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Inference And Learning: Computational Difficulty And Efficiency

Abstract
In this thesis, we mainly investigate two collections of problems: statistical network inference and model
selection in regression. The common feature shared by these two types of problems is that they typically
exhibit an interesting phenomenon in terms of computational difficulty and efficiency.

For statistical network inference, our goal is to infer the network structure based on a noisy observation of the
network. Statistically, we model the network as generated from the structural information with the presence of
noise, for example, planted submatrix model (for bipartite weighted graph), stochastic block model, and
Watts-Strogatz model. As the relative amount of ``signal-to-noise'' varies, the problems exhibit different stages
of computational difficulty. On the theoretical side, we investigate these stages through characterizing the
transition thresholds on the ``signal-to-noise'' ratio, for the aforementioned models. On the methodological
side, we provide new computationally efficient procedures to reconstruct the network structure for each
model.

For model selection in regression, our goal is to learn a ``good'' model based on a certain model class from the
observed data sequences (feature and response pairs), when the model can be misspecified. More concretely,
we study two model selection problems: to learn from general classes of functions based on i.i.d. data with
minimal assumptions, and to select from the sparse linear model class based on possibly adversarially chosen
data in a sequential fashion. We develop new theoretical and algorithmic tools beyond empirical risk
minimization to study these problems from a learning theory point of view.
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ABSTRACT

INFERENCE AND LEARNING: COMPUTATIONAL DIFFICULTY AND

EFFICIENCY

Tengyuan Liang

T. Tony Cai

Alexander Rakhlin

In this thesis, we mainly investigate two collections of problems: statistical network infer-

ence and model selection in regression. The common feature shared by these two types

of problems is that they typically exhibit an interesting phenomenon in terms of compu-

tational difficulty and efficiency. For statistical network inference, our goal is to infer the

network structure based on a noisy observation of the network. Statistically, we model

the network as generated from the structural information with the presence of noise, for

example, planted submatrix model (for bipartite weighted graph), stochastic block model,

and Watts-Strogatz model. As the relative amount of “signal-to-noise” varies, the problems

exhibit different stages of computational difficulty. On the theoretical side, we investigate

these stages through characterizing the transition thresholds on the “signal-to-noise” ratio,

for the aforementioned models. On the methodological side, we provide new computation-

ally efficient procedures to reconstruct the network structure for each model. For model

selection in regression, our goal is to learn a “good” model based on a certain model class

from the observed data sequences (feature and response pairs), when the model can be mis-

specified. More concretely, we study two model selection problems: to learn from general

classes of functions based on i.i.d. data with minimal assumptions, and to select from the

sparse linear model class based on possibly adversarially chosen data in a sequential fash-

ion. We develop new theoretical and algorithmic tools beyond empirical risk minimization

to study these problems from a learning theory point of view.
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CHAPTER 1 : Introduction

The unprecedented “data deluge” emerging in science and engineering in recent years poses

many challenges to the development of theory and methodology. Specifically, part of the

new features of these challenges can be summarized as follows:

• Inference How to make inference on a large amount of unknown variables or param-

eters with limited amount of partial, noisy, and indirect measurements (observations)?

• Learning How to predict as well as a class of complex models (non-linear and

non-convex), using heterogeneous data that can be arbitrary or even adversarial, in

various specific protocols (online, bandit feedback, partial information)?

• Computation Computation adds a new dimension to this modern challenge. As

the scale of the data increases significantly, how to take computational and memory

budgets into account when designing inference and learning algorithms?

The goal of this thesis is to investigate these features for two collections of problems: statis-

tical network inference, and model selection in regression. We will start with two concrete

data examples as a gentle introduction to motivate our studies, then we will move to the

outline of the remaining chapters before stepping into detailed discussions.

Structural inference of C. elegans neuron network In this paragraph, we will use

the C. elegans neuron network (Pavlovic et al., 2014) as an example to illustrate the im-

portance of structural inference for complex networks, which is the focus of Chapter 2. C.

elegans is one of the simplest organisms with a nervous system whose neuronal “wiring

diagram” (neural connections) has been completed (with around 300 neurons and 2000

edges). In practice, it is important to understand the structural information of the complex

systems/networks based on the connection patterns. From the statistical side, researchers

often model the network as generated from some statistical model (for example, stochastic

block models, and the Watts-Strogatz small world model), with the goal of inferring the
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structure from the data. Brute-force maximum likelihood based approach is usually com-

putationally prohibitive with large scale networks. Therefore, it is important to understand

when we can solve the inference problem in a computationally efficient manner. Here we

illustrate some of the methods proposed in Chapter 2 on this C.elegans network.

We apply the algorithm proposed in Chapter 2.1 on discovering the community structure

on this dataset. Figure 1 summarizes the community structure we discover.

Figure 1: Plot of the community structure in the space spanned by the top four left singular
vectors. Here each color represents a community and ui, 1 ≤ i ≤ 4 denotes the singular
vectors respectively. For instance, the top right subfigure denotes projecting the nodes onto
the space spanned by (u4, u1).

We also apply the algorithm proposed in Chapter 2.3 on reconstructing the ring lattice

structure on this dataset. Figure 2 describes the result. On the left, we solve for the ring

embedding layout by the algorithm proposed in Chapter 2.3, and plot the connection among
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the nodes. On the right, we randomly permute the nodes as the circle layout (what one

expects to see without the ring lattice structure). As a contrast, one can clearly see the

edges are much better organized in the left compared to the right, suggesting the presence

of Watts-Strogatz ring lattice structure.

Figure 2: Plot of the ring lattice structure. On the left, the layout is returned by our spectral
embedding algorithm; on the right, the layout is returned by a random permutation.

Model selection for fitting neuronal data In this paragraph, we will employ simulated

neuronal data (Kaufman et al., 2005) to motivate the focus of Chapter 3 — model selection

in regression. The task is to predict the firing rate of neurons based on the simulated data as

good as the best one among a collection of models. Specifically, in Figure 3, we fitted three

models, cubic smoothing spline, polynomial regression of degree 4, and Bayesian adaptive

regression splines (BARS). Traditionally, model selection is typically addressed using cross-

validation (CV) in a general way. However, it is questionable whether CV will provide

the optimal behavior, let alone the computational burden when facing a large collection of

models.

3



Figure 3: Simulated neuron data with three fitting models: cubic smoothing spline, poly-
nomial regression of degree 4, and Bayesian adaptive regression splines (BARS).

We apply the two-step Star algorithm proposed in Chapter 3.1 on the neuronal dataset,

and summarize the result in Figure 4. Here each data point corresponds to one experiment,

whose x-axis denotes the mean square error (MSE) of the cross-validation, and y-axis de-

notes the MSE of the Star algorithm. As one can see, clearly the Star algorithm outperforms

the CV significantly over many experiments.

Figure 4: Plot of MSE of Star algorithm compared to cross validation.
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1.1. Outline

1.1.1. Chapter 2

Historically, statisticians and information theorists mostly focus on analyzing the threshold

that separates “signal” and “noise” over random instances (in the average-case sense), over-

looking computation complexity. However, computer scientists are usually concerned with

quantifying problems according to their computational difficulty in the worst-case sense. In

this chapter, we will investigate the intersection of the above perspectives. For an average

instance, we would like to: (a) identify the statistical threshold that describes the solvability

of the problem information-theoretically, and (b) quantify the computational threshold that

sheds light on the difficulty for polynomial-time algorithms (inside the statistically solvable

phase).

In Cai et al. (2015a), we examined the above two thresholds on the problem of subma-

trix localization with background noise. We discovered that, quite surprisingly, there is

always an intrinsic gap between computational and statistical thresholds under standard

computational hardness assumption. There is a non-vanishing phase quantifying the price

to pay for pursuing polynomial run-time. We established the computational optimality in

two stages: (a) we provided a new average-case reduction to the hidden clique problem; (b)

we proposed a simple near-linear time algorithm that achieves the computational threshold.

Overall, this work illustrates that for certain statistical problems, there are more structured

phases inside the statistically-solvable phase.

Motivated by the fact that real network datasets always contain side information (partial

labels, nodes’ features) in addition to the connections, our work Cai et al. (2016c) studied

the computational difficulty of partially-labeled stochastic block models when a vanishing

portion of true labels are revealed. One the one hand, we derived and analyzed a new lo-

cal algorithm — linearized message passing — that achieves exponential decaying error for

node inference down to the well-known Kesten-Stigum (K-S) threshold. One the other hand,

5



we proved that this K-S threshold is indeed the barrier for all local algorithms (heuristi-

cally believed to be powerful polynomial time algorithms) through a minimax lower bound.

Whether the gap between K-S and information-theoretic threshold (with growing number

of blocks) is inevitable for polynomial time algorithms, remains an open problem.

In Cai et al. (2016a), we initiated the investigation of the corresponding thresholds for detec-

tion and structural reconstruction in Watts-Strogatz (W-S) small world networks. The W-S

model with neighborhood size k and rewiring probability β can be viewed as a continuous

interpolation between a deterministic ring lattice graph and the Erdős-Rényi random graph.

We studied both the computational and statistical aspects of detecting the deterministic

ring lattice structure (or local geographical links) in the presence of random connections (or

long range links), and for its recovery. We partitioned parameter space (k, β) into several

phases according to the difficulty of the problem, and proposed distinct methods that math-

ematically achieve the corresponding thresholds separating the phases. We implemented our

spectral ring embedding algorithm on the Les Misérables co-appearance network.

1.1.2. Chapter 3

In this chapter we will study regression and model selection problem focusing on two aspects:

(a) model misspecification; (b) model class can be non-convex. For the first point, classic

decision theory is concerned with making decisions from i.i.d. data generated from a well-

specified statistical model. However, one should be agnostic about these two assumptions:

(a) the i.i.d. data may be generated from a mis-specified model; (b) the underlying stochastic

process generating the data is non-i.i.d., even adversarially chosen by oblivious nature.

Statistical learning theory and online learning provide handful tools to solve these two

problems respectively. For the second point, when the model class is non-convex (such as

sparse linear regression and finite aggregation), we would like to understand its consequences

on the estimation/prediction procedure and accuracy, as well as the computation difficulty.

In Liang et al. (2015), we revisited the regression problem under square loss in the statistical
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learning setting (i.i.d., mis-specified model), for general classes of functions that can be

unbounded and non-convex. We introduced a new notion of offset Rademacher complexity,

and showed that the excess loss can be upper bounded by this new complexity through a

novel geometric inequality. We achieved this goal through: (a) proposing a novel two-step

estimator; (b) adopting the symmetrization and chaining tools in empirical processes theory

to this offset complexity. We showed that localization for unbounded class is automatic

through this offset analysis. This new framework recovers the sharp rates in parametric

regression, finite aggregation, and non-parametric regression simultaneously.

Cai et al. (2016b) presents a unified geometric framework for the statistical analysis of a

general ill-posed linear inverse model which includes as special cases noisy compressed sens-

ing, sign vector recovery, trace regression, orthogonal matrix estimation, and noisy matrix

completion. We propose computationally feasible convex programs for statistical inference

including estimation, confidence intervals and hypothesis testing. A theoretical framework

is developed to characterize the local estimation rate of convergence and to provide sta-

tistical inference guarantees. Our results are built based on the local conic geometry and

duality. The difficulty of statistical inference is captured by the geometric characterization

of the local tangent cone through the Gaussian width and Sudakov estimate.

Online sparse linear regression is an online problem where an algorithm repeatedly chooses

a subset of coordinates to observe in an adversarially chosen feature vector, makes a real-

valued prediction, receives the true label, and incurs the squared loss. The goal is to design

an online learning algorithm with sublinear regret to the best sparse linear predictor in hind-

sight. Without any assumptions, this problem is known to be computationally intractable.

In Kale et al. (2017), we make the assumption that data matrix satisfies restricted isome-

try property, and show that this assumption leads to computationally efficient algorithms

with sublinear regret for two variants of the problem. In the first variant, the true label is

generated according to a sparse linear model with additive Gaussian noise. In the second,

the true label is chosen adversarially.
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CHAPTER 2 : Statistical Network Inference and Computation

2.1. Submatrix Localization and Bi-Clustering

2.1.1. Introduction

The “signal + noise” model

X = M + Z, (2.1)

where M is the signal of interest and Z is noise, is ubiquitous in statistics and is used

in a wide range of applications. Such a “signal + noise” model has been well studied

in statistics in a number of settings, including nonparametric regression where M is a

function, and the Gaussian sequence model where M is a finite or an infinite dimensional

vector. See, for example, Tsybakov (2009); Johnstone (2013) and the references therein.

In nonparametric regression, the structural knowledge on M is typically characterized by

smoothness, and in the sequence model the structural knowledge on M is often described

by sparsity. Fundamental statistical properties such as the minimax estimation rates and

the signal detection boundaries have been established under these structural assumptions.

For a range of contemporary applications in statistical learning and signal processing, M and

Z in the “signal + noise” model (2.1) are high-dimensional matrices (Tufts and Shah, 1993;

Drineas et al., 2006; Donoho and Gavish, 2014; Chandrasekaran et al., 2009; Candès et al.,

2011). In this setting, many new interesting problems arise under a variety of structural

assumptions on M and the distribution of Z. Examples include sparse principal component

analysis (PCA) (Vu and Lei, 2012; Berthet and Rigollet, 2013b; Birnbaum et al., 2013;

Cai et al., 2013, 2015b), low-rank matrix de-noising (Donoho and Gavish, 2014), matrix

factorization and decomposition (Chandrasekaran et al., 2009; Candès et al., 2011; Agarwal

et al., 2012), non-negative PCA (Zass and Shashua, 2006; Montanari and Richard, 2014),

submatrix detection and localization (Butucea and Ingster, 2013; Butucea et al., 2013),
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synchronization and planted partition (Javanmard et al., 2015; Decelle et al., 2011), among

many others. In the conventional statistical framework, the goal is developing optimal

statistical procedures (for estimation, testing, etc), where optimality is understood with

respect to the sample size and parameter space.

When the dimensionality of the data becomes large as in many contemporary applications,

the computational concerns associated with the statistical procedures come to the fore-

front. After all, statistical methods are useful in practice only if they can be computed

within a reasonable amount of time. A fundamental question is: Is there a price to pay

for statistical performance if one only considers computable (polynomial-time) procedures?

This question is particularly relevant for non-convex problems with combinatorial struc-

tures. These problems pose a significant computational challenge because naive methods

based on exhaustive search are typically not computationally efficient. Trade-off between

computational efficiency and statistical accuracy in high-dimensional inference has drawn

increasing attention in the literature. In particular, Chandrasekaran et al. (2012) and Wain-

wright (2014) considered a general class of linear inverse problems, with different emphasis

on geometry of convex relaxation and decomposition of statistical and computational er-

rors. Chandrasekaran and Jordan (2013) studied an approach for trading off computational

demands with statistical accuracy via relaxation hierarchies. Berthet and Rigollet (2013a);

Ma and Wu (2013a); Zhang et al. (2014b) focused on computational difficulties for various

statistical problems, such as detection and regression.

In the present thesis, we study the interplay between computational efficiency and statistical

accuracy in submatrix localization based on a noisy observation of a large matrix. The

problem considered in this thesis is formalized as follows.
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Problem Formulation

Consider the matrix X of the form

X = M + Z, where M = λ · 1Rm1TCn (2.2)

and 1Rm ∈ Rm denotes a binary vector with 1 on the index set Rm and zero otherwise. Here,

the entries Zij of the noise matrix are i.i.d. zero-mean sub-Gaussian random variables with

parameter σ (defined formally in Equation (2.5)). Given the parameters m,n, km, kn, λ/σ,

the set of all distributions described above – for all possible choices of Rm and Cn – forms

the submatrix model M(m,n, km, kn, λ/σ).

This model can be further extended to multiple submatrices where

M =
r∑
s=1

λs · 1Rs1TCs (2.3)

where |Rs| = k
(m)
s and |Cs| = k

(n)
s denote the support set of the s-th submatrix. For

simplicity, we first focus on the single submatrix and then extend the analysis to the model

(2.3) in Section 2.1.2.

There are two fundamental questions associated with the submatrix model (2.2). One is the

detection problem: given one observation of the X matrix, decide whether it is generated

from a distribution in the submatrix model or from the pure noise model. Precisely, the

detection problem considers testing of the hypotheses

H0 : M = 0 v.s. Hα : M ∈M(m,n, km, kn, λ/σ).

The other is the localization problem, where the goal is to exactly recover the signal index

sets Rm and Cn (the support of the mean matrixM). It is clear that the localization problem

is at least as hard (both computationally and statistically) as the detection problem. The
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focus of the current thesis is on the localization problem. As we will show in this thesis,

the localization problem requires larger signal to noise ratio, as well as novel algorithm and

analysis to exploit the submatrix structure.

Main Results

To state our main results, let us first define a hierarchy of algorithms in terms of their

worst-case running time on instances of the submatrix localization problem:

LinAlg ⊂ PolyAlg ⊂ ExpoAlg ⊂ AllAlg.

The set LinAlg contains algorithms A that produce an answer (in our case, the localization

subset R̂Am, Ĉ
A
n ) in time linear in m×n (the minimal computation required to read the ma-

trix). The classes PolyAlg and ExpoAlg of algorithms, respectively, terminate in polynomial

and exponential time, while AllAlg has no restriction.

Combining Theorem 2.1.3 and 2.1.4 in Section 2.1.2 and Theorem 2.1.5 in Section 2.1.3,

the statistical and computational boundaries for submatrix localization can be summarized

as follows. The notations %,-,� are formally defined in Section 2.1.1.

Theorem 2.1.1 (Computational and Statistical Boundaries). Consider the submatrix lo-

calization problem under the model (2.2). The computational boundary SNRc for the dense

case when min{km, kn} % max{m1/2, n1/2} is

SNRc �
√
m ∨ n
kmkn

+

√
log n

km
∨ logm

kn
,

in the sense that

lim
m,n,km,kn→∞

inf
A∈LinAlg

sup
M∈M

P
(
R̂Am 6= Rm or ĈAn 6= Cn

)
= 0, if

λ

σ
% SNRc

lim
m,n,km,kn→∞

inf
A∈PolyAlg

sup
M∈M

P
(
R̂Am 6= Rm or ĈAn 6= Cn

)
> 0, if

λ

σ
- SNRc (2.4)
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where (2.4) holds under the Hidden Clique hypothesis HCl (see Section 2.1.2). For the sparse

case when max{km, kn} - min{m1/2, n1/2}, the computational boundary is SNRc = Θ∗(1),

more precisely

1 - SNRc -

√
log

m ∨ n
kmkn

.

The statistical boundary SNRs is

SNRs �
√

log n

km
∨ logm

kn
,

in the sense that

lim
m,n,km,kn→∞

inf
A∈ExpoAlg

sup
M∈M

P
(
R̂Am 6= Rm or ĈAn 6= Cn

)
= 0, if

λ

σ
% SNRs

lim
m,n,km,kn→∞

inf
A∈AllAlg

sup
M∈M

P
(
R̂Am 6= Rm or ĈAn 6= Cn

)
> 0, if

λ

σ
- SNRs

under the minimal assumption max{km, kn} - min{m,n}.

If we parametrize the submatrix model as m = n, km � kn � k = Θ∗(nα), λ/σ = Θ∗(n−β),

for some 0 < α, β < 1, we can summarize the results of Theorem 2.1.1 in a phase diagram,

as illustrated in Figure 5.

To explain the diagram, consider the following cases. First, the statistical boundary is

√
log n

km
∨ logm

kn
,

which gives the line separating the red and the blue regions. For the dense regime α ≥ 1/2,

the computational boundary given by Theorem 2.1.1 is

√
m ∨ n
kmkn

+

√
log n

km
∨ logm

kn
,

which corresponds to the line separating the blue and the green regions. For the sparse
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statistically easy
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C

Figure 5: Phase diagram for submatrix localization. Red region (C): statistically impos-
sible, where even without computational budget, the problem is hard. Blue region (B):
statistically possible but computationally expensive (under the hidden clique hypothesis),
where the problem is hard to all polynomial time algorithm but easy with exponential time
algorithm. Green region (A): statistically possible and computationally easy, where a fast
polynomial time algorithm will solve the problem.

regime α < 1/2, the computational boundary is Θ(1) - SNRc - Θ(
√

log m∨n
kmkn

), which is

the horizontal line connecting (α = 0, β = 0) to (α = 1/2, β = 0).

As a key part of Theorem 2.1.1, we provide linear time spectral algorithm that will succeed

in localizing the submatrix with high probability in the regime above the computational

threshold. Furthermore, the method is data-driven and adaptive: it does not require the

prior knowledge on the size of the submatrix. This should be contrasted with the method of

Chen and Xu (2014) which requires the prior knowledge of km, kn; furthermore, the running

time of their SDP-based method is superlinear in nm. Under the hidden clique hypothesis,

we prove that below the computational threshold there is no polynomial time algorithm

that can succeed in localizing the submatrix. We remark that the computational lower

bound for localization requires distinct new techniques compared to the lower bound for

detection; the latter has been resolved in Ma and Wu (2013a).

Beyond localization of one single submatrix, we generalize both the computational and sta-

tistical story to a growing number of submatrices in Section 2.1.2. As mentioned earlier, the

statistical boundary for one single submatrix localization has been investigated by Butucea

et al. (2013) in the Gaussian case. Our result focuses on the computational intrinsic diffi-
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culty of localization for a growing number of submatrices, at the expense of not providing

the exact constants for the thresholds.

The phase transition diagram in Figure 5 for localization should be contrasted with the

corresponding result for detection, as shown in (Butucea and Ingster, 2013; Ma and Wu,

2013a). For a large enough submatrix size (as quantified by α > 2/3), the computationally-

intractable-but-statistically-possible region collapses for the detection problem, but not for

localization. In plain words, detecting the presence of a large submatrix becomes both

computationally and statistically easy beyond a certain size, while for localization there

is always a gap between statistically possible and computationally feasible regions. This

phenomenon also appears to be distinct to that of other problems like estimation of sparse

principal components (Cai et al., 2013), where computational and statistical easiness coin-

cide with each other over a large region of the parameter spaces.

Prior Work

There is a growing body of work in statistical literature on submatrix problems. Arias-

Castro et al. (2011) studied the detection problem for a cluster inside a large matrix.

Butucea and Ingster (2013); Butucea et al. (2013) formulated the submatrix detection

and localization problems under Gaussian noise and determined sharp statistical transition

boundaries. For the detection problem, Ma and Wu (2013a) provided a computational lower

bound result under the assumption that hidden clique detection is computationally difficult.

Shabalin et al. (2009) provided a fast iterative maximization algorithm to heuristically solve

the submatrix localization problem. Balakrishnan et al. (2011); Kolar et al. (2011) focused

on statistical and computational trade-offs for the submatrix localization problem. Under

the sparse regime km - m1/2 and kn - n1/2, the entry-wise thresholding turns out to be the

“near optimal” polynomial-time algorithm (which we will show to be a de-noised spectral

algorithm that perform slightly better in Section 2.1.2). However, for the dense regime when

km % m1/2 and kn % n1/2, the algorithms provided in Kolar et al. (2011) are not optimal
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in the sense that there are other polynomial-time algorithm that can succeed in finding the

submatrix with smaller SNR. Concurrently with our work, Chen and Xu (2014) provided a

convex relaxation algorithm that improves the SNR boundary of Kolar et al. (2011) in the

dense regime. On the computational downside, the implementation of the method requires

a full SVD on each iteration, and therefore does not scale well with the dimensionality

of the problem. Furthermore, there is no computational lower bound in the literature to

guarantee the optimality of the SNR boundary achieved in Chen and Xu (2014). A problem

similar to submatrix localization is that of clique finding in random graph. Deshpande and

Montanari (2013) presented an iterative approximate message passing algorithm to solve

the latter problem with sharp boundaries on SNR.

We would like to emphasize on the differences between the localization and the detec-

tion problems. In terms of the theoretical results, unlike detection, there is always a gap

between statistically optimal and computationally feasible regions for localization. This

non-vanishing computational-to-statistical-gap phenomenon also appears in the community

detection literature with growing number of communities (Decelle et al., 2011). In terms of

the methodology, for detection, combining the results in (Donoho and Jin, 2004; Ma and

Wu, 2013a), there is no loss in treating M in model (2.2) as a vector and applying the

higher criticism method (Donoho and Jin, 2004) to the vectorized matrix for the problem of

submatrix detection, in the computationally efficient region. In fact, the procedure achieves

sharper constants in the Gaussian setting. However, in contrast, we will show that for lo-

calization, it is crucial to utilize the matrix structure, even in the computationally efficient

region.

Organization

The section is organized as follows. Section 2.1.2 establishes the computational boundary,

with the computational lower bounds given in Section 2.1.2 and upper bound results in

Sections 2.1.2-2.1.2. An extension to the case of multiple submatrices is presented in Section
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2.1.2. The upper and lower bounds for statistical boundary for multiple submatrices are

discussed in Section 2.1.3. A short discussion is given in Section 2.1.4. Technical proofs are

deferred to Appendix.

Notation

Let [m] denote the index set {1, 2, . . . ,m}. For a matrix X ∈ Rm×n, Xi· ∈ Rn denotes its

i-th row and X·j ∈ Rm denotes its j-th column. For any I ⊆ [m], J ⊆ [n], XIJ denotes the

submatrix corresponding to the index set I×J . For a vector v ∈ Rn, ‖v‖`p = (
∑

i∈[n] |vi|p)1/p

and for a matrix M ∈ Rm×n, ‖M‖`p = supv 6=0 ‖Mv‖`p/‖v‖`p . When p = 2, the latter is

the usual spectral norm, abbreviated as ‖M‖2. The nuclear norm of a matrix M is convex

surrogate for the rank, with the notation to be ‖M‖∗. The Frobenius norm of a matrix M

is defined as ‖M‖F =
√∑

i,jM
2
ij . The inner product associated with the Frobenius norm

is defined as 〈A,B〉 = tr(ATB).

Denote the asymptotic notation a(n) = Θ(b(n)) if there exist two universal constants cl, cu

such that cl ≤ lim
n→∞

a(n)/b(n) ≤ lim
n→∞

a(n)/b(n) ≤ cu. Θ∗ is asymptotic equivalence hiding

logarithmic factors in the following sense: a(n) = Θ∗(b(n)) iff there exists c > 0 such that

a(n) = Θ(b(n) logc n). Additionally, we use the notation a(n) � b(n) as equivalent to a(n) =

Θ(b(n)), a(n) % b(n) iff limn→∞ a(n)/b(n) =∞ and a(n) - b(n) iff limn→∞ a(n)/b(n) = 0.

We define the zero-mean sub-Gaussian random variable z with sub-Gaussian parameter σ

in terms of its Laplacian

Eeλz ≤ exp(σ2λ2/2), for all λ > 0, (2.5)

then we have

P(|z| > σt) ≤ 2 · exp(−t2/2).
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We call a random vector Z ∈ Rn isotropic with parameter σ if

E(vTZ)2 = σ2‖v‖2`2 , for all v ∈ Rn.

Clearly, Gaussian and Bernoulli measures, and more general product measures of zero-mean

sub-Gaussian random variables satisfy this isotropic definition up to a constant scalar factor.

2.1.2. Computational Boundary

We characterize in this section the computational boundaries for the submatrix localization

problem. Sections 2.1.2 and 2.1.2 consider respectively the computational lower bound and

upper bound. The computational lower bound given in Theorem 2.1.2 is based on the

hidden clique hypothesis.

Algorithmic Reduction and Computational Lower Bound

Theoretical Computer Science identifies a range of problems which are believed to be “hard,”

in the sense that in the worst-case the required computation grows exponentially with the

size of the problem. Faced with a new computational problem, one might try to reduce any

of the “hard” problems to the new problem, and therefore claim that the new problem is

as hard as the rest in this family. Since statistical procedures typically deal with a random

(rather than worst-case) input, it is natural to seek token problems that are believed to be

computationally difficult on average with respect to some distribution on instances. The

hidden clique problem is one such example (for recent results on this problem, see Feldman

et al. (2013); Deshpande and Montanari (2013)). While there exists a quasi-polynomial

algorithm, no polynomial-time method (for the appropriate regime, described below) is

known. Following several other works on reductions for statistical problems, we work under

the hypothesis that no polynomial-time method exists.

Let us make the discussion more precise. Consider the hidden clique model G(N,κ) where

N is the total number of nodes and κ is the number of clique nodes. In the hidden clique
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model, a random graph instance is generated in the following way. Choose κ clique nodes

uniformly at random from all the possible choices, and connect all the edges within the

clique. For all the other edges, connect with probability 1/2.

Hidden Clique Hypothesis for Localization (HCl) Consider the random instance

of hidden clique model G(N,κ). For any sequence κ(N) such that κ(N) ≤ Nβ for some

0 < β < 1/2, there is no randomized polynomial time algorithm that can find the planted

clique with probability tending to 1 as N → ∞. Mathematically, define the randomized

polynomial time algorithm class PolyAlg as the class of algorithms A that satisfies

lim
N,κ(N)→∞

sup
A∈PolyAlg

ECliquePG(N,κ)|Clique (runtime of A not polynomial in N) = 0.

Then

lim
N,κ(N)→∞

inf
A∈PolyAlg

ECliquePG(N,κ)|Clique (clique set returned by A not correct) > 0,

where PG(N,κ)|Clique is the (possibly more detailed due to randomness of algorithm) σ-field

conditioned on the clique location and EClique is with respect to uniform distribution over

all possible clique locations.

Hidden Clique Hypothesis for Detection (HCd) Consider the hidden clique model

G(N,κ). For any sequence of κ(N) such that κ(N) ≤ Nβ for some 0 < β < 1/2, there is no

randomized polynomial time algorithm that can distinguish between

H0 : PER v.s. Hα : PHC

with probability going to 1 as N → ∞. Here PER is the Erdős-Rényi model, while PHC is

the hidden clique model with uniform distribution on all the possible locations of the clique.
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More precisely,

lim
N,κ(N)→∞

inf
A∈PolyAlg

ECliquePG(N,κ)|Clique (detection decision returned by A wrong) > 0,

where PG(N,κ)|Clique and EClique are the same as defined in HCl.

The hidden clique hypothesis has been used recently by several authors to claim compu-

tational intractability of certain statistical problems. In particular, Berthet and Rigollet

(2013a); Ma and Wu (2013a) assumed the hypothesis HCd and Wang et al. (2014) used

HCl. Localization is harder than detection, in the sense that if an algorithm A solves the

localization problem with high probability, it also correctly solves the detection problem.

Assuming that no polynomial time algorithm can solve the detection problem implies im-

possibility results in localization as well. In plain language, HCl is a milder hypothesis than

HCd.

We will provide computational lower bound result for localization in Theorem 2.1.2. In

Appendix, we contrast the difference of lower bound constructions between localization and

detection. The detection computational lower bound was proved in Ma and Wu (2013a).

For the localization computational lower bound, to the best of our knowledge, there is no

proof in the literature. Theorem 2.1.2 ensures the upper bound in Lemma 2.1.1 being sharp.

Theorem 2.1.2 (Computational Lower Bound for Localization). Consider the submatrix

model (2.2) with parameter tuple (m = n, km � kn � nα, λ/σ = n−β), where 1
2 < α <

1, β > 0. Under the computational assumption HCl, if

λ

σ
-

√
m+ n

kmkn
⇒ β > α− 1

2
,

it is not possible to localize the true support of the submatrix with probability going to 1

within polynomial time.

Our algorithmic reduction for localization relies on a bootstrapping idea based on the matrix

structure and a cleaning-up procedure. These two key ideas offer new insights in addition to
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the usual computational lower bound arguments. Bootstrapping introduces an additional

randomness on top of the randomness in the hidden clique. Careful examination of these

two σ-fields allows us to write the resulting object into mixture of submatrix models. For

submatrix localization we need to transform back the submatrix support to the original

hidden clique support exactly, with high probability. In plain language, even though we

lose track of the exact location of the support when reducing the hidden clique to submatrix

model, we can still recover the exact location of the hidden clique with high probability.

For technical details of the proof, please refer to the Appendix.

Adaptive Spectral Algorithm and Upper Bound

In this section, we introduce linear time algorithm that solves the submatrix localization

problem above the computational boundary SNRc. Our proposed localization Algorithms

1 and 2 are motivated by the spectral algorithm in random graphs (McSherry, 2001; Ng

et al., 2002).

Algorithm 1 Vanilla Spectral Projection Algorithm for Dense Regime

Input: X ∈ Rm×n the data matrix.

Output: A subset of the row indexes R̂m and a subset of column indexes Ĉn as the local-

ization sets of the submatrix.

1. Compute top left and top right singular vectors U·1 and V·1, respectively (these correspond

to the SVD X = UΣV T )

2. To compute Ĉn, calculate the inner products UT·1X·j ∈ R, 1 ≤ j ≤ n. These values form

two data-driven clusters, and a cut at the largest gap between consecutive values returns

the subsets Ĉn and [n]\Ĉn. Similarly, for the R̂m, calculate Xi·V·1 ∈ R, 1 ≤ i ≤ m and

obtain two separated clusters.

The proposed algorithm has several advantages over the localization algorithms that ap-

peared in literature. First, it is a linear time algorithm (that is, Θ(mn) time complexity).

The top singular vectors can be evaluated using fast iterative power methods, which is ef-
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ficient both in terms of space and time. Secondly, this algorithm does not require the prior

knowledge of km and kn and automatically adapts to the true submatrix size.

Lemma 2.1.1 below justifies the effectiveness of the spectral algorithm.

Lemma 2.1.1 (Guarantee for Spectral Algorithm). Consider the submatrix model (2.2),

Algorithm 1 and assume min{km, kn} % max{m1/2, n1/2}. There exist a universal C > 0

such that when

λ

σ
≥ C ·

(√
m ∨ n
kmkn

+

√
log n

km
∨ logm

kn

)
,

the spectral method succeeds in the sense that R̂m = Rm, Ĉn = Cn with probability at least

1−m−c − n−c − 2 exp (−c(m+ n)).

Remark 2.1.1. The theory and algorithm remain the same if the signal matrix M is more

general in the following sense: M has rank one, its left and right singular vectors are sparse,

and the nonzero entries of the singular vectors are of the same order. Mathematically,

M = λ
√
kmkn · uvT , where u, v are unit singular vectors with km, kn non-zero entries,

and |u|max/|u|min ≤ c and |v|max/|v|min ≤ c for some constant c ≥ 1. Here for a vector

w, |w|max and |w|min denote respectively the largest and smallest magnitudes among the

nonzero coordinates. When c = 1, the algorithm is fully data-driven and does not require

the knowledge of λ, σ, km, kn. When c is large but finite, one may require in addition the

knowledge of km and kn to perform the final cut to obtain Ĉn and R̂m.

Dense Regime

We are now ready to state the SNR boundary for polynomial-time algorithms (under an

appropriate computational assumption), thus excluding the exhaustive search procedure.

The results hold under the dense regime when k % n1/2.

Theorem 2.1.3 (Computational Boundary for Dense Regime). Consider the submatrix

model (2.2) and assume min{km, kn} % max{m1/2, n1/2}. There exists a critical rate

SNRc �
√
m ∨ n
kmkn

+

√
log n

km
∨ logm

kn
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for the signal to noise ratio SNRc such that for λ/σ % SNRc, both the adaptive linear

time Algorithm 1 and convex relaxation (runs in polynomial time) will succeed in submatrix

localization, i.e., R̂m = Rm, Ĉn = Cn, with high probability. For λ/σ - SNRc, there is no

polynomial time algorithm that will work under the hidden clique hypothesis HCl.

The proof of the above theorem is based on the theoretical justification of the spectral

Algorithm 1 and the new computational lower bound result for localization in Theorem

2.1.2. We remark that the analyses can be extended to multiple, even growing number of

submatrices case. We postpone a proof of this fact to Section 2.1.2 for simplicity and focus

on the case of a single submatrix.

Sparse Regime

Under the sparse regime when k - n1/2, a naive plug-in of Lemma 2.1.1 requires the SNRc

to be larger than Θ(n1/2/k) %
√

log n, which implies the vanilla spectral Algorithm 1 is

outperformed by simple entrywise thresholding. However, a modified version with entry-

wise soft-thresholding as a preprocessing de-noising step turns out to provide near optimal

performance in the sparse regime. Before we introduce the formal algorithm, let us define

the soft-thresholding function at level t to be

ηt(y) = sign(y)(|y| − t)+. (2.6)

Soft-thresholding as a de-noising step achieving optimal bias-and-variance trade-off has been

widely understood in the wavelet literature, for example, see Donoho and Johnstone (1998).

Now we are ready to state the following de-noised spectral Algorithm 2 to localize the

submatrix under the sparse regime when k - n1/2.
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Algorithm 2 De-noised Spectral Algorithm for Sparse Regime

Input: X ∈ Rm×n the data matrix, a thresholding level t = Θ(σ
√

log m∨n
kmkn

).

Output: A subset of the row indexes R̂m and a subset of column indexes Ĉn as the local-

ization sets of the submatrix.

1. Soft-threshold each entry of the matrix X at level t, denote the resulting matrix as

ηt(X)

2. Compute top left and top right singular vectors U·1 and V·1 of matrix ηt(X), respectively

(these correspond to the SVD ηt(X) = UΣV T )

3. To compute Ĉn, calculate the inner products UT·1 · ηt(X·j), 1 ≤ j ≤ n. These values

form two clusters. Similarly, for the R̂m, calculate ηt(Xi·) · V·1, 1 ≤ i ≤ m and obtain two

separated clusters. A simple thresholding procedure returns the subsets Ĉn and R̂m.

Lemma 2.1.2 below provides the theoretical guarantee for the above algorithm when k -

n1/2.

Lemma 2.1.2 (Guarantee for De-noised Spectral Algorithm). Consider the submatrix

model (2.2), soft-thresholded spectral Algorithm 2 with thresholded level σt, and assume

min{km, kn} - max{m1/2, n1/2}. There exist a universal C > 0 such that when

λ

σ
≥ C ·

([√
m ∨ n
kmkn

+

√
log n

km
∨ logm

kn

]
· e−t2/2 + t

)
,

the spectral method succeeds in the sense that R̂m = Rm, Ĉn = Cn with probability at least

1 − m−c − n−c − 2 exp (−c(m+ n)). Further if we choose Θ(σ
√

log m∨n
kmkn

) as the optimal

thresholding level, we have de-noised spectral algorithm works when

λ

σ
%

√
log

m ∨ n
kmkn

.

Combining the hidden clique hypothesis HCl together with Lemma 2.1.2, the following

theorem holds under the sparse regime when k - n1/2.
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Theorem 2.1.4 (Computational Boundary for Sparse Regime). Consider the submatrix

model (2.2) and assume max{km, kn} - min{m1/2, n1/2}. There exists a critical rate for

the signal to noise ratio SNRc between

1 - SNRc -

√
log

m ∨ n
kmkn

such that for λ/σ %
√

log m∨n
kmkn

, the linear time Algorithm 2 will succeed in submatrix

localization, i.e., R̂m = Rm, Ĉn = Cn, with high probability. For λ/σ - 1, there is no

polynomial time algorithm that will work under the hidden clique hypothesis HCl.

Remark 2.1.2. The upper bound achieved by the de-noised spectral Algorithm 2 is optimal

in the two boundary cases: k = 1 and k � n1/2. When k = 1, both the information theoretic

and computational boundary meet at
√

log n. When k � n1/2, the computational lower

bound and upper bound match in Theorem 2.1.4, thus suggesting the near optimality of

Algorithm 2 within the polynomial time algorithm class. The potential logarithmic gap is

due to the crudeness of the hidden clique hypothesis. Precisely, for k = 2, hidden clique

is not only hard for G(n, p) with p = 1/2, but also hard for G(n, p) with p = 1/ log n.

Similarly for k = nα, α < 1/2, hidden clique is not only hard for G(n, p) with p = 1/2, but

also for some 0 < p < 1/2.

Extension to Growing Number of Submatrices

The computational boundaries established in the previous sections for a single submatrix

can be extended to non-overlapping multiple submatrices model (2.3). The non-overlapping

assumption corresponds to that for any 1 ≤ s 6= t ≤ r, Rs ∩ Rt = ∅ and Cs ∩ Ct = ∅. The

Algorithm 3 below is an extension of the spectral projection Algorithm 1 to address the

multiple submatrices localization problem.
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Algorithm 3 Spectral Algorithm for Multiple Submatrices

Input: X ∈ Rm×n the data matrix. A pre-specified number of submatrices r.

Output: A subset of the row indexes {R̂sm, 1 ≤ s ≤ r} and a subset of column indexes

{Ĉsn, 1 ≤ s ≤ r} as the localization of the submatrices.

1. Calculate top r left and right singular vectors in the SVD X = UΣV T . Denote these

vectors as Ur ∈ Rm×r and Vr ∈ Rn×r, respectively

2. For the Ĉsn, 1 ≤ s ≤ r, calculate the projection Ur(U
T
r Ur)

−1UTr X·j , 1 ≤ j ≤ n, run k-

means clustering algorithm (with k = r+1) for these n vectors in Rm. For the R̂sm, 1 ≤ s ≤ r,

calculate Vr(V
T
r Vr)

−1V T
r X

T
i· , 1 ≤ i ≤ m, run k-means clustering algorithm (with k = r+ 1)

for these m vectors in Rn (while the effective dimension is Rr).

We emphasize that the following Proposition 2.1.3 holds even when the number of subma-

trices r grows with m,n.

Lemma 2.1.3 (Spectral Algorithm for Non-overlapping Submatrices Case). Consider the

non-overlapping multiple submatrices model (2.3) and Algorithm 3. Assume

k(m)
s � km, k(n)

s � kn, λs � λ

for all 1 ≤ s ≤ r and min{km, kn} % max{m1/2, n1/2}. There exist a universal C > 0 such

that when

λ

σ
≥ C ·

(√
r

km ∧ kn
+

√
log n

km
∨
√

logm

kn
+

√
m ∨ n
kmkn

)
, (2.7)

the spectral method succeeds in the sense that R̂
(s)
m = R

(s)
m , Ĉ

(s)
n = C

(s)
n , 1 ≤ s ≤ r with

probability at least 1−m−c − n−c − 2 exp (−c(m+ n)).

Remark 2.1.3. Under the non-overlapping assumption, rkm - m, rkn - n hold in most

cases. Thus the first term in Equation (2.7) is dominated by the latter two terms. Thus a

growing number r does not affect the bound in Equation (2.7) as long as the non-overlapping

assumption holds.
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2.1.3. Statistical Boundary

In this section we study the statistical boundary. As mentioned in the introduction, in

the Gaussian noise setting, the statistical boundary for a single submatrix localization has

been established in Butucea et al. (2013). In this section, we generalize to localization of

a growing number of submatrices, as well as sub-Gaussian noise, at the expense of having

non-exact constants for the threshold.

Information Theoretic Bound

We begin with the information theoretic lower bound for the localization accuracy.

Lemma 2.1.4 (Information Theoretic Lower Bound). Consider the submatrix model (2.2)

with Gaussian noise Zij ∼ N (0, σ2). For any fixed 0 < α < 1, there exist a universal

constant Cα such that if

λ

σ
≤ Cα ·

√
log(m/km)

kn
+

log(n/kn)

km
, (2.8)

any algorithm A will fail to localize the submatrix in the following minimax sense:

inf
A∈AllAlg

sup
M∈M

P
(
R̂Am 6= Rm or ĈAn 6= Cn

)
> 1− α− log 2

km log(m/km) + kn log(n/kn)
.

Combinatorial Search for Growing Number of Submatrices

Combinatorial search over all submatrices of size km×kn finds the location with the strongest

aggregate signal and is statistically optimal (Butucea et al., 2013; Butucea and Ingster,

2013). Unfortunately, it requires computational complexity Θ
((

m
km

)
+
(
n
kn

))
, which is expo-

nential in km, kn. The search Algorithm 4 was introduced and analyzed under the Gaussian

setting for a single submatrix in Butucea and Ingster (2013), which can be used iteratively

to solve multiple submatrices localization.
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Algorithm 4 Combinatorial Search Algorithm

Input: X ∈ Rm×n the data matrix.

Output: A subset of the row indexes R̂m and a subset of column indexes Ĉn as the local-

ization of the submatrix.

For all index subsets I × J with |I| = km and |J | = kn, calculate the sum of the entries in

the submatrix XIJ . Report the index subset R̂m × Ĉn with the largest sum.

For the case of multiple submatrices, the submatrices can be extracted with the largest sum

in a greedy fashion.

Lemma 2.1.5 below provides a theoretical guarantee for Algorithm 4 to achieve the infor-

mation theoretic lower bound.

Lemma 2.1.5 (Guarantee for Search Algorithm). Consider the non-overlapping multiple

submatrices model (2.3) and iterative application of Algorithm 4 in a greedy fashion for r

times. Assume

k(m)
s � km, k(n)

s � kn, λs � λ

for all 1 ≤ s ≤ r and max{km, kn} - min{m,n}. There exists a universal constant C > 0

such that if

λ

σ
≥ C ·

√
log(em/km)

kn
+

log(en/kn)

km
,

then Algorithm 4 will succeed in returning the correct location of the submatrix with proba-

bility at least 1− 2kmkn
mn .

To complete Theorem 2.1.1, we include the following Theorem 2.1.5 capturing the statistical

boundary. It is proved by exhibiting the information-theoretic lower bound Lemma 2.1.4

and analyzing Algorithm 4.

Theorem 2.1.5 (Statistical Boundary). Consider the submatrix model (2.2). There exists

a critical rate

SNRs �
√

log n

km
∨ logm

kn
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for the signal to noise ratio, such that for any problem with λ/σ % SNRs, the statistical

search Algorithm 4 will succeed in submatrix localization, i.e., R̂m = Rm, Ĉn = Cn, with

high probability. On the other hand, if λ/σ - SNRs, no algorithm will work (in the minimax

sense) with probability tending to 1.

2.1.4. Discussion

Submatrix Localization v.s. Detection As pointed out in Section 2.1.1, for any

k = nα, 0 < α < 1, there is an intrinsic SNR gap between computational and statistical

boundaries for submatrix localization. Unlike the submatrix detection problem where for

the regime 2/3 < α < 1, there is no gap between what is computationally possible and

what is statistical possible, the inevitable gap in submatrix localization is due to the com-

binatorial structure of the problem. This phenomenon is also seen in some network related

problems, for instance, stochastic block models with a growing number of communities De-

celle et al. (2011). Compared to the submatrix detection problem, the algorithm to solve

the localization problem is more complicated and the techniques required for the analysis

are much more involved.

