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Economics Of Non-Neutrality In The Internet

Abstract
Net-neutrality on the Internet is the set of policies that prevents a paid or unpaid discrimination by Internet
Service Providers (ISPs) among different types of transmitted data. The recent moves to change the net
neutrality rules and the growing demand for data have driven the ISPs to provide differential treatment of
traffic to generate additional revenue streams from Content Providers (CPs). In this thesis, we consider
economic frameworks to investigate different questions about the departure toward a non-neutral regime and
its possible consequences. In particular, we i) assess whether different entities of the market have the incentive
to adopt a non-neutral pricing scheme; and if yes ii) what are the pricing strategies they choose; and iii) how
these changes affect the Internet market. First, we investigate the incentives of different entities of the Internet
market for migrating to a non-neutral regime. Thus, we consider early stages of a non-neutral Internet. We
consider a diverse set of parameters for the market, e.g. market powers of ISPs, sensitivity of EUs and CPs to
the quality of the content. The goal is to obtain founded insights on whether there exists a market equilibrium,
the structure of the equilibria, and how they depend on different parameters of the market when the current
equilibrium (neutral regime) is disrupted and some ISPs have switched to a non-neutral regime. Then, we seek
to investigate frameworks using which ISPs and CPs select appropriate incentives for each other, and
investigate the implications of these new schemes on the entities of the Internet market. We analyze two non-
neutral frameworks. In the first framework, we focus on the price competition between ISPs in the presence of
uncertainty in competition and demand when CPs, i.e. demand, is merely price taker, i.e. passive in
equilibrium selection. Then, in the second framework, we consider the case in which CPs have an active role
in the market, and decide on the number of resources they want to reserve/buy from ISPs based on the price
ISPs quote. In this case, we also consider the coupling between limited resources and the quality of the
content delivered to end-users and subsequently the strategies of the decision makers. We obtain strategies for
ISPs and CPs under a variety of market dynamics.
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ABSTRACT

ECONOMICS OF NON-NEUTRALITY IN THE INTERNET

Mohammad Hassan Lotfi

Saswati Sarkar

Net-neutrality on the Internet is the set of policies that prevents a paid or unpaid discrim-

ination by Internet Service Providers (ISPs) among different types of transmitted data.

The recent moves to change the net neutrality rules and the growing demand for data have

driven the ISPs to provide differential treatment of traffic to generate additional revenue

streams from Content Providers (CPs). In this thesis, we consider economic frameworks

to investigate different questions about the departure toward a non-neutral regime and its

possible consequences. In particular, we i) assess whether different entities of the market

have the incentive to adopt a non-neutral pricing scheme; and if yes ii) what are the pric-

ing strategies they choose; and iii) how these changes affect the Internet market. First,

we investigate the incentives of different entities of the Internet market for migrating to

a non-neutral regime. Thus, we consider early stages of a non-neutral Internet. We con-

sider a diverse set of parameters for the market, e.g. market powers of ISPs, sensitivity

of EUs and CPs to the quality of the content. The goal is to obtain founded insights

on whether there exists a market equilibrium, the structure of the equilibria, and how

they depend on different parameters of the market when the current equilibrium (neutral

regime) is disrupted and some ISPs have switched to a non-neutral regime. Then, we

seek to investigate frameworks using which ISPs and CPs select appropriate incentives

vi



for each other, and investigate the implications of these new schemes on the entities of

the Internet market. We analyze two non-neutral frameworks. In the first framework, we

focus on the price competition between ISPs in the presence of uncertainty in competition

and demand when CPs, i.e. demand, is merely price taker, i.e. passive in equilibrium se-

lection. Then, in the second framework, we consider the case in which CPs have an active

role in the market, and decide on the number of resources they want to reserve/buy from

ISPs based on the price ISPs quote. In this case, we also consider the coupling between

limited resources and the quality of the content delivered to end-users and subsequently

the strategies of the decision makers. We obtain strategies for ISPs and CPs under a

variety of market dynamics.
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Chapter 1

Introduction and Overview

1.1 Network Neutrality and Pricing of the Internet

1.1.1 Net Neutrality

Net-neutrality on the Internet is the set of policies that prevents a paid or unpaid discrim-

ination by Internet Service Providers (ISPs) among different types of transmitted data.

This precludes ISPs from charging Content Providers (CPs) to carry their data to the

End-Users (EUs) in the last-mile. Since January 2014, when a federal appeals court struck

down parts of the Federal Communication Commission’s (FCC) rules for net-neutrality

[65], the net-neutrality debate has received more attention. In February 2015, the FCC

reclassified the Internet as a utility [55], providing the grounds for this agency to secure

even stricter net-neutrality rules. In Europe, in October 2015, the European parliament

has rejected legal amendments for strict net-neutrality rules, and passed a set of rules

that allow for sponsored data plans and Internet fast lanes for “specialized services” [61].

Further actions, from ISPs and Content Providers (CPs), are expected, since both
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may have incentives to adopt a non-neutral regime: the growing demand for data and the

saturating revenue of ISPs have driven them to provide differential treatment of traffic

to generate additional revenue streams from CPs. In addition to the ISPs generating

revenue from the CPs, with such a model, CPs can ensure the quality of service they

provide for their end-users particularly when resources are scarce such as in wireless

networks. Offering a sponsored data plan by At&T in 2014 is an instance of departure

toward a non-neutral regime. In this plan, AT&T allows CPs to pay for the data bytes

that their users consume, thereby not eating into the users’ data quota.

In addition, net-neutrality rules are often considered to be vague. For example, in

February 2014, Comcast and Netflix negotiated a contract in which Netflix would pay

Comcast for a faster access to Comcast’s subscribers [66]. Both parties announced that

the contract is a peering agreement, and its goal is to resolve the traffic imbalance. How-

ever, after deploying the agreement, the average Netflix download speed improved signif-

icantly [59]. Note that a contract for resolving aggregate traffic imbalance at tier-1 ties

(particularly between an “eyeball” ISP and one serving a CP) in which the party receiving

the net traffic imbalance get paid is considered “neutral” [31, 28]. Thus, although the

Netflix-Comcast deal does not violate the net-neutrality rules, it has a non-neutral out-

come of a side-payment between a residential ISP and a CP. This reveals a net-neutrality

loophole at tier-1 ties Service Level Agreements (SLAs).

1.1.2 Pricing of the Internet

New pricing schemes in the Internet market either target end-users or CPs. For the end-

user side, different pricing schemes have been proposed to replace the traditional flat rate
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pricing [58], [17], [34]. These schemes can create additional revenue for SPs and provide

a more flexible data plan for end-users. However, SPs are reluctant in adopting such

pricing schemes due to the fact that these schemes are typically not user-friendly. Thus,

SPs mainly focus on changing the pricing structure of the CP side, for which they should

deal with net-neutrality rules.

Thus, and given the potential changes in net-neutrality policies in near future, the

pricing schemes on the Internet market are gradually departing from a one-sided pricing

to a two-sided scheme in which local ISPs which own the last mile charge both sides of

the network, i.e. CPs and end-users. Therefore, new regulations may fundamentally alter

the flow of the money and services among different stakeholders of the Internet market. A

schematic view of the two-sided pricing scheme on the Internet is presented in Figure 1.1.

Figure 1.1: Schematic view of the two-sided pricing scheme on the Internet

1.2 Summary of Contributions

It has almost been a decade that the advantages and disadvantages of the Internet

non-neutrality have been put on debate. Proponents of Net-Neutrality claim that non-

neutrality kills the innovation on the CP side, decreases the competition among CPs, and

undermines the so called “free Internet”. On the other hand, those who advocate relaxing
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the net-neutrality rules claim that the Internet neutrality, as it is perceived commonly, is

a barrier to further developments on the Internet since it decreases the incentives of ISPs,

as the pipe-line holders of the Internet, to invest on their infra-structure. This debate

has mostly been conducted on a qualitative level without rigorous economic and techni-

cal analyzes. A survey of the works on economic analysis of the net-neutrality debate is

presented in [57].

In this dissertation, we consider economic frameworks to investigate different ques-

tions about the departure toward a non-neutral regime and its possible consequences. In

particular, we i) assess whether different entities of the market have the incentive to adopt

a non-neutral pricing scheme; and if yes ii) what are the pricing strategies they choose;

and iii) how these changes affect the Internet market.

We first consider the migration to a non-neutral Internet and its consequences on

different entities of the Internet market. Then, we consider and analyze two different

non-neutral frameworks for a non-neutral Internet market. In particular:

• In Chapter 2, we investigate the incentives of different entities of the Internet market

for migrating to a non-neutral regime. Thus, we consider early stages of a non-

neutral Internet. We model the interaction between ISPs and CPs in a non-neutral

regime in the presence of asymmetric competition between ISPs when some of the

ISPs are non-neutral and some are neutral. In addition, we consider CPs that can

differentiate between ISPs by controlling the quality of the content they are offering

on each one. We consider a diverse set of parameters for the market, e.g. market

powers of ISPs, sensitivity of EUs and CPs to the quality of the content. The
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goal is to obtain founded insights on whether there exists a market equilibrium,

the structure of the equilibria, and how they depend on different parameters of the

market when the current equilibrium (neutral regime) is disrupted and some ISPs

have switched to a non-neutral regime. Insights from our work can be used by the

regulator in designing efficient rules for the Internet market.

Adopting non-neutrality gives rise to new distinctive environments where ISPs can

increase their profit by pricing the service they provide for the CPs, and CPs can provide

their users a better reception quality in exchange of monetary incentives for ISPs. We

subsequently seek to investigate frameworks using which ISPs and CPs select appropri-

ate incentives for each other (Figure 1.1), and investigate the implications of these new

schemes on the entities of the Internet market. Thus, we consider a market consisting of

ISPs, CPs, and end-users in which ISPs sell the bandwidth to CPs in exchange of financial

incentives:

• In Chapter 3, we study the case in which ISPs compete with each other to set

appropriate prices for CPs to sell/rent their bandwidth where the competition and

demand are uncertain. In this case, CPs have a passive role, in the sense that they

cannot alter their demand in accordance with the price set by ISPs. However, CPs

have the ability to choose amongst the ISPs based on their price.

• In Chapter 4, we consider the case in which CPs have an active role in the market,

and decide on the number of resources they want to reserve/buy from the ISPs

based on the price ISPs quote. In addition, we consider the coupling between

limited resources and the strategies of the decision makers. We obtain strategies for
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ISPs and CPs under a variety of market dynamics.

We now present and motivate the problems in more detail, and summarize our con-

tributions and related literature corresponding to each case:

1.3 Migration to a Non-Neutral Internet

1.3.1 The Research Challenges and Goals

Note that in reality, at initial stages of migration to a non-neutral regime, some ISPs

would adopt a non-neutral regime before others. Thus, we need to consider a model in

which some of the ISPs are neutral and some are non-neutral. We consider the market

with two ISPs, one neutral and one non-neutral. This can represent two groups of ISPs,

neutral and non-neutral, that are competing against each other. We also consider a

“big” CP with high market power that chooses her strategies to influence the equilibrium

outcome of the market. All other CPs are considered to be passive in the equilibrium

selection process, and their effects are modeled using a common factor in the utility of

End-Users (EUs). In addition, we consider a continuum of EUs that decide on the ISP

they want to buy Internet subscription from. We assume that EUs have different levels

of innate preferences for each ISP which can be because of initial set-up costs of a new

service upon switching the ISP or the reluctancy of EUs to change the existing ISP. These

innate preferences capture the degree by which EUs are locked in with a particular ISP.

Market powers of ISPs are defined as a function of these innate preferences.

In our model, both ISPs offer a free service for CPs up to a threshold on quality. In

addition, the non-neutral ISP offers a premium quality in exchange of a side payment from
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the CP. This side-payment can be negative or positive, where a negative side-payment

means a net payment from the non-neutral ISP to the CP. For instance, a negative side

payment can arise in a scenario that the non-neutral ISP wants to make sure that the

monopolistic CP offers with a premium quality and exclusively for her EUs. We assume

that the CP generates revenue through advertisements, and the advertisement profit of

the CP is an increasing function of the quality she offers to EUs.

We formulate a four-stage sequential game and seek the Sub-game Perfect Nash Ee-

quilibrium (SPNE) of the sequential game using backward induction.

Note that the equilibrium outcome has a complex dependency on a wide range of

parameters. Thus, the structure, the existence and the uniqueness of the equilibrium is

not apriori clear. One can expect different equilibrium outcomes in which either (i) the

CP offers her content only with a free (best effort) quality, or (ii) the CP offers her content

with free quality on the neutral and with premium quality on the non-neutral ISP, or (iii)

the CP offers with a premium quality only on the non-neutral ISP. Moreover, different

equilibrium Internet access fees and side payments can be selected by the ISPs whose value

directly affects the welfare of EUs. For example, the non-neutral ISP can select a small

Internet access fee to increase the number of her EUs and generates most of her revenue

through the side-payment she charges the CP. In this case, because of competition, the

neutral ISP should decrease her Internet access fee. Thus, the welfare of EUs would

be high. Or, the non-neutral ISP may select a small side-payment (possibly negative)

to make sure that the CP offers with a premium quality, and generate her revenue by

increasing Internet access fees for EUs, which enables the neutral ISP to increase her

price for EUs. Thus, this scenario yields a small welfare for EUs. Note that equilibrium
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outcomes determine the division of EUs between ISPs, and some divisions maybe more

desirable for the CP. Thus, the CP can have an active role in choosing the desirable

equilibrium outcome (as well as the division of EUs with ISPs) by controlling the quality

of her content on each ISP appropriately.

1.3.2 Contributions

Analytical Results

We show that if an SPNE exists, it would be one of the five possible strategies each of

which we explicitly characterize. In some of these strategies, the CP offers her content on

only the non-neutral ISP, and in the rest she offers her content on both ISPs. In addition,

in one of the outcomes, all EUs pay the Internet access fee to the non-neutral ISP, i.e. the

neutral ISP is driven out of the market. However, in the rest, both ISPs receive a positive

share of EUs, i.e. both ISPs are active. In addition, by providing specific instances, we

shows that an SPNE does not always exist.

We prove that when EUs have sufficiently low inertia for ISPs, i.e. when the prefer-

ences are “relatively” small and do not over rule major discrepancies on price and quality,

the game has a unique SPNE. In this SPNE, the CP offers her content with premium

quality on the non-neutral ISP while she does not offer her content on the neutral ISP, to

attract all EUs to the non-neutral ISP on which users can receive a better quality. Thus,

the neutral ISP would be driven out of the market. This implies that when inertias are

small, upon switching to a non-neutral regime by an ISP, the neutral ISPs are forced to

either leave the market or adopt a non-neutral regime.

We also consider the case that EUs have sufficiently high inertia for at least one of the
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ISPs, and EUs cannot easily switch between ISPs. This case often happens in practice

in the Internet market, e.g. when ISPs bundle Internet access with other services (e.g.

cable, phone). In this case, an EU may incur additional expenses for other services if

she buys Internet access from another ISP. Another example of high inertia of EUs is the

case in which EUs require different devices to access the Internet through different ISPs

(e.g. different devices for cable and DSL services), i.e. high set up costs. We prove that

there exists a unique SPNE with a non-neutral outcome, and we explicitly characterize

the SPNE. In the unique SPNE, both ISPs are active, and the CP offers her content with

free quality on the neutral ISP and with premium quality on the non-neutral ISP.

In addition, we consider a benchmark case in which both ISPs are neutral. In this

case, we prove that there exists a unique SPNE, in which the CP offers her content over

both ISPs with free quality, and both ISPs would be active. We use the results of this

case as a benchmark for assessing the extent of benefit of switching to non-neutrality for

different entities of the market.

Numerical Results

Numerical results confirm our theoretical results that when the inertias of EUs for ISPs

are small (respectively, high) enough, then the SPNE (respectively, the SPNE with a

non-neutral outcome) exists and is unique. Numerical results also help pinpoint which of

the five possible SPNE strategies occurs when the inertias are between these two extreme

cases (high and low inertias). More specifically, results yield that if the inertia are between

these two extreme cases but still on the lower end of the region in between, the game has

an SPNE outcome in which both ISPs are active, but the CP offers her content with
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premium quality and only on the non-neutral ISP. Results also reveal that if the inertia

are between the two extreme cases but on the upper end of the region in between, then

the game has no SPNE. Results of simulation over large sets of parameters also suggest

that in all scenarios, the SPNE is unique if it were to exist.

Numerical results reveal that the neutral ISP loses payoff in all SPNE outcomes in

comparison to the benchamrk case. In addition, for a wide range of parameters, the non-

neutral ISP receives a better payoff under a non-neutral scenario. This implies that it is

beneficial for ISPs to operate as non-neutral, if they have the choice. However, switching

to a non-neutral regime is not always profitable for ISPs. If EUs or the CP are not

sensitive to the quality of the content delivered and the market power of the non-neutral

ISP is small, then ISPs are better off staying neutral.

Results also reveal that the sensitivity of the EUs and the CP, and the market power

of ISPs substantially influences the welfare of EUs (EUW) in neutral and non-neutral

scenarios. The EUW would be higher in a non-neutral setting (as compared to the

neutral setting) if (i) the market power of the non-neutral ISP is low, (ii) the sensitivity

of the CP to the quality is high, or (iii) EUs are not very sensitive to the quality, or a

combination of these conditions. In these cases a cheaper Internet access fee would be

charged to the EUs by the non-neutral ISP which yields a higher EUW. In the absence

of these conditions, the EUW of the neutral scenario would be higher.

1.3.3 Related Works

This work falls in the category of economic models for a non-neutral Internet [57]. This

line of work can be divided into two broad categories: those that consider a non-neutral
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regime in which (a) a non-neutral ISP blocks the content of the CPs that do not pay

the side-payment, examples are [11], [52], [35], and those that consider (b) a non-neutral

ISP that provides quality differentiations for CPs and do not necessarily block a content,

examples are [43, 44, 32, 54, 7, 48, 2, 18, 8, 6]. Note that in reality and because of

FCC restrictions on blocking the content, we expect the latter scenario (differentiation in

quality) to emerge. Thus, in this work, we consider the second scenario.

These works can also be further divided into two other categories: (i) those that con-

sider monopolistic ISPs: [44, 32, 54, 7, 20, 48, 2], and (ii) those that consider competition

between ISPs: [43, 11, 52, 18, 8, 6, 35]. Our work belongs to the latter case.

To the best of our knowledge, this work is one of the few works that considers the

problem of migration to a non-neutral regime, i.e. when some of the ISPs are neutral

and some are non-neutral. The focus of previous works is on the social welfare analysis

of the market when all ISPs are neutral and/or all are non-neutral, without considering

the incentives of individual ISPs to adopt a non-neutral regime. The excpetion is [43]

in which the authors consider competition between a neutral (public option) ISP with

non-neutral ISPs. They argue that the existence of a non-neutral ISP alongside of a

neutral ISP increases the customer surplus in comparison to a neutral scenario in which

all ISPs are neutral. However, parameters such as different market powers of ISPs and

the sensitivity of EUs and CPs to the quality of the content are important in determining

the welfare of EUs which are absent in the model of [43]. We consider these parameters in

our model. Contrary to their results, we show that the competition between the neutral

and non-neutral ISPs would not always increase the customers welfare.

In addition, in contrast to the previous works, we consider competition between ISPs
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that have different market powers, i.e. an asymmetric competition (Market power is the

ability of a decision maker to raise the market price for a good or service.). Moreover,

in most of the previous works, CPs have a passive role, i.e. they are only price-takers.

However, in our model, we consider the quality of the content that a CP offers for EUs of

each ISP as the strategy by which she can influence the equilibrium of the market. For

example, a CP can select a particular ISP and offer with a high quality on this ISP, and

stop offering her content on other ISPs. By doing so, the CP might be able to migrate

EUs of other ISPs to the selected ISP.

1.4 Non-Neutrality Framework I- Uncertain Price Compe-

tition in an Internet Market

1.4.1 The Research Challenges and Goals

We consider a market with two ISPs (henceforth denoted by sellers), where each seller

offers multiple units of resources for sale to CPs (henceforth denoted by buyers or cus-

tomers). We investigate the price selection strategy for sellers in presence of uncertainty in

competition using Game Theory. Customers shop around for the lowest available prices.

Therefore sellers seek to set prices that will ensure that their commodities are sold and also

fetch adequate profit. Often times, a seller is not aware of the number of units available

to her competitor before quoting her price. Thus, the competition that each seller faces is

uncertain, and different sellers have different number of resources available (heterogeneous

availability). Each seller selects the price per unit depending on the number of units she

has available for sale, the statistics of the availability process for her competitor, and the
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demand. In general, each seller chooses her price randomly using different probability

distributions for different availability levels. Thus, the strategy of each player is a vector

of probability distributions. For instance, if a seller can potentially offer up to three units

of resources, her vector of strategies would be (Φ1(.),Φ2(.),Φ3(.)), where Φi(.) is the price

selection probability distribution when the seller offers i units.

Due to uncertainty in competition, quoting a high price by a seller enhances the risk

of not being able to sell the resources offered by that seller. On the other hand, although

selecting a low price increases the chance of winning the competition, it also decreases the

profit earned by the seller. Therefore, pricing in presence of uncertainty in competition

is a risk-reward tradeoff. It is not apriori clear that how offering multiple number of

units affects the price selection by sellers. For instance, a seller with a large number of

available units may be motivated to quote a low price, since in the event of winning the

competition, a small amount of profit per unit would result in a large total profit. On

the other hand, a seller may also be enticed to select a high price when the availability is

high to significantly increase her overall profit, even at the risk of not being able to sell

the available units. We focus on investigating the impact of heterogeneous availability

and uncertain competition on the aforementioned risk-reward tradeoff.

Note that uncertainty in competition is an integral feature not only a non-neutral

Internet but also a diverse sets of application such as microgrid and secondary spectrum

markets. We later discuss about how our model captures these applications.
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1.4.2 Contributions

In our work, sellers are allowed to have different probability distributions for different

availability levels (asymmetric market). Note that since the utility of sellers is not a

continuous function of their strategy, classical theorems for existence and uniqueness of

NE cannot be used. We identify key properties that every NE pricing strategy should

satisfy when demand is greater than the maximum possible availability level (necessary

conditions). The properties reveal that the sellers randomize their price using probability

distributions whose support sets are mutually disjoint and in decreasing order of the num-

ber of availability. In the context of the aforementioned risk-reward tradeoff, sellers opt

for low-risk pricing when they have high availability. We also prove that any strategy pro-

file that satisfies these properties constitutes an NE regardless of the relation between the

demand and the number of available units (sufficiency condition). This sufficiency result

naturally leads to an algorithm for computing the strategies that satisfy the mentioned

properties (If such a strategy exists, it is an NE).

In addition, We consider a symmetric market and prove that these properties are

also necessary conditions for a NE regardless of the relation between the demand and

the number of available units. We prove that the symmetric NE exists uniquely, and

obtain an algorithm for explicitly computing it. Note that the uniqueness is specific to

the symmetric market- our analysis reveals that an asymmetric market allows for multiple

Nash equilibria.

Furthermore, we propose a strategy for sellers in a symmetric oligopoly that satisfies

the necessary and sufficient properties identified for a symmetric NE in a symmetric
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duopoly market. Numerical evaluations reveal that this strategy constitutes a fairly good

approximation for the symmetric NE of a symmetric oligopoly. Finally, we generalize the

results to the case of random demand.

1.4.3 Related Works

Price competition among different entities has been extensively studied in [10, 19, 13,

60, 50, 51, 69, 47, 67, 16, 64]. In economics literature as also in the context of specific

applications, uncertainty in competition has been investigated when the availability level

is either zero or one [23, 29, 25, 27, 26]. The strategy profile of each seller consists of only

one probability distribution since sellers need to select a price only when they have one

unit available for sale. We, however, characterize the Nash equilibrium pricing strategies

when sellers have arbitrary and potentially different number of available units for sale

(not merely zero or one). In this case, different price selection strategies may be required

for different number of available units. Thus, the pricing strategy profile of each seller is

a collection of probability distributions, one for each availability value. Therefore both

results and proofs are substantially different from previous works.

Another genre of work allows sellers to control the amount of commodities they would

generate for sale [9, 30, 62, 15, 21, 3]. In these works, sellers (e.g. power generators) bid a

supply function 1 to a central auctioneer. Based on the demand and the bids submitted,

the auctioneer solves an optimization problem to determine the number of units needed

to be generated by the sellers and subsequently the price that should be paid to them. In

1A supply function is a function that maps the price of the commodity under sale to the amount a

producer will produce for sale.
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[9, 30, 62], the setting is a uniform-price procurement auction in which the price is equal

for different sellers, i.e. the clearing price. However, in [15, 21, 3], authors investigate a

pay-as-bid (discriminatory) procurement auction, in which the central entity accepts the

offers submitted by the sellers and pays the accepted offers based on the bid submitted. In

[3], authors provide a characterization of mixed equilibria over increasing supply curves.

In other words, in their characterization, the price per infinitesimal unit of the commodity

is increasing, i.e., the higher the number of units produced, the higher the price per unit.

We instead consider scenarios where sellers do not control the amount of commodities they

produce2. Thus, each seller quotes a price depending on the number of available units

and her belief about other sellers. The distinctions in the setup lead to major differences

in the formulation, analyses, and results. Our results reveal that the Nash equilibrium

pricing of our model is in stark contrast with the optimal curves found in [3]. Specifically,

we show that sellers with high availability quote a lower price.

Note that the setting considered in this chapter is an asymmetric discriminatory multi-

unit auction in which sellers are the bidders. As stated in [22]: “Unfortunately, computing

equilibrium strategies in (asymmetric) discriminatory multi-unit auctions is still an open

question”. In this chapter, we provide an algorithm to compute the equilibrium strategies

for a duopoly case. Using the results for duopoly, we provide an algorithm to compute

the equilibrium strategies for a symmetric duopoly.

2This implies that in [3] the market will be cleared (firms produce up to the point that satisfies the

demand), while in our case, there is no guarantee that all the available units would be sold.
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1.5 Non-Neutrality Framework II- Quality Sponsored Data

1.5.1 The Research Challenges and Goals

In this work, we consider the cases in which ISPs can increase their profit by charging

CPs for the service they provide, and the CPs can provide their users a better reception

quality in exchange of monetary incentives for ISPs. In contrary to the previous case,

we consider the CPs to have an active role in the market, and decide on the number of

resources they want to reserve/buy from ISPs based on the price that ISPs quote. We

refer to this model as the quality-sponsored data (QSD) model, wherein spectral resources

at ISPs are sponsored to ensure quality for the data bytes being delivered to the end

users.

Hence, the over-arching goal of this work is to analyze and understand the implications

of the QSD model on the market dynamics. Using game-theoretic [45] tools, we study the

market equilibria and dynamics under various scenarios and assumptions involving the

three key players of the market, namely the CPs, ISPs and end users. We investigate the

scenarios under which the QSD model is plausible, and one can expect a stable outcome

for the market that involves sponsoring the quality of the content by CPs. In addition,

we discuss about the division of profit between ISPs and CPs in two cases (1) when the

decision makers do not cooperate and at least one of them is myopic optimizer, and (2)

when both cooperatively maximize the payoff in the long-run. In the process, we devise

strategies for the CPs (respectively, ISPs) to determine if they should participate in QSD,

what quality to sponsor, and how the ISPs should price their resources.

In our model, ISPs make a portion of their resources available for sponsorship, and
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price it appropriately to maximize their payoff. Their payoff depends on monetary revenue

and satisfaction of end-users both for the non-sponsored and sponsored content. Note

that the QSD model couples market decisions to the scarce (wireless) resources. Thus,

resources allocated to sponsored contents will affect those allocated to non-sponsored

content and hence their quality. Thus, one should consider the impact of the quality of

the two types of data (sponsored and non-sponsored) on satisfaction of end-users.

1.5.2 Contributions

We consider one CP and one ISP. We consider that the CP has an advertisement revenue

model3, and characterize the myopic pricing strategies for the CP and the ISP given the

quality of the content that needs to be guaranteed and the available resource using a non-

cooperative sequential game framework. Assuming the demand for content to be dynamic,

wherein the change in the demand is dependent on the quality end-users experience, we

investigate the asymptotic behavior of the market when at most one of the decision makers

(ISP or CP) is short-sighted, i.e. not involving the dynamics of demand in their decision

making. We show that depending on certain key parameters, such as the importance

of non-sponsored data for ISPs and the parameters of the dynamic demand, the market

can be asymptotically (in long run) stable or unstable. Furthermore, four different stable

outcomes are possible: 1. no-sponsoring, 2. maximum bit sponsoring: the CP sponsors

all the available resources, 3. minimum quality sponsoring: the CP sponsors minimum

resources to deliver a minimum desired rate to her users, and 4. Interior solution in

which the CP sponsors more than the minimum but not all the available resources. We

3A CP that earns money through advertisements.
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characterize the conditions under which each of these asymptotic outcomes is plausible.

The effects of different market parameters on the asymptotic outcome of the market is

investigated through numerical simulations.

Note that there may exist multiple equilibria, and a non-cooperative framework may

lead to a Pareto-inefficient outcome. Thus, when both of the decision makers are long-

sighted, it is natural to consider a cooperative scheme such as a bargaining game frame-

work. Thus, we investigate the role of a CP and an ISP with long-sighted business models4

in stabilizing the market and equilibrium selection. We characterize the Nash Bargaining

Solution (NBS) of the game to determine the profit sharing mechanism between the ISP

and CP.

1.5.3 Related Works:

Works related to the emerging subject of sponsored content are scarce. In [24], [5], [4],

and [68], authors investigate the economic aspects of content sponsoring in a framework

similar to At&t sponsored data plans. Note that in At&t sponsored data plan, the CP

pays for the quantity of the data carried to the end-users, while in our scheme the CP

pays for the quality of the data, and end-user is responsible for paying for the quantity.

We take into the account the quality of the content and the coupling it has with scarce

resources. We consider more strategic CPs that decide on the portion of ISP’s resources

they want to sponsor, based on the price ISPs quote and the demand from end-users.

This work falls in the category of economic models for a non-neutral Internet. Most

4in which decision makers maximize their payoff in long-run considering the dynamics of the demand

for the content.
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of the works in this area study the social welfare of the market under neutrality and non-

neutrality regimes. In these works the decision of CPs does not depend on the demand

for the content, and simply is a take-it-or-leave-it choice, i.e. either the CP pays for the

premium quality or uses the free quality. In addition, most of the works do not consider

the coupling between limited resources available to ISPs and the strategies of the decision

makers. Exceptions are [32] and [43]. We consider that CPs decide on the number of

resources they want to sponsor based on the dynamics of their demand. Depending on

the demand and number of resources available with the ISP, the number of sponsored

resources by the CP determines the quality of experience for users of sponsored and

non-sponsored contents. Thus, we consider the coupling between market decisions and

the limited wireless resources. Moreover, we study problems like stability of the market

and the effects of being short-sighted or long-sighted. Therefore, we focus on one-to-one

interaction between CPs and ISPs, and its implications on the payoff of individual decision

makers.

The closest work to ours is [12] in which authors study the interaction between an ISP

and a CP when the CP can sponsor a quality higher than the minimum quality under a

private contract with the ISP. Their main focus is to compare the social welfare of the

sequential game when either the ISP or the CP is the leader, with the Pareto optimal

outcome resulting from a bargaining game between the ISP and the CP. Authors assume

that the number of subscribers to the ISP is an increasing function of the quality it

provides for the CP. In other words, as the quality for the sponsored content enhances,

end-users of the ISP become more satisfied. However, in our work, the main focus is

the coupling between the limited resources and the quality. Thus, providing a better
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quality for a sponsored content may degrade the quality of non-sponsored contents in

peak congestion times. Therefore, in our model, the satisfaction of end-users which is a

function of both sponsored and the non-sponsored content is not necessarily increasing

with respect to the sponsored quality. This changes the nature of the problem.
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1.6 Publications

• Chapter 2 is based on [39]. The shorter versions have been published in [35] and

[40].

• Chapter 3 is based on [37]. The shorter version has been published in [36].

• Chapter 4 is based on [42]. THe shorter version has been published in [41].

• Other published papers are [34] and [38].
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Chapter 2

Migration to a Non-Neutral

Internet
1

We consider early stages of migrating to non-neutrality in which some ISPs would adopt

a non-neutral regime before others. In this setting, we assess the benefits of different

entities in an emerging non-neutral network. Such an assessment is crucial in whether a

non-neutral Internet would be adopted. Thus, we consider a system in which there exists

two ISPs, one “big” CP, and a continuum of End-Users (EUs). One of the ISPs is neutral

and the other is non-neutral. We consider that the CP can differentiate between ISPs by

controlling the quality of the content she is offering on each one. We also consider that

EUs have different levels of innate preferences for ISPs. We formulate a sequential game,

and explicitly characterize all the possible Sub-game Perfect Nash Equilibria (SPNE) of

the game. We prove that if an SPNE exists, it would be one of the five possible strategies

1Presented in W-PIN+NetEcon 2014 (as a poster)[35], the Information Science and Systems conference

(CISS) [40], and submitted to Operations Research [39].
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each of which we explicitly characterize. We prove that when EUs have sufficiently low

innate preferences for ISPs, a unique SPNE exists in which the neutral ISP would be

driven out of the market. We also prove that when these preferences are sufficiently high,

there exists a unique SPNE with a non-neutral outcome in which both ISPs are active.

Numerical results reveal that the neutral ISP receives a lower payoff and the non-neutral

ISP receives a higher payoff (most of the time) in a non-neutral scenario. However, we

identify scenarios in which the non-neutral ISP loses payoff by adopting non-neutrality.

We also show that a non-neutral regime yields a higher welfare for EUs in comparison to

a neutral one if the market power of the non-neutral ISP is small, the sensitivity of EUs

(respectively, the CP) to the quality is low (respectively, high), or a combinations of these

factors.

The chapter is organized as follows: First, in Section 2.1, we present the model. Then,

we find the SPNE(s) strategies in Section 2.2. In Section 2.3, we present the results for the

benchmark case, i.e. both ISPs neutral. In Section 2.4, we summarize and discuss about

the key results of the work. We provide numerical examples in Section 2.5. Finally, we

comment on some of the assumptions of the model and their generalizations in Section 2.6.

All proofs are presented in the Appendix (Section 2.7).

2.1 Model and Formulations

We consider two ISPs, a CP, and a continuum of EUs.
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ISPs:

We consider one of the ISPs to be neutral (ISP N) and the other to be non-neutral (ISP

NoN), i.e. the latter can offer a premium quality for CPs in exchange of a side-payment.

The strategies of the neutral and non-neutral ISPs are to determine Internet access fees

for EUs, i.e. pN and pNoN , respectively. We show that most of the results will depend on

the difference in the Internet access fees, i.e. ∆p := pNoN − pN .

In addition, the non-neutral ISP determines p̃, i.e. the side-payment per quality. Note

that p̃ can be positive or negative, in which a negative side-payment implies a reverse flow

of money from the non-neutral ISP to the CP. The CP will pay premium quality fee, i.e.

the side-payment, to the non-neutral ISP if she chooses to offer a quality higher than the

free quality threshold (q̃f ), and can offer with up to the quality q̃f for free on both ISPs.

The side-payment paid to the non-neutral ISP is considered to be a linear function of the

quality. Thus,

Side Payment =


p̃q if q > q̃f

0 Otherwise

We assume that the neutral ISP generates her profit from EUs, and the non-neutral

generates her profit from EUs and potentially from the CP (if p̃ > 0 and the CP is willing

to pay for a premium quality). The payoff of the neutral and non-neutral ISPs are as

follows:

πN (pN ) = (pN − c)nN & πNoN (p̃, pNoN ) = (pNoN − c)nNoN + zp̃qNoN (2.1)

where nN and nNoN are the fraction of EUs that have access to Internet via the neutral

and non-neutral ISPs, respectively. The parameter qNoN is the quality of the content
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on the non-neutral ISP, and c is the marginal cost of providing Internet for EUs. The

parameter z indicates whether the CP chooses to offer her content with premium quality

(z=1 when the CP offers with premium quality, and z = 0 otherwise). From (2.1), for a

positive payoff, pN ≥ c, and pNoN ≥ c, if z = 0. However, if z = 1, there may exist cases

that even with pNoN < c, the payoff of ISP NoN would be positive.

The CP:

The CP can potentially offer different quality levels on different ISPs. The strategy

of the CP is to choose a quality of qN ∈ {0, q̃f} on the neutral ISP, and a quality of

qNoN ∈ {0, q̃f , q̃p} on the non-neutral ISP, with ∆q := qNoN − qN . In our model, the CP

generates revenue through advertisement. We also assume that the advertising profit that

the CP receives is a function of the number of EUs and the content quality she delivers

to these EUs 2. Thus, the advertising profit is proportional to qN and qNoN (As seen

in the first two terms of (2.2)). In addition, the CP pays (or receive if p̃ < 0) a side-

payment to the non-neutral ISP based on the side-payment per quality fee determined by

the non-neutral ISP and the quality. Thus, the profit of the CP is,

πCP (qN , qNoN , z) = nNκadqN + nNoNκadqNoN − zp̃qNoN (2.2)

where κad is a constant 3, z = 0 if qNoN = {0, q̃f} (using free quality) and z = 1 if

qNoN = q̃p (using premium quality).

2Note that we are assuming that advertisements are quality-dependent. For example they are video or

sound. Some examples of the CPs that provide these types of ads are YouTube and Spotify.
3We assume a linear dependency between the quality and the advertising revenue and the cost. Thus,

κad can be considered to be κad = κad,rev − κad,cost.
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It may appear from (2.2) that the CP would lose nothing by choosing at least a free

quality on both ISPs. However, this is not the case. As we explain later, nN and nNoN are

dependent on qN and qNoN , and there is a negative correlation between them. In other

words, increasing one of them (e.g. nN ), decreases the other one (e.g. nNoN ). Therefore,

the CP may stop offering her content on the neutral ISP to move EUs to the non-neutral

ISP on which they can receive a better quality. This may lead to higher advertisement

revenues for the CP.

End-Users:

The strategy of an EU is to choose one of the ISPs to buy Internet access from. We

assume that the neutral ISP is located at 0, the non-neutral one is located at 1, and EUs

are distributed uniformly along the unit interval [0, 1]. The closer an EU to an ISP, the

more this EU prefers this ISP to the other. Note that the notion of closeness and distance

is used to model the preference of EUs and market power of ISPs, and may not be the

same as the physical distance.

More formally, the EU located at x ∈ [0, 1] incurs a transport cost of tNx (respectively,

tNoN (1 − x)) when joining the neutral ISP (respectively, non-neutral ISP), where tN

(respectively, tNoN ) is the marginal transport cost for the neutral (respectively, non-

neutral) ISP. Two possible interpretations of the transport costs are reluctancy of EUs

to change their ISP and initial set-up costs of a new service upon switching the ISP. In

sum, we consider tN and tNoN as the reluctancy of EUs for connecting to the neutral and

non-neutral ISPs, respectively.

We consider a common valuation for connecting to the Internet for EUs regardless of
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the content of the CP. This common valuation also models the valuation of EUs for CPs

other than the CP considered in this work, i.e. the valuation for connecting to the Internet

regardless of the status of the CP considered. Let v∗ denote this common valuation.

The overall valuation of an EU located at x ∈ [0, 1] for connecting to the Internet via

the neutral ISP (respectively, non-neutral ISP) is considered to be v∗ + κuqN − tNx

(respectively, v∗+κuqNoN − tNoN (1−x)). Thus, the utility of an EU who connects to the

ISP j ∈ {N,NoN} located at distance xj of the ISP, and is receiving the content with

quality qj , is:

uEU,j(xj) = v∗ + κuqj − tjxj − pj , j ∈ {N,NoN} (2.3)

This model is generally known as the hotelling model. A symmetric version (tN =

tNoN ) of this model is used in the context of the Internet market in [6].

Note that the lower tN and tNoN , the easier EUs can switch between ISPs, and thus

the lower would be the inertia of EUs. Therefore, high transport cost for an ISP is

associated with EUs that are locked in with the other ISP. We consider the ratio of tN

and tNoN as the relative bias of EUs for ISPs. More specifically, the higher tN
tN+tNoN

(respectively, tNoN
tN+tNoN

), the higher the bias of EUs for connecting to the Internet via ISP

NoN (respectively, ISP N). We define the market power of an ISP to be the relative biases,

i.e. the market power of the neutral and non-neutral ISPs are tNoN
tN+tNoN

and tN
tN+tNoN

,

respectively.

A schematic of the market is presented in Figure 2.1.
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Figure 2.1: A schematic of the market - red (solid) lines are the flow of the money and

blue (dashed) lines are the flow of the content.

Formulations:

We assume that ISPs are the leaders of the game, and the CP and EUs are followers.

Thus, the sequence of the game is as follows:

1. The neutral and non-neutral ISPs determine Internet access fees for EUs (pN and

pNoN ).

2. The non-neutral ISP announces the premium quality fee side-payment (p̃).

3. The CP decides on the quality of the content (qN and qNoN ) for EUs of each ISP.

4. EUs decide which ISP to join.

We assumed the selection of Internet access fees to happen before the selection of the

side-payment because of the rate of change in these selections. Note that the Internet

access fees are expected to be kept constant for a longer time horizons in comparison to

the side-payment that is expected to change more frequently depending on the demand

and the network specifications.
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In the sequential game framework, we seek a Subgame Perfect Nash Equilibrium

(SPNE) using backward induction.

Definition 1. Subgame Perfect Nash Equilibrium (SPNE): A strategy is an SPNE if and

only if it constitutes a Nash Equilibrium (NE) of every subgame of the game.

Definition 2. Backward Induction: Characterizing the equilibrium strategies starting

from the last stage of the game and proceeding backward.

We also assume that each EU chooses exactly one ISP to buy Internet access. This

is known as the full market coverage of EUs by ISPs. This assumption is common in

hotelling models and is necessary to ensure competition between ISPs. An equivalent

assumption is to consider the common valuation v∗ to be sufficiently large so that the

utility of EUs for connecting to the Internet is positive regardless of the choice of ISP.

2.2 The Sub-Game Perfect Nash Equilibrium

In this section, we seek a sub-game perfect equilibrium using backward induction. In

Sections 2.2.1 to 2.2.4, we characterize the equilibrium strategies of each stage in a reverse

order starting from Stage 4. For each stage, we assume that each decision maker is aware

of the strategies chosen by other decision makers in previous stages.

2.2.1 Stage 4: Customers decide which ISP to join

In this subsection, we characterize the division of EUs between ISPs in the equilibrium,

i.e. nN and nNoN , using the knowledge of the strategies chosen by the ISPs and the

CP in Stages 1, 2, and 3. To do so, we characterize the location of the EU that is
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indifferent between joining either of the ISPs, xn. Thus, EUs located at [0, xn) join the

neutral ISP, and those located at (xn, 1] joins the non-neutral ISP. The EU located at

xn ∈ [0, 1] is indifferent between connecting to the neutral and non-neutral ISP (Recall

that we assumed full market coverage by ISPs) if:

v∗ + κuqNoN−tNoN (1− xn)− pNoN = v∗ + κuqN − tNxn − pN

⇒ xn =
tNoN + κu(qN − qNoN ) + pNoN − pN

tNoN + tN

(2.4)

Thus, the fraction of EUs with each ISP (nN and nNoN ) is:

nN =



0 if xn < 0

tNoN+κu(qN−qNoN )+pNoN−pN
tNoN+tN

if 0 ≤ xn ≤ 1

1 if xn > 1

& nNoN = 1− nN (2.5)

2.2.2 Stage 3: The CP decides the qualities to offer over each ISP (qN

and qNoN)

In this section, we characterize qN , qNoN in the equilibrium using the knowledge of the

vector of access fees ~p = (pN , pNoN ) and p̃ from stages 1 and 2. Recall that z = 1 if qNoN >

q̃f , and z = 0 otherwise. First, we find the strategies that maximize πCP (qN , qNoN , z)

(2.2). Then, using appropriate tie-breaking assumptions, we characterize the equilibrium

strategies in Theorems 1 and 2.

Note that the CP maximizes (2.2) by choosing the optimum strategies, (q∗N , q
∗
NoN ),

from the sets F0 or F1:

F0 = {(0, 0), (0, q̃f ), (q̃f , 0), (q̃f , q̃f )}

F1 = {(0, q̃p), (q̃f , q̃p)}
(2.6)
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Conditions

xN ≤ 0 0 < xN < 1 xN ≥ 1(
qNoN − qN ≥ ∆p+tNoN

κu

) (
∆p−tN
κu

< qNoN − qN < ∆p+tNoN
κu

) (
qNoN − qN ≤ ∆p−tN

κu

)
All EUs join Non-neutral EUs divide between both ISPs All EUs join Neutral Union (

⋃
)

z = 0 FL0 F I0 FU0 F0

z = 1 FL1 F I1 FU1 F1

Union (
⋃

) FL F I FU F

Table 2.1: Notations for different subsets of the feasible set. Expressions in parenthesis

are equivalent form of the conditions, e.g. xN ≤ 0 ⇐⇒ qNoN − qN ≥ ∆p+tNoN
κu

.

Note that F0 and F1 are the set of strategies by which z = 0 and z = 1, respectively.

Each of the sets F0 and F1 is further divided into three subsets, FLi , F Ii , and FUi , for

i ∈ {0, 1}, depending on whether xN ≤ 0, 0 < xN < 1, or xN ≥ 1 (using (2.4)). Since

xN is a function of qN and qNoN , these conditions on xN lead to constraints on qN and

qNoN . In Table 2.1, we present the division of the feasible set into the above-mentioned

subsets and the constraints on qN and qNoN for each subset. Note that FL0 ∪ FL1 = FL,

F I0 ∪ F I1 = F I , and FU0 ∪ FU1 = FU .

Next, we present the tie-breaking assumptions used to prove these results (Section 2.2.2).

Then, we present the statement of the main results in Section 2.2.2. We prove the results

in Appendix 2.7.1.

Tie- Breaking Assumptions

We assume that for choosing the equilibrium strategy, the CP uses the following tie-

breaking assumptions that one can expect to arise in practice.

First note that (q∗N , q
∗
NoN ) ∈ FL (respectively, (q∗N , q

∗
NoN ) ∈ FU ) yields that n∗N = 0
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(respectively, n∗NoN = 0). Thus, in this case, the quality that the CP offers on the neutral

ISP (respectively, non-neutral ISP) is of no importance. Therefore:

Assumption 1. If (q∗N , q
∗
NoN ) ∈ FL (respectively, (q∗N , q

∗
NoN ) ∈ FU ), then without loss

of generality, q∗N = 0 (respectively, q∗NoN = 0).

In addition, in practice, it is natural to expect that the CP prefer higher qualities to

lower ones, e.g. z = 1 over z = 0, if this selection does not affect the payoff.

Assumption 2. If the optimum solutions exist in F0 and F1, then the CP chooses the

ones in F1. In other words, if z = 1 and z = 0 yield equal maximum payoffs for the CP,

then the CP will pick z = 1, i.e. will use the premium quality.

The following tie-breaking assumptions are based on the natural assumption that the

CP would prefer to diversify her content over different ISPs if she is indifferent:

Assumption 3. If there exists global optimum solutions in F I , then they are preferred by

the CP over global optimum solutions in FL and FU . In other words, if the outcome in

which only one ISP is operating and the outcome by which both ISPs are operating yield

the global maximum payoff for the CP, then the CP chooses the strategies by which the

latter outcome occurs.

Assumption 4. Consider two strategies: (i) (q′N , q
′
NoN ) such that at least one of q′N or

q′NoN is zero, and (ii) (q′′N , q
′′
NoN ) such that q′′N > 0 and q′′NoN > 0. If these two strategies

yield the same payoff for the CP, then the CP chooses (ii), i.e. the one with positive

quality on both ISPs.

In the following tie-breaking assumption, we assume that the CP takes into the account

the welfare of EUs for tie-breaking between strategies.
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Assumption 5. If the payoff of the CP when only the neutral ISP is operating is equal

to the payoff when only the non-neutral is operating, then the CP prefers the strategy

by which the ISP that offers the lower Internet access fee, i.e. pi, i ∈ {N,NoN}, is

operating. In other words, the CP chooses the strategy that yields a higher social welfare

for EUs.

The above-mentioned assumptions over-ride each other in the order specified. For

example, if two strategies one in FL1 and the other in F I0 are both global maximum, then

Assumption 2 suggests that the CP chooses the strategy in FL1 , and Assumption 3 suggests

that the CP chooses the strategy in F I0 . Since Assumption 2 comes before Assumption 3,

the CP chooses the strategy in FL0 . Next, using these tie-breaking assumptions, we

characterize the equilibrium strategies:

Main Results

First, we define certain thresholds that appear in the results:

Definition 3. • p̃t,1 = κad(1−
q̃f
q̃p

)

• p̃t,2 = κad(nNoN −
q̃f
q̃p

) , where nNoN =
tN+κuq̃p−∆p
tN+tNoN

.

• p̃t,3 = κadnNoN (1− q̃f
q̃p

), where nNoN =
tN+κu(q̃p−q̃f )−∆p

tN+tNoN
.

• ∆pt = κu(2q̃p − q̃f )− tNoN

We would observe that, when characterizing the optimum strategies, p̃t,1, p̃t,2, and p̃t,3

would be thresholds on side-payment, and ∆pt would be a threshold on the difference in

the access fees.
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In Theorem 1, we characterize the equilibrium strategies of the CP by which zeq = 0

for different values of ∆p. Then, using these results, in Theorem 2, we characterize the

equilibrium strategies of the CP in general case for different regions of ∆p.

Theorem 1. If (qeqN , q
eq
NoN ) ∈ F0, then:

1. if −tNoN < ∆p < tN , then (qeqN , q
eq
NoN ) = (q̃f , q̃f ) ∈ F I0 .

2. if ∆p ≥ tN , (qeqN , q
eq
NoN ) = (q̃f , 0) ∈ FU0 .

3. if ∆p ≤ −tNoN , (qeqN , q
eq
NoN ) = (0, q̃f ) ∈ FL0 .

In addition, the utility of the CP by each candidate equilibrium strategy is κadq̃f .

For proving this theorem, we characterize optimums strategies among all (qN , qNoN ) ∈

F0. Then, using these optimum strategies and tie-breaking assumptions, we characterize

(qeqN , q
eq
NoN ). Later, we will see that this theorem also characterizes the optimum strategies

of the CP in the benchmark case in which both ISPs are forced to be neutral.

Intuitively, as ∆p increases, the number of EUs with ISP NoN decreases. Thus, as the

results of Theorem 1 confirms, as ∆p increases, the outcome of the market moves from

FL0 , i.e. all EUs join ISP NoN, to F I0 , i.e. both ISPs have positive share of EUs, and to

FU0 , i.e. all EUs join the ISP N.

In Theorem 2, we characterize the equilibrium strategy of the CP in general case.

We prove that results are threshold-type: when the side-payment, i.e. p̃, is less than a

threshold, the CP chooses the premium quality, i.e. zeq = 1, and when p̃ is higher than

the threshold, zeq = 0 and the CP chooses the strategies according to Theorem 1. We

also characterize the value of this thresholds for different regions of ∆p. Note that as ∆p

increases, the number of EUs with ISP NoN decreases. This affects the payoff of the CP,
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and subsequently the value of the side-payment that ISP NoN charges to the CP. Thus,

the value of the threshold on the side-payment depends on ∆p.

Theorem 2. Let the thresholds ∆pt, p̃t,1, p̃t,2, and p̃t,3 as characterized in Definition 3,

then:

1. If ∆p ≤ κuq̃p − tNoN :

• if p̃ ≤ p̃t,1, then zeq = 1, and (qeqN , q
eq
NoN ) = (0, q̃p) ∈ FL1 .

• if p̃ > p̃t,1, then zeq = 0, and qeqN and qeqNoN are determined by Theorem 1.

2. If κuq̃p − tNoN < ∆p < tN + κuq̃p, and q̃f ≤ tN+tNoN
κu

:

(a) if κuq̃p − tNoN < ∆p < tN + κu(q̃p − q̃f ), and:

i. if ∆p ≥ ∆pt:

• if p̃ ≤ p̃t,3, then zeq = 1 and (qeqN , q
eq
NoN ) = (q̃f , q̃p) ∈ F I1 .

