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Abstract
When urbanization occurs, the removal of vegetation, compaction of soil and construction of impervious
surfaces—roofs, asphalt, and concrete—and drainage infrastructure result in drastic changes to the natural
hydrological cycle. Stormwater runoff occurs when rain does not infiltrate into soil. Instead it ponds at the
surface and forms shallow channels of overland flow. The result is increased peak flows and pollutant loads,
eroded streambanks, and decreased biodiversity in aquatic habitat. In urban areas, runoff is typically directed
into catch basins and underground pipe systems to prevent flooding, however such systems are also failing to
meet modern environmental goals. Green infrastructure is the widely evocative idea that development
practices and stormwater management infrastructure can do better to mimic the natural hydrological
conditions through distributed vegetation and source control measures that prevent runoff from being
produced in the first place. This dissertation uses statistics and high-resolution, coupled surface-subsurface
hydrologic simulation (ParFlow.CLM) to examine three understudied aspects of green infrastructure
planning. First, I examine how development characteristics affect the runoff response in urban catchments. I
find that instead of focusing on site imperviousness, planners should aim to preserve the ecosystem functions
of infiltration and evapotranspiration that are lost even with low density development. Second, I look at how
the spatial configuration of green infrastructure at the neighborhood scale affects runoff generation. While
spatial configuration of green infrastructure does result in statistically significant differences in performance,
such differences are not likely to be detectable above noise levels present in empirical monitoring data. In this
study, there was no evidence of reduced hydrological effectiveness for green infrastructure located at sag
points in the topography. Lastly, using six years of empirical data from a voluntary residential green
infrastructure program, I show how the spread of green infrastructure depends on the demographic and
physical characteristics of neighborhoods as well as spatially-dependent social processes (such as the spread of
information). This dissertation advances the science of green infrastructure planning at multiple scales and in
multiple sectors to improve the practice of urban water resource management and sustainable development.
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ABSTRACT 
 

LAND, WATER, INFRASTRUCTURE AND PEOPLE: CONSIDERATIONS OF 

PLANNING FOR DISTRIBUTED STORMWATER MANAGEMENT SYSTEMS 

Theodore Chao Lim 

John Landis 

 

When urbanization occurs, the removal of vegetation, compaction of soil and construction 

of impervious surfaces—roofs, asphalt, and concrete—and drainage infrastructure result 

in drastic changes to the natural hydrological cycle. Stormwater runoff occurs when rain 

does not infiltrate into soil. Instead it ponds at the surface and forms shallow channels of 

overland flow. The result is increased peak flows and pollutant loads, eroded streambanks, 

and decreased biodiversity in aquatic habitat. In urban areas, runoff is typically directed 

into catch basins and underground pipe systems to prevent flooding, however such 

systems are also failing to meet modern environmental goals. Green infrastructure is the 

widely evocative idea that development practices and stormwater management 

infrastructure can do better to mimic the natural hydrological conditions through distributed 

vegetation and source control measures that prevent runoff from being produced in the 

first place. This dissertation uses statistics and high-resolution, coupled surface-

subsurface hydrologic simulation (ParFlow.CLM) to examine three understudied aspects 

of green infrastructure planning. First, I examine how development characteristics affect 

the runoff response in urban catchments. I find that instead of focusing on site 

imperviousness, planners should aim to preserve the ecosystem functions of infiltration 

and evapotranspiration that are lost even with low density development. Second, I look at 

how the spatial configuration of green infrastructure at the neighborhood scale affects 

runoff generation. While spatial configuration of green infrastructure does result in 



statistically significant differences in performance, such differences are not likely to be 

detectable above noise levels present in empirical monitoring data. In this study, there 

was no evidence of reduced hydrological effectiveness for green infrastructure located at 

sag points in the topography. Lastly, using six years of empirical data from a voluntary 

residential green infrastructure program, I show how the spread of green infrastructure 

depends on the demographic and physical characteristics of neighborhoods as well as 

spatially-dependent social processes (such as the spread of information). This dissertation 

advances the science of green infrastructure planning at multiple scales and in multiple 

sectors to improve the practice of urban water resource management and sustainable 

development.  
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CHAPTER 1: INTRODUCTION, HYPOTHESES AND CHAPTER 
OUTLINE 

 

URBANIZATION AND THE PROBLEM OF STORMWATER 
RUNOFF 

Stormwater runoff occurs when rain does not infiltrate into soil. Instead it ponds at the 

surface and forms shallow channels of overland flow. Stormwater runoff is the most visible 

response of land to rain. In urban areas, runoff is typically directed into catch basins and 

underground pipe systems to prevent the flooding of property and infrastructure. When it 

rains, the majority of us do not stop to think of where that water goes. As long as it does 

not flood, most urban residents do not care about how the infrastructure is functioning. 

However, in cities in the United States, drainage infrastructure in many of our oldest and 

densest cities are in great need of upgrade. The problem of stormwater runoff affects 

urban areas in two ways: through the regulatory goals and standards for infrastructure in 

the Clean Water Act, and through the expectations of long-term resilience and 

sustainability of our communities. To begin this dissertation, I draw on two examples of 

how stormwater runoff effects cities to illustrate these two problems: the case of 

Philadelphia’s Combined Sewer Overflow Long Term Control Plan Green City Clean 

Waters, and the case of the 2016 flooding of the historic downtown of Ellicott City, 

Maryland. These two examples illustrate means through which planning practice can 

improve urban stormwater management issues: through capital improvements programs 

for infrastructure investment and through zoning and subdivision regulations for land 

management. 

Philadelphia’s infrastructure for draining stormwater away from development is referred to 

as a “combined sewer system” (CSS). This means that stormwater runoff and domestic 
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wastewater are collected within the same pipe network. During dry weather and small 

rainfall events, the wastewater/stormwater runoff mix is conveyed to one of three 

wastewater treatment plants (WWTPs) operated by the city. However, during many larger 

rain events, the volume of stormwater runoff overwhelms the capacity of the conveyance, 

storage and treatment infrastructure, and the excess volume overflows, untreated, from 

outfalls of the pipe system into natural streams and rivers. This discharge of raw sewage 

is called a “combined sewer overflow” (CSO). Before the most recent efforts to mitigate 

CSO events, an average of 8 billion gallons of untreated sewage/stormwater overflowed 

from the system each year (Philadelphia Water Department, 2011), a violation of the Clean 

Water Act (CWA). 

 

Figure 1.1 Litter discharged from a 

combined sewer overflow (outlet not 

shown, but located at the lower right 

of the photograph) spreads through 

Tacony Creek in North Philadelphia. 

Photo by the author 
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Philadelphia’s approach to this problem is to use “source control” methods to intercept 

surface runoff close to where it forms to prevent it or from ever entering the collection 

system. Such source control methods include building rain gardens, tree trenches, and 

permeable pavement that encourage runoff to infiltrate into soils and evapotranspire back 

into the atmosphere. These source control methods are also known as “green 

infrastructure” (GI), low impact development (LID), or stormwater best management 

practices (BMPs). By 2036, the city’s agreement with the US Environmental Protection 

Agency requires that the 1” rainfall event for nearly 10,000 acres of impervious surfaces 

(such as roofs, concrete and asphalt) within the city be treated with GI. This area amounts 

to one-third of the total CSS area of the city and is the most ambitious GI plan adopted in 

the country to bring local stormwater/sewer infrastructure into compliance with the CWA. 

The costs needed to upgrade aging water infrastructure to meet modern environmental 

standards in the US are estimated to be over $60 billion and are mostly a local 

expenditure. According to the US Conference of Mayors, water infrastructure spending is 

the second highest local expenditure after education. Delayed maintenance of drainage 

infrastructure has resulted in local water and sewer rates in many cities that are rising 

three times faster than inflation (US Conference of Mayors, 2007). Therefore, the 

management of and planning for stormwater runoff and infrastructure is a pervasive local 

issue with national-scale implications that very few residents are actually aware of. 

Philadelphia’s plan to use GI to upgrade its infrastructure, called Green City, Clean 

Waters, is based on the premise that cost savings can be reached by incorporating the 

multiple benefits of GI (environmental amenity, community health, etc), but presents the 

challenge of how the land surface area to construct such large amounts of GI will be 

obtained within an already built-out city, with slow redevelopment rates (Philadelphia 

Water Department, 2009).  
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My second example illustrates how new development can also make existing development 

more flood prone. On July 30, 2016, the historic downtown of Ellicott City, MD was 

destroyed by a flood that also claimed the lives of two people. The Howard County Council 

responded by considering enacting a nine-month development moratorium to examine 

how development increases flood risk (Waseem, 2016). In the end however, development 

pressure in the county resulted in the tabling of the proposed moratorium. The benefits 

that society receives from undeveloped lands, such as forests, are called “ecosystem 

services.” Not typically counted as formal assets of cities, they nonetheless provide critical 

functions to society, such as flood mitigation, that are overlooked in favor of the economic 

incentives of land development. Only after disasters such as that of the 2016 flooding of 

downtown Ellicott City, are alternatives to development considered. Even then, the 

economic pressures of development will continue to win out if the benefits of natural lands 

remain under-recognized. This ambivalence exemplifies a central tension in regional 

urban and environmental planning: that planners are pressured to function as part of the 

urban growth machine, yet must simultaneously ensure environmental quality alongside 

development. 

The above two examples illustrate why it is necessary to adopt the best planning practices 

for integrated land, water, and infrastructure interventions. These practices need to be 

able to both protect natural water bodies and to recognize the ecosystem services existing 

communities derive from natural lands, and to do so at multiple scales. This is especially 

true as problems associated with urban stormwater management are only expected to 

become more severe with population growth and climate change (USGCRP, 2009; Kunkel 

et al., 2012; AECOM, 2013). 

In this dissertation, I explore the hydrological function GI has at various scales and how 

distributed GI implementation has actually occurred. 
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There are three central propositions: 

1. Land conservation results in better hydrological outcomes than engineered GI that 

treats runoff from urban development. 

2. Clustered spatial configurations of GI networks in urban areas may result in lower-

than-expected ability to mitigate overland flows due to lateral interactions between 

facilities a delayed capacity recovery between storm events. 

3. The dynamics of voluntary residential adoption of distributed engineered GI 

networks have the potential to result in clusters of adoption within cities, due both 

to clusters of land suitability and social preferences within cities, and due to social 

processes of new technology adoption. 

Exploration of these propositions will increase planners’ understanding of GI function and 

implementation processes. This will increase their ability to weigh land conservation 

against new development, decide how to invest time and resources into outreach to 

residents to encourage GI construction on private property, and plan for changing 

participation rates in voluntary programs to better adapt communities to changing 

urbanization and climate conditions.  

CHAPTER OVERVIEW 

In this dissertation I bridge key issues of the urban runoff, land management, and 

infrastructure and explore implications for urban environmental planning. In Chapter 2 I 

give more detail about the regulatory context of stormwater management and the 

intellectual roots of GI. In this chapter, I show how the current focus on untreated 

stormwater discharges from Combined Sewer Systems (CSS) took decades after the 

enactment of the Clean Water Act to become defined and regulated as “point sources” of 

pollution. Doing so assigned accountability for eliminating combined sewer over flow (CSO) 
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events, but successfully attaining this goal requires recognition of socio-ecological 

systems challenges of large-area generated point sources. Adaptive management and 

urban experimentation are current management paradigms that frequently assess 

outcomes and correct course if intermediate goals are not met. This type of environmental 

policy is frequently used for socio-ecological systems where there are frequently 

nonlinearities, high levels of uncertainty and complex interconnections between 

biophysical and social system elements, which is the case for runoff management and 

urban development, land management and infrastructure systems.  

In Chapter 3 I contextualize the changes in hydrological function associated with different 

types and intensities of development at the regional scale, addressing Proposition 1, 

above. In this chapter, I examine the effect of the proportion of land that is covered by 

impervious area. Impervious area has been the major causal focus of degraded 

hydrological function associated with urbanization. I develop a statistical methodology to 

detect evidence of reduced watershed capacitance to classify over 100 urbanized 

watersheds from continuous stream flow data, then regress this classification on the 

characteristics of the urbanized watersheds. The results of this chapter show that reduced 

storage is determined more by development, than type of development, and that low-

density suburban development and urban green space functions more similarly to highly 

impervious areas than to naturalized land. This finding highlights the importance of 

accounting for environmental changes accompanying urbanization beyond 

imperviousness, including: changes to hydraulic conductivity and reduced 

evapotranspiration rates because of vegetation change, highlighting the importance of 

land conservation over type of development in preserving hydrologic function. 

In Chapter 4 I describe the application of a three-dimensional surface-subsurface 

hydrological simulation model, ParFlow.CLM to an urbanized sewershed (approximately 
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three urban blocks), to test Proposition 2, above. This application is unique for two 

reasons. First, the majority of urban hydrological models focus on site imperviousness in 

order to predict runoff flows and volumes that load conventional infrastructure—piped 

drainage systems—assuming that water that is infiltrated into soils has “exited” the system. 

If GI is extensively implemented within a catchment however, it is important to account for 

subsurface dynamics after infiltration into soils and evapotranspiration on the site. 

ParFlow.CLM accounts for these processes in three dimensions, allowing me to identify 

important network interactions in hydrological function at the catchment scale. Secondly, 

the study site that is modeled, located in Washington DC, collected in-pipe flows before 

and after the installation of GI in the public right-of-way (ROW) and on private properties, 

between 2009 and 2015. This data allowed for comparisons of the applied ParFlow.CLM 

model to this site with empirical data. 

In Chapter 5 I use the ParFlow.CLM model developed for the site in Chapter 4 to test nine 

alternative spatial configuration scenarios for the GI network and building footprints within 

the sewershed, testing Proposition 2, above. The nine scenarios reflect policy and 

planning-relevant interventions related to site management and development and are thus 

directly related to adaptive management actions that a city could choose to enact. 

Differences in the event-based runoff responses are detected between scenarios, with GI 

configurations located in high flow accumulation areas intercepting more runoff. However, 

compared to the amount of variation in the observed monitoring data, only the differences 

in performance between the most optimal spatial configuration and the least optimal 

spatial configuration would likely be detectable through monitored pipe flows. 

In Chapter 6 I analyze six years of citywide, voluntary residential GI program participation 

data to determine the physical and socio-economic determinants of program participation 

in Washington DC, testing Proposition 3, above. While other studies have emphasized 
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physical feasibility of GI construction on private properties and financial incentives for 

property owners, this study characterizes the growth of the program over time and space. 

Controlling for the tendency for similar types of individuals to spatially cluster within the 

city, this analysis shows that the effect of spatially-dependent social processes becomes 

more important as the program matures. The results of the statistical analysis are 

supported by findings from a survey of participants that indicates that a major determinant 

of program participation is hearing about the program from a friend or neighbor. This 

indicates that GI adoption, like other environmental behaviors, can be thought of as a 

social process of new technology adoption, dependent on social capital and information 

networks, in addition to a function of personal preferences or property characteristics. For 

urban planners, this demonstrates an approximate timescale of voluntary, bottom-up 

programs that may be used alongside more top-down zoning, subdivision regulations, and 

capital improvements programs to manage stormwater in cities. 

Lastly, in Chapter 7 I summarize the conclusions of the dissertation and offer policy 

recommendations for cities and regions to achieve more sustainable outcomes through 

water resource management and planning. 
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CHAPTER 2: INTELLECTUAL ROOTS AND REGULATORY 
CONTEXT OF GREEN INFRASTRUCTURE 

 

INTRODUCTION 

Green infrastructure is a concept that recognizes the interrelationships between land, 

water, and drainage infrastructure. Green Infrastructure (GI) can have different meanings 

in different contexts and at different scales. Embracing the ability of the term to be 

evocative in many different fields, I broadly define GI as an integrated, ecological approach 

to land, water and built infrastructure management that meets multiple objectives of 

sustainability: environmental, financial and community benefits. Integrated land and water 

management approaches can span many scales: from conservation planning at the 

regional scale, to a homeowner’s decision to adopt a rain garden to manage the 

stormwater runoff from their own roof.  

Understanding the science of GI is essential for practice. In the following chapters of this 

dissertation, I address impacts of regional development on streamflow patterns, the 

implications of spatial configuration of imperviousness and GI networks within cities, and 

the spatial-temporal social process of voluntary adoption of GI by urban residents. In this 

chapter, I address the intellectual and regulatory roots of GI to situate the importance of 

my research within larger conversations in environmental policy, planning, and socio-

ecological systems.  

HISTORICAL ROOTS OF GREEN INFRASTRUCTURE 

The concept of GI has intellectual roots originating in two related areas: ecosystem 

services and urban sustainability. Although the ideas of ecosystem services and urban 

sustainability are not mutually exclusive, they approach GI from two different directions.  
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The Ecosystem Services Origins of Green Infrastructure 

Ecosystem services, a term popularized in the 2005 United Nations Millennium 

Ecosystems Assessment initiative, is a recognition of the critical processes that human 

society derives from nature (Millennium Ecosystem Assessment, 2005). Undeveloped, 

natural areas provide ecosystem services including food production, timber, recreation, 

water filtration and storage, and heat island mitigation through forests, agricultural lands, 

and open space. Calling such regional-scale lands “green infrastructure” recognizes the 

importance of these ecosystem services to society and underscores the need to value and 

actively plan for the conservation of natural areas and working lands alongside 

development, just like other critical infrastructures, such as sewer and water facilities. 

Further, planning for the conservation of these areas cannot be piecemeal; rather, using 

the ecological concept of patches, all types and sizes of GI should be thought of part of 

an integrated network (Benedict and McMahon, 2006). In this view of GI, the goal is to 

preserve ecological function as our planet becomes increasingly urbanized. And 

maintaining the connectivity of green infrastructure is considered key to maximizing 

ecosystem services (ibid.). The central questions are of the ecological impact of 

development and the quantification of costs and benefits of urbanization inclusive of 

ecological impacts and ecosystem services. The term ‘infrastructure’ suggests that society 

think of these ecosystem services as infrastructural – complete with standards and 

protocols that make transparent its embeddedness in society (Star, 1999). Infrastructure 

also implies that there should be long-term financing for construction and annual 

operations and maintenance costs for these systems. 

Though the term “ecosystem services” can be traced to within the past 15-20 years, the 

idea that planning for development should incorporate consideration of the natural 

environment can be traced back much further. Early regional planners in the first half of 
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the 20th century stressed the importance of natural land conservation. Increasing 

urbanization in the late 19th century led the birth of the field of urban planning. Such 

regional planning thinkers as Patrick Geddes, Benton MacKaye and Lewis Mumford, 

recognized the need to balance the processes of urbanization with regional environmental 

quality (Mackaye, 1940; Geddes, 1949; Mumford, 1961). Initiatives to limit and contain 

urban development, such as greenbelts and urban growth boundaries, which are growth 

management tools still commonly used today, can be traced back to the work of these 

early regional planners. Later, Ian McHarg, who joined the fields of landscape architecture 

and environmental planning, wrote his seminal work Design with Nature, using overlays 

of environmental data to help guide development away from areas with high ecological 

value (McHarg, 1969). In the 1990s, contemporary site design initiatives such as Charles 

Little’s Greenways for America, and New Urbanism and Smart Growth also valued 

compact development morphologies that acknowledged and promoted conservation of 

ecosystem services alongside development (Little, 1990; Duany and Plater-Zyberk, 1991; 

Daniels, 2001). Rather than characterize naturalized areas as the absence of 

development, environmental planners recognized that urban areas could not be sustained 

without the supporting functions of natural lands. A clear example of an urban area’s 

formal recognition of the ecosystem service of water supply and purification derived from 

outside its political borders is New York City’s purchase of thousands acres of land and 

conservation easements upstate to preserve the source of the city’s drinking water supply. 

The investment in preservation of the land in 1997 was estimated at $1.5 billion, while the 

cost to construct treatment facilities large enough to treat the city’s water demand would 

have cost $6 billion at the time, and $250 million annual to operate (NYC DEP, 2017). 

Today, New York City is known for its high quality potable water, due to the ecosystem 
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services of filtration, purification, and storage that the forested and mountainous land 

provides to the city. 

The Urban Sustainability Origins of Green Infrastructure 

A second, distinct conceptualization of GI—that of urban sustainability—focuses on the 

functions and metabolisms of the city. In 1997, Rees asked the question, “Is ‘Sustainable 

City’ an Oxymoron?,” spurring a line of scholarship that examines how cities can improve 

environmental performance, often in contrast to other types of urbanized development, 

such as suburbs (Rees, 1997; Portney, 2003; Owen, 2009). This line of scholarship 

focuses on the dissection of urban processes and how cities can adopt plans and policies 

to achieve the triple bottom line goals of sustainability: environmental, economic, and 

social health (Campbell, 1996). Emergence of environmental design standards, such as 

the US Green Building Council’s Leadership in Energy and Environmental Design (LEED) 

and the US Department of Energy’s EnergyStar rating systems codified environmental 

performance and ‘green-ness’ into development. From this perspective of GI, the 

emphasis is not on recognizing the previously ignored ‘infrastructural’ ecosystem services 

that society derives from nature, but on imposing ‘green’ objectives for conventional urban 

infrastructures. Infrastructure is itself is an ecological concept. It facilitates not only 

material and energy flows between cities and their hinterlands, but also organizes the 

actors, institutions and regulations that govern and are affected by those material and 

energy flows. Therefore, greening a city and its infrastructure could include a palette of 

improvements to the urban landscape such as Low Impact Development (LID), solar panel 

programs, and clean energy bus fleets. Making cities more sustainable is also frequently 

equated with making them more desirable places to live, and cities see sustainability as 
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part of developing a ‘competitive advantage’ over other cities to attract and keep 

populations (Portney, 2009). 

The concept of infrastructure planning to meet multiple rather than singular goals has been 

a transformative force in infrastructure planning, operations and management, institutions, 

politics and processes (Brown, 2005; Farrelly and Brown, 2011; Karvonen, 2011). The 

greening discourse’s simultaneous emergence with sustainability has additional 

associations with ‘green-ness’ to environmental performance, including personal and 

community health and economic efficiency. In some circumstances it is actually these 

aspects of green-ness—not the specifics of environmental performance—that the public 

actually desires and understands. For example, the previous Water Commissioner of 

Philadelphia, Howard Neukrug, who played a major role in beginning one of the most 

aggressive green stormwater infrastructure programs in the country, recently stated in an 

interview that the decision to implement GI represented a shift away the conventional 

engineering conceptualization of ‘sustainable’ infrastructure as the most durable solution 

that resists aging and decay, towards a conceptualization of infrastructure that helps a 

community meet multiple goals of growth, revitalization and broader ecological benefits 

(Mittermaier, 2016). With respect to stormwater, GI redefines stormwater runoff as a 

resource to improve urban environmental function and amenity, rather than a waste to be 

disposed of (Bos and Brown, 2012; Hamel et al., 2013). 

Interdisciplinary Thinking and Green Infrastructure Concepts  

Although one might be tempted to differentiate ‘types’ of GI according to rural and urban 

locations, this would ignore important intersections between the desire to improve urban 

environmental performance and acknowledgement of critical benefits humans derive from 

nature. Cities seek to draw the benefits of ecosystem services into their borders in order 
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to improve livability for their residents. For example, since the days of rapid urban growth 

during industrialization, Frederick Law Olmsted, father of the field of landscape 

architecture and designer of New York City’s Central Park and Boston’s Emerald Necklace, 

advocated for areas of naturalized aesthetic within cities where residents could find 

physical and mental respite from the stresses of the city, but that were also engineered to 

provide naturalized stormwater management and flood regulating functions (Eisenman, 

2013).  

Within the field of landscape architecture, the rejection of the dichotomous presentation of 

nature and the urban as oppositional has become clearer. This is especially true most 

recently within the landscape urbanism movement, and some have suggested that the 

idea of landscape, rather than previous emphasis on buildings and engineered 

infrastructure components of the urban environment, is the most inclusive concept to 

capture the confluence, integration, and fluid exchange between environmental and 

engineered infrastructure systems  (Waldheim, 2006). In recognition of the creation of 

more environmental problems resulting from large-scale, centralized urban infrastructures, 

this movement purports a vision of “urbanism beyond engineering,” in which design, with 

its unifying ecological theories, can take a more central role in guiding sustainable 

development (Bélanger, 2009).  

Common historical ties between the fields of landscape architecture, urban planning and 

civil engineering from over 100 years ago have made GI an attractive and evocative 

concept across these fields. The benefits to urban areas and the recognition of the effects 

of urbanization on environmental conditions have made many enthusiastic about 

incorporating GI into the future of infrastructure management. The shortcomings of the 

large, centralized, technocratic planning and engineering design practices of the previous 

century of infrastructure development are necessarily our current starting point. Today we 



17 
 

deal with the physical, institutional and regulatory legacies of infrastructures planned in 

another century.  

THE REGULATORY CONTEXT OF STORMWATER 
MANAGEMENT AND GREEN INFRASTRUCTURE 

Legacy Stormwater Infrastructure Systems 

During the 19th and 20th centuries, the “Sanitary City” model of urban development was 

dominant (Melosi, 2000). Under this model, the current scientific and engineering 

understanding and values of efficiency of development led to infrastructure designs where 

wastewater and stormwater runoff were conveniently channeled into nearby creeks that 

would flush out and dilute wastes into rivers, lakes and bays. In Philadelphia, over 20 

streams that originally meandered across the city were buried and sewered so that a 

rational, efficient street grid system could be built (Levine, 2012). Roughly one third of the 

land area of Philadelphia is served by a Combined Sewer System, which collects sewage 

and stormwater runoff within the same pipes. This main branches of this system are also 

collocated where previous streambeds flowed, since these are areas in the topography 

where water tends to accumulate. The efficiency of the design to quickly channel away 

wastewater and drain the city made it the cutting-edge technology of its day (Tarr and 

Dupuy, 1988).  

Today there are still 688 communities served by CSSs in the US. During dry weather, 

these systems convey wastewater to treatment plants, but during rain storms, they 

function as they did over 100 years ago: discharging a mixture of raw sewage and 

stormwater runoff into a receiving water body when the sewage volume flowing to a 

wastewater treatment plant exceeds the plant’s capacity (Figure 2.1). Although such 

systems allowed wastes and water to be drained away from properties, decreasing 

incidents of urban diseases of the day, today, our higher environmental standards and 
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better understanding of ecology and the hydrological cycle have made these original CSS 

infrastructure functions unacceptable.  

 

Figure 2.1 (Left) The typical function of a CSS (Combined Sewer System). During rain 

events, the capacity of the conveyance system is overwhelmed and overflows a mixture 

of untreated wastewater and stormwater runoff into surrounding water bodies. (Right) The 

intended function of GI is to intercept runoff near where it falls, before it enters the CSS. 

This prevents the system from being overwhelmed and from raw sewage discharges into 

natural water bodies. 

 

However, separating wastewater and stormwater collection systems to meet current 

environmental standards is physically and economically infeasible for most CSS-served 

communities. GI helps fill this gap in infrastructure function by intercepting rainfall close to 

where it falls, and using the natural processes of infiltration and evapotranspiration to 

prevent or slow it from even entering the conventional infrastructure systems (Figure 2.1). 

From the perspective of the environmental regulation and management of our existing 

infrastructure systems, GI decreases the loadings onto the infrastructure and can be used 

to decrease Combined Sewer Overflow (CSO) events – when raw sewage is discharged 
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into the environment. It is also used to filter contaminants and slow flows through Municipal 

Separate Sewer Systems (MS4s) that collect stormwater separately from domestic 

sewage, but directly discharge it into surrounding water bodies.  

Developing notions of connections between land, water and 
infrastructure 

As those of the landscape urbanism movement have recognized, and what more 

engineers and urban planners are also beginning to realize, is that our understanding of 

urban hydrology now indicates that restoration and preservation of quality aquatic habitat 

is not only about permissible infrastructure function according to current regulations. It is 

about bridging previously severed conceptual links between ‘the urban’ and ‘nature.’  This 

necessarily touches on issues of the relationship of humans to the environment, the 

relationships of humans to one another and institutions, and better understanding of the 

physical processes linking the built and natural environments, all of which can be 

examined at multiple scales. This necessitates a broader view of relevant system 

components. 

Compared to 1900, we live in a much more urbanized society. In 2009 a majority of the 

world’s population lived in urban areas for the first time in history (United Nations, 2014). 

The type of urban development has also changed (Angel et al., 2011). In part a response 

to the poor environmental conditions and crowding of Industrial-era cities, in part a function 

of automobile-centric development and the interstate highway system, the process of 

urbanization in the United States has resulted in sprawling suburban development 

(Jackson, 1985). This type of urbanization converts farm fields and forest land to low 

density development, which while it may have lower overall levels of impervious surface 

than urban cores, nevertheless has been shown to have large impacts on the hydrological 

cycle (Booth and Jackson, 1997; Hekl and Dymond, 2016). Such widespread land cover 
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and vegetation change does not only impact aquatic habitat quality. It can also impact 

existing downstream development, whose drainage infrastructure can become easily 

overloaded with runoff resulting from development that occurs after the sizing of its 

infrastructure, as illustrated by the example of flooding of the historical downtown of Ellicott 

City, MD mentioned in Chapter 1.  

Green Infrastructure and the Clean Water Act 

The intellectual development of the concept of GI and the relationships between land 

management and water resource quality was also reflected in federal environmental 

regulation. Surface water quality in the United States is primarily regulated by the Clean 

Water Act (CWA). The evolution of the focus of the CWA regulation reflects an increasing 

recognition of distributed, large-area generated sources of water pollution and the need to 

treat water resource management as an integrated socio-ecological system that includes 

land, legacy infrastructure, and social system dynamics. This evolution has occurred over 

four decades and is important to understanding the barriers to integrated, systematic GI 

implementation that still exist today.  

In this section I show how the CWA-based regulation has been successful in reducing 

discrete sources of pollution that have clearly assignable accountability. Today we see 

can see the application of such regulatory strategies to infrastructure system regulation to 

eliminate combined sewer overflows and improve the function of separated sewer systems. 

However, unlike past environmental regulation, mere assignment of accountability and 

property rights-based pollution control techniques are unlikely to be successful for sources 

of pollution generated from large areas. Instead, a systems-perspective of negotiation, 

collaboration and broader cultural change is necessary. The lack of systems-perspective 

prevents proper contextualization of the function of GI at the different scales presented in 
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the above section. Specifically, the current CWA regulatory focus overemphasizes GI as 

the “greening of infrastructure” and underemphasizes the “infrastructuring of green-ness” 

intellectual roots of GI presented above. This has also resulted in insufficient policy and 

scientific connections between the two, preventing scaling up of the benefits associated 

with GI. 

The set of policies that we normally refer to as “The Clean Water Act” (CWA) are the set 

of 1972 amendments to the Federal Water Pollution Control Act, passed in 1948, and their 

subsequent amendments. In 1972, Congress gave administrative authority to the then-

newly created Environmental Protection Agency to draft, implement and enforce the vision 

of the Act. From its onset, the CWA included two complimentary approaches.  

Discharge Permit Regulations 

The first is a technology-based approach, which considers the selection of best available 

practices and technologies for reducing discharge of harmful contaminants into the aquatic 

environment unique to specific industries. Dependent on the technologies available to 

remove contaminants from the waste stream, US EPA adopts effluent discharge 

guidelines and uses these guidelines to set the permit limits for the National Discharge 

Elimination System (NPDES) permittees. The original language of the CWA encouraged 

the use of “Best Available Technology” (BAT), “Best Conventional Pollution Control 

Technology” (BCT) and “Best Practicable Control Technology” (BPT). The use of “best” 

terminology to qualify prescribed technologies allowed for some flexibility in the 

interpretation of the various needs and standards of different industries, and to allow for 

consideration of costs and effluent reduction benefits in the permit decision-making 

process.  
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Water Quality Standard Planning 

The second approach takes into account the environmental and social context of the 

receiving natural water body. Depending on the desired uses of the water body, states set 

water quality standards (WQS) for the natural water body. States develop priority lists for 

impaired waters (303(d) lists) and set Total Maximum Daily Loads (TMDLs) for specific 

pollutants (US EPA, 2014). The two complementary approaches of NPDES and TMDLs 

are designed to work together so water quality goals are linked to permit limits. If a given 

water body is not meeting its water quality goals, this may lead to more stringent NPDES 

permit limits. The dual approach also implies that NPDES permits, which are issued to 

point sources, cannot capture all sources of pollution, especially nonpoint source pollution, 

which are difficult to attribute to a single, discrete source. TMDLs are meant to ensure that 

impaired water bodies are still held to set water quality standards.  

Today, these two approaches in the CWA can be understood as approaches to regulating 

“point” and “nonpoint” sources. Of the two approaches, the technology-based, NPDES 

permitting approach is often associated with the regulation of point sources. Point 

discharges in violation of NPDES permit effluent limits are subject to fines or mandates 

for injunctive relief via administrative judicial action. The following are regulated as point 

sources: industrial effluent, wastewater treatment plants, concentrated animal feeding 

operations (CAFOs), combined sewer systems (CSS), and municipal separate storm 

sewer systems (MS4s). All other sources are designated as “nonpoint” sources. Although 

this dichotomy between “point” and “nonpoint” sources is still commonly used today, it is 

not only not reflective of physical pollution generation processes, it is also a hindrance to 

transfer of successful lessons learned from those sources categorized as “point” to 

“nonpoint” and vice versa.  
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Current practices are already incorporating more ecological perspectives of system 

function into infrastructure management and regional planning practices. Both 

infrastructure management and regional planning would additionally benefit from an 

explicitly ecological perspective that bridges scales and sectors to better unite the two 

complementary halves of the CWA. In the following section, I suggest how the concept of 

“Green Infrastructure” within an ecological conceptual framework has already begun to 

bridge the gap, and how continued ecologically-framed research around GI will strengthen 

the power of the CWA to improve future water quality. 

REGULATION OF POINT AND NONPOINT SOURCES OF WATER 
POLLUTION 

Point source regulation has been based on economic theory 

Point sources are sources of pollution that can be attributed to a discrete location in space. 

For example, the production processes of a paper mill produce wastes that are discharged 

in water from an outlet to a natural water body is regulated as an industrial point source of 

water pollution. Firms’ decisions to comply with environmental regulation can be 

understood as a cost-benefit analysis where firms weigh the probability of enforcement 

and probable fines (Expected Marginal Penalty, EMP) and the marginal costs of 

implementing pollution abatement (Marginal Abatement Cost, MAC)  (Gray and Deily, 

1996; Dasgupta et al., 2000; Shimshack and Ward, 2005; Gray and Shimshack, 2011). 

Economic theory dictates that firms comply with environmental regulation because of the 

fear of fines associated with noncompliance. Fines associated with noncompliance 

internalize the negative externalities of pollution, pushing firms to change their practices 

for the benefit of society, which would otherwise collectively bear the negative impacts of 

pollution. 
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Where environmental responsibility can be clearly assigned, enforcement of 

environmental regulation of point sources has been shown to motivate even firms that 

were not directly fined by regulators to comply with regulation (Shimshack and Ward, 

2005). Once an enforceable environmental standard is set, there is also evidence that 

regulated entities will achieve higher states of compliance than required by regulation. 

Even in cases where threatened fines were less costly than abatement measures, 

noncompliant firms have been shown to be motivated at least towards partial compliance 

(Harrington, 1988).  

Challenges in economics-based pollution source regulation 

In contrast to traditional point sources, it is much more difficult to attribute a discrete 

location for nonpoint sources of pollution. Nonpoint source pollution is generated over 

large areas, such as agricultural land, or atmospheric deposition, and is usually associated 

with wet weather events, which result in precipitation that runs off of land surfaces, carrying 

excess nutrients, sediments, and other contaminants along with it into nearby streams, 

rivers and estuaries. The large area and wet weather-dependent nature of sources 

typically thought of as nonpoint result in much more complexity in regulation. It is more 

difficult to attribute responsibility to specific contributors of pollution because of the 

increased number of actors involved over large areas. In addition, there is an increase of 

temporal randomness (stochasticity) of discharge compared to more process-driven 

effluent discharges.  

While nonpoint sources are usually portrayed as harder to identify, there is also evidence 

that the EMP/MAC model underlying point source regulation does not truly capture 

complexity of decision-making and context behind pollution and pollution prevention. The 

breakdown of the EMP/MAC model is more severe the more stochastic (unpredictable) 
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and open the system. Even for industrial processes, which are relatively deterministic 

(known) processes, unpredictability of accidental discharge has been documented to be 

a major source of both regulatory challenge in enforcement and in firms’ decision-making 

when weighing costs and benefits of compliance (Brännlund and Löfgren, 1996). For both 

industrial firms and publically-owned wastewater treatment plants (WWTP), firms often 

choose to “overcomply” with regulation due to factors not captured by the EMP/MAC 

model such as decision makers wishing to present a “green image” to customers, or 

response to corporate image, reputation, external community pressure concerns or 

shifting cultural norms (Downing and Kimball, 1982; Arora and Cason, 1995; Potoski and 

Prakash, 2005; Banduopadhyay and Horowitz, 2006; Prakash and Potoski, 2007), 

indicating that the “system” to be regulated does not have a clear boundary at the edge of 

the firm’s internal processes, but also includes public pressure, community and reputation 

that extend beyond the firm’s specific business. Given this, it is not surprising that both 

spatial heterogeneity and temporal stochasticity of emissions have been shown to break 

down the economic EMP/MAC model, even for sources of pollution normally classified as 

“point sources” (Banduopadhyay and Horowitz, 2006; Shimshack and Ward, 2008). 

As discussed above, environmental regulation of the “command-and-control” flavor – 

issuing permits and enforcing compliance through inspections and fines – has generally 

been considered successful in regulating traditional point sources such as industrial firms 

and wastewater treatment plants. Yet, 53% of river and stream miles and 69% of lakes, 

ponds and reservoirs in the US remain classified as “impaired” (US EPA, 2015). US EPA 

has identified that “nonpoint” sources of pollution remain the major challenge to 

improvement of water quality. In studies from the Chesapeake Bay, researchers estimate 

that 44% of nitrogen and 65% of phosphorous loads to the Bay originate from agricultural 

land uses and 25-28% of nitrogen originates from atmospheric deposition (US EPA, 2010).  
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Both of these sources are not regulated as point sources and generate pollution over large, 

distributed areas. 

