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Point And Density Forecasts In Panel Data Models

Abstract
This dissertation develops econometric methods that facilitate estimation and improve forecasting
performance in panel data models. The panel considered in this paper features large cross-sectional dimension
(N) but short time series (T). It is modeled by a dynamic linear model with common and heterogeneous
coefficients and cross-sectional heteroskedasticity. Due to short T, traditional methods have difficulty in
disentangling the heterogeneous parameters from the shocks, which contaminates the estimates of the
heterogeneous parameters. To tackle this problem, the methods developed in this dissertation assume that
there is an underlying distribution of the heterogeneous parameters and pool the information from the whole
cross-section together via this distribution. Chapter 2, coauthored with Hyungsik Roger Moon and Frank
Schorfheide, constructs point forecasts using an empirical Bayes method that builds on Tweedie's formula to
obtain the posterior mean of the heterogeneous coefficients under a correlated random effects distribution.
We show that the risk of a predictor based on a non-parametric estimate of the Tweedie correction is
asymptotically equivalent to the risk of a predictor that treats the correlated-random-effects distribution as
known (ratio-optimality). Our empirical Bayes predictor performs well compared to various competitors in a
Monte Carlo study. In an empirical application, we use the predictor to forecast revenues for a large panel of
bank holding companies and compare forecasts that condition on actual and severely adverse macroeconomic
conditions. In Chapter 3, I focus on density forecasts and use a full Bayes approach, where the distribution of
the heterogeneous coefficients is modeled nonparametrically allowing for correlation between heterogeneous
parameters and initial conditions as well as individual-specific regressors. I develop a simulation-based
posterior sampling algorithm specifically addressing the nonparametric density estimation of unobserved
heterogeneous parameters. I prove that both the estimated common parameters and the estimated
distribution of the heterogeneous parameters achieve posterior consistency, and that the density forecasts
asymptotically converge to the oracle forecast. Monte Carlo simulations and an application to young firm
dynamics demonstrate improvements in density forecasts relative to alternative approaches.
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ABSTRACT

POINT AND DENSITY FORECASTS IN PANEL DATA MODELS

Laura Liu

Francis X. Diebold

Frank Schorfheide

This dissertation develops econometric methods that facilitate estimation and improve fore-

casting performance in panel data models. The panel considered in this paper features

large cross-sectional dimension (N) but short time series (T ). It is modeled by a dynamic

linear model with common and heterogeneous coe�cients and cross-sectional heteroskedas-

ticity. Due to short T , traditional methods have di�culty in disentangling the heterogeneous

parameters from the shocks, which contaminates the estimates of the heterogeneous param-

eters. To tackle this problem, the methods developed in this dissertation assume that there

is an underlying distribution of the heterogeneous parameters and pool the information from

the whole cross-section together via this distribution. Chapter 2, coauthored with Hyungsik

Roger Moon and Frank Schorfheide, constructs point forecasts using an empirical Bayes

method that builds on Tweedie's formula to obtain the posterior mean of the heteroge-

neous coe�cients under a correlated random e�ects distribution. We show that the risk of

a predictor based on a non-parametric estimate of the Tweedie correction is asymptotically

equivalent to the risk of a predictor that treats the correlated-random-e�ects distribution as

known (ratio-optimality). Our empirical Bayes predictor performs well compared to various

competitors in a Monte Carlo study. In an empirical application, we use the predictor to

forecast revenues for a large panel of bank holding companies and compare forecasts that

condition on actual and severely adverse macroeconomic conditions. In Chapter 3, I focus

on density forecasts and use a full Bayes approach, where the distribution of the heteroge-

neous coe�cients is modeled nonparametrically allowing for correlation between heteroge-

neous parameters and initial conditions as well as individual-speci�c regressors. I develop

v



a simulation-based posterior sampling algorithm speci�cally addressing the nonparametric

density estimation of unobserved heterogeneous parameters. I prove that both the estimated

common parameters and the estimated distribution of the heterogeneous parameters achieve

posterior consistency, and that the density forecasts asymptotically converge to the oracle

forecast. Monte Carlo simulations and an application to young �rm dynamics demonstrate

improvements in density forecasts relative to alternative approaches.

vi



TABLE OF CONTENTS

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER 1 : Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 : Point Forecasts and Bank Stress Tests . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 A Dynamic Panel Forecasting Model . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Decision-Theoretic Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Implementation of the Optimal Forecast . . . . . . . . . . . . . . . . . . . . . 20

2.5 Ratio Optimality in the Basic Dynamic Panel Model . . . . . . . . . . . . . . 27

2.6 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Empirical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

CHAPTER 3 : Density Forecasts and Young Firm Dynamics . . . . . . . . . . . . . 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Theoretical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.7 Empirical Application: Young Firm Dynamics . . . . . . . . . . . . . . . . . . 116

vii



3.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

APPENDIX A : Point Forecasts and Bank Stress Tests . . . . . . . . . . . . . . . . . 127

A.1 Theoretical Derivations and Proofs . . . . . . . . . . . . . . . . . . . . . . . . 127

A.2 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.3 Additional Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

APPENDIX B : Density Forecasts and Young Firm Dynamics . . . . . . . . . . . . . 181

B.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

B.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

B.3 Proofs for Baseline Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

B.4 Proofs for General Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

B.5 Extension: Heavy Tails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

B.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

viii



LIST OF TABLES

TABLE 1 : Monte Carlo Design 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 32

TABLE 2 : Monte Carlo Experiment 1: Random E�ects, Parametric Tweedie

Correction, Selection Bias . . . . . . . . . . . . . . . . . . . . . . . . 34

TABLE 3 : Monte Carlo Design 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 37

TABLE 4 : Monte Carlo Experiment 2: Correlated Random E�ects, Non-parametric

versus Parametric Tweedie Correction . . . . . . . . . . . . . . . . . . 41

TABLE 5 : Monte Carlo Design 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 42

TABLE 6 : Monte Carlo Experiment 3: Misspeci�ed Likelihood Function . . . . 43

TABLE 7 : MSE for Basic Dynamic Panel Model . . . . . . . . . . . . . . . . . . 45

TABLE 8 : MSE for Basic Dynamic Panel Model for T = 5 . . . . . . . . . . . . 47

TABLE 9 : Parameter Estimates for T = 5: θ̂QMLE , Parametric Tweedie Cor-

rection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

TABLE 10 : MSE for Model with Unemployment for T = 5 . . . . . . . . . . . . . 50

TABLE 11 : MSE for Model with Unemployment, Fed Funds Rate, and Spread

for T = 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

TABLE 12 : Simulation Setup: Baseline Model . . . . . . . . . . . . . . . . . . . 108

TABLE 13 : Forecast Evaluation: Baseline Model . . . . . . . . . . . . . . . . . . 111

TABLE 14 : Simulation Setup: General Model . . . . . . . . . . . . . . . . . . . . 114

TABLE 15 : Prior Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

TABLE 16 : Forecast Evaluation: General Model . . . . . . . . . . . . . . . . . . 117

TABLE 17 : Descriptive Statistics for Observable . . . . . . . . . . . . . . . . . . 119

TABLE 18 : Common Parameter β . . . . . . . . . . . . . . . . . . . . . . . . . . 120

TABLE 19 : Forecast Evaluation: Young Firm Dynamics . . . . . . . . . . . . . . 122

TABLE 20 : Two-digit NAICS Codes . . . . . . . . . . . . . . . . . . . . . . . . . 125

ix



TABLE 21 : Size of Adjusted Rolling Samples . . . . . . . . . . . . . . . . . . . . 179

TABLE 22 : Descriptive Statistics for Rolling Samples . . . . . . . . . . . . . . . . 179

TABLE 23 : Parameter Estimates: θ̂QMLE , Parametric Tweedie Correction . . . . 180

x



LIST OF ILLUSTRATIONS

FIGURE 1 : QMLE Estimation: Distribution of Êλi
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CHAPTER 1

Introduction

This dissertation develops econometric methods that facilitate estimation and improve fore-

casting performance in panel data models. Panel data, such as a collection of �rms or house-

holds observed repeatedly for a number of periods, are widely used in empirical studies and

can be useful for forecasting individuals' future outcomes, which is interesting and impor-

tant in many cases. For example, in the context of banks, stress tests involve forecasting

pre-provision net revenues (PPNR) and other balance sheet variables under counterfactual

stressed macroeconomic and �nancial scenarios; in the context of young �rms, accurate

forecasts can help investors select promising startups and assist policymakers in regulating

entrepreneur funding.

For illustrative purposes, let us consider a simple dynamic panel data model:

yit = βyi,t−1 + λi + uit, uit ∼ N
(
0, σ2

)
,

where i = 1, · · · , N , and t = 1, · · · , T + 1. The yit's are observed individual outcomes,

β and σ2 are common parameters, and λi's are unobserved individual e�ects. The general

model studied in this dissertation extends this baseline setup to account for many important

features of real-world empirical studies, including regressors with common e�ects, correlated

random coe�cients, and cross-sectional heteroskedasticity. Based on the observed panel up

to time T , I am interested in providing point and density forecasts of yi,T+1.

The panel considered in this paper features large cross-sectional dimension (N) but short

time series (T ). This framework is appealing to the bank stress tests example due to changes

in the regulatory environment in the aftermath of the recent �nancial crisis as well as frequent

mergers in the banking industry. It also �ts the young �rm dynamics example well as the
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number of observations for each young �rm is restricted by its age.

Due to short T , traditional methods have di�culty in disentangling the unobserved indi-

vidual e�ects from the shocks, which contaminates the estimates of the individual e�ects.

The naive estimators that only utilize the individual-speci�c observations are inconsistent

even if N goes to in�nity. To tackle this problem, the methods developed in this disserta-

tion assume that there is an underlying distribution of the individual e�ects. Moreover, the

individual e�ects are allowed to be correlated with the initial condition yi0, i.e. correlated

random e�ects model. Then, we can pool the information from the whole cross-section to-

gether via this distribution in an e�cient and �exible way, and provide better estimates of

the individual e�ects and more accurate forecasts of the individual-speci�c future outcomes.

The methods proposed in this dissertation are general to many other problems beyond fore-

casting. Here estimating heterogeneous parameters is important because we want to generate

good forecasts, but in other cases, the heterogeneous parameters themselves can possibly

be the objects of interest. For example, people may be interested in individual-speci�c

treatment e�ects, and the technique developed here can be applied to those questions.

Chapter 2, coauthored with Hyungsik Roger Moon and Frank Schorfheide, constructs point

forecasts using an empirical Bayes method that builds on Tweedie's formula to obtain the

posterior mean of the heterogeneous coe�cients under a correlated random e�ects distribu-

tion. This formula utilizes cross-sectional information to transform the unit-speci�c (quasi)

maximum likelihood estimator into an approximation of the posterior mean under a prior

distribution that equals the population distribution of the random coe�cients.

We show that the risk of a predictor based on a non-parametric estimate of the Tweedie

correction is asymptotically equivalent to the risk of a predictor that treats the correlated-

random-e�ects distribution as known (ratio-optimality). In other words, the regret of fore-

casts is negligible comparing to the part of the optimal risk that is due to uncertainty about

the heterogeneous coe�cients.

2



Our empirical Bayes predictor performs well compared to various competitors in a Monte

Carlo study. In an empirical application, we use the predictor to forecast revenues for

a large panel of bank holding companies and compare forecasts that condition on actual

and severely adverse macroeconomic conditions. Results show that the impact of stressed

macroeconomic conditions (characterized by unemployment, federal funds rate, and spread)

on bank revenues is relatively small with respect to the cross-sectional dispersion of revenues.

In Chapter 3, I tackle a di�erent problem in a similar panel data setup as described in

Chapter 2. Instead of providing point forecasts via an empirical Bayes method, here I

focus on density forecasts and use a full Bayes approach, where the distribution of the

heterogeneous coe�cients is modeled nonparametrically by a mixture model allowing for

correlation between heterogeneous parameters and initial conditions as well as individual-

speci�c regressors. Once this distribution is estimated by exploring the information from the

whole cross-section, I can, intuitively speaking, use it as a prior distribution and combine it

with individual-speci�c data and obtain the individual-speci�c posterior. This individual-

speci�c posterior helps provide better inference about the heterogeneous parameters of each

individual.

In this framework, it is natural to construct density forecasts. Basically, it is a predictive

distribution of future performance of a speci�c �rm, which summarizes all sources of future

uncertainties. Especially, in this setup of dynamic panel data model, the density forecasts

re�ect uncertainties due to future shocks, individual heterogeneity, and estimation uncer-

tainty, where the part of uncertainties due to individual heterogeneity arises from the lack

of time-series information available to infer the heterogeneous parameters of each individ-

ual. Moreover, based on density forecasts, it is straightforward to derive point forecasts and

interval forecasts.

I develop a simulation-based posterior sampling algorithm speci�cally addressing the non-

parametric density estimation of unobserved heterogeneous parameters. I prove that both

the estimated common parameters and the estimated distribution of the heterogeneous pa-

3



rameters achieve posterior consistency, and that the density forecasts asymptotically con-

verge to the oracle forecast, an (infeasible) benchmark that is de�ned as the individual-

speci�c posterior predictive distribution under the assumption that the common parameters

and the distribution of the heterogeneous parameters are known.

Monte Carlo simulations demonstrate improvements in density forecasts relative to alter-

native approaches. There are three key factors for better density forecasts: in order of im-

portance, nonparametric Bayesian prior, cross-sectional heteroskedasticity, and correlated

random coe�cients. An application to young �rm dynamics also shows that the proposed

predictor provides more accurate density predictions, and the estimated model helps shed

light on the latent heterogeneity structure.

4



CHAPTER 2

Point Forecasts and Bank Stress Tests1

2.1 Introduction

The main goal of this paper is to forecast a collection of short time series. Examples are

the performance of start-up companies, developmental skills of small children, and revenues

and leverage of banks after signi�cant regulatory changes. In these applications the key

di�culty lies in the e�cient implementation of the forecast. Due to the short time span,

each time series taken by itself provides insu�cient sample information to precisely estimate

unit-speci�c parameters. We will use the cross-sectional information in the sample to make

inference about the distribution of heterogeneous parameters. This distribution can then

serve as a prior for the unit-speci�c coe�cients to sharpen posterior inference based on the

short time series.

More speci�cally, we consider a linear dynamic panel model in which the unobserved in-

dividual heterogeneity, which we denote by the vector λi, interacts with some observed

predictors:

Yit = λ′iWit−1 + ρ′Xit−1 + α′Zit−1 + Uit, i = 1, . . . , N, t = 1, . . . , T. (2.1.1)

Here, (Wit−1, Xit−1, Zit−1) are predictors and Uit is an unpredictable shock. Throughout

this paper we adopt a correlated random e�ects approach in which the λis are treated as

random variables that are possibly correlated with some of the predictors. An important

special case is the linear dynamic panel data model in whichWit−1 = 1, λi is a heterogeneous

intercept, and the sole predictor is the lagged dependent variable: Xit−1 = Yit−1.

1This chapter builds on Liu et al. (2016), coauthored with Hyungsik Roger Moon and Frank Schorfheide.

5



We develop methods to generate point forecasts of YiT+1, assuming that the time dimension

T is short relative to the number of predictors (WiT , XiT , ZiT ). The forecasts are evaluated

under a quadratic loss function. In this setting an accurate forecasts not only requires a

precise estimate of the common parameters (α, ρ), but also of the parameters λi that are

speci�c to the cross-sectional units i. The existing literature on dynamic panel data models

almost exclusively studied the estimation of the common parameters, treating the unit-

speci�c parameters as a nuisance. Our paper builds on the insights of the dynamic panel

literature and focuses on the estimation of λi, which is essential for the prediction of Yit.

The benchmark for our prediction methods is the so-called oracle forecast. The oracle is

assumed to know the common coe�cients (α, ρ) as well as the distribution of the heteroge-

neous coe�cients λi, denoted by π(λi|·). Note that this distribution could be conditional

on some observable characteristics of unit i. Because we are interested in forecasts for the

entire cross section of N units, a natural notion of risk is that of compound risk, which is

a (possibly weighted) cross-sectional average of expected losses. In a correlated random-

e�ects setting, this averaging is done under the distribution π(λi|·), which means that the

compound risk associated with the forecasts of the N units is the same as the integrated risk

for the forecast of a particular unit i. It is well known, that the integrated risk is minimized

by the Bayes predictor that minimizes the posterior expected loss conditional on time T

information for unit i. Thus, the oracle replaces λi by its posterior mean.

The implementation of the oracle forecast is infeasible because in practice neither the com-

mon coe�cients (ρ, α) nor the distribution of the unit-speci�c coe�cients π(λi|·) is known.

To obtain a feasible predictor, we extend the classical posterior mean formula attributed to

separate works of Arthur Eddington and Maurice Tweedie to our dynamic panel data setup.

According to this formula, the posterior mean of λi can be expressed as a function of the

cross-sectional density of certain su�cient statistics. Conditional on the common param-

eters, this distribution can then be estimated either parametrically or non-parametrically

from the panel data set. The unknown common parameters can be replaced by a gener-
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alized method of moments (GMM) estimator, a likelihood-based correlated random e�ects

estimator, or a Bayes estimator.

Our paper makes three contributions. First, we show in the context of the linear dynamic

panel data model that a feasible predictor based on a consistent estimator of (ρ, α) and a

non-parametric estimator of the cross-sectional density of the relevant su�cient statistics can

achieve the same compound risk as the oracle predictor asymptotically. Our main theorem

extends a result from Brown and Greenshtein (2009) for a vector of means to a panel data

model with estimated common coe�cients. Importantly, this result also covers the case in

which the distribution π(λi|·) degenerates to a point mass. As in Brown and Greenshtein

(2009), we are able to show that the rate of convergence to the oracle risk accelerates in the

case of homogeneous λ coe�cients. Second, we provide a detailed Monte Carlo study that

compares the performance of various implementations, both non-parametric and parametric,

of our predictor. Third, we use our techniques to forecast pre-provision net-revenues of a

panel of banks.

If the time series dimension is small, our feasible predictor performs much better than a

naive predictor of YiT+1 that is based on within-group estimates of λi. A small T leads

to a noisy estimate of λi. Moreover, from a compound risk perspective, there will be a

selection bias. Consider the special case of α = ρ = 0 and Wit = 1. Here, λi is simply

a heterogeneous intercept. Very large (small) realizations of Yit will be attributed to large

(small) values of λi, which means that the within-group mean will be upward (downward)

biased for those units. The use of a prior distribution estimated from the cross-sectional

information essentially corrects this bias, which facilitates the reduction of the prediction

risk if it is averaged over the entire cross section. Alternatively, one could ignore the cross-

sectional heterogeneity and estimate a (misspeci�ed) model with a homogeneous coe�cient

λ. If the heterogeneity is small, this procedure is likely to perform well in a mean-squared-

error sense. However, as the heterogeneity increases, the performance of a predictor that is

based on a pooled estimation quickly deteriorates. We illustrate the performance of various
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implementations of the feasible predictor in a Monte Carlo study and provide comparisons

with other predictors, including one that is based on quasi maximum likelihood estimation

of the unit-speci�c coe�cients and one that is constructed from a pooled OLS estimator

that ignores parameter heterogeneity.

In an empirical application we forecast pre-provision net revenues of bank holding companies.

The stress tests that have become mandatory under the Dodd-Frank Act require banks to

establish how revenues vary in stressed macroeconomic and �nancial scenarios. We capture

the e�ect of macroeconomic conditions on bank performance by including the unemployment

rate, an interest rate, and an interest rate spread in the vector Wit−1 in (2.1.1). Our

analysis consists of two steps. We �rst document the one-year-ahead forecast accuracy of

the posterior mean predictor developed in this paper under the actual economic conditions,

meaning that we set the aggregate covariates to their observed values. In a second step, we

replace the observed values of the macroeconomic covariates by counterfactual values that

re�ect severely adverse macroeconomic conditions. We �nd that our proposed posterior

mean predictor is considerably more accurate than a predictor that does not utilize any

prior distribution. The posterior mean predictor shrinks the estimates of the unit-speci�c

coe�cients toward a common prior mean, which reduces its sampling variability. According

to our estimates, the e�ect of stressed macroeconomic conditions on bank revenues is very

small relative to the cross-sectional dispersion of revenues across holding companies.

Our paper is related to several strands of the literature. For α = ρ = 0 and Wit = 1 the

problem analyzed in this paper reduces to the problem of estimating a vector of means,

which is a classic problem in the statistic literature. In this context, Tweedie's formula has

been used, for instance, by Robbins (1951) and more recently by Brown and Greenshtein

(2009) and Efron (2011) in a �big data� application. Throughout this paper we are adopting

an empirical Bayes approach, that uses cross-sectional information to estimate aspects of the

prior distribution of the correlated random e�ects and then conditions on these estimates.

Empirical Bayes methods also have a long history in the statistics literature going back to
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Robbins (1956) (see Robert (1994) for a textbook treatment).

We use compound decision theory as in Robbins (1964), Brown and Greenshtein (2009),

Jiang and Zhang (2009) to state our optimality result. Because our setup nests the linear

dynamic panel data model, we utilize results on the consistent estimation of ρ in dynamic

panel data models with �xed e�ects when T is small, e.g., Anderson and Hsiao (1981),

Arellano and Bond (1991), Arellano and Bover (1995), Blundell and Bond (1998), Alvarez

and Arellano (2003). Fully Bayesian approaches to the analysis of dynamic panel data

models have been developed in Chamberlain and Hirano (1999), Hirano (2002), Lancaster

(2002).

The papers that are most closely related to ours are Gu and Koenker (2016a,b). They also

consider a linear panel data model and use Tweedie's formula to construct an approximation

to the posterior mean of the heterogeneous regression coe�cients. However, their papers

focus on the use of the Kiefer-Wolfowitz estimator for the cross-sectional distribution of the

su�cient statistics, whereas our paper explores various plug-in estimators for the homo-

geneous coe�cients in combination with both parametric and nonparametric estimates of

the cross-sectional distribution. Moreover, our paper establishes the ratio-optimality of the

forecast and presents a di�erent application. Finally, Liu (2016) develops a fully Bayesian

(as opposed to empirical Bayes) approach to construct density forecast. She uses a Dirichlet

process mixture to construct a prior for the distribution of the heterogeneous coe�cients,

which then is updated in view of the observed panel data.

There is an earlier panel forecast literature (e.g., see the survey article by Baltagi (2008)

and its references) that is based on the best linear unbiased prediction (BLUP) proposed

by Goldberger (1962). Compared to the BLUP-based forecasts, our forecasts based on

Tweedie's formula have several advantages. First, it is known that the estimator of the

unobserved individual heterogeneity parameter based on the BLUP method corresponds

to the Bayes estimator based on a Gaussian prior (see, for example, Robinson (1991)),

while our estimator based on Tweedie's formula is consistent with much more general prior
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distributions. Second, the BLUP method �nds the forecast that minimizes the expected

quadratic loss in the class of linear (in (Yi0, ..., YiT )′) and unbiased forecasts. Therefore, it

is not necessarily optimal in our framework that constructs the optimal forecast without

restricting the class of forecasts. Third, the existing panel forecasts based on the BLUP

were developed for panel regressions with random e�ects and do not apply to correlated

random e�ects settings.

There is a small academic literature on econometric techniques for stress test. Most papers

analyze revenue and balance sheet data for the relatively small set of bank holding companies

with consolidated assets of more than 50 billion dollars. There are slightly more than 30 of

these companies and they are subject to the Comprehensive Capital Analysis and Review

conducted by the Federal Reserve Board of Governors. An important paper in this literature

is Covas et al. (2014), which uses quantile autoregressive models to forecast bank balance

sheet and revenue components. We work with a much larger panel of bank holding companies

that comprises, depending on the sample period, between 460 and 725 institutions.

The remainder of the paper is organized as follows. Section 2.2 introduces the panel data

model considered in this paper, derives the likelihood function, and provides an impor-

tant identi�cation result. Decision theoretic foundations for the proposed predictor and a

derivation of the oracle forecast are provided in Section 2.3. Section 2.4 discusses feasible

implementation strategies for the predictor and we show in Section 2.5 in the context of a

basic dynamic panel data model that our proposed predictor asymptotically has the same

risk as the oracle forecast. A simulation study is provided in Section 2.6. The empirical

application is presented in Section 2.7 and Section 2.8 concludes. Technical derivations,

proofs, the description of the data set used in the empirical analysis, and further empirical

results are relegated to the Appendix.
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2.2 A Dynamic Panel Forecasting Model

We consider a panel with observations for cross-sectional units i = 1, . . . , N in periods

t = 1, . . . , T . Observation Yit is assumed to be generated by (2.1.1). We distinguish three

types of regressors. First, the kw×1 vector Wit interacts with the heterogeneous coe�cients

λi. In many panel data applications Wit = 1, meaning that λi is simply a heterogenous

intercept. We allow Wit to also include deterministic time e�ects such as seasonality, time

trends and/or strictly exogenous variables observed at time t. To distinguish deterministic

time e�ects w1,t+1 from cross-sectionally varying and strictly exogenous variables W2,it, we

partition the vector into Wit = (w1,t+1,W2,it).
2 The dimensions of the two components

are kw1 and kw2 , respectively. Second, Xit is a kx × 1 vector of sequentially exogenous

predictors with homogeneous coe�cients. The predictors Xit may include lags of Yit+1 and

we collect all the predetermined variables other than the lagged dependent variable into the

subvector X2,it. Third, Zit is a kz-vector of strictly exogenous regressors, also with common

coe�cients.

Our main goal is to construct optimal forecasts of (Y1T+1, ..., YNT+1) conditional on the

entire panel observations {(Yit,Wit−1, Xit−1, Zit−1), i = 1, . . . , N and t = 1, ..., T using the

forecasting model (2.1.1). An important special case of model (2.1.1) is the basic dynamic

panel data model

Yit = λi + ρYit−1 + Uit, (2.2.1)

which is obtained by setting Wit = 1, Xit = Yit and α = 0. The restricted model (2.2.1)

has been widely studied in the literature. However, most studies focus on consistently

estimating the common parameter ρ in the presence of an increasing (with the cross-sectional

dimension N) number of λis. In forecasting applications, we also need to estimate the λis.

In Section 2.2.1 we specify the likelihood function for model (2.1.1) and in Section 2.2.2

we establish the identi�ability of the model parameters, including the distribution of the

heterogeneous coe�cients λi.

2Because Wit is a predictor for Yit+1 we use a t+1 subscript for the deterministic trend component w1.
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2.2.1 The Likelihood Function

Let Y t1:t2
i = (Yit1 , ..., Yit2) and use a similar notation to collectWits, Xits, and Zits. We begin

by making some assumptions on the joint distribution of {Y 1:T+1
i , X0:T

i ,W 0:T
2,i , Z

0:T
i , λi}Ni=1

conditional on the regression coe�cients ρ and α and the vector of volatility parameters γ

(to be introduced below). We drop the deterministic trend regressors w1,t from the notation

for now. We use E[·] to denote expectations and V[·] to denote variances.

Assumption 2.2.1.

(i) (Y 1:T+1
i , λi, X

0:T
i ,W 0:T

2i , Z0:T
i ) are independent across i.

(ii) (λi, Xi0,W
0:T
2,i , Z

0:T
i ) are iid with joint density

π(λ, x0, w
0:T
2 , z0:T ) = π(λ|x0, w

0:T
2 , z0:T )π(x0, w

0:T
2 , z0:T ).

(iii) For t = 1, . . . , T , the distribution of X2,it conditional on (Y 1:t
i , X0:t−1

i ,W 0:T
2,i , Z

0:T
i ) does

not depend on the heterogeneous parameters λi and parameters (ρ, α, γ1, ...γT ).

(iv) The distribution of (W 0:T
2,i , Z

0:T
i ) does not depend on λi and (ρ, α, γ1, ..., γT ).

(v) Uit = σt(Xi0,W
0:T
2,i , Z

0:T
i , γt)Vit, where Vit is iid across i = 1, ..., N and independent

over t = 1, ..., T+1 with E[Vit] = 0 and V[Vit] = 1 for t = 1, . . . , T+1 and (Vi1, . . . , ViT )

are independent of Xi0,W
0:T
2,i , Z

0:T
i . We assume σt(Xi0,W

0:T
2,i , Z

0:T
i , γt) is a function

that depends on the unknown �nite-dimensional parameter vector γt.

Assumption 2.2.1(i) states that conditionally on the predictors, the Yit+1s are cross-sectionally

independent. Thus, we assume that all the spatial correlation in the dependent variables

is due to the observed predictors. Assumption 2.2.1(ii) formalizes the correlated random

e�ects assumption. The subsequent Assumptions 2.2.1(iii) and (iv) imply that λi may a�ect

Xit only indirectly through Y 1:t
i � an assumption that is clearly satis�ed in the dynamic

panel data model (2.2.1) � and that the strictly exogenous predictors do not depend on
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λi. In Assumption 2.2.1(v), we allow the unpredictable shocks Uit to be conditionally het-

eroskedastic in both the cross section and over time. We allow σt(·) to be dependent on the

initial condition of the sequentially exogenous predictors, Xi0, and other exogenous vari-

ables. Because throughout the paper we assume that the time dimension T is small, the

dependence through Xi0 can generate a persistent ARCH e�ect.

We now turn to the likelihood function. We use lower case (yit, wit, xit, zit) to denote the

realizations of the random variables (Yit, Xit,Wit, Zit). The parameters that control the

volatilities σt(·) are stacked into the vector γ = [γ′1, ..., γ
′
T ]′ and we collect the homogeneous

parameters into the vector θ = [α′, ρ′, γ′]′. We use Hi = (Xi0,W
0:T
2,i , Z

0:T
i ) for the exogenous

conditioning variables and hi = (xi0, w
0:T
2,i , z

0:T
i ) for their realization. Finally, we denote

the density of Vi by ϕ(v). Recall that we used x2,it to denote predetermined predictors

other than the lagged dependent variable. According to Assumption 2.2.1(iii) the density

qt(x2,it|y1:t
i , x0:t−1

i , w2i, zi) does not provide any information about λi and will subsequently

be absorbed into a constant of proportionality. Combining the likelihood function for the

observables with the conditional distribution of the heterogeneous coe�cients leads to

p(yi, x2,i, λi|hi, θ) ∝

(
T∏
t=1

1

σt(hi, γt)
ϕ

(
yit − λ′iwit−1 − ρ′xit−1 − α′zit−1

σt(hi, γt)

))
π(λi|hi).

(2.2.2)

Because conditional on the predictors the observations are cross-sectionally independent, the

joint densities for observations i = 1, . . . , N can be obtained by taking the product across i

of (2.2.2).

2.2.2 Identi�cation

We now provide conditions under which the forecasting model (2.1.1) is identi�able. While

the identi�cation of the �nite-dimensional parameter vector θ is fairly straightforward, the

empirical Bayes approach pursued in this paper also requires the identi�cation of the corre-

lated random e�ects distribution π(λi|hi) from the cross-sectional information in the panel.

Before presenting a general result which is formally proved in the Online Appendix, we
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sketch the identi�cation argument in the context of the restricted dynamic model (2.2.1)

with heterogeneous intercept and heteroskedastic innovations.

The identi�cation can be established in three steps. First, the identi�cation of the homo-

geneous regression coe�cient ρ follows from a standard argument used in the instrumental

variable (IV) estimation of dynamic panel data models. To eliminate the dependence on

λi de�ne Y
∗
it = Yit − 1

T−t
∑T

s=t+1 Yis and X∗it−1 = Yit−1 − 1
T−t

∑T
s=t+1 Yis−1. Then, be-

cause E[Uit|Y 0:t−1
i , λi] = 0, the orthogonality conditions E

[
(Y ∗it − ρX∗it−1)Yit−1

]
= 0 for

t = 1, . . . , T −1 in combination with a relevant rank condition can be used to identify ρ (see,

e.g., Arellano and Bover (1995)). Second, to identify the variance parameters γ, let Yi, Xi,

and Ui denote the T × 1 vectors that stack Yit, Yit−1, and Uit, respectively, for t = 1, . . . , T .

Moreover, let ι be a T×1 vector of ones and de�ne Σ
1/2
i (γ̃) = diag

(
σ1(hi, γ̃1), . . . , σT (hi, γ̃T )

)
,

Si(γ̃) = Σ
−1/2
i (γ̃)ι, and Mi(γ̃) = I − Si(S′iSi)−1S′i. Using this notation, we obtain

Mi(γ̃)Σ
−1/2
i (γ̃)

(
Yi −Xiρ

)
= Mi(γ̃)Si(γ̃)λi +Mi(γ̃)Σ

−1/2
i (γ̃)Ui = Mi(γ̃)Vi.

This leads to the conditional moment condition

E
[
Mi(γ̃)Σ

−1/2
i (γ̃)

(
Yi −Xiρ

)(
Yi −Xiρ

)′
Σ
−1/2
i (γ̃)M ′i(γ̃)−Mi(γ̃)

∣∣Hi

]
= 0 (2.2.3)

if and only if γ̃ = γ, which identi�es γ. Third, let

Ỹi = Σ
−1/2
i (γ)

(
Yi −Xiρ

)
= Si(γ)λi + Vi. (2.2.4)

The identi�cation of π(λi|hi) can be established using a characteristic function argument

similar to that in Arellano and Bonhomme (2012a). For the general model (2.1.1) we make

the following assumptions:

Assumption 2.2.2.

(i) The parameter vectors α and ρ are identi�able.
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(ii) For each t = 1, . . . , T and almost all hi σ
2
t (hi, γ̃t) = σ2

t (hi, γt) implies γ̃t = γt. More-

over, σ2
t (hi, γt) > 0.

(iii) The characteristic functions for λi|(Hi = hi) and Vi are non-vanishing almost every-

where.

(iv) Wi = [Wi0, ...,WiT−1]′ has full rank kw.

Because the identi�cation of α and ρ in panel data models with �xed or random e�ects is well

established, we make the high-level Assumption 2.2.2(i) that the homogeneous parameters

are identi�able.3 We discuss in the appendix how the identi�cation argument for ρ in the

basic dynamic panel data model can be extended to a more general speci�cation as in

(2.1.1). Assumption 2.2.2(ii) enables us to identify the volatility parameters γ, and (iii) and

(iv) deliver the identi�ability of the distribution of heterogeneous coe�cients. The following

theorem summarizes the identi�cation result and is proved in the Appendix.

Theorem 2.2.3. Suppose that Assumptions 2.2.1 and 2.2.2 are satis�ed. Then the pa-

rameters α, ρ, and γ as well as the correlated random e�ects distribution π(λi|hi) and the

distribution of Vit in model (2.1.1) are identi�ed.

2.3 Decision-Theoretic Foundation

We adopt a decision-theoretic framework in which forecasts are evaluated based on cross-

sectional sums of mean-squared error losses. Such losses are called compound loss functions.

Section 2.3.1 provides a formal de�nition of the compound risk (expected loss). In Sec-

tion 2.3.2 we derive the optimal forecasts under the assumption that the cross-sectional

distribution of the λis is known (oracle forecast). While it is infeasible to implement this

forecast in practice, the oracle forecast provides a natural benchmark for the evaluation of

feasible predictors. Finally, in Section 2.3.3 we introduce the concept of ratio optimality,

3Textbook / handbook chapter treatments can be found in, for instance, Baltagi (1995), Arellano and
Honoré (2001), Arellano (2003) and Hsiao (2014).
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which describes forecasts that asymptotically (as N −→ ∞) attain the same risk as the

oracle forecast.

2.3.1 Compound Risk

Let L(ŶiT+1, YiT+1) denote the loss associated with forecast Ŷi,T+1 of individual i′s time

T +1 observation, YiT+1. In this paper we consider the conventional quadratic loss function,

L(ŶiT+1, YiT+1) = (ŶiT+1 − YiT+1)2.

The main goal of the paper is to construct optimal forecasts for groups of individuals selected

by a known selection rule in terms of observed data. We express the selection rule as

Di = Di(YN ) ∈ {0, 1}, i = 1, . . . , N, (2.3.1)

where Di(YN ) is a measurable function of the observations YN , YN = (Y1, . . . ,YN ), and

Yi = (Y 0:T
i , X1:T

i , Hi). For instance, suppose that Di(YN ) = I{YiT ∈ A} for A ⊂ R. In this

case, the selection is homogeneous across i and, for individual i, depends only on its own

sample. Alternatively, suppose that units are selected based on the ranking of an index, e.g.,

the empirical quantile of YiT . In this case, the selection dummyDi depends on (Y1T , ..., YNT )

and thereby also on the data for the other N − 1 individuals.

The compound loss of interest is the average of the individual losses weighted by the selection

dummies:

LN (Ŷ N
T+1, Y

N
T+1) =

N∑
i=1

Di(YN )L(ŶiT+1, YiT+1),

where Y N
T+1 = (Y1T+1, . . . , YNT+1). The compound risk is the expected compound loss

RN (Ŷ N
T+1) = EY

N ,λN ,UNT+1

θ

[
LN (Ŷ N

T+1, Y
N
T+1)

]
. (2.3.2)

We use the θ subscript for the expectation operator to indicate that the expectation is condi-
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tional on θ.4. The superscript (YN , λN , UNT+1) indicates that we are integrating with respect

to the observed data YN and the unobserved heterogeneous coe�cients λN = (λ1, . . . , λN )

and UNT+1 = (U1T+1, . . . , UNT+1).

2.3.2 Optimal Forecast and Oracle Risk

We now derive the optimal forecast that minimizes the compound risk. The risk achieved

by the optimal forecast will be called the oracle risk, which is the target risk to achieve. In

the compound decision theory it is assumed that the oracle knows the vector θ as well as

the distribution of the heterogeneous coe�cients π(λi, hi) and observes YN . However, the

oracle does not know the speci�c λi for unit i. In order to �nd the optimal forecast, note

that conditional on θ the compound risk takes the form of an integrated risk that can be

expressed as

RN (Ŷ N
T+1) = EY

N

θ

[
Eλ

N ,UNT+1

θ,YN [LN (Ŷ N
T+1, Y

N
T+1)]

]
. (2.3.3)

The inner expectation can be interpreted as posterior risk, which is obtained by conditioning

on the observations YN and integrating over the heterogeneous parameter λN and the shocks

UNT+1. The outer expectation averages over the possible trajectories YN .

It is well known that the integrated risk is minimized by choosing the forecast that minimizes

the posterior risk for each realization YN . Using the independence across i, the posterior

risk can be written as follows:

Eλ
N ,UNT+1

θ,YN [LN (Ŷ N
T+1, Y

N
T+1)] (2.3.4)

=

N∑
i=1

Di(YN )

{(
ŶiT+1 − Eλi,UiT+1

θ,Yi [YiT+1]
)2

+ Vλi,UiT+1

θ,Yi [YiT+1]

}

where Vλi,UiT+1

θ,Yi [·] is the posterior variance. The decomposition of the risk into a squared

bias term and the posterior variance of YiT+1 implies that Eλi,UiT+1

θ,Yi [YiT+1] is the optimal

4Strictly speaking, the expectation also conditions on the deterministic trend terms W1

17



predictor. Because UiT+1 is mean-independent of λi and Yi, we obtain

Ŷ opt
iT+1 = Eλi,UiT+1

θ,Yi [YiT+1] = Eλiθ,Yi [λi]
′WiT + ρ′XiT + α′ZiT . (2.3.5)

Note that the posterior expectation of λi only depends on observations for unit i, even if

the selection rule Di(YN ) also depends on the data from other units j 6= i. The result is

summarized in the following theorem:

Theorem 2.3.1 (Optimal Forecast). Suppose Assumptions 2.2.1 are satis�ed. The optimal

forecast that minimizes the composite risk in (2.3.2) is given by Ŷ opt
iT+1 in (2.3.5). The

compound risk of the optimal forecast is

Ropt

N = EY
N

θ

[
N∑
i=1

Di(YN )
(
W ′iTV

λi
θ,Yi [λi]WiT + σ2

T+1(Hi, γT+1)
)]

. (2.3.6)

According to (2.3.6), the compound oracle risk has two components. The �rst component re-

�ects uncertainty with respect to the heterogeneous coe�cient λi and the second component

captures uncertainty about the error term UiT+1. Unfortunately, the direct implementation

of the optimal forecast is infeasible because neither the parameter vector θ nor the correlated

random e�ect distribution (or prior) π(·) are known. Thus, the oracle risk Ropt
N provides a

lower bound for the risk that is attainable in practice.

2.3.3 Ratio Optimality

The identi�cation result presented in Section 2.2.2 implies that as the cross-sectional dimen-

sion N −→ ∞, it might be possible to learn the unknown parameter θ and random-e�ects

distribution π(·) and construct a feasible estimator that asymptotically attains the oracle

risk. Following Brown and Greenshtein (2009), we say that a predictor achieves ratio opti-

mality if the regret RN (Ŷ N
T+1) − Ropt

N of the forecast Ŷ N
T+1 is negligible relative to the part

of the optimal risk that is due to uncertainty about λi:

De�nition 2.3.2. For a given ε0 > 0, we say that forecast Ŷ N
T+1 achieves ε0-ratio optimality,
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if

lim sup
N→∞

RN (Ŷ N
T+1)−Ropt

N

EYNθ
[∑N

i=1Di(YN )W ′iTV
λi
θ,Yi [λi]WiT

]
+N ε0

≤ 0. (2.3.7)

Using (2.3.5), the risk di�erential in the numerator (called regret) can be written as

RN (Ŷ N
T+1)−Ropt

N = EY
N

θ

[
N∑
i=1

Di(YN )
(
ŶiT+1 − Eλi,UiT+1

θ,Yi [YiT+1]
)2
]
. (2.3.8)

For illustrative purposes, Consider the basic dynamic panel data model (2.2.1). For this

model Eλi,UiT+1

θ,Yi [YiT+1] = EλiYi [λi] + ρYiT . A natural class of predictors is given by ŶiT+1 =

ÊλiYi [λi] + ρ̂YiT , where ÊλiYi [λi] is an approximation of the posterior mean of λi that replaces

the unknown ρ and distribution π(·) by suitable estimates. The autoregressive coe�cient in

this model can be
√
N -consistently estimated, which suggests that

∑N
i=1(ρ̂−ρ)2Y 2

iT = Op(1).

Thus, whether a predictor attains ratio optimality crucially depends on the rate at which

the discrepancy between EλiYi [λi] and ÊλiYi [λi] vanishes.

The denominator of the ratio in De�nition 2.3.2 is divergent. The rate of divergence depends

on the posterior variance of λi. If the posterior variance is strictly greater than zero, then

the denominator is of order O(N). Note that for each unit i, the posterior variance is based

on a �nite number of observations T . Thus, for the posterior variance to be equal to zero,

it must be the case that the prior density π(λ) is a pointmass, meaning that there is a

homogeneous intercept λ. In this case the de�nition of ratio optimality requires that the

regret vanishes at a faster rate, because the rate of the numerator drops from O(N) to N ε0 .

Subsequently, we will pursue an empirical Bayes strategy to construct an approximation

ÊλiYi [λi] based on the cross-sectional information and show that it attains ratio-optimality.

In the linear panel literature, researchers often use the �rst di�erence to eliminate λi. In

this case, the natural forecast of YiT+1 in the basic dynamic panel data model (2.2.1) would

be Ŷ FD
iT+1(ρ) = YiT + ρ(YiT − YiT−1), which is di�erent from Ŷ opt

iT+1 in (2.3.5). Thus, we

can immediately deduce from Theorem 2.3.1 that Ŷ FD
iT+1(ρ) is not an optimal forecast. The

quasi-di�erencing of Yit introduces a predictable moving-average error term that is ignored
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by the predictor Ŷ FD
iT+1(ρ).

2.4 Implementation of the Optimal Forecast

We will construct a consistent approximation of the posterior mean Eλi,UiT+1

θ,Yi [λi] using a

convenient formula which is named after the statistician Maurice Tweedie (though it had

been previously derived by the astronomer Arthur Eddington). This formula is presented

in Section 2.4.1. In Section 2.4.2 we discuss the parametric estimation of the correction

term and in Section 2.4.3 we consider a nonparametric kernel-based estimation. The QMLE

and Generalized Method-of-Moments (GMM) estimation of the parameter θ are discussed

in Sections 2.4.4 and 2.4.5.

2.4.1 Tweedie's Formula

When the innovations Uit are conditionally normally distributed, we can derive a convenient

formula for the posterior expectation Eλiθ,Yi [λi] of the individual heterogeneous parameter λi.

Assumption 2.4.1. The unpredictable shock Vit has a standard normal distribution:

Vit | (Y 1:t−1
i , X0:t−1

i ,W2i, Zi, λi) ∼ N(0, 1), t = 1, ..., T.

The assumption of normally distributed Vit's is not as restrictive as it may seem. Recall

that the shocks Uit are de�ned as Vitσt(Xi0,W
0:T
2,i , Z

0:T
i , γt). Thus, due to the potential

heteroskedasticity, the distribution of shocks is a mixture of normals. The only restriction is

that the random variables characterizing the scale of the mixture component are observed.

Moreover, even in the homoskedastic case σt = σ, the distribution of Yit given the regres-

sors is non-normal because the distribution of the λi parameters is fully �exible. Using

Assumption 2.4.1 we will now further manipulate the density p(yi, x2,i, λi|hi, θ) in (2.2.2).5

5In principle, the normality assumption could be generalized to the assumption that the distribution of
Vit belongs to the exponential family.
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To simplify the notation we will drop the i subscript. De�ne

ỹt(θ) = yt − ρ′xt−1 − α′zt−1, Σ(θ) = diag(σ2
1, . . . , σ

2
T ), (2.4.1)

and let ỹ(θ) and w be matrices with rows ỹt(θ) and w
′
t−1, t = 1, ..., T . Because the subsequent

calculations condition on θ we will omit the θ-argument from ỹ, Σ, and functions thereof.

Replacing ϕ(v) in (2.2.2) with a Gaussian density function we obtain:

p(y, x2, λ|h, θ)

∝ exp

{
−1

2
(λ̂− λ)′w′Σ−1w(λ̂− λ)

}
exp

{
−1

2
(ỹ − wλ̂)′Σ−1(ỹ − wλ̂)

}
π(λ|h).

The factorization of p(y, x2, λ|h, θ) implies that

λ̂ = (w′Σ−1w)−1w′Σ−1ỹ (2.4.2)

is a su�cient statistic and that we can express the posterior distribution of λ as

p(λ|y, x2, h, θ) = p(λ|λ̂, h, θ) =
p(λ̂|λ, h, θ)π(λ|h)

p(λ̂|h, θ)
,

where

p(λ̂|λ, h, θ) = (2π)−kw/2|w′Σ−1w|1/2 exp

{
−1

2
(λ̂− λ)′w′Σ−1w(λ̂− λ)

}
. (2.4.3)

To obtain a representation for the posterior mean, we now di�erentiate the equation

ˆ
p(λ|λ̂, h, θ)dλ = 1

with respect to λ̂. Exchanging the order of integration and di�erentiation and using the
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properties of the exponential function, we obtain

0 = w′Σ−1w

ˆ
(λ− λ̂)p(λ|λ̂, h, θ)dλ− ∂

∂λ̂
ln p(λ̂|h, θ)

= w′Σ−1w
(
Eλθ,Y [λ]− λ̂

)
− ∂

∂λ̂
ln p(λ̂|h, θ).

Solving this equation for the posterior mean yields Tweedie's formula, which is summarized

in the following theorem.

Theorem 2.4.2. Suppose that Assumptions 2.2.1 and 2.4.1 hold. The posterior mean of λi

has the representation

Eλiθ,Yi [λi] = λ̂i(θ) +

(
W 0:T−1′

i Σ−1(θ)W 0:T−1
i

)−1 ∂

∂λ̂i(θ)
ln p(λ̂i(θ)|Hi, θ). (2.4.4)

The optimal forecast is given by

Ŷ opt
iT+1(θ) =

(
λ̂i(θ) +

(
W 0:T−1′

i Σ−1(θ)W 0:T−1
i

)−1 ∂

∂λ̂i(θ)
ln p(λ̂i(θ)|Hi, θ)

)′
WT+1

+ρ′XiT + α′ZiT . (2.4.5)

Tweedie's formula was used by Robbins (1951) to estimate a vector of means λN for the

model Yi|λi ∼ N(λi, 1), λi ∼ π(·), i = 1, . . . , N . Recently, it was extended by Efron (2011) to

the family of exponential distribution, allowing for a unknown �nite-dimensional parameter

θ. Theorem 2.4.2 extends Tweedie's formula to the estimation of correlated random e�ect

parameters in a dynamic panel regression setup.

The posterior mean takes the form of the sum of the su�cient statistic λ̂i(θ) and a correction

term that re�ects the prior distribution of λi. The correction term is expresses as a function

of the marginal density of the su�cient statistic λ̂i(θ) conditional on Hi and θ. Thus, it

is not necessary to solve a deconvolution problem that separates the prior density π(λi|hi)

from the distribution of the error terms Vit. We expressed Tweedie's formula in (2.4.4) in

terms of the conditional density p(λ̂i(θ)|Hi, θ). However, because the posterior mean is a
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function of the log density di�erentiated with respect to λ̂i(θ), the conditional density can

be replaced by a joint density:

∂

∂λ̂i(θ)
ln p(λ̂i(θ)|Hi, θ) =

∂

∂λ̂i(θ)
ln p(λ̂i(θ), Hi|θ).

The construction of ratio-optimal forecasts relies on replacing the density p(λ̂i(θ), Hi|θ) and

the common parameter θ by consistent estimates.

2.4.2 Parametric Estimation of Tweedie Correction

If the random-e�ects distribution π(λ|hi) is Gaussian, then it is possible to derive the

marginal density of the su�cient statistic p(λ̂i(θ)|hi, θ) analytically. Let

λi|(Hi, θ) ∼ N
(
ΦHi,Ω

)
. (2.4.6)

Moreover, de�ne ξ =
(
vec(Φ), vech(Ω)

)′
. To highlight the dependence of the correlated

random-e�ects distribution on the hyperparameter ξ we will write π(λi|hi, ξ). The marginal

density (omitting the i subscripts and the θ-argument of λ̂) is given by

p
(
λ̂(θ)

∣∣h, θ, ξ) =

ˆ
p
(
λ̂(θ)|λ, h, θ

)
π(λ|h, ξ)dλ (2.4.7)

= (2π)−kw/2
∣∣Ω−1

∣∣1/2∣∣w′Σ−1w
∣∣1/2∣∣Ω̄∣∣1/2

× exp

{
−1

2

(
λ̂′w′Σ−1wλ̂+ h′Φ′Ω−1Φh− λ̄′Ω̄−1λ̄

)}
.

Here, we used the likelihood of λ̂ in (2.4.3), the density associated with the Gaussian prior

in (2.4.6), and then the properties of a multivariate Gaussian density to integrate out λ.

The terms λ̄ and Ω̄ are the posterior mean and variance of λ, respectively:

Ω̄−1 = Ω−1 + w′Σ−1w, λ̄ = Ω̄
(
Ω−1Φh+ w′Σ−1wλ̂

)
.

Conditional on θ the vector of hyperparameters ξ can be estimated by maximizing the
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marginal likelihood

ξ̂(θ) = argmaxξ

N∏
i=1

p(λ̂i(θ)|hi, θ, ξ) (2.4.8)

using the cross-sectional distribution of the su�cient statistic. Tweedie's formula can then

be evaluated based on p
(
λ̂i(θ)|hi, θ, ξ̂(θ)

)
. In principle it is possible to replace the Gaussian

prior distribution with a more general parametric distribution. However, in general it will

not be possible to derive an analytical formula for the marginal likelihood.

