‖Ψ̂1:k‖)

+ C2‖Σz − Σ̂z‖2
(

2 + ‖Σ̂z‖
∆

+ ‖Φ̂1:k‖+ ‖Ψ̂1:k‖

)

≤ C3‖Σz − Σ̂z‖(2 + ‖Σ̂z‖)(‖Φ̂1:k‖+ ‖Ψ̂1:k‖)(1 + ‖Σz − Σ̂z‖/∆).

where in the last inequality we use ‖Σz‖ ≤ 2 and

‖Σz − Σ̂z‖2
(
‖Φ̂1:k‖+ ‖Ψ̂1:k‖

)
≤ ‖Σz − Σ̂z‖(‖Σz‖+ ‖Σ̂z‖)

(
‖Φ̂1:k‖+ ‖Ψ̂1:k‖

)
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By the same argument,

‖δ2‖ ≤ C3‖Σz − Σ̂z‖(2 + ‖Σ̂z‖)(‖Φ̂1:k‖+ ‖Ψ̂1:k‖)(1 + ‖Σz − Σ̂z‖/∆).

We can also bound δ3, δ4 in the same manner and will obtain,

‖δ3‖, ‖δ4‖ ≤ C‖Σz − Σ̂z‖2(2 + ‖Σ̂z‖)2(‖Φ̂1:k‖+ ‖Ψ̂1:k‖)/∆

Recall that δ6 = Σ̂21
x δ1Λ1 − Λ2Σ̂21

y δ1 + δ5 and δ5 = −δ3Λ1 + Λ2δ4, then

‖A1 ◦ δ6‖ ≤ ‖A1 ◦ (Σ̂21
x δ1Λ1 − Λ2Σ̂21

y δ1 + δ5)‖

≤ ‖A1 ◦ (Σ̂21
x δ1Λ1)‖+ ‖A1 ◦ (Λ2Σ̂21

y δ1)‖+ ‖A1 ◦ (δ3Λ1)‖+ ‖A1 ◦ (Λ2δ4)‖

= ‖(A1Λ1) ◦ (Σ̂21
x δ1)‖+ ‖(Λ2A1) ◦ (Σ̂21

y δ1)‖+ ‖(A1Λ1) ◦ δ3‖+ ‖(Λ2A1) ◦ δ4‖.

By the same argument as in (2.26),

‖A1 ◦ δ6‖ ≤
3

2
‖Σ̂21

x δ1‖+
1

2
‖Σ̂21

y δ1‖+
3

2
‖δ3‖+

1

2
‖δ4‖

≤ 2‖Σz − Σ̂z‖‖δ1‖+
3

2
‖δ3‖+

1

2
‖δ4‖

≤ C‖Σz − Σ̂z‖2(2 + ‖Σ̂z‖)(‖Φ̂1:k‖+ ‖Ψ̂1:k‖)(1 + ‖Σz − Σ̂z‖/∆)

+ C‖Σz − Σ̂z‖2(2 + ‖Σ̂z‖)2(‖Φ̂1:k‖+ ‖Ψ̂1:k‖)/∆

≤ C‖Σz − Σ̂z‖2(2 + ‖Σ̂z‖)2(‖Φ̂1:k‖+ ‖Ψ̂1:k‖)(1 + ‖Σz − Σ̂z‖)/∆.

By the same argument as in (2.27),

‖A1 ◦A2 ◦ δ6‖ ≤
1

∆
‖A1 ◦ δ6‖

≤ C‖Σz − Σ̂z‖2(2 + ‖Σ̂z‖)2(‖Φ̂1:k‖+ ‖Ψ̂1:k‖)(1 + ‖Σz − Σ̂z‖)/∆2.
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Recall that δ7 = Σ̂21
xyδ1 + Σ̂21

x (Λ1δ1 + δ2Λ1) + Λ2Σ̂21
y δ2 + δ5, then

‖δ7‖ ≤ ‖Σz − Σ̂z‖(2‖δ1‖+ 2‖δ2‖) + ‖δ3‖+ ‖δ4‖

≤ C‖Σz − Σ̂z‖2(2 + ‖Σ̂z‖)(‖Φ̂1:k‖+ ‖Ψ̂1:k‖)(1 + ‖Σz − Σ̂z‖/∆)

+ C‖Σz − Σ̂z‖2(2 + ‖Σ̂z‖)2(‖Φ̂1:k‖+ ‖Ψ̂1:k‖)/∆

≤ C‖Σz − Σ̂z‖2(2 + ‖Σ̂z‖)2(‖Φ̂1:k‖+ ‖Ψ̂1:k‖)(1 + ‖Σz − Σ̂z‖)/∆.

Again, by the same argument in (2.27),

‖A2 ◦ δ7‖ ≤ C‖Σz − Σ̂z‖2(2 + ‖Σ̂z‖)2(‖Φ̂1:k‖+ ‖Ψ̂1:k‖)(1 + ‖Σz − Σ̂z‖)/∆2.

2.7.6. Proof of Lemma 2.11

By definition, Φ̂>Σ̂xΦ̂ = Ip1 , then

Φ̂>Φ̂− Ip1 = −Φ̂>(Σ̂x − Ip1)Φ̂.

Notice that Σ̂
1/2
x Φ̂ ∈ O(p1),

‖Φ̂>Φ̂− Ip1‖ ≤ ‖Φ̂>(Σ̂x − Ip1)Φ̂‖ ≤ ‖Φ̂>Σ̂1/2
x ‖‖Σ̂−1/2

x (Σ̂x − Ip1)Σ̂−1/2
x ‖‖Σ̂1/2

x Φ̂‖

= ‖Σ̂−1/2
x (Σ̂x − Ip1)Σ̂−1/2

x ‖.

As a submatrix,

‖Φ̂>1:kΦ̂1:k − Ik‖ ≤ ‖Σ̂−1/2
x (Σ̂x − Ip1)Σ̂−1/2

x ‖

≤ ‖Σ̂−1
x ‖‖Σ̂x − Ip1‖

≤ 1

1− ‖Σ̂x − Ip1‖
‖Σ̂x − Ip1‖

≤ ‖Σ̂z − Σz‖
1− ‖Σ̂z − Σz‖

,
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which implies that

σ2
k(Φ̂1:k) ≥ 1− ‖Σ̂z − Σz‖

1− ‖Σ̂z − Σz‖
, ‖Φ̂1:k‖2 ≤ 1 +

‖Σ̂z − Σz‖
1− ‖Σ̂z − Σz‖

.

Notice that ‖Σz‖ ≤ 2. By Lemma 2.19, for any given positive constant τ , there exists

constants c, C depending on τ such that when n ≥ C(p1 + p2),

‖Σ̂z − Σz‖ ≤ τ

holds with probability at least 1 − e−cn. Choose τ small enough such that σ2
k(Φ̂1:k) ≥ 1/2

and ‖Φ̂1:k‖2 ≤ 3/2. By the same argument,

σ2
k(Ψ̂1:k) ≥ 1/2, ‖Ψ̂1:k‖2 ≤ 3/2

will hold as well and therefore

(2 + ‖Σ̂z‖)2(‖Φ̂1:k‖+ ‖Ψ̂1:k‖)(1 + ‖Σz − Σ̂z‖) ≤ (2 + ‖Σz‖+ τ)2 × 3× (1 + τ) ≤ 150

2.7.7. Proof of Lemma 2.13

We can write down explicitly, for 1 ≤ j ≤ k < i ≤ p1

[B]i−k,j =
1

n

n∑
α=1

(
λjxαiyαj − λ2

jxαixαj + λixαjyαi − λiλjyαiyαj
)
.

Notice that (xαi, yαi) are mutually uncorrelated pairs for any 1 ≤ α ≤ n, 1 ≤ i ≤ p1. It is

easy to compute

E[B]2i−k,j = (1− λ2
j )(λ

2
i + λ2

j − 2λ2
iλ

2
j )/n,
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and thus

E‖D̃−1B‖2F =
1

n

∑
1≤j≤k<i≤p1

(1− λ2
j )
λ2
i + λ2

j − 2λ2
iλ

2
j

(λk − λi)2

≤
1− λ2

k

n

∑
1≤j≤k<i≤p1

λ2
i (1− λ2

j ) + λ2
j (1− λ2

i )

(λk − λi)2

≤
2(1− λ2

k)

n

∑
1≤j≤k<i≤p1

1− λ2
i

(λk − λi)2

≤
2(1− λ2

k)

n

∑
1≤j≤k<i≤p1

1− λ2
k+1

(λk − λk+1)2

≤
2(1− λ2

k)(1− λ2
k+1)

n∆2
(p1 − k)k,

where the second last inequality is due to the fact that for λ > λk+1, f(x) = 1−x2
(λ−x)2

is

increasing in the interval [0, λk+1].

2.7.8. Proof of Lemma 2.28

The first two inequalities are trivial because the operator norm of a matrix is not less than

that of its sub-matrices. Notice that Λ̂ and Λ are singular values of Σ̂
−1/2
x Σ̂xyΣ̂

−1/2
y and

Σxy respectively. Hence by Weyl’s inequality,

‖Λ̂− Λ‖ ≤ ‖Σ̂−1/2
x Σ̂xyΣ̂

−1/2
y − Σxy‖.

Further observe that

Σ̂−1/2
x Σ̂xyΣ̂

−1/2
y − Σxy = (Ip1 − Σ̂1/2

x )Σ̂−1/2
x Σ̂xyΣ̂

−1/2
y

+ Σ̂1/2
x Σ̂−1/2

x Σ̂xyΣ̂
−1/2
y (Ip2 − Σ̂1/2

y ) + (Σ̂xy − Σxy).

and ‖Σ̂−1/2
x Σ̂xyΣ̂

−1/2
y ‖ = λ̂1 ≤ 1. Then

‖Σ̂−1/2
x Σ̂xyΣ̂

−1/2
y − Σxy‖ ≤ ‖Ip1 − Σ̂1/2

x ‖+ ‖Σ̂x‖‖Ip2 − Σ̂1/2
y ‖+ ‖Σ̂xy − Σxy‖.
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Also notice that

‖I − Σ̂y‖ = ‖(I − Σ1/2
y )(I + Σ1/2

y )‖ ≥ σmin(I + Σ1/2
y )‖I − Σ1/2

y ‖ ≥ ‖I − Σ1/2
y ‖.

Therefore,

‖Σ̂−1/2
x Σ̂xyΣ̂

−1/2
y − Σxy‖ ≤ ‖Ip1 − Σ̂x‖+ ‖Σ̂x‖‖Ip2 − Σ̂y‖+ ‖Σ̂xy − Σxy‖

≤ ‖Σz − Σ̂z‖
(

2 + ‖Σ̂z‖
)
.

The last inequality in the lemma relies on the fact that Σ̂
1/2
x Φ̂1:k and Ip1,k are leading k

singular vectors of Σ̂
−1/2
x Σ̂xyΣ̂

−1/2
y and Σxy respectively. By a variant of Wedin’s sin θ law

as stated in Lemma 2.24,

∥∥∥P
Σ̂

1/2
x Φ̂1:k

(Ip1 − PIp1,k)
∥∥∥ ≤ C‖Σ̂−1/2

x Σ̂xyΣ̂
−1/2
y − Σxy‖

∆
.

On the other hand,

∥∥∥P
Σ̂

1/2
x Φ̂1:k

(Ip1 − PIp1,k)
∥∥∥ =

∥∥∥Σ̂1/2
x Φ̂1:k(Σ̂

1/2
x Φ̂1:k)

>(Ip1 − PIp1,k)
∥∥∥

=
∥∥∥(Σ̂1/2

x Φ̂1:k)
>(Ip1 − PIp1,k)

∥∥∥
=
∥∥∥(Σ̂1/2

x Φ̂1:k)
l
∥∥∥ ,

where the second equality is due to the fact that Σ̂
1/2
x Φ̂1:k has orthonormal columns and

(Σ̂
1/2
x Φ̂1:k)

l denotes the lower (p1 − k) × k sub-matrix of Σ̂
1/2
x Φ̂1:k. Again, by triangle

inequality,

∥∥∥Φ̂l
1:k

∥∥∥ =

∥∥∥∥(Σ̂1/2
x Φ̂1:k)

l −
(

(Σ̂1/2
x − Ip1)Φ̂1:k

)l∥∥∥∥
≤
∥∥∥(Σ̂1/2

x Φ̂1:k)
l
∥∥∥+

∥∥∥(Σ̂1/2
x − Ip1)Φ̂1:k

∥∥∥
≤ C‖Σ̂−1/2

x Σ̂xyΣ̂
−1/2
y − Σxy‖

∆
+
∥∥∥Σ̂z − Σ̂

∥∥∥∥∥∥Φ̂1:k

∥∥∥ .
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The last inequality is obtained by substituting the upper bound for ‖Σ̂−1/2
x Σ̂xyΣ̂

−1/2
y −Σxy‖

obtained above.

2.7.9. Connection with the Loss Function in Gao et al. (2014)

The proposed Frobenius norm loss function is upper bounded by the loss function of Gao

et al. (2015b). Specifically, we are going to show

L2(span(x>Φ1:k), span(x>Φ̂1:k)) = 2 inf
Q∈Rk×k

E
∥∥∥x>Φ1:k − x>Φ̂1:kQ

∥∥∥2
, (2.44)

and therefore,

inf
Q∈O(k,k)

E
∥∥∥x>Φ1:k − x>Φ̂1:kQ

∥∥∥2
≥ inf

Q∈Rk×k
E
∥∥∥x>Φ1:k − x>Φ̂1:kQ

∥∥∥2

≥ 1

2
L2(span(x>Φ1:k), span(x>Φ̂1:k)).

To prove (2.44), simple algebra yields

E
∥∥∥x>Φ1:k − x>Φ̂1:kQ

∥∥∥2

2
= trace

(
(Φ1:k − Φ̂1:kQ)>Σx(Φ1:k − Φ̂1:kQ)

)
=
∥∥∥Σx

1/2Φ1:k − Σx
1/2Φ̂1:kQ

∥∥∥2

F
.

Then the least squares solution Q∗ = (Φ̂>1:kΣxΦ̂1:k)
−1Φ̂>1:kΣxΦ1:k achieves the minimum.

Substitute Q∗ into the objective will show that

inf
Q∈Rk×k

∥∥∥Σ1/2
x Φ1:k − Σ1/2

x Φ̂1:kQ
∥∥∥2

F
=
∥∥∥(Ip1 − PΣ

1/2
x Φ̂1:k

)
Σ1/2
x Φ1:k

∥∥∥2

F

Notice that Σ
1/2
x Φ1:k ∈ O(p1, k), then

inf
Q∈Rk×k

∥∥∥Σ1/2
x Φ1:k − Σ1/2

x Φ̂1:kQ
∥∥∥2

F
=

∥∥∥∥(Ip1 − PΣ
1/2
x Φ̂1:k

)
Σ1/2
x Φ1:k

(
Σ1/2
x Φ1:k

)>∥∥∥∥2

F

=
∥∥∥(Ip1 − PΣ

1/2
x Φ̂1:k

)
P

Σ
1/2
x Φ1:k

∥∥∥2

F

=
1

2

∥∥∥P
Σ

1/2
x Φ1:k

− P
Σ

1/2
x Φ̂1:k

∥∥∥2

F
.
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where the last equality is due to Lemma 2.18.
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CHAPTER 3 : Canonical Correlation Analysis: Iterative Algorithm

3.1. Introduction

In modern machine learning applications, CCA has been successfully applied to massive

multi-view datasets to extract low-dimensional feature representations of high-dimensional

complex objects, like images (Rasiwasia et al., 2010), text (Dhillon et al., 2011, 2012)

and speeches (Arora and Livescu, 2013). The scale of the datasets necessitates efficient

estimation of leading-k canonical vectors. According to results obtained in previous chapter,

the corresponding sample canonical vectors are minimax optimal under a certain sample size

condition, which is usually satisfied in the interesting large-n-large-p regime (n� p1, p2 �

1) we consider in this chapter. It is well-known that sample canonical vectors have the

following closed form solution.

Proposition 3.1. Φ̂ = Σ̂
−1/2
x Û , Ψ̂ = Σ̂

−1/2
y V̂ , Λ̂ = D̂ where Σ̂

−1/2
x Σ̂xyΣ̂

−1/2
y = ÛD̂V̂ > is

the singular value decomposition. This also implies Σ̂xy = Σ̂xΦ̂Λ̂Ψ̂>Σ̂y.

Here, we continue using the notation in Chapter 2. With p = p1 ∧ p2, recall that Σ̂x ∈

Rp1×p1 , Σ̂y ∈ Rp2×p2 , Σ̂xy ∈ Rp1×p2 are the sample covariance matrices, Φ̂ = (φ̂1, · · · , φ̂p) ∈

Rp1×p, Ψ̂ = (ψ̂1, · · · .ψ̂p) ∈ Rp2×p are the sample canonical vectors, Λ̂ ∈ Rp×p is the sample

canonical correlation matrix. This proposition reveals that the leading-k sample canonical

vectors can be obtained by the following three step algorithm.

1. Whitening: X̃ = XΣ̂
−1/2
x , Ỹ = Y Σ̂

−1/2
y , Σ̃xy = 1

n−1X̃
>Ỹ

2. k-truncated SVD: Σ̃xy ≈ ÛkD̂kV̂
>
k

3. Φ̂1:k = Σ̂
−1/2
x Ûk, Ψ̂1:k = Σ̂

−1/2
y V̂k

This algorithm works well when the sample size and feature dimension is of moderate

size but it will be very slow and numerically unstable for large-scale datasets which are

ubiquitous in the age of ‘Big Data’. The bottleneck of this algorithm is the whitening step,

which involves:
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• large matrix multiplication X>X,Y >Y, X̃>Ỹ to obtain Σ̂x, Σ̂y, Σ̃xy with

computational complexity O(np2
1 + np2

2);

• large matrix decomposition to compute Σ̂
−1/2
x and Σ̂

−1/2
y with computational

complexity O(p3
1 + p3

2).

Remark 3.2. The whitening step dominates the k-truncated SVD step because the top

k dimensional singular vectors can be efficiently computed by randomized SVD algorithms

(see Halko et al. (2011) for a nice review).

Remark 3.3. Another classical algorithm (built-in function in Matlab) introduced by

Bjorck and Golub (1973) whitens the data matrices in a different but equivalent way. It

starts with QR decomposition, X = QxRx and Y = QyRy and then performs a SVD on

Q>xQy, which has the same computational complexity O(np2
1 + np2

2).

Besides the heavy computational cost, extra O(p2
1 + p2

2) space is necessary to store the

matrices Σ̂
−1/2
x and Σ̂

−1/2
y (typically dense). In high-dimensional applications where the

number of features is huge, this is another bottleneck since data retrieval could further slow

down the algorithm. In distributed storage systems, operations involving Σ̂
−1/2
x and Σ̂

−1/2
y

will incur heavy communication cost. Therefore, it is natural to ask: is there a scalable

algorithm that avoids huge matrix decomposition and huge matrix multiplication? Is it

memory efficient? Or even more ambitiously, is there an online algorithm that generates

decent approximation given a fixed computational power (e.g. CPU time, number of

operations)?

3.1.1. Related Work

The scalability of estimation/learning algorithms has become increasingly important in

modern data processing tasks. Since matrix manipulation is the building block of many

machine learning and statistical algorithms, lots of efforts have been devoted to developing

fast randomized algorithms for large-scale matrix mulitplications and factorizations such

as Sarlos (2006), Liberty et al. (2007), Woolfe et al. (2008), Halko et al. (2011), etc. For
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example, these techniques are successfully applied to approximately finding the leading-k

singular value decomposition and other partial matrix decompositions. However, existing

results do not directly solve CCA due to the whitening step where full matrix decomposition

is unavoidable. Several authors have tried to devise a scalable CCA algorithm. Avron

et al. (2013) proposed an efficient approach for CCA between two tall and thin matrices

(p1, p2 � n) by exploiting recently developed tools, notably Subsampled Randomized

Hadamard Transform, which only subsampled a small proportion of the n data points

to approximate the matrix product. However, when the size of the features, p1 and p2, are

large, the sampling scheme does not work. Later, Lu and Foster (2014) consider sparse

design matrices and formulate CCA as iterative least squares, where in each iteration a fast

regression algorithm that exploits sparsity is applied.

Another related line of research considers stochastic optimization algorithms for PCA such

as Oja and Karhunen (1985), Arora et al. (2012), Mitliagkas et al. (2013), Balsubramani

et al. (2013). Compared with batch algorithms, these stochastic versions empirically

converge much faster with similar accuracy. Moreover, these stochastic algorithms can

be applied to streaming setting where data comes sequentially (one pass or several pass)

without being stored. As mentioned in Arora et al. (2012), stochastic optimization algorithm

for CCA is more challenging and remains an open problem because of the whitening step.

3.1.2. Main Contribution

The main contribution of this paper is to directly tackle CCA as a non-convex optimization

problem and propose a novel Augmented Approximate Gradient (AppGrad) scheme and its

stochastic variant for finding the top k dimensional canonical subspace. Its advantages over

state-of-art CCA algorithms are three fold. First, AppGrad only involves a large matrix

multiplying a thin matrix of width k and small matrix decomposition of dimension k × k.

Therefore to some extent it is free from the two bottlenecks. It also benefits if X and Y are

sparse while the classical algorithm still needs to invert the dense matrices X>X and Y >Y .

