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Mechanics Of Fluctuating Elastic Plates And Fiber Networks

Abstract
Lipid membranes and fiber networks in biological systems perform important mechanical functions at the
cellular and tissue levels. In this thesis I delve into two detailed problems -- thermal fluctuation of membranes
and non-linear compression response of fiber networks. Typically, membrane fluctuations are analysed by
decomposing into normal modes or by molecular simulations. In the first part of my thesis, I propose a new
semi-analytic method to calculate the partition function of a membrane. The membrane is viewed as a
fluctuating von Karman plate and discretized into triangular elements. Its energy is expressed as a function of
nodal displacements, and then the partition function and co-variance matrix are computed using Gaussian
integrals. I recover well-known results for the dependence of the projected area of a lipid bilayer membrane on
the applied tension, and recent simulation results on the ependence of membrane free energy on geometry,
spontaneous curvature and tension. As new applications I use this technique to study a membrane with
heterogeneity and different boundary conditions. I also use this technique to study solid membranes by taking
account of the non-linear coupling of in-plane strains with out-of-plane deflections using a penalty energy, and
apply it to graphene, an ultra-thin two-dimensional solid. The scaling of graphene fluctuations with membrane
size is recovered. I am able to capture the dependence of the thermal expansion coefficient of graphene on
temperature. Next, I study curvature mediated interactions between inclusions in membranes. I assume the
inclusions to be rigid, and show that the elastic and entropic forces between them can compete to yield a local
maximum in the free energy if the membrane bending modulus is small. If the spacing between the inclusions
is less than this local maximum then the attractive entropic forces dominate and the separation between the
inclusions will be determined by short range interactions; if the spacing is more than the local maximum then
the elastic repulsive forces dominate and the inclusions will move further apart. This technique can be
extended to account for entropic effects in other methods which rely on quadratic energies to study the
interactions of inclusions in membranes. In the second part of this thesis I study the compression response of
two fiber network materials -- blood clots and carbon nanotube forests. The stress-strain curve of both
materials reveals four characteristic regions, for compression-decompression: 1) linear elastic region; 2) upper
plateau or softening region; 3) non-linear elastic region or re-stretching of the network; 4) lower plateau in
which dissociation of some newly made connections occurs. This response is described by a phase transition
based continuum model. The model is inspired by the observation of one or more moving interfaces across
which densified and rarefied phases of fibers co-exist. I use a quasi-static version of the Abeyaratne-Knowles
theory of phase transitions for continua with a stick-slip type kinetic law and a nucleation criterion based on
the

critical stress for buckling to describe the formation and motion of these interfaces in uniaxial compression
experiments. Our models could aid the design of biomaterials and carbon nanotube forests to have desired
mechanical properties and guide further understanding of their behavior under large deformations.
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ABSTRACT

MECHANICS OF FLUCTUATING ELASTIC PLATES AND FIBER

NETWORKS

Xiaojun Liang

Prashant K. Purohit

Lipid membranes and fiber networks in biological systems perform important mechanical

functions at the cellular and tissue levels. In this thesis I delve into two detailed problems

– thermal fluctuation of membranes and non-linear compression response of fiber networks.

Typically, membrane fluctuations are analysed by decomposing into normal modes or by

molecular simulations. In the first part of my thesis, I propose a new semi-analytic method

to calculate the partition function of a membrane. The membrane is viewed as a fluctuat-

ing von Karman plate and discretized into triangular elements. Its energy is expressed as a

function of nodal displacements, and then the partition function and co-variance matrix are

computed using Gaussian integrals. I recover well-known results for the dependence of the

projected area of a lipid bilayer membrane on the applied tension, and recent simulation

results on the dependence of membrane free energy on geometry, spontaneous curvature and

tension. As new applications I use this technique to study a membrane with heterogeneity

and different boundary conditions. I also use this technique to study solid membranes by

taking account of the non-linear coupling of in-plane strains with out-of-plane deflections

using a penalty energy, and apply it to graphene, an ultra-thin two-dimensional solid. The

scaling of graphene fluctuations with membrane size is recovered. I am able to capture the

dependence of the thermal expansion coefficient of graphene on temperature. Next, I study

curvature mediated interactions between inclusions in membranes. I assume the inclusions

to be rigid, and show that the elastic and entropic forces between them can compete to

yield a local maximum in the free energy if the membrane bending modulus is small. If

the spacing between the inclusions is less than this local maximum then the attractive en-

tropic forces dominate and the separation between the inclusions will be determined by

short range interactions; if the spacing is more than the local maximum then the elastic

repulsive forces dominate and the inclusions will move further apart. This technique can be

extended to account for entropic effects in other methods which rely on quadratic energies
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to study the interactions of inclusions in membranes. In the second part of this thesis I

study the compression response of two fiber network materials – blood clots and carbon

nanotube forests. The stress-strain curve of both materials reveals four characteristic re-

gions, for compression-decompression: 1) linear elastic region; 2) upper plateau or softening

region; 3) non-linear elastic region or re-stretching of the network; 4) lower plateau in which

dissociation of some newly made connections occurs. This response is described by a phase

transition based continuum model. The model is inspired by the observation of one or

more moving interfaces across which densified and rarefied phases of fibers co-exist. I use

a quasi-static version of the Abeyaratne-Knowles theory of phase transitions for continua

with a stick-slip type kinetic law and a nucleation criterion based on the critical stress for

buckling to describe the formation and motion of these interfaces in uniaxial compression

experiments. Our models could aid the design of biomaterials and carbon nanotube forests

to have desired mechanical properties and guide further understanding of their behavior

under large deformations.
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Chapter 1

Introduction

Living cells are able to sense external mechanical forces and react to them both chem-

ically and mechanically. The boundary between the interior and exterior of the cell is the

plasma membrane. It serves as a protecting shell for the cell organelles as shown in Fig-

ure 1.1a. This membrane has a very complex structure, and elaborate assembly of distinct

components is required for morphological or topological change in its shape. It mainly con-

sists of an organized bilayer of lipids, which are fatty acid molecules surrounded by fluid.

The bilayer is about 5 nm thick with a bending modulus around 20 kBT at T = 300 K. It is

stable against thermal motions, but is considerably soft to be flexible for shape transforma-

tion. The cell membrane is regarded as a fluid interface, thermodynamic properties of which

are influenced by its stretching and bending stiffness, induced curvature field and thermal

fluctuations Ramakrishnan et al. (2014). In addition to the lipid bilayer, the cell membrane

itself also has a large number of proteins embedded in it and is often described in terms of

the ‘fluid mosaic model’ (see Figure 1.1b). The embedded proteins occupy volume fraction

between 18% to 75% with a corresponding ratio of numbers of protein to lipid varying from

0.23 − 1.6 Guidotti (1972). The embedded proteins can diffuse on the membrane and can

interact with each other and with the lipids in the membrane sterically, electrostatically,

mechanically and through other means. Their interactions are the key factor determining

the shape and thus function of the cell membrane. The cell membrane is supported un-

derneath by the cytoskeleton which is a mesh-work of filaments that extends throughout

the cytoplasm (see Figure 1.1c) and could include actin, spectrin, intermediate filaments,

microtubules and proteins that cross-link them. It works intimately with the cell membrane
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Figure 1.1: (a) Schematic diagram of a typical cell structure, which contains many in-cell
organelles. (b) Schematic diagram of a lipid bilyer membrane, whose mechanical rigidity is
altered by the presence of embedded protein molecules. (c) Schematic diagram of a filament
network.

to spatially organize the components of the cell, and also connects the cell physically and

biologically to the surrounding substance in its exterior. It helps a cell to resist deformation,

to transport cross-cellular force and to adjust shape during functioning Fletcher & Mullins

(2010). Both in-cell and cross-cell physical forces can act on the cytoskeleton to modify

local mechanical properties and biological function. The exterior of the cell often consists

of a matrix of filaments called the extra-cellular matrix (ECM). Much of the biology of a cell

depends on the mechanics of the ECM. Therefore, it is extremely important to understand

quantitatively the mechanics of cell membranes, cytoskeleton and the ECM.

Mechanical and thermodynamic properties of the cell membrane have been quantita-

tively studied using in vitro experimental methods Evans & Rawicz (1990). These studies

from a few decades ago have revealed that in the mechanics of cell membranes, thermal fluc-
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tuations play an important role Helfrich (1973), Weeks (1977). Early analytic results that

successfully explained the behavior of liquid-vapor interfaces also explained the fluctuations

of lipid bilayers Helfrich (1975), Milner & Safran (1987), Boal & Boal (2012). Following

this idea, people developed analytic Helfrich (1973, 1975), Evans (1974) and computa-

tional methods Weeks (1977), Milner & Safran (1987) to understand how lipid membranes

respond mechanically and thermodynamically to different applied loading and boundary

conditions. Later, atomic modeling methods were applied to understand highly complex

two-dimensional systems, such as lipid bilayers, by using sophisticated computational tech-

niques Lindahl & Edholm (2000). Both experimental and computational methods were

able to determine not just how lipids assemble to form membranes, but also how mem-

brane inclusions sense local membrane curvature, and then affect membrane local structure

(lipid bilayer thickness, tilt of the lipids, etc.). However, it is not always possible to design

an experiment for large scale problems involving membrane protein interactions, and also

the sample scale is too large for molecular simulations. To overcome these difficulties, re-

searchers turned to continuum modeling to study large scale (more than several microns)

membrane-protein problems. In this approach the lipid membrane is treated as a thin plate

because its in-plane dimensions are much larger than its thickness. The infinite microscopic

degrees of freedom of the two dimensional system are represented by several macroscopic

variables of the plate that define the system mechanical and thermodynamic properties.

Similar strategies together with molecular dynamic tools are applied to extract the me-

chanical properties of two-dimensional solids, such as, graphene Fasolino et al. (2007) and

polymeric membranes Rodŕıguez-Garćıa et al. (2011). These two-dimensional solids are

regarded as elastic plates suffering from out-of-plane fluctuation. However, the term ‘mem-

brane’ is more commonly used in the literature for these two-dimensional systems. In this

thesis I will use ‘plate’ and ‘membrane’ interchangeably when referring to these objects.

While the effect of thermal fluctuations on the mechanics of homogeneous lipid mem-

branes is relatively well understood, the same cannot be said about heterogeneous lipid

membranes, such as those that have proteins embedded in them or have domains in which

different types of lipids are present. One of our goals in this thesis is to study exactly this

type of heterogeneous membranes. Most treatments of such membranes in the computa-

tional/theoretical literature are based on Fourier methods and/or Monte Carlo, molecular

dynamics or Brownian dynamics computations which require significant computational re-
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sources. We propose a different semi-analytic technique that requires much less computa-

tional effort and can be used to study two-dimensional systems which involve elastic and

entropic effects, such as, fluctuating heterogeneous lipid membranes, fluctuating graphene

sheets and protein interactions on lipid membranes.

We treat inclusions, such as proteins, in lipid membranes as defects in a solid (imagine

an impurity atom occupying a site in a crystal lattice). In mechanics the forces of interaction

between defects in an elastic body are well understood. For example, two screw dislocations

with Burger’s vectors b and b′ at a distance r from each other interact with a force per unit

length F of magnitude F = µbb′/(2πr) where µ is the shear modulus of the solid. This

interaction force arises because the defects produce elastic fields around them which can

overlap. The interaction between the defects could be attractive or repulsive depending on

whether the total elastic energy of the solid decreases or increases due to the overlapping of

stress and strain fields produced by the defects Weertman & Weertman (1992). Interactions

between defects in an elastic solid can also arise due to entropic effects. For example, the

equilibrium concentration of vacancies in a solid is a result of the competition between

the elastic energy and the entropy of the vacancies. The elastic part of the free energy of

the solid, Uel, increases if the vacancy concentration increases because the vacancies create

elastic fields around them that store energy. On the other hand, the entropic part of the free

energy of the solid decreases as the vacancy concentration increases because the entropic

part of the free energy goes as −TS ≈ −TkB(c log c+ (1− c) log(1− c)) for dilute vacancy

concentrations, or c << 1. This competition gives rise to a non-zero vacancy concentration

at which the free energy is a minimum Christian (2002). In a similar vein, the chemical force

on a dislocation has its origins in the entropy of vacancies Weertman & Weertman (1992).

The physics of elastic and entropic interactions described above is applicable to any kind of

defect of in an elastic material. Since lipid membranes can be modeled as elastic continua

we will apply concepts similar to those described above to inclusions, such as proteins, in

them.

While lipid membranes could be studied in vitro, the cytoskeleton is not a simple and

isolated object that could be completely studied without other cell organelles. However, its

structure as an isotropic filament network has been identified and reconstructed in vitro to

circumvent cell complexity Zagar et al. (2011). Researchers have used both experimental

and computational methods to understand its mechanical response under different applied
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loading condition Howard et al. (2001), Huisman et al. (2007), Stricker et al. (2010). It has

been realized that their mechanics in compression is similar to that of foams Gent & Thomas

(1959, 1963). Recall that foams or cellular solids, like networks, consist of interconnected

solid material and large voids that contain fluids like air or water. Examples of other

natural foam material are bone, wood and cork, which have a prismatic, or honeycomb-like

cells that support the overall structure. Following this realization materials with a similar

cellular structure are being designed, such as carbon nanotube (CNT) forests Cao et al.

(2005) and porous scaffolds in tissue engineering Gibson (2005). The mechanical response

of a foam material strongly depends on that of the solid making up the foam, as well as

its microstructural features, especially the length of filament between cross-links and the

volume fraction of the solid filaments. The volume fraction is also equivalent to the ratio

of the density of the cellular solid to that of the solid it is made from, which is called the

relative density in literature Gibson & Ashby (1999), Gibson (2005). The volume fraction

of the filament ranges from 0.1 to 0.4 for different kind of materials, and could be as low as

0.001 for special ultra-low-density foams. People started to represent the foam structure by

an organized model of repeating unit cells, such as a hexagon in two dimensions, a cube or

dodecahedron in three dimension as in Ko (1965), Finnie & Patel (1970), Gibson & Ashby

(1982). On the other hand, dimensional analysis is also used to estimate the stiffness of

foam network without specifying the exact geometrical model for single cell as done by

Gibson and Ashby Gibson & Ashby (1999). This shows that the expression for axial and

shear stiffness of foam material is proportional to the length scale between cross-links and

the volume fraction of the solid filaments, and leaves the coefficient to be determined by

experiment. Other than theoretical methods, computational methods such as the finite

element method have also been developed to understand random foam structures as in

Silva et al. (1995), Van der Burg et al. (1997). Finite element models are able to include

imperfections in the foam structure as in Chen et al. (2001).

In recent biophysical studies of filament networks most attention has been devoted to

shear loading, but little has been done for compressive loading. When filament networks are

loaded in compression they give stress-strain curves that are similar to those of foams which

have three regions. In the small strain region, there is an initial linear relation between stress

and strain which is similar to any elastic solid. In this region, the stiffness is well understood

and can be obtained by considering a unit cell or by dimensional analysis Gibson & Ashby
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Figure 1.2: (a) A two dimensional system suffering from out-of-plane fluctuations. There
is hydro-static tension on the boundary of the system. (b) The projected area increases as
hydro-static tension increases.

(1999). As the compressive load is increased to a critical value, filaments in the network

start to bend and buckle, and thus the stress-strain curve turns into a plateau. The critical

load could be somehow estimated by viewing each filament as an Euler-Bernoulli beamKim

et al. (2016). Along the plateau region, the fraction of buckled filaments gradually increases

until most of the filaments are buckled. Finally, network densification occurs forming many

more inter-filament contacts resulting in steep rise of the stress-strain curve. In this region,

the stress dependence on fiber volume fraction is given by a power law relation Van Wyk

(1946), Toll (1998). This behavior is typical and has been summarized in Figure 1.3. Often

in compressed fiber networks in the plateau region of the stress-strain curve one observes

regions of locally densified network coexisting with a rarefied network with straight fibers

and few contacts. Our major insight is that these are two phases of the same material with

a mobile interface separating them. Thus, compression of fiber networks can be tackled

using a continuum theory of phase transitions. We utilize this insight to model compression

of fibrin networks (which are one type of ECM with fibrin filaments), CNT foams, as well

as blood clots which consist of fibrin networks with embedded platelets and red blood cells.
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Figure 1.3: (a) Schematic diagram of a foam-like material under compression. The small
compression configuration with straight filament is on the left. The large compression
configuration with densified network is on the right and a mixture of these two phases for
intermediate load in the middle. (b) A typical tri-phasic stressstrain response of such a
material assuming quasi-static loading. There is a critical load at the end of the linear
region at which filaments start buckling, and the overall curve turns into a plateau region
due to increasing fraction of buckled filaments. Finally, there is sharp increase following the
plateau due to network densification.

1.1 Scope of the thesis

This thesis is organized as follows. Following the introduction, Part I describes a new

method combining continuum mechanics and statistical mechanics to understand how ther-

mal fluctuation of two-dimensional materials influences their mechanical behavior. Chap-

ter 2 applies the method to lipid bilayer membranes. A membrane is viewed as a fluctuating

von Karman plate and discretized into triangular elements. Its energy is expressed as a func-

tion of nodal displacements, and the partition function and co-variance matrix is computed

using Gaussian integrals. Well-known results for the dependence of the projected area of

the membrane on the applied tension and recent simulation results on the dependence of
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membrane free energy on geometry, spontaneous curvature and tension are recovered. As

new applications we compute the fluctuations of the membrane of a malaria infected cell

and analyze the effects of boundary conditions on fluctuations.

Chapter 3 applies the above method to a solid membrane, graphene. The non-linear

coupling of in-plane strains with out-of-plane deflections in solid membranes is captured

using a penalty energy. We recover well-known results for the scaling of the fluctuations

with membrane size, but show that the fluctuation profile strongly depends on boundary

conditions and type of loading applied on the membrane. Our method quantitatively pre-

dicts the dependence of the thermal expansion coefficient of graphene on temperature in

agreement with several experiments. We also make falsifiable predictions for the depen-

dence of thermal expansion coefficient and the heat capacity of graphene on applied loads

and temperature.

Chapter 4 accounts for membrane inclusions such as proteins, bringing us a step closer

to realistic cell membranes. The elastic energy of such a system has been well studied Kim

et al. (1998), Yolcu et al. (2014); however, the entropic part has not. The embedded proteins

in this thesis are modeled as stiff objects which impose a fixed contact angle boundary

condition on the membrane producing regions of local curvature. Both elastic contribution

and entropic contribution to the free energy of a two-protein and multi-protein system (or

cluster) as function of separation distance is computed. An equilibrium spacing between two

or more proteins is determined using our computation where the elastic interaction force

is balanced by the entropic force. This critical spacing can be modlulated by applying a

tension as well as by changing membrane bending modulus. Furthermore, we can compute

free energies of a cluster of proteins on a membrane and show how the membrane mechanical

properties are affected.

Part II introduces a phase transition theory with specific phase boundary kinetic laws to

study the compression behavior of foams. Chapter 5 applies the theory to a fibrin network.

By characterization of the network structure with synchronous measurement of the fibrin

storage and loss moduli at increasing degrees of compression, we show that the compressive

behavior of fibrin networks is similar to that of cellular solids. A non-linear stress-strain

response of fibrin consists of three regimes, same as a foam. Importantly, the spatially non-

uniform network deformation includes formation of a moving “compression front” along the

axis of strain, which segregated the fibrin network into compartments with different fiber
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densities and structure. The Young’s modulus of the linear phase depends quadratically

on the fibrin volume fraction while that in the densified phase depends cubically on it.

The viscoelastic plateau regime corresponds to a mixture of these two phases in which

the fractions of the two phases change during compression. We model this regime using a

continuum theory of phase transitions and analytically predict the storage and loss moduli

which are in good agreement with the experimental data.

Chapter 6 further applies our analysis to platelet poor plasma (PPP) clots, platelet

rich plasma (PRP) clots and whole blood clots with a combination of experiment and

theory. The experimental analysis is carried out in the lab of Professor John Weisel using

a custom built apparatus that combines a rheometer and a confocal microscope. Using this

apparatus they can measure the compression stress-strain curve at various strain rates while

simultaneously tracking the evolution in clot structure. In addition to the phase transition

theory of pure fibrin networks, we also account for the pre-stress caused by platelets, the

adhesion of fibrin fibers in the densified phase, the compression of red-blood cells, and the

pumping of liquids through the clot during compression.

Chapter 7 applies our phase transition theory to CNT forests, which are well-known

as foam-like materials. Our model is inspired by the observation of one or more propagating

interfaces across which densified and rarefied phases of the CNT forests co-exist. The same

phase transitions model for continua with a stick-slip type kinetic law and a nucleation crite-

rion based on the critical stress for buckling of CNT forests is used to describe the formation

and propagation of these interfaces in uniaxial compression experiments. We consider pil-

lars made from bare CNTs, as well as those coated with different thicknesses of alumina

using atomic layer deposition (ALD). The effect of ALD coating thickness on the parame-

ters entering the phase transition model are described. We also carry out nanoindentation

experiments on the CNT pillars and interpret the load-indentation data by incorporating a

constitutive law allowing for phase transitions into solutions for the indentation of a linearly

elastic half-space. Even though the state of stress in a nanoindentation experiment is more

complex than that in a uniaxial compression test, we find that the parameters obtained

from fitting the nanoindentation experiments are close to those from uniaxial compression.

Our nanoindentation experiments also reveal dissipation which, we believe, has its origins

in inter-fiber contacts in the densified phase. Our models could therefore aid the design of

CNT forests to have engineered mechanical properties, and guide further understanding of
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their behavior under large deformations.

Chapter 8 concludes the thesis by summarizing and discussing the new results and

pointing to future research directions.
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Part I

Thermal fluctuation of elastic

bodies
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Chapter 2

Lipid membranes

Many previous analytic studies of the thermal fluctuation of membranes relied on Fourier

series (or series expansions in other orthogonal bases) Fasolino et al. (2007), Helfrich (1973,

1975), Milner & Safran (1987), Boal & Boal (2012) to decompose the membrane fluctuation

into normal modes. Then the mean square amplitude of each mode was obtained using the

equipartition theorem. Finally, integration over all wave-lengths lead to an expression for

the change in projected area of the membrane as a function of the tension. However, these

treatments did not examine the role of boundary conditions on membrane fluctuations. For

example, I expect smaller fluctuations if I apply clamped-clamped boundary conditions on

a fluctuating plate than when I apply simply supported boundary conditions.

Membrane statistical mechanics has also been studied using different simulation meth-

ods. In these studies the membrane is first discretized and its energy is written in terms

of the discretized variables. Fluctuations are then analyzed using Monte Carlo techniques

Auth & Gompper (2013), Ramakrishnan et al. (2010), Tourdot et al. (2014), Lin et al.

(2006), Harmandaris & Deserno (2006), Hanlumyuang et al. (2014). Unlike the Fourier

series approaches, Monte Carlo methods are not restricted to small fluctuations of mem-

branes. They are general enough to account for the coupling of out-of-plane displacement

to in-plane strains Fasolino et al. (2007), Nelson et al. (2004), as well as different types of

boundary conditions. Using Monte Carlo simulations the effects of proteins on membranes

have also been studied Tourdot et al. (2014), Lin et al. (2006), Ramakrishnan et al. (2014).

Another class of simulation methods that has been used to study membrane fluctuations is

the time dependent Ginzburg-Landau (TDGL) method. The advantage of these methods
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is that they can capture the temporal response of membranes Agrawal & Radhakrishnan

(2009), Lin et al. (2006) while Monte Carlo methods give only the equilibrium response.

However, it is time consuming to compute membrane free energies using Monte Carlo or

TDGL methods. I refer the reader to a review by Ramakrishnan et al. (2014) for a detailed

description of the state of the art in simulation methods for membranes.

Here I propose a new approach to compute membrane free energies and fluctuations. I

discretize a membrane using equilateral triangle elements Hughes (2000). Then I express

the energy of the membrane in terms of displacements of each node exactly as in finite

elements, like many Monte Carlo and other simulations do Gompper & Kroll (1996), Nelson

et al. (2004). However, I compute the partition function of the membrane using a different

strategy based on Gaussian integrals Weiner (2012), D & M. (1980), Zhang & Crothers

(2003) that has been successfully applied to fluctuating elastic rodsSu & Purohit (2010,

2011) and fiber networksSu & Purohit (2012), Flory et al. (1969). This has the advantage

that it involves lesser computational effort than Monte Carlo or TDGL methods if the size

of the membrane is not very large. The disadvantage is that I am confined to fluctuations

that are not so large as to cause overhangs in the membrane configuration (this is similar

to the Monge gauge Boal & Boal (2012)) resulting in non-quadratic Hamiltonians. Using

our method I first recover some known results on membrane fluctuations. Then, I show

how different boundary conditions can affect the fluctuations. I also use our method to

compute free energies of a membrane with regions of different spontaneous curvature. Our

method allows us to study heterogeneous membranes which are the norm in biological cells.

I apply it to a recent experiment on the fluctuations of cell membranes infected with malarial

parasite Park et al. (2008).

2.1 von Karman energy

Consider a thin square membrane (or plate) of side L with a finite bending modulus Kb

everywhere as shown in Figure 2.1. Here I assume that Kb is a constant everywhere, but

later in the paper I allow Kb to be a function of reference coordinates x and y. I assume

that the plate is under tension, but due to thermal fluctuations it can suffer moderately

large deflections. According to the von Karman plate theory, the elastic energy E of such a

plate can be expressed as a combination of the stretching and bending energies as in Audoly
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Figure 2.1: Fluctuating elastic plate with applied hydro-static tension F . The out-of-plane
deflection of reference point (x, y) is w(x, y).

& Pomeau (2010):

E = Es + Eb =
Y h

2(1− ν2)

∫∫
dxdy

[
(εx + εy)

2 − 2 (1− ν)
(
εxεy − ε2

xy

)]
+

Y h3

24(1− ν2)

∫∫
dxdy

[
(w,xx + w,yy)

2 − 2 (1− ν)
(
w,xxw,yy − w2

,xy

)]
,

(2.1)

where Y and ν are the Young’s modulus and Poisson ratio of the material respectively, and

h is the thickness of the membrane. The variables εx, εy, εxy, and w in the integral are

respectively the in-plane strains and out-plane displacement of the neutral plane. The sub

index ,xx,,xy ,,yy represent second derivatives respectively with respect to the reference coor-

dinates. von Karman also deduced the geometrical relation that links the in-plane strains

to w(x, y) and the two in-plane displacements u, v respectively in the x and y directions.

This relation is summarized by

εx =u,x +
w2
,x

2
,

εy =v,y +
w2
,y

2
,

εxy =
u,y + v,x

2
+
w,xw,y

2
.

(2.2)

The in-plane strains εx, εy, εxy are related to the out-of-plane displacement w(x, y) through

a compatibility condition which involves the Gauss curvature of the membrane Audoly &

Pomeau (2010). Now, consider applying a two-dimensional hydro-static tension of magni-

tude F along all the edges of our fluctuating membrane, as shown in Figure 2.1. Then from
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Eqn. (2.2), the potential energy due to this tension is given by

PE = −
∫∫

F (u,x + v,y) dxdy = −
∫∫

F

(
εx −

w2
,x

2
+ εy −

w2
,y

2

)
dxdy. (2.3)

Assuming two-dimensional plane stress, let us define K = Y/(2−2ν) as the two-dimensional

bulk modulus. I use K and shear modulus G = Y/(2 + 2ν) instead of Young’s modulus Y

and Poisson’s ratio ν as the two mechanical parameters for an isotropic material, then

Y

1− ν2
=

1

2

(
Y

1 + ν
+

Y

1− ν

)
= K +G. (2.4)

Using this I can rewrite the expression for the von-Karman energy as

Es =

∫∫
dxdy

{
Kh

2
(εx + εy)

2 +
Gh

2

[
(εx − εy)2 + ε2

xy

]}
,

Eb =

∫∫
dxdy

{
Kh3

24
(w,xx + w,yy)

2 +
Gh3

24

[
(w,xx − w,yy)2 + w2

,xy

]}
.

(2.5)

Adding the potential energy to this expression and denoting Kh3/12 as a new bending

modulus Kb, I get the total energy of the fluctuating plate as E = Es + Eb, where

Es =

∫∫
dxdy

{
Kh

2
(εx + εy)

2 +
Gh

2

[
(εx − εy)2 + ε2

xy

]
− F (εx + εy)

}
,

Eb =

∫∫
dxdy

{
Kb

2
(w,xx + w,yy)

2 +
Gh3

24

[
(w,xx − w,yy)2 + w2

,xy

]
+
F

2
(w2

,x + w2
,y)

}
.

(2.6)

We will use this energy to calculate the partition function Z of our plate. But, in order to

calculate the partition function I must first discretize our plate and express the energy in

terms of the discretized variables.

2.2 Discretization into triangular elements

In this section I specialize to a liquid membrane and show how I discretize it to com-

pute the energy. The in-plane shear modulus G is assumed to be zero. Then the energy

15



expressions reduce to

Es =

∫∫
dxdy

{
Kh

2
(εx + εy)

2 − F (εx + εy)

}
,

Eb =

∫∫
dxdy

{
Kb

2
(w,xx + w,yy)

2 +
F

2
(w2

,x + w2
,y)

}
.

(2.7)

To further simplify the problem let us assume that our membrane is inextensible, or εx+εy =

0 everywhere. Hence, the only terms left in the energy expression are the bending energy

and potential energy of the applied tension F caused by out-of-plane displacement of the

membrane. For any given εx, εy and w, I can choose an appropriate εxy to satisfy the

compatibility equation because in-plane shears do not cost any energy for a liquid plate.

If the in-plane shear modulus was non-zero then this would not be the case and I would

have to impose the compatibility condition as a constraint everywhere on the plate. For

the discretized plate this would require computation of the Gauss curvature at every node.

This point has been treated in detail in Fasolino et al. (2007), Nelson & Peliti (1987).

We discretize the membrane into Q ≈ 4N2
√

3
equilateral triangles with P ≈ 2N(N+1)√

3
node

points, where N = L/l, L is the length of the membrane and l is the side of each triangle.

The discretization scheme is shown in Figure 2.2a. If the out-of-plane displacements at the

nodes are known I assume that the displacements in the interior of the triangular element

can be obtained by linear interpolation. Thus, our planar triangle element in the reference

configuration goes to a planar triangle in the deformed configuration (see Figure 2.2a).

Then I can discretize the total energy into the expression below as discussed in several

papers Gompper & Kroll (1996), Abad et al. (1986), Fraternali & Marcelli (2012).

E =
Kb

2

∑
(i,j)

Aij

∣∣∣∣ n̂i − n̂jlij

∣∣∣∣2 +
F

2

∑
Ae
(
w2
,x + w2

,y

)
. (2.8)

Here, the mean curvature term due to the out-of-plane displacement w,xx + w,yy is expressed

in terms of the difference of normal vectors n̂ of the two adjacent triangle elements. The

summation in the potential energy of the tension F runs over all the triangle elements, and

the summation in the bending energy term runs over all the adjacent triangle element pairs

that share one edge linked by nodes i, j. lij is the length between the centers of these two

triangle elements. Ae = L2/Q is the reference area of one triangle element, Aij is the area

associated with edge ij, which equals 2Ae/3 in the reference configuration. lij and Aij are
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(a) (b)

Figure 2.2: (a) Equilateral triangles discretization of a square plate. (b) Reference and
deformed configuration of two adjacent elements. The reference configuration is drawn with
dashed lines. Each triangular element deforms into a triangle in the deformed configuration.

shown in Figure 2.2b in which nodes i, j, k, l form two elements sharing one edge linked by

nodes i, j. w,x, w,y, and n̂ for the element formed by nodes i, j, k are given in terms of the

three node displacements wi, wj , wk as

w,x =
2wi − wj − wk√

3l
, w,y =

wj − wk
l

,

~rx =
(0, 1, w,x)√

1 + w2
,x

, ~ry =
(0, 1, w,y)√

1 + w2
,y

,

n̂i = ~rx × ~ry =
(−w,x,−w,y, 1)√

1 + w2
,x + w2

,y + w2
,xw

2
,y

.

(2.9)

Similarly w,x, w,y, and n̂ for the element formed by nodes i, j, l are given in terms of the three

node displacements wi, wj , wl. w
2
,x and w2

,y are assumed small enough that the denominator

in the expression for n̂i can be expanded in a Taylor series. However, if we retain terms

only upto quadratic order in w(x, y) in the energy then w2
,x and w2

,y from the denominators

do not contribute. Substituting the result into Eqn. (2.8) I get the energy expression as a

quadratic function of the nodal displacements for the two elements shown in Figure 2.2b as

E =
4KbAe

3l4
(wi + wj − wk − wl)2 +

FAe
3l2

[
(wi − wj)2 + (wj − wk)2 + (wk − wi)2

]
. (2.10)

We can repeat this exercise for all the elements and get the energy as a quadratic function
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of {wt}, t = 1, 2, ..., P , where P is the number of nodes, viz., E = wMwT, where the vector

w = [w1, w2, ..., wP ]. The matrix M is the stiffness matrix and it is a function of Kb, F, L, l.

