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Infusing Factor Viii-Expressing Platelets Or Megakaryocytes As A Novel
Therapeutic Strategy For Hemophilia A

Abstract
Approximately 1:5000 males have the most common inherited form of severe bleeding, hemophilia A, a
deficiency of functional coagulation factor VIII. Patients with severe hemophilia A suffer from recurrent
bleeding with significant morbidity and mortality with 20-30% of these patients developing antibodies to
infused Factor (F) VIII therapy. One area of on-going research for treatments for these patients is ectopically
expressing FVIII in megakaryocytes and platelets. This FVIII, termed pFVIII, is stored in alpha granules of
platelets and is capable of restoring hemostasis in FVIIInull mice, even in the presence of circulating
inhibitors. pFVIII has been proposed to be used for gene therapy for patients with hemophilia A, intractable
inhibitors, and life-threatening bleeds. However, prior studies by us have shown that high levels of pFVIII can
injure developing megakaryocytes. Combined with the known risk of prolonged thrombocytopenia following
bone marrow transplantation, this may limit its utility of this strategy. Because of these limitations, we now
propose an alternative therapeutic pFVIII strategy of infusing pFVIII-expressing megakaryocytes or platelets.
We envision that such a product would be generated beginning with induced-pluripotent stem cells (iPSCs).
iPSC-derived megakaryocytes, termed iMks, that are modified to express pFVIII may then be used to
improved hemostasis in problematic inhibitor patients with hemophilia A. As proof-of-principle, we
demonstrate that improved hemostasis can be achieved in vitro and in vivo with human pFVIII-expressing
murine platelet. Infusion of such platelets can provide several days of improved hemostasis in FVIIInull mice.
They were effective in the presence of inhibitors, and the efficacy of pFVIII was enhanced by recombinant
factor VIIa. Human pFVIII-expressing iMks also improved hemostasis in vitro and derived platelets from
infused human pFVIII-iMks improved hemostasis in FVIIInull mice. These studies indicate the potential
therapeutic use of recurrent pFVIII-expressing megakaryocyte or platelet infusions with prolonged
hemostatic coverage that may be additive with present-day bypassing agents in hemophilia A patients with
clinically relevant neutralizing inhibitors.
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ABSTRACT 

INFUSING FACTOR VIII-EXPRESSING PLATELETS OR MEGAKARYOCYTES AS A NOVEL 

THERAPEUTIC STRATEGY FOR HEMOPHILIA A 

Randolph B. Lyde Jr. 

Mortimer Poncz M.D. 

Approximately 1:5000 males have the most common inherited form of severe bleeding, 

hemophilia A, a deficiency of functional coagulation factor VIII.	Patients with severe hemophilia A 

suffer from recurrent bleeding with significant morbidity and mortality with 20-30% of these 

patients developing antibodies to infused Factor (F) VIII therapy. One area of on-going research 

for treatments for these patients is ectopically expressing FVIII in megakaryocytes and platelets. 

This FVIII, termed pFVIII, is stored in alpha granules of platelets and is capable of restoring 

hemostasis in FVIIInull mice, even in the presence of circulating inhibitors. pFVIII has been 

proposed to be used for gene therapy for patients with hemophilia A, intractable inhibitors, and 

life-threatening bleeds. However, prior studies by us have shown that high levels of pFVIII can 

injure developing megakaryocytes. Combined with the known risk of prolonged thrombocytopenia 

following bone marrow transplantation, this may limit its utility of this strategy. Because of these 

limitations, we now propose an alternative therapeutic pFVIII strategy of infusing pFVIII-

expressing megakaryocytes or platelets. We envision that such a product would be generated 

beginning with induced-pluripotent stem cells (iPSCs). iPSC-derived megakaryocytes, termed 

iMks, that are modified to express pFVIII may then be used to improved hemostasis in 

problematic inhibitor patients with hemophilia A. As proof-of-principle, we demonstrate that 

improved hemostasis can be achieved in vitro and in vivo with human pFVIII-expressing murine 

platelet. Infusion of such platelets can provide several days of improved hemostasis in FVIIInull 

mice. They were effective in the presence of inhibitors, and the efficacy of pFVIII was enhanced 

by recombinant factor VIIa. Human pFVIII-expressing iMks also improved hemostasis in vitro and 

derived platelets from infused human pFVIII-iMks improved hemostasis in FVIIInull mice. These 

studies indicate the potential therapeutic use of recurrent pFVIII-expressing megakaryocyte or 
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platelet infusions with prolonged hemostatic coverage that may be additive with present-day 

bypassing agents in hemophilia A patients with clinically relevant neutralizing inhibitors. 
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Hemophilia A 
	

 
Hemophilia A is a congenital X-linked recessive disease caused by a deficiency 

in functional Factor (F) VIII protein that effects 1 in 5000 males1. While the role of FVIII 

deficiency in this disorder was discovered in the 20th century, the first accounts of 

hemophilia were written in the Talmud, dating back to 2nd century AD2.  The Talmud 

describes two male babies that died after circumcision and instructs that the third male 

baby not be circumcised. By the 20th century, doctors largely believed that the bleeding 

seen in hemophilic patients was due to weak vessels3,4. It was not until the early 1900s 

that investigators like Sahli and Addis realized that the major hallmark of hemophilia was 

a delay in clotting of whole blood5,6. In 1917, Addis showed that small amounts of 

“prothrombin” prepared from whole blood could markedly decrease the clotting defect. 

However, subsequent studies by Govaerts and Gratia showed that prothrombin could 

not be the ultimate culprit whose absence caused hemophilia7. By 1937, Patek and 

Taylor, re-examined the small fraction of normal plasma used by Addis and found that 

this fraction contained FVIII, which they then called “anti-hemophilic globulin”, that could 

markedly improve the clotting defect seen in hemophilic blood8.  

 Hemophilia A results from loss or reduced function and activity of the FVIII 

protein due to mutations in F8 gene1. Mutations in F8 gene that cause hemophilia A 

include: point mutations, small and large deletions, splice mutations, and inversions. The 

level of residual FVIII activity found in patients’ blood corresponds to the severity of the 

disease, which ranges from mild (5-50% of FVIII activity) which makes up 25% of this 

patient population, moderate (1-5% of FVIII activity) affecting 10% of patients, to severe 

(<1% of FVIII activity) affecting 65% of hemophilia A patients9,10. Nearly half of all severe 
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hemophilia A patients have an intron 22 inversion in their F8 gene11. Severe patients 

experience recurrent bleeds in their bodily cavities including their joints, muscles, and 

internal organs. These recurrent bleeds can ultimately lead to muscular atrophy and loss 

of joint support known as chronic synovitis12. In addition, one of the major complications 

of severe hemophilia A is that about 30% of these patients will develop neutralizing 

antibodies to infused FVIII therapy, the current mainstay treatment for hemophilia A 

patients1,13.  

 

FVIII structure and processing (from gene to plasma)  
	

 
The F8 gene is located on the distal portion of the long arm of the X 

chromosome, maps to position Xq28, and covers 186kb of genomic DNA14. Until 

recently, the cellular origin of circulating plasma FVIII within the body was unknown. Cell 

isolation studies indicated that liver sinusoid endothelial cells (LSECs) were the main 

source of circulating plasma FVIII15-18. While LSECs are the primary source of FVIII 

within the body, F8 mRNA is found in many cell types including monocytes and 

hepatocytes19. Proper mRNA and protein processing is essential for excretion and 

function of the protein1,20,21.  

The F8 gene of this large plasma glycoprotein consists of 26 exons that range 

from 29 to 3,106 base pairs in length14,21. Fully processed F8 mRNA contains 9 kb of 

nucleotides, and in the endoplasmic reticulum (ER), it is translated into a 2,351 amino 

acid (267kDa) protein. This single-chain peptide contains 6 domains: 3 A-domains, 2 C-

domains and one large B-domain. Domains A1, A2, and A3 vary little in size with 336, 

345, and 335 amino acids respectively and are homologous to ceruloplasmin and factor 
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V (FV) A-domains22,23. C1 and C2 domains are 155 and 152 amino acids respectively 

and are homologous to the C domains of FV24,25. The A2 and A3 domain is separated by 

the large B-Domain, 980 amino acids, which is the only domain within FVIII that does not 

share homology with FV23,26. The B-Domain makes up 40% of FVIII protein. In addition, 

FVIII contains 3 acidic regions, a1, a2, and a3. Upon full translation within the ER, the 

resulting orientation of full-length FVIII is A1-a1-A2-a2-B-a3-A3-C1-C224,25.  

Inside the ER, the FVIII protein is decorated by N-glycosylation at 25 N-

glycosylation sites, 19 of which are found on the B-Domain25,27,28. These sites have been 

shown to affect overall activity of the functional protein28. During its formation in the ER, 

large mannose branched sugars are added to the developing protein. These sugars 

work to stabilize and prevent aggregation of newly forming protein domains. To further 

facilitate proper folding, the newly formed FVIII binds to chaperone proteins: calnexin 

(CNX), calreticulin (CRT), or immonogloblin binding protein (BiP)29-31. FVIII shuttles 

between ER proteins: CNX (an ER bound protein) and CRT (a soluble protein in the ER 

lumen) until its final glucose is trimmed from its oligosaccharide units that are attach to 

FVIII’s asparagine residues21. This CNX/CRT cycle ensures proper folding of the large 

protein and helps retain FVIII in the lumen of the ER until this process is complete. If this 

process is successful, FVIII detaches from the two lectins and is permitted to leave the 

ER and enter the golgi29,31. If FVIII is not folded correctly it is goes back to the CNX/CRT 

cycle until it is ultimately released to the golgi or sent to be degraded.  

 Inside the lumen of the ER, FVIII forms a stable complex with BiP, a key 

participant in the unfolded protein response pathway (UPR)32-34. In fact, overexpression 

of FVIII in cultured cells results in activation of UPR and increased expression of BiP. 

BiP binds to the hydrophobic beta sheet within the A1 domain, which helps retain FVIII 



5	
		

within the ER lumen. Mutations in this these BiP binding sites have been associated with 

increased FVIII secretion35,36.  

Properly-folded FVIII binds to a cargo processing complex containing ERGIC-53 

(also known as LMAN1) and Multiple Coagulation Factor Deficiency 2 (MCFD2) within 

vesicles in order to leave the ER and enter the golgi37. Mutations in ERGIC-53 or 

MCFD2 result in a combined FV and FVIII deficiency disorder, which result in FV and 

FVIII levels ranging from 5% to 30% of normal38. Upon exiting the ER, FVIII is shuttled to 

the golgi apparatus where it is further processed and matured. Inside the golgi, FVIII 

undergoes proteolysis and is further matured by keys enzymes (Figure 1.1). However, 

before this can take place, FVIII’s N-linked oligosaccharides are modified into branched, 

complex structures. In addition, sulfation of tyrosine residues and O-linked glycosylation 

of serine and threonine residues within the B-Domain are added21. Tyrosine sulfation is 

important for full FVIII activity and interaction with thrombin. In fact, mutations of 6 key 

tyrosines to phenylalanine have been shown to decrease the efficacy at which thrombin 

can cleave FVIII which results in reduced FVIII activation39.  

Before FVIII can be released into the plasma, it undergoes proteolysis by Paired-

basic Amino acid Cleaving Enzyme (PACE/Furin) within the golgi40,41. This intracellular 

protease cleaves proteins at arginine-X-X-arginine (R-X-X-R) motifs. Inside the golgi, 

PACE cleaves the FVIII B-Domain arginine residues 1313 and 1648 to release the 

heavy 200kD (A1-a1-A2-a2-B) and light 80kD (a3-A3-C1-C2) chains of FVIII40,42,43. After 

cleavage by PACE, FVIII is excreted from the cell into the plasma in this inactivated 

form. This heterodimer is held together by coordinated metal ions. Both copper and 

calcium or manganese ions are essential for association of the heavy and light chains as 

well as pro-coagulant function44,45. While calcium or manganese do not contribute to the 
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two chains maintaining a dimeric structure, they are important for proper configuration 

and protein function44,45.  

Copper on the other hand, is essential for proper heavy and light chain 

dimerization of the inactive and active forms. FVIII copper binding pockets are located 

within the A1 and A3. Mutations in the copper-binding site C310F result in severe 

hemophilia46,47.  

Once inside the blood stream FVIII circulates in its inactivated form at a 

concentration of 100-200 ng/ml with ~96% of circulating FVIII bound to its carrier protein 

von-Willebrand factor (VWF), synthesized and secreted by endothelial cells48,49. FVIII’s 

half-life (~11 hrs) is largely associated with the half-life of VWF50. Patients with severe 

VWF disease type 3 have low levels of both vWF and FVIII as the half-life of the free 

FVIII is ~2 hours51-53. VWF binds to the C2 and acidic a3 FVIII domains. This VWF–FVIII 

interaction works to stabilize FVIII and prevent untoward activation and unintended 

thrombosis by preventing FVIII from binding to phospholipids on activated platelets53. 

The VWF-FVIII complex also prevents FVIII proteolytic degradation by activated Protein 

C (aPC) and activated Factor X (FXa)54-56. Additionally, VWF provides FVIII to sites of 

vascular injury by binding activated platelets to vascular sub-endothelium57,58.  

The non-covalent VWF-FVIII interaction is disrupted after FVIII is activated by 

thrombin (FIIa). FIIa cleaves FVIII at three arginine (Arg) sites: Arg372, Arg740, and 

Arg168959. The first cleavage separates the A1 from the A2 domain. The second 

separates the A2 from the B domain and final cleavage cuts the acidic a3 domain 

releasing FVIII from VWF to form the activated heterotrimer (FVIIIa). After FVIII is 

activated and dissociates from vWF, FVIIIa is able to participate in the coagulation 

cascade60,61. FVIIIa is short-lived, being unstable, its A2 dissociates rapidly62. In addition, 

FIIa, aPC and FXa tightly regulate its activity and inactivation through proteolysis (Figure 
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1.2). Ultimately hepatic elimination of FVIIIa is accomplished by low-density lipoprotein 

receptor-related protein (LRP), which binds to the dissociated A3, C2, and A2 domain to 

ensure efficient clearance63. These interactions are mediated by heparin sulfate 

proteoglycans64.  

 

Coagulation cascade and FVIII co-factor activity 
	

 
Hemostasis is a delicate and intricate balance of clot formation and lysis, 

involving a myriad of key blood proteins that regulate this process. In response to 

vascular injury, a series of serine proteases perform proteolytic cleavages to activate 

platelets and other blood components to promote blood coagulation and stop excessive 

bleeding. Activated thrombin (FIIa) sits at the center of this important physiological 

process65. Multiple feed-forward loops ensure that sufficient amounts of FIIa are able to 

induce the activation of coagulation factors, leading to the formation of stable platelet-

fibrin plug at the site of vascular injury. Two pathways (intrinsic and extrinsic) converge 

to ensure that sufficient amounts of FIIa are amplified65. FVIII is an important component 

of the intrinsic pathway (Figure 1.3).  

 Upon damage to the vascular wall, tissue factor (TF), a major component of the 

subendothelium is exposed to blood circulation. FVIIa binds to TF to activate FX which 

with FVa forms the prothrombinase complex (FXa:FVa). This complex is essential for 

converting inactive thrombin (FII) into FIIa. FIIa is then able to influence its own 

activation by converting factors VIII, V, VII, and XI into their active forms. FIIa also tightly 

regulates the inactivation of these proteins through direct proteolysis of cofactors as well 

as activation of aPC. FIIa also activates platelets; it is on the surface of these activated 
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platelets that FVIIIa binds to FIXa to exert its full co-factor activity. The binding of FVIIIa 

to FIXa forms the Xase complex (FVIIIa:FIXa), which converts inactive factor X (FX) to 

FXa at a rate of 5 orders of magnitude higher than FIXa alone. This FXa is then able to 

bind to more FVa to produce more FIIa as a feed-forward cycle that eventually leads to a 

stable platelet-fibrin plug65.  

 

Role of platelets in hemostasis  
	

 
Platelets have been implicated in a myriad of important bodily functions ranging 

from wound repair, angiogenesis, to inflammation, but their main function is in 

hemostasis66. Platelets are anucleated cell fragments that are capable of forming 

aggregates in response to vascular injury. Platelets can range from 2-5 µm in size and 

circulate at a concentration of 150-450K particles per microliter of blood in healthy 

individuals67,68.  

 Platelets are cytoplasmic fractions of megakaryocytes. While megakaryocytes 

make up less than 0.1% of nucleated cells in the marrow, they are the largest cells within 

the bone marrow niche, growing up to 100 µm in diameter. Some reports indicate that 

each megakaryocyte can make up to 104 platelets69,70. The process by which these cells 

make platelets has been an area of rigorous study. After maturation, the 

megakaryocytes become polyploid through a process known as endomitosis. In addition, 

megakaryocytes develops a demarcation membrane system that functions as an 

intricate membrane system that allows for proplatelet formation68. These mature 

megakaryocytes then extend their proplatelets, long strands of megakaryocyte 

cytoplasm, into the sinusoidal vessels of the bone marrow niche where they can shed 

mature functioning platelets. The process from megakaryocyte to proplatelet to mature 
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platelet is a complex one that involves many transcription factors and subcellular 

players68. Recent studies have shown that megakaryocytes migrate from the marrow to 

the lungs intact and shed platelets in that microvascular system71.  

Once platelets are released into the circulation, they travel in the blood stream as 

non-activated discoid particles that have a half-life of ~10 days72. Endothelial cells act as 

a physical barrier, in part, to prevent platelet attachment to the subendothelium. In 

addition, the endothelial layer releases factors to keep platelets quiescent. Both 

endothelium derived relaxing factor (Nitric Oxide, NO) and prostacyclin (PGI2) released 

from endothelial cells work to prevent platelet adhesion, activation, and aggregation73. 

Upon vascular disruption, platelets become activated to prevent excessive bleeding.  

One key activator of platelets and initiator of clot formation is FIIa, which is 

present in high amounts upon exposure of TF and initiation of the coagulation cascade. 

FIIa activates platelets by cleaving the tethered ligands on protease-activated receptors 

1 (PAR-1) and 4 (PAR-4) on the platelet surface. Cleavage of these G-coupled protein 

receptors (GPCRs) activate downstream second messengers that cause conformational 

and cytoskeletal changes that allow platelets to better adhere to vWF, collagen, and 

other platelet receptors to form a tight plug at the site of vascular injury73.  