In light of this, it is increasingly critical that environmental strategies incorporate the 

complexities of large area pollution generation, heterogeneity of actors, and temporal 

stochasticity. The next section traces the history of GI as an acceptable strategy to meet 

CWA requirements. The lessons learned from the implementation of GI as a best available 

“technology” to prevent point discharges from infrastructure systems can be extended to 

how large-area, distributed natural infrastructure may be successfully implemented to deal 

with even more spatially and temporally stochastic sources, such as agricultural and 

atmospheric deposition sources of pollution.  

COMBINED SEWER OVERFLOWS AND GREEN 
INFRASTRUCTURE 

GI in cities is an infrastructure-centric concept that uses often-vegetated, source control 

Best Management Practices (BMPs) to intercept, evaporate or infiltrate surface runoff 

before it reaches the underground pipe collection system. Its primary purpose is to reduce 

loading on existing conventional infrastructure systems. As of the 2012 Clean Watershed 

Needs Survey, 14 cities officially included budget line items for Green Infrastructure as 

part of their CSO elimination programs (US EPA, 2016). Today, the use of GI as an 

acceptable technology for CSO abatement seems commonplace, with cities such as 

Philadelphia even planning for a majority GI-based strategy to eliminate CSO events 

(Philadelphia Water Department, 2009). However, both the definition of a CSO as a source 

of pollution that could be regulated as a “point source” and GI as an acceptable 

“technology” for point source abatement were both ideas that evolved over time.  
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The Evolution of Large-Area Point Sources 

The original 1972 CWA did not specifically address CSOs, industrial storm runoff or 

municipal storm drains, but did explicitly exempt agricultural stormwater discharge from 

having to obtain technology-based discharge permits (US EPA, 2001). It was not until the 

1980s that the initial focus of the CWA on traditional POTW and industrial point sources 

shifted to wet weather sources of pollution. In order to regulate CSOs as point sources, 

additional federal leadership and interpretation was needed to clarify how such point 

sources should be regulated. In 1980 an important case Montgomery Environmental 

Coalition vs. Costle, affirmed the EPA’s interpretation that CSOs were not equivalent to 

discharges from WWTPs and thus not subject to limits based on secondary treatment 

standards placed on WWTPs. However, this ambiguous ruling could be interpreted to 

mean that CSOs were not point sources and did not need to be regulated to the same 

rigor as WWTPs and industrial point sources had been. 

By the late 1980s, Congress and the EPA could not ignore the contribution of wet weather-

dependent sources of water pollution. In 1987, the Congress passed another major 

amendment to the CWA, the “Water Quality Act of 1987, which created the “Nonpoint 

Source Management Program (Section 319 in the CWA) to give grants to states to support 

demonstrations, technology transfer and technical assistance to manage sources of 

pollution not explicitly regulated as point sources. The 1987 amendment also explicitly 

stated for the first time that industrial stormwater discharges and MS4s must obtain 

NPDES permits for stormwater outfalls. This decision explicitly extended the classification 

of “point source” to include stormwater generated over vast areas discharged at discrete 

points, even when such sources were not at all related to sewage collection, conveyance, 

or storage. The Water Quality Act of 1987 still exempted agricultural runoff from 
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technology-based NPDES regulation, but funding was allocated to support further 

research on the contribution of agricultural runoff to water quality degradation. 

Two years later, the EPA issued the National Combined Sewer Overflow Control Strategy 

in the Federal Register (US EPA, 1989). This document reaffirmed that CSO discharges 

are point source discharges independent of the POTW treatment facility. This clarification 

subjected CSS outfalls to NPDES permit requirements and required them to be brought 

into compliance with technology-based and water-quality-based requirements of the CWA. 

According to the strategy, “CSOs which are discharging without a permit are unlawful and 

must be issued permits or eliminated.” (US EPA 1989). The strategy stated some possible 

complexities for single, system-side permitting of CSOs and acknowledged that portions 

of a CSS are sometimes operated by multiple authorities and closely tied to the function 

of the treatment infrastructure of POTWs, recommending that NPDES permits should 

cross-reference the POTWs’ NPDES permit and effluent limits. At the time, it was not 

immediately obvious how the CSS outfalls should be considered point sources, since 

unlike other point sources, the systems contributing to CSO events covered massive 

urbanized areas, and were stochastically dependent on rainfall, groundwater levels (which 

would influence inflow and infiltration into the system) and domestic water usage rates 

within the city (which fluctuate diurnally, and affect the system’s ability to accommodate 

rain volumes). Although the strategy provided federal leadership on the interpretation and 

application of “point source” to CSOs, municipal organizations felt that the National CSO 

Control Strategy did not provide sufficient clarity and therefore they pushed the EPA for a 

consistent national approach to dealing with CSO events (US EPA, 1995). 

The EPA responded by forming a Management Advisory Group in 1992, which included 

representatives from state and local government, industry associations and environmental 

groups. The result was the release of the CSO Control Policy in 1994, to expand upon the 



29 
 

original strategy outlined in 1989. The 1994 CSO Control Policy required communities to 

implement two phases to bring CSOs into compliance with NPDES permits and water 

quality standards. Phase 1 required communities served by CSS to first implement the 

following Nine Minimum Controls (NMCs) no later than January 1, 1997 events (US EPA, 

1995): 

1. Characterization, monitoring and modeling 

2. Public participation 

3. Consideration of sensitive areas for prioritization 

4. Evaluation of alternatives that will enable the permittee, in consultation with the 

NPDES permitting authority, WQS authority, and the public, to select CSO 

controls that will meet CWA requirements 

5. Cost/performance considerations 

6. Operational plan revisions that include long-term CSO controls 

7. Maximization of treatment at the existing POTW treatment plant 

8. An implementation schedule for CSO controls 

9. Post construction compliance monitoring program to verify compliance 

 

Phase 2 required communities to develop and implement Long-Term Control Plans 

(LTCPs) to ensure that the actions to be implemented would indeed lead to reduction of 

CSO events and improvement of water quality (US EPA, 1995). Compared to the original 

recommended controls in the EPA’s 1989 Strategy, the 1994 Policy additionally 

emphasized processes of knowledge gathering, system understanding and 

acknowledgement of diverse stakeholders as opposed to emphasis on a singular 

permitted entity. These actions were all signs of recognition that BAT determination and 

evaluation under uncertain and more stochastic circumstances are much more difficult to 

ascertain, and for which there would not be a single “industry standard”. The guidance of 

the 1994 policy essentially urged operators of wastewater collection and treatment 

facilities to broaden their understanding of the systems. Their previous NPDES permits 
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covered the boundary of the process starting from the controllable inlet of the POTW, to 

the treated effluent outlet. Now, by nature of the much larger and weather-dependent 

system, they were being held responsible for a much more stochastic and heterogeneous 

system, including many processes which they had much less control over. 

Development of Control Strategies 

In its 2004 Report to Congress on the status of CSOs, the EPA presented numerous 

strategies for source control and system operations and maintenance distributed over the 

entire sewershed as viable technologies to attain compliance with NPDES permits for CSS 

outfalls. The Report presented real-time monitoring and model development as best 

practice technologies for reducing CSO events. This strategy departed from the previous 

understanding of “end of pipe” BATs, BCTs and BPTs that were deployed to physically 

treat or reduce flows at the outfall. The purpose of these tools was not to treat the physical 

flows themselves, but rather to identify problem areas within the watershed—problematic 

areas within the system that contributed to the downstream “point source” of the CSS 

outfall.  

The 2004 report was the first time that EPA advocated the use of Low Impact Development 

(LID) as an acceptable treatment technology for CSO control. LID is a source control 

strategy that is meant to reduce the generation of runoff before it enters the collection 

system, usually using vegetated areas and infiltration of runoff into the underlying soil and 

slowing peak flows from overwhelming infrastructure capacity.  

Wastewater utility operators suddenly found the systems for which they were responsible 

including not only the well-defined infrastructure assets of the POTW, conveyance 

structures and pump stations; the incorporation of source control BMPs and LID extended 

the boundary of their system to include land use type, development decisions, and 



31 
 

management of stormwater runoff from private property. CSS and MS4 outfall discharge 

permit holders became large-area generated point sources. These permit holders are 

similar to the problem of diffuse generation, multiple-actor nonpoint sources of pollution in 

their limited control over the system and high stochasticity, but they are unique in their 

assigned accountability over discharge effluent quality. A major question for the operators 

of NPDES permitted systems (stormwater or wastewater utilities) was how to pass on 

accountability of the function of their systems onto the diverse, heterogeneous property 

owners and residents across their service areas that were producing the runoff feeding 

the system. As will be further addressed in the following section, while the 1994 CSO 

Control Policy effectively assigned accountability to stormwater and wastewater utilities to 

compel compliance with more stringent environmental standards, it is not clear that further 

passing on economic-based accountability to property owners and residents within the 

service area will actually result in the desired effect of greener land management practices, 

distributed reduction of runoff and system loading, and elimination of CSO events. 

IDENTIFYING SOLUTIONS TO LARGE AREA-GENERATED 
SOURCES OF WATER POLLUTION 

Problem of Accountability or Cooperation? 

Some researchers have attributed the reason for stalled surface water quality 

improvement to the inability of regulatory actions to affect land use practices (Dyckman 

and Paulsen, 2012). Although the link between land use and water quality is undoubtedly 

clear, the US has historically rejected the idea of federal involvement in local land use 

decisions, a sentiment that was particularly apparent in the failure of the National Land 

Use Planning Acts of the 1970s (Rome 2001). There are two major schools of thought for 

the best way to correct for the gap in linked land use and water quality planning. These 

schools of thought have emerged in response to regional scale, integrated land-water 
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management practices, but they also conceptually apply to land-water management 

practices within cities. 

One approach, spearheaded by former Interior Secretary General Babbitt called for an 

increased, unified federal vision for land-use and water planning. Babbitt believed that 

federal funding should be contingent on approval of states’ comprehensive, integrated 

land/water plans and would increase realization of outcomes (Babbitt, 2007). In contrast, 

others argued for more flexible institutional arrangements that are better able to deal with 

the fragmented nature of federalist government, including interstate compacts, interstate 

associations, federal-state partnerships, federal-interstate partnerships, or federal-state-

local partnerships (such as Metropolitan Planning Organizations formed for transportation 

infrastructure planning). Such partnerships allow diverse locally-specific stakeholders to 

negotiate water quality trading agreements and set water quality standards given local 

conditions and means of achieving those water quality standards (Leach and Pelkey, 2001; 

Sabatier et al., 2005; Mandarano et al., 2008; Dyckman and Paulsen, 2012).  

Assignment of greater accountability and federal oversight (e.g.: Babbitt, 2007) reflects 

the belief that greater accountability will result in clearer EMP/MAC tradeoffs, which would 

then result in the ability to nudge actors toward better environmental decisions.  

One former EPA official expressed that in over 20 years of work in the water pollution 

regulation sector, he had never truly seen a source of pollution that could not be attributed 

to some point, indicating that accountability should not be thought of as fundamentally 

unknowable (Layzer, 2011). The history of how discharges from MS4 and CSS outfalls 

were not immediately clear from the start of the CWA, but were defined through federal 

leadership, highlights how accountability can be assigned to large-area-generated 

sources of pollution. Just as the heterogeneous landscape of the urban environment came 

to fall under the regulatory jurisdiction of MS4 and CSS outfalls, nonpoint sources could 
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plausibly be conceived of as a point source at a larger scale. The question then is not 

necessarily about technical feasibility, but of whether hyper-focus on identifying point 

sources and applying EMP/MAC-type regulatory and economic incentives to those 

sources will actually result in the expected environmental outcomes. 

For example, if driving produces emissions of NOx that contributes to the atmospheric 

deposition portion of nitrogen loading to the Chesapeake Bay, a point source-type policy 

response might be to issue emissions permits to each driver or use a vehicle miles 

traveled-based tax to discourage driving. However, such a strategy might not be socially 

equitable, since such a tax would be higher for those who live further from their workplaces 

– possibly a result of larger structural forces, including land-use patterns and urban 

economics, and potentially larger burden on poorer households. This simple example 

illustrates how environmental decision-making processes that affect diverse actors are 

likely to involve a host of other factors that increase the problem’s complexity. 

In contrast to the familiar point source EMP/MAP-based approach, more flexible 

arrangements based on negotiation, partnerships and communication (e.g.: Sabatier, 

2005), reflect a belief in another approach to environmental stewardship: one that accepts 

complexity and interactions between system components and leverages these 

interactions to identify solutions. In the next section, I apply the concept of socio-ecological 

systems (SES) to stormwater management planning and policy. 

Urban Ecology and Socio-Ecological Systems (SES) 

Urban ecology has emerged as a unifying area of interest for natural and social scientists 

as well as designers and planners. Broadly, the study of ecology is defined as the 

interaction between an organism and its environment, where “environment” is in contrast 

to whatever biological complex is chosen (Tansley, 1935). Part of the appeal of the 
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ecological concept is its ability to metaphorically adapt to the context to which it is being 

applied (Pickett et al., 2004); however, a core requirement is identification of functional 

linkages between organisms and the environment of a physical area (Pickett et al., 1997). 

Humans and human influences—including our social and cultural structures, institutions, 

and built infrastructure—are an important part of many physical and biological complexes, 

especially in urban areas. It is therefore useful to explicitly include human components of 

ecological systems (Tansley, 1935; Machlis et al., 1997; Grove et al., 2015). 

Beginning in 1997, with the establishment of two National Science Foundation Long-Term 

Ecological Research sites located in the urban areas of Phoenix and Baltimore, 

conceptualization of an ecology of cities, in contrast to previous views of ecology in cities 

started to come into focus. Previously, scientists studied ecology in cities by using 

comparative before and after experiments or measurements along urban to rural gradients 

to quantify the effects of urbanization on natural systems and focused on the green spaces 

in cities as disturbed rural analogs to the ‘natural’ condition. In contrast, these urban 

LTERs took the ecology of cities approach, which emphasized incorporation of whole 

systems—social and biophysical—to understand how cities metabolize material and 

energy flows (Grimm et al., 2000). Framing the city as an ecosystem, and a unit of analysis 

in itself resulted in a “radical expansion” of ecology (McDonnell and Pickett, 1990; Grimm 

et al., 2000). 

Within the urban ecosystem framework, the role of humans, human institutions and social 

relationships and their interrelations with biophysical resources are identified more 

explicitly for research. The “Human Ecosystem Model” (Figure 2.2) portrays an example 

of the potential relationships between system components (Pickett et al., 1997). Within the 

ecosystems, patterns and processes highlight the roles of change over time and spatial 

patchiness of heterogeneity that are present within self-organizing systems such as cities. 
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The research resulting from two decades of this conceptual framework of urban ecology 

has succeeded in identifying previously unexplored gaps and connections in knowledge, 

debunking previously held conceptions about the ecological processes in urban areas, 

and has contributed to constructing a unified theory of urban ecology (Pickett et al., 2008). 

Conceptual frameworks from urban ecology are useful for addressing complex socio-

ecological systems by promoting interdisciplinary research, and translating and 

disseminating results. In the human ecosystem model, components of the human social 

system, such as regulations, social norms, and knowledge, influence our planning for 

resource systems. Resource systems, which include cultural, socioeconomic and 

ecological resources also in turn influence human social systems.  

Related to urban ecology is the idea of socio-ecological systems (SES). Systems science 

is the “study of an interconnected set of elements that is coherently organized in a way 

that achieves something” (Meadows, 2008). Undoubtedly, SES are related to urban 

ecological concepts, but additional emphasis is placed in purpose in addition to pattern 

and process. The identification of the purpose of the system underlies the importance of 

identification of the interconnections between the elements of the system. The 

interconnections and feedbacks determine a system and its sustainability. The feedbacks 

between ecological and social components of the system are what allow us to properly 

allocate and protect limited resources for the longevity of society (see Figure 2.2). 
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Figure 2.2. An example of a socio-ecological system conceptual model representation: 

the Human Ecosystem Model. Source: Pickett et al. 1997 

 

Perhaps the best-known example of unsustainable feedback between social system 

allocation and environmental resources is the “Tragedy of the Commons.” According to 

the theory of the Tragedy of the Commons, a failure for social institutions to incorporate 

the negative externalities of common pool resources, leads to resource overuse. The 

marginal benefit that any one actor gains from overusing the resource outweighs the cost 

that is spread across all actors (Hardin, 1968). Based on this theory, people with a 

common-pool resource will tend to pollute or overuse that resource until it eventually 

collapses (the system is over-logged, over-fished, or completely degraded). The typical 

response to the tragedy of the commons is to internalize the negative externalities 

associated with pollution or overuse. Negative externalities can therefore be understood 
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as a lack of recognition of property systems. Theoretically, no actor would willingly pollute 

or unsustainably harvest resources if he/she were to bear the total cost of doing so. The 

answer to the tragedy of the commons problem then has been to internalize the negative 

externality by assigning property rights or by imposing Pigouvian taxes meant to reduce 

pollution and overuse (Pigou, 1920; Coase, 1960). However as alluded to above, such 

simple frameworks and the imposition of these policy solutions frequently fail. Within a 

SES framework, failure occurs when the purpose of the system, to sustainably support 

society with natural resources, has been lost. The goal of a whole systems perspective is 

to identify more elements of the system contributing to its overall purpose, not to simplify 

the system into one-size-fits-all rules.  

In addition to the dominant paradigm of internalizing negative externalities through market 

signals as a solution to common-pool resource problems, there are also examples of long-

term sustainability achievement through communication and self-organizing groups 

(Ostrom, 2009). Therefore, especially when Pigouvian tax-type policy responses fail to 

solve a complex environmental problem or to explain actors’ behaviors, it becomes 

necessary to incorporate more specific components of the complex system, to understand 

their intersections and relationships, rather than ignore or assume away complexity. 

Ostrom and others have suggested multi-level aspects of complex SES that can improve 

a system’s ability to self-organize sustainable management and use of a common pool 

resources. The framework includes the overarching social-economic and political setting 

(e.g., economic development, demographic trends, media organization), resource 

systems, resource units, governance systems, user characteristics, interactions between 

users, outcomes, and related ecosystems. Both conventional gray stormwater 

infrastructure and green infrastructure can be understood as part of a larger SES in 

addition to merely an example of the Tragedy of the Commons. 
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It is the acknowledgement of stochastic, open-system dynamics that makes the socio-

ecological conceptual model of infrastructure increasingly relevant in 2017. Currently, 

some of the components of the ecological view of infrastructure are already being 

incorporated into infrastructure management and urban planning practices. Others, are 

understudied. 

Urban Runoff as a Socio-Ecological System 

Stormwater flows and storage volumes in conventional infrastructure within an urbanized 

area can be understood as common-pool resources because water quality and available 

storage diminish as runoff flows through the urban environment (Flynn and Davidson, 

2016). In the US, the regulatory context of the Clean Water Act combined with local public 

works and environmental agencies’ desires to improve infrastructural and environmental 

function have resulted in the enactment of standards related to the management of 

stormwater. As Ostrom suggests however, the problem of pollution associated with urban 

runoff is not likely to be solved simply through enacting a property-rights based system, 

or Pigouvian tax penalty for runoff pollution. Cities exist within a complex SES with 

embedded socio-economic realities, governance structures, and legacy infrastructures 

and institutions. Increasing fines on local utilities already burdened with aging 

infrastructure costs for example, is neither a fair decision, nor one that is likely to be 

effective or even feasible. The local decision and financial capacity to upgrade aging 

infrastructure systems, especially in older, post-industrial  “legacy cities” in the US, 

requires innovative planning, and partnerships at multiple levels of government, with 

communities, local nonprofits, community organizations and philanthropic groups (Birch 

and Wachter, 2008). The multiple benefits of GI allows local communities to find creative 

ways to partner to achieve their CWA mandates, improve environmental and 
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infrastructural function, and improve livability. For areas experiencing growth, this can be 

mandated through new compelling development to meet rainfall retention standards. But, 

it is more of a challenge for cities with slow redevelopment rates, falling or stagnated 

population growth, aging infrastructure, and significant financial constraints, a perfect 

storm for many of America’s legacy cities (Schilling and Logan, 2008). 

The decision to adopt formal GI planning as part of a city’s capital improvement plan is 

situated within an SES framework that includes complex operational choice rules, such as 

regulations, funding, and management plans. There are also potentially competing 

ordinances involving zoning, subdivision regulations, and building codes that can prevent 

successful GI implementation (Flynn and Davidson, 2016). The barriers to city-wide 

adoption of GI planning are well-documented. “Siloed” local government departments can 

make necessary collaborations to implement GI plans difficult (Brown, 2005). Centralized 

technocratic culture often prevents effective management of distributed infrastructure 

systems (Roy et al., 2008; Dhakal and Chevalier, 2016). And, many cities’ are dealing with 

limited infrastructure budgets and declining populations that limit any local investment in 

infrastructure and foster public pushback to increasing fees (Keeley et al., 2013).  

Even within cities that have adopted formal GI plans, there still exist major barriers to 

successful implementation. The most ambitious GI plan in the US, Philadelphia’s Green 

City, Clean Waters program, aims to treat one third of its impervious area (10,000 acres) 

with GI to reduce loading to its overburdened combined sewer system by 2035. Since GI 

is land-area intensive, the plan would benefit greatly, and in fact requires, the participation 

of private commercial property owners to treat their stormwater on site to meet this goal 

(Philadelphia Water Department, 2009). In the spirit of internalizing the negative 

externality of runoff production, in 2009 Philadelphia changed its stormwater billing to be 

based on impervious surface area, rather than on water meter usage. If property owners 
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willingly treated runoff on their properties or reduced imperviousness, letting it infiltrate 

into soils instead of loading the public sewer infrastructure, the Philadelphia Water 

Department (PWD) would credit their accounts (Valderrama and Davis, 2015). This market 

incentive was meant to send the correct environmental behavior “nudge” to encourage 

private adoption of GI, but has had limited effect (Hsu et al., 2017).  

The distributed nature of GI can be understood as both an opportunity for the 

‘democratization’ of formerly centralized, technocratic planning practices, and as a 

challenge. For example, the West Mill Creek Project, a decades-long collaborative 

community program organized educational, community activities, and civic leadership 

programs around issues of stormwater management in Philadelphia. The West Mill Creek, 

a historical stream that was sewered and buried in order to accommodate the city’s grid-

based street network, was the focal point. Issues of environmental justice, geospatial 

mapping, public green space, and lot vacancy all intersected with how water drained from 

this urban watershed (Spirn, 2005). In contrast to technocratic, top-down infrastructure 

planning paradigms of the past, this civic political model emphasized the importance of 

place, organizing diverse coalitions of activists to address overlapping community issues, 

including: economic growth, environmental quality, local government control, and 

education. For example, part of the program paired university students with local public 

school students in Action-Based Learning about urban environmental science and 

technology related to the buried stream. Instead of simplifying and siloing, this model 

created transformation by including deliberation of various interconnections between 

system elements (Karvonen, 2011). The creation of knowledge, expertise and even data 

products from the West Mill Creek project has made long-term socio-ecological impacts 

that would be difficult to quantify by simplifying the system to singular metrics (for example: 

reductions in gallons of CSO discharges). Examples of these socio-ecological impacts 
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include: development of remotely sensed land cover and topographic data products for 

the City of Philadelphia and the initial training of local high school and graduate students 

who later went on to innovate in urban stormwater management geospatial software, web 

applications and land vacancy planning programs in Philadelphia and Baltimore (Spirn, 

2005) 1 . These are examples of dispersed beneficial contributions to the overall 

“ecosystem” of distributed stormwater management practices. 

However, there is also evidence that the legacies of the past paradigm of top-down 

governance still casts a shadow over ideal democratic deliberation and participation in 

Philadelphia’s Green City, Clean Waters program. Issues of inequality and distrust among 

residents and between residents and government officials have been shown to prevent 

true democratic deliberation (Travaline et al., 2015). PWD’s CWA mandate to implement 

greened acres places pressure on residents to accept the GI approach, leading to 

perceptions that efforts to “revitalize” their neighborhoods with GI had gone through little 

actual community participation. While distributed GI could represent a democratization of 

infrastructure, it might also be understood as an extension of top-down planning practices, 

also incorporating neighborhood aesthetics, and even land management practices on 

private properties. This balance is related to deeply entrenched relationships between 

various populations within the diverse urban environment and urban policy. True 

collaborative relationships under a mandated imperative to meet federal environmental 

regulation would benefit from lessons learned from past collaborative watershed-based 

initiatives. 

                                                            
1 Robert Cheetham, CEO of Philadelphia’s largest geospatial software design company Azavea, 
is a former graduate student participant of the West Mill Creek project (1996-1997). Azavea has 
built geodatabases and tools to support the Philadelphia Water Department’s deployment of GI 
(http://web.mit.edu/4.243j/www/wplp/about.html). One of the principal developers of Baltimore’s 
Green Pattern Book for vacant lot planning, Mark Cameron, previously participated in the West 
Mill Creek project (1990-1991). 
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Watershed-Based Strategies and Green Infrastructure 

Much has been written about collaborative approaches to watershed management. 

Collaboration is well-based in planning, which needs ways to deal with complexity and 

“wicked problems”, a term particularly apt within pluralistic societies in which there does 

not exist any indisputable public “good” or “optimal solution” (Rittel and Webber, 1973). 

Communicative rationality is the idea that knowledge is created through the exposing of 

contradictions, and negotiation of intents (Innes and Booher, 2010; Healey, 2012). 

Participatory planning decreases distrust between actors, leading to more consensus. 

Sabatier et al. (2005) empirically analyzed the conditions under which successful 

watershed partnerships have formed. The authors found that large ideological differences 

between participants were less likely to lead to the emergence of institutions of 

collaborative watershed management. Smaller, more stable, and more homogenous 

communities were more likely to lead to watershed partnerships accentuating the difficulty 

of planning for GI in highly heterogeneous urban environments (Sabatier et al., 2005; 

Lubell et al., 2009). Lubell et al. (2009) found the strongest predictors of partnerships were 

fairness, social networks, trust, budget support and scientific analyses.  

The voluntary adoption of environmental best management practices among orchard 

growers in an agricultural watershed is a function of local networks that diffuse innovation, 

social capital and cultural change (Lubell and Fulton, 2008). These studies concede that 

the most difficult, even impossible, outcome of successful watershed partnerships to 

measure, however, is water quality outcomes, because of the long time-series water 

quality monitoring data necessary to determine change, and the impact of random factors 

such as climate and weather conditions. Instead, measurement of success of watershed-

based planning usually relies on perceived impacts and other process-based or 

intermediary outcomes such as trust and communication (Carr et al., 2012). Consensus 
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building, negotiation and trust-building are important for large-area, multi-actor watershed 

management planning because they are more likely to result in specific restoration 

projects and in participants that are more likely to honor agreements (Sabatier et al., 2005). 

They are also likely to have non-direct effects towards overall cultural changes, awareness 

and education and therefore should also be valued for reaching beyond narrow 

evaluations of collaborative programs (Leach et al., 2002; Mazmanian and Kraft, 2009; 

Carr et al., 2012). Estuaries involved in the National Estuary Program network have been 

shown to span more levels of government, integrate more experts and science into policy 

and fostered stronger interpersonal relationships (Schneider et al., 2003). This is 

especially important in the context of local water infrastructure planning, which has been 

shown to include little vertical or horizontal integration beyond local engineering 

departments, impeding long-term perspective on infrastructure planning (Lienert et al., 

2013). 

The concepts and benefits associated with large-area, land based and watershed-scale 

water pollution control strategies above need not be excluded from the strategies 

employed by sources that are already currently regulated as “point sources” within the 

CWA framework, precisely because point sources such as CSO and MS4 outfalls also 

incorporate many of the same complexities as sources typically thought of as “nonpoint” 

sources. There is much potential for participatory planning and inclusion of multiple 

objectives within urban areas, whose infrastructure systems have traditionally been 

governed by technocratic, command and control engineering. The concept of “civic politics” 

represents a shift from this view of urban systems to a more relational perspective between 

humans and nonhumans (Karvonen, 2011). Civic politics is more than decentralizing 

environmental policy. It is actually about “creating transformative mode of local politics 

steeped in in deliberative democracy and community activity” (Karvonen, 2011). 
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Participatory planning has educational value and increases the likelihood of goal 

attainment through collective action. Communicative rationality is the process of revealing 

patterns in what might initially appear like randomness, a step in environmental regulation 

that is necessary for all sources of water pollution, including CSOs and MS4 outfalls and 

everything located to their right on the spectrum.  

In conclusion, there is an opportunity for urban GI planning to incorporate the findings, 

values and techniques of larger-scale watershed-based collaborative, voluntary and 

participatory planning. These techniques acknowledge and incorporate larger social 

processes of communication, education and cultural change into their long-term visions 

for environmental improvement, aspects that are certainly important for improving the 

function of urban infrastructure as well. However, others have expressed concern with the 

lack of accountability in results associated with collaborative watershed planning.  

 

SES RELATIONSHIP TO PHYSICAL FUNCTION 

There is also uncertainty around the physical hydrological performance of GI as a network. 

“Networks” of GI should be understood as integrated plans that incorporate the multiple 

scales and the contexts of the ecosystem services they provide (Benedict and McMahon, 

2006; Rouse and Bunster-Ossa, 2013). As I stated above, the idea of GI refers to both the 

“greening” of conventional infrastructure, and the “infrastructuring” of green-ness, or 

natural land. Therefore GI includes engineered best management practices—rain gardens, 

pervious pavement, etc.—that intercept stormwater runoff before it enters conventional 

drainage infrastructure. It also refers to the regional conservation of natural lands 

alongside development. Both involve issues of environmental and infrastructural 

governance, local and regional land use planning, and the linked management of land and 

water resources by many actors. 
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Questions of effectiveness of GI within these contexts and scales should not be 

considered separately. “Effective” physical planning and functioning of GI requires 

scientific understanding and definition of the physical hydrologic processes that determine 

how water moves through and is distributed in the environment. This requires us to not 

only account for surface runoff as is typically the focus of urban hydrological models, but 

processes of infiltration, flows though the unsaturated and saturated groundwater zones, 

and evapotranspiration. Evidence of these processes at different spatial and temporal 

scales help us identify important thresholds, feedbacks, interactions and unexpected 

outcomes from the ecosystem services we expect from GI, the “purposes” of this SES. 

Currently GI is in an experimentation phase. Measurements of physical effectiveness of 

GI will inform how we adapt our infrastructure, land, and water planning and management 

practices to meet environmental goals. But how we go about correcting course when goals 

are unmet, and how we choose to iteratively adapt our infrastructure, land, and water 

management techniques and policies, which levers we choose to pull, will be based on 

how we understand the dynamics of the components of the GI and urban runoff SES now. 

As I have touched on in this chapter and will continue to explore in the coming chapters, 

the dynamics and components involved include the social processes of GI adoption and 

urbanization and the physical processes that affect hydrological response.  
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CHAPTER 3: BEYOND IMPERVIOUSNESS: HYDROLOGIC 
RESPONSE AT THE REGIONAL WATERSHED SCALE 

 

INTRODUCTION AND BACKGROUND 

 Research has long shown the link between urbanization and degraded water quality and 

aquatic habitat (Hammer, 1972; Hatt et al., 2004; Newall and Walsh, 2005). For managers 

of urbanizing watersheds, one key indicator of negative hydrological change has been 

impervious surface area. Instead of subsurface flows that are typically the dominant 

response to rain events in humid catchments, the hydrologic response in urbanized 

watersheds becomes dominated by surface runoff (Leopold, 1968; Arnold and Gibbons, 

1996). Increased surface runoff occurs when impervious surfaces in the form of roofs, 

parking lots, roads and sidewalks prevent precipitation from infiltrating to the underlying 

soil. The result is a “flashier” runoff-response, which leads to flooding and erosion and 

sedimentation of natural water bodies (Booth and Jackson, 1997; McBride and Booth, 

2005). 

Impervious surface area has emerged as a key indicator of impaired aquatic habitat for 

watershed managers and urban planners for its ease of conceptual understanding, but 

research has shown that impervious surface area alone is not sufficient for understanding 

underlying mechanisms of hydrological response and degradation (Harbor, 1994; Brabec, 

2002; Shuster et al., 2005). One key distinction when trying to quantify impervious surface 

is the functional difference between Total Impervious Area (TIA) and Effective Impervious 

Area (EIA). Underlying the concept of EIA is the idea that degree of connectivity of 

impervious surface area is important in addition to the total magnitude of impervious area 

(McBride and Booth, 2005; Shuster et al., 2005; Alberti and Booth, 2007; Moglen and Kim, 

2007). Emphasis on hydraulic connectivity implies that pervious surfaces could also 
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function similarly to impervious surfaces and hydrologic response is dependent on 

antecedent moisture of underlying soils, slope and connectivity to impervious surfaces. 

Alternatively, impervious surfaces that are not hydraulically connected to the drainage 

network may not be considered EIA. This latter concept is the principle behind run-on 

infiltration stormwater management techniques in urbanized areas, which aim to 

“disconnect” impervious areas, reduce peak flows and volumes, and increase baseflows 

to local streams (Miles and Band, 2015).  

Researchers have approached quantifying EIA from TIA in different ways, including using 

empirical conversion factors, field surveys, and sensitivity analyses, but there is general 

agreement that EIA, rather than TIA more closely represents the physical process of 

hydrological impact on flow regimes (Alley and Veenhuis, 1983; Dinicola, 1990; Booth and 

Jackson, 1997; Brabec, 2002; Shuster et al., 2005; Knighton et al., 2013; Palla and 

Gnecco, 2015). Hydraulic connectivity has not only been shown to be one of the most 

sensitive parameters in urban hydrological modeling, resulting in modeled peak discharge 

variations of up to 265% in some cases (Lee and Heaney, 2003). It is also among the 

parameters estimated with the most uncertainty in urban hydrological modeling (Moglen 

and Kim, 2007; Knighton et al., 2013).  Others have suggested that overemphasis on 

connectivity of impervious area (EIA vs TIA) detracts from important changes to soil 

porosity, vegetation, imported water and other water infrastructure that urbanization has 

on hydrologic response and catchment water balance (Brandes et al., 2005; Meierdiercks 

et al., 2010a; Hamel et al., 2013).  

In this chapter, I do not assume impervious area as the dominant causal factor for flashy 

hydrologic response. Instead, I develop a robust statistical methodology to classify urban 

catchments into two groups. The first group includes catchments that have retained 
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incremental storage exceedance, a natural condition for catchments in humid climates 

that hydrologists refer “Variable Source Area” (VSA). The second group includes 

catchments that have lost incremental connectivity and instead exhibit constant hydraulic 

connectivity. Based on the classification, I address the following questions: 

1.) How does undeveloped land compare to land development variables in 

explaining the presence of VSA-response? 

2.) How does a higher fraction of developed (low density) open area in urban areas 

influence VSA? 

3.) How does stormwater management infrastructure, such as proximity to a 

combined sewer outfall, or presence of detention/retention-based stormwater 

management guidelines affect the probability of VSA-response?  

This study contributes to the existing literature by providing empirical evidence of the 

development-specific characteristics associated with VSA-type response using a cross-

section analysis of 119 unique urbanized catchments. 

 

URBAN VARIABLE SOURCE AREA 

The Hortonian model of runoff generation posits that runoff occurs when infiltration rates 

are exceeded by rainfall intensities. This differs from runoff generation in humid regions, 

which occurs by subsurface storm flow and saturation excess overland flow (Dunne, 

Horton and Black, 1970; Dunne et al., 1975; Dunne, 1978). Consideration of antecedent 

soil moisture and differential contraction of saturated areas between storm events led to 

the “variable source area” (VSA) concept of runoff generation. VSA emerged as an 

important model describing event-to-event, non-constant runoff contributing areas in 
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undisturbed humid regions (USFS, 1961; TVA, 1965; Hewlett and Hibbert, 1967; Dunne 

et al., 1975).  

Subsequent empirical research has shown that site-specific conditions such as high soil 

conductivity, steep slopes, mid-slope or downslope positions within the watershed  and 

seasonality affect presence of the VSA condition (McGlynn and McDonnell, 2003; Jencso 

et al., 2009). In mountainous, alpine forested and agricultural catchments, runoff is first 

generated in riparian zones, and riparian-hillslope connectivity increases under wetter 

conditions (McGlynn et al., 2004; Ocampo et al., 2006; James and Roulet, 2007; 

Wenninger et al., 2008). Monitoring patterns of soil moisture spatial extent has shown a 

clear thresholding relationship between antecedent wetness and rainfall and storm runoff 

(Detty and McGuire, 2010; Penna et al., 2011). Event-based rainfall runoff ratios also 

support threshold relations in subsurface stormflow and that subsurface flow is a dominant 

source of runoff (Tromp-van Meerveld and McDonnell, 2006). While the VSA model has 

been called into question for its ability to apply to all situations (McDonnell, 2003), it still 

remains attractive for its ability to conceptualize non-constant ratios in the rainfall-runoff 

transformation.  

In the study of urbanized catchments, land-use change and other human modifications to 

catchments has resulted in both better identification of specific processes and confounded 

sources of observed non-constant contributing area and thresholding effects. There has 

been significant interest in examining the effects of impervious surface area, infrastructure 

and developed open space associated with urbanization on increased hydraulic 

connectivity at the catchment scale. Placement and configuration of imperviousness within 

a catchment can have a significant influence on downstream response (Mejía and Moglen, 

2010). Locations and configuration of conventional conveyance (Tague and Pohl-Costello, 
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2008; Meierdiercks et al., 2010a; Ogden et al., 2011), infiltration-based (Gobel et al., 2004; 

Easton et al., 2007; Miles and Band, 2015) and detention-based (Smith et al., 2015) 

stormwater management infrastructures also influence incremental connectivity in 

hydrologic response of a catchment under varying event depths.  

