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Point And Density Forecasts In Panel Data Models

Abstract

This dissertation develops econometric methods that facilitate estimation and improve forecasting
performance in panel data models. The panel considered in this paper features large cross-sectional dimension
(N) but short time series (T). It is modeled by a dynamic linear model with common and heterogeneous
coeflicients and cross-sectional heteroskedasticity. Due to short T, traditional methods have difficulty in
disentangling the heterogeneous parameters from the shocks, which contaminates the estimates of the
heterogeneous parameters. To tackle this problem, the methods developed in this dissertation assume that
there is an underlying distribution of the heterogeneous parameters and pool the information from the whole
cross-section together via this distribution. Chapter 2, coauthored with Hyungsik Roger Moon and Frank
Schorfheide, constructs point forecasts using an empirical Bayes method that builds on Tweedie's formula to
obtain the posterior mean of the heterogeneous coefficients under a correlated random effects distribution.
We show that the risk of a predictor based on a non-parametric estimate of the Tweedie correction is
asymptotically equivalent to the risk of a predictor that treats the correlated-random-effects distribution as
known (ratio-optimality). Our empirical Bayes predictor performs well compared to various competitors in a
Monte Carlo study. In an empirical application, we use the predictor to forecast revenues for a large panel of
bank holding companies and compare forecasts that condition on actual and severely adverse macroeconomic
conditions. In Chapter 3, I focus on density forecasts and use a full Bayes approach, where the distribution of
the heterogeneous coefficients is modeled nonparametrically allowing for correlation between heterogeneous
parameters and initial conditions as well as individual-specific regressors. I develop a simulation-based
posterior sampling algorithm specifically addressing the nonparametric density estimation of unobserved
heterogeneous parameters. I prove that both the estimated common parameters and the estimated
distribution of the heterogeneous parameters achieve posterior consistency, and that the density forecasts
asymptotically converge to the oracle forecast. Monte Carlo simulations and an application to young firm
dynamics demonstrate improvements in density forecasts relative to alternative approaches.
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ABSTRACT

POINT AND DENSITY FORECASTS IN PANEL DATA MODELS

Laura Liu

Francis X. Diebold
Frank Schorfheide

This dissertation develops econometric methods that facilitate estimation and improve fore-
casting performance in panel data models. The panel considered in this paper features
large cross-sectional dimension (N) but short time series (7). It is modeled by a dynamic
linear model with common and heterogeneous coefficients and cross-sectional heteroskedas-
ticity. Due to short T, traditional methods have difficulty in disentangling the heterogeneous
parameters from the shocks, which contaminates the estimates of the heterogeneous param-
eters. To tackle this problem, the methods developed in this dissertation assume that there
is an underlying distribution of the heterogeneous parameters and pool the information from
the whole cross-section together via this distribution. Chapter 2, coauthored with Hyungsik
Roger Moon and Frank Schorfheide, constructs point forecasts using an empirical Bayes
method that builds on Tweedie’s formula to obtain the posterior mean of the heteroge-
neous coefficients under a correlated random effects distribution. We show that the risk of
a predictor based on a non-parametric estimate of the Tweedie correction is asymptotically
equivalent to the risk of a predictor that treats the correlated-random-effects distribution as
known (ratio-optimality). Our empirical Bayes predictor performs well compared to various
competitors in a Monte Carlo study. In an empirical application, we use the predictor to
forecast revenues for a large panel of bank holding companies and compare forecasts that
condition on actual and severely adverse macroeconomic conditions. In Chapter 3, I focus
on density forecasts and use a full Bayes approach, where the distribution of the heteroge-
neous coefficients is modeled nonparametrically allowing for correlation between heteroge-

neous parameters and initial conditions as well as individual-specific regressors. 1 develop



a simulation-based posterior sampling algorithm specifically addressing the nonparametric
density estimation of unobserved heterogeneous parameters. I prove that both the estimated
common parameters and the estimated distribution of the heterogeneous parameters achieve
posterior consistency, and that the density forecasts asymptotically converge to the oracle
forecast. Monte Carlo simulations and an application to young firm dynamics demonstrate

improvements in density forecasts relative to alternative approaches.
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CHAPTER 1

Introduction

This dissertation develops econometric methods that facilitate estimation and improve fore-
casting performance in panel data models. Panel data, such as a collection of firms or house-
holds observed repeatedly for a number of periods, are widely used in empirical studies and
can be useful for forecasting individuals’ future outcomes, which is interesting and impor-
tant in many cases. For example, in the context of banks, stress tests involve forecasting
pre-provision net revenues (PPNR) and other balance sheet variables under counterfactual
stressed macroeconomic and financial scenarios; in the context of young firms, accurate
forecasts can help investors select promising startups and assist policymakers in regulating

entrepreneur funding.

For illustrative purposes, let us consider a simple dynamic panel data model:
Yit = BYir—1 + Ni +uir,  ui ~ N (0,07),

where ¢ = 1,--- ,N, and t = 1,--- ,T + 1. The y;’s are observed individual outcomes,
B and o2 are common parameters, and \;’s are unobserved individual effects. The general
model studied in this dissertation extends this baseline setup to account for many important
features of real-world empirical studies, including regressors with common effects, correlated
random coefficients, and cross-sectional heteroskedasticity. Based on the observed panel up

to time T, I am interested in providing point and density forecasts of y; 741.

The panel considered in this paper features large cross-sectional dimension (N) but short
time series (7). This framework is appealing to the bank stress tests example due to changes
in the regulatory environment in the aftermath of the recent financial crisis as well as frequent

mergers in the banking industry. It also fits the young firm dynamics example well as the



number of observations for each young firm is restricted by its age.

Due to short T, traditional methods have difficulty in disentangling the unobserved indi-
vidual effects from the shocks, which contaminates the estimates of the individual effects.
The naive estimators that only utilize the individual-specific observations are inconsistent
even if N goes to infinity. To tackle this problem, the methods developed in this disserta-
tion assume that there is an underlying distribution of the individual effects. Moreover, the
individual effects are allowed to be correlated with the initial condition 0, i.e. correlated
random effects model. Then, we can pool the information from the whole cross-section to-
gether via this distribution in an efficient and flexible way, and provide better estimates of

the individual effects and more accurate forecasts of the individual-specific future outcomes.

The methods proposed in this dissertation are general to many other problems beyond fore-
casting. Here estimating heterogeneous parameters is important because we want to generate
good forecasts, but in other cases, the heterogeneous parameters themselves can possibly
be the objects of interest. For example, people may be interested in individual-specific

treatment effects, and the technique developed here can be applied to those questions.

Chapter 2, coauthored with Hyungsik Roger Moon and Frank Schorfheide, constructs point
forecasts using an empirical Bayes method that builds on Tweedie’s formula to obtain the
posterior mean of the heterogeneous coefficients under a correlated random effects distribu-
tion. This formula utilizes cross-sectional information to transform the unit-specific (quasi)
maximum likelihood estimator into an approximation of the posterior mean under a prior

distribution that equals the population distribution of the random coefficients.

We show that the risk of a predictor based on a non-parametric estimate of the Tweedie
correction is asymptotically equivalent to the risk of a predictor that treats the correlated-
random-effects distribution as known (ratio-optimality). In other words, the regret of fore-
casts is negligible comparing to the part of the optimal risk that is due to uncertainty about

the heterogeneous coefficients.



Our empirical Bayes predictor performs well compared to various competitors in a Monte
Carlo study. In an empirical application, we use the predictor to forecast revenues for
a large panel of bank holding companies and compare forecasts that condition on actual
and severely adverse macroeconomic conditions. Results show that the impact of stressed
macroeconomic conditions (characterized by unemployment, federal funds rate, and spread)

on bank revenues is relatively small with respect to the cross-sectional dispersion of revenues.

In Chapter 3, I tackle a different problem in a similar panel data setup as described in
Chapter 2. Instead of providing point forecasts via an empirical Bayes method, here I
focus on density forecasts and use a full Bayes approach, where the distribution of the
heterogeneous coefficients is modeled nonparametrically by a mixture model allowing for
correlation between heterogeneous parameters and initial conditions as well as individual-
specific regressors. Once this distribution is estimated by exploring the information from the
whole cross-section, I can, intuitively speaking, use it as a prior distribution and combine it
with individual-specific data and obtain the individual-specific posterior. This individual-
specific posterior helps provide better inference about the heterogeneous parameters of each

individual.

In this framework, it is natural to construct density forecasts. Bagically, it is a predictive
distribution of future performance of a specific firm, which summarizes all sources of future
uncertainties. Especially, in this setup of dynamic panel data model, the density forecasts
reflect uncertainties due to future shocks, individual heterogeneity, and estimation uncer-
tainty, where the part of uncertainties due to individual heterogeneity arises from the lack
of time-series information available to infer the heterogeneous parameters of each individ-
ual. Moreover, based on density forecasts, it is straightforward to derive point forecasts and

interval forecasts.

I develop a simulation-based posterior sampling algorithm specifically addressing the non-
parametric density estimation of unobserved heterogeneous parameters. I prove that both

the estimated common parameters and the estimated distribution of the heterogeneous pa-



rameters achieve posterior consistency, and that the density forecasts asymptotically con-
verge to the oracle forecast, an (infeasible) benchmark that is defined as the individual-
specific posterior predictive distribution under the assumption that the common parameters

and the distribution of the heterogeneous parameters are known.

Monte Carlo simulations demonstrate improvements in density forecasts relative to alter-
native approaches. There are three key factors for better density forecasts: in order of im-
portance, nonparametric Bayesian prior, cross-sectional heteroskedasticity, and correlated
random coefficients. An application to young firm dynamics also shows that the proposed
predictor provides more accurate density predictions, and the estimated model helps shed

light on the latent heterogeneity structure.



CHAPTER 2
Point Forecasts and Bank Stress Tests!

2.1 Introduction

The main goal of this paper is to forecast a collection of short time series. Examples are
the performance of start-up companies, developmental skills of small children, and revenues
and leverage of banks after significant regulatory changes. In these applications the key
difficulty lies in the efficient implementation of the forecast. Due to the short time span,
each time series taken by itself provides insufficient sample information to precisely estimate
unit-specific parameters. We will use the cross-sectional information in the sample to make
inference about the distribution of heterogeneous parameters. This distribution can then
serve as a prior for the unit-specific coefficients to sharpen posterior inference based on the

short time series.

More specifically, we consider a linear dynamic panel model in which the unobserved in-
dividual heterogeneity, which we denote by the vector );, interacts with some observed

predictors:
Yie = XNiWi1 + p' Xpp1 + &' Zy 1+ Uy, i=1,...,N, t=1,...,T. (2.1.1)

Here, (Wi;—1, Xit—1, Zir—1) are predictors and Uj; is an unpredictable shock. Throughout
this paper we adopt a correlated random effects approach in which the \;s are treated as
random variables that are possibly correlated with some of the predictors. An important
special case is the linear dynamic panel data model in which W;;_1 = 1, ); is a heterogeneous

intercept, and the sole predictor is the lagged dependent variable: X;;—1 = Yiz—1.

!This chapter builds on Liu et al. (2016), coauthored with Hyungsik Roger Moon and Frank Schorfheide.



We develop methods to generate point forecasts of Y;r41, assuming that the time dimension
T is short relative to the number of predictors (Wi, Xir, Zir). The forecasts are evaluated
under a quadratic loss function. In this setting an accurate forecasts not only requires a
precise estimate of the common parameters (a, p), but also of the parameters \; that are
specific to the cross-sectional units ¢. The existing literature on dynamic panel data models
almost exclusively studied the estimation of the common parameters, treating the unit-
specific parameters as a nuisance. Our paper builds on the insights of the dynamic panel

literature and focuses on the estimation of A;, which is essential for the prediction of Yj;.

The benchmark for our prediction methods is the so-called oracle forecast. The oracle is
assumed to know the common coefficients («, p) as well as the distribution of the heteroge-
neous coefficients \;, denoted by m()\;|-). Note that this distribution could be conditional
on some observable characteristics of unit 7. Because we are interested in forecasts for the
entire cross section of IV units, a natural notion of rigk is that of compound risk, which is
a (possibly weighted) cross-sectional average of expected losses. In a correlated random-
effects setting, this averaging is done under the distribution 7(\;|-), which means that the
compound risk associated with the forecasts of the NV units is the same as the integrated risk
for the forecast of a particular unit 7. It is well known, that the integrated risk is minimized
by the Bayes predictor that minimizes the posterior expected loss conditional on time T

information for unit ¢. Thus, the oracle replaces A; by its posterior mean.

The implementation of the oracle forecast is infeasible because in practice neither the com-
mon coefficients (p, a) nor the distribution of the unit-specific coefficients mw(\;|-) is known.
To obtain a feasible predictor, we extend the classical posterior mean formula attributed to
separate works of Arthur Eddington and Maurice Tweedie to our dynamic panel data setup.
According to this formula, the posterior mean of A; can be expressed as a function of the
cross-sectional density of certain sufficient statistics. Conditional on the common param-
eters, this distribution can then be estimated either parametrically or non-parametrically

from the panel data set. The unknown common parameters can be replaced by a gener-



alized method of moments (GMM) estimator, a likelihood-based correlated random effects

estimator, or a Bayes estimator.

Our paper makes three contributions. First, we show in the context of the linear dynamic
panel data model that a feasible predictor based on a consistent estimator of (p, ) and a
non-parametric estimator of the cross-sectional density of the relevant sufficient statistics can
achieve the same compound risk as the oracle predictor asymptotically. Our main theorem
extends a result from Brown and Greenshtein (2009) for a vector of means to a panel data
model with estimated common coefficients. Importantly, this result also covers the case in
which the distribution m()\;|-) degenerates to a point mass. As in Brown and Greenshtein
(2009), we are able to show that the rate of convergence to the oracle risk accelerates in the
case of homogeneous A coefficients. Second, we provide a detailed Monte Carlo study that
compares the performance of various implementations, both non-parametric and parametric,
of our predictor. Third, we use our techniques to forecast pre-provision net-revenues of a

panel of banks.

If the time series dimension is small, our feasible predictor performs much better than a
naive predictor of Y;pryq that is based on within-group estimates of A;. A small T leads
to a noisy estimate of ;. Moreover, from a compound risk perspective, there will be a
selection bias. Consider the special case of « = p = 0 and W;; = 1. Here, A; is simply
a heterogeneous intercept. Very large (small) realizations of Y;; will be attributed to large
(small) values of \;, which means that the within-group mean will be upward (downward)
biased for those units. The use of a prior distribution estimated from the cross-sectional
information essentially corrects this bias, which facilitates the reduction of the prediction
rigk if it is averaged over the entire cross section. Alternatively, one could ignore the cross-
sectional heterogeneity and estimate a (misspecified) model with a homogeneous coefficient
A. If the heterogeneity is small, this procedure is likely to perform well in a mean-squared-
error sense. However, as the heterogeneity increases, the performance of a predictor that is

based on a pooled estimation quickly deteriorates. We illustrate the performance of various



implementations of the feasible predictor in a Monte Carlo study and provide comparisons
with other predictors, including one that is based on quasi maximum likelihood estimation
of the unit-specific coefficients and one that is constructed from a pooled OLS estimator

that ignores parameter heterogeneity.

In an empirical application we forecast pre-provision net revenues of bank holding companies.
The stress tests that have become mandatory under the Dodd-Frank Act require banks to
establish how revenues vary in stressed macroeconomic and financial scenarios. We capture
the effect of macroeconomic conditions on bank performance by including the unemployment
rate, an interest rate, and an interest rate spread in the vector Wj—1 in (2.1.1). Our
analysis consists of two steps. We first document the one-year-ahead forecast accuracy of
the posterior mean predictor developed in this paper under the actual economic conditions,
meaning that we set the aggregate covariates to their observed values. In a second step, we
replace the observed values of the macroeconomic covariates by counterfactual values that
reflect severely adverse macroeconomic conditions. We find that our proposed posterior
mean predictor is considerably more accurate than a predictor that does not utilize any
prior distribution. The posterior mean predictor shrinks the estimates of the unit-specific
coefficients toward a common prior mean, which reduces its sampling variability. According
to our estimates, the effect of stressed macroeconomic conditions on bank revenues is very

small relative to the cross-sectional dispersion of revenues across holding companies.

Our paper is related to several strands of the literature. For a = p = 0 and Wy = 1 the
problem analyzed in this paper reduces to the problem of estimating a vector of means,
which is a classic problem in the statistic literature. In this context, Tweedie’s formula has
been used, for instance, by Robbins (1951) and more recently by Brown and Greenshtein
(2009) and Efron (2011) in a “big data” application. Throughout this paper we are adopting
an empirical Bayes approach, that uses cross-sectional information to estimate aspects of the
prior distribution of the correlated random effects and then conditions on these estimates.

Empirical Bayes methods also have a long history in the statistics literature going back to



Robbins (1956) (see Robert (1994) for a textbook treatment).

We use compound decision theory as in Robbins (1964), Brown and Greenshtein (2009),
Jiang and Zhang (2009) to state our optimality result. Because our setup nests the linear
dynamic panel data model, we utilize results on the consistent estimation of p in dynamic
panel data models with fixed effects when T is small, e.g., Anderson and Hsiao (1981),
Arellano and Bond (1991), Arellano and Bover (1995), Blundell and Bond (1998), Alvarez
and Arellano (2003). Fully Bayesian approaches to the analysis of dynamic panel data
models have been developed in Chamberlain and Hirano (1999), Hirano (2002), Lancaster
(2002).

The papers that are most closely related to ours are Gu and Koenker (2016a,b). They also
consider a linear panel data model and use Tweedie’s formula to construct an approximation
to the posterior mean of the heterogeneous regression coefficients. However, their papers
focus on the use of the Kiefer-Wolfowitz estimator for the cross-sectional distribution of the
sufficient statistics, whereas our paper explores various plug-in estimators for the homo-
geneous coefficients in combination with both parametric and nonparametric estimates of
the cross-sectional distribution. Moreover, our paper establishes the ratio-optimality of the
forecast and presents a different application. Finally, Liu (2016) develops a fully Bayesian
(as opposed to empirical Bayes) approach to construct density forecast. She uses a Dirichlet
process mixture to construct a prior for the distribution of the heterogeneous coefficients,

which then is updated in view of the observed panel data.

There is an earlier panel forecast literature (e.g., see the survey article by Baltagi (2008)
and its references) that is based on the best linear unbiased prediction (BLUP) proposed
by Goldberger (1962). Compared to the BLUP-based forecasts, our forecasts based on
Tweedie’s formula have several advantages. First, it is known that the estimator of the
unobserved individual heterogeneity parameter based on the BLUP method corresponds
to the Bayes estimator based on a Gaussian prior (see, for example, Robinson (1991)),

while our estimator based on Tweedie’s formula is consistent with much more general prior



distributions. Second, the BLUP method finds the forecast that minimizes the expected
quadratic loss in the class of linear (in (Yo, ..., Y;7)") and unbiased forecasts. Therefore, it
is not necessarily optimal in our framework that constructs the optimal forecast without
restricting the class of forecasts. Third, the existing panel forecasts based on the BLUP
were developed for panel regressions with random effects and do not apply to correlated

random effects settings.

There is a small academic literature on econometric techniques for stress test. Most papers
analyze revenue and balance sheet data for the relatively small set of bank holding companies
with consolidated assets of more than 50 billion dollars. There are slightly more than 30 of
these companies and they are subject to the Comprehensive Capital Analysis and Review
conducted by the Federal Reserve Board of Governors. An important paper in this literature
is Covas et al. (2014), which uses quantile autoregressive models to forecast bank balance
sheet and revenue components. We work with a much larger panel of bank holding companies

that comprises, depending on the sample period, between 460 and 725 institutions.

The remainder of the paper is organized as follows. Section 2.2 introduces the panel data
model considered in this paper, derives the likelihood function, and provides an impor-
tant identification result. Decision theoretic foundations for the proposed predictor and a
derivation of the oracle forecast are provided in Section 2.3. Section 2.4 discusses feasible
implementation strategies for the predictor and we show in Section 2.5 in the context of a
basic dynamic panel data model that our proposed predictor asymptotically has the same
risk as the oracle forecast. A simulation study is provided in Section 2.6. The empirical
application is presented in Section 2.7 and Section 2.8 concludes. Technical derivations,
proofs, the description of the data set used in the empirical analysis, and further empirical

results are relegated to the Appendix.
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2.2 A Dynamic Panel Forecasting Model

We consider a panel with observations for cross-sectional units ¢ = 1,..., N in periods
t =1,...,T. Observation Yj; is assumed to be generated by (2.1.1). We distinguish three
types of regressors. First, the k,, x 1 vector W;; interacts with the heterogeneous coefficients
Ai. In many panel data applications W;; = 1, meaning that A; is simply a heterogenous
intercept. We allow Wy to also include deterministic time effects such as seasonality, time
trends and/or strictly exogenous variables observed at time ¢. To distinguish deterministic
time effects wy ;41 from cross-sectionally varying and strictly exogenous variables W ¢, we
partition the vector into Wy = (thH,Wg,it).Q The dimensions of the two components
are ky, and k,,, respectively. Second, X is a k; x 1 vector of sequentially exogenous
predictors with homogeneous coefficients. The predictors X;; may include lags of Y;;41 and
we collect all the predetermined variables other than the lagged dependent variable into the
subvector Xg ;. Third, Zj; is a k,-vector of strictly exogenous regressors, also with common

coefficients.

Our main goal is to construct optimal forecasts of (Yi741,..., Yr+1) conditional on the
entire panel observations {(Yj, Wir—1, Xit—1, Zit—1), 1 = 1,..., N and t = 1, ..., T using the
forecasting model (2.1.1). An important special case of model (2.1.1) is the basic dynamic
panel data model

Yie = Ai + pYir—1 + Ui, (2.2.1)

which is obtained by setting Wy = 1, X;; = Yj; and o = 0. The restricted model (2.2.1)
has been widely studied in the literature. However, most studies focus on consistently
estimating the common parameter p in the presence of an increasing (with the cross-sectional
dimension N) number of \;s. In forecasting applications, we also need to estimate the \;s.
In Section 2.2.1 we specify the likelihood function for model (2.1.1) and in Section 2.2.2
we establish the identifiability of the model parameters, including the distribution of the

heterogeneous coefficients \;.

2Because Wy, is a predictor for Yi,, 1 we use a t + 1 subscript for the deterministic trend component w;.
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2.2.1 The Likelihood Function

Let Y;tl:t? = (Yi, ..., Yit,) and use a similar notation to collect Wys, X8, and Z;;s. We begin
by making some assumptions on the joint distribution of {YihTH, X?:T, ngp, ZZQ:T, )\i}i]\il
conditional on the regression coefficients p and « and the vector of volatility parameters ~y

(to be introduced below). We drop the deterministic trend regressors wy ¢ from the notation

for now. We use E[-] to denote expectations and V[-| to denote variances.

Assumption 2.2.1.

(i) (VTN XOT WL Z9T) are independent across 1.

(1) (i, Xio, Wg’:iT, Z0TY are iid with joint density

7

7\, zo, wS T, 20T = (N |z, w7, 29T ) (g, w7, 207T).

(i) Fort=1,...,T, the distribution of Xa; conditional on (Y;'*, X?:t_l, WQO;Z-T, Z9%TY does

)

not depend on the heterogeneous parameters \; and parameters (p,a, V1, ...77).

(iv) The distribution of (WQO;Z-T, Z%TY does not depend on N\; and (p,c, Y1, ..., yT).

7

7

(v) Uyp = at(Xio,WQO,i-T,Z?:T,%)V;t, where Vi is iid across ¢ = 1,..., N and independent
overt=1,..,T4+1 withE[Vy| =0 and V[Vy| =1 fort =1,...,T4+1 and (V;1,...,Vir)
1

are independent of X0, WYL, Z0T . We assume op(Xio, WS, Z9T ~,) is a function

that depends on the unknown finite-dimensional parameter vector ;.

Assumption 2.2.1(i) states that conditionally on the predictors, the Yj;41s are cross-sectionally
independent. Thus, we assume that all the spatial correlation in the dependent variables
is due to the observed predictors. Assumption 2.2.1(ii) formalizes the correlated random
effects assumption. The subsequent Assumptions 2.2.1(iii) and (iv) imply that A; may affect
Xt only indirectly through Y;'** — an assumption that is clearly satisfied in the dynamic

panel data model (2.2.1) — and that the strictly exogenous predictors do not depend on

12



Ai. In Assumption 2.2.1(v), we allow the unpredictable shocks Uj; to be conditionally het-
eroskedastic in both the cross section and over time. We allow o4(-) to be dependent on the
initial condition of the sequentially exogenous predictors, X;o, and other exogenous vari-
ables. Because throughout the paper we assume that the time dimension T is small, the

dependence through X;o can generate a persistent ARCH effect.

We now turn to the likelihood function. We use lower case (yit, wit, Tit, 2it) to denote the
realizations of the random variables (Yj;, X;t, Wit, Zit). The parameters that control the
volatilities oy(-) are stacked into the vector v = [7],...,7%]" and we collect the homogeneous

parameters into the vector § = [o/, p’,~']". We use H; = (Xi0, WL, Z9T) for the exogenous

o:T 0T

conditioning variables and h; = (zio, wy’; , ;" ) for their realization. Finally, we denote

the density of V; by ¢(v). Recall that we used z2; to denote predetermined predictors
other than the lagged dependent variable. According to Assumption 2.2.1(iii) the density

0:t—1
7

qe(x2,4t yz-l:t, T , W, z;) does not provide any information about A; and will subsequently
be absorbed into a constant of proportionality. Combining the likelihood function for the

observables with the conditional distribution of the heterogeneous coefficients leads to

T
1 Yit — Njwip—1 — p'Tip—1 — O/Zit—1>
iy L 17)‘217’2’0 X < TF)\Zh,Z
P(yir @2; Al ) (tl;[l O't(hi/)/t)(p ( ai(hi, ) (Ailha)
(2.2.2)

Because conditional on the predictors the observations are cross-sectionally independent, the

joint densities for observations ¢ = 1,..., N can be obtained by taking the product across i

of (2.2.2).
2.2.2 Identification

We now provide conditions under which the forecasting model (2.1.1) is identifiable. While
the identification of the finite-dimensional parameter vector 6 is fairly straightforward, the
empirical Bayes approach pursued in this paper also requires the identification of the corre-
lated random effects distribution m(\;|h;) from the cross-sectional information in the panel.

Before presenting a general result which is formally proved in the Online Appendix, we
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sketch the identification argument in the context of the restricted dynamic model (2.2.1)

with heterogeneous intercept and heteroskedastic innovations.

The identification can be established in three steps. First, the identification of the homo-
geneous regression coefficient p follows from a standard argument used in the instrumental
variable (IV) estimation of dynamic panel data models. To eliminate the dependence on
A; define Y = Yy — 75 30, Vs and X}, = Y1 — 745 30,1 Yis—1. Then, be-
cause E[Uit|YiO:t_1,)\i] = 0, the orthogonality conditions E[(Y; — PX;tfl)Yit—l] = 0 for
t=1,...,7—1 in combination with a relevant rank condition can be used to identify p (see,
e.g., Arellano and Bover (1995)). Second, to identify the variance parameters v, let Y;, Xj,
and U; denote the T x 1 vectors that stack Yj, Yi:—1, and Uy, respectively, fort =1,...,T.
Moreover, let ¢ be a T'x 1 vector of ones and define Zi/Q(:y) = diag(o1(hi, %), - - -, or(hi, A1),

Si(7) = E-_l/Z(i)L, and M;(¥) = I — S;(S!S;)~1S!. Using this notation, we obtain

1

M) (3) (Vi = Xip) = M(3)Si(3)N + Mi(3)S; 2 (3)Us = My(3)Vi.

)

This leads to the conditional moment condition

E[M:(3)S;23) (Vi — Xip) (Vi — Xip) S, 2A)M(F) — Mi(3)|H] =0 (2.2.3)

7

if and only if 4 = v, which identifies . Third, let

Vi =572 (0) (Yi — Xip) = Si(n)Ai + Vi (2.2.4)

()

The identification of 7(A;|h;) can be established using a characteristic function argument
similar to that in Arellano and Bonhomme (2012a). For the general model (2.1.1) we make

the following assumptions:

Assumption 2.2.2.

(i) The parameter vectors a and p are identifiable.
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(ii) For eacht =1,....T and almost all h; o2 (hi, ;) = o2(hi, V) implies 53 = ;. More-

over, a2(hi, ;) > 0.

(iii) The characteristic functions for N;|(H; = h;) and V; are non-vanishing almost every-

where.

() Wi = [Wig, ..., Wir—1]" has full rank k.

Because the identification of « and p in panel data models with fixed or random effects is well
established, we make the high-level Assumption 2.2.2(i) that the homogeneous parameters
are identifiable.> We discuss in the appendix how the identification argument for p in the
basic dynamic panel data model can be extended to a more general specification as in
(2.1.1). Assumption 2.2.2(ii) enables us to identify the volatility parameters v, and (iii) and
(iv) deliver the identifiability of the distribution of heterogeneous coefficients. The following

theorem summarizes the identification result and is proved in the Appendix.

Theorem 2.2.3. Suppose that Assumptions 2.2.1 and 2.2.2 are satisfied. Then the pa-
rameters a, p, and 7y as well as the correlated random effects distribution w(\;|h;) and the

distribution of Viz in model (2.1.1) are identified.

2.3 Decision-Theoretic Foundation

We adopt a decision-theoretic framework in which forecasts are evaluated based on cross-
sectional sums of mean-squared error losses. Such losses are called compound loss functions.
Section 2.3.1 provides a formal definition of the compound risk (expected loss). In Sec-
tion 2.3.2 we derive the optimal forecasts under the assumption that the cross-sectional
distribution of the \;s is known (oracle forecast). While it is infeasible to implement this
forecast in practice, the oracle forecast provides a natural benchmark for the evaluation of

feasible predictors. Finally, in Section 2.3.3 we introduce the concept of ratio optimality,

3Textbook / handbook chapter treatments can be found in, for instance, Baltagi (1995), Arellano and
Honoré (2001), Arellano (2003) and Hsiao (2014).
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which describes forecasts that asymptotically (as N — oo) attain the same risk as the

oracle forecast.
2.3.1 Compound Risk

Let L(?}TH,YZ-TH) denote the loss associated with forecast }A/;,TH of individual i’s time

T +1 observation, Y;r41. In this paper we consider the conventional quadratic loss function,

~ ~

L(Yirs1,Yirs1) = Yirer — Yir)>

The main goal of the paper is to construct optimal forecasts for groups of individuals selected

by a known selection rule in terms of observed data. We express the selection rule as
D; = D;(YN)e{0,1}, i=1,...,N, (2.3.1)

where D;(Y?) is a measurable function of the observations YV, YV = (),...,Yn), and
Vi = (YO X}T H;). For instance, suppose that D;(YV) = I{Yir € A} for A C R. In this
case, the selection is homogeneous across ¢ and, for individual ¢, depends only on its own
sample. Alternatively, suppose that units are selected based on the ranking of an index, e.g.,
the empirical quantile of ;7. In this case, the selection dummy D; depends on (Y17, ..., Yn7)

and thereby also on the data for the other N — 1 individuals.

The compound loss of interest is the average of the individual losses weighted by the selection

dummies:
N
Ly (Y, Vi) = ZDi(yN)L(Y;T-Hy Yir41),
i=1
where Yﬁl = (Yir41, ..., Yn7r4+1). The compound risk is the expected compound loss
SN YVANUR SN yN
Ry (V) = E; Ly (P Y] (2:3.2)

We use the 0 subscript for the expectation operator to indicate that the expectation is condi-
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tional on 6., The superscript (YN, A\, U%VH) indicates that we are integrating with respect

to the observed data JV and the unobserved heterogeneous coefficients AN = (A1,..., Ax)

and UY, | = (Uir41, ..., Un141)-

2.3.2 Optimal Forecast and Oracle Risk

We now derive the optimal forecast that minimizes the compound risk. The risk achieved
by the optimal forecast will be called the oracle risk, which is the target risk to achieve. In
the compound decision theory it is assumed that the oracle knows the vector 6 as well as
the distribution of the heterogeneous coefficients 7(\;, h;) and observes V. However, the
oracle does not know the specific A; for unit 7. In order to find the optimal forecast, note
that conditional on 0 the compound risk takes the form of an integrated risk that can be
expressed as

N | AN UN

Ry(Y{,) =E) EavyNT“[LN(Yﬁl,Yﬁl)}. (2.3.3)

The inner expectation can be interpreted as posterior risk, which is obtained by conditioning
on the observations YV and integrating over the heterogeneous parameter A and the shocks

U%V +1- The outer expectation averages over the possible trajectories AN

It is well known that the integrated risk is minimized by choosing the forecast that minimizes
the posterior risk for each realization YV. Using the independence across i, the posterior

risk can be written as follows:

AN UN -~
v LN (YR, YY) (2.3.4)

N
v iU 2 SYRIA
= 2 DY) { (Vir1 — B3 Wir]) 4 V5™ [Y”“]}
=1

E

where Vg‘i)’g”“[-] is the posterior variance. The decomposition of the risk into a squared

A

bias term and the posterior variance of Y;7,q implies that Egij,(i]iT+l[lfiT+1] is the optimal

)

“Strictly speaking, the expectation also conditions on the deterministic trend terms W
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predictor. Because U;r41 is mean-independent of A\; and );, we obtain
> Ai,Us i
VP =EpS " Yira] = By, (NI Wir + o/ Xir + o/ Zir. (2.3.5)

Note that the posterior expectation of A\; only depends on observations for unit ¢, even if
the selection rule D;()") also depends on the data from other units j # i. The result is

summarized in the following theorem:

Theorem 2.3.1 (Optimal Forecast). Suppose Assumptions 2.2.1 are satisfied. The optimal
forecast that minimizes the composite risk in (2.5.2) is given by 123?_?1 in (2.8.5). The

compound risk of the optimal forecast is

N
-8}

N
S DiYY) (Wi’TVnyi (N Wi + 021 (Hi, 71 ))] . (2.3.6)
i=1

According to (2.3.6), the compound oracle risk has two components. The first component re-
flects uncertainty with respect to the heterogeneous coefficient A\; and the second component
captures uncertainty about the error term U;r41. Unfortunately, the direct implementation
of the optimal forecast is infeasible because neither the parameter vector € nor the correlated
random effect distribution (or prior) 7(-) are known. Thus, the oracle risk R%’t provides a

lower bound for the rigk that is attainable in practice.
2.3.3 Ratio Optimality

The identification result presented in Section 2.2.2 implies that as the cross-sectional dimen-
sion N — oo, it might be possible to learn the unknown parameter § and random-effects
distribution 7(-) and construct a feasible estimator that asymptotically attains the oracle
risk. Following Brown and Greenshtein (2009), we say that a predictor achieves ratio opti-
mality if the regret RN(}A/Z{\ZA) — R?\?t of the forecast ffﬁ_l is negligible relative to the part

of the optimal risk that is due to uncertainty about A;:

Definition 2.3.2. For a given ¢y > 0, we say that forecast }A/j{\frl achieves eg-ratio optimality,
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if
R Ropt
lim sup < all TH)
N—oo By |:Zz L Di(YNYW Vs, [)\i]WiT} + Neo

<0. (2.3.7)

Using (2.3.5), the risk differential in the numerator (called regret) can be written as

Ry(V) - R =Y [ZD ) (Vi - Eéjﬁ”“[nm)]. (2:3.8)

For illustrative purposes, Consider the basic dynamic panel data model (2.2.1). For this
model ngj;[f”l Yirs1] = Eg‘;z [Ai] + pYir. A natural class of predictors is given by 2‘T+1 =
Iﬁi‘;z [Ai] + pYir, where ES\JZ [Ai] is an approximation of the posterior mean of \; that replaces
the unknown p and distribution 7 (-) by suitable estimates. The autoregressive coefficient in
this model can be v/ N-consistently estimated, which suggests that vazl(ﬁ—p)zYl% = 0p(1).
Thus, whether a predictor attains ratio optimality crucially depends on the rate at which

the discrepancy between Ei\}l [A;] and Ei\i [A;] vanishes.

The denominator of the ratio in Definition 2.3.2 is divergent. The rate of divergence depends
on the posterior variance of A;. If the posterior variance is strictly greater than zero, then
the denominator is of order O(N). Note that for each unit ¢, the posterior variance is based
on a finite number of observations 7T'. Thus, for the posterior variance to be equal to zero,
it must be the case that the prior density 7()) is a pointmass, meaning that there is a
homogeneous intercept A. In this case the definition of ratio optimality requires that the
regret vanishes at a faster rate, because the rate of the numerator drops from O(N) to N<.
Subsequently, we will pursue an empirical Bayes strategy to construct an approximation

@3‘;1 [A;] based on the cross-sectional information and show that it attains ratio-optimality.

In the linear panel literature, researchers often use the first difference to eliminate A;. In
this case, the natural forecast of Y741 in the basic dynamic panel data model (2.2.1) would
be Yg?l(p) = Yir + p(Yir — Yir—1), which is different from 2#’;_1 in (2.3.5). Thus, we
can immediately deduce from Theorem 2.3.1 that YZT D\ (p) is not an optimal forecast. The

quasi-differencing of Y;; introduces a predictable moving-average error term that is ignored
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by the predictor }A/Z?fl (p).

2.4 Implementation of the Optimal Forecast

AisUsir 1

We will construct a consistent approximation of the posterior mean E, Vi

[Ai] using a
convenient formula which is named after the statistician Maurice Tweedie (though it had
been previously derived by the astronomer Arthur Eddington). This formula is presented
in Section 2.4.1. In Section 2.4.2 we discuss the parametric estimation of the correction
term and in Section 2.4.3 we consider a nonparametric kernel-based estimation. The QMLE

and Generalized Method-of-Moments (GMM) estimation of the parameter 6 are discussed
in Sections 2.4.4 and 2.4.5.

2.4.1 Tweedie’s Formula

When the innovations Uy are conditionally normally distributed, we can derive a convenient

formula for the posterior expectation Eé\iy_ [Ai] of the individual heterogeneous parameter A;.

Assumption 2.4.1. The unpredictable shock Vi has a standard normal distribution:

Vi | (V1 X0 Wy, Zi, \) ~ N(0,1), t=1,..,T.

The assumption of normally distributed Vj;’s is not as restrictive as it may seem. Recall
that the shocks U;; are defined as %tat(Xio,Wg,;T,Z?:T,%). Thus, due to the potential
heteroskedasticity, the distribution of shocks is a mixture of normals. The only restriction is
that the random variables characterizing the scale of the mixture component are observed.
Moreover, even in the homoskedastic case o, = o, the distribution of Yj; given the regres-
sors is non-normal because the distribution of the \; parameters is fully flexible. Using

Assumption 2.4.1 we will now further manipulate the density p(y;, x4, Ai|hi, 0) in (2.2.2).5

®In principle, the normality assumption could be generalized to the assumption that the distribution of
Vit belongs to the exponential family.
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To simplify the notation we will drop the ¢ subscript. Define
G1(0) = ye — plwe1 — o'z, B(0) = diag(oi, ..., 07), (2.4.1)

and let §(#) and w be matrices with rows ¢(0) and w;_;,t = 1, ..., T. Because the subsequent
calculations condition on 6 we will omit the #-argument from ¢, X, and functions thereof.

Replacing ¢(v) in (2.2.2) with a Gaussian density function we obtain:

p(y7$27 )‘|h’ 0)

1 . 1 “
X exp {—2()\ — NS w(\ - )\)} exp {—2@ —w)\)'S7 (g - w)\)} w(Alh).
The factorization of p(y, x2, A|h, #) implies that
A= (WS lw) 'Ry (2.4.2)

is a sufficient statistic and that we can express the posterior distribution of \ as

p(AA, B, 0)m(A|R)
p(Ah, 0)

PNy, x2,h, 0) = p(A|A, , 0) =

)

where

o 1 » ~
p(AIA, b, 0) = (27) 7Fe/2 |/ S 1|2 exp {—2@ N 'S w(h - )\)} : (2.4.3)

To obtain a representation for the posterior mean, we now differentiate the equation

/p(Ayi,h,e)dA =1

with respect to A Exchanging the order of integration and differentiation and using the
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properties of the exponential function, we obtain

0 = w'E_lw/()\ — Np(AA, by 0)dA — 58; Inp(Alh, 6)

. o .
= wWEw(EGy[\] - A) — —<Inp(Alh, 0).
’ O\
Solving this equation for the posterior mean yields Tweedie’s formula, which is summarized

in the following theorem.

Theorem 2.4.2. Suppose that Assumptions 2.2.1 and 2.4.1 hold. The posterior mean of \;

has the representation

By N = h(0) + (WP s 0wt ) B S PO, ()

The optimal forecast is given by

-1 /
o . — . ) .
Y7L = <Ai<9>+ (W;J-T Ut oywTt 1) PNTIREA i(0)|Hz’79)> Wrs

—I-p/XiT + O/ZiT. (2.4.5)

Tweedie’s formula was used by Robbins (1951) to estimate a vector of means A" for the
model Y;|\; ~ N(A;, 1), \; ~7(-),i=1,..., N. Recently, it was extended by Efron (2011) to
the family of exponential distribution, allowing for a unknown finite-dimensional parameter
0. Theorem 2.4.2 extends Tweedie’s formula to the estimation of correlated random effect

parameters in a dynamic panel regression setup.

