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Essays In Mechanism Design

Abstract
In this thesis, I study mechanism design problems in environments where the information necessary to make
decisions is affected by the actions of principal or agents.

The first chapter considers the problem of a principal who must allocate a good among a finite number of
agents, each of whom values the good. Each agent has private information about the principal's payoff if he
receives the good. There are no monetary transfers. The principal can inspect agents' reports at a cost and
punish them, but punishments are limited because verification is imperfect or information arrives only after
the good has been allocated for a while. I characterize an optimal mechanism featuring two thresholds. Agents
whose values are below the lower threshold and above the upper threshold are pooled, respectively. If the
number of agents is small, then the pooling area at the top of value distribution disappears. If the number of
agents is large, then the two pooling areas meet and the optimal mechanism can be implemented via a
shortlisting procedure. The fact that the optimal mechanism depends on the number of agents implies that
small and large organizations should behave differently.

The second chapter considers the problem of a principal who wishes to distribute an indivisible good to a
population of budget-constrained agents. Both valuation and budget are an agent's private information. The
principal can inspect an agent's budget through a costly verification process and punish an agent who makes a
false statement. I characterize the direct surplus-maximizing mechanism. This direct mechanism can be
implemented by a two-stage mechanism in which agents only report their budgets. Specifically, all agents
report their budgets in the first stage. The principal then provides budget-dependent cash subsidies to agents
and assigns the goods randomly (with uniform probability) at budget-dependent prices. In the second stage, a
resale market opens, but is regulated with budget-dependent sales taxes. Agents who report low budgets
receive more subsidies in their initial purchases (the first stage), face higher taxes in the resale market (the
second stage) and are inspected randomly. This implementation exhibits some of the features of some welfare
programs, such as Singapore's housing and development board.

The third chapter studies the design of ex-ante efficient mechanisms in situations where a single item is for
sale, and agents have positively interdependent values and can covertly acquire information at a cost before
participating in a mechanism. I find that when interdependency is low or the number of agents is large, the ex-
post efficient mechanism is also ex-ante efficient. In cases of high interdependency or a small number of
agents, ex-ante efficient mechanisms discourage agents from acquiring excessive information by introducing
randomization to the ex-post efficient allocation rule in areas where the information's precision increases most
rapidly.
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ABSTRACT

ESSAYS IN MECHANISM DESIGN

Yunan Li

Rakesh V. Vohra

In this thesis, I study mechanism design problems in environments where the information necessary
to make decisions is affected by the actions of principal or agents.

The first chapter considers the problem of a principal whomust allocate a good among a finite number
of agents, each of whom values the good. Each agent has private information about the principal’s
payoff if he receives the good. There are no monetary transfers. The principal can inspect agents’
reports at a cost and punish them, but punishments are limited because verification is imperfect or
information arrives only after the good has been allocated for a while. I characterize an optimal
mechanism featuring two thresholds. Agents whose values are below the lower threshold and above
the upper threshold are pooled, respectively. If the number of agents is small, then the pooling area at
the top of value distribution disappears. If the number of agents is large, then the two pooling areas
meet and the optimal mechanism can be implemented via a shortlisting procedure. The fact that
the optimal mechanism depends on the number of agents implies that small and large organizations
should behave differently.

The second chapter considers the problem of a principal who wishes to distribute an indivisible
good to a population of budget-constrained agents. Both valuation and budget are an agent’s private
information. The principal can inspect an agent’s budget through a costly verification process and
punish an agent who makes a false statement. I characterize the direct surplus-maximizing mecha-
nism. This direct mechanism can be implemented by a two-stage mechanism in which agents only
report their budgets. Specifically, all agents report their budgets in the first stage. The principal then
provides budget-dependent cash subsidies to agents and assigns the goods randomly (with uniform
probability) at budget-dependent prices. In the second stage, a resale market opens, but is regulated
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with budget-dependent sales taxes. Agents who report low budgets receive more subsidies in their
initial purchases (the first stage), face higher taxes in the resale market (the second stage) and are
inspected randomly. This implementation exhibits some of the features of some welfare programs,
such as Singapore’s housing and development board.

The third chapter studies the design of ex ante efficient mechanisms in situations where a single item
is for sale, and agents have positively interdependent values and can covertly acquire information at
a cost before participating in a mechanism. I find that when interdependency is low or the number of
agents is large, the ex post efficient mechanism is also ex ante efficient. In cases of high interdepen-
dency or a small number of agents, ex ante efficient mechanisms discourage agents from acquiring
excessive information by introducing randomization to the ex post efficient allocation rule in areas
where the information’s precision increases most rapidly.
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CHAPTER 1 : INTRODUCTION

Mechanism design is “an analytical framework for thinking clearly and carefully about what exactly
a given institution can achieve when the information necessary to make decisions is dispersed and
privately held.”1. In many important applications, this information is endogenously influenced by
actions of principal or agents. A useful example to illustrate this point is a start-up company that
wants to bring a new product to the market and needs to attract funding. The start-up company can
learn the worth of the product by developing a prototype and gathering information about target cus-
tomers. A venture capital firm can also investigate the technical and the economic feasibility of the
product, which is initially privately known by the start-up company. These issues do not fit into the
standard mechanism design literature which largely focuses on environments in which the private
information of agents is given exogenously and is non-verifiable. In this thesis, I study mechanism
design problems in a richer information environment. Specifically, I explore the following two en-
vironments: one where principal can verify agents’ information; and one where agents can covertly
acquire information.

1.1. Mechanism design with costly verification

The standard mechanism design literature on allocation problems has largely focused on the use of
monetary transfers to induce truthful revelation. and has ignored the possibility of principal verifying
agents’ information. In some cases, the principal can obtain information about agents at a cost. For
example, the head of personnel for an organization can verify a job applicant’s claim or monitor his
performance once he is hired. A venture capital firm can investigate the competing start-ups or audit
the progress of a start-up once it is funded. Hence, I think it is important to consider this option.

Two recent papers, Ben-Porath et al. (2014) and Mylovanov and Zapechelnyuk (2014), have studied
this problem by taking the opposite position from the standard model and by ruling out transfers
but allowing costly inspection. They examined two extreme cases. In Ben-Porath et al. (2014),
verification is costly but punishment is unlimited in the sense that an agent can be rejected and does

1Vohra (2011)
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not receive the good. In Mylovanov and Zapechelnyuk (2014), verification is free but punishment
can be limited because verification is imperfect or information arrives only after the agent has been
hired for a while.

In Chapter 2, I consider a situation with both costly verification and limited punishment. I charac-
terize an optimal mechanism which has two thresholds. Agents whose values are below the lower
threshold and above the upper threshold respectively are pooled. If the number of agents is small,
then the pooling area at the top of the value distribution disappears, as seen in Ben-Porath et al.
(2014). In the case of intermediate and large numbers of agents, the optimal allocation rule also
involves pooling at the top, as seen in Mylovanov and Zapechelnyuk (2014). If the number of agents
is sufficiently large, then the two pooling areas meet and the optimal mechanism can be implemented
via a shortlisting procedure.

In Chapter 3, I study the problem of a principal who wishes to distribute an indivisible good to a
population of budget-constrained agents, such as public housing and social health care programs.
Both valuation and budget are the private information of an agent, but the principal can inspect an
agent’s budget through a costly verification process. Indeed, in many public programs, applicants
are subject to a set of eligibility conditions such as monthly income and family nucleus. Based on the
literature which studies allocation problems among financially-constrained agents (such as Che et al.
(2013a)), I consider mechanisms with monetary transfers and add the option of costly verification
on budgets.

I characterize the (direct) surplus-maximizing mechanism and also provide an implementation via a
two-stagemechanism. For tractability, I assume there are only two budget types: low and high. In the
first stage, agents report their budgets and the principal allocates the goods randomly. Agents who
report low budgets receive more cash and in-kind subsidies, and their reports are verified randomly.
In the second stage, a resale market opens but is regulated. Agents who report low budgets face
higher resale taxes, and their reports are verified randomly if they do not sell. This resembles the
affordable housing program in Singapore, which imposes more restrictions on the resale of agents
whose initial purchases are subsidized by the government.
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A technical challenge of this chapter is that we cannot anticipate a priori the set of binding incentive
compatibility constraints. This problem is also ubiquitous in multidimensional screening problems
with only monetary transfers and mechanism design problems with costly verification. To overcome
this difficulty, I develop a novel method which can potentially be used to solve other problems.

1.2. Mechanism design with information acquisition

Inmost of the literature onmechanism design, agents are assumed to have a given amount of informa-
tion and their incentives to acquire more information are not modeled. However, in many practical
settings, this assumption does not apply. For example, in auctions for offshore oil and gas leases
in the U.S., companies collect information about the tracts offered for sale using seismic surveys
before participating in the auctions. Another example is the sale of financial or business assets, in
which buyers perform due diligence to investigate the quality and compatibility of the assets before
submitting offers. Moreover, it is costly to acquire information. In the example of U.S. auctions for
offshore oil and gas leases (see Haile et al. (2010)), it cost $100, 000 to conduct a 50 square mile
3-D seismic survey in 2000. Similarly, in the sale of a business asset, the legal and accounting costs
of performing due diligence often amount to millions of dollars (see Quint and Hendricks (2013)).

Earlier papers have studied agents’ incentives to acquire information for fixed mechanisms. In a re-
cent paper, Bergemann and Välimäki (2002) considered the socially optimal information acquisition
in the context of general mechanism design. They focus on mechanisms that implement the ex-post
efficient allocations given acquired private information, and find that ex ante efficient information
acquisition can be achieved if agents have independent private values. However, if agents’ values
are interdependent, then ex-post efficient mechanisms will result in socially sub-optimal information
acquisition. In other words, there is a conflict between the provision of ex ante efficient incentives
to acquire information and the ex post efficient use of information.

What are ex-ante efficient mechanisms that balances the two trade-offs? In Chapter 4, I provide an
answer to this question. Specifically, I study the design of ex-ante efficient mechanisms in the sale of
a single object when agents’ values are positively interdependent. I focus on symmetric mechanisms

3



that treat all agents identically, and on symmetric equilibria in which agents acquire the same amount
of information before participating in a mechanism. I find that, when interdependency is low or the
number of agents is large, then the ex-post efficient mechanism is also ex-ante efficient. In cases
of high interdependency or a small number of agents, then ex-ante efficient mechanisms discourage
agents from acquiring excessive information by introducing randomization to the ex-post efficient
allocation rule in areas where the information’s precision increases most rapidly.

4



CHAPTER 2 : MECHANISM DESIGN WITH COSTLY VERIFICATION AND
LIMITED PUNISHMENTS

2.1. Introduction

In many large organizations scarce resources must be allocated internally without the benefit of
prices. Examples include the head of personnel for an organization choosing one of several appli-
cants for a job, venture capital firms choosing which startup to fund and funding agencies allocating
a grant among researchers. In these settings the principal must rely on verification of agents’ claims,
which can be costly. For example, the head of personnel can confirm a job applicant’s past work
experience, or monitor his performance once he is hired. A venture capital firm can investigate the
competing startups, or audit the progress of a startup once it is funded. Furthermore, the principal
can punish an agent if his claim is found to be false. For example, the head of personnel can reject
an applicant, fire an employee or deny a promotion. Venture capitals and funding agencies can cut
off funding.

Prior work has examined two extreme cases. In Ben-Porath et al. (2014), verification is costly, but
punishment is unlimited in the sense that an agent can be rejected and does not receive the resource.
InMylovanov and Zapechelnyuk (2014), verification is free, but punishment is limited. In this paper,
I consider a situation with both costly verification and limited punishment. I interpret verification
as acquiring information (e.g., requesting documentation, interviewing an agent, or monitoring an
agent at work), which could be costly. Moreover, punishment can be limited because verification is
imperfect or information arrives only after an agent has been hired for a while.

I think it is important to consider this general setting with both costly verification and limited pun-
ishment for two reasons. First, as it will become clear soon, this general setting helps us to identify
the role the number of agents plays in shaping optimal mechanisms. In the concluding section, I
give a more detailed comparison of the results in this paper with those in previous papers regarding
the role played by the number of agents. Second, in practice, it is possible that the principal can
obtain more precise information by incurring a higher information acquisition cost, which, in turn,

5



leads to a higher expected punishment. Although, throughout this paper, I take verification cost and
punishment level as exogenous, the results in the paper readily extend if the principal can jointly
optimize over verification cost and punishment level. The results in this paper help us to understand
the interactions between verification cost and punishment level.

Specifically, in the model, there is one principal who has to allocate one indivisible object among a
finite number of agents. She would like to give the object to the agent who has the highest value to
her. But doing this encourages all agents to exaggerate their values. The principal has at her disposal
two devices to discourage agents from exaggeration: first, the principal can ration at the bottom or
top of the distribution of values, but this reduces allocative efficiency; second, the principal can
verify an agent’s claim and punish him if his claim is found to be false, but verification is a costly
procedure. The goal of this paper is to find the optimal way to provide incentives via these two
devices.

For most parts of this paper, I consider a symmetric environment and characterize an optimal sym-
metric mechanism in this setting. If the number of agents is sufficiently small, then an one-threshold
mechanism as in Ben-Porath et al. (2014) is optimal. The allocation rule in this mechanism is effi-
cient at the top of the value distribution, and involves pooling only at the bottom. For intermediate
and large numbers of agents, the allocation rule involves pooling at both the top and the bottom as in
Mylovanov and Zapechelnyuk (2014). Specifically, the following two-threshold mechanism is opti-
mal. If there are agents whose values are above the upper threshold, then one of them is chosen at
random. If all agents’ values are below the upper threshold, but some are above the lower threshold,
then the one with the highest value is chosen. If all agents’ values are below the lower threshold, then
one of them is chosen at random. Note that an one-threshold mechanism can be viewed as a two-
threshold mechanism whose upper threshold is equal to the upper-bound of the value support. For a
sufficiently large number of agents, the two thresholds coincide, and the two-threshold mechanism
can be implemented using a shortlisting procedure. In this shortlisting procedure, agents whose val-
ues are above a threshold are shortlisted for sure, and agents whose values are below the threshold
are shortlisted with some probability. The principal then chooses one agent from the shortlist at
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random. The fact that the optimal mechanism depends on the number of agents implies that small
and large organizations should behave differently.

To understand the intuition behind these results, consider an agent with the lowest possible value to
the principal. Intuitively, as the number of agents increases, this agent gets worse off and has stronger
incentives to exaggerate his value in an one-threshold mechanism because now it is more likely that
there exists another agent whose value is above the threshold. When punishments are limited, the
principal can make exaggeration less attractive only by introducing distortions to the allocation rule
at the top of the value distribution.

This distinction between small and intermediate numbers of agents is important as it allows us to
establish a connection between Ben-Porath et al. (2014) and Mylovanov and Zapechelnyuk (2014).
Note that this distinction is absent if either verification is free or punishment is unlimited. In Ben-
Porath et al. (2014), an optimal mechanism never involves pooling at the top of value distribution
because punishment is unlimited. If punishment is limited, then pooling at the top is part of the op-
timal mechanism for a sufficiently large number of agents. In Mylovanov and Zapechelnyuk (2014),
an optimal mechanism always involves pooling at the top because verification is free. If verification
is costly, then pooling at the top disappears for a sufficiently small number of agents.

As an effort to understand the trade-off between verification (or information) cost and punishment
level (or information quality), I provide some comparative statics results with respect to verification
cost and punishment level in Section 2.4. An increase in verification cost has two opposite effects
on the size of the pooling areas. First, when verification becomes more costly, the optimal threshold
mechanism sees more pooling at the bottom to save verification cost. Second, the enlarging pooling
area at the bottom benefits agents with very low values and reduces their incentives to exaggerating
their values, which leads to less pooling at the top or no pooling at the top at all. In the paper, I
show that the second effect dominates, and, as a result, one-threshold mechanisms or two-threshold
mechanisms remain optimal for a larger number of agents as verification becomes more costly. The
impact of a change in punishment level is ambiguous and more interesting. On the one hand, a
reduction in punishment effectively makes verification more costly as the principal must inspect
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agents more frequently tomaintain incentive compatibility. Then the above analysis implies that one-
threshold mechanisms or two-threshold mechanisms remain optimal for a larger number of agents
as punishment becomes less severe. On the other hand, a reduction in punishment level makes it
harder to preventing agents from exaggeration through punishments, which leads to larger pooling
areas both at the bottom and at the top to restore incentive compatibility. This in turn implies that
one-threshold mechanisms or two-threshold mechanisms remain optimal for a smaller number of
agents as punishment becomes less severe.In general, the impact of a change in punishment level is
not monotonic.

In Section 2.5.1, I study a general model with asymmetric agents. In this setting, threshold mecha-
nisms are still optimal. The analysis, however, is much more complex. Though there is still a unique
lower threshold for all agents, different agents may face different upper thresholds. Using this result,
I revisit the symmetric environment and characterize the set of all optimal threshold mechanisms.
I find that limiting the principal’s ability to punish agents also limits her ability to treat agents dif-
ferently. In particular, when a one-threshold mechanism is optimal, the set of all optimal threshold
mechanisms shrinks as punishment becomes more limited. Eventually, the unique optimal threshold
mechanism is symmetric. If punishment is sufficiently limited so that a two-threshold mechanism
or a shortlisting procedure is optimal, then the principal can once again treat agents differently but
to the extent that they share the same set of thresholds. The comparison is less clear in this case
because the sets of optimal mechanisms are disjoint for different levels of punishments.

Technically, I follow Vohra (2012) and use tools from linear programming, which allows me to
analyze Ben-Porath et al. (2014) and Mylovanov and Zapechelnyuk (2014) in a unified framework.
It also allows me to get some results on optimal mechanisms in the asymmetric environment with
limited punishments, which are unavailable in Mylovanov and Zapechelnyuk (2014).

The rest of the paper is organized as follows. Section 2.1.1 discusses other related work. Section
2.2 presents the model. Section 2.3 characterizes an optimal symmetric mechanism when agents
are ex ante identical. Section 2.4 discusses the properties of this optimal mechanism. Section 2.5.1
studies a general asymmetric environment. Section 2.5.2 considers other variations of verification
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and punishment technologies. Section 2.6 concludes.

2.1.1. Other related literature

This paper is related to the costly state verification literature. The first contribution in the series
is Townsend (1979) who studies a model of a principal and a single agent. In Townsend (1979)
verification is deterministic. Border and Sobel (1987) and Mookherjee and Png (1989) generalize it
by allowing random inspection. Gale and Hellwig (1985) consider the effects of costly verification
in the context of credit markets. These models differ fromwhat I consider here in that in their models
there is only one agent and monetary transfers are allowed. Recently, Patel and Urgan (2017) also
study the problem of a principal who must allocate a good among multiple agents when transfers
are not allowed. As in Ben-Porath et al. (2014), in Patel and Urgan (2017), verification is costly and
punishments are unlimited. But, in addition to costly verification, the principal can deploy another
instrument: money burning. They show that both instruments are present in the optimal mechanism.
Furthermore, the optimal mechanism admits monotonicity in the allocation probability with regards
to an agent’s value, and takes a threshold form where all the values below a certain threshold are not
subject to verification or money burning.

Technically, this paper is related to the literature on reduced form implementation — see, e.g.,
Maskin and Riley (1984b), Matthews (1984b), Border (1991) and Mierendorff (2011). The most
related paper is Pai and Vohra (2014b), who also use reduced form implementation and linear pro-
gramming to derive optimal mechanisms for financially constrained agents.

2.2. Model

The set of agents is  ∶= {1,… , n}. There is a single indivisible object to be allocated among
them. The value to the principal of assigning the object to agent i is vi, where vi is agent i’s private
information. I assume {vi} are independently distributed, whose density fi is strictly positive on
Vi ∶= [vi, vi] ⊂ ℝ+. The assumption that an agent’s value to the principal is always non-negative
simplifies some statements, but the results in this paper can easily extend to include negative values.
I use Fi to denote the corresponding cumulative distribution function. Let  ∶=

∏

i Vi. Agent i gets
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a payoff of bi(vi) if he receives the object, and 0 otherwise. The principal can verify agent i’s report
at a cost ki ≥ 0 if agent i receives the object, and at a cost k�i ≥ 0 if agent i does not receive the object.
I allow for verification costs to depend on whether an agent gets the object. This is natural in some
environments. For example, if the object is a job slot and the private information is about an agent’s
ability, then it is easier to inspect an agent who is hired.1 Verification perfectly reveals an agent’s
type. The cost to an agent to have his report verified is zero. If agent i is inspected, then the principal
can impose a penalty ci(vi) ≥ 0 if agent i receives the object, and a penalty c�i (vi) ≥ 0 if agent i does
not receive the object. In Ben-Porath et al. (2014), the principal can inspect an agent at the same cost
regardless of whether he receives the object or not, i.e., ki = k�i . However, the principal can only
penalize an agent if he receives the object, i.e., c�i = 0. In Mylovanov and Zapechelnyuk (2014), the
principal can only inspect and penalize an agent if he receives the object, i.e., k�i = ∞ and c�i = 0.
For the rest of the paper, I follow Ben-Porath et al. (2014) and Mylovanov and Zapechelnyuk (2014)
and assume that c�i = 0. The interpretation is that the principal can only penalize an agent by taking
the object back possibly after a number of periods (e.g., rejecting a job applicant or firing him after
a certain length of employment). In Section 2.5.2, I discuss to what extent this assumption can be
relaxed.

We say that punishment is limited if ci(vi) < bi(vi) for all vi. That is, the principal cannot reduce an
agent’s payoff to his outside option by punishing him. If we interpret verification as acquiring infor-
mation, then punishment can be limited because information is imperfect. Throughout the paper, I
take verification cost and punishment level as exogenous. In practice, it is possible that the principal
can get more precise information by incurring a higher information acquisition cost, which, in turn,
leads to a severer expected punishment. In other words, by choosing a higher ki, the principal can
obtain a higher ci. The results in this paper readily extend if the principal can jointly optimize over
verification cost and punishment level.

I invoke the Revelation Principle and focus on direct mechanisms in which truth-telling is a Bayes-
Nash equilibrium. Clearly, if an agent is inspected, it is optimal to penalize him if and only if he is

1I will use the words “verify" and “inspect" exchangeably in this paper.
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found to have lied. Using this result, a direct mechanism can be written as a triplet (p, q, q�), where
p ∶= (p1,… , pn) ∶  → [0, 1]n, q ∶= (q1,… , qn) ∶  → [0, 1]n and q� ∶= (q�1 ,… , q�n ) ∶  →

[0, 1]n. For each i and each profile of reported values v ∈  , pi(v) specifies the probability with
which i is assigned the object, qi(v) specifies the probability of inspecting i conditional on the object
being assigned to agent i, and q�i (v) specifies the probability of inspecting i conditional on the object
not being assigned to agent i. The utility of an agent whose true type is vi and who reports v′i is
pi(vi, v−i)bi(vi) if v′i = vi and

pi(v′i, v−i)
(

bi(vi) − qi(v′i, v−i)ci(vi)
)

− (1 − pi(v′i, v−i))q
�
i (v

′
i, v−i)c

�
i (vi)

otherwise. A mechanism is feasible if ∑i pi(v) ≤ 1 for all v ∈  . A mechanism satisfies the
incentive compatibility (IC) constraints if for each agent i,

Ev−i
[

pi(vi, v−i)bi(vi)
]

≥ Ev−i
[

pi(v′i, v−i)
(

bi(vi) − qi(v′i, v−i)ci(vi)
)

− (1 − pi(v′i, v−i))q
�
i (v

′
i, v−i)c

�
i (vi)

]

,∀vi, v′i.

The principal’s objective is to maximize her expected gain from allocating the object minus the
expected verification cost,

Ev

[ n
∑

i=1
pi(v)

(

vi − qi(v)ki
)

− (1 − pi(v))q
�
i (v)k

�
i

]

, (2.1)

subject to the feasibility and IC constraints.

Because c�i = 0, clearly it is optimal to set q�i = 0. In what follows, I abuse notation a bit and denote
a mechanism by a pair (p, q). The principal’s objective function now becomes

Ev

[ n
∑

i=1
pi(v)

(

vi − qi(v)ki
)

]

. (2.2)

11



The IC constraints become: for each agent i,

Ev−i
[

pi(vi, v−i)bi(vi)
]

≥ Ev−i
[

pi(v′i, v−i)
(

bi(vi) − qi(v′i, v−i)ci(vi)
)]

,∀vi, v′i. (2.3)

Note that if ki = 0, then the above principal’s problem reduces to the one considered in Mylovanov
and Zapechelnyuk (2014); and if ci(vi) = bi(vi) for all vi, then it reduces to the one considered in
Ben-Porath et al. (2014).

For each agent i and each vi ∈ Vi, let Pi(vi) ∶= Ev−i
[

pi(vi, v−i)
] denote the interim probability

with which agent i is assigned the object, and let Qi(vi) ∶= Ev−i
[

pi(vi, v−i)qi(vi, v−i)
]

∕Pi(vi) if
Pi(vi) ≠ 0 and Qi(vi) ∶= 0 otherwise. Note that Pi(vi)Qi(vi) is the interim probability with which
agent i is inspected. Let P ∶= (P1,… , Pn) and Q ∶= (Q1,… , Qn). Then the principal’s problem
can be written in the reduced form:

max
P ,Q

n
∑

i=1
Evi

[

Pi(vi)
(

vi −Qi(vi)ki
)]

,

subject to

Pi(vi)bi(vi) ≥ Pi(v′i)
(

bi(vi) −Qi(v′i)ci(vi)
)

,∀vi, v′i, (IC)
0 ≤ Qi(vi) ≤ 1,∀vi, (F1)

∑

i ∫Si
Pi(vi)dFi(vi) ≤ 1 −

∏

i

(

1 − ∫Si
dFi(vi)

)

,∀Si ⊂ Vi. (F2)

In particular, an allocate rule p is feasible if and only if the corresponding reduced form allocation
ruleP satisfies (F2) by Theorem 2 inMierendorff (2011), which generalizes the well-knownMaskin-
Riley-Matthews-Border conditions to asymmetric environments.

I begin solving the principal’s problem by solving for the optimalQ for a givenP . In bothMylovanov
and Zapechelnyuk (2014) and Ben-Porath et al. (2014), this exercise is easy. If ki = 0, thenQ(vi) = 1
for all vi ∈ Vi. If ci(vi) = bi(vi) for all vi, then (IC) become Pi(vi)bi(vi) ≥ Pi(v′i)bi(vi)

(

1 −Qi(v′i)
)
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for all vi and v′i. Then (IC) hold if and only if

inf
vi
Pi(vi) ≥ Pi(v′i)

(

1 −Qi(v′i)
)

,∀v′i.

Because the principal’s objective function is strictly decreasing in Qi, it is optimal to set Qi(vi) =

1 − 'i∕Pi(vi) for all vi ∈ Vi, where 'i ∶= infvi Pi(vi). In general, for ki > 0 and ci(vi) ≠ bi(vi),
solving for the optimal Qi is hard.

For tractability, I assume that ci(vi) = cibi(vi) for some 0 < ci ≤ 1. This assumption is natural
in some applications. In the job slot example, this assumption is satisfied if an agent gets a private
benefit for each period he is employed and the penalty is being fired after a pre-specified number of
periods. In the example of venture capital firms or funding agencies, this assumption is satisfied if
agents receive funds periodically and the penalty is cutting off funding after certain periods. Further-
more, this assumption allows us to obtain a clear analysis on the interaction between the verification
cost (k) and the level of punishment (c). Lastly, this assumption can be relaxed, and the results in
this paper can easily extend if ci(vi)∕bi(vi) is minimized at vi.2

Under the assumption that the penalty, ci(vi), is proportional to the private benefit, bi(vi), (IC) be-
come Pi(vi) ≥ Pi(v′i)

(

1 − ciQi(v′i)
) for all vi and v′i. The (IC) constraint holds if and only if

'i ≥ Pi(v′i)
(

1 − ciQi(v′i)
)

,∀v′i. (2.4)

Because Qi(v′i) ≤ 1, then (2.4) holds only if

(1 − ci)Pi(v′i) ≤ 'i,∀v′i. (2.5)

Remark 1 Note that if ci = 1 as in Ben-Porath et al. (2014), then (2.5) is satisfied automatically.

2(IC) can be rewritten as: for each agent i,

Qi(v′i) ≥
bi(vi)
ci(vi)

(

1 −
Pi(vi)
Pi(v′i)

)

,∀vi, v′i.

Suppose that ci(vi)∕bi(vi) is minimized at vi and Pi(vi) is non-decreasing. Then for any given v′i, the left-hand side of theabove inequality is maximized at vi. Redefine ci ∶= ci(vi)∕bi(vi). Then (IC) hold if and only if (2.4) holds.
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This explains why there is no pooling at the top of value distribution in Ben-Porath et al. (2014). In

contrast, if 0 < ci < 1, then (2.5) imposes an upperbound on Pi, and, as I will show later, there can

be pooling at the top for a sufficiently number of agents.

For the rest of the paper, I assume that 0 < ci < 1. Suppose (2.5) holds, then it is optimal to set
Qi(vi) =

(

1 − 'i∕Pi(vi)
)

∕ci for all vi ∈ Vi. Substituting this into the principal’s objective function
gives:

n
∑

i=1
Evi

[

Pi(vi)
(

vi −
ki
ci

)]

+
'iki
ci

. (2.6)

For the main part of the paper, I assume vi’s are identically distributed, whose density f is strictly
positive on V = [v, v] ⊂ ℝ+. I use F to denote the corresponding cumulative distribution function.
In addition, I assume ci = c and ki = k for all i. In this symmetric setting, there exists an optimal
mechanism that is symmetric. Hence, I focus on symmetric mechanisms in Sections 2.3 and 2.4. In
what follows, I suppress the subscript iwhenever the meaning is clear. The main results of the paper
can be extended to environments in which the valuations (vi) of different agents can follow different
distributions (Fi), and both the punishments (ci) and the verification costs (ki) can be different for
different agents. I discuss this general asymmetric setting in Section 2.5.1.

2.3. Optimal mechanisms

In this section, I show that a simple threshold mechanism is optimal. As an overview of the proof
idea, I solve the principal’s problem in two steps. In the first step, I characterize an optimal mech-
anism for any given lowest probability with which an agent receives the object ('). In the second
step, I solve for the optimal '.

2.3.1. Optimal mechanisms for fixed '

Fix ' = infv P (v) ≤ 1∕n.3 I first solve the following problem (OPT − '):

max
P

Ev
[

P (v)
(

v − k
c

)]

+
'k
c
,

3Note that the problem (OPT − ') is feasible only if ' ≤ 1∕n.
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subject to

' ≤ P (v) ≤ '
1 − c

,∀v, (IC′)

n∫S
P (v)dF (v) ≤ 1 −

(

1 − ∫S
dF (v)

)n

,∀S ⊂ V . (F2)

Recall that there exists Q such that (F1) and (IC) hold if and only if P satisfies (IC′). To solve
(OPT − '), I approximate the continuum type space with a finite partition, characterize an optimal
mechanism in the finite model and take limits. Later on, I show that the limiting mechanism is
optimal in the original model.

Finite case

Fix an integer m ≥ 2. For t = 1,…m, let

vt ∶=v +
(2t − 1)(v − v)

2m
,

f t ∶=F
(

v +
t(v − v)
m

)

− F
(

v +
(t − 1)(v − v)

m

)

.

Consider the finite model in which vi can take onlym possible different values, i.e., vi ∈ {v1,… , vm}

and the probability mass function satisfies f (vt) = f t for t = 1,… , m. I abuse notation a bit and let
P ∶= (P 1,… , Pm), where P t is the interim probability with which a type vt agent is assigned the
good. Then the corresponding problem of (OPT −') in the finite model, denoted by (OPTm−'),
is given by:

max
P

m
∑

t=1
f tP t

(

vt − k
c

)

+
'k
c
,

subject to

' ≤ P t ≤ '
1 − c

,∀t, (IC′m)

n
∑

t∈S
f tP t ≤ 1 −

(

∑

t∉S
f t
)n

,∀S ⊂ {1,… , m}. (F2m)
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To solve (OPTm − '), I first rewrite it as a polymatroid optimization problem. Define G(S) ∶=
1 −

(
∑

t∉S f
t)n andH(S) ∶= G(S) − n'∑

t∈S f
t for all S ⊂ {1,… , m}. Define zt ∶= f t(P t − ')

for all t = 1,… , m and z ∶= (z1,… , zm). Clearly, P t ≥ ' if and only if zt ≥ 0 for all t = 1,… , m.
Using these notations, (F2m) can be rewritten as

n
∑

t∈S
zt ≤ H(S),∀S ⊂ {1,… , m}.

It is easy to verify that H(∅) = 0 and H is submodular. However, H is not monotonic. Define
H(S) ∶= minS′⊃S H(S). ThenH(∅) = 0, andH is non-decreasing and submodular. Furthermore,
by Lemma 16 in Appendix A.1,

{

z
|

|

|

|

|

z ≥ 0, n
∑

t∈S
zt ≤ H(S),∀S

}

=

{

z
|

|

|

|

|

z ≥ 0, n
∑

t∈S
zt ≤ H(S),∀S

}

,

Thus, (OPTm − ') can be rewritten as (OPTm1 − ')

max
z

m
∑

t=1
zt
(

vt − k
c

)

+ '
m
∑

t=1
f tvt,

subject to

0 ≤ zt ≤ c'f t

1 − c
,∀t, (IC′m1)

n
∑

t∈S
zt ≤ H(S),∀S ⊂ {1,… , m}. (F2m1)

Without the upper-bound on zt in (IC′m1), this is a standard polymatroid optimization problem, and
can be solved using the greedy algorithm. With the upper-bound, this is a weighted polymatroid
intersection problem and there exist efficient algorithms solving the optima if the weights (vt−k∕c)
are rational. See, for example, Cook et al. (2011) and Frank (2011). In this paper, I solve the problem
using a “guess-and-verify" approach. Though we cannot directly apply the greedy algorithm to
(OPTm1 − '), it is not hard to conjecture the optimal solution. Intuitively, zt = 0 if vt < k∕c.
Consider vt ≥ k∕c. Because H is non-decreasing and submodular, and the upper-bound on zt is
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linear in f t, the solution found by the greedy algorithm potentially violates the upper-bound for large
t. Hence, it is natural to conjecture that there exists a cutoff t such that the upper-bounds in (IC′m1)
bind if and only if t > t.

Formally, let S t ∶= {t,… , m} for all t = 1,… , m, and Sm+1 ∶= ∅. If ' ≤ (1 − c)∕n, let t ∶= 0;
otherwise, I show in the proof of Lemma 1 that there exists a unique t ∈ {1,… , m + 1} such that

H(S t) ≤ n
m
∑

�=t

c'f �

1 − c
andH(S t+1) > n

m
∑

�=t+1

c'f �

1 − c
.

Note that, by definition, if we assign the highest possible value allowed by (F2m1) to ∑m
�=t+1 z

� ,
then (IC′m1) must be violated for some t ≥ t + 1; but it is possible to assign the highest possible
value allowed by (F2m1) to ∑m

�=t z
� while respecting (IC′m1) for all t ≥ t. Hence, it is natural to

conjecture that t defined above is the cutoff above which the upper-bounds in (IC′m1) bind. I can
now construct my candidate optimal solution of (OPTm1 − ') as follows

ẑt ∶=

⎧

⎪

⎨

⎪

⎩

zt if vt ≥ k
c

0 if vt < k
c

, (2.7)

where

zt ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c'f t

1−c if t > t
1
n
H(S t) −

∑m
�=t+1

c'f t

1−c
if t = t

1
n

[

H(S t) −H(S t+1)
]

if t < t
,

As I have discussed earlier, if t > t and vt − k∕c > 0, then I conjecture that the upper-bound in
(IC′m1) binds and let ẑt = c'f t∕(1 − c). If t ≤ t and vt − k∕c > 0, then, in the spirit of greedy
algorithms, I start by assigning the highest possible value allowed by (F2m1) to ẑt and continue to
assign values to ẑt−1, ẑt−2,… in the same fashion. Finally, it is clear that if vt − k∕c < 0, then it is
optimal to set ẑt = 0. ẑ is feasible following from the fact thatH(∅) = 0, andH is non-decreasing
and submodular. Furthermore, we can verify the optimality of ẑ by the duality theorem:

Lemma 1 ẑ defined in (2.7) is an optimal solution to (OPTm1 − ').
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For each t = 1,… , m, let
P tm ∶=

ẑt

f t
+ ' (2.8)

The following corollary directly follows from Lemma 1:

Corollary 1 Pm defined in (2.8) is an optimal solution to (OPTm − ').

Continuum case

I characterize an optimal solution of (OPT−') by takingm to infinity. Let vl be such thatF (vl)n−1 =
n' and

vu ∶= inf
{

v
|

|

|

|

1 − F (v)n −
n'
1 − c

[1 − F (v)] ≥ 0
}

. (2.9)

vl is chosen so that if all agents whose values are below vl are pooled together and ranked below any
other agents with higher values, then their interim probability of receiving the object F (vl)n−1∕n is
equal to the lower-bound in (IC′), '. The definition of vu mirrors that of t. Informally, vu is chosen
so that if all agents whose values are above vu are pooled together and ranked above any other agents
with lower values, then their interim probability of receiving the object [1 − F (v)n]∕n[1 − F (v)] is
equal to the upper-bound in (IC′), '∕(1 − c). Note that if ' ≤ (1 − c)∕n, then vu = v. Let P ' be
defined as follows: If vl < vu, let

P '(v) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

'
1−c

if v ≥ vu

F (v)n−1 if vl < v < vu
' if v ≤ vl

.

If vl ≥ vu, let

v̂ ∶= inf
{

v
|

|

|

|

1 − n'F (v) −
n'
1 − c

[1 − F (v)] ≥ 0
}

∈ [vu, vl], (2.10)
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and

P '(v) ∶=

⎧

⎪

⎨

⎪

⎩

'
1−c

if v ≥ v̂

' if v < v̂
.

Finally, let

P ∗'(v) ∶=

⎧

⎪

⎨

⎪

⎩

P (v) if v ≥ k
c

' if v < k
c

. (2.11)

I show in Appendix A.1 that P ∗' is the “pointwise limit" of Pm as m → ∞. Moreover, P ∗' is an
optimal solution to (OPT − ').

Theorem 1 P ∗' defined in (2.11) is an optimal solution to (OPT − ').

2.3.2. Optimal '

I complete the characterization of an optimal mechanism by solving for the optimal '. First, if
verification is sufficiently costly or the principal’s ability to punish an agent is sufficiently limited,
then pure randomization is optimal.

Theorem 2 If v − k∕c ≤ Ev[v], then pure randomization, i.e., P ∗ = 1∕n is optimal.

To make the problem more interesting, in what follows, I assume:

Assumption 1 v − k∕c > Ev[v].

Recall that given ', vl is uniquely pinned down by F (vl)n−1 = n' and vu is uniquely pinned down
by (2.9). Define v∗ and v∗∗ by the equations (2.12) and (2.13), respectively:

Ev[v] − Ev[max{v, v∗}] +
k
c
= 0, (2.12)

Ev[v] − Ev[min{v, v∗∗}] + (1 − c)
[

Ev[v] − Ev[max{v, v∗∗}] +
k
c

]

= 0. (2.13)

19



They are well defined under Assumption 1. Furthermore, v∗∗ > v∗ ≥ k∕c. Finally, let

v♮ ∶= sup

{

v
|

|

|

|

|

F (v)n−1(1 − F (v))
1 − c

− 1 + F (v)n ≤ 0

}

. (2.14)

An optimal mechanism is characterized by the following theorem:

Theorem 3 Suppose that Assumption 1 holds. There are three cases.

1. If F (v∗)n−1 ≥ n(1 − c), then the optimal '∗ = F (v∗)n−1∕n and the following allocation rule

is optimal:

P ∗(v) ∶=

⎧

⎪

⎨

⎪

⎩

F (v)n−1 if v ≥ v∗

'∗ if v < v∗
.

2. If F (v∗)n−1 < n(1 − c) and v∗∗ ≤ v♮, then the optimal '∗ = (1 − c)∕n(1 − cF (v∗∗)) and the

following allocation rule is optimal

P ∗(v) ∶=

⎧

⎪

⎨

⎪

⎩

'∗

1−c if v ≥ v∗∗

'∗ if v < v∗∗
.

3. If F (v∗)n−1 < n(1 − c) and v∗∗ > v♮, then the optimal '∗ is defined by

Ev[v] − Ev[min{v, vu('∗)}] + (1 − c)
[

Ev[v] − Ev[max{v, vl('∗)}] +
k
c

]

= 0, (2.15)

and the following allocation rule is optimal:

P ∗(v) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

'∗

1−c
if v ≥ vu('∗)

F (v)n−1 if vl('∗) < v < vu('∗)

'∗ if v ≤ vl('∗)

.

To understand the result, consider the following implementation of the optimal mechanism in The-
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orem 3. There are two thresholds. I abuse notation here and denote them by vl and vu with v ≤ vl ≤

vu ≤ v. If every agent reports a value below vl, then an agent is selected uniformly at random and
receives the good, and no one is inspected. If any agent reports a value above vl but all reports are
below vu, then the agent with the highest reported value receives the good, is inspected with some
probability (proportional to 1∕c) and is penalized if he is found to have lied. If any agent reports a
value above vu, then an agent is selected uniformly at random among all the agents whose reported
values are above vu, receives the good, is inspected with a probability of 1 and is penalized if he
is found to have lied. I call a mechanism a one-threshold mechanism if vu = v, a two-thresholds

mechanism if vl < vu < v, and a shortlisting mechanism if vl = vu < v.

To understand conditions (2.12), (2.13) and (2.15), consider the impact of a reduction in vl. Intu-
itively, this improves allocation efficiency at the bottom of the value distribution. After some algebra,
one can verify that the increase in allocation efficiency is proportional to Ev[v] − Ev[max{v, vl}].
However, as vl decreases, agents with low v’s get worse off and have stronger incentives to exag-
gerate their types. To restore IC, the principal must now inspect agents more frequently, which
raises the total verification cost by an amount proportional to k∕c. Furthermore, because the prin-
cipal’s ability to penalize an agent is limited, more pooling at the top, i.e., a lower vu may also be
required to restore IC. This reduces the allocation efficiency at the top by an amount proportional
to [Ev[min{v, vu}] − Ev[v]

]

∕(1 − c). In an optimal mechanism, the marginal gain from a reduction
in vl (proportional to the left-hand side of (2.16)) must equal the marginal cost (proportional to the
right-hand side of (2.16)):

Ev[v] − Ev[max{v, vl}] =
Ev[min{v, vu}] − Ev[v]

1 − c
+ k
c
. (2.16)

This is precisely the case captured by the third part of Theorem 3 (compare (2.16) with (2.15)). If
the limited punishment constraint does not bind, i.e., vu = v, there is no efficiency loss at the top
and [

Ev[min{v, vu}] − Ev[v]
]

∕(1 − c) = 0. In this case, (2.16) becomes (2.12) (vl = v∗) and an
optimal mechanism is characterized by the first part of Theorem 3. If the principal’s ability to punish
an agent is sufficiently limited so that vu = vl(= v∗∗), then (2.16) becomes (2.13) and an optimal
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mechanism is characterized by the first part of Theorem 3.

Remark 2 If k = 0, then v∗ = v and F (v∗)n−1 = 0 < n(1 − c) for any 0 < c < 1. That is, when

verification is free, there is always pooling at the top (Mylovanov and Zapechelnyuk (2014)).

2.4. Properties of optimal mechanisms

Theorem 3 in the previous section shows that either one-threshold mechanisms, two-thresholds
mechanisms or shortlisting mechanisms are optimal. In this section, I show that which of the above
three kinds of mechanisms are optimal crucially depends on the number of agents (n). Specifically,
I show that there exist n∗(�, c) and n∗∗(�, c) with n∗(�, c) < n∗∗(�, c) such that if n ≤ n∗(�, c), then
one-threshold mechanisms are optimal; if n∗(�, c) < n < n∗∗(�, c), then two-thresholds mechanisms
are optimal; if n ≥ n∗∗(�, c), then shortlisting mechanisms are optimal. Here � ∶= k∕c ≥ 0 is
referred as the effective verification cost. The effective verification cost, �, is strictly decreasing in c.
This is because a smaller c implies a lower level of punishment, which makes verification essentially
more costly as the principal must inspect agents more frequently to maintain IC.

Formally, let n∗(�, c) < 1∕(1 − c) be defined by

F (v∗)n∗(�,c)−1 = n∗(�, c)(1 − c), (2.17)

where v∗ is defined by
Ev[v] − Ev[max{v, v∗}] + � = 0. (2.12)

Because v∗ is independent of n, by Theorem 3, one-threshold mechanisms are optimal if and only if
n ≤ n∗(�, c). Intuitively, for fixed v∗, an agent whose type below v∗ gets the object with probability

'∗ = 1
n
F (v∗)n−1,

which is strictly decreasing in n. In particular, an agent with the lowest type gets worse off and has
stronger incentives to exaggerate his type when the number of agents, n, increases. For n sufficiently
large, IC cannot be sustained without pooling at the top of the value distribution.
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Because v∗ is strictly increasing in �, the left-hand side of (2.17) is strictly decreasing in n, and the
right-hand side of (2.18) is strictly increasing in n, we have n∗ is strictly increasing in �. Intuitively,
as the effective verification cost (�) increases, the principal optimally reduces the use of verification
and instead enlarges the pooling area at the bottom of the value distribution (v∗ increases) to maintain
IC. As a result, an agent with the lowest type gets better off (' increases), and therefore IC can be
sustained without pooling at the top for a larger number of agents. For a fixed �, v∗ is independent
of c, but the right-hand side of (2.17) is strictly decreasing in c. Hence, n∗ is strictly increasing in
c. Intuitively, the upper-bound on P in (IC′) becomes larger as c increases, and therefore IC can be
sustained without pooling at the top for a larger number of agents.

Next, let n∗∗(�, c) < 1∕(1 − c) be defined by

1 − F (v∗∗)n∗∗(�,c)

1 − F (v∗∗)
=
F (v∗∗)n∗∗(�,c)−1

1 − c
, (2.18)

where v∗∗ is given by

Ev[v] − Ev[min{v, v∗∗}] + (1 − c)
[

Ev[v] − Ev[max{v, v∗∗}] +
k
c

]

= 0. (2.13)

Compare (2.18) with (2.14), and it is easy to see that v∗∗ ≤ v♮ if and only if n ≥ n∗∗(�, c). By
Theorem 3, shortlisting mechanisms are optimal if and only if n ≥ n∗∗(�, c). As I have discussed
earlier, an agent with the lowest type gets worse off and has stronger incentives to exaggerate his
type when the number of agents, n, increases. As a result, pooling areas at both the bottom and the
top of the value distribution must be enlarged to ensure that the mechanism is incentive compatible
and to save verification cost. Formally, I show in Appendix 2.4 that vl(n, �, c) is strictly increasing in
n and vu(n, �, c) is strictly decreasing in n. Eventually, for a sufficiently large number of agents, the
two pooling areas meet and there is a unique threshold such that all agents whose values are above
the threshold and all agents whose values are below the threshold are pooled, respectively.
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Recall that v∗∗ > v∗. Hence,

F (v∗∗)n∗(�,c)−1

1 − c
>
F (v∗)n∗(�,c)−1

1 − c
= n∗(�, c) ≥ 1 − F (v∗∗)n∗(�,c)

1 − F (v∗∗)
.

Because the left-hand side of (2.18) is strictly increasing in n, and the right-hand side of (2.18)
is strictly decreasing in n, we have n∗∗(�, c) > n∗(�, c). It is easy to see that v∗∗(�, c) is strictly
increasing in both � and c, and independent of n. Recall that v♮ is independent of �. I show in
Lemma 18 in Appendix A.1 that if n(1 − c) < 1, then v♮ is strictly increasing in n and strictly
decreasing in c. Hence, n∗∗(�, c) is strictly increasing in both � and c.

An increase in c has two opposite impacts on the size of the pooling areas. On the one hand, the
upper-bound on P in (IC′) becomes larger as c increases, which reduces the pooling area at the top
(vu increases) needed to sustain IC. On the other hand, it follows from the analysis in Section 2.3
that if vu increases, then the marginal benefit from an increase in vl also increases (the right-hand
side of (2.16)).4 Hence, it is optimal for the principal to enlarge the pooling area at the bottom
(vl increases). Formally, I show in Appendix A.2 that both vl(n, �, c) and vu(n, �, c) are strictly
increasing in c. The analysis above on n∗∗ shows that the first effect dominates, and two-thresholds
mechanisms are optimal for a larger number of agents as c increases.

An increase in � also has two opposite impacts on the size of the pooling areas. On the one hand, as I
have discussed earlier, as the effective verification cost (�) increases, the principal optimally reduces
the use of verification and instead enlarges the pooling area at the bottom of the value distribution to
maintain IC. On the other hand, as the pooling area at the bottom increases, an agent with the lowest
type gets better off, and IC can be sustained with less pooling at the top (vu increases). Formally, I
show in Appendix A.2 that both vl(n, �, c) and vu(n, �, c) are strictly increasing in �. The analysis
above on n∗∗ shows that the second effect dominates, and two-thresholds mechanisms are optimal
for a larger number of agents as � increases.

These results are summarized by the following corollary:

4Note that the marginal cost from a reduction in vl is the marginal benefit from an increase in vl.
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Corollary 2 Suppose that Assumption 1 holds. Given k > 0, c ∈ (0, 1) and � = k∕c, there exists

0 < n∗(�, c) < n∗∗(�, c) < 1∕(1 − c) such that the following statements are true:

1. If n ≤ n∗(�, c), then one-threshold mechanisms are optimal; if n∗(�, c) < n < n∗∗(�, c), then

two-thresholds mechanisms are optimal; if n ≥ n∗∗(�, c), then shortlisting mechanisms are

optimal.

2. n∗(�, c) and n∗∗(�, c) are strictly increasing in � and c.

3. v∗(n, �, c) is strictly increasing in �, and independent of n and c. v∗∗ is strictly increasing in

� and c, and independent of n. If n∗(�, c) < n < n∗∗(�, c), then vl(n, �, c) is strictly increasing

in n, � and c, and vu(n, �, c) is strictly decreasing in n, and strictly increasing in � and c.

Corollary 2 gives comparative statics results in terms of (�, c). It is also interesting to see the com-
parative statics results with respect to the model primitives (k, c). The impact of k is straightforward.
As k increases, verification becomes more costly. The optimal mechanism given in Theorem 3 sees
more pooling at the bottom (measured by ') to save verification cost. An increase in ' relaxes the
upper-bound on P , which leads to less pooling at the top or no pooling at the top at all. The impact
of c is ambiguous. On the one hand, given the amount of pooling at the bottom (measured by '), a
reduction in c lowers the upper-bound on P in (IC′), which implies more pooling at the top. On the
other hand, a reduction in c makes verification more costly. Similar to the case of an increase in k,
this change increases the amount of pooling at the bottom (' increases), and relaxes the upper-bound
on P . As a result, there may be less pooling at the top or no pooling at the top at all. The second
channel is absent if verification is free (k = 0). The non-monotonicity of the pooling area at the top
is further illustrated by the following numerical example.

Example 1 Consider a numerical example in which {vi} are uniformly distributed on [0, 1]. There

are n = 8 agents. The verification cost is k = 0.4. I abuse notation a bit and redefine vl = vu = v∗∗

if vl > vu. Figure 1 plots vl and vu as functions of c. Observe that the change of vu is not monotonic.

As c increases, the pooling area at the top first expands and then shrinks.
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Figure 1: The impact of level of punishment (c)

Finally, a careful examination of (2.17) and (2.12) proves the following corollary:

Corollary 3 limc→1 n∗(k∕c, c) = ∞ and limk→0 n∗(k∕c, c) = 0.

Corollary 3 shows that as the principal’s ability to punish an agent becomes unlimited, the model
collapses to Ben-Porath et al. (2014) and as verification cost diminishes, the model collapses to
Mylovanov and Zapechelnyuk (2014).

2.5. Extensions

In this section, I consider two extensions. In Section 2.5.1, I consider the general asymmetric envi-
ronment, and find that a generalized threshold mechanism is optimal in this case. Using this result,
I characterize the set of (possibly asymmetric) optimal mechanisms in the symmetric environment
and show how limiting the principal’s ability to punish agents also limits her ability to treat agents
differently. The results in Section 2.5.1 also extend the analysis in Mylovanov and Zapechelnyuk
(2014) to the asymmetric environments. In Section 2.5.2, I consider the case in which the princi-
pal can get information about and penalize an agent who does not receive the object, and show that
threshold mechanism are still optimal in this environment.
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2.5.1. Asymmetric environment

In this subsection, I consider the general model with asymmetric agents. Similar to that in Section
2.3, I first characterize an optimal mechanism given the lowest probabilities with which each agent
receives the object (' ∶= ('1,… , 'n)). Formally, fix 'i = infvi Pi(vi) for all i and consider the
following problem (OPTA − '):

max
P ,Q

n
∑

i=1
Evi

[

Pi(vi)
(

vi −
ki
ci

)]

+
'iki
ci

,

subject to

'i ≤ Pi(vi) ≤
'i
1 − ci

,∀vi, (AIC′)

0 ≤ Qi(vi) ≤ 1,∀vi, (AF1)
∑

i ∫Si
Pi(vi)dFi(vi) ≤ 1 −

∏

i

(

1 − ∫Si
dFi(vi)

)

,∀Si ⊂ Vi. (AF2)

Clearly, (OPTA − ') is feasible only if ∑i 'i ≤ 1. As in the symmetric case, I approximate the
continuum type space with a finite partition, solve an optimal mechanism in the finite model and
take limits. The following theorem gives an optimal solution to (OPTA − '):

Theorem 4 There exist dl and dui for i = 1,… , n such that P ∗ defined by

P ∗i (vi) ∶=

⎧

⎪

⎨

⎪

⎩

P i(vi) if vi >
ki
ci

'i if vi <
ki
ci
.
, (2.19)

where

P i(vi) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

'i
1−ci

if vi > dui +
ki
ci

∏

j≠i,duj≥vi−
ki
ci

Fj
(

vi −
ki
ci
+ kj

cj

)

if dl + ki
ci
< vi < dui +

ki
ci

'i if vi < dl +
ki
ci

. (2.20)
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is an optimal solution to (OPTA − ').

Not surprisingly, agents are now ordered by their “net" values vi − ki∕ci, which is equal to their
values to the principal minus the effective verification cost borne by the principal.5. As before, there
is a unique lower threshold dl such that all agents whose net values vi − ki∕ci below the threshold
are pooled. However, there can be up to n distinct upper thresholds dui (i = 1,… , n).

To illustrate how an optimal mechanism in Theorem 4 can be implemented, assume that there are
two distinct upper thresholds: du1 = ⋯ = duj > duj+1 = … dun . Then the first j agents whose net
values are above du1 are pooled together, and the rest n−j agents whose net values are above duj+1 are
pooled together and ranked below any of the first j agents whose net value is above duj+1. Specifically,
the following procedure implements the truth-telling equilibrium in a threshold mechanism: If there
exists some agent i (1 ≤ i ≤ j) whose net value vi − ki∕ci is above du1 , then one of such agents is
selected at random, receives the good and is inspected with probability one. If vi−ki∕ci < du1 for all
1 ≤ i ≤ j but vi−ki∕ci ≥ duj+1 for some 1 ≤ i ≤ j, then the agent with the highest reported net value
among the first j agents receives the good and is inspected with some probability. If vi−ki∕ci < duj+1
for all 1 ≤ i ≤ j and vi − ki∕ci ≥ duj+1 for some j + 1 ≤ i ≤ n, then one agent is selected at random
among all the agents whose reported net values are above duj+1, receives the good and is inspected
with some probability. If vi − ki∕ci < duj+1 for all i but vi − ki∕ci ≥ dl for some i, then the agent
with the highest reported net value receives the good and is inspected with some probability. If
vi − ki∕ci < dl for all i, then one agent is selected at random and receives the good, and no one is
inspected. Finally, an agent is punished if and only if he is found to have lied.

Because of the complication of pooling areas at the top, it is much harder to find an optimal solution to
(OPTA−'). Specifically, dui ’s are solved recursively from the largest to the smallest. Furthermore,
to characterize the set of optimal '’s, without priori knowledge of which set of agents share the
same upper threshold, one must consider 2n different cases.6 Thus, I leave the full characterization

5This is consistent with the result in Section 2.3 because when ki = k and ci = c for all i, ordering agents by net
values is as same as ordering them by values.

6Assume, without loss of generality, that du1 ≥ ⋯ ≥ dun . If there are � distinct upper thresholds, then there are C�
npossibilities to consider. In total, there are∑n

�=1 C
�
n = 2

n possibilities to consider.
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of optimal mechanisms for future research.

Though in general it is extremely hard to characterize the set of optimal ', In Appendix A.3.3, I
characterize the set of ' when the upperbounds on Pi in (AIC′) do not bind, i.e., dui = vi − ki

ci
for all

i. If ci = 1 for all i, then these are the unique set of optimal mechanisms found in Ben-Porath et al.
(2014).

Symmetric environment revisited

In this section, I revisit the symmetric environment. First, I argue that in the symmetric environment,
an optimal mechanism must satisfy: du1 = ⋯ = dun . To understand the intuition behind this result,
note first that in the symmetric environment dui ≥ duj only if 'i ≥ 'j . Assume, without loss of
generality, that du1 ≥ ⋯ ≥ dun . Consider, for simplicity, a mechanism in which maxj{vj − kj∕cj} >
du1 > du2 > du3 , which implies that '1 > '2. Then we can construct a new mechanism in which
'∗1 = '∗2 =

∑2
i=1 'i∕2 and 'i = '∗i for all i ≥ 3. In this new mechanism, agents 1 and 2 share the

same upper threshold du∗ ∈ (du1 , du2) and the upper thresholds of the other agents remain the same.
If agents 1 and 2 are ex ante identical, then this new mechanism improves the principal’s value by
allocating the good between agents 1 and 2 more efficiently when their “net" values, vi − ki∕ci, lie
between (du1 , du2).

This property of optimal mechanisms facilitates our analysis of optimal'. Theorem 5 below charac-
terizes the set of all optimal'. Let v∗, v∗∗ and v♮ be defined by (2.12), (2.13) and (2.14), respectively.

Theorem 5 Suppose that Assumption 1 holds. There are three cases.

1. If F (v∗)n−1 ≥ n(1 − c), then the set of optimal ' is the convex hull of

{

' |

|

|

'i∗ = F (v∗)n−1 − (n − 1)(1 − c), 'j = 1 − c ∀j ≠ i∗, i∗ ∈ 
}

.
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For each optimal '∗, the following allocation rule is optimal:

P ∗i (vi) ∶=

⎧

⎪

⎨

⎪

⎩

F
(

vi
)n−1 if vi ≥ v∗

'∗i if vi < v∗
.

2. If F (v∗)n−1 < n(1 − c) and v∗∗ ≤ v♮, then the set of optimal ' is the convex hull of

⎧

⎪

⎨

⎪

⎩

'
|

|

|

|

|

|

|

'ij = (1 − c)F (v
∗∗)j−1 if j ≤ ℎ − 1, 'iℎ =

1−c
1−cF (v∗∗) −

∑ℎ−1
j=1 (1 − c)F (v

∗∗)j−1,

'ij = 0 if j ≥ ℎ + 1 and (i1,… , in) is a permutation of (1,… , n)

⎫

⎪

⎬

⎪

⎭

,

where 1 ≤ ℎ ≤ n is such that

1 − F (v∗∗)ℎ−1

1 − F (v∗∗)
≤ 1
1 − cF (v∗∗)

<
1 − F (v∗∗)ℎ

1 − F (v∗∗)
.

For each optimal '∗, the following allocation rule is optimal:

P ∗i (vi) ∶=

⎧

⎪

⎨

⎪

⎩

'∗i
1−c if vi ≥ v∗∗

'∗i if vi < v∗∗
.

3. If F (v∗)n−1 < n(1 − c) and v∗∗ > v♮, then the the set of optimal ' is the convex hull of

{

' |

|

|

'ij = (1 − c)F (v
u('∗))j−1 ∀j and (i1,… , in) is a permutation of (1,… , n)

}

,

where '∗ is defined by (2.15) and, for each ', vl is such that F (vl)n−1 = ' and vu is defined

by (2.9). For each optimal '∗, the following allocation rule is optimal:

P ∗i (vi) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

'∗i
1−c if vi ≥ vu('∗)

F
(

vi
)n−1 if vl('∗) < vi < vu('∗)

'∗i if vi ≤ vl('∗)

.
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Theorem 5 illustrates how limiting the principal’s ability to punish agents restricts the principal’s
ability to treat agents differently. Suppose F (v∗)n−1 ≥ n(1 − c), then the upperbounds on Pi do not
bind in an optimal mechanism. This inequality is trivially satisfied if c = 1 as in Ben-Porath et al.
(2014). In Ben-Porath et al. (2014), there is a class of optimal mechanisms called favored-agent

mechanisms. In a favored-agent mechanism, there exists a favored-agent i∗ whose 'i∗ = F (v∗)n−1

and 'i = 0 for any other agent i ≠ i∗. However, if c < 1, then in an optimal mechanism it must be
that 'i ≥ 1 − c for all i because otherwise some upperbounds on Pi would be violated. Intuitively,
the worse an agent is treated when he reports a low type, the stronger incentive he has to exaggerate
his type. As a result, as the level of punishment declines, the extent to which the principal can favor
one agent at the cost of others without violating the (IC) constraints also declines. Fix the ratio of
� = k∕c so that v∗ remains the same. The optimal set of ' shrinks as c becomes smaller. When c is
such that F (v∗)n−1 = n(1 − c), the unique optimal '∗ is such that '∗1 = ⋯ = '∗n. These results are
summarized in Corollary 4.

Corollary 4 Suppose that Assumption 1 holds. Suppose Let Φ(�, c) denote the set of optimal '∗. If

c ≥ 1 − F (v∗)n−1∕n, then c < c′ implies that Φ(�, c) ⊊ Φ(�, c′) and

lim
c↘1−F (v∗)n−1∕n

Φ(�, c) =
{(

F (v∗)n−1

n
,… ,

F (v∗)n−1

n

)}

,

where v∗ is given by (2.12).

If c is small enough so that F (v∗)n−1 < n(1 − c), then the comparison is less clear because the sets
of optimal mechanisms are disjoint for different punishments. In this case, the principal can again
treat agents differently but to the extent that they share the same upper threshold. Assume, without
loss of generality, that an agent with a smaller index is more favored by the principal in terms of a
larger 'i. Then, in an optimal mechanism, the first ℎ agents cannot be favored too much in the sense
that∑ℎ

i=1 'i ≤ (1 − c)
∑ℎ
i=1 F (v

u)i−1 for all ℎ = 1,… , n.
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2.5.2. Other verification and punishment technologies

In this subsection, I consider a variation of the model in which I allow for k�i <∞ and c�i > 0. This
means that the principal can get information about and penalize an agent who does not receive the
object. I show that threshold mechanisms are still optimal in this environment.

In general, given pi(v) and the expected punishment c̄i(v) ≤ pi(v)ci(vi) + (1 − pi(v))c
�
i (vi), it is

optimal for the principal to minimize the expected verification cost:

min
qi(v),q

�
i (v)

pi(v)qi(v)ki + (1 − pi(v))q
�
i (v)k

�
i

subject to
pi(v)qi(v)ci(vi) + (1 − pi(v))q

�
i (v)c

�
i (vi) = c̄i(v). (2.21)

Clearly, depending on the relative magnitudes of the effective verification costs when an agent re-
ceives the object (ki∕ci(vi)) and that when an agent does not receive the object (k�i ∕c�i (vi)), there are
three cases: (i) If ki∕ci(vi) < k�i ∕c

�
i (vi), then it is optimal to set qi(v) = min{c̄i(v)∕pi(v)ci(vi), 1}

and q�i (v) = max{0, (c̄i(v) − pi(v)ci(vi))∕(1 − pi(v))c
�
i (vi)}. (ii) If ki∕ci(vi) > k�i ∕c

�
i (vi), then

it is optimal to set q�i (v) = min{1, c̄i(v)∕(1 − pi(v))c
�
i (vi)} and qi(v) = max{0, (c̄i(v) − (1 −

pi(v))c
�
i (vi))∕pi(v)ci(vi)}. (iii) If ki∕ci(vi) = k�i ∕c

�
i (vi), then any qi(v) and q�i (v) satisfying (2.21)

are optimal.

For tractability, I assume in what follows that ci(vi) = cibi(vi) and c�i (vi) = c�i bi(vi) for all vi.
For simplicity, I also assume that k�i = ki and c�i = ci for all i. The results in this subsection
can readily extend to more general cases, when, for example, it is more costly for the principal
to get information about an agent who does not receive the object (k�i ≥ ki), and the punishment
is also less severe for an agent who does not receive the object (c�i ≤ ci). Given (p, q, q�), let
Pi(vi) ∶= Ev−i

[

pi(vi, v−i)
] be the interim probability with which an agent receives the object and

P̂ (vi) ∶= Ev−i
[

pi(vi, v−i)qi(vi, v−i) + (1 − pi(vi, v−i))q
�
i (vi, v−i)

]

be the interim probability with

32



which an agent is inspected. The principal’s problem can be written in the reduced form:

max
P ,P̂

n
∑

i=1
Evi

[

Pi(vi)vi − P̂ (vi)ki
]

,

subject to

Pi(vi) ≥ Pi(v′i) − P̂i(v
′
i)ci,∀vi, v

′
i, (IC-OT)

0 ≤ P̂i(vi) ≤ 1,∀vi, (F1-OT)
∑

i ∫Si
Pi(vi)dFi(vi) ≤ 1 −

∏

i

(

1 − ∫Si
dFi(vi)

)

,∀Si ⊂ Vi. (AF2)

Note that the (IC-OT) constraints hold if and only if

'i ≥ Pi(v′i) − P̂ (v
′
i)ci,∀v

′
i. (2.22)

Because P̂i(v′i) ≤ 1, (2.22) holds only if

Pi(v′i) ≤ 'i + ci,∀v′i. (2.23)

Suppose that (2.23) holds, then it is optimal to set P̂i(vi) = (Pi(vi)−'i)∕ci for all vi ∈ Vi. Substituting
this into the principal’s objective function yields:

n
∑

i=1
Evi

[

Pi(vi)
(

vi −
ki
ci

)]

+
'iki
ci

. (2.6)

Note that, given {'i}, the principal’s objective function is as same as that in the case of c�i = 0.
The only difference between the principal’s two problems is the upperbound on Pi. (Compare (2.23)
with (2.5).)

There are two interesting observations. First, the upperbound on Pi does not bind in the original
problem ('i∕(1 − ci) ≥ 1) if and only if it does not bind in the new problem ('i + ci ≥ 1). This
implies that part 1 of Theorem 3 still applies here. Second, If the upperbound binds in the original
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problem, i.e., 'i∕(1 − ci) < 1, then the new upperbound is larger:

'i + ci −
'i
1 − ci

= ci

(

1 −
'i
1 − ci

)

> 0.

This is intuitive because allowing for the principal to penalize an agent who does not receive the
object clearly relaxes the principal’s problem. Hence, any feasible solution to the new problem is
also feasible in the original problem.

In the interest of the length of the paper, I only characterize an optimal mechanism in the symmetric
environment. In what follows, I assume that {vi} are identically distributed and ci = c and ki = k for
all i. Without loss of generality, I can focus on symmetric mechanisms. In what follows, I suppress
the subscript i whenever the meaning is clear.

First, as in the case of k�i = 0, if verification is sufficiently costly or the principal’s ability to punish
an agent is sufficiently limited, then pure randomization is optimal. In particular, Theorem 2 still
applies here. To make the problem more interesting, in what follows, I assume that Assumption 1
holds. Let v∗ be defined by (2.12) and redefine v∗∗ by

Ev[v] − Ev[min{v, v∗∗}] + Ev[v] − Ev[max{v, v∗∗}] +
k
c
= 0. (2.24)

v∗ and v∗∗ are well defined under Assumption 1. Furthermore, v∗∗ > v∗ ≥ k∕c. Finally, redefine

v♮ ∶= sup
{

v ||
|

(

F (v)n−1 + nc
)

(1 − F (v)) − 1 + F (v)n ≤ 0
}

. (2.25)

Theorem 6 below characterizes an optimal symmetric mechanism. The proof is similar to that in
Section 2.3 and neglected here.

Theorem 6 Suppose Assumption 1 holds. There are three cases.

1. If F (v∗)n−1 ≥ n(1 − c), then the optimal '∗ = F (v∗)n−1∕n and the following allocation rule

34



is optimal:

P ∗(v) ∶=

⎧

⎪

⎨

⎪

⎩

F (v)n−1 if v ≥ v∗

'∗ if v < v∗
.

2. If F (v∗)n−1 < n(1 − c) and v∗∗ ≤ v♮, then the optimal '∗ = (1 − nc)∕n(1 − nc + ncF (v∗∗))

and the following allocation rule is optimal:

P ∗(v) ∶=

⎧

⎪

⎨

⎪

⎩

'∗ + c if v ≥ v∗∗

'∗ if v < v∗∗
.

3. If F (v∗)n−1 < n(1 − c) and v∗∗ > v♮, then the optimal '∗ is defined by

Ev[v] − Ev[min{v, vu('∗)}] + Ev[v] − Ev[max{v, vl('∗)}] +
k
c
= 0, (2.26)

and the following allocation rule is optimal:

P ∗(v) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

'∗ + c if v ≥ vu('∗)

F (v)n−1 if vl('∗) < v < vu('∗)

'∗ if v ≤ vl('∗)

.

Note that the optimal mechanism obtained here is very similar to what obtained if the principal
can only penalize an agent who receives the object, but has different thresholds when the limited
punishment constraint is binding.

2.6. Concluding remarks

In this paper, I study the problem of a principal who has a single indivisible object to allocate among
a number of agents. Each agent has private information about the principal’s payoff of allocating
the object to him. There are no monetary transfers. The principal can inspect agents’ reports at a
cost and punish them, but the punishments are limited. I show that some simple threshold mecha-
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nisms are optimal in this setting. This paper includes Ben-Porath et al. (2014) and Mylovanov and
Zapechelnyuk (2014) as special cases and bridges their gaps. Specifically, if the number of agents
is small, then the optimal mechanism only involves pooling area at the bottom of value distribution
as in Ben-Porath et al. (2014). As the number of agents increases, pooling at the top is required to
guarantee incentive compatibility as in Mylovanov and Zapechelnyuk (2014). These results high-
light the role played by the number of agents in shaping optimal mechanisms, which is absent or
overlooked in previous work on mechanism design.

First, earlier mechanism design papers studying an allocation problem often focus on mechanisms
with monetary transfers and ignore the possibility of the principal verifying agents’ information. In
these papers, a robust feature of optimal mechanisms is that they are independent of the number
of agents. For example, in the seminal work of Myerson (1981), under some regularity conditions,
the revenue-maximizing mechanism can be implemented by a first-price or second-price auction
with a reserve price, and, in particular, this optimal reserve price is independent of the number of
agents. This difference is mainly because the kinds of binding IC constraints are different in the
two settings. In Myerson (1981), the binding IC constraints are between adjacent types, and the
difference between two adjacent types’ allocation rules is insensitive to a change in the number of
agents. But, in this paper, the binding IC constraints correspond to those of the lowest possible type
misreports as higher types. Note that, as the number of agents increases, the lowest possible type’s
probability of receiving the object declines much faster compared with a much higher type.

Second, in Ben-Porath et al. (2014), the optimal mechanisms are also independent of the number of
agents. Recall that when punishment is unlimited, a one-threshold mechanism is optimal, and the
threshold is independent of the number of agents (see the third part in Corollary 2). This difference is
because when the level of punishment is sufficiently high, although the difference in the probabilities
of receiving the object between the highest possible type and the lowest possible type increases as the
number of agents increases, the principal can always guarantee IC by verifying an agent’s information
and punishing him. But, in this paper, the level of punishment is limited. In this case, as the number
of agents increase, rationing becomes indispensable to guarantee IC, and the required rationing areas

36



also increase.
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CHAPTER 3 : MECHANISM DESIGN WITH FINANCIALLY CONSTRAINED
AGENTS AND COSTLY VERIFICATION

3.1. Introduction

Governments around the world allocate a variety of valuable resources to agents who are financially
constrained. In Singapore, for example, 80% of the population’s housing needs are met by the Hous-
ing and Development Board (HDB), a government agency founded in 1960 to provide affordable
housing.1 In the United States, Medicaid has provided health care to individuals and families with
low income and limited resources since 1965. Medicaid currently accounts for 16.1% of the state
general funds2 and provides health coverage to 80 million low-income people.3 Similar public hous-
ing and social health care programs prevail in many other countries.45 In China, several cities limit
the supply of vehicle licenses to curb the growth in private vehicles, and different cities have imple-
mented different mechanisms. For example, Shanghai allocates vehicle licenses through an auction-
like mechanism, while Beijing uses a vehicle license lottery (see Rong et al. 2015). The evaluation
of existing mechanisms has attracted attention from researchers and policymakers. In comparison
to lotteries, an auction-like mechanism is considered more efficient but favors high-income families
more.

