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New Methods To Assess Protein Folding And Conformational Dynamics

Abstract
A protein’s folding and conformational energy landscape depends on a large number of molecular degrees of
freedom and interactions. As a result, different proteins can follow different sequences of events moving
toward the native state along the course of folding. For example, the underlying structural organization and
ordering can occur locally first and then globally, or vice versa. In addition, the associated conformational
transitions can take place over a wide range of timescales. Because of these complexities, arriving at a detailed
assessment and understanding of the folding dynamics and mechanism of any protein via a single type of
experiment is challenging, and sometimes impossible. As such, over the past two decades, many different
experimental methods have been employed to study how proteins fold among which, the laser-induced
temperature-jump (T-jump) technique has emerged as a powerful tool to measure protein folding kinetics
occurring on the nanosecond and microsecond timescales. Herein, we further expand the utility of the T-
jump technique. First, we introduce a new form of the T-jump technique (referred to as VIPT-jump) that can
be used to distinguish between different folding mechanisms. Second, we apply the VIPT-jump concept to
better understand the folding dynamics of an alanine-based -helix, and, in conjunction with theoretical
modeling, we are able to determine the long-sought microscopic rate constants of the helical nucleation and
propagation processes. Third, we develop a new method to extend the time window of observation in a T-
jump experiment to the millisecond timescale. In a parallel effort, we demonstrate that quenching the
fluorescence of a dye molecule by a tryptophan residue via photoinduced electron transfer mechanism can be
used to interrogate the conformational dynamics of proteins that are crucial for function. Applying this
method to the M2 proton channel of the Influenza A virus allow us to determine, for the first time, the gating
dynamics of the tryptophan tetrad in this membrane protein.
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ABSTRACT 

 

NEW METHORDS TO ASSESS PROTEIN FOLDING AND CONFORMATIONAL 

DYNAMICS  

 

Chun-Wei Lin 

Feng Gai 

 

A protein’s folding and conformational energy landscape depends on a large number of 

molecular degrees of freedom and interactions. As a result, different proteins can follow 

different sequences of events moving toward the native state along the course of folding. 

For example, the underlying structural organization and ordering can occur locally first 

and then globally, or vice versa. In addition, the associated conformational transitions can 

take place over a wide range of timescales. Because of these complexities, arriving at a 

detailed assessment and understanding of the folding dynamics and mechanism of any 

protein via a single type of experiment is challenging, and sometimes impossible. As 

such, over the past two decades, many different experimental methods have been 

employed to study how proteins fold among which, the laser-induced temperature-jump 

(T-jump) technique has emerged as a powerful tool to measure protein folding kinetics 

occurring on the nanosecond and microsecond timescales. Herein, we further expand the 
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utility of the T-jump technique. First, we introduce a new form of the T-jump technique 

(referred to as VIPT-jump) that can be used to distinguish between different folding 

mechanisms. Second, we apply the VIPT-jump concept to better understand the folding 

dynamics of an alanine-based α-helix, and, in conjunction with theoretical modeling, we 

are able to determine the long-sought microscopic rate constants of the helical nucleation 

and propagation processes. Third, we develop a new method to extend the time window 

of observation in a T-jump experiment to the millisecond timescale. In a parallel effort, 

we demonstrate that quenching the fluorescence of a dye molecule by a tryptophan 

residue via photoinduced electron transfer mechanism can be used to interrogate the 

conformational dynamics of proteins that are crucial for function. Applying this method 

to the M2 proton channel of the Influenza A virus allow us to determine, for the first 

time, the gating dynamics of the tryptophan tetrad in this membrane protein. 
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CHAPTER 1 

Introduction 
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 Conformational dynamics studies on biomolecules have gained an explosive 

growth over the past 50 years since the first crystal structures of myoglobin and DNA 

were published in the 1950s.1-3 The reason that conformational dynamics studies of the 

biomolecules started almost at the beginning of structural biology is that the mechanisms 

of protein biological functions cannot be fully understood with only their structures. 

Although technology has advanced tremendously during these years; for example, (1) the 

time resolution of time-resolved spectroscopy reached femtosecond timescales, (2) single 

molecule measurements could be compared with conventional ensemble measurements 

due to the development of highly sensitive detectors, and (3) nonlinear multidimensional 

spectroscopy was invented, the conformational dynamics of biomolecules is still very 

challenging due to the size of molecule, and the complicated intra- and intermolecular 

interactions. To understand the conformational dynamics of protein folding, one must 

obtain the free energy potential surface of the biomolecule; however, it is almost 

impossible to obtain a high dimensional free energy potential using current experimental 

techniques. Therefore, approximations that can coarsely grain the molecule to reduce the 

number of degrees of freedom and reduce the dimensionality of the surface have become 

important strategies to study the conformational dynamics. Based on those strategies, this 

thesis is focused on the conformational dynamics of proteins from the folding dynamics 

of the one-state BBL peptide and alanine-based helical peptides to the proton conduction 

of the Influenza A M2 proton channel. 

 The issue of protein folding has now advanced to a stage where diversity in the 

folding mechanism is inevitable. To match the fast expanding knowledge of proteins, 

many models of the folding process are developed. The two-state model of folding is the 
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most common folding mechanism. It was developed early in the study of protein folding. 

It is popular because it simplifies the folding mechanism into a unimolecular reaction 

with an energy barrier between the initial (unfolded) and final (folded) states. The three-

dimension protein structure is a product of sidechain packing and backbone-backbone 

hydrogen bonding. However, assuming that all the hydrogen bonds can break and form 

simultaneously in a folding process may not be suitable in all cases. Exceptions to two-

state model of folding are expected and have been observed.4-11 

 Around twenty years ago, Wolynes et al. introduced the idea of a downhill (one-

state) folding mechanism from energy landscape theory.12 In the downhill scenario, the 

energy potential surface is represented as a barrierless single well, which allows for many 

conformations of the protein to be populated.13-15 The corresponding biological 

significance of the downhill scenario can be illustrated by the idea of a molecular 

rheostat.5, 16-17 From the view point of evolution, the nature of the downhill mechanism 

allows both protein stability and flexibility to be satisfied. This meets the demands of 

biological processes such as proteolytic degradation of regulatory proteins.18 There is an 

increasing number of protein folding studies proposing that the energy determined 

assuming a two-state model is small and the downhill model is more applicable.  

 In chapter 3, we study the folding mechanism of BBL, the peripheral subunit of 

the binding domain in 2-oxoglutarate dehydrogenase of Escherichia coli, which is 

reported as the first downhill folder in 2002.5 Unlike the intrinsic difference between the 

two-state and downhill models, both models have similar experimental behaviors. They 

give sigmoidal melting curves in temperature-dependent experiments. The relaxation 

traces of downhill folders can also follow an exponential function like two-state folders.19 
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Although there are many debates on the existence of downhill folders, several 

experimental signatures cannot be explained by the two-state mechanism such as BBL 

and other potential downhill folders.20-25 Probe-dependence17 is one of the useful ways to 

differentiate the downhill model from the two-state model.5, 17 Since different probes 

perturb the system differently, probe-dependence sometimes can be criticized as the 

outcome of the choice of the probes.20, 26 Directly from the intrinsic amide I stretching, a 

new experimental signature in the dynamics of downhill folders is described in this study.    

 The α-helix is one of the basic building blocks in protein secondary structure. The 

importance of α-helices cannot be addressed too much in the study of protein folding. 

Such an abundant secondary structure of proteins actually reveals the folding dynamics 

which is non-trivial. Few studies have shown that the folding process of α-helices in 

alanine-based peptides does not follow the classic two-state model.27-28 Alternatively, the 

helix-coil folding dynamics is commonly used to explain the folding process of the α-

helix.29-31 The nucleation and propagation rates of the helix-coil dynamics become the 

key to allowing the folding process of an α-helix to be fundamentally studied. However, 

experimentally accessing the nucleation and propagation rates still remains a challenge. 

Few molecular simulation studies show their attempts to obtain the nucleation rates, but 

the reported rates spread out in a wide time scale.32-36 Some of the groups introduce 

additional energy transfer probes to the helical structure and obtain the rates indirectly.37-

39 A straightforward method which directly determines the nucleation and propagation 

rates is still in need. 
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 In chapter 4, we present a new method to directly extract the nucleation and 

propagation rates by fitting the experimental kinetic traces with our kinetic model, which 

is based on the helix-coil transition theory. 

 Reverse micelles have become the useful systems to study water molecules at the 

interfacial region and protein loaded confined environment. In this study, we first 

combine an IR T-jump experiment with reverse micelles to extend the measuring time of 

the T-jump experiment. With the extended measuring time of the T-jump experiment, the 

gap in the measuring time range between the T-jump experiment and stopped-flow 

experiment can be overcome.  

 In chapter 5, both anionic and non-ionic surfactants are studied to better 

understand the electostatic interaction between the protein and the surfactant layer of 

reverse micelles. The positively charged LysM is loaded into the non-ionic Igepal co-520 

reverse micelle to study the folding dynamics. The conformational relaxation is 

determined to be 2.3 ms at 40 ºC. Ubiquitin loaded into the negatively charged AOT 

reverse micelles reveals the unusual formation of aggregation. The LEA peptide is loaded 

into low w0 reverse micelles to study the folding dynamics induced by dehydration, but 

limited information is obtained due to the low T-jump with the small sized reverse 

micelle. 

 Due to the threat of public health from the Influenza A virus, understanding the 

mechanism of how the virus invades the host cell becomes critical to developing anti-

influenza treatments. One strategy of anti-influenza treatments is to block the function of 

the Influenza A M2 proton channel (AM2). One function of AM2 is to conduct protons 
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from the endosome lumen to the virus envelope during the viral invasion. However, the 

mechanism of the proton conduction of AM2 is still unclear. Previous studies of AM2 

have provided insight into the structure of AM2 in the closed form, the roles of the gating 

residues, His37 and Trp41, the possible binding sites of the anti-influenza A drugs, and 

the kinetics of proton conduction. However, dynamics studies of AM2, which are crucial 

to understanding the conduction mechanism, are rarely done.  

 In chapter 6, we use photoinduced electron transfer fluorescence-quenching 

correlation spectroscopy (PET-FCS) to study the conformational dynamics of the AM2 

transmembrane region. The time constant of the inter helix motion is first reported along 

with the transition between the closed and open states, providing a new overall 

understanding of the proton conduction of AM2.  

 

 

 

 

 

 

 

 



 

 7 

CHAPTER 2 

Methods 
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2.1 Circular Dichroism (CD) Spectroscopy 

 CD spectroscopy is one of most common tool to study the secondary structure of 

protein. CD spectroscopy is a type of UV/Vis absorption spectroscopy that measures the 

difference of the absorbance between the left-handed and right-handed polarized light. 

Only chiral molecules would show preferred absorption on one of the polarized lights. 

Therefore, it is useful to probe the secondary structure of proteins. Since CD 

spectroscopy is based on UV/Vis absorption, the probe studied by CD spectroscopy must 

involve the electronic transition. The C=O group of a protein is the ideal group to study 

the secondary structure of proteins. The electronic transitions of C=O are from n to π* 

and π to π*corresponding to the range from 190 nm to 250 nm. Due to the unique 3-D 

chiral structures of protein secondary structures, each of them has its own signature of 

CD spectroscopy. α-helical structure has two minima at 222 nm and 209nm, β-sheets 

have one minimum at ~215 nm, and the coil structure has one minimum at ~195 nm. 

Although each secondary structure has its unique CD spectrum, limited information about 

the secondary structure can be obtained when there is the combination of different 

secondary structures. 

 

2.2 Fourier-Transform Infrared (FTIR) Spectroscopy and IR Spectroscopy of 

Proteins 

 FTIR spectroscopy measures the absorption due to the vibrations of molecules. 

For conventional FTIR, a broad band of light (from 500 cm-1 to 4000 cm-1) is sent 

through the interferometer to obtain the interferogram of the light. After a Fourier 
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transform, the interferogram of the light is converted into a frequency-domain 

transmittance spectrum. The transmittance spectra collected at the sample cell and the 

reference cell can be further converted into the absorption spectrum by using Beer's law. 
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where A is the absorbance, Is is the transmitted intensity at sample cell, and Ir is the the 

transmitted intensity at reference cell. In our setup, there are two compartments on the 

spacer, and both the sample measurement and reference measurement can be done in one 

cell.  

 For IR spectra of proteins, the amide I stretching mode (from 1620 cm-1 to 1680 

cm-1) is mostly used to study the secondary structure of the protein. It is treated as the 

intrinsic probe for the secondary structure, and is sensitive to the local environment. Due 

to the difference between different secondary structures, the amide I stretching has (1) 

one band at 1640-1650 cm-1 for an α-helix,  (2) one narrow band at 1620 cm-1 for parallel 

β-sheets, (3) one band at 1630 cm-1 and a weak band at 1680 cm-1for anti-parallel β-

sheets, (4) a broad band centered at 1650 cm-1 for coil structure. Although the amide I 

stretching mode is a global probe for protein secondary structures, it can also be used to 

study the local environment of the protein. Isotope labeling of the amide group has 

become a useful tool to change the amide I stretching mode into a local probe. Isotope 
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labeling of 13C and 18O on the C=O group of amide results in the red shift of the amide I 

band (~50 cm-1 for 13C and ~70 cm-1 for 13C and 18O together). The red-shifted band is 

then used to study the local environment of the protein. 