The posterior mean takes the form of the sum of the sufficient statistic 5\1(0) and a correction
term that reflects the prior distribution of A\;. The correction term is expresses as a function
of the marginal density of the sufficient statistic A;(f) conditional on H; and 6. Thus, it
is not necessary to solve a deconvolution problem that separates the prior density m(\;|h;)
from the distribution of the error terms Vj;. We expressed Tweedie’s formula in (2.4.4) in

~

terms of the conditional density p(\;(6)|H;,0). However, because the posterior mean is a
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function of the log density differentiated with respect to ;\i(H), the conditional density can

be replaced by a joint density:

0 N 0 5
P Inp(\i(0)|H;, 0) = YN Inp(A;(0), Hil0).

The construction of ratio-optimal forecasts relies on replacing the density p(\;(6), H;|0) and

the common parameter 6 by consistent estimates.
2.4.2 Parametric Estimation of Tweedie Correction

If the random-effects distribution m(A|h;) is Gaussian, then it is possible to derive the

marginal density of the sufficient statistic p(\;(0)|h;, 0) analytically. Let
| (Hi,6) ~ N(BH;, Q). (2.4.6)

Moreover, define & = (vec(®), vech(Q))/. To highlight the dependence of the correlated
random-effects distribution on the hyperparameter £ we will write 7(A;|h;, §). The marginal

density (omitting the i subscripts and the -argument of \) is given by

p(MO)|h,0,6) = /p(;\(9)|)\,h,9)7r()\|h,§)d)\ (2.4.7)

1/215(1/2

— (27r)—kw/2’Q—1‘1/2‘w/2—1w‘ }Q}

1 < . o
X exp {—2 (Nw'S™ wd + HO'Q h — )\’Q‘l)\)} :
Here, we used the likelihood of A in (2.4.3), the density associated with the Gaussian prior

in (2.4.6), and then the properties of a multivariate Gaussian density to integrate out A.

The terms A and § are the posterior mean and variance of \, respectively:

Q=0+ w'sw, A=Q(Q7 1R + WS w)).

Conditional on 6 the vector of hyperparameters £ can be estimated by maximizing the
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marginal likelihood
N

£(0) = argmaxe [ [ p(\i(0)Ih:,6,€) (2.4.8)
i=1

using the cross-sectional distribution of the sufficient statistic. Tweedie’s formula can then

be evaluated based on p(;\i(0)|hi, 0, 5(9)) In principle it is possible to replace the Gaussian

prior distribution with a more general parametric distribution. However, in general it will

not be possible to derive an analytical formula for the marginal likelihood.
2.4.3 Nonparametric Estimation of Tweedie Correction

A nonparametric implementation of the Tweedie correction can be obtained by replacing

p(Ai(0), hi|0) and its derivative with respect to A;(#) with a Kernel density estimate, e.g.,

P(Ni(6), 1il6) (2.4.9)

N
_ 1 kw2 |~k 1 |~1/2 1
- N]Zl{@w) By e { =

() = 3,00) V3 (34(6) = 3y00) |

1
x (2) ~*n/2| By | 7R (V3,712 exp {—232 (hi — hj)/Vhfl(hi — hj) } ] )
N

where By is the bandwidth and V5 and Vj are tuning matrices. Note that even if the
prior distribution 7(A) is a pointmass, the sufficient statistic A in (2.4.2) has a continuous

distribution and one can use a kernel density estimator to construct the Tweedie correction.

If the dimension of the conditioning variables H; is large, the nonparametric estimation
suffers from the curse of dimensionality. In this case, one may reduce the dimension of
the conditioning set with some smaller dimensional indices, e.g., by assuming that \; and
H; dependent only through H; = %3 Hy, that is, m(A|h) = w(A|h). In Section 2.5
we provide a detailed analysis of the Gaussian kernel estimator in the context of the basic

dynamic panel data model in (2.2.1) with time-homoskedastic innovations.
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2.4.4 QMLE Estimation of ¢

Notice that under Assumption 2.4.1, A;(#) in (2.4.2) is a sufficient statistic of \; conditional
on 6, h;, and m\(Ai|hi, &) is the parametric version of the correlated random effect den-
sity. Integrating out A\ under a parametric correlated random effect (or prior) distribution

max(A|xo, w2, 2, &), we have (omitting the ¢ subscripts)

p(y, x2|h, 0, &) (2.4.10)

_ / Dy, x2lh, 0, (Al £(6))dA

~ ~

o 9O exp {5 (50) - wh(0) = 0)316) - wii0) }

« / exp {—;(X(e) ~ N WS 0w (A0) - \) } r (A(O) |1, £(6)) dA
< 2O exp {5 (56) - wA©) S O)316) - wA®) |

x[w's " w| T2 p(A(B)|h, 6,€).

Here, we used the definition of §(#) in (2.4.1) and the product of Gaussian likelihood and

prior in (2.4.2). Note that the term p(\(6)|h, 6, €) in the last line of (2.4.10) is identical to
the objective function for £ used in (2.4.8). Thus, we can now jointly determine 6 and £ by

maximizing the integrated likelihood as a function:
N
(QQMLE, gQMLE) = argmaxg ¢ Hp(yi, :E2i|hi, 0, 5) (2.4.11)

=1

We refer to this estimator as quasi (Q) maximum likelihood estimator (MLE), because the

correlated random effects distribution could be misspecified.
2.4.5 GMM Estimation of 6

Without a convenient assumption about the random effects distribution, one can estimate

the parameter 6 using a sample analogue of the moment conditions that were used in the
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identification analysis in Section 2.2. For t =1,...,T — k,,, define

T T -1
Y=Y — ( > Vi ;S_1> (Z WZ-“W{S_1> Wit_1. (2.4.12)

s=t+1 s=t+1

Moreover, define X7, and Z},_; by replacing Y;. in (2.4.12) with X;. and Z,., respectively,
and let
XQ:t—l
(2

* * * /
git(p, @) = (Yit —Pl it—1 —a it—l) . , o gilp, ) = [gu(/)a 04)/, vy GiT—ky 2 04)/] .

1

The continuous-updating GMM estimator of p and « solves
N "/ N -1/ N
(PGrMm s Gaam) = argmin (Z 9i(p; a)) <Z 9i(p, @)gi(p, 04)/> (Z gi(p, 04))(2413)
i=1 i=1

prex i=1

This estimator was proposed by Arellano and Bover (1995) and we will refer to it as
GMM(AB) estimator in the Monte Carlo simulations (Section 2.6) and the empirical appli-

cation (Section 2.7).5
To estimate the heteroskedasticity parameter v = [y1,...,yr]" in o2 (H;, ), define:

ifl(ﬁ7 &) - Y; - X’i,*Tﬁ - Zi,fTOAév 211/2(7) = diag(gl(hi,71)7 cee )UT(hia VT))v

Si(r) = N VE)Wi,  Mly) =1 — S;(S.S;) 'S,

7

where p and & could be the estimators in (2.4.13). We use the sample analogue to a set of

moment condition implied by a generalization of (2.2.3):

6There exists a large literature on the estimation of dynamic panel data models. Alternative estimators
include Arellano and Bond (1991) and Blundell and Bond (1998).
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where B is a selection matrix that can be used to eliminate off-diagonal elements of the
covariance matrix. In population, these off-diagonal elements should be zero, because the

U,’s are assumed to be uncorrelated across time.

2.4.6 Extension to Multi-Step Forecasting

While this paper focuses on single-step forecasting, we briefly discuss in the context of the
basic dynamic panel data model how the framework can be extended to multi-step forecasts.

We can express

h—1 h—1
Yirsn = (Z ps> Xi + p"Yir + Z P*Uirshs.
s=0 s=0

Under the assumption that the oracle knows p and 7(\;,Y;0) we can express the oracle

forecast as
-1
Lopt i h
Yvi(;?Jrh = <§ p5> EO,% [)\z] + p"Yir.
s=0

As in the case of the one-step-ahead forecasts, the posterior mean Eé\f% [Ai] can be replaced
by an approximation based on Tweedie’s formula and the p’s can be replaced by consistent
estimates. A model with additional covariates would require external multi-step forecasts
of the covariates, or the specification in (2.1.1) would have to be modified such that all

exogenous regressors appear with an h-period lag.

2.5 Ratio Optimality in the Basic Dynamic Panel Model

Throughout this section we will consider the basic dynamic panel data model with ho-

moskedastic Gaussian innovations:
Yie = Ni + pYi1 + Ui, Uy ~#idN(0,6%),  (Mi, Yio) ~ 7(\, yio)- (2.5.1)

We will prove that ratio optimality for a general prior density m(A;|h;) can be achieved
with a Kernel estimator of the joint density of the sufficient statistic and initial condition:

p(\i(0), H;|0). The proof of the main result is a significant generalization of the proof in
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Brown and Greenshtein (2009) for a vector of means to the dynamic panel data model with

estimated common coeflicients.

For the model in (2.5.1), the sufficient statistic is given by

T
c 1
Ai(p) = T Z(th — pYii_1) (2.5.2)
t=1
and the posterior mean of \; simplifies to
; 3 A Q o2 0 .
Eé\jyl [Ai] = M()‘i(P)a O'Q/T,p()\i, YZO)) = Xi(p) + ?m In p(Ai(p), Yio)- (2.5.3)

The formula recognizes that the heterogeneous coefficient is a scalar intercept and that

~

the errors are homoskedastic. We simplified the notation by writing p(A;(p), Yio) instead
of p(Xi(p), Yio|f). This simplification is justified because we will estimate the density of
(Ai(p), Yio) directly from the data; see (2.5.4) below. We will use the notation u(-) to refer

to the conditional mean as function of the sufficient statistic ), the scale factor o2/, and

the density p(j\z-, Yio).

To facilitate the theoretical analysis, we make two adjustments to the posterior mean pre-
dictor of Yi71. First, we replace the kernel density estimator of (\;(p), Y;o) given in (2.4.9)

by a leave-one-out estimator of the form:

D () Vi) — L 1 (N =)\ 1 (Yo Y
p (Az(m,&zo)N_lj#BN(z)(a ESYCNIEES 1)

where ¢(+) is the pdf of a N(0,1). Using the fact that the observations are cross-sectionally

independent and conditionally normally distributed one can directly compute the expected
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value of the leave-one-out estimator:

B 1 Xi — A
= /\/02/T+BJQV¢ Vo T + B,

Ul — g0\
% [/ EQZ’ <yOBNyO) p(yi0|/\i)dyi0] p(\g)d;.

Taking expectations of the kernel estimator leads to a variance adjustment for conditional

(=) A(—=3) /%
By, 16 (M, gio

(2.5.5)

distribution of \;|\; (02/T + B3 instead of 02 /T) and the density of y;o|)\; is replaced by a

convolution.

Second, we replace the scale factor 62 /T in the posterior mean function u(-) by 62/T + BJQV,
which is the term that appears in (2.5.5). Moreover, we truncate the absolute value of
the posterior mean function from above. For C' > 0 and for any = € R, define [2]° :=
sgn(z) min{|z|, C'}. Then

~

Tir1 = [u(i(0).6%/T + Bp7'())] " + ¥ar, (2.5.6)

where Cy — oo slowly. Formally, we make the following technical assumptions.

Assumption 2.5.1 (Marginal distribution of \;). The marginal density of A\;, w(\) has

support AT C [-Cn, Cn]|, where for any e >0, Cn = o(N°).

Assumption 2.5.2 (Bandwidth). Let Cy = (14+k)(VIn N+Cy), where k is a constant such
that k > max{0, /202 /T —1}. The bandwidth for the kernel density estimator, By, satisfies
the following conditions: (i) for any € > 0, 1/B3 = o(N°¢); (i) Bn(Cl +2Cn) = o(1).
Assumption 2.5.3 (Conditional distribution of Yjo|\;). Let Y be the support of the con-
ditional density w(yio|\i). The conditional density of Yip conditioning on \; = X\, w(y|\),
satisfies the following three conditions: (i) 0 < w(y|\) < M for y € Y and X € A™. (i)
There exists a finite constant C such that for any large value C > C,

max{/coo 7r(y]/\)dx,/c ﬂ(y])\)dy} < exp(—m(C, A)),

o0
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where the function m(C, \) > 0 satisfies the following: m(C,\) is an increasing function of
C for each X\ and there exists finite constants K > 0 and € > 0 such that

liminf inf (m (K(\/hT\f+ Cw), A) —(2+¢) 1nN> > 0.

N—0 |)\|§CN

(iii) The following holds uniformly in y € YT N[-Cl,Cn| and X € A™:
1 Y=Y\ _~\ygm
[ oo (T5) widi = (1 o)l

Assumption 2.5.4 (Estimators of p and o2). There erist estimators p and 62 such that for
any e >0, (i) BY" [VN(p—p)[*] < o(N9), (ii) BY" [6*] < o(N€), and (iii) BY" [|V/N (62—
o?)|?] < o(N°).

We factorize the correlated random effects distribution as w(A;, yio) = 7(Xi)7(yio|Ai) and
impose regularity conditions on the marginal distribution of the heterogeneous coefficient
and the conditional distribution of the initial condition. In Assumption 2.5.1 we let the
support of 7()\;) slowly expand with the sample size by assuming that C grows at a
subpolynomial rate. Assumption 2.5.2 provides an upper and a lower bound for the rate at
which the bandwidth of the kernel estimator shrinks to zero. Note that for technical reasons

the assumed rate is much slower than in typical density estimation problems.”

Assumption 2.5.3 imposes regularity conditions on the conditional density of the initial
observation. In (i) we assume that 7(yip|\;) is bounded. In (ii) we control the tails of the
distribution. In the first constraint on m(C, \) we essentially assume that the density of y;o
has exponential tails. This also guarantees that the fourth moment of Y;qg exists. In part
(iii) we assume that 7(y|\) is sufficiently smooth with respect to y such that the convolution

on the left-hand side uniformly converges to 7(y|A) as the bandwidth By tends to zero. We

"In a nutshell, we need to control the behavior of 13(5\1-, Yio) and its derivative uniformly, which, in certain
steps of the proof, requires us to consider bounds of the form M/B3%, where M is a generic constant. If
the bandwidth shrinks too fast, the bounds diverge too quickly to ensure that it suffices to standardize the
regret in Definition 2.3.2 by N if the \; coefficients are identical for each cross-sectional unit.
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verify in the Appendix that a 7(y|\) that satisfies Assumption 2.5.3 is w(y|\) = ¢(y — A),
where ¢(z) = exp(—32?)/v/2m. Finally, Assumption 2.5.4 postulates the existence of finite
sample moments of the estimators of the common parameter. The main result is stated in

the following theorem:

Theorem 2.5.5. Suppose that Assumptions 2.2.1, 2.4.1, and 2.5.1 to 2.5.4. Then, for the
basic dynamic panel model the predictor ﬁTH defined in (2.5.6) satisfies the ratio optimality
i Definition 2.3.2.

The result in Theorem 2.5.5 is pointwise with respect to 8. However, the convergence of the
predictor }A/Z-TH to the oracle predictor is uniform with respect to the unobserved heterogene-
ity and the observed trajectory ); in the sense that the integrated risk (conditional on ) of
the feasible predictor converges to the integrated risk of the oracle predictor. The proof of
the theorem is a generalization of the proof in Brown and Greenshtein (2009), allowing for
the presence of estimated parameters in the sufficient statistic 5\() The remarkable aspect
of the results is the acceleration of the convergence (IN§ instead of N in the denominator
of the standardized regret in Definition 2.3.2) in cases in which the intercepts are identical

across units and 7(A) is a pointmass.

2.6 Monte Carlo Simulations

We will now conduct several Monte Carlo experiments to illustrate the performance of the

empirical Bayes predictor.
2.6.1 Experiment 1: Gaussian Random Effects Model

The first Monte Carlo experiment is based on the basic dynamic panel data model in (2.2.1).
The design of the experiment is summarized in Table 1. We assume that the \;’s are
normally distributed and uncorrelated with the initial condition Y;g. The innovations Uy
and the heterogeneous intercepts A; have unit variances. We consider two values for the

autocorrelation parameter: p € {0.5,0.95}. The panel consists of N = 1,000 cross-sectional

31



Table 1: Monte Carlo Design 1

Law of Motion: Yy = \; + pYir_1 + Uy where Uy ~ #9dN(0,~?). p € {0.5,0.95}, v =1
Initial Observations: Y;o ~ N(0,1)

Gaussian Random Effects: \;|Yip ~ N (¢ + ¢1Yi0,2), 60 =0,¢1 =0, Q=1

Sample Size: N = 1,000, T =3

Number of Monte Carlo Repetitions: Ng;,, = 1,000

units and the number of time periods is T" = 3. Generally, the smaller T relative to number
of right-hand-side variables with heterogeneous coefficients, the larger the gain from using
a prior distribution to compute posterior mean estimates of the \;’s. We will compare the

performance of the following predictors:

Oracle Forecast. The oracle knows the parameters § = (p,y) as well as the random effects
distribution m(\;|Yio,&), where & = (oo, ¢1,£2). However, the oracle does not know the

specific A; values. Its forecast is given by (2.3.5).

Posterior Predictive Mean Approximation Based on QMLE. The random effects
distribution is correctly modeled as belonging to the family \;|(Y;o,&) ~ N(¢o + ¢1Yio, Q).
The estimators HAQMLE and EQMLE are defined in (2.4.11). Tweedie’s formula (see (2.5.3)

for the simplified version) is evaluated based on p(j\i(éQMLEﬂyio, éQMLE, EQMLE).

Posterior Predictive Mean Approximation Based on GMM Estimator. We use
the Arellano-Bover estimator described in Section 2.4.5. The estimator for p is given by
(2.4.13) and the estimator for v by (2.4.14). The formulas simplify considerably. We have
Wit =1, X1 = Y1, Zip_1 = 0 and o = 0. Moreover, X,/ = 71, M;(y) = I — u//T,

where ¢ is a T x 1 vector of ones. Let l:/;(,f)) be the temporal average of Y;(p). Then

Pt = gt S [(TiA) — i) (Fi(5) — F:(p)'].
=1

The estimator £(gasas) is obtained from (2.4.8). Finally, Tweedie’s formula is evaluated
based on p(Ai(Ocnrar)io, Oanins, §Ocrin)).
GMM Plug-In Predictor. We use the Arellano-Bover estimator to obtain pgarar. Instead
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of using the posterior mean for )\;, the plug-in predictor is based on the MLE j\i(ﬁGMA4).

The resulting predictor is ?iT—&-l = Xi(ﬁGM M)+ pammYir-

Loss-Function-Based Predictor. We construct an estimator of (p, \") based on the

objective function:

T T
~ . - 1
pr = argmin, ~ Y >~ (Yie = pYi1 = Xi(p)"s Ailp) = 5 Y Yie = pYar. (26.1)
i=1 t=1 t=1

This estimator minimizes the loss function under which the forecasts are evaluated in sam-
ple. It is well-known that due to the incidental parameter problem, the estimator py is

inconsistent under fixed-IN asymptotics. The resulting predictor is }A/iTH = Xi(ﬁL) + prYir.

Pooled-OLS Predictor. Ignoring the heterogeneity in the A;’s and imposing that \; = A
for all 4, we can define
| NI
AR . 2
(pp,Ap) = argmin,, E g (Y;t —pYi 1 — )\) . (2.6.2)

NT «
i=1 t=1

The resulting predictor is }A/iTH =2 p+ppYir.

First-Difference Predictor. In the panel data literature it is common to difference-out
idiosyncratic intercepts, which suggests to predict AY;ry1 based on AY;p. We evaluate the

first-difference predictor at the Arellano-Bover GMM estimator of p to obtain }A/i?fl (Perin)-

In Table 2 we report the regret associated with each predictor relative to the posterior
variance of );, averaged over all trajectories YV, as specified in Definition 2.3.2 (setting

N€ =1). For the oracle predictor the regret is by definition zero and we tabulate the risk R%gt

~

instead (in parentheses). We also report the median forecast error €1T+1|T =Yir+1 — Yir+1

to highlight biases in the forecasts.

The columns titled “All Units” correspond to D; (YY) = 1. As expected from the theoretical

analysis, the posterior mean predictors have the lowest regret among the feasible predictors.
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The density of \; is estimated parametrically, using a family of distributions that nests
the true random effects distribution. Because it is based on a correctly specified likelihood
function, the predictor based on éQ mLE performs slightly better than the predictor based on
éGMM~ Consider p = 0.5: for the QMLE-based predictor the regret is 0.5% of the average
posterior variance, whereas it is 3% for the GMM-based predictor. The plug-in predictor
that replaces the unknown A;’s by the sufficient statistic A; (which is also the maximum
likelihood estimator) instead of the posterior mean is associated with a much larger relative

regret, which is about 37%.

The remaining three predictors are also strictly dominated by the posterior mean predictors.
Ignoring the serial correlation in AYj, the first-difference predictor performs the worst for
both choices of p. The second-to-worst predictor is the pooled-OLS predictor which ignores
the cross-sectional heterogeneity in the A;’s. A reduction of the variance  of the hetero-
geneous intercepts would improve the relative performance of the pooled-OLS predictor.
Finally, the loss-function-based predictor dominates the pooled-OLS and the first difference
predictor. As mentioned above, while conceptually appealing, the loss-function-based pre-
dictor relies on an inconsistent estimate of p, which in comparison to the GMM plug-in

predictor is unappealing if the cross-sectional dimension N is very large.

Across all units, the predictions under the loss-function-based estimator and the pooled-
OLS estimator appear to be biased. To study this bias further we now consider level-based
selection rules D;()?). Using the 5%, 47.5%, 52.5%, and 95% quantiles of the population
distribution of Y;r, we define cut-offs for a bottom 5% group, a middle 5% group, and a top
5% group. Because the cut-offs are computed from the population distribution of Y;r, for

unit 7 the selection rules only depends on YV;7 and not on Y7 with j # i.

For the top and bottom groups only the posterior mean predictors lead to unbiased fore-
cast errors. The sufficient statistic )\; tends to overestimate (underestimate) \; for the top
(bottom) group, because it interprets a sequence of above-average (below-average) U;r’s as

evidence for a high (low) A;. This is reflected in the bias: the plug-in predictors’ forecast
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Figure 1: QMLE Estimation: Distribution of Eg‘iy [Ai] versus ;(6)

s Vi

All Units Bottom Group Middle Group Top Group
1.5 1.5 1.5 1.5
1 1 1 1
0.5 0.5 0.5 05
95 0 5 10 9 92 0. ‘2 4 00 10

Notes: Solid (red) lines depict cross-sectional densities of posterior mean estimates ]Eg‘iy_ [Ai]. Dashed (blue)

lines depict cross-sectional densities of sufficient statistic \; (é) The results are based on the QMLE estima-
tor. The Monte Carlo design is described in Table 1.

errors for the top group are on average positive, whereas the forecast errors for the bottom
group tend to be negative. The posterior mean tends to correct these biases because it
shrinks toward the mean of the prior distribution of the A;’s. This reduces the regrets for
the top and bottom groups, and is also reflected in the risk calculated across all units. The
bias correction is illustrated in Figure 1, which compares the cross-sectional distribution of
the sufficient statistics /A\l(é) to the distribution of the posterior mean estimates IE;\’% [Ad]

obtained with Tweedie’s formula. Due to the shrinkage effect of the prior, the distribution

of the posterior means, in particular for the top and bottom groups, is more compressed.
2.6.2 Experiment 2: Non-Gaussian Correlated Random Effects Model

We now change the Monte Carlo design in two dimensions. First, we replace the Gaussian
random effects specification with a non-Gaussian specification in which the heterogeneous
coefficient \; is correlated with the initial condition Yjy3. Second, we consider a Tweedie

correction based on a kernel density estimate of p()\s|Yio) as discussed in Section 2.4.3.

The Monte Carlo design is summarized in Table 3. Starting point is a joint normal distribu-
tion for (\;, Yio), factorized into a marginal distribution 7. (\;) and a conditional distribution
7+ (Yio|A;). We assumed \; ~ N(H/\,K/\) and that Yjg|\; corresponds to the stationary dis-

tribution of Yj; associated with its autoregressive law of motion. The implied marginal
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Table 3: Monte Carlo Design 2

Law of Motion: Yy = \; + pYir—1 + Uy where Uy ~ #9dN(0,~%); p=0.5, v =1
Initial Observation: Yo ~ N (lﬁf*p, W+ 0%72)2), Vv =~2/(1 — p?); p,=1LV,=1
Non-Gaussian Correlated Random Effects:

N(¢+(Yi0),Q) with probability py

il Yio ~ : . - )

N(gb, (Y; )7Q) with probability 1 — py
o+ (Yio) = ¢o + 6 + (¢1 + )Y,
d—(Yio) = ¢o — 0 + (91 — )Y,

-1
Q= {ﬁ‘/yﬂ —I—K;\l} , o :Qz;\lﬁ)\’ b1 = ﬁﬂV{l’

Sample Size: N = 1,000, T =3
Number of Monte Carlo Repetitions: N, = 1,000

Figure 2: QMLE Estimation: Density p()|yio, 6) for § = 1/10 versus § = 1

Yio = —2.5 Yio = 2.0 Yio = 6.5
0.5 0.5 0.5
0.4 0.4 04
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 0 0

-5 0 5 -5 0 5 10 -10 0 10

20

Notes: Solid (blue) line is 6 = 1 and solid (red) line is 6 = 1/10. The Monte Carlo design is described in

Table 3.

distribution for Y;g is used as m(Y;o) in the Monte Carlo design. To obtain 7(\;|Y;0) we took

T« (Ai|Yio) from the Gaussian model and replaced it with a mixture of normals described

in Table 3. For 6 = 0 the mixture reduces to m.(\;|Yj0), whereas for large values of ¢ it

becomes bimodal. This bimodality also translates into the distribution of 5\’5/;[), which is

depicted in Figure 2 for 6 = 1/10 (almost Gaussian) and § = 1 (bimodal).

In this experiment we consider a parametric Tweedie correction (same as in Experiment 1,

but now misspecified in view of the DGP) and two nonparametric Tweedie corrections. First,

we compute the correction based on the simple Gaussian kernel in (2.4.9). The bandwidth is
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chosen in accordance with the theory in Section 2.5. We set By = ¢/(In N)?%5

, which would
be consistent with a truncation of the form Cy = ¢v/In N, and let ¢ € {1/2,1,2}.% Second,
we use the adaptive estimator proposed by Botev et al. (2010), henceforth BGK estimator,
which is based on the solution of a diffusion partial differential equation. This estimator is

associated with a plug-in bandwidth selection rule that requires no further tuning.® Unless

otherwise noted, the subsequent results are based on the BGK estimator.

Figure 3 shows the “true” density p(j\i|yi0,0) as well as Gaussian and nonparametric ap-
proximations. Under the Gaussian correlated random effects distribution we can directly
calculate the conditional distribution of \; given y;0. The nonparametric approximation
is obtained by dividing an estimate of the joint density of (Xi,yig) by an estimate of the
marginal density of y;o (this normalization is not required for the Tweedie correction). Each
hairline in Figure 3 corresponds to a density estimate from a different Monte Carlo run.
For 6 = 1/10 the Gaussian approximation is accurate and the variability of the estimates is
much smaller than that of the kernel estimates. For 6 = 1 the Gaussian density is unable to

approximate the bimodal p(j\i,yig|9), whereas the non-parametric approximation, at least

for y;0 = 2.0 captures the key features of the density of \i.

For the prediction, the relevant object is the correction (02 /T)0In p(A;, yio|#) /i, which is
depicted in Figure 4. Under a Gaussian correlated random effects distribution, the Tweedie
correction is linear in \; because the posterior mean is a linear combination of the prior mean
and the maximum of the likelihood function. Thus, the corrections based on the Gaussian
density estimate are linear regardless of 6. For § = 1/10 the correction under the “true”
random effects distribution is nearly linear, and thus well approximated by the Gaussian
correction. The nonparametric correction is fairly accurate for values of )\ in the center of
the conditional distribution A;|(yio,6), but it becomes less accurate in the tails. For § = 1,

on the other hand, the kernel-based correction provides a much better approximation of the

8The tuning matrices V5 and Vj, are set equal to the sample variances of i and Y0, respectively.
°Our estimates are based on Algorithms 1 and 2 in BGK. We use the authors’ MATLAB code to
implement the density estimator.
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Figure 3: QMLE Estimation: “True” Density p(\;|yio, 8) versus Gaussian and Nonparametric
Estimates

Parametric Gaussian Estimates p*(5\1~|yio, éQMLE, éQMLE)

Misspecification § = 1/10 Misspecification § = 1
Yio = —2.5 Yio = 2.0 Yio = —2.5 Yio = 2.0
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Notes: Solid (blue) lines depict “true” p(A;|yio, 6). Colored “hairs” depict 10 estimates from the Monte Carlo
repetitions. The nonparametric estimates are based on the BGK kernel estimator. The Monte Carlo design
is described in Table 3.

optimal correction than the Gaussian correction.

Table 4 compares the performance of twelve predictors; half of them based on QMLE and
the other half based on GMM. It is well-known that the GMM estimator of 6 is consistent
under the DGP described in Table 3. We show in the Appendix that the QMLE estimator
is also consistent for 6 under this DGP, despite the fact that the correlated random effects
distribution is misspecified. For each of the two 6 estimators we construct posterior mean
predictors using four different nonparametric Tweedie corrections as well as the Gaussian

Tweedie correction. Moreover, we compute the plug-in predictor based on Xl(é)
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Figure 4: QMLE Estimation: Gaussian versus Nonparametric Estimates Tweedie Correction

Parametric Gaussian Estimates p*(;\i|yio, éQMLE, SQMLE)

Misspecification § = 1/10 Misspecification § = 1
Yio = —2.5 Yio = 2.0 Yio = —2.5 yi0 = 2.0
4
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4 4
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Nonparametric Kernel Estimates ﬁ(5\¢|yio, éQ MLE)
Misspecification § = 1/10 Misspecification § = 1
Yio = —2.5 Yio = 2.0 Yio = —2.5 Yio = 2.0

Notes: Solid (blue) lines depict Tweedie correction based on p(Xi|yio, ). Colored “hairs” depict 10 estimates
from the Monte Carlo repetitions. The nonparametric estimates are based on the BGK kernel estimator.
The Monte Carlo design is described in Table 3.

Among the nonparametric predictors, the one based on the BGK density estimator clearly
dominates the ones derived from the simple kernel density estimator. If the random effects
distribution is almost normal, i.e., § = 1/10, setting ¢ = 2 is preferable to the other choices
of ¢. For the bimodal random effects distribution, i.e., § = 1, the best performance of
the simple kernel estimator is attained for ¢ = 1/2. The predictors that rely on posterior
mean approximations generally outperform the naive predictors based on Xz(é) The benefits
from shrinkage are most pronounced for the bottom and top groups. If the misspecification
is small (6 = 1/10), the parametric correction leads to more precise forecasts than the

nonparametric correction because it is based on a more efficient density estimator. As the
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Table 4: Monte Carlo Experiment 2: Correlated Random Effects, Non-parametric versus

Parametric Tweedie Correction

All Units Bottom Group Top Group

Median Median Median

Estimator / Predictor Regret  Forec.E. Regret Forec.E. Regret Forec.E
0=1/10
Oracle Predictor (1177.6)  0.003  (54.92) -0.046  (63.97) -0.010
Post. Mean (éQMLE, BGK Kernel) 0.179 -0.001 0.737 0.159 0.543 -0.119
Post. Mean (éQMLE7 Gaussian Kernel ¢ = 0.5) 0.635 0.001 1.711 0.438 1.157 -0.360
Post. Mean (éQMLE7 Gaussian Kernel ¢ = 1.0) 0.454 0.000 1.126 0.345 0.779 -0.279
Post. Mean (éQMLE, Gaussian Kernel ¢ = 2.0) 0.416 0.000 0.826 0.267 0.568 -0.183
Post. Mean (éQMLE, Parametric) 0.048 0.001 0.053 0.060 0.130 0.127
Plug-in Predictor (Ognrre, M\i(@onre)) 0.915 0.001 2323 0527 1549  -0.437
Post. Mean (éGMM; BGK Kernel) 0.217 0.002 0.766 0.135 0.566 -0.095
Post. Mean (éGMM, Gaussian Kernel ¢ = 0.5) 0.693 0.002 1.761 0.423 1.182 -0.336
Post. Mean (éGMM, Gaussian Kernel ¢ = 1.0) 0.509 0.001 1.180 0.333 0.813 -0.255
Post. Mean (éGMM, Gaussian Kernel ¢ = 2.0) 0.459 0.002 0.866 0.252 0.601 -0.160
Post. Mean (éGMM, Parametric) 0.091 0.002 0.079 0.043 0.192 0.146
Plug-in Predictor (Ogarar, Ni(@ann)) 0.968 0.003 2356 0511  1.558  -0.413
o0=1

Oracle Predictor (1161.7) -0.003  (54.43) -0.056  (65.78) -0.024
Post. Mean (éQMLE7 BGK Kernel) 0.298 0.006 0.756 0.181 0.735 -0.073
Post. Mean (éQMLE, Gaussian Kernel ¢ = 0.5) 0.526 0.001 0.857 0.240 0.855 -0.089
Post. Mean (éQMLE, Gaussian Kernel ¢ = 1.0) 0.661 0.002 0.894 0.226 0.936 -0.050
Post. Mean (éQMLE7 Gaussian Kernel ¢ = 2.0) 0.833 0.005 1.080 0.225 1.100 0.000
Post. Mean (éQMLE7 Parametric) 1.025 0.001 1.292 0.233 1.256 -0.012
Plug-in Predictor (Ggnre, \i(@onmre)) 1.068 0.001  1.852  0.388  1.468  -0.158
Post. Mean (éGMM, BGK Kernel) 0.343 0.006 0.906 0.171 0.874  -0.068
Post. Mean (éGMM, Gaussian Kernel ¢ = 0.5) 0.571 0.001 1.015 0.234 0.994  -0.086
Post. Mean (éGMM; Gaussian Kernel ¢ = 1.0) 0.706 0.002 1.050 0.217 1.076 -0.046
Post. Mean (éGMM; Gaussian Kernel ¢ = 2.0) 0.930 0.005 1.235 0.218 1.242 0.006
Post. Mean (éGMM, Parametric) 1.071 0.001 1.443 0.228 1.392 -0.005
Plug-in Predictor (garar, Ai(aarar)) 1.115 0.001 2011 038  1.609 -0.154

Notes: The design of the experiment is summarized in Table 3. For the oracle predictor we report the
compound risk (in parentheses) instead of the regret. The regret is standardized by the average posterior
variance of \;, see Definition 2.3.2. The BGK estimator relies on a adaptive bandwidth choice. For the

Gaussian kernel estimator in (2.4.9) we set By = ¢/(InN)

0.49

degree of misspecification increases, the nonparametric correction starts to perform better

and for § = 1 it clearly dominates the parametric competitor. This is consistent with the

accuracy of the underlying density estimators shown in Figures 3 and 4.

2.6.3 Experiment 3: Misspecified Likelihood Function

In the third experiment, summarized in Table 5, we consider a misspecification of the Gaus-

sian likelihood function by replacing the Normal distribution in the DGP with two mixtures.
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Table 5: Monte Carlo Design 3

Law of Motion: Y;; = A\; + p}/it,1 + Uy, p= 0.5, E[Uit} =0, V[Ult] =1
. . N(0,72) with probability p,
Scale Mixture: Uy ~ ud{ NE()’W%'; with probability 1 — p,
=472 =1/4,p, j)(l —72)/(d =2 =1/5
. . . N (g, with probability p,
Location Mixture: U ~ sz{ NEﬁLj 42)  with probabilitg 1—py
po =1/4, py =2, pu = piy /(g + p) = 1/9,
V=1 = pulpd)? — (1= pu)(py)? = 1/2
Initial Observations: Yo ~ N(0,1)
Gaussian Random Effects: A;|Yip ~ N(¢g + ¢1Yi0,2), o =0, 1 =0,Q2 =1
Sample Size: N = 1,000, 7T =3
Number of Monte Carlo Repetitions: N, = 1,000
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The plot overlays a N(0,1) density (blue, dotted), the scale mixture
(green, dashed), and the location mixture (red, solid).

We consider a scale mixture that generates excess kurtosis and a location mixture that gen-
erates skewness. The innovation distributions are normalized such that E[U;] = 0 and
V[Ui] = 1. For the heterogeneous intercepts A; we adopt the Gaussian random effects
specification of Experiment 1. In this experiment we compute the relative regret for five
predictors:'® the posterior mean predictor based on the non-parametric Tweedie correc-
tion and the plug-in predictor based on éQMLE and éMLE, respectively. Note that both the
QMLE and the GMM estimator of # remain consistent under the likelihood misspecification.
However, the (non-parametric) Tweedie correction no longer delivers a valid approximation

of the posterior mean.

10The computation of the oracle predictor and the normalization of the regret by the posterior variance
of X require a Gibbs sampler which is described in the Appendix.
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Table 6: Monte Carlo Experiment 3: Misspecified Likelihood Function

All Units Bottom Group Top Group

Median Median Median

Estimator / Predictor Regret  Forec.E. Regret ForecE Regret Forec.E.
Scale Mixture — Excess Kurtosis
Oracle Predictor (1153.7) ~ 0.000  (67.98) 0.002  (55.99) -0.033
Post. Mean (0gum e, BGK Kernel) 0.977 -0.002 2.031 0.170 2.226 -0.227
Post. Mean (éGMM, BGK Kernel) 1.033 -0.000 2.055 0.162 2.388 -0.211
Plug-In Predictor (Ogarar, Mi(@aarar))  1.605 0.002  3.666  0.555  4.396  -0.642
Loss-Function-Based Estimator 1.615 0.197 1.423 0.206 1.198 0.146
Pooled OLS 2.244 -0.286 4.295 -0.644 2.516 -0.020
Location Mixture — Skewness

Oracle Predictor (1200.2)  -0.146  (63.29) -0.167 (62.31) -0.162
Post. Mean (éQMLE, BGK Kernel) 0.359 -0.106 0.338  -0.077  0.962 -0.410
Post. Mean (8garar, BGK Kernel) 0.398 -0.105 0.362  -0.080 1.086 -0.399
Plug-In Predictor (Ocarar, Ni(Ocarar))  0.810  -0.091  1.359 0330  2.784  -0.818
Loss-Function-Based Estimator 0.807 0.099 0.461 0.030 0.497 -0.006
Pooled OLS 1.240 -0.391 3.902  -0.889  0.828 -0.235

Notes: The design of the experiment is summarized in Table 5. For the oracle predictor we report the
compound risk (in parentheses) instead of the regret. The regret is standardized by the average posterior
variance of \;, see Definition 2.3.2.

The results are summarized in Table 6. The risk of the oracle predictors can be compared
to that reported in Table 1. The excess kurtosis of the scale mixture and the skewness of
the location mixture slightly reduce the posterior variance of A compared to the standard
normal benchmark in Experiment 1. Due to the misspecification of the likelihood function,
the relative regret of the various predictors increases considerably, but the relative ranking is
essentially unchanged. The posterior mean predictors based on the nonparametric Tweedie
correction dominate all the other predictor, attaining a relative regrets of about 1 and
0.4, respectively. Compared to the plug-in and loss-function based predictors, the Tweedie
correction still reduces the regret 40% to 50%. The predictor based on the pooled OLS

estimation performs the worst among the five predictors in this experiment.

2.7 Empirical Application

We will now use the previously-developed predictors to forecast pre-provision net revenues

(PPNR) of bank holding companies (BHC). The stress tests that have become mandatory
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under the 2010 Dodd-Frank Act require banks to establish how PPNR varies in stressed
macroeconomic and financial scenarios. A first step toward building and estimating models
that provide trustworthy projections of PPNR and other bank-balance-sheet variables under
hypothetical stress scenarios, is to develop models that generate reliable forecasts under
the observed macroeconomic and financial conditions. Because of changes in the regulatory
environment in the aftermath of the financial crisis as well as frequent mergers in the banking
industry our large N small T" panel-data-forecasting framework seems particularly attractive

for stress-test applications.

We generate a collection of panel data sets in which pre-provision net revenue as a fraction
of consolidated assets (the ratio is scaled by 400 to obtain annualized percentages) is the
key dependent variable. The data sets are based on the FR Y-9C consolidated financial
statements for bank holding companies for the years 2002 to 2014, which are available
through the website of the Federal Reserve Bank of Chicago. Because the balance sheet
data exhibit strong seasonal features, we time-aggregate the quarterly observations into

annual observations and take the time period t to be one year.

We construct rolling samples that consist of T 4 2 observations, where T is the size of
the estimation sample and varies between T' = 3 and 7" = 11 years. The additional two
observations in each rolling sample are used, respectively, to initialize the lag in the first
period of the estimation sample and to compute the error of the one-step-ahead forecast. For
instance, with data from 2002 to 2014 we can construct M = 9 samples of size T = 3 with
forecast origins running from 7 = 2005 to 7 = 2013. Each rolling sample is indexed by the
pair (7,7T). The cross-sectional dimension N varies from sample to sample and ranges from
approximately = 460 to 725. Further details about the data as well as a description of our

procedure to create balanced panels and eliminate outliers are provided in the Appendix.

In Section 2.7.1 we use the basic dynamic panel data model to generate PPNR forecasts.
In Section 2.7.2 we extend the model to include covariates and compare forecasts under the

actual realization of the covariates and stressed scenarios in which we set the covariantes to

44



Table 7: MSE for Basic Dynamic Panel Model

Rolling Samples
T=3 T=5 T=7 T=9 T=11

Post. Mean (0garE, Parametric) 0.74 0.69 0.58 0.48 0.45
Post. Mean (Oga/rr, BGK Kernel) 0.84 074 059 050  0.46
Plug-In Predictor (Ogurm, Ni(foumrr)) 090 079 0.60 051 048
Post. Mean (0gazar, Parametric) 1.08 0.83 0.60 049 043
Post. Mean (0carar, BGK Kernel) 116 093 061 050  0.44
Plug-In Predictor (garar, N(Qgarns)) 117 089  0.61 051 0.46
Loss-Function-Based Estimator 0.91 0.84 0.63 0.53 0.42
Pooled OLS 071  0.68 057 048 045

Notes: The MSEs are computed across the different forecast origins 7 associated with each sample size 7.
counterfactual levels.
2.7.1 Results from the Basic Dynamic Panel Model

We begin by evaluating forecasts from the basic dynamic panel model in (2.5.1). The
parametric Tweedie correction is based on X\;|(H;,0) ~ N(¢o + ¢1Yio,w?). The forecast
evaluation criterion is the mean-squared error (MSE) computed across institutions and across

time:

Rty NT Dz T }/;T _27 ?
MSE = - 3 (Nf 2icy Diir) (Yirr +) ) (2.7.1)

N
M T=T1 NLT lel D'L (y'”—)
where M is the number of rolling samples. Table 7 summarizes the MSEs for different

estimators and different sizes T of the estimation samples. Recall that the unit of 371-7 is

annual revenue as fraction of total assets converted into annualized percentages.