One justification for this role of a government is that a competitivemarket outcomewill not maximize
social surplus if agents are financially constrained. Financial constraints mean that in a competitive
market some agents with high valuations will not obtain goods, while agents with low valuations
but access to cash will. The natural question arises as to what the surplus-maximizing (or optimal)
mechanism is in these circumstances when both valuations and financial constraints are the agents’
private information.

The mechanism design literature concerning this question has focused on mechanisms with only
1http://www.hdb.gov.sg/fi10/fi10320p.nsf/w/AboutUsPublicHousing?OpenDocument
2http://ccf.georgetown.edu/wp-content/uploads/2012/03/Medicaid-state-budgets-2005.pdf
3http://www.cbpp.org/research/health/policy-basics-introduction-to-medicaid?fa=view&id=

2223
4https://en.wikipedia.org/wiki/Public_housing
5https://en.wikipedia.org/wiki/Universal_health_coverage_by_country
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monetary transfers and has ignored the possibility of the principal verifying the agents’ reported
information about their abilities to pay. Indeed, in many instances, the principal relies on agents’
reports of their ability to pay, and the principal can verify this information and punish an agent who
makes a false statement. For example, applicants for HDB flats in Singapore and Medicaid in the
United States are subject to a set of eligibility conditions on age, family nucleus, monthly income,
and so on. The verification process can be costly, though. First, in some developing countries,
verifiable records on household income or wealth are rarely available, and governments lack the
administrative capacity to process this information. In such cases, alternative verification methods
such as a visit to the household to inspect the visible living conditions are not uncommon but are
often costly (see Coady et al. 2004). Second, certain types of income such as tips, side-jobs and cash
receipts are costly to verify. Similarly, governments have few ways to verify the income reports by
individuals who are self-employed or run small business without performing a costly investigation.
Third, agents may be financially constrained due to limited access to the financial market or high
expenditures, such as medical expenses or education costs. This information is often costly for
governments to verify. Last but not least, even when the verification cost for one individual is low,
the total cost can be substantial for a large population.

Hence, it is important to explore how the option of costly verification affects the optimal mechanism.
Verification allows the principal to better target low-budget agents and potentially improve their
welfare. However, verification is costly and reduces the amount of money available for subsidies.
The principal must now trade allocative efficiency for verification cost. The cost of verification also
influences whether the principal chooses to use cash subsidies or in-kind subsidies (the provision of
goods at discounted prices). The latter is less efficient because it often involves rationing, but saves
verification cost because it only benefits low-budget agents with high valuations. Finally, introducing
costly verification also complicates the analysis because it is no longer sufficient to consider “local”
incentive compatibility (IC) constraints. Because the IC constraints between distant types can also
bind, one cannot anticipate a priori the set of binding IC constraints.

To study these questions, I consider a mechanism design problem in which there is a unit mass of
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a continuum of agents and a limited supply of indivisible goods. Each agent has two-dimensional
private information — his valuation of the good v ∈ [v, v] and his exogenous budget constraint
b. The budget constraint is a hard one in the sense that agents cannot be compelled to pay more
than their budgets. For simplicity, I assume there are only two possible types of budgets, b2 > b1.
The principal can inspect an agent at a cost, perfectly revealing his budget, and impose a penalty on
detected misreporting. The principal is also subject to a budget balance constraint which requires
that the revenue from selling the good must exceed the inspection cost. This constraint rules out the
possibility that the principal can inject money and relieve all budget constraints. I focus on direct
mechanisms in which each agent reports private information directly and is punished if and only if
found to have lied about the budget. Given the report, the mechanism specifies for each agent his
probability of getting the good, his payment and his probability of being inspected.

I characterize the optimal direct mechanismwhichmaximizes utilitarian efficiency among all mecha-
nisms that are incentive compatible and individually rational, and that satisfy the resource constraint,
agents’ budget constraints and the principal’s budget balance constraint.

Let u(v, b) denote the utility of an agent with the lowest valuation v and budget b, which is also
the amount of cash subsidies received by agents with budget b. There exist three cutoffs v∗1 ≤

v∗2 ≤ v∗∗2 . Firstly, low-budget agents whose valuations are below v∗1 and high-budget agents whose
valuations are below v∗2 only receive only cash subsidies. Not surprisingly, these low-budget agents
receive higher cash subsidies and are inspected with probability proportional to the difference in
cash subsidies u(v, b1) − u(v, b2). Secondly, low-budget agents whose valuations exceed v∗1 receive
the good with probability a∗ ≤ 1 and make a payment of a∗v∗1−u(v, b1). They receive both cash and
in-kind subsidies. High-budget agents whose valuations lie in [v∗2, v∗∗2 ] are pooled with low-budget
agents whose valuations are above v∗1. They also receive the good with probability a∗, but they make
a payment of a∗v∗2 − u(v, b2). The difference in in-kind subsidies is given by a∗(v∗2 − v∗1), and these
low-budget agents are inspected with probability proportional to the sum of differences in cash and
in-kind subsidies u(v, b1) − u(v, b2) + a∗(v∗2 − v∗1). Finally, high-budget agents receive the good for
sure and make a payment of v∗∗2 − u(v, b2) if their valuations exceed v∗∗2 .
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If budgets are common knowledge, then the principal can without cost target low-budget agents
and provides cash subsidies and in-kind subsidies only to low-budget agents. If budgets are agents’
private information and cannot be verified, then high-budget agents whose valuations are below v∗2
have incentives to misreport as low-budget types to receive cash subsidies; and high-budget agents
whose valuations are slightly above v∗2 have incentives to misreport as low-budget types to receive
the good at a lower payment. As a result, in this case, agents with both budgets receive the same
amount of cash subsidies (u(v, b1) = u(v, b2)) and in-kind subsidies (v∗1 = v∗2).

The optimal direct mechanism can be implemented by a simple two-stage mechanism. Specifically,
all agents are asked to report their budgets in the first stage. The principal then provides budget-
dependent cash subsidies to agents and assigns the goods randomly (with uniform probability) at
budget-dependent prices. Agents who report low budgets receive higher cash subsidies and lower
prices. In the second stage, a resale market opens, but is regulated with budget-dependent sales taxes.
Agents who report low budgets are subject to higher sales taxes. Only agents who report low budgets
are inspected randomly. Unlike the case without inspection, in which all agents are subsidized and
regulated equally regardless of their budgets, the two-stage mechanism provides more subsidies to
low-budget agents in their initial purchases (the first stage) and imposes more restrictions on them in
the resale market (the second stage). Although inmy analysis the principal’s objective is to maximize
social surplus, I conjecture that these features would continue to apply when the principal wants to
benefit only low-budget agents.

This implementation exhibits some features of the public housing program in Singapore, as shown
in Table 1. In Singapore, buyers of resale HDB flats can apply for additional housing grants. If these
flats are purchased with housing grants, these buyers are required to reside in their flats for at least
5 years before they could resell or sublet. In contrast, flats purchased without housing grants are
subject to no requirement or a shorter one.

It is interesting to see how verification cost, the supply of goods and other parameters affect the
optimal mechanism and welfare. I provide analytic results of comparative statics for extreme cases,
such as when verification cost is sufficiently large and the supply of goods is sufficiently large or
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Table 1: Minimum occupation periods (MOP) of housing and development board (HDB) flats
Types of HDB flats MOP

Sell Sublet
Resale flats w/ Grants 5–7 years 5–7 years
Resale flats w/o Grants 0–5 years 3 years

Sources. — Sell: http://www.hdb.gov.sg/cs/infoweb/residential/selling-a-flat/eligibility; and Sub-
let: http://www.hdb.gov.sg/cs/infoweb/residential/renting-out-a-flat-bedroom/renting-out-your-flat/

eligibility.

small, and I explore the intermediate case numerically.

Verification allows the principal to better target low-budget agents and improves their welfare. In-
tuitively, as verification becomes costly, the principal tends to provide relatively smaller subsidies
to low-budget agents and inspect them less frequently. More interestingly, the optimal mechanism
makes use of both cash and in-kind subsidies, and the change in verification cost affects that mech-
anism’s reliance on each of them. If verification is cheap, then the principal achieves efficiency
mainly by offering more cash subsidies to low-budget agents. As verification becomes costly, the
difference in cash subsidies declines but the difference in in-kind subsidies increases. This is be-
cause in-kind subsidies are attractive only to high-valuation agents, which is cheaper in terms of ver-
ification cost. Eventually, the difference in in-kind subsidies also declines as verification becomes
sufficiently costly. Though reducing verification cost improves the welfare of low-budget agents, it
may hurt high-budget agents as more subsidies are diverted to low-budget agents.

Another interesting observation is that although an increase in the supply of goods improves the total
welfare, its impact on the welfare of each budget type is not monotonic. This is because an increase
in the supply has two opposite effects. On the one hand, the principal becomes less budget con-
strained, and can direct more subsidies to low-budget agents and inspect them more frequently. On
the other hand, low-budget agents also become less budget constrained, which reduces the needs to
subsidize and inspect them. As a result, the differences in cash and in-kind subsidies and the inspec-
tion probability are hump-shaped. Initially, the welfare of both budget types increases as the supply
increases. When the supply is large enough that the principal can afford to provide more subsidies
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to low-budget agents, the welfare of high-budget agents begins to decrease. Eventually, the need
to subsidize low-budget agents decreases as the supply increases while the welfare of low-budget
agents begins to decrease and that of high-budget agents begins to increase, until they coincide.

Technically, this paper develops a novel method that can potentially be used in solving other mecha-
nism design problems with multidimensional types. If each agent has only one-dimensional private
information, i.e., valuation, then it is sufficient to consider adjacent IC constraints; if each agent has
two-dimensional private information but the principal cannot inspect budgets, then it is sufficient
to consider two one-dimensional deviations. These, however, no longer apply in the case that each
agent has two dimensional private information and the principal can inspect budget at a cost. In
this case, in addition to downward adjacent IC constraints of misreporting values, one must consider
deviations in which an agent can misreport both dimensions of his private information. As a result,
the local approach commonly used does not work here.

To overcome this difficulty, I first restrict attention to a class of allocation rules that have enough
structures to help me keep track of binding IC constraints, and that are also rich enough to approxi-
mate any general allocation rule well. Specifically, I approximate the allocation rule of each budget
type using step functions. When restricting attention to step functions, binding IC constraints cor-
responding to the under-reporting of budgets are between different budget types whose values are
the jump discontinuity points of their allocation rules. This structure allows me to write the optimal
inspection rule as a function of the possible values and jump discontinuity points of the allocation
rule. I then solve a modification of the principal’s problem in which the allocation rule of low-budget
types are restricted to take at mostM distinct values. Because forM sufficiently large step-functions
can approximate the optimal allocation rule arbitrarily well, I can obtain a characterization of the
optimal mechanism in the limit.

The rest of the paper is organized as follows. Section 3.1.1 discusses related work. Section 3.2
presents the model. Section 3.3 characterizes the direct optimal mechanism when all agents’ budget
constraints are common knowledge. Section 3.4 characterizes the direct optimal mechanism when
an agent’s budget is his private information. Section 3.5 provides a simple implementation. Section
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3.6 studies the properties of the optimal mechanism. Section 3.7 considers various extensions of the
model. Section 3.8 concludes. All the proofs are relegated to the appendix.

3.1.1. Related literature

This paper is related to two branches of literature. First, it contributes to the literature studyingmech-
anism design problems when agents are financially constrained by incorporating costly verification.
Prior work analyzes the revenue or efficiency of a given mechanism or the design of an optimal
mechanism when either budgets are common knowledge, or budgets are agents’ private information
but cannot be verified. See Che and Gale (1998, 2006, 2000), Laffont and Robert (1996), Maskin
(2000), Benoit and Krishna (2001), Brusco and Lopomo (2008), Malakhov and Vohra (2008) and
Pai and Vohra (2014a).

In this first branch of literature, the two closest papers to the current paper are Che et al. (2013a) and
Richter (2015). In Che et al. (2013a) and Richter (2015), like in this paper, there is a unit mass of
a continuum of agents and a limited supply of goods. In Richter (2015) agents have linear prefer-
ences for an unlimited supply of the goods. He finds that both the revenue-maximizing mechanism
and surplus-maximizing mechanism feature a linear price for the good. In addition, the surplus-
maximizing mechanism has a uniform cash subsidy. In both Che et al. (2013a) and this paper, each
agent has a unit demand for an indivisible good, and the surplus-maximizing mechanism can be
implemented via a random assignment with a regulated resale and cash subsidy scheme. However,
Che et al. (2013a) does not consider the possibility that the principal can verify an agent’s budget at a
cost. This feature also distinguishes the current paper from all the other papers on mechanism design
with financially constrained agents. Che et al. (2013a) first compare three different methods of as-
signing the goods when agents have a continuum of possible valuations and a continuum of possible
budgets, and then characterize the optimal mechanism in a simple 2×2 model, in which each agent
has two possible valuations of the good and two possible budgets. In the presence of costly verifica-
tion, unlike Che et al. (2013a), in which all agents are subsidized and regulated equally regardless of
their budgets in an optimal mechanism, I show that an optimal mechanism provides more subsidies
to low-budget agents in their initial purchases and imposes more restrictions on them in the resale
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market.

Second, this paper is related to the costly state verification literature. The first significant contribution
to this series is from Townsend (1979), who studies a model of a principal and a single agent. In
Townsend (1979) verification is deterministic. Border and Sobel (1987) and Mookherjee and Png
(1989) generalize it by allowing random inspection. Gale and Hellwig (1985) consider the effects
of costly verification in the context of credit markets. Recently, Ben-Porath et al. (2014) study the
allocation problem in the costly state verification framework when there are multiple agents and
monetary transfer is not possible. Li (2016) extends Ben-Porath et al. (2014) to environments in
which the principal’s ability to punish an agent is limited. These models differ from what I consider
here in that in their models each agent has only one-dimensional private information.

This paper is also somewhat related to the literature on costless or ex-post verification. Glazer and
Rubinstein (2004) can be interpreted as a model of a principal and one agent with limited but cost-
less verification and no monetary transfers. Mylovanov and Zapechelnyuk (2014) study a model
of multiple agents with costless verification but limited punishments. This paper differs from these
earlier studies in that each agent has two-dimensional private information, verification is costly and
there are monetary transfers.

In the literature discussed above, one can anticipate a priori the set of binding IC constraints, which
is no longer true here. Instead, I use new techniques for keeping track of binding IC constraints.

3.2. Model

There is a unit mass of a continuum of agents. There is a mass S ∈ (0, 1) of indivisible goods.6
Each agent has a private valuation of the good v ∈ V ∶= [v, v] ⊂ ℝ+, and a privately known budget
b ∈ B ∶= {b1, b2}. I assume that b1 > v and b2 > v.7 Thus, a high-budget agent is never budget
constrained in an individually rational mechanism. The type of an agent is a pair consisting of his
valuation and his budget: t ∶= (v, b); and the type space is T ∶= V × B.

6The model is also applicable to divisible goods when an agent’s per-unit value for the good is constant up to an upper
bound.

7All the results can be easily extended to any b1 ≥ 0. In the paper, I assume b1 > v to make the statement more
concise.
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I assume v and b are independent. Each agent has a high budget with probability � and a low budget
with probability 1 − �. The valuation v is distributed with cumulative distribution function F and
strictly positive density f .

The principal can inspect an agent’s budget at a cost k ≥ 0, and can impose a penalty c > 0.
Inspection perfectly reveals an agent’s budget.8 I assume that the penalty c is large enough that an
agent never find it optimal to misreport his budget if he is certain he will be inspected. For the main
body of the paper, I assume that the penalty is not transferable. In Section 3.7.2, I study the case in
which penalty is transferable and show that all results hold in that case. For later use, let � ∶= k∕c.
As it will become clear, � measures the “effective” inspection cost to the principal. The cost to an
agent to have his report verified is zero. This assumption is reasonable if the goods are valuable to
agents and disclosure costs are negligible. In Section 3.7.3, I discuss what happens if it is also costly
for an agent to have his report verified.

The usual version of the revelation principle (see, e.g., Myerson 1979 and Harris and Townsend
1981) does not apply to models with verification. However, it is not hard to extend the argument to
this type of environment.9 Specifically, I show in Appendix B.1 that it is without loss of generality
to restrict attention to direct mechanisms. Furthermore, I assume that the principal can only punish
an agent who is inspected and found to have lied about his budget. This assumption, however, is
not without loss of generality. I discuss what happens if the principal is allowed to punish an agent
without verifying his budget or to punish an agent who is found to have reported his budget truthfully
in Section 3.7.4.

A direct mechanism is a triple (a, p, q), where a ∶ T → [0, 1] denotes the probability an agent obtains
the good, p ∶ T → ℝ denotes the payment an agent must make and q ∶ T → [0, 1] denotes the
probability of inspection. In this definition, I implicitly assume that payment rules are deterministic.
I discuss random payment rules at the end of this section and show that it is without loss of generality
to focus on deterministic payment rules.

8The paper’s results will not change if the principal cannot detect a lie with some probability.
9See Townsend (1988) and Ben-Porath et al. (2014) for more discussion and extension of the revelation principle to

various verification models, not including the environment considered in this paper.

46



The utility of an agent who has type t ∶= (v, b) and reports t̂ is

u(t̂, t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a(t̂)v − p(t̂) if b̂ = b and p(t̂) ≤ b,

a(t̂)v − q(t̂)c − p(t̂) if b̂ ≠ b and p(t̂) ≤ b,

−∞ if p(t̂) > b.

An agent has a standard quasi-linear utility up to his budget constraint, and cannot pay more than his
budget.

The welfare criterion I use is utilitarian efficiency. For why utilitarian efficiency is a reasonable
welfare criterion, see Vickrey (1945) and Harsanyi (1955). Given quasi-linear preferences, the total
value realized minus total inspection cost is an equivalent criterion.10 The principal’s problem is11

max
a,p,q

Et [a(t)v − q(t)k] , ()

subject to

u(t) ≡ u(t, t) ≥ 0, ∀t ∈ T , (IR)
u(t) ≥ u(t̂, t), ∀t ∈ T , t̂ ∈

{

t̂ ∈ T |

|

p(t̂) ≤ b
}

, (IC)
p(t) ≤ b, ∀t ∈ T , (BC)
Et [p(t) − q(t)k] ≥ 0, (BB)
Et [a(t)] ≤ S. (S)

The individual rationality (IR) constraint requires that each agent gets a non-negative expected payoff
from participating in the mechanism. The incentive compatibility (IC) constraint requires that it is

10To see this, consider a feasible mechanism (a, p, q). Note that if (a, p, q) maximizes welfare, then (BB) must hold
with equality. Otherwise the principal can improve welfare through lump-sum transfers. Then the principal’s objective
function becomes

E[u(t)] = E[va(t) − p(t)] = E[va(t) − q(t)k],
where the last equality holds since (BB) holds with equality.

11There are some subtle issues with a continuum of random variables. See Judd (1985). However, if we interpret the
continuum model as an approximation of a large economy, then Al-Najjar (2004) makes the limiting argument rigorous.
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weakly better for an agent to report his true type than any other type whose transfers he can afford.
The budget constraint (BC) states that an agent cannot be ask to make a payment larger than his
budget b. To be clear, note that (BC) follows from (IR). This budget constraint is the same as that
found in Che and Gale (2000) and Pai and Vohra (2014a), but different from Che et al. (2013a),
who use a per unit price constraint.12 I discuss the differences of the two frameworks in Section
3.7.1. The principal’s budget balance (BB) constraint requires that the revenue raised from selling
the goods must exceed the inspection cost. (BB) rules out the possibility that the principal can inject
money and relieve all budget constraints. Finally, the limited supply (S) constraint, which requires
that the amount of good assigned cannot exceed the supply. We say a mechanism (a, p, q) is feasible
if it satisfies constraints (IR), (IC), (BC), (BB) and (S).

Throughout the paper, I assume that S < 1 − F (b1) since otherwise the first-best can be achieved
via a competitive market. I also impose the following two assumptions throughout the paper.

Assumption 2 1−F
f

is non-increasing.

Assumption 3 f is non-increasing.

Assumption 2 is the standard monotone hazard rate condition, which is often adopted in the mech-
anism design literature. This assumption ensures that allocating more good to agents with higher
valuations from those with lower valuations generates higher revenues for the principal. Assumption
3 says that agents are less likely to have higher valuations than to have lower valuations. These two
assumptions are also imposed in Richter (2015) and Pai and Vohra (2014a). These two assump-
tions are satisfied by some commonly used distributions such as uniform distributions, exponential
distributions and left truncation of a normal distribution.

I conclude this section with a discussion of random payment rules.

12This constraint is called ex-post budget constraint in Che et al. (2013a).
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3.2.1. Random payment rules

When defining a direct mechanism, I implicitly assume that the payment rule is deterministic. I
argue that this is without loss of generality. Consider a random payment rule p̃ ∶ T → Δ(ℝ). Let
supp(p̃(t)) denote the supremum of payments in the support of p̃(t). The utility of an agent who has
type t and report t̂ is

u(t̂, t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a(t̂)v − E[p̃(t̂)] if b̂ = b and supp(p̃(t̂)) ≤ b,

a(t̂)v − q(t̂)c − E[p̃(t̂)] if b̂ ≠ b and supp(p̃(t̂)) ≤ b,

−∞ if supp(p̃(t̂)) > b.

In other words, an agent suffers an unbounded dis-utility if his budget constraint is violated with a
positive probability. The IC constraints become

u(t) ≥ u(t̂, t), ∀t ∈ T , t̂ ∈
{

t̂ ∈ T |

|

supp(p̃(t̂)) ≤ b
}

, (IC)

The principal’s objective function and all the other constraints remain intact.

By a similar argument to that used in Pai and Vohra (2014a), for any feasible mechanism (a, p̃, q),
one can construct another feasible mechanism (a, p̃, q) by setting

p̂(t) =

⎧

⎪

⎨

⎪

⎩

E[p̃(t)] − � with propability b−E[p̃(t)]
b−E[p̃(t)]+� ,

b with propability �
b−E[p̃(t)]+� ,

for some � > 0 sufficiently small. Furthermore, both mechanisms have the same welfare. Observe
that, under this construction, IC constraints corresponding to over reporting of budget are satisfied
“for free”. Given these observations, it is not hard to see that one can solve the principal’s prob-
lem (allowing for random payment rules) by restricting attention to deterministic payment rules but
relaxing IC constraints corresponding to the over reporting of budget. As I will show later, in the
optimal mechanism of  no low-budget agent has any incentive to over report his budget. Hence, it
is without loss of generality to focus on deterministic payment rules.
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3.3. Common knowledge budgets

As a benchmark, I first analyze the case in which all agents’ budget constraints are common knowl-
edge. This case can be viewed as the situation in which the principal can inspect an agent’s budget
for free (i.e., � = k∕c = 0).

Since budgets are common knowledge, the IC constraints hold as long as for each b ∈ B, no agent
has incentive to misreport his value:

a(v, b)v − p(v, b) ≤ a(v̂, b)v − p(v̂, b), ∀v, v̂. (IC-v)

The principal’s problem becomes
max
a,p,q

Et [a(t)v] , (CB)

subject to (IR), (IC-v), (BC), (S) and

Et[p(t)] ≥ 0,∀t ∈ T . (BB)

By the standard argument, (IC-v) holds if and only if for all b ∈ B, a(v, b) is non-decreasing in v and
p(v, b) = a(v, b)v − ∫ v

v a(�, b)d� − u(v, b). Since a(v, b) is non-decreasing in v, the payment p(v, b)
is also non-decreasing in v. Hence, (BC) holds if and only if p(v, b) ≤ b for all b.

Let � denote the characteristic function. The following theorem characterizes the optimal mecha-
nism.

Theorem 7 Suppose Assumption 3 holds, and budgets are common knowledge. There exist v∗1(0),

v∗2(0), u
∗
1(0) and u

∗
2(0) such that an optimal mechanism of CB is given by

a(v, b1) = �{v≥v∗1(0)
}a∗(0), p(v, b1) = �{v≥v∗1(0)

}(u∗1(0) + b1) − u
∗
1(0),

a(v, b2) = �{v≥v∗2(0)
}1, p(v, b2) = �{v≥v∗2

}v∗2(0),

where a∗(0) =
[

u∗1(0) + b1
]

∕v∗1(0), b1 < v
∗
1(0) ≤ v∗2(0) < v and 0 = u

∗
2(0) < u

∗
1(0) ≤ v∗1(0) − b1.
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In notations a∗(0), v∗i (0) and u∗i (0) (i = 1, 2) , subscript i indicates the corresponding budget bi and
argument 0 indicates that this can be viewed as an optimal mechanism when � = 0.

As expected, when budgets are common knowledge, the two budget group can be treated separately.
Only low-budget agents receive positive cash subsidies aiming to relax their budget constraints:
u(v, b1) = u∗1(0) > 0 = u∗2(0) = u(v, b2). There are two cutoffs: v∗1(0) ≤ v∗2(0). All high-budget
agents whose valuations are above v∗2(0) receive the good with probability one. This allocation can
be implemented by posting a price v∗2(0) for high-budget agents, which is the efficient mechanism
when agents are not financially constrained. All low-budget agents whose valuations are above v∗1(0)
receive the good with positive probability but are possibly rationed. The intuition for rationing is
familiar from the literature. Increasing allocations to low value agents reduces the payment of high
value agents and therefore “relaxes" their budget constraints.

Clearly, a high-budget agent whose value is below v∗1(0) has a strict incentive to misreport as a low-
budget agent since u(v, b1) > 0 = u(v, b2). A high-budget agent whose value is slightly above v∗1(0)
also has strict incentives to misreport as a low-budget agent:

v
(

u(v, b1) + b1
)

v∗1(0)
− b1 >

(

v − v∗1(0)
)

b1
v∗1(0)

≥ max
{

v − v∗2(0), 0
}

.

The last inequality holds for v > v∗1(0) sufficiently close to v∗1(0). As it will become clear in Section
3.4.1, when budgets are agents’ private information and the principal does not inspect, to discourage
agents from under reporting their budgets, it must be that u(v, b1) = u(v, b2) and a high-budget agent
must receive the good with a probability no less than that of a low-budget agent who has the same
valuation.
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3.4. Privately known budgets

In this section, I analyze the case in which an agent’s budget is his private information. In this case,
IC constraints can be separated into two categories:

Misreport value: a(v, b)v − p(v, b) ≥ a(v̂, b)v − p(v̂, b), ∀v, v̂, b, (IC-v)
Misreport both: a(v, b)v − p(v, b) ≥ �{p(v̂,b̂)≤b}

(

a(v̂, b̂)v − q(v̂, b̂)c − p(v̂, b̂)
)

, ∀v, v̂, b, b̂. (3.1)

As I stated in the previous section, (IC-v) holds if and only if for all b ∈ B, a(v, b) is non-decreasing
in v and p(v, b) = va(v, b) − ∫ v

v a(�, b)d� − u(v, b). The difficulty arises from (3.1). In what follows,
I first consider a relaxed problem by replacing (3.1) with the following constraint:

a(v, b2)v − p(v, b2) ≥ a(v̂, b1)v − q(v̂, b1)c − p(v̂, b1), ∀v, v̂. (IC-b)

This relaxation formalizes the intuition that the principal’s main concern is to prevent high-budget
agents from falsely claiming to be low-budget agents. Later, I verify that an optimalmechanism of the
relaxed problem automatically satisfies IC constraints corresponding to over-reporting of budgets.
In other words, it also solves the original problem.

To summarize, the principal’s relaxed problem is

max
a,p,a

Et[a(t)v − q(t)k], ( ′)

subject to (IR), (IC-v), (IC-b), (BC), (BB) and (S).

3.4.1. No verification

In this section, I consider the case in which the principal does not inspect agents, i.e., q ≡ 0. In this
case, as will become clear in the discussion below, it is sufficient to consider two one-dimensional

deviations, which greatly simplifies the analysis. Although some of the results may be familiar, it
highlights the differences in my approach. Denote the principal’s problem in this case by NI and
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the corresponding relaxed problem by  ′NI . As will become clear in Section 3.6, if the inspection
cost, k, is sufficiently high relative to the punishment, c, then it is optimal for the principal not to
use inspection. In particular, this is the case when the principal’s inspection cost is infinity (i.e.,
� = k∕c = ∞).

Observe first that in this case (IC-b) holds if and only if (IC-v) holds and

a(v, b2)v − p(v, b2) ≥ a(v, b1)v − p(v, b1), ∀v. (3.2)

To see this, note that if (3.2) holds, then

a(v, b2)v − p(v, b2) ≥ a(v, b1)v − p(v, b1)

≥ a(v̂, b1)v − p(v̂, b1),

where the second inequality follows from (IC-v). Thus, it is sufficient to consider the two one-
dimensional deviations: only misreport value and only misreport budget. The above inequality says
that if a type (v, b2) agent has no incentive to misreport (v, b1), then he has no incentive to misreport
(v̂, b1). This argument is not true when there is verification because it is possible that types (v, b1)
and (v̂, b1) are inspected with different probabilities. Instead, one must identify for each type (v̂, b1)
the high-budget type who benefits most frommisreporting (v̂, b1) in the absence of inspection, which
determines the set of binding (IC-b) constraints.

Using the envelope condition, (3.2) can be rewritten as

u(v, b2) + ∫

v

v
a(�, b2)d� ≥ u(v, b1) + ∫

v

v
a(�, b1)d�, ∀v. (3.3)

If v = v, then (3.3) implies that u(v, b2) ≥ u(v, b1). If u(v, b2) > u(v, b1), then one can construct
another feasible mechanism by reducing cash subsidies to high-budget agents while increasing their
probabilities of receiving the goods, which generates the same welfare. Hence, it is without loss of
generality to assume that u(v, b1) = u(v, b2). This result is summarized in Lemma 2, and a complete
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proof can be found in the appendix.13

Lemma 2 Suppose Assumption 3 holds, and the principal does not inspect agents. In an optimal

mechanism of  ′NI , it is without loss of generality to assume that u(v, b1) = u(v, b2).

One implication of Lemma 2 is that in an optimal mechanism agents receive positive cash subsidies
regardless of their budgets. This result contrasts the case of common knowledge budgets in which
only low-budget agents receive positive cash subsidies.

Next, I show that, for any given v, an optimal mechanism on average allocates weakly more resources
to high-budget agents whose valuations are below v than to low-budget agents whose valuations are
below v.

Lemma 3 Suppose Assumptions 2 and 3 hold, and the principal does not inspect agents. In an

optimal mechanism of  ′NI , the allocation rule satisfies

∫

v

v
a(�, b2)f (�)d� ≥ ∫

v

v
a(�, b1)f (�)d�, ∀v. (3.4)

Given Lemma 2, (3.4) follows immediately from (3.3) if v is uniformly distributed. Lemma 3 shows
that the result holds more generally for any distribution with non-increasing density. Using Lemmas
2 and 3, one can prove the following theorem, which characterizes the optimal direct mechanism.

Theorem 8 Suppose Assumptions 2 and 3 hold, and the principal does not inspect agents. There

exist v∗1(∞), v
∗
2(∞), v

∗∗
2 (∞), u

∗
1(∞) and u

∗
2(∞) such that an optimal mechanism of NI with no

inspection satisfies

a(v, b1) = �{v≥v∗(∞)}a∗(∞), p(v, b1) = �{v≥v∗1(∞)
}(u∗1(∞) + b1) − u

∗
1(∞),

a(v, b2) = �{v≥v∗2(∞)
}a∗(∞) + �{v≥v∗∗2 (∞)

}

(

1 − a∗(∞)
)

,

p(v, b2) = �{v≥v∗2(∞)
}(u∗2(∞) + b1) + �

{

v≥v∗∗2 (∞)
}

(

1 − a∗(∞)
)

v∗∗2 (∞) − u
∗
2(∞),

13It is immediate that u(v, b1) = u(v, b2) if one also requires that a low-budget agent has no incentive to misreport as a
high-budget agent.
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where

a∗(∞) =
u∗1(∞) + b1
v∗1(∞)

,

b1 < v∗1(∞) = v
∗
2(∞) ≤ v∗∗2 (∞) ≤ v and 0 < u∗1(∞) = u

∗
2(∞) ≤ v∗1(∞) − b1.

In notations a∗(∞), v∗i (∞), v∗∗2 (∞) and u∗i (∞) (i = 1, 2) , subscript i indicates the corresponding
budget bi and argument∞ indicates that this can be viewed as an optimal mechanism when � = ∞.

Not surprisingly the optimal allocation rule obtained here shares similar features with the one found
in Pai and Vohra (2014a).There are three cutoffs: v∗1(∞) = v∗2(∞) < v∗∗2 (∞). All high-budget agents
whose valuations are above v∗∗2 (∞) receive the good with probability one. All low-budget agents
whose valuations are above v∗1(∞) receive the good with positive probability but may be rationed.
In addition, high-budget agents whose valuations are in [v∗2(∞), v∗∗2 (∞)] are pooled with low-budget
agents whose valuations are at least v∗1(∞)(= v∗2(∞)). To understand this pooling, consider two
agents with the same valuation v, but different budgets b2 > b1. Then (IC-b) implies that as long as
agent (v, b2)’s payment is less than b1, he must receive the good with the same probability as (v, b1)
does.

The proof of Theorem 8 follows a weight-shifting argument similar to that of Lemma 1 in Richter
(2015). Consider a feasible mechanism (a, p, 0) whose allocation rule is indicated by the two thick
dotted curves in Figure 2. One can construct another feasiblemechanism (a∗, p∗, 0), whose allocation
rule is indicated by the thick solid lines, in the following way. Find a v∗1 and shift the allocation mass
of low-budget agents from the region to the left of v∗1 to the region to the right of v∗1. The choice of
v∗1 is uniquely determined so that the supply to low-budget agents remains unchanged. Let v̂ denote
the minimum valuation of high-budget agents who receive the good with a probability of at least
a(v, b1) = a∗(v, b1). Find v∗2 and v∗∗2 such that v∗2 ≤ v̂ ≤ v∗∗2 . Shift the allocation mass of high-
budget agents from the region to the left of v∗2 to [v∗2, v̂] and from [v̂, v∗∗2 ] to the region to the right of
v∗∗2 . The choice of v∗2 (and v∗∗2 , respectively) is uniquely determined so that the supply to high-budget
agents whose valuations are in [v, v̂] (and [v̂, v], respectively) remains unchanged. Finally, define
the new payment rule using the envelope condition. If f is “regular”, i.e., satisfies Assumptions 2
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a∗(⋅, b1)

v∗1

a∗(⋅, b2)

v∗2 v∗∗2v̂

Figure 2: Proof sketch of Theorem 8

and 3, then the newmechanism improves welfare and revenue while remaining affordable. Lemma 3
guarantees that v∗2 ≤ v∗1. Thus, no high-budget agent has incentive to misreport his budget. It is easy
to see that one can further improve welfare by increasing v∗2 and reducing v∗1. Hence, in an optimal
mechanism v∗1(∞) = v

∗
2(∞).

3.4.2. The general case

I now turn to the general problem of the principal. Using the envelope condition, (IC-b) becomes
the following: For all v and v̂,

u(v, b2) + ∫

v

v
a(�, b2)d� ≥ u(v, b1) + a(v̂, b1)(v − v̂) − q(v̂, b1)c + ∫

v̂

v
a(�, b1)d�. (IC-b)

First, for each v̂, I identify the type of high-budget agents whose gains from falsely claiming to be a
type (v̂, b1) agent are the largest. (IC-b) holds if and only if for each v̂ ∈ V , q(v̂, b1)c ≥ supvΔ(v, v̂),
where

Δ(v, v̂) ≡ u(v, b1) − u(v, b2) − ∫

v

v
a(�, b2)d� + a(v̂, b1)(v − v̂) + ∫

v̂

v
a(�, b1)d�.

Since )Δ(v, v̂)∕)v = −a(v, b2) + a(v̂, b1) is non-increasing in v, Δ(v, v̂) is concave in v and achieves
its maximum at v = vd(v̂), where

vd(v̂) ≡ inf
{

v|a(v, b2) ≥ a(v̂, b1)
}

. (3.5)

56



v

a
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v̂ vd(v̂)

a(⋅, b2)

Figure 3: The set of binding (IC-b) constraints

Suppose the allocation rules for both budget types are continuous in value v. Then the high-budget
agents who benefit most from falsely claiming to be (v̂, b1) are those who get the goods with the
same probability as type (v̂, b1) agents do. This point is illustrated by Figure 3, which plots an
allocation rule for high-budget agents, a(⋅, b2), and an allocation rule for low-budget agents, a(⋅, b1),
as a function of their valuations v.

Since the principal’s objective function is strictly decreasing in q, the optimal inspection rule satisfies

q(v̂, b1) =
1
c
max

{

0,Δ(vd(v̂))
}

. (3.6)

Note that vd(⋅) is defined using the allocation rule. As a result, one cannot anticipate, a priori, which
(IC-b) constraint binds. Furthermore, (IC-b) constraints are frequently binding not only among local
types. These difficulties are inherent in all multidimensional problems, and as a result the existing
approaches in the mechanism literature do not apply to this problem.14

In order to keep track of the binding (IC-b) constraints, we solve the principal’s problem by approx-
imating the allocation rule using step functions. FixM ≥ 2. Let v = v01 < v11 < ⋯ < vM1 = v and
0 = a0 ≤ a1 < a2 < ⋯ < aM ≤ aM+1 = 1. Suppose the allocation rule for type b1 agents takesM
distinct values: a(v, b1) = am if v ∈ (vm−11 , vm1 ) for m = 1,… ,M . The next lemma shows that the

14See Rochet and Stole (2003) for a survey on multidimensional mechanism design problem.
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Figure 4: Proof Sketch of Lemma 4

optimal allocation rule for type b2 agents can take at mostM + 2 distinct values: a0, a1,… , aM+1.

Lemma 4 Suppose Assumptions 2 and 3 hold. Suppose a(v, b1) = am if v ∈ (vm−11 , vm1 ) for m =

1,… ,M . Then there exists v ≤ v02 ≤ v12 ≤⋯ ≤ vM2 ≤ v such that an optimal allocation rule for b2

satisfies a(v, b2) = am if v ∈ (vm−12 , vm2 ) for m = 1,… ,M , a(v, b2) = 0 if v < v02 and a(v, b2) = 1 if

v > vM2 .

The proof of Lemma 4 is similar to that of Theorem 8 and illustrated by Figure 4, where the allocation
rule for low-budget agents (the solid red line) takes three distinctive values: a1 < a2 < a3. Consider
a feasible allocation rule for high-budget agents indicated by the dotted blue curve. Suppose there
exist a payment rule and an inspection to be used in conjunction with the allocation rule so that the
resulting mechanism is feasible. For ease of exposition, suppose a(⋅, b2) is continuous and let v̂m2
be such that a(v̂m2 , b2) = am for m = 1, 2, 3. For each m = 1, 2, 3, find vm2 and move the allocation
mass of high-budget agents from [v̂m2 , v

m
2 ] to [vm2 , v̂m+12 ], where v̂42 = v. The choice of vm2 is uniquely

determined so that the supply to high-budget agents whose value is in [v̂m2 , v̂m+12 ] remains unchanged.
Redefine the payment rule using the envelope condition and let the inspection rule remain the same.
One can verify that the new mechanism is feasible and clearly improves welfare.

We say an allocation rule a is anM-step allocation rule if there exist v = v01 < v11 < ⋯ < vM1 = v,
v ≤ v02 ≤ v12 ≤ ⋯ ≤ vM2 ≤ v and 0 = a0 ≤ a1 < a2 < ⋯ < aM ≤ aM+1 = 1 for some M ≥ 2

such that a(v, b1) = am if v ∈ (vm−11 , vm1 ) for m = 1,… ,M and a(v, b2) = am if v ∈ (vm−12 , vm2 )
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for m = 0, 1,… ,M + 1. Lemma 4 shows that it is without loss of generality to focus onM-step-
allocation rules among all step allocation rules.

Consider a mechanism using aM-step allocation rule. It is easy to see that for v ∈ (vm−11 , vm1 ), the
type b2 agents who benefitmost from falsely claiming to be type (v, b1) have valuations vd(v) = vm−12 .
Hence, we can keep track of the binding (IC-b) constraints by keeping track of the jump points of the
allocation rule. In this case, the optimal inspection rule satisfies q(v, b1) = qm for all v ∈ (vm−11 , vm1 )

and
qm = 1

c
max

{

0, u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 )

}

(3.7)

for m = 1,… ,M .

Consider the principal’s problem ( ′) with two modifications:

max
a,p,q

Et[a(t)v − q(t)k], ( ′(M,d))

subject to (IR), (IC-v), (IC-b), (BC), (S),

a is aM ′-step allocation rule for someM ′ ≤M,

E[p(t) − q(t)k] ≥ −d. (BB-d)

The second modification is to relax the government’s budget balance constraint by d ≥ 0. As it will
become clear later, any feasible mechanism of  ′ can be approximated arbitrarily well by a feasible
mechanism of  ′(M,d) forM sufficiently large and d sufficiently small.

Next, I show that in an optimal mechanism of  ′(M,d), in the absence of verification, either no
high-budget agent has incentives to misreport as low budget, or all high-budget agents weakly prefer
to misreport as low budget.

Lemma 5 Suppose Assumptions 2 and 3 hold. An optimal mechanism of  ′(M,d) satisfies one of

the following two conditions:
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(C1) For all m = 1,… ,M ,

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) ≥ 0. (3.8)

(C2) For all m = 1,… ,M ,

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) ≤ 0. (3.9)

The basic intuition underlying Lemma 5 is as follows: As long as a mechanism satisfies neither (C1)
nor (C2), one can strictly improve welfare by adjusting the allocation rule in regions in which high-
budget agents find it strictly optimal to report their budgets truthfully. I provide only a proof sketch
of Lemma 5 here. The full proof can be found in the appendix.

Proof Sketch. The proof is by contradiction. Let (a, p, q) be a feasible mechanism, where a is aM-
step allocation rule. Suppose (a, p, q) satisfies neither (C1) nor (C2). I show that one can construct
another feasible mechanism (a∗, p∗, q∗), which strictly improves welfare and satisfies one of the two
conditions. Furthermore, a∗ is a M ′-step function for some M ′ ≤ M . I break the proof into two
steps.

Step 1. I show that it is without loss of generality to assume that (3.8) holds for m = 1. Suppose, on
the contrary, that u(v, b1) − u(v, b2) + a1v02 < 0. Then there exists m > 1 such that vm

′−1
2 − vm′−11 ≤ 0

for all m′ < m and vm−12 − vm−11 > 0. One can construct another feasible mechanism by redirecting
cash subsidies from high-budget agents to low-budget agents, and shifting the allocation mass from
low-budget agents in [vm−11 , ṽm−11 ] to high-budget agents in [ṽm−12 , vm−12 ] for some vm−11 ≤ ṽm−11 ≤

ṽm−12 ≤ vm−12 .

Step 2. Suppose u(v, b1) − u(v, b2) + a1v02 ≥ 0. There exists m > 1 such that (3.8) holds for all
m′ < m and

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) < 0.
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It must be the case that vm−12 < vm−11 . For ease of exposition, assume that vm2 > vm−12 .15 One can
construct another feasible mechanism by either shifting the allocation mass from high-budget agents
in [vm−12 , v̂] to high-budget agents in [v̂, vm2 ] for some vm−12 < v̂ < vm2 , or shifting the allocation
mass from high-budget agents in [vm−12 , ṽm−12 ] to low-budget agents in [ṽm−11 , vm−11 ] for some vm−12 ≤

ṽm−12 ≤ ṽm−11 ≤ vm−11 .

If (C2) holds, then the optimal inspection rule is q ≡ 0. The optimal mechanism of  ′ in this case,
which is characterized in Section 3.4.1, is a feasible mechanism of  ′(M,d) and satisfies (C1) with
equality. Thus, I can conclude that an optimal mechanism of  ′(M,d) satisfies (C1).

Corollary 5 Suppose Assumptions 2 and 3 hold. An optimal mechanism of  ′(M,d) satisfies (C1).

Hence, an optimal inspection rule satisfies q(v, b1) = qm for all v ∈ (vm−11 , vm1 ), where

qm = 1
c

[

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 )

]

(3.10)

form = 1,… ,M . Now the principal’s problem ′(M,d) can be written as follows, where the Greek
letters in parentheses denote the corresponding Lagrangian multipliers.

max
u(v,b1),u(v,b2),

{am}Mm=1,{v
m
1 }

M−1
m=1 ,{v

m
2 }

M
m=0

�
M+1
∑

m=1
∫

vm2

vm−12

amvf (v)dv + (1 − �)
M
∑

m=1
∫

vm1

vm−11

amvf (v)dv

−(1 − �)k
c

M
∑

m=1
∫

vm1

vm−11

[

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 )

]

f (v)dv,

15In the appendix, I break the proof in three steps. I consider the case in which vm−12 < vM2 in Step 2 and the case
vm−12 = vM2 in Step 3.
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subject to

�
M+1
∑

m=1
am[F (vm2 ) − F (v

m−1
2 )] + (1 − �)

M
∑

m=1
am[F (vm1 ) − F (v

m−1
1 )] ≤ S, (�)

aMvM−1
1 −

M−1
∑

j=1
aj(vj1 − v

j−1
1 ) − u(v, b1) ≤ b1, (�)

− (1 − �)u(v, b1) + (1 − �)
M
∑

m=1
∫

vm1

vm−11

am
[

v −
1 − F (v)
f (v)

]

f (v)dv

− (1 − �)k
c

M
∑

m=1
∫

vm1

vm−11

[

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 )

]

f (v)dv

− �u(v, b2) + �
M+1
∑

m=1
∫

vm2

vm−12

am
[

v −
1 − F (v)
f (v)

]

f (v)dv ≥ −d, (�)

u(v, b1) ≥ 0, u(v, b2) ≥ 0, (�1, �2)

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) ≥ 0, m = 1,… ,M, (�m)

0 = a0 ≤ a1 ≤ a2 ≤⋯ ≤ aM ≤ aM+1 = 1, (�1,… , �M+1)
v = v01 ≤ v11 ≤⋯ ≤ vM1 = v, (
11 ,… , 
M1 )
v ≤ v02 ≤ v12 ≤⋯ ≤ vM2 ≤ v. (
02 ,… , 
M+1

2 )

To solve this problem, I first show that in an optimal mechanism of  ′(M,d), the inspection proba-
bility is non-decreasing in a low-budget agent’s reported value:

Lemma 6 Suppose Assumptions 2 and 3 hold. In an optimal mechanism of  ′(M,d), v12 − v
1
1 ≥ 0.

Suppose in addition that V (M,d) > V (M − 1, d) forM ≥ 3, then

vM−1
2 − vM−1

1 >⋯ > v12 − v
1
1 ≥ 0.

As a result, the inspection probability in an optimal mechanism of  ′(M,d) is non-decreasing in

reported value, i.e., qM ≥⋯ ≥ q1 ≥ 0.

To understand the intuition behind the monotonicity of inspection probability, consider a low-budget
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agent and a high-budget agent both receiving the good with probability am. Let pm1 and pm2 denote
their payments respectively. The difference in their payments, to which the inspection probability is
proportional, is

pm2 − p
m
1 = u(v, b1) − u(v, b2) +

m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ).

Clearly, this difference is non-decreasing in m since vm−12 − vm−11 ≥ 0. Suppose, on the contrary,
that qm−1 > qm. Then the principal can shift allocation from low-budget agents in [vm−21 , vm−11 ] to
low-budget agents in [vm−11 , vm1 ], which clearly improves allocation efficiency and revenue. This shift
also strictly reduces inspection cost because more low-budget agents are inspected with probability
qm rather than qm−1 and qm−1 > qm.

The inequality constraints corresponding to �m’s in  ′(M,d) are non-negativity constraints on in-
spection probabilities. As shown in Lemma 6, in an optimal mechanism of  ′(M,d), the inspection
probability is non-decreasing in a low-budget agent’s reported value. As a result, it is sufficient to
consider the inequality constraint corresponding to �1:

u(v, b1) − u(v, b2) + a1(v02 − v
0
1) ≥ 0.

Note that for fixed jump discontinuity points vmi ’s, the principal’s problem  ′(M,d) is linear in
u(v, b1), u(v, b2) and am’s. Hence, an optimal solution can be obtained at an extreme point of the
feasible region. The monotonicity of inspection probability implies that in addition to the mono-
tonicity constraints on am’s there are only finitely many other constraints binding. As a result, for an
M sufficiently large, there are finitely many distinct am’s in an optimal mechanism. More formally,
let V (M,d) denote the value of  ′(M,d). Then V (M,d) = V (M − 1, d) forM sufficiently large.
This result still holds if I replace (BC) with a per-unit price constraint, as shown in Section 3.7.1. If I
impose only (BC), then I can further prove that in an optimal mechanism of  ′(M,d) the allocation
rule is a 2-step allocation rule, i.e., V (M,d) = V (M − 1, d) forM ≥ 3.

Lemma 7 Suppose Assumptions 2 and 3 hold. Then V (M,d) = V (2, d) for allM ≥ 2 and d ≥ 0.
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Furthermore, for allM ≥ 2, in an optimal mechanism of  ′(M,d) the allocation rule is a 2-step

allocation rule.

Proof Sketch. I provide a proof sketch of Lemma 7. Assume, for ease of exposition, that

u(v, b1) − u(v, b2) + a1(v02 − v
0
1) > 0, (�1)

v = v01 < v
1
1 <⋯ < vM1 = v, (
11 ,… , 
M1 )

0 ≤ v02 < v
1
2 <⋯ < vM2 < v. (
02 ,… , 
M+1

2 )

Then �1 = ⋯ = �M = 0, 
11 = ⋯ = 
M1 = 0 and 
12 = ⋯ = 
M+1
2 = 0. The first-order conditions

for vm1 and vm2 (m = 1,… ,M − 1) are

(1 − �)
[

(� − vm1 − �'(v
m
1 ))f (v

m
1 ) + (1 + �)�[1 − F (v

m
1 )] + (1 + �)�(v

m
2 − v

m
1 )f (v

m
1 )
]

− � = 0,

�(� − vm2 − �'(v
m
2 ))f (v

m
2 ) − (1 − �)(1 + �)�[1 − F (v

m
1 )] = 0,

where '(v) ∶= v − [1 − F (v)]∕f (v) denotes the virtual value function. I show in the appendix
that If f is “regular”, which is to say that it satisfies Assumptions 2 and 3, then the above system of
equations has at most one solution. This result is illustrated by Example 2. Hence, I can conclude
that V (M,d) = V (2, d).

Example 2 Let v be uniformly distributed on [0, 1] and � < �+
√

�
1−� . Then the first-order conditions

for vm1 and vm2 (m = 1,… ,M − 1)

(1 − �)
[

� + � + (1 + �)� − (1 + 2� + 2(1 + �)�)vm1 + (1 + �)�v
m
2
]

− � = 0, (3.11)
�(� + �) − (1 − �)(1 + �)� + (1 − �)(1 + �)�vm1 − �(1 + 2�)v

m
2 = 0. (3.12)

Given �, � and �, (3.11) and (3.12) define vm2 as functions of vm1 , denoted by g1 and g2, respectively.

Then

g′1(v
m
1 ) = 2 +

1 + 2�
�(1 + �)

>
(1 − �)(1 + �)�
�(1 + 2�)

= g′2(v
m
1 ).
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This inequality implies that g1 can cross g2 at most once from below. Hence, (3.11) and (3.12) have
at most one solution.

The main result of this section is Theorem 9, which characterizes an optimal mechanism of the
original problem  . In particular, I show that an optimal mechanism of  ′(2, 0) is also an optimal
mechanism of  . In other words, in an optimal mechanism of  , the allocation rule is a 2-step
allocation rule.

Let V denote the value of  ′. We prove Theorem 9 by first showing that for any d > 0 there exists
M(d) > 0 such that for allM >M(d)

V − V (M,d) ≤ (1 − �) (1 + �) E[v]
M

.

The proof is by construction. Fix d > 0 and an integer M > M(d). I can construct a feasible
mechanism of  ′(M,d) that possibly violates (BB) by at most d and generates welfare which is
at least V − (1 − �) (1 + �)E[v]∕M . By Lemma 6, V − V (M,d) = V − V (2, d) ≤ (1 − �)(1 +

k∕c)E[v]∕M for all d > 0 and M > M(d). Fixing d > 0 and taking M to infinity yields V ≤

V (2, d) for all d > 0. By definition, V ≥ V (2, 0). Hence, V = V (2, 0) by the continuity of V (2, ⋅).
Thus, an optimal mechanism of  ′ also solves  ′. It is easy to verify that an optimal solution to
 ′(2, 0) satisfies (IC) constraints corresponding to agents over reporting their budgets and therefore
solves  . Finally, I show that v02 = v and a2 = 0 in an optimal mechanism. Let a∗(�) = a2,
v∗1(�) = v11, v∗2(�) = v12, v∗∗2 (�) = v22, u∗1(�) = u(v, b1) and u∗2(�) = u(v, b2), then an optimal
mechanism is characterized by the following Theorem 9.

Theorem 9 Suppose Assumptions 2 and 3 hold. There exist a∗(�), v∗1(�), v
∗
2(�), v

∗∗
2 (�), u

∗
1(�) and
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u∗2(�) such that an optimal mechanism of  is given by

a(v, b1) = �{v≥v∗1(�)
}a∗(�), p(v, b1) = �{v≥v∗1(�)

}a∗(�)v∗1(�) − u
∗
1(�),

q(v, b1) =
1
c

[

�{v≥v∗1(�)
}a∗(�)

(

v∗2(�) − v
∗
1(�)

)

+ u∗1(�) − u
∗
2(�)

]

,

a(v, b2) = �{v≥v∗2(�)
}a∗(�) + �{v≥v∗∗2 (�)

}

(

1 − a∗(�)
)

,

p(v, b2) = �{v≥v∗2(�)
}a∗(�)v∗2(�) + �

{

v≥v∗∗2 (�)
}

(

1 − a∗(�)
)

v∗∗2 (�) − u
∗
2(�),

q(v, b2) = 0,

where a∗(�) =
[

u∗1(�) + b1
]

∕v∗1(�), v < v∗1(�) ≤ v∗2(�) ≤ v∗∗2 (�) ≤ v, 0 < a∗(�) ≤ 1 and u∗1(�) ≥

u∗2(�).

In notations a∗(�), v∗i (�), v∗∗2 (�) and u∗i (�) (i = 1, 2), subscript i indicates the corresponding budget
bi and argument � indicates their dependence on �. In an optimal mechanism, low-budget agents
receive more cash subsidies (as in the case of common knowledge budgets), but high-budget agents
may also receive strictly positive cash subsidies (as in the case of private budgets without inspection).
There are three cutoffs: v∗1(�) ≤ v∗2(�) ≤ v∗∗2 (�). All high-budget agents whose valuations are above
v∗∗2 (�) receive the good with probability 1. All low-budget agents whose valuations are above v∗1(�)
receive the good with positive probability but may be rationed. Similar to the case of private budgets
without inspection, some high-budget agents (whose valuations are in [v∗2(�), v∗∗2 (�)]) are pooled
with low-budget agents. However, v∗1(�) ≤ v∗2(�). This difference between v∗1(�) and v∗2(�), together
with budget dependent cash subsidies, creates an incentive for high-budget agents to under report
their budgets. All agents who report low budgets are inspected with non-negative probability and
those who receive the goods are more likely to be inspected.

I note here that if � = 0, then u∗2(0) = 0 and v∗2(0) = v∗∗2 (0), which is the case in Theorem 7. If
� = ∞, then u∗1(∞) = u∗2(∞) and v∗1(∞) = v∗2(∞), which is the case in Theorem 8. To simplify
notation, in what follows, I suppress the dependence of u∗1, u∗2, v∗1, v∗2, v∗∗2 and a∗ on � whenever it is
clear.
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Theorem 9 also greatly simplifies the analysis. Now the principal’s problem can be reduced to:

max
u(v,b1),u(v,b2),
a2,v11,v

1
2,v

2
2

�

[

∫

v22

v12

a2vf (v)dv + ∫

v

v22

vf (v)dv

]

+ (1 − �)∫

v

v11

a2vf (v)dv

−(1 − �)k
c
[

u(v, b1) − u(v, b2)
]

F (v11) − (1 − �)
k
c ∫

v

v11

[

u(v, b1) − u(v, b2) + a2(v12 − v
1
1)
]

f (v)dv,

subject to

�a2
[

F (v22) − F (v
1
2)
]

+ �
[

1 − F (v22)
]

+ (1 − �)a2[1 − F (v11)] ≤ S, (�)
a2v11 − u(v, b1) ≤ b1, (�)

− (1 − �)u(v, b1) + (1 − �)∫

v21

v11

a2
[

v −
1 − F (v)
f (v)

]

f (v)dv

− (1 − �)k
c
[

u(v, b1) − u(v, b2)
]

F (v11) − (1 − �)
k
c ∫

v

v11

[

u(v, b1) − u(v, b2) + a2(v12 − v
1
1)
]

f (v)dv

− �u(v, b2) + � ∫

v22

v12

a2
[

v −
1 − F (v)
f (v)

]

f (v)dv + � ∫

v

v22

[

v −
1 − F (v)
f (v)

]

f (v)dv ≥ 0, (�)

u(v, b1) ≥ 0, u(v, b2) ≥ 0, (�1, �2)
u(v, b1) − u(v, b2) ≥ 0, (�1)
u(v, b1) − u(v, b2) + a2(v12 − v

1
1) ≥ 0, (�2)

0 ≤ a2 ≤ a3 = 1, (�2, �3)
v ≤ v11 ≤ v, (
11 , 
21 )
v ≤ v12 ≤ v22 ≤ v. (
12 , 
22 , 
32 )

Furthermore, the optimal mechanism is unique. Suppose, on the contrary, that there are two optimal
mechanism. Since  ′ is linear in (a, p, q),16 the convex combination of these two optimal mech-
anisms is also optimal. However, the convex combination of two 2-step allocation rules is not a
2-step allocation rule in general, which cannot be optimal by Lemma 4. Hence, there exists a unique
optimal mechanism.

16 ′(2, 0) is not linear in u(v, b1), u(v, b2), a2, v11, v12 and v22.
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Corollary 6 Suppose Assumptions 2 and 3 hold. There exists a unique optimal mechanism of  .

Furthermore, u∗1, u
∗
2, v

∗
1, v

∗
2, v

∗∗
2 and a∗ are continuous in k, c, �, b1 and S.

3.4.3. Subsidies in cash and in kind

I complete this section by a discussing subsidies in cash and in kind. In the optimal mechanism,
compared with the high-budget agents who do not receive the goods, high-budget agents whose
valuations exceed v∗∗2 receive the good with probability 1 by making an additional payment a∗v∗2 +
(1−a∗)v∗∗2 . All high-budget agents whose valuations lie in [v∗2, v∗∗2 ] receive the good with probability
a∗ by making an additional payment a∗v∗2, which is an in-kind subsidy. In the literature, the value of
an in-kind subsidy is often measured by its market value. In this paper, I do not model the private
market explicitly, so I use the additional payment, a∗v∗2 + (1 − a∗)v∗∗2 , made by high-budget high-
value agents as a measure of “price". Then the amount of in-kind subsidies offered to a high-budget
agent is a∗ [a∗v∗2 + (1 − a∗)v∗∗2

]

− a∗v∗2. Note that high-budget agents do not receive any in-kind
subsidies if v∗2 = v∗∗2 , as in the case when budgets are common knowledge. Similarly, the amount of
in-kind subsidies offered to a low-budget agent is a∗ [a∗v∗2 + (1 − a∗)v∗∗2

]

− a∗v∗1. The difference in
in-kind subsidies offered to the two budget types is a∗(v∗2 − v∗1).

In-kind subsidies are widespread around the world. The conventional wisdom rationalizing the
prevalence of in-kind subsidies is paternalism. A more recent justification is based on the idea that
agents have private information about their financial constraints, and governments cannot accurately
identify low-budget agents in need of help. As a result, in-kind subsidies will be part of a surplus-
maximizing mechanism as it is less susceptible to mimicking by high-budget agents. One difficulty
with this justification is that, in many transfer programs, governments first “verify income, and then
give benefits in kind, which would seem to rule out self-targeting as the primary reason for supplying
benefits in-kind”.17 Moreover, governments “generally expend considerable resources determining
eligibility”.18 In this paper, I formalize the idea that governments can verify agents’ private infor-
mation about their financial constraints via a costly procedure, and show that in such an environment

17Currie and Gahvari (2008)
18Currie and Gahvari (2008)
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the optimal mechanism still makes use of both cash and in-kind subsidies.

3.5. Implementation

In this section, I provide one simple implementation of the direct optimal mechanism character-
ized in Section 3.4. This implementation exhibits some of the features of Singapore’s housing and
development board (HDB).

Consider the following random assignment with regulated resale and cash subsidy (RwRRC) scheme,
which consists of two stages.

1. In the first stage, each agent reports his budget. Agents who report low budget are inspected
with a probability of (u∗1 − u∗2)∕c. The principal offers cash subsidies u∗1 to low-budget agents
and u∗2 to high-budget agents. The principal also offers low-budget agents the choice of par-
ticipating in a lottery at price p∗1 ∶= a∗v∗1 and high budget agents the choice of participating
in the same lottery at price p∗2 ∶= a∗v∗2. The principal distributes the goods randomly with
uniform probability among all participants of the lottery. Each participant receives one unit
of good with a probability no more than a∗.

2. In the second stage, the resale market opens, in which agents can purchase goods from each
other and the principal if not all the goods are distributed in the first stage. The per-unit sales
taxes are �∗1 ∶= v∗∗2 − v∗1 for low-budget sellers and �∗2 ∶= v∗∗2 − v∗2 for high-budget sellers.
Agents who report low budget in the first stage and choose not to sell the good in the second
stage are inspected with probability (v∗2 − v∗1)∕c.

Let a denote a lottery participant’s expected probability of receiving the good in the first stage, and
ps denote the expected price a buyer pays in the second stage. Assume without loss of generality
that ps > b1 so that a low-budget agent cannot afford it. Consider a low-budget agent whose type is
(v, b1) and who reports his budget truthfully. Then his payoff is u∗1 if he does not enter the lottery. If
he buys the lottery, there are two possibilities. If he keeps the good when he receives it in the first
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stage, then his payoff is u∗1 + av − a∗v∗1; otherwise his payoff is

u∗1 − a
∗v∗1 + a(p

s − v∗∗2 + v∗1).

Clearly, in the second stage, it is optimal for him to keep the good if and only if v ≥ ps − v∗∗2 + v∗1.
In the first stage, it is optimal for him to purchase the lottery if and only if

amax
{

v, ps − v∗∗2 + v∗1
}

≥ a∗v∗1.

Similarly, consider a high-budget agent whose type is (v, b2) and who reports his budget truthfully.
It is easy to see that if it is optimal for an agent not to buy the lottery in the first stage, then it is also
optimal for him not to buy the good in the second stage. If it is optimal for an agent to sell the good
he receives in the first stage, then it is optimal for him not to buy the good in the second stage when
he does not receive it in the first stage. Then his payoff is u∗2 if he does not buy the lottery. If he buys
the lottery, there are three possibilities. If he buys the lottery, keeps the good when he receives it
and buys it when he does not receive it, his payoff is

u∗2 − a
∗v∗2 + av + (1 − a)(v − p

s);

if he buys the lottery, keeps the good when he receives it and does not buy when he does not receive
it, his payoff is u∗1 + a∗(v− v∗1); if he buys the lottery and sells the good when he receives it, then his
payoff is

u∗2 − a
∗v∗2 + a(p

s − v∗∗2 + v∗2).

Clearly, in the second stage, it is optimal for him to keep the good if and only if v ≥ ps − v∗∗2 + v∗2
and buy the good if and only if v ≥ ps. In the first stage, it is optimal for him to purchase the lottery
if and only if

amax
{

v, ps − v∗∗2 + v∗2
}

≥ a∗v∗2.

Hence, in the second stage, the demand of the goods is �(1 − a) [1 − F (ps)] and the supply of the
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goods is

S−a(1−�)
[

1 − F
(

max
{

ps − v∗∗2 + v∗1,
a∗v∗1
a

})]

−a�
[

1 − F
(

max
{

ps − v∗∗2 + v∗2,
a∗v∗2
a

})]

.

It is not hard to verify that a = a∗ and ps = v∗∗2 is the unique equilibrium.19 Note that in this
equilibrium, an agent is indifferent between not buying the lottery, and buying the lottery but selling
the good when he receives it. All low-budget agents whose valuations are above v∗1 strictly prefer to
participate in the lottery and keep the good they receive. All high-budget agents whose valuations
are above v∗2 strictly prefer to participate in the lottery and keep the goods they receive. In addition,
all high-budget agents whose valuations are above v∗∗2 will buy the goods in the second stage if they
do not receive any in the first stage. These arguments prove the following result.

Proposition 1 Suppose Assumptions 2 and 3 hold. The optimal mechanism is implemented by

RwRRC with v ≤ v∗1 ≤ v∗2 ≤ v∗∗2 ≤ v, u∗1 ≥ u∗2 and 0 ≤ a∗ ≤ 1 given by Theorem 9.

If inspection is sufficiently costly or the principal cannot inspect agents, then in the RwRRC scheme
agents receive the same amount of cash subsidies u∗1 = u∗2 and the same price p∗1 = p∗2 in the first
stage and face the same sales taxes �∗1 = �∗2 in the second stage regardless of their budgets. This is
consistent with the findings in Che et al. (2013a). If inspection is not too costly, then the principal
provides financial aids to low-budget agents (u∗1 ≤ u∗2, p∗1 ≥ p∗2) in the first stage and discourages
them from reselling by imposing a higher sales tax in the second stage.

This implementation exhibits some of the features of Singapore’s HDB. HDB develops new flats
and sells them to eligible buyers.20 Buyers can purchase new flats directly from HDB or resale flats
from existing owners in the open market. Buyers must have resided in their flats for a period of time,
referred to as the minimum occupation period (MOP), before they are eligible to resell or sublet their
flats. Buyers of resale HDB flats can apply for a CPF housing grant, which is a housing subsidy to

19Clearly, for each a, there is a unique ps such that demand is equal to supply in the second stage. By construction,
a ≤ a∗. Suppose a < a∗, then the market clearing condition in the second stage implies that ps < v∗∗2 . This implies that
a low-budget agent buys the lottery only if v > v∗1 and a high-budget agent buys the lottery only if v > v∗2, which in turn
implies that a = a∗, a contradiction. Hence, a = a∗ and ps = v∗∗2 .

2090% of HDB flats are owned by their residents. The remainder are rental flats for people who cannot afford to
purchase the cheapest form of HDB flats despite financial aid.
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Table 1: Minimum occupation periods (MOP) of housing and development board (HDB) flats
Types of HDB flats MOP

Sell Sublet
Resale flats w/ Grants 5–7 years 5–7 years
Resale flats w/o Grants 0–5 years 3 years

Sources. — Sell: http://www.hdb.gov.sg/cs/infoweb/residential/selling-a-flat/eligibility; and Sub-
let: http://www.hdb.gov.sg/cs/infoweb/residential/renting-out-a-flat-bedroom/renting-out-your-flat/

eligibility.

help eligible households. HDB flats purchased with CPF housing grants are subject to longer MOPs
as illustrated by Table 1.

3.6. Properties of the optimal mechanism

Having derived the optimal mechanism, I would like to investigate the following questions. Is it
optimal for the principal to limit the supply of goods? When can the first-best outcome be achieved?
What is the effect of a decrease in verification cost as, for example, a government’s bureaucratic effi-
ciency improves? What is the effect of an increase in the supply as, for example, a government builds
more houses? What if agents become less budget-constrained? This loosening of constraints could
happen asmore agents are admitted into the formal financial system (� increases) or if their wealth in-
creases as the economy grows (b1 increases). What if the principal becomes less budget-constrained
as a government increases expenditures on transfer programs? In what follows, I investigate each of
these questions in turn.

Firstly, I show that it is not optimal for the principal to limit the supply of goods.

Proposition 2 Suppose Assumptions 2 and 3 hold. In an optimal mechanism, (S) holds with equality.

This result is straightforward if agents are unconstrained. However, it is not immediate from the
principal’s concern for efficiency if agents are budget-constrained. Recall that the principal also has
a budget constraint, and this constraint may cause her to restrict supply. To see why, consider the
extreme case in which low-budget agents have no money, i.e., b1 = 0. In this case, the principal
needs to raise all money from selling to high-budget agents. On the one hand, as she increases the
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amount of goods sold to high-budget agents, the revenue will start declining at some point. On the
other hand, increasing the amount of goods allocated to low-budget agents raises the inspection cost.
Thus, it is not obvious that in an optimal mechanism all the goods are distributed to agents. In the
proof of Proposition 2, I show that if not all the goods are distributed to agents yet, then the principal
can increase the amount of goods allocated to high-budget and low-budget agents simultaneously.
For an appropriately chosen allocation rule, the resulting mechanism is feasible and strictly improves
welfare.21

Secondly, I give a necessary and sufficient condition under which the first-best is achieved.

Proposition 3 Suppose Assumptions 2 and 3 hold. The first-best is achieved if and only ifS ≥ Ŝ(b1),

where Ŝ(b1) is the solution to

b1 − v∗F (v∗) = 0

with v∗ = F−1(1 − S). Furthermore, Ŝ(b1) is strictly decreasing in b1.

Intuitively, the first-best is achieved if the supply of the good is abundant or agents have ample bud-
gets. Note that the condition given in Proposition 3 is independent of inspection cost k, punishment
c and the percentage of high-budget agents �. This is because when the first-best is achieved, agents
of both budget types receive the same amount of cash subsidies and the same allocation rule, and
the inspection probability is zero. For the rest of this section, I assume that the first-best cannot be
achieved, i.e., S < Ŝ(b1).

Thirdly, I study the impact of changes in effective inspection cost (� = k∕c), supply (S), budget
(b1) and the percentage of high-budget agents (�) on the optimal mechanism as well as welfare.
The optimal mechanism is characterized by u∗1, u∗2, v∗1, v∗2, v∗∗2 and a∗, which (together with the
corresponding Lagrangian multipliers) are solutions to a system of non-linear equations. As a result,
it is hard to perform all comparative statics analysis analytically. In what follows, I give some analytic
results for extreme cases such as when effective inspection cost is sufficiently large and explore the
intermediate case numerically.

21I thank Michael Richter for suggesting this proof.
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Figure 5: The impact of an increase in effective inspection cost (�) on cash subsidies, allocation,
inspection and welfare. In this numerical example, v is uniformly distributed on [0, 1], S = 0.4,
b1 = 0.2, � = 0.5 and � ∈ [0, 0.2].
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Figure 6: The impact of an increase in effective inspection cost (�) on the differences in cash and
in-kind subsidies. In this numerical example, v is uniformly distributed on [0, 1], S = 0.4, b1 = 0.2,
� = 0.5 and � ∈ [0, 0.2].

Effective Verification Cost (�). Intuitively, as verification becomes more costly (� increases), the
principal tends to inspect agents less frequently in the optimal mechanism. To maintain incentive
compatibility, the principal needs to reduce the differences in cash and in-kind subsidies offered to
agents with different budgets. Proposition 4 shows that, for a large �, agents of both budget types
receive the same amount of cash subsidies. Eventually, for � sufficiently large, verification is never
used. The two lower bounds given in Proposition 4 are not tight, as illustrated in the numerical ex-
ample in Figure 5. If v is uniformly distributed, then one can further prove that, for fixed punishment
c, the verification probability is non-increasing in verification cost k. However, the change in total
verification cost may not be monotonic as illustrated by Figure 5c.

Proposition 4 Suppose Assumptions 2 and 3 hold.

1. If � ≥ �
1−�

, then agents of both budget types receive the same amount of cash subsidies, i.e.,

u∗1 = u
∗
2.