 

2.3 Laser-Induced Temperature-jump (T-jump) Spectroscopy 

 The T-jump experiment is popular for studying the relaxation process due to the 

fast jump of the temperature. By applying a T-jump experiment to protein, the relaxation 

trace from the T-jump experiment can be used to study the folding dynamics of the 

protein. In the conventional IR pump IR probe T-jump experiment, a nanosecond IR 

pumping laser pulse is sent to heat up water in the sample within several nanoseconds 

with an increase of ~15 °C in temperature. The continuous-wave (CW) IR probing laser 

is sent through the center of the pumping area to probe the optical density change caused 

by the incoming pumping laser pulse. Water is usually replaced by deuterium oxide (D2O) 

to avoid the saturation in probing frequencies, since the strong absorption of the water 

vibrational bending mode occurs at 1643 cm-1. Both D2O and the conformational 

dynamics of the protein can contribute to the change in optical density (∆ O. D.) at the 

probing frequency. The change contributed by D2O can be subtracted by ∆ O. D. of the 

reference cell with pure D2O. After subtraction, ∆  O. D. only consists of the 

conformational dynamics of the protein which would reflect the conformational 

relaxation corresponding to the jump in temperature. The temperature dependence of 

optical density of water is further used as an internal thermometer by converting ∆ O. D. 
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of D2O at the reference cell into the corresponding temperature change in the T-jump 

experiment.  

2.2 Fluorescence Correlation Spectroscopy (FCS) 

 By using FCS, the diffusion coefficient can be used as a probe to study the 

conformational change of the protein. The setup of FCS is based on the setup of confocal 

microscopy. A continuous-wave laser is used for the excitation of the fluorescent probe, 

and the emission collected by the objective of the microscope goes through a pinhole 

with a 60 µm diameter before reaching the detector. With the pinhole, only the emission 

from the confocal volume (~1 femtoliter) would be collected by the detector. The 

detector records the intensity trace of the emission from the confocal volume. The output 

intensity trace is further correlated to itself to show the correlation spectroscopy. By 

fitting the correlation curve to the corresponding diffusion model (see the equation 

below), the diffusion time of the sample can be extracted. To convert the diffusion time 

into the corresponding diffusion coefficient, the radial radius of the confocal volume is 

first determined by a standard with known diffusion coefficient, and then used to 

calculate the diffusion coefficient of the probed molecule. 
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where τD is the 3-D diffusion time constant,ω is the axial- to lateral-dimension ratio of 

the confocal volume ( xyz ωω / ), N is the number of fluorescent molecules in the confocal 

volume, τi and Ti are the respective time constant and amplitude of the dynamics 

component i, and D is the diffusion coefficient. 
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CHAPTER 3 

Using VIPT‑Jump to Distinguish Between Different Folding 

Mechanisms: Application to BBL and a Trpzip 
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Reprinted with permission from Journal of American Chemical Society, Chun-Wei Lin, 
Robert M. Culik, and Feng Gai, (2013) 135, 7668-7673. DOI: 10.1021/ja401473m, 
http://dx.doi.org/10.1021/ja401473m,40 Copyright (2013) American Chemical Society. 
 

3.1 Abstract 

 Protein folding involves a large number of sequential molecular steps or 

conformational substates. Thus, experimental characterization of the underlying folding 

energy landscape for any given protein is difficult. Herein, we present a new method that 

can be used to determine the major characteristics of the folding energy landscape in 

question, e.g., to distinguish between activated and barrierless downhill folding scenarios. 

This method is based on the idea that the conformational relaxation kinetics of different 

folding mechanisms at a given final condition will show different dependences on the 

initial condition. We show, using both simulation and experiment, that it is possible to 

differentiate between disparate kinetic folding models by comparing temperature jump 

(T-jump) relaxation traces obtained with a fixed final temperature and varied initial 

temperatures, which effectively varies the initial potential (VIP) of the system of interest. 

We apply this method (hereafter refer to as VIPT-jump) to two model systems, 

tryptophan zipper (Trpzip)-2c and BBL, and our results show that BBL exhibits 

characteristics of barrierless downhill folding, whereas Trpzip-2c folding encounters a 

free energy barrier. In addition, using the T-jump data of BBL we are able to provide, via 

Langevin dynamics simulations, a realistic estimate of its conformational diffusion 

coefficient. 
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3.2 Introduction 

 Protein folding involves many degrees of freedom or conformational substates 

and, therefore, represents a hyperdimensional problem.12, 15, 41 However, in practice the 

folding free energy landscape is often projected onto a low dimensional space, e.g., as a 

function of a putative ‘folding’ coordinate. As shown (Figure 3.1), in the case of a one-

dimensional folding coordinate, various folding scenarios can, in principle, be 

differentiated by the number, position, and magnitude of the free energy barriers that 

separate the folded state from the unfolded conformational ensemble. For example, two 

limiting cases become apparent: One contains a single free energy barrier that separates 

the folded from the unfolded state, i.e., the two-state folding mechanism (Figure 3.1A), 

whereas the other involves a continuum of thermally accessible states, i.e., the downhill 

or one-state folding scenario (Figure 3.1D).6, 14-15, 18, 42-46 Other simple cases involve one 

or more observable intermediate states, which can be located on either side of the major 

folding barrier (Figure 3.1B,C). While a onedimensional representation of the protein 

folding free energy landscape is informative and practical, for a given protein the existing 

experimental methods for studying folding kinetics sometimes cannot distinguish 

between different folding scenarios. For example, it has been shown that both two-state 

and downhill folding mechanisms can yield folding kinetics that are essentially 

indistinguishable by conventional experimental techniques.47-48 While these two folding 

scenarios, which are polar opposites, can be distinguished from each other by whether 

their folding kinetics10, 49-50 and/or thermodynamics23 depend on the conformational 

probe, we still lack a more straightforward approach to characterize the underlying nature 

of the folding free energy surface of the protein in question. Herein we show, for a given 
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final temperature in a temperature jump (T-jump) relaxation experiment,51-54 that by 

varying the initial temperature, which is equivalent to varying the initial potential of the 

system in question, the difference in the resulting relaxation kinetics reveals the nature of 

the underlying folding free energy landscape of the target protein. While the strategy of 

varying T-jump amplitude has been employed before in protein folding studies,49, 55-59 to 

the best of our knowledge it has not been used to characterize the underlying folding free 

energy landscape. Specifically, we apply this VIPT-jump technique to two model 

systems, tryptophan zipper (Trpzip)-2c and BBL, and our results show that the folding 

kinetics of Trpzip-2c are consistent with an activated folding mechanism, while those of 

BBL are characteristic of a barrierless downhill folder. In addition, using the free energy 

surface of BBL determined by Wang and co-workers60 and Langevin dynamics (LD) 

simulations, we are able to extract the conformational diffusion coefficient of BBL from 

the experimentally measured conformational relaxation kinetics. 
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3.3 Results and Discussion 

For a two-state folding scenario (Figure 3.1A), it is easy to show that the population 

redistribution kinetics, e.g., in response to a T-jump, only depend on the final temperature 

and not the initial temperature, whereas the latter determines the amplitude of the probing 

signal. Similarly, for folding mechanisms involving an intermediate state, populated at 

either the left- or right-hand side of the major folding free energy barrier (Figure 3.1B,C), 

it is easy to show that the population relaxation kinetics of the folded/ unfolded state, in 

response to a T-jump, are biphasic with two relaxation time constants determined by the 

corresponding microscopic rate constants at the final temperature. Thus, in this case the 

measurement of relaxation kinetics alone is insufficient to differentiate between the two 

scenarios. On the other hand, we show that the VIPT-jump technique is able to do so, 

which complements other methods.61-62 The applicability of this method simply stems 

from the fact that for such reversible ‘reaction’ systems, the relative amplitudes of the 

two kinetic phases (for a given final temperature) depend on the initial population 

distribution or temperature. To further illustrate this point, an example is given below. 

For the two folding pathways presented in Figure 3.2, it is easy to show that for pathway 

A the relative amplitude of the fast phase of the population relaxation kinetics of the 

folded state (F), at a final temperature (Tf) of 323.0 K, is increased from 8.9 to 16.1% 

when the initial temperature (Ti) is changed from 310.5 to 298.0 K, whereas the 

relaxation kinetics of the unfolded state (U) are essentially single exponential, and that 

for pathway B it is the relaxation kinetics of U that are sensitive to Ti (e.g., the relative 

amplitude of the fast phase is decreased from 30.8% to 25% in this case) (Tables 3.2, 3.3 

and Figure 3.2). Thus, taken together, this simple numerical analysis illustrates the utility 
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of the VIPT-jump method in distinguishing between folding pathways that conventional 

kinetics measurements cannot. In principle, the utility of the VIPT-jump technique is not 

only limited to these classical models but also can be further applied to the downhill 

folding scenario. For a population redistribution process occurring on a free energy 

surface that does not contain an appreciable barrier between states (Figure 3.1D), 

evaluation of the relaxation kinetics is less straightforward. Herein, we employ LD 

simulations to determine how the population relaxation kinetics at a given final 

temperature depend on the initial temperature, assuming that the dynamics occur in the 

overdamped regime.11, 63-64 Specifically, the time-dependent population distribution 

function, P(t,q), is obtained by numerically solving the following equation for each 

molecule:65 

( )
( ) )(, t
dq

TqdG
dt
dq

TD
TkB Γ+−=   (1) 

where G(q,T) is the one-dimensional free energy surface, q the folding coordinate, 

D(T) the diffusion coefficient, T the absolute temperature, and kB the Boltzmann constant. 

In addition, Γ(t) represents the random force arising from the underlying thermal bath 

with a mean value of 0 and a normally distributed variance that is bounded by the 

fluctuation − dissipation theorem.66 In the present study, the variance of Γ(t) is set to be 

2(kBT)2δ(t)/D, where δ(t) is the delta function corresponding to a Markovian process.66 In 

reality, the diffusion coefficient, D, may show a dependence on q; for simplicity in the 

present study we have assumed that it only depends on temperature. In practice, it is 

common to choose one of the protein’s structural parameters as the folding coordinate q, 

such as the fraction of native contacts (Q), the radius of gyration (Rg), or the root-mean-
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square distance (rmsd), which measures the displacement of each atom in a given 

structure from its native position. While the choice of the folding coordinate and the 

exact shape of the one-dimensional downhill folding free energy surface do not change 

our conclusions, in the present study we used the folding free energy surface determined 

by Wang and co-workers26 for BBL as a reference to determine G(q,T). Based on 

extensive molecular dynamics (MD) simulations and analyses using the weighted 

histogram analysis method, Wang and co-workers26 were able to extract an effective 

folding free energy surface as a function of rmsd at 298 K. To determine G(q,T) at other 

temperatures, we simply tilted the free energy surface obtained by Wang and co-workers. 

Specifically, the degree of tilting for any given temperature is determined by the criterion 

that the average nativeness of the protein at the target temperature matches that estimated 

from the circular dichroism (CD) temperature melting curve of BBL (see Supporting 

Information). 

 To determine whether the kinetics of a T-jump induced population redistribution 

process on a one-dimensional downhill- like folding free energy surface are sensitive to 

the initial temperature, we carried out two LD simulations that differ only in the initial 

population distribution. Specifically, we first determined three free energy surfaces using 

the method discussed above at three temperatures, e.g., 310.15 (Tf), 303.15 (Ti1), and 

298.15 K (Ti2). We then used these free energy surfaces, i.e., G(q,Tf), G(q,Ti1), G(q,Ti2), 

to determine the corresponding equilibrium (or Boltzmann) population distributions, i.e., 

Peq(q,Tf), Peq(q,Ti1), and Peq(q,Ti2). In the next step, we carried out LD simulations to 

determine the population relaxation dynamics, i.e., P(t,q), using the following conditions: 

P(t = 0,q) = Peq(q,Ti1) or P(t = 0,q) = Peq(q,Ti2) and P(t→∞,q) = Peq(q,Tf). Finally, 
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following Gruebele and coworkers,63 we converted P(t,q) to a signal, S(t), using the 

following equation: 

( ) ( )dqqtpqqHtS q ,)( *∫ −=   (2) 

where H is the Heaviside function, i.e., H = 1 when q ≥ q* and H = 0 when q < q*. While 

the exact value of q* may well depend on the nature and location of the conformational 

probe used in a specific experiment, without loss of generality in the current study, we 

have assumed that q* corresponds to an rmsd of 3.36 Å, which is equivalent to a 

nativeness of 0.7. While this choice is somewhat arbitrary, it does not change the 

conclusions reached below. In addition, when the amide I band of the protein in question 

is used to probe conformational relaxation (see below), the use of a heaviside step 

function to extract the signal, S(t), from the time-dependent population distribution 

function is a reasonable approximation. As shown (Figure 3.3), the results obtained from 

LD simulations confirm our expectation that for a T-jump induced population relaxation 

process occurring on a barrier-less free energy surface, the relaxation dynamics depend 

not only on Tf but also on Ti, which determines the initial equilibrium population 

distribution. In addition, consistent with several previous studies47-48 the relaxation traces 

in Figure 3.3 can be well described by a single-exponential function (Figure 3.11), 

indicating that in order to uncover the true nature of the underlying folding energy 

landscape of the protein in question, one cannot simply rely on conventional relaxation 

kinetics measurements. Thus, taken together, these simulation results provide concrete 

evidence in support of the applicability of the VIPT-jump method in distinguishing 

between various protein folding mechanisms, especially between two-state and 
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barrierless downhill folding scenarios. Additional simulations indicate that even for a 

folding free energy barrier as small as 1.5 kBT, the population relaxation kinetics show no 

measurable dependence on initial temperature, further underscoring the sensitivity of this 

method.  