For the short samples, i.e., T'= 3 and T = 5, the QMLE-based predictors are more accurate
than the GMM-based predictors. This discrepancy vanishes as the sample size is increased
to T'= 11. The posterior mean predictors computed with the Tweedie correction are more
accurate than the plug-in predictors. As expected, the MSE differential is largest in the small
T samples, because the unit-specific likelihood function contains fairly little information and
the prior strongly influences the posterior. The parametric Tweedie correction delivers more

accurate predictions than the non-parametric Tweedie correction, in particular for small
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Figure 5: Tweedie Corrections for 7' =5 and 7 = 2012
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Notes: Each panel shows the parametric (dashed blue) and the non-parametric (solid red) Tweedie correction
fOI" GQMLE-

T. In Figure 5 we compare the Tweedie corrections for T' = 5 and 7 = 2012. While the
corrections are quite similar for values of the sufficient statistic A;(p) = T ZtT:1(Yit —pYit—1)
between -1% and 1%, the non-parametric correction behaves somewhat erratic outside of

this interval which hurts the predictive performance.

Returning to the MSE results in Table 7, the posterior mean predictor yields roughly the
same MSE as pooled OLS. This suggests that a posteriori the data sets contain only weak
evidence for heterogeneous intercepts. In this regard, the parametric specification is more
efficient in shrinking the intercept estimates toward a common value. Finally, for all sample
sizes except T' = 11, the posterior-mean predictor based on éQMLE and the parametric

Tweedie correction is more accurate than the loss-function-based predictor.

In Table 8 we focus on the sample size T' = 5. In addition to averaging forecast errors across
all T' = 5 samples, we also report results for specific forecast origins, namely choices of 7
that correspond to the years 2007, the onset of the Great Recession, and 2012, which is
during the recovery period. Moreover, we compute MSEs based on cross-sectional selection
rules that depend on the level of PPNR at the forecast origin 7. We focus on institutions

with PPNR less than 0%, -1%, -2%, and -3%, respectively. Because the QMLE predictors
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Table 8: MSE for Basic Dynamic Panel Model for T' =5

Selection D;(Yir)
All Yir S 0 Yir S -1 Yir S -2 Yir S -3
Rolling Sample 7 = 2007

Post. Mean (éQMLE, Parametric) 0.90 0.90 1.04 1.29 1.72
Plug-In Predictor (Aorrre, Ni(fgumre)) 1.26  1.21 1.39 1.65 2.08
Loss-Function-Based Estimator 1.17 1.17 1.54 2.31 1.99
Pooled OLS 0.91 0.91 1.04 1.28 1.71
Rolling Sample 7 = 2012
Post. Mean (8garre, Parametric) 0.51 0.56 0.83 0.91 1.01
Plug-In Predictor (Agrrre, Ni(fgumrr)) 0.55  0.51 0.75 0.85 1.05
Loss-Function-Based Estimator 0.63 0.69 0.98 1.02 1.00
Pooled OLS 048  0.57 0.85 0.97 1.12
All Rolling Samples 7 = 2007, ...,2013
Post. Mean (0gurE, Parametric) 0.69 0.88 1.12 1.43 1.69
Plug-In Predictor (Agrrre, Mi(@gmre)) 079 1.00 1.32 1.72 2.16
Loss-Function-Based Estimator 0.84 1.00 1.24 1.54 1.63
Pooled OLS 0.71 0.90 1.16 1.50 1.80

Notes: For the last panel (all rolling samples) the MSEs are computed across the different forecast origins
T

dominate the GMM predictors and the parametric Tweedie correction was preferable to
the nonparametric correction, we now restrict our attention to the posterior-mean predictor
based on éQ mLE and the parametric Tweedie correction, the éQ mLE plug-in predictor, and

predictors constructed from loss-function-based estimates and pooled OLS, respectively.

For the 2007 sample, the plug-in and the loss-function-based predictor are dominated by the
other two predictors. The performance of the posterior-mean and the pooled-OLS predictor
are essentially identical. For the 2012 sample, the posterior-mean predictor performs better
than the plug-in predictor if we average across all institutions or if we condition on BCHs
with PPNR of less than -3%. In the other cases the ranking is reversed. Across all rolling
samples, the posterior mean predictor dominates. Across all institutions its performance is
only slightly better than pooled OLS, but if we condition on BCHs with PPNR of less than

-1%, -2%, or -3% then the accuracy relative to pooled OLS is more pronounced.

Table 23 in the Appendix provides point estimates of the parameters of the basic dy-

namic panel model and the parametric correlated random effects distribution for 7' = 5

47



Table 9: Parameter Estimates for T = 5: éQ MmLE, Parametric Tweedie Correction

T p 62 ¢ & @ N
2007 0.90 0.61 0.03 0.01 6E-8 537
2008 0.83 0.55 0.11 0.05 2E-8 598
2009 0.76 0.76 0.01 0.10 4E-8 613
2010 0.80 0.67 -0.05 0.09 2E-7 606
2011 0.79 0.58 -0.02 0.07 0.07 582
2012 0.71 0.53 0.04 0.13 0.16 587
2013 0.79 0.58 -0.05 0.12 0.09 608

Notes: Point estimates for the model Yiiy1 = Ai +pYie 4+ Uit y1, Uirr1 ~ N(0,02), Ai|Yio ~ N(¢o+¢1Yio,w?).

and 7 = 2007, ...,2013. Until 2010 the estimated variance of the correlated random effects
distribution is essentially zero, which implies that \; =~ ¢¢ + ¢1Y;0. Because of a non-zero
9271 the resulting predictor is not exactly pooled OLS but it is very similar as we have seen
from the results in Table 8. Starting in 2011, we obtain non-trivial estimates of &? which
imply non-trival a priori dispersion of the intercepts (that is not due to the dispersion in
initial conditions). Overall, the estimates @? imply a large degree of shrinkage. The positive
estimate q31 generates positive correlation between \; and Y;g. The intercept of the corre-
lated random effects distribution drops during the Great Recession'!, which is consistent
with the fact that bank revenues eroded during the financial crisis. The estimated common

autoregressive coefficients range from 0.7 to 0.9.
2.7.2 Results from Models with Covariates

To analyze the performance of the banking sector under stress scenarios it is necessary to
add predictors to the dynamic panel data model that reflect macroeconomic and financial
conditions. We consider three aggregate variables: the unemployment rate, the federal
funds rate, and the spread between the federal funds rate and the 10-year treasury bill.
Because these predictors are not bank-specific, the effect of the predictors on PPNR has to be
identified from time-series variation, which is challenging given the short time-dimension of
our panels. We consider two specifications: the first model only includes the unemployment

rate as additional predictor and we focus on the T' = 5 data sets. The second model includes

1 Recall that the 7 = 2010 estimation sample comprises the observations for 2006-2010.
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all three aggregate predictors and we estimated it based on the T' = 11 sample.

We generate forecasts using the actual values of the aggregate predictors (which we can
evaluate based on the actual PPNR realizations for the forecast perior) and compare these
forecasts to predictions under a stressed scenario, in which we use hypothetical values for
the predictors. When analyzing stress scenarios, one is typically interested in the effect of
stressed economic conditions on the current performance of the banking sector. For this rea-
son, we are changing the timing convention slightly and include the time ¢ macroeconomic
and financial variables into the vector Wi;_1. We are implicitly assuming that there is no
feedback from disaggregate BCH revenues to aggregate conditions. While this assumption
is incongsistent with the notion that the performance of the banking sector affects macroe-
conomic outcomes, elements of the Comprehensive Capital Analysis and Review (CCAR)

conducted by the Federal Reserve Board of Governors have this partial equilibrium flavor.

Results From a Model with Unemployment. We use the unemployment rate (UN-
RATE) from the FRED database maintained by the Federal Reserve Bank of St. Louis
and convert it to annual frequency by temporal averaging. We begin by computing MSEs,
which are reported in Table 10. This table has the same format as Table 8: we consider
MSEs for 2007, 2012, and averaged across all rolling samples. Moreover, we compute MSEs
conditional on the level of PPNR at the forecast origin. A few observations stand out. First,
the MSE for the posterior mean predictor is slightly reduced by including unemployment for
the 2007 and 2012 samples, but across all of the rolling samples it slightly increases. Second,
the gain of using the Tweedie correction, that is, the MSE differential between the plug-in
predictor and the posterior mean predictor, becomes larger as we include unemployment.
This is very intuitive: the more coefficients need to be estimated based on a given time-series
dimension, the more important the shrinkage induced from the prior distribution. Third,
the performance of the posterior-mean predictor and the pooled-OLS predictors remain very

similar, meaning that the Tweedie correction shrinks toward pooled OLS.!?

12This is supported by the estimates of ©? and &2 reported in the Online Appendix.
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Table 10: MSE for Model with Unemployment for T'=5

Selection D;(Yir)
All Yir S 0 Yir S -1 Yir S -2 Yir S -3
Rolling Sample 7 = 2007

Post. Mean (éQMLE, Parametric) 0.88 0.95 1.11 1.40 1.72
Plug-In Predictor (Ogrrre, Ni(fomrr)) 138 1.62 2.23 2.61 3.29
Loss-Function-Based Estimator 1.44 1.23 1.55 2.14 1.92
Pooled OLS 0.88 0.93 1.06 1.31 1.70
Rolling Sample 7 = 2012
Post. Mean (8garre, Parametric) 0.49 0.55 0.80 0.92 1.09
Plug-In Predictor (Agrrre, Mi(fgumrr)) 0.64  0.67 0.98 1.27 1.73
Loss-Function-Based Estimator 0.84 1.12 1.56 1.66 1.60
Pooled OLS 0.49 0.58 0.85 0.97 1.12
All Rolling Samples 7 = 2007, ...,2013
Post. Mean (GQMLE, Parametric) 0.72 0.92 1.16 1.45 1.70
Plug-In Predictor (Agrrre, M(@omre)) 252 3.90 4.39 6.07 5.88
Loss-Function-Based Estimator 2.14 3.22 3.71 4.91 4.56
Pooled OLS 0.72 0.96 1.23 1.56 1.86

Notes: For the last panel (all rolling samples) the MSEs are computed across the different forecast origins
T

We now impose stress by increasing the unemployment rate by 5%. This corresponds to
the unemployment movement in the severely adverse macroeconomic scenario in the Federal
Reserve’s CCAR 2016. In Figure 6 we are comparing one-year-ahead predictions for forecast
origins 7 = 2007 and 7 = 2012 under the actual period 7 + 1 unemployment rate and
the stressed unemployment rate. FEach circle in the graphs corresponds to a particular
BHC. We indicate institutions with assets greater than 50 billion dollars'® by red circles,
while the other BHCs appear as blue circles. The large institutions have in general smaller
revenues than the smaller BHCs. According to the plug-in predictor (the two right panels),
the response to the unemployment shock is very heterogeneous. For about half of the
intitutions a rise in unemployment leads to a drop in revenues, whereas for the other half
higher unemployment is associated with larger revenues. However, we know from Table 8
that forecasts from the plug-in predictor are fairly inaccurate. The stress-test implications
of the posterior mean predictor are markedly different. Due to the strong shrinkage the

effect is more homogeneous across institutions and appears to be slightly positive.

13These are the BHCs that are subject to the CCAR requirements.
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Figure 6: Predictions under Actual and Stressed Scenario for "= 5
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Notes: Each dot corresponds to a BHC in our dataset. We plot point predictions of PPNR under the actual
macroeconomic conditions (the unemployment rate is at its observed level in period 7 + 1) and a stressed
scenario (unemployment rate is 5% higher than its actual level).

A Model with Unemployment, Federal Funds Rate, and Spread. We now expand
the list of covariates and in addition to the unemployment rate include the federal funds
rate and the spread between the federal funds rate and the 10-year treasury bill. Both series
are obtained from the FRED database (FEDFUNDS and DGS10). We convert the series
into annual frequency by temporal averaging. Because we now have three regressors that
do not vary across units (meaning all BHCs are operating within the same macroeconomic
conditions, but may have hetereogeneous responses to these conditions), we focus on the

data set with the largest time series dimension, namely 7' = 11. MSEs are presented in
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Table 11: MSE for Model with Unemployment, Fed Funds Rate, and Spread for T'= 11

Selection D;(Vir)
All Yir S 0 Yir S -1 Yir S -2 Yir S -3

Post. Mean (0gu Lk, Parametric) 0.49 0.64 0.94 1.00 1.08
Plug-In Predictor (Agurre, M(@gmre)) 0.78  1.35 2.14 2.04 1.61
Loss-Function-Based Estimator 0.47 0.61 0.88 0.88 0.78
Pooled OLS 0.50 0.68 1.00 1.04 1.10

Notes: The MSEs are computed for the forecast origin 7 = 2013.

Table 11. The forecast origin is 7 = 2013. As before, the posterior mean predictor with the
Tweedie correction strongly dominates the plug-in predictor. Moreover, the posterior mean
predictor is also slightly more accurate than the predictor based on pooled OLS.'* Unlike
in the previous cases, the predictor constructed from the loss-function-based estimate of the

model coefficients now performs slightly better than the posterior mean predictor.

Figure 7 compares PPNR predictions under the actual macroeconomic conditions and a
stressed macroeconomic scenario. The stressed scenario comprises an increase in the unem-
ployment rate by 5% (as before) and an increase in nominal interest rates and spreads by
5%. This scenario could be interpreted as an aggressive monetary tightening that induced a
sharp drop in macroeconomic activity. The plug-in predictor generates very heterogeneous
responses to the macroeconomic stress scenario. Some banks benefit from the monetary
tightening and others experience a substantial fall in revenues. The posterior mean predic-
tor implies a much more homogeneous response of the banking sector under which there is

a very small (relative to the cross-sectional dispersion) increase in predicted revenues.

Discussion. We view this analysis as a first-step toward applying state-of-the-art panel data
forecasting techniques to stress tests. First, it is important to ensure that the empirical model
is able to accurately predict bank revenues and balance sheet characteristics under observed
macroeconomic conditions. Our analysis suggests that there are substantial performance

differences among various plausible estimators and predictors. Second, a key challenge is to

' While the estimates of the conditional variances of the \;; coefficients are close to zero, the estimated
conditional means of \;; vary with Y;o. This explains the difference between the posterior mean and the
pooled-OLS predictor.
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Figure 7: Predictions under Actual and Stressed Scenario for 7= 11 and 7 = 2013

Post. Mean (éQMLE, Parametric) Plug-In Predictor (éQMLE, /A\i(éQMLE))
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Notes: Each dot corresponds to a BHC in our dataset. We plot point predictions of PPNR under the actual

macroeconomic conditions (the unemployment rate, federal funds rate, and spread are at their observed 2014
levels) and a stressed scenario (the unemployment rate, federal funds rate, and spread are 5% higher than
their actual level in 2014).

cope with model complexity in view of the limited information in the sample. There is a
strong temptation to over-parameterize models that are used for stress tests. We decided
to time-aggregate the revenue data to smooth out irregular and non-Gaussian features of
the accounting data at the quarterly frequency. This limits the ability to precisely measure
the potentially heterogeneous effects of macroeconomic conditions on bank performance.
Prior information is used to discipline the inference. In our empirical Bayes procedure, this
prior information is essentially extracted from the cross-sectional variation in the data set.
While we a priors allowed for heterogeneous responses, it turned out a posteriori, trading-off
model complexity and fit, that the estimated coefficients exhibited very little heterogeneity.
Third, our empirical results indicate that relative to the cross-sectional dispersion of PPNR,
the effect of severely adverse scenarios on revenue point predictions are very small. We
leave it future research to explore richer empirical models that focus on specific revenue
and accounting components and consider a broader set of covariates. Finally, it would
be desirable to allow for a feedback from the performance of the banking sector into the

aggregate conditions.
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2.8 Conclusion

The literature on panel data forecasting in settings in which the cross-sectional dimension
is large and the time-series dimension is small is very sparse. Our paper contributes to this
literature by developing an empirical Bayes predictor that uses the cross-sectional informa-
tion in the panel to construct a prior distribution that can be used to form a posterior mean
predictor for each cross-sectional unit. The shorter the time-series dimension, the more im-
portant this prior becomes for forecasting and the larger the gains from using the posterior
mean predictor instead of a plug-in predictor. We consider a particular implementation
of this idea for linear models with Gaussian innovations that is based on Tweedie’s pos-
terior mean formula. It can be implemented by estimating the cross-sectional distribution
of sufficient statistics for the heterogeneous coefficients in the forecast model. We consider
both parametric and nonparametric techniques to estimate this distribution. We provide
a theorem that establishes a ratio-optimality property for the nonparametric estimator of
the Tweedie correction. The nonparametric estimation works well in environments in which
the cross-sectional distribution of heterogeneous coefficients is irregular. If it is well ap-
proximated by a Gaussian distribution, then a parametric implementation of the Tweedie
correction is preferable. We illustrate in an application that our forecasting techniques may
be useful to execute bank stress tests. Our paper focuses on one-step-ahead point forecasts.

We leave extensions to multi-step forecasting and density forecasting for future work.
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CHAPTER 3

Density Forecasts and Young Firm Dynam-

ics!®

3.1 Introduction

Panel data, such as a collection of firms or households observed repeatedly for a number of
periods, are widely used in empirical studies and can be useful for forecasting individuals’
future outcomes, which is interesting and important in many cases. For example, PSID
can be used to analyze income dynamics (Hirano, 2002; Gu and Koenker, 2016b), and bank
balance sheet data help conduct bank stress tests (Liu et al., 2016). This paper constructs
individual-specific density forecasts using a dynamic linear panel data model with common

and heterogeneous parameters and cross-sectional heteroskedasticity.

In this paper, I consider young firm dynamics as the empirical application. For illustrative

purposes, let us consider a simple dynamic panel data model as the baseline setup for this

paper:
it =Byt + N+ wir, ui~N(0,0%), (3.1.1)

~~ ~— =~

performance skill shock

where i = 1,--- ,N,and t = 1,--- ,T + 1. The y; is the observed firm performance such
as the log of employment,'® ); is the unobserved skill of an individual firm, and u; is an
ii.d. shock. Skill is independent of the shock, and the shock is independent across firms
and times. (B and o? are common across firms, where (3 represents the persistence of the

dynamic pattern, and o? gives the size of the shocks. Because the number of observations

'5This chapter builds on Liu (2016). T would like to acknowledge the Kauffman Foundation and the
NORC Data Enclave for providing researcher support and access to the confidential microdata.

'8 Employment is a standard measure in the firm dynamics literature (Akcigit and Kerr, 2010; Zarutskie
and Yang, 2015).
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for each young firm is restricted by its age, the young firm panel is characterized by large

cross-sectional dimension (V) but short time series (7).

Based on the observed panel, [ am interested in forecasting the future performance of any
specific firm, y; 741, which is valuable to both investors and regulators. For investors, it is
helpful to foresee which startups are more promising. For regulators, more accurate forecasts

facilitate monitoring and regulation of bank-lending practices and entrepreneur funding.'”

Considering that young firm dynamics involve sizeable uncertainties, a preferable forecast
would provide a distribution that summarizes all kinds of uncertainties regarding firm i’s
future outcome. This is exactly the concept of density forecasts. Generally, forecasting can
be done in point, interval, or density fashion, and density forecasts give the richest insight
regarding future outcomes. A typical question that density forecasts could answer is: what
is the chance that firm A will hire 5, 10, or 100 more people next year? Once the density

forecasts are obtained, one can easily recover the point and interval forecasts.

In particular, for a panel data model as specified in equation (3.1.1), density forecasts capture
uncertainties arising from both shocks u;’s and heterogeneous skills A;’s. The latter is due
to the lack of time-series information available to infer individual A;. I assume that \; is
drawn from the underlying skill distribution f, which serves as the key to characterize skill

uncertainties and provide better density forecasts.

A benchmark for evaluating density forecasts is the posterior predictive distribution for
i 7+1 under the assumption that the common parameters (6 , 02) and the distribution of the
heterogeneous coefficients f are known. I refer to this predictive density as the (infeasible)
oracle forecast. The role played by f can be more clearly appreciated in the following special
case where the common parameters are set to be f = 0 and 0? = 1. It is straightforward

to construct the oracle predictor for firm ¢, which combines firm ¢’s shock uncertainty and

1"The aggregate-level forecasts can be obtained by summing firm-specific forecasts over different sub-
groups.
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skill uncertainty.

foracte (y) = / S—N) - pOilfomiar) - dhi

shock uncertainty  skill uncertainty

Firm 4’s skill uncertainty can be interpreted as a posterior distribution with the prior belief

being the common skill distribution fy and updated with firm ¢’s data.

ol s s
p (i lfo,yinr) = pgir|di) fohy)
o (yirr|Ai) fo (N) dNi
Therefore, the common skill distribution fp helps in formulating firm ’s skill uncertainty

and contributes to firm 4’s density forecasts through the channel of skill uncertainty.

In practice, however, the skill distribution f is unknown and unobservable, thus introducing
another source of uncertainty. Now the oracle predictor becomes as an infeasible optimum.
A good feasible predictor should be as close to the oracle as possible, which calls for a good
estimate of the underlying skill distribution f. In this sense, the challenge is how we can
model f more carefully and flexibly. The parametric Gaussian density misses many common
features in the real world data, such as asymmetricity, heavy tails, or multiple peaks. Here I
model f nonparametrically where the prior is constructed from a mixture model and allows
for correlation between \; and y;o (i.e. a correlated random effects model). Then, I pool
the cross-sectional information to make inferences about f. The proposed semiparametric
Bayesian procedure achieves better estimates of the underlying skill distribution f than

parametric approaches, hence more accurate density forecasts of the future outcomes.

The contributions of this paper are threefold. First, I develop a posterior sampling algorithm
specifically addressing nonparametric density estimation of the unobserved A;. For a random
effects model, which is a special case with zero correlation between \; and y;o, the f part
becomes a relatively simple unconditional density estimation problem. I impose a Dirichlet
Process Mixture (DPM) prior on f and construct a posterior sampler building on the blocked

Gibbs sampler proposed by Ishwaran and James (2001, 2002). For a correlated random
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effects model, I further adapt the proposed algorithm to the much harder conditional density

estimation problem using a probit stick breaking process prior suggested by Pati et al. (2013).

Second, I establish the theoretical properties of the proposed semiparametric Bayesian pre-
dictor when the cross-sectional dimension N tends to infinity. Firstly, I provide conditions
for identifying both the parametric component (5, 02) and the nonparametric component
f. Then, I prove that both the estimated common parameters and the estimated distri-
bution of the heterogeneous coefficients achieve posterior consistency, which is an essential
building block for bounding the discrepancy between the proposed predictor and the oracle.
Compared to previous literature on posterior consistency, there are several challenges in the
current setting: (1) disentangling unobserved individual effects \;’s and shocks wu;’s, (2)
incorporating unknown shock size 02, (3) adding lagged dependent variables as covariates,
and (4) addressing correlated random effects from a conditional density estimation point of
view. Finally, I show that the density forecasts asymptotically converge to the oracle fore-
cast in weak topology, which is new to the nonparametric Bayesian literature and specifically

designed for density forecasts.

To accommodate many important features of real-world empirical studies, I extend the
simple model (3.1.1) to a more general specification. First, a realistic application also incor-
porates other observables with common effects (5'x;;—1), where z;t—1 can include lagged
yit. Second, it is helpful to consider observables with heterogeneous effects (Nw;;—1), i.e. a
correlated random coefficients model. Finally, beyond heterogeneity in coefficients ()\;), it

2

is desirable to take into account heterogeneity in shock sizes (o;

2) as well.'¥ All numerical

methods and theoretical properties are further established for the general specification.

Third, Monte Carlo simulations demonstrate improvements in density forecasts relative to
predictors with various parametric priors on f, evaluated by log predictive score. An ap-

plication to young firm dynamics also shows that the proposed predictor provides more

'8Here and below, the terminologies “random effects model” and “correlated random effects model” also
apply to individual effects on o2, which are slightly different from the traditional definitions concentrated
on )\1
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accurate density predictions. The better forecasting performance is largely due to three key
features (in order of importance): the nonparametric Bayesian prior, cross-sectional het-
eroskedasticity, and correlated random coefficients. The estimated model also helps shed
light on the latent heterogeneity structure and how different factors (e.g. R&D, recession,

etc.) contribute to the forecasts.

It is also worth mentioning that although I describe the econometric intuition using the
young firm dynamics application as an example, the method is very general and can be
applied to many economic and financial analyses that feature panel data with relatively
large N and small 7', such as microeconomic panel surveys (e.g. PSID, NLSY, and Consumer
Expenditure Survey (CE)), macroeconomic sectoral and regional panel data (e.g. Industrial
Production (IP), and State and Metro Area Employment, Hours, and Earnings (SAE)),
and financial institution performance (e.g. Commercial Bank Data and Holding Company
Data). Which T can be considered as a small T' depends on the dimension of individual
heterogeneity (d,,), the cross-sectional dimension (N), and size of the shocks (o2 or o?).
There can still be a significant gain in density forecasts even when 7" exceeds 100. Roughly
speaking, the proposed predictor would provide sizeable improvement as long as the time
series for individual ¢ is not informative enough to fully reveal its individual effects, A; and

2
a;.

Related Literature First, this paper contributes to the literature on individual forecast in
a panel data setup, and is closely related to Liu et al. (2016) and Gu and Koenker (2016a,b).
Liu et al. (2016) focus on point forecasts. They utilize the idea of Tweedie’s formula to
steer away from the complicated deconvolution problem in estimating A;. Unfortunately,
the Tweedie shortcut is not applicable to the inference of underlying A; distribution and

therefore not suitable for density forecasts.

Gu and Koenker (2016b) address the density estimation problem. Their method is different
from the one proposed in this paper in that this paper infers the underlying A; distribu-

tion via a full Bayesian approach (i.e. imposing a prior on the \; distribution and updating
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the prior belief by the observed data), whereas they employ an empirical Bayes procedure
(i.e. picking the \; distribution by maximizing the marginal likelihood of data). In prin-
ciple, the full Bayesian approach is preferable for density forecasts as it captures all kinds
of uncertainties, including estimation uncertainty of the underlying A; distribution, which
has been omitted by the empirical Bayes procedure. In addition, this paper features cor-
related random effects allowing for both cross-sectional heterogeneities and cross-sectional
heteroskedasticities interacting with the initial conditions, whereas the Gu and Koenker

(2016b) approach focuses on random effects models without such interaction.

In their recent paper, Gu and Koenker (2016a) also compare their method with an alternative
nonparametric Bayesian estimator featuring a Dirichlet Process (DP) prior under a set
of fixed scale parameters. There are two major differences between their DP setup and
the DPM prior used in this paper. First, the DPM prior provides continuous individual
effect distributions, which is more reasonable in many empirical setups. Second, this paper
incorporates a hyperprior for the scale parameter and updates it via the observed data, hence
let the data choose the complexity of the mixture approximation, which can essentially be

viewed as “automatic” model selection.!?

There have also been empirical works on the DPM model with panel data, such as Hirano
(2002), Burda and Harding (2013), Rossi (2014), and Jensen et al. (2015), but they focus on
empirical studies rather than theoretical analysis. Hirano (2002) and Jensen et al. (2015)
use linear panel models, while their setups are slightly different from this paper. Hirano
(2002) considers flexibility in u;; distribution instead of \; distribution. Jensen et al. (2015)
assume random effects instead of correlated random effects. Burda and Harding (2013) and
Rossi (2014) implement nonlinear panel data models via either a probit model or a logit

model, respectively.

Among others, Delaigle et al. (2008) have also studied the similar deconvolution problem

19Section 3.6 shows the simulation results comparing the DP prior vs the DPM prior. Both adopt a
hyperprior for the scale parameter.
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and estimated the \; distribution in a frequentist way, but the frequentist approach misses

estimation uncertainty, which matters in density forecasts, as mentioned previously.

Second, in terms of asymptotic properties, this paper relates to the literature on posterior
consistency of nonparametric Bayesian methods in density estimation problems. The pioneer
work by Schwartz (1965) lays out two high-level sufficient conditions in a general density
estimation context. Ghosal et al. (1999) bring Schwartz (1965)’s idea into the analysis of
density estimation with DPM priors. Amewou-Atisso et al. (2003) extend the discussion
to linear regression problems with an unknown error distribution. Tokdar (2006) further
generalizes the results to cases in which the true density has heavy tails. For a more thorough
review and discussion on posterior consistency in Bayesian nonparametric problems, please
refer to the handbooks, Ghosh and Ramamoorthi (2003) and Hjort et al. (2010) (especially
Chapters 1 and 2). To handle conditional density estimation, similar mixture structure can
be implemented, where the mixing probabilities can be characterized by a multinomial choice
model (Norets, 2010; Norets and Pelenis, 2012), a kernel stick break process (Norets and
Pelenis, 2014; Pelenis, 2014), or a probit stick breaking process (Pati et al., 2013). T adopt
the Pati et al. (2013) approach to offer a more coherent nonparametric framework that is
totally flexible in the conditional measure. This paper builds on the previous literature and
establishes the posterior consistency result for panel data models. Furthermore, this paper
obtains the convergence of the semiparametric Bayesian predictor to the oracle predictor,

which is new to the literature and specific to density forecasts.

Third, the algorithms constructed in this paper build on the literature on the posterior
sampling schemes for DPM models. The vast Markov chain Monte Carlo (MCMC) algo-
rithms can be divided into two general categories. One is the Pélya urn style samplers that
marginalize over the unknown distribution G' (Escobar and West, 1995; Neal, 2000).2° The
other resorts to the stick breaking process (Sethuraman, 1994) and directly incorporates G

into the sampling procedure. This paper utilizes a sampler from the second category, Ish-

2OFor the definition of G, see equation (3.2.5).
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waran and James (2001, 2002)’s blocked Gibbs sampler, as a building block for the proposed
algorithm. Basically, it incorporates truncation approximation and augments the data with
auxiliary component probabilities, which helps break down the complex posterior structure
and thus enhance mixing properties as well as reduce computation time.?! I further adapt
the proposed algorithm to the conditional density estimation for correlated random effects

using the probit stick breaking process prior suggested by Pati et al. (2013).

Last but not least, the empirical application in this paper also links to the young firm dy-
namics literature. Akcigit and Kerr (2010) document the fact that R&D intensive firms
grow faster, and such boosting effects are more prominent for smaller firms. Robb and Sea-
mans (2014) examine the role of R&D in capital structure and performance of young firms.
Zarutskie and Yang (2015) present some empirical evidence that young firms experienced
sizable setbacks during the recent recession, which may partly account for the current slow
and jobless recovery. For a thorough review on young firm innovation, please refer to the
handbook by Hall and Rosenberg (2010). The empirical analysis of this paper builds on
these previous findings. Besides providing more accurate density forecasts, we can also use
the estimated model to analyze the latent heterogeneity structure and understand the effects

of different factors (e.g. R&D, recession, etc.) on the forecasts.

The rest of the paper is organized as follows. Section 3.2 introduces the baseline panel data
model as well as the oracle predictor and the feasible semiparametric Bayesian predictor.
Section 3.3 proposes the posterior sampling algorithms. Section 3.4 characterizes identifi-
cation conditions and large sample properties. Section 3.5 presents various extensions of
the baseline model. Section 3.6 compares the performance of the semiparametric Bayesian
predictor using simulated data, and Section 3.7 applies the proposed predictor to the confi-
dential microdata from the Kauffman Firm Survey and analyzes the empirical findings on

young firm dynamics. Finally, Section 3.8 concludes and sketches future research directions.

21Robustness checks have been conducted with the more sophisticated slice-retrospective sampler (Dun-
son, 2009; Yau et al., 2011; Hastie et al., 2015), which does not involve hard truncation but is more compli-
cated to implement. Results from the slice-retrospective sampler are comparable with the simpler truncation
sampler.
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Notations, proofs, as well as additional algorithms and results can be found in the Appendix.

3.2 Model

3.2.1 Baseline Panel Data Model

The baseline dynamic panel data model is specified in equation (3.1.1),
Yit = BYis—1 + Ni + uig, ui ~ N (0,0%),

wheret=1,--- ,N,andt=1,--- ,T + h. The y;; is the observed individual outcome, such
as young firm performance. The main goal of this paper is to estimate the model using
the sample from period 1 to period T" and forecast the future distribution of y; 74. In the
remainder of the paper, I focus on the case where h = 1 (i.e. one-period-ahead forecasts) for
notation simplicity, but the discussion can be extended to multi-period-ahead forecasts via

either a direct or an iterated approach (Marcellino et al., 2006).

In this baseline model, there are only three terms on the right hand side. By;;—1 is the
AR(1) term on lagged outcome, which captures the persistence pattern. \; is the unobserved
individual heterogeneity modeled as individual-specific intercept, which implies that different
firms may have different skill levels. u; is the shock with zero mean and variance o2. To
emphasize the basic idea, the baseline model assumes cross-sectional homoskedasticity, which

means that the shock size o2 is the same across all firms.

As stressed in the motivation, the underlying skill distribution f is the key for better density
forecasts. There can be two kinds of assumptions imposed on f. One is the random effects
(RE) model, where the skill \; is independent of the initial performance y;0. The other is
the correlated random effects (CRE) model, where the skill \; and the initial performance
yio can be potentially correlated with each other. This paper considers both RE and CRE
models while focusing on the latter, as the CRE model is more realistic for young firm

dynamics as well as many other empirical setups, and RE can be viewed as a special case
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of CRE with zero correlation.
3.2.2 Oracle and Feasible Predictors

This subsection formally defines the infeasible optimal oracle predictor and the feasible
semiparametric Bayesian predictor proposed in this paper. The kernel of both definitions

relies on the conditional predictor,

f%n-gl (y|ﬁ7 afa yzOT /¢ Y; 5sz + )\7,70 ()\Z ’B,O’Q,f, yi,O:T) dAi, (321)

which provides the density forecasts of y; 741 conditional on the common parameters (5, a?),
underlying \; distribution (f), and firm 4’s data (y; 0.7). The term ¢ (y; Byir + A, 02) cap-
tures firm 4’s shock uncertainty, and p ()\i ’B, %, f, yw;T) characterizes firm 4’s skill uncer-
tainty. Note that once conditioned on f, firms’ performances are independent across i, and

only firm ¢’s data are needed for its density forecasts.

The infeasible oracle predictor is defined as if we knew all the elements that can be con-
sistently estimated. Specifically, the oracle knows the common parameters (S, 0(2]) and the
underlying A; distribution (fy), but not the skill of any individual firm ;. Then, the oracle
predictor is formulated by plugging the true values (ﬁo, o3, fo) into the conditional predictor

in equation (3.2.1),

f'LOTTa—ElIe ( ) ff%n—gl (y|607 0-(2)7 an yi,O:T) . (322)

In practice, (6 o2 f ) are all unknown but can be estimated via the Bayesian approach. First,

I adopt the conjugate normal-inverse-gamma prior for the common parameters (B , 02),

(5:0%) ~ N (m,58) 16 (o2 o 05")

in order to stay close to the linear Gaussian regression framework. To flexibly model the
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underlying skill distribution f, I resort to the nonparametric Bayesian prior, which is spec-
ified in detail in the next subsection. Then, I update the prior belief using the observations
from the whole panel and obtain the posterior. The semiparametric Bayesian predictor

is constructed by integrating the conditional predictor over the posterior distribution of

(8,0% 1),

f;g‘_t,_l (y) = /fﬁ%nfl (y‘ﬁv 027 f7 yi,O:T) dll (6, 027 f |y1:N70:T) dﬂdUQdf (323)

3.2.3 Nonparametric Bayesian Priors

A prior on the skill distribution f can be viewed as a distribution over a set of distributions.
Among other options, I choose mixture models for the nonparametric Bayesian prior, because
according to the literature, mixture models can effectively approximate a general class of
distributions (see Section 3.4) while being relatively easy to implement (see Section 3.3).
Moreover, the choice of the nonparametric Bayesian prior also depends on whether f is
characterized by a random effects model or a correlated random effects model. The correlated
random effects setup is more involved but can be crucial in some empirical studies, such as

the young firm dynamics application in this paper.
DPM Prior for Random Effects Model

In the random effects model, the skill A; is assumed to be independent of the initial per-
formance y;, so the inference of the underlying skill distribution f can be considered as
an unconditional density estimation problem. The DPM model is a typical nonparametric

Bayesian prior designed for unconditional density estimation.

Dirichlet Process (DP) The key building block for the DPM model is the DP, which
casts a distribution over a set of discrete distributions. A DP has two parameters: the base

distribution G characterizing the center of the DP, and the scale parameter « representing
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the precision (inverse-variance) of the DP. Denote
G ~ DP (a,Go)
if for any partition (Ay,---, Ag),
(G(A1), - ,G(Ak)) ~ Dir (aGo (A1), -+ ,aGy (AKk)) .
Dir (-) stands for the Dirichlet distribution with probability distribution function (pdf) being

(Ek 177k) H e 1

foir (T1, TR My NK) =
[Teei TOmk) 5

which is a multivariate generalization of the Beta distribution.

An alternative view of DP is given by the stick breaking process,

G=>> pl(0="0,

k=1
ek:NG()? k:]-aQa"')
Clv k= 17
pr = (3.2.4)
Hf;ll(l_gj)glw k:2737"'7

where ¢ ~ Beta (1, o), k=1,2,---

The stick breaking process distinguishes the roles of Gg and « in that the former governs
component value 0 while the latter guides the choice of component probability pg. From

now on, for a concise exposition, I denote the pg part in equation (3.2.4) as
pkNSB(]-ua)v k:1727 )
where the function name “SB” is the acronym for “stick breaking”, and the two arguments
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are passed from the parameters of the Beta distribution for “stick length” (k.

Dirichlet Process Mixture (DPM) Prior By definition, a draw from DP is a discrete
distribution. In this sense, imposing a DP prior on the skill distribution f amounts to
restricting firms’ skills to some discrete levels, which may not be very appealing for young
firm dynamics as well as some other empirical applications. A natural remedy is to assume A
follows a continuous parametric distribution f (A;€) where 6 are the parameters, and adopt
a DP prior for the distribution of . Then, the parameters 6 are discrete while the skill A
enjoys a continuous distribution. This additional layer of mixture lead to the idea of the
DPM model. For variables supported on the whole real line, like the skill A here, a typical
choice of the kernel of f (A;6) is a normal distribution with § = (4, w?) being the mean and

variance of the normal.

X~ N (A5 iy f) s (3.2.5)
(i w?) © G,

G ~ DP (o, Gp) .

Equivalently, with component label k, component probability pg, and component parameters

(uk,wz), one draw from the DPM prior can be rewritten as an infinite mixture of normals,

Ai~ > PN (N, wi) - (3.2.6)
k=1

Different draws from the DPM prior are characterized by different combinations of {px, i,
wz}, and different combinations of {pk, Lk wz} lead to different shapes of f. That is why the
DPM prior is flexible enough to approximate many distributions. The component parameters
(,uk,w,%) are directly drawn from the DP base distribution G, which is chosen to be the

conjugate normal-inverse-gamma distribution. The component probability py is constructed
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via the stick breaking process governed by the DP scale parameter a.

(:uk’vwlg) ~ GO’

pr~SB(l,a), k=1,2,---

Comparing the above two sets of expressions in equations (3.2.5) and (3.2.6), the first set
links the flexible structure in A to the flexible structure in (,u, w2), and serves as a more con-
venient setup for the theoretical derivation of asymptotic properties as in Subsection 3.4.3;
at the same time, the second set separates the channels regarding component parameters and
component probabilities, and therefore is more suitable for the numerical implementation

as in Section 3.3.

One virtue of the nonparametric Bayesian framework is to flexibly elicit the tuning parameter
from the data. Namely, we can set up an additional hyperprior for the DP scale parameter
a?

a~ Ga(q; af,by),

and update it based on the observations. Roughly speaking, the DP scale parameter « is
linked to the number of unique components in the mixture density and thus determines
and reflects the flexibility of the mixture density. Let K* denote the number of unique

components. As derived in Antoniak (1974), we have

E[K*|o] zalog(

Var [K*|a] ~ a [log <0“;N> - 1} .

a+N)

MGLRy Prior for Correlated Random Effects Model

To accommodate the correlated random effects model where the skill A; can be poten-

tially correlated with the initial performance y;0, it is necessary to consider a nonparametric
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Bayesian prior that is compatible with the much harder conditional density estimation prob-
lem. One issue is associated with the uncountable collection of conditional densities, and
Pati et al. (2013) circumvent it by linking the properties of the conditional densities to the
corresponding ones of the joint densities. As suggested in Pati et al. (2013), I utilize the
Mixtures of Gaussian Linear Regressions (MGLRy) prior, a generalization of the Gaussian-

mixture prior for conditional density estimation. Conditioning on o,

)\i|yi0 ~ N ()\17 M [17yi0]/7 w7,2) ) (327)
(i w?) = 6;: % G (5 yio)

G (5 yio) = >_ Pk (yio) .-
k=1

In the baseline setup, both individual heterogeneity A; and conditioning set y;o are scalars, so
pi is a two-element row vector and w? is a scalar. Similar to the DPM prior, the component
parameters can be directly drawn from the base distribution, which is again specified as the

conjugate normal-inverse-gamma distribution,
Op ~Go, k=1,2,---. (3.2.8)
Now the mixture probabilities are characterized by the probit stick breaking process

P (Wio) = @ (G (wi0)) [ ] (1 — @ (G (win))) (3.2.9)

Jj<k

where stochastic function (i is drawn from the Gaussian process ¢, ~ GP (0,Vy) for k =

1.2.....22

Expression (3.2.7) can be perceived as a conditional counterpart of expression (3.2.5) for the

purpose of theoretical derivation. The following expression (3.2.10) corresponds to expres-

*For a generic variable ¢ which can be multi-dimensional, the Gaussian process ((c) ~
GP (m(c),V (c,¢)) is defined as follows: for any finite set of {ci,c2,---,cn}, [C(c1),C(c2),--+,C (cn)]
has a joint Gaussian distribution with the mean vector being [m (c1),m (c2), -+ ,m(cs)]" and the ij-th
entry of covariance matrix being V (¢i, ¢;), 4,5 =1,--- , N.
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sion (3.2.6), which is in line with the numerical implementation in Section 3.3:

Ailyio ~ > ok (wi0) N (e [1yio) s wi) (3.2.10)
k=1

where the component parameters and component probabilities are specified in equations

(3.2.8) and (3.2.9), respectively.