The probability of finding the membrane in any given configuration is proportional to

exp (−E/kBT ), where E is the energy of this configuration, kB is the Boltzmann constant

and T is the absolute temperature. The partition function Z of the membrane is obtained by

integration of exp (−E/kBT ) over all possible configurations. To carry out this integration

efficiently, I first recognize that at zero temperature (absence of fluctuations) the lowest

energy configuration of our membrane is flat, w(x, y) = 0 for all x, y. When T > 0 the

membrane fluctuates around this flat configuration. Second, I recognize that configurations

with large deviations from this flat shape are energetically costly and will make exponentially

small contributions to the partition function. This allows us to change the limits of the

integrals over dwj , j = 1, 2, ..., P to ±∞. Then, the integration over all configurations for

the partition function becomes easy to carry out as given in Zhang & Crothers (2003), Su

& Purohit (2010, 2011, 2012). The partition function of the membrane scales with square

root of the determinant of matrix M, or the square root of the product of all eigenvalues

of M as

Z =

√
(2πkBT )P

det M
. (2.11)

2.3 Thermodynamics of the membrane

The Gibbs free energy G(F, T ) of the membrane is related to the partition function Z

as G = −kBT lnZ. This quantity can also be computed using Monte Carlo and TDGL

methods Agrawal & Radhakrishnan (2009) for a triangulated membrane whose energy was

written as a quadratic form above with the stiffness matrix M. The computational effort

involved in calculating these free energies using Monte Carlo or TDGL simulation methods

depends on the acceptable error tolerance. The smaller the error tolerance, the more Monte

Carlo moves are required. In our method the error in computation of the free energy arises

from the numerical computation of the determinant of M. If the size of the matrix is not

very large then the error in the computation of the determinant is limited only by machine

accuracy. Of course, discretizing a membrane also leads to errors in computation of the

thermodynamic properties. I quantify this error in the following. I also show a comparison

of the free energy computed using our method to that obtained by the TDGL method in
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(a) (b)

Figure 2.3: (a) Reduced area varies linearly as a function of logF for different values of
bending modulus Kb. (b) Slopes of curves in (a) vary linearly with the inverse of bending
modulus Kb.

Section 2.6.

We can compute the properties of the membrane by computing derivatives of the free

energy. First, the reduction in projected area caused by thermal fluctuation is defined as

∆A = A(∞, T )−A(F, T ), where A(∞, T ) is the membrane area at very large tension such

that all the undulations are stretched out and it is flat. The area reduction is conjugate to

the tension F in the free energy of the membrane, and can be computed as ∆A = −∂G/∂F .

Since all the terms related to the force F in the expression for the partition function Z are

included in the matrix M, I have

∆A = −kBT
2

d

dF
ln (det M) . (2.12)

Second, the entropy is given by

S = −∂G
∂T

=
kB
2

[P ln(2πkBT )− det M + 1] . (2.13)

We want to compare the results from these expressions with those expected from the

Helfrich theory. In a typical membrane fluctuation problem in biology the size of the

membrane is in microns, bending modulus of the membrane is around 10kBT and the typical

tension range is from 0.01pN/nm to 1pN/nm. So, for our computation, I consider a square

patch of membrane of side L = 1µm. Let us first examine the dependence of the reduced

area ∆A/A obtained from our computations on the bending modulus Kb. Here A = L2 is
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the reference area of the membrane at zero temperature. I compute the derivatives in Eqn.

(2.12) for distinct values of membrane bending modulus and plot the results in Figure 2.3a.

The slope of the curves (in the ∆A/A versus logF plot) varies linearly with the inverse of

bending modulus 1/Kb as shown in Figure 2.3b. This is consistent with the analytic solution

given in Helfrich (1975), Milner & Safran (1987), Boal & Boal (2012) and reproduced below:

∆A

A
=

kBT

8πKb
ln
π2/b2 + F/Kb

π2/A+ F/Kb
, (2.14)

where b is the radius of a lipid head group and is on the order of 1 nm. To compute the

entropy of the membrane recall the Maxwell relation linking the projected area and the

entropy: (
∂S

∂F

)
T

= −
(
∂∆A

∂T

)
F

. (2.15)

The right hand side of the above equation can be computed from (2.14). Then, by integra-

tion I get

S(F, T ) =

∫
−
(
∂∆A

∂T

)
F

dF

=
AkB
8π

(
π2

A
+

F

Kb

)
ln

(
π2

A
+

F

Kb

)
− AkB

8π

(
π2

b2
+

F

Kb

)
ln

(
π2

b2
+

F

Kb

)
+ S0(T ),

(2.16)

where S0(T ) is some function of temperature T and independent of membrane tension F .

In order to compare the results of our discretized model with this equation I change

N to see how small our elements should be in order for our curves to coincide with the

analytic solution. I go as far as N = 400 due to limitations of computational power. Note

that the side of one equilateral triangle element at N = 400 is about 2.5 nm since the

side of our square membrane is 1 µm. This means that each element contains only about

10 lipids when N = 400. The results of our computation are plotted in Figure 2.4a and

2.4b, respectively for reduced area ∆A/A and entropy change ∆S. I see that our semi-

analytic method approaches Eqns. (2.14) and (2.16) as N increases. I can define an error

by computing the distance between the analytic solution and the curve from our numerical

computation for both the reduced area and the entropy. The error at tension F = 0.01

pN/nm decreases linearly with the logarithm of the number of elements (i.e. it decreases

slowly) as shown in Figure. 2.5.
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(a) (b)

Figure 2.4: (a) Thermally reduced area computed with increasing number of elements with
Kb = 10kBT at T = 300K. (b) Entropy change ∆S = S − S0 computed with increasing
number of elements N . Notice that our numerical calculation based on (2.11) approaches
the analytic solution of Helfrich as N increases.

2.4 Analysis of variance and effect of boundary

conditions

One important result which follows from the calculation of the partition function is

the co-variance matrix 〈wiwj〉 Zhang & Crothers (2003), Su & Purohit (2010, 2011, 2012),

which can be calculated from the inverse of the stiffness matrix M as

〈wiwj〉 =
kBT

[M−1]ij
. (2.17)

From this I can get the variance of the out-plane deflection
〈
w2
i

〉
as a function of refer-

ence position on our membrane. I have done this in Figure 2.6 for two different boundary

conditions. Due to limitations computational power, I turn to a smaller 0.5µm ×0.5µm

membrane in order to keep the triangle element size l = 2.5 nm as in the previous com-

putation of reduced area. In the first case one edge of the membrane is simply supported

with the three other edges being free, while in the second case two opposite edges of the

membrane are simply supported with the other two being free. The distance between the

simply supported edges is allowed to change. In both cases a hydro-static tension F per

unit length is applied on the edges. In the first case the fluctuation increases as I go nearer

the free boundaries, while in the second the fluctuation is maximum near the center of the

membrane. In both cases the height fluctuation is on the order of several nm for given
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Figure 2.5: The error of our computational result, both for reduced area and entropy
change, with respect to the Helfrich solution at F = 0.01pN/nm decreases linearly with the
logarithm of the number of elements.

(a) (b)

Figure 2.6: (a) Standard deviation in w of a one end hinged membrane with tension
F = 0.01 pN/nm. (b) Standard deviation in w of a two end hinged membrane with
tension F = 0.01 pN/nm. The magnitude of the fluctuation depends on the boundary
conditions.

membrane properties and tension F = 0.01 pN/nm. Most studies of membrane fluctua-

tion do not account for the boundary conditions as we have done here. This could have

implications on the interpretations of experiments which extract membrane properties by

measuring thermal fluctuations.

2.5 Persistence length

Fluctuating polymers are often characterized by their persistence length ξp Boal &

Boal (2012). This concept has been extended also to membranes. Roughly speaking, the
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persistence length is a length scale at which the thermal energy is comparable to the energy

stored in elastic deformations. In other words, if the size of the elements is much larger than

the persistence length the approximation of smooth deformations will be violated because

shape fluctuations caused by thermal motion will obliterate the smoothness. Persistence

lengths of lipid membranes are known to be much longer than the molecular scale Boal &

Boal (2012). One arrives at this conclusion by defining the persistence length ξp through

the decay in correlation of normal vectors of the membrane as

〈n (0) · n (∆r)〉 = exp

(
−∆r

ξp

)
, (2.18)

where ∆r is a distance coordinate. According to the derivation in Boal & Boal (2012), the

correlation function can be reduced to

〈n (0) · n (∆r)〉 = 1− kBT

2π

∫
Iθ (z) qdq

F +Kbq2
, (2.19)

where z = q|∆r| and

Iθ (z) = 1−
∫ 2π

0 dθ cos (z cos θ)

2π
(2.20)

is a Bessel function. At large z the second term on the right hand side of the above equation

is very close to 0, so it is ignored in Eqn. (2.19). Hence, with q ranging approximately from

π/∆r to π/b, where b is the size of lipid head group, Eqn. (2.19) becomes:

〈n (0) · n (∆r)〉 ∼ 1− kBT

4πKb
ln
(
F +Kbq

2
)∣∣π/b
π/∆r

∼ 1− kBT

4πKb
ln

F +Kbπ
2/b2

F +Kbπ2/∆r2
. (2.21)

If I set membrane tension F to zero, Eqn. (2.21) becomes the expression in Boal & Boal

(2012):

〈n (0) · n (∆r)〉 ∼ 1− kBT

2πKb
ln

∆r

b
. (2.22)

By comparing this expression with a linearized version of Eqn. (2.18) one concludes that

the persistence length of a membrane is very long Boal & Boal (2012). On the other

hand, according to the expression for the normal vector n given in Eqn. (2.9) the quantity

〈n (0) · n (∆r)〉 can be related to the covariance matrix given in Eqn. (2.17). Suppose I

want to compute the correlation of normal vector between two equilateral triangle elements

whose nodal displacements are denoted by wa, wb, wc and wd, we, wf respectively according
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Figure 2.7: Change of correlation of normal vectors as functions of distance. I plot
1 − 〈n (0) · n (∆r)〉 against the distance ∆r. The straight black line is from Eqn.
(2.21), and the curved black line is from Eqn. (2.22) for 0.1 pN/nm tension. Blue,
red, yellow, magenta lines are obtained from our computations and represent four
distinct directions from the center of the membrane.

to Eqn. (2.9), then

n(0) =

(
−2wb − wa − wc√

3l
,−wc − wa

l
, 1

)
, n(∆r) =

(
−

2we − wd − wf√
3l

,−
wf − wd

l
, 1

)
.

(2.23)

From this I see that the average quantity 〈n (0) · n (∆r)〉 is a sum of several entries in

the covariance matrix 〈wiwj〉 of Eqn. (2.9). Hence, I am in a position to compare the

correlation of the normal vectors from our computations with Eqn. (2.22). This exercise is

performed in Figure 2.7. I choose the center of membrane as the origin where r = 0 and

extend ∆r towards four directions on the plane. The four different color points represent

computational results for the four directions. The result from our discretized model matches

the theoretical prediction Eqn. (2.22) very well in Figure 2.7 for F = 0. Our method

also captures the trend in the correlation expected from Eqn. (2.21) for finite tension

F = 0.1 pN/nm. The disagreement at large values of ∆r is due to (a) approximations

in the derivation of Eqn. (2.21), (b) from the fact that the analytic expression does not

account for boundary conditions as I do in our computation, and (c) ours is a discretized

model. While this reinforces our computational method, it also shows that Eqn. (2.18) is

not how the correlations of the normal decay on a membrane.
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2.6 Comparison to TDGL simulation

(a)

(b)

(c)

Figure 2.8: (a) Comparison of membrane free energy change as a function of r0. Black
markers are our result. Red marks are TGDL simulation data extracted from Figure
4 in Agrawal & Radhakrishnan (2009). (b) Three dimensional plot of equilibrium
position w̄ of a membrane with a region of non-zero spontaneous curvature C0 = 0.04
nm−1, r0 = 10 nm, and zero-tension. I have just chosen the mid 40 nm×40 nm region
to show for clarity. (c) Cross-sectional plot of a thermally fluctuating membrane with
a region of non-zero spontaneous curvature in the middle of the square patch. Blue
line is the equilibrium position. I have added the standard deviation

√
〈δw2〉 to the

equilibrium position and plotted it as the red line.

An advantage of our method is that I can compute membrane free energies with modest

computational effort. Here I compare our calculations with a TDGL simulation presented

in Agrawal & Radhakrishnan (2009). In their calculation, a square patch of membrane is

considered with non-zero spontaneous curvature C0 in a circular region of radius r0 in the

center of the square. Their membrane is discretized by a 50-by-50 grid, and membrane free

energy and entropy are obtained as a function of r0 for different membrane sizes, bending

modulus and tension. I will show that our model can be modified to account for spontaneous

curvature and correctly obtain these quantities. To this end I add C0 into Eqn. (2.8) for

the energy as follows:

E =
Kb

2

∑
(i,j)

Aij

(∣∣∣∣ n̂i − n̂jlij

∣∣∣∣− C0

)2

+
F

2

∑
Ae
(
w2
,x + w2

,y

)
. (2.24)

Note that C0 can be a function of position on the membrane. Now I follow the same
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procedure as I did for reaching Eqn. (2.10) and find that the energy takes the following

form:

E = wMwT + w · b + c, (2.25)

where b is a vector that accounts for the non-zero spontaneous curvature associated with

some node displacements wi, and c is a constant. Now, I differentiate Eqn. (2.25) with

respect to wi, i = 1, 2, ..., P and set it to zero to get the equilibrium position w̄ of the nodes

as:

w̄ = −1

2
M−1b. (2.26)

Let w = w̄ + δw, where the new variable δw is a fluctuation around the equilibrium

position. Therefore Eqn. (2.25) can be rewritten as:

E = (w̄ + δw)M(w̄ + δw)T + (w̄ + δw) · b + c = δwMδwT + c̄, (2.27)

where c̄ = c+ 1
2w̄ ·b is independent of δw. Then, after factoring out c̄ from the integration

for the partition function, I get Zhang & Crothers (2003), Su & Purohit (2010, 2011, 2012):

Z = exp

(
− c̄

kBT

)√
(2πkBT )P

det M
. (2.28)

To compare our computation with the TGDL simulation, I compute membrane free energy

with exactly the same membrane properties and applied tension as in Agrawal & Radhakr-

ishnan (2009). The side of the square patch is 250 nm. r0 is varied between 0 and 20 nm,

while C0 is chosen to be 0.04 nm−1. The membrane is simply supported on four sides, and I

use N = 300. The CPU time for the computation of one curve in Figure 2.8a is less than 20

hours on a PC with a Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz processor. Our result

agrees with free energies obtained from the TDGL simulation as shown in Figure 2.8a. I

also show a contour plot of equilibrium position as computed using Eqn. (2.26) in Figure

2.8b for zero tension. Our analysis shows that the spontaneous curvature does not affect

the stiffness matrix M. Hence, the variance of the fluctuations given in Eqn. (2.17) is a

function only of matrix M and is independent of the spontaneous curvature. The standard

deviation of the fluctuations as a function of position can be seen in Figure 2.8c in which

a cross-section of the membrane in equilibrium is depicted. Note also that spontaneous
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curvature does not change the entropy expression given in Eqn. (2.13). Therefore, in our

calculation, change of magnitude or location of non-zero spontaneous curvature does not

affect the entropy. This is also the case for the TDGL simulation in which every curve for

entropy change (Figure 6 in Agrawal & Radhakrishnan (2009) is flat and near zero com-

pared to the curve for free energy change due to different sizes of the non-zero spontaneous

curvature region.

2.7 Heterogeneous membrane

So far I have assumed that our membrane has the same bending modulus everywhere.

I have reproduced some well known results on membrane fluctuations and have extended

some other results, e.g. influence of boundary conditions on the magnitude of fluctuations.

However, our computational method is capable of handling heterogeneous membranes in

which the bending modulus and spontaneous curvature depend on position. This is the

case for every cell membrane and can be produced in vesicles in which phase separation

results in regions with different lipid compositions Baumgart et al. (2003). In order to

demonstrate the capabilities of our method I will use it to extract some information from

experimental data on the membranes of red blood cells infected with malarial parasites

Park et al. (2008). These experiments show that the fluctuations of the membrane are

significantly influenced by localized membrane stiffening caused by the parasite. To model

this situation I choose a square patch of membrane of side 250 nm. The middle portion

of this membrane of side 50 nm has a different bending modulus Kb2 = 100kBT , while

elsewhere Kb1 = 10kBT . I compute the variance of the fluctuations in w that are typically

measured in experiments. Our goal is to extract a membrane tension by comparing our

results with the experiment. The membrane is simply supporte on four sides and I apply a

constant force per unit length on all edges. The results from this heterogeneous membrane

model are shown in Figure 2.9. To match the experiments I had to use a membrane tension

as 0.3 pN/nm, which is less than the lytic tension of the membrane. In Figure 2.9a the

computational result correctly estimates the magnitude of the fluctuations measured in

Park et al. (2008). In this figure red represents large fluctuations and blue corresponds

to small fluctuations. The overall profile in Figure 2.9b is different from a homogeneous

membrane in section 2.4, where the fluctuation at the center point is larger than points
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(a) (b)

(c) (d)

Figure 2.9: (a) Two dimensional contour plot of standard deviation in w(x, y) of a hetero-
geneous membrane. (b) Three dimensional plot of standard deviation of the same heteroge-
neous membrane. (c) Cross-sectional profile of standard deviation. A and B are respectively
the middle and margin of the concave region in the center. (d) Difference between the mid-
dle and the margin of the concave region versus membrane mid-region bending modulus.
The bending modulus outside the mid-region of the membrane is 10kBT at T = 300K. The
tension F = 0.3pN/nm for these plots.

near the boundary. In this heterogeneous membrane, due to large bending modulus that

suppresses thermal fluctuation, the variance in the middle region is smaller. To see this

effect clearly, one cross-sectional profile of the membrane variance is shown in Figure 2.9c. I

measure the difference between the middle and the margin of the concave region marked as

A and B, respectively, and plot it as a function of membrane mid-region bending modulus

as shown in Figure 2.9d. If the membrane tension is known then this kind of plot can be

used to infer the difference in bending modulus between the stiffer and softer regions.
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Chapter 3

Graphene fluctuations

In this Chapter the goal is to extend our semi-analytic method based on Gaussian

integrals to solid membranes, or fluctuating elastic plates. The main difficulty in doing so is

that the out-of-plane deflections of a solid membrane are coupled with the in-plane strains

through the compatibility condition in von-Karman plate theory Audoly & Pomeau (2010).

Earlier simulation work on triangulated surface models as well as analytic theory has shown

that undulations with non-zero Gauss curvature are suppressed because of this constraint

Nelson & Peliti (1987), Abraham & Nelson (1990), Fasolino et al. (2007), Le Doussal &

Radzihovsky (1992), Abraham & Nelson (1990). In a similar vein, I show that a membrane

explores fewer configurations if I enforce the compatibility constraint on our discretized plate

through a penalty energy. The coupling between out-of-plane and in-plane displacement

in solid membranes has also been analyzed in Fourier space using perturbation theory to

get the anharmonic part of the spectrum Košmrlj & Nelson (2014), Paulose et al. (2012),

Fasolino et al. (2007). To the best of our knowledge, none of these methods explore the effect

of boundary conditions on the fluctuations. For example, analogous to filaments Purohit

et al. (2008), Su & Purohit (2012), I expect that a plate clamped on all its edges will suffer

smaller fluctuations than one that is simply supported on all its edges. Our method allows

us to explore these possibilities and consider fluctuations in the presence of shear loads.

Note that that the liquid membranes I studied before could not support shears. Also,

our method can handle different membrane geometries. For example, in Liang & Purohit

(2016a) I considered a square membrane with a circular patch in the middle that had a non-

zero spontaneous curvature. Due to the non-zero spontaneous curvature this patch assumed
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the shape of a spherical cap under zero loads. We analyzed the thermal fluctuations of this

membrane and showed that our results were in agreement with earlier simulations using

very different methods Agrawal & Radhakrishnan (2009). In these calculations I did not

need to enforce the compatibility constraint since the membrane was liquid in-plane. To

analyze the flcutuations of curved plates (or shells) using our method it will be necessary

to account for the compatibility constraint in curvilinear coordinates. While this is beyond

the scope of our paper, progress has been made in the study of thermal fluctuations of shells

Paulose et al. (2012) by triangulating them in a similar fashion as I do here.

As an illustration of the capability of our methods I focus attention on the thermal

fluctuations of graphene. The outstanding thermal, mechanical and electrical properties

of graphene Bunch et al. (2007), Lee et al. (2008) have received a lot of attention in the

past decade, but its thermal fluctuations have received relatively less attention Fasolino

et al. (2007). It is appreciated, however, that ripples on graphene have some bearing on

its physical properties Fasolino et al. (2007), Los et al. (2009), Zakharchenko et al. (2010),

Garcia-Sanchez et al. (2008), He et al. (2011). One such effect is its negative thermal

expansion coefficient which has been studied through experiment and simulation Yoon et al.

(2011), Bao et al. (2009), Pan et al. (2012). Here I quantitatively explain the dependence

of the thermal expansion coefficient on temperature using our semi-analytic method. I also

make predictions for the dependence of thermal expansion coefficient on loading (hydrostatic

and shear) and temperature.

3.1 von Karman energy

As Presented in previous chapter, Eqns. (2.1) and (2.3) together give the energy of a

configuration of the plate which is determined by εx(x, y), εy(x, y), εxy(x, y) and w(x, y),

subject to the compatibility constraint:

εx,yy + εy,xx − 2εxy,xy = w2
,xy − w,xxw,yy. (3.1)

It is instructive to make some estimates about the effect of fluctuations before I proceed

further. From Eqn. (2.1) I see that Es ∼ Y Aε2/2 where ε represents in-plane strains

and Eb ∼ KbAκ
2/2, where κ represents a curvature. Using the equipartition theorem of
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statistical mechanics I can estimate the mean-square fluctuations in these quantities as

〈ε2〉 = kBT
Y A and 〈κ2〉 = kBT

KbA
. If h is the thickness of our plate then the ratio of mean-square

fluctuations in the bending strain to in-plane strain is 〈ε2〉
〈κ2〉h2 = Kb

Y h2
. For a graphene sheet

Y ≈ 1 TPa×0.3 nm, Kb ≈ 10−19 Nm and h ≈ 0.3 nm Lee et al. (2008), so that Kb
Y h2
≈ 10−3,

and thus in-plane strain fluctuations can be neglected in comparison to out-of-plane bending

fluctuations. Due to the very high in-plane stretching modulus I can also neglect the term

F (εx + εy) in Eqn. (2.3) above. In the end, I assume that the plate has constant in-plane

strains (no fluctuation) due to hydrostatic tension F which contributes a constant term C

to the expression for energy below:

E = Eb + Ef + C =

∫∫
dxdy

[
Kb

2
(w,xx + w,yy)

2

+KG

(
w,xxw,yy − w2

,xy

)
+ F

(
w2
,x

2
+
w2
,y

2

)]
+ C.

(3.2)

We will use this energy expression to compute the fluctuations of our membrane, remember-

ing that C will have no effect on the fluctuations. To do so, I must calculate the partition

function.

3.2 Enforcing the compatibility constraint

In order to extend this technique to solid plates I must carry out the partition sum

only over those configurations that satisfy the compatibility equation Eqn. (3.1). This

equation constrains the displacements at every point on the plate. Now, the question is

how do I enforce this constraint everywhere on the plate. Recall that I discretize our plate

into equilateral triangle elements in the reference or undeformed configuration. When the

plate is deformed the elements remain triangular and flat with straight edges. Hence, all

the displacements u, v and w are linear functions of the reference coordinates and the

compatibility equation is trivially satisfied inside every triangular element. However, at

each node the strains vary discontinuously and the Gaussian curvature is non-zero. Hence,

in order to enforce the compatibility constraint at each node I will penalize a violation of

Eqn. (3.1) by a large energy cost. For convenience, I define a compatibility function:

fc = εx,yy + εy,xx − 2εxy,xy − w2
,xy + w,xxw,yy (3.3)
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(a) (b)

Figure 3.1: (a) Equilateral triangle discretization scheme of a square plate as in Liang &
Purohit (2016a). (b) For computing the energy cost of violating the compatibility constraint
Eqn. (3.1) I show in red the contour around a node whose out-of-plane displacement is w.
Out-of-plane displacements of surrounding nodes are denoted by w1, w2, w3, w4, w5, w6. Two
other integration contours around neighbouring nodes are shown in black.

The energy cost can be computed by multiplying fc(x, y) by a scalar and integrating over

an area around each node (the Voronoi cell). The total energy can be written as:

Ē = E +

∫∫
λfcdA = E +

∑
i

∫∫
λif

i
cdAi (3.4)

where λ(x, y) is a scalar with energy units, and Ai is the area within the red loop in

Figure 3.1b. The summation runs over all nodes i. In order to take advantage of Eqn.

(2.11), I take λ to be a constant λi within area Ai such that it could come out of each

integral. Then I express
∫∫

f icdAi as a quadratic expression in terms of the displacement

vector w just as I have done for the plate energy E:

Ē = wMwT +
∑
i

λiwiM
c
i wi

T. (3.5)

Here wi = [w,w1, w2, w3, w4, w5, w6] is a subset of w which consists of nodal displacement

of node i and six adjacent nodes as shown in Figure 3.1b. Mc
i is a stiffness matrix of

compatibility at node i, such that
∫∫

f icdAi = wiM
c
i wi

T. Mc
i will be computed in the

following section. Note that I can verify the effect of imposing compatibility at node i by

computing the average value of wiM
c
i wi

T. This is done by taking the partial derivative of
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the Gibb’s free energy with respect to λi as in Su & Purohit (2011, 2012):

〈
wiM

c
i wi

T
〉

=
∂G

∂λi
. (3.6)

(a) (b)

Figure 3.2: The upper surfaces show value of integral of compatibility equation around
every node, with (a) one edge hinged and others free , and (b) two edges hinged others
free, respectively, for a fluid membrane with zero penalty energy. The lower surfaces (on
the order of 10−6) show the same quantity for solid membranes with penalty energy scalar
λ = 109 pNnm.

3.3 Compatibility equation in terms of nodal vari-

ables

A convenient way to calculate the integral of Gaussian curvature in RHS of Eqn. (3.1)

at a node is given by Magid et al. (2007) as:

∫∫
CGdA = 2π −

∑
γi, (3.7)

where γi is the angle of the triangle element i sharing this node. Let us assume that our

plate is flat initially. I will now compute the angle of one element in terms of arbitrary

non-zero node displacements w, w1, and w2 as shown in Figure 3.1b. Suppose the original

length of the side of each element is l. Then, the deformed length of the three sides are
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(a) (b)

(c) (d)

Figure 3.3: (a) and (b) Variance of fluctuating elastic plate with applied hydro-static ten-
sion F , with one edge hinged and others free, and two edges hinged others free, respectively.
The upper surfaces in (a) and (b) show the fluctuation of a fluid membrane with the same
mechanical properties and boundary conditions as our solid plates. (c) The solid lines asso-
ciated with left axis show how the variance of the fluctuation becomes independent of the
penalty energy parameter λ which enforces the compatibility constraint, and the dashed
lines associated with right axis show how the average value of compatibility function fc
over all nodes approaches zero as λ becomes sufficiently large. (d) w̄ of a fluctuating elastic
plate as function of size with two different boundary conditions shown in (a) and (b). The
parameters of the membrane are reported in Group C-I in Table 3.1. The inset corresponds
to group I in Table 3.1.

related to w, w1, and w2 as:

a =

√
(w − w1)2 + l2,

b =

√
(w − w2)2 + l2,

c =

√
(w1 − w2)2 + l2.

(3.8)
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So, the deformed angle is given by

γ = arccos
a2 + b2 − c2

2ab
. (3.9)

We plug in Eqn. (3.8) and then calculate the change of angle with respect to the original

equilateral triangle. In order to carry out the integration for the partition function, I

approximate this expression quadratically:

γ − π

3
=

2 (w1 − w2)2 − (w − w1)2 − (w − w2)2

2
√

3l2
. (3.10)

We apply this calculation to other triangle elements sharing the node with out-of-plane

displacement w and get the integral of the Gaussian curvature at a node as:

∫∫
CGdA =

6∑
i=1

(π
3
− γi

)
=

∑6
i=1 (w − wi)2 −

∑6
i=1 (wi − wi+1)2

√
3l2

.

(3.11)

This takes care of the right hand side of the compatibility constraint Eqn. (3.1). The con-

tribution to the elastic bending energy due to the Gaussian curvature can also be calculated

using the above formula. Now I focus on the left side of Eqn. (3.1) which involves second

derivatives of the in-plane strains. To evaluate the integral of this quantity over a Voronoi

cell surrounding a node I choose the boundary of one such cell which is a closed integration

contour as shown in Figure 3.1b. Then, from Stokes Theorem I get

I =

∫∫
(εx,yy + εy,xx − 2εxy,xy) dA

=

∮
(εxy,x − εx,y) dx+

∮
(εy,x − εxy,y) dy.

(3.12)

The terms εxy,x and εxy,y in the integrands will contribute zero because our integration

contour is closed. Hence, I am left with

I =

∮
εy,xdy −

∮
εx,ydx. (3.13)
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Now I plug Eqns. (2.2) into the above integral, and similarly drop those terms in the

integrands whose contribution will be zero due to the closed contour. Finally, I am left with

I =

∮ [
1

2

∂

∂x

(
∂w

∂y

)2

dy − 1

2

∂

∂y

(
∂w

∂x

)2

dx

]
. (3.14)

The expression above can be easily evaluated in terms of the nodal variables for each element.

Thus, both sides of Eqn. (3.1), or the compatibility function fc, could be evaluated upto

quadratic order in the displacements wi at the nodes, governed by matrix Mc
i in Eqn. (3.5).

I will now choose all λi equal to a same value λ because there is no reason to penalize two

nodes differently. Then, the energy expression

Ē = wMwT + λ
∑
i

wiM
c
i wi

T. (3.15)

We will now show that λ contributes to the fluctuation through the boundaries. Note that

in Figure 3.1b, the integration contours around two adjacent nodes share one edge which

is traversed in opposite directions. Therefore, if I choose λ to be the same for these two

nodes, then the integration in Eqn. (3.14) along this edge will cancel due to opposite signs

of the contribution from the two contours that share it. Similarly, if λ is chosen to be the

same for all nodes, this cancellation will happen for all edges in the interior of the plate,

and the entire energy penalty due to the compatibility constraint goes to the boundary of

the plate. This is not surprising if one remembers the Gauss-Bonet theorem for the integral

of the Gaussian curvature Chen & Rong (2010). Thus, the summation of the energy cost

of violating the compatibility constraint at each node can be written as a quadratic form:

∑
i

wiM
c
i wi

T = wMcw
T, (3.16)

where the matrix Mc has non-zero entries only for the boundary nodes. Furthermore, I

find that Mc is positive semi-definite irrespective of the boundary conditions, so that I

only need to consider λ > 0 in Eqn. (3.15). Now, in order to enforce the compatibility

constraint I choose λ sufficiently large so that the variance of out-of-plane deflections w(x, y)

is independent of λ. In reality, by doing so I have required that fc is close to zero on average

over the whole plate. In order to justify this weaker constraint, we will compute 〈
∫∫

f icdAi〉

over a Voronoi cell surrounding each node to make sure they are approaching zero as well.
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Table 3.1: Parameters used in the computations of solid membranes.

Group L or L1(nm) Kb(pNnm) KG(pNnm) F (pNnm−1) Boundary condition N

A 1000 82 -53.3 0.001 One end hinged 50
B 1000 82 -53.3 0.001 Two ends hinged 50
C 5-150 41 -26.65 0 One end hinged 50
D 5-150 41 -26.65 0 Two ends hinged 50
E 5-150 82 -53.3 0 One end hinged 50
F 5-150 82 -53.3 0 Two ends hinged 50
G 5-150 205 -133.25 0 One end hinged 50
H 5-150 205 -133.25 0 Two ends hinged 50
I 5-150 3.28 -2.132 0 One end hinged 50
J 1000 (= L2) 82 -53.3 0 Shear S = 0.001pNnm−1 50
K 1000 (= L2) 82 -53.3 0 Shear S = 0.01pNnm−1 50
L 1000 (L2 = 500) 28.7 -18.655 0 Shear S = 0.01pNnm−1 50

This is exactly the quantity in Eqn. (3.6). We examine it at every node i for a solid

membrane and a fluid membrane in Figure 3.2a for two different boundary conditions as

given in section 2.4. Since this quantity is very small (on the order of 10−6) at all nodes for

the solid membrane I have ensured that the compatibility equation is satisfied everywhere.

In contrast for a liquid membrane with the same mechanical properties and boundary

conditions fc is much larger as seen in Figure 3.2a. I also show (a) how the variance of

the fluctuations of a solid membrane in Figure 3.3a and 3.3b becomes independent of λ as

it becomes sufficiently large (see the solid lines associated with left axis), and (b) how the

average value of fc over all nodes approaches zero as λ becomes sufficiently large (see the

dashed line associated with right axis). I see that λ = 109pNnm is a large enough value and

use it in all our subsequent calculations of the variance. The stage is now set to examine

the effect of boundary conditions on a fluctuating graphene sheet.

3.4 Analysis of variance and effect of boundary

conditions

One important result which follows from the calculation of the partition function is

the co-variance matrix 〈wiwj〉 Zhang & Crothers (2003), Su & Purohit (2010, 2011, 2012),

which can be calculated from the inverse of the stiffness matrix M as

〈wiwj〉 =
kBT

[M−1]ij
. (3.17)
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From this I can get the variance of the out-plane deflection
〈
w2
i

〉
as a function of reference

position on our membrane. We choose membrane size, bending moduli, tension, boundary

condition and finite element discretization as given in Table 3.1. First, I examine the overall

variance profile of the whole plate with two different boundary conditions – (a) one edge

hinged, three edges free, (b) two opposite edges hinged, two edges free. The variance is

plotted as function of node position in the reference configuration shown in Figure 3.3a and

3.3b. The results correspond to computation groups A and B in Table 3.1. In order to show

the effect of the compatibility constraint, I plot the variance profile of a fluid membrane with

the same Kb and KG in each plot for comparison. Recall that since a fluid membrane has

zero in-plane shear modulus I can choose εxy(x, y) to satisfy the compatibility equation for

a given out-of-plane deflection profile w(x, y) and in-plane strain profile εx(x, y), εy(x, y).

The compatibility constraint reduces the thermal fluctuations of solid membranes compared

to solid membranes for the same boundary conditions.