 To further test the utility of the VIPT-jump method, we applied it to two model 

systems, BBL and Trpzip-2c. We chose BBL because various experimental5, 17, 23, 26, 67 

and computional48, 60, 68-73 studies have suggested that its folding encounters a negligible 

barrier, whereas Trpzip-2 folding has been shown in several studies to involve a free 

energy barrier.74-78 Additionally, BBL folds on a similar time scale to Trpzip-2c,21, 78 

making the comparison more reliable. Specifically we measured the T-jump induced 

population relaxation kinetics of both systems based on the protocol of the VIPT-jump 

method, using timeresolved infrared (IR) spectroscopy and probing frequencies within 

the amide I band of these polypeptides. The amide I band of proteins/peptides arises 

predominantly from the stretching vibrations of backbone carbonyls and is a sensitive IR 

reporter of protein secondary structural contents.79  

 As shown (Figures 3.8 and 3.10) and consistent with previous studies,5, 26 the CD 

thermal unfolding curve of BBL indicates that increasing the temperature from 30 to 65 

°C induces a significant change in the secondary structural content of the protein and that 

the apparent melting temperature (Tm) is ∼44 °C. Thus, we carried out a series of T-jump 

IR measurements on BBL with final temperatures falling within this temperature range. 

In addition, we used probing frequencies of 1630 and 1668 cm−1. As shown (Figure 

3.12), the amide I´ band (amide I in D2O) of BBL decreases in intensity at 1630 cm−1 
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with increasing temperature, corresponding to a loss of helical structures, while there is a 

concomitant gain in intensity at 1668 cm−1, corresponding to an increase in disordered 

conformations. Thus, measurements at each of these frequencies provide representative 

tests of the sensitivity of the VIPT-jump method. As shown (Table 3.11), the T-jump 

relaxation kinetics obtained with both probing frequencies and at all the final 

temperatures tested show a certain dependence on the initial temperature. In particular, as 

indicated (Figures 3.4 and 3.5), while these relaxation traces can be fit by a single-

exponential function, their overall relaxation kinetics, obtained at a given Tf, show a Ti 

dependence with a relationship that a larger T-jump amplitude results in a faster 

relaxation rate. This is consistent with the LD simulation results for a downhill folder 

shown above (Figure 3.3), where a larger T-jump also leads to a faster relaxation, due to 

a greater force acting on the initial population ensemble. On the other hand, due to the 

free energy barrier present in its folding pathway, we expect that the relaxation kinetics 

of Trpzip-2c will not show a similar dependence. Indeed, as shown (Figures 3.6 and 

3.16), two T-jump IR relaxation traces obtained at the same final temperature (61.8 °C) 

but with different initial temperatures (46.8 and 52.8 °C) are indistinguishable within our 

experimental errors, indicating that the population relaxation rate of this peptide depends 

only on the final temperature, characteristic of an activated folding mechanism. Taken 

together, these results provide a direct validation of the utility of the VIPT-jump method 

in revealing the nature of the protein folding energy landscape and, especially, its ability 

to distinguish between barrier-crossing and barrierless folding mechanisms. 

 Our results provide additional evidence to support the notion that the folding of 

BBL, at least under our experimental conditions, does not encounter a significant free 
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energy barrier.5, 17, 23, 26, 48, 60, 67 Thus, its folding process can be treated as a diffusive 

motion along the folding coordinate, and as such, the T-jump induced relaxation kinetics 

of BBL can be used, in conjunction with LD simulations, to estimate its conformational 

diffusion coefficient as well as the ruggedness of its potential energy surface. Because, as 

indicated in eq 1, the population relaxation kinetics depend on both G(q,T) and D(T), one 

needs to know G(q,T) in order to accurately extract D(T) from the T-jump experimental 

data. In principle, one could globally analyze all of the thermodynamic data (e.g., that 

obtained from CD or IR measurements) and T-jump relaxation kinetics obtained at 

different temperatures to simultaneously determine, in a self-consistent manner, G(q,T) 

and D(T). However this is beyond the scope of the present paper, so instead we use the 

G(q,T) of Wang and co-workers60 to provide an estimate of the conformational diffusion 

coefficient of BBL near its Tm. As shown (Figure 3.7), the T-jump induced relaxation 

kinetics obtained at 46.8 °C (Tf) can be well described by a population redistribution 

process via conformational diffusion on the corresponding free energy surface; the 

diffusion coefficients thus obtained (i.e., 3.3 × 10−5 nm 2/ns for Ti = 38.1 °C and 2.7 × 

10−5 nm2/ns for Ti = 41.1 °C) show a dependence on the initial temperature. This Ti 

dependence is expected, as the conformational diffusion coefficient depends not only on 

the final temperature but also on the folding coordinate,60 a condition not explicitly 

considered in the current simulations. Nevertheless, the values of these diffusion 

coefficients are in quantitative agreement with the diffusion coefficient obtained by 

Gruebele and co-workers10 for a mutant of λ repressor (3 × 10−5 nm2/ns). Because λ 

repressor has approximately twice as many residues as BBL, this agreement suggests that 

the conformational diffusion of other proteins may have a similar diffusion coefficient. 
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For example, a simple calculation using this value of D suggests that it takes ∼30 ns to 

elongate an α-helix by one turn (3.5 residues), via a conformational diffusion search 

process. This rate of helix propagation is entirely consistent with those estimated from 

experimental measurements.38, 80-81 
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3.4 Conclusion 

 It is apparent that the free energy of a protein system (including solvent) depends 

on many degrees of freedom, which collectively determine the conformational state of 

the protein. However, when folding or unfolding is monitored with a specific 

experimental probe, such as CD, IR, or fluorescence, it often exhibits simple kinetics 

(e.g., one or two exponentials). Moreover, and perhaps more importantly, different 

folding scenarios, e.g., the two-state and downhill mechanisms, can give rise to 

practically indistinguishable kinetics, making it difficult, if not impossible, to elucidate 

the nature of the underlying folding energy landscape based on conventional kinetics 

measurements. Herein, we show, by varying the initial temperature in a T-jump 

experiment, which essentially varies the initial potential (VIP) of the protein system in 

question, that it is possible to discriminate between different types of folding 

mechanisms. This VIPT-jump method is akin to the strategy used in electronic 

spectroscopy to create different Franck−Condon states on the excited electronic potential 

energy surface by using different excitation wavelengths. Experimentally, we apply this 

VIPT-jump method to two model systems, BBL and Trpzip-2c, which have been 

suggested to follow two different folding mechanisms (i.e., downhill versus activated). 

We find that the T-jump induced conformational relaxation kinetics of BBL, but not 

Trpzip-2c, show dependence on the initial temperature at a fixed final temperature, with a 

larger T-jump resulting in a faster relaxation rate. These findings provide additional 

evidence to support the idea that BBL is a downhill folder. In addition, using LD 

simulations we are able to extract an apparent conformational diffusion coefficient for 

BBL, the magnitude of which is in agreement with that determined for another downhill 
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folder, λ repressor. An exciting new direction for this method would be to use VIPT-jump 

to study the free energy landscapes of intrinsically disordered proteins, which currently 

are relatively unknown. 
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3.5 Experimental Section 

 BBL and Trpzip-2c were synthesized on a PS3 automated peptide synthesizer 

(Protein Technologies, MA) using standard Fmoc protocols. Peptide products were 

further purified by reverse-phase chromatography and identified by matrix-assisted laser 

desorption ionization mass spectroscopy. Trifluoroacetic acid (TFA) removal and H−D 

exchange were achieved by multiple rounds of lyophilization.  

 All peptide samples were prepared in 20 mM phosphate buffer solution (pH 7), 

and the peptide concentrations were in the range of 45 μM for CD and 2−4 mM for IR 

measurements. The details of all spectroscopic measurements, including the T-jump IR 

setup, have been described elsewhere.82 Specifically, for the VIPT-jump experiments, 

variation of the T-jump magnitude was achieved by appropriately adjusting the pump 

intensity using a neutral density filter (Schott Glass Technologies, Inc., PA) and the 

initial temperature. For each T-jump relaxation trace obtained, the corresponding final 

temperature was measured twice, before and after the experiment, using the absorbance 

change of D2O in the reference side of the IR cell.82 If the final temperature deviated by 

more than 0.5 °C from the targeted value, the corresponding kinetic trace was discarded. 

 CD spectra and thermal melting curves were obtained on an Aviv 62A DS 

spectrometer (Aviv Associates, NJ) with a 1 mm sample holder. Fourier transform 

infrared (FTIR) spectra were collected on a Magna-IR 860 spectrometer (Nicolet, WI) 

using a homemade, twocompartment CaF2 sample cell of 56 μm path length. 
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 Langevin dynamics simulations were performed using Matlab (The MathWorks, 

MA) and a time step of 35 ns, and integration was performed using Runge−Kutta 

methods. 
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Figure 3.1. Cartoon depiction of representative folding free energy surfaces. (A) two-state 

folding scenario, (B) and (C) three-state folding scenarios with the observable 

intermediate state located on either side of the major folding barrier, and (D) downhill or 

one-state folding scenario. 
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Figure 3.2. Relative free energies of U, I, and F in a three-state folding scenario at 298.0 

(red), 310.5 (orange), and 323.0 K (blue), respectively, with the intermediate state located 

at either the left- (A) or right-hand (B) side of the major folding free energy barrier. 
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Figure 3.3. Simulated relaxation kinetics in response to T-jumps from different initial 

temperatures to the same final temperature, as indicated, obtained via LD simulations 

using the free energy surfaces shown in the inset. 
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Figure 3.4. Comparison of the normalized conformational relaxation kinetics of BBL 

obtained with a probing frequency of 1668 cm−1 and at a final temperature of 46.8 °C, 

from two different initial temperatures, as indicated. The red lines are fits of the data to a 

single-exponential function, and the resulting time constants are reported in Table 3.4. 
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Figure 3.5. Comparison of the normalized conformational relaxation kinetics of BBL 

obtained with a probing frequency of 1668 cm−1 and at a final temperature of 57.0 °C, 

from two different initial temperatures, as indicated. The red lines are fits of the data to a 

single-exponential function and the resulting time constants are reported in Table 3.4. 
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Figure 3.6. Comparison of the normalized conformational relaxation kinetics of Trpzip-

2c obtained at a final temperature of 61.8 °C, from different initial temperatures, as 

indicated. The probing frequency was 1630 cm−1. 
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Figure 3.7. LD fits (red) of the experimental IR relaxation kinetics of BBL from Figure 

3.4, using the free energy surfaces shown in the inset. The resulting effective 

conformational diffusion coefficients are given in the text. 
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Figure 3.7.  Far-UV CD spectrum of BBL, collected at 1°C. 
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Figure 3.9.  Relative population changes in response to a T-jump of 298 to 323 K (red) or 

310.5 to 323 K (blue), for the two three-state folding mechanisms (A or B, as indicated) 

presented in Figure 3.2. 
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Figure 3.10.  Overlay of CD thermal melting curve of BBL (blue) with IR melting curve 

probed at 1668 cm-1 (red). 
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Figure 3.11.  Single exponential fits of the Langevin Dynamics signal traces in Figure 

3.3, with temperature jumps as indicated.   
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Figure 3.12. Difference FTIR spectra of BBL in the amide I' region, generated by 

subtracting the FTIR spectrum at 6.9 °C from those measured at higher temperatures (the 

highest temperature was 62.9 °C). 
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Figure 3.13. Conformational relaxation kinetics of BBL obtained with a probing 

frequency of 1668 cm-1 after a T-jump from 49.2 to 50.7 °C. 
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Figure 3.14. Simulated relaxation kinetics in response to T-jumps from different initial 

temperatures to the same final temperature, as indicated, for an incipient downhill folding 

scenario. 