Detection for Growing Number of Submatrices The current thesis solves localiza-

tion of a growing number of submatrices. In comparison, for detection, the only known

results are for the case of a single submatrix as considered in Butucea and Ingster (2013)

for the statistical boundary and in Ma and Wu (2013a) for the computational boundary.

The detection problem in the setting of a growing number of submatrices is of significant

interest. In particular, it is interesting to understand the computational and statistical

trade-offs in such a setting. This will need further investigation.

Estimation of the Noise Level σ Although Algorithms 1 and 3 do not require the noise

level σ as an input, Algorithm 2 does require the knowledge of σ. The noise level σ can be

estimated robustly. In the Gaussian case, a simple robust estimator of σ is the following
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median absolute deviation (MAD) estimator due to the fact that M is sparse k2/m2 � 0.25:

σ̂ = medianij |Xij −medianij(Xij)|/Φ−1(0.75)

≈ 1.4826×medianij |Xij −medianij(Xij)|.
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2.2. Semi-supervised Community Detection

2.2.1. Introduction

The stochastic block model (SBM) is a well-studied model that addresses the clustering

phenomenon in large networks. Various phase transition phenomena and limitations for ef-

ficient algorithms have been established for this “vanilla” SBM (Coja-Oghlan, 2010; Decelle

et al., 2011; Massoulié, 2014; Mossel et al., 2012, 2013a; Krzakala et al., 2013; Abbe et al.,

2014; Hajek et al., 2014; Abbe and Sandon, 2015a; Deshpande et al., 2015). However, in real

network datasets, additional side information is often available. This additional information

may come, for instance, in the form of a small portion of revealed labels (or, community

memberships), and this thesis is concerned with methods for incorporating this additional

information to improve recovery of the latent community structure. Many global algorithms

studied in the literature are based on spectral analysis (with belief propagation as a further

refinement) or semi-definite programming. For these methods, it appears to be difficult to

incorporate such additional side information, although some success has been reported (Cu-

curingu et al., 2012; Zhang et al., 2014a). Incorporating the additional information within

local algorithms, however, is quite natural. In this thesis, we focus on local algorithms and

study their fundamental limitations. Our model is a partially labeled stochastic block

model (p-SBM), where δ portion of community labels are randomly revealed.

We address the following questions:

Phase Boundary Are there different phases of behavior in terms of the recovery guar-

antee, and what is the phase boundary for partially labeled SBM? How does the amount of

additional information δ affect the phase boundary?

Inference Guarantee What is the optimal guarantee on the recovery results for p-SBM

and how does it interpolate between weak and strong consistency known in the literature?

Is there an efficient and near-optimal parallelizable algorithm?
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Limitation for Local v.s. Global Algorithms While optimal local algorithms (belief

propagation) are computationally efficient, some global algorithms may be computationally

prohibitive. Is there a fundamental difference in the limits for local and global algorithms?

An answer to this question gives insights on the computational and statistical trade-offs.

Problem Formulation

We define p-SBM with parameter bundle (n, k, p, q, δ) as follows. Let n denote the number of

nodes, k the number of communities, p and q – the intra and inter connectivity probability,

respectively. The proportion of revealed labels is denoted by δ. Specifically, one observes a

partially labeled graph G(V,E) with |V | = n, generated as follows. There is a latent disjoint

partition V =
⋃k
l=1 Vl into k equal-sized groups,1 with |Vl| = n/k. The partition information

introduces the latent labeling `(v) = l iff v ∈ Vl. For any two nodes vi, vj , 1 ≤ i, j ≤ n, there

is an edge between them with probability p if vi and vj are in the same partition, and with

probability q if not. Independently for each node v ∈ V , its true labeling is revealed with

probability δ. Denote the set of labeled nodes V l, its revealed labels `(V l), and unlabeled

nodes by V u (where V = V l ∪ V u).

Equivalently, denote by G ∈ Rn×n the adjacency matrix, and let L ∈ Rn×n be the structural

block matrix

Lij = 1`(vi)=`(vj),

where Lij = 1 iff node i, j share the same labeling, Lij = 0 otherwise. Then we have

independently for 1 ≤ i < j ≤ n

Bij ∼ Bernoulli(p) if Lij = 1,

Bij ∼ Bernoulli(q) if Lij = 0.

Given the graph G(V,E) and the partially revealed labels `(V l), we want to recover the re-

1The result can be generalized to the balanced case, |Vl| � n/k, see Section 2.2.2.
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maining labels efficiently and accurately. We are interested in the case when δ(n), p(n), q(n)

decrease with n, and k(n) can either grow with n or stay fixed.

Prior Work

In the existing literature on SBM without side information, there are two major criteria

– weak and strong consistency. Weak consistency asks for recovery better than random

guessing in a sparse random graph regime (p � q � 1/n), and strong consistency requires

exact recovery for each node above the connectedness theshold (p � q � log n/n). Inter-

esting phase transition phenomena in weak consistency for SBM have been discovered in

(Decelle et al., 2011) via insightful cavity method from statistical physics. Sharp phase

transitions for weak consistency have been thoroughly investigated in (Coja-Oghlan, 2010;

Mossel et al., 2012, 2013a,b; Massoulié, 2014). In particular, spectral algorithms on the

non-backtracking matrix have been studied in (Massoulié, 2014) and the non-backtracking

walk in (Mossel et al., 2013b). Spectral algorithms as initialization and belief propagation

as further refinement to achieve optimal recovery was established in (Mossel et al., 2013a).

The work of Mossel et al. (2012) draws a connection between SBM thresholds and broad-

casting tree reconstruction thresholds through the observation that sparse random graphs

are locally tree-like. Recent work of Abbe and Sandon (2015b) establishes the positive

detectability result down to the Kesten-Stigum bound for all k via a detailed analysis of a

modified version of belief propagation. For strong consistency, (Abbe et al., 2014; Hajek

et al., 2014, 2015) established the phase transition using information theoretic tools and

semi-definite programming (SDP) techniques. In the statistical literature, Zhang and Zhou

(2015); Gao et al. (2015) investigated the mis-classification rate of the standard SBM.

Kanade et al. (2014) is one of the few papers that theoretically studied the partially labeled

SBM. The authors investigated the stochastic block model where the labels for a vanishing

fraction (δ → 0) of the nodes are revealed. The results focus on the asymptotic case when

δ is sufficiently small and block number k is sufficiently large, with no specified growth
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rate dependence. Kanade et al. (2014) show that pushing below the Kesten-Stigum bound

is possible in this setting, connecting to a similar phenomenon in k-label broadcasting

processes (Mossel, 2001). In contrast to these works, the focus of our study is as follows.

Given a certain parameter bundle p-SBM(n, k, p, q, δ), we investigate the recovery thresholds

as the fraction of labeled nodes changes, and determine the fraction of nodes that local

algorithms can recover.

The focus of this thesis is on local algorithms. These methods, naturally suited for dis-

tributed computation (Linial, 1992), provide efficient (sub-linear time) solutions to compu-

tationally hard combinatorial optimization problems on graphs. For some of these problems,

they are good approximations to global algorithms. We refer to (Kleinberg, 2000) on the

shortest path problem for small-world random graphs, (Gamarnik and Sudan, 2014) for the

maximum independent set problem for sparse random graphs, (Parnas and Ron, 2007) on

the minimum vertex cover problem, as well as (Nguyen and Onak, 2008).

Finally, let us briefly review the literature on broadcasting processes on trees, from which we

borrow technical tools to study p-SBM. Consider a Markov chain on an infinite tree rooted

at ρ with branching number b. Given the label of the root `(ρ), each vertex chooses its

label by applying the Markov rule M to its parent’s label, recursively and independently.

The process is called broadcasting process on trees. One is interested in reconstructing

the root label `(ρ) given all the n-th level leaf labels. Sharp reconstruction thresholds

for the broadcasting process on general trees for the symmetric Ising model setting (each

node’s label is {+,−}) have been studied in (Evans et al., 2000). Mossel et al. (2003)

studied a general Markov channel on trees that subsumes k-state Potts model and sym-

metric Ising model as special cases; the authors established non-census-solvability below

the Kesten-Stigum bound. Janson and Mossel (2004) extended the sharp threshold to ro-

bust reconstruction cases, where the vertex’ labels are contaminated with noise. In general,

transition thresholds proved in the above literature correspond to the Kesten-Stigum bound

b|λ2(M)|2 = 1 (Kesten and Stigum, 1966b,a). We remark that for a general Markov channel
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M , b|λ2(M)|2 < 1 does not always imply non-solvability — even though it indeed implies

non-census-solvability (Mossel et al., 2003) — which is equivalent to the extremality of free-

boundary Gibbs measure. The non-solvability of the tree reconstruction problem below the

Kesten-Stigum bound for a general Markov transition matrix M ∈ Rk×k still remains open,

especially for large k.

Our Contributions

This section summarizes the results. In terms of methodology, we propose a new efficient

linearized message-passing Algorithm 5 that solves the label recovery problem of p-SBM

in near-linear runtime. The algorithm shares the same transition boundary as the optimal

local algorithm (belief propagation) and takes on a simple form of a weighted majority vote

(with the weights depending on graph distance). This voting strategy is easy to implement

(see Section 2.2.5). On the theoretical front, our focus is on establishing recovery guarantees

according to the size of the Signal-to-Noise Ratio (SNR), defined as

SNR(n, k, p, q, δ) := (1− δ) n(p− q)2

k2(q + p−q
k )

. (2.9)

Phase Boundary For k = 2, the phase boundary for recovery guarantee is

SNR = 1.

Above the threshold, the problem can be solved efficiently. Below the threshold, the problem

is intrinsically hard. For growing k, on the one hand, a linearized message-passing algorithm

succeeds when

SNR > 1,

matching the well-established Kesten-Stigum bound for all k. On the other hand, no local
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algorithms work significantly better than random guessing if

SNR <
1

4
.

Inference Guarantee Above the SNR phase boundary, Algorithm 5, a fast linearized

message-passing algorithm Â (with near-linear run-time O∗(n)) provides near optimal re-

covery. For k = 2, under the regime SNR > 1, the proportion of mis-classified labels is at

most

sup
l∈{+,−}

Pl(Â 6= l) ≤ exp

(
−SNR− 1

2 + o(1)

)
∧ 1

2
.

Thus when SNR ∈ (1, 2 log n), the recovery guarantee smoothly interpolates between weak

and strong consistency. On the other hand, below the boundary SNR < 1, all local algo-

rithms suffer the minimax classification error at least

inf
Φ

sup
l∈{+,−}

Pl(Φ 6= l) ≥ 1

2
−O

(√
δ

1− δ ·
SNR

1− SNR

)
.

For growing k, above the phase boundary SNR > 1, the proportion of mis-classified labels

is at most

sup
l∈[k]

Pl(Â 6= l) ≤ (k − 1) · exp

(
−SNR− 1

2 + o(1)

)
∧ k − 1

k

via the approximate message-passing algorithm. However, below the boundary SNR < 1/4,

the minimax classification error is lower bounded by

inf
Φ

sup
l∈[k]

Pl(Φ 6= l) ≥ 1

2
−O

(
δ

1− δ ·
SNR

1− 4 · SNR ∨
1

k

)
.

Limitations of Local v.s. Global Algorithms It is known that the statistical bound-

ary (limitation for global and possibly exponential time algorithms) for growing number

of communities is SNR � O( log k
k ) (Abbe and Sandon (2015b), weak consistency) and

SNR � O( logn
k ) (Chen and Xu (2014), strong consistency). We show in this thesis that
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the limitation for local algorithms (those that use neighborhood information up to depth

log n) is

1

4
≤ SNR ≤ 1.

In conclusion, as k grows, there is a factor k gap between the boundaries for global and

local algorithms. Local algorithms can be evaluated in near line time; however, the global

algorithm achieving the statistical boundary requires exponential time.

To put our results in the right context, let us make comparisons with the known literature.

Most of the literature studies the standard SBM with no side labeling information. Here,

many algorithms that achieve the sharp phase boundary are either global algorithms, or a

combination of global and local algorithms, see (Mossel et al., 2013b; Massoulié, 2014; Hajek

et al., 2014; Abbe et al., 2014). However, from the theoretical perspective, it is not clear

how to distinguish the limitation for global v.s. local algorithms through the above studies.

In addition, from the model and algorithmic perspective, many global algorithms such as

spectral (Coja-Oghlan, 2010; Massoulié, 2014) and semi-definite programming (Abbe et al.,

2014; Hajek et al., 2014) are not readily applicable in a principled way when there is partially

revealed labels.

We try to resolve the above concerns. First, we establish a detailed statistical inference

guarantee for label recovery. Allowing for a vanishing δ amount of randomly revealed labels,

we show that a fast local algorithm enjoys a good recovery guarantee that interpolates

between weak and strong recovery precisely, down to the well-known Kesten-Stigum bound,

for general k. The error bound exp(−(SNR − 1)/2) proved in this thesis improves upon

the best known result of (SNR − 1)−1 in the weak recovery literature. We also prove that

the limitation for local algorithms matches the Kesten-Stigum bound, which is sub-optimal

compared to the limitation for global algorithms, when k grows. We also remark that the

boundary we establish matches the best known result for the standard SBM when we plug

in δ = 0.
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We study the message-passing algorithms for multi-label broadcasting tree when a fraction

of nodes’ labels have been revealed. Unlike the usual asymptotic results for belief propaga-

tion and approximate message-passing, we prove non-asymptotic concentration of measure

phenomenon for messages on multi-label broadcasting trees. As the tree structure encodes

detailed dependence among random variables, proving the concentration phenomenon re-

quires new ideas. We further provide a lower bound on belief propagation for multi-label

broadcasting trees.

Organization

The rest of the section is organized as follows. Section 2.2.2 reviews the preliminary back-

ground and theoretical tools – broadcasting trees – that will be employed to solve the p-SBM

problem. To better illustrate the main idea behind the theoretical analysis, we split the

main result into two sections: Section 2.2.3 resolves the recovery transition boundary for

k = 2, where the analysis is simple and best illustrates the main idea. In Section 2.2.4,

we focus on the growing k = k(n) case, where a modified algorithm and a more detailed

analysis are provided. In the growing k case, we establish a distinct gap in phase boundaries

between the global algorithms and local algorithms.

2.2.2. Preliminaries

Broadcasting Trees

First, we introduce the notation for the tree broadcasting process. Let T≤t(ρ) denote the

tree up to depth t with root ρ. The collection of revealed labels for a broadcasting tree

T≤t(ρ) is denoted as `T≤t(ρ) (this is a collection of random variables). The labels for the

binary broadcasting tree are [2] := {+,−} and for k-broadcasting tree [k] := {1, 2, . . . , k}.

For a node v, the set of labeled children is denoted by Cl(v) and unlabeled ones by Cu(v).

We also denote the depth-t children of v to be Ct(v). For a broadcasting tree T , denote by

d its broadcasting number, whose rigorous definition is given in (Evans et al., 2000; Lyons
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and Peres, 2005). For a broadcasting tree with bias parameter θ, the labels are broadcasted

in the following way: conditionally on the label of v,

`(u) =

 `(v) w.p. θ + 1−θ
k

l ∈ [k]\`(v) w.p. 1−θ
k

for any u ∈ C(v). In words, the child copies the color of its parent with probability θ+ 1−θ
k ,

or changes to any of the remaining k− 1 colors with equal probability 1−θ
k . For the node v,

NCl(v)(+) denotes the number of revealed positive nodes among its children. Similarly, we

define NCl(v)(l) for l ∈ [k] in multi-label trees.

Local Tree-like Graphs & Local Algorithms

When viewed locally, stochastic block models share many properties with broadcasting

trees. In fact, via the coupling lemma (see Lemma A.2.1) from (Mossel et al., 2012), one

can show the graph generated from the stochastic block model is locally a tree-like graph.

For the rest of the thesis, we abbreviate the following maximum coupling depth t̄n,k,p,q as t̄

(see Lemma A.2.1 for details).

Definition 2.2.1 (t̄-Local Algorithm Class for p-SBM). The t̄-local algorithm class is the

collection of decentralized algorithms that run in parallel on nodes of the graph. To re-

cover a node v’s label in p-SBM, an algorithm may only utilize information (revealed labels,

connectivity) of the local tree T≤t̄(v) rooted at v with depth at most t̄.

In view of the coupling result, for the stochastic block model p-SBM(n, k = 2, p, q, δ), as

long as we focus on t̄-local algorithms, we can instead study the binary-label broadcasting

process Treek=2(θ, d, δ) with broadcasting number d = n
2 (p + q) and bias parameter θ =

p−q
p+q . Similarly, for the multi-label model p-SBM(n, k, p, q, δ), we will study the k-label

broadcasting process Treek(θ, d, δ) with broadcasting number d = n(q + p−q
k ) and bias

parameter θ = p−q
k(q+ p−q

k
)
. 2 For each layer of the broadcasting tree, δ portion of nodes’

2In the balanced SBM case, for each node, the local tree changes slightly with different branching number

38



labels are revealed. Our goal is to understand the condition under which message-passing

algorithms on multi-label broadcasting trees succeed in recovering the root label.

Hyperbolic Functions and Other Notation

In order to introduce the belief propagation and message-passing algorithms, let us recall

several hyperbolic functions that will be used frequently. As we show, linearization of the

hyperbolic function induces a new approximate message-passing algorithm. Recall that

tanhx =
ex − e−x
ex + e−x

, arctanhx =
1

2
log

(
1 + x

1− x

)
,

and define

fθ(x) := 2 arctanh
(
θ tanh

x

2

)
= log

1 + θ · ex−1
ex+1

1− θ · ex−1
ex+1

. (2.10)

The function fθ : R→ R is a contraction with
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Figure 6: Function fθ for θ ∈ [0, 1].

|f(x)− f(y)| ≤ θ|x− y|
and bias parameter.
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since

dfθ(x)

dx
=

2θ

(1− θ2) cosh(x) + (1 + θ2)
≤ θ.

An illustration of fθ is provided in Figure 6. The recursion rule for message passing can be

written succinctly using the function fθ, as we show in Section 2.2.3.

Let us collect a few remaining definitions. The moment generating function (MGF) for a

random variable X is denoted by ΨX(λ) = EeλX , for λ > 0, and the cumulant generating

function is defined as KX(λ) = log ΨX(λ). For asymptotic order of magnitude, we use

a(n) = O(b(n)) to mean ∀n, a(n) ≤ Cb(n) for some universal constant C, and use O∗(·)

to omit the poly-logarithmic dependence. As for notation -,%: a(n) - b(n) if and only

if lim
n→∞

a(n)
b(n) ≤ c, with some constant c > 0, and vice versa. The square bracket [·] is used

to represent the index set [k] := [1, 2, . . . , k]; in particular when k = 2, [2] := {+,−} for

convenience.

2.2.3. Number of Communities k = 2 : Message Passing with Partial Information

p-SBM Transition Thresholds

We propose a novel linearized message-passing algorithm to solve the p-SBM in near-linear

time. The method employs Algorithm 7 and 8 as sub-routines, can run in parallel, and is

easy to implement.
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Algorithm 5 Message Passing for p-SBM

Data: A network graph G(V,E) with partial label information, where V = V l ∪ V u is

composed of labeled set and unlabeled set. Denote ε = o(1) small, and t̄ - logn
log(n(p+q)) .

Result: The labeling for each node v ∈ V u.

for each node v ∈ V u in the unlabeled set, do

open the tree neighborhood T≤t̄(v) induced by the graph G(V,E) for each node u ∈

C(1−ε)t̄(v), i.e., depth (1− ε)t̄ child of v, do

focus on the subtree T≤εt̄(u), initialize the message for u via the labeled node ∈ V l

in layer εt̄ of the subtree 3

end

run message-passing Algorithm 7 (Algorithm 8 for general k) on the tree T≤(1−ε)t̄(v)

with initial message on layer (1− ε)t̄ output `(v).

end

Now we are ready to present the main result.

Theorem 2.2.1 (Transition Thresholds for p-SBM: k = 2). Consider the partially labeled

stochastic block model G(V,E) and its revealed labels `(V l) under the conditions (1) np �

nq - no(1) and (2) δ % n−o(1). For any node ρ ∈ V u and its locally tree-like neighborhood

T≤t̄(ρ), define the maximum mis-classification error of a local estimator Φ : `T≤t̄(ρ) →

{+,−} as

Err(Φ) := max
l∈{+,−}

P
(

Φ(`T≤t(ρ)) 6= `(ρ)|`(ρ) = l
)
.

The transition boundary for p-SBM depends on the value

SNR = (1− δ)n(p− q)2

2(p+ q)
.
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(k = 2 in Eq. (2.9)). On the one hand, if

SNR > 1, (2.11)

the t̄- local message-passing Algorithm 5 — denoted as Â(`T≤t̄(ρ)) — recovers the true labels

of the nodes with mis-classification rate at most

Err(Â) ≤ exp

(
− SNR− 1

2C + ot̄(1)

)
∧ 1

2
, (2.12)

where C > 0 is a constant and C ≡ 1 if the local tree is regular. On the other hand, when

SNR < 1, (2.13)

for any t̄-local estimator Φ : `T≤t̄(ρ) → {+,−}, the minimax mis-classification error is lower

bounded as

inf
Φ

Err(Φ) ≥ 1

2
− C ·

√
δ

1− δ ·
SNR

1− SNR
· (p+ q)2

pq
=

1

2
− C ′ ·

√
δ

1− δ ·
SNR

1− SNR
.

The above lower bound in the regime δ = o(1) implies that no local algorithm using in-

formation up to depth t̄ can do significantly better than 1/2 + O(
√
δ), close to random

guessing.

Let us compare the main result for p-SBM with the well-known result for the standard

SBM with no partial label information. The boundary in Equations (2.11) and (2.13) is

the phase transition boundary for the standard SBM when we plug in δ = 0. This also

matches the well-known Kesten-Stigum bound. For the standard SBM in k = 2 case, the

Kesten-Stigum bound is proved to be sharp (even for global algorithms), see (Mossel et al.,

2013b; Massoulié, 2014).

The interesting case is when there is a vanishing amount of revealed label information, i.e.,
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o(1) = δ % n−o(1). In this case, the upper bound part of Theorem 2.2.1 states that this

vanishing amount of initial information is enough to propagate the labeling information to all

the nodes, above the same detection transition threshold as the vanilla SBM. However, the

theoretical guarantee for the label propagation pushes beyond weak consistency (detection),

explicitly interpolating between weak and strong consistency. The result provides a detailed

understanding of the strength of the SNR threshold and its effect on percentage recovery

guarantee, i.e., the inference guarantee. More concretely, for the regime p = a/n, q = b/n,

the boundary

SNR = (1− δ)n(p− q)2

2(p+ q)
> 1

which is equivalent to the setting (a−b)2

2(a+b) >
1

1−δ . When δ = 0, this matches the boundary for

weak consistency in (Mossel et al., 2013b; Massoulié, 2014). In addition, SNR > 1 + 2 log n

implies Err(Â) < 1/n → 0, which means strong consistency (recovery) in the regular tree

case (C ≡ 1). This condition on SNR is satisfied, for instance, by taking p = a log n/n, q =

b log n/n and computing the relationship between a, b, and δ to ensure

SNR = (1− δ)n(p− q)2

2(p+ q)
> 1 + 2 log n.

This relationship is precisely

√
a−
√
b√

2
>

√
1 + 1

2 logn

1− δ ·
√
a+
√
b√

2(a+ b)
%

√
1

1− δ .

The above agrees with the scaling for strong recovery in (Abbe et al., 2014; Hajek et al.,

2014).

The following sections are dedicated to proving the theorem. The upper bound is established

in Corollary 2.2.1 through a linearized belief propagation that serves as a subroutine for

Algorithm 5. The lower bound is established by employing the classic Le Cam’s theory, as

shown in Theorem 2.2.3.
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Belief Propagation & Message Passing

In this section we introduce the belief propagation (BP) Algorithm 6 and motivate the new

message-passing Algorithm 7 that, while being easier to analyze, mimics the behavior of

BP. Algorithm 7 serves as the key building block for Algorithm 5.

Recall the definition of the partially revealed binary broadcasting tree Treek=2(θ, d, δ) with

broadcasting number d. The root ρ is labeled `(·) with either {+,−} equally likely, and

the label is not revealed. The labels are broadcasted along the tree with a bias parameter

0 < θ < 1: for a child v ∈ C(u) of u, `(v) = `(u) with probability 1+θ
2 and `(v) = −`(u)

with probability 1−θ
2 . The tree is partially labeled in the sense that a fraction 0 < δ < 1

of labels are revealed for each layer and `T≤t(ρ) stands for the revealed label information of

tree rooted at ρ with depth ≤ t.

Let us formally introduce the BP algorithm, which is the Bayes optimal algorithm on trees.

We define

Mi(`T≤i(v)) := log
P
(
`(v) = +|`T≤i(v)

)
P
(
`(v) = −|`T≤i(v)

)
as the belief of node v’s label, and we abbreviate it as Mi when the context is clear. The

belief depends on the revealed information `T≤i(v). The following Algorithm 6 calculates

the log ratio Mt(`T≤t(ρ)) based on the revealed labels up to depth t, recursively, as shown

in Figure 7. The Algorithm is derived through Bayes’ rule and simple algebra.
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f✓(·)

f✓(·)

Mt(`Tt(⇢))

Mt�1(`Tt�1(C(⇢)))

Mt�2(`Tt�2(C2(⇢)))

M1(`T1(⇢))

M1(`T1(C(⇢)))

Figure 7: Illustration of recursion in Eq. (2.14) for messages on a d-regular tree. Here d = 3
with two unlabeled children ((1− δ)d = 2, denoted by blue) and one labeled child (δd = 1,
denoted by black), and the depth is 2. Ct(ρ) denotes depth t children of the root ρ. The
red arrows correspond to messages received from the labeled children and black arrow are
from the unlabeled children.

Algorithm 6 Belief Propagation (BP) on Partially Labeled Binary Broadcasting Tree

Data: A partially labeled tree T≤t(ρ) with depth t, with labels `T≤t(ρ), the root label `(ρ)

is unknown.

Result: The logit of the posterior probability Mt(`T≤t(ρ)) = log
P
(
`(ρ)=+|`T≤t(ρ)

)
P
(
`(ρ)=−|`T≤t(ρ)

) .

Initialization: i = 1, and M0(`T≤0(v)) = 0, M1(`T≤1(v)) =
(
NCl(v)(+)−NCl(v)(−)

)
log 1+θ

1−θ ,

∀v ∈ T≤t(ρ)

while i ≤ t do

focus on (t− i)-th layer for v ∈ Ct−i(ρ) and v unlabeled do

update messages for the subtree:

Mi(`T≤i(v)) = M1(`T1(v)) +
∑

u∈Cu(v)

fθ

(
Mi−1(`T≤i−1(u))

)
(2.14)

move one layer up: i = i+ 1

end

end

output Mt(`T≤t(ρ)).
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Here fθ(·) is the function defined in equation (2.10). The computational complexity of this

algorithm is

O
(

(δd+ 1)[(1− δ)d]t − d
(1− δ)d− 1

)
.

While the method is Bayes optimal, the density of the messages Mi is difficult to analyze,

due to the dependence on revealed labels and the non-linearity of fθ. However, the following

linearized version, Algorithm 7, shares many theoretical similarities with Algorithm 6, and

is easier to analyze. Both Algorithms 6, 7 require the prior knowledge of θ.

Algorithm 7 Approximate Message Passing (AMP) on Partially Labeled Binary Broad-
casting Tree

Data: A partially labeled tree T≤t(ρ) with depth t, with labels `T≤t(ρ), the root label `(ρ)

is unknown.

Result: Label `(ρ) = sign(Mt(`T≤t(ρ))).

Initialization: i = 1, and M0(`T≤0(v)) = 0, M1(`T≤1(v)) =
(
NCl(v)(+)−NCl(v)(−)

)
log 1+θ

1−θ ,

∀v ∈ T≤t(ρ)

while i ≤ t do

focus on (t− i)-th layer for v ∈ Ct−i(ρ) and v unlabeled do

update messages for the subtree:

Mi(`T≤i(v)) = M1(`T1(v)) + θ ·
∑

u∈Cu(v)

Mi−1(`T≤i−1(u))

move one layer up: i = i+ 1

end

end

output `(ρ) = sign(Mt(`T≤t(ρ))).

Algorithm 7 can also be viewed as a weight-adjusted majority vote algorithm. We will

prove in the next two sections that BP and AMP achieve the same transition boundary in

the following sense. Above a certain threshold, the AMP algorithm succeeds, which implies
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that the optimal BP algorithm will also work. Below the same threshold, even the optimal

BP algorithm will fail, and so does the AMP algorithm.

Concentration Phenomenon on Messages

We now prove Theorem 2.2.2, which shows the concentration of measure phenomenon for

messages defined on the broadcasting tree. We focus on a simpler case of regular local

trees, and the result will be generalized to Galton-Watson trees with a matching branching

number.

We state the result under a stronger condition δd ≥ 1. In the case when δd = o(1), a

separate trick, described in Remark 2.2.1 below, of aggregating the δ information in a

subtree will work.

Theorem 2.2.2 (Concentration of Messages for AMP). Consider the Approximate Message

Passing (AMP) Algorithm 7 on the binary-label broadcasting tree Treek=2(θ, d, δ). Assume

δd ≥. Define parameters {µt, σ2
t }t≥0 as

µt = µ1 + α · µt−1, (2.15)

σ2
t = σ2

1 + α · σ2
t−1 + α · µ2

t−1, (2.16)

with the initialization

µ1 = θδd · log
1 + θ

1− θ , σ2
1 = δd · log2 1 + θ

1− θ ,

α := (1− δ)θ2d.

The explicit formulas for µt and σ2
t are

µt =
αt − 1

α− 1
· µ1, (2.17)

σ2
t =

αt − 1

α− 1
· σ2

1 +
α2t−αt+1+αt−α

α−1 − 2(t− 1)αt

(α− 1)2
· µ2

1. (2.18)

47



For a certain depth t, conditionally on `(ρ) = +, the messages in Algorithm 7 concentrate

as

µt − x · σt ≤Mt(`T≤t(ρ)) ≤ µt + x · σt,

and conditionally on `(ρ) = −,

−µt − x · σt ≤Mt(`T≤t(ρ)) ≤ −µt + x · σt,

both with probability at least 1− 2 exp(x2/2).

Using Theorem 2.2.2, we establish the following positive result for approximate message-

passing.

Corollary 2.2.1 (Recovery Proportions for AMP, α > 1). Assume

α := (1− δ)θ2d > 1,

and for any t define

ε(t) =
(α− 1)2

θ2δd

1

αt − 1
+O(α−t), with lim

t→∞
ε(t) = 0.

Algorithm 7 recovers the label of the root node with probability at least

1− exp

(
− α− 1

2(1 + ε(t))

)
,

and its computational complexity is

O
(

(δd+ 1)[(1− δ)d]t − d
(1− δ)d− 1

)
.

Remark 2.2.1. For the sparse case δd = o(1), we employ the following technique. Take

t0 > 0 to be the smallest integer such that δ[(1 − δ)d]t0 > 1. For each leaf node v, open a
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depth t0 subtree rooted at v, with the number of labeled nodes Poisson(δ[(1 − δ)d]t0). Then

we have the following parameter updating rule

µt = α · µt−1, σ2
t = α · σ2

t−1 + α · µ2
t−1,

with initialization

µ1 = θt0 · log
1 + θ

1− θ , σ2
1 = log2 1 + θ

1− θ ,

α := (1− δ)θ2d.

The explicit formulas for µt and σ2
t based on the above updating rules are

µt = αt−1 · µ1, σ2
t = αt−1 · σ2

1 +
αt−1(αt−1 − 1)

α− 1
· µ2

1.

Corollary 2.2.1 will change as follows: the value ε(t) is now

ε(t) =
1

θ2t0

1

αt−1
, with lim

t→∞
ε(t) = 0.

This slightly modified algorithm recovers the label of the root node with probability at least

1− exp
(
− α−1

2(1+ε(t))

)
.

Lower Bound for Local Algorithms: Le Cam’s Method

In this section we show that the SNR threshold in Theorem 2.2.1 and Corollary 2.2.1 is sharp

for all local algorithms. The limitation for local algorithms is proved along the lines of Le

Cam’s method. If we can show a small upper bound on total variation distance between

two tree measures µ`≤t(+), µ`≤t(−), then no algorithm utilizing the information on the tree

can distinguish these two measures well. Theorem 2.2.3 formalizes this idea.

Theorem 2.2.3 (Limits of Local Algorithms). Consider the following two measures of

revealed labels defined on trees: µ+
`T≤t(ρ)

, µ−`T≤t(ρ)
. Assume that δd > 1, (1 − δ)θ2d < 1, and
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2δd log
(

1 + 4θ2

1−θ2

)
< [1 − (1 − δ)θ2d]2. Then for any t > 0, the following bound on total

variation holds

d2
TV

(
µ+
`T≤t(ρ)

, µ−`T≤t(ρ)

)
≤

2δd log
(

1 + 4θ2

1−θ2

)
1− (1− δ)θ2d

.

The above bound implies

inf
Φ

sup
l(ρ)∈{+,−}

P
(

Φ(`T≤t(ρ)) 6= `(ρ)
)
≥ 1

2
− C ·

δd log
(

1 + 4θ2

1−θ2

)
1− (1− δ)θ2d


1/2

,

where Φ : `T≤t(ρ) → {+,−} is any estimator mapping the revealed labels in the local tree

to a decision, and C > 0 is some universal constant.

We defer the proof of the Theorem 2.2.3 to Appendix. Theorem 2.2.3 assures the optimality

of Algorithm 7.

2.2.4. Growing Number of Communities

In this section, we extend the algorithmic and theoretical results to p-SBM with general k.

There is a distinct difference between the case of large k and k = 2: there is a factor gap

between the boundary achievable by local and global algorithms.

The main Algorithm that solves p-SBM for general k is still Algorithm 5, but this time it

takes Algorithm 8 as a subroutine. We will first state Theorem 2.2.4, which summarizes

the main result.

p-SBM Transition Thresholds

The transition boundary for partially labeled stochastic block model depends on the critical

value SNR defined in Equation (2.9).

Theorem 2.2.4 (Transition Thresholds for p-SBM: general k). Assume (1) np � nq -

no(1), (2) δ % n−o(1), (3) k - no(1), and consider the partially labeled stochastic block
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model G(V,E) and the revealed labels `(V l). For any node ρ ∈ V u and its locally tree-

like neighborhood T≤t̄(ρ), define the maximum mis-classification error for a local estimator

Φ : `T≤t̄(ρ) → [k] as

Err(Φ) := max
l∈[k]

P
(

Φ(`T≤t(ρ)) 6= `(ρ)|`(ρ) = l
)
.

On the one hand, if

SNR > 1, (2.19)

the t̄- local message-passing Algorithm 5, denoted by Â(`T≤t̄(ρ)), recovers the true labels of

the nodes, with mis-classification rate at most

Err(Â) ≤ (k − 1) exp

(
− SNR− 1

2C + ot̄(1)

)
∧ k − 1

k
, (2.20)

where C ≡ 1 if the local tree is regular. On the other hand, if

SNR <
1

4
, (2.21)

for any t̄-local estimator Φ : `T≤t̄(ρ) → [k], the minimax mis-classification error is lower

bounded as

inf
Φ

Err(Φ) ≥ 1

2

(
1− C · δ

1− δ ·
SNR

1− 4 · SNR ·
(p+ q)(q + (p− q)/k)

pq
− 1

k

)
>

1

2
− C ′ δ

1− δ ·
SNR

1− 4 · SNR ∨
1

k
,

where C = C ′ ≡ 1 if the local tree is regular.

When δ = o(1) and k > 2, the above lower bound says that no local algorithm (that uses

information up to depth t̄) can consistently estimate the labels with vanishing error.

As we did for k = 2, let us compare the main result for p-SBM with the well-known result

51



for the standard SBM with no partial label information. The boundary in Equation (2.19)

matches the detection bound in (Abbe and Sandon, 2015b) for standard SBM when we plug

in δ = 0, which also matches the well-known Kesten-Stigum (K-S) bound. In contrast to

the case k = 2, it is known that the K-S bound is not sharp when k is large, i.e., there exists

an algorithm which can succeed below the K-S bound. A natural question is whether K-S

bound is sharp within a certain local algorithm class. As we show in Equation (2.21), below

a quarter of the K-S bound, the distributions (indexed by the root label) on the revealed

labels for the local tree are bounded in the total variation distance sense, implying that no

local algorithm can significantly push below the K-S bound. In summary, 1/4 ≤ SNR ≤ 1

is the limitation for local algorithms. Remarkably, it is known in the literature (Chen and

Xu, 2014; Abbe and Sandon, 2015b) that information-theoretically the limitation for global

algorithms is SNR = O∗(1/k). This suggests a possible computational and statistical gap

as k grows.

Belief Propagation & Message Passing

In this section, we investigate the message-passing Algorithm 8 for p-SBM with k blocks,

corresponding to multi-label broadcasting trees. DenoteX
(i)
t (`T≤t(v)) = P

(
`(v) = i|`T≤t(v)

)
.

For u ∈ C(v),

P (`(u) = `(v)|`(v)) = θ +
1− θ
k

P (`(u) = l ∈ [k]\`(v)|`(v)) =
1− θ
k

.

For any j 6= i ∈ [k] and general t, the following Lemma describes the recursion arising from

the Bayes theorem.

Lemma 2.2.1. It holds that

log
X

(i)
t (`T≤t(v))

X
(j)
t (`T≤t(v))

= log
X

(i)
1 (`T1(v))

X
(j)
1 (`T1(v))

+
∑

u∈Cu(v)

log
1 + kθ

1−θX
(i)
t−1(`T≤t−1(u))

1 + kθ
1−θX

(j)
t−1(`T≤t−1(u))

.
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The above belief propagation formula for X
(i)
t (`T≤t(v)) is exact. However, it turns out ana-

lyzing the density of X
(i)
t (`T≤t(v)) is hard. Inspired by the “linearization” trick for k = 2,

we analyze the following linearized message-passing algorithm.

Algorithm 8 Approximate Message Passing on Partially Labeled k-Broadcasting Tree

Data: A partially labeled tree T≤t(ρ) with depth t and labels `T≤t(ρ), fixed j ∈ [k].

Result: The messages M
(i→j)
t (`T≤t(v)), for any i ∈ [k]/j.

initialization: s = 1, and M0(`T≤0(v)) = 0,M
(i→j)
1 (`T≤1(v)) =(

NCl(v)(i)−NCl(v)(j)
)

log
(

1 + kθ
1−θ

)
, ∀v, i 6= j

while s ≤ t do

focus on (t− s)-th layer for v ∈ Ct−s(ρ) and v unlabeled do

update messages for the subtree: M
(i→j)
s (`T≤s(v)) = M

(i→j)
1 (`T1(v)) + θ ·∑

u∈Cu(v)

M
(i→j)
s−1 (`T≤s−1(u)) move one layer up: s = s+ 1

end

end

If maxi∈[k]/jM
(i→j)
t (`T≤t(ρ)) > 0, output `(ρ) = arg maxi∈[k]/jM

(i→j)
t (`T≤t(ρ)); Else output

`(ρ) = j.

For p-SBM with k blocks, Algorithm 5, which uses the above Algorithm 8 as a sub-routine,

will succeed in recovering the labels in the regime above the threshold (2.19). The theoretical

justification is given in the following sections.

Concentration Phenomenon on Messages

As in the case k = 2, here we provide the concentration result on the distribution of

approximate messages recursively calculated based on the tree.

Theorem 2.2.5 (Concentration of Messages for k-AMP, (1−δ)θ2d > 1). Consider the Ap-

proximate Message Passing (AMP) Algorithm 8 on the k-label broadcasting tree Treek(θ, d, δ).
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Assume δd ≥ 1. With the initial values

µ1 = θδd · log

(
1 +

kθ

1− θ

)
, σ2

1 = δd · log2

(
1 +

kθ

1− θ

)

and the factor parameter

α := (1− δ)θ2d,

the recursion of the parameters µt, σ
2
t follows as in Eq. (2.15).

For a certain depth t, conditionally on `(v) = l, the moment generating function for

M
(i→j)
t (`T≤t(v)) is upper bounded as

Ψ
M

(i→j)
t

(λ) ≤


eλµte

λ2σ2
t

2 , i = l

e
λ2σ2

t
2 , i, j 6= l

e−λµte
λ2σ2

t
2 , j = l

The message-passing Algorithm 8 succeeds in recovering the label with probability at least

1− (k − 1) exp
(
− α

2(1+o(1))

)
when (1− δ)θ2d > 1.

Again, from Theorem 2.2.5 we can easily get the following recovery proportion guarantee.

For the message-passing Algorithm 7, assume

α := (1− δ)θ2d > 1,

and define for any t

ε(t) =
(α− 1)2

θ2δd

1

αt − 1
+O(α−t), with lim

t→∞
ε(t) = 0.
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Then Algorithm 8 recovers the label of the root node with probability at least

1− (k − 1) exp

(
−(1− δ)θ2d− 1

2(1 + ε(t))

)

with time complexity

O
(

(k − 1)
(δd+ 1)[(1− δ)d]t − d

(1− δ)d− 1

)
.

Multiple Testing Lower Bound on Local Algorithm Class

We conclude the theoretical study with a lower bound for local algorithms for k-label broad-

casting trees. We bound the distributions of leaf labels, indexed by different root colors

and show that in total variation distance, the distributions are indistinguishable (below the

threshold in equation (2.21)) from each other as δ vanishes.

Theorem 2.2.6 (Limitation for Local Algorithms). Consider the following measures of

revealed labels defined on trees indexed by the root’s label: µ
(i)
`T≤t(ρ)

, i ∈ [k]. Assume δd > 1,

(1− δ)θ2d < 1/4 and

2δd log

(
1 + θ2

(
1

θ + 1−θ
k

+
1

1−θ
k

))
< [1− 4(1− δ)θ2d]2.

Then for any t > 0, the following bound on the χ2 distance holds:

max
i,j∈[k]

log

(
1 + dχ2

(
µ

(i)
`T≤t(ρ)

, µ
(j)
`T≤t(ρ)

))
≤

2δd log

(
1 + θ2

(
1

θ+ 1−θ
k

+ 1
1−θ
k

))
1− 4(1− δ)θ2d

≤ k · 2δθ2d

1− 4(1− δ)θ2d

(
1

1− θ +
1

kθ + 1− θ

)
.

Furthermore, it holds that

inf
Φ

sup
l(ρ)∈[k]

P
(

Φ(`T≤t(ρ)) 6= `(ρ)
)
≥ 1

2

(
1− 2δθ2d

1− 4(1− δ)θ2d

(
1

1− θ +
1

kθ + 1− θ

)
− 1

k

)
,

where Φ : `T≤t(ρ) → [k] is any local estimator mapping from the revealed labels to a
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decision.

The proof is based on a multiple testing argument in Le Cam’s minimax lower bound theory.

We would like to remark that condition 4 · (1− δ)θ2d < 1 can be relaxed to

(1− δ)θ2d ·
(

1 + 3(1− θ)(1− 2

k
)

)
< 1.

2.2.5. Numerical Studies

In this section we apply our approximate message-passing Algorithm 5 to the political

blog dataset (Adamic and Glance, 2005), with a total of 1222 nodes. In the literature,

the state-of-the-art result for a global algorithm appears in (Jin et al., 2015), where the

mis-classification rate is 58/1222 = 4.75%. Here we run our message-passing Algorithm 5

with three different settings δ = 0.1, 0.05, 0.025, replicating each experiment 50 times (we

sample the revealed nodes independently in 50 experiments for each δ specification). As a

benchmark, we compare our results to the spectral algorithm on the (1− δ)n sub-network.

For our message-passing algorithm, we look at the local tree with depth 1 to 5. The results

are summarized as boxplots in Figure 8. The left figure illustrates the comparison of AMP

with depth 1 to 5 and the spectral algorithm, with red, green, blue boxes corresponding

to δ = 0.025, 0.05, 0.1, respectively. The right figure zooms in on the left plot with only

AMP depth 2 to 4 and spectral, to better emphasize the difference. Remark that if we

only look at depth 1, some of the nodes may have no revealed neighbors. In this setting,

we classify this node as wrong (this explains why depth-1 error can be larger than 1/2).

We present in this paragraph some of the statistics of the experiments, extracted from the

above Figure 8. In the case δ = 0.1, from depth 2-4, the AMP algorithm produces the

mis-classification error rate (we took the median over the experiments for robustness) of

6.31%, 5.22%, 5.01%, while the spectral algorithm produces the error rate 6.68%. When

δ = 0.05, i.e. about 60 node labels revealed, the error rates are 7.71%, 5.44%, 5.08% for the

AMP algorithm with depth 2 to 4, contrasted to the spectral algorithm error 6.66%. In a
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Figure 8: AMP algorithm on Political Blog Dataset.

more extreme case δ = 0.025 when there are only ∼ 30 node labels revealed, AMP depth

2-4 has error 10.20%, 5.71%, 5.66%, while spectral is 6.63%. In general, the AMP algorithm

with depth 3-4 uniformly beats the vanilla spectral algorithm. Note our AMP algorithm is

a distributed decentralized algorithm that can be run in parallel. We acknowledge that the

error ∼ 5% (when δ is very small) is still slightly worse than the state-of-the-art degree-

corrected SCORE algorithm in (Jin et al., 2015), which is 4.75%.
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2.3. Watts-Strogatz Small World Network

2.3.1. Introduction

The “small-world” phenomenon aims to describe real-world complex networks that exhibit

both high clustering and short average length properties. While most of the pairs of nodes

are not friends, any node can be reached from another in a small number of hops. The

Watts-Strogatz (WS) model, introduced in (Watts and Strogatz, 1998; Newman and Watts,

1999), is a popular generative model for networks that exhibit the small-world phenomenon.