• if p̃ > p̃t,3, then zeq = 0, and qeqN and qeqNoN are determined by Theo-

rem 1.

ii. if ∆p < ∆pt:

• if p̃ ≤ p̃t,2, then zeq = 1 and (qeqN , q
eq
NoN ) = (0, q̃p) ∈ F I1 .

• if p̃ > p̃t,2, then zeq = 0, and qeqN and qeqNoN are determined by Theo-

rem 1.

(b) if tN + κu(q̃p − q̃f ) ≤ ∆p < tN + κuq̃p:

i. if p̃ ≤ p̃t,2, then zeq = 1, and (qeqN , q
eq
NoN ) = (0, q̃p) ∈ F I1 .

ii. if p̃ > p̃t,2, then zeq = 0, and qeqN and qeqNoN are determined by Theorem 1.
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3. If κuq̃p − tNoN < ∆p < tN + κuq̃p, and q̃f >
tN+tNoN

κu
:

(a) if p̃ ≤ p̃t,2, then zeq = 1, and (qeqN , q
eq
NoN ) = (0, q̃p) ∈ F I1 .

(b) if p̃ > p̃t,2, then zeq = 0, and qeqN and qeqNoN are determined by Theorem 1.

4. If ∆p ≥ tN + κuq̃p, then zeq = 0, and qeqN and qeqNoN are determined by Theorem 1.

Note that the thresholds p̃t,1, p̃t,2, and p̃t,3 are decreasing with respect to
q̃f
q̃p

. Thus,

as theorem implies, the higher
q̃p
q̃f

, the higher would be the threshold on p̃ after which

the CP chooses the free quality over the premium one. In addition, with high q̃p and low

tNoN , the CP prefers to choose the strategy by which the neutral ISP is driven out of the

market.

2.2.3 Stage 2: ISP NoN determines the side-payment, p̃:

In this stage, ISP NoN chooses the equilibrium strategy p̃ = p̃eq, with the knowledge of

pNoN and pN , to maximize her payoff:

πNoN (pNoN , p̃) = (pNoN − c)nNoN + zp̃qNoN (2.7)

First, we introduce a tie-breaking assumption (Assumption 6) for ISP NoN. In The-

orem 3, we characterize the necessary and sufficient condition on p̃eq by which zeq = 1,

i.e. the CP chooses the premium quality. Subsequently, in Theorem 4, we characterize

p̃eq by which zeq = 1. Note that if zeq = 0, (2.7) would be independent of p̃. Thus, we

only need to characterize p̃eq by which zeq = 1. The proofs of theorems are presented in

Appendix 2.7.2.

The following tie-breaking assumption for ISP NoN is used to determine the optimum

strategy in this stage. In this tie-breaking assumption, we assume that because of legal
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complexities of a non-neutral regime, whenever ISP NoN is indifferent between zeq = 0

and zeq = 1, she chooses p̃ such that zeq = 0, i.e. choosing neutrality over non-neutrality4.

Assumption 6. If p̃1 by which (qeqN , q
eq
NoN )∈ F1, i.e. zeq = 1, and p̃2 by which (qeqN , q

eq
NoN ) ∈

F0 yield the same payoff for ISP NoN, this ISP chooses p̃2, i.e. the one that yields zeq = 0.

Recall that in Definition 3, we characterized some threshold values for the side pay-

ment. For each value of ∆p, the actual threshold on the side payment is equal to one

of the thresholds characterized. We define and characterize the actual threshold, i.e. p̃t,

based on the results in Theorem 2:

Definition 4. We define p̃t = p̃t,1 if conditions of item 1 of Theorem 2 is met, p̃t =

p̃t,2 if the conditions of items 2-a-ii, 2-b, and 3 of Theorem 2 is met, and p̃t = p̃t,3 if

the conditions of the item 2-a-i of Theorem 2 is met. Note that p̃t,1, p̃t,2, and p̃t,3 are

characterized in Definition 3, respectively.

The following Theorem characterizes a necessary and sufficient condition on p̃t by

which zeq = 1.

Theorem 3. zeq = 1 if and only if πNoN (pNoN , p̃t) > πNoN,z=0(pNoN , p̃) and ∆p <

tN + κuq̃p, where πNoN,z=0(pNoN , p̃) is the payoff of ISP NoN when zeq = 0.

The theorem implies that ∆p being less than a threshold and the existence of p̃ by

which the payoff of ISP NoN is greater than the payoff of this ISP when z = 0 are

necessary and sufficient conditions for zeq = 1. The reason for the former is explained

after Theorem 4. The latter follows from the fact that, if the payoff of ISP NoN is not

4Although the new rules are not final yet, it is expected that non-neutrality would be accepted by the

FCC only under extensive traffic monitoring by the FCC. This introduces an implicit cost for the ISPs.
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greater than the payoff of this ISP when z = 0, in an NE strategy, ISP would not choose

p̃ such that zeq = 1, since the strategy of choosing an extremely large p̃ by which z = 0

yields a better payoff.

In the following theorem, we characterize p̃ chosen by ISP NoN by which (qeqN , q
eq
NoN ) ∈

F1, and also necessary conditions for p̃ by which zeq = 1.

Theorem 4. If zeq = 1, then p̃eq = p̃t, πNoN (pNoN , p̃t) > πNoN,z=0(pNoN , p̃), and ∆p <

tN + κuq̃p, where πNoN,z=0(pNoN , p̃) is the payoff of ISP NoN when zeq = 0.

Thus, the necessary conditions are: (i) in each region, p̃eq is the maximum side pay-

ment by which the CP chooses zeq = 1, i.e. the threshold defined in Definition 4, (ii) the

payoff of ISP NoN with p̃eq should be strictly larger than the payoff when zeq = 0, and

(iii) ∆p should be smaller than a threshold (if not the number of EUs on ISP NoN would

be zero, and trivially the CP does not offer her content on this ISP).

Remark 1. Note that, if zeq = 0, then the payoff of ISP NoN (2.1) is independent of p̃.

Thus, πNoN,z=0(pNoN , p̃) is independent of p̃.

2.2.4 Stage 1: ISPs determine peqN and peqNoN :

First, in Theorem 5, we prove that if inertias are small, then there is no NE by which

zeq = 0. Then, in Theorem 6, we characterize the NE strategies by which zeq = 1 for the

case that the inertias are small. In Theorem 6, we prove that if inertias are sufficiently

small, then a unique NE exists. If not, only under certain conditions a unique NE exists.

Numerical simulations under a wide range of parameters (presented in Section 2.5.1)

reveal that these conditions are always satisfied.
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Then, we focus on the case that inertias are not small. In Theorem 7, we characterize

all possible NE strategies by which zeq = 1. In Theorem 8, we prove that when one of the

inertias is large, the only NE strategy by which zeq = 1 is the third candidate strategy

of Theorem 7. Then, in Theorem 9, we characterize the only candidate NE strategy by

which zeq = 0.

By (2.1) and without loss of generality, in the equilibrium, peqN ≥ c. In addition, if

z = 0, peqNoN ≥ c. If 0 ≤ xn ≤ 1, i.e. (qeqN , q
eq
NoN ) ∈ F I , from (2.5), the payoff of neutral

and non-neutral ISPs are:

πN (pN ) = (pN − c)
tNoN + κu(qN − qNoN ) + pNoN − pN

tN + tNoN
(2.8)

πNoN (pNoN , p̃) = (pNoN − c)
tN + κu(qNoN − qN ) + pN − pNoN

tN + tNoN
+ zqNoN p̃ (2.9)

First, given the strategies of the CP and EUs described in previous sections, we prove

that if inertias are small, then there is no NE by which zeq = 0:

Theorem 5. If tN +tNoN ≤ κuq̃p, there is no NE by which (qeqN , q
eq
NoN ) ∈ F0, i.e. zeq = 0.

Next, we characterize the NE strategies by which zeq = 1 when inertias are small:

Theorem 6. If tN+tNoN ≤ κuq̃p, the NE strategies, peqN and peqNoN by which (qeqN , q
eq
NoN ) ∈

F1, i.e. zeq = 1, are:

1. peqNoN = c+ κuq̃p − tNoN and peqN = c if and only if q̃p ≥ tN+2tNoN
κu+κad

.

2. peqNoN = c +
tNoN+2tN+q̃p(κu−2κad)

3 and peqN = c +
2tNoN+tN−q̃p(κu+κad)

3 if and only if

q̃p <
tN+2tNoN
κu+κad

, and πN (peqN ) ≥ pdt−c where pdt =
κadq̃f (tN+tNoN )

peqNoN−c+κadq̃p
+peqNoN−tNoN−κuq̃p.
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We show in Corollary 2 that both sets of strategies are associated with the case that

the CP offers with premium quality on ISP NoN and with zero quality on ISP N. In the

first set, ISP N would be driven out of the market, while with the second set, ISP N would

be active.

Now, we focus on the case that inertias are not small. In the following theorem, we

characterize the NE strategies by which zeq = 1:

Theorem 7. If q̃p <
tN+tNoN

κu
, then the only possible NE strategies by which (qeqN , q

eq
NoN ) ∈

F1, i.e. zeq = 1, are:

1. If ∆p ≤ κuq̃p − tNoN , then peqNoN = c+ κuq̃p − tNoN and peqN = c.

2. If (i) κuq̃p − tNoN < ∆peq < κu(2q̃p − q̃f ) − tNoN or tN + κu(q̃p − q̃f ) < ∆peq <

tN +κuq̃p, then peqNoN = c+
tNoN+2tN+q̃p(κu−2κad)

3 and peqN = c+
2tNoN+tN−q̃p(κu+κad)

3 ,

and πeqNoN = πNoN (p̃eqNoN , p̃t,2). The necessary conditions: (ii) q̃p ≤ 2tNoN+tN
κu+κad

, and

(iii) πeqNoN > πNoN,z=0(p̃eqNoN , p̃).

3. If (i) κu(2q̃p − q̃f ) − tNoN < ∆peq < tN + κu(q̃p − q̃f ), then peqNoN = c +

tNoN+2tN+(q̃p−q̃f )(κu−2κad)
3 and peqN = c +

2tNoN+tN−(q̃p−q̃f )(κu+κad)
3 , and πeqNoN =

πNoN (p̃eqNoN , p̃t,3). The necessary conditions: (ii) q̃p − q̃f ≤ 2tNoN+tN
κu+κad

, and (iii)

πeqNoN > πNoN,z=0(p̃eqNoN , p̃).

4. peqNoN = c and peqN = c − κu(2q̃p − q̃f ) + tNoN , and πeqNoN = πNoN (p̃eqNoN , p̃t,3). The

necessary conditions: (i) 2q̃p − q̃f ≤ tNoN
κu

and (ii) πeqNoN > πNoN,z=0(p̃eqNoN , p̃).

We show in Corollary 3 that the first two sets of strategies are associated with the

case that the CP offers with premium quality on ISP NoN and with zero quality on ISP
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N. With the first set, ISP N would be driven out of the market, while with the second,

ISP N would be active. The third and fourth sets of strategies are associated with the

case that both ISPs are active and the CP offers her content with premium quality on

ISP NoN and with free quality on ISP N.

Next, we prove that when either of the transport costs is large enough, then the only

NE strategy by which zeq = 1 is the third candidate strategy of the previous theorem:

Theorem 8. When either tN or tNoN is large enough, for the case that q̃p <
tN+tNoN

κu
,

the only NE strategy by which zeq = 1 is peqNoN = c +
tNoN+2tN+(q̃p−q̃f )(κu−2κad)

3 and

peqN = c+
2tNoN+tN−(q̃p−q̃f )(κu+κad)

3 .

Remark 2. Note that when at least one of tN and tNoN is large, then the effect of q̃p can

be ignored. Thus, this scenario can be considered to be similar to the case that both ISPs

are neutral, i.e. the benchmark case. Later, in Theorem 10, we prove that a unique SPNE

exists in this case, and it is similar to the NE strategies characterized in Theorem 8 with

q̃p = q̃f .

Now, we characterize the equilibrium strategy by which zeq = 0 when inertias are not

small:

Theorem 9. If q̃p <
tN+tNoN

κu
, the only possible NE strategy by which (qeqN , q

eq
NoN ) ∈ F0, i.e.

zeq = 0 is peqN = c+ 1
3(2tNoN+tN ) and peqNoN = c+ 1

3(2tN+tNoN ). The necessary condition

for this strategy to be a candidate NE strategy is πNoN (peqNoN , z = 0) ≥ πNoN (peqNoN , p̃t).

Remark 3. Note that the candidate strategies listed in Theorems 7 and 9 are NE if and

only if the conditions listed in the theorem hold and no unilateral deviation is profitable

for each ISPs.
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2.3 Benchmark Case: A Neutral Regime

In this section, we consider a benchmark case in which both ISPs are forced to be neutral.

Our goal is to find the SPNE when both ISPs are neutral. We compare the results of

the benchmark case with the results we found in the previous section. Note that we do

not restrict the analysis of this section to any particular range of transport costs, and the

analysis is done for a general case.

The main result of this section is Theorem 10. In order to characterize the equilibrium

in this case, we can consider a simple change to our previous model and use some of the

previous results. We assume that in this case, the CP chooses zeq = 0, regardless of the

strategy of ISPs. Thus, (qeqN , q
eq
NoN ) ∈ F0, and as a result both ISPs are neutral.

Note that in this case, the equilibrium strategy of Stage 4 is similar as before, and the

equilibrium strategy of Stage 3 is characterized in Theorem 1. Recall that in Theorem 1,

we characterize the equilibrium strategies within F0 without considering the strategies in

F1. In addition, note that the strategy of Stage 2 is of no importance since with zeq = 0,

the effect of p̃ would be eliminated in all analyses. Thus, we only need to find the new

equilibrium strategies in Stage 1 of the game:

Theorem 10. The unique NE strategies chosen by the ISP are peqN = c+ 1
3(2tNoN + tN )

and peqNoN = c+ 1
3(2tN + tNoN ).

2.4 The Outcome of the Game and Discussions

First, in Section 2.4.1, we summarize, discuss, and interpret the possible outcomes of the

model characterized in the previous section. Then, in Section 2.4.2, we summarize and
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discuss the results for a benchmark case in which both ISPs are neutral.

2.4.1 Possible Outcomes of the Market

In Sections 2.2 and 2.3, we have characterized all the possible SPNE strategies. Using

these strategies, we have characterized the SPNE outcomes in Appendix 2.7.5. In this

section, we summarize, discuss, and interpret these possible outcomes.

Candidate Outcome (a): peqNoN = c + κuq̃p − tNoN , peqN = c, zeq = 1, i.e. the

CP pays for the premium quality, p̃eq = p̃t,1 = κad(1 −
q̃f
q̃p

), (qeqN , q
eq
NoN ) = (0, q̃p) ∈ FL1 ,

neqN = 0, and neqNoN = 1 (outcome associated with Theorem 6-1 and Theorem 7-1).

Note that from Theorems 5 and 6, this outcome is the unique SPNE of the game if

tN and tNoN are sufficiently small, i.e. EUs are not locked-in with ISPs. This outcome

represents the case in which the CP offers the content with premium quality and pays

the side-payment to the non-neutral ISP. Note that EUs can receive a better quality of

content on the non-neutral ISP, and that yields a better advertisement revenue for the

CP. Thus, in the equilibrium, the CP offers her content only on the non-neutral ISP to

increase the number of EUs connecting to the Internet via the non-neutral ISP. By doing

so, given the conditions of this candidate outcome, all EUs would join the non-neutral

ISP and the neutral ISP would be driven out of the market.

In addition, note that the Internet access fee chosen by ISP NoN (peqNoN ) increases

with (i) increasing the sensitivity of end-users to the quality (κu), (ii) increasing the value

of the premium quality (q̃p), and (iii) decreasing the transport cost of ISP NoN (tNoN ).

Recall that tNoN has an inverse relationship with the market power of ISP NoN if tN is

fixed.
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Moreover, note that the side-payment charged for the premium quality (p̃eq q̃p) is

positive, and is dependent on (i) the sensitivity of the payoff of the CP to the quality of

the advertisement, i.e. κad, and (ii) the difference between the premium and free quality,

i.e. q̃p − q̃f . The latter implies that ISP NoN chooses the side-payment in proportion to

the additional value created for the CP.

Candidate Outcome (b): peqNoN = c +
tNoN+2tN+q̃p(κu−2κad)

3 , peqN = c +

2tNoN+tN−q̃p(κu+κad)
3 , zeq = 1, p̃eq = p̃t,2 = κad(n

eq
NoN −

q̃f
q̃p

), (qeqN , q
eq
NoN ) = (0, q̃p) ∈ F I1 ,

neqN =
tN+2tNoN−q̃p(κu+κad)

3(tN+tNoN ) , and neqNoN =
2tN+tNoN+q̃p(κu+κad)

3(tN+tNoN ) (outcome associated with

Theorem 6-2 and Theorem 7-2).

Candidate outcome (b) represents the case in which both ISPs are active. However,

similar to (a), with this outcome, the CP does not offer her content over the neutral

ISP, and offers her content only over the non-neutral ISP with premium quality. Thus,

although the CP stops offering her content on the neutral ISP, she cannot move all EUs

to ISP NoN. The loss in the number of EUs would be compensated by receiving higher

advertisement revenue (due to the premium quality) and paying a lower side payment

(will be explained in the associated paragraph).

It is noteworthy to observe that if tN (respectively, tNoN ) increases, peqNoN (respectively,

peqN ) increases with a rate 2
3rd the rate of the growth of this transport cost. This is intuitive.

The higher tN (while tNoN fixed), the higher would be the market power of ISP NoN, and

subsequently the higher would be peqNoN . In addition, counter-intuitively, pN (respectively,

pNoN ) also increases with a rate 1
3rd of the rate of growth of tN (respectively, tNoN ). This

counter-intuitive result (Internet access fee of an ISP being an increasing function of the

transport cost of this ISP) is because of competition between ISPs. For example, with
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the increase of tNoN , EUs have more incentive to join the neutral ISP and less incentive

to switch to the non-neutral ISP. Thus the neutral ISP can set a higher price for EUs.

This allows her competitor, i.e. ISP NoN, to increases her price, but with a rate lower

than the rate by which the price of ISP N increases.

In addition, note that peqN is a decreasing function of q̃p, κu, and κad: The higher

the premium quality or the sensitivity of EUs and the CP to the quality, the lower

would be the Internet access fee of ISP N. On the other hand, the relationship between

these parameters and peqNoN is more complicated. The Internet access fee of ISP NoN is

increasing with respect to the sensitivity of EUs to the quality, and is decreasing with

respect to the sensitivity of the CP to the quality. Thus, the more the CP is sensitive

to the quality, the more the ISP NoN provides subsidies for EUs (cheaper Internet access

fees), and compensates the payoff through charging the CP. In addition, note that peqNoN

is decreasing or increasing with respect to the amount of premium quality (q̃p) depending

on the sensitivity of EUs and the CP to the quality: If the sensitivity of EUs to the quality

dominates the sensitivity of the CP (κu > 2κad), then peqNoN is increasing with respect

to q̃p. If not, then ISP NoN generates more revenue from the CP, and thus provide a

cheaper Internet access fee for EUs. The higher this sensitivity, the higher would be the

side payment from the CP (can be seen from the expression of p̃eq), and the higher would

be the discount on the Internet access fees for EUs.

Moreover, note that the side-payment charged for the premium quality (p̃eq q̃p) is

increasing with respect to (i) κad (the sensitivity of the CP to the quality), (ii) the

premium quality (q̃p), and (iii) number of EUs with the non-neutral ISP (neqNoN ), and is

decreasing with respect to the free quality (q̃f ). Note that since in this case nNoN < 1,
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the side payment would be lower than the side payment in candidate outcome (a). This

side-payment can be positive or negative. However, as we explain later, the numerical

results reveal that the side-payment is positive whenever this candidate outcome is an

SPNE.

In addition, note that nNoN is increasing with respect to the premium quality, i.e. q̃p,

and the sensitivity of the CP and EUs to the quality, i.e. κu and κad. The relationship

between nNoN (and thus nN ) and the transport costs, i.e. tN and tNoN is more complex

and is discussed in Section 2.5.2.

Candidate Outcome (c): peqNoN = c +
tNoN+2tN+(q̃p−q̃f )(κu−2κad)

3 , peqN = c +

2tNoN+tN−(q̃p−q̃f )(κu+κad)
3 , zeq = 1, p̃eq = p̃t,3 = κadn

eq
NoN (1 − q̃f

q̃p
), (qeqN , q

eq
NoN ) = (q̃f , q̃p) ∈

F I1 , neqN =
tN+2tNoN−(q̃p−q̃f )(κu+κad)

3(tN+tNoN ) , and neqNoN =
2tN+tNoN+(q̃p−q̃f )(κu+κad)

3(tN+tNoN ) (outcome as-

sociated with Theorem 7-3). Recall that in Theorem 8, we proved that when either of tN

or tNoN is large, then the only candidate outcome by which zeq = 1 is (c).

Candidate outcome (c) represents the case that both ISPs are active, and the CP

offers her content with free quality on the neutral ISP and with premium quality on the

non-neutral one. The dependencies of the access fees (peqN and peqNoN ) to tN , tNoN , κu, and

κad are the same as what described for candidate outcome (b). In addition, note that peqN

is decreasing with the difference between the premium and free qualities, i.e. q̃p− q̃f , and

peqNoN is decreasing or increasing with respect to the difference in the qualities depending

on the sensitivity of EUs and the CP to the quality (similar to the description for the

candidate outcome (b)).

Moreover, note that the side-payment charged for the premium quality (p̃eq q̃p) is

increasing with respect to (i) κad (the sensitivity of the CP to the quality), (ii) the
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difference between the premium and free qualities (q̃p − q̃f ), (iii) number of EUs with

the non-neutral ISP (neqNoN ). This side-payment is always positive. The dependencies of

nNoN to the parameters are similar to what described for candidate outcome (b), with

the difference that nNoN depends on the difference in the qualities, i.e. q̃p − q̃f , instead

of only q̃p.

Note that when either of tN or tNoN is large, then (c) is the only candidate outcome

by which zeq = 1. First, recall that the payoff that an ISP receives depends on both the

number of EUs and the Internet connection fee of that ISP. In addition, we discussed that

when either of tN or tNoN is large, then both of the Internet connection fees would be

large in candidate outcomes (b) and (c). It turns out that when tN or tNoN is large, ISPs

prefer candidate outcomes (b) and (c) to the outcomes by which they discount the price

heavily to attract EUs ((a) and (d)).

Moreover, when both ISPs are active, large tNoN or tN decreases the effect of quality

of the content on the decision of EUs (both through high transport costs and increase in

the Internet access fees). Thus, the CP cannot control the number of EUs with each ISP

by strategically controlling her quality. Therefore the CP simply chooses to provide with

maximum possible quality on both ISPs instead of choosing strategic qualities to control

the equilibrium. Thus, (c) is expected to occur.

Candidate Outcome (d): peqNoN = c, peqN = c − κu(2q̃p − q̃f ) + tNoN , zeq = 1,

p̃eq = p̃t,3 = κadn
eq
NoN (1 − q̃f

q̃p
), (qeqN , q

eq
NoN ) = (q̃f , q̃p) ∈ F I1 , neqN =

κuq̃p
tN+tNoN

, and neqNoN =

tN+tNoN−κuq̃p
tN+tNoN

(outcome associated with Theorem 7-4).

Candidate outcome (d) represents the scenario in which the non-neutral ISP is forced

to provide a low Internet access fee for EUs. This strategy can only be valid when tNoN is
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large (so that peqN ≥ c). In other words, the only scenario that this strategy is possible is

when EUs are reluctant joining the non-neutral ISP. Thus, this ISP should provide large

discounts for EUs. Note that in this case, both ISPs are active, and the CP offers her

content over both ISPs, with free quality on the neutral ISP and with premium quality

on the non-neutral one.

In this case, peqN is decreasing with respect to κu and q̃p, and increasing with respect

to q̃f and tNoN . In addition, the side payment is similar to the one in candidate outcome

(c).

In this candidate outcome, peqNoN is fixed, while peqN is decreasing with respect to q̃p

and κu. In addition, the rate of decrease of peqN is twice of the rate of increase of utility of

EUs from κu and q̃p when connecting to ISP NoN. Thus, The rate of increase in the utility

of EUs for ISP N is higher than that of ISP NoN, and as result confirms, neqN would be

increasing with respect to the premium quality and the sensitivity of EUs to the quality.

In addition, peqN is increasing with tNoN . Thus, as results confirm, neqN would be decreasing

with respect to the transport cost of ISP NoN5. Finally, note that the Internet access fees

are independent of tN , but the utility of EUs connecting to neutral ISP is decreasing with

tN (2.3). Thus, as result confirms, the number of EUs with the neutral ISP, i.e. neqN , is

decreasing with respect to both tN .

Candidate Outcome (e): peqNoN = c + 1
3(2tN + tNoN ), peqN = c + 1

3(2tNoN + tN ),

5Note that the utility of EUs connecting to ISP NoN is also decreasing with tNoN (2.3). However, the

rate of decrease in the utility of EUs connecting to ISP NoN (tNoN is multiplies to a coefficient smaller

than one) is lower than the rate of increase of the price of the neutral ISP (multiplied by one). Thus,

overall, the number of EUs with the neutral (respectively, non-neutral) ISP is decreasing (respectively,

increasing).
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zeq = 0, (qeqN , q
eq
NoN ) = (q̃f , q̃f ) ∈ FL0 , neqN = 2tNoN+tN

3(tNoN+tN ) , neqNoN = 2tN+tNoN
3(tN+tNoN ) , and since

zeq = 0, p̃eq is of no importance (outcome associated with Theorem 9).

This case characterizes the only possible SPNE outcome by which zeq = 0. This

outcome is similar to the benchmark one (Section 2.4.2). Outcome (c) would be reduced

to (e), if q̃p = q̃f .

Remark: Note that candidate strategies in different theorems (defined for different

regions of tN and tNoN ) can be similar and yield similar outcomes, e.g. Theorem 6-1 and

Theorem 7-1. In addition, there is no outcome in which the CP offers her content only on

the neutral ISP. From the expression of payoff of the CP (2.2), the CP can get at most

κadq̃f by offering only on the neutral ISP. On the other hand, the CP can guarantee a

payoff of this amount by offering on both ISPs and z = 0. Assumption 4, i.e. the CP

prefers to offer on both ISP whenever she is indifferent, yields that the CP never choose

the strategy in which she offers only on the neutral ISP.

Interplay Between Sensitivities to Quality and the Outcome: Intuitively,

we expect that high sensitivity of EUs and the CP to the quality, i.e. large κu and

κad, respectively, yields high payoff for the non-neutral ISP, since this ISP can provide

a premium quality and charge the EUs accordingly to increase her payoff. Thus, the

payoff can be collected from EUs or the CP, or both. Results reveal that in all candidate

outcomes ISP NoN charges the CP in proportion to her sensitivity to the quality of the

content. In addition, in candidate outcomes (a) to (c), the payoff collected from EUs

through the Internet connection fees is always increasing with respect to the sensitivity

of the EUs to the quality. In candidate outcomes (b) and (c), the Internet connection

fees are decreasing with respect to the sensitivity of the CP to the quality. Thus, in these
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candidate outcomes, EUs receive a discount in proportion to the sensitivity of the CP to

the quality. In candidate outcome (d), the Internet connection fee of ISP NoN does not

depends on the qualities, but it is as low as the marginal cost.

Existence of NE: An SPNE may not always exist. For example, for parameters

q̃f = 1, q̃p = 1.5, c = 1, κu = 1, κad = 0.5, tN = 3, and tNoN = 2, none of the candidate

outcomes listed above would be an SPNE. The reason is that there exists a profitable

deviation for at least one of the ISPs for those candidate strategies that their conditions

are satisfied given these parameters. Later in Section 2.5.1, we identify the regions with

no SPNE.

2.4.2 Benchmark: A Neutral Scenario

In the benchmark case, i.e. when both ISPs are neutral, we proved that there exists a

unique SPNE, and the unique equilibrium outcome of the game is (the subscript B refers

to “Benchmark”):

• Stage 1 - Internet access Fees chosen by ISPs: peqN,B = c + 1
3(2tNoN + tN ) and

peqNoN,B = c+ 1
3(2tN + tNoN ).

• Stage 2 - Side Payment chosen by ISP NoN is of no importance.

• Stage 3 - Qualities chosen by the CP: qeqNoN,B = q̃f and qeqN,B = q̃f .

• Stage 4 - Fractions of EUs with ISPs: neqN,B = 2tNoN+tN
3(tNoN+tN ) and neqNoN,B = 2tN+tNoN

3(tNoN+tN ) .

Note that this case is similar to candidate outcome (e), i.e. the only candidate outcome

of our model by which zeq = 0. In this case, both ISPs are active and the CP offers the

free quality on both ISPs. Note that in this case, the asymmetries of the model only arise
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from the asymmetry in tN and tNoN . Thus, EUs are divided between ISPs depending on

tN and tNoN , and the Internet access fees (pN and pNoN ) are a function of transport costs

(tN and tNoN ). Also, similar to the candidate outcome (b) of the previous section, if tN

(respectively, tNoN ) increases, pNoN (respectively, pN ) increases with a rate 2
3rd the rate

of the growth of this transport cost. Also, counter-intuitively, pN (respectively, pNoN )

increases with a rate 1
3rd of the rate of growth of tN (respectively, tNoN ).

In this case, Internet access fees are independent of the quality provided for EUs, i.e.

q̃f . Recall that in contrast, in a non-neutral regime, the Internet access fee quoted by

ISP NoN is dependent on the quality she provides (q̃p). The reason lies in the product

differentiation in the latter. The non-neutral ISP can charge for the quality she provides

for EUs through differentiating her product from the neutral ISP. While in a neutral

regime, no ISP can charge for the quality they provide because of competition. It is

noteworthy that if tNoN&tN → 0, peqNoN,B&peqN,B → c. In other words, in the absence of

inertias, since there is no differentiation between the quality offered by the ISPs in the

neutral regime, price competition drives the access fees to the marginal cost. This implies

that by removing the inertias (tN and tNoN ), the model would be similar to a Bertrand

competition [45]. Thus, considering the inertias brings a realistic dimension to the model.

The relationship between neqN and neqNoN and the transport costs are similar to that of

candidate outcomes (b) and (c) of the previous section, and is investigated in Section 2.5.1.
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2.5 Numerical Results

First, in Section 2.5.1, using numerical analysis, we find the NE strategies of Stage 1 for

various parameters. Recall that strategies of Stage 1 yield one of the outcomes (a)-(e). In

Section 2.5.2, we complement the discussions in Section 2.4.1, by providing more intuitions

about neqNoN , p̃eq, and the payoff of ISPs, based on the numerical results. We assess the

benefits of non-neutrality by comparing the results of the model with the benchmark case

in Section 2.5.3. In Section 2.5.4, we provide regulatory comments based on the results.

2.5.1 NE Strategies

Recall that if SPNE exists, it would of the form of outcomes (a)-(e) (Section 2.4.1). Now,

we check whether these outcomes are indeed SPNE. We only need to check whether the

candidate strategies of Stage 1 are NE. For doing so, we check for any profitable deviation

for each ISPs. To check for unilateral deviations, we consider different regions of ∆p

(regions characterized in Theorem 2). In each region, we can identify potential profitable

deviations (using first order condition for some regions, and the fact that payoff of ISPs

are monotonic in other regions). Thus, the search for the best deviations is equivalent

to comparing the payoff of finite number of candidate deviations with the payoff of the

candidate equilibrium. We also check conditions listed in Theorems 6, 7, and 9.

We now present two illustrative examples. In Figure 2.2a, we identify the NE strategies

of stage 1 for different regions of tN and tNoN when κu = 1 and κad = 0.5. In Figure 2.2b,

we identify the NE strategies when κu = 0.5 and κad = 1. For the figures, we consider

q̃f = 1, q̃p = 1.5, and c = 1. Numerical results for a large set of parameters reveal that
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(a) κu = 1 and κad = 0.5 (b) κu = 0.5 and κad = 1

Figure 2.2: NE strategies of Stage 1 for various tN and tNoN

the pattern of NE strategies for different values of parameters is similar to one of the two

pattern presented in Figures 2.2a and 2.2b. Overall, the outcome in which the neutral

ISP is driven out of the market occurs when tN and tNoN are small. As tN and tNoN

increases, we expect to have equilibrium outcomes in which both ISPs are active. Next,

we discuss about the trends we observe in the results.

Note that in Theorem 6, we proved that, for q̃p ≥ tN+2tNoN
κu+κad

and q̃p ≥ tN+tNoN
κu

,

candidate strategy (Theorem 6-1) is an NE. Numerical results for a large set of parameters

also reveal that for q̃p ≥ tN+2tNoN
κu+κad

and q̃p <
tN+tNoN

κu
, candidate strategy (Theorem 7-1)

is also an NE strategy. Note that these two strategies are the same and are listed under

candidate outcome (a). Therefore, when tN+2tNoN
κu+κad

≤ q̃p, (a) is an SPNE outcome. In this

case, since the transport costs are low, EUs can easily switch ISPs. Thus, ISP NoN is

able to attract all EUs by discounting the Internet access fee for EUs using some of the

side payment received from the CP. Therefore, the neutral ISP would be driven out of
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the market.

With increase in tN or tNoN , EUs have more inertia. Thus, one of the ISPs should

provide a low Internet access fee for EUs to attract them all. However, in this case, ISPs

prefer to maintain a high Internet access fee for EUs6, and split the EUs. Thus, as tN and

tNoN increases, we expect to have equilibrium outcomes in which both ISPs are active.

Numerical results reveal that if q̃p <
tN+2tNoN
κu+κad

and q̃p ≥ tN+tNoN
κu

, candidate strategy

(Theorem 6-2) is an NE. In addition, consider the lines tN + 2tNoN = q̃p(κu + κad) and

tN + tNoN = κuq̃p. Results reveal that when the point (tN , tNoN ) is just above these lines,

the candidate strategy (Theorem 7-2) is an NE strategy. When (tN , tNoN ) is substantially

above these lines, then candidate strategy (Theorem 7-3) is an NE strategy. This result

have been proved in Theorem 8. In addition, when (tN , tNoN ) is above these lines, but is

in an intermediate range, then no NE exists.

Numerical results for large set of parameters also reveal that the NE is unique, if it

were to exist (in Figures there exists only one NE in each region). In addition, extensive

numerical results reveal that candidate outcomes (d) and (e) are never SPNE. Thus,

henceforth we do not include (d) and (e) in our discussions about the results.

2.5.2 Dependencies of neqNoN , p̃eq, and Payoffs of ISPs to tN and tNoN

Note that in Section 2.4.1, we explained that the relationship between neqNoN and the

transport costs is not obvious from the expressions. Thus, in this section, we provide

intuitions for the behavior of neqNoN , and subsequently p̃eq and the payoffs of ISPs with

6As we discussed, when both ISPs are active, the Internet connection fees are increasing with the

transport costs. In other words, each ISP lock in some EUs and charge high Internet access fees to them.
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Figure 2.3: neqNoN with respect to tN and tNoN

respect to tN and tNoN .

Numerical Results on neqNoN : Numerical results reveal that neqNoN is non-increasing

with respect to both transport costs. For instance, in Figure 2.3, we plot the value of

neqNoN with respect to tNoN and tN , when q̃f = 1 and q̃p = 1.5. Recall that neqN = 1−neqNoN .

Thus, we only plot neqNoN .

Note that for candidate outcome (a), as we know from the results, neqNoN = 1. To

understand the results for candidate outcomes (b) and (c), note that from (2.5) the

number of EUs with each ISP has a decreasing relation with (i) the transport costs of the

ISP, and (ii) the Internet access fee of the ISP which itself is increasing with both transport

costs. In addition, the number of EUs with the ISP has an increasing relation with respect

to the same parameters for the other ISP. Thus, different factors, some decreasing and

some increasing with respect to the transport cost of an ISP, play a role in determining

the number of EUs with each ISP. Overall, it turns out that the effect of increasing either

of the transport costs decreases the incentive of EUs to join ISP NoN. Thus, in candidate

outcomes (b) and (c), neqNoN is decreasing with respect to both transport costs.

Numerical Results on p̃eq: Note that the higher the number of EUs with ISP NoN,

the higher would be the benefit of the CP from the premium quality. Thus, we expect
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Figure 2.4: p̃eq with respect to tN and tNoN

the side-payment, i.e. p̃eq to be increasing with respect to number of EUs with ISP NoN.

Results in Section 2.4.1 also confirms this fact. Thus, the relationship between p̃eq and

the transport costs is similar to the relationship between neqNoN and the transport costs.

Therefore, in candidate outcome (b) and (c), the higher one of the transport costs, the

lower would be the side payments. For instance, in Figures 2.4, we plot the value of p̃eq

with respect to tNoN and tN , respectively, when q̃f = 1 and q̃p = 1.5.

Note that as we discussed in Section 2.4.1, in candidate outcome (b), p̃eq can be

positive or negative. However, numerical results for a large set of parameters reveal that

p̃eq is positive, whenever this candidate outcome is SPNE.

Numerical Results on the Payoffs of ISPs: Numerical results for the case q̃f = 1

and q̃p = 1.5 are plotted in Figure 2.5. If there is no NE strategy, we plot the payoff of

ISPs in the benchmark case, i.e. when both ISPs are neutral.

Note that when the market of power ISP NoN is small, i.e. the fraction tN
tN+tNoN

is

small, then the payoff of ISP NoN would be lower than the payoff of ISP N (Figure 2.5-

left).

For candidate outcome (a), the payoff of ISP N is zero (since the number of EUs

with this ISP is zero), and the payoff of ISP NoN is independent of tN (since ISP N is
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Figure 2.5: Payoff of ISPs with respect to tN and tNoN

out of the market), but decreasing with respect to tNoN (since peqNoN is decreasing with

tNoN ). Intuitively, we expect the utility of an ISP to be decreasing with respect to the

transport cost of that ISP, and increasing with respect to the transport cost of the other

ISP. However, for some parameters and some of the candidate outcomes, results reveal

that the payoff of an ISP is increasing with the transport cost of the ISP. Next, we explain

the underlying reasons for this counter-intuitive behavior.

Note that the payoff of an ISP is increasing with (i) the number of EUs with the ISP

and also (ii) the Internet access fee charged to the EUs. Recall that for the neutral ISP, in

candidate outcomes (b), (c), and the benchmark case, both of (i) and (ii) are increasing

with respect to both transport costs. Thus, the payoff of ISP N is increasing with respect

to both transport costs. On the other hand, for ISP NoN, the number of EUs is decreasing

and the Internet access fee is increasing with the transport costs. Thus, depending on

which of these factors overweights the other one, the payoff of ISP NoN can be decreasing

or increasing with respect to the transport costs.

58



2.5.3 Profits of Entities Due to Non-neutrality

We compare the results of the model and the benchmark case in which both ISPs are

neutral. We compare Internet access fees, payoff of ISPs, the welfare of EUs, and the

payoff of the CP:

Internet Access Fees

In a non-neutral case, the neutral ISP would always decrease her Internet access fee, while

that of the non-neutral ISP could be higher or lower depending on the parameters of the

market. We now provide insights on when each of these scenarios happens.

First, note that the discount that ISP N provides for EUs in a non-neutral case, i.e.

peqN,B − p
eq
N , is always positive for candidate outcomes (a), (b), and (c) (using previous

results). Thus, the neutral ISP would always decrease her Internet access fee in a non-

neutral scenario in order to compete with the non-neutral ISP which is now offering a

better quality.

In a non-neutral regime, if (a) occurs, then the discount that ISP NoN provides for

EUs in a non-neutral case is peqNoN,B − p
eq
NoN = 1

3(5tNoN + tN )− κuq̃p (using the previous

results). This discount can be negative or positive, and is decreasing with κu and q̃p, and

increasing with tNoN and tN . Thus, if (i) EUs are not sensitive to the quality, i.e. small

κu, (ii) ISP NoN does not provide a high premium quality, i.e. small q̃p, (iii) end-users

cannot switch between ISPs easily, i.e. tN and tNoN large enough, or a combination of

these factors, then ISP NoN provides a cheaper Internet access fee for EUs in comparison

to the neutral scenario.

For candidate outcome (b) (respectively, (c)), using the results in Sections 2.4.1 and
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2.4.2, the amount of discount is peqNoN,B − p
eq
NoN = 1

3 q̃p(2κad− κu) (respectively, peqNoN,B −

peqNoN = 1
3(q̃p − q̃f )(2κad − κu)). Thus, if 2κad > κu, i.e. the sensitivity of the CP is

high enough, then the discount is positive and is increasing with the premium quality

(respectively, the difference between the premium and free quality). On the other hand,

if the sensitivity of the CP is low, then the discount is negative, i.e. ISP NoN charges

higher access fees to the EUs. The reason is that if the CP is sensitive to the quality, ISP

NoN can charge higher side-payments to the CP. Thus, she can provide some of these

new revenue to EUs as a discount even though they receive a premium quality. This is

not possible when the CP is not sensitive to the quality of her content. In this case, ISP

NoN charges the premium quality to the EUs directly, i.e. higher Internet access fees for

EUs.

Payoff of ISPs

Consider the payoffs of ISPs N and NoN under both neutral and non-neutral scenarios.

The difference in the payoffs for the case κu = 0.5, κad = 1, q̃f = 1, q̃p = 1.5, and tN = 0.3

are plotted in Figure 2.6 (using different parameters values yields same intuitions).

Results reveal that the neutral ISP will lose payoff in all of the non-neutral NE strate-

gies, i.e. those that yield zeq = 1 (Figure 2.6-right). Note that in case (a), ISP N would be

driven out of the market. Thus, πeqN = 0, while πeqN,B > 0. In cases (b) and (c), although

ISP N is active, she has to subsidize the Internet connection fee for EUs to be able to

compete with ISP NoN, while possibly can attract lower number of EUs. This yields a

loss in the payoff under a non-neutral scenario.

Results also reveal that for a wide range of parameters, ISP NoN receives a better payoff

60



Figure 2.6: The difference between the payoff of ISPs for two scenarios with respect to

tN and tNoN

under a non-neutral scenario (Figure 2.6-left). We discussed that ISP NoN extracts the

additional profit of the CP (from the premium quality her EUs receive) in a non-neutral

scenario. In addition, we also explained that for some parameters (κu > 2κad), ISP NoN

charges higher prices to EUs. Even when ISP NoN subsidizes the Internet access fee for

EUs (2κad > κad), she would compensate through the side payment charged to the CP

(high κad yields a high side payment). Moreover, ISP NoN can potentially attract more

EUs by providing a cheaper fee or a premium quality (or both). Thus, overall we expect

the non-neutral ISP to receives a better payoff under a non-neutral regime.

However, we can find scenarios in which ISP NoN loses payoff by switching to non-

neutrality. For example, with κu = κad = 0.85, q̃f = 1, q̃p = 1.03, tN = 0.05, and

tNoN = 0.8, then πeqNoN < πeqNoN,B. In particular, the payoff of ISP NoN decreases in a

non-neutral regime if the outcome of the market is (a), and κu, κad, q̃p− q̃f , and tN
tN+tNoN

(the market power of ISP NoN) are small.

We now explain the underlying reason for this counter-intuitive result. Note that

knowing that the other ISP has switched to non-neutrality, the neutral ISP would decrease
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her Internet access fee for EUs to compensate for the superior quality that her competitor

offers. On the other hand, the non-neutral ISP also has to significantly decrease her

Internet access fee for EUs (because of her low market power, competition, and low

sensitivity of EUs to the quality), while not generating enough revenue from the side-

payments received from the CP (because of low sensitivity of the CP to quality or a

premium quality that is not significantly better than a free quality). This makes both

ISPs, lose revenue in a non-neutral setting under the specified conditions. Note that the

non-neutral ISP still extracts the additional profit she creates for EUs.

EU’s Welfare

Recall that from (2.3), the utility of an EU who connects to the ISP j ∈ {N,NoN}

located at distance xj of the ISP, and is receiving the content with quality qj , is uEU,j =

v∗+ κuqj − tjxj − pj . Now, let us define the Welfare of EUs (EUW) for an EU connected

to ISP j located at distance xj from this ISP to be uEU,j(xj)−v∗ = κuqj−pj− tjxj . Note

that we dropped the common valuation v∗ since it is equal for all EUs in all scenarios,

and is only used to guarantee the full coverage of the market, i.e. to prevent negative

utility for EUs. Thus, the total welfare of EUs is:

EUW =

∫ nN

0

(
κuqN − pN − tNx

)
dx+

∫ 1

nN

(
κuqNoN − pNoN − tNoN (1− x)

)
dx

= (κuqN − pN )nN −
tN
2
n2
N + (κuqNoN − pNoN )nNoN −

tNoN
2

n2
NoN

(2.10)

Note that since we dropped v∗, EUW could be negative. In Figures 2.7 and 2.8, we plot

the difference in the EUW of the non-neutral case with the benchmark case for various

parameters of the market, when q̃f = 1 and q̃p = 1.5.

Results reveal that in general, EUW would be higher in a non-neutral setting if (i) the

market power of ISP NoN is low, (ii) the sensitivity of the CP to the quality is high, or (iii)
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Figure 2.7: Difference in EUW with respect to tN and tNoN

Figure 2.8: Difference in EUW with respect to tN and tNoN

EUs are not very sensitive to the quality, or a combination of these conditions. However,

when both transport costs are sufficiently small, or the sensitivity of EUs (respectively,

the CP) to the quality is high (respectively, low), then the benchmark case yields a better

EUW in comparison to the non-neutral case. We next explain the reasons behind these

results.

Consider the benchmark case. In this case, the welfare of EUs is dependent on the

transport costs and the Internet access fees determined by ISPs N and NoN. Recall that

both access fees are increasing with tN and tNoN . Thus, intuitively, EUW of the bench-

mark case is decreasing with tN and tNoN .7

7Note that nN and nNoN are sum up to one. Thus, the effect of access fees on EUW is more than the

effect of number of EUs with each ISP.
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In case (a), in which only the non-neutral ISP is active, EUW is dependent on the

Internet access fee of ISP NoN, i.e. peqNoN = c + κuq̃p − tNoN . Thus, EUW of the non-

neutral scenario with outcome (a) is increasing with respect to tNoN . In other words,

if tNoN is large, ISP NoN should provide a cheaper Internet access fee (subsidizing the

access fee), to attract EUs and keep the neutral ISP out of the market. Thus, EUW

would be high. In addition, the EUW is independent of tN . Thus, as Figures 2.7 and 2.8

confirm , the difference between the EUW of the non-neutral scenario in case (a) and the

EUW of the benchmark case is increasing with respect to tN and tNoN .

We observe that when both transport costs are sufficiently small, the benchmark case

yields a higher EUW than the non-neutral scenario. Note that if tNoN is small, i.e. EUs

can join (switch to) ISP NoN without incurring high transport costs, ISP NoN attracts

all EUs even when quoting a high Internet access fee for EUs (since it offers a premium

quality). Thus, ISP NoN charges a high Internet access fee, and the EUW would be

small. On the other hand, if tN is also small, the EUW of the benchmark case would be

high (as discussed previously). Thus, when both transport costs are sufficiently small, we

expect the benchmark case to yield a better EUW in comparison to the non-neutral case.

Negative differences in Figures 2.7 and 2.8 confirm this intuition. Note that in Figure 2.8,

because of high sensitivity of EUs to the quality, EUW of the neutral scenario is higher

than the non-neutral scenario even when tN or tNoN are not small. Finally, observe that

the maximum difference in the EUWs is achieved for the highest tN and tNoN by which

the outcome of the game is (a), i.e. when only the non-neutral is active.

For candidate outcomes (b) and (c), similar to the benchmark case, the Internet access

fees are increasing with respect to tN and tNoN . Thus, EUW is expected to be decreasing
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with respect to these transport costs. Results in the figures reveal that the difference in

EUWs is decreasing with respect to tNoN and tN . This means that EUW of the non-

neutral case decreases more than EUW of the benchmark case. This difference is positive

when the sensitivity of the EUs to the quality is low, i.e. small κu (Figure 2.7), and

negative when κu is large (Figure 2.8). Recall that the non-neutral ISP provides discount

to EUs when the sensitivity of the CP to the quality is high enough. If not, ISP NoN

charges higher prices to EUs in comparison to the benchmark case. This is the reason

that EUW of the non-neutral case is lower than the benchmark case when EUs are highly

sensitive to the quality they receive.

Thus, the transport costs and the sensitivity of EUs and the CP to the quality are

the important factors in comparing the EUW of the neutral and non-neutral scenario.

As explained, the higher the sensitivity of the CP (respectively, EUs) to the quality, the

higher (respectively, lower) would be EUW in the non-neutral case.

Payoff of the CP

Using (2.2) and the candidate outcomes listed in Sections 2.4.1 and 2.4.2, we can calculate

the payoff of the CP in different outcomes. Results yield that the equilibrium payoff of

the CP in all the possible outcomes of the non-neutral scenario and also in the benchmark

scenario are equal and are πeqCP = πeqCP,B = κadq̃f . The reason is that the non-neutral ISP

is the leader in the this leader-follower game. Thus, knowing the parameters of the game

and the tie-breaking assumption 2 of the CP, it can extract all the profits of the CP and

make it indifferent between taking the non-neutral option and not taking it.
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2.5.4 Does the Market Need to be Regulated?

We showed that in the presence of a “big” monopolistic CP and when EUs can switch

between ISPs, if a non-neutral regime emerges, then neutral ISPs are likely to lose their

market share, and are expected to be forced out of the market. In addition, in any NE

outcome, the neutral ISP would lose payoff. Thus, if the regulator is interested in keeping

some of the neutral ISPs in the market8, she should provide incentives for them. These

incentives could be in the form of monetary subsidies or tax deductions.

Although for many parameters, the payoff of the non-neutral ISP would be higher

by adopting a non-neutral regime, as explained before, with certain conditions on the

parameters, an ISP is likely to receive a lower payoff by switching to non-neutral regime.

These conditions are when (i) EUs are not sensitive to the quality, i.e. small κu, (ii)

the CP is not sensitive to the quality her EUs receive, i.e. small κad, (iii) ISP NoN

does not offer enough differentiation in the quality, i.e. small q̃p − q̃f , (iv) the market

power of the non-neutral ISP is low, or a combination of these factors. Thus, with

these conditions a non-neutral regime is unlikely to emerge, and there is no need for a

government intervention.

2.6 Discussions on Generalization of the Model

Note that we assumed qN ∈ {0, q̃f} and qNoN ∈ {0, q̃f , q̃p}. This assumption can be

generalized to selecting quality strategies from continuous sets, i.e. qN ∈ [0, q̃f ] and

8For example, the reason could be to prevent non-neutral ISPs from becoming monopoly or it could

be the social pressure to preserve some neutrality in the market.
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qNoN ∈ [0, q̃p]. In this case, the CP pays a side payment of p̃qNoN if she chooses qNoN ∈

(q̃f , q̃p]. In Appendix 2.7.6, we prove that our results herein would continue to hold under

this generalization.

Recall that in our model, being neutral or non-neutral is fixed and is not a decision

variable for ISPs. This means that the non-neutral ISP has already have the infrastructure

for offering a premium quality to the CP. For this reason the fixed cost of investment on

the infrastructure for offering a non-neutral service is not considered in the utility of ISP

NoN (2.1). Even when considering this fixed cost, analyses yield that the results would

be the same as before. Even if we consider both the investment cost and the decision of

ISP NoN on being neutral or non-neutral, then the fixed cost of investment would affect

the comparison between the payoff of ISP NoN in neutral and non-neutral scenarios only

by a constant. This increases the regions of parameters in which an ISP would lose payoff

by switching to a non-neutral regime. The overall intuitions are expected to be the same

as before.

The result that over some parameters, an ISP can lose payoff by switching to a non-

neutral regime is dependent on the assumption that the neutral and non-neutral ISPs

first decide on the Internet access fees, and then the non-neutral ISP decides on the

side-payment in the second stage. If we swap the order of these two stages, then the

non-neutral ISP would not lose payoff by switching to non-neutrality since in this case,

she would be the sole leader of the game. Thus, ISP NoN, in the worst case, obtains

the payoff of the neutral scenario. Recall that the reason for our choice of the orders of

the stages of the game is that Internet access fees are expected to be kept constant for a

longer time horizons in comparison to the side-payment.
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Recall that in the hotelling model, we considered EUs to be distributed uniformly

between zero and one. In the case of considering a non-uniform distribution, depending

on the skewness of the probability measure, results would be similar to small tN or tNoN .