2. There exists � ≤ �
S(1−�) such that the verification probability in an optimal mechanism is zero,

i.e., q(v, b) = 0 for all v and b, if and only if � ≥ �. Furthermore, the total welfare is strictly

decreasing in � over [0, �] and constant in � over [�,∞).
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3. If v is uniformly distributed, then the verification probability is non-increasing in k.

Figure 5 plots the impact of an increase in effective verification cost (�) on cash subsidies, allocation,
verification and welfare in a numerical example. It is straightforward that an increase in � reduces the
total welfare but its impacts on different budget types are different. Verification allows the principal
to more accurately target low-budget agents and improves their welfare. As a result, as � increases,
the welfare of low-budget agents declines while that of high-budget agents rises, as seen in Figure
5d.

More interestingly, the optimal mechanism makes use of both cash and in-kind subsidies, and the
change in verification cost affects that mechanism’s reliance on each of them as shown in Figure 6.
If � is sufficiently small, then the principal helps low-budget agents mainly by offering them more
cash subsidies. As � increases, the difference in cash subsidies declines but the difference in in-kind
subsidies increases. This is because even though cash subsidy is more efficient in the sense that it
does not introduce any distortion in allocation, it is more expensive in terms of verification cost.
Cash subsidy is attractive to everyone regardless of their valuations. In contrast, in-kind subsidy
is attractive only to agents whose valuations are high enough. Eventually, the difference in in-kind
subsidies also declines as verification becomes sufficiently costly.

Supply (S). The impact of an increase in the supply (S) on the optimal mechanism is complicated.
On the one hand, the principal becomes less budget constrained, and can direct more subsidies to
low-budget agents and inspect them more frequently. On the other hand, low-budget agents also
become less budget constrained as S increases,22 which reduces the needs to subsidize and inspect
them. As shown in Propositions 4 and 5, for sufficiently large and small S, agents of both budget
types receive the same amount of cash subsidies.

Proposition 5 Suppose Assumptions 2 and 3 hold. If S is sufficiently small, then agents of both

budget types receive the same amount of cash subsidies, i.e., u∗1 = u
∗
2.

22As in Section 3.4.3, I use the additional payment a∗v∗2+(1−a∗)v∗∗2 made by a high-budget high-valuation agent a mea-
sure of “price”. Then this price generally declines as S increases and low-budget agents become less budget constrained
in the sense that the gap between this price and their budgets shrinks.
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Figure 7: The impact of an increase in the supply (S) on cash subsidies, allocation, verification and
welfare. In this numerical example, v is uniformly distributed on [0, 1], � = 0.08, b1 = 0.2, � = 0.5
and S ∈ [0, 0.6].
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Figure 8: The impact of an increase in the supply (S) on the differences in cash and in-kind subsidies,
allocation and payment. In the right panel, the red line (p1) denotes the payment by a low-budget
agent who receives the good with probability a∗, the blue line (p21) denotes the payment by a high-
budget agent who receives the good with probability a∗, and the red line (p22) denotes the payment
by a high-budget agent who receives the good with probability one. In this numerical example, v is
uniformly distributed on [0, 1], � = 0.08, b1 = 0.2, � = 0.5 and S ∈ [0, 0.6].

These effects can also be seen in Figures 7 and 8, which plot the impact of an increase in the supply
(S) on cash subsidies, allocation, verification and welfare in a numerical example. Specifically,
Figure 8a plots the differences in cash and in-kind subsidies between high-budget and low-budget
agents. If S is sufficiently small, then agents receive the same amount of subsidies regardless of
their budgets. As S increases, the principal raises first the difference in in-kind subsidies and then
that in cash subsidies. This order occurs because it is less expensive to target only low-budget high-
valuation agents than all low-budget agents. Eventually, the differences in both cash and in-kind
subsidies decline as the need to subsidize low-budget agents declines. As a result, the verification
probability is hump-shaped as shown in Figure 7c.

Intuitively, the total welfare is strictly increasing in S. More interestingly, the welfare of each type
is not monotonic in S. Figure 7d plots the total welfare and the average utility of each budget type
as a function of S. Initially, the average utilities of both budget types increase as S increases. When
S is large enough that the principal begins to divert more cash subsidies and goods to low-budget
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agents, the average utility of high-budget agents begins to decrease as S increases. Eventually,
the need to subsidize low-budget agents decreases as S increases, and the average utility of low-
budget agents begins to decrease while that of high-budget agents begins to increase, until they
coincide. Specifically, low-valuation agents of both budget types can get worse off as they receive
less cash subsidies. Interestingly, high-budget high-valuation agents can also get worse off because
their payments can increase as S increases (see Figure 8b). These increases in payments occur
because disproportionately more goods will be allocated to low-budget agents and there will be less
pooling when S increases.

Percentage of high-budget agents (�). Proposition 4 also proves that for small �, agents of both
budget types receive the same amount of cash subsidies. Eventually, for � sufficiently small, verifi-
cation is never used. This result is intuitive because a smaller � means a larger population of low-
budget agents and therefore higher total verification cost given the same mechanism. Hence, the
principal tends to inspect agents less frequently as � decreases. However, this change in verification
probability is not monotonic in �, because an increase in � not only makes verification less costly
but also makes the economy wealthier. If � is sufficiently large, then the principal becomes less
budget-constrained and can afford to maintain incentive compatibility by subsidizing high-budget
agents directly rather than inspect low-budget agents. This is illustrated by the numerical example
in Figure 9.

The total welfare as well as the welfare of low-budget agents are strictly increasing in �, but the
welfare of high-budget agents is not monotonic in �. Initially, as � increases, the welfare of high-
budget agents declines as the principal provides more subsidies to low-budget agents. Eventually,
the welfare of high-budget agents rises as the principal subsidizes high-budget agents rather than
inspecting low-budget agents.

Budget (b1) Low-budget agents become less budget constrained as b1 increases. This change re-
duces the need for subsidies, which leads to a decline in verification probability. Proposition 6 proves
that for large b1, agents of both budget types receive the same amount of cash subsidies. Figure 10
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Figure 9: The impact of an increase in the percentage of high-budget agents (�) on cash subsidies,
allocation, verification and welfare. In this numerical example, v is uniformly distributed on [0, 1],
� = 0.08, b1 = 0.2, S = 0.4 and � ∈ [0, 1].
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Figure 10: The impact of relaxing low-budget agents’ budget constraint (b1) on cash subsidies, al-
location, verification and welfare. In this numerical example, v is uniformly distributed on [0, 1],
� = 0.08, S = 0.4, � = 0.5 and b1 ∈ [0, 0.6].
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plots the impact of an increase in b1 on cash subsidies, allocation, verification and welfare in a nu-
merical example. In this numerical example, the total verification probability is non-increasing in
b1 and zero for b1 sufficiently large.

Proposition 6 Suppose Assumptions 2 and 3 hold. If b1 is sufficiently large, then agents of both

budget types receive the same amount of cash subsidies, i.e., u∗1 = u
∗
2.

The total welfare, as well as, the welfare of high-budget agents is strictly increasing in b1, but the
welfare of low-budget agents is not monotonic in b1. On the one hand, low-budget agents become
less budget-constrained as b1 increases. On the other hand, the principal provides lower cash and
in-kind subsidies to low-budget agents as b1 increases. As shown in Figure 10d, either effect can
dominate the other. Hence, the welfare of low-budget agents may either increase or decrease as b1
increases.

Lastly, I study the impact of relaxing the principal’s budget-balanced constraint on the optimal mech-
anism and welfare. Specifically, I reformulate the principal’s budget constraint as follows:

Et [p(t) − q(t)k] ≥ −d. (BB)

In the main part of the paper, I assume d = 0. But it is easy to see that all the results in Sections 3.3
and 3.4 extend to the case of d ≥ 0.

Figure 11 plots the impact of an increase in the principal’s budget (d) on cash subsidies, allocation,
verification and welfare in a numerical example. Note that an increase in d leads to an increase in
the total cash subsidies by more than one-hundred percent. This is easy to see when there is no
verification. An increase in d raises cash subsidies to low-budget agents, which relax their budget
constraints and improve allocation efficiency. Under Assumption 2, this in turn improves the prin-
cipal’s revenue and allows her to further raise cash subsidies. The numerical example suggests this
is still true when verification is possible.
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Figure 11: The impact of an increase in the principal’s budget (d) on cash subsidies, allocation,
verification and welfare. In this numerical example, v is uniformly distributed on [0, 1], � = 0.04,
b1 = 0.2, S = 0.4, � = 0.5 and d ∈ [0.0.2].
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3.7. Extensions and discussions

In this section, I discuss several issues. Section 3.7.1 shows that some of the analysis extends if
I replace the budget constraint by a more stringent per-unit price constraint. Section 3.7.2 shows
that the analysis extends to the case where punishment is transferable. Sections 3.7.3 and 3.7.4
discuss the robustness of my analysis to weakening the assumptions on verification and punishment,
respectively. Section 3.7.5 discusses why it is necessary to explicitly model budget constraints.

3.7.1. Per-unit price constraint

In the optimal direct mechanism, agents make payments to the principal regardless of whether they
receive the goods,23 which some may consider unrealistic. The question, then, is whether this direct
mechanism can be implemented by a mechanism in which agents pay if and only if they receive the
goods and their payments are within their budgets. Such an implementation is impossible if a∗ < 1.
I can guarantee that such an implementation always exists if I replace (BC) by the following per-unit
price constraint:

p(t) ≤ a(t)b, ∀t = (v, b). (PC)

(BC) is the same as that found in Che and Gale (2000) and Pai and Vohra (2014a), but different from
Che et al. (2013a), which uses (PC).

Nevertheless, I assume (BC) in the main body of the paper for the following reasons. First, as
will become clear, the optimal mechanisms in these two settings share qualitatively similar features.
Second, for some parameter values (e.g., verification cost is low, resources are relatively abundant or
the percentage of budget constrained agents is small), there is no rationing in the optimal mechanism
(a∗(�) = 1). Third, rationing is realistic if b1 is close to zero. For example, families with very low
income may receive free coverage from Medicaid.

In the rest of this subsection, I consider the principal’s problem in which (BC) is replaced by (PC),
denoted by PC . I first make the observation that if (PC) holds for v′ then it holds for all v < v′.

23For a finite number of agents, this is similar to an all-pay auction.
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This is trivial if a(v, b) = 0. If a(v, b) > 0, then by the envelope condition we have

p(v′, b)
a(v′, b)

−
p(v, b)
a(v, b)

=∫

v′

v

(

1 −
a(�, b)
a(v′, b)

)

d� − ∫

v

v

(

a(�, b)
a(v′, b)

−
a(�, b)
a(v, b)

)

d� −
u(v, b)
a(v′, b)

+
u(v, b)
a(v, b)

≥0,

where the last inequality holds since a(v, b) is non-decreasing in v. Hence, (PC) holds if and only if
p(v, b) ≤ a(v, b)b for all b.

Given this observation, it is straightforward to extend the results of Theorems 7 and 8 to the current
setting. Theorem 10 characterizes an optimal mechanism of PC when budgets are common knowl-
edge (� = 0). Theorem 11 characterizes an optimal mechanism of PC when budget is an agent’s
private information and the principal cannot verify this information (� = ∞). The latter theorem
extends the results in Section 3 of Che et al. (2013a) to the setting of a continuum of values under
the regularity conditions.

Theorem 10 Suppose Assumption 3 holds, and budgets are common knowledge. There exists v∗1(0),

v∗2(0), u
∗
1(0) and u

∗
2(0) such that an optimal mechanism of PC,CB is given by

a(v, b1) = �{v≥v∗1(0)
}a∗(0), p(v, b1) = �{v≥v∗1(0)

}

(

u∗1(0) + a
∗(0)b1

)

− u∗(0),

a(v, b2) = �{v≥v∗2(0)
}, p(v, b2) = �{v≥v∗2(0)

}v∗2(0),

where a∗(0) = u∗1(0)∕
[

v∗1(0) − b1
]

, b1 < v∗1(0) ≤ v∗2(0) < v and 0 = u
∗
2(0) < u

∗
1(0) ≤ v∗1(0) − b1.

Theorem 11 Suppose Assumptions 2 and 3 hold, and the principal does not inspect agents. There

exists v∗1(∞), v
∗
2(∞), v

∗∗
2 (∞), u

∗
1(∞) and u

∗
2(∞)such that an optimal mechanism of PC,NI with no

verification satisfies

a(v, b1) = �{v≥v∗1(∞)
}a∗(∞), p(v, b1) = �{v≥v∗1(∞)

}a∗(∞)v∗1(∞) − u
∗
1(∞),

a(v, b2) = �{v≥v∗1(∞)
}a∗(∞) + �{v≥v∗∗2 (∞)

}

(

1 − a∗(∞)
)

,

p(v, b2) = �{v≥v∗2(∞)
}a∗(∞)v∗2(∞) + �

{

v≥v∗∗2
}

(

1 − a∗(∞)
)

v∗∗2 (∞) − u
∗
2(∞),
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where a∗(∞) = u∗1(∞)∕
[

v∗1(∞) − b1
]

, b1 < v∗1(∞) = v∗2(∞) ≤ v∗∗2 (∞) ≤ v and 0 < u∗1(∞) =

u∗2(∞) ≤ v∗1(∞) − b1.

The analysis is more complex if budget is an agent’s private information and the principal can verify
this information at a cost. As before, I first consider the principal’s relaxed problem  ′PC in which
I relax (IC) corresponding to over-reporting of budgets. One can show that Lemmas 4 and 5 and
Corollary 5 still hold. Next, I consider the principal’s relaxed problem with two modifications: (i)
The allocation rule is anM ′-step allocation rule for some integerM ′ ≤ M andM ≥ 2 is a fixed
integer; and (ii) the principal’s budget balance constraint is relaxed by a constant d ≥ 0. Denote this
problem by  ′PC (M,d) and its value by VPC (M,d). Then  ′PC (M,d) is identical to  ′(M,d) if I
replace (BC) by the following (PC) constraint:

aMvM−1
1 −

M−1
∑

j=1
aj(vj1 − v

j−1
1 ) − u(v, b1) ≤ b1a

M . (�)

One can readily extend the results of Lemma 6 to the current setting, which says that, in an optimal
mechanism of  ′PC (M,d), the verification probability is non-decreasing in a low-budget agent’s
reported value. Using the monotonicity of verification probability and the linearity of  ′PC (M,d)

in u(v, b1), u(v, b2) and am’s, we have VPC (M,d) = VPC (M − 1, d) for M sufficiently large. By
a similar approximation argument to that in the proof of Theorem 9, one can prove the following
theorem, which characterizes an optimal mechanism of PC .

Theorem 12 Suppose Assumptions 2 and 3 hold. There exists an integer 2 ≤ M ≤ 5, v < v11 <

⋯ < vM−1
1 < v, v ≤ v02 ≤ v12 < ⋯ < vM−1

2 ≤ vM2 < v and 0 ≤ a1 < a2 < … aM ≤ 1 such that an
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optimal mechanism of PC is given by

a(v, b1) =
M
∑

m=1
�{vm−11 <v≤vm1 }

am,

p(v, b1) =
M−1
∑

m=1
�{v≥vm1 }

(

am+1 − am
)

vm1 − u(v, b1),

q(v, b1) =
1
c

[

u(v, b1) − u(v, b2) + a1
(

v02 − v
)

+
M−1
∑

m=1
�{v≥vm1 }

(

am+1 − am
) (

vm2 − v
m
1
)

]

a(v, b2) =
M
∑

m=1
�{vm−12 <v≤vm2 }

am + �{v≥vM2 },

p(v, b2) =
M−1
∑

m=0
�{v≥vm2 }

(

am+1 − am
)

vm2 + �{v≥vM2 }
(

1 − aM
)

− u(v, b2).

However, it is hard to further improve this result, as in Section 3.4.2 when we require only the weaker
(BC) constraint. In particular, the proof of Lemma 7 does not apply here. It holds if we also make
the following assumption.

Assumption 4 a(v, b) = 0 for all v < b1.

Assumption 4 requires that an agent whose valuation is too low (lower than b1) receives the good
with probability zero. Note that optimal mechanisms in Theorem 10 and Theorem 11 satisfy this
condition. I conjecture this condition also holds in the general case, although I cannot prove it.
Under this additional assumption, we have

Lemma 8 Suppose Assumptions 2, 3 and 4 hold. Then VPC (M,d) = VPC (2, d) for allM ≥ 2 and

d ≥ 0.

Given Lemma 8, it is easy to extend the result of Theorem 9 to this setting.

Theorem 13 Suppose Assumptions 2, 3 and 4 hold. There exist a∗(�), v∗1(�), v
∗
2(�), v

∗∗
2 (�), u

∗
1(�)
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and u∗2(�) such that an optimal mechanism of PC is given by

a(v, b1) = �{v≥v∗1(�)
}a∗(�), p(v, b1) = �{v≥v∗1(�)

}a∗(�)v∗1(�) − u
∗
1(�),

q(v, b1) =
1
c

[

�{v≥v∗1(�)
}a∗(�)

(

v∗2(�) − v
∗
1(�)

)

+ u∗1(�) − u
∗
2(�)

]

,

a(v, b2) = �{v≥v∗2(�)
}a∗(�) + �{v≥v∗∗2 (�)

}

(

1 − a∗(�)
)

,

p(v, b2) = �{v≥v∗2(�)
}a∗(�)v∗2(�) + �

{

v≥v∗∗2 (�)
}

(

1 − a∗(�)
)

v∗∗2 (�) − u
∗
2(�),

q(v, b2) = 0,

where a∗(�) = u∗1(�)∕
[

v∗1(�) − b1
]

, v ≤ v∗1(�) ≤ v∗2(�) ≤ v∗∗2 (�) ≤ v, 0 < a∗(�) ≤ 1 and u∗1(�) ≥

u∗2(�).

3.7.2. Monetary penalty

In this subsection, I discuss what happens if penalty is transferable. Specifically, the principal can
inspect an agent’s budget at a cost k > 0, and can impose a monetary penalty of up to c ≥ 0. I also
allow the principal to punish an innocent agent and an agent without verification. Nonetheless, as
I will show later, it is optimal for the principal to punish an agent if and only if he is found to have
lied about his budget. Using this result, the principal’s problem can be reduced to the one stated in
Section 3.2, when penalty is not transferable. Hence, all results in previous sections also hold in the
case of monetary penalty.

I also relax the assumption that an agent is punished if and only if he is found to have lied. In
this case, a direct mechanism is a quadruple (a, p, q, �), where a, p and q are defined as before and
� ∶ T × {b1, b2, n} → [0, c] denotes the penalty imposed on an agent. In particular, �(t̂, n) ∈ [0, c]
denotes the penalty imposed on an agent who reports t̂ and is not inspected, and �(t̂, b) ∈ [0, c]

denotes the penalty imposed on an agent who reports t̂ and is inspected, and whose budget is revealed
to be b. The utility of an agent who has type t ∶= (v, b) and reports t̂ is

u(t̂, t) =

⎧

⎪

⎨

⎪

⎩

a(t̂)v − p(t̂) − (1 − q(t̂))�(t̂, n) − q(t̂)�(t̂, b) if p(t̂) + �(t̂, b) ≤ b and p(t̂) + �(t̂, n) ≤ b,

−∞ otherwise.
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The principal’s problem is

max
a,p,q,�

Et [a(t)v − q(t)k] , ()

subject to

u(t) ≡ u(t, t) ≥ 0, ∀t ∈ T , (IR)
u(t) ≥ u(t̂, t), ∀t ∈ T , t̂ ∈

{

t̂ ∈ T |

|

p(t̂) + max{�(t̂, n), �(t̂, b)} ≤ b
}

, (IC)
p(t) + max{�(t, n), �(t, b)} ≤ b, ∀t ∈ T , (BC)
Et [p(t) + (1 − q(t))�(t, n) + q(t)�(t, b) − q(t)k] ≥ 0, (BB)
Et [a(t)] ≤ S. (S)

Note that (BC) requires that an agent must be able to afford the payment and the punishment. I show
that it is without loss of generality to focus on mechanisms in which an agent is penalized if and
only if he is found to have lied about his budget, and whenever he is found to have lied he has the
maximum possible monetary penalty c imposed upon him.

Lemma 9 It is without loss of generality to focus on mechanisms in which �(t̂, n) = 0, �(t̂, b) = 0 if

b̂ = b and �(t̂, b) = c if b̂ ≠ b.

Using Lemma 9, the principal’s problem can be reduced to the one stated in Section 3.2 when penalty
is not transferable. Hence, all results in previous sections also hold in the case of monetary penalty.

3.7.3. Costly disclosure

In this subsection, I study what happens if it is also costly for an agent to have his report verified. For
example, agents may bear some costs of providing documentation. Assume that an agent incurs a
non-monetary cost only when his report is verified. Let cT ≥ 0 denote the cost incurred by an agent
from being verified by the principal if he reported his type truthfully, and let cF ≥ cT be his cost

89



if he lied.24 As I will show below, disclosure costs have three effects. Firstly, similar to monetary
transfers, disclosure costs can also be used to screen agents with different valuations and help relax
agents’ budget constraints. Secondly, it is more costly for an agent to lie about his budget because
cF ≥ cT . Finally, disclosure costs make verification more costly for the principal whose concern
is welfare. Even though it is difficult to solve the optimal mechanism, I show that if the difference
between cF and cT is sufficiently large, then the first two effects dominate and introducing disclosure
costs improves welfare.

The utility of an agent who has type t = (v, b) and reports t̂ is

u(t̂, t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a(t̂)v − p(t̂) − q(t̂)cT if b̂ = b and p(t̂) ≤ b,

a(t̂)v − p(t̂) − q(t̂)
(

cF + c
) if b̂ ≠ b and p(t̂) ≤ b,

−∞ if p(t̂) > b.

The principal’s problem is
max
a,p,q

Et
[

a(t)v − q(t)k − q(t)cT
]

, (DC )

subject to (IR), (IC), (BC), (BB) and (S). Note that if cT = 0, then (DC ) is equivalent to the original
problem () in which the punishment is cF + c.

Consider the more general case in which cT ≥ 0. Define pe(t) ∶= p(t) + q(t)cT , ke ∶= k + cT

and ce ∶= c + cF − cT . As in Section 3.4, I separate (IC) into two categories and ignore those
corresponding to over-reporting of budgets. Then the principal’s relaxed problem can be written as:

max
a,p,q

Et
[

a(t)v − q(t)ke
]

, ( ′DC )

24The analysis goes through as long as cF + c ≥ cT .
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subject to

a(t)v − pe(t) ≥ 0, ∀t ∈ T , (IR)
a(v, b)v − pe(v, b) ≥ a(v̂, b)v − pe(v̂, b), ∀v, v̂, b, (IC-v)
a(v, b2)v − pe(v, b2) ≥ a(v̂, b1)v − q(v̂, b1)ce − pe(v̂, b1), ∀v, v̂. (IC-b)
pe(t) ≤ b + q(t)cT , ∀t ∈ T , (BC)
Et

[

pe(t) − q(t)ke
]

≥ 0, , (BB)
Et [a(t)] ≤ S. (S)

Compare  ′DC with  ′. It is easy to see that the two problems are identical except for the (BC)
constraint. In  ′DC , a low-budget agent faces a less stringent budget constraint if he expects to be
inspected with a non-zero probability. This is because in the presence of disclosure cost the effective
payment made by an agent who reports his type truthfully is pe(t) = p(t) + q(t)cT . In addition to
the monetary transfer p(t), disclosure cost q(t)cT can also be used to screen agents with different
valuations. Intuitively, an agent with a higher valuation is also willing to bear a higher disclosure
cost. Though disclosure cost can be used to relax an agent’s budget constraint, it reduces an agent’s
utility which makes verification more costly from the principal’s perspective, i.e., ke = k + cT ≥ k.
As a result, the total welfare effect of introducing cT is ambiguous.

The effective punishment perceived by an agent is now c+ cF − cT , the original punishment plus the
additional disclosure cost one must incur when lying about his budget. Hence, an increase in cF is
always welfare-enhancing, as it discourages agents from misreporting their budgets.

Though solving DC is beyond the scope of this paper, Proposition 7 provides a sufficient condition
under which introducing disclosure costs cT and cF improve the total welfare. Let V (k, c, b1) denote
the value of the principal’s original problem, in which verification cost is k, punishment is c and low-
budget agent’s budget is b1; and let VDC (k, c, b1, cT , cF ) denote the value of the principal’s problem
in which verification cost is k, punishment is c, low-budget agent’s budget is b1 and disclosure costs
are cT and cF . Then
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Proposition 7 Suppose Assumptions 2 and 3 hold. If k∕c ≥ cT ∕(cF−cT ), thenVDC (k, c, b1, cF , cT ) ≥

V (k, c, b1). Furthermore, if q(v, b1) > 0 in the optimal mechanism of (k + cT , c + cF − cT , b1),

then VDC (k, c, b1, cF , cT ) > V (k, c, b1).

3.7.4. Punishing the innocent or without verification

In Appendix B.1, I show that it is without loss of generality to focus on a direct mechanism (a, p, q, �),
where a ∶ T → [0, 1] denotes the probability an agent obtains the good, p ∶ T → ℝ denotes
the payment an agent must make, q ∶ T → [0, 1] denotes the probability of inspecting and � ∶
T × {b1, b2, n} → [0, 1] denotes the probability of punishment. In particular, �(t̂, n) ∈ [0, 1] denotes
the probability of punishing an agent who reports t̂ and is not inspected, and �(t̂, b) ∈ [0, 1] denotes
the probability of punishing an agent who reports t̂ and is inspected and whose budget is revealed to
be b. In the main part of the paper, I assume that �((v, b), n) = �((v, b), b) = 0. In other words, the
principal is not allowed to punish an agent without verifying his budget or an agent who is found to
have reported his budget truthfully. This assumption is not without loss of generality.

In this case, the utility of an agent who has type t = (v, b) and reports t̂ = (v̂, b̂) is

u(t̂, t) =

⎧

⎪

⎨

⎪

⎩

a(t̂)v − p(t̂) − (1 − q(t̂))�(t̂, n)c − q(t̂)�(t̂, b)c if p(t̂) ≤ b

−∞ if p(t̂) > b

Then the principal’s problem is

max
a,p,q,�

Et [a(t)v − q(t)k − (1 − q(t))�(t, n)c − q(t)�(t, b)c] , (PI )

subject to (IR), (IC), (BC), (BB) and (S). Lemma 10 shows that the principal finds it optimal to
always punish an agent who is found to have lied about his budget and never punish an agent who is
found to have reported his budget truthfully.

Lemma 10 An optimalmechanism ofPI satisfies that (i) �((v̂, b̂), b) = 1 if b̂ ≠ b and (ii) �((v, b), b) =

0 for almost all (v, b).
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Define pe(t) ∶= p(t)+(1−q(t))�(t, n)c, which is the effective paymentmade by an agent who reports
his type truthfully. As in Section 3.4, I separate (IC) constraints into two categories and ignore those
corresponding to over-reporting of budgets. Using Lemma 10, the principal’s problem can be written
as:

max
a,p,q,�

Et [a(t)v − q(t)k − (1 − q(t))�(t, n)c] , ( ′PI )

subject to

a(t)v − pe(t) ≥ 0, ∀t ∈ T , (IR)
a(v, b)v − pe(v, b) ≥ a(v̂, b)v − pe(v̂, b), ∀v, v̂, b, (IC-v)
a(v, b2)v − pe(v, b2) ≥ a(v̂, b1)v − q(v̂, b1)c − pe(v̂, b1), ∀v, v̂. (IC-b)
pe(t) ≤ b + (1 − q(t))�(t, n)c, ∀t ∈ T , (BC)
Et

[

pe(t) − q(t)k − (1 − q(t))�(t, n)c
]

≥ 0, (BB)
Et [a(t)] ≤ S. (S)

Compare  ′PI with  ′. Note that by punishing an agent without verifying his budget, the principal
relaxes the agent’s budget constraint. However, it is costly, as reflected in the principal’s objective
function and (BB). Hence, in general, it is unclear whether it is optimal for the principal to do so.

3.7.5. Modified type

In the standard environment, when agents are not budget-constrained, an agent’s valuation is defined
as the maximum amount of money he is willing to pay for the good. When agents are budget con-
strained, the natural analogue is the minimum of an agent’s valuation v and budget b. I follow Pai
and Vohra (2014a) and redefine t ∶= min{v, b} as an agent’s modified type. In this subsection, I
show why it is necessary to explicitly model budget constraint rather than accommodate budgets in
the above way.
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Let G denote the distribution of the modified type. Then

G(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

F (t) if t < b1,
�F (b1) + 1 − � if t = b1,
�F (t) if t > b1.

The principal’s ability to inspect an agent’s budget implies that she can perfectly learn a low-budget
agent’s modified type if his valuation exceeds his budget. I first solve the principal’s problem by
assuming common-knowledge budgets and then verify that no agent has any incentive to misreport
his modified type. In other words, there is no inspection in the optimal mechanism. Denote the
principal’s problem by MT .

Proposition 8 Suppose an agent’s budget is common knowledge. (i) If �
[

1 − F (b1)
]

≤ S < 1 −

F (b1), then the optimal mechanism of MT is given by

a(t) = �{t=b1}
S − �

[

1 − F (b1)
]

1 − �
+ �{t>b1}, p(t) = �{t=b1}

S − �
[

1 − F (b1)
]

1 − �
b1 + �{t≥b1}b1.

(ii) If S < �
[

1 − F (b1)
]

, then the optimal mechanism is given by

a(t) = �{t>t∗}, p(t) = �{t≥b1}t
∗,

where t∗ is such that � [1 − F (t∗)] = S.

The following corollary is a straightforward corollary of Proposition 8.

Corollary 7 Suppose an agent’s budget is his private information. The mechanism given in Propo-

sition 8 is incentive compatible and therefore optimal in MT .

Compared with Theorem 9, the mechanism given in Proposition 8 is sub-optimal because (i) it allo-
cates too many resources to high-budget agents; and (ii) it has “too little” rationing for high-budget
agents but “too much” rationing for low-budget agents.
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What went wrong here? First, consider a low-budget agent with modified type t = b1 and a high-
budget agent with modified type t = b1 + � for some � > 0. Then the low-budget agent’s expected
valuation is higher than the high-budget agent’s valuation, i.e., E[v|t = b1, b = b1] > b1 + �,
for � > 0 sufficiently small. This implies that the low-budget agent should receive the good with
higher probability as in Theorem 9, i.e., v∗1 ≤ v∗2. However, in the current mechanism it is the
high-budget agent who receives the good with higher probability. Second, consider two low-budget
agents with valuations v = b1 and v′ = b1 + � for � > 0 sufficiently small, respectively. In the
current mechanism, they are pooled. However, their payments are p(b1) < b1, which suggests that
they should be separated as in Theorem 9, i.e., v∗1 > b1. The second observation is also made in Pai
and Vohra (2014a) in which the principal’s objective is maximizing revenue.

3.8. Conclusion

In this paper, I study the problem of a principal who wishes to distribute an indivisible good to a
population of budget-constrained agents. Both valuation and budget are an agent’s private informa-
tion. The principal can inspect an agent’s budget through a costly verification process and punish an
agent who makes a false statement. I characterize the direct surplus-maximizing mechanism. This
direct mechanism can be implemented by a two-stage mechanism that exhibits some of the features
of Singapore’s housing and development board.

Throughout the paper, I impose two regularity assumptions on the distribution of an agent’s valua-
tion: monotone hazard rate condition and decreasing density condition. These two assumptions are
commonly used in the literature studying mechanism design problem with financially constrained
agents. Their primary role is to rule out complicated pooling regions in an optimal mechanism,
which greatly simplifies analysis. Several of the paper’s results (Lemmas 4, 5 and 6) still hold if I
replace these two assumptions by weaker conditions. However, Lemma 7 may not hold anymore as
an optimal mechanism is expected to involve more complicated pooling regions.

Another simplifying assumption I make in the paper is that valuation and budget are independent.
In some environments, this assumption is reasonable. For example, an individual’s valuation of
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health insurance is largely affected by his or her health risk, which is relatively independent of his
or her wealth. In general, an individual’s valuation and budget can be either positively or negatively
correlated, depending on whether the goods are considered normal goods or inferior goods. The
independence assumption is much harder to relax. As Pai and Vohra (2014a) show, if valuation and
budget are correlated, an optimal mechanism may involve more complicated pooling regions.
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CHAPTER 4 : EFFICIENT MECHANISMS WITH INFORMATION ACQUISITION

4.1. Introduction

Most literature on mechanism design assumes that the amount of information possessed by agents
is exogenous. In many important settings, however, this assumption does not apply. For example,
in auctions for offshore oil and gas leases in the U.S., companies use seismic surveys to collect
information about the tracts offered for sale before participating in the auctions. Another example
is the sale of financial or business assets, in which buyers perform due diligence to investigate the
quality and compatibility of the assets before submitting offers. In other words, in these settings
the information held by agents is endogenous. Moreover, it is costly to acquire information. In the
example of U.S. auctions for offshore oil and gas leases (see Haile et al. (2010)), companies can
choose to conduct two-dimensional (2-D) or three dimensional (3-D) seismic surveys. 3-D surveys
can produce more accurate information, and thus were used in 80% of wells drilled in the Gulf
of Mexico by 1996. However, this number was only 5% in 1989 when 3-D surveys were more
expensive than 2-D surveys.1 Similarly, the legal and accounting costs of performing due diligence
often amount to millions of dollars in the sale of a business asset (see Quint and Hendricks (2013)
and Bergemann et al. (2009)).

Furthermore, the incentives for agents to acquire information depend on the design of a mechanism.
This can be seen from earlier studies that compare first price auctions with second price auctions
in terms of the incentives they provide for agents to collect information in advance (among them
Matthews (1984a), Stegeman (1996) and Persico (2000)). More recently, Bergemann and Välimäki
(2002) consider the socially optimal information acquisition in the context of general mechanism
design. They focus on mechanisms that implement the ex post efficient allocations given acquired
private information, and find that ex ante efficient information acquisition can be achieved if agents
have independent private values. However, if agents’ values are interdependent, then ex post effi-
cient mechanisms will result in socially sub-optimal information acquisition. In a follow-up paper,

1For instance, it costs $1 million to examine a 50 square mile 3-D seismic survey in 1990, while this number was less
than $100, 000 in 2000.
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Bergemann et al. (2009) study the equilibrium level of information acquisition when agents face
binary information decisions, and find that ex post efficient mechanisms result in excessive infor-
mation acquisition in equilibrium. In summary, there is a conflict between the provision of ex ante
efficient incentives to acquire information and the ex post efficient use of information. The question
regarding how to design an ex ante efficient mechanism to balance the two trade-offs remains open.

This paper studies the design of ex ante efficient mechanisms in the sale of a single object when
agents’ values are positively interdependent. The true value of the object to each agent is initially
unknown. Before participating in a mechanism agents can simultaneously and independently decide
how much information to acquire, and the private information they acquire is independent. Infor-
mation acquisition is costly and the information choice of each agent is his private information.
In this paper, I assume that the information structures are supermodular ordered. Ganuza and Pe-
nalva (2010) first introduce the notion of “supermodular precision", and Shi (2012) later uses it when
studying revenue-maximizing mechanisms in the independent private value setting with endogenous
information.

In the main body of the paper, I focus on symmetric mechanisms and symmetric equilibria in which
agents acquire the same amount of information before participating in a mechanism. Firstly, I show
that the social planner never withholds the item in an ex ante efficient mechanism. Intuitively, when-
ever the social planner withholds the object, she can also allocate it randomly. By doing so, the
allocative efficiency increases while an agent’s ex ante incentive to acquire information remains
unaffected. Though intuitive, the proof of this result is non-trivial because of the presence of the
non-standard information acquisition constraint. In addition, this result facilitates the analysis by
allowing us to work with interim allocation rules directly.

Secondly, I show that it is socially optimal for agents to acquire no more information than what
they would when the ex post efficient mechanism is used. This is consistent with Bergemann and
Välimäki (2002) and Bergemann et al. (2009). For any given information choice satisfying the
above condition, I fully characterize the mechanisms that implement this choice and maximize the
net social surplus. An ex ante efficient mechanism discourages agents from excessive information
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acquisition by sometimes randomly allocating the item. Specifically, an ex ante efficient interim
allocation rule randomizes in areas in which the accuracy of an agent’s posterior estimate can be
significantly improved if an additional piece of information is acquired. In the special case in which
the improvements are the same for all possible posterior estimates, i.e., the information structures
are uniformly supermodular ordered, it is optimal to allocate the object uniformly at random with
some probability.

Methodologically, when characterizing the optimal mechanisms, I use an approach first proposed by
Reid (1968) and later introduced into the mechanism design problem by Mierendorff (2009). My
proof, however, is not a straightforward modification of Mierendorff (2009). In Mierendorff (2009),
the interim allocation rule is discontinuous at one known point. In my model, the interim allocation
rule could be discontinuous at most countably many times, at unknown points.

I also study how the socially optimal information choice is affected by model primitives such as the
interdependency of agents’ values and the number of agents. In general, it is difficult to solve the
optimal information choice analytically. Hence, I restrict attention to the special case in which the
information structures are uniformly supermodular ordered. Under this restriction, I show that the
optimal level of information gathering decreases as the interdependency of agents’ values increases,
and gathering no information is optimal in the case of pure common value. Furthermore, when the
ex post efficient mechanism is used, the amount of information acquired by each agent diminishes
as the number of agents increases to infinity. As a result, the ex post efficient mechanism is also ex
ante efficient when the number of agents is large.

Lastly, I study the general ex ante efficient mechanisms without restricting attention to symmetric
mechanisms or symmetric equilibria. As in the symmetric case, the social planner never withholds
the item in an ex ante efficient mechanism. Because characterizing optimal mechanisms in the gen-
eral setting is extremely hard, I again restrict attention to the special case in which the information
structures are uniformly supermodular ordered. Under this assumption, I provide conditions under
which the socially optimal information choices are the same for all agents and there exists a sym-
metric ex ante efficient mechanism. I also provide an example in which an asymmetric mechanism
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generates higher expected social surplus than the optimal symmetric mechanism does when these
conditions are violated.

This paper is related to the literature studying agents’ incentives to acquire information given some
commonly usedmechanisms. Earlier papers focus on the comparison between first-price and second-
price auctions. For example, Matthews (1984a) considers a first-price auction with pure common
values, and examines how an increase in the number of agents affects the information acquisition.
Stegeman (1996) finds that both auctions lead to identical and, more importantly, efficient incentives
for information acquisition when agents’ values are private and independent. In contrast, Persico
(2000) finds that first-price auctions provide stronger incentive for agents to acquire information
than second-price auctions do when their values are affiliated. The two most closely related papers
are Bergemann and Välimäki (2002) and Bergemann et al. (2009). Both study the efficiency of
information acquisition by agents when ex post efficient mechanisms is used. Instead of focusing on
a particular mechanism, this paper studies the design of ex ante efficient mechanisms.

This paper is also related to papers that study the revenue-maximizing mechanisms with endogenous
information acquisition. The most closely related paper is Shi (2012) who considers the sale of a
single asset when buyers have independent private values andwho, before the auction, can simultane-
ously and independently decide how much information to acquire. He finds that the optimal reserve
price is always below the standard monopoly price to encourage information acquisition. Several
other papers consider the case where the seller can control the timing of information acquisition (see,
for example, Levin and Smith (1994), Ye (2004), and Crémer et al. (2009)).

The rest of the paper is organized as follows. Section 4.2 presents the model. Section 4.3 contains the
main results. More specifically, Section 4.3.2 characterizes optimal symmetric mechanisms for each
given information choice and Section 4.3.3 studies the socially optimal information choice. Section
4.4 examines ex ante efficient mechanisms without imposing symmetry restrictions. Section 4.5
concludes. All omitted proofs are relegated to appendix.
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4.2. Model

There are n agents, indexed by i ∈ {1,⋯ , n}, who compete for a single object. Each agent i has a
payoff-relevant type �i, which is unknown ex ante. The true value of the object to agent i is

vi(�) ∶= �i + 

∑

j≠i
�j ,

where � ∶= (�1,… , �n) is the type profile, and 
 ∈ [0, 1] is a measure of interdependence.2 Each
agent has a quasi-linear utility. Specifically, agent i’s payoff is qivi(�) − ti if he gets the object with
probability qi ∈ [0, 1] and pays ti ∈ ℝ.

Initially, agents only know that {�i} are independently distributed with a common prior distribution
F and support [�, �] ⊂ ℝ+. F has a positive and continuous density function f over [�, �], and
its mean is denoted by � ∶= ∫ �

� �f (�)d�. Each agent i can covertly acquire a costly signal xi ∈
ℝ about his type �i by selecting a joint distribution of (xi, �i) from a family of joint distributions
{G(xi, �i|�i)}, indexed by �i ∈ A ∶= [�, �] ⊂ ℝ. For each � ∈ A, we also refer the joint distribution
G(⋅, ⋅|�) as an information structure. Let g denote the density function associated with G. For each
� ∈ A, G(⋅, ⋅|�) admits the same marginal distribution of �, i.e., ∫ℝ g(x, �|�)dx = f (�) for all
� ∈ [�, �]. Assume that E[�|x, �] is strictly increasing in x for all � ∈ A. That is, a higher signal
leads to a higher conditional expectation.3 A signal with a higher � is more precise, in a sense
which I formally define below. Let C(�) denote the cost of acquiring a signal with precision �. As
is standard in the literature, assume that C is non-negative, strictly increasing, twice continuously
differentiable and strictly convex. Furthermore, assume that C(�) = C ′(�) = 0.

2Under this specification, the range of possible valuations for agent i depends on the number of agents. An alternative
normalized specification is given by

vi(�) ∶= (1 − 
)�i +



n − 1
∑

j≠i
�j .

With this specification, the range of possible valuations for agent i does not depend on the number of agents, but now the
single-crossing condition does. Most of my results hold for either specifications.

3For each � ∈ A, let G(�|x, �) denote the conditional distribution of � given x. Then one sufficient condition for this
is to assume that G(�|x, �) have the monotone likelihood ratio property.
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4.2.1. Information order

Let G(x|�) denote the marginal distribution of signal x given precision �. I define a new signal
by applying the probability integral transformation on the original signal. Let s ∶= G(x|�). This
transformed signal s is uniformly distributed on [0, 1].4 Clearly, the transformed signal has the same
informational content as the original signal. Furthermore, because any two transformed signals
have the same marginal distribution, their realizations are directly comparable. Therefore, I will
henceforth work with the transformed signal directly. Let w(s, �) ∶= E[�|s, �] be the conditional
expectation of � given signal s and precision �. Then, by assumption, w(s, �) is strictly increasing
in s. For each � ∈ A, let H(w|�) ∶= ℙ(w(s, �) ≤ w) denote the cumulative distribution function
of w(s, �), and ℎ(w|�) denote its corresponding density function. I assume that both H(w|�) and
ℎ(w|�) are twice continuously differentiable in w and �. Throughout the paper, I assume that the
information structures are supermodular ordered:

Definition 1 The information structures are supermodular ordered if for all � ∈ A,

−
H�(w|�)
ℎ(w|�)

is strictly increasing in w on [w(0, �), w(1, �)].

To understand Definition 1, note that w�(s, �) = −H�(w(s, �)|�)∕ℎ(w(s, �)|�) which is strictly
increasing in s. Hence, w(s, �) is supermodular in (s, �). Formally, I prove in the appendix that if
the information structures are supermodular ordered, then w(s, �) satisfies the following property:5

Lemma 11 Suppose that the information structures are supermodular ordered. Then w(⋅, ⋅) is

4s is uniform on [0, 1] only if G(x) is continuous and strictly increasing. This can be assumed without loss of gen-
erality. If G has a discontinuity at z, where ℙ(x̃ = z) = p, x can be transformed into x∗, which has a continuous and
strictly increasing distribution function using the following construction proposed in Lehmann (1988): x∗ = x for x < z,
x∗ = x + pU if x = z, where U is uniform on (0, 1), and x∗ = x + p for x > z.

5Lemma 11 is not an equivalent definition of supermoduler ordered information structures. If w(⋅, ⋅) is strictly su-
permodular, i.e., satisfies inequality (4.1), then −H�(⋅|�)∕ℎ(⋅|�) is non-decreasing, but not necessarily strictly increasing.I conjecture that all the results still hold if we only require that −H�(⋅|�)∕ℎ(⋅|�) is non-decreasing, but the stronger as-sumption simplifies analysis.
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strictly supermodular: for all s, s′ ∈ (0, 1), s > s′ and � > �′

w(s, �) −w(s′, �) > w(s, �′) −w(s′, �′). (4.1)

Intuitively, if s contains little information about �, then w(s, �) does not vary much as s changes
and its distribution concentrates around �. As s becomes more informative about �, w(s, �) varies
more as s changes and its distribution becomes more dispersed. Formally, if � > �′ then w(s, �) is
strictly larger than w(s, �′) in the dispersive order.6 Based on this notion of dispersion, Ganuza and
Penalva (2010) first introduce the information order called “supermodular precision" . Shi (2012)
also assumes that the information structures are supermodular ordered for some of his results.

For some results of the paper, I further require that the information structures are uniformly super-
modular ordered. Recall that if an information structure is more precise, then w(s, �) changes more
dramatically as s changes, i.e.,ws(s, �) is larger. Hence, we can interpretws(s, �) as a local measure
of the information structure’s precision around s. Then,ws,�(s, �)∕ws(s, �) is the percentage change
of the information structure’s precision around s as � increases. We say the information structures
are uniformly supermodular ordered if

ws,�(s, �∗)
ws(s, �∗)

= )
)w

[

−
H�(w(s, �∗)|�∗)
ℎ(w(s, �∗)|�∗)

]

is independent of s (or equivalently w). In other words, when � increases, the information structure
becomes more precise “uniformly" over [0, 1]. The formal definition is given as follows:

Definition 2 The information structures are uniformly supermodular ordered if there exists a posi-

tive function b ∶ A → ℝ++ such that, for all � ∈ A and w ∈ [w(0, �), w(1, �)],

−
H�(w|�)
ℎ(w|�)

=
w − �
b(�)

.

6(See Ganuza and Penalva (2010)) Let Y and Z be two real-valued random variables with distributions F and G,
respectively. We say Y is greater than Z in the dispersive order if for all q, p ∈ (0, 1) and q > p,

F −1(q) − F −1(p) ≥ G−1(q) − G−1(p).
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When the information structures are uniformly supermodular ordered, we can obtain a sharper and
simpler characterization of the optimal mechanisms. The following two commonly used information
technologies in the literature are uniformly supermodular ordered:7

Example 3 (Linear experiments) Consider the following information structure, which is called

“truth-or-noise” in Lewis and Sappington (1994), Johnson and Myatt (2006) and Shi (2012). With

probability �i ∈ [0, 1], xi is equal to agent i’s true type �i, and with probability 1 − �i, xi is an

independent draw from F . Since the marginal distribution of xi is F , the transformed signal is

si = F (xi). Then the posterior estimate of an agent who chooses �i and receives si is w(si, �i) =

�iF−1(si) + (1 − �i)�. It is easy to verify that

−
H�i(wi|�i)
ℎ(wi|�i)

=
wi − �
�i

.

Hence, the information structures are uniformly supermodular ordered.

Example 4 (Normal experiments) Let {�i} be independently distributed with a normal distribu-

tion: �i
iid∼  (�, 1∕�). Agent i can obtain a costly signal xi = �i + "i, where "i

iid∼  (0, 1∕�i).

Since the marginal distribution of xi is also normal, i.e., xi ∼  (�, (� + �i)∕��i), the transformed

signal is si = Φ
(

√

��i(xi − �)∕
√

� + �i
)

, where Φ is the distribution function of the standard

normal distribution. Then the posterior estimate of an agent who chooses �i and receives si is

w(si, �i) = � +

√

�iΦ−1(si)
√

�(�i + �)
.

It is easy to verify that

−
H�i(wi|�i)
ℎ(wi|�i)

=
�(wi − �)
2�i(�i + �)

.

Hence, the information structures are uniformly supermodular ordered.

7See, for example, Ganuza and Penalva (2010) and Shi (2012).
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4.2.2. Timing

The game proceeds in the following way: The social planner announces a mechanism. After ob-
serving the mechanism, agents simultaneously choose their information structures {�i} and observe
the realized signals {si}. Both �i and si are agent i’s private information. Then agents simultane-
ously decide whether to participate in the mechanism. Each participating agent reports his private
information. Based on their reports, an allocation and payments are implemented according to the
announced mechanism.

I assume that the payoff structure, the timing of the game, the family of information structures and
the prior distribution F are common knowledge. The solution concept is Bayesian Nash equilibrium.

4.2.3. Mechanisms

The private information of agent i is two-dimensional, including the choice of information structure
�i and the realized signal si. However, similar to Biais et al. (2000), Szalay (2009) and Shi (2012),
the usual difficulties inherent in multi-dimensional mechanism design problem do not arise here.
This is because the posterior estimate, w(si, �i), summarizes all the private information needed to
compute agent i’s expected valuation of the object:

E�[vi(�)|�i, si] = w(si, �i) + 

∑

j≠i
E[�j].

Furthermore, the social planner cannot screen agents with the same posterior estimate but different
choices of information structures. Hence, I can appeal to the revelation principle and focus on direct
mechanisms in which agents report their posterior estimates directly. For ease of notation, I usewi to
denotewi(si, �i) andw ∶= (w1,… , wn) denote a vector or posterior estimates. A direct mechanism
is a pair (q, t), where q ∶= (q1,… , qn) and t ∶= (t1,… , tn). For i = 1,… , n, qi ∶ [�, �]n → [0, 1]

is agent i’s allocation rule and ti ∶ [�, �]n → ℝ is agent i’s payment rule. Specifically, given a
reported vector of posterior estimates w, agent i receives the object with probability qi(w), and
makes a payment ti(w) to the social planner. I note here that the message space for each agent in
a direct mechanism is [�, �] because, without further knowledge on agents’ choices of information
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structures, any wi ∈ [�, �] can arise in the game.

Given a mechanism (q, t), let �∗ ∶= (�∗1 ,… , �∗n ) denote the equilibrium vector of information struc-
tures. Define agent i’s interim allocation rule as

Qi(wi) ∶= Ew−i[qi(wi, w−i)|�∗−i], ∀wi ∈ [�, �], (4.2)

where �∗−i are his opponents’ information structures. Then the interim utility of agent i who has a
posterior estimate wi and reports w′i is

Ui(wi, w
′
i) ∶= wiQi(w′i) + Ew−i

[




(

∑

j≠i
wj

)

qi(w′i, w−i) − ti(w
′
i, w−i)

|

|

|

|

|

|

�∗−i

]

.

Note that Qi(wi) and Ui(wi, w′i) also depend on �∗−i, and I suppress the dependence for ease of
notation.

I require that the mechanism chosen by the social planner must satisfy the following constraints.
First, the mechanism must be individually rational (IR):

Ui(wi) ∶= Ui(wi, wi) ≥ 0, ∀wi ∈ [�, �], (IR)

so that the agents are willing to participate in the mechanism. Because the social planner’s goal is
to maximize social surplus and transfers between agents and the social planner do not affect social
surplus, we can guarantee that (IR) is satisfied by making sufficiently large lump sum transfers to
agents. Hence, we can safely ignore (IR) for the remainder of the paper. Second, the mechanism
must be Bayesian incentive compatible (IC):

Ui(wi) ≥ Ui(wi, w
′
i),∀wi, w

′
i ∈ [�, �], (IC)

so that truth-telling is a Bayesian Nash equilibrium. Lastly, because the information structure chosen
by an agent is unobservable, the mechanism must also satisfy the information acquisition constraint
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(IA). That is, no agent stands to gain by deviating from his equilibrium choice: for each agent i,

�∗i ∈ argmax�i
Ew

[

qi(w)

(

wi + 

∑

j≠i
E[�j]

)

− ti(w)
|

|

|

|

|

|

�i, �j = �∗j ∀j ≠ i

]

− C(�i). (IA)

Then the social planner’s problem is to choose a mechanism (q, t) and a vector of recommendations
of information structures �∗ to maximize the social surplus:

max
�∗,(q,t)

E

[

∑

i
(wi + 


∑

j≠i
wj)qi(w)

|

|

|

|

|

|

�i = �∗i ∀i

]

−
∑

i
C(�∗i ),

subject to (IC), (IA) and the feasibility constraint (F):,

0 ≤ qi(w) ≤ 1,
∑

i
qi(w) ≤ 1,∀w. (F)

We say a mechanism is ex post efficient if for all i, qi(w) = 1 if wi > maxj wj and qi(w) = 0 if
wi < maxj wj . We say a mechanism (q, t) is ex ante efficient or optimal if there exists �∗ such that
�∗ and (q, t) solve the social planner’s problem.

4.3. Efficient mechanisms

In this section, I restrict attention to mechanisms that treat all agents symmetrically8 as well as
symmetric equilibria in which all agents acquire the same information structure, i.e., �∗i = �∗ for all
i. This restriction significantly simplifies the analysis, but it may result in a loss of generality. Section
4.4 presents a study of ex ante efficient mechanisms without imposing this symmetry restriction,
and provides conditions under which the socially optimal information choices are the same for all
agents and there exists a symmetric ex ante efficient mechanism. Note that when q is symmetric
and all agents acquire the same information structure, the corresponding interim allocation rule Qi

is independent of i. From here on, I drop the subscript i from Q, w and � whenever the meaning is
clear.

8The formal definition of symmetric mechanisms can be found at the beginning of Appendix C.1.
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Now the social planner’s problem becomes:

max
�∗,(q,t)

E

[

∑

i
(wi + 


∑

j≠i
wj)qi(w)

|

|

|

|

|

|

�i = �∗ ∀i

]

− nC(�∗),

subject to (IC), (IA) and (F).

By the standard argument (see, for example, Myerson (1981)), (IC) holds if and only if

Q(w) is non-decreasing in w, (MON)

and Ui(w) is absolutely continuous and satisfies the following envelope condition

Ui(w) = Ui(�) + ∫

w

�
Q(w̃)dw̃, ∀w ∈ [�, �]. (4.3)

Suppose that agent i chooses �i, then his expected payoff is

∫

w(1,�i)

w(0,�i)
Ui(w)dH(w|�i) − C(�i)

=∫

w(1,�i)

w(0,�i)

[

Ui(�) + ∫

w

�
Q(w̃)dw̃

]

dH(w|�i) − C(�i)

=Ui(�) + ∫

w(1,�i)

�
Q(w)dw − ∫

w(1,�i)

w(0,�i)
H(w|�i)Q(w)dw − C(�i)

=Ui(w(0, �i)) + ∫

w(1,�i)

w(0,�i)

[

1 −H(wi|�i)
]

Qi(wi)dwi − C(�i),

where the first and the last lines hold by the envelope condition (4.3) and the second line holds by
integration by parts.

Next, I replace (IA) by a one-sided first-order necessary condition. In an earlier paper, Bergemann
and Välimäki (2002) show that if the social planner adopts the ex post efficient mechanism, then
agents tend to acquire more information than the socially desired level. This result suggests that
an ex ante efficient mechanism would distort the allocation of the object to discourage agents from
acquiring information. Hence, I hypothesize that to ensure that (IA) holds in an ex ante efficient
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mechanism, it suffices to ensure that no agent has incentives to acquire more precise information
than recommended: for all �i > �∗,

Ui(w(0, �∗)) + ∫

w(1,�∗)

w(0,�∗)

[

1 −H(w|�∗)
]

Q(w)dw − C(�∗)

≥ Ui(w(0, �i)) + ∫

w(1,�i)

w(0,�i)

[

1 −H(w|�i)
]

Q(w)dw − C(�i).

This implies the following one-sided first-order condition:9

Ew
[

−
H�(w|�∗)
ℎ(w|�∗)

Q(w)
|

|

|

|

�i = �∗
]

≤ C ′(�∗). (IA′)

The left-hand side of the above inequality is agent i’s marginal benefit from acquiring �∗i , and the
right-hand side is themarginal cost. In Lemma 43 in the appendix, I show that for any non-decreasing
Qi, an agent’s marginal benefit from acquiring information is non-negative. Subsequently, I consider
the relaxed problem of the social planner by replacing (IA) by (IA′). I later show that (IA′) holds with
equality when �∗ is chosen optimally. The first-order approach is valid if the second-order condition
of the agents’ optimization problem is satisfied. Appendix C.1.3 provides sufficient conditions that
ensure the first-order approach is valid.

Although (IA′) is easier to work with than (IA), it is still nonstandard and prevents me from solving
the social planner’s problem directly as in Myerson (1981). To overcome this difficulty, I focus on
reduced form auctions. Formally,

Definition 3 An allocation rule q implements Q ∶ [�, �]→ [0, 1] and Q is the reduced form of q if

q satisfies (4.2) and (F) for all w ∈ [�, �]. Q is implementable if q exists implementing Q.

One important prior result I use in this paper is the necessary and sufficient condition of Maskin and
Riley (1984a), Matthews (1984c) and Border (1991), which characterizes the interim allocation rules
implementable by symmetric mechanisms. By Theorem 1 in Matthews (1984c), any non-decreasing

9The main reason why I consider a one-sided first-order condition here is to sign the Lagrangian multiplier associated
with (IA′). Admittedly, this relaxation also simplifies the proof of Theorem 14. But my conjecture is that Theorem 14 can
be proved even if we require the first-order condition holds with equality.
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function Q ∶ [�, �]→ [0, 1] is implementable if and only if it satisfies

Y (w) ∶= ∫

�

w

[

H(z|�∗)n−1 −Q(z)
]

ℎ(z|�∗)dz ≥ 0, ∀w ∈ [�, �]. (F′)

The above condition says that the probability of assigning the object to an agent whose posterior
estimate is abovew, n ∫ �

w Q(z)ℎ(z|�
∗)dz, must not exceed the probability with which there exists an

agent whose posterior estimate is above w, 1 − H(w|�∗)n = n ∫ �
w H(z|�

∗)n−1ℎ(z|�∗)dz. Clearly,
this is a necessary condition for Q to be implementable. If Q is non-decreasing, then Theorem 1
in Matthews (1984c) shows that it is also sufficient. Hence, given (MON), we can replace (F) by
(F′). Note that the support of w isW ∶= [w(0, �∗), w(1, �∗)] ⊂ [�, �]. Therefore, (F′) imposes no
restriction on Q in outsideW .

Now all three constraints ((IC), (IA) and (F)) are replaced by constraints ((MON), (IA′) and (F′))
that are expressed as functionals of the interim allocation rule Q. In order to work with reduced
form auctions, we must express the social planner’s objective function or the expected social surplus
as a functional of Q as well. This exercise is trivial when agents have independent private values
(
 = 0), because in this case an agent’s expected valuation of the object and his winning probability
are independent conditional on his private information. In general, this is impossible when agents’
values are interdependent (
 > 0), because in this case both an agent’s expected valuation of the
object and his winning probability depend on other agents’ private information. Nonetheless, we
can still write the expected social surplus as a functional of Q if Q is the reduced form of an ex ante
efficient allocation rule, which never withholds the object:

Theorem 14 Suppose that the information structures are supermodular ordered, and �∗ and (q, t)

solve the relaxed problem of the social planner. Then

∑

i
qi(w) = 1 for almost all w ∈ W n. (4.4)

The proof of Theorem 14 can be found in Section 4.3.1. Using Theorem 14 and the law of iterated
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expectations, the social planner’s objective function can be rewritten as a functional of Q:

Ew

[

∑

i
(wi + 


∑

j≠i
wj)qi(w)

|

|

|

|

|

|

�i = �∗ ∀i

]

=
∑

i
Ewi

[

(1 − 
)wiQ(wi)|| �i = �
∗] + n
�.

Because the second term, n
�, is a constant, we ignore it from here on. To summarize, the social
planner’s relaxed problem, denoted by ( ′), is as follows:

max
�∗,Q

Ew
[

(1 − 
)wQ(w)| �∗
]

− C(�∗), ( ′)

subject to

Y (w) = ∫

�

w
[H(z|�∗)n−1 −Q(z)]ℎ(z|�∗)dz ≥ 0, ∀w ∈ [�, �]. (F′)

Q(w) is non-decreasing in w, (MON)
Ew

[

−
H�(w|�∗)
ℎ(w|�∗)

Q(w)
|

|

|

|

�∗
]

≤ C ′(�∗). (IA′)

In addition to being instrumental in solving the social planner’s problem, the result of Theorem 14
also has some inherent economic interest. Obviously, when information is exogenous, the efficient
mechanism never withholds the object. This is not obvious when information is endogenous, be-
cause, by withholding the object occasionally, the social planner can discourage agents from acquir-
ing information, which may improve efficiency ex ante. However, intuitively, whenever the social
planner withholds the object, she can also allocate it randomly. By doing so, the ex post allocative
efficiency improves while an agent’s ex ante incentive to acquire information remains unaffected.

Though intuitive, the proof of Theorem 14 is non-trivial. This is because the resulting mechanism,
by simply randomizing the object whenever it is withheld, is likely to violate (MON) or (IA′). To
illustrate this difficulty, letA be a set of types such that∑i qi(w) < 1wheneverw ∈ An, and suppose
there exists an interval (w,w) such that (w,w) ∩ A = ∅ and inf A < w < w < supA.

If we simply redefine q such that it remains unchanged outside An and∑i qi(w) = 1 for allw ∈ An,
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then the resulting Q remains unchanged for all w ∈ (w,w) but increases for all w ∈ A. If we
allocate the object too often to agents whose types are in [�,w] ∩ A, the resulting Q will no longer
be non-decreasing and therefore violate (MON). If we allocate the object too often to agents whose
types are in [w, �]∩A, this will increase an agent’s marginal benefit from acquiring information and
lead to a violation of (IA′). Hence, to ensure that the new q generates a higher social surplus while
satisfies all the constraints, we must adjust q not only inside An, but also outside An.

4.3.1. Proof of Theorem 14

This section contains the proof of Theorem 14. The readers who are not interested in the proof may
skip this section and proceed directly to Section 4.3.2 without loss of continuity.

I prove Theorem 14 by proving Lemmas 12 and 13. Observe first that if �i = �∗ for all i, then
Y (w(0, �∗)) is equal to 1 minus the probability of assigning the object to some agent. Clearly, (4.4)
is violated if and only if Y (w(0, �∗)) > 0. Then

Lemma 12 Suppose that the information structures are supermodular ordered, and �i = �∗ for all

i. LetQ be any interim allocation rule satisfying (F′), (MON), (IA′) and Y (w(0, �∗)) > 0, then there
exists Q̂ satisfying (F′), (MON) and (IA′) such that

Q̂(w) ≥ Q(w), ∀w ∈ W , (4.5)

and strict inequalities hold for a set of w with positive measure.

The intuition behind the proof of Lemma 12 can be illustrated by Figure 12. Suppose thatQ satisfies
the assumptions in Lemma 12, then one can construct a Q̂ by increasing Q at the lower end of
its domain as in Figure 12. Clearly, the resulting Q̂ is non-decreasing and implementable if the
change is sufficiently small. It remains to verify that Q̂ also satisfies (IA′). Intuitively, agents have
fewer incentives to acquire information if outcomes are less sensitive to changes in their private
information, which is the case when they face a less steep allocation rule. In Lemma 43 in Appendix
C.1, I show that if Q̂ is less steep than Q in the sense that it differs from Q by a non-increasing
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w

Q
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Figure 12: Proof idea of Lemma 12

function (as in Figure 12), then for any amount of information acquired (or any �), Q̂ gives agents a
smaller marginal benefit of acquiring more information. Hence, Q̂ satisfies (IA′) as Q does.

The gap between Lemma 12 and Theorem 14 is that when 
 > 0, the expected social surplus

Ew

[

∑

i
(wi + 


∑

j≠i
wj)qi(w)

|

|

|

|

|

|

�i = �∗ ∀i

]

does not directly depend onQ. To prove Theorem 14, we need to show that, for any ex-post allocation
rule q implementing Q, we can find a q̂ that implements Q̂ and yields higher social surplus. This is
the result of the following Lemma 13.

Lemma 13 Suppose that the information structures are supermodular ordered, and �i = �∗ for

all i. Let Q and Q̂ be two implementable allocation rules satisfying (4.5). Let q be an ex-post

allocation rule that implementsQ. Then there exists an ex-post allocation rule q̂ that implements Q̂

and satisfies

Ew

[

∑

i
(wi + 


∑

j≠i
wj)q̂i(w)

|

|

|

|

|

|

�i = �∗ ∀i

]

> Ew

[

∑

i
(wi + 


∑

j≠i
wj)qi(w)

|

|

|

|

|

|

�i = �∗ ∀i

]

.

The proof of Lemma 13 relies on the following technical lemma. I abuse notation a bit and let ℎ
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denote the probability measure onW corresponding toH(wi|�∗), then

Lemma 14 LetQ ∶ W → [0, 1] be an interim allocation rule and � ∶ W n → [0, 1] be a symmetric

measurable function. Then there exists a symmetric ex post allocation rule q that implementsQ and

satisfies
∑

i qi(w) ≥ �(w) for almost all w ∈ W n if and only if for all measurable sets A ⊂ W , the

following inequality holds

∫An
�(w)dℎn(w) ≤ n∫A

Q(wi)dℎ(wi) ≤ ∫An
dℎn(w). (4.6)

To see that inequality (4.6) is necessary, suppose that there exists an ex post allocation rule q that
implements Q and satisfies ∑i qi(w) ≥ �(w) for almost all w ∈ W n. For any measurable set
A ⊂ W , the probability with which an agent whose type is in A receives the object is given by
n ∫AQ(wi)dℎ(wi). This probability cannot exceed the probability that there exists an agent whose
type is in A, ∫An dℎn(w); and must exceed the probability with which an agent receives the object
when all agents’ types are in A, ∫An

∑

i qi(w)dℎn(w), which is greater than ∫An �(w)dℎ
n(w) by as-

sumption. In Appendix C.1.1, I show that (4.6) is also sufficient. Note also that if A = [w, �], then
the second inequality in (4.6) becomes (F′).

With Lemma 14 in hand, it is easy to prove Lemma 13.

Proof of Lemma 13. Consider two implementable allocation rules Q and Q̂ satisfying (4.5).
Let q be a symmetric ex-post allocation rule that implements Q. Define � ∶ W n → [0, 1] by
�(w) ∶=

∑

i qi(w) for all w ∈ W n. Then � is symmetric. By Lemma 14,

∫An
dℎn(w) ≥ n∫A

Q̂(wi)dℎ(wi) ≥ n∫A
Q(wi)dℎ(wi) ≥ ∫An

�(w)dℎn(w).

By Lemma 14, there exists an allocation rule q̂ that implements Q̂ and satisfies ∑ q̂i(w) ≥ �(w) =
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∑

i qi(w) for almost all w ∈ W n. Hence,

Ew

[

∑

i

(

wi + 

∑

j≠i
wj

)

q̂i(w)
|

|

|

|

|

|

�i = �∗ ∀i

]

=
∑

i
Ewi

[

(1 − 
)wiQ̂(wi)
|

|

|

�i = �∗
]

+ Ew

[(



∑

i
wi

)(

∑

i
q̂i(w)

)

|

|

|

|

|

|

�i = �∗ ∀i

]

>
∑

i
Ewi

[

(1 − 
)wiQ(wi)|| �i = �
∗] + Ew

[(



∑

i
wi

)(

∑

i
qi(w)

)

|

|

|

|

|

|

�i = �∗ ∀i

]

= Ew

[

∑

i

(

wi + 

∑

j≠i
wj

)

qi(w)
|

|

|

|

|

|

�i = �∗ ∀i

]

,

where the strict inequality holds becauseQ and Q̂ satisfies (4.5) and∑ q̂i(w) ≥
∑

i qi(w) for almost
all w ∈ W n. This completes the proof.

4.3.2. Optimal mechanisms for fixed �∗

I solve the principal’s relaxed problem ( ′) in two steps. In this subsection, I solve the following
sub-problem for each �∗ ∈ A, denoted by ( ′-�∗):

V (�∗) ∶= max
Q

Ew
[

wQ(w)| �∗
]

, ( ′-�∗)

subject to (F′), (MON) and (IA′). In Section 4.3.3, I solve max�∈A(1 − 
)V (�) − C(�).

Fix �∗. If the principal adopts the ex post efficient mechanism, then the interim allocation rule is
given by Q(w) = H(w|�∗)n−1 for all w. Clearly, if �∗ is such that

Ew
[

−
H�(w|�∗)
ℎ(w|�∗)

H(w|�∗)n−1
|

|

|

|

�∗
]

≤ C ′(�∗), (4.7)

then the ex post efficient mechanism solves ( ′-�∗). Hence, in the rest of this subsection, I assume
that �∗ is such that (4.7) is violated. In what follows, I consider two cases in turn. In Section 4.3.2,
I first solve a relaxed problem by ignoring the monotonicity constraint (MON), and then show that
if the information structures are uniformly supermodular ordered then the solutions of the relaxed
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problem automatically satisfy (MON). In 4.3.2, I consider the general case when the information
structures are supermodular ordered. In this case, the solutions of the relaxed problem violates
(MON) in general. In the main text, I present an informal arugument to derive the optimal solutions
of ( ′-�∗) usingMyerson (1981)’s ironing procedure. The formal analysis can be found in Appendix
C.1.2.

Optimal mechanisms in the regular case

If we ignore the monotonicity constraint (MON), then we can use the following Lagrangian relax-
ation to get an intuition of the optimal solution:

ℒ ∶= ∫

w(1,�∗)

w(0,�∗)
'�X

(

H(w|�∗), �∗
)

Q(w)ℎ(w|�∗)dw + �XC ′(�∗), (4.8)

where �X > 0 is the Lagrangian multiplier associated with (IA′) and '�X (⋅, �∗) is defined by10

'�X (t, �∗) ∶= H−1(t|�∗) + �X
H�(H−1(t|�∗)|�∗)
ℎ(H−1(t|�∗)|�∗)

, ∀t ∈ [0, 1].

Note that because H(⋅|�) is strictly increasing, '�X (⋅, �∗) is strictly increasing (or decreasing) if
and only if '�X (H(⋅|�∗), �∗) is strictly increasing (or decreasing). Here, '�X (H(w|�∗), �∗) can be
viewed as the “virtual value” associated with posterior estimate w:

'�X (H(w|�∗), �∗) = w + �X
H�(w|�∗)
ℎ(w|�∗)

. ∀w ∈ W .

The standard virtual value in a revenue maximization problem is defined as the difference between a
type’s true value and the information rents necessary to induce truthtelling. Here, as in the standard
virtual value, the first term,w, is an agent’s posterior estimate of his type. In the case of private values
(
 = 0), this is equal to his expected value of the object. Because agents can acquire information,
we must subtract, from an agent’s posterior estimate, �X multiplied by the marginal change of an

10I define'�X (⋅, �∗) as a function of percentiles rather than posterior estimates simply tomake it easier to define “ironed
virtual values" later when the pointwise virtual surplus maximizer violates (MON).
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agent’s posterior estimate if he acquires more precise information:

−
H�(w|�∗)
ℎ(w|�∗)

= w�(s, �∗),

where s is such that w(s, �∗) = w. If the information structures are supermodular ordered, then
−H�(w|�∗)∕ℎ(w|�∗) is strictly increasing in w. Hence, the virtual value function is less steeper
than the identity function. In the ex post efficient mechanism, an agent is rewarded based on his
posterior estimate. In contrast, in an ex ante efficient mechanism, an agent is rewarded based on
his virtual value which is less sensitive to his private information than his posterior estimate does.
Intuitively, this difference would discourage agents from acquiring excessive information. Finally,
because the social planner’s goal is to maximize the social surplus rather than her revenue, the inverse
hazard rate associated with the information rents does not appear.

If �X is chosen optimally, then the optimal solution to ( ′-�∗) can be obtained by maximizing the
virtual surplus pointwise. If, in addition, the virtual values are non-decreasing inw, then there exists
a pointwise virtual surplus maximizer that is non-decreasing and therefore incentive compatible.

This method works in the simple case in which the information structures are uniformly supermod-
ular ordered. Recall that in this case we have

−
H�(w|�∗)
ℎ(w|�∗)

=
w − �
b(�∗)

, ∀w.

Hence, the virtual values are given by

'�X (H(w|�∗), �∗) = w − �X
w − �
b(�∗)

, ∀w.