The WS model interpolates between the two extremes—the regular lattice graph for high

clustering on the one hand, and the random graph exhibiting the short chain property

on the other. Considerable effort has been spent on studying the asymptotic statistical

behavior (degree distribution, average path length, clustering coefficient, etc.) and the

empirical performance of the WS model (Watts, 1999; Amaral et al., 2000; Barrat and

Weigt, 2000; Latora and Marchiori, 2001; Van Der Hofstad, 2009). Successful applications

of the WS model have been found in a range of disciplines, such as psychology (Milgram,

1967), epidemiology (Moore and Newman, 2000), medicine and health (Stam et al., 2007),

to name a few. In one of the first algorithmic studies of small-world networks, Kleinberg

(2000) investigated the theoretical difficulty of finding the shortest path between any two

nodes when one is restricted to use local algorithms, and further extended the small-world

notion to long range percolation on graphs (Benjamini and Berger, 2000; Coppersmith et al.,

2002).

In the present thesis, we study detection and reconstruction of small-world networks. Our

focus is on both statistical and computational aspects of these problems. Given a network,

the first challenge is to detect whether it enjoys the small-world property (i.e., high cluster-

ing and short average path), or whether the observation may simply be explained by the

Erdős-Rényi random graph (the null hypothesis). The second question is concerned with

the reconstruction of the neighborhood structure if the network does exhibit the small-world

phenomenon. In the language of social network analysis, the detection problem corresponds
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to detecting the existence of strong ties (close friend connections) in the presence of weak

ties (random connections). The more difficult reconstruction problem corresponds to dis-

tinguishing between strong and weak ties. Statistical and computational difficulties of both

detection and reconstruction are due to the latent high-dimensional permutation matrix

which blurs the natural ordering of the ring structure on the nodes.

Let us parametrize the WS model in the following way: the number of nodes is denoted by

n, the neighborhood size by k, and the rewiring probability by β. Provided the adjacency

matrix A ∈ Rn×n, we are interested in identifying the tuples (n, k, β) when detection and

reconstruction of the small-world random graph is possible. Specifically, we focus on the

following two questions.

Detection Given the adjacency matrix A up to a permutation, when (in terms of n, k, β)

and how (in terms of procedures) can one statistically distinguish whether it is a small-world

graph (β < 1), or a random graph with matching degree (β = 1). What can be said if we

restrict our attention to computationally efficient procedures?

Reconstruction Once the presence of the neighborhood structure is confirmed, when (in

terms of n, k, β) and how (in terms of procedures) can one estimate the deterministic neigh-

borhood structure? If one only aims to estimate the structure asymptotically consistently,

are there computationally efficient procedures, and what are their limitations?

We address the above questions by presenting a phase diagram in Figure 9. The phase

diagram divides the parameter space into four disjoint regions according to the difficulty of

the problem. We propose distinct methods for the regions where solutions are possible.

Why the Small-World Model?

Finding and analyzing the appropriate statistical models for real-world complex networks

is one of the main themes in network science. Many real empirical networks—for example,

internet architecture, social networks, and biochemical pathways—exhibit two features si-
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multaneously: high clustering among individual nodes and short distance between any two

nodes. Consider the local tree rooted at a person. The high clustering property suggests

prevalent existence of triadic closure, which significantly reduces the number of reachable

people within a certain depth (in contrast to the regular tree case where this number grows

exponentially with the depth), contradicting the short average length property. In a path-

breaking paper, Watts and Strogatz (1998) provided a mathematical model that resolves

the above seemingly contradictory notions. The solution is surprisingly simple — interpo-

lating between structural ring lattice graph and a random graph. The ring lattice provides

the strong ties (i.e., homophily, connection to people who are similar to us) and triadic

closure, while the random graph generates the weak ties (connection to people who are

otherwise far-away), preserving the local-regular-branching-tree-like structure that induces

short paths between pairs.

We remark that one can find different notions of “small-worldness” in the existing literature.

For instance, “small-world” refers to “short chain” in (Milgram, 1967; Kleinberg, 2000),

while it refers to both “high clustering” and “short chain” in (Watts and Strogatz, 1998).

We adopt the latter definition in the current study.

Rewiring Model

Let us now define the WS model. Consider a ring lattice with n nodes, where each node

is connected with its k nearest neighbors (k/2 on the left and k/2 on the right, k even for

convenience). The rewiring process consists of two steps. First, we erase each currently

connected edge with probability β, independently. Next, we reconnect each edge pair with

probability β k
n−1 , allowing multiplicity.4 The observed symmetric adjacency matrix A ∈

{0, 1}n×n has the following structure under some unobserved permutation matrix Pπ ∈
4The original rewiring process in Watts and Strogatz (1998) does not allow multiplicity; however, for the

simplicity of technical analysis, we focus on reconnection allowing multiplicity. These two rewiring processes
are asymptotically equivalent.
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{0, 1}n×n. For 1 ≤ i < j ≤ n, the probability that

[PπAP
T
π ]ij = 1

is given by

(i) 1− β(1− β k
n−1), if 0 < |i− j| ≤ k

2 mod n− 1− k
2

(ii) β k
n−1 otherwise,

and the entries are independent of each other. Equivalently, we have for 1 ≤ i < j ≤ n

Aij = κ
(
[PπBP

T
π ]ij

)
, (2.22)

where κ(·) is the entry-wise i.i.d. Markov channel,

κ(0) ∼ Bernoulli

(
β

k

n− 1

)
,

κ(1) ∼ Bernoulli

(
1− β(1− β k

n− 1
)

)
,

and B ∈ {0, 1}n×n indicates the support of the structural ring lattice

Bij =

 1, if 0 < |i− j| ≤ k
2 mod n− 1− k

2

0, otherwise
. (2.23)

We denote by WS(n, k, β) the distribution of the random graph generated from the rewiring

model, and denote by ER(n, k
n−1) the Erdős-Rényi random graph distribution (with match-

ing average degree k). Remark that if β = 1, the small-world graph WS(n, k, β) reduces to

ER(n, k
n−1), with no neighborhood structure. In contrast, if β = 0, the small-world graph

WS(n, k, β) corresponds to the deterministic ring lattice, without random connections. We

focus on the dependence of the gap 1 − β = o(1) on n and k, such that distinguishing be-

tween WS(n, k, β) and ER(n, k
n−1) or reconstructing the ring lattice structure is statistically
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and computationally possible.

Summary of Results

The main theoretical and algorithmic results are summarized in this section. We first intro-

duce several regions in terms of (n, k, β), according to the difficulty of the problem instance,

and then we present the results using the phase diagram in Figure 9. Except for the ‘im-

possible region’, we will introduce algorithms with distinct computational properties. The

‘impossible region’ is defined through a lower bound, while the other regions are classified

according to upper bounds on performance of respective procedures.

Impossible region: 1 − β ≺
√

logn
n ∨ logn

k . In this region, no multiple testing procedure

(regardless of computational budget) can succeed in distinguishing, with vanishing error,

among the class of models that includes all of WS(n, k, β) and ER(n, k
n−1).

Hard region:
√

logn
n ∨

logn
k � 1− β ≺

√
1
k ∨

√
logn
k . It is possible to distringuish between

WS(n, k, β) and ER(n, k
n−1) statistically with vanishing error; however the evaluation of the

test statistic (2.26) requires exponential time complexity, to the best of our knowledge.

Easy region:
√

1
k ∨

√
logn
k � 1 − β �

√√
logn
n ∨

logn
k . There exists an efficient spectral

test that can distinguish between the small-world random graph WS(n, k, β) and the Erdős-

Rényi graph ER(n, k
n−1) in time nearly linear in the matrix size.

Reconstructable region:

√√
logn
n ∨

logn
k ≺ 1 − β � 1. In this region, not only is it

possible to detect the existence of the lattice structure in a small-world graph, but it is also

possible to consistently reconstruct the neighborhood structure via a novel computationally

efficient correlation thresholding procedure.

The following phase diagram provides an intuitive illustration of the above theoretical

results. If we parametrize k � nx, 0 < x < 1 and 1 − β � n−y, 0 < y < 1, each

point (x, y) ∈ [0, 1]2 corresponds to a particular problem instance with parameter bun-
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Figure 9: Phase diagram for small-world network: impossible region (red region I), hard
region (blue region II), easy region (green region III), and reconstructable region (cyan
region IV).

dle (n, k = nx, β = 1 − n−y). According to the location of (x, y), the difficulty of the

problem changes; for instance, the larger the x and the smaller the y is, the easier the

problem becomes. The various regions are: impossible region (red region I), hard region

(blue region II), easy region (green region III), reconstructable region (cyan region IV).

Notation

A,B,Z ∈ Rn×n denote symmetric matrices: A is the adjacency matrix, B is the structural

signal matrix as in Equation (2.23), and Z = A − EA is the noise matrix. We denote the

matrix of all ones by J . Notations �, �, ≺, � denote the asymptotic order: a(n) � b(n)

if and only if lim sup
n→∞

a(n)
b(n) ≤ c, with some constant c > 0, a(n) ≺ b(n) if and only if

lim sup
n→∞

a(n)
b(n) = 0. C,C ′ > 0 are universal constants that may change from line to line. For

a symmetric matrix A, λi(A), 1 ≤ i ≤ n, denote the eigenvalues in a decreasing order.

The inner-product 〈A,B〉 = tr(ATB) denotes both the Euclidian inner-product and matrix

inner-product. For any integer n, [n] := {0, 1, . . . , n− 1} denotes the index set. Denote the

permutation in symmetric group π ∈ Sn and its associated matrix form as Pπ.
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For a graph G(V,E) generated from the Watts-Strogatz model WS(n, k, β) with associated

permutation π, for each node vi ∈ V, 1 ≤ i ≤ |V |, we denote

N (vi) :=

{
vj : 0 < |π−1(i)− π−1(j)| ≤ k

2
mod n− 1− k

2

}
,

the ring neighborhood of vi before permutation π is applied.

Organization

The following sections are dedicated to the theoretical justification of the various regions

in Section 2.3.1. Specifically, Section 2.3.2 establishes the boundary for the impossible

region I, where the detection problem is information-theoretically impossible. We contrast

the hard region II with the regions III and IV in Section 2.3.3; here, the difference arises

in statistical and computational aspects of detecting the strong tie structure inside the

random graph. Section 2.3.4 studies a correlation thresholding algorithm that reconstructs

the neighborhood structure consistently when the parameters lie within the reconstructable

region IV. We also study a spectral ordering algorithm which succeeds in reconstruction in

a part of region III. Whether the remaining part of region III admits a recovery procedure

is an open problem. Additional further directions are listed in Section 2.3.5.

2.3.2. The Impossible Region: Lower Bounds

We start with an information-theoretic result that describes the difficulty of distinguishing

among a class of models. Theorem 2.3.1 below characterizes the impossible region, as in

Section 2.3.1, in the language of minimax multiple testing error. The proof is postponed to

Appendix.

Theorem 2.3.1 (Impossible Region). Consider the following statistical models: P0 denotes

the distribution of the Erdős-Rényi random graph ER(n, k
n−1), and Pπ, π ∈ Sn−1 denote

distributions of the Watts-Strogatz small-world graph WS(n, k, β) as in Equation (2.22) with

different permutations π. Consider any selector φ : {0, 1}n×n → Sn−1 ∪ {0} that maps the

adjacency matrix A ∈ {0, 1}n×n to a decision in Sn−1∪{0}. Then for any fixed 0 < α < 1/8,
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the following lower bound on multiple testing error holds:

lim
n→∞

min
φ

max

P0(φ 6= 0),
1

(n− 1)!

∑
π∈Sn−1

Pπ(φ 6= π)

 ≥ 1− 2α,

when the parameters satisfy

1− β ≤ Cα ·
√

log n

n
or 1− β ≤ C ′α ·

log n

k
· 1

log n logn
k2

,

with constants Cα, C
′
α that only depend on α. In other words, if

1− β ≺
√

log n

n
∨ log n

k
,

no multiple testing procedure can succeed in distinguishing, with vanishing error, the class

of models containing all of WS(n, k, β) and ER(n, k
n−1).

The missing latent random variable, the permutation matrix Pπ, is the object we are in-

terested in recovering. A permutation matrix Pπ induces a certain distribution on the

adjacency matrix A. Thus the parameter space of interest, including models WS(n, k, β)

and ER(n, k
n−1), is of cardinality (n − 1)! + 1. Based on the observed adjacency matrix,

distinguishing among the models WS(n, k, β) and ER(n, k
n−1) is equivalent to a multiple

testing problem. The impossible region characterizes the information-theoretic difficulty

of this reconstruction problem by establishing the condition that ensures non-vanishing

minimax testing error as n, k(n)→∞.

The “high dimensional” nature of this problem is mainly driven by the unknown permuta-

tion matrix, and this latent structure introduces difficulty both statistically and computa-

tionally. Statistically, via Le Cam’s method, one can build a distance metric on permutation

matrices using the distance between the corresponding measures (measures on adjacency

matrices induced by the permutation structure). In order to characterize the intrinsic dif-

ficulty of estimating the permutation structure, one needs to understand the richness of

the set of permutation matrices within certain distance to one particular element, a com-
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binatorial task. The combinatorial nature of the problem makes the “naive” approach

computationally intensive.

2.3.3. Hard vs. Easy Regions: Detection Statistics

This section studies the hard and easy regions in Section 2.3.1. First, we propose a near

optimal test, the maximum likelihood test, that detects the ring structure above the

information boundary derived in Theorem 2.3.1. However, the evaluation of the maximum

likelihood test requires O(nn) time complexity. The maximum likelihood test succeeds

outside of region I, and, in particular, succeeds (statistically) in the hard region II. We then

propose another efficient test, the spectral test, that detects the ring structure in time

O∗(n2) via the power method. The spectral test is motivated from the circulant structure

of the signal matrix B (as in Eq. 2.23). The method succeeds in regions III and IV.

Theorem 2.3.2 combines the results of Lemma 2.3.1 and Lemma 2.3.2 below.

Theorem 2.3.2 (Detection: Easy and Hard Boundaries). Consider the following statistical

models: P0 denotes the distribution of the Erdős-Rényi random graph ER(n, k
n−1), and

Pπ, π ∈ Sn−1 denote distributions of the Watts-Strogatz small-world graph WS(n, k, β).

Consider any selector φ : {0, 1}n×n → {0, 1} that maps an adjacency matrix to a binary

decision.

We say that minimax detection for the small-world random model is possible when

lim
n→∞

min
φ

max

P0(φ 6= 0),
1

(n− 1)!

∑
π∈Sn−1

Pπ(φ 6= 1)

 = 0. (2.24)

If the parameter (n, k, β) satisfies

hard boundary : 1− β �
√

log n

n
∨ log n

k
,

minimax detection is possible, and an exponential time maximum likelihood test (2.26)
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ensures (2.24). If, in addition, the parameter (n, k, β) satisfies

easy boundary : 1− β �
√

1

k
∨
√

log n

k
,

then a near-linear time spectral test (2.28) ensures (2.24).

Proof of Theorem 2.3.2 consists of two parts, which will be addressed in the following two

sections, respectively.

Maximum Likelihood Test

Consider the test statistic T1 as the objective value of the following optimization

T1(A) := max
Pπ
〈PπBP Tπ , A〉, (2.25)

where Pπ ∈ {0, 1}n×n is taken over all permutation matrices and A is the observed adjacency

matrix. The maximum likelihood test φ1 : A→ {0, 1} based on T1 by

φ1(A) (2.26)

=

 1 if T1(A) ≥ k
n−1nk + 2

√
k

n−1nk · log n! + 2
3 · log n!

0 otherwise.

The threshold is chosen as the rate k2 + O
(√

k2n log n
e ∨ n log n

e

)
: if the objective value

is of a greater order, then we believe the graph is generated from the small-world rewiring

process with strong ties; otherwise we cannot reject the null, the random graph model with

only weak ties.

Lemma 2.3.1 (Guarantee for Maximum Likelihood Test). The maximum likelihood test

φ1 in Equation (2.26) succeeds in detecting the small-world random structure when

1− β �
√

log n

n
∨ log n

k
,
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in the sense that

lim
n,k(n)→∞

max

P0(φ1 6= 0),
1

(n− 1)!

(n−1)!∑
i=1

Pi(φ1 6= 1)

 = 0.

Remark 2.3.1. Lemma 2.3.1 can be viewed as the condition on the signal and noise sepa-

ration. By solving the combinatorial optimization problem, the test statistic aggregates the

signal that separates from the noise the most. An interesting open problem is: if we solve

a relaxed version of the combinatorial optimization problem (2.25) in polynomial time, how

much stronger the condition on 1− β needs to be to ensure power.

Spectral Test

For the spectral test, we calculate the second largest eigenvalue of the adjacency matrix A

as the test statistic

T2(A) := λ2(A). (2.27)

The spectral test φ2 : A→ {0, 1} is

φ2(A) =

 1 if T2(A) �
√
k ∨√log n

0 otherwise.
(2.28)

Namely, if λ2(A) passes the threshold, we classify the graph as a small-world graph. Eval-

uation of (2.28) requires near-linear time O∗(n2) in the size of the matrix.

Lemma 2.3.2 (Guarantee for Spectral Test). The second eigenvalue test φ2 in Equa-

tion (2.28) satisfies

lim
n,k(n)→∞

max

P0(φ2 6= 0),
1

(n− 1)!

(n−1)!∑
i=1

Pi(φ2 6= 1)

 = 0
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whenever

1− β �
√

1

k
∨
√

log n

k
.

The main idea behind Lemma 2.3.2 is as follows. Let us look at the expectation of the

adjacency matrix,

EA = (1− β)(1− β k

n− 1
) · P Tπ BPπ + β

k

n− 1
· (J − I),

where J is the matrix of all ones. The main structure matrix P Tπ BPπ is a permuted version

of the circulant matrix (see e.g. (Gray, 2006)). The spectrum of the circulant matrix B is

highly structured, and is of distinct nature in comparison to the noise matrix A− EA.

2.3.4. Reconstructable Region: Fast Structural Reconstruction

In this section, we discuss reconstruction of the ring structure in the Watts-Strogatz model.

We show that in the reconstructable region (region IV in Figure 9), a correlation thresh-

olding procedure succeeds in reconstructing the ring neighborhood structure. As a by-

product, once the neighborhood structure is known, one can distinguish between weak ties

(random edges) and strong ties (neighborhood edges) for each node. A natural question

is whether there is another algorithm that can work in a region (beyond region IV) where

correlation thresholding fails. We show that in a certain regime with large k, a spectral

ordering procedure outperforms the correlation thresholding procedure and succeeds in

parts of regions III and IV (as depicted in Figure 10 below).

Correlation Thresholding

Consider the following correlation thresholding procedure for neighborhood recon-

struction.
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Algorithm 9 Correlation Thresholding for Neighborhood Reconstruction

Data: An adjacency matrix A ∈ Rn×n for the graph G(V,E).
Result: For each node vi, 1 ≤ i ≤ n, an estimated set for neighborhood N̂ (vi).
1. For each vi, calculate correlations 〈Ai, Aj〉, j 6= i
2. Sort {〈Ai, Aj〉, j ∈ [n]\{i}} in a decreasing order, select the largest k ones to form the
estimated set N̂ (vi)
Output: N̂ (vi), for all i ∈ [n]

The following lemma proves consistency of the above Algorithm 9. Note the computational

complexity is O(n · min{log n, k}) for each node using quick-sort, with a total runtime

O∗(n2).

Lemma 2.3.3 (Consistency of Correlation Thresholding). Consider the Watts-Strogatz

random graph WS(n, k, β). Under the reconstructable regime IV (in Figure 9), that is,

1− β �
√

log n

k
∨
(

log n

n

)1/4

, (2.29)

correlation thresholding provides a consistent estimate of the neighborhood set N (vi) w.h.p

in the sense that

lim
n,k(n)→∞

max
i∈[n]

|N̂ (vi)4N (vi)|
|N (vi)|

= 0,

where 4 denotes the symmetric set difference.

The condition under which consistency of correlation thresholding is ensured corresponds

to the reconstructable region in Figure 9. One may ask if there is another algorithm that

can provide a consistent estimate of the neighborhood set beyond region IV. The answer is

yes, and we will show in the following section that under the regime when k is large (for

instance, k � n 15
16 ), indeed it is possible to slightly improve on Algorithm 9.

Spectral Ordering

Consider the following spectral ordering procedure, which approximately reconstructs

the ring lattice structure when k is large, i.e., k � n 7
8 .
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Algorithm 10 Spectral Reconstruction of Ring Structure

Data: An adjacency matrix A ∈ Rn×n for the graph G(V,E).
Result: A ring embedding of the nodes V .
1. Calculate top 3 eigenvectors in the SVD A = UΣUT . Denote second and third eigenvec-
tors as u ∈ Rn and v ∈ Rn, respectively
2. For each node i and vector A·i ∈ Rn, calculate the associated angle θi for the vector
(uTA·i, v

TA·i)
Output: the sorted sequence {θi}ni=1 and the corresponding ring embedding of the nodes.

For each node vi, N̂ (vi) are the closest k nodes in the ring embedding.

The following Lemma 2.3.4 shows that when k is large, Algorithm 10 also provides consistent

reconstruction of the ring lattice. Its computational complexity is O∗(n2).

Lemma 2.3.4 (Guarantee for Spectral Ordering). Consider the Watts-Strogatz graph WS(n, k, β).

Assume k is large enough in the following sense:

1 > lim
n,k(n)→∞

log k

log n
≥ lim

n,k(n)→∞

log k

log n
>

7

8
.

Under the regime

1− β � n3.5

k4
, (2.30)

the spectral ordering provides consistent estimate of the neighborhood set N (vi) w.h.p. in

the sense that

lim
n,k(n)→∞

max
i∈[n]

|N̂ (vi)4N (vi)|
|N (vi)|

= 0,

where 4 denotes the symmetric set difference.

In Lemma 2.3.4, we can only prove consistency of spectral ordering under the technical

condition that k is large. We do not believe this is due to an artifact of the proof. Even

though the structural matrix (the signal) has large eigenvalues, the eigen-gap is not large

enough. The spectral ordering succeeds when the spectral gap stands out over the noise
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Figure 10: Phase diagram for small-world networks: impossible region (red region I), hard
region (blue region II), easy region (green region III), and reconstructable region (cyan
region IV and IV’). Compared to Figure 9, the spectral ordering procedure extends the

reconstructable region (IV) when k � n 15
16 (IV’).

level, which implies that k needs to be large enough.

Let us compare the region described in Equation (2.30) with the reconstructable region

in Equation (2.29). We observe that spectral ordering pushes slightly beyond the recon-

structable region when k � n 15
16 , as shown in Figure 10.

Numerical Study

To see how the ring embedding Algorithm 10 performs on real dataset, we implemented it

in Python, on the co-appearance network of characters in the novel Les Misérable5 (Knuth,

1993). Figure 11 summarizes the visualization (zoom in for better resolution). Each node

represents one character, and the color and size illustrate its degree, with darker color and

larger size meaning higher degree. The lines connecting nodes on the ring represent co-

appearance relationship in the chapters of the book, with the line width summarizing the

co-appearance intensity. As one can see in the embedding, the obvious triangle is among

5The data is downloaded from Prof. Mark Newman’s website http://www-personal.umich.edu/~mejn/

netdata/.
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Figure 11: Ring embedding of Les Misérable co-appearance network.

the three main characters – Valjean, Marius and Cosette. In the ring embedding, Valjean

and Javert are next to each other, so does Marius and Eponine, as they have very strong

ties (enemies and friends) in the plot. The algorithm embeds the main characters – Valjean,

Marius, Fantine, Thenadler, etc – in a rather spread out fashion on the ring, with each main

character communicating with many other minor characters as in the novel. The structure

assures the “short chain” property – any two characters can reach each other through these

few main characters as middle points. One can also see many triadic closures in the ring

neighborhood around main character, supporting the local “high clustering” feature.

2.3.5. Discussion

Comparison to stochastic block models Recently, stochastic block models (SBM)

have attracted considerable amount of attention from researchers in various fields (Decelle

et al., 2011; Massoulié, 2014; Mossel et al., 2013b). Community detection in stochastic

block models focuses on recovering the hidden community structure obscured by noise in
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Figure 12: The structural matrices for stochastic block model (left), mixed membership
SBM (middle), and small-world model (right). The black location denotes the support of
the structural matrix.

the adjacency matrix and further concealed by the latent permutation on the nodes.

Detectability or weak recovery of the hidden community is one of the central question in

studying SBM in the constant degree regime. Drawing insights from statistical physics,

Decelle et al. (2011) conjectured a sharp transition threshold (also known as the Kesten-

Stigum bound) for detection in the symmetric two-community case, above which recovering

the community better than random guessing is possible, and below which – impossible. Mas-

soulié (2014); Mossel et al. (2013b) proved the conjecture independently, one using spectral

analysis on the non-backtracking matrix (Hashimoto, 1989), the other through analyzing

non-backtracking walks. Later, for partial recovery and strong recovery (reconstruction) of

multiple communities beyond the symmetric case, Abbe and Sandon (2015a) characterized

the recovery threshold in terms of the Chernoff-Hellinger divergence.

The hidden community structure for classic SBM is illustrated in Figure 12 (left) as a

block diagonal matrix. An interesting but theoretically more challenging extension to the

classic SBM is the mixed-membership SBM, where each node may simultaneously belong

to several communities. Consider an easy case of the model, where the mixed-membership

occurs only within neighborhood communities, as shown in the middle image of Figure 12.

The small-world network we are investigating in this thesis can be seen as an extreme case

(shown on the right-most figure) of this easy mixed-membership SBM, where each node falls

in effectively k local clusters. In the small-world network model, identifying the structural

links and random links becomes challenging since there are many local clusters, in constrast

to the relatively small number of communities in SBM. The multitude of local clusters

74



makes it difficult to analyze the effect of the hidden permutation on the structural matrix.

We view the current thesis as an initial attempt at tackling this problem.

Relations to graph matching Small world reconstruction, community membership re-

construction, planted clique localization etc., can be cast as solving for the latent permuta-

tion matrix Pπ with different structural matrix B, in arg maxPπ∈Π〈PπAP Tπ , B〉 as suggested

in Eq. (2.25). This is also called graph matching (Lyzinski et al., 2014). As one aims to

match the observed adjacency matrix A to the structural matrix B via latent permutation

matrix Pπ. As written in the above form, the reconstruction task is reduced to a quadratic

assignment problem (QAP), which is known to be NP-hard (Burkard et al., 1998; Cela,

2013). Due to the NP-hard nature of QAP, various relaxations on the permutation matrix

constraints have been proposed: for instance, orthogonal matrices, doubly stochastic ma-

trices, and SDP relaxations (Chandrasekaran et al., 2012). Quantifying the loss due to a

relaxation for each model is a challenging task.

Reconstructable region We addressed the reconstruction problem via two distinct pro-

cedures: correlation thresholding and spectral ordering. Whether there exist other computa-

tionally efficient algorithms that can significantly improve upon the current reconstructable

region is an open problem. Designing new algorithms requires a deeper insight into the

structure of the small-world model, and will probably shed light on better algorithms for

mixed membership models.

Robustness The test statistics and reconstruction procedure investigated in the current

thesis are tailored to the W-S model assumptions. For example, the maximum likelihood

test enjoys good properties when the model is well-specified. However, we acknowledge

that real complex networks hardly satisfy the idealized assumptions. Therefore, when the

model is mis-specified, designing robust procedures and tests with theoretical guarantees is

an interesting further direction.
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CHAPTER 3 : Regression, Learning and Model Selection

3.1. Learning under Square Loss with Offset Rademacher Complexity

3.1.1. Introduction

Determining the finite-sample behavior of risk in the problem of regression is arguably one of

the most basic problems of Learning Theory and Statistics. This behavior can be studied in

substantial generality with the tools of empirical process theory. When functions in a given

convex class are uniformly bounded, one may verify the so-called “Bernstein condition.”

The condition—which relates the variance of the increments of the empirical process to their

expectation—implies a certain localization phenomenon around the optimum and forms the

basis of the analysis via local Rademacher complexities. The technique has been developed

in (Koltchinskii and Panchenko, 2000; Koltchinskii, 2011b; Bousquet et al., 2002; Bartlett

et al., 2005; Bousquet, 2002), among others, based on Talagrand’s celebrated concentration

inequality for the supremum of an empirical process.

In a recent pathbreaking paper, Mendelson (2014a) showed that a large part of this heavy

machinery is not necessary for obtaining tight upper bounds on excess loss, even—and

especially—if functions are unbounded. Mendelson observed that only one-sided control of

the tail is required in the deviation inequality, and, thankfully, it is the tail that can be

controlled under very mild assumptions.

In a parallel line of work, the search within the online learning setting for an analogue of

“localization” has led to a notion of an “offset” Rademacher process (Rakhlin and Sridharan,

2014), yielding—in a rather clean manner—optimal rates for minimax regret in online

supervised learning. It was also shown that the supremum of the offset process is a lower

bound on the minimax value, thus establishing its intrinsic nature. The present thesis blends

the ideas of Mendelson (2014a) and Rakhlin and Sridharan (2014). We introduce the notion

of an offset Rademacher process for i.i.d. data and show that the supremum of this process
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upper bounds (both in expectation and in high probability) the excess risk of an empirical

risk minimizer (for convex classes) and a two-step Star estimator of Audibert (2007) (for

arbitrary classes). The statement holds under a weak assumption even if functions are not

uniformly bounded.

The offset Rademacher complexity provides an intuitive alternative to the machinery of local

Rademacher averages. Let us recall that the Rademacher process indexed by a function class

G ⊆ RX is defined as a stochastic process g 7→ 1
n

∑n
t=1 εtg(xt) where x1, . . . , xn ∈ X are

held fixed and ε1, . . . , εn are i.i.d. Rademacher random variables. We define the offset

Rademacher process as a stochastic process

g 7→ 1

n

n∑
t=1

εtg(xt)− cg(xt)
2

for some c ≥ 0. The process itself captures the notion of localization: when g is large

in magnitude, the negative quadratic term acts as a compensator and “extinguishes” the

fluctuations of the term involving Rademacher variables. The supremum of the process will

be termed offset Rademacher complexity, and one may expect that this complexity is of a

smaller order than the classical Rademacher averages (which, without localization, cannot

be better than the rate of n−1/2).

The self-modulating property of the offset complexity can be illustrated on the canonical

example of a linear class G = {x 7→ wTx : w ∈ Rp}, in which case the offset Rademacher

complexity becomes

1

n
sup
w∈Rp

{
wT

(
n∑
t=1

εtxt

)
− c‖w‖2Σ

}
=

1

4cn

∥∥∥∥∥
n∑
t=1

εtxt

∥∥∥∥∥
2

Σ−1

where Σ =
∑n

t=1 xtx
T
t . Under mild conditions, the above expression is of the order O (p/n)

in expectation and in high probability — a familiar rate achieved by the ordinary least

squares, at least in the case of a well-specified model. We refer to Section 3.1.6 for the

precise statement for both well-specified and misspecified case.
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Our contributions can be summarized as follows. First, we show that offset Rademacher

complexity is an upper bound on excess loss of the proposed estimator, both in expectation

and in deviation. We then extend the chaining technique to quantify the behavior of the

supremum of the offset process in terms of covering numbers. By doing so, we recover the

rates of aggregation established in (Rakhlin et al., 2015) and, unlike the latter paper, the

present method does not require boundedness (of the noise and functions). We provide a

lower bound on minimax excess loss in terms of offset Rademacher complexity, indicating

its intrinsic nature for the problems of regression. While our in-expectation results for

bounded functions do not require any assumptions, the high probability statements rest on

a lower isometry assumption that holds, for instance, for subgaussian classes. We show that

offset Rademacher complexity can be further upper bounded by the fixed-point complexities

defined by Mendelson Mendelson (2014a). We conclude with the analysis of ordinary least

squares.

3.1.2. Problem Description and the Estimator

Let F be a class of functions on a probability space (X , PX). The response is given by

an unknown random variable Y , distributed jointly with X according to P = PX × PY |X .

We observe a sample (X1, Y1), . . . , (Xn, Yn) distributed i.i.d. according to P and aim to

construct an estimator f̂ with small excess loss E(f̂), where

E(g) , E(g − Y )2 − inf
f∈F

E(f − Y )2 (3.1)

and E(f − Y )2 = E(f(X) − Y )2 is the expectation with respect to (X,Y ). Let Ê denote

the empirical expectation operator and define the following two-step procedure:

ĝ = argmin
f∈F

Ê(f(X)− Y )2, f̂ = argmin
f∈star(F ,ĝ)

Ê(f(X)− Y )2 (3.2)

where star(F , g) = {λg + (1 − λ)f : f ∈ F , λ ∈ [0, 1]} is the star hull of F around g. (we

abbreviate star(F , 0) as star(F).) This two-step estimator was introduced (to the best of
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our knowledge) by Audibert (2007) for a finite class F . We will refer to the procedure

as the Star estimator. Audibert showed that this method is deviation-optimal for finite

aggregation — the first such result, followed by other estimators with similar properties

(Lecué and Mendelson, 2009; Dai et al., 2012) for the finite case. We present analysis

that quantifies the behavior of this method for arbitrary classes of functions. The method

has several nice features. First, it provides an alternative to the 3-stage discretization

method of Rakhlin et al. (2015), does not require the prior knowledge of the entropy of

the class, and goes beyond the bounded case. Second, it enjoys an upper bound of offset

Rademacher complexity via relatively routine arguments under rather weak assumptions.

Third, it naturally reduces to empirical risk minimization for convex classes (indeed, this

happens whenever star(F , ĝ) = F).

Let f∗ denote the minimizer

f∗ = argmin
f∈F

E(f(X)− Y )2,

and let ξ denote the “noise”

ξ = Y − f∗.

We say that the model is misspecified if the regression function E[Y |X = x] /∈ F , which

means ξ is not zero-mean. Otherwise, we say that the model is well-specified.

3.1.3. A Geometric Inequality

We start by proving a geometric inequality for the Star estimator. This deterministic

inequality holds conditionally on X1, . . . , Xn, and therefore reduces to a problem in Rn.

Lemma 3.1.1 (Geometric Inequality). The two-step estimator f̂ in (3.2) satisfies

Ê(h− Y )2 − Ê(f̂ − Y )2 ≥ c · Ê(f̂ − h)2 (3.3)

for any h ∈ F and c = 1/18. If F is convex, (3.3) holds with c = 1. Moreover, if F is a
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linear subspace, (3.3) holds with equality and c = 1 by the Pythagorean theorem.

Remark 3.1.1. In the absence of convexity of F , the two-step estimator f̂ mimics the key

Pythagorean identity, though with a constant 1/18. We have not focused on optimizing c

but rather on presenting a clean geometric argument.

h⊥

ĝ

f ′

h

Y

B1

B2

Figure 13: Proof of the geometry inequality. The solid and dotted balls are B(Y, ‖ĝ− Y ‖n)
and B(Y, ‖f̂ − Y ‖n), respectively.

Proof of Lemma 3.1.1. Define the empirical `2 distance to be, for any f, g, ‖f‖n :=

[Êf2]1/2 and empirical product to be 〈f, g〉n := Ê[fg]. We will slightly abuse the notation

by identifying every function with its finite-dimensional projection on (X1, . . . , Xn).

Denote the ball (and sphere) centered at Y and with radius ‖ĝ−Y ‖n to be B1 := B(Y, ‖ĝ−

Y ‖n) (and S1, correspondingly). In a similar manner, define B2 := B(Y, ‖f̂ − Y ‖n) and S2.

By the definition of the Star algorithm, we have B2 ⊆ B1. The statement holds with c = 1

if f̂ = ĝ, and so we may assume B2 ⊂ B1. Denote by C the conic hull of B2 with origin at ĝ.

Define the spherical cap outside the cone C to be S = S1 \ C (drawn in red in Figure 13).

First, by the optimality of ĝ, for any h ∈ F , we have ‖h− Y ‖2n ≥ ‖ĝ − Y ‖2n, i.e. any h ∈ F

is not in the interior of B1. Furthermore, h is not in the interior of the cone C, as otherwise

there would be a point inside B2 strictly better than f̂ . Thus h ∈ (intC)c ∩ (intB1)c.

Second, f̂ ∈ B2 and it is a contact point of C and S2. Indeed, f̂ is necessarily on a line

segment between ĝ and a point outside B1 that does not pass through the interior of B2 by
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optimality of f̂ . Let K be the set of all contact points – potential locations of f̂ .

Now we fix h ∈ F and consider the two dimensional plane L that passes through three points

(ĝ, Y, h), depicted in Figure 13. Observe that the left-hand-side of the desired inequality

(3.3) is constant as f̂ ranges over K. To prove the inequality it therefore suffices to choose a

value f ′ ∈ K that maximizes the right-hand-side. The maximization of ‖h−f ′‖2 over f ′ ∈ K

is achieved by f ′ ∈ K ∩ L. This can be argued simply by symmetry: the two-dimensional

plane L intersects span(K) in a line and the distance between h and K is maximized at the

extreme point of this intersection. Hence, to prove the desired inequality, we can restrict

our attention to the plane L and f ′ instead of f̂ .

For any h ∈ F , define the projection of h onto the shell L∩S to be h⊥ ∈ S. We first prove

(3.3) for h⊥ and then extend the statement to h. By the geometry of the cone,

‖f ′ − ĝ‖n ≥
1

2
‖ĝ − h⊥‖n.

By triangle inequality,

‖f ′ − ĝ‖n ≥
1

2
‖ĝ − h⊥‖n ≥

1

2

(
‖f ′ − h⊥‖n − ‖f ′ − ĝ‖n

)
.

Rearranging,

‖f ′ − ĝ‖2n ≥
1

9
‖f ′ − h⊥‖2n.

By the Pythagorean theorem,

‖h⊥ − Y ‖2n − ‖f ′ − Y ‖2n = ‖ĝ − Y ‖2n − ‖f ′ − Y ‖2n = ‖f ′ − ĝ‖2n ≥
1

9
‖f ′ − h⊥‖2n,

thus proving the claim for h⊥ for constant c = 1/9.

We can now extend the claim to h. Indeed, due to the fact that h ∈ (intC)c ∩ (intB1)c and
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the geometry of the projection h→ h⊥, we have 〈h⊥ − Y, h⊥ − h〉n ≤ 0. Thus

‖h− Y ‖2n − ‖f ′ − Y ‖2n = ‖h⊥ − h‖2n + ‖h⊥ − Y ‖2n − 2〈h⊥ − Y, h⊥ − h〉n − ‖f ′ − Y ‖2n

≥ ‖h⊥ − h‖2n + (‖h⊥ − Y ‖2n − ‖f ′ − Y ‖2n)

≥ ‖h⊥ − h‖2n +
1

9
‖f ′ − h⊥‖2n ≥

1

18
(‖h⊥ − h‖n + ‖f ′ − h⊥‖n)2

≥ 1

18
‖f ′ − h‖2n.

This proves the claim for h with constant 1/18.

An upper bound on excess loss follows immediately from Lemma 3.1.1.

Corollary 3.1.1. Conditioned on the data {Xn, Yn}, we have a deterministic upper bound

for the Star algorithm:

E(f̂) ≤ (Ê− E)[2(f∗ − Y )(f∗ − f̂)] + E(f∗ − f̂)2 − (1 + c) · Ê(f∗ − f̂)2, (3.4)

with the value of constant c given in Lemma 3.1.1.

Proof.

E(f̂) = E(f̂(X)− Y )2 − inf
f∈F

E(f(X)− Y )2

≤ E(f̂ − Y )2 − E(f∗ − Y )2 +
[
Ê(f∗ − Y )2 − Ê(f̂ − Y )2 − c · Ê(f̂ − f∗)2

]
= (Ê− E)[2(f∗ − Y )(f∗ − f̂)] + E(f∗ − f̂)2 − (1 + c) · Ê(f∗ − f̂)2.

An attentive reader will notice that the multiplier on the negative empirical quadratic term

in (3.4) is slightly larger than the one on the expected quadratic term. This is the starting

point of the analysis that follows.
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3.1.4. Symmetrization

We will now show that the discrepancy in the multiplier constant in (3.4) leads to offset

Rademacher complexity through rather elementary symmetrization inequalities. We per-

form this analysis both in expectation (for the case of bounded functions) and in high

probability (for the general unbounded case). While the former result follows from the lat-

ter, the in-expectation statement for bounded functions requires no assumptions, in contrast

to control of the tails.

Theorem 3.1.1. Define the set H := F − f∗ + star(F − F). The following expectation

bound on excess loss of the Star estimator holds:

EE(f̂) ≤ (2M +K(2 + c)/2) · E sup
h∈H

{
1

n

n∑
i=1

2εih(Xi)− c′h(Xi)
2

}

where ε1, . . . , εn are independent Rademacher random variables, c′ = min{ c
4M ,

c
4K(2+c)},

K = supf |f |∞, and M = supf |Y − f |∞ almost surely.

The proof of the theorem involves an introduction of independent Rademacher random

variables and two contraction-style arguments to remove the multipliers (Yi − f∗(Xi)).

These algebraic manipulations are postponed to the appendix.

The term in the curly brackets will be called an offset Rademacher process, and the ex-

pected supremum — an offset Rademacher complexity. While Theorem 3.1.1 only applies

to bounded functions and bounded noise, the upper bound already captures the localization

phenomenon, even for non-convex function classes (and thus goes well beyond the classical

local Rademacher analysis).

As argued in (Mendelson, 2014a), it is the contraction step that requires boundedness

of the functions when analyzing square loss. Mendelson uses a small ball assumption (a

weak condition on the distribution, stated below) to split the analysis into the study of the

multiplier and quadratic terms. This assumption allows one to compare the expected square
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of any function to its empirical version, to within a multiplicative constant that depends

on the small ball property. In contrast, we need a somewhat stronger assumption that will

allow us to take this constant to be at least 1 − c/4. We phrase this condition—the lower

isometry bound—as follows.

Definition 3.1.1 (Lower Isometry Bound). We say that a function class F satisfies the

lower isometry bound with some parameters 0 < η < 1 and 0 < δ < 1 if

P

(
inf

f∈F\{0}

1

n

n∑
i=1

f2(Xi)

Ef2
≥ 1− η

)
≥ 1− δ (3.5)

for all n ≥ n0(F , δ, η), where n0(F , δ, η) depends on the complexity of the class.

In general this is a mild assumption that requires good tail behavior of functions in F ,

yet it is stronger than the small ball property. Mendelson Mendelson (2015) shows that

this condition holds for heavy-tailed classes assuming the small ball condition plus a norm-

comparison property ‖f‖`q ≤ L‖f‖`2 , ∀f ∈ F . We also remark that Assumption 3.1.1

holds for sub-gaussian classes F using concentration tools, as already shown in Lecué and

Mendelson (2013). For completeness, let us also state the small ball property:

Definition 3.1.2 (Small Ball Property Mendelson (2014a,b)). The class of functions F

satisfies the small-ball condition if there exist constants κ > 0 and 0 < ε < 1 for every

f ∈ F ,

P
(
|f(X)| ≥ κ(Ef2)1/2

)
≥ ε.

Armed with the lower isometry bound, we now prove that the tail behavior of the deter-

ministic upper bound in (3.4) can be controlled via the tail behavior of offset Rademacher

complexity.

Theorem 3.1.2. Define the set H := F − f∗ + star(F − F). Assume the lower isometry

bound in Definition 3.1.1 holds with η = c/4 and some δ < 1, where c is the constant in
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(3.3). Let ξi = Yi − f∗(Xi). Define

A := sup
h∈H

Eh4

(Eh2)2
and B := sup

X,Y
Eξ4.

Then there exist two absolute constants c′, c̃ > 0 (only depends on c), such that

P
(
E(f̂) > 4u

)
≤ 4δ + 4P

(
sup
h∈H

1

n

n∑
i=1

εiξih(Xi)− c̃ · h(Xi)
2 > u

)

for any

u >
32
√
AB

c′
· 1

n
,

as long as n > 16(1−c′)2A
c′2 ∨ n0(H, δ, c/4).

Theorem 3.1.2 states that excess loss is stochastically dominated by offset Rademacher com-

plexity. We remark that the requirement in A,B holds under the mild moment conditions.

Remark 3.1.2. In certain cases, Definition 3.1.1 can be shown to hold for f ∈ F \ r∗B

(rather than all f ∈ F), for some critical radius r∗, as soon as n ≥ n0(F , δ, η, r∗) (see

Mendelson (2015)). In this case, the bound on the offset complexity is only affected additively

by (r∗)2.

We postpone the proof of the Theorem to the appendix. In a nutshell, it extends the

classical probabilistic symmetrization technique (Giné and Zinn, 1984; Mendelson, 2003) to

the non-zero-mean offset process under the investigation.

3.1.5. Offset Rademacher Process: Chaining and Critical Radius

Let us summarize the development so far. We have shown that excess loss of the Star

estimator is upper bounded by the (data-dependent) offset Rademacher complexity, both

in expectation and in high probability, under the appropriate assumptions. We claim that

the necessary properties of the estimator are now captured by the offset complexity, and

we are now squarely in the realm of empirical process theory. In particular, we may want

to quantify rates of convergence under complexity assumptions on F , such as covering
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numbers. In contrast to local Rademacher analyses where one would need to estimate the

data-dependent fixed point of the critical radius in some way, the task is much easier for

the offset complexity. To this end, we study the offset process with the tools of empirical

process theory.

Chaining Bounds

The first lemma describes the behavior of offset Rademacher process for a finite class.

Lemma 3.1.2. Let V ⊂ Rn be a finite set of vectors of cardinality N . Then for any C > 0,

Eε max
v∈V

[
1

n

n∑
i=1

εivi − Cv2
i

]
≤ 1

2C

logN

n
.

Furthermore, for any δ > 0,

P

(
max
v∈V

[
1

n

n∑
i=1

εivi − Cv2
i

]
≥ 1

2C

logN + log 1/δ

n

)
≤ δ.

When the noise ξ is unbounded,

Eε max
v∈V

[
1

n

n∑
i=1

εiξivi − Cv2
i

]
≤M · logN

n
,

Pε

(
max
v∈V

[
1

n

n∑
i=1

εiξivi − Cv2
i

]
≥M · logN + log 1/δ

n

)
≤ δ,

where

M := sup
v∈V \{0}

∑n
i=1 v

2
i ξ

2
i

2C
∑n

i=1 v
2
i

. (3.6)

Armed with the lemma for a finite collection, we upper bound the offset Rademacher com-

plexity of a general class through the chaining technique. We perform the analysis in

expectation and in probability. Recall that a δ-cover of a subset S in a metric space (T, d)

is a collection of elements such that the union of the δ-balls with centers at the elements
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contains S. A covering number at scale δ is the size of the minimal δ-cover.