 

 

 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

0.03 0.3 3 30

N
or

m
al

iz
ed

 R
el

ax
at

io
n 

Si
gn

al
 

Time (µs)

40.0-55.0 °C

47.0-55.0 °C



 

 43 

 

 

Figure 3.15. Free energy surfaces for an incipient downhill folding scenario used to 

simulate relaxation kinetics in Figure 3.14. 
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Figure 3.16. Relaxation kinetics of Trpzip-2c with different magnitude T-jumps, as 

indicated, to similar final temperature. 
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Name Sequence 

BBL ALSPAIRRLLAEHNLDASAIKGTGVGGRLTREDVEKHLAK-NH2 

Trpzip-2c AWAWENGKWAWK-NH2 

Table 3.1.  Name and sequence of the peptides studied. 
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  Temperature (K) [F]% [I]% [U]% 

A 

298.0 80.55 17.97 1.48 

310.5 70.33 20.15 9.52 

323.0 42.24 15.54 42.23 

B 

298.0 80.55 17.97 1.48 

310.5 70.33 20.15 9.52 

323.0 42.24 15.54 42.23 

Table 3.2. The equilibrium population percentage of each state (F: folded state, I: 

intermediate state, and U: unfolded state) corresponding to the free energies in Figure 3.2. 
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Mechanis
m 

T-jump Relaxation parameters of the folded 
state 

Ti (K) Tf (K) τ1(µs) τ2(µs) A1% A2% 

A 
310.5 323.0 1.85 33.96 8.87 91.13 

298.0 323.0 1.85 33.96 16.10 83.90 

B 
310.5 323.0 34.28 - - - 

298.0 323.0 34.28 - - - 

Mechanis
m 

T-jump Relaxation parameters of the 
intermediate state 

Ti (K) Tf (K) τ1(µs) τ2(µs) A1% A2% 

A 
310.5 323.0 1.85 33.96 27.21 72.79 

298.0 323.0 1.85 33.96 42.42 57.58 

B 
310.5 323.0 1.85 33.96 63.07 36.93 

298.0 323.0 1.85 33.96 56.08 43.92 

Mechanis
m 

T-jump Relaxation parameters of the unfolded 
state 

Ti (K) Tf (K) τ1(µs) τ2(µs) A1% A2% 

A 
310.5 323.0 34.03 - - - 

298.0 323.0 34.03 - - - 

B 
310.5 323.0 1.846 33.96 30.78 69.22 

298.0 323.0 1.846 33.96 24.95 75.05 

Table 3.3. T-jump relaxation kinetic parameters calculated for the two three-state folding 

seniors presented in Figure 3.2. 
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Probe Frequency (cm-1) Tf Ti Tf - Ti τR (μs) Rel. Amp. 

1668 

46.8 
38.1 8.7 3.3 ± 0.24 1.45 

41.1 5.7 4.5 ± 0.04 1.00 

50.7 

44.4 6.3 2.6 ± 0.05 3.39 

46.5 4.2 3.0 ± 0.13 2.22 

49.2 1.5 3.4 ± 0.02 1.00 

57.0 
44.4 12.6 2.0 ± 0.18 2.05 

53.3 3.7 2.8 ± 0.01 1.00 

1630 46.5 
39.2 7.3 3.4 ± 0.27 2.16 

43.6 2.9 4.9 ± 0.13 1.00 

Table 3.4. Relaxation times of BBL obtained from fitting the corresponding T-jump IR 

relaxation kinetics to a single-exponential function. 
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Probing Frequency (cm-1) Tf Ti Tf – Ti τR (μs) Rel. Amp. 

1630 

61.8 
46.8 15.0 0.90 ± 0.03 1.56 

52.9 9.0 0.92 ± 0.06 1.00 

72.4 52.5 19.9 0.50 ± 0.10 - 

57.8 41.1 16.7 1.10 ± 0.14 - 

Table 3.5. Relaxation times of Trpzip-2c obtained from fitting the corresponding T-jump 

IR relaxation kinetics to a single-exponential function. 

 

 

 

 

 

 

 

 

 

 

 



 

 50 

CHPATER 4 

Extracting the α-Helix Nucleation and Propagation Rates from the VIPT-Jump 

Kinetics of an Alanine-Based Peptide 
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This chapter is recently prepared in manuscript and submitted to The Journal of Physical 
Chemistry. 
 

4.1 Abstract 

 An infrared temperature-jump (T-jump) study by Huang et al. (Proc. Natl. Acad. 

Sci. 2002 99, 2788–2793) showed that the conformational relaxation kinetics of an 

alanine-based α-helical peptide depend not only on the final temperature (Tf) but also on 

the initial temperature (Ti) when Tf is fixed. This finding indicates that the folding free 

energy landscape of this peptide is non-two-state like, allowing conformational 

ensembles with different helical length and relaxation time to populate in the temperature 

range of the experiment. Because the α-helix folding involves two fundamental events, 

nucleation and propagation, the results of Huang et al. thus present a unique opportunity 

to determine their rate constants – a long-sought goal in the study of the helix-coil 

transition dynamics. Herein, we capitalize on this notion and develop a coarse-grained 

kinetic model to globally fit the thermal unfolding curve and T-jump kinetic traces of this 

peptide. Using this strategy, we are able to explicitly determine the microscopic rate 

constants of kinetic steps encountered in the nucleation and propagation processes. Our 

results reveal that the time taken to form an α-helical nucleus (i.e., an α-helical segment 

with one helical hydrogen bond) is about 320 ns, whereas the time taken to elongate this 

nucleus by one residue (or backbone unit) is 4.9 ns, depending on the position of this 

residue. 
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4.2 Introduction 

 The α-helix is not only ubiquitously found in proteins as a secondary structural 

element, it is also the folded conformation of many peptides. In this regard, the folding 

dynamics and mechanism of the α-helix have been extensively studied, either in the 

context of globular protein folding or as an individual and independent folding unit.27-28, 

51, 54-55, 83-92 Currently, the most widely accepted theoretical framework to describe the α-

helix folding properties is the helix-coil transition theory introduced by Zimm and 

Bragg93 as well as Lifson and Roig.94 In essence, this theory is a coarse-grained, one-

dimensional (1D) Ising model, which treats the peptide in question as a linear chain of 

basic units, corresponding to the constituent residues or peptide groups that can adopt 

either a helical (H) or coil (C) state. Thermodynamically, a C to H (C→H) transition 

leads to a decrease in the configurational entropy (∆S) of the system, whereas the 

formation of a helical hydrogen bond (hH-bond) between two peptide groups that are in 

the H state (i.e., one at position i and the other at i+3) results in a favorable enthalpic 

gain (∆H). Thus, based on the 1D Ising model,29, 31, 95 the free energy change (∆G) upon 

formation of a particular helical conformation consisting of m hH-bonds and n H sites is: 

STnHmG ∆⋅−∆⋅=∆ . Furthermore, the kinetics of the α-helix formation is described 

by a series of sequential events, wherein the consecutive C→H transitions required to 

form the first hH-bond are regarded as the nucleation event, whereas the subsequent 

kinetic steps leading to lengthening of this nascent α-helical motif are referred to as the 

propagation process. 
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 While such Ising-based models provide a sound theoretical framework for 

understanding the mechanism of the helix-coil transition,29, 95-99 it has proven rather 

difficult to experimentally assess the mechanistic details they infer, especially the 

microscopic rate constants of the nucleation and propagation events. This is due, at least 

in part, to the fact that (1) both events occur on a rapid timescale (i.e., on the nanosecond 

timescale for alanine-based α-helices);51 (2) their rates are not well separated;57 (3) 

among the sequential kinetic events involved in α-helix folding, the first one (i.e., 

nucleation) is the slowest; and (4) there is not a simple experimental signal that can be 

used to distinguish nucleation from propagation. For example, although previous 

studies27-28, 90, 100 on various α-helical peptides were able to directly characterize the 

overall relaxation kinetics of the helix-coil transition in question, induced by either a 

rapid temperature-jump (T-jump) or a photo-isomerization event, they were unable to 

unambiguously separate and hence determine the respective contributions from the 

nucleation and propagation processes to the observed kinetic signals. In light of this 

difficulty, several recent studies have explored the possibility of isolating and therefore 

exclusively detecting a specific microscopic event in α-helix folding. These include (1) 

using short peptides that can form only a single turn of α-helix to assess the nucleation 

time via T-jump experiments,81 (2) using a photo-responsive cross-linker that induces a 

kink in an α-helix to probe the speed limit of the propagation process via transient two 

dimensional infrared (2D IR) measurements,101 and (3) employing a triplet-triplet energy 

transfer pair to assess local folding-unfolding dynamics of an α-helical peptide and using 

the resultant information to evaluate the helical propagation rate by analyzing the 

corresponding experimental results with the a kinetic Ising model.80 Herein, we 
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demonstrate a new approach, which shows that the nucleation and propagation rates of 

an α-helix can be directly extracted by globally fitting its circular dichroism (CD) 

thermal unfolding curve and two T-jump kinetic traces, measured at the same final 

temperature but different initial temperatures, to a 1D Ising model. 

 A study by Huang et al.57 showed that the conformational relaxation kinetics of an 

alanine-based α-helical peptide (refereed to hereafter as AK peptide), in response to a 

rapid T-jump and as measured by time-resolved infrared (IR) spectroscopy, depend not 

only on the final temperature (Tf), as expected, but also on the initial temperature (Ti) for 

a fixed Tf (Figure 4.1). Since varying the initial temperature of the system in question is 

equivalent to varying its initial potential (VIP), we therefore refer to this type of T-jump 

kinetics as VIPT-jump kinetics. Our previous study40 has shown that for a conformational 

relaxation process involving more than two conformational ensembles, its kinetics show a 

Ti-dependence for a given Tf. Therefore, the T-jump results of Huang et al. are not only 

consistent with the notion that the helix-coil transition kinetics involve multiple 

microscopic steps (e.g., nucleation and propagation) but also provide an additional piece 

of information that could be used to better determine their respective rate constants. This 

is because, as shown (Figure 4.2), the VIPT-jump kinetics of Huang et al. can be 

qualitatively understood in terms of three population ensembles (ES1, ES2 and ES3) 

having different helical conformational distributions and, in addition, going from ES1 to 

ES2 results in mostly shortening of the α-helices (and hence is fast), whereas converting 

ES2 to ES3 leads to a lager percentage of the α-helices to completely unfold (and hence, 

on average, is slower). Herein, we aim to capitalize on this picture and to extract the α-
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helical nucleation and propagation rate constants by computationally fitting the VIPT-

jump kinetics of Huang et al. to a 1D Ising-like model. 

 

4.3 Results and Discussion 

 To determine the helical nucleation and propagation rate constants of the AK 

peptide, we use a kinetic 1D-Ising model to simultaneously its CD thermal unfolding 

curve and VIPT-jump kinetics. Our coarse-grained model treats each amide bond of the 

α-helix in question as a basic unit, which can adopt either a H or D state. As shown 

(Scheme 4.1), the AK peptide consists of 14 such units. This is because the D-Arg residue 

(i.e., r) and the SPE motif in its sequence were introduced to serve as helix caps, at the C- 

and N-terminus, respectively. In addition, since the experimental results of Huang et al. 

indicated that, as also observed for other α-helical peptides,39, 57, 80, 102 the middle region 

of the AK α-helix is more stable than its N- and C-terminal regions, we further divide 

those 14 units into three regions (referred to as the N-, C-, and M-region, respectively). 

Furthermore, we need to consider the fact that the VIPT-jump kinetics of Huang et al. 

were obtained by monitoring the amide I′ band arising from 4 13C-isotopically labeled 

Ala residues in the middle of the AK peptide (Scheme 4.1) when computing the 

relaxation kinetics for comparison (see below).  

Unlike what has been done in many previous studies,31, 95-96, 103 which often 

treated the folding thermodynamics and kinetics of the helix-coil transition in question 

separately, herein we seek to develop a sequential and fully reversible kinetic model to 

simultaneously characterize the thermodynamic and kinetic properties of the AK peptide. 
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The coarse-grained model of the AK peptide (Scheme 4.1) gives rise to a total of 214 

conformational states. Thus, without further approximation, one needs to consider 214 × 

(214 − 1) elementary reaction steps in the calculation of its conformational relaxation 

kinetics, which is nether practical nor necessary. To reduce the number of rate equations, 

we assume that in one microscopic kinetic step only one amide unit is allowed to change 

its conformational state, either C→H (i.e., forward or folding reaction) or H→C (i.e., 

backward or unfolding reaction). While this assumption decreases the total number of 

kinetic equations to a more manageable one (i.e., 14 × 214), the corresponding kinetic 

analysis would still involve a large number of rate constants. Thus, we further make the 

following definitions and assumptions to reduce the number of variables or fitting 

parameters in the computer simulation: (1) the elementary steps leading to formation of a 

helical nucleus (i.e., ---CHHHC---) are considered as the nucleation events and have the 

same rate constant; (2) an elementary step leading to lengthening of a preexisting helical 

nucleus or helical segment is defined as a propagation step; (3) the nucleation rate 

constant (kN) and the rate constant (k-N) of the corresponding reverse reaction are position 

independent; (4) within an individual region (i.e., C-, M-, or N-region) the helical 

propagation rate constant (i.e., kPC, kPM, or kPN) and the rate constant (i.e., k-PC, k-PM, or k-

PN) of the corresponding reverse reaction are position independent; and (5) only the 

unfolding rate constants are temperature dependent. Taken together, these assumptions 

reduce the total number of rate constants or variables in the model to 12. 
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Thermodynamic treatment.  It is easy to show that once all of the microscopic rate 

constants of the system in question are known for a given temperature, one can easily 

compute the free energy of any helical state, relative to that (G0) of the completely 

unfolded or disordered state (i.e., CCCCCCCCCCCCCC). As illustrated by a specific 

example (Scheme 4.2), when G0 is set to be zero, the free energy (Gi) of any one of the 

possible conformational states can be evaluated (where i represents state i). Based on this 

information, the population weight (χi) of the ith state (i = 0 to 214) at the temperature (T) 

of interest can be further determined by 
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where R is the gas constant.  

Eq. (1) allows us to further evaluate the fractional helical content of the system at 

T, ξH(T), which equals to the experimentally determined percent helicity at the same 

temperature via CD spectroscopy. It is straightforward to show that 
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where H
iN represents the total number of hH-bonds contained state i and H

maxN = 11 is the 

maximum number of hH-bonds that the AK peptide can form.  