I first argue that the optimal �X is equal to b(�∗). Suppose that �X < b(�∗), then the pointwise virtual
surplus maximizer is the ex post efficient allocation rule: Q(w) = H(w|�∗)n−1 for all w. However,
because, by assumption, �∗ is such that (4.7) is violated, (IA′) is violated. This is a contradiction.
Hence, �X ≥ b(�∗). Suppose that �X > b(�∗), then '�X (H(w|�∗), �∗) is strictly decreasing. Hence,
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the pointwise virtual value maximizer is strictly decreasing and not incentive compatible (or violates
(MON)). It is easy to see that the interim allocation rule Q that maximizes the expected virtual
surplus and satisfies (MON) is constant. However, in this case (IA′) holds with strict inequality,
which implies that �X = 0 and contradicts to hypothesis that �X > b(�∗) > 0. Hence, the optimal
�X is equal to b(�∗).

If �X = b(�∗), then the virtual values are given by '�X (w, �∗) = � for all w, which is constant.
Hence, any feasible non-decreasing allocation rule Q satisfying condition (4.4) maximizes the ex-
pected virtual surplus. If Q also satisfies (IA′) with equality, then it solves ( ′-�∗). In particular,
there exists � ∈ [0, 1] such that the following interim allocation rule solves ( ′-�∗):

Q̂(w) = �H(w|�∗)n−1 + (1 − �)1
n
, ∀w.

Recall that (4.4) holds if and only if Y (w(0, �∗)) = 0. These arguments prove the following Propo-
sition 9.

Proposition 9 Suppose that the first-order approach is valid, and the information structures are

uniformly supermodular ordered. Suppose, in addition, that �∗ is such that (4.7) is violated. Then
Q solves ( ′-�∗) if and only if Q is non-decreasing, Y (w(0, �∗)) = 0 and Q satisfies (IA′) with
equality.

Optimal mechanisms in the general case

If the information structures are not uniformly supermodular ordered, then typically the pointwise
virtual surplus maximizer is not incentive compatible (or violates (MON)), and ironing is necessary.
In particular, an optimal solution can be obtained by ironing '�X (⋅, �∗) in the following procedure
first introduced by Myerson (1981). For each t ∈ [0, 1], define

J �X (t, �∗) ∶= ∫

t

0
'�X (�, �∗)d�.
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Figure 13: Ironing

Let J �X denote the convex hull of J �X , defined by

J
�X (t, �∗) ∶= min

{

�J (t1, �∗) + (1 − �)J (t2, �∗)|t1, t2 ∈ [0, 1], �t1 + (1 − �)t2 = t
}

, ∀t ∈ [0, 1].

This is illustrated by Figure 13. Because J �X (⋅, �∗) is convex, it is continuously differentiable vir-
tually everywhere. Define the ironed virtual value '�X (⋅, �∗) as follows. First, for each t ∈ (0, 1)

such that )J �X (t, �∗)∕)t exists, let '�X (t, �∗) ∶= )J
�X (t, �∗)∕)t. Then extend '�X (⋅, �∗) to [0, 1]

by right continuity. Because J �X (⋅, �∗) is convex, '�X (⋅, �∗) is non-decreasing. By construction,
J �X (H(⋅|�∗), �∗) ≥ J

�X (H(⋅|�∗), �∗). If J �X (H(w|�∗), �∗) > J �X (H(w|�∗), �∗) for some w, then
J
�X (H(⋅|�∗), �∗) is linear and therefore '�X (H(⋅|�∗), �∗) is constant in a neighborhood of w. (See

Figure 13.)

Suppose that �X is chosen optimally. I argue that, any interim allocation rule Q solves ( ′-�∗) if
and only if (i)Q satisfies (IA′) with equality; (ii) Y (w(0, �∗)) = 0; and (iii)Q satisfies the following
two pooling properties:

1. If J �X (H(w|�∗), �∗) > J �X (H(w|�∗), �∗) for all w ∈ (w,w) and let (w,w) be chosen maxi-
mally, then Q is constant on (w,w).

2. If Y (w) > 0 for all w ∈ (w,w) and let (w,w) be chosen maximally, then '�X (H(⋅|�∗), �∗) is
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constant on (w,w).

The proof is based on Toikka (2011). For the ease of notation, I suppress the dependence of '�X ,
'�X , J �X and J �X on �X . Then the expected social surplus is

∫

w(1,�∗)

w(0,�∗)
zQ(z)ℎ(z|�∗)dz

≤∫

w(1,�∗)

w(0,�∗)

[

z + �X
H�(z|�∗)
ℎ(z|�∗)

]

Q(z)ℎ(z|�∗)dz + �XC ′(�∗) (4.9)

=∫

w(1,�∗)

w(0,�∗)
'�X (H(z|�∗))Q(z)dH(z|�∗) + �XC ′(�∗)

=∫

w(1,�∗)

w(0,�∗)

[

'�X (H(z|�∗)) − '�X (H(z|�∗))
]

Q(z)dH(z|�∗)

+ ∫

w(1,�∗)

w(0,�∗)
'�X (H(z|�∗))Q(z)dH(z|�∗) + �XC ′(�∗)

= − ∫

w(1,�∗)

w(0,�∗)

[

J �X (H(z|�∗)) − J
�X (H(z|�∗))

]

dQ(z)

+ ∫

w(1,�∗)

w(0,�∗)
'�X (H(z|�∗))Q(z)dH(z|�∗) + �XC ′(�∗) (4.10)

≤∫

w(1,�∗)

w(0,�∗)
'�X (H(z|�∗))Q(z)dH(z|�∗) + �XC ′(�∗) (4.11)

=∫

w(1,�∗)

w(0,�∗)
'�X (H(z|�∗))H(z|�∗)n−1dH(z|�∗) + ∫

w(1,�∗)

w(0,�∗)
'�X (H(z|�∗))Y ′(z)dz + �XC ′(�∗)

(4.12)

≤∫

w(1,�∗)

w(0,�∗)
'�X (H(z|�∗))H(z|�∗)n−1dH(z|�∗) − ∫

w(1,�∗)

w(0,�∗)
Y (z)d'�X (H(z|�∗)) + �XC ′(�∗)

(4.13)

=∫

w(1,�∗)

w(0,�∗)
'�X (H(z|�∗))H(z|�∗)n−1dH(z|�∗) + �XC ′(�∗). (4.14)

Here, the inequality (4.9) holds because �X ≥ 0 and Q satisfies (IA′); and the equality holds if and
only ifQ satisfies (IA′) with equality. (4.10) follows from integration by parts. The inequality (4.11)
holds because J �X ≥ J

�X ; and the equality holds if and only ifQ satisfies the first pooling property.
(4.12) follows from the definition of Y . The inequality (4.13) follows from integration by parts and
the fact that Y ((w(0, �∗))) ≥ 0; and the equality holds if and only if Y (w(0, �∗)) = 0. Finally, the
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equality (4.14) because Y ≥ 0; and the equality holds if and only if Q satisfies the second pooling
property.

It remains to determine the optimal multiplier �X . In order to do so, I first define the “steepest"
allocation rule Q+ and the “least steep" allocation rule Q− satisfying conditions (ii) and (iii) given
above. Define Q+(⋅, �X) as follows. If J �X (H(w|�∗), �∗) > J �X (H(w|�∗), �∗) for w ∈ (w,w) and
let (w,w) be chosen maximally, then let

Q+(w, �X) ∶=
1
n
[H(w|�∗)n −H(w|�∗)n]

H(w|�∗) −H(w|�∗)
, ∀w ∈ (w,w).

Otherwise, let Q+(w, �X) ∶= H(w|�∗)n−1. Define Q−(⋅, �X) as follows. If '�X (H(⋅|�∗), �∗) is
constant on (w,w) with w < w and let (w,w) be chosen maximally, then let

Q−(w, �X) ∶=
1
n
[H(w|�∗)n −H(w|�∗)n]

H(w|�∗) −H(w|�∗)
, ∀w ∈ (w,w).

Otherwise, let Q−(z, �X) ∶= H(z|�∗)n−1. Clearly, both Q+ and Q− are non-decreasing, imple-
mentable and satisfy conditions (ii) and (iii). I demonstrate Corollary 12 in Appendix C.1.2 thatQ+
is the “steepest" allocation rule andQ− is the “least steep" allocation rule among all non-decreasing
implementable Q’s satisfying conditions (ii) and (iii) in the following sense: for all non-decreasing
implementable Q’s satisfying conditions (ii) and (iii),

E
[

−
H�(w|�∗)
ℎ(w|�∗)

Q+(w, �X)
|

|

|

|

�∗
]

≥ E
[

−
H�(w|�∗)
ℎ(w|�∗)

Q(w)
|

|

|

|

�∗
]

≥ E
[

−
H�(w|�∗)
ℎ(w|�∗)

Q−(w, �X)
|

|

|

|

�∗
]

.

Hence, there exists a non-decreasing implementable Q satisfying conditions (i)-(iii) if and only if
�X is such that

E
[

−
H�(w|�∗)
ℎ(w|�∗)

Q+(w, �X)
|

|

|

|

�∗
]

≥ C ′(�∗) ≥ E
[

−
H�(w|�∗)
ℎ(w|�∗)

Q−(w, �X)
|

|

|

|

�∗
]

. (4.15)

Lemma 15 proves that such a �X exists and is unique, and its proof can be found in Appendix C.1.2.
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Lemma 15 Suppose that the first-order approach is valid and the information structures are super-

modular ordered. Suppose, in addition, that �∗ is such that (4.7) is violated. There exists a unique

�X > 0 such that inequality (4.15) holds.

The main result of this section is the following Theorem 15, which demonstrates that the unique �X
given in Lemma 15 is indeed optimal, and the allocation rules I have derived above solve ( ′-�∗):

Theorem 15 Suppose that the first-order approach is valid and the information structures are su-

permodular ordered. Suppose, in addition, that �∗ is such that (4.7) is violated. Let �X > 0 be

such that inequality (4.15) holds andQ be a non-decreasing implementable allocation rule. ThenQ

solves ( ′-�∗) if and only if Y (w(0, �∗)) = 0, andQ satisfies (IA′) with equality and the two pooling
properties.

My interpretation of the optimal pooling areas is as follows: Optimally, pooling occurs where
'�X (H(⋅|�∗), �∗) is not strictly increasing, i.e.,

ws,�(s, �∗)
ws(s, �∗)

= )
)w

[

−
H�(w(s, �∗)|�∗)
ℎ(w(s, �∗)|�∗)

]

≥ 1
�X

Recall that if an information structure is more precise, then w(s, �) changes more dramatically as
s changes, i.e., ws(s, �) is larger. Hence, one can interpret ws(s, �) as a local measure of the in-
formation structures’ precision around s. Then, ws,�(s, �)∕ws(s, �) is the percentage change of the
information structures’ precision around s as � increases. Intuitively, the most effective way to dis-
courage agents from acquiring too much information is to introduce randomization to where the
information structures’ precision increases most rapidly. If the information structures are uniformly
supermodular ordered, then ws,�(s, �)∕ws(s, �) is a constant. In other words, when � increases, the
information structure becomes more precision uniformly over [0, 1].

Lastly, given Theorem 15, it is straightforward that there exists an optimal Q which takes the fol-
lowing relatively simple form:

Corollary 8 There exists � ∈ [0, 1] such that Q̂(w) ∶= �Q+(w, �X) + (1 − �)Q−(w, �X) solves
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( ′-�∗).

Though the result is intuitive, the proof of Theorem 15 is difficult because of the presence of both the
non-standard constraint (IA′) and (MON). In this paper, I use the following approach first proposed
byReid (1968) and later introduced into themechanism design problem byMierendorff (2009). I first
solve ( ′-�∗) under an additional restriction, that Q is Lipschitz continuous with global Lipschitz
constant K:

|Q(w) −Q(w′)| ≤ K|w −w′|, ∀w,w′ ∈ W .

Denote themodifiedmaximization problem by (K -�∗). I show that the optimal solutions of (K -�∗)
converge to that of ( ′-�∗) asK →∞. Then I can obtain a characterization of the optimal solutions
of ( ′-�∗) in the limit. The formal analysis can be found in Appendix C.1.2.

The proof is not a straightforward modification of Mierendorff (2009). Let Q and QK denote the
optimal solutions to (K -�∗) and ( ′-�∗), respectively. In Mierendorff (2009),Q is discontinuous at
exactly one point, and it can be shown that forK sufficiently large, the slope ofQK is equal toK only
in a neighborhood around the discontinuity point. In this paper, however, Q could be discontinuous
at most countably many times, at unknown points. IfQ is discontinuous atw, then it is possible that
every neighborhood ofw contains another discontinuity point. Hence, it is non-trivial to characterize
Q as the limit of QK .

I conclude this subsection by briefly discussing why I cannot apply control they directly. In the
published version of Mierendorff (2009), Mierendorff (2016) does not use the approach described
above, and directly appeals to Theorems 7 and 8 in Seierstad and Sydsæter (1987). However, the
problem considered here, ( ′-�∗), is more complex for the following two reasons. First, as I have
mentioned above, in Mierendorff (2016), state variable Q is discontinuous at exactly one point,
while in ( ′-�∗), Q could be discontinuous at most countably many points. Second, the problem in
Mierendorff (2016) can be written as a control problem without restrictions on the state variables,
while ( ′-�∗) contains pure state constraints (constraints in which control variables do not appear).
To the best of my knowledge, no existing theorem can be applied to provide necessary and sufficient
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conditions for the optimal solutions of ( ′-�∗).

4.3.3. Optimal �∗

Given optimal solutions of ( ′-�∗), I can now study the optimal information choices. Let �s(�) ∶=
(1 − 
)V (�) − C(�) and �∗ ∈ argmax�∈A �s(�). I show in Appendix C.1.2 that

�s(�) = (1 − 
)∫

w(1,�)

w(0,�)
'�X (H(w|�), �)H(w|�)n−1ℎ(w|�)dw + (1 − 
)�XC ′(�) − C(�),

where, as demonstrated in Theorem 15, �X depends on � in a complex way. In general, it is hard to
solve the optimal �∗. In this section, I first give a condition that the optimal �∗ must satisfy and then
solve it when the information structures are uniformly supermodular ordered.

In Lemma 63 in Appendix C.1.3, I show that if the second-order condition of the agents’ optimization
problem is satisfied, then

∫

w(1,�)

w(0,�)
−H�(w|�)H(w|�)n−1dw − C ′(�) is strictly decreasing in �. (4.16)

Let
�̂ ∶= inf {� ∈ A|(4.7) holds for �} . (4.17)

Then �̂ is independent of 
 and limn→∞ �̂ = �. By (4.16), inequality (4.7) holds for all � > �̂. I
claim that the socially optimal �∗ ≤ �̂. Note first that for all � > �̂, the optimal solution to ( ′-�∗)
is Q(w) = H(w|�)n−1. Hence, the average social surplus is

�s(�) = (1 − 
)∫

w(1,�)

w(0,�)
wH(w|�)n−1ℎ(w|�)dw − C(�).

Taking derivative with respect to � gives

�s′(�) = (1 − 
)∫

w(1,�)

w(0,�)
−H�(w|�)H(w|�)n−1dw − C ′(�).

BecauseC ′(�) is strictly increasing, �s′(�) is strictly decreasing by (4.16). By construction, �s′(�̂) =
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−
C ′(�̂) ≤ 0. Hence, �s′(�) < 0 for all � > �̂ and at optimum �∗ ≤ �̂. This result is summarized in
the following proposition:

Proposition 10 Suppose that the second-order condition of the agents’ optimization problem is sat-

isfied, and the information structures are supermodular ordered. The socially optimal information

choice �∗ is such that �∗ ≤ �̂, where �̂ is such that (4.7) holds with equality if � = �̂.

Proposition 10 states it is not optimal for the social planner to encourage agents to acquire more
information than they would under the ex post efficient mechanism. This result is not surprising
given the results of Bergemann et al. (2009). Proposition 10 also implies that (IA′) always holds
with equality when �∗ is chosen optimally.11 Hence, it is sufficient to consider the one-sided first-
order condition.

To obtain further results about the socially optimal information choice �∗, I assume that the infor-
mation structures are uniformly supermodular ordered for the rest of this section. In this case, the
average social surplus is

�s(�) = (1 − 
)
[�
n
+ b(�)C ′(�)

]

− C(�), ∀� ∈ [�, �̂],

Hence,

�s′(�) =
[

(1 − 
)b′(�) − 1
]

C ′(�) + (1 − 
)b(�)C ′′(�), ∀� ∈ [�, �̂].

Hence, �s′(�) ≤ 0 if and only if 1 − C ′(�)∕ [b′(�)C ′(�) + b(�)C ′′(�)] ≤ 
 . Assume that
C ′(�)∕

[

b′(�)C ′(�) + b(�)C ′′(�)
] is strictly increasing. Then there exists a unique �◦ ∈ A such that

�s′(�) ≶ 0 if and only if � ≷ �◦. Furthermore, �◦ is strictly decreasing in 
 and independent of
n, and lim
→0 �◦ = �. Therefore the socially optimal information choice is �∗ = min{�◦, �̂}. This
result is summarized by the following proposition:

11If �∗ = �̂, then the ex post efficient mechanism is optimal and (IA′) holds with equality by the definition of �̂.
Suppose that �∗ < �̂. Suppose, to the contrary, that (IA′) holds with strict inequality. Then the ex post efficient mechanism
is optimal. However, because inequality (4.7) is violated when �∗ < �̂, (IA′) is violated, which is a contradiction.
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Proposition 11 Suppose that the second-order condition of the agents’ optimization problem is

satisfied, and the information structures are uniformly supermodular ordered. Suppose, in ad-

dition, that C ′(�)∕
[

b′(�)C ′(�) + b(�)C ′′(�)
]

is strictly increasing in �. At optimum, �∗(n, 
) =

min{�◦(
), �̂(n)}, where �◦ is strictly decreasing in 
 , lim
→0 �◦ = � and limn→∞ �̂ = �.

Proposition 11 implies that the ex post efficient mechanism is also ex ante efficient if the level of
interdependency is low. As the level of interdependency increases, the socially optimal information
choice decreases, and an ex ante efficient mechanism introduces more randomization into the alloca-
tion rule to discourage agents from acquiring too much information. Proposition 11 also implies that
the ex post efficient mechanism is also ex ante efficient for a sufficiently large number of agents. In-
tuitively, when there is a large number of agents, the incentive for each agent to acquire information
is already small and there is no need for the social planner to further discourage them from acquiring
information by distorting the allocation rule.

Example 5 (Linear experiments) Consider the information structures in Example 3. Assume that

F (�) = � with support [0, 1], and the cost function (used in Persico (2000)) is of the form

C(�) = K
(

� − �
)2 , ∀� ∈ [�, 1],

where 0 < � < 1 andK ≥ 1∕8�. Then, as I demonstrate in Appendix C.1.3, the first-order approach

is valid. In this case �̂ is such that

2K(�̂ − �) = n − 1
2n(n + 1)

.

Note that the left-hand side of the above equation is strictly increasing in �̂; and the right-hand side

is strictly decreasing in n for n ≥ 2 and converges to 0 as n goes to infinity. Hence, �̂ is strictly

decreasing in n and goes to � as n goes to infinity. Finally,

�s′(�) = 2K
[


� − (2
 − 1)�
]

.
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If 
 ≤ 1
2 , then �

s′(�) ≥ 0 for all � and therefore �∗ = �̂. If 
 > 1
2 , then �

s′(�) is strictly decreasing

in � and therefore

�∗ = min
{ 
�
2
 − 1

, �̂
}

.

Thus, if 
 sufficiently small or n sufficiently large, then �∗ = �̂, and the ex post efficient mechanism

is also ex ante efficient. If 
 sufficiently large or n sufficiently small, then the optimal �∗ is strictly

decreasing in 
 , and goes to � as 
 increases to 1.

4.4. Efficient asymmetric mechanisms

In this section, I study the ex ante efficient mechanisms without restricting attention to symmetric
mechanisms and symmetric equilibria. First, I show that the result in Theorem 14 is still valid for
general asymmetric mechanisms, i.e., an ex ante efficient mechanism never withholds the object.
Second, I derive the ex ante efficient mechanisms when the information structures are uniformly
supermodular ordered, and provide conditions under which the socially optimal information choices
are the same for all agents and there exists a symmetric ex ante efficient mechanism. Finally, I give
an example in which an asymmetric mechanism generates higher net social surplus that the optimal
symmetric mechanism.

As in the symmetric case, I consider the relaxed problem of the social planner by replacing (IA) by
the one-sided first-order conditions

Ew

[

−
H�i(w|�

∗
i )

ℎ(w|�∗i )
Q(w)

|

|

|

|

|

�i = �∗i

]

≤ C ′(�∗i ), ∀i. (AIA′)

and focus on reduced form auctions. Let Q ∶= (Q1,… , Qn), where Qi ∶ [�, �] → [0, 1] is non-
decreasing for all i. By Theorem 3 in Mierendorff (2011), Q is implementable if and only if it
satisfies

n
∑

i=1
∫

w(1,�∗i )

wi
Qi(zi)dH(zi|�∗i ) ≤ 1 −

n
∏

i=1
H(wi|�

∗
i ), ∀w ∈

n
∏

i=1
[w(0, �∗i ), w(1, �

∗
i )]. (AF′)

Thus, given (MON), we can replace (F) by (AF′). Finally, as in the symmetric case, an ex ante
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efficient mechanism never withholds the object:

Theorem 16 Suppose that the information structures are supermodular ordered, and �∗ and (q, t)

solve the relaxed problem of the social planner. Then

∑

i
qi(w) = 1 for almost all w ∈

n
∏

i=1
[w(0, �∗i ), w(1, �

∗
i )]. (4.18)

By Theorem 16 and the Law of iterated expectations, we can rewrite the social planner’s objective
function as a function of Q:

Ew

[

∑

i
(wi + 


∑

j≠i
wj)qi(w)

|

|

|

|

|

|

�i = �∗i ∀i

]

=
∑

i
Ewi

[

(1 − 
)wiQi(wi)|| �i = �
∗
i
]

+ n
�.

Because the second term, n
�, is a constant, we ignore it from here on. To summarize, the social
planner’s relaxed problem, denoted by ( ′), becomes:

max
�∗,Q

Ew

[

∑

i
(1 − 
)wiQi(wi)

|

|

|

|

|

�i = �∗i ∀i

]

−
∑

i
C(�∗i ),

subject to
n
∑

i=1
∫

w(1,�∗i )

wi
Qi(zi)dH(zi|�∗i ) ≤ 1 −

n
∏

i=1
H(wi|�

∗
i ), ∀w ∈

n
∏

i=1
[w(0, �∗i ), w(1, �

∗
i )], (AF′)

Qi(wi) is non-decreasing in wi, ∀i, (MON)

Ewi

[

−
H�i(wi|�∗i )
ℎ(wi|�∗i )

Qi(wi)
|

|

|

|

|

�i = �∗i

]

≤ C ′(�∗i ), ∀i. (AIA′)

As in the symmetric case, I solve ( ′) in two steps. First, for each �∗ ∈ An, I solve the following
sub-problem, denoted by ( ′-�∗):

V (�∗) ∶= max
Q

Ew

[

∑

i
wiQi(wi)

|

|

|

|

|

�∗
]

subject to (AF′), (MON) and (AIA′) ,

Second, I solve max�∈An �s(�) ∶= (1 − 
)V (�) −∑

i C(�i).
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Fix �∗. If the principal adopts the ex post efficient mechanism, then the interim allocation rule is
given by Qi(wi) =

∏

j≠iH(wi|�∗i ) for all wi and all i. Clearly, if �∗ is such that

Ewi

[

−
H�i(wi|�∗i )
ℎ(wi|�∗i )

∏

j≠i
H(wi|�

∗
j )
|

|

|

|

|

|

�∗
]

≤ C ′(�∗i ),∀i, (4.19)

then the ex post efficient mechanism solves ( ′-�∗). Furthermore, I show Lemma 67 in the appendix
that if �∗ is chosen optimally, then (AIA′) holds with equality for all i and

�s(�∗) = (1 − 
)

[

� +
n
∑

i=1
b(�∗i )C

′(�∗i )

]

−
∑

i
C(�∗i ). (4.20)

Suppose that �∗ is such that there exists agent i,

Ewi

[

−
H�i(wi|�∗i )
ℎ(wi|�∗i )

∏

j≠i
H(wi|�

∗
j )
|

|

|

|

|

|

�∗
]

> C ′(�∗i ). (4.21)

Suppose that there exists 0 < k ≤ n such that (AIA′) binds for the first k agents. Then we can ignore
(AIA′) for the last n − k agents. Let �i denote the Lagrangian multiplier associated with (AIA′) for
agent i (i ≤ k). By a similar argument to that in Section 4.3.2, we have �i = b(�∗i ) for all i ≤ k.
Then the Lagrangian relaxation becomes

ℒ =
∑

i≤k
∫

w(1,�∗i )

w(0,�∗i )
�Qi(wi)ℎ(wi|�

∗
i )dwi +

∑

i>k
∫

w(1,�∗i )

w(0,�∗i )
wiQi(wi)ℎ(wi|�

∗
i )dwi +

∑

i≤k
b(�∗i )C

′(�∗i )

=∫

w(1,�∗1 )

w(0,�∗1 )
⋯∫

w(1,�∗n )

w(0,�∗n )

(

∑

i≤k
�qi(w) +

∑

i>k
wiqi(w)

) n
∏

i=1
ℎ(wi|�

∗
i )dw1…dwn +

∑

i≤k
b(�∗i )C

′(�∗i ).

Suppose that k < n, then a pointwise virtual surplus maximizer must satisfy for all w,

∑

i≤k
qi(w) =

⎧

⎪

⎨

⎪

⎩

1 if maxj>k{wj} < �,

0 if maxj>k{wj} > �.
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and for all j > k,

qj(w) =
⎧

⎪

⎨

⎪

⎩

1 if wj > � and wj = maxj>k{wj},

0 if wj < � or wj < maxj>k{wj}.

Therefore, for all i > k, the optimal interim allocation rule is given byQi(wi) =
∏

j>k,j≠iH(wi|�∗j )

if wi > � and Qi(wi) = 0 if wi < �. Hence,

V (�∗) = �
∏

i>k
H(�|�∗i ) +

∑

i>k
∫

w(1,�∗i )

�
wi

∏

j>k,j≠i
H(wi|�

∗
j )ℎ(wi|�

∗
i )dwi +

∑

i≤k
b(�∗i )C

′(�∗i ).

Finally, (AIA′) holds for i > k if and only if

∫

w(1,�∗i )

�
−H�i(wi|�

∗
i )

∏

j>k,j≠i
H(wi|�

∗
j )dwi ≤ C ′(�∗i ). (4.22)

Consider an agent i (i > k). I argue that if �∗ is chosen optimally, then (4.22) holds with equality.
Suppose, to the contrary, that (4.22) holds with strict inequality, then

)�s(�∗)
)�i

= −(1 − 
)∫

w(1,�∗i )

�
H�i(wi|�

∗
i )

∏

j>k,j≠i
H(wi|�

∗
j )dwi − C ′(�∗i ) < −
C

′(�∗i ) ≤ 0,

a contradiction to the optimality of �∗i . Hence, (4.22) holds with equality for all i > k. Furthermore,
because the information structures are uniformly supermodular ordered, we have

∫

w(1,�∗i )

�
wi

∏

j>k,j≠i
H(wi|�

∗
j )dwi = C ′(�∗i )b(�

∗
i ) + ∫

w(1,�∗i )

�
�

∏

j>k,j≠i
H(wi|�

∗
j )dwi.

Substituting this into the expression of V (�∗) yields

V (�∗) =�
∏

i>k
H(�|�∗i ) +

∑

i>k
∫

w(1,�∗i )

�
�

∏

j>k,j≠i
H(wi|�

∗
j )ℎ(wi|�

∗
i )dwi +

n
∑

i=1
b(�∗i )C

′(�∗i )

=�
∏

i>k
H(�|�∗i ) + � ∫

�

�
d
∏

j>k
H(w|�∗j ) +

n
∑

i=1
b(�∗i )C

′(�∗i )

=�
∏

i>k
H(�|�∗i ) + �

[

1 −
∏

i>k
H(�|�∗i )

]

+
n
∑

i=1
b(�∗i )C

′(�∗i ) = � +
n
∑

i=1
b(�∗i )C

′(�∗i ).
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Hence,

�s(�∗) = (1 − 
)

[

� +
n
∑

i=1
b(�∗i )C

′(�∗i )

]

−
∑

i
C(�∗i ). (4.20)

Suppose that k = n, then a pointwise virtual surplus maximizer must satisfy∑i qi(w) = 1 for allw.
Hence, (4.20) still holds in this case.

These results are summarized by the following proposition:

Proposition 12 Suppose that the second-order condition of the agents’ optimization problem is sat-

isfied, and the information structures are uniformly supermodular ordered. Let �∗ be a socially

optimal information choices. Then there exists agent i,

Ewi

[

−
H�i(wi|�∗i )
ℎ(wi|�∗i )

∏

j≠i
H(wi|�

∗
j )
|

|

|

|

|

|

�∗
]

= C ′(�∗i ).

and the average social surplus �s(�∗) is given by (4.20).

It follows immediately from Proposition 12 that if there exists �◦ ∈ argmax�∈A(1 − 
)b(�)C ′(�) −
C(�) such that �◦ ≤ �̂, where �̂ is define by (4.17), then the socially optimal information choices
are the same for all agents:

Proposition 13 Suppose that the second-order condition of the agents’ optimization problem is sat-

isfied, and the information structures are uniformly supermodular ordered. Suppose, in addition,

that there exists �◦ ∈ argmax�∈A(1 − 
)b(�)C ′(�) − C(�) such that �◦ ≤ �̂, where �̂ is define by

(4.17). Then the socially optimal information choices are the same for all agents.

I conclude this section by giving an example in which an asymmetric mechanism generates higher
net social surplus that the optimal symmetric mechanism when the conditions in Proposition 13 is
violated.

Example 6 (Linear experiments) Consider Example 5. Let n = 2, � = 1∕2 andK = 3∕8 ≥ 1∕8�.

Then, as I demonstrate in Appendix C.1.3, the first-order approach is valid. A socially optimal
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information choice � must be such that

�1 ≤
9�2

18�2 − 2
or �2 ≤

9�1
18�1 − 2

. (4.23)

When � satisfies (4.23), the average social surplus is given by

�s(�) = (1 − 
)
[1
2
+ 3
4
�1

(

�1 −
1
2

)

+ 3
4
�2

(

�2 −
1
2

)]

− 3
8

(

�1 −
1
2

)2
− 3
8

(

�2 −
1
2

)2
.

In this case, �̂ is such that
3
4

(

�̂ − 1
2

)

= 1
12

or �̂ = 11
18
.

Furthermore, (1 − �)b(�)C ′(�) − C(�) = (1 − 
)34�(� −
1
2 ) −

3
8 (� −

1
2 )
2 has a unique maximizer on

[1
2
, 1]. If 
 ≤ 1

2
, then �◦ = 1; and if 
 > 1

2
, then �◦ = 
∕(4
 − 2). By Proposition 13, if �◦ ≤ �̂ or


 ≥ 11∕13, then the socially optimal information choices are the same for all agents.

Assume for the rest of the example that 
 ≤ 11∕13. In this case, the optimal symmetric mechanism

is ex ante efficient, and induces the following symmetric equilibrium: �1 = �2 = �̂. In this case, the

average social surplus is given by

�s(�̂, �̂) =
192 − 195


324
≈ 0.59 − 0.60
.

Consider the following asymmetric mechanism in which

q1(w1, w2) =

⎧

⎪

⎨

⎪

⎩

0 if min
{

max
{

7
32 , w1

}

, 2532
}

< w2

1 if min
{

max
{

7
32
, w1

}

, 25
32

}

> w2
,

and q2(w1, w2) = 1 − q1(w1, w2) for all (w1, w2) ∈ [0, 1]2. Given this mechanism, the following

information choices is an equilibrium �∗1 = 9∕16 and �∗2 = 1. Let �i(�) denote agent i’s ex ante
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expected payoff for i = 1, 2. Given �∗2 = 1, the interim allocation rule of agent 1 is given by

Q1(w1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

7
32

if w1 ∈
[

0, 7
32

]

w1 if w1 ∈
[

7
32 ,

25
32

]

25
32 if w1 ∈

[

25
32 , 1

]

.

It is easy to verify that

)�1(�1, �∗2 )
)�1

= ∫

w(1,�1)

w(0,�1)
−H�(w1, �1)Q1(w1)dw1 − C ′(�1) = −

8�1
12

+ 3
8
.

Hence, it is optimal for agent 1 to choose �∗1 = 9∕16. Similarly, given �∗1 = 9∕16, the interim

allocation rule of agent 2 is given by

Q2(w2) =
16
9
w2 −

7
18
,∀w2 ∈ [0, 1].

It is easy to verify that

)�2(�∗1 , �2)
)�2

= ∫

w(1,�2)

w(0,�2)
−H�(w2, �1)Q2(w2)dw2 − C ′(�2) = −

65�2
108

+ 3
8
> 0, ∀�2 ∈

[1
2
, 1
]

.

Hence, it is optimal for agent 2 to choose �∗2 = 1. In this case, the average social surplus is given by

�s(�∗1 , �
∗
2 ) =

728 − 923

1024

≈ 0.71 − 0.90
.

Clearly, if 
 < 0.4, then this asymmetric mechanism generates strictly higher net social surplus that

the optimal symmetric mechanism does.

4.5. Conclusion

I have studied ex ante efficient mechanisms in the sale of a single object when agents have posi-
tively interdependent values, and information is independent and endogenous. Specifically, I assume
agents are initially uncertain about the value of the object on sale, and they are able to pay a cost to
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acquire information about this value before participating in a mechanism. In an earlier paper, Berge-
mann and Välimäki (2002) find that using the ex post efficient mechanism will lead to ex ante over
investment in information by agents. This suggests potential gains in ex ante efficiency by adjusting
ex post efficient mechanisms in a way to discourage agents from gathering information.

First, I find that an ex ante efficient mechanism never withholds the object. Intuitively, whenever the
object is withheld, one can instead allocate it randomly among agents. This improves the allocative
efficiency without giving agents additional incentive to acquire information. Second, I fully char-
acterize ex ante efficient mechanisms. When the interdependence is low or the number of agents is
large, the ex-post efficient mechanism is also ex ante efficient. When the interdependence is high or
the number of agents is small, an ex ante efficient mechanism involves randomization. Specifically,
an ex ante efficient allocation rule randomizes in areas in which the accuracy of an agent’s posterior
estimate can be significantly improved if an additional piece of information in acquired.

In this paper, I assume all agents simultaneously acquire information prior to the auction. One inter-
esting direction for future research is to allow for the possibility of sequential information acquisition.
It is likely that the efficiency can be improved if agents are asked to acquire information in turn, and
one’s information acquisition decision can depend on the signals received by those who take actions
earlier. Another interesting direction for future research is to consider the impact of initial private
information. In this paper I only considered static mechanisms in which agents only report their
private information once. In general, one can consider a dynamic mechanism in which agents report
their private information both before and after acquiring information.
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APPENDIX TO CHAPTER 2

A.1. Omitted proofs in Sections 2.3

A polymatroid is a polytope of type

P (g) ∶=

{

x ∈ ℝE
|

|

|

|

|

x ≥ 0,
∑

e∈A
xe ≤ g(A) for all A ⊂ E

}

, (A.1)

where E is a finite set and g ∶ 2E → ℝ+ is a submodular function.

Lemma 16 There exists a monotone and submodular function g ∶ 2E → ℝ+ with g(∅) = 0 and

P (g) = P (g).

Proof. Let g(∅) ∶= 0 and g(X) ∶= minA⊃X g(A) for X ≠ ∅. Let X ⊂ Y ⊂ E. If X = ∅, then
g(X) = 0 ≤ g(Y ). If X ≠ ∅, then A ⊃ Y implies that A ⊃ X, and therefore we have

g(X) = min
A⊃X

g(A) ≤ min
A⊃Y

g(A) = g(Y ).

Hence, g is monotone. Let e ∈ E∖Y . To show that g is submodular, it suffices to show that

g(Y ∪ {e}) − g(Y ) ≤ g(X ∪ {e}) − g(X).

Because g(∅) = 0 ≤ minA g(A), it suffices to show that

min
C⊃Y ∪{e}

g(C) + min
D⊃X

g(D) ≤ min
A⊃X∪{e}

g(A) + min
B⊃Y

g(B).

Let A∗ ∈ argminA⊃X∪{e} g(A) and B∗ ∈ argminB⊃Y g(B). Then A∗∪B∗ ⊃ Y ∪{e} and A∗∩B∗ ⊃
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X. Hence,

min
A⊃X∪{e}

g(A) + min
B⊃Y

g(B) = g(A∗) + g(B∗)

≥ g(A∗ ∪ B∗) + g(A∗ ∩ B∗)

≥ min
C⊃Y ∪{e}

g(C) + min
D⊃X

g(D),

where the first inequality holds because g is submodular. Hence, g is submodular. Finally, I want
to show that P (g) = P (g). Because g(A) ≥ g(A) for all A ⊂ E, we have P (g) ⊂ P (g). Suppose
that there exists x ∈ ℝE such that x ∈ P (g) and x ∉ P (g). Then there exists A ≠ ∅ such that
∑

e∈A xe > g(A). By construction, there exists B ⊃ A such that g(A) = g(B). However, then
we have ∑e∈B xe ≥

∑

e∈A xe > g(A) = g(B), which is a contradiction to that x ∈ P (g). Hence,
P (g) = P (g).

Proof of Lemma 1. First, because H(∅) = 0, and H is non-decreasing and submodular, ẑt is
feasible. Next, I show that ẑt is optimal.

I begin the analysis by characterizingH . Clearly, there exists a unique t ∈ {1,… , m} such that

1
n

⎛

⎜

⎜

⎝

t−1
∑

�=1
f �

⎞

⎟

⎟

⎠

n−1

< ' ≤ 1
n

( t
∑

�=1
f �

)n−1

.

Here, t is the minimum t such that if all agents whose values are weakly less than vt are pooled
together and ranked below any other agents with higher values, then they receive the object with
probability of at least '. It is easy to verify that1

H(S t) =

⎧

⎪

⎨

⎪

⎩

1 −
(

∑t−1
�=1 f

�
)n
− n'

∑m
�=t f

� if t > t
1 − n' if t ≤ t

. (A.2)

LetΔ(t) ∶= H(S t)−n∑m
�=t

c'f �

1−c
for t = 1,… , m+1. ThenΔ(m+1) = 0 andΔ(t) = Δ̃

(

∑t−1
�=1 f

�
)

,

1This result can be seen as a corollary of Lemmas 22 and 23 in Appendix A.3.
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where Δ̃(x) = 1 − n'
1−c − x

n − n'x
1−c is concave in x. If Δ(1) = 1 − n'∕(1 − c) ≥ 0, then let t ∶= 0;

otherwise, there exists a unique t ∈ {1,… , m + 1} such that

H(S t) ≤ n
m
∑

�=t

c'f �

1 − c
andH(S t+1) > n

m
∑

�=t+1

c'f �

1 − c
.

Let � ∶= (�1,… , �m) and � ∶= (�1,… , �m) denote the dual variables corresponding to the upper-
bounds and lower-bounds in (IC′m1), and � ∶= (�(S))S denote the dual variables corresponding
to (F2m1) in problem (OPTm1 − '). Consider the dual to problem (OPTm1 − '), denoted by
(DOPTm1 − '),

min
�,�,�

m
∑

t=1

c'f t�t

1 − c
+
∑

S
�(S)H(S) + '

m
∑

t=1
f tvt,

subject to

vt − k
c
− �t + �t − n

∑

S∋t
�(S) ≥ 0,∀t,

� ≥ 0, � ≥ 0, � ≥ 0.

Let ẑ be define in (2.7), and (�̂, �̂, �̂) be the corresponding dual variables. Let t0 be such that vt ≥ k∕c

if and only if t ≥ t0.

Case 1: vt < k
c
or t < t0. In this case, we have

ẑt ∶=

⎧

⎪

⎨

⎪

⎩

c'f t

1−c
if t > t

0 if t ≤ t
.

Let �̂(S) = 0 for all S. If vt < k∕c, then let �̂t = 0 and �̂t = k∕c − vt > 0; if vt ≥ k∕c, then let
�̂t = 0 and �̂t = vt − k∕c ≥ 0. It is easy to verify that this is a feasible solution to (DOPTm1 − '),
and the complementary slackness conditions are satisfied. Finally, the dual objective is equal to the
primal objective:

m
∑

t=t0

c'f t

1 − c

(

vt − k
c

)

+ '
m
∑

t=1
f tvt.
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By the duality theorem, ẑ is an optimal solution to (OPTm1 − ').

Case 2: vt ≥ k
c
or t ≥ t0. In this case, we have

ẑt ∶=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

c'f t

1−c if t > t
1
n
H(S t) −

∑m
�=t+1

c'f t

1−c if t = t
1
n

[

H(S t) −H(S t+1)
]

if t0 ≤ t < t

0 if t < t0

,

Let �̂(S) > 0 if S = S t for t0 ≤ t ≤ t; and �̂(S) = 0 otherwise. If t < t0, then let �̂t = 0 and
�̂t = k∕c − vt ≥ 0. If t0 ≤ t ≤ t, then let �̂t = �̂t = 0, �̂(S t) = (vt − vt−1)∕n for t > t0 and
�̂(S t0) = (vt0 − k∕c)∕n. If t > t, then let �̂t = vt − vt and �̂t = 0. It is easy to verify that this is
a feasible solution to (DOPTm1 − '), and the complementary slackness conditions are satisfied.
Finally, the dual objective is equal to the primal objective:

1
n
H(S t0)

(

vt
0 − k

c

)

+
t

∑

t=t0+1

1
n
H(S t)

(

vt − vt−1
)

+
m
∑

t=t+1

c'f t

1 − c

(

vt − k
c

)

+ '
m
∑

t=1
f tvt.

By the duality theorem, ẑ is an optimal solution to (OPTm1 − ').

Lemma 17 An optimal solution to (OPT − ') exists.

Proof. Let D denote the set of feasible solutions, i.e., solutions satisfying (IC′) and (F2). Consider
D as a subset of L2, the set of square integrable functions with respect to the probability measure
corresponding to F . Topologize L2 with its weak∗, or �(L2, L2), topology. It is straightforward to
verify that D is �(L2, L2) compact. See, for example, Border (1991).

Let V (') ∶= supP∈D Ev
[

P (v)
(

v − k
c

)]

+ 'k
c
. Let {P�} be a sequence of feasible solutions to

(OPT − ') such that

∫ P�(v)
(

v − k
c

)

dF (v) +
'k
c

→ V (').

By Helly’s selection theorem, after taking subsequences, I can assume that there exists P such that
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{P�} converges pointwise to P . Because D is �(L2, L2) compact, after taking subsequences again,
I can assume that there exists P ∈ D such that {P�} converges to P in �(L2, L2) topology. Because
v − k∕c ∈ L2, the weak convergence of {P�} implies that

∫ P (v)
(

v − k
c

)

dF (v) +
'k
c
= V (').

Proof of Theorem 1. Let {Pm} be the sequence of optimal solutions to (OPTm − ') defined in
Corollary 1. Let P tm ∶= zt∕f t + ' for all t. Then

P tm ∶=

⎧

⎪

⎨

⎪

⎩

P
t
m if vt > k

c

' if vt < k
c

.

Recall thatH is given by (A.2). Thus, there are three cases. If t > t, then

P
t
m =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

'
1−c if t > t
1
n−

1
n

(

∑t
�=1 f

�
)n
−
∑m
�=t+1

'ft

1−c

f t
if t = t

1
n

(
∑t
�=1 f

�)n− 1
n

(

∑t−1
�=1 f

�
)n

f t
if t < t < t

1
n

(

∑t
�=1 f

�
)n
−'

∑t−1
�=1 f

�

f t
if t = t

' if t < t

.

If t = t, then

P
t
m =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

'
1−c

if t > t
1
n−'

∑t−1
t=1 f

t−
∑m
�=t+1

'ft

1−c

f t
if t = t

' if t < t
.
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If t < t, then

P
t
m =

⎧

⎪

⎨

⎪

⎩

'
1−c

if t > t
' if t < t

.

I can extend Pm to V by setting

Pm(v) ∶= P tm for v ∈
[

v +
(t − 1)(v − v)

m
, v +

t(v − v)
m

]

, t = 1,… , m.

Extend Pm to V in a similar fashion. Compare Pm and P '. It is easy to see that {Pm} converges
pointwise to P '. Hence, {Pm} converges pointwise to P ∗' , which is a feasible solution to (OPT −').

To show the optimality of P ∗' , let P̂ be an optimal solution to (OPT − '), which exists by Lemma
17 in the appendix. Define P̂m be such that

P̂ tm ∶=
1
f t ∫

v+ t(v−v)
m

v+ (t−1)(v−v)
m

P̂ (v)dF (v) for t = 1,… , m,

and it can be extended to V by setting

P̂m(v) ∶= P̂ tm for v ∈
[

v +
(t − 1)(v − v)

m
, v +

t(v − v)
m

]

, t = 1,… , m.

By the Lebesgue differentiation theorem, {P̂m} converges pointwise to P̂ . It is easy to verify that P̂m
defined on {v1,… , vm} is a feasible solution to (OPTm − '). Hence

m
∑

t=1
f tP̂ tm

(

vt − k
c

)

+
'k
c

≤
m
∑

t=1
f tP tm

(

vt − k
c

)

+
'k
c

By the dominated convergence theorem,
m
∑

t=1
f tP̂ tm

(

vt − k
c

)

= ∫V
P̂m(v)

(

v − k
c

)

dF (v)→ ∫V
P̂ (v)

(

v − k
c

)

dF (v),

and
m
∑

t=1
f tP tm

(

vt − k
c

)

= ∫V
Pm(v)

(

v − k
c

)

dF (v)→ ∫V
P ∗'(v)

(

v − k
c

)

dF (v).
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Hence,

∫V
P ∗'(v)

(

v − k
c

)

dF (v) = ∫V
P̂ (v)

(

v − k
c

)

dF (v),

which implies that P ∗' is optimal.

Lemma 18 Suppose (1 − c)∕n ≤ ' ≤ min{1∕n, 1 − c}. Then vl ≥ vu if and only if vl ≤ v♮, where

v♮ is defined by (2.14). Furthermore, if n(1 − c) < 1 then v♮ is strictly increasing in n and strictly

decreasing in c.

Proof. Because (1 − c)∕n ≤ ' ≤ min{1∕n, 1 − c}, vl and vu satisfies:

1 − F (vu)n

1 − F (vu)
=
F (vl)n−1

1 − c
. (A.3)

Define
Δ(v) ∶=

F (v)n−1(1 − F (v))
1 − c

− 1 + F (v)n.

Then Δ(v) = −1 < 0 and Δ(v) = 0. Then

Δ′(v) =
F (v)n−2f (v)

1 − c
[−cnF (v) + n − 1] .

Clearly, the term in the brackets is strictly decreasing in v. Moreover, Δ′(v) = n − 1 > 0 and
Δ′(v) = n(1 − c) − 1.

If n(1 − c) ≥ 1, then Δ′(v) ≥ 0 for all v. Hence, Δ(v) is non-decreasing, and therefore Δ(v) ≤ 0 for
all v. Hence,

1 − F (vu)n

1 − F (vu)
=
F (vl)n−1

1 − c
≤ 1 − F (vl)n

1 − F (vl)
,

which implies vl ≥ vu.

If n(1 − c) < 1, then there exists v♭ such that Δ′(v) > 0 for v ∈ [v, v♭] and Δ′(v) < 0 for v ∈ [v♭, v].
Hence, Δ(v) in strictly increasing in [v, v♭], and strictly decreasing in [v♭, v]. Hence, there exists a
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unique v♮ ∈ (v, v) such that Δ(v) ≤ 0 if and only if v ≤ v♮. By (A.3), this implies that vl ≥ vu if
and only if vl ≤ v♮. Finally, for any v, Δ(v) is strictly decreasing in n, and strictly increasing in c.
Hence, v♮ is strictly increasing in n, and strictly decreasing in c.

Proof of Theorem 3. First, if ' ≤ (1 − c)∕n, then vu = v̂ = v, and

P ∗'(v) ∶=

⎧

⎪

⎨

⎪

⎩

'
1−c if v ≥ k

c

' if v < k
c

.

The principal’s objective becomes

c'
1 − c ∫

v

k
c

(

v − k
c

)

dF (v) + '∫

v

v
vdF (v),

which is strictly increasing in '. Hence, in optimum, ' ≥ (1 − c)∕n.

Given ', let Z(') denote the principal’s optimal payoff. Suppose that ' ≥ 1 − c or equivalently
F (vl)n−1 ≥ n(1 − c). Then vu = v, and the principal’s payoff is Z(') = Z1(vl(')), where

Z1(vl) ∶=∫

v

max
{

vl , kc
}

(

v − k
c

)

F (v)n−1dF (v)

+ 1
n
F (vl)n−1 ∫

max
{

vl , kc
}

v

(

v − k
c

)

dF (v) + 1
n
F (vl)n−1k

c
.

If vl < k∕c, then Z1(vl) is strictly increasing in vl. If vl ≥ k∕c, then

Z′
1(v

l) = n − 1
n

F (vl)n−2f (vl)
{

Ev[v] − Ev[max{v, vl}] +
k
c

}

.

Clearly, the term inside the braces is strictly decreasing in vl. Recall that v∗ ≥ k∕c is defined by
(2.12). Hence, Z′

1(v
l) ≥ 0 if and only if vl ≤ v∗, and Z1 achieves its maximum at vl = v∗. I show

in Lemma 19 in the appendix that for any ' and the corresponding vl, we have Z(') ≤ Z1(vl(')).
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Hence,

Z(') ≤ Z1(vl(')) ≤ Z1(v∗).

Thus, if F (v∗)n−1 ≥ n(1− c), then it is optimal to set '∗ = F (v∗)n−1∕n and vl = v∗. This proves the
first part of Theorem 3.

Suppose that F (v∗)n−1 < n(1 − c). Then in optimum ' ≤ 1 − c. Because (1 − c)∕n ≤ ' ≤ 1∕n,
there is a one-to-one correspondence between v̂ and '. Given ', v̂(') is uniquely pinned down by

1 − n'F (v̂) −
n'
1 − c

[1 − F (v̂)] = 0.

If ' is such that vl ≥ vu, then Z(') = Z2(v̂(')), where

Z2(v̂) ∶=
1 − c

n(1 − cF (v̂)) ∫

max
{

v̂, kc
}

v

(

v − k
c

)

dF (v)

+ 1
n(1 − cF (v̂)) ∫

v

max
{

v̂, kc
}

(

v − k
c

)

dF (v) + 1 − c
n(1 − cF (v̂))

k
c
.

If v̂ < k∕c, then Z2(v̂) is strictly increasing in v̂. If v̂ ≥ k∕c, then

Z′
2(v̂) =

cf (v̂)
n(1 − cF (v̂))2

{

Ev[v] − Ev[min{v, v̂}] + (1 − c)
[

Ev[v] − Ev[max{v, v̂}] +
k
c

]}

.

Clearly, the term inside the braces is strictly decreasing in v̂. Recall that v∗∗ > v∗ ≥ k∕c is defined
by (2.13). Hence, Z′

2(v̂) ≥ 0 if and only if v̂ ≤ v∗∗, and Z2 achieves its maximum at v̂ = v∗∗.
I show in Lemma 20 in the appendix that for any ' ≤ 1 − c and the corresponding v̂, we have
Z(') ≤ Z2(v̂(')). Hence,

Z(') ≤ Z2(v̂(')) ≤ Z2(v∗∗).

Finally, by Lemma 18, vl ≥ vu if and only if vl ≤ v♮. Thus, if v∗∗ ≤ v♮, then it is optimal to set
'∗ = F (v∗∗)n−1∕n and vl = v∗∗. This proves the second part of Theorem 3.
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Suppose that F (v∗)n−1 < n(1 − c) and v∗∗ > v♮. Then

Z(') ='∫

max
{

vl , kc
}

v

(

v − k
c

)

dF (v) + ∫

max
{

vu, kc
}

max
{

vl , kc
}

(

v − k
c

)

F (v)n−1dF (v)

+
'

1 − c ∫

v

max
{

vu, kc
}

(

v − k
c

)

dF (v) +
'k
c
.

If ' is such that vl < k∕c, then Z(') is strictly increasing in '. If vl ≥ k∕c, then

Z′(') = 1
1 − c

[

Ev[v] − Ev[min{v, vu}]
]

+ Ev[v] − Ev[max{v, vl}] +
k
c
.

Because both vl and vu are strictly increasing in ', Z′(') is strictly decreasing in '. Let '∗ be such
that

Ev[v] − Ev[min{v, vu('∗)}] + (1 − c)
[

Ev[v] − Ev[max{v, vl('∗)}] +
k
c

]

= 0. (2.15)

Compare (2.15) with (2.13) and (2.12), and it is easy to see that vu('∗) > v∗∗ > vl('∗) > v∗. Hence,
Z′(') ≥ 0 if and only if ' ≤ '∗, andZ achieves its maximum at ' = '∗. This proves the third part
of Theorem 3.

Lemma 19 Let Z and Z1 be defined as in the proof of Theorem 3. Then Z(') ≤ Z1(vl(')).

Proof. Fix ' and the corresponding vl. Note that Z1(vl) is attained by the following allocation rule

P1(v) ∶=

⎧

⎪

⎨

⎪

⎩

F (v)n−1 if v ≥ max
{

vl, k
c

}

' if v < max
{

vl, k
c

} .

It is easy to see that P1 − P ∗' is non-decreasing, and

∫

v

v
P1(v)dF (v) = ∫

v

v
P ∗'(v)dF (v) =

1
n
.

Moreover, v−k∕c is non-decreasing in v. Hence, by Lemma 1 in Persico (2000),Z(') ≤ Z1(vl(')).
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Lemma 20 Let Z and Z2 be defined as in the proof of Theorem 3. If ' ≤ 1 − c, then Z(') ≤

Z2(v̂(')).

Proof. Fix ' and the corresponding v̂. Note that Z2(v̂) is attained by the following allocation rule

P2(v) ∶=

⎧

⎪

⎨

⎪

⎩

'
1−c if v ≥ max

{

v̂, k
c

}

' if v < max
{

v̂, k
c

} .

It is easy to see that P2 − P ∗' is non-decreasing, and

∫

v

v
P2(v)dF (v) = ∫

v

v
P ∗'(v)dF (v) =

1
n
,

Moreover, v−k∕c is non-decreasing in v. Hence, by Lemma 1 in Persico (2000),Z(') ≤ Z1(v2('̂)).

Proof of Theorem 2. LetZ andZ1 be defined as in the proof of Theorem 3. If v−k∕c ≤ Ev[v], then
Z1(v) is strictly increasing in vl and achieves its maximum when vl = v. By Lemma 19, Z(') ≤
Z1(vl(')) ≤ Z1(v). Note that Z1(v) can be achieved via pure randomization. This completes the
proof.

A.2. Omitted proofs in Section 2.4

Proof of Corollary 2. The analysis in Section 2.4 has proved most results of Corollary 2. What is
left to prove is that if n∗(�, c) < n < n∗∗(�, c), then vl(n, �, c) is strictly increasing in n, � and c and
vu(n, �, c) is strictly decreasing in n and strictly decreasing in � and c. If n∗(�, c) < n < n∗∗(�, c),
then vl and vu satisfy (A.3). It is easy to see that vu is strictly increasing in vl and vice versa.

To prove the properties of vl, let

Δl(vl, n, �, c) ∶= Ev[v] − Ev[min{v, vu}] + (1 − c)
[

Ev[v] − Ev[max{v, vl}] +
k
c

]

,
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where vu is a function of vl, n and c defined by (A.3). ThenΔl(vl, n, �, c) ≡ 0 by (2.15). Furthermore,
we have

)Δl
)vl

= −[1 − F (vu)])v
u

)vl
− (1 − c)F (vl) < 0,

)Δl
)n

= −[1 − F (vu)])v
u

)n
> 0,

)Δl
)�

= 1 − c > 0,

)Δl
)c

= −
[

Ev[v] − Ev[max{v, vl}] +
k
c

]

> 0.

(A.4)

Hence, by the implicit function theorem, we have )vl∕)n > 0, )vl∕)� > 0 and )vl∕)c > 0. To see
that )vu∕)n < 0 in the second line in (A.4), let

Δ(vu, vl, n) ∶=
F (vl)n−1(1 − F (vu))

1 − c
− 1 + F (vu)n.

Then Δ(vu, vl, n) ≡ 0 by (A.3). Furthermore, we have

)Δ
)vu

=
[

−
F (vl)n−1

1 − c
+ nF (vu)n−1

]

f (vu) =
[

−
1 − F (vu)n

1 − F (vu)
+ nF (vu)n−1

]

f (vu) < 0,

)Δ
)n

=
F (vl)n−1[1 − F (vu)] logF (vl)

1 − c
+ F (vu)n logF (vu) < 0.

Hence, by the implicit function theorem, )vu∕)n = −()Δ∕)n)∕()Δ∕)vu) < 0.

To prove the properties of vu, let

Δu(vu, n, �, c) ∶= Ev[v] − Ev[min{v, vu}] + (1 − c)
[

Ev[v] − Ev[max{v, vl}] +
k
c

]

,

where vl is a function of vu, n and c defined by (A.3). ThenΔu(vu, n, �, c) ≡ 0 by (A.3). Furthermore,
we have

)Δu
)vu

= −[1 − F (vu)] − (1 − c)F (vl) )v
l

)vu
< 0,

)Δu
)n

= −(1 − c)F (vl))v
l

)n
< 0,

)Δu
)�

= 1 − c > 0,

)Δu
)c

= −
[

Ev[v] − Ev[max{v, vl}] +
k
c

]

> 0.

(A.5)
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Hence, by the implicit function theorem, we have )vu∕)n < 0, )vu∕)� > 0 and )vu∕)c > 0. To see
that )vl∕)n > 0 in the second line in (A.5), note that

)Δ
)vl

=
(n − 1)F (vl)n−2f (vl)[1 − F (vu)]

1 − c
> 0.

Hence, by the implicit function theorem, )vl∕)n = −()Δ∕)n)∕()Δ∕)vl) > 0.

A.3. Asymmetric environment

A.3.1. Finite case

Let  ∶= ∪i[vi − ki∕ci, vi − ki∕ci]. Let d ∶= inf  and d ∶= sup. Fix an integer m ≥ 2. For
t = 1,…m, let

dt ∶=d +
(2t − 1)(d − d)

2m
,

f ti ∶=Fi

(

d +
t(d − d)
m

+
ki
ci

)

− Fi

(

d +
(t − 1)(d − d)

m
+
ki
ci

)

, i = 1,… , n.

Consider the finite model in which, for each agent i, vi − ki∕ci can take only m possible different
values, i.e., vi − ki∕ci ∈ {d1,… , dm} and the probability mass function satisfies fi(dt) = f ti for
t = 1,… , m. It is possible that f ti = 0 for some t. The corresponding problem of (OPTA − ') in
the finite model, denoted by (OPTAm − '), is given by:

max
P

n
∑

i=1

[ m
∑

t=1
f tiP

t
i d

t +
'iki
ci

]

,

subject to

'i ≤ P ti ≤
'i
1 − ci

,∀t, (AIC′m)
n
∑

i=1

∑

t∈Si

f tiP
t
i ≤ 1 −

n
∏

i=1

∑

t∉Si

f ti ,∀Si ⊂ {1,… , m}. (AF2m)
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DefineH() ∶= 1−∏n
i=1

∑

t∉Si
f ti −

∑n
i=1

∑

t∈Si
'if ti for all ∶= (S1,… , Sn) andSi ⊂ {1,… , m}

for all i. DefineH() ∶= min ′⊃ H( ′) for all . Let zti ∶= f ti
(

P ti − 'i
) for all i and t. By Lemma

16, (OPTAm − ') can be rewritten as (OPTAm1 − ')

max
z

n
∑

i=1

m
∑

t=1
ztid

t +
n
∑

i=1
'i

( m
∑

t=1
f ti d

t +
ki
ci

)

,

subject to

0 ≤ zti ≤
ci'if ti
1 − ci

,∀i,∀t, (AIC′m1)
n
∑

i=1

∑

t∈Si

zti ≤ H(),∀ ⊂ {1,… , m}n. (AF2m1)

Note that if f ti = 0, then zti = 0 by definition and therefore satisfies (AIC′m1) automatically.

Algorithm 1 below describes an algorithm that finds a feasible solution to (OPTAm − '). I start
by giving a verbal overview of the algorithm. It is in the spirit of greedy algorithms. It begins
by assigning values to {zmi }i who have the largest weight dm in the objective function. Let set m0
collect all the agents whose highest net values are below dm. If i ∈ m0 , then fmi = 0 by definition and
zmi = 0 by (AIC′m1). Next check whether there exists some agent i ∉ m0 such that if zmi is assigned
the highest value allowed by (AF2m1), then the upper-bound on zmi in (AIC′m1) is respected. If
so, assign zmi this highest value. Continue until no such agent can be found. Then, among all the
agents whose zmi have not been assign values yet, check whether there exists a pair of agents, a triple
of agents and etc. until there does not exist a group of agents ′ such that if assign ∑

i∈′ z
m
i the

highest value allowed by (AF2m1), then the the upper-bounds in (AIC′m1) can be respected. If now
there still exists an agent i whose zmi has not been assigned a value yet, then I conjecture that the
upper-bound on zmi in (AIC′m1) binds, and let zmi = ci'if ti ∕(1− ci). Let set m1 collect all the agents
not in m0 and for whom the upper-bounds on zmi in (AIC′m1) do not bind. Continue to assign values
to {zm−1i }i, {zm−2i }i,…{z1i }i in the same fashion.

In order to define the algorithm formally, I introduce some notations. Let S ti ∶= {t,… , m} and
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Sm+1i ∶= ∅ for all i and t,  t ∶= {t,… , m}n for all t and m+1 ∶= ∅. Define  + (t, i) ∶=

(S1,… , Si−1, Si ∪ {t}, Si+1… , Sn) and  − (t, i) ∶= (S1,… , Si−1, Si∖{t}, Si+1… , Sn).

Algorithm 1 Let m0 ∶=
{

i |
|

fmi = 0
}

and zmi ∶= 0 for all i ∈ m0 . Define m1 ⊂ ∖m0 , n
m,

{

�m,1,… , �m,nm
}

,
{

m,1,… ,m,nm
}

and zmi for all i ∉ m0 recursively as follows.

1. Let m1 = ∅ and � = 1.

2. If m1 = ∖m0 , then go to step 5. Otherwise, let � = 1 and go to step 2.

3. If there exists ′ ≠ ∅ such that |′| = �, ′ ∩
(

m0 ∪ m1
)

= ∅ and

H

(

 +
∑

i∈′
(m, i)

)

−H() ≤
∑

i∈′

ci'ifmi
1 − ci

,

where Sj = Smj if j ∈ m1 and Sj = Sm+1j otherwise, then let zmi ≤ ci'ifmi ∕(1 − ci) for i ∈ ′

be such that

∑

i∈′
zmi = H

(

 +
∑

i∈′
(m, i)

)

−H().

Let �m,� ∶= ′ and m,� ∶=  . Redefine � as � + 1 and m1 as ′ ∪ m1 , and go to step 2. If

there does not exist such an ′, go to step 4.

4. If � < n − |m0 ∪ m1 |, then redefine � as � + 1 and go to step 3. If � = n − |m0 ∪ m1 |, then go to

step 5.

5. Let nm ∶= � − 1 and zmi ∶= ci'if
m
i ∕(1 − ci) for all i ∈ ∖

(

m0 ∪ m1
)

.

Let 1 ≤ t ≤ m − 1. Suppose that we have defined �0 , 
�
1 , n

� ,
{

��,1,… , ��,n�
}

,
{

�,1,… ,�,n�
}

and {z�i }i for all � ≥ t + 1. Let t0 ∶=
{

i|f ti = 0
}

and zti ∶= 0 for all i ∈ t0. Define 
t
1 ⊂ ∖t0,

{

�t,1,… , �t,nt
}

,
{

 t,1,… , t,nt
}

and zti for all i ∉ t0 recursively as follows.

1. Let t1 ∶= ∅ and � = 1.
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2. If t1 = ∖t0, then go to step 5. Otherwise, let � = 1 and go to step 2.

3. If there exists ′ ≠ ∅ such that |′| = �, ′ ∩
(

t0 ∪ t1
)

= ∅ and

min

H

(

 +
∑

i∈′
(t, i)

)

−
n
∑

j=1

∑

�∈Sj

z�j ≤
∑

i∈′

ci'if ti
1 − ci

,

where  = (S t11 ,… , S tnn ) with tj ≥ t if j ∈ �t,1 ∪⋯∪�t,�−1, tj = t+1 if j ∈ ′ and tj ≥ t+1

otherwise, then let zti ≤ ci'if ti ∕(1 − ci) for i ∈ ′ be such that

∑

i∈′
zti = min H

(

 +
∑

i∈′
(m, i)

)

−
n
∑

i=1

∑

�∈Si

z�i .

Let �t,� ∶= ′ and  t,� as a minimizer of the right-hand side of the above equation such that

there is no  ⊋  t,� which is also a minimizer. Redefine � as � + 1 and t1 as 
′ ∪ t1, and go

to step 2. If there does not exist such an ′, then go to step 4.

4. If � < n − |t0 ∪ t1|, then redefine � as � + 1 and go to step 3. If � = n − |t0 ∪ t1|, then go to

step 5.

5. Let nt ∶= � − 1 and zti ∶= ci'if
t
i ∕(1 − ci) for all i ∈ ∖

(

t0 ∪ t1
)

.

Note that {S t,� +∑

i∈�t,� (t, i)} is the collection of sets for which (AF2m1) bind.

Let z be a solution found by Algorithm 1. I first prove that z is a feasible solution to (OPTAm1−').
For each i and t, let P ti ∶= zti∕f ti +'i if f ti > 0 and P

t
i ∶= 0 otherwise. Then z is a feasible solution to

(OPTAm1−') if and only if P is a feasible solution to (OPTAm−'). Lemma 25 below proves that
P is non-decreasing. By Theorem 2 in Mierendorff (2011), P is a feasible solution to (OPTAm−')
if and only if for all t1,… , tn ∈ {1,… , m}

n
∑

i=1

∑

t∈Si

P
t
i ≤ 1 −

n
∏

i=1

∑

t∉Stii

f ti .
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By construction, this is true if and only if for all t1,… , tn ∈ {1,… , m},
n
∑

i=1

∑

t∈Si

zti ≤ H(), (A.6)

where  = (S t11 ,… , S tnn ), which is proved in Lemma 24.

Hence, P is a feasible solution to (OPTAm−'), or equivalently, z is a feasible solution to (OPTAm1−
'). Let

ẑti ∶=

⎧

⎪

⎨

⎪

⎩

zti if dt ≥ 0
0 if dt < 0

. (A.7)

Clearly, ẑ is also a feasible solution to (OPTAm1 − '). Furthermore,one can verify that ẑ is an
optimal solution to (OPTAm1 − ') by the duality theorem:

Lemma 21 ẑ define in (A.7) is an optimal solution to (OPTAm1 − ').

Finally, let P m ∶= (Pm,ti )i,t, where

Pm,ti ∶=

⎧

⎪

⎨

⎪

⎩

P
m,t
i if dt ≥ 0

'i if dt < 0
. (A.8)

The following corollary directly follows from Lemma 21:

Corollary 9 P m defined in (A.8) is an optimal solution to (OPTAm − ').

The rest of this subsection is organized as follows. In Appendix A.3.1, I prove two technical lemmas
onH andH , which are useful for later proofs. In Appendix A.3.1, I prove that z is a feasible solution
to (OPTAm − ') by proving Lemmas 24 and 25. In Appendix A.3.1, I prove that ẑ is an optimal
solution to (OPTAm − '). In Appendix A.3.1, I prove two technical lemmas that are useful in
characterizing the limit of {Pm}.
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Properties ofH andH

Here, I introduce two technical lemmas on H and H . Lemma 22 proves a useful property of H .
Lemma 23 characterizesH .

Lemma 22 IfH() < 1 −
∑n
i=1 'i and  ′ ⊂  , thenH( ′) ≤ H().

Proof. Consider  = (S1,… , Sn). We have

H() − 1 +
n
∑

i=1
'i =

n
∑

i=1
'i

∑

�∉Si

f �i −
n
∏

i=1

∑

�∉Si

f �i .

Let suppi ∶=
{

t|f ti > 0
}. If Si = Ssuppi for some i, then ∑

�∉Si
f �i = 0 and therefore H() ≥

1 −
∑n
i=1 'i. Hence, H() < 1 −

∑n
i=1 'i implies that Si ≠ Ssuppi or ∑�∉Si

f �i > 0 for all i. Thus,
'i ≤

∏

j≠i
∑

�∉Sj
f �j for all i. Let  ′ ∶= (S1,… , Si−1, Si∖{t}, Si+1… , Sn). Then

H() −H( ′) = f ti
⎛

⎜

⎜

⎝

∏

j≠i

∑

�∉Sj

f �j − 'i
⎞

⎟

⎟

⎠

≥ 0.

Hence,H( ′) ≤ H(). By induction,H( ′) ≤ H() for all  ′ ⊂  .

Lemma 23 H() = min
{

H(), 1 −
∑n
i=1 'i

}

.

Proof. Recall that H() = min ′′⊃ H(S). Recall that 1 ∶= {1,… , m}n. Because 1 ⊃  and
H(1) = 1 −

∑n
i=1 'i, we haveH() ≤ 1 −

∑n
i=1 'i.

Suppose thatH() ≤ 1−∑n
i=1 'i. Let ′′ ⊃  . IfH( ′′) ≥ 1−∑n

i=1 'i, thenH() ≤ 1−
∑n
i=1 'i ≤

H( ′′). IfH( ′′) < 1 −∑n
i=1 'i, thenH() ≤ H( ′′) by Lemma 22. Hence,H() = H().

Suppose thatH() > 1−∑n
i=1 'i. I claim thatH() = 1−∑n

i=1 'i. Suppose not, then there exists
 ′′ ⊃  such that H( ′′) < 1 −

∑n
i=1 'i. Then, by Lemma 22, H() ≤ H( ′′) < 1 −

∑n
i=1 'i,

which is a contradiction to the fact thatH() > 1 −∑n
i=1 'i. Hence,H() = 1 −

∑n
i=1 'i.
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Proofs of feasibility

Lemma 24 For all t1,… , tn ∈ {1,… , m},

n
∑

i=1

∑

t∈Si

zti ≤ H(), (A.6)

where  = (S t11 ,… , S tnn ).

Proof. For each t, let �t,0 ∶= ∅ and �t,nt+1 ∶= ∖(t0 ∪ t1). Suppose that  ⊂ m, i.e., ti ≥ m for
all i. By Algorithm 1, we have

∑

i∈�m,1
zmi = H

(

∅ +
∑

i∈�m,1
(m, i)

)

,

∑

i∈′′
zmi ≤

∑

i∈′′

ci'ifmi
1 − ci

≤ H

(

∅ +
∑

i∈′′
(m, i)

)

,∀∅ ≠ ′′ ⊊ �m,1,

where the second inequality in the second line holds because otherwise |�m,1| ≤ |′′| by Algorithm
1, which is a contradiction to ′′ ⊊ �m,1. Thus, (A.6) holds if ti = m + 1 for all i ∉ �m,1. Suppose
that we have shown that (A.6) holds if ti = m + 1 for all i ∉ �m,1 ∪ ⋯ ∪ �m,�−1 and � ≥ 2.
Suppose that ti = m + 1 for all i ∉ �m,1 ∪ ⋯ ∪ �m,� . Let  ′ ∶= ∅ +

∑

i∈�m,1∪⋯∪�m,�−1(m, i) and
′′ ∶=

{

i ∈ �m,�|ti = m
}

⊂ �m,� . By Algorithm 1, we have

∑

i∈′′
zmi = H

(

 ′ +
∑

i∈′
(m, i)

)

−H( ′) if ′′ = �m,� and � ≤ nm,

∑

i∈′′
zmi ≤

∑

i∈′′

ci'ifmi
1 − ci

≤ H

(

 ′ +
∑

i∈′′
(m, i)

)

−H( ′) if ′′ ⊊ �m,� or � = nm + 1.
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Because  −∑

i∈�m,� (m, i) ⊂  ′, we have
n
∑

i=1

∑

t∈S′i∖Si

zti =
n
∑

i=1

∑

t∈S′i

zti −
∑

i∉�m,�

∑

t∈Si

zti

≥ H( ′) −H

(

 −
∑

i∈�m,�
(m, i)

)

≥ H

(

S′ +
∑

i∈′
(m, i)

)

−H(),

where the last inequality holds becauseH is submodular. Hence,
n
∑

i=1

∑

t∈Si

zti ≤
n
∑

i=1

∑

t∈S′i

zti −
n
∑

i=1

∑

t∈S′i∖Si

zti +H

(

 ′ +
∑

i∈′
(m, i)

)

−H( ′)

≤ H( ′) −H

(

 ′ +
∑

i∈′
(m, i)

)

+H() +H

(

 ′ +
∑

i∈′
(m, i)

)

−H( ′)

= H().