2.4.3 Nonparametric Estimation of Tweedie Correction

A nonparametric implementation of the Tweedie correction can be obtained by replacing

p(λ̂i(θ), hi|θ) and its derivative with respect to λ̂i(θ) with a Kernel density estimate, e.g.,

p̂(λ̂i(θ), hi|θ) (2.4.9)

=
1

N

N∑
j=1

[
(2π)−kw/2|BN |−kw |Vλ̂|

−1/2 exp

{
− 1

2B2
N

(
λ̂i(θ)− λ̂j(θ)

)′
V −1

λ̂

(
λ̂i(θ)− λ̂j(θ)

)}

×(2π)−kh/2|BN |−kh |Vh|−1/2 exp

{
− 1

2B2
N

(
hi − hj

)′
V −1
h

(
hi − hj

)}]
,

where BN is the bandwidth and Vλ̂ and Vh are tuning matrices. Note that even if the

prior distribution π(λ) is a pointmass, the su�cient statistic λ̂ in (2.4.2) has a continuous

distribution and one can use a kernel density estimator to construct the Tweedie correction.

If the dimension of the conditioning variables Hi is large, the nonparametric estimation

su�ers from the curse of dimensionality. In this case, one may reduce the dimension of

the conditioning set with some smaller dimensional indices, e.g., by assuming that λi and

Hi dependent only through H̄i = 1
T

∑T
t=1Hit, that is, π(λ|h) = π(λ|h̄). In Section 2.5

we provide a detailed analysis of the Gaussian kernel estimator in the context of the basic

dynamic panel data model in (2.2.1) with time-homoskedastic innovations.
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2.4.4 QMLE Estimation of θ

Notice that under Assumption 2.4.1, λ̂i(θ) in (2.4.2) is a su�cient statistic of λi conditional

on θ, hi, and πλ(λi|hi, ξ) is the parametric version of the correlated random e�ect den-

sity. Integrating out λ under a parametric correlated random e�ect (or prior) distribution

πλ(λ|x0, w2, z, ξ), we have (omitting the i subscripts)

p(y, x2|h, θ, ξ) (2.4.10)

=

ˆ
p(y, x2|h, θ, λ)πλ(λ|h, ξ̂(θ))dλ

∝ |Σ(θ)|−1/2 exp

{
−1

2

(
ỹ(θ)− wλ̂(θ)

)′
Σ−1(θ)

(
ỹ(θ)− wλ̂(θ)

)}
×
ˆ

exp

{
−1

2

(
λ̂(θ)− λ

)′
w′Σ−1(θ)w

(
λ̂(θ)− λ

)}
πλ
(
λ(θ)|h, ξ̂(θ)

)
dλ

∝ |Σ(θ)|−1/2 exp

{
−1

2

(
ỹ(θ)− wλ̂(θ)

)′
Σ−1(θ)

(
ỹ(θ)− wλ̂(θ)

)}
×
∣∣w′Σ−1w

∣∣−1/2
p(λ̂(θ)|h, θ, ξ).

Here, we used the de�nition of ỹ(θ) in (2.4.1) and the product of Gaussian likelihood and

prior in (2.4.2). Note that the term p(λ̂(θ)|h, θ, ξ) in the last line of (2.4.10) is identical to

the objective function for ξ used in (2.4.8). Thus, we can now jointly determine θ and ξ by

maximizing the integrated likelihood as a function:

(
θ̂QMLE , ξ̂QMLE

)
= argmaxθ,ξ

N∏
i=1

p(yi, x2i|hi, θ, ξ). (2.4.11)

We refer to this estimator as quasi (Q) maximum likelihood estimator (MLE), because the

correlated random e�ects distribution could be misspeci�ed.

2.4.5 GMM Estimation of θ

Without a convenient assumption about the random e�ects distribution, one can estimate

the parameter θ using a sample analogue of the moment conditions that were used in the
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identi�cation analysis in Section 2.2. For t = 1, . . . , T − kw, de�ne

Y ∗it = Yit −

(
T∑

s=t+1

YisW
′
is−1

)(
T∑

s=t+1

Wis−1W
′
is−1

)−1

Wit−1. (2.4.12)

Moreover, de�ne X∗it−1 and Z∗it−1 by replacing Yi· in (2.4.12) with Xi· and Zi·, respectively,

and let

git(ρ, α) = (Y ∗it −ρ′X∗it−1−α′Z∗it−1)

 X0:t−1
i

Z0:T
i

 , gi(ρ, α) =
[
gi1(ρ, α)′, . . . , giT−kw(ρ, α)′

]′
.

The continuous-updating GMM estimator of ρ and α solves

(ρ̂GMM , α̂GMM ) = argmin
ρ,α

(
N∑
i=1

gi(ρ, α)

)′( N∑
i=1

gi(ρ, α)gi(ρ, α)′

)−1( N∑
i=1

gi(ρ, α)

)
.(2.4.13)

This estimator was proposed by Arellano and Bover (1995) and we will refer to it as

GMM(AB) estimator in the Monte Carlo simulations (Section 2.6) and the empirical appli-

cation (Section 2.7).6

To estimate the heteroskedasticity parameter γ = [γ1, ..., γT ]′ in σ2
t (Hi, γt), de�ne:

Ỹi(ρ̂, α̂) = Yi −Xi,−T ρ̂− Zi,−T α̂, Σ
1/2
i (γ) = diag

(
σ1(hi, γ1), . . . , σT (hi, γT )

)
,

Si(γ) = Σ
−1/2
i (γ)Wi, Mi(γ) = I − Si(S′iSi)−1S′i,

where ρ̂ and α̂ could be the estimators in (2.4.13). We use the sample analogue to a set of

moment condition implied by a generalization of (2.2.3):

γ̂GMM = argminγ
1

N

N∑
i=1

∥∥∥∥B vec

(
Mi(γ)Σ

−1/2
i (γ)Ỹi(ρ̂, α̂) (2.4.14)

×Ỹ ′i (ρ̂, α̂)Σ
−1/2
i (γ)Mi(γ)−Mi(γ)

)∥∥∥∥2

,

6There exists a large literature on the estimation of dynamic panel data models. Alternative estimators
include Arellano and Bond (1991) and Blundell and Bond (1998).
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where B is a selection matrix that can be used to eliminate o�-diagonal elements of the

covariance matrix. In population, these o�-diagonal elements should be zero, because the

Uit's are assumed to be uncorrelated across time.

2.4.6 Extension to Multi-Step Forecasting

While this paper focuses on single-step forecasting, we brie�y discuss in the context of the

basic dynamic panel data model how the framework can be extended to multi-step forecasts.

We can express

YiT+h =

(
h−1∑
s=0

ρs

)
λi + ρhYiT +

h−1∑
s=0

ρ2UiT+h−s.

Under the assumption that the oracle knows ρ and π(λi, Yi0) we can express the oracle

forecast as

Ŷ opt
iT+h =

(
h−1∑
s=0

ρs

)
Eλiθ,Yi [λi] + ρhYiT .

As in the case of the one-step-ahead forecasts, the posterior mean Eλiθ,Yi [λi] can be replaced

by an approximation based on Tweedie's formula and the ρ's can be replaced by consistent

estimates. A model with additional covariates would require external multi-step forecasts

of the covariates, or the speci�cation in (2.1.1) would have to be modi�ed such that all

exogenous regressors appear with an h-period lag.

2.5 Ratio Optimality in the Basic Dynamic Panel Model

Throughout this section we will consider the basic dynamic panel data model with ho-

moskedastic Gaussian innovations:

Yit = λi + ρYit−1 + Uit, Uit ∼ iidN(0, σ2), (λi, Yi0) ∼ π(λ, yi0). (2.5.1)

We will prove that ratio optimality for a general prior density π(λi|hi) can be achieved

with a Kernel estimator of the joint density of the su�cient statistic and initial condition:

p(λ̂i(θ), Hi|θ). The proof of the main result is a signi�cant generalization of the proof in
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Brown and Greenshtein (2009) for a vector of means to the dynamic panel data model with

estimated common coe�cients.

For the model in (2.5.1), the su�cient statistic is given by

λ̂i(ρ) =
1

T

T∑
t=1

(Yit − ρYit−1) (2.5.2)

and the posterior mean of λi simpli�es to

Eλiθ,Yi [λi] = µ
(
λ̂i(ρ), σ2/T, p(λ̂i, Yi0)

)
= λ̂i(ρ) +

σ2

T

∂

∂λ̂i(θ)
ln p(λ̂i(ρ), Yi0). (2.5.3)

The formula recognizes that the heterogeneous coe�cient is a scalar intercept and that

the errors are homoskedastic. We simpli�ed the notation by writing p(λ̂i(ρ), Yi0) instead

of p(λ̂i(ρ), Yi0|θ). This simpli�cation is justi�ed because we will estimate the density of

(λ̂i(ρ), Yi0) directly from the data; see (2.5.4) below. We will use the notation µ(·) to refer

to the conditional mean as function of the su�cient statistic λ̂, the scale factor σ2/T , and

the density p(λ̂i, Yi0).

To facilitate the theoretical analysis, we make two adjustments to the posterior mean pre-

dictor of YiT+1. First, we replace the kernel density estimator of (λ̂i(ρ), Yi0) given in (2.4.9)

by a leave-one-out estimator of the form:

p̂(−i)(λ̂i(ρ), Yi0) =
1

N − 1

∑
j 6=i

1

BN
φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

)
1

BN
φ

(
Yj0 − Yi0
BN

)
, (2.5.4)

where φ(·) is the pdf of a N(0, 1). Using the fact that the observations are cross-sectionally

independent and conditionally normally distributed one can directly compute the expected
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value of the leave-one-out estimator:

EY
(−i)

θ,Yi [p̂(−i)(λ̂i, yi0)] =

ˆ
1√

σ2/T +B2
N

φ

 λ̂i − λi√
σ2/T +B2

N

 (2.5.5)

×
[ˆ

1

BN
φ

(
yi0 − ỹi0
BN

)
p(ỹi0|λi)dỹi0

]
p(λi)dλi.

Taking expectations of the kernel estimator leads to a variance adjustment for conditional

distribution of λ̂i|λi (σ2/T +B2
N instead of σ2/T ) and the density of yi0|λi is replaced by a

convolution.

Second, we replace the scale factor σ̂2/T in the posterior mean function µ(·) by σ̂2/T +B2
N ,

which is the term that appears in (2.5.5). Moreover, we truncate the absolute value of

the posterior mean function from above. For C > 0 and for any x ∈ R, de�ne [x]C :=

sgn(x) min{|x|, C}. Then

ŶiT+1 =
[
µ
(
λ̂i(ρ̂), σ̂2/T +B2

N , p̂
−i(·)

)]CN
+ ρ̂YiT , (2.5.6)

where CN −→∞ slowly. Formally, we make the following technical assumptions.

Assumption 2.5.1 (Marginal distribution of λi). The marginal density of λi, π(λ) has

support Λπ ⊂ [−CN , CN ], where for any ε > 0, CN = o(N ε).

Assumption 2.5.2 (Bandwidth). Let C ′N = (1+k)(
√

lnN+CN ), where k is a constant such

that k > max{0,
√

2σ2/T−1}. The bandwidth for the kernel density estimator, BN , satis�es

the following conditions: (i) for any ε > 0, 1/B2
N = o(N ε); (ii) BN (C ′N + 2CN ) = o(1).

Assumption 2.5.3 (Conditional distribution of Yi0|λi). Let Yπλ be the support of the con-

ditional density π(yi0|λi). The conditional density of Yi0 conditioning on λi = λ, π(y|λ),

satis�es the following three conditions: (i) 0 < π(y|λ) < M for y ∈ Yπλ and λ ∈ Λπ. (ii)

There exists a �nite constant C̄ such that for any large value C > C̄,

max

{ˆ ∞
C

π(y|λ)dx,

ˆ −C
−∞

π(y|λ)dy

}
≤ exp(−m(C, λ)),
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where the function m(C, λ) > 0 satis�es the following: m(C, λ) is an increasing function of

C for each λ and there exists �nite constants K > 0 and ε ≥ 0 such that

lim inf
N−→∞

inf
|λ|≤CN

(
m
(
K(
√

lnN + CN ), λ
)
− (2 + ε) lnN

)
≥ 0.

(iii) The following holds uniformly in y ∈ Yπλ ∩ [−C ′N , CN ] and λ ∈ Λπ:

ˆ
1

BN
φ

(
ỹ − y
BN

)
π(ỹ|λ)dỹ =

(
1 + o(1)

)
π(y|λ).

Assumption 2.5.4 (Estimators of ρ and σ2). There exist estimators ρ̂ and σ̂2 such that for

any ε > 0, (i) EY
N

θ

[
|
√
N(ρ̂−ρ)|4

]
≤ o(N ε), (ii) EY

N

θ

[
σ̂4
]
≤ o(N ε), and (iii) EY

N

θ

[
|
√
N(σ̂2−

σ2)|2
]
≤ o(N ε).

We factorize the correlated random e�ects distribution as π(λi, yi0) = π(λi)π(yi0|λi) and

impose regularity conditions on the marginal distribution of the heterogeneous coe�cient

and the conditional distribution of the initial condition. In Assumption 2.5.1 we let the

support of π(λi) slowly expand with the sample size by assuming that CN grows at a

subpolynomial rate. Assumption 2.5.2 provides an upper and a lower bound for the rate at

which the bandwidth of the kernel estimator shrinks to zero. Note that for technical reasons

the assumed rate is much slower than in typical density estimation problems.7

Assumption 2.5.3 imposes regularity conditions on the conditional density of the initial

observation. In (i) we assume that π(yi0|λi) is bounded. In (ii) we control the tails of the

distribution. In the �rst constraint on m(C, λ) we essentially assume that the density of yi0

has exponential tails. This also guarantees that the fourth moment of Yi0 exists. In part

(iii) we assume that π(y|λ) is su�ciently smooth with respect to y such that the convolution

on the left-hand side uniformly converges to π(y|λ) as the bandwidth BN tends to zero. We

7In a nutshell, we need to control the behavior of p̂(λ̂i, Yi0) and its derivative uniformly, which, in certain
steps of the proof, requires us to consider bounds of the form M/B2

N , where M is a generic constant. If
the bandwidth shrinks too fast, the bounds diverge too quickly to ensure that it su�ces to standardize the
regret in De�nition 2.3.2 by N ε0 if the λi coe�cients are identical for each cross-sectional unit.
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verify in the Appendix that a π(y|λ) that satis�es Assumption 2.5.3 is π(y|λ) = φ(y − λ),

where φ(x) = exp(−1
2x

2)/
√

2π. Finally, Assumption 2.5.4 postulates the existence of �nite

sample moments of the estimators of the common parameter. The main result is stated in

the following theorem:

Theorem 2.5.5. Suppose that Assumptions 2.2.1, 2.4.1, and 2.5.1 to 2.5.4. Then, for the

basic dynamic panel model the predictor ŶiT+1 de�ned in (2.5.6) satis�es the ratio optimality

in De�nition 2.3.2.

The result in Theorem 2.5.5 is pointwise with respect to θ. However, the convergence of the

predictor ŶiT+1 to the oracle predictor is uniform with respect to the unobserved heterogene-

ity and the observed trajectory Yi in the sense that the integrated risk (conditional on θ) of

the feasible predictor converges to the integrated risk of the oracle predictor. The proof of

the theorem is a generalization of the proof in Brown and Greenshtein (2009), allowing for

the presence of estimated parameters in the su�cient statistic λ̂(·). The remarkable aspect

of the results is the acceleration of the convergence (N ε
0 instead of N in the denominator

of the standardized regret in De�nition 2.3.2) in cases in which the intercepts are identical

across units and π(λ) is a pointmass.

2.6 Monte Carlo Simulations

We will now conduct several Monte Carlo experiments to illustrate the performance of the

empirical Bayes predictor.

2.6.1 Experiment 1: Gaussian Random E�ects Model

The �rst Monte Carlo experiment is based on the basic dynamic panel data model in (2.2.1).

The design of the experiment is summarized in Table 1. We assume that the λi's are

normally distributed and uncorrelated with the initial condition Yi0. The innovations Uit

and the heterogeneous intercepts λi have unit variances. We consider two values for the

autocorrelation parameter: ρ ∈ {0.5, 0.95}. The panel consists of N = 1, 000 cross-sectional
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Table 1: Monte Carlo Design 1

Law of Motion: Yit = λi + ρYit−1 + Uit where Uit ∼ iidN(0, γ2). ρ ∈ {0.5, 0.95}, γ = 1
Initial Observations: Yi0 ∼ N(0, 1)
Gaussian Random E�ects: λi|Yi0 ∼ N(φ0 + φ1Yi0,Ω), φ0 = 0, φ1 = 0, Ω = 1
Sample Size: N = 1, 000, T = 3
Number of Monte Carlo Repetitions: Nsim = 1, 000

units and the number of time periods is T = 3. Generally, the smaller T relative to number

of right-hand-side variables with heterogeneous coe�cients, the larger the gain from using

a prior distribution to compute posterior mean estimates of the λi's. We will compare the

performance of the following predictors:

Oracle Forecast. The oracle knows the parameters θ = (ρ, γ) as well as the random e�ects

distribution π(λi|Yi0, ξ), where ξ = (φ0, φ1,Ω). However, the oracle does not know the

speci�c λi values. Its forecast is given by (2.3.5).

Posterior Predictive Mean Approximation Based on QMLE. The random e�ects

distribution is correctly modeled as belonging to the family λi|(Yi0, ξ) ∼ N(φ0 + φ1Yi0,Ω).

The estimators θ̂QMLE and ξ̂QMLE are de�ned in (2.4.11). Tweedie's formula (see (2.5.3)

for the simpli�ed version) is evaluated based on p
(
λ̂i(θ̂QMLE)|yi0, θ̂QMLE , ξ̂QMLE

)
.

Posterior Predictive Mean Approximation Based on GMM Estimator. We use

the Arellano-Bover estimator described in Section 2.4.5. The estimator for ρ is given by

(2.4.13) and the estimator for γ by (2.4.14). The formulas simplify considerably. We have

Wit = 1, Xit−1 = Yit−1, Zit−1 = ∅ and α = ∅. Moreover, Σ
1/2
i = γI, Mi(γ) = I − ιι′/T ,

where ι is a T × 1 vector of ones. Let ¯̃Yi(ρ̂) be the temporal average of Ỹi(ρ̂). Then

γ̂2
GMM =

1

NT

T

T − 1

∑
i=1

tr
[
(Ỹi(ρ̂)− ι ¯̃Yi(ρ̂))(Ỹi(ρ̂)− ι ¯̃Yi(ρ̂))′

]
.

The estimator ξ̂(θ̂GMM ) is obtained from (2.4.8). Finally, Tweedie's formula is evaluated

based on p
(
λ̂i(θ̂GMM )|yi0, θ̂GMM , ξ̂(θ̂GMM )

)
.

GMM Plug-In Predictor. We use the Arellano-Bover estimator to obtain ρ̂GMM . Instead
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of using the posterior mean for λi, the plug-in predictor is based on the MLE λ̂i(ρ̂GMM ).

The resulting predictor is ŶiT+1 = λ̂i(ρ̂GMM ) + ρ̂GMMYiT .

Loss-Function-Based Predictor. We construct an estimator of (ρ, λN ) based on the

objective function:

ρ̂L = argminρ
1

NT

N∑
i=1

T∑
t=1

(
Yit − ρYit−1 − λ̂i(ρ)

)2
, λ̂i(ρ) =

1

T

T∑
t=1

Yit − ρYit−1. (2.6.1)

This estimator minimizes the loss function under which the forecasts are evaluated in sam-

ple. It is well-known that due to the incidental parameter problem, the estimator ρ̂L is

inconsistent under �xed-N asymptotics. The resulting predictor is ŶiT+1 = λ̂i(ρ̂L) + ρ̂LYiT .

Pooled-OLS Predictor. Ignoring the heterogeneity in the λi's and imposing that λi = λ

for all i, we can de�ne

(ρ̂P , λ̂P ) = argminρ,λ
1

NT

N∑
i=1

T∑
t=1

(
Yit − ρYit−1 − λ

)2
. (2.6.2)

The resulting predictor is ŶiT+1 = λ̂P + ρ̂PYiT .

First-Di�erence Predictor. In the panel data literature it is common to di�erence-out

idiosyncratic intercepts, which suggests to predict ∆YiT+1 based on ∆YiT . We evaluate the

�rst-di�erence predictor at the Arellano-Bover GMM estimator of ρ to obtain Ŷ FD
iT+1(ρ̂GMM ).

In Table 2 we report the regret associated with each predictor relative to the posterior

variance of λi, averaged over all trajectories YN , as speci�ed in De�nition 2.3.2 (setting

N ε = 1). For the oracle predictor the regret is by de�nition zero and we tabulate the risk RoptN

instead (in parentheses). We also report the median forecast error êiT+1|T = YiT+1 − ŶiT+1

to highlight biases in the forecasts.

The columns titled �All Units� correspond to Di(YN ) = 1. As expected from the theoretical

analysis, the posterior mean predictors have the lowest regret among the feasible predictors.
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The density of λ̂i is estimated parametrically, using a family of distributions that nests

the true random e�ects distribution. Because it is based on a correctly speci�ed likelihood

function, the predictor based on θ̂QMLE performs slightly better than the predictor based on

θ̂GMM . Consider ρ = 0.5: for the QMLE-based predictor the regret is 0.5% of the average

posterior variance, whereas it is 3% for the GMM-based predictor. The plug-in predictor

that replaces the unknown λi's by the su�cient statistic λ̂i (which is also the maximum

likelihood estimator) instead of the posterior mean is associated with a much larger relative

regret, which is about 37%.

The remaining three predictors are also strictly dominated by the posterior mean predictors.

Ignoring the serial correlation in ∆Yit, the �rst-di�erence predictor performs the worst for

both choices of ρ. The second-to-worst predictor is the pooled-OLS predictor which ignores

the cross-sectional heterogeneity in the λi's. A reduction of the variance Ω of the hetero-

geneous intercepts would improve the relative performance of the pooled-OLS predictor.

Finally, the loss-function-based predictor dominates the pooled-OLS and the �rst di�erence

predictor. As mentioned above, while conceptually appealing, the loss-function-based pre-

dictor relies on an inconsistent estimate of ρ, which in comparison to the GMM plug-in

predictor is unappealing if the cross-sectional dimension N is very large.

Across all units, the predictions under the loss-function-based estimator and the pooled-

OLS estimator appear to be biased. To study this bias further we now consider level-based

selection rules Di(Y i). Using the 5%, 47.5%, 52.5%, and 95% quantiles of the population

distribution of YiT , we de�ne cut-o�s for a bottom 5% group, a middle 5% group, and a top

5% group. Because the cut-o�s are computed from the population distribution of YiT , for

unit i the selection rules only depends on YiT and not on YjT with j 6= i.

For the top and bottom groups only the posterior mean predictors lead to unbiased fore-

cast errors. The su�cient statistic λ̂i tends to overestimate (underestimate) λi for the top

(bottom) group, because it interprets a sequence of above-average (below-average) UiT 's as

evidence for a high (low) λi. This is re�ected in the bias: the plug-in predictors' forecast
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Figure 1: QMLE Estimation: Distribution of Êλi
θ̂,Yi

[λi] versus λ̂i(θ̂)

All Units Bottom Group Middle Group Top Group

Notes: Solid (red) lines depict cross-sectional densities of posterior mean estimates Êλi
θ̂,Yi

[λi]. Dashed (blue)

lines depict cross-sectional densities of su�cient statistic λ̂i(θ̂). The results are based on the QMLE estima-

tor. The Monte Carlo design is described in Table 1.

errors for the top group are on average positive, whereas the forecast errors for the bottom

group tend to be negative. The posterior mean tends to correct these biases because it

shrinks toward the mean of the prior distribution of the λi's. This reduces the regrets for

the top and bottom groups, and is also re�ected in the risk calculated across all units. The

bias correction is illustrated in Figure 1, which compares the cross-sectional distribution of

the su�cient statistics λ̂i(θ̂) to the distribution of the posterior mean estimates Êλi
θ̂,Yi

[λi]

obtained with Tweedie's formula. Due to the shrinkage e�ect of the prior, the distribution

of the posterior means, in particular for the top and bottom groups, is more compressed.

2.6.2 Experiment 2: Non-Gaussian Correlated Random E�ects Model

We now change the Monte Carlo design in two dimensions. First, we replace the Gaussian

random e�ects speci�cation with a non-Gaussian speci�cation in which the heterogeneous

coe�cient λi is correlated with the initial condition Yi0. Second, we consider a Tweedie

correction based on a kernel density estimate of p(λ̂i|Yi0) as discussed in Section 2.4.3.

The Monte Carlo design is summarized in Table 3. Starting point is a joint normal distribu-

tion for (λi, Yi0), factorized into a marginal distribution π∗(λi) and a conditional distribution

π∗(Yi0|λi). We assumed λi ∼ N(µ
λ
, V λ) and that Yi0|λi corresponds to the stationary dis-

tribution of Yit associated with its autoregressive law of motion. The implied marginal
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Table 3: Monte Carlo Design 2

Law of Motion: Yit = λi + ρYit−1 + Uit where Uit ∼ iidN(0, γ2); ρ = 0.5, γ = 1

Initial Observation: Yi0 ∼ N
(
µ
λ

1−ρ , VY +
V λ

(1−ρ)2

)
, VY = γ2/(1− ρ2); µ

λ
= 1, V λ = 1

Non-Gaussian Correlated Random E�ects:

λi|Yi0 ∼
{
N
(
φ+(Yi0),Ω

)
with probability pλ

N
(
φ−(Yi0),Ω

)
with probability 1− pλ

,

φ+(Yi0) = φ0 + δ + (φ1 + δ)Yi0,
φ−(Yi0) = φ0 − δ + (φ1 − δ)Yi0,
Ω =

[
1

(1−ρ)2V
−1
Y + V −1

λ

]−1
, φ0 = ΩV −1

λ µ
λ
, φ1 = 1

1−ρΩV −1
Y ,

pλ = 1/2, δ ∈ {1/5, 1, 5} (δ = 1/
√
κ)

Sample Size: N = 1, 000, T = 3
Number of Monte Carlo Repetitions: Nsim = 1, 000

Figure 2: QMLE Estimation: Density p(λ̂i|yi0, θ) for δ = 1/10 versus δ = 1

yi0 = −2.5 yi0 = 2.0 yi0 = 6.5

Notes: Solid (blue) line is δ = 1 and solid (red) line is δ = 1/10. The Monte Carlo design is described in

Table 3.

distribution for Yi0 is used as π(Yi0) in the Monte Carlo design. To obtain π(λi|Yi0) we took

π∗(λi|Yi0) from the Gaussian model and replaced it with a mixture of normals described

in Table 3. For δ = 0 the mixture reduces to π∗(λi|Yi0), whereas for large values of δ it

becomes bimodal. This bimodality also translates into the distribution of λ̂|Yi0, which is

depicted in Figure 2 for δ = 1/10 (almost Gaussian) and δ = 1 (bimodal).

In this experiment we consider a parametric Tweedie correction (same as in Experiment 1,

but now misspeci�ed in view of the DGP) and two nonparametric Tweedie corrections. First,

we compute the correction based on the simple Gaussian kernel in (2.4.9). The bandwidth is
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chosen in accordance with the theory in Section 2.5. We set BN = c/(lnN)0.55, which would

be consistent with a truncation of the form CN = c
√

lnN , and let c ∈ {1/2, 1, 2}.8 Second,

we use the adaptive estimator proposed by Botev et al. (2010), henceforth BGK estimator,

which is based on the solution of a di�usion partial di�erential equation. This estimator is

associated with a plug-in bandwidth selection rule that requires no further tuning.9 Unless

otherwise noted, the subsequent results are based on the BGK estimator.

Figure 3 shows the �true� density p(λ̂i|yi0, θ) as well as Gaussian and nonparametric ap-

proximations. Under the Gaussian correlated random e�ects distribution we can directly

calculate the conditional distribution of λ̂i given yi0. The nonparametric approximation

is obtained by dividing an estimate of the joint density of (λ̂i, yi0) by an estimate of the

marginal density of yi0 (this normalization is not required for the Tweedie correction). Each

hairline in Figure 3 corresponds to a density estimate from a di�erent Monte Carlo run.

For δ = 1/10 the Gaussian approximation is accurate and the variability of the estimates is

much smaller than that of the kernel estimates. For δ = 1 the Gaussian density is unable to

approximate the bimodal p(λ̂i, yi0|θ), whereas the non-parametric approximation, at least

for yi0 = 2.0 captures the key features of the density of λ̂i.

For the prediction, the relevant object is the correction (σ2/T )∂ ln p(λ̂i, yi0|θ)/∂λ̂i, which is

depicted in Figure 4. Under a Gaussian correlated random e�ects distribution, the Tweedie

correction is linear in λ̂i because the posterior mean is a linear combination of the prior mean

and the maximum of the likelihood function. Thus, the corrections based on the Gaussian

density estimate are linear regardless of δ. For δ = 1/10 the correction under the �true�

random e�ects distribution is nearly linear, and thus well approximated by the Gaussian

correction. The nonparametric correction is fairly accurate for values of λ̂ in the center of

the conditional distribution λ̂i|(yi0, θ), but it becomes less accurate in the tails. For δ = 1,

on the other hand, the kernel-based correction provides a much better approximation of the

8The tuning matrices Vλ̂ and Vh are set equal to the sample variances of λ̂i and yi0, respectively.
9Our estimates are based on Algorithms 1 and 2 in BGK. We use the authors' MATLAB code to

implement the density estimator.
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Figure 3: QMLE Estimation: �True� Density p(λ̂i|yi0, θ) versus Gaussian and Nonparametric
Estimates

Parametric Gaussian Estimates p∗(λ̂i|yi0, θ̂QMLE , ξ̂QMLE)
Misspeci�cation δ = 1/10 Misspeci�cation δ = 1

yi0 = −2.5 yi0 = 2.0 yi0 = −2.5 yi0 = 2.0

Nonparametric Kernel Estimates p̂(λ̂i|yi0, θ̂QMLE)
Misspeci�cation δ = 1/10 Misspeci�cation δ = 1

yi0 = −2.5 yi0 = 2.0 yi0 = −2.5 yi0 = 2.0

Notes: Solid (blue) lines depict �true� p(λ̂i|yi0, θ). Colored �hairs� depict 10 estimates from the Monte Carlo

repetitions. The nonparametric estimates are based on the BGK kernel estimator. The Monte Carlo design

is described in Table 3.

optimal correction than the Gaussian correction.

Table 4 compares the performance of twelve predictors; half of them based on QMLE and

the other half based on GMM. It is well-known that the GMM estimator of θ is consistent

under the DGP described in Table 3. We show in the Appendix that the QMLE estimator

is also consistent for θ under this DGP, despite the fact that the correlated random e�ects

distribution is misspeci�ed. For each of the two θ estimators we construct posterior mean

predictors using four di�erent nonparametric Tweedie corrections as well as the Gaussian

Tweedie correction. Moreover, we compute the plug-in predictor based on λ̂i(θ̂).
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Figure 4: QMLE Estimation: Gaussian versus Nonparametric Estimates Tweedie Correction

Parametric Gaussian Estimates p∗(λ̂i|yi0, θ̂QMLE , ξ̂QMLE)
Misspeci�cation δ = 1/10 Misspeci�cation δ = 1

yi0 = −2.5 yi0 = 2.0 yi0 = −2.5 yi0 = 2.0

Nonparametric Kernel Estimates p̂(λ̂i|yi0, θ̂QMLE)
Misspeci�cation δ = 1/10 Misspeci�cation δ = 1

yi0 = −2.5 yi0 = 2.0 yi0 = −2.5 yi0 = 2.0

Notes: Solid (blue) lines depict Tweedie correction based on p(λ̂i|yi0, θ). Colored �hairs� depict 10 estimates

from the Monte Carlo repetitions. The nonparametric estimates are based on the BGK kernel estimator.

The Monte Carlo design is described in Table 3.

Among the nonparametric predictors, the one based on the BGK density estimator clearly

dominates the ones derived from the simple kernel density estimator. If the random e�ects

distribution is almost normal, i.e., δ = 1/10, setting c = 2 is preferable to the other choices

of c. For the bimodal random e�ects distribution, i.e., δ = 1, the best performance of

the simple kernel estimator is attained for c = 1/2. The predictors that rely on posterior

mean approximations generally outperform the naive predictors based on λ̂i(θ̂). The bene�ts

from shrinkage are most pronounced for the bottom and top groups. If the misspeci�cation

is small (δ = 1/10), the parametric correction leads to more precise forecasts than the

nonparametric correction because it is based on a more e�cient density estimator. As the
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Table 4: Monte Carlo Experiment 2: Correlated Random E�ects, Non-parametric versus
Parametric Tweedie Correction

All Units Bottom Group Top Group
Median Median Median

Estimator / Predictor Regret Forec.E. Regret Forec.E. Regret Forec.E

δ = 1/10

Oracle Predictor (1177.6) 0.003 (54.92) -0.046 (63.97) -0.010

Post. Mean (θ̂QMLE , BGK Kernel) 0.179 -0.001 0.737 0.159 0.543 -0.119

Post. Mean (θ̂QMLE , Gaussian Kernel c = 0.5) 0.635 0.001 1.711 0.438 1.157 -0.360

Post. Mean (θ̂QMLE , Gaussian Kernel c = 1.0) 0.454 0.000 1.126 0.345 0.779 -0.279

Post. Mean (θ̂QMLE , Gaussian Kernel c = 2.0) 0.416 0.000 0.826 0.267 0.568 -0.183

Post. Mean (θ̂QMLE , Parametric) 0.048 0.001 0.053 0.060 0.130 0.127

Plug-in Predictor (θ̂QMLE , λ̂i(θ̂QMLE)) 0.915 0.001 2.323 0.527 1.549 -0.437

Post. Mean (θ̂GMM , BGK Kernel) 0.217 0.002 0.766 0.135 0.566 -0.095

Post. Mean (θ̂GMM , Gaussian Kernel c = 0.5) 0.693 0.002 1.761 0.423 1.182 -0.336

Post. Mean (θ̂GMM , Gaussian Kernel c = 1.0) 0.509 0.001 1.180 0.333 0.813 -0.255

Post. Mean (θ̂GMM , Gaussian Kernel c = 2.0) 0.459 0.002 0.866 0.252 0.601 -0.160

Post. Mean (θ̂GMM , Parametric) 0.091 0.002 0.079 0.043 0.192 0.146

Plug-in Predictor (θ̂GMM , λ̂i(θ̂GMM )) 0.968 0.003 2.356 0.511 1.558 -0.413

δ = 1

Oracle Predictor (1161.7) -0.003 (54.43) -0.056 (65.78) -0.024

Post. Mean (θ̂QMLE , BGK Kernel) 0.298 0.006 0.756 0.181 0.735 -0.073

Post. Mean (θ̂QMLE , Gaussian Kernel c = 0.5) 0.526 0.001 0.857 0.240 0.855 -0.089

Post. Mean (θ̂QMLE , Gaussian Kernel c = 1.0) 0.661 0.002 0.894 0.226 0.936 -0.050

Post. Mean (θ̂QMLE , Gaussian Kernel c = 2.0) 0.833 0.005 1.080 0.225 1.100 0.000

Post. Mean (θ̂QMLE , Parametric) 1.025 0.001 1.292 0.233 1.256 -0.012

Plug-in Predictor (θ̂QMLE , λ̂i(θ̂QMLE)) 1.068 0.001 1.852 0.388 1.468 -0.158

Post. Mean (θ̂GMM , BGK Kernel) 0.343 0.006 0.906 0.171 0.874 -0.068

Post. Mean (θ̂GMM , Gaussian Kernel c = 0.5) 0.571 0.001 1.015 0.234 0.994 -0.086

Post. Mean (θ̂GMM , Gaussian Kernel c = 1.0) 0.706 0.002 1.050 0.217 1.076 -0.046

Post. Mean (θ̂GMM , Gaussian Kernel c = 2.0) 0.930 0.005 1.235 0.218 1.242 0.006

Post. Mean (θ̂GMM , Parametric) 1.071 0.001 1.443 0.228 1.392 -0.005

Plug-in Predictor (θ̂GMM , λ̂i(θ̂GMM )) 1.115 0.001 2.011 0.383 1.609 -0.154

Notes: The design of the experiment is summarized in Table 3. For the oracle predictor we report the

compound risk (in parentheses) instead of the regret. The regret is standardized by the average posterior

variance of λi, see De�nition 2.3.2. The BGK estimator relies on a adaptive bandwidth choice. For the

Gaussian kernel estimator in (2.4.9) we set BN = c/(lnN)0.49.

degree of misspeci�cation increases, the nonparametric correction starts to perform better

and for δ = 1 it clearly dominates the parametric competitor. This is consistent with the

accuracy of the underlying density estimators shown in Figures 3 and 4.

2.6.3 Experiment 3: Misspeci�ed Likelihood Function

In the third experiment, summarized in Table 5, we consider a misspeci�cation of the Gaus-

sian likelihood function by replacing the Normal distribution in the DGP with two mixtures.
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Table 5: Monte Carlo Design 3

Law of Motion: Yit = λi + ρYit−1 + Uit, ρ = 0.5, E[Uit] = 0, V[Uit] = 1

Scale Mixture: Uit ∼ iid
{
N(0, γ2

+) with probability pu
N(0, γ2

−) with probability 1− pu
,

γ2
+ = 4, γ2

− = 1/4, pu = (1− γ2
−)/(γ2

+ − γ2
−) = 1/5

Location Mixture: Uit ∼ iid
{
N(µ+, γ

2) with probability pu
N(−µ−, γ2) with probability 1− pu

,

µ− = 1/4, µ+ = 2, pu = µ−u /(µ
−
u + µ+

u ) = 1/9,
γ2 = 1− pu(µ+

u )2 − (1− pu)(µ−u )2 = 1/2
Initial Observations: Yi0 ∼ N(0, 1)
Gaussian Random E�ects: λi|Yi0 ∼ N(φ0 + φ1Yi0,Ω), φ0 = 0, φ1 = 0, Ω = 1
Sample Size: N = 1, 000, T = 3
Number of Monte Carlo Repetitions: Nsim = 1, 000

The plot overlays a N(0, 1) density (blue, dotted), the scale mixture
(green, dashed), and the location mixture (red, solid).

We consider a scale mixture that generates excess kurtosis and a location mixture that gen-

erates skewness. The innovation distributions are normalized such that E[Uit] = 0 and

V[Uit] = 1. For the heterogeneous intercepts λi we adopt the Gaussian random e�ects

speci�cation of Experiment 1. In this experiment we compute the relative regret for �ve

predictors:10 the posterior mean predictor based on the non-parametric Tweedie correc-

tion and the plug-in predictor based on θ̂QMLE and θ̂MLE , respectively. Note that both the

QMLE and the GMM estimator of θ remain consistent under the likelihood misspeci�cation.

However, the (non-parametric) Tweedie correction no longer delivers a valid approximation

of the posterior mean.

10The computation of the oracle predictor and the normalization of the regret by the posterior variance
of λ require a Gibbs sampler which is described in the Appendix.
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Table 6: Monte Carlo Experiment 3: Misspeci�ed Likelihood Function

All Units Bottom Group Top Group
Median Median Median

Estimator / Predictor Regret Forec.E. Regret Forec.E Regret Forec.E.

Scale Mixture � Excess Kurtosis

Oracle Predictor (1153.7) 0.000 (67.98) 0.002 (55.99) -0.033

Post. Mean (θ̂QMLE , BGK Kernel) 0.977 -0.002 2.031 0.170 2.226 -0.227

Post. Mean (θ̂GMM , BGK Kernel) 1.033 -0.000 2.055 0.162 2.388 -0.211

Plug-In Predictor (θ̂GMM , λ̂i(θ̂GMM )) 1.605 0.002 3.666 0.555 4.396 -0.642
Loss-Function-Based Estimator 1.615 0.197 1.423 0.206 1.198 0.146
Pooled OLS 2.244 -0.286 4.295 -0.644 2.516 -0.020

Location Mixture � Skewness

Oracle Predictor (1200.2) -0.146 (63.29) -0.167 (62.31) -0.162

Post. Mean (θ̂QMLE , BGK Kernel) 0.359 -0.106 0.338 -0.077 0.962 -0.410

Post. Mean (θ̂GMM , BGK Kernel) 0.398 -0.105 0.362 -0.080 1.086 -0.399

Plug-In Predictor (θ̂GMM , λ̂i(θ̂GMM )) 0.810 -0.091 1.359 0.330 2.784 -0.818
Loss-Function-Based Estimator 0.807 0.099 0.461 0.030 0.497 -0.006
Pooled OLS 1.240 -0.391 3.902 -0.889 0.828 -0.235

Notes: The design of the experiment is summarized in Table 5. For the oracle predictor we report the

compound risk (in parentheses) instead of the regret. The regret is standardized by the average posterior

variance of λi, see De�nition 2.3.2.

The results are summarized in Table 6. The risk of the oracle predictors can be compared

to that reported in Table 1. The excess kurtosis of the scale mixture and the skewness of

the location mixture slightly reduce the posterior variance of λ compared to the standard

normal benchmark in Experiment 1. Due to the misspeci�cation of the likelihood function,

the relative regret of the various predictors increases considerably, but the relative ranking is

essentially unchanged. The posterior mean predictors based on the nonparametric Tweedie

correction dominate all the other predictor, attaining a relative regrets of about 1 and

0.4, respectively. Compared to the plug-in and loss-function based predictors, the Tweedie

correction still reduces the regret 40% to 50%. The predictor based on the pooled OLS

estimation performs the worst among the �ve predictors in this experiment.

2.7 Empirical Application

We will now use the previously-developed predictors to forecast pre-provision net revenues

(PPNR) of bank holding companies (BHC). The stress tests that have become mandatory
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under the 2010 Dodd-Frank Act require banks to establish how PPNR varies in stressed

macroeconomic and �nancial scenarios. A �rst step toward building and estimating models

that provide trustworthy projections of PPNR and other bank-balance-sheet variables under

hypothetical stress scenarios, is to develop models that generate reliable forecasts under

the observed macroeconomic and �nancial conditions. Because of changes in the regulatory

environment in the aftermath of the �nancial crisis as well as frequent mergers in the banking

industry our large N small T panel-data-forecasting framework seems particularly attractive

for stress-test applications.

We generate a collection of panel data sets in which pre-provision net revenue as a fraction

of consolidated assets (the ratio is scaled by 400 to obtain annualized percentages) is the

key dependent variable. The data sets are based on the FR Y-9C consolidated �nancial

statements for bank holding companies for the years 2002 to 2014, which are available

through the website of the Federal Reserve Bank of Chicago. Because the balance sheet

data exhibit strong seasonal features, we time-aggregate the quarterly observations into

annual observations and take the time period t to be one year.

We construct rolling samples that consist of T + 2 observations, where T is the size of

the estimation sample and varies between T = 3 and T = 11 years. The additional two

observations in each rolling sample are used, respectively, to initialize the lag in the �rst

period of the estimation sample and to compute the error of the one-step-ahead forecast. For

instance, with data from 2002 to 2014 we can construct M = 9 samples of size T = 3 with

forecast origins running from τ = 2005 to τ = 2013. Each rolling sample is indexed by the

pair (τ, T ). The cross-sectional dimension N varies from sample to sample and ranges from

approximately = 460 to 725. Further details about the data as well as a description of our

procedure to create balanced panels and eliminate outliers are provided in the Appendix.

In Section 2.7.1 we use the basic dynamic panel data model to generate PPNR forecasts.

In Section 2.7.2 we extend the model to include covariates and compare forecasts under the

actual realization of the covariates and stressed scenarios in which we set the covariantes to
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Table 7: MSE for Basic Dynamic Panel Model

Rolling Samples
T = 3 T = 5 T = 7 T = 9 T = 11

Post. Mean (θ̂QMLE , Parametric) 0.74 0.69 0.58 0.48 0.45

Post. Mean (θ̂QMLE , BGK Kernel) 0.84 0.74 0.59 0.50 0.46

Plug-In Predictor (θ̂QMLE , λ̂i(θ̂QMLE)) 0.90 0.79 0.60 0.51 0.48

Post. Mean (θ̂GMM , Parametric) 1.08 0.83 0.60 0.49 0.43

Post. Mean (θ̂GMM , BGK Kernel) 1.16 0.93 0.61 0.50 0.44

Plug-In Predictor (θ̂GMM , λ̂i(θ̂GMM )) 1.17 0.89 0.61 0.51 0.46
Loss-Function-Based Estimator 0.91 0.84 0.63 0.53 0.42
Pooled OLS 0.71 0.68 0.57 0.48 0.45

Notes: The MSEs are computed across the di�erent forecast origins τ associated with each sample size T .

counterfactual levels.

2.7.1 Results from the Basic Dynamic Panel Model

We begin by evaluating forecasts from the basic dynamic panel model in (2.5.1). The

parametric Tweedie correction is based on λi|(Hi, θ) ∼ N(φ0 + φ1Yi0, ω
2). The forecast

evaluation criterion is the mean-squared error (MSE) computed across institutions and across

time:

MSE =
1

M

τ1+M−1∑
τ=τ1

(
1
Nτ

∑Nτ
i=1Di(Yiτ )

(
Yiτ+1 − Ŷiτ+1

)2
1
Nτ

∑Nτ
i=1Di(Yiτ )

)
, (2.7.1)

where M is the number of rolling samples. Table 7 summarizes the MSEs for di�erent

estimators and di�erent sizes T of the estimation samples. Recall that the unit of Ŷiτ is

annual revenue as fraction of total assets converted into annualized percentages.

For the short samples, i.e., T = 3 and T = 5, the QMLE-based predictors are more accurate

than the GMM-based predictors. This discrepancy vanishes as the sample size is increased

to T = 11. The posterior mean predictors computed with the Tweedie correction are more

accurate than the plug-in predictors. As expected, the MSE di�erential is largest in the small

T samples, because the unit-speci�c likelihood function contains fairly little information and

the prior strongly in�uences the posterior. The parametric Tweedie correction delivers more

accurate predictions than the non-parametric Tweedie correction, in particular for small
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Figure 5: Tweedie Corrections for T = 5 and τ = 2012

Yi0 = 0 Yi0 = −2 Yi0 = −3

Notes: Each panel shows the parametric (dashed blue) and the non-parametric (solid red) Tweedie correction

for θ̂QMLE .

T . In Figure 5 we compare the Tweedie corrections for T = 5 and τ = 2012. While the

corrections are quite similar for values of the su�cient statistic λ̂i(ρ) = 1
T

∑T
t=1(Yit−ρYit−1)

between -1% and 1%, the non-parametric correction behaves somewhat erratic outside of

this interval which hurts the predictive performance.

Returning to the MSE results in Table 7, the posterior mean predictor yields roughly the

same MSE as pooled OLS. This suggests that a posteriori the data sets contain only weak

evidence for heterogeneous intercepts. In this regard, the parametric speci�cation is more

e�cient in shrinking the intercept estimates toward a common value. Finally, for all sample

sizes except T = 11, the posterior-mean predictor based on θ̂QMLE and the parametric

Tweedie correction is more accurate than the loss-function-based predictor.

In Table 8 we focus on the sample size T = 5. In addition to averaging forecast errors across

all T = 5 samples, we also report results for speci�c forecast origins, namely choices of τ

that correspond to the years 2007, the onset of the Great Recession, and 2012, which is

during the recovery period. Moreover, we compute MSEs based on cross-sectional selection

rules that depend on the level of PPNR at the forecast origin τ . We focus on institutions

with PPNR less than 0%, -1%, -2%, and -3%, respectively. Because the QMLE predictors
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Table 8: MSE for Basic Dynamic Panel Model for T = 5

Selection Di(Yiτ )
All yiτ ≤ 0 yiτ ≤ −1 yiτ ≤ −2 yiτ ≤ −3

Rolling Sample τ = 2007

Post. Mean (θ̂QMLE , Parametric) 0.90 0.90 1.04 1.29 1.72

Plug-In Predictor (θ̂QMLE , λ̂i(θ̂QMLE)) 1.26 1.21 1.39 1.65 2.08
Loss-Function-Based Estimator 1.17 1.17 1.54 2.31 1.99
Pooled OLS 0.91 0.91 1.04 1.28 1.71

Rolling Sample τ = 2012

Post. Mean (θ̂QMLE , Parametric) 0.51 0.56 0.83 0.91 1.01

Plug-In Predictor (θ̂QMLE , λ̂i(θ̂QMLE)) 0.55 0.51 0.75 0.85 1.05
Loss-Function-Based Estimator 0.63 0.69 0.98 1.02 1.00
Pooled OLS 0.48 0.57 0.85 0.97 1.12

All Rolling Samples τ = 2007, . . . , 2013

Post. Mean (θ̂QMLE , Parametric) 0.69 0.88 1.12 1.43 1.69

Plug-In Predictor (θ̂QMLE , λ̂i(θ̂QMLE)) 0.79 1.00 1.32 1.72 2.16
Loss-Function-Based Estimator 0.84 1.00 1.24 1.54 1.63
Pooled OLS 0.71 0.90 1.16 1.50 1.80

Notes: For the last panel (all rolling samples) the MSEs are computed across the di�erent forecast origins

τ .

dominate the GMM predictors and the parametric Tweedie correction was preferable to

the nonparametric correction, we now restrict our attention to the posterior-mean predictor

based on θ̂QMLE and the parametric Tweedie correction, the θ̂QMLE plug-in predictor, and

predictors constructed from loss-function-based estimates and pooled OLS, respectively.

For the 2007 sample, the plug-in and the loss-function-based predictor are dominated by the

other two predictors. The performance of the posterior-mean and the pooled-OLS predictor

are essentially identical. For the 2012 sample, the posterior-mean predictor performs better

than the plug-in predictor if we average across all institutions or if we condition on BCHs

with PPNR of less than -3%. In the other cases the ranking is reversed. Across all rolling

samples, the posterior mean predictor dominates. Across all institutions its performance is

only slightly better than pooled OLS, but if we condition on BCHs with PPNR of less than

-1%, -2%, or -3% then the accuracy relative to pooled OLS is more pronounced.

Table 23 in the Appendix provides point estimates of the parameters of the basic dy-

namic panel model and the parametric correlated random e�ects distribution for T = 5

47



Table 9: Parameter Estimates for T = 5: θ̂QMLE , Parametric Tweedie Correction

τ ρ̂ σ̂2 φ̂0 φ̂1 ω̂2 N

2007 0.90 0.61 0.03 0.01 6E-8 537
2008 0.83 0.55 0.11 0.05 2E-8 598
2009 0.76 0.76 0.01 0.10 4E-8 613
2010 0.80 0.67 -0.05 0.09 2E-7 606
2011 0.79 0.58 -0.02 0.07 0.07 582
2012 0.71 0.53 0.04 0.13 0.16 587
2013 0.79 0.58 -0.05 0.12 0.09 608

Notes: Point estimates for the model Yit+1 = λi+ρYit+Uit+1, Uit+1 ∼ N(0, σ2), λi|Yi0 ∼ N(φ0+φ1Yi0, ω
2).

and τ = 2007, . . . , 2013. Until 2010 the estimated variance of the correlated random e�ects

distribution is essentially zero, which implies that λi ≈ φ0 + φ1Yi0. Because of a non-zero

φ̂1 the resulting predictor is not exactly pooled OLS but it is very similar as we have seen

from the results in Table 8. Starting in 2011, we obtain non-trivial estimates of ω̂2 which

imply non-trival a priori dispersion of the intercepts (that is not due to the dispersion in

initial conditions). Overall, the estimates ω̂2 imply a large degree of shrinkage. The positive

estimate φ̂1 generates positive correlation between λi and Yi0. The intercept of the corre-

lated random e�ects distribution drops during the Great Recession11, which is consistent

with the fact that bank revenues eroded during the �nancial crisis. The estimated common

autoregressive coe�cients range from 0.7 to 0.9.