Second, AppGrad achieves optimal storage complexity O(k(p1 + p2)), the space necessary
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to store the output, compared with classical algorithms which usually require O(p2
1 + p2

2)

for storing Σ̂
−1/2
x and Σ̂

−1/2
y . Third, the stochastic (online) variant of AppGrad is especially

efficient for large scale datasets if moderate accuracy is desired. It is well-suited to the case

when computational resources are limited or data comes as a stream. To the best of our

knowledge, it is the first stochastic algorithm for CCA, which partly gives an affirmative

answer to a question left open in Arora et al. (2012).

For simplicity, we first focus on the leading canonical pair (φ̂1, ψ̂1) to motivate the proposed

algorithms. Results for general scenario can be obtained in the same manner and will be

briefly discussed in the later part of this section.

3.2. Algorithm: Augmented Approximate Gradient Descent

Throughout the paper, we assume X and Y are of full rank. We use ‖ · ‖ for L2 norm.

∀u ∈ Rp1 , v ∈ Rp2 , we define ‖u‖x = (u>Σ̂xu)
1
2 and ‖v‖y = (v>Σ̂yv)

1
2 , which are norms

induced by X and Y .

3.2.1. Background

To begin, we recast sample CCA as the solution to a non-convex optimization problem

(Golub and Zha, 1995).

Lemma 3.4. (φ̂1, ψ̂1) is the solution to:

min
1

2n
‖Xφ− Y ψ‖2

subject to φ>Σ̂xφ = 1, ψ>Σ̂yψ = 1

(3.1)

Although (3.1) is non-convex (objective function is convex but the constraint set is

non-convex), Golub and Zha (1995) showed that an alternating minimization strategy

(Algorithm 1), or rather iterative least squares, converges to the leading canonical pair.

However, each update φt+1 = Σ̂−1
x Σ̂xyψ

t is computationally intensive. Essentially, the
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Algorithm 2 CCA via Naive Gradient Descent

Input: Data matrix X ∈ Rn×p1 , Y ∈ Rn×p2 , initialization (φ0, ψ0), step size η1, η2

Output : NAN (incorrect algorithm)
repeat
φt+1 = φt − η1X

>(Xφt − Y ψt)/n
φt+1 = φt+1/‖φt+1‖x
ψt+1 = ψt − η2Y

>(Y ψt −Xφt)/n
ψt+1 = ψt+1/‖ψt+1‖y

until convergence

alternating least squares algorithm acts like a second order method, which is usually

recognized to be inefficient for large-scale datasets, especially when the current estimate

is not close enough to the optimum. Therefore, it is natural to ask: is there a valid first

order method that solves (3.1)?

Algorithm 1 CCA via Alternating Least Squares

Input: Data matrix X ∈ Rn×p1 , Y ∈ Rn×p2 and initialization (φ0, ψ0)

Output: (φAls, ψAls)

repeat

φt+1 = arg min
φ

1
2n‖Xφ− Y ψ

t‖2 = Σ̂−1
x Σ̂xyψ

t

φt+1 = φt+1/‖φt+1‖x

ψt+1 = arg min
ψ

1
2n‖Y ψ −Xφ

t‖2 = Σ̂−1
y Σ̂yxφ

t

ψt+1 = ψt+1/‖ψt+1‖y

until convergence

Heuristics borrowed from the convex optimization literature give rise to the projected

gradient scheme summarized in Algorithm 2. Instead of completely solving a least squares

problem in each iteration, a single gradient step of (3.1) is performed and then the estimates

are projected back to the constrained domain, which avoids inverting a huge matrix.

Unfortunately, the following proposition shows that Algorithm 2 fails to converge to the

leading canonical pair.

Proposition 3.5. If leading canonical correlation λ̂1 6= 1 and either φ̂1 is not an eigenvector
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Algorithm 3 CCA via AppGrad

Input: Data matrix X ∈ Rn×p1 , Y ∈ Rn×p2 , initialization (φ0, ψ0, φ̃0, ψ̃0), step size η1, η2

Output: (φAg, ψAg, φ̃Ag, ψ̃Ag)
repeat
φ̃t+1 = φ̃t − η1X

>(Xφ̃t − Y ψt)/n
φt+1 = φ̃t+1/‖φ̃t+1‖x
ψ̃t+1 = ψ̃t − η2Y

>(Y ψ̃t −Xφt)/n
φt+1 = ψ̃t+1/‖ψ̃t+1‖y

until convergence

of Σ̂x or ψ̂1 is not an eigenvector of Σ̂y, then ∀η1, η2 > 0, the leading canonical pair (φ̂1, ψ̂1)

is not a fixed point of the naive gradient scheme in Algorithm 2. Therefore, the algorithm

does not converge to (φ̂1, ψ̂1).

Proof of Proposition 3.5. The proof is similar to the proof of Proposition 3.6 and we leave

out the details here.

The failure of Algorithm 2 is due to the non-convex nature of (3.1). Although every gradient

step might decrease the objective function, this property no longer persists after projected

to the non-convex domain
{

(φ, ψ) |φ>Σ̂xφ = 1, ψ>Σ̂yψ = 1
}

(the normalization step). On

the contrary, decreases triggered by gradient descent are maintained if the estimates are

projected to a convex region.

3.2.2. AppGrad Scheme for Leading Canonical Pair

As a remedy, we propose the novel Augmented Approximate Gradient (AppGrad) descent

scheme summarized in Algorithm 3. It inherits the convergence guarantee of alternating

least squares as well as the scalability and memory efficiency of first order methods, which

only involves matrix-vector multiplication and only requires O(p1 + p2) extra space.

AppGrad seems unnatural at first sight but has nice intuitions behind as we will discuss

later. The differences and similarities between these algorithms are subtle but crucial.

Compared with the naive gradient descent, we introduce two auxiliary variables (φ̃t, ψ̃t), an
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unnormalized version of (φt, ψt). During each iterate, we update φ̃t and ψ̃t without scaling

them to have unit norm, which in turn produces the ‘correct’ normalized counterpart,

(φt, ψt). It turns out that (φ̂1, ψ̂1, λ̂1φ̂1, λ̂1ψ̂1) is a fixed point of the dynamic system

{(φt, ψt, φ̃t, ψ̃t)}∞t=0.

Proposition 3.6. ∀ i ≤ p1, let φ̃i = λ̂iφ̂i, ψ̃i = λ̂iψ̂i, then (φ̂i, ψ̂i, φ̃i, ψ̃i) are the fixed points

of AppGrad scheme.

To prove the proposition, we need the following lemma that characterizes the relations

among some key quantities.

Proof of Proposition 3.6. Substitute (φt, ψt, φ̃t, ψ̃t) = (φ̂i, ψ̂i, φ̃i, ψ̃i) into the iterative

formula in Algorithm 3.

φ̃t+1 = φ̃i − η1(Σ̂xφ̃i − Σ̂xyψ̂i)

= φ̃i − η1(Σ̂xφ̃i − Σ̂xΦ̂Λ̂Ψ̂>Σ̂yψ̂i)

= φ̃i − η1(Σ̂xφ̃i − λ̂iΣ̂xφ̂i)

= φ̃i

The second equality is direct application of Proposition 3.1. The third equality is due to

the fact that Ψ̂>Σ̂yΨ̂ = Ip2 . Then,

φt+1 = φ̃i/‖φ̃i‖x = φ̃i/λ̂i = φ̂i

Therefore (φ̃t+1, φt+1) = (φ̃t, φt) = (φ̃i, φ̂i). A symmetric argument will show that

(ψ̃t+1, ψt+1) = (ψ̃t, ψt) = (ψ̃i, ψ̂i), which completes the proof.

The connection between AppGrad and the alternating minimization strategy is subtle.

Intuitively, when (φt, ψt) is not close to (φ̂1, ψ̂1), solving the least squares completely as

carried out in Algorithm 1 is a waste of computational power (informally by regarding it

as a second order method, the Newton Step has fast convergence only when the current
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estimate is close to the optimum). Instead of solving a sequence of possibly irrelevant

least squares problems, the following lemma shows that AppGrad directly targets the least

squares problem that involves the leading canonical pair.

Lemma 3.7. Let (φ̂1, ψ̂1) be the leading canonical pair and (φ̃1, ψ̃1) = λ̂1(φ̂1, ψ̂1). Then,

φ̃1 = arg min
φ

1

2n
‖Xφ− Y ψ̂1‖2

ψ̃1 = arg min
ψ

1

2n
‖Y ψ −Xφ̂1‖2

(3.2)

Proof of Lemma 3.7. Let φ∗ = arg min
φ

1
2n‖Xφ − Y ψ̂1‖2. By the optimality condition,

Σ̂xφ
∗ = Σ̂xyψ̂1. Apply Proposition 3.1,

φ∗ = Σ̂−1
x Σ̂xΦ̂Λ̂Ψ̂>Σ̂yψ̂1 = λ̂1φ̂1 = φ̃1

A similar argument gives ψ∗ = ψ̃1

Lemma 3.7 characterizes the relationship between the leading canonical pair (φ̂1, ψ̂1) and

its unnormalized counterpart (φ̃1, ψ̃1), which sheds some insight on how AppGrad works.

The intuition is that (φt, ψt) and (φ̃t, ψ̃t) are current estimates of (φ̂1, ψ̂1) and (φ̃1, ψ̃1), and

the updates of (φ̃t+1, ψ̃t+1) in Algorithm 3 are actually gradient steps of the least squares in

(3.2), with the unknown truth (φ̂1, ψ̂1) approximated by (φt, ψt). In terms of mathematics,

φ̃t+1 = φ̃t − η1X
>(Xφ̃t − Y ψt)/n

≈ φ̃t − η1X
>(Xφ̃t − Y ψ̂1)/n

= φ̃t − η1∇φ
1

2n
‖Xφ− Y ψ̂1‖2|φ=φ̃t

(3.3)

The normalization step in Algorithm 3 corresponds to generating new approximations

of (φ̂1, ψ̂1), namely (φt+1, ψt+1), using the updated (φ̃t+1, ψ̃t+1) through the relationship

(φ̂1, ψ̂1) = (φ̃1/‖φ̃1‖x, ψ̃1/‖ψ̃1‖y). Therefore, one can interpret AppGrad as an approximate

gradient scheme for solving (3.2). When (φ̃t, ψ̃t) converge to (φ̃1, ψ̃1), its scaled version
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Algorithm 4 CCA via AppGrad (Rank-k)

Input: Data matrix X ∈ Rn×p1 , Y ∈ Rn×p2 , initialization (Φ̂0, Ψ̂0, Φ̃0, Ψ̃0), step size
η1, η2

Output : (Φ̂Ag, Ψ̂Ag, Φ̃Ag, Ψ̃Ag)
repeat

Φ̃t+1 = Φ̃t − η1X
>(XΦ̃t − YΨt)/n

SVD: (Φ̃t+1)>Σ̂xΦ̃t+1 = UxDxU
>
x

Φt+1 = Φ̃t+1UxD
− 1

2
x U>x

Ψ̃t+1 = Ψ̃t − η2Y
>(Y Ψ̃t −XΦt)/n

SVD: (Ψ̃t+1)>Σ̂yΨ̃
t+1 = UyDyU

>
y

Ψt+1 = Ψ̃t+1UyD
− 1

2
y U>y

until convergence

(φt, ψt) converges to the leading canonical pair (φ̂1, ψ̂1).

The following theorem shows that when the estimates enter a neighborhood of the true

canonical pair, AppGrad is contractive. Define the error metric et = ‖∆φ̃t‖2 + ‖∆ψ̃t‖2

where ∆φ̃t = φ̃t − φ̃1,∆ψ̃
t = ψ̃t − ψ̃1.

Theorem 4. Assume λ̂1 > λ̂2, and λmax(Σ̂x), λmax(Σ̂y) ≤ L1, λmin(Σ̂x), λmin(Σ̂y) ≥ L−1
2

for positive constants L1, L2, where λmin(·), λmax(·) denote smallest and largest eigenvalues.

If e0 < 2(λ̂2
1 − λ̂2

2)/L1 and set η1 = η2 = η = δ/6L1, AppGrad achieves linear convergence

in the sense that ∀ t ∈ N+

et ≤
(

1− δ2

6L1L2

)t
e0

where δ = 1−
(

1− 2(λ̂21−λ22)−L1e0

2λ̂21

) 1
2
> 0

Remark 3.8. The theorem reveals that the larger the eigen-gap λ̂1 − λ̂2, the broader is

the basin of attraction. We didn’t try to optimize the conditions above and empirically as

shown in the experiments, a randomized initialization always suffices to capture most of the

correlation.

3.2.3. AppGrad for General Rank-k Case
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Following the spirit of rank-one case, AppGrad can be easily generalized to compute the

top k dimesional canonical subspace as summarized in Algorithm 4. The only difference

is that the original scalar normalization is replaced by its matrix counterpart, that is

to multiply the inverse of the square root matrix Φt+1 = Φ̃t+1UxD
− 1

2
x U>x , ensuring that

(Φt+1)>X>XΦt+1 = Ik.

Notice that the gradient step only involves a large matrix multiplying a thin matrix of

width k and the SVD is performed on a small k × k matrix. Therefore, the computational

complexity per iteration is dominated by the gradient step, of order O(n(p1 + p2)k). The

cost will be further reduced when the data matrices X,Y are sparse.

Compared with classical spectral algorithm which first whitens the data matrices and

then performs a SVD on the whitened covariance matrix, AppGrad merges these two

steps together. This is the key of its efficiency. At a high level, whitening the whole

data matrix is not necessary and we only want to whiten the directions that contain the

leading CCA subspace. However, these directions are unknown and therefore for two-step

procedures, whitening the whole data matrix is unavoidable. Instead, AppGrad tries to

identify (gradient step) and whiten (normalization step) these directions simultaneously. In

this way, every normalization step is only performed on the potential k dimensional target

CCA subspace and therefore only deals with a small k × k matrix.

Parallel results of Lemma 3.4, Proposition 3.5, Proposition 3.6, Lemma 3.7 for this general

scenario can be established in a similar manner. Here, to make Algorithm 4 more clear, we

state the fixed point result of which the proof is similar to Proposition 3.6.

Proposition 3.9. Let Λ̂k = diag(λ̂1, · · · , λ̂k) be the diagonal matrix of top k canonical

correlations and let Φ̂k = (φ̂1, · · · , φ̂k), Ψ̂k = (φ̂1, · · · , φ̂k) be the top k CCA vectors.

Also denote Φ̃k = Φ̂kΛ̂k and Ψ̃k = Ψ̂kΛ̂k. Then for any k × k orthogonal matrix Q,

(Φ̂k, Ψ̂k, Φ̃k, Ψ̃k)Q is a fixed point of AppGrad scheme.

The top k dimensional canonical subspace is identifiable up to a rotation matrix and
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Algorithm 5 CCA via Stochastic AppGrad (Rank-k)

Input: Data matrix X ∈ Rn×p1 , Y ∈ Rn×p2 , initialization (Φ̂0, Ψ̂0, Φ̃0, Ψ̃0), step size
η1t, η2t, minibatch size m
Output : (Φ̂Sag, Ψ̂Sag, Φ̃Sag, Ψ̃Sag)
repeat

Randomly pick a subset I ⊂ {1, 2, · · · , n} of size m
Φ̃t+1 = Φ̃t − η1tX

>
I (XIΦ̃

t − YIΨt)/m

SVD: (Φ̃t+1)>( 1
mX

>
I XI)Φ̃

t+1 = U>x DxUx

Φt+1 = Φ̃t+1U>x D
− 1

2
x Ux

Ψ̃t+1 = Ψ̃t − η2tY
>
I (YIΨ̃

t −XIΦt)/m

SVD: (Ψ̃t+1)>( 1
mY

>
I YI)Ψ̃

t+1 = U>y DyUy

Ψt+1 = Ψ̃t+1U>y D
− 1

2
y Uy

until convergence

Proposition 3.9 shows that every optimum is a fixed point of AppGrad scheme.

3.2.4. Stochastic AppGrad

Recently, there is a growing interest in stochastic optimization which is shown to have

better performance for large-scale learning problems Bousquet and Bottou (2008); Bottou

(2010). Especially in the so-called ‘data laden regime’, where data is abundant and the

bottleneck is runtime, stochastic optimization dominates batch algorithms both empirically

and theoretically. Given these advantages, lots of efforts have been spent developing

stochastic algorithms for principal component analysis Oja and Karhunen (1985); Arora

et al. (2012); Mitliagkas et al. (2013); Balsubramani et al. (2013). Despite promising

progress in PCA, as mentioned in Arora et al. (2012), stochastic CCA is more challenging

and remains an open problem due to the whitening step.

As a gradient scheme, AppGrad naturally generalizes to the stochastic regime and we

summarize this as Algorithm 5. Compared with the batch version, only a small subset

of samples are used to compute the gradient, which reduces the computational cost per

iteration from O(n(p1 + p2)k) to O(m(p1 + p2)k) (m = |I| is the size of the minibatch).
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Table 1: Brief Summary of Datasets

Datasets Description p1 p2 n

Mediamill image and its labels 100 120 3 ∗ 104

Mnist left and right halves of images 392 392 6 ∗ 104

Penn Treebank word co-ocurrance 104 104 5 ∗ 105

URL host and lexical features 105 105 106

Empirically, this makes stochastic AppGrad much faster than the batch version as we will

see in the experiments. Also, for large scale applications when fully calculating the CCA

subspace is prohibitive, stochastic AppGrad can generate a decent approximation given a

fixed computational effort, while other algorithms only give a one-shot estimate after the

whole procedure is carried out completely. Moreover, when there is a generative model, as

shown in Bousquet and Bottou (2008), due to the tradeoff between statistical and numerical

accuracy, fully solving an empirical risk minimization is unnecessary since the statistical

error will finally dominate. On the contrary, stochastic optimization directly tackles the

problem in the population level and therefore is more statistically efficient.

It is worth mentioning that the normalization step is accomplished using a sampled

Gram matrix 1
mX

>
I XI and 1

mY
>
I YI . A key observation is that when m ∈ O(k),

(Φ̃t+1)>( 1
mX

>
I XI)Φ̃

t+1 ≈ (Φ̃t+1)>( 1
mX

>X)Φ̃t+1 using a standard concentration inequality,

because the matrix we want to approximate (Φ̃t+1)>( 1
mX

>X)Φ̃t+1 is a k× k matrix, while

generally O(p) sample is needed to have 1
mX

>
I XI ≈

1
nX
>X. As we have argued in the

previous section, this bonus is a byproduct of the fact that AppGrad tries to identify and

whiten the directions that contains the CCA subspace simultaneously, or else O(p) samples

are necessary for whitening the whole data matrices.

3.3. Experiments

In this section, we present experiments on four real datasets to evaluate the effectiveness of

the proposed algorithms for computing the top 20 (k=20) dimensional canonical subspace.

A short summary of the datasets is in Table 1.
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Mediamill is an annotated video dataset from the Mediamill Challenge Snoek et al. (2006).

Each image is a representative frame of a video shot annotated with 101 labels and consists

of 120 features. CCA is performed to explore the correlation structure between the images

and its labels.

MNIST is a database of handwritten digits. CCA is used to learn correlated representations

between the left and right halves of the images.

Penn Tree Bank dataset is extracted from Wall Street Journal, which consists of 1.17

million tokens and a vocabulary size of 43, 000 Lamar et al. (2010). CCA has been

successfully used on this dataset to build low dimensional word embeddings Dhillon et al.

(2011, 2012). The task here is a CCA between words and their context. We only consider

the 10, 000 most frequent words to avoid sample sparsity.

URL Reputation dataset Ma et al. (2009) is extracted from UCI machine learning

repository. The dataset contains 2.4 million URLs each represented by 3.2 million features.

For simplicity we only use the first 2 million samples. 38% of the features are host based

features like WHOIS info, IP prefix and 62% are lexical based features like host name and

primary domain. We run a CCA between a subset of host based features and a subset of

lexical based features.

3.3.1. Implementations

Evaluation Criterion: The evaluation criterion we use for the first three datasets

(Mediamill, MNIST, Penn Tree Bank) is Proportion of Correlations Captured (PCC).

To introduce this term, we first introduce the concept of Total Correlations Captured

(TCC) between two data matrices. Suppose A,B ∈ Rn×k. Consider the sample canonical

correlation analysis between A and B by treating the rows of A,B as pairwise observations,

and denote λ1(A,B), · · · , λk(A,B) as the sample canonical correlations. Then we define
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Total Correlations Captured by

TCC := λ1(A,B) + · · ·+ λk(A,B)

Finally, we can define the Proportion of Correlations Captured by the estimated top-

k dimensional canonical subspace against the true top-k dimensional sample canonical

subspace by

PCC =
TCC(XΦk, YΨk)

TCC(XΦ̂k, Y Ψ̂k)

Intuitively PCC characterizes the proportion of correlations captured by certain algorithm

compared with the true sample CCA subspace. Therefore, the higher is PCC the better is

the estimated CCA subspace.

However, for URL Reputation dataset, the number of samples and features are too large for

the algorithm to compute the true sample CCA subspace in a reasonable amount of time

and instead we only compare the numerator TCC(XΦ̃k, Y Ψ̃k) (monotone w.r.t. PCC) for

different algorithms.

Initialization We initialize (Φ0,Ψ0) by first drawing i.i.d. samples from the standard

Gaussian distribution and then normalize such that (Φ0)>Σ̂xΦ0 = Ik and (Ψ0)>Σ̂yΨ
0 = Ik

Step size For both AppGrad and stochastic AppGrad, a small part of the training set is

held out and cross-validation is used to choose the step size adaptively.