By induction, (A.6) holds for all  ⊂ m.

Suppose that  ⊂  t+1+
∑

i∈�t,1∪⋯∪�t,� (t, i) for t ≤ m−1 and 1 ≤ � ≤ nt+1. Let ′ ∶= {i ∈ �t,�|ti =
t} and  ′ ∶=  −

∑

i∈′(t, i). Suppose, w.l.o.g., that ′ ≠ ∅. If ′ = �t,� , then, by Algorithm 1, we
have

∑

i∈′
z�i ≤ H

(

 ′ +
∑

i∈′
(t, i)

)

−
n
∑

i=1

∑

�∈S′i

z�i = H () −
n
∑

i=1

∑

�∈S′i

z�i .

If ′ ⊊ �t,� , then, by Algorithm 1, we have

∑

i∈′
z�i ≤

∑

i∈′

ci'if ti
1 − ci

≤ H

(

 ′ +
∑

i∈′
(t, i)

)

−
n
∑

i=1

∑

�∈S′i

z�i = H () −
n
∑

i=1

∑

�∈S′i

z�i ,

where the second inequality holds because otherwise |�t,�| ≤ |′| by Algorithm 1, which is a con-
tradiction to ′ ⊊ �t,� . Hence, (A.6) holds for  .
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Lemma 25 P
t
i is non-decreasing in t on

{

t |
|

f ti > 0
}

.

To prove Lemma 25, I first prove the following lemmawhich says that if the upper-bound in (AIC′m1)
does not bind for zt+1i , then it does not bind for zti.

Lemma 26 Suppose that f ti , f
t+1
i > 0. Then zt+1i ∈ t+11 implies that zti ∈ t1.

Proof. Suppose that f ti , f t+1i > 0 and zt+1i ∈ t+11 . Then, by Algorithm 1, there exists  with
Sj = S

tj
j ⊂ S

t+1
j for all j ≠ i and Si = S t+1i such that

n
∑

j=1

∑

�∈Sj

z�j = H().

Suppose thatH() < 1 −∑n
j=1 'j . Because, by Lemma 24,

∑

j≠i

∑

�∈Sj

z�j +
∑

�∈Si∖{t+1}
z�i ≤ H( − (t + 1, i)),

we have
ci'if t+1i

1 − ci
≥ zt+1i ≥ H() −H( − (t + 1, i)) = f t+1i

⎛

⎜

⎜

⎝

∏

j≠i

∑

�∈Sj

f �j − 'i
⎞

⎟

⎟

⎠

,

where the last equality holds by Lemmas 22 and 23. This implies that∏j≠i
∑

�∈Sj
f �j ≤ 'i

1−ci
. Hence,

zti ≤H( + (t, i)) −
n
∑

j=1

∑

�∈Sj

z�j

≤H( + (t, i)) −H()

=f ti
⎛

⎜

⎜

⎝

∏

j≠i

∑

�∈Sj

f �j − 'i
⎞

⎟

⎟

⎠

≤
ci'if ti
1 − ci

,

where the equality holds by Lemmas 22 and 23.

Suppose thatH() ≥ 1−∑n
j=1 'j , then by Lemmas 22 and 23,H() = H(+(t, i)) = 1−∑n

j=1 'j .
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Hence,

zti ≤H( + (t, i)) −
n
∑

j=1

∑

�∈Sj

z�j

≤H( + (t, i)) −H()

=0 ≤
ci'if ti
1 − ci

.

Hence, zti ∈ t1.

Proof of Lemma 25. Suppose that f ti , f t+1i > 0. Recall that P ti = zti∕f
t
i + 'i if f ti > 0 . Suppose

that zt+1i ∉ t+11 , then P ti ≤ 'i
1−ci

= P
t+1
i . Suppose that zt+1i ∈ t+11 . Then there exists  with

Sj = S
tj
j ⊂ S

t+1
j for all j ≠ i and Si = S t+1i such that

n
∑

j=1

∑

�∈Sj

z�j = H().

Suppose that H() < 1 −
∑n
j=1 'j . In the proof of Lemma 26, we have shown that zt+1i ≥

f t+1i

(

∏

j≠i
∑

�∈Sj
f �j − 'i

)

and zti ≤ f ti
(

∏

j≠i
∑

�∈Sj
f �j − 'i

)

. Hence,

P
t
i ≤

∏

j≠i

∑

�∈Sj

f �j ≤ P
t+1
i .

Suppose thatH() ≥ 1 −∑n
j=1 'j . By the proof of Lemma 26, we have P ti = 'i ≤ P

t+1
i .

Proofs of optimality

Before proving Lemma 21, I first prove some useful properties of  t,� and z. Recall that {S t,� +
∑

i∈�t,� (t, i)} is the collection of sets for which (AF2m1) bind. The result in Lemma 27 implies that
this collection is a nested sequence of sets. In fact, Lemma 27 proves a stronger statement.

Lemma 27  t,1 ⊃  t+1,nt+1 +
∑

i∈�t+1,nt+1 (t+1, i) for 1 ≤ t ≤ m−1; and  t,�+1 ⊃  t,� +
∑

i∈�t,� (t, i)
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for 1 ≤ t ≤ m.

Proof. By Algorithm 1, m,�+1 ⊃ m,� +
∑

i∈�m,� (m, i). Let t ≤ m − 1 and ′ = �t,1. Let  ∶=

 t+1,nt+1+
∑

i∈�t+1,nt+1 (t+1, i). Then
∑n
j=1

∑

�∈Sj
z�j = H(). Suppose  t,1 ⊅  . Let  ′ ∶= ∪ t,1.

Then S′j = S
tj
j for some tj ≥ t + 1 for all j. By Lemma 24, we have

n
∑

j=1

∑

�∈S′j∖S
t,1
j

z�j

=
n
∑

j=1

∑

�∈Sj

z�j −
n
∑

j=1

∑

�∈St,1j ∩Sj

z�j

≥H() −H( ∩  t,1).

Hence,

H

(

 ′ +
∑

i∈′
(t, i)

)

−
n
∑

j=1

∑

�∈S′j

z�j −H

(

 t,1 +
∑

i∈′
(t, i)

)

+
n
∑

j=1

∑

�∈St,1j

z�j

=H

(

 ′ +
∑

i∈′
(t, i)

)

−H

(

 t,1 +
∑

i∈′
(t, i)

)

−
n
∑

j=1

∑

�∈S′j∖S
t,1
j

z�j

≤

[

H

(

 ′ +
∑

i∈′
(t, i)

)

−H()

]

−

[

H

(

 t,1 +
∑

i∈′
(t, i)

)

−H( ∩  t,1)

]

≤0,

where the last inequality holds because H is submodular, which is a contradiction to the definition
of  t,� . Hence,  t,1 ⊃  t+1,nt+1 +

∑

i∈�t+1,nt+1 (t + 1, i). By a similar argument, one can show that
 t,�+1 ⊃  t,� +

∑

i∈�t,� (t, i) for all t ≤ m − 1.

By Lemmas 22, 23 and 27, there exists t and � such that

H

(

 t,� +
∑

i∈�t,�
(t, i)

)

=

⎧

⎪

⎨

⎪

⎩

1 −
∑

i 'i if t < t or � ≥ �, t = t

H
(

 t,� +
∑

i∈�t,� (t, i)
)

< 1 −
∑

i 'i otherwise
. (A.9)
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The definition of t is analogous to that in the symmetric case. By a similar argument to that in Lemma
26, we have

Lemma 28 If t < t, or t = t and i ∉ �t,1 ∪⋯ ∪ �t,� , then zti = 0.

Proof of Lemma21. Consider the dual to problem (OPTAm1−'), which is denoted by (DOPTAm1−
'),

min
�,�,�

n
∑

i=1

m
∑

t=1

�tici'if
t
i

1 − ci
+
∑


�()H() +

n
∑

i=1
'i

( m
∑

t=1
f ti d

t +
ki
ci

)

,

subject to

dt − �ti + �
t
i −

∑

Si∋t
�() ≥ 0 if f ti > 0,∀i,∀t,

� ≥ 0, � ≥ 0, � ≥ 0.

Let ẑ be defined by (A.7) and (�̂, �̂, �̂) be the corresponding dual variables. Let t0 be such that
dt0 ≥ 0 if and only if t ≥ t0.

Let �̂ ( t,nt +∑

i∈�t,nt (t, i)
)

≥ 0 for t ≥ max{t0, t} and �̂() = 0 otherwise. (i) If t < max{t0, t},
then let �̂ti = 0 and �̂ti = −dt ≥ 0. (ii) If t = max{t0, t}, then let �̂

(

 t,nt +
∑

j∈�t,nt (t, j)
)

= dt ≥ 0

and �̂ti = 0. If i ∈ t1, then let �̂ti = 0. If i ∉ t0 ∪ t1, let �̂ti = dt ≥ 0. (iii) If t > max{t0, t}, let
�̂
(

 t,nt +
∑

j∈�t,nt (t, j)
)

= dt − dt−1 ≥ 0 and �̂ti = 0. If i ∈ t1, then let �̂ti = 0. If i ∉ t0 ∪ t1 and
i ∈ max{t

0,t}
1 , then let �̂ti = dt − dt∗ ≥ 0 where t∗ = min{t′ ≥ max{t0, t}|t′1 ∋ i}. If i ∉ max{t

0,t}
1 ,

then let �̂ti = 0. Hence, (�̂, �̂, �̂) is a feasible solution to (DOPTAm1 − ') and the complementary
slackness conditions are satisfied. Finally, it is easy to verify that the dual objective is equal to the
primal objective. By the duality theorem, ẑ is an optimal solution to (OPTAm1 − ').

Properties of S t,�

Before moving on to the continuum case, I prove the following two lemmas which are useful in
characterizing the limit of {Pm}.
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Lemma 29 Suppose  t,� = (S
t∗1
1 ,… , S t

∗
n
n ). Then t∗i = t if i ∈ �t,1 ∪ ⋯ ∪ �t,�−1, t∗i = t + 1 if

i ∈ t+11 ∪ �t,�∖
(

�t,1 ∪⋯ ∪ �t,�−1
)

, and t∗i ∈ {t + 1, m + 1} otherwise. Furthermore, for ℎ ∉

t+11 ∪ �t,1 ∪⋯ ∪ �t,� , we have

1. If 'ℎ
1−cℎ

−
∏

i≠ℎ
∑t∗i −1
�=1 f

�
i ≥ 0, then t∗ℎ = t + 1.

2. If 'ℎ
1−cℎ

−
∏

i≠ℎ
∑t∗i −1
�=1 f

�
i < 0 andH

(

 t,� +
∑

i∈�t,� (t, i)
)

< 1 −
∑n
i=1 'i, then t

∗
ℎ = m + 1.

Proof. By Algorithm 1, t∗i = t + 1 if i ∈ �t,� . By Lemma 27, t∗i = t if i ∈ �t,1 ∪ ⋯ ∪ �t,�−1

and t∗i = t + 1 if i ∈ t+11 ∖
(

�t,1 ∪⋯ ∪ �t,�−1
). If t = m, then, by Algorithm 1, t∗i = m + 1 for

i ∉ �t,1 ∪⋯ ∪ �t,�−1.

Let t ≤ m − 1. For the ease of notation, let ′ = �t,� and  = (S t11 ,… , S tnn ) be such that ti = t if
i ∈ �t,1 ∪⋯ ∪ �t,�−1, ti = t + 1 if i ∈ t+11 ∪ �t,�∖

(

�t,1 ∪⋯ ∪ �t,�−1
) and ti ≥ t + 1 otherwise. Fix

ℎ ∉ t+11 ∪ �t,1 ∪⋯ ∪ �t,� and ti for all i ≠ ℎ. Define

Δ(tℎ) ∶= H

(

 +
∑

i∈′
(t, i)

)

−
n
∑

i=1

∑

�∈Si

z�i .

By Lemma 28 and the fact that ℎ ∉ t+11 , there exists t ≤ t∗ ≤ m + 1 such that if t + 1 ≤ tℎ ≤ t∗,
then Δ(tℎ) = 1 −∑n

i=1 'i −
∑n
i=1

∑

�∈Si
z�i ; and if t∗ < tℎ ≤ m + 1, then

Δ(tℎ) = 1 −

(

∏

i∉′

ti−1
∑

�=1
f �i

)(

∏

i∈′

t−1
∑

�=1
f �i

)

−
∑

i∉′

m
∑

�=ti

f �i 'i −
∑

i∈′

m
∑

�=t
f �i 'i −

n
∑

i=1

m
∑

�=ti

z�i .

Because ℎ ∉ t+11 , we have ztℎℎ = cℎ'ℎf
tℎ
ℎ ∕(1 − cℎ) for all tℎ ≥ t + 1. If tℎ < t∗, then we have

Δ(tℎ + 1) − Δ(tℎ) = cℎ'ℎf
tℎ
ℎ ∕(1 − cℎ) ≥ 0. Hence, Δ(t + 1) ≤ Δ(tℎ) for all tℎ ≤ t∗. If tℎ > t∗, we

have

Δ(tℎ + 1) − Δ(tℎ)

=f tℎℎ

(

'ℎ
1 − cℎ

−

(

∏

i∉′,i≠ℎ

ti−1
∑

�=1
f �i

)(

∏

i∈′

t−1
∑

�=1
f �i

))

.
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If tℎ = t∗, we have

Δ(tℎ + 1) − Δ(tℎ)

≥f tℎℎ

(

'ℎ
1 − cℎ

−

(

∏

i∉′,i≠ℎ

ti−1
∑

�=1
f �i

)(

∏

i∈′

t−1
∑

�=1
f �i

))

.

Hence, if 'ℎ
1−cℎ

−
(

∏

i∉′,i≠ℎ
∑ti−1
�=1 f

�
i

)(

∏

i∈′
∑t−1
�=1 f

�
i

)

≥ 0, thenΔ(tℎ+1) ≥ Δ(tℎ) for all tℎ ≥ t∗.
Furthermore, because Δ(t + 1) ≤ Δ(tℎ) for all tℎ ≤ t∗, we have Δ(t + 1) ≤ Δ(tℎ) for all tℎ ≥ t + 1,
hence t∗ℎ = t + 1.

If 'ℎ
1−cℎ

−
(

∏

i∉′,i≠ℎ
∑ti−1
�=1 f

�
i

)(

∏

i∈′
∑t−1
�=1 f

�
i

)

< 0, then Δ(tℎ + 1) ≤ Δ(tℎ) for all tℎ > t∗.
Hence, Δ(m + 1) ≤ Δ(tℎ) for all tℎ > t∗. Recall that Δ(t + 1) ≤ Δ(tℎ) for all tℎ ≤ t∗. Hence, t∗ℎ ∈
argmin {Δ(t + 1),Δ(m + 1)}. If H (

 t,� +
∑

i∈�t,� (t, i)
)

< 1 −
∑n
i=1 'i, then t∗ = t by definition,

which implies that t∗ℎ = m + 1.

Lemma 30 Suppose  t,� = (S t
∗
1
1 ,… , S t

∗
n
n ) and ℎ ∉ t+11 ∪ �t,1 ∪⋯ ∪ �t,� , then t∗ℎ = t + 1 implies

that ℎ ∈ t1.

Proof. Suppose H (

 t,� +
∑

i∈�t,� (t, i)
)

= 1 −
∑n
i=1 'i, then by Lemma 28, ℎ ∈ t1. Suppose

H
(

 t,� +
∑

i∈�t,� (t, i)
)

< 1 −
∑n
i=1 'i. By Lemma 29, 'ℎ

1−cℎ
≥
∏

i≠ℎ
∑t∗i −1
�=1 f

�
i . Hence,

H

(

 t,� +
∑

i∈�t,�
(t, i) + (t, ℎ)

)

−H

(

 t,� +
∑

i∈�t,�
(t, i)

)

≤f tℎ
⎛

⎜

⎜

⎝

∏

i≠ℎ

t∗i −1
∑

�=1
f �i − 'ℎ

⎞

⎟

⎟

⎠

≤f tℎ

(

'ℎ
1 − cℎ

− 'ℎ

)

=
cℎ'ℎf tℎ
1 − cℎ

.

By Algorithm 1, ℎ ∈ t1.
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A.3.2. Continuum case

I characterize an optimal solution in the continuum case by taking m to infinity. Let m,t1 denote
t1 and tm be defined by (A.9) when  is discretized by m grid points. Clearly, if i ∈ m,t1 then
i ∈ 2m,2t−11 . Let tmi ∶= max

{

t|i ∈ m,t1

} and dmi ∶= d + (tmi −1)(d−d)
m

. Then the sequence of
{

d
2�

i

}

�

is non-decreasing and bounded from above by d. Hence, the sequence converges and let dui ∶=
lim�→∞ d

2�

i denote its limit. For each �, let d2� ∶= d + (t2�−1)(d−d)
2� , which is bounded. After taking

subsequences, we can assume {d2�}� converges and let dl ∶= lim�→∞ d2
� denote its limit. Let

P i(vi) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

'i
1−ci

if vi > dui + ki
ci

∏

j≠i,duj≥vi−
ki
ci

Fj
(

vi −
ki
ci
+ kj

cj

)

if dl + ki
ci
< vi < dui +

ki
ci

'i if vi < dl + ki
ci

.

Finally, let P ∗ ∶= (P ∗i )i where

P ∗i (vi) ∶=

⎧

⎪

⎨

⎪

⎩

P i(vi) if vi > ki
ci

'i if vi < ki
ci

. (2.19)

We are now ready to prove Theorem 4.

Proof of Theorem 4. We can extend Pmi (Pmi ) to [vi, vi] by setting, for each t = 1,… , m,

P
m
i (vi) ∶= P

m,t
i (P

m
i (vi) ∶= P

m,t
i ) for vi ∈

[

d +
(t − 1)(d − d)

m
+
ki
ci
, d +

t(d − d)
m

+
ki
ci

]

.

I show that, after taking subsequences, Pmi converges to P i pointwise.

First, by construction and Lemma 28, P 2�i (vi) = 'i for all vi < d2
� + ki

ci
, we have lim�→∞ P

2�

i (vi) =

P i(vi) for all vi < dl + ki
ci
. Similarly, by construction, P 2�i (vi) = 'i

1−ci
for all vi > d2

�

i + ki
ci
, we have

lim�→∞ P
2�

i (vi) = P i(vi) for all vi > dui + ki
ci
.

Suppose dl < vi − ki
ci
< dui . Assume without loss of generality that du1 ≥ ⋯ ≥ dun ≥ dl. If dui = dl,
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then we are done. Assume for the rest of the proof that dui > dl. Let dun+1 ∶= dl. Consider vi such
that dui ≥ duj > vi −

ki
ci
> duj+1 for some j ≥ i. For m sufficiently large, there exists t such that

duj+1 < d +
(t − 1)(d − d)

m
< d +

t(d − d)
m

< vi −
ki
ci
< d +

(t + 1)(d − d)
m

< duj ≤ dui .

Hence, by construction, we have m,t1 = m,t+11 = {1,… , j}. By Lemmas 29 and 30, there exists
 = (S t11 ,… , S tnn ) such that ti = t + 1, tℎ ∈ {t, t + 1} if ℎ ≤ j and ℎ ≠ i, tℎ = m + 1 if ℎ > j, and

f ti
(

P
m,t
i − 'i

)

= zm,ti = H( + (t, i)) −H().

BecauseH is submodular, we have

f ti
(

P
m,t
i − 'i

)

≤ H( ′ + (t, i)) −H( ′)

= f ti

(

∏

ℎ≤j,ℎ≠i

t
∑

�=1
f �ℎ − 'i

)

,

where  ′ = (S t+11 ,… , S t+1j , Sm+1j+1 ,… , Sm+1n ); and

f ti
(

P
m,t
i − 'i

)

≥ H( ′′ − (t, i)) −H( ′)

= f ti

(

∏

ℎ≤j,ℎ≠i

t−1
∑

�=1
f �ℎ − 'i

)

,

where  ′′ = (S t1,… , S tj , S
m+1
j+1 ,… , Sm+1n ). Hence,

∏

ℎ≤j,ℎ≠i

t−1
∑

�=1
f �ℎ ≤ P

m,t
i ≤

∏

ℎ≤j,ℎ≠i

t
∑

�=1
f �ℎ .

Take m = 2� to infinity and we have lim�→∞ P
2�

i (vi) = P i(vi).

It follows that, after taking subsequences, Pmi converges to P ∗i pointwise. P ∗ is feasible by a similar
argument to that in the proof of Lemma 17, and optimal by a similar argument to that in the proof
of Theorem 1.
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A.3.3. Optimal one-threshold mechanism

By a similar argument to that in the proof of Theorem 2, we can show that pure randomization is
optimal if verification is sufficiently costly or the principal’s ability to punish an agent is sufficiently
limited, i.e., vi−ki∕ci ≤ Evi[vi] for all i. To make the problem interesting, in what follows, I assume:

Assumption 5 vi − ki∕ci > Evi[vi] for some i.

If dui = vi − ki
ci
for all i, then dl ≥ maxj

{

vj − kj∕cj
}

satisfies that

n
∑

i=1
'iFi

(

dl +
ki
ci

)

=
n
∏

i=1
Fi

(

dl +
ki
ci

)

.

Lemma 31 below shows that there exists a unique dl satisfying the above equation. Note that unless
'i = 0 for all i, we have dl > maxj

{

vj − kj∕cj
}

. Clearly, in optimum, 'i > 0 for some i. Hence,
dl > maxj

{

vj − kj∕cj
}

. Let d∗i (i = 1,… , n) be defined by

Evi[vi] − Evi

[

max
{

vi, d
∗
i +

ki
ci

}]

+
ki
ci
= 0, (A.10)

and dl∗ ∶= maxi d∗i . Nowwe are ready to state the main result in this subsection which characterizes
the set of optimal ':

Theorem 17 Suppose that Assumption 5 holds. If

n
∑

i=1
(1 − ci)Fi

(

dl∗ +
ki
ci

)

∏

j≠i
Fj

(

vj −
ki
ci
+
kj
cj

)

≤
n
∏

i=1
Fi

(

dl∗ +
ki
ci

)

,

then the set of optimal ' is the convex hull of

⎧

⎪

⎪

⎨

⎪

⎪

⎩

'

|

|

|

|

|

|

|

|

|

|

i∗ ∈ argmaxi d∗i , 'i = (1 − ci)
∏

j≠i Fj
(

vj −
ki
ci
+ kj

cj

)

∀i ≠ i∗,

'i∗ =
∏n

i=1 Fi
(

dl∗+ ki
ci

)

−
∑

i≠i∗ (1−ci)
∏

j≠i Fj

(

vj−
ki
ci
+
kj
cj

)

Fi
(

d∗+ ki
ci

)

Fi∗
(

dl∗+ ki∗
ci∗

)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.
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For each optimal '∗, the following allocation rule is optimal:

P ∗∗i (vi) ∶=

⎧

⎪

⎨

⎪

⎩

∏

j≠i Fj
(

vi −
ki
ci
+ kj

cj

)

if vi ≥ dl + ki
ci

'∗i if vi < dl +
ki
ci

.

Proof. Let Φ(dl, du1 ,… , dun) ⊂
{

'|
∑

'i ≤ 1
} denote the feasible set of ' given dl and du1 ,… , dun .

I often abuse notation and use Φ to denote the feasible set when its meaning is clear. Fix dl >
maxj

{

vj − kj∕cj
}

and dui = vi − ki
ci
for all i. Then ' is feasible if and only if

n
∑

i=1
'iFi

(

dl +
ki
ci

)

=
n
∏

i=1
Fi

(

dl +
ki
ci

)

,

∏

j≠i
Fj

(

vi −
ki
ci
+
kj
cj

)

≤
'i
1 − ci

,∀i.

Hence, Φ is non-empty if and only if
n
∑

i=1
(1 − ci)Fi

(

dl +
ki
ci

)

∏

j≠i
Fj

(

vi −
ki
ci
+
kj
cj

)

≤
n
∏

i=1
Fi

(

dl +
ki
ci

)

.

Suppose that Φ is non-empty. It is not hard to see that Φ is convex. Because the objective function
is linear in ' and the feasible set is convex, there is an optimal ' which is an extreme point.

Clearly, ' is an extreme point of Φ if and only if there exists i∗ such that
n
∑

i=1
'iFi

(

dl +
ki
ci

)

=
n
∏

i=1
Fi

(

dl +
ki
ci

)

,

'j = (1 − cj)
∏

i≠j
Fi

(

vj −
kj
cj
+
ki
ci

)

,∀j ≠ i∗.

In this case, denote the principal’s payoff by Z1,i∗(dl). For ease of notation, let i∗ = 1. Let '̄j ∶=

164



(1 − cj)
∏

i≠j Fi
(

vj −
kj
cj
+ ki

ci

)

for all j. Then the principal’s payoff is given as follows:

Z1,1(dl) ∶=
n
∑

i=1
∫

vi

max
{

dl+ ki
ci
, kici

}

(

vi −
ki
ci

)

∏

j≠i
Fj

(

vi −
ki
ci
+
kj
cj

)

dFi(vi)

+
∑

i≠1
∫

max
{

dl+ ki
ci
, kici

}

vi

(

vi −
ki
ci

)

'idFi(vi)

+ ∫

max
{

dl+ k1
c1
, k1c1

}

v1

(

v1 −
k1
c1

)

∏n
i=1 Fi

(

dl + ki
ci

)

−
∑

i≠1 Fi
(

dl + ki
ci

)

'i

F1
(

dl + k1
c1

) dF1(v1)

+
∑

i≠1

'iki
ci

+
k1
c1

∏n
i=1 Fi

(

dl + ki
ci

)

−
∑

i≠1 Fi
(

dl + ki
ci

)

'i

F1
(

dl + k1
c1

) .

If dl < 0, then it is not hard to show that Z1,1 is strictly increasing in dl. If dl ≥ 0, then, after some
algebra, we have

Z′
1,1(d

l)

=

⎧

⎪

⎨

⎪

⎩

∑

i≠1

⎡

⎢

⎢

⎢

⎣

fi

(

dl +
ki
ci

)

∏

j≠i,1
Fj

(

dl +
kj
cj

)

− 'i
fi
(

dl + ki
ci

)

F1
(

dl + k1
c1

)

− Fi
(

dl + ki
ci

)

f1
(

dl + k1
c1

)

F 21
(

dl + k1
c1

)

⎤

⎥

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

⋅
⎡

⎢

⎢

⎣

∫

dl+ k1
c1

v1

(

v1 − dl −
k1
c1

)

dF1(v1) +
k1
c1

⎤

⎥

⎥

⎦

.

Because 'i ≤
∏

j≠i Fj
(

dl + kj
cj

)

, the first-term in the above equation is strictly positive. The
second-term is strictly decreasing in dl. Let d∗1 be such that

∫

d∗1+
k1
c1

v1

(

v1 − d∗1 −
k1
c1

)

dF1(v1) +
k1
c1
= 0. (A.11)

ThenZ′
1,1(d

l) > 0 if dl < d∗1 andZ′
1,1(d

l) < 0 if dl > d∗1 . Hence, Z1,1(dl) achieves its maximum at
dl = d∗1 .

Define d∗i for all i ≥ 2 as in (A.11). Suppose that d∗1 ≥ d∗2 . By a similar argument to that in Lemma
31, Φ

(

d∗2 , v1 −
k1
c1
,… , vn −

kn
cn

)

≠ ∅ implies that Φ
(

d∗1 , v1 −
k1
c1
,… , vn −

kn
cn

)

≠ ∅. Suppose that
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both Φ
(

d∗2 , v1 −
k1
c1
,… , vn −

kn
cn

)

and Φ
(

d∗1 , v1 −
k1
c1
,… , vn −

kn
cn

)

are non-empty. Then

Z1,1(dl) −Z1,2(dl)

=

[ n
∏

i=1
Fi

(

dl +
ki
ci

)

−
∑

i=1
Fi

(

dl +
ki
ci

)

'i

]

⋅

⎧

⎪

⎨

⎪

⎩

1

F1
(

dl + k1
c1

)

[

∫

dl+ k1
c1

v1

(

v1 −
k1
c1

)

dF1(v1) +
k1
c1

]

− 1

F2
(

dl + k2
c2

)

[

∫

dl+ k2
c2

v2

(

v1 −
k2
c2

)

dF2(v2) +
k2
c2

]⎫

⎪

⎬

⎪

⎭

If dl = d∗2 , then by definition we have

Z1,1(d∗2 ) −Z1,2(d
∗
2 )

=

[ n
∏

i=1
Fi

(

d∗2 +
ki
ci

)

−
∑

i=1
Fi

(

d∗2 +
ki
ci

)

'i

]

⋅

⎧

⎪

⎨

⎪

⎩

1

F1
(

d∗2 +
k1
c1

)

[

∫

d∗2+
k1
c1

v1

(

v1 −
k1
c1

)

dF1(v1) +
k1
c1

]

− d∗2

⎫

⎪

⎬

⎪

⎭

≥

[ n
∏

i=1
Fi

(

d∗2 +
ki
ci

)

−
∑

i=1
Fi

(

d∗2 +
ki
ci

)

'i

]

(

d∗2 − d
∗
2
)

= 0,

where the last inequality holds because d∗1 ≥ d∗2 , and the inequality holds strictly if d∗1 > d∗2 . Hence,
Z1,1(d∗1 ) ≥ Z1,2(d∗2 ) and the inequality holds strictly if d∗1 > d∗2 .

Let dl∗ ∶= maxi d∗i . If

n
∑

i=1
(1 − ci)

∏

j≠i
Fj

(

vj −
ki
ci
+
kj
cj

)

Fi

(

d∗ +
ki
ci

)

≤
n
∏

i=1
Fi

(

dl∗ +
ki
ci

)

,

then Φ
(

dl∗, v1 −
k1
c1
,… , vn −

kn
cn

)

is feasible. This completes the proof.
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Lemma 31 There exists a unique dl ≥ maxj
{

vj − kj∕cj
}

such that

n
∑

i=1
'iFi

(

dl +
ki
ci

)

=
n
∏

i=1
Fi

(

dl +
ki
ci

)

. (A.12)

Proof. If 'i = 0 for all i, then dl = maxj
{

vj − kj∕cj
}

is the unique solution to (A.12). Assume,
for the rest of the proof, that 'i > 0 for some i. Let

Δ(dl) ∶=
n
∑

i=1
'iFi

(

dl +
ki
ci

)

−
n
∏

i=1
Fi

(

dl +
ki
ci

)

.

Then
Δ′(dl) =

n
∑

i=1
fi

(

dl +
ki
ci

)

[

'i −
∏

j≠i
Fj

(

dl +
kj
cj

)

]

.

BecauseΔl
(

maxj
{

vj − kj∕cj
})

> 0, a solution to (A.12)must satisfy that dl > maxj
{

vj − kj∕cj
}

.
Assume, for the rest of the proof, that dl > maxj

{

vj − kj∕cj
}

. Then Fi
(

dl + ki
ci

)

> 0 for all i. If
Δ(dl) ≤ 0, then 'i ≤ ∏

j≠i Fj
(

dl + kj
cj

)

for all i, and the strict inequality holds for some i, which
implies that Δ′(dl) < 0. Hence, Δ(dl) crosses zero at most once, in which case it does so from
above. Because Δl

(

maxj
{

vj − kj∕cj
})

> 0 and Δl
(

maxj
{

vj − kj∕cj
})

=
∑

i 'i − 1 ≤ 0, there
exists a unique dl satisfying (A.12).

A.3.4. Symmetric environment revisited

Fix' and let dui and dl be the associated optimal thresholds. Assume, without loss of generality, that
du1 ≥ ⋯ ≥ dun ≥ dl. Let 1 ≤ �1 < ⋯ < �L ≤ n be such that du1 = ⋯ = du�1 , du�� > du��+1 = ⋯ = du��+1
for � = 1,… , L − 1 and du�L > du�L+1 = ⋯ = dun = dl. Note that in the symmetric environment
dui ≥ duj only if 'i ≥ 'j . The proof of Theorem 5 uses the following properties of dl and dui :

Lemma 32 If 'i
1−c ≥ 1 for all i ≤ �1, then du�1 = v − k

c
; otherwise 'i

1−c < 1 for all i ≤ �1 and du�1
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satisfies

1 − F
(

du�1 +
k
c

)�1
=

�1
∑

i=1

'i
1 − ci

[

1 − F
(

du�1 +
k
c

)]

,

1 − F (v)�1 ≶
�1
∑

i=1

'i
1 − c

[1 − F (v)] if v ≶ du�1 +
k
c
,

'i
1 − c

≥ F
(

du�1 +
k
c

)�1−1
,∀i = 1,… , �1.

For � = 1,… , L − 1, 'i
1−c < 1 for �� + 1 ≤ i ≤ ��+1 and du��+1 satisfies

F
(

d��+1 +
k
c

)��
− F

(

d��+1 +
k
c

)��+1
=

��+1
∑

i=��+1

'i
1 − ci

[

1 − F
(

d��+1 +
k
c

)]

,

F (v)�� − F (v)��+1 ≶
��+1
∑

i=��+1

'i
1 − c

[1 − F (v)] if v ≶ d��+1 +
k
c
,

'i
1 − c

≥ F
(

du��+1 +
k
c

)��+1−1
,∀i = �� + 1,… , ��+1.

Finally, dl satisfies

F
(

dl + k
c

)�L
=

n
∑

i=1
'iF

(

dl + k
c

)

+
n
∑

i=�L+1

'i
1 − c

[

1 − F
(

dl + k
c

)]

,

F (v)�L ≶
n
∑

i=1
'iF (v) +

n
∑

i=�L+1

'i
1 − c

[1 − F (v)] if v ≶ dl + k
c
.

The arguments used to prove Lemma 32 are similar to that used to show that Pmi converges to P i if
dl < vi −

ki
ci
< dui , and are neglected here.

Proof of Theorem 5. The first part of the theorem directly follows from Theorem 17. Assume, for
the rest of the proof, that F (v∗)n−1 < n(1 − c). Consider an optimal ', and let dui and dl be the
associated optimal thresholds. Assume, without loss of generality, that du1 ≥ ⋯ ≥ dun ≥ dl. Let ��
(� = 1,… , L) be defined as in the beginning of this subsection.

First, I show that L = 1. Suppose, to the contrary, that L ≥ 2. Suppose that du�2 < 0, then the
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principal’s objective function is strictly increasing in 'i for i > �2. Hence, in optimum, it must be
that du�2 ≥ 0. Construct a new '∗ as follows: Let

'∗i =
1
�2

�2
∑

j=1
'j , for all i = 1,… , �2,

and '∗i = 'i for all i > �2. Let du∗i and dl∗ be the optimal thresholds associated with '∗. Then
du∗1 = … du∗�2 and du∗i = dui for all i > �2. There are two cases: (1) 'i < 1 − c for all i ≤ �1 and (2)
'i ≥ 1 − c for all i ≤ �1.

Case 1: 'i < 1 − c for all i ≤ �1. In this case, '∗1 < 1 − c. Then du∗�2 is defined by

[

1 − F
(

du∗�2 +
k
c

)]

�2
∑

i=1

'∗i
1 − c

= 1 − F
(

du
∗

�2
+ k
c

)�2
. (A.13)
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Hence, du�2 < du
∗

�2
< du�1 . Let Z(') denote the principal’s payoff given '. Then

Z('∗) −Z(')

=
�2
∑

i=1

[

∫

v

du∗�2
+ k
c

(

vi −
k
c

) '∗i
1 − c

dF (vi) + ∫

du∗�2
+ k
c

du�2
+ k
c

(

vi −
k
c

)

F (vi)�2−1dF (vi)

]

−
�2
∑

i=�1+1
∫

v

du�2
+ k
c

(

vi −
k
c

) 'i
1 − c

dF (vi)

−
�1
∑

i=1

[

∫

du�1
+ k
c

du�2
+ k
c

(

vi −
k
c

)

F (vi)�1−1dF (vi) + ∫

v

du�1
+ k
c

(

vi −
k
c

) 'i
1 − c

dF (vi)

]

=∫

du∗�2
+ k
c

du�2
+ k
c

(

v − k
c

)

�2F (v)�2−1dF (v) + ∫

v

du∗�2
+ k
c

(

v − k
c

)

�2
∑

i=1

'∗i
1 − c

dF (v)

− ∫

du�1
+ k
c

du�2
+ k
c

(

v − k
c

)

( �2
∑

i=�1+1

'i
1 − c

+ �1F (v)�1−1
)

dF (v) − ∫

u

du�1
+ k
c

(

v − k
c

)

�2
∑

i=1

'i
1 − c

dF (v)

=∫

du∗�2
+ k
c

du�2
+ k
c

(

v − k
c

)

�2F (v)�2−1dF (v) + ∫

du�1
+ k
c

du∗�2
+ k
c

(

v − k
c

)

�2
∑

i=1

'i
1 − c

dF (v)

− ∫

du�1
+ k
c

du�2
+ k
c

(

v − k
c

)

( �2
∑

i=�1+1

'i
1 − c

+ �1F (v)�1−1
)

dF (v)

=du�1

[

F
(

du�1 +
k
c

)

�1
∑

i=1

'i
1 − c

− F
(

du�1 +
k
c

)�1
]

+ du∗�2

[

F
(

du∗�2 +
k
c

)�2
− F

(

du∗�2 +
k
c

)

�2
∑

i=�1+1

'i
1 − c

]

− du�2

[

F
(

du�2 +
k
c

)�2
− F

(

du�2 +
k
c

)

�2
∑

i=�1+1

'i
1 − c

− F
(

du�2 +
k
c

)�1
]

− ∫

du∗�2
+ k
c

du�2
+ k
c

[

F (v)�2 − F (v)
�2
∑

i=�1

'i
1 − c

− F (v)�1
]

dv − ∫

du�1
+ k
c

du∗�2
+ k
c

[

F (v)
�1+1
∑

i=1

'i
1 − c

− F (v)�1
]

dv,

where the third equality holds because∑�2
i=1 'i =

∑�2
i=1 '

∗
i , and the last equality holds by integration

by parts. Because du∗�2 satisfies (A.13), du�1 satisfies that

1 − F
(

du�1 +
k
c

)�1
=
[

1 − F
(

du�1 +
k
c

)]

�1
∑

i=1

'i
1 − c

1 − F (v)�1 < [1 − F (v)]
�1
∑

i=1

'i
1 − c

,∀v < du�1 +
k
c
,
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and du�2 satisfies that

1 − F
(

du�2 +
k
c

)�2
=
[

1 − F
(

du�2 +
k
c

)]

�2
∑

i=�1+1

'i
1 − c

+ 1 − F
(

du�2 +
k
c

)�1

1 − F (v)�2 > [1 − F (v)]
�2
∑

i=�1+1

'i
1 − c

+ 1 − F (v)�1 ,∀v > du�2 +
k
c
,

we have

Z('∗) −Z(')

>
(

d�1 − d
u∗
�2

)

( �1
∑

i=1

'i
1 − c

− 1

)

−
(

du∗�2 − d�2
)

�2
∑

�1+1

'i
1 − c

+∫

du∗�2
+ k
c

du�2
+ k
c

�2
∑

i=�1+1

'i
1 − c

dv − ∫

du�1
+ k
c

du∗�2
+ k
c

( �1
∑

i=1

'i
1 − c

− 1

)

dv = 0,

which is a contradiction to the optimality of '.

Case 2: 'i ≥ 1 − c for all i ≤ �1. If '∗1 ≥ 1 − c, then du∗�2 = d. In this case, we have

Z('∗) −Z(')

=
�2
∑

i=1
∫

v

du�2
+ k
c

(

vi −
k
c

)

F (vi)�2−1dF (vi) −
�2
∑

i=�1+1
∫

v

du�2
+ k
c

(

vi −
k
c

) 'i
1 − c

dF (vi)

−
�1
∑

i=1
∫

v

du�2
+ k
c

(

vi −
k
c

)

F (vi)�1−1dF (vi)

=∫

v

du�2
+ k
c

(

v − k
c

)

�2F (v)�2−1dF (v) − ∫

v

du�2
+ k
c

(

v − k
c

)

( �2
∑

i=�1+1

'i
1 − c

+ �1F (v)�1−1
)

dF (v)

=
(

v − k
c

)

[

F (v)�2 − F (v)
�2
∑

i=�1+1

'i
1 − c

− F (v)�1
]

|

|

|

|

|

|

v

du�2
+ k
c

− ∫

v

du�2
+ k
c

[

F (v)�2 − F (v)
�2
∑

i=�1+1

'i
1 − c

− F (v)�1
]

dv,
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where the last equality holds by integration by parts. Because du�2 satisfies that

[

1 − F
(

du�2 +
k
c

)]

�2
∑

i=�1+1

'i
1 − c

+ 1 − F
(

du�2 +
k
c

)�1
= 1 − F

(

du�2 +
k
c

)�2
,

[1 − F (v)]
�2
∑

i=�1+1

'i
1 − c

+ 1 − F (v)�1 < 1 − F (v)�2 ,∀v > du�2 +
k
c
,

we have

Z('∗) −Z(') > −
(

v − k
c
− du�2

)

�2
∑

i=1

'i
1 − c

+ ∫

v

du�2
+ k
c

�2
∑

i=�1+1

'i
1 − c

dv = 0,

which is a contradiction to the optimality of '. If '∗1 < 1 − c, then let du∗1 =⋯ = du∗�2 be defined by
(A.13). Note that if �1 = 1 and '1∕(1−c) = 1, then the new mechanism using'∗ coincides with the
old mechanism using '. In this case, we can redefine du1 ∶= du�2 without changing the mechanism.
Except for this case, we can show, by a similar argument to that in Case 1, that Z('∗) −Z(') > 0,
which is a contradiction to the optimality of '.

Hence, by induction, we have L = 1. For ease of notation, let j ∶= �1. Next, we show that j = 0
or n. Suppose, to the contrary, that 0 < j < n. Suppose that dl < 0, then the principal’s objective
function is strictly increasing in 'i for i > j. Hence, in optimum, it must be that dl ≥ 0. Construct
a new '∗ as follows: Let

'∗i =
1
n

n
∑

j=1
'j , for all i = 1,… , n.

Case 1: 'i < 1 − c for all i ≤ j. In this case, '∗1 < 1 − c. Let du∗1 =⋯ = du∗n be such that

1 − F
(

du∗j + k
c

)n
=

n
∑

i=1

'∗i
1 − c

[

1 − F
(

du∗j + k
c

)]

. (A.14)

Then du∗j < duj . Let dl∗ be such that

F
(

dl∗ + k
c

)n
=

n
∑

i=1
'∗i F

(

dl∗ + k
c

)

. (A.15)
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Then dl < dl∗. There are two subcases to consider: (i) dl∗ ≤ du∗j and (ii) dl∗ > du∗j .

(i) Suppose that dl∗ ≤ du∗j . Then

Z('∗) −Z(')

=
n
∑

i=1

[

∫

dl∗+ k
c

v

(

vi −
k
c

)

'∗i dF (vi) + ∫

du∗j +
k
c

dl∗+ k
c

(

vi −
k
c

)

F (vi)n−1dF (vi) + ∫

v

du∗j +
k
c

(

vi −
k
c

) '∗i
1 − c

dF (vi)

]

−
n
∑

i=1
∫

dl+ k
c

v

(

vi −
k
c

)

'idF (vi) −
n
∑

i=j+1
∫

v

dl+ k
c

(

vi −
k
c

) 'i
1 − c

dF (vi)

−
j
∑

i=1

[

∫

duj+
k
c

dl+ k
c

(

vi −
k
c

)

F (vi)j−1dF (vi) + ∫

v

duj+
k
c

(

vi −
k
c

) 'i
1 − c

dF (vi)

]

=∫

dl∗+ k
c

dl+ k
c

(

v − k
c

)

n
∑

i=1
'idF (v) + ∫

du∗j +
k
c

dl∗+ k
c

(

v − k
c

)

nF (v)n−1dF (v) + ∫

duj+
k
c

du∗j +
k
c

(

v − k
c

)

n
∑

i=1

'i
1 − c

dF (v)

− ∫

duj+
k
c

dl+ k
c

(

v − k
c

)

n
∑

i=j+1

'i
1 − c

dF (v) − ∫

duj+
k
c

dl+ k
c

(

v − k
c

)

jF (v)j−1dF (v)

=duj

[

F
(

duj +
k
c

)

j
∑

i=1

'i
1 − c

− F
(

duj +
k
c

)j
]

+ du∗j

[

F
(

du∗j + k
c

)n
− F

(

du∗j + k
c

)

n
∑

i=1

'i
1 − c

]

+ dl∗
[

F
(

dl∗ + k
c

)

n
∑

i=1
'i − F

(

dl∗ + k
c

)n
]

+ dl
[

−F
(

dl + k
c

)

n
∑

i=1
'i + F

(

dl + k
c

)

n
∑

i=j+1

'i
1 − c

+ F
(

dl + k
c

)j
]

− ∫

dl∗+ k
c

dl+ k
c

F (v)
n
∑

i=1
'idv − ∫

du∗j +
k
c

dl∗+ k
c

F (v)ndv − ∫

du∗j +
k
c

duj+
k
c

F (v)
n
∑

i=1

'i
1 − c

dv

+ ∫

duj+
k
c

dl+ k
c

[

F (v)
n
∑

i=j+1

'i
1 − c

+ F (v)j
]

dv,

where the second equality holds because∑n
i=1 '

∗
i =

∑n
i=1 'i and the last equality holds by integra-

tion by parts. Because du∗j satisfies (A.14), dl∗ satisfies (A.15), duj satisfies that

1 − F
(

duj +
k
c

)j
=

n
∑

i=j+1

'i
1 − c

[

1 − F
(

duj +
k
c

)]

,

1 − F (v)j <
n
∑

i=j+1

'i
1 − c

[1 − F (v)] ,∀v < duj ,
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and dl satisfies that

1 − F
(

dl + k
c

)j
+

n
∑

i=j+1

'i
1 − c

[

1 − F
(

dl + k
c

)]

+
n
∑

i=1
'iF

(

dl + k
c

)

= 1,

1 − F (v)j +
n
∑

i=j+1

'i
1 − c

[1 − F (v)] +
n
∑

i=1
'iF (v) < 1,∀v > dl

F (v)j − F (v)n > [1 − F (v)]
n
∑

i=j+1

'i
1 − c

,∀v > dl = duj+1,

we have

Z('∗) −Z(')

>duj

( j
∑

i=1

'i
1 − c

− 1

)

+ du∗j

(

1 −
n
∑

i=1

'i
1 − c

)

+ dl
n
∑

i=j+1

'i
1 − c

− ∫

dl∗+ k
c

dl+ k
c

n
∑

i=j+1

'i
1 − c

dv − ∫

du∗j +
k
c

dl∗+ k
c

n
∑

i=j+1

'i
1 − c

dv − ∫

du∗j +
k
c

duj+
k
c

( j
∑

i=1

'i
1 − c

− 1

)

dv = 0,

which is a contradiction to the optimality of '.

(ii) Suppose that dl∗ > du∗j . In this case, redefine dl∗ = du∗j such that

n
∑

i=1

[

'∗i F
(

dl∗ + k
c

)

+
'∗i
1 − c

(

1 − F
(

dl∗ + k
c

))

]

= 1.

Then dl < dl∗ = du∗j < duj . By a similar argument to that in case (ii), we can show that Z('∗) −
Z(') > 0, which is a contradiction to the optimality of '.

Case 2: 'i ≥ 1 − c for all i ≤ j. If '∗1 ≥ 1 − c, then let du∗1 = … du∗n = d and dl∗ be defined by
(A.15). By a similar argument to that in Case 1, we can show that Z('∗) − Z(') > 0, which is a
contradiction to the optimality of '.

If '∗1 < 1−c, then let du∗1 = … du∗n = d be defined by (A.14) and dl∗ be defined by (A.15). Note that
if j = 1 and '1∕(1 − c) = 1, then the new mechanism using '∗ coincides with the old mechanism
using '. In this case, we can redefine du1 ∶= dl without changing the mechanism. Except for this
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case, we can show, by a similar argument to that in Case 1, that Z('∗) − Z(') > 0, which is a
contradiction to the optimality of '.

Hence, j = 0 or n.

Case 1: j = 0. In this case, for all i,

P ∗i (vi) =

⎧

⎪

⎨

⎪

⎩

'i
1−c if vi ≥ dl + k

c

'i if vi < dl + k
c

.

is an optimal mechanism given '. Furthermore, ' and dl must satisfy

[

1 − F
(

dl + k
c

)]

i
∑

j=1

'j
1 − c

≤ 1 − F
(

dl + k
c

)i
,∀i ≤ n, (A.16)

F
(

dl + k
c

)

n
∑

i=1
'i +

[

1 − F
(

dl + k
c

)]

n
∑

i=1

'i
1 − c

= 1. (A.17)

In particular, (A.16) holds for i = n, which implies

n
∑

i=1

'i
1 − c

≤
1 − F

(

dl + k
c

)n

1 − F
(

dl + k
c

) .

Substituting this into (A.17) yields

F
(

dl + k
c

)n−1
≤

n
∑

i=1
'i ≤

(1 − c)
[

1 − F
(

dl + k
c

)n]

1 − F
(

dl + k
c

) .

By the proof of the second part in Theorem 3, j = 0 is optimal if v∗∗ ≤ v♮, in which case the optimal
dl = du1 =⋯ = dun = v

∗∗ − k
c
. The set of optimal ' is given by Φ(dl, du1 ,… , dun). Clearly, ' ∈ Φ if

and only if ' satisfies conditions (A.16) and (A.17). Because v∗∗ ≤ v♮ implies that

1 ≤ 1
1 − cF (v∗∗)

≤ 1 − F (v∗∗)n

1 − F (v∗∗)
,
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there exists 1 ≤ ℎ ≤ n such that

1 − F (v∗∗)ℎ−1

1 − F (v∗∗)
≤ 1
1 − cF (v∗∗)

<
1 − F (v∗∗)ℎ

1 − F (v∗∗)
.

Hence, for all i > ℎ, (A.16) holds if (A.17) holds. Given this, it is easy to see that the set of optimal
' is the convex hull of

⎧

⎪

⎨

⎪

⎩

'
|

|

|

|

|

|

|

'ij = (1 − c)F (v
∗∗)j−1 if j ≤ ℎ − 1, 'iℎ =

1−c
1−cF (v∗∗) −

∑ℎ−1
j=1 (1 − c)F (v

∗∗)j−1,

'ij = 0 if j ≥ ℎ + 1 and (i1,… , in) is a permutation of (1,… , n)

⎫

⎪

⎬

⎪

⎭

.

Case 2: j = n. In this case, let du ∶= du1 =⋯ = dun , and

P ∗i (vi) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

'i
1−c if vi ≥ du + k

c

F (v)n−1 if dl + k
c
< vi < du +

k
c

'i if vi ≤ dl + k
c

.

Furthermore, ', dl and du must satisfy that

[

1 − F
(

du + k
c

)]

i
∑

j=1

'j
1 − c

≤ 1 − F
(

du + k
c

)i
,∀i ≤ n − 1, (A.18)

[

1 − F
(

du + k
c

)]

n
∑

i=1

'i
1 − c

= 1 − F
(

du + k
c

)n
, (A.19)

F
(

dl + k
c

)

n
∑

i=1
'i = F

(

dl + k
c

)n
. (A.20)

(A.19) and (A.20) imply that dl and du satisfy that

1 − F
(

du + k
c

)n

1 − F
(

du + k
c

) =
F
(

dl + k
c

)n−1

1 − c
.

By the proof of the third part in Theorem 3, j = n is optimal if v∗∗ > v♮, in which case the optimal
dl = vl('∗) − k

c
and the optimal du1 = ⋯ = dun = vu('∗) − k

c
. The set of optimal ' is given by
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Φ(dl, du1 ,… , dun). Clearly, ' ∈ Φ if and only if ' satisfies conditions (A.18)-(A.20). It is easy to
see that Φ is the convex hull of

{

' |

|

|

'ij = (1 − c)F (v
u('∗))j−1 ∀j and (i1,… , in) is a permutation of (1,… , n)

}

.
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APPENDIX TO CHAPTER 3

B.1. The revelation principle

Consider a general mechanism that consists of a message space ℳ and a quadruplet (a, p, q, �),
where a ∶ ℳ → [0, 1] denotes the probability an agent obtains the good, p ∶ ℳ → [0, 1] denotes
the payment an agent must make, q ∶ ℳ → [0, 1] denotes the probability of inspecting and � ∶
ℳ×{n, b1, b2} → [0, 1] denotes the probability an agent is penalized. In particular, �(m, n) denotes
the probability an agent is penalized if he is not inspected and �(m, b) denotes the probability an
agent is penalized if he is inspected and his budget is revealed to be b.

Given a mechanism, an agent of type t = (v, b) choosesm ∈ℳ to maximize

a(m)v − p(m) − (1 − q(m))�(m, n)c − q(m)�(m, b)c

subject to the constraint that p(m) ≤ b. Letm∗(t) denote the solution to the agent’s problem. For
simplicity, I assumem∗(t) is deterministic, but it is easy to accommodate mixed strategies. If the
agent’s problem has multiple solutions, then some deterministic selection rule is used. Consider a
new mechanism with message space T . Let a∗(t) = a(m∗(t)), p∗(t) = p(m∗(t)), q∗(t) = a(m∗(t))

and �∗(t, ⋅) = �(m∗(t), ⋅). Then the new mechanism is incentive compatible. Clearly, an agent has
no incentive to report t̂ such that p∗(t̂) > b. For t̂ such that p∗(t̂) ≤ b, we have

a(m∗(t))v − p(m∗(t)) − (1 − q(m∗(t)))�(m∗(t), n)c − q(m∗(t))�(m∗(t), b)c

≥a(m∗(t̂))v − p(m∗(t̂)) − (1 − q(m∗(t̂)))�(m∗(t̂), n)c − q(m∗(t̂))�(m∗(t̂), b)c.

The inequality simply follows from the fact thatm∗(t) is the solution to a type t agent’s problem in
the original mechanism. Clearly, the principal’s payoff in the truthtelling equilibrium is as same as
that in the original mechanism.
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B.2. Common knowledge budgets

Proof of Theorem 7. Let (a, p) be a feasible mechanism. For each b ∈ B, a(⋅, b) is non-decreasing
and p(v, b) = va(v, b) − ∫ v

v a(�, b)d� − u(v, b). Consider another mechanism (a∗, p∗). Let a∗(⋅, b) be
defined by

a∗(v, b) =

⎧

⎪

⎨

⎪

⎩

a(v, b) if v ≥ v∗b
0 otherwise

,

where v∗b is such that

∫

v

v
a(v, b)f (v)dv = a(v, b)(1 − F (v∗b)). (B.1)

Let p∗(v, b) = va∗(v, b) − ∫ v
v a

∗(�, b)d� − u(v, b). Clearly, (a∗, p∗) satisfies constraints (IR), (IC) and
(S) and improves welfare. The revenue obtained by (a∗, p∗) is

Et[p∗(t)] = −(1 − �)u(v, b1) − �u(v, b2) + ∫

v

v

[

v −
1 − F (v)
f (v)

]

[

(1 − �)a∗(v, b1) + �a∗(v, b2)
]

dv.

By Assumption 2, v − [1 − F (v)]∕f (v) is strictly increasing. Thus, (a∗, p∗) also improves revenue,
and therefore satisfies the (BB) constraint. Finally, we show that the (BC) constraint holds:

p∗(v, b) =va(v, b) − ∫

v

v
a∗(v, b)dv − u(v, b)

≤va(v, b) − ∫

v

v
a(v, b)dv − u(v, b) ≤ b.

The inequality holds if and only if

∫

v

v
[a∗(v, b) − a(v, b)]dv ≥ 0,

⟺∫

v

v∗b

[a∗(v, b) − a(v, b)]dv ≥ ∫

v∗b

v
[a(v, b) − a∗(v, b)]dv.

179



The inequality holds since

∫

v

v∗b

[a∗(v, b) − a(v, b)]dv = ∫

v

v∗b

[a∗(v, b) − a(v, b)]f (v) 1
f (v)

dv

≥ ∫

v

v∗b

[a∗(v, b) − a(v, b)]f (v) 1
f (v∗b)

dv

= ∫

v∗b

v
[a(v, b) − a∗(v, b)]f (v) 1

f (v∗b)
dv

≥ ∫

v∗b

v
[a(v, b) − a∗(v, b)]f (v) 1

f (v)
dv

= ∫

v∗b

v
[a(v, b) − a∗(v, b)]dv,

where the second and fourth line holds since f is non-increasing by Assumption 3 and the third
line holds by (B.1). Hence there exists v∗1 and v∗2 such that the optimal allocation rule satisfies
a(v, b1) = �{v≥v∗1

}(v) min
{

u(v,b1)+b1
v∗1

, 1
}

and a(v, b2) = �{v≥v∗2}(v).

B.3. Privately known budgets

B.3.1. No verification

Proof of Lemma 2. If v = v, (3.3) reduces to u(v, b2) ≥ u(v, b1). Suppose u(v, b2) > u(v, b1). Let

u∗(v, b1) = u∗(v, b2) = (1 − �)u(v, b1) + �u(v, b2).

Let v∗ be such that

v∗ ∶= sup

⎧

⎪

⎨

⎪

⎩

v

|

|

|

|

|

|

|

∫ v
v a(�, b1)d� + u(v, b1) − ∫ v

v min{a(�, b1), a(�, b2)}d�

−(1 − �)u(v, b1) − �u(v, b2) ≤ 0

⎫

⎪

⎬

⎪

⎭

.

Let v− ∶= sup{v ≤ v∗|a(v, b2) ≥ a(v, b1)} and v+ ∶= inf{v ≥ v∗|a(v, b2) ≥ a(v, b1)}. Note that
if v∗ = v, then v+ = v∗ = v. Note also that if a(v∗, b2) ≥ a(v∗, b1), then v+ = v− = v∗. Clearly,

180



a(v, b1) > a(v, b2) for all v ∈ (v−, v+). There exists � ∈ (0, 1) such that

∫

v+

v
a(�, b1)d� + u(v, b1) − ∫

v−

v
min{a(�, b1), a(�, b2)}d�

− ∫

v+

v−
[�a(�, b1) + (1 − �)a(�, b2)]d� − (1 − �)u(v, b1) − �u(v, b2) = 0.

Assume without loss of generality that a(v−, b1) = a(v−, b2) and a(v+, b1) = a(v+, b2). Let

a∗(v, b1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min{a(v, b1), a(v, b2)} if v < v−
�a(v, b1) + (1 − �)a(v, b2) if v− < v < v+
a(v, b1) if v > v+

,

and

a∗(v, b2) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1−�)[a(v,b1)−min{a(v,b1),a(v,b2)}]
�

+ a(v, b2) if v < v−
(1−�)[a(v,b1)−�a(v,b1)−(1−�)a(v,b2)]

�
+ a(v, b2) if v− < v < v+

a(v, b2) if v > v+
.

Clearly, a∗(v, b) is feasible and non-decreasing in v. By construction, we have (1 − �)u(v, b1) +
�u(v, b2) = (1 − �)u∗(v, b1) + �u∗(v, b2), (1 − �)a(v, b1) + �a(v, b2) = (1 − �)a∗(v, b1) + �a∗(v, b2)
for all v, and

u(v, b1) + ∫

v+

v
a(v, b1)dv = u∗(v, b1) + ∫

v+

v
a∗(v, b1)dv. (B.2)

Hence
u(v, b2) + ∫

v+

v
a(v, b2)dv = u∗(v, b2) + ∫

v+

v
a∗(v, b2)dv. (B.3)

181



Let p∗(v, b) = va∗(v, b) − ∫ v
v a(�, b)d� − u

∗(v, b). Then

p∗(v, b1) = va∗(v, b1) − ∫

v

v
a∗(v, b1)dv − u∗(v, b1)

= va(v, b1) − ∫

v+

v
a∗(v, b1)dv − ∫

v

v+
a(v, b1)dv − u∗(v, b1)

= va(v, b1) − ∫

v+

0
a(v, b1)dv − ∫

v

v+
a(v, b1)dv − u(v, b1) ≤ b1,

where the third line follows from (B.2). Hence the (BC) constraint holds. For v < v−, we have
a∗(v, b2) ≥ a∗(v, b1) and u∗(v, b1) = u∗(v, b2). Hence (3.3) holds. For v > v+, we have

u∗(v, b1) + ∫

v

v
a∗(�, b1)d� = u(v, b1) + ∫

v

v
a(�, b1)d�

≤ u(v, b2) + ∫

v

v
a(�, b2)d�

= u∗(v, b2) + ∫

v

v
a∗(�, b2)d�,

where the first line follows from (B.2) and the third line follows from (B.3). Finally, consider v ∈
[v−, v+]. Suppose � ≤ 1 − �, then a∗(v, b1) ≤ a∗(v, b2) for v ∈ (v−, v+) and we have

u∗(v, b1) + ∫

v

v
a∗(�, b1)d� = u∗(v, b1) + ∫

v−

v
a∗(�, b1)d� + ∫

v

v−
a∗(�, b1)d�

≤ u∗(v, b2) + ∫

v−

v
a∗(�, b2)d� + ∫

v

v−
a∗(�, b2)d�

= u∗(v, b2) + ∫

v

v
a∗(�, b2)d�.

Suppose � > �, then a∗(v, b1) > a∗(v, b2) for v ∈ [v−, v+] and we have

u∗(v, b1) + ∫

v

v
a∗(�, b1)d� = u∗(v, b1) + ∫

v+

v
a∗(�, b1)d� − ∫

v+

v
a∗(�, b1)d�

≤ u∗(v, b2) + ∫

v+

v
a∗(�, b2)d� − ∫

v+

v
a∗(�, b2)d�

= u∗(v, b2) + ∫

v

v
a∗(�, b2)d�.

182



Hence the (IC-b) constraint holds. Clearly, (a∗, p∗) also satisfies constraints (IR), (IC-v), (S) and
(BB), and does not change welfare.

Proof of Lemma 3. Given Lemma 2, (3.3) becomes

∫

v

v
a(�, b2)d� ≥ ∫

v

v
a(�, b1)d�, ∀v. (B.4)

For each b ∈ B, we have

∫

v

v
a(�, b)f (�)d� = ∫

v

v
f (�)d∫

�

v
a(�′, b)d�′

= f (v)∫

v

v
a(�′, b)d�′ − ∫

v

v

[

∫

�

v
a(�′, b)d�′

]

f ′(�)d�.

Since f ≥ 0 and −f ′ ≥ 0, (3.4) follows from (B.4).

Proof of Theorem 8. We first solve the optimal mechanism of  ′ and then verify that the optimal
mechanism also satisfies the (IC) constraint of low-budget agents. Let (a, p) be a feasible mechanism.
For each b ∈ B, a(⋅, b) is non-decreasing and p(v, b) = va(v, b) − ∫ v

v a(�, b)d� − u(v, b). Consider
another mechanism (a∗, p∗).

Let v̂ ∶= inf{v|a(v, b2) ≥ a(v, b1)}. Note that v̂ = v if a(v, b1) > a(v, b2) and v̂ = v if a(v, b1) ≤
a(v, b2). Let a∗ be defined by

a∗(v, b1) =

⎧

⎪

⎨

⎪

⎩

a(v, b1) if v ≥ v∗1,

0 otherwise,
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where v∗1 satisfies a(v, b1)[1 − F (v∗1)] = ∫ v
v a(v, b1)f (v)dv, and

a∗(v, b2) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if v ≥ v∗∗2 ,

a(v, b1) if v∗2 ≤ v < v∗∗2 ,

0 otherwise,

where v∗2 ≤ v̂ satisfies a(v, b1)[F (v̂)−F (v∗2)] = ∫ v̂
v a(v, b2)f (v)dv and v∗∗2 ≥ v̂ satisfies 1−F (v∗∗2 )+

a(v, b1)[F (v∗∗2 ) − F (v̂)] = ∫ v
v̂ a(v, b2)f (v)dv. Let p∗(v, b) = va∗(v, b) − ∫ v

v a
∗(�, b)d� − u(v, b).

We show that v∗1 ≥ v∗2. If v∗1 ≥ v̂, then v∗1 ≥ v∗2. If v∗1 < v̂, then

a(v, b1)[F (v̂) − F (v∗1)] = ∫

v̂

v
a(v, b1)f (v)dv + ∫

v

v̂
[a(v, b1) − a(v, b1)]f (v)dv

≤ ∫

v̂

v
a(v, b1)f (v)dv

≤ ∫

v̂

v
a(v, b2)f (v)dv

= a(v, b1)[F (v̂) − F (v∗2)],

where the third line holds by Lemma 3. In this case, it must be that a(v, b1) > 0 since otherwise
a(v, b1) = 0 ≤ a(0, b2), which implies v̂ = v ≤ v∗1. Hence, v∗2 ≤ v∗1. Thus, (a∗, p∗) satisfies the
(IC-b) constraint.

Clearly, (a∗, p∗) also satisfies constraints (BC), (IR), (IC-v), (S) and (BB) and strictly improves wel-
fare. Suppose v∗2 < v∗1, then it is welfare improving to increase v∗2 and reduce v∗1 without affecting any
constraint. Hence, it is optimal to set v∗1 = v∗2 = v∗. Let u∗ = u(v, b1) = u(v, b2). Then the optimal
allocation rule satisfies a(v, b1) = �{v≥v∗}min

{

u∗+b1
v∗

, 1
}

and a(v, b2) = �{v≥v∗}min
{

u∗+b1
v∗

, 1
}

+

�{v≥v∗∗2
}

(

1 − min
{

u∗+b1
v∗

, 1
})

.

Clearly, if u∗ + b1 > v∗, we can reduce u∗ such that u∗ + b1 = v∗ without affecting any constraint or
the principal’s objective function. This completes the characterization of the optimal mechanism of
 ′. Finally, it is easy to see that the (IC) constraint of low-budget types is satisfied. This completes
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the proof.

B.3.2. The general case

Proof of Lemma 4. Suppose not. Then one can construct another feasible mechanism (a∗, p∗, q∗),
which strictly improves welfare.

Let v̂m2 = inf{v|a(v, b2) ≥ am} for m = 1,… ,M , v̂02 = 0 and v̂M+1
2 = v. Given a, the optimal

verification rule satisfies q(v, b1) = qm if v ∈ (vm−11 , vm1 ) for m = 1,… ,M , where

qm = 1
c
max

{

0, u(v, b1) − u(v, b2) − ∫

v̂m2

v
a(�, b2)d� + am(v̂m2 − v

m−1
1 ) + ∫

vm−11

v
a(�, b1)d�

}

.

For each m = 1,… ,M + 1, there exists vm−12 ∈ [v̂m−12 , v̂m2 ] such that

∫

v̂m2

v̂m−12

a(v, b2)f (v)dv = am−1[F (vm−12 ) − F (v̂m−12 )] + am[F (v̂m2 ) − F (v
m−1
2 )]. (B.5)

Consider a∗(v, b2) such that a∗(v, b2) = am if v ∈ (vm−12 , vm2 ) for m = 1,… ,M , a∗(v, b2) = 0 if
v < v02 and a∗(v, b2) = 1 if v > vM2 . Note that if a1 = 0, then v02 = v. If aM = 1, then vM2 is
in-determined and we assume vM2 = vM−1

2 . Let a∗(v, b1) = a(v, b1).

Let p∗(v, b) = va∗(v, b) − ∫ v
v a

∗(�, b)d� − u(v, b). Let q∗(v, b1) = q(v, b1). We show that the (IC-b)
constraint is satisfied. That is, for m = 1,… ,M ,

qmc ≥ u(v, b1) − u(v, b2) − ∫

vm−12

v
a∗(�, b2)d� + am(vm−12 − vm−11 ) + ∫

vm−11

v
a(�, b1)d�.
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Since a∗(v, b2) = am for v ∈ (vm−12 , v̂m2 ), we have

u(v, b1) − u(v, b2) − ∫

vm−12

v
a∗(�, b2)d� + am(vm−12 − vm−11 ) + ∫

vm−11

v
a(�, b1)d�

=u(v, b1) − u(v, b2) − ∫

v̂m2

v
a∗(�, b2)d� + am(v̂m2 − v

m−1
1 ) + ∫

vm−11

v
a(�, b1)d�

≤u(v, b1) − u(v, b2) − ∫

v̂m2

v
a(�, b2)d� + am(v̂m2 − v

m−1
1 ) + ∫

vm−11

v
a(�, b1)d�,

where the last inequality holds if and only if

∫

v̂m2

v
[a∗(�, b2) − a(�, b2)]d� ≥ 0.

To prove this, we prove that for m = 1,… ,M

∫

v̂m2

v̂m−12

[a∗(�, b2) − a(�, b2)]d� ≥ 0. (B.6)

(B.6) holds if and only if

∫

v̂m2

vm−12

[a∗(�, b2) − a(�, b2)]d� ≥ ∫

vm−12

v̂m−12

[a(�, b2) − a∗(�, b2)]d�. (B.7)

(B.7) follows from the construction of a∗ and Assumption 3:

∫

v̂m2

vm−12

[a∗(�, b2) − a(�, b2)]d� ≥∫

v̂m2

vm−12

[a∗(�, b2) − a(�, b2)]f (�)
1

f (vm−12 )
d�

=∫

vm−12

v̂m−12

[a(�, b2) − a∗(�, b2)]f (�)
1

f (vm−12 )
d�

≥∫

vm−12

v̂m−12

[a(�, b2) − a∗(�, b2)]d�.

By Assumption 2, Et[p∗(t)] ≥ Et[p(t)]. Hence, constraint (BB) is satisfied. It is also clear that
(a∗, p∗, q∗) satisfies constraints (IR), (IC-v), (BC) and (S), and strictly improves welfare.
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Proof of Lemma 5. The proof is by contradiction. Let (a, p, q) be a feasible mechanism, where
a is a M-step allocation rule, p satisfies the envelope condition and q is given by (3.7). Suppose
(a, p, q) satisfies neither (C1) nor (C2). I show that one can construct another feasible mechanism
(a∗, p∗, q∗), which strictly improves welfare and satisfies one of the two conditions. Furthermore, a∗
is aM ′-step function for someM ′ ≤M . I break the proof into three steps.

Step 1. Suppose u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

< 0. Let m > 1 be such that vm′−12 − vm′−11 ≤ 0

for all m′ < m and vm−12 − vm−11 > 0. If there is no such m, then (a, p, q) satisfies (C2). Let v̂ be
defined by F (v̂) = �F (vm−12 ) + (1 − �)F (vm−11 ) if F (vm1 ) > �F (vm−12 ) + (1 − �)F (vm−11 ) and v̂ = vm1
otherwise. Consider two different cases.

Case 1

Suppose (am − am−1)(v̂ − vm−11 ) ≥ �[u(v, b2) − u(v, b1) − a1
(

v02 − v
0
1

)

], let ṽm−11 ∈ [vm−11 , v̂]

be such that

(am − am−1)(ṽm−11 − vm−11 ) = �[u(v, b2) − u(v, b1) − a1
(

v02 − v
0
1
)

].