These cellular signals also increase intracellular Ca2+ concentration within 

platelets which allows for the release of their content from platelet granules74,75. Platelets 

have three distinct granules within their cytoplasm:  alpha (α) granules, dense (δ) 

granules, and lysosomes (λ). These granules contain different proteins and small 

molecules either built up during the life span of the megakaryocyte or taken up from the 

blood stream. α-granules contain a wide array of proteins both made in the 

megakaryocyte or taken up in circulation including vWF, FV, and the platelet-specific C-

X-C motif chemokine ligand 4 (CXCL4) also known as platelet factor 4 (PF4)76,77. δ-
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granules contain smaller molecules like serotonin, divalent metal cations Mg2+ and Ca2+, 

and ADP and ATP. In addition, platelets release thromboxane A2 (TXA2), which binds to 

GPCRs on activated and surrounding quiescent to further act as a feed-forward 

mechanism of activation that further increases intracellular Ca2+. 

Key glycoprotein receptors on the platelet surface are imperative for proper 

activation and adhesion to other platelets and injured endothelium. Nearly 25,000 copies 

of the glycoprotein (GP) Ibα/β-IX (GPIb-IX-V, CD42) receptor are found on the platelet 

surface, making it the second most abundant receptor on platelets78,79. GPIb-IX-V binds 

to vWF released from endothelial cells to slow platelets from circulation and attach them 

to damaged endothelium, and collagen in a process called adhesion79. GPIIb-IIIa (αIIb, 

CD41) is essential in platelet-to-platelet binding, mediated by fibrinogen linkages in a 

process called aggregation. Both ADP and TXA2 induce a conformational change in 

αIIb-β3 that aids in its binding to fibrinogen and thus other platelets to form compact 

plugs. About 80,000 copies of the αIIb-β3 receptors decorate the platelet surface, 

making it the most abundant platelet receptor80.  

Platelets can even be used as a delivery system for potential therapeutics. 

Quebec platelet disorder (QPD), a rare autosomal dominant platelet disorder where 

urokinase-type plasminogen activator (uPA) is ectopically expressed in platelet α-

granules, causes a mild bleeding diathesis in affected individuals81. Our group, created a 

QPD transgenic mouse where uPA is ectopically expressed in platelets using the Cxcl4 

promoter. Infusing these platelets into WT mice at 5% circulating platelets was able to 

prevent full thrombus formation in FeCl3 carotid injury assays82. These experiments 

demonstrate that platelets can be used as a delivery system for therapeutic agents in 

order to treat disease.  
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FVIII variants  
	

 
Ever since the successful cloning of the F8 gene in 1984 by several groups14, 

researchers have tried to modify the gene and protein to ensure better intracellular 

processing, excretion, half-life, and activity of recombinant FVIII. In 1992, full-length 

recombinant FVIII was approved and came onto market for treatment of patients. The 

full function of the FVIII B-domain is not currently known, however it has been 

speculated that it could play a role in FVIII synthesis, quality control, secretion, plasma 

activation, platelet binding, and even clearance28. In the mid 1990’s, scientists 

discovered they could delete the B-domain in FVIII to ensure more efficient cloning of 

the gene while sparing functionality and half-life of the protein83,84. To improve production 

and yield of the protein, scientists and companies have removed the B-domain. By 2000, 

B-domainless FVIII was available for clinical use85,86. 

Our studies utilize variations of the B-domain deleted FVIII mentioned above. 

The first is a human B-domainless FVIII (hBDFVIII) that contains a residual 14 amino 

acid peptide from the B-domain that links heavy and the light chain and allows for proper 

processing by PACE/Furin enzyme. This previously described modification has minimal 

effect on circulation half-life and activity of FVIII84. The other FVIII variants utilized in our 

studies have a mutation in the PACE/Furin cleavage site within this residual 14-amino 

acid domain that prevents PACE/Furin from cleaving the single chain protein into the 

heavy and light chain, hBDFVIIIR1645H (RH), and FVIIIΔ 42. hBDFVIIIRH has a mutation in the 

furin cleavage site while FVIIIΔ has a 4-amino acid deletion from amino acids 1645-1648 

of the entire PACE/Furin recognition sequence. These mutations cause the resulting 
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FVIII to be predominately expressed as a single chain which has been shown to cause a 

delay in A2 domain dissociation and therefore increased biological activity42,87. 

Previous studies by Dr. Sabatino showed that canine (c) BDFVIII was secreted 

primarily as a single chain when expressed in baby hamster kidney (BHK) cells. In 

addition, this cBDFVIII was more stable and had higher biological activity. Interrogation 

of its amino acid sequence revealed one key difference in its PACE/Furin cleavage site 

when compared to hBDFVIII42,88. cBDFVIII contained a histidine at amino acid 1645 

(HHQR) instead of an arginine like in humans (RHQR)88. Further studies of cBDFVIII 

indicated that it was this amino acid difference that allowed for suboptimal cleavage by 

PACE/Furin and the excretion of this protein in its single chain form resulting in higher 

biological activity88. Taking these cues from cBDFVIII Sabatino and colleges developed 

hBDFVIIIRH.  

 

FVIII inhibitors 
	

One major complication of FVIII therapy in severe hemophilia A patients is the 

development of alloimmune neutralizing antibodies (inhibitors) to FVIII. Inhibitors are a 

mixed composition of immunoglobulin G (IgG) subtypes 1-4 with IgG4 being the most 

prevalent. These inhibitors are broadly classified into two types based on effects on 

FVIII. Type 1 completely inhibits FVIII activity through second-order kinetics. Type 2 

partially inhibits FVIII activity. Type 1 inhibitors are more prevalent in patients with 

severe hemophilia, while type 2 is more common in mild and acquired hemophiliacs89. 

Inhibitors are detected and quantified via Bethesda assay or the Nijmegen-modified 

Bethesda assay90. These assays only detect inhibitors that reduce FVIII activity. Each 

assay uses serial dilutions of inhibitor plasma incubated with normal plasma. A Bethesda 
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unit (BU) is the amount of inhibitor to reduce FVIII activity level by 50%, this 

measurement is on log scale. Patients with a BU titer of 5 or below are considered low 

titer, a BU of greater than 5 is considered high-titer91.  

Twenty-Thirty percent of patients with severe hemophilia A develop inhibitors. 

The risk of developing inhibitors is highest 10-15 days after first exposure to FVIII13. 

Specific genetic mutations are correlated to higher risk of inhibitor formation. Patients 

with large FVIII deletions have the highest rate of inhibitor formation. In contrast, patients 

who have mutations that result in loss of function, but where their FVIII retains the 

majority of its structure have lower risk of inhibitor formation. Race and ethnicity can also 

play a role in inhibitor formation. African-Americans and Hispanics have higher rates of 

developing an inhibitor than other ethnic groups92,93.  

 Many patients that develop inhibitors respond to immune tolerance induction 

(ITI) with FVIII.  ITI is accomplished through high dose (>200 IU/kg/day in some 

protocols) infusions of FVIII twice a day, once a day, or every other day depending on 

the protocol94,95. Newer ITI protocols have included 

immunomodulating/immunosuppressive therapies like cyclophosphamide in combination 

with high-dose FVIII96. However, a significant number of patients do not respond and 

have persistent high-titer intractable inhibitors with recurrent, sometime life-threatening 

bleeds95. Bypassing agents, such as activated prothrombin complex concentrate 

(FIEBA), recombinant FVIIa, or potentially emicizumab (ACE910), which 

heterodimerizes FIX and FX are not always effective, have short half-lives (FIEBA and 

FVIIa)97, or have a prothrombotic risk (all three)97,98.  

 

Induced pluripotent stem cells (iPSCs) and hematopoietic applications 
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We utilized iPSCs to derive megakaryocytes and platelets. iPSCs were obtained 

by reprograming somatic cells either from peripheral blood of patients or healthy donors 

and transducing them with a set of stem cell transcription factors. In 2006, Takahashi 

and Yamanaka, successfully reprogrammed adult mouse fibroblasts into iPSCs through 

viral transduction with transcription factors Oct-4, Sox-2, Klf4 and c-Myc. The 

subsequent cells had similar morphology and subcellular characteristics as embryonic 

stem (ES) cells99,100.  

 One important characteristic that these IPSCs share with ES cells is that they are 

pluripotent, being able to give rise to a myriad of cells types. When subcutaneously 

injected into mice, iPSCs form teratomas. These tumors developed cells from all three 

germ layers: ectoderm, mesoderm and endoderm99. This quality of iPSCs meant they 

had the potential to be differentiated into many different cell types. In our case, we 

showed that these cells could be differentiated into the hematopoietic linage. Previous 

studies by our group showed that iPSCs could also be gene manipulated to carry 

transgenes for enhanced green fluorescent protein (eGFP), Friend leukemia integration 

1 transcription factor (FLI-1), and αIIb-β3 under the control of the murine Gp1ba 

promoter.  Upon differentiation into megakaryocytes and platelets, the transgene of 

interest was expressed at high levels. Differentiation into other linages did not lead to 

expression of the protein101,102.  

In addition, these cells are able to self-renew indefinitely99. This allows 

researchers to have a near-unlimited supply of starting material to study complex and 

rare diseases. Even more important in the case of hemophilia A therapy, one would only 

need to remove and reprogram cells once and have a limitless supply of transfusable 

material for the patient at will. Additionally, iPSCs have the therapeutic advantage of 
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potentially being derived from patients’ own cells. This could ultimately limit the risk of 

graft-vs.-host disease and eliminate potential immune rejection. 

 

Platelet gene therapy for hemophilia A  
	

 
 Gene therapy is the transduction of normal or modified genes into a patient’s 

cells to treat a disease. Ideal gene therapy for patients with hemophilia A would involve 

long-term correction of plasma factor (F) VIII levels by establishing FVIII expression in 

tissues that physiologically express this protein103,104. Progress has been made to this 

end; however, if the patient has a pre-existing inhibitor, plasma correction is not likely to 

be effective with the following caveat: if plasma FVIII’s continued expression suppresses 

inhibitor formation or if the immune suppression used in some forms of gene therapy 

(e.g., bone marrow engraftment) is successful in eliminating the inhibitor, then such gene 

therapies may be useful105,106. 

 Previous studies by our laboratory and others have demonstrated that ectopically 

expressing FVIII within platelets (pFVIII) could be a viable alternative to plasma 

correction for effective therapy in patients with significant hemophilia A and intractable 

inhibitors107-109. Through several transgenic mouse models of expressing pFVIII, these 

groups were able to demonstrate that this approach differs from plasma correction: 

pFVIII expressed in platelet α-granules and is released only upon platelet activation and 

degranulation110. Thus the pFVIII would be localized to sites of bleeding, potentially 

making it more efficacious at lower doses108,109. Storing FVIII within platelets would also 

extend it’s circulatory half-life to that of the half-life of platelets, ~10 days in humans111. 
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Finally, the sequestered pFVIII may be protected from inhibitors until released within the 

clot and be especially effective in patients with inhibitors. 

Patients can receive pFVIII in two ways. The first, and most direct approach 

being pursued by my group and others, is long-term expression through permanent, 

genetic modification of hematopoietic stem cells (HSCs) so that FVIII is specifically 

turned on in megakaryocytes and platelets. HSCs have the capability of differentiating 

into all blood lineages, most importantly megakaryocytes and platelets112. In addition, 

HSCs have the ability to self-renew and can continue to make megakaryocytes 

expressing pFVIII for life. This long-term approach would be accomplished through 

autologous bone marrow transplant (BMT). The second approach is accomplished 

through infusions of modified platelets derived from HSCs. These HSCs can be obtained 

from a myriad of sources including peripheral blood mobilized adult bone marrow113, 

from umbilical cord blood, from fat cells, or from iPSCs114. All can be genetically modified 

to express pFVIII upon differentiation into megakaryocytes, but only cells like cord blood 

expanded with valproic acid115, fat cells116,117 and iPSCs can be markedly expanded to 

have practical utility. 

Previous studies have used tissue-specific promoters to target FVIII transgene 

expression to megakaryocytes and platelets. This may have the advantage of reducing 

potential immune response to FVIII leaking out of other cell lines at low levels, 

preventing the further development of inhibitors. These promoters include but are not 

limited to GPIBA108, ITGA2B118, CXCL4119, GPV120, and GPVI121. Each promoter is active 

during megakaryopoiesis and is fairly well expressed. 

 Previous studies from our laboratory have demonstrated the therapeutic efficacy 

of pFVIII. Using the murine platelet specific-promoter Gp1ba, hBDFVIII was expressed 

solely in platelets and megakaryocytes of transgenic mice on a FVIIInull background (Line 
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h38)108. We verified that Line h38 mice expressed a FVIII equivalent of 3% normal 

plasma activity and 9% antigen level (as human FVIII has ~30% specific activity in 

mouse plasma)108. This pFVIII level of expression was able to correct the hemophilia A 

phenotype in FVIIInull mice in several hemostatic challenges. In a mouse BMT study, we 

used the platelet-specific murine Cxcl4 promoter to express hBDFVIIIRH in platelets of 

FVIIInull mice109. When comparing these mice to mice that expressed hBDFVIII in their 

platelets, hBDFVIIIRH showed greater hemostatic efficacy in both the FeCl3 carotid and 

cremaster laser injury models, consistent with the known greater biological activity of 

hBDFVIIIRH 42,109.  

 pFVIII also shows efficacy in the presence of FVIII inhibitors. We previously 

showed that pFVIII in Line h38 mice was efficacious in FeCl3 injury after infusion of a 1:5 

mixture of two FVIII inhibitors, ESH8 and GMA-8021107. In another study, Dr. Shi and 

group demonstrated that transgenic mice expressing pFVIII was efficacious in the 

presence of high-titer inhibitors using a tail-clip exsanguination model118, but we have 

argued that this model may be too sensitive to low levels of released pFVIII under non-

physiologic (almost static) setting.   

To date, one study has demonstrated pFVIII efficacy in a canine model of 

hemophilia A. While this study showed that long-term canine pFVIII expression (5-9 

mU/108 platelets) could be achieved, it failed to test its efficacy in the setting of a 

hemostatic challenge model. Furthermore, this pFVIII was not tested in an inhibitor 

setting. In addition, only three dogs were studied, each having limited FVIII levels within 

their platelets122.  

 

Limitations of pFVIII 
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While pFVIII is a potential therapy for Hemophilia A patients with inhibitors, there 

are several limitations of expressing pFVIII by BMT gene therapy. Currently, assessing 

the degree of pFVIII protection in the presence and absence of inhibitors has been 

difficult in animal models. No model showing bleeds comparable to those affecting 

patients is available. Hemostatic assays such as the murine tail-clip exsanguination 

assay tend to be especially sensitive to low levels of pFVIII. Released pFVIII from α-

granules is not temporally or spatially available as plasma FVIII, which may explain its 

efficacy in the presence of inhibitors and its greater efficacy in some hemostatic models, 

but not in others. This temporal difference is likely the cause of potential emboli in pFVIII 

cremaster models of thrombosis our group has previously reported.  To expose a patient 

to BMT gene therapy with no assurance of efficacy with and without circulating inhibitors 

in a hemophilia A patient with significant bleeds in targets including joint, retroperitoneal, 

and intracranial would be risky.  

Additionally, achieving high-levels of pFVIII per platelet has been problematic 

with one report by Dr. Shi’s group describing an ~0.2 U/ml antigen correction in mice123.  

Whether the mice were accompanied with thrombocytopenia is not clear, as platelet 

counts in those animals and response of these mice to platelet production challenges 

were not reported123. Ectopically expressed FVIII can cause injury to the expressing cell 

due to poor intracellular processing of the FVIII. We showed this to occur in developing 

Mks, especially expressing canine FVIII and less so for hBDFVIII109. Achieving high 

levels of pFVIII expression is a desired goal, but may result in injured developing Mks 

and worsen post-BMT thrombocytopenia. A combination of thrombocytopenia and FVIII 

deficiency with inhibitors may be clinically challenging. Therefore, pFVIII BMT therapy 

has three theoretical limitations: 1) The post-BMT thrombocytopenia may be worsened 

by pFVIII, 2) Efficacy of pFVIII in target organs of patients with hemophilia A has not 
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been established, and 3) whether pFVIII may be effective in these target organs in the 

presence of inhibitors has yet to be tested in spite of the existence of a FVIIInull dog 

model of pFVIII.  

 

Motivation for studies  
	

 While pFVIII has many advantages it also has its limitations, particularly in the 

setting of BMT. The purpose of these studies is to try to address some of the limitations 

of pFVIII in the setting of BMT, persistent inhibitors, and life threating hemophilia A 

disease, offering an alternative therapeutic approach for pFVIII therapy in hemophilia A. 

To overcome the aforementioned limitations, I propose an alternative strategy for pFVIII 

therapy: expressing pFVIII in in vitro-grown megakaryocytes (Mks) and using the pFVIII-

Mks to generate platelets for acute or for prophylactic care in severe hemophilia A 

patients with uncontrollable inhibitor titer and a history of life-threatening disease. Such a 

strategy may be able to be given through weekly prophylactic infusions and be used in 

conjunction with acute treatment with bypassing agents for bleeds. Efficacy in a 

particular patient may also be an indication that that patient may be a good candidate for 

undergoing pFVIII BMT, with the potential of using pFVIII platelet infusion therapeutically 

during the immediate post-BMT period. 