For example, if the probability measure is skewed toward zero, i.e. EUs are distributed

close to the neutral ISP, results would be similar to uniform distribution and tN small.

2.7 Appendix

2.7.1 Proofs of Section 2.2.2- Stage 3

First, note that by (2.2), (qN , qNoN ) = (0, 0) yields a payoff of zero, while (q̃f , q̃f ) yields a

payoff of κadq̃f > 0. Thus, we can discard strategy (qN , qNoN ) = (0, 0) from the candidate

solutions in (2.6). In addition, we use tie-breaking Assumption 1 to discard (0, q̃f ) ∈ FU0 ,

(q̃f , 0) ∈ FL0 , (q̃f , q̃f ) ∈ FU0 ∪ FL0 , (0, q̃p) ∈ FU0 , and (q̃f , q̃f ) ∈ FU1 ∪ FL1 . Thus, the

candidate solutions in (2.6) can be divided into the sub-sets characterized in Table 2.1 as

follows:

(0, q̃f ) ∈ F I0 ∪ FL0 , (q̃f , 0) ∈ F I0 ∪ FU0 , (q̃f , q̃f ) ∈ F I0 , (0, q̃p) ∈ F I1 ∪ FL1 , (q̃f , q̃p) ∈ F I1

(2.11)

Moreover, if 0 < nNoN < 1, then the expression for the payoff in (2.2), would be

(using (2.5)):

πCP (qN , qNoN , z) =
tNoN + κu(qN − qNoN ) + pNoN − pN

tN + tNoN
κadqN

+
tN + κu(qNoN − qN ) + pN − pNoN

tN + tNoN
κadqNoN − zp̃qNoN

(2.12)

The following lemmas are used in proving the main results of this section:
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Lemma 1. Let (q̃f , q̃p) and (0, q̃p) belong to the set F I , i.e. for them 0 < xN < 1. Then

πG(q̃f , q̃p, z = 1) ≥ πG(0, q̃p, z = 1) if and only if ∆p ≥ ∆pt, where ∆pt = κu(2q̃p − q̃f )−

tNoN .

Proof. The proof is done by comparing the payoffs (note that in both cases 0 < xN < 1).

We use (2.12) to write the expression of πG(qN , qNoN , z):

πG(q̃f , q̃p, z = 1) ≥ πG(0, q̃p, z = 1) ⇐⇒

(
tNoN − κu(q̃p − q̃f ) + pNoN − pN

)
κadq̃f +

(
tN + κu(q̃p − q̃f ) + pN − pNoN

)
κadq̃p

≥
(
tN + κuq̃p + pN − pNoN

)
κadq̃p

⇐⇒ tNoN − κu(2q̃p − q̃f ) + pNoN − pN ≥ 0 ⇐⇒ ∆p ≥ κu(2q̃p − q̃f )− tNoN = ∆pt

The result follows.

Lemma 2. Let (0, q̃p) ∈ FL1 , i.e. by which nNoN = 1. Then, πCP (0, q̃p, z = 1) ≥ κadq̃f if

and only if p̃ ≤ p̃t,1, where p̃t,1 = κad(1−
q̃f
q̃p

).

Proof. We use (2.2) to write the expression of the payoff of the CP:

πCP (0, q̃p, z = 1) ≥ κadq̃f ⇐⇒ κadq̃p − p̃q̃p ≥ κadq̃f ⇐⇒ p̃ ≤ κad(1−
q̃f
q̃p

) = p̃t,1

Lemma 3. Let (0, q̃p) ∈ F I1 , i.e. by which 0 < nNoN < 1. Then, πCP (0, q̃p, z = 1) ≥

κadq̃f if and only if p̃ ≤ p̃t,2, where p̃t,2 = κad(nNoN −
q̃f
q̃p

) and nNoN =
tN+κuq̃p−∆p
tN+tNoN

.

Proof. We compare the payoff with κadq̃f . We use (2.2) to write the expression of the

payoff of the CP:

πCP (0, q̃p, z = 1) ≥ κadq̃f ⇐⇒ nNoNκadq̃p − p̃q̃p ≥ κadq̃f ⇐⇒ p̃ ≤ κad(nNoN −
q̃f
q̃p

) = p̃t,2

where, by (2.5), nNoN =
tN+κuq̃p−∆p
tN+tNoN

. The result follows.
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Lemma 4. Let (q̃f , q̃p) ∈ F I1 , i.e. by which 0 < nNoN < 1. Then, πG(q̃f , q̃p, z = 1) ≥

κadq̃f if and only if p̃ ≤ p̃t,3, where p̃t,3 = κadnNoN (1− q̃f
q̃p

) and nNoN =
tN+κu(q̃p−q̃f )−∆p

tN+tNoN
.

Proof. We compare the payoff with κadq̃f . We use (2.2) to write the expression of the

payoff of the CP:

πG(q̃f , q̃p, z = 1) ≥ κadq̃f ⇐⇒ (1− nNoN )κadq̃f + nNoNκadq̃p − p̃q̃p ≥ κadq̃f

⇐⇒ p̃ ≤ κadnNoN (1−
q̃f
q̃p

) = p̃t,3

where, by (2.5), nNoN =
tN+κu(q̃p−q̃f )−∆p

tN+tNoN
. The result follows.

Remark 4. The values of ∆pt, p̃t,1, p̃t,2, and p̃t,3 characterized in the above lemmas are

used in Definition 3.

We should distinguish between the solutions that maximize (2.2), i.e. (q∗N , q
∗
NoN ) which

is not unique, and the strategy that is chosen by the CP in the equilibrium, which is a

unique choice among the optimum solutions. Thus, we denote the equilibrium strategy

of the CP by (qeqN , q
eq
NoN ), which subsequently yields the equilibrium fraction of EUs with

each ISP, i.e. xeqN , N eq
N , and N eq

NoN .

Now, by comparing the payoffs of the candidate solutions and using tie-breaking as-

sumptions, we prove one of the main results of this section, Theorem 1:

Proof. Proof of Theorem 1: Note that an equilibrium strategy, i.e. (qeqN , q
eq
NoN ), should be

a global maxima of (2.2). Suppose (q∗N , q
∗
NoN ) ∈ F0. First, in Part A, we separate the

cases that (q∗N , q
∗
NoN ) is in FL0 , F I0 , or FU0 , characterize the candidate optimum strategy,

i.e. (q∗N , q
∗
NoN ), chosen by the CP in each of these subsets (Note that FL0 ∪F I0 ∪FU0 = F0),

and identify the necessary condition on ∆p for each of these candidate optimums to be in
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a particular subset. In Part B, we summarize the candidate optimum strategies. Finally,

in Part C, by comparing the payoffs of the candidate strategies in different regions of ∆p

and using the tie-breaking assumptions, we characterize the equilibrium strategies.

Part A: First, consider F I0 . If (q∗N , q
∗
NoN ) ∈ F I0 , i.e. z∗ = 0, then (q∗N , q

∗
NoN ), by

(2.11), is (a) (0, q̃f ), or (b) (q̃f , 0), or (c) (q̃f , q̃f ). Note that the necessary and sufficient

condition for each of these candidate outcomes to be in F I0 is ∆p−tN
κu

< ∆q∗ < ∆p+tNoN
κu

(Table 2.1). First consider case (a). Note that ∆q∗ = q̃f . Thus, the necessary and

sufficient condition for (a) to be in F I0 becomes ∆p−tN
κu

< q̃f <
∆p+tNoN

κu
, which yields

κuq̃f − tNoN < ∆p < κuq̃f + tN . Similarly, For cases (b), the necessary and sufficient

condition is −κuq̃f − tNoN < ∆p < −κuq̃f + tN , and for (c) is −tNoN < ∆p < tN .

Now, consider FL0 . If (q∗N , q
∗
NoN ) ∈ FL0 , then (q∗N , q

∗
NoN ), by (2.11), is (d) (0, q̃f ) ∈ FL0 .

Note that, using the condition in Table 2.1, the necessary and sufficient condition for

(0, q̃f ) ∈ FL0 is ∆p ≤ κuq̃f − tNoN .

Finally, consider FU0 . If (q∗N , q
∗
NoN ) ∈ FU0 , then (q∗N , q

∗
NoN ), by (2.11), is (e) (q̃f , 0) ∈

FU0 . Using the condition in Table 2.1, the necessary and sufficient condition for (q̃f , 0) ∈

FU0 is ∆p ≥ tN − κuq̃f .

Part B: Note that, as mentioned before, the strategy that is chosen by the CP

in the equilibrium is a unique choice among the possible optimum solutions. Thus, if

(qeqN , q
eq
NoN ) ∈ F0, then (qeqN , q

eq
NoN ) is of the form of one of the followings (the necessary

condition for each to be optimum is also listed):

(a) (0, q̃f ) ∈ F I0 , if this is overall optimum then κuq̃f − tNoN < ∆p < κuq̃f + tN (the

necessary condition).

71



(b) (q̃f , 0) ∈ F I0 , the necessary condition: −κuq̃f − tNoN < ∆p < −κuq̃f + tN .

(c) (q̃f , q̃f ) ∈ F I0 , the necessary condition: −tNoN < ∆p < tN .

(d) (0, q̃f ) ∈ FL0 , the necessary condition: ∆p ≤ κuq̃f − tNoN .

(e) (q̃f , 0) ∈ FU0 , the necessary condition: ∆p ≥ −κuq̃f + tN .

Part C: Now, we compare the payoffs of the CP at each candidate solutions, and use

tie-breaking assumptions whenever needed to get the equilibrium strategies of the CP.

The payoff of the CP, for each candidate solution, is as follows (by (2.2)):

πCP,(a) = nNoNκadq̃f & 0 < nNoN < 1

πCP,(b) = nNκadq̃f & 0 < nN < 1

πCP,(c) = κadq̃f

πCP,(d) = κadq̃f

πCP,(e) = κadq̃f

(2.13)

Next, we characterize the equilibrium strategies in different intervals of ∆p. First

consider −tNoN < ∆p < tN . Note that in this case, ∆p satisfies the necessary condition

of (c) being a candidate strategy, and also the necessary and sufficient condition of (c)

being in F I0 . In addition, πCP,(c) > πCP,(a) and πCP,(c) > πCP,(b). Thus, (a) and (b)

cannot be overall optimum solutions. Moreover, πCP,(c) = πCP,(d) and πCP,(c) = πCP,(e).

Using tie-breaking assumption 3 yields that the CP prefers (c) to (d) and (e). Thus,

(q̃f , q̃f ) ∈ F I0 is chosen as the equilibrium strategy in this interval, and case 1 of the

lemma follows.

Now, consider ∆p ≥ tN . Note that in this case, ∆p satisfies the necessary condition
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of (e) being a candidate strategy, and also the necessary and sufficient condition of (e) to

be in FU0 . In addition, this condition rules out (b) and (c). However, for certain intervals

of ∆p ≥ tN , the necessary condition of candidate strategies (a) and (d) can be satisfied.

We now compare the payoff of (e) to (a) and (d). First note that πCP,(e) > πCP,(a). Thus

candidate strategy (a) can be discarded. Also, πCP,(e) = πCP,(d). Since ∆p = pNoN−pN ≥

tN > 0, and by using tie-breaking assumption 5, candidate strategy (e), i.e. (q̃f , 0) ∈ FU0

is chosen as the equilibrium strategy in this interval by the CP. Thus, case 2 of the lemma

follows.

Finally, consider ∆p ≤ −tNoN . Note that in this case, ∆p satisfies the necessary

condition of (d) to be a candidate strategy, and also the necessary and sufficient condition

of (d) to be in FL0 . In addition, this condition rules out (a) and (c). However, for certain

intervals of ∆p ≤ −tNoN , the necessary condition of candidate strategies (b) and (e)

can be satisfied. We now compare the payoff of (d) to (b) and (e). First note that

πCP,(d) > πCP,(b). Thus candidate strategy (b) can be discarded. Also, πCP,(d) = πCP,(e).

Since ∆p = pNoN − pN ≤ −tNoN < 0, and by using tie-breaking assumption 5, candidate

strategy (d), i.e. (0, q̃f ) ∈ FL0 is chosen as the equilibrium strategy in this interval by the

CP. Thus, case 3 of the lemma follows.

Note that by (2.13), πCP,(a) = πCP,(b) = πCP,(c) = κadq̃f and these are all the candidate

solutions.Thus, the utility of the CP by each candidate equilibrium strategy would be

κadq̃f . The result follows.

Now, we focus on characterizing the candidate strategies and the necessary condition

for each of them when zeq = 1.
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Theorem 11. If (qeqN , q
eq
NoN ) ∈ F1, then (qeqN , q

eq
NoN ) is of the form of one of the followings:

(a) (0, q̃p), the necessary condition: κuq̃p−tNoN < ∆p < κuq̃p+tN . In addition, (0, q̃p) ∈

F I1 if and only if κuq̃p − tNoN < ∆p < κuq̃p + tN .

(b) (q̃f , q̃p), the necessary condition: κu(q̃p − q̃f ) − tNoN < ∆p < κu(q̃p − q̃f ) + tN . In

addition, (q̃f , q̃p) ∈ F I1 iff κu(q̃p − q̃f )− tNoN < ∆p < κu(q̃p − q̃f ) + tN .

(c) (0, q̃p), the necessary condition: ∆p ≤ κuq̃p − tNoN . In addition, (0, q̃p) ∈ FL1 iff

∆p ≤ κuq̃p − tNoN .

Proof. Suppose (q∗N , q
∗
NoN ) ∈ F1. We separate the cases that (q∗N , q

∗
NoN ) is in FL1 , F I1 ,

or FU1 , characterize the candidate optimum solutions chosen by the CP in each of these

subsets, and identify the necessary condition on ∆p for each of these candidate optimum

strategies to be in a particular subset.

Note that by (2.11), no optimum strategy is chosen in the set FU1 . Thus, we charac-

terize the optimum strategies chosen in F I1 and FL1 by the CP.

Now, consider F I1 . By (2.11), if (q∗N , q
∗
NoN ) ∈ F I1 , then (q∗N , q

∗
NoN ) is (a) (0, q̃p) or

(b) (q̃f , q̃p). The necessary condition for each of them to be optimum is to be in F I1 . In

addition, the necessary and sufficient condition for each of these candidate outcomes to

be in F I1 is ∆p−tN
κu

< ∆q∗ < ∆p+tNoN
κu

(by Table 2.1). Thus, for case (a), the necessary

and sufficient condition is κuq̃p − tNoN < ∆p < κuq̃p + tN (note that ∆q∗ = q̃p), and for

case (b) is κu(q̃p− q̃f )− tNoN < ∆p < κu(q̃p− q̃f ) + tN . These yields candidate strategies

(a) and (b) and their conditions of the Theorem.

Consider FL1 . By (2.11), if (q∗N , q
∗
NoN ) ∈ FL1 , then (q∗N , q

∗
NoN ) is (c) (0, q̃p). Note

that the necessary and sufficient condition for (0, q̃p) ∈ FL1 is ∆p ≤ κuq̃p − tNoN (by the
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−tNoN + κu(q̃p − q̃f ) κuq̃p − tNoNtN + κu(q̃p − q̃f ) κuq̃p + tN

(q̃f , q̃p) ∈ F I1 (0, q̃p) ∈ F I1

(0, q̃p) ∈ FL1

∆p

Figure 2.9: A schematic view of the ordering of different candidate equilibrium stratwgies

characterized in Theorem 11 with respect to ∆p when q̃f >
tN+tNoN

κu
and z = 1.

condition in Table 2.1 and ∆q = q̃p). The theorem follows.

The payoff of the CP in each candidate solution of Theorem 11 is as follows (using

(2.2)):

πCP,(a) = nNoNκadq̃p − p̃q̃p & 0 < nNoN < 1

πCP,(b) = (1− n′NoN )κadq̃f + n′NoNκadq̃p − p̃q̃p & 0 < n′N < 1

πCP,(c) = κadq̃p − p̃q̃p

(2.14)

Thus, the payoffs are a function of p̃ and ∆p. Now, to get the second main result

of this section, we compare the payoff of the candidate answers with the payoff of the

candidate strategies when z = 0 considering different values of p̃ and ∆p, and pick the

maximum as the equilibrium strategy of the CP. Thus Theorem 2 is proved as follows:

Proof of Theorem 2:

Proof. Now, for different regions of ∆p, we compare the payoffs of the candidate equi-

librium strategies characterized in Theorem 11 to each other and also to the equilibrium

strategies in Theorem 1, and use tie-breaking assumptions (whenever needed) to charac-

terize the equilibrium strategies of the CP.

First consider ∆p ≤ κuq̃p − tNoN . In this case, ∆p satisfies the necessary condition of

candidate strategy (c) in Theorem 11. In addition, note that by (2.14), πCP,(c) > πCP,(a)
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and πCP,(c) > πCP,(b) (by q̃p > q̃f ). Thus, for this region, (c) is chosen if and only

if this strategy yields a higher or equal (by tie-breaking assumption 2) payoff than the

payoff when zeq = 0, that is κuq̃f (by Theorem 1). Thus, using Lemma 2, zeq = 1, and

(qeqN , q
eq
NoN ) = (0, q̃p) ∈ FL1 if p̃ ≤ p̃t,1. Otherwise zeq = 0, since the payoff of (c) and

subsequently (a) and (b) are smaller than the payoff when zeq = 0. Thus, in this case,

the equilibrium strategy can be found using Theorem 1. This is item 1 of the theorem.

For ∆p ≥ tN + κuq̃p, the necessary condition of none of the candidate strategies in

Theorem 11 can be satisfied. Therefore, zeq = 0. This is item 4 of the theorem.

Now, for the rest of the proof, we consider κuq̃p − tNoN < ∆p < tN + κuq̃p. In this

case, the necessary condition of candidate strategy (c) of Theorem 11 cannot be satisfied.

Therefore, we can eliminate (c). On the other hand, the necessary and sufficient condition

of (a) of Theorem 11 can be met. Now, consider two different cases, q̃f ≤ tN+tNoN
κu

and

q̃f >
tN+tNoN

κu
:

• q̃f ≤ tN+tNoN
κu

. This yields that κuq̃p − tNoN ≤ tN + κu(q̃p − q̃f ). For this case,

consider two sub-cases:

– κuq̃p−tNoN < ∆p < tN+κu(q̃p−q̃f ). In this case, ∆p satisfies the necessary and

sufficient condition of (b) in Theorem 11. Now, we should compare πG,(a) and

πG,(b). In Lemma 1, we compare the payoff of the two solutions. In addition,

by tie breaking assumption 4, when the payoffs are equal the CP chooses (b)

over (a). Thus, if ∆p ≥ ∆pt, (b), i.e. (q̃f , q̃p) would be chosen versus (a).

Otherwise (a), i.e. (0, q̃p) would be chosen. Now, we compare the payoff of the

one chosen with the payoff of the case z = 0, i.e. κadq̃f :
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∗ If ∆p ≥ ∆pt, then by Lemma 4 and tie-breaking assumption 2, zeq = 1

and (qeqN , q
eq
NoN ) = (q̃f , q̃p) ∈ F I1 if p̃ ≤ p̃t,3 (by comparing the payoff of

strategy (b) by the payoff when z = 0, i.e. κadq̃f ). Otherwise zeq = 0, and

the equilibrium strategy can be found using Theorem 1. This is item 2-a-i

of the theorem.

∗ If ∆p < ∆pt, then by Lemma 3 and tie-breaking assumption 2, zeq = 1

and(qeqN , q
eq
NoN ) = (0, q̃p) ∈ F I1 if p̃ ≤ p̃t,2 (by comparing the payoff of

strategy (a) by the payoff when z = 0, i.e. κadq̃f ). Otherwise zeq = 0, and

the equilibrium strategy can be found using Theorem 1. This is item 2-a-ii

of the theorem.

– tN + κu(q̃p − q̃f ) ≤ ∆p < tN + κuq̃p: In this range, the necessary condition of

(b) of Theorem 11 cannot be satisfied. Thus, the only candidate solution by

which z = 1, whose necessary and sufficient conditions can be satisfied, is (a)

(as stated before). Therefore, we should compare the payoff of (a) with that of

when zeq = 0, i.e. κadq̃f . Using Lemma 3 and Assumption 2, if p̃ ≤ p̃t,2 then

zeq = 1 and (qeqN , q
eq
NoN ) = (0, q̃p) ∈ F I1 . Otherwise zeq = 0, and the equilibrium

strategy can be found using Theorem 1. This is item 2-b of the theorem.

• q̃f > tN+tNoN
κu

: In this case, κuq̃p − tNoN > tN + κu(q̃p − q̃f ). Thus, the necessary

condition of (b) cannot be satisfied. Therefore, we can eliminate (c) (eliminated

before) and (b). On the other hand, the necessary and sufficient condition of (a) of

Theorem 11 can be met. Therefore, we should compare the payoff of (a) with that

of when zeq = 0, i.e. κadq̃f . Using Lemma 3 and Assumption 2, if p̃ ≤ p̃t,2 then
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zeq = 1 and (qeqN , q
eq
NoN ) = (0, q̃p) ∈ F I1 . Otherwise zeq = 0, since the payoff of (a) is

smaller than the payoff when zeq = 0. Thus, in this case, the equilibrium strategy

can be found using Theorem 1. This is item 3 of the theorem. The result follows.

The following lemma simplify item 2-a of Theorem 2, and is useful in the next stages:

Lemma 5. Consider κuq̃p − tNoN < ∆p < tN + κu(q̃p − q̃f ). If q̃p ≥ tN+tNoN
κu

, then

∆p < ∆pt. If q̃p < tN+tNoN
κu

, then κuq̃p − tNoN < ∆pt < tN + κu(q̃p − q̃f ), where

∆pt = κu(2q̃p − q̃f )− tNoN characterized in Lemma 1.

Proof. Proof: First, consider q̃p ≥ tN+tNoN
κu

. Note that:

∆pt − (tN + κu(q̃p − q̃f )) = κuq̃p − tN − tNoN ≥ 0

Thus for every ∆p such that ∆p < tN + κu(q̃p − q̃f ), ∆pt > ∆p. This establish the first

part of the lemma.

Now, consider q̃p <
tN+tNoN

κu
. In this case:

∆pt − (tN + κu(q̃p − q̃f )) = κuq̃p − tN − tNoN < 0

and

∆pt − (κuq̃p − tNoN ) = κu(q̃p − q̃f ) > 0 (since q̃p > q̃f )

Thus, κuq̃p − tNoN < ∆pt < tN + κu(q̃p − q̃f ). The result follows.

Theorem 2 and Lemma 5 yields the following corollary:
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Corollary 1. Let q̃p ≥ tN+tNoN
κu

. Then the structure of the optimum answers of the CP

(results in Theorem 2) for the case that q̃f ≤ tN+tNoN
κu

is the same as the results when

q̃f >
tN+tNoN

κu
.

Proof. Proof: Note that items 1 and 4 of Theorem 3 are the same for both cases, regardless

of q̃f . In addition by Lemma 5, when q̃p ≥ tN+tNoN
κu

, then ∆p < ∆pt. Thus, 2-a-i in

Theorem 2 would not happen. Note that 2-a-ii and 2-b yields is similar to 3. Thus, the

two structures are similar, and the corollary follows.

2.7.2 Proofs of Section 2.2.3 - Stage 2

First, we prove Theorem 4. Then using the results of this theorem, we prove Theorem 3.

Proof of Theorem 4

It is sufficient to prove that if any one of the conditions (1) ∆p < tN + κuq̃p, (2) p̃eq = p̃t,

or (3) πNoN (pNoN , p̃t) > πNoN,z=0(pNoN , p̃) is not true, then zeq = 0. Thus, in each of

the following cases, we consider one of these conditions to be not true, and prove that

zeq = 0.

• Case 1-∆p ≥ tN + κuq̃p: By Theorem 2, when ∆p ≥ tN + κuq̃p, z
eq = 0. This case

follows.

• Case 2-p̃eq 6= p̃t: if ∆p ≥ tN + κuq̃p, using case 1, zeq = 0. Now, consider ∆p <

tN + κuq̃p. In this case, either p̃eq > p̃t or p̃eq < p̃t. We claim that no p̃ such that

p̃ < p̃t can be an optimum solution (the claim is proved in the next paragraph).

Thus, p̃eq > p̃t. Note that p̃eq > p̃t yields zeq = 0 (by Theorem 2). Thus, the case
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follows.

Now, we prove that no p̃ such that p̃ < p̃t can be an optimum solution. Note that

by Theorem 2, when ∆p < tN + κuq̃p, for p̃ ≤ p̃t, the CP chooses z = 1. Thus,

the payoff of ISP NoN (2.7) is equal to (pNoN − c)nNoN + p̃q̃f , and is a strictly

increasing function of p̃ (note that pNoN is fixed and by (2.5), nNoN is independent

of p̃). Thus, every p̃ such that p̃ < p̃t, yields a strictly smaller payoff for ISP NoN

in comparison to the the payoff when p̃ = p̃t. Thus, no p̃ such that p̃ < p̃t can be

an optimum solution. The result follows.

• Case 3-πNoN (pNoN , p̃t) ≤ πNoN,z=0(pNoN , p̃): In this case, either p̃eq 6= p̃t or p̃eq =

p̃t. Note that by Case 2, p̃eq 6= p̃t yields zeq = 0, which yields the result.

Now, consider p̃eq = p̃t. Note that by Theorem 2, the non-neutral ISP can ensure

zeq = 0, by choosing p̃ greater than max{p̃t,1, p̃t,2, p̃t,3}. Thus, since p̃eq = p̃t,

πNoN (pNoN , p̃t) = πNoN,z=0(pNoN , p̃).
9 By tie-breaking assumption 6, zeq = 0. The

theorem follows.

Proof of Theorem 3

First, note that by Theorem 4, if zeq = 1 then πNoN (pNoN , p̃t) > πNoN,z=0(pNoN , p̃) and

∆p < tN + κuq̃p. To prove the reverse, note that if πNoN (pNoN , p̃t) > πNoN,z=0(pNoN , p̃)

and ∆p < tN + κuq̃p, p̃ that yields zeq = 0 cannot be an optimum answer. Note that

by Theorem 2, when p̃ = p̃t, the ISP NoN can make sure that zeq = 1. Thus, in the

equilibrium, zeq = 1. The result follows.

9if not, then p̃eq 6= p̃t, since p̃t is not optimum.
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2.7.3 Proofs of Section 2.2.4 - Stage 1

Proof of Theorem 5

We consider different regions of ∆p in Theorem 1 and Theorem 2. For each region, we

prove that there is no NE.

First, consider ∆p ≤ κuq̃p − tNoN . Note that in this region, the payoff of non-neutral

ISP if zeq = 0 is at most peqNoN−c (by (2.1)). On the other hand, by Theorem 2, by choosing

p̃′ = p̃t,1, ISP NoN can ensure that the CP chooses zeq = 1. In this case, the payoff of

non-neutral ISP (by (2.1)) is p′NoN − c+ p̃t,1q̃NoN = peqNoN − c+ κad(q̃p − q̃f ) > peqNoN − c.

Thus, πNoN (peqNoN , p̃t,1) > πNoN,z=0(peqNoN , p̃), and by Theorem 3, zeq = 1. Thus, in this

case, there is no NE by which zeq = 0.

Now, Consider peqN and peqNoN to be NE strategies by which zeq = 0 and ∆peq > κuq̃p−

tNoN . Note that tN + tNoN ≤ κuq̃p (assumption of the theorem) yields κuq̃p− tNoN ≥ tN ,

and ∆peq > tN . Thus, by item 2 of Theorem 1, neqN = 1. Consider a unilateral deviation by

neutral ISP such that p′N = peqN+ε in which ε > 0 such that peqNoN−p′N > κuq̃p−tNoN . Note

that the values of zeq, qeqN , and qeqNoN is the same as before, since still ∆p′ = peqNoN − p′N >

tN . Thus, again neqN = 1, and by (2.1), the payoff of neutral ISP is an increasing function

of pN . Thus, p′N is a profitable unilateral deviation. This contradicts the assumption that

peqN and peqNoN is NE. Thus, the result of the theorem follows.

Proof of Theorem 6

Before proving the theorem, we state two lemmas with their proof which are used in the

proof of the theorem:

81



Lemma 6. If pNoN = c+ κuq̃p − tNoN and pN = c, then zeq = 1.

Proof. Proof: Note that in this case, ∆p = κuq̃p− tNoN . Thus, p̃t = p̃t,1. Therefore, using

Theorem 3, it is sufficient to prove that πNoN (pNoN , p̃t,1) > πNoN,z=0(pNoN , p̃), where

πNoN,z=0(p̃NoN , p̃) is the payoff of ISP NoN when zeq = 0. Note that πNoN,z=0(pNoN , p̃) ≤

pNoN − c = κuq̃p − tNoN and πNoN (pNoN , p̃t,1) = κuq̃p − tNoN + κad(q̃p − q̃f ) (since by

Theorem 2, nNoN = 1, and by (2.1)). In addition, note that, q̃p > q̃f . Thus, this condition

holds, and the result follows.

Lemma 7. If pNoN = c +
tNoN+2tN+q̃p(κu−2κad)

3 , pN = c +
2tNoN+tN−q̃p(κu+κad)

3 , q̃p <

tN+2tNoN
κu+κad

, and κuq̃p ≥ tN + tNoN , then zeq = 1.

Proof. Proof: Note that if κuq̃p − tNoN < ∆p < tN + κuq̃p, by definition of p̃t (Defini-

tion 4), p̃t = p̃t,2. Thus, by Theorem 3, it is enough to prove that πNoN (pNoN , p̃t,2) >

πNoN,z=0(p̃NoN , p̃), where πNoN,z=0(p̃NoN , p̃) is the payoff of ISP NoN when zeq = 0.

First, we prove that πNoN (pNoN , p̃t,2) > pN − c+ κuq̃p − tNoN + κad(q̃p − q̃f ):

πNoN (pNoN , p̃t,2) ≥ pN − c+ κuq̃p − tNoN + κad(q̃p − q̃f )

⇐⇒
(
tNoN + 2tN + q̃p(κu + κad)

)2
9(tN + tNoN )

≥ tN − tNoN + 2q̃p(κu + κad)

3

⇐⇒ (q̃p(κu + κad)− tN − 2tNoN )2 ≥ 0

In addition, note that pN − c+ κuq̃p − tNoN + κad(q̃p − q̃f ) > 0, since pN ≥ c (under the

condition q̃p <
tN+2tNoN
κu+κad

), κuq̃p − tNoN ≥ tN > 0 (by the assumption of the lemma), and

q̃p > q̃f . Thus, πNoN (pNoN , p̃t,2) > 0.

Now, consider πNoN,z=0(p̃NoN , p̃). Note that by the assumption of the lemma κuq̃p ≥

tN + tNoN . Thus, ∆p > tN , and by item 2 of Theorem 1, if zeq = 0, nNoN = 0. Thus, by

(2.1), πNoN,z=0(p̃NoN , p̃) = 0. Therefore, πNoN (pNoN , p̃t,2) > πNoN,z=0(p̃NoN , p̃), and the

result follows.
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Now, we prove Theorem 6:

Proof. Proof of Theorem 6: We use the optimum strategies of the CP characterized in

Theorem 2 to characterize Nash equilibria. Note that for the case that κuq̃p ≥ tN + tNoN ,

by Corollary 1, the structure of the equilibrium strategies chosen by the CP is similar

to the case that κuq̃f > tN + tNoN . Thus, in this case, items 1, 3, and 4 of Theorem 2

characterizes the NE strategies chosen by the CP. Thus, henceforth we assume κuq̃p ≥

tN + tNoN , and use these items to prove the theorem.

We denote ∆p ≤ κuq̃p − tNoN by region A, κuq̃p − tNoN < ∆p < tN + κuq̃p by region

B, and ∆p ≥ tN + κuq̃p by region C. Using Theorem 2, if zeq = 1, then ∆p < tN + κuq̃p.

Thus, to characterize NE strategies by which zeq = 1, we should characterize any possible

NE strategies in regions A and B. In Case A, we prove that the only possible NE in

region A is peqNoN = c + κuq̃p − tNoN and peqN = c. In addition, we prove that these

strategies are NE if q̃p ≥ tN+2tNoN
κu+κad

. If not, then there is no NE in region A. In Case B,

we prove that the only possible NE in region B is peqNoN = c +
tNoN+2tN+q̃p(κu−2κad)

3 and

peqN = c +
2tNoN+tN−q̃p(κu+κad)

3 . In addition, we prove that these strategies can be NE

strategies if q̃p ≥ tN+2tNoN
κu+κad

. If not, then there is no NE in region B.

Case A: We characterize the NE strategies peqN and peqNoN such that ∆peq = peqNoN −

peqN ≤ κuq̃p − tNoN . First, in Case A-1, we prove that if zeq = 1 the only possible NE

in this region is peqNoN = c + κuq̃p − tNoN and peqN = c, and with these strategies, zeq is

indeed equal to 1. In Case A-2, we characterize the necessary and sufficient conditions

by which there is no unilateral profitable deviation for ISPs. This provides the necessary

and sufficient condition for these strategies to be NE.
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Case A-1: Note that by Theorem 2, for region A, (qeqN , q
eq
NoN ) = (0, q̃p) ∈ FL1 if

and only if p̃ ≤ p̃t,1 = κad(1 −
q̃f
q̃p

). In addition, by Theorem 4, if zeq = 1 then p̃eq =

p̃t,1 = κad(1 −
q̃f
q̃p

). Thus, in this region, if zeq = 1, the payoff of ISP NoN is equal to

pNoN−c+ q̃pp̃t,1 (by (2.1)) since nNoN = 1. Therefore, the payoff is an increasing function

of pNoN . In addition, note that in region A, nN = 0 and regardless of pN , the neutral

ISP receives a payoff of zero (by (2.1)). Thus, peqNoN , i.e. the equilibrium Internet access

fee, should be such that the neutral ISP cannot get a positive payoff by increasing or

decreasing pN , and changing the region of ∆p to B or C. Using this condition, we find

the equilibrium strategy.

Note that increasing pN decreases ∆p, and cannot change the region of ∆p. We claim

that by decreasing pN to p′N such that pNoN − p′N > κuq̃p − tNoN , the ISP N can fetch a

positive payoff as long as p′N > c (the claim is proved in the next paragraph). Therefore,

in the equilibrium, peqNoN is such that even with p′N = c (the minimum plausible price),

∆p ≤ κuq̃p−tNoN . Thus, peqNoN ≤ c+κuq̃p−tNoN . Given that the payoff of ISP NoN is an

increasing function of pNoN , we get peqNoN = c+ κuq̃p − tNoN . In addition, we claim that

peqN = c. If not, then peqN > c. In this case, ∆p = peqN − p
eq
NoN < κuq̃p − tNoN . We argued

that the payoff of ISP NoN is an increasing function of pNoN . Thus, by increasing pNoN

such that ∆p = κuq̃p − tNoN , ISP NoN can increase her payoff, which is a contradiction

with peqN and peqNoN being NE strategies.

To prove the claim, note that if pNoN − p′N > κuq̃p − tNoN , then either (i) zeq = 0 or

(ii) zeq = 1. Note that ∆p > κuq̃p − tNoN ≥ tN , since q̃p ≥ tN+tNoN
κu

. Thus, for case (i),

(qeqN , q
eq
NoN ) is of the form of part 2 of Theorem 1. Thus, nN = 1. Therefore ISP N can

fetch a positive payoff as long as pN > c (by (2.1)). Now consider case (ii), i.e. zeq = 1.

84



Note that when pNoN − p′N > κuq̃p − tNoN , ∆p is either in region B or C. By Theorem 2,

the only deviation that yields zeq = 1 is p′N such that ∆p in region B. Note that in this

region, by item 3 of Theorem 2, nN > 0. Thus, ISP N can fetch a positive payoff as long

as pN > c (by (2.1)). This completes the proof of the claim that by decreasing pN to p′N

such that pNoN − p′N > κuq̃p − tNoN , the ISP N can fetch a positive payoff as long as

p′N > c.

Therefore, the NE strategies are peqNoN = c+κuq̃p−tNoN and peqN = c, and the payoff of

the ISP NoN at this price by (2.1) and p̃t,1 = κad(1−
q̃f
q̃p

) is equal to (note that nNoN = 1),

and

πeqNoN = κuq̃p − tNoN + q̃pp̃t,1 = κuq̃p − tNoN + κad(q̃p − q̃f ) (2.15)

which is strictly positive since q̃p ≥ tN+tNoN
κu

and q̃p > q̃f .

Note that Lemma 6 yields that with peqN and peqNoN zeq = 1.

Case A-2: Now, in order to prove that peqN and peqNoN are indeed NE strategies, we

show that there is no unilateral profitable deviation for ISPs. First, in Case (A-2-i) we rule

out the possibility of a unilateral profitable deviation for ISP N. Then, in Case (A-2-ii)

we rule out a possibility of a downward unilateral profitable deviation, i.e. pNoN < peqNoN ,

for ISP NoN. Finally, in Case (A-3-iii), we consider a deviation of the form pNoN > peqNoN

for ISP NoN, and prove that the necessary and sufficient condition for this deviation to

be not profitable is q̃p ≥ tN+2tNoN
κu+κad

.

Case A-2-i: The construction of strategies peqN and peqNoN yields that there is no

profitable deviation for ISP N. To prove this formally, note that the only deviation for

ISP N that might be profitable is pN > c. With this deviation, ∆p would be still in

region A, in which nN = 0, and the payoff of ISP N is zero. Thus, such a deviation is not
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profitable.

Case A-2-ii: Now, consider a deviation by ISP NoN such that pNoN < peqNoN . In

this case, ∆p is in region A, and the payoff of ISP NoN is equal to pNoN − c + q̃pp̃t,1

(by (2.1) and nNoN = 1). Thus, the payoff of ISP NoN is strictly increasing in region A.

Therefore, peqNoN dominates all prices pNoN < peqNoN . Thus, this kind of deviation is not

profitable for ISP NoN.

Case A-2-iii: In this case, we consider a deviation such that pNoN > peqNoN . Thus,

∆p > κuq̃p − tNoN . Therefore, ∆p is either in Region B or C. First, in Case A-2-iii-a

we rule out the possibility of a profitable unilateral deviation in region C. Then, in Case

A-2-iii-b, we rule out the possibility of a profitable unilateral deviation in region B if

zeq = 0. Finally, in Case A-2-iii-c, we prove that a deviation to region B if zeq = 1 is not

profitable if and only if q̃p ≥ tN+2tNoN
κu+κad

.

Case A-2-iii-a: Using item 4 of Theorem 2, if ∆p in region C, i.e. ∆p ≥ tN + κuq̃p,

then zeq = 0. In this case, (qeqN , q
eq
NoN ) is of the form of part 2 of Theorem 1 (note that

κuq̃p ≥ tN + tNoN ). Thus, nNoN = 0. Therefore, the ISP NoN receives a payoff of zero,

and a deviation of this kind in not profitable for this ISP (since the equilibrium payoff is

positive.).

Case A-2-iii-b: Consider a deviation to Region B by ISP NoN by which zeq = 0.

then by item 2 of Theorem 1, nNoN = 0. Therefore, the ISP NoN receives a payoff of

zero, and a deviation of this kind in not profitable for this ISP.

Case A-2-iii-c: Now, consider Consider a deviation to Region B by ISP NoN by

which zeq = 1. In this case, by item 3 of Theorem 2, (0, q̃p) ∈ F I1 , and by Theorem 4 and
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Lemma 3, p̃eq = p̃t,2 = κad(nNoN −
q̃f
q̃p

) and nNoN =
tN+κuq̃p−∆p
tN+tNoN

. Therefore, using (2.1):

πNoN (p̃′NoN , p̃t,2) = (p′NoN − c)nNoN + κad(nNoN q̃p − q̃f )

= (p′NoN − c+ κadq̃p)nNoN − κadq̃f

(2.16)

in which nNoN =
tN+κuq̃p−p′NoN+c

tN+tNoN
. The maximum πNoN (p̃′NoN , p̃t,2) can be found by

applying the first order condition on the payoff, which gives us:

p∗NoN = c+
1

2
(tN + q̃p(κu − κad)) (2.17)

This deviation is a profitable deviation in region B if (i) πNoN (p̃∗NoN , p̃t,2) > πeqNoN and

(ii) κuq̃p − tNoN < p∗NoN − c < tN + κuq̃p. We also claim (claim is proved in the next two

paragraphs) that if any deviation to region B is profitable, then (i) πNoN (p̃∗NoN , p̃t,2) >

πeqNoN and (ii) κuq̃p − tNoN < p∗NoN − c < tN + κuq̃p. Thus, a deviation to this region is

profitable if and only if (i) πNoN (p̃∗NoN , p̃t,2) > πeqNoN and (ii) κuq̃p − tNoN < p∗NoN − c <

tN + κuq̃p.

Now, we prove the claim that (i) πNoN (p̃∗NoN , p̃t,2) > πeqNoN and (ii) κuq̃p − tNoN <

p∗NoN − c < tN + κuq̃p. are necessary condition for a profitable deviation. First, we prove

that (ii) is a necessary condition. Suppose (ii) is not true. We claim that no p′NoN such

that κuq̃p−tNoN < p′NoN−c < tN+κuq̃p can be a profitable deviation. To prove this, note

that by concavity of (2.16), if p∗NoN is not such that κuq̃p− tNoN < p∗NoN − c < tN +κuq̃p,

then all p′NoN such that κuq̃p− tNoN < p′NoN − c < tN +κuq̃p yields a strictly lower payoff

than the maximum of payoffs at the boundary points. Note that with the upper boundary

point, ∆p = p′NoN − c = tN + κuq̃p. In this case, by item 4 of Theorem 2, zeq = 0, and by

item 2 of Theorem 1, nNoN = 0. Thus, the payoff of ISP NoN is zero (by (2.1)). On the

other hand, in the lower boundary point, i.e. p′NoN = κuq̃p − tNoN + c is equal to peqNoN .
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Thus, the maximum payoff at the boundary points is equal to the equilibrium payoff.

Therefore, if p∗NoN is not such that κuq̃p − tNoN < p∗NoN − c < tN + κuq̃p, then all p′NoN

such that κuq̃p − tNoN < p′NoN − c < tN + κuq̃p, yields a payoff which is strictly less than

the equilibrium payoff. The proof of (ii) being a necessary condition is complete.

Now, we prove that (i) is a necessary condition. Suppose (i) is not true and:

πNoN (p̃∗NoN , p̃t,2) ≤ πeqNoN

Then, either (ii) is true or not. If (ii) is not true, in the previous paragraph, we prove

that no p′NoN if Region B can be a profitable deviation, which yields the result. Now,

consider the case that (ii) holds. In this case, by concavity of the payoff, p∗NoN yields the

highest payoff among pNoN ’s in Region B. Thus, πNoN (p̃∗NoN , p̃t,2) ≤ πeqNoN yields that a

deviation to Region B cannot be profitable. This completes the proof of the claim.

Thus, a deviation to region B is profitable if and only if (i) πNoN (p̃∗NoN , p̃t,2) > πeqNoN

and (ii) κuq̃p−tNoN < p∗NoN−c < tN+κuq̃p. First we check (i) and then (ii). Using (2.16),

(2.17), and the expressions of nNoN , we find the payoff of ISP NoN after deviation and

compare it to the value of (2.25). We claim that (i) is always true unless q̃p = tN+2tNoN
κu+κad

.

Note that:

πNoN (p̃∗NoN , p̃t,2) ≥ πeqNoN ⇐⇒
(tN + q̃p(κad + κu))2

4(tN + tNoN )
≥ q̃p(κu + κad)− tNoN

⇐⇒
(
(κu + κad)q̃p − tN − 2tNoN

)2 ≥ 0

Thus, (i) is true if and only if q̃p 6= tN+2tNoN
κu+κad

.

Now, we check (ii). Note that p∗NoN − c < tN + κuq̃p since:

p∗NoN − c < tN + κuq̃p ⇐⇒ q̃p(κu + κad) > −tN
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is always true. Now, we should check the lowerbound, i.e. κuq̃p − tNoN < p∗NoN − c:

κuq̃p − tNoN < p∗NoN − c ⇐⇒ q̃p(κu + κad) < tN + 2tNoN

which is true if and only if q̃p <
tN+2tNoN
κu+κad

.

Now, using the conditions for (i) and (ii) to be true, we can say that (i) and (ii) are

true if and only if κuq̃p − tNoN < p∗NoN − c. Thus, there is no profitable deviation to

region B if and only if q̃p ≥ tN+2tNoN
κu+κad

.

This completes the proof of item 1 of theorem that peqNoN = c+κuq̃p−tNoN and peqN = c

are NE strategies if and only if q̃p ≥ tN+2tNoN
κu+κad

.

Case B: Now, we characterize any possible NE strategies in region B, i.e. κuq̃p −

tNoN < ∆p < tN + κuq̃p, by which zeq = 1. First, in case B-1 we prove that if zeq = 1,

the only possible NE in this region is peqNoN = c +
tNoN+2tN+q̃p(κu−2κad)

3 and peqN = c +

2tNoN+tN−q̃p(κu+κad)
3 . We also prove that the necessary condition for these strategies to

be a NE is q̃p <
tN+2tNoN
κu+κad

, and verify that these strategies yield zeq = 1. In case B-

2, we characterize the necessary and sufficient condition by which these is no unilateral

profitable deviation for ISPs.

Case B-1: Note that in this region, by item 3 of Theorem 2, if zeq = 1, then

(qeqN , q
eq
NoN ) = (0, q̃p) ∈ F I1 . In addition, by Theorem 4, p̃eq = p̃t,2 = κad(nNoN −

q̃f
q̃p

)

and nNoN =
tN+κuq̃p−∆p
tN+tNoN

(by (2.5)). Thus, by (2.1), the payoff of ISP NoN in this

region is πNoN,B(pNoN , p̃t,2) = (pNoN − c)nNoN + p̃t,2q̃p, and the payoff of ISP N is

πN,B = (pN − c)(1 − nNoN ). Note that p̃t,2q̃p = κad(q̃pnNoN − q̃f ). Thus, using the

expression of nNoN , the payoffs are:

πNoN,B = (pNoN − c+ κadq̃p)(
tN + κuq̃p + pN − pNoN

tN + tNoN
)− κadq̃f (2.18)
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πN,B = (pN − c)(
tNoN − κuq̃p + pNoN − pN

tN + tNoN
) (2.19)

Note that any NE inside this region should satisfy the first order optimality condition

(note that the payoffs are concave). Thus,

dπN
dpN

= 0⇒ tNoN − κuq̃p + pNoN − 2pN + c = 0

dπNoN,B
dpNoN

= 0⇒ tN + q̃p(κu − κad) + pN − 2pNoN + c = 0

(2.20)

Solving the equation yields:

peqNoN = c+
tNoN + 2tN + q̃p(κu − 2κad)

3
(2.21)

peqN = c+
2tNoN + tN − q̃p(κu + κad)

3
(2.22)

The equilibrium payoffs for ISP are:

πeqNoN =

(
tNoN + 2tN + q̃p(κu + κad)

)2
9(tN + tNoN )

− κadq̃f (2.23)

πeqN =

(
2tNoN + tN − q̃p(κu + κad)

)2
9(tN + tNoN )

(2.24)

Now, we check the necessary conditions for these strategies to be NE. First, note

that if q̃p >
2tNoN+tN
κu+κad

, then peqN < c, and peqN cannot be an NE. Thus, the first necessary

condition for these strategies to be NE is q̃p ≤ 2tNoN+tN
κu+κad

. The next necessary condition

is that ∆peq = peqNoN − p
eq
N to be in region B, i.e. κuq̃p − tNoN < ∆peq < tN + κuq̃p. We

claim that the upperbound always holds. To prove this consider:

∆peq < tN + κuq̃p ⇐⇒ 2tN + tNoN + q̃p(κu + κad) > 0
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which is always true. Now, we check the lower bound:

κuq̃p − tNoN < ∆peq ⇐⇒ κuq̃p − tNoN <
1

3
(tN − tNoN + q̃p(2κu − κad))

⇐⇒ q̃p <
tN + 2tNoN
κu + κad

Thus, this necessary condition together with the previous necessary condition yields that

if peqN and peqNoN , NE strategies, then q̃p <
tN+2tNoN
κu+κad

.

In addition, note that by Lemma 7, peqN and peqNoN indeed yields zeq = 1.

Thus, if q̃p < tN+2tNoN
κu+κad

, then the NE strategies can be peqN and peqNoN . To prove

that these strategies are NE, we should rule out the possibility of a unilateral profitable

deviation by both ISPs which we proceed to do in the next case.

Case B-2: In this case, we consider the possibility of a unilateral deviation by ISPs.

First, in Case B-2-i, we rule out the possibility of a profitable deviation by the non-neutral

ISP, and then in Case B-2-ii, we provide necessary and sufficient condition for a unilateral

deviation to be not profitable for the neural ISP.

Case B-2-i: A deviation by the non-neutral ISP can be to regions A, C, and other

prices in region B. In the following cases, we prove that a deviation by ISP NoN to each

of these regions si not profitable:

Case B-2-i-A: Consider peqN fixed and decreasing pNoN such that ∆p in regions A,

i.e. ∆p ≤ κuq̃p − tNoN . Note that in A the payoff of the ISP NoN is an increasing

function of pNoN (as discussed in Case A). Thus, all other prices are dominated by p′NoN =

peqN + κuq̃p − tNoN . The payoff in this case is π′NoN = peqN + κuq̃p − tNoN − c + zq̃pp̃t,1

(by (2.1)), and p̃t,1 = κad(1 −
q̃f
q̃p

) (by definition 3). We claim that this deviation is not
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profitable for ISP NoN, since:

πNoN (pNoN , p̃t,2) ≥ peqN − c+ κuq̃p − tNoN + κad(q̃p − q̃f )

⇐⇒
(
tNoN + 2tN + q̃p(κu + κad)

)2
9(tN + tNoN )

≥ tN − tNoN + 2q̃p(κu + κad)

3

⇐⇒ (q̃p(κu + κad)− tN − 2tNoN )2 ≥ 0

which is true always. Thus, no deviation is profitable for ISP NoN.

Case B-2-i-B: Now, consider a deviation by ISP NoN inside region B. By optimality

of the solution inside B, if zeq = 1, since pN = peqN is fixed, all other pNoN such that ∆p

in region B is dominated in payoff by pNoN = peqNoN . If pNoN is such that zeq = 0, then

nNoN = 0 (by item 2 of Theorem 1 and κuq̃p− tNoN ≥ tN ). Thus, the payoff of ISP NoN

is zero and this deviation is also not profitable.

Case B-2-i-C: In this case, consider a deviation to region C, i.e. ∆p ≥ tN + κuq̃p.

Fixing peqN and increasing pNoN such that ∆p in regions C yields a payoff of zero to ISP

NoN (since by item 4 of Theorem 2, zeq = 0 in this region, and by Theorem 1, neqNoN = 0.).

Thus, this deviation is also not profitable.

Case B-2-ii: Now, consider a unilateral deviation by the non-neutral ISP. Similar to

the case B-2-i, this deviation can be to regions A, C, and other prices in region B:

Case B-2-ii-A: In this case, we consider the possibility of a deviation by ISP

N to region A, i.e. ∆p ≤ κuq̃p − tNoN . Note that in region A, πNoN (pNoN , p̃t,1) >

πNoN,z=0(pNoN , p̃), where πNoN,z=0(pNoN , p̃) is the payoff of ISP NoN when zeq = 0. To

prove this note that by q̃pp̃t,1 = κad(q̃p − q̃f ) > 0, we can write:

πNoN (pNoN , p̃t,1) = pNoN − c+ q̃pp̃t,1 > pNoN − c > πNoN,z=0(pNoN , p̃)

Thus, in region A, πNoN (pNoN , p̃t,1) > πNoN,z=0(pNoN , p̃), and by Theorem 3, zeq = 1.

Thus, using Theorem 2, ib this region nNoN = 1. Therefore, nN = 0, and by (2.1), the
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payoff of ISP N is zero. Thus, a deviation to this region is not profitable.