This setup has three key features: (1) component means are linear in y;o; (2) component
variances are independent of y;p; and (3) mixture probabilities are flexible functions of
yio- This framework is general enough to accommodate many conditional distributions.

Intuitively, by Bayes’ theorem,

f ()\7 yO)

The joint distribution in the numerator can be approximated by a mixture of normals
o
FAw0) =Y o (P\;yo]/; ﬁkﬂk) ;
k=1

where [y, is a two-element column vector, and €, is a 2 x 2 covariance matrix. Applying

Bayes’ theorem again to the normal kernel for each component k,

¢ (P\,yo]/; ﬂkvﬁk) =¢ (yo; ﬂk,Qan,m) ¢ (A [1,90]  wi) s

~ Qg 12 ~ Qp 12} 2 A
where = - == - wi = —
i |:,UJk‘,1 Q2o HE,2, Q.22 y Wk k11

()
k,22

. Combining all the steps above,
the conditional distribution can be approximated as

> Pr® (?Jo; ﬁk,%ﬁk,m) ¢ (A e [1,90]",w3)

f (Alyo) = ; T o)

M

pr (Y0) & (N e [Lyo) s wi)

B
Il

1
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The last line is given by collecting marginals of y;o into px (yo) = ﬁm(yo}?gg’gk’m). In

summary, the current setup is similar to approximating the conditional density via Bayes’
theorem, but does not explicitly model the distribution of the conditioning variable y;9, and

thus allows for more relaxed assumptions on it.

3.3 Numerical Implementation

In this section, [ propose a posterior sampling procedure for the baseline panel data model
introduced in Subsection 3.2.1 together with the nonparametric Bayesian prior specified in

Subsection 3.2.3 that enjoys desirable theoretical properties as discussed in Section 3.4.

Recall the baseline model,
Yit = BYip—1+ Ni +ui,  ui ~ N (0,0%),

and the conjugate normal-inverse-gamma, prior for the common parameters (B, 02),
(6,02) ~ N <m€,wga2) 1G <02; agz,b82> .

The hyperparameters are chosen in a relatively ignorant sense without inferring too much
from the data except aligning the scale according to the variance of the data (see Appendix
B.2.1 for details). The skill )\; is drawn from the underlying skill distribution f, which
can be characterized by either the random effects model or the correlated random effects
model. Subsection 3.3.1 describes the posterior sampler for the former, and Subsection 3.3.2

delineates the posterior sampler for the latter.
3.3.1 Random Effects Model

For the random effects model, [ impose the Gaussian-mixture DPM prior on f. The posterior
sampling algorithm builds on the blocked Gibbs sampler proposed by Ishwaran and James

(2001, 2002). They truncate the number of components by a large K, and prove that as long
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as K is large enough, the truncated prior is “virtually indistinguishable” from the original
one. Once truncation is conducted, it is possible to augment the data with latent component

probabilities, which boosts numerical convergence and leads to faster code.

To check the robustness regarding the truncation, I also implement the more sophisticated
yet complicated slice-retrospective sampler (Dunson, 2009; Yau et al., 2011; Hastie et al.,
2015) which does not truncate the number of components at a predetermined K. The full
algorithm for the general model (3.5.1) can be found as Algorithm B.2.4 in the Appendix.
The estimates and forecasts for the two samplers are comparable, so I will only show the

results generated from the simpler truncation sampler in this paper.

Suppose the number of components is truncated at K. Then, the Gaussian-mixture DPM

prior can be expressed as??

K

/\zszkN(,ukawz)7 i=1,---,N.
k=1

The parameters for each component can be viewed as directly drawn from the DP base
distribution Gy. A typical choice of G is the normal-inverse-gamma prior, which respects
the conjugacy when the DPM kernel is also normal (see Appendix B.2.1 for details of hy-

perparameter choices).
Go (,u;ﬁw,%) =N (Mk; mé,@[)awz) 1G <w,%; aé,bé‘) .

The component probabilities are constructed via a truncated stick breaking process governed

3In this section, the nonparametric Bayesian priors are formulated as in equations (3.2.6) and (3.2.10).
Such expressions explicitly separate the channels regarding component parameters and component proba-
bilities, and hence facilitate the construction of the posterior samplers.
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by the DP scale parameter a.

Cla k= 17

1> p;, k=K,

where (; ~ Beta (1, a), k=1,--- , K —1.

Note that due to the truncation approximation, the probability for component K is different
from its infinite mixture counterpart in equation (3.2.4). Resembling the infinite mixture

case, [ denote the above truncated sticking process as
pr~TSB(l,o,K), k=1,--- K,

where “T'SB” is for “truncated stick breaking”, the first two arguments are passed from the
parameters of the Beta distribution, and the last argument is the truncated number of

components.

Let ~; be firm ¢’s component affiliation, which can take values {1,---, K}, Ji be the set
of firms in component k, i.e. Jy = {i: 7; = k}, and ni be the number of individuals in
component k, i.e. ny = #Ji. Then, the (data-augmented) joint posterior for the model

parameters is given by

p (e s s i} {30 A} B, 0% | yivoer) (3.3.1)
= Hp (ylt ‘)\i75702ayi,t—1) : Hp ()‘Z ’/‘L’Yzaw?yl)p(r% |{pk‘})
it i

e (s w?) p(prler) - p () - p (B, 0%),
k

where k=1,--- ,K,i=1,---N,and t =1,---,T.

The first block Hiip (yit ‘)\i, B, 02,yi7t_1) links observations to model parameters {\;}, 3,
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and o2. The second block [, p (\i| u%,w?ﬁ )p (i |{px}) links the skill \; to the underlying
skill distribution f. The last block [], p (uk,wﬁ)p(pﬂa) “p(a)-p (5,02) formulates the
prior belief on (5, a2, f)

The following Gibbs sampler cycles over the following blocks of parameters (in order): (1)
component probabilities, a, {px}; (2) component parameters, { /5, w? }; (3) component mem-
berships, {7;}; (4) individual effects, {)\;}; (5) common parameters, 3,0%. A sequence of
draws from this algorithm forms a Markov chain with the sampling distribution converging

to the posterior density.

Note that if the skill \; were known, only step (5) would be sufficient to recover the common
parameters. If the mixture structure of f were known (i.e. (p;€7 ,uk,w,%,) for all components
were known), steps (3)-(5) would be needed to first assign firms to components and then
infer firm 4’s gkill based on the specific component that it has been assigned to. In reality,
neither skill \; nor its distribution f is known, so I incorporate two more steps (1)-(2) to

model the underlying skill distribution f.

Below, I present the formulas for the key nonparametric Bayesian steps, and leave the details
of standard posterior sampling procedures, such as drawing from a normal-inverse-gamma
distribution or a linear regression, to Appendix B.2.3.

Algorithm 3.3.1. (Baseline Model: Random Effects)
For each iteration s =1, -+, Ngim,

1. Component probabilities:

(a) Draw o'®) from a gamma distribution p (a(s)‘p(;_l)):
a® ~ Ga (a(s); ag + K —1, by — logp§71)> .

(b) Fork=1,--- K, draw p,(:) from the truncated stick breaking process
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p ({7 o {m}):

K
p) ~ TSB(1+n00, 0@ S nl Y K| k=1, K
Jj=k+1

2. Component parameters: For k=1,--- | K, draw <u,(:),wi

(s)  2(s) {)\Z(s—l) } S ) '
wedy

gamma distribution p (,uk , Wy,
3. Component memberships: Fori=1,---N, draw %_(s) from a multinomial distribution
s s s 2(s s—1
p({'n( )} Hpé)wi),wk( )}, A )>:

’yi(s) =k, with probability p;,, k=1,--- , K,

(s

)> from a normal-inverse-

K
pir o oo (A5 i), S pa =1,
k=1

4. Individual effects: Fori=1,--- N, draw )\ES) from a mormal distribution
P <)\(s) (s 2(s) Bs=1) 52(s-1)

)
bW,
ﬂ’yl(é)a NOY
5. Common parameters: Draw (ﬁ(s), 02(3)) from a linear regression model

p(ﬁ(s)’o.Q(S) { AES)}, Z/l:N,O:T)-

3.3.2 Correlated Random Effects Model

» Yi,0:T ) -

To account for the conditional structure in the correlated random effects model, I implement
the MGLRy prior as specified in Subsection 3.2.3, which can be viewed as the conditional
counterpart of the Gaussian-mixture prior. In the baseline setup, the conditioning set is a

singleton with y;9 being the only element.

The major computational difference from the random effects model in the previous subsec-
tion is that now the component probabilities become flexible functions of y;0. As suggested
in Pati et al. (2013), T adopt the following priors and auxiliary variables in order to take

advantage of conjugacy as much as possible. First, the covariance function for Gaussian
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process V (¢, €) is specified as
Vi (c,¢) = exp (fAk lc — E|2) ,
where kK =1,2,---. An exponential prior is imposed on Ay, i.e.
p(Ag) o< exp (—Ag),

so p (Ag) has full support on R and satisfies Pati et al. (2013) Remark 5.2.

Furthermore, it is helpful to introduce a set of auxiliary stochastic functions & (yi0), k =

1,2,---, such that

&k (yio) ~ N (Ck (yi0) » 1),

Pk (yi0) = Prob (& (yi0) > 0, and & (yi0) < 0 for all j < k).

Note that the probit stick breaking process defined in equation (3.2.9) can be recovered by

marginalizing over & (vip)’s.

Finally, T blend the MGLRy prior with Ishwaran and James (2001, 2002) truncation approx-

imation to simplify the numerical procedure while still retaining reliable results.

Denote N x 1 vectors

Cro=[C (10) . e (w20) -+ 5 G (ywo)]’
&k = [& (10) , &k (¥20) 5 -+, &k (yno)]

as well as an N x N matrix Vi with the ij-th element being

(Vik)ij = exp (*Ak |yio — Z/j0|2> :
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The next algorithm extends Algorithm 3.3.1 to the correlated random effects scenario. Step
1 for component probabilities has been changed, while the rest of the steps are in line with
those in Algorithm 3.3.1.

Algorithm 3.3.2. (Baseline Model: Correlated Random Effects)
For each iteration s =1, , Ngim,

1. Component probabilities:
(a) For k =1,--- K — 1, draw A,(:) via the random-walk Metropolis-Hastings ap-

proach,

p (Aﬁf)

¢, {yi0}> o< exp <_Al(:)> ¢ ( v 0, exp <_A§:) [yio = yj0’2)> '

Then, calculate V;ﬂs) such that

(V/(:)>ij = €xXp <_A1(:) |yio — yj0|2) .

(b) Fork=1,--- K—1,andi=1,---,N, draw 5,538) (yio) from a truncated normal

distribution p (51(;) (o) ‘Clgs—l) (yi0) v'Yi(S_l) > .

x N (C,isq) (yio) 1) 1 (5}(:) (yi0) < 0) ik < 7(571)’

flE;S) (yzO) XX N ( lis—l) (yz()) 5 1) 1 (gl(j) (yzO) Z O) s ’Lf kj = ’Y'(s—l),

~ N ((12871) (yi0) 1) ; if k> ’7‘(871),
(c) Fork=1,--- K —1, draw C,(f) from a multivariate normal distribution
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Ve

p((§)

(d) Fork =1,--- K, andi = 1,---,N, the component probabilities p,(j) (yio) are

fully determined by ng) :

@ (CfS) (%0)) s ifk; =1,
(s) _ s s ‘
Py, (yZO) - ¢)<<k)(y20)) H_]<k <1_q)<<( )(yZ0)>> ; ka:27 7K_17
1~ Z]I-(:_ll p;(j) (%io) 5 ifk=K
2. Component parameters: Fork=1,--- | K, draw ulg ),wk ) from a linear regression

model p <u,(:),wz(s)

()

-N, draw ’yi(s) from a multinomial distribution

3. Component memberships: Fori=1,--

» ({%(s)} HP; )M;(:)vwk( )}’ )\1(571)7%0):
v = &, with probability pi,, k=1, | K,

Dik X p;(f) (yio) @ ()\1(-5_1), ﬂgj) 1, o)’ 2( )) szk =1

4. Individual effects: Fori=1,--- N, drow )\ES) from a normal distribution

p<¥ﬂ
5. Common parameters: Draw (ﬁ(s), 02(8)) from a linear regression model

P (5(3)’ o2(s) {)\gs)} : Z/l:N,O:T)-

Remark 3.3.3. With the above prior specification, all steps enjoy closed-form conditional

i 2_553,5<s—1>,a%s—n,yi,w)

posterior distributions except step 1-a for Ay, which does not exhibit a well-known density
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form. Hence, I resort to the random-walk Metropolis-Hastings (RWMH) algorithm to sample
Aj. In addition, I also incorporate an adaptive procedure based on Atchadé and Rosenthal
(2005) and Griffin (2016), which adaptively adjusts the random walk step size and keep
acceptance rates around 30%. Intuitively, when the acceptance rate for the current iteration
is too high (low), the adaptive algorithm increases (decreases) the step size in the next
iteration, and thus potentially raises (lowers) the acceptance rate in the next round. The
change in step size decreases with the number of iterations completed, and the step size
converges to the optimal value. Please refer to the detailed description in Algorithm B.2.1

in the Appendix.

3.4 Theoretical Properties

3.4.1 Background

Generally speaking, Bayesian analysis starts with a prior belief and updates it with data.
It is desirable to ensure that the prior belief does not dominate the posterior inference
asymptotically. Namely, as more and more data have been observed, one would have weighed
more on the data and less on prior, and the effect from the prior would have ultimately been
washed out. For pure Bayesians who have different prior beliefs, the asymptotic properties
make sure that they will eventually agree on similar predictive distributions (Blackwell and
Dubins, 1962; Diaconis and Freedman, 1986). For frequentists who perceive that there
is an unknown true data generating process, the asymptotic properties act as frequentist
justification for the Bayesian analysis—as the sample size increases, the updated posterior
recovers the unknown truth. Moreover, the conditions for posterior consistency provide

guidance in choosing better-behaved priors.

In the context of infinite dimensional analysis such as density estimation, posterior consis-
tency cannot be taken as given. On the one hand, Doob’s theorem (Doob, 1949) indicates
that Bayesian posterior will achieve consistency almost surely under the prior measure. On

the other hand, the null set for the prior can be topologically large, and hence the true
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model can easily fall beyond the scope of the prior, especially in nonparametric analysis.
Freedman (1963) gives a simple counter-example in the nonparametric setup, and Freedman
(1965) further examines the combinations of the prior and the true parameters that yield a
consistent posterior, and proves that such combinations are meager in the joint space of the
prior and the true parameters. Therefore, for problems involving density estimation, it is
crucial to find reasonable conditions on the joint behavior of the prior and the true density

to establish the posterior consistency argument.

In this section, I show the asymptotic properties of the proposed semiparametric Bayesian
predictor when the cross-sectional dimension N tends to infinity. Basically, under reason-
ably general conditions, the joint posterior of the common parameters and the individual
effect distribution concentrates in an arbitrarily small region around the true underlying
model, and the density forecasts concentrate in an arbitrarily small region around the or-
acle. Subsection 3.4.2 provides the conditions for identification, which lays the foundation
for posterior consistent analysis. Subsection 3.4.3 proves the posterior consistency of the
estimator, which is an essential building block for bounding the discrepancy between the
proposed predictor and the oracle. Finally, Subsection 3.4.4 establishes the main Bayesian

asymptotic argument for density forecasts.
3.4.2 Identification

To establish the posterior consistency argument, we first need to ensure identification for
both the common parameters and the (conditional) distribution of individual effects. Here,
I present the identification result in terms of the correlated random effects model, with the
random effects model being a special case. In the baseline setup, the identification argu-
ment directly follows Assumptions 2.1-2.2 and Theorem 2.3 in Liu et al. (2016), which is in
turn based on early works, such as Arellano and Bover (1995) and Arellano and Bonhomme
(2012b), so below I only state the assumption and the proposition without extensive discus-
sion. Please refer to Subsection 3.5.3 for more general results addressing correlated random

coeflicients, cross-sectional heteroskedasticities, and unbalanced panels.
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Assumption 3.4.1. (Baseline Model: Identification)

1. {yio, \i} are i.i.d. across i.
2. w18 1.4.d. across i and t, and independent of \;.
3. The characteristic function for \i|yio is non-vanishing almost everywhere.

4. T >2.

The first condition characterizes the correlated random effects model, where there can be
potential correlation between skill A; and initial performance ;9. For the random effects
case, this condition can be altered to “); is independent of y;9 and i.i.d. across ¢”. The second
condition ensures that skill is independent of shock, and that shock is independent across
firms and times, so skill and shock are intrinsically different and distinguishable. The third
condition facilitates the deconvolution between the signal (skill) and the noise (shock) via
Fourier transformation. The last condition guarantees that the time span is long enough
to distinguish persistence (By;;—1) and individual effects ();). Then, the identification
statement is established as follows.

Proposition 3.4.2. (Baseline Model: Identification)

Under Assumption 3.4.1, the common paramelers (6,02) and the conditional distribution

of individual effects f(Ni|lyio) are all identified.
3.4.3 Posterior Consistency

In this subsection, I establish the posterior consistency of the estimated common parameters
(B, 02) and the estimated (conditional) distribution of individual effects f in the baseline
setup. Subsections 3.4.3 and 3.4.3 examine the random effects model and the correlated
random effects model, respectively. Further discussion of the general model can be found in

Subsection 3.5.4.
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Random Effects Model

First, let us consider the random effects model with f being an unconditional distribution.
Let © = R x R* be the space for the parametric component 9 = (ﬂ, 02), and let F be the
set of densities on R (with respect to Lebesgue measure) as the space for the nonparametric
component f. The true data generating process is characterized by (9o, fo). The posterior
consistency results are established with respect to the weak topology, which is generated by
a neighborhood basis constituted of the weak neighborhoods defined below.

Definition 3.4.3. A weak neighborhood of fy is defined as

Uea (fo) = {fef: ’/%f—/%@jfo

®

T are bounded, continuous functions.

where € > 0 and ® = {@j}j:1

Let II(-,-) be a joint prior distribution on @ x F with marginal priors being 1V (-) and
I/ (-). The corresponding joint posterior distribution is denoted as II (-, -|y1.x 0.77) With the
marginal posteriors defined similarly as above.

Definition 3.4.4. The posterior achieves weak consistency at (9o, fo) if for any U. s (fo)

and any § > 0, as N — oo,

H((?S‘, f) : ”19 — 190” < (5, f S U€7<1> (f0)| yl;N’();T) — 1, a.s.

As stated in the original Schwartz (1965) theorem (Lemma 3.4.6), weak consistency is closely
related to the Kullback-Leibler (KL) divergence. For any two distributions fo and f, the

KL divergence of f from fy is defined as

dir (fo,f)Z/fologj;-

The KL property is characterized based on KL divergence as follows.
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Definition 3.4.5. If for all e > 0, IIf (f € F: dgr (fo, f) <€) > 0, we say fo is in the KL
support of 117 or fo € KL (Hf).

Preliminary: Schwartz (1965) Theorem The following lemma restates the Schwartz
(1965) theorem of weak posterior consistency. It is established in a simpler scenario where
we observe \; (not y;) and wants to infer its distribution.

Lemma 3.4.6. (Schwartz, 1965)
The posterior is weakly consistent at fo under two sufficient conditions:

1. Kullback-Leibler property: fo is in the KL support of 11, or fo € KL (II).
2. Uniformly exponentially consistent tests: For any U = Uca (fo), there exists v > 0

and a sequence of tests o (M1, -+, \n) testing®*
Hy: f=fy against Hy: feU°
such that?

Ef, (pn) <exp(—yN) and fsué) Ef(1—-¢n) <exp(—yN) (3.4.1)
e c

for all N > Ny, where Ny is a positive integer.

The following sketch of proof gives the intuition behind the two sufficient conditions. Note

that the posterior probability of U¢ is given by

fUc i= 1f0()\))dH(f) numery

II(UA\.N) = v " = (3.4.2)
ST () devomy
(1 —cpN)numerN
<
= eNT denom y

and we want it to be arbitrarily small.

24901\; = 0 favors the null hypothesis Hy, whereas ¢ n = 1 favors the alternative hypothesis H;.
BE, (pn) and supsepe Ef (1 — o) can be interpreted as type-I and type-II errors, respectively.
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First, based on the Borel-Cantelli lemma, the condition on the type-1 error suggests that

the first term N — 0 almost surely.

Second, for the numerator of the second term, the condition on the type-II error implies

that

N

N .
2 (0 ewpmmen) = [0-em) - [ T San() - IThowax

=1
/cfl—soN]J )X - I (f)

< sup Ef ((1 - on))
feue

<exp(—yN).

Hence, exp (VN) (1 — o) numery — 0 almost surely.

Third, for the denominator of the second term, as N — 0,

denomN:/eXp< Zl >dH —>/exp —N -dgr, (fo, ) dIL(f).
Combine it with the KL property fo € KL (II), then

lim inf e’ - denomy = oo, for all ¥ > 0.
N—oo

Hence, exp < ) denom — oo almost surely.

Therefore, the posterior probability of U¢

II(U°|A1:n) = 0, a.s.

Schwartz (1965) Theorem guarantees posterior consistency in a general density estimation

context. However, as mentioned in the introduction, there are a number of challenges in
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adapting these two conditions even to the baseline setup with random effects. The first chal-
lenge is that, because we observe y;; rather than A;, we need to disentangle the uncertainties
generated from unknown cross-sectional heterogeneities A;’s and from independent shocks
ui’s. Second is to incorporate unknown shock size o?. Third is to take care of the lagged

dependent variables as covariates.
In all these scenarios, note that:

(1) The KL requirement ensures that the prior puts positive weight on the true distribution.
To satisfy the KL requirement, we need some joint assumptions on the true distribution fy
and the prior II. Compared to general nonparametric Bayesian modeling, the DPM structure
(and the MGLR structure for the correlated random effects model) offers more regularities
on the prior IT and thus weaker assumptions on the true distribution fy (see Lemma 3.4.8

and Assumption 3.4.14).

(2) Uniformly exponentially consistent tests guarantee that the data is informative enough
to differentiate the true distribution from the alternatives. These tests are not specific to
the DPM setup but closely related to the definition of the weak neighborhood, hence linked

to the identification argument as well.

In the following discussion, I will tackle the aforementioned three challenges one by one.

Disentangle Skills and Shocks Now let us consider a simple cross-sectional case where

B =0, 02=1,and T = 1. Since there is only one period, the ¢ subscript is omitted.

yi = N +ui, u;~ N(0,1), (3.4.3)

The only twist here is to distinguish the uncertainties originating from unknown individual
effects \;’s and from independent shocks u;’s. Note that unlike previous studies that estimate

distributions of observables,? here the target \; intertwines with u; and cannot be easily

26Some studies (Amewou-Atisso et al., 2003; Tokdar, 2006) estimate distributions of quantities that can
be inferred from observables given common coefficients. For example, in the linear regression problems with
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inferred from the observed y;.

Proposition 3.4.7. (Baseline Model: Skills vs Shocks)

In setup (3.4.3) with the random effects version of Assumption 3.4.1 (1-3), if fo € KL (Hf),

the posterior is weakly consistent at fo.

At the first glance, Proposition 3.4.7 looks similar to the classical Schwartz (1965) theorem.
However, here both the KL requirement and the uniformly exponentially consistent tests
are constructed on the observed y; whereas the weak consistency result is established on the

unobserved \;. There is a gap between the two, as previously mentioned.

The KL requirement is achieved through the convexity of the KL divergence. In terms of
the tests, intuitively, if we obtain enough data and know the distribution of the shocks, it is
possible to separate the signal \; from the noise u; even in the cross-sectional setting. The
exact argument is delivered via proof by contradiction that utilizes characteristic functions

to uncouple the effects from A; and u;. Please refer to Appendix B.3.1 for the detailed proof.

Previous studies have proposed many sets of conditions to ensure that fo is in the KL

support of II/. Based on Wu and Ghosal (2008) Theorem 5, the next lemma gives one set

of conditions for fy together with the Gaussian-mixture DPM prior,?”

Xi ~ N (ps,w?)
G ~ DP (o, Gy) .
Lemma 3.4.8. (Wu and Ghosal, 2008: Gaussian)

If fo and its prior Go satisfy the following conditions:

an unknown error distribution, i.e. y; = 8'x; + u;, conditional on the regression coefficients 8, u; = y; — 8'z;
is inferable from the data.

>"In this section, the nonparametric Bayesian priors are in the form of equations (3.2.5) and (3.2.7), which
are more suitable for the posterior consistency analysis.
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1. fo (X) is a continuous density on R.

For some 0 < M < 00, 0 < fo(A) <M for all \.

1S o (W) Tog fo (\) dA| < oo

For some 6 >0, [ fo(X\)log %()‘)\))d/\ < 00, where @5 (A) = inf|y_y<5 fo (\).
For somen >0, [ IAPAFD £0 (A) dA < oo.

S ;v e e

Gy has full support on RxR™T.

then fo € KL (II7).

Conditions 1-5 ensure that the true distribution fy is well-behaved, and condition 6 further

guarantees that the DPM prior is general enough to contain the true distribution.

If the true distribution fy has heavy tails, we can resort to Lemma B.5.1 following Tokdar
(2006) Theorem 3.3. Lemma B.5.1 ensures the posterior consistency of Cauchy fo when Gy

is the standard conjugate normal-inverse-gamma distribution.

Unknown Shock Size Most of the time in practice, we do not know the shock variances
in advance. In this part, I consider cross-sectionally homoskedastic shocks with unknown
variance as in the baseline model. The cross-sectional heteroskedasticity scenario can be

found in Subsection 3.5.4. Now consider a panel setting (T > 1)?® with 3 = 0:

Yit = Ai + i, wig ~ N (0,07, (3.4.4)
where o2 is unknown with the true value being 03. The joint posterior consistency for

(02, f ) is stated in the following proposition.
Proposition 3.4.9. (Baseline Model: Unknown Shock Size)

In setup (8.4.4) with the random effects version of Assumption 3.4.1, if fo € KL (Hf) and

08 € supp (HU2), the posterior is weakly consistent at (03, fo).

*Note that when \; and wu;; are both Gaussian with unknown variances, we cannot separately identify
the variances in the cross-sectional setting (7" = 1). This is no longer a problem if either of the distributions
is non-Gaussian or if we work with panel data.
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Paralleling the previous subsection, we can refer to Lemma 3.4.8 for conditions that ensure

fo€ KL (117).

Appendix B.3.1 provides the complete proof. The KL requirement is satisfied based on the
dominated convergence theorem. The intuition behind the tests is to split the alternative
region of (02, f) into two parts. First, when a candidate o is far from the true o3, we can
employ orthogonal forward differencing to get rid of \; (see Appendix B.4.1), and then use
the residues to construct a sequence of tests which distinguish Gaussian distributions with
different variances. Second, when o2 is close to o2 but f is far from fy, we need to make sure

that the deviation generated from o?

in f.

is small enough so that it cannot offset the difference

Lagged Dependent Variables Lagged dependent variables are essential for predictions,
as persistence is usually an important feature of economic data. Now let us add a one-period
lag of y;; to the right hand side of equation (3.5.4), which gives exactly the baseline model
(3.1.1):

Vit = BYit—1 + N +uig,  uy ~ N (0, 02) )

where 19 = (5,02) are unknown with the true value being 9y = (60,0(2)). The following
assumption ensures the existence of the required tests in the presence of a linear regressor.

Assumption 3.4.10. (Initial Conditions)

Yo s compactly supported.

Proposition 3.4.11. (Baseline Model: Random Effects)
In the baseline setup (3.1.1) with random effects, suppose we have:

1. The random effects version of Assumption 3.4.1.
2. yi0 satisfies Assumption 8.4.10.
3. f and G satisfy Lemma 3.4.8.

4. Yo € supp (Hﬁ),
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Then, the posterior is weakly consistent at (Yo, fo).

The proof can be found in Appendix B.3.1. The KL requirement is established as in pre-
vious cases. The uniformly exponentially consistent tests are constructed by dividing the
alternative region into two parts: the tests on 3 and o? are achieved via orthogonal forward
differencing followed by a linear regression, while the tests on f are crafted to address the

non-i.i.d. observables due to the AR(1) term.

Once again, we can refer to Tokdar (2006) Theorem 3.3 in order to account for heavy tails in
the true unknown distributions. For further details, please see Proposition B.5.3 regarding

the general model (3.5.1).

Correlated Random Effects Model

In the young firm example, the correlated random effects model can be interpreted as that
a young firm’s initial performance may reflect its underlying skill, which is a more sensible

assumption.

For the correlated random effects model, the definitions and notations are parallel with
the random effects ones with slight adjustment considering that now f is a conditional
distribution. In the baseline setup, the conditioning set ¢; = y;0. As in Pati et al. (2013),
it is helpful to link the properties of the conditional densities to the corresponding ones of
the joint densities, which circumvents the difficulty associated with an uncountable set of
conditional densities. Let C be a compact subset of R for the conditioning variable ¢; = y;o,
‘H be the set of joint densities on R x C (with respect to Lebesgue measure), and F be the

set of conditional densities on R given conditioning variable ¢ € C.

Let h, f, and g be the joint, conditional, and marginal densities, respectively. Denote

ho (A, ¢) = fo(Ale) -qo(c), h(Ae)=f(Ale)-qo(e).
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where h, hg € H, and f, fo € F. ho, fo, and qo are the true densities. Note that h and hg
share the same marginal density qg, but different conditional densities f and fy. This setup

does not require estimating qo and thus relaxes the assumption on the initial conditions.

The definitions of weak neighborhood and KL property rely on the joint density charac-
terization. Note that in both definitions, the conditioning variable c is integrated out with
respect to the true gp.

Definition 3.4.12. A weak neighborhood of fy is defined as

Ue,@(f())_{fef: ‘/@jh—/%‘ho <6}

where € > 0 and ® = {¢; }3.]:1 are bounded, continuous functions of (A, ¢).

Definition 3.4.13. If for all ¢ > 0, II/ (f € F: dgr (ho,h) <€) > 0, we say fo is in the

KL support of I/ | or fo € KL (Hf).

As described in Subsection 3.2.3, the MGLRy prior is a conditional version of the nonpara-
metric Bayesian prior. It can be specified as follows, with the conditioning set simply being

a scalar, y;0.
Ailyio ~ N (Nis s [L o], wy),
id
(i, w?) = 0; G (5 yio) ,
o0
G (5 yio) = Y _ vk (io) g,
k=1
where for components k=1,2,---

0 ~ Go,

Pr (wio) = ® (G (i) [T (1 = @ (¢ (o)),

j<k

G~ GP(0,V).
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The induced prior on the mixing measures G (6;; y;0) is denoted as II.

Assumption 3.4.14. (Baseline Model: Correlated Random Effects)

1. Conditions on fo:
(a) For some 0 < M < 00, 0 < fo(Ayo) <M for all (X, yo).
() | [f fo (Alyo) log fo (Alyo) dA] qo (y0) dyo| < oo
(c) ‘f [f fo (Alyo) log %CD\} q0 (yo)dyo) < 00,
where s (Nyo) = inf|y_x<5 fo (Alyo), for some § > 0.
(d) For somen >0, [ [f I fy (Alyo) d)\} q0 (o) dyo < o0.
(e) fo(:|") is jointly continuous in (X, yo).
(f) g0 (yo) >0 for all yo € C.
2. Conditions on I1:
(a) For k = 1,2,---, V} is chosen such that (x, ~ GP (0,Vy) has continuous path
reglizations.
(b) For k =1,2,---, for any continuous g (-), and any € > 0, ﬁ(SUPyOeC |Ck (v0) —
9(wo)| <€) >0.

(¢c) Gy is absolutely continuous.

These conditions follow Assumptions A1-Ab5 and S1-S3 in Pati et al. (2013) for posterior con-
sistency under the conditional density topology. The first group of conditions can be viewed
as conditional density analogs of the conditions in Lemma 3.4.8. These requirements are
satisfied for flexible classes of models, i.e. generalized stick-breaking process mixtures with
the stick-breaking lengths being monotone differentiable functions of a continuous stochastic
process.

Proposition 3.4.15. (Baseline Model: Correlated Random Effects)
In the baseline setup (8.1.1) with correlated random effects, suppose we have:

1. Assumption 3.4.1.

2. Y0 sotisfies Assumption 8.4.10.
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3. f and G satisfy Assumption 3.4.14.

4. Yo € supp (Hﬁ).

Then, the posterior is weakly consistent at (Yo, fo).

The proof in Appendix B.3.2 is similar to the random effects case except that now the KL

property and the uniformly exponentially consistent tests are on the joint distribution of

(Ais yio)-
3.4.4 Density forecasts

Once the posterior consistency results are obtained, we can bound the discrepancy between
the proposed predictor and the oracle by the estimation uncertainties in 3, o2, and f, and
then show the asymptotical convergence of the density forecasts to the oracle forecast (see
Appendix B.3.3 for the detailed proof).

Proposition 3.4.16. (Baseline Model: Density Forecasts)
In the baseline setup (3.1.1), suppose we have:

1. For the random effects model, conditions in Proposition 3.4.11.
2. For the correlated random effects model,
(a) conditions in Proposition 3.4.15,

(b) qo (yo) is continuous, and there exists ¢ > 0 such that |qo (yo)| > q for all yo € C.

Then, the density forecasts converge to the oracle predictor in the following two ways:

1. Conwvergence of f%"j_il in weak topology: for any i and any U s ( i"%"ﬂf) as N — oo,

d l
P feit € Uco (£555) | mrovorr ) = 1, aus.

2. “Pointwise” convergence of fisg+1,' for any i, any y, and any € > 0, as N — o0,

[ W) = S5 ()] < € aus.
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The first result focuses on the conditional predictor (3.2.1) and is more coherent with the
weak topology for posterior consistency in the previous subsection. The second result is
established for the semiparametric Bayesian predictor (3.2.3), which is the posterior mean of
the conditional predictor. In addition, the asymptotic convergence of aggregate-level density

forecasts can be derived by summing individual-specific forecasts over different subcategories.

3.5 Extensions

3.5.1 General Panel Data Model

The general panel data model with correlated random coefficients can be specified as
it = B'wip1 + Nwig—1 +uie,  ui ~ N (0,07) (3.5.1)

where ¢ = 1,--- /N, and t = 1,--- ;T 4+ 1. Similar to the baseline setup in Subsection
3.2.1, the y;; is the observed individual outcomes, and I am interested in providing density

forecasts of y; 741 for any individual i.

The w; ;1 is a vector of observed covariates that have heterogeneous effects on the outcomes,
with \; being the unobserved individual heterogeneities. w;;—1 is strictly exogenous and
captures the key sources of individual heterogeneities. The simplest choice would be w; ;1 =
1 where \; can be interpreted as an individual-specific intercept, i.e. firm ¢’s skill level in
the baseline model (3.1.1). Moreover, it is also helpful to include other key covariates of
interest whose effects are more diverse cross-sectionally, such as observables that characterize
innovation activities. Furthermore, the current setup can also take into account deterministic
or stochastic aggregate effects, such as time dummies for the recent recession. For notation
clarity, I decompose w;;—1 = (wﬁ’ 1,w{7’t_1)/, where wj' | stands for a vector of aggregate
variables, and wi{ 1 is composed of individual-specific variables. In the simple individual-
A

specific-intercept case, we have w;’; =1 for all ¢, and the corresponding scalar \;’s give the

values for the heterogeneous intercepts.
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The z; ;1 is a vector of observed covariates that have homogeneous effects on the outcomes,
and B is the corresponding vector of common parameters. x;;—1 can be either strictly
exogenous or predetermined, which can be further denoted as x; ;1 = (acgt'_l, xf t’_1> /, where
x%_l is the strictly exogenous part while xf ¢ is the predetermined part. The one-period-
lagged outcome y;;—1 is a typical candidate for :ﬁf .1 in the dynamic panel data literature,
which captures the persistence structure. In addition, both a:gt_l and xf ;1 can incorporate
other general control variables, such as firm characters as well as local and national economic
conditions. The notation xf .1 indicates the subgroup of wf .1 excluding lagged outcomes.
Here, the distinction between homogeneous effects (8'z;:—1) versus heterogeneous effects
(Mw;¢—1) allows us to enjoy the best of both worlds—revealing the latent nonstandard

structures for the key effects while avoiding the curse-of-dimensionality problem, which

shares the same idea as Burda et al. (2012).

The u;; is an individual-time-specific shock characterized by zero mean and cross-sectional
heteroskedasticity, o?. The normality assumption is not very restrictive due to the flexibility
in 02 distribution. Table 1 in Fernandez and Steel (2000) demonstrates that scale mixture of
normals can capture “a rich class of continuous, symmetric, and unimodal distributions” (p.
81), including Cauchy, Laplace, Logistic, etc. More rigorously, as proved by Kelker (1970),

this class is composed of marginal distributions of higher-dimensional spherical distributions.
In the correlated random coefficients model, A; can depend on some of the covariates and

initial conditions. Specifically, I define the conditioning set at period t to be

Cit—1 = {yi,O:t-l, 3758(:,5,1, ng:T7 wi,OZT} (352)

and allow the distribution of A; to be a function of c;5. Note that as lagged y;; and xf b}
are predetermined variables, the sequences of :EZ{D .1 in the conditioning set ¢; ;1 start from
period 0 to period t — 1; while acgt_l and w; ;1 are both strictly exogenous, so the condi-

tioning set c¢;;—1 contains their entire sequences. For future use, I also define the part of
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cit—1 that is composed of individual-specific variables as

* _ . Px O I
Cit—1 — {yz,o;tq, Li0:4—1> Li,0:T> wz’,O:T}‘

3.5.2 Posterior Samplers

Random Coefficients Model

Compared to Subsection 3.3.1 for the baseline setup, the major change here is to account for
cross-sectional heteroskedasticity via another flexible prior on the distribution of 03. Define

2 is some small positive number. Then, the support of f(‘)’z is

l; = log (022 — QZ) where o
bounded below by ¢? and thus satisfies the requirement for the asymptotic convergence of
the density forecasts in Proposition 3.5.12.22 The log transformation ensures an unbounded
support for I; so that Algorithm 3.3.1 with Gaussian-mixture DPM prior can be directly
employed. Beyond cross-sectional heteroskedasticity, there is a minor alternation due to

the (potentially) multivariate \;. In this scenario, the component mean gy is a vector and

component variance ), is a positive definite matrix.

The following algorithm parallels Algorithm 3.3.1. Both algorithms are based on truncation
approximation, which is relatively easy to implement and enjoys good mixing properties.

For the slice-retrospective sampler, please refer to Algorithm B.2.4 in the Appendix.

Denote D = {{D;},D4} as a shorthand for the data sample used for estimation, where
D; = C;T contains the observed data for individual ¢, and Dy = wéT is composed of the
aggregate regressors with heterogeneous effects. Note that because \; and o2 are independent
with respect to each other, their mixture structures are completely separate. As their

mixture structures are almost identical, 1 define a generic variable z which can represent

either X\ or [, and then include z as a superscript to indicate whether a specific parameter

2Note that only Proposition 3.5.12 for density forecasts needs a positive lower bound on the distribution
of o2. The propositions for identification and posterior consistency of the estimates are not restricted to but
can accommodate such requirement.
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belongs to the A part or the [ part. Most of the conditional posteriors are either similar
to Algorithm B.2.4 or standard for posterior sampling (see Appendix B.2.3), except for the

additional term (Uz-2 — g2)71 in step 4-b, which takes care of the change of variables from

2

g

l; =log (O'Z-Q — QQ) to o

Algorithm 3.5.1. (General Model: Random Coefficients)
For each iteration s =1, , Ngim,

1. Component probabilities: For z =\, [,
(a) Draw o*®) from a gamma distribution p (az(5)|p§((j_1)).
(b) For k*=1,--- , K?, draw pigs) from the truncated stick breaking process
p({i o ™))
z(s) Qz(s)

2. Component parameters: For z =\, I, for kK* =1,--- | K?, draw (“kz S0 ) from a

multivariate-normal-inverse- Wishart distribution (or a normal-inverse-gamma distri-

{25871) }ieJ,jSl) > '

3. Component memberships: Forz =M\, I, fori=1,--- N, draw ,in(S) from a multinomial
distribution p ({yf(s)} ‘{ngs)’ Mi(j), 92£8)} , Zi(s_l) )

4. Individual-specific parameters:

bution if z is a scalar) p <M2£S), ngs)

(a) Fori=1,--- N, draw )\Z(s) from a multivariate-normal distribution (or a normal

distribution if X is a scalar) p ()\ES)

M,AYZ_(AS)a Q,?ZE\S)? (012) (=0 ) 6(571)7 Dia DA) .

(b) Fori=1,--- N, draw (01-2)(8) via the random-walk Metropolis-Hastings approach

L 7Y

p (1) ).

x ((U%)(s) _gQ)‘l é (log ((U?)(S) —Q2) ; Ml(;),Ql(s))

5 ~k

. H ¢ (yit; )‘z(S)Iwi,t—l + 5(8_1)/561',1&—1» (01'2)(8)> .

t=1

Mi(z_s) LN AB 86D Dy )

5. Common parameters: Draw ) from a linear regression model

p (89 [{A7 @07}, p).
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Correlated Random Coefficients Model

Regarding conditional density estimation, I impose the MGLRy prior on both A; and ;.
Compared to Algorithm 3.3.2 for the baseline setup, the algorithm here makes the following
changes: (1) generic variable z = \, [, (2) (o7 —QQ)_l in step 4-b, (3) vector \;, and (4)
vector conditioning set ¢;o. The conditioning set ¢;o is characterized by equation (3.5.2) for
balanced panels or equation (3.5.3) for unbalanced panels. In practice, it is more compu-
tationally efficient to incorporate a subset of ¢;g or a function of ¢;g guided by the specific

problem at hand.
Algorithm 3.5.2. (General Model: Correlated Random Coefficients)

For each iteration s =1, -+, Ngim,

1. Component probabilities: For z = A, I,

(a) For k* = 1,--- | K* — 1, draw AZ&S) via the random-walk Metropolis-Hastings

z(f_l), {CiO}) and then calculate V,(:).

approach, p (A;f)
(b) For k* = 1,--- ,K* —1, and i = 1,--- N, draw g,jﬁs) (cio) from a truncated
normal distribution p (g,jﬁs) (cio) ‘g,jﬁs’l) (cio) ,75(871) )
(¢) Fork*=1,--- [K*—1, ngs) from a multivariate normal distribution
p (GO &9).