 

Summary 
	

pFVIII as a potential therapy for Hemophilia A patients with intractable inhibitors 

has been an ongoing area of study. While strides have been made to bring this potential 

therapy to clinic, this approach in the setting of BMT is potentially problematic to a 
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subset of severe hemophilia A patients with high-titer inhibitors. This thesis seeks to 

address these limitations with an alternative approach of pFVIII therapy. By utilizing 

mouse Line h38 platelets that express hBDFVIII and hBDFVIII-containing human iPSC-

derived megakaryocytes (iMks), I explored the therapeutic benefit, both in vitro in a 

rotational thromboelastography assay (ROTEM) and in vivo in FVIIInull mice. I 

hypothesize that the Line h38 platelets infused into FVIIInull mice would simulate 

outcomes expected in patients treated in a similar fashion with modified human platelets 

made in vitro.  Our group has shown that infused iMks release platelets in vivo with 

similar biology as endogenous platelets and I hypothesize that pFVIII-iMks will give rise 

to platelets in vivo and these functionally derived platelets will mitigate the FVIIInull 

phenotype in mice. I show that the hemostatic effects with these approaches persist in 

vivo for several days. This therapeutic strategy is also effective in the presence of 

inhibitors, and can be additive with rFVIIa. The potential uses and limitations of this 

infused pFVIII approach are also discussed. Chapter 2 summarizes the potential use of 

infusions of FVIII containing platelets from our highest expressing hBDFVIII transgenic 

Line h38 mice to improve hemostasis in the presence and absence of inhibitors. In 

addition the ability of these platelets to have a combinatorial effect with rFVIIa bypassing 

agent is also explored here. Chapter 3 outlines the generation and characterization of 

iPSCs, viral transduction, and FVIII expressing iPS megakaryocytes iMks.  This chapter 

also details in vitro and in vivo effects of FVIII containing iMks on clot formation and 

thrombosis. Chapter 4 describes other studies utilizing human IgG localization in 

megakaryocytes to better understand how pFVIII achieves its protection from inhibitors 

as well as lessons learned from adenovirus-associated site 1 (AAVS1) to express pFVIII 

in iPSCs. Chapter 5 will conclude this thesis with clinical implications and future 

directions of the outlined studies.  
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Figures  

 
 
Figure 1.1: Interaction with ER proteins help to mature FVIII (adopted from Randal 
Kaufman21) 
Developing FVIII binds to critical ER chaperones: BiP, CNX, and CRT that help ensure 

the protein is properly folded. After being fully translated FVIII binds to CXN and RT that 

help fold and prune sugars on glycoproteins. FVIII stays within this CNX/CRT complex 

until folded into the correct configuration. If FVIII is properly folded, it exits the ER. Upon 

leaving the ER, properly folded FVIII binds to ERGIC-53/MCFD2 and trafficked to the 

Golgi for further processing. If FVIII is not properly folded, it exits the CNX/CRT complex 

and bids to BiP. FVIII binding to BiP marks it for Endoplasmic-reticulum-associated 

protein degradation (ERAD) and FVIII is degraded.  
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R1645H, Δ 

 
Figure 1.2: FVIII protein structure, activation, and inactivation (adopted from Steve 

W. Pipe28).  
From top, Red line in full length FVIII indicates R1634H and Δ mutation in order to create 

variants. Full length FVIII is processed within LSEC cells and then secreted into the 

blood stream as heterodimer held together by a divalent metal ion. Thrombin then 

cleaves the B-domain from heavy chain of FVIII and the a3 acidic domain allowing VWF 

to dissociate. Upon further thrombin processing FVIII becomes a heterotrimer and the 

activated FVIIIa, at which point it can exhibit its co-factor activity. Inactivation occurs 

quickly through dissociation of A2 domain and further proteolysis by thrombin and aPC. 
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Figure 1.3: FVIII’s role in hemostasis and clot formation.  

FVIIIa’s role in the intrinsic pathway of the coagulation cascade. Exposure of tissue 

factor (TF) at the site of vascular injury binds to FVIIa and activates FX. Activated FVIII 

works as a co-factor with FIXa to convert FX to FXa. Red box indicates FVIIIa:FIXa Xase 

complex. These two pathways ultimately increase the level of FIIa, which cleaves 

fibrinogen to fibrin to form. This fibrin is then able to bind to platelets and form a 

cohesive platelet plug at the site of vascular injury.  
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Chapter 2 – In Vitro and In Vivo Hemostatic Therapeutic Efficacy of FVIII-
Containing Mouse Platelets 
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Abstract  
 

pFVIII is able to correct the bleeding phenotype seen in FVIIInull transgenic 

animals, however, to date this has been accomplished largely by bone marrow 

transplant (BMT) which can be problematic in patients with hemophilia A and intractable 

inhibitors. We tested an alternative pFVIII-approach using platelets containing hBDFVIII 

at a fairly high level to examine its potential therapeutic value. We envision that our 

studies will show that infused pFVIII platelets can provide hemostatic efficacy for a 

relatively prolonged period of time and can be used additively with a bypassing agent 

and can do so in spite of the presence of an inhibitor. In this chapter, I describe the in 

vitro and in vivo efficacy of infusing FVIII containing platelets as a therapy for Hemophilia 

A, their therapeutic efficacy in the presence of FVIIa, and the efficacy of pFVIII in the 

presence of inhibitors with and without FVIIa. First, I describe the transgenic mice used 

in these studies, FVIIInull and our murine transgenic Line h38 expressing hBDFVIII in 

their platelets on FVIIInull background. Line h38 is the highest expressing hBDFVIII 

transgneic line available to us. It has been breed onto the FVIIInull background. Efficacy 

of pFVIII line h38 platelets were studied in an in vitro ROTEM assay with and without a 

bypass agent. The ability of infused pFVIII platelet infusion to abrogate the FVIIInull 

phenotype seen in in vivo FeCl3 carotid assay, and tail-vain exsanguination assay were 

done and the half-life of the observed hemostatic improvement was followed. Finally, the 

effects of combined efficacy of FVIIa and infused pFVIII in FeCl3 assay in the presence 

and absence of FVIII inhibitors was examined. These studies showed that pFVIII infused 

platelets can provide a relative prolonged therapeutic benefit that was effective in the 

presence of inhibitors and that was enhanced by inclusion of a bypass agent. 
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Introduction 
 

 Genetically modified animals or transgenic organisms are a powerful research 

tool utilized by many laboratories. Dr. Ralph Brinster in collaboration with Dr. Richarad 

Palmiter at the University of Pennsylvania was one of the first researchers to 

successfully create a transgenic mouse that was capable of passing its genetically 

altered genes to its offspring124,125. While Brinster and Palmiter first used this technology 

to express oncogenes in mice, their techniques and ideas proved to be translatable to an 

array of genes that allow researchers to mimic clinical disease states and to study 

potential therapeutic interventions.   

  To this end, our laboratory has utilized a FVIIInull mouse model of hemophilia A, 

first created and described by Dr. Kazazian, that exhibits the prolonged bleeding time 

seen in hemophilia A patients126,127. These mice have a disruption in exon 16 of their 

FVIII gene that results in a truncated dysfunctional form of the FVIII protein. This 

mutation ultimately causes a severe form of the disease with <1% FVIII activity126. While 

these mice have no residual FVIII activity, they do not develop spontaneous bleeds into 

their joints as humans do. However, following a number of hemostatic challenges, these 

mice can bleed to death. For example, tail transection of these animals causes them to 

expire a few hours post clipping128. 

 One major hallmark of severe hemophilia A in human is the occurrence of 

significant arthropathy of the synovial cavities of the large joints129,130. For patients that 

lacked regular FVIII replacement therapy, by age 25 years over 85% of these patients 

have major morphology changes in key joints129. An injury model of chronic synovitis has 

been developed for these mice where mechanical trauma is induced in these joints131. 
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These models have been used to test the effect of bypassing agents in these animals; 

however, there are several limitations with this model the first being these bleeds are not 

spontaneous as in humans132. The second is that these models do not mimic weight on 

these joints as seen in humans133. Like humans, however, these mice develop 

antibodies to infused FVIII. Their immune response to infused FVIII is very similar to that 

in severe hemophilia A patients that develop inhibitors and has been extensively studied 

and used to develop potential therapeutic134.  

 Our laboratory has utilized these mice to test the efficacy of a platelet delivery 

system for FVIII. In 2003, Dr. Yaravoi developed transgenic mice lines that expressed 

hBDFVIII solely in their megakaryocyte and platelets, driven off of the murine Gp1ba 

promoter. The highest expressing transgenic line, Line h38, had an antigenic FVIII level 

of 9% and an activity level of 3% determined by ELISA and Coatest assays, 

respectively108. This level of expression is able to almost completely rescue the 

hemophilia A phenotype in a FeCl3 carotid artery model. These mice achieved occlusion 

similar to wild-type mice and to FVIIInull mice infused with a 50% soluble hBDFVIII 

correction dose. Furthermore, these studies indicated that in all the transgenic lines, 

FVIII was in the platelet α-granules with none detected circulating in the plasma after 

they were crossed onto a FVIIInull background. The pFVIII was shown to colocalize with 

vWF, presumably in α-granules, and could be released upon platelet activation108.  

 The efficacy of these platelets was directly compared to infused recombinant 

hFVIII in the presence of an inhibitor mixture consisting of ESH8 and GMA-8021. 

Gewirtz et al. showed that Line h38 mice were able to protect against FVIII inhibitor 

inactivation better than plasma FVIII. The efficacy seen in the FeCl3 was modest, 6-7 

fold improvement in BU per mL compared to hFVIII infusion107. These results were 
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slightly different than those seen with the pFVIII mouse developed by Dr. Shi’s group. 

Using the tail-vein exsanguination model, they showed that pFVIII was efficacious in the 

presence of high-titer inhibitor and protective top >20 BUs118.  

Obtaining high levels of pFVIII in transgenic animal models as well as cell lines 

has been challenging. One reason is that FVIII is toxic to the expressing ectopic cell and 

expressing it at high levels can lead to ER stress and apoptosis135. We showed that 

expressing canine FVIII injured megakaryocytes, and that hBDFVIII was also 

deleterious109. Canine pFVIII expression in mice through lentiviral BMT showed that 

canine FVIII could inhibit platelet production from donor-derived megakaryocytes. To 

date, Dr. Shi has developed a transgenic mouse that expresses ~0.2 U/ml antigen 

correction, roughly twice that seen in Line h38123. We utilized our Line h38 mice in our 

studies because it is the transgenic line with the highest level of pFVIII that is available 

to us and has been well characterized, including measurements of the platelet count and 

response to various hemostatic challenges108,110. 

 

Human FVIII inhibitors 

About twenty-thirty percent of patients with severe hemophilia A that have 

received recombinant FVIII therapy will develop inhibitors to the infused therapy. Type 1 

inhibitors inactivate FVIII through potentially binding to the A2 and A3 domains of FVIII89. 

These sites are close to the bindings sites for FIXa. Another main epitope of FVIII 

inhibitors is the C2 domain that binds to the surface of platelets. After inhibitors bind and 

inactivate FVIII, the FVIII is quickly cleared. Some inhibitors even bind to FVIII-

associated proteins such as: FIXa, FXa, and VWF. The inhibitor studies outlined in this 

chapter are a mix of two inhibitors commonly used in inhibitor studies and that are well-

characterized, ESH8 and GMA-8021. ESH8 is a mouse monoclonal antibody that binds 
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to the human FVIII C2 domain in the presence of VWF136,137. GMA-8021 is a mouse 

monoclonal antibody also originally known as R8B12138 binds to the C2 domain of 

FVIII139,140. We previously showed that a 1:5 (µg:µg) could fully inhibit plasma FVIII when 

infused into a FVIIInull recipient mouse at 1ug/gram107.  

 

Bypassing agents  

Current treatment for hemophilia A patients with inhibitors is ITI with high levels 

of infused FVIII with or without immunosuppression therapy95. Where high-titer inhibitors 

persist, bleeds are treated with bypassing agents. Currently there are two FVIII 

bypassing agents that are clinically used to treat Hemophilia A patients with inhibitors, 

rFVIIa and activated prothrombin complex concentrates (aPCCs), notably	 FEIBA. A 

potential third therapy is emicizumab (ACE910), which heterodimerizes FIX and FX, 

which is currently undergoing clinical trials.   

The first two bypassing agents are used for either prophylactic treatment or for 

acute events. aPCC is produced from pooled plasma that contains factors all of the 

vitamin K-dependent factors: VII, II, IX, and X. rFVIIa is a purified recombinant protein 

that has reported efficacy in patients with inhibitors with acute bleeds141,142. rFVIIa doses 

for inhibitor patients ranges from 35-90 µg/kg. Its expense and its short half-life of 2-3 

hours are its most challenging limitations143-145. aPPCs also have reported efficacy in 

patients with inhibitors. rFVIIa and aPPC has a reported efficacy rate of 85% and 80% in 

inhibitor patients respectively. While both have significantly improved quality of life for 

hemophilia A patients with inhibitors, these bypassing agents are not as effective as 

FVIII at treating acute bleeds and their short half-lives limits their prophylaxis use141,142.  

To note, ACE910 is currently in phase three clinical trials and has shown promise 

as a bypassing agent146. This humanized bispecific antibody mimics activated FVIIIa 
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binding FIX and FX. ACE910 has good bioavailability after subcutaneous injection and 

has a half-life of up to 5 weeks147. A 12-week study showed 72% of patients enrolled in 

the study with inhibitors had no bleeding events while on the therapy. Dose regimens 

included 0.3, 1.0, or 3.0 mg/kg once a week146. Unfortunately, the success was marred 

due to a patient’s death post conclusion of the initial study. While on ACE910, this 

patient being treated for a rectal hemorrhage, developed signs of thrombotic 

microangiopathy and died98. Whether the occurrence of thrombotic microangiopathy on 

this drug will be a common complication in a significant number of patients needs further 

study.  

 

Materials and Methods   
	

 
Mice lines  

FVIIInull mice with exon 16 disruption in F8 gene126,127, the murine transgenic Line 

h38 expressing hBDFVIII in their platelets108, and the transgenic hαIIb-expressing 

line148,149 were previously described. Line h38 mice are on the FVIIInull background, but 

are designated simply as Line h38. All mice have been previously backcrossed onto a 

C57Bl6 background for >10 generations. In all studies, 6-10 weeks of age littermate 

mice of either sex were studied.  

 

Isolation of whole blood and platelets  

Whole blood of FVIIInull, Line h38, and hαIIb-expressing mice were collected from 

the inferior vena cava in 3.8% sodium citrate as described150,151. Mice were anesthetized 

using pentobarbital (80 mg/kg, Akorn Pharmceuticals) and vena cava exposed. Up to 
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1ml of whole blood was then collected into 1 ml BD syringes using a 23-gauge needle 

(precision glide, BD, New Jersey). 3.8% Sodium citrate was added to the whole blood to 

obtain 10% of total volume. Whole blood was used directly in ROTEM studies or for in 

vivo infusion studies after isolation of platelets using differential centrifugation as 

previously described. To isolate platelets, 1 µl of PGE-1 was added to whole blood to 

prevent platelet activation. Whole blood was then centrifuged for 10 minutes at 860 RPM 

to first isolate platelet rich plasma (PRP). The PRP was then spun at 3000 RPM for 8 

minutes, and the resulting platelet pellet was washed twice and then re-suspended in 

PBS or platelet re-suspension solution. In some studies, supernatant from PRP was 

tested for the presence of FVIII as previously described108,152 (data not shown). Total 

blood and platelet counts were determined using a HemaVet counter (Triad Associates) 

prior to study. Whole blood and platelet suspensions were used within 1 hour for both in 

vitro and in vivo infusion studies. In some studies, Line h38 whole blood was mixed with 

that of FVIIInull mice to obtain decreased percentages of Line h38 platelets. 

  

ROTEM studies for pFVIII 

Whole murine blood was recalcified to 10 mM with 0.2 M CaCl2, and then 110 µl 

of whole blood was transferred to 37°C ROTEM minicups (Werfern) for assessment via 

ROTEM thromboelastometry using an INTEM-based assay, as previously 

described153,154. INTEM reagent (Werfern), an intrinsic pathway activator of kaolin155, was 

used to activate mouse whole blood. In some studies, supplemental rFVIIa (1-50 nM, 

final concentration, NovoNordisk) was added to FVIIInull whole blood ROTEM cups. In 

other studies, iMks expressing either hBDFVIII or the hBDFVIIIRH variant, eGFP, or no 

added protein non-transduced control (NTC) were added to FVIIInull whole blood in 

ROTEM minicups. Care was taken to insure that no more than 10 µl of cell suspension 
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was added to whole blood. In other studies, human full-length rFVIII (0.01-1.0 ng/ml final 

concentration, Advate, Shire) was added to FVIIInull whole blood as a positive control. 

The thromboelastometry assay was carried out for up to 30 minutes, and data were 

collected and analyzed via ROTEM software (Werfern). Typical ROTEM readout and 

parameter collected for these experiments are illustrated in Figure 2.1.  

 

rFVIIa 

rFVIIa utilized in these studies in vitro and in vivo studies was obtained from 

NovoNordisk (1mg doses). 1.1 ml histidine diluent, supplied, was used to reconstitute 

lyophilized powder. Protein was used immediately for infusion studies or aliquoted and 

stored at -80°C. 

 

Mouse platelet half-life studies   

To define platelet half-life and total percentage of infused circulating platelets 

post infusion, 4x108 hαIIb-expressing or calcein AM-loaded platelets were infused into 

FVIIInull mice and analyzed over 72 hours via flow cytometery. Platelets were infused via 

the tail-vein and blood collected from the retro-orbital sinus at various time points. Blood 

was collected using Microhematocrit Capillary Tubes (Fisherbrand) into minicapillary 

blood collection tubes prepared with EDTA DI potassium salt (RAM Scientific Inc.). 1 µl 

of blood was added to 100 µl antibody solution containing anti-CD41a-allophycocyanin 

(APC), and anti-CD42b-phycoerythrin (PE) (both BD Biosciences) antibodies. 

Antibody/blood samples were allowed to incubate for 20 minutes at room temperature. 

400 µl of phosphate buffered saline (PBS,Gibco) was added to each sample after 
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incubation, and the samples were analyzed via flow cytometry using a BD FACSCanto II 

(BD Biosciences) and further analyzed using FlowJo software.   

 

Tail-clip exsanguination assay  

The tail-clip exsanguination assay were performed in FVIIInull mice after they had 

received up to 4x108 Line h38 or FVIIInull control platelets in 100 µl in PBS, 0.5-72 hours 

prior to the injury. Controls also included FVIIInull mice that received 100 µl of PBS. In 

some studies, FVIIInull mice were infused with 0.25, 1 and 4 mg/kg rFVIIa retro-orbitally, 

up to 2 hours prior to injury. After these infusions, mice tails were resected to 2mm in 

diameter to allow for significant bleeding118. Mice were allowed to bleed overnight and 

then checked up to 16 hours post tail resection. The primary endpoint was the number of 

mice surviving over night.  