Contrary to commonly held beliefs about limiting imperviousness of development in order 

to avoid negative changes in hydrologic regime, studies indicate that developed open 

space can also have limited ability to prevent flashy response. Reasons for this include 

the limited infiltrative capacity of compacted soils (Smith and Smith, 2015), high proportion 

of runoff response attributed to shallow subsurface flow under residential lawns (Wigmosta 

and Burges, 1997), subsurface saturation due to leaky water distribution infrastructure 

(Lerner, 2002), and decreased evapotranspiration associated with vegetation change 

(Bhaskar et al., 2015). Table 3.1 shows an adaptation of the VSA to include urban run-on 

from impervious areas and other potential sources of impacts to soil saturation in 

urbanized catchments (Miles and Band, 2015). As shown in Table 3.1, urban VSA 

response is associated with incremental connectivity of conveyance infrastructure, 

impervious areas, and soils and pervious areas. 

 

 

Table 3.1 Comparison of Theories of Runoff Generation: Hortonian, VSA and 
Urban VSA 

  Hortonian Dunne's Variable 
Source Area 

Urban Variable Source 
Area 

Theory Runoff occurs when 
infiltration rates are 
exceeded by rainfall 
intensity 

Runoff occurs when 
hydraulic connectivity 
is reached. It is a 
function of infiltration 
and differential 
contraction of 
saturated areas 

Runoff occurs when 
hydraulic connectivity is 
reached. It is a function 
of infiltration and 
differential contraction of 
saturated areas 
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Main 
Drivers 

Land surface cover, 
soil infiltration 
properties 

Vegetation's ability to 
recover capacity of 
soil, slope, sag points 
within catchment, 
surface-subsurface 
interactions, hydraulic 
conductivity 

Vegetation's ability to 
recover capacity of soil, 
slope, sag points within 
catchment, surface-
subsurface interactions, 
hydraulic conductivity, 
connectivity due to 
infrastructure, run-on 
infiltration from 
impervious surfaces onto 
pervious surface areas 

           

 

Analyses of empirical rainfall-runoff relationships from urbanized catchments have 

revealed that for smaller storms (< 38.1 mm or 1.5 inches), runoff depths as a fraction of 

the rainfall depths correspond closely to the EIA of the catchment. However, this 

relationship is less reliable for larger storms (Doyle and Miller, 1980). Regression-based 

analyses of the relationship between rainfall and runoff depths have been used to 

delineate the sequentially gained hydraulic connectivity of EIA, TIA and pervious areas 

respectively and to estimate their proportions within the catchment area (Boyd et al., 1993, 

1994; Goldshleger et al., 2012; Loperfido et al., 2014; Ebrahimian et al., 2016). Studies 

which examine changing ratios between rainfall depth and runoff depth within a catchment 

all share a common interpretation that the variable proportion of area contributing to the 

hydrologic response is dependent on the total depth of rainfall. 

In this chapter, I determine the significant predictors of VSA hydrologic response across 

urbanized catchments using regression analysis. Previous studies suggest that both 

impervious surface and land development in general (including seemingly pervious areas) 

will result in the dominance of Hortonian flow over VSA, while lower levels of development 

will result in the dominance of VSA over Hortonian overland flow (Miles, 2014). In 

urbanized catchments with high levels of impervious surface, we expect the contributing 
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area from these catchments to correspond to the fraction of the catchment area that is 

composed of impervious area.  

In VSA-dominated catchments, we would expect a nonlinear relationship between rainfall 

and runoff. As rainfall depths increase or rainy periods are prolonged, we expect some 

areas within the catchment area to incrementally lose capacity to store and infiltrate 

precipitation as storage thresholds are exceeded. This will lead to an increasing slope in 

the relationship between rainfall and runoff as cumulative rainfall depths increase. It 

should be noted that the conceptualization presented in this work (Table 3.1), departs 

from the Dunne VSA model in that it includes both runoff production processes (saturation 

excess and infiltration excess) and other factors specifically of interest in urbanized 

catchments that influence observable nonlinearity at discrete downstream streamflow 

measurement locations, such as the presence of CSS or other stormwater management 

infrastructure. 

 

METHODS 

Broadly, my methodology involves three steps. First, I perform hydrograph separation to 

create a dataset of paired event rainfall-runoff depths for each catchment in the analysis. 

Second, I develop a statistical methodology to detect the presence of nonlinearity in the 

rainfall-runoff relationship for each of the catchments, using the rainfall event data. Lastly, 

I use logistic regression to estimate the effects of the catchments’ characteristics on VSA-

type response. 
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Data 

National-Level Datasets 

Catchments for the analysis were selected from stream gauge flow monitored by the 

USGS, with characteristics included in the GAGES II database. GAGES II was developed 

by the USGS to provide users with an exhaustive set of geospatially-specified catchment 

characteristics corresponding to a large number of gauged watersheds. The database 

includes both “reference” watersheds, which are minimally influenced by human activity, 

and watersheds that represent a range of hydrologic conditions including urban 

development intensity  (Falcone et al., 2010). For a catchment in the national-level dataset 

to be included in this study, I used three criteria. First, the catchment had to be at least 

50% developed according to the National Land Cover Dataset urban development 

classification. Second, the stream gauge had to be located within a 15-mile radius of an 

airport-based precipitation gauge having hourly data. Third, the catchment had to have at 

least 35 rainfall events that resulted in paired rainfall-runoff data. Stream gauge data for 

GAGES II catchments were downloaded from the USGS website 

(http://nwis.waterdata.usgs.gov/nwis/sw) using basin identification numbers and date 

ranges for available flow and precipitation data (Lins, 2012). Precipitation data was 

obtained from the National Climatic Data Center (http://www.ncdc.noaa.gov/ ). From these 

criteria, the study included 91 analysis catchment areas in the contiguous US (shown in 

Figure 3.1). 

The catchments ranged from 50.49% developed to 99.98% developed. The median level 

of development was 84.37%. The 30-year (1970-2000) average annual precipitation 

among the study basins ranged from 63.31 cm to 136.80 cm. The drainage areas ranged 

from 3.70 km2 to 505.80 km2 with a median drainage area of 85.06 km2. The generalized 
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rainfall intensities in centimeters per hour for a 2-year, 1-hour storm event ranged from 

4.06 cm (1.6 inches) per hour to 5.59 cm (2.2 inches) per hour.  

I added three variables to those in the GAGES II database: (1) distance of the stream 

gauge location to the nearest (upstream or downstream) active combined sewer outfall; 

(2) whether the watershed included a community served by a CSS; and (3) a binary 

variable for whether the city or county in which the stream gauge was located encouraged 

infiltration, retention, or detention-based stormwater management practices at the time of 

the study. Geospatial locations of permitted outfalls were extracted from the EPA’s Facility 

Registry Service (http://www.epa.gov/enviro/facility-registry-service-frs ) for all permitted 

combined sewer outfalls listed by EPA (US EPA, 2004).  Promotion of stormwater 

management practices was determined through an internet search of the name of the city 

and county in which the gauge was located, followed by the terms “Stormwater Detention, 

Retention, Green Infrastructure, Infiltration.” Locations for which informational materials 

were readily available were presumed to be “actively” promoting this type of decentralized 

infrastructure. 

Because CSSs have the potential to confound the results of the VSA classification 

analysis, I subset the national-level dataset with gauges known to not include any 

combined sewer systems. Of the 91 national-level catchments, 56 were confirmed not to 

have CSS within their boundaries. This subset is hereafter referred to as the “non-CSS 

dataset” (shown in Figure 3.1).  
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Figure 3.1. Locations of national dataset and non-CSS dataset analysis catchments 

 

Batlimore Metropolitan Area (BMA) Datasets 

The question of spatial heterogeneity in rainfall records was one of the major concerns 

with the analysis of the national dataset. Others have shown that especially in urbanized 

areas, where human activity and changes to the natural landscape influence micro-

climates and local weather patterns, precipitation measured at one discrete location can 

vary significantly from the amount of rainfall at another nearby rain gauge (Shepherd, 2005; 

Smith et al., 2012). For this reason, the analyses were also performed on a dataset of 

Baltimore Metropolitan Area (BMA) basins for which there was HydroNEXRAD radar 

precipitation data available covering the entirety of the gauge’s catchment area. Radar 

rainfall data processed by the HydroNEXRAD system was obtained at a 1 square 

kilometer resolution at 15-minute intervals. A multiplicative bias correction value was then 
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used to bias correct basin average time series data for each basin for each 15-minute time 

period to calibrate HydroNEXRAD data to precipitation records from a diverse network of 

rain gauges in the Baltimore region (Smith et al., 2012). This procedure allowed for the 

use of spatial precipitation records that fell over the contributing area and should be much 

more accurate than discrete rain gauge data. 

 

Figure 3.2. BMA dataset gauge locations and basin boundaries 

 

After the time-series-averaged precipitation data was obtained for each watershed, the 

procedure used for pairing rainfall events with flow gauge readings was identical to that of 

the national dataset. Due to data limitations, only 34 watersheds over 30% developed 

were left for the study (Figure 3.2). The watersheds ranged from 31.86% developed to 

96.87% developed. The average annual precipitation depth (from 1970-2000) ranged from 

107.9 cm to 123.3 cm. The drainage areas ranged from 1.20 km2 to 906.60 km2. Some 
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watersheds that were not included in the national-level dataset because of a lack of a 

proximate rain gauge station were included in the Baltimore Metropolitan Area dataset, for 

which the more accurate radar precipitation data was available. Combined sewer outfall 

proximity was calculated as for the national-level dataset. Using the same internet search 

method as was used for the national dataset, all counties for the BMA catchments were 

determined to have implemented detention, retention or infiltration-based stormwater 

management policies, therefore the effect of this development characteristic could not be 

estimated through regression and it was not included in the BMA analysis. Between the 

national and BMA datasets, there were 119 unique catchments included in the study. 

 

Hydrograph Separation and Event Definition 

I used the R package ‘EcoHydRology’ to separate the hydrographs into baseflow and 

quickflow components (Fuka et al., 2014). By visual inspection of the hydrograph 

separation for a 12.7 mm (0.5 inches)  rainfall event and a 38.1 mm rainfall event (1.5 

inches) for a few representative watersheds, I determined that a filter parameter of 0.925 

and three passes was appropriate to automate baseflow separation across the variation 

in my analysis catchments. Since some catchments exhibited very little response to rainfall, 

I defined the start and end of rainfall events from the continuous precipitation record. 

Events were defined as any length of time that preceded and followed by 96-hour periods 

of no rainfall in the precipitation record. The implicit assumption of the 96-hour dry period 

is that localized groundwater mounding or saturation that could contribute to VSA within a 

catchment would decrease in influence after that period. To capture the full quickflow 

component of the hydrograph in the flow record (especially in larger catchments), I added 

a buffer of 36 hours after the precipitation-defined end time of the event. Through 
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separated hydrograph inspection, I confirmed that the 36- hour period was long enough 

to capture the quickflow response even from the larger catchments in the dataset. An 

example of the separation (described below) is shown in Figure 3.3. The time step for all 

hydrograph separation was 15 minutes. All flow data were available at least at this 

resolution. Flow data collected at a higher resolution time step were averaged to 15 minute 

intervals. 

For each event, precipitation depths were summed and paired with cumulative quickflows 

over the defined event period and normalized by dividing by the catchment area. Thus, for 

each analysis catchment, a set of paired rainfall-runoff depths for each event was created. 

An identical process was carried out for the BMA dataset, except that the source of the 

precipitation data was basin-averaged, bias-corrected HYDRO-NEXRAD data. 

 

Figure 3.3. Example of hydrograph separation using R package ‘EcoHydRology’ for the 

watershed in our sample with the largest drainage area, Salado Creek in San Antonio, TX 

(drainage area = 505.8 km2). The flow response to a 38.1 mm (1.5 inch) total rainfall depth 

is shown. The response returns to baseflow conditions within the 36-hour period. 



67 
 

 

ROBUST STATISTICAL DETECTION OF VSA 

Classification of catchments as having dominant VSA processes was based on the 

statistical detection of nonlinearity in the rainfall-runoff response of the catchment. 

Statistical significance of nonlinearity was determined through the estimation of the linear 

model: 

 

	 exp  [3.1] 

 

where rainij is the precipitation depth of each event j in the time period for catchment i and 

runoffij is the runoff depth corresponding to precipitation event j. If the coefficient estimated 

for exp(rainij) was statistically significant, this indicated evidence of nonlinearity in the 

rainfall-runoff relationship averaged over many events. In the detection of VSA processes, 

I expected this nonlinearity to be positive.  

One problem with the above specification is that it suffers from heteroscedasticity, or non-

constant variance in the residuals of the estimated equation. While heteroscedasticity 

does not bias the estimates of the coefficients in a linear regression, it does result in 

inefficient estimates of the standard errors of the coefficient estimates. In order to correct 

the effects of heteroscedasticity on standard error estimates of the coefficients, I log-

transformed both the rainfall and runoff data to improve residual distribution. I used the R 

package ‘sandwich’ to estimate robust standard errors for the coefficients of the log 

transformed model [3.1] (Zeileis, 2004). I assigned catchments as VSA-dominant if was 

significant at the =0.05 level, and non-VSA dominant if  was not significant at the  = 

0.05 level. The result of this part of the analysis was an assigned binary hydrological 
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response variable for each of the analysis watersheds: linear, corresponding to no 

evidence of VSA processes (Zi = 0), or nonlinear, corresponding to evidence of VSA 

processes (Zi = 1). 

Seasonal effects have been shown to influence nonlinearity in event-based rainfall-runoff 

ratios (Smith et al., 2005; Detty and McGuire, 2010; Meierdiercks et al., 2010b). During 

the growing season, evapotranspiration reduces soil moisture, allowing catchments to 

recover volume more quickly between events. We would therefore expect dormant season 

subsurface conditions to stay wetter longer and to be more associated with a constant 

response. In order to gain more clarity on potential sources of variation in nonlinear rainfall-

runoff ratios, I specified an additional model to test whether growing season rainfall events 

have a statistically different rainfall-runoff relationship than dormant season events. The 

dormant season was defined as the months from October – March and the growing season 

was defined as the months from April – September (Detty and McGuire, 2010).  

The above-specified model [3.1] allowing for an additional effect of seasonality is shown 

in model [2]: 

 

	 exp 	

exp              [3.2] 

 

where  is a dummy variable equal to one if event j occurred during the growing season 

and zero if event j occurred during the dormant season. If the regression [3.2] for 

catchment i results in significant coefficients , , or , this indicates that the rainfall-

runoff ratio is statistically different during the growing season than during the dormant 
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season. The model allowing for estimates effects for seasonality [3.2] was log-transformed 

in the same way the restricted model [3.1] was log-transformed.   

The choice of the exponential form of the term capturing nonlinearity is contrasted to the 

“breakpoint” or threshold conceptualization of nonlinearity that has been applied in other 

studies (e.g., Loperfido et al. (2014)). The exponentiated form is preferred for its ability to 

better reflect incremental exceedance of area-based storage within the catchment and 

thus, incremental hydrologic connectivity of areas to the downstream streamflow response. 

The choice to discretize the detection of VSA-type response is limited because it does not 

capture variation in the magnitude of nonlinearity; however, the focus of this analysis was 

on explaining the VSA process, rather than on predicting runoff magnitudes from rainfall 

depths. 

 

LOGISTIC REGRESSION OF VSA ON CATCHMENT 
CHARACTERISTICS 

After obtaining the binary VSA (nonlinear) or non-VSA (linear) response classification for 

each watershed was obtained, logistic regression was used to test which explanatory 

variables (catchment characteristics) contributed to the probability of a catchment 

exhibiting a nonlinear response. The probability of VSA-type response is expressed as an 

inverse logistic function of catchment characteristics in [3.3]: 

 

Pr 1 logit       [3.3] 

 

where Mi is the vector of k characteristics for catchment i (m1i… mki), and  is the vector 

of coefficients for the characteristics of catchment i. Of particular interest was estimating 

the effect of development and specifically impervious surface on the probability of a 
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catchment exhibiting a VSA-type (nonlinear) response. Other variables tested as part of 

the vector M included: average slope, average annual precipitation, number of data 

observations, size of the drainage area, percent of various land use types, stream order, 

basin compactness (a measure of elongation), and region. In the final models, theoretically 

important variables and variables statistically significant at the  = 0.10, 0.05 and 0.01 

levels were included. 

To test my hypotheses, I fit [3.3] using two sets of models for each of the three datasets 

(national, BMA, and non-CSS only). The first set of models (Models 1A-1C, shown in 

Table 3.2) starts with percent undeveloped land as the sole predictor of VSA-type 

response (Model 1A), then sequentially adds geologic/morphologic controls as predictor 

variables in the model (Model 1B), followed by other development characteristic controls 

(Model 1C). The set of geologic/morphologic and meteorological controls in the models 

included average slope (%), average annual precipitation (cm/yr), and catchment area 

(km2). Watersheds with lower average slopes are expected to exhibit more variability in 

the saturated zone and from subsurface throughflow, which result in a VSA response 

(Dunne et al., 1975). Smaller basins are likely to exhibit flashier hydrological response, 

which may be associated with reduced VSA effects (Smith and Smith, 2015). The 

meteorological control included was the average total annual precipitation in the 

watershed. Higher annual precipitation is likely to be positively associated with humid 

climates that are likely more dominated by VSA processes than by Hortonian flow, all else 

being equal (Dunne et al., 1975; Miles and Band, 2015). Other development characteristic 

controls included percent TIA, percent developed open space, distance to combined 

sewer outfall and a binary variable for decentralized stormwater management practices. 

Percent undeveloped land was calculated from the GAGES II database by subtracting low, 
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medium, and high density development and developed open space percentages from 

100%. Developed open space is a National Land Cover Dataset (NLCD) classification 

defined as the percent of the 30m x 30m grids within the watershed that is estimated to 

have less than 20% impervious cover. Typically, these areas include large-lot single-family 

housing units, parks, golf courses and landscaped vegetation in developed areas. 

In the second set of models, I removed percent undeveloped land as a predictor variable 

and only include development-type variables (Models 2A-2C, shown in Table 3.3). 

Starting with percent impervious area along with the geologic/morphologic and 

meteorological controls (Model 2A), I add in other development-type variables, for percent 

developed open space (Model 2B), and distance to combined sewer outfall, and 

decentralized stormwater management practices (Model 2C). Estimating the effects of 

development-type variables separately from the percent undeveloped area variable allows 

us to test how different development types contribute to explaining the variation in VSA-

type response and avoid multicollinearity of explanatory variables. 

Goodness-of-fit for the logistic regressions was assessed using two methods: McFadden’s 

pseudo R-squared and a percent-correctly-predicted pseudo R-squared where the cutoff 

point was defined as the mean of the dependent variable (Wooldridge, 2010). The 

likelihood ratio test was used to evaluate whether the inclusion of additional explanatory 

variables led to statistical improvement of the model’s fit to the data. 

 

RESULTS 

Classification 

The robust catchment classification methodology resulted in 69 out of 91 total national-

level catchments (76%), 21 of 34 total BMA catchments (62%) and 44 out of 56 total non-
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CSS watersheds (78%) being classified as having statistical evidence of VSA-processes. 

Among the national dataset basins, those classified as having nonlinear response had an 

average drainage area of 90.96 km2, while those classified as having a linear response 

had an average drainage area of 66.5 km2. T-test results showed that the difference in 

means was not statistically significant at the 0.05 level (p = .246, n1 = 69, n2 = 22). Table 

3.2 shows the estimated linear and nonlinear coefficients and significance according to 

the robust standard errors for the BMA watersheds (national dataset results are included 

as supplemental information). Figure 3.3 illustrates the linear and nonlinear fits for several 

example watersheds. From these visual inspections of the fits to the data, I determined 

that the classifications based on the regression specifications and the robust standard 

error calculations for both the national (and non-CSS) dataset and the BMA dataset were 

satisfactory.  
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TABLE 3.2: Estimated linear and nonlinear coefficients and robust standard errors for Baltimore Metropolitan Area watersheds 

     

Draina
ge area 
(km2) 

Percent 
Developed  Linear Coefficient 

Non‐linear 
Coefficient 

Station 
ID  Name       

Esti‐
mate 

Robust 
Std err 
  

Esti‐
mate 

Robust 
Std err 
  

1581500  BYNUM RUN AT BEL AIR, MD  21.7  65.96  0.537  0.07  * 1.045  0.19  *
1581752  PLUMTREE RUN NEAR BEL AIR, MD  6.5  78.88  0.690  0.07  * 0.874  0.26  *
1581757  OTTER POINT CREEK NEAR EDGEWOOD, MD  139  32.08  0.463  0.05  * 1.208  0.18  *
1583600  BEAVERDAM RUN AT COCKEYSVILLE, MD  53.6  51.17  0.271  0.06  * 0.706  0.21  *
1585090  WHITEMARSH RUN NEAR FULLERTON, MD  6.9  87.64  0.791  0.09  * 0.825  0.29  *
1585100  WHITEMARSH RUN AT WHITE MARSH, MD  19.7  84.78  0.727  0.09  * 0.940  0.32  *
1585104  HONEYGO RUN NEAR WHITE MARSH, MD  6.1  68.19  0.623  0.10  * 0.988  0.30  *
1585200  WEST BRANCH HERRING RUN AT IDLEWYLDE, MD  6  86.64  0.817  0.08  * 0.304  0.27    
1589100  EAST BRANCH HERBERT RUN AT ARBUTUS, MD  6.4  91.3  0.930  0.14  * 0.030  0.58    
1589197  GWYNNS FALLS NEAR DELIGHT, MD  10.6  78.43  0.730  0.10  * 0.424  0.41    
1589290  SCOTTS LEVEL BRANCH AT ROCKDALE, MD  8.7  79.51  0.627  0.06  * 0.915  0.22  *
1589300  GWYNNS FALLS AT VILLA NOVA, MD  84.5  65.79  0.561  0.06  * 1.001  0.16  *
1589305  POWDER MILL RUN NEAR LOCHEARN, MD  9.2  89.08  0.848  0.07  * 0.428  0.24  *
1589312  DEAD RUN NEAR CATONSVILLE, MD  2  95.63  0.991  0.08  * 0.256  0.20    

1589317 
TRIBUTARY TO DEAD RUN TRIBUTARY AT 
WOODLAWN, MD  1.2  96.87  1.000  0.08  * 0.302  0.20    

1589330  DEAD RUN AT FRANKLINTOWN, MD  14.2  95.2  0.969  0.09  * 0.502  0.25  *

1589352 
GWYNNS FALLS AT WASHINGTON BLVD AT 
BALTIMORE, MD  159.1  75.72  0.624  0.05  * 0.720  0.18  *

1589440  JONES FALLS AT SORRENTO, MD  65.1  33.9  0.403  0.05  * 1.010  0.22  *



 

 
 

74 

1589500  SAWMILL CREEK AT GLEN BURNIE, MD  12.6  66.55  0.446  0.06  * 0.563  0.24  *

1589795 
SOUTH FORK JABEZ BRANCH AT MILLERSVILLE, 
MD  2.5  35.6  0.213  0.08  * 1.769  0.27  *

1593500  LITTLE PATUXENT RIVER AT GUILFORD, MD  98  58.66  0.445  0.04  * 1.010  0.22  *
1594000  LITTLE PATUXENT RIVER AT SAVAGE, MD  254.4  37.02  0.468  0.07  * 0.589  0.26  *
1594440  PATUXENT RIVER NEAR BOWIE, MD  906.6  31.86  0.387  0.08  * 0.541  0.32  *
1594526  WESTERN BRANCH AT UPPER MARLBORO, MD  233.6  50.38  0.610  0.05  * 0.661  0.18  *
1644280  BROAD RUN NEAR LEESBURG, VA  196.9  56.03  0.299  0.11  * 0.520  0.61    

1644375 
LITTLE SENECA CREEK TRIBUTARY NEAR 
GERMANTOWN, MD  3.3  82.65  0.625  0.09  * 0.527  0.38    

1645000  SENECA CREEK AT DAWSONVILLE, MD  262.4  36.92  0.296  0.07  *
‐

0.054  0.15    
1646000  DIFFICULT RUN NEAR GREAT FALLS, VA  149.9  50.53  0.623  0.09  * 0.280  0.40    

1647850  TURKEY BRANCH NEAR ROCKVILLE, MD  7  88.48  0.968  0.13  *
‐

0.114  0.54    

1648000 
ROCK CREEK AT SHERRILL DRIVE WASHINGTON, 
DC  136.8  70.99  0.715  0.11  *

‐
0.415  0.44    

1649150 
PAINT BRANCH TRIBUTARY NEAR COLESVILLE, 
MD  2.7  39.35  0.456  0.08  * 1.115  0.30  *

1649190 
PAINT BRANCH NEAR COLLEGE PARK, 
MARYLAND  34  57.34  0.483  0.09  * 0.351  0.36    

1649500 
NORTH EAST BRANCH ANACOSTIA RIVER AT 
RIVERDALE, MD  188.1  62.92  0.567  0.08  * 0.644  0.28  *

1650500 
NW BRANCH ANACOSTIA RIVER NEAR 
COLESVILLE, MD  54.8  48.29  0.665  0.11  *

‐
0.010  0.46    

* indicates coefficient estimate is significant at the alpha = 0.05 level.                         
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 FIGURE 3.4: Example plots of linear and nonlinear relationships between rainfall and runoff (log transformed). Gray areas 

represent 90% confidence interval of model fit with both linear and nonlinear terms included, using robust standard estimates. 
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The solid line is the predicted relationship with both linear and nonlinear terms included. The dashed line is the predicted 

relationship with only the linear term included
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In order to determine whether the addition of the dummy variable for growing season and 

its interaction with the linear and nonlinear components of the regression significantly 

improved the fit of the model, I employed a heteroscedastic standard errors-robust F-test 

comparing the fits of the nested models [3.1] and [3.2]. In the majority of the catchments 

in both the national and BMA datasets, there was no significant improvement in model fit 

by including the dummy variable for growing season (57/91 catchments in the national 

dataset and 26/34 catchments in the BMA dataset exhibited no significant differences in 

fit compared to the restricted model [3.1], where the values of , , and are all 

constrained to the value 0). Of the catchments that did exhibit improvement by 

incorporating seasonal differences, many estimated individual effects that were 

insignificant at the 0.05 level for all three additional seasonal terms (9/34 for the national 

dataset and 2/8 for the BMA dataset).  

Among the seasonal models [3.2] that did exhibit some improvement over the restricted 

models [3.1], the interpretation of significantly estimated regression coefficients of may 

provide some additional insight into the dynamics of urban VSA runoff behavior. Figure 

3.5 shows the classifications of each basin included in this study, first by whether the fit of 

the model was improved with the inclusion season-specific variables, then by the year-

round classification as exhibiting evidence of VSA-behavior, and lastly, by significance 

and signs of estimated season-specific effects. Figure 3.5 shows that among those 

catchments for which the addition of the seasonal variables significantly improved fit, 9/20 

of the national dataset and 2/8 of the BMA dataset had insignificant effects for all three 

variables. For both datasets however, the next frequent classification among those with 

improved models was for non-VSA basins with significant nonlinear behavior during the 

growing season. This coefficient was estimated as positive in 4/5 national catchments in 
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this category and 2/2 of BMA catchments in this category. Both these findings are in 

agreement with the present understanding of VSA runoff generation, which suggests that 

variable source area dynamics would be more pronounced during the growing season, 

when evapotranspiration allows basins to recover storage volume more quickly (Detty and 

McGuire, 2010). 
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FIGURE 3.5 Classification of all analysis basins included in this study based on model improvement with inclusion of seasonal 

controls, significance of nonlinear term (evidence of VSA behavior), and significance and sign of estimated coefficients 
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associated with effect of rainfall-runoff ratio relationship during the growing season (April – Sep). Of catchments whose models 

were improved by controlling for seasonality and had significant individual coefficients, the highest frequency that appeared 

were for VSA catchments with positive coefficients for the nonlinear seasonal term. This is in agreement with previous theory 

and findings that VSA response should be more pronounced during the growing season. 
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Predictors of Urban VSA 

Table 3.3 shows the results of the regressions that include the percent of the watershed 

that is undeveloped as a predictor of the VSA-classification. For the national dataset, 

percent undeveloped area alone was a significant predictor of a VSA-type response. A 1% 

increase in the percent undeveloped land within a watershed was associated with a 3.5% 

increase in the odds of a watershed exhibiting VSA-type response. For all three datasets, 

including morphological and meteorological controls in Model 1B led to significant 

improvement over Model 1A. A likelihood ratio test between Models 1B and 1A yielded p-

values of 0.035, 0.00087, and 0.0084 for the national dataset, BMA dataset and CSS 

dataset, respectively. Based on Model 1B, the effect of a 1% increase in undeveloped land 

was associated with between 5.5% and 10.8% increase in the odds of the watershed 

exhibiting evidence of a VSA-type response, controlling for slope, precipitation, and 

catchment area.  
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Table 3.3: Results of logistic regression of percent undeveloped land and other controls on probability of VSA-type response 

		 MODEL	1A:	Undeveloped	Land	
MODEL1B:	Undeveloped	Land	+	

Morphologic	and	Meteorological	Controls	

MODEL1C:	Undeveloped	Land	+	
Development	Characteristics	+	

Morph/Met	Controls	

Panel	A:	National	Dataset	(n	=	91)	 		 		 		 		 		 		 		 		 		 		 		 		 		 		

		 Estimate	

Effect	
on	
Odds	
(%)	

t‐
statistic	

(a)	 		 Estimate	

Effect	
on	
Odds	
(%)	

t‐
statistic	 		 VIF	 Estimate	

Effect	
on	
Odds	
(%)	

t‐
statistic	 		 VIF	

Undeveloped	Land	(%)	 0.034  3.476  1.327  .	 0.053  5.488  2.392  *	 1.324  0.066  6.842  1.233  		 6.981 

Total	Impervious	Area	(%)	 		 		 		 		 		 		 		 		 		 0.012  1.249  0.133  		 14.579 

Developed	Open	Space	(%)	 		 		 		 		 		 		 		 		 		 ‐0.032  ‐3.154  ‐0.502  		 6.655 

Distance	to	CSO	(m)	 		 		 		 		 		 		 		 		 		 0.000  0.000  0.535  		 1.965 

Ret/Det	SW	Infrastructure	(binary)	 		 		 		 		 		 		 		 		 		 0.301  35.081  0.459  		 1.483 

Average	Slope	(%)	 		 		 		 		 ‐0.441  ‐35.682  ‐2.225  *	 1.370  ‐0.298  ‐25.763  ‐1.332  		 1.670 

Average	Annual	Precipitation	(cm/yr)	 		 		 		 		 0.038  3.892  1.964  *	 1.159  0.036  3.692  1.456  		 1.694 

Catchment	Area	(km2)	 		 		 		 		 0.002  0.152  0.448  		 1.143  0.000  0.015  0.036  		 1.547 

Intercept	 0.516  67.566  0.185  		 ‐3.160  ‐96  ‐1.491  		 		 ‐3.270  ‐96  ‐0.694  		 		

McFadden's	R2	 0.038	 		 		 		 0.124	 		 		 		 		 0.143	 		 		 		 		

Count‐based	R2	(above	mean)	 0.560	 		 		 		 0.670	 		 		 		 		 0.692	 		 		 		 		
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Panel	B:	BMA	Dataset	(n	=	34)(b)	 		 		 		 		 		 		 		 		 		 		 		 		 		 		

		 Estimate	
Effect	on	
Odds	(%)	 t‐statistic	 		 Estimate	

Effect	on	
Odds	(%)	 t‐statistic	 		 VIF	 Estimate	

Effect	on	
Odds	(%)	 t‐statistic	 		 VIF	

Undeveloped	Land	(%)	 0.027  2.747  1.462  		 0.102  10.760  2.157  *	 3.430  0.328  38.814  1.372  *	 48.338 

Total	Impervious	Area	(%)	 		 		 		 		 		 		 		 		 		 ‐0.132  ‐12.367  ‐0.509  		 25.004 

Developed	Open	Space	(%)	 		 		 		 		 		 		 		 		 		 ‐0.452  ‐36.388  ‐1.465  		 15.031 

Distance	to	CSO	(m)	 		 		 		 		 		 		 		 		 		 0.000  ‐0.048  ‐1.656  .	 9.857 

Average	Slope	(%)	 		 		 		 		 ‐1.820  ‐83.793  ‐2.012  *	 3.263  ‐3.394  ‐96.642  ‐1.689  *	 6.552 

Average	Annual	Precipitation	(cm/yr)	 		 		 		 		 0.770  115.977  2.640  **	 3.644  1.498  347.274  2.235  **	 11.126 

Catchment	Area	(km2)	 		 		 		 		 0.004  0.380  0.536  		 1.639  0.000  0.007  0.004  		 2.905 

Intercept	 ‐0.415  ‐33.942  ‐0.601  		 ‐85.310  ‐100  ‐2.648  **	 		 ‐144.114  ‐100  ‐2.222  		 		

McFadden's	R2	 0.051	 		 		 		 0.417	 		 		 		 		 0.672	 		 		 		 		

Count‐based	R2	(above	mean)	 0.618	 		 		 		 0.853	 		 		 		 		 0.941	 		 		 		 		

		 		 		 		 		 		 		 		 		 		 		 		 		 		 		
		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

Panel	C:	non‐CSS	Dataset	(n	=	56)(c)	 		 		 		 		 		 		 		 		 		 		 		 		 		 		

		 Estimate	
Effect	on	
Odds	(%)	 t‐statistic	 		 Estimate	

Effect	on	
Odds	(%)	 t‐statistic	 		 VIF	 Estimate	

Effect	on	
Odds	(%)	 t‐statistic	 		 VIF	

Undeveloped	Land	(%)	 0.036  3.668  1.444  		 0.087  9.039  2.186  *	 1.980  0.130  13.880  1.197  		 11.825 

Total	Impervious	Area	(%)	 		 		 		 		 		 		 		 		 		 0.075  7.773  0.411  		 20.343 

Developed	Open	Space	(%)	 		 		 		 		 		 		 		 		 		 ‐0.046  ‐4.475  ‐0.434  		 6.890 

Average	Slope	(%)	 		 		 		 		 ‐1.207  ‐70.091  ‐2.756  ***	 1.860  ‐0.920  ‐60.151  ‐1.793  .	 1.805 

Average	Annual	Precipitation	(cm/yr)	 		 		 		 		 ‐0.040  ‐3.937  ‐1.074  		 1.284  ‐0.030  ‐2.985  ‐0.744  		 1.481 

Catchment	Area	(km2)	 		 		 		 		 ‐0.002  ‐0.191  ‐0.373  		 1.460  ‐0.004  ‐0.371  ‐0.697  		 1.721 

Intercept	 0.709  103.196  1.459  		 7.285  145732  1.539  		 		 3.932  5003  0.397  		 		

McFadden's	R2	 0.040	 		 		 		 0.241	 		 		 		 		 0.325	 		 		 		 		

Count‐based	R2	(above	mean)	 0.536	 		 		 		 0.768	 		 		 		 		 0.821	 		 		 		 		

(a)	.	Significance	at	the	0.10	level	;	*	Significance	at	the	0.05	level;	**	Significance	at	the	0.01	level	 		 		 		 		 		 		 		

(b)	Retention/Detention	stormwater	infrastructure	excluded	because	all	BMA	watersheds	located	in	counties	with	detention,	retention	or	infiltration‐based	infrastructure	

(c)	Distance	to	CSO	and	Ret/Det	stormwater	infrastructure	effects	could	not	be	estimated	due	to	complete	separation	in	the	data	 		 		 		 		
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Adding in controls for development types sequentially did not further statistically improve 

the model fits for the national or BMA datasets but some improvement was shown with 

the non-CSS dataset. One model (not shown in Table 3.3) estimated with the non-CSS 

dataset which included percent developed open space, percent undeveloped land and the 

morphological and meteorological controls (but excluding percent impervious area), did 

estimate statistically significant results for both undeveloped land and developed open 

space and this model was shown to be a statistical improvement over Model 1B (p = 

0.03053). The effect of undeveloped land was similar to that estimated in Model 1B 

(9.32%), but the effect of developed open space was estimated to be -8.232% (p = 0.0463). 

In contrast, the effect of impervious area is not significant at the 0.05 level when 

included with undeveloped area with any of the datasets. This suggests that developed 

open space functions more similarly to what we would expect from impervious area, and 

that this effect is most prevalent watersheds that do not have CSS.  