2.7.2 Results from Models with Covariates

To analyze the performance of the banking sector under stress scenarios it is necessary to

add predictors to the dynamic panel data model that re�ect macroeconomic and �nancial

conditions. We consider three aggregate variables: the unemployment rate, the federal

funds rate, and the spread between the federal funds rate and the 10-year treasury bill.

Because these predictors are not bank-speci�c, the e�ect of the predictors on PPNR has to be

identi�ed from time-series variation, which is challenging given the short time-dimension of

our panels. We consider two speci�cations: the �rst model only includes the unemployment

rate as additional predictor and we focus on the T = 5 data sets. The second model includes

11Recall that the τ = 2010 estimation sample comprises the observations for 2006-2010.
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all three aggregate predictors and we estimated it based on the T = 11 sample.

We generate forecasts using the actual values of the aggregate predictors (which we can

evaluate based on the actual PPNR realizations for the forecast perior) and compare these

forecasts to predictions under a stressed scenario, in which we use hypothetical values for

the predictors. When analyzing stress scenarios, one is typically interested in the e�ect of

stressed economic conditions on the current performance of the banking sector. For this rea-

son, we are changing the timing convention slightly and include the time t macroeconomic

and �nancial variables into the vector Wit−1. We are implicitly assuming that there is no

feedback from disaggregate BCH revenues to aggregate conditions. While this assumption

is inconsistent with the notion that the performance of the banking sector a�ects macroe-

conomic outcomes, elements of the Comprehensive Capital Analysis and Review (CCAR)

conducted by the Federal Reserve Board of Governors have this partial equilibrium �avor.

Results From a Model with Unemployment. We use the unemployment rate (UN-

RATE) from the FRED database maintained by the Federal Reserve Bank of St. Louis

and convert it to annual frequency by temporal averaging. We begin by computing MSEs,

which are reported in Table 10. This table has the same format as Table 8: we consider

MSEs for 2007, 2012, and averaged across all rolling samples. Moreover, we compute MSEs

conditional on the level of PPNR at the forecast origin. A few observations stand out. First,

the MSE for the posterior mean predictor is slightly reduced by including unemployment for

the 2007 and 2012 samples, but across all of the rolling samples it slightly increases. Second,

the gain of using the Tweedie correction, that is, the MSE di�erential between the plug-in

predictor and the posterior mean predictor, becomes larger as we include unemployment.

This is very intuitive: the more coe�cients need to be estimated based on a given time-series

dimension, the more important the shrinkage induced from the prior distribution. Third,

the performance of the posterior-mean predictor and the pooled-OLS predictors remain very

similar, meaning that the Tweedie correction shrinks toward pooled OLS.12

12This is supported by the estimates of ω̂2
1 and ω̂2

2 reported in the Online Appendix.
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Table 10: MSE for Model with Unemployment for T = 5

Selection Di(Yiτ )
All yiτ ≤ 0 yiτ ≤ −1 yiτ ≤ −2 yiτ ≤ −3

Rolling Sample τ = 2007

Post. Mean (θ̂QMLE , Parametric) 0.88 0.95 1.11 1.40 1.72

Plug-In Predictor (θ̂QMLE , λ̂i(θ̂QMLE)) 1.38 1.62 2.23 2.61 3.29
Loss-Function-Based Estimator 1.44 1.23 1.55 2.14 1.92
Pooled OLS 0.88 0.93 1.06 1.31 1.70

Rolling Sample τ = 2012

Post. Mean (θ̂QMLE , Parametric) 0.49 0.55 0.80 0.92 1.09

Plug-In Predictor (θ̂QMLE , λ̂i(θ̂QMLE)) 0.64 0.67 0.98 1.27 1.73
Loss-Function-Based Estimator 0.84 1.12 1.56 1.66 1.60
Pooled OLS 0.49 0.58 0.85 0.97 1.12

All Rolling Samples τ = 2007, . . . , 2013

Post. Mean (θ̂QMLE , Parametric) 0.72 0.92 1.16 1.45 1.70

Plug-In Predictor (θ̂QMLE , λ̂i(θ̂QMLE)) 2.52 3.90 4.39 6.07 5.88
Loss-Function-Based Estimator 2.14 3.22 3.71 4.91 4.56
Pooled OLS 0.72 0.96 1.23 1.56 1.86

Notes: For the last panel (all rolling samples) the MSEs are computed across the di�erent forecast origins

τ .

We now impose stress by increasing the unemployment rate by 5%. This corresponds to

the unemployment movement in the severely adverse macroeconomic scenario in the Federal

Reserve's CCAR 2016. In Figure 6 we are comparing one-year-ahead predictions for forecast

origins τ = 2007 and τ = 2012 under the actual period τ + 1 unemployment rate and

the stressed unemployment rate. Each circle in the graphs corresponds to a particular

BHC. We indicate institutions with assets greater than 50 billion dollars13 by red circles,

while the other BHCs appear as blue circles. The large institutions have in general smaller

revenues than the smaller BHCs. According to the plug-in predictor (the two right panels),

the response to the unemployment shock is very heterogeneous. For about half of the

intitutions a rise in unemployment leads to a drop in revenues, whereas for the other half

higher unemployment is associated with larger revenues. However, we know from Table 8

that forecasts from the plug-in predictor are fairly inaccurate. The stress-test implications

of the posterior mean predictor are markedly di�erent. Due to the strong shrinkage the

e�ect is more homogeneous across institutions and appears to be slightly positive.

13These are the BHCs that are subject to the CCAR requirements.
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Figure 6: Predictions under Actual and Stressed Scenario for T = 5

Post. Mean (θ̂QMLE , Parametric) Plug-In Predictor (θ̂QMLE , λ̂i(θ̂QMLE))
Rolling Sample τ = 2007

Rolling Sample τ = 2012

Notes: Each dot corresponds to a BHC in our dataset. We plot point predictions of PPNR under the actual

macroeconomic conditions (the unemployment rate is at its observed level in period τ + 1) and a stressed

scenario (unemployment rate is 5% higher than its actual level).

A Model with Unemployment, Federal Funds Rate, and Spread. We now expand

the list of covariates and in addition to the unemployment rate include the federal funds

rate and the spread between the federal funds rate and the 10-year treasury bill. Both series

are obtained from the FRED database (FEDFUNDS and DGS10). We convert the series

into annual frequency by temporal averaging. Because we now have three regressors that

do not vary across units (meaning all BHCs are operating within the same macroeconomic

conditions, but may have hetereogeneous responses to these conditions), we focus on the

data set with the largest time series dimension, namely T = 11. MSEs are presented in
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Table 11: MSE for Model with Unemployment, Fed Funds Rate, and Spread for T = 11

Selection Di(Yiτ )
All yiτ ≤ 0 yiτ ≤ −1 yiτ ≤ −2 yiτ ≤ −3

Post. Mean (θ̂QMLE , Parametric) 0.49 0.64 0.94 1.00 1.08

Plug-In Predictor (θ̂QMLE , λ̂i(θ̂QMLE)) 0.78 1.35 2.14 2.04 1.61
Loss-Function-Based Estimator 0.47 0.61 0.88 0.88 0.78
Pooled OLS 0.50 0.68 1.00 1.04 1.10

Notes: The MSEs are computed for the forecast origin τ = 2013.

Table 11. The forecast origin is τ = 2013. As before, the posterior mean predictor with the

Tweedie correction strongly dominates the plug-in predictor. Moreover, the posterior mean

predictor is also slightly more accurate than the predictor based on pooled OLS.14 Unlike

in the previous cases, the predictor constructed from the loss-function-based estimate of the

model coe�cients now performs slightly better than the posterior mean predictor.

Figure 7 compares PPNR predictions under the actual macroeconomic conditions and a

stressed macroeconomic scenario. The stressed scenario comprises an increase in the unem-

ployment rate by 5% (as before) and an increase in nominal interest rates and spreads by

5%. This scenario could be interpreted as an aggressive monetary tightening that induced a

sharp drop in macroeconomic activity. The plug-in predictor generates very heterogeneous

responses to the macroeconomic stress scenario. Some banks bene�t from the monetary

tightening and others experience a substantial fall in revenues. The posterior mean predic-

tor implies a much more homogeneous response of the banking sector under which there is

a very small (relative to the cross-sectional dispersion) increase in predicted revenues.

Discussion. We view this analysis as a �rst-step toward applying state-of-the-art panel data

forecasting techniques to stress tests. First, it is important to ensure that the empirical model

is able to accurately predict bank revenues and balance sheet characteristics under observed

macroeconomic conditions. Our analysis suggests that there are substantial performance

di�erences among various plausible estimators and predictors. Second, a key challenge is to

14While the estimates of the conditional variances of the λij coe�cients are close to zero, the estimated
conditional means of λij vary with Yi0. This explains the di�erence between the posterior mean and the
pooled-OLS predictor.
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Figure 7: Predictions under Actual and Stressed Scenario for T = 11 and τ = 2013

Post. Mean (θ̂QMLE , Parametric) Plug-In Predictor (θ̂QMLE , λ̂i(θ̂QMLE))

Notes: Each dot corresponds to a BHC in our dataset. We plot point predictions of PPNR under the actual

macroeconomic conditions (the unemployment rate, federal funds rate, and spread are at their observed 2014

levels) and a stressed scenario (the unemployment rate, federal funds rate, and spread are 5% higher than

their actual level in 2014).

cope with model complexity in view of the limited information in the sample. There is a

strong temptation to over-parameterize models that are used for stress tests. We decided

to time-aggregate the revenue data to smooth out irregular and non-Gaussian features of

the accounting data at the quarterly frequency. This limits the ability to precisely measure

the potentially heterogeneous e�ects of macroeconomic conditions on bank performance.

Prior information is used to discipline the inference. In our empirical Bayes procedure, this

prior information is essentially extracted from the cross-sectional variation in the data set.

While we a priori allowed for heterogeneous responses, it turned out a posteriori, trading-o�

model complexity and �t, that the estimated coe�cients exhibited very little heterogeneity.

Third, our empirical results indicate that relative to the cross-sectional dispersion of PPNR,

the e�ect of severely adverse scenarios on revenue point predictions are very small. We

leave it future research to explore richer empirical models that focus on speci�c revenue

and accounting components and consider a broader set of covariates. Finally, it would

be desirable to allow for a feedback from the performance of the banking sector into the

aggregate conditions.
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2.8 Conclusion

The literature on panel data forecasting in settings in which the cross-sectional dimension

is large and the time-series dimension is small is very sparse. Our paper contributes to this

literature by developing an empirical Bayes predictor that uses the cross-sectional informa-

tion in the panel to construct a prior distribution that can be used to form a posterior mean

predictor for each cross-sectional unit. The shorter the time-series dimension, the more im-

portant this prior becomes for forecasting and the larger the gains from using the posterior

mean predictor instead of a plug-in predictor. We consider a particular implementation

of this idea for linear models with Gaussian innovations that is based on Tweedie's pos-

terior mean formula. It can be implemented by estimating the cross-sectional distribution

of su�cient statistics for the heterogeneous coe�cients in the forecast model. We consider

both parametric and nonparametric techniques to estimate this distribution. We provide

a theorem that establishes a ratio-optimality property for the nonparametric estimator of

the Tweedie correction. The nonparametric estimation works well in environments in which

the cross-sectional distribution of heterogeneous coe�cients is irregular. If it is well ap-

proximated by a Gaussian distribution, then a parametric implementation of the Tweedie

correction is preferable. We illustrate in an application that our forecasting techniques may

be useful to execute bank stress tests. Our paper focuses on one-step-ahead point forecasts.

We leave extensions to multi-step forecasting and density forecasting for future work.
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CHAPTER 3

Density Forecasts and Young Firm Dynam-

ics15

3.1 Introduction

Panel data, such as a collection of �rms or households observed repeatedly for a number of

periods, are widely used in empirical studies and can be useful for forecasting individuals'

future outcomes, which is interesting and important in many cases. For example, PSID

can be used to analyze income dynamics (Hirano, 2002; Gu and Koenker, 2016b), and bank

balance sheet data help conduct bank stress tests (Liu et al., 2016). This paper constructs

individual-speci�c density forecasts using a dynamic linear panel data model with common

and heterogeneous parameters and cross-sectional heteroskedasticity.

In this paper, I consider young �rm dynamics as the empirical application. For illustrative

purposes, let us consider a simple dynamic panel data model as the baseline setup for this

paper:

yit︸︷︷︸
performance

= βyi,t−1 + λi︸︷︷︸
skill

+ uit︸︷︷︸
shock

, uit ∼ N
(
0, σ2

)
, (3.1.1)

where i = 1, · · · , N , and t = 1, · · · , T + 1. The yit is the observed �rm performance such

as the log of employment,16 λi is the unobserved skill of an individual �rm, and uit is an

i.i.d. shock. Skill is independent of the shock, and the shock is independent across �rms

and times. β and σ2 are common across �rms, where β represents the persistence of the

dynamic pattern, and σ2 gives the size of the shocks. Because the number of observations

15This chapter builds on Liu (2016). I would like to acknowledge the Kau�man Foundation and the
NORC Data Enclave for providing researcher support and access to the con�dential microdata.

16Employment is a standard measure in the �rm dynamics literature (Akcigit and Kerr, 2010; Zarutskie
and Yang, 2015).
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for each young �rm is restricted by its age, the young �rm panel is characterized by large

cross-sectional dimension (N) but short time series (T ).

Based on the observed panel, I am interested in forecasting the future performance of any

speci�c �rm, yi,T+1, which is valuable to both investors and regulators. For investors, it is

helpful to foresee which startups are more promising. For regulators, more accurate forecasts

facilitate monitoring and regulation of bank-lending practices and entrepreneur funding.17

Considering that young �rm dynamics involve sizeable uncertainties, a preferable forecast

would provide a distribution that summarizes all kinds of uncertainties regarding �rm i's

future outcome. This is exactly the concept of density forecasts. Generally, forecasting can

be done in point, interval, or density fashion, and density forecasts give the richest insight

regarding future outcomes. A typical question that density forecasts could answer is: what

is the chance that �rm A will hire 5, 10, or 100 more people next year? Once the density

forecasts are obtained, one can easily recover the point and interval forecasts.

In particular, for a panel data model as speci�ed in equation (3.1.1), density forecasts capture

uncertainties arising from both shocks uit's and heterogeneous skills λi's. The latter is due

to the lack of time-series information available to infer individual λi. I assume that λi is

drawn from the underlying skill distribution f , which serves as the key to characterize skill

uncertainties and provide better density forecasts.

A benchmark for evaluating density forecasts is the posterior predictive distribution for

yi,T+1 under the assumption that the common parameters
(
β, σ2

)
and the distribution of the

heterogeneous coe�cients f are known. I refer to this predictive density as the (infeasible)

oracle forecast. The role played by f can be more clearly appreciated in the following special

case where the common parameters are set to be β = 0 and σ2 = 1. It is straightforward

to construct the oracle predictor for �rm i, which combines �rm i's shock uncertainty and

17The aggregate-level forecasts can be obtained by summing �rm-speci�c forecasts over di�erent sub-
groups.
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skill uncertainty.

foraclei,T+1 (y) =

ˆ
φ (y − λi)︸ ︷︷ ︸

shock uncertainty

· p (λi |f0, yi,1:T )︸ ︷︷ ︸
skill uncertainty

· dλi.

Firm i's skill uncertainty can be interpreted as a posterior distribution with the prior belief

being the common skill distribution f0 and updated with �rm i's data.

p (λi |f0, yi,1:T ) =
p (yi,1:T |λi) f0 (λi)´
p (yi,1:T |λi) f0 (λi) dλi

.

Therefore, the common skill distribution f0 helps in formulating �rm i's skill uncertainty

and contributes to �rm i's density forecasts through the channel of skill uncertainty.

In practice, however, the skill distribution f is unknown and unobservable, thus introducing

another source of uncertainty. Now the oracle predictor becomes as an infeasible optimum.

A good feasible predictor should be as close to the oracle as possible, which calls for a good

estimate of the underlying skill distribution f . In this sense, the challenge is how we can

model f more carefully and �exibly. The parametric Gaussian density misses many common

features in the real world data, such as asymmetricity, heavy tails, or multiple peaks. Here I

model f nonparametrically where the prior is constructed from a mixture model and allows

for correlation between λi and yi0 (i.e. a correlated random e�ects model). Then, I pool

the cross-sectional information to make inferences about f . The proposed semiparametric

Bayesian procedure achieves better estimates of the underlying skill distribution f than

parametric approaches, hence more accurate density forecasts of the future outcomes.

The contributions of this paper are threefold. First, I develop a posterior sampling algorithm

speci�cally addressing nonparametric density estimation of the unobserved λi. For a random

e�ects model, which is a special case with zero correlation between λi and yi0, the f part

becomes a relatively simple unconditional density estimation problem. I impose a Dirichlet

Process Mixture (DPM) prior on f and construct a posterior sampler building on the blocked

Gibbs sampler proposed by Ishwaran and James (2001, 2002). For a correlated random
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e�ects model, I further adapt the proposed algorithm to the much harder conditional density

estimation problem using a probit stick breaking process prior suggested by Pati et al. (2013).

Second, I establish the theoretical properties of the proposed semiparametric Bayesian pre-

dictor when the cross-sectional dimension N tends to in�nity. Firstly, I provide conditions

for identifying both the parametric component
(
β, σ2

)
and the nonparametric component

f . Then, I prove that both the estimated common parameters and the estimated distri-

bution of the heterogeneous coe�cients achieve posterior consistency, which is an essential

building block for bounding the discrepancy between the proposed predictor and the oracle.

Compared to previous literature on posterior consistency, there are several challenges in the

current setting: (1) disentangling unobserved individual e�ects λi's and shocks uit's, (2)

incorporating unknown shock size σ2, (3) adding lagged dependent variables as covariates,

and (4) addressing correlated random e�ects from a conditional density estimation point of

view. Finally, I show that the density forecasts asymptotically converge to the oracle fore-

cast in weak topology, which is new to the nonparametric Bayesian literature and speci�cally

designed for density forecasts.

To accommodate many important features of real-world empirical studies, I extend the

simple model (3.1.1) to a more general speci�cation. First, a realistic application also incor-

porates other observables with common e�ects (β′xi,t−1), where xi,t−1 can include lagged

yit. Second, it is helpful to consider observables with heterogeneous e�ects (λ′iwi,t−1), i.e. a

correlated random coe�cients model. Finally, beyond heterogeneity in coe�cients (λi), it

is desirable to take into account heterogeneity in shock sizes (σ2
i ) as well.

18 All numerical

methods and theoretical properties are further established for the general speci�cation.

Third, Monte Carlo simulations demonstrate improvements in density forecasts relative to

predictors with various parametric priors on f , evaluated by log predictive score. An ap-

plication to young �rm dynamics also shows that the proposed predictor provides more

18Here and below, the terminologies �random e�ects model� and �correlated random e�ects model� also
apply to individual e�ects on σ2

i , which are slightly di�erent from the traditional de�nitions concentrated
on λi.
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accurate density predictions. The better forecasting performance is largely due to three key

features (in order of importance): the nonparametric Bayesian prior, cross-sectional het-

eroskedasticity, and correlated random coe�cients. The estimated model also helps shed

light on the latent heterogeneity structure and how di�erent factors (e.g. R&D, recession,

etc.) contribute to the forecasts.

It is also worth mentioning that although I describe the econometric intuition using the

young �rm dynamics application as an example, the method is very general and can be

applied to many economic and �nancial analyses that feature panel data with relatively

large N and small T , such as microeconomic panel surveys (e.g. PSID, NLSY, and Consumer

Expenditure Survey (CE)), macroeconomic sectoral and regional panel data (e.g. Industrial

Production (IP), and State and Metro Area Employment, Hours, and Earnings (SAE)),

and �nancial institution performance (e.g. Commercial Bank Data and Holding Company

Data). Which T can be considered as a small T depends on the dimension of individual

heterogeneity (dw), the cross-sectional dimension (N), and size of the shocks (σ2 or σ2
i ).

There can still be a signi�cant gain in density forecasts even when T exceeds 100. Roughly

speaking, the proposed predictor would provide sizeable improvement as long as the time

series for individual i is not informative enough to fully reveal its individual e�ects, λi and

σ2
i .

Related Literature First, this paper contributes to the literature on individual forecast in

a panel data setup, and is closely related to Liu et al. (2016) and Gu and Koenker (2016a,b).

Liu et al. (2016) focus on point forecasts. They utilize the idea of Tweedie's formula to

steer away from the complicated deconvolution problem in estimating λi. Unfortunately,

the Tweedie shortcut is not applicable to the inference of underlying λi distribution and

therefore not suitable for density forecasts.

Gu and Koenker (2016b) address the density estimation problem. Their method is di�erent

from the one proposed in this paper in that this paper infers the underlying λi distribu-

tion via a full Bayesian approach (i.e. imposing a prior on the λi distribution and updating
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the prior belief by the observed data), whereas they employ an empirical Bayes procedure

(i.e. picking the λi distribution by maximizing the marginal likelihood of data). In prin-

ciple, the full Bayesian approach is preferable for density forecasts as it captures all kinds

of uncertainties, including estimation uncertainty of the underlying λi distribution, which

has been omitted by the empirical Bayes procedure. In addition, this paper features cor-

related random e�ects allowing for both cross-sectional heterogeneities and cross-sectional

heteroskedasticities interacting with the initial conditions, whereas the Gu and Koenker

(2016b) approach focuses on random e�ects models without such interaction.

In their recent paper, Gu and Koenker (2016a) also compare their method with an alternative

nonparametric Bayesian estimator featuring a Dirichlet Process (DP) prior under a set

of �xed scale parameters. There are two major di�erences between their DP setup and

the DPM prior used in this paper. First, the DPM prior provides continuous individual

e�ect distributions, which is more reasonable in many empirical setups. Second, this paper

incorporates a hyperprior for the scale parameter and updates it via the observed data, hence

let the data choose the complexity of the mixture approximation, which can essentially be

viewed as �automatic� model selection.19

There have also been empirical works on the DPM model with panel data, such as Hirano

(2002), Burda and Harding (2013), Rossi (2014), and Jensen et al. (2015), but they focus on

empirical studies rather than theoretical analysis. Hirano (2002) and Jensen et al. (2015)

use linear panel models, while their setups are slightly di�erent from this paper. Hirano

(2002) considers �exibility in uit distribution instead of λi distribution. Jensen et al. (2015)

assume random e�ects instead of correlated random e�ects. Burda and Harding (2013) and

Rossi (2014) implement nonlinear panel data models via either a probit model or a logit

model, respectively.

Among others, Delaigle et al. (2008) have also studied the similar deconvolution problem

19Section 3.6 shows the simulation results comparing the DP prior vs the DPM prior. Both adopt a
hyperprior for the scale parameter.
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and estimated the λi distribution in a frequentist way, but the frequentist approach misses

estimation uncertainty, which matters in density forecasts, as mentioned previously.

Second, in terms of asymptotic properties, this paper relates to the literature on posterior

consistency of nonparametric Bayesian methods in density estimation problems. The pioneer

work by Schwartz (1965) lays out two high-level su�cient conditions in a general density

estimation context. Ghosal et al. (1999) bring Schwartz (1965)'s idea into the analysis of

density estimation with DPM priors. Amewou-Atisso et al. (2003) extend the discussion

to linear regression problems with an unknown error distribution. Tokdar (2006) further

generalizes the results to cases in which the true density has heavy tails. For a more thorough

review and discussion on posterior consistency in Bayesian nonparametric problems, please

refer to the handbooks, Ghosh and Ramamoorthi (2003) and Hjort et al. (2010) (especially

Chapters 1 and 2). To handle conditional density estimation, similar mixture structure can

be implemented, where the mixing probabilities can be characterized by a multinomial choice

model (Norets, 2010; Norets and Pelenis, 2012), a kernel stick break process (Norets and

Pelenis, 2014; Pelenis, 2014), or a probit stick breaking process (Pati et al., 2013). I adopt

the Pati et al. (2013) approach to o�er a more coherent nonparametric framework that is

totally �exible in the conditional measure. This paper builds on the previous literature and

establishes the posterior consistency result for panel data models. Furthermore, this paper

obtains the convergence of the semiparametric Bayesian predictor to the oracle predictor,

which is new to the literature and speci�c to density forecasts.

Third, the algorithms constructed in this paper build on the literature on the posterior

sampling schemes for DPM models. The vast Markov chain Monte Carlo (MCMC) algo-

rithms can be divided into two general categories. One is the Pólya urn style samplers that

marginalize over the unknown distribution G (Escobar and West, 1995; Neal, 2000).20 The

other resorts to the stick breaking process (Sethuraman, 1994) and directly incorporates G

into the sampling procedure. This paper utilizes a sampler from the second category, Ish-

20For the de�nition of G, see equation (3.2.5).
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waran and James (2001, 2002)'s blocked Gibbs sampler, as a building block for the proposed

algorithm. Basically, it incorporates truncation approximation and augments the data with

auxiliary component probabilities, which helps break down the complex posterior structure

and thus enhance mixing properties as well as reduce computation time.21 I further adapt

the proposed algorithm to the conditional density estimation for correlated random e�ects

using the probit stick breaking process prior suggested by Pati et al. (2013).

Last but not least, the empirical application in this paper also links to the young �rm dy-

namics literature. Akcigit and Kerr (2010) document the fact that R&D intensive �rms

grow faster, and such boosting e�ects are more prominent for smaller �rms. Robb and Sea-

mans (2014) examine the role of R&D in capital structure and performance of young �rms.

Zarutskie and Yang (2015) present some empirical evidence that young �rms experienced

sizable setbacks during the recent recession, which may partly account for the current slow

and jobless recovery. For a thorough review on young �rm innovation, please refer to the

handbook by Hall and Rosenberg (2010). The empirical analysis of this paper builds on

these previous �ndings. Besides providing more accurate density forecasts, we can also use

the estimated model to analyze the latent heterogeneity structure and understand the e�ects

of di�erent factors (e.g. R&D, recession, etc.) on the forecasts.

The rest of the paper is organized as follows. Section 3.2 introduces the baseline panel data

model as well as the oracle predictor and the feasible semiparametric Bayesian predictor.

Section 3.3 proposes the posterior sampling algorithms. Section 3.4 characterizes identi�-

cation conditions and large sample properties. Section 3.5 presents various extensions of

the baseline model. Section 3.6 compares the performance of the semiparametric Bayesian

predictor using simulated data, and Section 3.7 applies the proposed predictor to the con�-

dential microdata from the Kau�man Firm Survey and analyzes the empirical �ndings on

young �rm dynamics. Finally, Section 3.8 concludes and sketches future research directions.

21Robustness checks have been conducted with the more sophisticated slice-retrospective sampler (Dun-
son, 2009; Yau et al., 2011; Hastie et al., 2015), which does not involve hard truncation but is more compli-
cated to implement. Results from the slice-retrospective sampler are comparable with the simpler truncation
sampler.
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Notations, proofs, as well as additional algorithms and results can be found in the Appendix.

3.2 Model

3.2.1 Baseline Panel Data Model

The baseline dynamic panel data model is speci�ed in equation (3.1.1),

yit = βyi,t−1 + λi + uit, uit ∼ N
(
0, σ2

)
,

where i = 1, · · · , N , and t = 1, · · · , T + h. The yit is the observed individual outcome, such

as young �rm performance. The main goal of this paper is to estimate the model using

the sample from period 1 to period T and forecast the future distribution of yi,T+h. In the

remainder of the paper, I focus on the case where h = 1 (i.e. one-period-ahead forecasts) for

notation simplicity, but the discussion can be extended to multi-period-ahead forecasts via

either a direct or an iterated approach (Marcellino et al., 2006).

In this baseline model, there are only three terms on the right hand side. βyi,t−1 is the

AR(1) term on lagged outcome, which captures the persistence pattern. λi is the unobserved

individual heterogeneity modeled as individual-speci�c intercept, which implies that di�erent

�rms may have di�erent skill levels. uit is the shock with zero mean and variance σ2. To

emphasize the basic idea, the baseline model assumes cross-sectional homoskedasticity, which

means that the shock size σ2 is the same across all �rms.

As stressed in the motivation, the underlying skill distribution f is the key for better density

forecasts. There can be two kinds of assumptions imposed on f . One is the random e�ects

(RE) model, where the skill λi is independent of the initial performance yi0. The other is

the correlated random e�ects (CRE) model, where the skill λi and the initial performance

yi0 can be potentially correlated with each other. This paper considers both RE and CRE

models while focusing on the latter, as the CRE model is more realistic for young �rm

dynamics as well as many other empirical setups, and RE can be viewed as a special case
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of CRE with zero correlation.

3.2.2 Oracle and Feasible Predictors

This subsection formally de�nes the infeasible optimal oracle predictor and the feasible

semiparametric Bayesian predictor proposed in this paper. The kernel of both de�nitions

relies on the conditional predictor,

f condi,T+1

(
y|β, σ2, f, yi,0:T

)
=

ˆ
φ
(
y; βyiT + λi, σ

2
)
p
(
λi
∣∣β, σ2, f, yi,0:T

)
dλi, (3.2.1)

which provides the density forecasts of yi,T+1 conditional on the common parameters (β, σ
2),

underlying λi distribution (f), and �rm i's data (yi,0:T ). The term φ
(
y; βyiT + λi, σ

2
)
cap-

tures �rm i's shock uncertainty, and p
(
λi
∣∣β, σ2, f, yi,0:T

)
characterizes �rm i's skill uncer-

tainty. Note that once conditioned on f , �rms' performances are independent across i, and

only �rm i's data are needed for its density forecasts.

The infeasible oracle predictor is de�ned as if we knew all the elements that can be con-

sistently estimated. Speci�cally, the oracle knows the common parameters (β0, σ
2
0) and the

underlying λi distribution (f0), but not the skill of any individual �rm λi. Then, the oracle

predictor is formulated by plugging the true values
(
β0, σ

2
0, f0

)
into the conditional predictor

in equation (3.2.1),

foraclei,T+1 (y) = f condi,T+1

(
y|β0, σ

2
0, f0, yi,0:T

)
. (3.2.2)

In practice,
(
β, σ2, f

)
are all unknown but can be estimated via the Bayesian approach. First,

I adopt the conjugate normal-inverse-gamma prior for the common parameters
(
β, σ2

)
,

(
β, σ2

)
∼ N

(
mβ

0 ,Σ
β
0

)
IG
(
σ2; aσ

2

0 , bσ
2

0

)
,

in order to stay close to the linear Gaussian regression framework. To �exibly model the
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underlying skill distribution f , I resort to the nonparametric Bayesian prior, which is spec-

i�ed in detail in the next subsection. Then, I update the prior belief using the observations

from the whole panel and obtain the posterior. The semiparametric Bayesian predictor

is constructed by integrating the conditional predictor over the posterior distribution of(
β, σ2, f

)
,

fspi,T+1 (y) =

ˆ
f condi,T+1

(
y|β, σ2, f, yi,0:T

)
dΠ
(
β, σ2, f |y1:N,0:T

)
dβdσ2df. (3.2.3)

3.2.3 Nonparametric Bayesian Priors

A prior on the skill distribution f can be viewed as a distribution over a set of distributions.

Among other options, I choose mixture models for the nonparametric Bayesian prior, because

according to the literature, mixture models can e�ectively approximate a general class of

distributions (see Section 3.4) while being relatively easy to implement (see Section 3.3).

Moreover, the choice of the nonparametric Bayesian prior also depends on whether f is

characterized by a random e�ects model or a correlated random e�ects model. The correlated

random e�ects setup is more involved but can be crucial in some empirical studies, such as

the young �rm dynamics application in this paper.

DPM Prior for Random E�ects Model

In the random e�ects model, the skill λi is assumed to be independent of the initial per-

formance yi0, so the inference of the underlying skill distribution f can be considered as

an unconditional density estimation problem. The DPM model is a typical nonparametric

Bayesian prior designed for unconditional density estimation.

Dirichlet Process (DP) The key building block for the DPM model is the DP, which

casts a distribution over a set of discrete distributions. A DP has two parameters: the base

distribution G0 characterizing the center of the DP, and the scale parameter α representing
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the precision (inverse-variance) of the DP. Denote

G ∼ DP (α,G0) ,

if for any partition (A1, · · · , AK),

(G (A1) , · · · , G (AK)) ∼ Dir (αG0 (A1) , · · · , αG0 (AK)) .

Dir (·) stands for the Dirichlet distribution with probability distribution function (pdf) being

fDir (x1, · · · , xK ; η1, · · · , ηK) =
Γ
(∑K

k=1 ηk

)
∏K
k=1 Γ(ηk)

K∏
k=1

xηk−1
k ,

which is a multivariate generalization of the Beta distribution.

An alternative view of DP is given by the stick breaking process,

G =
∞∑
k=1

pk1 (θ = θk) ,

θk ∼ G0, k = 1, 2, · · · ,

pk =


ζ1, k = 1,∏k−1
j=1 (1− ζj) ζk, k = 2, 3, · · · ,

(3.2.4)

where ζk ∼ Beta (1, α) , k = 1, 2, · · · .

The stick breaking process distinguishes the roles of G0 and α in that the former governs

component value θk while the latter guides the choice of component probability pk. From

now on, for a concise exposition, I denote the pk part in equation (3.2.4) as

pk ∼ SB (1, α) , k = 1, 2, · · · ,

where the function name �SB� is the acronym for �stick breaking�, and the two arguments
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are passed from the parameters of the Beta distribution for �stick length� ζk.

Dirichlet Process Mixture (DPM) Prior By de�nition, a draw from DP is a discrete

distribution. In this sense, imposing a DP prior on the skill distribution f amounts to

restricting �rms' skills to some discrete levels, which may not be very appealing for young

�rm dynamics as well as some other empirical applications. A natural remedy is to assume λ

follows a continuous parametric distribution f (λ; θ) where θ are the parameters, and adopt

a DP prior for the distribution of θ. Then, the parameters θ are discrete while the skill λ

enjoys a continuous distribution. This additional layer of mixture lead to the idea of the

DPM model. For variables supported on the whole real line, like the skill λ here, a typical

choice of the kernel of f (λ; θ) is a normal distribution with θ =
(
µ, ω2

)
being the mean and

variance of the normal.

λi ∼ N
(
λi; µi, ω

2
i

)
, (3.2.5)(

µi, ω
2
i

) iid∼ G,

G ∼ DP (α,G0) .

Equivalently, with component label k, component probability pk, and component parameters(
µk, ω

2
k

)
, one draw from the DPM prior can be rewritten as an in�nite mixture of normals,

λi ∼
∞∑
k=1

pkN
(
λi; µk, ω

2
k

)
. (3.2.6)

Di�erent draws from the DPM prior are characterized by di�erent combinations of {pk, µk,

ω2
k}, and di�erent combinations of

{
pk, µk, ω

2
k

}
lead to di�erent shapes of f . That is why the

DPM prior is �exible enough to approximate many distributions. The component parameters(
µk, ω

2
k

)
are directly drawn from the DP base distribution G0, which is chosen to be the

conjugate normal-inverse-gamma distribution. The component probability pk is constructed

67



via the stick breaking process governed by the DP scale parameter α.

(
µk, ω

2
k

)
∼ G0,

pk ∼ SB (1, α) , k = 1, 2, · · · .

Comparing the above two sets of expressions in equations (3.2.5) and (3.2.6), the �rst set

links the �exible structure in λ to the �exible structure in
(
µ, ω2

)
, and serves as a more con-

venient setup for the theoretical derivation of asymptotic properties as in Subsection 3.4.3;

at the same time, the second set separates the channels regarding component parameters and

component probabilities, and therefore is more suitable for the numerical implementation

as in Section 3.3.

One virtue of the nonparametric Bayesian framework is to �exibly elicit the tuning parameter

from the data. Namely, we can set up an additional hyperprior for the DP scale parameter

α,

α ∼ Ga (α; aα0 , b
α
0 ) ,

and update it based on the observations. Roughly speaking, the DP scale parameter α is

linked to the number of unique components in the mixture density and thus determines

and re�ects the �exibility of the mixture density. Let K∗ denote the number of unique

components. As derived in Antoniak (1974), we have

E [K∗|α] ≈ α log

(
α+N

α

)
,

V ar [K∗|α] ≈ α
[
log

(
α+N

α

)
− 1

]
.

MGLRx Prior for Correlated Random E�ects Model

To accommodate the correlated random e�ects model where the skill λi can be poten-

tially correlated with the initial performance yi0, it is necessary to consider a nonparametric
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Bayesian prior that is compatible with the much harder conditional density estimation prob-

lem. One issue is associated with the uncountable collection of conditional densities, and

Pati et al. (2013) circumvent it by linking the properties of the conditional densities to the

corresponding ones of the joint densities. As suggested in Pati et al. (2013), I utilize the

Mixtures of Gaussian Linear Regressions (MGLRx) prior, a generalization of the Gaussian-

mixture prior for conditional density estimation. Conditioning on yi0,

λi|yi0 ∼ N
(
λi; µi [1, yi0]′ , ω2

i

)
, (3.2.7)(

µi, ω
2
i

)
≡ θi

iid∼ G (·; yi0) ,

G (·; yi0) =

∞∑
k=1

pk (yi0) δθk .

In the baseline setup, both individual heterogeneity λi and conditioning set yi0 are scalars, so

µi is a two-element row vector and ω2
i is a scalar. Similar to the DPM prior, the component

parameters can be directly drawn from the base distribution, which is again speci�ed as the

conjugate normal-inverse-gamma distribution,

θk ∼ G0, k = 1, 2, · · · . (3.2.8)

Now the mixture probabilities are characterized by the probit stick breaking process

pk (yi0) = Φ (ζk (yi0))
∏
j<k

(1− Φ (ζj (yi0))) , (3.2.9)

where stochastic function ζk is drawn from the Gaussian process ζk ∼ GP (0, Vk) for k =

1, 2, · · · .22

Expression (3.2.7) can be perceived as a conditional counterpart of expression (3.2.5) for the

purpose of theoretical derivation. The following expression (3.2.10) corresponds to expres-

22For a generic variable c which can be multi-dimensional, the Gaussian process ζ (c) ∼
GP (m (c) , V (c, c̃)) is de�ned as follows: for any �nite set of {c1, c2, · · · , cn}, [ζ (c1) , ζ (c2) , · · · , ζ (cn)]′
has a joint Gaussian distribution with the mean vector being [m (c1) ,m (c2) , · · · ,m (cn)]

′ and the i,j-th
entry of covariance matrix being V (ci, cj), i, j = 1, · · · , N .
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sion (3.2.6), which is in line with the numerical implementation in Section 3.3:

λi|yi0 ∼
∞∑
k=1

pk (yi0)N
(
µk [1, yi0]′ , ω2

k

)
, (3.2.10)

where the component parameters and component probabilities are speci�ed in equations

(3.2.8) and (3.2.9), respectively.

This setup has three key features: (1) component means are linear in yi0; (2) component

variances are independent of yi0; and (3) mixture probabilities are �exible functions of

yi0. This framework is general enough to accommodate many conditional distributions.

Intuitively, by Bayes' theorem,

f (λ|y0) =
f (λ, y0)

f (y0)
.

The joint distribution in the numerator can be approximated by a mixture of normals

f (λ, y0) ≈
∞∑
k=1

p̃kφ
(

[λ, y0]′ ; µ̃k, Ω̃k

)
,

where µ̃k is a two-element column vector, and Ω̃k is a 2 × 2 covariance matrix. Applying

Bayes' theorem again to the normal kernel for each component k,

φ
(

[λ, y0]′ ; µ̃k, Ω̃k

)
= φ

(
y0; µ̃k,2, Ω̃k,22

)
φ
(
λ; µk [1, y0]′ , ω2

k

)
,

where µk =
[
µ̃k,1 −

Ω̃k,12

Ω̃k,22
µ̃k,2,

Ω̃k,12

Ω̃k,22

]
, ω2

k = Ω̃k,11 −
(Ω̃k,12)

2

Ω̃k,22
. Combining all the steps above,

the conditional distribution can be approximated as

f (λ|y0) ≈
∞∑
k=1

p̃kφ
(
y0; µ̃k,2, Ω̃k,22

)
φ
(
λ; µk [1, y0]′ , ω2

k

)
f (y0)

=

∞∑
k=1

pk (y0)φ
(
λ; µk [1, y0]′ , ω2

k

)
,
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The last line is given by collecting marginals of yi0 into pk (y0) =
p̃kφ(y0; µ̃k,2,Ω̃k,22)

f(y0) . In

summary, the current setup is similar to approximating the conditional density via Bayes'

theorem, but does not explicitly model the distribution of the conditioning variable yi0, and

thus allows for more relaxed assumptions on it.

3.3 Numerical Implementation

In this section, I propose a posterior sampling procedure for the baseline panel data model

introduced in Subsection 3.2.1 together with the nonparametric Bayesian prior speci�ed in

Subsection 3.2.3 that enjoys desirable theoretical properties as discussed in Section 3.4.

Recall the baseline model,

yit = βyi,t−1 + λi + uit, uit ∼ N
(
0, σ2

)
,

and the conjugate normal-inverse-gamma prior for the common parameters
(
β, σ2

)
,

(
β, σ2

)
∼ N

(
mβ

0 , ψ
β
0σ

2
)
IG
(
σ2; aσ

2

0 , bσ
2

0

)
.

The hyperparameters are chosen in a relatively ignorant sense without inferring too much

from the data except aligning the scale according to the variance of the data (see Appendix

B.2.1 for details). The skill λi is drawn from the underlying skill distribution f , which

can be characterized by either the random e�ects model or the correlated random e�ects

model. Subsection 3.3.1 describes the posterior sampler for the former, and Subsection 3.3.2

delineates the posterior sampler for the latter.

3.3.1 Random E�ects Model

For the random e�ects model, I impose the Gaussian-mixture DPM prior on f . The posterior

sampling algorithm builds on the blocked Gibbs sampler proposed by Ishwaran and James

(2001, 2002). They truncate the number of components by a large K, and prove that as long
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as K is large enough, the truncated prior is �virtually indistinguishable� from the original

one. Once truncation is conducted, it is possible to augment the data with latent component

probabilities, which boosts numerical convergence and leads to faster code.

To check the robustness regarding the truncation, I also implement the more sophisticated

yet complicated slice-retrospective sampler (Dunson, 2009; Yau et al., 2011; Hastie et al.,

2015) which does not truncate the number of components at a predetermined K. The full

algorithm for the general model (3.5.1) can be found as Algorithm B.2.4 in the Appendix.

The estimates and forecasts for the two samplers are comparable, so I will only show the

results generated from the simpler truncation sampler in this paper.

Suppose the number of components is truncated at K. Then, the Gaussian-mixture DPM

prior can be expressed as23

λi ∼
K∑
k=1

pkN
(
µk, ω

2
k

)
, i = 1, · · · , N.

The parameters for each component can be viewed as directly drawn from the DP base

distribution G0. A typical choice of G0 is the normal-inverse-gamma prior, which respects

the conjugacy when the DPM kernel is also normal (see Appendix B.2.1 for details of hy-

perparameter choices).

G0

(
µk, ω

2
k

)
= N

(
µk; m

λ
0 , ψ

λ
0ω

2
k

)
IG
(
ω2
k; a

λ
0 , b

λ
0

)
.

The component probabilities are constructed via a truncated stick breaking process governed

23In this section, the nonparametric Bayesian priors are formulated as in equations (3.2.6) and (3.2.10).
Such expressions explicitly separate the channels regarding component parameters and component proba-
bilities, and hence facilitate the construction of the posterior samplers.
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by the DP scale parameter α.

pk =


ζ1, k = 1,∏k−1
j=1 (1− ζj) ζk, k = 2, · · · ,K − 1,

1−
∑K−1

j=1 pj , k = K,

where ζk ∼ Beta (1, α) , k = 1, · · · ,K − 1.

Note that due to the truncation approximation, the probability for component K is di�erent

from its in�nite mixture counterpart in equation (3.2.4). Resembling the in�nite mixture

case, I denote the above truncated sticking process as

pk ∼ TSB (1, α,K) , k = 1, · · ·K,

where �TSB� is for �truncated stick breaking�, the �rst two arguments are passed from the

parameters of the Beta distribution, and the last argument is the truncated number of

components.

Let γi be �rm i's component a�liation, which can take values {1, · · · ,K}, Jk be the set

of �rms in component k, i.e. Jk = {i : γi = k}, and nk be the number of individuals in

component k, i.e. nk = #Jk. Then, the (data-augmented) joint posterior for the model

parameters is given by

p
(
α,
{
pk, µk, ω

2
k

}
, {γi, λi} , β, σ2

∣∣ y1:N,0:T

)
(3.3.1)

=
∏
i,t

p
(
yit
∣∣λi, β, σ2, yi,t−1

)
·
∏
i

p
(
λi
∣∣µγi , ω2

γi

)
p (γi |{pk})

·
∏
k

p
(
µk, ω

2
k

)
p (pk|α) · p (α) · p

(
β, σ2

)
,

where k = 1, · · · ,K, i = 1, · · ·N , and t = 1, · · · , T .

The �rst block
∏
i,t p

(
yit
∣∣λi, β, σ2, yi,t−1

)
links observations to model parameters {λi} , β,
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and σ2. The second block
∏
i p
(
λi
∣∣µγi , ω2

γi

)
p (γi |{pk}) links the skill λi to the underlying

skill distribution f . The last block
∏
k p
(
µk, ω

2
k

)
p (pk|α) · p (α) · p

(
β, σ2

)
formulates the

prior belief on
(
β, σ2, f

)
.

The following Gibbs sampler cycles over the following blocks of parameters (in order): (1)

component probabilities, α, {pk}; (2) component parameters,
{
µk, ω

2
k

}
; (3) component mem-

berships, {γi}; (4) individual e�ects, {λi}; (5) common parameters, β, σ2. A sequence of

draws from this algorithm forms a Markov chain with the sampling distribution converging

to the posterior density.

Note that if the skill λi were known, only step (5) would be su�cient to recover the common

parameters. If the mixture structure of f were known (i.e.
(
pk, µk, ω

2
k

)
for all components

were known), steps (3)-(5) would be needed to �rst assign �rms to components and then

infer �rm i's skill based on the speci�c component that it has been assigned to. In reality,

neither skill λi nor its distribution f is known, so I incorporate two more steps (1)-(2) to

model the underlying skill distribution f .

Below, I present the formulas for the key nonparametric Bayesian steps, and leave the details

of standard posterior sampling procedures, such as drawing from a normal-inverse-gamma

distribution or a linear regression, to Appendix B.2.3.

Algorithm 3.3.1. (Baseline Model: Random E�ects)

For each iteration s = 1, · · · , nsim,

1. Component probabilities:

(a) Draw α(s) from a gamma distribution p
(
α(s)

∣∣ p(s−1)
K

)
:

α(s) ∼ Ga
(
α(s); aα0 +K − 1, bα0 − log p

(s−1)
K

)
.

(b) For k = 1, · · · ,K, draw p
(s)
k from the truncated stick breaking process
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p
({
p

(s)
k

} ∣∣∣α(s),
{
n

(s−1)
k

})
:

p
(s)
k ∼ TSB

1 + n
(s−1)
k , α(s) +

K∑
j=k+1

n
(s−1)
j , K

 , k = 1, · · ·K.

2. Component parameters: For k = 1, · · · ,K, draw
(
µ

(s)
k , ω

2(s)
k

)
from a normal-inverse-

gamma distribution p

(
µ

(s)
k , ω

2(s)
k

∣∣∣∣{λ(s−1)
i

}
i∈J(s−1)

k

)
.

3. Component memberships: For i = 1, · · ·N , draw γ
(s)
i from a multinomial distribution

p
({
γ

(s)
i

} ∣∣∣{p(s)
k , µ

(s)
k , ω

2(s)
k

}
, λ

(s−1)
i

)
:

γ
(s)
i = k, with probability pik, k = 1, · · · ,K,

pik ∝ p
(s)
k φ

(
λ

(s−1)
i ; µ

(s)
k , ω

2(s)
k

)
,

K∑
k=1

pik = 1.

4. Individual e�ects: For i = 1, · · · , N , draw λ
(s)
i from a normal distribution

p

(
λ

(s)
i

∣∣∣∣µ(s)

γ
(s)
i

, ω
2(s)

γ
(s)
i

, β(s−1), σ2(s−1), yi,0:T

)
.

5. Common parameters: Draw
(
β(s), σ2(s)

)
from a linear regression model

p
(
β(s), σ2(s)

∣∣∣{λ(s)
i

}
, y1:N,0:T

)
.

3.3.2 Correlated Random E�ects Model

To account for the conditional structure in the correlated random e�ects model, I implement

the MGLRx prior as speci�ed in Subsection 3.2.3, which can be viewed as the conditional

counterpart of the Gaussian-mixture prior. In the baseline setup, the conditioning set is a

singleton with yi0 being the only element.

The major computational di�erence from the random e�ects model in the previous subsec-

tion is that now the component probabilities become �exible functions of yi0. As suggested

in Pati et al. (2013), I adopt the following priors and auxiliary variables in order to take

advantage of conjugacy as much as possible. First, the covariance function for Gaussian
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process Vk (c, c̃) is speci�ed as

Vk (c, c̃) = exp
(
−Ak |c− c̃|2

)
,

where k = 1, 2, · · · . An exponential prior is imposed on Ak, i.e.

p (Ak) ∝ exp (−Ak) ,

so p (Ak) has full support on R+ and satis�es Pati et al. (2013) Remark 5.2.

Furthermore, it is helpful to introduce a set of auxiliary stochastic functions ξk (yi0), k =

1, 2, · · · , such that

ξk (yi0) ∼ N (ζk (yi0) , 1) ,

pk (yi0) = Prob (ξk (yi0) ≥ 0, and ξj (yi0) < 0 for all j < k) .

Note that the probit stick breaking process de�ned in equation (3.2.9) can be recovered by

marginalizing over ξk (yi0)'s.

Finally, I blend the MGLRx prior with Ishwaran and James (2001, 2002) truncation approx-

imation to simplify the numerical procedure while still retaining reliable results.

Denote N × 1 vectors

ζk = [ζk (y10) , ζk (y20) , · · · , ζk (yN0)]′ ,

ξk = [ξk (y10) , ξk (y20) , · · · , ξk (yN0)]′ ,

as well as an N ×N matrix V k with the ij-th element being

(V k)ij = exp
(
−Ak |yi0 − yj0|2

)
.
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The next algorithm extends Algorithm 3.3.1 to the correlated random e�ects scenario. Step

1 for component probabilities has been changed, while the rest of the steps are in line with

those in Algorithm 3.3.1.

Algorithm 3.3.2. (Baseline Model: Correlated Random E�ects)

For each iteration s = 1, · · · , nsim,

1. Component probabilities:

(a) For k = 1, · · · ,K − 1, draw A
(s)
k via the random-walk Metropolis-Hastings ap-

proach,

p
(
A

(s)
k

∣∣∣ ζ(s−1)
k , {yi0}

)
∝ exp

(
−A(s)

k

)
φ
(
ζ

(s−1)
k ; 0, exp

(
−A(s)

k |yi0 − yj0|
2
))

.

Then, calculate V
(s)
k such that

(
V

(s)
k

)
ij

= exp
(
−A(s)

k |yi0 − yj0|
2
)
.

(b) For k = 1, · · · ,K − 1, and i = 1, · · · , N , draw ξ
(s)
k (yi0) from a truncated normal

distribution p
(
ξ

(s)
k (yi0)

∣∣∣ζ(s−1)
k (yi0) , γ

(s−1)
i

)
:

ξ
(s)
k (yi0)


∝ N

(
ζ

(s−1)
k (yi0) , 1

)
1
(
ξ

(s)
k (yi0) < 0

)
, if k < γ

(s−1)
i ,

∝ N
(
ζ

(s−1)
k (yi0) , 1

)
1
(
ξ

(s)
k (yi0) ≥ 0

)
, if k = γ

(s−1)
i ,

∼ N
(
ζ

(s−1)
k (yi0) , 1

)
, if k > γ

(s−1)
i ,

.