Second, I examine the relation between variance and membrane size while fixing the

mechanical properties. An earlier theoretical result gives that the average fluctuation w̄

(square root of variance) scales with some power of membrane size L, or as Lδ. δ is proved

to be 1 for a fluid membranes as in Nelson et al. (2004), Fasolino et al. (2007), and around

0.6− 0.8 as given in Nelson et al. (2004), Fasolino et al. (2007), Le Doussal & Radzihovsky

(1992), Abraham & Nelson (1990) for solid membranes. We recover this power law scaling in

our calculations as shown in Figure 3.3d. The parameters of our membrane are chosen from

group C to H in Table. 3.1. However, I find that the power δ for a given solid membrane

depends on the boundary conditions. When only one edge is hinged and the others are free

δ = 0.8321, when two opposite edges are hinged and two are free δ = 0.5968. These powers

are close to the range given in Nelson et al. (2004), Fasolino et al. (2007).

In the analysis given by Lipowsky & Girardet (1990), Boal & Boal (2012), an ideal

membrane with non-zero in-plane shear resistance µ, but zero bending resistance Kb, has

been shown to have an average thermal fluctuation w̄ ∝ L0.5 given by

w̄ = 0.62L0.5

(
kBT

Y

)0.25

. (3.18)

The fluctuating plate model studied in our paper is neither this ideal membrane (with

Kb = 0, µ 6= 0), nor a fluid membrane (with Kb 6= 0, µ = 0). Therefore, the resulting
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power is between 0.5 and 1 and it depends on the applied boundary condition. In order to

further verify our model, I give results from another calculation in the inset of Figure 3.3d

using parameters from group I in Table 3.1. I cannot choose the bending modulus Kb and

Gaussian curvature modulus KG to be exactly zero since this results in a singular stiffness

matrix M. So, I choose Kb and KG to be smaller than the thermal energy scale 1kBT . I

find in Figure 3.3d inset that the power δ for this membrane is δ = 0.5542, which is closer

to the theory in Lipowsky & Girardet (1990), Boal & Boal (2012).

(a) (b) (c)

Figure 3.4: Distinct variance profiles of a sheet under shear loading as given in Group J,
K, L of Table 3.1. (a) Mode n = 1, m = 1 has the largest amplitude. (b) Mode n = 1,
m = 2 has the largest amplitude. (c) Mode n = 1, m = 3 has the largest amplitude.

3.5 Study of ripples under shear loading

An interesting possibility for us is to replace the hydro-static tension F with some other

boundary condition, for example a shear loading S as in Min & Aluru (2011). Along one

pair of opposite edges, I apply a tension of magnitude +S, while along the other pair of

opposite edges, I apply a compression −S. This will result in shear loading on the plate.

To account for this loading, Eqn. (2.3) is changed to:

Ef = −
∫∫

S (u,x − v,y) dxdy

= −
∫∫

S

(
εx −

w2
,x

2
− εy +

w2
,y

2

)
dxdy.

(3.19)
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This results in a sign change in Eqn. (3.2) as:

E =

∫∫
dxdy

[
Kb

2
(w,xx + w,yy)

2

+KG

(
w,xxw,yy − w2

,xy

)
+ S

(
w2
,x

2
−
w2
,y

2

)]
.

(3.20)

In Table 3.1, group J-L I give parameters for this type of problem. The resulting variance

profiles for the out-of-plane deflection are given in Figure 3.4 for three different combina-

tions of parameters. All three membranes are simply supported on the four edges. Each

combination of properties results in a distinct variance profile. Next, I am going to explain

the relation between the parameters and the variance profile obtained from our computa-

tion. Due to hinged boundary conditions on all edges the deflections w(x, y) of our plate

can be expressed as a double Fourier series Boal & Boal (2012):

w (x, y) =
∑

(m,n)

qmn sin

(
nπx

L1

)
sin

(
mπy

L2

)
, (3.21)

where qmn is the amplitude of the normal mode corresponding to m, n. Note that I assume

our plate to be rectangular with sides L1 in x direction and L2 in y direction. When I plug

the above expression into Eqn. (3.20) I get:

E =
∑

(m,n)

q2
mn

[
Kbπ4

8L1L2

(
n2 +m2

)2
+
Sπ2

8

(
n2 −m2

)]
. (3.22)

From the equipartition theorem of statistical mechanics Landau & Lifshitz (1986), each

Fourier mode (m,n) should possess energy kBT/2. Therefore, I can compute the amplitude

of each mode as:

〈q2
mn〉 =

4kBTL1L2

Kbπ4 (n2 +m2)2 + SL1L2π2 (n2 −m2)
. (3.23)

Therefore, the mode (m,n) with maximum amplitude should be given by:

n = 1; m =


√

1 + 2SL1L2
Kbπ2 − 1

2

 , (3.24)
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(a) (b)

Figure 3.5: (a) Prediction of graphene layer thermal expansion coefficient. Dots are the
result of our semi-analytic method; blue, green, and purple lines are experimental results
respectively by Yoon et al. (2011), Bao et al. (2009), and Pan et al. (2012); red line is
theoretical work by Mounet & Marzari (2005). The inset shows α as a function of T over a
broader temperature range. (b) Prediction of graphene layer thermal expansion coefficient
under distinct shear loading (upper panel), and hydro-static tension (lower panel), the unit
in the legends is pNnm−1.

where [·] gives the nearest positive integer. The mode shapes observed in Figure 3.4a-

3.4c are consistent with the result of plugging parameters of Group J-L into Eqn. (3.24).

The mode making the dominant contribution to the variance changes with the loading

because solid membranes can support shear. In contrast, in fluid membranes the dominant

contribution to the variance always comes from the lowest normal mode n = 1,m = 1

because they can only sustain hydro-static tension. It is trivial to extend these calculations

to combined hydro-static and shear loading on the plate. It is evident from the above

results that different loading and boundary conditions will result in different ripple profiles

in fluctuating solid plates.

3.6 Quantitative analysis of the negative thermal

expansion coefficient of graphene

We will use our model to analyze the negative thermal expansion coefficient of graphene

which is around −10−6K−1. This remarkable feature of graphene has been measured and

predicted in Fasolino et al. (2007), Yoon et al. (2011), Bao et al. (2009), Pan et al. (2012),

Mounet & Marzari (2005). However, all these works were based either on experiment or
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molecular simulation. Here I give a quantitative explanation for the negative thermal ex-

pansion coefficient using our fluctuating elastic plate model. The Gibbs free energy G(F, T )

of the whole plate is related to the partition function Z as G = −kBT lnZ. We can compute

the properties of the plate by computing derivatives of the free energy. First, the reduc-

tion in projected area caused by thermal fluctuation is given by ∆A = A(∞, T )−A(F, T ),

where A(∞, T ) is the membrane area at very large tension such that all the undulations

are stretched out and it is flat. The area reduction is conjugate to the tension F in the

free energy of the membrane, and can be computed as ∆A = −∂G/∂F . Since all the terms

related to the force F in the expression for the partition function Z are included in the

matrix M, I have
∆A

A
= −kBT

2A

∂

∂F
ln (det M) , (3.25)

where A is original area of the membrane at zero tension and zero temperature. The

increase in out-of-plane bending deflections of the plate at higher temperatures reduce the

projected area and result in a negative thermal expansion coefficient. The dependence of

the bending modulus Kb on the temperature also contributes to the thermal expansion

coefficient. This dependence has been studied in Fasolino et al. (2007) and I summarize it

through the following fit:

Kb = 131.36 + 200 · tanh
T

1500
, (3.26)

where the units of Kb and T are pNnm and K, respectively. I evaluate ∆A/A at F = 0.001

pN/nm of a 100 nm-by-100 nm graphene sheet, for various values of T . By differentiating

Eqn. (3.25) with respect to temperature T I get the thermal expansion coefficient:

α = − ∂2

∂T∂F

[
kBT

2A
ln detM

]
. (3.27)

We plot our result in Figure 3.5a together with other simulation and experimental results.

It is apparent that our method agrees quite well with earlier work. In particular, I find that

the thermal expansion coefficient increases with increasing temperature as has been found

in several experiments Yoon et al. (2011), Bao et al. (2009), Pan et al. (2012). Although

experimental data for α is available over a range 200 − 400K, I have shown in the inset

of Figure 3.5a that α < 0 over a much broader range upto 800K. I also must not lose

sight of the fact that this figure assumes that the physics behind the negative α is bending
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fluctuations, which may not be the right physics for a solid near 0 K. I also carefully

examine the effect of distinct hydrostatic tension and shear loading on thermal expansion

coefficient as given in Figure 3.5b. I see that hydrostatic tension does not affect the thermal

expansion coefficient much. The shear loading, however, enormously affects it. Firstly, as

the shear load increases, the slope with respect to temperature T changes from positive

to negative. Secondly, at shear loading equal to 0.001 pNnm−1, the thermal expansion

coefficient becomes positive. Note also that the slope of the α vs. T curve is related to the

heat capacity CF = −T∂2G/∂T 2 at given tension F or shear loading S through

∂α

∂T
= − 1

A

∂3G

∂F∂T 2
=

1

AT

∂CF
∂F

. (3.28)

In Figure 3.5b top panel I see that this slope changes sign at a certain value of S. The

equation above shows that a measurement of the heat capacity as a function of S can be

a good way of testing our predictions in addition to experiments of the type carried out in

Yoon et al. (2011), Bao et al. (2009), Pan et al. (2012).

43



Chapter 4

Inclusions in membranes

If two similar proteins bind to a lipid bilayer separated by a distance r then the elas-

tic deformation field around one of them can produce a repulsive force on the other one

Golestanian et al. (1996). This force decays as 1/r4 as has been deduced from studies of

proteins interacting through elastic deformations of a lipid bilayer Ruiz-Herrero & Hagan

(2015), Kim et al. (1998), Yolcu et al. (2014), Müller & Deserno (2010), Schweitzer & Ko-

zlov (2015), Yolcu et al. (2014), Ruiz-Herrero & Hagan (2015), Yuan et al. (2011), Huang

et al. (2011). Lipid membranes also fluctuate due to Brownian motion. This results in an

attractive entropic force between two similar proteins Ruiz-Herrero & Hagan (2015), Yolcu

et al. (2014). The competition between attractive and repulsive forces can lead to self-

assembly of proteins on a lipid bilayer membrane Dommersnes & Fournier (2002), Reynwar

et al. (2007). This sort of self-assembly determines the shape of a cell membrane and plays

a role in endo- and exo-cytosis by the formation of localized invaginations or buds. For

example, bud formation happens when capsid proteins of viruses, like HIV and influenza,

land on lipid membranes and self-assemble Ruiz-Herrero & Hagan (2015). Similarly, the

protein endophilin clusters together on lipid membranes and causes the formation of cylin-

drical tubules, and thus, it plays a role in membrane trafficking events in a cell Farsad

et al. (2001). The early stages of self-assembly of certain amyloid forming proteins (which

cause Alzheimer’s and Parkinson’s diseases) also involves self-assembly of monomers on a

lipid membrane Pannuzzo et al. (2013). Since self-assembly often involves much more than

two proteins, the interactions between many proteins on a membrane have been studied

and it has been learned that pair-wise expressions are not sufficient to describe these many
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(a) (b)

Figure 4.1: (a) Schematic figure of a fluctuating membrane with applied hydro-static
tension F . The out-of-plane deflection of reference point (x, y) is w(x, y). The red circles are
embedded proteins, or inclusions. (b) Equilateral triangle element discretization scheme of
a square membrane. The inclusions are represented by hexagons consisting of many triangle
elements. I keep the element size fixed, so the number of triangle elements in an inclusion
depends on the size of the inclusion.

body interactions Kim et al. (1998). However, analytic studies of these many body in-

teractions account for membrane bending deformations only. The entropic component of

the interactions has been studied recently using simulations and a sophisticated field the-

ory Yolcu et al. (2014), Müller & Deserno (2010). The field theory relies on the idea that

the height fluctuations of the membrane are small, so the bending energy can be written as

a quadratic form. This leads to Gaussian path integrals that can be evaluated analytically,

but not without difficulty Yolcu et al. (2014).

Our overarching goal in this Chapter is to study elastic and entropic forces between

many inclusions on lipid membranes using computational methods based on Gaussian inte-

grals. Although mechanical and thermodynamic properties of lipid membranes, including

how inclusions (such as, proteins) effect the overall membrane behavior, have been quantita-

tively studied using experimental,theoretical and computational methods Evans & Rawicz

(1990), Helfrich (1973), Weeks (1977), Helfrich (1975), Boal & Boal (2012), Milner & Safran

(1987), Lindahl & Edholm (2000), Agrawal et al. (2016), it is not always possible to de-

sign an experiment for large scale problems involving membrane protein interactions, and

also the sample scale is too large for molecular simulations. To overcome these difficulties,

researchers have turned to continuum modeling and associated computational methods

Kahraman et al. (2016) to study large scale (more than several microns) problems involving
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Figure 4.2: (a) The equilibrium shape of a membrane with two proteins embedded in it and
separated by a distance ∆r. The proteins are rigid cylinders which enforce contact angles
ψA and ψB with respect to adjacent membrane. In section 4.2.1, I will fix these angles to
a given value as an enforced boundary condition. (b) Unit normal vectors n̂i and n̂j of two
elements sharing one protein-membrane boundary edge. lij is the reference length between
the center of these two triangle elements. Red triangle is protein element.

protein interactions on membranes. Unlike molecular simulation (such as, Monte Carlo

and Molecular Dynamics based studies Lindahl & Edholm (2000), Agrawal et al. (2016))

these continuum methods do not include Brownian fluctuations. Our technique described

below can potentially be combined with continuum computational methods to account for

entropic effects arising from Brownian fluctuations.

4.1 Theory

4.1.1 Protein-membrane interaction energy

A lipid bilayer membrane in a live cell has proteins embedded in it as shown in Figure

4.1a, whose size is a few nanometers. These proteins are much stiffer than lipid molecules

and they have strong interactions with their surrounding lipids Kahraman (2015). The

embedded proteins change the local shape of the membrane and affect both the elastic and

entropic parts of the membrane free energy. I will now apply our semi-analytic method

described above to the study the effect of membrane inclusions. I model each protein by

assigning some of the triangle elements with much larger bending stiffness (103 pNnm for

all computations in this paper) than the lipid membrane as shown in Figure 4.1b. Also, I

fixed the displacement of all the protein nodes to be zero to compute the bending energy.

Thus, I am assuming the proteins to be rigid disks in comparison to the membrane. An
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advantage of assuming rigid inclusions is that I do not have to account for the energy

due to Gauss curvature in our calculations Kim et al. (1998). One protein could contain

6, 24, or 54 equilateral triangle elements depending on its size. The protein-membrane

interaction at the boundary of each protein (labeled A, B, · · · ) is modeled by uniform

contact angles ψA, ψB, · · · . Here ψA is the angle between the boundary triangle elements

of protein A and the adjacent membrane triangle elements shown in Figure 4.2a. If we

remember that the displacement of all nodes on the proteins is zero then the displacement

of protein-adjacent membrane nodes is w =
√

3
2 l sinψA. Since all our boundary conditions

are specified node displacements we solve for the displacements of all other nodes comprising

the membrane using standard techniques in the finite element method (see, for example,

Bathe (2006)). Once the displacements of all nodes are known the elastic energy can be

immediately computed. To compute the entropic contribution to the free energy we add a

penalty energy Ep to Eqn. (2.10), very similar to earlier works Liang & Purohit (2016b),

Zhang & Crothers (2003). Here the penalty energy is written as the sum:

Ep = λ
∑
C

(ψA − ψ)2 , (4.1)

where ψ is chosen to be 0.1 for every computations, and λ is a penalty energy coefficient,

which is chosen to be large enough (e.g. λ = 1012 in Liang & Purohit (2016b)) to ensure that

the probability of configurations violating the boundary condition is extremely small in the

partition sum for Z. The contour C is the boundary of all the proteins, thus I have tacitly

assumed that all proteins have the same contact angle with the membrane. I can, of course,

impose a different contact angle at every protein, but I do not do so here for simplicity.

ψA could be expressed as the absolute value of the difference between unit normal vectors

n̂i, n̂j of the two elements sharing one boundary edge as in Figure 4.2b, or

ψA = |n̂i − n̂j | .1 (4.2)

Recall that n̂i and n̂j can be represented by quadratic expressions of node displacement

variables [w1, w2, ..., wP ]. Therefore, I can write the penalty energy by an algebraic expres-

1This is by assuming ψA to be small such that cosψA = 1 − ψ2
A/2. Therefore, |n̂i − n̂j |2 =

2− 2n̂i · n̂j = 2− 2 cosψA = ψ2
A.
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sion

Ep = wMPwT + w ·Cp + C, (4.3)

where Cp is a vector and C is a constant. Now, I perform the same exercise as in Liang

& Purohit (2016a); I replace the stiffness matrix M in Eqn. (2.11) with a new matrix

M + MP taking care of both membrane energy as well as penalty energy, and rewrite the

energy expression as:

E + Ep = (w − w̄) (M + MP) (w − w̄)T + C̄. (4.4)

where the equilibrium position w̄ has been computed before and C is a constant taking

care of the equilibrium position energy. Finally, I carry out the integral for the partition

function:

Z = exp

(
− C̄

kBT

)√
(2πkBT )P

det (M + MP)
. (4.5)

The membrane free energy with inclusions is thus given by:

G = −kBT lnZ = C̄ +
kBT

2
ln det (M + MP) +G0. (4.6)

Here the first term takes care of the elastic contribution, which is independent of tempera-

ture, and the second term takes care of the entropic contribution, which increases linearly

with temperature, and G0 is a constant.

4.2 Results

4.2.1 Interaction of two inclusions

The first problem solved using our method is to compute the interactions between two

proteins on a lipid bilayer as shown in Figure 4.1b. I can compute both the elastic and

entropic parts of the free energy of this lipid membrane as a function of a protein separation

distance r. I choose a membrane with side L = 500 nm and a discretization scheme with

N = 200, resulting in an element size l = 2.5 nm because it resulted in excellent agreement

between our computations and the analytic expressions for membrane entropy Liang &

Purohit (2016a). The bending modulus is varied from 5kBT to 20kBT and membrane
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Figure 4.3: Results for computations with two inclusions on a membrane with properties
summarized in Table 4.1. Circles are computation results and solid lines are theoretical fits
using Eqn. (4.7). Blue and green data, associated with left and right y-axis respectively,
correspond to elastic and entropic parts of the membrane free energy.

Table 4.1: Parameters used in the two protein computations.

GroupL(nm) Element
size(nm)

Kb

(pNnm)
Protein
size(nm)

tension F
(pNnm−1)

ael
(pNnm5)

aen
(pNnm5)

cel
(pNnm9)

ben
(pNnm7)

rcr
(nm)

A 500 2.5 82 7.5 0 5.86×105 -8.72×105 -3.90×109 1.29×108 -
B 500 2.5 41 7.5 0 2.93×105 -9.41×105 -1.96×109 1.50×108 -
C 500 2.5 20.5 7.5 0 1.46×105 -9.97×105 -9.76×108 1.69×108 -
D 500 2.5 82 5 0 2.25×105 -1.40×104 -1.09×1010 4.34×106 -
E 500 2.5 41 5 0 1.12×105 -1.69×104 -5.45×109 4.73×106 -
F 500 2.5 20.5 5 0 5.56×104 -1.87×104 -2.72×109 4.72×106 -
G 500 2.5 82 2.5 0 6.21×104 -1.97×103 -3.94×109 1.43×105 -
H 500 2.5 41 2.5 0 3.11×104 -2.13×103 -1.97×109 1.47×105 -
I 500 2.5 20.5 2.5 0 1.55×104 -2.23×103 -9.86×108 1.51×105 -

J 500 2.5 6.15 2.5 0 4.66×103 -2.31×103 -2.96×108 1.52×105 25
K 500 2.5 4.1 2.5 0 3.11×103 -2.33×103 -1.97×108 1.46×105 30
L 500 2.5 3.28 2.5 0 2.49×103 -2.33×103 -1.58×108 1.34×105 35
M 500 2.5 2.87 2.5 0 2.18×103 -2.28×103 -1.38×108 1.40×105 40

N 500 2.5 3.69 2.5 0.00001 2.80×103 -2.30×103 -1.77×108 1.62×105 35
O 500 2.5 3.69 2.5 0.0005 2.88×103 -2.34×103 -1.87×108 1.46×105 35
P 500 2.5 3.69 2.5 0.005 2.82×103 -1.93×103 -1.76×108 2.60×105 40
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Figure 4.4: Dependence of fitting parameters ael and aen in Eqn. (4.7) on membrane
bending modulus and protein size. The blue solid lines associated with the left y-axis are
result for ael, which increases roughly linearly with Kb. The green dash lines associated
with the right y-axis are results for aen, which are almost independent of Kb (aen decreases
very slowly with decreasing Kb).

tension is set to zero. I hinge all four sides of the membrane. The proteins contain 6, 24,

or 54 equilateral triangle elements depending on their radius R. The results for various

computation groups in Table 4.1 are shown in Figure 4.3. In each plot the distance r is on

the x-axis, the elastic part of the free energy (blue curve and circles) is on the left y-axis

and the entropic part of the free energy (green curve and circles) is on the right y-axis.

We see in all the computation groups that the entropic part of the free energy increases

with protein separation distance and the elastic part decreases with protein separation

distance. The dependence of both entropic and elastic parts of the free energy has been

studied analytically in Yolcu et al. (2014) and references therein. It is known that the elastic

and entropic parts of the free energy of a membrane with two identical rigid circular disks

whose centers are a distance r apart take the form (to lowest order in 1/r):

Uel(r) =
ael
r4

+
cel
r8

+O(
1

r10
),

Uen(r) =
aen
r4

+
ben
r6

+
cen
r8

+O(
1

r10
).

(4.7)

The subscript el and en indicate elastic and entropic parts, respectively. Note that the r−6

term in the elastic part of the free energy is zero because the two inclusions are identi-

cal Yolcu et al. (2014). I obtained ael, aen, ben, etc., by fitting each computation group in
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Figure 4.5: Total free energy profile of selected groups in Table 4.1. (A) The position of
the maximum rcr moved to the right as bending modulus increased. (B) The position of
the maximum moved to the right as tension increased. The blues lines and red lines are
associated with left and right y-axis respectively. The inset in (A) shows the position of the
maximum, rcr, as a function of Kb for zero tension as (see Group J-M in Table 4.1) as dots.

Table 4.1 using Eqn. (4.7) as shown by the solid lines in Figure 4.3. The fitting parameters

are given in Table 4.1. The fitting parameter ael should scale with Kbψ
2
AR

4, while fitting

parameter aen should scale with kBTR
4 and be independent of Kb if the inclusions are

circular discs of radius R as in Yolcu et al. (2014). In Figure 4.4 I see that our ael increases

roughly linearly with bending modulus Kb, and aen remains almost unchanged as bending

modulus increases from 5kBT to 20kBT , which agrees with the analytic theory based on

Gaussian integrals Yolcu et al. (2014). We see from Table 4.1 that ael, aen and ben increase

with protein size, as expected. I do not expect exact agreement of our computations with

Yolcu et al. (2014) because (a) our inclusions are hexagonal in shape while those in Yolcu

et al. (2014) are circular, (b) I use only the first few terms in the expansions provided in

Yolcu et al. (2014) to fit our results, (c) our membrane is not infinite as in Yolcu et al.

(2014) and has specific boundary conditions applied at its edges, and (d) the expansions in

Yolcu et al. (2014) are valid, presumably, for R/r << 1, while for some of our computations

R/r < 1.

4.2.2 Free energy maxima due to elastic entropic competi-

tion

Figure 4.3 shows that the elastic and entropic parts of the free energy have opposing

trends as functions of r. This competition could result in a maximum in the total free
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energy if the appropriate system parameters are chosen. To see this let’s start with Eqn.

(4.7):

U = Uel + Uen =
ael + aen

r4
+
ben
r6

+
cel + cen

r8
+O(

1

r10
), (4.8)

then, neglecting higher order terms I am able to compute the critical separation distance

rcr where the free energy U reaches a local maximum as:

r2
cr =

−3ben +
√

9b2en − 32 (ael + aen) (cel + cen)

4 (ael + aen)
. (4.9)

For rcr to be real, the right hand must be positive. If ael + aen > 0, then cel + cen < 0 will

result in a maximum; if ael + aen < 0, then ben >
4
√

2
3 (ael + aen) (cel + cen) will result in a

maximum. Now, from our fits, it is possible to find real values of rcr. Generally, for most

lipid bilayer membranes, the elastic contribution overwhelmingly dominates the entropic

contribution and there is no maximum. However, for some special membranes with small

bending rigidity, the entropic contribution can balance the elastic contribution and I can

get a maximum. To test this idea, I chose lower bending moduli Kb = 0.7−1.5kBT (Group

J-M in Table 4.1) and computed the free energy of our membrane with two inclusions of

radius 2.5 nm at zero tension. Such low bending moduli are known to occur for surfactant

membranes (see Rekvig et al. (2004) and references therein). In Figure 4.5(A) I plot the

free energy U(r) for two of these membranes and see a maximum in each case. The location

of the maximum, rcr, decreases with increasing Kb as I expect from Eqn. (4.9). Recall both

from Yolcu et al. (2014) and our computation result in Table 4.1, that the coefficient ael

and cel varies lienarly with Kb, while the coefficients aen, ben, and cen are independent of

Kb. Then, rcr in Eqn. (4.9) should be related to Kb through

rcr =
β +

√
γ − µKb − νK2

b

α+Kb
, (4.10)

where α, β, γ, µ, and ν are related to the protein size R and other system parameters. In

our calculation, I cannot find the exact location of the maximum, rcr, since I only choose

the separation distances that are multiples of l, the element size. However, I am able to

see the trend of rcr increasing as the bending modulus of the membrane Kb decreases. I

plot the result from our computation for the location of the maximum rcr of Group J-M in

Table 4.1 in an inset of Figure 4.5A. We see that the trend is consistent with prediction by
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(a) (b)

Figure 4.6: (a) Free energy profile of membrane inclusion system with parameters in Table
4.2. The blue line and green line are associated with left and right y-axis, respectively. (b)
Out-of-plane deflection profile of a membrane with seven inclusions.

Eqn. (4.10).

4.2.3 Effect of tension on free energy maxima

While changing the bending modulus is one way of controlling the magnitude of elastic

and entropic parts of the free energy, another way to do so is to change the hydrostatic

tension. I have tried this for Kb = 0.9kBT by applying a tension F = 1 × 10−5 pN/nm

to F = 5 × 10−3 pN/nm (Group N-P in Table 4.1). In Figure 4.5(B), I compare the

computation result of total free energy of group N and P of same bending modulus Kb. The

non-zero value of tension increases the elastic part of the free energy because the potential

energy of the applied tension is added. It decreases the entropic contribution since tension

stretches out the ripples of out-of-plane thermal fluctuation. The net result is that the

location of the free energy maxima rcr decreases with increasing F , and thus Figure 4.5A

and B exhibit a similar result.

4.2.4 Protein cluster

Table 4.2: Parameters used in the protein cluster computations.

Group L(nm) Element size(nm) Kb (pNnm) Protein size(nm) tension F (pNnm−1) rcr (nm)

Q 500 2.5 4.1 2.5 0 30
R 500 2.5 2.87 2.5 0 35
S 500 2.5 2.87 2.5 0.01 40
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Having benchmarked our computations against analytic results I want to go beyond

pair-wise interactions which are known not to apply to many-body interactions Kim et al.

(1998). Our computational method is not restricted to just two inclusions; it can equally

well be used to study interactions between many inclusions in a membrane. To illustrate

the capability of our method I will assume that a cluster of seven inclusions forms a regular

hexagon with one inclusion at each of the six vertices and one at the center as shown in

the inset of Figure 4.6a. The side of the hexagon is r. Our choice of parameters for the

membrane inclusion system is shown in Table 4.2. The out-of-plane deflection profile of a

membrane protein system in group Q with a separation distance r = 60 nm is shown in

Figure 4.6b. I compute the total free energy of the system as a function of r. I change both

Kb and F in computation groups Q,R and S. For all groups I see a maximum in the free

energy, as shown in Table 4.2 and plotted in Figure 4.6a. If r < rcr then these proteins

will attract each other due to entropic interactions and r will decrease until a preferred

separation is dictated by short range interactions. The value of rcr can be modulated by

changing the tension F . A more detailed analysis (including a parameter study) of such

clusters of inclusions is left to future work, but the computations presented here suffice to

illustrate the capabilities of our computational method.
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Part II

Non-linear compression response of

filament networks
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Chapter 5

Compression of fibrin

Our goal in this chapter is to study the mechanical and structural responses of fibrin to

compression by a combination of experiment and theory. In particular, from precise dynamic

rheological and microscopic measurements I have developed a model for the compression

behavior of fibrin networks based on the theory of foams and other cellular solids. First,

the compression stress-strain curve was measured in experiment along with the loss and

storage moduli at various strains with simultaneous three-dimensional visualization of the

fibrin network during the deformation. In addition to the non-linear behavior of storage

and loss moduli, I were able to reveal the non-uniformity of the compressive deformation

with formation of a “compression front” or “phase boundary” along the axis of compressive

strain (see Figure 1.3) Gaitanaros et al. (2012), Jang & Kyriakides (2009). Next, I described

how the non-linear rheological behavior could be explained by viewing the fibrin network

as a “cellular” solid that could exist in two phases – the low-strain phase in which the

fibers are mostly straight, and a high-strain phase in which the fibers are mostly buckled.

In displacement-controlled experiments such a solid has a stress plateau when there is a

mixture of both phases. The fraction of each phase at equilibrium is determined by a lever

rule Landau & Lifshitz (1986). However, the storage and loss moduli at various degrees of

compression in our fibrin networks were obtained in the experiments by performing small

oscillations around a certain strain. These oscillations changed the fractions of the two

phases but they were not necessarily quasi-static. We treated these two phases using a

continuum theory of phase transitions in which a kinetic equation relates the rate of change

of the fraction of the phases to the stress Gibson & Ashby (1999). In this way I explained
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the storage and loss moduli of the networks while accounting for the contributions of the

moving phase boundary as well as the viscoelasticity of each phase.

In this chapter I first provide the details of the experimental procedures and present a

description of the obtained data on controlled fibrin compression followed by a comprehen-

sive theoretical analysis. After a short summary of the well-known results for cellular solids

I show how this approach can be applied to fiber networks. I also describe the constitutive

laws for fiber networks under large compression that have been studied using experiments

and theory for several decades Van Wyk (1946), Toll (1998). I finally show how these results

can be generalized and combined with a continuum theory for phase transitions to obtain

the storage and loss moduli of networks under compression. The novelties of this work

are (a) experimental visualization of a propagating phase boundary in compressed fibrin

networks, (b) an explanation for the trends in storage and loss moduli of the compressed

networks in terms of a theory of phase transitions, and (c) first application of foam theory to

a bio-polymer network. Our analysis leads to some new experimentally testable predictions

about the dependence of the mechanical properties of the clot on network parameters that

have been summarized in the discussion section.

5.1 Compression-Induced Non-Uniformity of the

Fibrin Network Structure

Visual examination of the fluorescent confocal images of the fibrin clots during com-

pression revealed marked non-uniformity of the network structure. Here I define the XYZ-

coordinate system as Z-axis along the vertical direction that is opposed to the applied

compression. The XZ-plane sections of the fibrin networks clearly showed the appearance

and progression of a gradient in the fluorescence intensity in the direction of compression

with a more or less sharp boundary between the areas with different intensities (Figure

5.1). To precisely quantify the non-uniformity of the network density, I computationally

reconstructed and analyzed the three dimensional images of a 150-µm-thick uncompressed

fibrin clot and the same clot after 20% and 50% compression by segregating each image into

14 equal horizontal sublayers spanning the entire height of the network. The thickness of

the red layers at various degrees of compression was different depending on the height of the
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Figure 5.1: The “compression front” or “phase boundary” is formed in response to vertical
deformation of a fibrin clot. To provide visual examination of the changing clot structure,
the distribution of fluorescence intensity in the XZ plane is shown in the same fibrin clot,
uncompressed (left), about 20% compressed (center), and about 50% compressed (right).
As the degree of compression increases, the fluorescence intensity (reflecting the network
density) displays a gradient along the direction of compression. Here the compressive strain
ε is a degree of compression defined as ε = |∆L/L0|, where ∆L = L − L0, and L0 and L
are the initial and reduced thickness dimensions of the uncompressed and compressed clots,
respectively. The dashed lines outline the top (I), middle (II) and bottom (III) layers of the
compressed clot, respectively. A horizontal arrow indicates the position of the compression
front.

clot. I quantified the uniformity of network densification as the node density in each layer

and plotted it against the distance from the bottom of the clot compressed from above (Fig-

ure 5.2). Our results showed that during vertical compression of a fibrin network a much

higher degree of node densification was observed closer to the top of a clot, while the node

and network density decreased towards the bottom. The top, middle and bottom layers of

the compressed clots are indicated in Figure 5.1 and Figure 5.2. As the degree of compres-

sion increased from ε = 0 to ε = 0.2 and ε = 0.47, the node density of the upper network

layers increased by a factor of 1.8 and 2.3, respectively. At the same degrees of compression

(ε = 0.2 and ε = 0.47) the node density of the middle layers of the network increased by

only 1.1 and 1.2, respectively. The density of the bottom portion of the network did not

change at ε = 0.2, but increased by 1.2 for ε = 0.47 as is apparent from the diffuse region

near the bottom of the clot in Figure 5.1 (right panel). However, this does not contradict

the presence of a moving compression front from the top of the clot. Since the width of the

front given by the parameter c in Eqn. (5.1) is about 30 µm and its center is located at

Z0 = 42 µm, the bottom portions of the network likely experience a non-zero strain that

pushes them against the glass surface causing a moderate increase in fluorescence intensity.
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To confirm the structural non-uniformities in fibrin clots produced by compressive loads,

I also complemented the three-dimensional structural analysis of compressed fibrin networks

with an experiment to follow the displacement of microscopic fluorescent beads embedded

into the network in response to clot compression. 2-µm polystyrene fluorescent beads were

tracked during the compressive deformation in a clot volume of 35.8× 35.8× 25.5µm in the

bottom portion of the clot. The compression was applied in 25µm steps. After each step I

waited 2 minutes before measuring the displacements of the beads. I found that the beads’

position changed non-linearly in the Z-direction as a function of compressive strain (Figure

5.3), indicating the non-uniform compression of the network. In the case of spatially uniform

compression, one would expect to observe a linear displacement of beads with compression

irrespective of their initial position and the distance from the bottom of a clot. However,

in our experiments the beads exhibited less than 20% relative displacements when the clot

was exposed to compressive strains from ε = 0 to ε = 0.6, but revealed a rapid descent

toward the bottom of the clot at ε > 0.6. To be more specific, when the compressive strain

reached 0.6, the absolute distances changed by 2, 1.5 and 0.6 µm for the beads initially

located at 14.7, 11.1 and 2.7 µm over the bottom, respectively. At a compressive strain of

0.7 the bead, which was the closest to the bottom of the clot, stopped moving because it

had reached the surface. As the strain increased, other beads moved downwards until they

also reached the bottom of the clot. The trajectory of all the beads turned downward at a

similar compressive strain because they are all located within 15 µm of the bottom while

compression is applied in 25 µm steps and the width of the front is about 30µm (see Figure

5.1 and Figure 5.2).The nonlinear response of bead displacement to network compression

indicated that the deformation of the network occurred non-uniformly with the top layers

being compressed earlier and stronger than the lower network portions. As a result, the

beads did not undergo large displacements at low strains but their vertical position started

to change drastically at about ε > 0.6 as the boundary between the relatively compact

(upper) and loose (lower) portions of the network approached the bottom of the clot.

