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Abstract
There's a great interest in studying particle assembly on fluid interfaces for their properties to stabilize droplets
in food, cosmetics, and oil industry, and to form permeable capsules in pharmaceutical industry. Capillary
interaction holds tremendous promise as a tool to orient and assemble microparticles on interfaces between
two immiscible fluids. Microparticles trapped at an interface deform the interface around them due to particle
geometry, surface roughness, external fields and body forces. When particle deformations overlap, capillary
interaction arise to minimize the interfacial deformation, hence minimizing energy. In literature, anisotropic
shaped particles has been reported that their interactions depend strongly on the particle shape and curvature
fields where particles adsorb can orient and attract particles to high curvature regions. However, less is known
about particles of other shapes that don't disturb the interface as much as those anisotropic particles. In my
thesis, I aim to use curvature field as a means to direct assemblies of particles with less pronounced
deformation on interfaces. On curved oil-water interfaces, I study capillary attraction of microdisks and
spheres that are pinned at the three-phase contact line due to surface roughness. These particles have radius
much smaller comparing to the radius of curvature; they induce nanometric deformation on the interface and
still create significant interface distortion and capillary interactions. To understand structure formation, I
develop theory for pair interactions of particles on curved interfaces where capillary curvature interaction
competes with particle pair interaction. Furthermore, I delve into interactions of large microdisks with
curvature fields in both experiments and theory to explore capillary repulsion owing to the interaction of
higher order modes with curvature fields. Lastly, I show the elastocapillary interactions of microcylinders on a
thin film of uniform nematic liquid crystals. In all the studies described above, interface curvature, in
particular, finite deviatoric curvature plays a central role in assembly and in guiding structure formation. The
concepts studied here are fundamental and provide guidance in understanding, building, and designing
colloidal structures with functionalities that have potential applications in various fields.
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my fiancé, Erte Xi, for your love and support; none of this would been possible without

you.

iv



ABSTRACT

CAPILLARY ASSEMBLY OF MICROPARTICLES ON CURVED FLUID INTERFACES

Iris Bi Liu

Kathleen J. Stebe

There’s a great interest in studying particle assembly on fluid interfaces for their properties

to stabilize droplets in food, cosmetics, and oil industry, and to form permeable capsules

in pharmaceutical industry. Capillary interaction holds tremendous promise as a tool to

orient and assemble microparticles on interfaces between two immiscible fluids. Micropar-

ticles trapped at an interface deform the interface around them due to particle geometry,

surface roughness, external fields and body forces. When particle deformations overlap,

capillary interaction arise to minimize the interfacial deformation, hence minimizing en-

ergy. In literature, anisotropic shaped particles has been reported that their interactions

depend strongly on the particle shape; and curvature fields where particles adsorb can ori-

ent and attract particles to high curvature regions. However, less is known about particles

of other shapes that don’t disturb the interface as much as those anisotropic particles. In

my thesis, I aim to use curvature field as a means to direct assemblies of particles with

less pronounced deformation on interfaces. On curved oil-water interfaces, I study capillary

attraction of microdisks and spheres that are pinned at the three-phase contact line due

to surface roughness. These particles have radius much smaller comparing to the radius of

curvature; they induce nanometric deformation on the interface and still create significant

interface distortion and capillary interactions. To understand structure formation, I develop

theory for pair interactions of particles on curved interfaces where capillary curvature in-

teraction competes with particle pair interaction. Furthermore, I delve into interactions of

large microdisks with curvature fields in both experiments and theory to explore capillary

repulsion owing to the interaction of higher order modes with curvature fields. Lastly, I

show the elastocapillary interactions of microcylinders on a thin film of uniform nematic
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liquid crystals. In all the studies described above, interface curvature, in particular, finite

deviatoric curvature plays a central role in assembly and in guiding structure formation.

The concepts studied here are fundamental and provide guidance in understanding, build-

ing, and designing colloidal structures with functionalities that have potential applications

in various fields.
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CHAPTER 1 : Introduction

1.1. Motivation

Over the past decade, the advent of complex colloids as building blocks has fueled intense

interest in their organization and assembly to form new materials [1]. Anisotropic colloids

with non-spherical shapes or patchy surfaces offer important degrees of freedom, including

complex, directionally dependent potentials [1, 2]. Sophisticated assembly schemes include

design of particle shape and chemistry to favor the formation of particular superstructures.

For example, colloid shape can be designed to assemble into complex crystalline structures

via emergent interactions owing to features like sharp edges and planar facets [3, 4], or to

interact specifically via lock-and-key interactions [5]. Colloidal surface chemistry can be

tailored, for example, via grafting of DNA [6, 7, 8, 9, 10] or tailored wetting [11, 12, 13, 14]

to drive particular structure formation. These examples often exploit weak, O(kBT ), inter-

actions to direct assembly. In other modes of directed assembly, applied electro-magnetic

fields guide assembly. Particle interactions with the field and with neighboring particles

are typically very strong, and the resulting structures are often trapped. Particles or their

assemblies orient and move along field lines to form superstructures with symmetries cou-

pled to the field itself. Examples include para- or ferromagnetic colloids chaining along

magnetic fields gradients [15, 16, 17] and dipolar particles chaining in electric field gradi-

ents [18, 19]. In our research, we focus on fields which can direct colloid assembly that rely

on energy landscapes in confined soft matter. Examples include interface-shape mediated

capillary energy fields for particles on fluid interfaces [20], membrane-shape mediated fields

for colloids on lipid bilayer membranes [21], and elastic energy fields for colloids in confined

nematic liquid crystals [22, 23, 24, 25]. These fields are remarkably versatile in their ability

to guide microparticles into well defined structures. Furthermore, since they depend on the

configuration of the soft matter in which they assemble, which can be dynamically tuned,

they are routes to reconfigurable structures.
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In this chapter, we discuss capillary interactions between microparticles at fluid interfaces.

Classically, colloids trapped at fluid interfaces have been exploited to stabilize emulsions and

foams [26]. The colloids can bring added functionality, for example, as catalysts [27] or as

responsive structures to dynamically (de)stabilize emulsions [28]. Particles at interfaces can

form disordered structures [29] or ordered monolayers [30]. For ordered systems, interface

curvature imposes topological constraints [31, 32, 33]. Electrostatic interactions between

particles are known to play important roles in structure formation at interfaces, as has been

widely discussed [34, 35, 36, 37]. There are several excellent reviews that address these

topics, which are outside the scope of this thesis [38, 39].

At the scale of hundreds of microns to millimeters, there are many familiar examples of

capillary interactions. In nature, ”water striders” exploit surface tension to support their

weight, and propel themselves using hydrophobic legs [40]. The oft-cited Cheerios effect

is another example, in which pieces of breakfast cereal cluster on the surface of a bowl of

milk [41]. The heavy pieces distort the interface around them, and interact to lower the

interfacial and gravitational potential energies [42, 43], although details in the interface

deformation around the morsels of cereal probably play important roles in the near field.

By dynamically tuning the interface around them, whirligig beetles raft to form chains

and other structures [44], and waterlily leaf beetles larvae move along curved menisci [45].

These examples show that capillary interactions are highly shape dependent. The concept

of designing particle shape to interact specifically was explored in an exciting body of work

at this scale decades ago [46, 47, 48]. Particles were designed with faceted shapes; some

facets were well wet, others were not. At fluid interfaces, to minimize the excess area, they

assembled to bring well-wet facets in contact, and poorly wet facets in contact, to form well

defined structures.

In thesis chapter, we focus on capillary interactions as a means of microparticle assembly.

We focus on interactions between colloids up to tens of microns, including disks, spheres,

cylinders and ellipsoids. When microparticles are introduced to the interface by spreading

2



or sedimentation from a dense suspension, they can become trapped in disordered layers

owing to the strength of near field capillary interactions between them to form a colloidal

monolayer membrane. However, if particles are sparse, or are introduced by sequential

addition, they can assemble in preferred configurations to form a range of structures. Fur-

thermore, at this length scale, interface curvature acts like an external field; particles move

along curvature gradient lines to particular sites and form structures related to the under-

lying curvature gradients. Thus, at the microscale, complex structures can be formed even

from simply shaped particles without complex, tailored wetting conditions.

Here, we describe key concepts in the underlying physics of particles at fluid interfaces,

drawing in part on notes prepared for the summer school 2015 International School of

Physics ”Enrico Fermi”[49]. We review recent advances in the literature, and identify open

issues and areas of ongoing research in the field. This review will be published in the Annual

Review of Condensed Matter Physics.

1.2. Simplifications owing to particle size

Capillary interactions occur between microparticles trapped at fluid interfaces as they move

to minimize the interfacial area, or, in the event of contact line motion, the sum of the

energies owing to interface area and wetting energies. These interactions are determined by

the wetting configuration of the particle and the shape of the interface around the particle.

Typically, because of their microscopic radii a, several forces or stresses can be neglected,

simplifying analysis of the particle interaction. We enumerate several of these effects here.

(i) Particle weight or buoyancy can typically be neglected, i.e., the Bond number:

Bo = ρga2
/
γ � 1, (1.1)

where γ is the surface tension, ∆ρ is the difference in fluid densities, and g is the acceleration

due to gravity.

3



(ii) Particle inertia can typically be neglected. Once attached to fluid interfaces, particles

typically move in creeping flow, with Reynolds number:

Re = ρua/µ� 1, (1.2)

where µ is a characteristics viscosity of the fluids near the interface and u is the particle

velocity. In this case, the sum of forces on the particles is zero.

(iii) The interface shape is typically independent of particle velocity. The magnitude of

viscous stresses compared to surface tension is negligible, with capillary number:

Ca = µu/γ � 1. (1.3)

This allows quasi-static analysis; at any instant in time, capillary interactions are deter-

mined by the interface shape, which is determined only by the particle locations and contact

line configurations.

(iv) Capillary interactions are often so strong that Brownian effects are negligible, that is,

the Péclet number,

Pe = Ua/D � 1, (1.4)

where D is the Stokes-Einstein diffusivity of the particle in the interface, and U is the

characteristic velocity of particle migration. In this limit, in creeping flow, capillary forces

are balanced by viscous drag. This equality allows particle paths to be analyzed to find

energy lost to viscous dissipation, and to infer capillary energy landscapes along those paths.

(v) Particles can deform the interface, with distortions that decay over distances comparable

to the particle radius. In analysis, the height h of the interface around the particle above a

reference plane tangent to the interface is often described in a Monge gauge, i.e., interface

height h(r) is a single valued function, where r is a position vector on the interface. Interface
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slopes are often assumed small compared to unity. In this limit, the shape of the interface

is governed by

∇2h =
∆P

γ
, (1.5)

where ∆P is the pressure difference evaluated at the interface. For constant mean curvature

interfaces, the interface obeys:

∇2h = 0. (1.6)

There is, however, a body of work for particles on curved interfaces in which the particle-

sourced distortions are assumed to decay slowly compared to the radius of curvature [50, 51],

or to move along interfaces of finite slope [52]. We do not address those limits here.

In the following sections, we discuss theory for particles at interfaces and review key findings.

While we refer to liquid-vapor interfaces, the theory applies equally to interfaces between

immiscible fluids. We discuss, in turn, isolated particles, pair interactions on planar inter-

faces and particles at curved fluid interfaces.

1.3. Trapping of isolated particles on planar interfaces

Consider a particle in suspension near a planar fluid interface. When the particle attaches

to the interface, it eliminates a patch of solid-liquid contact ∆ASL and makes a hole in the

interface of area ∆ALV . Furthermore, it can make distortions in the surrounding interface

with area δA. The net energy change or trapping energy is:

∆E = (γSL − γSV )∆ASL + γ∆ALV + γδA, (1.7)

where γSL and γSV are the surface energies of the solid-liquid and solid-vapor surfaces.

When the trapping energy is large compared to kBT , the particle is trapped, i.e., it cannot
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spontaneously leave the interface. We will discuss the trapping energy for two scenarios

shown in Figure 1.1.

1.3.1. Trapping energy for a sphere at equilibrium

The case of a perfect sphere at equilibrium on a planar interface with contact angle θ0 is an

important ideal limit. The particle can attach without deforming the surrounding interface,

so δA = 0, and the contact line is simply a circle in the plane of the interface [30]. The

trapping energy is:

∆E = −γπa2(1− |cos θ0|)2, (1.8)

where θ0 is defined by the balance of the surface energies tensions given by the Young’s

equation,

cos θ0 =
γSV − γSL

γ
. (1.9)

By attaching, the particle reduces the area of the liquid vapor interface, lowering the system

energy. This effect is modulated by the particle wetting properties. The trapping energy is

remarkably large. For example, for air-water interfaces, the surface tension is γ = 72 mN/m

or 18 kBT
/
nm2. Typical trapping energies for microparticles can be 105 − 106 kBT .

1.3.2. Contact line pinning

This simple picture is complicated by contact line pinning on nanoscopic sites of roughness

or chemical heterogeneity, for which there is now strong experimental evidence, even for

simple, apparently homogeneous spherical polystyrene microparticles [53]. Pinned contact

lines alter trapping energies fundamentally, as particles with undulated contact lines distort

the interface around them, so δA 6= 0. The implications of contact line distortion on

isolated trapped particles are still being resolved [53, 54, 55]. For isolated particles, contact

line pinning changes the trapping energy by the amount γδA; this is termed a self-energy
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contribution [39]. As we discuss below, particle-sourced interface distortions are the source

of capillary pair interactions. Here, we review recent literature on contact line pinning for

particles at interfaces.

Spherical microparticle attachment to the interface occurs via a rapid snap-in event, followed

by a slow wetting as the contact line moves toward equilibrium [53, 55, 56, 57, 58]. Snap-in

includes a rapid opening or breaching of the interface, and the formation of a contact line on

the particle surface. Immediately after snap-in, particles oscillate owing to inertia associated

with this event. In experiments with glass microbeads with various surface chemistries and

radii, snap-in occurred within 0.1ms, reflecting a balance of inertia and surface tension

independent of particle wetting; the snap-in force however, depended on particle size and

wetting [56]. Once the oscillations end, the contact line exhibits slow, glassy dynamics

as it approaches equilibrium [53, 55]. Contact line motion occurs with negligible capillary

number Ca based on contact line velocity, so viscous effects, typically important for contact

line motion in dynamic spreading are negligible [59] . Using holographic imaging to track

the position of a polystyrene colloid near a decane-water interface, the contact line was

inferred to move slowly, logarithmically in time for particles close to equilibrium. Because

of these slow kinetics, similar particles with differing breach times have different wetting

positions in the interface. The observed logarithmic relaxation is consistent with a model

in which the contact line is pinned at nanoscopic heterogeneities with hopping frequencies

given in terms of Blake-Haynes model from molecular kinetic theory [60]. Further analysis

and supporting molecular dynamics simulation reveals contact line relaxations are initially

exponential with a visco-capillary time scale, then exhibit slow logarithmic aging like that

captured in experiments, and finally exhibit exponential decay to equilibrium, suggesting

that the glassy dynamics end [57]. Recent studies of particles made of different materials

show that the glassy contact line dynamics are generic, but the energy of pinning sites varies

strongly for different materials as presented in Ref. [55].

Contact line pinning may have important dynamical consequences even for isolated particles

7



attached at the interface; pinned states, and associated enhanced dissipation owing either

to contact line hopping or interaction of the undulated interface with capillary waves were

invoked in a recent study reporting unexpectedly high drag on Brownian particles adsorbed

from suspension in air at air-water interfaces [54].

1.3.3. Trapping energy for a particle with a pinned contact line

For spherical particles with pinned contact lines on planar interfaces, there are several

unknown aspects that complicate evaluation of the trapping energy. These include the

unknown angle characterizing the degree of immersion of the particle in the fluid, θtr, the

unknown contact line shape, and the associated area of particle-sourced deformation in the

interface δA. In the limit of small slopes, the shape of the contact line can be decomposed

into Fourier modes [61], and δA can be found by determining the height h of the interface

around the particle above the reference plane and evaluating the associated area for each

mode. The shape of the interface is given by a decaying multipole expansion expressed in a

polar coordinate system (r, φ) in the plane of the interface with origin at the center of the

hole made by the particle in the interface. Each order of this expansion is excited by the

corresponding Fourier mode at the contact line:

h(r, φ) = b0 ln r +
∞∑
m=1

cmr
−m cos(mφ+ αm), (1.10)

where αm is the phase angle of mode m. Since body forces and torques on the particles

are negligible, mechanical equilibrium requires that b0 = c1 = 0. Thus the quadrupolar

distortion is the first surviving mode in the interface distortion [61]. Letting hqp be the

amplitude of this mode, the interface height to leading order is:

h(r, φ) = hqp
a2

r2
cos 2φ. (1.11)

This term describes the long-range interface distortion from any particle with an undulated

contact line; the existence of this mode gives rise to universal behavior between interacting
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particles in the far field, and for small particles at curved fluid interfaces.

To evaluate the trapping energy for a particle, δA must be evaluated. Dividing the particle-

free interface into two domains, I + P , where the domain P is occupied by the particle

after attachment, and the domain I is outside of the contact line (Fig. 1.2), the area can

be evaluated in the limit of small slopes:

δA ≈
∫∫
I

∇h · ∇h
2

rdrdφ = πh2
qp. (1.12)

The trapping energy for the particle can be evaluated:

∆Eplanar = −γπa2(1− |cos θtr|)2 + γπh2
qp. (1.13)

The first term is similar to the equilibrium case except that the angle characterizing the

degree of immersion in the trapped state θtr replaces θ0. The second term is the ’self energy’

of the particle, the energy cost associated with the area of the distortion around the particle.

Similar terms appear from the higher order modes in the multipole expansion [61, 62].

1.3.4. Non-spherical particles

The contributions to the trapping energy remain the same for complex shaped particles.

These include the energy decrease owing to the hole in the interface, modulated by the

particle wetting energies, and the energy owing to the excess area of the interface distortion.

The evaluation of each contribution is difficult for many reasons. The equilibrium wetting

configuration of complex shaped particles cannot typically be derived analytically [63, 64,

65]. Thus, the size of the hole in the interface, the height of the particle, and the interface

distortion must typically be found via simulation. Furthermore, contact line pinning occurs

on these particles, so, while simulated equilibrium wetting configurations lend guidance,

they do not suffice to predict the dynamic state of the interface and the particle. There
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are, however, important simplifications that can be made to make some progress. Pinned

contact lines around non-spherical particles can be decomposed into Fourier modes; interface

distortions can be described in multipole expansions. For elongated particles, an expansion

in ellipsoidal coordinates for a particular particle aspect ratio is appropriate [66]. The

quadrupolar modes in this coordinate accurately describes the far field interface shape for

elongated particles [63].

1.3.5. Key findings for isolated particles

Anisotropically shaped microparticles attach to interfaces via a process related to that for

spheres. However, the highly non-uniform dynamic contact angle along the contact line

contour as the particle enters the interface gives interesting dynamics [67]. An ellipsoidal

microparticle enters the interface via a rolling motion consistent with non-uniform dis-

placement of contact line segments; segments with greater differences between the θtr and

θ0 moved faster. These observations imply that differing, time dependent surface defor-

mations can be made by similar particles. Complex shaped particles, whether they are

adsorbed from suspension or spread via solvents can assume a variety of configurations

[63, 68, 69, 70, 71, 72]. As a crude guiding principle, isolated particles assume orientations

in which they make the largest hole in the interface with greater probability; e.g. elongated

particles have their long axes in the plane of the interface. Examples

Anisotropic microparticles can make very strong distortions in fluid interfaces that can be

imaged via interferometry [63, 69] and compared to simulated equilibrium wetting configura-

tions [68]. Distortions around prolate ellipsoids and cylinders have quadrupolar symmetry.

Observed interface shapes agree well with the height of quadrupolar modes in elliptical

coordinates within a few radii of contact with the particle [63, 65], a fact that facilitates

analysis. In the very near field, however, only simulations capture details [73], in partic-

ular near features like sharp edges and corners. In most simulations [65, 74], equilibrium

contact angles are assumed in the near field, in spite of the importance of pinned contact

lines. Finer features also play a role, including particle roughness [75]. To investigate these
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effects, particles designed to form wavy contact lines with wavelength and amplitude small

compared to the particle length have been studied [76]; the distortions made by the wavy

features decay over distances similar to their wavelength and change the energy landscape

only in the near field around the particle These will have implications in pair interactions.

Finally, while the quadrupole is the leading order distortion for the interface in the far field

absent external forces, there are particle configurations that excite higher order modes, e.g.

simulations of cuboid-shaped particles show that, in certain orientations, particles excite

well-defined hexapolar modes in the interface [74].

1.3.6. Summary

Particles become trapped at planar fluid interfaces. Perfectly smooth spheres with equi-

librium wetting conditions leave the interface around them unperturbed. However, parti-

cles with pinned contact lines, patchy wetting or non-spherical shapes distort the interface

around them. The associated self-energies contribute to the trapping energy of the particle.

Distortions due to various particle features decay at different distances from the particle.

All particles make quadrupolar distortions in the far field; higher order modes owing to

complex contact line shapes decay more rapidly. Within a few particle radii of contact,

features like particle elongation become apparent; closer still, contact line waviness due

to particle geometry, roughness or pinning and sharp edges play a role [76]. The distor-

tion fields around microparticles at interfaces play a central role in pair interactions, as is

discussed in section 1.4.1 below.

1.4. Pairs of particles on planar interfaces

Particles interact at fluid interfaces to minimize the interfacial area. Interactions between

capillary multipoles are often likened to those between charge multipoles except that like

charges attract. In this rubric, regions above the reference plane are positive while those

below the reference plane are negative. When distortions h from neighboring particles

overlap, particles orient and migrate so that regions with ”like charge” overlap. In this way,
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the slope of the interface, and the area δA owing to the distortions, decreases. (We revisit

the analogy to electrostatics in section 3.6.3, below.) As particles approach, different parts

of their distortion fields interact depending on their separation distance. Interactions first

occur because of their quadrupolar modes. Closer to contact, higher order modes, near field

distortions, and the presence of corners and edges play roles. Furthermore, rearrangement

of wetting configurations and contributions from the associated solid-fluid wetting energies

can, in principle, play a role. All of these have been discussed in prior literature [61, 39, 65,

62, 64]. Therefore, we discuss main concepts and findings in only a cursory manner here,

and refer the interested reader to those reviews for a more thorough treatment.

Below, we derive the capillary energy of interaction between two colloidal particles with

pinned contact lines on an otherwise planar interface, using the method of reflections, and

compare this to the exact solution in bipolar coordinates. This treatment differs from the

seminal work in the literature [61] in that we do not adopt the superposition approximation.

1.4.1. Method of reflections

Particles 1 and 2 of radius a are separated by distance r12, with a/r12 � 1 (see Fig. 1.3a).

Both particles have pinned contact lines with quadrupolar modes of amplitude hqp. In

isolation, the shape of the interface around each colloid can be expressed in terms of polar

coordinates (r1, φ1) and (r2, φ2) located at the centers of the particles:

h1 = hqp
a2

r2
1

cos 2(φ1 − α1) (1.14)

and

h2 = hqp
a2

r2
2

cos 2(φ2 − α2), (1.15)

where α1 and α2 denote the phase angles of particles with respect to the line connecting

particle centers. A Taylor Series expansion of the distortion owing to particle 2 near particle
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1 yields:

h2 = h2|r12
+ r1 · ∇h2|r12

+ r1 ·
∇∇h2

2

∣∣∣∣
r12

· r1 + ..., (1.16)

where r1 is the position vector from the origin at particle 1 and r12 is the vector from the

origin to particle 2. In the above expression, the first two terms are changes to the height

and slope; absent body forces and torques, particle 1 adjusts its height and tilt to eliminate

these terms. The third term is the curvature field created by particle 2 in the vicinity of

particle 1. This term is the leading order distortion made by particle 2 near 1, and defines

the far field distortion h∞ for particle 1 [77, 78]. The shape of the interface around particle

1 in the plane tangent to the interface can be found by solving this boundary value problem:

∇2h1 = 0, (1.17)

with the boundary condition at the contact line:

h1(r1 = a) = hqp cos 2(φ1 − α1), (1.18)

and in the far field:

h1(r1 →∞) = h∞ = 3hqp
a2

r4
12

r2
1 cos 2(φ1 + α2). (1.19)

We find:

h1 = 3hqp
a2

r4
12

r2
1 cos 2(φ1 + α2) + η1 (1.20)

and

η1 = hqp
a2

r2
1

cos 2(φ1 − α1)− 3hqp
a2

r4
12

a4

r2
1

cos 2(φ1 + α2). (1.21)
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The disturbance η1 includes the particle sourced term and an induced or reflected term

“undoing” the curvature created by particle 2.