Case B-2-ii-B: Now, consider a deviation inside region B by ISP N. If zeq = 1, by

optimality of the solution inside B (since pN = peqN is fixed) all other pN such that ∆p in

region B is dominated in payoff by pN = peqN .

Now, consider the case that pN is such that zeq = 0. In this case, nNoN = 0 (by item

2 of Theorem 1 and κuq̃p − tNoN ≥ tN ), and such a deviation might be profitable.

In order to have zeq = 0, by Theorem 3, πNoN (peqNoN , p̃t,2) ≤ πNoN,z=0(peqNoN , p̃), where

πNoN,z=0(peqNoN , p̃) is the payoff when zeq = 0. Note that by the assumption of the theorem

(κuq̃p ≥ tN + tNoN ), and in this region ∆p > κuq̃p − tNoN ≥ tN . Thus, by Theorem 1,

if zeq = 0, then nNoN = 0. Therefore, by (2.1), πNoN,z=0(peqNoN , p̃) = 0. Using (2.18), we

can find πNoN (peqNoN , p̃t,2), and compare the payoffs:

πNoN (peqNoN , p̃t,2) ≤ πNoN,z=0(peqNoN , p̃) ⇐⇒ (peqNoN − c+ κadq̃p)(
tN + κuq̃p + p′N − p

eq
NoN

tN + tNoN
)− κadq̃f ≤ 0

⇐⇒ p′N ≤
κadq̃f (tN + tNoN )

peqNoN − c+ κadq̃p
+ peqNoN − tNoN − κuq̃p = pdt

Therefore, a deviation is only profitable if p′N ≤ pdt . If this condition holds, we need

to check whether this deviation is indeed profitable. Note that in region B, if zeq = 0,

(as explained before) by Theorem 1, nN = 1. Thus, by (2.1), the payoff of ISP N is an

increasing function of pN , and is equal to p′N−c. Thus, p′N = pdt yields the maximum payoff

after deviation. Therefore, such a deviation is not profitable if and only if pdt−c ≤ πN (peqN ).

Case B-2-ii-C: Now, consider a deviation by ISP N to region C, i.e. ∆p ≥ κuq̃p+ tN .

Note that in region C, zeq = 0, and by item 2 of Theorem 1, nN = 1. Thus, the payoff

of ISP N (2.1) is an increasing function of pN . Thus, p′N = peqNoN − κuq̃p − tN (by

definition of region C) yields the highest payoff after deviation. Note that by (2.34),

peqNoN = c+
tNoN+2tN+q̃p(κu−2κad)

3 . Therefore, p′N = c+
tNoN−tN−2q̃p(κu+κad)

3 . In addition,
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note that by the assumption of the theorem, κuq̃p ≥ tN + tNoN . Thus, p′N < c, and by

(2.1), the payoff of neutral ISP is negative. Thus, this deviation is not profitable.

Therefore, we only need to check the condition in Case B-2-ii-B for ruling out profitable

deviations. This is item 2 of the theorem. The theorem follows.

Proof of Theorem 7

In this case, note that q̃f < q̃p <
tN+tNoN

κu
. Thus, we characterize the optimum strategies

for the CP using items 1, 2, and 4 of Theorem 2.

First, note that by Lemma 5, since q̃p <
tN+tNoN

κu
, κuq̃p−tNoN < ∆pt < tN+κu(q̃p−q̃f ),

where ∆pt = κu(2q̃p − q̃f )− tNoN characterized in Lemma 1. Thus, using this result, we

characterize the regions characterized in items 1, 2, and 4 of Theorem 2. We denote

∆p ≤ κuq̃p − tNoN by region A, κuq̃p − tNoN < ∆p < κu(2q̃p − q̃f )− tNoN by region B1,

κu(2q̃p−q̃f )−tNoN ≤ ∆p < tN+κu(q̃p−q̃f ) by region C, tN+κu(q̃p−q̃f ) ≤ ∆p < tN+κuq̃p

by set B2, and ∆p ≥ tN + κuq̃p by D. Using Theorem 2, if zeq = 1, then ∆p < tN + κuq̃p.

Thus, we characterize any possible NE strategies by which zeq = 1, in regions A and B1,

C, and B2:

Case A: First, we consider ∆p ≤ κuq̃p − tNoN . In this case, we show that the

payoff of ISP NoN is an increasing function of ∆p. Then, we characterize the NE as

peqNoN = c+ κuq̃p− tNoN and peqN = c, using the fact that when choosing an NE, no player

can increase her payoff by unilaterally changing her strategy.

Note that by Theorem 2, for region A, (qeqN , q
eq
NoN ) = (0, q̃p) ∈ FL1 if and only if

p̃ ≤ p̃t,1 = κad(1 −
q̃f
q̃p

). In addition, by Theorem 4, if zeq = 1 then p̃eq = p̃t,1 =

κad(1−
q̃f
q̃p

) (Definition 3). Thus, in this region, if zeq = 1, the payoff of ISP NoN is equal
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to pNoN − c + q̃pp̃t,1 (by (2.1)) since nNoN = 1. Therefore, the payoff is an increasing

function of pNoN . In addition, note that in region A, nN = 0 and regardless of pN , the

neutral ISP receives a payoff of zero (by (2.1)). Thus, peqNoN , i.e. the equilibrium Internet

access fee, should be such that the neutral ISP cannot get a positive payoff by increasing

or decreasing pN , and changing the region of ∆p to B1, B2, or C. Using this condition,

we find the equilibrium strategy.

First consider a unilateral deviation by ISP N. Note that increasing pN decreases

∆p, and cannot change the region of ∆p. Thus, a deviation of this kind would not be

profitable. We claim that by decreasing pN to p′N such that pNoN − p′N > κuq̃p − tNoN ,

the ISP N can fetch a positive payoff as long as p′N > c (the claim is proved in the next

paragraph). Therefore, in the equilibrium, peqNoN is such that even with p′N = c (the

minimum plausible price), ∆p ≤ κuq̃p− tNoN . Thus, peqNoN ≤ c+κuq̃p− tNoN (Otherwise,

there exists a p′N > c by which ∆p > κuq̃p − tNoN ). Given that the payoff of ISP NoN is

an increasing function of pNoN , we get peqNoN = c+κuq̃p−tNoN . In addition, we claim that

peqN = c. If not, then peqN > c. In this case, ∆p = peqN − p
eq
NoN < κuq̃p − tNoN . We argued

that the payoff of ISP NoN is an increasing function of pNoN . Thus, by increasing pNoN

such that ∆p = κuq̃p − tNoN , ISP NoN can increase her payoff, which is a contradiction

with peqN and peqNoN being NE strategies.

To prove the claim, note that if pNoN − p′N > κuq̃p − tNoN , then either (i) zeq = 0

or (ii) zeq = 1. For case (i), since κuq̃p − tNoN > −tNoN , when ∆p > κuq̃p − tNoN , then

(qeqN , q
eq
NoN ) is of the form of items 1 or 2 of Theorem 1. Thus, nN > 0. Therefore ISP

N can fetch a positive payoff as long as pN > c (by (2.1)). Now consider case (ii), i.e.

zeq = 1. In this case, if zeq = 1, then by using item 2 of Thoerem 2, nN > 0 (since
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solutions that yield zeq = 1 are in F I .). Thus, ISP N can fetch a positive payoff as long

as pN > c (by (2.1)). This completes the proof of the claim that by decreasing pN to p′N

such that pNoN − p′N > κuq̃p − tNoN , the ISP N can fetch a positive payoff as long as

p′N > c.

Therefore, the NE strategies are peqNoN = c+κuq̃p−tNoN and peqN = c, and the payoff of

the ISP NoN at this price by (2.1) and p̃t,1 = κad(1−
q̃f
q̃p

) is equal to (note that nNoN = 1),

and

πeqNoN = κuq̃p − tNoN + q̃pp̃t,1 = κuq̃p − tNoN + κad(q̃p − q̃f ) (2.25)

which is strictly positive since q̃p >
tN+tNoN

κu
and q̃p > q̃f . Note that Lemma 6 yields that

with peqN and peqNoN , zeq = 1. The first item of the theorem follows.

Case B1 and B2: Now, consider regions B1 and B2, i.e. κuq̃p − tNoN < ∆p <

κu(2q̃p − q̃f )− tNoN and tN + κu(q̃p − q̃f ) ≤ ∆p < tN + κuq̃p, respectively.

Note that in these regions, by items 2-a-ii and 2-b of Theorem 2, if zeq = 1, then

(qeqN , q
eq
NoN ) = (0, q̃p) ∈ F I1 . In addition, by Theorem 4, p̃eq = p̃t,2 = κad(nNoN −

q̃f
q̃p

)

and nNoN =
tN+κuq̃p−∆p
tN+tNoN

(Definition 3). Thus, by (2.1), the payoff of ISP NoN in this

region is πNoN,B(pNoN , p̃t,2) = (pNoN − c)nNoN + p̃t,2q̃p, and the payoff of ISP N is

πN,B = (pN − c)(1 − nNoN ). Note that p̃t,2q̃p = κad(q̃pnNoN − q̃f ). Thus, using the

expression of nNoN , the payoffs are:

πNoN,B(pNoN , p̃t,2) = (pNoN − c+ κadq̃p)(
tN + κuq̃p + pN − pNoN

tN + tNoN
)− κadq̃f (2.26)

πN,B(pN ) = (pN − c)(
tNoN − κuq̃p + pNoN − pN

tN + tNoN
) (2.27)

First, we rule out any NE such that ∆peq = tN + κu(q̃p − q̃f ). Suppose that ∆peq =
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peqNoN − p
eq
N = tN +κu(q̃p− q̃f ). Consider a deviation by ISP N such that p′N = peqN + ε > c

for ε > 0 such that ∆p′ = peqNoN − p′N to be in region C. Note that by item 2-a-i of

Theorem 2, in region C, (qeqN , q
eq
NoN ) = (q̃f , q̃p) ∈ F I1 . Thus, the payoff of this ISP with

this deviation is (by (2.8)):

πN (p′N ) = (peqN + ε− c)(
tNoN − κu(q̃p − q̃f ) + peqNoN − p

eq
N − ε

tN + tNoN
)

Note that limε↓0 πN (p′N ) > πN,B(peqN ). Thus, for ε > 0 small enough, this deviation is

profitable. Thus, the strategies by which ∆peq = tN + κu(q̃p − q̃f ) cannot be NE.

Now, we characterize any NE in κuq̃p − tNoN < ∆p < κu(2q̃p − q̃f ) − tNoN and

tN + κu(q̃p − q̃f ) < ∆p < tN + κuq̃p. Note that any NE inside this region should satisfy

the first order optimality condition (note that the payoffs are concave). Thus,

dπN
dpN

= 0⇒ tNoN − κuq̃p + pNoN − 2pN + c = 0

dπNoN,B
dpNoN

= 0⇒ tN + q̃p(κu − κad) + pN − 2pNoN + c = 0

(2.28)

Solving the equation yields:

peqNoN = c+
tNoN + 2tN + q̃p(κu − 2κad)

3
(2.29)

peqN = c+
2tNoN + tN − q̃p(κu + κad)

3
(2.30)

First, note that if q̃p >
2tNoN+tN
κu+κad

, then peqN < c, and peqN cannot be an NE. Thus, the

first necessary condition for these strategies to be NE is q̃p ≤ 2tNoN+tN
κu+κad

. In addition, by

Theorem 3, πeqNoN > πNoN,z=0(p̃eqNoN , p̃) (for these strategies to yield zeq = 1). The second

item of the theorem follows.

Case C: Now, consider region C, i.e. ∆pt = κu(2q̃p− q̃f )−tNoN ≤ ∆p < tN +κu(q̃p−

q̃f ). Note that in this regions, by items 2-a-i of Theorem 2, if zeq = 1, then (qeqN , q
eq
NoN ) =
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(q̃f , q̃p) ∈ F I1 . In addition, by Theorem 4 and Definition 4, p̃eq = p̃t,3 = κadnNoN (1− q̃f
q̃p

)

and nNoN =
tN+κu(q̃p−q̃f )−∆p

tN+tNoN
(Definition 3). Thus, by (2.1), the payoff of ISP NoN in

this region is πNoN,C(pNoN , p̃t,3) = (pNoN − c)nNoN + p̃t,3q̃p, and the payoff of ISP N

is πN,B = (pN − c)(1 − nNoN ). Note that p̃t,3q̃p = κadnNoN (q̃p − q̃f ). Thus, using the

expression of nNoN , the payoffs are:

πNoN,C(pNoN , p̃t,3) = (pNoN − c+ κad(q̃p − q̃f ))(
tN + κu(q̃p − q̃f ) + pN − pNoN

tN + tNoN
) (2.31)

πN,C(pN ) = (pN − c)(
tNoN − κu(q̃p − q̃f ) + pNoN − pN

tN + tNoN
) (2.32)

First, in Part C-1, we characterize any NE in region κu(2q̃p − q̃f ) − tNoN < ∆p <

tN +κu(q̃p− q̃f ). Later, in Part C-2, we consider the case that ∆peq = κu(2q̃p− q̃f )−tNoN .

Part C-1: Note that any NE in region κu(2q̃p − q̃f )− tNoN < ∆p < tN + κu(q̃p − q̃f )

should satisfy the first order optimality condition (note that the payoffs are concave).

Thus,
dπN,C
dpN

= 0⇒ tNoN − κu(q̃p − q̃f ) + pNoN − 2pN + c = 0

dπNoN,C
dpNoN

= 0⇒ tN + (q̃p − q̃f )(κu − κad) + pN − 2pNoN + c = 0

(2.33)

Solving the equation yields:

peqNoN = c+
tNoN + 2tN + (q̃p − q̃f )(κu − 2κad)

3
(2.34)

peqN = c+
2tNoN + tN − (q̃p − q̃f )(κu + κad)

3
(2.35)

First, note that if q̃p − q̃f > 2tNoN+tN
κu+κad

, then peqN < c, and peqN cannot be an NE. Thus,

the first necessary condition for these strategies to be NE is q̃p − q̃f ≤ 2tNoN+tN
κu+κad

. In

addition, by Theorem 3, πeqNoN > πNoN,z=0(p̃eqNoN , p̃) (in order for these strategies to yield

zeq = 1). The third item of the theorem follows.
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Part C-2: Now, consider peqN and peqNoN such that ∆peq = peqNoN − p
eq
N = κu(2q̃p −

q̃f ) − tNoN . These strategies are not NE if ISP NoN can strictly increase her payoff by

decreasing her price such that ∆p in region B1. Note that using (2.31) and the expression

for ∆peq, the payoff of ISP NoN in this case is:

πNoN (peqNoN , p̃t,3) = (pNoN − c+ κad(q̃p − q̃f ))(
tN − κuq̃p + tNoN

tN + tNoN
) (2.36)

By choosing p′NoN = peqNoN −ε such that ε ↓ 0, ISP NoN can get a limit payoff of (since

∆p = ∆peq when ε→ 0, and it is in region B1, and using (2.26)):

π′NoN = lim
ε↓0

πeqNoN (pNoN − ε, p̃t,3) = (peqNoN − c+ κadq̃p)(
tN − κu(q̃p − q̃f ) + tNoN

tN + tNoN
)− κadq̃f

Thus, peqN and peqNoN such that ∆peq = peqNoN − p
eq
N = κu(2q̃p − q̃f )− tNoN are not NE

if:

π′NoN > πNoN (peqNoN , p̃t,3) ⇐⇒ (peqNoN − c+ κadq̃p)
κuq̃f

tN + tNoN
− κadκuq̃f q̃p
tN + tNoN

> 0

⇐⇒ peqNoN > c

Thus, the necessary condition for these strategy to be NE is peqNoN ≤ c. Note that

from (2.31) and (2.32), since ∆p is fixed, the payoffs of ISP NoN and N are an increasing

function of pNoN and pN , respectively. Thus, peqNoN = c, and peqN = c−κu(2q̃p− q̃f )+tNoN .

Note that a necessary condition for peqN to be an NE is that peqN ≥ c. Thus, one necessary

condition is that 2q̃p − q̃f ≤ tNoN
κu

. In addition, πNoN (p̃eqNoN , p̃t,3) > πNoN,z=0(p̃eqNoN , p̃)

(using Theorem 3, in order for these strategies to yield zeq = 1). The forth item of the

theorem follows.

Proof of Theorem 8

We use Theorem 7 to prove the result. First, in Part 1, we prove that when one of tN or

tNoN is large, then strategies 1), 2), and 4) listed in Theorem 7 are not NE. In Part 2, we
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prove that when one of tN or tNoN is high, then strategy 3) of Theorem 7 is an NE. This

completes the proof of the theorem.

Part 1: We prove that strategies 1), 2), and 4) listed in Theorem 7 are not NE in

Parts 1-i, 1-ii, and 1-iii, respectively.

Part 1-i: In this part, we prove that, item 1 of Theorem 7, i.e. peqNoN = c +

κuq̃p− tNoN and peqN = c is not an NE. We do so in Parts 1-i-a and 1-i-b, by introducing a

unilateral profitable deviation for ISP NoN for the cases that tNoN is large and tN is large,

respectively. Note that in this case, by item 1 of Theorem 2, (qeqN , q
eq
NoN ) ∈ (0, q̃f ) ∈ FL1 .

Thus, nNoN = 1, and the payoff of ISP NoN is (by (2.1), Theorem 4, and Definition 3):

πNoN = κuq̃p − tNoN + κad(q̃p − q̃f ) (2.37)

Part 1-i-a: If tNoN is large, then (2.37) would be less than zero. A deviation to price

p′NoN = c yields a payoff of at least zero for the ISP NoN (by (2.1)). Thus, this is a

profitable deviation.

Part 1-i-b: Now, consider tN to be large, and a deviation by ISP NoN such that

p′NoN = 1
2 tN (Thus, ∆p = p′NoN − peqN = 1

2 tN − c). Note that in this case, ∆pt =

κu(2q̃p − q̃f ) − tNoN < ∆p < tN + κu(q̃p − q̃f ). Thus, by item 2-a-i of Theorem 2,

(qeqn , q
eq
NoN ) = (q̃f , q̃p) ∈ F I1 . Thus, by (2.1), the payoff of ISP NoN after deviation (by the

definition of p̃t,3 in Definition 3 and Theorem 4) is at least10:

π′NoN =
1

2
tNnNoN + κadnNoN (q̃p − q̃f ) (2.38)

, where nNoN =
1
2
tN+κu(q̃p−q̃f )+c

tN+tNoN
. Thus, for tN large, nNoN → 1

2 . Thus, comparing (2.38)

10Note that the payoff of NoN is equal to the maximum of the payoff when p̃eq = p̃t and when p̃eq > p̃t,

i.e. when zeq = 0
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with (2.37) yields:

π′NoN =
1

4
tN +

1

2
κad(q̃p − q̃f ) > πNoN since tN is large

Thus, this deviation is profitable .

Part 1-ii: In this part, we prove that item 2 of Theorem 7, i.e. peqNoN = c +

tNoN+2tN+q̃p(κu−2κad)
3 and peqN = c +

2tNoN+tN−q̃p(κu+κad)
3 is not an NE. We do so by

proving that ∆peq does not satisfy κuq̃p − tNoN < ∆peq < κu(2q̃p − q̃f ) − tNoN and

tN + κu(q̃p − q̃f ) < ∆peq < tN + κuq̃p, in the cases that tNoN or tN is large.

First, note that:

∆peq = peqNoN − p
eq
N =

1

3
(tN − tNoN + q̃p(2κu − κad)) (2.39)

If ∆peq < κu(2q̃p− q̃f )− tNoN , then tN + 2tNoN < 3κu(2q̃p− q̃f )− q̃p(2κu−κad), which is

not correct when tNoN or tN is large. Thus, (a) ∆peq ≥ κu(2q̃p− q̃f )− tNoN . In addition,

if tN + κu(q̃p − q̃f ) < ∆peq, then 2tN + tNoN < q̃p(2κu − κad)− 3κu(q̃p − q̃f ), which is not

correct when tNoN or tN is large. Thus, (b) ∆peq ≤ tN + κu(q̃p − q̃f ). Therefore, (a) and

(b) yields that ∆peq is not in the regions specified. Thus, item 2 cannot be an NE.

Part 1-iii: In this part, we prove that item 4 of Theorem 7, i.e. peqNoN = c and

peqN = c − κu(2q̃p − q̃f ) + tNoN is not an NE. To do so, we prove that there exists a

profitable unilateral deviation for ISP NoN. Note that, in this case, ∆peq = ∆pt. By item

2-a-i of Theorem 2, when ∆pt ≤ ∆p < tN + κu(q̃p − q̃f ), then (qeqN , q
eq
NoN ) = (q̃f , q̃p) ∈ F I1 .

Thus, the expression of the payoff of ISP NoN is (by p̃t = p̃t,3, Definition 3, Theorem 4,

and (2.9)):

πNoN,C(pNoN , p̃t,3) = (pNoN − c+ κad(q̃p − q̃f ))(
tN + κu(q̃p − q̃f ) + pN − pNoN

tN + tNoN
)
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Note that:

dπNoN,C
dpNoN

=
tN + (q̃p − q̃f )(κu − κad) + pN − 2pNoN + c

tN + tNoN

Thus,

dπNoN,C
dpNoN

|peqN ,peqNoN =
tN + tNoN + (q̃p − q̃f )(κu − κad)− κu(2q̃p − q̃f )

tN + tNoN

Note that
dπNoN,C
dpNoN

|peqN ,peqNoN > 0, when either tN or tNoN are large enough. Thus, in this

case, the payoff is increasing with respect to pNoN . Thus, p′NoN = peqNoN + ε for ε > 0

small, is a unilateral profitable deviation.

Part 2: We now prove that when one of tN or tNoN is large, then strategy 3) of

Theorem 7 is an NE. To do so, we check conditions (i), (ii), and (iii) of strategy 3) of

Theorem 7, in Parts 2-i, 2-ii, and 2-iii, respectively. Later, in Part 2-iv, we prove that

there is no unilateral profitable deviation for ISPs. This completes the proof.

Part 2-i: In this part, we check the condition, i.e. κu(2q̃p − q̃f ) − tNoN < ∆peq <

tN + κu(q̃p − q̃f ). Note that in this case:

∆peq =
1

3
(tN − tNoN + (q̃p − q̃f )(2κu − κad)) (2.40)

Comparing the lower boundary yields that:

κu(2q̃p − q̃f )− tNoN < ∆peq ⇒ 2tNoN + tN + (q̃p − q̃f )(2κu − κad)− 3κu(2q̃p − q̃f ) > 0

which is true when one of tN or tNoN is large. Now, consider the upper boundary:

∆peq < tN + κu(q̃p − q̃f )⇒ 2tN + tNoN + κu(q̃p − q̃f )− (q̃p − q̃f )(2κu − κad) > 0

which is true when one of tN or tNoN is large. Thus, condition (i) of strategy 3) of

Theorem 7 is true.
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Part 2-ii: Condition (ii) of this strategy is q̃p − q̃f ≤ 2tNoN+tN
κu+κad

. This condition holds

when one of tN or tNoN is large.

Part 2-iii: Now, we check the third condition, i.e.

πeqNoN = πNoN (p̃eqNoN , p̃t,3) > πNoN,z=0(p̃eqNoN , p̃)

We use (2.1) to find πeqNoN = πNoN (p̃eqNoN , p̃t,3). Note that by using item 2-a-i of Theorem 2

(since zeq = 1), (qeqN , q
eq
NoN ) = (q̃f , q̃p). Thus, by the definition of peqNoN , ∆peq, p̃t,3, using

Definition 3, and Theorem 4:

πeqNoN =

(
tNoN + 2tN + (q̃p − q̃f )(κu + κad)

)2
9(tN + tNoN )

(2.41)

Now, we obtain πNoN,z=0(p̃eqNoN , p̃). Consider the case that p̃ is such that zeq = 0.

Note that since κu(2q̃p− q̃f )− tNoN < ∆peq < tN +κu(q̃p− q̃f ), then −tNoN < ∆peq < tN

or ∆peq ≥ tN . Using item 2 of Theorem 1, if ∆peq ≥ tN , then nNoN = 0, and by (2.1),

πNoN,z=0(p̃eqNoN , p̃) = 0. Thus, πeqNoN > πNoN,z=0(p̃eqNoN , p̃), and this part follows. Now,

consider the case that −tNoN < ∆peq < tN . Using item 1 of Theorem 1, if −tNoN <

∆peq < tN , then (qeqN , q
eq
NoN ) = (q̃f , q̃f ) ∈ F I0 . Since (qeqN , q

eq
NoN ) ∈ F I0 , we can use (2.9).

Thus, by using peqNoN , ∆peq, and , πNoN,z=0(p̃eqNoN , p̃) is:

πNoN,z=0(p̃eqNoN , p̃) =
1

9(tN + tNoN )

(
2tN + tNoN + (q̃p − q̃f )(κu − 2κad)

)
×
(
2tN + tNoN − (q̃p − q̃f )(2κu − κad)

) (2.42)

Next, we prove that tNoN+2tN+(q̃p−q̃f )(κu+κad) > 2tN+tNoN+(q̃p−q̃f )(κu−2κad)

and tNoN + 2tN + (q̃p − q̃f )(κu + κad) > 2tN + tNoN − (q̃p − q̃f )(2κu − κad). This yields

πeqNoN > πNoN,z=0(p̃eqNoN , p̃). To prove the inequalities, note that:

tNoN + 2tN + (q̃p − q̃f )(κu + κad) > 2tN + tNoN + (q̃p − q̃f )(κu − 2κad) ⇐⇒ 3κad(q̃p − q̃f ) > 0

tNoN + 2tN + (q̃p − q̃f )(κu + κad) > 2tN + tNoN − (q̃p − q̃f )(2κu − κad) ⇐⇒ 3κu(q̃p − q̃f ) > 0
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Since q̃p > q̃f , both inequalities hold. This completes the proof of this part.

Part 2-iv: In this part, we prove that there is no profitable unilateral deviation by ISPs

when one of tN or tNoN is large. To do so, first, in Part 2-iv-NoN, we rule out the

possibility of a profitable deviation by the non-neutral ISP. Then, in Part 2-iv-N, we rule

out profitable deviations by the neutral ISP.

Note that, by (2.41), the equilibrium payoff of ISP NoN, πeqNoN = πNoN (p̃eqNoN , p̃t,3) is:

πeqNoN =

(
tNoN + 2tN + (q̃p − q̃f )(κu + κad)

)2
9(tN + tNoN )

In addition, using (qeqN , q
eq
NoN ) = (q̃f , q̃p), p

eq
N , ∆peq, and (2.8), we can find πeqN = πN (p̃eqN ),:

πeqN =

(
2tNoN + tN − (q̃p − q̃f )(κu + κad)

)2
9(tN + tNoN )

(2.43)

Note that when tN and tNoN are large, πeqN and πeqNoN would be large.

Consider different regions in Theorem 2. We denote ∆p ≤ κuq̃p − tNoN by region A,

κuq̃p−tNoN < ∆p < ∆pt = κu(2q̃p− q̃f )−tNoN by region B1, ∆pt = κu(2q̃p− q̃f )−tNoN ≤

∆p < tN + κu(q̃p − q̃f ) by region C, tN + κu(q̃p − q̃f ) ≤ ∆p < tN + κuq̃p by B2, and

∆p ≥ tN +κuq̃p by D. Recall that ∆peq = peqNoN −p
eq
N is in region C. Note that the payoffs

are concave in C, and we found the strategies by solving the first order condition. Thus,

there is no unilateral profitable deviation in C.

Part 2-iv-NoN: Now, we consider unilateral deviations by ISP NoN. We prove that any

deviation to regions A, B1, B2, and D is not profitable in Cases 2-iv-NoN-A, 2-iv-NoN-B1,

2-iv-NoN-B2, and 2-iv-NoN-D, respectively. This yields that no deviation is profitable for

ISP NoN.

Case 2-iv-NoN-A: First, we prove that in Region A, zeq = 1. Note that in this case, by
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Definition 4, p̃t = p̃t,1. Thus, πNoN (pNoN , p̃t) = pNoN−c+ q̃pp̃t,1 = pNoN−c+κad(q̃p− q̃f )

(by (2.1), Definition 3, and since nNoN = 1 by item 1 of Theorem 2). On the other hand,

πNoN,z=0(pNoN , p̃) = (pNoN − c)nNoN . Thus, πNoN (pNoN , p̃t) > πNoN,z=0(pNoN , p̃) (since

q̃p > q̃f and 0 ≤ nNoN ≤ 1). Thus, by Theorem 3, in region A, zeq = 1.

Now, consider peqN fixed and decreasing pNoN such that ∆p in region A, i.e. ∆p ≤

κuq̃p − tNoN . Since in Region A, zeq = 1, and by Theorem 4, the payoff after deviation

is π′NoN = pNoN − c + q̃pp̃t,1 (by (2.1), Definition 3, and since nNoN = 1 by item 1 of

Theorem 2). Thus, the payoff of the ISP NoN is an increasing function of pNoN . Therefore,

all other prices are dominated by p′NoN = peqN + κuq̃p − tNoN . The payoff in this case is

π′NoN = peqN + κuq̃p − tNoN − c+ q̃pp̃t,1 (by (2.1)). Therefore:

π′NoN =
1

3
(tN − tNoN ) + α (2.44)

where α is a constant independent of tN and tNoN . Now, in Cases (i), (ii), and (iii), we

prove that πeqNoN > π′NoN when (i) tN is sufficiently larger than other parameters, (ii)

tNoN is sufficiently larger than other parameters, and (iii) tN and tNoN are of the same

order of magnitude and both are sufficiently larger than other parameters, respectively.

Case (i): If tN is sufficiently larger than other parameters, then:

πeqNoN ≈
4tN
9

> π′NoN ≈
1

3
tN

Thus, this deviation is not profitable.

Case (ii): If tNoN is sufficiently larger than other parameters, then:

πeqNoN ≈
tNoN

9
> π′NoN ≈ −

1

3
tNoN

Thus, this deviation is also not profitable.

Case (iii): If tN and tNoN are of the same order of magnitude (tN ≈ tNoN ) and both
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are sufficiently larger than other parameters, then:

πeqNoN =
tN
2
>
tN
3
> π′NoN

Thus, this deviation is not profitable.

Thus, any deviation to region A by ISP NoN is not profitable. This completes the

proof of this case.

Case 2-iv-NoN-B1: Now, consider a deviation by ISP NoN to region B1, i.e. κuq̃p −

tNoN < ∆p < ∆pt = κu(2q̃p − q̃f ) − tNoN . Note that with this deviation, p′NoN =

1
3(tN − tNoN ) + α, where αl < α < αu, in which αl and αu are bounded. In addition, by

(2.5), after the deviation, n′NoN = tN+tNoN−β
tN+tNoN

, where β > 0 is bounded (βl < β < βu, and

βl and βu bounded ). Therefore, for large tN and tNoN , n′NoN → 1. Thus, by (2.9), the

payoff of ISP NoN after deviation is:

π′NoN =
1

3
(tN − tNoN ) + γ

where γ is bounded (Note that p̃ is independent of tN and tNoN ). This expression is

similar to (2.44). Thus, we can exactly repeat the arguments in Cases i, ii, and iii to

prove that any deviation to region B1 by ISP NoN is not profitable. This completes the

proof of this case.

Case 2-iv-NoN-B2: Now, consider a deviation by ISP NoN to region B2, i.e. tN +

κu(q̃p − q̃f ) ≤ ∆p < tN + κuq̃p. Note that with this deviation, ∆p′ = tN + α, and

p′NoN = 2tNoN+4tN
3 + γ where κu(q̃p − q̃f ) ≤ α ≤ κuq̃p and thus γ is bounded. Thus, by

(2.5), after this deviation, n′NoN = β
tN+tNoN

, where β > 0 is a constant independent of

tN and tNoN , and the payoff of ISP NoN after deviation is π′NoN = 2tNoN+4tN
3(tN+tNoN )β + η (by

(2.1) and considering that by Theorem 4, if zeq = 1, then p̃ = p̃t,2,, and independent of
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tN and tNoN ), where η is a constant independent of tN and tNoN . Thus, when one of tN

and tNoN is large, π′NoN → constant. Therefore, πeqNoN > π′NoN . Thus, any deviation to

region B2 by ISP NoN is not profitable.

Case 2-iv-NoN-D: By item 4 of Theorem 2, in region D, nNoN = 0. Thus, a deviation

to this region, yields a payoff of zero, by (2.9) and zeq = 0. Thus, a deviation of this kind

is not profitable for ISP NoN.

Part 2-iv-N: Now, consider unilateral deviations by the neutral ISP. Similar to Part

2-iv-N, we prove that any deviation to regions A, B1, B2, and D is not profitable. We do

so in Cases 2-iv-N-A, 2-iv-N-B1, 2-iv-N-B2, and 2-iv-N-D, respectively.

Case 2-iv-N-A: Consider a deviation by ISP N to region A. In this case, by item 1 of

Theorem 2, nN = 0. Thus, the payoff of ISP N after deviation is zero (by (2.8)), and this

deviation is not profitable.

Case 2-iv-N-B1: Now, consider a deviation by ISP N to region B1, i.e. κuq̃p − tNoN <

∆p < ∆pt = κu(2q̃p − q̃f ) − tNoN . Note that with this deviation, ∆p = −tNoN + α, and

p′N = 4tNoN+2tN
3 +γ, where κuq̃p < α < κu(2q̃p−q̃f ) and thus γ is bounded. Thus, by (2.5),

n′N = β
tN+tNoN

, where β > 0 is bounded. By (2.1). The payoff of ISP N after deviation is

πN = 4tNoN+2tN
3(tN+tNoN )β (by (2.1)). Thus, when one of tN and tNoN is large, π′N → constant.

Thus, πeqN > π′N . Therefore, any deviation to region B1 by ISP N is not profitable.

case 2-iv-N-B2: Now, consider a deviation by ISP NoN to region B2, i.e. tN +

κu(q̃p − q̃f ) ≤ ∆p < tN + κuq̃p. Note that with this deviation, ∆p′ = tN + α, where

κu(q̃p− q̃f ) ≤ α < κuq̃p. Thus, p′N = 1
3(tNoN − tN ) + β, where β is bounded. In addition,

by (2.5), after the deviation, n′N = tN+tNoN−γ
tN+tNoN

, where γ > 0 is bounded. Therefore, for
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large tN or tNoN , n′N → 1. Thus, by (2.8), the payoff of ISP N after deviation is:

π′N =
1

3
(tNoN − tN ) + η (2.45)

where η is bounded. Now, in Cases i, ii, and iii, we prove that πeqN > π′N when (i)

tN is sufficiently larger than other parameters, (ii) tNoN is sufficiently larger than other

parameters, and (iii) tN and tNoN are of the same order of magnitude and both are

sufficiently larger than other parameters, respectively.

Case i: If tN is sufficiently larger than other parameters, then:

πeqN ≈
tN
9
> π′N ≈ −

1

3
tN

Thus, this deviation is not profitable.

Case ii: If tNoN is sufficiently larger than other parameters, then:

πeqN ≈
4tNoN

9
> π′N ≈

1

3
tNoN

Thus, this deviation is also not profitable.

Case iii: If tN and tNoN are of the same order of magnitude (tN ≈ tNoN ) and both are

sufficiently larger than other parameters, then:

πeqN =
tNoN

2
>
tNoN

3
> π′N

Thus, this deviation is not profitable.

Thus, any deviation to Region B2 by ISP N is not profitable. This completes the proof

of this case.

Case 2-iv-N-D: Now, consider decreasing pNoN such that ∆p in region D, i.e. ∆p ≥

κuq̃p + tN . Note that by item 4 of Theorem 2, zeq = 0, and nN = 1. Thus, the payoff
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of ISP N is equal to pN − c (by (2.1)). Thus, the payoff of the ISP N is an increasing

function of pN . Therefore, all other prices are dominated by p′N = peqNoN − (κuq̃p + tN ).

Thus, the payoff in this case is π′N = 1
3(tNoN − tN ) + α, where α is a constant and is

independent of tN and tNoN . This expression is similar to (2.45). Thus, we can exactly

repeat the arguments in Cases 2-iv-N-B2-a, 2-iv-N-B2-b, and 2-iv-N-B2-c to prove that

any deviation to region D by ISP NoN is not profitable. This completes the proof of this

case. This completes the proof of this case, and the theorem.

Proof of Theorem 9

We consider different regions of ∆p in Theorem 1 and Theorem 2. For each region, we

characterize all possible NE strategies.

First, consider ∆p ≤ κuq̃p − tNoN . Note that in this region, the payoff of non-neutral

ISP if zeq = 0 is at most peqNoN−c (by (2.1)). On the other hand, by Theorem 2, by choosing

p̃′ = p̃t,1, ISP NoN can ensure that the CP chooses zeq = 1. In this case, the payoff of

non-neutral ISP (by (2.1)) is p′NoN − c+ p̃t,1q̃NoN = peqNoN − c+ κad(q̃p − q̃f ) > peqNoN − c.

Thus, πNoN (peqNoN , p̃t,1) > πNoN,z=0(peqNoN , p̃). Therefore, in this case, there is no NE by

which zeq = 0.

Now, consider ∆p > κuq̃p− tNoN . Note that q̃p <
tN+tNoN

κu
. Thus, two possibility may

arise: (i) −tNoN < ∆p < tN , and (ii) ∆p ≥ tN . We consider these two cases in Case 1

and 2, respectively.

Case 1: In this case, −tNoN < ∆p < tN . By item 1 of Theorem 1, (qeqN , q
eq
NoN ) =

(q̃f , q̃f ) ∈ F I0 . Note that in this region, 0 < xN < 1, and an NE strategy for ISPs should
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satisfy the first order optimality conditions. Thus, using (2.8) and (2.9):

πN (pN ) = (pN − c)
tNoN + pNoN − pN

tN + tNoN

πNoN (pNoN , p̃) = (pNoN − c)
tN + pN − pNoN

tN + tNoN

Solving the first order optimality condition yields:

peqN = c+
1

3
(2tNoN + tN )

peqNoN = c+
1

3
(2tN + tNoN )

(2.46)

which is unique. Note that peqN ≥ c and peqNoN ≥ c. First, note that −tNoN < ∆peq =

peqNoN − p
eq
N = tN−tNoN

3 < tN .

The necessary condition for this strategy to be an NE is πNoN,z=0(peqNoN ) ≥

πNoN (peqNoN , p̃t) (by Theorem 3). The candidate strategies and this necessary condition

is listed in the statement of the theorem.

Case 2: Now, consider ∆p ≥ tN . We consider two cases ∆p = tN and ∆p > tN in

Cases 2-i and 2-ii, respectively.

Case 2-i: Now consider strategies pNoN and pN such that ∆p = tN . In this case, using

case 2 of Theorem 1, (qeqN , q
eq
NoN ) = (q̃f , 0) ∈ FU0 . Thus, nNoN = 0 and πNoN (pNoN , z =

0) = 0, i.e. the payoff of the non-neutral ISP is zero. Consider ε > 0 such that p′NoN =

pNoN − ε > c. In this case, p′NoN − pN < tN . Thus, by Theorem 1, (qeqN , q
eq
NoN ) ∈ F I0

or (qeqN , q
eq
NoN ) ∈ FL0 . Thus, nNoN > 0, and πNoN (p′NoN , z = 0) > 0. Thus, p′NoN is a

profitable deviation for the non-neutral ISP. Therefore, as long as such a deviation exist

pNoN and pN such that ∆p = tN cannot be NE.

Case 2-ii: Now, consider ∆p > tN . Thus, by item 2 of Theorem 1, neqN = 1. Consider

a unilateral deviation by neutral ISP such that p′N = peqN + ε in which ε > 0 such that
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peqNoN − p′N > tN . Note that the values of qeqN and qeqNoN is the same as before, since still

∆p′ = peqNoN −p′N > tN . Thus, again neqN = 1, and by (2.1), the payoff of neutral ISP is an

increasing function of pN . Thus, p′N is a profitable unilateral deviation. This contradicts

the assumption that peqN and peqNoN is NE. Thus, the result of the theorem follows.

2.7.4 Proof of Theorem 10

The following lemmas allow us to characterize the NE when (qeqN , q
eq
NoN ) ∈ F0, i.e. zeq = 0.

Lemmas 8 and 9 are useful in proving Theorem 10.

Lemma 8. No pNoN and pN such that ∆p = pNoN − pN ≤ −tNoN can be equilibrium

strategies.

Proof. Proof: First, we rule out the existence of an NE when ∆p < −tNoN , and then

when ∆p = −tNoN .

First, consider pNoN and pN such that ∆p < −tNoN . In this case, pNoN < pN − tNoN .

Note that the payoff of the non-neutral ISP when ∆p ≤ −tNoN is pNoN − c (by (2.1) and

nNoN = 1, using case 3 of Theorem 1), and is strictly increasing with respect to pNoN .

Thus, every price pNoN < pN − tNoN yields a strictly lower payoff for the non-neutral ISP

in comparison with the payoff of the this ISP when pNoN = pN−tNoN . Thus, there exist a

profitable deviation for the non-neutral ISP for strategies such that pNoN − pN < −tNoN .

Therefore, no pNoN and pN such that pNoN − pN < −tNoN can be NE strategies.

Now consider strategies pNoN and pN such that ∆p = −tNoN . In this case, using case

3 of Theorem 1, (qeqN , q
eq
NoN ) = (0, q̃f ) ∈ FL0 . Thus, nN = 0 and πN (pN ) = 0, i.e. the

payoff of the neutral ISP is zero. Consider ε > 0 such that p′N = pN − ε > c. In this

case, pNoN − p′N > −tNoN . Thus, by Theorem 1, (qeqN , q
eq
NoN ) ∈ F I0 or (qeqN , q

eq
NoN ) ∈ FU0 .
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Thus, nN > 0, and πN (p′N ) > 0. Thus, p′N is a profitable deviation for the neutral ISP.

Therefore, as long as such a deviation exist pNoN and pN such that ∆p = −tNoN cannot

be NE. Now, we prove that such deviation always exist. This complete the proof. Note

that this deviation does not exist if and only if pN − ε ≤ c for all ε > 0. Therefore, this

deviation does not exist if only if pN ≤ c. Thus, pNoN ≤ c− tNoN < c, which contradicts

the fact that if z = 0, peqNoN ≥ c (as mentioned in the beginning of the section). The

lemma follows.

Lemma 9. No pNoN and pN such that ∆p ≥ tN can be equilibrium strategies.

Proof. Proof: First, we rule out the existence of an NE when ∆p > tN , and then when

∆p = tN . Consider pNoN and pN such that ∆p > tN . In this case, pN < pNoN − tN .

Note that the payoff of the neutral ISP when ∆p ≥ tN is pN − c (by (2.1) and nN = 1,

using case 2 of Theorem 1), and is strictly increasing with respect to pN . Thus, every

price pN < pNoN − tN yields a strictly lower payoff for the neutral ISP in comparison

with the payoff of the this ISP when pN = pNoN − tN . Thus, no pNoN and pN such that

pNoN − pN > tN can be Ne strategies.

Now consider strategies pNoN and pN such that ∆p = tN . In this case, using case 2 of

Theorem 1, (qeqN , q
eq
NoN ) = (q̃f , 0) ∈ FU0 . Thus, nNoN = 0 and πNoN (pNoN , z = 0) = 0, i.e.

the payoff of the non-neutral ISP is zero. Consider ε > 0 such that p′NoN = pNoN − ε > c.

In this case, p′NoN −pN < tN . Thus, by Theorem 1, (qeqN , q
eq
NoN ) ∈ F I0 or (qeqN , q

eq
NoN ) ∈ FL0 .

Thus, nNoN > 0, and πNoN (p′NoN , z = 0) > 0. Thus, p′NoN is a profitable deviation

for the non-neutral ISP. Therefore, as long as such a deviation exist pNoN and pN such

that ∆p = tN cannot be NE. Now, we prove that such deviation always exist. This
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complete the proof. Note that this deviation does not exist if and only if pNoN − ε ≤ c

for all ε > 0. Therefore, this deviation does not exist if only if pNoN ≤ c. Therefore,

pN ≤ c − tN < c, which contradicts the fact that peqN ≥ c (as mentioned after at the

beginning of the section.). The lemma follows.

Now, we proceed to prove Theorem 10:

Proof. Proof of Theorem 10: First, in Part 1, we characterize the candidate equilibrium

strategies by applying the first order condition on the payoffs. Then, in Part 2, we prove

that no unilateral deviation is profitable for ISPs. Thus, the strategies characterized in

Part 1 are NE.

Part 1: Note that zeq = 0. First note that by Lemmas 8 and 9, no pN and pNoN

such that ∆p ≤ −tNoN or ∆p ≥ tN can be Nash equilibrium. Thus, we consider −tNoN <

∆p < tN . Note that in this region, 0 < xN < 1, and an NE strategy for ISPs should

satisfy the first order optimality conditions. Thus, using (2.8) and (2.9), and item 1 of

Theorem 1:

peqN = c+
1

3
(2tNoN + tN )

peqNoN = c+
1

3
(2tN + tNoN )

(2.47)

which is unique. Note that peqN ≥ c and peqNoN ≥ c. In order to prove that this is an NE,

it is enough to prove that (i) −tNoN < ∆peq = peqNoN − p
eq
N < tN , (ii) a deviation of one of

the ISPs by which ∆p is shifted to the region ∆p ≤ −tNoN or ∆p ≥ tN is not profitable

for that ISP.

The condition (i) can be proved by (2.47). From this equation, ∆peq = tN−tNoN
3 .

Thus, ∆peq > −tNoN and ∆peq < tN . Therefore, (i) is true for this case.
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Part 2: Now, we should prove that condition (ii) holds, i.e. no unilateral deviation

is profitable. First, in Case 2-a, we rule out the possibility of a unilateral deviation when

−tNoN < ∆p < tN for both neutral and non-neutral ISPs. Then, we consider ∆p ≤ −tNoN

and ∆p ≥ tN , and in Cases 2-NoN and 2-N, we rule out the possibility of a unilateral

deviation in these regions for ISP N and NoN, respectively.

Case 2-a: First, note that by concavity of the payoffs (using (2.8) and (2.9)) as long

as −tNoN < ∆p < tN , i.e. 0 < xN < 1, a unilateral deviation by one of the ISPs from peqN

or peqNoN decreases this ISP’s payoff. Thus, we should consider the deviation by ISPs by

which ∆p ≤ −tNoN or ∆p ≥ tN .

Case 2-NoN: Now, consider the deviations by the non-neutral ISP. Fix pN = peqN , and

consider two cases. In Case 2-NoN-i (respectively, Case 2-NoN-ii), we consider deviation

by ISP NoN such that ∆p ≥ tN (respectively, ∆p ≤ −tNoN ).

Case 2-NoN-i: Suppose the non-neutral ISP increases her price from peqNoN to make

∆p ≥ tN . In this case, nNoN = 0, and the payoff of the ISP is zero (by (2.1)). Since in the

candidate equilibrium strategy this payoff is non-negative, this deviation is not profitable.

Case 2-NoN-ii: Now, consider the case in which the non-neutral ISP decreases her

price to make ∆p ≤ −tNoN . In this case, nNoN = 1 and πNoN (p′NoN , z = 0) = p′NoN − c

(by (2.1)). Thus, the payoff is a strictly increasing function of p′NoN , and is maximized at

p′NoN = peqN − tNoN . We show that πNoN (p′NoN , z = 0) < πNoN (peqNoN , z = 0). Note that

πNoN (p′NoN , z = 0) = 1
3(tN − tNoN ). In addition, using (2.47), (2.1), 0 ≤ xN ≤ 1, (2.5),

and the fact that with peqN and peqNoN , qeqNoN − q
eq
N = 0:

πNoN (peqNoN , z = 0) =
1

9

(2tN + tNoN )2

tNoN + tN
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Thus:

πNoN (p′NoN , z = 0) < πNoN (peqNoN , z = 0) ⇐⇒ 3(t2N − t2NoN ) < 4t2N + t2NoN + 4tN tNoN

⇐⇒ t2N + 4t2NoN + 4tN tNoN > 0

where the last inequality is always true. Thus, this deviation is not profitable for ISP

NoN.

These cases prove that no deviation form (2.47) is profitable for ISP NoN.

Case 2-N: Now, consider a deviation by the neutral ISP from (2.47). Similar argu-

ment can be done for the neutral ISP. Fix, pNoN = peqNoN , and consider two cases. In Case

2-N-i (respectively, Case 2-N-ii), we consider deviation by ISP N such that ∆p ≤ −tNoN

(respectively, ∆p ≥ tN ).

Case 2-N-i: Suppose the neutral ISP increases her price from peqN to get ∆p ≤ −tNoN .

In this case, nN = 0, and the payoff of this ISP is zero. Since in the candidate equilibrium

strategy the payoff is non-negative, this deviation is not profitable.

Case 2-N-ii: Now, consider the case in which the non-neutral ISP decreases her price

such that ∆p ≥ tN . In this case, nN = 1 and πN (p′N ) = p′N − c. Thus, the payoff is a

strictly increasing function of p′N , and is maximized at p′N = peqNoN − tN . We show that

πN (p′N ) < πN (peqN ). Note that πN (p′N ) = 1
3(tNoN − tN ) (by (2.1)). In addition, using

(2.47), (2.1), 0 ≤ xN ≤ 1, (2.5), and the fact that with peqN and peqNoN , qeqNoN − q
eq
N = 0:

πN (peqN ) =
1

9

(2tNoN + tN )2

tNoN + tN

Thus:

πN (p′N ) < πN (peqN ) ⇐⇒ 3(t2NoN − t2N ) < 4t2NoN + t2N + 4tN tNoN

⇐⇒ t2NoN + 4t2N + 4tN tNoN > 0
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where the last inequality is always true. Thus, this deviation is not profitable for ISP N.

Thus, there is no profitable deviation for ISP N. This completes the proof, and the lemma

follows.

2.7.5 Proofs of Corollaries Characterizing the Outcome of the Market

Now, using the equilibrium strategies characterized in previous theorems, we characterize

the equilibrium outcomes of the market for different parameters in the following corollar-

ies:

Corollary 2. If tN + tNoN ≤ κuq̃p, the equilibrium outcome of the market is:

• If tN + 2tNoN ≤ q̃p(κu + κad), then p̃eq = p̃t,1 = κad(1−
q̃f
q̃p

), (qeqN , q
eq
NoN ) = (0, q̃p) ∈

FL1 , neqN = 0, and neqNoN = 1.

• If tN +2tNoN > q̃p(κu+κad) and conditions of item 2 of Theorem 6 is satisfied, then

p̃eq = p̃t,2 = κad(n
eq
NoN −

q̃f
q̃p

), (qeqN , q
eq
NoN ) = (0, q̃p) ∈ F I1 , neqN =

tN+2tNoN−q̃p(κu+κad)
3(tN+tNoN ) ,

and neqNoN =
2tN+tNoN+q̃p(κu+κad)

3(tN+tNoN ) .

Proof. Proof: First, consider Strategy 1 of Theorem 6. Item 1 of Theorem 2 yields that

(qeqN , q
eq
NoN ) = (0, q̃p) ∈ FL1 . Thus, neqN = 0, and neqNoN = 1. In addition, by Theorem 4,

p̃eq = p̃t,1 = κad(1−
q̃f
q̃p

).

Now, consider Strategy 2 of Theorem 6. Note that we constructed this strategy such

that ∆p satisfies item 3 of Theorem 2. Thus, (qeqN , q
eq
NoN ) = (0, q̃p) ∈ F I1 . In addition, by

Theorem 4, p̃eq = p̃t,2 = κad(nNoN −
q̃f
q̃p

). Using the expression for ∆p = peqNoN − p
eq
N , and

(2.5), the expressions for neqN and neqNoN follow.
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Corollary 3. If Strategy 1 of Theorem 7 is an NE, it yields p̃eq = p̃t,1 = κad(1 −
q̃f
q̃p

),

(qeqN , q
eq
NoN ) = (0, q̃p) ∈ FL1 , neqN = 0, and neqNoN = 1. If Strategy 2 of Theorem 7 is an NE, it

yields p̃eq = p̃t,2 = κad(n
eq
NoN−

q̃f
q̃p

), (qeqN , q
eq
NoN ) = (0, q̃p) ∈ F I1 , neqN =

tN+2tNoN−q̃p(κu+κad)
3(tN+tNoN ) ,

and neqNoN =
2tN+tNoN+q̃p(κu+κad)

3(tN+tNoN ) . If Strategy 3 of Theorem 7 is an NE, it yields p̃eq =

p̃t,3 = κadn
eq
NoN (1 − q̃f

q̃p
), (qeqN , q

eq
NoN ) = (q̃f , q̃p) ∈ F I1 , neqN =

tN+2tNoN−(q̃p−q̃f )(κu+κad)
3(tN+tNoN ) ,

and neqNoN =
2tN+tNoN+(q̃p−q̃f )(κu+κad)

3(tN+tNoN ) . If Strategy 4 of Theorem 7 is an NE, it yields

p̃eq = p̃t,3 = κadn
eq
NoN (1 − q̃f

q̃p
), (qeqN , q

eq
NoN ) = (q̃f , q̃p) ∈ F I1 , neqN =

κuq̃p
tN+tNoN

, and neqNoN =

tN+tNoN−κuq̃p
tN+tNoN

.