Thus, both the structural analysis and bead tracking provide evidence for the formation

and propagation of a “compression front” inside the network as more dense upper layers

overtake the less dense bottom portions of the fibrin clot during progressive compression.
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Figure 5.2: (a)The node density of the fibrin network as a function of height from
the bottom of the sample based on three dimensional reconstruction of the network,
uncompressed (ε = 0) and compressed to different degrees (ε = 0.2 and ε = 0.47). The
node density was normalized with respect to the node density of the uncompressed
clot. Note that the node density increases from bottom to top. The curve is flatter
near the top and bottom of the sample and has a larger gradient near the middle.
This suggests that the fibers are buckled near the top and straight near the bottom.
The symbols represent experimental data (MSD, n=4) and I have modeled the regime
of high gradient as a compression front or phase boundary. The lines represent fitting
curves made using Eqns. (5.1) and (5.2) together with the experimental data with
fitting parameters a = b = 0.2, c = 30 µm, and Z0 = 42 µm for red curve, Z0 = 100
µm for green curve respectively.Z0 represents the center of the phase boundary in the
reference configuration. The decrease of Z0 shows that the front moves downwards
in response to increased compression. The top (I), middle (II) and bottom (III)
layers of the compressed clot (ε = 0.47) are separated by the vertical dashed lines
that correspond to the layers shown in Figure 5.1. Large circles with vertical arrows
indicate the position of the compression front. (b) Experimental data of node density
under large compression is fitted by Eqn. (5.7). This justifies our use of Eqn. (5.8)
for the densified network. I have used l = 1.32 µm, d = 0.22 µm, ν = 0.1 µm−3.

Such a front can be represented by a strain profile given as:

ε = a+ b tanh(
Z − Z0

c
), (5.1)

z(Z) = d+ (1− a)Z − bc log

(
cosh(

Z − Z0

c
)

)
, (5.2)

where Z is the original height of a material point in the unstressed (reference) configuration,

Z0 is the location of the center of the front in the unstressed configuration, and z is the

deformed height that is measured in the experiment. I got Eqn. (5.2) by integrating
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Figure 5.3: The absolute vertical distance from the bead to the bottom of the clot along the
direction of network compression for various locations in the same clot compressed from ε =
0− 0.9. The network is characterized by z - the bead distance from the bottom at a certain
degree of compression and z0 - the bead initial distance from the bottom of the network.
2µm polystyrene fluorescent beads were tracked during the compressive deformation in a
clot volume of 35.8× 35.8× 25.5µm in the bottom portion of the clot. Densification occurs
at the bottom of the clot only at high compressive strain, likely coinciding with the arrival
of the compression front at the bottom. Before the arrival of the compression front the
density in the bottom of the clot remains almost independent of strain. This is what I
expect in the plateau regime when the network consists of a mixture of two phases that
accommodate the increasing compressive strain simply by advancing the compression front.

dz/dZ = 1− ε with boundary condition z(0) = 0, as in our experiments. Capital Z0 cannot

be measured in our experiment but using Eqn. (5.2) the change in Z0 can be obtained from

the experimentally measured changes in the location of the phase boundary as a function

of z as explained below. The network density is proportional to 1/(1 − ε) as discussed in

section 5.3. Thus, I can plot the network or node density as a function of z. Since the

maximum values of the strain in Eqn. (5.1) are a±b, I expect that 2b should approximately

equal the transformation strain or the difference in strains between the high-strain and

low-strain phases at the plateau stress σ0 a should be the strain at the center of the front,

c should be a measure of the width of the front, and d is obtained by enforcing z(0) = 0

(see analysis in Appendix). Keeping this in mind I chose reasonable values of a, b and c

to fit the experimental data. The data and the fits are shown in Figure 5.2. I found that

2b ≈ 0.4, as expected to be the transformation strain shown in Figure 5.2. Furthermore, Z0

comes closer to the bottom of the sample when higher compression is applied, confirming

that the “compression front” moves downward in response to the loading.
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5.2 Non-linear Mechanical and Structural Response

of Fibrin Networks to Compression

Structural alterations of fibrin network during compression underlie changes of shear

viscoelasticity studied with rotational rheometry. The rheological measurements of fibrin

clots with various initial shear storage and loss moduli were performed with two different

compression steps (10 µm and 25 µm ) and at different degrees of compression. The ex-

perimental results are shown in Figures 5.4 and 5.5 in combination with the theoretical

curves. The normal stress, calculated as the force distributed over the area of the smaller

rheometer plate was measured for each degree of compression, and presented as the plots of

normal stress, σ, versus compressive strain, ε (Figure 5.4). The curves were almost linear at

lower degrees of compression with a steep increase of the normal stress at higher degrees of

compression (ε > 0.5). The evolution of the shear viscoelastic properties of fibrin networks

in response to compressive deformation displayed a typical tri-phasic behavior (Figure 5.6).

In the beginning of compression (ε < 0.05), the shear elastic modulus of a fibrin network

was almost constant followed by a long relative plateau up to about ε = 0.7 − 0.8 com-

pressive strain and finally dramatic increase at the highest compressive strains. The loss

modulus followed the same trend (Figure 5.5b). If the current rheological measurements are

correlated with the structural analysis of the network dynamics performed earlier in Kim

et al. (2014), the results could be described as follows. First, a linear viscoelastic response

to compression was observed, in which most fibers are straight. Then, a plateau regime

follows, accompanied by an increasing number of buckled fibers while the stress remains

nearly constant as strain increases. Finally, I see a regime in which network densification

occurs with a stress-strain response that is markedly non-linear and dominated by bending

of fibers after buckling and inter-fiber contact. In the next section we will quantify these ob-

servations using a model for foams. I emphasize that the experimental results reported here

are substantially distinct from those reported earlier Kim et al. (2014) because in addition

to the confirmed non-linear response, I were able to reveal the non-uniformity of the com-

pressive deformation with formation of a “compression front” or “phase boundary” along

the axis of compressive strain (see Figure 1.3a) Gaitanaros et al. (2012), Jang & Kyriakides

(2009).
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5.3 Short Review of Cellular Solids

A foam is a porous low density structure consisting of cells or fibers made of a viscoelastic

material. In our case these fibers are made of fibrin. If Es is Young’s modulus of a single

fibrin fiber, then the Young’s modulus and shear modulus of the network or foam consisting

of these fibers is given by Gibson & Ashby (1999):

E1 = Esφ
2
0, (5.3)

G1 =
3

8
Esφ

2
0, (5.4)

where the important non-dimensional quantity φ = πνd2l/4 is the volume fraction of fibrin

in the network, ν, d, and l are respectively the number of fiber segments per unit volume,

fiber diameter and fiber segment length between branch points. φ0 is the initial fiber volume

fraction before compression. These expressions are derived under the assumption of small

strains so that the stress-strain relation of the foam can be approximated as linear. I will

designate this phase of our fibrin network as the linear phase or the low-strain phase.

When this network is loaded in compression fibers will buckle Gibson & Ashby (1999)

when a critical force is reached. From Euler’s formula, the critical axial load that causes

fiber buckling is

Fcr =
n2π2EsI

l2
, (5.5)

where Es, I and l are the Young’s modulus, area moment of inertia, and the length of

the fiber between branch points, respectively. The coefficient n is close to one and is

determined by boundary conditions at the fiber ends. According to the analysis given in

Gibson & Ashby (1999), n is taken to be 1 because the fiber lengh l varies over a range in

random networks. I can use this expression for the critical load to estimate the stress σ0

at which buckling of fibers begins in the network. According to Gibson & Ashby (1999),

since, σ0 ∝ Fcr/l2 ∝ EsI/l4, I could write it as

σ0 = cEsφ
2
0, (5.6)

where the coefficient c is assumed to be 0.04 in Gibson & Ashby (1999). The strain cor-

responding to the critical stress in the low-strain phase is easily computed as ε1 = σ0/E1.
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Another way to estimate ε1 is to use Eqn. (5.5) – ε1 ≈ Fcr/(AEs) where A is fiber cross-

sectional area. Both these methods give an estimate of ε1 around 0.05 and σ0 around 5

Pa for the parameters in the experiments shown in Figures 5.4 and 5.5. These ideas for

estimating σ0 can only be justified if the fibers in the network are not undulating due to

thermal motion. The extent of thermal undulations depends on the persistence length of

the fibers and their length between branch-points. The persistence length of fibrin varies

over a wide range depending on the conditions (thrombin concentration, pH, calcilum con-

centration, etc.,Ryan et al. (1999)) under which a clot is made Sharma et al. (2008), Jahnel

et al. (2008). In fact, Piechocka et al. (2010) summarizes several reasons in addition to fibrin

assembly conditions (such as, protein packing density, lateral binding between protofibrils.

etc.) that result in the variation of fibrin persistence length. For our fibrin networks, which

have been derived from plasma clots, the average diameter of the fibers is about 220nm

Kim et al. (2016), which together with a Young’s modulus E = 5MPa Collet et al. (2005)

gives a persistence length EI/kBT at room temperature about 1m. The length l between

branch points is about 1 − 2µm, on average. Thus, thermal fluctuations of the fibers are

negligible, consistent with the assumption for foams.

When large compressive strain is applied to a fibrin network the total volume decreases

considerably and the inter-fiber space is reduced. In this configuration a linear stress-strain

relation is not applicable any more. The fibers are mostly buckled and forced to touch each

other. I call this kind of configuration the “densified phase” or the high-strain phase. This

sort of densified network has been studied by Toll Toll (1998) who showed that the number

of contact points Nc per unit volume is an increasing function of fiber volume fraction φ

and was given by

Nc =
16

π2

f

d3
φ2, (5.7)

where f is a scalar invariant of the fiber orientation distribution function and is equal to π/4

for three dimensional isotropic networks Toll (1998). Following Gibson & Ashby (1999), in

the densified phase I assume the fiber volume fraction φ = φ0/(1−ε). In other words, all the

volume change is due to the reduction in the thickness of the network in the direction of the

compressive force with no change in the cross-sectional area. Our experiments indicate that

this is a good approximation. I compared Eqn. (5.7) to the experimental data on contact

point density Nc from Kim et al. (2014) and found that it indeed varied quadratically with

64



the fiber volume fraction φ as shown in Figure 5.2b. The stress-strain relation for such a

network was proposed by van-Wyk Van Wyk (1946) and Toll Toll (1998) in the following

form:

σ = kEs (φn − φn0 ) , (5.8)

where the coefficient k is determined by the material and loading conditions. It is found

to be less than 1, as in Mezeix et al. (2009). The exponent n was analytically derived

to be 3 from Eqn. (5.7) for three-dimensional random networks in Toll (1998). This has

been confirmed by several experiments Mezeix et al. (2009), Choong et al. (2013), Bouaziz

et al. (2013), Masse & Poquillon (2013). From Eqn. (5.8), I can compute the local tangent

moduli of the network in the densified regime. The tangent modulus at any strain in the

densified regime is directly proportional to the storage modulus in the rotational rheometer

oscillation experiments. Following the linear theory for foams at small strains I assume

that the ratio between this storage modulus and the local tangent modulus in the densified

regime is 3/8 (see Eqns. (5.3) and (5.4)) and get the following expression for the shear

modulus of the densified network at strain ε:.

G =
9kEφ3

0

8 (1− ε)4 . (5.9)

Any contributions due to the Poisson effect in the densified regime are absorbed into the

constant k that has been treated as a fitting parameter in the literature. This is also

consistent with our experimentally motivated assumption above that vertical compression

of the fibrin network does not change its cross-sectional area. For the plateau stress σ = σ0,

I find that the Young’s and shear moduli are

E2 =
3kEφ3

0

(1− ε2)4 , (5.10)

G2 =
9kEφ3

0

8 (1− ε2)4 , (5.11)

where ε2 is the strain at which σ0 = kEs
(
φ3 − φ3

0

)
.

We will use a linearized version of the stress-strain relations (in the neighborhood of

σ = σ0) in our subsequent analysis. These are summarized for the low- and high-strain
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phases as follows.

ε (σ) =

 σ/E1

σ/E2 + εT

σ ≤ σ0 (ε < ε1)

σ ≥ σ0 (ε > ε2)
(5.12)

where σ0 is the critical stress for buckling, as discussed previously. At this stress the straight

and densified phases co-exist. E1, E2 are Young’s moduli in the straight and densified

phases respectively from Eqns (5.3) and (5.10). εT is the transformation strain which can

be estimated by constructing the tangent to the stress-strain curve at ε = ε2 and reading

off the intercept on the ε axis. If I assume that the process of loading is quasi-static so that

the sample stays in equilibrium during the compression process, then the compressive strain

ε in the plateau corresponding to the stress σ0 is obtained simply by changing the fraction

of fibers buckled. If I denote the fraction of fibrin in the high strain phase as s ∈ [0, 1], then

total strain can be estimated from the insight that the sample consists of two ‘springs’ in

series consisting of the straight and densified network respectively as observed in Figure 5.2.

ε = (1− s) σ

E1
+ s

(
σ

E2
+ εT

)
. (5.13)

This completes the description of the stress-strain curve for a fibrin network under com-

pression. As an example I have plotted this stress-strain curve for a fibrin network with

network parameters experimentally measured in Kim et al. (2014) in Figure 1.3b. I have

used values of the fiber Young’s modulus Es = 5 MPa Brown et al. (2009), Purohit et al.

(2011), Collet et al. (2005). The stresses in Figure 1.3b are of the same magnitude as

the measured storage moduli in Figure 5.5. However, the stress strain curve in Figure 5.4

does not have an initial linear regime for small strains even though it seems to have a flat

plateau regime for intermediate strains and a regime with steeply increasing stress for high

strains. Furthermore, the shear moduli measured in Figure 5.5 are at least three orders

of magnitude lower than those seen in the normal stress data plotted in Figure 5.4. This

indicates that Figure 5.4 is not a true reflection of the stress strain response of the network;

rather it is the result of water squeezing out of the network in response to compression.

To understand why this is the case I must account for the strain-rate dependence of the

mechanical response of these fibrin gels.
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5.4 Strain Rate Dependence

The fibrin networks that have been tested in our experiments really are gels that contain

a large amount of water. As the gel is compressed, water is squeezed out. However, as it

is sheared, water is not squeezed out because the total volume does not change. Hence, it

is expected that the measured normal stresses in compression will depend on the applied

strain rates. This effect is well-known as poro-viscoelasticity in foams and other cellular

solids Gibson & Ashby (1999). An analytic relation for the stress as a function of the

applied strain rate is given as Gibson & Ashby (1999)

σ =
Cµε̇

1− ε

(
D

l

)2

, (5.14)

where µ is dynamic viscosity of the fluid, ε and ε̇ are the compressive strain and its rate, D

is horizontal dimension of the foam sample, and l is the cell edge-length of the foam. The

coefficient C is about unity. As shown in Figure 5.4, the measured normal stress during

compression can be captured by Eqn. (5.14) with the parameters µ = 0.001 Pa·s (for water),

D = 22 mm (known from our experimental set-up) and l as the only fitting parameter for

each experiment. The strain rate for each experiment is different because the height of the

samples varies while the rate of compression (30µ m/s, see section 2.3) remains fixed for

each experiment. The fitted values of l appear in Table 5.1. They are within the range of

variation of fiber lengths between branch points seen in experiments Kim et al. (2014). I

see that most of the normal stress measured in the experiments is due to the expulsion of

water from the fibrin gel. Hence, the storage and loss moduli measured in our rheometer

experiments and shown in Figure 5.5 cannot be extracted from the stress-strain curves

shown in Figure 5.4.

From Eqn (5.14), I can approximate the viscosity of the gel for small strains (infinitesimal

values of ε) as

η ∝ µ
(
D

l

)2

(5.15)

However, the viscous losses due to this term cannot be measured in the rotational rheome-

ter experiments because the derivation of this expression assumes that the volume of the

network is changing while the oscillatory experiments are performed in shear which involves

no change in volume. Therefore, the loss modulus in the low strain phase should only come
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Table 5.1: Fitting parameters for each experiment of fibrin.

Individual group Sample height(mm) strain rate(s−1) Fiber length(µm)

Black circle 550 0.055 0.5
Magenta triangle 650 0.046 0.3
Black diamond 650 0.046 0.27
Blue circle 750 0.04 0.5
Green diamond 650 0.046 0.4
Red square 750 0.04 0.3

Individual group φ0 k ε20 M (Pa−1s−1) wτon(10−18J · s)

Black circle 0.0045 0.025 0.82 0.004 2
Magenta triangle 0.0045 0.0025 0.8 0.005 1.2
Black diamond 0.0035 0.0025 0.85 0.008 1.7
Blue circle 0.0035 0.333 0.7 0.008 4
Green diamond 0.004 0.333 0.6 0.008 6.5
Red square Densification not observerd

from the liquid viscosity itself. For water, this is merely µ = 0.001 Pa·s, which is much

smaller than the value obtained from (5.15). Therefore, I treat the fibrin network in the

low strain phase as a purely elastic solid with constant modulus.

Another important network property that is related to the strain rate is the inter-fiber

friction. This is particularly important in the densified phase in which a large number of

contacts are created between fibers. Fibers sliding against each other while in contact will

cause dissipation in the network. In order to estimate the viscosity associated with this

process I appeal to an elegant calculation in Howard et al. (2001). This book gives an

explanation for the molecular basis of “viscosity” due to the forming and breaking of bonds

as molecules slide past each other. The expression is:

η = wNcτon, (5.16)

where w is the inter-molecular bond energy and τon the average life-time of a bond. An

expression for Nc as a function of fibrin volume fraction is already given in Eqn. (5.7).

However, w and τon are difficult to determine for fibrin fibers. Some work along this

direction has been done for estimating the viscous losses in microtubule networks Yang

et al. (2013), but here I treat the product wτon as a fitting parameter. In summary, I model

the densified network at σ = σ0 (for small strains) as a Kelvin-Voigt solid Fung (1965) in
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which the stress-strain relation is given as:

σ = E2(ε− εT ) + ηε̇, (5.17)

where the parameters E2 and η are taken from Eqns (5.10) and (5.16). In the rotational

rheometer experiments the loss modulus is related to this viscosity as:

G′′ = ηω, (5.18)

where ω is frequency of oscillation. The loss modulus for both the low- and high-strain

phases can be determined using this formula if I use η = µ = 0.001Pa·s (of water) for the

low-strain phase and Eqn.(5.16) for the high-strain phase. In order to estimate the loss

modulus in the plateau regime of the stress-strain curve I need to account for the rate at

which the fractions of the two phases evolve. This is explained in the next section.

5.5 Phase Boundary Mobility

In the oscillation experiments, the fraction of each phase depends on both applied strain

and strain rate. As shown in Figure 1.3a, the phase boundary is expected to oscillate as the

applied loading oscillates. I treat this process in a one-dimensional model as follows. After

pre-compressing the sample, I assume that the oscillation is also in the axial direction.

This is different from the experiments in which an oscillating shear strain is applied on

the pre-compressed networks. However, since the oscillating shear strains applied in the

experiments are small, I can assume that they will give storage and loss moduli that are

proportional to those obtained in our calculations.

During the oscillation process the sample may not be in equilibrium and thus the stress

may not be σ0. There will be oscillation in stress, phase fractions, as well as strain. I

assume that the fraction s is determined by the kinetics of transformation as in Abeyaratne

& Knowles (2006). This means that the rate of change of each fraction is given as a function

of stress σ. To simplify the problem I consider the particular kinetic equation Raj & Purohit

(2011):

ṡ = Φ (σ) = M (σ − σ0) , (5.19)
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Figure 5.4: Fitting of the experimental data of normal stress according to Eqn. (5.14).
Different symbols and colors are experimental data corresponding to different clot samples
of varying height as shown in Table 5.1. Since the rate at which they are compressed is
30µm/s for all samples the strain rate for each of them is different. Lines show model
fits with parameters as given in Table 5.1. Most of the normal stress measured in the
compression experiments on our fibrin gels is due to the escape of water in response to
compression. For this reason I cannot extract the storage and loss modulus of the networks
from these stress-strain curves.

or,

s− s0 =

∫ t

0
M(σ − σ0)dt = M

∫ t

0
(σ − σ0)dt, (5.20)

where M is a time-independent mobility parameter determined by the network that could

be regarded as a fitting parameter in our theory and s0 is the fraction of high strain phase

before oscillation is applied. In the experiment I apply a harmonic oscillating strain to the
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Figure 5.5: Fitting of the storage moduli and loss moduli according to Eqns. (5.4), (5.9),
(5.32), (5.16), (5.18), and (5.32). I have used fitting parameters for each individual ex-
perimental group as given in Table 5.1. Note that there is no densification regime in the
last group. One possible reason could be the failure or damage of the network under large
compression. However, the data for strains smaller than 0.8 in the last group are consistent
with the other data sets.
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Figure 5.6: Experimental data of storage moduli and loss moduli versus logarithm of strain,
showing three different regimes of fibrin network mechanics as indicated schematically in
Figure 1.3. In the linear regime(0 < ε < 0.05), the moduli are constant; in the phase
transition regime(0.05 < ε < 0.7), they are decreasing due to progressive fiber buckling;
in the desification regime (0.7 < ε < 1), they are steeply increasing due to bending of the
buckled fibers and increased inter-fiber contact. The theoretical curves passing through the
experimental data are plotted using Eqns. (5.4), (5.9), (5.32), (5.16), (5.18), and (5.32)
with φ0 = 0.0045, k = 0.025, ε20 = 0.7, M = 0.004Pa−1s−1, ωτon = 2× 10−18J · s.

pre-compressed network as:

ε = ε0 + a sinωt, (5.21)

where ε0 is an initial strain in the plateau regime of phase transition before oscillation is

applied. Taking account of the strain rate dependence I rewrite Eqn. (5.13) as:

ε = (1− s)ε1 + sε2,

σ = E1ε1 = E2(ε2 − εT ) + ηε̇2.
(5.22)

Now, recall that the expression for equilibrium stress σ0 and strain ε0 are given by:

ε0 = (1− s0)ε10 + s0ε20,

σ0 = E1ε10 = E2(ε20 − εT ).
(5.23)

where the subscript 0 denotes the quantity in initial compression equilibrium before oscil-

lation. Subtracting Eqns. (5.23) from (5.22) I get:

a sinωt = (1− s0)x+ s0y + (s− s0)(ε2 − ε1), (5.24)

σ − σ0 = E1x = E2y + ηẏ, (5.25)

where x = ε1 − ε10 and y = ε2 − ε20 are the small oscillating components of strain in each
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phase. Since the oscillation in strain is small, I make an approximation in Eqn. (5.24) by

replacing ε2 − ε1 with ε20 − ε10. Then, plugging Eqn. (5.20) and (5.25) in (5.24) I get:

a sinωt = (1− s0)
E2y + ηẏ

E1
+ s0y

+M(ε20 − ε10)

∫ t

0
(E2y + ηẏ)dt.

(5.26)

Carrying out the integral of ẏ and rearranging terms, I find that

a sinωt = Ay +Bẏ + C

∫ t

0
ydt, (5.27)

where the three dimensionless quantities A, B, and C are given by:

A = (1− s0)
E2

E1
+ s0 +Mη(ε20 − ε10),

B = (1− s0)
η

E1
,

C = ME2(ε20 − ε10).

(5.28)

Let us assume that this equation has the solution:

y = U sinωt+ V cosωt, (5.29)

where U and V are at present unknown. Plugging this into Eqn. (5.27) and solving for the

two coefficients U and V gives:

U = a
A

A2 + (Bω − C/ω)2
,

V = −a Bω − C/ω
A2 + (Bω − C/ω)2

.

(5.30)

Plugging this back into Eqn. (5.22) I get the expression for stress as:

σ = σ0 + E2y + ηẏ

= σ0 + a(E2U − ηV ω) sinωt+ a(E2V + ηUω) cosωt.
(5.31)
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Therefore, the storage and loss modulus in the plateau regime (i.e. σ = σ0) are respectively

G′ = E2U − ηV ω =
E2A+ ηBω2 − ηC
A2 + (Bω − C/ω)2 ,

G′′ = E2V + ηUω =
−E2 (Bω − C/ω) + ηAω

A2 + (Bω − C/ω)2 .

(5.32)

In order to confirm that the above framework predicts the correct storage and loss mod-

uli, I compared quantitatively our theory with the experimental data. The input parameters

of the network in the above computations were taken from the experiments shown in Fig-

ure 5.5. Combining Eqns. (5.4), (5.9) and (5.32) together, I obtain the theoretical curve in

each individual experiment in Figure 5.5. I take the value of branch point density and fiber

density exactly as measured in experiment as 0.04 µm−3 and 0.1 µm−3 respectively. The

other fitting parameters for each experiment are reported in Table 5.1. The trends in stor-

age and loss moduli are captured quite well with this model. Note that the experimentally

measured average fiber length and average fiber diameter are 1.32 µm and 220 nm respec-

tively Kim et al. (2014), which result in a fiber volume fraction of φ0 = πνd2l/4 = 0.005.

The φ0 values obtained by our fits are slightly below this value but well within the range of

variation of φ0 in the experiments Kim et al. (2014). Also note that the value of constant k

in the densifed phase varies inversely with the strain ε20 where the phase transition finished.

I have not yet been able to rationalize this.

We will now connect our results for the variation in moduli to Figure 1.3 which schemat-

ically shows three distinct regimes in the stress-strain curve. To this end I have replotted

all the data for storage and loss moduli in Figure 5.6 against the logarithm of the strain

ε. The red and blue curves in the upper and lower panels are fits to the average of all the

storage and loss moduli, respectively. The strains ε1 and ε2 have been indicated by dashed

lines to demarcate the three regimes. In the initial linear regime, ε < ε1, the moduli G′ and

G′′ are constant. In the plateau regime, ε1 ≤ ε ≤ ε2 the network accommodates more strain

by changing the fractions of the straight and densified phases of the networks through the

motion of the phase boundary. G′ decreases with increasing strain in the plateau regime

because the slope of the stress-strain curve of the densified phase at ε = ε2 is smaller than

the slope for the straight phase at ε = ε1. For ε > ε2 densification occurs and both moduli

increase steeply.
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Chapter 6

Compression of PPP, PRP and

whole blood clots

Most studies of clot mechanics and all studies of compression of clots have been carried

out using clots made only of fibrin Kim et al. (2016). However, the fibrin network is only

a part of the blood clots formed in vivo at sites of vascular injuries to prevent blood loss.

These clots also contain varying amounts of platelets, red blood cells (RBCs), other cells and

plasma proteins. Furthermore, such blood clots formed in a vessel are subject to external

and internal mechanical forces. Internal mechanical forces are generated in the vasculature

by blood flow, created by cardiac contraction producing the hydrostatic force of the blood

within the vessel. There is also internal mechanical deformation generated by platelets

pulling on fibrin in clot contraction (retraction). External forces are created as a result of

vessel wall contraction, cardiac muscle and striated muscles adjacent to the blood vessels,

especially in veins of the lower limbs. Thus, there are multiple forces acting on blood clots,

including shear, tensile, and compressive forces.

There are only a few studies of the effects of platelets on clot mechanical properties,

although they affect fibrin structure Gersh et al. (2009). It is likely that platelets pulling

on fibrin induce the fibers to go beyond the low strain linear viscoelastic limit and exhibit

strain stiffening Burstein & Lewi (1952), Shah & Janmey (1997). Since much thrombin

is generated on the platelet surface, many fibrin fibers originate from platelets or platelet

aggregates, affecting the overall structure of the clots Collet et al. (2005).

Similarly, not much is known about the effects of RBCs on clot mechanical properties.
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Although they have long been viewed as passive participants in clotting, there is increasing

evidence that they play a more active role Gersh et al. (2009). For example, in clot con-

traction, RBCs are compressed to form a tightly packed array of polyhedral cells, which

forms a very tight seal that is largely impermeable Cines et al. (2014). Thus, it is very

important to understand how these various components of the clot, the fibrin network,

RBCs and platelets, interact with each other in response to deformation. This knowledge

can be important for understanding how blood clots and thrombi respond to mechanical

forces in vivo. In addition, fibrin is increasingly being used as a biomaterial, including with

composite materials and various cells, so its responses to compression are also important in

this context.

Here, I investigate the mechanical response of human whole blood clots, platelet-rich

plasma (PRP) clots, and platelet-poor plasma (PPP) clots, to cycles of compression and

decompression, and correlate the effects with structural changes in all the components (see

also Franck et al. (2007), Maskarinec et al. (2009)). These mechanical responses show unique

characteristics that were unexpected, but can be interpreted in terms of a continuum phase

transition model. In addition, I also investigate the viscoelastic properties of the clots and

how they change with compression/decompression and a structural basis of these properties.

6.1 Materials and Methods

6.1.1 Materials

Whole blood from healthy volunteers was collected according to an IRB protocol at

the University of Pennsylvania with informed consent. The blood was collected into 12

mM sodium citrate (final concentration) as an anticoagulant, and then centrifuged at 130

g for 15 min to obtain PRP, which was again centrifuged at 10, 000 g for 15 min to obtain

PPP. Clots were made by adding CaCl2 (25 mM final concentration) and 1 U/mL (final

concentration) human α-thrombin (American Diagnostica Inc. Stamford, CT USA). Clots

of 600 µm thick were formed at 37 ◦C directly between the rheometer plates (ARG2; TA

Instruments, New Castle, DE) for all whole blood, PRP and PPP clots.
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Figure 6.1: Experimental set-up to obtain rheological data for compression and decom-
pression of clots and typical stress-strain curves for compression-decompression cycling.
(A) Schematic illustration of compression and decompression of a clot formed between the
rheometer plates. The dark gray shapes represent the top and bottom plates of the rheome-
ter, while the light gray shape represents the clot and the serum expelled from the clot. The
clot was compressed as the upper rheometer plate moved down, squeezing serum out of the
clot. When the maximum compressive strain was achieved, the upper plate was moved back
up to its original position at the same rate to forcefully decompress the clot. The serum
was pulled back into the clot. Three cycles of compression and decompression were per-
formed on the same clot. (B) An example of stress-strain curves obtained by measuring the
normal stress during compression and decompression cycles, as shown in (A). The symbols
of squares, triangles and circles represent the first, second, and third cycle, respectively. (a)
Starting point with no compression; (b) first inflection point in the compression of the clot;
(c) point at which clot is fully compressed and the start of decompression; (d) first inflection
point in the decompression of clot; (e) second inflection point in the decompression cycle.
(a) end point of decompression cycle. Compressive stresses and strains are assumed to have
a positive sign (opposite of convention in which tensile stresses and strains are positive).
Note that during the decompressive part of the cycle (c,d,e) tensile forces must be applied
to return the clot to its original thickness.

6.1.2 Experimental methods

Compression experiments

Clots were compressed continuously at the rates of 10 or 100 µm/s, as the upper rheome-

ter plate moved down to exert an axial force on the upper surface of the clot. When the

maximum compressive strain was achieved, the upper plate was moved back to its original
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position at the same rate to forcefully decompress the clot. Three cycles of compression

and decompression were performed on the same clot. The clots were compressed and de-

compressed vertically up to 2/3 or 1/2 of their initial thickness, i.e., compression of 1.5X or

2X. The compressive strain (degree of compression) was defined as the absolute fractional

change in fibrin clot thickness ε = |∆h/h0|, where ∆h = h − h0, and h0 and h are the

thickness dimensions of the uncompressed and compressed clots, respectively. During com-

pression and decompression, the normal stress was measured and stress-strain curves were

plotted for further analysis. Also, changes of viscoelastic properties of clots during compres-

sion and decompression were measured at various points of the compression-decompression

cycles with constant oscillatory strain of 3.3% at a frequency of 1.5 Hz to produce a linear

shear stress response to imposed shear strain. The elastic response in shear of the clot was

characterized by the shear storage modulus, G′, representing the stored energy and defined

as G′ = (σ0/γ0) cos(δ). The viscous response was measured by the shear loss modulus, G′′,

calculated as the out-of-phase part of the stress as G′′ = (σ0/γ0) sin(δ), corresponding to

the energy dissipated as heat. Here, σ0 is the amplitude of the oscillatory stress, γ0 is the

amplitude of the oscillatory strain, and δ is the phase difference between the stress and

strain sinusoids.