To calculate the area associated with this disturbance field δA1 around particle 1, we eval-

uate:

δA1 ≈
∫∫
I

∇h1 · ∇h1

2
r1dr1dφ1 −

∫∫
I

∇h∞ · ∇h∞
2

r1dr1dφ1. (1.22)

δA1 contains three terms; the self energy that occurs for isolated particles, a pair interaction

energy that depends on r12, and a higher order term that makes negligible contributions to

leading order. Taking the difference in energies for finite r12 and for infinite separations,

the capillary energy for particle 1 interacting with particle 2 to leading order is:

∆E1 = −6γπhqp
2 a

4

r4
12

cos 2(α1 + α2). (1.23)

Particle 2 has an identical contribution, so:

∆E = 2∆E1 = −12γπhqp
2 a

4

r4
12

cos 2(α1 + α2). (1.24)

The interface shape can be solved exactly in bipolar coordinates [62, 79] for pinned quadrupo-

lar contact lines on both particles. The result, however, includes changes in height and

slope from the neighboring particle that are not present absent body forces and torques.

By amending the boundary condition at the contact line to remove these effects, the in-

terface height and the excess area around both particles 1 and 2, δA can be calculated

analytically. The resulting interaction energy is compared to the pair interaction energy

in Equation 1.24 in Figure 1.3b. The two solutions agree for particles more than a radius

from contact. However, very near to contact, there is a deviation between the two solutions

which indicates the importance of higher order reflections in the near field.
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The pair interaction energy between particles predicts that particles attract only if they

are in mirror-symmetric orientations i.e., α1 + α2 = 0◦ (Fig. 1.3c). Particles that are mis-

aligned rotate to assume mirror symmetry, and then migrate. For common fluid interfaces,

γ ∼ 10kBT/nm
2. Particles with contact line distortions as small as 2nm can have more than

10kBT of interaction at center to center separations of several radii. Microparticles with

rough surfaces, anisotropic shapes or patchy wetting can have contact lines with far larger

amplitude modes. The attractive capillary force corresponding to the energy expression of

Equation 1.24 ∼ r−5
12 . For particles moving in creeping flow, this force is counterbalanced

by viscous drag ∼ dr12/dt. This balance requires that particles move with a power law

r12 ∼ (tf − t)1/6 [68].

1.4.2. Key findings of interactions on planar interfaces

The strong deformation fields around anisotropic particles make them excellent vehicles for

studying capillary interactions. Here we focus on ellipsoids and cylinders, and the role of

particle roughness. The dynamics of microparticle assembly were first observed for ellipsoids

at a oil-water interface a decade ago [68], motivating interest in ellipsoidal particle assembly

[65, 66, 73, 80, 81]. The particles, with major axis∼ 10µm and minor axes ∼ 2µm interacted

over distances as great as six particle lengths with weakly Brownian trajectories in the far

field, and well determined paths in the near field. Particles approached in either tip-to-tip

and side-to-side configurations. For tip-to-tip interactions, the particles obeyed the expected

power law for interacting polar quadrupoles in the far field. For side-to-side arrangements,

a lower exponent was reported; subsequent detailed simulation shows that contributions

from higher order modes are significant at separations as large as four particle lengths [73].

The capillary energy change along a trajectory, inferred from viscous dissipation, was very

strong, ∼ 104kBT . Particles assemble tip-to-tip for polystyrene particles or side-to-side for

silica coated particles [68]. The existence of these preferred alignments is an interesting

feature, as the theory described in section 1.4.1 does not predict this effect. Theory for

pairs of interacting elliptical quadrupoles does predict mirror symmetric approaches, tip-to-
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tip assembly at contact, and rotation to side-to-side alignment after contact [63]. Detailed

simulation of the interface between ellipsoids near contact also predicts side-to-side assembly

[65, 73]. Thus, near field capillary interactions favor side-to-side arrangements. The tip-

to-tip arrangement might be enforced by electrostatic repulsion, known to be significant

for polystyrene particles at oil-water interfaces. Indeed, particles with scant surface charge

(PMMA microparticles) assemble side-to-side [72]. Similar arrangements have been reported

for diverse ellipsoidal shaped objects, including mosquito eggs [66] and whirligig beetles

[44]. The mechanics of these structures is rich. Particles chained tip-to-tip rotate freely

while maintaining contact, while chains of side-to-side particles can bend weakly under

compression.

Crowded interfaces of ellipsoids also have interesting behavior that we describe only briefly.

Simulation of weakly non-spherical particles assuming pairwise additivity suggests that even

nanometric deviation from sphericity can drive capillary assembly of ellipsoids into a variety

of structures that include dendritic-trapped configurations, rafts and hexagonal lattices [82].

The rheology of rafts of ellipsoidal particles in tip-to-tip assembly differs from sphere-laden

interfaces; particle monolayers are elastic at low surface area fractions and yield via a series

of flipping events under compression [83], with major implications in important processes

like convective assembly within evaporating drops [29].

Cylindrical microparticles interact over distances comparable to ten particle lengths, with

excellent agreement with the power law for interacting polar quadrupoles in the far field

as presented in Ref. [63] If the particles are already oriented end-to-end, they maintain

that alignment until contact. If however, they are oriented side-to-side, they rotate while

maintaining mirror symmetry to assemble to form a straight and rigid dimer. On sparse

interfaces, long chains comprised of many cylinders form.

The chains of cylinders are remarkably rigid, failing to bend or break even under significant

torque applied by rotating them in a magnetic field. To understand this effect, cylindrical

microparticles near contact were compared to ellipsoidal particles near contact in simulation
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[65]. Cylinders were simulated in an end-to-end alignment, and then in arrangements where

they rotated from that arrangement. The steric barrier posed by the particle’s sharp edges

and the associated rearrangements of the capillary bridge between the particles give rise

to a strong energy barrier to rotation that enforces the rigid end-to-end alignment. These

features are absent on ellipsoids, which can roll over each other freely near contact; the

associated energy landscape indicates that the capillary bond between pairs of ellipsoids is

elastic, so chains of side-to-side ellipsoids are flexible, whereas chains of cylinders should

remain aligned until they snap under applied torque.

It is interesting to ask whether particles come to contact, and what would limit their prox-

imity. In an early study, particle roughness was suggested as a source of repulsive capillary

interactions. Wavy contact lines pinned on the rough sites would create local disturbances

near the particle, important only in the very near field [75]. When neighboring particles

approach, these disturbances would interact. If they matched perfectly, with identical wave-

lengths, phases and amplitudes, particles would attract. However, if they differ, as would

be expected for random roughness, particles would be repelled. This concept was recently

demonstrated using particles with wavy edges [76]. In the far field, these particles experi-

ence the usual capillary attraction. However, when distortions from the wavy contact lines

overlap, particles with differing undulations are repelled.

1.4.3. Summary

Particles with pinned contact lines interact via capillarity over remarkable distances. Anisotropic

particles align as they migrate to preferred configurations. In the near field, details in the

particle shape play major roles in determining the strength of the interactions, the distance

of closest approach. In his analysis of particle interactions in the far field, Stamou noted

that one particle moved in the curvature field of its neighbor [61]. In principle, however,

any means of pinning or distorting the interface far from the particle can create a curvature

field. It is a natural extension to consider particles on curved interfaces. This subject is the

focus of this thesis.
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1.5. Outline of Thesis

My research has focused on microparticles on curved fluid interfaces. Fluid interfaces serve

as platforms for particles to interact with each other and with the curvature field to form

structures with well-defined alignment and orientation at predefined locations. Particles

at fluid interfaces interact via capillary interactions which arise from the overlapping of

the deformation fields that they create on the fluid interfaces. These interactions depend

strongly on the particle properties, including particle geometry and surface properties, and

the interface shape. In this dissertation, I combine experiments and theory to study the

behavior of microparticles at curved fluid interfaces.

Chapter 2 focuses on the interaction of a microdisk with curvature field. Mircrodisks have

pinned contact line at the interface due to surface roughness of the particles. The particle

interaction with curvature field is sourced from the undulated contact line. Experimental

results are compared against theory to provide insights on capillary curvature interactions.

Chapter 3 studies the interaction of a microsphere on a curved interface. Two cases are

discussed for a microsphere interaction with curvature field: equilibrium contact angle and

pinned contact line. Experimental results are reported to show microspheres have pinned

contact line and have similar interaction with curvature field as microdisks.

In the above studies, the disks and spheres are small compared to the radius of the micropost

used to create the interface curvature. In Chapter 4, I relax this limit: I observe and report

rich interactions of the particles with the interface curvature field. Some particles are

attracted to zones of high curvature, others stop at an equilibrium location, while others

are repelled from regions of high curvature by curvature field. I report analysis to explain

these experimental observations.

Chapter 5 highlights the interaction of a pair of particles on a curved fluid interface. A

full derivation of the pair interaction energy is provided. Interestingly, the pair interaction

is simply the summation of the particle-curvature interaction with the particle-particle
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interaction. The contributions depends strongly on the curvature field and the particles

separation distance.

Chapter 6 shifts focus to cylindrical particles on the air- nematic liquid crystal interface.

Liquid crystals introduce complexity to the study, as particle orientaiton is influence by

elastic energies associated with distortions on the nematic liquid crystal director field. In

this study, I explore the microcylinders behavior on both the uniform planar and curved

nematic interfaces. Capillarity compete and couple with elasticity on the interface to guide

particle assembly. Here, I summarize regions of dominance for capillarity and elasticity.
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Figure 1.1: Particle trapped at a fluid interface. Schematic of particle adsorption on an
interface with (a) an equilibrium contact angle, and (b) pinned contact line.
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Figure 1.2: Schematic of a spherical particle (a) immersed in vapor phase and becomes (b)
adsorbed to a vapor-liquid interface. Inset: top view of a particle (P, particle domain) on
an interface (I).
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Figure 1.3: Schematic of pair of particles interacting with their quadrupoles. (a) Spheres
separated by distance r12 align in mirror symmetric orientation where the doublesided ar-
rows indicate the rise of the interface, and α1 and α2 define the phase angle for particle
1 and 2, respectively. (b) Non-dimensional interaction energy comparison between the
method of reflections and the exact solution from bipolar coordinate calculation. Inset:
Near field comparison of the two methods [49]. (c) A pair of interacting spheres with
their quadrupoles co-aligned (rise-to-rise). Reprinted with permission from Reference [61]
(https://doi.org/10.1103/PhysRevE.62.5263); copyright 2000 by the American Physical So-
ciety.
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Figure 1.4: Schematic of a spherical particle with quadrupolar deformation on a curved
interface where the particle-induced distortion is denoted ηin.
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CHAPTER 2 : Curvature capillary attraction: Small disks at curved interfaces

2.1. Introduction

Capillary interactions are ubiquitous between microparticles at fluid interfaces. Classically,

they are exploited in a wide range of technologies including stabilization of foams and

Pickering emulsions [84] and in separations of materials in ore flotation [85]. Fundamentally,

they provide insight into condensed matter physics, for example, the formation and evolution

of 2D crystal structures [30, 86] and their topological constraints [32]. More recently, they

are widely exploited in bottom up assembly schemes to organize particles for advanced

materials applications [87].

Capillary interactions arise spontaneously between microparticles at interfaces. Typically,

the effects of gravity are negligible compared to surface tension, i.e. the particle radius a is

small compared to the capillary length based on the density of the fluid ρ, the interfacial

tension γ, and the gravitational acceleration constant g, i.e. a√
γ
ρg

� 1. As reviewed in the

Introduction to this thesis, on planar interfaces, capillary interactions are well understood

[39, 64, 88, 89]. Particles adsorb and eliminate a patch of fluid interface. In addition, they

perturb the shape and thereby increase the area of the interface around them if they have

anisotropic surface energies [90], non-spherical shapes [68, 72, 91], or in principle, if they

have spherical shapes but have contact lines pinned at some non-equilibrium position [61].

In the far field, when distortions from neighboring particles overlap, the area and therefore

the energy of the interface typically decrease when the particles approach each other.

Capillary attraction in the limit of negligible gravity has been observed to orient and assem-

ble Janus particles [90] and particles with complex shapes including ellipsoids [68, 72] and

cylinders [68, 72, 91]. Rough particles also distort planar interfaces, creating disturbances

which decay close to particle contact. The energies associated with these disturbances from

neighboring particles can be attractive or repulsive. Far field capillary attraction and near

field capillary repulsion can be used to define particle separation distances [75, 76].
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There are important gaps in our understanding of curvature driven capillary migration.

Fluid interfaces can be curved owing to confinement or body forces to display mean or

deviatoric curvature fields that influence particle migration. Microparticles in the limit of

negligible gravity have indeed been observed to migrate on curved interfaces. Cylindrical

microparticles orient along principal axes and migrate to high curvature sites owing to their

undulated contact lines [20]. A case of spherical micro particle migration in this limit has

also been reported; the particle migrated along a curvature gradient to find an equilibrium

position that is ascribed to a balance of capillary forces and weak gravitational forces [52].

From a theoretical perspective, the behavior of isotropic spheres with equilibrium wetting

boundary conditions has been studied for several interface shapes, including interfaces with

zero mean curvature [92], cylindrically-shaped interfaces [50], or interfaces with arbitrary

curvatures [89, 93, 94]. In several of these theoretical studies, particles are predicted to

migrate with curvature capillary energies which are quadratic in the deviatoric curvature

field; in this work, we show that contributions of that order are identically zero for the case

of pinned contact lines.

This limit may be broadly relevant. There is a growing body of evidence that colloidal

particles can have pinned contact lines at fluid interfaces in experiment [53, 95, 96] and

simulation [57, 97]. Here, we study migration of particles with pinned contact lines on in-

terfaces with well-defined curvature fields, using a planar disk-shaped particle which pins the

contact line at its sharp edges. On planar interfaces, the disks interact only weakly and only

if they are in close proximity. When placed on curved interfaces, however, these particles

experience significant capillary energies and move towards regions with higher curvature.

Particle trajectories are highly reproducible and deterministic for isolated disks. Particles

interact in the near field to form linear structures oriented along curvature gradients.

We derive a general theory for particles with pinned contact lines on a curved interface.

Generally, by adsorbing to a fluid interface, a particle eliminates a patch of interface, replac-

ing it with fluid-solid surfaces. The particle also creates a disturbance in order to satisfy
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its pinning boundary condition at the three phase contact line. For interfaces with finite

mean curvature, this disturbance in interface height does work against the pressure jump

at the interface. For a particle of roughly circular cross section, the pinned contact line

shape can be described in terms of multipole expansion for the contact line height, with

the leading order being the quadrupolar mode [61] (see Fig. 2.1(c) and (d)). For constant

mean curvature interfaces, analysis predicts that a planar particle with a perfectly circular

contact line will not migrate, and that planar particles with weak deviations from a circular

contact line will migrate to regions of steepest curvature.

2.2. Experiments

Epoxy resin microdisks of radius a = 5µm are fabricated using standard lithographic meth-

ods. A negative tone photoresist (SU-8 2002, MicroChem Corp.) was deposited onto a

silicon wafer (Montco Silicon) by spin-coating. The photoresist was exposed to UV light

(365 nm) on a tabletop mask aligner (OAI Model 100) through a photomask (Microtronics

Inc., Fine Line Imaging). The samples then were heated using UV light to cure the polymer.

Finally, the microdisks were released from the wafer via sonication.

Microdisks make only weak interface distortions on planar interfaces. Thus, when placed on

planar interfaces, these particles fail to interact unless they are within ∼ 10 radii of contact.

We confirm that the disks have pinned contact lines by imaging the underside of a particle

trapped in an interface (Fig. 2.2(a)). The image is acquired using a gel-trapping technique

by placing a microparticle in the air aqueous interface of a warm (50◦C) gellan solution

which is then cooled to form a gel. PDMS is then poured over the particle, cross-linked,

and lifted, making a negative mold of the interface and taking the particle with it. An SEM

image of this assembly reveals that the particle pins the interface at its upper sharp edge.

The disks are also rough on the nanometric scale; using an AFM (Bruker Icon) in tapping

mode, we find the root mean square roughness over the surface area of the disks ranges

from 18 to 32 nm (Fig. 2.2(b)).
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To study particle migration, a host interface is formed with a well-defined curvature field

using a technique reported previously [20] which we recapitulate briefly here. A curved

oil-water interface is formed around a micropost of height Hm and radius Rm centered

within a confining ring located several capillary lengths from the micropost. This structure

is filled with water so that the contact line pins at the top of the micropost and the slope

of the interface is ψ ∼ 15 − 18◦ as measured using a goniometer (see Fig. 2.3(a)). The

shape of the oil-water interface for distances from the micropost small compared to the

capillary length obeys h0 = Hm −Rm tanψ ln L
Rm

, where L is the radial distance measured

from the micropost center. This interface (shown schematically in Fig. 2.3(b)) has zero

mean curvature H0 = c1+c2
2 = 0, and deviatoric curvature ∆c0 = c1− c2 which is finite and

position dependent. The deviatoric curvature is greatest in magnitude close to the post,

and decrease monotonically with distance from the post.

2.3. Results and Discussions

Disks are submerged in the oil phase, and allowed to sediment and attach to the interface.

Particles, once attached, migrate up the curvature gradient along radial trajectories toward

the micropost if they are isolated (Fig. 2.4(a)). Deviations from radial trajectories occur

only for particles close to neighboring particles (within 10-15 radii) or close to disks that are

already anchored on the micropost (Fig. 2.4(b)). Trajectories of isolated particles superpose

when graphed in terms of (L, tc), where tc denotes time to contact defined as tc = t0 − t

and t0 is the time when the disk reaches the edge of the post (Fig. 2.4(c)). The more

complex trajectories owing to interaction with neighboring elements or floating aggregates

are evident as deviations from the master L vs. tc curve (see Fig. 2.4(d)).

Since the particle migrates in creeping flow, the capillary force on the particle is balanced

by a drag force according to F = CDµa
dL
dt where we adopt for CD Lamb’s drag coefficient

for a disk on an interface [98] and the average viscosity of the two surrounding fluids µ,

is used. The capillary energy ∆E is balanced by viscous dissipation, which is found by

integrating the velocity of migration over the particle position for each particle trajectory.
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In Figure 2.5 capillary energies extracted from these trajectories for isolated disks are plotted

against a∆c0. In this figure we report only regions of the trajectory far enough from the

micropost to neglect hydrodynamic interactions [99]. The capillary energy plotted against

a∆c0 is linear; the root mean squared error of the linear fit is approximately ∼ 10−7 for

each trajectory. This migration is in agreement with a simple functional form which we

have derived previously for migration of cylindrical microparticles migrating in curvature

fields [20]:

E = E0 − πa2γ(
hp∆c0

2
) (2.1)

where hp is the amplitude of a quadrupolar distortion made by the particles. In our prior

work on cylindrical microparticles, quadrupolar distortions were bounded by the equilibrium

wetting configuration around the particles and thus could be associated with the particle

shape. For the present case, we hypothesize that quadrupolar distortions are excited in the

fluid interface owing to uncontrolled roughness of the particle, as suggested by Stamou et al.

in their analysis of particles at planar interfaces [61]. The data in Figure 2.5 are consistent

with particles with quadrupolar modes of 25− 30nm, a magnitude similar to the roughness

of the particles, suggesting that particle roughness sets the scale for disturbances sourced

by the particle into the interface. The curvature capillary energy associated with this weak

distortion is appreciable; ∆E ∼ 12, 000kBT , explaining the non-Brownian, deterministic

paths observed for the disks.

In the experiments, the curvature of the host interface decreases monotonically with distance

from the center of the micropost. For very small curvature, the capillary force driving

upward migration is too small to overcome the downward pull of gravity, as reported by

Blanc et al.; if a particle attaches to an interface far away from the micropost, the particle

should not migrate [52]. We predict this threshold in our experiment by equating the

gravitational force on the particle to the upward capillary force, Fz = −∂E
∂L (dh0

dL )−1 and find

that particles should fail to migrate for L > 465µm and hp = 25nm. This compares well to
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our experimental observation Lexp ∼ 308− 449µm.

Confronted by the observed linear dependence of the curvature capillary energy on a∆c0,

we derive the capillary energy in detail. Our work differs significantly from related work in

the literature for spheres which reported quadratic dependence, i.e. proportional to a2∆c0
2.

Below, we show that, while, in principle, such a term might occur, its pre-factor is identically

zero. To do so, we present a detailed discussion of capillary energy for weakly non-circular

pinned contact lines on curved interfaces.

2.4. Theory

2.4.1. Disks with weakly roughened surfaces

We first consider the host interface without any particle. The free energy has two contri-

butions,

E1 = γ

∫∫
©
D

(1 +
∇h0 · ∇h0

2
)dA−

∫∫
©
D

∆p h0dA, (2.2)

where h0 is the height of the host interface prior to particle deposition, γ is the interfacial

tension and D denotes the entire interfacial domain. In this expression, the first term is the

energy due to the surface area assuming small slope ε = |∇h0| � 1 and the second term is

the work done by the pressure jump across the interface ∆p. When the particle is trapped

at the interface, the free energy becomes

E2 = γ1A1 + γ2A2 + γ

∫∫
©

D−P

(1 +
∇h · ∇h

2
)dA−

∫∫
©
D

∆p hdA, (2.3)

where h is the height of interface after the particle is adsorbed, γ1A1 and γ2A2 are the

product of the surface energies and wetted areas for the solid and the upper and lower

fluids, respectively, P corresponds to the domain under the particle. The energy difference,
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E between these two states is expressed

E =γ1A1 + γ2A2 + γ[

∮
∂(D−P )

[
1

2
η∇η + η∇h0]·mds

−
∫∫
©
P

(1 +
∇h0 · ∇h0

2
)dA+

∫∫
©
P

∆p

γ
(h0 − ω)dA] +O(ε4), (2.4)

where η is the disturbance field created by the particle, defined as η = h − h0, ω is a

shift of the particle center of mass perpendicular to the interface, ∂(D − P ) denotes the

contours enclosing the domain D-P and m is the unit normal to these contours tangent

to the interface pointing outward the domain. In Eq. 2.4, the first term is independent of

particle position, the second term is the energy owing to the disturbance eta, the third term

is the area of the hole in the interface created by particle adsorption and the final term is

the pressure work (see Fig. 2.1 for detail).

The height of the host surface at any point satisfies the Young-Laplace equation,

2γH = ∆p, (2.5)

where H is the mean curvature, H = c1+c2
2 , and c1 and c2 are the principal curvatures. At

any point on the interface, a polar coordinate (r, φ) can be defined tangent to the plane,

where the origin for φ is along one of the principal axes. Adopting a Monge representation

and utilizing Eq. 2.5, the interface height h0(r, φ) for any surface can be expanded locally

in this coordinate to be,

h0(r, φ) =
r2

4
(2H0 + ∆c0 cos 2φ), (2.6)

where H0 and ∆c0 = c1 − c2 are the mean and deviatoric curvatures of the host surface

evaluated at particle center of mass. To solve for the disturbance field, Eq. 2.5 must be

solved with respect to the boundary conditions at the three phase contact line Γ. The

leading order mode of the contact line height is a quadrupolar undulation as the monopoly
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and dipolar terms are excluded by force and torque balances on the particle, respectively.

This quadrupolar mode has an amplitude hp (see Fig. 2.1(c), where we assume hp � a.

Higher order modes do not contribute to leading order and are not considered further.