One of the main objectives of symmetrization is to arrive at a stochastic process that

can be studied conditionally on data, so that all the relevant complexities can be made

sample-based (or, empirical). Since the functions only enter offset Rademacher complexity

through their values on the sample X1, . . . , Xn, we are left with a finite-dimensional object.

Throughout the thesis, we work with the empirical `2 distance

dn(f, g) =

(
1

n

n∑
i=1

(f(Xi)− g(Xi))
2

)1/2

.

The covering number of G at scale δ with respect to dn will be denoted by N2(G, δ).

Lemma 3.1.3. Let G be a class of functions from Z to R. Then for any z1, . . . , zn ∈ Z

Eε sup
g∈G

[
1

n

n∑
t=1

εig(zi)− Cg(zi)
2

]
≤ inf

γ≥0,α∈[0,γ]

{
(2/C) logN2(G, γ)

n

+4α+
12√
n

∫ γ

α

√
logN2(G, δ)dδ

}

where N2(G, γ) is an `2-cover of G on (z1, . . . , zn) at scale γ (assumed to contain 0).

Instead of assuming that 0 is contained in the cover, we may simply increase the size of the

cover by 1, which can be absorbed by a small change of a constant.

Let us discuss the upper bound of Lemma 3.1.3. First, we may take α = 0, unless the integral

diverges (which happens for very large classes with entropy growth of logN2(G, δ) ∼ δ−p,

p ≥ 2). Next, observe that first term is precisely the rate of aggregation with a finite

collection of size N2(G, γ). Hence, the upper bound is an optimal balance of the following

procedure: cover the set at scale γ and pay the rate of aggregation for this finite collection,

plus pay the rate of convergence of ERM within a γ-ball. The optimal balance is given by

some γ (and can be easily computed under assumptions on covering number behavior —

see (Rakhlin and Sridharan, 2014)). The optimal γ quantifies the localization radius that

arises from the curvature of the loss function. One may also view the optimal balance as
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the well-known equation

logN (G, γ)

n
� γ2,

studied in statistics (Yang and Barron, 1999) for well-specified models. The present thesis,

as well as (Rakhlin et al., 2015), extend the analysis of this balance to the misspecified case

and non-convex classes of functions.

Now we provide a high probability analogue of Lemma 3.1.3.

Lemma 3.1.4. Let G be a class of functions from Z to R. Then for any z1, . . . , zn ∈ Z
and any u > 0,

Pε

(
sup
g∈G

[
1

n

n∑
t=1

εig(zi)− Cg(zi)
2

]
> u · inf

α∈[0,γ]

{
4α+

12√
n

∫ γ

α

√
logN2(G, δ)dδ

}
+

2

C

logN2(G, γ) + u

n

)

≤ 2

1− e−2 exp(−cu2) + exp(−u)

where N2(G, γ) is an `2-cover of G on (z1, . . . , zn) at scale γ (assumed to contain 0) and C, c > 0

are universal constants.

The above lemmas study the behavior of offset Rademacher complexity for abstract classes

G. Observe that the upper bounds in previous sections are in terms of the class F − f∗ +

star(F − F). This class, however, is not more complex that the original class F (with the

exception of a finite class F). More precisely, the covering numbers of F + F ′ := {f + g :

f ∈ F , g ∈ F ′} and F − F ′ := {f − g : f ∈ F , g ∈ F ′} are bounded as

logN2(F + F ′, 2ε), logN2(F − F ′, 2ε) ≤ logN2(F , ε) + logN2(F ′, ε)

for any F ,F ′. The following lemma shows that the complexity of the star hull star(F) is

also not significantly larger than that of F .

Lemma 3.1.5 (Mendelson (2002), Lemma 4.5). For any scale ε > 0, the covering number

of F ⊂ B2 and that of star(F) are bounded in the sense

logN2(F , 2ε) ≤ logN2(star(F), 2ε) ≤ log
2

ε
+ logN2(F , ε).
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Critical Radius

Now let us study the critical radius of offset Rademacher processes. Let ξ = f∗ − Y and

define

αn(H, κ, δ) , inf

{
r > 0 : P

(
sup

h∈H∩rB

{
1

n

n∑
i=1

2εiξih(Xi)− c′
1

n

n∑
i=1

h2(Xi)

}
≤ κr2

)
≥ 1− δ

}
.

(3.7)

Theorem 3.1.3. Assume H is star-shaped around 0 and the lower isometry bound holds

for δ, ε. Define the critical radius

r = αn(H, c′(1− ε), δ).

Then we have with probability at least 1− 2δ,

sup
h∈H

{
2

n

n∑
i=1

εiξih(Xi)− c′
1

n

n∑
i=1

h2(Xi)

}
= sup

h∈H∩rB

{
2

n

n∑
i=1

εiξih(Xi)− c′
1

n

n∑
i=1

h2(Xi)

}
,

which further implies

sup
h∈H

{
2

n

n∑
i=1

εiξih(Xi)− c′
1

n

n∑
i=1

h2(Xi)

}
≤ r2.

The first statement of Theorem 3.1.3 shows the self-modulating behavior of the offset pro-

cess: there is a critical radius, beyond which the fluctuations of the offset process are

controlled by those within the radius. To understand the second statement, we observe

that the complexity αn is upper bounded by the corresponding complexity in (Mendel-

son, 2014a), which is defined without the quadratic term subtracted off. Hence, offset

Rademacher complexity is no larger (under our Assumption 3.1.1) than the upper bounds

obtained by Mendelson (2014a) in terms of the critical radius.
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3.1.6. Examples

In this section, we briefly describe several applications. The first is concerned with para-

metric regression.

Lemma 3.1.6. Consider the parametric regression Yi = XT
i β
∗ + ξi, 1 ≤ i ≤ n, where ξi

need not be centered. The offset Rademacher complexity is bounded as

Eε sup
β∈Rp

{
1

n

n∑
i=1

2εiξiX
T
i β − CβTXiX

T
i β

}
=

tr
(
G−1H

)
Cn

and

Pε

(
sup
β∈Rp

{
1

n

n∑
i=1

2εiξiX
T
i β − CβTXiX

T
i β

}
≥ tr

(
G−1H

)
Cn

+

√
tr ([G−1H]2)

n
(4

√
2 log

1

δ
+ 64 log

1

δ
)

)
≤ δ

where G :=
∑n
i=1XiX

T
i is the Gram matrix and H =

∑n
i=1 ξ

2
iXiX

T
i . In the well-specified case

(that is, ξi are zero-mean), assuming that conditional variance is σ2, then conditionally on the design

matrix, EG−1H = σ2Ip and excess loss is upper bounded by order σ2p
n .

Proof. The offset Rademacher can be interpreted as the Fenchel-Legendre transform, where

sup
β∈Rp

{
n∑
i=1

2εiξiX
T
i β − CβTXiX

T
i β

}
=

∑n
i,j=1 εiεjξiξjX

T
i G
−1Xj

Cn
. (3.8)

Thus we have in expectation

Eε
1

n
sup
β∈Rp

{
n∑
i=1

2εiξiX
T
i β − CβTXiX

T
i β

}
=

∑n
i=1 ξ

2
iX

T
i G
−1Xi

Cn
=

tr[G−1(
∑n

i=1 ξ
2
iXiX

T
i )]

Cn
.

(3.9)

For high probability bound, note the expression in Equation (3.8) is Rademacher chaos of

order two. Define symmetric matrix M ∈ Rn×n with entries

Mij = ξiξjX
T
i G
−1Xj
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and define

Z =
n∑

i,j=1

εiεjξiξjX
T
i G
−1Xj =

n∑
i,j=1

εiεjMij .

Then

EZ = tr[G−1(
n∑
i=1

ξ2
iXiX

T
i )],

and

E
n∑
i=1

(
n∑
j=1

εjMij)
2 = ‖M‖2F = tr[G−1(

n∑
i=1

ξ2
iXiX

T
i )G−1(

n∑
i=1

ξ2
iXiX

T
i )].

Furthermore,

‖M‖ ≤ ‖M‖F =

√√√√tr[G−1(

n∑
i=1

ξ2
iXiXT

i )G−1(

n∑
i=1

ξ2
iXiXT

i )]

We apply the concentration result in (Boucheron et al., 2013, Exercise 6.9),

P
(
Z − EZ ≥ 4

√
2‖M‖F

√
t+ 64‖M‖t

)
≤ e−t. (3.10)

For the finite dictionary aggregation problem, the following lemma shows control of offset

Rademacher complexity.

Lemma 3.1.7. Assume F ∈ B2 is a finite class of cardinality N . Define H = F − f∗ +

star(F −F) which contains the Star estimator f̂ − f∗ defined in Equation (3.2). The offset

Rademacher complexity for H is bounded as

Eε sup
h∈H

{
1

n

n∑
i=1

2εiξih(Xi)− Ch(Xi)
2

}
≤ C̃ · log(N ∨ n)

n

and

Pε

(
sup
h∈H

{
1

n

n∑
i=1

2εiξih(Xi)− Ch(Xi)
2

}
≤ C̃ · log(N ∨ n) + log 1

δ

n

)
≤ δ.
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where C̃ is a constant depends on K := 2(
√∑n

i=1 ξ
2
i /n+ 2C) and

M := sup
h∈H\{0}

∑n
i=1 h(Xi)

2ξ2
i

2C
∑n

i=1 h(Xi)2
.

We observe that the bound of Lemma 3.1.7 is worse than the optimal bound of (Audibert,

2007) by an additive logn
n term. This is due to the fact that the analysis for finite case

passes through the offset Rademacher complexity of the star hull, and for this case the star

hull is more rich than the finite class. For this case, a direct analysis of the Star estimator

is provided in (Audibert, 2007).

While the offset complexity of the star hull is crude for the finite case, the offset Rademacher

complexity does capture the correct rates for regression with larger classes, initially derived

in (Rakhlin et al., 2015). We briefly mention the result. The proof is identical to the one in

(Rakhlin and Sridharan, 2014), with the only difference that offset Rademacher is defined

in that paper as a sequential complexity in the context of online learning.

Corollary 3.1.2. Consider the problem of nonparametric regression, as quantified by the

growth

logN2(F , ε) ≤ ε−p.

In the regime p ∈ (0, 2), the upper bound of Lemma 3.1.4 scales as n
− 2

2+p . In the regime

p ≥ 2, the bound scales as n−1/p, with an extra logarithmic factor at p = 2.

For the parametric case of p = 0, one may also readily estimate the offset complexity.

Results for VC classes, sparse combinations of dictionary elements, and other parametric

cases follow easily by plugging in the estimate for the covering number or directly upper

bounding the offset complexity (see Rakhlin et al. (2015); Rakhlin and Sridharan (2014)).

3.1.7. Lower bound on Minimax Regret via Offset Rademacher Complexity

We conclude with a lower bound on minimax regret in terms of offset Rademacher com-

plexity.
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Theorem 3.1.4 (Minimax Lower Bound on Regret). Define the offset Rademacher com-

plexity over X⊗n as

Ro(n,F) = sup
{xi}ni=1∈X⊗n

Eε sup
f∈F

{
1

n

n∑
i=1

2εif(xi)− f(xi)
2

}

then the following minimax lower bound on regret holds:

inf
ĝ∈G

sup
P

{
E(ĝ − Y )2 − inf

f∈F
E(f − Y )2

}
≥ Ro((1 + c)n,F)− c

1 + c
Ro(cn,G),

for any c > 0.

For the purposes of matching the performance of the Star procedure, we can take G =

F + star(F − F).
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3.2. Geometric Inference for General High Dimensional Linear Models

3.2.1. Introduction

Driven by a wide range of applications, high-dimensional linear inverse problems such as

noisy compressed sensing, sign vector recovery, trace regression, orthogonal matrix estima-

tion, and noisy matrix completion have drawn significant recent interest in several fields, in-

cluding statistics, applied mathematics, computer science, and electrical engineering. These

problems are often studied in a case-by-case fashion, with the main focus on estimation.

Although similarities in the technical analyses have been suggested heuristically, a gen-

eral unified theory for statistical inference including estimation, confidence intervals and

hypothesis testing is still yet to be developed.

In this thesis, we consider a general linear inverse model

Y = X (M) + Z (3.11)

where M ∈ Rp is the vectorized version of the parameter of interest, X : Rp → Rn is a

linear operator (matrix in Rn×p), and Z ∈ Rn is a noise vector. We observe (X , Y ) and

wish to recover the unknown parameter M . A particular focus is on the high-dimensional

setting where the ambient dimension p of the parameter M is much larger than the sample

size n, i.e., the dimension of Y . In such a setting, the parameter of interest M is commonly

assumed to have, with respect to a given atom set A, a certain low complexity structure

which captures the true dimension of the statistical estimation problem. A number of

high-dimensional inference problems actively studied in the recent literature can be seen as

special cases of this general linear inverse model.

High Dimension Linear Regression/Noisy Compressed Sensing. In high-dimensional
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linear regression, one observes (X,Y ) with

Y = XM + Z, (3.12)

where Y ∈ Rn, X ∈ Rn×p with p � n, M ∈ Rp is a sparse signal, and Z ∈ Rn is a noise

vector. The goal is to recover the unknown sparse signal of interest M ∈ Rp based on

the observation (X,Y ) through an efficient algorithm. Many estimation methods including

`1-regularized procedures such as the Lasso and Dantzig Selector have been developed and

analyzed. See, for example, Tibshirani (1996); Candès and Tao (2007); Bickel et al. (2009);

Bühlmann and van de Geer (2011) and the references therein. Confidence intervals and

hypothesis testing for high-dimensional linear regression have also been actively studied in

the last few years. A common approach is to first construct a de-biased Lasso or de-biased

scaled-Lasso estimator and then make inference based on the asymptotic normality of low-

dimensional functionals of the de-biased estimator. See, for example, Bühlmann (2013);

Zhang and Zhang (2014); van de Geer et al. (2014); Javanmard and Montanari (2014).

Trace Regression. Accurate recovery of a low-rank matrix based on a small number of

linear measurements has a wide range of applications and has drawn much recent attention

in several fields. See, for example, Recht et al. (2010); Koltchinskii (2011a); Rohde et al.

(2011); Koltchinskii et al. (2011); Candes and Plan (2011). In trace regression, one observes

(Xi, Yi), i = 1, ..., n with

Yi = Tr(XT
i M) + Zi, (3.13)

where Yi ∈ R, Xi ∈ Rp1×p2 are measurement matrices, and Zi are noise. The goal is to

recover the unknown matrix M ∈ Rp1×p2 which is assumed to be of low rank. Here the

dimension of the parameter M is p ≡ p1p2 � n. A number of constrained and penalized

nuclear minimization methods have been introduced and studied in both the noiseless and

noisy settings. See the aforementioned references for further details.
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Sign Vector Recovery. The setting of sign vector recovery is similar to the one for the

high-dimensional regression except the signal of interest is a sign vector. More specifically,

one observes (X,Y ) with

Y = XM + Z (3.14)

where Y ∈ Rn, X ∈ Rn×p, M ∈ {+1,−1}p is a sign vector, and Z ∈ Rn is a noise vector.

The goal is to recover the unknown sign signal M . Exhaustive search over the parameter

set is computationally prohibitive. The noiseless case of (3.14), known as the generalized

multi-knapsack problem (Khuri et al., 1994; Mangasarian and Recht, 2011), can be solved

through an integer program which is known to be computationally difficult even for checking

the uniqueness of the solution, see (Prokopyev et al., 2005; Valiant and Vazirani, 1986).

Orthogonal Matrix Recovery. In some applications the matrix of interest in trace

regression is known to be an orthogonal/rotation matrix (Ten Berge, 1977; Gower and

Dijksterhuis, 2004). More specifically, in orthogonal matrix recovery, we observe (Xi, Yi),

i = 1, . . . , n as in the trace regression model (3.13) where Xi ∈ Rm×m are measurement

matrices and M ∈ Rm×m is an orthogonal matrix. The goal is to recover the unknown M

using an efficient algorithm. Computational difficulties come in because of the non-convex

constraint.

Other high-dimensional inference problems that are closely connected to the structured lin-

ear inverse model (3.11) include Matrix Completion Candes and Plan (2010); Chatterjee

(2012); Cai and Zhou (2013), sparse and low rank decomposition in robust principal com-

ponent analysis (Candès et al., 2011), and sparse noise and sparse parameter in demixing

problem (Amelunxen et al., 2013), to name a few. We will discuss the connections in Section

3.2.3.

There are several fundamental questions for this general class of high-dimensional linear

inverse problems:
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Statistical Questions: How well can the parameter M be estimated? What is the

intrinsic difficulty of the estimation problem? How to provide inference guarantees

for M , i.e., confidence intervals and hypothesis testing, in general?

Computational Questions: Are there computationally efficient (polynomial time

complexity) algorithms that are also sharp in terms of statistical estimation and in-

ference?

High-Dimensional Linear Inverse Problems

Linear inverse problems have been well studied in the classical setting where the parameter

of interest lies in a convex set. See, for example, Tikhonov and Arsenin (1977), O’Sullivan

(1986), and Johnstone and Silverman (1990). In particular, for estimation of a linear

functional over a convex parameter space, Donoho (1994) developed an elegant geometric

characterization of the minimax theory in terms of the modulus of continuity. However, the

theory relies critically on the convexity assumption of the parameter space. As shown in

Cai and Low (2004a,b), the behavior of the functional estimation and confidence interval

problems is significantly different even when the parameter space is the union of two convex

sets. For the high-dimensional linear inverse problems considered in the present thesis,

the parameter space is highly non-convex and the theory and techniques developed in the

classical setting are not readily applicable.

For high-dimensional linear inverse problems such as those mentioned earlier, the parameter

space has low-complexity and exhaustive search often leads to the optimal solution in terms

of statistical accuracy. However, it is computationally prohibitive and requires the prior

knowledge of the true low complexity. In recent years, relaxing the problem to a convex

program such as `1 or nuclear norm minimization and then solving it with optimization

techniques has proven to be a powerful approach in individual cases.

Unified approaches to signal recovery recently appeared both in the applied mathematics

literature (Chandrasekaran et al., 2012; Amelunxen et al., 2013; Oymak et al., 2013) and in
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the statistics literature (Negahban et al., 2012). Oymak et al. (2013) studied the generalized

LASSO problem through conic geometry with a simple bound in terms of the `2 norm of

the noise vector (which may not vanish to 0 as sample size n increases). (Chandrasekaran

et al., 2012) introduced the notion of atomic norm to define a low complexity structure

and showed that Gaussian width captures the minimum sample size required to ensure

recovery. Amelunxen et al. (2013) studied the phase transition for the convex algorithms

for a wide range of problems. These suggest that the geometry of the local tangent cone

determines the minimum number of samples to ensure successful recovery in the noiseless or

deterministic noise settings. Negahban et al. (2012) studied the regularized M -estimation

with a decomposable norm penalty in the additive Gaussian noise setting.

Another line of research is focused on a detailed analysis of the Empirical Risk Minimization

(ERM) (Lecué and Mendelson, 2013). The analysis is based on the empirical processes

theory, with a proper localized rather than global analysis. In addition to convexity, the

ERM requires the prior knowledge on the size of the bounded parameter set of interest.

This knowledge is not needed for the algorithm we propose in the present thesis.

Compared to estimation, there is a paucity of methods and theoretical results for confi-

dence intervals and hypothesis testing for these linear inverse models. Specifically for high-

dimensional linear regression, Bühlmann (2013) studied a bias correction method based on

ridge estimation, while Zhang and Zhang (2014) proposed bias correction via score vector

using scaled Lasso as the initial estimator. van de Geer et al. (2014); Javanmard and Mon-

tanari (2014) focused on de-sparsifying Lasso by constructing a near inverse of the Gram

matrix; the first paper uses nodewise Lasso, while the other uses `∞ constrained quadratic

programing, with similar theoretical guarantees. To the best of our knowledge, a unified

treatment of inference procedures for general high-dimensional linear inverse models is yet

to be developed.
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Geometric Characterization of Linear Inverse Problems

We take a geometric perspective in studying the model (3.11). The parameter M inherits

certain low complexity structure with respect to a given atom set in a high-dimensional

space, thus introducing computationally difficult non-convex constraints. However, proper

convex relaxation based on the atom structure provides a computationally feasible solution.

For point estimation, we are interested in how the local convex geometry around the true

parameter affects the estimation procedure and the intrinsic estimation difficulty. For infer-

ence, we develop general procedures induced by the convex geometry, addressing inferential

questions such as confidence intervals and hypothesis testing. We are also interested in the

sample size condition induced by the local convex geometry for valid inference guarantees.

This local geometry plays a key role in our analysis.

Complexity measures such as Gaussian width and Rademacher complexity are well studied

in the empirical processes theory (Ledoux and Talagrand, 1991; Talagrand, 1996a), and are

known to capture the difficulty of the estimation problem. Covering/Packing entropy and

volume ratio (Yang and Barron, 1999; Vershynin, 2011; Ma and Wu, 2013b) are also widely

used in geometric functional analysis to measure the complexity. In this thesis, we will show

how these geometric quantities affect the computationally efficient estimation/inference

procedure, as well as the intrinsic difficulties.

Our Contributions

The main result can be summarized as follows:

Unified convex algorithms. We propose a general computationally feasible convex

program that provides near optimal rate of convergence simultaneously for a collection

of high-dimensional linear inverse problems. We also study a general efficient convex

program that leads to statistical inference for linear contrasts of M , such as confidence

intervals and hypothesis testing. The point estimation and statistical inference are
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adaptive in the sense that the difficulty (rate of convergence, conditions on sample

size, etc.) automatically adapts to the low complexity structure of the true parameter.

Local geometric theory. A unified theoretical framework is provided for analyzing

high-dimensional linear inverse problems based on the local conic geometry and dual-

ity. Local geometric complexities govern the difficulty of statistical inference for the

linear inverse problems.

Specifically, on the local tangent cone TA(M) (defined in (3.18)), geometric quantities such

as the Gaussian width w(Bp
2 ∩ TA(M)) and Sudakov minoration estimate e(Bp

2 ∩ TA(M))

(both defined in Section 3.2.2; Bp
2 denotes unit Euclidean ball in Rp) capture the rate of

convergence. In terms of the upper bound, with overwhelming probability, if n % w2(Bp
2 ∩

TA(M)), the estimation error under `2 norm for our algorithm is

σ
γA(M)w(XA)√

n
,

where γA(M) is the local asphericity ratio defined in (3.25). A minimax lower bound for

estimation over the local tangent cone TA(M) is

σ
e(Bp

2 ∩ TA(M))√
n

.

For statistical inference, we establish valid asymptotic normality for any linear functional

〈v,M〉 (with ‖v‖`1 bounded) of the parameter M under the condition

lim
n,p(n)→∞

γ2
A(M)w2(XA)√

n
= 0,

which can be compared to the condition for point estimation consistency

lim
n,p(n)→∞

γA(M)w(XA)√
n

= 0.

There is a critical difference on the sufficient conditions between valid inference and esti-
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mation consistency — more stringent condition on sample size n is required for inference

beyond estimation. Intuitively, statistical inference is purely geometrized by Gaussian width

and Sudakov minoration estimate.

Organization

The rest of the section is structured as follows. In Section 3.2.2, after notation, definitions,

and basic convex geometry are reviewed, we formally present convex programs for recovering

the parameter M , and for providing inference guarantees for M . The properties of the

proposed procedures are then studied in Section 3.2.3 under the Gaussian setting, where a

geometric theory is developed, along with the minimax lower bound, as well as the confidence

intervals and hypothesis testing. Applications to particular high-dimensional estimation

problems are caculated in Section 3.2.3. Section 3.2.4 extends the geometric theory beyond

the Gaussian case. Further discussions appear in Section 3.2.5, and the proofs of the main

results are given in Appendix and Supplement Cai et al. (2014).

3.2.2. Preliminaries and Algorithms

Let us first review notation and definitions that will be used in the rest of the section. We

use ‖ · ‖`q to denote the `q norm of a vector or induced norm of a matrix, and use Bp
2 to

denote the unit Euclidean ball in Rp. For a matrix M , denote by ‖M‖F , ‖M‖∗, and ‖M‖

the Frobenius norm, nuclear norm, and spectral norm of M respectively. When there is no

confusion, we also denote ‖M‖F = ‖M‖`2 for a matrix M . For a vector V ∈ Rp, denote

its transpose by V ∗. The inner product on vectors is defined as usual 〈V1, V2〉 = V ∗1 V2. For

matrices 〈M1,M2〉 = Tr(M∗1M2) = Vec(M1)∗Vec(M2), where Vec(M) ∈ Rpq denotes the

vectorized version of matrix M ∈ Rp×q. X : Rp → Rn denotes a linear operator from Rp to

Rn. Following the notation above, M∗ ∈ Rq×p is the adjoint (transpose) matrix of M and

X ∗ : Rn → Rp is the adjoint operator of X such that 〈X (V1), V2〉 = 〈V1,X ∗(V2)〉.

For a convex compact set K in a metric space with the metric d, the ε-entropy for a

convex compact set K with respect to the metric d is denoted in the following way: ε-
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packing entropy logM(K, ε, d) is the logarithm of the cardinality of the largest ε-packing set.

Similarly, ε-covering entropy logN (K, ε, d) is the log-cardinality of the smallest ε-covering

set with respect to metric d. A well known result isM(K, 2ε, d) ≤ N (K, ε, d) ≤M(K, ε, d).

When the metric d is the usual Euclidean distance, we will omit d in M(K, ε, d) and

N (K, ε, d) and simply write M(K, ε) and N (K, ε).

For two sequences of positive numbers {an} and {bn}, we denote an & bn and an . bn if

there exist constants c0, C0 such that an
bn
≥ c0 and an

bn
≤ C0 respectively, for all n. We write

an � bn if an & bn and an . bn. Throughout the thesis, c, C denote constants that may

vary from place to place.

Basic Convex Geometry

The notion of low complexity is based on a collection of basic atoms. We denote the

collection of these basic atoms as an atom set A, either countable or uncountable. A

parameter M is of complexity k in terms of the atoms in A if M can be expressed as a

linear combination of at most k atoms in A, i.e., there exists a decomposition

M =
∑
a∈A

ca(M) · a, where
∑
a∈A

1{ca(M)6=0} ≤ k.

In convex geometry (Pisier, 1999), the Minkowski functional (gauge) of a symmetric convex

body K is defined as

‖x‖K = inf{t > 0 : x ∈ tK}.

Let A be a collection of atoms that is a compact subset of Rp. Without loss of generality,

assume A is contained inside `∞ ball. We assume that the elements of A are extreme

points of the convex hull conv(A) (in the sense that for any x ∈ Rp, sup{〈x, a〉 : a ∈ A} =

sup{〈x, a〉 : a ∈ conv(A)}). The atomic norm ‖x‖A for any x ∈ Rp is defined as the gauge
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of conv(A):

‖x‖A = inf{t > 0 : x ∈ t conv(A)}.

As noted in Chandrasekaran et al. (2012), the atomic norm can also be written as

‖x‖A = inf

{∑
a∈A

ca : x =
∑
a∈A

ca · a, ca ≥ 0

}
. (3.15)

The dual norm of this atomic norm is defined in the following way (since the atoms in A

are the extreme points of conv(A)),

‖x‖∗A = sup{〈x, a〉 : a ∈ A} = sup{〈x, a〉 : ‖a‖A ≤ 1}. (3.16)

We have the following (“Cauchy-Schwarz”) symmetric relation for the norm and its dual

〈x, y〉 ≤ ‖x‖∗A‖y‖A. (3.17)

It is clear that the unit ball with respect to the atomic norm ‖ · ‖A is the convex hull of the

set of atoms A. The tangent cone at x with respect to the scaled unit ball ‖x‖A conv(A)

is defined to be

TA(x) = cone {h : ‖x+ h‖A ≤ ‖x‖A} . (3.18)

Also known as a recession cone, TA(x) is the collection of directions where the atomic

norm becomes smaller. The “size” of the tangent cone at the true parameter M will affect

the difficulty of the recovery problem. We focus on the cone intersected with the unit

ball Bp
2 ∩ TA(M) in analyzing the complexity of the cone. See Figure 14 for an intuitive

illustration.

It is helpful to look at the atom set, atomic norm and tangent cone geometry in a few
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kMkAconv(A)

M

M + h

h

TA(M)

Figure 14: Tangent cone: general illus-
tration in 2D. The red shaped area is the
scaled convex hull of atom set. The blue
dashed line forms the tangent cone at M .
Black arrow denotes the possible direc-
tions inside the cone.

M1

M2

M3

Figure 15: Tangent cone illustration in
3D for sparse regression. For three pos-
sible locations Mi, 1 ≤ i ≤ 3, the tangent
cone are different, with cones becoming
more complex as i increases.

examples to better illustrate the general model and notion of low complexity.

Example 3.2.1. For sparse signal recovery in high-dimensional linear regression, the atom

set consists of the unit basis vectors {±ei}, the atomic norm is the vector `1 norm, and its

dual norm is the vector `∞ norm. The convex hull conv(A) is called the cross-polytope.

Figure 15 illustrates this tangent cone for 3D `1 norm ball for 3 different cases TA(Mi), 1 ≤

i ≤ 3. The “angle” or “complexity” of the local tangent cone determines the difficulty of

recovery. Previous work showed that the algebraic characterization (sparsity) of the param-

eter space drives the global rate, and we are arguing that the geometric characterization

through the local tangent cone provides an intuitive and refined local approach.

Example 3.2.2. In trace regression and matrix completion, the goal is to recover low rank

matrices. In such settings, the atom set consists of the rank one matrices (matrix manifold)

A = {uv∗ : ‖u‖`2 = 1, ‖v‖`2 = 1} and the atomic norm is the nuclear norm and the dual

norm is the spectral norm. The convex hull conv(A) is called the nuclear norm ball of

matrices. The position of the true parameter on the scaled nuclear norm ball determines
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the geometry of the local tangent cone, thus affecting the estimation difficulty.

Example 3.2.3. In integer programming, one would like to recover the sign vectors whose

entries take on values ±1. The atom set is all sign vectors (cardinality 2p) and the convex

hull conv(A) is the hypercube. Tangent cones for each parameter have the same structure

in this case.

Example 3.2.4. In orthogonal matrix recovery, the matrix of interest is constrained to

be orthogonal. In this case, the atom set is all orthogonal matrices and the convex hull

conv(A) is the spectral norm ball. Similar to sign vector recovery, the local tangent cones

for each orthogonal matrix share similar geometric property.

Gaussian Width, Sudakov Estimate, and Other Geometric Quantities

We first introduce two complexity measures, the Gaussian width and Sudakov estimate.

Definition 3.2.1 (Gaussian Width). For a compact set K ∈ Rp, the Gaussian width is

defined as

w(K) := Eg
[

sup
v∈K
〈g, v〉

]
. (3.19)

where g ∼ N(0, Ip) is the standard multivariate Gaussian vector.

Gaussian width quantifies the probability that a randomly oriented subspace misses a con-

vex subset. It was used in Gordon’s analysis (Gordon, 1988), and was shown recently to

play a crucial rule in linear inverse problems in various noiseless or deterministic noise

settings, see, for example, Chandrasekaran et al. (2012); Amelunxen et al. (2013). Ex-

plicit upper bounds on the Gaussian width for different convex sets have been given in

Chandrasekaran et al. (2012); Amelunxen et al. (2013). For example, if M ∈ Rp is a

s-sparse vector, w(Bp
2 ∩ TA(M)) .

√
s log p/s. When M ∈ Rp×q is a rank-r matrix,

w(Bp
2 ∩ TA(M)) .

√
r(p+ q − r). For sign vector in Rp, w(Bp

2 ∩ TA(M)) .
√
p, while

for orthogonal matrix in Rm×m, w(Bp
2 ∩ TA(M)) .

√
m(m− 1). See Section 3.4 propo-

sitions 3.10-3.14 in Chandrasekaran et al. (2012) for detailed calculations. The Gaussian
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width as a complexity measure of the local tangent cone will be used in the upper bound

analysis in Sections 3.2.3 and 3.2.4.

Definition 3.2.2 (Sudakov Minoration Estimate). The Sudakov estimate of a compact set

K ∈ Rp is defined as

e(K) := sup
ε

ε
√

logN (K, ε). (3.20)

where N (K, ε) denotes the ε-covering number of set K with respect to the Euclidean norm.

Sudakov estimate has been used in the literature as a measure of complexity for a general

functional class that nearly matches (from below) the expected supremum of a gaussian

process. By balancing the cardinality of the covering set at scale ε and the covering radius

ε, the estimate maximizes

ε
√

logN (Bp
2 ∩ TA(M), ε),

thus determining the complexity of the cone TA(M). Sudakov estimate as a complexity

measure of the local tangent cone is useful for the minimax lower bound analysis.

The following well-known result (Dudley, 1967; Ledoux and Talagrand, 1991) establishes a

relation between the Gaussian width w(·) and Sudakov estimate e(·):

Lemma 3.2.1 (Sudakov Minoration and Dudley Entropy Integral). For any compact subset

K ⊆ Rp, there exist a universal constant c > 0 such that

c · e(K) ≤ w(K) ≤ 24

∫ ∞
0

√
logN (K, ε)dε. (3.21)

In the literature, another complexity measure—volume ratio—has also been used to char-

acterize the minimax lower bounds (Ma and Wu, 2013b). Volume ratio has been studied

in Pisier (1999) and Vershynin (2011). For a convex set K ∈ Rp, volume ratio used in the

present thesis is defined as follows.
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Definition 3.2.3 (Volume Ratio). The volume ratio is defined as

v(K) :=
√
p

(
vol(K)

vol(Bp
2)

) 1
p

. (3.22)

The recovery difficulty of the linear inverse problem also depends on other geometric quan-

tities defined on the local tangent cone TA(M): the local isometry constants φA(M,X )

and ψA(M,X ) and the local asphericity ratio γA(M). The local isometry constants are

defined for the local tangent cone at the true parameter M as

φA(M,X ) := inf

{‖X (h)‖`2
‖h‖`2

: h ∈ TA(M), h 6= 0

}
(3.23)

ψA(M,X ) := sup

{‖X (h)‖`2
‖h‖`2

: h ∈ TA(M), h 6= 0

}
. (3.24)

The local isometry constants measure how well the linear operator preserves the `2 norm

within the local tangent cone. Intuitively, the larger the ψ or the smaller the φ is, the harder

the recovery is. We will see later that the local isometry constants are determined by the

Gaussian width under the Gaussian ensemble design.

The local asphericity ratio is defined as

γA(M) := sup

{‖h‖A
‖h‖`2

: h ∈ TA(M), h 6= 0

}
(3.25)

and measures how extreme the atomic norm is relative to the `2 norm within the local

tangent cone.

Point Estimation via Convex Relaxation

We now return to the linear inverse model (3.11) in the high-dimensional setting. Suppose

we observe (X , Y ) as in (3.11) where the parameter of interest M is assumed to have low

complexity with respect to a given atom set A. The low complexity of M introduces a non-

convex constraint, which leads to serious computational difficulties if solved directly. Convex
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relaxation is an effective and natural approach in such a setting. In most interesting cases,

the atom set is not too rich in the sense that conv(A) ⊂ Bp
2 . For such cases, we propose

a generic convex constrained minimization procedure induced by the atomic norm and the

corresponding dual norm to estimate M :

M̂ = arg min
M

{‖M‖A : ‖X ∗(Y −X (M))‖∗A ≤ λ} (3.26)

where λ is a localization radius (tuning parameter) that depends on the sample size, noise

level, and geometry of the atom set A. An explicit formula for λ is given in (3.31) in the case

of Gaussian noise. The atomic norm minimization (3.26) is a convex relaxation of the low

complexity structure, and λ specifies the localization scale based on the noise. This generic

convex program utilizes the duality and recovers the low complexity structure adaptively.

The Dantzig selector for high-dimensional sparse regression (Candès and Tao, 2007) and

the constrained nuclear norm minimization Candes and Plan (2011) for trace regression are

particular examples of (3.26). The properties of the estimator M̂ will be investigated in

Sections 3.2.3 and 3.2.4.

In cases where the atomic norm ball is rich, i.e. conv(A) 6⊂ Bp
2 , a slightly stronger program

M̂ = arg min
M

{‖M‖A : ‖X ∗(Y −X (M))‖∗A ≤ λ, ‖X ∗(Y −X (M))‖`2 ≤ µ} (3.27)

with λ, µ as tuning parameters will yield optimal guarantees. The analysis of (3.27) is

essentially the same as (3.26). For conciseness, we will present the main result for the

interesting case (3.26). We remark that the atomic dual norm constraint is crucial for

attaining optimal behavior unless conv(A) ⊃ Bp
2 . For instance, the convex program in

Chandrasekaran et al. (2012) with only the `2 constraint will lead to a suboptimal estimator.
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Statistical Inference via Feasibility of Convex Program

In the high-dimensional setting, p-values as well as confidence intervals are important in-

ferential questions beyond point estimation. In this section we will show how to perform

statistical inference for the linear inverse model (3.11). Let M ∈ Rp be the vectorized pa-

rameter of interest, and {ei, 1 ≤ i ≤ p} are the corresponding basis vectors. Consider the

following convex feasibility problem for matrix Ω ∈ Rp×p, where each row Ωi· satisfies

‖X ∗XΩ∗i· − ei‖∗A ≤ η, ∀1 ≤ i ≤ p. (3.28)

Here η is some tuning parameter that depends on the sample size and geometry of the atom

setA. One can also solve a stronger version of the above convex program for η ∈ R,Ω ∈ Rp×p

simultaneously:

(Ω, ηn) = arg min
Ω,η

{η : ‖X ∗XΩ∗i· − ei‖∗A ≤ η, ∀1 ≤ i ≤ p} . (3.29)

Built upon the constrained minimization estimator M̂ in (3.26) and feasible matrix Ω in

(3.29), the de-biased estimator for inference on parameter M is defined as

M̃ := M̂ + ΩX ∗(Y −X (M̂)). (3.30)

We will establish the asymptotic normality for linear contrast 〈v,M〉, where v ∈ Rp, ‖v‖`1 ≤

ρ, ρ does not grow with n, p(n), and construct confidence intervals and hypothesis tests

based on the asymptotic normality result. In the case of high-dimensional linear regression,

de-biased estimators has been investigated in Bühlmann (2013); Zhang and Zhang (2014);

van de Geer et al. (2014); Javanmard and Montanari (2014). The convex feasibility program

we proposed here can be viewed as a unified treatment for general linear inverse models.

We will show that under some conditions on the sample size and the local tangent cone,

asymptotic confidence intervals and hypothesis tests are valid for linear contrast 〈v,M〉
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which include as a special case the individual coordinates of M .

3.2.3. Local Geometric Theory: Gaussian Setting

We establish in this section a general theory of geometric inference in the Gaussian setting

where the noise vector Z is Gaussian and the linear operator X is the Gaussian ensemble

design (Definition 3.2.4). In analyzing Model 3.11, without loss of generality, we can scale

X , Z simultaneously such that column `2 norm does not grow with n. In the stochastic

noise setting, the noise Zi, 1 ≤ i ≤ n is scaled correspondingly to noise level σ/
√
n.

Definition 3.2.4 (Gaussian Ensemble Design). Let X ∈ Rn×p be the matrix form of the

linear operator X : Rp → Rn. X is Gaussian ensemble if each element is an i.i.d Gaussian

random variable with mean 0 and variance 1
n .

Our analysis is quite different from the case by case global analysis of the Dantzig selector,

Lasso and nuclear norm minimization. We show a stronger result which adapts to the

local tangent cone geometry. All the analyses in our theory are non-asymptotic, and the

constants are explicit. Another advantage is that the local analysis yields robustness for

a given parameter (with near but not exact low complexity), as the convergence rate is

captured by the geometry of the associated local tangent cone at a given M . Later in

Section 3.2.4 we will show how to extend the theory to a more general setting.

Local Geometric Upper Bound

For the upper bound analysis, we need to choose a suitable localization radius λ (in the

convex program (3.26)) to guarantee that the true parameter M is in the feasible set with

high probability. In the case of Gaussian noise the tuning parameter is chosen as

λA(X , σ, n) =
σ√
n

{
w(XA) + δ · sup

v∈A
‖X v‖`2

}
� σ√

n
w(XA) (3.31)

where XT is the image of the set T under the linear operator X , and δ > 0 can be chosen

arbitrarily according to the probability of success we would like to attain (δ is commonly
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chosen at order
√

log p). λA(X , σ, n) is a global parameter that depends on the linear

operator X and the atom set A, but, importantly, not on the complexity of M . The

following theorem geometrizes the local rate of convergence in the Gaussian case.

Theorem 3.2.1 (Gaussian Ensemble: Convergence Rate). Suppose we observe (X , Y ) as

in (3.11) with the Gaussian ensemble design and Z ∼ N(0, σ
2

n In). Let M̂ be the solution of

(3.26) with λ chosen as in (3.31). Let 0 < c < 1 be a constant. For any δ > 0, if

n ≥ 4[w(Bp
2 ∩ TA(M)) + δ]2

c2
∨ 1

c
,

then with probability at least 1− 3 exp(−δ2/2),

‖M̂ −M‖A ≤ γA(M) · ‖M̂ −M‖`2 , and further we have

‖M̂ −M‖`2 ≤
1

1− c‖X (M̂ −M)‖`2 ≤
2σ

(1− c)2
· γA(M)w(XA)√

n
.

Theorem 3.2.1 gives bounds for the estimation error under both the `2 norm loss and the

atomic norm loss, as well as for the in sample prediction error. The upper bounds are

determined by the geometric quantities w(XA), γA(M) and w(Bp
2 ∩ TA(M)). Take, for

example, the estimation error under the `2 loss. Given any ε > 0, the smallest sample size

n to ensure the recovery error ‖M̂ −M‖`2 ≤ ε with probability at least 1− 3 exp(−δ2/2) is

n ≥ max

{
4σ2

(1− c)4
· γ

2
A(M)w2(XA)

ε2
,

4w2(Bp
2 ∩ TA(M))

c2

}
.

That is, the minimum sample size for guaranteed statistical accuracy is driven by two

geometric terms w(XA)γA(M) and w(Bp
2 ∩TA(M)). We will see in Section 3.2.3 that these

two rates match in a range of specific high-dimensional estimation problems.

The proof of Theorem 3.2.1 (and Theorem 3.2.4 in Section 3.2.4) relies on the following two

key lemmas.

Lemma 3.2.2 (Choice of Tuning Parameter). Consider the linear inverse model (3.11)
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with Z ∼ N(0, σ
2

n In). For any δ > 0, with probability at least 1− exp(−δ2/2) on the σ-field

of Z (conditional on X ),

‖X ∗(Z)‖∗A ≤
σ√
n

{
w(XA) + δ · sup

v∈A
‖X v‖`2

}
. (3.32)

This lemma is proved in Appendix. The particular value of λA(X , σ, n) for a range of

examples will be calculated in Section 3.2.3.

The next lemma addresses the local behavior of the linear operator X around the true

parameter M under the Gaussian ensemble design. We call a linear operator locally near-

isometric if the local isometry constants are uniformly bounded. The following lemma tells

us that in the most widely used Gaussian ensemble case, the local isometry constants are

guaranteed to be bounded, given the sample size n is at least of order [w(Bp
2 ∩ TA(M))]2.

Hence, the difficulty of the problem is captured by the Gaussian width.

Lemma 3.2.3 (Local Isometry Bound for Gaussian Ensemble). Assume the linear operator

X is the Gaussian ensemble design. Let 0 < c < 1 be a constant. For any δ > 0, if

n ≥ 4[w(Bp
2 ∩ TA(M)) + δ]2

c2
∨ 1

c
,

then with probability at least 1 − 2 exp(−δ2/2), the local isometry constants are around 1

with

φA(M,X ) ≥ 1− c and ψA(M,X ) ≤ 1 + c.

Local Geometric Inference: Confidence Intervals and Hypothesis Testing

For statistical inference on the general linear inverse model, we would like to choose the

smallest η in (3.28) to ensure that, under the Gaussian ensemble design, the feasibility set

for (3.28) is non-empty with high probability. The following theorem establishes geometric
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inference for Model (3.11).

Theorem 3.2.2 (Geometric Inference). Suppose we observe (X , Y ) as in (3.11) with the

Gaussian ensemble design and Z ∼ N(0, σ
2

n In). Let M̂ ∈ Rp,Ω ∈ Rp×p be the solution

of (3.26) and (3.28) , and let M̃ ∈ Rp be the de-biased estimator as in (3.30). Assume

p ≥ n % w2(Bp
2 ∩ TA(M)). If the tuning parameters λ, η are chosen with

λ � σ√
n
w(XA), η � 1√

n
w(XA),

convex programs (3.26) and (3.28) have non-empty feasibility set for Ω with high probability.

The following decomposition

M̃ −M = ∆ +
σ√
n

ΩX ∗W (3.33)

holds, where W ∼ N(0, In) is the standard Gaussian vector with

ΩX ∗W ∼ N(0,ΩX ∗XΩ∗)

and ∆ ∈ Rp satisfies ‖∆‖`∞ - γ2
A(M) ·λη � σ γ

2
A(M)w2(XA)

n . Suppose (n, p(n)) as a sequence

satisfies

lim sup
n,p(n)→∞

γ2
A(M)w2(XA)√

n
= 0,

then for any v ∈ Rp, ‖v‖`1 ≤ ρ with ρ finite, we have the asymptotic normality for the

functional 〈v, M̃〉,

√
n

σ

(
〈v, M̃〉 − 〈v,M〉

)
=
√
v∗[ΩX ∗XΩ∗]v · Z0 + op(1) (3.34)

where Z0 ∼ N(0, 1) and lim
n,p(n)→∞

op(1) = 0 means convergence in probability.

It follows from Theorem 3.2.2 that a valid asymptotic (1− α)-level confidence intervals for
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Mi, 1 ≤ i ≤ p (when v is taken as ei in Theorem 3.2.2) is

[
M̃i + Φ−1

(α
2

)
σ

√
[ΩX ∗XΩ∗]ii

n
, M̃i + Φ−1

(
1− α

2

)
σ

√
[ΩX ∗XΩ∗]ii

n

]
. (3.35)

If we are interested in a linear contrast 〈v,M〉 = v0, ‖v‖`1 ≤ ρ with ρ fixed, consider the

hypothesis testing problem

H0 :

p∑
i=1

viMi = v0 v.s. Hα :

p∑
i=1

viMi 6= v0.