Scanning electron microscopy

Clots (whole blood, PRP and PPP) that were used in rheometry experiments were fixed

in 2% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.4, dehydrated with ethanol, dried

with 50% and finally with 100% hexamethyldisilazane (Acros Organics, Fair Lawn, NJ), and

sputter-coated with gold-palladium as described in Vorjohann et al. (2010). The samples

were examined and images saved in an FEI Quanta 250FEG scanning electron microscope

(FEI, Hillsboro, OR).

Confocal microscopy

Clots were formed as described above for rheometry measurements, except that 0.06

mg/ml Alexa 488 labeled fibrinogen (Invitrogen, Carlsbad, CA, USA) was added to the

clots plasma before clot formation. For whole blood clots, 25% of RBCs within each clot

were stained with DiD (Molecular Probes by Life Technologies, Eugene, OR, USA ) far

red fluorescent dye which was incorporated into the RBC membrane. To stain RBC, whole

78



blood was centrifuged at 160 g, supernatant (plasma) was aspirated, 25% of volume RBC

were taken from a tube and stained with DiD. After staining was completed, stained and

unstained RBC were mixed and added back to plasma .

Clots were formed in a customized chamber built between two coverslips separated

by plastic putty, which maintains compression of the clot within the chamber when it is

compressed between the rheometer plates. The chambers were transferred to the stage

of the microscope and images were collected using a Zeiss LSM 710 confocal microscope

(Zeiss, Oberkochen, Germany) with a 63-X oil immersion 1.4 NA Plan Apo objective lens.

Passively decompressed clots were also imaged by removing the putty and allowing the

clots to relax. 3D reconstructions of z-sections were computed by using Volocity software

(Perkin-Elmer Co, Waltham, MA USA).

6.1.3 Theoretical methods

Compression of PPP and PRP clots

It has been demonstrated earlier that fibrin can be viewed as a foam with fluid in its

pores because of its low density isotropic network structure Kim et al. (2016). As described

in Figure 6.2 and Section 6.2.7, observation of network structure reveals a transition from

a rarefied phase to a densified phase under compression. In Kim et al. (2016) I had demon-

strated that the transition proceeds by the propagation of an interface through the sample

that separates the rarefied and densified phases. In the rarefied phase, fibrin fibers are

mostly straight and the whole network has a linear response under compression with a

Young’s modulus EL that depends on the network density and fiber mechanical properties

as described in Gibson & Ashby (1999), Onck et al. (2005), Huisman et al. (2007). Thus,

the stress-strain response in the rarefied phase is given by:

ε = ΓL (σ) =
σ

EL
, (6.1)

where EL is related to the Young’s modulus of a single fiber Es as in Gibson & Ashby

(1999):

EL = Esφ
2
0, (6.2)
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Figure 6.2: Three-dimensional reconstructions of the fibrin network under compression
with different rates of compression and graph of the fluorescence intensity and schematic
illustration of the changes in structure with distance under compression. (A-C) Three di-
mensional reconstructions (71 µm X 71 µm X 196 µm) of 392 optical sections of confocal
images of plasma clots before and after compression, with different rates of compression.
Both XY and XZ projections are shown for each set of images. (A) Before compression.
(B) Clot compressed 2X at 10 µm/sec. (C) Clot compressed 2X at 100 µm/sec. Arrow-
heads point to aligned fibers. Magnification bar = 25 µm. (D) Distribution of fluorescence
intensity in the Z direction averaged in the X direction over (392) of images in the XZ
plane. Blue line is control of uncompressed clot; red and black lines correspond to a PPP
clot compressed 2X at 10 µm/s, and 100 µm/s, respectively. Green and purple curves
are fits from Eqn. (6.21) and (6.22). (E) A schematic presentation of images of the XZ
planes based on 3D reconstruction of images and fluorescence intensity profiles of plasma
clots with and without compression. A(XZ), clot without compression. B(XZ), compressed
clot with rate of compression 10µm/sec. C(XZ), compressed clot with rate of compression
100 µm/sec. Large arrows indicate the direction of compression; small arrows show the
boundary between densified and rarefied phases. Gray color indicates the densified phase,
while no shading indicates the rarefied phase. The densified phase can be identified by
increased fluorescence intensity in the confocal images, reflecting the increase of network
density, along the direction of compression. It was defined as the distance from the top of
images toward the bottom at the point where the intensity profile changed to the control
level, and that distance was normalized by the maximum distance, since the same number
of stacks were taken for all conditions and the same degree of compression was used for the
two different rates of compression, 10µm/sec and 100µm/sec. The phase boundary is sharp
at low compression rate and diffuse at high compression rate.

where φ0 is the fibrin network volume fraction. In our notation σ > 0 for compressive

stresses and ε > 0 for compressive strains. In the densified phase, fibers are bent and

buckled with many contact points. The number of contact points Nc per unit volume in a

dense isotropic network has been studied by Toll Toll (1998), and shown to be a function

of fiber volume fraction φ as:

Nc =
4

πd3
φ2, (6.3)
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where d is the diameter of fiber. A good approximation of the increase of volume fraction φ

with compression of the clot is the form φ = φ0/(1− ε) from our previous work Kim et al.

(2016), where ε is the uniaxial compressive strain. Here I assume that the cross-sectional

area change of the fibrin network during compression is small, and thus could be ignored.

The stress-strain relation for this sort of dense network was proposed by van-Wyk Van Wyk

(1946) and Toll Toll (1998) in the following form:

σ = kEs
(
φ3 − φ3

0

)
, (6.4)

where the coefficient k is determined by the material and loading conditions. It is found to

be around 0.1 in Kim et al. (2016) for a fibrin network. Furthermore, fibrin fibers making

contact and adhering to each other cause a reduction in the free energy of the network. I

treat each formed contact point as a bond which releases free energy Ubond, resulting in a

total energy per unit deformed volume which is given by

E = NcUbond +

∫
σεdε. (6.5)

Plugging the expression of Nc from Eqn. (6.3) and for σ from Eqn. (6.4) into the above

equation, and then differentiating this total energy, I get a new stress-strain law in the

densified phase as:

σ = kEs
(
φ3 − φ3

0

)
− 2Cφ2

0Ubond

(1− ε)3 =
K −∆G

(1− ε)3 −K, (6.6)

where K = kEsφ
3
0 is a constant with units of stress, and ∆G = 2CUbondφ

2
0 is a normalized

bonding energy density. From the measurements on densified fibrin networks in Kim et al.

(2014, 2016), I estimate K to be around 10 kPa, but ∆G must be extracted from fitting to

experiment. By inverting the above stress-strain relation for the densified phase I get

ε = ΓH (σ) = 1− 3

√
K −∆G

σ +K
. (6.7)

Effect of platelets

Some clots examined in this paper contain platelets. These are cells that after activation

attach to fibrin fibers in a clot and exert forces that are responsible for clot contraction.
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Since thrombin is generated on the platelet surface and as a result of the forces exerted by

platelets, the fibrin network can be locally dense around platelet aggregates Collet et al.

(2002). Away from this locally dense region, the fibers are in tension and in the rarefied

phase. The locally dense regions caused by platelets are uniformly distributed all over a

clot. Since the platelets themselves are small (2-3 µm) I assume that their contribution

to the overall mechanical response can be taken into account through a single variable –

the pre-tension in the network denoted by σpre. Thus, the stress σ in the fibrin network is

non-zero even at zero applied strain as is apparent in the initial part of the experimental

stress-strain curve for the PRP and whole blood clots studied in this paper. Pre-tension

in a clot can also be caused by other phenomena; for example, polymerization of the fibrin

network between two parallel plates can result in some pre-stress, as seen in the PPP clots.

I do not account for this separately, instead, the pre-stress due to all agents is represented

by a single variable σpre. Thus, the stress-strain relation for the rarefied phase becomes

ΓL(σ) =
σ − σpre
EL

, (6.8)

where EL is a Young’s modulus. In our experiments the pre-stress typically is tensile,

σpre < 0. Also, platelet-poor plasma clots have lower pre-stress than platelet-rich plasma

clots.

Phase transition theory

Next, I introduce the phase transition theory to model how a fibrin network responds

when it is compressed and decompressed. In the loading process, as the stress σ increases

from zero, the network starts in the rarefied phase. The transition to the densified phase

nucleates at a critical stress σLH < σM , where σM is the maximum stress at which the

rarefied phase can exist. Similarly, in the unloading process, the transition to the rarefied

phase nucleates at critical stress σHL > σm, where σm is the minimum stress at which the

densified phase can exist and σHL < σLH . Therefore, in the region between σHL and σLH ,

the two phases can co-exist at a stress σ. I define the strain difference between the two

phases as a transformation strain:

γT (σ) = ΓH(σ)− ΓL(σ) = 1− 3

√
K −∆G

σ +K
− σ − σpre

E
, σm ≤ σ ≤ σM . (6.9)
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During the loading and unloading process, I assume that the fibrin network undergoes a

phase change under quasi-static conditions, so that the stress in any part of the network is

the same. Let 0 ≤ z ≤ h be the reference coordinate along the direction of loading, and

w (z, t) be the local displacement. The bottom at z = 0 is fixed, hence w (0, t) = 0 for all t.

At the top the displacement is given as w (h, t) = δ (t). Suppose for σHL ≤ σ ≤ σLH , there

is a separation at z = s (t) between two parts of our continuum representing the network

such that for z < s(t) the network is in the rarefied phase and for z > s(t) the network is

in the densified phase. Therefore, the displacement at the top is given by:

w (h, t) = δ (t) = ΓL [σ (t)] s (t) + ΓH [σ (t)] [h− s (t)] . (6.10)

In the above, I have denoted the position of the phase boundary by s(t). In order to describe

the motion of this phase boundary s (t) as it goes from the top to bottom of the sample, I

introduce a kinetic law Abeyaratne & Knowles (2006):

ṡ = Φ(f) =


MLH(f − fLH), if f > fLH ,

0, if fHL ≤ f ≤ fLH ,

MHL(f − fHL), if f < fHL,

(6.11)

where Φ is a material property Abeyaratne & Knowles (2006), and:

f(σ) =

∫ σ

σ0

γT (σ′) dσ′, (6.12)

is the driving force on the phase boundary Abeyaratne & Knowles (2006). f is assumed here

to be a unique function of stress, and σ0 is a Maxwell stress, at which the Helmholtz free

energy density of the two phases is equal. The parameters MLH > 0 and MHL > 0 in Eqn.

(6.11) are mobilities that could be fitted to the experimental data and are not necessarily

equal. Φ(f) must satisfy the dissipation inequality which requires that fṡ ≥ 0. Also, fLH

and fHL correspond, respectively, to stresses σLH and σHL which may be determined using

Eqn. (6.12). In order to complete the formulation of the problem, I need a nucleation

criterion. This has already been mentioned above. For loading, when the specimen is being

compressed, the densified phase nucleates in the rarefied phase at stress σLH where σLH

can be assumed to be where driving force f is just greater than fLH so that the phase
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boundary makes its appearance and immediately begins to move. Similarly, for unloading,

the rarefied phase nucleates in the densified phase at stress σHL where driving force f is

just smaller than fHL. Differentiating Eqn. (6.10) and eliminating ṡ (t) using Eqn. (6.11)

I get: [
ΓL(σ)Γ′H(σ)− Γ′L(σ)ΓH(σ)− γ′T (σ)

δ

h

]
σ̇ + γT (σ)

δ̇

h
=
γ2
T

h
Φ (σ) . (6.13)

This governing equation gives the response of the network undergoing phase-transition dur-

ing loading and unloading. The motion of the phase boundary during loading and unloading

could be different due to the difference in the mobilities MLH , MHL and nucleation values

fLH , fHL.

Effect of liquid pumping

One important feature of compressing and decompressing a fibrin network is that it

contains liquid that is pumped out and then back into the network (Supplemental video).

The pumping introduces a rate-dependence into the mechanical response of the network

through the well-known mechanism of poro-viscoelasticity. An analytic formula for the

compressive stress for a poro-viscoelastic foam under compression is given in Gibson &

Ashby (1999) as:

σli =
Cwµε̇

1− ε

(
D

l

)2

, (6.14)

where µ is the dynamic viscosity of the liquid, ε and ε̇ are the compressive strain and its

rate, D is horizontal dimension of the foam sample, and l is the cell edge-length of the

foam. The coefficient Cw is about unity. The expression above assumes that ε is uniform

through the sample, hence I will take ε = w (h, t) /h where w(h, t) is given by Eqn. (6.10).

This formula gives a non-linear rate-dependent stress, which must be added to the stress

due to the deformation of the fibrin fibers. If I imagine this strain-rate dependent stress as

one due to a dashpot, then the dashpot is in parallel with a spring-dashpot arrangement

characterizing the response of the fiber network (plus platelets). The total stress, σtot, in

the network is then

σtot(ε, ε̇) = σ(ε, ε̇) + σli(ε, ε̇). (6.15)
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Model for oscillatory shear of clots under compression

We measured the storage and loss modulus of all clots as a function of compressive

strain during loading and unloading. In this section I will show how the dependence of

the storage and loss modulus of PPP clots on compressive strain can be captured using

our phase transition theory. Recall that compression causes the clot to be divided into two

compartments – the upper compartment is the densified phase which has a shear modulus

Gd (for small shear strains) and shear viscosity ηd for small shear rates, and the lower

compartment is the rarefied phase with shear modulus Gr. In reality, the rarefied phase

might have a small shear viscosity, but I assume it to be zero here to keep the fitting

parameters to a minimum. The physics behind dissipation in the densified phase is fiber

contact point friction as given in Kim et al. (2016), and possibly the viscous dissipation due

to platelets and RBC. A viscosity parameter that captures the energy dissipation due to

friction at the contact points is given as:

η = UbondτonNc, (6.16)

where τon is the average life-time of a bond. η will remain as a fitting parameter. Recent

experiments by Kurniawan et al. (2016) shed some light on the strength of these contacts,

but I could not estimate Ubond or τon from their results. The height of the upper compart-

ment is zd and that of the lower compartment is zr. These heights will change with the

compressive strain applied and they can be computed using our phase transition model.

The overall response of clots under small shear strains can be viewed as a combination of

springs and dashpot in series as shown in the inset of Figure 6.9a. In the experiment we

apply a rotation θd to the top plate and measure the torque on it to extract a storage and

loss modulus G′ and G′′, respectively, as a function of compressive strain. Our goal is to

determine the values Gd, ηd and Gr that capture the trends in G′ and G′′ as a function of

strain. To this end, first I note that the shear stress τ is

τ(r) = Grγr =
rGrθr
zr (ε)

, (6.17)

where θr is the rotation angle at the sharp phase boundary, zr is the height of rarefied phase

(Figure 6.9a) and r is radial coordinate on the plate. The densified phase has a viscoelastic
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stress-strain relation as:

τ(r) = Gdγd + ηγ̇d =
rGd (θd − θr)

zd (ε)
+
rη
(
θ̇d − θ̇r

)
zd (ε)

, (6.18)

where θd is the rotation angle of the top plate, and zd(ε) is the height of densified phase

(Figure 6.9a). Combining Eqn. (6.17) and (6.18) I have:

(Grzd/zr +Gd) θr + ηθ̇r = Gdθd + ηθ̇d. (6.19)

In the experiment suppose the prescribed rotational angle of the top plate θd is given as

θd = A sinωt. This will result in a shear stress also in harmonic form as τ = AG′ sinωt +

AG′′ cosωt, and from Eqn. (6.17), I know the rotational angle of the interface θr =

(G′ sinωt+G′′ cosωt) zr/Gr. Then, plugging the expression of θr and θd into Eqn. (6.19),

I solve for the modulus G′ and G′′ as:

G′ = Gr
(Grzd/zr +Gd)Gd + η2ω2

(Grzd/zr +Gd)
2 + η2ω2

,

G′′ =
G2
rηωzd/zr

(Grzd/zr +Gd)
2 + η2ω2

.

(6.20)

6.2 Results

Rheometry with cycling of compression and decompression was used to study the me-

chanical and structural responses of various kinds of blood clots to compressive strain. In

other words, clots were formed between the rheometer plates, and then the upper plate was

lowered to compress the clot. After a certain extent of compression was achieved, the upper

plate was raised back to its initial point, which I call decompression. During the compres-

sion, when the upper plate moved down, serum, and serum with some RBCs in the case of

whole blood clots, was squeezed out of the clots. When the upper plate was moved back

up to its original position, the serum and serum with RBCs were pulled back into the clot

(Supplemental video). During each cycle, which consists of two parts – compression and

decompression – normal stress as a function of strain was measured and stress-strain curves

were plotted. Figure 6.1 is an example of a typical plot of normal stress, σ, as a function

of compressive strain ε for three successive cycles. The compression part of the cycle is

designated as points a, b and c, while the decompression part of the cycle is designated as
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points c, d and e. Resistance of clots to compression results in a compressive stress (with a

positive sign, opposite of convention), while during decompression there is a tensile stress

(with a negative sign), indicating that a tensile force must be applied to return the clot to

its initial thickness.

6.2.1 Stress-strain response of blood clots during compression-

decompression cycles

Our experiments demonstrated that the stress-strain curves depended on the type of

clot structure and composition, including the presence of platelets and RBCs, as well as the

degree and rate of compression and decompression. All three types of blood clots, made

from PPP, PRP, and whole blood, were subjected to 1.5X and 2X compression of their

initial thickness at two different rates, 10 µm/sec and 100 µm/sec.

6.2.2 PPP clots

Compression of PPP clots to ε = 0.33 resulted in an average normal stress of 1.48

kPa (Figure 6.1B(b-c)), while compression to ε = 0.5 gave a normal stress of 2.02 kPa.

Unloading peaks during the decompression part of the cycle gave a normal stress of -1.61

kPa for ε = 0.33 (Figure 6.1B(d-e)) and -1.72 kPa for ε = 0.5 (Table 6.2). Increasing

the rate of compression by 10 times resulted in increased stress values for all regions of

the stress-strain curves. For example, at the same degree of compression ε = 0.33, the

normal stress increased 6.9-fold for the loading peak and 4.7-fold for the unloading peaks.

Increasing the strain up to ε = 0.5 resulted in an increase in the normal stress of 11.7-fold

for loading and 9.8-fold for unloading peaks.

6.2.3 PRP clots

A PRP clot has stiffer clot structure compared to a PPP clot, so the original G′ of the

PRP clots was higher than that of the PPP clots (Supplemental Table 1). For the same

strains, this results in higher stress in the compression experiments on PRP clots. At a

compression rate of 10 µm/sec, PRP clots on average yielded higher normal stresses 2.03

kPa for the loading peaks, 3.77 kPa and for the unloading peaks, -1.84 kPa, -2.53 kPa for
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ε = 0.33 and ε = 0.5, respectively (Table 6.2). Increasing the rate of compression by 10

times resulted in increased normal stress for all parameters (Table 6.2).

6.2.4 Whole blood clots

Whole blood clots differ from PPP and PRP clots because they contain RBCs that are

incorporated into the fibrin-platelet network of the clots. RBCs represent about 40% of

total volume in these clots. At a low rate of compression-decompression (10 µm/sec), whole

blood clots yielded higher average stress values for loading and unloading peaks for both

strains, compared to PPP and PRP clots. Loading peaks were 8.76 kPa and 20.89 kPa

and unloading peaks were -5.10 kPa and -9.45 kPa for compressive strains of ε = 0.33 and

ε = 0.5, respectively. Interestingly, for low compressive strain ε = 0.33, increasing the rate

of compression-decompression by 10 times resulted in increasing the average stress value

for loading and unloading peaks, to 16.53 kPa and -9.03 kPa, respectively. However, for a

compressive strain of ε = 0.5, instead of increasing the normal stress, it decreased for both

loading and unloading peaks (Table 6.2). There was an especially dramatic decrease for

the unloading peak of -9 kPa for ε = 0.33, versus 0.9 kPa for ε = 0.5 compressive strains.

Thus, at a low rate of compression-decompression (10 µm/sec), whole blood clots yielded

higher average stress values for all parameters of stress-strain curves. However there is a

dramatic decrease for loading and unloading peaks as well as for hysteresis area at higher

rate of compression 100 µm/sec. These results may be attributed to dramatic structural

changes, which are mostly irreversible (Section 6.2.7).

For all clots, the compressive stress increased with increasing compressive strain. In

particular, for the low rate of compression of 10 µm/sec, increasing the compressive strain

from ε = 0.33 to ε = 0.5 resulted in increasing the normal stress 1.4-fold for PPP clots, 1.9-

fold for PRP clots and 2.4-fold for whole blood clots (Table 6.2). In addition, at strains up to

ε = 0.5, PPP and PRP clots had a piecewise linear response to stress (Figure 6.5). However,

for whole blood clots, increasing the compressive strain from 0.33 to 0.5 resulted in a more

rapid upturn in normal stress and onset of a nonlinear response (Figure 6.7) compared to

PPP and PRP clots. Increasing the rate of compression-decompression by 10 times resulted

in increasing the average stress values for loading and unloading peaks for PPP and PRP

clots compared to those at a low rate of compression-decompression. However, whole blood
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clots respond in a different manner, such that increasing the compressive strain to 0.5

resulted in decreased loading and unloading peaks compared to those for PPP and PRP

clots. The behavior is also due to irreversible changes in clot structure (Section 6.2.7).

6.2.5 Hysteresis in compression-decompression

The amount of hysteresis, as defined by the area within the compression-decompression

curves, decreased with each cycle for all clots. There was an especially great decrease

after the first cycle. Thus, during the compression-decompression cycling, clots dissipated

energy and never returned to their original (structural) state. The hysteresis area depended

on clot structure. The hysteresis area for PRP clots was higher than that for PPP clots,

and it increased with increasing compressive strain for both rates. Also, the hysteresis

area of whole blood clots at the low rate of compression of 10 µm/sec increased with

increasing compressive strain and was greater than those for PPP and PRP clots, 5.52

versus 1.2 and 2.02 (Table 6.2) , respectively. However, increasing the rate of compression-

decompression by 10 times had a dramatic effect on the hysteresis area of whole blood clots.

The hysteresis area of whole blood clots at low compressive strain of 0.34 was about the same

as that for PPP clots and decreased dramatically with increasing strain up to 0.5. Thus,

our results indicate that the network of all clots apparently adjusted to the mechanical

loading. The viscoelastic response (Section 6.2.6) and hysteresis behavior of compressed

and uncompressed clots suggests that there are changes in clot structure, depending on the

degree and rate of compression. Identification of these changes will help to determine the

structural basis of the responses of clots to compression and decompression.

6.2.6 Shear storage and loss moduli as a function of strain

Shear storage (G′) and loss (G′′) moduli were measured as a function of strain during

repeated compressive-decompressive loads for three cycles. When the maximum compres-

sive strain was achieved, clots were decompressed to their original thickness at the same

rate. Before and after each compression-decompression cycle, a small shear oscillation was

imposed to measure the clot viscoelastic properties. Repeated compression-decompression

cycles of blood clots revealed similar trends. During the compressive part of the cycles,

G′ and G′′ moduli decreased, as the serum and serum with RBCs were squeezed out of
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clots (Supplemental video). In the decompression part of the cycle, when clots returned

to their original thickness, serum and serum with RBCs went back into the clots (Supple-

mental video). As shown in Supplemental Figure 3, PRP clots were found to be more rigid

with a higher elastic modulus than PPP clots, and they became stiffer after cycling. For

example, at the rate of 10 µm/sec and ε = 0.33, the final stiffness of the PRP clots was

1.4-fold higher than that for PPP clots. Increasing the compressive strain to 0.5 resulted in

decreasing the difference between PPP and PRP clots to 1.1-fold. However, increasing the

rate of compression-decompression by 10 times resulted in increasing the difference in final

stiffness between PRP and PPP clots. At the low compressive strain of 0.33, the PRP clots

were 1.2-fold stiffer than PPP clots. That difference increased to 1.6-fold by increasing the

compressive strain to 0.5. In addition, the strain-stiffening of PPP and PRP clots progres-

sively increased with cycling. For example, PPP clots ended up 4.2-fold stiffer on average

after cycling of compression-decompression regimes.

Whole blood clot structure is different in comparison to PPP and PRP clots in that

red- and white-blood cells are incorporated into these clots. Surprisingly, for whole blood

clots, the stiffness decreased, instead increasing after the first cycle as happened for PPP

and PRP clots. Although the stiffness was slightly increasing with each cycle, the stiffness

never exceeded the original value. For example, the final stiffness of whole blood clots with

a compressive strain 0.33 and 0.5 decreased by 2-fold and 1.6-fold after the first cycle at the

lower rate of compression-decompression, but the stiffness decreased by 2.2-fold and 4-fold

respectively, with an increase of the rate of compression-decompression by 10 times.

6.2.7 Structural changes in blood clots during

compression-decompression cycling

We used confocal and scanning electron microscopy to determine how PPP, PRP and

whole blood clots responded to cycling of compression-decompression loads, and to see what

the structural bases for these mechanical behaviors are. At first, I studied PPP clots at the

same degree of compression under two different rates of compression, 10 µm/sec and 100

µm/sec. At the maximum extent of compression, about 400 optical sections were collected

for each clot using a confocal microscope. In response to compression, the fibrin network

became divided into two regions with distinctive structural characteristics, a densified re-
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Figure 6.3: Changes in the structure of PPP and PRP clots after the first cycle of
compression-decompression as observed by scanning electron microscopy. The clots were
compressed 2X at a rate of 10 µm/sec and decompressed at the same rate. (A) PPP clot
before compression. (B) Zoomed area from panel (A); (C) PPP clot after first cycle of
compression-decompression. (D) Zoomed area from panel (C). (E) PRP clot before com-
pression. (F) Zoomed area from panel (E). (G) PRP clot after first cycle of compression; (H)
Zoomed area from panel (G). White arrowheads point to fibrin bundles; black arrowheads
point to broken ends of fibers. Magnification bar = 10 µm.

gion adjacent to the top plate of the rheometer, where the compression was applied and

a rarefied region below with a much lower fiber density (Figure 6.2A-C). Those changes

depend on the rate of compression, such that the size of the densified region is larger and

denser at the high rate of compression. To quantify the densified region, three-dimensional

reconstructions of optical sections were carried out. The intensity profile was measured for

all XY planes along the Z axis and plotted as a function of distance from the top of the

clot, where compression started (Figure 6.2D). The densified area was identified by changes
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of fluorescence intensity along the direction of compression. I found that a high rate of

compression resulted in a denser network, which is reflected by the almost 2-fold higher

maximum intensity than at a low rate of compression. In addition, increasing the rate of

compression resulted in propagation of higher intensities (due to densification) deeper into

the clot along the direction of compression. The boundary between the densified and rar-

efied region was sharper at the low rate of compression (Figure 6.2D). In terms of network

structure, densification means buckling, bending, criss-crossing and bundling of fibers, as

well as alignment of fibers in the plane perpendicular to the stress Kim et al. (2016). Those

structural changes happened during the compressive part of the stress strain cycle (Figure

6.1(a-c)). During the linear elastic response from the beginning of compression to the first

inflection point (Figure 6.1(b)), mostly bending and rotation of fibers occurred. During the

next portion of the curve (Figure 6.1(b-c)), as compression proceeds, the distance between

fibers was decreasing, which resulted in buckling, criss-crossing, bundling and reorientation

of fibers in the network, such that they became aligned perpendicular to the direction of

the compression (Figure 6.2A-C). As a result of those structural changes, the stiffness of

the network decreased (Section 6.2.6). Some structural changes that occurred during com-

pression were reversible while others were irreversible. The first part of the decompression

curve was a non-linear elastic response that happens when the compressive strain changed

less than 0.05, up to the first inflection point during decompression (Figure 6.1(b)). At this

point, most of the reversible changes, such as bending and rotation, which happened during

the linear response of compression, returned to their original form during decompression.

As strain continued to decrease, the stress decreased due to network rearrangement via

dissociation of fiber-fiber junctions that arose from contacts during compression. These

rearrangements resulted in energy dissipation, and the second cycle of compression started

with a clot with some structures still modified.

To determine how the network changed in detail after the first cycle of compression-

decompression, scanning electron microscopy was performed. It is very clear that after the

first compression-decompression cycle, the network of PPP clots was rearranged (SEM Fig-

ure 6.3A-D). After the first cycle, the thickness of fibers increased for the clots as a result of

both criss-crossing and bundling of fibers during compression. However, not all fibers stuck

to each other either in criss-crossing structures or in bundles, and were dissociated after

decompression was completed. In addition, many fibers ends were observed for PPP clots,

92



probably as a result of fiber breakage. Those changes in clot structure were responsible for

the increasing stiffness of the clot with each cycle. The next sets of experiments were carried

out with PRP clots. I found that PRP clots responded on compression-decompression cycles

generally in a similar manner as PPP clots. Originally, PRP clots have a denser fibrin net-

work compared to PPP clots, which means shorter distances between fibers and smaller pore

size. Due to those differences, more bundling and criss-crossing were observed in PRP clots

(SEM Figure 6.3E-H) than in PPP clots. Those structural differences resulted in higher

stiffness after the first compression-decompression cycle (Section 6.1.3). There were simi-

larities and differences in the responses of whole blood clots on compression-decompression

cycling, as compared to PPP and PRP clots. The same densified and rarefied regions were

observed in the fibrin network. The differences are likely due to clot composition, since

a major component of whole blood clots are RBCs that make up about 40% of the clot

volume. As I observed during compression-decompression cycling, RBCs move out dur-

ing compression and move back into the clots during decompression (Supplemental video).

When I measured the hematocrit of the blood, and hence the hematocrit of the clot before

compression, and the hematocrit of the serum and RBCs expelled from the clot at the

point when compression was completed but decompression had not yet started, surprisingly

the hematocrit was the same, meaning that the RBCs were expelled from the clot in the

same proportion as the serum. Furthermore, all the RBCs that were forced out of the clot

during compression returned during decompression. To follow the structural changes of

whole blood clots during compression and decompression, clots were examined by confocal

microscopy. I found that RBCs, while initially randomly distributed throughout the clot,

were rearranged non-randomly during the compressive part of the cycle. They were pushed

down in the direction of compression into the rarefied phase, as well as being forced out

with the liquid. As a result of this redistribution, more RBCs were observed in the bottom

of the clot in the rarefied region and on the periphery of clot near the edges of the rheometer

plates, while there were few RBCs in the densified region, which was mostly fibrin network

(Figure 6.8C).

Interestingly, the shape of RBCs in the compressed clot changed as a result of compres-

sion, such that no biconcave cells were observed in the compressed clot. In addition, many

fibrin fibers in the densified zone were oriented perpendicular to the direction of compres-

sion, as observed for PPP and PRP clots. When the restraints keeping the clots compressed
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were removed and the clots were allowed to relax for an hour before being imaged in the

confocal microscope, I observed that some liquid with RBCs moved back into the clot. This

passive decompression corresponds to the linear response up to the first inflection point

(Figure 6.1(c-d)). Interestingly, after passive decompression, most RBCs were polyhedro-

cytes (Figure 6.8E, F). To see in detail the structural changes in whole blood clots after

the first compression-decompression cycle, those clots were examined by scanning electron

microscopy, with observations consistent with those from confocal microscopy. Some irre-

versible changes occurred, e.g. the fibrin network was rearranged with thicker fibers and

smaller pore sizes than before compression (Supplemental Figure 2B, D, F). Furthermore,

most of the RBCs present after the first compression-decompression cycle were polyhedral

in shape (Supplemental Figure 2B). Also, on the periphery of the clot at the edges of the

rheometer plates, RBCs were a more prominent component, as a result of the compression-

decompression cycle.

6.2.8 Location of phase boundary

The fluorescence intensity of fibrin as a function of depth (measured from the top)

through the deformed samples is plotted in Figure 6.2D. The blue dots represent an uncom-

pressed sample, red dots represent a sample compressed to half its original height at a rate

of 10 µm/s, and the black dots represent a sample compressed to half its original height at

a rate of 100 µm/s. I see clearly that the fluorescence intensity is larger near the top of

the compressed samples. I have observed this sort of segregation in earlier work Kim et al.

(2016) in which a locally densified region of the fibrin network under compression is sepa-

rated from a rarefied region by a (diffuse) front. I assume that the fluorescence intensity is

proportional to the local network density which scales as 1/(1− ε) where ε(Z) = dz/dZ−1

is the compressive strain. If the strain profile ε(Z) is given by a hyperbolic tangent function

(see Kim et al. (2016) for why I choose this functional form),

ε = a+ b tanh
Z − Z0

c
, (6.21)
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with a, b, c and Z0 constants, then the deformed position z (measured in experiment) of a

plane located at reference position Z in the unstressed sample is

z(Z) = d+ (1− a)Z − bc log

(
cosh

Z − Z0

c

)
, (6.22)

where Z0 is the location of the center of the front in the unstressed configuration. d is

chosen such that z(0) = 0 (at the bottom of the clot which is the static rheometer plate),

and a, b, c are obtained by fitting the experimentally measured fluorescence intensity (which

is proportional to the fiber density) in Figure 6.2D. For the low strain rate (10 µm/s),

a = 0.4, b = 0.2, c = 10 µm gives the green curve. For the high strain rate (100 µm/s),

a = 0.52, b = 0.27, c = 180 µm gives the purple curve. Both curves give the center of the

interface at Z0 = 460 µm, while the total height of the undeformed sample is h = 600

µm. Thus, the phase boundary moves the same distance through the sample irrespective

of the strain rate because it has been compressed by exactly the same amount in both

cases. However, a smaller c value for the low strain rate experiment indicates a sharp front

separating the rarefied and densified phases, whereas a larger c value for high strain rate

indicates a wide and diffuse front. The value of a for the two strain rates is also different,

which results in much higher strains (more densification) behind the phase boundary for

the high strain rates. In contrast to our experimental results, the model of Kim et al. (2016)

does not capture the strain-rate dependence of the phase boundary width. In the model of

Kim et al. (2016) the width of the phase boundary depends on a capillarity (or interfacial

energy) parameter λ and on the stress-strain curve of the fibrin network, but not on the

viscosity parameter ν which multiplies the strain-rate. Hence, our experiments suggest that

a more sophisticated model in which ν is not constant, but depends on the pore-size in the

fibrin network (as in Eqn. (6.14)) is likely needed to capture strain-rate dependence of the

phase-boundary width.