In the most general case the disk cross section is non-circular; deviations in the contact line

from a circular shape can be described as Γ = a (1 +
∑∞

n=1 ζn cos(nφ− αn)), where αn is a

phase angle and ζn � 1. Thus, the complete boundary condition is expressed,

h(r) = a
(

1 +
∑∞

n=1
ζn cos(nφ− αn)

)
= hp

a2

r2
cos 2φ. (2.7)

We first derive an expression for trapping energy of a disk with a perfectly circular cross-

section and weak roughness, and thereafter we extend the theory for weakly non-circular

cases. Having defined the host interface as in Eq. 2.6, the area under the particle can be

expressed as,

∫∫
©
P

(
1 +
∇h0 · ∇h0

2

)
dA = πa2 + πa2

(
1

4
a2H2

0 +
1

16
a2∆c2

0

)
(2.8)

where we linearized the surface metric. The determination of the remaining terms in Eq. 2.4

requires that we obtain the disturbance eta created by the particle by solving Eq. 2.5. For

circular contact lines, the pinning boyndary condition can be expressed,

h(r = a) = ω + hp cos 2φ. (2.9)

Far from the particle, the disturbance should decay to zero,

lim
r→∞

, h(r, φ)→ h0 =
r2

4
(2H0 + ∆c0 cos 2φ), (2.10)

for which the general solution is

h(r, φ) =
r2H0

2
+

∆c0 cos 2φ

4

(
r2 − a4

r2

)
+ hp

a2

r2
cos 2φ (2.11)
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where

ω =
a2

2
H0. (2.12)

To confirm these analytical expressions for h, we have preformed a numerical calculation

based on a Green’s function for the domain corresponding to the experimental setup, dis-

cussed in Ref. [100]; the numerically determined solution agrees excellently with the anal-

ysis. The disturbance due to the particle is

η = hp
a2

r2
cos 2φ− ∆c0 cos 2φ

4

a4

r2
. (2.13)

The derivatives of η and h0 required to evaluate the remaining terms in the trapping energy

are

∂η

∂r
= −2hp

a2

r3
cos 2φ+

∆c0 cos 2φ

2

a4

r3
, (2.14)

∂h0

∂r
=
r

2
(2H0 + ∆c0 cos 2φ), (2.15)

The contour integral given in Eq. 2.4 can be evaluated as,

∮
∂(D−P )

1

2
η∇η ·mds =

∫ 2π

0

ηr

2

∂η

∂r

∣∣∣∣
r→∞

dφ−
∫ 2π

0

ηr

2

∂η

∂r

∣∣∣∣
r=a

dφ

= 0 + π(h2
p −

hpa
2∆c0

2
+
a4∆c2

0

16
), (2.16)

The first term inside the bracket is the self-energy of the quadrupolar roughness, a constant

independent of curvature. The latter two terms depend on the curvature of the interface.

To obtain a better insight into the effect of deviatoric curvature, we set H0 = 0 and note
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that,

−
∫∫
©
P

(
∇h0 · ∇h0

2

)
dA = − 1

16
πa4∆c2

0. (2.17)

This is the excess area eliminated under the disk when it attaches to a saddle shaped

interface and its magnitude is equal and opposite the quadratic term in Eq. 2.16. Hence,

these terms cancel. We note that this is the case even for interfaces with non-zero mean

curvature since in calculation of Eq. 2.17 terms include H0 and ∆c0 never couple. The sole

remaining contribution which could conceivably contribute a quadratic term in a∆c0 is:

∮
∂(D−P )

η∇h0 ·mds =

∫ 2π

0
ηr
∂h0

∂r

∣∣∣∣
r→∞

dφ−
∫ 2π

0
ηr
∂h0

∂r

∣∣∣∣
r=a

dφ = 0 (2.18)

To evaluate this expression, particular care must be taken to evaluate this expression at all

contours enclosing the area. The integrand, a product of decaying and growing modes of the

same power, is independent of radial position. Therefore, the evaluation of the integral at

the inner and outer contours yields a value of zero, and there are no quadratic contributions

to the free energy.

It remains to evaluate the pressure work contribution which can be written,

∫∫
©
P

∆p

γ
(h0 − ω)dA = 2H0

∫ a

0
r′dr′

∫ 2π

0
(h0 − ω)dφ

=
πa4H2

0

2
− πa4H2

0 = −πa
4H2

0

2
, (2.19)

by substituting Eqs. 2.16, 2.18 and 2.19 in Eq. 2.4, the capillary energy of a particle with

pinned circular contact line can be written as,

E = E0 − πa2γ(
3a2H2

0

4
+
hp∆c0

2
) (2.20)

where E0 = γ1A1 + γ2A2 − γπa2(1 − h2
0
a2 ), is independent of curvature. The deviation of
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Eq. 2.20, and its favorable comparison to experiment, is the main point of this paper. On

interfaces with constant mean curvature, Eq. 2.20 reduces to Eq. 2.1, which is compared

to experiment in Figure 2.5. Disks with pinned contact lines migrate solely because of

roughness, with driving capillary energies proportional to the amplitude of the quadrupolar

mode of the distortion that they excite in the interface.

Recall that the disks are not only rough but also have weakly noncircular edges. To as-

certain the importance of this non-circularity, we modified the above calculation to discuss

for slightly deformed disks. My collaborator, Dr. Sharifi-Mood, performed domain per-

turbation analysis and showed that the correction is on the order of 4-5 kBT , i.e. ∼ 104

times smaller than the observed curvature capillary energies. Numerical solution for the

disturbance created by the particle in the interface agrees with the analytical solution, to

with 2%. This confirms the analytical form for the disturbance created by the particle used

to calculate the curvature capillary energy. For further details, please refer to Ref. [100].

2.5. Conclusions

We have performed experiments using disks with pinned contact lines on an interface with

strong deviatoric curvature gradients. The particles migrated up to sites of high curvature

with capillary energies that are linear in the deviatoric curvature ∆c0. This experimental

finding is in contrast to prior work on spheres with equilibrium contact lines in the interface.

To place this result in context, we derived an analytical expression for the curvature capillary

migration energy, and show that it is indeed linear in the product hp∆c0, where hp is the

amplitude of the quadrupolar mode of the particle sourced disturbance. The values for hp

inferred from the energy data correspond to the scale of the particle roughness as determined

by AFM. Our analysis shows definitively that no quadratic term in deviatoric curvature is

present in the migration energy, a marked difference from prior work in the literature. This

analysis can be extended to pair interactions of particles on curved interfaces. Qualitatively,

the formation of chains along the curvature gradient direction evident in Figure 2.4 can be

readily be explained. The quadrupole owing to roughness aligns along the principal axes of
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the interface, so interacting particles chain along the radial direction. Finally, these results

for disks have important implications for spheres with pinned contact lines; we address this

issue in the next chapter.
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Figure 2.1: Schematic representations of (a) area of the hole under the host surface, (b) curvature
induced distortion of the pinned contact line, (c) height undulations of contact line e.g. due to
particle roughness and (d) non-circular contact line (top view) shape decomposition into dipolar
(n = 1, Γ1 = a(1 + ξ1 cosφ)), and quadrupolar (n = 2, Γ2 = a(1 + ξ2 cos 2φ)) modes.
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Figure 2.2: (a) SEM image of a microdisk and PDMS negative of the air-water interface showing
contact line pinning. (b) AFM reveals nanoscopic roughness of the disk surfaces of with RMS values
ranging of 18-32 nm.
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Figure 2.3: The curved interface (a) side view of the curved interface. (b) Schematic of the curved
interface molded around a micropost. The principal curvatures are greatest in magnitude close to
the post, and decrease monotonically with distance from the post.
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Figure 2.4: Time stamped images (a) of a microdisk trajectory, and (b) of multiple trajectories
around a crowded micropost. Particles chain at micropost along the radial direction. (c) Trajectories
of isolated disk migrating in the curvature field. (d) Trajectories for disks migrating on a crowded
interface. Colors for trajectories in (c) and (d) correspond to trajectories of similar colors in (b).
(scale bar= 100 µm).
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Figure 2.5: Comparison of predicted energy (solid lines) against those extracted from experiment for
trajectories in Fig. 2.4(c) for isolated particles (symbols). (The colors correspond to the trajectories
in Fig. 2.4(b). The solid black line corresponds to hp = 25 nm, the solid blue line corresponds to
hp = 30 nm.
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CHAPTER 3 : Curvature capillary attraction: Microspheres at curved interfaces

3.1. Introduction

Capillary interactions are ubiquitous between particles on fluid interfaces. They trap par-

ticles at the interface [30] and determine their ensuing organization [20, 39, 64], allowing

particles to be widely exploited in technological applications such as stabilization of foams

and emulsions [84], and in settings as diverse as the food [101], pharmaceutical [102], min-

eral recovery [103], and petroleum industries [104]. For microparticles of radius a at planar

interfaces of tension γ, gravity is irrelevant, as the Bond number Bo = ∆ρga2

γ � 1, where g

is the gravitational acceleration constant, and ∆ρ is the density difference between the two

fluids on either side of the interface. In this limit, particles with undulated contact lines

distort the interface around them, with an associated excess interfacial area. The defor-

mation fields and interfacial area depend on the relative position of the particles, yielding

decreasing capillary energy as particles approach [61].

In this research we are interested in the behavior of isolated microparticles trapped on

curved interfaces. In experiment, microparticles migrate along curvature gradients to sites

of high curvature, as has now been observed for microcylinders [20], microspheres [52],

and microdisks [100]. Theoretically, the curvature capillary energy driving this migration

is simply the sum of the surface energies and pressure work for particles at the interface.

When particles attach to their host interfaces, they change the interface shape owing to

the boundary condition at the contact line where the interface meets the particle. There

are two limits for this boundary condition. The interface can intersect the particle with an

equilibrium contact angle θ0, determined by the balance of surface energies according to

Young’s equation [105]. Alternatively, the contact line can be pinned by kinetic trapping

at heterogeneities, roughness or other pinning sites on the particle surface [53, 57, 61, 95,

96, 97]. Curvature capillary migration depends on the coupling of the particle-sourced

distortion with the host interface shape. For a particle which is much smaller than the
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capillary length, far from pinning boundaries, and therefore small compared to the prevailing

curvature fields, particle-sourced distortions decay over distances comparable to the particle

radius. This scenario lends itself to analysis by a singular perturbation method [106, 107].

In a particle-fixed reference frame defined in the plane tangent to the interface, the host

interface shape around the particle can be locally decomposed into terms proportional to

the host interface mean curvature and deviatoric curvature. By rescaling the governing

equations with respect to the particle radius, the shape of the interface around the particle

can be found over length scales comparable to this radius. This approach allows clear

treatment of limiting boundary conditions on particle sourced distortions and the ranges

of validity of local expansions of the host interfaces. It also clarifies the appropriate outer

limits on (area or contour) integrals used to evaluate the excess area of the interface created

by the particle. Using this method, we have previously solved the curvature capillary energy

for disks with pinned contact lines, which applies equally to spheres with pinned contact

lines in the limit of weak undulations [100]. We apply the approach to derive the curvature

capillary energy for spheres with equilibrium contact angles. While the curvature capillary

energies for this scenario have been derived previously and reported to be quadratic in the

deviatoric curvature of the interface [52, 92, 93, 94], we find that this term has prefactor zero.

We identify the source of the discrepancy between our result and that published previously.

We predict that spheres migrate by capillarity on constant mean curvature interfaces only

if their contact lines are pinned, and that spheres with equilibrium contact lines would have

energies several orders of magnitude weaker than is observed in experiment.

We perform experiments in which we record the trajectories of polystyrene microspheres

at hexadecane-water interfaces with well defined curvature fields. We compare the energy

dissipated by particle migration to the curvature capillary energy expressions, and find that

the spheres migrate in agreement with the expression for pinned contact lines.

This work was performed in collaboration with Dr. Sharifi-Mood. It has been published in

Soft Matter as a paper entitled ”Curvature capillary migration of microspheres”, Ref [108]-
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Reproduced by permission of The Royal Society of Chemistry. In this work, I designed and

performed the experiments, and tracked particle trajectories. My collaborator, Dr. Sharifi-

Mood, derived the theory for particle curvature interaction and performed the numerical

analysis.

3.2. Theory

Here we give a concise derivation of the capillary energy of a sphere trapped on a curved

fluid interface. Without loss of generality, we focus on interfaces with zero mean curvature

as the role of finite mean curvature gradient has been addressed in the literature [93, 100].

We first consider the free energy of a system including a free interface with a spherical

colloidal particle submerged in subphase fluid 1. In this case, the free energy can be written

as,

E1 = γ

∫∫
©
D

(1 +
∇h0 · ∇h0

2
)dA+ γ1As, (3.1)

where h0 is the Monge representation of the host interface height prior to particle attach-

ment, D denotes the entire interfacial domain, dA = dxdy, γ1 is the surface energy of the

colloid with fluid 1, and As = 4πa2 accounts for the total area of the colloid. In writing the

above expression we have assumed small slopes, i.e. |∇h0| � 1. Upon attaching to the host

interface, the particle creates a disturbance to satisfy its boundary condition on the three

phase contact line. The free energy of the system in this case is,

E2 = γ1A1 + γ2A2 + γ

∫∫
©

D−P

(1 +
∇h · ∇h

2
)dA, (3.2)

where h is the interface height after the particle is adsorbed, γ1A1 and γ2A2 are the product

of the surface energies and wetted areas for the solid in contact with the upper and lower

fluids, respectively, and P denotes the domain under the particle. The capillary energy

associated with adsorption of a particle to an interface can be found simply via subtraction
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of the two energies,

E = E2 − E1 =γ1A1 + γ2A2 − γ1As+

γ[

∫∫
©

D−P

(
∇η · ∇η

2
+∇η · ∇h0)dA−

∫∫
©
P

(1 +
∇h0 · ∇h0

2
)dA], (3.3)

where η is the disturbance field defined as η = h − h0. In the above expression, the first

integral is due to the disturbance created by the particle and the second integral is the area

of the hole in the host interface under the particle. We integrate the first integral by parts

and then apply the divergence theorem to have,

∫∫
©

D−P

[
∇η · ∇η

2
+∇η · ∇h0]dA =

∮
∂(D−P )

[
1

2
η∇η + η∇h0] ·mds, (3.4)

where ∂(D − P ) denotes the contours enclosing the domain D − P (See Fig. 3.1). There

are two contours enclosing this domain: one, not shown, infinitely far from the particle,

with outward pointing vector in the radial direction, and the other enclosing the region P

with outward-pointing unit normal vector m. Consequently the curvature capillary energy

of the system can be expressed as,

E = E2 − E1 =γ1A1 + γ2A2 − γ1As+

γ[

∮
∂(D−P )

[
1

2
η∇η + η∇h0] ·mds−

∫∫
©
P

(1 +
∇h0 · ∇h0

2
)dA]. (3.5)

We expand the interface locally around an arbitrary point to obtain a saddle shape,

h0(x, y) =
∆c0

4
(x2 − y2), (3.6)

where (x, y) coordinate is tangent to the host interface, oriented along the principle curva-

tures c1 and c2, and ∆c0 is the deviatoric curvature of the host interface defined as,
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∆c0 = c1 − c2, (3.7)

where we adopt a convention such that c1 is always positive. We discuss the range of validity

of Eq. 3.6 in terms of an asymptotic treatment in Ref. [108], and in terms of a comparison of

host interface shape used in our experiments. To evaluate the integrals in Eq. 3.5, we must

define the boundary condition at the three phase contact line, and determine the associated

disturbance field η. We discuss two distinct scenarios for this energy (see Fig. 3.2).

3.2.1. Pinned contact line

The curvature capillary energy E, for a particle with nearly circular cross section and

a pinned contact line trapped on a host interface with arbitrary mean curvature H0 and

deviatoric curvature ∆c0 was derived previously [100]. The height of the pinned contact line

contour can be decomposed into a multipole expansion with quadrupolar mode of amplitude

hp. The associated curvature capillary energy is,

E = E0 − γπa2(
hp∆c0

2
+

3a2H2
0

4
). (3.8)

In this expression, the first term E0 is independent of the local curvature. The second

term predicts that a particle will move to sites of high deviatoric curvature, while the third

predicts particle migration along gradients of mean curvature. To understand the relevant

importance of these terms, we consider
a2H2

0
hp∆c0

∼ a
hp

a∆p
γ where ∆p is the pressure jump

across the interface. This ratio suggests that, for sufficiently small pressure jump across

the interface, the effect of mean curvature can be neglected. In section 3, we explore this

regime in experiment.
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3.2.2. Equilibrium wetting

We use a formal matched asymptotic expansion [106, 107] to evaluate the curvature capillary

energy in terms of the small parameter λ = r0∆c0, where r0 = a sin θ0 is the radius of the

hole made a sphere is a planar interface. Here, we give the main features of this derivation

in dimensional form, and note the bounds on the solutions and ranges of validity implied

by the asymptotics.

For a spherical particle in a curved interface with an equilibrium wetting condition, the

fluid interface deforms until it satisfies the equilibrium contact angle at every point on the

contact line. The contact line shape is not known a priori and must be determined as a

part of analysis, as was originally done by Würger [92]. The shape of contact line can be

deduced from geometrical relationships (see Fig. 3.3) to be,

cos θ = cos θ0 +
h(r ∈ ρ)

a
, (3.9)

sin θ =
ρ

a
, (3.10)

where θ is a polar angle which located the contact line in a spherical coordinate system

with respect to the particle center, cos θ0 = d
a , and ρ(φ) is the contour of the contact line

projected into a plane, which obeys,

ρ = a
√

1− cos2θ. (3.11)

By substituting Eq. 3.9 and 3.10 in this expression and assuming h(r∈ρ)
a ∼ O(λ) � 1, the

radial location of contact line projected into the x− y plane is,

ρ = r0 − h(r) cot θ0 −
1

2

h2(r)

r0
(cot2θ0 + 1) + ... |r∈ρ, (3.12)

The corresponding unit vector m and the arc length element ds up to the first correction
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in λ are,

m = −[er +
cot θ0

r0

∂h(r)

∂φ
eφ] |r∈ρ, (3.13)

ds = r0[1− cot θ0
h(r)

r0
]dφ |r∈ρ. (3.14)

Young’s equation requires,

nP · nI = cos θ0|r∈ρ, (3.15)

where nP is the unit normal to the particle and nI is the unit normal to the interface

evaluated at the contact line. By applying this expression, the boundary condition for the

interface shape at the three phase contact line to the leading order is,

h

r0
=
∂h

∂r
|r=r0 . (3.16)

The height of interface satisfies the Young-Laplace equation, which, assuming small slopes,

reduces to the Laplacian:

∇2h = 0. (3.17)

The boundary condition for the particle-sourced distortion in the far field can be derived

using a Van Dyke matching scheme [106, 107] to match the interface shape far from the

particle to the host interface shape. The resulting boundary condition far from the particle

is,

lim
r→∞

h(r, φ) = h0 =
∆c0

4
r2 cos 2φ, (3.18)

where the limit r →∞ implies exploring regions around the particle large compared to the
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particle radius. Using Eq. 3.16 and Eq. 3.18 the leading order interface shape is,

h(r, φ) =
∆c0 cos 2φ

4
(r2 +

r4
0

3r2
), (3.19)

The corresponding disturbance to the interface is,

η = h− h0 =
∆c0 cos 2φ

12

r4
0

r2
. (3.20)

Asymptotic analysis for the curved interface around the circular microcylinder show that

Eq. 3.18 remains valid everywhere the disturbance (Eq. 3.20) is finite. With this information,

we determine the curvature capillary energy Eq. 3.5. In so doing, we can straight-forwardly

apply the limits at the contact line and r →∞, knowing that these functions remain valid

within this domain. This is indeed consistent with experiment. We mold the fluid interface

by pinning it to a micropost. The interface forms a shape with a well defined curvature field.

For micro-particles on interfaces with deviatoric curvatures like those in our experiments

∆c0 ∼ 400 − 3000 m−1, the distortions will be � 10−10m within 5 − 6 radii, a, from the

the center of particle. Over such ranges, the shape of the fluid interface Eq. 3.18 agrees

well with the full function describing the interface shape hmicropost; the quadrupolar mode

of hmicropost agrees with Eq. 3.18 to better than 2% error. This is the sole mode that can

couple to the quadrupolar undulation of the particle. While we perform this matching in

detail only for the host interface used in our experiments, the asymptotic analysis can be

applied similarly to any fluid interface provided a
Rc
� 1, Rc is the characteristic length of

the host interface. The deviatoric curvature part of far field boundary condition is given

by Eq. 3.18, with the details for the curvature source (e.g. the micropost in our example)

emerging in the expression for ∆c0. In the event that the interface has finite mean curvature,

an additional term emerges with the local mean curvature of the interface.

We evaluate

(i) the self-energy of the disturbance created in the host interface, the sum of the following
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two contour integrals:

∮
ρ

η

2
∇η ·mds =r4

0

∫ 2π

0

∆c2
0cos22φ

144
dφ =

π∆c2
0r

4
0

144
(3.21)

∮
r→∞

η

2
∇η ·mds =0 (3.22)

This term captures the increase in interfacial area owing to the particle sourced distortion.

(ii) the interaction of the disturbance and the host interface, given by the sum of the

following two contour integrals:

∮
ρ

η∇h0 ·mds = −r4
0

∫ 2π

0

∆c2
0cos22φ

24
dφ =− π∆c2

0r
4
0

24
(3.23)

∮
r→∞

η∇h0 ·mds =r4
0

∫ 2π

0

∆c2
0cos22φ

24
dφ = +

π∆c2
0r

4
0

24
. (3.24)

These terms are equal and opposite, and hence sum to zero. Thus, the net contribution of

the particle induced disturbance, the sum of (i) and (ii), is

∮
∂(D−P )

[
1

2
η∇η + η∇h0] ·mds =

π∆c2
0r

4
0

144
. (3.25)

(iii) We calculate the energy decrease owing to the area of the hole under the particle as,

−
∫∫
©
P

(1 +
∇h0 · ∇h0

2
)dS =− πr2

0 −
π∆c2

0r
4
0

144
. (3.26)

The second term in the above expression is equal and opposite to the term in Eq. 3.25.

Summing the curvature dependent terms in (i),(ii) and (iii), the energy costs of increased

area by the deformation field is shown to be offset by the energy decrease owing to the area

eliminated under the particle. This exact canceling of two effects occurs both for the pinned

and equilibrium contact lines.
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To complete this derivation, the contribution of the (curvature independent) wetting ener-

gies can be simplified by noting,

γ1A1 = γ12πa2(1 + cos θ0), (3.27)

γ2A2 = γ22πa2(1− cos θ0), (3.28)

γ1As = γ14πa2, (3.29)

and

cos θ0 =
γ2 − γ1

γ
, (3.30)

summing these contributions, the net curvature capillary energy to order λ2 is identically

zero, i.e.,

E

γπr2
0

= Ep +O(λ4), (3.31)

where the first term in this expression is Pieranski’s trapping energy [30] for a sphere obeying

an equilibrium contact angle in a planar interface Ep = − sin−2 θ0(1− cos θ0)2. The above

expression is exact up to the λ4 term.

Eq. 3.31 shows that there is no quadratic term in ∆c0 for spheres with equilibrium contact

lines, and that the curvature capillary energies for these particles are extremely weak. A

similar conclusion has been found for perfect disks with circular pinned contact lines [100].

These results differ significantly from prior theory in the literature for this problem. The

origin of the discrepancy is an inappropriate treatment of the contour integral given in

Eq. 3.24, which was assumed to be zero in prior work.

3.3. Experiments

We study migrations of polystyrene colloidal spheres (Polyscicences, Inc.) with mean di-

ameter of 2a = 10 µm. Fig. 3.4.(b) illustrates an SEM image of a microsphere revealing
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qualitatively the surface roughness of the particle. AFM measurement (Bruker Icon) indi-

cates that the root mean squared roughness of the particles is ∼ 15−21 nm (see Fig. 3.4.(c)).

We impose a curvature field to the host interface using a technique reported previously [20]

which we recapitulate briefly. A curved oil-water interface is formed around a micropost

which is either circular or square in cross section (see the schematic in Fig. 3.4(a)). The

interface pins to the edge of the post, and has a height Hm at the post’s edge. The post

is centered within a confining ring located several capillary lengths away
rring√

γ
∆ρg

= 5.5,

where rring is the radius of the outer ring. By adjusting the volume of water, the slope

of the interface at the post’s edge is adjusted to be ψ ∼ 15 − 18◦. This system is gently

covered in hexadecane in order to prevent evaporation and to protect the interface from

stray convection. The interface height in a region sufficiently close to the circular post is

well approximated by:

hmicropost = Hm −Rm tanψ ln(
L

Rm
), (3.32)

where L is the distance to the center of the post. This interface has zero mean curvature

H0 = (c1 + c2)/2 = 0, and finite deviatoric curvature ∆c0 = c1 − c2 varying with the radial

position. Owing to the finite volume of fluid, there is a weak but negligible pressure drop

across the interface.

A dilute suspension of microspheres in hexadecane is prepared. A drop of this suspension is

carefully dropped on top of the oil phase. The particles then gently sediment under gravity.

Once attached to the interface, they migrate uphill in a deterministic path along devia-

toric curvature gradients. We only focus on isolated particles far from neighbors (distances

greater than 10-15 radii) and the micropost (L > Rm + 10a) to rule out the pair capillary

and hydrodynamic interactions [109]. The capillary energy was estimated by evaluating

the total dissipation according to the appropriate drag formula (Stokes’ law) along particle

trajectories.
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3.4. Results and Discussions

In Fig. 3.5(a), we illustrate the time stamped images of trajectories for migrating spheres

for constant time increment (∆t = 1 s). These images reveal that the spheres are propelled

faster in the region closer to the post where the magnitude of deviatoric curvature is greater.