Regularization For all the algorithms, a little regularization is added for numerical

stability which means we replace Gram matrix X>X with X>X+λI for some small positive

λ.

Oversampling Oversampling means when aiming for the top k dimensional subspace,

people usually computes the top k+l dimensional subspace from which a best k dimensional

subspace is extracted. In practice, l = 5 ∼ 10 suffices to improve the performance. We only

do a oversampling of 5 in the URL dataset.
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3.3.2. Summary of Results

For the first three datasets (Mediamill, MNIST, Penn Tree Bank), both in-sample and

out-of-sample PCC are computed for AppGrad and Stochastic AppGrad as summarized in

Figure 1. As you can see, both algorithms capture most of the correlations compared with

the true sample CCA subspace and stochastic AppGrad consistently achieves the same PCC

with much less computational cost than its batch version. Moreover, the larger the size of

the data, the bigger advantage will stochastic AppGrad obtain. One thing to notice is that,

as revealed in Mediamill dataset, out-of-sample PCC is not necessarily less than in-sample

PCC because both denominator and numerator change on the hold out set.
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Figure 1: Proportion of Correlations Captured (PCC) by AppGrad and stochastic AppGrad
on different datasets

For URL Reputation dataset, as we mentioned earlier, classical algorithms fail on a

personal desktop. The reason is that these algorithms only produce a one-shot estimate

after the whole procedure is completed, which is usually prohibitive for huge datasets.

In this scenario, the advantage of online algorithms like stochastic AppGrad becomes

crucial. Further, the stochastic nature makes the algorithm cost-effective and generate
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decent approximations given fixed computational resources (e.g. FLOP). As revealed by

Figure 2, as the number of iterations increases, stochastic AppGrad captures more and more

correlations.

Since the true sample CCA subspaces for URL dataset are too slow to compute, we compare

our algorithm with some naive heuristics which can be carried out efficiently in large scale

and catch a reasonable amount of correlation. Below is a brief description of them.

• Non-Whitening (NW-CCA): directly perform SVD on the unwhitened covariance

matrix X>Y . This strategy is also used in Witten et al. (2009)

• Diagonally Whitening (DW-CCA) (Lu and Foster, 2014): avoid inverting matrices by

approximating Σ̂
−1/2
x , Σ̂

−1/2
y with (diag(Σ̂x))−1/2 and (diag(Σ̂y))

−1/2.

• Whitening the leading m Principal Component Directions (PCA-CCA): First compute

the leading m dimensional principal component subspace and project the data

matrices X and Y to the subspace, denote them Ux and Uy. Then compute the top k

dimensional CCA subspace of the pair (Ux, Uy). At last, transform the CCA subspace

of (Ux, Uy) back to the CCA subspace of original matrix pair (X,Y ). Specifically for

this example, we choose m = 1200 (log(FLOP)=35, dominating the computational

cost of Stochastic AppGrad) .

Remark 3.10. For all the heuristics mentioned above, SVD and PCA steps are carried

out using the randomized algorithms in Halko et al. (2011). For PCA-CCA, as the

number of Principal Components (m) increases, more correlation will be captured but the

computational cost will also increase. When m = p1, PCA-CCA is reduced to the original

CCA.
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Figure 2: Total Correlations Captured (TCC) by NW-CCA, DW-CCA, PCA-CCA and
stochastic AppGrad on URL dataset. The dashed lines indicate TCC for those heuristics
and the colored dots denote corresponding computational cost. Red arrow means log(FLOP)
of PCA-CCA is more than 33.

Essentially, all the heuristics are incorrect algorithms and try to approximately whiten the

data matrices. As suggested by Figure 2, stochastic AppGrad significantly captures much

more correlations.

3.4. Proof of Theorem 4

A brief review of the notations in the main paper:

‖u‖x = (u>Σ̂xu)
1
2 , ‖v‖y = (v>Σ̂yv)

1
2 , ψ̃1 = λ̂1φ̂1, ψ̃1 = λ̂1ψ̂1

∆φ̃t = φ̃t − φ̃1, ∆ψ̃t = ψ̃t − ψ̃1, ∆φt = φt − φ̂1, ∆ψt = ψt − ψ̂1
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Further, we define cosx(u, v) = u>Σ̂xv
‖u‖x‖v‖x, the cosine of the angle between two vectors induced

by the inner product 〈u, v〉 = u>Σ̂xv. Similarly, we define cosy(u, v) =
u>Σ̂yv
‖u‖y‖v‖y. To prove

the theorem, we will repeatedly use the following lemma.

Lemma 3.11. ‖∆φt‖x≤ 1

λ̂1

√
2

1+cosx(φt,φ̂1)
‖∆φ̃t‖x and ‖∆ψt‖y≤ 1

λ̂1

√
2

1+cosy(ψt,ψ̂1)
‖∆ψ̃t‖y

Proof of Lemma 3.11. Notice that cosx(φ̃t, φ̃1) = cosx(φt, φ̂1), then

‖∆φ̃t‖2x = ‖φ̃t − φ̃1‖2x ≥ ‖φ̃1‖2 sin2
x(φ̃t, φ̃1) = λ̂2

1 sin2
x(φt, φ̂1)

Also notice that ‖φt‖x = ‖φ̂1‖x = 1, which implies cosx(φt, φ̂1) = 1 − ‖φt − φ̂1‖2x/2 =

1− ‖∆φt‖2x/2. Further

‖∆φ̃t‖2x ≥ λ̂2
1 sin2

x(φt, φ̂1) = λ̂2
1(1− cos2

x(φt, φ̂1)) =
λ̂2

1

2
‖∆φt‖2x(1 + cosx(φt, φ̂1))

Square root both sides,

‖∆φt‖x≤
1

λ̂1

√
2

1 + cosx(φt, φ̂1)
‖∆φ̃t‖x

Similar argument will show that

‖∆ψt‖y≤
1

λ̂1

√
2

1 + cosy(ψt, ψ̂1)
‖∆ψ̃t‖y

Without loss of generality, we can always assume cosx(φ̃t, φ̃1), cosy(ψ̃
t, ψ̃1) ≥ 0 because

the canonical vectors are only identifiable up to a flip in sign and we can always choose

φ̃1, ψ̃1 such that the cosines are nonnegative. Apply simple algebra to the gradient step
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φ̃t+1 = φ̃t − η(Σ̂xφ̃
t − Σ̂xyψ

t), we have

φ̃t+1 − φ̃1 = φ̃t − φ̃1 − η(Σ̂x(φ̃t − φ̃1) + Σ̂xφ̃1 − Σ̂xy(ψ
t − ψ̂1)− Σ̂xyψ̂1)

∆φ̃t+1 = ∆φ̃t − η(Σ̂x∆φ̃t − Σ̂xy∆φ
t)− η(Σ̂xφ̃1 − Σ̂xyψ̂1)

By Proposition 3.1, η(Σ̂xφ̃1 − Σ̂xyψ̂1) = η(Σ̂xφ̃1 − λ̂1Σ̂xφ̂1) = 0, which implies

∆φ̃t+1 = ∆φ̃t − η(Σ̂x∆φ̃t − Σ̂xy∆ψ
t)

Square both sizes,

‖∆φ̃t+1‖2 = ‖∆φ̃t‖2 + η2‖Σ̂x∆φ̃t − Σ̂xy∆ψ
t‖2 − 2η(∆φ̃t)>(Σ̂x∆φ̃t − Σ̂xy∆ψ

t) (3.4)

Again apply Proposition 3.1,

‖Σ̂xy∆ψ
t‖ = ‖Σ̂xΦ̂Λ̂Ψ̂T Σ̂y∆ψ

t‖

≤ ‖Σ̂1/2
x ‖‖Σ̂1/2

x Φ̂‖‖Λ̂‖‖Ψ̂>Σ̂1/2
y ‖‖Σ̂1/2

y ∆ψt‖

≤ λ̂1L
1
2
1 ‖∆ψ

t‖y

The last inequality uses the assumption that λmax(Σ̂x), λmax(Σ̂y) ≤ L1. By Lemma3.11,

‖∆ψt‖y ≤
√

2

λ̂1
‖∆ψ̃t‖y. Hence, ‖Σ̂xy∆ψ

t‖ ≤
√

2L1‖∆ψ̃t‖y. Also notice that ‖Σ̂x∆φ̃t‖ ≤

‖Σ̂1/2
x ‖‖Σ̂1/2

x ∆φ̃t‖ ≤ L
1
2
1 ‖∆φ̃t‖x, then

‖Σ̂x∆φ̃t − Σ̂xy∆ψ
t‖2 ≤ (L

1
2
1 ‖∆φ̃

t‖x +
√

2L
1
2
1 ‖∆ψ̃

t‖y)2 ≤ 2L1(‖∆φ̃t‖2x + 2‖∆ψ̃t‖2y)

Substitute into (3.4),

‖∆φ̃t+1‖2 ≤ ‖∆φ̃t‖2 − 2η‖∆φ̃t‖2x + 2L1η
2(‖∆φ̃t‖2x + 2‖∆ψ̃t‖2y) + 2η(∆φ̃t)>Σ̂xy∆ψ

t (3.5)

Now, we are going to bound the term (∆φ̃t)T Σ̂xy∆ψ
t. Because Σ̂

1/2
y Ψ̂ is an orthonormal

matrix and Σ̂
1/2
y ψt is a unit vector, there exist coefficients α1, · · · , αp, α⊥ and unit vector
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ψ⊥ ∈ colspan(Σ̂
1/2
y Ψ̂)⊥ such that Σ̂

1/2
y ψt =

∑p
i=1 αiΣ̂

1/2
y ψ̂i + α⊥Σ̂

1/2
y ψ⊥,

∑p
i=1 α

2
i + α2

⊥ = 1.

Therefore,

(∆φ̃t)>Σ̂xΦ̂Λ̂Ψ̂>Σ̂y∆ψ
t = ∆φ̃tΣ̂xΦ̂Λ̂(Σ̂1/2

y Ψ̂)>
{

(α1 − 1)Σ̂1/2
y ψ̂1

+

p∑
i=2

αiΣ̂
1/2
y ψ̂i + α⊥Σ̂1/2

y ψ⊥

}
= λ̂1(α1 − 1)(∆φ̃t)>Σ̂xφ̂1 +

p∑
i=2

αiλ̂i(∆φ̃
t)>Σ̂xφ̂i

By Cauchy-Schwartz inequality,

(∆φ̃t)>Σ̂xΦ̂Λ̂Ψ̂>Σ̂y∆ψ
t ≤

(
λ̂2

1(1− α1)2 +

p∑
i=2

α2
i λ̂

2
i

) 1
2
(

p∑
i=1

(
(∆φ̃t)>Σ̂xφ̂1

)2) 1
2

≤
(
λ̂2

1(1− α1)2 + λ̂2
2(1− α2

1)
) 1

2 ‖∆φ̃t‖x

=

(
λ̂2

1

1− α1

1 + α1
+ λ̂2

2

) 1
2

(1− α2
1)

1
2 ‖∆φ̃t‖x

By definition, 1− α1 = 1− cosy(ψ
t, ψ̂1) =

‖∆ψt‖2y
2 . Further by Lemma 3.11,

1− α1 ≤
1

λ̂2
1(1 + α1)

‖∆ψ̃t‖2y

Therefore,

(∆φ̃t)>Σ̂xΦΛ̂Ψ>Σ̂y∆ψ
t ≤

(
1− α1

1 + α1
+
λ̂2

2

λ̂2
1

) 1
2

‖∆φ̃t‖x‖∆ψ̃t‖y

≤

(
‖∆ψ̃t‖2y

λ̂2
1(1 + α1)2

+
λ̂2

2

λ̂2
1

) 1
2

‖∆φ̃t‖x‖∆ψ̃t‖y

≤ 1

2

(
‖∆ψ̃t‖2y
λ̂2

1

+
λ̂2

2

λ̂2
1

) 1
2 (
‖∆φ̃t‖2x + ‖∆ψ̃t‖2y

)
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Substitute into (3.5),

‖∆φ̃t+1‖2 ≤ ‖∆φ̃t‖2 − 2η‖∆φ̃t‖2x + 2L1η
2
(
‖∆φ̃t‖2x + 2‖∆ψ̃t‖2y

)
+ η

(
‖∆ψ̃t‖2y
λ̂2

1

+
λ̂2

2

λ̂2
1

) 1
2 (
‖∆φ̃t‖2x + ‖∆ψ̃t‖2y

)

Similar analysis implies that,

‖∆ψ̃t+1‖2 ≤ ‖∆ψ̃t‖2 − 2η‖∆ψ̃t‖2y + 2L1η
2
(
‖∆ψ̃t‖2y + 2‖∆φ̃t‖2x

)
+ η

(
‖∆φ̃t‖2x
λ̂2

1

+
λ̂2

2

λ̂2
1

) 1
2 (
‖∆φ̃t‖2x + ‖∆ψ̃t‖2y

)

Add these two inequalities,

‖∆φ̃t+1‖2 + ‖∆ψ̃t+1‖2 ≤
(
‖∆φ̃t‖2 + ‖∆ψ̃t‖2

)
− 2η

1− 1

2

(
‖∆ψ̃t‖2y
λ̂2

1

+
λ̂2

2

λ̂2
1

) 1
2

−1

2

(
‖∆φ̃t‖2x
λ̂2

1

+
λ̂2

2

λ̂2
1

) 1
2

− 3L1η

(‖∆φ̃t‖2x + ‖∆ψ̃t‖2y
)

Notice that
√
a+
√
b ≤

√
2(a+ b), we have

(
‖∆ψ̃t‖2y
λ̂2

1

+
λ̂2

2

λ̂2
1

) 1
2

+

(
‖∆φ̃t‖2x
λ̂2

1

+
λ̂2

2

λ̂2
1

) 1
2

≤

(
2‖∆ψ̃t‖2y

λ̂2
1

+
2‖∆φ̃t‖2x

λ̂2
1

+
4λ̂2

2

λ̂2
1

) 1
2

≤

(
2L1‖∆ψ̃t‖2

λ̂2
1

+
2L1‖∆φ̃t‖2

λ̂2
1

+
4λ̂2

2

λ̂2
1

) 1
2

=
1

2λ̂1

(
L1

2
‖∆ψ̃t‖2 +

L1

2
‖∆φ̃t‖2 + λ̂2

2

) 1
2

Then,

‖∆φ̃t+1‖2 + ‖∆ψ̃t+1‖2 ≤
(
‖∆φ̃t‖2 + ‖∆ψ̃t‖2

)
− 2η

(
‖∆φ̃t‖2x + ‖∆ψ̃t‖2y

)
×

{
1− 1

λ̂1

(
L1

2
‖∆ψ̃t‖2 +

L1

2
‖∆φ̃t‖2 + λ̂2

2

) 1
2

− 3L1η

} (3.6)
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By definition, δ = 1 − λ̂−1
1

(
L1
2 ‖∆ψ̃

0‖2 + L1
2 ‖∆φ̃

0‖2 + λ̂2
2

) 1
2

and η = δ/6L1. Substitute in

(3.6) with t = 0,

‖∆φ̃1‖2 + ‖∆ψ̃1‖2 =
(
‖∆φ̃0‖2 + ‖∆ψ̃0‖2

)
− δ2

6L1

(
‖∆φ̃0‖2x + ‖∆ψ̃0‖2y

)
≤
(
‖∆φ̃0‖2 + ‖∆ψ̃t‖2

)
− δ2

6L1L2

(
‖∆φ̃0‖2 + ‖∆ψ̃0‖2

)
≤
(

1− δ2

6L1L2

)(
‖∆φ̃0‖2 + ‖∆ψ̃0‖2

)
It follows by induction that ∀ t ∈ N+

‖∆φ̃t+1‖2 + ‖∆ψ̃t+1‖2 ≤
(

1− δ2

6L1L2

)(
‖∆φ̃t‖2 + ‖∆ψ̃t‖2

)
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CHAPTER 4 : Network Data Modeling

4.1. Introduction

Network is a prevalent form of data for quantitative and qualitative analysis in a number of

fields, including but not limited to sociology, computer science, neuroscience, etc. Moreover,

due to advances in science and technology, the sizes of the networks we encounter are ever

increasing. Therefore, to explore, to visualize and to utilize the information in large networks

poses significant challenges to Statistics. Unlike traditional datasets in which a number of

features are recorded for each subject, network datasets provide information on the relation

among all subjects under study, sometimes together with additional features. In this paper,

we focus on the modeling, visualization and exploration of networks in which additional

features might be observed for each node pair.

On real world networks, people oftentimes observe the following characteristics. First,

the degree distributions of nodes are often right-skewed and so networks exhibit degree

heterogeneity. In addition, connections in networks often demonstrate transitivity, that is

nodes with common neighbors are more likely to be connected. Moreover, nodes that are

similar in certain ways (students in the same grade, brain regions that are close physically,

etc.) are more likely to form bonds. Such a phenomenon is usually called homophily in

network studies. Furthermore, nodes in some networks exhibit clustering effect and in such

cases it is desirable to partition the nodes into different communities.

An efficient way to explore network data and to extract key information is to fit appropriate

statistical models on them. To date, there have been a collection of network models

proposed by researchers in various fields. These models aim to catch different subsets of the

foregoing characteristics, and Goldenberg et al. (2010) provides a comprehensive overview.

An important class of network models are latent space models (Hoff et al., 2002). Suppose

there are n nodes in the observed network. The key idea underlying latent space modeling

is that each node i can be represented by a vector zi in some low dimensional Euclidean
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space (or some other metric space of choice) that is sometimes called the social space, and

nodes that are “close” in the social space are more likely to be connected. Hoff et al. (2002)

considered two types of latent space models: distance models and projection models. In

both cases, the latent vectors {zi}ni=1 were treated as fixed effects. Later, a series of papers

(Hoff, 2003; Handcock et al., 2007; Krivitsky et al., 2009) generalized the original proposal

in Hoff et al. (2002) for better modeling of other characteristics of social networks, such

as clustering, degree heterogeneity, etc. In these generalizations, the zi’s were treated as

random effects generated from certain multivariate Gaussian mixtures. Moreover, model

fitting and inference in these models has been carried out via Markov Chain Monte Carlo,

and it is difficult to scale these methodologies to handle large networks (Goldenberg et al.,

2010). Moreover, one needs to use different likelihood function based on choice of model

and there is little understanding of the quality of fitting when the model is mis-specified.

Albeit these disadvantages, latent space models are attractive due to their friendliness to

interpretation and visualization.

In this paper, we aim to tackle the following two key issues in latent space modeling of

network data. First, we seek a class of latent space models that is special enough so that

we can design fast fitting algorithms for them and hence be able to handle networks of very

large sizes. In addition, we would like to be able to fit a class of models that are flexible

enough to well approximate a wide range of latent space models of interest so that fitting

methods for this flexible class continue to work even when the model is mis-specified. From

a practical viewpoint, if one is able to find such a class of models and design fast algorithms

for fitting them, then one would be able to use this class as working models and to use the

associated fast algorithms to effectively explore large networks.

Main contributions We make progress on tackling the foregoing two issues

simultaneously in the present paper, which we summarize as the following main

contributions:

1. We propose a special class of latent space models, called inner-product models, and
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two fast fitting algorithms for this class. Let the observed n-by-n adjacency matrix

and covariate matrix be A and X, respectively. The inner-product model assumes

that for any i < j,

Aij = Aji
ind.∼ Bernoulli(Pij), with

logit(Pij) = Θij = αi + αj + βXij + z>i zj ,

(4.1)

where for any x ∈ (0, 1), logit(x) = log[x/(1− x)]. Here, αi, 1 ≤ i ≤ n, are parameters

modeling degree heterogeneity. The parameter β is the coefficient for the observed

covariate, and z>i zj is the inner-product between the latent vectors. As we will

show later in Section 4.2, this class of models can incorporate degree heterogeneity,

transitivity and homophily explicitly. From a matrix estimation viewpoint, the matrix

G = (Gij) = (z>i zj) is of rank at most k that is much smaller than n. Motivated by

recent advances in low rank matrix estimation, we design two fast algorithms for fitting

(4.1). One algorithm is based on lifting and nuclear norm penalization of the negative

log-likelihood function. The other is based on directly optimizing the negative log-

likelihood function via projected gradient descent. For both algorithms, we establish

high probability error bounds for inner-product models.

2. We further show that these two fitting algorithms are “universal” in the sense they

can work simultaneously for a wide range of latent space models beyond the inner-

product model class. For example, they work for the distance model and the Gaussian

kernel model in which the inner-product term z>i zj in (4.1) is replaced with −‖zi−zj‖

and c exp(−‖zi − zj‖2/σ2), respectively. Thus, the class of inner-product models is

flexible and can be used to approximate many other latent space models of interest. In

addition, the associated algorithms can be applied to networks generated from a wide

range of mis-specified models and still yield reasonable results. The key mathematical

insight that enables such flexibility is introduced in Section 4.2 as the Schoenberg

Condition (4.7).
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3. We demonstrate the effectiveness of the model and algorithms on real data examples.

In particular, we fit inner-product models by the proposed algorithms on five different

real network datasets for several different tasks, including visualization, clustering

and network-assisted classification. On three popular benchmark datasets for testing

community detection on networks, a simple k-means clustering on the estimated latent

vectors obtained by our algorithm yields as good result on one dataset and better

results on the other two when compared with four state-of-the-art methods. The same

“model fitting followed by k-means clustering” approach also yields nice clustering of

nodes on a network with edge covariates. Due to the nature of latent space models, for

all datasets on which we fit the model, we obtain natural visualizations of the networks

by plotting latent vectors. Furthermore, we illustrate how network information can be

incorporated in traditional learning problems using a document classification example.