In order to use Eq. (2) to fit the CD thermal unfolding curve of the AK peptide, 

we need to further convert the CD signal at T to ξH(T). This is done by using the method 

of Baldwin and coworkers,104 as shown below:  

 

CH

C222
H ][][

][][)(
θθ
θθξ

−
−

=T   (3) 

with 

T
n

×+





 −×−= 1005.2144000][ Hθ   (4) 

and 

T×−= 45640][ Cθ   (5) 

 

where [θ]222 is the mean residue ellipticity measured at 222 nm, [θ]H is the mean residue 

ellipticity of the peptide with 100% helical content at 222 nm, [θ]C is the mean residue 

ellipticity of the peptide with 0% helical content at 222 nm, and n is the number of 

residues of the α-helix. 
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Kinetic treatment.  As indicated above, the VIPT-jump kinetics of Huang et al. were 

obtained by monitoring the amide I′ band of 4 13C-isotopically labeled Ala residues in the 

middle of the AK peptide. The amide I′ band is an established IR probe of protein 

secondary structures because of its dependence on interactions involving backbone amide 

groups, such as hydrogen bonding formation and transition dipole couplings.79, 82 

Considering these factors, we assume that (1) only those amide units highlighted in gray 

in Scheme 4.1, all of which are able to form a hH-bond with one of the isotopically 

labeled amide units, can potentially contribute to the kinetics signal (S); (2) S is linearly 

proportional to the number of hH-bonds (NhHS) formed within the signal region; and (3) S 

= 0 if there is only 1 hH-bond formed within the signal region (due to lack of vibrational 

coupling). For easy counting, we use the following equation in the computer program to 

determine NhHS, 

 

( )( )∑∏
=

+

=

=
8

2

3

hHS
k

k

kj

jPN ,  (6) 

 

where P(j) = 1 or 0 when the jth amide unit (within the signal region) is in the H or C 

state. 

To fit the experimentally determined T-jump kinetic traces, the following master 

equation is solved numerically by a fourth-order Runge-Kutta algorithm,11, 40  
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)()( trtC
dt
d T ⋅= α   (7) 

 

where C is the concentration vector, r is the rate vector, and αΤ is the transpose of the 

stoichiometric matrix. Specifically, the C vector is a 214 × 1 matrix, and the dimension of 

the α matrix is 14∙214 × 214, where the rows correspond to the elementary reactions in the 

model and the columns represent the states of the peptide. The matrix elements in α 

correspond to the reactant and product coefficients of the corresponding elementary 

reactions. The rate vector, r, is a 14∙2 14 × 1 matrix and contains all the rates of the 

corresponding elementary reactions in the model. To minimize the use of computer 

memory, the α matrix is further converted into a sparse matrix in the calculation. Since 

the commonly used single-sequence approximation29-30, 105 is not adopted in the current 

model, a single C→H (H→C) transition can lead to formation (breaking) of multiple hH-

bonds due to the merging (splitting) of preexisting helical segments. For such 

conformational transitions, which are different from a simple propagation process, we 

evaluate their kinetics using a sequential model wherein the number of kinetic steps is 

determined based on the number of hH-bonds being formed (or broken).  

 

Global fitting.  During the global fitting of the two T-jump kinetic traces and the CD 

thermal unfolding curve of the AK peptide, only the aforementioned 12 elementary rate 

constants are treated as variables. In addition, we choose the lower initial temperature 

(i.e., 0.5 oC) and the final temperature (i.e., 14.5 oC) of the T-jump experiment of Huang 
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et al. as the two reference temperatures (T1 and T2). For a rate constant that is assumed to 

be temperature dependent, its values obtained at these two temperatures (i.e., kT1 and kT2) 

are used to further calculate the corresponding free energy barrier, ≠≠≠ ∆⋅−∆=∆ STHG , 

via the following relationships: 
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where kB is the Boltzmann constant and the value of A is set to be 1010 s-1. With ≠∆G

determined, the value of the rate constant in consideration at any other temperature T (kT) 

can be further calculated via following equation: 

 

)exp(T RT
GAk

≠∆
−⋅= .  (1) 
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Repeating this process for all other temperature-dependent rate constants would allow us 

to obtain all kinetic information required to determine the conformational distribution at 

T, hence allowing the CD signal at T to be evaluated.  

 

Fitting results.  As indicated (Figure 4.3), our coarse-grained kinetic model with 12 

variables satisfactorily fits the CD thermal unfolding curve and the VIPT-jump kinetic 

traces of the AK peptide. It is worth noting that when these experimental data were 

individually fit to three equations, at least 16 variables would be required (i.e., 7 for 

fitting the CD curve to a two-state model and 4 for fitting each T-jump trace to a 

stretched exponential function). Therefore, in comparison we believe that the 12 rate 

constants recovered from the global fitting (Table 4.1) are statistically significant.  

 Perhaps more importantly, the fitting results are consistent with several 

expectations and previous studies. These include (1) for the nucleation process, the 

forward rate constant, kN = (103.9 ns)-1, is smaller than the backward rate constant, k-N = 

(23.0 ns)-1, which is consistent with the notion that the formation of an α-helix nucleus is 

a thermodynamically unfavorable event;29, 93, 106-108 (2) for the propagation process, the 

trend is reversed (for the temperature range considered), which consistent with the notion 

that propagation leads to α-helix stabilization;29, 39, 93, 108 (3) for the propagation process, 

the ratio between the forward rate constant and the backward rate constant is 3.1 for the 

M-region, 1.1 for the N-region, and 1.3 for the C-region, which is consistent with the fact 

that the middle region of an α-helix is more stable than its terminal regions;39, 57, 80 and 

(4) using the value of kN, which, according to our model, is the rate constant of a single 
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C→H transition involved in the nucleation process, we determine the time required to 

form a helical nucleus (i.e., the ---CHHHC--- state in our model) to be about 318 ns. This 

value is in close agreement with that (i.e., 400 ns) reported by Kiefhaber and coworkers 

for an alanine-based peptide.80 Similarly, using the propagation rate constant obtained for 

the M-region (i.e., kPM), we calculate the time required to elongate a helical nucleus by 5 

more hH-bonds (or 5 H sites according to our model) to be about 25 ns, which is again 

similar to that (50 ns) determined by Kiefhaber and coworkers.80 Moreover, our results 

are also broadly consistent with the molecular dynamics (MD) simulation study of De 

Sancho and Best,38 which showed that the timescales of the helix nucleation and 

elongation are 20-70 ns and ~1 ns, respectively, for an alanine-based peptide.  

 Finally, with the fitting results in hand, we can make a more detailed assessment 

of the helix-coil transition mechanism of the AK peptide. First, the conformational 

distribution calculated based on our model (Figure 4.4) indicates that there are a 

significant percentage of peptide molecules that contain more than one contiguous helical 

segment per peptide chain. This result argues against the applicability of the commonly 

used single-sequence approximation. Second, the free energy profiles obtained at 0.5 and 

14.5 °C indicate that fully helical and disorder states are separated by a rather broad free 

energy barrier, located between 0 and 8 folded (or H) peptide units (Figure 4.5). Third, 

the minimum free energy surface is shallow at the folded side (Figure 4.5), allowing 

helical conformations with different helical chain length to populate. In addition, upon 

increasing the temperature from 0.5 to 14.5 ºC, the helical conformation corresponding to 

the global free energy minimum is shortened from 11 H units to 8. A closer examination 

of the calculated conformational distribution at 14.5 ºC reveals that most H units are 
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concentrated in the middle region of the peptide, a picture consistent with the fact that the 

helical structure in the terminal regions of an α-helix is less stable and tends to be frayed. 

As shown (Figure 4.6), the conformational distributions obtained at 0.5, 10.1 and 14.5 °C 

corroborate this notion as they indicate that, in this temperature range, increasing 

temperature does not lead to a simple population exchange, from the fully folded to the 

fully disordered conformation, instead it mostly results in a decrease in the average 

helical chain length. It is this (gradual) conformational shift, a scenario that is in 

agreement with our qualitative interpretation of the experimental observation of Huang et 

al. (Figure 4.2), that causes the Ti-dependence in the T-jump measurements and therefore 

is the key to allow the propagation kinetics detectable. In support of this notion, 

comparing the equilibrium conformation distributions determined for 0.5 and 14.5 oC of 

the peptide with the transient conformational distribution obtained at 200 ns of the 

conformational relaxation kinetics, induced by a T-jump from 0.5 to 14.5 oC, indicates 

that a conformational shift involving mostly propagation steps occurs early, whereas a 

global unfolding process involving the nucleation step takes place at a later time.  
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4.4 Conclusion 

 For a protein or peptide that can only sample a folded and an unfolded state, the 

single-exponential rate constant of its T-jump induced conformational relaxation kinetics 

only depends on the final temperature (Tf).40 Thus, the study of Huang et al.,57 which 

showed that the conformational relaxation kinetics of an alanine-based α-helical peptide 

exhibit a measurable dependence on the initial temperature (Ti) when Tf is fixed, not only 

suggests that the α-helix folding does not follow a two-state mechanism but also provides 

additional experimental information that can be used to determine the underlying 

nucleation and propagation rate constants. Taking advantage of this point, herein we 

develop a one-dimensional (1D) kinetic Ising model that involves 214 conformational 

states and 12 fundamental rate constants to describe the folding kinetics and 

thermodynamics of this peptide. Using this model, we are able to globally fit the thermal 

unfolding curve and T-jump kinetics obtained by Huang et al., and hence extracting the 

rate constants for the elementary kinetic steps involved in the helical nucleation and 

propagation processes. Our results show that for this alanine-based peptide the nucleation 

process (i.e., forming the first α-helical turn) takes places on a timescale of about 320 ns, 

whereas the process of lengthening a preexisting helical segment by one more unit (i.e., 

propagation) occurs as quickly as 5 ns. 
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4.5 Computational Methods 

 All calculations were carried out using specially written MATLAB programs 

(Mathworks, Natick, MA) on a Dell PowerEdge T610 computer equipped with two six-

core Intel Xeon X5690 processors. Specifically, the differential equations were 

numerically solved by the fourth-order Runge-Kutta algorithm where the stoichiometric 

matrix was converted to a sparse matrix to reduce the usage of computer memory. Global 

fitting of the T-jump kinetics and the CD thermal unfolding curve of the ΑΚ peptide was 

done using the derivative-free pattern search algorithm109-110 wherein the quality of the 

fitting was judged by the χ2 value. 
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Figure 4.1. Normalized IR T-jump relaxation kinetics of the AK peptide, showing the 

dependence on Ti. Reprinted with permission from Reference 62 (Huang, C.-Y.; Getahun, 

Z.; Zhu, Y.; Klemke, J. W.; DeGrado, W. F.; Gai, F. Proc. Natl. Acad. Sci. U.S.A. 2002, 

99, 2788-2793). Copyright 2002, Proceedings of the National Academy Sciences. 

 

 

 

 

 

 

 

-0.016

-0.014

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

0.002

-100 200 500 800 1100 1400

Time (ns)

∆
O

D
(t

)

o    0.6 - 14.5 oC (x 1)
∆  10.1 - 14.3 oC (x 3.75)

200

250

300

350

400

0 4 8 12 16

∆T (oC)

τ 
(n

s)

-0.016

-0.014

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

0.002

-100 200 500 800 1100 1400

Time (ns)

∆
O

D
(t

)

o    0.6 - 14.5 oC (x 1)
∆  10.1 - 14.3 oC (x 3.75)

200

250

300

350

400

0 4 8 12 16

∆T (oC)

τ 
(n

s)



 

 68 

 

 

Figure 4.2. Cartoon illustration of the origin of Ti-dependent conformational relaxation 

kinetics of an α-helix system. 
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Figure 4.3.  Global fitting results of the CD thermal unfolding curve (A) and the IR T-

jump relaxation kinetics (B) of the AK peptide. In each case, the symbols represent the 

original experimental data and the line corresponds to the respective fit. 
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Figure 4.4.  Conformational distribution of the AK peptide as a function of the number of 

contiguous helical segments per peptide chain at 0.5 and 14.5 °C, as indicated. 
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Figure 4.5.  Free energy (G) of the AK peptide as a function of its conformation (i.e., the 

number of peptide units in H state) at 0.5 and 14.5 °C, as indicated. In each case, the line 

represents the minimum free energy surface. 
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Figure 4.6.  Conformational distribution of the AK peptide as a function of the number of 

peptide units in H state at 0.5, 10.1, and 14.5 ºC, as indicated. 
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Figure 4.7.  Comparison of equilibrium conformational distributions of the AK peptide at 

0.5 and 14.5 ºC with the transient conformational distribution obtained at 200 ns along 

the course of conformational relaxation induced by a T-jump from 0.5 to 14.5 ºC. 
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Nucleation (N) 

Folding (+)  k+N = (103.9 ns)-1 

Unfolding (-) 
14.5°C k-N = (23.0 ns)-1 

0.5°C k-N = (28.3 ns)-1 

   N terminal region 
(N) 

Middle region  

(M) 
C terminal region 

(C) 

Propagation (P) 

Folding (+)  k+PN = (12.0 ns)-1 k+PM = (4.9 ns)-1 k+PC = (91.7 ns)-1 

Unfolding (-) 
14.5°C k-PN = (13.2 ns)-1 k-PM = (15.2 ns)-1 k-PC = (116.6 ns)-1 

0.5°C k-PN = (17.6 ns)-1 k-PM = (16.5 ns)-1 k-PC = (206.4 ns)-1 

Table 4.1.  Rate constants obtained from the global fitting. 
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Scheme 4.1. The sequence of the peptide and few conformational states where "P" 

denotes the peptide group (or the amide unit), the basic unit of the coarse grained model 

in this study. For each P unit, it can only be in the helical (H) or coil (C) state. The string 

of P is the coarse grained 1D Ising model, which is aligned to the sequence of the peptide 

by the dash line indicating the corresponding position of the peptide for each coarse 

grained unit. 