Note that the size of the spheres are so small that the inertial effects can be neglected (Re ∼

10−3) within the entire trajectory. These trajectories are nearly radial, as the corresponding

curvature field around the cylindrical post has no dependency on the azimuthal angle φ.

Fig. 3.5(b) shows the radial distance of the migrating microspheres from the center of the

post, L, as a function of time remaining until contact, t− tc, where tc is the time in which

the sphere reached the edge of the post. Qualitatively, these trajectories are similar to

those reported previously for microdisks with pinned contact lines migrating in curvature

fields. To investigate this quantitatively, we compare energy dissipated along the particle

trajectory to theory.

To do so, we note that, in the limit of zero inertia, and neglecting potential energy differ-

ences, the curvature capillary energy expended to drive the particles is balanced by viscous

dissipation. The total energy dissipated along the trajectories can be extracted from the

trajectories according to ∆E =
∫ L
L0
FdragdL

′ where L0 is the reference point and L is an

arbitrary point along the trajectory. We used the Stokes’ drag formula for a sphere equally

immersed in the subphase fluids, Fdrag = 6πµUa, where µ is the average viscosity of oil and

water evaluated at the temperature of the environment. The curvature capillary energy

found over the trajectories beginning at a∆c0 = 6 × 10−3 and ending ten particle radii

from the micropost was plotted against a∆c0 as open symbols in Fig. 3.6; this range of

a∆c0 was selected because all trajectories captured in experiment spanned this region. The

relationship is linear and the total energy difference along a typical trajectory is thousands

of times greater than thermal unit energy kBT . The curvature capillary energy is presented

normalized by γπa2 = 8.8 × 108 kBT ; the energy for the segment of the particle paths

shown in Fig. 3.6 is in the range of 6, 000 − 50, 000 kBT . This magnitude indicates that
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the equilibrium wetting boundary condition cannot be responsible for the migration of the

spheres in our experiment, as according to Eq. 3.31 for a typical microsphere a = 5µm

with equilibrium contact angle of θ = 90◦, the curvature capillary energy is of magnitude

∆E ∼ γπa2 sin2 θ0λ
4 ∼ 10kBT . Moreover the relationship between ∆E and r0∆c0 would

be highly nonlinear. Hence, we conclude that the equilibrium contact angle boundary con-

dition does not apply to our microspheres. Rather, the microspheres migrate with pinned

contact lines.

We propose that this curvature migration is an assay for nanometric corrugations of the

contact line in a trapped state. The magnitude of the quadrupolar mode hp for the contact

line undulations can be inferred from the trajectories in Fig. 3.5. While 7 of 10 of the

reported trajectories have hp similar in scale to the particle roughness (between 20−40 nm),

magnitudes for the remaining trajectories were larger, with hp as high as 130 nm for one

trajectory. These results indicate that similar particles have differing pinning states at the

interface, with significant consequences for their ensuing dynamics. The role of gravity

for particles on curved interfaces has been addressed previously [52, 100]. Because the

Bond number is negligible, particle weight plays no role in the deformation of the interface,

and the analyses above are valid. For weak enough curvature gradients, however, particles

cannot overcome potential energy barriers and thus can attain an equilibrium height.

This form for the curvature capillary energy has been invoked previously to study curva-

ture capillary migration of cylindrical microparticles which followed complex trajectories on

interfaces around square microposts with associated complex curvature fields [20]. If the

spheres indeed have identical physics, they, too, should migrate along complex contours in

such a curvature field. We have studied trajectories of spheres in this setting (see Fig. 3.7(a),

in which isolated particles migrate to corners, as does a pair of dimerized particles at the

lower right hand corner). To compare particle trajectories to local curvatures, the curvature

field around the square micropost was determined using a Galerkin finite element method

(Simulation ran by Dr. Sharifi-Mood). Vectors indicating the magnitude and direction
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of gradients in deviatoric curvature are indicated in Figures 3.7(b) and (c). The spheres

migrate from their initial point of attachment along paths defined indeed by these vectors.

The ability of the sphere to trace this complex trajectory confirms the underlying physics

of microparticles with pinned contact lines is similar regardless of details of the particle

shape, and is consistent with the concept that the particle quadrupolar mode couples to

the underlying saddle shaped surface.

3.5. Conclusions

We study micropshere migration owing to curvature capillary energy in theory and experi-

ment. We show that for equilibrium contact angles, the curvature capillary energy is very

weak, with leading order contributions of fourth order in deviatoric curvature or higher, in

contradiction to the accepted form in the literature. This leading order contribution would

amount to roughly 10 kBT in our experiments, several orders of magnitude lower that we

measure in experiment. In experiment, microspheres migrate along deterministic trajec-

tories defined by curvature gradients. We find that the corresponding capillary curvature

energy propelling the particles ranges from 6, 000− 50, 000 kBT . We compare these obser-

vations to arguments derived previously for particles with pinned contact lines, in which

the quadrupolar mode of the particle contact line undulation couples with the curvature

field to yield an energy linear in the deviatoric curvature. The data indeed obey this form,

allowing the magnitude of the particle induced quadrupole to be inferred. In many cases,

it is comparable to particle roughness as determined by AFM. However, significantly larger

magnitudes are also found, suggesting that similar particles can have different pinned states

at the interface. These results imply that contact line pinning occurs for microparticles at

these curved fluid interfaces with dramatic implications in their dynamics at interfaces.
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3.6. Summary of capillary attraction

3.6.1. Curvature capillary energy

When a particle with a pinned, undulated contact line attaches to a curved fluid interface,

the interface curvature alters the trapping energy. In the limit of small slopes, for particles

small compared to the principal radii R1, R2, the host interface near the particle center

can be expanded in terms of the mean curvature H0 = 1
2(c1 + c2) = 1

2( 1
R1

+ 1
R2

) and the

deviatoric curvature ∆c0 = c1− c2 = 1
R1
− 1

R2
, where c1 and c2 are the principal curvatures

evaluated at the particle center of mass. In the absence of the particle, the interface shape

is

h0 =
r2H0

2
+

∆c0

4
r2 cos 2φ. (3.33)

When a particle attaches to the curved interface, the trapping energy is:

∆E = (γSL − γSV )∆ASL + γ∆ALV + γδA+ PV work. (3.34)

We consider the right-hand side of this expression term by term. The wetting energies are

unchanged from the planar case given the symmetries of the Fourier modes that describe the

contact line. The hole made by the particle in the interface and the area in the distortion

field both depend on the curvature field, and must be computed. Finally, changes in height

owing to the particle require PV work against the pressure jump at the interface. To

evaluate these terms, we find the disturbance made to the interface shape by the particle
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η = h− h0, which requires solution of a simple boundary value problem:

∇2h = 0, (3.35)

h(r = a) = hqp cos 2φ, (3.36)

h(r →∞) = h0, (3.37)

h = h0 + ηqp + ηin (3.38)

= h0 + hqp
a2

r2
cos 2φ− a2∆c0

4

a2

r2
cos 2φ+ ω0.

The disturbance η has two parts: the particle imposed distortion ηqp and the induced

disturbance or reflected mode ηin (Fig. 1.4). Additionally, the particle shifts vertically to

situate itself in the interface with finite mean curvature ω0 = a2H0
2 ; this requires PV work:

∆P

∫∫
P

(h0 −
H0a

2

2
)rdrdφ = −γπa2H

2
0a

2

2
. (3.39)

The area of the interface is given by the sum ∆ALV + δA. By attaching to the interface,

the particle forms a circular hole with area πa2, with a correction owing to curvature:

∆ALV = −
∫∫
P

(
∇h0 · ∇h0

2
)rdrdφ = −πa2(1 +

a2H2
0

4
+
a2∆c2

0

16
). (3.40)

To evaluate δA, several contributions must be evaluated.

δA =

∫∫
I

(
∇ηin · ∇ηin

2
)rdrdφ+

∫∫
I

(∇ηin · ∇ηqp)rdrdφ

+

∫∫
I

(
∇ηqp · ∇ηqp

2
)rdrdφ+

∫∫
I

(∇η · ∇h0)rdrdφ, (3.41)

The first term in this expression is the area from the induced disturbance around the particle.

The divergence theorem requires that this term be equal and opposite to the deviatoric
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curvature correction to ∆A. The second term is the interaction of two disturbance terms:

∫∫
I

(∇ηqp · ∇ηin)rdrdφ = −π
2

∆c0a
2hqp. (3.42)

The third term is the area from the particle sourced disturbance, evaluated previously, and

the final term is identically zero. Gathering terms, the trapping energy on a curved interface

is:

∆E = ∆Eplanar − γπa2(
3a2H2

0

4
+
hqp∆c0

2
), (3.43)

where ∆Eplanar is defined in Eq. 1.13. The trapping energy is reduced by interface curvature.

In this discussion, we assumed that the particle’s quadrupolar mode was aligned with the

saddle shape of the interface. If this were not the case, there would be a capillary torque

exerted on the particle which would cause the particle to align [91], and the energy expression

becomes:

∆E = ∆Eplanar − γπa2(
3a2H2

0

4
+
hqp∆c0

2
cos 2α), (3.44)

where α is the angle between the quadrupolar rise axis on the particle and the first principal

axis. Finally, throughout this discussion, we have assumed that θtr = 90o. If that were not

the case, in all pre-factors, the radius a should be replaced with a sin θtr.

This expression has important consequences for particles for varying curvature fields. We

have focused on constant mean curvature interfaces, for which we define the curvature

capillary energy at a given position of the interface Ecc = ∆E −∆Eplanar:

Ecc = −γπa2hqp∆c0

2
cos 2α, (3.45)

This predicts a local torque enforcing alignment along the principal axes and a force on the

particle propelling it toward high curvature regions. This expression is similar to Equation
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1.24, in which one particle moves in the curvature field made by its neighbor. In that

case, the neighboring particle made a deviatoric curvature field in the interface ∆c0 =

12hqp
a2

r4
12
cos2(φ+ α1).

3.6.2. Planar disks trajectories with corrected drag coefficient

In Chapter 2, we’ve studied 10 µm disk migration on curved fluid interfaces formed around

a circular micropost [100]. In the work by Yao et. al, the capillary energy that drive the

small disks to high curvature region predicts a linear dependence on the deviatoric curvature.

Here, we re-plotted one trajectory of a small disk migrating from 10 radii away from the

micropost to the edge of a 250 µm diameter micropost in Fig. 3.8. The dotted line shows

the energy dissipation using a constant drag coefficient; deviates slightly from linearity in

high a∆c region. Under lower Reynolds number, Stoke’s law governs the resistance of a

spherical particle moving in a fluid. However, when the particle approaches a boundary, a

rigid wall or a free surface, special care needs to be taken to correct Stoke’s resistance [109].

In contrast, the solid line shows the energy dissipation incorporating the hydrodynamic

effect due to the near field using Brenner’s drag coefficient. Indeed, it is linear all the

way to the edge of the micropost. Inset shows the trajectory has a 1
4 powerless in the far

field, which indicates the quadrupolar interaction [49, 110]. Since the correction to the drag

coefficient is used in every point from the trajectory, the energy dissipated is greater than

the curve with constant drag coefficient, which will predict a slightly higher hqp value for

the experiments. Here I also plotted the trajectories previously reported in Chapter 2 using

the corrected drag coefficient in Figure 3.9. The inferred hqp ranges from 71− 101 nm.

3.6.3. Analogies to electrostatics

Capillary interactions are similar to electrostatic interactions [111]. The electrostatic energy

U is often likened to the capillary energy. We explore this concept further for a disk that

is attached to a curved interface. First we compare a disk with a circular, pinned contact

line to a grounded disk in an external field. Then we consider a disk with a quadrupolar
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undulated contact line to a disk with a quadrupolar edge potential.

The interface height above the plane of the interface h is analogous to the electrostatic

potential ψout external to the particle. The potential at the particle edge corresponds to

boundary conditions on h at the contact line. Particles with finite edge potentials, however,

have two quantities that are absent in capillarity; these include the electrostatic potential

inside the particle ψin and the charge density at the contact line σ.

We evaluate U for a disk in an external field of form

ψext = ψ0
r2

a2
cos 2φ. (3.46)

A grounded disk in an external field

Consider a grounded disk with radius a in an unbounded domain I in a far field potential

ψext. The potentials inside ψin and outside of the disk ψout are:

ψout = ψ0(
r2

a2
− a2

r2
) cos 2φ, (3.47)

ψin = 0. (3.48)

The total electrical energy U is:

U =
1

2

∫∫
I+P

ρ(r)ψ(r)dA (3.49)

where I + P is the entire domain, dA is an area element, and ρ(r) is the charge density in

the system. However, the sole charge is σ, the induced charge on the surface of the disk,

σ = er · (−ε∇ψ(r ≥ a))|r=a = −4εψ0a
−1 cos 2φ, (3.50)
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where er is the unit normal pointing away from the disk, and ε is the relative permittivity

of the disk to that of free space. The expression for U can be recast and evaluated:

U =
1

2

∫ ∞
a

∫ 2π

0
σδ(r − a)ψ(r)rdφdr = 0, (3.51)

where δ is the Dirac delta function. Recalling that, for a grounded disk, ψ(r = a) = 0, U

is zero. This result agrees with the capillary energy we have derived for circular, pinned

contact lines on curved interfaces, for which the capillary energy is zero. In particular, there

are no terms in ψ2
0, or analogously (a2∆c0)2 whose contributions have been the subject of

discussion [100, 108, 112].

A disk with an edge potential

Consider a dielectric disk of radius a with edge potential ψ(r = a) = q cos 2φ in an un-

bounded domain with far field potential ψext. Here, ψin is finite, as the disk polarizes owing

to the edge potential. This finite potential has no analogy in the capillary problem; this will

propagate throughout the calculation of U . For simplicity, we consider a disk and external

domain of the same relative permittivity. The electric potentials inside and outside the disk

are subject to the boundary conditions:

ψin
∣∣
r=a

= ψout
∣∣
r=a

, (3.52)

er · (∇ψin −∇ψout)
∣∣
r=a

=
σ

ε
. (3.53)

with solutions:

ψin = q
r2

a2
cos 2φ, (3.54)

ψout = q
a2

r2
cos 2φ+ ψ0(

r2

a2
− a2

r2
) cos 2φ. (3.55)
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Notice that ψout has the same form as h for a particle with a pinned, quadrupolar contact

line on a curved interface. The corresponding egde charge density is:

σ = 4ε
(q − ψ0)

a
cos 2φ. (3.56)

Since this is the sole charge in this system, U is:

U =
1

2

∫ ∞
0

∫ 2π

0
σδ(r − a)ψ(r)rdφdr

= −2πεψ0q + πεq2 + πεq2. (3.57)

We break this expression into three terms; the first two are analogous to the net capillary

energy for a particle on a curved interface; these include the curvature capillary energy Ecc

in Equation (3.45) and the self energy owing to the particle distortion in Equation (1.13).

The third term, of the same form as the self energy, is not present in the capillary energy.

To understand the origin of this term, we use Gauss’s law to recast U :

U = − ε
2

∮
∂(I+P )

(ψ∇ψ) · n dl +
ε

2

∫∫
I+P

(∇ψ)2dA, (3.58)

where the second integral can be decomposed into the domains inside and outside of the

disk:

∫∫
I+P

(∇ψ)2dA =

∫∫
P

(∇ψin)
2
dA+

∫∫
I

(∇ψout)2
dA, (3.59)

The contribution to U integrated over P is:

ε

2

∫∫
P

(∇ψin)
2
dA = επ

∫ a

0

4q2

a4
r3dr = επq2, (3.60)

This is the energy required to polarize the disk. This has no analogy in the capillary

problem. The process of charging the particle, which generates the potential inside of the
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particle, differs from the process of undulating the contact line, which relies on wetting

energies or pinning sites. When this term is disregarded, the analogy between electrostatics

and capillarity holds.

3.6.4. Key findings on curved interfaces

Spherical particles on curved interfaces have been analyzed in several limits. Particles with

contact angle of 90◦ on bounded cylindrically-shaped interfaces are predicted to induce

quadrupolar distortions that drive assembly [50]. Particles with contact lines at equilibrium

on unbounded interfaces are predicted either to interact with capillary energies that are

quadratic in the deviatoric curvature [92] or to fail to interact [108], depending on the

treatment of the far field boundary in evaluating the interfacial area. Since contact line

pinning is ubiquitous, this case is difficult to interrogate in experiment. Finally, particles

with pinned contact lines on unbounded interfaces have been addressed. This case, which is

identical to the case of a disk on the interface except for the constant wetting energy terms,

is discussed in section 3.6.1.

Structures that clearly reveal quadrupolar symmetries were observed on interfaces with

complex curvatures. The interfaces were formed by placing droplets of oil on surfaces

with patterned hydrophobic surfaces; the resulting interfaces had constant mean curva-

ture but spatially varying deviatoric curvatures [86]. Charged spherical microparticles on

these interfaces form a square lattice characteristic of capillary quadrupolar interactions

balanced by electrostatic repulsion. The square lattice is strained, consistent with the par-

ticle quadrupolar distortion aligning along the spatially varying principle axes. At particle

densities greater than 0.33, hexagonal lattices begin to appear, characteristic of colloidal

crystals at interfaces absent strong quadrupolar modes.

Spherical particles also respond dynamically to curved interfaces. Silica colloids at air-water

interfaces displayed different behaviors depending on particle wetting [52]. For contact

angles up to 5◦, particles settle to the minimum interface height, consistent with weak
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capillary interaction. For contact angle of ∼ 30◦, particles migrate along the principal axis

to equilibrium sites.

We have studied the dynamics of microparticles on curved oil-water interfaces for several

particle shapes including disks [100], spheres [108] and cylinders [20]. These experiments are

performed on interface shapes molded around a micropost. A vertical cylindrical micropost

hundreds of microns in diameter is fabricated from epoxy resin on a silicon substrate. The

post is surrounded by a low ring, located several capillary lengths away. This space is filled

with water so that the contact line pinned at the edge of the micropost. The maximum slope

of the interface occurs at the micropost given by the angle ψ ∼ 15◦ with the horizontal. A

layer of hexadecane is gently placed over this water layer to prevent evaporation, dampen

stray convection, and to allow particles to be introduced to the interface via sedimentation

through the oil. This apparatus is placed under an optical microscope and imaged from

above; particle trajectories are recorded and analyzed. Near the post, in the region of

interest, the interface height decays logarithmically with distance L from the center of the

micropost. In this region, the mean curvature is negligible and the deviatoric curvature

∆c0 is known, ∼ −L−2. Particles attach to the interface and migrate along the curvature

gradient to sites of high deviatoric curvature, in agreement with the predictions in Equation

3.45. Results are summarized in Figure 3.10, including time-stamped images of typical

trajectories (left-most column), the energy dissipated along a particle path (center column)

and observed power laws implied by the equality of viscous drag and the curvature capillary

force (right-most column). The energy dissipated versus deviatoric curvature is linear in ∆c0

with coefficient of linear regression R2 = 0.999 or better. As the cylindrical microparticle

migrates, it aligns its quadrupolar rise axis with the rise axis toward the micropost, in

agreement with the capillary torque implied by Equation 3.45. Recent work reveals analogies

between capillary migration on curved fluid interfaces and Janus bead migration on tense

lipid bilayer vesicles. The tense vesicle shape obeys the Young-Laplace equation. The

particle migrates along curvature gradients on GUVs stretched to impose curvature fields,

with energy dissipated linearly in the deviatoric curvature [21]. For all of these studies, the
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interface slope is small and the particle is much smaller than the micropost. In recent work,

we have challenged these assumptions. That discussion is described in Chapter 4.

3.6.5. Summary

The discussion of lattice formation by repulsive particles on interfaces with weakly varying

deviatoric curvatures is one interesting limit for structure formation on curved interfaces.

Particles formed a square lattice, and neither assembled nor migrated. Structure formation

on interfaces with strong curvature gradients is another interesting limit. For example,

consider cylindrical particles on an interface pinned to a square micropost (see Fig. 3.10b).

Curvature gradients near the corners are very steep; particles migrate along curvature gra-

dient lines to form trapped structures influenced by the curvature gradients, and particle

pair interactions, and potentially by multibody effects and local non-linearities. Between

these limits, tunable structures informed by curvature gradients may be formed. This is a

focus of ongoing work.
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Figure 3.1: Schematic representation of a sphere trapped at a curved interface and its
mapping to the tangent plane.
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Figure 3.2: Schematic representation of a sphere trapped at an interface with (a) a pinned
undulated contact line and (b) an equilibrium wetting boundary condition with a contact
angel θ0.
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Figure 3.3: (a) Schematic view of a sphere of radius a at a liquid interface in x − z plane,
where θ0 and r0 are the contact angle and the radius of the contact line for a flat interface.
h0 describes a curved interface without a particle, h = h0 + η accounts for the height of
interface in presence of the particle. θ is the polar angle of the deformed contact line, and ρ
is its radial position. (b) Schematic view of the contact lines in x− y plane in flat (in blue)
and curved interfaces (in red).
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  10 µm

ψ

Water
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Top view

Figure 3.4: (a) Schematic view of curvature field around the micropost. (b) SEM image
of a microsphere and PDMS negative of the air-water interface showing particle roughness
and (C) AFM reveals nanoscopic roughness of the sphere surfaces with RMS values ranging
of 15− 21 nm.
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(b)$(a)$

Figure 3.5: (a) Time stamped image of microspheres trajectory (scale bar = 100 µm). (b)
Trajectories for spheres migrating on the interface. Colors for trajectories in (b) correspond
to trajectories of similar colors in (a).
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hp = 20 nm

hp = 40 nm

hp = 130 nm

Figure 3.6: Comparison of predicted curvature capillary energy for particles with pinned
contact lines (Eq. 3.8) (solid lines) against those extracted from experiment for trajectories
in Fig. 3.5(b) for isolated particles (symbols). The colors correspond to the trajectories in
Fig. 3.5(b). The linear fit is excellent for all trajectories, with coefficient of linear regression
R2 = 0.999 for the worst case.
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Figure 3.7: (a) Time-stamped trajectories of microspheres around a square post illustrating
that the microspheres follow complex trajectories as defined by the deviatoric curvature field
(the scale bar is 100µm). Numerically evaluated curvature gradient around (b) a square
post and (c) a corner of the square post. The arrows scaled with the magnitude of deviatoric
curvature gradient.
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Figure 3.8: Energy dissipated of a microdisk (2a= 10µm) on a curved interface (Rm =
125µm) from 10 radii away to the contact of the micropost using Brenner’s drag coefficient
[109]. Dotted blue curve shows the energy dissipation using a constant drag coefficient,
CD = 1. Solid blue curve shows the energy dissipation using Brenner’s drag coefficient
[109]. Inset: plot presents the separation distance versus the contact time and the dotted
line shows a slope of 1

4 .
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Figure 3.9: Energy dissipated of microdisks (a= 5µm) on a curved interface (Rm = 125µm)
for the full trajectory (25 radii away) to the contact of the micropost using Brenner’s drag
coefficient [109]
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Figure 3.10: Curvature capillary migration of disk (a), sphere (b) and cylinder (c). Left-
most column shows the time-stamped image of trajectories of microparticles migrating
toward a circular micropost. Center column shows curvature capillary energy for particles
are linear in deviatoric curvature. Right-most column plots power law dependence of center-
to-center separation distance (L) versus contact time. (a) Inset: side view of the curved
interface. Scale bars are 100 µm. (a) Reprinted from Reference [100], copyright (2015),
with permission from Elsevier. (b) Adapted from [108] with permission from The Royal
Society of Chemistry. (c) Reprinted with permission from [20], copyright (2011), National
Academy of Sciences.
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CHAPTER 4 : Curvature capillary repulsion: Large disks at curved interfaces

4.1. Introduction

Directed assembly of colloids is an exciting field in materials science to form structures with

new symmetries and responses. We have been studying how interface curvature can be used

in new ways to guide structure formation. On a fluid interface, the area of the deforma-

tion field around adsorbed microparticles depends on interface curvature; particles move to

minimize the excess area of the distortions that they make in the interface. For particles

that are sufficiently small, this area decreases as particles move along principle axes to sites

of high deviatoric curvature. We have studied this migration for microparticles on a curved

host interface with zero mean curvature created by pinning an oil-water interface around

a micropost. Here, on a similar interface, we demonstrate capillary curvature repulsion,

that is, we identify conditions in which microparticles migrate away from high curvature

sites. Using theory and experiment, we discuss the origin of these interactions and their

relationship to the particle’s undulated contact line. We discuss the implications of this

new type of interaction in various contexts from materials science to microrobotics.

In this chapter, I report work that will be published with co-authors Giulia Bigazzi, Dr.