(c) For k = 1, · · · ,K − 1, draw ζ
(s)
k from a multivariate normal distribution
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p
(
ζ

(s)
k

∣∣∣V (s)
k , ξ

(s)
k

)
:

ζ
(s)
k ∼ N

(
mζ
k, Σζ

k

)
,

Σζ
k =

[(
V

(s)
k

)−1
+ IN

]−1

,

mζ
k = Σζ

kξ
(s)
k .

(d) For k = 1, · · · ,K, and i = 1, · · · , N , the component probabilities p
(s)
k (yi0) are

fully determined by ζ
(s)
k :

p
(s)
k (yi0) =


Φ
(
ζ

(s)
1 (yi0)

)
, if k = 1,

Φ
(
ζ

(s)
k (yi0)

)∏
j<k

(
1− Φ

(
ζ

(s)
j (yi0)

))
, if k = 2, · · · ,K − 1,

1−
∑K−1

j=1 p
(s)
k (yi0) , if k = K.

2. Component parameters: For k = 1, · · · ,K, draw
(
µ

(s)
k , ω

2(s)
k

)
from a linear regression

model p

(
µ

(s)
k , ω

2(s)
k

∣∣∣∣{λ(s−1)
i , yi0

}
i∈J(s−1)

k

)
.

3. Component memberships: For i = 1, · · ·N , draw γ
(s)
i from a multinomial distribution

p
({
γ

(s)
i

} ∣∣∣{p(s)
k , µ

(s)
k , ω

2(s)
k

}
, λ

(s−1)
i , yi0

)
:

γ
(s)
i = k, with probability pik, k = 1, · · · ,K,

pik ∝ p
(s)
k (yi0)φ

(
λ

(s−1)
i ; µ

(s)
k [1, yi0]′ , ω

2(s)
k

)
,

K∑
k=1

pik = 1.

4. Individual e�ects: For i = 1, · · · , N , draw λ
(s)
i from a normal distribution

p

(
λ

(s)
i

∣∣∣∣µ(s)

γ
(s)
i

, ω
2(s)

γ
(s)
i

, β(s−1), σ2(s−1), yi,0:T

)
.

5. Common parameters: Draw
(
β(s), σ2(s)

)
from a linear regression model

p
(
β(s), σ2(s)

∣∣∣{λ(s)
i

}
, y1:N,0:T

)
.

Remark 3.3.3. With the above prior speci�cation, all steps enjoy closed-form conditional

posterior distributions except step 1-a for Ak, which does not exhibit a well-known density
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form. Hence, I resort to the random-walk Metropolis-Hastings (RWMH) algorithm to sample

Ak. In addition, I also incorporate an adaptive procedure based on Atchadé and Rosenthal

(2005) and Gri�n (2016), which adaptively adjusts the random walk step size and keep

acceptance rates around 30%. Intuitively, when the acceptance rate for the current iteration

is too high (low), the adaptive algorithm increases (decreases) the step size in the next

iteration, and thus potentially raises (lowers) the acceptance rate in the next round. The

change in step size decreases with the number of iterations completed, and the step size

converges to the optimal value. Please refer to the detailed description in Algorithm B.2.1

in the Appendix.

3.4 Theoretical Properties

3.4.1 Background

Generally speaking, Bayesian analysis starts with a prior belief and updates it with data.

It is desirable to ensure that the prior belief does not dominate the posterior inference

asymptotically. Namely, as more and more data have been observed, one would have weighed

more on the data and less on prior, and the e�ect from the prior would have ultimately been

washed out. For pure Bayesians who have di�erent prior beliefs, the asymptotic properties

make sure that they will eventually agree on similar predictive distributions (Blackwell and

Dubins, 1962; Diaconis and Freedman, 1986). For frequentists who perceive that there

is an unknown true data generating process, the asymptotic properties act as frequentist

justi�cation for the Bayesian analysis�as the sample size increases, the updated posterior

recovers the unknown truth. Moreover, the conditions for posterior consistency provide

guidance in choosing better-behaved priors.

In the context of in�nite dimensional analysis such as density estimation, posterior consis-

tency cannot be taken as given. On the one hand, Doob's theorem (Doob, 1949) indicates

that Bayesian posterior will achieve consistency almost surely under the prior measure. On

the other hand, the null set for the prior can be topologically large, and hence the true
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model can easily fall beyond the scope of the prior, especially in nonparametric analysis.

Freedman (1963) gives a simple counter-example in the nonparametric setup, and Freedman

(1965) further examines the combinations of the prior and the true parameters that yield a

consistent posterior, and proves that such combinations are meager in the joint space of the

prior and the true parameters. Therefore, for problems involving density estimation, it is

crucial to �nd reasonable conditions on the joint behavior of the prior and the true density

to establish the posterior consistency argument.

In this section, I show the asymptotic properties of the proposed semiparametric Bayesian

predictor when the cross-sectional dimension N tends to in�nity. Basically, under reason-

ably general conditions, the joint posterior of the common parameters and the individual

e�ect distribution concentrates in an arbitrarily small region around the true underlying

model, and the density forecasts concentrate in an arbitrarily small region around the or-

acle. Subsection 3.4.2 provides the conditions for identi�cation, which lays the foundation

for posterior consistent analysis. Subsection 3.4.3 proves the posterior consistency of the

estimator, which is an essential building block for bounding the discrepancy between the

proposed predictor and the oracle. Finally, Subsection 3.4.4 establishes the main Bayesian

asymptotic argument for density forecasts.

3.4.2 Identi�cation

To establish the posterior consistency argument, we �rst need to ensure identi�cation for

both the common parameters and the (conditional) distribution of individual e�ects. Here,

I present the identi�cation result in terms of the correlated random e�ects model, with the

random e�ects model being a special case. In the baseline setup, the identi�cation argu-

ment directly follows Assumptions 2.1-2.2 and Theorem 2.3 in Liu et al. (2016), which is in

turn based on early works, such as Arellano and Bover (1995) and Arellano and Bonhomme

(2012b), so below I only state the assumption and the proposition without extensive discus-

sion. Please refer to Subsection 3.5.3 for more general results addressing correlated random

coe�cients, cross-sectional heteroskedasticities, and unbalanced panels.
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Assumption 3.4.1. (Baseline Model: Identi�cation)

1. {yi0, λi} are i.i.d. across i.

2. uit is i.i.d. across i and t, and independent of λi.

3. The characteristic function for λi|yi0 is non-vanishing almost everywhere.

4. T ≥ 2.

The �rst condition characterizes the correlated random e�ects model, where there can be

potential correlation between skill λi and initial performance yi0. For the random e�ects

case, this condition can be altered to �λi is independent of yi0 and i.i.d. across i�. The second

condition ensures that skill is independent of shock, and that shock is independent across

�rms and times, so skill and shock are intrinsically di�erent and distinguishable. The third

condition facilitates the deconvolution between the signal (skill) and the noise (shock) via

Fourier transformation. The last condition guarantees that the time span is long enough

to distinguish persistence (βyi,t−1) and individual e�ects (λi). Then, the identi�cation

statement is established as follows.

Proposition 3.4.2. (Baseline Model: Identi�cation)

Under Assumption 3.4.1, the common parameters
(
β, σ2

)
and the conditional distribution

of individual e�ects f(λi|yi0) are all identi�ed.

3.4.3 Posterior Consistency

In this subsection, I establish the posterior consistency of the estimated common parameters(
β, σ2

)
and the estimated (conditional) distribution of individual e�ects f in the baseline

setup. Subsections 3.4.3 and 3.4.3 examine the random e�ects model and the correlated

random e�ects model, respectively. Further discussion of the general model can be found in

Subsection 3.5.4.
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Random E�ects Model

First, let us consider the random e�ects model with f being an unconditional distribution.

Let Θ = R× R+ be the space for the parametric component ϑ =
(
β, σ2

)
, and let F be the

set of densities on R (with respect to Lebesgue measure) as the space for the nonparametric

component f . The true data generating process is characterized by (ϑ0, f0). The posterior

consistency results are established with respect to the weak topology, which is generated by

a neighborhood basis constituted of the weak neighborhoods de�ned below.

De�nition 3.4.3. A weak neighborhood of f0 is de�ned as

Uε,Φ (f0) =

{
f ∈ F :

∣∣∣∣ˆ ϕjf −
ˆ
ϕjf0

∣∣∣∣ < ε

}

where ε > 0 and Φ = {ϕj}Jj=1 are bounded, continuous functions.

Let Π (·, ·) be a joint prior distribution on Θ × F with marginal priors being Πϑ (·) and

Πf (·). The corresponding joint posterior distribution is denoted as Π (·, ·|y1:N,0:T ) with the

marginal posteriors de�ned similarly as above.

De�nition 3.4.4. The posterior achieves weak consistency at (ϑ0, f0) if for any Uε,Φ (f0)

and any δ > 0, as N →∞,

Π ((ϑ, f) : ‖ϑ− ϑ0‖ < δ, f ∈ Uε,Φ (f0)| y1:N,0:T )→ 1, a.s.

As stated in the original Schwartz (1965) theorem (Lemma 3.4.6), weak consistency is closely

related to the Kullback-Leibler (KL) divergence. For any two distributions f0 and f , the

KL divergence of f from f0 is de�ned as

dKL (f0, f) =

ˆ
f0 log

f0

f
.

The KL property is characterized based on KL divergence as follows.
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De�nition 3.4.5. If for all ε > 0, Πf (f ∈ F : dKL (f0, f) < ε) > 0, we say f0 is in the KL

support of Πf , or f0 ∈ KL
(
Πf
)
.

Preliminary: Schwartz (1965) Theorem The following lemma restates the Schwartz

(1965) theorem of weak posterior consistency. It is established in a simpler scenario where

we observe λi (not yi) and wants to infer its distribution.

Lemma 3.4.6. (Schwartz, 1965)

The posterior is weakly consistent at f0 under two su�cient conditions:

1. Kullback-Leibler property: f0 is in the KL support of Π, or f0 ∈ KL (Π).

2. Uniformly exponentially consistent tests: For any U = Uε,Φ (f0), there exists γ > 0

and a sequence of tests ϕN (λ1, · · · , λN ) testing24

H0 : f = f0 against H1 : f ∈ U c

such that25

Ef0 (ϕN ) < exp (−γN) and sup
f∈Uc

Ef (1−ϕN ) < exp (−γN) (3.4.1)

for all N > N0, where N0 is a positive integer.

The following sketch of proof gives the intuition behind the two su�cient conditions. Note

that the posterior probability of U c is given by

Π (U c|λ1:N ) =

´
Uc
∏N
i=1

f(λi)
f0(λi)

dΠ (f)´
F
∏N
i=1

f(λi)
f0(λi)

dΠ (f)
≡ numerN

denomN
(3.4.2)

≤ ϕN +
(1−ϕN ) numerN

denomN
,

and we want it to be arbitrarily small.

24ϕN = 0 favors the null hypothesis H0, whereas ϕN = 1 favors the alternative hypothesis H1.
25Ef0 (ϕN ) and supf∈Uc Ef (1−ϕN ) can be interpreted as type-I and type-II errors, respectively.
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First, based on the Borel-Cantelli lemma, the condition on the type-I error suggests that

the �rst term ϕN → 0 almost surely.

Second, for the numerator of the second term, the condition on the type-II error implies

that

Ef0 ((1−ϕN ) numerN ) =

ˆ
(1−ϕN ) ·

ˆ
Uc

N∏
i=1

f (λi)

f0 (λi)
dΠ (f) ·

N∏
i=1

f0 (λi) dλi

=

ˆ
Uc

ˆ
(1−ϕN )

N∏
i=1

f (λi) dλi · dΠ (f)

≤ sup
f∈Uc

Ef ((1−ϕN ))

< exp (−γN) .

Hence, exp
(
γN
2

)
(1−ϕN ) numerN → 0 almost surely.

Third, for the denominator of the second term, as N → 0,

denomN =

ˆ
F

exp

(
−

N∑
i=1

log
f0 (λi)

f (λi)

)
dΠ (f)→

ˆ
F

exp (−N · dKL (f0, f)) dΠ (f) .

Combine it with the KL property f0 ∈ KL (Π), then

lim inf
N→∞

eγ̃N · denomN =∞, for all γ̃ > 0.

Hence, exp
(
γN
4

)
denomN →∞ almost surely.

Therefore, the posterior probability of U c

Π (U c|λ1:N )→ 0, a.s.

Schwartz (1965) Theorem guarantees posterior consistency in a general density estimation

context. However, as mentioned in the introduction, there are a number of challenges in
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adapting these two conditions even to the baseline setup with random e�ects. The �rst chal-

lenge is that, because we observe yit rather than λi, we need to disentangle the uncertainties

generated from unknown cross-sectional heterogeneities λi's and from independent shocks

uit's. Second is to incorporate unknown shock size σ2. Third is to take care of the lagged

dependent variables as covariates.

In all these scenarios, note that:

(1) The KL requirement ensures that the prior puts positive weight on the true distribution.

To satisfy the KL requirement, we need some joint assumptions on the true distribution f0

and the prior Π. Compared to general nonparametric Bayesian modeling, the DPM structure

(and the MGLRx structure for the correlated random e�ects model) o�ers more regularities

on the prior Π and thus weaker assumptions on the true distribution f0 (see Lemma 3.4.8

and Assumption 3.4.14).

(2) Uniformly exponentially consistent tests guarantee that the data is informative enough

to di�erentiate the true distribution from the alternatives. These tests are not speci�c to

the DPM setup but closely related to the de�nition of the weak neighborhood, hence linked

to the identi�cation argument as well.

In the following discussion, I will tackle the aforementioned three challenges one by one.

Disentangle Skills and Shocks Now let us consider a simple cross-sectional case where

β = 0, σ2 = 1, and T = 1. Since there is only one period, the t subscript is omitted.

yi = λi + ui, ui ∼ N (0, 1) , (3.4.3)

The only twist here is to distinguish the uncertainties originating from unknown individual

e�ects λi's and from independent shocks ui's. Note that unlike previous studies that estimate

distributions of observables,26 here the target λi intertwines with ui and cannot be easily

26Some studies (Amewou-Atisso et al., 2003; Tokdar, 2006) estimate distributions of quantities that can
be inferred from observables given common coe�cients. For example, in the linear regression problems with
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inferred from the observed yi.

Proposition 3.4.7. (Baseline Model: Skills vs Shocks)

In setup (3.4.3) with the random e�ects version of Assumption 3.4.1 (1-3), if f0 ∈ KL
(
Πf
)
,

the posterior is weakly consistent at f0.

At the �rst glance, Proposition 3.4.7 looks similar to the classical Schwartz (1965) theorem.

However, here both the KL requirement and the uniformly exponentially consistent tests

are constructed on the observed yi whereas the weak consistency result is established on the

unobserved λi. There is a gap between the two, as previously mentioned.

The KL requirement is achieved through the convexity of the KL divergence. In terms of

the tests, intuitively, if we obtain enough data and know the distribution of the shocks, it is

possible to separate the signal λi from the noise ui even in the cross-sectional setting. The

exact argument is delivered via proof by contradiction that utilizes characteristic functions

to uncouple the e�ects from λi and ui. Please refer to Appendix B.3.1 for the detailed proof.

Previous studies have proposed many sets of conditions to ensure that f0 is in the KL

support of Πf . Based on Wu and Ghosal (2008) Theorem 5, the next lemma gives one set

of conditions for f0 together with the Gaussian-mixture DPM prior,27

λi ∼ N
(
µi, ω

2
i

)
,(

µi, ω
2
i

) iid∼ G,

G ∼ DP (α,G0) .

Lemma 3.4.8. (Wu and Ghosal, 2008: Gaussian)

If f0 and its prior G0 satisfy the following conditions:

an unknown error distribution, i.e. yi = β′xi+ui, conditional on the regression coe�cients β, ui = yi−β′xi
is inferable from the data.

27In this section, the nonparametric Bayesian priors are in the form of equations (3.2.5) and (3.2.7), which
are more suitable for the posterior consistency analysis.
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1. f0 (λ) is a continuous density on R.

2. For some 0 < M <∞, 0 < f0 (λ) ≤M for all λ.

3.
∣∣´ f0 (λ) log f0 (λ) dλ

∣∣ <∞.

4. For some δ > 0,
´
f0 (λ) log f0(λ)

ϕδ(λ)dλ <∞, where ϕδ (λ) = inf‖λ′−λ‖<δ f0 (λ′).

5. For some η > 0,
´
|λ|2(1+η) f0 (λ) dλ <∞.

6. G0 has full support on R×R+.

then f0 ∈ KL
(
Πf
)
.

Conditions 1-5 ensure that the true distribution f0 is well-behaved, and condition 6 further

guarantees that the DPM prior is general enough to contain the true distribution.

If the true distribution f0 has heavy tails, we can resort to Lemma B.5.1 following Tokdar

(2006) Theorem 3.3. Lemma B.5.1 ensures the posterior consistency of Cauchy f0 when G0

is the standard conjugate normal-inverse-gamma distribution.

Unknown Shock Size Most of the time in practice, we do not know the shock variances

in advance. In this part, I consider cross-sectionally homoskedastic shocks with unknown

variance as in the baseline model. The cross-sectional heteroskedasticity scenario can be

found in Subsection 3.5.4. Now consider a panel setting (T > 1)28 with β = 0:

yit = λi + uit, uit ∼ N
(
0, σ2

)
, (3.4.4)

where σ2 is unknown with the true value being σ2
0. The joint posterior consistency for(

σ2, f
)
is stated in the following proposition.

Proposition 3.4.9. (Baseline Model: Unknown Shock Size)

In setup (3.4.4) with the random e�ects version of Assumption 3.4.1, if f0 ∈ KL
(
Πf
)
and

σ2
0 ∈ supp

(
Πσ2

)
, the posterior is weakly consistent at

(
σ2

0, f0

)
.

28Note that when λi and uit are both Gaussian with unknown variances, we cannot separately identify
the variances in the cross-sectional setting (T = 1). This is no longer a problem if either of the distributions
is non-Gaussian or if we work with panel data.
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Paralleling the previous subsection, we can refer to Lemma 3.4.8 for conditions that ensure

f0 ∈ KL
(
Πf
)
.

Appendix B.3.1 provides the complete proof. The KL requirement is satis�ed based on the

dominated convergence theorem. The intuition behind the tests is to split the alternative

region of
(
σ2, f

)
into two parts. First, when a candidate σ2 is far from the true σ2

0, we can

employ orthogonal forward di�erencing to get rid of λi (see Appendix B.4.1), and then use

the residues to construct a sequence of tests which distinguish Gaussian distributions with

di�erent variances. Second, when σ2 is close to σ2
0 but f is far from f0, we need to make sure

that the deviation generated from σ2 is small enough so that it cannot o�set the di�erence

in f .

Lagged Dependent Variables Lagged dependent variables are essential for predictions,

as persistence is usually an important feature of economic data. Now let us add a one-period

lag of yit to the right hand side of equation (3.5.4), which gives exactly the baseline model

(3.1.1):

yit = βyi,t−1 + λi + uit, uit ∼ N
(
0, σ2

)
,

where ϑ =
(
β, σ2

)
are unknown with the true value being ϑ0 =

(
β0, σ

2
0

)
. The following

assumption ensures the existence of the required tests in the presence of a linear regressor.

Assumption 3.4.10. (Initial Conditions)

yi0 is compactly supported.

Proposition 3.4.11. (Baseline Model: Random E�ects)

In the baseline setup (3.1.1) with random e�ects, suppose we have:

1. The random e�ects version of Assumption 3.4.1.

2. yi0 satis�es Assumption 3.4.10.

3. f and G satisfy Lemma 3.4.8.

4. ϑ0 ∈ supp
(
Πϑ
)
.
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Then, the posterior is weakly consistent at (ϑ0, f0).

The proof can be found in Appendix B.3.1. The KL requirement is established as in pre-

vious cases. The uniformly exponentially consistent tests are constructed by dividing the

alternative region into two parts: the tests on β and σ2 are achieved via orthogonal forward

di�erencing followed by a linear regression, while the tests on f are crafted to address the

non-i.i.d. observables due to the AR(1) term.

Once again, we can refer to Tokdar (2006) Theorem 3.3 in order to account for heavy tails in

the true unknown distributions. For further details, please see Proposition B.5.3 regarding

the general model (3.5.1).

Correlated Random E�ects Model

In the young �rm example, the correlated random e�ects model can be interpreted as that

a young �rm's initial performance may re�ect its underlying skill, which is a more sensible

assumption.

For the correlated random e�ects model, the de�nitions and notations are parallel with

the random e�ects ones with slight adjustment considering that now f is a conditional

distribution. In the baseline setup, the conditioning set ci = yi0. As in Pati et al. (2013),

it is helpful to link the properties of the conditional densities to the corresponding ones of

the joint densities, which circumvents the di�culty associated with an uncountable set of

conditional densities. Let C be a compact subset of R for the conditioning variable ci = yi0,

H be the set of joint densities on R× C (with respect to Lebesgue measure), and F be the

set of conditional densities on R given conditioning variable c ∈ C.

Let h, f , and q be the joint, conditional, and marginal densities, respectively. Denote

h0 (λ, c) = f0 (λ|c) · q0 (c) , h (λ, c) = f (λ|c) · q0 (c) .
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where h, h0 ∈ H, and f, f0 ∈ F . h0, f0, and q0 are the true densities. Note that h and h0

share the same marginal density q0, but di�erent conditional densities f and f0. This setup

does not require estimating q0 and thus relaxes the assumption on the initial conditions.

The de�nitions of weak neighborhood and KL property rely on the joint density charac-

terization. Note that in both de�nitions, the conditioning variable c is integrated out with

respect to the true q0.

De�nition 3.4.12. A weak neighborhood of f0 is de�ned as

Uε,Φ (f0) =

{
f ∈ F :

∣∣∣∣ˆ ϕjh−
ˆ
ϕjh0

∣∣∣∣ < ε

}

where ε > 0 and Φ = {ϕj}Jj=1 are bounded, continuous functions of (λ, c).

De�nition 3.4.13. If for all ε > 0, Πf (f ∈ F : dKL (h0, h) < ε) > 0, we say f0 is in the

KL support of Πf , or f0 ∈ KL
(
Πf
)
.

As described in Subsection 3.2.3, the MGLRx prior is a conditional version of the nonpara-

metric Bayesian prior. It can be speci�ed as follows, with the conditioning set simply being

a scalar, yi0.

λi|yi0 ∼ N
(
λi; µi [1, yi0]′ , ω2

i

)
,(

µi, ω
2
i

)
≡ θi

iid∼ G (·; yi0) ,

G (·; yi0) =
∞∑
k=1

pk (yi0) δθk .

where for components k = 1, 2, · · ·

θk ∼ G0,

pk (yi0) = Φ (ζk (yi0))
∏
j<k

(1− Φ (ζj (yi0))) ,

ζk ∼ GP (0, Vk) .
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The induced prior on the mixing measures G (θi; yi0) is denoted as Π̃.

Assumption 3.4.14. (Baseline Model: Correlated Random E�ects)

1. Conditions on f0:

(a) For some 0 < M <∞, 0 < f0 (λ|y0) ≤M for all (λ, y0).

(b)
∣∣´ [´ f0 (λ|y0) log f0 (λ|y0) dλ

]
q0 (y0) dy0

∣∣ <∞.

(c)
∣∣∣´ [´ f0 (λ|y0) log f0(λ|y0)

ϕδ(λ|y0)dλ
]
q0 (y0) dy0

∣∣∣ <∞,

where ϕδ (λ|y0) = inf |λ′−λ|<δ f0 (λ|y0), for some δ > 0.

(d) For some η > 0,
´ [´

|λ|2(1+η) f0 (λ|y0) dλ
]
q0 (y0) dy0 <∞.

(e) f0 (·|·) is jointly continuous in (λ, y0).

(f) q0 (y0) > 0 for all y0 ∈ C.

2. Conditions on Π̃:

(a) For k = 1, 2, · · · , Vk is chosen such that ζk ∼ GP (0, Vk) has continuous path

realizations.

(b) For k = 1, 2, · · · , for any continuous g (·), and any ε > 0, Π̃(supy0∈C |ζk (y0) −

g (y0) | < ε) > 0.

(c) G0 is absolutely continuous.

These conditions follow Assumptions A1-A5 and S1-S3 in Pati et al. (2013) for posterior con-

sistency under the conditional density topology. The �rst group of conditions can be viewed

as conditional density analogs of the conditions in Lemma 3.4.8. These requirements are

satis�ed for �exible classes of models, i.e. generalized stick-breaking process mixtures with

the stick-breaking lengths being monotone di�erentiable functions of a continuous stochastic

process.

Proposition 3.4.15. (Baseline Model: Correlated Random E�ects)

In the baseline setup (3.1.1) with correlated random e�ects, suppose we have:

1. Assumption 3.4.1.

2. yi0 satis�es Assumption 3.4.10.
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3. f and G satisfy Assumption 3.4.14.

4. ϑ0 ∈ supp
(
Πϑ
)
.

Then, the posterior is weakly consistent at (ϑ0, f0).

The proof in Appendix B.3.2 is similar to the random e�ects case except that now the KL

property and the uniformly exponentially consistent tests are on the joint distribution of

(λi, yi0).

3.4.4 Density forecasts

Once the posterior consistency results are obtained, we can bound the discrepancy between

the proposed predictor and the oracle by the estimation uncertainties in β, σ2, and f , and

then show the asymptotical convergence of the density forecasts to the oracle forecast (see

Appendix B.3.3 for the detailed proof).

Proposition 3.4.16. (Baseline Model: Density Forecasts)

In the baseline setup (3.1.1), suppose we have:

1. For the random e�ects model, conditions in Proposition 3.4.11.

2. For the correlated random e�ects model,

(a) conditions in Proposition 3.4.15,

(b) q0 (y0) is continuous, and there exists q > 0 such that |q0 (y0)| > q for all y0 ∈ C.

Then, the density forecasts converge to the oracle predictor in the following two ways:

1. Convergence of f condi,T+1 in weak topology: for any i and any Uε,Φ

(
foraclei,T+1

)
, as N →∞,

P
(
f condi,T+1 ∈ Uε,Φ

(
foraclei,T+1

)∣∣∣ y1:N,0:T

)
→ 1, a.s.

2. �Pointwise� convergence of f spi,T+1: for any i, any y, and any ε > 0, as N →∞,

∣∣∣fspi,T+1 (y)− foraclei,T+1 (y)
∣∣∣ < ε, a.s.
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The �rst result focuses on the conditional predictor (3.2.1) and is more coherent with the

weak topology for posterior consistency in the previous subsection. The second result is

established for the semiparametric Bayesian predictor (3.2.3), which is the posterior mean of

the conditional predictor. In addition, the asymptotic convergence of aggregate-level density

forecasts can be derived by summing individual-speci�c forecasts over di�erent subcategories.

3.5 Extensions

3.5.1 General Panel Data Model

The general panel data model with correlated random coe�cients can be speci�ed as

yit = β′xi,t−1 + λ′iwi,t−1 + uit, uit ∼ N
(
0, σ2

i

)
(3.5.1)

where i = 1, · · · , N , and t = 1, · · · , T + 1. Similar to the baseline setup in Subsection

3.2.1, the yit is the observed individual outcomes, and I am interested in providing density

forecasts of yi,T+1 for any individual i.

The wi,t−1 is a vector of observed covariates that have heterogeneous e�ects on the outcomes,

with λi being the unobserved individual heterogeneities. wi,t−1 is strictly exogenous and

captures the key sources of individual heterogeneities. The simplest choice would be wi,t−1 =

1 where λi can be interpreted as an individual-speci�c intercept, i.e. �rm i's skill level in

the baseline model (3.1.1). Moreover, it is also helpful to include other key covariates of

interest whose e�ects are more diverse cross-sectionally, such as observables that characterize

innovation activities. Furthermore, the current setup can also take into account deterministic

or stochastic aggregate e�ects, such as time dummies for the recent recession. For notation

clarity, I decompose wi,t−1 =
(
wA′t−1, w

I′
i,t−1

)′
, where wAt−1 stands for a vector of aggregate

variables, and wIi,t−1 is composed of individual-speci�c variables. In the simple individual-

speci�c-intercept case, we have wAt−1 = 1 for all t, and the corresponding scalar λi's give the

values for the heterogeneous intercepts.
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The xi,t−1 is a vector of observed covariates that have homogeneous e�ects on the outcomes,

and β is the corresponding vector of common parameters. xi,t−1 can be either strictly

exogenous or predetermined, which can be further denoted as xi,t−1 =
(
xO′i,t−1, x

P ′
i,t−1

)′
, where

xOi,t−1 is the strictly exogenous part while x
P
i,t−1 is the predetermined part. The one-period-

lagged outcome yi,t−1 is a typical candidate for xPi,t−1 in the dynamic panel data literature,

which captures the persistence structure. In addition, both xOi,t−1 and x
P
i,t−1 can incorporate

other general control variables, such as �rm characters as well as local and national economic

conditions. The notation xP∗i,t−1 indicates the subgroup of xPi,t−1 excluding lagged outcomes.

Here, the distinction between homogeneous e�ects (β′xi,t−1) versus heterogeneous e�ects

(λ′iwi,t−1) allows us to enjoy the best of both worlds�revealing the latent nonstandard

structures for the key e�ects while avoiding the curse-of-dimensionality problem, which

shares the same idea as Burda et al. (2012).

The uit is an individual-time-speci�c shock characterized by zero mean and cross-sectional

heteroskedasticity, σ2
i . The normality assumption is not very restrictive due to the �exibility

in σ2
i distribution. Table 1 in Fernandez and Steel (2000) demonstrates that scale mixture of

normals can capture �a rich class of continuous, symmetric, and unimodal distributions� (p.

81), including Cauchy, Laplace, Logistic, etc. More rigorously, as proved by Kelker (1970),

this class is composed of marginal distributions of higher-dimensional spherical distributions.

In the correlated random coe�cients model, λi can depend on some of the covariates and

initial conditions. Speci�cally, I de�ne the conditioning set at period t to be

ci,t−1 =
{
yi,0:t−1, x

P∗
i,0:t−1, x

O
i,0:T , wi,0:T

}
(3.5.2)

and allow the distribution of λi to be a function of ci0. Note that as lagged yit and x
P∗
i,t−1

are predetermined variables, the sequences of xP∗i,t−1 in the conditioning set ci,t−1 start from

period 0 to period t − 1; while xOi,t−1 and wi,t−1 are both strictly exogenous, so the condi-

tioning set ci,t−1 contains their entire sequences. For future use, I also de�ne the part of
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ci,t−1 that is composed of individual-speci�c variables as

c∗i,t−1 =
{
yi,0:t−1, x

P∗
i,0:t−1, x

O
i,0:T , w

I
i,0:T

}
.

3.5.2 Posterior Samplers

Random Coe�cients Model

Compared to Subsection 3.3.1 for the baseline setup, the major change here is to account for

cross-sectional heteroskedasticity via another �exible prior on the distribution of σ2
i . De�ne

li = log
(
σ2
i − σ2

)
where σ2 is some small positive number. Then, the support of fσ

2

0 is

bounded below by σ2 and thus satis�es the requirement for the asymptotic convergence of

the density forecasts in Proposition 3.5.12.29 The log transformation ensures an unbounded

support for li so that Algorithm 3.3.1 with Gaussian-mixture DPM prior can be directly

employed. Beyond cross-sectional heteroskedasticity, there is a minor alternation due to

the (potentially) multivariate λi. In this scenario, the component mean µk is a vector and

component variance Ωk is a positive de�nite matrix.

The following algorithm parallels Algorithm 3.3.1. Both algorithms are based on truncation

approximation, which is relatively easy to implement and enjoys good mixing properties.

For the slice-retrospective sampler, please refer to Algorithm B.2.4 in the Appendix.

Denote D = {{Di} , DA} as a shorthand for the data sample used for estimation, where

Di = c∗i,T contains the observed data for individual i, and DA = wA0:T is composed of the

aggregate regressors with heterogeneous e�ects. Note that because λi and σ
2
i are independent

with respect to each other, their mixture structures are completely separate. As their

mixture structures are almost identical, I de�ne a generic variable z which can represent

either λ or l, and then include z as a superscript to indicate whether a speci�c parameter

29Note that only Proposition 3.5.12 for density forecasts needs a positive lower bound on the distribution
of σ2

i . The propositions for identi�cation and posterior consistency of the estimates are not restricted to but
can accommodate such requirement.
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belongs to the λ part or the l part. Most of the conditional posteriors are either similar

to Algorithm B.2.4 or standard for posterior sampling (see Appendix B.2.3), except for the

additional term
(
σ2
i − σ2

)−1
in step 4-b, which takes care of the change of variables from

li = log
(
σ2
i − σ2

)
to σ2

i .

Algorithm 3.5.1. (General Model: Random Coe�cients)

For each iteration s = 1, · · · , nsim,

1. Component probabilities: For z = λ, l,

(a) Draw αz(s) from a gamma distribution p
(
αz(s)

∣∣ pz(s−1)
Kz

)
.

(b) For kz = 1, · · · ,Kz, draw p
z(s)
kz from the truncated stick breaking process

p
({
p
z(s)
kz

} ∣∣∣αz(s),{nz(s−1)
kz

})
.

2. Component parameters: For z = λ, l, for kz = 1, · · · ,Kz, draw
(
µ
z(s)
kz ,Ω

z(s)
kz

)
from a

multivariate-normal-inverse-Wishart distribution (or a normal-inverse-gamma distri-

bution if z is a scalar) p

(
µ
z(s)
kz ,Ω

z(s)
kz

∣∣∣∣{z(s−1)
i

}
i∈Jz(s−1)

kz

)
.

3. Component memberships: For z = λ, l, for i = 1, · · ·N , draw γ
z(s)
i from a multinomial

distribution p
({
γ
z(s)
i

} ∣∣∣{pz(s)kz , µ
z(s)
kz ,Ω

z(s)
kz

}
, z

(s−1)
i

)
.

4. Individual-speci�c parameters:

(a) For i = 1, · · · , N , draw λ
(s)
i from a multivariate-normal distribution (or a normal

distribution if λ is a scalar) p
(
λ

(s)
i

∣∣∣µλ(s)

γλi
,Ω

λ(s)

γλi
,
(
σ2
i

)(s−1)
, β(s−1), Di, DA

)
.

(b) For i = 1, · · · , N , draw
(
σ2
i

)(s)
via the random-walk Metropolis-Hastings approach

p
((
σ2
i

)(s) ∣∣∣µl(s)
γli
,Ω

l(s)

γli
, λ

(s)
i , β(s−1), Di, DA

)
∝
((
σ2
i

)(s) − σ2
)−1

φ
(

log
((
σ2
i

)(s) − σ2
)

; µ
l(s)

γli
,Ω

l(s)

γli

)
·
T∏
t=1

φ
(
yit; λ

(s)′
i wi,t−1 + β(s−1)′xi,t−1,

(
σ2
i

)(s))
.

5. Common parameters: Draw β(s) from a linear regression model

p
(
β(s)

∣∣∣{λ(s)
i ,
(
σ2
i

)(s)}
, D

)
.
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Correlated Random Coe�cients Model

Regarding conditional density estimation, I impose the MGLRx prior on both λi and li.

Compared to Algorithm 3.3.2 for the baseline setup, the algorithm here makes the following

changes: (1) generic variable z = λ, l, (2)
(
σ2
i − σ2

)−1
in step 4-b, (3) vector λi, and (4)

vector conditioning set ci0. The conditioning set ci0 is characterized by equation (3.5.2) for

balanced panels or equation (3.5.3) for unbalanced panels. In practice, it is more compu-

tationally e�cient to incorporate a subset of ci0 or a function of ci0 guided by the speci�c

problem at hand.

Algorithm 3.5.2. (General Model: Correlated Random Coe�cients)

For each iteration s = 1, · · · , nsim,

1. Component probabilities: For z = λ, l,

(a) For kz = 1, · · · ,Kz − 1, draw A
z(s)
kz via the random-walk Metropolis-Hastings

approach, p
(
A
z(s)
kz

∣∣∣ ζz(s−1)
kz , {ci0}

)
and then calculate V

(s)
k .

(b) For kz = 1, · · · ,Kz − 1, and i = 1, · · · , N , draw ξ
z(s)
kz (ci0) from a truncated

normal distribution p
(
ξ
z(s)
kz (ci0)

∣∣∣ζz(s−1)
kz (ci0) , γ

z(s−1)
i

)
.

(c) For kz = 1, · · · ,Kz − 1, ζ
z(s)
kz from a multivariate normal distribution

p
(
ζ
z(s)
kz

∣∣∣V z(s)
kz , ξ

z(s)
kz

)
.

(d) For kz = 1, · · · ,Kz − 1, and i = 1, · · · , N , the component probabilities p
z(s)
kz (ci0)

are fully determined by ζ
z(s)
kz .

2. Component parameters: For z = λ, l, for kz = 1, · · · ,Kz,

(a) Draw µ
z(s)
kz from a matricvariate-normal distribution (or a multivariate-normal

distribution if z is a scalar) p

(
µ
z(s)
kz

∣∣∣∣Ωz(s−1)
kz ,

{
z

(s−1)
i , ci0

}
i∈Jz(s−1)

kz

)
.

(b) Draw Ω
z(s)
kz from an inverse-Wishart distribution (or an inverse-gamma distribu-

tion if z is a scalar) p

(
Ω
z(s)
kz

∣∣∣∣µz(s)kz ,
{
z

(s−1)
i , ci0

}
i∈Jz(s−1)

kz

)
.

3. Component memberships: For z = λ, l, for i = 1, · · ·N , draw γ
z(s)
i from a multinomial

distribution p
({
γ
z(s)
i

} ∣∣∣{pz(s)kz , µ
z(s)
kz ,Ω

z(s)
kz

}
, z

(s−1)
i , ci0

)
.
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4. Individual-speci�c parameters:

(a) For i = 1, · · · , N , draw λ
(s)
i from a multivariate-normal distribution (or a normal

distribution if λ is a scalar) p
(
λ

(s)
i

∣∣∣µλ(s)

γλi
,Ω

λ(s)

γλi
,
(
σ2
i

)(s−1)
, β(s−1), Di, DA

)
.

(b) For i = 1, · · · , N , draw
(
σ2
i

)(s)
via the random-walk Metropolis-Hastings approach

p
((
σ2
i

)(s) ∣∣∣µl(s)
γli
,Ω

l(s)

γli
, λ

(s)
i , β(s−1), Di, DA

)
.

5. Common parameters: Draw β(s) from a linear regression model

p
(
β(s)

∣∣∣{λ(s)
i ,
(
σ2
i

)(s)}
, D

)
.

3.5.3 Identi�cation

Assumption 3.5.3. (General Model: Setup)

1. Conditional on wA0:T ,
{
c∗i0, λi, σ

2
i

}
are i.i.d. across i.

2. For all t, conditional on {yit, ci,t−1}, xP∗it is independent of
{
λi, σ

2
i

}
and β.

3.
{
xOi,0:T , wi,0:T

}
are independent of

{
λi, σ

2
i

}
and β.

4. Let uit = σivit. vit is i.i.d. across i and t and independent of ci,t−1.

Remark 3.5.4. (i) For the random e�ects case, the �rst condition can be altered to �
{
λi, σ

2
i

}
are independent of ci0 and i.i.d. across i�.

(ii) For the distribution of the shock uit, a general class of shock distributions can be ac-

commodated by the scale mixture of normals generated from the �exible distribution of σ2
i

(Kelker, 1970; Fernandez and Steel, 2000). It is possible to allow some additional �exibility

in the distribution of uit. For example, the identi�cation argument still holds as long as (1)

vit is i.i.d. across i and independent over t, and (2) the distributions of vit, f
v
t (vit), have

known functional forms, such that E[vit] = 0, V[vit] = 1. Nevertheless, as this paper studies

panels with short time spans, time-varying shock distribution may not play a signi�cant role.

I will keep the normality assumption in the rest of this paper to streamline the arguments.

Assumption 3.5.5. (General Model: Identi�cation) For all i,

1. The common parameter vector β is identi�able.30

30The identi�cation of common parameters in panel data models is standard in the literature. For
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2. wi,0:T−1 has full rank dw.

3. Conditioning on ci0, λi and σ
2
i are independent of each other.

4. The characteristic functions for λi|ci0 and σ2
i |ci0 are non-vanishing almost everywhere.

Proposition 3.5.6. (General Model: Identi�cation)

Under Assumptions 3.5.3 and 3.5.5, the common parameters β and the conditional distri-

bution of individual e�ects, fλ(λi|ci0) and fσ
2
(σ2
i |ci0), are all identi�ed.

Please refer to Appendix B.4.1 for the proof. Assumption 3.5.3-3.5.5 and Proposition 3.5.6

are similar to Assumption 2.1-2.2 and Theorem 2.3 in Liu et al. (2016) except for the

treatment of heteroskedasticity. First, this paper supports unobserved cross-sectional het-

eroskedasticity whereas Liu et al. (2016) incorporate cross-sectional heteroskedasticity as a

parametric function of observables. Second, Liu et al. (2016) allow for time-varying het-

eroskedasticity whereas the identi�cation restriction in this paper can only permit time-

varying distribution for vit (see Remark 3.5.4 (ii)) while keeping zero mean and unit variance.

However, considering that this paper focuses on the scenarios with short time dimension,

lack of time-varying heteroskedasticity would not be a major concern.

Furthermore, the above identi�cation results can be extended to unbalanced panels. Let Ti

denote the longest chain for individual i that has complete observations, from t0i to t1i. That

is, {yit, wi,t−1, xi,t−1} are observed for all t = t0i, · · · , t1i. Then, I discard the unobserved

periods and rede�ne the conditioning set at time t = 1, t0i, · · · , t1i, T + 1 to be

ci,t−1 =
{
yi,τPi,t−1

, xP∗
i,τPi,t−1

, xO
i,τPiT

, wi,τPiT

}
, (3.5.3)

where the set for time periods τPi,t−1 = {0, t0i − 1, · · · , t1i − 1, T}∩{0, · · · , t− 1}. Note that

ti0 can be 1, and ti1 can be T , so this structure is also able to accommodate balanced panels.

example, there have been various ways to di�erence data across t to remove the individual e�ects λi (e.g.
orthogonal forward di�erencing, see Appendix B.4.1), and we can construct moment conditions based on the
transformed data to identify the common parameters β. Here I follow Liu et al. (2016) and state a high-level
identi�cation assumption.
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Accordingly, the individual-speci�c component of ci,t−1 is

c∗i,t−1 =
{
yi,τPi,t−1

, xP∗
i,τPi,t−1

, xO
i,τPiT

, wI
i,τPiT

}
.

Assumption 3.5.7. (Unbalanced Panels) For all i,

1. ci0 is observed.

2. xiT and wiT are observed.

3. The common parameter vector β is identi�able.

4. wi,(t0i−1):(t1i−1) has full rank dw.

The �rst condition guarantees the existence of the initial conditioning set for the correlated

random coe�cients model. In practice, it is not necessary to incorporate all initial values

of the predetermined variables and the whole series of the strictly exogenous variables. It

is more feasible to only take into account a subset of ci0 or a function of ci0 that is relevant

for the speci�c analysis. The second condition ensures that the covariates in the forecast

equation are available in order to make predictions. The third condition is the same as

Assumption 3.5.5 (1) that makes a high-level assumption on the identi�cation of common

parameters. The fourth condition is the unbalanced panel counterpart of Assumption 3.5.5

(2). It guarantees that the observed chain is long and informative enough to distinguish

di�erent aspects of individual e�ects. Now we can state similar identi�cation results for

unbalanced panels.

Proposition 3.5.8. (Identi�cation: Unbalanced Panels)

For unbalanced panels, under Assumptions 3.5.3, 3.5.5 (3-4), and 3.5.7, the common parame-

ter vector β and the conditional distributions of individual e�ects, fλ(λi|ci0) and fσ
2
(σ2
i |ci0),

are all identi�ed.
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3.5.4 Asymptotic Properties

In Subsection 3.5.4, I address posterior consistency of fσ
2
with unknown individual-speci�c

heteroskedasticity σ2
i . In Subsection 3.5.4, I proceed with the general setup (3.5.1) by con-

sidering (correlated) random coe�cients, adding other strictly exogenous and predetermined

covariates into xit, and accounting for unbalanced panels, then the posterior consistency can

be obtained with respect to the common parameters vector β and the (conditional) distri-

butions of individual e�ects, fλ and fσ. In Subsection 3.5.4, I establish the asymptotic

properties of the density forecasts.

Let dz be the dimension of zit, where z is a generic variable which can be w or x. Then,

Θ = Rdx , Fλ is a set of (conditional) densities on Rdw , and Fσ2
is a set of (conditional)

densities on R+. The data sample used for estimation is D = {{Di} , DA} de�ned in

Subsection 3.5.1, which constitutes the conditioning set for posterior inference.

Cross-sectional Heteroskedasticity

In many empirical applications, such as the young �rm analysis in Section 3.7, risk may

largely vary over the cross-section. Therefore, it is more realistic to address cross-sectional

heteroskedasticity, which also contributes considerably to density forecasts. Now let us adapt

the simple panel model in equation (3.4.4) to incorporate cross-sectional heteroskedastic

shocks.

yit = λi + uit, uit ∼ N
(
0, σ2

i

)
, (3.5.4)

where β = 0, and λi is independent of σ
2
i . Their distributions, f

λ (λi) and f
σ2 (

σ2
i

)
, are un-

known, with the true distributions being fλ0 (λi) and f
σ2

0

(
σ2
i

)
, respectively. Their posteriors

are consistently estimated as established in the following proposition.

Proposition 3.5.9. (Cross-sectional Heteroskedasticity)

In setup (3.5.4) with the random e�ects version of Assumption 3.5.3 (1 and 4) and Assump-

tion 3.5.5 (3-4), if fλ0 ∈ KL
(

Πfλ
)
and fσ

2

0 ∈ KL
(

Πfσ
2)
, the posterior is weakly consistent
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at
(
fλ0 , f

σ2

0

)
.

Please refer to Appendix B.4.2 for the complete proof. The KL requirement is again given

by the convexity of KL divergence. The intuition of the tests is again to break down the

alternatives into two circumstances. First, when a candidate fσ
2
and the true fσ

2

0 are not

identical, we can once again rely on orthogonal forward di�erencing (see Appendix B.4.1) to

distinguish variance distributions. Note that the Fourier transformation (i.e. characteristic

functions) is not suitable for disentangling products of random variables, so I resort to the

Mellin transform (Galambos and Simonelli, 2004) instead. The second circumstance comes

when the variance distributions are close to each other, but fλ is far from fλ0 . Here I apply

the argument for Proposition 3.4.7 with slight adaption.

fλ0 ∈ KL
(

Πfλ
)
is guaranteed by conditions in Lemma 3.4.8 (or Lemma B.5.1 for true

distribution with heavy tails). Concerning fσ
2

0 , I impose a Gaussian-mixture DPM prior on

l = log
(
σ2 − σ2

)
, and similar su�cient conditions apply to the distribution of l as well.

General Setup

In this subsection, I generalize the setup to the full panel data model in equation (3.5.1) with

regard to the following three aspects. The proofs are along the same lines of the baseline

model plus cross-sectionally heteroskedasticity.

First, in practice, it is more desirable to consider a vector of λi interacting with observed wit.

In the young �rm example, di�erent young �rms may respond di�erently to the �nancial cri-

sis, and R&D activities may bene�t the young �rms in di�erent magnitudes. A (correlated)

random coe�cient model can capture such heterogeneities and facilitate predictions.

The uniformly exponentially consistent tests for multivariate λi are constructed in a similar

way as Proposition 3.4.7 outlined in the �disentangle skills and shocks� part of Subsection

3.4.3. Note that for each l = 1, · · · , dw, we can implement orthogonal forward di�erencing

with respect to all other {λim}m6=l and reduce the problem to λil versus shocks as in equation
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(3.4.3). The same logic still holds when we add lagged dependent variables and other

predictors. Furthermore, a multi-dimensional version of Lemma 3.4.8 or Assumption 3.4.14

guarantees the KL property of multivariate λi .

Second, additional strictly exogenous (xOi,t−1) and predetermined (xP∗i,t−1) predictors help

control for other sources of variation and gain more accurate forecasts. We can reproduce

the analysis for Proposition 3.4.15 by allowing the conditioning set ci0 to include the initial

values of the predetermined variables and the whole series of the strictly exogenous variables.

Third, it is constructive to account for unbalanced panels with missing observations, which

incorporates more data into the estimation and elicits more information for the prediction.

The posterior consistency argument is still valid in like manner given Assumption 3.5.7.

Combining above discussions all together, we achieve the posterior consistency result for the

general panel data model. The random coe�cients model is relatively more straightforward

regarding posterior consistency, as the random coe�cients setup together with Assumption

3.5.5 (3) implies that
(
λi, σ

2
i , ci0

)
are independent among one another. The theorem for the

random coe�cients model is stated as follows.

Proposition 3.5.10. (General Model: Random Coe�cients)

Suppose we have:

1. Assumptions 3.5.3, 3.5.5 (3-4), 3.5.7, and 3.4.10.

2. Lemma 3.4.8 on λ and l.

3. β0 ∈ supp
(
Πβ
)
.

Then, the posterior is weakly consistent at
(
β0, f

λ
0 , f

σ2

0

)
.

For heavy tails in the true unknown distributions, Lemma B.5.2 generalizes Lemma B.5.1 to

the multivariate scenario, and Proposition B.5.3 gives a parallel posterior consistency result.

In the world of correlated random coe�cients, λi is independent of σ
2
i conditional on ci0. In
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other words, λi and σ
2
i can potentially depend on the initial condition ci0, and therefore can

potentially relate to each other through ci0. For example, a young �rm's initial performance

may reveal its underlying ability and risk. The following proposition is established for the

correlated random coe�cients model.

Proposition 3.5.11. (General Model: Correlated Random Coe�cients)

Under Assumptions 3.5.3, 3.5.5 (3-4), 3.5.7, 3.4.10, and 3.4.14, if β0 ∈ supp
(
Πβ
)
, the

posterior is weakly consistent at
(
β0, f

λ
0 , f

σ2

0

)
.

Note that Propositions 3.5.10 and 3.5.11 are parallel with each other, as the �rst group of

conditions in Assumption 3.4.14 is the conditional analog of Lemma 3.4.8 conditions.

Density Forecasts

In the sequel, the next proposition shows convergence of density forecasts in the general

model.

Proposition 3.5.12. (General Model: Density Forecasts)

In the general model (3.5.1), suppose we have:

1. For the random coe�cients model,

(a) conditions in Proposition 3.5.10,

(b) supp
(
fσ

2

0

)
is bounded below by some σ2 > 0.

2. For the correlated random coe�cients model,

(a) conditions in Proposition 3.5.11,

(b) q0 (y0) is continuous, and there exists q > 0 such that |q0 (y0)| > q for all y0 ∈ C,

(c) supp
(
fσ

2

0

)
is bounded below by some σ2 > 0.

Then the density forecasts converge to the oracle predictor in the following two ways:
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1. Convergence of f condi,T+1 in weak topology: for any i and any Uε,Φ

(
foraclei,T+1

)
, as N →∞,

P
(
f condi,T+1 ∈ Uε,Φ

(
foraclei,T+1

)∣∣∣ y1:N,0:T

)
→ 1, a.s.

2. �Pointwise� convergence of f spi,T+1: for any i, any y, and any ε > 0, as N →∞,

∣∣∣fspi,T+1 (y)− foraclei,T+1 (y)
∣∣∣ < ε, a.s.

The additional requirement that the support of fσ
2

0 is bounded below ensures that the

likelihood would not explode. Then, the proof is in the same vein as the baseline setup.