Related works When fitting a network model, we are essentially modeling and estimating

the edge probability matrix. From this viewpoint, the present paper is related to the

literature on graphon estimation and edge probability matrix estimation for block models.

See, for instance, Bickel and Chen (2009); Airoldi et al. (2013); Wolfe and Olhede (2013);

Gao et al. (2015a); Klopp et al. (2015); Gao et al. (2016) and the references therein.

However, the block models have stronger structural assumptions than the latent space

models we are going to investigate. In addition, it is relatively difficult to introduce edge

covariates in block models while Binkiewicz et al. (2015) has made an interesting attempt.

The algorithmic and theoretical aspects of the paper is also closely connected to the line of

research on low rank matrix estimation, which plays an important role in many applications

such as phase retrieval Candes et al. (2015); Candès et al. (2015) and matrix completion

Candès and Tao (2010); Keshavan et al. (2010a,b); Candès and Recht (2012); Koltchinskii

et al. (2011). Indeed, the idea of nuclear norm penalization has originated from matrix

completion Candès and Tao (2010). The idea of directly optimizing a non-convex objective

function involving a low rank matrix has been studied recently in a series of important
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papers. See, for instance, Burer and Monteiro (2005); Sun and Luo (2016); Tu et al. (2015);

Chen and Wainwright (2015); Zheng and Lafferty (2016); Ge et al. (2016b) and the references

therein. Among these papers, the one that is the most related to the projected gradient

descent algorithm we are to propose and analyze is Chen and Wainwright (2015) which

focused on estimating a positive semi-definite matrix of exact low rank in a collection of

interesting problems. However, we will obtain tighter error bounds for latent space models

and we will go beyond the exact low rank scenario. We would like to reiterate that the

aforementioned works are mostly related to algorithmic and theoretical components of the

present paper, but they have little to do with the modeling aspect.

Organization After a brief introduction of standard notation used throughout the paper,

the rest of the paper is organized as follows. Section 4.2 introduces both inner-product

models and a broader class of latent space models on which our fitting methods work. The

two fitting methods are described in detail in Section 4.3, followed by their theoretical

guarantees under both inner-product models and the broader class. The theoretical results

are further corroborated by simulated examples in Section 4.4. Section 4.5 demonstrates the

competitive performance of the modeling approach and fitting methods on five different real

network datasets. We discuss interesting related problems in Section 4.6 and present proofs

of the main results in Section 4.7. Technical details justifying the initialization methods for

the project gradient descent approach are deferred to the appendix.

Notation ForX,Y ∈ Rm×n, X◦Y denotes the Hadamard (element-wise) product between

X and Y and
〈
X,Y

〉
= tr(X>Y ) defines an inner product between them. For any function

f , f(X) is the shorthand for applying f(·) element-wisely to X, that is f(X) ∈ Rm×n and

[f(X)]ij = f(Xij). vec(X) is the vector constructed by stacking the matrix X column by

column. Xi∗ and X∗j respectively denote the ith row and jth column of X. Sn+ is the set

of all n× n positive semidefinite matrices and O(m,n) is the set of all m× n orthonormal

matrices. PX is the projection matrix onto the column space of X.
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4.2. Latent Space Models

In this section, we first give a detailed introduction of the inner-product model (4.1) and

conditions for its identifiability. In addition, we introduce a more general class of latent

space models that includes the inner-product model as a special case. The methods we

propose later will be motivated by the inner-product model and can also be applied to the

more general class.

4.2.1. Inner-product models

Recall the inner-product model defined in (4.1), i.e., for any observed A and X and any

i < j,

Aij = Aji
ind.∼ Bernoulli(Pij), with logit(Pij) = Θij = αi + αj + βXij + z>i zj .

Fixing all other parameters, if we increase αi, then node i has higher chances of connecting

with other nodes. Therefore, the αi’s model degree heterogeneity of nodes and we call

them degree heterogeneity parameters. Next, the regression coefficient β moderates the

contribution of covariate to edge formation. For instance, if Xij indicates whether nodes i

and j share some common attribute such as gender, then a positive β value implies that

nodes that share common feature are more likely to connect. Such a phenomenon is called

homophily in the social network literaute. Last but not least, the latent variables {zi}ni=1

enter the model through their inner-product z>i zj , and hence is the name of the model. We

impose no additional structural/distributional assumptions on the latent variables for the

sake of modeling flexibility.

We note that model (4.1) also allows the latent variables to enter the second equation in the

form of g(zi, zj) = −1
2‖zi− zj‖

2. To see this, note that g(zi, zj) = −1
2‖zi‖

2− 1
2‖zj‖

2 + z>i zj ,

and we may re-parameterize by setting α̃i = αi − 1
2‖zi‖

2 for all i. Then we have

Θij = αi + αj + βXij −
1

2
‖zi − zj‖2 = α̃i + α̃j + βXij + z>i zj .
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An important implication of this observation is that the function g(zi, zj) = −1
2‖zi − zj‖

2

directly models transitivity, i.e., nodes with common neighbors are more likely to connect

since their latent variables are more likely to be close to each other in the latent space.

In view of the foregoing discussion, the inner-product model (4.1) also enjoys this nice

modeling capacity.

In matrix form, we have

Θ = α1n
> + 1nα

> + βX +G (4.2)

where 1n is the all one vector in Rn and G = ZZ> with Z = (z1, · · · , zn)> ∈ Rn×k. Since

there is no self-edge and Θ is symmetric, only the upper diagonal elements of Θ are well

defined, which we denote by Θu. Nonetheless we define the diagonal element of Θ as in

(4.2) since it is inconsequential. To ensure identifiability of model parameters in (4.1), we

assume the latent variables are centered, that is

JZ = Z where J = In −
1

n
1n1n

>. (4.3)

Note that this condition uniquely identifies Z up to an orthogonal transformation of the

rows while G = ZZ> is now directly identifiable.

4.2.2. A more general class of latent space models

Model (4.1) is a special case of a more general class of latent space models, which can be

defined by

Aij = Aji
ind.∼ Bernoulli(Pij), with

logit(Pij) = Θij = α̃i + α̃j + βXij + h(zi, zj)

(4.4)

where h(·, ·) is a smooth symmetric function on Rk × Rk. We shall impose an additional

constraint on h following the discussion below. In matrix form, for α̃ = (α̃1, . . . , α̃n)′ and

H = (h(zi, zj)), we can write

Θ = α̃1n
> + 1nα̃

> + βX +H.
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To better connect with (4.2), let

G = JHJ, and α1n
> + 1nα

> = α̃1n
> + 1nα̃

> +H − JHJ. (4.5)

Note that the second equation in the last display holds since the expression on its right hand

side is symmetric and of rank at most two. Then we can rewrite the second last display as

Θ = α1n
> + 1nα

> + βX +G (4.6)

which reduces to (4.2) and G satisfies JG = G. Our additional constraint on h is the

following Schoenberg Condition:

For any positive integer n ≥ 2 and any z1, . . . , zn ∈ Rk,

G = JHJ is positive semi-definite for H = (h(zi, zj)) and J = In − 1
n1n1n

>.

(4.7)

Condition (4.7) may seem abstract, while the following lemma provides two important sets

of symmetric functions for which it is satisfied.

Lemma 4.1. Condition (4.7) is satisfied in the following cases:

1. h is a positive semi-definite kernel function on Rk × Rk;

2. h(x, y) = −‖x − y‖qp for some p ∈ (0, 2] and q ∈ (0, p] where ‖ · ‖p is the p-norm (or

p-seminorm when p < 1) on Rk.

The first claim of Lemma 4.1 is a direct consequence of the definition of positive semi-definite

kernel function which ensures that the matrix H itself is positive semi-definite and so is

G = JHJ since J is also positive semi-definite. The second claim is a direct consequence of

the famous Hilbert space embedding result by Schoenberg (Schoenberg, 1937, 1938). See,

for instance, Theorems 1 and 2 of Schoenberg (1937).
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4.3. Two Model Fitting Methods

In this section, we propose two methods for fitting models (4.1) and (4.4)–(4.7) on network

datasets. Both methods are motivated by minimizing the negative log-likelihood function

of the inner-product model, and can be regarded as pseudo-likelihood approaches for more

general models. In what follows, we first motivate and describe both methods for the inner-

product model and establish their theoretical guarantees. Then we extend these guarantees

to the general class. From a methodological viewpoint, a key advantage of these methods,

in particular the projected gradient descent method, is scalability to networks of large sizes.

4.3.1. A convex approach via penalized MLE

We first focus on the inner-product model (4.1) in which the parameter Θ belongs to the

following set

F(n, k,M1,M2, X) =
{

Θ|Θ = α1n
> + 1nα

> + βX + ZZ>, JZ = Z ∈ Rn×k,

−M1 ≤ Θij ≤ −M2 for 1 ≤ i 6= j ≤ n, max
1≤i≤n

|Θii| ≤M1

} (4.8)

where k is the latent space dimension and both M1 and M2 are positive. In what follows,

we allow all these quantities to scale on n. Notice that for any Θ ∈ F(n, k,M1,M2, X), the

corresponding edge probabilities satisfy

1

2
e−M1 ≤ 1

1 + eM1
≤ Pij ≤

1

1 + eM2
≤ e−M2 , 1 ≤ i 6= j ≤ n. (4.9)

Thus M1 controls the conditioning of the problem and M2 controls the sparsity of the

network.

Let σ(x) = 1/(1 + e−x) be the sigmoid function, then for any i 6= j, Pij = σ(Θij) and the
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log-likelihood function of model (4.1) can be written as

`(Θu|A) =
∑
i<j

{
Aij log

(
σ(Θij)

)
+ (1−Aij) log

(
1− σ(Θij)

)}
=
∑
i<j

{
AijΘij + log

(
1− σ(Θij)

)}
.

Recall that G = ZZ>. The maximum likelihood estimate of Θu is the solution of the

following rank constrained minimization problem:

min
Θu,α,β,G

−
∑
i<j

{
AijΘij + log

(
1− σ(Θij)

)}
,

subject to Θ = α1n
> + 1nα

> + βX +G, −M1 ≤ Θij ≤ −M2,

GJ = G, G ∈ Sn+, rank(G) ≤ k.

(4.10)

This optimization problem is non-convex and generally intractable. To overcome this

difficulty, we consider a convex relaxation that replaces the rank constraint on G in (4.10)

with a penalty term on its nuclear norm. Since G is positive semi-definite, its nuclear norm

equals its trace. Thus, our first model fitting scheme solves the following convex program:

min
α,β,G

−
∑
i,j

{
AijΘij + log

(
1− σ(Θij)

)}
+ λn tr(G)

subject to Θ = α1n
> + 1nα

> + βX +G,GJ = G, G ∈ Sn+

−M1 ≤ Θij ≤ −M2.

(4.11)

Remark 4.2. We remark that in addition to the introduction of the trace penalty, the first

term in the objective function in (4.11) now sums over all (i, j) pairs. Due to symmetry,

after scaling, the difference from the sum in (4.10) lies in the inclusion of all diagonal terms

in Θ. This slight modification leads to no noticeable difference in practice. However, it

allows easier implementation and simplifies the theoretical investigation. We would also

like to comment that the constraint −M1 ≤ Θij ≤ −M2 is included partially for obtaining

theoretical guarantees. In simulated examples, we have found that the convex program
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worked equally well without this constraint.

Theoretical guarantees. We now turn to establishing theoretical guarantees for the

optimizer of (4.11). When X in nonzero, we make the following assumption for the

identifiability of β.

Assumption 4.3.1. The stable rank of the covariate matrix X satisfies rstable(X) =

‖X‖2F / ‖X‖
2
op ≥M0k for some large enough constant M0.

The linear dependence on k of rstable(X) is in some sense necessary in order for β to

be identifiable as otherwise the effect of the covariates could be absorbed into the latent

component ZZ>.

Let (α̂, β̂, Ĝ) be the solution to the optimization problem (4.11) and (α?, β?, G?) be the true

parameter that governs the data generation process. Let Θ̂ and Θ? be defined as in (4.2)

but with the estimates and the true parameter values respectively. Define the error terms

∆
Θ̂

= Θ̂−Θ?, ∆α̂ = α̂− α?, ∆
β̂

= β̂ − β? and ∆
Ĝ

= Ĝ−G?. The following theorem gives

both deterministic and high probability error bounds for estimating both the latent vectors

and logit-transformed probability matrix.

Theorem 5. Under Assumption 4.3.1, for any λn satisfying λn ≥ max{2 ‖A− P‖op , |〈A−

P,X/ ‖X‖F〉|/
√
k, 1}, there exists a constant C such that

∥∥∆
Ĝ

∥∥2

F
,
∥∥∆

Θ̂

∥∥2

F
≤ Ce2M1λ2

nk.

Specifically, setting λn = C0

√
max {ne−M2 , log n} for a large enough constant C0, there

exist positive constants c, C such that with probability at least 1− n−c,

∥∥∆
Ĝ

∥∥2

F
,
∥∥∆

Θ̂

∥∥2

F
≤ Ce2M1−M2nk ×max

{
1,
eM2 log n

n

}
.

If we turn the error metrics in Theorem 5 to mean squared errors, namely ‖∆
Ĝ
‖2F/n2 and
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‖∆
Θ̂
‖2F/n2, then we obtain the familiar k/n rate in low rank matrix estimation problems.

Remark 4.3. Note that the choice of the penalty parameter λn depends on e−M2 which

by (4.9) controls the sparsity of the observed network. In practice, we do not know this

quantity and we propose to estimate M2 with M̂2 = logit(
∑

ij Aij/n
2).

4.3.2. A non-convex approach via projected gradient descent

Although the foregoing convex relaxation method is conceptually neat, state-of-the-art

algorithms to solve the nuclear (trace) norm minimization problem (4.11) such as iterative

singular value thresholding usually require computing a full singular value decomposition

at every iteration, which can still be time consuming on large networks.

To further improve scalability of model fitting, we propose an efficient first order algorithm

that directly tackles the following non-convex objective function:

min
Z,α,β

h(Z,α, β) = −
∑
i,j

{
AijΘij + log

(
1− σ(Θij)

)}
where Θ = α1n

> + 1nα
> + βX + ZZ>.

(4.12)

The detailed description of the method is presented in Algorithm 6.

Algorithm 6 A projected gradient descent model fitting method.

Input: Adjacency matrix: A; covariate matrix: X; latent space dimension: k ≥ 1; initial
estimates: Z0, α0, β0; step sizes: ηZ , ηα, ηβ; constraint sets: CZ , Cα, Cβ.

Output: Ẑ = ZT , α̂ = αT , β̂ = βT .
for t = 0, 1, · · · , T − 1 do
Z̃t+1 = Zt − ηZ∇Zh(Z,α, β) = Zt + 2ηZ

(
A− σ(Θt)

)
Zt;

α̃t+1 = αt − ηα∇αh(Z,α, β) = αt + 2ηα(A− σ(Θt))1n;
β̃t+1 = βt − ηβ∇βh(Z,α, β) = βt + ηβ

〈
A− σ(Θt), X

〉
;

Zt+1 = PCZ (Z̃t+1), αt+1 = PCα(α̃t+1), βt+1 = PCβ (β̃t+1);
end for

After initialization, Algorithm 6 iteratively updates the estimates for the three parameters,

namely Z, α and β. In each iteration, for each parameter, the algorithm first descend along

the gradient direction by a pre-specified step size. The descent step is then followed by an

additional projection step which projects the updated estimate to a pre-specified constraint
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set. The details on the step sizes and the constraint sets will be given in the statement of

Theorem 6.

For each iteration, the update on the latent part is performed in the space of Z (that is Rn×k)

rather than the space of all n× n Gram matrices as was required in the convex approach.

In this way, it reduces the computational cost per iteration from O(n3) to O(n2k). Since

we are most interested in cases where k � n, such a reduction leads to improved scalability

of the non-convex approach to large networks. To implement this non-convex algorithm,

we need to assume the knowledge of the latent space dimension k, which was not needed

for the convex program (4.11). We defer the discussion on the data-driven choice of k to

Section 4.6.

We note that Algorithm 6 is not guaranteed to find any global minimizer, or even any

local minimizer, of the objective function (4.12). However, as we shall show next, under

appropriate conditions, the estimates generated by the algorithm will quickly enter a

neighborhood of the true parameters (Z?, α?, β?) and any element in this neighborhood

is statistically at least as good as the estimator obtained from the convex method (4.11).

This approach has close connection to the investigation of various non-convex methods

for other statistical and signal processing applications. See for instance Candès et al.

(2015), Chen and Wainwright (2015) and the references therein. In what follows, we first

characterize statistical accuracy of the outputs under certain conditions on the initializers

of the algorithm. Then we discuss how to construct initializers by which such conditions

are satisfied.

Theoretical guarantees. We now investigate the statistical properties of the outputs of

Algorithm 6. A key step is to characterize the evolution of the iterates.

As a first step, we introduce an error metric that is equivalent to ‖∆Θt‖2F = ‖Θt−Θ?‖2F while

at the same time is more convenient for establishing an inequality satisfied by all iterates.

Note that the latent vectors are only identifiable up to an orthogonal transformation of Rk,
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for any Z1, Z2 ∈ Rn×k, we define the distance measure

dist(Z1, Z2) = min
R∈O(k)

‖Z1 − Z2R‖F

where O(k) collects all k×k orthogonal matrices. Let Rt = arg minR∈O(k)

∥∥Zt − Z?R∥∥F
and

∆Zt = Zt−Z?Rt, and further let ∆αt = αt−α?,∆Gt = Zt(Zt)>−Z?Z>? and ∆βt = βt−β?.

Then the error metric we use is

et = ‖Z?‖2op ‖∆Zt‖2F + 2
∥∥∥∆αt1n

>
∥∥∥2

F
+
∥∥∆βtX

∥∥2

F
. (4.13)

Let κZ? be the condition number of Z? (i.e., the ratio of the largest to the smallest singular

values). The following lemma shows that the two error metrics et and ∆Θt are equivalent

up to a constant multiple of κ2
Z?

.

Lemma 4.4. Under Assumption 4.3.1, there exists constant 0 ≤ c0 < 1 such that

et ≤
κ2
Z?

2(
√

2− 1)
‖∆Gt‖2F + 2

∥∥∥∆αt1n
>
∥∥∥2

F
+
∥∥∆βtX

∥∥2

F
≤

κ2
Z?

2(
√

2− 1)(1− c0)
‖∆Θt‖2F .

Moreover, if dist(Zt, Z?) ≤ c ‖Z?‖op,

et ≥
1

(c+ 2)2
‖∆Gt‖2F + 2

∥∥∥∆αt1n
>
∥∥∥2

F
+
∥∥∆βtX

∥∥2

F
≥ 1

(c+ 2)2(1 + c0)
‖∆Θt‖2F .

Next, we focus on the following class of models on which our theoretical result holds:

F0(n, k,M1,M2, X) =
{

Θ|Θ = α1n
> + 1nα

> + βX + ZZ>, JZ = Z,

max
1≤i≤n

‖Zi∗‖2, ‖α‖∞, |β| max
1≤i<j≤n

|Xij | ≤M1/3,

max
1≤i 6=j≤n

Θij ≤ −M2

}
.

(4.14)

By the triangle inequality, we have F0(n, k,M1,M2, X) ⊂ F(n, k,M1,M2, X) where the
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latter was defined in (4.8). In other words, this is a slightly more restrictive class than that

we have considered for the convex method.

Furthermore, our theorem depends on the following condition on the initializers.

Assumption 4.3.2. The initializers Z0, α0, β0 in Algorithm 6 satisfy e0 ≤

ce−2M1 ‖Z?‖4op /κ
4
Z?

for a sufficiently small positive constant c.

The following theorem states that the error sequence converges linearly till it reaches the

desired statistical precision.

Theorem 6. Let Assumptions 4.3.1 and 4.3.2 be satisfied. Set the constraint sets as

CZ = {Z ∈ Rn×k, JZ = Z, max
1≤i≤n

‖Zi∗‖ ≤M1/3},

Cα = {α ∈ Rn, ‖α‖∞ ≤M1/3}, Cβ = {β ∈ R, β‖X‖∞ ≤M1/3},

and the step sizes as ηZ = η/
∥∥Z0

∥∥2

op
, ηα = η/(2n), ηβ = η/(2 ‖X‖2F) for any η ≤ c where c

is a universal positive constant. Let ζn = max{2 ‖A− P‖op , |〈A − P,X/ ‖X‖F〉|/
√
k, 1}.

Then we have

• Deterministic errors of iterates: if ‖Z?‖2op ≥ C1κ
2
Z?
eM1ζ2

n × max
{√

ηkeM1 , 1
}

for a

sufficiently large constant C1, there exist positive constants ρ and C such that

et ≤ 2

(
1− η

eM1κ2
Z?

ρ

)t
e0 +

Cκ2
Z?

ρ
e2M1ζ2

nk.

• Probabilistic errors of iterates: if ‖Z?‖2op ≥ C1κ
2
Z?

√
neM1−M2/2 max

{√
ηkeM1 , 1

}
for

a sufficiently large constant C1, there exist positive constants ρ, c0 and C such that

with probability at least 1− n−c0,

et ≤ 2

(
1− η

eM1κ2
Z?

ρ

)t
e0 +

Cκ2
Z?