The test statistic is
√
n(〈v,M̃〉−v0)

σ(v∗[ΩX ∗XΩ∗]v)1/2 and under the null, it follows an asymptotic standard

normal distribution as n→∞. Similarly, the p-value is of the form 2−2Φ−1

(∣∣∣∣ √
n(〈v,M̃〉−v0)

σ(v∗[ΩX ∗XΩ∗]v)1/2

∣∣∣∣)
as n→∞.

Note the asymptotic normality holds for any finite linear contrast, and the asymptotic vari-

ance nearly achieves the Fisher information lower bound, as Ω is an estimate of the inverse

of X ∗X . For fixed dimension inference, Fisher information lower bound is asymptotically

optimal.

Remark 3.2.1. Note that the condition required for asymptotic normality and valid con-

fidence intervals,

lim
n,p(n)→∞

γ2
A(M)w2(XA)√

n
= 0,

is stronger than the one for estimation consistency of the parameter M under the `2 norm,

lim
n,p(n)→∞

γA(M)w(XA)√
n

= 0.

For inference, we do require stronger condition in order to learn the order of the bias of the

estimate. In the case when n > p and the Gaussian ensemble design, X ∗X is non-singular

with high probability. With the choice of Ω = (X ∗X )−1 and η = 0, for any i ∈ [p], the
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following holds non-asymptotically,

√
n(M̃i −Mi) ∼ N(0, σ2[(X ∗X )−1]ii).

Extension: Correlated Design

The results in Section 3.2.3 and 3.2.3 can be extended beyond Gaussian ensemble (where

E[X ∗X ] = I) to Gaussian design with known covariance matrix Σ (where E[X ∗X ] = Σ).

Consider the following slightly modified point estimation and inference procedure (with

tuning parameter λ, η)

Point Estimation via M̂ M̂ = arg min
M

{‖M‖A : ‖X ∗(Y −X (M))‖∗A ≤ λ}

Inference via M̃ Ω : ‖X ∗XΩ∗i· − Σ
1
2 ei‖∗A ≤ η, ∀1 ≤ i ≤ p (3.36)

M̃ := M̂ + Σ−
1
2 ΩX ∗(Y −X (M̂))

where Ω ∈ Rp×p is an solution to the convex feasibility problem (3.36). Then the following

Corollary holds.

Corollary 3.2.1. Suppose we observe (X , Y ) as in (3.11), where the Gaussian design X

has covariance Σ and Z ∼ N(0, σ
2

n In). Consider the convex programs for estimation M̂ and

inference M̃ with the tuning parameters chosen as

λ � σ√
n
w(XA), η � 1√

n
w(XA).

Under the condition n % w(Bp
2 ∩ Σ

1
2 ◦ TA(M)), M̂ satisfies

‖M̂ −M‖`2 - σ
γA(M)w(XA)√

n
, ‖M̂ −M‖A - σ

γ2
A(M)w(XA)√

n
.
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Suppose (n, p(n)) as a sequence satisfies

lim sup
n,p(n)→∞

γ2
A(M)w2(XA)√

n
= 0,

then for any v ∈ Rp, ‖v‖`1 ≤ ρ with ρ finite, we have the asymptotic normality for the

functional 〈Σ 1
2 v, M̃〉,

√
n

σ

(
〈Σ 1

2 v, M̃〉 − 〈Σ 1
2 v,M〉

)
=
√
v∗[ΩX ∗XΩ∗]v · Z0 + op(1)

where Z0 ∼ N(0, 1) and lim
n,p(n)→∞

op(1) = 0 means convergence in probability.

Minimax Lower Bound for Local Tangent Cone

As seen in Section 3.2.3 and 3.2.3, the local tangent cone plays an important role in the

upper bound analysis. In this section, we are interested in restricting the parameter space

to the local tangent cone and seeing how the geometry of the cone affects the minimax lower

bound.

Theorem 3.2.3 (Lower bound Based on Local Tangent Cone). Suppose we observe (X , Y )

as in (3.11) with the Gaussian ensemble design and Z ∼ N(0, σ
2

n In). Let M be the true

parameter of interest. Let 0 < c < 1 be a constant. For any δ > 0, if n ≥ 4[w(Bp2∩TA(M))+δ]2

c2
∨

1
c . Then with probability at least 1− 2 exp(−δ2/2),

inf
M̂

sup
M ′∈TA(M)

E·|X ‖M̂ −M ′‖2`2 ≥
c0σ

2

(1 + c)2
·
(
e(Bp

2 ∩ TA(M))√
n

)2

for some universal constant c0 > 0. Here E·|X stands for the conditional expectation given

the design matrix X , and the probability statement is with respect to the distribution of X

under the Gaussian ensemble design.

Recall Theorem 3.2.1, the local upper bound is basically determined by γ2
A(M)w2(XA),

which in many examples in Section 3.2.3 is of the rate w2(Bp
2 ∩ TA(M)). The general
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relationship between these two quantities is given in Lemma 3.2.4 below, which is proved

in Supplement Cai et al. (2014).

Lemma 3.2.4. For any atom set A, we have the following relation

γA(M)w(A) ≥ w(Bp
2 ∩ TA(M))

where w(·) is the Gaussian width and γA(M) is defined in (3.25).

From Theorem 3.2.3, the minimax lower bound for estimation over the local tangent cone

is determined by the Sudakov estimate e2(Bp
2 ∩ TA(M)). It follows directly from Lemma

3.2.1 that there exists a universal constant c > 0 such that c · e(Bp
2 ∩ TA(M)) ≤ w(Bp

2 ∩

TA(M)) ≤ 24
∫∞

0

√
logN (Bp

2 ∩ TA(M), ε)dε. Thus under the Gaussian setting, both in

terms of the upper bound and lower bound, geometric complexity measures govern the

difficulty of the estimation problem, through closely related quantities: Gaussian width and

Sudakov estimate.

Application of the Geometric Approach

In this section we apply the general theory under the Gaussian setting to some of the

actively studied high-dimensional problems mentioned in Section 3.2.1 to illustrate the

wide applicability of the theory. The detailed proofs are deferred to Supplement Cai et al.

(2014).

High-Dimensional Linear Regression We begin by considering the high-dimensional

linear regression model (3.12) under the assumption that the true parameter M ∈ Rp

is sparse, say ‖M‖l0 = s. Our general theory applying to the `1 minimization recovers

the optimality results as in Dantzig selector and Lasso. In this case, it can be shown

that γA(M)w(A) and w(Bp
2 ∩ TA(M)) are of the same rate

√
s log p. See Supplement Cai

et al. (2014) for the detailed calculations. The asphericity ratio γA(M) ≤ 2
√
s reflects the

sparsity of M through the local tangent cone and the Gaussian width w(XA) � √log p. The
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following corollary follows from the geometric analysis of the high-dimensional regression

model.

Corollary 3.2.2. Consider the linear regression model (3.12). Assume that X ∈ Rn×p

is the Gaussian ensemble design and the parameter of interest M ∈ Rp is of sparsity s.

Let M̂ be the solution to the constrained `1 minimization (3.26) with λ = C1σ
√

log p
n . If

n ≥ C2s log p, then

‖M̂ −M‖`2 - σ

√
s log p

n
, ‖M̂ −M‖`1 - σs

√
log p

n
, ‖X (M̂ −M)‖`2 - σ

√
s log p

n
.

with high probability, where C1, C2 > 0 are some universal constants.

For `2 norm consistency of the estimation for M , we require lim
n,p(n)→∞

s log p
n = 0. However,

for valid inferential guarantee, the de-biased Dantzig selector type estimator M̃ satisfies

asymptotic normality under the condition lim
n,p(n)→∞

s log p√
n

= 0 through Theorem 3.2.2. Under

this condition, the confidence interval given in (3.35) has asymptotic coverage probability

of (1−α) and its expected length is at the parametric rate 1√
n

. Furthermore, the confidence

intervals do not depend on the specific value of s. Results in Section 3.2.3 and 3.2.3 recover

the best known result on confidence intervals as in Zhang and Zhang (2014); van de Geer

et al. (2014); Javanmard and Montanari (2014). Our result is a generic procedure that

compensates for the bias introduced by the point estimation convex program. All these

procedures are driven by local geometry.

Low Rank Matrix Recovery We now consider the recovery of low-rank matrices under

the trace regression model (3.13). The geometric theory leads to the optimal recovery results

for nuclear norm minimization and penalized trace regression in the existing literature.

Assume the true parameterM ∈ Rp×q has rank r. Let us examine the behavior of φA(M,X ),

γA(M), and λA(X , σ, n). Detailed calculations given in Supplement Cai et al. (2014) show

that in this case γA(M)w(A) and w(Bp
2 ∩ TA(M)) are of the same order

√
r(p+ q). The

asphericity ratio γA(M) ≤ 2
√

2r characterizes the low rank structure and the Gaussian
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width w(XA) � √p+ q. We have the following corollary for low rank matrix recovery.

Corollary 3.2.3. Consider the trace regression model (3.13). Assume that X ∈ Rn×pq is

the Gaussian ensemble design and the true parameter M ∈ Rp×q is of rank r. Let M̂ be

the solution to the constrained nuclear norm minimization (3.26) with λ = C1σ
√

p+q
n . If

n ≥ C2r(p+ q), then for some universal constants C1, C2 > 0, with high probability,

‖M̂ −M‖F - σ

√
r(p+ q)

n
, ‖M̂ −M‖∗ - σr

√
p+ q

n
, ‖X (M̂ −M)‖`2 - σ

√
r(p+ q)

n
.

For consistency under the Frobenius norm, the condition is lim
n,p(n),q(n)→∞

√
r(p+q)√
n

= 0. For

statistical inference, Theorem 3.2.2 requires lim
n,p(n),q(n)→∞

r(p+q)√
n

= 0, which is essentially

n & pq (sample size is larger than the dimension) for r = 1. This phenomenon happens

when the Gaussian width complexity of the rank-1 matrices is large, i.e., the atom set is too

rich. We remark that in practice, convex program (3.29) can still be used for constructing

confidence intervals and performing hypothesis testing. However, it is harder to provide

sharp upper bound theoretically for the approximation error η in (3.29), for any given

r, p, q.

Sign Vector Recovery We turn to the sign vector recovery model (3.14) where the

parameter of interest M ∈ {+1,−1}p is a sign vector. The convex hull of the atom set is then

the `∞ norm ball. Applying the general theory to the constrained `∞ norm minimization

(3.27) leads to the optimal rates of convergence for the sign vector recovery. The calculations

given in Supplement Cai et al. (2014) show that the asphericity ratio γA(M) ≤ 1 and the

Gaussian width w(XBp
2) � √p. Geometric theory when applied to sign vector recovery

shows the following Corollary.

Corollary 3.2.4. Consider the model (3.14) where the true parameter M ∈ {+1,−1}p is a

sign vector. Assume that X ∈ Rn×p is the Gaussian ensemble design. Let M̂ be the solution

to the convex program (3.27) with λ = C1σ
p√
n

and µ = C1σ
√

p
n . If n ≥ C2p, then for some
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universal constant C > 0, with high probability,

‖M̂ −M‖`2 , ‖M̂ −M‖`∞ , ‖X (M̂ −M)‖`2 ≤ C · σ
√
p

n
.

Orthogonal Matrix Recovery We now treat orthogonal matrix recovery using the spec-

tral norm minimization. Please see Example 4 in Section 3.2.2 for details. Consider the

same model as in trace regression, but the parameter of interest M ∈ Rm×m is an orthogonal

matrix. One can show that w(Bp
2 ∩TA(M)) is of order

√
m2 and γA(M) ≤ 1. Applying the

geometric analysis to the constrained spectral norm minimization (3.27) yields the following.

Corollary 3.2.5. Consider the orthogonal matrix recovery model (3.13). Assume that

X ∈ Rn×m2
is the Gaussian ensemble matrix and the true parameter M ∈ Rm×m is an

orthogonal matrix. Let M̂ be the solution to the program (3.27) with λ = C1σ
√

m3

n and

µ = C1σ
√

m2

n . If n ≥ C2m
2, then, with high probability,

‖M̂ −M‖F , ‖M̂ −M‖, ‖X (M̂ −M)‖`2 ≤ C · σ
√
m2

n
,

where C > 0 is some universal constant.

Other examples Other examples that can be formalized under the framework of the

linear inverse model include permutation matrix recovery (Jagabathula and Shah, 2011),

sparse plus low rank matrix recovery (Candès et al., 2011) and matrix completion (Candès

and Recht, 2009). The convex relaxation of permutation matrix is double stochastic matrix;

the atomic norm corresponding to sparse plus low rank atom set is the infimal convolution

of the `1 norm and nuclear norm; for matrix completion, the design matrix can be viewed

as a diagonal matrix with diagonal elements being independent Bernoulli random variables.

See Section 3.2.5 for a discussion on further examples.
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3.2.4. Local Geometric Theory: General Setting

We have developed in the last section a local geometric theory for the linear inverse model in

the Gaussian setting. The Gaussian assumption on the design and noise enables us to carry

out concrete and more specific calculations as seen in the examples given in Section 3.2.3,

but the distributional assumption is not essential. In this section we extend this theory to

the general setting.

General Local Upper Bound

We shall consider a fixed design matrix X (in the case of random design, results we will

establish are conditional on the design) and condition on the event that the noise is con-

trolled ‖X ∗(Z)‖∗A ≤ λn. We have seen in Lemma 3.2.2 of Section 3.2.3 how to choose λn to

make this happen with overwhelming probability under Gaussian noise.

Theorem 3.2.4 (Geometrizing Local Convergence). Suppose we observe (X , Y ) as in

(3.11). Condition on the event that the noise vector Z satisfies, for some given choice of

localization radius λn, ‖X ∗(Z)‖∗A ≤ λn. Let M̂ be the solution to the convex program (3.26)

with λn being the tuning parameter. Then the geometric quantities defined on the local

tangent cone capture the local convergence rate for M̂ :

‖M̂ −M‖A ≤ γA(M)‖M̂ −M‖`2 , and further

‖M̂ −M‖`2 ≤
1

φA(M,X )
‖X (M̂ −M)‖`2 ≤

2γA(M)λn
φ2
A(M,X )

with the local asphericity ratio γA(M) defined in (3.25) and the local lower isometry constant

φA(M,X ) defined in (3.23).

Theorem 3.2.4 does not require distributional assumptions on the noise, nor does it impose

conditions on the design matrix. Theorem 3.2.1 can be viewed as a special case where the

local isometry constant φA(M,X ) and the local radius λn are calculated explicitly under

the Gaussian assumption. Theorem 3.2.4 is proved in Appendix in a general form, which
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analyzes convex programs (3.26) and (3.27) simultaneously.

General Geometric Inference

Geometric inference can also be extended to other fixed designs when Z is Gaussian. We

can modify the convex feasibility program (3.28) into the following stronger form

(Ω, ηn) = arg min
Ω,η

{η : ‖X ∗XΩ∗i· − ei‖∗A ≤ η, ∀1 ≤ i ≤ p} . (3.37)

Then the following theorem holds (proof is analogous to Theorem 3.2.2).

Theorem 3.2.5 (Geometric Inference). Suppose we observe (X , Y ) as in (3.11) with

Z ∼ N(0, σ
2

n In). Let M̂ be the solution to the convex program (3.26). Denote Ω and ηn as

the optimal solution to the convex program (3.37), and M̃ as the de-biased estimator. The

following decomposition

M̃ −M = ∆ +
σ√
n

ΩX ∗W (3.38)

holds, where W ∼ N(0, In) is the standard Gaussian vector and

ΩX ∗W ∼ N(0,ΩX ∗XΩ∗).

Here the bias part ∆ ∈ Rp satisfies, with high probability,

‖∆‖`∞ ≤
2 · γ2

A(M)

φA(M,X )
· λnηn,

provided we choose λn as in Lemma 3.2.2.

General Local Minimax Lower Bound

The lower bound given in the Gaussian case can also be extended to the general setting where

the class of noise distributions contains the Gaussian distributions. We aim to geometrize
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the intrinsic difficulty of the estimation problem in a unified manner. We first present a

general result for a convex cone T in the parameter space, which illustrates how the Sudakov

estimate, volume ratio and the design matrix affect the minimax lower bound.

Theorem 3.2.6. Let T ∈ Rp be a compact convex cone. The minimax lower bound for the

linear inverse model (3.11), if restricted to the cone T , is

inf
M̂

sup
M∈T

E·|X ‖M̂ −M‖2`2 ≥
c0σ

2

ψ2
·
(
e(Bp

2 ∩ T )√
n

∨ v(Bp
2 ∩ T )√
n

)2

where M̂ is any measurable estimator, ψ = sup
v∈Bp2∩T

‖X (v)‖`2 and c0 is a universal constant.

Here E·|X is conditioned on the design matrix. e(·) and v(·) denote the Sudakov estimate

(3.20) and volume ratio (3.22). Then

inf
M̂

sup
M ′∈TA(M)

E·|X ‖M̂ −M ′‖2`2 ≥
c0σ

2

ψ2
A(M,X )

·
(
e(Bp

2 ∩ TA(M))√
n

∨ v(Bp
2 ∩ TA(M))√

n

)2

.

Theorem 3.2.6 gives minimax lower bounds in terms of the Sudakov estimate and volume

ratio. In the Gaussian setting, Lemma 3.2.3 shows that the local upper isometry constant

satisfies ψA(M,X ) ≤ 1 + c with probability at least 1− 2 exp(−δ2/2), as long as

n ≥ 4[w(Bp
2 ∩ TA(M)) + δ]2

c2
∨ 1

c
.

We remark that ψA(M,X ) can be bounded under more general design matrix X . However,

under the Gaussian design (even correlated design), the minimum sample size n to ensure

that ψA(M,X ) is upper bounded, is directly determined by Gaussian width of the tangent

cone.

The geometric complexity of the lower bound provided by Theorem 3.2.6 matches w(Bp
2 ∩

TA(M)) if Sudakov minoration of Lemma 3.2.1 can be reversed on the tangent cone, in the

sense that w(Bp
2 ∩ TA(M)) ≤ C · e(Bp

2 ∩ TA(M)). Further, recalling Urysohn’s inequality

we have v(Bp
2 ∩ TA(M)) ≤ w(Bp

2 ∩ TA(M)). Hence, if the reverse Urysohn’s inequality
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w(Bp
2 ∩TA(M)) ≤ C · v(Bp

2 ∩TA(M)) holds for the local tangent cone, the obtained rate is,

again, of the order w(Bp
2 ∩ TA(M)).

3.2.5. Discussion

This section presents a unified geometric characterization of the local estimation rates of

convergence as well as statistical inference for high-dimensional linear inverse problems.

Exploring other interesting applications that can be subsumed under the general framework

is an interesting future research direction.

For statistical inference, both independent Gaussian design and correlated Gaussian design

with known covariance Σ are considered. The case of unknown Σ is an interesting problem

for future work.

The lower bound constructed in the current thesis can be contrasted with the lower bounds

in Ye and Zhang (2010); Candes and Davenport (2013). Both the above two papers consider

specifically the minimax lower bound for high-dimensional linear regression. We focus on

a more generic perspective – lower bounds in Theorem 3.2.6 hold in general for arbitrary

star-shaped body T , which includes `p, 0 ≤ p ≤ ∞, balls and cones as special cases.
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3.3. Adaptive Feature Selection: Efficient Online Sparse Regression

3.3.1. Introduction

In modern real-world sequential prediction problems, samples are typically high dimen-

sional, and construction of the features may itself be a computationally intensive task.

Therefore in sequential prediction, due to the computation and resource constraints, it is

preferable to design algorithms that compute only a limited number of features for each new

data example. One example of this situation, from (Cesa-Bianchi et al., 2011), is medical

diagnosis of a disease, in which each feature is the result of a medical test on the patient.

Since it is undesirable to subject a patient to a battery of medical tests, we would like to

adaptively design diagnostic procedures that rely on only a few, highly informative tests.

Online sparse linear regression (OSLR) is a sequential prediction problem in which an

algorithm is allowed to see only a small subset of coordinates of each feature vector. The

problem is parameterized by 3 positive integers: d, the dimension of the feature vectors,

k, the sparsity of the linear regressors we compare the algorithm’s performance to, and k0,

a budget on the number of features that can be queried in each round by the algorithm.

Generally we have k � d and k0 ≥ k but not significantly larger (our algorithms need1

k0 = Õ(k)).

In the OSLR problem, the algorithm makes predictions over a sequence of T rounds. In

each round t, nature chooses a feature vector xt ∈ Rd, the algorithm chooses a subset of

{1, 2, . . . , d} of size at most k′ and observes the corresponding coordinates of the feature

vector. It then makes a prediction ŷt ∈ R based on the observed features, observes the true

label yt, and suffers loss (yt − ŷt)2. The goal of the learner is to make the cumulative loss

comparable to that of the best k-sparse linear predictor w in hindsight. The performance

of the online learner is measured by the regret, which is defined as the difference between

1In this thesis, we use the Õ(·) notation to suppress factors that are polylogarithmic in the natural
parameters of the problem.
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the two losses:

RegretT =
T∑
t=1

(yt − ŷt)2 − min
w: ‖w‖0≤k

T∑
t=1

(yt − 〈xt, w〉)2 .

The goal is to construct algorithms that enjoy regret that is sub-linear in T , the total

number of rounds. A sub-linear regret implies that in the asymptotic sense, the average

per-round loss of the algorithm approaches the average per-round loss of the best k-sparse

linear predictor.

Sparse regression is in general a computationally hard problem. In particular, given k,

x1, x2, . . . , xT and y1, y2, . . . , yT as inputs, the offline problem of finding a k-sparse w that

minimizes the error
∑T

t=1(yt− 〈xt, w〉)2 does not admit a polynomial time algorithm under

standard complexity assumptions Foster et al. (2015). This hardness persists even under the

assumption that there exists a k-sparse w∗ such that yt = 〈xt, w∗〉 for all t. Furthermore,

the computational hardness is present even when the solution is required to be only Õ(k)-

sparse solution and has to minimize the error only approximately; see Foster et al. (2015)

for details. The hardness result was extended to online sparse regression by Foster et al.

(2016). They showed that for all δ > 0 there exists no polynomial-time algorithm with

regret O(T 1−δ) unless NP ⊆ BPP .

Foster et al. (2016) posed the open question of what additional assumptions can be made

on the data to make the problem tractable. In this thesis, we answer this open question by

providing efficient algorithms with sublinear regret under the assumption that the matrix

of feature vectors satisfies the restricted isometry property (RIP) (Candes and Tao, 2005).

It has been shown that if RIP holds and there exists a sparse linear predictor w∗ such

that yt = 〈xt, w∗〉 + ηt where ηt is independent noise, the offline sparse linear regression

problem admits computationally efficient algorithms, e.g., Candès and Tao (2007). RIP

and related Restricted Eigenvalue Condition (Bickel et al., 2009) have been widely used

as a standard assumption for theoretical analysis in the compressive sensing and sparse

regression literature, in the offline case. In the online setting, it is natural to ask whether
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sparse regression avoids the computational difficulty under a proper form of RIP condition.

In this thesis, we answer this question in a positive way, both in the realizable setting and

in the agnostic setting. As a by-product, we resolve the adaptive feature selection problem

as the efficient algorithms we propose in this thesis adaptively choose a different “sparse”

subset of features to query at each round. This is closely related to attribute-efficient

learning (see discussion in Section 3.3.1) and online model selection.

Summary of Results

We design polynomial-time algorithms for online sparse linear regression for two models for

the sequence (x1, y1), (x2, y2), . . . , (xT , yT ). The first model is called the realizable and the

second is called agnostic. In both models, we assume that, after proper normalization, for all

large enough t, the matrix Xt formed from the first t feature vectors x1, x2, . . . , xt satisfies

the restricted isometry property. The two models differ in the assumptions on yt. The

realizable model assumes that yt = 〈xt, w∗〉+ηt where w∗ is k-sparse and ηt is an independent

noise. In the agnostic model, yt can be arbitrary. The models and corresponding algorithms

are presented in Sections 3.3.2 and 3.3.3 respectively. Interestingly enough, the algorithms

and their corresponding analyses are completely different in the realizable and agnostic case.

Our algorithms allow for somewhat more flexibility than the problem definition: they are

designed to work with a budget k0 on the number of features that can be queried that may

be larger than the sparsity parameter k of the comparator. The regret bounds we derive

improve with increasing values of k0. In the case when k0 ≈ k, the dependence on d in

the regret bounds is polynomial, as can be expected in limited feedback settings (this is

analogous to polynomial dependence on d in bandit settings). In the extreme case when

k0 = d, i.e. we have access to all the features, the dependence on the dimension d in the

regret bounds we prove is only logarithmic. The interpretation is that if we have full access

to the features, but the goal is to compete with just k sparse linear regressors, then the

number of data points that need to be seen to achieve good predictive accuracy has only
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logarithmic dependence on d. This is analogous to the (offline) compressed sensing setting

where the sample complexity bounds, under RIP, only depend logarithmically on d.

A major building block in the solution for the realizable setting (Section 3.3.2) consists of

identifying the best k-sparse linear predictor for the past data at any round in the prediction

problem. This is done by solving a sparse regression problem on the observed data. The

solution of this problem cannot be obtained by a simple application of say, the Dantzig

selector (Candès and Tao, 2007) since we do not observe the data matrix X, but rather a

subsample of its entries. Our algorithm is a variant of the Dantzig selector that incorporates

random sampling into the optimization, and computes a near-optimal solution by solving a

linear program. The resulting algorithm has a regret bound of Õ(log T ).

The algorithm for the agnostic setting relies on the theory of submodular optimization.

The analysis in (Boutsidis et al., 2015) shows that the RIP assumption implies that the

set function defined as the minimum loss achievable by a linear regressor restricted to the

set in question satisfies a property called weak supermodularity. Weak supermodularity is

a relaxation of standard supermodularity that is still strong enough to show performance

bounds for the standard greedy feature selection algorithm for solving the sparse regression

problem. We then employ a technique developed by Streeter and Golovin (2008) to con-

struct an online learning algorithm that mimics the greedy feature selection algorithm. The

resulting algorithm has a regret bound of Õ(T 2/3).

Related work

A related setting is attribute-efficient learning (Cesa-Bianchi et al., 2011; Hazan and Koren,

2012; Kukliansky and Shamir, 2015). This is a batch learning problem in which the examples

are generated i.i.d., and the goal is to simply output a linear regressor using only a limited

number of features per example with bounded excess risk compared to the optimal linear

regressor, when given full access to the features at test time. Since the goal is not prediction

but simply computing the optimal linear regressor, efficient algorithms exist and have been
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developed by the aforementioned papers.

Without any assumptions, only inefficient algorithms for the online sparse linear regression

problem are known Zolghadr et al. (2013); Foster et al. (2016). Kale (2014) posed the open

question of whether it is possible to design an efficient algorithm for the problem with a

sublinear regret bound. This question was answered in the negative by Foster et al. (2016),

who showed that efficiency can only be obtained under additional assumptions on the data.

This thesis shows that the RIP assumption yields tractability in the online setting just as

it does in the batch setting.

In the realizable setting, the linear program at the heart of the algorithm is motivated

from Dantzig selection Candès and Tao (2007) and error-in-variable regression Rosenbaum

and Tsybakov (2010); Belloni et al. (2016). The problem of finding the best sparse linear

predictor when only a sample of the entries in the data matrix is available is also discussed

by Belloni et al. (2016) (see also the references therein). In fact, these papers solve a more

general problem where we observe a matrix Z rather than X that is an unbiased estimator

of X. While we can use their results in a black-box manner, they are tailored for the setting

where the variance of each Zij is constant and it is difficult to obtain the exact dependence

on this variance in their bounds. In our setting, this variance can be linear in the dimension

of the feature vectors, and hence we wish to control the dependence on the variance in

the bounds. Thus, we use an algorithm that is similar to the one in Belloni et al. (2016),

and provide an analysis for it (in the supplementary material). As an added bonus, our

algorithm results in solving a linear program rather than a conic or general convex program,

hence admits a solution that is more computationally efficient.

In the agnostic setting, the computationally efficient algorithm we propose is motivated

from (online) supermodular optimization (Natarajan, 1995; Boutsidis et al., 2015; Streeter

and Golovin, 2008). The algorithm is computationally efficient and enjoys sublinear regret

under an RIP-like condition, as we will show in Section 3.3.3. This result can be contrasted

with the known computationally prohibitive algorithms for online sparse linear regression
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(Zolghadr et al., 2013; Foster et al., 2016), and the hardness result without RIP (Foster

et al., 2015, 2016).

Notation and Preliminaries

For d ∈ N, we denote by [d] the set {1, 2, . . . , d}. For a vector in x ∈ Rd, denote by x(i) its

i-th coordinate. For a subset S ⊆ [d], we use the notation RS to indicate the vector space

spanned by the coordinate axes indexed by S (i.e. the set of all vectors w supported on the

set S). For a vector x ∈ Rd, denote by x(S) ∈ Rd the projection of x on RS . That is, the

coordinates of x(S) are

x(S)(i) =


x(i) if i ∈ S,

0 if i 6∈ S,

for i = 1, 2, . . . , d.

Let 〈u, v〉 =
∑

i u(i) · v(i) be the inner product of vectors u and v.

For p ∈ [0,∞], the `p-norm of a vector x ∈ Rd is denoted by ‖x‖p. For p ∈ (0,∞),

‖x‖p = (
∑

i |xi|p)1/p, ‖x‖∞ = maxi |xi|, and ‖x‖0 is the number of non-zero coordinates of

x.

The following definition will play a key role:

Definition 3.3.1 (Restricted Isometry Property Candès and Tao (2007)). Let ε ∈ (0, 1)

and k ≥ 0. We say that a matrix X ∈ Rn×d satisfies restricted isometry property (RIP)

with parameters (ε, k) if for any w ∈ Rd with ‖w‖0 ≤ k we have

(1− ε) ‖w‖2 ≤
1√
n
‖Xw‖2 ≤ (1 + ε) ‖w‖2 .

One can show that RIP holds with overwhelming probability if n = Ω(ε−2k log(ed/k)) and

each row of the matrix is sampled independently from an isotropic sub-Gaussian distribu-

tion. In the realizable setting, the sub-Gaussian assumption can be relaxed to incorporate
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heavy tail distribution via the “small ball” analysis introduced in Mendelson (2014), since

we only require one-sided lower isometry property.

Proper Online Sparse Linear Regression

We introduce a variant of online sparse regression (OSLR), which we call proper online

sparse linear regression (POSLR). The adjective “proper” is to indicate that the algorithm

is required to output a weight vector in each round and its prediction is computed by taking

an inner product with the feature vector.

We assume that there is an underlying sequence (x1, y1), (x2, y2), . . . , (xT , yT ) of labeled

examples in Rd × R. In each round t = 1, 2, . . . , T , the algorithm behaves according to the

following protocol:

1. Choose a vector wt ∈ Rd such that ‖wt‖0 ≤ k.

2. Choose St ⊆ [d] of size at most k0.

3. Observe xt(St) and yt, and incur loss (yt − 〈xt, wt〉)2.

Essentially, the algorithm makes the prediction ŷt := 〈xt, wt〉 in round t. The regret after

T rounds of an algorithm with respect to w ∈ Rd is

RegretT (w) =
T∑
t=1

(yt − 〈xt, wt〉)2 −
T∑
t=1

(yt − 〈xt, w〉)2 .

The regret after T rounds of an algorithm with respect to the best k-sparse linear regressor

is defined as

RegretT = max
w: ‖w‖0≤k

RegretT (w) .

Note that any algorithm for POSLR gives rise to an algorithm for OSLR. Namely, if an

algorithm for POSLR chooses wt and St, the corresponding algorithm for OSLR queries the

coordinates St∪{i : wt(i) 6= 0}. The algorithm for OSLR queries at most k0 +k coordinates
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and has the same regret as the algorithm for POSLR.

Additionally, POSLR allows parameters settings which do not have corresponding counter-

parts in OSLR. Namely, we can consider the sparse “full information” setting where k0 = d

and k � d.

We denote byXt the t×dmatrix of first t unlabeled samples i.e. rows ofXt are xT1 , x
T
2 , . . . , x

T
t .

Similarly, we denote by Yt ∈ Rt the vector of first t labels y1, y2, . . . , yt. We use the short-

hand notation X, Y for XT and YT respectively.

In order to get computationally efficient algorithms, we assume that that for all t ≥ t0, the

matrix Xt satisfies the restricted isometry condition. The parameter t0 and RIP parameters

k, ε will be specified later.

3.3.2. Realizable Model

In this section we design an algorithm for POSLR for the realizable model. In this setting

we assume that there is a vector w∗ ∈ Rd such that ‖w∗‖0 ≤ k and the sequence of labels

y1, y2, . . . , yT is generated according to the linear model

yt = 〈xt, w∗〉+ ηt , (3.39)

where η1, η2, . . . , ηT are independent random variables from N(0, σ2). We assume that the

standard deviation σ, or an upper bound of it, is given to the algorithm as input. We

assume that ‖w∗‖1 ≤ 1 and ‖xt‖∞ ≤ 1 for all t.

For convenience, we use η to denote the vector (η1, η2, . . . , ηT ) of noise variables.

Algorithm

The algorithm maintains an unbiased estimate X̂t of the matrix Xt. The rows of X̂t are

vectors x̂T1 , x̂
T
2 , . . . , x̂

T
t which are unbiased estimates of xT1 , x

T
2 , . . . , x

T
t . To construct the

estimates, in each round t, the set St ⊆ [d] is chosen uniformly at random from the collection
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of all subsets of [d] of size k0. The estimate is

x̂t =
d

k0
· xt(St). (3.40)

To compute the predictions of the algorithm, we consider the linear program

minimize ‖w‖1 s.t.

∥∥∥∥1

t
X̂T
t

(
Yt − X̂tw

)
+

1

t
D̂tw

∥∥∥∥
∞

≤ C
√
d log(td/δ)

tk0

(
σ +

d

k0

)
.

(3.41)

Here, C > 0 is a universal constant, and δ ∈ (0, 1) is the allowed failure probability. D̂t,

defined in equation (3.43), is a diagonal matrix that offsets the bias on the diag(X̂T
t X̂t).

The linear program (3.41) is called the Dantzig selector. We denote its optimal solution by

ŵt+1. (We define ŵ1 = 0.)

Based on ŵt, we construct w̃t ∈ Rd. Let |ŵt(i1)| ≥ |ŵt(i2)| ≥ · · · ≥ |ŵt(id)| be the

coordinates sorted according to the their absolute value, breaking ties according to their

index. Let S̃t = {i1, i2, . . . , ik} be the top k coordinates. We define w̃t as

w̃t = ŵt(S̃t). (3.42)

The actual prediction wt is either zero if t ≤ t0 or w̃s for some s ≤ t and it gets updated

whenever t is a power of 2.

The algorithm queries at most k + k0 features each round, and the linear program can

be solved in polynomial time using simplex method or interior point method. The algo-

rithm solves the linear program only dlog2 T e times by using the same vector in the rounds

2s, . . . , 2s+1−1. This lazy update improves both the computational aspects of the algorithm

and the regret bound.
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Algorithm 11 Dantzig Selector for POSLR

Require: T , σ, t0, k, k0

1: for t = 1, 2, . . . , T do
2: if t ≤ t0 then
3: Predict wt = 0
4: else if t is a power of 2 then
5: Let ŵt be the solution of linear program (3.41)
6: Compute w̃t according to (3.42)
7: Predict wt = w̃t
8: else
9: Predict wt = wt−1

10: end if
11: Let St ⊆ [d] be a random subset of size k0

12: Observe xt(St) and yt
13: Construct estimate x̂t according to (3.40)
14: Append x̂Tt to X̂t−1 to form X̂t ∈ Rt×d
15: end for

Main Result

The main result in this section provides a logarithmic regret bound under the following

assumptions 2

• The feature vectors have the property that for any t ≥ t0, the matrix Xt satisfies the

RIP condition with (1
5 , 3k), with t0 = O(k log(d) log(T )).

• The underlying POSLR online prediction problem has a sparsity budget of k and

observation budget k0.

• The model is realizable as defined in equation (3.39) with i.i.d unbiased Gaussian

noise with standard deviation σ = O(1).

Theorem 3.3.1. For any δ > 0, with probability at least 1− δ, Algorithm 11 satisfies

RegretT = O
(
k2 log(d/δ)(d/k0)3 log(T )

)
.

2A more precise statement with the exact dependence on the problem parameters can be found in the
supplementary material.
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The theorem asserts that an O(log T ) regret bound is efficiently achievable in the realizable

setting. Furthermore when k0 = Ω(d) the regret scales as log(d) meaning that we do

not necessarily require T ≥ d to obtain a meaningful result. We note that the complete

expression for arbitrary t0, σ is given in the supplementary material.

The algorithm can be easily understood via the error-in-variable equation

yt = 〈xt, w∗〉+ ηt ,

x̂t = xt + ξt.

with E[ξt] = E[x̂t−xt] = 0, where the expectation is taken over random sampling introduced

by the algorithm when performing feature exploration. The learner observes yt as well as

the “noisy” feature vector x̂t, and aims to recovery w∗.

As mentioned above, we (implicitly) need an unbiased estimator of XT
t Xt. By taking X̂T

t X̂t

it is easy to verify that the off-diagonal entries are indeed unbiased however this is not the

case for the diagonal. To this end we define Dt ∈ Rd×d as the diagonal matrix compensating

for the sampling bias on the diagonal elements of X̂T
t X̂t

Dt =

(
d

k0
− 1

)
· diag

(
XT
t Xt

)
and the estimated bias from the observed data is

D̂t =

(
1− k0

d

)
· diag

(
X̂T
t X̂t

)
. (3.43)

Therefore, program (11) can be viewed as Dantzig selector with plug-in unbiased estimates

for XT
t Yt and XT

t Xt using limited observed features.
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Sketch of Proof

The main building block in proving Theorem 3.3.1 is stated in Lemma 3.3.1. It proves

that the sequence of solutions ŵt converges to the optimal response w∗ based on which

the signal yt is created. More accurately, ignoring all second order terms, it shows that

‖ŵt − w∗‖1 ≤ O(1/
√
t). In Lemma 3.3.2 we show that the same applies for the sparse

approximation wt of ŵt. Now, since ‖xt‖∞ ≤ 1 we get that the difference between our

response 〈xt, wt〉 and the (almost) optimal response 〈xt, w∗〉 is bounded by 1/
√
t. Given

this, a careful calculation of the difference of losses leads to a regret bound w.r.t. w∗.

Specifically, an elementary analysis of the loss expression leads to the equality

RegretT (w∗) =
T∑
t=1

2ηt 〈xt, w∗ − wt〉+ (〈xt, w∗ − wt〉)2

A bound on both summands can clearly be expressed in terms of | 〈xt, w∗ − wt〉 | = O(1/
√
t).

The right summand requires a martingale concentration bound and the left is trivial. For

both we obtain a bound of O(log(T )).

We are now left with two technicalities. The first is that w∗ is not necessarily the empiri-

cally optimal response. To this end we provide, in the supplementary material, a constant

(independent of T ) bound on the regret of w∗ compared to the empirical optimum. The

second technicality is the fact that we do not solve for ŵt in every round, but in exponential

gaps. This translates to an added factor of 2 to the bound ‖wt−w∗‖1 that affects only the

constants in the O(·) terms.

Lemma 3.3.1 (Estimation Rates). Assume that the matrix Xt ∈ Rt×d satisfies the RIP

condition with (ε, 3k) for some ε < 1/5. Let ŵn+1 ∈ Rd be the optimal solution of pro-
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gram (3.41). With probability at least 1− δ,

‖ŵt+1 − w∗‖2 ≤ C ·
√

d

k0
· k log(d/δ)

t

(
σ +

d

k0

)
,

‖ŵt+1 − w∗‖1 ≤ C ·
√

d

k0

k2 log(d/δ)

t

(
σ +

d

k0

)
.

Here C > 0 is some universal constant and σ is the standard deviation of the noise.

Note the ŵt may not be sparse; it can have many non-zero coordinates that are small in

absolute value. However, we take the top k coordinates of ŵt in absolute value. Thanks to

the Lemma 3.3.2 below, we lose only a constant factor
√

3.

Lemma 3.3.2. Let ŵ ∈ Rd be an arbitrary vector and let w∗ ∈ Rd be a k-sparse vector.

Let S̃ ⊆ [d] be the top k coordinates of ŵ in absolute value. Then,

∥∥∥ŵ(S̃)− w∗
∥∥∥

2
≤
√

3 ‖ŵ − w∗‖2 .

3.3.3. Agnostic Setting

In this section we focus on the agnostic setting, where we don’t impose any distributional

assumption on the sequence. In this setting, there is no “true” sparse model, but the learner

— with limited access to features — is competing with the best k-sparse model defined using

full information {(xt, yt)}Tt=1.

As before, we do assume that xt and yt are bounded. Without loss of generality, ‖xt‖∞ ≤ 1,

and |yt| ≤ 1 for all t. Once again, without any regularity condition on the design matrix,

Foster et al. (2016) have shown that achieving a sub-linear regret O(T 1−δ) is in general

computationally hard, for any constant δ > 0 unless NP ⊆ BPP.

We give an efficient algorithm that achieves sub-linear regret under the assumption that

the design matrix of any (sufficiently long) block of consecutive data points has bounded

restricted condition number, which we define below:
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Definition 3.3.2 (Restricted Condition Number). Let k ∈ N be a sparsity parameter. The

restricted condition number for sparsity k of a matrix X ∈ Rn×d is defined as

sup
v,w: ‖v‖=‖w‖=1,
‖v‖0,‖w‖0≤k

‖Xv‖
‖Xw‖ .

It is easy to see that if a matrix X satisfies RIP with parameters (ε, k), then its restricted

condition number for sparsity k is at most 1+ε
1−ε . Thus, having bounded restricted condition

number is a weaker requirement than RIP.

We now define the Block Bounded Restricted Condition Number Property (BBRCNP):

Definition 3.3.3 (Block Bounded Restricted Condition Number Property). Let κ > 0 and

k ∈ N. A sequence of feature vectors x1, x2, . . . , xT satisfies BBRCNP with parameters

(κ,K) if there is a constant t0 such that for any sequence of consecutive time steps T with

|T | ≥ t0, the restricted condition number for sparsity k of X, the design matrix of the

feature vectors xt for t ∈ T , is at most κ.

Note that in the random design setting where xt, for t ∈ [T ], are isotropic sub-Gaussian

vectors, t0 = O(log T +k log d) suffices to satisfy BBRCNP with high probability, where the

O(·) notation hides a constant depending on κ.

We assume in this section that the sequence of feature vectors satisfies BBRCNP with

parameters (κ,K) for some K = O(k log(T )) to be defined in the course of the analysis.

Algorithm

The algorithm in the agnostic setting is of distinct nature from that in the stochastic setting.

Our algorithm is motivated from literature on maximization of sub-modular set function

(Natarajan, 1995; Streeter and Golovin, 2008; Boutsidis et al., 2015). Though the prob-

lem being NP-hard, greedy algorithm on sub-modular maximization provides provable good

approximation ratio. Specifically, Streeter and Golovin (2008) considered online optimiza-
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tion of super/sub-modular set functions using expert algorithm as sub-routine. Natarajan

(1995); Boutsidis et al. (2015) casted the sparse linear regression as maximization of weakly

supermodular function. We will introduce an algorithm that blends various ideas from

referred literature, to attack the online sparse regression with limited features.

First, let’s introduce the notion of a weakly supermodular function.

Definition 3.3.4. For parameters k ∈ N and α ≥ 1, a set function g : [d] → R is (k, α)-

weakly supermodular if for any two sets S ⊆ T ⊆ [d] with |T | ≤ k, the following two

inequalities hold:

1. (monotonicity) g(T ) ≤ g(S), and

2. (approximately decreasing marginal gain)

g(S)− g(T ) ≤ α
∑
i∈T\S

[g(S)− g(S ∪ {i})].

The definition is slightly stronger than that in Boutsidis et al. (2015). We will show that

sparse linear regression can be viewed as weakly supermodular minimization in Defini-

tion 3.3.4 once the design matrix has bounded restricted condition number.

Now we outline the algorithm (see Algorithm 12). We divide the rounds 1, 2, . . . , T into

mini-batches of size B each (so there are T/B such batches). The b-th batch thus consists

of the examples (xt, yt) for t ∈ Tb := {(b− 1)B + 1, (b− 1)B + 1, . . . , bB}. Within the b-th

batch, our algorithm queries the same subset of features of size at most k0.

The algorithm consists of few key steps. First, one can show that under BBRCNP, as long

as B is large enough, the loss within batch b defines a weakly supermodular set function

gt(S) =
1

B
inf
w∈RS

∑
t∈Tb

(yt − 〈xt, w〉)2.

Therefore, we can formulate the original online sparse regression problem into online weakly
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supermodular minimization problem. For the latter problem, we develop an online greedy

algorithm along the lines of (Streeter and Golovin, 2008). We employ k1 = O∗(k) budgeted

experts algorithms (Amin et al., 2015), denoted BEXP, with budget parameter3 k0
k1

. The

precise characteristics of BEXP are given in Theorem 3.3.2 (adapted from Theorem 2 in

(Amin et al., 2015)).

Theorem 3.3.2. For the problem of prediction from expert advice, let there be d experts,

and let k ∈ [d] be a budget parameter. In each prediction round t, the BEXP algorithm

chooses an expert jt and a set of experts Ut containing jt of size at most k, obtains as

feedback the losses of all the experts in Ut, suffers the loss of expert jt, and guarantees an

expected regret bound of 2

√
d log(d)

k T over T prediction rounds.

At the beginning of each mini-batch b, the BEXP algorithms are run. Each BEXP algorithm

outputs a set of coordinates of size k0
k1

as well as a special coordinate in that set. The union

of all of these sets is then used as the set of features to query throughout the subsequent

mini-batch. Within the mini-batch, the algorithm runs the standard Vovk-Azoury-Warmuth

algorithm for linear prediction with square loss restricted to set of special coordinates output

by all the BEXP algorithms.

At the end of the mini-batch, every BEXP algorithm is provided carefully constructed

losses for each coordinate that was output as feedback. These losses ensure that the set of

special coordinates chosen by the BEXP algorithms mimic the greedy algorithm for weakly

supermodular minimization.