Proof. Proof: First, consider Strategy 1 of Theorem 7. Item 1 of Theorem 2 yields that

(qeqN , q
eq
NoN ) = (0, q̃p) ∈ FL1 . Thus, neqN = 0, and neqNoN = 1. In addition, by Theorem 4,

p̃eq = p̃t,1 = κad(1−
q̃f
q̃p

).

Now, consider Strategy 2 of Theorem 7. Note that we constructed this strategy such

that ∆p satisfies items 2-a-ii or 2-b of Theorem 2. Thus, (qeqN , q
eq
NoN ) = (0, q̃p) ∈ F I1 .

In addition, by Theorem 4, p̃eq = p̃t,2 = κad(n
eq
NoN −

q̃f
q̃p

). Using the expression for

∆p = peqNoN − p
eq
N , and (2.5), the expressions for neqN and neqNoN follow.

Consider Strategies 3 and 4 of Theorem 7. In this case, ∆p satisfies item 2-a-i of

Theorem 2 (by construction of these strategies). Thus, (qeqN , q
eq
NoN ) = (q̃f , q̃p) ∈ F I1 . In

addition, by Theorem 4, p̃eq = p̃t,3 = κadn
eq
NoN (1− q̃f

q̃p
). Using the expression of ∆peq for

each of the strategies, neqN and neqNoN follow.

Corollary 4. If the strategy of Theorem 9 is an NE, it yields (qeqN , q
eq
NoN ) = (q̃f , q̃f ) ∈ FL0 ,

neqN = 2tNoN+tN
3(tNoN+tN ) , and neqNoN = 2tN+tNoN

3(tN+tNoN ) . Since zeq = 0, p̃eq is of no importance.
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Proof. Proof: Note that we constructed this strategy such that ∆p satisfies item 1 of

Theorem 1. Thus, (qeqN , q
eq
NoN ) = (q̃f , q̃f ) ∈ F I0 . Using the expression for ∆p = peqNoN −p

eq
N ,

and (2.5), the expressions for neqN and neqNoN follow.

Corollary 5. If both ISPs are neutral, then in the equilibrium, ISPs chooses peqN = c +

1
3(2tNoN + tN ) and peqNoN = c + 1

3(2tN + tNoN ) as the Internet access fees. The CP

chooses the vector of qualities (qeqN , q
eq
N ) = (q̃f , q̃f ). The fraction of EUs with each ISP is

neqN = 2tNoN+tN
3(tNoN+tN ) and neqNoN = 2tN+tNoN

3(tNoN+tN ) .

Results follow from Theorem 1 (note that −tNoN < ∆peq < tN ), and (2.5).

2.7.6 Continuous Strategy Set for the CP

In this section, we consider qN ∈ [0, q̃f ] and qNoN ∈ [0, q̃p]. In this case, the CP pays

a side payment of p̃qNoN if she chooses qNoN ∈ (q̃f , q̃p]. The rest of the model is the

same as before. Note that in this case, the optimum strategies in Stage 4 of the game,

in which end-users decide on the ISP, is the same as before. We prove that the optimum

decisions made by the CP is similar to the decisions of the CP when she has a discrete

set of strategies. This yields that the results of the model would the same as before when

the CP chooses her strategy from a continuous set.

Therefore, we focus on characterizing the optimum strategies of the CP when she

chooses her strategy from continuous sets, i.e. qN ∈ [0, q̃f ] and qNoN ∈ [0, q̃p]. The

following lemma is useful in defining the maximization and to characterize the optimum

answers.

Lemma 10. πCP (qN , q̃f,NoN , z = 0) ≥ πCP (qN , q̃f,NoN , z = 1).
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Remark 5. Note that although we considered z to be a dummy variable, in this lemma

and for the purpose of analysis, we treat it as an independent variable.

Proof. Proof: The lemma follows by (2.2), and comparing the expressions in these two

cases:

πCP (qN , q̃f,NoN , z = 0)− πCP (qN , q̃f,NoN , z = 1) = q̃f,NoN p̃ ≥ 0

Note that we used the fact that from (2.5), since the qualities are the same in both

cases, nN and nNoN are equal for both cases.

Lemma 10 provides the ground to formally define the maximization for the CP as:

max
z,qN ,qNoN

πCP (qN , qNoN , z) = max
z,qN ,qNoN

(
nNκadqN + nNoNκadqNoN − zp̃qNoN

)
s.t:

qN ≤ q̃f

if z = 1 q̃f < qNoN ≤ q̃p

if z = 0 qNoN ≤ q̃f

(2.48)

Existence of the maximum: Note that the mixed integer programming (2.48) can be

written as two convex maximizations, one for z = 0 and one for z = 1. In addition, note

that for the case z = 1, the feasible set is not closed (since q̃f < qNoN ≤ q̃p). Thus, in this

case, we should use the “supremum” instead of “maximum”. However, using Lemma 10,

we prove that the maximum of (2.48) exists, and therefore the term maximum can be

used safely. To prove this, consider the closure of the feasible set when z = 1 formed by

adding q̃f to the set, i.e. F̃1. Since the feasible set associated with z = 0 (F0) and the

closure of the feasible set associated to z = 1 (F̃1) are closed and bounded (compact) and
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the objective function is continuous for each z ∈ {0, 1}, using Weierstrass Extreme Value

Theorem, we can say that a maximum exists in each of these two sets and for the overall

optimization (2.48). If the maxima in F̃1 is not q̃f , then the maxima is in the original

feasible set (F1). Therefore the maximum of (2.48) exists. If not and q̃f is the maxima

in the set F̃1, then by Lemma 10, the maximum in the set F0 dominates the maximum

of the set F̃1. Thus, the maxima of (2.48) is in F0. Therefore, the maximum of (2.48)

exists, and we can use the term maximum safely.

Henceforth, the solution (q̃∗N , q̃
∗
NoN , z

∗) of the maximization (2.48) would be called the

optimum strategies of the CP. This solution yields x∗N and subsequently n∗N and n∗NoN by

(2.5). In addition, we denote the feasible set of (2.48) by F .

Finding the optimum strategies of the CP: To characterize the optimum strategies, we

use the partition the feasible set in Table 2.1, and characterize the candidate optimum

strategies, i.e. the strategies that yield a higher payoff than the rest of the feasible

solutions, in each subset. The overall optimum, which is chosen by the CP, is the one

that yields the highest payoff among candidate strategies.

Note that although the maximum of the overall optimization exist, a maximum may

not necessarily exist in each of the subsets. We will show in the next set of lemmas that the

optimization in each subset of the feasible set can be reduced to a convex maximization

over linear constraints. Thus, only the extreme points of the feasible sets may constitute

the optimum solution. This means that the CP chooses her strategy among the discrete

strategies, qN ∈ {0, q̃f} and qNoN ∈ {0, q̃f , q̃p}.

We now characterize optimum strategies of the CP, by considering each of the sub-

feasible sets and characterizing the optimum solutions in each of them. In Lemma 13, we
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prove that if (q∗N , q
∗
NoN ) ∈ F I , then q∗N ∈ {0, q̃f}, q∗NoN ∈ {0, q̃f , q̃p}, and (q∗N , q

∗
NoN ) 6=

(0, 0). In Lemma 15, we prove that if (q∗N , q
∗
NoN ) ∈ FL, then q∗NoN = q̃f , if q∗NoN ∈ FL0 ,

and q∗NoN = q̃p, if q∗NoN ∈ FL1 . Moreover, 0 ≤ q∗N ≤
1
κu

(κuq
∗
NoN − tNoN − ∆p), and

∆p ≤ κuq
∗
NoN − tNoN . In Lemma 16, we prove that if (q∗N , q

∗
NoN ) ∈ FU , then q∗N = q̃f

and 0 ≤ q∗NoN ≤
1
κu

(κuq̃f − tN + ∆p) and ∆p ≥ tN − κuq̃f . In addition, Lemmas 11 and

12 provide some results that are useful in proving Lemmas 13-16.

Lemma 11. In an optimum solution of (2.48), nNoNκad − zp̃ ≥ 0.

Proof. Proof: Suppose there exists an optimum answer such that nNoNκad−zp̃ < 0. Note

that 0 ≤ nN , nNoN ≤ 1 and qualities are non-negative. Thus, in this case, πCP < κadqN .

However, choosing z = 0 and qNoN = qN , yields a profit equal to κadqN . This contradicts

the solution with nNoNκad − zp̃ < 0 to be optimum. Thus, the Lemma follows.

Lemma 12. In an optimum solution, the CP offers the content quality equal to one of

the threshold at least on one ISP, i.e. q∗N = q̃f OR (q∗NoN = q̃p XOR q∗NoN = q̃f ), where

XOR means only one the qualities is chosen.

Proof. Proof: Suppose not. Let the optimum qualities to be q̂NoN < q̃f if z = 0, or

q̃f < q̂NoN < q̃p if z = 1, and q̂N < q̃f . The difference between the qualities offered in two

platforms is ∆q = q̂NoN − q̂N . Consider q′NoN = q̂NoN + ε and q′N = q̂N + ε in which ε > 0

and is such that q′NoN ≤ q̃f if z = 0, or q̃f ≤ q′NoN ≤ q̃p if z = 1, and q′N ≤ q̃f . Note that

z remains fixed and q′NoN − q′N = q̂NoN − q̂N = ∆q. Since ∆q is the same for two cases,

the number of subscriber to each ISP is the same for both cases by (2.5). Lemma 11,

(2.2), and the fact that nN , nNoN ≥ 0 yield that π′CP ≥ π̂CP , where π̂CP (, respectively

π′CP ) is the payoff of the CP when the vector of qualities is (q̂N , q̂NoN ) (, respectively,
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(q′N , q
′
NoN )).

We now prove if (q̂N , q̂NoN ) is the optimum solution, then the inequality is strict, i.e.

π′CP > π̂CP . Suppose not, and π′CP = π̂CP . This only happens if nNoNκad − zp̃ = 0 and

nN = 0. Note that in this case, π′CP = π̂CP = 0. However, in the previous paragraph, we

argued that with qN = q̃f and qNoN = q̃f , the CP can get a payoff of κadq̃f > 0. This

contradicts the assumption that (q̂N , q̂NoN ) is the optimum solution. Thus, π′CP > π̂CP .

This inequality contradicts the assumption that (q̂N , q̂NoN ) is the optimum solution.

Thus, the result follows.

Clearly, the decision of the CP about the vector of qualities depends on the parameter

xN (2.4), and subsequently on nN . First, we characterize the candidate strategies of

the CP when 0 ≤ xN ≤ 1, i.e. (q∗N , q
∗
NoN ) ∈ F I and therefore nN = xN . Then, we

consider the case of xN < 0 (nN = 0 and (q∗N , q
∗
NoN ) ∈ FL) and xN > 1 (nN = 1 and

(q∗N , q
∗
NoN ) ∈ FU ). Finally, we combine both cases to determine the optimum strategies

of the CP. In the following lemma, we characterize the candidate optimum qualities in

F I , i.e. the strategies by which 0 ≤ xN ≤ 1.

Lemma 13. If (q∗N , q
∗
NoN ) ∈ F I , i.e. optimum strategies are such that 0 < x∗N < 1, then

q∗N ∈ {0, q̃f}, q∗NoN ∈ {0, q̃f , q̃p}, (q∗N , q
∗
NoN ) 6= (0, 0).

Remark 6. Note that to be in F I and from (2.5), (q∗N , q
∗
NoN ) should be such that ∆p−tN

κu
<

∆q∗ = q∗NoN − q∗N < ∆p+tNoN
κu

. In Lemma 12, we have proved that the quality on at least

one of the ISPs is equal to a threshold. In this lemma, we prove that the qualities offered

on both ISPs are equal to thresholds or one of them is zero.

Proof. Proof: We would like to characterize the optimum qualities in F I = F I0
⋃
F I1 , i.e.
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optimum strategies for which 0 < xN < 1. First note that by Lemma 12, either (a)

q∗N = c and q∗NoN = c + ∆q where c = q̃f , or (b) q∗NoN = c and q∗N = c − ∆q where

c ∈ {q̃f , q̃p}. Note that the feasible sets for each case can be rewritten as a function of

∆q. We characterize the candidate solutions for each case:

• Case (a): The feasible set for the case (a) is ∆q ∈ G0 = [−c, q̃f − c] (for z = 0) and

∆q ∈ G1 = (q̃f − c, q̃p− c] (for z = 1), where c = q̃f . Let G = G0 ∪G1. Note that if

0 ≤ xN ≤ 1, then nN = xN and nNoN = 1− xN . Thus, (2.48) can be written as,

max
z,∆q∈G=G0∪G1

πCP (c, c+ ∆q, z) =

max
z,∆q∈G

(
tNoN − κu∆q + pNoN − pN

)
κadc+

+
(
tN + κu∆q + pN − pNoN

)
κad(c+ ∆q)− zp̃(c+ ∆q)

(2.49)

Note that although the feasible set G1 is not closed, we used maximum instead of

supremum. We will show that the maximum of (2.49) exists. Thus, the term max-

imum can be used safely. Note that the objective functions of (2.49) is a strictly

convex functions of ∆q. Note that henceforth wherever we refer to maximum with-

out further clarification, we refer to the solution of (2.48).

Let G̃1 be the closure of G1, then G̃1\G1 = {q̃f − c}. First, we prove that the

maximum of (2.49) exists. Note that G0 and G̃1 are closed and bounded (compact)

and the objective function of (2.49) is continuous with respect to ∆q for each z ∈

{0, 1}. Using Weierstrass Extreme Value Theorem, we can say that a maxima for

πCP (c,∆q + c, z = 0) and πCP (c,∆q + c, z = 1) exists in each of two sets G0 and

G̃1, respectively. Thus, the overall maximum for the objective function of (2.49)
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over G0 and G̃1 exists. Now, consider two cases:

1. If the maxima of πCP (c,∆q + c, z = 1) in G̃1 is not ∆q = q̃f − c, then the

maxima is in the original feasible set (G1). Therefore the maximum of (2.49)

exists (since G0 is closed).

2. If ∆q = q̃f − c is the maxima of πCP (c,∆q + c, z = 1) in the set G̃1, then by

Lemma 10, the maximum of πCP (c,∆q + c, z = 0) in the set G0 greater than

or equal to the maximum of πCP (c,∆q+ c, z = 1) in G̃1. Thus, the maxima of

(2.49) over G0 and G1 exists and is in G0.

Now, that we have proved the existence of the maximum for (2.49), we aim to find

all the candidate optimum solutions. Note that the set G0 is closed. Thus, by the

strict convexity of the objective function of (2.49), the candidate optimums in G0

are the extreme points of G0. Using the definition of this feasible set, the candidate

answers are (i) q∗N = q̃f and q∗NoN ∈ {0, q̃f}.

Now, consider the feasible set G̃1, and consider two cases:

1. If ∆q = q̃f − c is not the unique maxima of (2.49) in G̃1, then the maxima is

in G1 or G0. The candidate answers in the set G0 are already characterized.

In addition, by strict convexity of the objective function, the maxima can only

be an extreme point of G̃1. Since q̃f − c is not the unique maxima of (2.48)

in G̃1, q̃p is a maxima of (2.48) in G1. Thus, by strong convexity, for all

∆q ∈ G1 πCP (c, q̃p, z = 1) > πCP (c,∆q + c, z = 1), and the only candidate

optimum solution over G1 is at ∆q = q̃p− c ∈ G1 which yields (ii) q∗N = q̃f and

q∗NoN = q̃p.
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2. If q̃f−c is the unique maxima in G̃1, then πCP (c, q̃f , z = 1) > πCP (c,∆q+c, z =

1) for ∆q ∈ G1. By Lemma 10, πCP (c, q̃f , z = 0) ≥ πCP (c, q̃f , z = 1). There-

fore, the overall maximum of (2.49) is in the set G0, and is as characterized

previously.

• Case (b): The feasible set for the case (b) is ∆q ∈ Ĝ0 = [c− q̃f , c] where c = q̃f (for

z = 0), and ∆q ∈ Ĝ1 = [c− q̃f , c] where c = q̃p (for z = 1). For this case, (2.48) can

be written as:

max
z,∆q∈Ĝ=Ĝ0∪Ĝ1

πCP (c−∆q, c, z) =

max
z,∆q∈Ĝ

κad
(
tNoN − κu∆q + pNoN − pN

)
(c−∆q) + κadc

(
tN + κu∆q + pN − pNoN

)
− zp̃c

(2.50)

Note that the feasible set is closed. Thus the term maximum is fine. In addition,

the objective functions of (2.50) are strictly convex functions of ∆q. Thus, using

the strict convexity and the definition of the feasible set, i.e. c − q̃f ≤ ∆q∗ ≤ c

where c is q̃f and q̃p, respectively, we can get the other set of candidate answers,

(iii) q∗NoN = q̃f and q̃∗N ∈ {0, q̃f}, and (iv) q̃∗NoN = q̃p and q̃∗N ∈ {0, q̃f}.

From, (i), (ii), (iii), and (iv), the result follows.

The following corollary follows immediately from Lemma 13:

Corollary 6. The possible candidate optimum strategies by which 0 < x∗N < 1, i.e.

(q∗N , q
∗
NoN ) ∈ F I , are (1) (0, q̃f ), (2) (q̃f , 0), and (3) (q̃f , q̃f ) when z = 0, i.e. (q∗N , q

∗
NoN ) ∈

F I0 , and (1) (0, q̃p) and (2) (q̃f , q̃p) when z = 1, i.e. (q∗N , q
∗
NoN ) ∈ F I1 . Note that the
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necessary and sufficient condition for each of these candidate outcomes to be in F I is

∆p−tN
κu

< ∆q∗ < ∆p+tNoN
κu

.

Note that Corollary 6 lists all the candidate answers by which 0 < xN < 1. In the

next three lemmas, we focus on the candidate answers when xN ≥ 1 or xN ≤ 0.

Lemma 14. If ∆p > κuq̃f − tNoN then xN > 0 for all choices of qNoN and qN in the

feasible set F0 (that is FL0 is an empty set). Similarly, If ∆p > κuq̃p − tNoN then xN > 0

for all choices of qNoN and qN in the feasible set F1 (that is FL1 is an empty set). In

addition, if ∆p < tN − κuq̃f then xN < 1 for all choices of qNoN and qN in the overall

feasible set F (that is FU is an empty set).

Proof. Proof: First note that from (2.5), xN > 0 is equivalent to:

∆p > κu(qNoN − qN )− tNoN (2.51)

Consider ∆p > κuq̃f − tNoN (respectively, ∆p > κuq̃p − tNoN ), if (qN , qNoN ) ∈ F0

(respectively, (qN , qNoN ) ∈ F1) then ∆p > κuq̃f − tNoN ≥ κu(qNoN − qN )− tNoN (respec-

tively, ∆p > κuq̃p − tNoN ≥ κu(qNoN − qN ) − tNoN ) for every choice of (qN , qNoN ) ∈ F0

(respectively, (qN , qNoN ) ∈ F1). The inequality ∆p > κu(qNoN−qN )−tNoN yields xN > 0.

The first result of the lemma follows.

Now, we prove the second statement. From (2.5), xN < 1 is equivalent to:

∆p < tN + κu(qNoN − qN ) (2.52)

Consider ∆p < tN − κuq̃f . Note that:

∆p < tN − κuq̃f ≤ tN + κu(qNoN − qN )
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for every choice of 0 ≤ qN ≤ q̃f and 0 ≤ qNoN ≤ q̃p which are all the possible choices in

F . The inequality ∆p < tN + κu(qNoN − qN ) yields that xN < 1. The result follows.

The following lemma characterizes all the candidate answers when x∗N ≤ 0, and char-

acterize the necessary condition on parameters for this solutions to be feasible.

Lemma 15. Let (q∗N , q
∗
NoN ) ∈ FL. If (q∗N , q

∗
NoN ) ∈ FL0 (respectively, if (q∗N , q

∗
NoN ) ∈ FL1 ),

then q∗NoN = q̃f (respectively, q∗NoN = q̃p). Moreover, for every x ∈ [0, 1
κu

(κuq̃f − tNoN −

∆p)] (respectively, x ∈ [0, 1
κu

(κuq̃p − tNoN −∆p)]) and ∆p ≤ κuq̃f − tNoN (respectively,

∆p ≤ κuq̃p − tNoN ), (x, q̃f ) (respectively, (x, q̃p)) constitutes an optimum solution in FL0

(respectively, in FL1 ).

Proof. Proof: From (2.5), xN ≤ 0 is equivalent to:

∆p ≤ κu(qNoN − qN )− tNoN (2.53)

Note that from (2.5), if xN ≤ 0 then nN = 0 and nNoN = 1. In this case, the payoff

of the CP is,

πG = κadqNoN − zp̃qNoN (2.54)

Note that the value of the payoff is independent of qN as long as nN = 0, and from (2.5)

nN is a function of qN and qNoN . In addition, note that if there exist a qNoN that satisfies

the constraint ∆p ≤ κu(qNoN − qN ) − tNoN (and therefore nN = 0) then q′NoN ≥ qNoN

also satisfies this constraint. Therefore for q′NoN ≥ qNoN , nN = 0 and (2.54) is true. Note

that from Lemma 11, (2.54) is an increasing function of qNoN . Thus, if xN ≤ 0, then

q∗NoN = q̃f if (q∗N , q
∗
NoN ) ∈ FL0 or q∗NoN = q̃p if (q∗N , q

∗
NoN ) ∈ FL1 (using the feasible sets in

Table 2.1 and their definitions).
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Using (2.53), (q∗N , q
∗
NoN ) ∈ FL0 (respectively, (q∗N , q

∗
NoN ) ∈ FL1 ) if and only if,

q∗N ≤
1

κu
(κuq̃f −∆p− tNoN )

(
respectively, q∗N ≤

1

κu
(κuq̃p −∆p− tNoN )

)
(2.55)

Note that every q∗N that satisfies (2.55) is an optimum answer since when (q∗N , q
∗
NoN ) ∈

FL, nN = 0 and q∗N is of no importance. Also, note that qN ≥ 0. Thus, (2.55) is true

for at least one q∗N if ∆p ≤ κuq̃f − tNoN (respectively, ∆p ≤ κuq̃p − tNoN ). The result

follows.

The following lemma characterizes all the candidate answers when xN ≥ 1, and char-

acterize the necessary condition on parameters for this solutions to be feasible.

Lemma 16. If (q∗N , q
∗
NoN ) ∈ FU , i.e. optimum strategies are such that x∗N ≥ 1. Then

q∗N = q̃f . Moreover, for all x ∈ [0, 1
κu

(κuq̃f − tN + ∆p)] and ∆p ≥ tN − κuq̃f , (q∗N , x)

constitutes an optimum solution in FU .

Proof. Proof: From (2.5), xN ≥ 1 is equivalent to:

∆p ≥ tN + κu(qNoN − qN ) (2.56)

Now, we prove the first result of the lemma. Note that from (2.5), if xN ≥ 1 then

nN = 1 and nNoN = 0. In this case, the payoff of the CP is,

πG = κadqN (2.57)

Note that the value of the payoff is independent of qNoN as long as nN = 1, and from

(2.5), nN is a function of qN and qNoN . In addition, note that if there exist a qN that

satisfies ∆p ≥ tN +κu(qNoN − qN ), then q′N ≥ qN also satisfies this constraint. Therefore,
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for q′N ≥ qN , nN = 1 and (2.57) is true. Note that (2.57) is an increasing function of qN .

Thus, q∗N = q̃f (using the feasible sets in Table 2.1 and their definitions).

Using (2.56), (q∗N , q
∗
NoN ) ∈ FU if and only if:

q∗NoN ≤
1

κu
(κuq̃f − tN + ∆p) (2.58)

Note that every q∗NoN that satisfies (2.58) is an optimum answer since when (q∗N , q
∗
NoN ) ∈

FU , n∗NoN = 0 and q∗NoN is of no importance. Also, note that qNoN ≥ 0. Thus, the

condition (2.58) is true for at least one q∗NoN if κuq̃f−tN +∆p ≥ 0. The result follows.

Corollary 7. If (qeqN , q
eq
NoN ) ∈ FL0 , then (qeqN , q

eq
NoN ) = (0, q̃f ). If (qeqN , q

eq
NoN ) ∈ FL1 , then

(qeqN , q
eq
NoN ) = (0, q̃p). If (qeqN , q

eq
NoN ) ∈ FU , then (qeqN , q

eq
NoN ) = (q̃f , 0).

Proof. Proof: Note that when (q∗N , q
∗
NoN ) ∈ FL (, respectively (q∗N , q

∗
NoN ) ∈ FU ), then

the payoff of the CP is independent of q∗N and q∗NoN . Thus, result of the corollary follows

from Tie-Breaking Assumption 1.

Theorem 12. All possible equilibrium strategies are:

(0, q̃f ) ∈ F I0 ∪ FL0 , (q̃f , 0) ∈ F I0 ∪ FU0 , (q̃f , q̃f ) ∈ F I0 ,

(0, q̃p) ∈ F I1 ∪ FL1 , (q̃f , q̃p) ∈ F I1

(2.59)

Results follow directly from Corollaries 6 and 7.

Note that (2.59) and (2.11) are exactly similar. This implies that the strategies chosen

by the CP when she chooses from continuous sets is exactly similar to the strategies when

she chooses from the discrete set characterized in our model. This completes our proof.
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Chapter 3

Non-Neutrality Framework I -

Uncertain Price Competition in

an Internet Market
1

In Chapter 2, we assessed the benefits of migrating to non-neutrality for different enti-

ties of the market. Given the incentives of different entities of the market to migrate

to a non-neutral regime under appropriate conditions, in this chapter, we formulate and

analyze the strategic choices of decision makers in a non-neutral Internet market. More

specifically, we analyze the interactions, pricings, and the consequences of different non-

neutral frameworks. In this chapter, we study the price competition in a duopoly with

an arbitrary number of buyers. In this case, ISPs can be considered to be sellers sell-

ing/leasing a number of their resources to buyers, i.e. CPs. Each seller can offer multiple

1Presented in Allerton 2012 [36] and published in IEEE Transaction on Automatic Control [37].
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units of resources depending on the availability of the resources which is random and may

be different for different sellers. Sellers seek to select a price that will be attractive to

the buyers and also fetch adequate profits. The selection will in general depend on the

number of units available with the seller and also that of its competitor - the seller may

only know the statistics of the latter. We analyze this price competition as a game, and

identify a set of necessary and sufficient properties for the Nash Equilibrium (NE). The

properties reveal that sellers randomize their price using probability distributions whose

support sets are mutually disjoint and in decreasing order of the number of availability.

We prove the existence and uniqueness of a symmetric NE in a symmetric market, and

explicitly compute the price distribution in the symmetric NE. In addition, we propose a

heuristic pricing strategy for sellers in a symmetric oligopoly market which satisfies the

necessary and sufficient properties identified for a NE in a symmetric duopoly. Numerical

evaluations reveal that our proposed strategy constitutes a good approximation for the

NE of the symmetric oligopoly market.

The chapter is organized as follows: We model the price selection problem as a one-

shot non-cooperative game in Section 3.1. In Section 3.2, we identify key properties that

every NE pricing strategy should satisfy when demand is greater than the maximum

possible availability level. In Section 3.3, we prove that any strategy profile that satisfies

the properties listed in Section 3.2 constitutes an NE regardless of the relation between

the demand and the number of available units. This sufficiency result naturally leads to an

algorithm for computing the strategies that satisfy the properties in Section 3.2 (presented

in Appendix, Section 3.9.3). In Section 3.4, we present the results for a symmetric market.

Results are generalized to the case of random demand in Section 3.5. In Section 3.6,
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numerical evaluations are presented. In Section 3.7, we outline the connection between

the decision problem we considered and two other different emerging application domains:

primary/secondary and microgrid markets. In addition, we discuss about some aspects of

the model in connection to the applications considered. Finally, in Section 3.8 we conclude

the chapter. Additional details and some of the proofs are presented in the Appendix of

the chapter (Section 3.9).

3.1 Market Model and Problem Formulation

3.1.1 Market Model

First, we define some preliminary notations. Then sellers’ decision and information are

described.

Preliminary notations

We consider a market with two sellers in which each seller owns multiple number of the

same commodity and quotes a price per unit. The total demand of the market is d units.

For simplicity, the demand is assumed to be deterministic. The generalization to random

d is straightforward, and is presented in Section 3.5.

Buyers prefer the seller who quotes a lower price per unit, and they are equally likely

to buy a unit from sellers who select equal prices. Thus, if sellers have a, b units to

sell respectively and quote prices of x, y per unit, where x < y, then they respectively

sell min{a, d}, min{b, (d − a)+} units, where z+ denotes max{z, 0}. The cost of each

transaction is c. Therefore, a seller earns a profit of i(x − c) when she sells i units with
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price x per unit. Because of regulatory restrictions or because of valuations that buyers

associate with purchase of each unit, the price selected by each seller should be bounded

by some constant v > c, i.e. x ≤ v. The availability of each seller is random:

Terminology 1. We denote mk as the maximum possible number of available units of

seller k. Let qkj ∈ [0, 1] be the probability that seller k has j ∈ {0, . . . ,mk} units available,

and ~qk = (qk0, . . . , qkmk).

The availability of sellers may for example follow binomial distributions B(m1, p1) and

B(m2, p2). Specifically, if p1 = 0.5, p2 = 0.3, m1 = 3, and m2 = 2, then ~q1 = (1
8 ,

3
8 ,

3
8 ,

1
8)

and ~q2 = ( 49
100 ,

42
100 ,

9
100).

We assume that sellers have zero unit available for sale with positive probability, i.e.,

qk0 > 0 for k ∈ {1, 2}, and the competition is uncertain, i.e., qk̄i < 1 for i ∈ {0, 1, . . . ,mk}

for at least one seller k2. Note that if competition is deterministic for both sellers, then

the problem is trivial.

Terminology 2. For each seller k, let k̄ denote the other seller, i.e., if k = 1 (respectively,

k = 2), then k̄ = 2 (respectively k̄ = 1).

Sellers’ decisions and information

Sellers select their price based on the number of units they offer in the market. Before

choosing her price, a seller does not know the number of units of the commodity that

her competitor has available for sale and the price per unit her competitor selects. She

2Note that if these exists i, j ∈ {0, . . . ,mk} such that q1i = 1 and q2j = 1, then both sellers know the

exact number of available units with the other seller. Thus the competition is deterministic.
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is however aware of the demand and the distributions for the above quantities. A seller

may select her price randomly.

Terminology 3. Let Φkj(.) be the probability distribution that the seller k ∈ {1, 2} uses

for selecting price per unit when she offers j units. Let p̃kj and ṽkj be the infimum and

the supremum of the support set3 of Φkj(.). The strategy profile of seller k is Θk(.) =

(Φk1(.), . . . ,Φkmk(.)).

An example of probability distributions, support sets, and their infimums and supre-

mums is presented in Figure 3.1. In this figure, the infimums (p̃kj ’s) are illustrated

explicitly, and ṽkj = p̃k,j−1 (For instance, ṽ13 = p̃12). Note that, Figure 3.1 presents

the distributions which are strictly increasing between the infimum and the supremum

of their support sets. However, the probability distributions in general may consist of

strictly increasing and flat parts. For example, a probability distribution that is strictly

increasing over intervals [a, b] and [c, d], and flat over interval [b, c]. Unlike the previous

example, the support set of this probability distribution ([a, d] ∪ [c, d]) is not connected.

3.1.2 Problem Formulation

Clearly, the number of units a seller sells and her profit are random.

Terminology 4. Let uk(Θk(.),Θk̄(.)) denotes the expected profit of seller k when she

adopts strategy profile Θk(.) and her competitor adopts Θk̄(.).

3The support set of a probability distribution is the smallest closed set such that its complement has

probability zero under the distribution function. In other words, if there is another set such that its

complement has probability zero, it should be a super set of the support set.
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Definition 5. A Nash equilibrium (NE)4 is a strategy profile such that no seller can im-

prove her expected profit by unilaterally deviating from her strategy. Therefore, (Θ?
1(.),Θ?

2(.))

is a NE if for each seller k:

uk(Θ
∗
k(·),Θ∗k̄(·)) ≥ uk(Θ̃k(·),Θ∗k̄(·)), ∀ Θ̃k(·).

Terminology 5. With slight abuse of notation, we denote ukl(x) as the expected profit

that seller k earns, and Bkl(x) as the expected number of units that seller k sells, when she

offers l units for sale with price x per unit, respectively (the dependence on the competitor’s

strategy is implicit in this simplified notation).

Clearly, ukl(x) = Bkl(x)(x− c). (3.1)

Note that ukl
l is the expected utility per unit of availability. Thus, Ak,l,j(x) = 1

l ukl(x)−

1
jukj(x) is the difference between the utility per availability for availability levels l and

j. We will see that Ak,l,j(x) plays an important role throughout in the proofs, which

motivates the following terminology:

Terminology 6. Let Ak,l,j(x) = 1
l ukl(x)− 1

jukj(x) = (x− c)Bk,l,j(x), where Bk,l,j(x) =

1
lBkl(x)− 1

jBkj(x).

Terminology 7. Let ek = (d−mk̄)
+.

Note that for all x ≤ v,

Bkl(x) = l l = 1, . . . , ek (3.2)

4Clearly, our game is a Bayesian game with the number of available units for sale being the type of

a player. For the sake of notational convenience, we use Nash equilibrium as an alternative for Bayesian

Nash equilibrium.
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as k will sell all she offers in this case given that the total offering is less than the

demand. We would later obtain the expression for Bkl(x) under the NE strategy profiles

when l > ek.

Definition 6. A price x is said to be the best-response price for seller k when she offers

j units if ukj(x) ≥ ukj(a) for all a ∈ [0, v].

Note that a NE-strategy profile selects with positive probability only amongst the

best-response prices. Thus, all the elements of support sets are best responses except

potentially those on the boundaries (elements of boundaries may not be best responses)

if there is a discontinuity in the utility at those points.

We seek to determine the Nash equilibrium strategy profile of sellers. If m1 + m2 ≤

d, since there is no competition between sellers, both sellers offer their units with the

monopoly price, v at the NE. We therefore assume that m1 +m2 > d.

3.2 Properties of a NE when d > max{m1,m2}

We investigate the necessary conditions for a strategy to be an NE when d > max{m1,m2}

(Theorem 13). We will explicitly point out whenever we use the assumption that d >

max{m1,m2}.

Theorem 13. A NE must satisfy the following properties when d > max{m1,m2},

1. For each k, there exists a threshold such that seller k offers price v with probability

one if she has the availability level less than or equal to this threshold. This threshold,

denoted as lk henceforth, is such that:
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(a) lk ∈ {ek, . . . ,mk − 1}

(b) l1 + l2 = d− 1 or l1 + l2 = d

2. When seller k has lk + 1 5 units, she uses distribution Φk,lk+1(.)

(a) whose support set is [p̃k,lk+1, v],

(b) which is continuous throughout except possibly at v, and

(c) has a jump at v for at most one value of k ∈ {1, 2}, and size of such a jump is

less than 1

3. When the availability level is i ∈ {lk + 2, . . . ,mk}6, seller k uses distribution Φki(.)

(a) whose support set is [p̃k,i, p̃k,i−1],

(b) which is continuous throughout

(c) p̃1,mk = p̃2,mk

4. The utility of seller k when she offers i units is equal for all prices in the support

set of Φki(.), except possibly at price v (if v belongs to her support set).

In Appendix 3.9.3, we will present an algorithm to explicitly compute the NE strategies

satisfying properties in Theorem 13. Using this algorithm, in Figure 3.1, we plot an NE

probability distribution of price when the vector of availability distributions are ~q1 =

[0.3, 0.2, 0.2, 0.3] and ~q2 = [0.4, 0.2, 0.2, 0.2], the demand , i.e. d, is 3, v = 10, and c = 6.

Note that in this case l1 = l2 = 1, and l1 + l2 = d−1 (part 1 at Theorem 13). This means

that both sellers offer price v with probability one if they have one unit of commodity

5The same lk as the one in part 1.
6The same lk as the one in part 1
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Figure 3.1: An example of an NE pricing strategy, Supp = Support Set. Note that Φ11

and Φ21 have a jump of magnitude one, and Φ22 has a jump of size 0.6 at v.

available. When sellers have availability l1 + 1 = 2 and l2 + 1 = 2 units available for

sale, they use probability distributions Φ12(.) and Φ22(.), respectively, whose support

sets are [p̃12, v] and [p̃22, v], respectively (part 2a of the Theorem). In addition, these

distributions are continuous throughout except possibly at v (part 2b). Furthermore, only

the probability distribution Φ22(.) has a jump at price v and the size of this jump is less

than one (part 2c of Theorem 13). When sellers have availability level l1 + 2 = l2 + 2 = 3,

they use probability distributions Φ13(.) and Φ23(.), respectively, whose support sets are

[p̃13, p̃12] and [p̃23, p̃22], respectively (part 3a of Theorem 13). In addition, these probability

distributions are continuous throughout (part 3b). Note that p̃13 = p̃23 = p̃ (part 3c of

the Theorem). More numerical examples are presented in Appendix 3.9.3.

We prove Theorem 13 using the following results which we first state and prove later.
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1. The probability distribution of price, Φki(x) for i ∈ {1, . . . ,mk}, is continuous for

x < v (Section 3.2.2, Property 3).

2. The lower bound of prices are equal for both sellers (Section 3.2.3, Property 4).

3. There is no gap between support sets (Section 3.2.4, Property 5).

4. Support sets are disjoint barring common boundary points, and are in decreasing

order of the number of available units for sale (Section 3.2.4, Property 6).

5. The structure of NE at price v: A seller selects v with probability one, if and

only if the number of available units with her is less than or equal to a threshold

lk ∈ {0, 1, . . . ,mk−1}, where l1 +l2 = d or l1 +l2 = d−1 (Section 3.2.6, Property 7).

Note that in Figure 3.1, the distributions are continuous and the lower bound of prices

are equal. In addition, every element of the set [p̃, v] belongs to a support set, i.e. there

is no gap between support sets. The support sets of seller one when she offers 3, 2, and

1 unit are [p̃, p̃12], [p̃12, v], and {v}, respectively. This illustrates the result 4. The result

5 is the same as part 1 in Theorem 13, and is previously connected to Figure 3.1.

Henceforth in this section, we focus on proving the necessary results and properties

needed to prove Theorem 13.

3.2.1 Results that we use throughout

Property 1. For each i and k, Φki(c) = 0.

This result follows directly since prices less than cost c are not chosen by sellers.

Property 1 therefore rules out jumps at prices x ≤ c.
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Proof. Note that for each i, uki(x) ≤ 0 for x ≤ c. But, since Bki(x) ≥ iqk̄0 > 0 for all

x ∈ [0, v], uki(x) > 0 for all x ∈ (c, v]. Thus, no price in [0, c] is a best response for a

seller.

Lemma 17 rules out jumps at prices higher than c:

Lemma 17. Let the strategy profile of player k be Θk(.) = (Φk1(.), . . . ,Φkmk(.)), and

Φki(.) have a jump at x > c. Then for l such that l + i > d, uk̄l(x − ε′) > uk̄l(a),

∀a ∈ [x,min{x+ ε, v}], and for all sufficiently small but positive ε and ε′.

We provide the intuition behind the result and defer the proof to Appendix 3.9.1. Note

that offering a lower price increases the expected number of units sold by a seller, but

decreases the revenue per unit sold. Suppose that a seller k offers i units with price x with

a positive probability. Let her competitor k̄ have l units available where l + i > d; k̄ can

sell a strictly larger number of units in an expected sense by choosing a price in the left

neighborhood of x (eg, x− ε) rather than x or in its right neighborhood. In addition the

difference is bounded away from zero even as the size of the left neighborhood approaches

zero. On the other hand, the difference in the revenue per unit approaches zero as the

size of the left neighborhood approaches zero. Therefore, prices in the left neighborhood

of x constitute better responses for the seller than x or those in its right neighborhood.

The following property fully characterizes the NE when seller k offers i ∈ {1, . . . , ek}

units.

Property 2. Φki(x) selects v with probability 1 and any other prices with probability 0

when i = 1, . . . , ek for each k.
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The proof relies on the fact that if a seller offers less than or equal to ek units of

commodity, she can sell all units regardless of the price she quotes. Therefore v strictly

dominates all other prices.

Proof. This statement holds by vacuity if max{m1,m2} ≥ d. Now consider d > max{m1,m2}.

If the seller k offers i ≤ ek units, the total offerings from both sellers are at most d, since the

other seller offers at most mk̄ units. Thus, the seller k can sell everything it offers with any

price x in interval [0, v]. Therefore for all x ∈ [0, v), uki(x) = i(x− c) < i(v− c) = uki(v).

Thus, no price in [0, v) is a best response. The result follows.

3.2.2 Continuity of Price Distribution for Price x < v

Utilizing Lemma 17, we can prove that the distribution of price is continuous for prices

less than v,

Property 3. Φki(x) is continuous for x < v.

Note that in Fig 3.1, there is no jump in the distributions for prices less than v.

Proof. If i ≤ ek, the property follows from Property 2. Now let i > ek. If x ≤ c,

the property follows from Property 1. Now consider x ∈ (c, v). We use contradiction

argument. Suppose Φki(.) has a jump at price x < v. Since i > ek, there exists l ≤ mk̄

such that l+ i > d. Using lemma 17, we can say that if Φki(.) has a jump at x, for each l

such that l+i > d, uk̄l(x−ε′) > uk̄l(a), where a ∈ [x,min{x+ε, v}], and for all sufficiently

small but positive ε and ε′. Therefore no price in this interval is a best response for the

seller k̄ when she offers l units. Therefore Φk̄l(x+ ε) = Φk̄l(x) for all sufficiently small but

positive ε and all l such that l > d − i, i.e. the other seller does not choose any price in
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[x, x + ε) whenever she offers l units. Knowing this we can say that Bki(a) = Bki(x) for

all a ∈ [x, x+ ε) for some ε > 0 such that x+ ε ≤ v. Therefore,

uki(x) = (x− c)Bki(x) < (x+
ε

2
− c)Bki(x+

ε

2
) = uki(x+

ε

2
) (3.3)

Thus, x is not a best response for a seller who offers i units. Hence x is chosen with

probability zero, which rules out a jump at x for Φki(.). The property follows.

Based on this property, the distribution of price is continuous for x < v. We will later

show that the price distribution has a jump at v for some availabilities.

Based on the above continuity result, the expression for the expected number of units

sold for all x ∈ [0, v) and l = ek + 1, . . . ,mk is,

Bkl(x) = l
d−l∑
i=0

qk̄i + l

mk̄∑
i=d−l+1

(
1− Φk̄i(x)

)
qk̄i +

mk̄∑
i=d−l+1

Φk̄i(x)qk̄i(d− i) (3.4)

Note that we assumed d ≥ max{m1,m2} in (3.4). The first term in the left hand side

corresponds to the situation in which the other seller offers at most d − l units. In this

case, seller k will sell all l units she offered in the market. The second and the third terms

are corresponding to the situation in which the other seller offers more than d − l units

with a price higher than and less than x, respectively. If the other seller offers with price

higher than x, seller k is able to sell the entire l units. On the other hand, if k̄ offers with

a price less than x, k will sell d− l units of commodity.

We can now obtain an expression for ukl(x) for x < v from (3.1), (3.2), and (3.4).

142



3.2.3 Sellers Have Equal Lowerbound of Prices

Note that the example NE distributions presented in Figure 3.1 have equal lower bounds

(p̃ = p̃13 = p̃23). We now prove that all NE distributions must satisfy this property:

Property 4. The minimum of lower end points of support sets are equal for both sellers.

Mathematically,

p̃1 = p̃2

where, p̃k = min{p̃ki : i = 1, . . . ,mk}. Furthermore, p̃1 = p̃2 < v if d < m1 +m2.

If the lower bound of prices for seller k, i.e. p̃k, is lower than that for the other seller,

p̃k̄, then k sells equal number of units in an expected sense by choosing p̃k as any other

price in (p̃k, p̃k̄). Using continuity of distributions for prices less than v, we can say that

p̃k̄ is a better response than p̃k for k, which is a contradiction. The formal proof follows:

Proof. Suppose not. Without loss of generality suppose p̃1 < p̃2 ≤ v. Therefore there

exists j such that p̃1 belongs to the support set of Φ1j(.). Since player 2 does not offer

with any price in the interval [p̃1, p̃2), B1j(p̃1) = B1j(p̃
−
2 ) 7. Thus u1j(p̃1) < u1j(p̃

−
2 ) which

contradicts the assumption that p̃1 is a best response for the first player when she offers

i units of commodity. Therefore, the first part of the property follows.

Suppose p̃1 = p̃2 = v. Thus, both sellers choose the price v with probability 1

regardless of the number of units they have available. Consider seller k. Let l = mk̄.

Since m1 +m2 > d, Lemma 17 implies that uk̄mk̄(v − ε) > uk̄mk̄(v). This contradicts the

assumption that v is the best response for seller k. The result follows.

7f(x−) = limy↑x f(y)
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Terminology 8. Let p̃ denote the minimum of lower end points of prices in the NE, i.e.

p̃1 = p̃2 = p̃.

3.2.4 The union of support sets cover [p̃, v]

We show that there does not exist an interval of prices in [p̃, v] which is eschewed with

probability 1 by both sellers. If such an interval existed, the cumulative distribution

functions of both sellers would be flat in it, which we rule out below. Note that in Fig 3.1,

the NE distributions are strictly increasing throughout their support sets, and there is no

flat region.

Property 5. There does not exist a, b such that p̃ ≤ a < b ≤ v and Φki(b) = Φki(a) for

all i ∈ {ek + 1, . . . ,mk} and k = 1, 2.

If such a and b exist for seller k, this means that regardless of the number of available

units, k does not select any price in the interval (y, z) where y ≤ a, z ≥ b, and y is a

best response when k has an availability level l. This implies that for the competitor,

k̄, the expected utility is strictly increasing in interval [y, b]. Thus k̄ does not select any

price in the interval [y, b). This again implies that for seller k, when she offers l units,

price b yields a strictly higher payoff than y, which is in contradiction with y being a best

response for k when offering l units. The formal proof is as follows:

Proof. Let there be a, b, and k such that p̃ ≤ a < b ≤ v and Φki(b) = Φki(a) for all i.

Thus for ζ such that a < b− ζ < b ≤ v, Φki(b− ζ) = Φki(a). Consider y such that,

y = sup{x|x < a, x ∈ support set of Φkl(.) for an l}
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Since support sets are closed, y belongs in the support set of Φkl(·) for some l. Thus, y is

a best response when the availability of player k is l (note that y < v).

In addition, note that Φki(y) = Φki(b − ζ) for all i. Since a < b − ζ < v, from

Property 3 and equation (3.4), the expected number of units sold for the second seller

remains constant for prices in [y, b − ζ], regardless of the number of units she offers, i.e.

Bk̄,.(y) = Bk̄,.(b− ζ). Thus, uk̄,.(b− ζ) > uk̄,.(y), and player k̄ does not offer any price in

the interval [y, b−ζ). Therefore Φk̄,.(y) = Φk̄,.(b−ζ). Since a < b−ζ < v, from Property 3

and equation (3.4), Bkl(y) = Bkl(b−ζ). Thus, ukl(b−ζ) > ukl(y). This is in contradiction

with y being a best response when the availability of player k is l. Therefore, there does

not exist a, b such that p̃ ≤ a < b ≤ v and Φki(b) = Φki(a) for all i ∈ {1, . . . ,mk} and

k = 1, 2. Also, note that for i ∈ {1, . . . , ek}, Φki(b) = Φki(a) for p̃ ≤ a < b ≤ v, since

support sets for these distributions only contain v. The result follows.

Remark: In all the previous results, we considered d ≥ max{m1,m2}. In the next

section, we need to consider that d > max{m1,m2}.

3.2.5 Support Sets Are Mutually Disjoint and in Decreasing Order of

the Number of Availabilities

We start with proving a result, Lemma 18, on Ak,l,j(x) (defined in Section 3.1, Termi-

nology 6). Note that we use Lemma 18 in subsequent sections as well. We next prove

Property 6 using this result, which leads to the main results of this section: Corollaries 8

and 9.
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First, using (3.2) and (3.4),

Bk,l,j(x) =− 1

l

d−j∑
i=d−l+1

Φk̄i(x)qk̄i(i− d+ l) +

mk̄∑
i=d−j+1

Φk̄i(x)qk̄i(d− i)(
1

l
− l

j
) (3.5)

Thus, Bk,l,j(·) is non increasing and non positive with respect to the price x when

l > j. Therefore if l > j then Ak,l,j(x) is non increasing and non positive with respect

to x. Based on the following lemma, Ak,l,j(x) is (strictly) decreasing for v > x ≥ p̃ and

l > j if d > max{m1,m2}.

Lemma 18. For each seller k ∈ {1, 2} and every l and j, j < l ≤ mk, Ak,l,j(x) is

(strictly) decreasing for p̃ ≤ x < v when d > max{m1,m2}.

Since Ak,l,j(.) = (x − c)Bk,l,j(x), knowing that Bk,l,j(x) is non-increasing, lemma

follows if we prove that Bk,l,j(·) is negative. We will prove that Φkmk(x), which is included

in the summation of Bk,l,j(·), is positive for x > p̃ and k ∈ {1, 2}. In addition, the

coefficient of Φkmk(x) is negative since d > max{m1,m2}. Thus, the result follows.

Proof. It is enough to prove that Bk,l,j(x) is non-increasing for x ≥ p̃ and negative for

x > p̃. This yields that Ak,l,j(x) = (x− c)Bk,l,j(x) is strictly decreasing with respect to x.

Note that in (3.5), Φkj(.)’s are non-negative and non-increasing since they are prob-

ability distributions. In addition, they have negative weights: −(i − d − l) ≤ −1 < 0,

1
l −

1
j < 0, and since d > max{m1,m2}, d− i ≥ d−mk̄ > 0. Thus Bk,l,j(x) is non increas-

ing and non positive with respect to the price x when l ≥ j. To prove that Bk,l,j(x) is

negative for x > p̃, since the distributions in (3.5) have (strictly) negative weights , it is

enough to prove that at least one of the Φkj(.)’s is included in the summation of Bk,l,j(.)

is positive, i.e. not all of them are zero. We will prove that Φkmk(x) > 0 for x > p̃ and

k ∈ {1, 2}.
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Suppose not and there exists x > p̃ such that x ≤ p̃kmk . By Property 5, there exists

an ε > 0 and an availability level j 6= {1, . . . , ek,mk} such that [p̃kmk − ε, p̃kmk ] belongs to

the support set of Φkj(.) and p̃kj < p̃kmk . Thus ukj(p̃kmk) = ukj(p̃kmk − ε). In addition,

Bk,mk,j(x) is the weighted summation of Φk̄i(.) for i ∈ {ek̄+1, . . . ,mk̄}. Property 5 implies

that p̃kj belongs to at least one of the support sets of Φk̄i(.) for i ∈ {ek̄ + 1, . . . ,mk̄}.

The distribution Φk̄i(.) is included in the summation of Bk,mk,j(x), and its coefficient is

negative. Thus, Ak,mk,j(x) is strictly decreasing with respect to x for x > p̃kj . Thus

Ak,mk,j(p̃kmk − ε) > Ak,mk,j(p̃kmk). Using ukj(p̃kmk) = ukj(p̃kmk − ε), we can conclude

that ukmk(p̃kmk) = ukmk.max < ukmk(p̃kmk − ε). This contradicts with p̃k,mk belonging to

the support set of Φkmk(.). The result follows.