Let ṽm−12 ∈ [v̂, vm−12 ] be such that �[F (vm−12 ) − F (ṽm−12 )] = (1 − �)[F (ṽm−11 ) − F (vm−11 )].
Let ṽm′i = vm′i for i = 1, 2 and m′ ≠ m − 1. Let a∗(v, b1) = am−1 if v ∈ (vm−11 , ṽm−11 )

and a∗(v, b1) = a(v, b1) otherwise. Let a∗(v, b2) = am if v ∈ (ṽm−12 , vm−12 ) and a∗(v, b2) =
a(v, b2) otherwise. Let u∗(v, b1) = (1 − �)u(v, b1) + �u(v, b2) − �a1

(

v02 − v
0
1

) and u∗(v, b2) =
(1 − �)u(v, b1) + �u(v, b2) + (1 − �)a1

(

v02 − v
0
1

). Let p∗(v, b) = va∗(v, b) − ∫ v
v a

∗(�, b)d� −

u∗(v, b). By construction, p∗(v, b1) = p(v, b1) ≤ b1. Hence, the (BC) constraint is satisfied.
Let q∗(v, b1) = q(v, b1). By Assumption 2, the (BB) constraint holds. For v ∈ (ṽm′−11 , ṽm′1 ),
m′ = 1,… , m − 1, (IC-b) holds since

u∗(v, b1) − u∗(v, b2) +
m′
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 ) ≤ 0 ≤ q∗(v, b1)c.
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For v ∈ (ṽm′−11 , ṽm′1 ), m′ = m,… ,M , we have q∗(v, b1) = qm. Then (IC-b) holds since

u∗(v, b1) − u∗(v, b2) +
m′
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 )

=
m′
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) + (am − am−1)(ṽm−12 − ṽm−11 − vm−12 + vm−11 ) − a1

(

v02 − v
0
1
)

≤
m′
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) +

(am − am−1)(vm−11 − ṽm−11 )
�

− a1
(

v02 − v
0
1
)

=
m′
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) + u(v, b1) − u(v, b2)

=qm′c,

where the third line holds since by Assumption 3

vm−12 − ṽm−12 ≥ 1
f (ṽm−12 )

[F (vm−12 ) − F (ṽm−12 )]

≥1 − �
�

1
f (ṽm−11 )

[F (ṽm−11 ) − F (vm−11 )]

≥1 − �
�

(

ṽm−11 − vm−11
)

.

Clearly, (a∗, p∗, q∗) also satisfies constraints (IR), (IC-v) and (S) and strictly increases welfare.
Note also that the new mechanism satisfies u(v, b1) − u(v, b2) + a1

(

v02 − v
0
1

)

= 0.

Suppose ṽm−11 < vm1 , then continue with the argument in step 2.

Suppose ṽm−11 = vm1 < ṽm−12 , then by the arguments in Lemma 4, we can construct a new
mechanism which is feasible and strictly increases welfare, and whose allocation rule is a
(M − 1)-step allocation rule. Continue with the argument in step 2.

Case 2

Suppose (am − am−1)(v̂ − vm−11 ) < �[u(v, b2) − u(v, b1) + a1
(

v02 − v
0
1

)

]. Let ṽm−11 = v̂. Let
ṽm−12 ∈ [v̂, vm−12 ] be such that �[F (vm−12 ) − F (ṽm−12 )] = (1 − �)[F (ṽm−11 ) − F (vm−11 )]. Let
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ṽm′i = vm′i for i = 1, 2 and m′ ≠ m − 1. Let a∗(v, b1) = am−1 if v ∈ (vm−11 , ṽm−11 ), and
a∗(v, b1) = a(v, b1) otherwise. Let a∗(v, b2) = am if v ∈ (ṽm−12 , vm−12 ) and a∗(v, b2) = a(v, b2)
otherwise. Let u∗(v, b1) = u(v, b1)+(am−am−1)(v̂−vm−11 ) and u∗(v, b2) = u(v, b2)−(1−�)(am−
am−1)(v̂ − vm−11 )∕�. Then u∗(v, b2) > u∗(v, b1) + a1

(

v02 − v
0
1

)

≥ 0. Let p∗(v, b) = va∗(v, b) −
∫ v
v a

∗(�, b)d�−u∗(v, b). By construction, p∗(v, b1) = p(v, b1) ≤ b1. Hence, the (BC) constraint
is satisfied. Let q∗(v, b1) = q(v, b1). By Assumption 2, the (BB) constraint is satisfied. By the
same argument in Case 1, the (IC-b) constraint is satisfied. Clearly, (a∗, p∗, q∗) also satisfies
constraints (IR), (IC-v) and (S) and strictly increases welfare.

In this case, by construction, we have ṽm−11 = min
{

ṽm−12 , vm1
}.

Suppose ṽm−11 = ṽm−12 < vm1 , then let m∗ > m be such that ṽm′−12 − ṽm′−11 ≤ 0 for all m′ < m∗

and ṽm∗−12 − ṽm∗−11 > 0. If there is no suchm∗, (a∗, p∗, q∗) then satisfies (C2). Otherwise repeat
the argument in step 1 for m∗.

Suppose ṽm−11 = vm1 ≤ ṽm−12 , then by the argument in Lemma 4, we can construct a new
mechanism which is feasible and strictly increases welfare, and whose allocation rule is a
(M − 1)-step allocation rule. Repeat the arguments in step 1 for m.

SinceM is finite, in finite steps we can construct a feasible mechanism (a, p, q) that either satisfies
(C2) or u(0, b1) − u(0, b2) + a1v02 ≥ 0. In the latter case, continue with the argument in step 2.

Step 2. Suppose u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

≥ 0. Consider m ≥ 2. Suppose (3.8) holds for
all m′ < m and

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) < 0.

If there is no such m, then (a, p, q) satisfies (C1). It must be the case that vm−12 < vm−11 . Suppose
vm−12 < vM2 . Let m∗ ≥ m be the smallest m′ such that vm′2 > vm−12 . That is, vm∗2 > vm−12 and
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vm′2 = vm−12 for m′ = m,… , m∗ − 1. Let v̂ ∈ [vm−12 , vm−11 ] be such that

u(v, b1) − u(v, b2) +
m−1
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) + (am − am−1)(v̂ − vm−11 ) = 0.

We consider two different cases.

Case 1

Suppose (am∗ − am−1)[F (v̂) − F (vm−12 )] ≤ (am∗+1 − am∗)[F (vm∗2 ) − F (v̂)]. Let ṽm
∗

2 ∈ [v̂, vm∗2 )

be such that

(am∗ − am−1)[F (ṽm−12 ) − F (vm−12 )] = (am∗+1 − am∗)[F (vm∗2 ) − F (ṽ
m∗
2 )]. (B.8)

Let ṽm′2 = v̂ for m′ = m − 1,… , m∗ − 1 and ṽm′2 = vm′2 if m′ < m − 1 or m′ > m∗. Let
ṽm′1 = vm′1 for all m′. Let a∗(v, b1) = a(v, b1). Let a∗(v, b2) = am−1 if v ∈ (vm−12 , ṽm−12 ),
a∗(v, b2) = am∗+1 if v ∈ (ṽm∗2 , v

m∗
2 ) and a∗(v, b2) = a(v, b2) otherwise. Let p∗(v, b) =

va∗(v, b) − ∫ v
v a

∗(�, b)d� − u(v, b). Clearly, p∗(v, b1) = p(v, b1) ≤ b1. Hence, the (BC)
constraint is satisfied. Let q∗(v, b1) = q(v, b1). By Assumption 2, the (BB) constraint holds.

Finally, we show that (a∗, p∗, q∗) satisfies the (IC-b) constraint. That is, for m′ = 1,… ,M

u(v, b1) − u(v, b2) +
m′
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 ) ≤ qm

′
c.

This is trivial for m′ ≤ m. For m′ = m + 1,… , m∗, we have ṽm′−12 = ṽm−12 ≤ vm−11 < vm′−11 .
Hence

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) +

m′
∑

j=m+1
(aj − aj−1)(ṽj−12 − vj−11 ) < 0 ≤ qm

′
c.
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Finally, consider m′ ≥ m∗ + 1. It suffices to show that

u(v, b1) − u(v, b2) +
m∗+1
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 )

≤u(v, b1) − u(v, b2) +
m∗+1
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ),

which holds if and only if

(am∗ − am−1)(ṽm−12 − vm−12 ) ≤ (am∗+1 − am∗)(vm∗2 − ṽm∗2 ).

The last inequality holds by (B.8) and Assumption 3. Clearly, (a∗, p∗, q∗) also satisfies con-
straints (IR), (IC-v) and (S) and strictly increases welfare. Letm′′ > m be such that (3.8) holds
for all m′ < m′′ and is violated for m′′. If there is no such m′′, then (a∗, p∗, q∗) satisfies (C1).
Otherwise repeat the argument in step 2 for m′′.

Case 2

Suppose (am∗ − am−1)[F (v̂) − F (vm−12 )] > (am∗+1 − am∗)[F (vm∗2 ) − F (v̂)]. Let ṽm−12 be such
that

(am∗ − am−1)[F (ṽm−12 ) − F (vm−12 )] = (am∗+1 − am∗)[F (vm∗2 ) − F (ṽ
m−1
2 )].

Let ṽm′2 = ṽm−12 for m′ = m,… , m∗ and ṽm′2 = vm′2 if m′ < m − 1 or m′ > m∗. Let
ṽm′1 = vm′1 for all m′. Let a∗(v, b1) = a(v, b1). Let a∗(⋅, b2) such that a∗(v, b2) = am−1 if
v ∈ (vm−12 , ṽm−12 ), a∗(v, b2) = am∗+1 if v ∈ (ṽm−12 , vm∗2 ) and a∗(v, b2) = a(v, b2) otherwise.
Let p∗(v, b) = va∗(v, b) − ∫ v

v a
∗(�, b)d� − u(v, b). Clearly, p∗(v, b1) = p(v, b1) ≤ b1. Hence,

the (BC) constraint is satisfied. Let q∗(v, b1) = q(v, b1). By Assumption 2, the (BB) con-
straint holds. By the same argument in Case 1, the (IC-b) constraint is satisfied. Clearly,
(a∗, p∗, q∗) also satisfies constraints (IR), (IC-v) and (S) and strictly increases welfare. Note
that for (a∗, p∗, q∗) we have ṽm∗2 = ṽm−12 . Repeat the argument in step 2 for m with m∗ replaced
by m∗ + 1.

SinceM is finite, in finite steps we can construct a feasible mechanism (a, p, q) that either satisfies
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(C1), or vM2 = vm−12 < vm−11 and

u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) < 0.

In the latter case, continue with the argument in step 3.

Step 3. Suppose u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

≥ 0,

u(v, b1) − u(v, b2) +
m′
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) ≥ 0

for allm′ = 1,… , m−1, vM2 = vm−12 < vm−11 , and u(v, b1)−u(v, b2)+∑m
j=1(a

j−aj−1)(vj−12 −vj−11 ) < 0.

Let ṽm−11 = vm−11 − " for some " > 0 and ṽm′2 = vm−12 + � for m′ = m − 1,… ,M , where � > 0 is
such that

(1 − �)(am − am−1)
[

F (vm−11 ) − F (ṽm−11 )
]

= �(1 − am−1)
[

F (vm−12 ) − F (ṽm−12 )
]

. (B.9)

Let ṽm′i = vm′i if m′ ≠ m − 1 for i = 1, 2. Let " > 0 be such that

min

{

ṽm−11 − vm−21 , u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 )

}

= 0. (B.10)

Since ∑m−1
j=1 (a

j − aj−1)(ṽj−12 − ṽj−11 ) ≥ 0, we have ṽm′2 ≤ ṽm′1 for all m′ ≥ m − 1. Let a∗(v, bi) = am
if v ∈ (ṽm−1i , ṽmi ) for i = 1, 2 and m = 1,… ,M , a∗(v, b2) = 0 if v < ṽ02 and a∗(v, b2) = 1 if v > ṽM2 .
Let p∗(v, b) = va∗(v, b) − ∫ v

v a
∗(�, b)d� − u(v, b). Since a∗(v, b1) = a(v, b1) and a∗(v, b1) ≥ a(v, b1)

for all v, we have p∗(v, b1) ≤ p(v, b1) ≤ b1. Hence, the (BC) constraint is satisfied. Let q∗(v, b1) = qm
if v ∈ (ṽm−11 , ṽm1 ) for m = 1,… ,M . Then the change of the verification cost is

k(qm − qm−1)[F (vm−11 ) − F (ṽm−11 )].

Since qm = 0 ≤ qm−1, the verification cost is reduced. Furthermore, by Assumption 2, the revenue
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increases. Hence, the (BB) constraint holds. Finally, we show that the (IC-b) constraint is satisfied.
That is, for m′ = 1,… ,M

u(v, b1) − u(v, b2) +
m′
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 ) ≤ qm

′
c.

This is trivial for m′ < m. For m′ ≥ m, this holds since

u(v, b1) − u(v, b2) +
m′
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 ) ≤ 0 = qm′c.

Clearly, (a∗, p∗, q∗) also satisfies constraints (IR), (IC-v) and (S) and strictly increases welfare.

If the first term of (B.10) reaches zero first, then by the argument in Lemma 4, we can construct
a new mechanism which is feasible and strictly increases welfare, and whose allocation rule is a
(M − 1)-step allocation rule. Then repeat the argument in step 3 for m − 1. If the second term of
(B.10) reaches zero first and m < M , then repeat the argument in step 3 for m + 1. If the second
term of (B.10) reaches zero first and m =M , then (a∗, p∗, q∗) satisfies (C1).

Since M is finite, in finite steps we can construct a feasible mechanism (a∗, p∗, q∗), which strictly
improves welfare and satisfies (C1). Furthermore, a∗ is aM ′-step allocation rule for someM ′ ≤M .

Lemma 33 Suppose Assumptions 2 and 3 hold. An optimal mechanism of  ′(M,d) satisfies that

v12 ≥ v11.

Proof of Lemma 33. Assume without loss of generality that a2 > a1. Suppose, on the contrary, that
v12 < v

1
1. Since (3.8) holds for m = 2, it must be that u(v, b1) − u(v, b2) + a1(v20 − v10) > 0. Hence, it

is either (i) u(v, b1) > u(v, b2) ≥ 0, or (ii) a1 > 0 and v02 > v10.

Suppose u(v, b1) > u(v, b2) ≥ 0.

We construct another feasible mechanism (a∗, p∗, q∗), which strictly improves welfare. Let
" > 0 be sufficiently small. Let ṽ11 = v11 − �"∕(1 − �) and ṽ12 > v12 be such that (1 −
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�)
[

F (v11) − F (ṽ
1
1)
]

= �
[

F (ṽ12) − F (v
1
2)
]. By Assumption 3,

ṽ12 − v
1
2 ≤

[

F (ṽ12) − F (v
1
2)
] 1
f (ṽ12)

≤ 1 − �
�

[

F (v11) − F (ṽ
1
1)
] 1
f (ṽ11)

≤ 1 − �
�

(v11 − ṽ
1
1) = ".

For " > 0 sufficiently small, ṽ12 ≤ ṽ11. Let ṽmi = vmi for i = 1, 2 and m ≠ 1. Let u∗(v, b2) =
u(v, b2)+(a2−a1)" and u∗(v, b1) = u(v, b1)−�(a2−a1)"∕(1−�). For " > 0 sufficiently small,
u∗(v, b1) ≥ u∗(v, b2) > 0. Let a∗(v, bi) = am for v ∈ (ṽm−1i , ṽmi ) for i = 1, 2 and m = 1,… ,M ,
a∗(v, b2) = 0 if v < ṽ02 and a∗(v, b1) = 1 if v > ṽM2 . Let p∗(v, b) = va∗(v, b) − ∫ v

v a
∗(�, b)d� −

u∗(v, b). By construction, p∗(v, b1) = p(v, b1). Hence, the (BC) constraint is satisfied. Let
q∗(v, b) = q(v, b). Clearly, (a∗, p∗, q∗) satisfies constraints (IR), (IC-v) and (S), and strictly
improves welfare. (a∗, p∗, q∗) satisfies (BB) by Assumption 2.

Finally, we show that (a∗, p∗, q∗) satisfies the (IC-b) constraint. If v < ṽ11, then

u∗(v, b1) − u∗(v, b2) + a1(ṽ02 − ṽ
0
1) = u(v, b1) − u(v, b2) + a

1(v02 − v
0
1) −

(a2 − a1)"
1 − �

≤ q1c.

If v ∈ (ṽ11, v21), then

u∗(v, b1) − u∗(v, b2) + a1(ṽ02 − ṽ
0
1) + (a

2 − a1)(ṽ12 − ṽ
1
1)

=u(v, b1) − u(v, b2) + a1(v02 − v
0
1) + (a

2 − a1)(v12 − v
1
1)

−
(a2 − a1)"
1 − �

+ (a2 − a1)(ṽ12 − v
1
2 + v

1
1 − ṽ

1
1)

≤u(v, b1) − u(v, b2) + a1(v02 − v
0
1) + (a

2 − a1)(v12 − v
1
1) −

(a2 − a1)"
1 − �

+ (a2 − a1)
(

" + �"
1 − �

)

=u(v, b1) − u(v, b2) + a1(v02 − v
0
1) + (a

2 − a1)(v12 − v
1
1)

≤min{q2c, q1c},

where the first inequality holds since ṽ12 − v12 ≤ " and the last inequality holds since v12 < v11.
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If v ∈ (vm−11 , vm1 ) for m ≥ 3, then

u∗(v, b1) − u∗(v, b2) + a1(ṽ02 − ṽ
0
1) + (a

2 − a1)(ṽ12 − ṽ
1
1) +

m
∑

j=3
(aj − aj−1)(ṽj−12 − ṽj−11 )

≤u(v, b1) − u(v, b2) + a1(v02 − v
0
1) + (a

2 − a1)(v12 − v
1
1) +

m
∑

j=3
(aj − aj−1)(vj−12 − vj−11 )

≤qmc.

Hence, (IC-b) constraint is satisfied. This contradicts to that (a, p, q) is optimal.

Suppose a1 > 0 and v02 > v
0
1.

We construct another feasible mechanism (a∗, p∗, q∗), which strictly improves welfare. Let
" ∈ (0, a1] be sufficiently small. Let

ṽ11 =
(a2 − a1)v11 + "v

0
1

a2 − a1 + "
< v11.

By Assumption 3, we have

(a2 − a1)
[

F (v11) − F (ṽ
1
1)
]

≤(a2 − a1)(v11 − ṽ
1
1)f (ṽ

1
1)

="(ṽ11 − v
0
1)f (ṽ

1
1)

≤"
[

F (ṽ11) − F (v
0
1)
]

.

Let Δ ∶= (a2 − a1)
[

F (v11) − F (ṽ
1
1)
]

− "
[

F (ṽ11) − F (v
0
1)
]

≥ 0. If v12 > v02, then let ṽ02 = v02
and ṽ12 be such that

�(a2 − a1)
[

F (v12) − F (ṽ
1
2)
]

= �"
[

F (ṽ12) − F (v
0
2)
]

+ (1 − �)Δ.
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For " > 0 sufficiently small, ṽ12 ≥ ṽ02 ≥ v01. If v12 = v02, then let ṽ12 = ṽ02 be such that

�(a2 − a1)
[

F (v12) − F (ṽ
1
2)
]

= (1 − �)Δ.

For " > 0 sufficiently small, ṽ12 = ṽ02 ≥ v01. Let ṽmi = vmi for i = 1, 2 and m ≥ 2. For i = 1, 2,
let a∗(v, bi) = a1 − " if v ∈ (ṽ0i , ṽ

1
i ), a∗(v, bi) = a2 if v ∈ (ṽ1i , v

1
i ), and a∗(v, bi) = a(v, bi)

otherwise. Let u∗(v, b) = u(v, b) and p∗(v, b) = va∗(v, b) − ∫ v
v a

∗(�, b)d� − u∗(v, b). By
construction, p∗(v, b1) = p(v, b1). Hence, the (BC) constraint is satisfied. Let q∗(v, b) =
q(v, b). Clearly, (a∗, p∗, q∗) satisfies constraints (IR), (IC-v) and (S), and strictly improves
welfare. (a∗, p∗, q∗) satisfies (BB) by Assumption 2.

Finally, we show that (a∗, p∗, q∗) satisfies the (IC-b) constraint. Suppose v12 > v02. If v < ṽ11,
then

u∗(v, b1) − u∗(v, b2) + (a1 − ")(v02 − v
0
1) < u(v, b1) − u(v, b2) + a

1(v02 − v
0
1) = q

1c.

If v ∈ (ṽ11, ṽ21), then

u∗(v, b1) − u∗(v, b2) + (a1 − ")(v02 − v
0
1) + (a

2 − a1 + ")(ṽ12 − ṽ
1
1)

=u(v, b1) − u(v, b2) + a1(v02 − v
0
1) + (a

2 − a1)(v12 − v
1
1)

+ (a2 − a1 + ")(ṽ12 − ṽ
1
1) − "(v

0
2 − v

0
1) − (a

2 − a1)(v12 − v
1
1)

=u(v, b1) − u(v, b2) + a1(v02 − v
0
1) + (a

2 − a1)(v12 − v
1
1)

+ (a2 − a1 + ")ṽ12 − "v
0
2 − (a

2 − a1)v12

≤u(v, b1) − u(v, b2) + a1(v02 − v
0
1) + (a

2 − a1)(v12 − v
1
1) ≤ min{q

1c, q2c},

where the last inequality holds since v12 < v11. To see that the first inequality holds, note that
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by Assumption 3,

(a2 − a1)(v12 − ṽ
1
2) ≥ (a

2 − a1)
[

F (v12) − F (ṽ
1
2)
] 1
f (ṽ12)

≥ "
[

F (ṽ12) − F (v
0
2)
]

≥ "(ṽ12 − v
0
2).

Hence, (a2 − a1 + ")ṽ12 ≤ (a2 − a1)v12 + "v
0
2. Furthermore, ṽmi = vmi for i = 1, 2 and m ≥ 2.

Hence, the (IC-b) constraint is satisfied. Suppose v02 = v12. If v < ṽ11, then

u∗(v, b1) − u∗(v, b2) + (a1 − ")(v02 − v
0
1) < u(v, b1) − u(v, b2) + a

1(v02 − v
0
1) = q

1c.

If v ∈ (ṽ11, ṽ21), then

u∗(v, b1) − u∗(v, b2) + (a1 − ")(v02 − v
0
1) + (a

2 − a1 + ")(ṽ12 − ṽ
1
1)

=u(v, b1) − u(v, b2) + a1(v02 − v
0
1) + (a

2 − a1)(v12 − v
1
1) + a

2(ṽ12 − v
1
2)

≤u(v, b1) − u(v, b2) + a1(v02 − v
0
1) + (a

2 − a1)(v12 − v
1
1) ≤ min{q

1c, q2c},

where the first inequality holds since ṽ12 ≤ v12 and the second inequality holds since v12 < v11.
Furthermore, ṽmi = vmi for i = 1, 2 and m ≥ 2. Hence, the (IC-b) constraint is satisfied. This
contradicts to that (a, p, q) is optimal.

Hence, v12 ≥ v11.

LetM ≥ 3 be an integer. We note that if a mechanism is a feasible solution to  ′(M − 1, d), then it
is also a feasible solution to  ′(M,d). Clearly, V (M − 1, d) ≤ V (M,d). Suppose V (M − 1, d) <

V (M,d), then in an optimal solution to  ′(M,d) the allocation rule must be a M-step allocation
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rule, i.e.,

0 = a0 ≤ a1 < a2 <⋯ < aM ≤ aM+1 = 1,

v = v01 < v
1
1 <⋯ < vM1 = v.

Hence �2 = ⋯ = �M = 0 and 
11 = ⋯ = 
M1 = 0. Let � ∶= k∕c. Then the first-order conditions of
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 ′(M,d) are

�

[

∫

vm2

vm−12

[

(1 + �)v − �
1 − F (v)
f (v)

]

dv − �[F (vm2 ) − F (v
m−1
2 )]

]

+ (1 − �)

[

∫

vm1

vm−11

[

(1 + �)v − �
1 − F (v)
f (v)

]

f (v)dv

]

− (1 − �)(1 + �)�(vm−12 − vm−11 )[F (vm1 ) − F (v
m−1
1 )] − (1 − �)�[F (vm1 ) − F (v

m−1
1 )]

+ (1 − �)(1 + �)�(vm2 − v
m
1 − v

m−1
2 + vm−11 )[1 − F (vm1 )] + �(v

m
1 − v

m−1
1 ) + �m(vm−12 − vm−11 )

− (vm2 − v
m
1 − v

m−1
2 + vm−11 )

M
∑

j=m+1
�j + �m − �m+1 = 0, (am, 1 ≤ m ≤M − 1)

�

[

∫

vM2

vM−1
2

[

(1 + �)v − �
1 − F (v)
f (v)

]

f (v)dv − �[F (vM2 ) − F (v
M−1
2 )]

]

+ (1 − �)∫

vM1

vM−1
1

[

(1 + �)v − �
1 − F (v)
f (v)

]

f (v)dv

− (1 − �)(1 + �)�(vM−1
2 − vM−1

1 )[F (vM1 ) − F (v
M−1
1 )] − (1 − �)�[F (vM1 ) − F (v

M−1
1 )]

− �vM−1
1 + �M (vM−1

2 − vM−1
1 ) + �M − �M+1 = 0, (aM )

(am+1 − am)
{

(1 − �)
[

(� − (1 + �)vm1 )f (v
m
1 ) + (� + � + ��) [1 − F (v

m
1 )] + (1 + �)�(v

m
2 − v

m
1 )f (v

m
1 )
]

−
M
∑

j=m+1
�j − �

}

= 0, (vm1 , 1 ≤ m ≤M − 1)

a1
{

�
[

(� − (1 + �)v02)f (v
0
2) + �[1 − F (v

0
2)]

]

− (1 − �)(1 + �)� +
M
∑

j=1
�j
}

+ 
02 − 

1
2 = 0, (v02)

(am+1 − am)

{

�
[

(� − (1 + �)vm2 )f (v
m
2 ) + �[1 − F (v

m
2 )]

]

− (1 − �)(1 + �)�[1 − F (vm1 )] +
M
∑

j=m+1
�j
}

+ 
m2 − 

m+1
2 = 0, (vm2 , 1 ≤ m ≤M − 1)

�(aM+1 − aM )
[

(� − (1 + �)vM2 )f (v
M
2 ) + �[1 − F (v

M
2 )]

]

+ 
M2 − 
M+1
2 = 0, (vM2 )

� +
M
∑

m=1
�m − (1 − �) (� + � + ��) + �1 = 0, (u(v, b1))

−
M
∑

m=1
�m − �� + (1 − �)(1 + �)� + �2 = 0. (u(v, b2))

The variables in the parentheses denote with respect to which variables the first-order conditions
are taken.
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Lemma 34 Suppose Assumptions 2 and 3 hold and V (M,d) > V (M − 1, d) for someM ≥ 3. An

optimal mechanism of  ′(M,d) satisfies that vm2 − v
m
1 is strictly increasing in m = 1,…M − 1.

Proof of Lemma 34. Since am+1 > am for m = 1,…M − 1, the FOCs of vm1 become

(1 − �)
[

(� − (1 + �)vm1 )f (v
m
1 ) + (� + � + ��) [1 − F (v

m
1 )] + (1 + �)�(v

m
2 − v

m
1 )f (v

m
1 )
]

−
M
∑

j=m+1
�j − � = 0,

for m = 1,… ,M − 1. Then for m = 1,… ,M − 1

vm2 − v
m
1 =

1
�
vm1 −

� + � + ��
(1 + �)�

1 − F (vm1 )
f (vm1 )

−
�

(1 + �)�
+

� +
∑M
j=m+1 �

j

(1 − �)(1 + �)�f (vm1 )
,

which is strictly increasing in vm1 by Assumptions 2 and 3. If �m+1 = 0, then vm+12 −vm+11 > vm2 −v
m
1

since vm+11 > vm1 .

If �m+1 > 0, then vm+12 ≥ vm+11 > vm1 ≥ vm2 since (3.8) holds for m and m + 2 and (3.8) holds with
equality for m + 1. Hence, vm+12 − vm+11 ≥ 0 ≥ vm2 − v

m
1 . By Lemma 33, v12 ≥ v11. Hence, if there

exists m ≥ 1 such that vm+12 − vm+11 ≥ 0 ≥ vm2 − v
m
1 , then it must be the case that vm+12 − vm+11 =

vm2 −v
m
1 =⋯ = v12−v

1
1 = 0. In particular, v22−v21 = v12−v11. Then we can construct another feasible

mechanism (a∗, p∗, q∗), which strictly improves welfare. Let v̂ ∈ (v11, v21) be such that

(a3 − a2)
[

F (v21) − F (v̂)
]

= (a2 − a1)
[

F (v̂) − F (v11)
]

.

Let a∗(v, b) = a1 if v ∈ (v11, v̂), a∗(v, b) = a3 if v ∈ (v̂, v21) and a∗(v, b) = a(v, b) otherwise. Let
p∗(v, b) = va∗(v, b)− ∫ v

v a
∗(�, b)d�− u(v, b). Then the (BC) constraint is satisfied by Assumption 3.

Let q∗(v, b1) = q(v, b1). Clearly, (a∗, p∗, q∗) satisfies constraints (IR), (IC-v), (IC-b), (S) and (BB),
and strictly improves welfare. A contradiction.

Lemma 35 Suppose Assumptions 2 and 3 hold. Then V (M,d) = V (5, d) for allM ≥ 5 and d ≥ 0.
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Proof of Lemma 35. Fix d ≥ 0 andM ≥ 6 be an integer. We show that V (M − 1, d) = V (M,d).
Suppose, on the contrary, that V (M −1, d) < V (M,d), then in an optimal solution to  ′(M,d) the
allocation rule must be a M-step allocation rule. In particular, 0 = a0 ≤ a1 < a2 < ⋯ < aM ≤

aM+1 = 1. By Lemmas 33 and 34, an optimal solution to  ′(M,d) must satisfies

vM−1
2 − vM−1

1 > vM−2
2 − vM−2

1 >⋯ > v12 − v
1
1 ≥ 0. (B.11)

Fix v = v01 < v11 < ⋯ < vM1 = v and 0 ≥ v02 ≤ v12 ≤ ⋯ ≤ vM2 ≤ vM+1
2 ≤ v such that (B.11) holds.

Then  ′(M,d) is linear in u(v, b1), u(v, b2) and am for m = 1,… ,M . Then an optimal solution
can be obtained at an extreme point of the feasible region. By (B.11), inequalities corresponding
to �m for m = 2,…M holds if the inequality corresponding to �1 holds. Hence, the feasible set is
characterized by (S), (BC), (BB) and the following inequalities:

u(v, b1) ≥ 0, u(v, b2) ≥ 0,

u(v, b1) − u(v, b2) + a1(v02 − v
0
1) ≥ 0, (B.12)

0 ≤ a0 ≤ a1 ≤⋯ ≤ aM ≤ aM+1 = 1.

Note that if a1 = 0, then u(v, b1) ≥ 0 is redundant. Hence, in addition to (S), (BC), (BB) and
aM ≤ 1, at most three of the following four inequalities are active at the same time: u(v, b1) ≥ 0,
u(v, b2) ≥ 0, a1 ≥ 0 and (B.12). SinceM ≥ 6, at least one of the following constraints hold with
equality: a1 ≤ a2⋯ ≤ aM−1 ≤ aM , a contradiction.

Lemma 36 Suppose Assumptions 2 and 3 hold. For any d > 0, there existsM(d) such that for all

M > M(d),

V − V (M,d) ≤ (1 − �)
(

1 + k
c

) E[v]
M

.

Proof of Lemma 36. Let (a, p, q) denote an optimal mechanism of  ′. Then p(v, b) = va(v, b) −

∫ v
v a(�, b)d� − u(v, b) for all (v, b) ∈ T and q is defined by (3.6). FixM ≥ 2. Let a0 = 0, aM+1 = 1
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and am = (m − 1)a(v, b1)∕M for m = 1,… ,M . Let v01 = v, vM1 = v and for m = 0,… ,M − 1

vm1 = inf
{

v ||
|

a(v, b1) ≥ am+1
}

.

Then v = v01 ≤ v11 ≤ ⋯ ≤ vM1 = v and 0 = a0 ≤ a1 < a2 < ⋯ < aM ≤ aM+1 = 1. Let
a∗(v, b1) = am if v ∈ (vm−11 , vm1 ) for m = 1,… ,M . Then a(v, b1) − 1∕M ≤ a∗(v, b1) ≤ a(v, b1). Let
v̂m2 = inf{v|a(v, b2) ≥ am} for m = 1,… ,M , v̂02 = 0 and v̂M+1

2 = v. For each m = 1,… ,M + 1,
there exists vm−12 ∈ [v̂m−12 , v̂m2 ] such that

∫

v̂m2

v̂m−12

a(v, b2)f (v)dv = am−1[F (vm−12 ) − F (v̂m−12 )] + am[F (v̂m2 ) − F (v
m−1
2 )]. (B.13)

Consider a∗(v, b2) such that a∗(v, b2) = am if v ∈ (vm−12 , vm2 ) for m = 1,… ,M , a∗(v, b2) = 0 if
v < v02 and a∗(v, b2) = 1 if v > vM2 . Note that since a1 = 0, we have v02 = v. Clearly, a∗ satisfies
constraint (S). Let p∗(v, b) = va∗(v, b) − ∫ v

v a
∗(�, b)d� − u(v, b) for b ∈ B. Let q∗ be such that

cq∗(v, b1) = cq(v, b1) +
v
M
.

We show that the (IC-b) constraint is satisfied, i.e., for all v ∈ (vm−11 , vm1 ), m = 1,… ,M ,

cq∗(v, b1) ≥ u(v, b1) − u(v, b2) − ∫

vm−12

v
a(�, b2)d� + am(vm−12 − v) + ∫

v

v
a∗(�, b1)d�.

Recall that for v ∈ (vm−11 , vm1 ), we have

cq(v, b1) ≥ u(v, b1) − u(v, b2) − ∫

v̂m2

v
a(�, b2)d� + a(v, b1)(v̂m2 − v) + ∫

v

v
a(�, b1)d�.
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Then for v ∈ (vm−11 , vm1 )

cq∗(v, b1) = cq(v, b1) +
v
M

≥ u(v, b1) − u(v, b2) − ∫

v̂m2

v
a(�, b2)d� + a(v, b1)v̂m2 −

(

a(v, b) − 1
M

)

v + ∫

v

v
a(�, b1)d�

≥ u(v, b1) − u(v, b2) − ∫

v̂m2

v
a(�, b2)d� + am(v̂m2 − v) + ∫

v

v
a(�, b1)d�

≥ u(v, b1) − u(v, b2) − ∫

v̂m2

v
a∗(�, b2)d� + am(v̂m2 − v) + ∫

v

v
a∗(�, b1)d�

= u(v, b1) − u(v, b2) − ∫

vm−12

v
a∗(�, b2)d� + am(vm−12 − v) + ∫

v

v
a∗(�, b1)d�,

where the third line holds since a(v, b) − 1∕M ≤ a∗(v, b) ≤ a(v, b) and the fourth line holds by the
same argument in the proof of Lemma 4. Then

Et[p∗(t) − q∗(t)k] − Et[p(t) − q(t)k]

=� ∫

v

v

[

v −
1 − F (v)
f (v)

]

[a∗(v, b2) − a(v, b2)]f (v)dv

+ (1 − �)∫

v

v

[

v −
1 − F (v)
f (v)

]

[a∗(v, b1) − a(v, b1)]f (v)dv

− (1 − �)∫

v

v
k[q∗(v, b1) − q(v, b1)]f (v)dv

≥ − E[v]
M

− (1 − �)E[v]
M

k
c
.

For any d > 0, there existsM(d) such that for allM > M(d), we have E[v]
M

+ (1 − �)E[v]
M

k
c
< d.

Then (a∗, p∗, q∗) is a feasible solution to  ′(M,d) forM > M(d). Hence,

V − V (M,d)

≤(1 − �)

[

∫

v

v
v[a(v, b1) − a∗(v, b1)]f (v)dv − ∫

v

v

[

q(v, b1) − q∗(v, b1)
]

kf (v)dv

]

≤(1 − �)
(

1 + k
c

) E[v]
M

.
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Proof of Theorem 9. By Lemmas 7 and 36, we have

V − V (2, d) = V − V (M,d) ≤ (1 − �)
(

1 + k
c

) E[v]
M

.

Let M goes to infinity and we have V (2, 0) ≤ V ≤ V (2, d) for all d > 0. By Lemma 37,
limd→0 V (2, d) = V (2, 0). Hence, V = V (2, 0).

Hence, there exists u(v, b1) ≥ 0, u(v, b2) ≥ 0, v ≤ v11 ≤ v, v ≤ v02 ≤ v12 ≤ v22 ≤ v and 0 ≤ a1 ≤ a2 ≤

v the optimal mechanism of  ′ is given by

a(v, b1) = a1 + �{v≥v11
}

(

a2 − a1
)

,

a(v, b2) = �{v≥v02
}a1 + �{v≥v12

}

(

a2 − a1
)

+ �{v≥v22
}(1 − a2),

p(v, b1) = −u(v, b1) + �{v≥v11
}

(

a2 − a1
)

v11,

p(v, b2) = −u(v, b2) + �{v≥v02
}a1v02 + �

{

v≥v12
}

(

a2 − a1
)

v12 + �
{

v≥v22
}(1 − a2)v22,

q(v, b1) =
1
c

[

u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1
)

+ �{v≥v11
}

(

a2 − a1
)

(v12 − v
1
1)
]

,

q(v, b2) = 0.

By Lemma 33, v12 ≥ v11. We show below that v02 = v and a1 = 0.

First, we show that v02 = v. We consider two different cases: u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

= 0

and u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

> 0.

Suppose u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

= 0.

Suppose to the contradiction that v02 > v. Then we can construct another feasible mechanism
(a∗, p∗, q∗), which strictly improves welfare. Since v02 > v = v01, we have u(v, b2) > u(v, b1)

and, by construction, a1 > 0 and v11 > v.

Let " > 0 be sufficiently small. Let ṽ01 = v + " and ṽ02 < v02 be such that �[F (v02) − F (ṽ02)] =

204



(1 − �)F (v + "). For " > 0 sufficiently small, ṽ01 < min{v11, ṽ
0
2}. Let ṽ1i = v1i for i =

1, 2. Let u∗(v, b1) = u(v, b1) + a1" and u∗(v, b2) = u(v, b2) − (1 − �)a1"∕�. For " > 0

sufficiently small, u∗(v, b2) ≥ u∗(v, b1) > 0. Let a∗(v, b1) = 0 if v < ṽ01 and a∗(v, b1) =
a(v, b1) otherwise. Let a∗(v, b2) = a1 if v ∈ (ṽ02, v02) and a∗(v, b2) = a(v, b2) otherwise. Let
p∗(v, b) = va∗(v, b)−∫ v

v a
∗(�, b)d�−u∗(v, b). Since u∗(v, b1)−a1ṽ01 = u(v, b1)−a1v01, we have

p∗(v, b1) = p(v, b1) ≤ b1. Hence, the (BC) constraint is satisfied. Let q∗(v, b1) = q(v, b1).
Clearly, (a∗, p∗, q∗) satisfies constraints (IR), (IC-v) and (S), and strictly improves welfare.
(a∗, p∗, q∗) satisfies (BB) by Assumption 2.

Finally, we show that (a∗, p∗, q∗) satisfies the (IC-b) constraint. First, for v < v + ", we have
u∗(v, b1) − u∗(v, b2) ≤ 0 ≤ q∗(v, b1)c. Next, we show that for m = 1, 2

qmc ≥ u∗(v, b1) − u∗(v, b2) +
m
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 ).

Since

v02 − ṽ
0
2 = ∫

v02

ṽ02

f (v) 1
f (v)

dv

≥ 1
f (ṽ02)

[F (v02) − F (ṽ
0
2)]

≥ 1 − �
�

F (v + ")
f (v + ")

≥ 1 − �
�

",

where the inequalities hold by Assumption 3, we have

u∗(v, b1) − u∗(v, b2) +
1
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 )

=u(v, b1) − u(v, b2) + a1v02 +
a1"
�
+ a1(ṽ02 − v

0
2) − a

1(v01 + ")

≤u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1
)

.

205



Furthermore, ṽmi = vmi for i = 1, 2 and m ≥ 1. Hence, the (IC-b) constraint is satisfied. This
contradicts to that (a, p, q) is optimal. Hence v02 = v.

Suppose u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

> 0.

Suppose to the contradiction that v02 > v. In this case, 
02 = 0. By construction, we have
a1 > 0 and v11 > v. Hence, �1 = 0. Furthermore, since u(v, b1) − u(v, b2) + a1

(

v02 − v
0
1

)

> 0

and v12 ≥ v11, we have �1 = �2 = 0. Then v02 satisfies

�
[

(� − (1 + �)v02)f (v
0
2) + �[1 − F (v

0
2)]

]

− (1 − �)(1 + �)�[1 − F (v01)] = 0, (B.14)

� ∫

vM2

v02

[v + �'(v) − �] f (v)dv

+ (1 − �)

[

∫

vM1

v01

[v + �'(v) − �] f (v)dv − (1 + �)�(v02 − v
0
1)[1 − F (v

0
1)]

]

− �v01 − �
M+1 = 0. (B.15)

Since v02 ≥ v01, it follows from Claims 3 and (B.15) that ∫ vM1
v01

[v + �'(v)] f (v)dv ≥ �[1 −

F (v01)], i.e., v̂(�) = v.

Given �, � and �, (B.22) and (B.23) define v12 as functions of v11, denoted by g1 and g2, respec-
tively. By a similar argument in Claim 6, g′1(v) > 1, and g′2(v) < 1 if v > v̂(�) and g2(v) ≥ v.
Let Δ3 denote the left-hand side of (B.18) or (B.15), then

)Δ3
)v11

= (1 − �)
[

(� − v11 − �'(v
1
1))f (v

1
1) + (1 + �)�(v

1
2 − v

1
1)f (v

1
1) + (1 + �)�[1 − F (v

1
1)]

]

− �,

)Δ3
)v12

= �(� − v12 − �'(v
1
2))f (v

1
2) − (1 − �)(1 + �)�[1 − F (v

1
1)].

Clearly, )Δ3(v1, g2(v1))∕)v2 = 0 by (B.21). Since v12 ≥ v11, then g2(v) > g1(v) for all v < v11.
Then )Δ3(v1, g2(v1))∕)v1 > Δ3(v1, g1(v1))∕)v1 = 0 for all v1 < v11. Then

0 = Δ3(v11, v
1
2) = Δ3(v

0
1, v

0
2) + ∫

v11

v01

)Δ3(v1, g2(v1))
)v1

dv1 > Δ3(v01, v
0
2) = 0,
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a contradiction. Hence, v02 = v.

Next, we show that a1 = 0. Suppose a1 > 0, then �1 = 0. Then v02 satisfies

a1
{

�
[

� − v02 − �'(v
0
2)
]

f (v02) − (1 − �)(1 + �)� +
2
∑

j=1
�j
}

+ 
02 = 0, (B.16)

� ∫

vM2

v02

[v + �'(v) − �] f (v)dv + (1 − �)∫

vM1

v01

[v + �'(v) − �] f (v)dv − �v01 − �
M+1 = 0.

(B.17)

By Claims 3, it follows from (B.17) that ∫ vM1
v01

[v + �'(v)] f (v)dv − � ≥ 0, i.e., v̂(�) = v. Since
g′2(v) ≤ 1 if v ≥ v̂(�) and g2(v) ≥ v, and g2(v11) = v12 ≥ v11, we have v02 = g2(v01) > v01 = v, a
contradiction. Hence, a1 = 0.

Let a∗ = a2, v∗1 = v11, v∗2 = v12 and v∗∗2 = v22. Let u∗1 = u(v, b1) and u∗2 = u(v, b2). This completes the
proof.

Proof of Corollary 6. This results holds trivially if the first-best can be achieved. For the rest of
the proof, I assume that the first-best can be achieved. Suppose there are two optimal mechanisms
(a, p, q) and (â, p̂, q̂). By Theorem 9, there exist (u∗1, u∗2, a∗, v∗1, v∗2, v∗∗2 ) and (û∗1, û∗2, â∗, v̂∗1, v̂∗2, v̂∗∗2 ) that
characterize the two different optimal mechanisms, respectively.

First, I show that the convex combination of the two mechanisms (�a+ (1 − �)â, �p+ (1 − �)p̂, � +
(1 − �)q̂), where � ∈ (0, 1), is also optimal. Clearly, it satisfies (IR), (BC), (BB) and (S):

[�a(t) + (1 − �)â(t)]v − [�p(t) + (1 − �)p̂(t)] = �[a(t)v − p(t)] + (1 − �)[â(t)v − p̂(t)] ≥ 0,

�p(t) + (1 − �)p̂(t) ≤ b,

Et [�p(t) + (1 − �)p̂(t) − [�q(t) + (1 − �)q̂(t)]k] = �Et[p(t) − q(t)k] + (1 − �)Et[p̂(t) − q̂(t)k] ≥ 0,

Et[�a(t) + (1 − �)â(t)] = �Et[a(t)] + (1 − �)E[â(t)] ≤ S.
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It satisfies (IC-v) since �a(v, b) + (1 − �)â(v, b) is non-decreasing in v and

�p(v, b) + (1 − �)p̂(v, b)

=�

[

a(v, b)v − ∫

v

v
a(�, b)d� − u(v, b)

]

+ (1 − �)

[

â(v, b)v − ∫

v

v
â(�, b)d� − û(v, b)

]

= [�a(v, b) + (1 − �)] v − ∫

v

v
[�a(�, b) + (1 − �)â(�, b)]d� − [�u(v, b) + (1 − �)û(v, b)].

Finally, it satisfies (IC-b) since

[�a(v, b2) + (1 − �)â(v, b2)]v − [�p(v, b2) + (1 − �)p̂(v, b2)]

=�[a(v, b2)v − p(v, b2)] + (1 − �)[â(v, b2)v − p̂(v, b2)]

≥�[a(v̂, b1)v − p(v̂, b1) − q(v̂, b1)c] + (1 − �)[â(v̂, b1)v − p̂(v̂, b1) − q̂(v̂, b1)c]

=[�a(v, b1) + (1 − �)â(v, b1)]v − [�p(v̂, b1) + (1 − �)p̂(v̂, b1)] − [�q(v̂, b1)c + (1 − �)q(v̂, b1)]c.

Furthermore,

Et [[�a(t) + (1 − �)â(t)]v − [�q(t) + (1 − �)q̂(t)]k]

=�Et[a(t)v − q(t)k] + (1 − �)Et[â(t)v − q̂(t)k]

=V .

Hence, (�a + (1 − �)â, �p + (1 − �)p̂, � + (1 − �)q̂) is an optimal mechanism of  .

Second, I show that v∗1 = v̂∗1. Suppose, on the contrary, that v∗1 < v̂∗1. Then

�a(v, b1) + (1 − �)â(v, b1) = �{v≥v∗1}�a
∗ + �v≥v̂∗1 (1 − �)â

∗,

which is a 3-step function, a contradiction.

Third, I show that v∗2 = v̂∗2, v∗∗2 = v̂∗∗2 and a∗ = â∗. Suppose a∗ = â∗ = 1. By Proposition 2, (S)
holds with equality in an optimal mechanism. Hence, v∗2 = v∗∗2 = v̂∗2 = v̂

∗∗
2 .
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Suppose a∗ < 1 and â∗ = 1. Since (S) holds with equality in both mechanisms, it must be that
v∗2 < v̂

∗
2. In this case, a(v, b1) = �{v≥v∗1}[�a∗ + (1 − �)]. If v ∈

(

v∗2,min{v
∗∗
2 , v̂

∗∗
2 }

), then a(v, b2) =
�a∗ < �a∗ + (1 − �), which is a contradiction to Lemma 4.

Suppose a∗ < 1 and â∗ < 1. In this case, a(v, b1) = �{v≥v∗1}[�a
∗ + (1 − �)â∗]. Suppose, on the

contrary, that v∗2 < v̂∗2. If v ∈
(

v∗2,min{v
∗∗
2 , v̂

∗
2}
), then a(v, b2) = �a∗ < �a∗ + (1 − �)â∗, which

is a contradiction to Lemma 4. Hence, v∗2 = v̂∗2. Suppose, on the contrary, that v∗∗2 < v̂∗∗2 . If
v ∈

(

v∗∗2 , v̂
∗∗
2

), then a(v, b2) = �+(1−�)â∗ > �a∗+(1−�)â∗, a contradiction to Lemma 4. Hence,
v∗∗2 = v̂∗∗2 . Finally, since (S) holds with equality in both mechanisms, it must be the case a∗ = â∗.

Lastly, I show that u∗i = û∗i for i = 1, 2. Proposition 14 shows that if the first-best cannot be achieved
then both (BC) and (BB) hold with equality in an optimal mechanism. Hence, u∗1 = a∗v∗1 − b1 =

â∗v̂∗1 − b1 = û
∗
1. If � ≥ �∕(1 − �), then by Proposition 4 u∗2 = u∗1 = û∗1 = û∗2. If � < �∕(1 − �), then

u∗2 = û
∗
2 by (BB).

B.3.3. Proof of Lemma 7

LetM ≥ 3 be an integer. We want to show that V (M − 1, d) = V (M,d). Suppose to the contra-
diction that V (M − 1, d) < V (M,d), then an optimal solution to  ′(M,d) satisfies the first-order
conditions given before the proof of Lemma 34 in Appendix 3.4.2.

For later use, we note here that the summation of FOCs of am′ , m+1 ≤ m′ ≤M , m = 0,… ,M −1,
gives:

�

[

∫

vM2

vm2

[

(1 + �)v − �
1 − F (v)
f (v)

]

f (v)dv − �[F (vM2 ) − F (v
m
2 )]

]

+ (1 − �)

[

∫

vM1

vm1

[

(1 + �)v − �
1 − F (v)
f (v)

]

f (v)dv − (1 + �)�(vm2 − v
m
1 )[1 − F (v

m
1 )] − �[1 − F (v

m
1 )]

]

− �vm1 + (v
m
2 − v

m
1 )

M
∑

j=m+1
�j + �m+1 − �M+1 = 0. (B.18)

Recall that �2 = ⋯ = �M = 0. We break the proof into several claims. In all claims, we assume,
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without explicitly repeating this, that Assumptions 2 and 3 hold, u(v, b1), u(v, b2), {am}Mm=1, {vm1 }M−1
m=1

and {vm2 }Mm=0} define an optimal mechanism of  ′(M,d) and �, �, �, �1, �2, {�m}Mm=1, {�m}M+1
m=1 ,

{
m1 }
M
m=1 and {
m2 }M+1

m=0 are the associated Lagrangian multipliers.

Claim 1 
m2 = 0 for m = 2,… ,M − 1.

Proof. Since am+1 > am for m = 1,…M − 1, the FOCs of vm1 become

(1 − �)
[

(� − (1 + �)vm1 )f (v
m
1 ) + (� + � + ��) [1 − F (v

m
1 )] + (1 + �)�(v

m
2 − v

m
1 )f (v

m
1 )
]

−
M
∑

j=m+1
�j − � = 0,

for m = 1,… ,M − 1. Then for m = 1,… ,M − 1

vm2 =
1 + �
�

vm1 −
� + � + ��
(1 + �)�

1 − F (vm1 )
f (vm1 )

−
�

(1 + �)�
+

� +
∑M
j=m+1 �

j

(1 − �)(1 + �)�f (vm1 )
, (B.19)

which is strictly increasing in vm1 by Assumptions 2 and 3. Let m = 1,… ,M − 2. If �m+1 = 0, then
vm+12 > vm2 since vm+11 > vm1 and (B.19). If �m+1 > 0, then vm+12 ≥ vm+11 > vm1 ≥ vm2 since (3.8) holds
for m and m + 2 and (3.8) holds with equality for m + 1. Hence, 
m2 = 0 for m = 2,… ,M − 1.

Let
'(v) ∶= v −

1 − F (v)
f (v)

,

denote the “virtual” value, which is strictly increasing in v by Assumption 2. By Lemmas 33 and
34, we have vM−1

2 > vM−1
1 . In this case, �M = 0.

Claim 2 Suppose vM−1
2 > vM−1

1 , then v + �'(v) > � ≥ vM−1
2 + �'(vM−1

2 ).

Proof. Since �M = 0, the FOC of vM−1
2 implies that � ≥ vM−1

2 + �'(vM−1
2 ). Since vM−1

2 > vM−1
1

and �M = 0, the FOC of aM implies that

� ∫

vM2

vM−1
2

[v + �'(v) − �] f (v)dv + (1 − �)∫

vM1

vM−1
1

[v + �'(v) − �] f (v)dv ≥ 0.
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Hence, it must be the case that � < v + �'(v).

Claim 3 Suppose vM−1
2 > vM−1

1 , then 
M2 = 
M+1
2 = 0 and vM2 + �'(vM2 ) ≤ �.

Proof. Suppose vM2 + �'(vM2 ) > � ≥ vM−1
2 + �'(vM−1

2 ), then vM2 > vM−1
2 and therefore 
M2 = 0.

Suppose vM2 + �'(vM2 ) ≤ � < v + �'(v), then vM2 < v and therefore 
M+1
2 = 0. Since 
M+1

2 = 0

and vM2 + �'(vM2 ) ≤ �, the FOC of vM2 implies that 
M2 = 0. Hence, 
M2 = 0.

Suppose aM+1 > aM , then the FOC of vM2 implies that � ≥ vM2 + �'(vM2 ). Suppose aM+1 = aM ,
then by construction vM2 = vM−1

2 and therefore vM2 + �'(vM2 ) ≤ �. Hence, vM2 + �'(vM2 ) ≤ � <

v + �'(v), which implies that vM2 < v and therefore 
M+1
2 = 0.

In what follows, we consider two cases: u(v, b1)−u(v, b2)+a1
(

v02 − v
0
1

)

> 0 and u(v, b1)−u(v, b2)+
a1

(

v02 − v
0
1

)

= 0.

Case 1. vM−1
2 > vM−1

1 and u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

= 0.

Claim 4 Suppose vM−1
2 > vM−1

1 and u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

= 0, then 
12 = 0.

Proof. Suppose 
02 > 0, then v02 = v. Since (3.8) holds for m = 2, we have v12 ≥ v11 > v = v02.
Hence, 
12 = 0.

Suppose 
02 = 0. Suppose a1 = 0, then the FOC of v02 implies that 
12 = 0. Suppose a1 > 0. Suppose
to the contradiction that 
12 > 0, then we can construct another feasible mechanism (a∗, p∗, q∗), which
strictly improves welfare. Since 
12 > 0, we have v02 = v12 ≥ v11. We consider two different cases: (1)
v02 = v

1
2 = v

1
1 and (2) v02 = v12 > v11.

Suppose v02 = v
1
2 = v

1
1.
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Let ṽ11 be such that a2(v11 − ṽ11) = a1(v11 − v). Then, by Assumption 3, we have

a2
[

F (v11) − F (ṽ
1
1)
]

= (a2 − a1 + a1)
[

F (v11) − F (ṽ
1
1)
]

≤ a1
[

F (v11) − F (ṽ
1
1)
]

+ (a2 − a1)f (ṽ11)(v
1
1 − ṽ

1
1)

= a1
[

F (v11) − F (ṽ
1
1)
]

+ a1f (ṽ11)ṽ
1
1

≤ a1F (v11).

Let ṽ02 = v and ṽ12 be such that �
[

F (v12) − F (ṽ
1
2)
]

= (1 − �)
[

a1F (v11) − a
2 [F (v11) − F (ṽ

1
1)
]].

Let ṽm1 = vm1 and ṽm2 = vm2 for all m ≥ 1. Let a∗(v, bi) = am if v ∈ (ṽm−1i , ṽmi ) for m ≥ 2 and i =
1, 2 and a∗(v, bi) = 0 if v ∈ (v, ṽ1i ) for i = 1, 2. Let p∗(v, b) = va∗(v, b)−∫ v

v a
∗(�, b)d�−u(v, b).

Then, by construction, p∗(v, b1) = p(v, b1) ≤ b1. Hence, the (BC) constraint is satisfied. Let
q∗(v, b1) = q(v, b1). By Assumption 2, (a∗, p∗, q∗) improves revenue and therefore satisfies
the (BB) constraint. Clearly, (a∗, p∗, q∗) satisfies constraints (IR), (IC-v) and (S), and strictly
improves welfare.

Finally, we show that (a∗, p∗, q∗) satisfies the (IC-b) constraint. For v ∈ (v, ṽ11), we have

u(v, b1) − u(v, b2) < u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1
)

= q1c.

For v ∈ (ṽ11, v11), we have

u(v, b1) − u(v, b2) + a2(ṽ12 − ṽ
1
1) ≤ u(v, b1) − u(v, b2) + a1

(

v02 − v
0
1
)

= q1c.

The first inequality holds since a2(ṽ12 − ṽ11) ≤ a2(v11 − ṽ
1
1) = a1(v11 − v) = a1

(

v02 − v
0
1

). For
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v ∈ (vm−11 , vm−21 ), m ≥ 2, we have

u(v, b1) − u(v, b2) + a2(ṽ12 − ṽ
1
1) +

m
∑

j=3
(aj − aj−1)(ṽj−12 − ṽj−11 )

=u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) + a2(ṽ12 − ṽ

1
1)

− (a2 − a1)(v12 − v
1
1) − a

1 (v02 − v
0
1
)

=u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) + a2ṽ12 − a

2ṽ11 − a
2v12 + (a

2 − a1)v11 + a
1v01

≤u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) = qmc,

where the last inequality holds by construction. Hence, the (IC-b) constraint is satisfied. Thus,
(a∗, p∗, q∗) is feasible. However, this contradicts to that (a, p, q) is optimal.

Suppose v02 = v
1
2 > v

1
1.

Let a∗(v, b1) = a1 − " for some " > 0 sufficiently small if v < v11 and a∗(v, b1) = a(v, b1)

otherwise. Let ṽ02 < v02 be such that �(a1 − ") [F (v02) − F (ṽ02)
]

= (1 − �)"F (v11). For " > 0
sufficiently small, v11 < ṽ02. Let ṽm2 = vm2 for m ≥ 1. Let a∗(v, b2) = a1 − " if v ∈ (ṽ02, ṽ12) and
a∗(v, b2) = a(v, b2) otherwise. Let u∗(v, b1) = u(v, b1) + "(v11 − v01) and u∗(v, b2) = u(v, b2) −
(1 − �)"(v11 − v

0
1)∕�. For " > 0 sufficiently small, u∗(v, b2) ≥ u∗(v, b1) > 0. Let p∗(v, b) =

va∗(v, b) − ∫ v
v a(�, b)d� − u(v, b). Then, by construction, we have p∗(v, b1) = p(v, b1) ≤ b1.

Hence, the (BC) constraint is satisfied. Let q∗(v, b1) = q(v, b1). Then (a∗, p∗, q∗) satisfies (BB)
by Assumption 2. Clearly, (a∗, p∗, q∗) satisfies constraints (IR), (IC-v) and (S), and strictly
improves welfare.

Finally, we show that (a∗, p∗, q∗) satisfies the (IC-b) constraint. Note that, by Assumption 3,
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we have

(a1 − ")(v02 − ṽ
0
2) = (a

1 − ")∫

v02

ṽ02

f (v) 1
f (v)

dv

≥ (a1 − ") 1
f (ṽ02)

[F (v02) − F (ṽ
0
2)]

≥ 1 − �
�

" 1
f (v11)

F (v11)

≥ 1 − �
�

"(v11 − v
0
1).

Then, for v < v11, we have

u∗(v, b1) − u∗(v, b2) + (a1 − ")(ṽ02 − v
0
1)

=u(v, b1) − u(v, b2) + a1v02 +
"(v11 − v

0
1)

�
+ (a1 − ")(ṽ02 − v

0
2) − "v

0
2 − (a

1 − ")v01

≤u(v, b1) − u(v, b2) + a1v02 +
"(v11 − v

0
1)

�
−
(1 − �)"(v11 − v

0
1)

�
− "v02 − (a

1 − ")v01

≤u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1
)

+ "(v11 − v
0
2)

<u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1
)

= q1c.

For v ∈ (vm−11 , vm1 ) for m = 2,… ,M , we have

u∗(v, b1) − u∗(v, b2) + (a1 − ")(ṽ02 − v
0
1) + (a

2 − a1 + ")(v12 − v
1
1)

+
m
∑

j=3
(aj − aj−1)(ṽj−12 − ṽj−11 )

≤u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) + "(v11 − v

0
2) + "(v

1
2 − v

1
1),

=u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) = qmc.

Hence, the (IC-b) constraint is satisfied. Thus, (a∗, p∗, q∗) is feasible. However, this contra-
dicts to that (a, p, q) is optimal.
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Hence, it must be that 
12 = 0.

By Claims 1, 3 and 4, we have 
m2 = 0 for m = 1,… ,M + 1. Thus, for m = 1,… ,M − 1, vm1 and
vm2 satisfy

(1 − �)
[

(� − vm1 − �'(v
m
1 ))f (v

m
1 ) + (1 + �)�[1 − F (v

m
1 )] + (1 + �)�(v

m
2 − v

m
1 )f (v

m
1 )
]

−
M
∑

j=m+1
�j − � = 0, (B.20)

�(� − vm2 − �'(v
m
2 ))f (v

m
2 ) − (1 − �)(1 + �)�[1 − F (v

m
1 )] +

M
∑

j=m+1
�j = 0. (B.21)

Recall that (B.20) and (B.21) are the first-order conditions of vm1 and vm2 , respectively, for m =

1,… ,M − 1.

Claim 5 Suppose vM−1
2 > vM−1

1 and u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

= 0, then �m = 0 for

m = 3,… ,M .

Proof. The result follows directly from Lemmas 33 and 34.

Claim 6 Suppose vM−1
2 > vM−1

1 and u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

= 0, thenM ≤ 2.

Proof. Let m̂ = 1 if �2 = 0 and m̂ = 2 if �2 > 0. For m = m̂,… ,M − 1, (B.20) and (B.21) become

(1 − �)
[

(� − vm1 − �'(v
m
1 ))f (v

m
1 ) + (1 + �)�[1 − F (v

m
1 )] + (1 + �)�(v

m
2 − v

m
1 )f (v

m
1 )
]

− � = 0,

(B.22)
�(� − vm2 − �'(v

m
2 ))f (v

m
2 ) − (1 − �)(1 + �)�[1 − F (v

m
1 )] = 0, (B.23)

Given �, � and �, (B.22) and (B.23) define vm2 as functions of vm1 , denoted by g1 and g2, respectively.
Clearly, by Assumptions 2 and 3, g′1(vm1 ) > 1. Since �m̂ > 0, (3.8) holds by equality for m̂, which
implies that vm̂2 ≥ vm̂1 . Furthermore, since g′1(vm1 ) > 1, vm2 ≥ vm1 for all m̂ ≤ m ≤ M − 1. Since
v + �'(v) < � for all v < vM2 , vm2 ≥ vm1 ≥ v ≥ 0, ∑M

j=m+1 �
j = 0, � ≥ 0, �m+1 = 0 and �M+1 ≥ 0,
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(B.18) implies that

∫

v

vm
[v + �'(v) − �] f (v)dv ≥ 0,

which holds if and only if vm ≥ v̂(�), where

v̂(�) ∶= inf

{

v̂
|

|

|

|

|

∫

v

vm
[v + �'(v) − �] f (v)dv ≥ 0

}

.

By the implicit function theorem, we have

g′2(v
m
1 ) =

1 − �
�

(1 + �)�f (vm1 )
−(� − (1 + �)vm2 )f

′(vm2 ) + (1 + 2�)f (v
m
2 )
> 0. (B.24)

To see that the last inequality holds, note that (� − v − �'(v))f (v) is strictly decreasing in v for
v < vM2 . Taking derivative with respect to v yields (� − (1 + �)v)f ′(v) − (1 + 2�)f (v) < 0 for
v < vM2 . Note that Assumption 2 implies that for all v ≥ vm1 , we have

f (v) ≥ f (vm1 )
1 − F (v)
1 − F (vm1 )

. (B.25)

Then for vm1 ≥ v̂(�) we have

1 − F (vm1 ) ≥
f (vm1 )

1 − F (vm1 ) ∫

v

vm1

(1 − F (v))dv

=
f (vm1 )

1 − F (vm1 )

[

(1 + �)∫

v

vm1

(1 − F (v))dv − �∫

v

vm1

(1 − F (v))dv

]

=
f (vm1 )

1 − F (vm1 )

[

−(1 + �)vm1 [1 − F (v
m
1 )] + ∫

v

vm1

[

(1 + �)v − �
1 − F (v)
f (v)

]

f (v)dv

]

≥ (� − (1 + �)vm1 )f (v
m
1 ),

where the first line holds by (B.25), the third line holds by integration by parts, and the last line holds

216



since vm1 ≥ v̂(�). Combining this and (B.23) yields

(� − vm2 − �'(v
m
2 ))f (v

m
2 ) =

1 − �
�

(1 + �)�[1 − F (vm1 )]

= 1 − �
�

�
[

[1 − F (vm1 )] + �[1 − F (v
m
1 )]

]

≥ 1 − �
�

�
[

(� − (1 + �)vm1 )f (v
m
1 ) + �[1 − F (v

m
1 )]

]

= 1 − �
�

�
[

� − vm1 − �'(v
m
1 )
]

f (vm1 ).

Hence,

�f (vm1 )
f (vm2 )

≤ �
1 − �

� − vm2 − �'(v
m
2 )

� − vm1 − �'(v
m
1 )
.

Furthermore,

− (� − (1 + �)vm2 )f
′(vm2 ) + (1 + 2�)f (v

m
2 )

= − (� − vm2 − �'(v
m
2 ))f

′(vm2 ) + �

{

[1 − F (vm2 )]f
′(vm2 )

f (vm2 )
+ f (vm2 )

}

+ (1 + �)f (vm2 )

≥(1 + �)f (vm2 ),

where the last inequality holds since � − vm2 − �'(vm2 ) > 0, f ′ ≤ 0 by Assumption 3 and [1 −
F (vm2 )]f

′(vm2 ) + f
2(vm2 ) ≥ 0 by Assumption 2. Finally, since vm2 ≥ vm1 ≥ v̂(�), we have

g′2(v
m
1 ) =

1 − �
�

(1 + �)�f (vm1 )
−(� − (1 + �)vm2 )f

′(vm2 ) + (1 + 2�)f (v
m
2 )

≤
� − vm2 − �'(v

m
2 )

� − vm1 − �'(v
m
1 )

≤ 1.

Note that g′2(vm1 ) < 1 if vm1 > v̂(�) or vm1 < vm2 .

Thus, there exists at most one vm1 ≥ v̂(�) such that g1(vm1 ) = g2(vm1 ) ≥ vm1 , i.e., (B.22) and (B.23) has
at most one solution such that vm2 ≥ vm1 ≥ v̂(�). Hence,M ≤ m̂ + 1 ≤ 3.

SupposeM = 3. By Claim 3, v + �'(v) < � for all v ≤ vM2 . Furthermore, � ≥ 0 and �M+1 ≥ 0.
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Hence, it follows from (B.18) that

∫

v

v1
[v + �'(v) − �] f (v)dv ≥ 0,

i.e., v1 ≥ v̂(�). Then we have vm̂1 > vm̂−1 ≥ v̂(�), and g2(vm̂1 ) = vm̂2 ≥ vm̂1 since �m̂ > 0. Since
g′2(v) < 1 if v > v̂(�) and g2(v) ≥ v, we have g2(v) > v for all v < vm̂1 . Hence, vm̂−1 = g2(vm̂−1) >
vm̂−1, a contradiction. Hence,M = 2 and v12 ≥ v11.

Case 2. vM−1
2 > vM−1

1 and u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

> 0. In this case, by Lemmas 33 and
34, �m = 0 for m = 1,… ,M .

Claim 7 Suppose vM−1
2 > vM−1

1 and u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

> 0, then 
12 = 0.

Proof. Since u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

> 0, �1 = 0. Suppose, on the contrary, that 
12 > 0.
Then v12 = v02.

Suppose 
02 > 0, then v12 = v02 = v = v01. Hence, u(v, b1) > u(v, b2). Let ṽ12 = v + " for some
" > 0 sufficiently small. Let ṽ11 be such that �F (") = (1−�)

[

F (v11) − F (ṽ
1
1)
]. For " > 0 sufficiently

small, ṽ12 < ṽ11. Let ṽmi = vmi and for i = 1, 2 and m ≠ 1. Let a∗(v, b2) = a1 for all v ∈ (v, ṽ12) and
a∗(v, b2) = a(v, b2) otherwise. Let a∗(v, b1) = a2 for v ∈ (ṽ11, v11) and a∗(v, b1) = a(v, b1) otherwise.
Let u∗(v, b1) = u(v, b1)−(a2−a1)(v11− ṽ11) and u∗(v, b2) = u(v, b2)+ 1−�

�
(a2−a1)(v11− ṽ

1
1). For " > 0

sufficiently small, u∗(v, b1) ≥ u∗(v, b2) > 0. Let p∗(v, b) = va∗(v, b) − ∫ v
v a

∗(�, b)d� − u∗(v, b). By
construction, p∗(v, b1) = p(v, b1) ≤ b1. Hence, the (BC) constraint holds. Let q∗(v, b1) = q(v, b1).
By Assumption 2, the (BB) constraint holds. For v ∈ (v, ṽ11), (IC-b) holds since

u∗(v, b1) − u∗(v, b2) + a1(ṽ02 − ṽ
0
1) = u(v, b1) − u(v, b2) + a

1(v02 − v
0
1) −

(a2 − a1)(v11 − ṽ
1
1)

�
≤ q1c.
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For v ∈ (ṽ11, v11), (IC-b) holds since

u∗(v, b1) − u∗(v, b2) + a1(ṽ02 − ṽ
0
1) + (a

2 − a1)(ṽ12 − ṽ
1
1)

=u(v, b1) − u(v, b2) +
2
∑

j=1
(aj − aj−1)(vj−12 − vj−11 )

−
(a2 − a1)(v11 − ṽ

1
1)

�
+ (a2 − a1)(v11 − ṽ

1
1 + ṽ

1
2 − v

1
2)

=u(v, b1) − u(v, b2) +
2
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) + (a2 − a1)(ṽ12 − v

1
2) −

(1 − �)(a2 − a1)(v11 − ṽ
1
1)

�

≤u(v, b1) − u(v, b2) +
2
∑

j=1
(aj − aj−1)(vj−12 − vj−11 )

≤u(v, b1) − u(v, b2) + a1(v02 − v
0
1) = q

1c,

where the last inequality holds since v12 = v < v11, and the first inequality holds since by Assumption
3 we have

ṽ12 − v
1
2 ≤

F (")
f (ṽ12)

≤ 1
f (ṽ11)

1 − �
�

[

F (v11) − F (ṽ
1
1)
]

≤
(1 − �)(v11 − ṽ

1
1)

�
.

For v ∈ (vm−11 , vm1 ), m = 2,… ,M , (IC-b) holds since

u∗(v, b1) − u∗(v, b2) +
m
∑

j=1
(aj − aj−1)(ṽj−12 − ṽj−11 )

=u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) + (a2 − a1)(ṽ12 − v

1
2) −

(1 − �)(a2 − a1)(v11 − ṽ
1
1)

�

≤u(v, b1) − u(v, b2) +
m
∑

j=1
(aj − aj−1)(vj−12 − vj−11 ) = qmc.

Clearly, (a∗, p∗, q∗) also satisfies constraints (IR), (IC-v) and (S), and strictly improves welfare. This
contradicts to the optimality of (a, p, q). Hence, 
12 = 0.
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Suppose 
02 = 0. Suppose a1 = 0, then the FOC of v02 implies that 
12 = 0. Suppose a1 > 0. Then

�(� − (1 + �)v02)f (v
0
2) + ��[1 − F (v

0
2)]

≥(1 − �)(1 + �)� −
M
∑

j=2
�j

>(1 − �)(1 + �)�[1 − F (v11)] −
M
∑

j=2
�j

≥�(� − (1 + �)v12)f (v
1
2) + ��[1 − F (v

1
2)].

Since (� − (1 + �)v)f (v) + �[1 − F (v)] is strictly decreasing in v when v + �'(v) < �, we have
v12 > v

0
2 and therefore 
12 = 0.

By Claims 1, 3 and 7, we have 
m2 = 0 for m = 1,… ,M . Thus, for m = 1,… ,M − 1, vm1 and vm2
satisfies (B.22), (B.23) and (B.18).

Claim 8 Suppose vM−1
2 > vM−1

1 and u(v, b1) − u(v, b2) + a1
(

v02 − v
0
1

)

> 0, thenM ≤ 2.

Proof. Suppose, on the contrary, thatM ≥ 3. Then there exists 1 ≤ m < M − 1 such that vm2 ≥ vm1 .
It follows from (B.18) that ∫ vM1

vm1
[v + �'(v)] f (v)dv ≥ �[1 − F (vm1 )], i.e., vm1 ≥ v̂(�). Both (vm1 , vm2 )

and (vM−1
1 , vM−1

2 ) are solutions to (B.22) and (B.23), and satisfy v2 ≥ v1 ≥ v̂(�). However, by a
similar argument in Claim 6, (B.22) and (B.23) have at most one solution satisfying v2 ≥ v1 ≥ v̂(�),
a contradiction. Hence, it must beM ≤ 2.