3.6 Simulation

In this section, I have conducted extensive Monte Carlo simulation experiments to examine

the numerical performance of the proposed semiparametric Bayesian predictor. Subsection

3.6.1 describes the evaluation criteria for point forecasts and density forecasts. Subsection

3.6.2 introduces other alternative predictors. Subsection 3.6.3 considers the baseline setup

with random e�ects. Subsection 3.6.4 extends to the general setup incorporating cross-

sectional heterogeneity and correlated random coe�cients.

3.6.1 Forecast Evaluation Methods

As mentioned in the model setup in Subsection 3.2.1, this paper focuses on one-step-ahead

forecasts, but a similar framework can be applied to multi-period-ahead forecasts. The

forecasting performance is evaluated along both the point and density forecast dimensions,

with particular attention to the latter.

Point forecasts are evaluated via the Mean Square Error (MSE), which resonates with the

quadratic loss function. Let ŷi,T+1 denote the forecast made by the model,

ŷi,T+1 = β̂′xiT + λ̂′iwiT ,
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where λ̂i and β̂ stand for the estimated parameter values. Then, the forecast error is de�ned

as

êi,T+1 = yi,T+1 − ŷi,T+1,

with yi,T+1 being the realized value at time T + 1. The formula for the MSE is provided in

the following equation,

MSE =
1

N

∑
i

ê2
i,T+1.

The Diebold and Mariano (1995) test is further implemented to assess whether or not the

di�erence in the MSE is signi�cant.

The accuracy of the density forecasts is measured by the log predictive score (LPS) as

suggested in Geweke and Amisano (2010),

LPS =
1

N

∑
i

log p̂ (yi,T+1|D) ,

where yi,T+1 is the realization at T + 1, and p̂ (yi,T+1|D) represents the predictive likelihood

with respect to the estimated model conditional on the observed data D. I also perform the

Amisano and Giacomini (2007) test to examine the signi�cance in the LPS di�erence.

3.6.2 Alternative Predictors

In the simulation experiments, I compare the proposed semiparametric Bayesian predictor

with other alternatives, including Bayesian estimators with the prior of λi being a homoge-

neous prior, a �at prior, a parametric prior, and a DP prior (more rigorously, the DP prior

is on f rather than λi).

The homogeneous prior is de�ned as λi ∼ δλ∗ , where δλ∗ is the Dirac delta function rep-

resenting a degenerate distribution P (λi = λ∗) = 1. Intuitively, this prior believes that all

�rms share the same level of skill λ∗. Because λ∗ is unknown beforehand, it becomes an-

other common parameter, similar to β. Hence I adopt a multivariate-normal-inverse-gamma

prior on
(
[β, λ∗]′ , σ2

)
, which can be viewed as a Bayesian counterpart of the pooled OLS
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estimator.

The �at prior is speci�ed as p (λi) ∝ 1, an uninformative prior with the posterior mode

being the MLE estimate. Roughly speaking, the �at prior infers �rm i's skill λi only using

�rm i's history.

The parametric prior is given by λi ∼ N
(
µi, ω

2
i

)
, and a normal-inverse-gamma hyperprior

is further imposed on
(
µi, ω

2
i

)
. It can be considered as a special case of the DPM prior when

the scale parameter α→∞, so there is only one component, and
(
µi, ω

2
i

)
are directly drawn

from the base distribution G0. This choice of hyperprior follows the suggestion by Basu and

Chib (2003) to match the Gaussian model with the DPM model such that �the predictive

(or marginal) distribution of a single observation is identical under the two models� (pp.

226-227).

This paper focuses on the scenario in which f is continuous and approximated by a mixture

model, as a continuous distribution may be more sensible for the skill of young �rms as well

as other similar empirical studies. To examine how much can be gained or lost from the

continuity assumption, I also implement a DP prior where λi follows a �exible nonparametric

distribution but on a discrete support.

These priors are denoted as �Homog�, �Flat�, �Param�, and �NP-disc�, respectively, in the

graphs and tables below. In addition, �NP-R� denotes the proposed nonparametric prior for

random e�ects/coe�cients models, and �NP-C� for correlated random e�ects/coe�cients

models.

3.6.3 Baseline Model

Let us �rst consider the baseline model with random e�ects. The speci�cations are summa-

rized in Table 12.

β0 is set to be 0.8 as economic data usually exhibit some degree of persistence. σ
2
0 equals 1/4,

so the rough magnitude of signal-noise ratio is σ2
0/V (λi) = 1/4. The initial conditions yi0 is
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Table 12: Simulation Setup: Baseline Model

(a) Dynamic Panel Data Model

Law of motion yit = βyi,t−1 + λi + uit, uit ∼ N
(
0, σ2

)
Common parameters β0 = 0.8, σ2

0 = 1
Initial conditions yi0 ∼ TN (0, 1,−5, 5)
Sample size N = 1000, T = 6

(b) Random E�ects

Degenerate λi = 0
Skewed λi ∼ 1

9N
(
2, 1

2

)
+ 8

9N
(
−1

4 ,
1
2

)
Fat tail λi ∼ 1

5N (0, 4) + 4
5N
(
0, 1

4

)
Bimodal λi ∼ 0.35N (0, 1) + 0.65N (10, 1), normalized to V ar (λi) = 1

drawn from a truncated normal distribution where I take the standard normal as the base

distribution and truncate it at |yi0| < 5. This truncation setup complies with Assumption

3.4.10 such that yi0 is compactly supported. Choices of N and T are comparable with the

young �rm dynamics application.

There are four parameterizations of the true distribution of λi, f0 (·). As this subsection

focuses on the simplest baseline model with random e�ects, all the four parameterizations

are independent of yi0. The degenerate λi distribution suggests that all �rms enjoy the same

skill level. Note that it does not satisfy the �rst condition in Lemma 3.4.8, which requires

the true λi distribution to be continuous. The purpose of this distribution is to learn how

bad things can go under the misspeci�cation that the true λi distribution is completely

o� the prior support. The functional forms of the skewed and fat tail distributions are

borrowed from Monte Carlo design 2 in Liu et al. (2016). These two speci�cations re�ect

more realistic scenarios in empirical studies. The last setup portrays a bimodal distribution

with asymmetric weights put on the two components.

I simulated 1,000 panel datasets for each setup and report the average statistics of these

1,000 exercises. Forecasting performance, especially the relative rankings and magnitudes,

is highly stable across simulations. In each simulation exercise, I generated 40,000 MCMC
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draws with the �rst 20,000 being discarded as burn-in. Based on graphical and statistical

tests, the MCMC draws seem to converge to a stationary distribution. Both the Brook-

Draper diagnostic and the Raftery-Lewis diagnostic yield desirable MCMC accuracy. For

trace plots, prior/posterior distributions, rolling means, and autocorrelation graphs of β, σ2,

α, and λ1, please refer to Figures 15 to 18.

Table 13 shows the forecasting comparison among alternative priors. The point forecasts

are evaluated by MSE together with the Diebold and Mariano (1995) test. The performance

of the density forecasts is assessed by the LPS and the Amisano and Giacomini (2007) test.

For the oracle predictor, the table reports the exact values of MSE and LPS (multiplied

by the cross-sectional dimension N). For other predictors, the table reports the percentage

deviations from the oracle MSE and di�erence with respect to the oracle LPS*N. The tests

are conducted with respect to NP-R, with signi�cance levels indicated by *: 10%, **: 5%,

and ***: 1%. The entries in bold indicate the best feasible predictor in each column.

For each λi distribution, point forecasts and density forecasts share comparable rankings.

When the λi distribution is degenerate, �Homog� and �NP-disc� are the best, as expected.

They are followed by �NP-R� and �Param�, and �Flat� is considerably worse. When the

λi distribution is non-degenerate, there is a substantial gain in both point forecasts and

density forecasts from employing the �NP-R� predictor. In the bimodal case, the �NP-R�

predictor exceeds all other competitors. In principle, the nonparametric prior constructed

from mixtures of normals should perform the best when the true DGP is made up of distinct

normal components. In the skewed and fat tailed cases, the �Flat� and �Param� predictors

are second best, yet still signi�cantly inferior to �NP-R�. The �Homog� and �NP-disc� pre-

dictors yield the poorest forecasts, which suggests that their discrete supports are not able

to approximate the continuous λi distribution, and even the nonparametric DP prior with

countably in�nite support (�NP-disc�) is far from enough.

Therefore, when researchers believe that the underlying λi distribution is indeed discrete,

the DP prior (�NP-disc�) is a more sensible choice; on the other hand, when the underlying
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λi distribution is actually continuous, the DPM prior (or the MGLRx prior later for the

correlated random e�ects model) promotes better forecasts. In the empirical application

to young �rm dynamics, it would be more reasonable to assume continuous distributions of

individual heterogeneities in levels, reactions to R&D, and shock sizes, and results show that

the continuous nonparametric prior outperforms the discrete DP prior in terms of density

forecasts (see Table 19).

To investigate the sources of the gain in forecasts, Figure 8 demonstrates the posterior

distribution of the λi distribution (i.e. a distribution over distributions) for experiments

�Skewed�, �Fat Tail�, and �Bimodal�. In each case, the graphs are constructed from the

estimation results of one simulation exercise among the 1,000 simulation exercises. The

left subgraph is given by the �Param� estimator, which is compared and contrasted with

the right subgraph by �NP-R�. In each subgraph, the black solid line represents the true λi

distribution, f0. The blue bands show the posterior distribution of f , Π (f | y1:N,0:T ).

For the skewed λi distribution, the �NP-R� estimator better tracks the peak on the left

and the tail on the right. For the λi distribution with fat tails, the �NP-R� estimator

accommodates the slowly decaying tails, but is still not able to fully mimic the spiking peak.

For the bimodal λi distribution, it is not surprising that the �NP-R� estimator captures the

M-shape fairly nicely. In summary, the nonparametric prior �exibly approximates a vast set

of distributions, which helps provide more precise estimates of the underlying λi distributions

and consequently more accurate density forecasts. This observation con�rms the connection

between skill distribution estimation and density forecasts as stated in Propositions 3.4.11

and 3.4.16.

I have also considered various robustness checks. In terms of the setup, I have tried di�erent

cross-sectional dimensions N = 100, 500, 1000, 105, di�erent time spans T = 6, 10, 20, 50,

di�erent persistences β = 0.2, 0.5, 0.8, 0.95, di�erent sizes of the i.i.d. shocks σ2 = 1/4 and

1, which govern the signal-to-noise ratio, and di�erent underlying λi distributions including

standard normal. In general, the �NP-R� predictor is the overall best for density forecasts
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Figure 8: f0 vs Π (f | y1:N,0:T ) : Baseline Model

(a) Skewed

(b) Fat Tail

(c) Bimodal
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except when the true λi comes from a degenerate distribution or a normal distribution. In the

latter case, the parsimonious �Param� prior coincides with the underlying λi distribution and

is not surprisingly but only marginally better than the �NP-R� predictor. Roughly speaking,

the superiority of the �NP-R� predictor is more prominent when the time series for a speci�c

��rm� i is not informative enough to reveal its �skill� but the whole panel can recover the

skill distribution and hence ��rm� i's �skill uncertainty�. That is, �NP-R� works the best

when N is not too small, T is not too long, σ2 is not too large, and the λi distribution

is relatively non-Gaussian. For instance, as the cross-sectional dimension N increases, the

blue band in Figure 8 gets closer to the true f0 and eventually completely overlaps it (see

Figure 19), which resonates the posterior consistency statement.

In terms of estimators, I have also constructed the posterior sampler for more sophisticated

priors, such as the Pitman-Yor process which allows power law tail for clustering behaviors,

as well as DPM with skew normal components which better accommodates asymmetric data

generating process. They provide some improvement in the corresponding situations, but

call for extra computation e�orts.

3.6.4 General Model

The general model accounts for three key features: (i) multidimensional individual hetero-

geneity, (ii) cross-sectional heteroskedasticity, and (iii) correlated random coe�cients. The

exact speci�cation is characterized in Table 14.

In terms of multidimensional individual heterogeneity, now λi is a 3-by-1 vector, and the

corresponding covariates are composed of the level, time-speci�c w
(2)
t−1, and individual-time-

speci�c w
(3)
i,t−1.

In terms of correlated random coe�cients, I adopt the conditional distribution following

Dunson and Park (2008) and Norets and Pelenis (2014). They regard it as a challenging

problem because such conditional distribution exhibits rapid changes in its shape which

considerably restricts local sample size. The original conditional distribution in their papers
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Table 14: Simulation Setup: General Model

Law of motion yit = βyi,t−1 + λ′iwi,t−1 + uit, uit ∼ N
(
0, σ2

i

)
Covariates wi,t−1 = [1, w

(2)
t−1, w

(3)
i,t−1]′,

where w
(2)
t−1 ∼ N (0, 1) and w

(3)
i,t−1 ∼ Ga (1, 1)

Common parameters β0 = 0.8
Initial conditions yi0 ∼ U (0, 1)
Correlated random coef. λi|yi0 ∼

e−2yi0N
(
yi0v, 0.12vv′

)
+
(
1− e−2yi0

)
N
(
y4
i0v, 0.22vv′

)
,

where v = [1, 2, −1]′

Cross-sectional heterosk. σ2
i |yi0 ∼ 0.454 (yi0 + 0.5)2 · (IG (51, 40) + 0.2)

Sample size N = 1000, T = 6

is one-dimensional, and I expand it to accommodate the three-dimensional λi via a linear

transformation of the original. In Figure 9 panel (a), the left subgraph presents the joint

distribution of λi1 and yi0, where λi1 is the coe�cient on w
(1)
i,t−1 = 1 and can be interpreted

as the heterogeneous intercept. It shows that the shape of the joint distribution is fairly

complex, containing many local peaks and valleys. The right subgraph shows the conditional

distribution of λi1 given yi0 = 0.25, 0.5, 0.75. We can see that the conditional distribution

is also irregular and evolves with yi0.

In addition, I also let the cross-sectional heteroskedasticity interact with the initial condi-

tions, and the functional form is modi�ed from Pelenis (2014) case 2. The modi�cation

guarantees the continuity of σ2
i distribution, bounds it above zero (see conditions for Propo-

sitions 3.5.10-3.5.12), and ensures that the signal-to-noise ratio is not far from 1. Their joint

and conditional distributions are depicted in Figure 9 panel (b).

The rest of the setup is the same as the baseline scenario in the previous subsection.

Due to cross-sectional heteroskedasticity and correlated random coe�cients, the prior struc-

tures become more complicated. Table 15 describes the prior setups of λi and li, with the

predictor labels being consistent with the de�nitions in Subsection 3.6.2. Note that I further

add the �Homosk-NP-C� predictor in order to examine whether it is practically relevant to

model heteroskedasticity.
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Figure 9: DGP: General Model

(a) p (λi1|yi0)

(b) p
(
σ2
i |yi0

)

Table 15: Prior Structures

Predictor λi prior li prior

Heterosk NP-C MGLRx MGLRx

Homog Point mass Point mass
Homosk NP-C MGLRx Point mass

Heterosk Flat Uninformative Uninformative
Param N IG
NP-disc DP DP
NP-R DPM DPM
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Table 16 assesses the forecasting performance of these predictors. From the best to the

worst, the point forecast ranking is �Heterosk-NP-R�, �Heterosk-Param�, �Heterosk-NP-disc�,

�Heterosk-NP-C�, �Homosk-NP-C�, �Homog�, and �Heterosk-Flat�. The �rst two constitute

the �rst tier, the next two can be viewed as the second tier, the next one is the third tier,

and the last two are markedly inferior. It is anticipated that more parsimonious estimators

would outperform �Heterosk-NP-C� in terms of point forecasts, though �Heterosk-NP-C� is

correctly speci�ed while the parsimonious ones are not.

Nevertheless, the focus of this paper is density forecasting, where �Heterosk-NP-C� becomes

the most accurate density predictor. Several lessons can be inferred from a more detailed

comparison among predictors. First, based on the comparison between �Heterosk-NP-C�

and �Homog�/�Homosk-NP-C�, it is important to account for individual e�ects in both co-

e�cients λi's and shock sizes σ2
i 's. Second, comparing �Heterosk-NP-C� with �Heterosk-

Flat�/�Heterosk-Param�, we see that the �exible nonparametric prior plays a signi�cant

role in enhancing density forecasts. Third, the di�erence between �Heterosk-NP-C� and

�Heterosk-NP-disc� indicates that the discrete prior performs less satisfactorily when the

underlying individual heterogeneity is continuous. Last, �Heterosk-NP-R� is less favorable

than �Heterosk-NP-C�, which necessitates a careful modeling of the correlated random co-

e�cient structure.

3.7 Empirical Application: Young Firm Dynamics

3.7.1 Background and Data

To understand how the proposed predictor works in real world analysis, I applied it to

provide density forecasts of young �rm performance. Studies have documented that young

�rm performance is a�ected by R&D, recession, etc. and that di�erent �rms may react

di�erently to these factors (Akcigit and Kerr, 2010; Robb and Seamans, 2014; Zarutskie

and Yang, 2015). In this empirical application, I examine these channels from a density

forecasting perspective.
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Table 16: Forecast Evaluation: General Model

MSE* LPS*N

Oracle 0.70*** -1150***

Heterosk NP-C 13.68%*** -74***

Homog 89.28%*** -503***
Homosk NP-C 20.84%*** -161***

Heterosk Flat 151.60%*** -515***
Param 11.30%*** -139***
NP-disc 13.08%*** -150***
NP-R 11.25%*** -93***

The point forecasts are evaluated by the Mean Square Error (MSE) together with the Diebold and
Mariano (1995) test. The performance of the density forecasts is assessed by the log predictive
score (LPS) and the Amisano and Giacomini (2007) test. For the oracle predictor, the table
reports the exact values of MSE and LPS. For other predictors, the table reports the percentage
deviations from the benchmark MSE and di�erence with respect to the benchmark LPS. The tests
are conducted with respect to Heterosk-NP-C, with signi�cance levels indicated by *: 10%, **: 5%,
***: 1%. The entries in bold indicate the best feasible predictor in each column.

To analyze �rm dynamics, traditional cross-sectional data are not su�cient whereas panel

data are more suitable as they track the �rms over time. In particular, it is desirable to work

with a dataset that contains su�cient information on early �rm �nancing31 and innovation,

and spreads over the recent recession. The restricted-access Kau�man Firm Survey (KFS)

is the ideal candidate for such purpose, as it o�ers the largest panel of startups (4,928 �rms

founded in 2004, nationally representative sample) and longest time span (2004-2011, one

baseline survey and seven follow-up annual surveys), together with detailed information on

young �rms. For further description of the survey design, please refer to Robb et al. (2009).32

3.7.2 Model Speci�cation

I consider the general model with multidimensional individual heterogeneity in λi and cross-

sectional heteroskedasticity in σ2
i . Following the �rm dynamics literature, such as Akcigit

and Kerr (2010) and Zarutskie and Yang (2015), �rm performance is measured by employ-

31In the current version of the empirical exercises, �rm �nancing variables (e.g. capital structure) are
not included as regressors because they overly restrict the cross-sectional dimension, but I intend to include
them in future work in which I will explicitly model �rm exit and thus allow for a larger cross-section.

32Here I do not impose weights on �rms as the purpose of the current study is forecasting individual �rm
performance. Further extensions can easily incorporate weights into the estimation procedure.
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ment. Speci�cally, here yit is chosen to be the log of employment denoted as log empit. I

adopt the log of employment instead of employment growth rate since the latter signi�cantly

reduces the cross-sectional sample size. It is preferable to work with larger N according to

the theoretical argument.

For the key variables with potential heterogeneous e�ects (wi,t−1), I compare the forecasting

performance of the following three setups:33

(i) wi,t−1 = 1, which speci�es the baseline model with λi being the individual-speci�c inter-

cept.

(ii) wi,t−1 = [1, rect−1]′. rect is an aggregate dummy variable indicating the recent recession.

It is equal to 1 for 2008 and 2009, and is equal to 0 for other periods.

(iii) wi,t−1 = [1, R&Di,t−1]′. R&Dit is given by the ratio of a �rm's R&D employment over

its total employment, considering that R&D employment has more complete observations

compared to other innovation intensity gauges.34

The panel used for estimation spans 2004 to 2010 with time-series dimension T = 6.35 The

data for 2011 is reserved for pseudo out-of-sample forecast evaluation. Sample selection is

performed as follows:

(i) For any (i, t) combination where R&D employment is greater than the total employment,

there is an incompatibility issue, so I set R&Dit = NA, which only a�ects 0.68% of the

observations.

(ii) I only keep �rms with long enough observations according to Assumption 3.5.7, which

ensures identi�cation in unbalanced panels. This results in cross-sectional dimension N =

33I do not jointly incorporate recession and R&D because such speci�cation largely restricts the cross-
sectional sample size.

34I have also explored other measures of innovation activities (e.g. a binary variable on whether the �rm
spends any money on R&D, numbers of intellectual properties�patents, copyrights, or trademarks�owned
or licensed by the �rm). The estimated AR(1) coe�cients and relative rankings of density forecasts are
generally robust across measures.

35Note that the estimation panel starts from period 0 (i.e. 2004) and ends at period T (i.e. 2010) with
T + 1 = 7 periods in total.
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Table 17: Descriptive Statistics for Observable

10% mean med 90% std skew kurt

log emp 0.41 1.44 1.34 2.63 0.86 0.82 3.58
R&D 0.05 0.22 0.17 0.49 0.18 1.21 4.25

Figure 10: Histograms for Observables

859 for the baseline speci�cation, N = 794 with recession, and N = 677 with R&D.

(iii) In order to compare forecasting performance across di�erent setups, the sample is further

restricted so that all three setups share exactly the same set of �rms.

After all these data cleaning steps, we are left with N = 654 �rms. The proportion of

missing values are (#missing obs) / (NT ) = 6.27% . The descriptive statistics for log empit

and R&Dit are summarized in Table 17, and the corresponding histograms are plotted in

Figure 10, where both distributions are right skewed and may have more than one peak.

3.7.3 Results

The alternative priors are similar to those in the Monte Carlo simulation except for one

additional prior, �Heterosk-NP-C/R�, which assumes that λi is correlated with yi0 while σ2
i

is not, by imposing an MGLRx prior on λi and a DPM prior on li = log
(
σ2
i − σ2

)
. It is

possible to craft other priors according to the speci�c heterogeneity structure of the empirical

problem at hand. For example, let λi1 correlate with yi0 while setting λi2 independent of yi0.
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Table 18: Common Parameter β

Baseline Recession R&D
mean std mean std mean std

Heterosk NP-C/R 0.48 0.01 0.46 0.02 0.52 0.01

Homog 0.85 0.02 0.85 0.02 0.89 0.02
Homosk NP-C 0.37 0.02 0.88 0.02 0.51 0.03

Heterosk Flat 0.19 0.02 0.25 0.00 0.50 0.00
Param 0.48 0.03 0.26 0.03 0.56 0.03
NP-disc 0.55 0.02 0.79 0.02 0.84 0.04
NP-R 0.47 0.03 0.30 0.03 0.74 0.04
NP-C 0.38 0.02 0.40 0.06 0.53 0.01

I will leave this to future exploration. The conditioning set is chosen to be standardized yi0.

The standardization ensures numerical stability in practice, as the conditioning variables

enter exponentially into the covariance function for the Gaussian process.

Table 18 characterizes the posterior estimates of the common parameter β. In most of

the cases except for �Homog� and �NP-disc�, the posterior means are around 0.4 ∼ 0.5,

which suggests that the young �rm performance exhibits some degree of persistency, but not

remarkably strong, which is reasonable as young �rms generally experience more uncertainty.

For �Homog� and �NP-disc�, their posterior means of β are much larger. This may arise from

the fact that homogeneous or discrete λi structure is not able to capture all individual e�ects,

so these estimators may attribute the remaining individual e�ects to persistence and thus

overestimate β. In all scenarios, the posterior standard deviations are relatively small, which

indicates that the posterior distributions are very tight.

Table 19 compares the forecasting performance of the predictors across di�erent model

setups. The �Heterosk-NP-C/R� predictor is chosen to be the benchmark for all comparisons.

For the benchmark predictor, the table reports the exact values of MSE and LPS (multiplied

by the cross-sectional dimension N). For other predictors, the table reports the percentage

deviations from the benchmark MSE and di�erence with respect to the benchmark LPS*N.

For density forecasts measured by LPS, the overall best is the �Heterosk-NP-C/R� predictor
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in the R&D setup. Comparing setups, the one with recession yields the worst density

forecasts (and point forecasts as well), so the recession dummy does not contribute much to

forecasting and may even incur over�tting.

Comparing across predictors for the baseline and R&D setups, the main message is similar

to the Monte Carlo simulation of the general model in Subsection 3.6.4. In summary, it

is crucial to account for individual e�ects in both coe�cients λi's and shock sizes σ2
i 's

through a �exible nonparametric prior that acknowledges continuity and correlated random

e�ects/coe�cients when the underlying individual heterogeneity is likely to possess these

features. Note that now both �NP-R� and �NP-C� are inferior to �NP-C/R� where the

distribution of λi depends on the initial conditions but the distribution of σ2
i does not.

36

In terms of point forecasts, most of the estimators are comparable according to MSE, with

only �Flat� performing poorly in all three setups. Intuitively, shrinkage in general leads

to better forecasting performance, especially for point forecasts, whereas the �Flat� prior

does not introduce any shrinkage to individual e�ects
(
λi, σ

2
i

)
. Conditional on the common

parameter β, the �Flat� estimator of
(
λi, σ

2
i

)
is a Bayesian analog of individual-speci�c

MLE/OLS that utilizes only the individual-speci�c observations, which is inadmissible under

�xed T (Robbins, 1956; James and Stein, 1961; Efron, 2012).

Figure 11 provides the histograms of the probability integral transformation (PIT) in the

R&D setup. While LPS characterizes the relative ranks of predictors, PIT supplements LPS

and can be viewed as an absolute evaluation on how good the density forecasts coincide

with the true (unobserved) conditional forecasting distributions with respect to the current

information set. In this sense, under the null hypothesis that the density forecasts coincide

with the truth, the probability integral transforms are i.i.d. U (0, 1) and the histogram is

close to a �at line. For details of PIT, please refer to Diebold et al. (1998). In each

subgraph, the two red lines indicate the con�dence interval. We can see that, in �NP-C/R�,

36This result cannot be directly compared to the Gibrat's law literature (Lee et al., 1998; Santarelli et al.,
2006), as the dependent variable here is the log of employment instead of employment growth.
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Table 19: Forecast Evaluation: Young Firm Dynamics

Baseline Recession R&D
MSE* LPS*N MSE* LPS*N MSE* LPS*N

Heterosk NP-C/R 0.20*** -230*** 0.23*** -272*** 0.20*** -228***

Homog 10%*** -81*** -2%*** -41*** 8%*** -74***
Homosk NP-C 7%*** -66*** 2%*** -17*** 9%*** -52***

Heterosk Flat 22%*** -42*** 44%*** -701*** 102%*** -309***
Param 4%*** -60*** 35%*** -135*** 7%*** -52***
NP-disc 1%*** -9*** -7%*** -1*** 2%*** -20***
NP-R 1%*** -5*** 28%*** -63*** 3%*** -16***
NP-C 3%*** -6*** 3%*** -5*** 0.1%*** -5***

The point forecasts are evaluated by the Mean Square Error (MSE) together with the Diebold and
Mariano (1995) test. The performance of the density forecasts is assessed by the log predictive
score (LPS) and the Amisano and Giacomini (2007) test. For the benchmark predictor
Heterosk-NP-C/R, the table reports the exact values of MSE and LPS. For other predictors, the
table reports the percentage deviations from the benchmark MSE and di�erence with respect to
the benchmark LPS. The tests are conducted with respect to the benchmark, with signi�cance
levels indicated by *: 10%, **: 5%, ***: 1%. The entries in bold indicate the best predictor in
each column.

�NP-C� and �Flat�, the histogram bars are mostly within the con�dence band, while other

predictors yield apparent inverse-U shapes. The reason might be that the other predictors

do not take correlated random coe�cients into account but instead attributes the subtlety

of correlated random coe�cients to the estimated variance, which leads to more di�used

predictive distributions.

Figure 12 shows the predictive distributions of 10 randomly selected �rms in the R&D setup.

In terms of the �Homog� predictor, all predictive distributions share the same Gaussian

shape paralleling with each other. On the contrary, in terms of the �NP-C/R� predictor, it

is clear that the predictive distributions are fairly di�erent in the center location, variance,

and skewness. Figure 13 further aggregates the predictive distributions over sectors based

on two-digit NAICS codes (Table 20). It plots the predictive distributions of the log of

the average employment within each sector. Comparing �Homog� and �NP-C/R� across

sectors, we can see the following several patterns. First, �NP-C/R� predictive distributions

tend to be narrower and have longer right tails, whereas �Homog� ones are distributed in

the standard bell shape. Second, there are substantial heterogeneities in density forecasts
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Figure 11: PIT

Red lines indicate the con�dence interval.

Figure 12: Predictive Distributions: 10 Randomly Selected Firms

across sectors. For sectors with relatively large average employment, e.g. �construction�

(sector 23), �Homog� pushes the forecasts down, hence systematically underpredicts their

future employment, while �NP-C/R� respects this source of heterogeneity and signi�cantly

lessens the underprediction problem. On the other hand, for sectors with relatively small

average employment, e.g. �Retail Trade� (sector 44), �Homog� introduces an upward bias

into the forecasts, while �NP-C/R� reduces such bias by �exibly estimating the underlying

distribution of �rm-speci�c heterogeneities.
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Figure 13: Predictive Distributions: Aggregated by Sectors

Subgraph titles are two-digit NAICS codes. Only sectors with more than 10 �rms are shown.
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Table 20: Two-digit NAICS Codes

Code Sector

11 Agriculture, Forestry, Fishing and Hunting
21 Mining, Quarrying, and Oil and Gas Extraction
22 Utilities
23 Construction
31-33 Manufacturing
42 Wholesale Trade
44-45 Retail Trade
48-49 Transportation and Warehousing
51 Information
52 Finance and Insurance
53 Real Estate and Rental and Leasing
54 Professional, Scienti�c, and Technical Services
56 Administrative and Support and Waste Management and Remediation Services
61 Educational Services
62 Health Care and Social Assistance
71 Arts, Entertainment, and Recreation
72 Accommodation and Food Services
81 Other Services (except Public Administration)

The latent heterogeneity structure is presented in Figure 14, which plots the joint distribu-

tions of the estimated individual e�ects and the conditional variable in the R&D setup. We

can see that λi,level, λi,RD, and standardized yi0 are positively correlated with each other,

which roughly indicates that larger �rms respond more positively to R&D activities within

the KFS young �rm sample. In all the three subgraphs, the pairwise relationships among

λi,level, λi,RD, and standardized yi0 are nonlinear and exhibit multiple components, which

reassures the utilization of nonparametric prior with correlated random coe�cients.

3.8 Concluding Remarks

This paper proposes a semiparametric Bayesian predictor which performs well in density

forecasts of individuals in a panel data setup. Monte Carlo simulations and an empirical

application to young �rms dynamics show that the keys for better density forecasts are, in

order of importance, nonparametric Bayesian prior, cross-sectional heteroskedasticity, and

correlated random coe�cients.
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Figure 14: Joint Distributions of λ̂i and Condition Variable

Moving forward, I plan to extend my research in the following several directions: Theoret-

ically, I will continue the Bayesian asymptotic discussion with strong posterior consistency

and rates of convergence. Methodologically, I will explore some variations of the current

setup. First, some empirical studies may include a large number of covariates with poten-

tial heterogeneous e�ects (i.e. more variables included in wi,t−1), so it is both theoretically

and empirically desirable to investigate a variable selection scheme in a high-dimensional

nonparametric Bayesian framework. Chung and Dunson (2012) and Liverani et al. (2015)

employ variable selection via binary switches, which may be adaptable to the panel data

setting. Another possible direction is to construct a Bayesian-Lasso-type estimator coher-

ent with the current nonparametric Bayesian implementation. Second, I will consider panel

VAR (Canova and Ciccarelli, 2013), a useful tool to incorporate several variables for each

of the individuals and to jointly model the evolution of these variables, allowing me to take

more information into account for forecasting purposes and o�er richer insights into the

latent heterogeneity structure. Meanwhile, it is also interesting to incorporate extra cross-

variable restrictions and implement the Bayesian GMM method as proposed in Shin (2014).

Third, I will experiment with nonlinear panel data models, such as the Tobit model that

helps accommodate �rms' endogenous exit choice. Such extension would be numerically

feasible, but requires further theoretical work. A natural next step would be extending the

theoretical discussion to the family of �generalized linear models�.
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APPENDIX A

Point Forecasts and Bank Stress Tests

A.1 Theoretical Derivations and Proofs

A.1.1 Proofs for Section 2.2

Lemma A.1.1. Suppose that T ≥ kw + 1 ≥ 2. Suppose that W is a T × kw matrix with

rank(W) = kw. Let Σ be a T ×T matrix of rank T . Let S = ΣW . Then, rank(MS⊗SB) = T,

where MS⊗S and B are de�ned in the proof of Theorem 2.2.3.

Proof of Lemma A.1.1. Notice that the matrix B is a T 2 × T selection matrix that has

one at positions (1, 1), (T + 2, 2), (2T + 3, 3), ..., (T 2, T ) and zeros at the other positions.

Notice that since Σ is full rank, rank(S) = rank(ΣW ) = rank(W ) = kw. If rank(S) = kw,

then rank(S ⊗ S) = k2
w. Since the rank of the projection matrix is the same as its trace, we

have rank(MS⊗S) = tr(MS⊗S) = T 2 − k2
w.

By the spectral decomposition, we can decompose MS⊗S = FΛF ′, where F is a T 2 × T 2

orthogonal matrix and Λ is a T 2×T 2 diagonal matrix whose �rst T 2− k2
w elements are one

and the rest are zero. Since F is full rank, rank(MS⊗SB) = rank(FΛF ′B) = rank(ΛF ′B).

Notice that F ′B is a T 2 × T matrix that collects the columns of F ′ in the positions of

1, T + 2, 2T + 3, ..., T 2. Since the columns of F ′ are linearly independent, rank(F ′B) = T .

Notice that ΛF ′B is a submatrix of F ′B that selects the �rst T 2−k2
w rows. Since T−1 ≥ kw

and T ≥ 2 implies that T 2− k2
w ≥ 2T − 1 > T , the (T 2− k2

w)×T submatrix of F ′B, ΛF ′B,

has rank T . �

The matrix E
[
(W ′it, X

′
it, Z

′
it)
′(W ′it, X

′
it, Z

′
it)
]
has full rank for t = 1, . . . , T . The matrices∑T

s=t+1Wis−1W
′
is−1 are invertible with probability one for all t = 1, . . . , T − kw and i =
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1, . . . , N .

Proof of Theorem 2.2.3. (i) The parameters α and ρ are identi�able by Assumption 2.2.2.

(ii) Let Yi,Wi, Xi, Zi and Ui denote the matrices vectors that stack Yit,W
′
it−1, X

′
it−1, Z

′
it−1,

and Uit, respectively, for t = 1, . . . , T . De�ne

Σ
1/2
i (γ) = diag

(
σ1(hi, γ1), . . . , σT (hi, γT )

)
,

Si(γ) = Σ
−1/2
i (γ)Wi, Mi(γ) = I − Si(S′iSi)−1S′i.

Using the same manipulation as in the main text, we obtain the condition

Mi(γ̃)
(
Σ
−1/2
i (γ̃)Σi(γ)Σ

−1/2
i (γ̃)− I

)
M ′i(γ̃) = 0. (A.1.1)

for each hi. Taking expectations with respect to Hi and using Assumption 2.2.2(ii), we

deduce that

E
[
Mi(γ̃)

(
Σ
−1/2
i (γ̃)Σi(γ)Σ

−1/2
i (γ̃)− I

)
M ′i(γ̃)

]
= 0. (A.1.2)

if and only if γ̃ = γ.

(iii) The subsequent argument is similar to the proof of Theorem 2 in Arellano and Bon-

homme (2012a). Conditional on ρ, α, and γ we can remove the e�ect of Xi and Zi from Yi

and de�ne

Ỹi = Σ
−1/2
i (γ)(Yi −Xiρ− Ziα) = Si(γ)λi + Vi. (A.1.3)

To simplify the notation, we will omit the i subscripts and the γ argument in the remainder

of the proof.

Because S(γ), λ and V are independent conditional on H (and γ), we have

ln ΨỸ (τ |h) = ln Ψλ(S′τ |h) + ln ΨV (τ) (A.1.4)
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Taking the second derivative with respect to τ leads to

∂2

∂τ∂τ ′
ln ΨỸ (τ |h) =

∂2

∂τ∂τ ′
(
ln Ψλ(S′τ |h)

)
+

∂2

∂τ∂τ ′
ln ΨV (τ) (A.1.5)

= S

(
∂2

∂ξ∂ξ′
ln Ψλ(S′τ |h)

)
S′ +

∂2

∂τ∂τ ′
ln ΨV (τ).

Using the assumption that the Vts are independent over t, we can write

ln ΨV (τ) =
T∑
t=1

ln ΨVt(τt),

where ΨVt is the characteristic function of Vt. Then,

vec

(
∂2

∂τ∂τ ′
ln ΨV (τ)

)
= vec

(
diag

(
∂2

∂τ2
1

ln ΨV1(τ1), ...,
∂2

∂τ2
T

ln ΨVT (τT )

))
(A.1.6)

= B

(
∂2

∂τ2
1

ln ΨV1(τ1), ...,
∂2

∂τ2
T

ln ΨVT (τT )

)′

for a suitably chosen matrix B. Let

MS⊗S = I − S(S′S)−1S′ ⊗ S(S′S)−1S′.

Then,

MS⊗Svec(ln ΨỸ (τ |h)) = MS⊗SB

(
∂2

∂τ2
1

ln ΨV1(τ1), ...,
∂2

∂τ2
T

ln ΨVT (τT )

)′
. (A.1.7)

Because Σ(γ) is of full rank T (Assumption 2.2.2(iii)) andW is of full rank of kw (Assumption

2.2.2(iv)), S(γ) has full rank kw. Notice that T ≥ kw + 1. Then, according to Lemma A.1.1,

MS⊗SB is also full rank. In turn, from (A.1.7), we can identify ln ΨVt(τt) uniquely for

t = 1, ..., T . Also using the restrictions that ∂
∂τt

ln ΨVt(0) = 0 (E(Vit) = 0) and ln ΨVt(0) = 0,

we can deduce that the characteristic function of Vt is uniquely identi�ed.

Next, we show how to identify ln Ψλ(τ |h). Because ln ΨỸ (τ |h) and ln ΨV (τ) are identi�ed,
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from (A.1.4) we obtain

ln ΨỸ (τ |h)− ln ΨV (τ) = ln Ψλ(S′τ |h). (A.1.8)

Taking second derivatives, we obtain

∂2

∂τ∂τ ′

(
ln ΨỸ (τ |h)−

T∑
t=1

ln ΨV (τt)

)
= S

(
∂2

∂ξ∂ξ′
ln Ψλ(S′τ |h)

)
S′. (A.1.9)

Because S is of full rank, we can identify

∂2

∂ξ∂ξ′
ln Ψλ(S′τ |h) = (S′S)−1S′

[
∂2

∂τ∂τ ′

(
ln ΨỸ (τ |h)−

T∑
t=1

ln ΨV (τt)

)]
S(S′S)−1.

(A.1.10)

The mean E(λ|h) can be identi�ed as follows. Note that

λ̂ = (S′S)−1S′Ỹ = λ+ (S′S)−1S′V. (A.1.11)

Taking expectations yields

E(λ|h) = E[λ̂|h], (A.1.12)

because E[(S′S)−1S′V |h] = (S′S)−1S′E[V |h] = 0. Once the mean has been determined, we

can identify ln Ψλ(ξ|h) using ∂
∂ξ ln Ψλ(0|h) = E(λ|h) and ln Ψλ(0|h) = 0. �

Discussion of Assumption 2.2.2(i). We discuss an example of how to identify α and ρ

based on moment conditions in the general model (2.1.1). Under the model (2.1.1) we can
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remove the e�ect of λi with the following within projections:

Y ∗it = Yit −

(
T∑

s=t+1

YisW
′
is−1

)(
T∑

s=t+1

Wis−1W
′
is−1

)−1

Wit−1

X∗it−1 = Xit−1 −

(
T∑

s=t+1

Xis−1W
′
is−1

)(
T∑

s=t+1

Wis−1W
′
is−1

)−1

Wit−1

Z∗it−1 = Zit−1 −

(
T∑

s=t+1

Zis−1W
′
is−1

)(
T∑

s=t+1

Wis−1W
′
is−1

)−1

Wit−1

for t = 1, . . . , T − kw. Because E[Uit|Y 1:t−1
i , Hi, λi] = 0, we obtain the moment condition

E


Y ∗it − [ ρ̃′ α̃′

]  X∗it−1

Z∗it−1


[ X ′it−s−1 Z ′it−s−1

] = 0 (A.1.13)

for s ≥ 0. To simplify the exposition, suppose that we choose [Xit−1, Zit−1] as instrumental

variables. In this case, for the moment conditions to be only satis�ed only at ρ̃ = ρ and

α̃ = α it is necessary that the matrix

E

 X∗it−1X
′
it−1 X∗it−1Z

′
it−1

Z∗it−1X
′
it−1 Z∗it−1Z

′
it−1

 (A.1.14)
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is full rank. Consider, for instance, the upper-left element. We can write

E[X∗it−1X
′
it−1]

=E

Xit−1 −

(
T∑

s=t+1

Xis−1W
′
is−1

)(
T∑

s=t+1

Wis−1W
′
is−1

)−1

Wit−1

X ′it−1


=E

E
Xit−1 −

(
T∑

s=t+1

Xis−1W
′
is−1

)(
T∑

s=t+1

Wis−1W
′
is−1

)−1

Wit−1

X ′it−1

∣∣∣∣W t:T−1
i


=E[Xit−1X

′
it−1]− 1

T − h

( T∑
s=t+1

E
[
E[Xis−1Xit−1|W t:T−1

i ]

×W ′is−1

(
1

T − h

T∑
s=t+1

Wis−1W
′
is−1

)−1

Wit−1

])

=E[Xit−1X
′
it−1]− 1

T − h

T∑
s=t+1

κsE[Xis−1X
′
it−1] = I + II, say.

The fourth equality is based on the assumption that the Wit's are strictly exogenous. The

completion of the identi�cation argument requires a moment bound for

κs = E

[
W ′is−1

(
1

T − h

T∑
s=t+1

Wis−1W
′
is−1

)−1

Wit−1

]
,

a full rank condition on E[Xit−1X
′
it−1], and a condition that ensures that term II does not

induce a rank de�ciency in term I. Similar conditions need to be imposed on the terms that

appear in the other submatrices of (A.1.14).

A.1.2 Proofs for Section 2.5

Su�cient Conditions for Assumption 2.5.3(iii)

The high-level condition in Assumption 2.5.3(iii) is satis�ed if the following two conditions

hold:
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(a) There exists a sequence DN →∞ such that BNDN = o(1) and

exp

(
−
D2
N

2

)
= o(1)

(
inf

y∈Yπλ∩[−C′N ,CN ],λ∈Λπ
π(y|λ)

)
.

(b) There exists a shrinking neighborhood of y and a function δ(y, λ) such that for any

|a| ≤ κN → 0,

|π(y|λ)− π(y + a|λ)| ≤ δ(y, λ)|a|,

where

sup
y∈Yπλ∩[−C′N ,CN ],λ∈Λπ

∣∣∣∣BN δ(y, λ)

π(y|λ)

∣∣∣∣ = o(1).

The claim can be veri�ed as follows. For |y| ≤ Yπλ ∩ [−C ′N , CN ] and λ ∈ Λπ, by the change-

of-variable with y∗ = ỹ−y
BN

, we have

ˆ
1

BN
φ

(
ỹ − y
BN

)(
π(ỹ|λ)

π(y|λ)
− 1

)
dỹ =

ˆ
φ(y∗)

(
π(y +BNy

∗|λ)− π(y|λ)

π(y|λ)

)
dy∗.

Split the integration into two, one over |y∗| ≤ DN and other one over |y∗| > DN . By

Assumption 2.5.3(i) and (iii)-(a), uniformly in |y∗| ≤ DN and other one over |y∗| > DN ,∣∣∣∣∣
ˆ
|y∗|>DN

φ(y∗)

(
π(y +BNy

∗|λ)− π(y|λ)

π(y|λ)

)
dy∗

∣∣∣∣∣ ≤ M
´
|y∗|>DN φ(y∗)dy∗

infy∈Yπλ∩[−C′N ,CN ],λ∈Λπ π(y|λ)

≤
M exp

(
−D2

N
2

)
infy∈Yπλ∩[−C′N ,CN ],λ∈Λπ π(y|λ)

= o(1)

Also, notice that since |y∗| ≤ DN , |BNy∗| ≤ BNDN = o(1). Then, by Assumption (iii)-(b),

∣∣∣∣∣
ˆ
|y∗|≤DN

φ(y∗)

(
π(y +BNy

∗|λ)− π(y|λ)

π(y|λ)

)
dy∗

∣∣∣∣∣ ≤
ˆ
φ(y∗)y∗dy∗

∣∣∣∣δ(y, λ)

π(y|λ)
BN

∣∣∣∣
= Mo(1) = o(1)

uniformly in y ∈ Yπλ ∩ [−C ′N , CN ] and λ ∈ Λπ.
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An Example of a π(y|λ) That Satis�es Assumption 2.5.3

Consider π(y|λ) = φ(y − λ), where φ(x) = exp(−1
2x

2)/
√

2π. First, since 0 < φ(x) < 1,

Assumption 2.5.3(i) is satis�ed. To verify Assumption 2.5.3(ii), notice that because Yi0|λi ∼

N(λi, 1), we have for C ≥ 0,

P{Yi0 ≥ C|λi = λ} ≤ exp

(
−(C − λ)2

2

)
.

In this case, m(C, λ) = (C −λ)2/2. Choose K ≥ max{1,
√

2(2 + ε)} with any ε ≥ 0. Then,

lim inf
N−→∞

inf
|λ|≤CN

(m(K(
√

lnN + CN ), λ)− (2 + ε) lnN) ≥ 0,

as required for Assumption 2.5.3(ii), regardless of the speci�c rate of CN . To verify Assump-

tion 2.5.3(iii) we can use the closed-form expression for the convolution:

ˆ
1

BN
φ

(
ỹ − y
BN

)
π(ỹ|λ)dỹ =

1√
1 +B2

N

φ

 y − λ√
1 +B2

N

 .

Note that we can write

φ

 y − λ√
1 +B2

N

 = φ
(
y − λ

)
exp

(
(BN (y − λ))2

2(1 +B2
N )

)
.

Thus,

sup
y∈Yπλ∩[−C′N ,CN ], λ∈Λπ

exp

(
(BN (y − λ))2

2(1 +B2
N )

)
− 1 ≤ exp

(
(BN (C ′N + CN ))2

)
− 1 = o(1),

according to Assumption 2.5.2.
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Main Theorem

Proof of Theorem 2.5.5. The goal is to prove that for a given ε0 > 0

lim sup
N→∞

RN (Ŷ N
T+1)−Ropt

N

NEY
i,λi

θ

[
(λi − Eλi

θ,Yi [λi])
2
]

+N ε0
≤ 0, (A.1.15)

where

RN (Ŷ N
T+1) = NEY

N ,λi
θ

[(
λi + ρYiT − ŶiT+1

)2
]

+Nσ2

Ropt
N = NEYi,λiθ

[(
λi − Eλi

θ,Yi [λi]
)2
]

+Nσ2.

Here we used the fact that there is cross-sectional independence and symmetry in terms of

i. The statement is equivalent to

lim sup
N→∞

NEY
N ,λi

θ

[(
λi + ρYiT − ŶiT+1

)2
]

NEY
i,λi

θ

[
(λi − Eλi

θ,Yi [λi])
2
]

+N ε0
≤ 1. (A.1.16)

Forecast Error Decomposition. We decompose the forecast error as follows: Using the

previously developed notation, we expand the prediction error due to parameter estimation

as follows:

ŶiT+1 − λi − ρYiT

=
[
µ
(
λ̂i(ρ̂), σ̂2/T +B2

N , p̂
(−i)(λ̂i(ρ̂), Yi0)

)]CN
− µ

(
λ̂i(ρ), σ2/T +B2

N , p∗(λ̂i(ρ), Yi0)
)

+µ
(
λ̂i(ρ), σ2/T +B2

N , p∗(λ̂i(ρ), Yi0)
)
− λi

+(ρ̂− ρ)YiT

= A1i +A2i +A3i, say.
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We de�ne the density p∗(λ̂i(ρ), Yi0) as the expected value of the kernel density estimator:

p∗(λ̂i, yi0) = EY
(−i)

θ,Yi [p̂(−i)(λ̂i, yi0)]. (A.1.17)

It can be calculated as follows. Taking expectations with respect to (λ̂j , yj,0) for j 6= i yields

EY
(−i)

θ,Yi [p̂(−i)(λ̂i, yi0)]

=
∑
j 6=i

ˆ ˆ
1

BN
φ

(
λ̂i − λ̂j
BN

)
1

BN
φ

(
yi0 − yj0
BN

)
p(λ̂j , yj0)dλ̂jdyj0

=

ˆ ˆ
1

BN
φ

(
λ̂i − λ̂j
BN

)
1

BN
φ

(
yi0 − yj0
BN

)
p(λ̂j , yj0)dλ̂jdyj0.

The second equality follows from the symmetry with respect to j and the fact that we

integrate out (λ̂j , yj0). We now substitute in

p(λ̂j , yj0) =

ˆ
p(λ̂j |λj)π(λj , yj0)dλj ,

and change the order of integration. This leads to:

EY
(−i)

θ,Yi [p̂(−i)(λ̂i, yi0)]

=

ˆ ˆ [ˆ
1

BN
φ

(
λ̂i − λ̂j
BN

)
p(λ̂j |λj)dλ̂j

]
1

BN
φ

(
yi0 − yj0
BN

)
π(λj , yj0)dλjdyj0

=

ˆ ˆ
1√

σ2/T +B2
N

φ

 λ̂i − λj√
σ2/T +B2

N

 1

BN
φ

(
yi0 − yj0
BN

)
π(λj , yj0)dλjdyj0

=

ˆ
1√

σ2/T +B2
N

φ

 λ̂i − λj√
σ2/T +B2

N

[ˆ 1

BN
φ

(
yi0 − yj0
BN

)
π(yj0|λj)dyj0

]
π(λj)dλj .
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Now re-label λj and λi and yj0 as ỹi0 to obtain:

p∗(λ̂i, yi0)

=

ˆ
1√

σ2/T +B2
N

φ

 λ̂i − λi√
σ2/T +B2

N

[ˆ 1

BN
φ

(
yi0 − ỹi0
BN

)
π(ỹi0|λi)dỹi0

]
π(λi)dλi.

Risk Decomposition. Write

NEY
N

θ

[(
λi + ρYiT − ŶiT+1

)2
]

= NEY
N

θ

[
(A1i +A2i +A3i)

2
]
.

We deduce from the Cr inequality that the statement of the theorem follows if we can show

that for the ε0 > 0 given in De�nition 2.3.2:

(i) NEY
N

θ

[
A2

1i

]
= o(N ε0)

(ii) lim sup
N→∞

NEY
N ,λi

θ

[
A2

2i

]
NEY

i,λi
θ

[
(λi − Eλi

θ,Yi [λi])
2
]

+N ε0
≤ 1

(iii) NEY
N

θ

[
A2

3i

]
= o(N ε0).

The required bounds are provided in Lemmas A.1.2 (term A1i), A.1.3 (term A2i), A.1.4

(term A3i). �

Three Important Lemmas

Truncations. The remainder of the proof involves a number of truncations that we will

apply when analyzing the risk terms. For now, LN = o(N ε) will be a sequence such that

LN −→∞ as N −→∞. We will specify the rate at which LN diverges below.