Main Result

In this section, we will show that Algorithm 12 achieves sublinear regret under BBRCNP.

Theorem 3.3.3. Suppose the sequence of feature vectors satisfies BBRCNP with parameters

(κ, k1 + k) for k1 = 1
3κ

2k log(T ), and assume that T is large enough so that t0 ≤ ( k0T
κ2dk

)1/3.

Then if Algorithm 12 is run with parameters B = ( k0T
κ2dk

)1/3 and k1 as specified above, its

3We assume, for convenience, that k0 is divisible by k1.
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Algorithm 12 Online Greedy Algorithm for POSLR

Require: Mini-batch size B, sparsity parameters k0 and k1

1: Set up k1 budgeted prediction algorithms BEXP(i) for i ∈ [k1], each using the coordinates
in [d] as “experts” with a per-round budget of k0

k1
.

2: for b = 1, 2, . . . , T/B do

3: For each i ∈ [k1], obtain a coordinate j
(i)
b and subset of coordinates U

(i)
b from BEXP(i)

such that j
(i)
b ∈ U

(i)
b .

4: Define V
(0)
b = ∅ and for each i ∈ [k1] define V

(i)
b = {j(i′)

b | i′ ≤ i}.
5: Set up the Vovk-Azoury-Warmuth (VAW) algorithm for predicting using the features

in V
(k1)
b .

6: for t ∈ Tb do
7: Set St =

⋃
i∈[k1] U

(i)
b , obtain xt(St), and pass xt(V

(k1)
b ) to VAW.

8: Set wt to be the weight vector output by VAW.
9: Obtain the true label yt and pass it to VAW.

10: end for
11: Define the function

gb(S) =
1

B
inf
w∈RS

∑
t∈Tb

(yt − 〈xt, w〉)2. (3.44)

12: For each j ∈ U (i)
b , compute gb(V

(i−1)
b ∪{j}) and pass it BEXP(i) as the loss for expert

j.
13: end for

expected regret is at most Õ((κ
8dk4

k0
)1/3T 2/3).

Proof. The proof relies on a number of lemmas whose proofs can be found in the supple-

mentary material. We begin with the connection between sparse linear regression, weakly

supermodular function and RIP, formally stated in Lemma 3.3.3. This lemma is a direct

consequence of Lemma 5 in (Boutsidis et al., 2015).

Lemma 3.3.3. Consider a sequence of examples (xt, yt) ∈ Rd × R for t = 1, 2, . . . , B, and

let X be the design matrix for the sequence. Consider the set function associated with least

squares optimization:

g(S) = inf
w∈RS

1

B

B∑
t=1

(yt − 〈xt, w〉)2.

Suppose the restricted condition number of X for sparsity k is bounded by κ. Then g(S) is
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(k, κ2)-weakly supermodular.

Even though minimization of weakly supermodular functions is NP-hard, the greedy algo-

rithm provides a good approximation, as shown in the next lemma.

Lemma 3.3.4. Consider a (k, α)-weakly supermodular set function g(·). Let j∗ := arg minj g({j}).

Then, for any subset V of size at most k, we have

g({j∗})− g(V ) ≤
(

1− 1
α|V |

)
[g(∅)− g(V )].

The BEXP algorithms essentially implement the greedy algorithm in an online fashion.

Using the properties of the BEXP algorithm, we have the following regret guarantee:

Lemma 3.3.5. Suppose the sequence of feature vectors satisfies BBRCNP with parameters

(ε, k1 + k). Then for any set V of coordinates of size at most k, we have

E

T/B∑
b=1

gb(V
(k1)
b )− gb(V )


≤

T/B∑
b=1

(
1− 1

κ2|V |

)k1

[gb(∅)− gb(V )] + 2κ2k

√
dk1 log(d)T

k0B
.

Finally, within every mini-batch, the VAW algorithm guarantees the following regret bound,

an immediate consequence of Theorem 11.8 in Cesa-Bianchi and Lugosi (2006):

Lemma 3.3.6. Within every batch b, the VAW algorithm generates weight vectors wt for

t ∈ Tb such that ∑
t∈Tb

(yt − 〈xt, wt〉)2 −Bgb(V (k1)
b ) ≤ O(k1 log(B)).

We can now prove Theorem 3.3.3. Combining the bounds of lemma 3.3.5 and 3.3.6, we
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conclude that for any subset of coordinates V of size at most k, we have

E

[
T∑
t=1

(yt − 〈xt, wt〉)2

]
(3.45)

≤
T/B∑
b=1

Bgb(V ) +B(1− 1
κ2|V |)

k1 [gb(∅)− gb(V )] (3.46)

+O

(
κ2k

√
dk1 log(d)BT

k0
+
T

B
k1 log(B)

)
. (3.47)

Finally, note that
T/B∑
b=1

Bgb(V ) ≤ inf
w∈RV

T∑
t=1

(yt − 〈xt, w〉)2,

and
T/B∑
b=1

B(1− 1
κ2|V |)

k1 [gb(∅)− gb(V )] ≤ T · exp(− k1
κ2k

),

because gb(∅) ≤ 1. Using these bounds in (3.47), and plugging in the specified values of B

and k1, we get the stated regret bound.

3.3.4. Conclusions and Future Work

In this section, we gave computationally efficient algorithms for the online sparse linear

regression problem under the assumption that the design matrices of the feature vectors

satisfy RIP-type properties. Since the problem is hard without any assumptions, our work

is the first one to show that assumptions that are similar to the ones used to sparse recovery

in the batch setting yield tractability in the online setting as well.

Several open questions remain in this line of work and will be the basis for future work.

Is it possible to improve the regret bound in the agnostic setting? Can we give matching

lower bounds on the regret in various settings? Is it possible to relax the RIP assumption

on the design matrices and still have efficient algorithms?
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APPENDIX

A.1. Appendix for Section 2.1

We prove in this section the main results given in the paper. We first collect and prove a

few important technical lemmas that will be used in the proofs of the main results.

Prerequisite Lemmas

We start with the following version of the Wedin’s Theorem.

Lemma A.1.1 (Davis-Kahan-Wedin’s Type Perturbation Bound). It holds that

√
‖ sin Φ‖2F + ‖ sin Θ‖2F ≤

√
2‖E‖F
δ

and also the following holds for 2-norm (or any unitary invariant norm)

max {‖ sin Φ‖2, ‖ sin Θ‖2} ≤
‖E‖2
δ

.

We will then introduce some concentration inequalities. Lemmas A.1.2 and A.1.3 are con-

centration of measure results from random matrix theory.

Lemma A.1.2 (Vershynin (2010), Theorem 39). Let Z ∈ Rm×n be a matrix whose rows

Zi· are independent sub-Gaussian isotropic random vectors in Rn with parameter σ. Then

for every t ≥ 0, with probability at least 1− 2 exp(−ct2) one has

‖Z‖2 ≤ σ(
√
m+ C

√
n+ t)

where C, c > 0 are some universal constants.

Lemma A.1.3 (Hsu et al. (2012), Projection Lemma). Assume Z ∈ Rn is an isotropic

sub-Gaussian vector with i.i.d. entries and parameter σ. P is a projection operator to a
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subspace of dimension r, then we have the following concentration inequality

P(‖PZ‖2`2 ≥ σ2(r + 2
√
rt+ 2t)) ≤ exp(−ct),

where c > 0 is a universal constant.

The proof of this lemma is a simple application of Theorem 2.1 inHsu et al. (2012) for the

case that P is a rank r positive semidefinite projection matrix.

The following two are standard Chernoff-type bounds for bounded random variables.

Lemma A.1.4 (Hoeffding (1963), Hoeffding’s Inequality). Let Xi, 1 ≤ i ≤ n be independent

random variables. Assume ai ≤ Xi ≤ bi, 1 ≤ i ≤ n. Then for Sn =
∑n

i=1Xi

P (|Sn − ESn| > u) ≤ 2 exp

(
− 2u2∑n

i=1(bi − ai)2

)
. (A.1)

Lemma A.1.5 (Bennett (1962), Bernstein’s Inequality). Let Xi, 1 ≤ i ≤ n be independent

zero-mean random variables. Suppose |Xi| ≤M, 1 ≤ i ≤ n. Then

P

(
n∑
i=1

Xi > u

)
≤ exp

(
− u2/2∑n

i=1 EX2
i +Mu/3

)
. (A.2)

We will end this section stating the Fano’s information inequality, which plays a key role in

many information theoretic lower bounds.

Lemma A.1.6 (Tsybakov (2009) Corollary 2.6). Let P0,P1, . . . ,PM be probability measures

on the same probability space (Θ,F), M ≥ 2. If for some 0 < α < 1

1

M + 1

M∑
i=0

KL(Pi||P̄) ≤ α · logM (A.3)

where

P̄ =
1

M + 1

M∑
i=0

Pi.

145



Then

pe,M ≥ p̄e,M ≥
log(M + 1)− log 2

logM
− α (A.4)

where pe,M is the minimax error for the multiple testing problem.

Main Proofs

Proof of Lemma 2.1.1. Recall the matrix form of the submatrix model, with the SVD de-

composition of the mean signal matrix M

X = λ
√
kmknUV

T + Z.

The largest singular value of λUV T is λ
√
kmkn, and all the other singular values are 0s.

Davis-Kahan-Wedin’s perturbation bound tells us how close the singular space of X is to

the singular space of M . Let us apply the derived Lemma A.1.1 to X = λ
√
kmknUV

T +Z.

Denote the top left and right singular vector of X as Ũ and Ṽ . One can see that E‖Z‖2 �

σ(
√
m+

√
n) under very mild finite fourth moment conditions through a result in (Lata la,

2005). Lemma A.1.2 provides a more explicit probabilisitic bound for the concentration

of the largest singular value of i.i.d sub-Gaussian random matrix. Because the rows Zi·

are sampled from product measure of mean zero sub-Gaussians, they naturally satisfy the

isotropic condition. Hence, with probability at least 1 − 2 exp (−c(m+ n)), via Lemma

A.1.2, we reach

‖Z‖2 ≤ C · σ(
√
m+

√
n). (A.5)

Using Weyl’s interlacing inequality, we have

|σi(X)− σi(M)| ≤ ‖Z‖2
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and thus

σ1(X) ≥ λ
√
kmkn − ‖Z‖2

σ2(X) ≤ ‖Z‖2.

Applying Lemma A.1.1, we have

max
{
| sin∠(U, Ũ)|, | sin∠(V, Ṽ )|

}
≤ Cσ(

√
m+

√
n)

λ
√
kmkn − Cσ(

√
m+

√
n)
� σ(

√
m+

√
n)

λ
√
kmkn

.

In addition

‖U − Ũ‖`2 =

√
2− 2 cos∠(U, Ũ) = 2| sin 1

2
∠(U, Ũ)|,

which means

max
{
‖U − Ũ‖`2 , ‖V − Ṽ ‖`2

}
≤ C · σ(

√
m+

√
n)

λ
√
kmkn

.

And according to the definition of the canonical angles, we have

max
{
‖UUT − Ũ ŨT ‖2, ‖V V T − Ṽ Ṽ T ‖2

}
≤ C · σ(

√
m+

√
n)

λ
√
kmkn

.

Now let us assume we have two observations of X. We use the first observation X̃ to solve

for the singular vectors Ũ , Ṽ , we use the second observation X to project to the singular

vectors Ũ , Ṽ . We can use Tsybakov’s sample cloning argument (Tsybakov (2014), Lemma

2.1) to create two independent observations of X when noise is Gaussian as follows. Create

a pure Gaussian matrix Z ′ and define X1 = X + Z ′ = M + (Z + Z ′) and X2 = X − Z ′ =

M + (Z − Z ′), making X1, X2 independent with the variance being doubled. This step

is not essential because we can perform random subsampling as in Vu (2014); having two

observations instead of one does not change the picture statistically or computationally.

Recall X = M + Z = λ
√
kmknUV

T + Z.
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Define the projection operator to be P, we start the analysis by decomposing

‖PŨX·j −M·j‖`2 ≤ ‖PŨ (X·j −M·j)‖`2 + ‖(PŨ − I)M·j‖`2 (A.6)

for 1 ≤ j ≤ n.

For the first term of (A.6), note that X·j−M·j = Z·j ∈ Rm is an i.i.d. isotropic sub-Gaussian

vector, and thus we have through Lemma A.1.3, for t = (1 + 1/c) log n, Z·j ∈ Rm, 1 ≤ j ≤ n

and r = 1

P

‖PŨ (X·j −M·j)‖`2 ≥ σ
√
r

√
1 + 2

√
1 + 1/c ·

√
log n

r
+ 2(1 + 1/c) · log n

r

 ≤ n−c−1.

(A.7)

We invoke the union bound for all 1 ≤ j ≤ n to obtain

max
1≤j≤n

‖PŨ (X·j −M·j)‖`2 ≤ σ
√
r +

√
2(1 + 1/c) · σ

√
log n (A.8)

≤ σ + C · σ
√

log n (A.9)

with probability at least 1− n−c.

For the second term M·j = X̃·j − Z̃·j of (A.6), there are two ways of upper bounding it.

The first approach is to split

‖(PŨ − I)M‖2 ≤ ‖(PŨ − I)X̃‖2 + ‖(PŨ − I)Z̃‖2 ≤ 2‖Z̃‖2. (A.10)

The first term of (A.10) is σ2(X̃) ≤ σ2(M) + ‖Z̃‖2 through Weyl’s interlacing inequality,

while the second term is bounded by ‖Z̃‖2. We also know that ‖Z̃‖2 ≤ C3 · σ(
√
m +

√
n).

Recall the definition of the induced `2 norm of a matrix (PŨ − I)M :

‖(PŨ − I)M‖2 ≥
‖(PŨ − I)MV ‖`2

‖V ‖`2
= ‖(PŨ − I)λ

√
kmknU‖`2 ≥

√
kn‖(PŨ − I)M·j‖`2 .
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In the second approach, the second term of (A.6) can be handled through perturbation Sin

Theta Theorem A.1.1:

‖(PŨ − I)M·j‖`2 = ‖(PŨ − PU )M·j‖`2 ≤ ‖Ũ ŨT − UUT ‖2 · ‖M·j‖`2 ≤ C
σ
√
m+ n

λ
√
kmkn

λ
√
km.

This second approach will be used in the multiple submatrices analysis.

Combining all the above, we have with probability at least 1−n−c−m−c, for all 1 ≤ j ≤ n

‖PŨX·j −M·j‖`2 ≤ C ·
(
σ
√

log n+ σ

√
m ∨ n
kn

)
. (A.11)

Similarly we have for all 1 ≤ i ≤ m,

‖PṼXT
i· −MT

i· ‖`2 ≤ C ·
(
σ
√

logm+ σ

√
m ∨ n
km

)
. (A.12)

Clearly we know that for i ∈ Rm and i′ ∈ [m]\Rm

‖MT
i· −MT

i′·‖`2 = λ
√
kn

and for j ∈ Cn and j′ ∈ [n]\Cn

‖M·j −M·j′‖`2 = λ
√
km

Thus if

λ
√
km ≥ 6C ·

(
σ
√

log n+ σ

√
m ∨ n
kn

)
(A.13)

λ
√
kn ≥ 6C ·

(
σ
√

logm+ σ

√
m ∨ n
km

)
(A.14)
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hold, we have

2 max
i,i′∈Rm

‖PṼXT
i· − PṼXT

i′·‖ ≤ min
i∈Rm,i′∈[m]\Rm

‖PṼXT
i· − PṼXT

i′·‖

Therefore we have got di = Xi·Ṽ ∈ R (a one dimensional line along direction Ṽ ) such that

on this line, data forms two data-driven clusters in the sense that

2 max
i,i′∈Rm

|di − di′ | ≤ min
i∈Rm,i′∈[m]\Rm

|di − di′ |.

In this case, the largest adjacent gap in di, i ∈ [m] (data-driven) suggests the cut-off (without

requiring the knowledge of λ, σ, km). And the simple cut-off clustering recovers the nodes

exactly.

In summary, if

λ ≥ C · σ
(√

log n

km
+

√
logm

kn
+

√
m+ n

kmkn

)
,

the spectral algorithm succeeds with probability at least

1−m−c − n−c − 2 exp (−c(m+ n)) .

Proof of Theorem 2.1.2. Computational lower bound for localization (support recovery) is

of different nature than the computational lower bound for detection (two point testing).

The idea is to design a randomized polynomial time algorithmic reduction to relate an

instance of hidden clique problem to our submatrix localization problem. The proof proceeds

in the following way: we will construct a randomized polynomial time transformation T

to map a random instance of G(N,κ) to a random instance of our submatrix M(m =

n, km � kn � k, λ/σ) (abbreviated as M(n, k, λ/σ)). Then we will provide a quantitative

computational lower bound by showing that if there is a polynomial time algorithm that
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pushes below the hypothesized computational boundary for localization in the submatrix

model, there will be a polynomial time algorithm that solves hidden clique localization with

high probability (a contradiction to HCl).

Denote the randomized polynomial time transformation as

T : G(N,κ(N))→M(n, k = nα, λ/σ = n−β).

There are several stages for the construction of the algorithmic reduction. First we define a

graph Ge(N,κ(N)) that is stochastically equivalent to the hidden clique graph G(N,κ(N)),

but is easier for theoretical analysis. Ge has the property: each node independently has the

probability κ(N)/N to be a clique node, and with the remaining probability a non-clique

node. Using Bernstein’s inequality and the inequality (A.20) proved below, with probability

at least 1− 2N−1 the number of clique nodes κe in Ge

κ

(
1−

√
4 logN

κ

)
≤ κe ≤ κ

(
1 +

√
4 logN

κ

)
⇒ κe � κ (A.15)

as long as κ % logN .

Consider a hidden clique graph Ge(2N, 2κ(N)) with N = n and κ(N) = κ. Denote the set

of clique nodes for Ge(2N, 2κ(N)) to be CN,κ. Represent the hidden clique graph using the

symmetric adjacency matrix G ∈ {−1, 1}2N×2N , where Gij = 1 if i, j ∈ CN,κ, otherwise

with equal probability to be either −1 or 1. As remarked before, with probability at least

1− 2N−1, we have planted 2κ(1± o(1)) clique nodes in graph Ge with 2N nodes. Take out

the upper-right submatrix of G, denote as GUR where U is the index set 1 ≤ i ≤ N and R

is the index set N + 1 ≤ j ≤ 2N . Now GUR has independent entries.

The construction of T employs the Bootstrapping idea. Generate l2 (with l � nβ, 0 < β <

1/2) matrices through bootstrap subsampling as follows. Generate l− 1 independent index

vectors ψ(s) ∈ Rn, 1 ≤ s < l, where each element ψ(s)(i), 1 ≤ i ≤ n is a random draw with
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replacement from the row indices [n]. Denote vector ψ(0)(i) = i, 1 ≤ i ≤ n as the original

index set. Similarly, we can define independently the column index vectors φ(t), 1 ≤ t < l.

We remark that these bootstrap samples can be generated in polynomial time Ω(l2n2). The

transformation is a weighted average of l2 matrices of size n × n generated based on the

original adjacency matrix GUR.

T : Mij =
1

l

∑
0≤s,t<l

(GUR)ψ(s)(i)φ(t)(j), 1 ≤ i, j ≤ n. (A.16)

Recall that CN,κ stands for the clique set of the hidden clique graph. We define the row

candidate set Rl := {i ∈ [n] : ∃ 0 ≤ s < l, ψ(s)(i) ∈ CN,κ} and column candidate set

Cl := {j ∈ [n] : ∃ 0 ≤ t < l, φ(t)(j) ∈ CN,κ}. Observe that Rl ×Cl are the indices where the

matrix M contains signal.

There are two cases for Mij , given the candidate set Rl × Cl. If i ∈ Rl and j ∈ Cl, namely

when (i, j) is a clique edge in at least one of the l2 matrices, then E[Mij |Ge] ≥ l−1 where the

expectation is taken over the bootstrap σ-field conditioned on the candidate set Rl×Cl and

the original σ-field of Ge. Otherwise E[Mij |Ge] = l( |E|
N2−κ2 − 1

2) for (i, j) /∈ Rl × Cl, where

|E| is a Binomial(N2 − κ2, 1/2). With high probability, E[Mij |Ge] � l√
N2−κ2

� l
n = o(1

l ).

Thus the mean separation between the signal position and non-signal position is 1
` − l

n � 1
` .

Note in the submatrix model, it does not matter if the noise has mean zero or not (since

we can subtract the mean)– only the signal separation matters.

Now let us discuss the independence issue in M through our Bootstrapping construction.

Clearly due to sampling with replacement and bootstrapping, condition on Ge, we have

independence among samples for the same location (i, j)

(GUR)ψ(s)(i)φ(t)(j) ⊥ (GUR)ψ(s′)(i)φ(t′)(j).
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For the independence among entries in one Bootstrapped matrix, clearly

(GUR)ψ(s)(i)φ(t)(j) ⊥ (GUR)ψ(s)(i′)φ(t)(j′).

The only case where there might be a weak dependence is between

(GUR)ψ(s)(i)φ(t)(j), (GUR)ψ(s)(i)φ(t)(j′)

and (GUR)ψ(s)(i)φ(t)(j), (GUR)ψ(s)(i)φ(t′)(j). The way to eliminate the weak dependence is

through Vu (2008)’s result on universality of random discrete graphs. Vu (2008) showed that

random regular graph G(n, n/2) shares many similarities with Erdős-Rényi random graph

G(n, 1/2): for instance, top and second eigenvalues (n/2 and
√
n respectively), limiting

spectral distribution, sandwich conjecture, determinant, etc. Let us consider the case where

the upper-right of the adjacency matrix G consists of random bi-regular graph with a

planted clique. We assume that the hidden clique hypothesis for k -
√
n is still valid for

the following random graph: for a n × n adjacency matrix G, first find a clique/principal

submatrix of size k uniformly randomly and connect density, for the remaining part of the

matrix, sample a random regular graph of G(n− k, n−k2 ) and a random bi-regular graph of

size k × (n− k) with left regular degree n/2− k and right regular degree k/2 (here degree

test will not work in this graph and spectral barrier still suggests k -
√
n is hard due to

universality result of random discrete graphs). In the bootstrapping step, conditionally on

the row ψ(s)(i) being not a clique, (GUR)ψ(s)(i)φ(t)(j) ⊥ (GUR)ψ(s)(i)φ(t)(j′)|ψ(s)(i), and each

one is a Rademacher random variable (regardless of the choice of ψ(s)(i)), which implies

(GUR)ψ(s)(i)φ(t)(j) ⊥ (GUR)ψ(s)(i)φ(t)(j′) holds unconditionally. Thus in the bootstrapping

procedure, we have independence among entries within the matrix unconditionally.

Let us move to verify the sub-Gaussianity of M matrix. Note that for the index i, j that is
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not a clique for any of the matrices, Mij is sub-Gaussian, due to Hoeffding’s inequality

P (|Mij − EMij | ≥ u) ≤ 2 exp(−u2/2). (A.17)

For the index i, j being a clique in at least one of the matrices, we claim the number of

matrices has (i, j) being clique is O∗(1). Due to Bernstein’s inequality, we have maxi |{0 ≤

s < l : ψ(s)(i) ∈ CN,κ}| ≤ κl
n + 8

3 log n with probability at least 1−n−1. This further implies

there are at least l2 − (κln + 8
3 log n)2 many independent Rademacher random variables in

each i, j position, thus

P (|Mij − EMij | ≥ u) ≤ 2 exp
(
−(1− C · (κn−1 + l−1 log n)2)u2/2

)
. (A.18)

Up to now we have proved that when i, j is a signal node for M , then O∗(1)l−1 ≥ EMij ≥

l−1. Thus the sub-Gaussian parameter is σ = 1 − o(1) because κn−1, l−1 log n are both

o(1). The constructed M(n, k, λ/σ) matrix satisfies the submatrix model with λ/σ � l−1

and sub-Gaussian parameter σ = 1− o(1).

Let us estimate the corresponding k in the submatrix model. We need to bound the order

of the cardinality of Rl, denoted as |Rl|. The total number of positions with signal (at least

one clique node inside) is

E|Rl| = E|{1 ≤ i ≤ n : i ∈ Rl}| = n
[
1− (1− κ/n)l

]
.

Thus we have the two sided bound

κl

(
1− κl

2n

)
≤ E|Rl| ≤ κl

which is of the order k := κl. Let us provide a high probability bound on |Rl|. By Bernstein’s

154



inequality

P (||Rl| − E|Rl|| > u) ≤ 2 exp

(
− u2/2

κl + u/3

)
. (A.19)

Thus if we take u =
√

4κl log n, as long as log n = o(κl),

P
(
||Rl| − E|Rl|| >

√
4κl log n

)
≤ 2n−1. (A.20)

So with probability at least 1− 2n−1, the number of positions that contain signal nodes is

bounded as

κl

(
1− κl

n

)(
1−

√
4 log n

κl

)
< |Rl| < κl

(
1 +

√
4 log n

κl

)
⇒ |Rl| � κl. (A.21)

Equation (A.21) implies that with high probability

κl(1− o(1)) ≤ |Rl| ≤ κl(1 + o(1)),

κl(1− o(1)) ≤ |Cl| ≤ κl(1 + o(1)).

The above means, in the submatrix parametrization, km � kn � κl � nα, λ/σ � l−1 � n−β,

which implies κ � nα−β.

Suppose there exists a polynomial time algorithm AM that pushes below the computational

boundary. In other words,

n−β � λ

σ
-

√
m+ n

kmkn
� n(1−2α)/2 ⇒ β > α− 1

2

with the last inequality having a slack ε > 0. More precisely, AM returns two estimated

index sets R̂n and Ĉn corresponding to the location of the submatrix (and correct with

probability going to 1) under the regime β = α−1/2+ε. Suppose under some conditions, this

algorithmAM can be modified to a randomized polynomial time algorithmAG that correctly
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identifies the hidden clique nodes with high probability. It means in the corresponding

hidden clique graph G(2N, 2κ), AG also pushes below the computational boundary of hidden

clique by the amount ε:

κ(N) = 2κ � (2n)α−β � n1/2−ε - n1/2 � N 1
2 .

In summary, the quantitative computational lower bound implies that if the computational

boundary for submatrix localization is pushed below by an amount ε in the power, the

hidden clique boundary is correspondingly improved by ε.

Now let us show that any algorithm AM that localizes the submatrix introduces a ran-

domized algorithm that finds the hidden clique nodes with probability tending to 1. The

algorithm relies on the following simple lemma.

Lemma A.1.7. For the hidden clique model G(N,κ), suppose an algorithm provides a

candidate set S of size k that contains the true clique subset. If

κ ≥ C
√
k logN

then by looking at the adjacency matrix restricted to S we can recover the clique subset

exactly with high probability.

The proof of Lemma A.1.7 is immediate. If i is a clique node, then mini
∑

j∈C Gij ≥

κ − C/2 · √k logN . If i is not a clique node, then maxi
∑

j∈C Gij ≤ C/2 · √k logN . The

proof is completed.

Algorithm AM provides candidate sets Rl, Cl of size k, inside which κ are correct clique

nodes, and thus exact recovery can be completed through Lemma A.1.7 since κ % (k logN)1/2

(since κ � n1/2−ε % k1/2 � nα/2 when ε is small). The algorithm AM induces another ran-

domized polynomial time algorithm AG that solves the hidden clique problem G(2N, 2κ)

with κ - N1/2. The algorithm AG returns the support ĈN,κ that coincides with the true
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support CN,κ with probability going to 1 (a contradiction to the hidden clique hypothesis

HCl). We conclude that, under the hypothesis, there is no polynomial time algorithm AM
that can push below the computational boundary λ -

√
m+n
kmkn

.

Proof of Theorem 2.1.3 is a direct result of Lemma 2.1.1 and Theorem 2.1.2. Proof of

Theorem 2.1.4 is obvious based on Lemma 2.1.2 and the hidden clique hypothesis HCl.

Proof of Theorem 2.1.5 combines the result of Lemma 2.1.5 and Lemma 2.1.4.

A.2. Appendix for Section 2.2

We will start with two useful Lemmas. Lemma A.2.1 couples the local behavior of a stochas-

tic block model with that of a Galton-Watson branching process. Lemma A.2.2 is the

well-known Hoeffding’s inequality.

Lemma A.2.1 (Proposition 4.2 in (Mossel et al., 2012)). Take t = t̄n,k,p,q -
logn

log[kn(q+ p−q
k

)]
.

There exists a coupling between (G, σ) and (T, `) such that (G≤t, σG≤t) = (T≤t, `T≤t) asymp-

totically almost surely. Here (T, `) corresponds to the broadcast process on a Galton-Watson

tree process T with offspring distribution Poisson
(
n(q + p−q

k )
)
, and (G, σ) corresponds to the

SBM and its labels.

Lemma A.2.2 (Hoeffding’s Inequality). Let X be any real-valued random variable with

expected value EX = 0 and such that a ≤ X ≤ b almost surely. Then, for all λ > 0,

E
[
eλX

]
≤ exp

(
λ2(b− a)2

8

)
.

Now we are ready to prove the main theoretical results. First, we focus on the k = 2 case

and prove the broadcasting tree version of Theorem 2.2.2 and Theorem 2.2.3, under the

assumption the tree is regular. Later, based on these two theorems, Theorem 2.2.1 for

157



p-SBM (k = 2) is proved. Similarly for general k case, we will first prove Theorem 2.2.5

and Theorem 2.2.6.

Proof of Theorem 2.2.2. We focus on a regular tree where each node has (1− δ)d unlabeled

children and δd labeled children. For t = 1, the results follow from Hoeffding’s inequality

directly because

M1(`T1(ρ)) =
(
NCl(ρ)(+)−NCl(ρ)(−)

)
log

1 + θ

1− θ .

Let us use induction to prove the remaining claim. Assume for tree with depth t− 1 rooted

from u, for any λ > 0

E
[
e
λMt−1(`T≤t−1(u))|`(u) = +

]
≤ eλµt−1 · eλ

2

2
σ2
t−1 ,

E
[
e
λMt−1(`T≤t−1(u))|`(u) = −

]
≤ e−λµt−1 · eλ

2

2
σ2
t−1 .

These will further imply, conditionally on `(u) = +,

Mt−1(`T≤t−1(u)) ∈ µt−1 ± x · σt−1;

and conditionally on `(v) = −,

Mt−1(`T≤t−1(u)) ∈ −µt−1 ± x · σt−1;

both with probability at least 1− 2 exp(x2/2). Now, recall the recursion for AMP:

Mt(`T≤t(v)) = M1(`T1(v)) + θ ·
∑

u∈Cu(v)

Mt−1(`T≤t−1(u)).
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For the moment generating function we have

E
[
e
λMt(`T≤t(v))|`(v) = +

]
≤ eλ(θδd·log 1+θ

1−θ )e
λ2

2 (
√
δd·log 1+θ

1−θ )
2

·
∏

u∈Cu(v)

E
[
e
λθMt−1(`T≤t−1(u))|`(v) = +

]
= eλµ1e

λ2

2
σ2

1 ·
∏

u∈Cu(v)

E
[
e
λθMt−1(`T≤t−1(u))|`(v) = +

]
.

The last term in the previous equation can be written as

E
[
e
λθMt−1(`T≤t−1(u))|`(v) = +

]
≤ eλ

2θ2

2
σ2
t−1 ·

{
1 + θ

2
eλθµt−1 +

1− θ
2

e−λθµt−1

}
(A.22)

≤ eλ
2θ2

2
σ2
t−1 · eλθ( 1+θ

2
µt−1− 1−θ

2
µt−1) · eλ

2θ2

2
µ2
t−1 (A.23)

= e
λ2θ2

2
σ2
t−1 · eλθ2µt−1 · eλ

2θ2

2
µ2
t−1

where equation (A.22) to (A.23) relies on Hoeffding’s lemma: for a random variable Y =

θµt−1 with probability 1+θ
2 and Y = −θµt−1 with probability 1−θ

2 ,

ΨY (λ) = EeλY ≤ eλEY eλ
2

2
θ2µ2

t−1 = eλ(
1+θ

2
θµt−1− 1−θ

2
θµt−1)e

λ2

2
θ2µ2

t−1 .

Thus

E
[
e
λMt(`T≤t(v))|`(v) = +

]
≤ eλ

2

2
σ2

1 · eλµ1 ·
{
e
λ2θ2

2
σ2
t−1 · eλθ2µt−1 · eλ

2θ2

2
µ2
t−1

}(1−δ)d

= eλ(µ1+αµt−1) · eλ
2

2
(σ2

1+ασ2
t−1+αµ2

t−1)

= eλµt · eλ
2

2
σ2
t .
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When `(v) = −, we have

E
[
e
λMt(`T≤t(v))|`(v) = −

]
≤ eλ

2

2
σ2

1 · e−λµ1 ·
∏

u∈Cu(v)

E
[
e
λθMt−1(`T≤t−1(u))|`(v) = −

]

≤ eλ
2

2
σ2

1 · e−λµ1 ·
{
e
λ2θ2

2
σ2
t−1 ·

{
1 + θ

2
e−λθµt−1 +

1− θ
2

eλθµt−1

}}(1−δ)d

≤ eλ
2

2
σ2

1 · e−λµ1 ·
{
e
λ2θ2

2
σ2
t−1 · e−λθ2µt−1 · eλ

2θ2

2
µ2
t−1

}(1−δ)d

= e−λµt · eλ
2

2
σ2
t .

This completes the proof.

Proof of Theorem 2.2.3. Define the measure µ+
`T≤t(ρ)

on the revealed labels, for a depth t

tree rooted from ρ with label `(ρ) = + (and similarly define µ−`T≤t(ρ)
). We have the following

recursion formula

µ+
`T≤t(ρ)

=

(
1 + θ

2

)NCl(ρ) (1− θ
2

)δd−NCl(ρ) ∏
v∈Cu(ρ)

[
1 + θ

2
· µ+

`≤t−1(v) +
1− θ

2
· µ−`≤t−1(v)

]
.

Recall that the χ2 distance between two absolute continuous measures µ(x), ν(x) is

dχ2(µ, ν) =

∫
µ2

ν
dx− 1,

and we have the total variation distance between these two measures is upper bounded by

the χ2 distance

dTV

(
µ+
`T≤t(ρ)

, µ−`T≤t(ρ)

)
≤
√
dχ2

(
µ+
`T≤t(ρ)

, µ−`T≤t(ρ)

)
.
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Let us upper bound the symmetric version of χ2 distance defined as

dtχ2 := max

{
dχ2

(
µ+
`T≤t(ρ)

, µ−`T≤t(ρ)

)
, dχ2

(
µ−`T≤t(ρ)

, µ+
`T≤t(ρ)

)}
.

Note that

dχ2

(
µ+
`T≤t(ρ)

, µ−`T≤t(ρ)

)
=

(
1 +

4θ2

1− θ2

)δd
·
[
1 + dχ2

(
1 + θ

2
· µ+
`≤t−1(v)

+
1− θ

2
· µ−
`≤t−1(v)

,
1 + θ

2
· µ−
`≤t−1(v)

+
1− θ

2
· µ+
`≤t−1(v)

)](1−δ)d
− 1,

and for the RHS, we have the expression

dχ2

(
1 + θ

2
· µ+

`≤t−1(v) +
1− θ

2
· µ−`≤t−1(v),

1 + θ

2
· µ−`≤t−1(v) +

1− θ
2
· µ+

`≤t−1(v)

)
= θ2

∫ (µ+
`≤t−1(v) − µ

−
`≤t−1(v))

2

1+θ
2 · µ−`≤t−1(v) + 1−θ

2 · µ+
`≤t−1(v)

dx.

Recalling Jensen’s inequality, RHS of the above equation is further upper bounded by

RHS ≤ θ2

∫
(µ+
`≤t−1(v) − µ

−
`≤t−1(v))

2 ·
[

1 + θ

2
· 1

µ−`≤t−1(v)

+
1− θ

2
· 1

µ+
`≤t−1(v)

]
dx

= θ2

[
1 + θ

2
dχ2

(
µ+
`T≤t(ρ)

, µ−`T≤t(ρ)

)
+

1− θ
2

dχ2

(
µ−`≤t−1(v), µ

+
`≤t−1(v)

)]
.

Thus

max

{
dχ2

(
1 + θ

2
· µ+

`≤t−1(v) +
1− θ

2
· µ−`≤t−1(v),

1 + θ

2
· µ−`≤t−1(v) +

1− θ
2
· µ+

`≤t−1(v)

)
,

dχ2

(
1 + θ

2
· µ−`≤t−1(v) +

1− θ
2
· µ+

`≤t−1(v),
1 + θ

2
· µ+

`≤t−1(v) +
1− θ

2
· µ−`≤t−1(v)

)}
≤θ2 max

{
dχ2

(
µ+
`≤t−1(v), µ

−
`≤t−1(v)

)
, dχ2

(
µ−`≤t−1(v), µ

+
`≤t−1(v)

)}
= θ2dt−1

χ2 .

Therefore, we have

log
(

1 + dtχ2

)
≤ δd · log

(
1 +

4θ2

1− θ2

)
+ (1− δ)d · log

(
1 + θ2 · dt−1

χ2

)
.
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If (1 − δ)θ2d < 1, denote the fixed point of the above equation as c∗ (the existence is

manifested by the following bound (A.26)), i.e.,

log(1 + c∗) = δd · log

(
1 +

4θ2

1− θ2

)
+ (1− δ)d · log(1 + θ2 · c∗).

Due to the fact that x− 1
2x

2 ≤ log(1 + x) ≤ x, we have the following upper bound

c∗ − 1

2
(c∗)2 ≤ log(1 + c∗) = δd · log

(
1 +

4θ2

1− θ2

)
+ (1− δ)d · log(1 + θ2c∗) (A.24)

≤ δd · log

(
1 +

4θ2

1− θ2

)
+ (1− δ)θ2d · c∗ (A.25)

and thus c∗ ≤
δd · log

(
1 + 4θ2

1−θ2

)
1− (1− δ)θ2d

· 2

1 +

√
1− 2

δd·log
(

1+ 4θ2

1−θ2

)
(1−(1−δ)θ2d)2

. (A.26)

If we have

dt−1
χ2 ≤ c∗

it is easy to see that

log
(

1 + dtχ2

)
≤ δd · log

(
1 +

4θ2

1− θ2

)
+ (1− δ)d · log

(
1 + θ2 · dt−1

χ2

)
≤ δd · log

(
1 +

4θ2

1− θ2

)
+ (1− δ)d · log(1 + θ2 · c∗) = log(1 + c∗),

which implies dtχ2 ≤ c∗. Therefore we only need to verify d1
χ2 ≤ c∗, which is trivial. Thus

we have the bound,

lim sup
t→∞

dtχ2 ≤ c∗ ≤ 2
δd · log

(
1 + 4θ2

1−θ2

)
1− (1− δ)θ2d

,
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provided
2δd·log

(
1+ 4θ2

1−θ2

)
(1−(1−δ)θ2d)2 < 1. So far we have proved

lim sup
t→∞

dtTV ≤ lim sup
t→∞

(
dtχ2

)1/2
≤

2δd · log
(

1 + 4θ2

1−θ2

)
1− (1− δ)θ2d


1/2

.

Through Le Cam’s Lemma, the error rate, for all local algorithms, is at least

inf
Φ

sup
l∈{+,−}

Pl(Φ 6= l) ≥
1−

{
2δd·log

(
1+ 4θ2

1−θ2

)
1−(1−δ)θ2d

}1/2

2
.

Proof of Theorem 2.2.5. For α > 1:

Use induction analysis. For t = 1, the result follows from Hoeffding’s lemma. Assume

results hold for t− 1, then if above the fraction label is l,

E
[
e
λMt(`T≤t(v))|`(v) = l

]
≤ eλ

2

2
σ2

1 · eλµ1 ·
∏

u∈Cu(v)

E
[
e
λθMt−1(`T≤t−1(u))|`(v) = l

]
= e

λ2

2
σ2

1 · eλµ1 ·
∏

u∈Cu(v)

[(
θ +

1− θ
k

)
· eλθµt−1e

λ2θ2σ2
t−1

2 +
1− θ
k
· e−λθµt−1e

λ2θ2σ2
t−1

2

+
(k − 2)(1− θ)

k
· e

λ2θ2σ2
t−1

2

]
≤ eλ(µ1+αµt−1) · eλ

2

2
·(σ2

1+(1−δ)dθ2σ2
t−1) · eλ

2

2
·(1−δ)dθ2µ2

t−1

≤ eλ(µ1+αµt−1) · eλ
2

2
·(σ2

1+(1−δ)dθ2σ2
t−1+(1−δ)dθ2µ2

t−1)

where the last step uses Hoeffding’s Lemma A.2.2. When none of the labels is l, we have
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the following bound

E
[
e
λMt(`T≤t(v))|`(v) = l

]
≤ eλ

2

2
σ2

1 ·
∏

u∈Cu(v)

[
1− θ
k
· eλθµt−1e

λ2θ2σ2
t−1

2 +
1− θ
k
· e−λθµt−1e

λ2θ2σ2
t−1

2

+

(
θ +

(k − 2)(1− θ)
k

)
· e

λ2θ2σ2
t−1

2

]
≤ eλ

2

2
·(σ2

1+(1−δ)dθ2σ2
t−1) · eλ

2

2
·(1−δ)dθ2µ2

t−1 .

Proof is completed.

Proof of Theorem 2.2.6. Borrowing the idea from Proof A.2, we can study the following

testing problem:

dχ2

(
µ

(i)
`T≤t(ρ)

, µ
(j)
`T≤t(ρ)

)

=

(
1 + θ2

(
1

θ + 1−θ
k

+
1

1−θ
k

))δd [
1 + dχ2

(
θµ

(i)
`≤t−1(v)

+ (1− θ)µ̄`≤t−1(v), θµ
(j)
`≤t−1(v)

+ (1− θ)µ̄`≤t−1(v)

)](1−δ)d
− 1

We know

dχ2

(
θµ

(i)
`≤t−1(v) + (1− θ)µ̄`≤t−1(v), θµ

(j)
`≤t−1(v) + (1− θ)µ̄`≤t−1(v)

)
=

∫ θ2(µ
(i)
`≤t−1(v) − µ

(j)
`≤t−1(v))

2

θµ
(j)
`≤t−1(v) + (1− θ)µ̄`≤t−1(v)

dx

≤ θ2

[
(θ +

1− θ
k

)dχ2

(
µ

(i)
`≤t−1(v), µ

(j)
`≤t−1(v)

)
+

1− θ
k

dχ2

(
µ

(j)
`≤t−1(v), µ

(i)
`≤t−1(v)

)
+

1− θ
k

∑
l∈[k]\{i,j}

2
(
dχ2

(
µ

(i)
`≤t−1(v), µ

(l)
`≤t−1(v)

)
+ dχ2

(
µ

(j)
`≤t−1(v), µ

(l)
`≤t−1(v)

))
≤ θ2(1 +

3(1− θ)(k − 2)

k
) · dt−1

χ2

Thus define

dtχ2 := max
i,j∈[k],i 6=j

dχ2

(
µ

(i)
`T≤t(ρ)

, µ
(j)
`T≤t(ρ)

)
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Then

log(1 + dtχ2) ≤ δd · log

(
1 + θ2

(
1

θ + 1−θ
k

+
1

1−θ
k

))
+ (1− δ)d · log

(
1 + θ2(1 +

3(1− θ)(k − 2)

k
) · dt−1χ2

)

Thus if

(1− δ)θ2d(1 +
3(1− θ)(k − 2)

k
) < 1,

denote c∗ as the fixed point of the equation

log(1+c∗) = δd·log

(
1 + θ2

(
1

θ + 1−θ
k

+
1

1−θ
k

))
+(1−δ)d·log

(
1 + θ2(1 +

3(1− θ)(k − 2)

k
) · c∗

)
.

We have the following upper bounds for c∗ via the fact that x− 1
2x

2 < log(1 + x) < x

c∗ − 1

2
(c∗)2 ≤ δd · log

(
1 + θ2

(
1

θ + 1−θ
k

+
1

1−θ
k

))
+ (1− δ)θ2d(1 +

3(1− θ)(k − 2)

k
) · c∗.

The above equation implies c∗ <
2δd·log

(
1+θ2

(
1

θ+ 1−θ
k

+ 1
1−θ
k

))
1−(1−δ)θ2d(1+

3(1−θ)(k−2)
k

)
, and

log(1 + dtχ2) ≤
2δd · log

(
1 + θ2

(
1

θ+ 1−θ
k

+ 1
1−θ
k

))
1− (1− δ)θ2d(1 + 3(1−θ)(k−2)

k )
.

Invoke the following Lemma from Tsybakov (2009)’s Proposition 2.4.

Lemma A.2.3 (Tsybakov (2009), Proposition 2.4). Let P0, P1, . . . , Pk−1 be probability mea-

sures on (X ,A) satisfying

1

k − 1

k−1∑
i=1

dχ2(Pj , P0) ≤ (k − 1) · α∗
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then we have for any selector ψ : X → [k]

max
i∈[k]

Pi(ψ 6= i) ≥ 1

2
[1− α∗ −

1

k − 1
]

Since we have 1
k−1

∑
i∈[k]\j dχ2

(
µ

(i)
`T≤t(ρ)

, µ
(j)
`T≤t(ρ)

)
≤ α · (k− 1), we apply Lemma A.2.3 and

obtain

inf
Φ

sup
l∈[k]

P (Φ 6= l) ≥ 1

2

(
1− α− 1

k − 1

)
,

where α = δ
1−δ · SNR

1−4·SNR ·
2(p+q)(q+p/(k−1))

pq .

A.3. Appendix for Section 2.3

Proof of Theorem 2.3.1. Denote the circulant matrix by B (it is Bπ for any π ∈ Sn−1). The

log-likelihood for WS model on symmetric matrix X (with diagonal elements being 0) is

logLn,k,β(X|B) = log
1− β(1− β k

n−1
)

β(1− β k
n−1

)
· 〈X,B〉

+ log
β k
n−1

1− β k
n−1

· 〈X, J − I −B〉

+ nk log(β(1− β
k

n− 1
)) + n(n− 1− k) log(1− β

k

n− 1
)

For the Erdős-Rényi model, the log likelihood is

logLn,k(X) = log

k
n−1

1− k
n−1

· 〈X, J − I〉+ n(n− 1) log(1−
k

n− 1
).