(d) Fork*=1,--- ,K* -1, andi=1,---,N, the component probabilities ngs) (cio)

. z(s)
are fully determined by C..".
2. Component parameters: For z =\, I, for k* =1,--- | K7,
(a) Draw M;ES) from a matricvariate-normal distribution (or a multivariate-normal
distribution if z is a scalar) p (uz(zs) QZES_I), {21(5—1)7 Cio}ie o) )
Ji
(b) Draw ngs) from an inverse-Wishart distribution (or an inverse-gamma distribu-
z(s) [ (s=1)
sz 9 {ZZ 7CZO}Z‘€JZ§51> > .
3. Component memberships: For z =\, [, fori=1,---N, draw %z(s) from a multinomial

distribution p ({Wf(s)} szgs), Mz(zS), ngs)} , zi(s_l), C@'o).

tion if z is a scalar) p (ngs)
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4. Individual-specific parameters:

(a) Fori=1,--- N, draw )\Z(s) from a multivariate-normal distribution (or a normal

W00, (02) 7Y, 86D, Dy, D).

7

distribution if X is a scalar) p ()\ES)

(b) Fori=1,--- N, draw (022) ) yia the random-walk Metropolis- Hastings approach

p((2)

5. Common parameters: Draw B®) from a linear regression model
p (893, ()9}, D).

3.5.3 Ildentification

M,ZY(IZ_S)v ny(;)? AES)’ 6(8_1)7 Di7 DA) .

Assumption 3.5.3. (General Model: Setup)

1. Conditional on w(ﬁT, {c;-“o, iy 01-2} are 1.4.d. across 1.
2. For all t, conditional on {yi, cit—1}, xﬁ* 1s independent of {)\i, 01-2} and (.
3. {xiO’O;T, wi,OZT} are independent of{)\i, 01-2} and 5.

4. Let wy = o4vi. vy 15 i.4.d. across i and t and independent of ¢;4—1.

Remark 3.5.4. (i) For the random effects case, the first condition can be altered to “{X;, o7}

are independent of ¢;o and i.i.d. across 7.

(ii) For the distribution of the shock w;;, a general class of shock distributions can be ac-
commodated by the scale mixture of normals generated from the flexible distribution of o2
(Kelker, 1970; Fernandez and Steel, 2000). It is possible to allow some additional flexibility
in the distribution of u;;. For example, the identification argument still holds as long as (1)
v is 1.i.d. across @ and independent over ¢, and (2) the distributions of vy, f/ (vit), have
known functional forms, such that E[vi] = 0, V[v;] = 1. Nevertheless, as this paper studies
panels with short time spans, time-varying shock distribution may not play a significant role.
I will keep the normality assumption in the rest of this paper to streamline the arguments.

Assumption 3.5.5. (General Model: Identification) For all i,

1. The common parameter vector (3 is identifiable.3°

3%The identification of common parameters in panel data models is standard in the literature. For
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2. w;0.r—1 has full rank d,.
3. Conditioning on cio, \i and o? are independent of each other.
4. The characteristic functions for \i|cio and o2|c;o are non-vanishing almost everywhere.

Proposition 3.5.6. (General Model: Identification)

Under Assumptions 8.5.8 and 3.5.5, the common parameters 3 and the conditional distri-

bution of individual effects, f>(\i|cio) and f”g(aﬂcio), are all identified.

Please refer to Appendix B.4.1 for the proof. Assumption 3.5.3-3.5.5 and Proposition 3.5.6
are similar to Assumption 2.1-2.2 and Theorem 2.3 in Liu et al. (2016) except for the
treatment of heteroskedasticity. First, this paper supports unobserved cross-sectional het-
eroskedasticity whereas Liu et al. (2016) incorporate cross-sectional heteroskedasticity as a
parametric function of observables. Second, Liu et al. (2016) allow for time-varying het-
eroskedasticity whereas the identification restriction in this paper can only permit time-
varying distribution for v;; (see Remark 3.5.4 (ii)) while keeping zero mean and unit variance.
However, considering that this paper focuses on the scenarios with short time dimension,

lack of time-varying heteroskedasticity would not be a major concern.

Furthermore, the above identification results can be extended to unbalanced panels. Let T;
denote the longest chain for individual ¢ that has complete observations, from to; to t1;. That
is, {yit, wit—1, wit—1} are observed for all ¢ = to;,--- ,t1;. Then, I discard the unobserved
periods and redefine the conditioning set at time t = 1,tg;,--- ,t15,7 + 1 to be

Px O
Ci,t—l = {yi,’T-P mi TPt 17 T, _p, wi +P } y (353)
Tit—

y
i,t—1 vLTr i

where the set for time periods 7'1-1;_1 ={0,to; — 1,--- ,t1; — 1, T}N{0,--- , ¢t — 1}. Note that

tio can be 1, and t;; can be T, so this structure is also able to accommodate balanced panels.

example, there have been various ways to difference data across ¢ to remove the individual effects \; (e.g.
orthogonal forward differencing, see Appendix B.4.1), and we can construct moment conditions based on the
transformed data to identify the common parameters /3. Here I follow Liu et al. (2016) and state a high-level
identification assumption.
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Accordingly, the individual-specific component of ¢; ;—1 is

* Px o 1
C: = . €T. xZ. w. .
i,t—1 {yl,ﬂi,l ’ Z,TZJ;71 ’ z,‘ril;’ 7,,7’;1: }

Assumption 3.5.7. (Unbalanced Panels) For all i,

1. ¢;p 18 observed.
2. x;7 and w;p are observed.
3. The common parameter vector 3 is identifiable.

4o Wi (t9;=1):(t1,—1) has full rank d,.

The first condition guarantees the existence of the initial conditioning set for the correlated
random coefficients model. In practice, it is not necessary to incorporate all initial values
of the predetermined variables and the whole series of the strictly exogenous variables. It
is more feasible to only take into account a subset of ¢;y or a function of ¢;y that is relevant
for the specific analysis. The second condition ensures that the covariates in the forecast
equation are available in order to make predictions. The third condition is the same as
Assumption 3.5.5 (1) that makes a high-level assumption on the identification of common
parameters. The fourth condition is the unbalanced panel counterpart of Assumption 3.5.5
(2). It guarantees that the observed chain is long and informative enough to distinguish
different aspects of individual effects. Now we can state similar identification results for
unbalanced panels.

Proposition 3.5.8. (Identification: Unbalanced Panels)

For unbalanced panels, under Assumptions 3.5.3, 3.5.5 (3-4), and 3.5.7, the common parame-
ter vector B and the conditional distributions of individual effects, f(\ilcio) and f”2(02-2|ci0),

are all identified.
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3.5.4 Asymptotic Properties

In Subsection 3.5.4, I address posterior consistency of f° * with unknown individual-specific
heteroskedasticity a?. In Subsection 3.5.4, I proceed with the general setup (3.5.1) by con-
sidering (correlated) random coefficients, adding other strictly exogenous and predetermined
covariates into x;, and accounting for unbalanced panels, then the posterior consistency can
be obtained with respect to the common parameters vector 5 and the (conditional) distri-
butions of individual effects, f* and f?. In Subsection 3.5.4, I establish the asymptotic

properties of the density forecasts.

Let d, be the dimension of z;;, where z is a generic variable which can be w or x. Then,
6 = R%, F is a set of (conditional) densities on R%, and F°" is a set of (conditional)
densities on R*. The data sample used for estimation is D = {{D;},Da} defined in

Subsection 3.5.1, which constitutes the conditioning set for posterior inference.
Cross-sectional Heteroskedasticity

In many empirical applications, such as the young firm analysis in Section 3.7, risk may
largely vary over the cross-section. Therefore, it is more realistic to address cross-sectional
heteroskedasticity, which also contributes considerably to density forecasts. Now let us adapt
the simple panel model in equation (3.4.4) to incorporate cross-sectional heteroskedastic
shocks.

yit = Ai + i, uie ~ N (0,07), (3.5.4)

where 3 = 0, and ); is independent of 0. Their distributions, f* (\;) and o (07), are un-
known, with the true distributions being f3 ()\;) and fg : (a?), respectively. Their posteriors
are consistently estimated as established in the following proposition.

Proposition 3.5.9. (Cross-sectional Heteroskedasticity)

In setup (3.5.4) with the random effects version of Assumption 3.5.3 (1 and 4) and Assump-
0,2
tion 8.5.5 (3-4), if f3 € KL <ka> and f(‘)72 € KL (Hf ), the posterior is weakly consistent
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at (fg\’ fgz)'

Please refer to Appendix B.4.2 for the complete proof. The KL requirement is again given
by the convexity of KL divergence. The intuition of the tests is again to break down the
alternatives into two circumstances. First, when a candidate f¢ * and the true fgz are not
identical, we can once again rely on orthogonal forward differencing (see Appendix B.4.1) to
distinguish variance distributions. Note that the Fourier transformation (i.e. characteristic
functions) is not suitable for disentangling products of random variables, so I resort to the
Mellin transform (Galambos and Simonelli, 2004) instead. The second circumstance comes
when the variance distributions are close to each other, but f* is far from fg. Here I apply

the argument for Proposition 3.4.7 with slight adaption.

f(j\ € KL (ka> is guaranteed by conditions in Lemma 3.4.8 (or Lemma B.5.1 for true
distribution with heavy tails). Concerning f§ 2, I impose a Gaussian-mixture DPM prior on

I =log (02 — QQ), and similar sufficient conditions apply to the distribution of [ as well.
General Setup

In this subsection, I generalize the setup to the full panel data model in equation (3.5.1) with
regard to the following three aspects. The proofs are along the same lines of the baseline

model plus cross-sectionally heteroskedasticity.

First, in practice, it is more desirable to consider a vector of \; interacting with observed w;;.
In the young firm example, different young firms may respond differently to the financial cri-
sis, and R&D activities may benefit the young firms in different magnitudes. A (correlated)

random coefficient model can capture such heterogeneities and facilitate predictions.

The uniformly exponentially consistent tests for multivariate \; are constructed in a similar
way as Proposition 3.4.7 outlined in the “disentangle skills and shocks” part of Subsection
3.4.3. Note that for each [ = 1,--- ,d,,, we can implement orthogonal forward differencing

with respect to all other {)\,-m}m# and reduce the problem to \;; versus shocks as in equation
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(3.4.3). The same logic still holds when we add lagged dependent variables and other
predictors. Furthermore, a multi-dimensional version of Lemma 3.4.8 or Assumption 3.4.14

guarantees the KL property of multivariate \; .

Second, additional strictly exogenous (%C,)tq) and predetermined (:nf 1) predictors help
control for other sources of variation and gain more accurate forecasts. We can reproduce
the analysis for Proposition 3.4.15 by allowing the conditioning set c;o to include the initial

values of the predetermined variables and the whole series of the strictly exogenous variables.

Third, it is constructive to account for unbalanced panels with missing observations, which
incorporates more data into the estimation and elicits more information for the prediction.

The posterior consistency argument is still valid in like manner given Assumption 3.5.7.

Combining above discussions all together, we achieve the posterior consistency result for the
general panel data model. The random coefficients model is relatively more straightforward
regarding posterior consistency, as the random coefficients setup together with Assumption
3.5.5 (3) implies that (/\i, UZ»Q, CiO) are independent among one another. The theorem for the
random coefficients model is stated as follows.

Proposition 3.5.10. (General Model: Random Coefficients)
Suppose we have:

1. Assumptions 3.5.3, 3.5.5 (3-4), 8.5.7, and 8.4.10.
2. Lemma 8.4.8 on A and [.

3. Bo € supp (HB).

Then, the posterior is weakly consistent at (50, fg‘, ng),

For heavy tails in the true unknown distributions, Lemma B.5.2 generalizes Lemma B.5.1 to

the multivariate scenario, and Proposition B.5.3 gives a parallel posterior consistency result.

In the world of correlated random coefficients, A; is independent of a? conditional on ¢;9. In

103



other words, \; and 0'7;2 can potentially depend on the initial condition c¢;g, and therefore can
potentially relate to each other through c¢;9. For example, a young firm’s initial performance
may reveal its underlying ability and risk. The following proposition is established for the
correlated random coefficients model.

Proposition 3.5.11. (General Model: Correlated Random Coefficients)

Under Assumptions 3.5.8, 8.5.5 (3-4), 3.5.7, 8.4.10, and 3.4.14, if Po € supp (HB), the

posterior is weakly consistent at (507 f[j\, f[‘)’Q).

Note that Propositions 3.5.10 and 3.5.11 are parallel with each other, as the first group of

conditions in Assumption 3.4.14 is the conditional analog of Lemma 3.4.8 conditions.
Density Forecasts

In the sequel, the next proposition shows convergence of density forecasts in the general
model.

Proposition 3.5.12. (General Model: Density Forecasts)
In the general model (3.5.1), suppose we have:

1. For the random coefficients model,
(a) conditions in Proposition 3.5.10,
(b) supp (f(?z) is bounded below by some a2 > 0.
2. For the correlated random coefficients model,
(a) conditions in Proposition 3.5.11,
(b) qo (yo) is continuous, and there exists ¢ > 0 such that |qo (yo)| > q for all yo € C,

(c) supp <f672> is bounded below by some o > 0.

Then the density forecasts converge to the oracle predictor in the following two ways:
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1. Conwvergence of icoT”fl in weak topology: for any i and any Uc o ( f”Tajll‘i), as N — oo,

d I
P( i1 € Uco ( i‘frTaff)‘yl:N,o:T) — 1, a.s.

2. “Pointunse” convergence of f;}%+1" for any i, any y, and any € > 0, as N — o0,

[y ) = J555E ()] < €, aus.

The additional requirement that the support of f(‘)’2 is bounded below ensures that the

likelihood would not explode. Then, the proof is in the same vein as the baseline setup.

3.6 Simulation

In this section, I have conducted extensive Monte Carlo simulation experiments to examine
the numerical performance of the proposed semiparametric Bayesian predictor. Subsection
3.6.1 describes the evaluation criteria for point forecasts and density forecasts. Subsection
3.6.2 introduces other alternative predictors. Subsection 3.6.3 considers the baseline setup
with random effects. Subsection 3.6.4 extends to the general setup incorporating cross-

sectional heterogeneity and correlated random coefficients.
3.6.1 Forecast Evaluation Methods

As mentioned in the model setup in Subsection 3.2.1, this paper focuses on one-step-ahead
forecasts, but a similar framework can be applied to multi-period-ahead forecasts. The
forecasting performance is evaluated along both the point and density forecast dimensions,

with particular attention to the latter.

Point forecasts are evaluated via the Mean Square Error (MSE), which resonates with the

quadratic loss function. Let g; 741 denote the forecast made by the model,
Jiri1 = B'rir + Nawr,
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where ); and B stand for the estimated parameter values. Then, the forecast error is defined

as

€ T+1 = YiT+1 — Ui, T+1,

with y; 741 being the realized value at time 7"+ 1. The formula for the MSE is provided in

the following equation,

1 .
MSE = N2637T+1.
1

The Diebold and Mariano (1995) test is further implemented to assess whether or not the

difference in the MSE is significant.

The accuracy of the density forecasts is measured by the log predictive score (LPS) as

suggested in Geweke and Amisano (2010),
N §Z gp y’L,T+1 )

where y; 741 is the realization at T+ 1, and p (y; 741|D) represents the predictive likelihood
with respect to the estimated model conditional on the observed data D. I also perform the

Amisano and Giacomini (2007) test to examine the significance in the LPS difference.
3.6.2 Alternative Predictors

In the simulation experiments, I compare the proposed semiparametric Bayesian predictor
with other alternatives, including Bayesian estimators with the prior of \; being a homoge-
neous prior, a flat prior, a parametric prior, and a DP prior (more rigorously, the DP prior

is on f rather than \;).

The homogeneous prior is defined as A\; ~ dy+, where )« is the Dirac delta function rep-
resenting a degenerate distribution P (\; = \*) = 1. Intuitively, this prior believes that all
firms share the same level of skill A*. Because A* is unknown beforehand, it becomes an-
other common parameter, similar to 3. Hence I adopt a multivariate-normal-inverse-gamma

prior on ([5, PN 02), which can be viewed as a Bayesian counterpart of the pooled OLS

106



estimator.

The flat prior is specified as p(A;) o 1, an uninformative prior with the posterior mode
being the MLE estimate. Roughly speaking, the flat prior infers firm ¢’s skill A\; only using

firm 4’s history.

The parametric prior is given by A; ~ N (ui,wz), and a normal-inverse-gamma hyperprior
is further imposed on (ui, w?) It can be considered as a special case of the DPM prior when
the scale parameter o — 00, so there is only one component, and (,ui, wf) are directly drawn
from the base distribution Gg. This choice of hyperprior follows the suggestion by Basu and
Chib (2003) to match the Gaussian model with the DPM model such that “the predictive
(or marginal) distribution of a single observation is identical under the two models” (pp.

226-227).

This paper focuses on the scenario in which f is continuous and approximated by a mixture
model, as a continuous distribution may be more sensible for the skill of young firms as well
as other similar empirical studies. To examine how much can be gained or lost from the
continuity assumption, I also implement a DP prior where A; follows a flexible nonparametric

distribution but on a discrete support.

These priors are denoted as “Homog”, “Flat”, “Param”, and “NP-disc”, respectively, in the
graphs and tables below. In addition, “NP-R” denotes the proposed nonparametric prior for
random effects/coefficients models, and “NP-C” for correlated random effects/coefficients

models.
3.6.3 Baseline Model

Let us first consider the baseline model with random effects. The specifications are summa-

rized in Table 12.

Bo is set to be 0.8 as economic data usually exhibit some degree of persistence. 03 equals 1/4,

so the rough magnitude of signal-noise ratio is 03 /V ()\;) = 1/4. The initial conditions y;o is
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Table 12: Simulation Setup: Baseline Model

(a) Dynamic Panel Data Model

Law of motion Yit = BYii—1 + Ni + Uig, Uig ~ N ((), 02)
Common parameters 3y = 0.8, 03 =1

Initial conditions yio ~ TN (0,1,-5,5)

Sample size N =1000, T =6

(b) Random Effects

Degenerate X; =0

Skewed BN (2.0) + 8N (-1, ])

Fat tail )\iNSN(O74)+%N (0’%

Bimodal Ai ~ 0.35N (0,1) + 0.65N (10, 1), normalized to Var (\;) =1

drawn from a truncated normal distribution where I take the standard normal as the base
distribution and truncate it at |y;0| < 5. This truncation setup complies with Assumption
3.4.10 such that y;o is compactly supported. Choices of N and T are comparable with the

young firm dynamics application.

There are four parameterizations of the true distribution of A;, fo (). As this subsection
focuses on the simplest baseline model with random effects, all the four parameterizations
are independent of y;9. The degenerate \; distribution suggests that all firms enjoy the same
skill level. Note that it does not satisfy the first condition in Lemma 3.4.8, which requires
the true A; distribution to be continuous. The purpose of this distribution is to learn how
bad things can go under the misspecification that the true \; distribution is completely
off the prior support. The functional forms of the skewed and fat tail distributions are
borrowed from Monte Carlo design 2 in Liu et al. (2016). These two specifications reflect
more realistic scenarios in empirical studies. The last setup portrays a bimodal distribution

with asymmetric weights put on the two components.

I simulated 1,000 panel datasets for each setup and report the average statistics of these
1,000 exercises. Forecasting performance, especially the relative rankings and magnitudes,

is highly stable across simulations. In each simulation exercise, [ generated 40,000 MCMC
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draws with the first 20,000 being discarded as burn-in. Based on graphical and statistical
tests, the MCMC draws seem to converge to a stationary distribution. Both the Brook-
Draper diagnostic and the Raftery-Lewis diagnostic yield desirable MCMC accuracy. For
trace plots, prior /posterior distributions, rolling means, and autocorrelation graphs of 3, 02,

«, and A1, please refer to Figures 15 to 18.

Table 13 shows the forecasting comparison among alternative priors. The point forecasts
are evaluated by MSE together with the Diebold and Mariano (1995) test. The performance
of the density forecasts is assessed by the LPS and the Amisano and Giacomini (2007) test.
For the oracle predictor, the table reports the exact values of MSE and LPS (multiplied
by the cross-sectional dimension N). For other predictors, the table reports the percentage
deviations from the oracle MSE and difference with respect to the oracle LPS*N. The tests
are conducted with respect to NP-R, with significance levels indicated by *: 10%, **: 5%,

and ***: 1%. The entries in bold indicate the best feasible predictor in each column.

For each )\; distribution, point forecasts and density forecasts share comparable rankings.
When the \; distribution is degenerate, “Homog” and “NP-disc” are the best, as expected.
They are followed by “NP-R” and “Param”, and “Flat” is considerably worse. When the
A; distribution is non-degenerate, there is a substantial gain in both point forecasts and
density forecasts from employing the “NP-R” predictor. In the bimodal case, the “NP-R”
predictor exceeds all other competitors. In principle, the nonparametric prior constructed
from mixtures of normals should perform the best when the true DGP is made up of distinct
normal components. In the skewed and fat tailed cases, the “Flat” and “Param” predictors
are second best, yet still significantly inferior to “NP-R”. The “Homog” and “NP-disc” pre-
dictors yield the poorest forecasts, which suggests that their discrete supports are not able
to approximate the continuous ); distribution, and even the nonparametric DP prior with

countably infinite support (“NP-disc”) is far from enough.

Therefore, when researchers believe that the underlying A; distribution is indeed discrete,

the DP prior (“NP-disc”) is a more sensible choice; on the other hand, when the underlying
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Ai distribution is actually continuous, the DPM prior (or the MGLRy prior later for the
correlated random effects model) promotes better forecasts. In the empirical application
to young firm dynamics, it would be more reasonable to assume continuous distributions of
individual heterogeneities in levels, reactions to R&D, and shock sizes, and results show that
the continuous nonparametric prior outperforms the discrete DP prior in terms of density

forecasts (see Table 19).

To investigate the sources of the gain in forecasts, Figure 8 demonstrates the posterior
distribution of the A; distribution (i.e. a distribution over distributions) for experiments
“Skewed”, “Fat Tail”, and “Bimodal”. In each case, the graphs are constructed from the
estimation results of one simulation exercise among the 1,000 simulation exercises. The
left subgraph is given by the “Param” estimator, which is compared and contrasted with
the right subgraph by “NP-R”. In each subgraph, the black solid line represents the true \;

distribution, fo. The blue bands show the posterior distribution of f, II (f | y1.n5,0.7)-

For the skewed A; distribution, the “NP-R” estimator better tracks the peak on the left
and the tail on the right. For the A; distribution with fat tails, the “NP-R” estimator
accommodates the slowly decaying tails, but is still not able to fully mimic the spiking peak.
For the bimodal \; distribution, it is not surprising that the “NP-R” estimator captures the
M-shape fairly nicely. In summary, the nonparametric prior flexibly approximates a vast set
of distributions, which helps provide more precise estimates of the underlying A; distributions
and consequently more accurate density forecasts. This observation confirms the connection
between skill distribution estimation and density forecasts as stated in Propositions 3.4.11

and 3.4.16.

I have also considered various robustness checks. In terms of the setup, I have tried different
cross-sectional dimensions N = 100, 500, 1000, 10°, different time spans T' = 6, 10, 20, 50,
different persistences 8 = 0.2, 0.5, 0.8, 0.95, different sizes of the i.i.d. shocks 02 = 1/4 and
1, which govern the signal-to-noise ratio, and different underlying A; distributions including

standard normal. In general, the “NP-R” predictor is the overall best for density forecasts
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Figure 8: fo vs II(f | y1:n,0.7) : Baseline Model
(a) Skewed
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except when the true A; comes from a degenerate distribution or a normal distribution. In the
latter case, the parsimonious “Param” prior coincides with the underlying \; distribution and
is not surprisingly but only marginally better than the “NP-R” predictor. Roughly speaking,
the superiority of the “NP-R” predictor is more prominent when the time series for a specific
“firm” ¢ is not informative enough to reveal its “skill” but the whole panel can recover the
skill distribution and hence “firm” ¢’s “skill uncertainty”. That is, “NP-R” works the best
when N is not too small, T is not too long, o2 is not too large, and the \; distribution
is relatively non-Gaussian. For instance, as the cross-sectional dimension N increases, the
blue band in Figure 8 gets closer to the true fy and eventually completely overlaps it (see

Figure 19), which resonates the posterior consistency statement.

In terms of estimators, I have also constructed the posterior sampler for more sophisticated
priors, such as the Pitman-Yor process which allows power law tail for clustering behaviors,
as well as DPM with skew normal components which better accommodates asymmetric data
generating process. They provide some improvement in the corresponding situations, but

call for extra computation efforts.
3.6.4 General Model

The general model accounts for three key features: (i) multidimensional individual hetero-
geneity, (ii) cross-sectional heteroskedasticity, and (iii) correlated random coefficients. The

exact specification is characterized in Table 14.

In terms of multidimensional individual heterogeneity, now ); is a 3-by-1 vector, and the

corresponding covariates are composed of the level, time-specific wﬁ)l, and individual-time-

specific wl(?;)_ 1

In terms of correlated random coefficients, I adopt the conditional distribution following
Dunson and Park (2008) and Norets and Pelenis (2014). They regard it as a challenging
problem because such conditional distribution exhibits rapid changes in its shape which

considerably restricts local sample size. The original conditional distribution in their papers
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Table 14: Simulation Setup: General Model

Law of motion Yit = BYit—1 + Nwi -1 + wit, ujg ~ N (O, 012)
Covariates wi—1 = [1, wt(i)l, wgi)_l]’,

where wg)l ~ N (0,1) and wz(i)_l ~ Ga(1,1)
Common parameters 8o =0.8
Initial conditions yio ~ U (0,1)
Correlated random coef. Ailyio ~

e 2o N (yiov, 0.1%00")+(1 — e72¥i0) N (yjyv, 0.2%00),
where v = [1, 2, -1’

Cross-sectional heterosk. 02|y ~ 0.454 (yio + 0.5)% - (IG (51, 40) 4 0.2)

Sample size N =1000, T=6

is one-dimensional, and I expand it to accommodate the three-dimensional A; via a linear
transformation of the original. In Figure 9 panel (a), the left subgraph presents the joint
distribution of A;; and y;0, where \;1 is the coefficient on wﬁ)_l = 1 and can be interpreted
as the heterogeneous intercept. It shows that the shape of the joint distribution is fairly
complex, containing many local peaks and valleys. The right subgraph shows the conditional

distribution of A\;; given y;0 = 0.25, 0.5,0.75. We can see that the conditional distribution

is also irregular and evolves with y;p.

In addition, I also let the cross-sectional heteroskedasticity interact with the initial condi-
tions, and the functional form is modified from Pelenis (2014) case 2. The modification
guarantees the continuity of 0'7;2 distribution, bounds it above zero (see conditions for Propo-
sitions 3.5.10-3.5.12), and ensures that the signal-to-noise ratio is not far from 1. Their joint

and conditional distributions are depicted in Figure 9 panel (b).
The rest of the setup is the same as the baseline scenario in the previous subsection.

Due to cross-sectional heteroskedasticity and correlated random coefficients, the prior struc-
tures become more complicated. Table 15 describes the prior setups of A; and [;, with the
predictor labels being consistent with the definitions in Subsection 3.6.2. Note that I further
add the “Homosk-NP-C” predictor in order to examine whether it is practically relevant to

model heteroskedasticity.
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Figure 9: DGP: General Model
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Table 15: Prior Structures
Predictor A; prior l; prior
Heterosk NP-C MGLR4 MGLR4
Homog Point mass Point mass
Homosk NP-C MGLRx Point mass
Heterosk  Flat Uninformative Uninformative
Param N IG
NP-disc | DP DP
NP-R DPM DPM
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Table 16 assesses the forecasting performance of these predictors. From the best to the
worst, the point forecast ranking is “Heterosk-NP-R”, “Heterosk-Param”, “Heterosk-NP-disc”,
“Heterosk-NP-C”, “Homosk-NP-C”, “Homog”, and “Heterosk-Flat”. The first two constitute
the first tier, the next two can be viewed as the second tier, the next one is the third tier,
and the last two are markedly inferior. It is anticipated that more parsimonious estimators
would outperform “Heterosk-NP-C” in terms of point forecasts, though “Heterosk-NP-C” is

correctly specified while the parsimonious ones are not.

Nevertheless, the focus of this paper is density forecasting, where “Heterosk-NP-C” becomes
the most accurate density predictor. Several lessons can be inferred from a more detailed
comparison among predictors. First, based on the comparison between “Heterosk-NP-C”

and “Homog”/“Homosk-NP-C”| it is important to account for individual effects in both co-

2

efficients \;’s and shock sizes o;’s. Second, comparing “Heterosk-NP-C” with “Heterosk-
Flat”/“Heterosk-Param”, we see that the flexible nonparametric prior plays a significant
role in enhancing density forecasts. Third, the difference between “Heterosk-NP-C” and
“Heterosk-NP-disc” indicates that the discrete prior performs less satisfactorily when the
underlying individual heterogeneity is continuous. Last, “Heterosk-NP-R” is less favorable
than “Heterosk-NP-C”, which necessitates a careful modeling of the correlated random co-

efficient structure.

3.7 Empirical Application: Young Firm Dynamics

3.7.1 Background and Data

To understand how the proposed predictor works in real world analysis, I applied it to
provide dengity forecasts of young firm performance. Studies have documented that young
firm performance is affected by R&D, recession, etc. and that different firms may react
differently to these factors (Akcigit and Kerr, 2010; Robb and Seamans, 2014; Zarutskie
and Yang, 2015). In this empirical application, I examine these channels from a density

forecasting perspective.
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Table 16: Forecast Evaluation: General Model
MSE LPS*N

Oracle 0.70 -1150
Heterosk NP-C 13.68% -74
Homog 89 .28V **x* =503+
Homosk NP-C 20.84%**x  _161***
Heterosk Flat 151.60%***  -515%*x*
Param 11.30%* -139%*x
NP-disc  13.08% -150%**
NP-R 11.25%* -93*

The point forecasts are evaluated by the Mean Square Error (MSE) together with the Diebold and
Mariano (1995) test. The performance of the density forecasts is assessed by the log predictive
score (LPS) and the Amisano and Giacomini (2007) test. For the oracle predictor, the table
reports the exact values of MSE and LPS. For other predictors, the table reports the percentage
deviations from the benchmark MSE and difference with respect to the benchmark LPS. The tests
are conducted with respect to Heterosk-NP-C, with significance levels indicated by *: 10%, **: 5%,
**%: 1%. The entries in bold indicate the best feasible predictor in each column.

To analyze firm dynamics, traditional cross-sectional data are not sufficient whereas panel
data are more suitable as they track the firms over time. In particular, it is desirable to work
with a dataset that contains sufficient information on early firm financing?! and innovation,
and spreads over the recent recession. The restricted-access Kauffman Firm Survey (KFS)
is the ideal candidate for such purpose, as it offers the largest panel of startups (4,928 firms
founded in 2004, nationally representative sample) and longest time span (2004-2011, one

baseline survey and seven follow-up annual surveys), together with detailed information on

young firms. For further description of the survey design, please refer to Robb et al. (2009).32
3.7.2 Model Specification

I consider the general model with multidimensional individual heterogeneity in \; and cross-

2

sectional heteroskedasticity in o;. Following the firm dynamics literature, such as Akcigit

and Kerr (2010) and Zarutskie and Yang (2015), firm performance is measured by employ-

3In the current version of the empirical exercises, firm financing variables (e.g. capital structure) are
not included as regressors because they overly restrict the cross-sectional dimension, but I intend to include
them in future work in which I will explicitly model firm exit and thus allow for a larger cross-section.

32Here I do not impose weights on firms as the purpose of the current study is forecasting individual firm
performance. Further extensions can easily incorporate weights into the estimation procedure.
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ment. Specifically, here y;; is chosen to be the log of employment denoted as logemp,;. 1
adopt the log of employment instead of employment growth rate since the latter significantly
reduces the cross-sectional sample size. It is preferable to work with larger N according to

the theoretical argument.

For the key variables with potential heterogeneous effects (w; 1), I compare the forecasting

performance of the following three setups:33

(1) wit—1 = 1, which specifies the baseline model with A; being the individual-specific inter-

cept.

(ii) wit—1 = [1, rec;—1]'. rec; is an aggregate dummy variable indicating the recent recession.

It is equal to 1 for 2008 and 2009, and is equal to 0 for other periods.

(i) wi -1 = [1, R&Dm,l]'. R&Dj; is given by the ratio of a firm’s R&D employment over
its total employment, considering that R&D employment has more complete observations

compared to other innovation intensity gauges.3*

The panel used for estimation spans 2004 to 2010 with time-series dimension 7' = 6.*> The
data for 2011 is reserved for pseudo out-of-sample forecast evaluation. Sample selection is

performed as follows:

(i) For any (¢,t) combination where R&D employment is greater than the total employment,
there is an incompatibility issue, so I set R&D;; = NA, which only affects 0.68% of the

observations.

(i) I only keep firms with long enough observations according to Assumption 3.5.7, which

ensures identification in unbalanced panels. This results in cross-sectional dimension N =

331 do not jointly incorporate recession and R&D because such specification largely restricts the cross-
sectional sample size.

341 have also explored other measures of innovation activities (e.g. a binary variable on whether the firm
spends any money on R&D, numbers of intellectual properties—patents, copyrights, or trademarks—owned
or licensed by the firm). The estimated AR(1) coefficients and relative rankings of density forecasts are
generally robust across measures.

35Note that the estimation panel starts from period 0 (i.e. 2004) and ends at period T (i.e. 2010) with
T + 1 =7 periods in total.
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Table 17: Descriptive Statistics for Observable

10% mean med 90% std skew kurt
logemp 041 144 134 263 086 0.82 3.58
R&D 0.05 0.22 017 049 0.18 1.21 4.25
Figure 10: Histograms for Observables
800 logEmp 2000 R&D
700 1800
1600
600
1400
ey 1200
400 1000
300 800
600
200
400
100 200
0 0
5 6 0 0.2 0.4 0.6 0.8 1

859 for the baseline specification, N = 794 with recession, and N = 677 with R&D.

(iii) In order to compare forecasting performance across different setups, the sample is further

restricted so that all three setups share exactly the same set of firms.

After all these data cleaning steps, we are left with N = 654 firms. The proportion of
missing values are (#missing obs) / (NT) = 6.27% . The descriptive statistics for logemp;;
and R&D;; are summarized in Table 17, and the corresponding histograms are plotted in

Figure 10, where both distributions are right skewed and may have more than one peak.
3.7.3 Results

The alternative priors are similar to those in the Monte Carlo simulation except for one
additional prior, “Heterosk-NP-C/R”, which assumes that A; is correlated with y;o while a?
is not, by imposing an MGLRy prior on A\; and a DPM prior on [; = log (012 — g2). It is
possible to craft other priors according to the specific heterogeneity structure of the empirical

problem at hand. For example, let A\;; correlate with y;0 while setting A;2 independent of ;0.
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Table 18: Common Parameter 3

Baseline Recession R&D
mean std | mean std | mean std

Heterosk NP-C/R | 048 0.01 | 046 0.02 | 0.52 0.01

Homog 085 0.02] 0.8 0.02|0.89 0.02
Homosk NP-C 0.37 0.02] 0.88 0.02 051 0.03
Heterosk TFlat 0.19 0.02| 0.25 0.00 | 0.50 0.00

Param 048 0.03] 026 0.03 |0.56 0.03
NP-disc | 0.55 0.02 | 0.79 0.02 | 0.84 0.04
NP-R 047 0.03| 030 0.03|0.74 0.04
NP-C 0.38 0.02| 040 0.06 | 0.53  0.01

I will leave this to future exploration. The conditioning set is chosen to be standardized ;.
The standardization ensures numerical stability in practice, as the conditioning variables

enter exponentially into the covariance function for the Gaussian process.

Table 18 characterizes the posterior estimates of the common parameter 5. In most of
the cases except for “Homog” and “NP-disc”, the posterior means are around 0.4 ~ 0.5,
which suggests that the young firm performance exhibits some degree of persistency, but not
remarkably strong, which is reasonable as young firms generally experience more uncertainty.
For “Homog” and “NP-disc”, their posterior means of 8 are much larger. This may arise from
the fact that homogeneous or discrete \; structure is not able to capture all individual effects,
so these estimators may attribute the remaining individual effects to persistence and thus
overestimate 3. In all scenarios, the posterior standard deviations are relatively small, which

indicates that the posterior distributions are very tight.

Table 19 compares the forecasting performance of the predictors across different model
setups. The “Heterosk-NP-C/R” predictor is chosen to be the benchmark for all comparisons.
For the benchmark predictor, the table reports the exact values of MSE and LPS (multiplied
by the cross-sectional dimension V). For other predictors, the table reports the percentage

deviations from the benchmark MSE and difference with respect to the benchmark LPS*N.

For density forecasts measured by LPS, the overall best is the “Heterosk-NP-C/R” predictor
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in the R&D setup. Comparing setups, the one with recession yields the worst density
forecasts (and point forecasts as well), so the recession dummy does not contribute much to

forecasting and may even incur overfitting.

Comparing across predictors for the baseline and R&D setups, the main message is similar

to the Monte Carlo simulation of the general model in Subsection 3.6.4. In summary, it

is crucial to account for individual effects in both coefficients \;’s and shock sizes a?’s
through a flexible nonparametric prior that acknowledges continuity and correlated random
effects/coefficients when the underlying individual heterogeneity is likely to possess these
features. Note that now both “NP-R” and “NP-C” are inferior to “NP-C/R” where the

distribution of A\; depends on the initial conditions but the distribution of a? does not.38

In terms of point forecasts, most of the estimators are comparable according to MSE, with
only “Flat” performing poorly in all three setups. Intuitively, shrinkage in general leads
to better forecasting performance, especially for point forecasts, whereas the “Flat” prior
does not introduce any shrinkage to individual effects ()\i, UZ-Q). Conditional on the common
parameter (3, the “Flat” estimator of (/\i,af) is a Bayesian analog of individual-specific
MLE/OLS that utilizes only the individual-specific observations, which is inadmissible under
fixed T' (Robbins, 1956; James and Stein, 1961; Efron, 2012).

Figure 11 provides the histograms of the probability integral transformation (PIT) in the
R&D setup. While LPS characterizes the relative ranks of predictors, PIT supplements LPS
and can be viewed as an absolute evaluation on how good the density forecasts coincide
with the true (unobserved) conditional forecasting distributions with respect to the current
information set. In this sense, under the null hypothesis that the density forecasts coincide
with the truth, the probability integral transforms are i.i.d. U (0,1) and the histogram is
close to a flat line. For details of PIT, please refer to Diebold et al. (1998). In each

subgraph, the two red lines indicate the confidence interval. We can see that, in “NP-C/R”,

36This result cannot be directly compared to the Gibrat’s law literature (Lee et al., 1998; Santarelli et al.,
2006), as the dependent variable here is the log of employment instead of employment growth.
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Table 19: Forecast Evaluation: Young Firm Dynamics

Baseline Recession R&D

MSE LPS*N MSE LPS*N MSE LPS*N

Heterosk NP-C/R | 0.20 -230 [ 023  -272 | 0.20 -228
Homog 10%** -8 ok 2% iy Rt 8%* N
Homosk NP-C T7%** -66*** 2% Ve 9% -H2xkx
Heterosk Flat 229 ¥ 4%k | A4YpRxx 70T FRE | 102% k% 309%**
Param 4%* -60*** | 35%***x  _135%*x 7% -5k
NP-disc 1% 9% | 7% -1 2% -2k
NP-R 1% -b* 28 Ypx** -3 *x* 3% S16%**

NP-C 3%* -6* 3% -HEx 0.1% -H¥*

The point forecasts are evaluated by the Mean Square Error (MSE) together with the Diebold and
Mariano (1995) test. The performance of the density forecasts is assessed by the log predictive
score (LPS) and the Amisano and Giacomini (2007) test. For the benchmark predictor
Heterosk-NP-C /R, the table reports the exact values of MSE and LPS. For other predictors, the
table reports the percentage deviations from the benchmark MSE and difference with respect to
the benchmark LPS. The tests are conducted with respect to the benchmark, with significance
levels indicated by *: 10%, **: 5%, ***. 1%. The entries in bold indicate the best predictor in
each column.

“NP-C” and “Flat”, the histogram bars are mostly within the confidence band, while other
predictors yield apparent inverse-U shapes. The reason might be that the other predictors
do not take correlated random coefficients into account but instead attributes the subtlety
of correlated random coefficients to the estimated variance, which leads to more diffused

predictive distributions.

Figure 12 shows the predictive distributions of 10 randomly selected firms in the R&D setup.
In terms of the “Homog” predictor, all predictive distributions share the same Gaussian
shape paralleling with each other. On the contrary, in terms of the “NP-C/R” predictor, it
is clear that the predictive distributions are fairly different in the center location, variance,
and skewness. Figure 13 further aggregates the predictive distributions over sectors based
on two-digit NAICS codes (Table 20). It plots the predictive distributions of the log of
the average employment within each sector. Comparing “Homog” and “NP-C/R” across
sectors, we can see the following several patterns. First, “NP-C/R” predictive distributions
tend to be narrower and have longer right tails, whereas “Homog” ones are distributed in

the standard bell shape. Second, there are substantial heterogeneities in density forecasts
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Figure 11: PIT
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Figure 12: Predictive Distributions:
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across sectors. For sectors with relatively large average employment, e.g. “construction”
(sector 23), “Homog” pushes the forecasts down, hence systematically underpredicts their
future employment, while “NP-C/R” respects this source of heterogeneity and significantly
lessens the underprediction problem. On the other hand, for sectors with relatively small
average employment, e.g. “Retail Trade” (sector 44), “Homog” introduces an upward bias

into the forecasts, while “NP-C/R” reduces such bias by flexibly estimating the underlying

distribution of firm-specific heterogeneities.
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Figure 13: Predictive Distributions: Aggregated by Sectors
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Subgraph titles are two-digit NAICS codes. Only sectors with more than 10 firms are shown.
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Table 20: Two-digit NAICS Codes

Code Sector

11 Agriculture, Forestry, Fishing and Hunting

21 Mining, Quarrying, and Oil and Gas Extraction
22 Utilities

23 Construction

31-33 Manufacturing

42 Wholesale Trade

44-45 Retail Trade

48-49 Transportation and Warehousing

ol Information

52 Finance and Insurance

93 Real Estate and Rental and Leasing

54 Professional, Scientific, and Technical Services

56 Administrative and Support and Waste Management and Remediation Services
61 Educational Services

62 Health Care and Social Assistance

71 Arts, Entertainment, and Recreation

72 Accommodation and Food Services

81 Other Services (except Public Administration)

The latent heterogeneity structure is presented in Figure 14, which plots the joint distribu-
tions of the estimated individual effects and the conditional variable in the R&D setup. We
can see that A jevel, AirD, and standardized y;o are positively correlated with each other,
which roughly indicates that larger firms respond more positively to R&D activities within
the KFS young firm sample. In all the three subgraphs, the pairwise relationships among
Ailevel, Ai,RD, and standardized y;o are nonlinear and exhibit multiple components, which

reassures the utilization of nonparametric prior with correlated random coefficients.