Lu Yao and Dr. Nima Sharifi-Mood. These results were obtained in collaboration. In

particular, in this study, I performed the experiments and lead the analysis.

4.2. Background

Fluid interfaces are excellent sites to organize microscale particles with potential to form

new functional structures. Microparticles are firmly attached to fluid interfaces by signif-

icant trapping energies associated with the elimination of a small patch of interface by

the particle adsorption. On planar interfaces, crystalline packing of microparticles can be

achieved, e.g., by exploiting electrostatic repulsion and weak confinement in a gravitational

well [30]. More complex arrangements can be achieved by a number of routes. For example,
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if complex fluids like nematic liquid crystals are used as subphases, repulsion between the

colloids owing to their topological defects can also form crystalline packings [113], and elastic

energies in the nematic subphase can guide complex open structures to form [24]. Particle

shape can also dictate the symmetries of structures at fluid interfaces; the capillary energy,

given by the product of surface tension and area, near a particle depends on features like

particle aspect ratio and the presence of sharp edges. Thus, capillary interactions depend

on particle shape and orientation, so particles assemble in preferred configurations, e.g.,

uncharged ellipsoids in side-to-side configurations [68, 72] and cylindrical microparticles in

end-to-end configurations [91, 64, 65]. In this communication, we discuss recent studies of

capillary assembly at curved fluid interfaces, introduce the new concept of curvature capil-

lary repulsion, and conclude with a broader vision of how these interactions and analogous

interactions in other soft matter hosts can be exploited in a number of contexts.

On a curved fluid interface, the excess area around a colloid depends on the underlying

interface shape. As a result, curvature can act as an “external field” to dictate particle

behavior. In prior work, we have reported capillary curvature attraction in the limit of

small particle radius to interface radius of curvature [20, 100, 108, 114]. Here we report

more complex behavior that emerges when this limit is relaxed. To situate this result, we

first briefly recapitulate the main concepts that explain curvature capillary attraction. We

then motivate our discussion of curvature capillary repulsion.

The phenomenon of capillary curvature attraction is now well established, having been

reported for microcylinders [20], microdisks [100], and microspheres [108]. These studies

were performed for particles on a host interface created by pinning a water interface around

a micropost of height Hm, radius Rm, with interface slope at the micropost of − tan Ψ,

where Ψ is roughly 15◦. A layer of hexadecane is gently placed above this water layer

to minimize fluxes from evaporation. A schematic of this arrangement is shown in Fig.

4.1a. Particles are introduced to this oil super-phase sediment under gravity and attach to

the interface, avoiding the use of spreading solvent. The interface slope is small, and all
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experiments are performed at distances from the center of the micropost L small compared

to the capillary length. Similar migrations are observed for cylinders, spheres and disks

[114]. A typical trajectory for a disk migrating on the curved fluid interface is shown in Fig.

4.1c. The particle attaches to the interface at some distance from the micropost. It then

migrates along paths radial to the micropost until contact. For this situation, the interface

shape is governed by the Laplace equation. The host interface shape h(L) in the absence

of the particle is simply

h(L) = Hm −Rm tan Ψ ln(
L

Rm
) (4.1)

The interface shape has zero mean curvature, and proves a versatile platform for investiga-

tion of curvature capillary effects. This expression can be expanded in a polar coordinate

system (r, φ) defined in the plane tangent to the interface in powers of λ = a
L0

, where a is

the particle radius and L0 is the distance from the post center where a particle adsorbs. To

leading order, the local host interface height above this reference plane has the form:

h0(r, φ) =
∆c(L0)

4
r2 cos 2φ (4.2)

This is a saddle surface, characterized by the deviatoric curvature ∆c = 1
R1
− 1

R2
, where R1

and R2 are the principal radii of curvature at L0. When colloidal particles attach to the

interface, they make distortions in the interface. Colloidal particles typically have pinned

contact lines [53, 115, 57]; these contours can be described in terms of an expansion in

Fourier modes. Each mode excites an interfacial distortion given by the corresponding

mode in a multipole expansion. For particles with negligible body forces and body torques,

the leading order Fourier mode has quadrupolar symmetries [61, 114], so the contact line,

to leading order is described:

hparticle(r = a, φ) = h2 cos 2(φ+ α2) (4.3)
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where h2 is the magnitude of the quadrupolar mode, and the phase angle α2 is zero when the

quadrupolar rise axis aligns with rise axis of the saddle surface. The interfacial distortion

associated with this contour couples with the interface curvature in a manner akin to a

charged multipole in an external electric field. For a small particle [100, 114], the capillary

energy for a microparticle on such a curved interface differs from the case of a planar

interface:

E(L0) = Eplanar − γπa2h2∆c(L0)

2
cos 2α2 (4.4)

This expression predicts a torque and a force; it indicates that particles decrease their

capillary energy by rotating the particle to align its quadrupolar rise along the rise axis of

the host interface (α2 = 0), as has been observed for cylindrical microparticles [63, 20], and

by migrating to sites of high curvature.

This predicted linear dependence of the capillary energy on the deviatoric curvature at the

particle center of mass can be compared to experiment like that presented in Fig. 4.1 c-d.

The Reynolds number Re= avρ
µ ∼ 10−5 for a typical trajectory, where a is the characteristic

length of the particle, v is the particle velocity, ρ is the fluid density, and µ is the fluid

viscosity. Thus, the particles migrate in creeping flow, and the energy dissipated along a

trajectory can be extracted by integrating along a particle path.

∆E = γπa2h2

2
(∆c(L0,f )−∆c(L0,i))

= 6πµa

sf∫
si

CDvds (4.5)

We have performed this integration two ways. We have truncated the particle trajectory

∼ 10 particle radii from the post to avoid hydrodynamic interactions with the wall, adopting

Lamb’s drag coefficient on a disk [98]. We have also integrated over the energy dissipated

over the entire trajectory, adopting drag coefficients for disks near bounding surfaces in Fig.

4.1c (details in Appendix A) [116]. These graphs confirm the predicted linear dependence
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of the migration energy on the local deviatoric curvature, and allow the magnitude of

h2 ∼ 71− 101 nm to be inferred. From (4.4), the capillary force can be found:

Fcap = γπa2h2

2

d∆c

dL0
δL (4.6)

A balance of this force and viscous drag predicts a power law dependence in L0 vs. (tf − t),

for particles far enough from the post to neglect hydrodynamic interactions, where tf is

the time that the particle ceases its migration. This power law is apparent in the data

(Fig. 4.1d). Note that the trajectories are non-Brownian; typical energy dissipated along a

trajectory is of order 105kBT . Typical capillary forces magnitudes are ∼ 10pN for a disk of

radius 10 µm for the range of h2 inferred. The gravitational force on the particle can also

be estimated [42, 117]. The particle migrates to minimize its potential energy, constrained

to move along the interface:

Eg = [(ρp − ρ1)Φ1 + (ρp − ρ2)(1− Φ1)]Vpgh (4.7)

where ρp is the particle density, ρi is the density of water (i=1) and oil (i=2), and Φ1 is the

volume fraction of the particle immersed in the aqueous phase, and Vp is the volume of the

particle. The corresponding force owing to gravity is:

Fg = −[(ρP − ρ1)Φ1 + (ρP − ρ2)(1− Φ1)]VP g
δh

δz
(4.8)

The ratio of the gravitational force to the capillary force is between 10−5 to 10−4. The

negligible contributions by gravity is also reflected in the small value for the Bond number,

a dimensionless number defines the contribution of gravitational forces to surface tension

forces, Bo = ∆ρgL2

γ = 1.3× 10−6.

What if we consider larger particles or smaller posts? What new phenomena emerge? Such

a trajectory is shown in Fig. 4.1e for a disk 125 µm in diameter on an interface similar to
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that in Fig. 4.1c. This larger particle moves along a roughly radial path away from the

post. Here, we delve into the origin of this apparent curvature repulsion, and find a rich

variety of behaviors.

4.3. Theory

We have considered several potential sources of this repulsion. Gravitational forces on

interfacially-trapped particles remain small, even for these larger particles. Interactions

with the micropost can also be considered. Equation (4.4) was derived using the method

of reflections [77, 99], in which the micropost determines the host interface shape near

the particle, and the disturbance made by the particle is determined assuming a pinned

contact line. The curvature-dependent part of the energy associated with this disturbance

is reported in (4.4). A similar calculation can be done to understand interactions of the

particle-sourced disturbance with the micropost. However, the energy associated with these

interactions is negligible, with largest contribution being two orders of magnitude smaller

than the leading order term (see Appendix A). Finally, we consider the role of higher order

Fourier modes in the particle’s distorted contact line, which can couple with higher order

modes in the local description of the host interface. Theory presented below shows that

the importance of these modes increase with λ; we present a simple theory based on these

interfacial details, and compare it favorably to the experiments.

Here, we derive a more general expression for a particle interacting with the host interface

shape. The entire host interface profile is described by (4.1). When a microdisk attaches

to this interface at some distance L0 from the center of the post, the disturbance created

by the particle decays monotonically over distances comparable to the particle radius a.

To understand the energy associated with this deformation, we first find an expression for

the local shape of the host interface at L0. In the limit of λ= a
L0

< 1 we expand (4.1) in a

power series in a local coordinate x, y, z with origin at L0 (Fig. 4.1b), where the height is

defined as the distance above the plane tangent to the interface. We perform a coordinate
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transformation, using the following relationship between the two coordinates,

L2 = X2 + Y 2 (4.9)

X = L0 + x (4.10)

Y = y (4.11)

Z = Z0 (4.12)

where X, Y, Z are the coordinate centered at the bottom center of the micropost, Z0 is the

interface height at the particle center of mass, and h0 is the height of the interface above

Z0. Expanding the natural log term in (4.1), and scaling heights with a, the dimensionless

interface profile is

h̃0 = 1
2
λRm tanψ

L0
(x̃2 − ỹ2)− λ2Rm tanψ

L0
( x̃

3

3 − x̃ỹ
2)

+1
4
λ3Rm tanψ

L0
(ỹ4 + x̃4 − 6x̃2ỹ2) + ... (4.13)

where h̃0=h
a , x̃=x

a , ỹ = y
a . Equation (4.13) can be recast in a polar coordinate x̃ = r̃ cosφ,

ỹ = r̃ sinφ:

h̃0 =
1

2

λRm tanψ

L0
r̃2 cos 2φ− 1

3

λ2Rm tanψ

L0
r̃3 cos 3φ+

1

4

λ3Rm tanψ

L0
r̃4 cos 4φ+ ... (4.14)

Noting that ∆c=2Rmtanψ
L0

2 the local description of the host interface shape becomes,

h0 =
1

4
∆cr2 cos 2φ− 1

6

∆c

L0
r3 cos 3φ+

1

8

∆c

L0
2 r

4 cos 4φ+ ... (4.15)

A circular disk on the fluid interface disturbs the interface height owing to its pinned contact

line; the particle-sourced disturbance owing to the pinned, undulated contact line can be

expressed in terms of a multipole expansion:

hparticle = h2
a2

r2
cos 2(φ+ α2) + h3

a3

r3
cos 3(φ+ α3) + h4

a4

r4
cos 4(φ+ α4) + ... (4.16)
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where the subscripts 2, 3, and 4 indicate mode of deformation, e.g., the quadrupolar, hexap-

olar, and octopolar modes of deformation and αn is the phase angle for mode n. To find

the interface shape for the particle attached to the interface, we note that the solution takes

the form of a multipole expansion, and apply the pinning boundary condition,

h(r = a, φ) = hparticle(r = a, φ) (4.17)

and require that, far from the particle, the interface recovers the host interface shape,

lim
r→∞

h(r, φ) = h0 (4.18)

The full expression of the resulting interface profile near the particle is

h = h0 + hparticle − 1

4

∆ca2

r2
a2 cos 2(φ+ α2) +

1

6

∆c

L0

a3

r3
a3 cos 3(φ+ α3) (4.19)

−1

8

∆c

L0
2

a4

r4
a4 cos 4(φ+ α4) + ...

The capillary energy associated with the particle on this interface is the product of the

constant interfacial tension and the change in surface area owing to particle attachment.

The details of this calculation are reported in our prior work on the quadrupolar disturbance,

so details are not given here. The capillary energy around the particle is:

∆E = γπa2 ∆c

2

{
−h2 cos 2α2 + λh3 cos 3α3 − λ2h4 cos 4α4 + ...

}
+ self terms (4.20)

where the self terms indicate interactions quadratic in the magnitude of each mode that

would occur for particles on a planar interfaces, which are independent of interface shape.

4.4. Experimental

We perform two series of experiments. We study disks of diameter 25 µm and 150 µm

and vary the micropost diameter while fixing its height and the slope of the interface at
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the micropost’s edge. For each experiment, we compute the Bond number Bo; for these

systems Bo ranges from 1 ×10−5 to 6 ×10−5.

4.4.1. Particle fabrication

Epoxy resin particles are fabricated using standard lithographic techniques. A negative

tone photoresist, SU-8 (MicroChem Corp.), is spin-coated onto a chrome-sputtered silicon

wafer. After soft baking at 95◦C, the photoresist is exposed to UV light on a tabletop mask

aligner (OAI Model 100) through a mask with an array of circular holes. The photoresist is

cross-linked on a hot plate at 95◦C. The sample is then developed in SU-8 developer solution

to dissolve the unexposed region, leaving solid circular disks on the wafer. The disks are

released from wafer by sonicating in chrome etchant. Subsequently, particles are cleaned,

washed with water and isopropanol, and stored in hexadecane for further uses. The disk

particles aspect ratio is 0.2, thickness to diameter.

4.4.2. Molding the Interface

We fabricate the vessel used to mold the fluid interface using lithographic techniques given

in detail in a previous publication [20]. In short, three layers of lithography are built on a

silicon wafer: a wetting layer of an array of microcylinders of height 5 µm, a bounding ring

of radius 1.27 cm and height 25 µm, and a micropost of height 250 µm. The micropost

height Hm in all the experiment is 200 µm. Microposts of varying radii are fabricated,

including 47 µm, 57 µm, 125 µm, 250 µm, and 600 µm.

4.4.3. Experimental Protocol

We add water to the vessel to pin at the top edge of the micropost and at the edge of the

bounding ring. The interface slope is determined by the volume of water; the volume is

sufficiently large and the ring is sufficiently far from the micropost that the mean curvature

of the interface is negligible. In these experiments, the pinning angle, ψ, is kept between

15◦ ≤ ψ ≤ 20◦. This is the maximum slope of the interface. We then carefully place
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a layer of hexadecane onto the water subphase to form a curved oil-water interface. We

introduce particles to the interface by gently adding drops of microparticles dispersed in

hexadecane to the superphase where they slowly sediment and attach to the interface.

We study trajectories after this attachment event. The vessel is placed under an upright

microscope (Zeiss M1m) in a reflective mode. Particle trajectories are recorded using a high

resolution camera at rate of 0.141 or 0.200 ms per frame.

4.5. Results and Discussions

We study microparticle migration on well-defined curved oil-water interfaces formed by

pinning water around a micropost. We define λ∗ = a
Rm

; this parameter is the upper bound

to λ around any post. Typical trajectories for disks of 25 µm in diameter on the curved

interface molded by a 57 µm micropost are reported in Fig. 4.2, for which λ∗=0.44. Three

particles approach the micropost with distinct behaviors. The first disk migrated towards

the micropost and stopped at center-to-center distance L0(tf )=50.1 µm from the post (Fig.

4.2a). The second disk migrated at a much slower rate to the micropost and stopped at

L0(tf )=128.0 µm (Fig. 4.2b). The third disk migrated along curvature gradients all the

way to the edge of the micropost (Fig. 4.2c). Interestingly, upon the attachment of the

third disk (green cross mark), the nearby disk (red triangle) was repelled at distances of a

few particle radii by the incoming particle. It moved away from the incoming particle by

orbiting around the post, i.e. keeping a fixed distance from the post.

There is evidence of competing modes when the trajectories are inspected for power law

dependencies. Trajectories in Fig. 4.2 are shown in a log-log as insets. In these insets, the

abscissa is tf − t, and vertical axis is L0/(Rm + a), a normalized center-to-center distance

which is unity for particles attached to posts. Far from the post, all three disks obey a

power law of 1
4 , indicating a dominant quadrupolar mode. The trajectories deviate strongly

from this power law for L0/(Rm + a) ∼ 3, or L0 < 120 µm and λ > 0.1, consistent

with contributions from other modes. These deviations differ from each other; two of the

trajectories steepen, while the other plateaus at distances too far from contact to attribute
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to hydrodynamic interactions.

Experiments with larger disks (2a=150 µm) also reveal interesting behaviors. Images of the

disks on planar interfaces are shown in Fig. 4.3a and b. The disks are quite rough, with

strong distortion apparent near their edges in the interferogram; the interface shape around

the disk is randomly puckered near the particle’s edge and weakly quadrupolar in the far

field; an additional interferogram with random puckering near the disk and only higher

order modes evident ∼ 2.3 radii from the disk in shown in Appendix A. We also show two

example trajectories in Appendix A of such disks. A disk on an interface around a 600 µm

post (λ∗ = 0.25) exhibits curvature attraction until contact, where on an interface around

a 250 µm diameter micropost (λ∗ = 0.6), such a disk moved radially towards the post and

stopped at some equilibrium location L0(tf )=314.7 µm, similar to the results above with

the smaller disks. However, when such disks are placed on an interface around a micropost

with diameter of 125 µm (λ∗ =1.2), the disks are strongly repelled from the high curvature

zones, migrating away from the micropost (Fig. 4.3a) at rapid rates that diminish with

distance from the post.

The energy dissipated along these repulsive trajectories is shown versus L0 in Fig. 4.3c;

these data, graphed against deviatoric curvature, suggest a linear relationship only far from

the post (Appendix A); an inspection of L0 versus t suggests that these particles act as

repulsive quadrupoles in the far field, i.e. that the particles have quadrupolar modes that

are misaligned, and hence repelled from the high curvature regions, with α2 = π/2. The

arrows in these figures indicate that the direction of migration is away from the post.

We have conducted similar experiments with 25 µm disks around microposts of various

diameters where λ∗ is 0.20, 0.44 and 0.53. We summarize our experimental findings for

all of the disks in a histogram in Fig. 4.4 and categorized these behaviors as attraction,

equilibria or repulsion as a function of λ∗. The histogram shows systematic changes with

λ∗. For λ∗ < 0.075 all particles experience capillary curvature attraction and move without

interruption along radial paths to the micropost. For moderate λ∗, particles are either
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attracted all the way to the micropost or find equilibrium locations at distances of several

particle radii from the micropost. For larger λ∗ > 0.5, particles either find equilibrium

locations or are repelled from high curvature regions. Finally, for the largest value of λ∗

explored, all particles were repelled from the high curvature zones.

We interpret these results within the context of (4.20). The contact line on each disk

is determined by randomly distributed rough sites that pin the contact line. Thus, the

amplitude of each mode can vary strongly from particle to particle in the same batch.

Equation (4.20) indicates that each mode has a preferred orientation to minimize the energy

on the interface. For example, for contact lines described by a quadrupolar mode, the energy

is minimized when the quadrupolar rise axis aligns with the rise axis of the interface; this

has indeed been reported for small cylindrical particles on curved fluid interfaces that excite

strong quadrupolar distortions [20]. For contact lines described solely by hexapolar modes

or octopolar modes, particles would orient as shown in Fig. 4.5. Particles experience a

capillary torque to enforce this alignment; if all αn could align so that their curvature

capillary energy were negative, the particles would migrate toward the post to minimize

the capillary energy. This migration would occur at different rates owing to the different

amplitudes of the modes hi and their differing dependencies on L0. Such trajectories would

give the steepest reduction in curvature capillary energy.

However, random pinning implies not only random amplitudes, but also random phase

angles of the various modes, so modes cannot co-align. Furthermore, when several modes are

present, different modes dominate in different zones of the interface. Far from the micropost,

the quadrupolar mode dominates the particle’s rotational alignment and migration. As the

particle migrates toward the post, λ increases, and higher order modes grow in importance.

There are two scenarios in zones where these higher order modes compete. The particle may

rotate, adjusting its angle in local equilibrium as it approaches the post. Or, there may be

significant energy barriers to rotation owing to the rugged contact line, so particles cannot

find an angle that allows particles to migrate toward the post. This latter case is particularly
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interesting, as it suggest that rough particles on curved interfaces may not rotate freely,

but may have pinned orientations. For such pinned angles, the signs on the competing

modes will likely differ. Orientations can occur where attractive and repulsive terms can

balance, defining states of mechanical equilibrium. However, as λ approaches unity, all

terms become important. For particles with trapped “bad” alignments with contributions

from many modes, energy can decrease only by moving away from the post, i.e. they will

be repelled from high curvature sites.

We have observed a complex trajectory that further supports this interpretation. A 25 µm

disk attached to an interface around a micropost of diameter 47 µm (λ∗ = 0.53). The particle

was initially repelled from the high curvature region, and migrated away from the post (Fig.

4.6). However, at L0= 309.5 µm (λ = 0.039) the particle suddenly rotated roughly 86◦, and

subsequently moved towards the post, obeying a 1/4 power law over the attractive segment

of its motion. The disk then increased its speed as it neared the post, but stopped abruptly

several particle radii from the post. This evidence suggests that the initial repulsion can

be attributed to the trapped poorly aligned quadrupole. The rotation occurred at λ where

the higher order modes were negligible; the rotation angle of 86◦ rotated the misaligned

quadrupole into favorable alignment for curvature attraction. Finally, the power law in the

subsequent attraction revealed the attractive quadrupolar curvature interaction (Fig. 4.6b).

We can indeed construct simple deformation fields and energy landscapes that capture the

main features of these experiments assuming a particle with two pinned modes, a hexapole

and quadrupole, with the rise axis of quadrupole aligned with that of the hexapole. If the

particle attaches far from the post, the hexapolar mode can be neglected. The particle

will rotate, aligning the quadrupolar rise axis with the rise axis of the interface and move

to sites of high curvature. As the particle approaches the post, the mis-aligned hexapole

introduces an increasingly strong repulsive force. If rotation is impeded, the disk will find

an equilibrium location which stops particle migration. If instead, the disk adsorbs to the

interface near the micropost, both modes contribute and there will be a strong rotational
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barrier. Particles with misaligned modes can reduce their energy by moving away from

the post (See Appendix A). We are exploring these scenarios using particle engineered to

present such distortions in ongoing work.

4.6. Conclusions

We have been developing the relationships between capillary energy landscapes around

isolated particles and interface shape to develop new ways to direct particle migration and

assembly. Contact line pinning plays an important role in determining such interactions;

undulated three-phase contact lines create quadrupolar distortions to leading order. These

distortions couple with the deviatoric curvature field of curved fluid interfaces. The resulting

curvature capillary energy drives small particles to sites of strong deviatoric curvature. In

other studies, we have explored this phenomenon for a variety of microparticle systems,

and have extended these arguments to understand microparticle migration on tense lipid

bilayer vesicles, on which particles trace Brownian trajectories guided by curvature gradients

owing to the weak tension in these systems [21]. Thus, the concepts we develop here can

be adapted to apply to different physical systems.

Here, we report that higher order modes in the interface shape and the particle sourced

distortion provide greater complexity, with particles finding equilibrium locations far from

the sites of highest curvature, or being repelled from high curvature locations. We have

demonstrated these concepts using particles with random roughness to pin the contact

lines. Pinned contact lines also occur on relatively smooth but chemically heterogeneous

particles. Since such particles are ubiquitous, these phenomena are also likely of broad

importance.

4.7. Outlook

Interface curvature has already been used to guide structure formation. For example, Ershov

et al. has exploited the coupling of the particle’s quadrupolar distortion with the principal

axes of curvature to form colloidal crystalline domains with quadrupolar symmetry from
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colloidal spheres [86]. Cavallaro et al. has exploited this coupling and capillary curvature

attraction to build complex structures around a square micropost [20]. The building of

such structures is a focus of ongoing work in our research group. Particles with differing

shapes give important degrees of freedom; cylindrical particles show competition between

pair quadrupolar interactions and curvature interactions in their assembly [70].

Curvature repulsion, discussed here, opens exciting new possibilities. To explore these phe-

nomena, we have expanded the host interface locally to higher order modes in a multipole

expansion. The particular expansion that we find is valid for our particular interface shape.