 

Ac-YG-S—P—E—A—A—A—K—A—A—A—A—K—A—A—A—A—r-CONH2

P—P—P—P—P—P—P—P—P—P—P—P—P—P

P—P—P—P—P—P—P—P—P—P—P—P—P—P
N region C regionMiddle region

P—P—P—P—P—P—P—P—P—P—P—P—P—P
Signal Region

P = H (helical) or D (disordered)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ac-YG-SPEAAAKAAAAKAAAAr-CONH2

HHHHHHHHHHHHHH (fully folded state)
DHHHHHHHHHHHHH 
DDHHHHHHHHHHHH  
DDDHHHHHHHHHHH
DDDHHHHHHHHHHD
...
DDDHHDDDDDHHDD
DDDHHDDDDDDDDD
DDDDDDDDDDDDDD (fully disordered state)

214 states in total
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Scheme 4.2. An example of how the free energy of the conformational state is defined 

where k1, k-1, k2, k-2, k3 and k-3 are the rate constants for the elemental reaction which are 

selected from the elemental rate constant set. 
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CHAPTER 5 

Measuring T-Jump Kinetics from Nanometer-Sized Water Droplets in Reverse 

Micelles  
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5.1 Abstract 

 Reverse micelles have become a useful system to study water molecules at the 

interfacial region and the protein loaded confined environment. In this study, we first 

combine an IR T-jmup experiment with reverse micelles to extend the measuring time of 

the T-jump experiment. With the extended measuring time of the T-jump experiment, the 

gap in the measuring time range between the T-jump experiment and stop-flow 

experiment can be overcome. Both anionic and non-ionic surfactant are studied here to 

better understand the electostatic interaction between the protein and the surfactant layer 

of the reverse micelles. The positively charged LysM is loaded into the non-ionic Igepal 

co-520 reverse micelle to study the folding dynamics. The conformational relaxation is 

determined to be 2.3 ms at 45.1 ºC. Ubiquitin loaded into the negatively charged AOT 

reverse micelles reveals the unusual formation of aggregation. The LEA peptide is loaded 

into low w0 reverse micelle to study the folding dynamics induced by dehydration, but 

limited information is obtained due to the low T-jump with the small sized reverse 

micelle. 
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5.2 Introduction 

 Over the past twenty years, the water pool confined in the nanoscopic reverse 

micelle has drawn much attention and been applied in many fields. By adding certain 

surfactants, water can be dissolved into oil, and the water pool is created through the 

microemulsion process which forms the self-assembled ternary system composed of oil, 

surfactant and water. The size of the water can be further controlled by the ratio of [water] 

to [surfactant]. The size-tunable water pool makes the reverse micelle an intriguing 

system for versatile applications. Since the size of the reverse micelle is on the nano scale, 

the ratio of the number of water molecules at the interfacial region between the water 

pool and the surrounding surfactant molecules is largely enhanced which provides a 

unique environment to study the solvent dynamics of water at the interface.111-113 The 

confined aqueous environment can also work as a nano reactor to study the enzymatic 

reaction by encapsulating both the enzyme and the substrate into the reverse micelle.114  

The confinement of the reverse micelle is also used in structural biology studies to force 

the folding of the protein and improve the structural resolution.115-117 In material science, 

comparing to regular micelles, reverse micelles can work as an alternative system to 

synthesize the nanomaterials and control their morphology. Duo to the similarity between 

the confined water pool of the reverse micelle and the water found in the biological 

system, which is usually in a crowd environment and closely interacts with proteins and 

membranes, reverse micelles act as a biological  model system.118-119  

 In the conventional IR pump/IR probe T-jump experiment, a nanosecond IR 

pumping laser pulse is sent to heat up water in the sample within several nanoseconds 

with an increase of ~15 °C in temperature. The continuous-wave (CW) IR probing laser 
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is sent through the center of the pumping area to probe the optical density change caused 

by the incoming pumping laser pulse. Water is usually replaced by deuterium oxide (D2O) 

to avoid the saturation in probing frequencies, since the strong absorption of the water 

vibrational bending mode at 1643 cm-1 is also the common region reported by the probes. 

Both D2O and the conformational dynamics of the protein can contribute to the change in 

optical density (∆ O. D.) at the probing frequency. The change contributed by D2O can be 

subtracted by ∆ O. D. of the reference cell with pure D2O. After the subtraction , ∆ O. D. 

is only contributed by the conformational dynamics of the protein which would reflect 

the conformational relaxation corresponding to the jump in temperature. The temperature 

dependence of optical density of water is further used as an internal thermometer by 

converting ∆ O. D. of D2O at the reference cell into the corresponding temperature 

change in T-jump experiment.  

 In the T-jump experiment, it is clear that the measurable time range for the 

measurement of the kinetic traces is limited by the heat dissipation from D2O into the 

CaF2 window and D2O outside the pumping area. Therefore, the T-jump experiment is 

suitable for proteins which have a conformational relaxation timescale that is less than 1 

ms. Usually, proteins with slower conformational relaxation times can be studied by the 

stopped-flow technique. However, the stopped-flow experiment has a dead time around 1 

to 2 ms. A new method is needed to fill the gap of the measuring time range between the 

T-jump and the stopped-flow experiments. One way is to increase the time of heat 

retention in the sample to increase the measuring time range of T-jump experiment. 

Usually, aqueous solution is the common way for the sample preparation of the 

conventional T-jump experiment. However, here we use nonpolar organic solvent, which 
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has a smaller heat conductivity compared to water to slow down the heat dissipation 

process. The sample is made by the reverse micelle solution and the protein is further 

loaded in the nano water pool of the reverse micelle. By doing so, the T-jump experiment 

is now performed in the nano water pool. To our best knowledge, this is also the first 

study which uses the T-jump technique to study the folding dynamics of a protein in the 

reverse micelle. 
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5.3 Results and Discussion 

The FTIR spectrum of AOT surfactant in isooctane shown in Figure 5.1 has relatively 

low optical density at the amide I' stretching region which makes AOT reverse micelles a 

good model system to study the protein folding dynamics using the amide I' stretching as 

the probe. In addition to the FTIR spectrum of the anionic surfactant , AOT, the FTIR 

spectra of nonionic surfactants of Brji30 and Igepal co-520 reverse micelles are shown in 

Figures 5.2 and 5.3. Likewise, they both have the absorption window to study the amide 

I' stretching mode of the protein. Due to the structural simplicity of the surfactant 

molecules studied here, they all have a relatively clean IR spectra. Therefore, they are not 

limited to probe only the amide I' stretching area. Other probes like azide and nitrile can 

also be used with these types of reverse micelles.120-125 By contrasting the results between 

the ionic and nonionic reverse micelle, the role of the surface charge in the confined nano 

water pool can be further interrogated. This will be discussed later with the protein in the 

reverse micelle. Figures 5.4 and 5.5 show the examples that LysM and LEA are loaded 

into the Igepal co-520 and AOT reverse micelles. The reverse micelles without protein in 

the reference cell allows the absorption spectra of the loaded protein to be extracted 

exclusively. After the basic investigation of the three reverse micelle surfactants and the 

protein in the reverse micelle from the steady-state IR spectroscopy, the following study 

is split into two parts. 1) We first study the heat dissipation of from the nano D2O pool 

into the bulk nonpolar organic solvent. The central idea is to use the low heat conduction 

nonpolar organic solvent as an insulator to keep the heat retained inside the nano D2O 

pool. 2) We study protein-folding dynamics in the reverse micelle to test the extended 
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measuring time range of the T-jump experiment and use the confined environment of the 

reverse micelle to study protein folding dynamics in the reverse micelle.  

 In part I, the normalized kinetic traces from bulk D2O and the nano D2O pool in 

AOT reverse micelles are shown in Figure 6. The kinetic traces probed at 1630 cm-1 are 

used to monitor the intensity change of the probing laser due to the OD change caused by 

T-jump. Because of the temperature dependence on the OD of D2O, the kinetic trace 

reflects the temperature change of D2O. For both traces, the temperature of D2O is 

instantaneously increased by ~10 ºC in a few ns and decays as the heat is released from 

D2O into the nearby environment. There are two major differences in the heat dissipation 

process between the bulk pure D2O and the nano D2O pool. For the bulk pure D2O, the 

heat can easily dissipate into the D2O outside the pump area or into the contacted CaF2 

window. For the nano D2O pool in the reverse micelle, the released heat has to cross the 

surrounding surfactant layer and diffuse into the nonpolar organic solvent. Both the 

nonpolar organic solvents, isooctane and cyclohexane, used in this study have a much 

smaller thermal conductivity when compared with water.126 Therefore, better heat 

retention would be expected for the nano D2O pool. It is clear in Figure 5.6 that the 

kinetic trace from the nano D2O pool has a much slower process of the heat dissipation 

than that from the bulk D2O. This shows that the low conductivity of the nonpolar 

organic solvent can improve the heat retention to extend the measuring time range of the 

T-jump experiment. To further improve the measuring time range of T-jump experiment, 

the mechanism of the heat dissipation from D2O should be well investigated. In the future, 

a systematic study of reverse micelles with different w0 can be used to understand the role 

of the surrounding surfactant layer on the effective contacting surface area between the 
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confined D2O pool and the bulk nonpolar organic solvent by adjusting the ratio between 

the surfactant molecules and D2O molecules. By comparing with different surfactant 

molecules in the reverse micelle system, the role of the surfactant molecular structure can 

also be clarified. 

 In part II, in order to test the extended measuring time range of the T-jump 

experiment and compare with the results from the stopped-flow experiment, LysM is 

loaded into AOT reverse micelle. However, the thermal stability of LysM is largely 

enhanced after being loaded into AOT reverse micelle. In Figure 5.7, the FTIR 

temperature dependence experiment of LysM in AOT reverse micelle shows the 

absorption of LysM in the amide I' stretching region is relatively unchanged from 24.7 ºC 

to 78.1 ºC. This is possibly due to the electrostatic interaction between the positively 

charged LysM with multiple lysine residues and the negatively charged AOT surfactant 

anion. The electrostatic interaction may bring LysM to the negatively charged inner 

surface of AOT reverse micelle and further stabilize the structure of LysM which 

increases the difficulty of the folding dynamics measurement. Therefore, anion AOT 

surfactant is replaced by the nonionic Igepal co-520 surfactant. Figure 5.8 shows the 

conformational relaxation trace of LysM in Igepal co-520 reverse micelle after the T-

jump from 40 to 45 ºC. The trace probed at 1630 cm-1 is fitted by an single exponential 

decay function with the fitted time constant of 2.3 ms which is similar to the value 

reported by the stopped-flow study. This result indicates the gap in the measuring time 

between the T-jump and the stopped-flow experiments can be filled by the combination 

of T-jump experiment with the reverse micelle. Furthermore, to study the stabilizing 

effect from the electrostatic interaction between the charged protein and surfactant 
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molecule, another protein, ubiquitin, which has the isoelectric point at 6.8, is loaded into 

AOT reverse micelle as the control experiment. Comparing to the isoelectric point of 

lysine side chain equal to 9.74, the net charge of ubiquitin should be around zero or 

slightly negatively charged which makes it a good control in the study of the electrostatic 

interaction with anionic AOT surfactant. However, the FTIR temperature dependence 

experiment from 24.7 ºC to 78.0 ºC in Figure 9 shows an increased peak at 1616 cm-1 as 

the temperature is increased, and the peak is not thermally reversible when the 

temperature goes back to 24.7 ºC. This indicates an unusual phenomenon that ubiquitin 

confined in the reverse micelle aggregates especially since only one or two ubiquitin 

molecules at most are able to be loaded into the reverse micelle due to the size of the 

reverse micelle and the ratio between the reverse micelles and the ubiquitin molecules. 

Further studies on this unlikely aggregation may help us better understand the mechanism 

of protein aggregation which has become a thriving arena in protein science related to 

Alzheimer's disease, type II diabetes, etc.  