3.8 Concluding Remarks

This paper proposes a semiparametric Bayesian predictor which performs well in density
forecasts of individuals in a panel data setup. Monte Carlo simulations and an empirical
application to young firms dynamics show that the keys for better density forecasts are, in
order of importance, nonparametric Bayesian prior, cross-sectional heteroskedasticity, and

correlated random coeflicients.
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Figure 14: Joint Distributions of \; and Condition Variable
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Moving forward, I plan to extend my research in the following several directions: Theoret-
ically, I will continue the Bayesian asymptotic discussion with strong posterior consistency
and rates of convergence. Methodologically, I will explore some variations of the current
setup. First, some empirical studies may include a large number of covariates with poten-
tial heterogeneous effects (i.e. more variables included in w;;—1), so it is both theoretically
and empirically desirable to investigate a variable selection scheme in a high-dimensional
nonparametric Bayesian framework. Chung and Dunson (2012) and Liverani et al. (2015)
employ variable selection via binary switches, which may be adaptable to the panel data
setting. Another possible direction is to construct a Bayesian-Lasso-type estimator coher-
ent with the current nonparametric Bayesian implementation. Second, I will consider panel
VAR (Canova and Ciccarelli, 2013), a useful tool to incorporate several variables for each
of the individuals and to jointly model the evolution of these variables, allowing me to take
more information into account for forecasting purposes and offer richer insights into the
latent heterogeneity structure. Meanwhile, it is also interesting to incorporate extra cross-
variable restrictions and implement the Bayesian GMM method as proposed in Shin (2014).
Third, T will experiment with nonlinear panel data models, such as the Tobit model that
helps accommodate firms’ endogenous exit choice. Such extension would be numerically
feasible, but requires further theoretical work. A natural next step would be extending the

theoretical discussion to the family of “generalized linear models”.
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APPENDIX A

Point Forecasts and Bank Stress Tests

A.1 Theoretical Derivations and Proofs

A.1.1 Proofs for Section 2.2

Lemma A.1.1. Suppose that T > ky, + 1 > 2. Suppose that W is a T X ky, matriz with
rank(W) = ky,. Let ¥ be a T x T matriz of rank T'. Let S = XW. Then, rank(MggsB) = T,

where Mggs and B are defined in the proof of Theorem 2.2.3.

Proof of Lemma A.1.1. Notice that the matrix B is a T2 x T selection matrix that has
one at positions (1,1), (T + 2,2), (2T + 3,3),...,(T?,T) and zeros at the other positions.
Notice that since ¥ is full rank, rank(S) = rank(XW) = rank(W) = ky,. If rank(S) = ky,
then rank(S ® S) = k2. Since the rank of the projection matrix is the same as its trace, we

have rank(M5®S) = tT(MS®S) =72 — k‘?u

By the spectral decomposition, we can decompose Mggs = FAF', where F is a T? x T?
orthogonal matrix and A is a T2 x T? diagonal matrix whose first 72 — k2 elements are one
and the rest are zero. Since F is full rank, rank(MggsB) = rank(FAF'B) = rank(AF'B).
Notice that F'B is a T? x T matrix that collects the columns of F’ in the positions of
1,T +2,2T + 3,...,T%. Since the columns of F’ are linearly independent, rank(F'B) = T.
Notice that AF'B is a submatrix of F” B that selects the first 7% — k2, rows. Since T—1 > ky,
and T > 2 implies that T? — k2 > 2T —1 > T, the (T? — k2) x T submatrix of F'B, AF'B,
has rank 7. I

The matrix E[(W]

it

X{t,Z{t)’(M/i’t,Xét,th)] has full rank for ¢t = 1,...,7. The matrices

ZST:tH Wis—1W/,_, are invertible with probability one for all ¢t = 1,...,T — k,, and ¢ =
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1,...,N.
Proof of Theorem 2.2.3. (i) The parameters « and p are identifiable by Assumption 2.2.2.

(ii) Let Y;, Wi, X;, Z; and U; denote the matrices vectors that stack Yy, W/,_, X/,_,, Z,_.

(2

and Uy, respectively, for t = 1,...,7T. Define

21-1/2(7) = diag(o1(hi,m), .., 07(hi, ¥7)),

Si(v) = S7VPWi,  Mi(y) =1 — Si(SiS) 7S,

)

Using the same manipulation as in the main text, we obtain the condition

M;(3) (S AT s P (3) - D ML(F) = 0. (A1)

7 7

for each h;. Taking expectations with respect to H; and using Assumption 2.2.2(ii), we
deduce that
e 1/2, - —1/2,~ -
E[M;(3)(£7 @)= () - 1) Mi(7)] = o. (A.1.2)

(2 7

if and only if 4 = .

(iii) The subsequent argument is similar to the proof of Theorem 2 in Arellano and Bon-
homme (2012a). Conditional on p, o, and v we can remove the effect of X; and Z; from Y;
and define

Y, = 27 () (Yi = Xip — Zia) = Si(7)Ai + Vi (A.1.3)

To simplify the notation, we will omit the 7 subscripts and the v argument in the remainder

of the proof.

Because S(7), A and V are independent conditional on H (and ), we have

In Uy (7]h) = In Wy (S'7|h) + In Uy (1) (A.1.4)
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Taking the second derivative with respect to 7 leads to

0? 0* , 0?
E IV (rlh) = 5o ——— (InU,(S'7|h)) + 5 s Wy () (A.1.5)
= S o In W, (S'7|h) o In Wy (7)
- 7 \agge T T aror VT

Using the assumption that the V;s are independent over ¢, we can write

In Uy (7 Z In Uy, (1),

where Wy, is the characteristic function of V;. Then,

o : o 92
vec <87'87" In \I’V(T)> = vec (dlag ((%12 In Wy, (11), ...\ ﬁ In Wy, (TT))> (A.1.6)

92 92 '
= B (371 In Wy, (11), .. 87’% In \IJVT(TT))

for a suitably chosen matrix B. Let

Mggs =1 —8(5'S)"1S' @ S(S'S)"'S".

Then,
2 2 /
Mggsvec(In Wy (7|h)) = MsgsB <5)2 In Wy, (11), ..., 52 In Wy, (TT)) . (A.1.7)
71 T

Because 3(7) is of full rank 7" (Assumption 2.2.2(iii)) and W is of full rank of k,, (Assumption
2.2.2(iv)), S(v) has full rank k,,. Notice that T' > k,, + 1. Then, according to Lemma A.1.1,
MsgsB is also full rank. In turn, from (A.l.?) we can identify In Wy, () uniquely for
t=1,...,T. Also using the restrictions that 5> ln Uy, (0) =0 (E(Vi¢) = 0) and In ¥y, (0) = 0,

we can deduce that the characteristic function of V; is uniquely identified.

Next, we show how to identify In Wy (7|h). Because In Wy (7|h) and In Wy (7) are identified,
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from (A.1.4) we obtain
In Uy (7h) —In Wy (r) = In¥y(S'7|h). (A.1.8)

Taking second derivatives, we obtain

2 2

6 - 6 / !
e <1n\1/?(f|h) - ;wywm) =5 (8585, In,(S T\h)> s (A.1.9)

Because S is of full rank, we can identify

2 2

o T
o7 <ln Ve (1|h) — ;ln\lf‘/(n)>] S(8'S)"L.

InW,(S'7|h) = (8'S)~1s’

393
(A.1.10)
The mean E(A|h) can be identified as follows. Note that
A= (9'9)718Y = A+ (5'S)"LSV. (A.1.11)
Taking expectations yields
E(\R) = E[A|A], (A.1.12)

because E[(S'S)1S'V|h] = (5'S)"LS’E[V|h] = 0. Once the mean has been determined, we
can identify In ¥ (£|h) using 8% In ¥, (0|h) = E(Alh) and In ¥, (0|h) =0. W

Discussion of Assumption 2.2.2(i). We discuss an example of how to identify a and p

based on moment conditions in the general model (2.1.1). Under the model (2.1.1) we can
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remove the effect of A\; with the following within projections:

T T -1
Yi = Yu-— ( R ,-;_1> (Z WMW{S_1> Wit—1

s=t+1 s=t+1
T T -1
G = Xi1— ( > Xis_lwgs_1> (Z Wis_lwz-;_1> Wit—1
s=t+1 s=t+1
T T -1
w1 = Zit1— ( Z Zis—1W{S1> (Z Wis—1W7;/51> Wit—1
s=t+1 s=t+1
fort=1,...,T — k. Because E[Uit|Yil:t_1, H;, \;] =0, we obtain the moment condition
Xit
E\|\Vi-[p &]| ' [ xt, . 2, ]| =0 (A.1.13)
Zit 1

for s > 0. To simplify the exposition, suppose that we choose [Xj;—1, Z;—1] as instrumental
variables. In this case, for the moment conditions to be only satisfied only at p = p and
& = « it is necessary that the matrix

XiaXay X542

(A.1.14)
Z;kt—le(t—l Z;;f—lzft{t—l
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is full rank. Consider, for instance, the upper-left element. We can write

E[X, 1 X ]

- . -1
=E | | Xi—1 — ( Z Xis—1Wis_ 1) (Z Wislwi,5_1> Wit—1 | Xip4

s=t+1 s=t+1

[ T -1
=k B Xit—1 = < Z Kis— 1W ) (Z Wisa W, 15— 1) Wis—1 Xz{t—l Wz't:T_l

s=t+1 s=t+1

T
1 T
—E[X; 1 X} 4] — T_h< > E[E[Xis_lxit_lng-T 1

s=t+1
- -1
X i/s—l <T_h S;_I Wis— 1Wz,s 1) Wit1:| >
T
1
—E[Xy_1 X} 4] — 7 > kE[Xi1 X}y =1+ 11, say.
s=t+1

The fourth equality is based on the assumption that the W;’s are strictly exogenous. The

completion of the identification argument requires a moment bound for

ks = E

-1
18— ]_<T h Z WZS 1 18— 1) W’Lt—l]?

s=t+1

a full rank condition on E[X;;—1 X/, ], and a condition that ensures that term /7 does not
induce a rank deficiency in term I. Similar conditions need to be imposed on the terms that

appear in the other submatrices of (A.1.14).
A.1.2 Proofs for Section 2.5

Sufficient Conditions for Assumption 2.5.3(iii)

The high-level condition in Assumption 2.5.3(iii) is satisfied if the following two conditions

hold:
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(a) There exists a sequence Dy — oo such that ByDy = o(1) and

D2
exp [ ——X ) =0(1) inf w(y|A) | .
2 yeVFN[~Cly,ON]AEAT

(b) There exists a shrinking neighborhood of y and a function 6(y, A) such that for any
la| < kny — 0,

[m(yIA) =7y + alA)] < 6(y, Alal,

where

sup

The claim can be verified as follows. For |y| < Y[ N[-C%,Cn] and A € A™, by the change-

of-variable with y* = %, we have

[ () (B - [ (223

Split the integration into two, one over |y*| < Dy and other one over |y*| > Dy. By

Assumption 2.5.3(i) and (iii)-(a), uniformly in |y*| < Dy and other one over |y*| > Dy,

o(y™) dy*| < -
ly*[> D m(y[A) infyeyra—cy.onlaenr T(Y[A)
M exp (—%)
<
infyeyrni—cr cnlaear T(YIA)
= o(1)

Also, notice that since |y*| < Dy, |Byy*| < ByDy = o(1). Then, by Assumption (iii)-(b),

o (T +Byy'[A) —7(yA) .
‘/MDN o) (FEERIERTER

d(y, A)
m(y|\)

IN

/ o(y* )y dy” BN‘
Mo(1) = o(1)

uniformly in y € YT N[—CY%,Cn] and A € A™.
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An Example of a 7(y|\) That Satisfies Assumption 2.5.3

Consider m(y|A) = ¢(y — A), where ¢(z) = exp(—i2?)/v2r. First, since 0 < ¢(z) < 1,
Assumption 2.5.3(i) is satisfied. To verify Assumption 2.5.3(ii), notice that because Yjo|\; ~
N()\;, 1), we have for C' > 0,

Pﬂ%zcmx—x}s%p(fC;Ay).

In this case, m(C, \) = (C' — \)?/2. Choose K > max{1, \/2(2 + ¢)} with any € > 0. Then,

liminf inf (M(K(VInN+Cn),A\)—(2+¢€)InN)>0,

N—c0 [A<Cx

as required for Assumption 2.5.3(ii), regardless of the specific rate of Cy. To verify Assump-

tion 2.5.3(iii) we can use the closed-form expression for the convolution:

/’1¢<g_y)wwumg= Y
50 Uns e \ i

Note that we can write

y—A CBMy—MF>
| = “Mexp | —2 727 ).
\ime) Ve G
Thus,
X w) — 1 < ex B C/ C 2 1= 1
ye)’fﬁ[—g};l,)cN],AeAw © p( 2(1+ B%) < exp ((Bn(Cy + Cw))) o(1),

according to Assumption 2.5.2.
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Main Theorem

Proof of Theorem 2.5.5. The goal is to prove that for a given ¢y > 0

~

Ry (YT—H) - R(J)\If)t

limsup 575 , <0, (A.1.15)
N—o0 NE;V i [(Az _ Eg\jyl [)\Z])2] + Neo
where
= N y. ~ 2
Ry(¥f,) = NE; ™ [(A + pYir = Vi) ] + No®

2
Y Ai
R® = NEY [(Ai—Eey[}\iD } + No2.

Here we used the fact that there is cross-sectional independence and symmetry in terms of

1. The statement is equivalent to

~ 2
NEgN’/\i |:()‘z + pYir — YiT+1> }
lim sup

Novoo  NEY (A — Epi[Ai))2] + Neo

<1. (A.1.16)

Forecast Error Decomposition. We decompose the forecast error as follows: Using the
previously developed notation, we expand the prediction error due to parameter estimation

as follows:

Yirs1 — A — pYir
= [#(u3). 6%/ T + BR, 5 (Milp), Vi)

+u(Xi(p), o /T + Bi, p«(Xi(p), Yio)) — A

% (a0, 0/ + B (i(0). Vi)

+(p—p)Yi

= Ay + Ay + As;, say.
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We define the density p.(Ai(p), Yio) as the expected value of the kernel density estimator:
~ (=) r A(—5) /%
P+( N, yio) = Eé’yz 5 (Ai, yio)).- (A.1.17)
It can be calculated as follows. Taking expectations with respect to (j\j, yj,0) for j # i yields

(
Eg}yl [ (= ) A1721/10]

] 1 Yio — Yj0 “ .
Z//BN ( N ) BN¢< BN >p( ]73/30) 7 aY;50

J#
] 1 Yio — Yj0 “ .
- & e e i, yi0)dNdyso.
//BN ( N )BN(b( BN )P( jayJO) jaY50

The second equality follows from the symmetry with respect to j and the fact that we

integrate out (5\]-, yjo). We now substitute in
p(Ajs yj0) = /p(/\j\Aj)w()\j,ij)dAj,
and change the order of integration. This leads to:

(=D A(—i
EY. (3 (i, yio)]

)\ _)\ 3 3 1 Yi0o — Y50
- // /BN ( By >P(A1|Aj)d&‘] By Y (BNJ> 7(A\j, yj0)dA;dy;o

A L ¢<%0—%0

1
¢
//\/02/T+B]2V \/02/T+B]2V Bn
1 M= RS yo-%o) g } NN
/mqb \/m [/BNgb( By T(yjolAj)dyjo | m(A;)dA;-

) T(Aj, yjo)dNdyjo
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Now re-label A\; and A; and y;o as ;0 to obtain:

D« (i, vio)

X — A i0 — Ui _ N
[/ i(;5 <y 0 yo) 7r(y10|)\l)dylo] F()\l)d)\l

1
B / / AWETIN A B
0?/T + By 02/T + By N N
Risk Decomposition. Write
N ~ 2 N
NE) |:()\z + pYir — Yz’T+1) } = NE)" (A + Ag; + As)?].

We deduce from the C). inequality that the statement of the theorem follows if we can show

that for the g > 0 given in Definition 2.3.2:

Q)  NE)[4%] = o(N®0)

N
NEy i AZ'
(i)  limsup T 0 )\_[ 5 <1
N—oo NIEB i [()\l — Eejyi [)\Z])z] + NN¢o

(i)  NEY"[4%] = o(N0).

The required bounds are provided in Lemmas A.1.2 (term Ay;), A.1.3 (term Ay;), A.1.4
(term As;). B

Three Important Lemmas

Truncations. The remainder of the proof involves a number of truncations that we will
apply when analyzing the risk terms. For now, Ly = o(IN¢) will be a sequence such that

Ly — o0 as N — co. We will specify the rate at which Ly diverges below.

1. Define the truncated region 7; = {|62 — 0%| < 1/Lx}. By Chebyshev’s inequality and

Assumption 2.5.4, we can bound
NP(T¥) = NP{|6% — 0?| > 1/Ln} < LAE[N (62 — 6%)?] = o(N°),
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provided that L% = o(N°¢) for any e.
2. Define the truncated region T3 = {|p — p| < 1/L%}. By Chebyshev’s inequality and

Assumption 2.5.4, we can bound
NP(T5) = NP{|p — pl > 1/L3} < LYE [N(5 - p)?] = o(N°),

provided that L}, = o(N¢) for any e.
3. Let U;—1(p) = % Zthz Uit—1(p) and Uy (p) = Ug + pUst_1 + - - - + p'~1U;1. Define the
truncated region T3 = {maxlgiSN Ui—1(p)] < MgLN} for some constant M;z. Notice

that U; —1(p) ~ #idN (0, 012—]) with 0 < 0[27 < 00. Thus, we have

NB(T§) = NP{max [0-1(p) = L}

< NZP{\U 1)l = L}

= NQP{IUi,—l(P)I > Ly}

IN

L2
2 exp ——+21nN (A.1.18)
205

4. Define the truncated region 74 = {maxj<;<n |Yio| < Ly}. Then,

NPT7S = NP Yol > L
721 {12112%}5\[| 10|_ N}

N
N> P{|Yio| > Ln}

<
i=1
Ly
= NQ/ [/ m(yo|N) dyo+/ 7(yo|N) dyo} TA(A)dA
Ly
< 237 [Lexplom (Ly, V] w3
< ZCN< sup exp[—m (Ly,\) —|—2lnN]> , (A.1.19)
IMN<Cn

where the last three lines hold by Assumptions 2.5.1 and 2.5.3.

5. Let i1 = Ci(p)Yio + Ca(p)i + Ui—1(p), where Ci(p) = %31 p'™1, Ca(p) =
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+ 23;2(1 + -+ p=2). According to Assumption 2.5.1 the support of )\; is contained
in [—-Cy,Cn]. Moreover, because T is finite, |C1(p)| < 1 and |Ca(p)| < T. Then, in
the region 73N Ty:

Y. < ) . i
max Vil < [Ci(p)] max Al +[Ca(p)] max [Yiol + max |Ui-1(p)l

IA

1.2
Cn + TLy + exp (-fg + 21nN>
205

which leads to

_ _ _ L2
max |Y;_1—Y; 1] <2 max |Y; 1] <2 (C’N+TLN+exp (—]\2/4-2111]\7) )
’ ’ 1<i<N ' 2

1<i,j<N i
(A.1.20)

6. For the region 75 N T3 N Ty we obtain the bound

2
2 <CN +TLy + exp <—2LU]\2’ +2lnN>)
Y1) < o

H— oY 1 —
1£?§N|(p p)(Yj -1 Z

(A.1.21)

Recall that Cy = o(IN€) is the truncation for the support of the prior of A (Assumption 2.5.1).

We will choose

Ly = o(N°) such that Ly = max {O‘U\/Q(Q +e)lnN,K(VInN + Cy), Bi’ C’N} ,
N
(A.1.22)

so that we can deduce

NPTE = o(N9), NPTE =o(N), NPT =o(N9), NPTF =o(N°)

(A.1.20) = o(N€), (A.1.21) = o(N°). (A.1.23)
for any e.

Term Ali
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Lemma A.1.2. Suppose the assumptions in Theorem 2.5.5 hold. Then,

Ve [( [0 0/7 + B3 500003 i)

2
u(ixp),o?/ﬂB%V,p*<x<p>7m>)) } — o(N%),

Proof of Lemma A.1.2. We begin with the following bound:

| A1

_ ' [1(A(p), 6%/T + B 5 (0i(), Yio))| "

— u(Ni(p), 0*/T + B3, p«(\i(p), Yio)) ’

IN

‘ [u(&i@), 6°/T + B, 5 (Ai(p), Yz-o))} e ’u(jxi(p), o*/T + B3, p+(Ailp), 1@0))‘

2CN. (A.1.24)

IN

The last equality follows from the fact that the second term can be interpreted as a posterior

mean under the likelihood function
s (Nis ol M)

1 Ai = A 1 i — Yi _ _
= ¢ [/ Bo® (yOByO> p(yiol)\i)dym] :
\/02/T + B3 \\/o?/T + B% N N

and the prior distribution 7()). Because, according to Assumption 2.5.1, the prior has

support on the interval [-Cxy, Cp], we can deduce that the posterior mean has to be

bounded by Cy as well. Then,

NEY'[43] < NEY'[ALL(T)UT)UT)(TL)] + CYN (PTE + PT + PTS + PTY)

< NEYV[ALI(TOI(T)I(T3)I(T2)] + o(N©). (A.1.25)

The bound for the second term follows from the fact that (A.1.23) and (A.1.24) hold for any

€ > 0, including €g. In the remainder of the proof we will construct a bound for the first
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term on the right-hand side of (A.1.25). We proceed in two steps.

Step 1. We introduce two additional trunctation regions, Ts; and 7Tg;, which are defined as

follows:

Tsi = {(S\z‘,Yio) | —Cy < X <Cl, —Cy <Y < Ci}

. . N€
Tei = {()\i,Yzo) (N, Yio) > N }7

where C'\, > C will be defined in (A.1.28) below and it is assumed that 0 < €’ < €. In the
first truncation region both 5\1 and Yjg are bounded by Cp. In the second truncation region

the density p(j\i, Yio) is not “high.” We will show that

NE) [ARL(Ts)U(TS)] < o(N®0) (A.1.26)

NEY ALN(TE)] < o(N©). (A.1.27)

~ ~

Step 1.1. First, we consider the case where (\;, yi0) are bounded and the density p(\;, yio0)
is “low” in (A.1.26). Using the bound for |A;;| in (A.1.24) we obtain:

NEY™ [AL1(T5)1(T5)]]

IN

ANC{P(Tsi N TE)

/

B ) Cy Cy . Ne€
= 4NCy [ I p(Ni,yio) < P(Ais Yio)d(Ni, Yio)
i=—CN Jyio=—Cl N

4N012V /C’N /CN Ne€
Xi==Cly Jyi=—Cly N

4C%(Ch)?N¢

IN

) dyiod\;

IN

= o(N®).

The last equality holds by the definition of C'y found in (A.1.28) below. This establishes
(A.1.26).
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~

Step 1.2. Next, we consider the case where (\;, yi0) exceed the C) bound and the density

p(>\i, yio) 18 “high:”

NE)" [AZU(TS)]

< 4NC]2V/T P(Ais yio)d(Ai, yio)

5

— 2 1 j‘i_/\iﬂ.m..ﬁ.
_ 4N0N/7_56 [A U/ﬁgb(G/ﬁ) (0l\) (A@)d)w] A, yio)

2 1 5\1 —Ai (v . N o
INCy /A [/ﬁi|>cgv a/\/T¢ ( cr/ﬁ) (ol Ai)d(Xi, gio)

1 5\1 -\ DA ui) (O ‘
! /yi0|>05\, 0/\/T(z5 < U/\/T) 7 (yio| Ai)d (N, yzo):| (\i)dN

1 N—N -
= 4NC3 CTR) g | mOg)dN
N /|)\i|<CN /Xi|>c;V o*/\/TQS ( J/ﬁ) ] ()

+4NC% / / 7 (yio| \i)dyio
Ail<Cn |/ yiol>Chy

= Bi;+ By, say.

IN

The second equality is obtained by integrating out y;0 and i, recognizing that the integrant
is a properly scaled probability density function that integrates to one. We are able to
restrict the range of integration for \; to the set |\;| < C'y because, by assumption, that is

the support of the prior density m(\)
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We will first analyze term B;. Note that

1 AT
/|&i>cgv oJVT" ( 0/\/T> i

VT(Cltr)o 0 o
_ / (i) + / (M)
—00 \/T(Cfv_)\z‘)/a
VTCh-NDfe oo o
</ oG+ [ S
. VE(Cly—INil)fo
<

2 / ()i,
VT(Clh—|Xi|) /o

_ LVTCy ~IND/o)
VG- ND/e

where we used the inequality [~ ¢(A\)dA < ¢(x)/x. Assuming that N is sufficiently large
such that

VT(C — [Ni)/o > 1

for |A\;| < Cn, we obtain

B; < 8NC% /

T
exp <—2(C§V - |)\Z|)2) m(N\i)dN;.
[Ai|<Cn 20

We can deduce that By = o(N°€) for any € > 0 (including €p) if
T
inf  —(Ch — |X\[)? > InN,
g 552 (Cn = [Ail)" > 1n
which follows if we choose

Ch = (1+k) (\/mN + CN) . k> max{0, \/202/T — 1}. (A.1.28)

This is the rate that appears in Assumption 2.5.2.
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For By, notice that under Assumption 2.5.3(ii) we obtain

By =

IA

< 8C%

IN

o(N¢)

‘)\i|<CN \yi0|>C§\,

ANC% / 2exp (—m(Cly, Ai))m(Ni)dA;
|Ai|<Cn

sup exp (—m(Cy, ;) +1nN) / T
[Ai|<Cn IXil<Cn

for any e. This leads to the desired bound in (A.1.27).

Step 2. It remains to be shown that
NEY™ [A21(T)(T)I(T3)L(Ta)(T5:)1(Tei)] < o(N0).

We introduce the following notation:

Di
Dxi

p(Ai(p), Yio)
p«(Xi(p), Yio)
1

i o) Yo

(A.1.29)

(A.1.30)

Using the fact that ]u(;\i(p), Yi0,02%/T + B?V,p*(jxi(p), Yi0))| < Cy and the triangle inequal-
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ity, we obtain

| Axil
:‘ [u(ii(ﬁ), Yio,6%/T + B3, 59 (\i(p), Yio)ﬂ o
— u(Ni(p), Yio, o /T + B3, p«(Ni(p), Yio))’
<‘u(&i<m,m&z/T+B%V,za<-i><x<ﬁ>,mo>) = 1(Xilp), Yio, 0®/T + By, p(Ai(p); Yio))

a &2 o? dpy; 52 2 dﬁz(il) dpxi
Ai(p) — Nilp) + (T - T) oo + (T +BN> D ’

p;
- 2 2 ~(—1)
R _ o o || dpsi o 9 dp; dpy;
<|p—pl||Y; _ — — —||— — + B t ,
_‘p pH ' 1| * T T DPxi * <T * N) ‘ ﬁg_z) Dxi

=A11; + A1 + Agzi,  say.

Recall that }7i,_1 = %Zle Yit—1. Using the Cauchy-Schwarz inequality, it suffices to show

that

NEY™ [A2,1(TONT)(T3) (T Ts)[(Tes)] < o(N®), j=1,2,3.

First, using a slightly more general argument than the one used in the proof of Lemma A.1.4,

we can show that

NEY" [43;] =B [N(p— p)*Vi—1] = o(N®).

)

Second, in the region T5; we can bound

Xi(p) = Eo [Xi Ai(p), Yio; p+(Mi(p), Yio)] | < Cy + Cn, (A.131)

where Eg[\;|-] is the posterior expectation of A; conditional on (X;(p), Yio) under the prior
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distribution p.(Xi(p), Yio). Using Assumption 2.5.4 we obtain the bound

1 yN

NngN [Afm-]l(%i)] < mﬂie [N(&2 _ 02)2] (Cx + Cn)? = o(N).

Finally, note that

Ly 1) Dxi

- 2

o2 1N (dp™  dp.
A%Si}l(’]'l)§<T+B]2V+) (pz} i)
b;

Thus, the desired result follows if we show

o | (dp " dpa ’
NE; ) " I(72)L(73)1(Ta)L(T5:)1(Tei) | = o(N®) (A.1.32)
P %3

i

To show (A.1.32), we have to control the denominator and consider the following truncation
region:

Tri = {(j\iaYiO)

s ]02} . (A.1.33)

We first analyze (A.1.32) on 77; (Step 2.1) and then on 75 (Step 2.2). We will use the

following decomposition:

dfé_i) _ dpsi _ dﬁg_i) — dpxi _ dpsi < ﬁﬁ‘“ — Dxi )

We also will abbreviate I(7))I(7x) = I(T;Tx).
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Step 2.1. For the region 77; we have

yN
NE)

~(—1) 2
( e ) (TTaTaTsi Toi i)

i

IN

yN
2NE) || =

2
) W(T2T3TaT5iT6iTri)
b; — Dxi + Dxi

( dpy”" — dp.i

~(~i)
+20(N©)NEY" ( 2 R—
ﬁ_l)—p*i+p*z‘

9
) I(T2T3T4T5:T6i T7i)

QBM + 20<N60)B2i7
say. The o(N“) bound follows from (A.1.31). Using the mean-value theorem, we can express

VN(@RT —dp) = VNPT — dp.) + VN (p— p)Ru(p)

i

VNG —pa) = VNG —pa) + VN~ p)Rai(p),

o}
1 ;\j(P) - 5‘Z(P) 3 > 1 Y0 — Yio
B’ ( T By ) Wit =igoo (P52,
Lt (A=A (A=A 5 o L (Y- Y
Ryi(p) = N_1 Z BiNQS ( By ) ( By ) (Yj,—l - }/i,—l)agb <BN> )

and p is located between p and p.

We proceed with the analysis of By. Using the lower bound for f){i*i) over the region T7;, the
C. inequality, and the law of iterated expectations, we obtain
i | 1 (=) (—i
By < SE) [pQngyi (NG - p*i)2ﬂ(717'2757z75ﬂ'6@-7'm}}
*7

il 1 i
+8EY | B [N(p — p)2Re (DT LT TiTsi Toi Tri)]
D WV

*1

= 8JE2” [Ba1i + Bay),
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say.

According to Lemma A.1.7(c) (see Section A.1.2)
Y= (—i) M
Eg i [N(pl - p*z) (73757372177517%27;1)} B2 —5 Pil(T5iT6:)-
This leads to

M
P; Pi i sdyio.

M
EY [Boyi] < =B | L1
2 B]2V 7’510767, p*’L

B2 (7?)1'7-61')] =

*1

According to Lemma A.1.7(e) (see Section A.1.2)

/ PL g3dyso = o(N°).
T5iNTe: p*z

Because 1/B%; = o(N¢) according to Assumption 2.5.2, we can deduce that

EY' [Ba1] < o(N°).

Using the Cauchy-Schwarz Inequality, we obtain

]. 1 1
B €y VEYS N2 — )] B (R (DT Ta To Ta i Tei Toi).

*1

Using the inequality once more leads to

IN

Eg]i [B22i]

VEYY [V2(5 - p)1] \/Es’i [p Y[Ry (DU T TsTaTsi Toi Toi)]

IN

Ey" [p Y[Ry (DU TaTsTaTei Tei )] |

*7

The second inequality follows from Assumption 2.5.4. According to Lemma A.1.7(a) (see
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Section A.1.2)

B [RY (DU T TiTeiToiTos)] < MIAp!I(TsiTer),

where Ly = o(N) was defined in (A.1.22). This leads to the bound

N
<1%) H(Taﬂ?ﬁ)]
Dxi
= ML} \// pidj\idyio
T5iNTes p*z

M, L3 \/ / > dNidyio
T5:NTes \Pxi
o(N*0).

Egﬂ [B22i]

IN

MI% , |E)

IN

IN

The second inequality holds because the density p; is bounded from above. The last in-

equality is proved in Lemma A.1.7(e) (see Section A.1.2).

We deduce that Bg; = o(N). A similar argument can be used to establish that By; =

o(N<0).

Step 2.2. Over the set 7, since |Ay;| < o(N), we have

; 2
dA‘('_Z) d *1
NEY" (Lw - ) T TTTTsToTs) | < o(NOINBY (T RTTi T T6:T5).
pZ *7
Notice that
S A ,  Psi
7i {pl Pxi + (P p)Rlz(m < 5 }
A=) s . _Psi
< i = p =1 pllRuG) < -2}

C {ﬁgfi)*p*mf%} {Ip pl|R1i(p)| >p“}
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Then,

NP (T TsTaTsi T TE)

0,y?
( Al *1 ( i
< MBI —pa < S NEL ({0 =l )] > T R TTT T To)
A= %1 16L i
< VR —pa < )+ SRR [Ru P IR T Tl o)

) [ (— 3 MLA
< NIP’gjyl {pf D p < —%} + pTNpiH(Tfn'ﬁsi)-

*7

The first inequality is based on the superset of 77, from above. The second inequality is
based on Chebychev’s inequality and trucation 75. The third inequality uses a version of
the result in Lemma A.1.7(a) in which the remainder is raised to the power of two instead
of to the power of four. Moreover, we use the fact that p; is bounded from above to absorb

one of the p; terms in the constant M.

In Lemma A.1.7(f) (see Section A.1.2) we apply Bernstein’s inequality to bound the proba-

bility IP’G i {;ﬁ(fi) — Pxi < —%} uniformly over (5\1, Yio) in the region T5;, showing that

(2

NEY [P {57 = s < BT Te) | = o(v),

as desired. Moreover, according to Lemma A.1.7(f) (see Section A.1.2)

. . . 2 ~
By’ [%Hmi%i)] - / <p> didyio = o(N¥),
Py T5:NToi \Pxi

which gives us the required result for Step 2.2. Combining the results from Steps 2.1 and

2.2 yields (A.1.29).

The bound in (A.1.25) now follows from (A.1.26), (A.1.27), and (A.1.29), which completes

the proof of the lemma. W

Term AQ/L'
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Lemma A.1.3. Suppose the assumptions in Theorem 2.5.5 hold. Then,

I3 i ~ R )
oy VES Y [0Ou(0). /T + B p. (o). Yi) = 1)°)

N—oo NEY A (A — Eyii[Mi))2] + Neo

<1

Proof of Lemma A.1.3. Notice that M(S\i(p), E0,02/T+B]2V,p*(5\i(p),iﬁo)) can be inter-
preted pu(-) as the posterior mean of \; under the p,(-) measure. We use Ef;”\i [-] to denote
the joint distribution of }* and ); under the p.(-) measure. Let {7y} be a non-negative

sequence such that 7y = o(N). The desired result follows if we can show that

Vi Y 52 2 \ )
NE*,Q M()\z(p)aEOaU /T"‘BN?p*()\z(p)alsz)) Ai + 7N

(i)  limsup — _ <1
N NEY A [~ Eylnl ] + N
i) N N 2
(i) lim sup <1,

N—oo Vi 3 5 2 03 2
NEY | (1(Ailp). Yio, /T + B, pe(Ailp), Ya)) = Ai) | + 7

where

By O~ Bl = By {('L‘(S\i(P)a Yio,0*/T.p(%i(p), Yio)) - Alﬂ |

Part (i): We will construct an upper bound for the numerator. Using the fact that the
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posterior mean minimizes the integrated risk, we obtain

N | (o) Yoo /T + B (o). i) - 1)
< NEYSN [(u(&(m, Yio, 0%/ T, p(Ai(p), Yio)) — M)Q]
= N//p*(j‘ivyio) (M(j\z'(P),yz‘mUQ/T,p(j\z'(P)ayio)) - /\i)QdS\z‘dyz'o
< N//p*(j\uyio) <M(5\i(p),yio,0’2/T,p(5\i(p),yio)) - Ai)ZH(’TSi'ESi)dS‘idyiO
+N4CKP(T5; U Tg;)

= N//P*(S\z',yz‘o) (M(S‘i(p>vyi0a0'2/T7p(5\i(p>vyiO)) - /\i)2]1(7-5i7-6i)d5\idyi0 + o(N).

The second inequality uses the fact that |\;| < Cy and therefore the posterior mean has to
be bounded in absolute value by Cn as well. The last line follows from an argument similar

to that used in Step 1 of the proof of Lemma A.1.2.
According to Lemma A.1.6, we obtain the following uniform bound over the region Ts; N Tg;:

pe(Nis wi0) < (14 0(1)p(Ai, wio)-

Therefore,

//p*(j\i,yz‘o) (H(S\i(p)ayi0702/T7p(5\i(p)ayi0)) - >\i>2H(7Bi’T6i)d5\idyi0

= (1+ 0(1))//]7(5\1’,%0) (M(S\i(P)ayi0,02/T,P(5\i(P),yio)) - Ai>2ﬂ(73i7%i)d5\idyi0-
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In turn, we obtain the following bound:

3\ 2 2
NE%M [(M()‘i(P)aYio,JQ/TJF BJQVaP*()\i(P),Eo)) - )‘i> } + 7N

< (140(1 N// i, Yio) (P),yio,02/T,P(5\i(P),yio))—)\i>2ﬂ(7'5i7'6i)d;\idyio
+o(N*)

< (14 o(1)NEY M [(Ai — B[] + o(N¥0)

< (14 o(1)NEY M (A — By [A)?] + N,

which yields the required result for Part (i).

Part (ii): Similar to the proof of Part (i), we construct an upper bound for the numerator

as follows

NEF | () Yoo /T + B (o). Vi) = 1)
=N //p(;\i,yio) 1 5\z‘(ﬂ)ayz‘o,Uz/TJr B, p(\i(p), yio)) — /\i>2d5\z‘dyz'o
//p* i Yio) “y;)o)) (M(S\z‘(ﬂ)a Yi0, 0%/ T + B, e (Ni(p), vio)) — /\i>2]1(7-5i7'6i)d5\z‘dyio
+ N4CKP(Ty; U Tg)
(14 oD)N [ p.Chssin) (Oulo). v T+ B (o). w0) = As)
x 1(T5:Tei)dNidyio + o(N€), any € >0
<(1+ o(1))NEY5™ [(u(&-(p), Yio, o2/ + B, p«(\i(p), Yio)) - Aiﬂ + 7.

For the last line we used the fact that 7v = o(N). We now have the required result for

Part (ii).

Term As;
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Lemma A.1.4. Suppose the assumptions in Theorem 2.5.5 hold. Then, for any e > 0:

NEY" [(p— p)*YZ] = o(N°).

)

Proof of Lemma A.1.4. Using the Cauchy-Schwarz inequality, we can bound

B (VNG - p)Y3] < \/Es’N (VNG - )| B [v4].
By Assumption 2.5.4, we have
B} (VNG - 9)"] < o)

for any € > 0.

For the second term, write
T—1
Yir = p"Yio + > p"(Ni + Uir—s).

7=0

Using the C, inequality and the assumptions that |p| < 1 and Uy ~ iidN (0, 0?), we deduce

that there are finite constants My, My, M3 such that

By 4] < 0nE) [va] + MoEy () + 2B (U]

= MEY” [Vi] + o(N%) + o(N°)

for any €, where the last line holds because |\;| < Cn according to Assumption 2.5.1 and

U;1 is normally distributed and therefore all its moments are finite.

The desired o(N€) bound for the fourth moment of Yjp can be obtained as follows (we are
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dropping subscripts and superscripts from expectation and probability operators):

Elval!] = 48| [ 1ol 2 rirar]

— 4IE/ P{|Yi0]27'|)\i}7'3d7']
LJO

[ ,C
= 4E / P{|Yig| > 7|\ }r3dr
0

+E [/ P{|Yio| > 7| \i}r3dr
C

IN

M+ / [ / ~ exp (—mf(r, A))T?’dT] 1y (A)dA

C

for some finite constant M, where C' is the constant in Assumption 2.5.3(ii).

Notice that on the domain [C,c0), the function exp (—m(7,\)) in decreasing in 7, while
the function 72 is increasing in 7. W.l.o.g, suppose that C = (1 + k)(vIn N* 4+ Cy+) and
(1+k)(VInN +Cpy) > 2InN for all N > N*. Now, let 7y = (1 + k)(VIn N 4+ Cy) and

bound the integral with a Riemann sum:

/ exp (—m(r,\)) m3dr < Z exp(—m(TN,)\))T]?{/_i_l(TNH—TN)
¢ N=N*
< Z eXP(—m(TNaA))TJ%/H
N=N*
= ) exp(—m(rn, A) +4In 7y 1)
N=N*
< Z exp(—(2+4+¢)InN+4Inty41)
N=N*
_ i T]z{fﬁ’l
- N2+e’
N=N*

for some constant € > 0. The last inequality holds by Assumption 2.5.3(ii). Because

75 = o(N€), there exists a finite constant M such that

00 4 0o

TN+1 1
N2+e <M Z ﬁ < 00
N=N* N=N*
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This leads to the desired result

E[|Yiol'] <oco. W

Further Details

We now provide more detailed derivations for some of the bounds used in Section A.1.2.