Model 1C, which also includes percent impervious area as an explanatory variable, 

showed slightly significant (p = 0.09) improvement over Model 1B for the non-CSS dataset, 

but none of the development variable coefficients were estimated to be statistically 

significant from zero. Model 1C exhibited the problem of rather high variance inflation 

factors for multiple variables for all three datasets. High VIFs are an indication of 

multicollinearity between the explanatory variables. Generally, VIF values >10 result in 

unreliable estimates (Kutner et al., 2004). When percent TIA was removed from Model 1C 

for the non-CSS dataset, all VIFs fell below 2, suggesting that the source of collinearity 

was between percent undeveloped and TIA and percent developed open space and TIA, 

and not between percent developed open space and percent undeveloped. 
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 A second set of models excluded the percent undeveloped variable to avoid 

multicollinearity and focus on the effects of percent impervious area, which is commonly 

identified as the strongest factor in decreased catchment storage and flashier hydrologic 

response (Table 3.4). The effect of impervious surface area was not found to be a 

significant predictor of a VSA-type response until other contextual factors were controlled 

for. Adding morphologic and meteorological controls (Model 2A), a significant effect was 

only estimated with the BMA dataset. A 1% increase in the percent impervious area was 

associated with an 11.1% decrease in the odds of a VSA-type response. TIA only became 

statistically significant for all three dataset after also controlling for percent developed open 

space (Model 2B) and a likelihood ratio test also indicates that the model improvement 

over 2A is statistically significant (p-values for the improvement of Model 2B over Model 

2A were 0.01276, 0.08941, and 0.001745 for the national, BMA, and non-CSS datasets, 

respectively). These models estimated between an 8.0% and 17.9% decrease in the odds 

of VSA-type response associated with a 1% increase in TIA.  
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Table 3.4: Results of logistic regression of development types and other controls on probability of VSA-type response 

		 MODEL	2A:	TIA	 MODEL2B:	TIA	+	Open	Space	
MODEL2C:	TIA	+	Open	Space	+	Other	

Development	Characteristics	
Panel	A:	National	Dataset	(n	=	
91)	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

		 Estimate	

Effect	
on	
Odds	
(%)	

t‐
statist
ic	(a)	 		 VIF	 Estimate	

Effect	
on	
Odds	
(%)	

t‐
statisti
c	 		 VIF	 Estimate	

Effect	
on	
Odds	
(%)	

t‐
statistic	 		 VIF	

Total	Impervious	Area	(%)	 ‐0.023  ‐2.235  ‐0.861  		 1.400  ‐0.083  ‐7.981  ‐2.157  *	 2.724  ‐0.092  ‐8.758  ‐2.275  * 2.932 

Developed	Open	Space	(%)	 		 		 		 		 		 ‐0.089  ‐8.554  ‐2.364  *	 2.433  ‐0.095  ‐9.095  ‐2.449  * 2.591 

Distance	to	CSO	(m)	 		 		 		 		 		 		 		 		 		 		 0.000  0.000  0.789  		 1.873 

Ret/Det	SW	Infrastructure	
(binary)	 		 		 		 		 		 		 		 		 		 		 0.120 

12.77
6  0.190  		 1.411 

Average	Slope	(%)	 ‐0.327  ‐27.879  ‐1.613  		 1.509  ‐0.348  ‐29.363  ‐1.669  .	 1.517  ‐0.289 

‐
25.06

8  ‐1.304  		 1.656 
Average	Annual	Precipitation	
(cm/yr)	 0.036  3.646  1.919  .	 1.177  0.052  5.319  2.465  *	 1.378  0.048  4.906  2.111  * 1.457 

Catchment	Area	(km2)	 0.003  0.350  0.290  		 1.066  0.002  0.222  0.668  		 1.094  0.001  0.055  0.134  		 1.529 

Intercept	 ‐1.621  ‐80.234  ‐0.781  		 		 0.881 
141.30

3  0.362  		 		 1.472 
335.9

76  0.547  		 		

McFadden's	R2	 0.066	 		 		 		 		 0.128	 		 		 		 		 0.553	 		 		 		 		

Count‐based	R2	(above	mean)	 0.626	 		 		 		 		 0.648	 		 		 		 		 0.703	 		 		 		 		
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Panel	B:	BMA	Dataset	(n	=	34)(b)	 		 		 		 		 		 		 		 		 		 		 		 		 		 		   

		 Estimate	

Effect	
on	
Odds	
(%)	

t‐
statist
ic	 		 VIF	 Estimate	

Effect	
on	
Odds	
(%)	

t‐
statisti
c	 		 VIF	 Estimate	

Effect	
on	
Odds	
(%)	

t‐
statistic	 		 VIF	

Total	Impervious	Area	(%)	 ‐0.117  ‐11.081  ‐2.052  *    ‐0.197  ‐17.855  ‐2.154  *	 4.617  ‐0.438 

‐
35.48

9  ‐2.160  * 14.001 

Developed	Open	Space	(%)	 		 		 		 		    ‐0.163  ‐15.022  ‐1.502  		 2.695  ‐0.441 

‐
35.64

7  ‐1.818  .	 8.968 

Distance	to	CSO	(m)	 		 		 		 		    		 		 		 		 		 0.000  ‐0.029  ‐1.932  .	 4.348 

Average	Slope	(%)	 ‐1.456  ‐76.679  ‐1.938  .	    ‐1.711  ‐81.932  ‐1.965  *	 2.913  ‐2.060 

‐
87.25

4  ‐1.938  .	 2.560 
Average	Annual	Precipitation	
(cm/yr)	 0.616  85.128  2.608 

*
*    0.769  116  2.743 

*
*	 3.192  1.040  183  2.534  * 5.242 

Catchment	Area	(km2)	 0.007  0.663  1.021  		    0.002  0.152  0.208  		 1.882  0.003  0.281  0.218  		 2.343 

Intercept	 ‐63.220 
‐

100.000  ‐2.551  *    ‐73.528  ‐100  ‐2.682 
*
*	 		 ‐83.951  ‐100  ‐2.448  * 		

McFadden's	R2	 0.358	 		 		 		    0.421	 		 		 		 		 0.614	 		 		 		 		

Count‐based	R2	(above	mean)	 0.794	 		 		 		    0.824	 		 		 		 		 0.853	 		 		 		 		

		 		 		 		 		    		 		 		 		 		 		 		 		 		 		

		 		 		 		 		    		 		 		 		 		 		 		 		 		 		
Panel	C:	non‐CSS	Dataset	(n	=	
56)(c)	 		 		 		 		    		 		 		 		 		 		 		 		 		 		

		 Estimate	

Effect	
on	
Odds	
(%)	

t‐
statist
ic	 		 VIF	 Estimate	

Effect	
on	
Odds	
(%)	

t‐
statisti
c	 		 VIF	 		 		 		 		 		

Total	Impervious	Area	(%)	 ‐0.013  ‐1.284  ‐0.321  		 1.450  ‐0.132  ‐12.322  ‐1.968  *	 3.058  		 		 		 		   

Developed	Open	Space	(%)	 		 		 		 		 		 ‐0.156  ‐14.477  ‐2.700 
*
*	 2.220  		 		 		 		   

Average	Slope	(%)	 ‐0.762  ‐53.331  ‐2.037  * 1.450  ‐1.037  ‐64.554  ‐2.117  *	 1.856  		 		 		 		   
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Average	Annual	Precipitation	
(cm/yr)	 ‐0.017  ‐1.673  ‐0.524  		 1.062  ‐0.011  ‐1.062  ‐0.290  		 1.203  		 		 		 		   

Catchment	Area	(km2)	 0.004  0.406  0.831  		 1.073  ‐0.001  ‐0.103  ‐0.221  		 1.313  		 		 		 		   

Intercept	 5.014  14952  1.114  		    13.245 
565465

40  2.001  *	 		 		 		 		 		   

McFadden's	R2	 0.131	 		 		 		 0.299	 		 		 		 		 		 		 		 		 		   

Count‐based	R2	(above	mean)	 0.696	 		 		 		 0.821	 		 		 		 		 		 		 		 		 		   

(a)	.	Significance	at	the	0.10	level	;	*	Significance	at	the	0.05	level;	**	Significance	at	the	0.01	level	                        

(b)	Retention/Detention	stormwater	infrastructure	excluded	because	all	BMA	watersheds	located	in	counties	with	detention,	retention	or	infiltration‐based	infrastructure	

(c)	Distance	to	CSO	and	Ret/Det	stormwater	infrastructure	effects	could	not	be	estimated	due	to	complete	separation	in	the	data	               
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The effect of developed open space was nearly equal in magnitude to that of TIA. A 1% 

increase in developed open space was associated with between 8.6% and 15.2% 

decrease in the odds of a VSA-type response. Adding variables representing type of 

development, such as distance to combined sewer outfall and presence of a retention, 

detention or infiltration-based stormwater management program (Model 2C), neither 

significantly improved model fit nor resulted in additional significant estimated effects 

(likelihood ratio test p values for improvement of Model 2C over 2B were 0.553 and 0.308 

for the national and BMA datasets, respectively). Model 2C for the national dataset had 

acceptable VIF values, and controlling for the distance to the nearest combined sewer 

outfall and presence of distributed stormwater infrastructure resulted in little change to the 

estimated effects of TIA and developed open space, demonstrating stability of the model. 

The two models that showed statistically significant improvements—Models 1B and 2B— 

had similar goodness-of-fit measures and estimated effects of significant controls, further 

increasing confidence that the results were not spurious. 

DISCUSSION 

Effect of undeveloped land compared to land development 
variables in explaining VSA response 

The results from models that included undeveloped land as an independent variable show 

that in general, development type variables add little compared to the explanatory power 

of undeveloped land for predicting VSA response. This is especially true when 

morphologic and meteorological controls are included. When no additional controls are 

included in the regressions, the effect of undeveloped land is marginally significant, while 

that of TIA is not significant. Only when controls for watershed morphologic and 

meteorological conditions does TIA become a stable predictor of VSA-response. This 
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result is important considering the attention that impervious area as a singular metric has 

been given over the years, especially for land use planning purposes. The conditional 

significance of impervious area highlights the need to incorporate contextualizing factors 

into the understanding of catchment-scale hydrological response. 

Effect of open space in urban areas on VSA response 

As expected, the effect of TIA on VSA-response is negative: a 1% increase in TIA within 

the watershed is associated with between 8.0% and 17.9% decrease in the odds of 

detection of a VSA-type response, controlling for other factors. Less expected is that 

developed open area (low density development) also has a negative effect on VSA-type 

response almost equal in magnitude to TIA. This suggests that on average, developed 

pervious area is also associated with Hortonian-flow dominated responses compared to 

undeveloped areas, a result that has also been confirmed by others (Smith et al., 2015). 

For land-use planners, this means it is not enough to limit imperviousness of new 

development. In order to preserve VSA-type response, it is necessary to limit even low-

density development. TIA is highly correlated with overall development levels (Pearson’s 

rho = 0.78, 0.80, and 0.91 for the national, BMA and non-CSS datasets, respectively), 

which explains why this particular metric may have been useful for land use planners in 

the past. Developed open space, which was shown in this study to add significantly to the 

explanatory power of TIA, is not correlated with overall development (Pearson’s rho = -

0.13, -0.09, 0.15 for the national, BMA and non-CSS datasets, respectively). This weak 

correlation, along with the relative invisibility of runoff generation on pervious surfaces 

compared to impervious surfaces, may explain why the effect of developed open space 

has been overlooked.  
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There are several possible explanations for why developed open space has a negative 

effect on VSA-type response. Developed open space in the NLCD is defined as 

development that is less than 20% impervious, so these areas could still contain roads 

and drainage infrastructure that increase hydraulic connectivity. Urban pervious surfaces 

could have very little storage due to compaction and localized subsurface saturation due 

to lawn watering and leakage and therefore lead to saturation overflow conditions even 

during very small events (Lerner, 2002; Bhaskar and Welty, 2012; Smith and Smith, 2015). 

Although this process is physically more similar to Dunne’s VSA concept of saturation 

overland flow, if storage is minimal, the hydrological response at this level of analysis is 

indistinguishable from Hortonian overland flow. 

Effects of stormwater management infrastructure on VSA 
response 

In the national dataset, no coefficients estimated for stormwater management control 

variables had statistically significant effects, and distance to CSO in the BMA dataset had 

only a marginally significant negative effect on VSA response. Many urban areas in the 

Northeast and Midwest US are served by combined sewer systems that collect 

wastewater and stormwater runoff within the same system. During small rain events, these 

collection systems do not discharge directly to streams, but direct all flows to the 

wastewater treatment plant, after which, runoff generated in one catchment may be 

discharged in another. The presence of this kind of infrastructure might suppress the 

detection of runoff response in highly urbanized areas, mitigating some of the negative 

effect of high levels of impervious surface in urbanized areas and resulting in decreased 

(less negative) effects on the probability of VSA compared to suburban areas. The more 

negative effect of developed open space estimated from the non-CSS dataset offers some 
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supporting evidence that this is true: among watersheds in which runoff is not intercepted 

by wastewater collection and treatment systems, there is more of a Hortonian-type 

hydrological response. The data used in this analysis and the formulation of urban VSA 

include both runoff generation processes and the effects of intermediary structures that 

could confound the detection of a non-constant rainfall-runoff relationship (Table 3.1). 

However, previously demonstrated empirical evidence that variable source dynamics are 

more pronounced during summer months were also supported. It should be noted 

however, that the implications of a “VSA” type response that results from runoff being sent 

to a wastewater treatment plant during small storms but discharging runoff during large 

events has very different implications for watershed management than more natural VSA 

runoff production processes. Estimating the effect of retention, detention and infiltration-

based stormwater management practices from the presence of guidelines including these 

practices does not necessarily reflect extent of implementation. However, previous 

research has shown that despite being constructed with modern detention and retention 

ponds, developed basins in Maryland still functioned more similarly to basins without such 

infrastructure than to an undeveloped, forested basin (Meierdiercks et al., 2010b). 

There are limitations of the data used in this analysis. While the GAGES II dataset is 

valuable because it allows for a cross-sectional analysis of many watersheds across the 

US, the resolution of land cover and precipitation data is too low to distinguish among 

specific physical processes of localized runoff generation. The particular processes and 

pathways within urbanized catchments ideally should be assessed in the field, and 

therefore, the conclusions of this study should be understood as the ‘average’ effects of 

the covariates included in the regressions, as measured at the stream gauge. It could be 
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that issues of resolution among the urbanized catchments studied may mask the specific 

connectivity conditions of ‘developed open space.’ 

CONCLUSIONS 

This study confirms the need to move away from impervious surface as a singular metric 

for hydrological response, but has particular implications for land use planners and 

watershed managers. Previous emphasis on limiting imperviousness of new development 

suggests that low density, suburban development results in less disruption of hydrological 

response because of the presence of open space to mitigate flows. This study provides 

evidence that developed open space functions more similarly to impervious area than it 

does to natural areas, and shows that there is no evidence that developed open space 

promotes VSA dynamics. This finding may provide watershed managers and land use 

planners with additional rationale to promote higher density urban development or 

redevelopment and preserve naturalized areas rather than develop at low densities with 

more developed open space. It also implies that bulk lot coverage or zoning regulations 

that limit imperviousness but do not specifically address preservation of naturalized 

vegetation or native, undisturbed soils should be reexamined. 
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CHAPTER 4: COUPLED SURFACE – SUBSURFACE 
ECOHYDROLOGIC MODELING IN AN URBAN SEWERSHED: 

APPLICATION OF THE PARFLOW MODEL 
 

INTRODUCTION AND BACKGROUND 

To date, hydrological modeling of urbanized watersheds has focused primarily on land 

cover and surface type. Impervious surface area, has emerged has emerged as the 

dominant explanation for reduction of subsurface storage in urbanized watersheds 

(Schueler, 1994; Arnold and Gibbons, 1996; Moglen and Kim, 2007). However, as shown 

in the previous chapter “Beyond Imperviousness: Hydrologic Response at the Regional 

Watershed Scale” and an increasing number of numerical and empirical studies of 

urbanized catchments, impervious surface area may not be the dominant explanation for 

changes in the urban hydrological cycle (Bhaskar et al., 2015; Smith et al., 2015; Lim, 

2016). In these studies, subsurface dynamics, inter-event capacity recovery through 

evapotranspiration from vegetation and potential interactions between overland flow and 

the differential contraction of saturated areas, and lower than expected porosity and 

hydraulic conductivity of compacted urban soils are offered as possible explanations for 

changes in the hydrological cycle associated with urbanization.  

Empirical monitoring results measuring effectiveness of green 
infrastructure 

Extensive monitoring has shown that GI is effective at the site scale in reducing peak flows 

and runoff volumes and increasing water quality from rainfall events (Davis, 2007, 2008; 

Emerson and Traver, 2008; Li et al., 2009; Driscoll et al., 2015; Page et al., 2015). At the 

catchment-scale however, limited implementation of GI means that there are very few 

empirical studies comparing expected performance of GI to actual performance. In an 
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EPA-led experimental program, researchers documented measurable and statistically 

significant weakened correlation of event-based rainfall depths and measured stream 

gauge flows (indicating measurable effectiveness of GI), in a suburban watershed in Ohio 

(Shuster and Rhea, 2013). Loperfido et. al.(2014) empirically studied the rainfall-runoff 

response in four catchments in the Chesapeake Bay area for a year and a half, and 

concluded that distributed BMPs resulted in higher baseflows, higher minimum 

precipitation thresholds for stream response, better maximum discharge controls for small 

events and reduced runoff volumes for the 1000-year event. Both of these studies took 

place in regions with significant new development, and not in existing urban areas that 

were retrofitted with GI. 

The need to account for surface-subsurface interactions in GI 
modeling 

Previous research suggests that the interactions or feedbacks between surface and 

subsurface dynamics may have significant contributions to the local water balance and 

hydrology in urban environments. The concept of Urban Variable Source Area (UVSA) is 

an adaptation of Dunne’s Variable Source Area (VSA) (See previous chapter), which 

states that heterogeneity of infiltration rates within a watershed has not only to do with the 

heterogeneity of soils; it is also dynamically related to the behavior of water over the 

topography of the landscape and in heterogeneous interactions with subsurface (shallow 

groundwater) capacity of soil. For example, “sag points” in the topography require longer 

inter-event dry periods to recover their full capacities than upslope locations. Thus, 

infiltration capacity is also determined by antecedent wetting conditions (Dunne et al., 

1975).  

Figure 4.1 shows a conceptualization of how lateral subsurface and subsurface-surface 

interactions could result in variability of effectiveness of run-off interception areas 
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depending on differential capacity recovery between events. Infiltration to the subsurface 

can result in temporary saturation of low lying areas. When precipitation falls on saturated 

low lying areas, overland flow is produced from areas that would not contribute to overland 

flow had they not been saturated, producing a “variable source area.” 

 

 

Figure 4.1. Example of fluxes influencing variable source area dynamics. p denotes 

precipitation, qo denotes overland flow, qr denotes return flow, and qs denotes subsurface 

flow contributing to streamflow response. Source: Beven, 2012 

 

UVSA (Table 3.1) acknowledges that run-on infiltration-based best management practices 

(BMPs) placed at different spatial locations within the sub-catchment could recover their 

infiltration capacities differently due to groundwater saturation, especially at sag points 

(Miles and Band, 2015). Imported water from leaking underground pipes and septic tanks 

may also be a substantial source of groundwater recharge and soil saturation in urban 

areas (Lerner, 2002; Meierdiercks et al., 2010; Price, 2011).  While many studies have 

focused on the effect of the easily-observable impervious surface on hydrological change, 

its effect on subsurface storage may not be so straightforward, as development is highly 

associated with imported water (leakages into the subsurface) and reduced vegetation 

(less evapotranspiration), and forced infiltration of stormwater runoff, which could actually 

result in increased subsurface storage (Ku et al., 1992; Gobel et al., 2004). The presence 
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of drainage infrastructure has been shown to have different effects on UVSA depending 

on the size of the storm. During small storm events, drainage infrastructure results in 

higher connectivity and larger peak flows, but during large events, the presence of 

drainage infrastructure has been shown to reduce recharge to downslope areas, which 

then produce less runoff (Tague and Pohl-Costello, 2008). Several other studies have 

showed specifically that infiltration-based BMPs result in groundwater mounding, 

mounding is more severe when BMPs are spatially clustered together, and can exceed 

pre-development groundwater recharge (Gobel et al., 2004; Endreny and Collins, 2009; 

Machusick, 2009; Maimone et al., 2011).  

While the above studies suggest that UVSA is likely to influence spatial location of 

infiltration within the watershed, few studies have addressed how lateral interactions and 

groundwater table feedbacks may influence hydrological effectiveness of widespread, 

infiltration-based GI at the catchment scale. Miles (2014) completed research on low to 

medium density infiltration-based GI using an eco-hydrology model that incorporated 

UVSA. The research showed that GI location (near stream or far from stream) did not 

significantly influence hydrological effectiveness. However, that non-finding may have 

been due to low overall levels of impervious area disconnection. In addition, that study did 

not include a model with overland flow routing that is associated with high levels of 

impervious area.  

Whereas hydrologic processes are inherently three-dimensional, many modeling 

approaches average over one dimension to reduce model complexity, depending on the 

process of interest.  Models focusing on surface processes often average over the vertical, 

whereas models focusing on infiltration processes focus on a vertical cross-section, 

implying a lateral average. Some hybrid models link these two approaches together to 

create a pseudo 3-d model. One study linked a natural distributed hydrological model with 
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a lumped urban stormwater model to include solutions to overland flow routing likely to be 

associated with higher levels of imperviousness. This study confirmed that there were 

significant interactions between surface runoff generation and groundwater, with up to 24% 

of total discharge from the urban runoff network originating from groundwater (Kidmose et 

al., 2015). Coupled models have been popular to deal with the vertical processes of 

evapotranspiration, infiltration, gravitational drainage and vertical soil moisture separately 

from lateral routing solutions (Bouilloud et al., 2010). These coupled models have been 

adapted for suburban catchments, with very low infiltration rates specified for impervious 

surfaces and runoff drained through sewer networks (Furusho et al., 2013). Overall the 

adaptation was shown to perform satisfactorily, although it tended to underestimate total 

discharge during dry periods because of unrealistic deep drainage assumptions, and 

overestimate total discharge during wet periods because runoff from impervious surfaces 

was overestimated (Furusho et al., 2013).  

The majority of what we know about infiltration-based stormwater management at the 

catchment scale comes from hydrological modeling studies. These studies use our 

physical knowledge about hydrology to predict hydrological response to GI through 

mathematical expressions. All types of hydrological modeling can be characterized as 

belonging to one of three broad approaches: lumped, semi-lumped, and distributed. 

Lumped models treat the catchment as a single unit of analysis with averaged state 

parameters (such as TR-55 and the SCS Curve Number method) (USDA, 1986). Semi-

lumped models break down the catchment area into sub-catchments with averaged state 

parameters. Distributed models discretize the entire catchment into grids and solve state 

variables for each grid pixel. Discretizing the catchment area allows the model to make 

predictions that are more finely distributed over space. Distributed models are also 
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sometimes called “process-based” or “physics-based” models, since they are built on 

known physics-based relationships (Beven, 2012). 

The majority of urban hydrological modeling belong to the lumped, or semi-lumped 

parameter approach, and many studies have demonstrated the effectiveness of GI at the 

catchment scale using these approaches (Gilroy and McCuen, 2009; Ahiablame et al., 

2013; Burszta-Adamiak and Mrowiec, 2013; Lee et al., 2013; Qin et al., 2013; Palla and 

Gnecco, 2015). While most lumped parameter approaches are still based on empirically-

observed relationships and are easier to parameterize and not as computationally 

intensive as distributed models, their structure does not allow for the possibility of 

interactions or feedbacks that are distributed in space within the catchment or sub-

catchment. Their lumped structure also makes it impossible to distinguish between distinct 

processes within the catchment, especially complex interactions in the subsurface and 

between subsurface and surface processes such as overland flow, interflow, 

evapotranspiration, and infiltration (Bhaskar et al., 2015). 

What remains unknown is how detailed, vertical water and energy fluxes such as those 

represented in eco-hydrological models or soil-vegetation-air transfer (SVAT) models 

might be incorporated into higher-intensity urban areas. These interactions are likely to be 

important because infiltration-based BMPs recover their volumes through 

evapotranspiration and because they all depend on availability of storage capacity in soils 

in order to work as expected. In medium-density urban areas, the spatial configuration of 

infiltration-based BMPs may make measurable differences in flows measured in the 

drainage system and to the overall local water balance. But previous models have not 

accounted for an adequate representation of both surface and subsurface interactions that 

are likely to be more important as urban catchments include more opportunities for 

infiltration. 
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Comparisons of common hydrological models 

Figure 4.2 shows how three hydrological models treat surface-subsurface interactions. In 

the widely-used SWMM model (distributed by the EPA), a watershed can be divided into 

smaller subcatchment areas to make it more spatially distributed. Since within each 

subcatchment state parameters are averaged before being uniformly distributed to the 

downslope receiving subcatchment node, one must be very careful about the a priori 

assumptions of how each node is delineated and connected to subsequent nodes. The 

routing within SWMM is not based on hydraulics, but rather on a non-linear reservoir 

hydrologic method that has been shown to be less accurate, especially for predicting 

hydrographs for smaller storms where the event duration is less than the time of 

concentration (Xiong and Melching 2005). Although groundwater flow is included an option 

within SWMM, it analyzes groundwater flow for each defined subcatchment independently 

(Rossman 2015). This means that interactions between two infiltration areas can only 

occur if the water table has risen to the surface in the upslope area and runoff is produced 

by saturation excess. 
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Figure 4.2 Conceptualization of various hydrological models’ treatment of overland flow routing and groundwater and example testable 

hypotheses.
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The Regional Hydro-Ecological Simulation System (RHESSys) model, which was 

originally developed for forested catchment areas, is spatially distributed and includes 

energy-water fluxes both between the surface and subsurface and the surface, plants and 

air. Although this model has been adapted for use in low and medium density developed 

catchments (B. C. Miles 2014), it is not suited for modeling higher density development 

because it lacks a solution to hydraulic flow routing (kinematic, diffusive, or dynamic wave), 

therefore it does not predict hydrographs. The groundwater model in RHESSys is a simple 

linear reservoir. In addition to the effect of saturation overflow from an upstream area, 

RHESSys therefore also allows for consideration of return flow and subsurface storm flow 

contributions to the measured response. With respect to GI implementation, this would 

allow for testing of upslope versus downslope positions of GI within the catchment (Tague 

and Pohl-Costello 2008; Mittman 2009; B. C. Miles 2014). In Figure 4.2, the diagram for 

RHESSys shows that the common subsurface reservoir has already affected the 

infiltration capacity of the downslope GI facility, despite the fact that the upslope facility 

has not yet “overflowed.” 

ParFlow is a three-dimensional, variably saturated groundwater flow code, has been 

integrated with a two-dimensional overland flow simulator (Kollet and Maxwell 2006). The 

structure of this model is such that it does not necessitate the often awkward 

parameterization of a gradient across the surface-subsurface interface and the 

proportionality constant that has been typical of coupled surface-subsurface systems. 

Instead, it links the system of equations through the boundary condition at the ground 

surface, such the overland flow equations are implemented into the Richards equation at 

the top boundary cell under saturated conditions (Kollet and Maxwell 2006). This 

generalization of the surface-subsurface interaction results in both greater numerical 

stability and a continuous solution for pressure head. Since ParFlow is spatially distributed, 
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integrates 3D subsurface- 2D surface interactions, and includes the solution for the 

kinematic wave approximation for shallow overland flow, this makes it an ideal candidate 

for testing under what conditions the position and configuration of GI within the 

subcatchment may be less efficient than the sum of the expected performance of 

individual GI facilities. 

The need to account for the ecohydrological dynamics of meteorological forcing, 

evapotranspiration and subsurface flow described above to better represent dynamics that 

might affect UVSA, motivates the use of a high-resolution coupled surface-groundwater 

flow ecohydrological model, ParFlow.CLM (Kollet and Maxwell, 2006). ParFlow.CLM is 

capable of modeling these processes at high resolution in three dimensions in the 

subsurface through a finite-difference solution of the Richards equation in a grid-based 

domain. In contrast to other urban hydrological models that do not represent the three 

dimensional subsurface, ParFlow’s use of Richards equation represents the most rigorous 

approach to calculating three dimensional movement of water in soils. Table 4.1 illustrates 

in more detail how ParFlow’s treatment of infiltration compares to two other hydrological 

models in common use for urban areas, RHESSys and SWMM.  

While ParFlow uses a nonlinear solver to find the finite-difference solution of the full 

Richards equation (with the option to use van Genuchten lookup table to relate hydraulic 

conductivity to both pressure head and soil moisture to speed up calculations), RHESSys 

uses a simplification of Richards equation that assumes that hydraulic conductivity is 

dependent on moisture content, but not on pressure head, called Phillips equation. SWMM 

includes two main options for representing infiltration. One is a further simplification of 

Richards equation that assumes that conductivity is not dependent on either pressure 

head or soil moisture content, called Horton’s equation. The other option for representation 

of nonlinear infiltration capacity in SWMM is based in an approximate theory which 
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assumes a sharp, discontinuous wetting front as infiltration progresses (Green-Ampt 

method). In the Green-Ampt method, infiltration rate is expressed as an implicit function 

of cumulative infiltration. 

 

Table 4.1. Comparison of governing equations and subsurface process representation in 

three hydrological models 

Model  ParFlow  RHESSys SWMM 

Conservation of mass 
and momentum 

Richards Equation Phillips Equation Horton’s Equation or Green‐
Ampt Equation 

Assumptions  Hydraulic conductivity and 
diffusivity are functions of soil 
moisture and pressure. Richards 
equation is solved for all grid cells 
throughout the entire domain. 

Hydraulic conductivity and 
diffusivity are functions of 
soil moisture content, but 
not pressure head. 
 
 

Horton: Hydraulic conductivity 
and diffusivity are constants, not 
dependent on soil moisture 
content or pressure head 
 
Green‐Ampt: Implicit solution to 
infiltration (based on cumulative 
infiltration) that assumes sharp 
discontinuity at wetting front 

Representative 
Equation 

Richards: 

 

 

1

1  

 

 
 

 is residual water content 

 is saturated water content 

 is the effective saturation 

K is hydraulic conductivity, a 
function of pressure head (h) 
t is time 
z is elevation head 
h is pressure head 

Modified Phillips:

1
2

 

 
 
f is infiltration rate 
F is cumulative infiltration 
S is sorptivity, a function of 
soil suction 

Horton: 

 
 

 is a constant infiltration rate 

 is the initial infiltration rate 

k is a decay constant 
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Domain discretization Three dimensional grid Model has three vertical 
layers: surface detention, 
unsaturated zone and 
saturated zone. Ksat at the 
wetting front is used that is 
based on an exponential 
profile (Ksat decreases 
exponentially as depth 
increases). For vertical 
unsaturated zone drainage 
into saturated zone, Kunsat can 
be determined by the 
vanGenuchten method 

Two‐zone groundwater model 
with saturated and unsaturated 
zones.  

Antecedent Moisture  Gridded continuous Lumped – uniformly 
distributed in unsaturated 
zone 

Lumped – uniformly distributed

Hydraulic 
Conductivity Profile 

vanGenuchten look up table for 
full solution to Richards equation 

Exponential profile NA 

Dimensions  Three  One One 

Lateral Subsurface 
Redistribution 

Gridded Cell – Fully Distributed TOPMODEL or DHSVM –
quasi distributed at hillslope 
or basin scale, respectively 

NA 

 

 

ParFlow simulates coupled subsurface-surface flow through an overland flow boundary 

condition represented through a version of the kinematic wave equation when pressure 

head at the top layer of the domain is greater than zero. The CLM (Community Land Model) 

portion of the model represents surface-atmosphere dynamics including soil moisture and 

temperature, plant evapotranspiration and sensible heat flux (Ashby and Falgout, 1996; 

Oleson, 2010; Condon and Maxwell, 2014). ParFlow.CLM is efficiently optimized to 

perform on parallel resources, but has not been applied extensively to small urbanized 

sewersheds to “untangle” various ecohydrological processes (Bhaskar et al., 2015). 

APPLICATION OF PARFLOW.CLM TO A MEDIUM—DENSITY 
URBAN SEWERSHED 

Site Context 

In this chapter of the dissertation, I apply a ParFlow.CLM, a model that explicitly accounts 

for these dynamics to an urbanized, instrumented sewershed located in Washington DC’s 

Lafayette neighborhood. A sewershed refers to the area draining to a point within a storm 
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drain or sewer collection system, similar to the idea of a ‘watershed’ but accounting for 

changes in contributing area due to built infrastructure systems. The purpose of the 

application of this model is to test the extent to which the spatial configuration of 

imperviousness and green infrastructure retrofits, in addition to the magnitude of retrofits, 

in existing urban environments affects the hydrological response from the area. 

Since the EPA’s acceptance of GI and source control technologies for reducing combined 

sewer overflow events, many cities with aging drainage infrastructure are seeking to 

incorporate GI planning into their CSO Long Term Control Plans (LTCP) as a cost effective 

way of complying with the CWA while also enhancing the livability of the urban 

environment. In 2015, DC Water, the Water and Sewer Authority and permit holder for the 

CSS outfalls in Washington DC was successful in amending its original LTCP to 

incorporate significant amounts of GI retrofits in selected sewersheds. In some 

sewersheds, runoff from up to 30% of impervious area will be treated through source 

control measures such as rain gardens, permeable pavement and bioswales. 

Implementation of this plan allowed for the downsizing of two previously proposed large, 

underground storage pipes, saving the District sewer and water ratepayers an estimated 

$475 per year through 2032 (DC Water, 2015). In Philadelphia, the EPA approved the 

most aggressive GI-based CSO LTCP in the US. Philadelphia’s CSO LTCP, called “Green 

City, Clean Waters” (GCCW) calls for the city to construct 10,000 “Greened Acres” by 

2030, where a “greened acre” is defined as the management of 1” of runoff from 1 acre of 

directly connected impervious surface (Philadelphia Water Department, 2009). 10,000 

acres of imperviousness is nearly one third of the total area of the portion of the city served 

by the CSS. Unlike DC’s LTCP, which identifies target percentage retrofits for specific 

sewersheds in the city, Philadelphia’s GCCW was permitted solely in terms of aggregate 

area treated and does not address differences in capacity of the existing infrastructure. 



 

113 
 

The aggregate magnitude-based targets in Philadelphia and DC both do not consider the 

possibility that as an aggregate network, infiltration-based GI could potentially function 

differently than the sum of individual site-scale BMPs, or that the spatial configuration of 

this network might affect how it alters the urban hydrological cycle. 

RiverSmart Washington monitoring program description 

In this research I partnered with Washington DC’s Department of Energy and the 

Environment (DOEE) on a project called the RiverSmart Washington project that 

evaluates a monitored urban sewershed before and after GI installation. DC’s RiverSmart 

programs were established to help reduce stormwater runoff from entering the District’s 

waterways and the Chesapeake Bay and to restore ecological function to the landscape. 

In 2015, Washington DC’s water and wastewater utility provider, DC Water, revised its 

Combined Sewer Overflow (CSO) Long Term Control Plan (LTCP) to include GI 

components that allowed it to dramatically downsize two previously planned underground 

tunnels. This increased regulatory and institutional support to better understand the 

physical function of GI configurations and the effects of alternative site development 

morphologies at the sewershed scale (DC Water, 2015). In particular, city-wide initiatives 

to promote voluntary residential adoption of subsidized rain gardens and permeable 

pavement installations motivated a need to better understand how resulting spatial 

configurations may perform compared to facilities in the right-of-way (ROW), which may 

be more costly to the city. 

Made possible through $4M in joint funding from the U.S. Fish and Wildlife Service, DOEE, 

and DC Water, DOEE began the RiverSmart Washington monitoring program in 2009. 

The project first monitored in-pipe flows for the base case, pre-GI condition for six months 

(from July 2010 to December 2010) as well as local precipitation monitoring. This initial 
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monitoring period was followed by extensive construction of GI within several sewersheds 

in DC. At the Lafayette demonstration site (0.05 km2, and originally 34% impervious, with 

15% building footprint and 19% pavement), the District Department of Transportation 

(DDOT) oversaw installation of bioretention bump-outs and permeable pavements 

designed to treat nearly all of the public ROW. Table 4.2 below shows an inventory of the 

public right of way retrofits total surface areas and contributing areas. Measurements were 

calculated from the construction documents provided to me by DOEE and dimensions of 

the constructed facilities were verified in the field. Since construction documents did not 

include explicit delineation of contribution areas I mapped contributing areas in the field 

on November 28, 2015 based on visual flow paths during a rain event and site topography 

Figure 4.3 shows site photographs of BMPs constructed in the public ROW during a rain 

event. 
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Table 4.2  Inventory of public right-of-way BMPs implemented on the site 

Description 
W 

(m) L (m) 
BMP footprint 

(m2) 

BMP 
Contributing 

Area (m2) 
Permeable Pavement - ROW 
Gutter 1.8 76.2 139.4 195.1 
Permeable Pavement - ROW 
Gutter 1.8 70.4 128.8 149.4 
Pemeable Pavelemt - Full 
width of alley 4.3 48.5 207.1 0.0 
Bioswale - curb inlet extends 
off ROW 2.7 12.8 33.9 105.8 
Permeable Pavement - ROW 
Gutter 1.8 48.2 88.1 112.1 
Permeable Pavement - ROW 
Gutter 1.8 87.6 160.1 227.1 

Bioswale in existing ROW 1.4 29.6 41.5 168.1 

Permeable Rubber Sidewalk 1.5 58.8 89.7 0.0 

Bioswale all outside ROW 1.6 16.5 27.2 312.5 
Permeable Pavement - ROW 
Gutter 1.8 74.2 135.7 152.0 
Permeable Pavement - ROW 
Gutter 1.8 54.6 99.8 143.2 
Bioswale – curb inlet extends 
off ROW 2.9 12.9 37.6 112.7 
Permeable Pavement - ROW 
Gutter 1.8 28.7 52.5 73.2 
Permeable Pavement - Center 
of alley 1.2 56.2 68.5 102.7 
Permeable Pavement - Center 
of alley 1.2 70.1 85.5 128.2 
Permeable Pavement - ROW 
Gutter 1.8 111.6 204.0 254.3 
Permeable Pavement - ROW 
Gutter 1.8 111.6 204.0 292.1 
Permeable Pavement - Center 
of alley 1.2 104.6 127.6 350.8 
Permeable Pavement - Full 
width ROW 9.3 41.9 389.9 0.0 

Bioswale all outside ROW 1.4 13.7 19.5 66.1 

Total       2340.2 2945.5 
 

 

 



 

116 
 

 

 

Figure 4.3 Site photographs of BMPs treating the sewershed’s public ROWs. Top 

left: Permeable asphalt: surface runoff is visible, indicating lower than expected infiltration 

performance. Top middle: a bioswale with a flush curb cut extending beyond the ROW 

into adjacent grass strip. Top right left: permeable concrete installed in the center of a 

reverse crowned alley. Lower left: permeable concrete spanning the full width of the ROW. 

Lower right: foreground shows permeable rubber sidewalk adjacent to bioswale. 