ρ
e2M1−M2nk ×max

{
1,
eM2 log n

n

}
.
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For any T > T0 = log

(
M2

1

κ2Z?e
4M1−M2

n
k2

)
/ log

(
1− η

eM1κ2Z?
ρ

)
,

‖∆GT ‖2F, ‖∆ΘT ‖2F ≤ C ′κ2
Z?e

2M1−M2nk ×max

{
1,
eM2 log n

n

}

for some constant C ′.

Remark 4.5. When both M1 and M2 are constants and the covariate matrix X is absent,

the result in Section 4.5 of Chen and Wainwright (2015), in particular Corollary 5, implies

the error rate of O(nk) in Theorem 6. However, when M1 →∞ and M2 remains bounded

as n → ∞, the error rate in Chen and Wainwright (2015) becomes1 O(e8M1M2
1nk), which

can be much larger than the rate O(e2M1nk) given by Theorem 6 even when X is still

absent. In addition, Algorithm 6 enjoys nice theoretical guarantees on its performance even

when the model is mis-specified and the Θ matrix is only approximately low rank. See

Theorem 9 below. These important cases are not covered by the general theory in Chen

and Wainwright (2015).

Remark 4.6. In view of Lemma 4.4, the rate obtained by the non-convex approach in

terms of
∥∥∆

Θ̂

∥∥2

F
matches the upper bound achieved by the convex method, up to a multiple

of κ2
Z?

. As suggested by Lemma 4.4, the extra factor comes partly from the fact that et is

a stronger loss function than ‖∆Θt‖2F and in the worst case can be cκ2
Z?

times larger than

‖∆Θt‖2F.

Remark 4.7. Under the setup in Theorem 6, the projection steps for α, β in Algorithm 6

are straightforward and have the following closed form expressions:

αt+1
i = α̃t+1

i min

(
1,

M1

3|α̃t+1
i |

)
, βt+1 = β̃t+1 min

(
1,

M1

3|β̃t+1|maxi,j |Xij |

)
.

The projection step for Z is slightly more involved. Notice that CZ = C1
Z

⋂
C2
Z where

C1
Z = {Z ∈ Rn×k, JZ = Z}, C2

Z = {Z ∈ Rn×k, max
1≤i≤n

‖Zi∗‖2 ≤M1/3}.

1One can verify that in this case we can identify the quantities in Corollary 5 of Chen and Wainwright
(2015) as σ = 1, p = 1, d = n, r = k, ν �M1, L4ν � 1 and `4ν � e4M1 .
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Projecting to either of them has closed form solution, that is

PC1Z (Z) = JZ,
[
PC2Z (Z)

]
i∗

= Zi∗min

(
1,

√
M1

3‖Zi∗‖2

)
.

Then Dykstra’s projection algorithm (Dykstra, 1983) (or alternating projection algorithm)

can be applied to obtain PCZ (Z̃t+1). We note that projections induced by the boundedness

constraints for Z,α, β are needed for establishing the error bounds theoretically. However,

when implementing the algorithm, users are at liberty to drop these projections and to only

center the columns of the Z iterates. We did not see any noticeable difference on simulated

examples caused by dropping them.

4.3.3. Initialization

Assumption 4.3.2 plays a key role in obtaining the desired error rates in Theorem 6. We

now present two ways to initialize Algorithm 6 so that Assumption 4.3.2 can be satisfied

under different circumstances.

Initialization by projected gradient descent in the lifted space The first

initialization method is summarized in Algorithm 7, which is essentially running the

projected gradient descent algorithm on the following regularized objective function for

a small number of steps:

f(G,α, β) = −
∑
i,j

{AijΘij + log(1− σ(Θij))}+λn tr(G)+
γn
2

(
‖G‖2F+2

∥∥∥α1n
>
∥∥∥2

F
+‖Xβ‖2F

)
.

Except for the third term, this is the same as the objective function in (4.11). However, the

inclusion of the additional proximal term ensures that Assumption 4.3.2 can be satisfied

after a small number of projected gradient descent steps.

We further assume the strength of the latent effect ‖G?‖F is comparable to the strength of

the degree heterogeneity effect
∥∥α?1n>∥∥F

and the homophily effect ‖Xβ?‖F.

Theorem 7. Suppose that Assumption 4.3.1 holds and that ‖α?1n>‖F, ‖β?X‖F ≤ C‖G?‖F
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Algorithm 7 Initialization of Algorithm 6 by Projected Gradient Descent

Input: Adjacency matrix: A; covariate matrix X; initial values: G0 = 0, α0 = 0, β0 = 0;
step size: η; constraint set: CG, Cα, Cβ; regularization parameter: λn, γn; latent dimension:
k; number of steps: T.
for t = 1, 2, · · · ,T do
G̃t+1 = Gt − η∇Zf(Z,α, β) = Gt + η

(
A− σ(Θt)− λnIn − γnGt

)
α̃t+1 = αt − η∇αf(Z,α, β)/n = αt + η

(
(A− σ(Θt))1n/2n− γnαt

)
β̃t+1 = βt − η∇βf(Z,α, β)/ ‖X‖2F = βt + η

(〈
A− σ(Θt), X

〉
/ ‖X‖2F − γnβt

)
Gt+1 = PCG(G̃t+1), αt+1 = PCα(α̃t+1), βt+1 = PCβ (β̃t+1)

end for
Top-k eigen-decomposition: GT ≈ UkDkU

>
k . Set ZT = UkD

1/2
k

Ouput: ZT, αT, βT

for a numeric constant C > 0. Let λn satisfy C0

√
max {ne−M2 , log n} ≤ λn ≤

c0 ‖G?‖op /(e
2M1
√
kκ3

Z?
) for sufficiently large constant C0 and sufficiently small constant

c0, let γn satisfy γn ≤ δλn/ ‖G?‖op for sufficiently small constant δ. Choose step size

η ≤ 2/9 and set the constraint sets as

CG = {G ∈ Sn×n+ , JG = G, max
1≤i,j≤n

|Gij | ≤M1/3},

Cα = {α ∈ Rn, ‖α‖∞ ≤M1/3}, Cβ = {β ∈ R, β‖X‖∞ ≤M1/3}.

If the latent vectors contain strong enough signal in the sense that

‖G?‖2op ≥ Cκ
6
Z?e

4M1−M2nk ×max

{
1,
eM2 log n

n

}
, (4.15)

for some sufficiently large constant C, there exist positive constants c, C1 such that with

probability at least 1 − n−c, for any given constant c1 > 0, eT ≤ c2
1e
−2M1 ‖Z?‖4op /κ

4
Z?

as

long as T ≥ T0, where

T0 = log

(
C1e

2M1kκ6
Z?

c2
1

)(
log

(
1

1− γnη

))−1

. (4.16)
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Theorem 7 gives the range of λn and γn such that implementing Algorithm 7 with

T ≥ T0 and using the output as the initializers for Algorithm 6, the condition on e0

in Assumption 4.3.2 will be satisfied. To go one step further, the following corollary

characterizes the ideal choices of γn and λn in Algorithm 7. It is worth noting that the choice

of λn here does not coincide with that in Theorem 5. Interestingly, the corollary shows that

when M1, k and κZ? are all upper bounded by universal constants, for appropriate choices

of γn and λn in Algorithm 7, the number of iterations needed does not depend on the graph

size n.

Corollary 4.8. Specifically in Theorem 7, if we choose γn = γ = c0/(e
2M1
√
kκ3

Z?
) for some

sufficiently small constant c0, and λn = C0γn ‖G?‖op for some sufficiently large constant

C0, there exist positive constants c, C1 such that with probability at least 1 − n−c, for any

given constant c1 > 0, eT ≤ c2
1e
−2M1 ‖Z?‖4op /κ

4
Z?

as long as T ≥ T0, where

T0 = log

(
C1e

2M1kκ6
Z?

c2
1

)(
log

(
1

1− γη

))−1

. (4.17)

Remark 4.9. Similar to computing PCZ (·) in Algorithm 6, PCG(·) could also be

implemented by Dykstra’s projection algorithm since CG is the intersection of two convex

sets. The boundedness constraint maxi,j |Gij | ≤ M/3 is only for the purpose of proof.

In practice, if ignoring this constraint, Gt+1 will have closed form solution Gt+1 =

PSn+(JG̃t+1J) where PSn+(·) can be computed by singular value thresholding.

Initialization by universal singular value thresholding Another way to construct

the initialization is to first estimate the probability matrix P by universal singular value

thresholding (USVT) proposed by Chatterjee (2015) and then recover the initial estimates

of α,Z, β heuristically by inverting the logit transform. The procedure is summarized in

Algorithm 8.

The estimate of P by USVT is consistent when ‖P‖∗ is “small”. Following the arguments
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Algorithm 8 Initialization of Algorithm 6 by Singular Value Thresholding

Input: Adjacency matrix: A; covariate matrix X; latent dimension k; threshold τ .
1. Singular value thresholding: P̃ =

∑
σi≥τ σiuiv

>
i where A =

∑n
i=1 σiuiv

>
i is the

singular value decomposition. Elementwisely project P̃ to the interval
[

1
2e
−M1 , 1

2

]
to obtain P̂ . Estimate the logit matrix by Θ̂ = logit((P̂ + P̂>)/2).

2. α0, β0 = arg minα,β

∥∥∥Θ̂−
(
α1n

> + 1nα
> + βX

)∥∥∥2

F

3. Ĝ = PSn+(R) where R = J
(

Θ̂−
(
α01n

> + 1n(α0)> + β0X
))
J

4. Z0 = UkD
1/2
k where Ĝ ≈ UkDkU

>
k is the top-k singular value decomposition.

Output: α0, Z0, β0

in Theorems 2.6 and 2.7 of Chatterjee (2015), such condition is satisfied when the covariate

matrix X = 0 or when X has “simple” structure. Such “simple” structure could be Xij =

f(xi, xj) where x1, · · · , xn ∈ Rd are feature vectors associated with the n nodes and f(·, ·)

characterizes the distance/similarity between node i and node j. For instance, one could

have Xij = 1{xi=xj} where x1, · · · , xn ∈ {1, · · · ,K} is a categorical variable such as gender,

race, nationality, etc; or Xij = g(|xi−xj |) where g(·) is a continuous monotone link function

and x1, · · · , xn ∈ R is a continuous variable such as age, income, years of education, etc.

Remark 4.10. The least squares problem in step 2 of Algorithm 8 has closed form solution

and can be computed in O(n2) operations. The computational cost of Algorithm 8 is

dominated by matrix decompositions in step 1 and step 3.

In particular, the following proposition shows that for large enough network with no edge

covariates included in the latent space model, the α0 and Z0 generated by Algorithm 8

satisfy the initialization condition specified in Assumption 4.3.2 with high probability.

Proposition 4.11. If no covariates are included in the latent space model and ‖G?‖F ≥ c0n

for some numeric constant c0 > 0, then there exists constant c1 such that with probability

at least 1 − nc1, for any n ≥ C(k,M1, κZ?) where C(k,M1, κZ?) is a constant depending

on k,M1 and κZ?, the outputs of Algorithm 8 with τ ≥ 1.1
√
n satisfies the initialization

condition in Assumption 4.3.2.
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4.3.4. Results for general models

Following the introduction in Section 4.2.2, we consider the following parameter space for

the more general class of latent space models

Fg(n,M1,M2, X) =
{

Θ|Θ = α1n
> + 1nα

> + βX +G,G ∈ Sn+, JG = G,

max
1≤i≤n

Gii, ‖α‖∞, |β| max
1≤i<j≤n

|Xij | ≤M1/3,

max
1≤i 6=j≤n

Θij ≤ −M2

}
.

(4.18)

Note that the latent space dimension k is no longer a parameter in (4.18). Then for any

positive integer k, let UkDkU
>
k be the best rank-k approximation to G?. In this case, with

slight abuse of notation, we let

Z? = UkD
1/2
k and Gk = G? − UkDkU

>
k .

Performance of the penalized MLE method The following theorem is a

generalization of Theorem 5 to the general class.

Theorem 8. For any k ∈ N+ such that Assumption 4.3.1 holds and any λn satisfying

λn ≥ max{2 ‖A− P‖op , |〈A− P,X/ ‖X‖F〉|/
√
k, 1}, there exists a constant C such that

∥∥∆
Θ̂

∥∥2

F
≤ C

(
e2M1λ2

nk + eM1λn‖Gk‖∗
)
.

Specifically, setting λn = C0

√
max {ne−M2 , log n} for a large enough constant C0, there

exists positive constants c, C such that with probability at least 1− n−c,

∥∥∆
Θ̂

∥∥2

F
≤ C

(
e2M1−M2nk ×max

{
1,
eM2 log n

n

}
+ eM1−M2/2

√
n‖Gk‖∗

)
. (4.19)

We continue using the error metric et defined in equation (4.37).
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Theorem 9. Under Assumption 4.3.1, 4.3.2, set the constraint sets as

CZ = {Z ∈ Rn×k, JZ = Z, max
1≤i≤n

‖Zi∗‖ ≤M1/3},

Cα = {α ∈ Rn, ‖α‖∞ ≤M1/3}, Cβ = {β ∈ R, β‖X‖∞ ≤M1/3}.

and choose step sizes by ηZ = η/
∥∥Z0

∥∥2

op
, ηα = η/(2n), ηβ = η/(2 ‖X‖2F) for any η ≤ c

where c is some positive constant. Let ζn = max{2 ‖A− P‖op , |〈A−P,X/ ‖X‖F〉|/
√
k, 1}.

• If ‖G?‖op ≥ C1κ
2
Z?
eM1ζ2

n × max

{√
ηkeM1 ,

√
η
∥∥Gk∥∥2

F
/ζ2
n, 1

}
, there exist positive

constants ρ and C such that

et ≤ 2

(
1− η

eM1κ2
Z?

ρ

)t
e0 +

Cκ2
Z?

ρ

(
e2M1ζ2

nk + eM1
∥∥Gk∥∥2

F

)
.

• If ‖G?‖op ≥ C1κ
2
Z?

√
neM1−M2/2 max

{√
ηkeM1 ,

√
η
∥∥Gk∥∥2

F
/ζ2
n, 1

}
for a sufficiently

large constant C1, there exist positive constants ρ, c0 and C such that with probability

at least 1− n−c0, the iterates generated by Algorithm 6 satisfying

et ≤ 2

(
1− η

eM1κ2
Z?

ρ

)t
e0 +

Cκ2
Z?

ρ

(
e2M1−M2nk ×max

{
1,
eM2 log n

n

}
+ eM1

∥∥Gk∥∥2

F

)
.

For any T > T0 = log

(
M2

1

κ2Z?e
4M1−M2

n
k2

)
/ log

(
1− η

eM1κ2Z?
ρ

)
,

‖∆GT ‖2F, ‖∆ΘT ‖2F ≤ C ′κ2
Z?

(
e2M1−M2nk ×max

{
1,
eM2 log n

n

}
+ eM1

∥∥Gk∥∥2

F

)

for some constant C ′.

Theorem 10. Suppose that Assumption 4.3.1 holds and that ‖α?1n>‖F, ‖β?X‖F ≤ C‖G?‖F

for a numeric constant C > 0. Let λn satisfy C0

√
max {ne−M2 , log n} ≤ λn ≤

c0 ‖G?‖op /(e
2M1
√
kκ3

Z?
) for sufficiently large constant C0 and sufficiently small constant

c0, let γn satisfy γn ≤ δλn/ ‖G?‖op for sufficiently small constant δ. Choose step size
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η ≤ 2/9 and set the constraint sets as

CG = {G ∈ Sn×n+ , JG = G, max
1≤i,j≤n

|Gij | ≤M1/3},

Cα = {α ∈ Rn, ‖α‖∞ ≤M1/3}, Cβ = {β ∈ R, β‖X‖∞ ≤M1/3}.

If the latent vectors contain strong enough signal in the sense that

‖G?‖2op ≥ Cκ
6
Z?e

2M1 max
{
e2M1−M2nk ×max

{
1,
eM2 log n

n

}
, ‖Gk‖2∗/k,

∥∥Gk∥∥2

F

}
,

for some sufficiently large constant C, there exist positive constants c, C1 such that with

probability at least 1 − n−c, for any given constant c1 > 0, eT ≤ c2
1e
−2M1 ‖Z?‖4op /κ

4
Z?

as

long as T ≥ T0, where

T0 = log

(
C1e

2M1kκ6
Z?

c2
1

)(
log

(
1

1− γnη

))−1

.

4.4. Simulation Studies

In this section, we present simulation studies of three different aspects of the proposed

methods: (1) scaling of estimation errors and computational costs with network sizes, (2)

impact of initialization on Algorithm 6, and (3) performance of the methods on general

models.

Estimation errors and computational costs We first investigate how estimation

errors scale with network size. To this end, we fix β? = −
√

2 and for any (n, k) ∈

{500, 1000, 2000, 4000, 8000} × {2, 4, 8}, we set the other model parameters randomly

following these steps:

1. Generate the degree heterogeneity parameters: (α?)i = −αi/
∑n

j=1 αj for 1 ≤ i ≤ n,

where α1, · · · , αn
iid∼ U [1, 3].
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2. Generate µ1, µ2 ∈ Rk with coordinates iid following U [−1, 1] as two latent vector

centers;

3. Generate latent vectors: for i = 1, . . . , k, let (z1)i, · · · , (zbn/2c)i
iid∼ (µ1)i +N[−2,2](0, 1)

and (zbn/2c+1)i, · · · , (zn)i
iid∼ (µ2)i + N[−2,2](0, 1) where N[−2,2](0, 1) is the standard

normal distribution restricted onto the interval [−2, 2], then set Z? = JZ where

Z = [z1, · · · , zn]> and J is as defined in (4.3). Finally, we normalize Z? such that

‖G?‖F = n;

4. Generate the covariate matrix: X = n× X̃/‖X̃‖F where X̃ij
iid∼ min {|N(1, 1)|, 2}.

For each generated model, we further generated 30 independent copies of the adjacency

matrix for each model configuration. Unless otherwise specified, for all experiments in this

section, with given (n, k), the model parameters are set randomly following the above four

steps and algorithms are run on 30 independent copies of the adjacency matrix.

The results of the estimation error for varying (n, k) are summarized in the log-log boxplots

in Figure 3, where “Relative Error - Z” is defined as ‖ẐẐ> − Z?Z
>
? ‖F/‖Z?Z>? ‖F and

“Relative Error - Θ” is defined as ‖Θ̂ − Θ?‖F/‖Θ>? ‖F. From the boxplots, for each fixed

latent space dimension k, the estimation errors for both Z? and Θ? scale at the order of

1/
√
n. This agrees well with the theoretical results in Section 4.3. For different latent space

dimension k, the error curve with respect to network size n only differs in the intercept.

Next we consider the running time of Algorithm 6 with T = 100. To this end, we fix

k = 4 and vary n from 500 to 16000. The results are presented in the log-log scatterplot of

Figure 4 which indicates the computational cost scales quadratically.

Impact of initialization on Algorithm 6 We now turn to the comparison of three

different initialization methods for Algorithm 6: the convex method (Algorithm 7), singular

value thresholding (Algorithm 8), and random initialization. To this end, we fixed n =

4000, k = 4. The relative estimation errors are summarized as boxplots in Figure 5. Clearly,
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Figure 3: log-log boxplot for relative estimation errors with varying network size and latent
space dimension.
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Figure 4: log-log plot for average run time with varying network size.

the non-convex algorithm is very robust to the initial estimates. Similar phenomenon is

observed in real data analysis where different initializations yield nearly the same clustering

accuracy.

Performance on the general model class Finally, to investigate the performance of the

proposed method under the general model (4.4), we try two frequently used kernel functions,

distance kernel hd(zi, zj) = −‖zi−zj‖ and Gaussian kernel hg(zi, zj) = 4 exp(−‖zi−zj‖2/9).

In this part, we use d to represent the dimension of the latent vectors (that is, z1, · · · , zn ∈
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Figure 5: Boxplot for relative estimation error with different initialization methods.

Rd) and k to represent the fitting dimension in Algorithm 6. We fix d = 4 and network

size n = 4000. Model parameters are set randomly in the same manner as the four step

procedure except that the third step is changed to:

Generate latent vectors: for i = 1, . . . , d, let (z1)i, · · · , (zbn/2c)i
iid∼ (µ1)i +

N[−2,2](0, 1) and (zbn/2c+1)i, · · · , (zn)i
iid∼ (µ2)i +N[−2,2](0, 1) where N[−2,2](0, 1)

is the standard normal distribution restricted onto the interval [−2, 2]. Finally

for given kernel function h(·, ·), set G? = JHJ where Hij = h(zi, zj).

We run both the convex approach and Algorithm 6 with different fitting dimensions.

The boxplot for the relative estimation errors and the singular value decay of the kernel

matrix under distance kernel and Gaussian kernel are summarized in Figure 6 and Figure 7

respectively.

As we can see, under the generalized model, the non-convex algorithm exhibits bias-variance

tradeoff with respect to the fitting dimension, which dependens on the singular value decay

of the kernel matrix. The advantage of the convex method is the adaptivity to the unknown

kernel function.