Recall that

1 E 1 (A=A (A=A o o\ 1 (Yo Y

Ru(ﬂ)——N_l;B]gvﬁb(J B ! B (Y}l_KI)BN(b(JBN )
1 1 (X0 = Ailp) 1 (Yo Yy
+N—1;B}°’V¢<] Bx (Yj,lyi,l)BN¢<]BN >

For expositional purposes, our analysis focuses on the slightly simpler term Rg;(p). The

extension to Ry;(p) is fairly straightforward. By definition,

N(P) = Xi(B) = Aj(p) = Ailp) — (5 — p) (Vi1 — Yi_1).

Therefore,

N A 3 — _

Consider the region 7 N 73 N Ty. First, using (A.1.21) we can bound

max_|(p— p)(¥j_1 — ¥i1)| <

M
1<ii<N ' Ly’
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Thus,

BN BN
o) = dlp) (M N0 - M) M
= ¢< By +<LNBN>>H{ By _LNBN}

Il
SN
N

>
<.
—
=
|
4
>
=
N~

say. The function ¢(z) is flat for |x| < M/LyBy and is proportional to a Gaussian density

outside of this region.

Second, we can use the bound

Third, for the region T3 N T4 we can deduce from (A.1.20) that

max ’Yj,—l - }7i,—1| S MLN
1<ij<N

Therefore,

_ 1 (YooY MLy (Yo —Y;
Vi1 =Yoo (2 =)< Mo = .
N By By By

Now, define the function

6.0) = () (Il + o).

Because for random variables with bounded densities and Gaussian tails all moments exist

and because Ly By > 1 by definition of Ly in (A.1.22), the function ¢, (z) has the property
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that for any finite positive integer m there is a finite constant M such that

/ b (z)™dz < M.

Combining the previous results we obtain the following bound for Ra;(p):

MLy N1 - (Nilp) = X 1 [(Yio—Y
JF

For the subsequent analysis it is convenient define the function

Oy = s Yio = Ya) = 5776, (Aj(p)B‘NA"”)) o (5. (A.1.35)

In the remainder of this section we will state and prove three technical lemmas that establish
moment bounds for Ri;(p) and Rg;(p). The bounds are used in Section A.1.2. We will
abbreviate ng(;) [] = E;[-] and simply use E[-] to denote Egﬂv[-}.
Lemma A.1.5. Suppose the assumptions required for Theorem 2.5.5 are satisfied. Then,
for a finite positive integer m, over the region Ts;, we have

E; [fm(j\j — i, Yo — Yio)] < M

> Wpi-

Proof of Lemma A.1.5. We have

E; [f™(A\; — Mi» Yjo — Yio)]
1 - (A=3\ 1  (yw—Yo\\ )

_ 1 1 - 5\—5\1 " 1 yO—Y; m R .
E B?v(m”/{/BN(ﬁ* (&v) BN¢< By > p()"yop‘)d()\,yo)}w()\)d)\.
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The inner integral is

say.

Notice that
~ ~ m 3 2
1 A=\ 1 1 A=)\ 3
n o= /Bﬂ*( B ) o/NT P (2 (0/\/T> )dA
. 2
B _ . m;ex _1 )\Z—)\z‘i‘BNA* *
_ /@(A) U 2( NG > dA
£\ 2
_ /¢*(A*)mexp <_ ((ii—Ai)BNA*) 021/T> eXp( (f/&) )CM*
1oAY
O,/\/TeXp 2 U/\/T
m ([ o) ewqu‘“ﬁ (iﬁ?>
= Mp(N\i| i, Yio).

w;e@( ( >)

We used the change-of-variable A\, = (XA — A;)/By to replace A. Here the second in-

IN

o\ 2
equality holds because the exponential function exp <—% (UB /N \/AT> ) is bounded by a con-
stant. Moreover, under truncation Ts;, || < C)y and the support of \; is bounded by
[-Cn,Cn| (under Assumption 2.5.1). Thus, vy = Bn(Cly + 2Cn). According to As-

sumption 2.5.2 vy = Bn(Cy\ + 2Cn) = o(1). Thus, the last inequality holds because
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[ @ (A*)™ exp (uyA*) dA* is finite. Finally, note that p(A| A, Yio) = p(Ai|\i).

We now proceed with a bound for the second integral, I. Using the fact that the Gaussian

pdf ¢(z) is bounded, we can write

_ 1 Yo — Yio\ "
I, = /BN¢< B ) 7(yo|A\)dyo

1 Yo — Yio
< R a——
< M/BNqb( B >7T(yo|/\)dyo

N
= M(1+o(1))m(Yio|N),

uniformly in |yo| < CJ and [A] < Cn. Here the last equality follows from Assump-

tion 2.5.3(iii). Combining the bounds for I; and I» and integrating over A\, we obtain

1

Ei[f™(\j — X\, Yjo — Yio)] = = /11 x Tom(X\g)d\;
N

1 .
< LM+ o) [ pilN, Yiop(Vol (M) dA
B]Q\/gm 1)

1
N

as required.

Lemma A.1.6. Suppose the assumptions required for Theorem 2.5.5 are satisfied. Then,

Di

sup = 1+0(1) (A.1.36)
(Ai,Yi0)€T5iNTes P¥i
sup 2% = 140(1). (A.1.37)

(Xi,Yi0)€T5:NTgi Pi

Proof of Lemma A.1.6. We begin by verifying (A.1.36). Let

(i violNi) = \/Ulzﬁqb (%) 7(Yiol Ai)

: 1 i — N 1 0 — Ui . .
pe(Niyyiol i) = ¢ [/ F¢ (yoByo> F(yiop\z‘)dyio]
N N

\/B% +02/T \\/B% +02/T
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such that

pi = /p(j\i,yiop\i)ﬂ-()\i)d)\i» Pxi = /p*(j\iayiop\i)ﬂ()‘i)d)‘i'

Because |A;| < Cny by Assumption 2.5.1 and \5\@| < C in the region Ts;, for some finite

constant M we have

1 (b(/\i—Ai) B 1 of Az
Vo2 /T \\o*/T \/B?V—i-JQ/T \/B]QV—FO'Q/T
2
\/B% +02/T 1 X — A B2
Y N

JoT 0] 2

2
2\ /B +or ) /T

1 — N\
\/B?V—i-O'Q/T \/B +02/T

x1/1+ MB3; exp(—M(Cly + Cn)*B%)

Y
= (1+o(1 , (A.1.38)

\/B +a2/T \/B +o?T

IN

where o(1) is uniform in (5\1, Yio) € T5i N Tei. Here we used Assumption 2.5.2 which implies

that vy = (Cly + Cn)Bn = o(1).

According to Assumption 2.5.3(iii),
1 i0 — Ui . -
[ e (P20 ) wtaiolhdsio = (1-+ o)yl
By By
uniformly in |y;0| < C and |A;| < Cy. This implies that

m(yiolh) < (1 +o(1 / (‘%0 y“)yr(gioyxi)dgio. (A.1.39)

uniformly in |y;0| < Cl and |N;| < Cy.
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Then, by combining the bounds in (A.1.38) and (A.1.39) we deduce

(i, viol i) — pe (N, yiol \i)

1 >‘z—>\l
B %UQ/Tqb <\/02/T> ™ (wiol X
—_ 1 AZ—AZ L M _ .
\/BJZV—FT/T¢ \/BJQV"‘T/T /BN¢< By )”(yzo‘)\z)d%o
2 1 Ai — Ai B (M)) =N\
(14 0(1))* — 1] mé(m)/&ﬂ B ) T@o)dio

= o(1) - pu(Xi, wio] M)

IN

Note that the o(1) term does not depend on (A;, Yio) € T5; N Tei-

We deduce that

Dbi Di — Pxi
sup — = 1+ sup —_—
(M\i,Yi0)ET5:NTsi DPi (A\i,Yi0)ET5:NTsi DPi
f [p(j\i, Yio|\i) _p*(j\i,yiop\i)} T(Ai)dA;
= 1+ sup
(Ai,Yi0)€T5:NTs: Psi
= 1+4+o0(1).

This proves (A.1.36). A similar argument can be used to establish (A.1.37). B
Lemma A.1.7. Under the assumptions required for Theorem 2.5.5, we obtain the following

bounds:
(0) Bi[R;()UT2TsTaTsiTsi T)] < MLyp{I(TsiToi)
() E[REABTRTTTeTn)] < Mppil(TTs)
(¢) B NG = poi PUBTTTToi )| < 24 mil(TeiTen)

(4) Ei [N\ = dpoo "W T ToTaToi TosToi) | < pl(T5iTer)
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(e) f7’5m7?si <]%> d\idyio = o(N€), m > 1.
(f) NE[PAR" — pui < —pai/A}1(T5iTer)] = o(N°)

Proof of Lemma A.1.7. Part (a). Recall the following definitions

P(z) = gf)(I—FL]\]IWBN)]I{%S—L]\J[\4BN}+¢(O)H{|$|SLJ\]]\/‘;N}

First, recall that according to (A.1.34), in the region 72N 73N 74

N
MLy A
_1§ O = A, Yo — Yio).

|R2i(p)| < N )
J#i
Then,
MLy & '
R < |57 22 F(h = A Yio — Yio)
J#
MLy WL« < A,
- [N—l Z{f()‘j_)‘i’yjﬂ_EO)_Ei[f()\j—)\quo—Yio)]
J#
o 4
HE[f(Aj = Ai, Yjo — Yio)] H
1 N o o o “
< MLy ]\,_1; <f()\j — i, Yo — Yio) = Ei[f(N\j — i, Yjo — Y )])

+ ML [E[m._x Yio — Y; )]]4
N 7 J iy 450 20

= MLy (A1 + As),

say. The second inequality holds because |z + y|* < 8(|z|* + |y[*).
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The term (N — 1)*A; takes the form

(Zaj>4 = Za +QZZa]al

1>)

_ (Za?)? o) Z;a]az +4 Z;‘W
= > aj +6ZZa

1>

(Z ) Zzaﬂz +4zzzz%azalak,

1>] i i>g l#) k>
where

a;j = f(Nj — Ai, Yjo — Yio) — Bi[f(A; — Ai, Yio — Yao)], j #i.

Notice that conditional on (X;(p), Yio), the random variables a; have mean zero and are 7id

across j # 4. This implies that
E, {(Z%ﬂ L GED W
1>

The remaining terms drop out because they involve at least one term a; that is raised to

the power of one and therefore has mean zero.

Using the C'g inequality, Jensen’s inequality, the conditional independence of a? and a? and

Lemma A.1.5, we can bound

M M
4 2 2 2
Ei[aj] < ﬁpiy Ei[ajai} < ijlvpi'
Thus, in the region 7o N T3 N Ty N T N T
Mp; p2 4
Bl < §pe * napr = M
The second inequality holds because over Tg;, p; > ]\]f\; > NAgJQV . Using a similar argument,
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we can also deduce that

Ei[42] < Mpj,
which proves Part (a) of the lemma.
Part (b). Similar to proof of Part (a).

Part (c). Can be established using existing results for the variance of a kernel density

estimator.
Part (d). Similar to proof of Part (c).

Part (e). We have the desired result because by Lemma A.1.6 we can choose a constant ¢

such that

Di — Dxi < CDxi

over truncations 7Ts; and Tg;. Thus,

<l> = <1+Z”> < (1—|—c)m.
P+ P+

We deduce that

/ (pl> dN\idyio < (1 + C)m/ dAidyio = (QCEV)Q = o(N%),
T5iNTei \Pxi T5iToi

as required.

Part (f). Define
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and write

N ~ ~
= 1 Lo (A A L Yio— Yo
b; Psi = N—l;{BNgb( By N¢ By
L (A L (Y~ Yao
Bn Bn By By

N
= BJQV(]V_D; ¢i(5\j,1’jo)—Ei[¢i(§\j,}/jo)])_

Notice that for 1;(\;, Yjo) ~ iid across j # i with |¢i(5\j, Yjo)| < M for some finite constant

M. Then, by Bernstein’s inequality ! (e.g., Lemma 19.32 in van der Vaart (1998)),

NP; {ﬁﬁ’” — Pui < —@} I(75:Te6:)

4
N
_ apd b o V) — Elr (A Y _Psi T
- N]P)z B?V(N_l);(wz(ApY]O) Ez[wz()\p}/jO)])< A ]I(7-527-62)
4 _ 2
< 2Nexp 1 ?N(N 1)pii/16 I(75:T6:)-
AEi[i(Nj, Yjo)?] + M B3pix /4

Using an argument similar to the proof of Lemma A.1.5 one can show that
Eilti(j, Yy0)*/By] < Mpi/ B

In turn

) ) 2
VB {5 = pa < =B LT Ter) < 2exp <—MNB?V]& +1n N) I(75: ).
] *7

From Lemma A.1.6 we can find a constant ¢ such that p; < (1 4 ¢)ps and py; < (14 ¢)p;.

'For a bounded function f and a sequence of iid random variables X,

8

2

1 x
- x} e (‘m[f(xi)?] RSP f(””‘)> |

T Do) ~ EIF(X)
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This leads to

pii > Di
- 2°
pi+tpwi  (2+c)(1+¢)

Then, on the region Tg;

N P GO NN ) T
NE [IP’Z {pi Pei < =7 }]I('Tm’ﬁiz)}
2
< 9E ~MNB% L5 4N ) 1(T5:Ts
N {exp< Npi+p*i+ " > (7376)]
< 2E[exp (—-MNB3p; + In N) I(T5:Tsi)]
< 2exp (-MB%VNE’HnN)

= o(NY),

as desired. W
A.1.3 Derivations for Section 2.6

Consistency of QMLE in Experiments 2 and 3

We show for the basic dynamic panel data model that even if the Gaussian correlated
random effects distribution is misspecified, the pseudo-true value of the QMLE estimator of

0 corresponds to the “true” 6y. We do so, by calculating
(6, &) = argmaxy ¢ By [Inp(Y, X2|H,6,€)], (A.1.40)

and verifying that 6, = 6y. Here, p(y, z2|h, 0, &) is given in (2.4.10). Because the observations
are conditionally independent across ¢ and the likelihood function is symmetric with respect

to 7, we can drop the i subscripts.

We make some adjustment to the notation. The covariance matrix > only depends on

v, but not on (p, ). Moreover, we will split £ into the parameters that characterize the
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conditional mean of A\, denoted by ®, and w, which are the non-redundant elements of the

prior covariance matrix . Finally, we define
Y(6)=Y -Xp—Za

with the understanding that 61 = (p, @) and excludes 7. Moreover, let ¢ = vec(®’) and

W =1® MW, such that we can write ®h = I/¢. Using this notation, we can write

Inp(y, z2|h, 01,7, ¢, w) (A.1.41)
= O SIS0 - 5 (6~ wA®)'S () ((6) — wh D))

1 1 ~
—§ln Q| + iln 1Q(y,w)|

- (&w)'w'z—l(ww&(e) LR - N (0,90 (1. M6, 5)) ,

where

AO) = (WS (y)w) " w'STH(9)g(0)

O lyw) = @ +w'S T yw, MO,€) = Qv,w) (2R ¢+ WS Hy)wA®)).

In the basic dynamic panel data model \ is scalar, w = ¢, X(y) = I, 20 = 0, z = 0,

h = [1,y0]', Q = w?. Thus, splitting the (T — 1)(In~?)/2, we can write

lnp(y|ha Py ¢7w) = C-— T2_ ! 1n|’72| - 2,1Y2(27(p) - Lj‘(p)),(g(p) - LS\(,O))

]_ 2 ]. 2 ]- ]- )
—iln‘w ‘— ilnh /T‘ +§ln(1/T)+§ln’Q(’y,w)‘
_1 zAz i 1T N2

2<72)\ (p) + —3&'hh'¢ N CRINE

Q(v,w)
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where

- 1

Mp) = 79(p)
_ 1 1 < - 1 - T .

1 _ /
0w = St A0, =90 (e + A0)
Note that
1T
1 I o, Ls 1 w?y? 1 2, .2
_iln’w {—I—iln‘T/v ‘+§1n’Q(%w)‘ :iln 54_% ——§ln‘w + /T’

In turn, we can write

Inp(y|h, p,v, ¢, w)

T-1 2 1 - 2, .2
= C-—; lnl'y\—Wy(p)’(f—w’/T)y(p)—2ln\w +~°/T|
1 z 2 / / w2'72/T iﬁ EA 2
3 (B + Spoiite - 0 (St + i)
T-1 : r_. . 1 2, .2
= C-—; lnlv\—fvzy(p) (I—LL/T)y(p)—§ln!w + /7|

1 1570 1 ! 3
Iy <¢ hiG = 2MPIH'G + W))'

Taking expectations (we omit the subscripts from the expectation operator), we can write

E[Inp(Y|H, p,7, $,w)] (A.1.42)
T-1

1 ~ ~ 1
= (- In|v?% — WE[Y(p)/(I —u'/T)Y (p)] - §1n |w? +~%/T|

s (0~ ) B B (0 - (BT ELAG)
~E[A() ) (EIFLH') BLEA)] + B()] )
We deduce that
6.(p) = (ELHE)"E[HA(p)). (A.1.43)

To evaluate ¢, (po), note that A(po) = A+ ¢'u/T. Using that fact that the initial observation
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Yo is uncorrelated with the shocks Uy, t > 1, we deduce that E[H\(po)] = E[H)]. Thus,

0. (p0) = (ELEH") 'E[AN, (A144)

The pseudo-true value is obtained through a population regression of A on H.

Plugging the pseudo-true value for ¢ into (A.1.42) yields the concentrated objective function

E[Inp(Y|H, p,7, «(p),w)] (A.1.45)

T—-1
- C-—

Inlo*| = 5B V() (7 = o)V ()]

1 A .

—;mhﬂ+%ﬂﬂ—% (EIN(p)] — E[Mp) H') (E[HA') 'E[HA()).

2+ 2]T)

Using well-known results for the maximum likelihood estimator of a variance parameter in

a Gaussian regression model, we can immediately deduce that

i) = —=E[Y(p)(I —u/T)Y (p)] (A.1.46)

W2(p) +2(p)/T = (EN*(p)] — E[Np)H')(ELHH")) "E[H(p)]).

At p = po we obtain Y (pg) = tA4+u. Thus, E[A2(po)] = 13/T+E[N?] and E[H\(po)] = E[H\].

In turn,

V(o) =18, w2(po) = B[N — ENH)(E[H H')) "E[AN. (A.1.47)

Given p = po the pseudo-true value for 42 is the “true” 42 and the pseudo-true variance
of the correlated random-effects distribution is given by the expected value of the squared

residual from a projection of A onto H.
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Using (A.1.46), we can now concentrate out 2 and w? from the objective function (A.1.45):

E[lnp(Y\H,p,v*(p),gb*(p),w*(p)] (A148)
L [V (o) (1 = o/ /T)¥ ()]
L BT (0)] — B (o)) (B BT ()]

T —
- C—

To find the maximum of E[In p(Y|H, p,v:(p), ¢«(p), ws(p)] with respect to p we will calculate

the first-order condition. Differentiating (A.1.48) with respect to p yields

FOC(p) = (T—1)

E[X'(1 — u!/T)Y (p)]
E[V (o)1 —w/Tmp)}
o EXwY (p)] ~ ELXWH)(E[AA) " 'E[HY (p)

E[Y (p)u'Y ()] - [ o)) (ELAA) BT ()]

We will now verify that F.O.C.(pg) = 0. Because both denominators are strictly positive,

we can rewrite the condition as

F.O0.C.(po) = (T —DE[X'(I-u//T)Y (po)] (A.1.49)
(L () ¥ o)) = B (oo ' (BT 'Y ELLT ()]
FE[V(p0)' (T — I T)Y (p0)
(BLXWY (0] ~ LX) BIT ) EIACY (o))

Using again the fact that 17(,00) = 1A + U, we can rewrite the terms appearing in the
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first-order condition as follows:

E[X'(I - u'/T)Y (po)] = E[X'(I—u//T)u] =E[X"u] —E[X w/u]/T
= —E[X'u'u]/T
E[Y'(po)u'Y (p)] = E[A\ +u)u' (A +u)] = T°EN?] + E[u've'u]
= T?EN+TH
E[H!/Y (po)] = E[H/(tA+u)] = TE[H
E[Y (po)' (I =/ /T)Y (po)] = E[u'(I —u'/T)u] = (T = 1)y’

EX'w/'Y(po)] = E[X't/(tA+u)]=TEX" N +E[X wu].

For the first equality we used the fact that X;; = Y1 is uncorrelated with U;. We can

now re-state the first-order condition (A.1.49) as follows:

F.0.C.(po) (A.1.50)
— (T - D(EXW) (o + (BN - AT (B AY) BN

+ (E[X/LL/U] + T(E[X"\] — E[X".H'| (E[Flﬁ’])_lE[H)\])> (T — 1)72

= T(T-1) [73 <IE[X’L)\] — E[X".H'|(E[HH"]) E[H)\])

—E[X "1ty (EW] —E\H'|(E[HH) E[HA])] :
We now have to analyze the terms involving X’t. Note that we can express
t—1
Yy =pbYo+ Y po(A+ Upr).
=0
Define a; = th_:lo ph and b = ZtT:_ll a;. Thus, we can write
t—1

Y: = ,OBY(] + Aag + Zant_T, t > 0.
7=0
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Consequently,

Sren(E (s

Thus, we obtain

’ﬂ

||FﬂH

T—1t—1
>+ Zngt T—aTyo—l—b)\—i—ZatUT te

t=1 7=0

Il
=)

i T-1 T
EX'w/'u] = E (aTYo + bA + Z atUTt> (Z Ut> = b’yg

L t=1 t=1

i T-1

Mﬂﬂ::E<W%+M+XhﬁTJ4:mE%M+WW]

L t=1

i T-1
mxﬂq::E(wm+w+§ym¢0ﬁizwmmM+mmﬁy

L t=1

Using these expressions, most terms that appear in (A.1.50) cancel out and the condition

simplifies to
FQQ@@:T@—U%@(M%M—M%ﬁ%ﬂﬁﬁ@1MﬁM> (A.1.51)
Now consider

E[YoH'|(E[HH'])) B[]

1 E[YF]  —E[Y] E[Yo]

= BN (EY)) [E[Yo] B ]

= E[YpA.

—E[Yo] 1 E[Y{]

Thus, we obtain the desired result that F.O.C.(pg) = 0. To summarize, the pseudo-true

values are given by

pe = po, =90, o= (E[HA) BN, (A.1.52)

[\

wi = EN]-ENH)(E[HAH)"
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Computation of the Oracle Predictor in Experiment 3

We are using a Gibbs sampler to compute the oracle predictor under the mixture distribu-

tions for Uj.

Scale Mixture. Let a; = 1 if Uy is generated from the mixture component with variance 7_%
and a; = 0 if Uy is generated from the mixture component with variance v2. Omitting i

subscripts from now on, define
v 2 2 2
Yi =Y, —pYio1, v (a) = aryi + (1 —ag)y>

such that
Yil(A,ar) ~ N (A% (ar)).

Under the prior distribution
AlYo ~ N(¢o + ¢1Y0,9),

we obtain a posterior distribution of the form
)\|(CL1;T, }/O:T) ~ N(E\(CLLT), Q(CLI;T)), (A153)
where

T
arr) = Q7+ (Pa)™) !

T
Marr) = Qair)(Q ' (¢o + 1Y) + Y (7P (a)"'Vh).

t=1
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The posterior probability of a; = 1 conditional on (), Yo.7) is given by

P(a; = 1, Yo.r) (A.1.54)
Pu(74) " exp {—ﬁ(Yt ~ Y1 = N)?}

Pulr4+) L exp {_ﬁ(Yt — Y1 — A)z} + (1= pu)(y-) " exp {_2%3

(Y — pYi1 — )2}
The posterior mean E[A|);] can be approximated with the following Gibbs sampler. Generate

a sequence of draws {\°, a‘{:T}i\gT” by iterating over the conditional distributions given in

(A.1.53) and (A.1.54). Then,

N%m
E\Yor] = N > Matg), (A.1.55)
stm s=1
) 2
A~ 1 5”77‘_ 9 1 N‘S‘lm7 s
VA Yor] = N Q(as.r) + N(a5.p) | — N > Maig) |
s o simoo g

Location Mizture. Let a; = 1 if Uy is generated from the mixture component with mean
4 and a;; = 0 if Uy is generated from the mixture component with mean —pu_. Omitting

1 subscripts from now on, define

Yi(ar) = Y — pYi1 — (arp — (1 — ap)p-),
such that
ﬁ(a’t”()‘?at) ~ N()"VQ)

Now let

Aa1:7) ZYt at) \2/T).

Under the prior distribution

MYy ~ N(¢o + ¢1Y0,9),
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we obtain a posterior distribution of the form
M(av:r, Yor) ~ N (Marr), ), (A.1.56)
where

Q = (@'+1/9)"

)\(al;T)

QQ (g0 + d1Y0) + (T/43)Marr)).
The posterior probability of a; = 1 conditional on (A, Yp.7) is given by

P(a¢ = 1|\, Yo.r) (A.1.57)
Pu €XP {—#(Yt —pYii1 — A — u+)2}

pueXp{—#(Yt —pYii1 — A — u+)} + (1= pu) exp {—ﬁ(Y} — pYi1 — A+/L)2}

The posterior mean E[\|Yy.7] can be approximated with the following Gibbs sampler. Gen-
erate a sequence of draws {\*, aiT}i\ﬁﬁm by iterating over the conditional distributions given

in (A.1.56) and (A.1.57). Then,

N.,

~ 1 stm _
EPYor] = — Alair), (A.1.58)

stm s=1

Ng; N.: 2
~ _ 1 s s 1 sim .
V[AD/OT] = (Q + N.: Z )‘Q(al:T)> - (N ] Z )\(alzT)>
sim ] sim

A.2 Data Set

The construction of our data is based on Covas et al. (2014). We downloaded FR Y-9C BHC
finanical statements for the years 2002 to 2014 using the web portal of the Federal Reserve

Bank of Chicago. The financial statements are available at quarterly frequency. We define
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PPNR (relative to assets) as follows

PPNR = 400(NII + ONII — ONIE) /ASSETS,

where
NII = Net Interest Income BHCK 4074
ONII — Total Non-Interest Income BHCK 4079
ONIE = Total Non-Interest Expenses BHCK 4093 - C216 - C232
ASSETS = Consolidated Assets BHCK 3368

Here net interest income is the difference between total interest income and expenses. It
excludes provisions for loan and lease losses. Non-interest income includes various types
of fees, trading revenue, as well as net gains on asset sales. Non-interest expenses include,
for instance, salaries and employee benefits and expenses of premises and fixed assets. As
in Covas et al. (2014), we exclude impairment losses (C216 and C232). We divide the net
revenues by the amount of consolidated assets. This ratio is multiplied by 400 to annualize

the flow variables and convert the ratio into percentages.

The raw data take the form of an unbalanced panel of BHCs. The appearance and disap-
pearance of specific institutions in the data set is affected by entry and exit, mergers and
acquisitions, as well as changes in reporting requirements for the FR Y-9C form. Because
some of the quarter-over-quarter changes in the income and expense flows are a reflection of
accounting practices rather than economic conditions of the institutions, we aggregate the
quarterly data to annual data. However, prior to the temporal aggregation we eliminate
certain types of outliers. Before describing our outlier removal procedure, we briefly discuss

the structure of the rolling samples used for the forecast evaluation.

Our goal is to construct rolling samples that consist of T+42 observations, where T is the
size of the estimation sample and varies between T' = 3 and T' = 11. The additional two

observations in each rolling sample are used, respectively, to initialize the lag in the first
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period of the estimation sample and to compute the error of the one-step-ahead forecast.
We index each rolling sample by the forecast origin ¢ = 7. For instance, taking the time
period t to be a year, with data from 2002 to 2014 we can construct M = 9 samples of size
T = 3 with forecast origins running from 7 = 2005 to 7 = 2013. Each rolling sample is
indexed by the pair (7,T). The following adjustment procedure that eliminates BHCs with

missing observations and outliers is applied to each rolling sample (7,7T) separately:

1. Fliminate BCHs for which total assets are missing for all time periods in the sample.

2. Compute average non-missing total assets and eliminate BCIs with average assets
below 500 million dollars.

3. Eliminate BCHs for which one or more PPNR components are missing for at least one
period of the sample.

4. Eliminate BCHs for which the absolute difference between the temporal mean and the
temporal median exceeds 10.

5. Define deviations from temporal means as §;; = y; — ¥;- Pooling the §;4’s across insti-
tutions and time periods, compute the median gy 5 and the 0.025 and 0.975 quantiles,

qo.025 and ¢g.975. We delete institutions for which at least one d;; falls outside of the

range qo.5 £ (¢o.975 — §0.025)-

The adjustment procedure is applied to quarterly observations. After the sample adjust-
ments we aggregate from quarterly to annual frequency by averaging the PPNR ratios over
the four quarters of the calendar year. The effect of the sample-adjustment procedure on
the size of the rolling samples is summarized in Table 21. Here we are focusing on the
extreme cases T = 3 (short sample) and T" = 11 (long sample). The column labeled Ny
provides the number of raw data for each sample. In columns Nj;, j = 1,...,4, we report
the observations remaining after adjustment j. Finally, N is the number of observations
after the fifth adjustment. This is the relevant sample size for the subsequent empirical
analysis. For many BCHs we do not have information on the consolidated assets, which

leads to reduction of the sample size by 60% to 80%. Once we restrict average consolidated
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Table 21: Size of Adjusted Rolling Samples

Sample Adjustment Step

T T NO N1 NQ N3 N4 N
2005 6,731 2,629 882 580 580 551
2006 6,673 2,591 959 650 650 615
2007 6,619 2,537 1,024 693 693 655
2008 6,519 2456 1,074 716 716 670
2009 6,399 1,281 1,139 693 693 653
2010 6,223 1,287 1,157 683 683 639
2011 6,518 1,396 1273 704 704 656
2012 6,343 1,413 1,301 755 7h5 710
2013 6,154 1,407 1,291 772 771 725

1 2013 8,011 20957 1431 497 496 461

— W WwWWwWwWwwwww

Table 22: Descriptive Statistics for Rolling Samples

Sample Statistics
T 7 Min Mean Median Max StdD Skew Kurt
3 2005 -8.81 1.48 1.65 846 2.07 -0.80 5.36
3 2006 -7.61 1.50 1.54 846 1.95 -0.43 4.90
3 2007 -9.55 1.36 1.42 775 194 -0.61 5.51
3 2008 -9.55 1.12 1.22 7.7 193 -0.72 5.62
3 2009 -1044 0.98 1.08 7.00 184 -0.82 6.01
3 2010 -746  0.87 0.96 6.60 1.74 -0.63 4.76
3 2011 -8.87 0.84 096 7.17 177 -0.70 5.04
3 2012 -765 0.79 0.90 7.81 1.86 -0.46 4.41
3 2013 -8.11 0.82 095 7.73 1.87 -0.53 4.62
11 2013 -8.89 1.15 1.23 7.00 1.82 -0.65 5.02

Notes: The descriptive statistics are computed for samples in which we pool observations across institutions
and time periods. We did not weight the statistics by size of the institution.

assets to be above 500 million dollars, the sample size shrinks to approximately 900 to 1,400
institutions. Roughly 35% to 65% of these institutions have missing observations for PPNR
components, which leads to V3. The outlier elimination in Steps 4. and 5. have a relatively

small effect on the sample size.

Descriptive statistics for the T = 3 and T' = 11 rolling samples are reported in Table 21. For
each rolling sample we pool observations across institutions and time periods. We do not
weight the observations by the size of the institution. Focusing on the T' = 3 samples, notice
that the mean PPNR falls from about 1.5% for the 2005 and 2006 samples to 0.80% for the

2012 sample, which includes observations starting in 2009. In the 2013 sample the mean
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increased again to 1.15%. The means are generally smaller than the medians, suggesting
that the samples are left-skewed, which is confirmed by the skewness measures reported in
the second to last column. The samples also exhibit fat tails. The kurtosis statistics range

from 4.4 to 6.0.

A.3 Additional Empirical Results

Table 23: Parameter Estimates: éQMLE, Parametric Tweedie Correction

Intercept Unemployment

T p 62 o b @ ¢ ¢ @3 N

2007 091 1.10 -099 0.08 4E-7 0.18 -0.01 9E-9 537
2008 0.86 1.09 -1.25 -0.05 3E-6 0.28 0.02 1E-7 598
2009 086 1.14 -0.27 -0.06 1E-7 0.05 0.02 5E-9 613
2010 086 1.14 -0.38 -0.03 2E-8 0.07 0.01 1E-9 606
2011 094 112 -0.22 -0.17 2E-7 0.03 0.02 3E-9 582
2012 094 112 0.01 -0.30 2E-8& 0.00 0.03 1E-9 587
2013 0.93 1.12 -047 -0.30 3E-7 0.05 0.04 2E-9 608

Notes: Point estimates for the model Y;;t+1 = Ali + )\QiURt + pYit + Uit+1, Uit+1 ~ N(O,CJ’Q), A]'Z"Y;;o ~
N(¢pjo + qﬁjle,g?) for j = 1,2. The time-series dimension of the estimation sample is 7" = 5.

180



APPENDIX B

Density Forecasts and Young Firm Dynamics

B.1 Notations

U (a,b) represents a uniform distribution with minimum value a and maximum value b.

If a =0 and b =1, we obtain the standard uniform distribution, U (0, 1).

N (u, 02) or N (a:; 78 02) stands for a Gaussian distribution with mean p and variance o2.

Its probability distribution function (pdf) is given by ¢ (:c; Ly 02). When g =0and 0?2 =1
(i.e. standard normal), we reduce the notation to ¢ (x). The corresponding cumulative distri-
bution functions (cdf) are denoted as ® (z; 1, 02) and @ (z), respectively. The same conven-
tion holds for multivariate normal, where N (u, 3), N (z;u, %), ¢ (x; p, 2), and @ (x; p, X)

are for the distribution with the mean vector p and the covariance matrix .

TN (/1,, % a, b) denotes a truncated normal distribution with 4 and o2 being the mean
and variance before truncation, and a and b being the lower and upper end of the truncated

interval.

The gamma distribution is denoted as Ga (x; a,b) with probability density function being

fca (z;a,b) = Fb(Z) 2% 1e7%®  The according inverse-gamma distribution is given by

1G (x; a,b) with probability density function being fig (z;a,b) = %x_“_le_b/x. The T' ()

in the denominators is the gamma function.

The inverse Wishart distribution is a generalization of the inverse gamma distribution

to multi-dimensional setups. Let Q be a d x d matrix, then the inverse Wishart distribution

is denoted as IW (Q; ¥,v), and its pdf is fiw (Q;¥,v) = Ulde() |Q|7V+g+1 e~ 3t (T,
22 Ty(%

When €2 is a scalar, the inverse Wishart distribution is reduced to a inverse-gamma distri-
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bution with a = v/2, b= U/2.

1(+) is an indicator function that equals 1 if the condition in the parenthesis is satisfied

and equals 0 otherwise.
Iy is an N x N identity matrix.

In the panel data setup, for a generic variable z, which can be v, w ,x, or y, z;z isa d, x 1

vector, and z;¢,.t, = (Zity, -+, Zity) 18 @ d» X (t2 — t1 + 1) matrix.

||-|| represents the Euclidean norm, i.e. for a n-dimensional vector z = [21, 29, - - , 24,
=l = 21+ + 20

supp () denotes the support of a probability measure.

B.2 Algorithms

B.2.1 Hyperparameters

Recall the prior for the common parameters:
(ﬂ,aQ) ~ N <m€,1/1€02> 1G (02; ag2,b32) i

The hyperparameters are chosen in a relatively ignorant sense without inferring too much

from the data except aligning the scale according to the variance of the data.

0’ =2, (B.2.1)
v’ = £ (Var, () - (a§” — 1) = B (Var, () (B-22)
my = 0.5, (B.2.3)
ul = ! -1 , (B.2.4)
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In equation (B.2.2) here and equation (B.2.5) below, E! and @'i stand for the sample

mean and variance for firm ¢ over t = 1,--- ,T, and Ei and Var' are the sample mean and
variance over the whole cross-section i = 1,--- , N. Equation (B.2.2) ensures that on average

the prior and the data have a similar scale. Equation (B.2.3) conjectures that the young
firm dynamics are highly likely persistent and stationary. Since we don’t have strong prior
information in the common parameters, their priors are chosen to be not very restrictive.
Equation (B.2.1) characterizes a rather less informative prior on ¢? with infinite variance,

and Equation (B.2.4) assumes that the prior variance of /3 is equal to 1 on average.

The hyperpriors for the DPM prior are specified as:

Go (,uk,w,%) =N (Mk-; mé‘,zﬁé‘wﬁ) 1G (wz; aé‘,bé) ,

a~ Ga(a; ag,by) .
Similarly, the hyperparameters are chosen to be:

ay =2, 0 = Var' (B () - (= 1) = Var' (EL (). (B.2.5)
my =0, Yo = 1,

ag =2, b3 = 2. (B.2.6)

where bé is selected to match the scale, while a())‘, ma\, and w()\ yields a relatively ignorant and
diffuse prior. Following Ishwaran and James (2001, 2002), the hyperparameters for the DP
scale parameter « in equation (B.2.6) allows for a flexible component structure with a wide
range of component numbers. The truncated number of components is set to be K = 50, so
that the approximation error is uniformly bounded by Ishwaran and James (2001) Theorem
2:

HfA’K - f’\H ~ 4N exp <—Ka_1> <210 x 10718,

at the prior mean of a (& = 1) and cross-sectional sample size N = 1000.

183



I have also examined other choices of hyperparameters, and results are not very sensitive
to hyperparameters as long as the implied priors are flexible enough to cover the range of

observables.
B.2.2 Random-Walk Metropolis-Hastings

When there is no closed-form conditional posterior distribution in some MCMC steps, it is
helpful to employ the Metropolis-within-Gibbs sampler and use the random-walk Metropolis-
Hastings (RWMH) algorithm for those steps. The adaptive RWMH algorithm below is based
on Atchadé and Rosenthal (2005) and Griffin (2016), which adaptively adjust the random
walk step size in order to keep acceptance rates around certain desirable percentage.

Algorithm B.2.1. (Adaptive RWMH)
Let us consider a generic variable 6. For each iteration s =1, -+, Ngim,

1. Draw candidate 0 from the random-walk proposal density 6 ~N (9(5_1), C(S)E).

2. Calculate the acceptance rate

a.r.(0]0*~1) = min 7})(5\)
(66 ! ) = (1’p(9(s—1)|.)> ’

where p(8|-) is the conditional posterior distribution of interest.

3. Accept the proposal and set 0©) = 0 with probability a.r.(0|0~). Otherwise, reject

the proposal and set 05) = 9(s=1),

4. Update the random-walk step size for the next iteration,

log (6D = p (logC(s) +s57¢ (a.r.(§|0(5_1)) - a,r.*)) ,

where 0.5 < ¢ <1, a.r.* is the target acceptance rate, and

p () = min (|z], 2) - sgn (x)
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where T > 0 s a very large number.
Remark B.2.2. (i) In step 1, since the algorithms in this paper only consider RWMH on

conditionally independent scalar variables, 3 is simply taken to be 1.

(ii) In step 4, T choose ¢ = 0.55, a.r.* = 30% in the numerical exercises, following Griffin

(2016).
B.2.3 Details on Posterior Samplers

The formulas below focus on the (correlated) random coefficients model in Algorithms 3.5.1
and 3.5.2 where the (correlated) random effects model in Algorithms 3.3.1 and 3.3.2 are

special cases with solely univariate ;.
Step 2: Component Parameters

Random Coefficients Model Forz =\, land k* = 1,--- , K*, draw (M;S”), QZES)) from

a multivariate-normal-inverse-Wishart distribution (or a normal-inverse-gamma distribution

{Zi(s*l) }ieJ,jS” > :

(0.58) o 12 ) (050 508

1 (s—1

~Z s—1)

M= = nz(sfl) Z < ’
k= E]z(c 1)

v = (W) et

if z is a scalar) p (M;£S)7 Q;gs)

z z 51
mie =¥ | (V§) " mg + Z )

z(s—1)

ieJ!
V]?Z —V()+ z(s 1)7
2
-1 _
it S () e W) mg - it (W) e
zEJZ(S Y
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Correlated Random Coefficients Model Due to the complexity arising from the con-

ditional structure, I break the updating procedure for (uiﬁs),ﬁigs)) into two steps. For
z=MANland k*=1,--- , K7,

(s)

(a) Draw ,uzz from a matricvariate-normal distribution (or a multivariate-normal distribu-

(s) Q;gsfl)7 {Zi(sfl)7 Cio}ief(rl) > :
kZ

tion if z is a scalar) p <MZZ
vee (i) ~ N (vee (1) 5 vee (mi) v )

i = 3 AT ).

iegls™y
~zceo 2 : r 7! /
mkz - [1762'0] [1vci0] ;
iegrh
A~z A 2,2C (& Z,cc\ —1
ke =g (me)

_17-1
Vi = [@g)l + i@ (90 Y) } ,
—1
vec (mf=) = V- [(1/16)_1 vec (mg) + (ﬁ%i’fc ® (QZ£8_1)> > vec (mzz)] ,
where vec () denotes matrix vectorization, and ® is the Kronecker product.

(b) Draw Q,’igs) from an inverse-Wishart distribution (or an inverse-gamma distribution if z

2(s) [ (s=1) .
Mkz ) {Zi ) Clo}iEJZ;S_l) > '

O~ W () Wi v )

is a scalar) p <Q;£s)

z(s—1
V]iz = 1/5 + nkg )7

Pt Y (A - L)) (7 - i L))
iegrli
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Step 4: Individual-specific Parameters

Fort=1,--- /N, draw )\(5) from a multivariate-normal distribution (or a normal distribution

20,

if A is a scalar) p ()\( A (U?)(S_l) ,B6-D D, DA>:

A~ N (m)‘ 23) ,
-1
Zg\ _ <<Qi§s)>—1 " ((O_ig)(sfl)>—1 tzi;wiyt_lwg,t1> ’
m; =%} ((Q;\;S))l i} + ((("1‘2)(871)>71 gwi,tl (yit - 5(S_I)I$i,t1)> )

where the conditional “prior” mean is characterized by

~/\ ,ui‘(s), for the random coefficients model,
My = i
/fﬁs) 1, cgo]/, for the correlated random coefficients model.