Note that in the previous lemma, we used d > max{m1,m2} to prove that Ak,l,j(x)

is decreasing for p̃ ≤ x < v. The following properties characterize the NE for price less

than v.

Property 6. For k ∈ {1, 2}, the support set of Φkl(.) is a subset of [p̃, p̃kj ] ∪ [v] for all

integers j ∈ [1, l).

For example, in Figure 3.1, the support set for seller 1 and availability 3 is [p̃, p̃12],

which is a subset of the mentioned set.

Proof. First note that for j ∈ {1, . . . , ek} property follows, since p̃kj = v by Property 2.

Now consider j > ek. Consider support sets of Φkj(·), Φkl(·), and j < l. We will show

that ukl(a) < ukl(p̃kj) for all a ∈ (p̃kj , v). Thus, no a ∈ (p̃kj , v) is a best response for

the seller k with availability of l units. Therefore, the support set of Φkl(·) is a subset of

[c, p̃kj ] ∪ [v].
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We now complete the proof, by showing that ukl(a) < ukl(p̃kj) for all a ∈ (p̃kj , v):

1

l
ukl(a)− 1

j
ukj(a) = Ak,l,j(a)

Since l > j and p̃ ≤ p̃kj < a < v, by Lemma 18, Ak,l,j(a) is decreasing function of a

for a ∈ [p̃kj , v). Thus, Ak,j(a) < Ak,j(p̃kj) for a ∈ (p̃kj , v). On the other hand ukj(a) ≤

ukj(p̃kj) for all a > p̃kj , since p̃kj is a best response of a seller with availability j, therefore

ukl(p̃kj) > ukl(a).

Note that, in this stage, since Φkl(.) can have a jump at v, we cannot rule out v as a

member of the support set of Φkl(.).

Corollary 8. The support sets of Φkl(.) and Φkj(.) overlap at most at one point in [p̃, v).

For instance, note that in Figure 3.1, the support sets of Φ13 and Φ12 overlap only at

p̃12, the support sets of Φ12 and Φ11 overlap only at v, and there is no overlap between

support sets of Φ13 and Φ11.

Proof. Suppose two points x1 and x2, where x1 < x2 < v, and both points belong to the

intersection of the support sets of Φkj(·) and Φkl(·). Without loss of generality, consider

j < l. The price x2 > p̃j belongs to the support set of Φkl(.), which is a contradiction

with Property 6.

Corollary 9. For prices less than v support sets are contiguous (Property 5), disjoint (ex-

cept possibly at one point) (Corollary 8), and in decreasing order of the number of available

units for sale (Property 6). Thus, there exists an increasing sequence akmk , ak,mk−1, . . .

of positive real numbers in (c, v] such that the seller k will randomize her price in the

interval [aki, ak,i+1] and possibly {v} when she has i units of commodity available for sale.
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For instance, note that in Figure 3.1, the support sets of seller one are in decreasing

order of the number of available units for sale, and the aforementioned increasing sequence

is p̃, p̃12, and v.

3.2.6 The Structure of Nash Equilibrium at Price v

We will investigate the possibility of having a jump at v. First, we prove Lemma 19

which complements previous results by identifying the nature of overlap between Φkj(.)

and Φk̄l(.) for j ∈ {1, . . . ,mk} and l ∈ {1, . . . ,mk̄} for prices less than v. Using this

lemma, we prove Property 7 which is the main result of this section.

Lemma 19. For every price p̃ ≤ x < v, x should belong to the support sets Φkl(.) and

Φk̄j(.) such that l + j > d.

A contradiction argument is used to prove the lemma. Assume that there exist x, l,

and j such that x belongs to say Φkl(.) and Φk̄j(.), and l + j ≤ d. We show that in this

case, the expected number of units sold at x and x+ ε are equal for seller k when offering

l units, i.e. Bkl(x) = Bkl(x+ ε), and subsequently that ukl(x+ ε) > ukl(x). Thus x is not

a best response for seller k who offers l units, which is a contradiction.

Proof. Suppose not. There exist x, l, and j such that x belongs to say Φkl(.) and Φk̄j(.),

and l + j ≤ d. We show that there exist j̃, ε > 0 such that x + ε belongs in the support

set of Φk̄j̃(.), and subsequently that ukl(x + ε) > ukl(x). Thus x is not a best response

for seller k who offers l units which is a contradiction. Consider two cases:

• x = ṽk̄j . Using Corollary 9, x and x+ ε belongs to the support set of Φk̄,j−1(.) when

ε is small enough. Take j̃ = j − 1.
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• x < ṽk̄j . If ε is small enough, x and x+ ε belongs to the support set of Φk̄j(.). Take

j̃ = j.

Note that since l+ j ≤ d, l+ j̃ ≤ d. We are going to argue that the expected number

of units sold at x and x+ε are equal for seller k, i.e. Bkl(x) = Bkl(x+ε). To show this, we

condition on the number of available units with the seller k̄. If k̄ has more than j̃ number

of available units, say f , then she will offer with price less than x with probability one.

Thus B̃kl(x|f) = B̃kl(x+ ε|f) = d− f in which B̃.(.|.) is the conditional expected number

of units sold. If k̄ offers less than j̃ number of units, she will offer with price higher than

x + ε with probability one. Thus B̃kl(x|f) = B̃kl(x + ε|f) = l. If k̄ offers j̃ units, since

l + j̃ ≤ d, B̃kl(x|j̃) = B̃kl(x+ ε|j̃) = l. Therefore the expected number of units sold at x

and x+ ε are equal for seller k, and ukl(x+ ε) > ukl(x). The proof is complete.

Finally, the following property characterizes the behavior of NE at v.

Property 7. For each k, there exists a threshold such that seller k offers price v with

probability one if she has the availability level less than or equal to this threshold. We

denote this threshold with lk. This threshold is such that:

• lk ∈ {ek, . . . ,mk − 1}

• l1 + l2 = d− 1 or l1 + l2 = d

The price distribution Φkj(.) does not have a jump at v if j > lk + 1, at most one of the

distributions Φ1,l1+1(.) and Φ2,l2+1(.) can have a jump at v, and size of such a jump is

less than 1.
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Note that in Fig 3.1, l1 = l2 = 1, and l1 + l2 = d− 1. In addition, both sellers have a

jump of magnitude one at price v when they have one unit available, only seller two has a

jump at price v when the availability level is two, and there is no jump in the distribution

functions when sellers have three units available.

Proof. Take zk such that k offers price v with probability one if she has i ∈ {1, . . . , zk}

units. Property 2 shows that zk ≥ ek. We will prove that the zk should be less than mk.

Note that if seller k has mk units of availability and she offers her units with a single

price v, then p̃k = v. By Properties 4 and 6, the other seller, k̄, offers her units with a

single price v regardless of the number of available units. This is a contradiction. The

reason is because of Lemma 17. Since m1 + m2 > d, if Φ1,m1(.) has a jump at v, then

u2m2(v − ε) > u2m2l(v), for all sufficiently small but positive ε. Thus v is not a best

response for the second player when she offers m2 units, which is a contradiction. Thus

zk < mk. Therefore zk ∈ {ek, . . . ,mk − 1}.

First, suppose z1 + z2 ≥ d + 1. By lemma 17, v is not a best response for the player

k when she offers zk units, which is a contradiction. Therefore z1 + z2 ≤ d. Next, we will

prove that either z1 + z2 = d− 1 or z1 + z2 = d. Note that by the definition of zk, seller

k with availability zk + 1 cannot choose the price v with probability 1. Thus using this

fact and Corollary 9, the price x = v − ε for ε > 0 small enough is in the support sets of

Φ1,z1+1(·) and Φ2,z2+1(·). Thus, by Lemma 19, z1 + z2 ≥ d−1. Knowing that z1 + z2 ≤ d.

Take lk = zk, and the first part of the property follows.

Now we should consider the possibility of having a jump at v for Φkj(.) for j ≥ lk + 1.

We will prove that the price distribution does not have a jump at v when seller k offers
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more than lk + 1 units. Suppose Φkj(.) has a jump for j > lk + 1. Note that j + lk̄ >

lk + lk̄ + 1 ≥ d. By Lemma 17, v is not a best response for the seller k̄ under availability

lk̄ which contradicts the definition of lk̄.

Now consider lk + 1. By definition of lk such a jump must have a size less than 1,

should it exist. We will prove that at most one of the distributions Φ1,l1+1(.) and Φk,l2+1(.)

can have a jump at v. Suppose not and both have a jump at v. By Lemma 17, since

(l1 + 1) + (l2 + 1) > d, v is not a best response for the player k when she offers lk + 1

units. This is a contradiction. The result follows.

Revisiting Equation (3.4) implies that utility, uki(.), is continuous not only in interval

[c, v), but also at price v, if i ≤ d− lk̄ − 1. The reason is that for i ≤ d− lk̄ − 1, equation

(3.4) depends only on Φk̄j(.) where j ≥ lk̄ + 2, which is continuous at price v based on

Property 7. If Φk̄lk̄+1(.) is continuous at v then uki(.) is continuous in [c, v] for i ≤ d− lk̄.

3.2.7 Proof of Theorem 13

Proof. Part 1 of Theorem 13 follows from Property 7. We now prove part 2. The support

set of Φk,lk+1(.) includes at least one x < v from Property 7. Thus, Properties 6 and 5

imply part 2a of this part. Parts 2b and 2c follow from Properties 3 and 7, respectively.

We now prove part 3. We start with 3a. Consider i > lk+1. From Property 7, Φk,i(·)

does not have a jump at v. From part 2a and Property 6, v is not in the supports set of

Φk,i(.) and ṽk,i ≤ p̃k,i−1. The result can now be proved by induction starting with i = lk+2

using the fact that there is no gap between the support sets (Property 5). Since v is not
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in the support set of Φk,i(.), part 3b follows from Property 3. Part 3c follows from part 3a

and Property 4.

Part 4 follows from the fact that every price in the support set of a NE, except those

on the boundaries, should be a best response for a seller. Thus they yield the same utility

value. The result follows for the boundary points of the support sets other than v from

Property 3.

3.3 Arbitrary Demand

In this section, first we present the sufficiency theorem for d ≥ max{m1,m2} (Theo-

rem 14). Theorem 14 establishes that a strategy profile which satisfies the mentioned

properties in Theorem 13 constitutes an NE when d ≥ max{m1,m2}. Note that un-

like Theorem 13, the sufficiency theorem holds even when d = max{m1,m2}. Thus, the

properties in Theorem 13 are both necessary and sufficient conditions for an NE when

d > max{m1,m2}, and only sufficient conditions when d = max{m1,m2}. The sufficiency

theorem naturally leads to an algorithm for computing NE strategy profiles that satisfy

the properties in Theorem 13 (Appendix 3.9.3). Any strategy profile obtained by the

algorithm constitutes an NE by Theorem 14. In Section 3.3.2, we argue that the compu-

tation of the NE strategies for d < max{m1,m2} can be reduced to d = max{m1,m2}.

This completes the entire framework.

3.3.1 The Sufficiency Theorem when d ≥ max{m1,m2}

Theorem 14. Consider a strategy profile that satisfies the properties enumerated in The-

orem 13. This strategy profile is a Nash equilibrium when d ≥ max{m1,m2}.
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The proof is presented in Appendix 3.9.2. In the proof, we use the fact that Ak,l,j(.)

is non increasing and non positive when d ≥ max{m1,m2}.

3.3.2 Allowing d ≤ max{m1,m2}

Note that all results before equation (3.4) also hold when d ≤ max{m1,m2}. Thus (3.4)

can be restated by replacing ek = d−mk̄ with ek = (d−mk̄)
+:

Bkj(x) = j

(d−j)+∑
i=0

qk̄i + min{j, d}
mk̄∑

i=(d−j)++1

(
1− Φk̄i(x)

)
qk̄i +

mk̄∑
i=(d−j)++1

Φk̄i(x)qk̄i(d− i)+

(3.6)

Note that if mk > d, the utilities of all number of availability levels j ≥ d for player k

are equal:

ukd = uk,d+1 = · · · = ukmk = d

mk̄∑
i=1

(
1− Φk̄i(x)

)
qk̄i (3.7)

Let q̃k̄d =
∑mk̄

i=d qk̄i and Φ̃k̄d(x) =
∑mk̄

i=d
qk̄i
q̃k̄d

Φk̄i(x). Thus, q̃k̄d is the probability that

the availability level of seller k̄ is greater than or equal to d and Φ̃k̄d(x) is the average

probability distribution associated with selecting the price if seller k̄ availability is d or

higher. Now, the term
∑mk̄

i=d

(
1− Φk̄i(x)

)
qk̄i in the expression for uki(.) in (3.6) can

be replaced by q̃k̄d(1 − Φ̃k̄d(x)). Thus the problem is reduced to finding the structure

when d = max{m1,m2}. It was proved previously that a strategy profile that satisfies

properties in Theorem 13 is a NE when d = max{m1,m2}. Thus, a set of equilibria of the

game when d < max{m1,m2} can be found by defining Φ̃kd(.) and using the properties in

Theorem 13. The distribution of each individual Φkj(.) for j ≥ d cannot be determined

uniquely and is not of significant interest.
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3.4 The Symmetric Setting

We now consider the symmetric setting in which ~q1 = ~q2 = ~q (clearly m1 = m2 = m). In

this case, it is natural to consider a symmetric NE, defined as follows,

Definition 7. An NE (Θ1(·),Θ2(·)) is said to be symmetric if Θ1(·) = Θ2(·).

Thus, when considering symmetric NE, in terminologies like Φ.(·),Θ.(·), u.(·), p̃·, we

drop the index that represents the seller and only retain the index that represents the

number of units available for sale. As a special case of the general setting (Sections 3.2 and

3.3), every symmetric NE should satisfy the properties in Theorem 13 when d > m , and

every strategy profile that satisfies these properties is a NE when d ≥ m (Theorem 14).

In Section 3.4.1, we extend Theorem 13 to the case of d = m. In Section 3.4.2, we will

present an algorithm to find symmetric Nash equilibria of the game when d ≥ m. Using

the results in Section 3.3.2, the algorithm can be extended to d < m.

Note that the algorithm reveals that there is only one symmetric strategy profile that

satisfies the properties. It follows from Theorems 13 and 14 that a symmetric NE strategy

profile exists uniquely when d ≥ m. In contrast, in Appendix 3.9.3, we show that there

may exist multiple Nash equilibria for an asymmetric market.

3.4.1 Properties of a Symmetric Nash Equilibrium

Theorem 15. Let d = m. A symmetric NE in a symmetric market satisfies the properties

in Theorem 13.

The proof is technical and is relegated to the Appendix. It implies that properties in

Theorem 13 are necessary and sufficient conditions for a symmetric NE when d ≥ m.
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Since NE is symmetric, l∗ = l1 = l2. Thus, l∗ = d−1
2 or l∗ = d

2 , whichever is an

integer. Since at most one seller can have a jump at v at l∗ + 1, in a symmetric NE,

none of them do. Thus, the properties in Theorem 13 transform to the following in the

symmetric context.

1. Sellers offer price v with probability 1, if they have i ∈ {1, . . . , l∗} available units.

2. There exists an increasing sequence am, am−1, . . . , al∗+1, al∗ of positive real numbers

in (c, v] with al∗ = v such that each seller randomizes her price in the interval

[ai, ai−1] when she has i units of commodity available for sale for i ∈ {l∗+1, . . . ,m}.

Thus,

(a) Support sets are contiguous.

(b) Support sets are disjoint (except possibly at one point).

(c) Support sets are in decreasing order of the number of available units for sale.

3. Price distribution is continuous for i ≥ l∗.

4. The utility of a seller when she offers i units is equal for all prices in the support

set of Φi(.), except possibly at price v (if it belongs to her support set).

3.4.2 Algorithm for computing a symmetric NE for the symmetric set-

ting

We will now identify an algorithm to compute strategies that exhibit the properties in

the previous subsection. The algorithm reveals that there is only one symmetric strategy

profile that satisfies the same. It follows from Theorem 13 and 14 that a symmetric NE
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strategy profile exists uniquely when d ≥ m. Note that the algorithm is developed for

d ≥ m. However, with the method presented in Section 3.3.2, the algorithm can be used

to find the equilibrium for d ≤ m.

Since Φj(·) is completely characterized for j < d+1
2 , we should characterize Φj(·) for

j ≥ d+1
2 , and outline a framework for computing the same. We proceed in an increasing

order of j starting with j = dd+1
2 e. Then moving to j = dd+1

2 e+ 1, etc.

Now, let dd+1
2 e. Note that ṽd d+1

2
e = v and p̃k = v for k < dd+1

2 e, and ṽk ≤ p̃d d+1
2
e

for k > dd+1
2 e (Properties 1 and 2c). Since support sets are ordered (Property 2c) and

disjoint (Property 2b), the expression for ud d+1
2
e(x) for x ∈ [p̃d d+1

2
e, v) only depends on

Φd d+1
2
e(x)(Equation (3.4)). In particular, ud d+1

2
e(v
−) can be obtained using the fact that

Φd d+1
2
e(v
−) = 1 which follows from the continuity of Φd d+1

2
e(.) (Properties 3). Next,

ud d+1
2
e(x) = ud d+1

2
e(v
−) for every x ∈ [p̃d d+1

2
e, v). Thus having ud d+1

2
e(v
−), and using

continuity, we can find a unique expression for Φd d+1
2
e(x). Using Φd d+1

2
e(p̃d d+1

2
e) = 0,

p̃d d+1
2
e can be found uniquely.

We now compute the structure of Φi(·), ∀i > dd+1
2 e using Φi−1(.),Φi−2(.), · · · ,Φd d+1

2
e(.)

that are computed before Φi(·). We utilize the facts that,

1. Φj(x) = 1 for j > i, x ∈ [p̃i, ṽi]

2. Φj(x) = 0 for j < i, x ∈ [p̃i, ṽi]

3. ṽi < v

Thus, from (3.4),

ui(ṽi) = (ṽi − c)
(
i

i−1∑
g=0

qg +

m∑
i

qg(d− g)

)
(3.8)
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Since ṽi = p̃i−1, and p̃i−1 is computed during the computation of Φi−1(·), which precedes

that of Φi(·), (3.8) fully specifies ui(ṽi). Furthermore, for x ∈ [p̃i, ṽi] the only unknown

variable in the expression of ui(x) is Φi(x). Since ui(x) = ui(vi) for x ∈ [p̃i, ṽi],

Φi(x) =
i
∑i−1

g=0 qg + iqi +
∑m

g=i+1 qg(d− g)− ui(ṽi)
x−c

qi(2i− d)
(3.9)

From (3.9), Φi(ṽi) = 1. Thus, for x ≥ ṽi, Φi(x) = 1. Now, p̃i can be uniquely identified

using the fact that Φi(p̃i) = 0,

p̃i = c+

(ṽi − c)
(
i
∑i−1

g=0 qg +
∑m

i qg(d− g)

)
i
∑i−1

g=0 qg + iqi +
∑m

g=i+1 qg(d− g)
(3.10)

Therefore Φi(x) = 0 for x ≤ p̃i. Clearly, Φi(·) has been characterized uniquely. Note that

the denominator of (3.10) is positive since d ≥ m and qm < 1 (uncertainty assumption in

Section 3.1). In addition, p̃i > c. This is because of the fact that the second term of RHS

of (3.10) is positive.

We now prove that Φi(·) is a valid probability distribution. Clearly, Φi(·) is continuous.

Note that in (3.9) for x ∈ [p̃i, ṽi), by increasing x, the term ui(vi)
x−c will strictly decrease

(since ui(ṽi) > 0), and we can say that Φi(x) is strictly increasing. Also, Φi(p̃i) = 0 and

Φi(ṽi) = 1. Thus, 0 ≤ Φi(x) ≤ 1 for x ∈ [p̃i, ṽi). Therefore, Φi(·) is non-decreasing and

assumes values in [0, 1] for all x. The claim follows. Thus we have uniquely identified a

symmetric strategy that satisfies the properties required by a Nash equilibrium.

3.5 Random Demand

We have so far assumed that the demand d is deterministic. In this section, we will

generalize the results to a random demand, D. Let rd denote the probability that the
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demand is d, Bkld(x) be the expected number of units that seller k sells if she offers l

units for sale and quotes x as the price per unit when the total demand is d, and ukld(x)

be the expected utility in this case. Clearly,

ukl(x) =
∑
d

rdukld(x) =
∑
d

rdBkld(x)(x− c)

We introduce d = min{d : d > 0 and rd > 0}. Utilizing similar proofs, we can show that

all the previous results about the structure of NE are valid for the random demand, once

d is replaced with d. This is but expected as each seller now chooses her price knowing

that she is assured of an overall demand of at least d (instead of d in the deterministic

demand case). Algorithms similar to those in the deterministic case can be developed for

computation of the NE in both symmetric and general cases.

3.6 Numerical Evaluations

In this section, we present numerical results for a symmetric market. In Section 3.6.1,

using the results we proved for a duopoly market, we propose a heuristic pricing strategy

for sellers in an oligopoly market, i.e. a market with multiple number of sellers. Numerical

results reveal that our proposed strategy constitutes a good approximation for the NE

of the oligopoly market. In Section 3.6.2, we investigate the asymptotic behavior of the

symmetric NE of a symmetric duopoly market when the number of available units with

a seller increases to infinity.
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3.6.1 Oligopoly Market

Suppose that the setting is symmetric and there exist n sellers in the market. We consider

a strategy that satisfies the properties identified for a symmetric NE in Section 3.4 with

the threshold l∗ = b dnc. Note that the algorithm for finding such a strategy is similar to

what is presented in Section 3.4.2. We now investigate how well this strategy approximates

an NE strategy in an oligopoly market.

We numerically compute the maximum expected utility for a particular seller, when

all other sellers choose the proposed strategy (best response utility, UBest Response). We

observe that over a large set of parameters for all possible availability levels, the best re-

sponse utility is either the same as the expected utility obtained by following the proposed

strategy (UProposed Strategy), or is fairly close to this value 8.

For instance, consider a market in which the availability of each seller follows a bi-

nomial distribution, B(m, p), with binomial probability p = 0.4 and m = 3 (m is the

maximum possible available units with each seller). In addition, in this market the de-

mand is d = max{n,m}, v = 10, and c = 1. We plot the relative difference, described as

follows, between the best response utility and the expected utility of the proposed strategy

versus different number of sellers, i.e. n, for different availability levels in Figure 3.2:

Relative Difference =
UBest Response − UProposed Strategy

UProposed Strategy

Note that the relative difference is zero for all availability levels when there exist 2, 3,

and 6 sellers in the market. Thus, the proposed strategy is a NE of the market in these

8For large sets of parameters, the difference is at most 5 percent of the value of the expected utility

resulted by the proposed strategy.
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Figure 3.2: The relative difference of the best response expected utility and the expected

utility of the proposed strategy versus different number of sellers

cases. Although, in the case of 4 and 5 sellers the proposed strategy is not an NE when

a seller has 1 and 2 units of commodity available, respectively, the relative difference in

these cases is less than 3 percent. Thus, overall, we can say that the proposed strategy is

a good approximation for the oligopoly market in this scenario.

3.6.2 The Asymptotic Behavior

The focus of this section is on the asymptotic behavior of the symmetric NE of a symmetric

duopoly market when the number of available units with a seller increases to infinity. In

asymptotic scenario, many of availability probability distributions that arise naturally

concentrate around the mean. Thus, qk → 0, when k is far from the mean. First, we show

that the length of the support set for availability of k units approaches zero as qk → 0:

From equation (3.10),

p̃i = c+
(p̃i−1 − c)(i

∑i−1
g=0 qg +

∑m
g=i qg(d− g))

i
∑i
g=0 qg +

∑m
g=i+1 qg(d− g)

= p̃i−1 + (p̃i−1 − c)
qi(d− 2i)

i
∑i
g=0 qg +

∑m
g=i+1 qg(d− g)
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Figure 3.3: p̃ versus m for when availability level is binomial with probability p and

demand is m

It is immediate that if qi → 0, then p̃i → p̃i−1
9. This implies that the length of the

support set for the availability level i units approaches zero.

We investigate the asymptotic behavior using numerical simulations when the avail-

ability of each seller follows a binomial distribution (m, r < 1). With this distribution,

as m→∞, the binomial distribution can be approximated by a normal distribution with

mean mr and variance mr(1 − r). Thus m → ∞ yields that p̃i → p̃i−1 when |i − mr|

is large enough. In other words, the length of the support set for the availability level i

units approaches zero if i is far from the mean. Other parameters are considered to be

v = 10, c = 1, and d = m.

In Figure 3.3, the value of p̃, i.e. the lowest lower-bound is plotted versus m, i.e. the

highest possible level of availability. As you can see, the larger the probability r, the

smaller p̃. Note that when r is large, the seller is more likely to offer with higher levels of

9Note that the denominator is positive since d ≥ m, and we assume uncertainty in competition, i.e.

qm < 1.
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availability. Therefore the competition is more intense. In addition, when m is increased,

the distribution ~q of the availability levels concentrates around the mean, mr. If r > 1
2 ,

when a seller offers k = mr, knowing that the other seller offers mr > m
2 with positive

probability, she will offer price less than v (note that d = m). Furthermore, the higher m,

the more intense the competition, and consequently p̃ is decreasing. On the other hand,

when r ≤ 1
2 , if a seller offers around mr units, there is no competition between sellers

knowing that 2mr ≤ d = m. Furthermore, the availability probability qk, when k is far

from mr, tends to zero when m is large. Thus the associated support sets shrink to zero.

This explains the increasing behavior of p̃. We notice oscillation in the figure, since m

alternates between odd and even.

3.7 Applications and Discussion

The framework we described in this chapter can also be used to model two other applica-

tions in which uncertainty in competition naturally emerges: secondary spectrum access

and micro grid networks.

Pricing in secondary spectrum access networks [1] is one of the applications of our

model. Recent developments in wireless devices have resulted in a significant growth

in demand for the radio spectrum. This leads to spectrum congestion. On the other

hand, the available radio spectrum is greatly under-utilized [57]. Spectrum congestion

and under-utilization have directed researchers to adopt new techniques in order to use

the available spectrum more efficiently and to decrease congestion. Secondary spectrum

access is an example of these techniques. In these networks, there are two types of users:
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(i) Primary/licensed users, who lease a number of frequency bands (channels) directly

from the regulator, and (ii) Secondary/unlicensed users, who lease frequency bands from

primary users for a certain amount of time in exchange for money or other types of credit.

Note that primary and secondary users correspond to sellers and buyers in our model,

respectively. Each primary user may have multiple vacant frequency bands available for

sale, and a secondary user can lease a channel only if it is not in use by the primary

user who owns it. The usage of subscribers of primary users is random and different for

different primaries. Thus primaries are uncertain about the competition, and they need

to select prices for the frequency bands they offer for sale, without knowing the number

of frequency bands available for sale with their competitors.

The next example scenario pertains to pricing in micro grids[14]. A micro grid network

is a network of distributed power generating systems connected to local subscribers, and

also to the central macro power grid. The distributed generation of power at small on-

site stations is a promising alternative to the traditional generation at large stations.

Decreasing the loss of transmission by reducing the distance to consumption units10,

utilizing renewable energy sources, decreasing the risk of blackout, and increasing security

are some of the advantages of distributed power generating scheme [33]. In these networks,

a microgrid equipped with a distributed power generating system can sell its excess power

to other microgrids as well as the macro grid. Since micro grids are emerging technologies

11, their market structure has not been finalized yet. Thus, different market structures

needs to be investigated. One possible scenario is a centralized market in which micro

10In microgrid networks, the power can be sold to or bought from other local micro grids. This reduces

the distance the power should be transmitted via the macro grid from a generation to a consumption site.
11Microgrids are emerging in different countries such as United States [63] and India[46].
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grids sell their excess power to the macro grid or a local utility at a feed-in tariff12[56].

Another scenario, which is investigated in this chapter, is a distributed market in which

micro grids trade the power among themselves as also with macro grid at a price quoted

by them in a competitive market. Our model captures the second scenario in which each

micro grid with excess power (seller) sells its excess power to micro grids with deficient

power or the macro grid (buyers)13. The amount of power generated by a power generating

system is not apriori known and is different for different sellers. Thus, the sellers need

to select prices for the excess power they offer for sale, without knowing the number of

power units available for sale with their competitors (uncertainty in competition).

We now discuss about some details of the applications that arise in practice. Note

that one unit of commodity might be valued differently by different buyers in the above

mentioned applications. For instance, different secondary users receive different rates for

the same frequency band, depending on their location. Similarly, different microgrids

receive different amounts of power owing to differences in power loss. Hence, different

buyers have different utilities even when they buy the same amount of commodity. How-

ever, in our formulations, we assumed that the pricing structure is the same for all buyers,

regardless of the differences in the utilities. We justify this assumption as follow.

First note that in microgrid networks, the transmission loss is typically negligible, due

to the proximity of generators and consumers. Thus, all consumers receive approximately

12A feed-in tariff is an offer by the macro grid to purchase some or all of the output of a micro grid at

a fixed or formula rate.
13Note that each microgrid can be a seller or a buyer depending on the number of power units generated

and the demand of its subscribers. However, at a fixed time, the identity of a micro grid as a seller or a

buyer is fixed.
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the same utility for a unit of power they purchase. For Primary/Secondary markets and a

Non-Neutral Internet market, the utility of secondary users and CPs (as buyers) depends

on the utility of their end-users, and subsequently is different for different secondaries

and CPs, depending on the characteristics of their end-users. Sellers would not in general

know the characteristics and identities of the subscribers of potential buyers. Hence,

prices quoted by the sellers cannot depend on the utility of buyers. In addition, note that

introducing a differential pricing for customers complicates the pricing structure for them,

and prevents an easy cost prediction and management. For instance, in wireless settings,

the channel quality of end-users and the rate perceived by them are time and location

dependent[34]. Thus, in a differential pricing scheme, customers know the current pricing

only when they use the service. But, customers are usually reluctant to adopt differential

pricing schemes, owing to the rapid variability of prices which is not usually well-received

by them [58]. In addition, sellers are also reluctant using a differential pricing scheme

for their end-users, as they are usually computationally complex. Therefore, we did not

consider different valuations for different customers in determining the pricing strategy

of sellers. However, differential pricing for users with different valuation might arise for

other applications; this constitutes a topic of future research.

3.8 Conclusion

We investigated price competition in a duopoly market with uncertain competition when

different sellers may have different number of units available for sale. We modelled the

interactions among sellers as a non-cooperative game and listed a set of properties that are
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sufficient conditions for a strategy profile to be an NE. We proved that these properties are

also necessary conditions for an NE in a symmetric market, or for some values of demand

values in an asymmetric market. We showed that there exists a unique symmetric NE and

presented an algorithm for computing the same. Using the results proved for a duopoly,

we proposed a heuristic pricing strategy for sellers in a symmetric oligopoly market which

approximate the NE. Directions for future work is to consider different pricing for different

types of demand.

3.9 Appendix

3.9.1 Proof of Lemma 17

Proof. First consider the tuple < l, y > associated with the seller k̄ in which the first

element is the number of units she offers and the second one is the price she chooses. We

introduce D
(1)
kl (y, i, x) as the expected number of units sold by the seller k who wants to

offer l units with price y when her competitor’s tuple < g, z > 6=< i, x >, and D
(2)
kl (y, i, x)

as the expected number of units sold by the seller who wants to offer l units with price y

when her competitor’s tuple < g, z >=< i, x >. The expected number of units sold by a

seller can be written as,

Bkl(y) = D
(1)
kl (y, i, x)Pr{< g, z >6=< i, x >}+D

(2)
kl (y, i, x)Pr{< g, z >=< i, x >}

Note that D
(1)
kl (a, i, x) ≤ D(1)

kl (x, i, x) and D
(2)
kl (a, i, x) ≤ D(2)

kl (x, i, x) for a ≥ x because

the number of units a seller sells is a non-increasing function of her price for any given

amounts offered by both sellers and any given price chosen by the competitor. Thus
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Bkl(a) ≤ Bkl(x). In addition,

Bkl(x− ε′)−Bkl(x) = (D
(1)
kl (x− ε′, i, x)−D(1)

kl (x, i, x))Pr{< g, z >6=< i, x >}

+ (D
(2)
kl (x− ε′, i, x)−D(2)

kl (x, i, x))Pr{< g, z >=< i, x >}
(3.11)

As we discussed D
(1)
kl (x, i, x) ≤ D

(1)
kl (x− ε′, i, x). For D

(2)
kl (x, i, x), we should consider

ties. Since each buyer is equally likely to buy a unit from both sellers if both select equal

prices, we can say that D
(2)
kl (x, i, x) = l di+l < l (since i + l > d) and D

(2)
kl (x − ε, i, x) = l.

Note that Pr{other seller’s tuple < g, z >=< i, x >} = qi × Jump Size of Φki(.) at x.

Thus, for all positive ε′, RHS of (3.11) is greater than or equal to θ(x), where θ(x) is a

positive number that does not depend on ε. Therefore since Bkl(a) ≤ Bkl(x), ∀a ≥ x,

Bkl(x− ε′) ≥ Bkl(a) + θ(x), for all a ≥ x. Thus,

ukl(x− ε′)− ukl(a) ≥ (x− ε′ − a)Bkl(a) + θ(x)(x− ε′ − c)

Since x > c, for all sufficiently small ε′, x − ε′ − c > 0. In addition, since a ≤ x + ε

by the statement of the lemma, the lowest value for x− ε′ − a is −ε− ε′, and Bkl(a) ≤ l.

Therefore (x − ε′ − a)Bkl(a) + θ(x)(x − ε′ − c) ≥ (−ε − ε′)l + θ(x). Therefore, for all

sufficiently small but positive ε and ε′,

ukl(x− ε′) > ukl(a) a ∈ [x,min{x+ ε, v}]

3.9.2 Proof of Theorem 14

Proof. The goal is to show that for each i and k all x ∈ [p̃ki, ṽki) constitutes a best

response for the seller k who offers i units. That is, for each x ∈ [p̃ki, ṽki) and for all
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y, uki(x) ≥ uki(y). In addition, if Φki(·) associates positive probability with ṽki, then

uki(ṽki) ≥ uki(y) for all y, i.e., vki is a best response when the seller k offers i units. Note

that the distributions, Φki(·)’s, should satisfy Property 3. Thus, equations (3.4) and (3.5)

holds for x < v, and Ak,l,j(x) is non increasing and non positive with respect to x for

l > j > ek̄.

We consider the case j ≤ ek̄ here. Thus, Bk,j(x) = j and Bk,l,j(x) = 1
lBk,l(x) − 1.

Note that the expected number of units Bk,l(x) sold at price x when l units are offered is

a non-increasing function of x and Bk,l(x) ≤ l. Thus, Bk,l,j(x) and therefore Ak,l,j(x) is

non increasing and non positive with respect to x for l > j regardless of how j compares

with ek̄.

Consider x < p̃. uki(x) ≤ i(x− c) < i(p̃− c) = uki(p̃). The last equality follows from

(3.4), since Φkj(p̃) = 0 for all j. Therefore we consider x ≥ p̃ throughout the proof.

Suppose lk ∈ {0, 1, . . . ,mk − 1} in Property 7 is fixed. We first start with i ≥ lk +

1. From the assumption in Theorem 14, we know that uki(x) = uki(y) for any x, y in

the interior of the support set of Φki(·), the support set of Φki(·) is [p̃ki, ṽki], Φki(·) is

continuous at all x < v, ṽki < v for i > lk + 1, and ṽki = v for i = lk + 1. Thus, if

i > lk + 1 uki(x) = uki(y) for all x, y ∈ [p̃ki, ṽki], and for i = lk + 1, uki(x) = uki(y) for

all x, y ∈ [p̃ki, ṽki). We consider the last case in detail. Here, ṽki = v. If k̄ has a jump at

v when she offers lk̄ + 1 units, by Lemma 17, uki(v) < uki(v − ε) for arbitrary small but

positive ε. 14 If not, using equation (3.4) and continuity of the price distributions included

in that equation, it follows that uki(v) = uki(p̃ki). Thus, we only need to prove that for

all x, uki(p̃ki) ≥ uki(x). We do so by separately considering three cases: 1. i ≥ lk + 1 and

14Note that Lemma 17 holds for any arbitrary price distributions and not only those that are NE.
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x ∈ [p̃, p̃ki) 2. i ≥ lk + 1 and x ∈ (ṽki, v] 3. i ≤ lk.

1) i ≥ lk + 1 and x ∈ [p̃, p̃ki): The claim follows by vacuity for i = mk. We therefore

consider i < mk. Since ṽkj = p̃k,j−1 for j ≥ lk + 1, any such x is in [p̃kg, p̃k,g−1) for some

g > i. We prove this claim by induction on g, starting with the base case of g = i + 1.

For x ∈ [p̃k,i+1, p̃ki),

1

i+ 1
uk,i+1(x)− 1

i
uki(x) = Ak,i+1,i(x)

1

i+ 1
uk,i+1(p̃ki)−

1

i
uki(p̃ki) = Ak,i+1,i(p̃ki)

uk,i+1(x) = uk,i+1(p̃ki)

Note that p̃ki = ṽk,i+1. Subtracting the first and the second equation, we get,

1

i
(uki(x)− uki(p̃ki)) = Ak,i+1,i(p̃ki)−Ak,i+1,i(x) ≤ 0

Since Ak,l,j(x) is non increasing and non positive with respect to x for l > j. Therefore

uki(x) ≤ uki(p̃ki) for x ∈ [p̃k,i+1, p̃ki). We want to prove that uki(x) ≤ uki(p̃ki) for

x ∈ [p̃k,g+1, p̃kg), knowing that uki(x) ≤ uki(p̃ki) for x ∈ [p̃kg, p̃k,g−1) and mk−1 ≥ g ≥ i+1

(at the base we had g = i+ 1).

1

g + 1
uk,g+1(x)− 1

i
uki(x) = Ak,g+1,i(x)

1

g + 1
uk,g+1(p̃kg)−

1

i
uki(p̃kg) = Ak,g+1,i(p̃kg)

uk,g+1(x) = uk,g+1(p̃kg)

Note that p̃kg = ṽk,g+1. Subtracting the first and the second equation, we get,

1

i
(uki(x)− uki(p̃kg)) = Ak,g+1,i(p̃kg)−Ak,g+1,i(x) ≤ 0

Thus, uki(x) ≤ uki(p̃kg) for x ∈ [p̃k,g+1, p̃kg). The induction hypothesis yields uki(x) ≤

uki(p̃ki) for x ∈ [p̃k,g+1, p̃kg).
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2) i ≥ lk + 1 and x ∈ (ṽki, v]: We have just shown that uki(x) ≤ uki(p̃ki) for all

x ∈ [p̃, p̃ki). We now show the same for all x ∈ (ṽki, v]. The claim follows by vacuity

for i = lk + 1, since ṽki = v. We therefore consider i > lk + 1. Since ṽkj = p̃k,j−1 for

lk +1 ≤ j ≤ mk, and ṽk,lk+1 = v, any such x is in (p̃kg, p̃k,g−1] for some lk +1 < g < i. We

prove this claim by induction on g, starting with the base case of g = i− 1. Let x < v.

1

i
uki(x)− 1

i− 1
uk,i−1(x) = Ak,i,i−1(x)

1

i
uki(p̃k,i−1)− 1

i− 1
uk,i−1(p̃k,i−1) = Ak,i,i−1(p̃k,i−1)

uk,i−1(x) = uk,i−1(p̃k,i−1)

Subtracting the first and the second equation, we get,

1

i
(uki(x)− uki(p̃k,i−1)) = Ak,i,i−1(x)−Ak,i,i−1(p̃k,i−1) ≤ 0

Therefore uki(x) ≤ uki(p̃k,i−1) for x ∈ (p̃k,i−1, p̃k,i−2] \ v. The claim is established

in the base case if p̃k,i−2 < v. Else, if p̃k,i−2 = v, the claim has been shown only for

x ∈ (p̃k,i−1, v) and we still need to show that uki(v) ≤ uki(p̃k,i−1), which we proceed to

do. Now, let x = v. if the seller k̄ has a jump when it offers lk̄ + 1 units, since i > lk + 1,

for all sufficiently small but positive ε, uki(v) < uki(v − ε), and for sufficiently small but

positive ε, v − ε ∈ (p̃k,i−1, v). Since uki(v − ε) ≤ uki(p̃k,i−1), the base case follows. If not,

that is seller k̄ does not have a jump when it offers lk̄ + 1 units, using equation (3.4) and

continuity, we can deduce that uki(v) ≤ uki(p̃k,i−1). The base case follows.

Now we want to prove that uki(x) ≤ uki(p̃k,i−1) for x ∈ (p̃k,g−1, p̃k,g−2], knowing that

uki(x) ≤ uki(p̃k,i−1) for x ∈ (p̃kg, p̃k,g−1] and g ≤ i− 1 and g− 1 ≥ lk + 1. First, let x < v.
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1

i
uki(x)− 1

g − 1
uk,g−1(x) = Ak,i,g−1(x)

1

i
uki(p̃k,g−1)− 1

g − 1
uk,g−1(p̃k,g−1) = Ak,i,g−1(p̃k,g−1)

uk,g−1(x) = uk,g−1(p̃k,g−1)

Subtracting the first and the second equation, we get,

1

i
(uki(x)− uki(p̃k,g−1)) = Ak,i,g−1(x)−Ak,i,g−1(p̃k,g−1) ≤ 0

The inequality is because of the fact that Ak,l,j(x) is non increasing and non positive

with respect to x if l > j. Therefore uki(x) ≤ uki(p̃k,g−1). Furthermore we know from

the assumption of induction that uki(p̃k,g−1) ≤ uki(p̃k,i−1), thus uki(x) ≤ uki(p̃k,i−1) for

x ∈ (p̃k,g−1, p̃k,g−2]\v. We can show that uki(v) ≤ uki(p̃k,i−1) if v ∈ (p̃k,g−1, p̃k,g−2] exactly

as in the base case. The proof that for each i ≥ lk +1 each x ∈ [p̃ki, ṽki) is a best response

when a seller offers i units is therefore complete.

3) i ≤ lk: Now let i ≤ lk. Thus, lk > 0. Consider two cases:

• lk + lk̄ = d− 1. Therefore i ≤ lk = d− lk̄ − 1. As we previously mentioned, utility

uki(.), is continuous not only in interval [c, v), but also at price v, if i ≤ d− lk̄ − 1.

Using (3.5), and the fact that Ak,l,j(x) is non increasing and non positive with

respect to x, for l > j and a similar argument to case 1, we can get uki(x) ≤ uki(v)

for all x ∈ [p̃, v). The result follows.

• lk + lk̄ = d. Therefore i ≤ lk = d − lk̄. Since lk + lk̄ + 1 > d, neither Φklk+1(.) nor

Φk̄lk̄+1(.) have a jump at v, and uki(.) is continuous in [c, v]. The result follows by

a similar argument to that of in the previous case.
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3.9.3 Computation of NE Strategies in an Asymmetric Setting

In this section, we consider the general case in which the setting may not be symmetric.

First we develop a framework to obtain the strategy profiles that satisfy the properties

listed in Theorem 13. Then, we compute these strategies for a simple case of an asym-

metric market in which m1 = m2 = d = 3. We then show that the system may have

multiple Nash equilibria.

Framework for computation

In Theorem 14, it has been proved that the properties listed in Theorem 13 are sufficient

properties for a NE whether d > {m1,m1} or d = max{m1,m2}. In this section, we use

Theorem 13 to obtain a framework to identify a set of Nash equilibria for the game.

First, fix l1 and l2 (refer to Property 7). In addition, note that Theorem 13 specifies

the ordering of support sets for a seller and not the relative ordering of support sets of

the two sellers. Thus, we fix an ordering of p̃ki’s and p̃k̄j ’s for i ∈ {lk + 1, . . . ,mk} and

j ∈ {lk̄ + 1, . . . ,mk̄} such that for seller k and k̄ the lower bounds are ordered with a

decreasing relation with i and j respectively, and p̃kmk = p̃k̄mk̄ = p̃. The unknowns that

we should determine for a NE are p̃, mk − lk − 1 and mk̄ − lk̄ − 1 number of lower bounds

other than p̃ for seller k and k̄ respectively, and the distribution of price over each support

set.

For these particular l1, l2, and relative ordering of support sets, the NE is the solution

of:
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uki(p̃ki) = uki(p̃
−
k,i−1) i ∈ A

uk̄j(p̃k̄j) = uk̄j(p̃
−
k̄,j−1

) j ∈ A

uki(p̃ki) = uki(p̃
−
k̄j

) i ∈ A, j : p̃k̄j ∈ (p̃ki, p̃k,i−1)

uk̄j(p̃k̄j) = uk̄j(p̃
−
ki) j ∈ A, i : p̃ki ∈ (p̃k̄j , p̃k̄,j−1)

f1f2 = 0

(3.12)

where A = {lk+1, . . . ,mk}. In addition, f1 and f2 are the magnitude of jump at v for

the first and second seller when they offer lk + 1 and lk̄ + 1 units, respectively. Note that

the first four sets of equations are derived using the fact that the utility of a seller should

be equal over the entire support set. The fifth equation ensures that only one seller can

have a positive jump at v.

In equation (3.12), the unknowns are p̃, m1 +m2− l1− l2− 2 number of lower-bounds

other than p̃, p1, p2, and m1 +m2− l1− l2−2 number of probability distributions at some

specific points. That is Φki(p̃k̄j) for i ∈ {lk+1, . . . ,mk} and j such that p̃k̄j ∈ (p̃ki, p̃k,i−1).

By solving the system of equations (3.12), we can get a candidate NE.

Using the solution, Φki(.) for k ∈ {1, 2} and i ∈ {1, . . . ,mk} can be found. To find the

distributions of price for prices less than v, first note that each price x ∈ [p̃, v) which is not

a lower bound for the support set belongs to exactly one of the support sets of each seller.

Therefore, by (3.4), the expression of utility of player k when it offers i units depends only

on x and Φkj(x), i.e. uki(x) = (x−c)G(Φkj(x)), where G(Φ.(.)) is a decreasing function of

Φ.(.), and therefore its inverse exists. On the other hand, the utilities at the lower bounds

are obtained from (3.12) for both sellers. Using Property 4, Φk̄j(x) = G−1(
uki(p̃kj)
x−c ). If

the resulting Φk̄j(·) are valid probability distribution functions, using Theorem 14 we can
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conclude that they constitute a NE for the given l1, l2, and the fixed ordering of lower

bounds.

We have shown how to obtain a Nash equilibrium given one exists for a particular

choice of l1, l2, and a relative ordering between the support sets of the two sellers. Note

that by changing the choices of the above we can possibly obtain multiple Nash equilibria.

In the next sections, we present an example in which there exist at least two equilibria.

It is not clear that there always exists an NE; our extensive numerical evaluations have

not however lead to an instance where there does not exist one.

Example illustration of computation of Nash Equilibria

Consider the case in which each seller offers up to three units and the total demand is

exactly three units, i.e. d = 3. Without loss of generality we assume that l1 ≥ l2; the

strategy profiles in the other case l1 < l2 can be obtained by swapping the indices of the

sellers.

1) First we focus on the case in which l1 + l2 = d− 1 = 2. In this case, l1 = l2 = 1 or

l1 = 2, l2 = 0. If l1 = l2 = 1, then sellers choose v with probability 1, if they offer 1 unit

of commodity. In order to specify the NE, we should find the lower bounds p̃13 = p̃23 = p̃,

p̃12, p̃22, jumps at price v (f1 and f2), and each distribution Φkj(.) for all k = 1, 2, and

j = 2, 3.

First consider the ordering of lower bounds in which p̃22 ≥ p̃12 (Figure 3.4). The

system of equations is:

u13(p̃) = u13(p̃12)⇒ 3(p̃− c) = (3− 3q23Φ23(p̃12))(p̃12 − c) (3.13)
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u23(p̃) = u23(p̃12)⇒ 3(p̃− c) = (3− 3q13)(p̃12 − c) (3.14)

u23(p̃) = u23(p̃22)⇒ 3(p̃− c) = (3− 3q13 − 2q12Φ12(p̃22))(p̃22 − c) (3.15)

u12(v−) = u12(p̃22)⇒ (v − c)(2q20 + 2q21 + 2q22f2 + q22(1− f2)) = (p̃22 − c)(2− 2q23) (3.16)

u12(v−) = u12(p̃12)⇒ (v−c)(2q20+2q21+2q22f2+q22(1−f2)) = (p̃12−c)(2−2q23Φ23(p̃12)) (3.17)

u22(v−) = u22(p̃22)⇒ (v−c)(2q10 +2q11 +2q12f1 +q12(1−f1)) = (p̃22−c)(2−2q13−q12Φ12(p̃22))

(3.18)

f1f2 = 0 (At most one seller can have a jump at v ) (3.19)

Using equations (3.13), (3.15), (3.17), and (3.18), we can find p̃22 as,

p̃22 =
(v − c)A
1
2 −

1
2q13

+ c

A =

(
2q10 + 2q11 + q12(1 + f1)− 3

2
q20 −

3

2
q21 −

3

4
q22(1 + f2)

) (3.20)

On the other hand, from (3.16),

p̃22 =
(v − c)(2q20 + 2q21 + q22(1 + f2))

2− 2q23
+ c (3.21)

The values of p̃22 in (3.20) and (3.21) should be equal. Utilizing this and (3.19),

2f1q12

1− q13
− 1

2
q22f2A = (q20 + q21 +

1

2
q22)A− 4q10 + 4q11 + 2q12

1− q13
= B (3.22)
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where A = 1
1−q23

+ 3
1−q13

. Therefore,



f1 = f2 = 0 if B = 0

f1 > 0&f2 = 0 if B > 0

f2 > 0&f1 = 0 if B < 0

(3.23)

Therefore f1, f2, and p̃22 are uniquely determined. Using (3.18), Φ12(p̃22) can be derived

uniquely,

Φ12(p̃22) =
1

q12

(
2− 2q13 −

v − c
(p̃22 − c)

(2q10 + 2q11 + q12(1 + f1))
)

(3.24)

By (3.15), p̃ can be derived uniquely, (3.14) determines p̃12 uniquely, and (3.13) pro-

vides us Φ23(p̃12) uniquely. However, we should check whether Φ23(p̃12) and Φ12(p̃22) are

between zero and one or not. If not, then this NE candidate is not valid. The distributions

can be found by the process explained previously.

Another possible ordering of lower bounds is when p̃22 ≤ p̃21. The system of equations

corresponding to this case can be obtained by swapping the index of sellers.

In the case of l1 = 2 and l2 = 0, Figure 3.5 illustrates a schematic view of the support

sets for the unique relative ordering of support sets. Equations can be obtained with a

similar approach to the previous case.

2) l1 + l2 = 3 = d. Note that lk = 3 and lk̄ = 0 can be ruled out since lk should be less

than mk = 3. Thus, l1 = 2 and l2 = 1 (Figure 3.6). The approach to find the equilibria

is similar to the previous cases.
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c

p̃11 = v

p̃21 = vp̃ = p̃13 = p̃23

p̃12

p̃222nd Seller

1st Seller

Figure 3.4: l1 = 1 and l2 = 1

c

p̃11 = p̃12 = v

vp̃ = p̃13 = p̃23

p̃22

p̃21

2nd Seller

1st Seller

Figure 3.5: l1 = 2 and l2 = 0

c

p̃11 = p̃12 = v

p̃21 = vp̃ = p̃13 = p̃23 p̃22

2nd Seller

1st Seller

Figure 3.6: l1 = 2 and l2 = 1

Multiple Nash Equilibria

In Section 3.4, we proved that the symmetric NE exists uniquely. In this section, we

show that an asymmetric market allows for multiple Nash equilibria. Nash equilibria are

computed using the above framework with v = 10 and c = 1 and for different values of

~q1 and ~q2. Some lead to a unique NE and some others to multiple Nash equilibria. For

instance, the NE is unique, if

~q1 = [0.45, 0.1, 0.4, 0.05] ~q2 = [0.2, 0.2, 0.45, 0.15]

In this case, in the NE strategy, l1 = 1, l2 = 2, p̃12 = 9.0526, p̃ = 8.65, and Φ23(p̃12) =

0.3333, and the second seller has a jump of size 0.625 at price v = 10. However, there are

two Nash equilibria if:

~q1 = [0.05, 0.1, 0.4, 0.45] ~q2 = [0.2, 0.2, 0.4, 0.2]

In both NE, l1 = 2, l2 = 1, and Φ13(p̃22) = 0.4444. In the first NE, f2 = 0.06525, f1 = 0,

p̃ = 5.95, and p̃22 = 7.1875. In the second NE, f2 = 0, f1 = 0.7778, p̃ = 5.8, and p̃22 = 7.
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3.9.4 Proof of Theorem 15

Before going to the proof of Theorem 15, we need to prove some lemmas and theorems.