As indicated by Theorem 9, the optimal choice of fitting dimension k should depend on the

size of the network. To illustrate such dependency, we vary both network size and fitting
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Figure 6: log-log plot for the relative estimation errors of both convex and non-convex
approach under the distance kernel hd(zi, zj) = −‖zi − zj‖.
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Figure 7: log-log plot for the relative estimation errors of both convex and non-convex
approach under the Gaussian kernel hg(zi, zj) = 4 exp(−‖zi − zj‖2/9)

dimension, of which the results are summarized in Figure 8. As the size of the network

increases, the optimal choice of fitting dimension increases as well.
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Figure 8: log-log plot for the relative estimation error with varying network size under
distance kernel hd(zi, zj) = −‖zi−zj‖ (left panel) and under the Gaussian kernel hg(zi, zj) =
4 exp(−‖zi − zj‖2/9) (right panel).

4.5. Real Data Examples

In this section, we demonstrate how the model and fitting methods can be used to explore

real world datasets that involve large networks. In view of the discussion in Section 4.3.4

and Section 4.4, we can always use the inner-product model (4.1) – (4.3) as our working

model. In particular, we illustrate three different aspects. First, we consider community

detection on networks without covariate. To this end, we compare the performance of simple

k-means clustering on fitted latent variables with several state-of-the-art methods. Next,

we investigate community detection on networks with covariates. In this case, we could

still apply k-means clustering on fitted latent variables. Whether there is covariate or not,

we can always visualize the network by plotting fitted latent variables in some appropriate

way. Furthermore, we study how fitting the model can generate new feature variables to aid

content-based classification of documents. The ability of feature generation also makes the

model and the fitting methods potentially useful in other learning scenarios when additional

network information is present.
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4.5.1. Community detection without covariate

Community detection on networks without covariate has been intensively studied from both

theoretical and methodological viewpoints. Thus, it naturally serves as a test example of

the usefulness of the model and fitting methods we have proposed in previous sections. To

adapt our method to community detection, we propose to partition the network nodes by

the following two step procedure:

1. Fit the inner-product model to data with Algorithm 6;

2. Apply a simple k-means clustering on the fitted latent variables.

In what follows, we call this two step procedure LSCD (Latent Space based Community

Detection). We shall compare it with three state-of-the-art methods:

• SCORE (Jin, 2015): a normalized spectral clustering method developed under DCBM;

• OCCAM (Zhang et al., 2014): a normalized and regularized spectral clustering method

for potentially overlapping community detection;

• CMM (Chen et al., 2015): a convexified modularity maximization method developed

under DCBM.

• Latentnet Krivitsky and Handcock: a hierachical bayesian method based on the latent

space clustering model (Handcock et al., 2007).

To avoid biasing toward our own method, we compare these methods on three datasets that

have been previously used in the original papers to justify the three methods at comparison:

a political blog dataset (Adamic and Glance, 2005) that was studied in Jin (2015) and two

Facebook datasets (friendship networks of Simmons College and Caltech) (Traud et al.,

2012) that were studied in Chen et al. (2015). To make fair comparison, for all the methods,

we supplied the true number of communities in each dataset. When fitting our model, we

set the latent space dimension to be the same as the number of communities.
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In the latentnet package Krivitsky and Handcock, there are three different ways to predict

the community membership. In the notations of the package Krivitsky and Handcock,

they are mkl$Z.K, mkl$mbc$Z.K and mle$Z.K respectively. We found that mkl$mbc$Z.K

consistently outperforms the other two on these data examples. Due to the stochastic nature

of the Bayesian approach, we repeated it 20 times and report the average performance as

well as the standard deviation (numbers in parentheses).

Table 2 summarizes the performance of all four methods on the three datasets. Among all

the methods at comparison, all methods performed well on the political blog dataset with

Latentnet being the best, and LSCD outperformed all other methods on the two Facebook

datasets. On the Caltech friendship dataset, it improved the best result out of the other

three methods by almost 15% in terms of number of mis-clustered nodes.

Dataset # Clusters LSCD SCORE OCCAM CMM Latentnet

Political Blog 2 4.75% 4.75% 5.32% 5.07% 4.51% (0.12%)
Simmons 4 11.79% 23.57% 23.43% 12.04% 29.09% (1.23%)
Caltech 8 17.97% 31.02% 32.03% 21.02% 38.47% (1.19%)

Table 2: Proportions of mis-clustered nodes by different methods on three datasets.

In what follows, we provide more details on each dataset and on the performance of these

community detection methods on them.

Political Blog This well-known dataset was recorded by Adamic and Glance (2005)

during the 2004 U.S. Presidential Election. The original form is a directed network of

hyperlinks between 1490 political blogs. The blogs were manually labeled as either liberal or

conservative according to their political leanings. The labels were treated as true community

memberships. Following the literature, we removed the direction information and focused

on the largest connected component which contains 1222 nodes and 16714 edges. All five

methods performed comparably on this dataset with Latentnet achieving the smallest mis-

clustered proportion.
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Simmons College The Simmons College Facebook network is an undirected graph that

contains 1518 nodes and 32988 undirected edges. For comparison purpose, we followed the

same pre-processing steps as in Chen et al. (2015) by considering the largest connected

component of the students with graduation year between 2006 and 2009, which led to a

subgraph of 1137 nodes and 24257 edges. It was observed in Traud et al. (2012) that the class

year has the highest assortativity values among all available demographic characteristics,

and so we treated the class year as the true community label. On this dataset, LSCD

achieved the lowest mis-clustered proportion among these methods, with CMM a close

second lowest.

An important advantage of model (4.1) is that it can provide a natural visualization of

the network. To illustrate, the left panel of Figure 9 is a 3D visualization of the network

with the first three coordinates of the estimated latent variables. From the plot, one can

immediately see three big clusters: class year 2006 and 2007 combined (red), class year 2008

(green) and class year 2009 (blue). The right panel zooms into the cluster that includes

class year 2006 and 2007 by projecting the the estimated four dimensional latent vectors

onto a two dimensional discriminant subspace that was estimated from the fitted latent

variables and the clustering results of LSCD. It turned out that class year 2006 and 2007

could also be reasonably distinguished by the latent vectors.

Caltech Data In contrast to the Simmons College network in which communities are

formed according to class years, communities in the Caltech friendship network are formed

according to dorms Traud et al. (2011, 2012). In particular, students spread across

eight different dorms which we treated as true community labels. Following the same

pre-processing steps as in Chen et al. (2015), we excluded the students whose residence

information was missing and considered the largest connected component of the remaining

graph, which contained 590 nodes and 12822 undirected edges. This dataset is more

challenging than the Simmons College network. Not only the size of the network halves

but the number of communities doubles. In some sense, it serves the purpose of testing
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Figure 9: The left panel is a visualization of the network with the first three coordinates of
the estimated latent vectors. The right panel is a visualization of students in class year 2006
and 2007 by projecting the four dimensional latent vectors to an estimated two dimensional
discriminant subspace.

these methods when the signal is weak. LSCD also achieved the highest overall accuracy

on this dataset, reducing the second best error rate (achieved by CMM) by nearly 15%. See

the last row of Table 2. Moreover, LSCD achieved the lowest maximum community-wise

misclustering error among the four methods. See Figure 10 on page 126 for a detailed

comparison of community-wise misclustering rates of the five methods.

It is worth noting that the two spectral methods, SCORE and OCCAM, fell far behind

on the two Facebook datasets. One possible explanation is that the structures of these

Facebook networks are more complex than the political blog network and so DCBM suffers

more under-fitting on them. In contrast, the latent space model (4.1) is more expressive and

goes well beyond simple block structure. The Latentnet approach did not perform well on

the Facebook datasets, either. One possible reason is the increased numbers of communities

compared to the political blog dataset.

125



165

166

167

168

169

170

171

172

165 166 167 168 169 170 171 172
Actual Dorms

Pr
ed

ic
te

d 
D

or
m

s 
by

 L
SC

D

165

166

167

168

169

170

171

172

165 166 167 168 169 170 171 172
Actual Dorms

Pr
ed

ic
te

d 
D

or
m

s 
by

 S
C

O
R

E

165

166

167

168

169

170

171

172

165 166 167 168 169 170 171 172
Actual Dorms

Pr
ed

ic
te

d 
D

or
m

s 
by

 O
C

C
AM

165

166

167

168

169

170

171

172

165 166 167 168 169 170 171 172
Actual Dorms

Pr
ed

ic
te

d 
D

or
m

s 
by

 C
M

M

165

166

167

168

169

170

171

172

165 166 167 168 169 170 171 172
Actual Dorms

Pr
ed

ic
te

d 
D

or
m

s 
by

 L
at

en
tn

et

0.00 0.02 0.04 0.06
Clustering Error

Figure 10: Comparison of community-wise misclustering errors in Caltech friendship
network. Top row, left to right: LSCD, SCORE and OCCAM; bottom row, left to right:
CMM and Latentnet.

4.5.2. Community detection with covariate

We now further demonstrate the power of the model and our proposed fitting methods

by considering community detection on networks with covariates. Again, we used the

LSCD procedure laid out in the previous subsection for community detection.

To this end, we consider a lawyer network dataset which was introduced in Lazega (2001)

that studied the relations among 71 lawyers in a New England law firm. The lawyers

were asked to check the names of those who they socialized with outside work, who they

knew their family and vice versa. There are also several node attributes contained in

the dataset: status (partner or associate), gender, office, years in the firm, age, practice

(litigation or corporate), and law school attended, among which status is most assortative.

Following Zhang et al. (2015), we took status as the true community label. Furthermore,

we symmetrized the adjacency matrix, excluded two isolated nodes and finally ended up
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with 69 lawyers connected by 399 undirected edges.
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Figure 11: Visualization of the lawyer network using the estimated two dimensional latent
vectors. The left panel shows results without including any covariate while the right panel
shows results that used practice type information.

Visualization and clustering results with and without covariate are shown in Figure 11.

On the left panel, as we can see, the latent vectors without adjustment by any covariate

worked reasonably well in separating the lawyers of different status and most of the 12

errors (red diamonds) were committed on the boundary. On the right panel, we included

a covariate ‘practice’ into the latent space model: Xij = Xji = 1 if i 6= j and the ith

and the jth lawyers shared the same practice, and Xij = Xji = 0 otherwise. Ideally, the

influence on the network of being the same type of lawyer should be ‘ruled out’ this way and

the remaining influence on connecting probabilities should mainly be the effect of having

different status. In other words, the estimated latent vectors should mainly contain the

information of lawyers’ status and the effect of lawyers’ practice type should be absorbed

into the factor βX. The predicted community memberships of lawyers indexed by orange

numbers (39, 43, 45, 46, 51, 58) were successfully corrected after introducing this covariate.

So the number of misclustered nodes was reduced by 50%. We also observed that lawyer

37, though still misclassified, was significantly pushed towards the right spot.
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4.5.3. Network assisted learning

In this section, we demonstrate how fitting model (4.1) can generate new features to be

used in machine learning applications when additional network information is available.

Consider a network with n nodes and observed adjacency matrix A. Suppose the profile of

the nodes is represented by d dimensional features, denoted by x1, · · · , xn ∈ Rd. Assume

each node is associated with a label (or say, variable of interest), denoted by y, either

continuous or categorical. Suppose the labels are only observed for part of the nodes in the

network. Without loss of generality, we assume y1, · · · , ym are observed where m < n. The

goal here is to predict the rest of the labels ym+1, · · · , yn based on available information.

Without considering the network information, this is typical setup of supervised learning

with labeled traning set (x1, y1), · · · , (xm, ym) and unlabeled test set xm+1, · · · , xn. As one

way to utilize the network information, we propose to supplement the existing features in

the prediction task with the latent vectors estimated by Algorithm 6 (without including

edge covariates).

To give a specific example, we considered the Cora dataset (McCallum et al., 2000). It

contains 2708 machine learning papers which were manually classified into 7 categories:

Neural Networks, Rule Learning, Reinforcement Learning, Probabilistic Methods, Theory,

Genetic Algorithms and Case Based. The dataset also includes the contents of the papers

and a citation network, which are represented by a document-word matrix (the vocabulary

contains 1433 frequent words) and an adjacency matrix respectively. The task is to predict

the category of the papers based on the available information. For demonstration purpose,

we only consider distinguishing neural network papers from the other categories.

As usually done in latent semantic analysis, to represent the text information as vectors,

we extract leading-d principal components from the document-word matrix as the features.

We chose d = 100 by maximizing the prediction accuracy using cross-validation.

However, how to utilize the information contained in the citation network for the desired
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learning problem is less straightforward. We propose to augment the latent semantic

features with the latent vectors estimated from the citation network. Based on the simple

intuition that papers in the same category are more likely to cite each other, we expect that

the latent vectors, as low dimensional summary of the network, should contain information

about the paper category. The key message we want to deliver with this data example is

that with vector representation of the nodes obtained from fitting the latent space model,

network information can be incorporated in many supervised and unsupervised learning

problems and other exploratory data analysis tasks.

Back to the Cora dataset, for illustration purpose, we fitted standard logistic regressions

with the following three sets of features:

1. the leading 100 principal components;

2. estimated degree parameters α̂i and latent vectors ẑi obtained from Algorithm 6;

3. the combination of features in 1 and 2.

We considered three different latent space dimensions: k = 2, 5, 10. As we can see from

Figure 12, the latent vectors contained a considerable amount of predictive power for the

category. Adding the latent vectors to the principal components of the word-document

matrix substantially reduced misclassification rate.
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Figure 12: Boxplots of misclassification errors using logistic regression with different feature
sets. We randomly split the dataset into training and test sets with size ratio 3:1 for
500 times and computed misclassification errors for each configuration. PC represents the
leading 100 principal components of the document-word matrix. Z(k) represents the feature
matrix where the ith row is the concatenation of the estimated degree parameter α̂i and the
estimated latent vector ẑi with latent dimension k.

4.6. Discussion

In this section, we discuss a number of related issues and potential future research problems.

Data-driven choice of latent space dimension For the projected gradient descent

method, i.e., Algorithm 6, one needs to specify the latent space dimension k as an input.

Although Theorem 9 suggests that the algorithm could still work reasonably well if the

specified latent space dimension is slightly off the target, it is desirable to have a systematic

approach to selecting k based on data. One possibility is to inspect the eigenvalues of GT in

Algorithm 7 and set k to be the number of eigenvalues larger than the parameter λn used in

the algorithm. Alternatively, one may consider adapting the bi-cross-validation technique

Owen and Perry (2009) to the current context. We leave systematic investigation of such a

choice for future research.
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Undirected networks with multiple covariates and weighted edges The model

(4.1) and the fitting methods can easily be extended to handle multiple covariates. When

the number of covariates is fixed, error bounds analogous to those in Section 4.3 can also

be established when network sizes are sufficiently large. We omit the details since they do

not seem to offer additional insights and the proof arguments are essentially the same.

Moreover, as pointed out in Goldenberg et al. (2010), latent space models for binary

networks such as (4.1) can readily be generalized to weighted networks, i.e., networks with

non-binary edges. We refer interested readers to the general recipe prescribed in Section

3.9 of Goldenberg et al. (2010). If the latent variables enter a model for weighted networks

in the same way as in model (4.1), we expect the key ideas behind our proposed fitting

methods to continue to work.

Directed networks In many real world networks, edges are directed. Thus, it is a natural

next step to generalize model (4.1) to handle such data. Suppose for any i 6= j, Aij = 1 if

there is an edge pointing from node i to node j, and Aij = 0 otherwise. We can consider

the following model: for any i 6= j,

Aij
ind.∼ Bernoulli(Pij), with logit(Pij) = Θij = αi + γj + βXij + z>i wj . (4.20)

Here, the αi’s ∈ R model degree heterogeneity of outgoing edges while the γj ’s ∈ R model

heterogeneity of incoming edges. The meaning of β is the same as in model (4.1). To further

accommodate asymmetry, we associate with each node two sets of latent variables zi, wi ∈

Rk, where the zi’s are latent variables influencing outgoing edges and the wi’s incoming

edges. Such a model has been proposed and used in the study of recommender system

Agarwal and Chen (2009). Under this model, the idea behind the convex programming

fitting method in Section 4.3.1 can be extended. However, it is not clear whether one could

devise a non-convex fitting method with similar theoretical guarantees to what we have in

the undirected case. On the other hand, it should be relatively straightforward to further
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extend the ideas to directed networks with multiple covariates and weighted edges.
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4.7. Proofs

Throughout the proof, let P = (σ(Θ?,ij)) and P 0 = (Pij1i 6=j). Thus, E(A) = P 0.

4.7.1. Proofs of Theorems 8

Let Z? ∈ Rn×k such that Z?Z
>
? is the best rank k approximation to G?. For any matrix M ,

let col(M) be the subspace spanned by the column vectors of M and row(M) = col(M>).

For any subspace S of Rn (or Rn×n), let S⊥ be its orthogonal complement, and PS the

projection operator onto the subspace. The proof relies on the following two lemmas.

Lemma 4.12. Let M⊥k = {M ∈ Rn×n : row(M) ⊂ col(Z?)
⊥ and col(M) ⊂ col(Z?)

⊥} and

Mk be its orthogonal complement in Rn×n under trace inner product. If λn ≥ 2 ‖A− P‖op,

then for Gk = PM⊥k G?, we have

‖∆
Ĝ
‖∗ ≤ 4

√
2k
∥∥PMk

∆
Ĝ

∥∥
F

+ 2
∥∥∥∆α̂1n

>
∥∥∥

F
+

2

λn
|〈A− P,∆

β̂
X〉|+ 4‖Gk‖∗. (4.21)

Lemma 4.13. For any k ≥ 1 such that Assumption 4.3.1 holds. Choose λn ≥

max {2‖A− P‖op, 1} and |〈A − P,X〉| ≤ λn
√
k‖X‖F. There exist constants C > 0 and

0 ≤ c < 1 such that

‖∆
Θ̂
‖2F ≥ (1− c)

(
‖∆

Ĝ
‖2F + 2‖∆α̂1n

>‖2F + ‖∆
β̂
X‖2F

)
− C‖Gk‖2∗/k, and

‖∆
Θ̂
‖2F ≤ (1 + c)

(
‖∆

Ĝ
‖2F + 2‖∆α̂1n

>‖2F + ‖∆
β̂
X‖2F

)
+ C‖Gk‖2∗/k.

(4.22)

Proof of part one of Theorem 8 Recall the definition of h in (4.35). Observe that

Θ̂ = α̂1n
>+ 1nα̂

>+ β̂X + Ĝ is the optimal solution to (4.11), and that the true parameter

Θ? = α?1n
> + 1nα

>
? + β?X +G? is feasible. Thus, we have the basic inequality

h(Θ̂)− h(Θ?) + λn(‖Ĝ‖∗ − ‖G?‖∗) ≤ 0. (4.23)
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For any Θ in the parameter space F(n, k,M1,M2, X), |Θij | ≤ M1 for all i, j ∈ [n] and so

for τ = eM1/(1 + eM1)2, the Hessian

∇2h(Θ) = diag
(
vec
(
σ(Θ) ◦ (1− σ(Θ))

))
� τIn2×n2 .

For any vector b, diag(b) is the diagonal matrix with elements of a on its diagonals. For any

matrix B = [b1, . . . , bn] ∈ Rn×n, vec(B) ∈ Rn2
is obtained by stacking b1, . . . , bn in order.

With the last display, Taylor expansion gives

h(Θ̂)− h(Θ?) ≥ 〈∇Θh(Θ?),∆Θ̂
〉+

τ

2
‖∆

Θ̂
‖2F.

On the other hand, triangular inequality implies

λn(‖Ĝ‖∗ − ‖G?‖∗) ≥ −λn‖∆G‖∗.

Together with (4.23), the last two displays imply

〈∇Θh(Θ?),∆Θ̂
〉+

τ

2
‖∆

Θ̂
‖F − λn‖∆Ĝ

‖∗ ≤ 0.

Triangle inequality further implies

τ

2
‖∆Θ‖2F ≤ λn‖∆G‖∗ + |〈∇Θh(Θ?),∆Ĝ

+ ∆α̂1n
> + 1n∆>α̂ 〉|+ |∆β̂

〈∇Θh(Θ?), X〉|

= λn‖∆G‖∗ + |〈A− P,∆
Ĝ

+ 2∆α̂1n
>〉|+ |∆

β̂
〈A− P,X〉|

≤ λn‖∆G‖∗ + |〈A− P,∆
Ĝ

+ 2∆α̂1n
>〉|+ λn

√
k‖∆

β̂
X‖F.

(4.24)

Here the equality is due to the symmetry of A − P and the last inequality is due to the

condition imposed on λn. We now further upper bound the first two terms on the rightmost

side. First, by Lemma 4.12 and the assumption that |〈A− P,X〉| ≤ λn
√
k‖X‖F, we have

‖∆G‖∗ ≤ 4
√

2k ‖PMk
∆
Ĝ
‖F + 2‖∆α̂1n

>‖F + 2
√
k ‖∆

β̂
X‖F + 4‖Gk‖∗. (4.25)
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Moreover, Hölder’s inequality implies

|〈A− P,∆
Ĝ

+ 2∆α̂1n
>〉| ≤ ‖A− P‖op(‖∆

Ĝ
‖∗ + 2‖∆α̂1n

>‖∗)

= ‖A− P‖op(‖∆
Ĝ
‖∗ + 2‖∆α̂1n

>‖F)

≤ λn
2

(‖∆
Ĝ
‖∗ + 2‖∆α̂1n

>‖F).