Step 5: Common parameters

Cross-sectional Homoskedasticity Draw (3(),0%®) from a linear regression model

{)\Es)}, D):
<5<s>702(s)>NN<ﬁ(s) mB, o2 )IG( 205). aa?jbﬁ),

., N T -1
¢6=<<¢€) +szi7t—1ﬂf§,t—1) )

with “unknown” variance, p (ﬁ(s), o2(s)

_1i:1 t=1 .
mP = WB <(¢g> mg + ZZ Tit—1 (yzt Y )/wi,t—1)> )
o2 o2 NT -
a = aO + 7
b = 582 + % (i Z (yit - AES)/wi,pl) + mo (%) mg —m” (Wg)il mﬁ) ~
i=1 t=1
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Cross-sectional Heteroskedasticity Draw 3 from a linear regression model with

(N0}, p):
86~ N (mﬁ’?Eﬂ) 7
N T -1
i = <(Eﬁ>1 + ((cr?)(s)y1 Z T 1, )
" Z i=1 t=1 ; H ,
mb = xP ((E€>_lmg + ((0?)(S)>_l ii%t 1 (yzt - ( )/wi,t—1)> .

i=1 t=1

“known” variance, p (B(s)

Remark B.2.3. For unbalanced panels, the summations and products in steps 4 and 5 (Sub-
sections B.2.3 and B.2.3) are instead over t = tq;, - - - , t1;, the observed periods for individual

7.
B.2.4 Slice-Retrospective Samplers

The next algorithm borrows the idea from some recent development in DPM sampling
strategies (Dunson, 2009; Yau et al., 2011; Hastie et al., 2015), which integrates the slice
sampler (Walker, 2007; Kalli et al., 2011) and the retrospective sampler (Papaspiliopoulos
and Roberts, 2008). By adding extra auxiliary variables, the sampler is able to avoid hard
truncation in Ishwaran and James (2001, 2002). I experiment with it to check whether the
approximation error due to truncation would significantly affect the density forecasts or not,
and the results do not change much. The following algorithm is designed for the random
coefficient case. A corresponding version for the correlated random coefficient case can be

constructed in a similar manner.

The auxiliary variables u?, 7 = 1,--- , N, are i.i.d. standard uniform random variables, i.e.

u? ~ U (0,1). Then, the mixture of components in equation (3.2.6) can be rewritten as

Z o~ Z (uf < pi=) (2 0;2),

k*=1

where z = A, [. By marginalizing over u;, we can recover equation (3.2.6). Accordingly, we
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can define the number of active components as

K** = max ~?
ISiSN%v

and the number of potential components (including active components) as

e
K> =min{k*: | 1- ;pj < Ig%ignNuf

Although the number of components is infinite literally, we only need to care about the

components that can potentially be occupied. Therefore, K** serves as an upper limit on

the number of components that need to be updated at certain iteration. Here I suppress

the iteration indicator s for exposition simplicity, but note that both K*4 and K*¥ can

change over iterations; this is indeed the highlight of this sampler.

Algorithm B.2.4. (General Model: Random Coefficients III (Slice- Retrospective))

For each iteration s =1,  Ngm, steps 1-8 in Algorithm 8.5.1 are modified as follows:
For z =\, I,

1. Aclive components:

(a) Number of active components:

K*4 = max 7;(571)
1<i<N '*

(b) Component probabilities: for k* = 1,--- , K>, draw pi: from the stick breaking

o251, {nzgs—l) } > .

process p <{pii‘}

KZ‘A
Pt ~ SB ni(zs—l)’ az(s—1)+ Z n;(s—l) . k=1, ,KZ’A'
j=k+1
(c) Component parameters: for k* =1,--- , K*4, draw 0= from
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» <91§§ {Zi(sfl)} sl 1)> as in Algorithm 3.3.1 step 2.

(d) Label switching:

z,A KZ,A

jointly update {ngs),ezgs),’yf*}ZZI based on {pkz,%ﬁ, f(sfl)}kzﬂ by three

Metropolis-Hastings label-switching moves:

i. randomly select two non-empty components, switch their component labels
(vi ), while leaving component parameters (0;.) and component probabilities
(pi-) unchanged;

ii. randomly select two adjacent components, switch their component labels (v7)
and component “stick lengths” (C7.), while leaving component parameters
(07-) unchanged;

iii. randomly select two non-empty components, switch their component labels
(v;) and component parameters (07.), as well as update their component
probabilities (pj. ).

Then, adjust K*4 accordingly.

2. Auziliary variables: fori=1,--- N, draw uf(s) from a uniform distribution

p( z(s) Hpkg)},%z*):

W U (0, pz(s)) .

Z%
(3 ﬂ/i

3. DP scale parameter:

(a) Draw the latent variable &) from a beta distribution p (fz(s) |az(5_1), N).'
ﬁz(s) ~ Beta (ozz(s_l) +1, N) .
(b) Draw a®) from a mizture of two gamma distributions p (az(s) ‘fz(s), K#A, N) :

az(s) ~ paz Ga (O[Z(S); aaz + }-(Z,A7 baz —log éZ(S))

+(1-p") G ( R e N e
2 a® +KZA
(baz _]ngz s )
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4. Potential components:
(a) Component probabilities: start with K** = K*4,
i if (1 — ZJKZZI pj(s)> < minj<;<ny uf(s), set K*P = K#* and stop;
ii. otherwise, let K** = K** + 1, draw (}.. ~ Beta (1,0(2(8)), update pg(ﬁl =
Cheen HKKZ* (1 — Cj), and go to step (a-1).
(b) Component parameters: for k* = K>4 +1,--.  K>F  draw e,jﬁs) from the DP

base distribution G§.

5. Component memberships: Fori=1,---N, draw %;(5) from a multinomial distribution

P ({%’Z(s)} HngS)’ MzES)’ ngs)} 7 uf(s), zfs_l) ) .

72.2(8) = k*, with probability pi., k* =1,--- , K>,

KZ,P
D5 X ngs)qb <zi(s_1); ,U;gs), ngs)) 1 (uf(s) < pigs)) , Z P = 1.
k=1

The remaining part of the algorithm resembles steps 4 and § in Algorithm 3.5.1.

Remark B.2.5. Note that:

(i) Steps 1-b,c,d are sampling from “marginal” posterior of (p.,0;.,~7) for the active com-
ponents with the auxiliary variables u?’s being integrated out. Thus, extra caution is needed

in dealing with the order of the steps.

(ii) The label switching moves 1-d-i and 1-d-ii are based on Papaspiliopoulos and Roberts
(2008), and 1-d-iii is suggested by Hastie et al. (2015). All these label switching moves aim

to improve numerical convergence.

(iii) Step 3 for DP scale parameter o® follows Escobar and West (1995). It is different from
step 1-a in Algorithm 3.5.1 due to the unrestricted number of components in the current

sampler.

(iv) Steps 4-a-ii and 4-b that update potential components are very similar to steps 1-b and

1-c that update active components—just take JZ. as an empty set and draw directly from
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the prior.

(v) The auxiliary variable u} also appears in step 5 that updates component memberships.
The inclusion of auxiliary variables helps determine a finite set of relevant components for

each individual ¢ without mechanically truncating the infinite mixture.

B.3 Proofs for Baseline Model

B.3.1 Posterior Consistency: Random Effects Model

Skills vs Shocks

Proof. (Proposition 3.4.7)

Based on the Schwartz (1965) theorem stated in Lemma 3.4.6, two sufficient conditions
guarantee the posterior consistency: KL requirement and uniformly exponentially consistent

tests.
(i) KL requirement

The proposition assumes that the KL property holds for the distribution of A, i.e. for all

€ >0,
fo ()
f N

whose sufficient conditions are stated in Lemmas 3.4.8 and B.5.1. On the other hand, the

Hf<f€]-":/f0(>\)log d)\<e>>0,

KL requirement is specified on the observed y in order to guarantee that the denominator

in equation (3.4.2) is large enough. In this sense, we need to establish that for all € > 0,

Jfoly—) ¢ () dd
ff (= ) 6 () dut dudy < 6) > 0.

H<f€F: [ fow=wo oy

Let g(x) = zlogz, a(u) = foly—u)¢(u), A = [a(u)du, b(u) = f(y—u)¢(u), B =
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[ b(u)du. We can rewrite the integral over u as

/h@w¢wn%§?giﬁﬁﬁ2$%“=A*%§ZBﬂ(§>
o [5 e) < ()
fo(y —u)

/(;5 ) fo (y — u)log ——=—=du, (B.3.1)

fy—u)

where the inequality is given by Jensen’s inequality. Then, further integrating the above

expression over y, we have

The inequality follows the above expression (B.3.1), the next equality is given by change of

variables, and the last equality is given by the KL property of the distribution of A.
(i1) Uniformly exponentially consistent tests
(ii-a) When X is observed

Note that by the Hoeffding’s inequality, the uniformly exponentially consistent tests are
equivalent to strictly unbiased tests, so we only need to construct a test function ¢* such
that
E < inf E
o (7)< jnf By (o).
Without loss of generality, let us consider a weak neighborhood defined on € > 0 and a

bounded continuous function ¢ ranging from 0 to 1. Then, the corresponding neighborhood

Vo ) = {1+ | [t = [ ot <<}

is given by
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We can divide the alternative region into two parts3’
Uc, (fo) = A1 U Az

where

m={s: [or> [on+e},
na={s: [or<[on-c}.

For Ay, we can choose the test function p* to be ¢. For Ay, we can choose ¢* to be
1 — . Then, in either case A = Ay, As, type I error Ef (¢*) = [¢*fo, and power

infrea Ef (¢*) > [ ©*fo + €, hence the tests exist when X is observed.
(ii-b) When y is observed instead of A
Define g (A\) = f (A) — fo (A). Then, by definition, [ g (A\)d\ =0 for all g. There are always

tests if we observe A, then for any g, there exists a € > 0 such that

/Ig ()] dA > e. (B.3.2)

The next step is to prove that there are tests when y is observed instead of A\, which is done
via proof by contradiction. Suppose there is no test when we only observe y, then there

exists a g such that

h) = [ 3(-wo(w)du=0for all

due to the continuity of h. Employing the Fourier transform, we have

Fy (&) =Fx(§) crexp (—0252) = 0 for all &.

37t is legitimate to divide the alternatives into sub-regions. Intuitively, with different alternative sub-
regions, the numerator in equation (3.4.2) is composed of integrals over different domains, and all of them
converge to 0.
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Since c¢1 exp (—0252) # 0, then

Fy (&) =0 for all &.

Finally, the inverse Fourier transform leads to
g(A) =0 for all

which contradicts equation (B.3.2). Therefore, there are also tests when y is observed instead

of \.

Combining (i) and (ii-b), f achieves posterior consistency even when we only observe y. [

Unknown Shocks Sizes

Proof. (Proposition 3.4.9)
(i) KL requirement

Based on the observed sufficient statistics A = %Z;‘le y;r with corresponding errors 4 =

% Zthl Ui, the KL requirement can be written as follows: for all € > 0,

feF, o?eR:

2

II N o\ Jh(A-w)e (a0, %) di > 0.
/fo (A—u) ¢ <u; 0, (;’) log f;(gfc’)>¢((ﬁ’; N ;;dﬂ’ did) < e

Under the prior specification together with hyperparameters specified in Appendix B.2.1,

the integral is bounded with probability one. Following the dominated convergence theorem,

s, | Jo (&_a)eb(a; 0, 03> L G GRS ) i
g7 0%




where the upper bound of the right hand side can be characterized by the KL property of
the distribution of A as in the proof of Proposition 3.4.7 part (i). The sufficient conditions

of the KL property of the distribution of A are stated in Lemmas 3.4.8 and B.5.1.
(ii) Uniformly exponentially consistent tests

The alternative region can be split into the following two parts:

(ii-a) |02 — o3| > A

Orthogonal forward differencing yields g;; ~ N (0, 0’3). Then, as N — oo,

NI D1 Lot @) i fy 2
o2 AN(T-1) "N(T—-1))"

Note that for a generic variable z ~ N (0, 1), for z* > 0,

(B.3.3)

Then, we can directly construct the following test function

1 N T—1/~ \2
N el 2ot (Fit)
1 ( XT=D 12 t=1 \Jut <1_A2 , f0r02<02—A,
R g 20, 0
PN (yl:N,l:Tfl) = L SN 5 Tlg 92
— =1 =1 g
1<N(T D = ¢ >1+2§3), for o® > a3+ A,

which satisfies the requirements (3.4.1) for the uniformly exponentially consistent tests.
(ii-b) ‘02 — 0(2)} <A, fe Uf’q, (fo)

Without loss of generality, let ® = {¢} be a singleton and ¢* be the test function that

distinguishes f = fy versus f € US,, (fo) when 02 is known. Then, we can express the
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difference between E (¢*) and Ey, (¢*) as

7( e (3) fo (A= )¢<ﬂ;0,2§>dﬂd5\
;5/¢(g(f@_ﬂ)_h<x_@>¢@4,f)ﬁwx
)f u) <¢ <u o,‘j) — <u 0, “T8>) dadi‘. (B.3.4)

Since ¢* is the test function when of is known, the first term

[# () (=) -n(i-0))o (w0 B)ai>c  @33)

§/<p* (\) s (A-a) ’gb did)
Jp(eeg) (e
< ﬁ 11— mﬁ. (B.3.6)

The second inequality is given by the fact that ¢* (5\> € [0,1]. The last inequality follows
Pinsker’s inequality that bounds the total variation distance by the KL divergence, which

has an explicit form for normal distributions

2 2 2 2
.05 O _ 1 (og op

We can choose A > 0 such that for any ‘02 — 08{ <A,

2 2
o o €
A-r-md<s
o o 2
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Plugging expressions (B.3.5) and (B.3.6) into (B.3.4), we obtain

2

[o ()1 (h-a)o (0.2 )auar- [ (3) fo (A1) o (i 0.5 ) auas

*

s0 ¢* is the test function with respect to the alternative sub-region {‘02 — 08| <A, f€

Ués (fo)}- s

Lagged Dependent Variables

Proof. (Proposition 3.4.11)
(i) KL requirement

Define the sufficient statistics \ (B) = % Zthl Yit — BYit—1 with corresponding errors 4 =

% Zthl uit. The KL requirement is satisfied as long as for all € > 0,

feF, (Bo*) e RxR':

/fo (Bo) —U)tb(ﬂ;O,UTg)logffo( (o) _u>¢< OUO)dAdﬁdS\<€ > 0.

1 (30) ) wr0.3)

Similar to the previous case, the dominated convergence theorem and the KL property of

the distribution of A complete the proof.
(i1) Uniformly exponentially consistent tests

The alternative region can be split into the following two parts:

(ii-a) |8 — Bo| > A or |o? — oF| > A

198



Orthogonal forward differencing yields y;; = B9; —1 -+, Uig ~ N (0, ag). Then, as N — oo,

) N T-1 1 /N 11 4 o8
Bors = <Z;z:: Yit—1 2) (ZZQH 1%) — N (50, NZ?:_llE?(ﬂat—l)z)

=11

1
2
T N(T-1) Ez 1 t 1 (yzt_BOLsyzt 1) N i)N . 2
o2 XNt "N -1)-1)"

Since the upper tail of a normal distribution is bounded as in expression (B.3.3), we can

directly construct the following test function
en=1-(1-¢ng) (1 - ¢no2),
where
enN,3 (J1:N1:7-1)
1<BOLS<BO_%)7 for B<fBy—A
1(BOLS>BO+%)7 for B> Bo+ A,

YN,o2 (J1:N,1:7-1)

1 N ~T-1(s _ 4 = 2
5 et i (Je—BorsFii—1) A
1<N(T L 2 <1_ﬁ , foro?<at—-A,

90

90

1 N T—1(~ A . 2
7,21: Z — (yit_ﬁOLsyi,tfl) ’
1<N(T 1) L=l >1+2%Tg , f0r02>08+A’,

which satisfies the requirements (3.4.1) for the uniformly exponentially consistent tests.

(ii—b) |ﬁ—,80’ < A, ’0'2—0'3‘ < A/ fE ch> (fo)

The following proof is analogous to the proofs of Proposition 3.3 in Amewou-Atisso et al.
(2003) except the inclusion of shocks wu;’s in the current setup, which prohibits direct in-
ference of \;. Without loss of generality, let ® = {¢} and ¢* (y) be the corresponding test

function on § = y;1 — Boyio = A + u;1 when [y and 08 are known. Then, we can construct
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a uniformly continuous test function

@ (y)7 if ’yo‘ < My,
1, Zf !?3| > My,
max {* (5), ¢* (M) + 552G (9= M) |, if § € [My, M),

max {" (), 1+ S () + M) } if € [~Ma, M),

where M is chosen such that

. €
/ foly—u)o (u; 0, 0(2]) dudy; < 1
9> M

Then,

o\ g . . 3
/90** (9) f (G —u) ¢ (u; 0,08) dudy, — /90** (@) fo (5 — u) & (u; 0,08) dudys > ~e.
(B.3.7)
Due to uniform continuity, given € > 0, there exists § > 0 such that [¢** (¥/) — ¢*™* (9)] <

€/4 for any |y —y| < 6. As w0 is compacted supported, we can choose A such that
y

|(8 — Bo) yio| < 6.

Let 41 be a generic variable representing y;1. Define the test function for the non-i.i.d. case

to be ¢; (Y1) = ¢** (y1 — Bowio)- Then, the difference between Ef (¢;) and Ey) (¢;) is

/% (1) f (1 — Byio — ) ¢ (u; 0,07) dudy,
~ [ ) fo o = B — )& (s 0.08) dudys

> / wi (1) (f (y1 = Boyio — ) = fo (1 — Boyio — w)) & (u; 0, 0%) dudy
+ / 0i (Y1) (f (y1 — Byio — w) — f (y1 — Boyio — 1)) ¢ (u; 0,0%) dudy:

- ‘/% (1) f (y1 — Byio — u) (¢ (w; 0,0%) — ¢ (u; 0,0%)) dudy| .
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From expression (B.3.7), the first term is bounded below by 3e¢/4. Similar to the proof of
Proposition 3.4.9 part (ii-b), the third term is bounded above by €/4. For the second term,

note that for any 4,

/¢“@y—®f@y—&ﬂo@y=/¢“@nf@rww@1

Then,

/% — Byio —u) — f (y1 — Boyio — u)) dy1

\

& (1 + (B — %mdﬂmﬂmm—/WWWf%—@@1

\/

/MP** y1 + (8 — Bo) yio) — ™ (y1)| f (y1 — ) dyr

|
Nm

where the last inequality is given by the uniform continuity of ¢**. Hence, Ef (¢;) —
E, (i) > €/4, and {p;} constitutes the tests with respect to the alternative sub-region
{1850l < A, |0 —af| < A, [ € Uy (fo)}. 0

B.3.2 Posterior Consistency: Correlated Random Effects Model

Recall that h, f, and g are the joint, conditional, and marginal densities, respectively. In

addition,

ho (A,c) = fo(Ale) - qo (c), h(Ac)=f(Alc)-qo(c).
Proof. (Proposition 3.4.15)
(i) KL requirement

Define the sufficient statistics \ (B) = % 23:1 Yit — BYit—1 with corresponding errors 4 =
% Zthl uit. Considering joint density characterization, the observations are i.i.d. across ¢ in

the correlated random effects setup. The KL requirement can be specified as follows: for all
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e >0,
ferF, (B,UZ)GRXR+2

(b - yo)qb(a; o"f) .
S o (ABo) =, wo) & (5 0, %) dit
Sr(A@) i, wo) o (w; 0,%) i

The rest of the proof is similar to the previous cases employing the dominated convergence

log dadM\dyy < €

theorem and the KL property of the joint distribution of (A, yp) with sufficient conditions

stated in Assumption 3.4.14.
(ii) Uniformly exponentially consistent tests

It follows the proof of Proposition 3.4.11 part (ii) except that in case |8 — fy| < A, ‘02 - 03‘ <
. [ € Ule (fo), the test function ¢ is defined on (y1,yo0) that distinguishes the true hg

from alternative h. O

B.3.3 Density Forecasts
Proof. (Proposition 3.4.16)
(i) Random Effects: Result 1

In this part, I am going to prove that for any ¢ and any U, ¢ ( er“jae), as N — oo,

d I
(ff(:)rnﬂ €Ue.o (ffTTaﬁf) yl:N,o:T) =1, a.s.

This is equivalent to proving that for any bounded continuous function ¢,

/ o () % (418, 0, f.yior) dy

P| feF:
- / o (y) 12554 (y) dy

<e€ Yi:No:T | — 17 a.s.
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where

‘ / e (y) F58484 (WIB. o2, foyior) dy — / o (y) FIEE () dy‘

= ‘/w(y)cﬁ(y; Byir + Xi, o) p (N |B, 0%, f,yi07) dhidy

/w(y) o (y; Bovir + Ni,o3) p (Ni | Bo. 08, fo, yior) d/\z'dy‘
_ Te W) o (y; Byir + Xi, o) TLip (Wit | X, B, 02, yie—1) f (M) dhidy
JTLip (Wit [N, By 0% yie-1) f (M) dXs

T W) o (i Bovir + Xi»08) T1, p (vie | Ai: Bo, 08, yii—1) fo (Ni) didy
JTLp (yie P\z‘,ﬁo, o2, yii—1) fo (Ni) dN;

The last equality is given by plugging in

Htp (yzt ‘)\%Bv UQ?Z/’Z t—l) f (/\Z)
>\i ’ 2> s Yi,0: = : .
Pl Fior) = T G N B 0% e 1) 7 V) X,

Set

A:/Hp(yit|/\i7/8’0'27yi,t—1)d)\i,
t

B = /‘p(y) ¢ (y7 Ble + Aivo-Q) Hp (yzt ‘)‘i75702ayi,t—1) dA’Ldy
t

with Ap and By being the counterparts for the oracle predictor. Then, we want to make

sure the following expression is arbitrarily small,

B By

_ Do _ |Bo||A—A0\+\B—Bo’
A A

~ [Aol[A4] Al

and it is sufficient to establish the following four statements.
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(a) |A— Ao| < €

|A — Aol

<

/HP (yit |Nis Bos 05, yit—1) (F (M) = fo (Ag)) dAs
t

_l’_

/ (Hp (yit | Ni, B, 02, Y1) — HP (yat ‘)\z',ﬁo,(f%,yi,tﬂ) Jo (Ai) dA;
t t

The first term is less than € /2 with probability one due to the posterior consistency of f

and that

1 2
1;[]0 (yit | Ni» Bo, 05, Yii—1) = C (Bo, 03, yioer) @ (M; T Z (yit — Boyii—1) 5 ?) (B.3.8)

T

is a bounded continuous function in A;, with C (60, 08, yi,o:T) being

— €Xp
L 202

c (50> ag, yi,O:T) = % <_ 2 (Yit — ﬁoyi,t_1)2 - % (- (i — ,Boyi,t—l))2> '
VT (2%03) E

For the second term,

‘/ (Hp (yit | Xis B, 0%, yiz—1) — Hp (it P\i,ﬂo,ff%ayi,t—Q) Jo (Ai) dA;
¢ ¢

SM/ Hp(yit |Xi, 8,02, yie—1) *Hp(yz't | Xis Bos 03, Yie—1 ) | dNi
¢ i
¢)\EZ(_5 )12
79 T — Yit Yit—1 ’T
<MC (5070(2)7%,01)/ ) N
-9 (AiQ T > (yie — Bovii—1) 29)
T
1 2
+ M |C (8,0% yior) — C (ﬂo,o&yi,om)!/¢> <)\z’; T ZT: (it — BYit—1) UT> d\;.

(B.3.9)

where the last inequality is given by rewriting [[, p (yit ‘)\i, B,02, yi,t_l) as a distribution of
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Ai (equation B.3.8). Following Pinsker’s inequality that bounds the total variation distance

by the KL divergence,

1 o? 1 0(2]
/ ¢\ A 7 > (it — Byi-1) v Ais > (it — Boyii-1) T ||
T T
< [2aicr (0 (Mt 3 e~ Bowen). 2 ) 0 (0 ), 2
>~ KL 79 T . Yit 0Yi,t— 1 T ) yzt Yit—1), T
g of . (B=50)° iyie1)’
< % —1-In Gg VoS (B.3.10)

(5, 2) enjoy posterior consistency, both ‘C (,B,Uz,yi,O:T> -C (60708,%,01)‘ in expres-

2
sion (B.3.9) and \/UO —1—1In (B=Fo) (T% ieo1) in expression (B.3.10) can be arbitrar-

ily small. Therefore, the second term is less than € /2 with probability one.

(b) |B — Bo| < ¢

|B — By|

<

/90 (v) & (y; Bovir + s 03) Hp (yit | Xi Bos 06, Yi—1) (f (Ni) = fo (As)) dNidy
t
¢ (y; Byir + Xi,0?) Hp (it | Nis B, 0°, yi—1)
t

+ [ fo (0) dhidy
— ¢ (y; Bowir + Xi,o0) [ [ p (wie [Xir Bos 06, yiv—1)
t

Similar to (a), the first term is small due to the posterior consistency of f, while Pinsker’s

inequality together with the posterior consistency of (B , 02) ensure a small second term.

(c) There exists A > 0 such that [Ag] > A.

Ay = /Hp(yit‘)\iaﬁovggayi,t—l)fO()\i)d)\z
t

2
= C(ﬁOaagayi,O:T)/¢ </\i; %Z(yit_ﬁoyi,t—l) T) fo (Ai) dA

T
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Since ¢ ( & T ZT (yit — BoYit—1), T) and fo (\;) share the same support on R, the integral
is bounded below by some positive A. Moreover, we have |A — Ag| < € from (a), then

|A| > |Ag| — € > A — €. Therefore, both |Ag| and |A| are bounded below.

(d) [Bo| < o0
|Bo| = ‘/ (y; 5OyiT‘|’)\iaUg)Hp(yit‘)\iyﬁ()aa(%vyi,t—l)fO()\i)d)\idy
;
< (272 ‘/¢ Y Bowir + Xi» o) fo (As) dX; dy‘
e
= M‘P';T
(2m0?)

(ii) Random Effects: Result 2

Now the goal is to prove that for any ¢, any y, and any € > 0, as N — oo,

fir () = Foee ()] <€, as.
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where

l
I () = F2552 ()

= ‘/ o (y; Byir + Xi, o) p (N |B,0°, foyior ) dIL(B,0°, f lyr.nvor ) dAidBdo?df

—/gf)(y; Bovir + Nir 03) p (Ni |Bos 5, fos yior ) dA;

_ |/ [ & (ys Byir + Xi, o) TTp (vie | M B, 0%, yi—1) [ (i) dhidy

ST p (Wie [N, B, 02, yie—1) £ (i) dA;

~dIL (B, 0%, f lyr.v.01 ) dBdo?df

_ [ (y; Bovir + Xi, o) T, p (wit | Nis Bo, 08, yi—1) fo (Ni) dNidy
thp (y’bt ’Aiw@(bo-ga yi,t—l) fO ()\z) d>\7,

</ ‘f@b (5 Byir + Xi, o) TL p (it | Xi, B, 0% yie—1) f (Ni) dNidy

thp (ylt ‘)‘27 57027 Yit—1 ) f ()\1) dA’L

S o (s Boyir + Nis05) TT, 2 (it | Nis Bos 08, yie—1) fo (Ni) dNidy
JTLp (vit | Nis Bo, 08, yig—1) fo (i) dXi

~dI1 (B,0%, f lyr.v.01 ) dBdo?df.

Note that along the same lines as part (i) “Random Effects: Result 17, the integrand

[ (y; Byir + Xis o) TLp (it | Mis B, 02, yie—1) f (Ni) dhidy
J T2 (it |Nis B, 0%, yi—1) | (A) dA;
[ (y; Boyir + Xi,03) TTip (it | Ai, Bo, 08, yie—1) fo (M) dhidy
ST p (vie P\z', Bo, 08, yit—1) fo (Ni) dNi

< €.

(iii) Correlated Random Effects: Result 1

As the posterior consistency for conditional density estimation is characterized by the joint
distribution over (\;, yio), the convergence of “joint” predictive distribution (y;741,v:0) fol-

lows the same logic as part (i) “Random Effects: Result 1”. Hence for any bounded contin-
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uous function @ (y,yio) , and any € > 0, as N — oo,

ferF, (B,0%) eRxR*:

‘/ & (v vio) 274 (yIB, 02, £, yi0m) qo (yio) dyiody yinoT | — 1, as.

/ap(y, yio) FEEE (ylyio) qo (yio)dyiody' <e

where

‘/ @ (v yio) L7 (ylB, o, £, yi0r) o (vio) dyiody

/80(11 Yi0) fOTTaﬁ (ylyio) qo (yio)dyz’()dy‘

_ @ (w,yi0) ¢ (y; Byir + Ais o) T1, p (it | Ais B, 02, yie—1) f (Nilyio) qo (yio) dXidyiody
JTLp (ie |\, By o2, yii—1) | (Nilwio) qo (io) dNidyio
(

[ @ (W, vi0) & (3 Boyir + Niy o) TL p (it | iy Bos 08, Yie—1) fo (Nilwio) g0 (yio) dNidyiody
S T1 2 (wit | X, Bo, 08, ie—1) fo (Nilyio) g0 (io) dNidyio

(B.3.11)

However, it is more desirable to establish the convergence of “conditional” predictive distri-
bution y; 741|yi0, i.e. for any bounded continuous function on y, ¢ (y) and any € > 0, as
N — o0,

ferF, (B,0%) eRxR:

‘/ fOTnf1 (18,02, f.yi0.r) dy nvor | = 1, as.

/ () £ (ylyro) dy| < e
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where

[ o0 018 0% Lo dy — [ o) 55 G
_ T W) o (y; Byir + Xi, o) TLp (Wit | Xi, B, 0%, yie—1) f (Nilyio) dAidy
JTLp (Wit [N, B, 02, yie—1) | (Nilwio) dAs

T W) ¢ (y; Boyir + Ni o) TL v (it | iy Bos 08, yie—1) fo (Nilyio) dNidy
[ TLp (it ’)\z’, Bos 08, yi—1) fo (Nilyio) dhi

(B.3.12)

o(y)
q0(Yio)

Set @ (y, yi0) = . Note that gy (y0) is continuous and bounded below due to condition

2-b in Proposition 3.4.16, so @ (y,y:0) is a bounded continuous continuous function. Then,
the right hand side of equation (B.3.11) coincides with the right hand side of equation

(B.3.12), so we achieve the convergence of “conditional” predictive distribution y; 741|yio-
(iv) Correlated Random Effects: Result 2

Combining (ii) and (iii) completes the proof. O

B.4 Proofs for General Model

B.4.1 Identification
Proof. (Proposition 3.5.6)

Part (iii) follows Liu et al. (2016), which is based on the early work by Arellano and Bon-

homme (2012b). Part (ii) for cross-sectional heteroskedasticity is new.
(1) The identification of common parameters (3 is given by Assumption 3.5.5 (1).

(i) Identify the distribution of shock sizes f
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First, let us perform orthogonal forward differencing, i.e. for t =1,--- | T — d,,

T -1 7
~ / /
Yie = Yit — Wi g Wi,s—1W; g1 g Wi s—1Yis,

s=t+1 s=t+1

T -1 7
~ / /
Lig—1 = Tiig—1 — Wi E Wi s—1W; g1 g Wi s—1Lj 5—1-

s=t+1 s=t+1

Then, define

~ ~ ] ~

Uit = Yit — B Tit—1,
T—dy

2 -2 _ 2.2

g; = E Ujp = 05 X+
t=1

where x? ~ x2 (T — dy,) follows an i.i.d. chi-squared distribution with (T — d,,) degrees of

freedom.

Note that Fourier transformation (i.e. characteristic functions) is not suitable for disen-
tangling products of random variables, so I resort to the Mellin transform (Galambos and

Simonelli, 2004). For a generic variable z, the Mellin transform of f (z) is specified as

M, (€) = / & (z) de,

which exists for all .

Considering that a?\c and X? are independent, we have

Mgz (§|c) = M2 (§]c) My2 () -

Note that the non-vanishing characteristic function of ¢ implies non-vanishing Mellin trans-

form M2 (§|c) (almost everywhere), so it is legitimate to take the logarithm of both sides,

log M52 (€]c) = log M2 (§]c) + log MX2 (&)
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Taking the second derivative with respect to &, we get

2 2 2

o
856&,10gﬂ4g2(€k§== 8585,10gﬂ452(€hﬂ‘* 90

log MX2 (f) .

The Mellin transform of chi-squared distribution M,z (§) is a known functional form. In

addition, we have

log M2 (0lc) = log M2 (0|c) —log M, 2 (0) = 0,
0 0
—log M2 (0lc) = % log M2 (0|c) — % log M, (0)
= i(E(logé?|c) —E (x*|¢)).

Based on Pav (2015),

B () =togz+ v (T3,

where 1 (-) is the derivative of the log of the Gamma function.

Given log M2 (0|c), 8% log M2 (0|c), and %;5, log M2 (¢|c), we can fully recover log M2 (§|c)
and hence uniquely determine f"z. Please refer to Theorem 1.19 in Galambos and Simonelli

(2004) for the uniqueness.
(iii) Identify the distribution of individual effects f

Define

o / !
Ui 1T = Yi1.T — B Tior—1 = Njwio.r—1 + Ui 1.7

LetY = Yiir, W =w, g.r_1, A = X and U = u; 1.7. The above expression can be simplified
as

Y = WA +U.

Denote Fy, , F and Fy as the conditional characteristic functions for Y , A and U, respec-

tively. Based on Assumption (3.5.5) (4), Fa and Fyy are non-vanishing almost everywhere.
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Then, we obtain

log Fy (W'€lc) = log Fy (£]c) — log Fus (€]c) .

Let ¢ = W€ and Ay = (W/W) ™" W, then the second derivative of log Fx ((|c) is charac-

terized by
2 82
e 198 P (€10) = w5 (0w Fy (6l ~ o i (€0) ) A
Moreover,
log Fp (0]c) = 0,
aag log Fy (O]c) = E (AWSO/‘ c) ,
so we can pin down log A (¢|¢) and f2. O

The proof of Proposition (3.5.8) for unbalanced panels follows in a similar manner.
B.4.2 Cross-sectional Heteroskedasticity

Proof. (Proposition 3.5.9)

(i) KL requirement

As X and o2 are independent, we have

dxr (f(;\fg2’ fAf‘fz) = dkr, (fOA, f>‘> +dgr (ng» fUQ) :

Based on the observed sufficient statistics A = %ZtT:l yit with corresponding errors 4 =
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% Zthl ui¢, the KL requirement is: for all € > 0,

> 0.

dido?d)\ < ¢

(
) f002 (02/) di do?
) f02 (02/) di! do?!

As in the proof of Proposition 3.4.7 part (i), similar convexity reasoning can be applied
to bound the KL divergence on y by dgkr, ( f(j\ 1§ 2, A f"2>. The sufficient conditions for
KL properties on A and [ are listed in Lemmas 3.4.8 and B.5.1. Note that since the KL
divergence is invariant under variable transformations, the KL property of the distribution

of [ is equivalent to the KL property of the distribution of o2.
(ii) Uniformly exponentially consistent tests

The alternative region can be split into the following two parts:

(ii-2) f7" € UG g (f5")

Orthogonal forward differencing yields g;z ~ N (0,012). Define &? = tT;Idw gj?t = fof,

where x? ~ x2 (T — d,) follows an i.i.d. chi-squared distribution with (T — d,,) degrees of

freedom. Here and below, I ignore the subscripts to simplify the notation.

Let g"2 (02) = f"2 (02) — fé’Q (02). There are always tests if we observe o2, then for any

g"z, there exists a € > 0 such that

/

Similar to part (ii-b) in the proof of Proposition 3.4.7, here again I utilize the proof-by-

g (02)‘ do® > e. (B.4.1)

contradiction technique. Suppose there is no test when &2 is observed instead of o2, then
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there exist a g% such that

~2

h(6?) = /902 <§2> £z (X*) dx® = 0 for all 62,

due to the continuity of h. Here I utilize the Mellin transform for products of random

variables. As 02 and x? are independent, we have

My (€) = M, (€) - My» (€) = 0 for all €.

The Mellin transform of chi-squared distribution M, () # 0, then
M2 (&) =0 for all €.

Note that M2 (§) uniquely determines §‘72 (02). Then, the inverse Mellin transform leads
to

3°" (%) = 0 for all 02,

which contradicts equation (B.4.1). Therefore, there are also tests distinguishing the true

2 . 2 ~
" from alternative f° even when we only observe 62.

(ii-b)) f7° = f&°, [ € UL ()

This is an intermediate step for part (ii-c). Once again I resort to proof by contradiction.
Define g* (A\) = f*(\) — f& (\). There are always tests if we observe ), then for any g¢*,

there exists a € > 0 such that

/‘g)‘ (/\)’ X > . (B.4.2)
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Suppose there is no test when y is observed instead of \, then there exist a §* such that

0=h(y) = /gA (y —u) ¢ (u; 0,02) f§° (02) dudo® for all y
—0=F, (&) = / e 4G (y —u) ¢ (u; 0,02) f5° (02) dudody
= / eTEOFTIGN (XY 6 (u; 0,02) f§° (02) dudodA
= F\ (6)- / c1exp (—2620?) 5 (02) do? = 0 for all €
—F) (€) =0 for all ¢

—3" (\) = 0 for all )\,

which contradicts equation (B.4.2). Therefore, there are also tests if we know f§ * but only

observe y.
(ii-b) 7" € Uy g (fé’ 2) , A eUss (1)

Without loss of generality, let ® = {¢} and ¢* be the corresponding test function when f§ ?

is known as in case (ii-b’). Then, the difference between Ey (¢*) and Ey (¢*) is

* (3 3 ~ ~ 02 o ~ 3
/gp ()\) 2 ()\—u) & <u; 0, T) 7" (0?) dado>dA
2
_ / o (A) 2 (X—a) ¢ <u 0, "T> 8 (07) dido?dA
* (3 3 ~ 3 ~ ~ 02 o ~ 3
>/90 ()\) (fA (A—u) R </\—u>> ¢ (u; 0, T) 1 (0?) didodA
2
_ ‘/g@* ()\) 2 (X —a) ¢ <u 0, “T) (f"2 (02) - f5° (02)) dﬂdo—QdS\’.
Case (ii-b’) implies that the first term is greater than some ¢ > 0. Meanwhile, we can choose
¢ =¢/2and @' = {¢’ (0?) =1} for Uv o <f6’2> so that the second term is bounded by €/2.

Hence, Ef (¢*) —Eg, (¢*) > €/2, and ¢* is the test function with respect to the alternative

sub-region {f"2 € U g (f(‘)’2) , e Ulo (f(j\)} O
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B.5 Extension: Heavy Tails

Lemma B.5.1 gives one set of conditions accommodating f§ with heavy tails using the
Gaussian-mixture DPM prior. It follows Tokdar (2006) Theorem 3.3. The notation is
slightly different from Tokdar (2006). Here G§ is defined on (uf, (wf)2>, the mean and the
variance, while Tokdar (2006) has the mean and the standard deviation as the arguments
for G§.

Lemma B.5.1. (Tokdar, 2006)

If f§ and the DP base distribution G§ satisfy the following conditions:

1. |[ £ (2)1og f§ (z) dz| < oo.
2. For some n € (0,1), [|z]" f§ (z) dz < o0.
8. There exist wg >0, 0 < by <n, by > by, and c1,co > 0 such that for large 1 > 0,

maX{ G (i = won?, 00) x [wh,00)), G5 ([0, 00) x (W77, 0)) }>Cm"”
) )

G§ ((—o0, —p+wopz] x [wi,00)), G§ ((—00,0] x (>~ 00

max{ G ((—o0, p) x (0,exp (2u" — 1)), } o1 gt
Gé ((_M’ OO) X (O,exp (2/“”] - 1)))

Then, f§ € KL (1I7).

The next lemma extends Lemma B.5.1 to the multivariate case. Then, Proposition B.5.3
largely parallels Proposition (3.5.10) with different condition sets for the KL property, which
accounts for heavy tails in the true unknown distributions..

Lemma B.5.2. (Heavy Tails: Multivariate)

If f§ and the DP base distribution G satisfy the following conditions:

1| [ £z (2)log f§ (2) dz| < oco.
2. For some n € (0,1), [|lz]|" f§ (2) dz < cc.
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3. There exist wg > 0, 0 < by < n, bo > by, and c1,co > 0 such that for large u > 0, for

all directional vectors ||z*|| = 1,

{ G5 ([ —won?,00) x [wh, 00) |2%) , G5 ([0,00) x (177", 00) |27), } L
max , >cip 0t
G5 (=00, —p +wopz] x [w§,00) [2*), G§ ((—o0,0] x (u*77,00) |2*)

. { G5 (=00, 1) x (0, xp (207 — 1)) ]2"), }>1_62Mb2
G5 ((~11,00) x (0, exp (27 = 1) |2*)

where G§ (+|z*) represents the conditional distribution that is induced from G§ (-) con-

ditional on the direction z*.

Then, f§ € KL (II?)
Proposition B.5.3. (General Model: Random Coefficients II)

Suppose we have:

1. Assumptions 3.5.3, 3.5.5 (3-4), 8.5.7, and 3.4.10.
2. Lemma B.5.2 on A and Lemma B.5.1 on [.

3. Po € supp (H'B).

Then, the posterior is weakly consistent at (Bo, fg‘, f6'2>,

B.6 Simulations
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Figure 15: Convergence Diagnostics: 8
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For each iteration s, rolling mean is calculated over the most recent 1000 draws.
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Figure 16: Convergence Diagnostics: o2
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For each iteration s, rolling mean is calculated over the most recent 1000 draws.
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Figure 17: Convergence Diagnostics: «
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For each iteration s, rolling mean is calculated over the most recent 1000 draws.
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Figure 18: Convergence Diagnostics:
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Figure 19: fo vs IL(f | y1.n0:7) :
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The black solid line represents the true \; distribution, fy. The blue bands show the posterior

distribution of f, IL(f | y1.n5,0:7)-
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