 Small w0 reverse micelles are used as the model system to mimic the environment 

of dehydration and the protein folding dynamics related to the dehydrateding 

environment can be studied by the combination of T-jump experiment with the reverse 

micelle. LEA peptide, which is an intrinsically disordered peptide that can be triggered to 

fold into a monomeric a-helix by removing the surrounding water, is loaded into AOT 

reverse micelle of w0 = 6. Although LEA peptide is successfully loaded into the reverse 

micelle and the observable helical content is confirmed by CD, the T-jump measured 

from the nano D2O pool is somehow limited under 4 ºC. Such a small T-jump and the 

limited helicity would result in a relatively small amplitude of the conformational 
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relaxation traces in the T-jump experiment and increases the difficulty to extract the 

kinetic trace out of the background noise. Further effort is needed to improve the T-jump 

with the reverse micelle of low w0. 
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5.4 Conclusion 

 In this study, we combined an IR T-jump experiment with reverse micelles to 

slow down the heat dissipation from the nano water pool into the bulk nonpolar organic 

solvent. By comparing the kinetic trace from pure D2O with the kinetic trace from the 

nano D2O pool in the reverse micelle, it shows that the nonpolar organic solvent helps to 

retain the heat in the nano D2O pool. This thus makes it possible to measure the folding 

dynamics from a slow folder, which is used to be measured by stopped-flow experiments, 

by a T-jump experiment. LysM is used to test the extended measuring time range of T-

jump experiment with Igepal co-520 reverse micelle. The time constant of LysM 

conformational relaxation is determined to be 2.3 ms at 45 ºC. Ubiquitin is loaded into 

AOT reverse micelle to study the electrostatic interaction between the loaded protein and 

the negatively charged AOT surfactant layer, and the unusual formation of aggregation 

may lead to a future study of the mechanism on protein aggregation. Moreover, AOT 

reverse micelles of low w0 are used as the model system to provide the environment of 

dehydration to induce the folding of LEA peptide. However, the T-jump for the small size 

reverse micelle has to be improved before the further study of the folding dynamics in the 

reverse micelle of low w0. 
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5.5 Experimental Section 

Peptide  and Reverse Micelle Sample Preparation 

 LysM and Lea were synthesized by standard Fmoc (9-fluorenylme-thoxy-

carbonyl) protocols using a PS3 automated peptide synthesizer (Protein Technologies, 

MA). Peptide products were further purified by reverse-phase high-performance liquid 

chromatography (HPLC) and identified by matrix-assisted laser desorption ionization 

time of flight (MALDI-TOF) mass spectroscopy. Trifluoroacetic acid (TFA) exchange 

was done by several rounds of hydrochloric  acid solution additions and lyophilization. 

The purified peptide was lyophilized ,and stored in a -30 ºC freezer. For IR 

measurements in D2O solution,  H−D exchange of the peptide was achieved by multiple 

rounds of mixing with D2O and lyophilization. Ubiquitin was purchased from Sigma-

Aldirch with no further purification and prepped with the same H−D exchange process.  

 

Peptide  and Reverse Micelle Sample Preparation 

 AOT surfactant was purchased from Fisher Scientific, Igepal co-520 was ordered 

from  Rhodia, and Brji 30 is purchased from Acros Organics. All of them were used 

directly without any further purification. Nonpolar organic solvent, isooctane and 

cyclohexane, are both spectral grade solvent. The surfactant is first prepared in a stock 

solution of 0.5 M.  The surfactant solution is further diluted by the nonpolar organic 

solvent and mixed with D2O to the target concentration ratio between the surfactant and 

D2O corresponding to the desired w0. The process of microemulsion is done by vortexing 

the mixture of surfactant solution and D2O until the solution turns clear. To load protein 
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into the reverse micelle, D2O is replaced by 20 mM phosphate D2O buffer at pH 7. The 

protein is first dissolved by the buffer solution and then mixed with surfactant solution to 

have the protein solution encapsulated by the reverse micelle. D2O at the reference cell is 

also replaced by buffer when the protein sample is studied. 

 

Static and Time-Resolved Spectroscopic Measurements 

Infrared spectra collected on a Magna-IR 860 spectrometer (Nicolet, WI) has 1 cm−1 

resolution. The sample cell is home made by CaF2 windows with the optical path length 

of 55 μm.57 For both types of measurement, protein in the reverse micelle solution had a 

bulk concentration of approximately 2.5 mM. A home-built laser-induced temperature 

jump (T-jump) apparatus is used to perform the time-resolved experiments. The detail of 

the setup is described elsewhere.27, 57, 127 For the T-jump kinetics reported, the probing 

frequency was in the region between 1668 and 1620 cm−1, and the T-jump amplitude was 

about 5 − 12 °C. 
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Figure 5.1. The Fourier transform infrared (FTIR) spectrum of AOT surfactant in 

isooctane 
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Figure 5.2. The FTIR spectrum of Brji30 surfactant in cyclohexane 
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Figure 5.3. The FTIR spectrum of Igepal 520 reverse micelle with w0 = 30 
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Figure 5.4. The FTIR spectrum of LysM in Igepal co-520 reverse micelle of w0 = 30. The 

absorption from D2O and Igepal co-520 surfactant is subtracted from the reference 

compartment of the cell with only D2O in Igepal co-520 reverse micelle. 
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Figure 5.5. The FTIR spectrum of LEA peptide in AOT reverse micelle of w0 = 6. The 

absorption contributed by D2O and AOT surfactant is subtracted from the reference 

compartment of the cell with only D2O in AOT reverse micelle. 
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Figure 5.6. The normalized kinetic traces of the probing signal intensity at 1630 cm-1 

caused by the change of the temperature in IR T-jump experiment. Red line is from D2O 

in AOT reverse micelle of w0 = 30 and blue is from bulk pure D2O. Both traces are from 

different compartments of a FTIR cell. 
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Figure 5.7. The FTIR temperature dependence experiment of LysM in AOT reverse 

micelle of w0 = 30 at amide I' stretching region. 
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Figure 5.8. The kinetic trace of the conformational relaxation process from LysM in 

Igepal co-520 reverse micelle of w0 = 30. The trace probed at 1630 cm-1 has a T-jump 

from 40.0 ºC to 45.1 ºC. The red line is the single-exponential fitting curve with a time 

constant of 2.3 ms. 
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Figure 5.9. The FTIR temperature dependence experiment of ubiquitin at amide I' 

stretching region. 

 

 

 

 

 

 

 

 

-0.01

0.04

0.09

0.14

1600 1620 1640 1660 1680

A
bs

or
ba

nc
e 

(O
D

)

Wavenumber (cm-1)

24.7 ℃
42.6 ℃
60.3 ℃
78.0 ℃
24.7 ℃



 

 99 

CHAPTER 6 

Conformational Dynamics of Influenza A M2 Proton Channel Probed by 

Photoinduced Electron Transfer Fluorescence-Quenching Correlation Spectroscopy 
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6.1 Abstract 

 Due to the threat of public health from the Influenza A virus, understanding the 

mechanism of how the virus invades the host cell becomes critical to developing the anti-

influenza treatment. One strategy of the anti-influenza treatment is to block the function 

of the Influenza A M2 proton channel (AM2). One function of AM2 is to conduct protons 

from the endosome lumen to the virus envelope during the viral invasion. However, the 

mechanism of the proton conduction of AM2 is still unclear. Previous studies of AM2 

have provided insight into the structure of AM2 in the closed form, the roles of the gating 

residues, His37 and Trp41, the possible binding sites of the anti-influenza A drugs, and 

the kinetics of proton conduction. However, dynamics studies of AM2, which are crucial 

to understanding the conduction mechanism, are rarely done. Here, we use photoinduced 

electron transfer fluorescence-quenching correlation spectroscopy (PET-FCS) to study 

the conformational dynamics of the AM2 transmembrane region. The time constant of 

the inter helix motion is first reported along with the transition between the closed and 

open states, providing new overall understanding of the proton conduction of AM2. 
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6.2 Introduction 

 The M2 protein of Influenza A virus consists of 97 residues and exists in 

the envelope of the virus as a homotetramer.128 One important function of this M2 

tetramer, which forms a pH-responsive channel, is to assist protons to unidirectionally 

across the viral membrane, allowing acidification of the viral interior in the endosome 

lumen.128-129 Because this acidification event plays a key role in viral replication, the M2 

proton channel has become a popular anti-viral drug target.130 As such, many studies 

have been devoted to elucidating its proton conduction and inhibition mechanisms.131-135 

In particular, significant progress has been made in recent years in structure-based 

studies,136 providing much needed molecular insight into the understanding of the pH-

activated, asymmetric proton conduction action of the M2 proton channel. While existing 

models137-144 differ in details with regard to the mechanism of proton conduction, they 

share several common features: (1) proton selection and channel activation are primarily 

controlled by His37 tetrad (Figure 1), (2) channel is activated or transitioned from a 

closed to an open state when three His37 residues are protonated at an acidic pH, (3) the 

role of Trp41 tetrad (Figure 1) is to allow unidirectional proton conduction only when the 

pH is low on the outside of the virus, and (4) channel waters are actively involved in 

proton conduction. Although we now know a great deal about the structure of this 

membrane-spanning channel and many thermodynamic aspects of its mechanism of 

action, we know relatively little about the underlying dynamics that control the rate of 

proton conduction. Herein, we aim to address this question by using a single-molecule 

fluorescence technique to assess the conformational dynamics of the M2 channel in 

model membranes. 
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 As a necessary process for proton conduction, protonation-deprotonation of His37 

could be the rate-limiting step.140, 144 However, the study of Hong and coworkers145 found 

that the His37-water proton exchange rate (~105 s-1) is significantly higher than the time-

averaged unitary proton flux of M2, suggesting that additional steps need to be included 

in the kinetic mechanism in order to explain the observed rate of proton conduction. In 

fact, several scenarios have been proposed, including (1) the His37-Trp41 cation-π 

interaction can periodically form and breaks at low pH,146 thus modulating the rate of 

proton conduction, (2) a recycling step is required after each proton release,147 which 

involves closing the Trp41 gate and opening the Val27 gate and hence decrease the rate 

adds additional time for proton conduction, (3) even at low pH the C-terminal open 

conformation (i.e., the conformation that allows transfer of protons from His37 to the 

interior of the virus) is only transiently populated,148 leading to a slower apparent rate, 

and (4) proton migration from water cluster B to C (Figure 1) requires an additional 

conformational transition that involve Trp41 via either sidechain or backbone motions.149 

Given that Trp41 is involved in all those scenarios, we carry out a single-molecule 

fluorescence experiment to directly assess its conformational dynamics under equilibrium 

but different pH conditions using both the full-length M2 protein and a truncated variant 

corresponding to the transmebrane domain of M2 (referred to as M2TM). 

 Our experimental design is based on the notion that Trp can effectively quench 

the fluorescence of oxazine dyes, such as Atto655.150-151 Because this quenching effect 

arises from a photoinduced electron transfer (PET) process, it requires the quencher (Trp) 

to be sufficiently close to the fluorphore (dye). In addition, as the rate of PET is 

sensitively dependent on the quencher-fluorphore separation distance (RQF), it is possible 
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to utilize a Trp-dye pair and fluorescence correlation spectroscopy (FCS) to characterize 

the rate of a specific protein conformational motion, as long as this motion modulates RQF 

and hence induces fluctuations in the fluorescence intensity.152-154 To employ this PET-

FCS strategy to assess the conformational dynamics of Trp41 in the full-length M2 and 

M2TM proton channels, we introduce an Atto655 dye at position 40 via a Cys residue 

using a double mutant of the respective native sequence, Leu40/Cys-Trp41/Phe (the 

labeled peptide and protein are hereafter referred to as M2TM* and M2*, respectively). 

The reason that we use a Trp41/Phe M2 (M2TM) mutant to carry the Atto655 

fluorescence reporter is to eliminate the intra-molecular quenching effect arising from the 

Trp residue on the same helix in the tetramer, which, when present, would dominate the 

observed PET-FCS signal.155 To use M2* (M2TM*) to report the motion of Trp41, we 

use a mixture of wild-type M2 (M2TM) and M2* (M2TM*) to prepare the corresponding 

membrane-bound tetramers. By specifically controlling the ratio between the labeled and 

non-labeled proteins (peptides), we ensure that the large majority of tetramers thus 

prepared contain either no or only one M2* or M2TM*. Because in a M2* (M2TM*) 

containing tetramer only inter-molecular quenching effect can occur, the PET-FCS signal 

thus provides a direct measurement of the underlying Trp41 dynamics. Our results show 

that Trp41 is subject to a conformational motion that occurs on a timescale of tens to 

hundreds of microseconds, depending on pH, membrane composition, and the identity of 

the proton channel (i.e., full-length M2 or M2TM). To the best of our knowledge, we 

believe that this is the first study revealing that the M2 proton channel undergoes a 

spontaneous conformational fluctuation on the microsecond timescale. 
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6.3 Results and Discussion 

 Since the He/Ne laser source of the FCS setup in this study is changed to be 

circularly polarized by a visible polarizer and a λ/4 waveplate (See Experimental 

Section), the fluorescence fluctuation of the anisotropic excitation from the rotation of 

LUV can be eliminated. Therefore, a conventional FCS model comprised of the diffusion 

part and dynamics part is used to describe the FCS traces (see below). 
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where τD is the 3-D diffusion time constant,ω is the axial- to lateral-dimension ratio of 

the confocal volume, N is the number of fluorescent molecules in the confocal volume, 

and τi and Ti 

are the respective time constant and amplitude of the dynamics component i. The value of 

ω was determined by the results of the fluorescent Atto 655 dye in water.  

First, the FCS experiment is conducted at different pHs with LUVs made of 

POPC/POPG/Cholesterol (4/1/2) since cholesterol is reported to improve the stability of 

AM2 tetramer structure on the membrane. By fitting the model of Equation 1 to the FCS 

traces at different pHs with two diffusion components for LUV diffusion, one dynamics 
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term for triplet state population, and another one dynamics term for PET, the time 

constant of PET components can be extracted from τPET of PET. The reason to use two 

diffusion terms is to account for the size dispersion of the LUVs. The triplet population is 

due to intersystem crossing at the first singlet excited state (S1) of the fluorescence dye 

and also results in the fluctuation in  fluorescence. Therefore, a dynamics term has to be 

attributed to this. The fluorescence fluctuation due to the quenching process from PET is 

taken into account by another dynamics term. All the individual fitted curves and detailed 

fitted results are shown in the Appendix.  