Permeable pavers in parking lane are visible in the background. 
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GI retrofits were also constructed on private properties of willing residents. Of the 74 

households within the sewershed, 25 agreed to install subsidized GI on their properties, 

resulting in the disconnection of over 1,400 m2 of residential rooftop and over 550 m2 of 

private paths and driveways. On my November 28, 2015 site visit, I mapped private 

pavement and roof areas that were re-routed to installed rain gardens or permeable 

pavement adopted by residents. Before 2010, residential downspouts were all physically 

connected to the storm drain system by a buried PVC pipe that drained either directly into 

the street or the adjacent sidewalk (see Figure 4.4).  

 

Figure 4.4. Image of how roofs are directly hydraulically connected to the stormdrain via 

downspout, buried PVC pipe that drains to a sidewalk, which drains onto the street. Water 

is eventually flows into a curbside catch basin, which leads into the stormdrain.  

 

Residents choosing to participate in the RiverSmart Washington retrofit program were 

offered a selection of potential BMPs that included: permeable pavers, rain gardens, 

bayscaping (native landscaping), and rain barrels. In order to increase participation rates 

in this neighborhood, DOEE offered residents subsidies for these retrofits above those 
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offered to residential participants in the city-wide residential RiverSmart Homes retrofit 

program (described in more detail in Chapter 6). Table 4.3 shows an inventory of 

residential retrofits and site summary statistics. Retrofits are grouped based on intended 

function: rain barrels serve the function of disconnecting roofs from the storm drain; 

bayscaping and rain gardens increase the permeability and porosity of native soils through 

amending soils; permeable pavements increase permeability of impervious surfaces. 

 

Table 4.3. Inventory of private GI retrofits 

Sewershed Total Area 52,000 m2 

2010 Total Impervious Area 22,000 m2  (42%) 
Total Private Property Area 37,000 m2 (71%) 
Number of Parcels 74 
Lot size 
   Min 
   Max 
   Median 
   Mean 

 
5 m2 

1,490 m2 

528 m2 

499 m2 

Disconnected Roofs (draining to rain barrels, rain 
gardens, permeable pavement, or lawn) 

1,423 m2 

Treated Pavement (permeable pavement) 552 m2 

Amended Lawns (rain gardens and bayscaping) 195 m2 

Lawns to impervious (residential renovations) 205 m2 

 

Construction of all the retrofits was followed by ten months of post-GI installation flow 

monitoring. This before and after monitoring dataset at the sewershed scale is unique and 

can be used to evaluate the retrofits’ impact on physical ecohydrological processes within 

the sewershed. Figure 4.5 depicts the boundary of the sewershed with locations of public 

and private GI installations and the monitoring location. 
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Figure 4.5. Domain of the study sewershed with public and private installations of GI and 

monitoring locations. Building footprints and sidewalks are in brown; streets are in gray; 

pervious areas are indicated by pale green; dark blue indicates public GI projects; dark 

green indicates private GI projects; the red arrow points to the monitoring location. 

 

The before and after flow monitoring was carried out using ADS Flowshark installed 

directly in the storm drain pipe, located underneath 34th street (red arrow shown in Figure 

4.4). The flow meters employed four ultrasonic level sensors to record stage (water level 

height) data in the pipe, a digital Doppler velocity meter, and a pressure sensor to measure 

surcharging conditions and provide additional stage data. Data from the meters were 

transmitted wirelessly via cellular communications. Local rain data were also collected via 
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a tipping bucket rain gauge installation located at MacFarland elementary school. The 

collected raw stage flow data were cleaned and used to calculate 5 minute increment 

instantaneous flow and paired with the rain gauge data. Data for the before and after 

monitoring activities were compiled by ADS and provided to the RiverSmart Washington 

subconsultant, Limnotech.  

LOCAL AND REGIONAL METEOROLOGICAL AND 
GEOPHYSICAL DATA SOURCES 

ParFlow allows the user to specify the number of desired subsurface layers in the model, 

with a minimum of 10 layers for coupling with the evapotranspiration and land surface-

atmospheric model CLM (Community Land Model) (Oleson, 2010). There are multiple 

ways the subsurface can be specified in ParFlow: through the creation of a “solidfile” with 

constant dz discretization, or a terrain following grid (TFG), which can be paired with 

variable dz discretization. Although the variable dz discretization is more computationally 

intensive (and requires additional post-processing steps to correctly scale the model’s 

output results), the variable dz option allowed me to represent finer-scale dynamics in the  

near surface layers with a small dz, and deeper layers with larger dz thicknesses, 

decreasing the total number of layers in the model and considerably saving total 

computational resources (Maxwell, 2013).  

Although I did not anticipate sewershed-scale GI retrofits to have an effect on regionally-

determined groundwater levels, I chose to define my subsurface domain with 12 variable 

dz layers in a terrain following grid extending to a total depth of 50 m below the surface. 

Including this depth in the model increased the stability of the underlying water table and 

prevented positive pressure buildup in low-lying areas of the site, which were confirmed 

not to exhibit presence of groundwater within 2 m of the surface. This was because there 

is a 21-m elevation differential across the site and well data from the nearest wells indicate 
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water table depths that have varied between 5.2 m (17.6’) and 6.4 m (21.0’) below the 

land surface for the past 15 years (Figure 4.6). In order for the lowest point of the site to 

maintain at least 5 m depth to groundwater, at least 26 m depth on the side of the domain 

with higher elevations had to be provided so that the water table was ensured to always 

be within the domain. This point is further explained below in the Regional Geologic 

Properties and Model Spinup sections. After the total model domain depth of 50m was 

established, the domain was divided into 12 layers (using the TFG specification of 

ParFlow), with layer thicknesses based on a combination of desired resolution based on 

expected dynamics of subsurface flow and empirical layer depths. The final thicknesses 

for the twelve layers were, from topsoil/pavement to bedrock: 0.05m, 0.05m, 0.05m, 0.5m, 

0.5m, 0.5m, 0.75m, 2.5m, 5m, 5m, 10m and 25.1m.  

 

Figure 4.6.Temporal variation of water table depths from a nearby well, also located in 

the Piedmont Physiographic Region to the north of the site. 

 

A summary of geophysical parameters of the site and their sources are summarized in 

Table 4.4. The following sections provide additional detail on these data. 
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Local Geotechnical Reports  

As part of the extensive DDOT GI construction, geotechnical analyses of 32 boring 

locations distributed throughout the site were carried out and provide much detail on the 

hydraulic conductivity conditions of the site to 2-m depth (HSA, Inc, 2012). Geotechnical 

reports included sieve analyses from 2 depths for each boring: between 1.2m – 1.8m (4’ 

– 6’), and between 1.8m – 2.4m (6’ – 8’). From the sieve analyses’ particle distributions, I 

calculated the mean tenth percentile passing (d10) across the 32 borings at each of the 

two sample depths. The geotechnical reports include depths of defined strata (topsoil, 

asphalt, concrete, estimated fill, and native soil) for each boring, soil descriptions (sand, 

silt, clay composition), and results for two sieve analyses for each boring location. 

Hydraulic conductivity for depths between native soils and backfill up to the depth of 2.44 

m (8 ft) were calculated based on the results of the HSA sieve analysis, using the Hazen 

formula (Vienken and Dietrich, 2011): 

∗  

Where the units of hydraulic conductivity (Ks) are cm/s, CH is the Hazen coefficient (1), 

and d10 is in mm. This resulted in permeabilities (hydraulic conductivities) of 8.14 x 10-6 

m/h for the top soil layer (soil 1), and 5.42 x 10-6 m/h for the lower soil layer (soil 2).  

The thicknesses of the variable dz layers in the subsurface domain are constant across 

the horizontal domain. The geotechnical reports focus on conditions within the public ROW 

and in alleys, since this is where the design of public BMPs were located. However a few 

borings were located in the turf strip between the ROW and the sidewalk. These borings 

indicated that in pervious areas, the average topsoil thickness was 5 cm (2.0 in). 

Paved ROWs and alleys either have asphalt or concrete surfaces. In asphalt covered 

ROWs/alleys, underlying 7.6 cm (3 in) of asphalt is approximately 23 cm (9 in) of 

aggregate base. Concrete used in alleys is 23 cm (9 in) thick. There is no aggregate fill 



 

123 
 

underlying concrete-surfaced alleys. In some cases, there is some evidence of backfill 

underlying the ROWs and alleys and the geotechnical reports give estimates of these 

thicknesses. However, since the reports also state the fill is compositionally and visually 

very similar to the surrounding native soil, I assumed that the fill properties are similar to 

the shallower of the two soil analyses performed at each boring location. The first 0.15 m 

(6 in) of the subsurface domain in ROWs and alleys is therefore defined as pavement. The 

properties of underlying aggregate base layers are averaged with areas of thicker 

imperviousness and assigned the hydraulic properties of native soils as determined by the 

sieve analyses.  

Topsoil was assigned a hydraulic conductivity 3.75 10 cm/s and porosity 0.4, 

based on the mean of field-measured values in an urban environment in nearby urban 

Virginia (Chen et al., 2014). Impervious pavement (both asphalt and concrete) were 

assigned 8.5 10  cm/s and porosity of 0.1% based on values reported in the 

literature for measured hydraulic properties of asphalt (Kuang et al., 2011). 

The soils underlying pervious areas are assumed to be native soils. According to the 

reports, even where fill has been placed, it apparently has been composed mostly of native 

soils, making it difficult to differentiate strata. Therefore, hydraulic properties for soils 

underlying the topsoil are assigned in the same manner as described above for the first 

sieve analysis layers. Underlying either topsoil or pavement layers therefore are either 

2.35 m of soil 1 and soil 2 properties or 2.25 m of soil 1 and soil 2 properties, discretized 

into layers as shown in Table 4.4. 

Regional Geologic Properties 

Beyond the 2.35 meters of site-specific geotechnical reports defining the soils properties 

of the site, deeper soil hydraulic properties were defined from regional data. The Lafayette 
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study site is located in Northwest, Washington DC. DC is bisected by the Fall Line, which 

delineates the Atlantic Coastal Plain (east) and Piedmont (west) physiographic provinces. 

The Lafayette site is located within the Piedmont physiographic region. This was 

confirmed both by Maryland State Geologic Survey and by the site engineer’s 

geotechnical reports (HSA, Inc, 2012). The Piedmont physiographic province is defined 

by layers that include soil, saprolite, a transition zone of highly weathered bedrock, and 

fractured bedrock.  

I defined layer thicknesses based on regional geological survey reports. The length of well 

casing is a commonly used method of approximating the depth of the soil, saprolite and 

transition zone layers, since well casings usually extend to within 0.6 m (two feet) of the 

bedrock layer. Maryland has several reports that use this method to determine the depth 

of the saprolite layers in the Piedmont physiographic region. Burgy and Duigon (2012) and 

Nutter and Otton (1969) report that in Maryland, well casing lengths range from 0 to 30.5 

m (100 ft) in depth, with an mean thickness of 12.5 m (41 ft).  

Underlying the saprolite layer is a transition zone of weathered bedrock that is 

characterized by high hydraulic conductivity. In the North Carolina Piedmont 

physiographic region, which is of the same geologic composition as the Piedmont 

underlying Washington DC, the transition zone has been estimated to be 4.6 m thick (15 

feet) (Harned and Daniel, 1992). Because in reports for well casing depths in Maryland, 

the transition zone is not specifically delineated from the saprolitic layer, it was assumed 

to make up a 5 m thick (16.4 ft) layer, the top third of which is within the 12.5 m (41 ft) of 

the surface. The remainder of the 12.5 m mean well casing depth (7.5m) was assigned to 

saprolite. The transition zone is underlain with bedrock layers to a total subsurface depth 

of 50 m (164 feet). 
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There were several sources of hydraulic properties for the saprolitic layers. Nutter and 

Otton report transmissivity values for pumped and observation wells in the Maryland 

Piedmont for saprolite ranging in thickness from 18.3 m – 25.3 (60 ft – 83 ft). Transmissivity 

coefficients were converted to estimates of hydraulic conductivity by dividing by the 

thickness of the saprolite. The average of all the calculated hydraulic conductivity values 

(1.43 E -03 cm/s) was assigned to the upper saprolite layer in the model. Nutter and Otton 

also report hydraulic conductivity values for saprolitic layers specifically for the 

Wissahickon Formation (of the Lower Peletic Schist geologic formation) for saprolite 

ranging in depth from 1.3m to 5.0m (4.5 ft – 16.5 ft). These values ranged from 5.70 E-04 

to 1.14 E-03 cm/s (1969). Green et al. (2004) reported a hydraulic conductivity value for 

saprolite of 3.53 E-04 cm/s, and the average of the Nutter and Otton reported values and 

the Green value was applied to the lower saprolitic layer in the model (1.78 E-03 cm/s).  

Layers below 10 m (33 ft) are defined as the transition zone and fractured bedrock layers 

(Cunningham and Daniel, 2001). Hydraulic conductivity values for the high-

fracture/hydraulic conductivity transition zone layers were calculated based on specific 

capacities reported in the Maryland Piedmont by Nutter and Otton ( 1969) and an empirical 

formula relating specific capacity to transmissivity reported by Mace (1997) and the 

dividing by the thickness of the overlying regolith. 

0.76 .  

where is the transmissivity (L2/t) and  is the measured specific capacity (L2/t). 

Calculated hydraulic conductivities for depths up to 61 m (200 ft), were averaged to obtain 

the hydraulic conductivities to apply to the transition zone. 

Hydraulic conductivity in the bedrock layers are dominated by flow through fractures, 

which decrease in density as bedrock depth increases. I assume that the exponential 

decrease in hydraulic conductivity as a function of depth in fractured bedrock is 
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functionally similar to the exponential decrease in well yields with well depths (Paulachok, 

1991), as has been done by others  (Andino, 2015). The following empirical relationship 

has been established for the Wissahickon formation, to which the site belongs. 

∗ .  

where  is well yield (gallons per minute),  is depth in feet, and  is an empirically 

determined constant. I assume that hydraulic conductivity has a similar relationship to 

depth: 

∗ .  

where  is in m/hr and  is in meters. The  value 6.99 10  for the uppermost 

fractured bedrock layer was obtained from the median hydraulic conductivity of the 

Oligoclase-Mica Schist of the Wissahickon formation (although the sites are classified as 

“Lower Peletic Schist” within the Wissahickon formation, this classification was formerly 

mapped as oligoclase facies and are therefore assumed to have similar properties) (Low 

et al., 2002). This  value and a depth of 30 m was then applied to the above expression 

and solved for  ( 0.214 ). Porosity values for the saprolite, transition zone and 

fractured bedrock layers were assigned using a porosity curve in the Piedmont region of 

North Carolina (Figure 4, p 9, (Cunningham and Daniel, 2001)), as summarized in Table 

4.4. 

Vegetative and Impervious Cover 

A high resolution vegetative cover dataset was provided to me of the DC metro area by 

researchers at the University of Vermont (University of Vermont, 2011). This dataset had 

a 1 m resolution and included six land cover/vegetation classifications within the 

Washington DC area: base soil, buildings, roads/railways, other paved surfaces, tree 

canopy, and water. The CLM portion of the model, which controls meteorological forcing, 
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energy fluxes, and evapotranspiration, requires all grid cells be assigned a vegetative 

cover classification (Table 4.5) (Maxwell et al., 2016). In order to generate the vegetative 

cover input dataset to be used in the CLM portion of the model, the UVM land cover 

dataset was reclassified to three types of vegetative cover: tree canopy (“Deciduous 

Broadleaf Forest”), urban and built, and grassland. These land covers were mostly 

selected to represent the differences in tree canopy interception and fallthrough and 

evapotranspiration processes associated with different types of vegetation. Therefore, grid 

cells of both pervious and impervious surface types underlying tree canopy were assigned 

to the “Deciduous Broadleaf Forest” vegetative cover type. All other pervious surface was 

assigned to “Grassland” and impervious surfaces not underneath tree canopy was 

assigned to “Urban and Built.” The tree canopy over the site is shown in Figure 4.7. 

 

Table 4.5. Land cover classes used in CLM 

1. Evergreen Needleleaf Forest 

2. Evergreen Broadleaf Forest 

3. Deciduous Needleleaf Forest 

4. Deciduous Broadleaf Forest 

5. Mixed Forests 

6. Closed Shrublands 

7. Open Shrublands 

8. Woody Savannas 

9. Savannas 

10. Grasslands 

11. Permanent Wetlands 

12. Croplands 
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13. Urban and Built-Up 

14. Cropland/Natural Vegetation Mosaic 

15. Snow and Ice 

16. Barren or Sparsely Vegetated 

17. Water 

18. Wooded Tundra 

 

 

Figure 4.7. Land cover distribution on domain. Any areas underneath tree canopy were 

assigned “Deciduous Broadleaf Forest” for the CLM portion of the model. The figure above 

shows the areas under tree canopy in green. The boundary of the sewershed is shown in 

red. 

 

The soil hydraulic properties shown in Table 4.4 and Manning’s n values, were based on 

a classification of land cover that included pervious areas, roofs/pavement, vegetation-

based GI, and pavement-based GI. The impervious/pervious land cover classification 
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used for both for defining the CLM vegetative cover and for the assigning hydraulic 

properties were rasterized from vector polygons of building footprints, and ROW 

boundaries from DC’s Office of the Chief Technology Officer (OCTO). I delineated 

boundaries of private impervious areas (patios, paths, driveways) from aerial imagery from 

publically available ESRI basemaps. The basis of the final DEM used in the model was a 

1m resolution base earth LIDAR digital elevation model also available from DC OCTO. 

 

Meteorological Data 

In addition to the site-specific rain depth data from Limnotech, I assembled meteorological 

data by combining site-specific precipitation monitoring from the RiverSmart Washington 

Program and National Land Data Assimilation Systems (NLDAS) meteorological forcing 

data (Mitchell, 2004), which additionally includes hourly records for air pressure, air 

temperature, wind speed, humidity and solar radiation retrieved for the site based on 

geographic coordinate-specified boundaries. The NLDAS data product used was “NLDAS 

Primary Forcing Data L4 Hourly 0.125 x 0.125 degree”. The coordinate boundaries used 

to specific the spatial extent of the NLDAS data were: North: 38.968701; South: 

38.950446 ; West: -77.077434 ; East: -77.053642. The two-dimensional data downloaded 

from NLDAS was further processed to a uniform one-dimensional hourly time step using 

code written in the ncl scripting language (https://www.ncl.ucar.edu/).  

 

REPRESENTATION OF GREEN INFRASTRUCTURE BMPS IN 
DOMAIN 

There were two major challenges of representing GI retrofits in ParFlow. The first 

challenge is the issue of surface flow routing. As mentioned above, interventions such as 

constructing a bioswale to intercept flows along the curb and gutter and disconnecting a 
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roof downspout and directing the flows into a rain garden do not only change the fate of 

rain that falls directly on the retrofit; they also change the routing of rain that falls on areas 

contributing to the retrofit. Figure 4.8 illustrates this for rooftops. In reality, the site has 

higher hydraulic connectivity than can be represented through a topography-based 

watershed model because of downspouts, buried gutters and the subgrade storm drain 

system. If building footprints are left were they appear in reality, water hitting the 

impervious roof would be intercepted by the lawn in the watershed model, when in fact, 

this area is directly connected to the storm drain. Thus, if no correction is made, 

“disconnection” by adding a bioswale in the model would have a muted effect compared 

to reality. 

To correct for this problem, I made two major modifications to the original site data. First, 

to reflect the true routing of roofs to stormdrains, I physically moved the building footprints 

to be adjacent to the street. This better represents the base case scenario of rooftops 

immediately gaining hydraulic connectivity to the storm drain system without having to 

create subgrade flow paths in the subsurface to represent the buried PVC pipe. For roofs 

that are subsequently disconnected and routed to a rain garden (as shown in Figure 4.8), 

the portion of the roof that is disconnected is placed “upslope” of the installed BMP, while 

the portion of the roof that is still connected is left in the position adjacent to the ROW. 

Second, I apply a “burn” at the centerline of the ROW to represent the darinage pipe and 

to enforce drainage of the site towards the drainage infrastructure. “Burning in” the 

centerline of the street as a representation of the subgrade pipe is a technique that has 

been used for both small stream systems and for built infrastructure that has replaced first 

and second order streams in urban areas (Bhaskar et al., 2015). The storm drain system 

on the site is separate from the site wastewater collection system. It is not pressurized 
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and does not experience surcharging during rain events, therefore these simplifications 

treat the pipe as surface open channel flow.  

 

Figure 4.8. Conceptual illustration of representation of hydraulic connectivity of roofs with 

connected and disconnected downspouts, and “burned” in storm drain system. 

 

The second challenge is representation of contributing area and GI footprint within the 

same grid cell. The horizontal resolution chosen for the domain is 5m x 5m. This means 

that for many of the GI retrofits both in the public ROW and on private property, one grid 

cell can exceed the actual area of the BMP’s footprint (some of the smaller residential rain 

gardens have footprints close to 1 m2). The solution to this problem is that a grid cell for 

GI retrofits actually represents the weighted average of hydraulic properties of both the 

BMP retrofit and its contributing area, according to the relative areas of each. For example, 

GI treating rooftops are sized to have 1/10 of the footprint of the contributing roof area, 

therefore, the hydraulic conductivity assigned to the treated area of the roof is (10*(Ks roof) 
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+ Ksbiomedia)/11. The properties assigned for pavement-based GI and vegetated based GI 

are presented in Table 4.4. The hydraulic conductivities used for the weighted calculations 

were derived primarily from the District Department of Transportation construction 

specifications for backfill materials and the Hazen equation (from construction documents). 

Where specifications were not available, typical values from industry and academic 

literature were used.
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Table 4.4 – Hydraulic Properties Assigned To Domain Subsurface Based on Land Cover Type 

Land‐Cover Specific Subsurface Layers 

  

   Layer  Thickness (m) 
Depth to 
Bottom 
(m) 

Description  Ksat (cm/s)  Porosity  Ksat Source/Method 
Porosity 

Source/Method 

   Pervious 

     
1  0.05  0.05 Topsoil 3.75E‐04 0.460 Chen et al. 2014 midpoint of reported range 

Porosity curve from 
Cunningham and 
Daniel (2001) 

     
2  0.05  0.1 Soil 1 8.14E‐06 0.400

HSA Geotechnical Report; Hazen formula      
3  0.05  0.15 Soil 1 8.14E‐06 0.400

     
4  0.5  0.65 Soil 1 8.14E‐06

     
           

   Impervious ‐ ROW, Roofs 

     
1  0.05  0.05 Impervious 8.50E‐07 0.001

Kuang et al. 2011; lower end of reported range 
Skelly and Loy, 2011; 

reported value      
2  0.05  0.1 Impervious 8.50E‐07 0.001

     
3  0.05  0.15 Impervious 8.50E‐07 0.001

     

4  0.5  0.65 Soil 1 8.14E‐06 0.450

HSA Geotechnical Report; Hazen formula  Porosity curve from 
Cunningham and 
Daniel (2001) 

     
           

   GI ‐ vegetated 

     
1  0.05  0.05 Bioinfiltration Media 3.25E‐03 0.043

Construction document specifications; Hazen 
formula 

DDOT specification, 
AASHTO standard  

     
2  0.05  0.1 Bioinfiltration Media 3.25E‐03 0.043

     
3  0.05  0.15 Storage 2.04E+00 0.068

     
4  0.5  0.65 Storage 2.04E+00 0.068

     
           

   GI ‐ pavement 

     
1  0.05  0.05 Permeable Pavement 3.30E‐05 0.010

Construction document specifications; Hazen 
formula 

DDOT specification, 
AASHTO standard  

     
2  0.05  0.1 Permeable Pavement 3.30E‐05 0.010
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3  0.05  0.15 Storage 2.04E+00 0.068

     
4  0.5  0.65 Storage 2.04E+00 0.068

     
           

Common Subsurface Layers 

     
5  0.5  1.15 Soil 1 8.14E‐06 0.450

HSA Geotechnical Report; Hazen formula 

Porosity curve from 
Cunningham and 
Daniel (2001) 

     
6  0.5  1.65 Soil 2 5.42E‐06 0.470

     
7  0.75  2.4 Soil 2 5.42E‐06 0.470

     

8  2.5  4.9 Saprolite 1.43E‐03 0.470

Nutter and Otton, 1969; mean of reported 

     

9  5  9.9 Saprolite 1.78E‐03 0.470
Nutter and Otton, 1969; Green et al. 2004; 
mean of reported 

     

10  5  14.9 Transition Zone 3.58E‐03 0.470

Nutter and Otton, 1969; Mace 1997; mean of 
reported transmissibility, divided by depth of 
regolith 

     
11  10  24.9 Bedrock 1.26E‐04 0.050

Paulachok 1991, Low et al., 2004; Andino (2015) 
well yields method 

     
12  25.1  50 Bedrock 8.25E‐05 0.020
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BOUNDARY CONDITIONS AND MODEL SPINUP 
(INITIALIZATION) 

“Model spinup” refers to the initialization period where the model reaches dynamic 

equilibrium, given the boundary conditions and meteorological forcing applied to the site. 

The TFG setup for ParFlow can be thought of as a box, with boundary conditions that are 

set for each of the six faces. Because of the topographic relief of the site and the fact that 

nowhere on the site does the groundwater table intersect the surface topography, constant 

pressure head boundary conditions were set on the eastern face (higher elevation) and 

the western face of the domain to allow water to drain from the subsurface directly (Figure 

4.9 shows the elevation range across the site). A 20 m different in pressure head between 

the eastern and western faces was set to represent the approximately constant empirical 

depth to groundwater in the Piedmont areas of the District. Zero flux boundary conditions 

were set on the northern, southern, and bottom faces of the box. An overland flow 

boundary condition and meteorological forcing conditions (precipitation, 

evapotranspiration) coupled through the CLM portion of the model were used for the top 

of the domain. 
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Figure 4.9. Site elevation, showing modified DEM with burned in street centerline. White= 

upper range of elevations, max = 118.1 m. Green = lower land of elevations, min = 93.2 

m. Original positions of building footprints, private paths and driveways and ROW outlines 

are shown overlaid on the modified DEM. 

 

Spinup was carried out in two stages. Through a process of trial and error, both these 

stages was found to be necessary in order for the KINSOL nonlinear solver to reach 

convergence for each time step of the simulation. In the first stage of spinup, the domain 

is set with an initial pressure of -15 m (from the surface) across the entire domain and the 

above described meteorological conditions. In addition, the first stage of spinup was done 

with homogeneous permeability three orders of magnitude higher than the permeability of 

the native soils. Permeability was increased throughout to get the water table to reach 

equilibrium throughout the domain faster. ParFlow r 743 includes spinup keys that remove 
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positive pressure from the top layer, preventing the formation of any overland flow. This 

lowers the computational requirements of solving both overland flow and subsurface flow, 

which often occur at vastly different orders of magnitude, and sometimes result in 

convergence issues. This part of spinup was run for 365 model days, at 1 hour timesteps, 

and required a wallclock time of less than half an hour using 256 processors on the Texas 

Advanced Computing Center’s supercomputer “Stampede.” Specific aspects of the 

parallelization of the runs are discussed in the next section. 

For the second stage of spinup, heterogeneous permeability was introduced into the 

domain, along with the CLM meteorological forcing and land-atmosphere model using 

hourly NLDAS data from 2009. The overland flow keys were again applied to suppress 

overland flow. The 2009 NLDAS data was run repeatedly for a total of eight years, until 

the year or year change in subsurface storage fell below 0.03%. Table 4.6 shows the year 

on year percentage change in subsurface storage, and Figure 4.9 shows the subsurface 

storage reaching a dynamic equilibrium by year nine of the stage 2 spinup. This stage of 

spinup took 20 hours using 256 processors on Stampede. 
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Figure 4.10 Dynamic equilibrium being reached after 8 years of spinup 

 

Table 4.6 Percent change in volume of water in subsurface storage for first 8 years of 

spinup 

Year  1  2  3  4  5  6    7  8 

Percent 
Change in 
Subsurface 
Volume 

4%  3.3%  2.5%  1.8%  1.1%  0.127%    0.0433%  0.026% 

 

PARFLOW WORKFLOW 

Running ParFlow and Run Efficiency Code Modifications 

My application of the ParFlow.CLM model utilized the 743 release 

(https://github.com/parflow). ParFlow.CLM is optimized to make use of high-performance 
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computing resources to simulate surface and subsurface flow, therefore the domain was 

split to make use of parallel compute cluster topology. All simulations in this study 

(including spinup and scenarios described in the following chapter) were run on 256 

processors (16 nodes) on the “Stampede” computing cluster at the Texas Advanced 

Computing Center, accessed through the NSF Extreme Science and Engineering 

Discovery Environment (XSEDE) platform. The study area domain, which had a total of 

69,120 cells, were distributed with 16 process splits in the x direction, 16 process splits in 

the y direction, and 1 process split in the z direction.  

Modifications to the original ParFlow code were made to optimize run time on the compute 

cluster. During ParFlow simulations, if the nonlinear solver (used to solve finite difference 

differential equations of three-dimensional Richards equation) for any particular time step 

does not converge within a pre-specified number of maximum solver iterations, the original 

ParFlow software “cuts” the time step in an attempt to simplify the problem. The default 

cut factor in ParFlow is 0.5. If the cut time step is solved, ParFlow returns to the original 

nonconverged timestep to attempt another solution. In the case where several failed 

timesteps occur in a row (as was the case for when overland flow begins to form on the 

modeled land surface), this can result in forward and backward jumping between smaller 

and smaller increments and the failed time step, causing much inefficiency. I modified the 

original ParFlow timing code such that if one timestep did not converge, the time step was 

cut to a constant dt of 0.001, and increments proceeded forwards the original non 

converged time step was reached. This resulted in much higher stability and no instances 

of multiple time step cuts for any of the scenarios. 
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Model Calibration and Comparisons with Monitored Flows 

The RiverSmart Washington Program collected in-pipe flow data before and after the 

construction of GI, which started in 2011. Because of the computational expense of 

running full simulation runs of ParFlow, several characteristic rain events from the before 

period were selected to calibrate the overland flow Manning’s roughness coefficient (n). 

Manning’s n was the only parameter selected for calibration to avoid issues of equifinality. 

The procedure for calibration followed was similar to that used in Bhaskar et al. (2015), 

where a runtime Mannings n was used for simulation, and several manning’s n values 

were used to calculate overland flow in a post-processing script. The Manning’s n values 

in the post-processing calculations that yielded the closest shape (rising limb and 

recession limb timing) and magnitude of peak flow to the observed hydrographs were 

selected for the subsequent calibration simulation. After several iterations, I determined 

that differentiating Manning’s n between the impervious areas of the site and the pervious 

areas of the site was necessary to best capture the relatively immediate response to 

rainfall recorded at the in-pipe storm drain monitoring location, and the correct order of 

magnitude flow peak. Figure 4.11 shows a comparison of simulated versus observed 

flows at the pour point (monitoring location) for several rain events that occurred in August 

2010.  
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Figure 4.11. Final calibrated model output for overland flow at the monitoring location.  
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Several points became evident in the process of calibrating Manning’s n. First, compared 

to the methodology used in Bhaskar et al. (2015), calibration had to be done more 

qualitatively in this study, and visual inspection of the calculated overland flow 

hydrographs’ shapes and peaks became the main means of evaluation of the model’s 

performance for each iteration of Manning’s n. Factors of consideration included order-of-

magnitude peak flows, immediate response in the rising limb (within the same 0.1 h time 

interval as the beginning of precipitation), and timing of the recession limb to return to 

near-zero “baseflow.” As expected, higher values of Manning’s n resulted in lower flow 

peaks and elongated recession limbs. Second, inconsistencies in the monitored data also 

became evident. An example of this issue can be seen in the top panel of Figure 4.11 for 

the August 7 – 13, 2010 rain events. The simulated overland flow very closely matched 

the observed overland flow for the first pulse of 47 mm total rain depth (observed peak 

flow = 0.055 m3/s; simulated peak flow = 0.050 m3/s). However, for the two subsequent 

pulses of rain (depths = 7.35 mm and 6.1 mm , respectively), the second observed peak 

of the same order of magnitude as that for the first pulse (0.0164 m3/s), and the third 

observed peak is also higher than expected (0.0403 m3/s). The simulated flows, by 

comparison more closely reflect the relative orders of magnitudes in flows that we would 

expect to see from the relative volumes of rainfall observed (second pulse flow = 0.0058 

m3/s, third pulse flow = 0.0043 m3/s) 

A third issue that became evident was the effect of the use of hourly meteorological forcing 

data compared to 5 min timestep data. As was explained in a previous section, the inputs 

to the CLM portion of the model need to be provided at an hourly timestep (dt = 1h). When 

the model is run on a shorter timestep, as is the case for my application of ParFlow, where 

dt = 0.1 h, the rainfall rate (LT-1), is divided into 10 even increments over 1 h. This means 
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that if the majority of a rain event occurred within one 5 min interval in reality, this rainfall 

depth would be spread evenly across 10 0.1-h dt timesteps, resulting in lower intensities, 

but preserving the total volume of rainfall on the site for the event. Some of this effect can 

be observed from a comparison of the observed and simulated rainfall depths in the 

bottom panel of Figure 4.11. In the second pulse of rain, the observed rainfall (recorded 

at 5 min intervals) occurs within three 5-min intervals, but this total volume is spread over 

10 6-min intervals in the model. Although the modeled peak very closely approximates the 

observed peak (observed peak flow = 0.0173 m3/s; simulated peak flow = 0.0174 m3/s), 

the response is delayed and the recession limb elongated.  

In the ParFlow code, Manning’s n values have units of TL−1/3, where L = ft and t = s. The 

final calibrated values for impervious surface in my domain were 1 x 10-2 (m h-1) for 

pervious areas and 1 x 10-5 (m h-1) for impervious areas. These correspond to the typical 

values for land covers ranging from pasture – short grass to concrete-lined channels, 

which characterizes the site well (Chow, 1959). 

Comparisons was carried out between the simulated post-GI simulated flows to observed 

flows using the Manning’s n values obtained from the model calibration process. In order 

to capture the micro-scale changes to grading that directs flows into installed GI facilities, 

all GI was set the higher Manning’s n value of 1 x 10-2, regardless of whether it was a 

pavement-based facility or a vegetation-based facility. This was done to ensure that flows 

onto a GI facility were “retained” within the facility. Post GI-Construction monitoring began 

on June 20, 2015 and continued through April 30, 2016. Several rain events in July, 2015 

were selected to compare the model results with monitored data. Figure 4.12 shows the 

simulated flows at the pour point compared to the observed flows. 
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Figure 4.12. Validation of the calibrated model using the post-GI simulation scenario and 

observed flows.  

 

From the top panel of Figure 4.12, we can see that the simulated flow peaks (and total 

overland volumes) are consistently lower than the observed peaks and overland flow 

volumes. For example, the July 1, 2015 rain event (total rain depth: 13.5 mm) 

corresponded with observed cumulative overland flow volumes at the monitoring point of 

78.7 m3, and a peak flow rate of 0.0152 cms. The simulated cumulative overland flow 

volumes at the sewershed’s pour point was calculated to be 31.7 m3 (40% of observed), 
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and the peak flow rate was 0.005 cms (32.9% of observed). Ratios between simulated 

and observed for the validation runs all performed at about this range.  

Although this validation is somewhat less than ideal because of the systematic 

underestimation of overland flow at the pour point compared to the empirical values, two 

explanations of this outcome gave me enough confidence in the calibrated model’s 

outputs to proceed with scenario testing. First, as can be seen in the precipitation 

hyetographs in the top panel of Figure 4.12, suppressed rainfall intensities from the CLM 

model may have had some effect on reducing simulated peak flows compared to the 

observed peak flows. Second, several questions were raised about the quality of the post-

monitoring data in the process of model validation. The post-GI flow data provided to 

DOEE’s subconsultant Limnotech from ADS were considerably noisier than the pre-GI 

data. Despite the period from 2015 – 2016 being a drier precipitation year than 2010 (total 

annual rainfall in 2015 was 1107.4 mm, or 43.6 inches, and total annual rainfall in 2010 

was 1146.048 mm, or 45.12 inches), and the installation of GI in the interim period, 

statistical analysis of the empirical flows showed no statistical difference in the 99th 

percentile (peak flows) between the two datasets. The first percentile (“base flows”) did 

show a statistically significant difference, with the post-GI flow data exhibiting higher 

baseflows. In a closer comparison between two similar rain events, one from August 5, 

2010 (total rainfall depth = 29 mm) and one from July 28, 2015 (total depth = 28 mm), pre-

GI empirical flows indicated that 3.6% of the rainfall was converted to runoff, while post-

GI empirical flows indicated that 19.7% of rainfall was converted to runoff, a 

counterintuitive result, especially given the amount of GI that was constructed within the 

sewershed. In contrast, the simulated rainfall – runoff ratio for this event pre-GI was 12.3%, 

and the simulated rainfall-runoff for the post-GI scenarios ranged from 6% - 7%.  
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In an email exchange with DOEE’s subconsultant Limnotech, it was confirmed that 

empirical data analysis for a separate control site exhibited significantly higher runoff 

volumes per inch of runoff in the post-GI monitoring period compared to the pre-GI 

monitoring period. While not ideal for validation purposes, the order of magnitude 

reflection of response in the validation runs, coupled with the knowledge that the post-GI 

empirical flow data are exhibiting systematically higher runoff volumes and more noise 

compared to the pre-GI empirical flow data gave me allowed me to have enough 

confidence in the model’s simulated outputs to proceed with testing spatial configuration 

scenarios, described in the following chapter. 
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CHAPTER 5: TESTING AND MEASURING CATCHMENT-SCALE 
EFFECTS OF GREEN INFRASTRUCTURE AND IMPERVIOUS 

SURFACE NETWORKS IN AN URBAN SEWERSHED 
 

INTRODUCTION 

While many studies have shown empirical evidence of the hydrological effectiveness of 

individual GI facilities (eg: rain gardens, bioswales, etc) (Emerson et al., 2005; Davis, 2007, 

2008; Li et al., 2009; Driscoll et al., 2015; Page et al., 2015), fewer studies have shown 

empirical evidence of hydrological effectiveness of networks of GI at the catchment scale. 