1. De�ne the truncated region T1 = {|σ̂2−σ2| ≤ 1/LN}. By Chebyshev's inequality and

Assumption 2.5.4, we can bound

NP(T c1 ) = NP{|σ̂2 − σ2| > 1/LN} ≤ L2
NE[N(σ̂2 − σ2)2] = o(N ε),
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provided that L2
N = o(N ε) for any ε.

2. De�ne the truncated region T2 = {|ρ̂ − ρ| ≤ 1/L2
N}. By Chebyshev's inequality and

Assumption 2.5.4, we can bound

NP(T c2 ) = NP{|ρ̂− ρ| > 1/L2
N} ≤ L4

NE
[
N(ρ̂− ρ)2

]
= o(N ε),

provided that L4
N = o(N ε) for any ε.

3. Let Ūi,−1(ρ) = 1
T

∑T
t=2 Uit−1(ρ) and Uit(ρ) = Uit + ρUit−1 + · · ·+ ρt−1Ui1. De�ne the

truncated region T3 =
{

max1≤i≤N |Ūi,−1(ρ)| ≤M3LN
}
for some constant M3. Notice

that Ūi,−1(ρ) ∼ iidN(0, σ2
Ū

) with 0 < σ2
Ū
<∞. Thus, we have

NP(T c3 ) = NP{ max
1≤i≤N

|Ūi,−1(ρ)| ≥ LN}

≤ N

N∑
i=1

P{|Ūi,−1(ρ)| ≥ LN}

= N2P{|Ūi,−1(ρ)| ≥ LN}

≤ 2 exp

(
−
L2
N

2σ2
Ū

+ 2 lnN

)
. (A.1.18)

4. De�ne the truncated region T4 = {max1≤i≤N |Yi0| ≤ LN}. Then,

NPT c4 = NP{ max
1≤i≤N

|Yi0| ≥ LN}

≤ N
N∑
i=1

P{|Yi0| ≥ LN}

= N2

ˆ [ˆ ∞
LN

π(y0|λ)dy0 +

ˆ −LN
−∞

π(y0|λ)dy0

]
πλ(λ)dλ

≤ 2N2

ˆ
exp [−m (LN , λ)]π(λ)dλ

≤ 2CN

(
sup
|λ|≤CN

exp [−m (LN , λ) + 2 lnN ]

)
, (A.1.19)

where the last three lines hold by Assumptions 2.5.1 and 2.5.3.

5. Let Ȳi,−1 = C1(ρ)Yi0 + C2(ρ)λi + Ūi,−1(ρ), where C1(ρ) = 1
T

∑T
t=1 ρ

t−1, C2(ρ) =
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1
T

∑T
t=2(1 + · · ·+ ρt−2). According to Assumption 2.5.1 the support of λi is contained

in [−CN , CN ]. Moreover, because T is �nite, |C1(ρ)| ≤ 1 and |C2(ρ)| < T . Then, in

the region T3 ∩ T4:

max
1≤i≤N

|Ȳi,−1| ≤ |C1(ρ)| max
1≤i≤N

|λi|+ |C2(ρ)| max
1≤i≤N

|Yi0|+ max
1≤i≤N

|Ūi,−1(ρ)|

≤ CN + TLN + exp

(
−
L2
N

2σ2
Ū

+ 2 lnN

)

which leads to

max
1≤i,j≤N

|Ȳj,−1 − Ȳi,−1| ≤ 2 max
1≤i≤N

|Ȳi,−1| ≤ 2

(
CN + TLN + exp

(
−
L2
N

2σ2
Ū

+ 2 lnN

))
.

(A.1.20)

6. For the region T2 ∩ T3 ∩ T4 we obtain the bound

max
1≤i,j≤N

|(ρ̂− ρ)(Ȳj,−1 − Ȳi,−1)| ≤
2

(
CN + TLN + exp

(
− L2

N

2σ2
Ū

+ 2 lnN

))
L2
N

.(A.1.21)

Recall that CN = o(N ε) is the truncation for the support of the prior of λ (Assumption 2.5.1).

We will choose

LN = o(N ε) such that LN = max

{
σŪ
√

2(2 + ε) lnN,K(
√

lnN + CN ),
1

BN
, CN

}
,

(A.1.22)

so that we can deduce

NPT c1 = o(N ε), NPT c2 = o(N ε), NPT c3 = o(N ε), NPT c4 = o(N ε)

(A.1.20) = o(N ε), (A.1.21) = o(N ε). (A.1.23)

for any ε.

Term A1i
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Lemma A.1.2. Suppose the assumptions in Theorem 2.5.5 hold. Then,

NEY
N

θ

[( [
µ
(
λ̂i(ρ̂), σ̂2/T +B2

N , p̂
(−i)(λ̂i(ρ̂), Yi0)

)]CN
−µ
(
λ̂i(ρ), σ2/T +B2

N , p∗(λ̂i(ρ), Yi0)
))2]

= o(N ε0).

Proof of Lemma A.1.2. We begin with the following bound:

|A1i|

=

∣∣∣∣[µ(λ̂i(ρ̂), σ̂2/T +B2
N , p̂

(−i)(λ̂i(ρ̂), Yi0)
)]CN

− µ
(
λ̂i(ρ), σ2/T +B2

N , p∗(λ̂i(ρ), Yi0)
)∣∣∣∣

≤
∣∣∣∣[µ(λ̂i(ρ̂), σ̂2/T +B2

N , p̂
(−i)(λ̂i(ρ̂), Yi0)

)]CN ∣∣∣∣+

∣∣∣∣µ(λ̂i(ρ), σ2/T +B2
N , p∗(λ̂i(ρ), Yi0)

)∣∣∣∣
≤ 2CN . (A.1.24)

The last equality follows from the fact that the second term can be interpreted as a posterior

mean under the likelihood function

p∗(λ̂i, yi0|λi)

=
1√

σ2/T +B2
N

φ

 λ̂i − λi√
σ2/T +B2

N

[ˆ 1

BN
φ

(
yi0 − ỹi0
BN

)
p(ỹi0|λi)dỹi0

]
.

and the prior distribution π(λ). Because, according to Assumption 2.5.1, the prior has

support on the interval [−CN , CN ], we can deduce that the posterior mean has to be

bounded by CN as well. Then,

NEY
N

θ [A2
1i] ≤ NEY

N

θ [A2
1iI(T1)I(T2)I(T3)I(T4)] + C2

NN (PT c1 + PT c2 + PT c3 + PT c4 )

≤ NEY
N

θ [A2
1iI(T1)I(T2)I(T3)I(T4)] + o(N ε0). (A.1.25)

The bound for the second term follows from the fact that (A.1.23) and (A.1.24) hold for any

ε > 0, including ε0. In the remainder of the proof we will construct a bound for the �rst
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term on the right-hand side of (A.1.25). We proceed in two steps.

Step 1. We introduce two additional trunctation regions, T5i and T6i, which are de�ned as

follows:

T5i =
{

(λ̂i, Yi0)
∣∣ − C ′N ≤ λ̂i ≤ C ′N , −C ′N ≤ Yi0 ≤ C ′N}

T6i =

{
(λ̂i, Yi0)

∣∣∣∣ p(λ̂i, Yi0) ≥ N ε′

N

}
,

where C ′N > CN will be de�ned in (A.1.28) below and it is assumed that 0 < ε′ < ε0. In the

�rst truncation region both λ̂i and Yi0 are bounded by CN . In the second truncation region

the density p(λ̂i, Yi0) is not �high.� We will show that

NEY
N

θ [A2
1iI(T5i)I(T c6i)] ≤ o(N ε0) (A.1.26)

NEY
N

θ [A2
1iI(T c5i)] ≤ o(N ε0). (A.1.27)

Step 1.1. First, we consider the case where (λ̂i, yi0) are bounded and the density p(λ̂i, yi0)

is �low� in (A.1.26). Using the bound for |A1i| in (A.1.24) we obtain:

NEY
N

θ

[
A2

1iI(T5i)I(T c6i)]
]

≤ 4NC2
NP(T5i ∩ T c6i)

= 4NC2
N

ˆ C′N

λ̂i=−C′N

ˆ C′N

yi0=−C′N
I

{
p(λ̂i, yi0) <

N ε′

N

}
p(λ̂i, yi0)d(λ̂i, yi0)

≤ 4NC2
N

ˆ C′N

λ̂i=−C′N

ˆ C′N

yi0=−C′N

(
N ε′

N

)
dyi0dλ̂i

≤ 4C2
N (C ′N )2N ε′

= o(N ε0).

The last equality holds by the de�nition of C ′N found in (A.1.28) below. This establishes

(A.1.26).
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Step 1.2. Next, we consider the case where (λ̂i, yi0) exceed the C ′N bound and the density

p(λ̂i, yi0) is �high:�

NEY
N

θ

[
A2

1iI(T c5i)
]

≤ 4NC2
N

ˆ
T c5
p(λ̂i, yi0)d(λ̂i, yi0)

= 4NC2
N

ˆ
T c5

[ˆ
λi

1

σ/
√
T
φ

(
λ̂i − λi
σ/
√
T

)
π(yi0|λi)π(λi)dλi

]
d(λ̂i, yi0)

≤ 4NC2
N

ˆ
λi

[ˆ
|λ̂i|>C′N

1

σ/
√
T
φ

(
λ̂i − λi
σ/
√
T

)
π(yi0|λi)d(λ̂i, yi0)

+

ˆ
|yi0|>C′N

1

σ/
√
T
φ

(
λ̂i − λi
σ/
√
T

)
π(yi0|λi)d(λ̂i, yi0)

]
π(λi)dλi

= 4NC2
N

ˆ
|λi|<CN

[ˆ
|λ̂i|>C′N

1

σ/
√
T
φ

(
λ̂i − λi
σ/
√
T

)
dλ̂i

]
π(λi)dλi

+4NC2
N

ˆ
|λi|<CN

[ˆ
|yi0|>C′N

π(yi0|λi)dyi0

]
π(λi)dλi

= B1 +B2, say.

The second equality is obtained by integrating out yi0 and λ̂i, recognizing that the integrant

is a properly scaled probability density function that integrates to one. We are able to

restrict the range of integration for λi to the set |λi| < CN because, by assumption, that is

the support of the prior density π(λ)
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We will �rst analyze term B1. Note that

ˆ
|λ̂i|>C′N

1

σ/
√
T
φ

(
λ̂i − λi
σ/
√
T

)
dλ̂i

=

ˆ −√T (C′N+λi)/σ

−∞
φ(λ̃i)dλ̃i +

ˆ ∞
√
T (C′N−λi)/σ

φ(λ̃i)dλ̃i

≤
ˆ −√T (C′N−|λi|)/σ

−∞
φ(λ̃i)dλ̃i +

ˆ ∞
√
T (C′N−|λi|)/σ

φ(λ̃i)dλ̃i

≤ 2

ˆ ∞
√
T (C′N−|λi|)/σ

φ(λ̃i)dλ̃i

≤ 2
φ
(√
T (C ′N − |λi|)/σ

)
√
T (C ′N − |λi|)/σ

,

where we used the inequality
´∞
x φ(λ)dλ ≤ φ(x)/x. Assuming that N is su�ciently large

such that
√
T (C ′N − |λi|)/σ > 1

for |λi| < CN , we obtain

B1 ≤ 8NC2
N

ˆ
|λi|<CN

exp

(
− T

2σ2
(C ′N − |λi|)2

)
π(λi)dλi.

We can deduce that B1 = o(N ε) for any ε > 0 (including ε0) if

inf
|λi|<CN

T

2σ2
(C ′N − |λi|)2 > lnN,

which follows if we choose

C ′N = (1 + k)
(√

lnN + CN

)
, k > max{0,

√
2σ2/T − 1}. (A.1.28)

This is the rate that appears in Assumption 2.5.2.
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For B2, notice that under Assumption 2.5.3(ii) we obtain

B2 = 4NC2
N

ˆ
|λi|<CN

[ˆ
|yi0|>C′N

π(yi0|λi)dyi0

]
π(λi)dλi

≤ 4NC2
N

ˆ
|λi|<CN

2 exp
(
−m(C ′N , λi)

)
π(λi)dλi

≤ 8C2
N

[
sup
|λi|≤CN

exp
(
−m(C ′N , λi) + lnN

)] ˆ
|λi|<CN

π(λi)dλi

≤ o(N ε)

for any ε. This leads to the desired bound in (A.1.27).

Step 2. It remains to be shown that

NEY
N

θ

[
A2

1iI(T1)I(T2)I(T3)I(T4)I(T5i)I(T6i)
]
≤ o(N ε0). (A.1.29)

We introduce the following notation:

p̃
(−i)
i = p̂(−i)(λ̂i(ρ̂), Yi0) (A.1.30)

dp̃
(−i)
i =

1

∂λ̂i(ρ̂)
∂p̂(−i)(λ̂i(ρ̂), Yi0)

p̂
(−i)
i = p̂(−i)(λ̂i(ρ), Yi0)

dp̂
(−i)
i =

1

∂λ̂i(ρ)
∂p̂−i(λ̂i(ρ), Yi0)

pi = p(λ̂i(ρ), Yi0)

p∗i = p∗(λ̂i(ρ), Yi0)

dp∗i =
1

∂λ̂i(ρ)
∂p∗(λ̂i(ρ), Yi0).

Using the fact that |µ
(
λ̂i(ρ), Yi0, σ

2/T +B2
N , p∗(λ̂i(ρ), Yi0)

)
| ≤ CN and the triangle inequal-
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ity, we obtain

|A1i|

=

∣∣∣∣ [µ(λ̂i(ρ̂), Yi0, σ̂
2/T +B2

N , p̂
(−i)(λ̂i(ρ̂), Yi0)

)]CN
− µ

(
λ̂i(ρ), Yi0, σ

2/T +B2
N , p∗(λ̂i(ρ), Yi0)

)∣∣∣∣
≤
∣∣∣∣µ(λ̂i(ρ̂), Yi0, σ̂

2/T +B2
N , p̂

(−i)(λ̂i(ρ̂), Yi0)
)
− µ

(
λ̂i(ρ), Yi0, σ

2/T +B2
N , p∗(λ̂i(ρ), Yi0)

)∣∣∣∣
=

∣∣∣∣λ̂i(ρ̂)− λi(ρ) +

(
σ̂2

T
− σ2

T

)
dp∗i
p∗i

+

(
σ̂2

T
+B2

N

)(
dp̃

(−i)
i

p̃
(−i)
i

− dp∗i
p∗i

)∣∣∣∣
≤
∣∣ρ̂− ρ∣∣∣∣Ȳi,−1

∣∣+

∣∣∣∣ σ̂2

T
− σ2

T

∣∣∣∣∣∣∣∣dp∗ip∗i

∣∣∣∣+

(
σ̂2

T
+B2

N

) ∣∣∣∣dp̃(−i)
i

p̃
(−i)
i

− dp∗i
p∗i

∣∣∣∣,
=A11i +A12i +A13i, say.

Recall that Ȳi,−1 = 1
T

∑T
t=1 Yit−1. Using the Cauchy-Schwarz inequality, it su�ces to show

that

NEY
N

θ

[
A2

1jiI(T1)I(T2)I(T3)I(T4)I(T5i)I(T6i)
]
≤ o(N ε0), j = 1, 2, 3.

First, using a slightly more general argument than the one used in the proof of Lemma A.1.4,

we can show that

NEY
N

θ

[
A2

11i

]
= EY

N

θ

[
N(ρ̂− ρ)2Ȳi,−1

]
= o(N ε0).

Second, in the region T5i we can bound

(
σ2

T
+B2

N

) ∣∣∣∣dp∗ip∗i

∣∣∣∣ =

∣∣∣∣λ̂i(ρ)− Eθ
[
λi
∣∣λ̂i(ρ), Yi0; p∗(λ̂i(ρ), Yi0)

]∣∣∣∣ ≤ C ′N + CN , (A.1.31)

where Eθ[λi|·] is the posterior expectation of λi conditional on (λ̂i(ρ), Yi0) under the prior
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distribution p∗(λ̂i(ρ), Yi0). Using Assumption 2.5.4 we obtain the bound

NEY
N

θ

[
A2

12iI(T5i)
]
≤ 1(

σ2/T +B2
N

)2EYNθ [
N(σ̂2 − σ2)2

]
(C ′N + CN )2 = o(N ε0).

Finally, note that

A2
13iI(T1) ≤

(
σ2

T
+B2

N +
1

LN

)2
(
dp̃

(−i)
i

p̃
(−i)
i

− dp∗i
p∗i

)2

.

Thus, the desired result follows if we show

NEY
N

θ

(dp̃(−i)
i

p̃
(−i)
i

− dp∗i
p∗i

)2

I(T2)I(T3)I(T4)I(T5i)I(T6i)

 = o(N ε0) (A.1.32)

To show (A.1.32), we have to control the denominator and consider the following truncation

region:

T7i =

{
(λ̂i, Yi0)

∣∣∣∣ p̃(−i)
i >

p∗i
2

}
. (A.1.33)

We �rst analyze (A.1.32) on T7i (Step 2.1) and then on T c7i (Step 2.2). We will use the

following decomposition:

dp̃
(−i)
i

p̃
(−i)
i

− dp∗i
p∗i

=
dp̃

(−i)
i − dp∗i

p̃
(−i)
i − p∗i + p∗i

− dp∗i
p∗i

(
p̃

(−i)
i − p∗i

p̃
(−i)
i − p∗i + p∗i

)
.

We also will abbreviate I(Tl)I(Tk) = I(TlTk).
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Step 2.1. For the region T7i we have

NEY
N

θ

(dp̃(−i)
i

p̃
(−i)
i

− dp∗i
p∗i

)2

I(T2T3T4T5iT6iT7i)


≤ 2NEY

N

θ

( dp̃
(−i)
i − dp∗i

p̃
(−i)
i − p∗i + p∗i

)2

I(T2T3T4T5iT6iT7i)


+2o(N ε0)NEY

N

θ

( p̃
(−i)
i − p∗i

p̃
(−i)
i − p∗i + p∗i

)2

I(T2T3T4T5iT6iT7i)


= 2B1i + 2o(N ε0)B2i,

say. The o(N ε0) bound follows from (A.1.31). Using the mean-value theorem, we can express

√
N(dp̃

(−i)
i − dp∗i) =

√
N(dp̂

(−i)
i − dp∗i) +

√
N(ρ̂− ρ)R1i(ρ̃)

√
N(p̃

(−i)
i − p∗i) =

√
N(p̂

(−i)
i − p∗i) +

√
N(ρ̂− ρ)R2i(ρ̃),

where

R1i(ρ) = − 1

N − 1

N∑
j 6=i

1

B2
N

φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

)(
λ̂j(ρ)− λ̂i(ρ)

BN

)2 (
Ȳj,−1 − Ȳi,−1

) 1

BN
φ

(
Yj0 − Yi0
BN

)

+
1

N − 1

N∑
j 6=i

1

B3
N

φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

)(
Ȳj,−1 − Ȳi,−1

) 1

BN
φ

(
Yj0 − Yi0
BN

)
,

R2i(ρ) =
1

N − 1

N∑
j 6=i

1

BN
φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

)(
λ̂j(ρ)− λ̂i(ρ)

BN

)(
Ȳj,−1 − Ȳi,−1

) 1

BN
φ

(
Yj0 − Yi0
BN

)
,

and ρ̃ is located between ρ̂ and ρ.

We proceed with the analysis of B2. Using the lower bound for p̃
(−i)
i over the region T7i, the

Cr inequality, and the law of iterated expectations, we obtain

B2i ≤ 8EY
i

θ

[
1

p2
∗i
EY

(−i)

θ,Yi
[
N(p̂

(−i)
i − p∗i)2I(T1T2T3T4T5iT6iT7i)

]]
+8EY

i

θ

[
1

p2
∗i
EY

(−i)

θ,Yi
[
N(ρ̂− ρ)2R2

2i(ρ̃)I(T1T2T3T4T5iT6iT7i)
]]

= 8EY
i

θ [B21i +B22i],
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say.

According to Lemma A.1.7(c) (see Section A.1.2)

EY
(−i)

θ,Yi
[
N(p̂

(−i)
i − p∗i)2I(T1T2T3T4T5iT6iT7i)

]
≤ M

B2
N

piI(T5iT6i).

This leads to

EY
i

θ [B21i] ≤
M

B2
N

EY
i

θ

[
pi
p2
∗i
I(T5iT6i)

]
=

M

B2
N

ˆ
T5i∩T6i

p2
i

p2
∗i
dλ̂idyi0.

According to Lemma A.1.7(e) (see Section A.1.2)

ˆ
T5i∩T6i

p2
i

p2
∗i
dλ̂idyi0 = o(N ε).

Because 1/B2
N = o(N ε) according to Assumption 2.5.2, we can deduce that

EY
i

θ [B21i] ≤ o(N ε0).

Using the Cauchy-Schwarz Inequality, we obtain

B22i ≤
1

p2
∗i

√
EY(−i)

θ,Yi
[
N2(ρ̂− ρ)4

]√
EY(−i)

θ,Yi
[
R4

2i(ρ̃)I(T1T2T3T4T5iT6iT7i)
]
.

Using the inequality once more leads to

EY
i

θ [B22i] ≤
√
EYNθ

[
N2(ρ̂− ρ)4

]√
EYiθ

[
1

p4
∗i
EY(−i)

θ,Yi
[
R4

2i(ρ̃)I(T1T2T3T4T5iT6iT7i)
]]

≤ M

√
EYiθ

[
1

p4
∗i
EY(−i)

θ,Yi
[
R4

2i(ρ̃)I(T1T2T3T4T5iT6iT7i)
]]
.

The second inequality follows from Assumption 2.5.4. According to Lemma A.1.7(a) (see
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Section A.1.2)

EY
(−i)

θ,Yi
[
R4

2i(ρ̃)I(T1T2T3T4T5iT6iT7i)
]
≤ML4

Np
4
i I(T5iT6i),

where LN = o(N ε0) was de�ned in (A.1.22). This leads to the bound

EY
i

θ [B22i] ≤ ML2
N

√√√√EYiθ

[(
pi
p∗i

)4

I(T5iT6i)

]

= ML2
N

√ˆ
T5i∩T6i

(
pi
p∗i

)4

pidλ̂idyi0

≤ M∗L
2
N

√ˆ
T5i∩T6i

(
pi
p∗i

)4

dλ̂idyi0

≤ o(N ε0).

The second inequality holds because the density pi is bounded from above. The last in-

equality is proved in Lemma A.1.7(e) (see Section A.1.2).

We deduce that B2i = o(N ε0). A similar argument can be used to establish that B1i =

o(N ε0).

Step 2.2. Over the set T c7i, since |A1i| ≤ o(N ε0), we have

NEY
N

θ

(dp̃(−i)
i

p̃
(−i)
i

− dp∗i
p∗i

)2

I(T1T2T3T4T5iT6iT c7i)

 ≤ o(N ε0)NPY
N

θ (T1T2T3T4T5iT6iT c7i).

Notice that

T c7i =
{
p̂

(−i)
i − p∗i + (ρ̂− ρ)R1i(ρ̃) < −p∗i

2

}
⊂

{
p̂

(−i)
i − p∗i − |ρ̂− ρ||R1i(ρ̃)| < −p∗i

2

}
⊂

{
p̂

(−i)
i − p∗i < −

p∗i
4

}
∪
{
|ρ̂− ρ||R1i(ρ̃)| > p∗i

4

}
.
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Then,

NPY
(−i)

θ,Yi (T1T2T3T4T5iT6iT c7i)

≤ NPY
(−i)

θ,Yi

{
p̂

(−i)
i − p∗i < −

p∗i
4

}
+NPY

(−i)

θ,Yi

[{
|ρ̂− ρ||R2i(ρ̃)| > p∗i

4

}
I(T1T2T3T4T5iT6i)

]
≤ NPY

(−i)

θ,Yi

{
p̂

(−i)
i − p∗i < −

p∗i
4

}
+

16L4
N

p2
∗i

EY
(−i)

θ,Yi
[
R2i(ρ̃)2I(T2T3T4T5iT6iT7i)

]
≤ NPY

(−i)

θ,Yi

{
p̂

(−i)
i − p∗i < −

p∗i
4

}
+
ML4

N

p2
∗i

piI(T5iT6i).

The �rst inequality is based on the superset of T c7i from above. The second inequality is

based on Chebychev's inequality and trucation T2. The third inequality uses a version of

the result in Lemma A.1.7(a) in which the remainder is raised to the power of two instead

of to the power of four. Moreover, we use the fact that pi is bounded from above to absorb

one of the pi terms in the constant M .

In Lemma A.1.7(f) (see Section A.1.2) we apply Bernstein's inequality to bound the proba-

bility PY
(−i)

θ,Yi

{
p̂

(−i)
i − p∗i < −p∗i

4

}
uniformly over (λ̂i, Yi0) in the region T5i, showing that

NEY
i

θ

[
PY

(−i)

θ,Yi

{
p̂

(−i)
i − p∗i < −

p∗i
4

}
I(T5iT6i)

]
= o(N ε0),

as desired. Moreover, according to Lemma A.1.7(f) (see Section A.1.2)

EY
i

θ

[
pi
p2
∗i
I(T5iT6i)

]
=

ˆ
T5i∩T6i

(
pi
p∗i

)2

dλ̂idyi0 = o(N ε0),

which gives us the required result for Step 2.2. Combining the results from Steps 2.1 and

2.2 yields (A.1.29).

The bound in (A.1.25) now follows from (A.1.26), (A.1.27), and (A.1.29), which completes

the proof of the lemma. �

Term A2i
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Lemma A.1.3. Suppose the assumptions in Theorem 2.5.5 hold. Then,

lim sup
N→∞

NEY
i,λi

θ

[(
µ
(
λ̂i(ρ), σ2/T +B2

N , p∗(λ̂i(ρ), Yi0)
)
− λi

)2]
NEY

i,λi
θ

[
(λi − Eλi

θ,Yi [λi])
2
]

+N ε0
≤ 1

Proof of Lemma A.1.3. Notice that µ
(
λ̂i(ρ), Yi0, σ

2/T +B2
N , p∗(λ̂i(ρ), Yi0)

)
can be inter-

preted µ(·) as the posterior mean of λi under the p∗(·) measure. We use EY
i,λi
∗,θ [·] to denote

the joint distribution of Y i and λi under the p∗(·) measure. Let {τN} be a non-negative

sequence such that τN = o(N ε0). The desired result follows if we can show that

(i) lim sup
N→∞

NEY
i,λi
∗,θ

[(
µ
(
λ̂i(ρ), Yi0, σ

2/T +B2
N , p∗(λ̂i(ρ), Yi0)

)
− λi

)2
]

+ τN

NEY
i,λi

θ

[
(λi − Eλi

θ,Yi [λi])
2
]

+N ε0
≤ 1

(ii) lim sup
N→∞

NEY
i,λi

θ

[(
µ
(
λ̂i(ρ), Yi0, σ

2/T +B2
N , p∗(λ̂i(ρ), Yi0)

)
− λi

)2
]

NEY
i,λi
∗,θ

[(
µ
(
λ̂i(ρ), Yi0, σ2/T +B2

N , p∗(λ̂i(ρ), Yi0)
)
− λi

)2
]

+ τN

≤ 1,

where

EY
i,λi

θ

[
(λi − Eλi

θ,Yi [λi])
2
]

= EY
i,λi

θ

[(
µ
(
λ̂i(ρ), Yi0, σ

2/T, p(λ̂i(ρ), Yi0)
)
− λi

)2
]
.

Part (i): We will construct an upper bound for the numerator. Using the fact that the
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posterior mean minimizes the integrated risk, we obtain

NEYi,λi∗,θ

[(
µ
(
λ̂i(ρ), Yi0, σ

2/T +B2
N , p∗(λ̂i(ρ), Yi0)

)
− λi

)2
]

≤ NEYi,λi∗,θ

[(
µ
(
λ̂i(ρ), Yi0, σ

2/T, p(λ̂i(ρ), Yi0)
)
− λi

)2
]

= N

ˆ ˆ
p∗(λ̂i, yi0)

(
µ
(
λ̂i(ρ), yi0, σ

2/T, p(λ̂i(ρ), yi0)
)
− λi

)2
dλ̂idyi0

≤ N

ˆ ˆ
p∗(λ̂i, yi0)

(
µ
(
λ̂i(ρ), yi0, σ

2/T, p(λ̂i(ρ), yi0)
)
− λi

)2
I(T5iT6i)dλ̂idyi0

+N4C2
NP(T c5i ∪ T c6i)

= N

ˆ ˆ
p∗(λ̂i, yi0)

(
µ
(
λ̂i(ρ), yi0, σ

2/T, p(λ̂i(ρ), yi0)
)
− λi

)2
I(T5iT6i)dλ̂idyi0 + o(N ε0).

The second inequality uses the fact that |λi| ≤ CN and therefore the posterior mean has to

be bounded in absolute value by CN as well. The last line follows from an argument similar

to that used in Step 1 of the proof of Lemma A.1.2.

According to Lemma A.1.6, we obtain the following uniform bound over the region T5i∩T6i:

p∗(λ̂i, yi0) ≤ (1 + o(1))p(λ̂i, yi0).

Therefore,

ˆ ˆ
p∗(λ̂i, yi0)

(
µ
(
λ̂i(ρ), yi0, σ

2/T, p(λ̂i(ρ), yi0)
)
− λi

)2
I(T5iT6i)dλ̂idyi0

= (1 + o(1))

ˆ ˆ
p(λ̂i, yi0)

(
µ
(
λ̂i(ρ), yi0, σ

2/T, p(λ̂i(ρ), yi0)
)
− λi

)2
I(T5iT6i)dλ̂idyi0.
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In turn, we obtain the following bound:

NEYi,λi∗,θ

[(
µ
(
λ̂i(ρ), Yi0, σ

2/T +B2
N , p∗(λ̂i(ρ), Yi0)

)
− λi

)2
]

+ τN

≤ (1 + o(1))N

ˆ ˆ
p(λ̂i, yi0)

(
µ
(
λ̂i(ρ), yi0, σ

2/T, p(λ̂i(ρ), yi0)
)
− λi

)2
I(T5iT6i)dλ̂idyi0

+o(N ε0)

≤ (1 + o(1))NEY
i,λi

θ

[
(λi − Eλi

θ,Yi [λi])
2
]

+ o(N ε0)

≤ (1 + o(1))NEY
i,λi

θ

[
(λi − Eλi

θ,Yi [λi])
2
]

+N ε0 ,

which yields the required result for Part (i).

Part (ii): Similar to the proof of Part (i), we construct an upper bound for the numerator

as follows

NEYi,λiθ

[(
µ
(
λ̂i(ρ), Yi0, σ

2/T +B2
N , p∗(λ̂i(ρ), Yi0)

)
− λi

)2
]

=N

¨
p(λ̂i, yi0)

(
µ
(
λ̂i(ρ), yi0, σ

2/T +B2
N , p∗(λ̂i(ρ), yi0)

)
− λi

)2
dλ̂idyi0

≤
¨

p∗(λ̂i, yi0)
p(λ̂i, yi0)

p∗(λ̂i, yi0)

(
µ
(
λ̂i(ρ), yi0, σ

2/T +B2
N , p∗(λ̂i(ρ), yi0)

)
− λi

)2
I(T5iT6i)dλ̂idyi0

+N4C2
NP(T c5i ∪ T c6i)

=(1 + o(1))N

¨
p∗(λ̂i, yi0)

(
µ
(
λ̂i(ρ), yi0, σ

2/T +B2
N , p∗(λ̂i(ρ), yi0)

)
− λi

)2

× I(T5iT6i)dλ̂idyi0 + o(N ε), any ε > 0

≤(1 + o(1))NEYi,λi∗,θ

[(
µ
(
λ̂i(ρ), Yi0, σ

2/T +B2
N , p∗(λ̂i(ρ), Yi0)

)
− λi

)2
]

+ τN .

For the last line we used the fact that τN = o(N ε0). We now have the required result for

Part (ii).

Term A3i
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Lemma A.1.4. Suppose the assumptions in Theorem 2.5.5 hold. Then, for any ε > 0:

NEY
N

θ

[(
ρ̂− ρ

)2
Y 2
iT

]
= o(N ε).

Proof of Lemma A.1.4. Using the Cauchy-Schwarz inequality, we can bound

EY
N

θ

[(√
N(ρ̂− ρ)

)2
Y 2
iT

]
≤

√
EYNθ

[(√
N(ρ̂− ρ)

)4]EYNθ [
Y 4
iT

]
.

By Assumption 2.5.4, we have

EY
N

θ

[(√
N(ρ̂− ρ)

)4] ≤ o(N ε)

for any ε > 0.

For the second term, write

YiT = ρTYi0 +
T−1∑
τ=0

ρτ (λi + UiT−τ ).

Using the Cr inequality and the assumptions that |ρ| < 1 and Uit ∼ iidN(0, σ2), we deduce

that there are �nite constants M1, M2, M3 such that

EY
N

θ

[
Y 4
iT

]
≤ M1EY

N

θ

[
Y 4
i0

]
+M2EY

N

θ

[
λ4
i

]
+M3EY

N

θ

[
U4
i1

]
= M1EY

N

θ

[
Y 4
i0

]
+ o(N ε0) + o(N ε)

for any ε, where the last line holds because |λi| ≤ CN according to Assumption 2.5.1 and

Ui1 is normally distributed and therefore all its moments are �nite.

The desired o(N ε) bound for the fourth moment of Yi0 can be obtained as follows (we are
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dropping subscripts and superscripts from expectation and probability operators):

E
[
|Yi0|4

]
= 4E

[ˆ ∞
0

I{|Yi0| ≥ τ}τ3dτ

]
= 4E

[ˆ ∞
0

P{|Yi0| ≥ τ |λi}τ3dτ

]
= 4E

[ˆ C̄

0
P{|Yi0| ≥ τ |λi}τ3dτ

]
+ E

[ˆ ∞
C̄

P{|Yi0| ≥ τ |λi}τ3dτ

]
≤ M +

ˆ [ˆ ∞
C̄

exp (−m(τ, λ)) τ3dτ

]
πλ(λ)dλ

for some �nite constant M , where C̄ is the constant in Assumption 2.5.3(ii).

Notice that on the domain [C̄,∞), the function exp (−m(τ, λ)) in decreasing in τ , while

the function τ3 is increasing in τ . W.l.o.g, suppose that C̄ = (1 + k)(
√

lnN∗ + CN∗) and

(1 + k)(
√

lnN + CN ) > 2 lnN for all N ≥ N∗. Now, let τN = (1 + k)(
√

lnN + CN ) and

bound the integral with a Riemann sum:

ˆ ∞
C̄

exp (−m(τ, λ)) τ3dτ ≤
∞∑

N=N∗

exp (−m(τN , λ)) τ3
N+1(τN+1 − τN )

≤
∞∑

N=N∗

exp (−m(τN , λ)) τ4
N+1

=
∞∑

N=N∗

exp (−m(τN , λ) + 4 ln τN+1)

≤
∞∑

N=N∗

exp (−(2 + ε) lnN + 4 ln τN+1)

=

∞∑
N=N∗

τ4
N+1

N2+ε
,

for some constant ε ≥ 0. The last inequality holds by Assumption 2.5.3(ii). Because

τ4
N = o(N ε), there exists a �nite constant M such that

∞∑
N=N∗

τ4
N+1

N2+ε
≤M

∞∑
N=N∗

1

N2
<∞.
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This leads to the desired result

E
[
|Yi0|4

]
<∞. �

Further Details

We now provide more detailed derivations for some of the bounds used in Section A.1.2.

Recall that

R1i(ρ) =− 1

N − 1

N∑
j 6=i

1

B2
N

φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

)(
λ̂j(ρ)− λ̂i(ρ)

BN

)2 (
Ȳj,−1 − Ȳi,−1

) 1

BN
φ

(
Yj0 − Yi0
BN

)

+
1

N − 1

N∑
j 6=i

1

B3
N

φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

)(
Ȳj,−1 − Ȳi,−1

) 1

BN
φ

(
Yj0 − Yi0
BN

)

R2i(ρ) =
1

N − 1

N∑
j 6=i

1

BN
φ

(
λ̂j(ρ)− λ̂i(ρ)

BN

)(
λ̂j(ρ)− λ̂i(ρ)

BN

)(
Ȳj,−1 − Ȳi,−1

) 1

BN
φ

(
Yj0 − Yi0
BN

)

For expositional purposes, our analysis focuses on the slightly simpler term R2i(ρ̃). The

extension to R1i(ρ̃) is fairly straightforward. By de�nition,

λ̂j(ρ̃)− λ̂i(ρ̃) = λ̂j(ρ)− λ̂i(ρ)− (ρ̃− ρ)(Ȳj,−1 − Ȳi,−1).

Therefore,

R2i(ρ̃) =
1

N − 1

N∑
j 6=i

1

BN
φ

(
λ̂j(ρ)− λ̂i(ρ)

BN
− (ρ̃− ρ)

(
Ȳj,−1 − Ȳi,−1

BN

))

×

(
λ̂j(ρ)− λ̂i(ρ)

BN
− (ρ̃− ρ)

(
Ȳj,−1 − Ȳi,−1

BN

))

×
(
Ȳj,−1 − Ȳi,−1

) 1

BN
φ

(
Yj0 − Yi0
BN

)
.

Consider the region T2 ∩ T3 ∩ T4. First, using (A.1.21) we can bound

max
1≤i,i≤N

∣∣(ρ̂− ρ)(Ȳj,−1 − Ȳi,−1)
∣∣ ≤ M

LN
.
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Thus,

φ

(
λ̂j(ρ)− λ̂i(ρ)

BN
− (ρ̃− ρ)

(
Ȳj,−1 − Ȳi,−1

BN

))
I(T2T3T4)

≤ φ

(
λ̂j(ρ)− λ̂i(ρ)

BN
+

(
M

LNBN

))
I

{
λ̂j(ρ)− λ̂i(ρ)

BN
≤ − M

LNBN

}

+φ(0)I

{∣∣∣∣∣ λ̂j(ρ)− λ̂i(ρ)

BN

∣∣∣∣∣ ≤ M

LNBN

}

+φ

(
λ̂j(ρ)− λ̂i(ρ)

BN
−
(

M

LNBN

))
I

{
λ̂j(ρ)− λ̂i(ρ)

BN
≥ M

LNBN

}

= φ̄

(
λ̂j(ρ)− λ̂i(ρ)

BN

)
,

say. The function φ̄(x) is �at for |x| < M/LNBN and is proportional to a Gaussian density

outside of this region.

Second, we can use the bound

∣∣∣∣∣ λ̂j(ρ)− λ̂i(ρ)

BN
− (ρ̃− ρ)

(
Ȳj,−1 − Ȳi,−1

BN

)∣∣∣∣∣ ≤
∣∣∣∣∣ λ̂j(ρ)− λ̂i(ρ)

BN

∣∣∣∣∣+
M

LNBN
.

Third, for the region T3 ∩ T4 we can deduce from (A.1.20) that

max
1≤i,j≤N

|Ȳj,−1 − Ȳi,−1| ≤MLN .

Therefore, ∣∣Ȳj,−1 − Ȳi,−1

∣∣ 1

BN
φ

(
Yj0 − Yi0
BN

)
≤ MLN

BN
φ

(
Yj0 − Yi0
BN

)
.

Now, de�ne the function

φ̄∗(x) = φ̄ (x)

(
|x|+ M

LNBN

)
.

Because for random variables with bounded densities and Gaussian tails all moments exist

and because LNBN > 1 by de�nition of LN in (A.1.22), the function φ̄∗(x) has the property
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that for any �nite positive integer m there is a �nite constant M such that

ˆ
φ̄∗(x)mdx ≤M.

Combining the previous results we obtain the following bound for R2i(ρ̃):

∣∣R2i(ρ̃)I(T2T3T4)
∣∣ ≤ MLN

N − 1

N∑
j 6=i

1

BN
φ̄∗

(
λ̂j(ρ)− λ̂i(ρ)

BN

)
1

BN
φ

(
Yj0 − Yi0
BN

)
. (A.1.34)

For the subsequent analysis it is convenient de�ne the function

f(λ̂j − λ̂i, Yj0 − Yi0) =
1

B2
N

φ̄∗

(
λ̂j(ρ)− λ̂i(ρ)

BN

)
φ

(
Yj0 − Yi0
BN

)
. (A.1.35)

In the remainder of this section we will state and prove three technical lemmas that establish

moment bounds for R1i(ρ̃) and R2i(ρ̃). The bounds are used in Section A.1.2. We will

abbreviate EY
(−i)

θ,Yi [·] = Ei[·] and simply use E[·] to denote EY
N

θ [·].

Lemma A.1.5. Suppose the assumptions required for Theorem 2.5.5 are satis�ed. Then,

for a �nite positive integer m, over the region T5i, we have

Ei
[
fm(λ̂j − λ̂i, Yj0 − Yi0)

]
≤ M

B
2(m−1)
N

pi.

Proof of Lemma A.1.5. We have

Ei
[
fm(λ̂j − λ̂i, Yj0 − Yi0)

]
=

ˆ (
1

BN
φ̄∗

(
λ̂− λ̂i
BN

)
1

BN
φ

(
y0 − Yi0
BN

))m
p(λ̂, y0)d(λ̂, y0)

=
1

B
2(m−1)
N

ˆ {ˆ
1

BN
φ̄∗

(
λ̂− λ̂i
BN

)m
1

BN
φ

(
y0 − Yi0
BN

)m
p(λ̂, y0|λ)d(λ̂, y0)

}
π(λ)dλ.
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The inner integral is

ˆ
1

BN
φ̄∗

(
λ̂− λ̂i
BN

)m
1

BN
φ

(
y0 − Yi0
BN

)m
p(λ̂, y0|λ)d(λ̂, y0)

=

ˆ
1

BN
φ̄∗

(
λ̂− λ̂i
BN

)m
1

σ/
√
T

exp

−1

2

(
λ̂− λi
σ/
√
T

)2
 dλ̂

×
ˆ

1

BN
φ

(
y0 − Yi0
BN

)m
π(y0|λ)dy0

= I1 × I2,

say.

Notice that

I1 =

ˆ
1

BN
φ̄∗

(
λ̂− λ̂i
BN

)m
1

σ/
√
T

exp

−1

2

(
λ̂− λi
σ/
√
T

)2
 dλ̂

=

ˆ
φ̄∗(λ

∗)m
1

σ/
√
T

exp

−1

2

(
λ̂i − λi +BNλ

∗

σ/
√
T

)2
 dλ∗

=

ˆ
φ̄∗(λ

∗)m exp

(
−
(

(λ̂i − λi)BNλ∗
) 1

σ2/T

)
exp

(
−1

2

(
BNλ

∗

σ/
√
T

)2
)
dλ∗

×

 1

σ/
√
T

exp

−1

2

(
λ̂i − λi
σ/
√
T

)2


≤ M

(ˆ
φ̄∗(λ

∗)m exp (vNλ
∗) dλ∗

) 1

σ/
√
T

exp

−1

2

(
λ̂i − λi
σ/
√
T

)2


≤ M

 1

σ/
√
T

exp

−1

2

(
λ̂i − λi
σ/
√
T

)2
 = Mp(λ̂i|λi, Yi0).

We used the change-of-variable λ∗ = (λ̂ − λ̂i)/BN to replace λ̂. Here the second in-

equality holds because the exponential function exp

(
−1

2

(
BNλ

∗

σ/
√
T

)2
)
is bounded by a con-

stant. Moreover, under truncation T5i, |λ̂i| ≤ C ′N and the support of λi is bounded by

[−CN , CN ] (under Assumption 2.5.1). Thus, vN = BN (C ′N + 2CN ). According to As-

sumption 2.5.2 vN = BN (C ′N + 2CN ) = o(1). Thus, the last inequality holds because
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´
φ̄∗(λ

∗)m exp (vNλ
∗) dλ∗ is �nite. Finally, note that p(λ̂i|λi, Yi0) = p(λ̂i|λi).

We now proceed with a bound for the second integral, I2. Using the fact that the Gaussian

pdf φ(x) is bounded, we can write

I2 =

ˆ
1

BN
φ

(
y0 − Yi0
BN

)m
π(y0|λ)dy0

≤ M

ˆ
1

BN
φ

(
y0 − Yi0
BN

)
π(y0|λ)dy0

= M
(
1 + o(1)

)
π(Yi0|λ),

uniformly in |y0| ≤ C ′N and |λ| ≤ CN . Here the last equality follows from Assump-

tion 2.5.3(iii). Combining the bounds for I1 and I2 and integrating over λ, we obtain

Ei
[
fm(λ̂j − λ̂i, Yj0 − Yi0)

]
=

1

B
2(m−1)
N

ˆ
I1 × I2π(λi)dλi

≤ 1

B
2(m−1)
N

M
(
1 + o(1)

) ˆ
p(λ̂i|λi, Yi0)p(Yi0|λi)π(λi)dλi

=
1

B
2(m−1)
N

M
(
1 + o(1)

)
pi,

as required.

Lemma A.1.6. Suppose the assumptions required for Theorem 2.5.5 are satis�ed. Then,

sup
(λ̂i,Yi0)∈T5i∩T6i

pi
p∗i

= 1 + o(1) (A.1.36)

sup
(λ̂i,Yi0)∈T5i∩T6i

p∗i
pi

= 1 + o(1). (A.1.37)

Proof of Lemma A.1.6. We begin by verifying (A.1.36). Let

p(λ̂i, yi0|λi) =
1√
σ2/T

φ

(
λ̂i − λi√
σ2/T

)
π(yi0|λi)

p∗(λ̂i, yi0|λi) =
1√

B2
N + σ2/T

φ

 λ̂i − λi√
B2
N + σ2/T

[ˆ 1

BN
φ

(
yi0 − ỹi0
BN

)
π(ỹi0|λi)dỹi0

]
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such that

pi =

ˆ
p(λ̂i, yi0|λi)π(λi)dλi, p∗i =

ˆ
p∗(λ̂i, yi0|λi)π(λi)dλi.

Because |λi| ≤ CN by Assumption 2.5.1 and |λ̂i| ≤ C ′N in the region T5i, for some �nite

constant M we have

1√
σ2/T

φ

(
λ̂i − λi√
σ2/T

)
=

1√
B2
N + σ2/T

φ

 λ̂i − λi√
B2
N + σ2/T


×

√
B2
N + σ2/T√
σ2/T

exp

−1

2

 λ̂i − λi√
B2
N + σ2/T

2

B2
N

σ2/T


≤ 1√

B2
N + σ2/T

φ

 λ̂i − λi√
B2
N + σ2/T


×
√

1 +MB2
N exp(−M(C ′N + CN )2B2

N )

= (1 + o(1))
1√

B2
N + σ2/T

φ

 λ̂i − λi√
B2
N + σ2/T

 , (A.1.38)

where o(1) is uniform in (λ̂i, Yi0) ∈ T5i ∩ T6i. Here we used Assumption 2.5.2 which implies

that vN = (C ′N + CN )BN = o(1).

According to Assumption 2.5.3(iii),

ˆ
1

BN
φ

(
yi0 − ỹi0
BN

)
π(ỹi0|λi)dỹi0 = (1 + o(1))π(yi0|λi)

uniformly in |yi0| ≤ C ′N and |λi| ≤ CN . This implies that

π(yi0|λi) ≤ (1 + o(1))

ˆ
1

BN
φ

(
yi0 − ỹi0
BN

)
π(ỹi0|λi)dỹi0. (A.1.39)

uniformly in |yi0| ≤ C ′N and |λi| ≤ CN .
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Then, by combining the bounds in (A.1.38) and (A.1.39) we deduce

p(λ̂i, yi0|λi)− p∗(λ̂i, yi0|λi)

=
1√
σ2/T

φ

(
λ̂i − λi√
σ2/T

)
π(yi0|λi)

− 1√
B2
N + σ2/T

φ

 λ̂i − λi√
B2
N + σ2/T

ˆ 1

BN
φ

(
yi0 − ỹi0
BN

)
π(ỹi0|λi)dỹi0

≤
[
(1 + o(1))2 − 1

] 1√
B2
N + σ2/T

φ

 λ̂i − λi√
B2
N + σ2/T

ˆ 1

BN
φ

(
yi0 − ỹi0
BN

)
π(ỹi0|λi)dỹi0

= o(1) · p∗(λ̂i, yi0|λi).

Note that the o(1) term does not depend on (λ̂i, Yi0) ∈ T5i ∩ T6i.

We deduce that

sup
(λ̂i,Yi0)∈T5i∩T6i

pi
p∗i

= 1 + sup
(λ̂i,Yi0)∈T5i∩T6i

pi − p∗i
p∗i

= 1 + sup
(λ̂i,Yi0)∈T5i∩T6i

´ [
p(λ̂i, yi0|λi)− p∗(λ̂i, yi0|λi)

]
π(λi)dλi

p∗i

= 1 + o(1).

This proves (A.1.36). A similar argument can be used to establish (A.1.37). �

Lemma A.1.7. Under the assumptions required for Theorem 2.5.5, we obtain the following

bounds:

(a) Ei
[
R4

2i(ρ̃)I(T2T3T4T5iT6iT7i)
]
≤ML4

Np
4
i I(T5iT6i)

(b) Ei
[
R4

1iI(T2T3T4T5iT6iT7i)
]
≤M L4

N

B4
N
p4
i I(T5iT6i)

(c) Ei
[
N(p̂

(−i)
i − p∗i)2I(T2T3T4T5iT6iT7i)

]
≤ M

B2
N
piI(T5iT6i)

(d) Ei
[
N(dp̂

(−i)
i − dp∗i)2I(T2T3T4T5iT6iT7i)

]
≤ M

B2
N
piI(T5iT6i)
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(e)
´
T5i∩T6i

(
pi
p∗i

)m
dλ̂idyi0 = o(N ε), m > 1.

(f) NE
[
Pi
{
p̂

(−i)
i − p∗i < −p∗i/4

}
I(T5iT6i)

]
= o(N ε)

Proof of Lemma A.1.7. Part (a). Recall the following de�nitions

φ̄(x) = φ

(
x+

M

LNBN

)
I
{
x ≤ − M

LNBN

}
+ φ(0)I

{
|x| ≤ M

LNBN

}
+φ

(
x− M

LNBN

)
I
{
x ≥ M

LNBN

}
φ̄∗(x) = φ̄ (x)

(
|x|+ M

LNBN

)
.

First, recall that according to (A.1.34), in the region T2 ∩ T3 ∩ T4

|R2i(ρ̃)| ≤ MLN
N − 1

N∑
j 6=i

f(λ̂j − λ̂i, Yj0 − Yi0).

Then,

|R2i(ρ̃)|4 ≤

MLN
N − 1

N∑
j 6=i

f(λ̂j − λ̂i, Yj0 − Yi0)

4

=

[
MLN
N − 1

N∑
j 6=i

{
f(λ̂j − λ̂i, Yj0 − Yi0)− Ei[f(λ̂j − λ̂i, Yj0 − Yi0)]

+Ei[f(λ̂j − λ̂i, Yj0 − Yi0)]

}]4

≤ ML4
N

 1

N − 1

N∑
j 6=i

(
f(λ̂j − λ̂i, Yj0 − Yi0)− Ei[f(λ̂j − λ̂i, Yj0 − Yi0)]

)4

+ML4
N

[
Ei[f(λ̂j − λ̂i, Yj0 − Yi0)]

]4

= ML4
N

(
A1 +A2

)
,

say. The second inequality holds because |x+ y|4 ≤ 8(|x|4 + |y|4).
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The term (N − 1)4A1 takes the form

(∑
aj

)4
=

∑ a2
j + 2

∑
j

∑
i>j

ajai

2

=
(∑

a2
j

)2
+ 4

(∑
a2
j

)∑
j

∑
i>j

ajai

+ 4

∑
j

∑
i>j

ajai

2

=
∑

a4
j + 6

∑
j

∑
i>j

a2
ja

2
i

+4
(∑

a2
j

)∑
j

∑
i>j

ajai

+ 4
∑
j

∑
i>j

∑
l 6=j

∑
k>l

ajaialak,

where

aj = f(λ̂j − λ̂i, Yj0 − Yi0)− Ei[f(λ̂j − λ̂i, Yj0 − Yi0)], j 6= i.