 Figure 6.1 shows a representative example of the fitting for one M2TM FCS 

curve. It is clear that at pH = 5, M2TM has a strong fluorescence fluctuation due to the 

non-diffusive process, especially the curve corresponding to the pure diffusion of LUV 

(black dashed line). The time constants of PET at pH from 5 to 8 are summarized in 

Table 6.1. Since the ratio between Atto 655 labeled DMM2TM and WT M2TM is 0.04, 

there would be either one or none labeled helix in the four-helix bundle. Therefore, PET 

becomes an inter-helix event in the M2 proton channel. Furthermore, due to the relatively 

short-range interaction of PET usually through the collision between the electron donor 

and acceptor, PET is indeed sensitive to the motion within the channel (inter-helix 

motion). Figure 6.2 shows the dependence of the PET time constant on pH. The pH 

dependence clearly matches the titration curve of His37 from other studies where His37 

is believed to work as the switch of the proton conduction in the M2 proton channel 

through a protonation and deprotonation mechanism. Therefore, the pH dependence of 

PET indicates the probed inter-helix motion synchronizes with the conductance of M2 

proton channel. Indeed, the inter-helix motion can be treated as the global  motion of the 
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M2 proton. To our best knowledge, this is first time that the conformational dynamics of 

M2 proton channel along with the open and close state is captured by the inter-helix 

motion. 

 To further interrogate the inter-helix motion of M2 proton channel, the effect of 

lipid composition on the inter-helix motion is studied. It was reported by Christian et al. 

that cholesterol in the lipid composition is critical to stabilize the four helices bundle 

structure of M2 proton channel.156 By removing cholesterol from the lipid composition, 

the FCS measurements are repeated from pH 5 to 8 to see the corresponding change 

reflected by the inter-helix motion without the stabilizing effect. The pH dependence of 

PET time constant is observed again, and the data are summarized and plotted in Table 

6.2 and Figure 6.3. Although the pH dependence of PET without cholesterol looks similar 

to the pH dependence of His37 (see Figure 6.3.), the difference between the dependence 

with and without cholesterol is clear when two sets of data are shown together in Figure 

6.4. It shows that the data set from the lipid without cholesterol is shifted to the direction 

of lower PET time constant and higher pH which indicates that the inter-helix motion 

becomes faster and the conduction of proton is activated at higher pH. Many studies have 

shown that cholesterol can increase the fluidity of lipid membrane and help to maintain 

structure of cell membrane. The faster inter-helix motion is expected due to the absence 

of cholesterol in the lipid membrane. Furthermore, the proton conduction activation at 

higher pH implies that the closed form of M2 proton channel requiring higher structural 

stability to keep the channel closed is destabilized by the absence of cholesterol.156 
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6.4 Conclusion 

 This study shows that PET-FCS can be used to study the conformational 

dynamics of the M2 proton channel. The time constant of PET is attributed to the 

dynamics of the inter-helix motion, and shows similar pH dependence as the titration 

curve of His37 in the M2 proton channel. Since His37 is believed to works as the gating 

unit of M2 proton channel via its protonation and deprotonation mechanism, the matched 

pH dependence of PET allows us to treat the inter-helix motion as the global motion 

corresponding to the conductance of the M2 proton channel. The inter-helix motion is 

further shown to be sensitive to both the structural stability of the four-helix bundle and 

the fluidity of the lipid membrane by using cholesterol in the lipid composition as the 

control. We believe this is the first time that the conformational dynamics from the inter 

helix motion is reported. The conformational dynamics should be included by future 

dynamics simulation studies to better model the proton conduction of the M2 proton 

channel. Understanding the dynamics of the M2 proton channel is key to unveiling the 

mechanism of the proton conduction; for example, why the channel has such high 

selectivity for protons and how the rate of the proton conduction is maintained. Further 

PET studies on the dynamics of the M2 proton channel with different types of PET pairs 

or different locations of PET pairs for the global or local dynamics are indeed required. 
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6.5 Experimental Section 

Peptide Synthesis and Purification. 

Peptides were synthesized by the peptide synthesizer (PS3) using solid-phase Fmoc 

synthesis, and further cleaved and purified as previously described.157 The sequence of 

WT M2TM peptide (22-46) is SSDPLVVAASIIGILHLILWILDRL. The M2TM  for 

Atto 655 dye labeling reaction has two mutations, L40C and W41F. This peptide is 

referred to as DMM2TM in this study. After the purification by reverse-phase high 

performance liquid chromatography (HPLC), peptides were lyophilized, and identified by 

matrix-assisted laser desorption ionization  (MALDI) - time of flight (TOF) mass 

spectrometry. 

 

Peptide Labeling. 

 The thiol side chain of Cys40 DMM2TM peptide were labeled with Atto 655 dye. 

Labeling reactions were performed with an 10-fold excess of dye to peptide. DMM2TM 

was weighed, and dissolved in phosphate buffer (pH = 7), and mixed with the 

corresponding amount of Atto 655 maleimide reactive dye (Sigma-Aldrich, St. Louis, 

MO) which is first dissolved in water. Total reaction mixture volumes were around 1.5 

mL. The reaction mixture was stirred at room temperature for 2 h and left in a 4 ºC fridge 

overnight. The reaction mixture was further purified by HPLC with a reverse-phase 

analytical C18 column with serial injections to remove the free reactive dyes. The elution 

gradient was similar to other studies with the preparative purification of M2TM.158-159 

The blue colored labeled peptide was lyophilized and identified by MALDI-TOF mass 
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spectrometry. The yield of the labeled DMM2TM was further determined by dissolving 

the labeled peptide into water and using Atto 655 extinction coefficient of 125000 M-1 

cm-1 at  680 nm. 

 

M2TM Reconstitution into Large Unilamellar Vesicle (LUV) 

 The lipid chloroform stock solution is made by 2.5 µmol total lipid molecules of 

4:1 POPC/POPG or 4:1:2 POPC/POPG/Cholesterol (Avanti Polar Lipids, Alabaster, AL) 

in chloroform. The stock solution was further mixed with WT M2TM (1.25 nmol, 1:2000 

monomer/lipid) in 40 mM octylglucoside (OG) (<50 µl) and 0.05 nmol (1:50 000 

monomer/lipid). Atto 655 labeled DMM2TM was dissolved in 2,2,2-Trifluoroethanol 

(TFE) (<10 µl) due to the limited solubility in aqueous solution. Next, the mixture was 

dried by a stream of nitrogen and left under the vacuum of the lyophilizer for more than 2 

h. If the lipid film is not used immediately, the film would be stored at -20 ºC. To make 

the LUV solution, the film was hydrated with 1.2 ml buffer solution of 50 mM phosphate 

and 100 mM NaCl for pH 6 - 8, and 50 mM sodium acetate and 100 mM NaCl for pH 5 - 

6. After vortex mixing, the mixture underwent 8 freeze-thaw cycles and the extrusion of 

the solution was made by a extruder with a 100 nm pore-size membrane filter (Avanti 

Polar Lipids, Alabaster, AL).  
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FCS Sample Preparation. 

 Due to the free labeled peptides and OG in the LUV sample, the LUV solution 

was further purified by the PD-10 desalting column (GE Healthcare Bio-Sciences, 

Pittsburgh, PA) right before the use. The PD-10 was washed by ultra-pure water (EMD 

Millipore, Darmstadt, Germany) and pre-equilibrated with the same buffer solution of the 

LUV sample. The coverslips (Fisher Scientific) required additional steps for passivation 

before use. They were sonicated in 5% NaOH aqueous solution for 30 min. After being 

cleaned by ultra-pure water, the coverslips were soaked into the saturated casein (Fisher 

Scientific) solution overnight. The next day, the coverslips were rinsed by ultra-pure 

water and dried with compressed air before use. For regular FCS measurements, a 40 µl 

M2TM LUV sample was loaded onto the specially passivated coverslips. The remaining 

passivated coverslips were stored in a dry box for future use. 

 

FCS Setup and Measurement 

 The details of the FCS setup is described in our other studies.127, 160 In the current 

case, excitation of the Atto 655 dye was accomplished by the 30 mW 632 nm line of a 

Helium/Neon laser (JDS Uniphase Corporation, Milpitas, CA). The polarization of the 

laser line was made circular by one high quality visible polarizer (Thorlab Inc., Newton, 

NJ) and a zero order  λ/4 quartz waveplate (Edmund Optics, Barrington, NJ) in this study 

to avoid the anisotropic excitation of the labeled peptide due to LUV rotation. Moreover, 

each 1.1 ml M2 LUV sample after extrusion was split into two 0.55 ml samples for 
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further purification by a PD-10 desalting column. The PD-10 desalting column purified 

sample was immediately loaded onto the coverslip of the FCS setup, and only two FCS 

curves were accumulated for one purified M2 sample with the duration of 300 s to avoid 

the signal contributed from the free labeled peptide released from LUV. An average of 4 

such FCS curves at each pH was used in the subsequent data analysis. 
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Figure 6.1. The fitting of FCS curve from M2TM at pH = 5 where blue line is the overall 

observable FCS trace, dashed black line is the fitted diffusion component of LUV, green 

is the overall dynamics subtracted by  LUV diffusion, and the red lines are the fitting 

curves. 
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Figure 6.2. The plot of PET time constant to pH of M2TM with the lipid composition of 

POPC/POPG/Cholesterol (4/1/2) 
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Figure 3. The plot of PET time constant to pH of M2TM with the lipid composition of 

POPC/POPG (4/1) 
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Figure 6.4. The plot of PET time constant to pH of M2TM. Empty circle denotes the 

experiments from the LUV made of POPC/POPG (4/1) and filled circle shows the 

experiments from LUV made of POPC/POPG/Cholesterol (4/1/2) 
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pH 5.00 5.50 6.00 6.25 6.50 7.00 7.50 8.00 
τPET 149.5 µs 201.1 µs 244.0 µs 272.8 µs 416.0 µs 486.2 µs 486.3 µs 485.1 µs 

 

Table 6.1. The PET time constants at different pH with the lipid composition of 

POPC/POPG/Cholesterol (4/1/2) 
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pH 5.00 5.50 6.00 6.25 6.50 6.75 7.00 7.25 7.50 8.00 

τPET  
121.2 

µs 
117.2 

µs 
139.7 

µs 
124.5 

µs 
171.3 

µs 
206.7 

µs 
319.1 

µs 
397.6 

µs 
412.3 

µs 
408.2 

µs 

 

Table 6.2. The PET time constants at different pH with the lipid composition of 

POPC/POPG (4/1) 
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CHAPTER 7 

Future Direction 
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 In chapter 3, we show that the VIPT-jump experiment can be used to differentiate 

different folding mechanisms. In this study, we used the VIPT-jump experiment to 

differentiate the one state folder, BBL, from the two state folder, Trpzip-2c. An LD 

simulation was also used to support our experimental findings. In addition, by fitting 

kinetic traces with the LD simulations, we estimated the time needed to form a helical 

turn in the one state folder. For future directions, VIPT-jump experiment can be used the 

study the folding mechanism of intrinsically disordered peptides. Since these peptides do 

not have any secondary structure, it provides an unique opportunity to focus on the 

potential folding dynamics of the disordered state.  

 In chapter 4, we develop a model which can successfully provide fundamental 

folding information of the α-helical structure. It also shows its potential application in the 

folding dynamics of nonequilibrium helical reorganization. Some of these experiments 

incorporate a molecular photoswitch into the helical peptide which can create a sudden 

change in the thermally equilibrated distribution of the protein with the appropriate 

pulsed light source as the trigger. Both the thermodynamic data before and after the 

triggering process as well as the relaxation kinetics after the triggering process are fitted 

together to extract the fundamental folding rate constants of the peptide constrained by 

the triggering moiety. 

 In chapter 5, we combined an IR T-jump experiment with reverse micelles to slow 

down the heat dissipation from the nano water pool into the bulk nonpolar organic 

solvent. This thus made it possible to measure the folding dynamics from a slow folder, 

LysM, which used to be measured by stopped-flow experiments, by a T-jump experiment. 
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Ubiquitin was loaded into AOT reverse micelle to study the electrostatic interaction 

between the loaded protein and the negatively charged AOT surfactant layer, and the 

unusual formation of aggregation may lead to a future study of the mechanism on protein 

aggregation. Moreover, AOT reverse micelles of low w0 are used as the model system to 

provide the environment of dehydration to induce the folding of the LEA peptide. 

However, the T-jump for the small size reverse micelle has to be improved before the 

further study of the folding dynamics in the reverse micelle of low w0. 

 In chapter 6, we showed that PET-FCS can be used to study the conformational 

dynamics of the M2 proton channel. The time constant of PET is attributed to the 

dynamics of the inter-helix motion, and shows a similar pH dependence as the titration 

curve of His37 in the M2 proton channel. The conformational dynamics should be 

included by future dynamics simulation studies to better model the proton conduction of 

the M2 proton channel. Understanding the dynamics of the M2 proton channel is key to 

unveiling the mechanism of the proton conduction; for example, why the channel has 

such high selectivity for protons and how the rate of the proton conduction is maintained. 

Further PET studies on the dynamics of the M2 proton channel with different types of 

PET pairs or different locations of PET pairs for global or local dynamics are indeed 

required. 
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