Before-and-after GI installation empirical monitoring of a residential neighborhood in Ohio 

where residences installed rain gardens have shown weakened correlations between 

rainfall depths and runoff depths (Shuster and Rhea, 2013). At the regional-scale, an 

empirical analysis of streamflow patterns in the Maryland region, where many 

communities have goals of reaching 10%-20% of the landscape to be treated with GI have 

shown that catchments with GI had less flashy hydrology, lower peak runoff and less 

frequent flood occurrence, compared to catchments that were untreated (Pennino et al., 

2016). 

An outstanding question of GI networks is the extent to which the spatial configuration of 

infiltration opportunities can effect differences in hydrological effectiveness. This is an 

important question because compared to conventional infrastructure, the spatial 

configuration of GI depends on spatially distributed processes of redevelopment, property 

turnover, and voluntary social adoption. Measuring the extent to which specific 

opportunities for GI should be targeted because of expected differences in hydrological 

effectiveness should be one factor that cities consider when prioritizing investments at 

specific sites within catchment areas. 
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It is impossible to carry out true controlled experimentation in the hydrological sciences. 

This is because boundary conditions of the site are often dictated by mother nature, or 

else in modeling, model structure and parameterization of site conditions limit 

generalization of results (Blöschl, 2017). In this study, the before-and-after GI construction 

site monitoring data through the RiverSmart Washington project resulted in the evaluation 

of just one possible spatial configuration of GI, under non-constant meteorological forcing 

conditions (2010 and 2015). Building a “virtual laboratory” of the site using ParFlow.CLM 

to test additional spatial configuration scenarios extends the usefulness of the monitoring 

data, while allowing us to “control for” the effects of boundary conditions on the site. The 

value from scenario testing is derived from ascertaining the sensitivity of the site to 

adjustments to the ranges of model parameters and spatial configurations those 

parameters. As stated above, the purpose of this study is to quantify, under these 

conditions, the level of variability that can be expected in measured hydrologic response 

that is associated with different spatial configurations.  

SCENARIO DEVELOPMENT AND HYPOTHESES 

The model of the base and actual green infrastructure configurations were used to test 

how spatial configurations of green infrastructure and impervious surfaces affect local 

hydrology. A total of nine scenarios were tested. Each scenario was simulated using a six- 

month period of meteorological forcing data (March 1, 2015 – September 1, 2015). This 

period was chosen for two reasons: first, the availability of rain gage data collected during 

this time period associated with the post-GI monitoring allowed me to splice in site-specific 

data to the NLDAS precipitation record when available (see previous chapter); and second, 

based on the historical rainfall record, the total annual rainfall depth in 2015 (1107.4 mm 

(43.6 inches)) was the rainfall depth closest to the mean total annual rainfall for the period 
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1949-2015 (1127.3 mm (44.4 inches)), so 2015 was taken as a relatively representative 

rainfall year.  

All scenarios were run with the same CLM settings and slopes files. This means that the 

topography of the site and the tree canopy were assumed to be constant across scenarios. 

All scenarios were initialized with the pressure field output from the equilibrated second 

spinup stage (see Chapter 4). The spatial configurations of the scenarios are shown in 

Figures 5.1 – 5.7, where yellow designates pervious areas (lawns), gray impervious 

surface areas (pavements and roofs), light green pavement-type GI (permeable 

pavement), and dark green vegetation-type GI.  

For each scenario, parameters of the surface and subsurface conditions, including 

distribution of pervious and impervious-assigned Manning’s n, porosity and permeability 

were distributed according the unique surface cover conditions of the scenario. For each 

scenario, edits to original vector shapefiles for building footprints and the ROW boundaries 

were made using ESRI software (http://desktop.arcgis.com/en/). Vector polygons 

representing original building footprints and ROW zones, and building footprints/ROW 

areas treated with GI were rasterized using GRASS GIS (GRASS Development Team, 

2017) in order to keep consistent 5 m gridding and alignment. The base case scenario 

(Figure 5.1), for which spinup was carried out (see previous Chapter) using 

meteorological forcing data from 2009 until dynamic equilibrium was reached, was also 

run for the simulation period. This allowed me to compare other scenarios with a 

comparable case reflecting the site pre-GI construction. 

Scenarios were developed to meet the goals of planning and policy considerations and 

practical implementation and to capture and control for physical variation of the site, in 

order to best identify specific physical processes causing differences in model output. For 

example, in order to make a policy-specific recommendation relating to spatial implications 
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of green infrastructure investment, I compare a scenario where all of the public right-of-

way (ROW) is retrofit with GI with a scenario where an equal amount of private property 

impervious area (mostly roofs) is retrofit with GI. Because the ROW is on average located 

in areas of higher flow accumulation in the domain than roof footprints, this scenario 

comparison tests the effect of spatial configuration of GI while also having a specific policy 

implication that can inform the location and type of future GI investment. Complete 

descriptions of all scenarios tested are given in the following sections. 

 

 

Figure 5.1. Base case scenario land cover used to assign hydraulic conductivity, porosity, 

and values of Manning’s roughness coefficient. Yellow: pervious; Gray: impervious. Red 

outline: sewershed boundary. 
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GI Configuration Scenarios 

Previous research has suggested that infiltration-based, “run-on” green infrastructure 

located at sag points, high topographic wetting index, and areas of high flow accumulation 

may have reduced ability to mitigate overland flows during long, multi-day events (Miles 

and Band, 2015). Groundwater simulation models have also demonstrated that clustered 

infiltration-based green infrastructure can result in groundwater mounding, which could 

reduce storage capacity in prolonged events (Endreny and Collins, 2009; Maimone et al., 

2011). On the other hand, other modeling studies have shown extensive infiltration-based 

BMPs to increase subsurface storage volumes, even beyond pre-development levels 

(Gobel et al., 2004). Application of the ParFlow modeling system extends these studies to 

include three-dimensional representation of the subsurface, including the vadose zone, 

coupled with overland surface flow and land-atmosphere interactions, such as 

evapotranspiration. The objective of the GI configuration scenarios is to better understand 

the magnitude of variation that can be attributed spatial configuration and location of GI 

and the implications of siting. Below I describe the scenarios. 

GI2A: ROW 

In this scenario (Figure 5.2), all of the areas in the public ROW are treated with green 

infrastructure with properties specified by the pavement-type construction specifications 

described in the previous chapter. Because GI that treats the ROW treats flows from the 

surface and does not intercept flows from the subgrade pipe, the pipe, burned in at the 

centerline is assigned properties of “untreated” impervious surface (Manning’s roughness 

coefficient, hydraulic conductivity, and porosity).  
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Figure 5.2. GI2A scenario land covers used to assign hydraulic conductivity, porosity, and 

values of Manning’s roughness coefficient. Yellow: pervious; Gray: impervious; Light 

green: pavement-type green infrastructure. Red outline: sewershed boundary. 

 

GI2B: Roofs 

An area equal to the total treated ROW in scenario GI2A is treated at the building footprints 

in scenario GI2B (Figure 5.3). Compared to GI2A retrofits, which correspond at the areas 

of highest flow accumulation in the sewershed since water is designed to flow towards the 

storm drain system located in the ROW, GI2B retrofits are spread over higher elevations, 

and have lower average flow accumulation. The parameters used for the roof retrofits were 

those specified by the vegetation-type construction specifications described in the 

previous chapter. 
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Figure 5.3. GI2B scenario land covers used to assign hydraulic conductivity, porosity, and 

values of Manning’s roughness coefficient. Yellow: pervious; Gray: impervious; Dark 

green: vegetation-type green infrastructure. Red outline: sewershed boundary. 

 

GI3A and GI3B: Treat low/high accumulation roofs 

In these scenarios (Figures 5.4a and 5.4b), properties with the lowest/highest mean flow 

accumulation values (averaged over flow accumulation values for the entire property area) 

were selected to treat with the vegetation-type GI respectively for GI3A and GI3B. 

Because properties vary in roof area, there is not a perfect control of area removed 

between the two scenarios. GI3A treated 4,930 m2 of impervious surface from the domain, 

while GI3B treated 4,318 m2 of impervious surface. These scenarios represent a type of 

outreach strategy that urban planners and stormwater managers might use to channel 

additional investment and subsidies towards properties where GI might result in better 
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mitigation of overland flow peaks. Theory suggests that inter-event capacity recovery 

through infiltration or evapotranspiration will have a large influence on whether retrofitting 

high flow accumulation properties or retrofitting low-flow accumulation properties will have 

a bigger effect on peak flow mitigation (Dunne and Black, 1970; Miles, 2014; Miles and 

Band, 2015). 
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Figures 5.4A (top), 5.4B (bottom). GI3A (top) and GI3B (bottom) scenario land covers 

used to assign hydraulic conductivity, porosity, and values of Manning’s roughness 

coefficient. Yellow: pervious; Gray: impervious; Dark green: vegetation-type green 

infrastructure. Red outline: sewershed boundary. 

 

Impervious Surface Configuration Scenarios 

The impervious surface configuration scenarios are designed to bracket the variation 

expected to result in the local hydrological cycle due to magnitude and spatial 

configuration of impervious surface area of the site. At the regional watershed scale, 

previous research has shown that imperviousness located near headwaters results in 

greater peak flows (Mejía and Moglen, 2010).  

IMP1: Disconnect Roofs 

The IMP1 scenario (Figure 5.5) is identical to the base case scenario for the site, except 

that the building footprints were not moved to be adjacent to the ROW. Relocating building 
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footprints adjacent to the ROW in the Base case scenario represented the routing of roof 

runoff to the storm drain collection system. The IMP1 scenario therefore tests the relative 

impact of simply disconnecting roof downspouts and routing them onto lawns, with no 

additional amendments to the porosity and storage capacity in the soils (as is done in the 

GI scenarios). 

 

Figure 5.5. IMP1 scenario land cover used to assign hydraulic conductivity, porosity, and 

values of Manning’s roughness coefficient. Yellow: pervious; Gray: impervious. Red 

outline: sewershed boundary. 

 

IMP2: Redevelopment Pressure to Maximum Zoning and Green Area Ratio 
Limits 

In 2013 The District of Columbia incorporated the “Green Area Ratio” (GAR) into its official 

zoning regulations. This impervious-surface-area-based rule is meant to set standards to 
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help reduce stormwater runoff and overall environmental quality, by limiting 

imperviousness and encouraging the use of native vegetation for landscaping. Each 

zoning classification has been assigned a limitation on the proportion of the site (lot 

coverage) that can be developed as impervious, in addition to the normal zoning 

restrictions specifying property line setbacks and floor area ratios in each neighborhood. 

To construct the IMP2 scenario (Figure 5.6), the highest allowable impervious area 

coverages per the new GAR regulation and previous zoning code was assigned to each 

parcel within the sewershed. The Lafayette site property values are among the highest in 

the District, indicating that these is strong redevelopment pressure in this location. In fact, 

extensions of building footprints occurred within the study period on multiple properties on 

the site. This scenario represents a future, maximum level of imperviousness on the site 

that could potentially occur given high redevelopment pressure. 
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Figure 5.6. IMP2 scenario land cover used to assign hydraulic conductivity, porosity, and 

values of Manning’s roughness coefficient. Yellow: pervious; Gray: impervious. Red 

outline: sewershed boundary. 

 

IMP3A and IMP3B: Remove impervious areas on low/high flow accumulation 
properties 

The IMP3A and IMP3B scenarios (Figures 5.7a, 5.7b) test the impacts of siting 

impervious surface area relative to topography-determined high and low flow 

accumulation paths within a drainage area. In the same way used for the GI3A and GI3B 

scenarios, properties with the lowest (IMP3A) and highest (IMP3B) mean flow 

accumulation values per property were chosen for impervious surface area removal. 

Because properties vary in roof area, there is not a perfect control of area removed 

between the two scenarios. IMP3A removed 4,930 m2 of impervious surface from the 

domain, while IMP3B removed 4,318 m2 of impervious surface from the domain. 

Comparison of the results of these scenarios are relevant for site planning to minimize 

runoff peaks, or in the case of shrinking or heavily vacant areas, targeted removal of 

imperviousness to increase the efficiency of infrastructure remaining on the site. 
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Figures 5.7a (top), 5.7b (bottom). IMP3A (top) and IMP3B (bottom) scenario land covers 

used to assign hydraulic conductivity, porosity, and values of Manning’s roughness 
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coefficient. Yellow: pervious; Gray: impervious; Dark green: vegetation-type green 

infrastructure. Red outline: sewershed boundary. 

 

Comparisons and Hypotheses 

The following table (Table 5.1) summarizes the comparisons that can be made between 

scenarios and the decisions that they are intended to help inform. 

Table 5.2  summarizes key differences between scenarios and the symbology to be used 

in the rest of this chapter.
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Table 5.1 Scenario comparisons’ research questions and policy-relevant context 

Scenario 
Comparisons 

Physical performance research question Planning/policy relevant context 

Base vs 
GI2A/GI2B/GI3A/
GI3B 

What is the range in variation that can be expected in 
GI's effect on the local water balance and hydrological 
response? 

Investment in GI construction 

GI2A vs GI2B How do retrofits clustered in the public right of way 
compare to retrofits dispersed on private property in 
effect on the local water balance and hydrological 
response? 

Investment in GI construction in the public right of 
way compared to investment in GI construction on 
private properties 
Development of metrics that incorporate physical 
effects, investment, and community benefits 

GI3A vs GI3B What is the range in variation in local water balance 
and hydrological response associated with spatial 
location and configuration of GI retrofits on private 
properties? 

Targeted outreach and subsidization of GI 
construction on private properties 

GI3A vs IMP3A 
GI3B vs IMP3B 

How does the effect of limiting imperviousness differ 
from the effect of treatment of imperviousness using 
GI on the local water balance and hydrological 
response? 

Targeting impervious surface removal (for 
example, in high vacancy neighborhoods, or on 
public land) and investment in green infrastructure 
Spatial decision-making in new development or 
redevelopment, development of zoning and parcel-
level new development regulations 

Base vs IMP1 vs 
GI2B 

How does downspout disconnection compare to roof 
runoff treatment with rain gardens in effects on local 
water balance  

Marginal benefits of downspout disconnection and 
treatment of private roof runoff investments 
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Base vs IMP1 vs 
IMP2 

What is the range in variation in effect on the local 
water balance and hydrological response associated 
with connectivity of impervious surface area, and 
increased surface area? 

Anticipation of effects of re-development pressure 
and increasing building footprint size on private 
properties on infrastructure performance 
Development of vegetation/impervious surface 
based requirements for parcel-level redevelopment 

IMP3A vs IMP3B How does limiting imperviousness in different spatial 
configurations affect local water balance and 
hydrological response? 

Targeting impervious surface removal (for 
example, in high vacancy neighborhoods, or on 
public land)  
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Table 5.2 Scenario summaries 

  
Imperviou

s (m2) 

Pervious
, non-GI 

(m2) 
Vegetate
d GI (m2) 

Pavemen
t GI (m2) 

Percent 
Imperviou

s 

Percent 
Imperviou
s Treated* 

Base 23375 29450 0 0 44% NA 

GI2A 15875 29450 0 7500 30% 14% 

GI2B 15150 29450 8225 0 29% 16% 

GI3A 19500 29450 3875 0 37% 7.3% 

GI3B 19025 29450 4350 0 36% 9.2% 

IMP1 23850 28975 0 0 45% NA 

IMP2 31900 20925 0 0 60% NA 
IMP3
A 19325 33500 0 0 37% 

7.3% 

IMP3
B 20100 32725 0 0 38% 

9.2% 

  
 * Compared to Base 
  

 

Scenario 
Code 

Description Plot 
Colors 

Base No treatment with GI; All roofs connected via downspout Gray/black 

GI2A All impervious area in ROW treated with permeable 
pavement GI; roofs connected via downspout 

Orange 

GI2B Equal roof area as GI2A treated with vegetative GI Brown 

GI3A Roofs located on low flow accumulation properties treated 
with GI 

Blue 

GI3B Roofs located on high flow accumulation properties treated 
with GI 

Purple 

IMP1 All roofs disconnected from storm drain in ROW Red 

IMP2 Maximum imperviousness on every property Black-
dashed 

IMP3A Roofs located on low flow accumulation properties removed 
and replaced with native soil properties 

Light 
Green 

IMP3B Roofs located on high flow accumulation properties removed 
and replaced with native soil properties 

Dark 
Green 

 



 

169 
 

The concept of limited “capacitance” of urban watersheds (Miles and Band, 2016) 

indicates that the more limited a watershed’s capacitance, the more sensitive it is likely to 

be to spatial configurations of run-on infiltration opportunities. Therefore, I hypothesized 

that during multi-day events and high total rainfall depth events (wetter conditions), 

treatments (either with GI or removal of imperviousness) located in high flow accumulation 

areas would become less effective due to slower ability to recover capacity.  

I hypothesized that less intensive treatments, such as roof disconnection, and mere 

removal of imperviousness, without increasing hydraulic conductivity of receiving native 

soils would have more limited effects than increasing hydraulic conductivity through GI 

retrofits.  

Research has shown that impacts to both the hydrological regime and ecological impacts 

can be observed at impervious thresholds as low as 2-3% for watersheds (Booth and 

Jackson, 1997; King et al., 2011), however based on a meta-analysis of impervious cover-

based metrics, the average level of imperviousness at which impacts to stream flow were 

detected was 7% (Schueler et al., 2009). The summarization of these research findings 

into the “10 percent rule” has been an important and memorable metric for watershed 

planners (Randolph, 2004; Daniels, 2014). Therefore, I hypothesized that the difference 

in performance between GI2A and GI2B, paired spatial scenarios that treated over 10% 

of the site’s impervious surface, will be more apparent than the differences in performance 

between GI3A and GI3B and IMP3A and IMP3B, which only treated about 7-9% of 

impervious surfaces. In urban sewersheds, 15% retrofits of impervious surface with green 

infrastructure has been cited as a threshold above which there will be detectable 

differences in pipe flows (Crockett, 2015). Using the monitoring data collected by 

Limnotech and the DOEE as representative of the amount of noise present in the site 

flows, I hypothesized that only performance comparisons between scenarios where 
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differences in imperviousness exceed 15% will exceed the of variation in monitored 

overland flow. Paired scenarios that have differences in imperviousness over 15% include: 

Base/GI2A, IMP2/Base, IMP2/GI2A, IMP2/GI2B, IMP2/IMP1, IMP2/IMP3A, IMP2/IMP2B. 

 

RESULTS 

Overland Flow 

Overland flow was calculated at the pour point of the sewershed (the point which all flows 

drain past, in this case, the monitoring point) for each of the scenarios for the simulation 

period. The method for calculating overland flow at any point within the domain is based 

on Manning’s equation:  

	
1.00

	 	√  

where Q is volumetric flowrate (L3T-1), V is flow velocity (LT-1), A is cross-sectional area 

(L2), n is Manning’s roughness coefficient (calibrated for the impervious land cover type 

as explained in the previous chapter TL−1/3)), R is the hydraulic radius (L), and S is bed 

slope. Within ParFlow, Manning’s equation (above) is adapted to use pressure head 

calculated at any surface grid cell, so that the equation for overland flow at that point as 

below:  

	 	√  

where dx (L) is the horizontal resolution of the domain, and P is the pressure head (L) 

output from the three dimensional array at the time t at the location of the grid cell. The 

ParFlow application of Manning’s equation assumes that for wide channels, the hydraulic 

radius can be replaced by depth, which is equivalent to pressure head (Maxwell et al., 

2016). The grid cell that was chosen to calculate overland flow was the outlet of the 

sewershed, where flow monitoring was carried out, pre- and post-installation of GI, also 



 

171 
 

referred to the sewershed’s “pour point”. All overland flow from the sewershed flow passed 

this point, therefore overland flow at this point is an integrated measure of flow 

heterogeneity within the sewershed. Overland flow was calculated for the entire simulation 

period for all nine scenarios.  

10-day simulation window hydrographs 

Figure 5.8 shows an example period of calculated overland flow measured at the 

sewershed’s pour point, and Figure 5.9 shows the context of the four rainfall events in this 

10-day window within the context of the simulated period. 

 

Figure 5.8. Overland flow at pour point hydrographs for all nine scenarios. The 10-day 

period shown here (June 20, 2015 through June 30, 2015) included four rainfall events, 

separated by inter-event dry periods of at least one day. The total depths for each of the 

events were 34.0 mm (1.34 in), 21.6 mm (0.85 in), 7.6 mm (0.30 in), and 47.0 mm (1.85 
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in). This 10-day period represented the period within the run window with the most frequent 

and largest intensity rainfall events. 

 

 

Figure 5.9. Precipitation records for June 20, 2015 – June 30, 2015. Inset shows the 

selected window for overland flow examination in the context of the entire simulation 

period, from March 1, 2015 – September 1, 2015. This window includes the highest-

intensity rainfall event as well as the wettest 10-day period. 

 

To better differentiate the overland flow patterns of the scenarios, two measures of effect 

on overland flow were chosen for closer examination: the total volume of runoff resulting 

from an event, and the peak flow of the event. From an infrastructure management 
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perspective, lower overall volumes reaching the pourpoint and lower peak flows are both 

desirable outcomes. This may differ from urban stream restoration goals that may seek to 

restore pre-development baseflows while mitigating flashiness (storm runoff peaks). From 

an infrastructure-centric perspective, infrastructure managers are typically trying to 

reducing loading on centralized drainage infrastructures, especially those that are shared 

with domestic wastewater conveyance. The measures and rankings for each scenario 

were calculated (Table 5.3). A visualization of changes in ranking between events is 

shown in Figure 5.10.  

A comparison of the overall 10-day rankings shows that IMP2 (maximum allowable 

imperviousness per-parcel for every parcel) had the highest magnitude values for both 

max peak flow over the 10-day period and for total volume of runoff over the 10-day period. 

The max peak flow for IMP2 (0.023 cms) is 13% greater than the max peak flows for Base 

(0.020 cms) and 17% greater than the IMP1 (disconnected scenario). When comparing 

peak flows, disconnecting roofs from ROW “pipe” decreased the max peak flow by 5%, 

compared to Base. However, this decrease in max peak was evident only in the first rain 

event in this 10-day window. In the third rain event, the peak flow from IMP1 even 

marginally exceeded the peak flow from Base. This suggests that the mere disconnection 

of rooftop imperviousness with no provision of additional storage in the receiving lawn 

area may do little to mitigate flow peaks during multiday events, after the initial soil storage 

is exhausted. A comparison between total runoff volumes between Base and IMP1 even 

show that disconnected roofs resulted in about 4% more total runoff volume than Base, 

suggesting that additional volume capture is necessary (for example through rain barrels 

or rain gardens) in order for downspout disconnection to have the desired effect on flow 

mitigation. However, when the flow duration curves are examined (following section), this 

difference appears to be negligible.  
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Table 5.3 Scenario rankings for peak flows and total event volumes for four consecutive 

events in 10-day window 

Peak Flows 
  Event 1 Event 2 Event 3 Event 4 10-day max 

  cms rank cms rank cms rank cms rank cms rank 
Base 0.020 2 0.011 2 0.006 3 0.019 2 0.020 2 
GI2A 0.010 9 0.005 9 0.003 9 0.010 9 0.010 9 
GI2B 0.016 8 0.008 8 0.005 8 0.015 8 0.016 8 
GI3A 0.018 4 0.009 4 0.006 4 0.017 4 0.018 4 
GI3B 0.017 5 0.009 5 0.005 5 0.016 7 0.017 5 
IMP1 0.019 3 0.011 3 0.006 2 0.019 3 0.019 3 
IMP2 0.023 1 0.013 1 0.007 1 0.022 1 0.023 1 
IMP3A 0.017 7 0.009 7 0.005 7 0.016 6 0.017 7 
IMP3B 0.017 6 0.009 6 0.005 6 0.016 5 0.017 6 
                      

Total Runoff Volumes 
  Event 1 Event 2 Event 3 Event 4 10-day total 

  m3 rank m3 rank m3 rank m3 rank m3 rank 
Base 2154 3 1188 3 303 3 3572 3 7217 3 
GI2A 1368 9 789 7 191 8 2610 9 4957 9 
GI2B 1505 8 717 9 190 9 2830 8 5243 8 
GI3A 1669 4 802 4 222 4 3028 5 5721 4 
GI3B 1629 6 796 5 211 6 2989 6 5624 6 
IMP1 2298 2 1221 2 320 2 3699 2 7539 2 
IMP2 2660 1 1429 1 390 1 4078 1 8557 1 
IMP3A 1668 5 762 8 206 7 3047 4 5683 5 
IMP3B 1615 7 796 6 212 5 2986 7 5608 7 
                      

 

Figure 5.10 visualizes all changes in rankings in flow peak and total volume magnitudes 

that occur over the 10-day analysis period. Crossovers in rankings between paired spatial 

configuration scenarios (i.e., when total treated areas are held constant and only spatial 

configuration or location of the intervention is changed. For example, the pair GI2A and 

GI2B) across events indicates context-dependent differences in hydrological behavior. 

Comparing paired scenarios’ peak flow rankings, the only crossover between a paired 

spatial configuration scenarios’ rankings occurs between Base and IMP1. Other paired 
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scenarios GI2A and GI2B, GI3A and GI3B and IMP3A and IMP3B all maintain consistent 

relative rankings: GI2A (downslope impervious treated) has lower flow peaks than GI2B 

(upslope roofs treated) in all four events; GI3B (downslope roofs treated) has lower flow 

peaks than GI3A (upslope impervious treated) in all four events, and IMP3A (upslope 

impervious removed) has lower flow peaks than IMP3B (downslope impervious removed) 

in all four events. However, as can be seen from Table 5.3, the differences in magnitude 

between peaks between Base and IMP1 and IMP3A and IMP3B are negligible (less than 

1%). This indicates that spatial configuration of imperviousness when no additional 

storage volume is provided has limited effect on peak flow mitigation. 
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Figure 5.10 Comparisons of magnitude rankings for flow peaks (left), and event runoff 

volumes (right), between nine simulated scenarios, over four rainfall events in a 10-day 

window. 

 

In contrast, differences in spatial configuration in placement of GI treatment areas (GI2A 

vs GI2B and GI3A vs GI3B) were as high as 40%. Larger differences in attributed to spatial 

configuration were observed between the GI2A and GI2B scenarios, which had 14.2% 

and 15.6% of the area within the sewershed treated with GI, respectively. GI3A and GI3B 

had smaller proportions of their total contributing area retrofit with GI (7.3% and 8.2%, 

respectively), about half of the total treated area in GI2A and GI2B scenarios. This result 

implies that differences in peak flow mitigation associated with spatial configuration and 

placement of GI become more apparent as the total area treated with GI increases. In 

Miles (2014), no differences in streamflow were found when upslope versus downslope 

roofs in a low-medium density neighborhood were treated with GI. In that study, residential 

rooftops comprised only about 7% of the total watershed area, compared to about 15% in 

this study. 

While peak flows were lower for the disconnected roof scenario (IMP1) compared to Base 

in three out of four rain events, Base had lower total volumes of runoff compared to IMP1 

in all four rain events. The increased volume of total runoff in each event for IMP1 ranged 

between 2.5% and 6.6% higher than the volume of total runoff for the Base scenario. 

GI3A’s total volume of runoff was slightly higher than GI3B’s total volume of runoff in each 

rainfall event (ranging between 0% - 5% larger volumes), indicating that although there 

was little difference between these scenarios’ peak flows, there was more of a difference 

in the ultimate fates of rainfall between these two scenarios. Total runoff volumes for each 

event exhibited several rank crossovers between paired spatial configuration scenarios 



 

177 
 

(Figure 5.10). During the first rainfall event (34mm) GI2A (downslope ROW treated) 

reduced total runoff volumes more than GI2B (upslope roofs treated), and IMP3B 

(downslope impervious removed) reduced total runoff volumes more than IMP3A (upslope 

impervious removed). Both these comparisons provide evidence that spatial configuration 

of GI and imperviousness matter: when run-on opportunities and storage areas are 

located in more downslope areas, more runoff volume is intercepted. However, after the 

first event, during the second (21 mm) and third (7.6 mm) events (perhaps before 

downslope capacity has been recovered), the scenarios that provide upslope infiltration 

and storage opportunities mitigate more total volumes than the scenarios that provide 

downslope infiltration and storage opportunities. After these two smaller events, capacity 

is “recovered” in downslope areas, and maximum infiltration opportunities in the 

downslope configurations again realizes its advantage in intercepting more subsurface 

flow during the fourth event (1.85 mm).  

 

Flow Duration Curves 

Flow duration curves (FDCs) are a way visually compare entire distribution profiles of a 

time series of flows. They show the amount of time that a given flow will be exceeded.  

Figure 5.11 shows the flow duration curves of the simulated scenarios compared to each 

other, and compared to observed empirical flows measured within the pipe. As was 

explained in the previous chapter, empirical flows pre-GI construction were collected from 

2010-07-14 to 2010-12-15, and empirical flows post-GI construction were collected from 

2015-06-20 to 2016-04-30. From Figure 5.11 several high-level trends are apparent. First, 

all scenarios exhibit larger “base flows” than what is observed from the monitoring data. 

This includes the simulated base, which had equal levels of imperviousness with 

connected roofs as the empirical base case, and the simulated IMP1 and IMP2, which had 
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equal, and higher levels of imperviousness with disconnected roofs, respectively. Both the 

empirical Base and empirical GI flows do not exhibit many intermediary flows; from a very 

low flow condition, the FDCs jump up to higher flow conditions about 10% of the time. This 

pattern could be attributed to either lack of sensor sensitivity to low flows or to the model’s 

overestimation of base flows from the site. Issues with empirical data are addressed in 

greater detail in a later section. 

 

Figure 5.11 Flow Duration Curves of simulated scenarios and empirical observed pipe 

flows 

 

Although simulated low flows are larger than empirical flows, Figure 5.11 shows relatively 

good agreement between the top 15% of flows between the simulated and empirical data. 

However, the FDCs show the distribution in peak flows to be underestimated by the model. 

This is not a completely apples-to-apples comparison however, since the rainfall total 
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depth and intensity profiles for the empirical data and the simulation period also differ. 

Differences in the magnitudes of event-based precipitation are discussed further in the 

following section. 

FDCs comparing scenarios are shown in Figure 5.12. Comparisons of the full distribution 

of flows, as well as zoomed-in insets of the maximum 1% of flows for each of the scenarios 

are depicted. A qualitative evaluation of the FDCs shows that among spatial configuration 

paired scenarios the greatest variation was observed between paired scenarios GI2A and 

GI2B. GI3A/GI3B and IMP3A/IMP3B exhibited very small differences, both with the high 

flow accumulation properties treated (GI3B and IMP3B) scenarios with lowered peak flows. 

The small differences in peaks cannot be clearly attributed to spatial configuration 

however, because the property-specific conditions of the site did not result in perfectly 

equal treated/removed areas between the 3A and 3B scenarios; the 3B scenarios had 

slightly higher amounts of impervious area treated/removed (Table 5.2).  The least 

variation was observed between GI3A and IMP3A, and GI3B and IMP3B. These 

comparisons compare the effects of increasing hydraulic conductivity by 1 – 6 orders of 

magnitude in the top four layers of the domain. In order to control for the small differences 

in areas treated with GI between the GI3A/IMP3A and GI3A/3B cases, event-based 

analyses that normalized by the total areas treated/removed were performed. 

The FDCs show that the only scenario to have a maximum peak flow clearly above that 

of the Base case is IMP2, the scenario that has 36.5% more impervious surface area than 

the Base case. Treatment of the ROW shows decreased low flow frequencies compared 

to Base in addition to decreased peak flows, indicating some evidence of a losing” stream 

type response from the burned in pipe to the surrounding soil. 
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Figure 5.12 FDC (flow duration 

curves) comparisons among key 

scenarios. 
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Event-Based Analysis  

A script was written in R to isolate the peaks and total rainfall volumes associated with 

each rainfall event from the simulated overland flow and monitored pre and post-GI time 

series. While FDCs allow for comparisons of entire distributions of flows, event-based 

analysis allows for an examination of the contexts of specific runoff behaviors. Runoff 

behaviors can vary depending on the size and intensity of the rainfall event, as well as the 

pre-event wetness or inter-event period. According to theory, a watershed that is highly 

sensitive to pre-event wetness would be expected to infiltrate less runoff when inter-event 

periods are short (and the watershed has less time to recover storage capacity) than a 

watershed that is less sensitive to pre-event wetness. Similarly, if a watershed is capacity-

limited, then we would expect GI in low-lying, high flow accumulation locations in the 

watershed to perform less effectively than GI in upland areas which would be expected to 

recover capacity more quickly. If, on the other hand, a watershed has high capacitance 

(Miles and Band, 2015), then perhaps GI in low-lying, high-flow-accumulation locations in 

the watershed would perform more effectively than GI in upland areas, since in addition 

to their direct contributing areas, they would intercept other upland areas’ flows. 

Rainfall events were identified based on inter-event dry periods of at least 10 hours. If 

rainfall stopped, but started again in less than 10 hours, both periods are counted as part 

of the same rainfall ‘event.’ All overland flow (as measured from the pour point) until flows 

returned back to zero were summed for a total event volume of runoff. Each event’s 

maximum flow peak was also calculated. 

Total volumes mitigated by GI retrofits and impervious surface removed were calculated 

by subtracting the total event-based runoff volumes from each of the alternative scenarios 

from the total event-based runoff volumes from the Base case. In addition, since the paired 

spatial configuration scenarios included slightly different totals of impervious surface 
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retrofit, per-m2 volumes intercepted for each event were calculated based on the total 

treated/removed area of impervious surface for the scenario. This was a way of assessing 

per-m2 efficacy of the GI retrofits. Equation 5.1 summarizes the calculation: 

,
 

 

[5.1] 

where 
, 	 is the area-normalized efficacy [L] of scenario S for the event defined by (i,j); 

 is the flow rate for the Base case scenario [L3T-1];  is the flow rate for scenario S; 

 is the total area of [L2] treated/removed impervious surface in scenario S; , ∈

	 , , , … ,  are paired times marking the start and end of events 1…n for n 

is total number of rain events; and 	 ∈ 	 2 , 2 , 3 , 3 , 3 , 3  is a 

paired spatial configuration scenario. The area-normalized efficacy 
, 	 for each defined 

event can also be understood as the average mitigated depth of rainfall per square meter 

of GI. Plots of 
, 	  by the event total rainfall depths are shown in Figure 5.13.  

Steeper slopes indicate that the treatment/removal of imperviousness is able to intercept 

more runoff compared to the Base scenario (more effective). On average, no significant 

differences associated with spatial configuration are observed treated or removed rooftop 

imperviousness. There is an observable difference between the performance of GI2A and 

GI2B however, with each m2 of GI in the GI2A case intercepting more runoff on average 

than the GI2B case. 
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Figure 5.13. Calculated efficacy (Es) of treatment per square meter of treated/removed 

impervious area. 

 

Assuming the runoff outputs for each scenario are representative for that particular 

configuration of spatially distributed parameters, there is a particular interest in explaining 

the circumstances under which paired spatial configuration scenarios’ E values sometimes 

reverse themselves. For example, out of 72 identified rainfall events, 	  for 48 

events, while 	  for 24 events; out of 72 identified rainfall events 	  

for 32 events, while 	  for 40 events; and out of 45 identified rainfall events, 

	  for 12 events. In order to more closely examine if there was statistical 

evidence that either total event rainfall depth or the inter-event period influenced whether 

the upslope or downslope spatial configuration was more effective in reducing the rainfall-

runoff ratio, an additional analysis was performed. Events where the spatial configuration 

treating or removing imperviousness on upslope (low flow accumulation) properties 

performed better (higher E) than the spatial configuration treating or removing 

imperviousness on downslope (high flow accumulation) properties were defined as the 

function g (Equation 5.2): 
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,
0 , ∈ , , , ,

1 , ∈ , , , ,
 

[5.2] 

 

where ,  is the rainfall event defined by start time i and end time j; , , ,  are the E 

values calculated in Equation 5.1; and “up” scenarios include GI2B, GI3A, and IMP3B 

and “down” scenarios include GI2A, GI3B, and IMP3B. The ,  binary state 

classification was then used as a classification state to group types of event conditions 

according to total rainfall depth and inter-event period. If the state classification is 

independent of these conditions then the state assignment should be random with respect 

to the condition. If on the other hand, the state classification is shown to be dependent on 

these conditions, then a comparison of the condition means between the two states can 

reveal a causal explanation for higher or lower efficacy E of the intervention. 
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Figure 5.14. Paired spatial configuration scenarios efficacy comparisons and dependence 

on total event rainfall depth and time to previous rainfall event. *p<0.10; **p<0.05; 

***p<0.0001 

 

The statistical significance of the dependence of the binary state classification on total 

event precipitation depth and time to previous rainfall event was tested using a t-test of 

means. The null hypothesis that the state classification on the event conditions were 

independent was rejected if the p-value resulting from the t-test was less than 0.10. Figure 

5.14 shows box plots of the groups resulting from the classifications.  

T-tests were significant for all of the paired spatial configuration scenarios’ dependence 

on total event rainfall depth (p = 0.058, 0.00017, 0.0021, for GI2A/B, GI3A/B, and IMP3A/B, 
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respectively). During larger events, spatial configuration scenarios where imperviousness 

located in high flow accumulation areas of the sewershed was removed/treated were more 

effective in reducing runoff volumes than spatial configuration scenarios located in low 

flow accumulation areas of the sewershed. The t-test for spatial efficacy’s dependence on 

the inter-event period was only (marginally, p = 0.095) significant between the IMP3A and 

IMP3B scenarios. This result indicates that when events occur soon after a previous 

rainfall event, the spatial configuration where imperviousness is removed from high flow 

accumulation areas will perform better than the spatial configuration where 

imperviousness is removed from upslope areas. The tests on dependence on spatial 

configuration both provide evidence that downslope interventions (treatment or removal) 

are more effective than upslope interventions under wetter conditions, indicating that the 

downslope interventions are capturing not only their direct contributing areas but also 

some upslope area. 