6.2.9 Application of phase transition model to PPP and PRP

clots

The stress-strain curves of PPP and PRP clots under compression can be computed

using these ideas as shown in Figure 6.4. The fitting parameters are given in Table 6.1. I
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(a) (b)

Figure 6.4: (a) Fitting of stress-strain cruves of PPP clots low strain rate, small compression
degree. (b) Fitting of stress-strain curves of PRP clots low strain rate, small compression
degree. Each clot is compressed and decompressed in three cycles; red dots (first cycle),
blue dots (second cycle), black dots (third cycle). Note that the first cycle gives a different
stress-strain curve than the other cycles. Most fitting parameters are the same for each
cycle, and I can use them to predict the corresponding cycles in the low strain rate high
compression degree experiments and the high strain rate experiments. The solid lines are
obtained by fitting our theory to the data; blue line (loading rarefied phase), red line (upper
plateau), black line (unloading densified + rarefied phase), green line (lower plateau).

use the following procedure to fit the curves. First, I fit the low strain linear response using

Eqn. (6.8) and obtain σpre and EL. Next, I consider the initial steep part of the unloading

curve (which does not include the lower plateau) and remember that this curve is given by

ε = x1ΓL(σ) + (1− x1)ΓH(σ), (6.23)

where x1 is a fixed fraction of the rarefied phase with 0 < x1 < 1 and ΓH(σ) is given by Eqn.

(6.7). Since ΓL(σ) is already known the fitting parameters are x1, K and ∆G. With ΓL(σ)

and ΓH(σ) known, I now want to fit the plateau region of the stress strain curves using the

differential equation Eqn. (6.13). For the upper plateau, the fitting parameters are MLH ,

σLH , and for the lower plateau the fitting parameters are MHL and σHL. I perform our fits

for the low strain rate small compression degree experiments on both PPP and PRP clots.

Each of these plots contain data from three compression-decompression cycles on the clots.

The first cycle gives a different response from the subsequent cycles, which is captured in our

model through a difference in σLH during loading, and σHL during unloading. Typically,

for both PPP and PRP clots σLH becomes smaller from the first cycle to the second. This

96



Table 6.1: Fitting parameters for low strain rate compression experiments.

Group PPP clot PRP clot Whole blood clot

σpre (kPa) -2.2 -2.2 -3.2
EL (kPa) 10 10 15
K (kPa) 10.25 10.25 10.25
∆G (kPa) 10 10 10
σLH (kPa) in 1st cycle 1.5 2.1 4.7
σLH (kPa) in 2nd cycle 1.4 1.3 1.7
σLH (kPa) in 3rd cycle 1.6 1.3 1.7
σHL (kPa) in 1st cycle -0.5 -0.7 -0.5
σHL (kPa) in 2nd cycle -0.6 -0.7 1
σHL (kPa) in 3rd cycle -0.4 -0.7 1
Mlh (kPa−1s−1) 0.06 0.06 0.06
Mhl (kPa−1s−1) 0.04 0.04 0.04
Cw 1 1 1
Cneo 0 0 9

suggests that there is rearrangement in the clot structure at network and fiber levels (Figure

6.3C, D, G, H), perhaps due to adhesion of fibers, which makes the buckling stress for fibers

smaller after the first cycle. The theoretical curves match the experimental data very well

for both PPP (Figure 6.4a) and PRP clots (Figure 6.4b) for each cycle.

6.2.10 Predictive capability of our model

We have used the parameters extracted from these fits to predict the (a) low strain-rate

high compression degree experiments for PPP clots (Figure 6.5a) and PRP clots (Fig-

ure 6.5b), and high strain-rate experiments (Figure 6.6) on both types of clots. In Table 6.2

I compare model and experiment on five different metrics – loading peak stress, unloading

peak stress, loading average stress, unloading average stress and hysteresis area (enclosed

by the loading/unloading stress-strain curve) – and show that our model does well on all

the metrics.

It is important to point out that while experiments and theoretical predictions agree

very well in Figure 6.5 in all parts of the stress-strain curve (low strain phase, upper plateau,

high strain phase, lower plateau), this is not true of Figure 6.6 which are from the high strain

rate experiments on the PPP and PRP clot samples. In the latter I capture the general

features (such as, hysteresis, peak stresses, etc.) quite well, but the overall shape of the

experimental and theoretical curves differ markedly, particularly in the unloading plateau.
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(a) (b)

Figure 6.5: (a) Theoretical prediction (solid lines) for PPP clots low strain rate
large compression degree matches experiment (dots). (b) Theoretical prediction (solid
lines) for PRP clots low strain rate large compression degree matches experiment
(dots). The coloring scheme for the lines and dots is the same (Figure 6.4).

The reasons for this are not completely clear to us, but we suspect that the more diffuse

phase boundary seen for the higher strain rate experiments in Figure 6.2D is the reason for

the disagreement. Recall that our phase transition theory assumes a sharp phase boundary

separating the rarefied and densified phases to get the upper and lower plateaus. Evidently,

this is a good assumption for the low strain rate experiments, but not for the high strain rate

ones (Figure 6.2D). Since strain rate dependence in our model arises from liquid pumping

and phase boundary kinetics I expect that a model accounting for strain-rate dependence

of the phase boundary width will also lead to a kinetic law different from Eqn. (6.11)

that might help capture the trends in Figure 6.6. A larger data set of the high strain-

rate experiments for PPP, PRP, and whole blood clots for various compression degrees and

multiple cycles is shown in the supplement. The form of the stress-strain curves, the area

of the hysteresis loops, etc., are similar to those shown in Figure 6.6. Table 6.2 includes

comparisons of the stress-strain curves in the supplement with our theoretical predictions

for the five metrics.

6.2.11 Effect of RBCs on mechanical response

While PPP and PRP clots could be modeled quite well by introducing a pre-tension

(due to platelets) into constitutive laws for foams, I need to account for RBCs in order to
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(a) (b)

Figure 6.6: (a) Theoretical prediction (solid lines) for PPP clots high strain rate ex-
periments (dots). (b) Theoretical prediction (solid lines) for PRP clots high strain
rate experiments (dots). Although the general features (upper plateau, average stress
during loading, hysteresis area) of the experimental curves are captured by the theo-
retical prediction, the agreement is not as good as for the low strain rate experiments.
The reason for the disagreement could be that the theory assumes a sharp phase
boundary, while fluorescence imaging in Figure 1.2 reveals a diffuse phase boundary
for the high strain rate experiments.

model the compression of whole blood clots. The large deformation response of RBCs under

tension and compression has been analyzed using continuum constitutive models as in Dao

et al. (2003), Lim et al. (2004), in which a non-linearly elastic neo-Hookean model given in

Simo & Pister (1984) and based on the classic experiments of Evans and Hochmuth Evans

& Hochmuth (1976), Hochmuth et al. (1979) is shown to predict the response quite well.

In our notation (in which ε > 0, σ > 0 for compression) this model of an RBC in uniaxial

tension/compression boils down to Ogden (1997):

σneo = 2Cneo
3ε− 3ε2 + ε3

1− ε
= 2Cneo

(
3ε+

ε3

1− ε

)
, (6.24)

where Cneo is a material constant, that could be fitted to experiment. In our experiments

I find that the RBC flow out with the liquid from the rarefied phase of the clot when it

is compressed, but they are sucked back into the network when it is decompressed. Thus,

the stress due to liquid pumping will now have another contribution that depends on the

fraction of the RBCs present in the densified phase. We model this in a simple way by
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Table 6.2: Comparison of metrics for the stress-strain curves obtained from experiment
and theory.

Group Loading peak Unloading peak Loading average Unloading average Hysteresis area

PPP clot
1.5X 10

1.48± 0.19 −1.61± 0.22 1.09± 0.13 −1.28± 0.17 0.65± 0.09

Theory 1.40 -1.17 1.10 -1.15 0.71

PPP clot
1.5X 100

10.25± 0.85 −7.5± 1.01 8.33± 0.69 −5.88± 0.82 3.43± 0.93

Theory 9.97 -6.08 8.22 -5.80 4.18

PPP clot 2X
10

2.02± 0.28 −1.72± 0.11 1.03± 0.14 −1.3± 0.13 1.10± 0.12

Theory 1.82 -1.46 1.08 -1.32 1.05

PPP clot 2X
100

25.71± 1.95 −16.89± 1.80 18.68± 0.6 −6.58± 0.57 9.04± 0.90

Theory 23.44 -8.88 16.9 -7.68 10.76

PRP clot
1.5X 10

2.03± 0.14 −1.84± 0.23 1.49± 0.16 −1.43± 0.26 0.97± 0.19

Theory 1.79 -1.64 1.50 -1.47 0.94

PRP clot
1.5X 100

16.92± 1.59 −14± 1.6 14.82± 1.41 10.8± 1.5 5.3± 0.49

Theory 17.31 -7.53 12.37 -7.1 5.88

PRP clot 2X
10

3.77± 0.45 −2.53± 0.29 2.14± 0.23 −1.66± 0.21 2.02± 0.27

Theory 3.05 -2.55 1.80 -1.50 1.58

PRP clot 2X
100

22.8± 2.95 −10.09± 1.77 16.5± 2.14 −4.63± 0.87 6.90± 0.35

Theory 23.14 -8.48 17.33 -7.10 6.58

Whole blood
clot 1.5X 10

8.76± 0.96 −5.10± 0.12 5.1± 0.74 −2.61± 0.79 2.21± 0.45

Theory 9.14 -5.23 5.00 -2.51 2.24

Whole blood
clot 1.5X 100

16.53± 1.82 −9.03± 1.23 11.9± 1.17 −5.79± 0.82 3.95± 0.38

Theory 15.78 -8.73 11.17 -6.25 4.01

Whole blood
clot 2X 10

20.89± 1.4 −9.45± 2.25 8.26± 0.94 −3.14± 0.93 5.52± 1.01

Theory 19.10 -10.79 8.17 -4.17 5.78

Whole blood
clot 2X 100

19.43± 1.01 −0.92± 0.12 15.47± 1.32 −0.56± 0.15 5.50± 0.63

Theory 30.2 -14.73 18.37 -8.24 8.97

All stresses are in units of MPa
Number before X indicates compression degree
Number after X indicates compression rate in µm/s

changing the expression for the stress due to liquid pumping:

σli =
Cwµε̇

1− ε

(
D

l

)2

+ 2(1− x(t))Cneo

(
3ε+

ε3

1− ε

)
, (6.25)
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(a) (b)

Figure 6.7: (a) Fitting of stress-strain curves of whole blood low strain rate, small
compression degree. (b) Prediction for whole blood low strain rate, large compression
degree. The coloring scheme of the lines and dots is the same as in figure 6.5. Again,
first cycle is differrent from the second and subsequent cycles.

where x(t) = s(t)/h is the fraction of the rarefied phase. The total stress is still given by

Eqn. (6.15). In reality, the distribution of the RBCs in the blood clot is heterogeneous

(see Figure 6.8). The deformed RBCs were found predominantly near the outer edge of

the compressed (cylindrical) clots in the densified phase (see Figure 6.8C and D); these

contribute to the stress in a big way. There were regular biconcave RBCs in the rarefied

phase of the clots (see Figure 6.8), but these do not contribute much to the stress since

they are undeformed. Our model above is a simplification since it assumes that the stress

carrying RBCs (those in the densified phase) are uniformly distributed through the sample

and that the sample itself has a uniform strain ε. I have used our phase transition model

with this modification to fit the low strain rate, small compression degree experiments on

whole blood samples in Figure 6.7(a). Again, the first loading/unloading cycle is different

from the subsequent cycles. The fitting parameters are given in Table 6.1. They are not

very different from the fitting parameters for PPP and PRP clots, except I have an extra

parameter Cneo for whole blood that accounts for the RBCs, which are absent in PPP

and PRP clots. Using these fitting parameters, I can predict the response for low strain

rate, high compression degree experiments on whole blood (Figure 6.7(b)). The agreement

between theoretical predictions and experiments is excellent. This is also evident in the

metrics tabulated in Table 6.2.
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Figure 6.8: Three-dimensional reconstructions of different areas of compressed and decom-
pressed whole blood clots, showing changes in fibrin network structure and the distribution
of RBCs. Three-dimensional reconstructions (134 µm X 134 µm X 25 µm) from 45 optical
sections of volumes of whole blood clots with and without compression, taken from the top
toward the bottom. The clots were compressed 2X at a rate of 10 µm/sec and decompressed
at the same rate. (XY) and (XZ) indicate the direction of view. Black arrowheads point
to normal biconcave erythrocytes, while white arrowheads point to deformed erythrocytes.
White arrows indicate polyhedrocytes and black arrows point to the aligned fibrin network
in the densified phase. (A) Clot with no compression, and images taken from the middle
part of the clot. (B) Clot with no compression, and images taken from the edge of the clot.
(C) Compressed clot, and images taken from the middle part of the clot. (D) Compressed
clot, and images taken from the edge of the clot. (E) Decompressed clot, and images taken
from the middle part of the clot. (F) Decompressed clot, and images taken from the edge
of the clot. Magnification bar = 25 µm
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(a) (b)

Figure 6.9: (a) Fitting of oscillatory shear experiment on PPP clots. Blue, red,
and black dots are first, second, third cycles, respectively. Blue and red lines are
theoretical predictions of G′ and G′′ during loading.

6.2.12 Shear storage and loss moduli as a function of com-

pressive strain

We fit the experimental data using the formula given in the Section 6.1.3. Note that

zr (ε) and zd (ε) for each compressive strain ε can be obtained for these PPP clots using

our phase transition model with parameters given in Table 6.1. In our experiment, the

oscillation frequency is 1.5 Hz. The combination of fitting parameters Gr = 84 Pa, Gd = 30

Pa, and η = 6 Pa·s gives a good match to the storage and loss moduli data for the first

loading cycle. The combination of fitting parameters Gr = 400 Pa, Gd = 30 Pa, and η = 6

Pa·s gives a good match to the second and third loading cycles. In both cases, the shear

modulus of the densified phase is smaller than that of the rarefied phase. This is because the

buckled fibers in the densified phase bend easily to accommodate the small displacements

due to shear, while the straight fibers in the rarefied phase have to rotate while being

constrained by other fibers. Also, note that Gr for the second and third cycle is larger

than that for the first cycle. This is consistent with our observations of the compression

stress-strain curves for PPP clots in which the first cycle is different from the subsequent

cycles and shows that there is rearrangement of the fibers after the first cycle, perhaps due

to fibers adhering to each other.

The arguments given above validate our phase transition model. However, some conun-
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drums still remain. First, note that while the storage modulus for small shear strains is in

the range of 102 Pa for the rarefied phase, the Young’s modulus for compression in the rar-

efied phase EL is in the kPa range. This is not expected for a classical foam whose Young’s

modulus and shear modulus are of the same order of magnitude Gibson & Ashby (1999).

Second, during unloading, both G′ and G′′ of the same clots are much larger than those

during loading at the same compressive strains. This could be because of different values

of zr and zd during unloading due to the different kinetic laws governing phase boundary

motion in the upper and lower plateaus. However, the simple model above cannot capture

the trends in G′ and G′′ during unloading even after accounting for the different kinetic law

in the lower plateau. I do not yet understand the reason behind this disagreement during

unloading, but speculate that the following could play a role: (a) energy dissipation due to

the phase boundary motion itself, (b) different shear behavior of the fibers and bonds in

tension (because the stress in the unloading plateau is tensile). A larger data set for the

measured storage and loss modulus of PPP, PRP, whole blood clots in different cycles is

given in the supplement. I have not attempted to fit that data set using the formula above,

but the trends in measured G′ and G′′ are similar to those given in Figure 6.9.

6.3 Discussion

6.3.1 Stress-strain curves

In the present study, the mechanical response of PPP clots, PRP clots, and whole blood

clots to axial compression and decompression was experimentally measured, correlated with

structural changes for all components and modeled. We observed directly for the first time

the stress-strain curves of all three types of clots and showed that they not only demonstrate

foam-like behavior in response to compression/decompression, but also that they respond in

a manner similar to carbon nanotube forests (Chapter 6). The stress-strain curves (Figure

6.1) for strains up to ε = 0.5 for each of the three types of clots revealed four characteristics

portions: 1) linear elastic regime (a, b in Figure 6.1), where (b) is the first inflection point

during compression; 2) a plateau or softening (b, c), where (c) is the end of compression and

the beginning of decompression; 3) a non-linearly elastic regime or stretching of the network

(c, d), where (d) is the first inflection point during decompression; 4) a second plateau in
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which dissociation of some newly made connections in the network occurs (d, e), where

(e) is second inflection point during decompression and (a) is the end of decompression

and beginning of compression again. The same four regimes are present in the stress-

strain curves of carbon nanotube forests as is well-documented in Maschmann et al. (2012),

Pathak et al. (2012), Raney, Fraternali & Daraio (2013) and numerous other publications.

Maschmann et al. (2012) have visualized the local strain profiles in compressed carbon

nanotube forests; their images suggest the propagation of one or two interfaces through

the sample (as explained in Chapter 6), which is similar to our observations in blood clots

shown in Figure 6.2. Here I have demonstrated that the stress-strain curves depended on

the type of clot structure, including the presence of platelets and RBCs, as well as the

degree and rate of compression and decompression.

6.3.2 Role of platelets in mechanical response

The initial stiffness of PRP clots was higher than that of PPP clots. Platelets are able

to generate contractile forces that apply tension to fibrin shortly after the clot is formed

and, as a result, they exert internal stresses within the network Jen & McIntire (1982),

Wen & Janmey (2011). Thus, a fibrin network that has been pre-stressed by platelets has a

larger ‘negative normal stress’ before compression than does a fibrin clot without platelets.

I show that PRP clots had higher than average normal stresses for all parameters: loading

peaks, unloading peaks and hysteresis area, in comparison to PPP clots (Table 6.2). This

finding is consistent with results on PPP clots for which the degree of clot stiffening during

compression strongly depended on clot pre-compression history Kim et al. (2014).

6.3.3 Role of RBCs in mechanical response

The stress response of PPP and PRP clots for strains up to 0.5 seems piecewise lin-

ear, while whole blood clots showed a non-linear response for compressive strains greater

than 0.2. This early onset of non-linear stress response could be attributed to differences

in clot composition. Whole blood clots are considerably more complex in structure and

their mechanical responses arise from the combination of fibrin, platelets, RBCs and other

components arranged in a complex geometry. The effects of platelets were discussed in

Section 6.2.11. Approximately 40% of the volume of whole blood is made up of RBCs and
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in clots they tend to segregate themselves in the pores of the fibrin network during poly-

merization Gersh et al. (2009). RBCs can undergo large mechanical deformations without

rupture in response to mechanical forces. Under compression, they can change shape from

normal biconcave to polyhedrocyte Cines et al. (2014), and then return to their original

shape with cessation of compression. This ability of RBCs could be attributed to their cy-

toskeleton, which is a two-dimensional spectrin network with triangular shape Discher et al.

(1994), since spectrin filaments are considered to be soft elastic elements among cytoskeletal

components Wen & Janmey (2011).

Our results show that compression of this complex structure consisting of a semi-flexible

network (fibrin) arranged and pre-stressed by platelets, with pores partially filled with soft

RBCs, caused some of the RBCs to escape from the network, due to their flexibility. RBCs

moved from densified regions (with mostly compressed fibrin and platelets) to the rarefied

areas below the phase boundary, as well as out of the clot. No biconcave RBCs were

observed during the compressive part of the cycle, indicating that those RBCs that did not

escape went through shape deformations. In most of the densified region only a few RBCs

were observed. At the top of the densified region, where fibers were aligned perpendicular to

the direction of compression, few RBCs were observed. Previous studies Weiss & Katzberg

(1952), Corey et al. (2007) showed that, independent of any forces, an aligned matrix of

fibers could direct cell growth along the fibers. We showed that during the compressive part

of the cycle that fibrin fibers are aligned in a direction perpendicular to the direction of

compression and parallel to the rheometer plate. Those aligned fibers could aid in guiding

the RBCs out of the clot, consistent with the correlation of mostly aligned fibers in densified

areas and no RBCs in those same areas during the compressive part of the cycle (Figure

6.8C-D). Also, it has been shown that substrate stiffness can control cell movements Lo et al.

(2000), and a recent study employing strain-stiffening composites made from soft polymers

comes to similar conclusions Ma et al. (2013). Thus, for whole blood clots I demonstrated

the effects of both the direct role of forces or matrix stiffness and matrix alignment on the

movement of RBCs. During the decompressive part of the cycle, RBCs moved back into the

clot and filled the network, even though some irreversible changes to the fibrin network had

occurred. Irreversible changes in the fibrin network as a result of cycling include bundling

and criss-crossing of fibers, which caused decreases of the average pore size of the network

(Figure 6.3). Decreasing the pore size of the network resulted in changes of RBC shape,

106



with most RBCs observed in the decompressive part of the cycle being of polyhedral or

intermediate shapes.

6.3.4 Repeated cycles of compression-decompression

All blood clots were subjected to three loading and unloading cycles, and I found that the

stress-strain curves of the first cycle differed from those of the second and third cycles. This

effect has also been observed in compression of carbon nanotube forests Raney, Fraternali &

Daraio (2013) in which after the first cycle the stress-strain curve does not change for dozens

of cycles. As in the carbon nanotube forests, this suggests that there were structural changes

in the clots, some which could be reversible and others irreversible. As I observed, clot

structures for all blood clots were different after the first cycle of compression/decompression

(Figure 6.3 and Supplemental Figure 2). The thickness of fibers increased, and the pore

size of the network decreased as a result of fiber criss-crossing. These findings confirmed

that not all structural changes during the compression/decompression cycle were reversible,

consistent with the hysteresis observed in the stress-strain curves. These changes in clot

structure were responsible for the changes observed in the viscoelastic properties as well as

for hysteresis behavior for all types of blood clots upon cyclic loading. I showed that all

structural modifications of all blood clots during the cycle and after each cycle result in

changes of stiffness.

As compression proceeds, at first fibers buckle and bend and then with increasing strain

fibers are forced into each other and become criss-crossed and bundle as the network density

increases. The increasing strain also results in the reorientation of fibers, such that many

fibers become aligned in the plane perpendicular to the direction of compression (Figure

6.2A-C and 6.8). Bent and buckled fibers can no longer contribute effectively to resisting de-

formation, resulting in decreasing the stiffness during the early compressive part of the cycle.

Since unbuckling and unbending do not require energy, those changes are reversible upon de-

compression. However, the binding forces between fibers that are criss-crossing or bundled

are strong Bonn et al. (2016), the dissociation of these linkages requires energy and resulted

in energy dissipation in each cycle. During decompression, some fibers are separated while

others stay associated, resulting in new clot structures after compression/decompression

cycles (Figure 6.3). These morphological changes arising from an increase in criss-crossed
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and bundled fibers result in decreasing pore size and increasing the fiber thickness, which

means an increasing clot stiffness with each cycle. I found that for PPP and PRP clots, G′

increased after each cycle, in agreement with these changes in clot structure. However, for

whole blood clots, instead of increasing, the stiffness decreased after the first cycle, which

may be attributed to differences in composition of whole blood clots. Many of the pores

are filled up with soft RBCs before compression. Thus, compression of whole blood clot

resulted in less criss-crossing and bundling, since the RBCs block these interactions, but

more bending and buckling than in PPP and PRP clots.

Moreover, RBCs escape from the fibrin network during the compressive part of the cycle

(see Supplemental video) and moved down from the densified region to the rarefied region

(Figure 6.8C), which resulted in a dramatic decrease in stiffness during the compressive part

of the cycle. During the decompressive part of the cycle, RBCs moved back into the clot

distorted from irreversible changes in the network, and filled up new spaces that are now

more compact. These changes resulted in shape transformation of some cells from biconcave

to polyhedral such that the second cycle of compression starts with a clot with deformed

RBCs. These deformations of RBCs and dissociation of newly formed fibrin fiber linkages

within the network, resulted in higher energy dissipation for whole blood clots than for PPP

and PRP clots. In addition, there is relatively less fibrin in whole blood clots because of the

presence of RBCs, in comparison with PPP and PRP clots. All these differences resulted in

decreasing G′ in subsequent cycles for whole blood clots, instead increasing G′ as observed

in PPP and PRP clots after each cycle.

6.3.5 Effects of the rate and extent of compression-decompression

on mechanical response

We observed that, in response to compression, the fibrin network for all blood clots was

divided into two regions, a densified region (with bent and buckled fibers) and a rarefied

region (with mostly straight fibers), with a boundary between them. The fluorescence

intensity profile of compressed clots as a function of depth revealed that the boundary front

propagates through the sample. The width and sharpness of the boundary depends on the

rate of compression. At low compression/decompression rates, the phase boundary is sharp

(or has a small width), while at high rates of compression/decompression, the boundary
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is diffuse. The propagation of this boundary through the sample is the basis of our phase

transition model to describe the compressive behavior of blood clots Abeyaratne & Knowles

(2006). The strain-rate dependence of the phase boundary width remains a topic for future

research since the model in Kim et al. (2016) does not fully capture the physics behind this

effect. A new model for the phase boundary width will also result in a different kinetic law

in the phase transition model required to explain the full stress-strain response.

6.3.6 Phase transition model

In terms of the stress-strain curves, the rarefied region corresponds to a linear response

when strain is low and the entire clot is rarefied and the densified region has a non-linear

stress-strain response. At the two plateaus, upper for the compressive part of the curves and

lower for the decompressive part, the clot is a mixture of the rarefied and densified phases

separated by a moving phase boundary. The mobility of the phase boundary is different for

the loading and unloading plateaus and has been taken into account in our phase transition

model for all three types of clots. Also, our phase transition model accounts for two criss-

crossing fibers adhering to each other in the densified phase through a certain energy of

adhesion (Section 6.1.3). The presence of platelets in the clot is represented through a

specific pre-stress in the rarefied phase (Section 6.1.3). Poroelastic effects are necessary to

account for the pumping of liquid through the clot during compression Gibson & Ashby

(1999). Finally, the deformation of RBCs by compression (Section 6.2.11) makes a major

contribution to the stress-strain relations in whole blood clots; it has been accounted for by

using classical expressions based on a neo-Hookean constitutive law.

Our phase transition model captures the entire stress-strain response of all three types

of clots. I evaluated the constants entering the model by fitting the low strain rate and

low compression degree experiments for each type of clot. Then, I showed that the same

parameters can predict the response of the clot for high rate and high degree of compression.

The prediction of our model at high strain rates for PPP and PRP clots are not as good

as the low strain rate prediction, likely because I assume a sharp phase boundary, which is

in conflict with our observation of a diffuse phase boundary at high strain rates. For whole

blood clots our model works very well for both high and low strain rates. The position of

the phase boundary enters into a simple calculation for the shear storage and loss moduli
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of compressed clots. I find that the trends in storage and loss moduli as a function of

compressive strain for PPP clots during loading can be captured by our phase transition

model. The trends in storage and loss moduli during unloading are not captured in our

analysis and remain a topic for future research. A possible reason for this discrepancy

could be that the physics behind the small strain shear behavior of the clots under tension

is different from that in compression.

6.3.7 Significance of the compression behavior of blood clots

Clot mechanics is an important part of the field of hemostasis and thrombosis because

blood clots and thrombi undergo dramatic deformations under (patho)physiological condi-

tions such as hydrodynamic blood flow, retraction of platelets, and contraction of muscle

surrounding blood vessels. Therefore, the outcomes of many bleeding and thrombotic dis-

orders, including thromboembolism, are largely determined by mechanical behavior of the

clot or thrombus. The mechanical response of blood clots and thrombi to compression is

important for their hemostatic function, obstructiveness and stability. The modeling of

compression front propagation as a dynamic phase transition and stress-strain curves in

cyclic compression/decompression, as well as the rheological properties of clots containing

platelets and RBCs, are predicted in this paper. This could become a useful diagnostic tool

for diseased states since I can predict how the compression response and rheology of clots

will change if platelet function is impaired (naturally or due to drugs), or the RBCs are too

stiff (as in sickle cell disease), or fibers are too thick (e.g., if the clot is formed in the blood

of a hemophiliac). Thus, studies on the compressive behavior of clots and thrombi may

reveal how clot rheology under large compression in vivo varies in pathological conditions

such as deep vein thrombosis, pulmonary embolism, hemophilia, and sickle cell anemia.

Aside from its significance to hemostasis and thrombosis, blood clot mechanics has

become increasingly important in view of extensive new applications of fibrin and other clot

components as a biomaterial, e.g., in tissue engineering, cell culturing, drug delivery, wound

sealing, etc., where the mechanical support provided by a clot network, in combination

with other properties, makes it a unique, versatile, and quite useful hydrogel. I have shown

that blood clots with platelets and/or with RBCs are a biological composite material with

unique mechanical properties. The information from these studies may enable design of
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tissue sealants and scaffolds with precisely tunable mechanical and structural properties.
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Chapter 7

Compression of CNT foams

In this chapter I apply a phase transitions based model to the compression response of

vertically aligned carbon nanotube (CNT) forests, obtained via quantitative in situ micro-

compression experiments. In doing so I assume that the CNT forest is an elastic foam

whose stored energy function has two wells – one corresponding to the rarefied phase in

which the CNTs are mostly straight, and the other corresponding to the densified phase

in which the CNTs are mostly buckled with a large number of contacts between them.

The existence of broad convex regions around the minima in the energy landscape of CNT

forests is attributed in Radhakrishnan et al. (2013) to the reversibility of the deformation

under moderate strains (as seen in experiments Qiu et al. (2011), McCarter et al. (2006) as

well as simulations Radhakrishnan et al. (2013)). Such reversibility is also characteristic of

phase changing materials whose Helmholtz free energy function has multiple minima, each of

which correspond to different micro-structure Bhattacharya (2003), Gibson & Ashby (1999).

In order to accommodate the deformations imposed on the boundary a phase changing

material forms microstructure in the bulk in which different phases co-exist at the same

stress Bhattacharya (2003), Gibson & Ashby (1999); analogously, there is a range of stresses

at which the densified and rarefied phases of CNT forests can co-exist to accommodate

deformations imposed at the boundary. The idea of a multi-well energy landscape A similar

idea has appeared in a series of papers that describe the CNT forests as a one-dimensional

mass-spring chain in which the springs are characterized by a double well potential Fraternali

et al. (2011), Blesgen et al. (2012), Raney, Wang & Daraio (2013), Raney, Fraternali &

Daraio (2013), Thevamaran et al. (2015). These models acknowledge the multi-scale nature
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of the mechanical response of CNT forests and allow for the possibility that the properties

could be graded Blesgen et al. (2012), so that the buckling load of the fibers could be a

function of position. They also predict discrete jumps in the load-displacement curves (as

the springs jump from one energy minimum to another) much like the discrete buckling

events of CNT forests loaded in uniaxial compression. A continuum limit of this type of

model has also been obtained and used to interpret the dissipation in loading/unloading

experiments Raney, Fraternali & Daraio (2013). However, to the best of our knowledge,

these models do not connect the micro-structural parameters of the CNT forests (such as,

density, CNT diameter) with the constitutive parameters entering the model as is done in

the literature on foams. A micro-structural connection based on the mechanics of foams has

been presented by Hutchens et al. (2012) who recognize that CNTs can adhere to each other

causing a reduction in the energy of the forest under compression (see also Zbib et al. (2008)).

They connect the microscopic sticking behavior of CNTs to the visco-plastic hardening rule

used in the fully three-dimensional computational framework of Hutchens et al. (2010). A

more comprehensive nano-scale computational model which represents CNTs in a forest

as elastica finite elements with van der Waals interactions was described by Torabi et al.

(2014) and Volkov et al. (2009). Torabi et al. (2014) establish relationships between post-

bulking stress, initial elastic modulus, and buckling wavelength on statistical parameters

(tortuosity, density and connectivity) of a CNT forest which a macroscopic constitutive

model, ideally, should reproduce. Separately, it has been argued that such a macroscopic

constitutive law for describing coordinated buckling of CNT forests should be local because

constitutive properties exhibit only statistical variations across a CNT forest from top to

bottom as demonstrated by uniaxial compression and nanoindentation experiments of Qiu

et al. (2011).

Here I use a local continuum phase transition theory to study the uniaxial compression

of CNT forests and include phase boundary kinetics as well as a nucleation criterion to de-

scribe features seen in the stress-strain curves. In contrast to a discrete mass-spring chain,

a continuum phase transition model describes layer buckling of CNT forests as continuous

interface (separating rarefied and densified phases) propagation (see cartoon in Figure 7.2a).

I (and others) have shown in recent work that the dynamics of discrete bi-stable mass-spring

chains can be captured by a continuum phase transition theory if information lost in going

from the discrete to continuum description is distilled into a kinetic relation and nucleation
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criterion that are supplied as constitutive information to the continuum theory Zhao &

Purohit (2016), Zhao et al. (2015), Truskinovsky & Vainchtein (2005). A continuum phase

transitions model, in contrast to a discrete mass-spring chain, is needed to model the re-

sponse of CNT forests under loading configurations that are more complex than uniaxial

compression. Here I demonstrate this idea by using our constitutive model to interpret

indentation experiments on the CNT forests in which the stress and strain fields are in-

herently three-dimensional (see Figure 7.2a). Phenomenological constitutive models that

capture the load-indentation depth curves in nanoindentation experiments have been im-

plemented recently using finite elements by Radhakrishnan et al. (2013), but to the best of

our knowledge, these models have not been used to explain the collective buckling of CNT

forests under uniaxial compression. In contrast, our continuum model can be applied to

both uniaxial compression as well as nanoindentation experiments. It is characterized by

a double-well energy landscape, much like the springs of Fraternali et al. (2011) and Bles-

gen et al. (2012), but it incorporates a rate-dependent kinetic law to describe the motion

of phase boundaries in the spirit of Hutchens et al. (2010). Hutchens et al. (2010) used

a visco-plastic computational model because the deformation of the CNT forests in their

experiments was not fully recoverable. In contrast, the CNT forests in our experiments

showed deformations that were largely recoverable with hysteresis, similar to Cao et al.