To summarize, we have shown in both cases thatM ≤ 2. However, this contradicts to the assumption
that M ≥ 3. Hence, it must be that V (M,d) = V (M − 1, d) for all M ≥ 3. This completes the
proof of Lemma 7.

B.3.4. Continuity

Let � = k∕c. I abuse notation and let  ′(2, �, �, S, b1, d) denote the principal’s problem  ′(2, d)

when verification cost is k, punishment is c, the percentage of high-budget agents is �, supply is
S and low-budget agent’s budget is b1. Define V ∶ R+ × (0, 1)2 × [v, v] × ℝ+ → ℝ+ and Γ∗ ∶
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R+ × (0, 1)2 × [v, v] × R+ → R2+ × [0, 1] × [v, v]
3 as follows. Let V (�, �, S, b1, d) denote the value

of  ′(2, �, �, S, b1, d) and Γ∗(�, �, S, b1, d) the set of optimal solutions.

Lemma 37 Suppose Assumption 2 holds. Then V (�, �, S, b1, d) is continuous and Γ∗(�, �, S, b1, d)

is upper hemicontinuous.

Proof of Lemma 37. Let correspondence Γ ∶ R+ × (0, 1)2 × [v, v] × R+ → R2+ × [0, 1] × [v, v]
3

be defined as follows. For each (�, �, S, b1, d), let (u(v, b1), u(v, b2), a2, v11, v12, v22) ∈ Γ(�, �, S, b1, d)
if and only if it is a feasible solution to (2, d). To simplify notation, let u1 = u(v, b1) and u2 =
u2(v, b2). Clearly, Γ is compact-valued and upper hemicontinuous. I show that it is also lower
hemicontinuous.

Fix (�, �, S, b1, d), (u1, u2, a2, v11, v12, v22) ∈ Γ(�, �, S, b1, d) and a sequence

(�(n), �(n), S(n), b1(n), d(n))→ (�, �, S, b1, d)

as n → ∞. Let '(v) ∶= v − 1−F (v)
f (v) and r be such that '(r) = 0. I show that after taking a

subsequence there exist (u1(n), u2(n), a2(n), v11(n), v12(n), v22(n)
)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
)

for all n and (u1(n), u2(n), a2(n), v11(n), v12(n), v22(n)
)

→ (u1, u2, a2, v11, v
1
2, v

2
2) as n→∞.

Case 1: Suppose a2 = 0. Then (S) and (BB) become:

�
[

1 − F (v22)
]

≤ S,

− u1 − [(1 − �)� − �] (u1 − u2) + � ∫

v

v22

'(v)f (v)dv ≥ −d.

Case 1.1: Suppose v22 < r.

After taking a subsequence, I can assume that for all n, F−1
(

�(n)−S(n)
�(n)

)

< r and

−(1 − �(n))(1 + �(n))u1 + [(1 − �(n))�(n) − �(n)] u2 + �(n)∫

v

r
'(v)f (v)dv ≥ −d(n).
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Let u1(n) = u1, u2(n) = u2, a2(n) = a2, v11(n) = v11, v12(n) = v12 and

v22(n) = inf

⎧

⎪

⎪

⎨

⎪

⎪

⎩

v ≥ max
{

v22, F
−1

(

�(n)−S(n)
�(n)

)}

,

−(1 − �(n))(1 + �(n))u1 + [(1 − �(n))�(n) − �(n)] u2

+�(n) ∫ v
v '(�)f (�)d� ≥ −d(n)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

Clearly, (u1(n), u2(n), a2(n), v11(n), v12(n), v22(n)
)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
) for all n

and (u1(n), u2(n), a2(n), v11(n), v12(n), v22(n)
)

→ (u1, u2, a2, v11, v
1
2, v

2
2) as n→∞.

Case 1.2

Suppose v22 ≥ r. Suppose v22 = v, then (BB) implies that u1 = u2 = 0. Let u1(n) = u1,
u2(n) = u2, a2(n) = a2, v11(n) = v11, v12(n) = v12 and v22(n) = v22. Clearly,

(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
)

for all n and (u1(n), u2(n), a2(n), v11(n), v12(n), v22(n)
)

→ (u1, u2, a2, v11, v
1
2, v

2
2) as n→∞.

Suppose v22 < v. After taking a subsequence, I can assume that for all n, F−1
(

�(n)−S(n)
�(n)

)

< v.
Let a2(n) = a2, v11(n) = v11, v12(n) = v12 and

v22(n) = max
{

v22, F
−1

(

�(n) − S(n)
�(n)

)}

.

For n sufficiently large, ∫ v
v22(n)

'(v)f (v)dv > 0. If u2 > 0, then let u1(n) = u1 + min{Δ(n), 0}

and u2(n) = u2+min{Δ(n), 0}; otherwise let u1(n) = u1+min
{

Δ(n)
(1−�(n))(1+�(n)) , 0

}

and u2(n) =
u2, where

Δ(n) = −(1 − �(n))(1 + �(n))u1 + [(1 − �(n))�(n) − �(n)] u2 + �(n)∫

v

v22(n)
'(�)f (�)d� + d(n).

Clearly, (u1(n), u2(n), a2(n), v11(n), v12(n), v22(n)
)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
) for all n

and (u1(n), u2(n), a2(n), v11(n), v12(n), v22(n)
)

→ (u1, u2, a2, v11, v
1
2, v

2
2) as n→∞.
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Case 2: Suppose a2 > 0.

Case 2.1: Suppose v22 < r.

Let a2(n) = min
{

b1(n)+u1
v11

, a2
}

. After taking a subsequence, I can assume that for all n,

F−1
(

�(n) − S(n) + (1 − �)a2(n)
[

1 − F (v11)
]

− �a2F (v12)

1 − �(n)a2(n)

)

< r

and

− (1 − �(n))(1 + �(n))u1 + [(1 − �(n))�(n) − �(n)] u2 + (1 − �(n))∫

v

v11

a2(n)'(v)f (v)dv

− (1 − �(n))�(n)a2(n)(v12 − v
1
1)
[

1 − F (v11)
]

+ �(n)∫

r

v12

a2(n)'(v)f (v)dv + �(n)∫

v

r
'(v)f (v)dv ≥ −d(n).

Let u1(n) = u1, u2(n) = u2, v11(n) = v11, v12(n) = v12 and

v22(n) = inf

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

v ≥ max
{

v22, F
−1

(

�(n)−S(n)+(1−�)a2(n)
[

1−F (v11)
]

−�a2F (v12)
1−�(n)a2(n)

)}

,

−(1 − �(n))(1 + �(n))u1 + [(1 − �(n))�(n) − �(n)] u2

+(1 − �(n)) ∫ v
v11
a2(n)'(�)f (�)d� − (1 − �(n))�(n)a2(n)(v12 − v

1
1)
[

1 − F (v11)
]

+�(n) ∫ v
v12
a2(n)'(�)f (�)d� + �(n) ∫ v

v '(�)f (�)d� ≥ −d(n)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.

Clearly, (u1(n), u2(n), a2(n), v11(n), v12(n), v22(n)
)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
) for all n

and (u1(n), u2(n), a2(n), v11(n), v12(n), v22(n)
)

→ (u1, u2, a2, v11, v
1
2, v

2
2) as n→∞.

Case 2.2: Suppose v22 ≥ r.

Suppose v11 = v and v12 = v22, then the proof follows that of Case 1.2. Assume for the rest of
the proof that v11 < v or v12 < v22. Let

A ∶= (1 − �)∫

v21

v11

'(v)f (v)dv − (1 − �)�∫

v

v11

(v12 − v
1
1)f (v)dv + � ∫

v22

v12

'(v)f (v)dv.
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and

A(n) ∶=(1 − �(n))∫

v21

v11

'(v)f (v)dv − (1 − �(n))�(n)∫

v

v11

(v12 − v
1
1)f (v)dv

+ �(n)∫

v22

v12

'(v)f (v)dv.

SupposeA < 0. After taking a subsequence, I can assume that for all n,S(n)−�(n) [1 − F (v22)
]

>

0, A(n) < 0 and

−(1 − �(n))(1 + �(n))u1 + [(1 − �(n))�(n) − �(n)] u2 + �(n)∫

v

v22

'(v)f (v)dv > −d(n).

Let u1(n) = u1, u2(n) = u2, v11(n) = v11, v12(n) = v12, v22(n) = v22 and

a2(n) = min

⎧

⎪

⎨

⎪

⎩

a2,
S(n)−�(n)

[

1−F (v22)
]

�(n)[F (v22)−F (v
1
2)]+(1−�(n))[1−F (v

1
1)]
, b1(n)+u1

v11
,

−(1−�(n))(1+�(n))u1+[(1−�(n))�(n)−�(n)]u2+�(n) ∫
v
v22
'(v)f (v)dv+d(n)

−A(n)

⎫

⎪

⎬

⎪

⎭

.

Clearly, (u1(n), u2(n), a2(n), v11(n), v12(n), v22(n)
)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
) for all n

and (u1(n), u2(n), a2(n), v11(n), v12(n), v22(n)
)

→ (u1, u2, a2, v11, v
1
2, v

2
2) as n→∞.

Suppose A = 0.

Suppose d = 0 and v22 = v. Then u1 = u2 = 0 and v12 ≥ v11. Define

gn(v) ∶=

⎧

⎪

⎨

⎪

⎩

(1 − �(n)) ∫ v
v '(�)f (�)d� − (1 − �(n))�(n)(v

1
2 − v)[1 − F (v)] + �(n) ∫

v
v12
'(�)f (�)d� if v < v12

∫ v
v '(�)f (�)d� if v ≥ v12

.

Then

g′n(v) ∶=

⎧

⎪

⎨

⎪

⎩

−(1 − �(n))'(v)f (v) + (1 − �(n))�(n)(v12 − v)f (v) + (1 − �(n))�(n)[1 − F (v)] if v < v12
−'(v)f (v) if v ≥ v12

.

Let g∞ and g′∞ denote the case in which �(n) = � and �(n) = �.
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Suppose v11 < v12. Then

gn(v12) = ∫

v

v12

'(�)f (�)d� > 0.

Let u1(n) = u1, u2(n) = u2, v12(n) = v12, v22(n) = v22,

v11(n) = inf
{

v ≥ v11 ||gn(v) ≥ 0
}

< v12,

and a2(n) = min
{

a2,
S(n) − �(n)

[

1 − F (v22)
]

�(n)[F (v22) − F (v
1
2)] + (1 − �(n))[1 − F (v

1
1(n))]

,
b1(n)
v11(n)

}

.

If v ∈ (v11, v12), then g′n(v)∕f (v) is strictly decreasing. Since g∞(v11) = A = 0 and g∞(v12) > 0,
g∞(v) > 0 for all v ∈ (v11, v12). Hence, v11(n)→ v11 as n→∞. Clearly,

(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
)

for all n and (u1(n), u2(n), a2(n), v11(n), v12(n), v22(n)
)

→ (u1, u2, a2, v11, v
1
2, v

2
2) as n→∞.

Suppose v11 = v12 < v. Let u1(n) = u1, u2(n) = u2, v11(n) = v11, v12(n) = v12, v22(n) = v22 and

a2(n) = min
{

a2,
S(n)−�(n)

[

1−F (v22)
]

�(n)[F (v22)−F (v
1
2)]+(1−�(n))[1−F (v

1
1(n))]

, b1(n)
v11(n)

}

.

Clearly, (u1(n), u2(n), a2(n), v11(n), v12(n), v22(n)
)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
) for all n

and (u1(n), u2(n), a2(n), v11(n), v12(n), v22(n)
)

→ (u1, u2, a2, v11, v
1
2, v

2
2) as n→∞.

Suppose v22 < v or d > 0. After taking a subsequence, I can assume there exists " > 0 such
that for all n, S(n) − �(n)[1 − F (n)] > ", b1(n) > " and

∫

v

v22

'(v)f (v)dv + d(n) > ".
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Note that (0, 0, 0, v11, v12, v22) ∈ Γ(�(n), �(n), S(n), b1(n), d(n)). Define �(n) ∈ (0, 1] as follows:

�(n) = sup

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

� ≤ 1

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

�(n)�a2[F (v22) − F (v
1
2)] + �(n)[1 − F (v

2
2)]

+(1 − �(n))�a2[1 − F (v11)] ≥ S(n),

�a2v11 − �u1 ≤ b1(n),

−(1 − �(n))(1 + �(n))�u1 + [(1 − �(n))�(n) − �(n)] �u2

+(1 − �(n)) ∫ v
v11
�a2'(�)f (�)d�

−(1 − �(n))�(n)�a2(v12 − v
1
1)
[

1 − F (v11)
]

+�(n) ∫ v22
v12
�a2'(�)f (�)d� + �(n) ∫ v

v22
'(�)f (�)d� ≥ −d(n)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

Since at (0, 0, 0, v11, v12, v22) constraints (S), (BC) and (BB) hold with strict inequality by a gap
at least ", it is not hard to see that �(n) → 1 as n → ∞. Let u1(n) = �(n)u1, u2(n) = �(n)u2,
a2(n) = �(n)a2, v11(n) = v11, v12(n) = v12 and v22(n) = v22. Clearly,

(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
)

for all n, and (u1(n), u2(n), a2(n), v11(n), v12(n), v22(n)
)

→ (u1, u2, a2, v11, v
1
2, v

2
2) as n→∞.

Suppose A > 0. After taking a subsequence, I can assume that there exists " > 0 such that
for all n, S(n) − �(n) [1 − F (v22)

]

> ", b1(n) > " and A(n) > ".

Suppose v22 = v and d = 0. Let

â2 = min

{

a2, "
2
[

F (v22) − F (v
1
2) + 1 − F (v

1
1)
] , "
2v11

}

> 0.
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Then (0, 0, â2, v11, v12, v22) ∈ Γ(�(n), �(n), S(n), b1(n), d(n)). Define �(n) ∈ (0, 1] as follows:

�(n) = sup

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

� ≤ 1

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

�(n)[�a2 + (1 − �)â2][F (v22) − F (v
1
2)] + �(n)[1 − F (v

2
2)]

+(1 − �(n))[�a2 + (1 − �)â2][1 − F (v11)] ≥ S(n),

[�a2 + (1 − �)â2]v11 − �u1 ≤ b1(n),

−(1 − �(n))(1 + �(n))�u1 + [(1 − �(n))�(n) − �(n)] �u2

+(1 − �(n)) ∫ v
v11
[�a2 + (1 − �)â2]'(�)f (�)d�

−(1 − �(n))�(n)[�a2 + (1 − �)â2](v12 − v
1
1)
[

1 − F (v11)
]

+�(n) ∫ v22
v12
[�a2 + (1 − �)â2]'(�)f (�)d�

+�(n) ∫ v
v22
'(�)f (�)d� ≥ −d(n)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

Since at (0, 0, â2, v11, v12, v22) constraints (S), (BC) and (BB) hold with strict inequality by a
gap at least min{â2", "∕2}, it is not hard to see that �(n) → 1 as n → ∞. Let u1(n) =
�(n)u1, u2(n) = �(n)u2, a2(n) = �(n)a2, v11(n) = v11, v12(n) = v12 and v22(n) = v22. Clearly,
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
) for all n,

and (u1(n), u2(n), a2(n), v11(n), v12(n), v22(n)
)

→ (u1, u2, a2, v11, v
1
2, v

2
2) as n→∞.

Suppose v22 < v or d > 0. Then by a similar argument to that of A = 0, there exist
(

u1(n), u2(n), a2(n), v11(n), v
1
2(n), v

2
2(n)

)

∈ Γ
(

�(n), �(n), S(n), b1(n), d(n)
) for all n,

and (u1(n), u2(n), a2(n), v11(n), v12(n), v22(n)
)

→ (u1, u2, a2, v11, v
1
2, v

2
2) as n→∞.

Hence, Γ is hemicontinuous. By Berge’s Maximum Theorem, V is continuous and Γ∗ is upper
hemicontinuous.

B.4. Properties of the optimal mechanism

Let a∗ = a2, v∗1 = v11, v∗2 = v12, v∗∗2 = v22, u∗1 = u(v, b1) and u∗2 = u(v, b2) denote an solution to
 ′(2, 0). Let �, �, �, �1, �2, �3, �1 and �2 denote the corresponding Lagrangian multipliers.

Proof of Proposition 3. First-best is achieved if the allocation rule satisfies v∗ ∶= v∗1 = v∗2 =
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F−1(1 − S) and a∗ = 1, and verification is zero. Hence, u∗1 = u∗2 = v∗ − b1 and (BB) holds if and
only if

b1 − v∗F (v∗) ≥ 0. (B.26)

Since v∗ = F−1(1 − S), there exists Ŝ(b1) < 1 such that (B.26) holds if and only if S ≥ Ŝ(b1).
Clearly, Ŝ(b1) is strictly decreasing in b1.

Proof of Proposition 2. Let S′ ∶= (1 − �)a∗ [1 − F (v∗1)
]

+ �a∗[F (v∗∗2 ) − F (v
∗
2)] + �[1 − F (v

∗∗
2 )].

Suppose to the contradiction that S′ < S. Let � ∈ (0, 1) be such that � +(1−�)S′ = S. Consider a
newmechanism (a∗, p∗, q∗). Let a∗(v, b) = �+(1−�)a(v, b) and p∗(v, b) = va∗(v, b)−∫ v

v a
∗(�, b)d�−

(1−�)u(v, b) for all v and b. Finally, let q(v, b2) = 0 for all v, q(v, b1) = (1−�)
[

u(v, b1) − u(v, b2)
]

∕c

if v < v∗1 and q(v, b1) = (1 − �)
[

u(v, b1) − u(v, b2) + a∗(v∗2 − v
∗
1)
]

∕c if v > v∗1. Clearly, (a∗, p∗, q∗)
strictly improves welfare upon (a, p, q). Now we show that (a∗, p∗, q∗) is also feasible. By construc-
tion, (IR) and (IC-v) hold. Note that

p∗(v, b) = va∗(v, b) − ∫

v

v
a∗(�, b)d� − (1 − �)u(v, b)

= (1 − �)va(v, b) + �v − ∫

v

v
[� + (1 − �)a(�, b)] d� − (1 − �)u(v, b)

= (1 − �)va(v, b) − (1 − �)∫

v

v
a(�, b)d� − (1 − �)u(v, b)

= (1 − �)p(v, b).

Hence, E [p∗(v, b) − kq∗(v, b)] = (1 − �)E [p(v, b) − kq(v, b)] ≥ 0. That is, (BB) holds. Since
p∗(v, b1) = (1 − �)p(v, b1) ≤ b1, (BC) holds. Since E[a∗(v, b)] = � + (1 − �)E[a(v, b)] = � + (1 −
�)S′ = S, (S) holds. Finally, we show that (IC-b) holds. If v ≤ v∗1, then

(1 − �)
[

u(v, b1) − u(v, b2)
]

+ �(v − v) ≤ q(v, b1)c.
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If v > v∗1, then

(1 − �)
[

u(v, b1) − u(v, b2)
]

+ �(v − v) + (� + (1 − �)a∗ − �)(v∗2 − v
∗
1) ≤ q(v, b1)c.

Thus, we can conclude that (a∗, p∗, q∗) is feasible. However, this contradicts to that (a, p, q) is opti-
mal. Hence, (S) holds with equality.

Proposition 14 Suppose Assumptions 2 and 3 hold. Suppose also that S < Ŝ(b1), i.e., the first-best

cannot be achieved. In an optimal mechanism of  , (S), (BB) and (BC) hold with equality.

Proof of Proposition 14. First, it follows from Proposition 2 that (S) holds with equality. Second,
we show that (BC) holds with equality. Suppose to the contradiction that (BC) holds with strict
inequality. We consider four different cases: (1) v∗2 > v∗1, (2) v∗∗2 > v∗2 = v

∗
1, (3) v∗∗2 = v∗2 = v

∗
1 and

a∗ < 1 and (4) v∗∗2 = v∗2 = v
∗
1 and a∗ = 1.

Suppose v∗2 > v
∗
1.

Let " > 0 and � > 0 be such that (1 − �) [F (v∗1 + ") − F (v∗1)
]

= �[F (v∗2) − F (v
∗
2 − �)]. For

" > 0 sufficiently small, we have v∗2 − v∗1 − "− � ≥ 0. Consider a new mechanism (a∗, p∗, q∗)

that satisfies

a∗(v, b1) = �{v≥v∗1+"
}a∗, p(v, b1) = �{v≥v∗1

}a∗(v∗1 + ") − u
∗
1,

q(v, b1) =
1
c

[

�{v≥v∗1
}a∗(v∗2 − v

∗
1 − " − �) + u

∗
1 − u

∗
2

]

,

a(v, b2) = �{v≥v∗2−�
}a∗ + �{v≥v∗∗2

}

(

1 − a∗
)

,

p(v, b2) = �{v≥v∗2−�
}a∗(v∗2 − �) + �

{

v≥v∗∗2
}(1 − a∗)v∗∗2 − u∗2,

q(v, b2) = 0.

Clearly, for " > 0 sufficiently small, (a∗, p∗, q∗) is feasible and strictly improves welfare upon
(a, p, q), a contradiction.

Suppose v∗∗2 > v∗2 = v
∗
1.
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Let " > 0 and � > 0 be such that a∗ [F (v∗1 + ") − F (v∗1)
]

= �[F (v∗∗2 )−F (v
∗∗
2 −�)]. For " > 0

sufficiently small, we have v∗∗2 − v∗1 − " − � ≥ 0. Consider a new mechanism (a∗, p∗, q∗) that
satisfies

a∗(v, b1) = �{v≥v∗1+"
}a∗, p(v, b1) = �{v≥v∗1

}a∗(v∗1 + ") − u
∗
1,

q(v, b1) =
1
c

[

�{v≥v∗1
}a∗(v∗2 − v

∗
1) + u

∗
1 − u

∗
2

]

,

a(v, b2) = �{v≥v∗2+"
}a∗ + �{v≥v∗∗2 −�

}

(

1 − a∗
)

,

p(v, b2) = �{v≥v∗2+"
}a∗(v∗2 + ") + �

{

v≥v∗∗2 −�
}(1 − a∗)(v∗∗2 − �) − u∗2,

q(v, b2) = 0.

Clearly, for " > 0 sufficiently small, (a∗, p∗, q∗) is feasible and strictly improves welfare upon
(a, p, q), a contradiction.

Suppose v∗∗2 = v∗2 = v
∗
1 and a

∗ < 1.

Let " > 0 and � > 0 be such that [(1 − �)a∗ + �] [F (v∗1 + ") − F (v∗1)
]

= (1− �)�[1 −F (v∗1 +

")]. For " > 0 sufficiently small, we have � ≤ 1 − a∗. Consider a new mechanism (a∗, p∗, q∗)

that satisfies

a∗(v, b1) = �{v≥v∗1+"
}(a∗ + �), p(v, b1) = �{v≥v∗1

}(a∗ + �)(v∗1 + ") − u
∗
1,

q(v, b1) =
1
c
(

u∗1 − u
∗
2
)

,

a(v, b2) = �{v≥v∗2+"
}, p(v, b2) = �{v≥v∗2+"

} − u∗2,

q(v, b2) = 0.

Clearly, for " > 0 sufficiently small, (a∗, p∗, q∗) is feasible and strictly improves welfare upon
(a, p, q), a contradiction.

Suppose v∗∗2 = v∗2 = v
∗
1 and a

∗ = 1.

In this case, the first-best allocation rule is achieved. Hence, it must be the case that the total
verification cost is strictly positive, i.e., u∗1 > u∗2 ≥ 0. Let u∗2 − u∗1 ≥ " > 0. Consider a new
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mechanism (a∗, p∗, q∗) that satisfies

a∗(v, b1) = �{v≥v∗1
}, p(v, b1) = �{v≥v∗1

}v∗1 − u
∗
1 + ",

q(v, b1) =
1
c
(

u∗1 − u
∗
2 − "

)

,

a(v, b2) = �{v≥v∗2
}, p(v, b2) = �{v≥v∗2

} − u∗2,

q(v, b2) = 0.

Clearly, for " > 0 sufficiently small, (a∗, p∗, q∗) is feasible and strictly improves welfare upon
(a, p, q), a contradiction.

Lastly, I show that (BB) holds with equality. Suppose not. Then we can increase u∗1 and u∗2 by the
same amount. The resulting new mechanism is feasible and gives the same welfare. In particular,
(BC) holds with strict inequality in the new mechanism. Then we can repeat the above argument and
construct another feasible mechanism which strictly improves welfare upon (a, p, q), a contradiction.

By Theorem 9, v∗1, v∗2, v∗∗2 , a2, u∗1, u∗2, �, �, �, �1, �2, �3, �1 and �2 satisfy the following first-order con-
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ditions:

(1 − �)
[

(� − v∗1 − �'(v
∗
1))f (v

∗
1) + (1 + �)�[1 − F (v

∗
1)] + (1 + �)�(v

∗
2 − v

∗
1)f (v

∗
1)
]

− � − �2 = 0, (B.27)
�(� − v∗2 − �'(v

∗
2))f (v

∗
2) − (1 − �)(1 + �)�[1 − F (v

∗
1)] + �

2 = 0, (B.28)
(1 − a∗)(� − v∗∗2 − �'(v∗∗2 ))f (v

∗∗
2 ) = 0, (B.29)

� ∫

v∗∗2

v∗2

[v + �'(v) − �] f (v)dv

+ (1 − �)

[

∫

v

v∗1

[v + �'(v) − �] f (v)dv − (1 + �)�(v∗2 − v
∗
1)[1 − F (v

∗
1)]

]

− �v∗1 + �
2(v∗2 − v

∗
1) − �

3 = 0, (B.30)
� + �1 + �2 − (1 − �) (� + � + ��) + �1 = 0, (B.31)
− �1 − �2 − �� + (1 − �)(1 + �)� + �2 = 0. (B.32)

Furthermore, (S) and (BB) become:

(1 − �)a∗[1 − F (v∗1)] + �a
∗[F (v∗∗2 ) − F (v

∗
2)] + �[1 − F (v

∗∗
2 )] = S, (B.33)

− (1 − �)u∗1 + (1 − �)a
∗v∗1[1 − F (v

∗
1)] − �u

∗
2 + �a

∗v∗2[1 − F (v
∗
2)] + �(1 − a

∗)v∗∗2 [1 − F (v
∗∗
2 )]

− (1 − �)�(u∗1 − u
∗
2) − (1 − �)�a

∗(v∗2 − v
∗
1)[1 − F (v

∗
1)] = 0. (B.34)

Proof of Proposition 4.

1. Suppose, on the contrary, that u∗1 > u∗2 ≥ 0. In this case, �1 = �1 = �2 = 0. (B.31) implies
that � = (1−�)(�+ �+��). (B.32) implies �2 = ��− (1−�)(1+�)�. Since �2 ≥ 0, we have
�[� − �(1 − �)] ≥ �(1 − �) which implies that � < �∕(1 − �), a contradiction.

2. Since S < 1, we have u∗1 = u∗2 by the first result of Proposition 4. It suffices to show that
v∗1 = v

∗
2. Suppose, on the contrary, that v∗2 > v∗1. In this case, �2 = 0. Combining (B.31) and

(B.32) yields � − � + �1 + �2 = 0. Since �1, �2 ≥ 0, we have � ≤ �. Taking the difference of
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(B.27) divided by (1 − �)f (v∗1) and (B.28) divided by �f (v∗2) gives

[1 + (1 + �)�]
(

v∗2 − v
∗
1
)

+ �
[

'(v∗2) − '(v
∗
1)
]

+ (1 + �)�
1 − F (v∗1)
f (v∗1)

+ (1 + �)
�(1 − �)

�
1 − F (v∗1)
f (v∗2)

−
�

(1 − �)f (v∗1)
= 0. (B.35)

Since v∗2 > v∗1, f (v∗2) ≤ f (v∗1) and � ≤ �, we have

0 ≥ [1 + (1 + �)�]
(

v∗2 − v
∗
1
)

+ �
[

'(v∗2) − '(v
∗
1)
]

+ (1 + �)
�
�
1 − F (v∗1)
f (v∗1)

− �
(1 − �)f (v∗1)

>
�
�
1 − F (v∗1)
f (v∗1)

+ �
[

�
�
1 − F (v∗1)
f (v∗1)

− 1
(1 − �)f (v∗1)

]

≥ 0,

where the last inequality holds since 1 − F (v∗1) ≥ S and � ≥ �∕[S(1 − �)]. A contradiction.
Hence, v∗1 = v∗2.

Proof of Proposition 5. Suppose, on the contrary, that u∗1 > u∗2 ≥ 0. In this case, �1 = �1 = �2 = 0.
(B.31) implies that � = (1−�)(�+ �+��). Taking the difference of (B.27) divided by (1−�)f (v∗1)
and (B.28) divided by �f (v∗2) gives

[1 + (1 + �)�]
(

v∗2 − v
∗
1
)

+ �
[

'(v∗2) − '(v
∗
1)
]

+ (1 + �)�
1 − F (v∗1)
f (v∗1)

+ (1 + �)
�(1 − �)

�
1 − F (v∗1)
f (v∗2)

−
�

(1 − �)f (v∗1)
= 0. (B.35)

Suppose S ≤ (1 − �)
[

1 − F (b1)
]. Since (BC) holds with equality and u∗1 ≥ 0, we have a∗ ≥ b1∕v∗1.

By (S), we have
(1 − �)

b1
v∗1

[

1 − F (v∗1)
]

≤ S.

Since S ≤ (1 − �)
[

1 − F (b1)
], there exists a unique Let v̂(S, b1, �) ∈ [b1, v] such that the above

inequality holds with equality when v∗1 = v̂(S, b1, �), where v̂ is strictly decreasing in S and � and
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strictly increasing in b1. Then v∗1 ≥ v̂(S, b1, �). Hence, v∗2−v∗1 ≤ '(v∗2)−'(v
∗
1) ≤ v−'

(

v̂(S, b1, �)
).

Since v∗2 ≥ v∗1, f (v∗2) ≤ f (v∗1) and � = (1 − �)(� + � + ��), we have

0 ≤ [1 + (1 + �)�]
(

v∗2 − v
∗
1
)

+ �
[

'(v∗2) − '(v
∗
1)
]

+ (1 + �)
�
�
1 − F (v∗1)
f (v∗2)

−
� + � + ��
f (v∗1)

<(1 + �)(1 + �)
[

v − '
(

v̂(S, b1, �)
)]

+ (1 + �)
�
�
1 − F (v∗1)
f (v∗2)

−
(1 + �)�
f (v∗1)

≤(1 + �)

{

(1 + �)
[

v − '
(

v̂(S, b1, �)
)]

+
�
�
1 − F

(

v̂(S, b1, �)
)

f (v)
−

�
f
(

v̂(S, b1, �)
)

}

.

Note that the term in the braces is strictly increasing in S and converges to −�∕f (v) < 0 as S goes
to zero. Hence, there exists Ŝ such that u∗1 = u∗2 if S < Ŝ.

Proof of Proposition 6. Suppose, on the contrary, that u∗1 > u∗2 ≥ 0. In this case, �1 = �1 = �2 = 0.
(B.31) implies that � = (1−�)(�+ �+��). Taking the difference of (B.27) divided by (1−�)f (v∗1)
and (B.28) divided by �f (v∗2) gives

[1 + (1 + �)�]
(

v∗2 − v
∗
1
)

+ �
[

'(v∗2) − '(v
∗
1)
]

+ (1 + �)�
1 − F (v∗1)
f (v∗1)

+ (1 + �)
�(1 − �)

�
1 − F (v∗1)
f (v∗2)

−
�

(1 − �)f (v∗1)
= 0. (B.35)

Suppose S ≥ (1 − �)
[

1 − F (b1)
]. Then by (S),

�[1 − F (v∗2)] ≥ (1 − �)
[

1 − F (b1)
]

− S. (B.36)

Since S ≥ (1−�)
[

1 − F (b1)
], there exists a unique v̂(S, b1, �) ∈ [b1, v] such that (B.36) holds with

equality, where v̂ is strictly decreasing in b1, S and �. Then v∗2 ≤ v̂(S, b1, �). Hence, v∗2 − v∗1 ≤

'(v∗2) − '(v
∗
1) ≤ '

(

v̂(S, b1, �)
)

− b1.
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Since v∗2 ≥ v∗1, f (v∗2) ≤ f (v∗1) and � = (1 − �)(� + � + ��), we have

0 ≤ [1 + (1 + �)�]
(

v∗2 − v
∗
1
)

+ �
[

'(v∗2) − '(v
∗
1)
]

+ (1 + �)
�
�
1 − F (v∗1)
f (v∗2)

−
� + � + ��
f (v∗1)

<(1 + �)(1 + �)
[

'
(

v̂(S, b1, �) − b1
)]

+ (1 + �)
�
�
1 − F (v∗1)
f (v∗2)

−
(1 + �)�
f (v∗1)

≤(1 + �)

{

(1 + �)
[

'
(

v̂(S, b1, �)
)

− b1
]

+
�
�

1 − F
(

b1
)

f
(

v̂(S, b1, �)
) −

�
f
(

b1
)

}

.

Note that the term in the braces is strictly decreasing in b1 and converges to −�∕f (v) < 0 as b1 goes
to v. Hence, there exists b̂1 such that u∗1 = u∗2 if b1 > b̂1.

B.5. Extensions and discussions

B.5.1. Per-unit price constraint

Proof of Theorem 10. The proof of Theorem 7 can easily modified to prove Theorem 10. It suffices
to show that (a∗, p∗) satisfies (PC) (instead of (BC)):

p∗(v, b) =va(v, b) − ∫

v

v
a∗(v, b)dv − u(v, b)

≤va(v, b) − ∫

v

v
a(v, b)dv − u(v, b)

≤a(v, b)b

=a∗(v, b)b,

where the third line holds by the same argument used in the proof of Theorem 7 and the last line
holds since a∗(v, b) = a(v, b) by construction. Hence, there exists v∗1 and v∗2 such that the optimal
allocation rule satisfies a(v, b1) = �{v≥v∗1}min

{

u∗

v∗1−b1
, 1
}

and a(v, b2) = �{v≥v∗2}.

Lemma 38 Suppose Assumption 3 holds, and the principal does not inspect agents. In an optimal

mechanism of  ′PC , it is without loss of generality to assume that u(v, b1) = u(v, b2).

Proof. The proof of Lemma 2 can easily modified to prove Lemma 38. It suffices to show that
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(a∗, p∗) satisfies (PC) (instead of (BC)). Note that a∗(v, b) = a(v, b) by construction and the rest of
the proof follows from a similar argument used in the proof of Theorem 7.

Lemma 39 Suppose Assumptions 2 and 3 hold, and the principal does not inspect agents. In an

optimal mechanism of  ′PC , the allocation rule satisfies

∫

v

v
a(�, b2)f (�)d� ≥ ∫

v

v
a(�, b1)f (�)d�, ∀v. (B.37)

Proof. The proof of Lemma 3 applies.

Proof of Theorem 11. The proof of Theorem 8 can easily modified to prove Theorem 11. It suffices
to show that (a∗, p∗) satisfies (PC) (instead of (BC)). Note that a∗(v, b) = a(v, b) by construction and
the rest of the proof follows from a similar argument used in the proof of Theorem 7.

B.5.2. Monetary penalty

Proof of Lemma 9. Consider types t ∶= (v, b) and t̂ such that p(t̂)+max{�(t̂, n), �(t̂, b)} ≤ b. Then
(IC) requires that

a(t)v − p(t) − (1 − q(t))�(t, n) − q(t)�(t, b)

≥a(t̂)v − p(t̂) − (1 − q(t̂))�(t̂, n) − q(t̂)�(t̂, b)

Consider an alternativemechanism (a∗, p∗, q∗, �∗)with a∗ = a and q∗ = q. Let �∗(t, n) = �∗(t, b) = 0
for all t and �∗(t̂, b) = c for all t̂ such that b̂ ≠ b. Let p∗(t) = p(t) + (1 − q(t))�(t, n) + q(t)�(t, b).
Since p(t) + max{�(t, n), �(t, b)} ≤ b, we have p∗(t) ≤ b, i.e., (BC) holds. It is easy to see that the
new mechanism also satisfies (IR), (BB) and (S) and does not affect the welfare.

Finally, I show that (IC) holds. Consider types t ∶= (v, b) and t̂ such that p∗(t̂) + c ≤ b. If b̂ = b,
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then (BC) in the old mechanism implies that p(t̂) + max{�(t̂, n), �(t̂, b)} ≤ b. Hence,

a∗(t)v − p∗(t)

=a(t)v − p(t) − (1 − q(t))�(t, n) − q(t)�(t, b)

≥a(t̂)v − p(t̂) − (1 − q(t̂))�(t̂, n) − q(t̂)�(t̂, b)

=a∗(t̂)v − p∗(t̂) + q(t̂)�(t̂, b̂) − q(t̂)�(t̂, b)

=a∗(t̂)v − p∗(t̂).

If b̂ ≠ b, then b ≥ p∗(t̂) + c = p(t̂) + (1 − q(t̂))�(t̂, n) + q(t̂)�(t̂, b̂) + c ≥ p(t̂) + max{�(t̂, n), �(t̂, b)}.
Hence,

a∗(t)v − p∗(t)

=a(t)v − p(t) − (1 − q(t))�(t, n) − q(t)�(t, b)

≥a(t̂)v − p(t̂) − (1 − q(t̂))�(t̂, n) − q(t̂)�(t̂, b)

=a∗(t̂)v − p∗(t̂) + q(t̂)�(t̂, b̂) − q(t̂)�(t̂, b)

≥a∗(t̂)v − p∗(t̂) − q∗(t̂)�∗(t̂, b).

The last inequality holds since �(t̂, b̂) ≥ 0 and �∗(t̂, b) = c ≥ �(t̂, b).

B.5.3. Punishing the innocent or without verification

Lemma 40 An optimal mechanism of PI satisfies (i) �(t, b̂) = 1 for b̂ ≠ b, (ii) p(t) < b implies that

�(t, n) = �(t, b) = 0 and (iii) (1 − �(t, n))�(t, b) = 0 for almost all t.

Proof. By the standard argument, (IC-v) implies that a is non-decreasing and

p(t) + (1 − q(t))�(t, n)c + q(t)�(t, b)c = a(t)v − ∫

v

0
a(�, b)d� − u(0, b).

Consider a new mechanism (a∗, p∗, q∗, �∗). Let a∗ = a. Thus, (S) holds. Let �∗(t̂, b) = 1 and
q∗(t̂) = q(t̂)�(t̂, b) for b ≠ b̂. Let p∗(t) = min {p(t) + (1 − q(t))�(t, n)c + q(t)�(t, b)c, b} . Thus, (BC)
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holds. Since p∗(t) ≥ p(t) and q∗(t) ≤ q(t), (BB) holds. Let �∗(t, n) = 0 if q∗(t) = 1 and otherwise

�∗(t, n) = min
{

p(t) + (1 − q(t))�(t, n)c + q(t)�(t, b)c − p∗(t)
(1 − q∗(t))c

, 1
}

.

Finally, let �∗(t, b) = 0 if q∗(t) = 0 and otherwise

�∗(t, b) =
p(t) + (1 − q(t))�(t, n)c + q(t)�(t, b)c − p∗(t) − (1 − q∗(t))�∗(t, n)c

q∗(t)c
≥ 0.

Then, �∗(t, b) > 0 if and only if �∗(t, n) = 1. Furthermore, p∗(t) ≥ p(t). Hence, �∗(t, b) > 0 implies
that

�∗(t, b) ≤ (1 − q(t))�(t, n) + q(t)�(t, b) − 1 + q∗(t)
q∗(t)

≤ 1.

Note also that, by construction, p(t) < b implies that �∗(t, n) = �∗(t, b) = 0. By construction,

p(t) + (1 − q(t))�(t, n)c + q(t)�(t, b)c = p∗(t) + (1 − q∗(t))�∗(t, n)c + q∗(t)�∗(t, b)c.

Hence (IR) holds. Consider a type t = (v, b) and t̂ such that p(t̂) ≤ p∗(t̂) ≤ b. Then

a∗(t)v − p∗(t) − (1 − q∗(t))�∗(t, n)c − q∗(t)�∗(t, b)c

=a(t)v − p(t) − (1 − q(t))�(t, n)c − q(t)�(t, b)c

≥a(t̂)v − p(t̂) − (1 − q(t̂))�(t̂, n)c − q(t̂)�(t̂, b)c

≥a∗(t̂)v − p∗(t̂) − (1 − q∗(t̂))�∗(t̂, n)c − q∗(t̂)c.

If b̂ = b, the last inequality holds trivially. If b̂ ≠ b, the last inequality holds since p∗(t̂) + (1 −
q∗(t̂))�(t̂, n)c ≥ p(t̂) + (1 − q(t̂))�(t̂, n)c and q∗(t̂) = q(t̂)�(t̂, b). Hence, (IC) holds. Thus, we have
verified that (a∗, p∗, q∗, �∗) is feasible. Since p∗(t) ≥ p(t), we have (1 − q(t))�(t, n)c + q(t)�(t, b)c ≥
(1 − q∗(t))�∗(t, n)c + q∗(t)�∗(t, b)c. Furthermore, q∗(t) ≤ q(t). For a positive measure set of t, one
of the above two inequalities holds strictly. Hence, (a∗, p∗, q∗, �∗) strictly improves welfare.

Lemma 41 An optimal mechanism of PI satisfies �(t, b) = 0 for almost all t.
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Proof. Fix a mechanism (a, p, q, �). Suppose �(t, b) > 0 on a positive measure set of t. Consider a
new mechanism (a∗, p∗, q∗, �∗) with a∗ = a and p∗ = p. If �(t, b) > 0, let q∗(t) = q(t)[1 − �(t, b)] <
q(t), �∗(t, b) = 0 and

�∗(t, n) =
(1 − q(t))�(t, n) + q(t)�(t, b)

1 − q∗(t)
= 1.

If �(t, b) = 0, let q∗(t) = q(t), �∗(t, b) = 0 and �∗(t, n) = �(t, n). By construction,

(1 − q(t))�(t, n)c + q(t)�(t, b)c = (1 − q∗(t))�∗(t, n)c + q∗(t)�∗(t, b)c.

Clearly, the new mechanism satisfies (IR), (BC), (BB) and (S) and strictly improves welfare. Con-
sider types t = (v, b) and t̂ such that p(t̂) = p∗(t̂) ≤ b. Then

a∗(t)v − p∗(t) − (1 − q∗(t))�∗(t, n)c − q∗(t)�∗(t, b)c

=a(t)v − p(t) − (1 − q(t))�(t, n)c − q(t)�(t, b)c

≥a(t̂)v − p(t̂) − (1 − q(t̂))�(t̂, n)c − q(t̂)c

=a∗(t̂)v − p∗(t̂) − (1 − q∗(t̂))�∗(t̂, n)c − q∗(t̂)c.

If �(t̂, b̂) = 0, the last equality holds trivially. If �(t̂, b̂) > 0, the last equality holds since �(t̂, n) =
�∗(t̂, n) = 1.
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APPENDIX TO CHAPTER 4

C.1. Omitted proofs in Section 4.3

Before proceeding to the proofs, I first define symmetric mechanisms formally. Let �i,j ∶ W n → W n

denote the function that interchanges the ith and the jth coordinates, i.e.,

�i,j(w1,… , wn) = (w1,… , wi−1, wj , wi+1,… , wj−1, wi, wj+1,… , wn), ∀(w1,… , wn).

We say that an allocation rule q is symmetric if q1 is such that q1(w) = q1(�i,j(w)) for all i, j ≠ 1,
qi(w) = q1(�1,i(w)) and ∑i qi(w) ≤ 1 for all w. We say that a mechanism (q, t) is symmetric if its
allocation rule q is symmetric.

Proof of Lemma 11. By construction, H(w(s, �)|�) = s for all s ∈ [0, 1] and � ∈ A. Taking
derivative of both sides of the equation with respect to � yields

ℎ(w(s, �)|�)w�(s, �) +H�(w(s, �)|�) = 0,

or equivalently,
−
H�(w(s, �)|�)
ℎ(w(s, �)|�)

= w�(s, �). (C.1)

If that the information structures are supermodular ordered, then −H�(w|�)∕ℎ(w|�) is strictly in-
creasing in w. Because w(s, �) is strictly increasing in s, w�(s, �) is strictly increasing in s. Hence,
for all s, s′ ∈ (0, 1), s′ > s and �′ > �′′ we have

w(s′, �′) −w(s′, �′′) = ∫

�′

�′′
w�(s′, �)d�

> ∫

�′

�′′
w�(s, �)d�

= w(s, �′) −w(s, �′′).

That is, w(⋅, ⋅) is strictly supermodular.
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Lemma 42 Let (c, d) be an interval of the real line, and J and Q be two non-decreasing functions.

Assume that for some measure ℎ on ℝ we have

∫

d

c
J (w)dℎ(w) = 0.

Then ∫ d
c J (w)Q(w)dℎ(w) ≥ 0.

Proof. This lemma is a corollary of Lemma 1 in Persico (2000).

Lemma 43 Suppose that Q ∶ [�, �]→ ℝ is non-decreasing on [w(0, �i), w(1, �i)], then

Ewi

[

−
H�i(wi|�i)
ℎ(wi|�i)

Q(wi)
|

|

|

|

|

�i

]

≥ 0, (C.2)

where the equality holds if Q is constant.

Proof. Because bothQ and −H�i (wi|�i)
ℎ(wi|�i)

are non-decreasing on [w(0, �i), w(1, �i)], it suffices to show
that

∫

w(1,�i)

w(0,�i)
H�i(wi|�i)dwi = 0. (C.3)

On the one hand, by integration by parts,

∫

w(1,�i)

w(0,�i)
H(wi|�i)dwi = wiH(wi|�i)

|

|

|

w(1,�i)
w(0,�i)

− ∫

w(1,�i)

w(0,�i)
widH(wi|�i),

= w(1, �i) − �.

Taking derivative with respect to �i yields

)
)�i ∫

w(1,�i)

w(0,�i)
H(wi|�i)dwi = w�i(1, �i). (C.4)

On the other hand, by the chain rule, we have

)
)�i ∫

w(1,�i)

w(0,�i)
H(wi|�i)dwi = w�i(1, �i) + ∫

w(1,�i)

w(0,�i)
H�i(wi|�i)dwi. (C.5)
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(b) Case II
Figure 14: Proof of Lemma 12

Comparing (C.4) and (C.5) proves (C.3). By Lemma 42, inequality (C.2) holds. If Q is constant,
the equality holds by (C.3).

Proof of Lemma 12. Define w♭ ∶= sup
{

wi
|

|

Y (w′i) > 0, ∀w(0, �
∗) ≤ w′i ≤ wi

}. By the continu-
ity of Y , we have Y (w♭) = 0 and w♭ > w(0, �∗). The proof is by construction. There are four cases
to consider.

Case I: Suppose that there exists w′i ∈ (w(0, �∗), w♭) such that Q is discontinuous at w′i.

LetQ(w′+
i ) denote the right-hand limit ofQ atw′i, andQ(w′−

i ) the corresponding left-hand limit. Let
0 < " ≤ min

{

minw(0,�∗)≤wi≤w′i
Y (wi)

H(w′i|�∗)
, Q(w′+

i ) −Q(w
′−
i )

}

. Define Q̂ as follows. Ifwi ≤ w(0, �∗),
then Q̂(wi) ∶= Q(wi); and if wi > w(0, �∗), then

Q̂(wi) ∶= Q(wi) + "�{wi≤w′i},

where �{wi≤w′i} is an indicator function. (See Figure 14a for an illustration.) By construction,
Q̂(w) ≥ Q(w) for all w ∈ W and the inequality holds strictly on a positive measure set. It is
also clear that Q̂ satisfies (MON). We now verify that Q̂ satisfies (IA′) and (F′). Because �{wi≤w′i}
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is non-increasing on [w(0, �∗), w(1, �∗)], by Lemma 43, we have

E

[

−
H�i(wi|�∗)
ℎ(wi|�∗)

Q̂(wi)
|

|

|

|

|

�i = �∗
]

,

=E

[

−
H�i(wi|�∗)
ℎ(wi|�∗)

Q(wi)
|

|

|

|

|

�i = �∗
]

+ "E

[

−
H�i(wi|�∗)
ℎ(wi|�∗)

�{wi≤w′i}
|

|

|

|

|

�i = �∗
]

,

≤C ′(�∗) + 0 = C ′(�∗).

Hence, Q̂ satisfies (IA′). Finally, let

Ŷ (wi) ∶= ∫

�

wi

[

H(z|�∗)n−1 − Q̂(z)
]

ℎ(z|�∗)dz.

Ifwi ≤ w′i, then Ŷ (wi) = Y (wi)−"[H(w′i|�
∗)−H(wi|�∗)] ≥ Y (wi)−"H(w′i|�

∗) ≥ 0. Ifwi > w′i,
then Ŷ (wi) = Y (wi) ≥ 0. Hence, Q̂ satisfies (F′).

Case II: Suppose that Q is continuous on [w(0, �∗), w♭].

We first show that there exists w′i ∈ (w(0, �∗), w♭) such that Q(w′i) < Q(w♭). Suppose, to the con-
trary, thatQ(wi) = Q(w♭) for allwi ∈ (w(0, �∗), w♭). IfQ(w♭) ≥ H(w♭

|�∗)n−1, then Y (w(0, �∗)) =
∫ w♭
w(0,�∗)[H(z|�

∗)n−1 −Q(z)]ℎ(z|�∗)dz < 0, a contradiction. If Q(w♭) < H(w♭
|�∗)n−1, then, by the

continuity ofQ andH , there exists � > 0 such thatQ(wi) < H(wi|�∗)n−1 for allwi ∈ [w♭, w♭+ �].
Hence,

0 = Y (w♭) = ∫

w♭+�

w♭
[H(z|�∗)n−1 −Q(z)]ℎ(z|�∗)dz + Y (w♭ + �) > Y (w♭ + �),

a contradiction. Thus, there exists w′i ∈ (w(0, �∗), w♭) such that Q(w′i) < Q(w♭).

By the continuity of Q, there exists w′′i ∈ (w′i, w
♭) such that Q(w′′i ) = 1

2

(

Q(w′i) +Q(w
♭)
). Let
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0 < " ≤ min
{

minw(0,�∗)≤wi≤w′′i
Y (wi)

H(w′′i |�∗)
, Q(w′′i ) −Q(w

′
i)
}

. Let

Q̂(wi) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max{Q(w′i) + ",Q(wi)} if wi > w′i,

Q(wi) + " if w(0, �∗) < wi ≤ w′i,

Q(wi) if wi ≤ w(0, �∗).

(See Figure 14b for an illustration.) Note that ifwi ≥ w′i
′ thenQ(wi) ≥ Q(w′i

′) ≥ Q(w′i)+". Hence,
Q̂(wi) = Q(wi) for wi ≥ w′i

′. By construction, Q̂(w) ≥ Q(w) for all w ∈ W and the inequality
holds strictly on a positive measure set. Clearly, Q̂ satisfies (MON). We now verify that Q̂ satisfies
(IA′) and (F′). It is easy to verify that Q̂−Q is non-increasing on [w(0, �∗), w(1, �∗)] and therefore
Q̂ satisfies (IA′) by Lemma 43. Finally, if wi ≥ w′i

′, then Ŷ (wi) = Y (wi). If wi < w′i
′, then

Ŷ (wi) =∫

w♭

wi

[

H(z|�∗)n−1 − Q̂(z)
]

ℎ(z|�∗)dz,

=Y (wi) − ∫

w′i
′

wi

[

Q̂(z) −Q(z)
]

ℎ(z|�∗)dz,

≥Y (wi) − "
[

H(w′i
′
|�∗) −H(wi|�

∗)
]

,

≥Y (wi) − "H(w′i
′
|�∗) ≥ 0.

Hence, Q̂ satisfies (F′).

Case III: Suppose that Q is continuous on [w(0, �∗), w♭) and Q(w♭−) < H(w♭
|�∗)n−1.

Define R(wi) ∶= Y (wi)∕(H(w♭
|�∗) −H(wi|�∗)) for wi < w♭. Then by L’Hopital’s rule,

lim
wi→w♭−

R(wi) = H(w♭
|�∗)n−1 −Q(w♭−) > 0.

Let 0 < " ≤ min
{

infw(0,�∗)≤wi<w♭ R(wi), Q(w♭+) −Q(w♭−)
}

. Define Q̂ as follows. If wi ≤

w(0, �∗), then Q̂(wi) ∶= Q(wi); and if wi > w(0, �∗), then Q̂(wi) ∶= Q(wi) + "�{wi<w♭}. By
construction, Q̂(w) ≥ Q(w) for all w ∈ W and the inequality holds strictly on a positive measure
set. Clearly, Q̂ satisfies (MON). We can verify that Q̂ satisfies (IA′) following the arguments in Case
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I. Finally, ifwi < w♭, then Ŷ (wi) = Y (wi)−"[H(w♭
|�∗)−H(wi|�∗)] ≥ Y (wi)−R(wi)[H(w♭

|�∗)−

H(wi|�∗)] = 0. If wi ≥ w♭, then Ŷ (wi) = Y (wi) ≥ 0. Hence, Q̂ satisfies (F′).

Case IV: Suppose that Q is continuous on [w(0, �∗), w♭) and Q(w♭−) ≥ Hn−1(w♭
|�∗).

We first show that Q(w♭−) = Hn−1(w♭
|�∗). Suppose to the contrary that Q(w♭−) > Hn−1(w♭

|�∗).
Then by the continuity of Q and H on [w(0, �∗), w♭), there exists � > 0 such that Q(wi) >

Hn−1(wi|�∗) for all wi ∈ (w♭ − �,w♭). Then

Y (w♭ − �) = ∫

w♭

w♭−�
[H(z|�∗)n−1 −Q(z)]ℎ(z|�∗)dz + Y (w♭) < 0,

a contradiction to that Q is feasible. Hence, Q(w♭−) = Hn−1(w♭
|�∗). Second, we show that there

existsw′i ∈ (w(0, �∗), w♭) such thatQ(w′i) < Q(w♭−). Suppose to the contrary thatQ(wi) = Q(w♭−)

for allwi ∈ (w(0, �∗), w♭), then Y (w(0, �∗)) = ∫ w♭
w(0,�∗)[H

n−1(z|�∗) −Q(z)]ℎ(z|�∗)dz+Y (w♭) < 0,
a contradiction. Hence, there exists w′i ∈ (w(0, �∗), w♭) such that Q(w′i) < Q(w♭−). The rest of the
proof follows from that of Case II.

C.1.1. Proof of Lemma 14

The proof uses a network-flow approach (see Che et al. (2013b) for detailed discussions of this
approach). For simplicity, I prove here the result for the case of finiteW . By a similar argument to
that of the proof of Theorem 5 in Che et al. (2013b), the result generalizes to the case of continuum
W . I abuse notation a bit and let f denote the probability mass function in the case of finiteW . In
this case, (4.6) becomes:

∑

w∈An

n
∏

i=1
f (wi)�(w) ≤ n

∑

w∈A
f (w)Q(w) ≤

∑

w∈An

n
∏

i=1
f (wi), ∀A ⊂ W . (C.6)

The proof is similar to that of Theorem 3 in Che et al. (2013b). Before proceeding to the proof, I first
introduce some notations and definitions. LetDi ∶= {(wi, i)|wi ∈ W } andD ∶= ∪ni=1Di, where the
latter is known as the disjoint union of the individual posterior estimate spaces. To simplify notation,
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we write typical elements of D as wi instead of (wi, i). Given an interim allocation rule Q, define a
circulation network as (N,E, k, d) as follows. The node set is N ∶= D ∪W n ∪ {◦} consisting of
demand nodes D, supply nodesW n, and a circulation node ◦. Directed edges E ⊂ N ×N specify
the pairs of nodes that can carry flows. There are three different kinds of edges:

• Edges from supply nodes to demand nodes: (w̃, wi) ∈ E if w̃i = wi.

• Edges from demand nodes to the circulation node ◦: (wi, ◦) ∈ E for all wi ∈ D.

• Edges from the circulation node ◦ to supply nodes: (◦,w) ∈ E for all w ∈ W n.

Let d(�,N ′) and k(�,N ′) denote a lower and upper bound for the total flow from node � to subset
N ′ ⊂ N∖{�}. There are three different kinds of flow capacities:

• Flow capacities from supply nodes: For each supply node w ∈ W n, let

d(w, N ′) =
n
∏

i=1
f (wi)�(w)

ifN ′ ⊃ {w1,… , wn} or else d(w, N ′) = 0; and let

k(w, N ′) =
n
∏

i=1
f (wi)

ifN ′ ∩ {w1,… , wn} ≠ ∅ or else k(w, N ′) = 0.

• Flow capacities from demand nodes: For each demand node wi ∈ D, let

k(wi, N
′) = d(wi, N

′) = f (wi)Q(wi)

if ◦ ∈ N ′ or else k(wi, N ′) = d(wi, N ′) = 0.

• Flow capacities from ◦: Let d(◦, N ′) = 0 and k(◦, N ′) = K for someK > 0 sufficiently large.

A feasible circulation flow on (N,E, k, d) is a function � ∶ E → ℝ+ that satisfies the capacity
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constraints

d(�,N ′) ≤
∑

�′∈N ′∶(�,�′)∈E
� (�, �′) ≤ k(�,N ′), ∀� ∈ N,∀N ′ ⊂ N∖{�},

and the flow conservation law

∑

�′∈N ′∶(�,�′)∈E
� (�, �′) =

∑

�′∈N ′∶(�′,�)∈E
� (�′, �), ∀� ∈ N.

ByTheorem 1 in Che et al. (2013b), an interim allocationQ is implementable by an ex post allocation
rule q satisfying∑n

i=1 qi(w) ≥ �(w) for allw if and only if there exists a feasible circulation flow for
the network (N,E, k, d) defined above. It is easy to verify that for every � ∈ N , k(�, ⋅) and d(�, ⋅)
are paramodular:

1. k(�, ⋅) is submodular: For anyN ′, N ′′ ⊂ N , k(�,N ′)+k(�,N ′′) ≥ k(�,N ′∪N ′′)+k(�,N ′∩

N ′′).

2. d(�, ⋅) is supermodular: For any N ′, N ′′ ⊂ N , d(�,N ′) + d(�,N ′′) ≤ d(�,N ′ ∪ N ′′) +

d(�,N ′ ∩N ′′).

3. k(�, ⋅) and d(�, ⋅) are compliant: For anyN ′, N ′′ ⊂ N , k(�,N ′)−d(�,N ′′) ≥ k(�,N ′∖N ′′)−

d(�,N ′′∖N ′).

Hence, by Theorem 1 in Hassin (1982), a feasible circulation flow � ∶ E → ℝ+ exists if and only if

∑

�∈N∖N ′

d(�,N ′) ≤
∑

�∈N ′

k(�,N∖N ′), ∀N ′ ⊂ N, (C.7)

which requires that the sum of lower bounds on the flows entering N ′ does not exceed the sum of
upper bounds on the flows exitingN ′.

Necessity: Suppose that the interim allocation ruleQ is the reduced form of an ex post allocation rule
q satisfying∑n

i=1 qi(w) ≥ �(w) for allw. Then, by Theorem 1 in Che et al. (2013b) and Theorem 1
in Hassin (1982), (C.7) holds. LetN ′ = ∪ni=1{(wi, i)|wi ∈ A} ⊂ D, where A ⊂ W is a measurable
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set. The right-hand side of (C.7) becomes

∑

�∈N ′

k(�,N∖N ′) =
∑

wi∈N ′

k(wi, ◦)

=
∑

wi∈N ′

f (wi)Q(wi)

= n
∑

w∈A
f (w)Q(w)

and the left-hand side of (C.7) becomes

∑

�∈N ′

d(�,N ′) =
∑

w∶{wi}∩N ′≠∅
d(w, N ′)

=
∑

w∈An

n
∏

i=1
f (wi)�(w),

which proves the first inequality in (C.6). LetN ′ = N∖ ∪ni=1 {(wi, i)|wi ∈ A}. The right-hand side
of (C.7) becomes

∑

�∈N ′

k(�,N∖N ′) =
∑

w∈An

n
∏

i=1
f (wi)

and the left-hand side of (C.7) becomes

∑

�∈N ′

d(�,N ′) =
n
∑

i=1

∑

wi∈A
d(wi, ◦)

= n
∑

w∈A
f (w)Q(w),

which proves the second inequality in (C.6).

Sufficiency: Because � is symmetric, by a similar argument to that in the proof of Theorem 7 in Che
et al. (2013b), (C.6) holds if and only if

∑

w∈
∏

i Ai

n
∏

i=1
f (wi)�(w) ≤

n
∑

i=1

∑

wi∈Ai

f (wi)Q(wi) ≤
∑

w∈∪i(Ai×W n−1)

n
∏

i=1
f (wi), ∀

n
∏

i=1
Ai ⊂ W

n. (C.8)
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For completeness, I include a proof of this claim in Lemma 44.

Suppose first that ◦ ∉ N ′. Let Ai = N ′ ∩Di for all i. In this case,

∑

�∈N ′

d(�,N ′) = d(◦, N ′ ∩W n) +
∑

w∈W n∖N ′

d(w, N ′ ∩D)

=
∑

w∈W n∖N ′

d(w, N ′ ∩D)

≤
∑

w∈W n∖N ′

d(w, N ′ ∩D)

≤
∑

w∈∪i(Ai×W n−1)

d(w, N ′ ∩D)

=
∑

w∈
∏n

i=1 Ai

d(w, N ′ ∩D)

=
∑

w∈
∏n

i=1 Ai

n
∏

i=1
f (wi)�(w)

≤
n
∑

i=1

∑

wi∈Ai

f (wi)Q(wi) +
∑

wi∈D∩N ′

k(wi, ◦)

=
∑

�∈N ′

k(�,N∖N ′).

Suppose next ◦ ∈ N ′. Then if W n ⊈ N ′, we have ∑�∈N ′ k(�,N∖N ′) ≥ k(◦, N∖N ′) = K >
∑

�∈N∖N ′ d(�,N ′) for K sufficiently large. Otherwise, if W n ⊂ N ′, then let Ai = Di∖N ′ for all i
and

∑

�∈N ′

k(�,N∖N ′) =
∑

w∈∪i(Ai×W n−1)

k(w, D∖N ′)

=
∑

w∈Ai×W n−1

n
∏

i=1
f (wi)

≥
n
∑

i=1

∑

wi∈Ai

f (wi)Q(wi)

=
∑

�∈D∖N ′

d(�,N ′).

Hence, if (C.6) holds, then (C.7) also holds. The conclusion follows by Theorem 1 in Hassin (1982)
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and Theorem 1 in Che et al. (2013b).

Lemma 44 (C.6) holds if and only if (C.8) holds.

Proof. Clearly, if (C.8) holds, then (C.6) holds. Suppose that (C.6) holds. I only prove here that
the first inequality in (C.6) holds. Virtually the same argument can be applied to prove the second
inequality in (C.8).

Suppose, to the contrary, that there exists ∏n
i=1Ai ⊂ W n such that the first inequality in (C.8) is

violated. Suppose that∏n
i=1Ai is minimal in the sense that for all proper subsets∏n

i=1A
′
i ⊊

∏n
i=1Ai,

the first inequality in (C.8) holds. Let A ∶= ∪iAi. I want to show that the first inequality in (C.6) is
violated for A, which is a contradiction.

To show this, I show that starting from∏n
i=1Ai , I can construct a finite sequence of sets

∏n
i=1Ai =

S 1 ⊊ S 2 ⊊⋯ ⊊ SM = A
n such that the first inequality in (C.8) is violated for allSm. The sequence

is constructed inductively:

Step 1. Let S 1 ∶=∏n
i=1Ai.

Step m. If Sm−1 = A
n, then we are done. Otherwise, there exist j, k ∈ {1,… , n} such that Bj ∶=

Aj∖Sm−1
k ≠ ∅ or Bk ∶= Ak∖Sm−1

j ≠ ∅. Let Sm ∶= (Sm−1
j ∪ Bk) × (Sm−1

k ∪ Bj) ×
∏

i≠j,k S
m−1
i .

Because there are a finite number of agents, the construction stops after a finite number of steps.
Next I show that if the first inequality in (C.8) is violated for Sm, then it is also violated for Sm+1.
Recall that the first inequality in (C.8) is violated for∏n

i=1Ai:

n
∑

i=1

∑

wi∈Ai

f (wi)Q(wi) <
∑

w∈
∏n

i=1 Ai

n
∏

i=1
f (wi)�(w) (C.9)
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Because∏n
i=1Ai is chosen minimally, we have

n
∑

i=1

∑

wi∈Ai

f (wi)Q(wi) −
∑

wj∈Bj

f (wj)Q(wj) −
∑

wk∈Bk

f (wk)Q(wk)

≥
∑

w∈(Aj∖Bj )×(Ak∖Bk)×
∏

i≠j,k Ai

n
∏

i=1
f (wi)�(w).

Hence,

∑

wj∈Bj

f (wj)Q(wj) +
∑

wk∈Bk

f (wk)Q(wk)

<
∑

w∈
∏n

i=1 Ai

n
∏

i=1
f (wi)�(w) −

∑

w∈(Aj∖Bj )×(Ak∖Bk)×
∏

i≠j,k Ai

n
∏

i=1
f (wi)�(w).

For Sm+1 = (Sm
j ∪ Bk) × (S

m
k ∪ Bj) ×

∏

i≠j,k S
m
i , we have

n
∑

i=1

∑

wi∈Smi

f (wi)Q(wi) +
∑

wj∈Bk

f (wj)Q(wj) +
∑

wk∈Bj

f (wk)Q(wk)

=
n
∑

i=1

∑

wi∈Smi

f (wi)Q(wi) +
∑

wj∈Bj

f (wj)Q(wj) +
∑

wk∈Bk

f (wk)Q(wk)

<
∑

w∈Sm

n
∏

i=1
f (wi)�(w) +

∑

w∈Aj×Ak×
∏

i≠j,k Ai

n
∏

i=1
f (wi)�(w) −

∑

w∈(Aj∖Bj )×(Ak∖Bk)×
∏

i≠j,k Ai

n
∏

i=1
f (wi)�(w)

=
∑

w∈Sm

n
∏

i=1
f (wi)�(w) +

∑

w∈Ak×Aj×
∏

i≠j,k Ai

n
∏

i=1
f (wi)�(w) −

∑

w∈(Ak∖Bk)×(Aj∖Bj )×
∏

i≠j,k Ai

n
∏

i=1
f (wi)�(w)

≤
∑

w∈Sm

n
∏

i=1
f (wi)�(w) +

∑

w∈(Smj ∪Bk)×(S
m
k ∪Bj )×

∏

i≠j,k S
m
i

n
∏

i=1
f (wi)�(w)

−
∑

w∈Smj ×S
m
k ×

∏

i≠j,k S
m
i

n
∏

i=1
f (wi)�(w)

=
∑

w∈Sm+1

n
∏

i=1
f (wi)�(w)

where the second and the fourth lines hold because � is symmetric, and the fifth line holds because
∑

w∈
∏n

i=1 Ai
∏n

i=1 f (wi)�(w) is supermodular over∏n
i=1Ai.
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C.1.2. Solving ( ′-�∗)

Recall that the sub-problem ( ′-�∗) is

V (�∗) ∶= max
Q

E
[

wQ(w)| �∗
]

,

subject to

Y (w) ∶= ∫

�

w
[H(z|�∗)n−1 −Q(z)]ℎ(z|�∗)dz ≥ 0, ∀w ∈ [�, �]. (F′)

Q(w) is non-decreasing in w, (MON)
E
[

−
H�(w|�∗)
ℎ(w|�∗)

Q(w)
|

|

|

|

�∗
]

≤ C ′(�∗). (IA′)

For brevity, denotew(0, �∗) byw,w(1, �∗) byw, ℎ(w|�∗) byℎ(w),H(w|�∗) byH(w) andH�(w|�∗)

byH�(w). Let X(w) ∶= ∫ w
0 H�(z)Q(z)dz for all w ∈ [w,w]. Then this is a control problem with

state variables X, Y and Q, and a control variable a ≥ 0. The evolution of the state variables is
governed by

X′(w) = H�(w)Q(w), (C.10)
Y ′(w) = −[H(w)n−1 −Q(w)]ℎ(w), (C.11)
Q′(w) = a(w), (C.12)

where the last equality holds ifQ(w) is differentiable atw. The non-negativity constraint for a guar-
antees that Q is non-decreasing. This implies some regularity on Q, but still leaves some problems
to apply control theory directly. First, we have to allow for (upward) jumps in the state variable Q.
Second, Q is not guaranteed to be piecewise continuous and piecewise continuously differentiable.

These problems can be circumvented by solving the maximization problem under the additional
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restriction that Q is Lipschitz continuous with global Lipschitz constant K:

Q ∈ K ∶=
{

Q ∶ W → [0, 1]||Q(z) −Q(z′)| ≤ K|z − z′| ∀z, z′ ∈ [0, 1]
}

.

We define the maximization problem (K -�∗) as ( ′-�∗) subject to the additional constraint Q ∈

K .

We say that Q is a feasible solution of ( ′-�∗) if it satisfies (MON), (F′) and (IA′), and an optimal

solution of ( ′-�∗) if it maximizes E [wQ(w)| �∗] subject to (MON), (F′) and (IA′). Similarly, we
say that Q ∈ K a feasible solution of (K -�∗) if it satisfies (MON), (F′) and (IA′), and Q ∈ K

an optimal solution of (K -�∗) if it maximizes E [wQ(w)| �∗] subject to (MON), (F′) and (IA′).

Lemma 45 in Appendix C.1.2 shows that an optimal solution of ( ′-�∗) exists, and for everyK > 0,
an optimal solution of (K -�∗) exists. Lemma 46 in Appendix C.1.2 shows that there exists an
optimal solution of ( ′-�∗), which is the pointwise limit of the optimal solutions of (K -�∗).

The rest of Appendix C.1.2 is organized as follows. Appendix C.1.2 introduces and proves Lemmas
45 and 46. Appendix C.1.2 gives the necessary conditions that an optimal solution of (K -�∗) must
satisfy. Appendix C.1.2 proves Theorem 15. Appendix C.1.2 proves Lemma 15.

Existence of optimal solutions

Before introducing and proving Lemmas 45 and 46, I first introduce some notations. I abuse notation
a bit and let ℎ denote the probability measure on W corresponding to H(w). In what follows, let
L2(ℎ) denote the set of measurable functions whose absolute value raised to the 2nd power has
finite integral. For brevity, denote L2(ℎ) by L2. Because L2 is the dual of L2 under the duality
⟨f, g⟩ = Ew [f (w)g(w)|� = �∗], topologize L2 with its weak∗, or �(L2, L2), topology.

Lemma 45 The following two statements are true.

1. An optimal solution of ( ′-�∗) exists.
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2. For every K > 0, an optimal solution of (K -�∗) exists.

Proof. The proof is based on Mierendorff (2009).

1. Let {Q�} be a sequence of feasible solutions of ( ′-�∗) such that

∫

w

w
zQ�(z)ℎ(z)dz→ V (�∗).

By Helly’s selection theorem, there exists a subsequence {Q��} and a non-decreasing function
Q such thatQ�� converges pointwise toQ. LetD collect allQ ∶ W → [0, 1] that satisfies (F′),
(MON) and (IA′). Consider D as a subset of L2. Recall that m is the probability measure on
corresponding toH(z). ThenD is �(L2, L2) compact by a proof similar to that of Lemma 5.4
in Border (1991) and Lemma 8 in Mierendorff (2011). Therefore, after taking subsequences
again, Q�� converges to Q in �(L2, L2) topology and Q ∈ D . Because z ∈ L2 and ℎ ∈ L2,
the weak convergence of {Q��} implies that

∫

w

w
zQ(z)ℎ(z)dz = V (�∗).

2. Let {Q�} be a sequence of feasible solutions of (K -�∗) such that

∫

w

w
zQ�(z)ℎ(z)dz→ V K (�∗).

After taking subsequences, we can assume thatQ� converges toQ pointwise and in �(L2, L2)
topology, and Q ∈ D as in part 1. Because Q� ∈ K , for all z, z′ ∈ W ,

|Q(z) −Q(z′)| = lim
�→∞

|Q�(z) −Q�(z′)| ≤ K|z − z′|.

Hence, Q ∈ K .
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Lemma 46 Let {QK} be a sequence of optimal solutions of (K -�∗) where K → ∞. Then there

exists a feasible solution Q of ( ′-�∗) and a subsequence QK� such that QK� converges to Q for

almost every w ∈ W . Furthermore, Q is optimal, i.e.,

∫

w

w
zQ(z)ℎ(z)dz = V (�∗).