The Kullback-Leibler divergence between these two models is
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KL(PB||P0) = EX∼PB log
PB(X)

P0(X)

= EX∼PB

{
−
(

log
k

n−1

1− k
n−1

− log
β k
n−1

1− β k
n−1

)
· 〈X, J − I〉

−n(n− 1) log(1− k

n− 1
)

+

(
log

1− β(1− β k
n−1)

β(1− β k
n−1)

− log
β k
n−1

1− β k
n−1

)
· 〈X,B〉

+nk log(β(1− β k

n− 1
)) + n(n− 1− k) log(1− β k

n− 1
)

}

which is equal to

−
(

log

k
n−1

1− k
n−1

− log
β k
n−1

1− β k
n−1

)
·

〈
(1− β)(1− β

k

n− 1
)B + β

k

n− 1
(J − I), J − I

〉

+

(
log

1− β(1− β k
n−1

)

β(1− β k
n−1

)
− log

β k
n−1

1− β k
n−1

)
·

〈
(1− β)(1− β

k

n− 1
)B + β

k

n− 1
(J − I), B

〉
− n(n− 1) log(1−

k

n− 1
) + nk log(β(1− β

k

n− 1
))

+ n(n− 1− k) log(1− β
k

n− 1
)

= n(n− 1) log
1− β k

n−1

1− k
n−1

− nk log
1

β
(A.27)

−
[

log
1

β
+ log

1− β k
n−1

1− k
n−1

]
nk

[
1− (1− β)β

k

n− 1

]

+

[
log

1

β
+ log

1− β(1− β k
n−1

)

β k
n−1

]
nk

[
1− β(1− β

k

n− 1
)

]

= − log
1

β
· nk

[
1 + β − β

k

n− 1

]

+ log
1− β k

n−1

1− k
n−1

· n
[
(n− 1− k) + (1− β)β

k2

n− 1

]

+ log
1− β(1− β k

n−1
)

β k
n−1

· nk
[
1− β(1− β

k

n− 1
)

]
. (A.28)
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Via the inequality log(1 + x) < x for all x > −1, we can further simplify the above

expression as

KL(PB||P0)

≤ nk(1− β)

[
−β + β

k

n− 1
+ (1− β)β

k2

n(n− 1− k)

]
+

(1− β)(1− β k
n−1)

β k
n−1

nk

[
(1− β) + β2 k

n− 1

]
≤ nk(1− β)

[
(1− β)β

k

n− 1
+ (1− β)β

k2

n(n− 1− k)

]
+

(1− β)2(1− β k
n−1)

β
n(n− 1) ≤ C · n2(1− β)2, (A.29)

where 0 < C < 1
2

k2

n(n−1) + 1
β is some universal constant (note we are interested in the case

when β is close to 1).

When k � n1/2, the above bound can be further strengthened, in the following sense (recall

equation (A.28)):

KL(PB||P0)

≤ nk(1− β)

[
−β + β

k

n− 1
+ (1− β)β

k2

n(n− 1− k)

]
+ log

1− β(1− β k
n−1)

β k
n−1

· nk
[
1− β(1− β k

n− 1
)

]

≤
{

log
1− β(1− β k

n−1)

β k
n−1

·
1− β(1− β k

n−1)

β k
n−1

}
· k2β

n

n− 1
.

Denote t :=
1−β(1−β k

n−1
)

β k
n−1

= 1−β
β

n−1
k + β. Thus we have

KL(PB||P0) ≤ t log t · k2β
n

n− 1
. (A.30)
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Suppose for some constant α∗ > 0, and α = α∗ · 1
β (1− 1

n)2, we have the following

t ≤ αn log n
e

k2
· 1

logα
n log n

e
k2

(A.31)

and t log t ≤ αn log n
e

k2
·
(

1− log logα
n log n

e
k2

logαn logn
k2

)
< α

n log n
e

k2
. (A.32)

Plugging in the expression for t into (A.31), if

1− β
β
≤ α(1 +

1

n− 1
) · log n

e

k
· 1

logα
n log n

e
k2

− k

n− 1
(A.33)

� log n

k

1

log
n log n

e
k2

we have

t ≤ αn log n
e

k2
· 1

logα
n log n

e
k2

⇒ t log t < α
n log n

e

k2

which further implies, via Equation (A.29),

1

(n− 1)!

∑
π∈Sn−1

KL(PBπ ||P0) ≤ t log t · k2β
n

n− 1

≤ α∗ · log(n− 1)!.

Recalling the bound on KL-divergence, if

1− β ≤
√
α∗
C
· (n− 1) log n

e

n2
�
√

log n

n
(A.34)

we have

1

(n− 1)!

∑
π∈Sn−1

KL(PBπ ||P0) ≤ n2(1− β)2 ≤ α∗ · log(n− 1)!.

We invoke the following Lemma on minimax error through Kullbak-Leibler divergence.

Lemma A.3.1 (Tsybakov (2009), Proposition 2.3). Let P0, P1,. . . , PM be probability mea-
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sures on (X ,A) satisfying

1

M

M∑
j=1

KL(Pj ||P0) ≤ α · logM (A.35)

with 0 < α < 1
8 . Then for any ψ : X → [M + 1]

max

P0(ψ 6= 0),
1

M

M∑
j=1

Pj(ψ 6= j)


≥

√
M√

M + 1

(
1− 2α−

√
2α

logM

)
.

Hence, if either one of the conditions in Equations (A.33) and (A.34) holds, we have

1

(n− 1)!

∑
π∈Sn−1

KL(PBπ ||P0) ≤ α∗ · log(n− 1)!. (A.36)

Putting everything together, Equation (A.36) holds whenever if

1− β ≺
√

log n

n
∨ log n

k
.

Applying Lemma A.3.1, we complete the proof:

lim
n→∞

min
φ

max

P0(φ 6= 0),
1

(n− 1)!

(n−1)!∑
i=1

Pi(φ 6= i)


≥ lim
n→∞

√
(n− 1)!

1 +
√

(n− 1)!

(
1− 2α−

√
2α

log(n− 1)!

)
= 1− 2α.

Proof of Lemma 2.3.1. Let us state the well-known Bernstein’s inequality (Boucheron et al.

(2013), Theorem 2.10), which will be used in the proof of this lemma.

Lemma A.3.2 (Bernstein’s inequality). Let X1, . . . , Xn be independent bounded real-valued
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random variables. Assume that there exist positive numbers v and c such that

n∑
i=1

E[X2
i ] ≤ v,

Xi ≤ 3c,∀1 ≤ i ≤ n a.s.

then we have, for all t > 0,

P

(
n∑
i=1

(Xi − EXi) ≥
√

2vt+ ct

)
≤ e−t. (A.37)

First, let us consider the case when the adjacency matrix A is generated from the Erdős-

Rényi random graph ER(n, k
n−1). For any Pπ with π ∈ Sn−1, we know 〈PπBP Tπ , A〉 has the

same distribution as 〈B,A〉. Thus, in view of Lemma A.3.2,

〈PπBP Tπ , A〉
in law
== 〈B,A〉 = 2

∑
i>j

AijBij

= 2
∑
i>j

E[Aij ]Bij + 2
∑
i>j

(Aij − E[Aij ])Bij

≤ k

n− 1
nk + 2

√
k

n− 1
nkt+

2

3
t

with probability at least 1 − exp(−t). Indeed, there are nk/2 non-zero Bi,j , i > j, and it

is clear that Aij ∼ Bernoulli( k
n−1) and 2

∑
i>j E[Aij ]Bij = nk k

n−1 , implying the choice of

c = 1
3 and

v =
∑
i<j

E[(AijBij)
2] =

∑
i<j

E[A2
ij ]Bij =

nk

2

k

n− 1

in Lemma A.3.2. Via the union bound, taking t = log n!, we have

max
Pπ
〈PπBP Tπ , A〉

≤ k

n− 1
nk + 2

√
k

n− 1
nk · log n! +

2

3
· log n!
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with probability at least 1− (n− 1)! exp(− log n!) = 1− 1
n .

Alternatively, suppose A is from the small-world rewiring model WS(n, k, β), with permu-

tation being identity. With probability at least 1− exp(− log n) = 1− 1
n ,

max
Pπ
〈PπBP Tπ , A〉 ≥ 〈B,A〉

= 〈B,E[A]〉+ 〈B,A− E[A]〉

≥ (1− β + β2 k

n− 1
)nk −

√
nk · log n

where the last step follows via Hoeffding’s inequality: it is clear that for (i, j) with Bij 6= 0,

E[Aij ] = 1− β + β2 k

n− 1
,

and 0 ≤ Aij ≤ 1 almost surely.

Therefore if there exist a threshold T > 0 such that

(1− β + β2 k

n− 1
)nk −

√
nk · log n > T

and T >
k

n− 1
nk + 2

√
k

n− 1
nk · log n! +

2

3
· log n! (A.38)

we have that

lim
n,k(n)→∞

max

P0(φ1 6= 0),
1

(n− 1)!

(n−1)!∑
i=1

Pi(φ1 6= 1)


≤ lim
n,k(n)→∞

1

n
= 0.

The detailed calculation of Equation (A.38) yields that the test succeeds with high proba-

bility whenever

1− β �
√

log n

n
∨ log n

k
.
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Proof of Lemma 2.3.2. Under the model WS(n, k, β) with permutation Pπ,

A = (1− β)(1− β k

n− 1
) · P Tπ BPπ + β

k

n− 1
· (J − I) + Z

where J = 11T ∈ Rn×n, B is the ring structured signal matrix defined in Equation (2.23),

and Z is a zero-mean noise random matrix.

We first study the random fluctuation part, Z = A − EA. Let us bound the expectation

E‖A−EA‖ as the first step, for any adjacency matrix A ∈ Rn×n using the symmetrization

trick. Denote A′ ∼ A as the independent copy of A sharing the same distribution. Take

E,G ∈ Rn×n as random symmetric Rademacher and Gaussian matrices with entries Eij , Gij

being, respectively, independent Rademacher and Gaussian. Denoting matrix Hadamard

product as A ◦B, we have

E‖A− EA‖ = E sup
‖v‖`2=1

〈(A− EA)v, v〉

= E sup
‖v‖`2=1

〈(A− EA′A′)v, v〉 ≤ EAEA′ sup
‖v‖`2=1

〈(A−A′)v, v〉

= EEEAEA′ sup
‖v‖`2=1

〈[E ◦ (A−A′)]v, v〉

≤ EAEE sup
‖v‖`2=1

〈[E ◦A]v, v〉+ EA′EE sup
‖v‖`2=1

〈[−E ◦A′]v, v〉

= 2EAEE sup
‖v‖`2=1

〈[E ◦A]v, v〉

≤ 2√
2/π
· EAEE sup

‖v‖`2=1
〈[EG[|G|] ◦ E ◦A]v, v〉

≤
√
π

2
· EAEEEG sup

‖v‖`2=1
〈[|G| ◦ E ◦A]v, v〉

=

√
π

2
· EAEG sup

‖v‖`2=1
〈[G ◦A]v, v〉

=

√
π

2
· EA (EG‖G ◦A‖) .
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Recall the following Lemma from (Bandeira and van Handel, 2014).

Lemma A.3.3 (Bandeira and van Handel (2014), Theorem 1.1). Let X be the n × n

symmetric random matrix with X = G ◦ A, where Gij , i < j are i.i.d. N(0, 1) and Aij are

given scalars. Then

EG‖X‖ - max
i

√∑
j

A2
ij + max

ij
|Aij | ·

√
log n.

Thus via Jensen’s inequality and the above Lemma, we upper bound

E‖A− EA‖ ≤
√
π

2
· EA (EG‖G ◦A‖)

- EA

max
i

√∑
j

A2
ij + max

ij
|Aij | ·

√
log n


≤
√

EA max
i

∑
j

A2
ij +

√
log n

≤
√
k + C12

√
k log n+ C2 log n+

√
log n �

√
k ∨

√
log n,

where the last step uses Bernstein inequality Lemma A.3.2. Moving from expectation

E‖A− EA‖ to concentration on ‖A− EA‖ is through Talagrand’s concentration inequality

(see, Talagrand (1996b) and Tao (2012) Theorem 2.1.13), since ‖ · ‖ is 1−Lipschitz convex

function in our case (and the entries are bounded), thus with probability at least 1− 1
n ,

‖A− EA‖ ≤ E‖A− EA‖+ C ·
√

log n �
√
k ∨

√
log n.

Now let us study the structural signal part. Matrix B is of the form circulant matrix, the

associated polynomial is

f(x) = (x+ xn−k/2) · x
k/2 − 1

x− 1
.
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The eigenvectors can be analytically calculated: collect for all j = 0, 1, ..., n/2

(cos 0, cos
2πj

n
, cos

2π2j

n
, . . . , cos

2πnj

n
)

and

(sin 0, cos
2πj

n
, sin

2π2j

n
, . . . , sin

2πnj

n
)

and the corresponding eigenvalues are

λj = f(wj) = 2

k/2∑
i=1

cos

(
i
2πj

n

)
.

Let us first assume k
n ≤ 1

2 , thus the second largest eigenvalue

λ2 = 2

k/2∑
i=1

cos

(
i
2π

n

)
=

2 sin kπ
2n

sin π
n

cos
(k + 2)π

2n
� k.

Now if there exist a threshold T > 0 such that w.h.p., the second eigenvalue of the adja-

cency matrix generated from WS model AWS separates from that of the adjacency matrix

generated from ER model AER in the following sense

λ2(AWS) > T > λ2(AER),

we have

lim
n,k(n)→∞

max

P0(φ2 6= 0),
1

(n− 1)!

(n−1)!∑
i=1

Pi(φ2 6= 1)

 = 0.

Using Weyl’s interlacing inequality, we have

λ2(AWS) ≥ λ2(E[AWS])− ‖Z‖

≥ (1− β)(1− β k

n− 1
)λ2 −

√
k ∨

√
log n,
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while

λ2(AER) ≤
√
k ∨

√
log n.

Therefore, we have the condition for which the second eigenvalue test succeeds:

(1− β)(1− β k

n− 1
)λ2 >

√
k ∨

√
log n

which means

(1− β)(1− β k

n− 1
) >

√
k ∨√log n

2 sin kπ
2n

sin π
n

cos (k+2)π
2n

�
√

1

k
∨
√

log n

k
.

Proof of Lemma 2.3.3. Take any two rows Ai·, Aj· of the adjacency matrix. Define the

distance x = |π−1(i)−π−1(j)|ring. Equivalently, the Hamming distance of the corresponding

signal vectors satisfies H(Bi·, Bj·) = 2x. Therefore the union of signal nodes for i, j-th row

is of cardinality |Si ∪ Sj | = k+ x, common signal nodes are of cardinality |Si ∩ Sj | = k− x,

unique signal nodes are of cardinality |Si4Sj | = 2x, and |Sci ∩ Scj | = n − k − x − 2. Each

signal coordinate is 1 with probability p = 1− β(1− β k
n−1), while non-signal coordinate is

1 with probability q = β k
n−1 , and we have

〈Ai·, Aj·〉 =
∑

l∈Si∩Sj

AilAjl +
∑

l∈Si4Sj

AilAjl +
∑

l∈Sci∩Scj

AilAjl.

Observe as long as l 6= i, j, Ail and Ajl are independent, and {AilAjl, l ∈ [n]\{i, j}} are

independent of each other.
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Let us bound each term via Bernstein’s inequality Lemma A.3.2,

∑
l∈Si∩Sj

AilAjl ∈ p2|Si ∩ Sj | ±
(√

2p2|Si ∩ Sj |t+
1

3
t

)
∑

l∈Si4Sj

AilAjl ∈ pq|Si4Sj | ±
(√

2pq|Si4Sj |t+
1

3
t

)
∑

l∈Sci∩Scj

AilAjl ∈ q2|Sci ∩ Scj | ±
(√

2q2|Sci ∩ Scj |t+
1

3
t

)

with probability at least 1 − 6 exp(−t). We take t = (2 + ε) log n for any ε > 0, such that

with probability at least 1− Cn−ε, the above bound holds for all pairs (i, j).

Thus for all |π−1(i)− π−1(j)|ring > k pairs,

〈Ai·, Aj·〉 ≤ 2kpq + (n− 2k − 2)q2

+
(√

4kpqt+
√

2(n− 2k − 2)q2t+ t
)
,

for |π−1(i)− π−1(j)|ring ≤ x pairs

〈Ai·, Aj·〉 ≥ (k − x)p2 + 2xpq + (n− k − x− 2)q2

−
(√

2(k − x)p2t+
√

4xpqt+
√

2(n− k − x− 2)q2t+ t
)
.

Thus, with t = (2 + ε) log n, p = 1− β(1− β k
n−1) and q = β k

n−1 , if x < x0 with

x0

k
:= 1− C1

√
log n

k

1

1− β − C2

√
log n

n

1

(1− β)2
,
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we have

(k − x)(p− q)2 ≥ 2t+ (2
√

2 + 1)
(√

kp2 +
√
nq2
)√

2t

≥ 2t+
(√

2kpq +
√

(n− 2k − 2)q2 +
√

(k − x)p2

+
√

2xpq +
√

(n− k − x− 2)q2
)√

2t,

which further implies,

min
j:|π−1(i)−π−1(j)|ring≤x0

〈Ai·, Aj·〉 ≥ max
j /∈N (vi)

〈Ai·, Aj·〉,∀i

max
i∈[n]

|N̂ (vi)4N (vi)|
|N (vi)|

≤ k − x0

k

= C1

√
log n

k

1

1− β + C2

√
log n

n

1

(1− β)2
.

Therefore we can reconstruct the neighborhood consistently, under the condition

1− β �
√

log n

k
∨
(

log n

n

)1/4

.

Proof of Lemma 2.3.4. Since eigen structure is not affected by permutation, we will work

under the case when the true permutation is identity. We work under a mild technical

assumption that we have two independent observation of the adjacency matrix, one used

for calculating the eigen-vector, the other used for projection to reduce dependency. Note

this technical assumption only affect the signal (1 − β) to noise (k/n) ratio by a constant

factor. Recall that A = M + Z, where M = (1 − β)(1 − β k
n−1) · B + β k

n−1 · (J − I) is the

signal matrix. Denote the eigenvectors of M to be U ∈ Rn×n, and eigenvectors of A to be

Û ∈ Rn×n. Denote the projection matrix corresponding the subspace of the second and
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third eigenvector U·2, U·3 to be H. Similarly Ĥ denotes the projection matrix to the 2-dim

space spanned by Û·2, Û·3.

Classic Davis-Kahan perturbation bound informs us that two dimensional subspace Ĥ and

H are close in spectral norm

‖Ĥ −H‖ ≤ ‖Z‖
∆λ− ‖Z‖ ,

where the spectral gap ∆λ of M is

∆λ := (1− β)(1− β k

n− 1
) · (λ2 − λ3)

= (1− β)(1− β k

n− 1
) ·

2

k/2∑
i=1

cos

(
i
2π

n

)
− 2

k/2∑
i=1

cos

(
i
2π · 2
n

)
= (1− β)(1− β k

n− 1
)

[
2 sin kπ

2n

sin π
n

cos
(k + 2)π

2n
− 2 sin kπ

n

sin 2π
n

cos
(k + 2)π

n

]

� (1− β)(1− β k

n− 1
)
k3

n2
.

From the proof of Lemma 2.3.2, we know with high probability

‖Z‖ �
√
k ∨

√
log n.

Note we have for the true signal matrix M and true projection H

HM·i = 〈U·2,M·i〉 · U·2 + 〈U·3,M·i〉 · U·3,

=
(1− β)λ2√

n
cos

(i− 1)2π

n
· U·2 +

(1− β)λ2√
n

sin
(i− 1)2π

n
· U·3; (A.39)

however, one only observes the noisy version ĤA·i ∈ Rn (of the signal HM·i ∈ Rn), which

satisfies the equality

ĤA·i = HM·i + (Ĥ −H)M·i + ĤZ·i.
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Hence we have, uniformly for all i,

‖ĤA·i −HM·i‖ ≤ ‖(Ĥ −H)M·i‖+ ‖ĤZ·i‖

≤ ‖Ĥ −H‖‖M·i‖+ ‖ĤZ·i‖

≤
√
k ∨√log n

∆λ−
√
k ∨√log n

·
√
k(1− β) + C

√
log n

with probability 1−n−c, with some constants c, C > 0. Here the last line follows from Davis-

Kahan bound on ‖Ĥ − H‖ and Azuma-Hoeffding’s inequality for 〈Û·2, Z·i〉 and 〈Û·3, Z·i〉

condition on Ĥ. Denote this stochastic error as

δ :=

√
k ∨√log n

∆λ−
√
k ∨√log n

·
√
k(1− β) + C

√
log n,

� k
k3

n2

=
n2

k2
.

The second line follows under the condition 1−β % n2

k2.5 , which is ensured under Eq. (A.40).

For any i, j with |j − i|ring = m, Eq. (A.39) together with simple geometry implies

‖HM·i −HM·j‖

=
(1− β)λ2√

n
·
[(

cos
(i− 1)2π

n
− cos

(j − 1)2π

n

)2

+

(
sin

(i− 1)2π

n
− sin

(j − 1)2π

n

)2
]1/2

=
(1− β)λ2√

n
· 2 sin

mπ

n
.
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Therefore, fix any i, for j /∈ N (vi) not in i’s neighborhood, using triangle inequality we have

min
j /∈N (vi)

‖ĤA·i − ĤA·j‖ ≥ min
j /∈N (vi)

‖HM·i −HM·j‖ − 2δ

≥ (1− β)λ2√
n

· 2 sin
kπ

n
− 2δ

=

(
(1− β)λ2√

n
· 2 sin

kπ

n
− 4δ

)
+ 2δ

≥ max
|j−i|ring<m

‖ĤA·i − ĤA·j‖

with

m =
n

π
arcsin

(
sin

kπ

n
− 2δ

√
n

λ2

1

1− β

)
.

Therefore the following bound on symmetric set difference holds

max
i∈[n]

|N̂ (vi)4N (vi)|
|N (vi)|

≤ 1−
arcsin

(
sin kπ

n − 2δ
√
n
λ2

1
1−β

)
kπ
n

≤ C ′ ·
n2

k2

√
n
k

1
1−β

k
n

� n3.5

k4

1

1− β .

In summary under the condition

1− β � n3.5

k4
, (A.40)

one can recover the neighborhood consistently w.h.p. in the sense

lim
n,k(n)→∞

max
i∈[n]

|N̂ (vi)4N (vi)|
|N (vi)|

= 0.
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A.4. Appendix for Section 3.1

Proof of Theorem 3.1.1. Since f̂ is in the star hull around ĝ, f̂ must lie in the set

H := F + star(F − F). Hence, in view of (3.4), excess loss E(f̂) is upper bounded by

sup
f∈H

{
(Ê− E)[2(f∗ − Y )(f∗ − f)] + E(f∗ − f)2 − (1 + c) · Ê(f∗ − f)2

}
(A.41)

≤ sup
f∈H

{
(Ê− E)[2(f∗ − Y )(f∗ − f)] + (1 + c/4)E(f∗ − f)2 − (1 + 3c/4) · Ê(f∗ − f)2

−(c/4)
(
Ê(f∗ − f)2 + E(f∗ − f)2

)}
≤ sup

f∈H

{
(Ê− E)[2(f∗ − Y )(f∗ − f)]− (c/4)

(
Ê(f∗ − f)2 + E(f∗ − f)2

)}
(A.42)

+ sup
f∈H

{
(1 + c/4)E(f∗ − f)2 − (1 + 3c/4) · Ê(f∗ − f)2

}
(A.43)

We invoke the supporting Lemma A.4.1 (stated and proved below) for the term (A.43):

E sup
f∈H

{
(1 + c/4)E(f∗ − f)2 − (1 + 3c/4) · Ê(f∗ − f)2

}
(A.44)

≤ K(2 + c)

2
· E sup

f∈H

1

n

{
n∑
i=1

2εi(f(Xi)− f∗(Xi))−
c

4K(2 + c)
·
n∑
i=1

(f(Xi)− f∗(Xi))
2

}
.

(A.45)

Let Ê′ stand for empirical expectation with respect to an independent copy (X ′1, . . . , X
′
n).

For the term (A.42), Jensen’s inequality yields

E sup
f∈H

{
(Ê− E)[2(f∗ − Y )(f∗ − f)]− (c/4)

(
Ê(f∗ − f)2 + E(f∗ − f)2

)}
≤ E sup

f∈H

{
(Ê− Ê′)[2(f∗ − Y )(f∗ − f)]− (c/4)

(
Ê(f∗ − f)2 + Ê′(f∗ − f)2

)}
.

When introducing i.i.d. Rademacher random variables, we observe that the quadratic term

remains unchanged by renaming Xi and X ′i, and thus the preceding expression is upper
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bounded by

2E sup
f∈H

{
1

n

n∑
i=1

2εi(f
∗(Xi)− Yi)(f∗(Xi)− f(Xi))− (c/4)(f∗(Xi)− f(Xi))

2

}
.

Using a contraction technique as in the proof of Lemma A.4.1, we obtain an upper bound

of

2M · E sup
f∈H

1

n

{
n∑
i=1

2εi(f
∗(Xi)− f(Xi))−

c

4M
·
n∑
i=1

(f∗(Xi)− f(Xi))
2

}
(A.46)

Combining the bounds yields the statement of the theorem.

Lemma A.4.1. For any class F of uniformly bounded functions with K = supf∈F |f |∞,

for any f∗ ∈ F , and for any c > 0, it holds that

E sup
f∈F

{
E(f − f∗)2 − (1 + 2c)Ê(f − f∗)2

}
≤ c · E sup

f∈F

1

n

{
4K(1 + c)

c

n∑
i=1

εi(f(Xi)− f∗(Xi))−
n∑
i=1

(f(Xi)− f∗(Xi))
2

}
.

Proof of Lemma A.4.1. We write

E sup
f∈F

{
E(f − f∗)2 − (1 + 2c)Ê(f − f∗)2

}
= E sup

f∈F

{
(1 + c)E(f − f∗)2 − (1 + c)Ê(f − f∗)2 − cE(f − f∗)2 − cÊ(f − f∗)2

}

which, by Jensen’s inequality, is upper bounded by

E sup
f∈F

{
(1 + c)(Ê′(f − f∗)2 − Ê(f − f∗)2)− cÊ′(f − f∗)2 − cÊ(f − f∗)2

}

We recall that Ê′ is an empirical mean operator with respect to an independent copy

(X ′1, . . . , X
′
n). Writing out the empirical expectations in the above expression, the above is
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equal to

E sup
f∈F

{
1 + c

n

n∑
i=1

εi

(
(f(X ′i)− f∗(X ′i))2 − (f(Xi)− f∗(Xi))

2
)
− cÊ′(f − f∗)2 − cÊ(f − f∗)2

}

≤ 2 · E sup
f∈F

{
1 + c

n

n∑
i=1

εi(f(Xi)− f∗(Xi))
2 − cÊ(f − f∗)2

}

with the last expectation taken over εi and data Xi, 1 ≤ i ≤ n.

We proceed with a contraction-style proof. Condition on X1, . . . , Xn and ε2, . . . , εn, and

write out the expectation with respect to ε1:

1

2
sup
f∈F

{
1 + c

n

n∑
i=2

εi(f(Xi)− f∗(Xi))
2 − cÊ(f − f∗)2 +

1 + c

n
(f(X1)− f∗(X1))2

}

+
1

2
sup
g∈F

{
1 + c

n

n∑
i=2

εi(g(Xi)− f∗(Xi))
2 − cÊ(g − f∗)2 − 1 + c

n
(g(X1)− f∗(X1))2

}

≤ 1

2
sup
f,g∈F

{
1 + c

n

n∑
i=2

εt(f(Xi)− f∗(Xi))
2 − cÊ(f − f∗)2 +

1 + c

n

n∑
i=2

εt(g(Xi)− f∗(Xi))
2

−cÊ(g − f∗)2 +
4K(1 + c)

n
|f(X1)− g(X1)|

}

The absolute value can be dropped since the expression is symmetric in f, g. We obtain an

upper bound of

1

2
sup
f,g∈F

{
1 + c

n

n∑
i=2

εt(f(Xi)− f∗(Xi))
2 − cÊ(f − f∗)2 +

1 + c

n

n∑
i=2

εt(g(Xi)− f∗(Xi))
2

−cÊ(g − f∗)2 +
4K(1 + c)

n
(f(X1)− g(X1))

}
= Eε1 sup

f∈F

{
1 + c

n

n∑
i=2

εi(f(Xi)− f∗(Xi))
2 − cÊ(f − f∗)2 +

4K(1 + c)

n
ε1f(X1)

}
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Proceeding in this fashion for ε2 until εn, we conclude

E sup
f∈F

{
E(f − f∗)2 − (1 + 2c)Ê(f − f∗)2

}
≤ E sup

f∈F

{
4K(1 + c)

n

n∑
i=1

εt(f(Xi)− f∗(Xi))−
c

n

n∑
i=1

(f(Xi)− f∗(Xi))
2

}

where we added f∗ back in for free since random signs are zero-mean.

Proof of Theorem 3.1.2. We start with the deterministic upper bound (A.41) on excess

loss (see the proof of Theorem 3.1.1):

sup
h∈H

{
(Ê− E)[2ξh] + Eh2 − (1 + c) · Êh2

}
(A.47)

where h = f − f∗ ∈ H. Define

UXi,Yi(h) = 2ξih(Xi)− E[2ξh] + Eh2 − (1 + c) · h(Xi)
2,

VXi,Yi(h) = 2ξih(Xi)− E[2ξh]− Eh2 + (1− c′) · h(Xi)
2.

where c′ will be specified later. We now prove a version of probabilistic symmetrization

lemma Giné and Zinn (1984); Mendelson (2003) for

P

(
sup
h∈H

n∑
i=1

UXi,Yi(h) > x

)
. (A.48)

Note that unlike the usual applications of the technique in the literature, we perform sym-

metrization with the quadratic terms. Define

B =

{
sup
h∈H

n∑
i=1

UXi,Yi(h) > x

}
, β = inf

h∈H
P

(
n∑
i=1

VXi,Yi(h) <
x

2

)
. (A.49)

Clearly for {Xi, Yi}ni=1 ∈ B, there exists a h ∈ H satisfies condition in B. If in addition h
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satisfies
n∑
i=1

VX′i,Y ′i (h) <
x

2

then
n∑
i=1

UXi,Yi(h)− VX′i,Y ′i (h) >
x

2

and therefore

sup
h∈H

n∑
i=1

UXi,Yi(h)− VX′i,Y ′i (h) >
x

2
.

The latter can be written as

sup
h∈H

{
n∑
i=1

2ξih(Xi)− 2ξ′ih(X ′i) + 2Eh2 − (1 + c) · h(Xi)
2 − (1− c′) · h(X ′i)

2

}
>
x

2
.

Then for this particular h,

β = inf
g∈H

P

(
n∑
i=1

VX′i,Y ′i (g) <
x

2

)
≤ P

(
n∑
i=1

VX′i,Y ′i (h) <
x

2

)

≤ P

(
n∑
i=1

UXi,Yi(h)− VX′i,Y ′i (h) >
x

2

)
≤ P

(
sup
h∈H

n∑
i=1

UXi,Yi(h)− VX′i,Y ′i (h) >
x

2

)
.

Note that the right-hand-side does not depend on h. We integrate over {Xi, Yi}ni=1 ∈ B to

obtain

β · P
(

sup
h∈H

n∑
i=1

UXi,Yi(h) > x

)

≤ P
(

sup
h∈H

n ·
{

2(Ê− Ê′)[ξh] + 2Eh2 − (1 + c) · Êh2 − (1− c′) · Ê′h2
}
>
x

2

)
(A.50)

Next, we apply Assumption 3.1.1 with ε = c/4 = 1/72 to terms in (A.50) to construct an

offset Rademacher process. Note

2

1− ε < 2(1 + 2ε) = 2 + c.
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We can now choose c̃, c′ > 0 in that satisfy

2

1− ε ≤ 2 + c− c′ − 2c̃ ⇐⇒ 1− (1− c′ − c̃)(1− ε) ≤ (1 + c− c̃)(1− ε)− 1. (A.51)

Choose b now such that

1− (1− c′ − c̃)(1− ε) ≤ b ≤ (1 + c− c̃)(1− ε)− 1. (A.52)

Then we have on the set H, applying lower isometry bound and Eq. (A.52), with probability

at least 1− 2δ,

Ê(f − f∗)2 ≥ (1− ε) · E(f − f∗)2 =⇒ (1 + b)Eh2 − (1 + c) · Êh2 ≤ −c̃ · Êh2,

Ê′(f − f∗)2 ≥ (1− ε) · E(f − f∗)2 =⇒ (1− b)Eh2 − (1− c′) · Ê′h2 ≤ −c̃ · Ê′h2.

Thus we can continue bounding the expression in (A.50) as

sup
h∈H

n ·
{

2(Ê− Ê′)[ξh] + 2Eh2 − (1 + c) · Êh2 − (1− c′) · Ê′h2
}

= sup
h∈H

n ·
{

2(Ê− Ê′)[ξh] + (1 + b)Eh2 − (1 + c) · Êh2 + (1− b)Eh2 − (1− c′) · Ê′h2
}

≤ sup
h∈H

n ·
{

2(Ê− Ê′)[ξh]− c̃ · Êh2 − c̃ · Ê′h2
}
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For the probability of deviation, we obtain

β · P
(

sup
h∈H

n∑
i=1

UXi,Yi(h) > x

)

≤ P
(

sup
h∈H

n ·
{

2(Ê− Ê′)[ξh]− c̃ · Êh2 − c̃ · Ê′h2
}
>
x

2

)
+ 2δ

= P
(

sup
h∈H

n ·
{

2(Ê− Ê′)[εξh]− c̃ · Êh2 − c̃ · Ê′h2
}
>
x

2

)
+ 2δ

≤ 2P

(
sup
h∈H

{
n∑
i=1

2εiξih(Xi)− c̃ ·
n∑
i=1

h(Xi)
2

}
>
x

4

)
+ 2δ.

To estimate β, write

β = inf
h∈H

P

(
n∑
i=1

VXi,Yi(h) <
x

2

)
(A.53)

= 1− sup
h∈H

P

(
n∑
i=1

2ξih(Xi)− E[2ξh]− Eh2 + (1− c′) · h(Xi)
2 ≥ x

2

)
. (A.54)

Let’s bound the last term in above equation, for any h ∈ H

P
(

(Ê− E)[2ξh] + (1− c′)Êh2 − Eh2 >
x

2n

)
(A.55)

≤P
(

(Ê− E)[2ξh] >
x

2n
+
c′

2
Eh2

)
+ P

(
(Ê− E)[h2] >

c′

2(1− c′)Eh
2

)
. (A.56)

(A.57)

Define

A := sup
h∈H

Eh4

(Eh2)2
and B := sup

X,Y
Eξ4.

Then for the second term in Eq (A.56), using Chebyshev’s inequality

P
(

(Ê− E)[h2] >
c′

2(1− c′)Eh
2

)
≤ 4(1− c′)2A

c′2n
≤ 1/4

if

n ≥ 16(1− c′)2A

c′2
.
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For the first term in Eq (A.56), note

Var[2ξh] ≤ 4E[ξ2h2] ≤ 4
√
AB · Eh2

and thus through Chebyshev inequality

P
(

(Ê− E)[2ξh] >
x

2n
+
c′

2
Eh2

)
≤ 4

√
AB · Eh2

n
(
x
2n + c′

2 Eh2
)2

≤ 4
√
AB · Eh2

n · 4 x
2n · c

′

2 Eh2
≤ 1

4

if

x ≥ 16
√
AB

c′
.

Assemble above bounds, for any h ∈ H

sup
h∈H

P

(
n∑
i=1

2ξih(Xi)− E[2ξh]− Eh2 + (1− c′) · h(Xi)
2 ≥ x

2

)
≤ 1

2

which further implies β ≥ 1/2 for any x > 16
√
AB
c′ and whenever

n >
16(1− c′)2A

c′2
.

Under the above regime,

1

2
P

(
sup
h∈H

n∑
i=1

UXi,Yi(h) > x

)
≤ 2P

(
sup
h∈H

{
n∑
i=1

εiξih(Xi)− c̃ ·
n∑
i=1

h(Xi)
2

}
>
x

4

)
+ 2δ

and so

P

(
sup
h∈H

n∑
i=1

UXi,Yi(h) > 4t

)

≤ 4P

(
sup
h∈H

{
n∑
i=1

εiξih(Xi)− c̃ ·
n∑
i=1

h(Xi)
2

}
> t

)
+ 4δ.
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We conclude by writing

P
(

sup
h∈H

(Ê− E)[2ξh] + Eh2 − (1 + c) · Êh2 > 4t

)
≤ 4P

(
sup
h∈H

1

n

n∑
i=1

εiξih(Xi)− c̃ ·
n∑
i=1

h(Xi)
2 > t

)
+ 4δ.

Proof of Lemma 3.1.2. Using a standard argument,

Eε max
v∈V

[
n∑
i=1

εivi − Cv2
i

]
≤ 1

λ
log
∑
v∈V

Eε exp

{
n∑
i=1

λεivi − λCv2
i

}
.

For any v ∈ V ,

Eε exp

{
n∑
i=1

λεivi − λCv2
i

}
≤ exp

{
n∑
i=1

λ2v2
i /2− λCv2

i

}
≤ 1

by setting λ = 2C. The first claim follows. For the second claim,

Pr max
v∈V

[
n∑
i=1

εivi − Cv2
i

]
≥ 1

2C
log(N/δ)

≤E exp

{
λmax
v∈V

[
n∑
i=1

εivi − Cv2
i

]
− λ 1

2C
log(N/δ)

}

≤
∑
v∈V

E exp

{
λ

[
n∑
i=1

εivi − Cv2
i

]
− λ 1

2C
log(N/δ)

}

≤
∑
v∈V

exp {− log(N/δ)} = δ.
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Now let’s move to the case where ξ, the noise is unbounded.

Eε
1

n
max
v∈V

{
n∑
i=1

εiξivi − Cv2
i

}
≤ 1

nλ
logEε

∑
v∈V

exp

(
λ

n∑
i=1

εiξivi − λCv2
i

)

≤ 1

nλ
log
∑
v∈V

exp

(
n∑
i=1

λ2

2
ξ2
i v

2
i − λCv2

i

)
≤ max

v∈V \{0}

∑n
i=1 v

2
i ξ

2
i

2C
∑n

i=1 v
2
i

· logN

n

if we take λ = minv∈V \{0}
2C
∑n
i=1 v

2
i∑n

i=1 v
2
i ξ

2
i

. The high probability statement follows also use this

particular choice of λ.

Proof of Lemma 3.1.3. The proof proceeds as in (Rakhlin and Sridharan, 2014). Fix

γ ∈ [0, 1]. By definition of a cover, there exists a set V ⊂ Rn vectors of size N = N2(G, γ)

with the following property: for any g ∈ G, there exists a v = v[g] ∈ V such that

1

n

n∑
i=1

(g(zi)− vi)2 ≤ γ2.

Then we may write,

Eε sup
g∈G

[
n∑
t=1

εig(zi)− Cg(zi)
2

]
(A.58)

≤ Eε sup
g∈G

[
1

n

n∑
t=1

εi(g(zi)− v[g]i)

]
+ Eε sup

g∈G

[
n∑
t=1

(C/4)v[g]2i − Cg(zi)
2

]
(A.59)

+ Eε sup
g∈G

[
n∑
t=1

εiv[g]i − (C/4)v[g]2i

]
(A.60)

We now argue that the second term is nonpositive. More precisely, we claim that for any

g ∈ G,

1

4

n∑
t=1

v[g]2i ≤
n∑
t=1

g(zi)
2 (A.61)

for some element v[g] ∈ V ∪ {0}. First, consider the case
∑n

t=1 g(zi)
2 ≤ γ2. Then v[g] = 0
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is an element γ-close to values of g on the sample, and (A.61) is trivially satisfied. Next,

consider the case
∑n

t=1 g(zi)
2 > γ2 and write u = (g(z1), . . . , g(zn)). The triangle inequality

for the Euclidean norm yields

‖v[g]‖ ≤ ‖v[g]− u‖+ ‖u‖ ≤ γ + ‖u‖ ≤ 2‖u‖,

establishing non-positivity of the second term in (A.58). The third term in (A.58) is upper

bounded with the help of Lemma 3.1.2 as

Eε max
g∈G

[
n∑
t=1

εiv[g]i − (C/4)v[g]2i

]
≤ 2

C
logN2(G, γ)

Finally, the first term in (A.58) is upper bounded using the standard chaining technique,

keeping in mind that the `2-diameter of the indexing set is at most γ.

Proof of Lemma 3.1.4. The proof is similar to the proof of Lemma 3.1.3. We proceed

with the following decomposition:

sup
g∈G

[
1

n

n∑
t=1

εig(zi)− Cg(zi)
2

]
≤ sup

g∈G

[
1

n

n∑
t=1

εi(g(zi)− v[g]i)

]
+ sup

g∈G

[
1

n

n∑
t=1

εiv[g]i −
C

4
v[g]2i

]
.

For the first term, we can employ the traditional high probability chaining bound. For some

c > 0, the following holds,

Pε

(
sup
g∈G

[
1

n

n∑
t=1

εi(g(zi)− v[g]i)

]
> u · inf

α∈[0,γ]

{
4α+

12√
n

∫ γ

α

√
logN2(G, δ)dδ

})

≤ 2

1− e−2
exp(−cu2).

For the second term,

Pε

(
sup
g∈G

[
1

n

n∑
t=1

εiv[g]i − (C/4)v[g]2i

]
>

2

C

logN2(G, γ) + u

n

)
≤ exp(−u).
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Combining the above two bounds, we have

Pε

(
sup
g∈G

[
1

n

n∑
t=1

εig(zi)− Cg(zi)
2

]
> u · inf

α∈[0,γ]

{
4α+

12√
n

∫ γ

α

√
logN2(G, δ)dδ

}
+

2

C

logN2(G, γ) + u

n

)
≤ Pε

(
sup
g∈G

[
1

n

n∑
t=1

εi(g(zi)− v[g]i)

]
> u · inf

α∈[0,γ]

{
4α+

12√
n

∫ γ

α

√
logN2(G, δ)dδ

})

+ Pε

(
sup
g∈G

[
1

n

n∑
t=1

εiv[g]i − (C/4)v[g]2i

]
>

2

C

logN2(G, γ) + u

n

)

≤ 2

1− e−2
exp(−cu2) + exp(−u).

Proof of Theorem 3.1.3. Denote by B the unit ball with respect to `2 distance, B =

{h : (Eh2)1/2 ≤ 1}, and let S denote the unit sphere. Choosing any h ∈ H\rB, we have

‖h‖`2 > r , αn(H, κ′, δ) with k′ to be chosen later. Under the assumption that H is

star-shaped, we know hr := r/‖h‖`2 · h ∈ H, thus

2

n

n∑
i=1

εiξih(Xi)− c′
1

n

n∑
i=1

h2(Xi)

=
‖h‖`2
r

2

n

n∑
i=1

εiξihr(Xi)−
(‖h‖`2

r

)2

c′
1

n

n∑
i=1

h2
r(Xi)

=
‖h‖`2
r

{
2

n

n∑
i=1

εiξihr(Xi)− c′
1

n

n∑
i=1

h2
r(Xi)

}
− ‖h‖`2

r

(‖h‖`2
r
− 1

)
c′

1

n

n∑
i=1

h2
r(Xi).

Comparing the supremum of the offset Rademacher process outside the ball rB with the
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one inside the ball rB, we have

sup
h∈H\rB

{
2

n

n∑
i=1

εiξih(Xi)− c′
1

n

n∑
i=1

h2(Xi)

}
− sup
h∈H∩rB

{
2

n

n∑
i=1

εiξih(Xi)− c′
1

n

n∑
i=1

h2(Xi)

}

≤ sup
h∈H\rB

{(‖h‖`2
r
− 1

)
sup

hr∈H∩rB

{
2

n

n∑
i=1

εiξihr(Xi)− c′
1

n

n∑
i=1

h2
r(Xi)

}

−‖h‖`2
r

(‖h‖`2
r
− 1

)
inf

hr∈H∩rS

{
c′

1

n

n∑
i=1

h2
r(Xi)

}}

≤ sup
h∈H\rB

{(‖h‖`2
r
− 1

){
sup

hr∈H∩rB

{
2

n

n∑
i=1

εiξihr(Xi)− c′
1

n

n∑
i=1

h2
r(Xi)

}

− inf
hr∈Hr∩rS

{
c′

1

n

n∑
i=1

h2
r(Xi)

}}}
. (A.62)

If

κ′r2 ≤ c′(1− ε)r2,

we can apply the lower isometry bound 3.1.1 and conclude

sup
h∈H∩rB

{
2

n

n∑
i=1

εiξih(Xi)− c′
1

n

n∑
i=1

h2(Xi)

}
≤ k′r2 ≤ c′(1−ε)r2 ≤ inf

hr∈H∩rS

{
c′

1

n

n∑
i=1

h2
r(Xi)

}

with probability at least 1− 2δ.

Under this event, the difference of terms in (A.62) is smaller than 0, and we conclude

sup
h∈H\rB

{
2

n

n∑
i=1

εiξih(Xi)− c′
1

n

n∑
i=1

h2(Xi)

}
− sup
h∈H∩rB

{
2

n

n∑
i=1

εiξih(Xi)− c′
1

n

n∑
i=1

h2(Xi)

}

≤ sup
h∈H\rB

{(‖h‖`2
r
− 1

){
sup

hr∈H∩rB

{
2

n

n∑
i=1

εiξihr(Xi)− c′
1

n

n∑
i=1

h2
r(Xi)

}

− inf
hr∈Hr∩rS

{
c′

1

n

n∑
i=1

h2
r(Xi)

}}}

≤ sup
h∈H\rB

{(‖h‖`2
r
− 1

)(
κ′r2 − c′(1− ε)r2

)}
≤ 0

Thus the excess loss is upper bounded by the offset Rademacher process, and the latter is
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further bounded by the process restricted within the critical radius:

sup
h∈H

{
2

n

n∑
i=1

εiξih(Xi)− c′
1

n

n∑
i=1

h2(Xi)

}
≤ sup

h∈H∩rB

{
2

n

n∑
i=1

εiξih(Xi)− c′
1

n

n∑
i=1

h2(Xi)

}

≤ α2
n(H, c′(1− ε), δ)

with probability at least 1− 2δ.