 

FeCl3 carotid injury assay  

The FeCl3-induced carotid artery injury assay in FVIIInull mice was previously 

described by us and shown to correlate to the amount of recombinant hFVIII 

infused108,109,152. Mice were transfused with either 2-4x108 Line h38 or FVIIInull platelets 

0.5-72 hours after being anesthetized using pentobarbital (80 mg/kg). The right carotid 

artery was then isolated and exposed to a 20% (W/V) FeCl3-saturated 1 X 2 mm 

Whatman 1 filter paper for 3 minutes. Upon removal of the FeCl3-saturated paper, the 

open surgical site was filled with PBS. Blood flow was then measured using a Doppler 

flow probe (Model 0.5VB, Transonic Systems). Total flow was recorded for 30 minutes, 

and the volume of blood flow over that time-frame was the primary endpoint.  

In some FeCl3 carotid artery injury studies, 0.1-2.0 µg of inhibitors per gram of 

mice in a total of 50 µl of water (see next paragraph) were infused via the jugular vein of 
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mice prior to the FeCl3 carotid injury assay. In other injury studies, rFVIIa at a 

concentration of 1-4 mg/kg was infused immediately prior to the FeCl3 carotid injury 

assay. In other studies, rFVIIa was infused via the jugular vein into FVIIInull mice at a 

concentration of 0.25-4.0 µg/kg concurrent with Line h38 platelet infusion and 0.1-2.0 µg 

inhibitor mixture.  

 

FVIII inhibitors 

For several studies, FVIII inhibitors were infused. Based on a prior study from our 

group showing optimal inhibition of plasma FVIII and pFVIII biology, a cocktail of two 

FVIII inhibitors consisting of 1 µg of ESH8 (BioMedica Diagnostics) plus 5 µg of GMA-

8021 (Green Mountain Antibodies) was used107. GMA-8021 is an IgG2a anti-human FVIII 

antibody that has specificity to the A2 domain138. ESH8 is a potent inhibitor that binds to 

the FVIII C2 domain in the presence of VWF and is also an IgG2a isotype137,156.  0.1-2.0 

µg of inhibitors mixture per gram of mice in a total of 50 µl of water were infused into the 

mouse via the jugular vein.  

 

Animal study approval 

All studies were carried out with the approval of the Children’s Hospital of 

Philadelphia’s Institutional Animal Care and Use Committee. 

 

Statistical analysis 

Statistical differences between arms were determined using a two-sided 

Student’s t-test or analysis of variance (ANOVA) with Bonferroni, Dunnett’s or Tukey’s 

corrections of multiple comparisons, when appropriate. PRISM 7.0 (Graphpad) was used 

to calculate statistical significance. P-Values ≤0.05 were considered significant.  
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Results  
 

ROTEM studies with recombinant full-length hFVIII 

 To evaluate the hemostatic efficacy of pFVIII, we first determined the hemostatic 

efficacy of hFVIII added at varying concentrations of 0.01, 0.1, and 1.0 ng/ml in FVIIInull 

mouse whole blood on ROTEM analysis (Figure 2.2). ROTEM is particularly sensitive to 

deficiencies in whole blood and plasma. Using this method allowed us to notice small 

changes in FVIII that may be efficacious in FVIIInull whole blood. Each concentration of 

soluble FVIII showed some level of clot formation. Results were seen in a dose-

dependent manner with 0.01 displaying the least amount of clot formation.  

 

In vitro studies using Line h38 platelets and rFVIIa 

ROTEM analysis was then used for in vitro studies of transgenic mouse lines, 

FVIIINull and Line h38. Wild-type mice were also run as controls. FVIIInull mice whole 

blood showed no hemostatic efficacy in this system. Line h38 blood partially corrected 

the hemostatic defect of FVIIInull murine blood (Figure 2.3A). To determine the amount of 

Line h38 blood that was required for this effect, Line h38 whole blood was diluted with 

FVIIInull blood, and ROTEM was performed (Figure 2.3B). Clot formation was detected in 

as little as 1% Line h38 blood while 20% Line h38 blood was enough to bring clotting 

close to that seen with whole Line h38 blood.  

 rFVIIa was then studied as present-day alternative therapy for patients with 

hemophilia and inhibitors1,144 and the potential combination use of rFVIIa and pFVIII. 

rFVIIa was added to FVIIINull whole blood to obtain at final concentration of 10 and 25 nM 

and then analyzed via ROTEM assay (Figure 2.4A). 25 nM or 90 ug/kg is a 
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pharmacological dose for inhibitor patients157,158. While both concentrations of rFVIIa 

were able to induce clotting to some extent in this assay, only 25 nM was able to bring 

parameters back near to that of wild-type; however, delay in clot time remained 

suggesting that sufficient time is needed to generate sufficient FXa for hemostasis to 

occur. The effect of adding both rFVIIa and Line h38 platelets in combination was also 

investigated in this assay. 10 nM of rFVIIa in combination with Line h38 whole blood was 

able to have an additive effect that was greater than Line h38 whole blood alone (Figure 

2.4B).  

 

In vivo studies of infused Line h38 platelets 

 To better understand the hemostatic value of pFVIII in vivo in FVIIInull mice, the 

half-life of infused mouse platelets was determined via flow cytometry (Figure 2.5). 

Isolated mouse WT platelets were either labeled with calcein-AM prior to infusion or 

infused transgenic hαIIb mouse platelets were labeled with an anti-hαIIb antibody after 

collection from the recipient FVIIInull mice. Blood was collected at various time points and 

analyzed for percentage of remaining infused platelets. The data indicates that isolated 

and infused mouse platelets had a half-life of about 22 hrs consistent with other studies 

by our group and others151,159.   

The hemostatic effects of infusing pFVIII-expressing Line h38 platelets into 

FVIIInull recipient mice was tested after infusing sufficient platelets so that line h38 

platelets represented ~15% of the total circulating platelets. This number of platelets 

would represent the number of platelets that is given in a straight-forward platelet 

transfusion in clinical setting160, and could be tolerated on a recurring basis.  Hemostatic 

efficacy was tested in the recipient mice in the tail-clip exsanguination assay that many 
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groups, including ours, have used to study corrected hemostasis in FVIIInull mice118,161 

(Figure 2.6). Mice were infused with Line h38 or FVIIInull platelets and then their tails 

were resected to 2 mm in diameter. Mice that received Line h38 platelets, but not FVIIInull 

platelets survived the overnight hemostatic challenge (Figure 2.6A). This hemostatic 

effect lasted at least 72 hours post-platelet infusion. The hemostatic effects of rFVIIa 

were also tested in this model (Figure 2.6B). rFVIIa was infused in FVIIINull mice at 

concentration of 0.25, 1.0, and 4.0 mg/kg. As with other studies, high doses of rFVIIa 

were needed to have an effect in hemophilia A mice tail bleeding and FeCl3 models153,162. 

Only the highest dose was able to rescue the mice, and by 2 hours post-infusion, the 

response in the tail-clip exsanguination assay had lessened.  

PFVIII hemostatic efficacy was also tested in the FeCl3 carotid artery injury model 

in which we had previously shown a clear defect in FVIIInull mice and a gradient of 

increased hemostatic efficacy at increasing infusions of hFVIII108. Infusion of Line h38 

platelets – but not non-pFVIII platelets – into FVIIInull mice was effective in decreasing 

blood flow up to 48-hours post-infusion (Figure 2.7A). rFVIIa was also effective in 

improving hemostasis in this model, but an additive effect with Line h38 platelets was 

seen in recipient FVIIInull mice (Figure 2.7B). Line h38 mice and prophylactic pFVIII 

infusions in the presence of inhibitors were tested in this model (Figure 2.7C and 2.7D). 

Prior to platelet infusion, we injected mice with a single dose of an inhibitor mixture that 

we previously showed fully inhibited pFVIII function in Line h38 mice (Figure 2.7C). We 

confirmed these findings and defined an inhibition dose that did not inhibit hemostasis in 

Line h38 mice, but did completely inhibit an infusion of Line h38 platelets to 15% (Figure 

2.7D); however, the addition of rFVIIa to this pFVIII therapy was able to decrease this 

inhibition.  
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Discussion   
 

The delivery of ectopic proteins by platelets to sites of vascular injury had been 

proposed by our group more than 15 years ago108. Our group has designed a platelet-

specific thrombolytic agent delivery strategy involving the storage of urokinase-type 

plasminogen activator (uPA) within α-granules and their release at nascent thrombi as a 

thromboprophylaxis agent82. These studies showed the potential of using platelets as a 

potent delivery system without systemic sequelae. This type of delivery system was also 

proposed to be applicable to the delivery of FVIII in hemophilia A patients with inhibitors 

as well107.  

In these studies, we propose that infusions of pFVIII-containing platelets may be 

an effective alternative treatment for patients with severe hemophilia A and intractable 

inhibitors for acute or prophylactic care. This therapy would be useful in place of 

bypassing agents. These platelets would provide coverage for a longer period of time 

than present-day FVIII-bypassing agents and may provide additive therapeutic potential 

with inhibitors especially in the presence of inhibitors. Moreover, it would be therapy that 

would avoid the potential life-threatening complication of doing platelet-directed bone 

marrow gene therapy and/or can be used to help patients survive the challenges of that 

process. 

As a proof-of-principle for this concept of infused pFVIII platelets, we utilized Line 

h38 platelets which have ~0.09 U (~75 ng) of hBDFVIII antigen per ml of mouse 

blood108. Previous in vitro studies done using ROTEM technology, showed that rFVIII 

can correct the hemostatic deficiency of FVIIInull blood in this system123. Whole blood 

from FVIIInull mice expressing high levels (~0.2 U/ml of murine blood) of pFVIII have also 

been previously reported to partially correct hemostatic function on 
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thromboelastography, although still showing a prolonged initiation of clot time. We 

confirm these results with our Line h38 whole blood including the prolonged clot time 

(Figure 2.3). This delay in clot time is likely due to the time it takes for platelets in the 

blood to become activated and release significant amounts of their granule pFVIII 

content. This explanation is supported by inclusions of low doses of rFVIII where the 

initial effects of very low dose rFVIII has a similar prolonged initiation of clot time  (Figure 

2.2).  Interestingly, as little as 1% Line h38 blood added to FVIIInull whole blood was able 

to have some effect in this model with 20% approximating that seen with Line h38 whole 

blood, supporting the potential value of therapeutic pFVIII platelet transfusions (Figure 

2.5B).  

To examine additive effects of pFVIII platelet infusions with bypassing agents, 

rFVIIa was used; one of the two present-day approved bypassing agents141,142,157. We 

show that clot formation was detectable with as low as 10 nM rFVIIa in ROTEM studies, 

while the addition of 25 nM FVIIa was required to improve maximum clot formation in 

ROTEM comparable to WT levels but still showed slight deficit in clot time (Figure 2.5A). 

This prolongation is consistent with rFVIIa not directly correcting the underlying 

hemostatic defect, but rather bypassing the defective step in the coagulation cascade. 

The addition of 10 nM rFVIIa to Line h38 blood showed an additive effect with a 

decrease in initiation of clot time, however the lag in clot time was still present (Figure 

2.5B). This failure to correct the clot time may again be in part due to the need for 

platelet activation and pFVIII release to begin to have pFVIII contribute to overall 

hemostasis. In addition this delay in hemostasis is due to low levels of either 

supplemental rFVIII (Figure 2.2) or rFVIIa (Figure 2.4). 

Prophylactic infusions of pFVIII platelets were further tested in vivo in two distinct 

assay systems beginning with the tail-clip exsanguination assay. The recipient infused 
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FVIIInull mice survived an overnight tail-clip exsanguination assay, which, in agreement 

with prior observations, was 100% lethal in non-transfused FVIIInull mice or mice infused 

with non-pFVIII platelets. The hemostatic effects of infusing pFVIII-expressing Line h38 

platelets into FVIIInull recipient mice was sufficient to result in ~15% of the circulating 

platelets being from Line h38. Such a level of infused platelet should be achievable 

clinically and a correction of this level had shown hemostatic efficacy in vitro (Figure 

2.3). Beginning at 1 and extending to 72 hours post-infused Line h38 platelets (Figure 

2.6A), there was improved survival in this tail-clipping hemostatic model in FVIIInull mice. 

This effect was not due to simply having infused platelets into the FVIIInull mice (Figure 

2.6A). We also found that the half-life of infused platelets prepared by us was ~22 hours 

(Figure 2.3), consistent with half-lives reported for infused murine platelets by others. By 

72-hours post-infusion of 15% Line h38 platelets, we anticipate that <2% of the 

circulating platelets would be Line h38-derived. In contrast to this infusion of pFVIII 

platelets, infusion of rFVIIa was ineffective at rescuing recipient FVIIInull mice from tail-

clip exsanguination even 0.25-hour post-infusion unless a high dose of 4 mg/kg rFVIIa 

was given, but even here, hemostatic efficacy was mostly gone 1.5-hours post-infusion 

(Figure 2.6B) consistent with the known short half-life of human rFVIIa in mice. It is worth 

noting that cessation of bleeding in the high dose rFVIIa arm was observed early in the 

assay, after the tail clip, indicating residual levels of rFVIIa might have improved their 

survival (data not shown).  

The FeCl3 carotid artery injury model was also used to study in vivo hemostatic 

challenges in FVIIInull mice. Previous work from our group has shown a positive 

correlative relationship between infused human rFVIII and decreased blood flow108. This 

assay can be completed within 30 minutes, and thus would allow studies of the additive 
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effects of pFVIII with rFVIIa. Mice infused with Line h38 platelets saw therapeutic 

efficacy for at least 48-hours post-infusion (Figure 2.7A).  

We believe that the differences between efficacy of pFVIII platelets by the two in 

vivo assays is the greater sensitivity of the tail-clip exsanguination assay to low levels of 

pFVIII as stasis likely occurs in the tails of these animals allowing greater efficacy to the 

available pFVIII161.  Nevertheless, if the half-life of these platelets and their therapeutic 

efficacy in mice, were extrapolated to humans, one would imagine a therapeutic window 

of 2-3 weeks, assuming a human platelet half-life of ~7-10 days. Line h38 platelets 

showed a combinatorial effect with rFVIIa (Figure 2.7B), indicating that this bypassing 

agent could be added to patients on pFVIII infusion prophylaxis therapy in settings of 

acute bleeds. More importantly, prophylactic pFVIII infusion was able to be effective in 

the setting of inhibitor (Figure 2.7D), this effect was also enhanced with the addition of 

rFVIIa.  
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Figure 2.1 Rotational Thromboelastometry (ROTEM) parameters  

Example of typical ROTEM data and parameters obtained from running in vitro 

experiment. Graph indicates the time it takes to initiate clotting: clot time (CT), the time it 

from when clotting starts to when clotting reaches 20mm of firmness (green area): clot 

forming time, the maximum stiffness of the clot: maximum clot firmness (MCF), and the 

steepness of the clotting curve: alpha angle.  
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Figure 2.2 Addition of soluble rFVIII improves clotting in in vitro ROTEM assay 

beginning with FVIIInull blood.  

Studies similar to Figure 2.1 except that the noted concentrations of rFVIII were added to 

of FVIIInull (KO) whole blood to achieve the concentrations noted. Each curve represents 

4 independent studies.   
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Figure 2.3 ROTEM analysis of WT, FVIIInull and Line h38 mice whole blood as well 

as studies of admixtures of Line h38 into FVIIInull whole blood. 

Whole blood from WT (black), Line h38 (brown), and FVIIInull (yellow, KO) mice were 

studied by ROTEM in (A) and (B). (A) Each curve represents 5 independent studies. (B) 

Same analysis as (A) in which Line h38 whole blood was added into FVIIInull to result in 

1, 5 or 20 percent levels of Line h38 platelets in the blood mixture. Each curve 

represents 4 independent studies.   
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Figure 2.4 Additive effect of rFVIIa and pFVIII by ROTEM.  

ROTEM analyses were performed as in Figures 2.1-2.3. (A) rFVIIa was added to FVIIInull 

mouse whole blood to bring the final concentrations to 10 and 25 nM. (B) Line h38 whole 

blood in the absence (red) and presence (purple) of 10 nM rFVIIa added were compared 

to FVIIInull mouse whole blood with 10 nM rFVIIa (blue). WT (black) and FVIIInull (yellow) 

mouse blood were used as positive and negative controls, respectively, in both (A) and 

(B). Each curve represents 4 independent studies in both (A) and (B). 
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Figure 2.5 Half-life of isolated mouse platelets infused into FVIIInull mice.  

(A) Half-life based on infusing 1-4x108 human hαIIb-expressing mouse platelets into 

FVIIInull mice. Total hαIIb-expressing platelets were tracked over 72 hours via flow 

cytometry. Measurement of remaining infused human platelets normalized to level at 5-

minutes post-infusion. Mean ± 1 SEM are shown. N = 4 independent studies. (B) 

Calcein-AM 4x108 loaded WT platelets infused into FVIIInull mice. Percent of circulating 

platelets that contained calcein are shown. Mean ± 1 SEM are shown. N = 3 

independent studies.  
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Figure 2.6 Survival post Line h38 platelet and rFVIIa infusion in the tail-clip 

exsanguination assay. 

(A) and (B) tail-clip exsanguination assay with expiration assessed 16-hours post-tail 

clip. (A) On the left part of the graph, WT, FVIIInull and Line h38 mice underwent tail-clip 

exsanguination. On the right, FVIIInull mice were infused with 15% Line h38 platelets and 

then underwent tail-clip exsanguination at 1, 24, 48, and 72-hours post-infusion. Percent 

of animals surviving of N = 4 animals per arm is shown for each time point. (B) On the 

left part of the graph, WT, FVIIInull and Line h38 mice underwent tail-clip exsanguination. 

On the right, mice were infused with 0.25, 1 and 4 mg/kg rFVIIa, retro-orbitally 15 

minutes prior to tail resection plus additional mice studied at 4 mg/kg rFVIIa 1.5 hours 

after the infusion with N = 4 animals per arm. Percent of animals surviving of N = 4 

animals per arm is shown for each concentration.  
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Figure 2.7 Efficacy of Line h38 platelet in the FeCl3-carotid artery injury model.  

FeCl3-carotid artery injury studies were studied using a 20% FeCl3 solution and a three-

minute injury as described109,152. Area under the curve (AUC) of subsequent blood flow 

was measured. In all studies, P values determined by one-way ANOVA. (A) WT, FVIIInull, 

Line h38 mice were studied as were FVIIInull mice infused with either WT or Line h38 

platelets to achieve 20% of the circulating platelets in the recipient. Those animals 

infused with Line h38 platelets were studied up to 72 hours later. Mean ± 1 standard 

error of the mean (SEM) are shown with N = 5 animals per arm. (B) Same as in (A) with 

studied FVIIInull mice infused with the indicated amounts of Line h38 platelets and rFVIIa. 