(4.26)

Here the equality holds since ∆α̂1n
> is a rank one matrix. Substituting (4.25) and (4.26)

into (4.24), we obtain that

τ

2
‖∆

Θ̂
‖2F ≤

3λn
2
‖∆

Ĝ
‖∗ + λn‖∆α̂1n

>‖F + λn
√
k‖∆

β̂
X‖F

≤ 3λn
2

(4
√

2k‖PMk
∆
Ĝ
‖F + 2‖∆α̂1n

>‖F + 2
√
k‖∆

β̂
X‖F + 4‖Gk‖∗)

+ λn‖∆α̂1n
>‖F + λn

√
k‖∆

β̂
X‖F

≤ C1λn
(√
k (‖PMk

∆
Ĝ
‖F + ‖∆α̂1n

>‖F + ‖∆
β̂
X‖F) + ‖Gk‖∗

)
.

(4.27)

By Lemma 4.13, we can further bound the righthand side as

τ

2
‖∆

Θ̂
‖2F ≤ C2λn

√
k (‖∆

Θ̂
‖F + ‖Gk‖∗/

√
k) + C1λn‖Gk‖∗

≤ C2λn
√
k ‖∆

Θ̂
‖F + (C1 + C2)λn‖Gk‖∗.

(4.28)

Solving the quadratic inequality, we obtain

‖∆
Θ̂
‖2F ≤ C ′

(
λ2
nk

τ2
+
λn‖Gk‖∗

τ

)
. (4.29)

Note that τ ≥ ce−M1 for some positive constant c. Therefore,

‖∆
Θ̂
‖2F ≤ C

(
e2M1λ2

nk + eM1λn‖Gk‖∗
)
.

This completes the proof.

Proof of part two of Theorem 8 The proof relies on the following lemma.

Lemma 4.14. For any Θ ∈ F(n, k,M1,M2, X), there exists absolute constants c, C such
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that with probability at least 1− n−c, the following inequality holds

‖A− P‖op,

〈
A− P,X

〉
√
k ‖X‖F

≤ C
√

max {ne−M2 , log n}. (4.30)

Proof of Lemma 4.14. For any Θ in the parameter space, the off diagonal elements of Θ are

uniformly bounded from above by −M2, and so maxi,j P
0
ij ≤ e−M2 . Moreover, maxi Pii ≤ 1

under our assumption. Thus, ‖A − P‖op ≤ ‖A − P 0‖op + ‖P 0 − P‖op ≤ ‖A − P 0‖op + 1.

Together with Lemma 4.23, this implies that there exist absolute constants c1, C > 0 such

that uniformly over the parameter space

P
(
‖A− P‖op ≤ C

√
max {ne−M2 , log n}

)
≥ 1− n−c1 . (4.31)

Since the diagonal entries of X are all zeros, we have 〈A − P,X〉 = 〈A − P 0, X〉. Hence,

Lemma 4.24 implies that uniformly over the parameter space,

P

(〈
A− P,X

〉
√
k ‖X‖F

≤ C
√

max {ne−M2 , log n}

)
≥ 1− 3 exp

(
−C2 max

{
ne−M2 , log n

}
k/8
)

≥ 1− 3n−C
2k/8

(4.32)

Combining (4.31) and (4.31) finishes the proof.

By Lemma 4.14, there exist constants c1, C1 such that for any λn ≥

2C1

√
max {ne−M2 , log n}, we have uniformly over the parameter space that

P

(
λn ≥ 2 max

{
‖A− P‖op,

〈
A− P,X

〉
√
k ‖X‖F

})
≥ 1− n−c1 . (4.33)

Denote such event as E. Since the conditions on λn in the first part of Theorem 8 are

satisfied on E, it follows that there exists an absolute constant C > 0 such that uniformly
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over the parameter space, with probability at least 1− n−c1 ,

‖∆
Θ̂
‖2F ≤ C(e2M1−M2nk + eM1−M2/2

√
n‖Gk‖∗). (4.34)

This completes the proof.

4.7.2. Proof of Lemma 4.12

Let

h(Θ) = −
∑

1≤i,j≤n
{AijΘij + log(1− σ(Θij))}. (4.35)

By the convexity of h(Θ),

h(Θ̂)− h(Θ?) ≥ 〈∇Θh(Θ?),∆Θ̂
〉

= −〈A− P, ∆
Ĝ

+ 2∆α̂1n
> + ∆

β̂
X〉

≥ −‖A− P‖op

(
‖∆

Ĝ
‖∗ + 2‖∆α̂1n

>‖∗
)
− |〈A− P,∆

β̂
X〉|

≥ −λn
2

(
‖PMk

∆
Ĝ
‖∗ + ‖PM⊥k ∆

Ĝ
‖∗ + 2

∥∥∥∆α̂1n
>
∥∥∥

F

)
− |〈A− P,∆

β̂
X〉| .

The last inequality holds since λn ≥ 2 ‖A− P‖op and PMk
+ PM⊥k equals identity. On the

other hand, by the definition of Gk,

‖Ĝ‖∗ − ‖G?‖∗ = ‖PMk
G? +Gk + PMk

∆
Ĝ

+ PM⊥k ∆
Ĝ
‖∗ − ‖PMk

G? +Gk‖∗

≥ ‖PMk
G? + PM⊥k ∆

Ĝ
‖∗ − ‖Gk‖∗ − ‖PMk

∆
Ĝ
‖∗ − ‖PMk

G?‖∗ − ‖Gk‖∗

= ‖PMk
G?‖∗ + ‖PM⊥k ∆

Ĝ
‖∗ − 2‖Gk‖∗ − ‖PMk

∆
Ĝ
‖∗ − ‖PMk

G?‖∗

= ‖PM⊥k ∆
Ĝ
‖∗ − ‖PMk

∆
Ĝ
‖∗ − 2‖Gk‖∗ .

Here, the second last equality holds since PMk
G? and PM⊥k ∆

Ĝ
have orthogonal column

and row spaces. Furthermore, since Θ̂ is the optimal solution to (4.11), and Θ? is feasible,
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the basic inequality and the last two displays imply

0 ≥ h(Θ̂)− h(Θ?) + λn
(
‖Ĝ‖∗ − ‖G?‖∗

)
≥ −λn

2

(
‖PMk

∆
Ĝ
‖∗ + ‖PM⊥k ∆

Ĝ
‖∗ + 2

∥∥∥∆α̂1n
>
∥∥∥

F

)
− |〈A− P,∆

β̂
X〉|+ λn

(
‖PM⊥k ∆

Ĝ
‖∗ − ‖PMk

∆
Ĝ
‖∗ − 2‖Gk‖∗

)
=
λn
2

(
‖PM⊥k ∆

Ĝ
‖∗ − 3‖PMk

∆
Ĝ
‖∗ − 4‖Gk‖∗ − 2

∥∥∥∆α̂1n
>
∥∥∥

F

)
− |〈A− P,∆

β̂
X〉| .

Rearranging the terms leads to

‖PM⊥k ∆
Ĝ
‖∗ ≤ 3‖PMk

∆
Ĝ
‖∗ + 2

∥∥∥∆α̂1n
>
∥∥∥

F
+

2

λn
|〈A− P,∆

β̂
X〉|+ 4‖Gk‖∗ ,

and triangle inequality further implies

‖∆
Ĝ
‖∗ ≤ 4‖PMk

∆
Ĝ
‖∗ + 2

∥∥∥∆α̂1n
>
∥∥∥

F
+

2

λn
|
〈
A− P,∆

β̂
X
〉
|+ 4‖Gk‖∗ .

Last but not least, note that the rank of PMk
∆
Ĝ

is at most 2k, and so we complete

the proof by further bounding the first term on the righthand side of the last display by

4
√

2k
∥∥PMk

∆
Ĝ

∥∥
F
.

4.7.3. Proof of Lemma 4.13

By definition, we have the decomposition

‖∆
Θ̂
‖2F = ‖∆

Ĝ
+ ∆α̂1n

> + 1n∆>α̂ + ∆
β̂
X‖2F

= ‖∆
Ĝ

+ ∆α̂1n
> + 1n∆>α̂ ‖

2
F + ‖∆

β̂
X‖2F + 2 〈∆

Ĝ
+ ∆α̂1n

> + 1n∆>α̂ ,∆β̂
X〉

= ‖∆
Ĝ
‖2F + 2‖∆α̂1n

>‖2F + 2 tr(∆α̂1n
>∆α̂1n

>)

+ ‖∆
β̂
X‖2F + 2 〈∆

Ĝ
+ 2∆α̂1n

>,∆
β̂
X〉 .
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Here the last equality is due to the symmetry of X and the fact that ∆
Ĝ

1n = 0. Since

tr(∆α̂1n
>∆α̂1n

>) = tr(1n
>∆α̂1n

>∆α̂) = |1n>∆α̂|2 ≥ 0, the last display implies

‖∆
Θ̂
‖2F ≥ ‖∆Ĝ

‖2F + 2‖∆α̂1n
>‖2F + ‖∆

β̂
X‖2F + 2 〈∆

Ĝ
+ 2∆α̂1n

>,∆
β̂
X〉. (4.36)

Furthermore, we have

|〈∆
Ĝ

+ 2∆α̂1n
>,∆

β̂
X〉|

≤ ‖∆
Ĝ
‖∗‖∆β̂

X‖op + 2‖∆α̂1n
>‖∗‖∆β̂

X‖op

≤
(
4
√

2k‖PMk
∆
Ĝ
‖F + 4‖∆α̂1n

>‖F +
2

λn
|〈A− P,∆

β̂
X〉|+ 4‖Gk‖∗

)
‖∆

β̂
X‖op

≤
(
4
√

2k‖PMk
∆
Ĝ
‖F + 4‖∆α̂1n

>‖F + 2
√
k‖∆

β̂
X‖F + 4‖Gk‖∗

) ‖∆β̂
X‖F√

rstable(X)

≤ C0

√
k√

rstable(X)

(
‖∆

Ĝ
‖2F + 2‖∆α̂1n

>‖2F + ‖∆
β̂
X‖2F

)
+

4‖Gk‖∗√
rstable(X)

‖∆
β̂
X‖F

≤ C0

√
k√

rstable(X)

(
‖∆

Ĝ
‖2F + 2‖∆α̂1n

>‖2F + ‖∆
β̂
X‖2F

)
+

2‖Gk‖2∗
c0 rstable(X)

+ 2c0‖∆β̂
X‖2F

for any constant c0 ≥ 0. Here, the first inequality holds since the operator norm and the

nuclear norm are dual norms under trace inner product. The second inequality is due to

Lemma 4.12 and the fact that ‖∆α̂1n
>‖∗ = ‖∆α̂1n

>‖F since ∆α̂1n
> is of rank one. The

third inequality is due to the definition of rstable(X) and that |〈A−P,X〉| ≤ λn
√
k‖X‖F by

assumption and ∆
β̂

is a scalar. The fourth inequality is due to Assumption 4.3.1 and the

last due to 2ab ≤ a2 + b2 for any a, b ∈ R. Substituting these inequalities into (4.36) leads

to

‖∆
Θ̂
‖2F ≥

(
1− 2C0

√
k√

rstable(X)

)
‖∆

Ĝ
‖2F +

(
2− 2C0

√
k√

rstable(X)

)
‖∆α̂1n

>‖2F

+

(
1− 2C0

√
k√

rstable(X)
− 4c0

)
‖∆

β̂
X‖2F −

4‖Gk‖2∗
c0 rstable(X)

.
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On the other hand, notice that tr(∆α̂1n
>∆α̂1n

>) ≤ ‖∆α̂1n
>‖2F , we have

‖∆
Θ̂
‖2F ≤

(
1 +

2C0

√
k√

rstable(X)

)
‖∆

Ĝ
‖2F +

(
4 +

2C0

√
k√

rstable(X)

)
‖∆α̂1n

>‖2F

+

(
1 +

2C0

√
k√

rstable(X)
+ 4c0

)
‖∆

β̂
X‖2F +

4‖Gk‖2∗
c0 rstable(X)

.

Together with Assumption 4.3.1, the last two displays complete the proof.

4.7.4. Proof of Lemma 4.4 and Theorem 9

Again, we directly prove the results under the general model. Recall that G? ≈ UkDkU
>
k

is the top-k eigen-decomposition of G?, Z? = UkD
1/2
k , Gk = G? − UkDkU

>
k and ∆Gt =

Zt(Zt)> − Z?Z>? . For the convenience of analysis, we will instead analyze the following

quantity,

ẽt =
∥∥Z0

∥∥2

op
‖∆Zt‖2F + 2

∥∥∥∆αt1n
>
∥∥∥2

F
+
∥∥∆βtX

∥∥2

F
. (4.37)

Under Assumption 4.3.2,

‖∆Z0‖op ≤ δ ‖Z?‖op , (1− δ)et ≤ ẽt ≤ (1 + δ)et. (4.38)

for some sufficiently small constant δ ∈ (0, 1). The rest of the proof relies on the following

lemmas.

Lemma 4.15. For any Θ? ∈ Fg(n,M1,M2, X), max
1≤i≤n

‖(Z?)i‖22 ≤M1/3.

Proof. By definition, G? − Z?Z
>
? ∈ Sn+, which implies, e>i

(
G? − Z?Z>?

)
ei = Gii −

‖(Z?)i‖22 ≥ 0, that is ‖(Z?)i‖22 ≤ Gii ≤M1/3 for any 1 ≤ i ≤ n.

Lemma 4.16. If Assumption 4.3.1 holds, there exist constants 0 ≤ c0 < 1 and C0 such

that

‖∆Θt‖2F ≥ (1− c0)

(∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F
+ 2

∥∥∥∆αt1n
>
∥∥∥2

F
+
∥∥∆βtX

∥∥2

F

)
− C0

∥∥Gk∥∥2

F
,

‖∆Θt‖2F ≤ (1 + c0)

(∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F
+ 2

∥∥∥∆αt1n
>
∥∥∥2

F
+
∥∥∆βtX

∥∥2

F

)
+ C0

∥∥Gk∥∥2

F
.
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Lemma 4.17. Under Assumption 4.3.1, let ζn = max{2 ‖A− P‖op , |〈A −

P,X/ ‖X‖F〉|/
√
k, 1}, if ‖∆Zt‖F ≤ c0e

−M1 ‖Z?‖op /κ
2
Z?

and ‖Z?‖2op ≥ C0e
M1κ2

Z?
ζ2
n for

sufficiently small constant c0 and sufficiently large constant C0, there exist a constant c

such that, for any η ≤ c, there exist positive constants ρ and C,

ẽt+1 ≤
(

1− η

eM1κ2
ρ
)
ẽt + ηC

(∥∥Gk∥∥2

F
+ eM1ζ2

nk
)
.

Lemma 4.18. Under Assumption 4.3.1, let ζn = max{2 ‖A− P‖op , |〈A −

P,X/ ‖X‖F〉|/
√
k, 1}, if ‖Z?‖2op ≥ C1κ

2
Z?
ζ2
ne
M1 max

{√
η
∥∥Gk∥∥2

F
/ζ2
n,
√
ηkeM1 , 1

}
for a

sufficiently large constant C1 and ẽ0 ≤ c2
0e
−2M1 ‖Z?‖4op /4κ

4
Z?

, then for all t ≥ 0,

‖∆Zt‖F ≤
c0

eM1κ2
Z?

‖Z?‖op . (4.39)

Proof of Lemma 4.4 By Lemma 4.16, notice that Gk = 0 under the inner product

model,

‖∆Θt‖2F ≥ (1− c0)

(∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F
+ 2

∥∥∥∆αt1n
>
∥∥∥2

F
+
∥∥∆βtX

∥∥2

F

)
‖∆Θt‖2F ≤ (1 + c0)

(∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F
+ 2

∥∥∥∆αt1n
>
∥∥∥2

F
+
∥∥∆βtX

∥∥2

F

) (4.40)

By Lemma 4.20,

∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F
≥ 2(
√

2− 1)κ−2
Z?
‖Z?‖2op ‖∆Zt‖2F (4.41)
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which implies,

et ≤
κ2
Z?

2(
√

2− 1)

∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F
+ 2

∥∥∥∆αt1n
>
∥∥∥2

F
+
∥∥∆βtX

∥∥2

F

≤
κ2
Z?

2(
√

2− 1)(1− c0)
‖∆Θt‖2F .

(4.42)

Similarly, by Lemma 4.21, when dist(Zt, Z?) ≤ c ‖Z?‖op,

∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F
≤ (2 + c)2 ‖Z?‖2op ‖∆Zt‖2F , (4.43)

and this implies,

et ≥
1

(2 + c)2

∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F
+ 2

∥∥∥∆αt1n
>
∥∥∥2

F
+
∥∥∆βtX

∥∥2

F

≥ 1

(2 + c)2(1 + c0)
‖Z?‖2op ‖∆Zt‖2F .

(4.44)

Proof of Part one of Theorem 9 By Lemma 4.18, for all t ≥ 0,

‖∆Zt‖F ≤
c0

eM1κ2
Z?

‖Z?‖op (4.45)

Then apply Lemma 4.17, there exists positive constants ρ and M such that for all t ≥ 0,

ẽt+1 ≤

(
1− η

eM1κ2
Z?

ρ

)
ẽt + ηC

(∥∥Gk∥∥2

F
+ eM1λ2

nk
)

Therefore,

ẽt ≤

(
1− η

eM1κ2
Z?

ρ

)t
ẽ0 +

t∑
i=0

ηC
(∥∥Gk∥∥2

F
+ eM1λ2

nk
)(

1− η

eM1κ2
Z?

ρ

)i

≤

(
1− η

eM1κ2
Z?

ρ

)t
ẽ0 +

Cκ2

ρ

(
e2M1λ2

nk + eM1
∥∥Gk∥∥2

F

)
.

(4.46)
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Notice that 0.9et ≤ ẽt ≤ 1.1et,

et ≤ 2

(
1− η

eM1κ2
Z?

ρ

)t
e0 +

2Cκ2

ρ

(
e2M1λ2

nk + eM1
∥∥Gk∥∥2

F

)
. (4.47)

Proof of Part two of Theorem 9 The proof is nearly the same as that of part two of

Theorem 8 and we leave out the details.

4.7.5. Proof of Lemma 4.16

By definition,

‖∆Gt‖2F =
∥∥∥Zt(Zt)> − Z?Z>? −Gk∥∥∥2

F

≥
∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F
+
∥∥Gk∥∥2

F
− 2|

〈
Zt(Zt)> − Z?Z>? , Gk

〉
|

≥
∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F
+
∥∥Gk∥∥2

F
− 2

∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥
F

∥∥Gk∥∥F

≥
∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F
+
∥∥Gk∥∥2

F
− c1

∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F
− c−1

1

∥∥Gk∥∥2

F

≥ (1− c1)
∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F
− (c−1

1 − 1)
∥∥Gk∥∥2

F

(4.48)

where the second last inequality comes from a2 + b2 ≥ 2ab and holds for any c1 ≥ 0.