Proof of Theorem 3.1.4. Denote F ⊂ G = F + star(F − F). The minimax excess loss

can be written as

inf
ĝ∈G

sup
P

{
E(ĝ − Y )2 − inf

f∈F
E(f − Y )2

}
= inf

ĝ∈G
sup
P

{{
−E2Y ĝ + Eĝ2

}
+ sup
f∈F

{
E2Y f − Ef2

}}
.

Now let’s construct a particular distribution P in the following way: take any x1, x2, ..., x(1+c)n ∈

X and let PX be the uniform distribution on these (1+c)n points. For any ε = (ε1, . . . , ε(1+c)n) ∈

{±1}(1+c)n, denote the distribution Pε of (X,Y ) indexed by ε to be: X is sampled from PX ,

and Y|X=xi = εi, ∀1 ≤ i ≤ (1 + c)n. Note here ĝ : (X,Y )⊗n → F + star(F − F). Now we

proceed with this particular distribution

inf
ĝ∈G

sup
P

{{
−E2Y ĝ + Eĝ2

}
+ sup
f∈F

{
E2Y f − Ef2

}}

≥ inf
ĝ∈G

sup
{xi}

(1+c)n
i=1 ∈X⊗(1+c)n

Eε

{{
−E2Y ĝ + Eĝ2

}
+ sup
f∈F

{
E2Y f − Ef2

}}

≥ sup
{xi}

(1+c)n
i=1 ∈X⊗(1+c)n

Eε

sup
f∈F

1

(1 + c)n


(1+c)n∑
i=1

2εif(xi)− f(xi)
2




− sup
ĝ∈G

sup
{xi}

(1+c)n
i=1 ∈X⊗(1+c)n

Eε
{

2EY ĝ − Eĝ2
}
.

Note that the first term is exactly Ro((1 + c)n,F). Let us upper bound the second term.
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Denote the indices of a uniform n samples from (1+c)n samples {xi}(1+c)n
i=1 with replacement

as i1, i2, . . . , in, and I be the set of unique indices |I| ≤ n. Observe that ĝ is a function of

(xI , YI) only, independent of εj , j /∈ I.

sup
ĝ∈G

sup
{xi}

(1+c)n
i=1 ∈X⊗(1+c)n

Eε
{

2EY ĝ − Eĝ2
}

≤ sup
ĝ∈G

sup
{xi}

(1+c)n
i=1 ∈X⊗(1+c)n

EεEi1,...,in

 1

(1 + c)n

(1+c)n∑
i=1

{
2εiĝ(xi)− ĝ(xi)

2
}

= sup
ĝ∈G

sup
{xi}

(1+c)n
i=1 ∈X⊗(1+c)n

Ei1,...,inEε

 1

(1 + c)n

(1+c)n∑
i=1

{
2εiĝ(xi)− ĝ(xi)

2
} (A.63)

Conditionally on i1, i2, ..., in,

1

(1 + c)n

∑
i/∈I

{
2εiĝ(xi)− ĝ(xi)

2
}

= 0− 1

(1 + c)n

∑
i/∈I

ĝ(xi)
2 < 0.

Expression in (A.63) is upper bounded by

sup
ĝ∈G

sup
{xi}

(1+c)n
i=1 ∈X⊗(1+c)n

Ei1,...,inEε

{
1

(1 + c)n

∑
i∈I

{
2εiĝ(xi)− ĝ(xi)

2
}}

≤ sup
ĝ∈G

Ei1,...,in sup
{xi}

|I|
i=1∈X⊗|I|

Eε

{
1

(1 + c)n

∑
i∈I

{
2εiĝ(xi)− ĝ(xi)

2
}}

≤ sup
ĝ∈G

sup
{xi}ni=1∈X⊗n

Eε

{
1

(1 + c)n

cn∑
i=1

{
2εiĝ(xi)− ĝ(xi)

2
}}

≤ sup
{xi}ni=1∈X⊗n

Eε sup
g∈G

{
1

(1 + c)n

cn∑
i=1

{
2εig(xi)− g(xi)

2
}}

=
c

1 + c
Ro(cn,G).

Thus the claim holds.
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Proof of Lemma 3.1.7. From Lemma 3.1.5, we know for H = F − f∗ + star(F − F),

logN2(H, 8ε) ≤ logN2(F − f∗, 4ε) + logN2(star(F − F), 4ε) ≤ log
2

ε
+ 3 logN2(F , ε).

Consider the δ-covering net of H, where for any h ∈ H, v[h] is the closest point on the net.

1

n
sup
h∈H

{
n∑
i=1

2εiξih(Xi)− Ch(Xi)
2

}

≤ 1

n
sup
h∈H

{
n∑
i=1

2εiξi(h(Xi)− v[h])− C(h(Xi)
2 − v[h]2)

}
+

1

n
sup

v∈N2(H,δ)

{
n∑
i=1

2εiξiv − Cv2

}

≤ 2(

√√√√ n∑
i=1

ξ2
i /n+ 2C) · δ +

1

n
sup

v∈N2(H,δ)

{
n∑
i=1

2εiξiv − Cv2

}
.

The second term is the offset Rademacher for a finite set of cardinality at most log(16/δ) +

3 logN , thus applying Lemma 3.1.2,

Eε
1

n
sup
h∈H

{
n∑
i=1

2εiξih(Xi)− Ch(Xi)
2

}
≤ inf

δ>0

{
K · δ +M · 3 logN + log(16/δ)

n

}
≤ C̃ · log(N ∨ n)

n

where K := 2(
√∑n

i=1 ξ
2
i /n + 2C) and M is defined in Equation (3.6). We also have the

high probability bound via Lemma 3.1.2:

Pε

(
1

n
sup
h∈H

{
n∑
i=1

2εiξih(Xi)− Ch(Xi)
2

}
≤ C̃ · log(N ∨ n) + u

n

)
≤ e−u.

A.5. Appendix for Section 3.2

The proofs of the main results are divided into several parts. For the upper bound of

point estimation, we will first prove Theorem 3.2.4 and then two lemmas, Lemma 3.2.3 and

Lemma 3.2.2 (these two Lemmas are included in Supplement Cai et al. (2014). Theorem
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3.2.1 is then easy to prove. As for the statistical inference, Theorem 3.2.2 is proved based

on Theorem 3.2.1. For the lower bound of point estimation, Theorem 3.2.3 is a direct

result combining Lemma 3.2.3 and Theorem 3.2.6, which is proved in Supplement Cai et al.

(2014). Proofs of Corollaries are deferred to Supplement Cai et al. (2014).

Proof of Theorem 3.2.4. We will prove a stronger version of the Theorem, analyzing both

(3.26) and (3.27). The proof is clean and in a general fashion, following directly from the

assumptions of the theorem and the definitions:

‖X ∗(Y −XM)‖∗A ≤ λ, ‖X ∗(Y −XM)‖`2 ≤ µ Assumption of the Theorem

‖X ∗(Y −X M̂)‖∗A ≤ λ, ‖X ∗(Y −X M̂)‖`2 ≤ µ Constraint in program

‖M̂‖A ≤ ‖M‖A Definition of minimizer

Thus we have

‖X ∗X (M̂ −M)‖∗A ≤ 2λ, ‖X ∗X (M̂ −M)‖`2 ≤ 2µ and M̂ −M ∈ TA(M). (A.64)

The first equation is due to triangle inequality and second one due to Tangent cone defini-

tion. Define H = M̂ −M ∈ TA(M). According to the “Cauchy-Schwarz” (3.17) relation

between atomic norm and its dual,

‖X (H)‖2`2 = 〈X (H),X (H)〉 = 〈X ∗X (H), H〉 ≤ ‖X ∗X (H)‖∗A‖H‖A.

Using the earlier result ‖X ∗X (H)‖∗A ≤ 2λ, as well as the following two equations for any

H ∈ TA(M)

φA(M,X )‖H‖`2 ≤ ‖X (H)‖`2 local isometry constant

‖H‖A ≤ γA(M)‖H‖`2 local asphericity ratio
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we get the following self-bounding relationship

φ2
A(M,X )‖H‖2`2 ≤ ‖X (H)‖2`2 ≤ 2λ‖H‖A ≤ 2λγA(M)‖H‖`2 ,

φ2
A(M,X )‖H‖2`2 ≤ ‖X (H)‖2`2 ≤ 2µ‖H‖`2 .

Thus ‖H‖`2 ≤ 2
φ2
A(M,X )

min{γA(M)λ, µ}. The proof is then completed by simple algebra.

Note here under the Gaussian setting, we can plug in λ � w(XA)/
√
n and µ � w(XBp

2)/
√
n

using Lemma 3.2.2.

Proof of Theorem 3.2.1. Theorem 3.2.1 is a special case of Theorem 3.2.4 under Gaussian

setting, combining with Lemma 3.2.3 and Lemma 3.2.2. All we need to show is a good

control of λn and φA(M,X ) with probability at least 1 − 3 exp(−δ2/2) under Gaussian

ensemble and Gaussian noise. We bound λn with probability at least 1 − exp(−δ2/2)

via Lemma 3.2.2. For φA(M,X ), we can lower bound by 1 − c with probability at least

1− 2 exp(−δ2/2). Let’s define good event to be when

λn ≤
σ√
n

{
Eg
[
sup
v∈A
〈g,X v〉

]
+ δ · sup

v∈A
‖X v‖`2

}

and 1 − c ≤ φA(M,X ) ≤ ψA(M,X ) ≤ 1 + c both hold. It is easy to see this good event

holds with probability 1− 3 exp(−δ2/2). Thus all we need to prove is maxz∈A ‖X z‖ ≤ 1 + c

under the good event.

According to Lemma 3.2.3, maxz∈A ‖X z‖/‖z‖ ≤ 1 + c is satisfied under the condition

n ≥ 1
c2

[w(Bp
2 ∩ A) + δ]2. As we know for any M , the unit atomic norm ball conv(A) is

contained in 2Bp
2 and TA(M), which means Bp

2 ∩ A ⊂ 2Bp
2 ∩ TA(M), thus w(Bp

2 ∩ A) ≤

2w(Bp
2 ∩ TA(M)) (monotonic property of Gaussian width). So we have for any M , if

n ≥ 4
c2

[w(Bp
2 ∩TA(M))+δ]2∨ 1

c . we have the following two bounds with probability at least
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1− 2 exp(−δ2/2)

max
z∈A
‖X z‖ ≤ 1 + c

1− c ≤ φA(M,X ) ≤ ψA(M,X ) ≤ 1 + c. (A.65)

Now plugging (A.65) into the expression of Lemma 3.2.2, together with Lemma 3.2.3,

Theorem 3.2.4 reduces to Theorem 3.2.1.

Proof of Theorem 3.2.2. We first prove that, with high probability, the convex program

(3.28) is indeed feasible with Ω = In. Equivalently we establish that, with high probability,

for any 1 ≤ i ≤ p, ‖X ∗X ei − ei‖∗A ≤ η for some proper choice of η. Here X ∈ Rn×p, and

the entries Xij iid∼ N(0, 1/n). Denote g =
√
nX·i as a scaling version of the i-th column of

X , g ∼ N(0, In) and g′ ∼ N(0, In) being an independent copy. Below Op(·) denotes the

asymptotic order in probability. We have, for all 1 ≤ i ≤ p uniformly,

‖X ∗X ei − ei‖∗A = sup
v∈A
〈X ∗X ei − ei, v〉 = sup

v∈A
〈X ∗g − ei, v〉/

√
n

≤ sup
v∈A
〈X ∗(−i)g, v〉/

√
n+ sup

v∈A

 1

n

n∑
j=1

g2
j − 1

 vi

w.h.p

-
w(X(−i)A)√

n
+Op(

√
log p/n) invoking Lemma 3.2.2

≤ w(XA)√
n

+
Eg′ supv∈A

∑n
k=1 g

′
kXki(−vi)√

n
+Op(

√
log p/n)

≤ w(XA)√
n

+

√
Eg′(

∑n
k=1 g

′
kXki)2 · supv∈A v

2
i√

n
+Op(

√
log p/n)

≤ w(XA)√
n

+

√
1 +Op(

√
log p/n)

n
+Op(

√
log p/n) (A.66)

where X(−i) is the linear operator setting i-th column to be all zeros. We applied Lemma 3.2.2

in establishing the above bounds.

For the de-biased estimate M̃ , we have M̃ = M̂+ΩX ∗(Y −X (M̂)) and M̃−M = (ΩX ∗X −
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Ip)(M − M̂) + ΩX ∗Z := ∆ + σ√
n

ΩX ∗W. Then for any 1 ≤ i ≤ p, from the Cauchy-Schwartz

relationship (3.17),

|∆i| = |〈X ∗XΩ∗i· − ei,M − M̂〉| ≤ ‖X ∗XΩ∗i· − ei‖∗A‖M − M̂‖A ≤ σ
γ2
A(M)w2(XA)

n
.

(A.67)

The last line invokes the consistency result in Theorem 3.2.1, ‖M̂ −M‖A - σ
γ2
A(M)w(XA)√

n
.

Thus we have ‖∆‖`∞ - σ
γ2
A(M)w2(XA)

n . For any linear contrast ‖v‖`1 ≤ ρ, we have
√
n
σ v
∗(M̃−

M) = v∗ΩX ∗W +
√
n
σ v
∗∆,

lim sup
n,p(n)→∞

√
n

σ
v∗∆ ≤ lim sup

n,p(n)→∞

√
n

σ
‖v‖`1‖∆‖`∞ ≤ ρ · lim sup

n,p(n)→∞

γ2
A(M)w2(XA)√

n
= 0,

and v∗ΩX ∗W ∼ N(0, v∗[ΩX ∗XΩ∗]v).

Proof of Theorem 3.2.3. Theorem 3.2.3 is a special case of Theorem 3.2.6, combining with

Lemma 3.2.3 (both in Supplement Cai et al. (2014). Plug in the general convex cone T by

local tangent cone TA(M), then upper bound ψA(M,X ) ≤ 1 + c with high probability via

Lemma 3.2.3.

A.6. Appendix for Section 3.3

A.6.1. Proofs for Realizable Setting

Proof of Lemma 3.3.1. Let ∆ := ŵ − w∗ be the difference between the true answer and

solution to the optimization problem. Let S to be the support of w∗ and let Sc = [d]\S be the

complements of S. Consider the permutation i1, . . . , id−k of Sc for which |∆(ij)| ≥ |∆(ij+1)|

for all j. That is, the permutation dictated by the magnitude of the entries of ∆ outside of

S. We split Sc into subsets of size k according to this permutation: Define Sj , for j ≥ 1 as

{i(j−1)k+1, . . . , ijk}. For convenience we also denote by S01 the set S ∪ S1.

Now, consider the matrix XS01 ∈ Rt×|S01| whose columns are those of X with indices S01.
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The Restricted Isometry Property of X dictates that for any vector c ∈ RS01 ,

(1− ε) ‖c‖2 ≤
1√
n
‖XS01c‖2 ≤ (1 + ε) ‖c‖2 .

Let V ⊆ Rt be the subspace of dimension |S01| that is the image of the linear operator XS01 ,

and let PV ∈ Rt×t be the projection matrix onto that subspace. We have, for any vector

z ∈ Rt that

(1− ε) ‖PV z‖ ≤
1√
n

∥∥XT
S01
z
∥∥ ≤ (1 + ε) ‖PV z‖

We apply this to z = X∆ and conclude that

‖PVX∆‖ ≤ 1√
t(1− ε)

∥∥XT
S01
X∆

∥∥ (A.68)

We continue to lower bound the quantity of ‖PVX∆‖. We decompose PVX∆ as

PVX∆ = PVX∆(S01) +
∑
j≥2

PVX∆(Sj) (A.69)

Now, according to the definition of V we that there exist vectors {cj}j≥2 in R|S01| for which

PVX∆(Sj) = XS01cj

We now invoke Lemma 1.1 from Candes and Tao (2005) stating that for any S′, S′′ with

|S′|+ |S′′| ≤ 3k it holds that

∀c, c′ 1

n

〈
XS′c,XS′′c

′〉 ≤ (2ε− ε2) ‖c‖2
∥∥c′∥∥

2

We apply this for S01, Sj , j ≥ 2 and conclude that

‖PVX∆(Sj)‖22 = 〈PVX∆(Sj), X∆(Sj)〉 ≤ 2εt ‖cj‖2·‖∆(Sj)‖ ≤
2ε
√
t

1− ε ‖PVX∆(Sj)‖2·‖∆(Sj)‖2 .
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Dividing through by ‖PVX∆(Sj)‖2, we get

‖PVX∆(Sj)‖ ≤
2ε
√
t

1− ε ‖∆(Sj)‖ . (A.70)

Let us now bound the sum ‖∆(Sj)‖. By the definition of Sj we know that any element

i ∈ Sj has the property ∆(i) ≤ (1/k) ‖∆(Sj−1)‖1. Hence

∑
j≥2

‖∆(Sj)‖ ≤ (1/
√
k)
∑
j≥1

‖∆(Sj)‖1 = (1/
√
k) ‖∆(Sc)‖1

We now combine this inequality with Equations (A.68), (A.69) and (A.70)

1

t

∥∥XT
S01
X∆

∥∥ ≥ 1− ε√
t
‖PVX∆‖

≥ 1− ε√
t
‖PVX∆(S01)‖ − 1− ε√

n

∑
j≥2

‖PVX∆(Sj)‖

≥ 1− ε√
t
‖X∆(S01)‖ − 2ε

∑
j≥2

‖∆(Sj)‖

≥ 1− ε√
t
‖X∆(S01)‖ − 2ε√

k
‖∆(Sc)‖1

The third inequality holds since X∆(S01) ∈ V hence PVX∆(S01) = X∆(S01). We continue

to bound the expression by claiming that ‖∆(S)‖1 ≥ ‖∆(Sc)‖1. This holds since in Sc,

ŵSc = ∆(Sc) hence

‖w∗‖1 = ‖ŵ −∆(Sc)−∆(S)‖1 ≤ ‖ŵ‖1 + (‖∆(S)‖1 − ‖∆(Sc)‖1)

Now, the optimality of ŵ implies ‖ŵ‖1 ≤ ‖w∗‖1, hence indeed ‖∆(S)‖1 ≥ ‖∆(Sc)‖1.

‖∆(Sc)‖1 ≤ ‖∆(S)‖1 ≤
√
k ‖∆(S)‖2 ≤ ‖∆(S01)‖2 ≤

√
k

(1− ε)
√
t
‖X∆(S01)‖
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We continue the chain of inequalities

1

t

∥∥XT
S01
X∆

∥∥ ≥ 1− ε√
n
‖X∆(S01)‖ − 2ε√

k
‖∆(Sc)‖1

≥ ‖X∆(S01)‖
(

1− ε√
n
− 2ε√

k
·

√
k

(1− ε)√n

)

=
(1− ε)2 − 2ε

(1− ε)
√
t
‖X∆(S01)‖

Rearranging we conclude that

‖∆(S01)‖ ≤ 1

(1− ε)
√
t
‖X∆(S01)‖ (RIP of X)

≤ 1

((1− ε)2 − 2ε)t

∥∥XT
S01
X∆

∥∥
≤

√
2k

(1− 4ε)t

∥∥XTX∆
∥∥
∞ (since for any z ∈ R2k, ‖z‖2 ≤

√
2k ‖z‖∞)

≤ C
√
dk log(d/δ)

tk0

(
σ +

d

k0
‖w∗‖1

)
(Lemma A.6.1 and ε < 1/5)

for some constant C. We continue our bound on ‖∆‖ by showing that ‖∆(Sc01)‖ ≤ ‖∆(S01)‖

‖∆(Sc01)‖22
(i)

≤ ‖∆(Sc)‖21 ·
∑
j≥k+1

1

j2
≤ 1

k
‖∆(Sc)‖21 ≤

1

k
‖∆(S)‖21 ≤ ‖∆(S)‖22 .

Inequality (i) holds due to the following: Let αi be the absolute value of the i’th largest (in

absolute value) element of ∆(Sc). It obviously holds that αi ≤ ‖∆(Sc)‖1 /i. Now, according

to the definition of S01 we have that ‖∆(Sc01)‖22 =
∑

j≥k+1 α
2
i and the inequality follows.

Hence,

‖∆(Sc01)‖2 ≤ ‖∆(S)‖2 ≤ ‖∆(S01)‖2 .

We conclude that

‖∆‖2 ≤
√

2 ‖∆(S01)‖2 ≤ C
√
dk log(d/δ)

tk0

(
σ +

d

k0
‖w∗‖1

)
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for some universal constant C > 0. Since ‖∆(S)‖1 ≥ ‖∆(Sc)‖1 and |S| ≤ k we get that

‖∆‖1 ≤ 2 ‖∆(S)‖1 ≤ 2
√
k ‖∆(S)‖2 ≤ 2

√
k ‖∆‖2

and the claim follows.

Proof of Lemma 3.3.2. Let S be the support of w∗. We can decompose the square of the

left hand side as

∥∥∥ŵ(S̃)− w∗
∥∥∥2

2
=
∑
i∈S∩S̃

(ŵ(i)− w∗(i))2 +
∑
i∈S̃\S

(ŵ(i))2 +
∑
i∈S\S̃

(w∗(i))2.

We upper bound the last sum on the right hand side as

∑
i∈S\S̃

(w∗(i))2 =
∑
i∈S\S̃

[(ŵ(i)− w∗(i)) + (ŵ(i))]2

≤ 2
∑
i∈S\S̃

(ŵ(i)− w∗(i))2 + (ŵ(i))2

≤ 2
∑
i∈S\S̃

(ŵ(i)− w∗(i))2 + 2
∑
i∈S̃\S

(ŵ(i))2 ,

where first inequality follows from the elementary inequality (a + b)2 ≤ 2a2 + 2b2 and the

second inequality is due to the fact that S̃ contains top k entries of ŵ in absolute value and
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|S \ S̃| = |S̃ \ S|. Hence,

∥∥∥ŵ(S̃)− w∗
∥∥∥2

2
=
∑
i∈S∩S̃

(ŵ(i)− w∗(i))2 +
∑
i∈S̃\S

(ŵ(i))2 +
∑
i∈S\S̃

(w∗(i))2

≤
∑
i∈S∩S̃

(ŵ(i)− w∗(i))2 + 2
∑
i∈S\S̃

(ŵ(i)− w∗(i))2 + 3
∑
i∈S̃\S

(ŵ(i))2

≤ 2
∑
i∈S∩S̃

(ŵ(i)− w∗(i))2 + 2
∑
i∈S\S̃

(ŵ(i)− w∗(i))2 + 3
∑
i∈S̃\S

(ŵ(i))2

= 2
∑
i∈S

(ŵ(i)− w∗(i))2 + 3
∑
i∈S̃\S

(ŵ(i))2

≤ 3

d∑
i=1

(ŵ(i)− w∗(i))2

= 3 ‖ŵ − w∗‖22 .

Taking square root finishes the proof.

Lemma A.6.1. There exists a universal constant C > 0 such that, with probability at least

1− δ, the convex program (3.41) is feasible and its optimal solution ŵ satisfies

∥∥∥∥1

t
XT
t Xt(ŵ − w∗)

∥∥∥∥
∞
≤ C

√
d log(d/δ)

tk0

(
σ +

d

k0
‖w∗‖1

)
.

We note that the above lemma is beyond simple triangle inequality on the feasibility con-

straints, as the left hand side depends on actual design matrix Xt which we do not observe,

instead of X̂t.

Proof. To simplify notation, we drop subscript t. Namely, let X = Xt, X̂ = Xt and D̂ = D̂t,

and also let η = (η1, η2, . . . , ηt) be the vector of noise variables.

First, we show that w∗ satisfies the constraint of (3.41) with probability at least 1− δ. We
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upper bound

∥∥∥∥1

t
X̂T (Y − X̂w∗) +

1

t
D̂w∗

∥∥∥∥
∞

=

∥∥∥∥[1

t
X̂T (X − X̂) +

1

t
D̂

]
w∗ +

1

t
X̂T η

∥∥∥∥
∞

≤
∥∥∥∥[1

t
X̂T (X − X̂) +

1

t
D̂

]
w∗
∥∥∥∥
∞

+
1

t

∥∥∥X̂T η
∥∥∥
∞

We first bound the left summand. By Lemma A.6.2, we have

∥∥∥∥[1

t
X̂T (X − X̂) +

1

t
D̂

]
w∗
∥∥∥∥
∞
≤ ‖w∗‖1 ·

∥∥∥∥1

t
X̂T (X − X̂) +

1

t
D̂

∥∥∥∥
∞

≤ ‖w∗‖1
(∥∥∥∥1

t
XT (X̂ −X)

∥∥∥∥
∞

+

∥∥∥∥1

t
(X̂ −X)T (X̂ −X)− 1

t
D̂

∥∥∥∥
∞

)
≤ ‖w∗‖1C ·

√
d3 log(d/δ)

tk0
3 .

For the right summand, since η is vector of i.i.d Gaussians with variance σ2, with probability

at least 1− δ,
1

t

∥∥∥X̂T η
∥∥∥
∞
≤ Cσ

t

√
log(d/δ) ·max

i∈[d]

∥∥∥X̂(i)

∥∥∥
2

where X̂(1), X̂(2), . . . , X̂(d) are the columns of X̂. Since the absolute value of the entries of

X̂ is at most d/k0, we have
∥∥∥X̂(i)

∥∥∥
2
≤
√
td/k0 and thus

1

t

∥∥∥X̂T η
∥∥∥
∞
≤ Cσ

√
d log(d/δ)

tk0
.

Combining the inequalities so far provides

∥∥∥∥1

t
X̂T (Y − X̂w∗) +

1

t
D̂w∗

∥∥∥∥
∞
≤ C

√
d log(d/δ)

tk0

(
σ +

d

k0
‖w∗‖1

)

and hence conclude the constraint of the optimization problem (3.41) is satisfied (at least)

by w∗ and thus the optimization problem is feasible.
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Now consider the vector ∆ := ŵ − w∗, we have

∥∥∥∥1

t
XTX∆

∥∥∥∥
∞
≤
∥∥∥∥1

t
(X̂T X̂ − D̂)∆

∥∥∥∥
∞

+

∥∥∥∥1

t
(X̂T X̂ − D̂ −XTX)∆

∥∥∥∥
∞

≤
∥∥∥∥1

t
(X̂T X̂ − D̂)∆

∥∥∥∥
∞

+

∥∥∥∥1

t
(X̂ −X)TX∆

∥∥∥∥
∞

+

∥∥∥∥1

t
XT (X̂ −X)∆

∥∥∥∥
∞

+

∥∥∥∥(1

t
(X̂ −X)T (X̂ −X)− 1

t
D̂

)
∆

∥∥∥∥
∞
.

According to Lemma A.6.2 we have

∥∥∥∥1

t
XT (X̂ −X)∆

∥∥∥∥
∞
≤
∥∥∥∥1

t
XT (X̂ −X)

∥∥∥∥
∞
‖∆‖1

≤ C
√
d log(d/δ)

tk0
(‖w∗‖1 + ‖ŵ‖1) ≤ 2C

√
d log(d/δ)

tk0
· ‖w∗‖1

where the last inequality is by the optimality of ŵ. The same argument provides an iden-

tical bound for
∥∥∥1
t (X̂ −X)TX∆

∥∥∥
∞

. The last summand can also be bounded by using

Lemma A.6.2 and the optimality of ŵ.

∥∥∥∥(1

t
(X̂ −X)T (X̂ −X)− 1

t
D̂

)
∆

∥∥∥∥
∞
≤ 2C

√
d3 log(d/δ)

tk0
3 · ‖w∗‖1

Finally, according to the feasibility of ŵ and w∗ we may bound the first summand

∥∥∥∥(1

t
X̂T X̂ − 1

t
D̂

)
∆

∥∥∥∥
∞
≤ 2C

√
d log(d/δ)

tk0

(
σ +

d

k0
‖w∗‖1

)
,

and reach the final bound.

Lemma A.6.2. For any t ≥ t0, with probability at least 1−δ, the following two inequalities

hold

∥∥∥∥1

t
(X̂t −Xt)

T (X̂t −Xt)−
1

t
D̂t

∥∥∥∥
∞
≤ C

√
d3 log(d/δ)

tk0
3 ,

∥∥∥∥1

t
XT
t (X̂t −Xt)

∥∥∥∥
∞
≤ C

√
d log(d/δ)

tk0
,
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where ‖·‖∞ denotes the maximum of the absolute values of the entries of a matrix.

Proof. Throughout we use that |xs(i)| ≤ 1 for all i ∈ [d] and all s ∈ [t], and (2) (x̂s(i) −

xs(i))
2 − 1

tDii is unbiased with absolute value of at most (d/k0)2 and variance of at most

(d/k0)3. For the first term, let’s bound

[
1

t
(X̂ −X)T (X̂ −X)− 1

t
D̂

]
ij

=
1

t

t∑
s=1

(x̂s(i)− xs(i))(x̂s(j)− xs(j))−
1

t
D̂ij

For i = j, we have

E

[(
(x̂s(i)− xs(i))2 − 1

t
Dii

)2
]
≤ E

[
(x̂s(i)− xs(i))4

]
≤ (d/k0)3

(x̂s(i)− xs(i))2 − 1

t
Dii ≤ (d/k0)2, E

[
(x̂s(i)− xs(i))2 − 1

t
Dii

]
= 0

Hence, by Bernstein’s inequality, for any v > 0,

Pr

[∣∣∣∣∣1t
t∑

s=1

(x̂s(i)− xs(i))2 − 1

t
Dii

∣∣∣∣∣ > v

]
≤ 2 exp

(
− v2t

(d/k0)3 + (d/k0)2v/3

)
.

It follows that for any δ > 0, with probability at least 1− δ it holds for all i ∈ [d] that,

∣∣∣∣∣1t
t∑

s=1

(x̂s(i)− xs(i))2 − 1

t
Dii

∣∣∣∣∣ ≤ O
(

log(d/δ)d2

tk0
2 +

√
log(d/δ)d3

tk0
3

)
.

Similarly we have 1
t (D̂ii −Dii) ≤ O

(
log(d/δ)d2

tk0
2 +

√
log(d/δ)d3

tk0
3

)
.

For i 6= j we use an analogous argument, only now the variance term in Bernstein’s inequal-

ity is (d/k0)2 rather than (d/k0)3, hence only reach a tighter bound.

For the second term, we again bound via Bernstein’s inequality as

[
1

t
XT (X̂ −X)

]
ij

=
1

t

t∑
s=1

xs(i)(x̂s(j)− xs(j)) ≤ O

√d log(d/δ)

tk0
+
d log(d/δ)

tk0
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The claim now follows by noticing that for large enough t, the dominating terms are those

that scale as 1/
√
t.

Proof of Theorem 3.3.1. By Lemma 3.3.1,

‖wt+1 − w∗‖2 ≤ O

√ d

k0

k log(d/δ)

t
(σ +

d

k0
‖w∗‖1)

 .

We have

RegretT (w∗)− Regrett0(w∗) =
T∑

t=t0+1

(yt − 〈xt, wt〉)2 − (yt − 〈xt, w∗〉)2

=
T∑

t=t0+1

(〈xt, w∗ − wt〉+ ηt)
2 − η2

t

=
T∑

t=t0+1

(〈xt, w∗ − wt〉+ 2ηt) 〈xt, w∗ − wt〉

=
T∑

t=t0+1

2ηt 〈xt, w∗ − wt〉+ (〈xt, w∗ − wt〉)2 ,

where we used that yt = 〈xt, wt〉 + ηt. To bound the regret we require the upper bound,

that occurs with probability of at least 1− δ, ∀t ≥ t0,

|〈xt, w∗ − wt〉|
(i)

≤ ‖xt‖∞
√
‖wt − w∗‖0·‖wt − w∗‖2

(ii)

≤ O

k ·√ d

k0

log(log(T )d/δ)

t

(
σ +

d

k0

) .

Inequality (i) holds since 〈a, b〉 ≤ ‖a(S)‖2 ·‖b‖2 with S being the support of b and ‖a(S)‖2 ≤

‖a‖∞
√
|S|. Inequality (ii) follows from Lemma 3.3.1 and Lemma 3.3.2, and a union bound

over the dlog(T )e many times the vector wt is updated. Now, for the left summand of the
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regret bound we have by Martingale concentration inequality that w.p. 1− δ

T∑
t=t0+1

2ηt 〈xt, wt − w∗〉 ≤ O

σ
√√√√log(1/δ)

T∑
t=t0+1

〈xt, wt − w∗〉2


= O

σ
√

log(1/δ) log(T )k2 · d log(d log(T )/δ)

k0

(
σ +

d

k0

)2
 .

The right summand is bounded as

T∑
t=t0+1

〈xt, w∗ − wt〉2 = O
(
k2 · d log(d log(T )/δ)

k0

(
σ +

d

k0

)2

· log(T )

)
.

Clearly, the right summand dominates the left one.

It remains to bound the regret in first t0 rounds. Since wt = 0 for t ≤ t0, we have

Regrett0(w∗) =

t0∑
t=1

2ηt 〈xt, w∗〉+ (〈xt, w∗〉)2 ≤ O
(
σ
√
t0 log(1/δ) + t0

)
.

Here, we used that | 〈xt, w∗〉 | ≤ 1 since ‖xt‖∞ ≤ 1 and ‖w∗‖1 ≤ 1. We also used that

ηt 〈xt, w∗〉 ∼ N(0, σ2 〈xt, w∗〉2) and η1 〈x1, w
∗〉 , η2 〈x2, w

∗〉 , . . . , ηt0 〈xt0 , w∗〉 are indepen-

dent. Thus their sum is a Gaussian with variance at most σ2t0.

Collecting all the terms along with Lemma A.6.3, bounding the difference RegretT −RegretT (w∗),

gives

RegretT ≤
(
t0 +

√
t0 log(1/δ) + k2 · d log(d log(T )/δ)

k0

(
σ +

d

k0

)2

· log(T )

)
(A.71)

Lemma A.6.3. In the realizable case, w.p. at least 1 − δ we have for any sequence of wt

that RegretT −RegretT (w∗) = O(σ2k log(d/δ)).

Proof. It is an easy exercise to show that RegretT −RegretT (w∗) is equal to the regret on
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an algorithm that always plays w∗. We thus continue to bound the regret of w∗.

Let ∆ ∈ Rd be the difference between w∗ and w̃, the empirical optimal solution for the

sparse regression problem. The loss associated with w∗ is clearly ‖η‖2, where η is the noise

term y = Xw∗ + η. The loss associated with w̃ is

‖X(w∗ + ∆)−Xw∗ − η‖2 = ‖η −X∆‖2 = ‖η −XS̃∆‖2

where S̃ is the support of ∆, having a cardinality of at most 2k. The closed form solution

for the least-squares problem dictates that

‖η −XS̃∆‖2 ≥ ‖η −XS̃X
†
S̃
η‖2 = ‖η‖2 − ‖XS̃X

†
S̃
η‖2 .

Here, A† is the pseudo inverse of a matrix A and XS is the matrix obtained from the

columns of X whose indices are in S. It follows that the regret of w∗ is bounded by

‖XS̃X
†
S̃
η‖2

for some subset S̃ of size at most 2k. To bound this quantity we use a high probability

bound for ‖XSX
†
Sη‖2 for a fixed set S, and take a union bound over all possible sets of

cardinality 2k. For a fixed set S we have that ‖XSX
†
Sη‖2/σ2 is distributed according to the

χ2
2k distribution. The tail bounds of this distribution suggest that

Pr
[
‖XSX

†
Sη‖2 > 2kσ2 + 2σ2

√
2kx+ 2σ2x

]
≤ exp(−x)

meaning that with probability at least 1− δ/d2k we have

‖XSX
†
Sη‖2 < 2kσ2 + 2σ2

√
2k · 2k · log(d/δ) + 2σ2 · 2k · log(d/δ) = O(σ2k log(d/δ))

Taking a union bound over all possible subsets of size ≤ 2k we get that w.p. at least 1− δ

the regret of w∗ is at most O(σ2k log(d/δ)).
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A.6.2. Proofs for Agnostic Setting

We begin with an auxiliary lemma for Lemma 3.3.3, informally proving that for any matrix

X̄ with BBRCNP (Definition 3.3.3) and vector y, the set function

g(S) = inf
w∈RS

‖y − X̄w‖2

is weakly supermodular. Its proof can be found in (Boutsidis et al., 2015), yet for complete-

ness we provide it here as well.

Lemma A.6.4. [Lemma 5 in (Boutsidis et al., 2015)] Let X̄ be a matrix whose columns

have 2-norm at most 1 and y be a vector with ‖y‖∞ ≤ 1 of dimension matching the number

of rows in X. the set function

g(S) = inf
w∈RS

‖y −Xw‖2

is α-weakly supermodular for sparsity k for α = maxS:|S|≤k 1/σmin(XS)2, where XS is the

submatrix of X obtained by choosing the columns indexed by S, and σmin(A) is the smallest

singular value of A.

Proof. Firstly, the well known closed form solution for the least-squares problem informs

us that

g(S) = inf
w∈RS

‖y −Xw‖2,

= yT [I − (XT
S )†XT

S ]y.

We use the notation A† for the pseudoinverse of a matrix A. That is, if the singular value

decomposition of A is A =
∑

i σiuiv
T
i with σi > 0 then A† =

∑
i σ
−1
i viu

T
i .

Let us first estimate g(S)− g(T ), for sets S ⊂ T . For brevity, define HS as the projection

matrix XSX
†
S projecting onto the column space of XS . Denote by ZT\S the matrix whose
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columns are those of XT\S projected away from the span of XS , and normalized. Namely,

writing xi as the i’th column of X, ζi = ‖(I − HS)xi‖, zi = (I − HS)xi/ζi, and ZT\S ’s

columns are {zi}i∈T\S . Notice that the columns of ZT\S and XS are orthogonal, hence

according to the Pythagorean theorem it holds that

g(S) = ‖y‖2 − ‖HSy‖2, g(T ) = ‖y‖2 − ‖HSy‖2 − ‖ZT\SZ†T\Sy‖
2

meaning that g(S) − g(T ) = ‖ZT\SZ†T\Sy‖2. In particular, this implies that for any j /∈ S

it holds that g(S) − g(S ∪ {j}) = (zTj y)2, since zj is a unit vector. Let us now decompose

g(S)− g(T ).

g(S)− g(T ) = ‖ZT\SZ†T\Sy‖
2 = ‖(ZTT\S)†ZTT\Sy‖2 ≤ ‖(ZTT\S)†‖2 · ‖ZTT\Sy‖2

The norm used in the last inequality is the matrix operator norm. We now bound both

factors of the product on the RHS separately. For the first factor, we claim that ‖(ZTT\S)†‖ =

‖Z†T\S‖ ≤ ‖X
†
T ‖. To see this, consider a vector w ∈ R|T\S|, for convenience denote its entries

by {w(i)}i∈T\S , and write zi = (xi −
∑

j∈S αijxj)/ζi. We have

ZT\Sw =
∑
i∈T\S

ziw(i) =
∑
i∈T\S

xiw(i)/ζi −
∑
j∈S

xj
∑
i∈T\S

w(i)αij/ζi = XTw
′

for the vector w′ ∈ R|T | defined as w′(i) = w(i)/ζi for i ∈ T\S and w′(j) = −∑i∈T\S w(i)αij/ζi

for j ∈ S. Since ζi ≤ ‖xi‖ ≤ 1 we must have ‖w′‖ ≥ ‖w‖. Consider now the unit vector

w for which ‖ZT\Sw‖ = ‖Z†T\S‖−1, that is, the unit norm singular vector corresponding to

the smallest non-zero singular value of ZT\S . For this w, and its corresponding vector w′,

we have

‖Z†T\S‖
−1 = ‖ZT\Sw‖ = ‖XTw

′‖ ≥ σmin(XT )‖w′‖ ≥ σmin(XT )‖w‖ = σmin(XT ).
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It follows that

‖(ZTT\S)†‖2 = ‖Z†T\S‖
2 ≤ 1/σmin(XT )2

We continue to bound the right factor of product.

‖ZTT\Sy‖2 =
∑
i∈T\S

(zTi y)2 =
∑
i∈T\S

g(S)− g(S ∪ {i}).

By combining the inequalities we obtained the required result:

g(S)− g(T ) ≤
(
1/σmin(XT )2

) ∑
i∈T\S

g(S)− g(S ∪ {i}).

Proof of Lemma 3.3.3. We would like to apply Lemma A.6.4 on the design matrix X. The

only catch is that the columns of X may not be bounded by 1 in norm. To remedy this, let

j be the index of the column with the maximum norm and consider the matrix X̄ = 1
‖Xj‖X

instead (here, Xj is the j-th column of X; note that Xj = Xej for the j-th standard basis

vector ej). Now, for any subset S of coordinates,

inf
w∈RS

‖y − X̄w‖2 = inf
w∈RS

‖y −Xw‖2.

Thus, we conclude that the set function of interest, g(S) = infw∈RS ‖y−Xw‖2, is α-weakly

supermodular for sparsity k for α = maxS:|S|≤k ‖X̄†S‖22. For any subset of coordinates S

of size at most k, let w be a unit norm right singular vector of X̄S corresponding to the

smallest singular value, so that ‖X̄†S‖2 = 1
‖X̄Sw‖

. But 1
‖X̄Sw‖

=
‖Xej‖
‖Xw′‖ , where w′ is the vector

w extended to all coordinates by padding with zeros.

Since the restricted condition number of X for sparsity k is bounded by κ we conclude that

‖Xej‖
‖Xw′‖ ≤ κ. Since this bound holds for any subset S of size at most k, we conclude that

α ≤ κ2.
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Proof of Lemma 3.3.4. By the α-weak supermodularity of g, we have

g(∅)− g(V ) ≤ α ·
∑
j∈V

[g(∅)− g({j})]

≤ α|V | · [(g(∅)− g(V ))− (g({j∗})− g(V ))].

Rearranging, we get the claimed bounds.

The following lemma gives a useful property of weakly supermodular functions.

Lemma A.6.5. Let g(·) be a (k, α)-weakly supermodular set function and U be a subset

with |U | < k. Then g′(S) := g(U ∪ S) is (k − |U |, α)-weakly supermodular.

Proof. For any two subsets S ⊆ T with |T | ≤ k − |U |, we have

g′(S)− g′(T ) = g(U ∪ S)− g(U ∪ T ) ≤ α
∑

j∈(T∪U)\(S∪U)

[g(U ∪ S)− g(U ∪ S ∪ {j})]

≤ α
∑
j∈T\S

[g(U ∪ S)− g(U ∪ S ∪ {j})] = α
∑
j∈T\S

[g′(S)− g′(S ∪ {j})].

Proof of Lemma 3.3.5. For i ∈ {0, 1, . . . , k1}, define the set function g
(i)
b as g

(i)
b (S) = gb(S∪

V
(i)
b ).

First, we analyze the performance of the BEXP algorithms. Fix any i ∈ [k1] and consider

BEXP(i). Conceptually, for any j ∈ [d], the loss of expert j at the end of mini-batch b is

gb(V
(i−1)
b ∪ j) (note that this loss is only evaluated for j ∈ U (i)

b in the algorithm). To bound

the regret, we need to bound the magnitude of the losses. Note that for any subset S, we

have 0 ≤ gb(S) ≤ 1
B

∑
t∈Tb y

2
t ≤ 1. Thus, the regret guarantee of BEXP (Theorem 3.3.2)
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implies that for any i ∈ [k1] and any j ∈ [d], we have

E

T/B∑
b=1

gb(V
(i−1)
b ∪ {j(i)

b })

 ≤ T/B∑
b=1

gb(V
(i−1)
b ∪ {j}) + 2

√
dk1 log(d)T

k0B
.

The expectation above is conditioned on the randomness in V
(i−1)
b , for b ∈ [T/B]. Rewriting

the above inequality using the g(i−1) and g(i) functions, and using the fact that V
(i−1)
b ∪

{j(i)
b } = V

(i)
b , we get

E

T/B∑
b=1

g
(i)
b (∅)

 ≤ T/B∑
b=1

g
(i−1)
b ({j}) + 2

√
dk1 log(d)T

k0B
. (A.72)

Next, since we assumed that the sequence of feature vectors satisfies BBRCNP with pa-

rameters (ε, k1 + k), Lemma 3.3.3 implies that the set function gb defined in (3.44) is

(k1 + k, κ2)-weakly supermodular for κ = 1+ε
1−ε . By Lemma A.6.5, the set function g

(i)
b is

(k, κ2)-weakly supermodular (since |V (i)
b | ≤ k1).

It is easy to check that the sum of weakly supermodular functions is also weakly supermodu-

lar (with the same parameters), and hence
∑T/B

b=1 g
(i−1)
b is also (k, κ2)-weakly supermodular.

Hence, by Lemma 3.3.4, if j∗ = arg minj
∑T/B

b=1 g
(i−1)
b ({j}), we have, for any subset V of

size at most k,

T/B∑
b=1

g
(i−1)
b ({j∗})− g(i−1)

b (V ) ≤ (1− 1
κ2|V |)[

T/B∑
b=1

g
(i−1)
b (∅)− g(i−1)

b (V )].

Since gb(V ) ≥ gb(V ∪ V (i−1)
b ) = g

(i−1)
b (V ), the above inequality implies that

T/B∑
b=1

g
(i−1)
b ({j∗})− gb(V ) ≤ (1− 1

κ2|V |)[

T/B∑
b=1

g
(i−1)
b (∅)− gb(V )].
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Combining this bound with (A.72) for j = j∗, we get

E

T/B∑
b=1

g
(i)
b (∅)− gb(V )

 ≤ (1− 1
κ2|V |)[

T/B∑
b=1

g
(i−1)
b (∅)− gb(V )] + 2

√
dk1 log(d)T

k0B
.

Applying this bound recursively for i ∈ [k1] and simplifying, we get

E

T/B∑
b=1

g
(k1)
b (∅)− gb(V )

 ≤ (1− 1
κ2|V |)

k1 [

T/B∑
b=1

g
(0)
b (∅)− gb(V )] + 2κ2|V |

√
dk1 log(d)T

k0B
.

Using the definitions of g
(k1)
b and g

(0)
b , and the fact that |V | ≤ k, we get the claimed

bound.
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