Notice that conditional on (λ̂i(ρ), Yi0), the random variables aj have mean zero and are iid

across j 6= i. This implies that

Ei
[(∑

aj

)4
]

=
∑

Ei
[
a4
j

]
+ 6

∑
j

∑
i>j

Ei
[
a2
ja

2
i

]
.

The remaining terms drop out because they involve at least one term aj that is raised to

the power of one and therefore has mean zero.

Using the CR inequality, Jensen's inequality, the conditional independence of a2
j and a

2
i and

Lemma A.1.5, we can bound

Ei[a4
j ] ≤

M

B6
N

pi, Ei[a2
ja

2
i ] ≤

M

B4
N

p2
i .

Thus, in the region T2 ∩ T3 ∩ T4 ∩ T5i ∩ T6i

Ei[A1] ≤ Mpi
N3B6

N

+
Mp2

i

N2B4
N

≤Mp4
i .

The second inequality holds because over T6i, pi ≥ Nε′

N ≥ M
NB2

N
. Using a similar argument,
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we can also deduce that

Ei[A2] ≤Mp4
i ,

which proves Part (a) of the lemma.

Part (b). Similar to proof of Part (a).

Part (c). Can be established using existing results for the variance of a kernel density

estimator.

Part (d). Similar to proof of Part (c).

Part (e). We have the desired result because by Lemma A.1.6 we can choose a constant c

such that

pi − p∗i ≤ cp∗i

over truncations T5i and T6i. Thus,

(
pi
p∗i

)m
=

(
1 +

pi − p∗i
p∗i

)m
≤ (1 + c)m.

We deduce that

ˆ
T5i∩T6i

(
pi
p∗i

)m
dλ̂idyi0 ≤ (1 + c)m

ˆ
T5i∩T6i

dλ̂idyi0 =
(
2C ′N

)2
= o(N ε),

as required.

Part (f). De�ne

ψi(λ̂j , Yj0) = φ

(
λ̂j − λ̂i
BN

)
φ

(
Yj0 − Yi0
BN

)
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and write

p̂
(−i)
i − p∗i =

1

N − 1

N∑
j 6=i

{
1

BN
φ

(
λ̂j − λ̂i
BN

)
1

BN
φ

(
Yj0 − Yi0
BN

)

− Ei

[
1

BN
φ

(
λ̂j − λ̂i
BN

)
1

BN
φ

(
Yj0 − Yi0
BN

)]}

=
1

B2
N (N − 1)

N∑
j 6=i

(
ψi(λ̂j , Yj0)− Ei[ψi(λ̂j , Yj0)]

)
.

Notice that for ψi(λj , Yj0) ∼ iid across j 6= i with |ψi(λ̂j , Yj0)| ≤M for some �nite constant

M . Then, by Bernstein's inequality 1 (e.g., Lemma 19.32 in van der Vaart (1998)),

NPi
{
p̂

(−i)
i − p∗i < −

p∗i
4

}
I(T5iT6i)

= NPi

 1

B2
N (N − 1)

N∑
j 6=i

(
ψi(λ̂j , Yj0)− Ei[ψi(λ̂j , Yj0)]

)
< −p∗i

4

 I(T5iT6i)

≤ 2N exp

(
−1

4

B4
N (N − 1)p2

∗i/16

Ei[ψi(λ̂j , Yj0)2] +MB2
Npi∗/4

)
I(T5iT6i).

Using an argument similar to the proof of Lemma A.1.5 one can show that

Ei[ψi(λj , Yj0)2/B4
N ] ≤Mpi/B

2
N .

In turn

NPi
{
p̂

(−i)
i − p∗i < −

p∗i
4

}
I(T5iT6i) ≤ 2 exp

(
−MNB2

N

p2
∗i

pi + p∗i
+ lnN

)
I(T5iT6i).

From Lemma A.1.6 we can �nd a constant c such that pi ≤ (1 + c)p∗i and p∗i ≤ (1 + c)pi.

1For a bounded function f and a sequence of iid random variables Xi,

P

{∣∣∣∣∣ 1√
N

N∑
i=1

(f(Xi)− E[f(Xi)])

∣∣∣∣∣ > x

}
≤ 2 exp

(
−1

4

x2

E[f(Xi)2] + 1√
N
x supx |f(x)|

)
.
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This leads to

p2
∗i

pi + p∗i
≥ pi

(2 + c)(1 + c)2
.

Then, on the region T6i

NE
[
Pi
{
p̂

(−i)
i − p∗i < −

p∗i
4

}
I(T5iT6i)

]
≤ 2E

[
exp

(
−MNB2

N

p2
∗i

pi + p∗i
+ lnN

)
I(T5iT6i)

]
≤ 2E

[
exp

(
−MNB2

Npi + lnN
)
I(T5iT6i)

]
≤ 2 exp

(
−MB2

NN
ε′ + lnN

)
= o(N ε),

as desired. �

A.1.3 Derivations for Section 2.6

Consistency of QMLE in Experiments 2 and 3

We show for the basic dynamic panel data model that even if the Gaussian correlated

random e�ects distribution is misspeci�ed, the pseudo-true value of the QMLE estimator of

θ corresponds to the �true� θ0. We do so, by calculating

(θ∗, ξ∗) = argmaxθ,ξ EYθ0 [ln p(Y,X2|H, θ, ξ)] , (A.1.40)

and verifying that θ∗ = θ0. Here, p(y, x2|h, θ, ξ) is given in (2.4.10). Because the observations

are conditionally independent across i and the likelihood function is symmetric with respect

to i, we can drop the i subscripts.

We make some adjustment to the notation. The covariance matrix Σ only depends on

γ, but not on (ρ, α). Moreover, we will split ξ into the parameters that characterize the
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conditional mean of λ, denoted by Φ, and ω, which are the non-redundant elements of the

prior covariance matrix Ω. Finally, we de�ne

Ỹ (θ1) = Y −Xρ− Zα

with the understanding that θ1 = (ρ, α) and excludes γ. Moreover, let φ = vec(Φ′) and

h̃′ = I ⊗ h′, such that we can write Φh = h̃′φ. Using this notation, we can write

ln p(y, x2|h, θ1, γ, φ, ω) (A.1.41)

= C − 1

2
ln |Σ(γ)| − 1

2

(
ỹ(θ1)− wλ̂(θ)

)′
Σ−1(γ)

(
ỹ(θ1)− wλ̂(θ)

)
−1

2
ln
∣∣Ω∣∣+

1

2
ln
∣∣Ω̄(γ, ω)

∣∣
−1

2

(
λ̂(θ)′w′Σ−1(γ)wλ̂(θ) + φ′h̃Ω−1h̃′φ− λ̄′(θ, ξ)Ω̄−1(γ, ω)λ̄(θ, ξ)

)
,

where

λ̂(θ) = (w′Σ−1(γ)w)−1w′Σ−1(γ)ỹ(θ1)

Ω̄−1(γ, ω) = Ω−1 + w′Σ−1(γ)w, λ̄(θ, ξ) = Ω̄(γ, ω)
(
Ω−1h̃′φ+ w′Σ−1(γ)wλ̂(θ)

)
.

In the basic dynamic panel data model λ is scalar, w = ι, Σ(γ) = γI, x2 = ∅, z = ∅,

h = [1, y0]′, Ω = ω2. Thus, splitting the (T − 1)(ln γ2)/2, we can write

ln p(y|h, ρ, γ, φ, ω) = C − T − 1

2
ln |γ2| − 1

2γ2

(
ỹ(ρ)− ιλ̂(ρ)

)′(
ỹ(ρ)− ιλ̂(ρ)

)
−1

2
ln
∣∣ω2
∣∣− 1

2
ln
∣∣γ2/T

∣∣+
1

2
ln(1/T ) +

1

2
ln
∣∣Ω̄(γ, ω)

∣∣
−1

2

(
T

γ2
λ̂2(ρ) +

1

ω2
φ′h̃h̃′φ− 1

Ω̄(γ, ω)
λ̄2(θ, ξ)

)
,
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where

λ̂(ρ) =
1

T
ι′ỹ(ρ)

Ω̄−1(γ, ω) =
1

ω2
+

1

γ2/T
, λ̄(θ, ξ) = Ω̄(γ, ω)

(
1

ω2
h̃′φ+

T

γ2
λ̂(ρ)

)
.

Note that

−1

2
ln
∣∣ω2
∣∣+

1

2
ln
∣∣T/γ2

∣∣+
1

2
ln
∣∣Ω̄(γ, ω)

∣∣ =
1

2
ln

∣∣∣∣∣
1
ω2

T
γ2

1
ω2 + T

γ2

∣∣∣∣∣ = −1

2
ln
∣∣ω2 + γ2/T

∣∣.
In turn, we can write

ln p(y|h, ρ, γ, φ, ω)

= C − T − 1

2
ln |γ2| − 1

2γ2
ỹ(ρ)′(I − ιι′/T )ỹ(ρ)− 1

2
ln
∣∣ω2 + γ2/T

∣∣
−1

2

(
T

γ2
λ̂2(ρ) +

1

ω2
φ′h̃h̃′φ− ω2γ2/T

ω2 + γ2/T

(
1

ω2
h̃′φ+

T

γ2
λ̂(ρ)

)2)
= C − T − 1

2
ln |γ2| − 1

2γ2
ỹ(ρ)′(I − ιι′/T )ỹ(ρ)− 1

2
ln
∣∣ω2 + γ2/T

∣∣
− 1

2(ω2 + γ2/T )

(
φ′h̃h̃′φ− 2λ̂(ρ)h̃′φ+ λ̂2(ρ)

)
.

Taking expectations (we omit the subscripts from the expectation operator), we can write

E
[

ln p(Y |H, ρ, γ, φ, ω)
]

(A.1.42)

= C − T − 1

2
ln |γ2| − 1

2γ2
E
[
Ỹ (ρ)′(I − ιι′/T )Ỹ (ρ)

]
− 1

2
ln
∣∣ω2 + γ2/T

∣∣
− 1

2(ω2 + γ2/T )

((
φ−

(
E[H̃H̃ ′]

)−1E[H̃λ̂(ρ)]
)′E[H̃H̃ ′]

(
φ−

(
E[H̃H̃ ′]

)−1E[H̃λ̂(ρ)]
)

−E[λ̂(ρ)H̃ ′]
(
E[H̃H̃ ′]

)−1E[H̃λ̂(ρ)] + E[λ̂2(ρ)]

)
.

We deduce that

φ∗(ρ) =
(
E[H̃H̃ ′]

)−1E[H̃λ̂(ρ)]. (A.1.43)

To evaluate φ∗(ρ0), note that λ̂(ρ0) = λ+ ι′u/T . Using that fact that the initial observation
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Yi0 is uncorrelated with the shocks Uit, t ≥ 1, we deduce that E[H̃λ̂(ρ0)] = E[H̃λ]. Thus,

φ∗(ρ0) =
(
E[H̃H̃ ′]

)−1E[H̃λ]. (A.1.44)

The pseudo-true value is obtained through a population regression of λ on H.

Plugging the pseudo-true value for φ into (A.1.42) yields the concentrated objective function

E
[

ln p(Y |H, ρ, γ, φ∗(ρ), ω)
]

(A.1.45)

= C − T − 1

2
ln |γ2| − 1

2γ2
E
[
Ỹ (ρ)′(I − ιι′/T )Ỹ (ρ)

]
−1

2
ln
∣∣ω2 + γ2/T

∣∣− 1

2(ω2 + γ2/T )

(
E[λ̂2(ρ)]− E[λ̂(ρ)H̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃λ̂(ρ)]
)
.

Using well-known results for the maximum likelihood estimator of a variance parameter in

a Gaussian regression model, we can immediately deduce that

γ2
∗(ρ) =

1

T − 1
E
[
Ỹ (ρ)′(I − ιι′/T )Ỹ (ρ)

]
(A.1.46)

ω2
∗(ρ) + γ2

∗(ρ)/T =
(
E[λ̂2(ρ)]− E[λ̂(ρ)H̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃λ̂(ρ)]
)
.

At ρ = ρ0 we obtain Ỹ (ρ0) = ιλ+u. Thus, E[λ̂2(ρ0)] = γ2
0/T+E[λ2] and E[H̃λ̂(ρ0)] = E[H̃λ].

In turn,

γ2
∗(ρ0) = γ2

0 , ω2
∗(ρ0) = E[λ2]− E[λH̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃λ]. (A.1.47)

Given ρ = ρ0 the pseudo-true value for γ2 is the �true� γ2
0 and the pseudo-true variance

of the correlated random-e�ects distribution is given by the expected value of the squared

residual from a projection of λ onto H.
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Using (A.1.46), we can now concentrate out γ2 and ω2 from the objective function (A.1.45):

E
[

ln p(Y |H, ρ, γ∗(ρ), φ∗(ρ), ω∗(ρ)
]

(A.1.48)

= C − T − 1

2
ln
∣∣E[Ỹ (ρ)′(I − ιι′/T )Ỹ (ρ)

]∣∣
−1

2
ln
∣∣E[Ỹ ′(ρ)ιι′Ỹ (ρ)]− E[Ỹ ′(ρ)ιH̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃ι′Ỹ (ρ)]
∣∣.

To �nd the maximum of E
[

ln p(Y |H, ρ, γ∗(ρ), φ∗(ρ), ω∗(ρ)
]
with respect to ρ we will calculate

the �rst-order condition. Di�erentiating (A.1.48) with respect to ρ yields

F.O.C.(ρ) = (T − 1)
E
[
X ′(I − ιι′/T )Ỹ (ρ)

]
E
[
Ỹ (ρ)′(I − ιι′/T )Ỹ (ρ)

]
+

E[X ′ιι′Ỹ (ρ)]− E[X ′ιH̃ ′]
(
E[H̃H̃ ′]

)−1E[H̃ι′Ỹ (ρ)]

E[Ỹ ′(ρ)ιι′Ỹ (ρ)]− E[Ỹ ′(ρ)ιH̃ ′]
(
E[H̃H̃ ′]

)−1E[H̃ι′Ỹ (ρ)]
.

We will now verify that F.O.C.(ρ0) = 0. Because both denominators are strictly positive,

we can rewrite the condition as

F.O.C.(ρ0) = (T − 1)E
[
X ′(I − ιι′/T )Ỹ (ρ0)

]
(A.1.49)

×
(
E[Ỹ ′(ρ0)ιι′Ỹ (ρ0)]− E[Ỹ ′(ρ0)ιH̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃ι′Ỹ (ρ0)]

)
+E
[
Ỹ (ρ0)′(I − ιι′/T )Ỹ (ρ0)

]
×
(
E[X ′ιι′Ỹ (ρ0)]− E[X ′ιH̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃ι′Ỹ (ρ0)]

)
.

Using again the fact that Ỹ (ρ0) = ιλ + U , we can rewrite the terms appearing in the
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�rst-order condition as follows:

E
[
X ′(I − ιι′/T )Ỹ (ρ0)

]
= E

[
X ′(I − ιι′/T )u

]
= E[X ′u]− E[X ′ιι′u]/T

= −E[X ′ιι′u]/T

E[Ỹ ′(ρ0)ιι′Ỹ (ρ)] = E
[
(λι′ + u′)ιι′(ιλ+ u)

]
= T 2E[λ2] + E[u′ιι′u]

= T 2E[λ2] + Tγ2
0

E[H̃ι′Ỹ (ρ0)] = E[H̃ι′(ιλ+ u)] = TE[H̃λ]

E
[
Ỹ (ρ0)′(I − ιι′/T )Ỹ (ρ0)

]
= E

[
u′(I − ιι′/T )u

]
= (T − 1)γ2

E[X ′ιι′Ỹ (ρ0)] = E[X ′ιι′(ιλ+ u)] = TE[X ′ιλ] + E[X ′ιι′u].

For the �rst equality we used the fact that Xit = Yit−1 is uncorrelated with Uit. We can

now re-state the �rst-order condition (A.1.49) as follows:

F.O.C.(ρ0) (A.1.50)

= −(T − 1)
(
E[X ′ιι′u]

)(
γ2

0 + T
(
E[λ2]− E[λH̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃λ]
))

+

(
E[X ′ιι′u] + T

(
E[X ′ιλ]− E[X ′ιH̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃λ]
))

(T − 1)γ2
0

= T (T − 1)

[
γ2

0

(
E[X ′ιλ]− E[X ′ιH̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃λ]

)
−E[X ′ιι′u]

(
E[λ2]− E[λH̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃λ]

)]
.

We now have to analyze the terms involving X ′ι. Note that we can express

Yt = ρt0Y0 +

t−1∑
τ=0

ρτ0(λ+ Ut−τ ).

De�ne at =
∑t−1

τ=0 ρ
τ
0 and b =

∑T−1
t=1 at. Thus, we can write

Yt = ρt0Y0 + λat +

t−1∑
τ=0

ρτ0Ut−τ , t > 0.
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Consequently,

X ′ι =

T−1∑
t=0

Yt = Y0

(
T−1∑
t=0

ρt0

)
+ λ

(
T−1∑
t=1

at

)
+

T−1∑
t=1

t−1∑
τ=0

ρτ0Ut−τ = aT y0 + bλ+

T−1∑
t=1

atUT−t.

Thus, we obtain

E[X ′ιι′u] = E

[(
aTY0 + bλ+

T−1∑
t=1

atUT−t

)(
T∑
t=1

Ut

)]
= bγ2

0

E[X ′ιλ] = E

[(
aTY0 + bλ+

T−1∑
t=1

atUT−t

)
λ

]
= aTE[Y0λ] + bE[λ2]

E[X ′ιH̃ ′] = E

[(
aTY0 + bλ+

T−1∑
t=1

atUT−t

)
H̃ ′

]
= aTE[Y0H̃

′] + bE[λH̃ ′].

Using these expressions, most terms that appear in (A.1.50) cancel out and the condition

simpli�es to

F.O.C.(ρ0) = T (T − 1)γ0aT

(
E[Y0λ]− E[Y0H̃

′]
(
E[H̃H̃ ′]

)−1E[H̃λ]

)
. (A.1.51)

Now consider

E[Y0H̃
′]
(
E[H̃H̃ ′]

)−1E[H̃λ]

=
1

E[Y 2
0 ]− (E[Y0])

[
E[Y0] E[Y 2

0 ]

] E[Y 2
0 ] −E[Y0]

−E[Y0] 1


 E[Y0]

E[Y 2
0 ]


= E[Y0λ].

Thus, we obtain the desired result that F.O.C.(ρ0) = 0. To summarize, the pseudo-true

values are given by

ρ∗ = ρ0, γ2
∗ = γ0, φ∗ =

(
E[H̃H̃ ′]

)−1E[H̃λ], (A.1.52)

ω2
∗ = E[λ2]− E[λH̃ ′]

(
E[H̃H̃ ′]

)−1E[H̃λ]. �
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Computation of the Oracle Predictor in Experiment 3

We are using a Gibbs sampler to compute the oracle predictor under the mixture distribu-

tions for Uit.

Scale Mixture. Let ait = 1 if Uit is generated from the mixture component with variance γ2
+

and ait = 0 if Uit is generated from the mixture component with variance γ2
−. Omitting i

subscripts from now on, de�ne

Ỹt = Yt − ρYt−1, γ2(at) = atγ
2
+ + (1− at)γ2

−

such that

Ỹt|(λ, at) ∼ N
(
λ, γ2(at)

)
.

Under the prior distribution

λ|Y0 ∼ N(φ0 + φ1Y0,Ω),

we obtain a posterior distribution of the form

λ|(a1:T , Y0:T ) ∼ N
(
λ̄(a1:T ), Ω̄(a1:T )

)
, (A.1.53)

where

Ω̄(a1:T ) =
(
Ω−1 +

T∑
t=1

(γ2(at))
−1
)−1

λ̄(a1:T ) = Ω̄(a1:T )
(
Ω−1(φ0 + φ1Y0) +

T∑
t=1

(γ2(at))
−1Ỹt

)
.
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The posterior probability of at = 1 conditional on (λ, Y0:T ) is given by

P
(
at = 1|λ, Y0:T ) (A.1.54)

=
pu(γ+)−1 exp

{
− 1

2γ2
+

(Yt − ρYt−1 − λ)2
}

pu(γ+)−1 exp
{
− 1

2γ2
+

(Yt − ρYt−1 − λ)2
}

+ (1− pu)(γ−)−1 exp
{
− 1

2γ2
−

(Yt − ρYt−1 − λ)2
} .

The posterior mean E[λ|Yi] can be approximated with the following Gibbs sampler. Generate

a sequence of draws {λs, as1:T }
Nsim
s=1 by iterating over the conditional distributions given in

(A.1.53) and (A.1.54). Then,

Ê[λ|Y0:T ] =
1

Nsim

Nsim∑
s=1

λ̄(as1:T ), (A.1.55)

V̂[λ|Y0:T ] =

(
1

Nsim

Nsim∑
s=1

Ω̄(as1:T ) + λ̄2(as1:T )

)
−

(
1

Nsim

Nsim∑
s=1

λ̄(as1:T )

)2

.

Location Mixture. Let ait = 1 if Uit is generated from the mixture component with mean

µ+ and ait = 0 if Uit is generated from the mixture component with mean −µ−. Omitting

i subscripts from now on, de�ne

Ỹt(at) = Yt − ρYt−1 − (atµ+ − (1− at)µ−),

such that

Ỹt(at)|(λ, at) ∼ N
(
λ, γ2

)
.

Now let

λ̂(a1:T ) =
1

T

T∑
t=1

Ỹt(at) ∼ N
(
λ, γ2/T ).

Under the prior distribution

λ|Y0 ∼ N(φ0 + φ1Y0,Ω),
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we obtain a posterior distribution of the form

λ|(a1:T , Y0:T ) ∼ N
(
λ̄(a1:T ), Ω̄

)
, (A.1.56)

where

Ω̄ =
(
Ω−1 + T/γ2

)−1

λ̄(a1:T ) = Ω̄
(
Ω−1(φ0 + φ1Y0) + (T/γ2)λ̂(a1:T )

)
.

The posterior probability of at = 1 conditional on (λ, Y0:T ) is given by

P
(
at = 1|λ, Y0:T ) (A.1.57)

=
pu exp

{
− 1

2γ2 (Yt − ρYt−1 − λ− µ+)2
}

pu exp
{
− 1

2γ2 (Yt − ρYt−1 − λ− µ+)
}

+ (1− pu) exp
{
− 1

2γ2 (Yt − ρYt−1 − λ+ µ−)2
} .

The posterior mean E[λ|Y0:T ] can be approximated with the following Gibbs sampler. Gen-

erate a sequence of draws {λs, as1:T }
Nsim
s=1 by iterating over the conditional distributions given

in (A.1.56) and (A.1.57). Then,

Ê[λ|Y0:T ] =
1

Nsim

Nsim∑
s=1

λ̄(as1:T ), (A.1.58)

V̂[λ|Y0:T ] =

(
Ω̄ +

1

Nsim

Nsim∑
s=1

λ̄2(as1:T )

)
−

(
1

Nsim

Nsim∑
s=1

λ̄(as1:T )

)2

.

A.2 Data Set

The construction of our data is based on Covas et al. (2014). We downloaded FR Y-9C BHC

�nanical statements for the years 2002 to 2014 using the web portal of the Federal Reserve

Bank of Chicago. The �nancial statements are available at quarterly frequency. We de�ne
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PPNR (relative to assets) as follows

PPNR = 400
(
NII + ONII−ONIE

)
/ASSETS,

where

NII = Net Interest Income BHCK 4074

ONII = Total Non-Interest Income BHCK 4079

ONIE = Total Non-Interest Expenses BHCK 4093 - C216 - C232

ASSETS = Consolidated Assets BHCK 3368

Here net interest income is the di�erence between total interest income and expenses. It

excludes provisions for loan and lease losses. Non-interest income includes various types

of fees, trading revenue, as well as net gains on asset sales. Non-interest expenses include,

for instance, salaries and employee bene�ts and expenses of premises and �xed assets. As

in Covas et al. (2014), we exclude impairment losses (C216 and C232). We divide the net

revenues by the amount of consolidated assets. This ratio is multiplied by 400 to annualize

the �ow variables and convert the ratio into percentages.

The raw data take the form of an unbalanced panel of BHCs. The appearance and disap-

pearance of speci�c institutions in the data set is a�ected by entry and exit, mergers and

acquisitions, as well as changes in reporting requirements for the FR Y-9C form. Because

some of the quarter-over-quarter changes in the income and expense �ows are a re�ection of

accounting practices rather than economic conditions of the institutions, we aggregate the

quarterly data to annual data. However, prior to the temporal aggregation we eliminate

certain types of outliers. Before describing our outlier removal procedure, we brie�y discuss

the structure of the rolling samples used for the forecast evaluation.

Our goal is to construct rolling samples that consist of T+2 observations, where T is the

size of the estimation sample and varies between T = 3 and T = 11. The additional two

observations in each rolling sample are used, respectively, to initialize the lag in the �rst
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period of the estimation sample and to compute the error of the one-step-ahead forecast.

We index each rolling sample by the forecast origin t = τ . For instance, taking the time

period t to be a year, with data from 2002 to 2014 we can construct M = 9 samples of size

T = 3 with forecast origins running from τ = 2005 to τ = 2013. Each rolling sample is

indexed by the pair (τ, T ). The following adjustment procedure that eliminates BHCs with

missing observations and outliers is applied to each rolling sample (τ, T ) separately:

1. Eliminate BCHs for which total assets are missing for all time periods in the sample.

2. Compute average non-missing total assets and eliminate BCHs with average assets

below 500 million dollars.

3. Eliminate BCHs for which one or more PPNR components are missing for at least one

period of the sample.

4. Eliminate BCHs for which the absolute di�erence between the temporal mean and the

temporal median exceeds 10.

5. De�ne deviations from temporal means as δit = yit − ȳi. Pooling the δit's across insti-

tutions and time periods, compute the median q0.5 and the 0.025 and 0.975 quantiles,

q0.025 and q0.975. We delete institutions for which at least one δit falls outside of the

range q0.5 ± (q0.975 − q0.025).

The adjustment procedure is applied to quarterly observations. After the sample adjust-

ments we aggregate from quarterly to annual frequency by averaging the PPNR ratios over

the four quarters of the calendar year. The e�ect of the sample-adjustment procedure on

the size of the rolling samples is summarized in Table 21. Here we are focusing on the

extreme cases T = 3 (short sample) and T = 11 (long sample). The column labeled N0

provides the number of raw data for each sample. In columns Nj , j = 1, . . . , 4, we report

the observations remaining after adjustment j. Finally, N is the number of observations

after the �fth adjustment. This is the relevant sample size for the subsequent empirical

analysis. For many BCHs we do not have information on the consolidated assets, which

leads to reduction of the sample size by 60% to 80%. Once we restrict average consolidated
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Table 21: Size of Adjusted Rolling Samples

Sample Adjustment Step
T τ N0 N1 N2 N3 N4 N

3 2005 6,731 2,629 882 580 580 551
3 2006 6,673 2,591 959 650 650 615
3 2007 6,619 2,537 1,024 693 693 655
3 2008 6,519 2,456 1,074 716 716 670
3 2009 6,399 1,281 1,139 693 693 653
3 2010 6,223 1,287 1,157 683 683 639
3 2011 6,518 1,396 1,273 704 704 656
3 2012 6,343 1,413 1,301 755 755 710
3 2013 6,154 1,407 1,291 772 771 725
11 2013 8,011 2,957 1,431 497 496 461

Table 22: Descriptive Statistics for Rolling Samples

Sample Statistics
T τ Min Mean Median Max StdD Skew Kurt

3 2005 -8.81 1.48 1.65 8.46 2.07 -0.80 5.36
3 2006 -7.61 1.50 1.54 8.46 1.95 -0.43 4.90
3 2007 -9.55 1.36 1.42 7.75 1.94 -0.61 5.51
3 2008 -9.55 1.12 1.22 7.75 1.93 -0.72 5.62
3 2009 -10.44 0.98 1.08 7.00 1.84 -0.82 6.01
3 2010 -7.46 0.87 0.96 6.60 1.74 -0.63 4.76
3 2011 -8.87 0.84 0.96 7.17 1.77 -0.70 5.04
3 2012 -7.65 0.79 0.90 7.81 1.86 -0.46 4.41
3 2013 -8.11 0.82 0.95 7.73 1.87 -0.53 4.62
11 2013 -8.89 1.15 1.23 7.00 1.82 -0.65 5.02

Notes: The descriptive statistics are computed for samples in which we pool observations across institutions

and time periods. We did not weight the statistics by size of the institution.

assets to be above 500 million dollars, the sample size shrinks to approximately 900 to 1,400

institutions. Roughly 35% to 65% of these institutions have missing observations for PPNR

components, which leads to N3. The outlier elimination in Steps 4. and 5. have a relatively

small e�ect on the sample size.

Descriptive statistics for the T = 3 and T = 11 rolling samples are reported in Table 21. For

each rolling sample we pool observations across institutions and time periods. We do not

weight the observations by the size of the institution. Focusing on the T = 3 samples, notice

that the mean PPNR falls from about 1.5% for the 2005 and 2006 samples to 0.80% for the

2012 sample, which includes observations starting in 2009. In the 2013 sample the mean
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increased again to 1.15%. The means are generally smaller than the medians, suggesting

that the samples are left-skewed, which is con�rmed by the skewness measures reported in

the second to last column. The samples also exhibit fat tails. The kurtosis statistics range

from 4.4 to 6.0.

A.3 Additional Empirical Results

Table 23: Parameter Estimates: θ̂QMLE , Parametric Tweedie Correction

Intercept Unemployment

τ ρ̂ σ̂2 φ̂10 φ̂11 ω̂2
1 φ̂20 φ̂21 ω̂2

2 N

2007 0.91 1.10 -0.99 0.08 4E-7 0.18 -0.01 9E-9 537
2008 0.86 1.09 -1.25 -0.05 3E-6 0.28 0.02 1E-7 598
2009 0.86 1.14 -0.27 -0.06 1E-7 0.05 0.02 5E-9 613
2010 0.86 1.14 -0.38 -0.03 2E-8 0.07 0.01 1E-9 606
2011 0.94 1.12 -0.22 -0.17 2E-7 0.03 0.02 3E-9 582
2012 0.94 1.12 0.01 -0.30 2E-8 0.00 0.03 1E-9 587
2013 0.93 1.12 -0.47 -0.30 3E-7 0.05 0.04 2E-9 608

Notes: Point estimates for the model Yit+1 = λ1i + λ2iURt + ρYit + Uit+1, Uit+1 ∼ N(0, σ2), λji|Yi0 ∼
N(φj0 + φj1Yi0, ω

2
j ) for j = 1, 2. The time-series dimension of the estimation sample is T = 5.
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APPENDIX B

Density Forecasts and Young Firm Dynamics

B.1 Notations

U (a, b) represents a uniform distribution with minimum value a and maximum value b.

If a = 0 and b = 1, we obtain the standard uniform distribution, U (0, 1).

N
(
µ, σ2

)
or N

(
x;µ, σ2

)
stands for aGaussian distribution with mean µ and variance σ2.

Its probability distribution function (pdf) is given by φ
(
x;µ, σ2

)
. When µ = 0 and σ2 = 1

(i.e. standard normal), we reduce the notation to φ (x). The corresponding cumulative distri-

bution functions (cdf) are denoted as Φ
(
x;µ, σ2

)
and Φ (x), respectively. The same conven-

tion holds for multivariate normal, where N (µ,Σ), N (x;µ,Σ), φ (x;µ,Σ), and Φ (x;µ,Σ)

are for the distribution with the mean vector µ and the covariance matrix Σ.

TN
(
µ, σ2, a, b

)
denotes a truncated normal distribution with µ and σ2 being the mean

and variance before truncation, and a and b being the lower and upper end of the truncated

interval.

The gamma distribution is denoted as Ga (x; a, b) with probability density function being

fGa (x; a, b) = ba

Γ(a)x
a−1e−bx. The according inverse-gamma distribution is given by

IG (x; a, b) with probability density function being fIG (x; a, b) = ba

Γ(a)x
−a−1e−b/x. The Γ (·)

in the denominators is the gamma function.

The inverse Wishart distribution is a generalization of the inverse gamma distribution

to multi-dimensional setups. Let Ω be a d× d matrix, then the inverse Wishart distribution

is denoted as IW (Ω; Ψ, ν), and its pdf is fIW (Ω; Ψ, ν) = |Ψ|
ν
2

2
νd
2 Γd( ν

2
)
|Ω|−

ν+d+1
2 e−

1
2
tr(ΨΩ−1).

When Ω is a scalar, the inverse Wishart distribution is reduced to a inverse-gamma distri-
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bution with a = ν/2, b = Ψ/2.

1 (·) is an indicator function that equals 1 if the condition in the parenthesis is satis�ed

and equals 0 otherwise.

IN is an N ×N identity matrix.

In the panel data setup, for a generic variable z, which can be v, w , x, or y, zit is a dz× 1

vector, and zi,t1:t2 = (zit1 , · · · , zit2) is a dz × (t2 − t1 + 1) matrix.

‖·‖ represents the Euclidean norm, i.e. for a n-dimensional vector z = [z1, z2, · · · , zn]′,

‖z‖ =
√
z2

1 + · · ·+ z2
n.

supp (·) denotes the support of a probability measure.

B.2 Algorithms

B.2.1 Hyperparameters

Recall the prior for the common parameters:

(
β, σ2

)
∼ N

(
mβ

0 , ψ
β
0σ

2
)
IG
(
σ2; aσ

2

0 , bσ
2

0

)
.

The hyperparameters are chosen in a relatively ignorant sense without inferring too much

from the data except aligning the scale according to the variance of the data.

aσ
2

0 = 2, (B.2.1)

bσ
2

0 = Êi
(
V̂ ar

t

i (yit)
)
·
(
aσ

2

0 − 1
)

= Êi
(
V̂ ar

t

i (yit)
)
, (B.2.2)

mβ
0 = 0.5, (B.2.3)

ψβ0 =
1

bσ
2

0 /
(
aσ

2

0 − 1
) =

1

Êi
(
V̂ ar

t

i (yit)
) . (B.2.4)
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In equation (B.2.2) here and equation (B.2.5) below, Êti and V̂ ar
t

i stand for the sample

mean and variance for �rm i over t = 1, · · · , T , and Êi and V̂ ar
i
are the sample mean and

variance over the whole cross-section i = 1, · · · , N . Equation (B.2.2) ensures that on average

the prior and the data have a similar scale. Equation (B.2.3) conjectures that the young

�rm dynamics are highly likely persistent and stationary. Since we don't have strong prior

information in the common parameters, their priors are chosen to be not very restrictive.

Equation (B.2.1) characterizes a rather less informative prior on σ2 with in�nite variance,

and Equation (B.2.4) assumes that the prior variance of β is equal to 1 on average.

The hyperpriors for the DPM prior are speci�ed as:

G0

(
µk, ω

2
k

)
= N

(
µk; m

λ
0 , ψ

λ
0ω

2
k

)
IG
(
ω2
k; a

λ
0 , b

λ
0

)
,

α ∼ Ga (α; aα0 , b
α
0 ) .

Similarly, the hyperparameters are chosen to be:

aλ0 = 2, bλ0 = V̂ ar
i
(
Êti (yit)

)
·
(
aλ0 − 1

)
= V̂ ar

i
(
Êti (yit)

)
, (B.2.5)

mλ
0 = 0, ψλ0 = 1,

aα0 = 2, bα0 = 2. (B.2.6)

where bλ0 is selected to match the scale, while aλ0 , m
λ
0 , and ψ

λ
0 yields a relatively ignorant and

di�use prior. Following Ishwaran and James (2001, 2002), the hyperparameters for the DP

scale parameter α in equation (B.2.6) allows for a �exible component structure with a wide

range of component numbers. The truncated number of components is set to be K = 50, so

that the approximation error is uniformly bounded by Ishwaran and James (2001) Theorem

2: ∥∥∥fλ,K − fλ∥∥∥ ∼ 4N exp

(
−K − 1

α

)
≤ 2.10× 10−18,

at the prior mean of α (ᾱ = 1) and cross-sectional sample size N = 1000.
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I have also examined other choices of hyperparameters, and results are not very sensitive

to hyperparameters as long as the implied priors are �exible enough to cover the range of

observables.

B.2.2 Random-Walk Metropolis-Hastings

When there is no closed-form conditional posterior distribution in some MCMC steps, it is

helpful to employ the Metropolis-within-Gibbs sampler and use the random-walk Metropolis-

Hastings (RWMH) algorithm for those steps. The adaptive RWMH algorithm below is based

on Atchadé and Rosenthal (2005) and Gri�n (2016), which adaptively adjust the random

walk step size in order to keep acceptance rates around certain desirable percentage.

Algorithm B.2.1. (Adaptive RWMH)

Let us consider a generic variable θ. For each iteration s = 1, · · · , nsim,

1. Draw candidate θ̃ from the random-walk proposal density θ̃ ∼ N
(
θ(s−1), ζ(s)Σ

)
.

2. Calculate the acceptance rate

a.r.(θ̃|θ(s−1)) = min

(
1,

p(θ̃|·)
p(θ(s−1)|·)

)
,

where p(θ|·) is the conditional posterior distribution of interest.

3. Accept the proposal and set θ(s) = θ̃ with probability a.r.(θ̃|θ(s−1)). Otherwise, reject

the proposal and set θ(s) = θ(s−1).

4. Update the random-walk step size for the next iteration,

log ζ(s+1) = ρ
(

log ζ(s) + s−c
(
a.r.(θ̃|θ(s−1))− a.r.?

))
,

where 0.5 < c ≤ 1, a.r.? is the target acceptance rate, and

ρ (x) = min (|x|, x̄) · sgn (x) ,
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where x̄ > 0 is a very large number.

Remark B.2.2. (i) In step 1, since the algorithms in this paper only consider RWMH on

conditionally independent scalar variables, Σ is simply taken to be 1.

(ii) In step 4, I choose c = 0.55, a.r.? = 30% in the numerical exercises, following Gri�n

(2016).

B.2.3 Details on Posterior Samplers

The formulas below focus on the (correlated) random coe�cients model in Algorithms 3.5.1

and 3.5.2 where the (correlated) random e�ects model in Algorithms 3.3.1 and 3.3.2 are

special cases with solely univariate λi.

Step 2: Component Parameters

Random Coe�cients Model For z = λ, l and kz = 1, · · · ,Kz, draw
(
µ
z(s)
kz ,Ω

z(s)
kz

)
from

a multivariate-normal-inverse-Wishart distribution (or a normal-inverse-gamma distribution

if z is a scalar) p

(
µ
z(s)
kz ,Ω

z(s)
kz

∣∣∣∣{z(s−1)
i

}
i∈Jz(s−1)

kz

)
:

(
µ
z(s)
kz ,Ω

z(s)
kz

)
∼ N

(
µ
z(s)
kz ; mz

kz , ψ
z
kzΩ

z(s)
kz

)
IW
(

Ω
z(s)
kz ; Ψz

kz , ν
z
kz

)
,

m̂z
kz =

1

n
z(s−1)
kz

∑
i∈Jz(s−1)

kz

z
(s−1)
i ,

ψzkz =
(

(ψz0)−1 + n
z(s−1)
kz

)−1
,

mz
kz = ψzkz

(ψz0)−1mz
0 +

∑
i∈Jz(s−1)

kz

z
(s−1)
i

 ,

νzkz = νz0 + n
z(s−1)
kz ,

Ψz
kz = Ψz

0 +
∑

i∈Jz(s−1)
kz

(
z

(s−1)
i

)2
+mz′

0 (ψz0)−1mz
0 −mz′

kz (ψzkz)
−1mz

kz .
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Correlated Random Coe�cients Model Due to the complexity arising from the con-

ditional structure, I break the updating procedure for
(
µ
z(s)
kz ,Ω

z(s)
kz

)
into two steps. For

z = λ, l and kz = 1, · · · ,Kz,

(a) Draw µ
z(s)
kz from a matricvariate-normal distribution (or a multivariate-normal distribu-

tion if z is a scalar) p

(
µ
z(s)
kz

∣∣∣∣Ωz(s−1)
kz ,

{
z

(s−1)
i , ci0

}
i∈Jz(s−1)

kz

)
:

vec
(
µ
z(s)
kz

)
∼ N

(
vec
(
µ
z(s)
kz

)
; vec (mz

kz) , ψ
z
kz

)
,

m̂z,zc
kz =

∑
i∈Jz(s−1)

kz

z
(s−1)
i

[
1, c′i0

]
,

m̂z,cc
kz =

∑
i∈Jz(s−1)

kz

[
1, c′i0

]′ [
1, c′i0

]
,

m̂z
kz = m̂z,zc

kz

(
m̂z,cc
kz

)−1
,

ψzkz =

[
(ψz0)−1 + m̂z,cc

kz ⊗
(

Ω
z(s−1)
kz

)−1
]−1

,

vec (mz
kz) = ψzkz

[
(ψz0)−1 vec (mz

0) +

(
m̂z,cc
kz ⊗

(
Ω
z(s−1)
kz

)−1
)
vec (m̂z

kz)

]
,

where vec (·) denotes matrix vectorization, and ⊗ is the Kronecker product.

(b) Draw Ω
z(s)
kz from an inverse-Wishart distribution (or an inverse-gamma distribution if z

is a scalar) p

(
Ω
z(s)
kz

∣∣∣∣µz(s)kz ,
{
z

(s−1)
i , ci0

}
i∈Jz(s−1)

kz

)
:

Ω
z(s)
kz ∼ IW

(
Ω
z(s)
kz ; Ψz

kz , ν
z
kz

)
,

νzkz = νz0 + n
z(s−1)
kz ,

Ψz
kz = Ψz

0 +
∑

i∈Jz(s−1)
kz

(
z

(s−1)
i − µz(s)kz

[
1, c′i0

]′)(
z

(s−1)
i − µz(s)kz

[
1, c′i0

]′)′
.
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Step 4: Individual-speci�c Parameters

For i = 1, · · · , N , draw λ
(s)
i from a multivariate-normal distribution (or a normal distribution

if λ is a scalar) p
(
λ

(s)
i

∣∣∣µλ(s)

γλi
,Ω

λ(s)

γλi
,
(
σ2
i

)(s−1)
, β(s−1), Di, DA

)
:

λ
(s)
i ∼ N

(
mλ
i ,Σ

λ
i

)
,

Σλ
i =

((
Ω
λ(s)

γλi

)−1
+
((
σ2
i

)(s−1)
)−1

T∑
t=1

wi,t−1w
′
i,t−1

)−1

,

mλ
i = Σλ

i

((
Ω
λ(s)

γλi

)−1
µ̃λi +

((
σ2
i

)(s−1)
)−1

T∑
t=1

wi,t−1

(
yit − β(s−1)′xi,t−1

))
,

where the conditional �prior� mean is characterized by

µ̃λi =


µ
λ(s)

γλi
, for the random coe�cients model,

µ
λ(s)

γλi
[1, c′i0]′ , for the correlated random coe�cients model.

Step 5: Common parameters

Cross-sectional Homoskedasticity Draw
(
β(s), σ2(s)

)
from a linear regression model

with �unknown� variance, p
(
β(s), σ2(s)

∣∣∣{λ(s)
i

}
, D

)
:

(
β(s), σ2(s)

)
∼ N

(
β(s); mβ, ψβσ2(s)

)
IG
(
σ2(s); aσ

2
, bσ

2
)
,

ψβ =

((
ψβ0

)−1
+

N∑
i=1

T∑
t=1

xi,t−1x
′
i,t−1

)−1

,

mβ = ψβ

((
ψβ0

)−1
mβ

0 +
N∑
i=1

T∑
t=1

xi,t−1

(
yit − λ(s)′

i wi,t−1

))
,

aσ
2

= aσ
2

0 +
NT

2

bσ
2

= bσ
2

0 +
1

2

(
N∑
i=1

T∑
t=1

(
yit − λ(s)′

i wi,t−1

)2
+mβ′

0

(
ψβ0

)−1
mβ

0 −m
β′
(
ψβ
)−1

mβ

)
.
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Cross-sectional Heteroskedasticity Draw β(s) from a linear regression model with

�known� variance, p
(
β(s)

∣∣∣{λ(s)
i ,
(
σ2
i

)(s)}
, D

)
:

β(s) ∼ N
(
mβ,Σβ

)
,

Σβ =

((
Σβ

0

)−1
+
((
σ2
i

)(s))−1
N∑
i=1

T∑
t=1

xi,t−1x
′
i,t−1

)−1

,

mβ = Σβ

((
Σβ

0

)−1
mβ

0 +
((
σ2
i

)(s))−1
N∑
i=1

T∑
t=1

xi,t−1

(
yit − λ(s)′

i wi,t−1

))
.

Remark B.2.3. For unbalanced panels, the summations and products in steps 4 and 5 (Sub-

sections B.2.3 and B.2.3) are instead over t = t0i, · · · , t1i, the observed periods for individual

i.

B.2.4 Slice-Retrospective Samplers

The next algorithm borrows the idea from some recent development in DPM sampling

strategies (Dunson, 2009; Yau et al., 2011; Hastie et al., 2015), which integrates the slice

sampler (Walker, 2007; Kalli et al., 2011) and the retrospective sampler (Papaspiliopoulos

and Roberts, 2008). By adding extra auxiliary variables, the sampler is able to avoid hard

truncation in Ishwaran and James (2001, 2002). I experiment with it to check whether the

approximation error due to truncation would signi�cantly a�ect the density forecasts or not,

and the results do not change much. The following algorithm is designed for the random

coe�cient case. A corresponding version for the correlated random coe�cient case can be

constructed in a similar manner.

The auxiliary variables uzi , i = 1, · · · , N , are i.i.d. standard uniform random variables, i.e.

uzi ∼ U (0, 1). Then, the mixture of components in equation (3.2.6) can be rewritten as

z ∼
∞∑

kz=1

1 (uzi < pzikz) f
z (z; θzkz) ,

where z = λ, l. By marginalizing over uzi , we can recover equation (3.2.6). Accordingly, we
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can de�ne the number of active components as

Kz,A = max
1≤i≤N

γzi ,

and the number of potential components (including active components) as

Kz,P = min

kz :

1−
kz∑
j=1

pzj

 < min
1≤i≤N

uzi

 .

Although the number of components is in�nite literally, we only need to care about the

components that can potentially be occupied. Therefore, Kz,P serves as an upper limit on

the number of components that need to be updated at certain iteration. Here I suppress

the iteration indicator s for exposition simplicity, but note that both Kz,A and Kz,P can

change over iterations; this is indeed the highlight of this sampler.

Algorithm B.2.4. (General Model: Random Coe�cients III (Slice-Retrospective))

For each iteration s = 1, · · · , nsim, steps 1-3 in Algorithm 3.5.1 are modi�ed as follows:

For z = λ, l,

1. Active components:

(a) Number of active components:

Kz,A = max
1≤i≤N

γ
z(s−1)
i .

(b) Component probabilities: for kz = 1, · · · ,Kz,A, draw pz∗kz from the stick breaking

process p
(
{pz∗kz}

∣∣∣αz(s−1),
{
n
z(s−1)
kz

})
:

pz∗kz ∼ SB

nz(s−1)
kz , αz(s−1) +

Kz,A∑
j=kz+1

n
z(s−1)
j

 , kz = 1, · · · ,Kz,A.

(c) Component parameters: for kz = 1, · · · ,Kz,A, draw θz∗kz from
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p

(
θz∗kz

∣∣∣∣{z(s−1)
i

}
i∈Jz(s−1)

kz

)
as in Algorithm 3.3.1 step 2.

(d) Label switching:

jointly update
{
p
z(s)
kz , θ

z(s)
kz , γz∗i

}Kz,A

kz=1
based on

{
pz∗kz , θ

z∗
kz , γ

z(s−1)
i

}Kz,A

kz=1
by three

Metropolis-Hastings label-switching moves:

i. randomly select two non-empty components, switch their component labels

(γzi ), while leaving component parameters (θzkz) and component probabilities

(pzkz) unchanged;

ii. randomly select two adjacent components, switch their component labels (γzi )

and component �stick lengths� (ζzkz), while leaving component parameters

(θzkz) unchanged;

iii. randomly select two non-empty components, switch their component labels

(γzi ) and component parameters (θzkz), as well as update their component

probabilities (pzkz).

Then, adjust Kz,A accordingly.

2. Auxiliary variables: for i = 1, · · · , N , draw u
z(s)
i from a uniform distribution

p
(
u
z(s)
i

∣∣∣{pz(s)kz

}
, γz∗i

)
:

u
z(s)
i ∼ U

(
0, p

z(s)
γz∗i

)
.

3. DP scale parameter:

(a) Draw the latent variable ξz(s) from a beta distribution p
(
ξz(s)

∣∣αz(s−1), N
)
:

ξz(s) ∼ Beta
(
αz(s−1) + 1, N

)
.

(b) Draw αz(s) from a mixture of two gamma distributions p
(
αz(s)

∣∣ξz(s),Kz,A, N
)

:

αz(s) ∼ pαzGa
(
αz(s); aα

z
+Kz,A, bα

z − log ξz(s)
)

+
(
1− pαz

)
Ga
(
αz(s); aα

z
+Kz,A − 1, bα

z − log ξz(s)
)
,

pα
z

=
aα

z
+Kz,A − 1

N
(
bαz − log ξz(s)

) .
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4. Potential components:

(a) Component probabilities: start with Kz∗ = Kz,A,

i. if
(

1−
∑Kz∗

j=1 p
z(s)
j

)
< min1≤i≤N u

z(s)
i , set Kz,P = Kz∗ and stop;

ii. otherwise, let Kz∗ = Kz∗ + 1, draw ζzKz∗ ∼ Beta
(
1, αz(s)

)
, update p

z(s)
Kz∗ =

ζzKz∗
∏
j<Kz∗

(
1− ζzj

)
, and go to step (a-i).

(b) Component parameters: for kz = Kz,A + 1, · · · ,Kz,P , draw θ
z(s)
kz from the DP

base distribution Gz0.

5. Component memberships: For i = 1, · · ·N , draw γ
z(s)
i from a multinomial distribution

p
({
γ
z(s)
i

} ∣∣∣{pz(s)kz , µ
z(s)
kz ,Ω

z(s)
kz

}
, u

z(s)
i , z

(s−1)
i

)
:

γ
z(s)
i = kz, with probability pzikz , k

z = 1, · · · ,Kz,P ,

pzikz ∝ p
z(s)
kz φ

(
z

(s−1)
i ;µ

z(s)
kz ,Ω

z(s)
kz

)
1
(
u
z(s)
i < p

z(s)
kz

)
,

Kz,P∑
kz=1

pzikz = 1.

The remaining part of the algorithm resembles steps 4 and 5 in Algorithm 3.5.1.

Remark B.2.5. Note that:

(i) Steps 1-b,c,d are sampling from �marginal� posterior of (pzkz , θ
z
kz , γ

z
i ) for the active com-

ponents with the auxiliary variables uzi 's being integrated out. Thus, extra caution is needed

in dealing with the order of the steps.

(ii) The label switching moves 1-d-i and 1-d-ii are based on Papaspiliopoulos and Roberts

(2008), and 1-d-iii is suggested by Hastie et al. (2015). All these label switching moves aim

to improve numerical convergence.

(iii) Step 3 for DP scale parameter αz follows Escobar and West (1995). It is di�erent from

step 1-a in Algorithm 3.5.1 due to the unrestricted number of components in the current

sampler.