Proof. The proof is based on Reid (1968) and Mierendorff (2009). After taking a subsequence, we
can assume thatQK converges pointwise to a feasible solution Q̂ of ( ′-�∗) (see the proof of Lemma
45). To show the optimality of Q̂, let Q be an optimal solution of ( ′-�∗). We can extend Q to ℝ

by setting Q(z) ∶= 0 for z < w and Q(z) ∶= 1 for z > w. Define Qd ∶ ℝ → [0, 1] as

Qd(z) ∶=
1
d ∫

z

z−d
Q(� )d�, ∀z ∈ ℝ.

By the Lebesgue differentiation theorem (see, e.g., Theorem 3.21 in Folland (1999)),Qd(z)→ Q(z)

for almost every z ∈ W as d → 0. Because Q is non-decreasing and Q(z) ∈ [0, 1] for all z, Qd is
non-decreasing, Qd ≤ Q, and Qd(z) ∈ [0, 1] for all z. Furthermore, Qd ∈ 

1
d : For all z > z′,

0 ≤ Qd(z) −Qd(z′) =
1
d

(

∫

z

z−d
Q(� )d� − ∫

z′

z′−d
Q(� )d�

)

=1
d

(

∫

z

z′
Q(� )d� − ∫

z−d

z′−d
Q(� )d�

)

≤ 1
d ∫

z

z′
Q(� )d�

≤ 1
d
(z − z′).

Finally, Qd satisfies (F′) because Qd ≤ Q and Q satisfies (F′).

Define Q̃d ∶= Qd if− ∫ w
w H�i(z)Qd(z)dz ≤ C ′(�∗) and otherwise Q̃d ∶= �dQd+(1−�d)∕n, where

�d =
C ′(�∗)

− ∫ w
w H�i(z)Qd(z)dz

.
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Then by Lemma 43, − ∫ w
w H�i(z)Q̃d(z)dz ≤ C ′(�∗). Thus, Q̃d is a feasible solution of (K -�∗),

where K = 1∕d. Because �d → 0, Q̃d → Q almost everywhere as d → 0. By the dominated
convergence theorem,

∫

w

w
zQ̃d(z)ℎ(z)dz→ ∫

w

w
zQ(z)ℎ(z)dz, as d → 0

and

∫

w

w
zQK (z)ℎ(z)dz→ ∫

w

w
zQ̂(z)ℎ(z)dz, as K →∞.

Let d = 1∕K . Then for all K , Q̃d is a feasible solution of (K -�∗) and therefore

∫

w

w
zQ̃d(z)ℎ(z)dz ≤ ∫

w

w
zQK (z)ℎ(z)dz.

Hence,

∫

w

w
zQ̂(z)ℎ(z)dz = ∫

w

w
zQ(z)ℎ(z)dz.

This completes the proof.

Solving (K -�∗)

The problem (K -�∗) can be summarized as follows:

max
X,Y ,Q,a∫

w

w
zQ(z)ℎ(z)dz, (K -�∗)
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subject to

X′(z) = H�(z)Q(z), (C.10)
Y ′(z) = −[H(z)n−1 −Q(z)]ℎ(z), (C.11)

Q′(z) = a(z), (C.12)
X(w) = 0, X(w) ≥ −C ′(�∗), (C.13)

Y (w) = 0, Y (w) = 0, (C.14)
Q(w) ≥ 0, Q(w) ≤ 1, (C.15)

0 ≤ a(z) ≤ K, (C.16)
Y (z) ≥ 0. (C.17)

We say that some property holds virtually everywhere if the property is fulfilled at all z except for
a countable number of z’s. We use the following abbreviation for “virtually everywhere”: v.e. By
Theorem 6.7.15 in Seierstad and Sydsæter (1987), we have

Lemma 47 Let (X, Y ,Q, a) be an admissible pair that solves (K -�∗). Then there exist a number

�0, vector functions (�X , �̌Y , �Q) and (�a, �a), and a non-decreasing function �Y , all having one-
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sided limits everywhere, such that the following condition holds:

�0 = 0 or �0 = 1, (C.18)
(�0, �X(z), �̌Y (z), �Q(z), �Y (w) − �Y (w)) ≠ 0, ∀z, (C.19)

�Q(z)a(z) ≥ �Q(z)a, ∀a ∈ (0, K), v.e. (C.20)
�Q(z) − �a(z) + �a(z) = 0, v.e. (C.21)

�Y is constant on any interval where Y > 0. (C.22)
�X and �Q are continuous. (C.23)

�′X(z) = 0, v.e. (C.24)
�′Q(z) = −

[

�0z + �X(z)
H�(z)
ℎ(z)

+ �̌Y (z)
]

ℎ(z) + �Y (z)ℎ(z), v.e. (C.25)

�̌Y (z) + �Y (z) is continuous, (C.26)
�̌′Y (z) + �

′
Y (z) = 0, v.e. (C.27)

�X(w) ≥ 0(= 0 if X(w) > −C ′(�∗)), (C.28)
�Q(w) ≤ 0(= 0 if Q(w) < 1), (C.29)
�Q(w) ≤ 0(= 0 if Q(w) > 0). (C.30)
�
a
(z) ≥ 0(= 0 if a(z) > 0), (C.31)

�a(z) ≥ 0(= 0 if a(z) < K). (C.32)

In what follows, I assume that (X, Y ,Q, a) is an admissible pair that solves (K -�∗) and
(X, Y ,Q, a, �0, �X , �̌Y , �Q, �a, �a, �Y ) satisfy the conditions in Lemma 47. I begin the analysis by
simplifying the conditions in Lemma 47.

Because �X is continuous and �′X(z) = 0 virtually everywhere, �X(z) is constant on [w,w]. I abuse
notation a bit and denote this constant by �X . Then (C.28) is equivalent to

�X ≥ 0(= 0 if X(w) > −C ′(�∗)).
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Similarly, because �̌Y +�Y is continuous and �̌′Y (z)+ �′Y (z) = 0 virtually everywhere, �̌Y (z)+ �Y (z)
is constant on [w,w]. We can assume without loss of generality that �̌Y (z) + �Y (z) = 0 for all
z ∈ [w,w]. Let �Y ∶= 2�̌Y . Then �Y = −�Y ∕2 and condition (C.22) is equivalent to

�Y (z) is constant on any interval where Y (z) > 0, (C.33)

and (C.25) is equivalent to

�′Q(z) = −
[

�0z + �X(z)
H�i(z)
ℎ(z)

+ �Y (z)
]

ℎ(z), v.e.

Furthermore, �Y is non-decreasing if and only if �Y is non-increasing. Because �Y has one-sided lim-
its everywhere, we can assume without loss of generality that �Y (w) = limz→w �Y (z) and �Y (w) =
limz→w �Y (z). Finally, (C.20), (C.21), (C.31) and (C.32) can be simplified to for virtually all z ∈
(w,w): If 0 < a(z) < K , then �Q(z) = �a(z) = �

a
(z) = 0. If a(z) = 0, then �a(z) = 0 and

−�
a
(z) = �Q(z) ≤ 0. If a(z) = K , then �

a
(z) = 0 and �a(z) = �Q(z) ≥ 0.

Then the conditions in Lemma 47 can be simplified as follows:

Corollary 10 Let (X, Y ,Q, a) be an admissible pair for (K -�∗). If (X, Y ,Q, a) is optimal, then
there exist a constant �X , a continuous and piecewise continuously differentiable function �Q, and
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a non-increasing function �Y such that the following holds:

�X ≥ 0 (= 0 if X(w̄) > −C ′(�∗)). (C.34)

�′Q(z) = −
[

z + �X
H�i(z)
ℎ(z)

+ �Y (z)
]

ℎ(z), v.e. (C.35)

�Y is constant on any interval where Y > 0. (C.36)
�Q(w) ≤ 0(= 0 if Q(w) < 1). (C.37)
�Q(w) ≤ 0(= 0 if Q(w) > 0). (C.38)

a(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

= 0 if �Q(z) ≤ 0,

∈ [0, K] if �Q(z) = 0,

= K if �Q(z) ≥ 0.

v.e. (C.39)

Proof. We prove Corollary 10 by proving the following two lemmas.

Lemma 48 �Q(w) = �Q(w) = 0.

Proof. By the transversality condition (C.30), �Q(w) ≤ 0 and equality holds ifQ(w) > 0. Suppose,
to the contrary, that �Q(w) < 0. Then Q(w) = 0. By continuity there exists � > 0 such that
�Q(z) < 0 for all z ∈ (w,w + �). Hence, by (C.20), a(z) = 0 for all z ∈ (w,w + �). This implies
that Q(z) = 0 for all z ∈ (w,w + �). Let z ∈ (w,w + �), then

0 = Y (w) = ∫

z

w
H(� )n−1ℎ(z)dz + Y (z) > Y (z),

a contradiction. Hence, �Q(w) = 0. A similar argument proves that �Q(w) = 0.

Lemma 49 (Non-triviality) �0 = 1.

Proof. Suppose, to the contrary, that �0 = 0. Then

�′Q(z) = −
[

�X
H�(z)
ℎ(z)

+ �Y (z)
]

ℎ(z), v.e.
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Hence,

�Q(w) =�Q(w) − ∫

w

w

[

�X
H�(z)
ℎ(z)

+ �Y (z)
]

ℎ(z)dz,

=�Q(w) − ∫

w

w
�Y (z)ℎ(z)dz.

Because �Q(w) = �Q(w) = 0, we have

∫

w

w
�Y (z)ℎ(z)dz = 0.

Because �Y is non-decreasing, it must be that �Y (w) ≥ 0 and �Y (w) ≤ 0. Suppose that �X > 0.
Then becauseH�i(z)∕ℎ(z) is strictly decreasing and �Y (z) is non-increasing, �Q(H−1(⋅)) is strictly
convex. Hence, �Q(z) < 0 for all z ∈ (w,w), and therefore a(z) = 0 for all z ∈ (w,w). That is, Q
is constant. However, if Q is constant, then X(w) = 0 > −C ′(�∗), a contradiction to that �X > 0.
Hence, �X = 0. Then

�Q(z) = −∫

z

w
�Y (� )ℎ(� )d�.

Suppose that �Y (w) = �Y (w) = 0, then �Y (z) = 0 for all z ∈ (w,w). Hence, �Q(z) = 0 for all
z ∈ (w,w) and �Y (w) − �Y (w) = −�Y (w)∕2 +
lambdaY (w)∕2 = 0. Then

(�0, �X(z), �Y (z), �Q(z), �Y (w) − �Y (w)) = 0, ∀z,

which is a contradiction to (C.19). Hence, �Y (w) > 0 and �Y (w) < 0. Thus, �Q(z) < 0 for all
z ∈ (w,w) and thereforeQ is constant. Hence, Y (z) > 0 for all z ∈ [w,w]. This, by (C.33), implies
that �Y is constant on (w,w), which is a contradiction to the fact that that �Y (w) > 0 and �Y (w) < 0.
Hence, �0 = 1.

This completes the proof of Corollary 10.

Before proceeding, I first introduce some notations and proves two technical lemmas (Lemmas 50
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and 52) that will be useful for later proof. For the ease of notation, I suppress the dependence of
'�X , J �X , '�X and J �X on �∗. For each w ∈ W , define

mY (w) ∶= −∫

w

w
�Y (z)ℎ(z)dz.

It follows from (C.35) that for any z, z ∈ W and z < z, we have

�Q(z) =�Q(z) − ∫

z

z

[

z + �X
H�i(z)
ℎ(z)

+ �Y (z)
]

ℎ(z)dz,

=�Q(z) − ∫

z

z

[

'�X (H(z)) + �Y (z)
]

ℎ(z)dz.

If z = w, then
�Q(z) = �Q(w) − J �X (H(z)) + mY (z). (C.40)

Hence, for virtually all z ∈ (w,w),

a(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

= 0 if �Q(w) + mY (z) ≤ J �X (H(z)),

∈ [0, K] if �Q(w) + mY (z) = J �X (H(z)),
= K if �Q(w) + mY (z) ≥ J �X (H(z)).

Lemma 50 For all t ∈ [0, 1],

�Q(w) + mY (H−1(t)) ≥ J
�X (t).

Proof. The proof of Lemma 50 uses the following lemma.

Lemma 51 (Reid) Suppose that �Q(w) + mY (H−1(t)) = J �X (t) for t ∈ {t, t}. Let a, b ∈ ℝ and

l(t) = a + bt. If J �X (t) ≥ l(t) for all t ∈ [t, t], then

�Q(w) + mY (H−1(t)) ≥ l(t), ∀t ∈ [t, t̄].
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Proof. Suppose, to the contrary, that �Q(w) + mY (H−1(t)) < l(t) for some t ∈ (t, t). Then by
continuity there exist " > 0 and t1, t2 ∈ (t, t) such that t < t1 < t2 < t, �Q(w)+mY (H−1(�)) < l(�)−"

for � ∈ (t1, t2), and

�Q(w) + mY (H−1(t1)) = l(t1) − ",

�Q(w) + mY (H−1(t2)) = l(t2) − ".

On the one hand, this implies that �Y ((H−1(⋅)) = −m′Y (H
−1(⋅)) cannot be constant on (t1, t2).

On the other hand, �Q(w)+mY (H−1(�)) < l(�)−" < J �X (�) for � ∈ (t1, t2). Hence, a(H−1(�)) = 0

for � ∈ (t1, t2), which implies that Y (H−1(�)) > 0 on the interval (t1, t2). To see this, note that
Y ′(z) = Q(z) − Hn−1(z) is strictly decreasing if Q is constant. Hence, Y is strictly concave on
(H−1(t1),H−1(t2)). For any � ∈ (t1, t2) there exists � ∈ (0, 1) such thatH−1(�) = �H−1(t1) + (1 −

�)H−1(t2). By strict concavity, Y (H−1(�)) > �Y (H−1(t1)) + (1 − �)Y (H−1(t2)) ≥ 0. By (C.36),
Y (H−1(⋅)) > 0 on (t1, t2) implies that �Y (H−1(⋅)) is constant on (t1, t2), a contradiction.

By (C.40) and Lemma 48, �Q(w) + mY (H−1(0)) = 0 = J �X (0) and �Q(w) + mY (H−1(1)) = J �X .
Then, by Lemma 51, Lemma 50 holds.

Lemma 52 If K > K ∶= maxz∈W (n − 1)H(z)n−2ℎ(z), then

�X ≤ �X ∶=
[

min
z∈W

)
)z

[

−
H�(z)
ℎ(z)

]]−1

.

Proof. The proof of Lemma 52 uses Lemmas 53, 54 and 55.

Lemma 53 (interior solution) Suppose that a(z) ∈ (0, K) for z ∈ (z, z), then �Y (z) = −'�X (H(z))

for virtually every z ∈ (z, z).

Proof. If a(z) ∈ (0, K) for z ∈ (z, z), then �Q(w) + mY (z) = J �X (H(z)) for virtually every
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z ∈ (z, z). Differentiating this equality with respect to z yields for virtually every z ∈ (z, z):

−�Y (z)ℎ(z) = '�X (H(z))ℎ(z),

Because ℎ > 0, −�Y (z) = '�X (H(z)) for virtually every z ∈ (z, z).

Lemma 54 (constant Q) Suppose that a(z) = 0 on (z, z) with z < z and let (z, z) be chosen maxi-

mally. Then

�Q(z) = 0,

�Q(w) + mY (z) = J �X (H(z)),

for z = z if z > w, and z = z if z < w. Furthermore,

'�X (H(z)) + �Y (z−) ≥ 0, if z > w,

'�X (H(z)) + �Y (z
+) ≤ 0, if z < w.

Proof. Because a(z) = 0 on (z, z), then

�Q(w) + mY (z) ≥ J �X (H(z)), v.e. z ∈ (z, z).

Suppose that z > w and let S− ∶= {z < z|a(z) > 0}. Since (z, z) is chosen maximally, Q(z) <
Q(z) for all z < z. Furthermore, because Q is absolutely continuous, S− ∩ [z − �, z] has positive
measure for every � > 0. Hence, there exists a sequence {zk} ∈ S− converging to z with �Q(w) +
mY (zk) ≥ J �X (H(zk)) for all k. By continuity, if z > w, then �Q(w) + mY (z) = J �X (H(z)), and
therefore �Q(z) = �Q(w) + mY (z) − J �X (H(z)). A similar argument proves that �Q(z) = 0 and
�Q(w) + mY (z) = J �X (H(z)) if z < w.
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If z > w, then for virtually all z ∈ S−,

0 = �Q(z)

= �Q(z) − ∫

z

z

[

'�X (H(� )) + �Y (� )
]

ℎ(� )d�

≥ −∫

z

z

[

'�X (H(� )) + �Y (� )
]

ℎ(� )d�.

Thus, there exists a sequence {zk} ∈ S− converging to z such that

∫

z

zk

[

'�X (H(� )) + �Y (� )
]

ℎ(� )d� ≥ 0, ∀k.

Hence,
'�X (H(z)) + �Y (z−) ≥ 0, if z > w.

A similar argument proves that

'�X (H(z)) + �Y (z
+) ≤ 0, if z < w.

Lemma 55 (a(z)=K) Suppose that a(z) = K on (z, z)with z < z and let (z, z) be chosen maximally.

Then

�Q(z) = 0,

�Q(w) + mY (z) = J �X (H(z)),

for z = z if z > w, and z = z if z < w. Furthermore,

'�X (H(z)) + �Y (z−) ≤ 0, if z > w,

'�X (H(z))�X + �Y (z
+) ≥ 0, if z < w,
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and

'�X (H(z)) + �Y (z+) ≤ 0, if z = w,

'�X (H(z)) + �Y (z
−) ≥ 0, if z = w.

Proof. The proofs for the case z > w and the case z < w are very similar to that of Lemma
54 and neglected here. We now show that the third inequality holds for z = w. Note that by the
transervasality condition, �Q(w) ≤ 0. For virtually all z ∈ (w, z),

0 ≤ �Q(z)

= �Q(w) − ∫

z

w

[

'�X (H(� )) + �Y (� )
]

ℎ(� )d�

≤ −∫

z

w

[

'�X (H(� )) + �Y (� )
]

ℎ(� )d�,

That is,

∫

z

w

[

'(H(� )) + �Y (� )
]

ℎ(� )d� ≤ 0, v.e. z ∈ (w, z).

Let z goes tow, and this proves the third inequality for z = w. A similar argument proves the fourth
inequality for z = w.

Suppose, to the contrary, that �X > �X . Then '�X (H(z)) is strictly decreasing. Suppose that
there exists an interval (z, z) such that a(z) ∈ (0, K) for z ∈ (z, z). Then, by Lemma 53, �Y (z) =
−'�X (H(z)) for virtually every z ∈ (z, z). Thus, �Y is strictly increasing on (z, z), which is a
contradiction to the fact that �Y is non-increasing. Because a is piecewise continuous by assumption,
a(z) ∈ {0, K} for almost every z ∈ W .

Suppose that there exists an interval (z, z) such that a(z) = K on (z, z) and let (z, z) be chosen
maximally. Then Y ′(z) = Q(z) −H(z)n−1 which is strictly increasing because K > maxz∈W (n −

1)H(z)n−2ℎ(z), and therefore Y (z) is strictly convex on [z, z]. This implies that Y (z) > 0 on [z, z]
except at most one point. Suppose that Y (z) > 0 for all z ∈ (z, z). Then �Y is constant on (z, z),
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and �Q(H−1(t)) = �Q(z) − ∫ t
H(z)

[

'�X (�) + �Y (H−1(�))
]

d� is strictly convex on (H(z),H(z)). By
Lemma 55 and the transversality condition, �Q(z) ≤ 0 and �Q(z) ≤ 0. Then the strict convexity
of �Q(H−1(t)) implies that �Q(z) < 0 for all z ∈ (z, z). However, a(z) = K on (z, z) implies that
�Q(z) ≥ 0 for virtually every z ∈ (z, z), a contradiction. Hence, there exists a unique z0 ∈ (z, z)

such that Y (z0) = 0, and therefore Y (z) > 0 and Y (z) > 0. Because Y (w) = Y (w) = 0 we have
w < z < z < w. Note that this also implies that �Y is constant on a neighborhood of and therefore
continuous at z ∈ {z, z}. By Lemma 55, we have

'�X (H(z)) + �Y (z) ≤ 0,

'�X (H(z)) + �Y (z) ≥ 0.

Hence,
�Y (z) ≤ −'�X (H(z)) < −'�X (H(z)) ≤ �Y (z),

where the second inequality holds because '�X is strictly decreasing and H is strictly increasing.
However, this is a contradiction to that �Y is non-increasing. Hence, a(z) = 0 for almost all z ∈ W .

Because Q is absolutely continuous, this implies that Q is constant onW . However, by Lemma 43,
X(w) = 0 > −C ′(�∗) when Q is constant onW , which implies that �X = 0, a contradiction to the
supposition that �X > �̄X > 0. Hence, �X ≤ �̄X .

Proof of Theorem 15

Let {Q�} be a sequence of optimal solutions of (K -�∗) where K = K� > K for each �, K is
defined is Lemma 52, and K� → ∞ as � → ∞. After taking a subsequence, we can assume that
{Q�} converges pointwise. Let Q∞ denote the almost everywhere limit of this sequence. Denote
the corresponding joint variables associated with Q� by �� . By Lemma 52, {��X} is bounded for �
sufficiently large. After taking a subsequence, we can assume that {��X} converges, and let �∞X ∶=

lim�→∞ ��X . By Lemma 46, Q∞ is an optimal solution.

For brevity, let '� (or '∞) denote '��X (or '�∞X ), J � (or J∞) denote J ��X (or J �∞X ), '� (or '∞) denote
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'�
�
X (or '�∞X ), J � (or J∞) denote J �

�
X (or J �∞X ).

BecauseQ� satisfies (IA′) with equality for all � andQ∞ is the pointwise limit of {Q�},Q∞ satisfies
(IA′) with equality. By a similar argument, Y∞(w) = 0. Lemmas 57 and 58 below show that Q∞
satisfies the two pooling properties when �X = �∞X . Finally, Lemma 59 below proves that that
�∞X = �∗X , where �∗X > 0 is such that inequality (4.15) holds. By the arguments in Section 4.3.2, this
completes the proof Theorem 15.

Before introducing and proving Lemmas 57, 58 and 59, I first prove the following technical lemma,
which is used in the proofs of Lemmas 57 and 58.

Lemma 56 The following four statements are true.

1. The sequence {'�} is uniformly convergent with limit '∞.

2. The sequence {J �} is uniformly convergent with limit J∞.

3. The sequence {'�′} is uniformly convergent with limit '∞′.

4. The sequence {J
�
} is uniformly convergent with limit J

∞
.

Proof. Let 
1 ∶= maxz∈W |H�i(z)∕ℎ(z)| > 0,


2 ∶= maxz∈W

|

|

|

|

|

)
)z

[

−
H�i(z)
ℎ(z)

]

|

|

|

|

|

> 0,

and 
3 ∶= maxz∈W 1∕ℎ(z) > 0. Here 
1, 
2 and 
3 are well define because H and ℎ are twice
continuously differentiable andW is compact.

1.
|'�(t) − '∞(t)| = |

|

��X − �
∞
X
|

|

|

|

|

|

|

H�i(H
−1(t))

ℎ(H−1(t))

|

|

|

|

|

≤ 
1 ||�
�
X − �

∞
X
|

|

→ 0,

as � →∞. Hence, the sequence {'�} is uniformly convergent with limit '∞.
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2.

|J �(t) − J∞(t)| = ∫

t

0
|'�(�) − '∞(�)| d�

≤ t
1 ||�
�
X − �

∞
X
|

|

≤ 
1 ||�
�
X − �

∞
X
|

|

→ 0,

as � → 0. Hence, the sequence {J �} is uniformly convergent with limit J∞.

3.

|

|

'�′(t) − '∞′(t)|
|

= |

|

��X − �
∞
X
|

|

|

|

|

|

|

|

)
)z

[

H�i(H
−1(t))

ℎ(H−1(t))

]

1
ℎ(H−1(t))

|

|

|

|

|

|

≤ 
2
3 ||�
�
X − �

∞
X
|

|

→ 0,

as � →∞. Hence, the sequence {'�′} is uniformly convergent with limit '∞′.

4. Because the sequence {J �} is uniformly convergent with limit J∞, for any " > 0 there exists
� > 0 such that for all � > �, |J∞(t) − J �(t)| ≤ " for all t ∈ [0, 1]. Fix t ∈ [0, 1]. Let
t1, t2, � ∈ [0, 1] be such that �t1 + (1 − �)t2 = t. Then for any � > �

J
∞
(t) ≤�J∞(t1) + (1 − �)J∞(t2)

≤�J �(t1) + (1 − �)J �(t2) + �|J∞(t1) − J �(t1)| + (1 − �)|J∞(t2) − J �(t2)|

≤�J �(t1) + (1 − �)J �(t2) + "

Hence,

J
∞
(t) ≤ min

{

�J �(t1) + (1 − �)J �(t2)|�t1 + (1 − �)t2 = t
}

+ " = J
�
(t) + ".

Similarly, we can show that J �(t) ≤ J
∞
(t) + ". Hence, |J∞(t) − J �(t)| ≤ ". Because this

holds for any t ∈ [0, 1], we have that the sequence {J �} is uniformly convergent with limit
J
∞.
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Lemma 57 Suppose that J∞(H(z)) > J
∞
(H(z)) for z ∈ (z, z) with z < z and let (z, z) be chosen

maximally. Then Q∞ is constant on (z, z).

Proof. For each 0 < � < (z−z)∕2, let "(�) ∶= minz∈[z+�,z−�]{J∞(H(z))−J∞(H(z))}. Then "(�) is
non-increasing in � and converges to zero as � converges to zero. Fix �0 > 0. Let "0 ∶= 1

4"(�0) > 0.
There exist 0 < �1 < �2 < �0 such that "(�1) = "0 and "(�2) = 2"0. I claim that there exists � such
that for all � > �,

J �(H(z)) − J̄ �(H(z)) ≥
7"0
2

if z ∈ [z + �0, z − �0], (C.41)

J �(H(z)) − J̄ �(H(z)) ≥
"0
2

if z ∈ [z + �1, z − �1], (C.42)

J �(H(z)) − J̄ �(H(z)) ≤
5"0
2

if J∞(H(z)) − J∞(H(z)) ≤ 2"0. (C.43)

We begin by prove (C.42). Because the sequence {J �} is uniformly convergent with limit J∞, there
exists � such that for all � > �, |J �(t) − J∞(t)| < "0∕8 for all t ∈ [0, 1]. Let t ∈ [H(z + �1),H(z −
�1)]. Then, by construction, J∞(t) − J∞(t) > "0. Hence, there exists �, t1, t2 ∈ [0, 1] such that
�t1 + (1 − �)t2 = t and �J∞(t1) + (1 − �)J∞(t2) < J∞(t) − 3"0∕4. Then

J̄ �(t) ≤�J �(t1) + (1 − �)J �(t2)

≤�J∞(t1) + �|J �(t1) − J∞(t1)| + (1 − �)J∞(t2) + (1 − �)|J �(t2) − J∞(t2)|

≤�J∞(t1) + (1 − �)J∞(t2) +
"0
8

≤J∞(t) −
3"0
4
+
"0
8

≤J �(t) + |J �(t) − J∞(t)| −
5"0
8

≤J �(t) + "
8
−
5"0
8

=J �(t) −
"0
2
.

Hence, J �(H(z)) − J̄ �(H(z)) ≥ "∕2 for all z ∈ [z + �1, z − �1]. A similar argument proves (C.41).
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To show (C.43), let z be such that J∞(H(z)) − J∞(H(z)) ≤ 2"0. For any �, t1, t2 ∈ [0, 1] such that
�t1 + (1 − �)t2 = t and t = H(z), we have

�J �(t1) + (1 − �)J �(t2)

≥�J∞(t1) − �|J �(t1) − J∞(t1)| + (1 − �)J∞(t2) − (1 − �)|J �(t2) − J∞(t2)|

≥�J∞(t1) + (1 − �)J∞(t2) −
"0
8

≥J
∞
(t) −

"0
8

=J∞(t) − [J∞(t) − J
∞
(t)] −

"0
8

≥J∞(t) − 2"0 −
"0
8
,

≥J �(t) − |J �(t) − J∞(t)| − 2"0 −
"0
8
,

≥J �(t) −
"0
8
− 2"0 −

"0
8
,

≥J �(t) −
5"0
2
.

Hence,

J
�
(t) ∶= min{�J �(t1) + (1 − �)J �(t2)|�, t1, t2 ∈ [0, 1] and �t1 + (1 − �)t2 = t} ≥ J �(t) −

5"0
2
.

Because "(�1) = "0 and "(�2) = 2"0, by continuity

ℎ� ∶= min
{

ℎ({z ∈ [z + �1, z + �2]|J∞(H(z)) − J
∞
(H(z)) ≤ 2"0}),

ℎ({z ∈ [z − �2, z − �1]|J∞(H(z)) − J
∞
(H(z)) ≤ 2"0})

}

> 0.

Fix � > � such that K� > 1∕ℎ�. Suppose that there exists (b1, b2) ⊂ (z + �0, z − �0) such that
a�(z) > 0. Then �Q(b1), �Q(b2) ≥ 0. Because ��Y is non-increasing, we have ��Y (b2) ≤ ��Y (b1). Note
that J � is linear and therefore '� is constant on (z, z). Hence, we have either −��Y (b2) ≥ '�(H(z))

for all z ∈ (z, z), or −��Y (b1) ≤ '�(H(z)) for all z ∈ (z, z). Assume without loss of generality that
−��Y (b2) ≥ '�(H(z)) for all z ∈ (z, z). For any z ∈ [z−�2, z−�1]with J∞(H(z))−J∞(H(z)) ≤ 2"0,
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we have

��Q(z) = �
�
Q(b2) − ∫

z

b2

[

��Y (� ) + '
�(H(� ))

]

ℎ(� )d�

≥ ∫

z

b2
'�(H(� ))ℎ(� )d� − ∫

z

b2
'�(H(� ))ℎ(� )d�

= J
�
(H(z)) − J

�
(H(b2)) − J �(H(z)) + J �(H(b2))

= J �(H(b2)) − J
�
(H(b2)) −

[

J �(H(z)) − J
�
(H(z))

]

≥
7"0
2
−
5"0
2
= "0 > 0,

where the first inequality holds because ��Q(b2) ≥ 0 and −��Y (� ) ≥ −��Y (b2) ≥ '�(H(� )) for all
� ≥ b2. That is, a�(z) = K� for almost every z ∈ [z−�2, z−�1]with J∞(H(z))−J∞(H(z)) ≤ 2"0.
However, this is a contradiction to that K� > 1∕ℎ� because 0 ≤ Q ≤ 1.

Hence, a�(z) = 0 for almost every z ∈ [z − �0, z + �0] for � sufficiently large. Let � goes to infinity
and we haveQ∞ is constant on [z− �0, z+ �0]. Because this is true for any �0 > 0, we have thatQ∞
is constant on (z, z).

Lemma 58 Suppose that Y∞(z) > 0 for all z ∈ (z, z) with z < z and let (z, z) be chosen maximally.

Then '∞ is constant on (H(z),H(z)).

Proof. Suppose, to the contrary, that '∞(H(z)−) > '∞(H(z)). Because '∞ is non-decreasing and
right-continuous, there exists � > 0 such that '∞(H(z − �)) > '∞(H(z + �)) for all � ∈ (0, �). Fix
� ∈ (0,min{�∕2, (z − z)∕4}). Because J∞ is convex and '∞ is non-constant on (z + �, z − �), we
have

J
∞
(H(z)) < J

∞
(H(z+�))+[H(z)−H(z+�)]

J
∞
(H(z − �)) − J

∞
(H(z + �))

H(z − �) −H(z + �)
, ∀z ∈ (z+�, z−�).
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Let

"1 ∶= min
z∈[z+2�,z−2�]

{

J
∞
(H(z + �)) + [H(z) −H(z + �)]

J
∞
(H(z − �)) − J

∞
(H(z + �))

H(z − �) −H(z + �)

−J
∞
(H(z))

}

> 0,

"2 ∶= min
z∈[z+�,z−�]

Y∞(z) > 0,

and
M1 ∶= 2 max

z∈[z,z]
|'∞(H(z))| > 0.

Because the sequence {J �} is uniformly convergent with limit J∞, the sequence {Y �} is uniformly
convergent with limit Y∞, and the sequence {'�} is uniformly convergent with limit'∞, there exists
� such that for � > �, |Y �(z)−Y∞(z)| < "2∕2 for all z ∈ W , |J∞(t)−J �(t)| ≤ "1∕8 for all t ∈ [0, 1],
and |'�(t) − '∞| ≤M∕2 for all t ∈ [0, 1]. Then for all � > � and z ∈ [z + 2�, z − 2�] we have

J
�
(H(z + �)) + [H(z) −H(z + �)]

J
�
(H(z − �)) − J

�
(H(z + �))

H(z − �) −H(z + �)
− J

�
(H(z))

≥J
∞
(H(z + �)) − |

|

|

J
∞
(H(z + �)) − J

�
(H(z + �))||

|

− J
∞
(H(z)) − |

|

|

J
∞
(H(z)) − J

�
(H(z))||

|

+
H(z) −H(z + �)

H(z − �) −H(z + �)

[

J
∞
(H(z − �)) − |

|

|

J
∞
(H(z − �)) − J

�
(H(z − �))||

|

−J
∞
(H(z + �)) − |

|

|

J
∞
(H(z + �)) − J

�
(H(z + �))||

|

]

≥J
∞
(H(z + �)) + [H(z) −H(z + �)]

J
∞
(H(z − �)) − J

∞
(H(z + �))

H(z − �) −H(z + �)
− J

∞
(H(z)) −

"1
2

≥
"1
2
. (C.44)

For all � > � and z ∈ [z + �, z − �] we have

Y �(z) ≥ Y∞(z) − |Y �(z) − Y∞(z)| ≥
"2
2
> 0.
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For all � > � and z ∈ [z + �, z − �], we have

'�(H(z)) ≤ '∞(H(z)) + |'�(H(z)) − '∞(H(z))| ≤
M1
2
+
M1
2
=M1.

Finally, letM3 ∶= minz∈[z,z] ℎ(z) > 0 and

M2 ∶=
|

|

|

|

|

|

J
�
(H(z − �)) − J

�
(H(z + �))

H(z − �) −H(z + �)

|

|

|

|

|

|

> 0.

Fix � > � such that K� > 1∕min{z0 + "1∕8M1M3, z0 + "1∕8M2M3, z− �}. Because Y �(z) > 0 on
[z+�, z−�], �Y is constant and thereforem�Y (H−1(⋅)) is affine on [H(z+�),H(z−�)]. By Lemmas
48 and 50, we have m�Y (z) ≥ J

�
(H(z)) for all z ∈ W . In particular, m�Y (z+ �) ≥ J

�
(H(z+ �)) and

m�Y (z − �) ≥ J
�
(H(z − �)). Hence, for all z ∈ [z + �, z − �],

m�Y (z) ≥ J
�
(H(z + �)) + [H(z) −H(z + �)]

J
�
(H(z − �)) − J

�
(z + �)

H(z − �) −H(z + �)
.

Suppose that J �(H(z0)) = J �(H(z0)) for some z0 ∈ [z + 2�, z − 2�]. Then for all z ∈ (

z0, z − �
)

such thatH(z) −H(z0) ≤ min{"1∕8M1, "2∕8M2} we have

J �(H(z))

=J �(H(z0)) + ∫

H(z)

H(z0)
'�(�)d�

≤J
�
(H(z0)) +M1(H(z) −H(z0))

≤J
�
(H(z + �)) + [H(z) −H(z + �) −H(z) +H(z0)]

J
�
(H(z − �)) − J

�
(H(z + �))

H(z − �) −H(z + �)
−
"1
2
+
"1
8

≤m�Y (z) + [H(z) −H(z0)]M2 −
"1
2
+
"1
8

≤m�Y (z) +
"1
8
−
"1
2
+
"1
8
= m�Y (z) −

"1
4
,

where the second inequality holds by (C.44). That is, J �(H(z)) < m�Y (z), and therefore a�(z) = K� .
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BecauseH(z)−H(z0) ≤M3(z−z0), we have a�(z) = K� for all z ∈ (z0,min{z0+"1∕8M1M3, z0+

"1∕8M2M3, z− �}), a contradiction to thatK� > 1∕min{z0+ "1∕8M1M3, z0+ "1∕8M2M3, z− �}

because 0 ≤ Q ≤ 1.

Hence, J �(H(z)) > J
�
(H(z)) for all z ∈ [z + 2�, z − 2�]. This implies that '� is constant on

[H(z−2�),H(z+2�)]. Clearly, {'�} converges uniformly on [H(z−2�),H(z+2�)] and lim�→∞ '
�

is constant on [H(z−2�),H(z+2�)]. Because, on [H(z−2�),H(z+2�)], {J �} converges uniformly
to J∞, each J � is differentiable with derivative '� , and {'�} converges uniformly, we have J∞

is differentiable on [H(z − 2�),H(z + 2�)] and its derivative '∞(t) = lim�→∞ '
�(t) for all t ∈

[H(z−2�),H(z+2�)]. Thus, '∞ is constant on [H(z−2�),H(z+2�)] and 2� < �, a contradiction
to the supposition. Hence, '∞ is constant on (H(z),H(z)).

Corollary 11 Suppose that '∞(H(z)) is constant on (z, z) with z < z and let (z, z) be chosen

maximally. Then Y∞(z) = Y∞(z) = 0, i.e.,

∫

z

z

[

H(� )n−1 −Q∞(� )
]

ℎ(� )d� = 0.

Proof. This is an immediate corollary of Lemma 58. Suppose, to the contrary, that Y∞(z) > 0.
Then by Lemma 58, '∞(H(⋅)) is constant on a neighborhood of z, a contradiction to the fact that
(z, z) is chosen maximally. Hence, Y∞(z) = 0. Similarly, Y∞(z) = 0.

Lemma 59 �∞X = �∗X , where �
∗
X > 0 is such that inequality (4.15) holds .

Proof. For any �X > 0, recall that Q+(⋅, �X) and Q−(⋅, �X) are defined as follows: If

J �X (H(w|�∗), �∗) > J
�X (H(w|�∗), �∗), ∀w ∈ (w,w),

and let (w,w) be chosen maximally, then let

Q+(w, �X) ∶=
1
n
[H(w|�∗)n −H(w|�∗)n]

H(w|�∗) −H(w|�∗)
, ∀w ∈ (w,w).
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Otherwise, let Q+(w, �X) ∶= H(w|�∗)n−1. If '�X (H(⋅|�∗), �∗) is constant on (w,w) with w < w

and let (w,w) be chosen maximally, then let

Q−(w, �X) ∶=
1
n
[H(w|�∗)n −H(w|�∗)n]

H(w|�∗) −H(w|�∗)
, ∀w ∈ (w,w).

Otherwise, let Q−(z, �X , �∗) ∶= H(z|�∗)n−1. For the ease of notation, denote Q+(w, �∞X ) (or
Q−(w, �∞x )) by Q+(w) (or Q−(w)). Note that all Q+, Q− and Q∞ are implementable and non-
decreasing, allocate the object with probability one, and satisfy the two pooling properties. Hence,
by the arguments in Section 4.3.2, for Q ∈ {Q+, Q−, Q∞},

∫

w

w

[

z + �∞X
H�i(z)
ℎ(z)

]

Q(z)ℎ(z)dz + �∞XC
′(�∗)

=∫

w

w
'∞(H(z))H(z)n−1dH(z) + �∞XC

′(�∗). (C.45)

Next we show that Y + ≤ Y∞ ≤ Y −. Let S+ ∶= {z ∈ W |Y +(z) > 0}, S− ∶= {z ∈ W |Y −(z) > 0}

and S ∶= {z ∈ W |Y∞(z) > 0}. By construction,

S+ = ∪{(z, z)|J∞(H(z)) > J
∞
(H(z)) ∀z ∈ (z, z)},

and
S− = ∪{(z, z)|'∞(H(⋅)) is constant on (z, z)}.

It follows from Lemma 57 and Lemma 58 that S+ ⊂ S ⊂ S−. If z ∉ S−, then Y +(z) = Y∞(z) =

Y −(z) = 0. If z ∈ S−∖S, then Y +(z) = Y∞(z) = 0 < Y −(z). Consider z ∈ S ⊂ S−, then there
exists an interval (z, z) with z < z < z such that '∞(H(⋅)) is constant on (z, z). Let (z, z) be chosen
maximally, then by construction Y −(z) = Y −(z) = 0. By Corollary 11, Y∞(z) = Y∞(z) = 0. For
any z ∈ (z, z),

Y −(z) − Y∞(z) = ∫

z

z

[

Q∞(� ) −Q−(� )
]

dH(� ).
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Then for any t ∈ (H(z),H(z)),

[

Y −(H−1(t)) − Y∞(H−1(t))
]′ = Q−(H−1(t)) −Q∞(H−1(t)),

which is non-increasing on (H(z),H(z)) becauseQ∞ is non-decreasing andQ− is constant on (z, z)
by construction. Hence, Y −(H−1(t)) − Y∞(H−1(t)) is concave on (H(z),H(z)). Because Y −(z) −
Y∞(z) = 0 and Y −(z) − Y∞(z) = 0, we have Y −(z) − Y∞(z) ≥ 0 for all z ∈ (z, z). Thus,
Y −(z) − Y∞(z) ≥ 0 for all z ∈ S. If z ∈ S∖S+, then Y −(z) ≥ Y∞(z) ≥ 0 = Y +(z). Finally,
consider z ∈ S+ ⊂ S, it suffices to show that Y +(z) ≤ Y∞(z). By construction, there exists an
interval (z, z) with z < z < z such that J∞(H(z)) < J∞(H(z)) for all z ∈ (z, z). Let (z, z) be
chosen maximally, then by construction Y +(z) = Y +(z) = 0. For any z ∈ (z, z)

Y +(z) − Y∞(z) = ∫

z

z

[

Q∞(� ) −Q−(� )
]

dH(� ) − Y∞(z).

Then for any t ∈ (H(z),H(z)),

[

Y +(H−1(t)) − Y∞(H−1(t))
]′ = Q+(H−1(t)) −Q∞(H−1(t)),

which is constant on (H(z),H(z)) becauseQ∞ is constant on (z, z) by Lemma 57 andQ− is constant
on (z, z) by construction. Hence, Y +(H−1(t)) − Y∞(H−1(t)) is affine on (H(z),H(z)). Because
Y +(z) = 0 ≤ Y∞(z) and Y +(z) = 0 ≤ Y∞(z), we have Y +(z) − Y∞(z) ≤ 0 for all z ∈ (z, z). Thus,
Y +(z) − Y∞(z) ≤ 0 for all z ∈ S+.

Furthermore, for any implementable allocation rule Q, we have

∫

w

w
zQ(z)dH(z)

=∫

w

w
zY ′(z)dz + ∫

w

w
zH(z)n−1dH(z)

=∫

w

w
zH(z)n−1dH(z) − ∫

w

w
Y (z)dz. (C.46)

277



Hence,

∫

w

w
zQ+(z)dH(z) ≥ ∫

w

w
zQ∞(z)dH(z) ≥ ∫

w

w
zQ−(z)dH(z).

Because �∞X > 0, combining this and (C.45) yields

∫

w

w
H�(z)Q+(z)dz ≤ −C ′(�∗) ≤ ∫

w

w
H�(z)Q−(z)dz. (4.15)

By Lemma 15, there exists an unique �X > 0 such that (4.15) holds. Hence, �∞X = �∗X .

The arguments in Lemma 59 also proves the following corollary:

Corollary 12 For any non-decreasing implementable Q that allocates the object with probability

one and satisfies the two pooling properties, the following inequality holds:

∫

w

w
zQ+(z, �X)dH(z) ≥ ∫

w

w
zQ(z)dH(z) ≥ ∫

w

w
zQ−(z, �X)dH(z).

Proof of Lemma 15

I break the proof into several lemmas. For each �X , recall thatQ+(⋅, �X) is the “steepest" allocation
rule associated with �′X , and Q−(⋅, �X) is the “least steep" allocation rule associated with �X . By
the argument in the proof of Corollary 8,

∫

w

w
−
H�(z)
ℎ(z)

Q−(z, �X)ℎ(z)dz ≤ ∫

w

w
−
H�(z)
ℎ(z)

Q+(z, �X)dz.

Let �′X > �X . First, I show in Lemma 60 that Q−(⋅, �X) is steeper than Q+(⋅, �′X). Second, I show
in Lemma 62 that this implies that the marginal benefit of information acquisition given Q−(⋅, �X)
is higher than that given Q+(⋅, �′X):

∫

w

w
−
H�(z)
ℎ(z)

Q+(z, �′X)ℎ(z)dz < ∫

w

w
−
H�(z)
ℎ(z)

Q−(z, �X)ℎ(z)dz.
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Furthermore, if �X is sufficiently large, thenQ+(⋅, �X) is constant and ∫ w
w −H�(z)

ℎ(z)
Q+(z, �X)ℎ(z)dz =

0 < C ′(�∗); if �X = 0, thenQ−(⋅, �X) = Hn−1(⋅) and ∫ w
w −H�(z)

ℎ(z) Q
−(z, �X)ℎ(z)dz > C ′(�∗) because

(4.7) is violated. Hence, there exists a unique �X > 0 such that inequality (4.15) holds.

Lemma 60 Let �′X > �X . Suppose that '
�X is constant on (t, t) with t < t and let (t, t) be chosen

maximally. Then there exists � > 0 such that J �
′
X (t) > J

�′X (t) for all t ∈ (t − �, t + �).

The proof of Lemma 60 relies on the following technical lemma.

Lemma 61 Let t ∈ (0, 1). If J �X (t) = J
�X (t), then J

�X is continuously differentiable at t with

derivative '�X (t) = '�X (t) and '�X ′(t) ≥ 0. Furthermore, J �X (t) = J
�X (t) if and only if

J �X (�) ≥ (� − t)'�X (t) + J �X (t), ∀� ∈ [0, 1]. (C.47)

Proof. For ease of notation, I suppress the dependence of J , J , ' and ' on �X . Let t ∈ (0, 1).
Suppose that J (t) = J (t). Suppose, to the contrary, that J is not continuously differentiable at t,
then '(t−) < '(t+). Then either '(t) > '(t−) or '(t) < '(t+). Assume without loss of generality
that '(t) < '(t+). Because ' is continuous and ' is non-decreasing, there exists � > 0 such that
'(�) < '(t+) ≤ '(�) for all � ∈ (t, t + �). Then

J (t + �) = J (t) + ∫

t+�

t
'(�)d� < J (t) + ∫

t+�

t
'(�)d� = J (t + �),

a contradiction. Hence, J is continuously differentiable at t. It follows from a similar argument that
'(t) = '(t) with '′(t) ≥ 0. Furthermore, for all � ∈ [0, 1],

J (�) ≥ J (�) ≥ (� − t)'(t) + J (t) = (� − t)'(t) + J (t),

where the second inequality holds because J is convex.

Suppose that (C.47) holds. Then � ∶→ (� − t)'(t) + J (t) is a convex function below J . Because J
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is the greatest convex function below J , we have

J (�) ≥ (� − t)'(t) + J (t) ∀� ∈ [0, 1].

If � = t, then J (t) ≥ J (t). Hence, J (t) = J (t).

Proof of Lemma 60. First, I claim that J �X (t) = J �X (t) and J �X (t) = J �X (t). To see that J �X (t) =
J �X (t), suppose to the contrary that J �X (t) > J �X (t). Then '�X (t) is constant in a neighborhood of
t. A contradiction to that (t, t) is chosen maximally. A similar argument proves that J �X (t) = J �X (t).

Consider t ∈ (t, t). Let � ∈ (0, 1) be such that �t + (1 − �)t = t. It suffices to show that

J �
′
X (t) > �J �

′
X (t) + (1 − �)J �

′
X (t).

Because '�X is constant on (t, t), J �X (t) = J �X (t) and J �X (t) = J �X (t), we have

J �X (t) ≥ J
�X (t)

= �J
�X (t) + (1 − �)J

�X (t)

= �J �X (t) + (1 − �)J �X (t).

Hence,

0 ≤J �X (t) − �J �X (t) − (1 − �)J �X (t)

=∫

t

0
H−1(� )d� − � ∫

t

0
H−1(� )d� − (1 − �)∫

t

0
H−1(� )d�

+ �X

[

∫

t

0

H�(H−1(� ))
ℎ(H−1(� ))

d� − � ∫

t

0

H�(H−1(� ))
ℎ(H−1(� ))

d� − (1 − �)∫

t

0

H�(H−1(� ))
ℎ(H−1(� ))

d�

]

.

BecauseH−1(⋅) is strictly increasing, ∫ t
0 H

−1(� )d� is strictly convex in t and therefore

∫

t

0
H−1(� )d� − � ∫

t

0
H−1(� )d� − (1 − �)∫

t

0
H−1(� )d� < 0.
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Hence,

∫

t

0

H�(H−1(� ))
ℎ(H−1(� ))

d� − � ∫

t

0

H�(H−1(� ))
ℎ(H−1(� ))

d� − (1 − �)∫

t

0

H�(H−1(� ))
ℎ(H−1(� ))

d� > 0.

Then

J �
′
X (t) − �J �

′
X (t) − (1 − �)J �

′
X (t)

=∫

t

0
H−1(� )d� − � ∫

t

0
H−1(� )d� − (1 − �)∫

t

0
H−1(� )d�

+ �′X

[

∫

t

0

H�(H−1(� ))
ℎ(H−1(� ))

d� − � ∫

t

0

H�(H−1(� ))
ℎ(H−1(� ))

d� − (1 − �)∫

t

0

H�(H−1(� ))
ℎ(H−1(� ))

d�

]

>∫

t

0
H−1(� )d� − � ∫

t

0
H−1(� )d� − (1 − �)∫

t

0
H−1(� )d�

+ �X

[

∫

t

0

H�(H−1(� ))
ℎ(H−1(� ))

d� − � ∫

t

0

H�(H−1(� ))
ℎ(H−1(� ))

d� − (1 − �)∫

t

0

H�(H−1(� ))
ℎ(H−1(� ))

d�

]

≥J �X (t) − �J �X (t) − (1 − �)J �X (t)

≥0.

Consider t. Since '�X is constant on (t, t) with J �X (t) = J �X (t) and J �X (t) = J �X (t), by Lemma 61,
we have

J
�X (t) =J �X (t)

≥(t − t)'�X (t) + J �X (t)

=(t − t)'�X (t) + J
�X (t) = J

�X (t).

Hence, J �X (t) = (t − t)'�X (t) + J �X (t). Thus,

∫

t

t
H−1(�)d� − (t − t)H−1(t) = �X

[

(t − t)
H�(H−1(t))
ℎ(H−1(t))

− ∫

t

t

H�(H−1(�))
ℎ(H−1(�))

]

.

SinceH−1(t) is strictly increasing, the left-hand side of the above equality is strictly positive. Hence
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for �′X > �X > 0 we have

∫

t

t
H−1(�)d� − (t − t)H−1(t) < �′X

[

(t − t)
H�(H−1(t))
ℎ(H−1(t))

− ∫

t

t

H�(H−1(�))
ℎ(H−1(�))

]

,

i.e.,
J �

′
X (t) < (t − t)'�

′
X (t) + J �

′
X (t).

By Lemma 61, J �′X (t) > J �
′
X (t).

A similar argument proves that J �′X (t) > J �
′
X (t). By continuity, there exists � > 0 such that J �′X (t) >

J
�′X (t) for all t ∈ (t − �, t + �).

Lemma 62 Let [z, z] ⊂ [w,w] with z < z, and z0 ∈ (z, z). Suppose that Q ∶ [�, �] → [0, 1] and

Q̌ ∶ [�, �]→ [0, 1] satisfying that

∫

z

z
Q(z)ℎ(z)dz = ∫

z

z
Q̌(z)ℎ(z)dz, (C.48)

and

Q(z) ≥ Q̌(z) if z > z0, and Q(z) ≤ Q̌(z) if z < z0. (C.49)

Then

∫

z

z
−
H�i(z)
ℎ(z)

[Q(z) − Q̌(z)]ℎ(z)dz ≥ 0, (C.50)

where the inequality holds strictly if the set {z ∈ [z, z]|Q(z) ≠ Q̌(z)} has a positive measure.

Proof. Because −H�(w)
ℎ(w) is strictly increasing in w, and Q and Q̌ satisfy (C.49), we have

∫

z

z

[

−
H�i(z)
ℎ(z)

+
H�i(z

0)

ℎ(z0)

]

[Q(z) − Q̌(z)]ℎ(z)dz ≥ 0,

where the inequality holds strictly if the set {z ∈ [z, z]|Q(z) ≠ Q̌(z)} has a positive measure. This
implies inequality (C.50) by (C.48).

282



C.1.3. Sufficient conditions for the first-order approach

In this section I provide sufficient conditions for the first-order approach to be valid. Let �(�i) denote
an agent i’s payoff from choosing �i given mechanism (q, t) and �j = �∗ for all j ≠ i. Then

�(�i) ∶= U (w(0, �i)) + ∫

w(1,�i)

w(0,�i)

[

1 −H(wi|�i)
]

Q(wi)dwi − C(�i),

where Q is defined by (4.2) for �j = �∗ for all j ≠ i. Then

�′(�i) =U ′(w(0, �i))w�i(0, �i) +
[

1 −H(w(1, �i)|�i)
]

Q(w(1, �i))w�(1, �i)

−
[

1 −H(w(0, �i)|�i)
]

Q(w(0, �i))w�i(0, �i) + ∫

w(1,�i)

w(0,�i)
−H�i(wi|�i)Q(wi)dwi − C ′(�i)

=∫

w(1,�i)

w(0,�i)
−H�i(wi|�i)Q(wi)dwi − C ′(�i),

where the second line holds because H(w(1, �i)|�i) = 1, H(w(0, �i)|�i) = 0, and U ′(w(0, �i)) =

Q(w(0, �i)) by the envelope condition. A sufficient condition for the first-order approach to be valid
is that �′(�i) is strictly decreasing for all non-decreasing implementable allocation ruleQ. If the sup-
port of the conditional expectation [w(0, �i), w(1, �i)] is invariant, then �′(�i) is strictly decreasing
if −H�i(wi|�i) has the single-crossing property in (�i;wi) and C ′(�i) is strictly decreasing. Suppose
that C is twice continuously differentiable, then

�′′(�i) =∫

w(1,�i)

w(0,�i)
−
)2H(wi|�i)

)�2i
Q(wi)dwi −H�i(w(1, �i)|�i)w�i(1, �i)Q(w(1, �i))

+H�i(w(0, �i)|�i)w�i(0, �i)Q(w(0, �i)) − C
′′(�i),

≤∫

w(1,�i)

w(0,�i)
−
)2H(wi|�i)

)�2i
Q(wi)dwi −H�i(w(1, �i)|�i)w�i(1, �i)Q(w(1, �i)) − C

′′(�i).

The inequality holds because H�i(w(0, �i)|�i) ≥ 0 and w�i(0, �i) ≤ 0 when the information struc-
tures are supermodular ordered. The following proposition from Shi (2012) gives sufficient condi-
tions for �′′(�i) < 0 for the two leading examples.

Proposition 15 (Shi (2012)) The following conditions are sufficient for first order approach:
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• In the linear experiments, if �iC ′′(�i) ≥ f
(

�
)

(�−�)2 for all �i, then �′′(�i) < 0 when either

F (�) is convex, or F (�) = �b (b > 0) with support [0, 1].

• In the normal experiments, �′′(�i) < 0 if
√

�3∕
[

�3i (�i + �)5
]

< 2
√

2�C ′′(�i) for all �i.

I conclude this section by proving the following lemma which is used in the proof of Proposition 10.

Lemma 63 If �′′(�i) < 0 for all �i and all non-decreasing implementable allocation rule Q, then

∫

w(1,�i)

w(0,�i)
−H�i(wi|�i)H(wi|�i)n−1dwi − C ′(�i) is strictly decreasing in �i. (4.16)

Proof. In particular, �′′(�i) < 0 if Q(wi) = H(wi|�i)n−1 for all wi. Then

)
)�i

[

∫

w(1,�i)

w(0,�i)
−H�i(wi|�i)H(wi|�i)n−1dwi − C ′(�i)

]

=∫

w(1,�i)

w(0,�i)
−
)2H(wi|�i)

)�2i
Q(wi)dwi −H�i(w(1, �i)|�i)w�i(1, �i)Q(w(1, �i))

+H�i(w(0, �i)|�i)w�i(0, �i)Q(w(0, �i)) − C
′′(�i) + ∫

w(1,�i)

w(0,�i)
−(n − 1)H�i(wi|�i)2H(wi|�i)n−2dwi,

=�′′(�i) + ∫

w(1,�i)

w(0,�i)
−(n − 1)H�i(wi|�i)2H(wi|�i)n−2dwi

<0,

where Q(wi) = H(wi|�i)n−1 for all wi.

C.1.4. Efficient asymmetric mechanisms

Proof of Theorem 16

As in the symmetric case, I prove Theorem 16 by proving the following two lemmas. Define

Y (w) ∶= 1 −
n
∏

i=1
H(wi|�

∗
i ) −

n
∑

i=1
∫

w(1,�∗i )

wi
Qi(zi)dH(zi|�∗i ),∀w ∈

n
∏

i=1
[w(0, �∗i ), w(1, �

∗
i )].
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Recall that 1 − ∏n
i=1H(wi|�∗i ) is the probability with which there exists an agent i whose type

is above wi; and ∑n
i=1 ∫

w(1,�∗i )
wi

Qi(zi)dH(zi|�∗i ) is the probability with which an agent whose type
is above wi receives the object. Let w ∶= (w(0, �∗1 ),… , w(0, �∗n )). Then Y (w) is the difference
between 1 and the probability with which some agent receives the object. Clearly, (4.18) is violated
if and only if Y (w) > 0.

Lemma 64 Suppose that the information structures are supermodular ordered, and �i = �∗i for all

i. Let Q be any interim allocation rule satisfying eqrefeq:AFprime (MON), (AIA′) and Y (w) > 0.
Then, for any i, there exists Q̂ satisfying (F′), (MON) and (AIA′) such that Q̂j = Qj for j ≠ i and

Q̂i(wi) ≥ Qi(wi), ∀wi ∈ [w(0, �∗i ), w(1, �
∗
i )], (C.51)

and strict inequality holds for a set of wi with positive measure.

Proof. Fix i. Define Yi(wi) ∶= infw−i Y (w) for all wi ∈ [w(0, �∗i ), w(1, �
∗
i )]. By Theorem

3 in Milgrom and Segal (2002), Yi is differentiable and Y ′i (wi) = −ℎ(wi|�∗i )
∏

j≠iH(w
∗
j |�

∗
j ) +

Qi(wi)ℎ(wi|�∗i ) where w∗−i is such that Y (wi, w∗−i) = Yi(wi) for all wi ∈ (w(0, �∗i ), w(1, �
∗
i )). Note

that

Y (w(0, �∗i ), w−i) = 1 − ∫

w(1,�∗i )

w(0,�∗i )
Qi(zi)dH(zi|�∗i ) −

n
∑

j≠i
∫

w(1,�∗j )

wj
Qj(zj)dH(zj|�∗j ),

which is strictly increasing in wj for all j ≠ i. Hence, Yi(w(0, �∗i )) = Y (w) > 0. Define w♭ ∶=

sup
{

wi
|

|

Yi(w′i) > 0 ∀w(0, �
∗
i ) ≤ w′i ≤ wi

}. By the continuity of Yi, we have Yi(w♭) = 0 and w♭ >

w(0, �∗i ). There are four cases to consider.

Case I: Suppose that there exists w′i ∈ (w(0, �∗i ), w
♭) such that Qi is discontinuous at w′i. Let

Qi(w
′+
i ) denote the right-hand limit of Qi at w′i, and Qi(w

′−
i ) the corresponding left-hand limit.

Let 0 < " ≤ min
{

minw(0,�∗i )≤wi≤w′i
Yi(wi)

H(w′i|�
∗
i )
, Qi(w

′+
i ) −Qi(w

′−
i )

}

. Define Q as follows. If wi ≤
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w(0, �∗), then Q̂i(wi) ∶= Qi(wi); and if wi > w(0, �∗), then

Q̂i(wi) ∶= Qi(wi) + "�{wi≤w′i},

where �{wi≤w′i} is the indicator function. Let Q̂j ∶= Qj for all j ≠ i. By construction, Q̂i(w) ≥

Qi(w) for all wi ∈ Wi and the inequality holds strictly on a positive measure set. By a similar
argument to that in the proof of Lemma 12, Q̂i satisfies (MON) and (AIA′). We now verify that Q̂
satisfies (AF′). Ifwi ≤ w′i, then Ŷ (wi, w−i) = Y (wi, w−i)−"[H(w′i|�

∗)−H(wi|�∗)] ≥ Y (wi, w−i)−

"H(w′i|�
∗
−i) ≥ 0 for all w−i. If wi > w′i, then Ŷ (wi, w−i) = Y (wi, w−i) ≥ 0 for all w−i. That is, Q̂

satisfies (AF′).

Case II: Suppose that Qi is continuous on [w(0, �∗i ), w♭]. We first show that there exists w′i ∈
(w(0, �∗i ), w

♭) such that Qi(w′i) < Qi(w♭). Suppose, to the contrary, that Qi(wi) = Qi(w♭) for all
wi ∈ (w(0, �∗i ), w

♭). Let w∗−i be such that Y (w♭, w∗−i) = Yi(w
♭) = 0. If Qi(w♭) ≥

∏

j≠iH(w
∗
j |�

∗
j ),

then Y (w(0, �∗i ), w∗−i) = Y (w♭, w∗−i) + ∫ w♭
w(0,�∗i )

[

∏

j≠iH(w
∗
j |�

∗
j ) −Qi(z)

]

ℎ(z|�∗i )dz < 0, a contra-
diction. Hence, Qi(w♭) <

∏

j≠iH(w
∗
j |�

∗
j ). Then, by the continuity of Qi andH , there exists � > 0

such that Qi(wi) <
∏

j≠iH(w
∗
j |�

∗
j ) for all wi ∈ [w♭, w♭ + �]. Moreover,

0 = Y (w♭, w∗−i) = ∫

w♭+�

w♭

[

∏

j≠i
H(w∗j |�

∗
j ) −Q(z)

]

ℎ(z|�∗i )dz+ Y (w
♭ + �,w∗−i) > Y (w

♭ + �,w∗−i),

a contradiction. Hence, there exists w′i ∈ (w(0, �∗i ), w♭) such that Qi(w′i) < Qi(w♭).

By the continuity of Qi, there exists w′′i ∈ (w′i, w♭) such that Qi(w′′i ) =
1
2

(

Qi(w′i) +Qi(w♭)
). Let

0 < " ≤ min
{

minw(0,�∗i )≤wi≤w′′i
Yi(wi)

H(w′′i |�
∗
i )
, Qi(w′′i ) −Qi(w′i)

}

. Let Q̂j ∶= Qj for j ≠ i and

Q̂i(wi) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max{Qi(w′i) + ",Qi(wi)} if wi > w′i,

Qi(wi) + " if w(0, �∗i ) < wi ≤ w′i,

Qi(wi) if wi ≤ w(0, �∗i ).

Note that ifwi ≥ w′i
′ thenQi(wi) ≥ Qi(w′i

′) ≥ Qi(w′i)+". Thus, Q̂i(wi) = Qi(wi) forwi ≥ w′i
′. By
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construction, Q̂i(wi) ≥ Q(wi) for allwi ∈ Wi and the inequality holds strictly on a positive measure
set. By a similar argument to that in the proof of Lemma 12, Q̂i satisfies (MON) and (AIA′). We
now verify that Q̂ satisfies (AF′). If wi ≥ w′i

′, then Ŷ (wi, w−i) = Y (wi, w−i) ≥ 0 for all w−i. If
wi < w′i

′, then for all w−i,

Ŷ (wi, w−i) =Y (wi, w−i) − ∫

w′i
′

wi

[

Q̂i(z) −Qi(z)
]

ℎi(z|�∗i )dz,

≥Y (wi, w−i) − "
[

H(w′i
′
|�∗i ) −H(wi|�

∗
i )
]

,

≥Yi(wi) − "H(w′i
′
|�∗) ≥ 0.

Hence, Q̂ satisfies (AF′).

Case III: Let w∗−i be such that Y (w♭, w∗−i) = Yi(w♭) = 0. Suppose that Qi is continuous on
[w(0, �∗i ), w

♭) and Qi(w♭−) <
∏

j≠iH(w
∗
j |�

∗
j ). Define R(wi) ∶= Yi(wi)∕(H(w♭

|�∗i ) −H(wi|�∗i ))

for wi < w♭. Then, by Theorem 3 in Milgrom and Segal (2002) and L’Hopital’s rule,

lim
wi→w♭−

R(wi) =
∏

j≠i
Hj(w∗j |�

∗
j ) −Qi(w♭−) > 0.

Let 0 < " ≤ min
{

infw(0,�∗i )≤wi<w♭ R(wi), Qi(w♭+) −Qi(w♭−)
}

. Let Q̂j ∶= Qj for all j ≠ i. If
wi ≤ w(0, �∗i ), then Q̂i(wi) ≡ Qi(wi); and if wi > w(0, �∗i ), then Q̂i(wi) ≡ Qi(wi) + "�{wi<w♭}.

By construction, Q̂i(wi) ≥ Qi(wi) for all wi ∈ Wi and the inequality holds strictly on a positive
measure set. One can verify that Q̂i satisfies (MON) and (AIA′) by an argument similar to that in the
proof of Lemma 12. Finally, ifwi < w♭, then Ŷ (wi, w−i) = Y (wi, w−i)−"[H(w♭

|�∗i )−H(wi|�∗i )] ≥

Yi(wi)−R(wi)[H(w♭
|�∗)−H(wi|�∗)] = 0 for allw−i. Ifwi ≥ w♭, then Ŷ (wi, w−i) = Y (wi, w−i) ≥

0 for all w−i. Hence, Q̂ satisfies (AF′).

Case IV: Let w∗−i be such that Y (w♭, w∗−i) = Yi(w♭) = 0. Suppose that Qi is continuous on
[w(0, �∗i ), w

♭) and Qi(w♭−) ≥
∏

j≠iH(w
∗
j |�

∗
j ). We first show that Qi(w♭−) =

∏

j≠iH(w
∗
j |�

∗
j ).

Suppose, to the contrary, that Qi(w♭−) >
∏

j≠iH(w
∗
j |�

∗
j ). Then, by the continuity of Qi andH on
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[w(0, �∗), w♭), there exists � > 0 such that Qi(wi) >
∏

j≠iH(w
∗
j |�

∗
j ) for all wi ∈ (w♭ − �,w♭).

Then
Y (w♭ − �,w−i) = ∫

w♭

w♭−�

[

∏

j≠i
H(w∗j |�

∗
j ) −Qi(z)

]

ℎ(z|�∗i )dz < 0,

a contradiction. Hence, Qi(w♭−) =
∏

j≠iH(w
∗
j |�

∗
j ).

Next, we show that there exists w′i ∈ (w(0, �∗i ), w
♭) such that Qi(w′i) < Qi(w♭−). Suppose, to the

contrary, that Qi(wi) = Qi(w♭−) for all wi ∈ (w(0, �∗), w♭). Then

Y (w(0, �∗), w∗−i) = ∫

w♭

w(0,�∗)

[

∏

j≠i
H(w∗j |�

∗
j ) −Qi(z)

]

ℎ(z|�∗i )dz < 0,

a contradiction. Hence, there exists w′i ∈ (w(0, �∗i ), w
♭) such that Qi(w′i) < Qi(w♭−). The rest of

the proof follows that of Case II.

Lemma 65 Suppose that the information structures are supermodular ordered, and �i = �∗i for

all i. Let Q and Q̂ be two implementable allocation rules satisfying (4.5). Let q be an ex-post

allocation rule that implementsQ. Then there exists an ex-post allocation rule q̂ that implements Q̂

and satisfies

Ew

[

∑

i
(wi + 


∑

j≠i
wj)q̂i(w)

|

|

|

|

|

|

�i = �∗i ∀i

]

> Ew

[

∑

i
(wi + 


∑

j≠i
wj)qi(w)

|

|

|

|

|

|

�i = �∗i ∀i

]

.

The proof of Lemma 65 relies on the following technical lemma. For each i, let ℎi denote the
probability measure on [w(0, �∗i ), w(1, �∗i )] corresponding toH(wi|�∗i ), then

Lemma 66 Let Q ∶
∏

i[w(0, �
∗
i ), w(1, �

∗
i )]→ [0, 1]n be an interim allocation rule

and � ∶
∏

i[w(0, �
∗
i ), w(1, �

∗
i )] → [0, 1] be a measurable function. Then there exists an ex post

allocation rule q that implements Q and satisfies

∑

i
qi(w) ≥ �(w) for almost all w ∈

∏

i
[w(0, �∗i ), w(1, �

∗
i )]
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if and only if for each measurable setA = (A1,… , An) where Ai ⊂ [w(0, �∗1 ), w(0, �
∗
i )] for all i, the

following inequality holds:

∫A
�(w)dℎ1(w1)…dℎn(wn) ≤

∑

i ∫Ai
Q(wi)dℎi(wi) ≤ ∫A

�(w)dℎ1(w1)…dℎn(wn). (C.52)

The proof of Lemma 14 can be readily extended to prove Lemma 66 and is neglected here. With
Lemma 66 in hand, the proof of Lemma 13 can be readily extended to prove Lemma 65 and is also
neglected here. Theorem 16 follows immediately given Lemmas 64 and 65.

Other omitted proofs

Lemma 67 Suppose that the second-order condition of the agents’ optimization problem is satisfied,

and the information structures are uniformly supermodular ordered. Let �∗ be a socially optimal

information choice. Suppose, in addition, that (4.19) holds. Then (AIA′) holds with equality for all
i. Furthermore,

�s(�∗) = (1 − 
)

[

� +
n
∑

i=1
b(�∗i )C

′(�∗i )

]

−
∑

i
C(�∗i ). (4.20)

Proof. Let �∗ be a socially optimal information choice. Suppose, to the contrary, that �∗ is such
that (4.19) holds with strictly inequality for some i. Then

V (�∗) =
n
∑

i=1
∫

w(1,�∗i )

w(0,�∗i )
w
∏

j≠i
H(w|�∗j )ℎ(w|�

∗
i )dw

= ∫

�

�
wd

∏

i
H(w|�∗i )

= � − ∫

�

�

∏

i
H(w|�∗i )dw,
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where the last line holds by integration by parts. Hence,

)
)�i

�s(�∗) = (1 − 
) )
)�i

V (�∗) − C ′(�∗i )

= (1 − 
)∫

�

�
−H�i(w|�

∗
i )
∏

j≠i
H(w|�∗j )dw − C

′(�∗i ),

which is strictly decreasing in �i if the second-order condition of the agents’ optimization problem
is satisfied. Because �∗ is such that (4.19) holds with strictly inequality for i,

)
)�i

�s(�∗) < −
C ′(�∗i ) ≤ 0.

Hence, �∗ is not optimal, a contradiction. Hence, if �∗ is chosen optimally, then (AIA′) holds with
equality for all i.

Let �∗ be such that (4.19) holds. Because the information structures are uniformly supermodular
ordered, and (AIA′) holds with equality, we have

∫

w(1,�∗i )

w(0,�∗i )

w − �
b(�i)

∏

j≠i
H(w|�∗j )ℎ(w|�

∗
i )dw = C ′(�∗i ).

Hence,

V (�∗) =
n
∑

i=1
∫

w(1,�∗)

w(0,�∗)
w
∏

j≠i
H(w|�∗j )ℎ(w|�

∗
i )dw

=
n
∑

i=1
b(�∗i )C

′(�∗i ) + �
n
∑

i=1
∫

w(1,�∗)

w(0,�∗)

∏

j≠i
H(w|�∗j )ℎ(w|�

∗
i )dw

=
n
∑

i=1
b(�∗i )C

′(�∗i ) + � ∫

�

�
wd

∏

i
H(w|�i)

=
n
∑

i=1
b(�∗i )C

′(�∗i ) + �.

Hence,
�s(�∗) = (1 − 
)

[

� +
n
∑

i=1
b(�∗i )C

′(�∗i )

]

−
∑

i
C(�∗i ). (4.20)
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This completes the proof.
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