However, such expansions can always be performed for interfaces with small slopes. Thus,

this work suggests that interface shapes can be molded and tailored to emphasize particular

modes in particular spatial regions. These interactions also have rich coupling with particle

shape. For example, consider a high aspect ratio microcylinder on a curved interface formed

around a very small micropost in Fig. 4.7. For reference, prior studies with small cylindri-

cal microparticles around large posts report particles aligned with their major axes along

principal axes. Here, the long microcylinder migrates radially along curvature gradients

with its major axis pointed toward the micropost, and stops at an equilibrium location far

from the post with an orientation that positions its sharp edge toward the post, indicating

the importance of details in the interface shape around the particle. This, too, is a focus of

ongoing work.

This research opens interesting new directions. In materials science, we might design cur-

vature capillary energy wells to mold objects based on their symmetries far from the cur-

vature source, thereby preventing trapped states that can occur for objects in contact with

the posts. In microrobotics, curvature attraction and curvature repulsion could provide new

means of propelling microrobots along interfaces [118]. It would be interesting to investigate

limiting length scales; can we mold structure formation at the submicron scale? Finally, we

close by noting that this study falls within a rich and interesting class of problems in which a

colloid is placed in soft matter, distorts the soft matter host, and creates an energy landscape
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around it. By molding the host-in this communication, the fluid interface, rich phenomena

emerge. We and others have explored related phenomena for colloids and macromolecules

confined in other hosts including colloids in nematic liquid crystals, colloids adhered to lipid

bilayer vesicles, and proteins on curved lipid bilayers [21, 23, 119, 120, 121, 122]
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Figure 4.1: Curvature attraction and curvature repulsion. Arrows indicate direction of
migration. (a) Schematic of the interface shape formed by pinning fluid interface to the
edge of a micropost and an outer ring. (b) Coordinates at center of micropost and at the
particle located a distance L0 from the post center. (c) (Top) A microdisk (2a=10 µm)
migrates to the edge of a micropost (250 µm diameter). (Bottom) The energy dissipated
as such particles migrate to the high curvature regions is linear in deviatoric curvature. (d)
The power law dependence confirms the dominance of the quadrupolar mode. (e) A disk
(2a=150 µm) migrates away from the micropost (125 µm diameter).
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Figure 4.2: Bocce Ball: Trajectories of microdisks (2a=25 µm) around a circular micropost.
Left panel: Time stamped image of microdisks trajectory on a curved oil-water interface
where the micropost is 57 µm in diameter. Right panel: log-log graph of L0/(Rm + a) vs
tf − t for each trajectory. (a) A microdisk (red triangle) migrates along curvature gradients
toward the micropost and stops before contacting the post (at 50.9 µm center-to-center
distance). (b) A microdisk (blue square) migrate towards the micropost and stops at 128.0
µm, several particle radii from the post. (c) A microdisk (green cross) migrates towards the
edge of the micropost. This incoming disk interacts strongly with the first disk, causing it
to move at a constant distance from the post to a new location, as such, its final position
is shifted slightly. Scale bar is 100 µm.
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Figure 4.3: Curvature repulsion of microdisks (2a=150 µm) around circular microposts.
Time stamped image of microdisks trajectories on curved oil-water interfaces. (a) Three
microdisks are repelled by the curved oil-water interface and migrate radially outwards from
the 125 µm diameter micropost. Inset: interferogram showing quadrupolar distortion far
from the particle and puckered interface near the particle. Scale bar is 100 µm. (b) Top:
quadrupolar undulation of interface height along a circle of radius 170 µm from particle
center. Bottom: rugged interface height along a circle of radius 86 µm from particle center.
(c) Energy dissipated along a trajectory. (d) L0 vs. t: evidence of repulsive quadrupole in
the far field.

93



Figure 4.4: Transition from curvature attraction to repulsion with λ∗. A histogram sum-
marizing all of the particle trajectories as a function of λ∗, the ratio of particle radius to
micropost radius. Green (attraction to the post), red (equilibrium away from the post),
and yellow (repulsion from the post throughout the field of view). The length of the bars
indicate the probabilities of the observed particles trajectories within the λ∗ range.
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Figure 4.5: Preferred orientation of quadrupole, hexapole and octopole deformation around
a micropost. Headed arrows indicate the axes of capillary rises on the particle. Quadrupole
and octopus prefer their rise axes pointed toward the micropost, while hexapole prefers to
point the valley between the two rise axes toward the micropost.

95



a)#

b)#

Figure 4.6: Repulsion followed by rotation and attraction. (a) Time stamped image (∆t=2
s) of a microdisk (2a=25 µm) on a curved interface created by a 47 µm micropost. The
microdisk is initially repelled by the curvature and migrates away from the micropost. The
particle then rotates roughly 86◦. Thereafter, it is attracted towards the micropost. Red
circle indicates the final location of the disk. Inset: Particle rotation as marked by red
dots (1) the mark on the particle, and yellow dots (2) indicate the center of the disk. (b)
L0/(Rm + a) vs tf − t for the latter part of trajectory, as disk approached the post.
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Figure 4.7: Particle shape: A long microcylinder finds an equilibrium location with complex
orientation. Time stamped image (∆t = 1.0s) of a microcylinder migration on a curved
oil-water interface formed around a 28 µm micropost. Scale bar is 100 µm.
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CHAPTER 5 : Pair interactions on curved interfaces

5.1. Introduction

In this chapter, we explore particle interactions on a curved fluid interface with zero mean

curvature. On planar interfaces, particles interact with deformation fields from their neigh-

bors to assemble. On curved interfaces, curvature capillary interactions can either attract

or repel particles from high curvature regions. Here, I derive an expression for the energy

of interaction for a pair of particles on curved fluid interfaces.

In our experiments using spheres on curved fluid interfaces, we have observed microspheres

on curved fluid interfaces assemble into chains, zig-zag, and L-shaped assemblies. These

observations inspired me to study physics behind the experimental observations. Assuming

the two microparticles attach to an interface with zero mean curvature, analytical solution

is derived for the pair interaction. The final form of the interaction energy will be useful

in understanding how particles assemble on curved interface, and in the development of

strategies to design structures guided by the curvature field.

This work was performed in collaboration with Dr. Sharifi-Mood and Alismari Read. I

derived the analytical solution for the pair interaction, and later compared it to my collab-

orator’s derivation in bipolar coordinate.

5.2. Theory

5.2.1. Interface profile around particle A

Suppose two microspheres, A and B, are trapped on a curved fluid interface, and the contact

line is pinned at the surface of each particle. The particles are separated by some distance

rAB. Each particle deforms the curved interface around them with a quadrupolar distortion,

hpA and hpB . Letting the coordinate to be centered at particle A, the interface shape around

particle A can be summed as the contribution from (i) the quadrupolar distortion owing to
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A’s undulated contact line hA, (ii) the parent interface h0, (iii) the induced term from the

parent interface hind(0), (iv) the local distortion near A from the neighboring particle B,

hB atA, and (v) the induced term due to particle B, hind (B atA),

h = h0 + hB atA + hA + hind(0) + hind (B atA). (5.1)

Each term can be written explicitly as

h0 =
∆cA0 rA

2

4
cos(2(φA − βA)) (5.2)

hB atA =
3hpBa

2r2
A

rAB4
cos(2(φA + αB)) (5.3)

hA =
hpAa

2

rA2
cos(2(φA − αA)) (5.4)

hind(0) = −∆cA0
4

a4

rA2
cos(2(φA − βA)) (5.5)

hind (B atA) = −3hpBa
4

rAB4

a2

r2
A

cos(2(φA + αB)) (5.6)

where ri is the radial distance from the center of particle i, αi is the phase angle of particle

i with respect to the center-to-center axis of the neighboring particle, βi is the phase angle

of particle i with respect to the host curvature field, and ∆ci0 is the deviatoric curvature at

i. The subscript i takes A or B for particle A and B respectively (Fig. 5.1).

The full expression of the height profile around particle A is

h =
∆cA0 rA

2

4
cos(2(φA − βA)) +

3hpBa
2r2
A

rAB4
cos(2(φA + αB)) +

hpAa
2

rA2
cos(2(φA − αA))

− ∆cA0
4

a4

rA2
cos(2(φA − βA))− 3hpBa

4

rAB4

a2

r2
A

cos(2(φA + αB)) (5.7)
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Define variables A, B, C, D, and E:

A =
∆cA0

4
(5.8a)

B =
3hpBa

2

rAB4
(5.8b)

C = hpAa
2 (5.8c)

D =
∆cA0 a

4

4
(5.8d)

E =
3hpBa

6

rAB4
(5.8e)

First derivative with respect to rA

∂h0

∂r
= 2ArA cos(2(φA − βA)) (5.9)

∂hB atA
∂rA

= 2BrA cos(2(φA + αB)) (5.10)

∂hA
∂rA

= −2C

r3
A

cos(2(φA − αA)) (5.11)

∂hind(0)

∂rA
=

2D

r3
A

cos(2(φA − βA)) (5.12)

∂hind(B atA)

∂rA
=

2E

r3
A

cos(2(φA + αB)) (5.13)

The interface profile around particle A can be written as a summation of host fields with

disturbance. Host fields, hhost in this context are the inherent curvature field and the dis-

tortion field from the neighboring particle, h0 and hB atA, respectively. The disturbance on

the interface contains three parts: the particle imposed distortion, the induced disturbance

due to the deviatoric curvature of the host interface, and the induced disturbance that fights

the distortion due to the neighboring particle B. Therefore, we can re-write h as,

h = hhost + η (5.14)
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where

hhost = h0 + hB atA

=
∆cA0 rA

2

4
cos(2(φA − βA)) +

3hpBa
2r2
A

rAB4
cos(2(φA − αB))

= Ar2
A cos(2(φA − βA)) +Br2

A cos(2(φA − αB)) (5.15)

η = hA + hind(0) + hind (B atA)

=
hpAa

2

rA2
cos(2(φA − αA))− ∆cA0

4

a4

rA2
cos(2(φA − βA))− 3hpBa

4

rAB4

a2

r2
A

cos(2(φA + αB))

=
C

r2
A

cos(2(φA − αA))− D

r2
A

cos(2(φA − βA))− E

r2
A

cos(2(φA + αB)) (5.16)

5.2.2. Finding interaction energy

To find pair interaction energy we first have to calculate the excess surface area. In Monge

representation, the area integral is:

A =

∫ √
1 +∇h · ∇hdS (5.17)

where dS is the area of the interface. Assuming small slopes, ∇h << 1, the integrand can

be approximated by Taylor series,

√
1 +∇h · ∇h = 1 +

∇h · ∇h
2

. (5.18)

Now, we can find the interaction energy between the two particles with a center-to-center

separation rAB. For simplicity, we ignore the contribution from the mean curvature, so the

energy prior to particle attachment is

E1 = γ

∫∫
©
D

1 +
∇hhost · ∇hhost

2
dA (5.19)
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where γ is the interfacial tension, h0 is the height of the host interface, and D denotes

the entire interfacial domain. When the particle attaches to the interface, the free energy

becomes

E2 = γ1A1 + γ2A2 + γ

∫∫
©

D−P

1 +
∇h · ∇h

2
dA (5.20)

where h is the height of interface after the particle is adsorbed, γ1A1 and γ2A2 are the

surface energies for the particle wetted with the upper and lower fluids, respectively, and

D − P is the domain of the interface outside of the particle. Therefore, the energy is

E2 − E1 = γ1A1 + γ2A2 + γ

∫∫
©

D−P

1 +
∇h · ∇h

2
dA− γ

∫∫
©
D

1 +
∇hhost · ∇hhost

2
dA (5.21)

Substituting Equation 5.15, 5.16, into Equation 5.20,

E2 = γ1A1 + γ2A2 + γ

∫∫
©

D−P

1 +
∇(h0 + hB atA + η) · ∇(h0 + hB atA + η)

2
dA (5.22)

= γ1A1 + γ2A2 + γ

∫∫
©

D−P

{
1 +
∇h0 · ∇h0

2
+
∇hB atA · ∇hB atA

2
+
∇η · ∇η

2

+∇h0 · ∇hB atA +∇h0 · ∇η +∇hB atA · ∇η} dA

So, Equation 5.21 becomes,

E2 − E1 = γ1A1 + γ2A2 + γ

∫∫
©

D−P

{
1 +
∇h0 · ∇h0

2
+
∇hB atA · ∇hB atA

2
+
∇η · ∇η

2

+∇h0 · ∇hB atA +∇h0 · ∇η +∇hB atA · ∇η} dA− γ
∫∫
©
D

1 +
∇hhost · ∇hhost

2
dA

= γ1A1 + γ2A2 + γ

∫∫
©

D−P

{
∇η · ∇η

2
+∇h0 · ∇η +∇hB atA · ∇η

}
dA

− γ
∫∫
©
P

1 +
∇hhost · ∇hhost

2
dA (5.23)
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The first integral is the energy owing to the disturbance, and the second integral is the

area of the hole in the interface created by the particle adsorption. Let’s first consider the

first integrand. Gradient operator of the disturbance can then be written as the sum of the

gradients,

∇η · ∇η
2

=
1

2
∇(hA + hind(0) + hind (B atA)) · ∇(hA + hind(0) + hind (B atA))

=
∇hA · ∇hA

2
+
∇hind(0) · ∇hind(0)

2
+
∇hind(B atA) · ∇hind(B atA)

2

+∇hA · ∇hind(0) +∇hA · hind(B atA) +∇hind(0) · hind(B atA) (5.24)

To solve the integral in the above equation, we utilize the Green’s theorem. The integrand

can then be written as

∇hA · ∇hA = ∇ · (hA∇hA)− (hA∇2hA) (5.25)

where the second term is zero since ∇2hA=0. Therefore, the area integral is

1

2

∫∫
©

D−P

∇hA · ∇hAdA =
1

2

∫∫
©

D−P

∇ · (hA∇hA)dA (5.26)

By applying Green’s theorem as contour integral,

1

2

∫∫
©

D−P

∇ · (hA∇hA)dA =
1

2

∮
I

(hA∇hA) ·mds (5.27)

= lim
r∗→∞

1

2

∮
rA=r∗

er · (hA∇hA) rAdφ−
1

2

∮
rA=a

er · (hA∇hA) rAdφ

=
1

2

2π∫
φ=0

hA

(
∂hA
∂r

)
rAdφ

∣∣∣∣∣∣∣
rA=∞

− 1

2

2π∫
φ=0

hA

(
∂hA
∂r

)
rAdφ

∣∣∣∣∣∣∣
rA=a
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Useful integrals for integrating cos functions from 0 to 2π:

2π∫
0

cos2(2(x− a))dx = π (5.28)

2π∫
0

cos(2(x− a)) cos(2(x− b))dx = π cos(2(a− b)) (5.29)

The individual terms are calculated as follows,

1

2

2π∫
φ=0

hA

(
∂hA
∂r

)
rAdφ

∣∣∣∣∣∣∣
rA=∞

=
1

2

2π∫
φ=0

C

r2
A

cos(2(φA − αA))

(
−2C

r3
A

cos(2(φA − αA))

)
rAdφ

= π
C2

r4
A

= π
(hpAa

2)2

r4
A

∣∣∣∣
rA=∞

= 0 (5.30)

−1

2

2π∫
φ=0

hA

(
∂hA
∂r

)
rAdφ

∣∣∣∣∣∣∣
rA=a

= π
(hpAa

2)2

r4
A

∣∣∣∣
rA=a

= −π (hpAa
2)2

a4
(5.31)

Subtracting two terms gives,

γ

∫∫
©

D−P

∇hA · ∇hA
2

dA = γπhPA
2 (5.32)
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Applying the same method, we solve the rest of the terms in ∇η · ∇η,

γ

∫∫
©

D−P

∇hind(0) · ∇hind(0)

2
dA = −γD

2

r4
A

π

∣∣∣∣∞
a

= γ
∆c2

0a
4

16
π (5.33)

γ

∫∫
©

D−P

∇hind(B atA) · ∇hind(B atA)

2
dA = −γE

2

r4
A

π

∣∣∣∣∞
a

= γ
9hpB

2a8

rAB8
π (5.34)

γ

∫∫
©

D−P

∇hA · ∇hind(0)dA =
2CD

r4
A

cos(2(βA − αA))

∣∣∣∣∞
a

= −γ hpAa
2∆cA0
2

π cos(2(βA − αA))

(5.35)

γ

∫∫
©

D−P

∇hA · ∇hind(B atA)dA = γ
2CE

rA4
cos(2(αA + αB))

∣∣∣∣∞
a

= −γ 6hpAhpBa
4

r4
AB

π cos(2(αA + αB)) (5.36)

γ

∫∫
©

D−P

∇hind(0) · ∇hind(B atA)dA = γ
2DE

rA4
π cos(2(βA + αB))

∣∣∣∣∞
a

= γ
3hpBa

6∆cA0
2r4
AB

π cos(2(βA + αB)) (5.37)

The remaining terms in the first integral are

γ

∫∫
©

D−P

∇h0 · ∇ηdA = 0 (5.38)

γ

∫∫
©

D−P

∇hB atA · ∇ηdA = 0 (5.39)
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The second integral is

−γ
∫∫
©
P

1 +
∇hhost · ∇hhost

2
dA =− γπa2 − γ

∫∫
©
P

∇h0 · ∇h0

2
+
∇hB atA · ∇hB atA

2

+∇h0 · ∇hB atA dA (5.40)

Individual integrals are calculated as

−γ
∫∫
©
P

∇h0 · ∇h0

2
dA = γ A2rA

2
∣∣a
0

= −γ∆cA0
2
a4

16
π (5.41)

−γ
∫∫
©
P

∇hB atA · ∇hB atA
2

dA = −γ B2rA
4π
∣∣a
0

= −γ
9h2

pB
a8

rAB8
π (5.42)

−γ
∫∫
©
P

∇h0 · ∇hB atA dA = −γ 2ABrA
2π cos(2(βA + αB))

∣∣a
0

= −γ 3hpBa
6∆cA0

2r4
AB

π cos(2(βA + αB)) (5.43)

The interaction energy, Equation 5.21, of particle A with respect to the deformation made

by neighboring particle B is

E2 − E1 = γ1A1 + γ2A2 + γπhPA
2 + γ

∆c2
0a

4

16
π + γ

9hpB
2a8

rAB8
π − γ hpAa

2∆cA0
2

π cos(2(βA − αA))

− γ 6hpAhpBa
4

r4
AB

π cos(2(αA + αB)) + γ
3hpBa

6∆cA0
2r4
AB

π cos(2(βA + αB))

− γπa2 − γ∆cA0
2
a4

16
π − γ

9h2
pB
a8

rAB8
π − γ 3hpBa

6∆cA0
2r4
AB

π cos(2(βA + αB))
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E2 − E1 = γ1A1 + γ2A2 + γπhPA
2 − γπa2 − γ hpAa

2∆cA0
2

π cos(2(βA − αA))

− γ 6hpAhpBa
4

r4
AB

π cos(2(αA + αB)) (5.44)

Similar expressions were discussed in the previous chapters for particles with pinned contact

lines. The first four terms in the above equation are independent of the curvature and the

location of the particles. We then define

EA0 = γ1A1 + γ2A2 + γπhPA
2 − γπa2 (5.45)

Therefore,

E = E2 − E1

= EA0 − γ
hpAa

2∆cA0
2

π cos(2(βA − αA))− γ 6hpAhpBa
4

r4
AB

π cos(2(αA + αB)) (5.46)

To capture the pair interaction, we repeat the same calculation for particle B in the cur-

vature field of particle A. Adding that result to the above expression, the final form of the

interaction energy is

Epair =EA0 + EB0 − γ
hpAa

2∆cA0
2

π cos(2(βA − αA))− γ 12hpAhpBa
4

r4
AB

π cos(2(αA + αB))

− γ hpBa
2∆cB0
2

π cos(2(βB − αB)) (5.47)

The final form of the interaction energy of a pair of particles A and B has contribution

from the individual particle curvature interaction, as well as pair interaction from the two

particles.
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5.3. Conclusion

In this chapter I have derived the interaction energy of a pair of microparticles on curved

fluid interfaces for zero mean curvature interfaces like those we study in our experiments.

This final form of energy has two contributions that depend on particle-particle separation

distance, and also the local curvature. This competition between the two contributions will

determine the particle alignment on the interface. When the pair interaction is stronger than

curvature interaction, particles will align with each other in a mirror symmetric orientation.

On the other hand, when the curvature interaction is stronger, particles will align their

quadrupolar axes along the principal axes, with the quadrupolar rise axis aligned with the

rise of the interface. With this result, we could predict particle behavior on the curved

interface and use curvature/pair interactions to dictate the assembly on fluid interfaces.
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Figure 5.1: Schematic of two particles, A and B, around a micropost. The dark circle
represents micropost. Two particles are separated by distance rAB. αA and αB denote the
phase angle of capillary rise axes for the two particles. βA and βB denote the phase angle
of the interface rise axes for the two particles.
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CHAPTER 6 : Cylindrical particles at nematic films

6.1. Introduction

Colloidal assembly is widely exploited in bottom-up schemes to create organized, micro-

and macroscopic structures from nano- and microscale building blocks; particles assembly

is guided, e.g., by interparticle potentials and entropic effects, often augmented by external

applied fields [1, 123]. Rather than using the usual applied electromagnetic fields, recent

research explores interactions that emerge when particles are placed in soft material, for

example, elastic interactions that occur when particles are immersed in liquid crystals (LCs)

[124, 125, 126].

In this chapter, we study the behavior of cyBlancLCRlindrical particles on thin air-nematic

interface, both planar and curved. Cylindrical particles have aspect ratio of 2.5 and are

fabricated using standard lithographic technique. Particle behavior on the thin film depends

both on the forces from the interface and as well as the bulk. The interplay of capillarity

and elasticity determines their interaction and alignment on the planar and the curved

interfaces. We report regions of dominance for the curved interfaces.

This work was performed in collaboration with Dr. Gharbi and Victor L. Ngo, an un-

dergraduate researcher who worked in our lab. I designed and performed the experiments,

worked on the derivation of capillary and elastic torques, and involved in all the discussions.

This study was published in the Proceedings of the National Academy of Sciences of the

United States of America.

6.2. Liquid Crystals

Liquid crystal (LC) is a state of matter between liquids and crystals. Molecules in crys-

tals are ordered whereas molecules in liquids they are not. For liquid crystals, they have

molecules of a liquid but still maintain some degree of orientational or positional order,

and have properties associated with both liquids and crystals. Liquid crystals are made up

110



of anisotropic molecules, including disc-like and rod-like molecules. Such anisotropy gives

rise to many unique properties of LC, such as elastic constant, viscosity coefficients, bire-

fringence, dielectric, and diamagnetic anisotropies. One well known example is the liquid

crystal display (LCDs) which was developed in 1970s. The discoveries of electro-optical

effects in LC revolutionized the display industry in making light weight and flat screens

with high quality images.

There are two types of liquid crystals: thermotropic and lyotropic liquid crystals. Ther-

motropic liquid crystals form liquid crystalline phases under certain temperature ranges. In

this case, phase transitions occur as the surrounding temperature is varied. On the other

hand, lyotropic liquid crystals form liquid crystals phases only if it is dissolved in water

or other solvents. Phases of liquid crystals depend strongly on the concentration of the

substances or compounds. Examples of lyotropic liquid crystals include soaps and phos-

pholipids which have a polar head group attached to a long hydrocarbon tail group. LC

molecules dissolved in a polar solvent may form micelles and vesicles, or bilayer structure

resembling the biological membranes. Hereafter, we will only focus on the thermotropic

liquid crystals.

The simplest liquid crystalline phase is the nematic phase. The name nematic comes from

the Greek word for thread. In the nematic state, the rod-like LC molecules align in a pre-

ferred orientational direction, denoted by the director field n; deviations from this alignment

cost elastic energy owing to the bend, twist and splay of the molecules [127]. There is grow-

ing interest in using LCs as media to template the assembly of particles by using director

configurations and hence elastic energy fields. Particles placed in oriented LCs perturb the

director field, eliciting a change in elastic energy that moves them to preferred locations or

causes them to interact. Most studies so far focus on spherical colloidal assembly in the

bulk LCs [120, 122, 128, 129]. Spherical colloids form either dipolar or quadrupolar defect

structures in nematic films, depending on the anchoring conditions at the particle surface

[122], as well as the nature of their confinement [128]. In the far field, particles interact
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as elastic multipoles; in the near field, the details of the director field rearrangement near

the particles cement the assemblies [120]. More recently, the role of complex particle shape

has been explored, with sharp edges and corners playing important roles in creating large

distortions and defects in the LC director field [130, 131, 121, 132, 133, 134, 135, 136].

In particular, moderate aspect ratio cylinders with homeotropic anchoring and associated

dipolar defects in uniform nematic films chain and orient with the director field [130, 135].