(2005), Pathak et al. (2012).

This chapter is laid out as follows. In section 7.1 I describe the preparation of the CNT

forest samples. In section 7.3 I describe the in situ scanning electron microscopy (SEM)

experiments, and how the data from the compression experiments is interpreted using a

phase transitions model. An insight that emerges from our analysis of the experimental

data within a phase transitions model is that the buckling wave length of the CNT forests is

related to the energy of the interface separating the rarefied and densified phases. In section

7.7 I briefly describe the nanoindentation experiments on the same samples, and how the

data from these experiments can be interpreted by incorporating a linearized version of our

phase transitions based model into solutions for indentation of an elastic half-space. The

purpose of section 7.7 is to show that our phase transitions based model of section 7.3 can

predict the response of the CNT forests to indentation even though the state of stress in

indentation is very different from that in uniaxial compression.
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Figure 7.1: (a) SEM image of an array of CNT pillars used for mechanical characterization;
(b) SEM image of individual pillar, close-up of CNT forests as viewed from sidewall, and
top/side view schematic of CNT forests without ALD coating; (c) corresponding images
after ALD coating with Al2O3.

7.1 CNT forest growth

For the growth of vertically aligned CNTs (see Figure 7.1), an Al2O3/Fe catalyst layer

is first patterned on 4” (100) silicon wafers coated with 300 nm of thermally grown SiO2,

by lift-off processing using photo-lithography followed by ultrasonic agitation in acetone.

The supported catalyst layer, 10 nm of Al2O3 and 1 nm of Fe, is sequentially deposited by
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electron beam physical vapor deposition. The wafer with the deposited catalyst is diced

into 1 × 1 cm pieces, and for each sample one piece is placed in the quartz tube furnace

for the CNT growth. The growth recipe starts with flowing 100/400 s.c.c.m. of He/H2

while heating the furnace up to 775 ◦C over 10 min (ramping step); then the temperature

is held at 775 ◦C for 10 min with the same gas flow rates (annealing step). Then the gas

flow is changed to 100/400/100 s.c.c.m. of C2H4/He/H2 at 775◦ C for CNT growth for the

selected duration based on the typical growth rate of approximately 100 µm/min (growth

step). Once the desired growth time has passed, the same gas flow is maintained while the

furnace is turned off, allowing the system to cool. Once the furnace temperature reaches

below 100 ◦C, 1000 s.c.c.m. of He is maintained for 5 min to purge the quartz tube before

the samples are retrieved.

7.2 ALD Al2O3 coating

Optionally, the as-grown CNT samples are then coated with Al2O3 via ALD (Ar-

radiance, GEMStar XT); each cycle deposits 1.1-1.3 Å of Al2O3. Trimethylaluminum,

Al2(CH3)6, and ozone, O3, were used as the precursors. The deposition is performed at 175

◦C and 1 Torr, and between introduction of each precursor, the chamber is evacuated to

ensure that no residual precursor remained in the chamber.

7.3 Compression of the CNT forests

After CNT growth and ALD coating, the CNT forests patterned as pillar compression

specimens are placed in a custom nanomechanical testing apparatus for quantitative in

situ mechanical testing in a scanning electron microscope (SEM). The testing apparatus

consists of three key components: a 6DOF closed loop nano-positioning stage (SmarAct

GmbH), a linear piezoelectric actuator (Physik Instrumente GmbH), and a MEMS-based

silicon capacitive load cell (FemtoTools AG) as illustrated in Figure 7.2b. The apparatus

has been described in detail previously Magagnosc et al. (2013), Zhao et al. (2015). The

testing setup is installed in a high resolution SEM (FEI Quanta) for mechanical testing of

the CNT pillars and simultaneous high resolution observation (see Figure 7.2c).

Testing was performed according to the following procedure. The SEM stage was tilted
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(a) (b)

(c) (d)

Figure 7.2: (a) Schematic of two experimental configurations (and, thus, stress states)
investigated: uniaxial pillar compression (left) and nanoindentation(right). In each case
an interface, or phase boundary, separates the densified and rarefied phases. The phase
boundary is flat in the uniaxial compression experiments and has an axi-symmetric shape
in the nanoindentation experiments. As the load P increases, the volume of the densified
phase increases by the outward motion of the phase boundary (shown by arrows). (b)
Schematic of in situ SEM mechanical testing configuration used for pillar compression, and
(c) low-magnification SEM image of testing apparatus and pillar specimens. (d) Illustration
of nanoindentation test on a CNT pillar.

by < 5◦ to provide an unobstructed view of the CNT pillar array as depicted in Figure

7.2c. A coarse angular alignment of the load cell indenter to the CNT pillars was first

performed visually. Fine angular alignment was achieved using the previously reported

contact stiffness method Zhao et al. (2015) on the CNT growth substrate. By maximizing

contact stiffness, good alignment of the CNT pillars and load cell was ensured, most notably

in the y-z plane (out of the imaging plane). The load cell was then visually aligned in the

x, y, and z directions with a selected pillar for testing. Quasi-displacement controlled

uniaxial compression was performed while recording the actuator displacement, force, and

an imaging sequence at nominal strain rates between 0.001 s−1 and 0.1 s−1.

The pillars tested here generally showed different moduli and plateau stresses, yet con-
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Figure 7.3: Quantitative in situ uniaxial compressive behavior and SEM images of (a)
bare CNT, (b) ALD 5 cycles and (c)ALD 10 cycles pillars. An arrow next to the SEM
images in (b) and (c) shows the position of the phase boundary above which the forest is
densified. The dots in each plot are experimental data and the lines are from the phase
transition model. Blue line corresponds to rarefied phase during loading, upper red line
to a mixture of rarefied and densified phases during loading, green line to densified phase
during unloading, and bottom red line to mixture of rarefied and densified phases during
unloading. Note that around a strain of 0.8 there is a difference between the loading and
unloading curves (for the densified phase) obtained from experiments. (d) SEM snapshots
obtained from the highlighted regions of the stress-strain curve in (c) showing the elastic,
plateau, and densification regimes.

sistent loading behavior regardless of ALD coating thickness, as shown in Figure 7.3 and

7.5. This general behavior is shown for uncoated (Figure 7.3a), ALD 5 cycles (Figure 7.3b),
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(a) (b)

Figure 7.4: (a) DIC measurement of displacement at each reference position for various
global compressive strains from 0.047 to 0.294. (b) DIC measurement of local strains for
various global compressive strains from 0.047 to 0.227 and fitting with Eqn. (7.21).

(a) (b) (c)

Figure 7.5: Compression stress-strain curves for three different strain rates 0.1 s−1, 0.01
s−1, and 0.001 s−1 (red, blue, and green solid line respectively) for (a) Bare CNT, (b) ALD
5 cycles, and (c) ALD 10 cycles pillars, respectively. Dashed lines are curves predicted by
our phase transition model with parameters given in Table 7.1.

and ALD 10 cycles (Figure 7.3c) pillars. During initial loading, a flat surface between the

punch face and the pillar top is created. Subsequently, the pillar undergoes elastic loading

evident in the initial linear response of the stress strain curve. At a critical stress level,

pillar scale buckling occurs, which is reflected in large softening events in the stress-strain

curve. This pillar scale buckling propagates spatially along the pillar axis with nominally

constant stress during the plateau region until it reaches the densification region. The stress

rapidly rises in the densification region. The three loading regimes are indicated in Figure

7.3c by the highlighted circles. Snapshots of the deformation morphology from the three

loading regimes are shown in Figure 7.3d.

While the stress-strain curves for the various sample conditions showed self-similar re-
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sponse, images obtained during the compression tests indicate that the ALD coatings sub-

stantially altered the pillar scale deformation behavior. Beginning with the bare CNT

samples, pillar scale buckling occurred at the top of the pillar and propagated entirely to

the bottom as compression progressed. Buckling initiated at the top likely because the

CNTs have more freedom to bend due to frictional interactions with the punch; in contrast,

at the bottom they have less freedom since they are attached to the substrate. In such short

CNT micropillars, I also expect that there is a density variation through the height, with a

lower density at the top Park et al. (2013). However, Qiu et al. (2011) performed localized

indentation and uniaxial compression experiments recently to show that coordinated buck-

ling of CNT forests is most likely the result of the interplay between the rigid substrate and

compliant forest and does not require variation in material properties through the height.

Between the first and second buckling (or nucleation) events I could discern an interface

marked by arrows in Figure 7.3b and 7.3c. Above this interface the CNT forests were den-

sified, and below it they were rarefied. The first buckling event remained identical in coated

samples. However, for the alumina coated pillars, another buckled region nucleated at the

bottom following propagation of a portion of the first buckled zone. Notably, this second

nucleation of pillar scale wrinkling was not clearly distinguishable in the stress-strain curve,

signifying that the deformation mechanism during the plateau region remains the same.

We examined the effect of strain rate on the compressive stress-strain response as shown

in Figure 7.5. Here, representative stress-strain curves for loading rates from 0.1 to 0.001

s−1 are shown in red blue, and green solid lines, respectively, for bare (Figure 7.5a), ALD

5 cycles (Figure 7.5b), and ALD 10 cycles (Figure 7.5c), all of which show some strain-

rate dependence. However, the qualitative loading response was found to be self-similar

regardless of the loading rate.

We used a digital image correlation (DIC) code Eberl et al. (2006) on the captured

SEM images during the in-situ compression test to examine the local displacement and

strains. The ALD 10 cycles pillar compressed with strain rate of 0.001/s was chosen for

the DIC since this sample showed most reliable tracking due to its high contrast features.

The SEM images were saved 1 per 2 seconds and the original SEM frame rate was 1 image

per 1 second. I focused on the movement along the compression axis. A grid having

a segment spacing of 250nm was used to monitor the displacement profile during pillar

during compression. For this grid, nine global strain levels were selected and the results
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Table 7.1: Fitting parameters of compression experiment on CNT forests.

Group E (MPa) B (MPa) A (MPa) σLH (MPa) σHL (MPa) Mlh

(MPa−1s−1)
Mhl

(MPa−1s−1)

ALD 10 cycle 20 1.37 1.36 3.7 0.5 0.09 0.12
ALD 5 cycle 8 0.61 0.60 2 0.2 0.5 0.3
Bare CNT 6 0.67 0.66 1 0 0.35 0.3

are plotted in Figure 7.4a. Dots of one color correspond to a particular global compressive

strain. The profiles represented by dots of each color have roughly the same piecwise linear

form depicted in the lower inset in Figure 7.4a. This piecewise linear displacement profile

moves to the left as the global strain increases. An ideal strain profile corresponding to the

piecewise linear displacement profile is shown in the upper inset. The strain discontinuity

represents a sharp interface, or phase boundary, which moves to the left as the global strain

increases. Motivated by this I used a 625 nm spaced grid to calculate local strains. Five

levels of global strain were selected and the results are plotted in Figure 7.4b. The strain

profiles in this figure are consistent with the idea of a moving interface.

7.4 CNT forests buckling viewed as a phase tran-

sition

In order to describe the CNT pillar compression process, I use a one-dimensional quasi-

static version of the well-known Abeyaratne-Knolwes theory Abeyaratne & Knowles (2006)

for phase transitions in continua. The discrete mass-spring model of Fraternali et al. (2011)

with bi-stable springs can be thought of as a pre-cursor to our continuum model since it was

shown in Purohit (2001) and Zhao & Purohit (2014) that the static and dynamic response

of bi-stable chains is analogous to that of one-dimensional phase-transforming continua. In

our continuum model the rarefied phase in which the CNTs are mostly straight is described

by the stress-strain (σ − ε) relation:

ε = ΓL(σ), 0 < σ < σM , (7.1)

where σM is upper stress limit for the rarefied phase. While loading in compression, the

densified phase nucleates at a stress σLH < σM , and is described by the stress-strain relation
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:

ε = ΓH(σ), σm < σ <∞, (7.2)

where σm is lower stress limit for the densified phase. Similarly, while unloading in com-

pression, the rarefied phase nucleates at stress σHL > σm (with σHL < σLH). Therefore,

for σm ≤ σ ≤ σM , there are two possible stable phases corresponding to stress σ. I define

a transformation strain γT (σ) as:

γT (σ) = ΓH(σ)− ΓL(σ), σm ≤ σ ≤ σM . (7.3)

We model the compression process of our CNT pillars as an one-dimensional initial-boundary-

value problem of a continuum having the above stress-strain relation. I assume that the

continuum extends along the x-direction and is confined to the interval 0 < x < L in the

reference configuration. The displacement of a material point at reference position x is

given by u(x, t). The end at x = 0 is fixed so that u(0, t) = 0 for all t. At the end x = L

I apply a displacement boundary condition, so that u(L, t) = δ(t). I see that when the

specimen is being loaded δ̇(t) < 0 and when it is being unloaded δ̇(t) > 0. The equation of

motion for our one-dimensional continuum in the quasi-static setting is simply ∂σ/∂x = 0,

so that σ(x, t) is constant for 0 < x < L at all t. So, the state of strain is: ε = ΓL(σ) if

σ < σM and ε = ΓH(σ) if σ > σm. If the stress σ is such that σm < σ < σM then a mixture

of phases is possible. Consequently, the elongation of the continuum is given by

u(L, t) = δ(t) = ΓH(σ(t))s(t) + ΓL(σ(t))(L− s(t)), (7.4)

where s(t)/L is the fraction of material in the densified phase (see Figure 7.3). Note that

if there was a single phase boundary separating the rarefied and densified phases (as is the

case before the second nucleation event for all three types of CNT forest) then s(t) denotes

the position of the phase boundary in the reference configuration. Recall now that δ(t) is

prescribed, but the evolution of s(t) is as yet unknown. For describing the evolution of s(t),

which can be thought of as an internal variable, in this continuum theory I need a kinetic

relation Abeyaratne & Knowles (2006). This kinetic relation is expressed in terms of the
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some driving force f by the relation

ṡ = Φ(f(t)), (7.5)

where Φ(f) is a material property as in Abeyaratne & Knowles (2006). Now, I assume f is

a unique function of σ, so the kinetic relation can be expressed as

ṡ = Φ̄(σ). (7.6)

Differentiating Eqn. (7.4) and eliminating ṡ using Eqn. (7.6) I get the following equation

relating σ(t) and δ(t):

[
p(σ)− γ′T (σ)

δ

L

]
σ̇ + γT (σ)

δ̇

L
=
γ2
T

L
Φ̄(σ) (7.7)

where

p(σ) = ΓL(σ)Γ′H(σ)− Γ′L(σ)ΓH(σ). (7.8)

For given δ(t) Eqn. (7.7) can be integrated to get σ(t). In our experiments δ̇ is typically a

constant value for both loading and unloading.

7.5 Application to the CNT forests

We now write specific constitutive relations for the stress-strain response of the CNT

forests given by Eqns. (7.1-7.2), and phase boundary kinetics in Eqn. (7.6). We assume

that the stress-strain relation is linear in the rarefied phase as:

σ = Eε, (7.9)

if ε < εM = σM/E, where E is a Young’s modulus. In doing so I have assumed that the

CNT forests behaves as a foam for which the stress-strain response at small strains can be

computed in the terms of the properties of single fibers and the density of the network Cao

et al. (2005), Zbib et al. (2008), Hutchens et al. (2010), Gibson & Ashby (1999). We point

out, however, that density is not the only parameter that determines the Young’s modulus

of a CNT forest Torabi et al. (2014), Volkov et al. (2009); tortuosity (average curvature of
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the CNTs) and connectivity (average number of contacts per unit length of CNTs) also play

a role, although density dominates the overall modulus Qiu & Bahr (2013). In the densified

phase, however, I will start with a non-linear power-law relation as given by Van Wyk

(1946) and Toll (1998) as :

σ = kE (φn − φn0 ) , (7.10)

where k is a coefficient around unity Mezeix et al. (2009), and n is derived to be 3 for three

dimensional isotropic random networks Van Wyk (1946), Toll (1998), and also confirmed

by several experiments Mezeix et al. (2009), Choong et al. (2013), Bouaziz et al. (2013),

Masse & Poquillon (2013), Kim et al. (2016). While vertically aligned CNT forests may

be better modeled as transversely isotropic materials, I do not do so here because such a

model requires five constitutive parameters which are difficult to obtain from experiments.

Furthermore, Hutchens et al. (2012) have demonstrated that an isotropic material model

can capture the visco-plastic response quite well. In the above φ0 is the volume fraction of

fibers in the network when σ = 0 and φ is the current volume fraction of the fibers. They

are related through the compressive strain ε as

φ =
φ0

1− ε
, (7.11)

assuming that the cross-sectional area of our specimen does not change (as evident from

the images in Figure 7.3). This stress-strain relation Eqn. (7.10) does not account for the

possibility that fibers can adhere to one another when brought into contact Radhakrishnan

et al. (2013), Torabi et al. (2014). In fact, a computational study by Torabi et al. (2014) has

revealed that average number of contacts per unit CNT length, or connectivity, depends not

just on the fiber volume fraction, but also on the growth process through the seed density

(each CNT grows from a seed) and weakly through the cone angle (the limiting cone around

link i within which the next link i + 1 of a growing CNT can lie). Here, in the interest of

analytical tractability, I will account for fiber-to-fiber adhesion following Toll (1998) who

shows that fiber contact point density scales with the square of the fiber volume fraction

Nc ∝ φ2. Assuming each newly formed contact point results in a bond which releases free

energy Ubond, the bonding energy per unit volume is Ebond = −Cφ2Ubond, where C is a

constant. I can add this contribution to the total strain energy stored in the network due

to compression and then differentiate the resulting expression to get a new stress-strain law
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in the densified phase that accounts for adhesion of fibers at contact points, yielding

σ = kE
(
φ3 − φ3

0

)
− 2Cφ2

0Ubond

(1− ε)3 =
B −A

(1− ε)3 −B, (7.12)

where A = 2CUbondφ
2
0, B = kEφ3

0 are two constants that are obtained by fitting to the

experimental stress-strain curves in the densified phase. Finally,

ΓL (σ) =
σ

E
,

ΓH (σ) = 1− 3

√
B −A
σ +B

,

γT (σ) = 1− 3

√
B −A
σ +B

− σ

E

(7.13)

A similar exercise accounting for contacts with adhesion was also performed by Hutchens

et al. (2012), but they simplified the resulting expressions to modify the visco-plastic harden-

ing law in the plateau region of the stress-strain curve. I can use the results above to derive

an expression for the driving force f in the quasi-static limit. I know from Abeyaratne-

Knowles Gibson & Ashby (1999) that:

f(σ) =

∫ σ

σ0

γT (σ′) dσ′, (7.14)

where σ0 is a Maxwell stress. Recall that at the Maxwell stress the Helmholtz free energy

density of the two phases is equal. The driving force f derived above enters a kinetic relation

describing the evolution of the internal variable s(t). For simplicity I will use the following

kinetic relation:

ṡ = Φ(f) =


MLH(f − fLH), if f > fLH ,

0, if fHL ≤ f ≤ fLH ,

MHL(f − fHL), if f < fHL.

(7.15)

Here MLH > 0 and MHL > 0 are mobility parameters which I will later fit to the ex-

perimental data. Also, fLH and fHL correspond, respectively, to stresses σLH and σHL

which may be determined using Eqn. (7.14). Our justification for choosing such a “stick-

slip” type kinetic relation is as follows. We know from earlier work that thermal sliding

of contacts between CNTs occurs when a CNT forest is compressed Radhakrishnan et al.
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(2013), Mesarovic et al. (2007). Thermally activated processes are governed by Arrhenius

type kinetics which can be linearized for small driving forces to give a linear kinetic law of

the type ṡ = Mf where M is a constant Abeyaratne & Knowles (2006). I also know from

computations Torabi et al. (2014), Volkov et al. (2009) and experiments Qiu et al. (2011)

that the CNTs reorient as the forest transforms from a rarefied phase to the densified phase.

The kinetics of the reorientation is difficult to obtain, but it is clear that these processes

produce a material that is heterogeneous at length scales much smaller than the specimen

size. It has been shown that this sort of heterogeneity combined with a linear kinetic law

at the microscopic scale leads to a stick-slip type of kinetic relation at the macroscopic

scale Bhattacharya (1999). That said, the choice of kinetic relation above is not sacrosanct;

the appropriate kinetic law should be deduced by fitting to experiment or nanoscale compu-

tations. The kinetic law, Eqn. (7.15), happens to fit the experiments described here quite

well (as shown later).

In order to complete the formulation of the problem, I need a nucleation criterion.

For loading, when the specimen is being compressed, the densified phase nucleates in the

rarefied phase at stress σLH where σLH can be assumed to be where driving force f is just

greater than fLH so that the phase boundary makes its appearance and immediately moves.

Similarly, for unloading, the rarefied phase nucleates in the densified phase at stress σHL

where driving force f is just smaller than fLH .

Now, the experiment is performed at a constant rate δ̇ < 0 during loading. Initially,

the entire continuum is in the rarefied phase. As the compressive strain ε increases, the

stress σ increases linearly and reaches the critical value σLH ; this is when a phase boundary

nucleates at the top of CNT pillar (x = 0), with the densified phase on its top and the

rarefied phase on its bottom. The stress in the continuum is now governed by Eqn. (7.7)

with initial condition σ = σLH given by the nucleation criterion. The kinetic relation enters

the mechanics through Φ̄(σ). The phase boundary moves through the continuum and

converts all the material into the densified phase. Once the phase boundary has reached

x = L, Eqn. (7.7), the nucleation criterion and the kinetic relation are no longer required.

The stress is the determined by the constitutive law ΓH(σ) since all the material is in the

densified phase. When I unload δ̇ > 0, the stress declines along the curve ΓH(σ) until a

critical value σHL is reached at which a phase boundary nucleates at x = L. Then σ(t) is

again governed by Eqn. (7.7) with initial condition σ = σHL. This differential equation
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remains relevant until the phase boundary has traversed the full length of the specimen

reaching x = 0. After this the stress follows the curve ΓL(σ) in the rarefied phase.

We have fitted the experimental data in Figure 7.3 from the measured loading and

unloading response of three different samples using the methods described above. In Figure

7.3, the experimental data is represented by discrete markers and the model fit is shown as

a continuous line. The strain rate δ̇/L for these experiments was 0.001 s−1. The parameters

obtained from the fits are summarized in Table 7.1. Our phase transitions model captures

the main features of the stress-strain curve quite well. The fitting parameters are E in the

rarefied phase, A and B in the densified phase, σLH and MLH for the upper plateau and σHL

and MHL in the lower plateau. The theoretical lines fall on top of the experimental data for

the linear elastic response in the rarefied phase and the non-linearly elastic response in the

densified phase. The plateaus in loading/unloading are also captured except for the stress-

jumps seen in the loading plateau on which I will comment later. I note that the Young’s

moduli in the rarefied phase of the bare CNT pillar is the smallest. The Young’s modulus in

the rarefied phase increases as the thickness of the ALD alumina coating increases. Similarly,

the stress at which the densified phase nucleates is also lowest for the bare CNT pillar and it

increases as the thickness of the ALD layers increases. This is expected since increasing the

thickness of the CNTs increases their stiffness causing an increase in the Young’s modulus

in the rarefied phase. In fact, this insight can be used to shed light on the microstructural

components of the forests. For foams, E ∼ Esφ2
0 where Es is the Young’s modulus of a single

fiber and φ0 is the fiber volume fraction (see Gibson and Gibson & Ashby (1999)). In our

bare CNT samples I estimate that the diameter of the CNTs is d ≈ 10 nm and the spacing

between adjacent CNTs is D ≈ 100 nm, on average. Thus, φ0 ≈ (d/D)2 ≈ 0.01. Thus, with

E = 6 MPa for the bare CNT foam samples, I estimate that ECNT ≈ 60 GPa for one CNT

fiber. This is smaller than the estimated Young’s modulus of pristine CNTs, about 1 TPa,

suggesting that our growth process produces CNTs with many defects. Similarly, I estimate

that the fiber diameter in our ALD 5 cycle samples is about d5 ≈ 1.1 nm, and that in the

ALD 10 cycle samples is about d10 ≈ 1.2 nm (see section 2). If I assume that the Young’s

modulus of the ALD alumina coated fibers are E5 = ECNT + Ealumina(1 − d2/d2
5) and

E10 = ECNT + Ealumina(1− d2/d2
10), then a similar calculation as above gives an estimate

Ealumina ≈ 30 GPa, which is again smaller than the measured value 180 GPa Tripp et al.

(2006). The densified phase is nucleated when the fibers buckle. The critical stress σLH is
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determined for foams from a knowledge of the buckling load of single fibers and the density

of the network as was done in Cao et al. (2005). Hence, if the bending stiffness is higher

due to increased thickness of the ALD layers then σLH also must increase. This is exactly

what I see from our fits to the experimental data.

It is more difficult to physically justify the mobility parameters MLH and MHL that have

been obtained by fitting our phase transition model to the experimental data. However, I

can predict the stress-strain response in loading/unloading of the same samples at different

strain rates δ̇. I have done this exercise for two other strain rates (0.01 s−1 and 0.1 s−1) with

the parameters shown in Table 7.1. The corresponding experimental stress-strain curves

for these strain-rates are plotted together with the theoretical predictions in Figure 7.5.

Remarkably, the agreement between theory and experiment indicates that the parameters

I have obtained from fitting one set of experimental data are useful in describing the con-

stitutive response of the material at other strain-rates as well. In particular, the nucleation

stresses and our choice of the kinetic law gives a small strain-rate dependence of the hys-

teresis which is consistent with earlier experiments Pathak et al. (2012), Raney, Fraternali

& Daraio (2013), Raney, Wang & Daraio (2013). If the motion of the phase boundary was

independent of the stresses then our model would reduce to the rate-independent hysteresis

models of Fraternali et al. (2011), Blesgen et al. (2012), Raney, Fraternali & Daraio (2013),

Raney, Wang & Daraio (2013).

Finally, I point to an important feature that has not been captured by our phase tran-

sition model described above. Note in Figure 7.3 and Figure 7.5 that near a strain of 0.8

(which corresponds to most of the pillar being in the densified phase) the experimental

loading and unloading curves are not identical at the end of unloading. This was observed

in simulations of fiber networks by Barbier et al. (2009). and attributed to friction be-

tween contacting fibers. In our experiments, the increased contact between the CNTs in

the densified phase exacerbates this effect. In fact, the loading and unloading curves in

our nanoindentation experiments are also different, leading to dissipation. I quantify this

dissipation in our analysis of the nanoindentation experiments by connecting it to the high

density of contacts in the densified phase.
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7.6 Stress jumps at the plateau

Our constitutive model yields a plateau in the stress-strain curve that is smooth. This

is not what I see in experiments. In fact, the stress-plateau in the experimental data

invariably has a few jumps in the stress (shown in Figure 7.5 for various strain rates), which

are caused by nucleation of the densified phase away from the moving phase boundary. In

this section I will quantify these jumps using energetic arguments. Nucleation events create

new interfaces between the rarefied and densified phases, which are characterized by an

interfacial energy Uinter. We require that the change in Gibbs free energy of the two phases

during a jump should equal the energy Uinter as:

∆s [GL (σ2)−GL (σ1)]−∆s [GH (σ2)−GH (σ1)] = Uinter, (7.16)

where the subscript 1, 2 indicates variables before and after the jump, respectively, and

∆s = s2 − s1, and G is the Gibbs free energy per unit reference length which is given by

G = W − σε. In the equation above L in the sub-script denotes the rarefied phase and

H denotes the densified phase. From Abeyaratne-Knowles theory Abeyaratne & Knowles

(2006), the driving force across an interface (given by f in Eqn. (7.14)) is simply the jump

in Gibbs free energy density across it. Hence, the equation above reduces to:

∆s [f (σ2)− f (σ1)] = Uinter. (7.17)

For each jump the phase fraction also changes and I can estimate the phase fractions from

the strains before and after the jumps using:

s1 =
ε1 − ΓL(σ1)

ΓH(σ1)− ΓL(σ1)
,

s2 =
ε2 − ΓL(σ2)

ΓH(σ2)− ΓL(σ2)
.

(7.18)

Using Eqns. (7.14), (7.17), and (7.18), I am able to estimate Uinter from the experimental

data σ1, σ2, ε1, ε2 for all visible stress jumps in Figure 7.5. I present the results in Table 7.2.

Next I am going to relate the obtained interfacial energy Uinter and phase fraction change

∆s with the strain profiles obtained by digital image correlation as described below.

The above analysis assumed that the interface is sharp (a discontinuity in strain ε(Z)),
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but in experiments the interface is diffuse with a continuous ε(Z). Diffuse interfaces are

characterized by an interfacial energy that can be written as:

Uinter = λ

∫ ∞
−∞

(
dε

dZ

)2

dZ, (7.19)

where λ is a constant. As λ → 0, the interface becomes sharp. I want to check if our

estimates of the interfacial energy obtained from the sudden nucleation events can be cor-

related with the diffuse interfaces seen in experiments on CNT forests. Such diffuse in-

terfaces in a quasistatically loaded specimen are often modeled as traveling waves moving

at velocity Vm in viscosity-strain gradient theories of phase boundary motion Abeyaratne

& Knowles (2006). If the stress-strain relation of our CNT forests is modeled as a cubic

σ−σ0 = α(ε−ε∗)−β(ε−ε∗)3 then a viscosity-strain gradient model Abeyaratne & Knowles

(2006) with Vm = 0 gives a differential equation for ε(Z) = ε(Z)− ε∗:

λ
d2ε

dZ2
+ αε− βε3 + σ − σ0 = 0. (7.20)

The solution to this differential equation is

ε(Z) = ε(Z)− ε∗ = a+ b tanh(
Z − Z0

c
), (7.21)

when the remote conditions at ±∞ are constant strains ε(∞) = a + b in the densified

phase, and ε(−∞) = a − b in the rarefied phase. The width of the interface, 2c, is related

to λ through c2 = 2λ/
(
βb2
)
. I fit the experimental strain profiles ε(Z) for the 10 ALD

cycles pillars in the Figure 7.4b using Eqn. (7.21) and obtain a = 0.31, b = 0.3, c = 0.2

µm. This is a relatively sharp interface, consistent with the displacement profiles shown

in Figure 7.4a. Using the values of b and c from this fit I computed an interfacial energy

Uinter = 0.17 J/m2 from Eqn. (7.20), which agrees very well with the result from the

analysis of stress jumps summarized in Table 7.2. We performed similar calculations on

the CNT compression experiments in Maschmann et al. (2012) and obtained a = 0.315,

b = 0.3, c = 2 µm from fits to the experimental strain profiles in Figure 5(b) of Maschmann

et al. (2012). From these values I computed an interfacial energy Uinter = 0.72 J/m2 which

is in the same range as Uinter = 0.14 ± 0.09 J/m2 obtained by applying our procedure

above to the jumps in the stress-strain curves in Figure 5(a) of Maschmann et al. (2012).
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For comparison, the interfacial energy for a graphite-graphite interface is around 0.2 J/m2

Zacharia et al. (2004), for an ice-water interface it is 0.041±0.009 J/m2 Jones & Chadwick

(1970), for an In-Bi interface it is 0.047±0.005 J/m2 Akbulut et al. (2008), and for a Zn-Sn

interface it is 0.106±0.009 J/m2 Keşlioğlu & Maraşlı (2004). Hence, our estimates of Uinter

for the CNT forests studied in this manuscript seem robust.

The interface width, 2c, is directly proportional to the buckling wavelength. According

to Zbib et al. (2008) the presence of this buckling wavelength indicates that a continuum

model with an intrinsic material length scale is required to model CNT forests. How this

internal length scale depends on statistical parameters of the CNT forest was investigated

by Torabi et al. (2014) who showed that the buckling wavelength depends on tortuosity

K, density l and connectivity γ (these are symbols used in Torabi et al. (2014)) in the

undeformed state. They deduced an empirical relation c
√
l = β1 + β2γ/K where β1, β2

are constants. On the other hand, the buckling stress σb in Torabi et al. (2014) increased

linearly with increasing l and was only weakly dependent on γ/K. Thus, I expect from

Torabi et al. (2014) that c should vary inversely with σb. Now, in our CNT forests with 10

ALD cycles c = 0.2 µm and σb ≈ 4.5 MPa (for bare CNT forests σb ≈ 1.3 MPa), while in

Maschmann et al. (2012) c = 2 µm and σb ≈ 0.6 MPa. The inverse relationship between

σb and ∆s (∆s is proportional to c) can also be seen in Table 7.1 and 7.2. Thus, our

results for trends in c vs. σb are consistent with those of Torabi et al. (2014). I relate c to

an interfacial energy between the rarefied and densified phases, while Torabi et al. (2014)

relate c to tortuosity, density and connectivity, all of which should increase as I cross the

interface from the rarefied to the densified phase. Intuitively, these two descriptions of the

intrinsic length scale are not unrelated – interfacial energy arises because the environment

of a material point on the two sides of an interface are different Israelachvili (2011). A final

point to note is that our interfacial energy depends on the square of the strain-gradient in

Eqn. (7.19). Strain-gradient elasticity theories Toupin (1962), Koiter (1964), Mindlin &

Eshel (1968) in which the elastic energy depends quadratically on both strains and strain-

gradients naturally have intrinsic length scales.
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Table 7.2: Stress jumps and interfacial energy values fitted from the data.

Group Number of jumps studied ∆s (µm) Uinter (J/m2)

Bare CNTs 9 0.27±0.09 0.13±0.04
CNTs with 5 ALD cycles 6 0.21±0.1 0.11±0.05
CNTs with 10 ALD cycles 8 0.20±0.16 0.12±0.10

7.7 Indentation of CNT forests

The experiments and analysis discussed thus far have resulted in a micro-structurally

motivated continuum model based on the mechanics of foams and the theory of phase

transitions. Our goal now is to test this model by using it to interpret nanoindentation

experiments (Figure 7.2d) on the same materials.