Mean ± 1 SEM are shown with N = 5 animals per arm. (C) Line h38 mice were infused 
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with varying concentrations (1.0, 1.5, or 2.0 µg/g of mice) of the inhibitor mixture prior to 

the FeCl3 injury. Mean ± 1 SEM are shown with N = 5 animals per arm. (D) FVIIInull and 

Line h38 mice were studied in the FeCl3-carotid artery injury model as in (A). FVIIInull 

mice were also infused with ~15% Line h38 or WT platelets and with varying 

concentrations of the inhibitor mixture (0.2, 0.5, or 1.0 µg/g of mice) ± 1 mg/kg of rFVIIa 

prior to the FeCl3 injury. Mean ± 1 SEM are shown with N = 5 animals per arm. 
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Chapter 3 – Generation and in vitro and in vivo characterization of iMks 
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Abstract 
	

Using lentivirus to express genes in cells that normally do not express them has been a 

hallmark of gene therapy. To this end, I have used separate lentiviral constructs to 

express the three FVIII variants; hBDFVIII, hBDFVIIIRH and hBDFVIIIΔ and then 

transduce them into differentiating induced pluripotent derived megakaryocytes (iMks). 

hBDFVIIIRH and hBDFVIIIΔ have greater hemostatic efficacy and biology activity in 

comparison to hBDFVIII due to a mutation in a PACE/Furin cleavage site. This chapter 

details the generation of human iPSCs (WT control) from human bone marrow cells, 

their maintenance, and differentiation into iMks. In addition, this chapter will outline a 

protocol for making viral vectors and their use in transducing HPCs that will are 

differentiated into iMks. Next, I characterize these FVIII-expressing iMks (pFVIII-iMks) 

and investigate the effects of expressing FVIII on Mks F8 mRNA levels, injury to the 

iMks and apoptosis, iMk responsiveness to agonists/activation. Lastly, I describe these 

FVIII-expressing iMks’ efficacy in in vitro and in vivo assays of clot formation and 

thrombosis. Ultimately, these studies indicate the potential use of iMks in infusion 

therapy for severe Hemophilia A patients.   
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Introduction 
 

Since the advent of iPSCs in 2006, many researchers have used this technology 

to model rare diseases, research areas of regenerative medicine, and develop potential 

therapeutics. iPSCs are made by ectopically expressing four transcription factors, Oct-4, 

Sox2, Klf4 and c-Myc, in somatic cells99,100. Since the inception of this technology, 

delivery systems for the key reprogramming factors have become more efficient and 

safe, in part, through the development of inducible single expression cassettes.  

Upon reprograming, iPSCs share many features with ES cells and have the 

ability be differentiated into almost any cell type, which gives them a wide array of 

applications. In addition, they self-renew, allowing for a virtual unlimited supply of cells of 

interest after reprogramming100. Because of these key features iPSCs have become 

attractive tools in almost all areas of research. In addition, iPSCs have the benefit of 

being able to be derived from somatic cells of healthy individuals as well as patients with 

rare diseases, allowing for their use in personalized medicine. To this end, researches 

have been able to further gene manipulate these cells for potential therapeutic benefit.  

The ability of these cells to differentiate into a myriad of functional cell types has 

been exploited extensively, including benign hematology163,164. Protocols have been 

developed to differentiate iPSCs into mesoderm layer cells and HPCs. These HPCS can 

then be further differentiated to any subsequent linage cell, including terminal 

hematopoietic cells like Mks165,166. Some of the earlier hematological applications of 

iPSCs included the study of sickle cell anemia167 and Fanconi anemia168.  

Our laboratory has utilized iPSCs, not only to differentiate them into Mks to study 

rare diseases like Glanzamann’s thrombasthenia, but also to correct the underlying 
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defect. For Glanzmann thrombasthenic iPSCs, we showed that expression of the human 

ITGA2B cDNA under the human Gp1ba promoter can drive sufficient αIIb expression to 

correct the thrombasthenic disorder in two different patient derived lines102. The 

expression construct was inserted using zinc finger nuclease (ZFN) technology into the 

adenovirus associated vector site (AAVS) 1 “safe harbor” locus and shown to correct 

αIIb expression in an Mk-specific fashion. More recently, our laboratory was able to 

develop iPSC lines derived from a patient with Paris Trousseau syndrome (PTSx), which 

underexpressed FLI1. In parallel lines, using TALEN technology, FLI1 was 

heterozygously knocked out in a WT line and another line was established where FLI1 

overexpression was driven in a Mk-specific fashion. These studies targeted FLI1 using 

ZFN technology to the AAVS1 locus and provided new insights into FLI1 biology, its role 

in PTSx and FLI1’s potential use in optimizing platelet release from iMks after infusion 

into recipient mice101. 

While both these studies from my group utilized an AAVS-1 targeting method, 

lentiviral targeting methods have also been used to express genes into iPSCs. Gene 

therapy through lentiviral expression has a number of advantages for transgene 

expression169. Lentiviral vectors are able to easily integrate into a large variety of cell 

types, allowing for efficient transfection of the desired genes170. Once integrated, these 

vectors are able to express high levels of the transgene with limited silencing169. These 

vectors can also express genes in a tissue-specific manner with the appropriate 

inclusion of a tissue-specific promoter109. In recent years, their use has become more 

efficient and safe through the use of 3 and 4 vector systems for producing virus as well 

as the development of self-inactivating vectors171-173. Lentiviruses, however, can cause 

toxicity to targeting cells when used in large quantities174. Furthermore, off target 

integration of the vectors is also an area of concern175,176.  
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Because of their benefits and ease of use, our group has also utilized lentiviral 

vectors in experiments to express FVIII variants in Mks of FVIIInull mice and in human 

and canine Mks as well109. We found that significant levels of hBDFVIII could be 

produced within Mks and subsequently platelets of these animals and that this 

expression could aid in hemostasis of FVIIInull mice after injury. Previously, we developed 

3 vector plasmids that the contained hBDFVIII, inactivation resistant FVIII (IRFVIII), or 

canine (c) cBDFVIII under the control of the GPIBA promoter. Although the level of 

IRFVIII and cBDFVIII antigen was lower than hBDFVIII and Line h38 mice, IRFVIII and 

cBDFVIII showed higher hemostatic efficacy152. Noting the success of cBDFVIII in these 

studies, our group utilized a human FVIII variant that had an analogous sequence in a 

PACE/Furin cleavage site, hBDFVIIIRH, developed by Drs. Valder Arruda and Denis 

Sabatino42,88. Comparing cBDFVIII, hBDFVIII, and hBDFVIIIRH, we found hBDFVIIIRH had 

better hemostatic efficacy than hBF8. Additionally, we showed that FVIII expressed in 

Mks and platelets could have adverse effects on the developing cells, especially when 

using cBDFVIII. Previously, cBDFVIII had shown to be expressed in BHK cells at three 

times the level of hBDFVIII, but we found the opposite using Mks from mice, humans or 

dogs109. These cFVIII-Mks were more apoptotic as noted via TUNEL assay, in 

comparison to FVIIInull Mks. It was also found that thrombopoietin (TPO) levels in 

transgenic cBDFVIII animals were elevated, suggesting that these post-BMT mice were 

compensating for a detrimental effect of cBDFVIII on megakaryopoiesis109. Taken 

together, we hypothesized that the level of cBDFVIII expressed in Mks could cause them 

to become apoptotic, and that these deleterious effects may need to be considered 

when developing pFVIII-based therapy.  

To date only one report has tried to express FVIII in iMks. Using human artificial 

chromosome (HAC) vector, Yakura, et al., used an integration-free method to express 
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FVIII driven by the CXCL4 promoter177. IPSCs were made from hemophilia A mouse 

cells and differentiated into iMks on OP9 stromal cell cultures after HAC targeting with 

Sendai virus (SeV). This group showed they could get Mks-specific expression of FVIII 

after the addition of TPO during iMk differentiation. While they showed expression of 

FVIII in Mk, this detection was limited to mRNA. This group was unable to show any 

expression of functional FVIII protein. In addition, this study did not show the 

functionality and efficacy of pFVIII-iMks in any FVIIInull models of thrombosis or 

hemostasis177. Because of these limitations, one is left to wonder whether or not these 

Mks or the FVIII they contained could produce platelets that would be able to correct the 

FVIIInull phenotype.  

In an attempt to express high levels of FVIII in my iMks, I attempted to use the 

Gp1ba promoter-driven FVIII cDNA inserted into the AAVS1 in iPSCs, but this strategy 

did not lead to sufficient FVIII expression (but see Chapter 4). My subsequent studies in 

this chapter used lentiviral vector studies to drive expression in iMks of hBDFVIII or 

hBDFVIIIRH or hBDFVIIIΔ after viral transduction into HPCs from differentiated WT 

iPSCs. These transduced HPCs were differentiated into FVIII expressing iMks (pFVIII-

iMks). pFVIII-iMks were then characterized in vitro and then tested for hemostatic 

efficacy both in in vitro ROTEM and in vivo FeCl3 assays in the setting of hemophilia A. 

 
 

Materials and Methods  
 

Generation, confirmation, and maintenance of WT iPSC line  

WT (WTBM1-8) iPSC used in subsequent experiments was generated as 

previously described102,178. Bone marrow cells were purchased from the stem cell core at 

the University of Pennsylvania (Philadelphia, PA). CD34+ cells were selected and 
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seeded onto a 35-mm plate, pre-coated with 5 µg/ml polybrene. pHAGE-hSTEMCCA 

(Figure 3.1), which contains the four transcription factors, OCT4, SOX2, KLF4, and c-

MYC essential for reprograming99. This vector was co-transfected with a vector 

containing reverse tetracycline transactivator protein (rTTA), pHAGE2-CMV-rTTA that 

allowed for cell reprograming after the addition of doxycycline178. Post-incubation, viral 

media was replaced with media suitable for iPSC grow, consisting DMEM/F12 (Gibco), 

20% KnockOut Serum (Invitrogen), 1 mM L-glutamine (Sigma-Aldrich), 1% nonessential 

amino-acid solution (Invitrogen), 0.1 mM β-mercaptoethanol (Sigma-Aldrich), and 10 

ng/ml basic fibroblast growth factor (bFGF) (R&D Systems). To select for properly 

transfected cells, 1 µg/ml doxycycline was added to the iPSC media for 3 weeks. Media 

was removed and replaced daily until individual drug resistant clones were present. 

Clones were picked and allowed to culture further179.  

Proper reprograming and analysis of pluripotency was confirmed through 

karyotyping of genomic DNA, analysis of ES cell surface markers, and teratoma 

formation of iPSCs. Karyotyping was performed by Cell Line Genetics (Madison, WI) 

(Figure 3.2A). 6 X 106 iPSCs were injected subdermally into NOD-SCID mice (strain 

250, Charles River) to assess teratoma formation. Tumors were collected, fixed and 

stained using hematoxylin and eosin, and assessed for germ layers as previously 

described102,165,178 (Figure 3.2B). To study pluripotent markers, cell expression of stage-

specific embryonic antigen (SSEA) 3, SSEA4, Tumor-related Antigen (TRA)-1-60 and 

TRA-1-81 antigens were investigated via flow cytometry using a BD FACSCanto II (BD 

Biosciences). SSEA3 Alexa Fluor (AF) 488, SSEA4 AF 647, TRA-1-60 AF 488, and 

TRA-1-81 AF 647 (Biolegend) antibodies were used to see relative amounts of antigens 

(Figure 3.2C). Proper cell morphology of iPSC colonies and cultures is indicated in 

Figure 3.2  



57	
	

Successfully reprogrammed cells were cultured and maintained as previously 

described166. Six-well culture dishes were coated with 0.01% gelatin at 37°C for 1 hour 

prior to addition of irradiated mouse embryonic fibroblasts (MEF) feeder-layer. This 

feeder-layer created a support, secreting factors needed for iPSC survival. After 

addition, MEFs were allowed to adhere to the plate for a minimum of 4 hours at 37°C in 

5% CO2 prior to use of the plate. iPSC colonies were maintained on MEF plates (Figure 

3.3A) and passaged every 3-4 days. To passage feeder cultures, cells were incubated 

with Accutase up to 5 minutes at 37°C to detach cells from the plate. Detached cells 

were then centrifuged at 1200 rpm for 3 minutes before passaging at the appropriate 

split ratios, ranging from 1:8 to 1:24, in iPSC medium. 10 µM Y-27632 dihydrochloride 

Rho Kinase (ROCK) inhibitor (Tocris) was added to the media overnight. The following 

day, iPS media lacking ROCK inhibitor was substituted and replenished daily. 

After several successful passages on feeder-layer MEFs were transitioned to a 

feeder-free culture (Figure 3.3B). Splitting ratios on feeder free cultures ranged from 1:2 

to 1:12. Prior to passaging, six-well plates were treated with diluted Matrigel hESC-

qualified matrix (Corning) for 1 hour. To passage feeder-free cultures, cells were washed 

with DMEM/F12 media and were allowed to incubate with Dispase (STEMCELL 

Technologies) at 37°C for up to 6 minutes or until the edges of the iPS colonies began to 

detach. Cells were then washed twice with DMEM/F12 media and then fresh mTRS-1 

media was added (STEMCELL Technologies). Colonies were then removed by scarping 

the well with cell scraper (SARSTEDT) and then split to the appropriate ratio and 

transferred to matrigel plates. mTSR-1 cell media was removed and replenished daily. 

All IPSCs were maintained at 37°C at 5% O2 and 5% CO2. 

 

Vectors used for reprogramming and lentiviral production  
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Previously described self-inactivating (SIN) lentriviral constructs180 used in these 

studies included the hBDFVIII (BD), the hBDFVIIIR1645H (RH), the hBFVIIIΔ (Δ), and 

eukaryotic green fluorescent protein (eGFP), each driven by the murine Ccxl4 proximal 

promoter109. Infectious viral stocks were produced through transient infection of human 

embryonic kidney 293T cells with the psPAX2 packaging vector, the pMD2G vesicular 

stomatitis virus glycoprotein envelope vector, and the appropriate lentiviral FVIII plasmid 

(Figure 3.4) at a DNA ratio of 2:1:4 respectively. Plasmids were co-transfected into 15cm 

dishes of 9x106 293T cells using polyethylenimine (PEI) (Polysciences). PEI to DNA 

volume ratio was 3:1. Viral particles were collected from the supernatant 48-hours post-

transfection, and concentrated by ultracentrifugation at 30,000g for 2 hours (Figure 3.5). 

Titering of final lentiviral infectious stocks was performed at the Fred Hutchinson Cancer 

Research Center as follows: HT1080 cells were plated in DMEM growth medium in 12-

well plates. The following day, cells were transduced with dilutions of the viral vector. 

The cells were subsequently kept in culture for 10 days in which they were passaged at 

a 1:5 split twice. DNA was extracted from cells and the percentage of viral genome 

copies were analyzed by qPCR as previously described109.  

 

iPSC differentiation into iMks 

IPSCs cultured on feeder-free cultures were utilized to differentiate into Mks. 

Differentiation of WT IPS line was performed as previously described102,165,166. 

Differentiation was an 8 day process that began with iPSCs and ended up HPCs. Prior 

to the start of differentiation, six-well plates were coated with 1:3 Matrigel 

(Corning):DMEM/F12 media and allowed to incubate at 37°C for 30 minutes. Feed-free 

cultures were then split onto these plates at a ratio of 1:3 to 1:12. Cells were then 

allowed to re-attach overnight prior to differentiation.  
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Differentiation began on day 0 (D0). Prior to D0 media being added to the 

differentiation plates, the cells were re-fed with mTSR-1 media for 2-4 hours to remove 

any debris. See Table 3.1 for full details of the various differentiation media. Cells were 

washed with Roswell Park Memorial Institute media (RPMI, Gibco) before feeding with 4 

ml per 35-mm dish of D0 media. At D2, cells were again washed with RPMI prior to 4 

mls per 35-mm dish of D2 media being added. On D4, cells were fed 4 ml per 35-mm 

dish of D4 media. Two days later, D4 media was removed and D6 media added. The 

day after D6 media is added, the unattached, suspended HPCs were collected from the 

supernatant. D7 media was then added, and HPCs were collected on both D7 and D8. 

After D8, plates were discarded and HPCs can be either be further differentiated and 

matured into iMks as previously described or infected with lentivirus and then 

differentiated. HPCs are added into iMk differentiation media for up to 7 days166.  

 
 
 
Establishing pFVIII-iMks 

HPCs (5-10x105 per well) were transfected with the FVIII-expressing or control 

lentiviral vectors at a multiplicity of infection of 1-10 via spin infection at 2000g for 2 

hours at 37°C in a 12-well non-tissue culture plate (BD Pharmingen) coated with 10-20 

µg cm-2 RetroNectin (Takara Bio) in iMk differentiation media as previously 

described109,152. Viral particles were washed off the cells 24 hours post-infection. Cells 

were placed in fresh iMk differentiation media for 5 days, and the resulting iMks were 

characterized in vitro or used to study pFVIII biology in vitro and in vivo.  

 

Viral integration number in pFVIII-iMks 
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DNA was extracted from pFVIII-iMks using DNeasy® Blood and Tissue Kit 

(Qiagen). Viral integration was determined via Lenti-X™ Provirus Quantitation Kit 

(Clontech). Total RNA was isolated from 2x106 iMks using RNeasy Micro Kit (Qiagen). 

Total RNA (500 ng) from each sample was used to generate cDNA using High Capacity 

Reverse Transcription Kit (ABI) used according to manufacturer’s instructions. 

 

mRNA analysis 

Message RNA level of target genes in final iMks was determined by quantitative 

RT-PCR using Taqman Probes with TaqMan® Fast Advance Master Mix (ABI) via 7900H 

T Real-Time Cycler. Taqman Probes used were: FVIII (F8) Hs00252034_m1, integrin 

alpha-IIb (ITGA2B) Hs01116228_m1, Tata Binding Protein (TBP) Hs00427620_m1, and 

platelet factor 4 (PF4) Hs00427220_g1. Relative transcript levels were quantified using 

the	2-ΔΔCT method181 and calculated against TBP as the standard.  