6.2.1. Capillarity and Elasticity

Even for spherical colloids, the air/nematic interface is a rich environment, for example,

microspheres with homeotropic anchoring, or perpendicular alignment of LC molecules to

particle surface, self-organize into 2D crystalline lattices on hybrid nematic films[137]. By

confining nematic LC films in cells with antagonistic anchoring conditions, defects can be

forced into the nematic bulk with well-defined geometries and locations [24]. The resulting

elastic energy fields propagate far from the defects and guide particle assembly on interfaces

as distant as 50 microns from the defect itself [24, 138]. So far, only spherical particle inter-

actions have been reported at nematic interfaces; for such particles, capillary interactions

caused by particle-sourced distortions of the interface are typically weak [138]. Anisotropic

particles, however, create large deformations in the interface, with large associated capillary

interactions.

Capillary interactions at planar isotropic fluid interfaces arise between particles with non-

spherical shapes, or, in principle, spherical particles with pinning sites or chemical patchi-

ness. The undulated contact line where liquid, vapor and particle meet distorts the interface

around the particles. To minimize the area of the interface, particles orient and assemble

[39, 139] to equilibrium distances influenced by near field capillary attraction or repulsion

[76]. At curved isotropic fluid interfaces, the particle-induced deformations interact with

the interface curvature [20, 52, 63, 100, 108]. In particular, cylindrical particles on planar

interfaces attract in mirror symmetric orientations and assemble to form rigid, linear chains

[63, 64]. On curved interfaces, they orient along principal axes of the interface and migrate
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to sites of high curvature [20].

6.3. Motivation

While directed assembly of colloids to form organized structures is often guided by external

applied fields [140, 141, 142], recent advances instead rely on interactions that emerge when

particles are placed in a soft material. Two important examples are elastic interactions

between particles in liquid crystals (LCs) [24, 124, 125, 126, 137, 138], and capillary in-

teractions between particles at fluid interfaces [39, 61, 64, 76]. Well defined director fields

with associated elastic energy landscapes can be imposed by confining nematic LCs between

surfaces that favor given molecular orientations. When particles are introduced, they elicit

an elastic response that moves them to preferred locations or drives them to interact with

each other [120, 122, 128, 129]. Capillary interactions occur between particles trapped at

fluid interfaces; the particles distort the interface and assemble to minimize the interfacial

area [39, 139]. Interface curvature fields can steer particles along well-defined paths and

orient them via curvature capillary energies. Since both fluid interfaces and LC director

fields are readily reconfigured, a deeper understanding of these mechanisms paves the way

for responsive or reconfigurable materials. Can capillarity and elasticity together direct

interactions between colloids on free surfaces of nematic films? To our knowledge, thus far,

only spherical colloids have been studied at nematic interfaces; for such particles, capillary

interactions are typically weak [138]. Anisotropic particles, however, create larger interface

deformations with associated significant capillary interactions, as has been established in

studies on isotropic fluids with planar [63, 64] and curved interfaces [20].

An a priori comparison of capillarity to elastic interactions suggests that capillarity would

dominate, and elasticity would not play an important role. For example, a particle of

radius R ∼ 10−5m on a nematic LC of average elastic constant K ∼ 10−11N with surface

tension γ ∼ 10−2Nm−1 has an elasto-capillary number γR
K ∼ 103 − 104, indicating that

capillary effects are far larger than those of elastic origin. However, a more careful scrutiny

of the magnitude of these interactions on, for example, cylindrical microparticles indicates
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otherwise. When immersed in an oriented hybrid nematic film, cylindrical microparticles of

length L and radius R chain by elastic dipolar interactions and orient along the director field,

with elastic energies and torques ∼ KL [130, 135]. On fluid interfaces, such microparticles

distort fluid interfaces with characteristic deformation magnitudes Hp << R and associated

capillary energy ∼ γHp
2. For this situation, the ratio of capillary to elastic energies is far

smaller, indicating that there may be a more interesting interplay of these effects. We probe

this interplay in a study of cylindrical microparticles with homeotropic anchoring at free

surfaces of an aligned hybrid nematic film, a system in which elastic effects and capillary

effects can play complementary or competing roles.

6.4. Materials and Methods

6.4.1. Lithographic cylindrical colloid fabrication and surface treatment

A microcylinder array is fabricated from negative tone epoxy photoresist SU-8 (Microchem

Corp.) using standard photolithographic procedures. In short, the negative tone epoxy

photoresist SU-8 is spin-coated onto a plasma-cleaned silicon wafer. After soft baking

the wafer, the photoresist is exposed to UV light (365nm) on a tabletop mask aligner (OAI

Model 100) through a photomask (Microtronics Inc., Fine Line Imaging). Subsequently, the

wafer is heated to crosslink the UV-exposed regions, and immersed in SU-8 developer to

dissolve the undeveloped epoxy. The resulting microcylinders in these arrays have nominal

radii R=5 µm, and length L=25 µm. To impose anchoring conditions, the microcylinder

arrays are sputtered with a 30 nm film of chromium. After releasing the microcylinders

from the wafer by scraping the wafer with a razor blade, the particles are sputtered a second

time to ensure that all sides of the particles are covered with chromium. To induce strong

homeotropic anchoring, cylindrical particles are treated with a 3% weight solution of N,N-

dimethyl-N-octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP, Sigma-Aldrich) in

a mixture of 90% weight of ethanol, and 10% weight of water solution, for one hour at

80◦C. Particles are subsequently cleaned by repeated cycles of rinsing, centrifugation, and

decanting in water. Microcylinders are then dried in the oven overnight to evaporate solvent.
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6.4.2. Substrate preparation: Planar interface

Planar anchoring of nematic LC on the glass substrate is achieved by treating glass micro-

scope slides with a solution of 1% weight polyvinyl alcohol (PVA) dissolved in a mixture

of ethanol and water (10:90 wt/wt). The substrates are first spin-coated with the PVA

solution at 2000 rpm for 20 seconds, and heated in the oven at 110◦C for one hour. The

PVA treated glass substrates are then rubbed in one direction with a velvet cloth to en-

sure unidirectional planar alignment. A nematic film is formed by spin-coating a small

droplet of 4-cyano-4-pentylbiphenyl (5CB) on the glass substrate. The thickness of the film

is controlled by the spin-coating speed.

6.4.3. Substrate preparation: Curved interface

The curved interface is molded simply by placing an SU-8 microdisk of height approxi-

mately 50µm and diameter 350µm on the glass substrate which is already covered with a

nematic film. The nematic film pins at the top edge of the microdisk creating a monopole

deformation of the interface. The angle of the curved interface at the edge of the microdisk

is between 10-15◦.

6.4.4. Particle dispersion and Microscopy

The particles are placed on nematic films prepared over either planar substrates to form a

planar air/nematic interface or around microdisks to create well defined curvature fields.

The anchoring of the nematic film is hybrid: planar at the glass substrate and perpendicular

in contact with air.

The microparticles are placed on air/nematic interfaces by aerosolizing them and allowing

them to sediment through air and attach to the interface. Once attached, the particles are

no longer affected by gravity, as is reflected in the small value of the Bond number, the ratio

between gravitational forces and interfacial tension Bo=∆ρgLc
2/γ ∼ 10−6, where ∆ρ is the

density difference between particle and liquid crystals (ρSU−8 = 1200kg/m3 and ρ5CB =
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1008kg/m3), g is the gravitational acceleration constant, Lc is the particle characteristic

length (Lc = 12.5×10−6m), and γ is the interfacial tension between two liquids (γ5CB−air =

3.8×10−2N/m) [143]. Cylinders of aspect ratio 2.5 typically assume a side-on configuration

with the particle long axis in the plane of the interface [63, 144].

Particle behavior is observed using bright field (BF) and polarized optical microscopy

(POM) in transmission mode under an upright optical microscope (Zeiss AxioImager M1m,

Carl Zeiss, Oberkochen, Germany). Images and videos are taken with a high-resolution

camera (Zeiss AxioCam HRc). Particle orientation and trajectory are analyzed using Im-

ageJ.

6.5. Results and Discussion

In our experiments, we study microcylinders deposited on the free surface of a hybrid aligned

nematic film. The film has oriented planar anchoring on the substrate and homeotropic

anchoring at the free surface. The significant bending of the director across the film thickness

provides an elastic environment that can couple to distortions or defects in the director field

created by the particles. Microcylinders with homeotropic anchoring are introduced onto

this surface by creating an aerosol, and subsequently allowing them to sediment through

air and attach to the interface (Fig.6.1a).

Once attached, the microcylinders align along the easy axis of the nematic film, correspond-

ing to the direction of the oriented planar anchoring on the substrate. This orientation

occurs robustly for films of h ≈ 25µm. This elastic alignment is enforced by a torque that

rotates nanowires [133] or bullet like particles [131] immersed within uniform LC, and can

be attributed to the coupling of the topological defect created by the microcylinder and the

prevailing director field. The microrods create a point defect at one of their flat ends (see

Fig.6.1b and c) which is similar to the hyperbolic hedgehog observed around homeotropic

beads trapped at air/nematic [137] or water/nematic interfaces [145, 146]. As expected,

the elastic defect and the associated alignment disappear when the nematic is heated to
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the isotropic phase (see Fig.6.1d and e). For larger film thicknesses (above h ≈ 50µm), the

elastic coupling vanishes and cylinders become randomly oriented.

In addition to elastic deformations, the cylinders deform the fluid interface. Interferomet-

ric images (Fig.6.2a) reveal the quadrupolar symmetries of this distortion, with rise at the

planar ends of the cylinder and weak downward deflections along the sides, qualitatively

similar to the behavior at the air/water interface [91]. This distortion has a polar quadrupo-

lar mode that determines the long range interactions of the particles [61]. The magnitude

of the polar quadrupolar deformation at the air/nematic interface of an isolated cylinder

measured 3 radii from the particle center is Hp = 174nm±30nm, independent of the liquid

crystal film thickness (Fig.6.2b).

These particles could, in principle, interact either via capillarity, elastic interactions, or

both. To discern the prevailing energies, trajectories of interacting particles were captured

using video microscopy. Typically, both elasticity and inertia are negligible, as reflected

by values of the Ericksen number Er = ηνLc/K ≈ 10−2 and the Reynolds number, Re =

ρ5CBνLc/η ≈ 10−7, respectively. In these expressions, η = 14.21mPa · s is the viscosity

of 5CB, ν is the bulk fluid velocity, Lc is the characteristic length of the particle, i.e the

cylinder length, ρ5CB=1.008g/ml is the density of 5CB, and K ∼ 10−11N is the average

Frank elastic constant. Thus, particle migrations are balanced by viscous dissipation, which

can be treated in the context of a Newtonian viscous fluid. To understand the drag on the

particle, we record the Brownian trajectories of an isolated particle on the film at a rate

of 70ms per frame for approximately 12 minutes. The microcylinders are affected both

by the anisotropic alignment of the director and the particle shape. The instantaneous

velocity of the particle between each video frame, is determined in directions both parallel

and perpendicular with the director field. From these data, the diffusion coefficient along

the easy axis and that perpendicular to it are determined to be 6.26 × 10−3µm2/s and

1.39 × 10−3µm2/s, respectively. For the purpose of estimating potentials, an average of

two diffusion coefficients was used in the Stokes-Einstein equation to find the Stokes drag
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coefficient.

On an isotropic fluid interface, cylindrical particles assemble in mirror symmetry to form

an end-to-end chain by capillarity [63]. The existence of an easy axis in this system alters

these trajectories. There are two scenarios observed for this assembly depending upon the

orientation of the vector defining the center to center distance between the particles r.

Either r is parallel to the easy axis or it is not. When r is parallel to the easy axis, the

microcylinders remain aligned along this axis as they approach in an end-end configuration

(see Fig.3). The interaction potential has elastic and capillary contributions

Utotal = Uelastic + Ucapillary (6.1)

Utotal = −K(LR)2r−3 − 12πγHp
2 cos(2ϕA + 2ϕB)Lc

4r−4 (6.2)

In this expression, the first term is an attractive elastic dipole-dipole interaction between

the cylinders assuming a small angle difference between the major axis of the two particles

[131]. In this expression L = 25× 10−6m is the length of the microcylinder, R = 5× 10−6m

is its radius, and r is the particle center to center separation distance. The elastic potential

at r = 110µm is about 2.8 × 101kBT . The second term is the capillary contribution,

with pair potential between polar capillary quadrupoles [61]. In this expression, Hp is

the magnitude of the quadrupolar distortion due to a cylinder, and ϕA and ϕB are the

orientation of the quadrupolar rise axis of particle A and B, respectively. The capillary

contribution to the interaction at r = 110µm is of 1.8 × 103kBT , two orders of magnitude

greater than the elastic potentials. Thus, assembly is indeed dominated by capillarity

while the alignment is enforced by elasticity. The particle trajectory versus time obeys the

expected 1/6 power-law dependence for interacting polar quadrupoles in the interface in the

far field (see Fig.6.3). This power law results from a balance of the prevailing interaction
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force with viscous dissipation [63, 68], i.e. Fdrag = Fcapillary , where Fdrag = CDLcη
dr
dt

and Fcapillary = 48πγHp
2 cos(2ϕA + 2ϕB)Lc

4r−5. In this expression, CD is the diffusion

coefficient. This balance allows us to identify the pre-factor to the power law:

(
48πγHp

2 cos(2ϕA + 2ϕB)Lc
3

CDη

)1/6

t1/6 = r (6.3)

When r is not parallel to the easy axis, both capillary and elastic effects are evident in the

particle dynamics. Microcylinders first assemble into an end-to-end structure at an angle

with respect the director field via capillarity (Fig.6.4a) with orientations that deviates from

mirror symmetry. Thereafter, an elastic torque rotates the assembled chain to re-align it

along the easy axis (Fig.6.4a and b). Similarly, chains of particles can form by successive

capillary interactions and rotations. Fig.6.4c shows elastic rotation on the film interface

of chain lengths 3, 4, 5, and 7 particles. This elastic torque can be approximated as

Telast = −KLcθ for small angle θ between the chains long axis and the easy axis. The

elastic torque is balanced by the viscous drag on the particle,

Telast = −KLc(θ − θf ) = ση
∂θ

∂t
(6.4)

where σ is the rotational drag coefficient of the chain [147]. Upon integration, the particle

positions may be characterized as a function of time and chain length:

θ(t) = Coe
−KLc

ση
t

(6.5)

where Co is a constant that can be computed from the cylinder’s initial and final orientation.

In Fig.6.4b, θ(t) is reported, where the abscissa indicates time since the chain formation, as

indicated that the experimental results are in a good fit with theory for chain comprising

four particles. In a hybrid nematic film, the elastic energy is inversely related to the film

thickness [148],
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FFO =
1

2
K

(θ̄o − θ̄h)2

h
(6.6)

where θ̄o is the angle of the liquid crystal molecule on the substrate, θ̄h is the angle of the

liquid crystal molecule at the air/nematic interface, and h is the thickness of the nematic

film. Hence as film thickness increases, the alignment and torque weaken significantly. As

we observed in experiment, these effects are completely absent for films thicker than 50µm.

6.5.1. Elasto-capillary interactions on curved interface

Microcylinders on interfaces with finite deviatoric curvatures align along principle axes and

migrate to sites of high curvature owing to capillarity [20]. Here we study the interplay of

this capillary alignment and the elasticity enforced alignment along the easy axis.

The curved nematic film covers a region roughly 2 cm in diameter, centered around the SU-8

microdisk of height 50µm and diameter 350µm, respectively. Microcylinders are aerosolized

and dispersed onto the surface molded around the microdisk (See schematic in Fig.6.5a).

The interface shape h(rm) is axially symmetric that the interface height profile, obtained

by interferometry, in four directions from the center of the microdisk collapse into one curve

in Fig.6.5a. From the data, the interface slopes and curvatures can be determined directly.

This interface shape has zero mean curvature H0 = 1
2(c1+c2) and finite deviatoric curvature

is given by :

∆c = c1 − c2 =
1

R1
− 1

R2
(6.7)

where R1 and R2 are the radii of curvature along the two principal axes, and c1 = 1
R1

and

c2 = 1
R2

are local principal curvatures, defined so that c1 ≥ c2. For our interface shape,

given that mean curvature is zero, c1 = −c2 From the expression for the interface height,
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the deviatoric curvature can be found:

∆c =
d2h

dr2
m

− 1

rm

dh

drm
= 2

d2h

dr2
m

(6.8)

Note that at the contact line where LC, air and microdisk meet, the height of the ne-

matic is still within the range where cylindrical particles can sense the easy axis on planar

films. Therefore, we select this height regime to ascertain whether curvature-alignment

or nematic-alignment will dominate. We report particle behaviors for distances from the

microdisk center rm up to 1500µm microns, for which the height varies from 25µm to

50µm. Microcylinders attach to the interface, and rotate to align their major axis along

the radial direction (see Fig.6.5b); in this configuration, the rise axis of the particle-sourced

quadrupole aligns along the rise of the monopole. For all microparticles observed within

roughly 1200µm from the center of the post, radial alignment is observed. Once attached,

microparticles migrate along a radial trajectory towards the post, along the curvature gra-

dient. In this region, particle alignment is dominated by capillarity.

For particles located between 1200 to 1300µm from the center of the microdisk, particles

transition from a curvature capillary alignment to elastic field dominated behavior (as shown

in Fig.6.5b, the yellow arc depicts a segment of a circle drawn with a radius of 1300µm).

Particles in this region transition from radial alignment to alignment along the easy axis. In

one observation, a weak flow field moved particles from the elastic-dominated to curvature-

capillary-dominated regions. Microcylinders convected toward the microdisk slowly rotate

from alignment along the easy axis to radial alignment.

The identification of the location where elastic alignment and capillary alignment compete

allows us to estimate the torque from both viewpoints. The capillary torque for particles

rotating from alignment along one principle axis to the other is given simply by Tcap =

2πγLc
2Hp∆c [91]. Evaluating this torque at rm = 1300µm, Tcap = 3.2 × 104kBT . At

the same location, the elastic torque Telast on a film of thickness h ≈ 25µm (the height
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at this distance from the post) can be estimated using equation (6.4) to be 4.8 × 104kBT ,

comparable to the capillary torque. Closer to the microdisk, elastic torques decrease while

capillary torques increase, explaining the observed crossover behavior.

6.6. Conclusions

In conclusion, cylindrical particles at free surfaces of hybrid nematic films display a rich

interplay of capillary and elastic interactions. The particles orient along the director easy

axis on nematic films that are sufficiently thin. Pairs of particles form chains by capillar-

ity, which rotate to align along the easy axis by an elastic torque. We characterize this

elastic torque for chains of varying length. On curved fluid interfaces, curvature capillary

orientation and migration compete with the elastic field for curvatures which are sufficiently

steep. Transition regions where curvature is weak enough for elastic-enforced alignment to

be restored are identified. By developing this understanding, we establish new assembly

tools with important degrees of freedom to assemble and orient responsive materials.
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c)#b)#

d)# e)#

a)#

Figure 6.1: Schematic of microcylinders on hybrid thin nematic film. (a). Optical images
of a microcylinder with homeotropic anchoring on a thin uniform nematic film (h ≈ 25µm)
of 5CB in the nematic phase: (b) in bright field and (c) under cross polarizers, and in the
isotropic phase: (d) in bright field and (e) under cross polarizers. In the nematic phase, a
point defect is observed on one flat end of the cylinder that disappears when heated to the
isotropic phase. White arrow indicates the directions of liquid crystal alignment. Scale bar
is 10µm.
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1.38μm' (0.7μm'

a)!

θ'

b)!

Figure 6.2: Interfacial deformation of microcylinders. (a) Interferogram of a cylinder at an
air/nematic interface. (b) The interface distortion (blue curve) has polar quadrupolar mode
(red curve) of amplitude 174 ± 30nm measured 3 radii from the particle center. Scale bar
is 10µm.
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t=82s#

t=83s#

Figure 6.3: Cylinders assemble into end-to-end chain on a hybrid nematic film. (a) Time-
lapsed image of cylinder assembly. (b) Particle center to center separation distance, r, as a
function of time, t, extracted from particle tracking. Inset: log r vs log(tmax − t) shows a
power law of t1/6 power. Arrow indicates the directions of liquid crystal alignment. Scale
bar is 10µm.
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a)!

b)! c)!

Figure 6.4: Upon forming a rigid chain, the aggregate rotates such that the chain axis aligns
parallel to the director field (a). Elastic rotation rate of a chain comprising four particles
(b). Rotations observed on the interface for chains of 75µm, 100µm, 125µm, and 175µm in
lengths (c). Arrow indicates the directions of liquid crystal alignment. Scale bar is 10µm.
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rm#

b)!

Figure 6.5: Microcylinders on a curved interface. (a) Schematic of the side view of the
interface (rm indicates the radial distance from the center of the microdisk). Inset: Interface
height profile obtained by interferometry shown as black circles. (b) Top view optical image
of the curved interface. After dispersing particles at the curved interface, particles within
the yellow circle located at rm = 1300µm, align radially towards the microdisk. Particles
outside of this curve,align with the director field. Microdisk diameter is 350µm, height
50µm. Scale bar is 100µm. Inset: Schematic of alignment of microcylinders.
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APPENDIX A

A.1. Reflected mode

A.1.1. Problem statement

We have based our previous analysis for particles around microposts with pinned contact

lines on the interaction of the particle-imposed quadrupole hA = hqp
a2

rA2 cos 2(ϕA − αA)

and the reflection from the particle of the local curvature field from the post: ηA =

−∆c0
4

a4

rA2 cos 2(ϕA), which yields the curvature capillary energy:

E = Eplanar − γπ
hqpa

2∆c0

2
cos 2(αA), (A.1)

where angle αA defining the orientation of the quadrupolar rise axis of A is defined counter-

clockwise from the xA axis. For the case of a singular perturbation in powers of a
L , in which

the particle-sourced distortion decays before reaching the micropost, this is the solution. If,

however, the particle-sourced distortion is not negligible at the micropost, and micropost

has a pinned contact line, there is a reflected mode owing to the particle-sourced distortion

hA from the post. Here we evaluate that contribution.

A.1.2. Taylor Series of disturbance from particle A at the post

Noting xA = xM + L and yA = yM , we find hA near the micropost.

hA(xM,yM ) = hqp
a2

(xM + L)2 + yM 2
cos 2

(
tan−1 yM

xM + L
− αA

)
(A.2)

To expand this in a Taylor series near 0M , which is the center of the micropost:

hA(xM , yM ) ≈hA(xM = 0, yM = 0) +∇hA(xM = 0, yM = 0) · xM

+
xM · ∇∇hA(xM = 0, yM = 0) · xM

2

(A.3)
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Figure A.1: Schematic of particle A and micropost M. A is a quadrupolar surface deflection
of magnitude hqp and radius a separated from the micropost by the distance L. Arrows
indicate orientation of quadrupolar rise axes. The angle αA defining the orientation of the
quadrupolar rise axis of A is defined counterclockwise from the xA axis.