The nanoindentation experiments were performed using a HysitronR© TI-950 TriboindenterTM,

fitted with a conical diamond indenter tip with spherical end. As shown in Figure 7.2d, the

indenter has a radius of about 1µm and an included angle of 90◦, which is much smaller than

the height and diameter of the CNT pillars (both 20 µm). I performed a series of loading

and partial unloading tests with controlled peak load as shown in Figure 7.6a. Specially,

there were 10 cycles of loading and unloading at each location. In each cycle, except the

last cycle, the load was ramped up to a certain peak load in 2 s and then unloaded to 5% of

its peak load in another 2 s (see Figure 7.6a inset). In the last cycle, the sample was fully

unloaded and the indenter was completely withdrawn from the surface. The peak load was

increased uniformly from 5µN up to 50µN. Three different samples, i.e. bare CNT, 5, and

10 cycles of ALD coated CNT pillars, were measured. For each material, 6 different pillars

were tested. The indentation tests were always performed at the center of each individual

pillar. Force-displacement curves were collected during experiments. One such curve is

shown as the black solid line in Figure 7.6a. Notice that there is hysteresis in each cycle of

loading/unloading and it increases at larger forces. This is true for bare CNT, as well as

ALD 5 cycles and 10 cycles pillars. Also notice that the residual displacement at zero load

at the end of each cycle keeps increasing as the peak load increases. I show below that such

a result is a consequence of the phase transition in the CNT forest.
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Table 7.3: Fitting parameters of nanoindentation experiment.(The error-bars account
for distinct nanoindentation groups.)

Group Bare CNT ALD 5 cycles ALD 10 cycles

z0 (µm) 1.8 1.38 1.06
E1 (MPa) 6.14±0.42 5.44±1.01 13.30±1.11
EH (MPa) 38.82±0.89 62.76±1.58 111.11±2.33
γT (indentation) 0.562±0.007 0.655±0.044 0.362±0.026

7.8 Point load on a half-space capable of phase

transitions

We will now show that our phase transition model can also be applied to nanoindentation

experiments on these CNT pillars. Since the indenter is small compared to the sample size

(1/20), I will approximate its response using the Boussinesq solution for a half-space with

a point-load as in Craig (2013). The load is applied perpendicular to the surface of the

half-space and the displacement underneath the load is given by:

u =
3P

2πEz
, (7.22)

where P is the applied point load, z is reference depth to surface and E is a reduced modulus

with effect of Poisson ratio absorbed. The stress distribution σ (r, z) within the half space

for this axis-symmetric problem is given by:

σz =
3Pz3

2πR5
;

σr =
P

2πR2

[
3r2z

R3
− (1− 2ν)R

R+ z

]
;

σθ =
(1− 2ν)P

2πR2

[
R

R+ z
− z

R

]
;

τrz =
3Prz2

2πR5
.

(7.23)

where r is reference radius in the polar coordinate system, and R =
√
r2 + z2. This solution

is valid for infinitesimal strains and isotropic linear elastic materials. But, the CNT forests

I study are capable of phase transitions. Hence, underneath the applied load, where the

stresses are very large, I expect that the CNT forests will be in the densified phase as

133



(a) (b)

(c) (d)

Figure 7.6: (a) Force-displacement curve for bare a CNT pillar in a nanoindentation exper-
iment (black solid line). Hysteresis increases with increasing load. The red dashed lines are
fits obtained with a combination of the Bussinesq solution and phase transition model, using
distinct values of reduced Young’s modulus for each cycle. The inset shows the scheme of
loading and unloading cycles in our nanoindentation experiment. (b) Prediction of second,
third and fourth cycles from Eqn. (7.26) using parameters for bare CNT pillars obtained
from the first cycle. The extracted parameters are reported in Table 7.3. (c) The slope
of the load indentation curves during unloading depends linearly of E

√
A where E is a

reduced modulus and A is the contact area of the indenter. (d) Plot showing hysteresis
in nanoindentation experiments is linear in the volume of the densified region. The error
bars are standard deviation from six distinct experiments. The inset is a figure showing
cross-sectional view of the axis-symmetric phase boundary determined using Eqn. (7.25) at
two different loads. The network inside the phase boundary is in the densified phase.

shown in Figure 7.2a. In order to accommodate this possibility I replace Eqn. (7.10) in

the densified phase with a linearized version ΓH (σ) = γT + σ/EH , where the stiffness EH

in the densified phase is much larger than that in the rarefied phase. One way to obtain

EH would be to linearize the stress-strain curve in the densified phase at an appropriate

strain ε, but it is not clear which ε to use since the strains vary all over the sample. Hence,

I obtain EH by fitting the last cycle of unloading in the indentation experiments in which
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the compressive load is so large that I could assume the CNT forests is densified over a

large volume underneath the load. This simplifying assumption enables us to exploit the

Boussinesq solution. Eqn. (7.22) for the displacement underneath the point load is modified

by adding the effect of the transformation strain γT as:

u =
3P

2πEz
+

∫
γTdz, (7.24)

where the limits of the integral are determined by the position of the phase boundary

between the densified and rarefied phases and E depends on the Young’s moduli in both

phases. The boundary location (r, z) for given P is determined by setting σz (from Eqn.

(7.23)) equal to a critical stress of nucleation σC , or:

3Pz3 = 2πσC
(
r2 + z2

) 5
2 . (7.25)

This critical stress σC is taken to be σLH in compression. As the load increases, the phase

boundary will move deeper into the half space, and thus the region containing the densified

phase will increase its volume as shown in the inset of Figure 7.6d. In this inset the yellow

and blue curves show the position of the phase boundary for low and high load, respectively.

There is a jump in strain across this phase boundary, but there is no jump in stress since

the phase boundary moves in a quasi-static manner. Since the expressions in Eqn. (7.23)

for the stress field do not involve the Young’s modulus and I assume that the material is

linear elastic in both phases, they are valid on both sides of the phase boundary. Eqn.

(7.24) above has a singularity in the displacements at z = 0. This happens because linear

elasticity is not a valid model near z = 0. In order to circumvent this difficulty I choose a

reference position z0 to calculate displacements u (in Eqn. (7.24)) such that at a critical

load when the densified phase nucleates, σz(z0) = σc, where this critical stress σc = σLH ,

obtained from fitting the uniaxial compression data. I assume that the CNT forests above

this reference position z0 is in a highly densified and stiff state due to large stresses. Hence,

the displacement at z0 will be nearly equal to the displacement underneath the indenter.

We are now in a position to calculate load-displacement curves which can be fit to the

experimental data.

In the experiments each sample is loaded and unloaded in a cyclic manner according

to the protocol shown in the inset of Figure 7.6a. In the first cycle the load is increased
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at a constant rate up to P1, and then it is decreased to nearly zero at a constant rate. In

the second cycle the same protocol is followed but the maximum load is P2 > P1. In the

third cycle the maximum load is P3 > P2, and so on for all subsequent cycles. A typical

load indentation curve is plotted in Figure 7.6a as the black line. Notice that there is a

change in the slope of the line at P ≈ 8µN, due to softening, presumably caused by the

phase transition. I determine z0 for this sample by setting σz(z0) = σc at P ≈ 8µN. σc are

chosen based on the nucleation stress σLH in Table 7.2, respectively, for the three different

CNT pillars, and the calculated z0 are reported in Table 7.3. For P >≈ 8µN the phase

boundary moves to zp > z0 along the line r = 0. During unloading, the phase boundary

does not move inward because of our choice of the kinetic relation and also because the

nucleation stress for the rarefied phase is very small as can be seen in Table 7.1. Hence,

the phase boundary remains static and the region inside is unloaded along the stress-strain

curve of the densified phase. Therefore, the slope of the re-loading curve is larger than the

initial loading curve. In order to quantitatively predict this behavior I utilize Eqn. (7.23)

to obtain the strain distribution. Note that outside phase boundary the Young’s modulus

is E1, while inside it is EH . So, by integrating εz with respect to z along the center line

r = 0 and realizing that the Young’s modulus for z > zp is E1, while that for z < zp is EH ,

where zp is the position of the phase boundary at r = 0, I get

u =
3P

2π

(
1

E1zp
+

1

EHz
− 1

EHzp

)
+

∫
γTdz. (7.26)

As a result, the equivalent reduced modulus E of Eqn. (7.24) extracted from Eqn. (7.26)

is some value between E1 and EH . This equivalent reduced modulus depends on zp, the

position of the phase boundary. I show in the Appendix Table 2 that zp does not change

much if I compute it using the Hertz contact solution for a paraboloid indenter, although

I have used the point load solution here. In particular, zp increases by the same amount

as I go from one peak load to the next (say P2 to P3) in the Hertz solution and the point

load solution. When the load is reduced to zero, there is some residual deformation due

to the transformation strain γT in Eqn. (7.26) above. When the load is increased again

the phase boundary moves outward only when the load exceeds P1, and it stops when

P = P2. Hence, I can compute the new zp and a new reduced modulus for the second

re-loading curve. By following the same procedure for all the loading/unloading cycles I
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can predict the reduced moduli for all the re-loading, as well as the entire load-indentation

curves. The result of this exercise is shown in Figure 7.6b for the bare CNT pillar in the

first four cycles as the red dashed lines. The fitting parameters are tabulated in Table 7.3

for three different samples. I see that the values of E1 are close to E obtained from fitting

the uniaxial compression data. The transformation strains γT are close to the magnitude

of the strain jumps at the stress plateaus for each of the three types of CNT pillars and the

trend in the EH values indicates that the Young’s modulus in the densified phase increases

as the ALD alumina coating thickness increases. In the appendix I use a linear stress-strain

relation for the densified phase to refit the uniaxial compression experimental data and

obtain Young’s modulus of both rarefied and densified phases EL, EH respectively, and

transformation strain γT . I compare them with the same parameters extracted from fitting

the nanoindentation experiments and find that all of them are consistent. This shows that

the same phase transition model can quantitatively describe both uniaxial compression as

well as nanoindentation experiments.

In Figure 7.6b, the red dashed lines (model) show good agreement with the experimental

data for only the first few cycles of loading and unloading. The discrepancy between the

prediction and experiments increases in the following cycles. In these cycles, the point load

assumption becomes invalid as the contact depth and contact area increase. In order to

quantitatively account for this I follow the work of Oliver & Pharr (1992) which shows that

S ∝ Er
√
A, where S is the stiffness of each cycle, Er is reduced modulus and A is the

contact area which depends on the contact depth and indenter’s geometry through:

A =

 π
(
2Rd− d2

)
, d <

(
1−

√
2

2

)
,

π
[(√

2− 1
)
R+ d

]
, otherwise.

(7.27)

Here d is the displacement at the peak load for each cycle and R is the indenter radius. I

plot the reduced modulus E from phase transition model vs S/
√
A for the three different

samples in Figure 7.6c. I find that dependence is linear. The proportionality constants

extracted are respectively 0.1091 for bare CNT pillars, 1.5976 for the ALD 5 cycles pillars,

and 8.5554 for ALD 10 cycles pillars. The proportionality constant is affected by (a) the

material, (b) the indenter shape, and (c) the sample geometry (it is not a half-space).
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7.9 Hysteresis in the nanoindentation experiments

In the nanoindentation experiments I also observe hysteresis in the cyclic loading/unloading

of the CNT pillars as shown in Figure 7.6. This cannot be captured by the linear elastic

Boussinesq solution given above. However, it is possible to make some estimates of the

hysteresis magnitude. A few papers claim that the energy dissipation can be attributed

to the friction and viscous dissipation caused by the airflow during loading and unloading

Kumar et al. (2015), Davami et al. (2016). From the poro-viscoelasticity theory of foams

Kim et al. (2016), Gibson & Ashby (1999), the stress due to air flow during compression is

given by:

σ =
µε̇

1− ε

(
D

l

)2

, (7.28)

where ε and ε̇ are the compressive strain and its rate, D is the horizontal dimension of the

CNT pillars, l is distance between single CNTs, and µ is the dynamic viscosity of the air.

If I plug experimental parameters into Eqn. (7.28), the resulting stress is very small and

hence unlikely to be a major source of dissipation. I therefore think that the hysteresis has

its origins in friction between fibers at the large number of contacts created in the densified

phase. The density of contacts is related to fiber volume fraction as in Van Wyk (1946)

Nc ∝ φ2. Since the stress-strain curve in the densified region is steep the strain does not

vary much over the volume of the densified region. Thus, I can approximate the fiber volume

fraction and the density of inter-fiber contacts in the densified region as nearly constant.

Under these circumstances the energy dissipated due to inter-fiber contacts should scale

linearly with the volume of the densified region in our samples (which evolves with load as

shown in the inset of Figure 7.6d). I can compute the volume of the densified region as a

function of load in the indentation experiments using our phase transition model described

above and plot the hysteresis as a function of this volume. The plot in Figure 7.6d confirms

that the hysteresis does indeed vary linearly with the volume of densified region confirming

our hypothesis that inter-fiber friction is responsible for the dissipation. Note also that for

the same volume of the densified region the energy dissipated is much larger for the ALD

alumina coated CNT pillars than for the bare CNT pillars. The likely cause is the rough

surface morphology of the alumina coated CNTs.
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Chapter 8

Conclusions

In Part I of this thesis we deal with flexible two-dimensional systems undergoing ther-

mal fluctuation. In Chapter 2 we proposed a new approach to compute the partition func-

tion of a thermally fluctuating lipid membrane. This approach, based on the discretization

of the membrane into equilateral triangles, deviates from many computational/simulation

methods which start from a similar discretization in that we compute the partition function

using Gaussian integrals. Our method can accommodate any type of boundary condition

and is not limited to homogeneous membranes. Furthermore, since it is based on triangular

elements, a wealth of knowledge from the field of computational mechanics of shells can be

brought to bear on membrane fluctuation problems through our techniques. An advantage

of our method is that we can compute membrane free energies for only a modest compu-

tational cost; these are otherwise computationally intensive to calculate using Monte Carlo

or TDGL methods. The disadvantages of our method are that we are restricted to (a) fluc-

tuations small enough that there are no overhangs in the membrane (similar to the Monge

gauge), and (b) quadratic Hamiltonians. On the other hand, Monte Carlo methods can

handle large deformations including overhangs and self-contact, as well as non-quadratic

Hamiltonians.

In Chapter 3 we generalize our idea to compute the partition function of a thermally

fluctuating solid membrane, especially graphene. We account for the non-linear coupling

of in-plane strains and out-of-plane deflections using a penalty method. Once the par-

tition function of the fluctuating membrane is known, several thermodynamic quantities

can be determined by calculating its derivatives. We have utilized this idea to illuminate
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how loading and boundary conditions affect the fluctuation profile (or ripples) of graphene

sheets. We have also shown that our method can quantitatively explain the dependence

of the negative thermal expansion coefficient of graphene on temperature. We have made

predictions for how shear loads can affect the thermal expansion coefficient that can be

tested in experiments. Our method can be used to make quantitative predictions for other

two dimensional materials.

In Chapter 4 we apply our finite element plate model and semi-analytic computational

method to determine the conditions under which elastic and entropic forces on inclusions in

membranes can conspire to produce a maximum in the free energy landscape. It was known

from earlier work that the elastic interactions between two inclusions decreases, and the

entropic interaction increases, as the separation between them increases. The lowest order

term in the elastic energy scales as Kbψ
2
A where Kb is the membrane bending modulus and

ψA is the contact angle between the inclusion and the membrane; the lowest order term in

the entropic part of the free energy scales as kBT . We find that for large values of KBψ
2
A the

elastic energy completely dominates the entropy and we do not see local minima or maxima

in the free energy landscape. However, for membranes whose bending modulus is in the 1

kBT range (e.g. some surfactant monolayers Rekvig et al. (2004)) or for very low contact

angles ψA the elastic and entropic interactions can balance each other and produce a local

maximum at spacing rcr in the free energy landscape. For separtations greater than rcr the

bending energy dominates and the inclusions repel each other, but for separations smaller

than rcr entropy dominates and the inclusions will attract. In such a scenario, the preferred

spacing between the inclsions will be dictated by short-range interactions. We have shown

that this is true not just for two interacting inclusions, but also for a cluster of inclusions.

The interactions between the inclusions described here fall under the category of ‘curvature

mediated’ interactions. Interactions between inclusions in lipid membranes can arise also

due to bilayer thickness mediated interactions. We have not considered this second set of

interactions here, but we know that they too can lead to a preferred lattice spacing between

inclusions on a lipid membrane as summarized in recent work by Kahraman et al. (2016).

This work minimizes an energy that is quadratic in u/a and its gradients where u(x, y)

is half the bilayer thickness and a is half the unperturbed bilayer thickness. We believe

that our methods of computing the partition function summarized here can be extended

to this type of energy. Such a modification would more accurately capture the physics of
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interactions between inclusions in a lipid bilayer. Another important ingredient that leads

to a preferred spacing between inclusions, such as proteins, on membranes is the interfacial

energy at the protein’s boundary with the membrane as shown by Agrawal et al. (2016). In

the work of Agrawal et al. (2016) the interfacial energy is assumed to depend quadratically

on the jumps in displacement and slope at the protein-membrane boundary and moduli

characterizing this interfacial energy are extracted from molecular simulations of proteins

embedded in lipid membranes. Once again, since the energies in this method are also

quadratic in the displacements or its gradient our technique can potentially be applied to

obtain entropic corrections.

In Part II of this thesis we deal with foam-like densification of fiber networks under

compression. In Chapter 5 we have shown that fibrin networks are natural cellular ma-

terials. The theoretical description of the fibrin mechanical behavior is novel and treats

fibrin networks in the context of a broad class of natural and synthetic foam-like materials

which share some key features. Among these is the tri-phasic stress-strain response with a

rarefied low-strain phase, a densified high-strain phase, and a plateau phase consisting of

a mixture of these two. Like most foams we also see a moving phase boundary separating

the two phases when fibrin networks are compressed Gaitanaros et al. (2012), Jang & Kyr-

iakides (2009). The phase boundary and several other features quantifying the structural

non-uniformity of fibrin networks under compression were revealed by collaborative three-

dimensional microscopy studies. Because of the complexity of the analysis, non-uniform

fibrin networks under loads have not been previously quantified. However, it is clear that

under physiological conditions fibrin networks are frequently exposed to dynamic forces,

which could result in non-isotropy and structural heterogeneities. Since in many cases,

fibrin networks participate in the permeation of blood clotting factors Kim et al. (2013)

variations in fibrin matrix density can affect the spatial-temporal distribution of factors

and hence, alter their biochemical interaction. Our results indicate that even a uniform

compression can produce structural gradients in fibrin networks, therefore, suggesting a

non-uniform alteration of fibrin matrix transport properties with compression.

In Chapter 6 we summarize an experimental and theoretical study of the compression

response of PPP clots, PRP clots and whole blood clots. Our collaborators measure the

compression stress-strain curves together with the evolution of clot structure using a custom

built apparatus that combines a rheometer and a confocal microscope. Our observations of
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the fluorescence intensity of compressed clots as a function of depth reveals that a front,

or phase boundary, propagates through the sample. On one side of this phase boundary

the fibrin network is in the rarefied phase with mostly straight fibers, and on the other

side the network is in the densified phase with buckled fibers and numerous contacts. The

width of the phase boundary depends on the rate of compression – it is small (sharp phase

boundary) for low strain rates and large (diffuse phase boundary) for high strain rates. The

propagation of this boundary through the sample is the basis of our phase transitions based

model to describe the compressive behavior of blood clots. We propose an analytic model

based on phase transitions which accounts for the coexistence of rarefied and densified fibrin

networks to analyze the experimental results described above. We account for the adhesion

of fibers in the densified phase and the presence of platelets through a pre-stress in the

rarefied phase. The pumping of liquid through the clot during compression also contributes

a stress which is modeled using an expression from the foam literature. The deformation of

red blood cells makes a major contribution to the stress in whole blood clots and we account

for this using classical expressions based on a neo-Hookean constitutive law for these cells.

We also propose a simple model to capture the shear storage and loss moduli as a function

of compressive strain. The position of the phase boundary is an input to this model which

is obtained from our phase transition theory.

Finally, in Chapter 7 we show that the same model for phase transitions in continua can

also describe the deformation of CNT forests both in uniaxial compression and nanoinden-

tation experiments. We have used specialized constitutive laws in the rarefied and densified

phases that are based on the bending of individual fibers. We have modified well-known

models for the compression of fiber networks in the densified phase to account for sticking

of the fibers. We have shown that hysteresis in the indentation experiments likely has its

origins in inter-fiber friction. Some features in our model, such as, rate-dependence and

fiber-to-fiber adhesion are also present in the models of Hutchens et al. (2010, 2012), but

we describe reversible deformations with hysteresis, while Hutchens et al. (2010, 2012) focus

on irrecoverable deformation. Our model also shares some features with those of Fraternali

et al. (2011), Blesgen et al. (2012), such as, the multi-well energy landscape of the springs.

However, ours is a continuum model which can be used to study a broader class of materials

and mechanical behaviors. As an example, our collaborators have performed experiments

on ALD alumina coated CNT pillars and we have shown how their mechanical parameters
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are affected by ALD coating thickness.

In conclusion, in my thesis we have applied knowledge from solid mechanics, statistical

mechanics, thermodynamics, and the finite element method to theoretically study the ther-

mal and mechanical properties of common systems in biology and materials science. We

collaborate with experimental colleagues and apply a model of phase transitions to fibrin

networks, blood clots, and CNT forests. Our studies in both topics could eventually be

used to inform further research in the mechanics of cells and tissues, as well as design of

biomaterials and CNT foam materials for optimizing desired mechanical properties.
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Appendix

Structure of the Compression Front

In our analysis above I assumed that the compression front is sharp. However, our

experiments reveal that it has a thickness over which there is a large gradient in the strain

profile. Fortunately, these descriptions are connected and have been discussed at length in

the literature Abeyaratne & Knowles (2006). Recall that I fitted the strain profile in our

compressed sample using Eqn. (5.1). In the following, I briefly describe why I use the strain

profile given by Eqn. (5.1). I follow the analysis in Abeyaratne & Knowles (2006). Our

network can exist in multiple phases at the same stress. Such materials have an up-down-up

type stress-strain curve that can be described using

σ − σ0 = −α(ε− ε∗) + β(ε− ε∗)3, (1)

where σ is the stress, ε is the strain, and α, β, σ0 and ε∗ are material parameters. If we

remember that σ = ∂W/∂ε, where W (ε) is a stored energy function, then it is not difficult

to see that W is a quartic function of ε with two wells. The well at low strains corresponds

to a network in which the fibers are straight, while the well at high strains corresponds to a

densified network with buckled fibers. Without loss of generality I will now refer to σ − σ0

as σ and to ε − ε∗ as ε. As an example, σ0 = 5 Pa, ε∗ = 0.32, α = 51 Pa and β = 651

Pa captures the compression curve for Es = 5 MPa in Figure 1a. In Figure 1b I have

plotted the Gibbs free energy density (Ψ = W − σε) landscape using the above parameters

for three different values of σ to show which phase has lower energy at each stress. Since

the motion of the compression front causes energy dissipation I augment this constitutive

equation with a linear viscosity term and since interfaces cost energy I add a linear strain
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gradient term as follows Abeyaratne & Knowles (2006):

σ = αε− βε3 + ρν
∂ε

∂t
− ρλ ∂

2ε

∂Z2
, (2)

where ρ is the density of the material, ν is a viscosity and λ accounts for the energy required

to create an interface. I assume that the compression front travels at velocity v and define

a new variable ξ = Z − vt. Since the stress σ in our sample is constant I wish to find a

profile for ε(z, t) that satisfies

ρλ
d2ε

dξ2
+ ρνv

dε

dξ
+ αε− βε3 + σ = 0, (3)

with remote conditions ε→ ε+ as ξ →∞ and ε→ ε− as ξ → −∞. It is easy to show that

ε(z, t) = a+ b tanh(
Z − vt− Z0

c
), (4)

gives such a profile for a particular choice of a, b, c and v that depend nonlinearly on α, β,

ν, λ, ρ and σ. In particular, a is a solution to the cubic σ+ 2αa− 8βa3 = 0, b =
√

α
β − 3a2,

c = 2ρλ
βb2

and v =
√

3βabc
ρν . I recover Eqn. (5.1) by setting v = 0, justifying its use to fit

the strain profile in our compressed samples. Note that in accordance with our assumption

in Eqn. (5.19) the front velocity v in this augmented theory depends on σ. A sharp front

corresponds to the limit as c→ 0. In this limit the dissipation caused by the motion of the

front can be captured by a kinetic equation like Eqn. (5.19) as in Abeyaratne & Knowles

(2006).

Sensitivity analysis of fitting in PPP and PRP

In section 6.2.9, we fitted the low strain rate, small compression degree compression

experiments on PPP and PRP clots using several different material parameters. Each

material parameter has its physical meaning; for example, EL is the Young’s modulus in

the rarefied phase, σpre is a pre-stress, both of which can be read off from the stress-strain

plot and have a clear physical basis that has been explained in the text. However, although

the mobility parameters MLH and MHL represent how fast the phase boundary between

rarefied and densified regions moves due to external loading, it is difficult to design an
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Figure 1: (a) The tri-phasic stress-strain response of such a material assuming quasi-
static loading. Theoretical curves are plotted according to Eqns. (5.3) and (5.8). I have
used l = 1.32µm, d = 0.22µm, ν = 0.1µm−3, and the two coefficients n = 3, k = 0.5
corresponding to a fibrin network.(b)Multi-well Gibbs free energy landscape for various
stresses. At the plateau stress σ = 5Pa both wells are at equal height, meaning that the
straight and densified phases of the network can co-exist. For lower σ the straight phase
has lower energy and for higher σ the densified phase has lower energy.

experiment to directly measure them. Here we present a sensitivity analysis by varying

our fitting result of MLH and MHL by ±10%. The results are shown using dashed lines in

Figure 2. The dashed line are very close to the solid lines indicating the sensitivity of our

results to a change in mobilities is very small.

Compression of clots under high compression rate 100 µm/s

We have observed changes in the structure of whole blood clots during compression/

decompression as shown in Figure 3. We have also done high strain-rate compression

experiments on PPP, PRP, as well as whole blood clot samples. The experimental data of

whole blood clot samples are shown in Figure 4.

Oscillatory shear of PPP, PRP, and whole blood in different

cycles

We have done oscillatory shear experiments on PPP, PRP, and whole blood clot samples

in three different cycles, and measured the shear storage and loss moduli at the beginning
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(a) (b)

Figure 2: Sensitivity analysis of fitting of the plateau region in the (a) PPP and (b) PRP
low strain rate, small compression degree experiments. The coloring scheme for the lines
and dots is the same (Figure 6.4). Changing the mobilities MLH and MHL by ±10% does
not affect the curves by much.

and end of each of each compression/decompression. The experimental data are shown in

Table 1.

Fitting the CNT uniaxial compression experiment using a

piece-wise linear stress-strain relation

Our goal here is to show that a piece-wise linear stress-strain law, like the one I used

to describe the nano-indentation experiment, can also quantitatively capture the stress-

strain plots of the uniaxal compression experiments. In the main text I had used a non-

linear relation to model the densified phase which I could not exploit in the solution of the

Boussinesq problem for nanoindentation. A piece-wise linear stress-strain relation for the

rarefied and densified phases is:

ΓL (σ) =
σ

EL
,

ΓH (σ) = γT +
σ

EH
,

(5)

We have used this to refit the compression experiment in Figure 5. The fitting parameters

are summarized in Table 2. I compare them with the same parameters from nanoindentation

and show the consistency.
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Figure 3: Structural changes in whole blood clots after the first cycle of compression
decompression as observed by scanning electron microscopy The clots were compressed 2x
at a rate of 10 µm/sec and decompressed at the same rate. (A, C, E) Control clots with
no compression. (B, D, F) Clots after the first cycle of compression/decompression. (A)
Whole blood clot before compression, showing the fibrin network. (B) Whole blood clot
after compression, showing the changes to the fibrin network. Fibers stick to each other,
and most of them were present as bundles. Also, some fibers stretched due to tension that
was created by RBCs pushing on them. (C) Moderately deformed RBCs in the middle part
of the clot before compression. (D) After the first cycle of compression decompression,
many RBCs were deformed, with most of them being polyhedrocytes. (E) Clot with no
compression, with this image being taken near the lateral edge of the clot. RBCs were
slightly deformed. (F) Decompressed clot, and images taken from the lateral edge of the
clot. Fibers are denser with smaller pore size. Some RBCs were deformed to a balloon -
like shape, as if they were trapped while trying to escape from the network. Black arrows
indicate the fibrin network; white arrows point to platelets; black arrowheads point to
RBCs. Magnification bar = 10 µm.

Predicting phase boundary using Hertz contact solution for a paraboloid

indenter

Following Johnson (1974), the vertical stress along the z-axis (r = 0) in the Hertz

contact problem can be calculated as

σz (0, z) =
3P

2πa2 (1 + z2/a2)
, (6)
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(c) (d)

(e) (f)

Figure 4: (a) (b) Experimental data for PPP high strain rate experiments (dots), both
small and large compression degree. (c) (d) Experimental data for PRP high strain rate
experiments (dots), both small and large compression degree. (e) (f) Experimental data for
whole blood high strain rate experiments (dots), both small and large compression degree.

where a is the radius of the contact area between the indenter and half-space. a is related

to the total load P and reduced Young’s modulus E as:

a =

(
3PR

4E

)1/3

, (7)
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Table 1: Shear storage and loss moduli of PPP, PRP, whole blood clots in each compression-
decompression cycle. Here 1st means before compression; 2nd means after one compression;
3rd means after one decompression; 4th means after the second compression; 5th means after
the second decompression; 6th means after the third compression; 7th means after the third
decompression.

Group 1st G′ 2nd G′ 3rd G′ 4th G′ 5th G′ 6th G′ 7th G′

PPP clot
2X G′

285±48 32±1 750±2 33±1 855±1 33.5±0.6 866 ±1

PPP clot
1.5X G′

122±15 22.5±0.4 397±2 24.6±0.5 494±1 24.0±0.5 515±1

PRP clot
2X G′

228±19 31±1 487±1 30.4±1.1 640±3 33.3±1.0 754 ± 3

PRP clot
1.5X G′

175±11 31.6±1.2 305±1 32.1±0.8 364±1 33±1 389±1

Whole blood

clot 2X G′
151±4 13.9±0.3 36.1±0.6 12.3±0.4 41.2±0.3 11.7±0.2 43.9±0.3

Whole blood

clot 1.5X G′
102±4 18.9±0.5 56.4±1.1 17.8±0.5 66.3±0.7 18.2±0.4 73.9±0.4

Group 1st G” 2nd G” 3rd G” 4th G” 5th G” 6th G” 7th G”

PPP clot
2X G”

5.5±1.6 5.5±0.1 19.6±0.8 4.8±0.1 22.2±1.1 4.6±0.1 22.3±1.4

PPP clot
1.5X G”

12.7 ±4.3 9.3±0.1 33.8 ±0.6 8.5±0.1 35.7±1.0 8.2±0.1 36.2±0.8

PRP clot
2X G”

20.1±3.1 6.3±0.1 27.4±0.5 5.7± 0.1 32.0±0.7 5.8±0.1 34.4±1.4

PRP clot
1.5X G”

9.5±0.9 5.8±0.2 18.6±1.5 5.6±0.1 19.0±2.0 5.3±0.2 20.1±2.4

Whole blood

clot 2X G”
10.1±.0.1 2.5±0.1 2.7±0.1 1.8±0.1 2.8±0.2 1.7±0.1 3.0±0.1

Whole blood

clot 1.5X G”
7.3±0.4 2.6±0.12 4.4±0.5 2.5±0.1 4.5±0.3 2.4±0.1 4.8±0.1

All moduli are in units of Pa.
Number before X indicates compression degree.
All the experiments are performed at compression rate of 100 µm/s.

where R is the curvature of indenter. R = 1 µm in our indentation experiment. The Hertz

solution is a good approximation only for small peak loads at which the indentation depths

are much smaller than R. I can now predict the position of the phase boundary zp at

each peak load in the nanoindentation experiment using the equivalent E extracted from

experiment for that peak load and setting σz = σLH in Eqn. (6). I compare zp from the

Hertz solution against those from the point load (Boussinesq) solution in Table 2. zp is

smaller for the Hertz solution in all cases because the point load is spread over a small area
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Figure 5: Fitting of compression experiment using a linear stress-strain relation in densified
phase for bare CNT (black dots), ALD 5 cycles (red dots) and ALD 10 cycles pillars(blue
dots). The lines are obtained from the phase transition model with parameters listed Table
2.

Table 2: Comparison of linear phase transition model parameters used in nanoindentation
vs compression, and comparison of phase boundary position zp predicted from Boussinesq
vs. Hertz solutions.

Group Bare CNTs CNTs with 5 ALD cycles CNTs with 10 ALD cycles

EL(MPa) (indentation) 6.14±0.42 5.44±1.01 13.30±1.11
EL(MPa) (compression) 6 8 20
EH(MPa) (indentation) 38.82±0.89 62.76±1.58 111.11±2.33
EH(MPa) (compression) 40 60 150
γT (indentation) 0.562±0.007 0.655±0.044 0.362±0.026
γT (compression) 0.747 0.70 0.76

zp (µm) at P2 (Boussinesq) 2.19 1.55 1.13
zp (µm) at P2 (Hertz) 1.92 1.22 0.89
zp (µm) at P3 (Boussinesq) 2.68 1.88 1.38
zp (µm) at P3 (Hertz) 2.40 1.54 1.13
zp (µm) at P4 (Boussinesq) 3.10 2.17 1.60
zp (µm) at P4 (Hertz) 2.81 1.82 1.33

in the Hertz solution. zp changes by the same amount in both solutions as I go from P2 to

P3, or P3 to P4.
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