Similarly, it could be shown that

‖∆Gt‖2F ≤ (1 + c1)
∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F
+ (1 + c−1

1 )
∥∥Gk∥∥2

F
(4.49)

Expand the term ‖∆Θt‖2F,

‖∆Θt‖2F =
∥∥∥∆Gt + ∆αt1n

> + 1n∆>αt + ∆βtX
∥∥∥2

F

=
∥∥∥∆Gt + ∆αt1n

> + 1n∆>αt
∥∥∥2

F
+
∥∥∆βtX

∥∥2

F
+ 2
〈
∆Gt + ∆αt1n

> + 1n∆>αt ,∆βtX
〉

= ‖∆Gt‖2F + 2
∥∥∥∆αt1n

>
∥∥∥2

F
+ 2 tr(∆αt1n

>∆αt1n
>) +

∥∥∆βtX
∥∥2

F

+ 2
〈
∆Gt + 2∆αt1n

>,∆βtX
〉
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where the last equality is due to the symmetry of X. Notice that tr(∆α̂1n
>∆α̂1n

>) =

tr(1n
>∆α̂1n

>∆α̂) = |1n>∆α̂|2 ≥ 0,

‖∆Θt‖2F ≥ (1− c1)
∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F
− (c−1

1 − 1)
∥∥Gk∥∥2

F
+ 2

∥∥∥∆αt1n
>
∥∥∥2

F
+
∥∥∆βtX

∥∥2

F

+ 2
〈
Zt(Zt)> − Z?Z>? + 2∆αt1n

>,∆βtX
〉
− 2
〈
Gk,∆βtX

〉
(4.50)

By Holder’s inequality,

|
〈
Zt(Zt)> − Z?Z>? + 2∆αt1n

>,∆βtX
〉
| ≤

(
‖Zt(Zt)> − Z?Z>? ‖∗ + 2‖∆αt1n

>‖∗
)∥∥∆βtX

∥∥
op

≤
(√

2k
∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥

F
+ 2

∥∥∥∆αt1n
>
∥∥∥

F

)∥∥∆βtX
∥∥

op

≤
(√

2k
∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥

F
+ 2

∥∥∥∆αt1n
>
∥∥∥

F

)∥∥∆βtX
∥∥

F
/
√

rstable(X)

≤ C1

√
k

rstable(X)

(∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F
+
∥∥∥∆αt1n

>
∥∥∥2

F
+
∥∥∆βtX

∥∥2

F

)

and for any c > 0,

|
〈
Gk,∆βtX

〉
| ≤

∥∥Gk∥∥F

∥∥∆βtX
∥∥

F
≤ c

∥∥∆βtX
∥∥2

F
+

1

4c

∥∥Gk∥∥2

F
. (4.51)

Substitute these inequalities into (4.50),

∥∥∆
Θ̂

∥∥2

F
≥

(
1− 2C1

√
k

rstable(X)
− c1

)∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F

+

(
2− 2C1

√
k

rstable(X)

)∥∥∥∆αt1n
>
∥∥∥2

F

+

(
1− 2C1

√
k

rstable(X)
− 2c

)∥∥∆βtX
∥∥2

F
− (c−1

1 + 1/2c)
∥∥Gk∥∥2

F
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On the other hand, notice that tr(∆αt1n
>∆αt1n

>) ≤ ‖∆αt1n‖2F , we have

∥∥∆
Θ̂

∥∥2

F
≤

(
1 + 2C1

√
k

rstable(X)
+ c1

)∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F

+

(
2 + 2C1

√
k

rstable(X)

)∥∥∥∆α̂1n
>
∥∥∥2

F

+

(
1 + 2C1

√
k

rstable(X)
+ 2c

)∥∥∆βtX
∥∥2

F
+ (c−1

1 + 1/2c)
∥∥Gk∥∥2

F

4.7.6. Proof of Lemma 4.17

Let Θt = αt1n
> + 1n(αt)> + βtX + Zt(Zt)> ∈ F , Rt = arg min

R∈Rr×r,RR>=Ir

∥∥Zt − Z?R∥∥F
,

R̃t = arg min
R∈Rr×r,RR>=Ir

∥∥∥Z̃t − Z?R∥∥∥
F

and ∆Zt = Zt − Z?Rt, then

∥∥Zt+1 − Z?Rt+1
∥∥2

F
≤
∥∥∥Zt+1 − Z?R̃t+1

∥∥∥2

F

≤
∥∥∥Z̃t+1 − Z?R̃t+1

∥∥∥2

F

≤
∥∥∥Z̃t+1 − Z?Rt

∥∥∥2

F

The first and last inequality are due to the definition of Rt+1 and R̃t+1, and the second

inequality is due to the projection step. Plug in the definition of Z̃t+1,

∥∥Zt+1 − Z?Rt+1
∥∥2

F
≤
∥∥Zt − Z?Rt∥∥2

F
+ η2

Z

∥∥∇h(Θt)Zt
∥∥2

F
− 2ηZ

〈
∇h(Θt)Zt, Zt − Z?Rt

〉
=
∥∥Zt − Z?Rt∥∥2

F
+ η2

Z

∥∥∇h(Θt)Zt
∥∥2

F

− 2ηZ
〈
∇h(Θt), (Zt − Z?Rt)(Zt)>

〉
Notice that,

Zt(Zt)> − Z?Rt(Zt)> =
1

2
(Zt(Zt)> − Z?Z>? ) +

1

2
(Zt(Zt)> + Z?Z

>
? )− Z?R(Zt)>

145



Also due to the symmetry of ∇h(Θt),

〈
∇h(Θt),

1

2
(Zt(Zt)> + Z?Z

>
? )− Z?R(Zt)>

〉
=

1

2

〈
∇h(Θt),∆Zt∆

>
Zt
〉

Therefore, combine the above three equations,

∥∥Zt+1 − Z?Rt+1
∥∥2

F
≤
∥∥Zt − Z?Rt∥∥2

F
+ η2

Z

∥∥∇h(Θt)Zt
∥∥2

F
− ηZ

〈
∇h(Θt),∆Zt∆

>
Zt
〉

− ηZ
〈
∇h(Θt), (Zt(Zt)> − Z?Z>? )

〉 (4.52)

By similar while much simpler argument, one will obtain

‖αt+1 − α?‖2 ≤ ‖α̃t+1 − α?‖2

= ‖αt − α?‖2 + η2
α

∥∥∇h(Θt)1n
∥∥2

F
− 2ηα

〈
∇h(Θt)1n, α

t − α?
〉 (4.53)

‖βt+1 − β?‖2 ≤ ‖β̃t+1 − β?‖2

= ‖βt − β?‖2 + η2
β

〈
∇h(Θt), X

〉2 − 2ηβ
〈
∇h(Θt), (βt − β?)X

〉 (4.54)

Let H(Θ) = E[h(Θ)]. With ηZ = η/
∥∥Z0

∥∥2

op
, ηα = η/2n, ηβ = η/2 ‖X‖2F , the weighted sum∥∥Z0

∥∥2

op
×(4.52)+2n×(4.53)+‖X‖2F×(4.54) is equivalent to

ẽt+1 ≤ ẽt − η
〈
∇h(Θt), Zt(Zt)> − Z?Z>? + 2(αt − α?)1n> + (βt − β?)X + ∆Zt∆

>
Zt
〉

+
(∥∥Z0

∥∥2

op
η2
Z

∥∥∇h(Θt)Zt
∥∥2

F
+ 2nη2

α

∥∥∇h(Θt)1n
∥∥2

F
+ ‖X‖2F η

2
β

〈
∇h(Θt), X

〉2
)

≤ ẽt − η
〈
∇h(Θt),∆

Θ
t

〉
− η
〈
∇h(Θt),∆Zt∆

>
Zt
〉

+
( η2

‖Z0‖2op

∥∥∇h(Θt)Zt
∥∥2

F
+
η2

2n

∥∥∇h(Θt)1n
∥∥2

F
+

η2

4 ‖X‖2F

〈
∇h(Θt), X

〉2
)
,
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where ∆
Θ
t = Zt(Zt)> − Z?Z>? + ∆αt1n

> + 1n(∆αt)
> + ∆βtX = ∆Θt −Gk. Then,

ẽt+1 ≤ ẽt − η
〈
∇h(Θt)−∇H(Θt),∆

Θ
t

〉
− η
〈
∇H(Θt),∆Θt

〉
− η
〈
∇H(Θt), Gk

〉
− η
〈
∇h(Θt),∆Zt∆

>
Zt
〉

+
( η2

‖Z0‖2op

∥∥∇h(Θt)Zt
∥∥2

F
+
η2

2n

∥∥∇h(Θt)1n
∥∥2

F

+
η2

4 ‖X‖2F

〈
∇h(Θt), X

〉2
)

≤ ẽt − η
〈
∇H(Θt),∆Θt

〉
+ η|

〈
∇h(Θt)−∇H(Θt),∆

Θ
t

〉
|+ η|

〈
∇h(Θ),∆Zt∆

>
Zt
〉
|

+ η|
〈
∇H(Θt), Gk

〉
|+ η2

( 1

‖Z0‖2op

∥∥∇h(Θt)Zt
∥∥2

F
+

1

2n

∥∥∇h(Θt)1n
∥∥2

F

+
1

4 ‖X‖2F

〈
∇h(Θt), X

〉2
)

= ẽt − ηI1 + ηI2 + ηI3 + ηI4 + η2I5

(4.55)

Notice that for any Θ ∈ F(n, k,M1,M2, X),

1

4
In2×n2 � ∇2H(Θ) = diag

(
vec
(
σ(Θ) ◦ (1− σ(Θ))

))
� τIn2×n2

where τ = eM1/(1+eM1)2 � e−M1 . Hence H(·) is τ -strongly convex and 1
4 -smooth. Further

notice that ∇H(Θ?) = 0, then by Lemma 4.22,

I1 =
〈
∇H(Θt),∆Θt

〉
≥ τ/4

τ + 1/4
‖∆Θt‖2F +

1

τ + 1/4

∥∥σ(Θt)− σ(Θ?)
∥∥2

F

By triangle inequality,

I2 ≤ |
〈
σ(Θ?)−A,Zt(Zt)> − Z?Z>?

〉
|+ 2|

〈
σ(Θ?)−A,∆αt1n

>〉|+ |〈σ(Θ?)−A,∆βtX
〉
|.

Recall that ζn = max{2 ‖A− P‖op , |〈A− P,X/ ‖X‖F〉|/
√
k, 1},

I2 ≤
ζn
2
‖Zt(Zt)> − Z?Z>? ‖∗ + ζn‖∆αt1n

>‖∗ + ζn
√
k
∥∥∆βtX

∥∥
F
.
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Notice that Zt(Zt)> − Z?Z>? has rank at most 2k,

I2 ≤
ζn
√

2k

2

∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥
F

+ ζn

∥∥∥∆αt1n
>
∥∥∥

F
+ ζn
√
k‖∆βtX‖F.

Further by Cauthy-Schwartz inequality, there exists constant C2 such that for any positive

constant c2 which we will specify later,

I2 ≤ c2

(∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F
+ 2

∥∥∥∆αt1n
>
∥∥∥2

F
+ ‖∆βtX‖2F

)
+
C2

4c2
ζ2
nk

By Lemma 4.16, there exist constants c1, C1 such that

I1 − I2 ≥
(

(1− c1)τ

4τ + 1
− c2

)(∥∥∥Zt(Zt)> − Z?Z>? ∥∥∥2

F
+ 2‖∆αt1n

>‖2F + ‖∆βtX‖2F
)

+
1

τ + 1/4

∥∥σ(Θt)− σ(Θ?)
∥∥2

F
− C1

∥∥Gk∥∥2

F
− C2

4c2
ζ2
nk

(4.56)

By Lemma 4.20,

I1 − I2 ≥
2(
√

2− 1)

κ2

(
(1− c1)τ

4τ + 1
− c2

)
et +

1

τ + 1/4

∥∥σ(Θt)− σ(Θ?)
∥∥2

F

− C1

∥∥Gk∥∥2

F
− C2

4c2
ζ2
nk

To bound I3, notice that ∆Zt∆
>
Zt is a positive definite matrix,

I3 ≤ |
〈
∇h(Θt),∆Zt∆

>
Zt
〉
| ≤

∥∥∇h(Θt)
∥∥

op

∥∥∥∆Zt∆
>
Zt

∥∥∥
∗

=
∥∥∇h(Θt)

∥∥
op

tr(∆Zt∆
>
Zt) ≤

∥∥∇h(Θt)
∥∥

op
‖∆Zt‖2F

=
∥∥∇h(Θt)−∇H(Θt) +∇H(Θt)

∥∥
op
‖∆Zt‖2F

≤
∥∥∇h(Θt)−∇H(Θt)

∥∥
op
‖∆Zt‖2F +

∥∥∇H(Θt)
∥∥

op
‖∆Zt‖2F

= ‖σ(Θ?)−A‖op ‖∆Zt‖2F +
∥∥σ(Θt)− σ(Θ?)

∥∥
op
‖∆Zt‖2F

≤ ζn
2
‖∆Zt‖2F +

∥∥σ(Θt)− σ(Θ?)
∥∥

F
‖∆Zt‖2F

(4.57)
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By the assumption that ‖∆Zt‖F ≤
c0

eM1κ2
‖Z?‖op,

∥∥σ(Θt)− σ(Θ?)
∥∥

F
‖∆Zt‖2F ≤

c0

eM1κ2

∥∥σ(Θt)− σ(Θ?)
∥∥

F
‖∆Zt‖F ‖Z?‖op

≤ c3

∥∥σ(Θt)− σ(Θ?)
∥∥2

F
+

c0

4c3eM1κ2
‖∆Zt‖2F ‖Z?‖

2
op

(4.58)

for any constant c3 to be specified later. Then

I3 ≤

(
ζn

2 ‖Z?‖2op

+
c0

4c3eM1κ2

)
et + c3

∥∥σ(Θt)− σ(Θ?)
∥∥2

F
(4.59)

By the assumption that ‖Z?‖2op ≥ C0κ
2ζne

M1 for sufficiently large constant C0,

I3 ≤
(

1

2C0eM1κ2
+

c0

4c3eM1κ2

)
et + c3

∥∥σ(Θt)− σ(Θ?)
∥∥2

F
(4.60)

By basically inequalities,

I4 = |
〈
∇H(Θt), Gk

〉
| = |

〈
σ(Θt)− σ(Θ?), Gk

〉
| ≤

∥∥σ(Θt)− σ(Θ?)
∥∥

F

∥∥Gk∥∥F

≤ c4

∥∥σ(Θt)− σ(Θ?)
∥∥2

F
+

1

4c4

∥∥Gk∥∥2

F

(4.61)

for any constant c4 to be specified later. The final step is to control I5 by upper bounding

its three terms separately,

∥∥∇h(Θt)Zt
∥∥2

F
=
∥∥(∇h(Θt)−∇H(Θt)

)
Zt +∇H(Θt)Zt

∥∥2

F

≤ 2
(∥∥(∇h(Θt)−∇H(Θt))Zt

∥∥2

F
+
∥∥∇H(Θt)Zt

∥∥2

F

)
≤ 2
(∥∥(σ(Θ?)−A)Zt

∥∥2

F
+
∥∥(σ(Θt)− σ(Θ?))Z

t
∥∥2

F

)
≤ 2
(
‖σ(Θ?)−A‖2op

∥∥Zt∥∥2

F
+
∥∥σ(Θt)− σ(Θ?)

∥∥2

F

∥∥Zt∥∥2

op

)
≤ 2
(ζ2

n

4

∥∥Zt∥∥2

F
+
∥∥Zt∥∥2

op

∥∥σ(Θt)− σ(Θ?)
∥∥2

F

)
(4.62)
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‖∇h(Θt)1n‖2 =
∥∥(∇h(Θt)−∇H(Θt)

)
1n +∇H(Θt)1n

∥∥2

≤ 2
(∥∥(∇h(Θt)−∇H(Θt)

)
1n
∥∥2

+ ‖∇H(Θt)1n‖2
)

≤ 2
(
‖(σ(Θ?)−A)1n‖2 +

∥∥(σ(Θt)− σ(Θ?))1n
∥∥2
)

≤ 2n
(ζ2

n

4
+
∥∥σ(Θt)− σ(Θ?)

∥∥2

F

)
(4.63)

〈
∇H(Θt), X

〉2
=
(〈
∇h(Θt)−∇H(Θt), X

〉
+
〈
∇H(Θt), X

〉)2

≤ 2
(〈
σ(Θ?)−A,X

〉2
+
〈
σ(Θt)− σ(Θ?), X

〉2
)

≤ 2
(
ζ2
nk ‖X‖

2
F +

∥∥σ(Θt)− σ(Θ?)
∥∥2

F
‖X‖2F

) (4.64)

When dist(Zt, Z?) ≤ c ‖Z?‖op, adding these inequalities will yield

I5 ≤

∥∥Zt∥∥2

op

‖Z?‖2op

ζ2
nk

2
+
ζ2
n

4
+
ζ2
nk

2

+

2
∥∥Zt∥∥2

op

‖Z?‖2op

+
3

2

∥∥σ(Θt)− σ(Θ?)
∥∥2

F
(4.65)

By the assumption that ‖∆Zt‖F ≤
c0

eM1κ2
‖Z?‖op for some sufficiently small c0,

I5 ≤ C5

(
ζ2
nk +

∥∥σ(Θt)− σ(Θ?)
∥∥2

F

)
. (4.66)

Combine equations (4.56), (4.60), (4.61), (4.66),

ẽt+1 ≤ ẽt − η

(
2(
√

2− 1)

κ2

(
(1− c1)τ

4τ + 1
− c2

)
− 1

2C0eM1κ2
+

c0

4c3eM1κ2

)
et

+ η

(
C1 +

1

4c4

)∥∥Gk∥∥2

F
−
(

1

τ + 1/4
− c3 − c4 − C5η

)∥∥σ(Θt)− σ(Θ?)
∥∥2

F

+ η
C2

4c2
ζ2
nk + η2C5ζ

2
nk

(4.67)

where c2, c3, c4 are arbitrary constants, c0 is a sufficiently small constant, and C0 is a

sufficiently large constant. Notice that τ � e−M1 . Choose c2 = cτ and c, c3, c4, η small
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enough such that

2(
√

2− 1)

(
(1− c1)τ

4τ + 1
− c2

)
− 1

2eM1C0
− c0

4c3eM1
> ρ̃e−M1

1

τ + 1/4
− c3 − c4 − C5η ≥ 0,

(4.68)

for some positive constant ρ̃. Recall that ẽt ≥ (1 − δ)et. Then there exists a universal

constant C > 0 such that

ẽt+1 ≤
(

1− η

eM1κ2
ρ̃(1− δ)

)
ẽt + ηC

(∥∥Gk∥∥2

F
+ eM1ζ2

nk
)
. (4.69)

The proof is finished by setting ρ = (1− δ)ρ̃.

4.7.7. Proof of Lemma 4.18

We prove this by induction. For the base case,

‖∆Z0‖F ≤

(
ẽ0

‖Z0‖2op

) 1
2

≤

(
c2

0

4e2M1κ4

‖Z?‖4op

‖Z0‖2op

) 1
2

=
c0

2eM1κ2
‖Z?‖op

‖Z?‖op

‖Z0‖op

≤ c0

eM1κ2
‖Z?‖op ,

where the last inequality is by the fact that,

∥∥Z0
∥∥

op
≥ ‖Z?‖op − ‖∆Z0‖op ≥

(
1− c0

2eM1κ2

)
‖Z?‖op ≥

3

4
‖Z?‖op .

Suppose the claim is true for all t ≤ t0, by Lemma 4.17,

ẽt0+1 ≤
(

1− η

eM1κ2
ρ
)t0

ẽ0 + ηC
(∥∥Gk∥∥2

F
+ eM1ζ2

nk
)

≤ ẽ0 + ηC
(∥∥Gk∥∥2

F
+ eM1ζ2

nk
)

≤ c2
0

4e2M1κ4
‖Z?‖4op + ηC

(∥∥Gk∥∥2

F
+ eM1ζ2

nk
)

=
c2

0

e2M1κ4
‖Z?‖4op

(
1

4
+ η

Ce2M1ζ2
nκ

4

c2
0 ‖Z?‖

4
op

(∥∥Gk∥∥2

F

ζ2
n

+ eM1k

))

≤ c2
0

e2M1κ4
‖Z?‖4op

(
1

4
+

C

c2
0C

2
1

)
(4.70)
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Choosing C1 large enough such that C2
1 ≥ 4C

c20
, then

ẽt0+1 ≤
c2

0

2e2M1κ4
‖Z?‖4op (4.71)

and therefore,

‖∆Zt0+1‖F ≤

(
ẽt0+1

‖Z?‖2op

) 1
2

≤ c0√
2eM1κ2

‖Z?‖op

‖Z?‖op

‖Z0‖op

≤ c0

eM1κ2
‖Z?‖op . (4.72)

4.7.8. Technique Lemmas

Lemma 4.19 (Chung and Lu (2002)). Let X1, · · · , Xn be independent Bernoulli random

variables with P (Xi = 1) = pi. For Sn =
∑n

i=1 aiXi and ν =
∑n

i=1 a
2
i pi. Then we have

P (Sn − ESn < −λ) ≤ exp(−λ2/2ν)

P (Sn − ESn > λ) ≤ exp
(
− λ2

2(ν + aλ/3)

)

where a = max{a1, · · · , an}.

Lemma 4.20 (Tu et al. (2015)). For any Z1, Z2 ∈ Rn×k, we have

dist(Z1, Z2)2 ≤ 1

2(
√

2− 1)σ2
k(Z1)

∥∥∥Z1Z
>
1 − Z2Z

>
2

∥∥∥2

F
(4.73)

Lemma 4.21 (Tu et al. (2015)). For any Z1, Z2 ∈ Rn×k such that dist(Z1, Z2) ≤ c ‖Z1‖op,

we have ∥∥∥Z1Z
>
1 − Z2Z

>
2

∥∥∥
F
≤ (2 + c) ‖Z1‖op dist(Z1, Z2) (4.74)

Lemma 4.22 (Nesterov (2004)). For a continuously differentiable function f , if it is µ-
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strongly convex and L-smooth on a convex domain D, say for any x, y ∈ D,

µ

2
‖x− y‖2 ≤ f(y)− f(x)−

〈
f ′(x), y − x

〉
≤ L

2
‖x− y‖2 (4.75)

then 〈
f ′(x)− f ′(y), x− y

〉
≥ µL

µ+ L
‖x− y‖2 +

1

µ+ L
‖f ′(x)− f ′(y)‖2 (4.76)

and also 〈
f ′(x)− f ′(y), x− y

〉
≥ µ‖x− y‖2 (4.77)

Lemma 4.23 (Lei and Rinaldo (2015)). Let A be the adjacency matrix of a random graph on

n nodes in which edges occur independently. Let E[A] = P and assume that nmaxi,j Pij ≤ d

and for d ≥ c0 log(n) for some c0 ≥ 0. Then for any C0, there is a constant C = C(C0, c0)

such that

‖A− P‖op ≤ C
√
d (4.78)

with probability at least 1− n−C0

Lemma 4.24. Let A be the adjacency matrix of a random graph of n nodes in which edges

occur independently and E[A] = P . Then,

|〈A− P,X〉| ≤ C ‖X‖F (4.79)

with probability at least 1− 2exp(−C2/8pmax)− exp(−C2 ‖X‖F /8‖X‖∞)

Proof of Lemma 4.24 Observe that 〈A − P,X〉 = 2
∑

i<j(Aij − Pij)Xij and Aij

are independent Bernoulli random variables with E[Aij ] = Pij . Apply Lemma 4.19 to
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∑
i<j(Aij − Pij)Xij with λ = C ‖X‖F /2, we have ν =

∑
i<j X

2
ijPij ≤ pmax ‖X‖2F and

P
(
|〈A− P,X〉| ≤ C ‖X‖F

)
≤ exp(−C2 ‖X‖2F /8ν) + exp

(
−

C2 ‖X‖2F
8 max {ν, C‖X‖∞ ‖X‖F}

)

≤ 2exp(−C2 ‖X‖2F /8ν) + exp(−C2 ‖X‖F /8‖X‖∞)

≤ 2exp(−C2/8pmax) + exp(−C2 ‖X‖F /8‖X‖∞)
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