First we prove that Al,j(x) is (strictly) decreasing for v > x ≥ p̃m−1 when d = m

(Lemma 20). Then, in Lemma 21, we prove that the minimum of the lower end points

is the lower end point of Φm(x), i.e., p̃ = p̃m. Next, using Lemmas 20 and 21, we prove

that p̃i /∈ [p̃m, p̃m−1) for i ∈ {1, . . . ,m − 2}. This establishes the ordering for Φm(.) and

Φm−1(.). After that we proceed to establish the ordering for the remaining support sets

Φj(.) for j ∈ {1, . . . ,m − 2}, knowing that for them p̃j ≥ p̃m−1. A similar result to the

Property 6 is proved in Property 8. Finally, we prove Theorem 15.

Note that a symmetric NE in a symmetric market is considered in this section. Lets

define Al,j(x) = 1
l ul(x)− 1

juj(x). Bl,j(x) is defined such that,

Al,j(x) = (x− c)Bl,j(x)

where,

Bl,j(x) = −1

l

d−j∑
i=d−l+1

Φi(x)qi(i− d+ l) +

m∑
i=d−j+1

Φi(x)qi(d− i)(
1

l
− 1

j
) (3.25)

Based on the following lemma, Al,j(x) is (strictly) decreasing for v > x ≥ p̃m−1 and l > j,

when d = m.

Lemma 20. For every l and j, l > j ≥ 1, Al,j(x) is (strictly) decreasing for v > x ≥ p̃m−1

when d = m.

We argued that Bl,j(·) is non increasing and non positive with respect to the price

x. To prove that Al,j(.) = (x − c)Bl,j(x) is strictly decreasing, it is enough to prove
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that Bl,j(·) is negative. We will prove that Φm−1(x) is included in the summation of

Bl,j(·) and obviously positive for x > p̃m−1. In addition, its coefficient is negative since

d = m > m− 1. Thus, the result follows.

Proof. It is enough to prove that Bl,j(x) is non-increasing for x ≥ p̃m−1 and negative

for x > p̃m−1 when demand is m. This yields that Al,j(x) = (x − c)Bl,j(x) is strictly

decreasing with respect to x.

Note that in (3.25), Φi(.)’s are non-negative and non-increasing since they are proba-

bility distributions. In addition, they have non-positive weights: −(i − d − l) ≤ −1 < 0,

1
l −

1
j < 0, and d− i ≥ d−m = 0 (note that d = m). Thus Bl,j(x) is non increasing and

non positive with respect to the price x when l ≥ j. To prove that Bl,j(x) is negative for

x > p̃m−1, since d − (m − 1) = 1 > 0 and −(i − d − l) ≤ −1 < 0 (possible coefficients

of Φm−1(x)) , it is enough to prove that Φm−1(.) is included in the summation of Bl,j(.)

and it is positive, i.e. Φm−1(x) > 0 for x > p̃m−1. The later follows from the definition of

p̃m−1.

Now we prove that Φm−1(.) is included in the summation of Bl,j(.). Note that l >

j ≥ 1. Thus l ≥ 2, and the lowest index of the (3.25) is d − l + 1 ≤ m − 2 + 1 = m − 1.

The result follows.

To prove the ordering and disjoint properties in the symmetric setting we should alter

the proofs. First we will prove that p̃ = p̃m, i.e. the minimum of lower bounds is the

lower bound of Φm(x). Then we will prove that p̃j /∈ [p̃m, p̃m−1) for j ∈ {1, . . . ,m − 2}.

This proves that the next lowest support set is the support set of Φm−1(.). After that

using Lemma 18 will prove that the support set of Φl(.) for l < m is a subset of [p̃m−1, pj ]
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for all integers j ∈ [1, l). These three all together establishes the ordering.

Lemma 21. p̃ = p̃m, i.e. the minimum of lower end points is the lower end point of

Φm(x).

Proof. Suppose not and there exists x > p̃ such that x ≤ p̃m. By Property 5, there exists

an ε > 0 and an availability level j 6= m such that [p̃m − ε, p̃m] belongs to the support set

of Φj(.) and p̃j < p̃m. Thus uj(p̃m) = uj(p̃m − ε). In addition, Bm,j(x) is the weighted

summation of Φi(.) for i ∈ {1, . . . ,m}. Thus, the distribution Φj(.) is included in the

summation of Bm,j(x), and its coefficient is negative. In addition, Φj(x) > 0 for x > p̃j .

Thus, Am,j(x) is strictly decreasing with respect to x for x > p̃j . Thus Am,j(p̃m − ε) >

Am,j(p̃m). Note that uj(p̃m) = uj(p̃m − ε). Thus, um(p̃m) = um,max < um(p̃m − ε). This

contradicts with p̃m belonging to the support set of Φm(.). The result follows.

Lemma 22. p̃i /∈ [p̃m, p̃m−1) for i ∈ {1, . . . ,m− 2}.

To prove this, we use a contradiction argument. Suppose that there exists p̃j ∈

[p̃m, p̃m−1) such that j ∈ {1, . . . ,m − 2}. We will prove that no x ∈ (p̃j , p̃m−1] is in the

support of Φm(.). Thus there exists u ∈ {1, . . . ,m− 2} such that p̃m−1 is in the support

set of Φu(.). We prove that the payoff of the seller when she offers u units with price

p̃m−1 + ε is strictly greater than the payoff when offering with price p̃m−1. This is in

contradiction with p̃m−1 being the best response for player with availability u.

Proof. The lemma follows by vacuity if m ≤ 2. Take m > 2. Note that p̃m−1 < v.

If not there is a jump of size 1 at price v when the seller offers m − 1 units. Since
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2m− 2 > d = m for m > 2, using Lemma 17, um−1(v − ε) > um−1(v) for ε small enough.

This is in contradiction with assigning a positive probability to price v in the equilibrium

when seller offers m− 1 units. Thus p̃m−1 < v.

Suppose there exists p̃j ∈ [p̃m, p̃m−1) such that j ∈ {1, . . . ,m − 2}. We will prove

that no x ∈ (p̃j , p̃m−1] is in the support of Φm(.). Thus (using this and Property 5),

there exists u ∈ {1, . . . ,m − 2} such that p̃m−1 is in the support set of Φu(.). Consider

Bm−1,u(x) which is the summation of weighted distributions Φi(x) when i ∈ {2, . . . ,m−

1}. Thus, the distribution Φm−1(.) is included in the summation of Bm−1,u(x) (note

that m > 2), and its coefficient is negative (Note that d − (m − 1) = 1 > 0). Thus,

Am−1,u(x) is strictly decreasing with respect to x for x > p̃m−1. Thus Am−1,u(p̃m−1 +ε) <

Am−1,u(p̃m−1). Using um−1(p̃m−1) = um−1(p̃m−1 + ε), we can conclude that uu(p̃m−1) =

uu,max < uu(p̃m−1 + ε). This is in contradiction with p̃m−1 being the best response for

player with availability u. Note that p̃m−1 < v, and every price less than v which belongs

to the support set of a distribution Φi(.) should be a best response for players when

offering i units. The lemma follows.

Now we complete the proof by proving that no x ∈ (p̃j , p̃m−1] is in the support of

Φm(.). Suppose not. We will show that there exist an availability level f and two prices

y1 and y2, such that p̃j < y1 < p̃m−1, belongs to the support set of Φm(.), and both y1

and y2 belong to the support set of Φf (.). Then we will show that um(y1) < um(y2),

which contradicts with y1 being in the support set of Φm(.).

Using the contradiction assumption, w is defined as,

w = inf
x∈(p̃j ,p̃m−1] & x ∈ Supp(Φm(.))

x
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Note that w is in the support set of Φm(.). Now consider two cases:

1. w > p̃j : Using continuity, the definition of support sets, and Property 5, there exist

ε and f ∈ {1, . . . ,m− 2} such that w and w− ε is in the support set of Φf (.). Take

y1 = w and y2 = w − ε.

2. w = p̃j : Using continuity and the definition of infimum, there exists ε such that

every w + ε belong to the support set of Φm(.) and Φj(.). Take f = j, y1 = w + ε,

and y2 = w.

Next, we will prove that um(y1) < um(y2), which contradicts with y1 being in the

support set of Φm(.). Note that y1 < v, and every price less than v which belongs to the

support set of a distribution Φi(.) should be a best response for players when offering i

units. This completes the proof.

Consider Bm,f (x) which is the summation of weighted distributions Φi(x) when i ∈

{1, . . . ,m − 1}. Thus, the distribution Φf (.) is included in the summation of Bm,f (x),

and its coefficient is negative. Thus, Am,f (x) is strictly decreasing with respect to x

for x ≥ p̃f . Thus Am,f (y2) > Am,f (y1). Using uf (y1) = uf (y2), we can conclude that

um(y1) < um(y2). The contradiction argument is complete.

Therefore we established the ordering for Φm(.) and Φm−1(.). Now we are set to

establish the ordering for the remaining support sets Φj(.) for j ∈ {1, . . . ,m−2}, knowing

that for them p̃j ≥ p̃m−1. The next is the counterpart of the Property 8 in symmetric

setting.
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Property 8. The support set of Φl(.) is a subset of [p̃, p̃j ] ∪ [v] for all integers j ∈ [1, l).

Proof. Consider support sets of Φj(·), Φl(·), and j < l. We will show that ul(a) < ul(p̃j)

for all a ∈ (p̃j , v). Thus, no a ∈ (p̃j , v) is a best response for the seller with availability of

l units. Therefore, the support set of Φl(·) is a subset of [p̃, p̃j ] ∪ [v].

We now complete the proof, by showing that ul(a) < ul(p̃j) for all a ∈ (p̃j , v):

1

l
ul(a)− 1

j
uj(a) = Al,j(a)

Note that if p̃j ≥ v, property follows by vacuity. Now we consider p̃j < v. Since

j < l ≤ m, j ≤ m − 1. By Lemma 22, p̃m−1 ≤ p̃j < a < v, by Lemma 20, Al,j(a) is

decreasing function of a for a ∈ [p̃m−1, v). Thus, Al,j(a) < Al,j(p̃j) for a ∈ (p̃j , v). On

the other hand uj(a) ≤ uj(p̃j) for all a > p̃j , since p̃j is a best response of a seller with

availability j, therefore ul(p̃j) > ul(a).

Now we will prove Theorem 15:

Proof. Note that the first place that we used the condition d > max{m1,m2} (in symmet-

ric setting d > m) instead of d = max{m1,m2} (d = m) was in Section 3.2.5. Thus all of

the results before that apply also to the case that d = m. Property 8 provides exactly the

same property in the Property 6 for the symmetric scenario. Thus the corollaries after

the property follows. In addition, results in the Section 3.2.6 follows, since they are based

on results before the Section 3.2.5 and Property 6 and its corollaries. Thus Theorem 13

goes through in the case of a symmetric NE and d = m. The result follows.
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Chapter 4

Non-Neutrality Framework II -

Quality Sponsored Data
1

In Chapter 2, we assessed the benefits of different entities for migrating to a non-neutral

Internet. In Chapter 3, we considered a non-neutral framework in which CPs are passive

in the equilibrium selection and are only price-takers. In this chapter, we consider a

non-neutral framework in which, in contrast to the previous work, CPs have an active

role in the market by selecting appropriate strategies. Note that while SPs currently

only provide best-effort services to their CPs, it is plausible to envision a model in near

future, where CPs are willing to sponsor quality of service for their content in exchange

of sharing a portion of their profit with SPs. This quality sponsoring becomes invaluable

especially when the available resources are scarce such as in wireless networks, and can

be accommodated in a non-neutral network. In this work, we consider the problem of

1Presented in WiOpt 2015 [41] and accpeted for publication in IEEE/ACM Transaction on Network-

ing [42].
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Quality-Sponsored Data (QSD) in a non-neutral network. In our model, SPs allow CPs to

sponsor a portion of their resources, and price it appropriately to maximize their payoff.

The payoff of the SP depends on the monetary revenue and the satisfaction of end-users

both for the non-sponsored and sponsored content, while CPs generate revenue through

advertisement. Note that in this setting, end-users still pay for the data they use. We

analyze the market dynamics and equilibria in two different frameworks, i.e. sequential

and bargaining game frameworks, and provide strategies for (i) SPs: to determine if

and how to price resources, and (ii) CPs: to determine if and what quality to sponsor.

The frameworks characterize different sets of equilibrium strategies and market outcomes

depending on the parameters of the market.

The chapter is organized as follows: In Section 4.1, we model the market. Subgame

Perfect Nash Equilibrium (SPNE) of the sequential game is characterized in Section 4.2,

and the Nash Bargaining Solution (NBS) of the game is characterized in Section 4.3. In

Section 4.4, we summarize the key results of the chapter and comment on some of the

assumptions and their generalizations. Finally, in Section 4.5, we conclude the chapter.

Additional details and some of the proofs are presented in the appendix of the chapter in

Section 4.6.

4.1 Model

4.1.1 Problem Formulation:

We model the ecosystem as a market consisting of three players: CPs, SPs, and end-users.

We focus on the interaction between SPs and CPs, and not on the competition among SPs
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Figure 4.1: Market when CP has an advertisement revenue model

and CPs. Thus the interaction between one CP and one SP is considered. The strategy

for the CP is to determine how much resources to sponsor (i.e. quality), and the strategy

of the SP is to determine how to price her resources. Decisions are made by the players

based on an estimated demand update function (explained later) at the beginning of every

time-epoch, which captures the typical time granularity of sponsorship decisions2.

The CP has an advertisement revenue model, and sponsors bt resources (e.g. bits in

an LTE frame) out of a total of N resources at tth time-epoch to sponsor the average

quality of at least ζ ( bit
frame) for her content, and pays a price of pt per resource sponsored

to the SP. Thus, on average a quality of ζ should be satisfied for the users. If not, the

CP exits the sponsorship program. Note that this does not guarantee the quality of an

individual user to be higher than ζ. An example Schematic picture of the market in this

case is presented in Figure 4.1.

The CP and the SP choose their strategy at time-epoch t after observing the previous

demand, i.e. the number of end-users desiring content from the previous epoch. Obviously,

2Using the estimate of the demand, players decide on their strategy to maximize an “estimated” payoff

(and not the actual one). Note that the shorter the interval of epochs, the more accurate the estimates,

and the more inconvenient the implementation would be. We will observe that, in our framework, the

algorithm of decision making in NE would be simple. Thus, the decision making can be done in shorter

time intervals, e.g. minutes.
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the demand is non-negative. Note that the demand for the content of the CP changes

over time depending on the satisfaction of users, which in turn depends on the resources

that the CP decides to sponsor and hence the quality. We suppose that the satisfaction

of users depends on the average quality, i.e. bt
dt

3, and the demand for content updates as

follows4,

dt+1 =


dt
(
1 + γ log(κu

bt
dt

)
)+

if dt > 0

0 if dt = 0

(4.1)

where z+ = max{z, 0}, dt is the demand between epoch t and t + 1, bt
dt

is the rate a

single user receives, and log(κu
bt
dt

) models the satisfaction of end users: the higher the

rate received by users, the higher their satisfaction. The parameter γ > 0 represents the

sensitivity of end-users to their satisfaction. A higher γ is associated with a higher rate

of change with respect to the satisfaction of users (higher fluctuation in demand). An

instance of this type of users is customers of a streaming website like Netflix that are

sensitive to the quality they receive. Parameter κu > 0 is a constant.

Note that the total available wireless resources (for sponsored and non-sponsored

contents) is limited (N). This limits the number of sponsored resources (bt) which in term

determines the upperbound of resources that can be allocated to non-sponsored contents.

3Note that we are analyzing the model from the perspective of the CP and the SP. Thus, we are

assuming that the CP and the SP see the demand for the content as a whole and want to sponsor an

average sponsored quality. The demand of the individual end-users could be potentially different from

each other.
4Note that receiving a satisfactory quality, increases the chance of user repeating the visit to the website

and increases the number of new users that are going to use the service. Therefore, a satisfactory QoS

will likely increase the demand for the data in the next session. In addition, we assume that the increase

in the demand would be slower with high rates (a diminishing return behavior).
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This is a key distinction of our work from previous works as the limited resources available

couples the utility of end users for both sponsored and non-sponsored content with the

decisions of the market players. We assume that the number of resources (bits) a CP can

sponsor is bounded above by N̂ (N̂ ≤ N).

The utility of the CP if she chooses to enter the sponsorship program consists of the

utility she receives by sponsoring the content minus the price she pays for sponsoring the

sponsored bits. The latter is ptbt. The former, i.e. the utility of the CP for sponsoring the

content, depends on the advertisement revenue which in turns depends on the demand for

the content as well as the quality received by the users (throughput is bt
dt

) 5. We consider

the utility from advertisement for the CP to be:

uad(bt) =


αdt log(κCP btdt

) if dt > 0

0 if dt = 0

(4.2)

Note that the better the quality of advertisement, more successful the advertisement

would be, and therefore the higher the utility that the CP receives from advertisement.

Thus, the utility of advertisement is dependent on the satisfaction of users. This is the

reason that we use a similar function to (4.1) for the utility of advertisement6. The

5Note that bt
dt

can be the quality of the content, ads, or both. One example of CPs whose revenue

depends on the quality of the ad is a CP that support video ads, e.g. YouTube. Another example is

websites loaded with several “flash ads” for which users may have difficulty loading the ads which can lead

to the decrease of number of clicks on the ads. In addition to these CPs, we can think about scenarios in

which increasing the quality of the content of a website (not only the ads) increases the revenue of this

website. An example of such contents are shopping websites (e.g. Amazon). Improving the quality of the

experience of users, increases the chance of spending more time on these website. This would increase the

chance of a transaction which increases the revenue of the CP.
6Note that we expect a diminishing return of ad utility based on quality, i.e. after a certain point
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constant κCP in general can be different from κu. The parameter α is a constant that

models the the unit income of the CP for each end-user based on the quality that the

end-user receives: The higher α, the higher the profit of the CP per rates sponsored. An

example of CPs with high α is shopping websites (e.g. Amazon) that in contrast with

streaming websites (e.g. Netflix) have a high profit per user rate.

Thus, the utility of the CP at time t if she chooses to join the sponsorship program

is:

uCP,t(bt) = uad(bt)− ptbt (4.3)

To have a non-trivial problem, we assume κCP ζ > e = 2.72.

The utility of the SP at time t if she chooses to offer the sponsorship program is the

revenue she makes by sponsoring the bits plus the users’ satisfaction function:

uSP,t(pt) = ptbt + us(bt(pt)) (4.4)

where the users’ satisfaction function, i.e. us(.), is a function of the number of sponsored

bits which subsequently depends on the price pt. This function consists of two parts: (i)

the satisfaction of users for access to the sponsored content and its quality, and (ii) the

satisfaction of users when using non-sponsored content. This function could be decreasing

or increasing depending on the users, the cell condition, etc. We define the satisfaction

function as follows7

increasing the quality would not significantly increase the utility of advertisement. Thus, we used a log

function to model the ad utility from an end-user (log( bt
dt

)). Thus, we assume the utility of advertisement

to be
∑
dt

constant× log( bt
dt

) = constant× dt log( bt
dt

). If we consider a linear dependency between quality

and ad revenue, then the utility would be
∑
dt

constant× bt
dt

= constant× bt. However, we believe that a

function with diminishing return would model the ad utility more closely.
7Note that in the case of no sponsoring, the demand of the CP should be added to the demand of in the
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us(bt) =


ν1dt log(

κSP bt
dt

) + ν2D log(κSP
N − bt
D

) if dt > 0& bt > 0

ν2D log(κSP
N − bt
D

) Otherwise (4.5a)

where D is the total demand for all CPs other than the strategic CP8 and κSP is a

positive constant. In addition, v1 and v2 are constants corresponding to the weights that

end-users assign to the sponsored and non-sponsored data, respectively. We considered

the users’ satisfaction function to be a part of the SP’s utility since it is natural to think

that SPs not only care about the money they receive for the sponsored content, but also

about the satisfaction (or the overall quality of experience) of end-users for both sponsored

and non-sponsored content9. Another reason for considering the satisfaction of users is

best effort categor, i.e. D in (4.5a) should be substituted by dt +D. However, we assume that dt << D,

i.e. the demand for one content is much smaller than the aggregate demand for all other contents. This

often arises in practice. In Appendix 4.6.8, we show that this modification does not alter any results in

essence, and the insights of the model would be the same as before.
8We now argue why D is considered to be constant. We consider the content of the CP that is willing

to sponsor her content to be different from the content of other CPs, i.e. no competition over the content.

An example of such CP is Youtube (for personal video streaming). This yields that the demands for the

strategic CP (that can be sponsored) and other CPs are independent of each other. Thus, no demand

will be switched from the content of the sponsored CP to other CPs. In addition, since we assume that

other CPs are not sensitive to the quality they deliver, their demand is independent of the quality their

end-users receive. Thus, D can be considered as a constant, and independent of the demand for the

sponsored content.
9Note that in reality, end-users can switch between SPs if they are not satisfied, and this incurs loss

to the SP they leave. To capture this, we need to consider the competition between SPs which makes the

analysis much more complicated. Instead, we consider only one SP and the user satisfaction function to

be an element in the utility of the SP. This captures some aspects of competition over end-users between

SPs, without complicating the analysis unnecessarily.
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the regulatory policies on the quality of the experience of users who use non-sponsored

contents. Thus, v1 and v2 can be determined by the SP or the regulator10. The higher

v2
v1

, the higher would be the importance of the non-sponsored content.

Note that, despite the dependencies between κu, κCP , and κSP , these parameters

could be potentially different. For example, the ad revenue is paid by an advertiser. This

advertiser may value the quality of the content delivered to the end-users different from

the end-users. Thus, for this reason, κCP might be different from κu. We do not mandate

the parameters to be different from each other and they can be potentially equal.

Recall that we assume if dt = 0 or one of the decision makers exits the sponsoring

program, then the game ends, and we have a stable outcome of no-sponsoring.

A summary of important symbols is presented in Table 4.1.

10 Although in the current set up, the regulator does not provide quality constraints for the SP, one

can envision that in a non-neutral framework, the regulator imposes explicit or implicit constraints on the

behavior of SP toward the sponsored and non-sponsored data. In other words, in a non-neutral regime,

it is natural to suppose that the regulator forces the SPs to take into the account the satisfaction of their

users regardless of the fact that they are using sponsored or non-sponsored data. Thus, the SP wants

to maximize her utility (which depends on the money collected from the CPs) given some constraints.

In this sense, including the satisfaction of users with parameters v1 and v2 is similar to the Lagrangian

penalty (reward) function by which we solve the mentioned maximization. Note that eventually v1 and v2

is set by the SP and not the regulator. However, their value depends on the restriction determined by the

regulator. Therefore, a strict net-neutrality rule, mandates the SP to assign high weights to the quality

of the content of non-sponsored data, i.e. high v2.
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Symbol Description

pt the price per unit of resources sponsored at time t

bt the number of sponsored bits in an LTE frame at time t

dt the demand between epoch t and t+ 1

ζ the minimum average quality desired by end-users

γ sensitivity of end users to the quality they receive.

α constant, the unit income

κu, κCP , κSP constants

N̂ the number of available bits for sponsoring

N the total number of bits (resources) in an LTE frame

us(.) end-users’ satisfaction function

uad(.) CP’s advertisement profit

ν1 the weight end-users assign to the sponsored data

ν2 the weight end-users assign to the non-sponsored data

D the total demand of end-users for non-sponsored data

1
κu

the stable quality, the rate that stabilizes the demand

z &y the participation factor for the CP and SP, 1 =join, 0 =exit

Table 4.1: Important Symbols
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4.1.2 Preliminary Notations and Definitions:

In this section, we define some notations that we use throughout the chapter. Section-

specific notations and definitions are presented in the corresponding sections.

Note that, we model the problem of QSD as a sequential game if at least one of the

decision makers is short-sighted, and as a bargaining game when both CPs and SPs are

long-sighted.

Definition 8. Short-Sighted (Myopic) Decision Maker: A decision maker is short-sighted

if she maximizes the myopic payoff knowing the present demand (dt),11 i.e. does not

involve the evolution of demand (4.1) in her decision making.

Definition 9. Long-Sighted Decision Maker: A decision maker is long-sighted if she

maximizes her payoff in long-run considering the current demand and the evolution of the

demand in (4.1).12

Since we consider an evolving demand of end-users based on their satisfaction, one of

the contributions of this work is to characterize the stability conditions of the market.

Definition 10. Stable Market: We say that the market is stable if and only if the demand

of end-users is asymptotically stable, i.e. if and only if:

lim
t→∞
|dt+1 − dt| = 0

Note that it is not apriori clear that the demand would be stable. In fact, we see that in the

short-sighted scenario, under certain parameters, the demand is unstable. The definition

11Mathematical definitions for the optimization solved by the short-sighted SP and CP are presented

in Equations (4.6) and (4.7), respectively.
12Mathematical definitions for the payoff of the long-sighted SP and CP are presented in Equations

(4.11) and (4.12), respectively.

194



of the stable market and (4.1) yield the following lemma that is useful in determining the

stable outcome of the market.

Lemma 23. The market is stable if and only if the quality bt
dt

t→∞−−−→ 1
κu

is sponsored for

end-users.

Proof. The result follows immediately from (4.1).

Definition 11. Stable Quality and Stable Demand: We refer to b
d = 1

κu
as the stable

quality, and d = κub as the stable demand.

4.2 Sequential Framework: SPNE Analysis

In the sequential game framework, we seek a Subgame Perfect Nash Equilibrium (SPNE)

using backward induction.

Definition 12. Subgame Perfect Nash Equilibrium (SPNE): A strategy is an SPNE if

and only if it constitutes a Nash Equilibrium (NE) of every subgame of the game.

Definition 13. Backward Induction: Characterizing the equilibrium strategies starting

from the last stage of the game and proceeding backward.

In this section, we first present the stages of the game (Section 4.2.1). Then, in

Section 4.2.2, we consider the case in which both the CP and the SP have a short-sighted

(myopic) business model and play the one-shot game infinitely. We characterize the

equilibrium strategies and asymptotic outcome of the game. When parameters of the

market are such that a stable sponsoring outcome is not plausible, considering decision

makers with long-sighted vision about the market may ensure a stable sponsoring outcome
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for the market. Thus, in Sections 4.2.3 and 4.2.4, using the sequential framework, we

investigate the cases in which either one of the SP and the CP is long-sighted and the

other is short-sighted. In Section 4.2.5, we present numerical results and discuss about

them.

4.2.1 Stages of the Game:

We suppose a complete information setting for the game. The timing of the game at time

epoch t is as follow:

1. The SP decides on (1) offering the sponsorship program, yt ∈ {0, 1} (with yt = 1

implying offering) and (2) if yt = 1, on the price per sponsored bit in an LTE frame,

pt, by solving the following optimization:

max
pt

uSP,t(pt), (4.6)

where uSP,t(pt) is defined in (4.24). The SP sets yt = 0 if u∗SP,t < v2D log(κSP
N
D )

(the payoff is less than no-sponsoring payoff) or dt = 0, and yt = 1 otherwise, where

u∗SP,t is the optimum outcome of the optimization13.

2. The CP decides on (1) whether to participate in the sponsorship program, zt ∈ {0, 1}

(with zt = 1 implying participation) and (2) if zt = 1 on the number of bits in an LTE

frame (i.e. quality) she wants to sponsor, bt, by solving the following optimization

13Note that we consider that in the case of indifference u∗SP,t = 0, y∗t = 1
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problem:

max
bt>0

uCP,t(bt)

s.t.
bt
dt
≥ ζ

bt ≤ N̂

(4.7)

where uCP,t is defined in (4.3). The first constraint is associated with the minimum

quality that the CP wants to deliver to her end-users. The second constraint puts

an upperbound to the number of bits that a CP can sponsor in an LTE frame. The

CP sets zt = 0 if u∗CP,t < 0 or dt = 0, and zt = 1 otherwise, where u∗CP,t is the

optimum outcome of the optimization14. In addition, the CP exits the sponsorship

program, i.e zt = 0, if there is no feasible solution for (4.7). Note that, dt =(
1 + γ log(κu

bt−1

dt−1
)
)+

, and is known as the history of the game is known.

We use the Backward Induction method to find the Sub game Perfect Nash Equilib-

rium (SPNE) of the game. Thus, first, we find the best response strategy of the CP in the

second stage given the strategy of the SP in the first stage and the history of the game.

This allows the CP to decide on (1) joining the sponsorship program and also on (2) the

number of bits to sponsor. Then, using this best response strategy and the history, the

SP chooses (1) whether to launch the sponsorship program or not, and (2) the optimum

per-bit price, pt, in the first stage.

4.2.2 Short-Sighted CP, Short-Sighted SP

CP’s Strategy: In the second stage, knowing the decision of the SP at stage one, the

CP solves (4.7) at each time-epoch t.

14Note that we consider that in the case of indifference u∗CP,t = 0, z∗t = 1
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Figure 4.2: The optimum strategy of the CP presented in theorem 16 for ζ1 (blue) and

ζ2 (red) when 0 < dt ≤ N̂
ζ and ζ2 > ζ1.

Theorem 16. Equilibrium Strategy of Stage 2: The strategy of the CP in the SPNE

is as follows:

if 0 < dt ≤
N̂

ζ
, (b∗t , z

∗
t ) =



(N̂ , 1) if pt ≤ αdt
N̂

(αdtpt , 1) if αdt
N̂
≤ pt ≤ α

ζ

(ζdt, 1) if α
ζ ≤ pt ≤

α log(κCP ζ)
ζ

(−, 0) if pt >
α log(κCP ζ)

ζ

(4.8)

if dt >
N̂

ζ
or dt = 0, (b∗t , z

∗
t ) = (−, 0) (4.9)

Remark 7. It is intuitive that the number of sponsored bits is a decreasing function of

the price per sponsored bit. In addition, one can expect that if the price per sponsored

bit is lower (respectively, higher) than a threshold, the CP sponsors all the available bits

(respectively, the amount to satisfy only the minimum quality requested by the end-users).

Moreover, if the price is so high that in case of sponsoring the CP receives a negative
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payoff, the CP would exit the sponsoring program. This also characterize another threshold

for the price per sponsored bit. In theorem 16, we confirm the intuitions, and go beyond

it by characterizing the thresholds on the price per sponsored bit and optimum number of

sponsored bits in different regions characterized by the thresholds. Figure 4.2 illustrates

the optimum strategy of the CP and the regions described in the theorem for two different

values of ζ. Note that the higher the minimum quality requested by end-users, the lower

the thresholds on pt after which the CP sponsors only the minimum quality or exits the

sponsorship program.

In order to prove the theorem, we apply the first order optimality condition since the

utility of the CP is concave. The proof is presented in the Appendix.

SP’s Strategy: Now, having the optimum strategy of the CP in stage 2, we can find

the optimum strategy for the SP:

Theorem 17. Equilibrium Strategy of Stage 1: The optimum strategies of the SP

are:

if 0 < dt ≤
N̂

ζ
, (p∗t , y

∗
t ) =


(
argmax{uSP,t(pt) : pt ∈ P ∗}, 1

)
if uSP,t(p

∗
t ) ≥ uSP,0

(−, 0) if uSP,t(p
∗
t ) < uSP,0

if dt >
N̂

ζ
or dt = 0, (p∗t , y

∗
t ) = (−, 0)

(4.10)

where P ∗ = {αdt
N̂
, α log(κCP ζ)

ζ , αν1dt+ν2D
ν1N

} is the set of candidate optimum pricing strate-

gies, and uSP,0 is considered to be the utility of the SP in case of no-sponsoring, i.e.

v2D log(κSP
N
D ). In addition, the necessary condition for the candidate stable point αν1dt+ν2D

ν1N

to be an optimum is αdt
N̂
≤ αν1dt+ν2D

ν1N
≤ α

ζ . Note that the variable yt determines whether

the SP offers the sponsorship program or not, with yt = 1 implying the offering.
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Remark 8. The immediate plausible range for the price per sponsored bit that one can

think of is the interval between the lowest price that makes the CP to sponsor all the

available bits and the highest price that makes the CP to sponsor only to satisfy the

minimum desired quality. In Theorem 17, first, we narrow down this interval to prices

between the highest price that makes the CP to sponsor all the available bits and the highest

price that makes the CP to sponsor only to satisfy the minimum desired quality. Then,

we characterize the interior optimum price. This choice is conditional on getting a payoff

greater than or equal to the utility of the SP in case of no-sponsoring. Otherwise, the SP

exits the sponsorship program.

In order to prove the theorem, we use the monotonic behavior of the utility of the SP

in some regions, and apply the first order optimality condition for the remaining regions.

The proof is presented in the Appendix.

Corollary 10. Choosing the price α log(κCP ζ)
ζ by the SP, i.e. the highest price by which

the CP sponsors only to guarantee the minimum quality, renders the utility of the CP

to be zero, and the CP to be indifferent between joining or not joining the sponsorship

program.

Proof. Results follow from (4.3), and that from Theorem 17, when pt = α log(κCP ζ)
ζ , d > 0

and bt = ζdt (from Theorem 16).

Outcome of the Game: Now that we have characterized the SPNE at each time-

epoch for a short-sighted CP and SP, the next step is to analyze the asymptotic behaviour

of the market given the demand update function (4.1) and considering the one-shot game

to be repeated infinitely. The goal is to characterize the asymptotically stable 5-tuple

200



equilibrium outcome of the game, i.e. (d, y, p, z, b) (table 4.1), if it were to exist. In

the next Theorem, all possible asymptotically stable outcomes are listed. However, the

existence of such a stable outcome is not guaranteed, and the market can be unstable in

some cases.

Theorem 18. The possible asymptotically stable outcomes of the game are:

1. (−, 0,−, 0,−): no sponsoring is offered, none taken.

2.
(
κuN̂ , 1, ακu, 1, N̂

)
: the maximum bit sponsoring; if this is the stable outcome then

κu ≤ 1
ζ .

3.
(
d, 1, α log(κCP ζ)

ζ , 1, ζd
)

: the minimum quality sponsoring; if this is the stable out-

come then κu = 1
ζ and 0 < d ≤ N̂

ζ .

4.
(
Nκu − ν2

ν1
D, 1, ακu, 1, N − ν2

κuν1
D
)

: the interior stable points; if this is the stable

outcome, then κu ≤ 1
ζ and 0 < b = N − ν2

κuν1
D ≤ N̂ .

Remark 9. Since the CP is shortsighted, in every stable outcome of the game, the strategy

of the CP would be a myopic optimum strategy. Thus, using Theorem 16, one can expect

the strategy of the CP to take one of the four possibilities in a stable outcome: (1) no

sponsoring (2) sponsoring the maximum amount available (3) sponsoring only to satisfy

the minimum required quality, or (4) sponsoring an optimum interior amount of bits.

Subsequently, depending on the strategy of the CP, Theorem 17 characterizes the stable

strategy of the SP. In order to prove the theorem we use Lemma 23. The proof is presented

in the Appendix.
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Corollary 11. There is no stable outcome involving sponsoring for the game if the stable

quality is smaller than the minimum quality set by the CP, i.e. 1
κu
< ζ.

Remark 10. Unlike other plausible stable outcomes, the third possible stable point, i.e.(
d, 1, α log(κCP ζ)

ζ , 1, ζd
)

when ζ = 1
κu

, can assume a range of different values. Whenever

the SP sets p = α log(κCP ζ)
ζ , the CP sets bt

dt
= ζ, and the market will be stable. By

choosing that price, the SP ensures that she will extract all the profit of the CP and makes

her indifferent between joining the sponsorship program and opting out, i.e. uCP (b) = 0

(using Corollary 10).

In the next theorem, we find the stable demand that maximizes the payoff of the SP

when she chooses the third stable point, i.e. the minimum quality.

Theorem 19. Let d∗ = N
ζ −

1
(α+ν1) log(κSP ζ)

. The payoff of the SP when the 5-tuple(
d, 1, α log(κCP ζ)

ζ , 1, ζd
)

(the minimum quality stable point) is the stable outcome of the

market is maximized when either (1) d = min{d∗, N̂ζ } and d∗ ≥ 0, or (2) d = 0 and

d∗ < 0.

The proof of the theorem is presented in the appendix.

In the next sections, we investigate the case in the SP is long-sighted and the CP is

short-sighted.

4.2.3 Long-Sighted SP, Short-Sighted CP

A long-sighted SP sets the per-bit sponsorship fee in order to achieve a stable market, i.e.

a stable demand for the content, and also to maximize the payoff in the long-run:

USP,Long Run(~p) = lim
T→∞

1

T

T∑
t=1

uSP,t(pt) (4.11)
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In this scenario, the SP is the leader of the game and therefore can set the equilibrium

of the game individually by knowing that the CP is a myopic optimizer unit and follows

the results in Theorem 16. Note that the long-sighted SP wants to asymptotically set a

strategy that given the strategy of the CP, yields the highest profit. Thus, even with a

long-sighted SP, the optimum strategy follows Theorem 17, and we can use the result in

Theorem 18.

The difference between this case and the previous case is the ability of the long-

sighted SP to choose between the candidate stable points in Theorem 18. Thus, the SP

sets appropriate sponsoring fees at the beginning of the sponsoring program in order to

asymptotically lock the stable outcome of the market in the chosen equilibrium.

Note that from Theorem 18, when κu >
1
ζ , there is no stable sponsoring outcome, and

if κu <
1
ζ , depending on the parameters of the market, the stable point 2, i.e. maximum

bit sponsoring, or 4, i.e. interior stable point, is chosen by the SP. In this case, if ν2, i.e.

the importance of non-sponsored data for end-users and SP, is high enough, the stable

point 4 is chosen and set by the SP. In addition, increasing the number of resources

available with the SP, i.e. N , makes the stable point 2, i.e. maximum bit sponsoring, to

yield the highest payoff, and thus is chosen by the SP. In the next theorem, we prove that

when κu = 1
ζ , the stable point 3 yields the highest payoff.

Theorem 20. If κu = 1
ζ , the minimum quality stable point, i.e.

(
d, 1, α log(κCP ζ)

ζ , 1, ζd
)

,

with the demand characterized in Theorem 19 yields the highest payoff for the SP.

Remark 11. Note that in a minimum quality stable point, the CP is indifferent, i.e. all

profit of the CP is extracted by the SP. Therefore, we can expect this stable outcome to
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be the most favorable for the SP. Thus, a long-sighted SP sets this stable point as the

asymptotic outcome of the market when κu = 1
ζ .

The proof of the theorem is presented in the appendix.

4.2.4 Short-Sighted SP, Long-Sighted CP

Consider a CP that chooses bt in order to achieve a stable demand and to maximize the

payoff in the long-run:

UCP,Long Run(~b) = lim
T→∞

1

T

T∑
t=1

uCP,t(bt) (4.12)

In the next theorem, we prove that for a long-sighted CP, the maximum bit sponsorship

yields the highest payoff amongst the stable outcomes characterized in Theorem 18. Note

that if the CP sponsors all the available units at the start of the sponsoring program,

the sudden increase in the demand may push the market to the stable outcome of no

sponsoring. Thus, given that the SP is short-sighted, the CP sets the number of bits for

sponsoring appropriately over time, in order to achieve the demand of κuN̂ eventually.

With this demand and b = N̂ , the market would be stable. However, note that not the

SP is the leader of the game and may chooses a price other than ακu, i.e. the price in the

maximum bit sponsoring. In this case, the CP cannot set the stable outcome she prefers.

Thus, the CP is forced to set a stable outcome that is also preferable for a short-sighted

SP.

Theorem 21. The 5-tuple plausible stable sponsoring points, characterized in Theo-

rem 18, in a decreasing order of the utility they yield to the CP are: maximum bit

sponsorship, interior stable point, and minimum quality.
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Figure 4.3: Market Asymptotic Outcomes with Short-Sighted Decision Makers when κu =

1
ζ

Figure 4.4: Market Asymptotic Outcomes when One of the Decision Makers is Long-

Sighted, when κu = 1
ζ

Remark 12. In order to establish the results, note that the stable point of no sponsoring is

not considered a sponsoring stable point. Thus not listed in the theorem. In addition, since

the CP is indifferent in the minimum quality stable point, this point should be the least

favorite one for the CP. The ordering of the maximum bit and the interior stable points

follows from the fact that the payoff of the CP is strictly increasing in those outcomes.

The proof is presented in the Appendix.

4.2.5 Numerical Results

In this section, we consider at least one of the SP and the CP to have a short-sighted

model, and investigate the effects of ζ, κu, v2, N , and γ on the asymptotic outcome of the

market. The fixed parameters considered are ν1 = 1, N̂ = 25, D = 50, κSP = κCP = 10,
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and ζ = 0.3. We observe the effect of important parameters such as κu, the sensitivity

of the demand to the quality (γ), the weight an SP assigns to non-sponsored data (ν2),

and the total number of available bits in an LTE frame (N) on the asymptotic outcome

of the market.

Market asymptotic outcomes for the case of κu = 1
ζ when both decision makers are

short-sighted and when one of them is long-sighted are presented in Figures 4.3 and 4.4,

respectively. Similar plots for the case of κu = 1
2ζ <

1
ζ are presented in Figures 4.5 and

4.6, respectively. Recall from Theorem 18 that the asymptotic stable outcome of the game

is one the four candidates: 1. No-Sponsoring, 2. Maximum bit sponsoring, 3. Minimum

quality, and 4. Interior stable point. In the figures, each of the numbers are corresponding

to one of the candidates. We also denote the unstable outcome by 0.

Next, we discuss about the effect of the framework and parameters on the asymptotic

outcome of the game:

Impact of a decision-maker with long-sighted model: Note that in both cases

κu = 1
ζ and κu <

1
ζ , the outcome of the market is independent of the CP or the CP being

long-sighted or the SP being long-sighted. The reason is that in the sequential game the

SP is the leader of the game. Thus, although a long-sighted SP can set the stable outcome

she prefers in the long-run, a long-sighted CP cannot enforce the most preferred stable

outcome, and should choose the stable outcome that is also preferable for the SP. This

yields the same asymptotic outcome for the market as the case that the SP is long-sighted.

Impact of the minimum quality (ζ) and the stable quality ( 1
κu

): Theorem

18 implies that depending on the relation between the minimum quality set by the CP

(ζ) and the stable quality ( 1
κu

), the market has different stability outcomes in the short-
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Figure 4.5: Market Asymptotic Outcomes with Short-Sighted Decision Makers, when

κu <
1
ζ

Figure 4.6: Market Asymptotic Outcomes when One of the Decision Makers is Long-

Sighted, when κu <
1
ζ

sighted scenario. We seek to identify the stable outcomes that arise in each different

parameter ranges:

• Using Corollary 11, If the CP over-provisions the minimum quality for the satisfac-

tion of users (ζ > 1
κu

), there is no stable sponsoring outcome since the demand of users

grows drastically forcing the SP and CP to exit the sponsoring program. Thus, we do not

study this case through simulations.

• If the CP under-provisions the minimum quality (ζ < 1
κu

), simulation results in

Figure 4.5 reveal that the market is set on the maximum bit sponsoring stable outcome

for a particular range of parameters. However, the market is unstable or has the stable

outcome of no-sponsoring for the rest of parameters.

• If the CP sets the minimum quality equal to the stable quality (ζ = 1
κu

), the market
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is set either on the no-sponsoring or the minimum quality stable outcomes. Comparing

Figures 4.3, 4.4, 4.5, and 4.6 reveals that in the case of κu = 1
ζ , the market is more likely

to have a stable outcome that involves sponsoring.

Impact of the sensitivity of the demand to the quality, γ: Note that, in

Figures 4.3 and 4.5, and in general, increasing the value of γ shifts the stable outcome of

the market from sponsoring to no-sponsoring. The exception is a range of v2 for the case

κu = 1
ζ , which we explain about when we discuss about the impact of v2 later.

Therefore, in a market with short-sighted entities, the sensitivity of the demand to

the quality, i.e. γ, greatly influences the stability of the market. When γ is high, the

satisfaction and subsequently the demand of end-users increases/decreases drastically with

small changes in the rate perceived by them. Thus, players would exit the sponsorship

program since the demand may go down to zero or the demand may exceed dmax = N̂
ζ

15,

i.e. the jump in the demand decreases the quality received by the users below the requested

minimum quality (ζ) which leads the CP to stick to the best-effort scenario. On the other

hand, if γ is small, the market is more likely to be set on a sponsoring stable outcome.

Thus, in order to have a stable outcome of sponsoring, γ should be sufficiently small.

Note that this parameter is small for a CP whose users are less sensitive to the quality

they receive, such as shopping websites. This is in contrast with streaming websites whose

users are sensitive to the quality (high γ). The parameter γ is also small for a CP which

has a well-established end-user side, i.e. a more stable demand, such as Google, in contrast

with the emerging CPs and start ups whose demand usually fluctuate more. Thus, in a

short-sighted setting, the QSD may not be a viable option for streaming websites and

15the highest number of end-users that can be satisfied with the minimum quality.
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emerging CPs.

In addition, note that the effect of γ would be canceled if one of the decision makers

is long-sighted. This implies that in QSD framework, CPs with volatile demand (high γ)

should be long-sighted to have a market with a stable outcome that involves sponsoring

the content.

Impact of the importance of non-sponsored contents, ν2: The parameter v2

being large, when v1 is normalized to one, represents the fact that the SP assigns more

weight to the satisfaction of users for using non-sponsored content. Thus, the SP wants

to restrict the number of bits she offers for sponsoring, and the best strategy for the SP is

to set her per-bit sponsorship fee high enough so that the CP sponsors a smaller number

of bits. Thus, we expect the market to have a stable outcome of no-sponsoring when v2

is high.

Results in Figures 4.3, 4.4, 4.5, and 4.6 confirm that the market has the stable outcome

of no-sponsoring when v2 is large. One of the differences between the cases κu = 1
ζ and

κu <
1
ζ is that when κu = 1

ζ , for a certain range of v2, the stable sponsoring outcome

is 3, i.e. the minimum quality stable outcome, regardless of γ, i.e. the sensitivity of the

demand to the quality. Next, we explain the reason for this behavior. Note that, as we

mentioned, v2 being high is associated with lower bits sponsored. Thus, for a certain

range of v2, we expect the CP to start the sponsoring program with a quality near the

minimum quality (since the CP wants to sponsor at least the minimum quality). In the

case that κu = 1
ζ , (4.1) implies that the demand increases more slowly (the logarithm in

the expression is smaller). Thus, the effect of γ is not significant, and the market can be

stabilized on the minimum quality stable point regardless of γ. However, this does not
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happen for the case of κu <
1
ζ , since in this case, from (4.1), the demand of end-users

diminishes to zero16, and the market is set on the stable outcome of no-sponsoring.

Impact of total available resources, N : Figures 4.3, 4.4, 4.5, and 4.6 reveal that

increasing the number of available resources (N) stretches the regions. In other words, as

N increases, results would be similar to that of smaller v2’s.

For example, in Figure 4.3, increasing the number of available bits (resources) increases

the area of no-sponsoring region for small v2. This is counter-intuitive since one can expect

that increasing the amount of available resources should facilitate sponsoring the content.

This counter-intuitive result is due to the fact that by increasing N , the value of the SP

for each bit decreases and the SP sets a lower sponsoring fee. This leads to sponsoring

more bits by the CP which leads to a significant increase in the demand for the content

when γ is large. This derives the market to the point of no-sponsoring. Therefore, the

outcome is the same as the case in which v2 is very small: the minimum quality stable

point when γ is small and no-sponsoring when γ is large.

Impact of v1 and v2 on the social welfare: If we define the social welfare of the

QSD regime as the sum of the payoffs of the CP and the SP17, then important parameters

for determining the social welfare of the system are v1 and v2 (can be imposed by the

regulator), and D. In this case, if v2
v1

or D are high, i.e. when the weight on the content

16Note that in this case the logarithm in (4.1) is negative for a quality near the minimum quality.
17Note that the payoff of the SP includes a term for users’ satisfaction function that captures the welfare

of EUs for sponsored and non-sponsored contents (possibly with constants different from v1 and v2). In

addition, the effect of the model on other CPs is also hidden in the users’ satisfaction function (the term

v2D log(κSP
N−bt
D

)). Thus, sum of the utility of the CP and the SP (with possibly different v1 and v2) is

a good indicator of the social welfare.
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of a non-sponsored content is high, then the SP restricts the number of bits she offers for

sponsoring by quoting a high sponsorship fee (as explained before). Thus, either the CP

reserves a smaller number of bits or exits the sponsorship program. In either cases, the

outcome would be aligned with maximizing the social welfare. Thus, v1 and v2 can be

imposed by the regulator to control the social welfare.

Remark 13. Figure 4.5 and 4.6 illustrate that the stable point 4, i.e. interior stable

point, does not emerge, and only stable points 1 and 2 occur. In other words, in a stable

outcome, when stakeholders of the market are short-sighted, either the CP sponsors all the

available resources or no sponsoring occurs. Note that in the stable point 4, the number of

bits sponsored by the CP in the equilibrium is N− ν2
κuν1

D. In addition, a stable sponsoring

5-tuple occurs only when ν2 is small which makes N − ν2
κuν1

D > N̂ for a wide range of

parameters. Thus, the stable point 4 does not emerge in many scenarios. One can argue

that by decreasing N or increasing D, we may have a scenario in which N − ν2
κuν1

D < N̂ .

However, note these changes, is similar to having a large v2. Thus, similar to previous

arguments, in this case, the SP is willing to set a price so high that leads the CP and

market to a no-sponsoring outcome. Therefore, again in the regions that support an

interior sponsoring solution, i.e. when N − ν2
κuν1

D < N̂ , the stable outcome 4 would not

occur. None of the parameters we considered results in such a stable outcome.

In the next section, using a bargaining framework, we investigate the scenario in which

the decision makers have a long-sighted model, i.e. consider the effect of their decisions

on the evolution of the demand and subsequently their payoff.
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4.3 Bargaining Framework: NBS Analysis

In the previous section, we proved that a long-sighted CP and SP can prefer different stable

outcomes, i.e. the stable outcomes that yield the highest payoff for them. If both deci-

sion makers are long-sighted, since multiple asymptotic outcomes are plausible, playing

a sequential game may lead to a Pareto-inefficient outcome in the long-run18. Therefore,

when both of the decision makers are long-sighted, it is natural to consider a bargaining

game framework19. A bargaining game provides the framework to model the scenario in

which two selfish agents can cooperatively select an equilibrium outcome (possibly among

multiple equilibria) when non-cooperation, i.e. disagreement, yields Pareto-inefficient re-

sults Note that both cases (multiple Nash equilibria and Pareto-inefficient outcome) occur

in our modeling in Section 4.2 when at least one of the decision makers is short-sighted.

After selecting the equilibrium, the division of profits can be characterized using the

18 The strategies of the SP and the CP are Pareto-inefficient in the long-run if at least one of the CP

or the SP can increase her payoff, by changing her strategy, without decreasing the other player’s payoff.

An example of an inefficient outcome that occurs in our model is when v2 is small and γ is large and

both players are short-sighted. According to Figure 4.3 the asymptotic outcome of the game would be

the no-sponsoring outcome. On the other hand, in Figure 4.4, with the same parameters, when one of the

decision makers is long-sighted (which means that she chooses different strategies to maximize her long-

run payoff), the asymptotic outcome of the market would be the minimum quality sponsoring outcome in

which the SP receives a strictly higher payoff than the previous case. Thus, the outcome of the sequential

game, can be Pareto inefficient in the long-run.
19We can also consider a bargaining game when decision makers are short-sighted. However, in this

chapter, we consider two extreme scenarios: (1) non-cooperation/at least one decision maker short-sighted

and (2) cooperation/both long-sight-sighted, and compare the outcome of the market in these two extreme

cases.
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bargaining game frameworks considering the bargaining power of each decision maker.