 

Flow cytometry analysis of iMks 

Day 6 pFVIII-iMks, NTC and eGFP controls were stained and analyzed surface 

markers and degree of apoptosis on FacsCanto (BD Biosciences) and further analyzed 

using FlowJo software as previously described. Antibodies used in these studies are 

listed in Table 3.2. 

 

pFVIII antigen level in pFVIII-iMks 

FVIII antigen levels in iMks were determined using an ELISA for hFVIII as 

previously described. Levels were compared to recombinant full-length hFVIII (Advate, 

Shire) and pFVIII levels in Line h38 Mks. 
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Apoptotic studies of pFVIII-iMKs 

Apoptotic changes in pFVIII-iMks was done in part by TUNEL-labeling using the 

APO-bromodeoxyuridine (BrdU) TUNEL Assay Kit (Invitrogen) as per manufacturer’s 

directions. Samples were stained and analyzed via flow cytometry using APC-labeled 

anti-CD42b (BD Biosciences) and AlexaFluor-488 labeled anti-BrdU for degree of 

apoptosis. All samples were compared to non-transduced controls. To further investigate 

apoptosis, 1x106 iMks samples were incubated with 5 µl annexin V-FITC (BD 

Biosciences), 10 µl APC-labeled anti-CD42b in 100 µl Tyrode’s buffer (Sigma) with 0.1% 

bovine serum albumin (BSA, Thermo) at room temperature (RT) for 30 minutes. Post 

incubation, cells were washed twice and then resuspended in Tyrode’s buffer that 

contained 0.1% BSA. Annexin V binding and CD42b levels were analyzed via flow 

cytometry. iMks were also stained concurrently with anti-CD41 and anti-CD42b (both BD 

Biosciences)  antibodies to measure the loss of gylcocalicin within CD42, an indicator of 

Mk injury182.  

 

iMk responsiveness to thrombin 

To examine in vitro-responsiveness of iMks to an agonist, 1x106 iMks were 

incubated with 1 unit of thrombin/ml (T8885-1VL, Invitrogen) in Tyrode’s buffer with 0.1% 

BSA in a final volume of 100 µl containing 1:2000 APC-labeled anti-CD42b antibody and 

FITC-labeled PAC-1 (BD Biosciences) as previously described102. The samples were 

incubated at 37°C for 30 minutes. Post incubation, 500 µl of ice-cold 0.1% Tyrode’s 

buffer was added. PAC-1 and CD42b binding were then analyzed via flow cytometry.  

 

In vitro hemostatic studies with pFVIII-iMks 
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ROTEM studies of pFVIII-Mks were performed by adding 10 µl of medium 

containing 5x103-5 pFVIII-iMks expressing hBDFVIII or hBDFVIIIRH, which has been 

shown by our group and others to have increased specific activity and hemostatic 

efficacy, to 110 µl of whole FVIIInull mouse blood. Negative controls were iMks 

transfected with no lentivirus, the eGFP-expressing lentivirus or phosphate-buffered 

saline (PBS, Gibco) added to the same volume of blood. ROTEM studies were 

performed as described in Chapter 2. 

 

In vivo hemostatic studies with pFVIII-iMks 

In vivo FeCl3-carotid artery injury studies using FVIIInull mice after xenotransfusion 

of human iMks were similar to the studies with Line h38 platelets, except that the 

recipient FVIIInull mice were pre-treated with clodronate liposomes (Encapsula 

NanoSciences) 24 hours prior to iMk infusion, to deplete macrophages and extend the 

half-life of the infused iMks and their released platelets. The percent human platelets 

circulating post-iMk infusion were determined following retro-orbital blood draws by flow 

cytometry using species-specific anti-αIIb antibodies, as we previously described151,183. 

Recipient FVIIInull mice received 5-10x106 iMks expressing hBDFVIII, hBDFVIIIRH, or 

eGFP infused via the jugular vein in 200 µl total volume of PBS.  

 

Statistical analysis 

Statistical differences between arms were determined using a two-sided 

Student’s t-test or analysis of variance (ANOVA) with Bonferroni, Dunnett’s or Tukey’s 

corrections of multiple comparisons, when appropriate. PRISM 7.0 (Graphpa) was used 

to calculate statistical significance. P-Values ≤0.05 were considered significant.  
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Results 
	

 
 
FVIII expression in pFVIII-iMks 

The iPSC line that we utilized had been previously used by our group and shown 

to be capable of differentiating into an evaluable number of iMks101,102. HPCs were 

transduced with the previously described Cxcl4-proximal promoter driven lentiviral 

vectors that express hBDFVIII (termed below BD), hBDFVIIIRH (termed below RH), 

hBDFVIIIΔ (termed Δ), or eGFP. A schematic showing iPSC hematopoietic 

differentiation, FVIII lentiviral transduction and downstream applications is shown in 

Figure 3.6. On Day 6 of iMk differentiation, lentiviral copy numbers of transduced cells 

were determined and shown not to be significantly different between the four vectors, 

although the highest level was seen for the RH-iMks (Figure 3.7A). F8 mRNA was 

highest for BD (p<0.001, Figure 3.7B), while RH and Δ showed similar levels. Although 

BD had the highest message level, FVIII antigen per cell by ELISA was ~50% higher for 

RH (p<0.01, Figure 3.7C). In addition, Line h38 Mks expressed at 2 orders of magnitude 

higher than pFVIII-iMks.  

 

In vitro characterization of lentiviral pFVIII-iMks 

Our previous studies suggested that ectopically expressed FVIII in Mks was 

harmful to the developing cells. To determine if damage and level of apoptosis to iMks 

occurred in this system, examination of cells for bromo-deoxyuridine staining via TUNEL 

assay (Figure 3.8A) and annexin V binding (Figure 3.8B) was completed. No difference 

was observed in these studies between pFVIII-iMks and controls. In addition, the health 
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of the pFVIII-iMks was analyzed by responsiveness to agonist stimulation and no 

difference was observed (Figure 3.9A). iMks were further analyzed for percent of the 

CD41+ pFVIII-iMks that were also CD42b+ – an indicator of undamaged Mks (Figure 

3.9B) – was done, comparing pFVIII-iMks to non-transfected iMks controls. mRNA levels 

of endogenous genes CXCL4 and ITGA2B genes were also investigated and showed no 

difference between FVIII-containing iMks, and NTC and eGFP controls (Figure 3.10A 

and 3.10B, respectively).  

 

In vitro studies with human pFVIII-iMks 

ROTEM studies were done with pFVIII-iMks added to FVIIInull murine whole blood 

and demonstrated that as few as 5x103 pFVIII-iMks added to 110 µl of whole blood can 

improve hemostasis compared to the addition of iMks not expressing FVIII (Figure 3.11A 

and 11B). The RH-iMks showed greater efficacy than BD -iMks as indicated by a shorter 

clotting time and increased α-Angle (Figure 3.11A and 11B). The addition of 10 nM 

rFVIIa showed a combinatorial effect with the pFVIII-iMks, further improving hemostasis, 

but not fully correcting it as the clotting time notably remained prolong (Figure 3.11C), 

supporting the Line h38 platelet data shown in Figure 2.4.  

 

In vivo studies with human pFVIII-iMks 

Infused iMks released detectable human platelets with a half-life of ~4 hours 

(Figure 3.12A). This short timeframe precluded tail-clip exsanguination studies, but 

allowed us to perform FeCl3 carotid artery studies initiated within 30 minutes after iMk 

infusion. Both WT and RH iMks improved hemostasis significantly compared to non-
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pFVIII-iMks, although none of these mice developed occlusive thrombi (Figure 3.12B). 

As in the ROTEM studies, RH iMks improved hemostasis better than BD iMks.  

 

Discussion  
	

 
Our laboratory has shown that infused Mks into mice release functional platelets 

after being entrapped in the lungs71. These platelets respond to platelet agonists and are 

able to take part in hemostasis during hemostatic challenge. These iMk-released 

platelets are also functional. Recently using in situ microscopy, it has shown that 

endogenous Mks in mice also travel to the lungs after being released from the marrow 

and release platelets that account for half of the daily production of platelets71. Thus 

infused iMks-released platelets in the lungs are likely to represent as good as platelets 

as one can obtain from in vitro-grown megakaryocytes and provide insights into the 

applicability of pFVIII-iPlatlets (iPlts) in the care of patients with hemophilia A.  

 

In vitro characterization of pFVIII-iMk 

Previous studies from our group showed that FVIII expressed at high levels 

within Mks, especially cFVIII, can be deleterious to the developing cell. We therefore 

examined using various markers of apoptosis and iMk health to see whether the pFVIII-

Mks were injured by the expressed FVIII. These studies found no indication of apoptosis 

or other injuries (Figure 3.8-3.10). The health of these iMks is likely in part due to human 

pFVIII not being as injurious to Mks as cFVIII and in part to the fact that the level of 

human pFVIII expressed in these iMks was low perhaps 1% of that achieved in Line h38 

transgenic mice Mks. 
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In vitro hemostatic studies with human pFVIII-iMks 

ROTEM studies were completed with pFVIII-iMks added to FVIIInull murine whole 

blood and demonstrated that as few as 5x103 pFVIII-iMks added to 110 µl of whole 

blood can improve hemostasis compared to the addition of iMks not expressing FVIII. 

This would be consistent with as few as 105 iMks being sufficient to achieve hemostatic 

effect in a 30 gm mouse. If each iMk released ~100 iPlts that would mean that ~107 

human iplts or ~1% of the concurrent ~2x109 murine platelets would be sufficient to 

demonstrate hemostatic efficacy in the intact mouse. Importantly, these in vitro 

hemostatic studies also supported that RH pFVIII were more effective than WT pFVIII 

released from iMks. The released pFVIII from iMks showed combinatorial hemostatic 

improvement with rFVIIa, further supporting the Line h38 platelet data shown in Figure 

2.4 and the utility of pFVIII infusion in the care of patients with hemophilia A.  

 

In vivo hemostatic studies with human pFVIII-iMks 

During these experiments, there was no available FVIIInull murine model on an 

immune compromised background that was available for infusion studies, so we infused 

iMks into clodronate liposome-treated FVIIInull mice to improve human platelet half-life by 

reducing phagocytic removal of the human cells and their released platelets. This was a 

successful model system although it is likely that circulating pre-activated platelet-like 

particles released in culture as we previously described are also present, though our 

prior studies suggest that they poorly contribute to hemostasis183. Clearly, these studies 

should be repeated in FVIIInull mice that are on an immunocompromised background and 

such studies are underway having obtained such mice from Dr. Shu-Wha Lin at Taiwan 

University.  
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The relatively short half-life of the iPlts in clodronate liposome-treated FVIIInull 

mice precluded tail-clip exsanguination studies, but allowed us to perform FeCl3 carotid 

artery studies initiated within 30 minutes after iMk infusion. Both hBDFVIII and 

hBDFVIIIRH iMks improved hemostasis significantly compared to non-pFVIII-iMks, 

although none of these mice developed occlusive thrombi (Figure 3.12B). As in the 

ROTEM studies, hBDFVIIIRH iMks improved hemostasis better than hBDFVIII iMks, 

further supporting the application of this variant or others showing greater specific 

activity in any therapy involving pFVIII treatment in hemophilia A. 
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Tables 
Table 3.1 Composition of iPSC and megakaryocyte differentiation medias 
 

Component Working 
Concentration 

Final 
Concentration 

Volume 
(1 plate) 

Day 0 (D0) 
RPMI (P/S+Glut)   24 mL 
Ascorbic Acid (fresh) 5 mg/mL 10 µL /mL 240 µL 
MTG (fresh) 26 µL/2 mL IMDM 3 µL /mL 72 µL 
BMP4 10 µg/mL 5 ng/mL 12 µL 
VEGF 50 µg/mL      50 ng/mL 24 µL 
CHiR (GSK b3 inhibitor) 10mM 1 µM 2.4 µL 

Day 2 (D2) 
RPMI (P/S + Glut)   12 mL 
SP34 (P/S + Glut)   12 mL 
Ascorbic Acid (fresh) 5 mg/mL 10 µL/mL 240 µL 
MTG (fresh) 26 µL/2 mL IMDM 3 µL/mL 72 µL 
VEGF 50 µg/mL 50 ng/mL 48 µL 
BMP4 10 µg/mL 5 ng/mL 12 µL 
bFGF-100 100 µg/mL      20 ng/mL 4.8 µL 

Day 4 (D4) 
StemPro 34 (P/S+Glut)   24 mL 
Ascorbic Acid (fresh) 5 mg/mL 10 µL/mL 240 µL 
MTG (fresh) 26 µL/2 mL IMDM 3 µL/mL 72 µL 
VEGF 50 µg/mL      15 ng/mL 7.2 µL 

 
Day 6,7,8 (D6,7,8) 

Component Working 
Concentration 

Final 
Concentration 

Day 6 
(1 plate) 

Day 7 
(1 plate) 

Day 8 
(1 plate) 

SFD   18 mL 24 mL 30 mL 
Ascorbic Acid 
(fresh) 

5 mg/mL 10 µL/mL 180 µL 240 µL 300 µL 

MTG (fresh) 26 µL/2 mL IMDM 3 µL /mL 54 µL 72 µL 90 µL 
VEGF 50 µg/mL      50ng/mL 18 µL 24 µL 30 µL 
bFGF-100 100 µg/mL      100ng/mL 18 µL 24 µL 30 µL 
TPO  50 µg/mL 50ng/mL 18 µL 24 µL 30 µL 
IL-6 10 µg/mL 10ng/mL 18 µL 24 µL 30 µL 
Flt3L 50 µg/mL 25ng/mL 9 µL 12 µL 15 µL 
SCF 100 µg/mL 25ng/mL 4.5 µL 6 µL 7.5 µL 
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Table 3.1 Cont.  
	
iMk differentiation media	

Component Working 
Concentration 

Final 
Concentration 

Volume 
(1 plate) 

SFD   12 mL 

Ascorbic Acid (fresh) 5 mg/mL 10 µL/mL 120 µL 
MTG (fresh) 26 µL/2 mL IMDM 3 µL/mL 36 µL 
SCF  100 µg/mL 25 ng/mL 3 µL 
TPO  50 µg/mL 100 ng/mL 24 µL 

 
Ascorbic acid (Wako Chemicals)  
BFGF: Basic fibroblast growth factor (R&D Systems) 
BMP4: Bone Morphogenic Protein 4 (Stemgent) 
CHIR: Synthase Kinase 3 inhibitor CHIR (Tocris) 
FLT-3L: Tyrosine Kinase 3 Ligand (Gibco) 
Glut: L-glutamine (Sigma-Aldrich) 
MTG: monothiolglycerol (Sigma-Aldrich) 
RPMI: Roswell Park Memorial Institute media (Gibco) 
SCF: Stem Cell Factor (Gibco) 
SP34: StemPro-34 serum-free mediums (R&D Systems)  
TPO: Thrombopoietin (R&D Systems) 
VEGF: Vascular Endothelial Growth Factor (R&D Systems) 
SFD: Serum-free differentiation medium (5% IMDM, 1% B-27, 0.5% N-2 supplements 
(Invitrogen), 1 mM (1%) L-glutamine, 0.5% BSA, and 22% Hams F12 medium 
(Corning).)  
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Table 3.2. Summary of commercial antibodies used in this paper including their 
indicated usage.  

Target Source Reactivity Label Company Catalog 
Number Usage 

CD42b Monoclonal 
Mouse Human APC BD 

Biosciences 551061 Flow 
Cytometry 

CD42b Monoclonal 
Mouse Human PE BD 

Biosciences  555473 Flow 
Cytometry 

CD41a Monoclonal 
Mouse Human APC BD 

Biosciences 559777 Flow 
Cytometry 

CD41a Monoclonal 
Mouse Human PE BD 

Biosciences 555467 Flow 
Cytometry 

CD42a Monoclonal 
Mouse Human PerCP BD 

Biosciences 340537 Flow 
Cytometry 

CD42a Monoclonal 
Mouse Human PE BD 

Biosciences 558819 Flow 
Cytometry 

Annexin 
V Bacteria Human FITC BD 

Biosciences 556420 Flow 
Cytometry 

PAC-1 Monoclonal 
Mouse Human FITC BD 

Biosciences 340507 Flow 
Cytometry 

BrdU 
[PBR-1] 

Monoclonal 
Mouse Human Alexa 

Fluor 488 Invitrogen A23210 Flow 
Cytometry 

IgG Polyclonal 
Goat Human Alexa 

Fluor 488 Thermo A-11013 IFM 

vWF Monoclonal 
Mouse Human N/A Thermo MA5-

14029 IFM 

Mouse 
IgG Donkey  Mouse Alexa 

Fluor 594 Thermo A-21203 IFM 

 
PE: Phycoerythrin  
APC: Allophycocyanin  
FITC: Fluorescein isothiocyanate 
IFM: Immunofluorescence microscopy 
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Figures  
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3’	LTR	
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Figure 3.1 Lentiviral vector schematic of inducible pHAGE-STEMCCA (adapted 

from Sommer et al., Stem Cells. 2009178). 

iPSCs were generated using a lentiviral vector that contained the 4 reprograming 

transcription factors: Oct-4, Klf4, Sox2, and cMyc. Illustration indicates the single 

multicistronic mRNA cassette. Expression of the 4 genes is under the control 

doxycycline inducible promoter, TetO-miniCMV. cpPu: central polypuryne tract. dU3: 

deleted U3. HIV: human immunodeficiency virus. IRES: internal ribosome entry site. 

LTR: long terminal repeat. miniCMV: mini-cytomegalovirus. PSI: packaging signal. RRE: 

rev responsive element. STEMCCA: stem cell cassette. WPRE: woodchuck hepatitis 

virus post-transcriptional regulatory element.  
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Figure 3.2 Confirmation of WT iPSC (WTBM1-8) pluripotent state. 

(A) Karyotype of the WT iPSC line showing a normal human chromosomal pattern 23 

chromosomal pairs and no abnormalities. (B) Teratoma formation and germ layer 

analysis indicate the presence all three germ layers. (C) Flow cytometry of early ES cell 

proteins and pluripotency markers in WT iPSCs using SSEA3, SSEA4, Tra-1-60, and 

Tra-1-81179. WT iPSC line exhibited high levels of each marker after reprograming as 

desired. SSEA: Stage-specific embryonic antigen. TRA: Tumor-related antigen.  
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A B 

Figure 3.3 iPSC morphology. 