We first evaluate:

hA(xM = 0, yM = 0) = hqp
a2

L2
cos (2αA) (A.4)

Define two variables ζ and Υ:

ζ = (xM + L)2 + yM
2 (A.5)

Υ = tan−1 yM
xM + L

(A.6)

from which one can show:

∂ζ

∂xM
= 2(xM + L) (A.7)

∂ζ

∂yM
= 2yM (A.8)

∂Υ

∂xM
=

(xM + L)2

(xM + L)2 + yM 2

−yM
(xM + L)2 =

−yM
ζ

(A.9)

∂Υ

∂yM
=

(xM + L)2

(xM + L)2 + yM 2

1

(xM + L)
=

(xM + L)

ζ
(A.10)
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Recast hA in terms of ζ and Υ,

hA(xM,yM ) = hqpa
2ζ−1 cos 2 (Υ− αA) (A.11)

Compute the partial derivatives of hA, and evaluate at xM = 0, yM = 0,

∂hA
∂xM

= −2hqpa
2ζ−2(xM + L) cos 2 (Υ− αA) + 2hqpa

2ζ−2 sin 2 (Υ− αA) (yM ) (A.12)

∂hA
∂xM

∣∣∣∣
0M

= −2hqpa
2L−3 cos 2αA (A.13)

∂hA
∂yM

= −2hqpa
2ζ−2(yM ) cos 2 (Υ− αA)− 2hqpa

2ζ−2 sin 2 (Υ− αA) (xM + L) (A.14)

∂hA
∂yM

∣∣∣∣
0M

= 2hqpa
2L−3 sin 2αA (A.15)

Using the derivatives from above, we find ∇hA,

∇hA =− 2hqpa
2ζ−2 cos 2 (Υ− αA) ((xM + L)δxM + yMδyM )

+ 2hqpa
2ζ−2 sin 2 (Υ− αA) (yMδxM − (xM + L)δyM )

(A.16)

Evaluating ∇hA at the center of the micropost, xM = 0, yM = 0

∇hA|0M = −2hqpa
2L−4 [L cos 2αAδxM − L sin 2αAδyM ] (A.17)

Noting that δxM = rM cosϕM and δyM = rM sinϕM ,

∇hA|0M · rM = −2hqpa
2L−3 [cos 2αArM cosϕM − sin 2αArM sinϕM ]

= −2hqpa
2RML

−3

[
rM
RM

cos 2αA cosϕM −
rM
RM

sin 2αA sinϕM

]
= −2hqpa

2RML
−3 rM
RM

[cos 2αA cosϕM − sin 2αA sinϕM ]

= −2hqpa
2RML

−3 rM
RM

cos(2αA + ϕM )

(A.18)
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Let rM = RM , where RM is the radius of the micropost,

(∇hA|0M · rM )
∣∣∣
rM=RM

= −2hqpa
2RML

−3 cos(2αA + ϕM ) (A.19)

Now, compute the second derivatives of hA,

∂

∂xM

∂hA
∂xM

= 8hqpa
2ζ−3(xM + L)2 cos 2 (Υ− αA)

− 2hqpa
2ζ−2 cos 2 (Υ− αA)

− 4hqpa
2ζ−3yM (xM + L) sin 2 (Υ− αA)

− 8hqpa
2ζ−3yM (xM + L) sin 2 (Υ− αA)

− 4hqpa
2ζ−3yM

2 cos 2 (Υ− αA)

(A.20)

∂

∂yM

∂hA
∂yM

= 8hqpa
2ζ−3yM

2 cos 2 (Υ− αA)

− 2hqpa
2ζ−2 cos 2 (Υ− αA)

+ 4hqpa
2ζ−3yM (xM + L) sin 2 (Υ− αA)

+ 8hqpa
2ζ−3yM (xM + L) sin 2 (Υ− αA)

− 4hqpa
2ζ−3(xM + L)2 cos 2 (Υ− αA)

(A.21)

Upon evaluation at xM = 0, yM = 0 this reduces to:

∂

∂xM

∂hA
∂xM

∣∣∣∣
0M

= 8hqpa
2L−6(L)2 cos 2αA − 2hqpa

2L−4 cos 2αA

= 6hqpa
2L−4 cos 2αA

(A.22)

∂

∂yM

∂hA
∂yM

∣∣∣∣
0M

= −4hqpa
2L−6(L)2 cos 2αA − 2hqpa

2L−4 cos 2αA

= −6hqpa
2L−4 cos 2αA

(A.23)

131



The mixed second partial derivative is

∂

∂xM

∂hA
∂yM

= 8hqpa
2ζ−3yM (xM + L) cos 2 (Υ− αA)

+ 4hqpa
2ζ−3yM

2 sin 2 (Υ− αA)

+ 8hqpa
2ζ−3(xM + L)2 sin 2 (Υ− αA)

+ 4hqpa
2ζ−3yM (xM + L) cos 2 (Υ− αA)

− 2hqpa
2ζ−2 sin 2 (Υ− αA)

(A.24)

Evaluate the second partial derivative at xM = 0, yM = 0,

∂

∂xM

∂hA
∂yM

∣∣∣∣
0M

= −8hqpa
2L−6(L)2 sin 2αA + 2hqpa

2L−4 sin 2αA

= −6hqpa
2L−4 sin 2αA

(A.25)

Evaluating r · ∇∇hA|0M · r,

r · ∇∇hA|0M · r = rM
2cos2ϕMhA,xx + rM

2sin2ϕMhA,yy + 2rM cosϕM sinϕMhA,xy

= rM
2cos2ϕM (6hqpa

2L−4 cos 2αA) + rM
2sin2ϕM (−6hqpa

2L−4 cos 2αA)

+ 2rM
2 cosϕM sinϕM (−6hqpa

2L−4 sin 2αA)

= −6hqpa
2L−4rM

2 {cos 2αA(− cos 2ϕM ) + sin 2ϕM sin 2αA}

= 6hqpa
2L−4rM

2 {cos 2αA(cos 2ϕM )− sin 2ϕM sin 2αA}

= 6hqpa
2L−4rM

2 cos 2 (αA + ϕM )

(A.26)

The resulting Taylor series expansion is:

hA(xM , yM ) ≈ hqp
a2

L2
cos 2αA − 2hqp

a2RM
L3

rM
RM

cos(ϕM + 2αA)

+ 6hqp
a2RM

2

L4

rM
2

RM
2 cos 2(ϕM + αA) (A.27)
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Evaluating this distortion at the edge of the micropost rM = RM , we find:

hA(xM = RM cosϕM , yM = RM sinϕM ) ≈ hqp
a2

L2
cos 2αA − 2hqp

a2RM
L3

cos(ϕM + 2αA)

+ 6hqp
a2RM

2

L4
cos 2(ϕM + αA) +H.O.T.

(A.28)

i.e., at the edge of the micropost, the particle changes the height, the slope and the curvature.

A.1.3. Reflected modes from the post

In order for the contact line at the micropost to remain fixed, some adjustment must be

made in the interface shape to undo the disturbance made by A. All of these terms excite

decaying induced terms near the post.

hinduced at M =− hqp
a2

L2
cos 2αA(1− ln

rM
RM

) an induced monopole at micropost

+ 2hqp
a2RM
L3

RM
rM

cos(ϕM + 2αA) an induced dipole at micropost

+ 6hqp
a2RM

2

L4

RM
2

rM 2
cos 2(ϕM + αA) an induced quadrupole at micropost

+H.O.T.

(A.29)

Consequences near the micropost

These can interact with the micropost-sourced monopole, dipolar and quadrupolar terms.

Each mode reflected from the post must be expanded around the particle.
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Monopole

The monopole reflected from the micropost changes the curvature near the particle. To

evaluate the curvature near A we evaluate:

hMonopole induced at M = −hqp
a2

L2
cos 2αA(1− ln

rM
RM

) (A.30)

Note that rM
2 = (xA − L)2 + yA

2, evaluate the expression at rA = 0,

hMonopole induced at M = −hqp
2

a2

L2
cos 2αA(2− ln

(xA − L)2 + yA
2

RM
2 ) (A.31)

hMonopole induced at M|rA=0 = −hqp
2

a2

L2
cos 2αA(2− ln

L2

RM
2 ) (A.32)

Compute ∇hMonopole induced at M,

∇hMonopole induced at M = hqp
a2

L2
cos 2αA

1

(xA − L)2 + yA2
((xA − L)δX + yAδY ) (A.33)

r · ∇hMonopole induced at M|0A = −hqp
a3

L3
cos 2αA

rA
a

cosϕ (A.34)

To find ∇∇hMonopole induced at M, we need to find the second derivatives,

∂

∂x

( (xA − L)

(xA − L)2 + yA2

)
= − 2(xA − L)2

((xA − L)2 + yA2)
2 +

1

(xA − L)2 + yA2
(A.35)

∂

∂y

( (xA − L)

(xA − L)2 + yA2

)
= − (xA − L)2yA

((xA − L)2 + yA2)
2 (A.36)

∇∇hMonopole indced at M = hqp
a2

L2
cos 2αA∇

((xA − L)δX + yAδY )

(xA − L)2 + yA2

= hqp
a2

L2
cos 2αA(∇AxδX +∇AyδY )

(A.37)
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It is convenient to define the variables ∇AxδX and ∇AyδY

∇AxδX =
∂

∂x

( (xA − L)

(xA − L)2 + yA2

)
δXδX +

∂

∂y

( (xA − L)

(xA − L)2 + yA2

)
δXδY

∇AxδX =

[
− 2(xA − L)2

((xA − L)2 + yA2)
2 +

1

(xA − L)2 + yA2

]
δXδX −

(xA − L)2yA

((xA − L)2 + yA2)
2 δXδY

∇AxδX |0A = − 1

L2
δXδX

(A.38)

∇Ayδy =
∂

∂x

(yA)

(xA − L)2 + yA2
δXδY +

∂

∂y

(yA)

(xA − L)2 + yA2
δY δY

∇Ayδy = − (yA)(xA − L)2

((xA − L)2 + yA2)
2 δXδY +− 2(yA)(yA)

((xA − L)2 + yA2)
2 +

1

(xA − L)2 + yA2
δY δY

∇Ayδy|0A =
1

L2
δY δY

(A.39)

The curvature evaluated at A is:

r · ∇∇hMonopolee induced at M|0A · r = −hqp
a4

L4
cos 2αA

rA
2

a2
(cos2ϕA − sin2ϕA)

= −hqp
a4

L4
cos 2αA

rA
2

a2
cos 2ϕA

(A.40)

where r = rA cosϕA + rA sinϕA. The corresponding induced mode at A is:

ηreaction to induced monopole = hqp
a4

L4
cos 2αA

a2

rA2
cos 2ϕA (A.41)

With associated capillary energy:

Erxn, ind monopole at post = γπa2 2hqp

RM
2

[
hqp

a4

L4
− ∆c0a

2

4
cos 2αA

]
(A.42)
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Dipole

In this section, we calculate the dipole reflected from the micropost changes the curvature

near the particle. Evaluate the changes in height, slope and curvature near the particle.

h1 induced at M = 2hqp
a2RM
L3

RM
rM

cos(ϕM + 2αA) (A.43)

We define variables ξ and Υ to use in later derivation,

ξ = (xA − L)2 + yA
2 (A.44)

Υ = tan−1 yA
xA − L

(A.45)

The partial derivatives of the variables are

∂ξ

∂x
= 2(xA − L) (A.46)

∂ξ

∂y
= 2yA (A.47)

∂Υ

∂x
=

∂

∂x

(
tan−1 yA

xA − L

)
=

1

1 +
(

yA
xA−L

)2

−yA
(xA − L)2 =

−yA
ξ

(A.48)

∂Υ

∂y
=

∂

∂y

(
tan−1 yA

xA − L

)
=

1

1 +
(

yA
xA−L

)2

1

(xA − L)
=

(xA − L)

ξ
(A.49)

∂

∂x

{
(ξ)−1/2 cos(Υ + 2αA)

}
= −(ξ)−3/2 ((xA − L) cos(Υ + 2αA)− yA sin(Υ + 2αA))

(A.50)

∂

∂y

{
(ξ)−1/2 cos(Υ + 2αA)

}
= −(ξ)−3/2 (yA cos(Υ + 2αA) + (xA − L) sin(Υ + 2αA))

(A.51)
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Now, the height of the interface near the particle A due to the dipole, Eqn. A.43, becomes,

h1 induced at M =
2hqpa

2RM
L3

RM

(ξ)1/2
cos(Υ + 2αA) (A.52)

h1 induced at M|0A =
2hqpa

2RM
2

L4
cos 2αA (A.53)

Compute ∇h1 induced at M near A

∇h1 induced at M near A =− 2hqpa
2RM

2

L3
(ξ)−3/2 ((xA − L) cos(Υ + 2αA)− yA sin(Υ + 2αA)) δX

− 2hqpa
2RM

2

L3
(ξ)−3/2(yA cos(Υ + 2αA) + (xA − L) sin(Υ + 2αA))δY

(A.54)

Upon evaluation at xA = yA = 0 this reduces to,

∇h1 induced at M near A|0A =
2hqpa

2RM
2

L5
(cos 2αAδX + sin 2αAδY ) (A.55)

Note that rA = rA cosϕAδX + rA sinϕAδY ,

rA · ∇h1 induced at M near A|0A =
2hqpa

3RM
2

L5

rA
a

(cosϕA cos 2αA + sinϕA sin 2αA) (A.56)

rA · ∇h1 induced at M near A|0A =
2hqpa

3RM
2

L5

rA
a

cos(ϕA − 2αA) (A.57)

Then, let’s compute ∇∇h1 induced at M near A

∇∇h1 induced at M near A = A0∇
(

(ξ)−3/2(((xA − L) cos(Υ + 2αA)− yA sin(Υ + 2αA)) δX

+ (yA cos(Υ + 2αA) + (xA − L) sin(Υ + 2αA)) δY ))

= A0∇ (T1δX + T2δY )

(A.58)
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where A0 = −2hqpa2RM
2

L3 . It is convenient to define variable T1 and T2,

∂T1

∂x
=

∂

∂x
(ξ)−3/2 ((xA − L) cos(Υ + 2αA)− yA sin(Υ + 2αA))

= −3(ξ)−5/2(xA − L) ((xA − L) cos(Υ + 2αA)− yA sin(Υ + 2αA))

+ (ξ)−5/2 (ξ cos(Υ + 2αA) + (xA − L)yA sin(Υ + 2αA) + yA
2 cos(Υ + 2αA)

)
= (ξ)−5/2((−3(xA − L)2 + ξ + yA

2) cos(Υ + 2αA) + 4yA(xA − L) sin(Υ + 2αA))

(A.59)

∂T1

∂y
=

∂

∂y
(ξ)−3/2 ((xA − L) cos(Υ + 2αA)− yA sin(Υ + 2αA))

= −3(ξ)−5/2yA ((xA − L) cos(Υ + 2αA)− yA sin(Υ + 2αA))

+ (ξ)−5/2
(
−(xA − L)2 sin(Υ + 2αA)− ξ sin(Υ + 2αA)− yA (xA − L) cos(Υ + 2αA)

)
= (ξ)−5/2((3yA

2 − (xA − L)2 − ξ) sin(Υ + 2αA)− 4yA(xA − L) cos(Υ + 2αA))

(A.60)

∂T2

∂x
=

∂

∂x
(ξ)−3/2 [yA cos(Υ + 2αA) + (xA − L) sin(Υ + 2αA)]

= −3(ξ)−5/2(xA − L) [yA cos(Υ + 2αA) + (xA − L) sin(Υ + 2αA)]

+ (ξ)−5/2 [yA2 sin(Υ + 2αA) + ξ sin(Υ + 2αA)− yA (xA − L) cos(Υ + 2αA)
]

= (ξ)−5/2((yA
2 − 3(xA − L)2 + ξ) sin(Υ + 2αA)− 4yA(xA − L) cos(Υ + 2αA))

(A.61)
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∂T2

∂y
=

∂

∂y
(ξ)−3/2 [yA cos(Υ + 2αA) + (xA − L) sin(Υ + 2αA)]

= −3(ξ)−5/2yA [yA cos(Υ + 2αA) + (xA − L) sin(Υ + 2αA)]

+ (ξ)−5/2
[
ξ cos(Υ + 2αA)− yA (xA − L) sin(Υ + 2αA) + (xA − L)2 cos(Υ + 2αA)

]
= (ξ)−5/2(−4yA(xA − L) sin(Υ + 2αA)− (3yA

2 − ξ − (xA − L)2) cos(Υ + 2αA))

(A.62)

Evaluating at the particle,

∂T1

∂x

∣∣∣∣
0A

=
−2

L3
cos 2αA (A.63)

∂T1

∂y

∣∣∣∣
0A

= − 2

L3
sin 2αA (A.64)

∂T2

∂x

∣∣∣∣
0A

= − 2

L3
sin 2αA (A.65)

∂T2

∂y

∣∣∣∣
0A

=
2

L3
cos 2αA (A.66)

Substituting:

r · ∇∇h · r = −2hqpa
2RM

2

L3

[
−2

L3
cos 2αArA

2(cos2ϕA − sin2ϕA)−

− 2

L3
sin 2αArA

2 sinϕA cosϕA −
2

L3
sin 2αArA

2 sinϕA cosϕA

]
= −2hqpa

2RM
2

L3

[
−2rA

2

L3
cos 2αA cos 2ϕA −

4rA
2

L3
sin 2αA sinϕA cosϕA

]
=

2hqpa
2RM

2

L3

[
2rA

2

L3
(sin 2αA sin 2ϕA + cos 2α cos 2ϕA)

]
=

4hqpa
4RM

2

L6
cos 2(ϕA − αA)

rA
2

a2

(A.67)

They are the same as the angles on the particle-sourced distortion at A. The corresponding

induced mode at the particle is:

η1 induced at M near A = −4hqpa
4RM

2

L6
cos 2(ϕA − αA)

a2

r2
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The energy should have the form:

EDipole−particle = γπa2 8hqpa
2

RM
4

[
hqp

RM
6

L6
− ∆c0a

2

4
cosαA

]
(A.68)

Quadrupole

Expansion of the quadrupolar term reflected from the micropost to A

h2 induced from A on M = −6hqp
a2RM

2

L4

RM
2

rM 2
cos 2(ϕM + αA) (A.69)

h2 induced from A on M expanded near A = −
(

6hqp
a2RM

2

L4

)
RM

2a2

L4

rA
2

a2
cos 2(ϕA − αA) (A.70)

h induced term from (2 induced from A on M expanded near A) = h2,refl (A.71)

= +

(
6hqp

a2RM
2

L4

)(
6
RM

2a2

L4

)
a2

rA2
cos 2(ϕA − αA)

E = h2,refl = +γπa2

(
6hqp

a2RM
2

L4

)(
6
RM

2a2

L4

)[
hqp −

∆c0a
2

4
cos 2αA

]
(A.72)

This has the same sign as the particle sourced term and interacts similarly either with the

particle directly or with the host curvature. The picture that is emerging is:

Eincluding reflection = Ecap curv attraction + E2,ref,∆c0 + E2,ref,hA + (E2,ref,2,ref ) +
∑
other

E

(A.73)
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Eincluding reflection =− γπhqp
a2∆c0

2
cos 2(αA)

+ γπ

[
hqp −

∆c0a
2

4
cos 2αA

](
2hqp

(
a

RM

)4
)(

RM
L

)4

(reaction to reflected monopole at post)

+ γπ

[
hqp −

∆c0a
2

4
cos 2αA

](
2hqp

(
a

RM

)4
)

(22)

(
RM
L

)6

(reaction to reflected dipole at post)

+ γπ

[
hqp −

∆c0a
2

4
cos 2αA

](
2hqp

(
a

RM

)4
)

(2232)

(
RM
L

)8

(reaction to reflected quadrupole at post)

+
∑
other

E

(A.74)

The last term,
∑
other

E, has contributions from the cross terms and self terms.

cross terms (which go as

(
a

RM

)8

):

+ reflected monopole and reflected dipole ∼
(
RM
L

)10

+ reflected monopole and reflected quadrupole ∼
(
RM
L

)12

+ reflected dipole and reflected quadrupole) ∼
(
RM
L

)14

self terms (which go as

(
a

RM

)8

):

+ reflected monopole self ∼
(
RM
L

)8

+ reflected dipole self ∼
(
RM
L

)12

+ reflected quadrupole self ∼
(
RM
L

)16

Each reflected mode could contribute a change of height, slope and quadrupole as it is ex-

panded near the particle. The addition of many such reflected terms could set equilibrium
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locations near the post. Analysis of the quadrupolar term alone would fix an equilibrium

location very close to the post. The addition of many higher order terms could perturb this

location.

A.2. Deformation around a large microdisk

In addition to Fig. 3a) in the main text, here we present the interferogram of another

microdisk (2a = 150µm). Figure A.2 shows random puckering near the particle and only

higher order modes evident at 170µm from particle center.

Figure A.2: Interferogram of a microdisk (2a = 150µm). Interferogram showing Top:
hexapolar undulation of interface height along a circle of radius 170 µm from particle center.
Bottom: undulated interface height along a circle of radius 86 µm from particle center.

A.3. Simulated studies on curvature capillary interactions with higher order modes

We extend our study on higher order mode interaction with curvature field by computing the

capillary energy of a 25 µm diameter disk on a 57 µm diameter micropost. In this problem,

we consider the disk particle carries two modes of with its undulated contact line: hexapole

(HP) and quadrupole (QP) . We assume these modes have fixed relative orientation and

we consider the case where the rise axis of the QP coincides with one rise point on the

HP, as depicted in the Figure A.3. We plot energy landscapes for this particle in several
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orientations with respect to the post. First, we consider an orientation where the QP is

attractive and the HP is repulsive. In this configuration, the two modes will frustrate each

other when they are both significant. By assigning h2 and h3 with reasonable values, we

calculate the capillary energy of the microdisk migration from L0 = 300µm to L0 = 41.5µm,

the center to center distance of a disk at the edge of a 57µm diameter post (Figure A.3a)).

The capillary energy first decreases as the particle approaches the micropost, indicating the

far field QP interaction. However, as the repulsive HP grows in importance, an energy well

near L0 = 96.5µm defines the particle’s equilibrium location. A second example trajectory

is shown in Fig. A.3b) for this particle oriented so that both QP and HP are repulsive; the

particle will migrate away from the micropost to minimize the energy of the system.

These simple examples demonstrate how a particle with different modes interacts with

the curvature field when there are strong energy barriers to particle rotation owing to

the rugged contact line. Figure A.3c) shows the energy barriers to rotation at two L0

locations on the curved interface as a function of α2 for this example particle, noting that

α2 = 0◦, 180◦ or −180◦ are the preferred QP alignment. The dotted line far from the post

(L0 = 300 µm) resembles a cos 2α2 which suggests the strong quadrupole interaction in the

far field. However, close to the post, the blue line, (L0 = 96.5 µm), the energy barriers are

more significant and the angular dependence is more complex. This significant rotational

barrier in the high curvature region prevents particles from finding their global minimum,

which is why we have a zoo of observations of particles equilibrating at various locations,

repelled from high curvature region, or migrating to the post. In the main text, we present

data that supports this interpretation for a particle that is repelled from near the post,

rotates in the far field, and follows by attraction to the micropost following a quadrupolar

dominated trajectory.
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a)# b)# c)#

Figure A.3: Curvature capillary energy of a 25 µm diameter disk with hexapolar (HP) and
quadrupolar (QP) modes. Simulated trajectory of a disk with hexapole (h2 = 300 nm) and
quadrupole (h3 = 2000 nm) deformation. a) Energy profile for a particle trajectory with
QP aligned and misaligned HP on a curved interface. b) Energy landscape of a trajectory
for misaligned HP and QP. In a) and b), the micropost (not shown) is located directly above
the particle in the schematic. c) Energy profile as a function of QP alignment (α2) with
respect to the principal curvature of the interface at L0 = 96.5 µm and L0 = 300 µm.
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APPENDIX B

B.1. Data analysis

Data analysis plays an important role in my research for the past five years. In this section

focuses on how the I use particle tracking to analyze experimental data. The steps listed here

are the general steps I took in my data analysis for all of the projects in previous chapters.

Parameters may vary slightly in order to obtain the most accurate particle position.

B.2. Particle tracking

Experiments are taken under an upright microscope (Zeiss M1m) in either reflective or

transmitted mode. Particle trajectories are recorded using a high resolution camera in a

black and white setting at a certain frame rate per second. After converting the raw video

into a readable format, e.g., avi, png, tif..., I import the video or the image sequence into

ImageJ. Selecting IMAGE-TYPE-8-bit, I convert the video into 8-bit. Here, in ANALYZE

tab, I enter the pixel to unit conversion in SET SCALE such that my final output will have

the unit of microns. In the experiments where micropost is present, I use OVAL to fit the

edges of the micropost to find the center location, which will be used later to calculate the

separation distance. In order to use the ANALYZE PARTICLE mode in the software, the

video needs to be adjusted to have a better contrast between the particle and the back-

ground. This is done by selecting IMAGE-ADJUST-THRESHOLD and manually changing

the min/max values so that the video has minimal background noise and still maintains a

strong contrast between the particles and its surroundings. Next, the video is converted

into Binary by selecting PROCESS-BINARY-MAKE BINARY. Based on the quality of the

video, there are a few tabs under BINARY might come useful. Under ANALYZE-SET

MEASUREMENT, we could select the quantities that we want to measure. Lastly, we run

ImageJ to analyze the particle by clicking ANALYZE-ANALYZE PARTICLE and entering

the range of particle size and circularity.
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B.3. Matlab

This section describes the steps I take using Matlab to analyze data. Once I obtain the par-

ticle location (x, y) at each frame from particle tracking, I compute the separation distance

(L) between the micropost and particle at each time time. To simplify the analysis, I fit

this time and separation distance with a polynomial using polyfit to get L(t). The degree

of polynomial varies from trajectory to trajectory; however, the general rule is that the fit

captures the trend without overfitting the data. Next, I evaluate the distance at each time

step from polynomial using polyval. From the polynomial L(t), I can calculate the local

deviatoric curvature at each frame t. The velocity is computed by finding the derivative of

L(t) using polyder and evaluating at each time frame, v(t). Finally, with velocity (v(t)),

distance (L(t)), and drag coefficient (CD), I use Stokes law by summing energy dissipated

at each time step to find the total energy dissipated along a path.
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