In Section 4.3.1, we formulate and analyze the bargaining game. In Section 4.3.2, we

present numerical results for this framework and discuss about the results.

4.3.1 Nash Bargaining Solution (NBS)

Thus, we formulate the interaction between the CP and the SP as a bargaining game,

and use the Nash Bargaining Solution (NBS) to characterize the bargaining solution to

the problem when both the SP and the CP are long-sighted.

Definition 14. Nash Bargaining Solution (NBS): is the unique solution ( in our case

the tuple of the payoffs of the CP and the SP) that satisfies the four “reasonable” ax-

ioms (Invariant to affine transformations, Pareto optimality, Independence of irrelevant

alternatives, and Symmetry) characterized in [53].

Let 0 ≤ w ≤ 1 be the relative bargaining power of the CP over SP: the higher w,

more powerful is the bargaining power of a CP. In addition, uCP and uSP denote the

payoff of the CP and SP respectively, and dCP and dSP denote the payoff each decision

maker receives in case of disagreement, i.e. disagreement payoff. In order to characterize

the disagreement payoffs, we assume that in case of disagreement, the SP and the CP

will interact as short-sighted entities playing the sequential game previously described20.

Thus, the disagreement payoffs can be found by determining the asymptotic status of the

market: the asymptotic payoff of the CP and the SP if the market is asymptotically stable,

20The reason is that if in the case of disagreement, the CP and the SP continue their selfish non-

cooperative behavior, they can obtain a payoff higher than or equal to the payoff of no-sponsoring. The

inequality is strict for the cases that a sequential game yields a sponsoring outcome.
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or the average payoffs if the market is unstable. Note that the value of the disagreement

payoff for the CP and the SP can have an effect similar to the bargaining power (w for

the CP and 1− w for the SP).

Using standard game theoretic results in [53], the pair of u∗CP and u∗SP can be identified

as the Nash bargaining solution of the problem if and only if it solves the following

optimization problem:

max
uCP ,uSP

(uCP − dCP )w(uSP − dSP )1−w

s.t.

(uCP , uSP ) ∈ U

(uCP , uSP ) ≥ (dCP , dSP )

(4.13)

where U is the set of feasible payoff pairs. Note that the long-sighted SP and CP want

to set a stable market in the long-run21, and based on Lemma 23 in a stable outcome

b
d = 1

κu
. Thus, the expressions for uCP and uSP in a stable outcome (using (4.3) and

(4.24)) are functions of the demand (d) and as follows:

uCP (d) = uad(d)− p d
κu

(4.14)

uSP (d) = p
d

κu
+ us(d) (4.15)

where uad(d) = αd log(κCPκu ) is the advertisement profit for the CP, and us(d) = ν1d log(κCPκu )+

ν2D log(κSP
N− d

κu
D ) is the satisfaction of the end-users of the SP. In addition, p d

κu
is the

21An unstable market makes it difficult for the CP and the SP to make decisions, predict the demand,

or manage the network. Thus, an unstable market has its implicit costs for the CP and the SP. This is

the reason that we assumed that the CP and the SP want to set an stable market.
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side-payment transferred from the CP to the SP in exchange of securing a quality of 1
κu

for the demand (d). Note that in Section 4.1, we introduced uad(.) and us(.) as functions

of the number of sponsored bits (b). Here, we redefine them to be functions of demand

(d) since in a stable outcome d = κub.

Thus, the maximization (4.13) is over d > 0 and p. In addition, note that the maximum

demand that can be satisfied with maximum available resources of N̂ to provide the quality

of 1
κu

is κuN̂ (d = κub ≤ κuN̂), which constitutes the feasible set. Thus the maximization

is,

max
d,p

(uCP − dCP )w(uSP − dSP )1−w

s.t.

0 ≤ d ≤ N̂κu

uCP ≥ dCP

uSP ≥ dSP

(4.16)

We define p∗ and d∗ to be the optimum solution of (4.16). Note that p∗ and d∗ char-

acterize the optimum division of profit (u∗CP and u∗SP ) and thus the NBS. In addition, we

define the aggregate excess profit to be the additional profit yielded from the cooperation

in the bargaining framework:

Definition 15. Aggregate Excess Profit (uexcess): The aggregate excess profit is defined

as follows:

uexcess = uCP − dCP + uSP − dSP = uad − dCP + us − dSP (4.17)

Note that uexcess in independent of p and is only a function of d. We define u∗excess =

uexcess|d=d∗ . Note that the bargaining would only occur if u∗excess > 0, i.e. the framework
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creates additional joint profit that can be divided between the SP and the CP. Thus,

henceforth, we characterize the NBS for the case that u∗excess > 0. We use uexcess in the

following theorem:

Theorem 22. If u∗excess > 0, the optimum solution of the optimization (4.16) is (d∗, p∗)

in which d∗ = arg max0≤d≤N̂κu uexcess, and p∗ is:

p∗ =
κu
d

(
(1− w)(u∗ad − dCP )− w(u∗s − dSP )

)
=
κu
d

(
(u∗ad − dCP )− wu∗excess

)
(4.18)

where u∗ad = uad|d=d∗, u
∗
s = us|d=d∗.

Remark 14. The theorem characterizes p∗ and d∗ which directly lead to the NBS (using

(4.14) and (4.15)), i.e. (u∗CP , u
∗
SP ). Based on the theorem, before splitting the profit,

the SP and the CP cooperatively set a stable quality and subsequently a stable demand to

maximize the aggregate excess profit, uexcess by solving the concave maximization problem

(maxd uexcess) with the single parameter d. Subsequently, they decide the split of the

additional profit, i.e. the side payment paid to the SP by the CP (p∗ d
∗

κu
), based on (4.18)

which depends on the bargaining power each has (w and 1−w). The proof of Theorem is

presented in the Appendix.

Remark 15. As we mentioned before, the value of the disagreement payoffs can also play

a similar role as the bargaining power (w). From (4.18): dCP ↑⇒ p ↓, and dSP ↑⇒ p ↑.

Remark 16. Price vs. Bargaining Power: The price per sponsored bit (4.18) is a

decreasing function of w , i.e. the bargaining power of the CP: the higher the bargaining

power of the CP the lower the side payment paid to the SP. It follows from (4.18) that

there exists a threshold on w, wt =
u∗ad−dCP
u∗excess

, such that when w > wt, p
∗ < 0, when w < wt,
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p∗ > 0, and when w = wt, p
∗ = 0. In other words, for the CP with a bargaining power

higher than the threshold wt, the flow of money is reversed, and the SP pays the CP. This

counter-intuitive case occurs either due to a high bargaining power of the CP (high w),

or in the scenario that the SP gain significantly more than the CP from the cooperative

scenario (u∗excess >> u∗ad − dCP , i.e. low wt). For example, a powerful CP, e.g. Google,

which already has a large established demand for the content might be reluctant to cooperate

with the SP unless the SP pays some of the additional profit to it.

4.3.2 Numerical Results

Now, consider the SP and the CP with long-sighted business model that play a bargaining

game as described in this Section. We investigate the effects of bargaining and cooperation

between the CP and the SP in increasing the utility of each of them and stabilizing the

market. In addition, we discuss about the relation between the number of available

resources (N) and the Nash bargaining price (p∗).

We consider w = 0.5, i.e. the CP and the SP have the same bargaining power, and

the values of v1, N̂ , D, κSP , and κCP to be the same as those considered in Section 4.2.5.

First, we plot the percentage of increase in the payoff of the CP and the SP after

bargaining versus v2 for different values of ζ when κu = 1
ζ in Figures 4.7 and 4.8. The

percentage of increase in the utility after bargaining is defined as follows:

increase (percentage) =
utility after bargaining-utility before bargaining

utility after bargaining
× 100

(4.19)

Note that when the utility before bargaining is zero and the utility after bargaining
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Figure 4.7: The percentage of increase in the utility of the CP when κu = 1
ζ with respect

to v2 for different values of ζ.

is positive, then the increase in the utility, using (4.19), is 100 percent, and this value is

zero if the utility after bargaining is equal to the utility before bargaining.

Results in Figure 4.7 reveal that the percentage of increase in the payoff of the CP

is either zero or 100. Note that when κu = 1
ζ , the market either has a stable outcome

of no sponsoring or a stable outcome of minimum quality sponsoring. In both cases, the

utility of the CP is zero. Thus, if bargaining occurs, the CP would get a positive payoff,

and the percentage of the increase in the utility of the CP would be 100. In Figure 4.7,

we can see a threshold on v2 after which the bargaining does not occur. This threshold

is decreasing with respect to ζ. The reason is intuitive: even in a bargaining framework,

due to limited resources, sponsoring does not occur if the CP needs a high quality to be

sponsored, and/or the quality of non-sponsored data is important for the SP.

Results in Figure 4.8 reveal that the percentage of increase in the utility of the SP after

bargaining is decreasing with respect to v2. In other words, the higher the importance of

non-sponsored data for the end-users and subsequently the SP, the lower the incentive of

the SP for participating in a bargaining game. Note that the case ζ = 2 is corresponding
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Figure 4.8: The percentage of increase in the utility of the SP when κu = 1
ζ with respect

to v2 for different values of ζ.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

20

40

60

80

100

v2

T
h
e
P
er
ce
n
ta
ge

of
In
cr
ea
se

 

 

ζ=0.2
ζ=4
ζ=8

Figure 4.9: The percentage of increase in the utility of the CP when κu = 1
2ζ with respect

to v2 for different values of ζ.

to a minimum quality stable outcome in the short-sighted framework. Thus, bargaining

does not add greatly to the utility of the SP. On the other hand, ζ = 4 and ζ = 8

are corresponding to a stable point of no sponsoring in the short sighted framework.

Therefore, the increase in the utility of the SP from bargaining is higher in these two

cases than ζ = 2. In addition, the percentage of increase is decreasing with respect to ζ.

In other words, the higher the minimum quality needed to be sponsored, the lower the

incentive of the SP for a bargaining framework.
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Figure 4.10: The percentage of increase in the utility of the SP when κu = 1
2ζ with respect

to v2 for different values of ζ..

In Figures 4.9 and 4.10, the percentage of the increase in the payoff of the CP and the

SP is plotted when κu = 1
2ζ . Note that for the case of ζ = 0.2, when v2 is small, the stable

outcome of a short-sighted market would be the maximum bit sponsoring. Since, in this

case, this stable outcome, yields the highest payoff for the SP and the CP, bargaining

cannot create additional profit. Thus, the percentage of increase in the utility of the SP

and the CP is zero up a threshold. For v2 higher than this threshold, and the cases ζ = 4

and ζ = 8, the corresponding short-sighted outcome of the market is no sponsoring stable

outcome. Thus, the results is similar to the previous figures (Figures 4.7 and 4.8).

Note that bargaining can enforce sponsoring for the set of parameters that have no

stable sponsoring outcome in a sequential game. However, the bargaining framework

cannot always enforce sponsoring. In particular, if the CP needs to sponsor a high quality

(high ζ) for the content, or the quality of non-sponsored content is important for the end-

users and subsequently the SP (high v2), then sponsoring does not occur regardless of the

framework used.

The next set of numerical results investigate the relation between the number of avail-
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Figure 4.11: The price per bit in a Nash bargaining solution versus the available number

of bits when κu = 1
2ζ .

able resources (N̂) and the Nash bargaining price (p∗). Intuitively, one may expect that

higher number of available resources yields a lower valuation of the SP for each unit of

resources, and subsequently a lower price for each bit. While this line of thought seems to

be true in the sequential framework, numerical results reveal a more complex relationship

between p∗ and N̂ in the bargaining framework: the negotiated price can be increasing,

decreasing, or a combination of both (Figures 4.11 and 4.12).

The reason for this counter-intuitive behavior is the different disagreement payoffs

resulting from different asymptotic outcomes of the game when decision makers are short-

sighted. The disagreement payoffs can be considered as a form of bargaining power for each

decision maker, and can affect the excess profit resulted by bargaining. Thus, different

disagreement payoffs lead to different amounts of excess profit and its division between

the CP and the SP, and subsequently different behavior of price per sponsored bit.
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Figure 4.12: The price per bit in a Nash bargaining solution versus the available number

of bits when κu = 1
ζ .

4.4 Discussions

First in Section 4.4.1, we present high-level perspective of the results. Then in Sec-

tion 4.4.2, we discuss about the modeling and assumptions of this the work in this chapter,

their implications, and their generalizations.

4.4.1 Summary of Key Results

We discussed that relation between the minimum quality the CP requests, i.e. ζ, and the

stable quality, i.e. 1
κu

,22 is an important factor in determining the asymptotic outcome of

the market (Section 4.2.5). In particular if the CP over-provisions the minimum quality,

i.e. ζ > 1
κu

, then there is no stable sponsoring outcome. The stability can be achieved

when ζ < 1
κu

(under-provision). However, the set of parameters for which the market is

stable is larger when ζ = 1
κu

. Thus, a QSD framework is more likely to emerge for CPs

that know the dynamic of their demand ( 1
κu

) and are willing to disclose it (by requesting

ζ = 1
κu

). However, note that in a sequential framework and if ζ = 1
κu

, the utility of the

22Recall that the stable quality is defined in Definition 11.
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CP would be zero, i.e. the additional profit of the CP by sponsoring the content would

be fully extracted if the CP reveals the true value of the stable quality. Thus, the CP

would be indifferent between this scheme and neutrality, while the SP receives a higher

payoff in QSD scheme. While in a bargaining framework (if it happens), both the CP and

the SP receive a higher payoff in comparison to a neutral framework. Thus, a bargaining

framework is preferable especially for the CP.

We showed that a CP with a volatile demand, i.e. a CP whose users are sensitive to

the quality (high γ), leads to a no-sponsoring outcome in a sequential framework (non-

cooperative scenario) if both the SP and CP are short-sighted. Examples of such CPs

are streaming websites and emerging CPs (start ups). Thus, a QSD framework is not a

viable scenario in long run for these CPs, if the decision-makers are short-sighted. For

these CPs, we can expect a stable QSD framework only if one of the CP or the SP is

long-sighted, or in a bargaining game framework. In addition, we showed that even in a

bargaining framework, an SP who assigns high weights to the satisfaction of users that

use the non-sponsored data (high v2
v1

), chooses to not sponsor the content of a CP who

needs high quality (high ζ).23

Moreover, results reveal that investment by the SP is not always in favor of having a

stable QSD. Increasing the number of available resources for sponsoring (investment by

the SP), when at least one of the decision makers is long-sighted, increases the range of

the parameters by which a stable QSD framework occurs. However, when both the SP

23As explained in the model, the parameter v2 can also represent the regulatory policies for the quality

of the experience of the users that use the non-sponsored content. In this case, a high v2 is corresponding

to stricter (net-neutrality) rules.
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and CP are short-sighted, increasing the number of resources may lead to a scenario in

which the CP sponsors a large number of resources. If the demand is volatile, this yields

a sudden jump in the demand, and drives the market to a no-sponsoring outcome (the

jump in demand decreases the quality below the minimum quality), and leads the CP to

use the best-effort scenario.

4.4.2 Comments on the Assumptions of the Model

We assume logarithmic functions for the demand update function and utilities owing to

its concavity. However, our analysis and insights are expected to be applicable to other

concave functions with diminishing returns.

Note that the focus of this work is on the interaction between an SP and a CP, and not

on the competition among SPs and CPs. In particular, we consider that only one CP wants

to sponsor a quality for her users, and the rests stick to the best effort scenario. The effects

of other CPs are considered by the SP as part of her utility. Introducing competition

among CPs and SPs would introduce another level of strategic decisions by them. It does

not necessarily alter the high-level intuitions for the interaction of the CP and the SP

provided in this work. For example, we can expect that even under competition, a CP with

a volatile demand would not be a good options for a QSD framework in a non-cooperative

scenario. However, considering the competition among CPs provides intuitions on the

possible structure of the Internet market in future under a QSD framework. For example,

a possible outcome would be the case that competitive CPs divide SPs (and subsequently

end-users) among themselves and each sponsors the quality of the content on only one of

the SPs. Using this, each CP can secure a monopoly over users. This would be a mild
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version of the “Internet fragmentation” which might be an undesirable outcome for users

and from the perspective of the FCC. A possible direction for future work is to consider

the competition over end-users among ISPs and CPs.

In addition, we assume that quality is sponsored by reserving a number of resources,

e.g. LTE time-frames. In general, SPs can sponsor high quality for users of CPs using

various methods, e.g. by prioritization of the content of a CP. Analyzing different methods

of sponsoring the quality of a content is beyond the scope of this work.

4.5 Conclusion

We introduced the problem of quality-sponsored data (QSD) in cellular networks and

studied its implications on market entities in sequential and bargaining game frameworks

in various scenarios. The direct coupling between the scarce (wireless) resources and

the market decisions resulting from QSD has been taken into account, Subgame Perfect

Nash Equilibrium and Nash Bargaining Solution of the problem is characterized, and the

market dynamics and equilibira have been investigated. We provided strategies for (i)

SPs: to determine if and how to price resources, and (ii) CPs: to determine if and how

many resources to sponsor (what quality). In this work, we focused on the interaction

between ISPs and CPs. A possible direction for future work is to consider the competition

over end-users among ISPs and CPs. Another direction is to consider the effects of QSD

on the payments of user to SPs, and its implications on the results.
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4.6 Appendix

4.6.1 Proof of Theorem 16

First we consider the case in which dt >
N̂
ζ . In this case, ζdt > N̂ . Therefore, there is

no feasible solution for bt. Thus, as we mentioned previously after (4.7), in this case of

infeasibility, the CP exits the sponsorship program, i.e. z∗t = 0. In addition, from (4.3),

dt = 0 yields uCP,t(bt) < 0 for every bt > 0, and subsequently z∗t = 0. This completes the

proof of (4.9).

Thus, henceforth, we consider 0 < dt ≤ N̂
ζ . Clearly, the utility of the CP (4.3)

is concave. Thus, the first order optimality condition provides us with the candidate

optimum answer for (4.7). The first order condition yields that b̂t = αdt
pt

. In order to be

an optimum answer, b̂t should be feasible, i.e. ζdt ≤ b̂t ≤ N̂ . This characterizes a region

for pt,
αdt
N̂
≤ pt ≤ α

ζ . In order to determine z∗, we should check non-negativity of u∗CP,t.

The utility of the CP with b̂t = αdt
pt

is non-negative if pt ≤ ακCP
e . Since ζκCP > e,24

α
ζ < ακCP

e . Therefore, a feasible solution for (4.8) yields a non-negative payoff. Thus,

z∗t = 1. This is the second region from top in (4.8).

If pt ≤ αdt
N̂

, then the top boundary condition b∗t = N̂ is the optimum answer of (4.8).

In addition, since in this region uCP,t(N̂) is positive, z∗t = 1. This is the first optimality

region of (4.8). On the other hand, if pt ≥ α
ζ , then the lower boundary condition, i.e.

b̄t = ζdt, is the optimum answer of the optimization. The condition for uCP,t(b̄t) ≥ 0 and

therefore z∗t = 1 is pt ≤ α log(κCP ζ)
ζ which yields the third optimality region in (4.8). If

pt >
α log(κCP ζ)

ζ , uCP,t(bt) < 0. Thus, z∗t = 0. This concludes the proof.

24The condition to have a non-trivial problem stated in Section 4.1.
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4.6.2 Proof of Theorem 17

Theorem 16 implies that if dt >
N̂
ζ , or dt = 0, or pt >

α log(κCP ζ)
ζ , the CP does not

participate in the sponsoring program. Thus, the value of y∗t does not affect the outcome

of the market in these cases. Without loss of generality, we assume that in these cases

the SP does not offer the program, i.e. y∗t = 0.

Thus, henceforth, we consider 0 < dt ≤ N̂
ζ and pt ≤ α log(κCP ζ)

ζ . Note that in this

region, by Theorem 16, bt > 0. Thus, the SP maximization problem is,

max
pt

uSP,t(pt) = max
pt

(
ptb
∗
t + ν1dt log

(
κSP b

∗
t

dt

)
+ ν2D log

(
κSP

N − b∗t
D

))
, (4.20)

where b∗t is the equilibrium outcome of the second stage. Let pt ≤ αdt
N̂

. Then from

Theorem 16, b∗t = N̂ . Thus, uSP,t(pt) is a strictly increasing function of pt. Therefore,

all prices less than αdt
N̂

yields a strictly lower payoff than p∗1,t = αdt
N̂

, which is the first

candidate pricing strategy. Next, let α
ζ ≤ pt ≤ α log(κCP ζ)

ζ . Thus, from Theorem 16,

b∗t = ζdt. Again, in this region, uSP,t(pt) is a strictly increasing function of pt. Thus,

p∗2,t = α log(κCP ζ)
ζ strictly dominates all other prices in this interval, which yields the

second candidate pricing strategy25. For the case that αdt
N̂
≤ pt ≤ α

ζ , from Theorem 16,

b∗t = αdt
pt

. In this region, the first order condition on uSP,t(pt) provides us with the local

extremum,

p∗3,t = α
ν1dt + ν2D

ν1N
(4.21)

Since the second order derivative can be negative or positive, the first order condition

provides us with only a candidate optimum answer, which is the third candidate pricing

25 Note that p∗2,t = α log(κCP ζ)
ζ

yields a payoff of zero for the CP. However, since we have assumed that

the indifferent CP chooses to join the sponsorship program, z∗t = 1 and subsequently y∗t = 1.
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strategy. This candidate strategy should satisfy the condition αdt
N̂
≤ p∗3,t ≤ α

ζ . If not, it

would not be an optimum answer since, as we discussed earlier in the proof, every price less

than (respectively, higher than) αdt
N̂

(respectively, α
ζ ) is dominated by αdt

N̂
(respectively,

α log(κCP ζ)
ζ )26. Note that these candidate strategies are optimum only if they yield a payoff

higher than the payoff of the SP in the case of no-sponsoring, i.e. v2D log(κSP
N
D ). The

result follows.

4.6.3 Proof of Theorem 18

We characterize the possible stable outcomes of the game when at each time t, the SP and

the CP choose their strategy to be the SPNE of the game characterized in Theorems 16

and 17.

The first candidate stable outcome is trivial: as soon as one of the CP or SP exits the

sponsorship program, or dt >
N̂
ζ , or dt = 0, the program will not be resumed.

Now consider the case that sponsoring occurs. In this case, y = 1 z = 1, and from

Theorem 17, the SP chooses one of the candidate optimum pricing strategies from the

set P ∗ = {αdt
N̂
, α log(κCP ζ)

ζ , αν1dt+ν2D
ν1N

}. We show that the first, the second, and the third

candidate pricing strategies are corresponding to the second, the third, and the fourth

stable outcome, respectively. Note that when choosing these prices, by Theorem 17, the

demand should be feasible, i.e. 0 < dt ≤ N̂
ζ . In addition, recall that by Lemma 23, the

demand is stable when d = κub.

Now, we obtain the second stable outcome by considering that p = αd
N̂

and 0 < dt ≤ N̂
ζ .

In this case, from Theorem 16, b = N̂ . Thus p = ακu since d = κuN̂ . The feasibility

26Note that from Theorem 16, prices higher than α log(κCP ζ)
ζ

leads to no sponsoring on the CP side.
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condition yields that d = κuN̂ ≤ N̂
ζ ⇒ κu ≤ 1

ζ
27.

Next, we obtain the third stable outcome by considering p = α log(κCP ζ)
ζ and 0 < dt ≤

N̂
ζ . In this case, from Theorem 16, b = ζd, and subsequently from the stability condition,

d = κub = κuζd. Therefore, this case occurs if κuζ = 1. Note that the demand could be

any positive value less than or equal to N̂
ζ (feasibility condition), and with this demand,

0 < b = ζd ≤ N̂ .

Finally, the fourth possible stable outcome happens when p = αν1d+ν2D
ν1N

, p ∈ [αd
N̂
, αζ ]

(from Theorem 17), and 0 < dt ≤ N̂
ζ . In this case, from Theorem 16, b = αd

p . In order to

have a stable outcome, d = κub⇒ p = ακu. Thus, from p = αν1dt+ν2D
ν1N

, d = Nκu − ν2
ν1
D

and b = N − ν2
ν1κu

D. Note that b should satisfy 0 < b ≤ N̂ , and from Theorem 17, we

know that p = αν1d+ν2D
ν1N

is optimum if it is in the interval [αd
N̂
, αζ ]. The latter yields that

αd
N̂
≤ p = ακu ≤ α

ζ , which yields that κu ≤ 1
ζ and b = αd

p ≤ N̂ . Note that these conditions

automatically lead to a feasible demand: from b = αd
p ≤ N̂ , then d ≤ N̂p

α = N̂κu ≤ N̂
ζ .

Thus, in this stable outcome, κu ≤ 1
ζ and 0 < b ≤ N̂ . The result follows.

4.6.4 Proof of Theorem 19

By (4.24), the utility of the SP when choosing the tuple
(
d, 1, α log(κCP ζ)

ζ , 1, ζd
)

is:

uSP = αd log (κSP ζ) + ν1d log (κSP ζ) + ν2D log

(
κSP

N − ζd
D

)

First, note that the expression of the utility is concave in d. Thus, the first order

condition gives the optimum answer. The solution of the first order condition is:

d∗ =
N

ζ
− 1

(α+ ν1) log (κSP ζ)

27Note that d = κuN̂ > 0.
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Based on Theorem 18, for d∗ to be the demand corresponding to the minimum quality

stable outcome, it should satisfy the constraint 0 < d∗ ≤ N̂
ζ . If d∗ > N̂

ζ or d∗ < 0, the

concavity implies that the optimum is d = N̂
ζ or d = 0, respectively.

4.6.5 Proof of Theorem 20

First, note that in Theorem 18, when κu = 1
ζ , the stable points 2, 3, and 4 can occur.

In addition, the demand is fixed in the stable point 2 and 4, while it can take a range of

values for the stable point 3, including the fixed demands in the other two stable points.

On the other hand, the price is fixed in all these three stable points. In these stable

points, the stable quality is b
d = ζ. Thus, by (4.24), the payoff of the SP is:

uSP = pζd+ ν1d log (κSP ζ) + ν2D log

(
κSP

N − ζd
D

)
Therefore, for a fixed demand, the payoff of the SP in this case is an increasing function

of the price p. Note that the third stable point, i.e. minimum quality stable point, has

the highest price among the possible stable points since log(κCP ζ) > 1.28 In addition,

it can take a range of demand including the fixed demands of the stable point 2 and 4 .

Thus, the third stable outcome of the market yields the highest payoff for the SP. The

optimum demand is chosen by Theorem 19 as discussed before. The result follows.

4.6.6 Proof of Theorem 21

First note that from Corollary 10, the minimum quality stable point, i.e.
(
d, 1, α log(κCP ζ)

ζ , 1, ζd
)

,

yields a payoff of zero for the CP. From Lemma 23, in both the maximum bit sponsorship,

i.e.
(
κuN̂ , 1, ακu, 1, N̂

)
, and interior stable point, i.e.

(
Nκu − ν2

ν1
D, 1, ακu, 1, N − ν2

κuν1
D
)

,

28In Section 4.1, we assumed that in order to have a non-trivial problem κCP ζ > e
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the stable quality ( bd) is 1
κu

. Thus, using (4.3), the payoff of the CP in these plausible

stable outcomes is:

uCP = αd

(
log

(
κCP
κu

)
− 1

)
Note that from the condition for plausibility of these stable points (κu ≤ 1

ζ ), and our

previous assumption that κCP ζ > e,29 κCP
κu

> e. Thus, the payoff of the CP in the

maximum bit sponsorship and the interior stable point is strictly greater than zero, and

is strictly increasing with respect to the demand. Given that the quality b
d = 1

κu
, and is a

constant, the higher the number of sponsored bits, the higher the demand, and therefore

the higher the payoff of the CP would be. In addition, note that the number of sponsored

bits in the maximum bit sponsorship point is greater than or equal to the number of

sponsored bits in the interior stable point. Thus, the utility of the CP in the maximum

bit sponsoring point is greater than or equal to the utility in the interior stable point.

The result follows.

4.6.7 Proof of Theorem 22

dCP and dSP are independent of d and p. In addition, uexcess = (uCP−dCP )+(uSP−dSP )

is independent of p, and is only a function of d. Thus, for a given d, using equation (2)

of [49], the optimum value of p is such that:

uCP − dCP
w

=
uSP − dSP

1− w
29The condition to have a non-trivial problem.
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if the solution for p satisfies other constraints. Thus, by plugging the expressions for the

CP and the SP ((4.14) and (4.15)), the candidate optimum p as a function of d is:

p∗ =
κu
d

(
(1− w)(uad − dCP )− w(us − dSP )

)
=
κu
d

(
(uad − dCP )− wuexcess

)
(4.22)

Substituting (4.22) in the objective function of (4.16) and using (4.14) and (4.15) yield

the new objective function:

ww(1− w)w(uad − dCP + us − dSP ) = ww(1− w)wuexcess

Substituting (4.22), (4.14), and (4.15) in the constraint uCP ≥ dCP , yields the new

constraint uad−dCP +us−dSP ≥ 0. Similar substitutions for uSP ≥ dSP yields the same

constraint. Thus, the optimization can be written as,

max
d
uexcess

s.t.

0 ≤ d ≤ N̂κu

uad − dCP + us − dSP = uexcess ≥ 0

(4.23)

The theorem follows from above and (4.22).

4.6.8 Comments on the Approximations in the Model

Note that in our model, we have assumed that either the CP sponsor a quality for her

end-users or she uses the best effort scenario (both cannot happen together). This means

that in the second case (no sponsoring) the demand of the CP would be added to the

pool of the demand for the best effort scenario, i.e. would be added to D. In our model,

we do not considered the augmentation since we naturally expect the demand for a CP
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to be much smaller than the total demand for all CPs. In this section, we discuss if and

how the results change if we consider this augmentation.

Change in the Model

The augmentation in the demand can be accommodated as follows:

The SP:

uSP,t(pt) = ptbt + us(bt(pt)) (4.24)

where now the users’ satisfaction function, i.e. us(.), becomes:

us(bt) =


ν1dt log

(
κSP bt
dt

)
+ ν2D log

(
κSP

N − bt
D

)
if dt > 0& bt > 0

ν2(D + dt) log

(
κSP

N − bt
(D + dt)

)
Otherwise (4.25a)

Note that (4.25a) is the same as (4.5a). Thus, the only change is for the case of no

sponsoring (dt = 0 or bt = 0) (4.25a) in which dt is added to the total demand of the best

effort scenario, i.e. D. Note that (4.25a) becomes similar to (4.5a) when dt << D.

The CP:

Note that we have considered that the CP receives a payoff of zero in the case of no

sponsoring. This is justified as in many cases in which if the CP does not sponsor the

data, then she will only transmit the content with a best effort scenario and because of

limited bandwidth do not transmit advertisements. An example of this can be seen in

Youtube: If the quality of the content is low, then Youtube automatically skips the ad.

Thus, in this case, when the CP transmits with best effort, it receives zero ad revenue.
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Change in the Analytical Results

This change may only affect the results when (i) the exact expression of us(bt) in the

case of no sponsoring, i.e. (4.25a), or (ii) the expressions for the optimum strategies of

the SP, i.e. p∗t is used. Note that in Theorem 1 we do not use any of (i) and (ii). Thus,

the Theorem would be similar to before. In the next paragraph, we will argue that the

expressions for p∗t in Theorem 2 would be the same as before. In Theorem 3, we only use

the expression for p∗t . Thus, the results of Theorem 3 would be the same as before. In

Theorems 4 and 5, we use (4.25a) (which is similar to (4.5a)) and the expression of p∗t

(which are the same as before). Thus, the the results for these theorems also would be as

before. For the long-sighted case, we do not use the exact expression of us(b). Thus, all

the results of long-sighted would be as before.

Now, we argue that the expressions for the optimum strategies of the SP in Theorem

2 would be the same as before. The first paragraph of the proof would be the same

as before since we do not use (4.25a). In addition, in the next paragraph of the proof

and when characterizing the optimum strategies of the SP, we focus on 0 < dt ≤ N̂
ζ and

pt ≤ α log(κCP ζ)
ζ . With these conditions, bt > 0 and sponsoring occurs. Thus, we use the

expression of uSP (pt) for the case of sponsoring (4.25a) which is the same as before, i.e.

(4.5a). Thus, the expressions for the optimum strategies of the SP would be the same as

before.

Note that the only change that should be applied to Theorem 17 is to the expression

of uSP,0, i.e. the utility of the SP in the case of no sponsoring. This utility should be

changed from (4.5a) to (4.25a), i.e. uSP,0 = v2(D + dt) log(κSP
N

D+dt
).
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Change in the Simulation Results

Since the SP now receives a greater utility in the case of no sponsoring (compare (4.5a)

with (4.25a)), the option of no-sponsoring becomes more attractive for the SP. We have

redone all the simulations with the new model. We comment on all the changes in the

numerical results, and present the results for one sample scenario (Figure 4.13).

Changes to Figures 3 to 6: In the numerical results, we observe that these figures

will remain similar in general. The only change is that the region of no sponsoring for

large v2 slightly increases (since the no-sponsoring is now more attractive for the SP).

Thus, the insights associated with these figures would be the same as before.

Changes to Figures 7 and 9: Now, consider the numerical results for the long-

sighted scenario. In this case, for Figures 7 and 9, we observe the thresholds for the jump

to no-sponsoring region slightly decreases (as we expect because of the explanations in the

first paragraph of Appendix 4.6.8). Otherwise, the figures would be the same as before.

This is because of the fact that the utility of the CP is the same as before.

Changes to Figures 8 and 10: We plot the counterpart of Figure 8, in Figure 4.13.

Note that the results are similar. The only difference is that the percentage of increase

in the utility of the SP decreases in some regions (regions in which short-sighted yields

no sponsoring). This is because of the increase in the utility of the SP in the case of

no sponsoring. The same happens to Figure 9. Thus, the insights associated with these

figures remain the same.

Changes to Figures 11 and 12: Recall that p∗ is the price of sponsored bits in the

bargaining framework, and is distinct from p∗t which is the price of sponsored bits in the
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Figure 4.13: The percentage of increase in the utility of the SP when κu = 1
ζ with respect

to v2 for different values of ζ (new model).

short-sighted framework. Results reveal that the insights associated with these figures

follow the same trend as before. Note that p∗ depends on the disagreement payoff which

is the payoff of short-sighted framework. Thus, the only change to the value of p∗ happens

when the disagreement yields no sponsoring. In this case, since the payoff of disagreement

increases slightly (4.25a), p∗ increases slightly.
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Figure 4.14: The percentage of increase in the utility of the SP when κu = 1
ζ with respect

to v2 for different values of ζ (old model).
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we considered economic frameworks to investigate different questions about

the departure toward a non-neutral regime and its possible consequences. We assessed

whether different entities of the market have the incentive to adopt a non-neutral pricing

scheme; what are the pricing strategies they choose; and how these changes affect the

Internet market. To answer these questions, we modeled, analyzed, and characterized a

non-neutral Internet market under different scenarios and parameters.

First, in Chapter 2, we investigated the incentives of different entities of the Internet

market for migrating to a non-neutral regime. We considered a diverse set of parameters

for the market, e.g. market powers of Internet Service Providers (ISPs), sensitivity of

End-Users (EUs), and Content Providers (CPs) to the quality of the content. The goal

was to obtain founded insights on whether there exists a market equilibrium, the structure

of the equilibria, and how they depend on different parameters of the market when the
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current equilibrium (neutral regime) is disrupted and some ISPs have switched to a non-

neutral regime. We considered a system in which there exists two ISPs, one “big” CP,

and a continuum of EUs. One of the ISPs is neutral and the other is non-neutral. We

considered that the CP can differentiate between ISPs by controlling the quality of the

content she is offering on each one. We also considered that EUs have different levels of

innate preferences for ISPs. We formulated a sequential game, and explicitly characterized

all the possible Sub-game Perfect Nash Equilibria (SPNE) of the game. We proved that if

an SPNE exists, it would be one of the five possible strategies each of which we explicitly

characterized. We proved that when EUs have sufficiently low innate preferences for

ISPs, a unique SPNE exists in which the neutral ISP would be driven out of the market.

We also proved that when these preferences are sufficiently high, there exists a unique

SPNE with a non-neutral outcome in which both ISPs are active. Through numerical

analysis, we observed that the neutral ISP receives a lower payoff and the non-neutral

ISP receives a higher payoff (most of the time) in a non-neutral scenario. However, we

identified scenarios in which the non-neutral ISP loses payoff by adopting non-neutrality.

We also showed that a non-neutral regime yields a higher welfare for EUs in comparison

to a neutral one if the market power of the non-neutral ISP is small, the sensitivity of

EUs (respectively, the CP) to the quality is low (respectively, high), or a combinations of

these factors.

Then, we investigated frameworks using which ISPs and CPs select appropriate in-

centives for each other, and investigated the implications of these new schemes on the

entities of the Internet market. Thus, we considered a market consisting of ISPs, CPs,

and EUs in which ISPs sell the bandwidth to CPs in exchange of financial incentives. We
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analyzed two non-neutral frameworks:

In Chapter 3, we studied the price competition in a duopoly with an arbitrary number

of buyers. In this case, ISPs was considered to be sellers selling/leasing a number of

their resources to buyers, i.e. CPs. Each seller can offer multiple units of resources

depending on the availability of the resources which is random and may be different

for different sellers. Sellers seek to select a price that will be attractive to the buyers

and also fetch adequate profits. A seller may only know the statistics of the number of

available resources to her competitor. We analyzed this price competition as a game, and

identified a set of necessary and sufficient properties for the Nash Equilibrium (NE). The

properties reveal that sellers randomize their price using probability distributions whose

support sets are mutually disjoint and in decreasing order of the number of availability.

We proved the existence and uniqueness of a symmetric NE in a symmetric market, and

explicitly computed the price distribution in the symmetric NE. In addition, we proposed

a heuristic pricing strategy for sellers in a symmetric oligopoly market which satisfies the

necessary and sufficient properties identified for a NE in a symmetric duopoly. Numerical

evaluations reveal that our proposed strategy constitutes a good approximation for the

NE of the symmetric oligopoly market. Note that in this case, CPs have a passive role, in

the sense that they cannot alter their demand in accordance with the price set by ISPs.

However, CPs have the ability to choose amongst the ISPs based on their price.

In Chapter 4, we considered a non-neutral framework in which CPs have an active

role in the market, and decide on the number of resources they want to reserve/buy from

the ISPs based on the price ISPs quote. In our model, ISPs allow CPs to sponsor a

portion of their resources, and price it appropriately to maximize their payoff. The payoff
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of an ISP depends on the monetary revenue and the satisfaction of end-users both for

the non-sponsored and sponsored content, while CPs generate revenue through advertise-

ment. Moreover, in this work, we considered the coupling between limited resources and

the strategies of the decision makers. We analyzed the market dynamics and equilibria

in two different frameworks, i.e. sequential and bargaining game frameworks, and pro-

vide strategies for (i) SPs: to determine if and how to price resources, and (ii) CPs: to

determine if and what quality to sponsor. The frameworks characterize different sets of

equilibrium strategies and market outcomes depending on the parameters of the market.

5.2 Future Works

Although different models and problems were presented and analyzed in this thesis, several

additional questions remain open. In this section, we present some of the extensions and

new questions that can be addressed in the future:

CPs:

Note that in Chapter 3, we considered a random number of identical CPs that are

price-takers. On the other hand, in Chapters 2 and 4, we considered a single strategic CP

while the rest of the CPs are passive and their effects can be captured by constant param-

eters. A possible direction for future work is to consider multiple number of “strategic”

CPs that are of different types. These CPs not only interact with ISPs but also compete

with each other to attract EUs and to reserve/buy the resources of ISPs. The effects of

this competition on the pricing of the Internet market and resources are not apriori clear.

One might think about scenarios in which a competition between CPs leads to higher
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prices quoted by ISPs for resources and subsequently heavier discounts for EUs. Thus, a

better welfare for EUs might be expected if this outcome occurs. On the other hand, a

“fragmented” Internet might be another outcome of the market. In this case, each CP

picks an ISP and provides her content with premium quality exclusively on that ISP to

avoid competition and also to secure a monopoly over EUs. This is not desirable from

the perspective of a policy maker since it may have negative effects on the social welfare

of the market.

The first step in extending our work toward this direction is to consider multiple CPs

that belong to two broad types, e.g. those with high market power such as Google and

Netflix, and those with low market power such as start-ups. It is interesting to investigate

under what conditions migration to a non-neutral Internet would drive the CPs with low

market power out of the market and how a regulator can prevent from this. Using this

model, we can also compare between inter-type cooperations/competitions with cross-

type cooperations/competitions. In other word, we can investigate whether CPs with low

market power prefer to cooperate among themselves to be able to compete with those

with high market power or they prefer to team up with powerful CPs in their competition

with other small CPs.

ISPs:

Another possible direction, is to consider the effects of investment decisions by ISPs

on the outcome of the market. In this case, ISPs invest the additional profit on their

infrastructure and can compensate the cost through CPs or EUs. For example, in the

model of Chapter 2, investment decisions can be accommodated by considering different

levels of premium quality, each corresponding to different costs. The non-neutral ISP
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would select a level of quality based on the cost and other parameters. It is of interest to

investigate how the quality-cost relationship can affect the results of that chapter.

In addition, note that in the models presented in this thesis, we focused on either

one (Chapter 4) or two ISPs (Chapters 2 and 3). A possible extension is to consider

more than two ISPs and the interaction among them. In Chapter 3, we provided a

heuristic algorithm to compute NE strategies for the case of a symmetric oligopoly, i.e.

more than two identical ISPs. We provided numerical results on the performance of this

algorithm. However, providing analytic results on the structure of equilibria in the case of

an asymmetric oligopoly is a topic of future work. As previously mentioned, computing

Nash equilibria in this case is considered to be an open problem. Thus, finding possible

structures on the equilibria may at least provide approximate solutions if not solve this

open problem.

Another possible direction to expand this work is to enable ISPs to share resources

among themselves. The interplay between cooperation and competition among ISPs can

change the pricing strategies for the CPs and EUs, and subsequently affect the social

welfare of the market. In [38], we investigate this interplay in the context of the interac-

tion between Mobile Network Operators (MNOs) and Mobile Virtual Network Operators

(MVNOs).

EUs:

Note that in Chapter 2, we considered EUs to have different reluctance for ISPs. The

lower the reluctance for ISPs, the easier an EU can switch between ISPs. Thus, high

reluctance is associated with EUs that are locked-in with ISPs. A possible future work is

to take into the account the duration of the contract that EUs have with ISPs. A possible
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extension that can be applied to the work in Chapter 4 is to consider end-users that can

switch between ISPs. Note that in Chapter 4, we assumed that end-users are locked with

ISPs due to contracts.

The Regulator:

In the models presented in this thesis, we do not explicitly consider the strategic

decisions a regulator can make. Instead, whenever possible, using the results of the

models, we commented on the role of the regulator in affecting the equilibrium outcome.

A future work is to consider the regulator as one of the decision makers of the market

alongside the ISPs, CPs, and EUs. The decision of the regulator could be to select the

amount of incentive (for example through tax breaks) or penalty (for example through

increasing tax) for the decision makers in order to control the equilibrium of the market.

Game Frameworks:

In this thesis, we mainly considered a myopic interaction among entities (except for

the model in Chapter 4). Investigating a long-run interaction among decision makers

using repeated game is a topic of future work. Through analyzing a repeated framework,

we can find out whether CPs or ISPs with high market power are able to secure monopoly

power over the market by driving their competitors out of the market through adoption

of sub-optimal strategies for a limited time.

In addition, in most of the models analyzed in this thesis, we considered non-cooperative

sequential game frameworks (except for one part of Chapter 4). It is of interest to in-

vestigate the equilibrium outcome of the models using cooperative or bargaining game

frameworks, and to compare the results with the results of this thesis.
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[44] Patrick Maillé and Galina Schwartz. Content providers volunteering to pay network

providers: Better than neutrality? arXiv preprint arXiv:1602.07615, 2016.

[45] Andreu Mas-Colell, Michael Dennis Whinston, Jerry R Green, et al. Microeconomic

theory, volume 1. Oxford university press New York, 1995.

[46] L. Mishra. Micro grids poised to take off. The Hindu, Web., 25 Oct. 2014.

[47] Massimo Motta. Endogenous quality choice: price vs. quantity competition. The

journal of industrial economics, pages 113–131, 1993.

[48] John Musacchio, Galina Schwartz, and Jean Walrand. A two-sided market analysis of

provider investment incentives with an application to the net-neutrality issue. Review

of Network Economics, 8(1), 2009.

[49] Abhinay Muthoo. The economics of bargaining. Fundamental Economics, 1, 2002.

[50] Dusit Niyato and Ekram Hossain. Competitive pricing for spectrum sharing in cog-

nitive radio networks: Dynamic game, inefficiency of nash equilibrium, and collusion.

Selected Areas in Communications, IEEE Journal on, 26(1):192–202, 2008.

[51] Dusit Niyato, Ekram Hossain, and Zhu Han. Dynamics of multiple-seller and

multiple-buyer spectrum trading in cognitive radio networks: A game-theoretic mod-

eling approach. Mobile Computing, IEEE Transactions on, 8(8):1009–1022, 2009.

[52] Paul Njoroge, Asuman Ozdaglar, Nicolás E Stier-Moses, and Gabriel Y Weintraub.

Investment in two-sided markets and the net neutrality debate. Review of Network

Economics, 12(4):355–402, 2010.

251



[53] Martin J Osborne and Ariel Rubinstein. Bargaining and markets, volume 34. Aca-

demic press San Diego, 1990.

[54] Jay Pil Choi and Byung-Cheol Kim. Net neutrality and investment incentives. The

RAND Journal of Economics, 41(3):446–471, 2010.

[55] R. R. Ruiz and S. Lohr. F.C.C. approves net neutrality rules, classifying broadband

internet service as a utility. NY Times., Web., 26 Feb. 2015.

[56] Paul Savage, Robert R Nordhaus, and Sean P Jamieson. Dc microgrids: Benefits

and barriers. From Silos to Systems: Issues in Clean Energy and Climate Change,

pages 51–66, 2010.

[57] Florian Schuett. Network neutrality: A survey of the economic literature. Review of

Network Economics, 9(2), 2010.

[58] Soumya Sen, Carlee Joe-Wong, Sangtae Ha, and Mung Chiang. A survey of smart

data pricing: Past proposals, current plans, and future trends. ACM Computing

Surveys (CSUR), 46(2):15, 2013.

[59] Zachary M. Seward. The inside story of how Netflix came to pay Comcast for internet

traffic. Quartz, Web., 27 Aug. 2014.

[60] Derk J Swider and Christoph Weber. Bidding under price uncertainty in multi-unit

pay-as-bid procurement auctions for power systems reserve. European Journal of

Operational Research, 181(3):1297–1308, 2007.

[61] James Vincent. European parliament rejects amendments protecting net neutrality.

The Verge, Web., 27 Oct. 2015.

252



[62] Lizhi Wang, Mainak Mazumdar, Matthew D Bailey, and Jorge Valenzuela. Oligopoly

models for market price of electricity under demand uncertainty and unit reliability.

European Journal of Operational Research, 181(3):1309–1321, 2007.

[63] E. Wood. How 3 states are moving forward with microgrids. GreenBiz, Web., 8 July

2014.

[64] Kyle Woodward. Strategic ironing in pay-as-bid auctions: Equilibrium existence with

private information. In Proceedings of the 2016 ACM Conference on Economics and

Computation, pages 121–121. ACM, 2016.

[65] E. Wyatt. Rebuffing F.C.C. in net neutrality case, court allows streaming deals. NY

Times., Web., 14 Jan. 2014.

[66] E. Wyatt and N. Cohen. Comcast and Netflix reach deal on service. NY Times.,

Web., 23 Feb. 2014.

[67] Di Zhang, Nouri J Samsatli, Adam D Hawkes, Dan JL Brett, Nilay Shah, and

Lazaros G Papageorgiou. Fair electricity transfer price and unit capacity selection

for microgrids. Energy Economics, 36:581–593, 2013.

[68] Liang Zhang and Dan Wang. Sponsoring content: Motivation and pitfalls for content

service providers. Technical report, Technical report, The Hong Kong Polytechnic

University, 2014. http://www4. comp. polyu. edu. hk/cslizhang/InfocomW14-TR.

pdf.

[69] Xia Zhou and Haitao Zheng. Trust: A general framework for truthful double spec-

trum auctions. In INFOCOM 2009, IEEE, pages 999–1007. IEEE, 2009.

253


	University of Pennsylvania
	ScholarlyCommons
	2017

	Economics Of Non-Neutrality In The Internet
	Mohammad Hassan Lotfi
	Recommended Citation

	Economics Of Non-Neutrality In The Internet
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories


	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction and Overview
	Network Neutrality and Pricing of the Internet
	Net Neutrality
	Pricing of the Internet

	Summary of Contributions
	Migration to a Non-Neutral Internet
	The Research Challenges and Goals
	Contributions
	Related Works

	Non-Neutrality Framework I- Uncertain Price Competition in an Internet Market
	The Research Challenges and Goals
	Contributions
	Related Works

	Non-Neutrality Framework II- Quality Sponsored Data
	The Research Challenges and Goals
	Contributions
	Related Works:

	Publications

	Migration to a Non-Neutral Internet
	Model and Formulations
	The Sub-Game Perfect Nash Equilibrium
	Stage 4: Customers decide which ISP to join
	Stage 3: The CP decides the qualities to offer over each ISP (qN and qNoN)
	Stage 2: ISP NoN determines the side-payment, :
	Stage 1: ISPs determine peqN and peqNoN:

	Benchmark Case: A Neutral Regime
	The Outcome of the Game and Discussions
	Possible Outcomes of the Market
	Benchmark: A Neutral Scenario

	Numerical Results
	NE Strategies
	Dependencies of neqNoN, eq, and Payoffs of ISPs to tN and tNoN
	Profits of Entities Due to Non-neutrality
	Does the Market Need to be Regulated?

	Discussions on Generalization of the Model
	Appendix
	Proofs of Section 2.2.2- Stage 3
	Proofs of Section 2.2.3 - Stage 2
	Proofs of Section 2.2.4 - Stage 1
	Proof of Theorem 10
	Proofs of Corollaries Characterizing the Outcome of the Market
	Continuous Strategy Set for the CP


	Non-Neutrality Framework I - Uncertain Price Competition in an Internet Market
	Market Model and Problem Formulation
	Market Model
	Problem Formulation

	Properties of a NE when d > max{m1,m2}
	Results that we use throughout
	Continuity of Price Distribution for Price x<v
	Sellers Have Equal Lowerbound of Prices
	The union of support sets cover [, v]
	Support Sets Are Mutually Disjoint and in Decreasing Order of the Number of Availabilities
	The Structure of Nash Equilibrium at Price v
	Proof of Theorem 13

	Arbitrary Demand
	The Sufficiency Theorem when dmax{m1,m2}
	Allowing dmax{m1,m2}

	The Symmetric Setting
	Properties of a Symmetric Nash Equilibrium
	Algorithm for computing a symmetric NE for the symmetric setting

	Random Demand
	Numerical Evaluations
	Oligopoly Market
	The Asymptotic Behavior

	Applications and Discussion
	Conclusion
	Appendix
	Proof of Lemma 17
	Proof of Theorem 14
	Computation of NE Strategies in an Asymmetric Setting
	Proof of Theorem 15


	Non-Neutrality Framework II - Quality Sponsored Data
	Model
	Problem Formulation:
	Preliminary Notations and Definitions:

	Sequential Framework: SPNE Analysis
	Stages of the Game:
	Short-Sighted CP, Short-Sighted SP
	Long-Sighted SP, Short-Sighted CP
	Short-Sighted SP, Long-Sighted CP
	Numerical Results

	Bargaining Framework: NBS Analysis
	Nash Bargaining Solution (NBS)
	Numerical Results

	Discussions
	Summary of Key Results
	Comments on the Assumptions of the Model

	Conclusion
	Appendix
	Proof of Theorem 16
	Proof of Theorem 17
	Proof of Theorem 18
	Proof of Theorem 19
	Proof of Theorem 20
	Proof of Theorem 21
	Proof of Theorem 22
	Comments on the Approximations in the Model


	Conclusion
	Summary
	Future Works