Empirical Data Quality Issues 

As mentioned in Chapter 4, on a telephone call I had with the engineers responsible for 

instrumenting the site, sensitivity of the sensors to low flows were confirmed. Accurate low 

flow measurements in the sewer pipe were not prioritized compared to capturing quickflow 

response to rainfall events, especially flow peaks. Between the initial monitoring period, 

from 2011 – 2015, there was also a change in leadership in the management of this project. 

Several data quality issues were noted. First, raw data was provided to the researcher in 

different formats. The pre-GI empirical data appeared much more packaged: rainfall 

intervals and calculated in-pipe monitored flows had been discretized to consistent time 

intervals and date ranges for documented instrumentation problems were documented, 

for example.  Second, the raw data between the two periods appeared to have been 
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cleaned and processed to different standards. In particular, periods of low-flow signals 

were observed in the post-GI dataset. These could either have been an instrumentation 

error, or a signal from localized lawn watering or other input. The pre-GI flow data did not 

exhibit any signal similar to this. Third, as noted in a report by the engineering consultant, 

and confirmed by this research, the rainfall-runoff ratio in many cases increased after the 

installation of GI. This finding, coupled with the observation that a second instrumented 

“control” sewershed (not included in this study) also exhibited higher rainfall-runoff ratios 

(by 72%), during the 2015-2016 year compared to in 2010, despite 2010 having a greater 

total annual rainfall depth than the 2015-2016 period, and there being no construction 

changes in that watershed, suggests that the monitoring data may be limited in making 

before and after comparisons (LimnoTech, 2016).  

 

Figure 5.15 Empirical Rainfall-runoff ratios before and after GI construction. The left figure 

shows that on the control site, the post-GI period rainfall-runoff ratio was higher than the 

pre-GI period rainfall-runoff ratio. The figure on the right shows that for the Lafayette site, 

there does not seem to be a significant difference between the rainfall-runoff behavior pre- 

and post-GI installation. Source: LimnoTech, 2016. 
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Unfortunately, there was no way of knowing whether the pre- or post- GI monitoring data 

more accurately reflects the site. While the reduction in slope of the rainfall-runoff ratio is 

not statistically significant for the Lafayette site, it does appear that the post-GI condition 

suppressed what might have otherwise been an increase in the rainfall-runoff ratio that 

was observed in the control sewershed (Before-After-Control-Intervention, BACI, 

experimental setup).  

Below is a summary of problems (incongruences) comparing simulated and empirical data. 

1. Simulated forcing (2015) had a maximum rainfall event of 48 mm. Empirical 

(2015) forcing had a maximum rainfall event depth of 66 mm. 

2. Post-GI empirical monitoring period systematically recorded greater flows than 

Pre-GI empirical monitoring period, despite smaller rainfall events, on average.  

3. Empirical flows record response to actual rainfall intensities. Simulated flows are 

responses to averaged rainfall intensities (peaks will be dampened) 

4. The full empirical flow records include events outside the growing season 

window, which are likely to result in more runoff, higher peaks, and larger rainfall-

runoff ratios 

As can be seen in Table 5.4, the event-based analyses allow for closer comparisons of 

the distributions of storm events and runoff response. Both the empirical rainfall-runoff 

(RR) ratio and the empirical event peaks are larger than the simulated RR and event peaks, 

by factors of 1.5 and 12.5, respectively. However, event rainfall totals for the empirical 

data are also greater by a factor of 1.6.  
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Table 5.4. Comparison of rainfall-runoff distribution summaries for simulated and 
empirical base case 

  Min Q1 Median 
Mea

n Q3 Max 
Empirical Base Case (RR) 0.1 0.13 0.17 0.16 0.17 0.2 
Simulated Base Case (RR) 0.01 0.05 0.06 0.07 0.07 0.13 
Empirical Base Case (event peak, 
cms) 0.115 0.116 0.14 0.15 0.16 0.2 
Simulated Base Case (event peak, 
cms) 

0.000
6 0.0016 0.0053 

0.00
56 0.0082 

0.01
6 

Empirical Base Case Rain 2010 
(event total, mm) 0.5 2.03 11.12 19 17 76.9 
Simulated Base Case Rain 2015 
(event total, mm) 0.012 0.65 3.22 7.75 11.5 47.8 
* Summarizes March - August window             

 

Site Sensitivity and Flow Monitoring Sensitivity Analysis 

While there were problems with the monitored data that prevent comparisons between the 

pre and post GI monitoring periods, the noise and measurement error in the monitoring 

data necessitates consideration of how the observed differences between scenarios’ 

outputs compare in magnitude to the level of variation and precision possible with in-pipe 

flow monitoring. Although the computational intensity of running ParFlow simulations 

prevents parameter sensitivity testing, the changed parameters between the nine 

scenarios tested can be thought of as tests on the sensitivity of the entire site. The level 

of variation in the event-based runoff volumes compared to the variation observed in 

event-based volumes from the monitoring data provides one way of evaluating the 

sensitivity of the site to the scenarios’ changes and the relevance of the magnitudes of 

difference in performance between the scenarios. 

Previously, the total event rainfall depth was shown to be significant influence on the 

relative performance between different treatment spatial configurations. Total event 

rainfall therefore was included as an important control in assessing performance variation 

across scenarios. This was especially important since the empirical monitoring data also 
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had a different rainfall profile than was used for the simulations, as described in the 

previous section. The measure of variation that was chosen therefore was the absolute 

width of the confidence percentile intervals estimated from the regression of the total event 

runoff volume on the total event precipitation event from the monitored rainfall and flow 

data from the pre-GI period. The confidence interval represents the area in which the ‘true’ 

mean runoff volume is likely to reside (with 95% confidence), and takes into account the 

number of observations available in the range, therefore is nonlinear in width, shorter 

when more observations are available, and larger when observations are scarcer. The 

post-GI monitoring period was not included in the quantification of variation in measured 

flows for reasons of data inconsistency and unreliability discussed in the previous section. 

The width of the confidence interval was calculated by taking the absolute value of the 

difference in the upper confidence interval limit and the lower confidence interval limit. 

Confidence interval upper and lower limits were determined by several confidence levels: 

95%, 90%, and 85%. 

If the mean differences between the scenarios’ total event runoff volumes is greater than 

the width of the confidence interval, this is an indication that the magnitude of the 

difference between the two scenarios might be large enough to attribute to outside the 

normal “noise” range of the base monitoring data. For example, the simulated runoff 

volumes per event for GI2A and Base are differenced. This difference is then regressed 

on the precipitation depths for each event. The resulting estimated slope for the regression 

represents the mean expected difference in volume between these two scenarios at a 

given rainfall event depth. If this expected difference is greater than the width of the 

confidence interval observed from the monitored data, this indicates that that difference is 

outside the bounds of confidence associated with the noise of monitored data, and the 

difference may be noticeable. Figure 5.16a shows the difference between the runoff 
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volumes for base case and each of the scenarios, compared with the widths of the 95%, 

90% and 75% confidence intervals. None of the scenarios exhibit a large enough 

difference with the base case to exceed the level of noise in the monitoring data at the 90% 

- 95% confidence levels. Only the difference in runoff volume from one scenario, GI2A 

exceeds the level of noise in the monitoring data at the 75% confidence level. Even the 

relatively dramatic increase in site imperviousness from 23,375 m2 to 31,900 m2 (36% 

increase) between Base and IMP2 did not result in a large enough difference to cross the 

barrier of noise in the monitoring data. 

Differences in performance between different spatial configurations were even smaller, 

and not significant compared to the level of noise in the monitored data. None of the 

differences in event runoff volumes for GI2A/GI2B, GI3A/3B or IMP3A/IMP3B approached 

detectable levels. 

Of all the combinations of scenarios simulated in this study, the maximum difference in 

mean event runoff volume was between IMP2 (maximum allowable impervious surface 

developed) and GI2A (all ROW surface area treated with GI). These configurations and 

parameterizations led to a performance difference that just barely crosses the 90% 

confidence interval of variation for the monitored data (Figure 5.16b). 
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Figure 5.16 a) Comparisons between effect of each scenario and level of natural variation 

observed in monitoring data (gray dashed line). b) Comparisons of differences in runoff 

volume between maximum treatment difference scenarios, IMP2 and GI2A, and level of 

natural variation observed in monitoring data (gray dashed line).. The 95% confidence 

interval of difference in runoff volume, dependent on rainfall depth is shown with the black 

dashed line. 
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Surface-Subsurface Pressure Head Propagation 

One benefit of applying the three-dimensional coupled surface-subsurface model 

ParFlow.CLM is that the any layer of the domain can be isolated to further study specific 

processes. In the previous section for example, an analysis of context-dependent 

differences in effectiveness revealed that interventions (treatment/removal) located in high 

flow accumulation areas in the sewershed resulted in greater effectiveness per square 

foot. Visual inspection of the three-dimensional positive pressure domain can reveal both 

where there is overland flow being generated, and how water infiltrates to the underlying 

layers. Figure 5.17 shows a comparison of GI2A and GI2B, the paired spatial scenarios 

that exhibited the most difference in response. 

Figure 5.17 is a three dimensional view of the site, from the southeast corner in the 

foreground to the northwest corner is the background. The blue-red coloration of pressure 

head is on a scale symmetric around 0, so that areas that appear blue have negative 

pressure, areas that appear red have positive pressure, and areas that are white are in a 

transition pressure, between positive and negative. The two columns show the same time 

slices through the rain event for GI2A and GI2B. Only the first three layers of the domain 

are shown (with a vertical exaggeration of 5x to make the site topography more apparent). 

When rain event first starts, the configurations of GI in each of the scenarios becomes 

apparent: in GI2A, which treats the ROW, impervious building footprints immediately begin 

to transition to positive pressure, while the ROW areas remain negative pressure. In 

contrast, in GI2B, the ROW, which is not treated with GI transitions first to positive 

pressure, while the building footprints retain their negative pressures for longer. Eventually, 

around time 2440 the two scenario domains appear similar.  

However, when the event begins to recede, some differences are again notable. In time 

2500, there is more positive surface pressure that appears to be connected to the treated 
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ROW areas in GI2A. Since retrofit pavement areas were assigned Manning’s n values 

equal to those of pervious turf areas, positive pressures in the alleyways after the initial 

overland pressure wave associated with the event are not contributing much to the 

overland flow. Instead, they are intercepting delayed response flows from upslope areas. 

In a zoomed-in cross section of these alleys, which were not served by a burned-in pipe 

as the main ROW was shows the positive pressure continuing to build up in the alley ways, 

even after overland flow has passed (Figure 5.18). 
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Figure 5.17.   Comparisons between top three  layers of domain response to rain event 

for GI2A (left) and GI2B (right). Color scheme from blue to red denotes pressure field 

centered at 0 pressure (white). Blue denotes negative pressure while red denotes positive 

pressure. By the end of the rainfall event , GI2A still exhibits high positive pressure in the 

alleys perpendicular to drainage system alignment. From examination of previous 

timesteps, it is clear that this high positive pressure includes contribution of upslope areas 
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of the properties adjacent to the alley.This positive pressure A longitudinal cross section 

of the alley is shown in Figure 5.18. 
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Figure 5.18 Cross section of alley where there is evidence of high pressure build up. Note 

that the main overland pressure wave has already passed through the central drainage 

alignment, and therefore appears in green. GI2A (left) alley shows continued interception 

of water in the retrofit alley, while GI2B does not.  

 

DISCUSSION AND POLICY IMPLICATIONS 

Table 5.5 summarizes the findings of this study. First, for the six-month simulation period 

of this study, there was not only no evidence that treatments located in high flow 

accumulation areas were less effective than treatments located in low flow accumulation 

areas, the evidence suggested otherwise. Both GI and impervious surface removal (and 

replacement with native soil) were able to mitigate more runoff volume from the site when 

it was located in high flow accumulation areas. This was shown to be the case because 

these areas were not only intercepting their designated treatment areas during the event, 

but also intercepting upland flows near the ends of the rainfall event period. The 

specifications of hydraulic conductivity and porosity used in this study, as well as the 

boundary conditions for the subsurface did not result in a limited capacitance situation. 

For example, because the groundwater table was located so far from the land surface, 



 

200 
 

very little change occurred beyond the fourth layer of the domain, i.e., there was no 

evidence of groundwater mounding and very little accumulation of saturation or positive 

pressure head between rainfall events. Therefore, instead of limiting capacitance, wetter 

conditions caused green infrastructure in higher accumulation areas to intercept flows that 

otherwise would contribute to overland flow. Comparison of performance based on storm 

peak mitigation was also shown to be much less sensitive to spatial configuration than 

total event runoff volume. This may indicate that flow peaks are more dependent on overall 

magnitude of connectivity of land surface type, while volumes are additionally dependent 

on specific subsurface flow paths and topography of the site that are changed with spatial 

configuration. 

Second, it was shown that while increased hydraulic conductivity from impervious to either 

green infrastructure or native soil resulted in observable differences in overland flow, there 

were no observable differences in the overland flow for green infrastructure vs native soil 

(e.g.: between GI3A and IMP3A). This finding may be related to the above finding in that 

the differences in hydraulic conductivity between native soil and GI may both not be 

constraining factors in watershed capacitance. Instead, the differences between paired 

spatial configuration scenarios (e.g.: between GI3A and GI3B) resulted in more 

observable differences. The site is more sensitive to changes in spatial configuration than 

changes in hydraulic conductivity, at least when the changes are only applied to only 7-9% 

of the site. If more of the site’s hydraulic conductivity were changed however, there is 

some evidence that indicates that differences in runoff volume would be more observable, 

related to the third point, below. 

Third, there was evidence that differences in runoff volume increased as the total treated 

area increased. The largest difference between paired spatial configuration scenarios was 

observed between GI2A and GI2B, which treated 14.2% and 15.6% of the site’s 
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impervious surface area, respectively, which was 5-7 percentage points greater than the 

treated areas in the paired scenarios GI3A/GI3B (7.3%/9.2%) and IMP3A/IMP3A 

(7.3%/9.2%).  

Lastly, this study developed a way of contextualizing the significance of magnitudes of 

differences observed between different scenarios without having to perform multiple 

realizations of parameters in a sensitivity-analysis type study. Given the amount of 

variation and noise present in monitored pipe flow data for the study site, only the 

differences in response between IMP2 and GI2A resulted in a different large enough to 

exceed level of variation associated with 90% confidence interval from the observed flow 

data. The difference in impervious surface between these two scenarios was 30 

percentage points. The difference between the Base and GI2A scenarios was large 

enough to exceed the level of variation associated with the 75% confidence interval. No 

other pairs of scenarios exceeded the level of variation in the monitored data.  

There are several policy implications of this research. First, the spatial configuration of 

green infrastructure is an important consideration when deciding between treating ROW 

or dispersed treatments on private property within sewersheds of this development density. 

Treatment of ROW areas with GI is more effective than treatment of private roof areas 

with rain gardens because such treatment has the capacity to intercept more upslope 

areas. In particular, the reverse-crowned alleys capture runoff from upslope areas, and 

are also perpendicular to the drainage system, decreasing opportunities for water to find 

more flow paths toward the pipe system, and encouraging water to infiltrate in the alley 

area. While GI constructed in the ROW is also typically more costly than private retrofits 

both in terms of one-off design and construction costs and from continued maintenance 

costs, these higher cost may be justified in increased effectiveness. In addition, although 

not a part of this study, ROW projects are more easily tracked, monitored and serviced by 
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centralized agencies, such as the DOEE or DDOT in DC and are therefore often able to 

be formally counted as part of an MS4 or CSO NPDES permit long term control plan. In 

contrast, private property retrofits still face challenges of durability, proper operations and 

maintenance and long-term tracking. 

Second, within residential sewersheds of this development density, a 50% property 

treatment rate does decrease runoff volumes and peaks compared to not doing anything, 

but spatial configuration is unimportant. Therefore, when either designing a voluntary 

residential GI program, or an impervious surface removal program (e.g.: vacant home 

demolition), spatial configuration of treatment properties will not make a difference in 

overland flow mitigation. From a hydrological effectiveness point of view, there is no 

reason to devote resources to target participation from specific property owners at this 

scale. 

Third, a combination of variation and measurement noise in pipe flow monitoring results 

in a barrier to the detection of potential differences attributed to site change. This applies 

to both increases in imperviousness of up to 15 percentage points, and treatment/removal 

of imperviousness of up to 30 percentage points. This study showed that only a decrease 

of 30 percentage points of imperviousness resulted in a detectable change in response 

compared to the amount of variation and measurement noise in pipe flow monitoring data. 

This 30 point decrease in imperviousness included both treating the ROW and a portion 

of building footprints, compared to the maximum allowable imperviousness for each 

property, highlighting the importance of residential participation in measurable mitigation 

of overland flows from urban sewersheds.  

The problem of detectable change and noisy empirical data may also have a regulatory 

implication. As mentioned in both this chapter and the previous chapter, the selection of 

flow monitoring technology and procedures for data processing made before and after 
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comparisons of the data very difficult, even with a BACI experimental design. The site 

used in this study is served by a separated sewer system, which means that the 

stormwater drainage system is designed to only convey wet-weather flows and expected 

to have zero baseflow during dry weather. The selection of the monitoring technology for 

the site, ultrasonic level sensors to measure stage height and the subsequent rating curve 

developed to translate stage height to flow, may not have consistently and reliably 

measured runoff response under these conditions. In addition, additional noise may have 

been introduced to the site through inputs not related to precipitation, such as lawn 

watering and car-washing in the neighborhood. Although empirical monitoring data 

analysis is typically held as the “gold standard” of experimental design, this study has 

shown ways that modeling can help fill in holes in understanding urban stormwater 

management, providing a way to “control” site conditions to conduct experiments about 

specific hydrological behaviors.  

In short, at the sewershed scale, planners should focus on retrofitting public ROWs with 

GI, prioritizing locations of higher flow accumulation to capture delayed response that do 

not easily drain into the conventional storm drainage infrastructure. GI on private 

properties can help add to the effectiveness of roof downspout disconnections, but there 

is no need to target specific properties. Increasing overall participation amongst residents, 

rather than trying to “optimize” spatial location of dispersed GI should be the main goal of 

voluntary distributed GI programs. This is the subject of the following chapter. 
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Table 5.5  Summary of research findings 

Treatment - Effect Hypothesis Finding 
Spatial configuration of 
green infrastructure on 
overland flow 

Green infrastructure located in high flow 
accumulation areas are less effective than 
treatments located in low flow accumulation 
areas during wetter conditions. 

Rejected. Green infrastructure located in high flow 
accumulation areas is more effective than green 
infrastructure located in low flow accumulation 
areas. 

Spatial configuration of 
impervious surface area 
removal on overland flow 

Impervious surfaces removed from high flow 
accumulation properties will mitigate less 
overland flow volumes during wetter conditions. 

Rejected. Impervious surfaces removed from high 
flow accumulation areas is less effective than 
impervious surfaces removed from low flow 
accumulation properties. 

Hydraulic conductivity of 
treatment on overland flow 

Increased hydraulic conductivity associated with 
green infrastructure retrofits will result in more 
mitigation of overland flows than merely 
replacing impervious surfaces areas with 
hydraulic conductivity of native soils, which will 
be more effective than merely disconnecting 
impervious areas from the drainage system. 

Partially supported. Green infrastructure retrofits 
and impervious surface removal performed better 
than roof disconnection, but there was no 
difference in runoff response between scenarios 
that increased hydraulic conductivity of receiving 
pervious areas and scenarios that merely replaced 
impervious surface with native soil. 

Magnitude of treatment on 
overland flow on 
differences between 
paired spatial configuration 
scenarios 

Differences between paired spatial configuration 
scenarios will be more evident when the total 
magnitude of treated area exceeds 10% 

Supported. The largest difference between spatial 
configuration scenarios was observed when total 
treated area exceeded 10%. 

Treatment of impervious 
surface - detectable 
differences in pipe flows, 
compared to noise in 
monitoring data 

Differences between scenarios' runoff volumes 
will be detectable when the difference between 
treated/removed impervious surface area 
exceeds 15% 

Partially supported. Differences between 
scenarios' runoff volumes were predicted to be 
detectable with only 75% confidence for two 
scenarios that differed by 15.6% impervious area. 
Differences between scenarios' runoff volumes 
were predicted to be detectable with 90% 
confidence for only one pair of scenarios, which 
differed in imperviousness by 30%. 
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CHAPTER 6: MORE ON DISTRIBUTED STORMWATER 
MANAGEMENT: SOCIAL NETWORKS AND INFRASTRUCTURE 
 

INTRODUCTION AND BACKGROUND 

Over forty years after the US EPA’s passage of the Clean Water Act (CWA), 53% of river 

and stream miles and 69% of lakes, ponds and reservoirs in the US remain classified as 

“impaired” (US EPA 2015). “Green Infrastructure” (GI) is a multi-scale strategy that 

acknowledges the critical roles natural processes such as evapotranspiration and 

infiltration play in supporting healthy, sustainable societies (Benedict and McMahon, 2006). 

GI can be used to refer to the importance of regional scale conservation planning 

(e.g. riparian corridor protection and growth management) on hydrological regime and 

water quality. Within cities however, GI often refers to the implementation of best 

management practices (BMPs) for stormwater management that at least partially mimic 

the natural hydrologic cycle by promoting infiltration and evaporation of stormwater. 

Traditionally, BMPs included detention basins that were not necessarily designed to 

include green characteristics, but GI today more often refers to rain gardens, bioswales, 

porous pavement, and tree plantings that incorporate more of the natural hydrologic cylce. 

They are mean to bring cities into compliance with stormwater and sewage infrastructure 

CWA regulations while also improving overall environmental quality and livability and are 

often implemented at the site scale. This type of GI is implemented on a property-by-

property basis, often by retrofitting sites to better manage stormwater runoff (US EPA, 

2004; Mandarano and Paulsen, 2011; Young, 2011). 

Understanding how to encourage and speed private property retrofits is particularly useful 

for post-industrial cities, which are likely to have slow redevelopment rates, stagnated 

population growth, and aging infrastructure in need of upgrade (Birch and Wachter, 2008; 
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Schilling and Logan, 2008)). Residential land use can make up over 50% of the land area 

in urbanized areas, making voluntary residential adoption of GI a potentially very cost 

effective means for cities to manage stormwater runoff, especially after ecosystem 

services co-benefits are factored in (Mandarano, 2011; Brown et al., 2016). As I will 

expand on in the following section, previous research has explored the influence of 

financial incentives, environmental attitudes, environmental knowledge, and physical 

constraints on the potential for residential adoption of GI.  

In this study, I examine the spatial-temporal patterns in which GI has actually been 

adopted by residents in Washington DC during the first six-years of a voluntary GI 

installation program called RiverSmart Homes.  Unlike the results of surveys, in which 

residents are asked directly about willingness to participate based on their preferences, 

the analysis of empirical data adds two things. First, it illuminates how highly 

heterogeneous spatial distributions of physical and social factors have influenced actual 

adoption. Second, it allows us to explore the spatial implications of time-dependent 

processes of adoption, such as pathways of information dissemination. This research tests 

how participation is dependent on spatial distribution of socio-demographic and physical 

landscapes of the city and how the spread of participation also exhibits a space-time event 

dependence that can be associated with the locations of previous installations. 

PREVIOUS RESEARCH 

Conventional drainage infrastructure, including catch basins, pipes and cisterns, is 

typically located in the public right of way. Retrofits of existing impervious areas with GI to 

effectively manage runoff close to where it is generated is often referred to as ‘source 

control’. Source control measures, such as rain gardens, require land surface area to 

intercept and retain or detain runoff volumes (Valderrama and Levine, 2012; Keeley et al., 
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2013). Access to these areas can be gained through new development regulations or 

through encouraging property owners to retrofit their properties. Localities with limited 

local budgets and slow redevelopment rates see GI as a cost-effective alternative to 

conventional infrastructure, especially if GI can be constructed by retrofitting private 

properties rather than relying on public property and right-of-way projects (Valderrama 

and Levine, 2013). 

Several studies have used surveys to determine the relationship between the residential 

uptake of GI and socio-demographic characteristics. Participants’ stated responses reflect 

both public and private motivations to GI adoption. Stated public benefits include: general 

desire to improve the environment (Thurston et al., 2008; Montalto et al., 2012; Baptiste 

et al., 2015), stormwater control (Sun and Hall, 2013), better water quality and hydrological 

improvement (Londoño Cadavid and Ando, 2013). Stated private benefits include: owners’ 

desire to reduce personal property flooding (Londoño Cadavid and Ando 2013), financial 

savings when subsidized installations are offered (Brown et al., 2016), and access to an 

unregulated source of irrigation water (Brown et al., 2016). Although participant survey 

responses yield insight into individuals’ preferences for environmental services, research 

has shown that actions can differ substantially from stated intentions (Diamond and 

Hausman, 1994; Portney, 1994).  

One potential source of difference between stated responses and actual program 

participation is that responses to surveys reflect the respondent’s preferences assuming 

he or she is aware of the program in question. In reality, awareness about voluntary 

programs may be a stronger determinant of participation. Many have suggested economic 

incentives as one way to increase awareness of strormwater management and encourage 

private adoption of GI. These incentives work through pricing the externality of runoff 

production and crediting property owners that treat or manage their own stormwater runoff 
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(Sample et al., 2003; Parikh et al., 2005). The logic of economic incentive strategies is 

based on an assumption of economic rationality where property owners will invest in GI 

construction if they can achieve long-term cost savings on stormwater fees. However most 

studies demonstrating the effectiveness of such approaches are theoretical rather than 

empirically-based. After taking into account the time that knowledge about fees, credits 

and GI retrofits takes to travel through social networks and individual decision-making 

processes, adoption rates have been shown to be much lower than when perfect 

economic rationality is assumed (Montalto et al., 2013).  

Infrastructure managers have also reported that limited public knowledge about 

stormwater issues and lack of familiarity are barriers to widespread adoption of GI (de 

Graaf and der Brugge, 2010; Keeley et al., 2013). Resident unfamiliarity with GI programs 

may also deter them from participation. Interviews carried out with participants in an 

economic-incentive based GI program confirmed that the decision to participate 

represented having taken a risk. In overcoming this risk, one third of interviewees 

expressed that “word-of-mouth” and “project presence” played a significant role in the 

decision to participate (Brown et al., 2016).  

Few empirical studies address the spatial patterns of residential GI adoption. An empirical 

study of a subsidized, voluntary rain barrel program showed that adoption counts were 

related to the social characteristics of neighborhoods, including “green” political party voter 

proportions and home ownership rates (Ando and Freitas, 2011). In addition, this study 

showed higher adoption rates in locations nearer to rain barrel distribution sites and near 

long-term GI demonstration and information dissemination sites. Another study of a two-

year experimental residential rain garden adoption program showed more spatial 

clustering near previous adopters than would have been expected due to chance 

accounting for the heterogeneity in the spatial configurations of parcels (Green et al., 
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2012). These studies reveal a move from static personal attributes as drivers of GI 

adoption towards understanding the influences of time-dependent information 

dissemination and social capital on GI adoption. 

Yard landscaping practices have also been framed as expressions of personal 

preferences as well as functions of historical and modern social norms. Research shows 

that residents’ yard landscaping practices are extensions of self-image that respond to 

cultural norms and that vegetation choices exhibit mimicry among neighbors (Zmyslony 

and Gagnon, 1998; Larsen and Harlan, 2006; Nassauer et al., 2009). Therefore, we might 

expect the participation of resident in a GI program to have some influence on his/her 

neighbors’ propensity to participate in the program. Participation in a voluntary GI program 

may similarly be socially influenced since it reflects both landscaping preferences and 

requires residents to gain awareness of the program. Gaining awareness of the program 

itself is a process of information dissemination. Others have suggested “epidemic” models 

of technology diffusion to express the spread of new information (Geroski, 2000; Jaffe et 

al., 2002). In these models, imitative behavior is primarily influenced by the spread of 

information through proximity-dependent social networks. Empirical research has 

demonstrated the utility of information dissemination models for explaining highly visible 

behaviors, such as residential solar panel installation (Rode and Weber, 2016), 

automobile purchasing (Grinblatt et al., 2004), and recycling (Hopper and Nielsen, 1991). 

When neighbors are exposed to “nudging” information, even a non-visible environmental 

behavior, such as energy and water consumption has been shown to be influenced by 

neighbors’ behaviors (Allcott, 2011; Jain et al., 2013). Normative social influence, which 

relies not only on sharing of information, but also on communication of behavioral 

standards (“the right thing to do”), has been shown to be influential, even if residents do 
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not report it being a major rationale for behavioral change (Nolan et al., 2008; Schultz et 

al., 2016). 

From the above, we can hypothesize two major causes of observed spatial patterning of 

voluntary GI. First, adoption rates may be determined by the spatial heterogeneity of social 

and physical conditions with the city. Second, the locations of participants may be 

determined by time-dependent information diffusion, which may influence spatial 

clustering of adoption. In the latter, emphasis is shifted from the physical and social 

conditions that drive residents to independently adopt GI towards understanding how 

residents learn about the program and subsequently decide to participate. If participation 

locations are dependent on the spatial locations of previous GI installations, even after 

controlling for the tendency of properties and residents with similar characteristics to 

cluster together, this is evidence of previously uncaptured spatial processes of program 

growth. Understanding the spatial-temporal growth of voluntary GI programs can help 

urban watershed managers who leverage ambassadorial behaviors or key demonstration 

sites in residential areas to efficiently disseminate information that promotes residential 

participation in environmental programs (Hopper and Nielsen, 1991; Castaneda et al., 

2015). This is important because if previous installations and participants influence the 

participation of their neighbors, municipalities might anticipate savings on future outreach 

budgets and plan for when a program may begin to grow on its own. Quantifying this type 

of influence also begins to suggest the range of timeframe necessary for adapting urban 

landscapes to future conditions through private landscape management. 
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CASE STUDY: WASHINGTON DC RIVERSMART HOMES 
PROGRAM 

Program Description 

The case used in this research is the RiverSmart Homes Program, administered by 

Washington DC’s Department of Energy and the Environment (DOEE). RiverSmart 

Homes is a voluntary stormwater retrofit program that provides subsidized installations of 

GI to residents. The purpose of the program is to help residents reduce stormwater runoff 

from their properties. It offers subsidies to adopt rain barrels, rain gardens, bayscaping 

(native plant landscaping), permeable pavement or shade trees on their properties. 

Homeowners make a copayment for each of the installations: $45 per rain barrel, $50 per 

shade tree, $75 per rain garden (limit one), $100 per bayscaping installation (limit one), 

and up to $1200 for the removal of impervious surface area and installation of permeable 

pavers. Participants are informed that they are required to maintain the installed features 

while they own the property. 

The process of becoming a RiverSmart Homes participant involves the resident finding 

out about the program, contacting RiverSmart Homes staff to schedule an initial 

appointment (usually through an online scheduler) to assess which installations would be 

feasible on the property, deciding which type of GI is desired (if any), scheduling a 

contractor to install the GI and lastly installing the GI. The DOEE completes about 1,100 

audits each year. Based on pilot programs administered by DOEE starting in 2007, DOEE 

specifically sought to eliminate barriers to participation including inability for non-car 

owners to transport materials to their homes, lack of understanding about installation and 

maintenance of GI (DC Water, 2015). Project funding has been provided through EPA 319 

grants, American Recovery and Reinvestment Act funds, the Anacostia River Clean Up 

and Protection Fund, and Municipal Separated Sewer System (MS4) funds (DC Water 
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2015). The geospatial location for each RiverSmart homes installation was recorded 

between 2009-2015. Dates of adoption for each participant are also available. Figure 6.1 

shows the overall participation trend over time. Through 2014, there were 3,737 

RiverSmart Homes installations on 2,836 unique properties, which represents 2.5 percent 

of all residential parcels in DC. The most popular installation was rain barrels (63%), 

followed by bayscaping (17%), rain gardens (14%), and lastly trees and permeable pavers 

(3% each). Figure 6.2 shows a map of the density of all GI installations through the 

RiverSmart Homes Program, overlaid on total populations of each of the district’s census 

tracts. It is clear that there is spatial clustering of adoptions within the city. 

 

Figure 6.1 RiverSmart Homes program participation over time 
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Figure 6.2.  Density of all GI installations through the RiverSmart Homes Program from 

2009 – 2014, overlaid on total population per census tract. 

	

In 2014, DOEE administered an online survey (>800 responses) of participants’ 

experiences with their GI installations. The survey included a question asking participants 

how they initially learned about the RiverSmart Homes program. Figure 6.3 shows that 

the majority of respondents learned of the program through friends, family or a past 
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participant. What remains unknown is the extent to which these informational networks 

resulted in spatial patterns. This is what I will investigate in this chapter. 

 

Figure 6.3. Survey responses from RiverSmart Homes participants to how they initially 

learned of the program. 

 

METHODS 

Overall Adoption Rate Regression 

The regression of overall adoption rates between 2009 – 2014 on neighborhood 

characteristics captures the effects of spatially-dependent factors that influenced early 

residential GI adoption. Previous literature indicates that both physical form and social 

characteristics of neighborhoods are likely to reflect information dissemination and 

landscaping preferences. Therefore, two sets of explanatory variables, for physical and 
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demographic neighborhood characteristics are included. The regression is specified as in 

Equation 6.1. 

log log	      [6.1] 

where log  is the log of the total number of  installations for census tract ; 

log 	is the log of the total number of households in census tract i; is a vector of 

census tract ’s demographic variables and  is a vector of census tract ’s physical 

variables. The demographic and physical variables included are shown in Table 6.1. 

Nested models of the full global model presented in (1) were estimated to compare the 

explanatory power of the model with only physical variables  (the global physical model) 

versus the model with only demographic variables  (the global demographic model). 

The maximum likelihood ratio test was calculated on the ordinary least squares 

regressions to quantify the explanatory strength of the global physical and global 

demographic models. Variance Inflation Factors (VIFs) were also calculated to ensure that 

variables included in each model did not exhibit extreme multicollinearity, which could 

result in unreliable coefficient and standard error estimates. 

Spatial autocorrelation, a violation of the ordinary least squares assumption that 

observations are independent and identically distributed, is a symptom of social influence, 

diffusion processes, and missing spatially correlated variables (Anselin and Griffith, 1988). 

The problem of spatial autocorrelation has been shown to result in inaccurate (artificially 

low) measures of standard error associated with the estimated coefficients (Hoechle, 

2007). While the coefficient estimates themselves will not change, standardized 

coefficients, which are needed to draw conclusions about the explanatory strength of each 

of the variables included in the model will be influenced by mis-estimated standard errors. 

Calculation of Moran’s I on the residuals for each model is a common method of 
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determining the extent to which the amount of variation in the data unexplained by the 

model may be biased due to uncaptured spatial autocorrelation. 

To address this problem, the specification shown above was also used to estimate a 

geographic weighted regression (GWR) on the standardized variables included in the full 

global model. GWR generalizes the assumptions that observations are independent and 

identically distributed, and is used to demonstrate extent of spatial variability of estimated 

coefficients between census tracts through distance-weighting the results of repeated 

regressions (Fotheringham, 2009). Through a cross-validation, leave-one-out technique, 

a kernel weighted bandwidth is chosen to determine how spatially correlated coefficient 

estimates will be determined. Smaller bandwidths allow GWR coefficient estimates to be 

highly dependent on nearby neighbors’ estimates and reflect high levels of spatial 

dependence (Bivand, 2017). The selection procedure for the adaptive bandwidth and the 

GWR coefficient estimation were performed using the ‘R’ package ‘spgwr’. The chosen 

kernel weighting scheme was based on a Gaussian distribution. One GWR model is fit for 

each of the 172 census tracts included in the study. An alpha = 0.05 significance level 

determined the significance of each census tracts’ GWR-estimated standardized 

coefficients. The set of GWR model estimates are centered on the OLS regression (the 

full global model) estimates.  

Linear regression was chosen to maintain interpretability of the estimated coefficients. The 

log transformation of the total count of GI installations aided in ensuring a more normal 

distribution of residuals from the estimated models. The presence of GI adoptions was 

treated as latent propensity to adopt GI. To avoid biasing the model coefficients from 

removing zero-valued census tracts from the analysis however, these census tracts were 

assumed to have low propensity of adoption, and a small value (0.1) was added before 

taking the log. Theoretically, this treats number of adoptions per each census tract as a 
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proxy for the latent propensity of residents within the census tract to participate in the 

program. Summary statistics for each type of GI and the attributes of the census tracts are 

shown in Table 6.1. 