 (A) iPSCs on feeder layer on brightfield imaging. (B) Same as in (A), but iPSCs in 

feeder-free culture. Images show representative iPSC colonies that were used for 

culture and differentiation. White arrows indicate iPSC colonies and black arrows 

indicate irradiated mouse embryonic fibroblast feeder layer. Brightfield images taken at 

4X using Zeiss, Axio, Observer z.1 microscope.  
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Figure 3.4 Lentiviral schematic used for pFVIII expression		
	
FVIII-containing viruses were made using the above lentiviral plasmid that contained F8 

cDNA and mouse Cxcl4 (PF4) promoter. HPCs were transduced with lentivirus that 

carried a transgene for one of three F8 cDNA variants: hBDFVIII, hBDFVIIRH and 

hBDFVIIIΔ. Expression of FVIII was controlled and specific to Mks and platelets through 

the use the Cxcl4 proximal promoter. Illustration shows the components of the viral 

vector. The hBF8 constructs was made by Dr. Teeshell Greene based on the plasmid 

pFUGW152, inserting the murine Cxcl4 promoter and human WT B-dmainless F8 cDNA 

replacing the eGFP cDNA in pFUGW. pFPF8W was then modified by Dr. Guohua Zhao 

in our group to remove second Xho I site and insert an Nhe I site in same position and 

an Age I site at position 8363 after the F8 cDNA to facilitate insertion of hBDFVIIIRH and 

hBDFVIIIΔ. 
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Figure 3.5 FVIII lentivirus production. 

Lentiviral vectors were made using a three-vector system184. 293T cells were co-

transfected using PEI with vectors: F8 cDNA vector (Figure 3.5), psPAX2 viral packing 

vector, and pMD26 viral envelop vector. 48-hours post infection, viral vectors were 

collected from the supernatant and concentrated through ultracentrifugation as 

described109,152.  

 
 



76	
	

 

Figure 3.6 Schematic of experimental design using iMks to study pFVIII biology. 

Peripheral blood mononuclear cells from patients were reprogrammed into iPSCs as 

previously described178,179. IPSCs were differentiated into HPCs. HPCs were transfected 

with a SIN lentiviruses expressing pFVIII or controls, and the HPCs were then 

differentiated into iMks. After differentiation and maturation of pFVIII-iMks, these cells 

were used for studies of pFVIII biology in vitro and in vivo. 
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Figure 3.7 FVIII expression in iMks. 

(A) DNA from 106 iMks was collected and analyzed for lentiviral integration. Viral 

genomes per cell were expressed relative to non-transduced control (NTC, dashed line). 

Mean ± 1 SEM are shown with the number of independent experiments indicated in each 

bar. No difference was noted by ANOVA analysis between the lines. (B) 500 ng of total 

RNA was analyzed for F8 message. NTC and eGFP-expressing iMks were used as 

negative controls. Mean ± 1 SEM are shown with number of independent experiments 

indicated in each bar. P values determined by one-way ANOVA. (C) 2x106 iMks were 

lysed to extract cellular content. Whole cell lysates were analyzed using human FVIII 

ELISA. Mean ± 1 SEM are shown with number of independent experiments indicated in 

each bar. P values determined by one-way ANOVA. BD = hBDFVIII-iMks, RH = 

hBDFVIIIRH-Mks, Δ = hBDFVIIIΔ-iMks, and h38 = Line h38 mouse platelets.  
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Supplement Figure 4 
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Figure 3.8 Apoptotic effects of FVIII on iMks.  

(A) TUNEL-stained for BrdU and co-stained for CD42b to examine for pFVIII-iMks 

apoptosis. Mean ± 1 SEM are shown with number of independent experiments indicated 

in each bar. No difference was noted by ANOVA analysis between the examined iMk 

lines. (B) Annexin V binding as an indicator of apoptosis of iMks. Mean ± 1 SEM are 

shown with number of independent experiments indicated in each bar. No difference 

was noted by ANOVA analysis between the examined iMk lines.  
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Figure 3.9 pFVIII effects on iMks. 

(A) Agonist responsiveness of iMks to 1 unit of thrombin/ml and measuring FITC-labeled 

PAC-1 antibody binding. For each iMk, the left bar is pre-thrombin and the right is post-

thrombin activation. Mean ± 1 SEM are shown with number of independent experiments 

for each iMk condition is shown. P<0.001 for pre- versus post-thrombin activation for 

each iMk condition by one-way ANOVA, but no difference was noted by ANOVA 

analysis between the examined iMk lines. (B) Studies of iMk injury with loss of CD42b+ 

signal within the CD41+ as an indication of metalloproteinase cleavage of the 

extracellular glycocalicin domain of the GPIbα chain182 are shown. Mean ± 1 SEM are 

shown with number of independent experiments indicated in each bar. No difference 

was noted by ANOVA analysis between the examined iMk lines. 
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Figure 3.10 mRNA expression of Mk and platelet genes in the studied iMk lines. 

Examination of relative mRNA levels compared to NTC by quantitative RT-PCR185 for 

CXCL4 (A) and ITGA2B (B). In both (A) and (B), 500 ng of total RNA was analyzed for 

message as described186. NTC and eGFP-expressing iMks were used as negative 

controls. Mean ± 1 SEM are shown with number of independent experiments indicated in 

each bar. Values calculated against TBP standard. (A) CXCL4 and (B) ITGA2B genes 

showed no difference in comparison to controls. 
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Figure 3.11 In vitro efficacy of pFVIII-iMks in ROTEM studies. 

ROTEM studies as in Figure 2.3, but with added iMks instead of Line h38 platelets. BD = 

BDFVIII-iMks added; RH = BDFVIIIRH-iMks added; and NTC = non-transfected control 

iMks added. Each curve represents 5 independent studies. (A) Addition of 5X103 iMks to 

110 µl of whole blood from FVIIInull mice. WT mice blood and FVIIInull (KO) mice blood 

were studied as positive and negative controls, respectively. (B) Same as in (A) with 

5X104 BD or RH iMks. (C) Same as in (A), but with (dotted lines) or without (solid lines) 

10 nM rFVIIa also added to the samples. Arrows indicate the paired studies without and 

with rFVIIa. 
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Figure 3.12 pFVIII-iMk infusion efficacy in FVIIInull mice using the FeCl3-carotid 

artery injury model.  

5-10X106 iMks were infused into clodronate liposome-treated FVIIInull mice. (A) Human 

platelets released from infused iMks were analyzed up to 24-hours post iMks infusion via 

flow cytometry. Mean ± 1 SEM are shown with 5 independent studies. (B) Similar FeCl3-

carotid artery injury studies as in Figure 2.7 with the primary endpoint being remaining 

blood flow as measured by AUC. Mean ± 1 SEM are shown with the number of 

independent studies noted in the bar graphs. P values were done by one-way ANOVA.  
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Chapter	4	–	Megakaryocyte	IgG	uptake	and	AAVS1	FVIII	targeting	of	iMks		
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Abstract  
	

Megakaryocytes and platelets take up specific proteins from blood circulation and store 

them in their α-granules. This uptake includes a general uptake and storage of IgG. This 

uptake should include neutralizing inhibitors of FVIII, which are virtually all IgGs. This 

would imply that inhibitors are localized into the same granules as FVIII and should 

either neutralize the pFVIII within the granules or neutralize FVIII after release if the IgG 

and FVIII are stored in distinct α-granules. However, pFVIII remains effective upon 

release at sites of vascular injury. Whether IgG taken up by Mks is stored in different 

granules than FVIII has yet to be explored. This chapter outlines preliminary studies to 

localize human IgG taken up by Mks using fluorescence microscopy, and indicates that 

IgG does not localize with endogenous Mk vWF. Additionally, in this chapter, an 

alternative approach to express pFVIII in iMks is explored through FVIII AAVS-1 

correction of hemophilia A iPSCs. These studies seek to enhance pFVIII expression in 

iMks as well as note some of limitations of using iMks.  
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Introduction  
 

Human FVIII inhibitors storage in α-granules 

Mks and platelets store endogenously made proteins and small molecules within 

three distinct granules: α, δ, and λ. α-granules contain proteins both made in the Mk or 

taken up in circulation. α-granules contain proteins such as vWF, PF4, other 

chemokines, and many more187. They also take up FV (in humans), albumin, fibrinogen, 

and IgGs from their surroundings188,189. The exact method of uptake is an area of on-

going study, but it is thought to be receptor-mediated and clatharin-dependent189,190. To 

date, the exact receptor that is responsible for uptake of plasma proteins has yet to be 

identified.  

 It is hypothesized that once these proteins are taken up from circulation and 

then are stored within the α-granules. After the development of our Line h38 transgenic 

mice in 2003, our group showed that pFVIII was present in granules that overlapped with 

granules that contained vWF, suggesting that pFVIII is largely stored in α-granules and 

released upon platelet activation108,152. In the absence of vWF, our group has shown that 

pFVIIII is still found at ~70% of the level in vWF-sufficient Mks, is still stored in α-

granules and is functional when released191.  

For pFVIII to be effective in the presence of high-titer inhibitors, it must be 

shielded from circulating inhibitors. Given this information and the fact that IgG is 

endocytosed and stored in α-granules, one would assume that inhibitors taken up by 

Mks and platelets would be stored with pFVIII. If this is true, why isn’t the FVIII contained 

within granules with inhibitors inhibited and rendered ineffective? And if IgG is stored at 

high quantities and released upon platelet activation, why does the locally released IgG 
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not inactivate released pFVIII? We hypothesize that IgG taken up by platelets is stored 

in “uptake” α-granules that do not contain FVIII and that vWF and pFVIII are stored in 

“endogenous” α-granules. Others have suggested the stored vWF protects the pFVIII 

from inhibitors both in the granules and after subsequent release of both pFVIII/vWF. 

They confirmed our findings that pFVIII is still stored at ~70% levels in type 3 vWD mice 

and is functional in a FVIIInull setting. In addition, they also present tail-clip 

exsanguination data that in Type 3 vWD/FVIIInull mice where pFVIII loses efficacy in the 

presence of inhibitors. However, these results are limited to just one hemostatic 

model192.  

 

AAVS-1 correction  

Previous studies by our group had utilized AAVS-1-targeting to express, under a 

Gplba promoter, genes within differentiating iMks102. Our first attempt at AAVS-1 

correction was by Spencer Sullivan. His report, in 2014, showed that he could correct 

the defect in Glanzmann thrombasthenia due to defective αIIb in iMks and iPlts by 

targeting ITGA2B-expression vector to the AAVS-1 locus. These studies demonstrated 

that he could express aIIb at a high level via this insertion technology and the construct 

utilized. Subsequently, Karen Vo using the same vector backbone and strategy, showed 

she could overexpress FLI1 by ~5-fold in iMks, clearly at a lower level than that achieved 

for αIIb, but still significantly higher than endogenous FLI1101.  

The first part of this chapter outlines preliminary studies on the localization of 

human IgG in Mks after endocytosis in vitro. Purified human IgG was added to Mk media 

to allow for uptake into Mks. Localization was compared to vWF an endogenous α-

granular protein and one of importance to pFVIII biology. This chapter also details 
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AAVS-1 targeting of FVIII into WT iPSCs, results and implications to using this system to 

express pFVIII.  

 

Materials and Methods 
 

Mk differentiation 

iMks were differentiated as previously described in Chapter 3. Mouse Mks were 

cultured and differentiated from bone marrow as previously described82,151.  

 

Isolation of human IgG 

Human IgG was isolated from healthy donors according to the Thermo Scientific 

protocol (20399). All buffers and resins were equilibrated at room temperature prior to 

the start of purification. 2 ml of Protein G agarose was packed into a support column 

(Thermo). Then 5 ml of Binding buffer (PBS) was added to resin and column and 

allowed to drain. Human plasma was isolated by spinning down whole blood for 10 

minutes at 3000 RPM. Binding buffer and human plasma was mixed at 1:1 (V:V) and 

then added to the column. After the column drained, 15 mls of Binding buffer was added 

to wash the resin followed by 5 ml of Elution buffer (0.1M Glycine, pH 2.5). The elute 

was collected in 0.5 ml fractions. The pH of each fraction was adjusted using 100 µl 

Neutralization buffer (1M Tris-HCl pH 8.0). The protein concentration of each fraction 

was determined using nano-drop, ND-1000 (NanoDrop) and bicinchoninic acid (BCA) 

protein assay (Thermo Scientific).  

 

Incubation of human IgG with Mks 
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Human IgG was added to Mk culture and incubated for 16 hours at various 

concentrations (0.001 - 1 mg/ml) at 37°C with D10 mouse Mks or D5 iMks. Mks were 

washed the next day for intracellular IgG staining.  

 

Intracellular staining and immunofluorescence microscopy  

Washed Mks were fixed in 2% paraformaldehyde (PFA) solution for 2 minutes. 

Fixed cells were then seeded onto slides using cytospin protocol. 100 µl of cell mixture 

was loaded into specimen chamber (Cyto-Tek) with filter paper (Cyto-Tek). Cells were 

spun for 1 minute to allow adherence. A circle was drawn around adherent cells using a 

liquid blocker PAP pen (Sigma). vWF antibody (Table 3.1) was added into an Antibody 

solution (PBS, 0.1% (W:V) BSA, 0.2% sapponin, 0.02% (W:V) NaN3) at a 1:100 dilution 

(V:V) and allowed to incubate with the seeded cells for 1 hour at room temperature. 

Slides were washed 3 times with Antibody solution and then 1:300 anti-mouse IgG and 

1:400 anti-human IgG (see Table 3.1) were added to the Antibody solution and allowed 

to incubate for 1 hour at room temperature. 4',6-diamidino-2-phenylindole (DAPI) 

solution was then added at a concentration of 1:1000 (V:V) in antibody solution and then 

incubate with seeded cells for 10 minutes. Cells were washed 3 times. A drop of 

Mounting media (Thermo) was added to cells and then a coverslip placed and sealed 

using clear nail polish on top of the slide. Images of Mks were taken using a DMi8 Leica 

Microscope. Images were taken at 40X objective and captured via Hamamatsu 

Photonics ORCA-Flash 4.0 sCMOS digital camera. Final images were processed using 

imageJ64.  

 
 
AAVS1 targeting of FVIII  
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WT iPSCs were targeted through co-transfection of AAVS-1 targeting plasmid 

and the right and left zinc finger nuclease vectors (Figure 4.3)102,193. Verification of 

correct full plasmid sequences were confirmed by sequencing. Transfected cells were 

grown on drug-resistant MEFs as previously described 102. Cells containing the AAVS1 

F8-expression construct were selected using 1.2µm/ml puromycin added to iPSC media 

(Figure 4.3)102. Subsequent colonies were picked and analyzed for gene insertion. 

Hemizygous or homozygous insertion of F8 cDNA was confirmed via southern blot as 

previously described 102,178,179.  

 

F8 mRNA and FVIII antigen  

F8 mRNA and FVIII antigen levels in Mks were investigated as previously 

described in Chapter 3.  

 
 

Results 
 

Localization of human IgG 

After incubation with IgG, Mks were visualized via confocal laser scanning 

immunofluorescence microscopy194. iMks showed that ~ 65% of IgG-positive granules 

were not positive for vWF (Figure 4.1D), Mks not incubated with igG show no 

background staining of IgG (Figure 4.1F). Incubation of human IgG with mouse Mks 

indicate similar results (Figure 4.2).  

 

AAVS-1 correction of iPSCs  

iPSCs that had the Gplbα-promoted driven F8 cDNA targeted to AAVS-1 locus 

and then differentiated into iMks show FVIII mRNA above NTC (Figure 4.4A). 
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hBDFVIIIRH showed higher mRNA levels than hBDFVIII. CXCL4 mRNA showed no 

difference among the groups (Figure 4.4B). Despite detectable F8 mRNA, both hBDFVIII 

and hBDFVIIIRH antigen were not detectable by FVIII ELISA (Figure 4.4C).   

 

Discussion 
	

 
FVIII inhibitors  

Isolated human IgG showed uptake into human and mouse Mks after 16-hour 

incubation. These studies showed that this igG was largely located in granules that were 

not associated with vWF (Figure 4.1C and 4.1G). While very preliminary, these data 

suggest that the majority of IgG was located in granules that were not associated with 

vWF, however a third of IgG was located in α-granules that did contain vWF, suggesting 

that the “uptake” and endogenous α-granules may ultimately overlap. These studies do 

not yet show that the uptake IgG overlaps with pFVIII containing granules, which we 

previously shown only partially overlaps with vWF-containing granules108. Our attempts 

to co-stain Mks for pFVIII were stymied due to low level of pFVIII expression in AAVS-1 

targeted iMks. In addition effects have been made to try and tag endogenous FVIII either 

with Human influenza hemagglutinin (HA) or eGFP.  

In addition to being stored in separate granules to avoid intra-granular 

neutralization of the pFVIII, we had postulated that the “uptake” and “endogenous” α -

granules might be differentially released. This differential release would prevent the 

presence of neutralizing FVIII antibodies at the site of pFVIII release, perhaps initially. 

Previous studies have shown that ~90% of all stored IgG in platelets is released upon 

platelet activation195. How then is pFVIII still effective in these settings? The difference in 
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distribution of released IgG from platelets and pFVIII may not occur on a global scale, 

but on a micro-scale within a growing thrombus. Perhaps, microenvironments within a 

growing thrombus release pFVIII from distinct granules in sufficient amounts relative to 

the inhibitors to feed-forward the clotting cascade before being neutralized by inhibitors. 

Detailed thrombus studies, perhaps with the cremaster laser injury model, may support 

this hypothesis. To define the role of platelet vWF in the protective process, we can 

repeat the in vitro and in vivo iMk studies in Chapter 3 using an iPSC line in which the 

VWF gene is disrupted using CRISPR/Cas9 technology. 

 

AAVS-1 FVIII expression 

The lentiviral approach used in Chapter 3 requires re-infection of cells using the 

appropriate expression vector with each differentiation and does not optimally take 

advantage of iPSC technology. Establishing a specific sub-line from the parental iPSC 

line WTBM1-8 that consistently expresses high levels of pFVIII without iMk injury would 

be ideal. We therefore tried this approach using an AAVS1 strategy with pFVIII 

expression driven with a strong Mk-specific promoter (Gp1ba), which allowed the level of 

ITGA2B mRNA expression to reach >50% of the level seen for the native ITGA2B 

gene102, which is one of the highest expressed gene in developing megakaryocytes80. 