(iv) Steps 4-a-ii and 4-b that update potential components are very similar to steps 1-b and

1-c that update active components�just take Jzkz as an empty set and draw directly from
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the prior.

(v) The auxiliary variable uzi also appears in step 5 that updates component memberships.

The inclusion of auxiliary variables helps determine a �nite set of relevant components for

each individual i without mechanically truncating the in�nite mixture.

B.3 Proofs for Baseline Model

B.3.1 Posterior Consistency: Random E�ects Model

Skills vs Shocks

Proof. (Proposition 3.4.7)

Based on the Schwartz (1965) theorem stated in Lemma 3.4.6, two su�cient conditions

guarantee the posterior consistency: KL requirement and uniformly exponentially consistent

tests.

(i) KL requirement

The proposition assumes that the KL property holds for the distribution of λ, i.e. for all

ε > 0,

Πf

(
f ∈ F :

ˆ
f0 (λ) log

f0 (λ)

f (λ)
dλ < ε

)
> 0,

whose su�cient conditions are stated in Lemmas 3.4.8 and B.5.1. On the other hand, the

KL requirement is speci�ed on the observed y in order to guarantee that the denominator

in equation (3.4.2) is large enough. In this sense, we need to establish that for all ε > 0,

Π

(
f ∈ F :

ˆ
f0 (y − u)φ (u) log

´
f0 (y − u′)φ (u′) du′´
f (y − u′)φ (u′) du′

dudy < ε

)
> 0.

Let g (x) = x log x, a (u) = f0 (y − u)φ (u), A =
´
a (u) du, b (u) = f (y − u)φ (u), B =
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´
b (u) du. We can rewrite the integral over u as

ˆ
f0 (y − u)φ (u) log

´
f0 (y − u′)φ (u′) du′´
f (y − u′)φ (u′) du′

du = A · log
A

B
= B · g

(
A

B

)
=B · g

(ˆ
b (u)

B
· f0 (y − u)

f (y − u)
du

)
≤
ˆ
b (u) g

(
f0 (y − u)

f (y − u)

)
du

=

ˆ
φ (u) f0 (y − u) log

f0 (y − u)

f (y − u)
du, (B.3.1)

where the inequality is given by Jensen's inequality. Then, further integrating the above

expression over y, we have

ˆ
f0 (y − u)φ (u) log

´
f0 (y − u′)φ (u′) du′´
f (y − u′)φ (u′) du′

dudy ≤
ˆ
φ (u) f0 (y − u) log

f0 (y − u)

f (y − u)
dudy

=

ˆ
φ (u) du ·

ˆ
f0 (λ) log

f0 (λ)

f (λ)
dλ = ε

The inequality follows the above expression (B.3.1), the next equality is given by change of

variables, and the last equality is given by the KL property of the distribution of λ.

(ii) Uniformly exponentially consistent tests

(ii-a) When λ is observed

Note that by the Hoe�ding's inequality, the uniformly exponentially consistent tests are

equivalent to strictly unbiased tests, so we only need to construct a test function ϕ? such

that

Ef0 (ϕ?) < inf
f∈Uc

Ef (ϕ?) .

Without loss of generality, let us consider a weak neighborhood de�ned on ε > 0 and a

bounded continuous function ϕ ranging from 0 to 1. Then, the corresponding neighborhood

is given by

Uε,ϕ (f0) =

{
f :

∣∣∣∣ˆ ϕf −
ˆ
ϕf0

∣∣∣∣ < ε

}
.
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We can divide the alternative region into two parts37

U cε,ϕ (f0) = A1 ∪A2

where

A1 =

{
f :

ˆ
ϕf >

ˆ
ϕf0 + ε

}
,

A2 =

{
f :

ˆ
ϕf <

ˆ
ϕf0 − ε

}
.

For A1, we can choose the test function ϕ? to be ϕ. For A2, we can choose ϕ? to be

1 − ϕ. Then, in either case A = A1, A2, type I error Ef0 (ϕ?) =
´
ϕ?f0, and power

inff∈A Ef (ϕ?) ≥
´
ϕ?f0 + ε, hence the tests exist when λ is observed.

(ii-b) When y is observed instead of λ

De�ne g (λ) = f (λ)− f0 (λ). Then, by de�nition,
´
g (λ) dλ = 0 for all g. There are always

tests if we observe λ, then for any g, there exists a ε > 0 such that

ˆ
|g (λ)| dλ > ε. (B.3.2)

The next step is to prove that there are tests when y is observed instead of λ, which is done

via proof by contradiction. Suppose there is no test when we only observe y, then there

exists a g̃ such that

h̃ (y) =

ˆ
g̃ (y − u)φ (u) du = 0 for all y,

due to the continuity of h̃. Employing the Fourier transform, we have

Fy (ξ) = Fλ (ξ) · c1 exp
(
−c2ξ

2
)

= 0 for all ξ.

37It is legitimate to divide the alternatives into sub-regions. Intuitively, with di�erent alternative sub-
regions, the numerator in equation (3.4.2) is composed of integrals over di�erent domains, and all of them
converge to 0.
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Since c1 exp
(
−c2ξ

2
)
6= 0, then

Fλ (ξ) = 0 for all ξ.

Finally, the inverse Fourier transform leads to

g̃ (λ) = 0 for all λ,

which contradicts equation (B.3.2). Therefore, there are also tests when y is observed instead

of λ.

Combining (i) and (ii-b), f achieves posterior consistency even when we only observe y.

Unknown Shocks Sizes

Proof. (Proposition 3.4.9)

(i) KL requirement

Based on the observed su�cient statistics λ̂ = 1
T

∑T
t=1 yit with corresponding errors û =

1
T

∑T
t=1 uit, the KL requirement can be written as follows: for all ε > 0,

Π


f ∈ F , σ2 ∈ R+ :

ˆ
f0

(
λ̂− û

)
φ

(
û; 0,

σ2
0

T

)
log

´
f0

(
λ̂− û′

)
φ
(
û′; 0,

σ2
0
T

)
dû′

´
f
(
λ̂− û′

)
φ
(
û′; 0, σ

2

T

)
dû′

dûdλ̂ < ε

 > 0.

Under the prior speci�cation together with hyperparameters speci�ed in Appendix B.2.1,

the integral is bounded with probability one. Following the dominated convergence theorem,

lim
σ2→σ2

0

ˆ
f0

(
λ̂− û

)
φ

(
û; 0,

σ2
0

T

)
log

´
f0

(
λ̂− û′

)
φ
(
û′; 0,

σ2
0
T

)
dû′

´
f
(
λ̂− û′

)
φ
(
û′; 0, σ

2

T

)
dû′

dûdλ̂

=

ˆ
f0

(
λ̂− û

)
φ

(
û; 0,

σ2
0

T

)
log

´
f0

(
λ̂− û′

)
φ
(
û′; 0,

σ2
0
T

)
dû′

´
f
(
λ̂− û′

)
φ
(
û′; 0,

σ2
0
T

)
dû′

dûdλ̂,
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where the upper bound of the right hand side can be characterized by the KL property of

the distribution of λ as in the proof of Proposition 3.4.7 part (i). The su�cient conditions

of the KL property of the distribution of λ are stated in Lemmas 3.4.8 and B.5.1.

(ii) Uniformly exponentially consistent tests

The alternative region can be split into the following two parts:

(ii-a)
∣∣σ2 − σ2

0

∣∣ > ∆

Orthogonal forward di�erencing yields ỹit ∼ N
(
0, σ2

0

)
. Then, as N →∞,

1
N(T−1)

∑N
i=1

∑T−1
t=1 (ỹit)

2

σ2
0

∼ χ2
N(T−1)

d→ N

(
1,

2

N (T − 1)

)
.

Note that for a generic variable x ∼ N (0, 1), for x∗ > 0,

P (x > x∗) ≤ φ (x∗)

x∗
. (B.3.3)

Then, we can directly construct the following test function

ϕN (ỹ1:N,1:T−1) =


1

(
1

N(T−1)

∑N
i=1

∑T−1
t=1 (ỹit)

2

σ2
0

< 1− ∆
2σ2

0

)
, for σ2 < σ2

0 −∆,

1

(
1

N(T−1)

∑N
i=1

∑T−1
t=1 (ỹit)

2

σ2
0

> 1 + ∆
2σ2

0

)
, for σ2 > σ2

0 + ∆,

which satis�es the requirements (3.4.1) for the uniformly exponentially consistent tests.

(ii-b)
∣∣σ2 − σ2

0

∣∣ < ∆, f ∈ U cε,Φ (f0)

Without loss of generality, let Φ = {ϕ} be a singleton and ϕ? be the test function that

distinguishes f = f0 versus f ∈ U cε,ϕ (f0) when σ2
0 is known. Then, we can express the
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di�erence between Ef (ϕ?) and Ef0 (ϕ?) as

ˆ
ϕ?
(
λ̂
)
f
(
λ̂− û

)
φ

(
û; 0,

σ2

T

)
dûdλ̂−

ˆ
ϕ?
(
λ̂
)
f0

(
λ̂− û

)
φ

(
û; 0,

σ2
0

T

)
dûdλ̂

>

ˆ
ϕ?
(
λ̂
)(

f
(
λ̂− û

)
− f0

(
λ̂− û

))
φ

(
û; 0,

σ2
0

T

)
dûdλ̂

−
∣∣∣∣ˆ ϕ?

(
λ̂
)
f
(
λ̂− û

)(
φ

(
û; 0,

σ2

T

)
− φ

(
û; 0,

σ2
0

T

))
dûdλ̂

∣∣∣∣ . (B.3.4)

Since ϕ? is the test function when σ2
0 is known, the �rst term

ˆ
ϕ?
(
λ̂
)(

f
(
λ̂− û

)
− f0

(
λ̂− û

))
φ

(
û; 0,

σ2
0

T

)
dûdλ̂ > ε. (B.3.5)

For the second term,

∣∣∣∣ˆ ϕ?
(
λ̂
)
f
(
λ̂− û

)(
φ

(
û; 0,

σ2

T

)
− φ

(
û; 0,

σ2
0

T

))
dûdλ̂

∣∣∣∣
≤
ˆ
ϕ?
(
λ̂
)
f
(
λ̂− û

) ∣∣∣∣φ(û; 0,
σ2

T

)
− φ

(
û; 0,

σ2
0

T

)∣∣∣∣ dûdλ̂
≤
ˆ ∣∣∣∣φ(û; 0,

σ2

T

)
− φ

(
û; 0,

σ2
0

T

)∣∣∣∣ dû
≤
√
σ2

0

σ2
− 1− ln

σ2
0

σ2
. (B.3.6)

The second inequality is given by the fact that ϕ?
(
λ̂
)
∈ [0, 1]. The last inequality follows

Pinsker's inequality that bounds the total variation distance by the KL divergence, which

has an explicit form for normal distributions

dKL

(
φ

(
û; 0,

σ2
0

T

)
, φ

(
û; 0,

σ2

T

))
=

1

2

(
σ2

0

σ2
− 1− ln

σ2
0

σ2

)
.

We can choose ∆ > 0 such that for any
∣∣σ2 − σ2

0

∣∣ < ∆,

√
σ2

0

σ2
− 1− ln

σ2
0

σ2
<
ε

2
.
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Plugging expressions (B.3.5) and (B.3.6) into (B.3.4), we obtain

ˆ
ϕ?
(
λ̂
)
f
(
λ̂− û

)
φ

(
û; 0,

σ2

T

)
dûdλ̂−

ˆ
ϕ?
(
λ̂
)
f0

(
λ̂− û

)
φ

(
û; 0,

σ2
0

T

)
dûdλ̂

> ε− ε

2
=
ε

2
,

so ϕ? is the test function with respect to the alternative sub-region {
∣∣σ2 − σ2

0

∣∣ < ∆, f ∈

U cε,Φ (f0)}.

Lagged Dependent Variables

Proof. (Proposition 3.4.11)

(i) KL requirement

De�ne the su�cient statistics λ̂ (β) = 1
T

∑T
t=1 yit − βyi,t−1 with corresponding errors û =

1
T

∑T
t=1 uit. The KL requirement is satis�ed as long as for all ε > 0,

Π


f ∈ F ,

(
β, σ2

)
∈ R× R+ :

ˆ
f0

(
λ̂ (β0)− û

)
φ

(
û; 0,

σ2
0

T

)
log

´
f0

(
λ̂ (β0)− û′

)
φ
(
û′; 0,

σ2
0
T

)
dû′

´
f
(
λ̂ (β)− û′

)
φ
(
û′; 0, σ

2

T

)
dû′

dûdλ̂ < ε

 > 0.

Similar to the previous case, the dominated convergence theorem and the KL property of

the distribution of λ complete the proof.

(ii) Uniformly exponentially consistent tests

The alternative region can be split into the following two parts:

(ii-a) |β − β0| > ∆ or
∣∣σ2 − σ2

0

∣∣ > ∆′
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Orthogonal forward di�erencing yields ỹit = βỹi,t−1+ũit, ũit ∼ N
(
0, σ2

0

)
. Then, as N →∞,

β̂OLS =

(
N∑
i=1

T−1∑
t=1

(ỹi,t−1)2

)−1( N∑
i=1

T−1∑
t=1

ỹi,t−1ỹit

)
d→ N

(
β0,

σ2
0

N
∑T−1

t=1 E (ỹi,t−1)2

)
1

N(T−1)

∑N
i=1

∑T−1
t=1

(
ỹit − β̂OLS ỹi,t−1

)2

σ2
0

∼ χ2
N(T−1)−1

d→ N

(
1,

2

N (T − 1)− 1

)
.

Since the upper tail of a normal distribution is bounded as in expression (B.3.3), we can

directly construct the following test function

ϕN = 1− (1−ϕN,β)
(
1−ϕN,σ2

)
,

where

ϕN,β (ỹ1:N,1:T−1)

=


1
(
β̂OLS < β0 − ∆

2

)
, for β < β0 −∆,

1
(
β̂OLS > β0 + ∆

2

)
, for β > β0 + ∆,

ϕN,σ2 (ỹ1:N,1:T−1)

=


1

(
1

N(T−1)

∑N
i=1

∑T−1
t=1 (ỹit−β̂OLS ỹi,t−1)

2

σ2
0

< 1− ∆′

2σ2
0

)
, for σ2 < σ2

0 −∆′,

1

(
1

N(T−1)

∑N
i=1

∑T−1
t=1 (ỹit−β̂OLS ỹi,t−1)

2

σ2
0

> 1 + ∆′

2σ2
0

)
, for σ2 > σ2

0 + ∆′,

which satis�es the requirements (3.4.1) for the uniformly exponentially consistent tests.

(ii-b) |β − β0| < ∆,
∣∣σ2 − σ2

0

∣∣ < ∆′, f ∈ U cε,Φ (f0)

The following proof is analogous to the proofs of Proposition 3.3 in Amewou-Atisso et al.

(2003) except the inclusion of shocks uit's in the current setup, which prohibits direct in-

ference of λi. Without loss of generality, let Φ = {ϕ} and ϕ? (ẙ) be the corresponding test

function on ẙ = yi1 − β0yi0 = λi + ui1 when β0 and σ2
0 are known. Then, we can construct
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a uniformly continuous test function

ϕ?? (ẙ) =



ϕ? (ẙ) , if |̊y| < M1,

1, if |̊y| > M2,

max
{
ϕ? (ẙ) , ϕ? (M1) + 1−ϕ?(M1)

M2−M1
(ẙ −M1)

}
, if ẙ ∈ [M1,M2] ,

max
{
ϕ? (ẙ) , 1 + ϕ?(−M1)−1

M2−M1
(ẙ +M2)

}
if ẙ ∈ [−M2,−M1] ,

where M1 is chosen such that

ˆ
|̊y|>M1

f0 (ẙ − u)φ
(
u; 0, σ2

0

)
dudy1 <

ε

4
.

Then,

ˆ
ϕ?? (ẙ) f (ẙ − u)φ

(
u; 0, σ2

0

)
dudy1 −

ˆ
ϕ?? (ẙ) f0 (ẙ − u)φ

(
u; 0, σ2

0

)
dudy1 >

3

4
ε.

(B.3.7)

Due to uniform continuity, given ε > 0, there exists δ > 0 such that |ϕ?? (ẙ′)− ϕ?? (ẙ)| <

ε/4 for any |̊y′ − ẙ| < δ. As yi0 is compacted supported, we can choose ∆ such that

|(β − β0) yi0| < δ.

Let y1 be a generic variable representing yi1. De�ne the test function for the non-i.i.d. case

to be ϕi (y1) = ϕ?? (y1 − β0yi0). Then, the di�erence between Ef (ϕi) and Ef0 (ϕi) is

ˆ
ϕi (y1) f (y1 − βyi0 − u)φ

(
u; 0, σ2

)
dudy1

−
ˆ
ϕi (y1) f0 (y1 − β0yi0 − u)φ

(
u; 0, σ2

0

)
dudy1

>

ˆ
ϕi (y1) (f (y1 − β0yi0 − u)− f0 (y1 − β0yi0 − u))φ

(
u; 0, σ2

0

)
dudy1

+

ˆ
ϕi (y1) (f (y1 − βyi0 − u)− f (y1 − β0yi0 − u))φ

(
u; 0, σ2

0

)
dudy1

−
∣∣∣∣ˆ ϕi (y1) f (y1 − βyi0 − u)

(
φ
(
u; 0, σ2

)
− φ

(
u; 0, σ2

0

))
dudy1

∣∣∣∣ .
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From expression (B.3.7), the �rst term is bounded below by 3ε/4. Similar to the proof of

Proposition 3.4.9 part (ii-b), the third term is bounded above by ε/4. For the second term,

note that for any δ,

ˆ
ϕ?? (y1 − δ) f (y1 − δ − u) dy1 =

ˆ
ϕ?? (y1) f (y1 − u) dy1

Then,

ˆ
ϕi (y1) (f (y1 − βyi0 − u)− f (y1 − β0yi0 − u)) dy1

=

ˆ
ϕ?? (y1 + (β − β0) yi0) f (y1 − u) dy1 −

ˆ
ϕ?? (y1) f (y1 − u) dy1

≥−
ˆ
|ϕ?? (y1 + (β − β0) yi0)− ϕ?? (y1)| f (y1 − u) dy1

≥− ε

4

where the last inequality is given by the uniform continuity of ϕ??. Hence, Ef (ϕi) −

Ef0 (ϕi) > ε/4, and {ϕi} constitutes the tests with respect to the alternative sub-region{
|β − β0| < ∆,

∣∣σ2 − σ2
0

∣∣ < ∆′, f ∈ U cε,Φ (f0)
}
.

B.3.2 Posterior Consistency: Correlated Random E�ects Model

Recall that h, f , and q are the joint, conditional, and marginal densities, respectively. In

addition,

h0 (λ, c) = f0 (λ|c) · q0 (c) , h (λ, c) = f (λ|c) · q0 (c) .

Proof. (Proposition 3.4.15)

(i) KL requirement

De�ne the su�cient statistics λ̂ (β) = 1
T

∑T
t=1 yit − βyi,t−1 with corresponding errors û =

1
T

∑T
t=1 uit. Considering joint density characterization, the observations are i.i.d. across i in

the correlated random e�ects setup. The KL requirement can be speci�ed as follows: for all
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ε > 0,

Π



f ∈ F ,
(
β, σ2

)
∈ R× R+ :

ˆ
h0

(
λ̂ (β0)− û, y0

)
φ

(
û; 0,

σ2
0

T

)

· log

´
h0

(
λ̂ (β0)− û′, y0

)
φ
(
û′; 0,

σ2
0
T

)
dû′

´
h
(
λ̂ (β)− û′, y0

)
φ
(
û′; 0, σ

2

T

)
dû′

dûdλ̂dy0 < ε


> 0.

The rest of the proof is similar to the previous cases employing the dominated convergence

theorem and the KL property of the joint distribution of (λ, y0) with su�cient conditions

stated in Assumption 3.4.14.

(ii) Uniformly exponentially consistent tests

It follows the proof of Proposition 3.4.11 part (ii) except that in case |β − β0| < ∆,
∣∣σ2 − σ2

0

∣∣ <
∆′, f ∈ U cε,Φ (f0), the test function ϕ is de�ned on (y1, y0) that distinguishes the true h0

from alternative h.

B.3.3 Density Forecasts

Proof. (Proposition 3.4.16)

(i) Random E�ects: Result 1

In this part, I am going to prove that for any i and any Uε,Φ

(
foraclei,T+1

)
, as N →∞,

P
(
f condi,T+1 ∈ Uε,Φ

(
foraclei,T+1

)∣∣∣ y1:N,0:T

)
→ 1, a.s.

This is equivalent to proving that for any bounded continuous function ϕ,

P

f ∈ F :

∣∣∣∣∣∣∣∣
ˆ
ϕ (y) f condi,T+1

(
y|β, σ2, f, yi,0:T

)
dy

−
ˆ
ϕ (y) foraclei,T+1 (y) dy

∣∣∣∣∣∣∣∣ < ε

∣∣∣∣∣∣∣∣ y1:N,0:T

→ 1, a.s.
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where

∣∣∣∣ˆ ϕ (y) f condi,T+1

(
y|β, σ2, f, yi,0:T

)
dy −

ˆ
ϕ (y) foraclei,T+1 (y) dy

∣∣∣∣
=

∣∣∣∣ˆ ϕ (y)φ
(
y; βyiT + λi, σ

2
)
p
(
λi
∣∣β, σ2, f, yi,0:T

)
dλidy

−
ˆ
ϕ (y)φ

(
y; β0yiT + λi, σ

2
0

)
p
(
λi
∣∣β0, σ

2
0, f0, yi,0:T

)
dλidy

∣∣∣∣
=

∣∣∣∣∣
´
ϕ (y)φ

(
y; βyiT + λi, σ

2
)∏

t p
(
yit
∣∣λi, β, σ2, yi,t−1

)
f (λi) dλidy´ ∏

t p (yit |λi, β, σ2, yi,t−1 ) f (λi) dλi

−
´
ϕ (y)φ

(
y; β0yiT + λi, σ

2
0

)∏
t p
(
yit
∣∣λi, β0, σ

2
0, yi,t−1

)
f0 (λi) dλidy´ ∏

t p
(
yit
∣∣λi, β0, σ2

0, yi,t−1

)
f0 (λi) dλi

∣∣∣∣∣ .
The last equality is given by plugging in

p
(
λi
∣∣β, σ2, f, yi,0:T

)
=

∏
t p
(
yit
∣∣λi, β, σ2, yi,t−1

)
f (λi)´ ∏

t p (yit |λ′i, β, σ2, yi,t−1 ) f (λ′i) dλ
′
i

.

Set

A =

ˆ ∏
t

p
(
yit
∣∣λi, β, σ2, yi,t−1

)
dλi,

B =

ˆ
ϕ (y)φ

(
y; βyiT + λi, σ

2
)∏

t

p
(
yit
∣∣λi, β, σ2, yi,t−1

)
dλidy.

with A0 and B0 being the counterparts for the oracle predictor. Then, we want to make

sure the following expression is arbitrarily small,

∣∣∣∣BA − B0

A0

∣∣∣∣ ≤ |B0| |A−A0|
|A0| |A|

+
|B −B0|
|A|

,

and it is su�cient to establish the following four statements.
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(a) |A−A0| < ε′

|A−A0|

≤

∣∣∣∣∣
ˆ ∏

t

p
(
yit
∣∣λi, β0, σ

2
0, yi,t−1

)
(f (λi)− f0 (λi)) dλi

∣∣∣∣∣
+

∣∣∣∣∣
ˆ (∏

t

p
(
yit
∣∣λi, β, σ2, yi,t−1

)
−
∏
t

p
(
yit
∣∣λi, β0, σ

2
0, yi,t−1

))
f0 (λi) dλi

∣∣∣∣∣
The �rst term is less than ε′/2 with probability one due to the posterior consistency of f

and that

∏
t

p
(
yit
∣∣λi, β0, σ

2
0, yi,t−1

)
= C

(
β0, σ

2
0, yi,0:T

)
φ

(
λi;

1

T

∑
T

(yit − β0yi,t−1) ,
σ2

0

T

)
(B.3.8)

is a bounded continuous function in λi, with C
(
β0, σ

2
0, yi,0:T

)
being

C
(
β0, σ

2
0, yi,0:T

)
=

1
√
T
(
2πσ2

0

)T−1
2

exp

(
−
∑

t (yit − β0yi,t−1)2 − 1
T (
∑

T (yit − β0yi,t−1))2

2σ2
0

)
.

For the second term,

∣∣∣∣∣
ˆ (∏

t

p
(
yit
∣∣λi, β, σ2, yi,t−1

)
−
∏
t

p
(
yit
∣∣λi, β0, σ

2
0, yi,t−1

))
f0 (λi) dλi

∣∣∣∣∣
≤M

ˆ ∣∣∣∣∣∏
t

p
(
yit
∣∣λi, β, σ2, yi,t−1

)
−
∏
t

p
(
yit
∣∣λi, β0, σ

2
0, yi,t−1

)∣∣∣∣∣ dλi

≤MC
(
β0, σ

2
0, yi,0:T

) ˆ
∣∣∣∣∣∣∣∣∣∣∣
φ

(
λi;

1

T

∑
T

(yit − βyi,t−1) ,
σ2

T

)

− φ

(
λi;

1

T

∑
T

(yit − β0yi,t−1) ,
σ2

0

T

)
∣∣∣∣∣∣∣∣∣∣∣
dλi

+M
∣∣C (β, σ2, yi,0:T

)
− C

(
β0, σ

2
0, yi,0:T

)∣∣ ˆ φ

(
λi;

1

T

∑
T

(yit − βyi,t−1) ,
σ2

T

)
dλi.

(B.3.9)

where the last inequality is given by rewriting
∏
t p
(
yit
∣∣λi, β, σ2, yi,t−1

)
as a distribution of
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λi (equation B.3.8). Following Pinsker's inequality that bounds the total variation distance

by the KL divergence,

ˆ ∣∣∣∣∣φ
(
λi;

1

T

∑
T

(yit − βyi,t−1) ,
σ2

T

)
− φ

(
λi;

1

T

∑
T

(yit − β0yi,t−1) ,
σ2

0

T

)∣∣∣∣∣ dλi
≤

√√√√2dKL

(
φ

(
λi;

1

T

∑
T

(yit − β0yi,t−1) ,
σ2

0

T

)
, φ

(
λi;

1

T

∑
T

(yit − βyi,t−1) ,
σ2

T

))

≤

√
σ2

0

σ2
− 1− ln

σ2
0

σ2
+

(β − β0)2 (
∑

t yi,t−1)2

Tσ2
. (B.3.10)

As
(
β, σ2

)
enjoy posterior consistency, both

∣∣C (β, σ2, yi,0:T

)
− C

(
β0, σ

2
0, yi,0:T

)∣∣ in expres-

sion (B.3.9) and

√
σ2

0
σ2 − 1− ln

σ2
0
σ2 +

(β−β0)2(
∑
t yi,t−1)

2

Tσ2 in expression (B.3.10) can be arbitrar-

ily small. Therefore, the second term is less than ε′/2 with probability one.

(b) |B −B0| < ε′

|B −B0|

≤

∣∣∣∣∣
ˆ
ϕ (y)φ

(
y; β0yiT + λi, σ

2
0

)∏
t

p
(
yit
∣∣λi, β0, σ

2
0, yi,t−1

)
(f (λi)− f0 (λi)) dλidy

∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
ˆ
ϕ (y)


φ
(
y; βyiT + λi, σ

2
)∏

t

p
(
yit
∣∣λi, β, σ2, yi,t−1

)
− φ

(
y; β0yiT + λi, σ

2
0

)∏
t

p
(
yit
∣∣λi, β0, σ

2
0, yi,t−1

)
 f0 (λi) dλidy

∣∣∣∣∣∣∣∣∣
Similar to (a), the �rst term is small due to the posterior consistency of f , while Pinsker's

inequality together with the posterior consistency of
(
β, σ2

)
ensure a small second term.

(c) There exists A > 0 such that |A0| > A.

A0 =

ˆ ∏
t

p
(
yit
∣∣λi, β0, σ

2
0, yi,t−1

)
f0 (λi) dλi

= C
(
β0, σ

2
0, yi,0:T

) ˆ
φ

(
λi;

1

T

∑
T

(yit − β0yi,t−1) ,
σ2

0

T

)
f0 (λi) dλi
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Since φ
(
λi;

1
T

∑
T (yit − β0yi,t−1) ,

σ2
0
T

)
and f0 (λi) share the same support on R, the integral

is bounded below by some positive A. Moreover, we have |A−A0| < ε′ from (a), then

|A| > |A0| − ε′ > A− ε′. Therefore, both |A0| and |A| are bounded below.

(d) |B0| <∞

|B0| =

∣∣∣∣∣
ˆ
ϕ (y)φ

(
y; β0yiT + λi, σ

2
0

)∏
t

p
(
yit
∣∣λi, β0, σ

2
0, yi,t−1

)
f0 (λi) dλidy

∣∣∣∣∣
≤ Mϕ ·

1(
2πσ2

0

)T
2

·
∣∣∣∣ˆ φ

(
y; β0yiT + λi, σ

2
0

)
f0 (λi) dλidy

∣∣∣∣
= Mϕ ·

1(
2πσ2

0

)T
2

(ii) Random E�ects: Result 2

Now the goal is to prove that for any i, any y, and any ε > 0, as N →∞,

∣∣∣fspi,T+1 (y)− foraclei,T+1 (y)
∣∣∣ < ε, a.s.
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where

∣∣∣f spi,T+1 (y)− foraclei,T+1 (y)
∣∣∣

=

∣∣∣∣ˆ φ
(
y; βyiT + λi, σ

2
)
p
(
λi
∣∣β, σ2, f, yi,0:T

)
dΠ
(
β, σ2, f |y1:N,0:T

)
dλidβdσ

2df

−
ˆ
φ
(
y; β0yiT + λi, σ

2
0

)
p
(
λi
∣∣β0, σ

2
0, f0, yi,0:T

)
dλi

∣∣∣∣
=

∣∣∣∣∣
ˆ ´

φ
(
y; βyiT + λi, σ

2
)∏

t p
(
yit
∣∣λi, β, σ2, yi,t−1

)
f (λi) dλidy´ ∏

t p (yit |λi, β, σ2, yi,t−1 ) f (λi) dλi

· dΠ
(
β, σ2, f |y1:N,0:T

)
dβdσ2df

−
´
φ
(
y; β0yiT + λi, σ

2
0

)∏
t p
(
yit
∣∣λi, β0, σ

2
0, yi,t−1

)
f0 (λi) dλidy´ ∏

t p
(
yit
∣∣λi, β0, σ2

0, yi,t−1

)
f0 (λi) dλi

∣∣∣∣∣
≤
ˆ ∣∣∣∣∣
´
φ
(
y; βyiT + λi, σ

2
)∏

t p
(
yit
∣∣λi, β, σ2, yi,t−1

)
f (λi) dλidy´ ∏

t p (yit |λi, β, σ2, yi,t−1 ) f (λi) dλi

−
´
φ
(
y; β0yiT + λi, σ

2
0

)∏
t p
(
yit
∣∣λi, β0, σ

2
0, yi,t−1

)
f0 (λi) dλidy´ ∏

t p
(
yit
∣∣λi, β0, σ2

0, yi,t−1

)
f0 (λi) dλi

∣∣∣∣∣
· dΠ

(
β, σ2, f |y1:N,0:T

)
dβdσ2df.

Note that along the same lines as part (i) �Random E�ects: Result 1�, the integrand

∣∣∣∣∣
´
φ
(
y; βyiT + λi, σ

2
)∏

t p
(
yit
∣∣λi, β, σ2, yi,t−1

)
f (λi) dλidy´ ∏

t p (yit |λi, β, σ2, yi,t−1 ) f (λi) dλi

−
´
φ
(
y; β0yiT + λi, σ

2
0

)∏
t p
(
yit
∣∣λi, β0, σ

2
0, yi,t−1

)
f0 (λi) dλidy´ ∏

t p
(
yit
∣∣λi, β0, σ2

0, yi,t−1

)
f0 (λi) dλi

∣∣∣∣∣ < ε.

(iii) Correlated Random E�ects: Result 1

As the posterior consistency for conditional density estimation is characterized by the joint

distribution over (λi, yi0), the convergence of �joint� predictive distribution (yi,T+1, yi0) fol-

lows the same logic as part (i) �Random E�ects: Result 1�. Hence for any bounded contin-
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uous function ϕ̃ (y, yi0) , and any ε > 0, as N →∞,

P


f ∈ F ,

(
β, σ2

)
∈ R× R+ :∣∣∣∣ˆ ϕ̃ (y, yi0) f condi,T+1

(
y|β, σ2, f, yi,0:T

)
q0 (yi0) dyi0dy

−
ˆ
ϕ̃ (y, yi0) foraclei,T+1 (y|yi0) q0 (yi0) dyi0dy

∣∣∣∣ < ε

∣∣∣∣∣∣∣∣∣∣∣∣
y1:N,0:T

→ 1, a.s.

where

∣∣∣∣ˆ ϕ̃ (y, yi0) f condi,T+1

(
y|β, σ2, f, yi,0:T

)
q0 (yi0) dyi0dy

−
ˆ
ϕ̃ (y, yi0) foraclei,T+1 (y|yi0) q0 (yi0) dyi0dy

∣∣∣∣
=

∣∣∣∣∣
´
ϕ̃ (y, yi0)φ

(
y; βyiT + λi, σ

2
)∏

t p
(
yit
∣∣λi, β, σ2, yi,t−1

)
f (λi|yi0) q0 (yi0) dλidyi0dy´ ∏

t p (yit |λi, β, σ2, yi,t−1 ) f (λi|yi0) q0 (yi0) dλidyi0

−
´
ϕ̃ (y, yi0)φ

(
y; β0yiT + λi, σ

2
0

)∏
t p
(
yit
∣∣λi, β0, σ

2
0, yi,t−1

)
f0 (λi|yi0) q0 (yi0) dλidyi0dy´ ∏

t p
(
yit
∣∣λi, β0, σ2

0, yi,t−1

)
f0 (λi|yi0) q0 (yi0) dλidyi0

∣∣∣∣∣ .
(B.3.11)

However, it is more desirable to establish the convergence of �conditional� predictive distri-

bution yi,T+1|yi0, i.e. for any bounded continuous function on y, ϕ (y) and any ε > 0, as

N →∞,

P


f ∈ F ,

(
β, σ2

)
∈ R× R+ :∣∣∣∣ˆ ϕ (y) f condi,T+1

(
y|β, σ2, f, yi,0:T

)
dy

−
ˆ
ϕ (y) foraclei,T+1 (y|yi0) dy

∣∣∣∣ < ε

∣∣∣∣∣∣∣∣∣∣∣∣
y1:N,0:T

→ 1, a.s.
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where

∣∣∣∣ˆ ϕ (y) f condi,T+1

(
y|β, σ2, f, yi,0:T

)
dy −

ˆ
ϕ (y) foraclei,T+1 (y|yi0) dy

∣∣∣∣
=

∣∣∣∣∣
´
ϕ (y)φ

(
y; βyiT + λi, σ

2
)∏

t p
(
yit
∣∣λi, β, σ2, yi,t−1

)
f (λi|yi0) dλidy´ ∏

t p (yit |λi, β, σ2, yi,t−1 ) f (λi|yi0) dλi

−
´
ϕ (y)φ

(
y; β0yiT + λi, σ

2
0

)∏
t p
(
yit
∣∣λi, β0, σ

2
0, yi,t−1

)
f0 (λi|yi0) dλidy´ ∏

t p
(
yit
∣∣λi, β0, σ2

0, yi,t−1

)
f0 (λi|yi0) dλi

∣∣∣∣∣ . (B.3.12)

Set ϕ̃ (y, yi0) = ϕ(y)
q0(yi0) . Note that q0 (yi0) is continuous and bounded below due to condition

2-b in Proposition 3.4.16, so ϕ̃ (y, yi0) is a bounded continuous continuous function. Then,

the right hand side of equation (B.3.11) coincides with the right hand side of equation

(B.3.12), so we achieve the convergence of �conditional� predictive distribution yi,T+1|yi0.

(iv) Correlated Random E�ects: Result 2

Combining (ii) and (iii) completes the proof.

B.4 Proofs for General Model

B.4.1 Identi�cation

Proof. (Proposition 3.5.6)

Part (iii) follows Liu et al. (2016), which is based on the early work by Arellano and Bon-

homme (2012b). Part (ii) for cross-sectional heteroskedasticity is new.

(i) The identi�cation of common parameters β is given by Assumption 3.5.5 (1).

(ii) Identify the distribution of shock sizes fσ
2
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First, let us perform orthogonal forward di�erencing, i.e. for t = 1, · · · , T − dw,

ỹit = yit − w′i,t−1

(
T∑

s=t+1

wi,s−1w
′
i,s−1

)−1 T∑
s=t+1

wi,s−1yis,

x̃i,t−1 = xi,t−1 − w′i,t−1

(
T∑

s=t+1

wi,s−1w
′
i,s−1

)−1 T∑
s=t+1

wi,s−1xi,s−1.

Then, de�ne

ũit = ỹit − β′x̃i,t−1,

σ̂2
i =

T−dw∑
t=1

ũ2
it = σ2

i χ
2
i .

where χ2
i ∼ χ2 (T − dw) follows an i.i.d. chi-squared distribution with (T − dw) degrees of

freedom.

Note that Fourier transformation (i.e. characteristic functions) is not suitable for disen-

tangling products of random variables, so I resort to the Mellin transform (Galambos and

Simonelli, 2004). For a generic variable x, the Mellin transform of f (x) is speci�ed as

Mx (ξ) =

ˆ
xiξf (x) dx,

which exists for all ξ.

Considering that σ2
i |c and χ2

i are independent, we have

Mσ̂2 (ξ|c) = Mσ2 (ξ|c)Mχ2 (ξ) .

Note that the non-vanishing characteristic function of σ2 implies non-vanishing Mellin trans-

form Mσ2 (ξ|c) (almost everywhere), so it is legitimate to take the logarithm of both sides,

logMσ̂2 (ξ|c) = logMσ2 (ξ|c) + logMχ2 (ξ) .
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Taking the second derivative with respect to ξ, we get

∂2

∂ξ∂ξ′
logMσ2 (ξ|c) =

∂2

∂ξ∂ξ′
logMσ̂2 (ξ|c)− ∂2

∂ξ∂ξ′
logMχ2 (ξ) .

The Mellin transform of chi-squared distribution Mχ2 (ξ) is a known functional form. In

addition, we have

logMσ2 (0|c) = logMσ̂2 (0|c)− logMχ2 (0) = 0,

∂

∂ξ
logMσ2 (0|c) =

∂

∂ξ
logMσ̂2 (0|c)− ∂

∂ξ
logMχ2 (0)

= i
(
E
(

log σ̂2
∣∣ c)− E

(
χ2
∣∣ c)) .

Based on Pav (2015),

E
(
χ2
∣∣ c) = log 2 + ψ

(
T − dw

2

)
,

where ψ (·) is the derivative of the log of the Gamma function.

Given logMσ2 (0|c), ∂
∂ξ logMσ2 (0|c), and ∂2

∂ξ∂ξ′ logMσ2 (ξ|c), we can fully recover logMσ2 (ξ|c)

and hence uniquely determine fσ
2
. Please refer to Theorem 1.19 in Galambos and Simonelli

(2004) for the uniqueness.

(iii) Identify the distribution of individual e�ects fλ

De�ne

ẙi,1:T = yi,1:T − β′xi,0:T−1 = λ′iwi,0:T−1 + ui,1:T .

Let Y̊ = ẙi,1:T ,W = w′i,0:T−1, Λ = λi and U = ui,1:T . The above expression can be simpli�ed

as

Y̊ = WΛ + U.

Denote FY̊ , FΛ and FU as the conditional characteristic functions for Y̊ , Λ and U , respec-

tively. Based on Assumption (3.5.5) (4), FΛ and FU are non-vanishing almost everywhere.
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Then, we obtain

logFΛ

(
W ′ξ|c

)
= logFY̊ (ξ|c)− logFU (ξ|c) .

Let ζ = W ′ξ and AW = (W ′W )−1W ′, then the second derivative of logFΛ (ζ|c) is charac-

terized by

∂2

∂ζ∂ζ ′
logFΛ (ζ|c) = AW

(
∂2

∂ξ∂ξ′
(
logFY̊ (ξ|c)− logFU (ξ|c)

))
A′W .

Moreover,

logFΛ (0|c) = 0,

∂

∂ζ
logFΛ (0|c) = iE

(
AW Y̊

∣∣∣ c) ,
so we can pin down log Λ (ζ|c) and fλ.

The proof of Proposition (3.5.8) for unbalanced panels follows in a similar manner.

B.4.2 Cross-sectional Heteroskedasticity

Proof. (Proposition 3.5.9)

(i) KL requirement

As λ and σ2 are independent, we have

dKL

(
fλ0 f

σ2

0 , fλfσ
2
)

= dKL

(
fλ0 , f

λ
)

+ dKL

(
fσ

2

0 , fσ
2
)
.

Based on the observed su�cient statistics λ̂ = 1
T

∑T
t=1 yit with corresponding errors û =
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1
T

∑T
t=1 uit, the KL requirement is: for all ε > 0,

Π



f ∈ F , fσ2 ∈ Fσ2
::

ˆ
fλ0

(
λ̂− û

)
φ

(
û; 0,

σ2

T

)
fσ

2

0

(
σ2
)

· log

´
fλ0

(
λ̂− û′

)
φ
(
û; 0, σ

2′

T

)
fσ

2

0

(
σ2′) dû′dσ2′

´
fλ
(
λ̂− û′

)
φ
(
û; 0, σ

2′

T

)
fσ2 (σ2′) dû′dσ2′

dûdσ2dλ̂ < ε


> 0.

As in the proof of Proposition 3.4.7 part (i), similar convexity reasoning can be applied

to bound the KL divergence on y by dKL

(
fλ0 f

σ2

0 , fλfσ
2
)
. The su�cient conditions for

KL properties on λ and l are listed in Lemmas 3.4.8 and B.5.1. Note that since the KL

divergence is invariant under variable transformations, the KL property of the distribution

of l is equivalent to the KL property of the distribution of σ2.

(ii) Uniformly exponentially consistent tests

The alternative region can be split into the following two parts:

(ii-a) fσ
2 ∈ U cε′,Φ′

(
fσ

2

0

)
Orthogonal forward di�erencing yields ỹit ∼ N

(
0, σ2

i

)
. De�ne σ̂2

i =
∑T−dw

t=1 ỹ2
it = σ2

i χ
2
i ,

where χ2
i ∼ χ2 (T − dw) follows an i.i.d. chi-squared distribution with (T − dw) degrees of

freedom. Here and below, I ignore the subscripts to simplify the notation.

Let gσ
2 (
σ2
)

= fσ
2 (
σ2
)
− fσ2

0

(
σ2
)
. There are always tests if we observe σ2, then for any

gσ
2
, there exists a ε > 0 such that

ˆ ∣∣∣gσ2 (
σ2
)∣∣∣ dσ2 > ε. (B.4.1)

Similar to part (ii-b) in the proof of Proposition 3.4.7, here again I utilize the proof-by-

contradiction technique. Suppose there is no test when σ̂2 is observed instead of σ2, then
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there exist a g̃σ such that

h̃
(
σ̂2
)

=

ˆ
g̃σ

2

(
σ̂2

χ2

)
fχ2

(
χ2
)
dχ2 = 0 for all σ̂2,

due to the continuity of h̃. Here I utilize the Mellin transform for products of random

variables. As σ2 and χ2 are independent, we have

Mσ̂2 (ξ) = Mσ2 (ξ) ·Mχ2 (ξ) = 0 for all ξ.

The Mellin transform of chi-squared distribution Mχ2 (ξ) 6= 0, then

Mσ2 (ξ) = 0 for all ξ.

Note that Mσ2 (ξ) uniquely determines g̃σ
2 (
σ2
)
. Then, the inverse Mellin transform leads

to

g̃σ
2 (
σ2
)

= 0 for all σ2,

which contradicts equation (B.4.1). Therefore, there are also tests distinguishing the true

fσ
2

0 from alternative fσ
2
even when we only observe σ̂2.

(ii-b') fσ
2

= fσ
2

0 , fλ ∈ U cε,Φ
(
fλ0
)

This is an intermediate step for part (ii-c). Once again I resort to proof by contradiction.

De�ne gλ (λ) = fλ (λ) − fλ0 (λ). There are always tests if we observe λ, then for any gλ,

there exists a ε > 0 such that ˆ ∣∣∣gλ (λ)
∣∣∣ dλ > ε. (B.4.2)
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Suppose there is no test when y is observed instead of λ, then there exist a g̃λ such that

0 = h̃ (y) =

ˆ
g̃λ (y − u)φ

(
u; 0, σ2

)
fσ

2

0

(
σ2
)
dudσ2 for all y

=⇒0 = Fy (ξ) =

ˆ
e−iξy g̃λ (y − u)φ

(
u; 0, σ2

)
fσ

2

0

(
σ2
)
dudσ2dy

=

ˆ
e−iξ(λ+σv)g̃λ (λ)φ

(
u; 0, σ2

)
fσ

2

0

(
σ2
)
dudσ2dλ

= Fλ (ξ) ·
ˆ
c1 exp

(
−c2ξ

2σ2
)
fσ

2

0

(
σ2
)
dσ2 = 0 for all ξ

=⇒Fλ (ξ) = 0 for all ξ

=⇒g̃λ (λ) = 0 for all λ,

which contradicts equation (B.4.2). Therefore, there are also tests if we know fσ
2

0 but only

observe y.

(ii-b) fσ
2 ∈ Uε′,Φ′

(
fσ

2

0

)
, fλ ∈ U cε,Φ

(
fλ0
)

Without loss of generality, let Φ = {ϕ} and ϕ? be the corresponding test function when fσ
2

0

is known as in case (ii-b'). Then, the di�erence between Ef (ϕ?) and Ef0 (ϕ?) is

ˆ
ϕ?
(
λ̂
)
fλ
(
λ̂− û

)
φ

(
û; 0,

σ2

T

)
fσ

2 (
σ2
)
dûdσ2dλ̂

−
ˆ
ϕ?
(
λ̂
)
fλ0

(
λ̂− û

)
φ

(
û; 0,

σ2

T

)
fσ

2

0

(
σ2
)
dûdσ2dλ̂

>

ˆ
ϕ?
(
λ̂
)(

fλ
(
λ̂− û

)
− fλ0

(
λ̂− û

))
φ

(
û; 0,

σ2

T

)
fσ

2

0

(
σ2
)
dûdσ2dλ̂

−
∣∣∣∣ˆ ϕ?

(
λ̂
)
fλ
(
λ̂− û

)
φ

(
û; 0,

σ2

T

)(
fσ

2 (
σ2
)
− fσ2

0

(
σ2
))
dûdσ2dλ̂

∣∣∣∣ .
Case (ii-b') implies that the �rst term is greater than some ε > 0. Meanwhile, we can choose

ε′ = ε/2 and Φ′ =
{
ϕ′
(
σ2
)

= 1
}
for Uε′,Φ′

(
fσ

2

0

)
so that the second term is bounded by ε/2.

Hence, Ef (ϕ?)− Ef0 (ϕ?) > ε/2, and ϕ? is the test function with respect to the alternative

sub-region
{
fσ

2 ∈ Uε′,Φ′
(
fσ

2

0

)
, fλ ∈ U cε,Φ

(
fλ0
)}

.
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B.5 Extension: Heavy Tails

Lemma B.5.1 gives one set of conditions accommodating fz0 with heavy tails using the

Gaussian-mixture DPM prior. It follows Tokdar (2006) Theorem 3.3. The notation is

slightly di�erent from Tokdar (2006). Here Gz0 is de�ned on
(
µzi , (ω

z
i )

2
)
, the mean and the

variance, while Tokdar (2006) has the mean and the standard deviation as the arguments

for Gz0.

Lemma B.5.1. (Tokdar, 2006)

If fz0 and the DP base distribution Gz0 satisfy the following conditions:

1.
∣∣´ fz0 (z) log fz0 (z) dz

∣∣ <∞.

2. For some η ∈ (0, 1),
´
|z|η fz0 (z) dz <∞.

3. There exist ω0 > 0, 0 < b1 < η, b2 > b1, and c1, c2 > 0 such that for large µ > 0,

max

 Gz0
([
µ− ω0µ

η
2 ,∞

)
×
[
ω2
0 ,∞

))
, Gz0

(
[0,∞)×

(
µ2−η,∞

))
,

Gz0
((
−∞,−µ+ ω0µ

η
2

]
×
[
ω2
0 ,∞

))
, Gz0

(
(−∞, 0]×

(
µ2−η,∞

))
 ≥ c1µ−b1 ,

max

 Gz0 ((−∞, µ)× (0, exp (2µη − 1))) ,

Gz0 ((−µ,∞)× (0, exp (2µη − 1)))

 > 1− c2µ−b2 .

Then, fz0 ∈ KL (Πz).

The next lemma extends Lemma B.5.1 to the multivariate case. Then, Proposition B.5.3

largely parallels Proposition (3.5.10) with di�erent condition sets for the KL property, which

accounts for heavy tails in the true unknown distributions..

Lemma B.5.2. (Heavy Tails: Multivariate)

If fz0 and the DP base distribution Gz0 satisfy the following conditions:

1.
∣∣´ fz0 (z) log fz0 (z) dz

∣∣ <∞.

2. For some η ∈ (0, 1),
´
‖z‖η fz0 (z) dz <∞.
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3. There exist ω0 > 0, 0 < b1 < η, b2 > b1, and c1, c2 > 0 such that for large µ > 0, for

all directional vectors ‖z∗‖ = 1,

max

 Gz0
([
µ− ω0µ

η
2 ,∞

)
×
[
ω2
0 ,∞

)
|z∗
)
, Gz0

(
[0,∞)×

(
µ2−η,∞

)
|z∗
)
,

Gz0
((
−∞,−µ+ ω0µ

η
2

]
×
[
ω2
0 ,∞

)
|z∗
)
, Gz0

(
(−∞, 0]×

(
µ2−η,∞

)
|z∗
)
 ≥ c1µ−b1 ,

max

 Gz0 ((−∞, µ)× (0, exp (2µη − 1)) |z∗) ,

Gz0 ((−µ,∞)× (0, exp (2µη − 1)) |z∗)

 > 1− c2µ−b2 ,

where Gz0 (·|z∗) represents the conditional distribution that is induced from Gz0 (·) con-

ditional on the direction z∗.

Then, fz0 ∈ KL (Πz)

Proposition B.5.3. (General Model: Random Coe�cients II)

Suppose we have:

1. Assumptions 3.5.3, 3.5.5 (3-4), 3.5.7, and 3.4.10.

2. Lemma B.5.2 on λ and Lemma B.5.1 on l.

3. β0 ∈ supp
(
Πβ
)
.

Then, the posterior is weakly consistent at
(
β0, f

λ
0 , f

σ2

0

)
.

B.6 Simulations
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Figure 15: Convergence Diagnostics: β

For each iteration s, rolling mean is calculated over the most recent 1000 draws.
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Figure 16: Convergence Diagnostics: σ2

For each iteration s, rolling mean is calculated over the most recent 1000 draws.
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Figure 17: Convergence Diagnostics: α

For each iteration s, rolling mean is calculated over the most recent 1000 draws.
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Figure 18: Convergence Diagnostics: λ1

For each iteration s, rolling mean is calculated over the most recent 1000 draws.
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Figure 19: f0 vs Π (f | y1:N,0:T ) : Baseline Model, N = 105

The black solid line represents the true λi distribution, f0. The blue bands show the posterior
distribution of f , Π (f | y1:N,0:T ).
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