Table 6.1. Summary statistics for overall GI adoption and census tract attributes 

    Minimum Median Mean Max Std Dev 

Green Infrastructure Adoptions 
(2009-2014)         

  Total Installations 0 14 28 215 40 

  Rain Barrels 0 7 14 107 19 

  Rain Gardens 0 1 3 30 5 

  Bayscaping 0 2 4 37 6 

  
Permeable 
Pavement 0 0 1 5 1 

  Trees 0 3 7 57 10 

Demographic 
Variables           

  Total Households 545 1519 1681 5375 786 

  
Median Home 
Value 

 $          
133,970  

 $          
478,615  

 $         
1,747,378  

 $         
70,663,950  

 $         
7,710,653  

  Total Population 1025 3315 3573 8036 1384 

  Total White 0 894 1427 6687 1559 

  Total Black 44 1639 1782 5219 1264 

  Total Asian 0 75 127 897 159 

  
Pop < High school 
ed 0 15 14 70 9 

  
Pop with Bachelor's 
Deg 0 26 32 100 29 

  Percent in Poverty 2% 14% 18% 53% 11% 

  Median Income 
 $            

14,813  
 $            

68,606  
 $            

74,053  
 $             

231,042  
 $            

41,489  

  
Unemployment 
Rate 0% 10% 12% 40% 9% 

  Owner 17 558 633 2099 399 

  Renter 70 781 886 3360 559 

  
Percent Non-
English 0.00% 0.08% 0.15% 1.34% 0.24% 

Physical Variables           

  
Mean res parcel 
area 190 1203 1605 12666 1439 

  
Mean percent 
impervious 16% 43% 46% 100% 16% 

  
Mean percent tree 
canopy 0% 19% 23% 60% 13% 

  In MS4 (dummy) 0 0 0.30 1 0.46 
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The explanatory variables included in the regressions were assembled from various 

sources and aggregated to the census tract level, which is a unit of analysis intended to 

act as a proxy for neighborhoods. Physical variables included: mean area of residential 

parcels, mean percent impervious of residential parcels, and mean tree canopy cover of 

impervious parcels. The mean area of residential parcels was calculated by selecting the 

properties with use code descriptions including the word “residential” (including: single 

family, multi-family, mixed use, etc) according to the Government of the District of 

Columbia Office of Tax and Revenue classifications 

(http://app.cfo.dc.gov/services/tax/property/pdf/usecodes.pdf) and the property lot 

shapefile from the District of Columbia Open Data portal 

(http://opendata.dc.gov/datasets/1f6708b1f3774306bef2fa81e612a725_40). The mean 

area of residential parcels per census tract was log transformed to correct for a right 

skewed distribution. The percent impervious and percent tree canopy were calculated 

using Zonal Statistics (ArcGIS Desktop 10.4) tools to summarize raster land use 

classification types per each residential property boundary. High resolution (1 meter x 1 

meter) raster data classifying urban land cover in DC into six classes (base soil, buildings, 

roads/railways, other paved surfaces, tree canopy, and water) was obtained from the 

University of Vermont (University of Vermont, 2011). Land cover for this dataset was 

derived using orthorectified leaf-on multispectral imagery. Each parcel’s existing land 

cover percentages were aggregated to the census tract level by averaging percent tree 

canopy cover for all residential parcels in the census tract. Demographic variables 

included: median household income, percent renters in the census tract, percent non-

English speaking population, population density, percent white, and median home value, 

among others. All demographic variables came from 2010 US Census. The distribution of 
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each variable to be included was examined to limit the influence of skewed distributions 

and outliers. Median household income was log-transformed to correct the right-skewed 

distribution and percent white was represented as a dummy variable (=1 if > 80% white) 

because of a clear bimodal distribution in the data. The percent of the census tract in which 

English was not the primary household language was represented as a dummy variable 

(=1 if > 0.3%) to capture the effect of long right tailed distribution. Table 6.1 shows 

summary statistics for each of the variables considered for the regression. 

Shuffle Test 

In order to test for evidence of spatial-temporal dependence of GI adoption patterns, I 

used a Monte Carlo randomized permutation resampling technique called the ‘shuffle test’ 

(Anagnostopoulos et al., 2008). This test works through resampling the same population 

of participants many times, randomizing only the time of participation, and comparing 

distance-based metrics between the time-randomized (simulated) distribution and 

observed (empirical) distance-based metrics. Unlike the above regression analyses, the 

shuffle test, “controls” for the effects of individual level heterogeneity through the 

assumption that personal and property attributes typically remain unchanged over time. 

The simulated distribution therefore isolates the effect of order of participation by creating 

a counterfactual distribution of participation orderings likely to occur given no time 

dependence of participation location. The observed metric (for which we are interested in 

testing extent of time-dependence) is then compared to this simulated “shuffled” 

probability distribution. Significant departure of the observed metric from the simulated 

probability distribution indicates that empirical participation locations were dependent on 

the locations of previous participations.  
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Rejection of the null hypothesis indicates that the location of participation cannot be ruled 

out as independent from the timing of previous participants. The strength in resampling 

techniques improves the findings of the survey administered by the District by 

experimentally testing how spatial program growth may not merely be a function of 

personal or property characteristics, but also on exposure to previous participants. It also 

is able to isolate the effect of proximity to a previous participant from individual and 

neighborhood characteristics that are difficult to obtain data on, and which result in omitted 

variable bias and spatial autocorrelation. If all such individual-level variables could be 

measured and included in a regression, then the detection of spatial-temporal dependence 

in the shuffle test would be similar to identification of the estimated effects of spatial and 

temporal lags in regression. 

I chose two metrics to represent exposure to GI: mean distance to closest previous 

program participant (DTC), and the number of previous participants within a 200-m radius 

(R200). Proximity-based, time-dependent exposure pathways may include a resident 

observing a RiverSmart Homes sign while passing a previous participant’s property, 

previous RiverSmart Homes participants talking about their installations to their neighbors, 

or a potential participant inquiring about a neighbors’ landscape upgrades. For each year 

t from 2010 to 2015, the set ,  includes all participants that have participated in the 

program at any time, from t = 2010 to the current time, tcur. The set ,  includes 

participants at time t that participated between t = 2010, … , tcur -1. The set ,  includes 

participants in tcur only. The simulated probability distribution is created by randomly 

assigning (with probability = 0.5) each installation location in the set  ,  to either 

, , , or , , , where i indicates the ith simulation iteration set. Then, the two metrics, 

DTCi and R200i are calculated using the actual geographic coordinates of participants with 
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the random assignment for the ith iteration. The simulation is repeated for 1, … ,  to 

form the time-randomized simulated distribution, where N is the total number of iterations 

(500). The observed metrics DTC and R200 for tcur are compared to the simulated 

distributions for these metrics.  

Figure 6.4 illustrates possible comparisons between the observed metrics and the metrics 

from a randomized iteration. For DTC, socially influenced clustering near previous 

participants would result in an observed mean distance that is on average less than mean 

distances from the time-randomized simulations. If there is no evidence of socially 

influenced clustering, then on average DTC should be about equal to the distances from 

the time-randomized simulations. Another type of time-dependent patterning is if observed 

DTC are actually longer than the time-randomized simulations. This could occur if time-

dependent outreach activities happening in specific neighborhoods outweigh neighbor-to-

neighbor dynamics. Figure 6.4 illustrates similar comparisons for the R200 metric. 

The choice of the time discretization (yearly) was chosen to help isolate the effect of 

information dissemination through the GI installations and previous participants 

themselves. The DOEE did provide promotional materials to community groups, non-profit 

organizations and at neighborhood-based fairs. These promotional activities would likely 

have a short-lived spatial effect on the spatial locations of participants. For example, in the 

days to weeks following a neighborhood promotional event, the DOEE confirmed seeing 

spikes in participants from that neighborhood. In this case, if the first participant reacting 

to such an activity had GI installed on her property and was followed by another participant 

in the neighborhood reacting to the same activity on his property several weeks later, then 

at the weekly scale, participant two might appear to have been “influenced” by his 

neighbor’s (participant 1) installation. In fact both participants were responding to a 

location-based promotional activity. Discretizing time with longer intervals minimizes the 
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effect of short-lived, spatial influences that increase participation. Table 6.2 highlights the 

spatial and temporal scales associated with participants’ answers to the question “How 

did you find out about the RiverSmart Homes program?” that reported in the online survey 

(2014). Social interactions that are both spatially determined and likely to happen on 

longer (months to years) time scales that are dependent on spatial locations include 

interactions with neighbors or through prolonged information dissemination through a 

neighborhood or other spatially-based group. 

Table 6.2 . Informational pathways to RiverSmart Homes and spatial-temporal scales 

Reported 
Means of 

Information 
about 

RSHomes 

Space Dependence Scale and Example 
Process 

Time Dependence Scale and Example 
Process 

Friend, 
Family, 
Neighbor 

Close: Neighbors talking
 
Far: Friends across town talking 

Short: Talking about the program in the 
days right after installation 
 
Long: Talking about the program months 
later when a neighbor notices the rain 
barrel in the front yard 

Email  Close: Neighborhood listserv email 
blast 
 
Far: City‐wide affinity group listserv 
email blast 

Short: Response to email blast in days 
following 
 
Long: Repeated email blasts sent for many 
months 

Internet  Not Space Dependent. People from 
across the city all can access the 
Internet 

Not Time Dependent. People from across 
the city can access content at any time 

Print Media  Not Space Dependent. For example, 
newspapers distributed all over city 

Short: Response to an advertisement in the 
days after print 

DOEE website  Not Space Dependent. For example, 
people from across the city all can 
access the Internet 

Not Time Dependent. People from across 
the city can access content at any time 

Flyer  Close: Flyer posted at a local grocery 
store seen by many neighbors 
 
Far: Flyer posted all over the city 

Short: Response to flyer in the days to 
weeks that it is posted or distributed 
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Figure 6.4. Conceptual illustration of observed metrics compared to a time-randomized 

iteration. Numbered circles represent the year of adoption 1, or 2. The left-most column 
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demonstrates the case of social influence clustering: the observed DTC metric is expected 

to be less than the average time-randomized simulation iteration, while the observed R200 

metric is expected to be greater than the average time-randomized simulation iteration. 

The right-most column demonstrates the case of growth to distant neighborhoods: the 

observed DTC metric is expected to be greater than the average time-randomized 

simulation iteration, while the observed R200 metric is expected to be less than the 

average time-randomized simulation iteration. Gray circles represent the area within a 

given buffer radius of each year 2 participant. 

 

RESULTS 

Neighborhood characteristics and overall adoption 

The results of the global regression are shown in Table 6.3. The full global model includes 

significant demographic and physical explanatory variables. The full model is able to 

account for over 50% of the variation in GI participation in census tracts (Adjusted R2 = 

0.53). There is significant improvement in the explanatory power of the model when both 

sets of variables are included, but the likelihood ratio test (F-test) and Adjusted R2 values 

show that more explanatory power is derived from the demographic variables (Adjusted 

R2 = 0.35) than the physical variables (Adjusted R2 = 0.29). The estimated coefficients in 

the full global model indicate that a 1% increase in the total number of households in a 

census tract is accompanied by a 2.2% increase in the number of GI installations, 

controlling for other factors. Higher mean percent imperviousness on residential parcels 

is associated with higher numbers of participants. However, the significance of a squared 

term for imperviousness indicates non-linearity. After reaching a turning point at 51.8% 

mean imperviousness, the effect of impervious area reverses and is associated with 



 

227 
 

decreased participation. Increased numbers of renters is associated with decreased 

participation, confirming the results of previous empirical research on rain barrel adoption 

in Chicago (Ando and Freitas, 2011). Higher median incomes are also associated with 

increased participation, with 1% increase in median income associated with a 0.76% 

increase in number of participants. Census tracts that are over 80% white on average 

have 78.9% fewer participants than more diverse neighborhoods. Neighborhoods with 

higher levels of non-English speakers are also associated with higher numbers of 

participants, providing evidence corroborating the findings of previous surveys that find 

that non-White communities expressed greater support of stormwater management 

installations on private properties (Montalto et al., 2012; Baptiste et al., 2015). The 

standardized coefficients of the full global model show that the most influential explanatory 

variable was the total number of households in the census tract, followed by the dummy 

variable for whether or not the census tract was over 80% white.  

A spatial autocorrelation test of the residuals of the full model using inverse weighted 

distances of the centroids of each census tract and Moran’s I revealed evidence of spatial 

autocorrelation in the residuals of all three global models. The GWR models fit for each 

census tract capture the heterogeneity in estimated effect of each standardized variable 

accounting for spatial autocorrelation. As can be seen in Table 6.3, not all of the 

explanatory variables that are estimated as statistically significant at the alpha=0.05 level 

are estimated to have significant effects in all of the census-tract specific GWR estimates. 

The only variables that are estimated as statistically significant for all 172 DC census tracts 

are the log of the total number of households in the tract, the number of renters in the tract, 

and the dummy variable for whether the tract is > 80% white. The range of estimates of 

the variables bracket the global full model estimates but capture additional variability of 

effect distributed over space. Based on the results of the GWR, the most influential 
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variables based on magnitude of the estimated standardized coefficients were the 

indicator for percent white > 80% (negative effect on adoption) and the average percent 

of tree canopy for all residential parcels within the tract (positive effect on adoption).  
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Table 6.3. Global regression and GWR of GI adoption on physical and demographic factors at the census tract scale 

   Global Model: Demographic Factors Only  Global Model: Physical Factors Only 

   beta  ba  s.e.  p     VIF  beta  ba  s.e.  p     VIF 

(Intercept)  ‐18.489  ‐18.489  3.872  4.E‐06  ***     7.6  7.6  3.1  0.017  *    

log(Total Number of Households)  2.943  7.051  0.610  3.E‐06  ***  4.1  ‐0.48  ‐1.15  0.34  0.157     1.1 

log(Average Parcel Area (sf))                    ‐0.97  ‐1.84  0.28  8.E‐04  ***  1.3 

Average Parcel Percent Impervious                    0.21  0.01  0.05  2.E‐05  ***  32 
Square of Average Parcel Percent 
Imperviousc                    ‐0.002  ‐1.E‐06  0.0005  4.E‐06  ***  33 
Average Percent Tree Canopy per 
Parcel                    3.9  30.3  1.40  6.E‐03  **  1.9 

Number of Renters in Census Tract  ‐0.003  0.000  0.000  1.E‐10  ***  4.4                   

Percent White >80% (0,1)  ‐1.036  ‐2.723  0.400  1.E‐02  **  1.5                   

log(Median Income)  0.196  0.339  0.300  5.E‐01  ***  1.9                   
Percent non‐English speaking 
>0.3% (0,1)  0.914  2.545  0.359  1.E‐02  **  1.1                   

Adjusted R2  0.3543     0.2906                

F statb  3.15E‐11     5.02E‐14                

                            

 
 
 
 
 
 
 
 
       



 

 
 

230 

   Global Model: Full Model  GWR Results (standardized) 

   beta  ba  s.e.  p     VIF  Min  Max  Significant Count 

Most 
Influential 
Count 

(Intercept)  ‐22.131  ‐22.131  4.150  3.E‐07  ***     ‐46  17  0  0 

log(Total Number of Households)  2.245  5.379  0.530  4.E‐05  ***  4.3  0.37  0.62  172  0 

log(Average Parcel Area (sf))  ‐0.354  ‐0.669  0.247  2.E‐01     1.5  ‐0.26  ‐0.06  103  0 

Average Parcel Percent Impervious  0.207  0.013  0.043  3.E‐06  ***  38  ‐0.04  0.13  111  0 
Square of Average Parcel Percent 
Imperviousc  ‐0.002  0.000  0.000  6.E‐08  ***  37  ‐0.001 

‐
0.0001  134  0 

Average Percent Tree Canopy per 
Parcel  1.760  13.650  1.451  2.E‐01     3.1  0.52  2.4  60  60 

Number of Renters in Census Tract  ‐0.002  0.000  0.000  3.E‐07  ***  5.1  ‐0.002  ‐0.001  172  0 

Percent White >80% (0,1)  ‐1.558  ‐4.093  0.374  5.E‐05  ***  1.8  ‐1.0  ‐0.7  172  112 

log(Median Income)  0.761  1.316  0.289  9.E‐03  **  2.4  ‐0.2  0.4  21  0 
Percent non‐English speaking 
>0.3% (0,1)  0.717  1.996  0.309  2.E‐02  *  1.1  0.1  0.4  11  0 

Adjusted R2  0.5289                      

F statb                         

* significant at alpha=0.05, ** significant at alpha = 0.01, *** significant at alpha = 0.001 
a fully standardized coefficient estimate 
b F stat compared to full model 
c the square of the average parcel percent impervious is included to capture a change in direction from positive to negative in the effect of this variable 
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Social influence 

Evidence of significant time-dependent social influence was detected through both the 

DTC and R200 shuffle tests. Comparison between the simulated probability distribution 

and the observed DTC suggests that the effect of social influence between neighbors did 

not become dominant until 2014 (Figure 6.5a). From 2009 to 2010, there is a statistically 

significant evidence of time-dependency, but 2010 installations were located significantly 

further from 2009 installation than would be expected from a distribution of time-

independent simulations (>99.9% percentile). After the first year of implementation, the 

observed DTC relative to the simulated probability distribution appears to reflect the right-

most situation in Figure 6.4, where growth to distant areas outweighs proximate social 

influence of neighbors. Over time however, the influence of growth to distant areas is 

gradually outweighed by the influence of proximate neighbors. By 2014, the observed DTC 

is significantly lower than what would be expected from a distribution of time-independent 

simulations (<0.1% percentile). 

The results from the R200 metric shuffle test support the finding that participation growth 

first occurred in distant areas after the first year (Figure 6.5b). The observed mean 

number of previous participants within a 200-m radius of each 2010 participant was 

significantly lower than expected from a distribution of time-independent simulations (<0.1% 

percentile). This situation again reflects the right-most situation shown in Figure 6.4. After 

three years however, this relationship reversed itself, and the observed mean number of 

previous participants within the 200-m radius of each  2012 participant (4.65) was 

significantly higher than expected from a distribution of time-independent simulations 

(mean = 3.89 within 200m radius; percentile>99.9%). This is more reflective of the left-

most situation shown in Figure 6.4.  
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Figure 6.5a DTC comparison between simulated probability distribution and observed 

DTC (dashed line).  2010 percentile > 99.9; 2011 percentile =91.6%; 2012 percentile 

=99.6%; 2013 percentile < 91.8%; 2014 percentile < 0.1% 
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Figure 6.5b Comparison between simulated probability distribution and observed R200 

(dashed line).  2010 percentile <0.1%; 2011 percentile = 93.6%; 2012 percentile > 99.9%; 

2013 percentile > 99.9%; 2014 percentile >99.9% 

 

DISCUSSION 

The regression results from this study confirm the survey results from other studies. 

Addressing spatial autocorrelation of residuals fit from a ‘global’ ordinary least squares 

regression model revealed how the magnitude of estimated effects of variables vary 

across the city. Further study of the variation of these effects may help identify reasons 

why some variables are more/less influential in certain neighborhoods. What is clear from 

the regression analysis however is that neighborhood demographic variables are able to 

explain more of the variation in participation than physical characteristics. Since the 

dependent variable was the log of the number of installations of any type of GI (rain barrels, 

rain gardens, bayscaping, shade trees or permeable pavement), residents willing to 

participate in the program are more likely to be able to choose an intervention compatible 

with the physical constraints of their properties. This would decrease the influence of 

physical factors compared to social factors.  

The results of the GWR estimates of standardized explanatory variables also revealed 

that adoption of GI may be driven for different reasons in different areas of the district. 

While the total number of households, the number of renters and a high proportion of white 

residents were factors that were significant in explaining the number of GI adoptions in 

every census tract, other factors, such as level of imperviousness, average parcel area, 

tree canopy cover, and median income were only statistically significant in explaining GI 

uptake in a subset of census tracts. Among census tracts were mean tree canopy cover 
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was significant (62), tree canopy cover was the most influential variable explaining GI 

adoption in 60 of them.  

Combining the findings of the regression analysis of overall participation with the findings 

of the shuffle tests allows for additional interpretation beyond similar studies that have 

sought to explain GI adoption using neighborhood characteristics. Instead of 

neighborhood characteristics reflecting the environmental attitudes, preferences of the 

participants, these characteristics could be more reflective of information flows and 

strength of social influence. 

The findings of the shuffle tests demonstrated evidence that residents tended to 

participate close to previous participants even after controlling for increased density of the 

installations over time and for unobserved individual-level attributes that would cause 

people who live near each other to independently participate in the program. However, 

this pattern emerged only after a certain period of program growth to more distant areas. 

For the DTC metric, statistically significant proximate social influence was not evident until 

the fifth simulation year, compared to in the third simulation year for the R200 metric. An 

explanation for the difference in timing of this trend is the sensitivity of the DTC metric to 

distant outliers. Results of subsequent tests revealed, as expected, that as the buffer 

distance of the counts-within-radius metric is decreased (for example, R100), more years 

were necessary to detect statistically significant evidence of proximate social influence. 

As the radius was increased (for example to R300), evidence was apparent in the second 

year.  

The patterns of social influence in a subsidized GI program detected in this research 

suggest that residential GI adoption can be viewed within stages. In the first stage (first 1-

2 years of the program), early adopters contribute to the growth of the program throughout 

the city. In the second stage (years 2-4), the effect of locations of previous adopters begins 
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to determine locations of subsequent adopters, outweighing growth to distant areas. In the 

third stage (years 3-5), adoptions by residents proximate to previous adopters becomes 

the dominant growth dynamic for the program. 

Limitations 

The main limitation of the shuffle test is the assumption that individuals’ location-based 

attributes are time-invariant. In reality, it is plausible that the locations of and 

demographics of decision makers are changing, and that this may be what is driving 

spatial-temporal dependence of GI adoptions. Systemic neighborhood demographic 

change over time is one example of a time-dependent change that might simultaneously 

drive GI adoption patterns. In the shuffle test, this pattern might appear like a neighbor’s 

adoption ‘influenced’ a subsequent neighbor’s adoption, when in fact one or both may 

have been driven by external trends. A time-dependent confounding factor includes real 

estate agents promoting the RiverSmart Homes program to their clients as a way to 

upgrade the property’s landscaping. In this study these influences are assumed to be 

minimal compared to the influence between proximate neighbors spreading information 

and “displaying” their installations. However, the magnitude of such influences also likely 

vary across the city. Unfortunately, this study did not include sufficient observations to 

compare the results of shuffle tests from different census tracts. Compared to other 

models which seek to capture time dependency of information spread, including other 

resampling techniques (La Fond and Neville, 2010), and panel-based regression (Geroski, 

2000), this study does not control for individual attributes, and therefore is unable to 

compare the relative impacts of social influence versus personal preferences on 

participation in voluntary GI programs. 
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What is unclear from this research therefore is whether normative-based peer pressure 

has resulted in changes in environmental attitude, or, if social influence is occurring 

through neighbors merely spreading information about the existence of the GI subsidy 

program. The choice of years as the time increment for the shuffle test is based on the 

assumption that other types of place-based program promotion would be expected to 

produce quick “bursts” of proximate participation as opposed to months-long or years long 

spatial-temporal dependence. However, I acknowledge that this logic is an imperfect proxy 

for conducting in-depth surveys for both how people learned of the program, and the 

spatial locations of their information sources. Follow-up research could collect information 

about participant locations and knowledge about previous participants to address this gap. 

Previous research has shown a tenuous relationship between knowledge of 

environmental function of GI installations and motivation to install GI (Roy et al., 2008; 

Londoño Cadavid and Ando, 2013; Brown et al., 2016). Perhaps such a shift in the role of 

social influence would constitute a future “fourth phase” of voluntary residential adoption 

of GI. This fourth phase would then begin to appear like the eco-normative feedback 

mechanisms that have been shown to be influential for energy and water consumption 

“nudge” type initiatives (Allcott, 2011; Jain et al., 2013; Schultz et al., 2016). 

CONCLUSION 

This research provides evidence that social influence between neighbors is a significant 

pathway for residents to find out about the River Smart Homes programs. Residential GI 

adoption shows evidence of positive social influence and that this influence results in 

clustered growth that outweighs growth to new areas after 2-3 years of program 

implementation. Showing that GI adoption is similarly responsive to peer influence for 

other environmental behaviors, such as water and energy conservation and solar panel 
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installations has implications for planners. The visibility of GI installation compared to other 

environmental behaviors makes it ideal to spread through space-based social networks 

as residents interact with each other and their local neighborhood environments. This 

suggests that planners should leverage the visibility and aesthetic of GI in high traffic areas 

to disseminate information about how to participate in voluntary programs and make 

positive impacts on the environment and enlist influential community members as 

“neighborhood ambassadors” for GI programs.  

The findings of this study also demonstrate the importance of distinguishing between 

personal willingness to adopt GI, physical feasibility and social processes of information 

dissemination, as empirical correlation between low participation and certain social 

characteristics may be more attributed to limitations of program awareness than conscious 

preferences of residents. In addition to relevance for voluntary GI adoption programs, this 

finding is also useful for programs that rely on economic incentives as motivation for 

private adoption of GI. Social influence through neighborhood “ambassadors” and highly 

visible installations may increase initial awareness and confidence in this ‘new technology’ 

to spur participation in combination with economic or normative approaches to 

encouraging residential participation. 
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CHAPTER 7: CONCLUSIONS AND IMPLICATIONS 
 

SUMMARY OF CONCLUSIONS 

The aspect of Green Infrastructure planning that most differs from conventional 

infrastructure planning is the distributed nature of its functional processes and 

implementation.  In this dissertation, I have improved understanding of three major 

previously unanswered questions about its function. First, in Chapter 3, I showed that the 

loss of incremental storage within watersheds is just as associated with low density 

suburban development as it is with highly impervious urban areas. This finding indicates 

that planners’ previous focus on impervious surface-based development metrics for 

natural hydrology protection is incomplete. Second, in Chapters 4 and 5, I tested the 

sensitivity of a representative residential urban sewershed to various changes in spatial 

configurations of imperviousness and GI networks. I found that coupled surface-

subsurface modeling is important in capturing inter-event capacity recovery in urban 

catchments relying on infiltration and evapotranspiration to manage stormwater runoff. 

However, at this scale, different spatial configurations that might occur due to distributed 

residential GI adoption patterns are not likely to have a detectable effect on hydrological 

effectiveness. Lastly, in Chapter 6, I showed how spatial patterns of GI adoption shift from 

growth to new neighborhoods to clustered around previous participants over time.  

IMPLICATIONS FOR PRACTICE 

Following the flooding of Ellicott City, MD’s historic downtown in 2016, Howard County 

was correct to re-examine the effect of continued development on downstream changes 

to hydrologic response. Even if new developments are “treated” with GI stormwater 

management facilities or designed according to Low Impact Development principles, such 
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practices are unlikely to be able to mitigate all changes to the hydrologic cycle that come 

alongside development. 

Instead, cities and regions should prioritize natural land conservation as part of their 

toolbox for preserving the natural hydrological cycle. In addition to the focus on the most 

visible aspect of the effect of urbanization on the hydrological cycle—runoff generated 

from impervious surfaces—the effects of natural soil and vegetation conservation may 

have an even larger effect than removing imperviousness. This is because the process of 

urbanization is accompanied by drastic changes to the hydraulic conductivity of soils, soil 

compaction, and the density of vegetation, in addition to the increase of imperviousness. 

Incremental hydraulic connectivity in natural areas can be maintained if they are left free 

of drainage infrastructure. Beyond preserved hydrological function, undeveloped lands 

provide opportunities for recreation and can contribute to higher property values and 

overall improvements in quality of life. Resisting development in conservation areas will 

require the economic justification of natural infrastructure and ecosystem services to 

society (eg: Schäffler and Swilling, 2013). While financially quantifying the value of 

conservation is beyond the scope of this dissertation, the findings of this research might 

be incorporated into such an evaluation. 

This empirical finding that development, and not type of development is more influential 

to the loss of incremental storage in urbanized watersheds contradicts the results of 

models that are based on simple land use conversion and land cover models (eg: Wu et 

al., 2015), but affirms other studies that incorporate more complex hydrological processes 

that could influence variable source area, or non-constant contributing areas in response 

in catchments (eg: Bhaskar et al., 2015). This suggests that policy that uses urban growth 

scenarios to evaluate effects on hydrologic response may be overestimating the 

effectiveness of engineered GI on the regional hydrological regime, and underestimating 
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the value of natural conserved land (evapotranspiration from forested land, for example). 

It also suggests that subdivision and land development regulations that require the 

retention of trees above a certain pole size and the planting of vegetation are well justified. 

An example of a more comprehensive zoning regulation is DC’s “Green Area Ratio,” which 

in addition to the subdivision and land development ordinances tools of setback 

requirements and lot bulk coverage limitations, also includes a weighting scheme for 

additional environmental benefits associated with landscape features 

(https://doee.dc.gov/node/619592). While setback requirements and bulk lot coverage 

limitations focus on limiting site imperviousness, metrics like the Green Area Ratio will be 

able to take into better account ecosystem services associated with mature trees, native 

vegetation, and leaf area ratios. At the regional scale, such factors may play a large role 

in restoring incremental storage exceedance patterns that we associate with undisturbed 

watersheds. Unfortunately, but perhaps not surprisingly, even after the deadly Ellicott City 

flood, the proposed development moratorium was not passed because of its political 

unpopularity. This illustrates the particular challenge of the role of the city planner as an 

actor within the urban growth machine, and the need for additional proof that natural land 

preservation does serve critical flood regulation function. 

The pursuit of “near natural” water budgets reflects the desire to replicate pre-development 

ecological conditions to reduce the effects of urbanization on the natural environment 

(Feng et al., 2016). This normative design goal is promoted by EPA standards and 

technical handbooks, as well as rating systems such as the USGBC’s LEED system 

http://www.usgbc.org/) and the Envision™ sustainable infrastructure system 

(http://sustainableinfrastructure.org/envision/), and is steadily becoming more of an 

industry standard as more engineering and construction firms gain capacity in GI design. 

This increase in multi-objective infrastructure planning is a good thing. However, we must 



 

245 
 

also keep in mind the limitations of model-based evidence of reaching “near natural” post-

development water budget goals, since most hydrologic models are not developed to 

capture the changes in evapotranspiration and soil hydraulic conductivity that accompany 

urbanization. This is especially true for greenfield development, where the consequences 

of engineered GI not truly enabling the site to reach “near natural” hydrological conditions 

will be more severe for the surrounding aquatic habitat than for a brownfield 

redevelopment site that in either case, is served by municipal drainage infrastructure. In 

fact, for an appropriately-sized CSS, runoff is intercepted by the drainage system, treated 

at the wastewater treatment plant, and released as treated effluent. The collection and 

treatment processes would smooth out the peaks of storm events and would remove 

pollutants that some engineered GI might not be able to mitigate.  

Related to this, is the second implication for practice: continued GI data collection and 

monitoring is necessary. There is still limited empirical research showing catchment-scale 

effects of engineered GI on hydrological regime and water quality. Empirical, statistical 

analysis of urbanized areas with and without GI in the Maryland-Washington DC region, 

where GI has already been adopted at rates high enough to begin to detect statistical 

differences, did show evidence of less flashy hydrology (Pennino et al., 2016). This region 

has collected large amounts of GI data (including contributing areas and locations of GI 

installations) as well as flow and water quality data. As more urban catchments implement 

GI across the US, we can expect more urbanized catchments to cross thresholds of 

catchment-scale hydrological effectiveness. In order to truly assess variation in 

effectiveness associated with engineered-GI at the catchment scale, data on GI 

implementation should be publically available, and policy should include the collection of 

relevant long-term monitoring data. In this dissertation, I conducted a statistical study of 

urban variable source area using USGS stream gauge flow data only, but important long-
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term water quality parameters, including nitrate (NO3-), total nitrogen (TN), phosphate 

(PO43-), and total phosphorous (TP) available in the Baltimore region enabled closer 

examination of the effectiveness of GI on water quality in this geographic area. These data 

have been collected through various programs, including the EPA and USGS, but also 

regionally specific initiatives, such as the Baltimore Ecosystem Study Long-term 

Ecological Research (http://www.beslter.org/data) site and the Clean Water Baltimore 

(http://cleanwaterbaltimore.businesscatalyst.com) Sampling Program (Pennino et al., 

2016). The use of GI to both improve infrastructure function and to improve environmental 

conditions fits into the adaptive management regulatory framework. This regulatory 

framework requires policy innovation and urban experimentation and theoretically should 

afford communities the agility to adapt to changing conditions of urbanization and climate. 

This adaptive management is only possible with continuous data collection, modelling and 

reassessment when interim goals are not met, or when conditions are not stationary. 

The third implication for practice from this dissertation is that the distributed nature of GI 

has the potential to be more of an asset than a challenge within cities. GI is a distributed 

infrastructure that can be deployed simply as a change to a property owner’s landscaping 

practices. On the one hand, this could be viewed as a challenge, because compared to 

traditional, centralized infrastructure planning, engineers have little control over the 

landscaping and land management practices of hundreds of thousands of property owners. 

On the other hand, this dissertation showed that precise spatial configurations are not 

likely to result in detectable differences in hydrologic response on the sewershed scale, 

and that participation in voluntary GI programs spreads through spatially-dependent social 

networks over time. Within any given sewershed, there is no reason to spend resources 

in property-specific targeting or land acquisition strategies to “optimize” GI placement to 

avoid decreased effectiveness of GI networks. Note that this does not imply that 
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implementation of GI at the city scale need not consider spatial location of GI. However, 

such a conclusion is likely to be dependent on the capacity and needs of the existing 

infrastructure, rather than on the natural processes of groundwater dynamics and 

evapotranspiration that were hypothesized to potentially impact capacity recovery 

differentially across space.  

Without the burden of spatial optimization from a hydrological perspective, GI planners 

and policymakers could shift their attention to other reasons for spatially targeting outreach 

to potential participants in distributed GI programs. For example, the spatial distribution of 

green space within cities is partially driven by overall market-driven redevelopment rates 

and investment, and is associated with larger properties and higher income levels (Heckert 

and Rosan, 2015; Lin et al., 2015). Targeted investment of GI implementation for 

traditionally disadvantaged residents is one way to encourage urban equity through 

community development and increased environmental amenity and beautification (Spirn, 

2005; Baptiste et al., 2015). 

As with other new technologies, it will take time for GI to catch on among residents, but 

the findings for this dissertation are encouraging because there is evidence of socially-

dependent dissemination. The hard work of outreach and publicity about voluntary GI 

programs after five years of implementation, has shifted from the planning agency, to past 

participants. In fact, in 2015, according to one planner involved in Washington DC’s 

voluntary residential GI program, the limiting factor for increased implementation is now 

availability of funds where previously the limiting factor was residents’ willingness to 

participate in the program.  
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FURTHER RESEARCH 

In this dissertation, I explored a range of scales and dimensions of the socio-ecological 

systems of green infrastructure and stormwater runoff. But there are still many outstanding 

questions about how scale and type of GI will actually result in measurable improvements 

in the aquatic habitat. GI that is planned for and implemented as part of the NPDES permit 

requirements for an MS4 or CSS should be viewed as a way to reach compliance as a 

point source. While this is one step towards meeting the goals of the Clean Water Act, it 

does not necessarily translate to improved water quality in impaired water bodies. This 

question will rely on how infrastructure outfalls, as a large-area point source, compare to 

other sources (some of which may be even more dispersed, such as agriculture or 

atmospheric deposition), in determining water quality. Situating both the current and 

potential capacity for urban areas to improve water quality within the larger context of other 

sources of water quality impairment will help policy makers and planners budget funding 

for water quality improvement plans at various scales. 

This dissertation was mostly concerned with hydrological regime changes, rather than on 

water quality parameters. Urbanization is accompanied by decreased storage and flashier 

runoff response, as well as increased pollutant loadings. Pollutant loads are also 

dependent on land use type, and GI will be able to reduce certain types of pollutants more 

efficiently than others. For example, in Chapter 2, I showed how low density developed 

open space exhibited loss of variable source area-type response in a similar way to high-

density urban cores. However, those different land use types would also be expected to 

exhibit different pollutant loading profiles. Additional research could investigate the 

interaction between variable source area-type response and pollutant profiles. 

The research on sensitivity of hydrologic response at the sewershed scale to the spatial 

configuration of imperviousness and GI networks could be broadened to examine the 
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conditions under which a “high capacitance” catchment begins to transition to a catchment 

that exhibits evidence of having “low capacitance.” Over the past three decades, there has 

been much interest in identifying thresholds of hydrologic change. The most well-known 

example, Schueler’s 10 percent rule of thumb, which stated that watersheds that were 

covered in over 10 percent impervious surface area had detectable signs of impairment, 

is still commonly referred to today (Schueler, 1994; Schueler et al., 2009).  

Unfortunately, going the other way, from a “more developed” state to a “less developed” 

state through GI retrofits will require larger changes to the developed landscape. This 

dissertation showed that differences in the rainfall-runoff ratio were only detectable after 

between 36 percent to 100 percent differences in (non-GI treated) impervious area on the 

site compared to the levels of variation present in monitored pipe flow data. Differences in 

the rainfall-runoff ratio between spatial configurations of GI networks of equal treated area 

were observable only when the total area treated with GI exceeded 14 percent. In another 

study, no observable differences were observed until 7 percent of the watershed area was 

retrofit with GI (Miles, 2014). Greater definition of when such thresholds in behavior and 

behavioral metrics, and under what conditions they exist would be useful to communities 

that would like to know at what point GI networks could reach an upper limit of 

effectiveness. 

This highlights the intuitive yet often overlooked distinction that cities that wish to restore 

environmental or infrastructure function are facing a fundamentally different problem than 

developing cities that wish to maintain the ecological function of undeveloped land. This 

means that it is appropriate to adopt subdivision and land development ordinances for 

greenfield development that are different from ordinances for existing site redevelopment. 

Ten percent disturbance of greenfield land for development is not the same as treating 10 

percent of impervious surface in an urban context. According to this study, the latter would 
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not be expected to result in any detectable difference in monitored pipe flow runoff 

volumes.  

Lastly, more empirical research is needed to determine the exact social processes through 

which voluntary GI adoption is spreading. In this dissertation I showed evidence of social 

processes of GI program growth. Programs such as the RiverSmart Homes program are 

entering a stage of maturity that allows for reflection on best practices for city-wide 

implementation. Understanding the time-dependent responsiveness of how residents’ 

landscape management practices will allow cities to plan for how long it may take 

distributed property owners adapt to changing infrastructure, climate, and development 

conditions for the benefit of the overall urban environment.  

For example, while a particular city’s storm or sewer infrastructure may currently 

necessitate mitigation of runoff from the first inch of rainfall, increased intensity of 

precipitation patterns may require more source control measures for that same system to 

be functional in the future. Knowing how quickly property owners will voluntarily adapt their 

landscaping practices given these nonstationary planning conditions will be very useful. 

In contrast to redevelopment rates that would trigger mandatory regulatory ordinances, 

growth rates of voluntary participation programs would capture an important mechanism 

for adaptive management, as well as a means for the city to invest in communities where 

real estate development may not be a primary driver of property upgrading. 
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