We did achieve D6 iMks that expressed F8 mRNA at up to 4 times the amount as their 

non-transfected control (Figure 4.4A) however; this was not sufficient to produce 

detectable levels of FVIII antigen within iMks above WT background (Figure 4.4C). Our 

data with the lentiviral approach in Chapter 3 suggest that the FVIII mRNA levels 

obtained by AAVS-1 targeting is 10-fold too low an expression level to see comparable 

FVIII levels described there and even that may still be an order of magnitude less than 

desired as seen in Line h38. 
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Sequence analysis of the resulting AAVS1 vector did not provide an explanation 

of why this particular construct as opposed to the ITGA2B cDNA construct and the FLI1 

cDNA construct was unsuccessful. Additional targeted clones were chosen, cultured, 

and analyzed for FVIII expression to rule out potential sub-clone bias. Futhermore, this 

particular Gplba -promoter driven construct may not be successful and if we shuttled the 

Cxcl4-promoter driven F8 cDNA from the lentiviral constructs, perhaps we would have 

achieved greater levels and success.  
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Figures  

 

DAPI Human IgG vWF 

A	 B	

C	 D	

E	 F	

G	 H	

 

Figure 4.1 Localization of human IgG in iMks post incubation. 

(A-D) Immunofluorescence microcopy of iMks incubated with isolated human igG for 16 

hrs. Magnification at 40X. (E-F) Immunofluorescence microcopy of control iMks not 

incubated with human IgG. (A) DAPI (B) human IgG (C) vWF (D) Merged image. IgG. 

(E) DAPI (F) human IgG (G) vWF (H) Merged image. Red arrows indicate vWF, green 

arrows indicate human IgG.  
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A	 B	

C	

Human IgG vWF 
 

Figure 4.2 Mouse Mks incubated with human IgG.  

(A-C) Immunofluorescence microcopy of mouse Mks incubated with isolated human IgG 

for 16 hours. Magnification at 40X. (A) vWF (B) human IgG (C) Merged image. All 

images show representative of experiments. Red arrows indicate vWF and green arrows 

indicate human IgG.  
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Figure 4.3 Vector Schematic of the AAVS1 targeting ZFN, targeting plasmid, 

AAVS-1 locus for FVIII expression (Adopted from Hockemeyer et al.102,193)  

Components for AAVS1 targeting of F8 to iPSCs. (A) Vector schematic of PGK-ZFN-L 

and PGK-ZFN-R plasmids that contain components to target ZFNs to the HA of the 

AAVS1 locus.  Expression of ZFNs are controlled by the PGK promoter(B). AAS1 locus 

and AAVS1 targeting plasmid containing F8 gene. Plasmid indicates HAs that over lab 

with HAs of ZFNs to apply for insertion of F8 into the AAVS1 locus. Plasmid also 

contains puromycin resistance and Gplbα promoter to express F8 in Mks and platelets. 

(C) Schematic shows proper insertion of F8 into AAVS1 locus.  
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Figure 4.4 FVIII expression in WT iMks after AAVS-1 targeting. 
 
(A) and (B) 500 ng of total RNA isolated from D6 iMks was analyzed for F8 and CXCL4 

(PF4) message using qRT-PCR. NTC was used as a negative control. Mean ± 1 SEM 

are shown. N=6 for all studies.  (C) 2x106 iMks were lysed to extract cellular content. 

Whole cell lysates were analyzed using human FVIII ELISA. Mean ± 1 SEM are shown. 

N=6 studies per arm.  
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Chapter 5 – Discussion and Future Directions   
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Discussion  
	

 

These studies sought to address the limitations of pFVIII gene therapy by BMT 

and offer an alternative route of pFVIII delivery that is not permanent. In these studies, 

we have tested the concept of whether infusions of platelets that can deliver pFVIII could 

be a potential strategy for treating patients with severe hemophilia A and intractable 

inhibitors using Line h38 platelet infusions. We provide proof-of-principle both in in vitro 

and in vivo hemostatic models that human pFVIII-expressing murine platelets can 

improve hemostasis. The pFVIII hemostatic effect lasted several days even in mice 

where platelet half-life is approximately half of that in humans. This hemostatic effect 

was additive in the presence of rFVIIa and effective in the presence of inhibitors. To 

further these studies and show that infused Mks can also deliver this same therapy and 

that it is applicable to human Mks, we utilized iPSC-derived Mks that expressed FVIII. 

This approach allowed us to have a renewable resource of cells that we could gene 

manipulate in vitro and expanded to limitless amounts. Studies with pFVIII-iMks support 

Line h38 studies and suggest that once robust technologies are developed to generate 

clinically relevant platelets – be it from iPSCs or from another cell line such as adipose 

cells116,117 – such technology could have application beyond just providing an alternative 

source of platelet transfusions, but serve as a delivery system for various therapeutic 

agents, perhaps beginning with pFVIII in the described clinical setting. 

 

Implications for future studies  
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Infusion of Line h38 platelets  

Our studies seek to extend previous research done in the field of pFVIII, which 

was always envisioned to lead to BMT-based therapies. Thus while others had shown 

that pFVIII-containing platelets can improve hemostasis in a ROTEM model, FeCl3 

carotid artery injury, and tail-clip exsanguination assays, none of those studies were 

focused on using these for proof-of-principle of using infused pFVIII platelets as a 

therapy. Thus no study defined how long the hemostatic effects last, the additive effects 

with rFVIIa and its application in the presence of inhibitors. 

On the other hand, our studies with Line h38 are also limited. While we show that 

infusions of 15% Line h38 platelets is sufficient to correct the bleeding phenotype seen 

FVIIInull mice in the presence and absence of inhibitor, our studies were limited by the 

relatively low levels of pFVIII in Line h38 platelets which have the whole blood 

equivalency of 3% FVIII plasma activity (as human FVIII has ~30% activity within murine 

plasma107,108). Thus in our studies with ≤15% Line h38 platelets, the blood would have 

the equivalency of ≤0.6%FVIII activity. This low level of FVIII may contribute to the sub-

optimal contraction seen on ROTEM studies (Figure 2.4). In the tail-clip exsanguination 

assay, the efficacy of pFVIII at such low levels is consistent with our prior proposal that 

the tail-clip exsanguination assay is especially sensitive to pFVIII. Calculated levels of 

plasma equivalent FVIII activity 72 hours after Line h38 platelet infusion would have 

levels as low as 0.02% and this was still effective in this hemostatic challenge (Figure 

2.6). Finally, the low pFVIII levels may explain why a high concentration of sclerosing 

FeCl3 was needed in the carotid artery studies with the endpoint of decreased arterial 

blood flow rather than full occlusion (Figure 2.7). Thus, if only low levels of pFVIII can be 

achieved in patients, its clinical value may be too limited especially in the presence of 
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high-titer inhibitors. Whether that low level would still be beneficial and useful in 

conjunction with rFVIIa would then need to be addressed. Thus clearly achieving at least 

the higher level seen in a recent transgenic mouse report may be of value123.  

 

pFVIII-iMks  

In vitro-grown human Mks from various sources have been used to generate 

platelets both by direct harvesting of so-called platelet-like particles (PLPs) in culture or 

by using various bioreactors196-198. Many of these PLPs lack surface CD41 and are not 

even derived from Mks199,200. Moreover of the CD41+-PLPs, only a small percent are 

non-injured annexin V negative/CD42b+ platelets. Not surprisingly, these PLPs have 

limited half-life in circulation post-infusion, are pre-activated, and have poor agonist 

responsiveness199,201. On the other hand, PLPs released from intravenous infusion of 

human Mks shed within the lungs over the subsequent few hours may be functional 

platelets as it has been recently shown that endogenous marrow Mks travel to the lungs 

where they account for ~50% of normal platelet release of platelets in mice71. We 

previously shown that such released platelets from infused human Mks have a 

Gaussian-size distribution, circulating half-life and agonist responsiveness similar to 

well-prepared, fresh, donor-derived platelets151. 

Remarkably, even with the low level of pFVIII in the studied iMks, the low number 

of platelets released per iMk and shortened released human platelet half-life, efficacy in 

the FeCl3-carotid artery injury model was seen, especially with the RH variant (Figure 

3.12). This better improvement with RH compared to BD pFVIII was also seen in the 

ROTEM studies (Figure 3.11). While RH antigen levels were higher than the BD pFVIII 

in iMks, this difference was small (Figure 3.7), and not likely solely responsible for the 

greater efficacy of RH. Moreover, this finding is also consistent with our previous studies 
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showing that FVIIInull mice expressing RH after lentiviral gene therapy had greater 

efficacy in improving hemostasis in the cremaster arteriole laser injury model due to 

increased RH stability within the core of the growing thrombus109. 

Our pFVIII-iMks studies also have several important limitations. iMks are known 

to be small with low ploidy and release ~10 platelets/iMk even upon infusion into 

recipient mice. At present, there was no available FVIIInull murine model on an immune 

compromised background that was available for infusion studies, so we infused iMks into 

clodronate liposome-treated FVIIInull mice to improve human platelet half-life by reducing 

phagocytic removal of the human platelets. To test the full potential of this model, a 

mouse would need to be developed to allow for long-term circulation of iMks and their 

released platelets. The survival of the released human platelets in clodronate liposome-

pretreated FVIIInull mice (Figure 3.12A) was shorter than the ~12 hours seen when 

human iMks were infused into immunodeficient mice. Currently we are breeding Non-

obese (NOD)/SCID/interferon receptor 2γ-deficient (NSG)-FVIIInull mice obtained from 

Dr. Shu-Wha Lin at Taiwan University. We plan to cross these mice with a mouse that 

have a mutation in their Vwf gene (vWFR1326H) that allows for better incorporation of 

human platelets into mouse thrombi as described by Tom Diacovo202. This will allow us 

to fully test the therapeutic benefit of pFVIII-iMks over longer periods of time and in the 

presence of inhibitors. These mice will also allow us to test other models of thrombosis. 

To date, because of the low integration of human platelets into mouse thrombi, we were 

precluded from using cremaster laser injury models for these studies. These new mice 

will allow us to perform these studies and further test the details of the hemostatic 

efficacy of our pFVIII-iMks  

 Additionally, in these studies we failed to show iMks’ effectiveness in the setting 

of infused inhibitors. Whether pFVIII-iMks will be beneficial in the FeCl3 or tail-clip 
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exsanguination model has yet to be fully elucidated; however, current studies to this end 

are underway. More importantly, the level of pFVIII in these iMks was even lower than 

that of the Line h38 platelets, and clearly a strategy to achieve higher levels of pFVIII per 

iMk needs to be established as well as to establish a self-replicating lineage. Chapter 4 

outlines other strategies utilized to express FVIII into iMks. So far our lentiviral approach 

gave the highest amounts of antigen. In subsequent studies, we also hope to utilize FVIII 

variants that have increased expression and/or biological activity in addition to the ones 

outlined in this thesis.  

  

IgG localization  

While our main goal was for the use of infused pFVIII-iMks as an effective 

hemostatic strategy in patients with high titer inhibitors, we also wanted to better 

understand why pFVIII was more effective than plasma FVIII in the care of patients with 

hemophilia A and inhibitors. In both plasma and pFVIII, FVIII is bound to vWF, so we felt 

that there should be an alternative explanation other than vWF binding to explain the 

difference efficacy in the setting of inhibitors. We hypothesized that the pFVIII was either 

localized in different granules than endocytosed IgG in absolute terms or in sufficient 

amounts to allow efficacy or that there were macro- or micro-domains within the 

interstices of a thrombus that contained free pFVIII able to activate the clotting cascade 

sufficiently before being neutralized. We began with confocal microscopy to test this 

hypothesis. Human IgG granular distribution only partially overlapped with that of vWF. 

Further studies would need to be done to test this hypothesis by looking at co-

localization of pFVIII in iMks, where pFVIII expression level is increased, and co-

localization with endogenously expressed vWF and endocytosed human IgG. Also iMks 

that have targeted disruption of vWF will need to be studied and perhaps the ability of 
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these two iMk populations to release platelets in FVIIInull mice will need to be looked on 

in situ microscopy.  The former hypothesis is supported in a 2011 study by Kamykowski 

et al. This group showed that proteins with pro and anti-agonist functions stored within 

platelets showed very little co-localization within the same α-granules when visualized 

via confocal microcopy203.  Understanding the basis for enhanced pFVIII resistance to 

inhibitors may provide insights that can lead to new strategies to improve this biology for 

example by enhancing vWF levels in pFVIII-iMks. 

 

Strategies to increase pFVIII expression within iMks  

In our studies, we utilized HPCs transduced with the appropriate lentiviruses to 

obtain pFVIII-iMks. These experiments were limited by the amount of virus we could add 

to the cells without having adverse effects due to viral toxicity. One approach that can be 

taken to not need to constantly transfect cells with lentiviruses is to accomplish the 

genetic modification at an earlier self-replicative stage. We described such a strategy 

using AAVS-1 targeting of vector constructs in iPSCs to drive megakaryocyte-specific 

expression using a Gp1ba promoter, but while this strategy had achieved high levels of 

eGFP expression and correction of αIIb expression in iMks, it did not drive significant 

expression of pFVIII (Figure 4.4). While increased F8 mRNA was obtained due to AAVS-

1 targeting, this level of mRNA was at least 40-fold too low for achieving a useful pFVIII-

iMk when compared to the pFVIII-iMks that were transduced with lentivirus.  

Through lenti-viral targeting of FVIII in iMks we were able to achieve modest 

levels of FVIII when compared to our Line h38 transgenic Mks (Figure 3.7). Interestingly, 

to achieve this relatively low level of pFVIII, HPCs needed to transduced with 10 viral 
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particles per cell that resulted in a FVIII mRNA level of at least 40 times greater than 

controls 

We also explored other strategies to express FVIII within iMks, not outlined in this 

thesis. Of note, we tried to introduce hBFVIII plasmids through electroporation into HPCs 

to increase F8 cDNA, mRNA, and antigen. We gave a dose of DNA that was well 

tolerated by Meg-01 line cells however, this dose caused cell arrest in HPCs and no 

production of FVIII. We also tried a 100-fold increase in lentiviral transduction which only 

yielded a modest increase in iMk FVIII (data not shown). Clearly, we may have 

challenges achieving this goal on two levels: 1.tolerance of the induction system and the 

amount of DNA given that allows for the survival of the iPSCs or HPCs and 2.expression 

levels of ectopic pFVIII and their ability to cause apoptosis of differentiating Mks.  

 

Other limitations of the pFVIII-iMk infusion approach  

One area of potential concern with pFVIII-iMks approach (beyond those that may 

be associated with infusion of iMks in any clinical setting) is the need to infuse large 

numbers of platelets into mice and potentially humans that are not thrombocytopenic. 

Infusing high levels of platelets may induce untoward thrombosis causing symptoms 

seen in thrombocytosis204. We tested whether a modest 15% increase in pFVIII could 

have a beneficial effect on thrombosis and hemostasis. These studies did not address 

the upper limits of infusing large amounts of platelets. While we did not indicate any 

adverse effect in mice receiving 15% platelet infusions, further studies would need to be 

completed to ensure that maximum benefit of pFVIII could be achieved without 

thrombotic risks. We propose that a once weekly to every other week infusion of pFVIII-

iMks would provide prophylactic therapy with no notable increase in platelet counts. This 

may need to be tested in mice models after we establish the NSG-FVIIInull mice.  
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Clinical application 

  
For pFVIII infusion therapy to reach clinical applications, the aforementioned 

limitations would have to be addressed. Once these limitations are addressed, we 

envision pFVIII therapy being beneficial in several areas of hemophilia A with severe 

inhibitors. One scenario for pFVIII infusion therapy could be that a patient with 

intractable inhibitors would receive products derived from “universal” pFVIII-iMks, which 

would release platelets missing particular human leukocyte-related antigens (HLA) on 

their surface205. This could be accomplished through reprogramming cells from healthy 

individuals and gene manipulating iPSCs to lack HLA antigens. Our group is beginning 

to work with Dr. David Russell at the University of Washington on this project206. This 

would prevent the need to reprogram each patient’s cells and allow for better selection of 

iPSC lines that not only give rise to the highest level of iMks, but lines that also express 

FVIII the best.  

Alternatively, patients may have their own iPSCs established and utilized to 

generate pFVIII-iMks. Both strategies may avoid the development of antibodies to the 

infused platelets and allow long-term treatment requiring transfusion every 1-2 weeks or 

longer with limited increases in their total platelet counts. Applying this strategy to pFVIII 

delivery would provide insights into what type of clinically relevant bleeds pFVIII therapy 

would be useful for and whether, in a particular patient with specific inhibitors, there 

would be benefit from a more permanent pFVIII therapy using marrow-directed gene 

therapy. Furthermore, the pFVIII-iMks may then be useful to support such challenging 

patients during their post-BMT thrombocytopenia with its anticipated increased bleeding 

risks. 
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Conclusion 
	

In summary, we studied the potential of an alternative approach for using pFVIII 

strategy to treat patients with severe hemophilia A and intractable inhibitors. Using 

transgenic mouse Line h38 platelets and WT iPSCs modified to express FVIII when 

differentiated into iMks, we show the utility of prophylactic infusions of pFVIII on 

achieving several days of hemostasis in FVIIInull mice. This pFVIII strategy was also 

effective in the presence and absence of inhibitors and was additive with a bypassing 

agent, rFVIIa. iMks expressing both hBDFVIII, hBDFVIIIRH were able to effect clot 

formation and thrombosis both in vivo and in vitro. hBDFVIIIRH had more of an effect in 

these settings than hBDFVIII. I also looked at IgG uptake into Mks and found that it 

largely localizes to granules that are not associated with vWF, which may further explain 

the efficacy of pFVIII in the setting of inhibitors. Prophylactic infusions of pFVIII has the 

advantage of not permanently altering the patients, can provide longer lasting 

prophylaxis than present-day bypassing agents, and be used in conjunction with these 

bypassing agents. This approach may also be a useful adjuvant for bleeding challenges 

post-marrow transplantation for gene therapy. Finally, it may be a first-to-clinic 

application of in vitro-generated megakaryocytes and their derived platelets that would 

justify the costs of preparing such a platelet product relative to donor-derived platelets. 
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