
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2017

Resource-Efficient Scheduling Of Multiprocessor
Mixed-Criticality Real-Time Systems
Jaewoo Lee
University of Pennsylvania, jaewoo@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Computer Engineering Commons, Computer Sciences Commons, and the Library
and Information Science Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2418
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Lee, Jaewoo, "Resource-Efficient Scheduling Of Multiprocessor Mixed-Criticality Real-Time Systems" (2017). Publicly Accessible Penn
Dissertations. 2418.
https://repository.upenn.edu/edissertations/2418

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/219377842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2418&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fedissertations%2F2418&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F2418&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=repository.upenn.edu%2Fedissertations%2F2418&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=repository.upenn.edu%2Fedissertations%2F2418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2418?utm_source=repository.upenn.edu%2Fedissertations%2F2418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2418
mailto:repository@pobox.upenn.edu

Resource-Efficient Scheduling Of Multiprocessor Mixed-Criticality Real-
Time Systems

Abstract
Timing guarantee is critical to ensure the correctness of embedded software systems that

interact with the physical environment. As modern embedded real-time systems evolves,

they face three challenges: resource constraints, mixed-criticality, and multiprocessors. This

dissertation focuses on resource-efficient scheduling techniques for mixed-criticality systems

on multiprocessor platforms.

While Mixed-Criticality (MC) scheduling has been extensively studied on uniprocessor plat-

forms, the problem on multiprocessor platforms has been largely open. Multiprocessor al-

gorithms are broadly classified into two categories: global and partitioned. Global schedul-

ing approaches use a global run-queue and migrate tasks among processors for improved

schedulability. Partitioned scheduling approaches use per processor run-queues and can

reduce preemption/migration overheads in real implementation. Existing global scheduling

schemes for MC systems have suffered from low schedulability. Our goal in the first work is

to improve the schedulability of MC scheduling algorithms. Inspired by the fluid scheduling

model in a regular (non-MC) domain, we have developed the MC-Fluid scheduling algo-

rithm that executes a task with criticality-dependent rates. We have evaluated MC-Fluid in

terms of the processor speedup factor: MC-Fluid is a multiprocessor MC scheduling algo-

rithm with a speed factor of 4/3, which is known to be optimal. In other words, MC-Fluid

can schedule any feasible mixed-criticality task system if each processor is sped up by a

factor of 4/3.

Although MC-Fluid is speedup-optimal, it is not directly implementable on multiprocessor

platforms of real processors due to the fractional processor assumption where multiple task

can be executed on one processor at the same time. In the second work, we have considered

the characteristic of a real processor (executing only one task at a time) and have developed

the MC-Discrete scheduling algorithm for regular (non-fluid) scheduling platforms. We have

shown that MC-Discrete is also speedup-optimal.

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2418

https://repository.upenn.edu/edissertations/2418?utm_source=repository.upenn.edu%2Fedissertations%2F2418&utm_medium=PDF&utm_campaign=PDFCoverPages

While our previous two works consider global scheduling approaches, our last work con-

siders partitioned scheduling approaches, which are widely used in practice because of low

implementation overheads. In addition to partitioned scheduling, the work consid-

ers the limitation of conventional MC scheduling algorithms that drops all low-criticality

tasks when violating a certain threshold of actual execution times. In practice, the system

designer wants to execute the tasks as much as possible. To address the issue, we have de-

veloped the MC-ADAPT scheduling framework under uniprocessor platforms to drop as few

low-criticality tasks as possible. Extending the framework with partitioned multiprocessor

platforms, we further reduce the dropping of low-criticality tasks by allowing migration of

low-criticality tasks at the moment of a criticality switch. We have evaluated the quality

of task dropping solution in terms of speedup factor. In existing work, the speedup factor

has been used to evaluate MC scheduling algorithms in terms of schedulability under the

worst-case scheduling scenario. In this work, we apply the speedup factor to evaluate MC

scheduling algorithms in terms of the quality of their task dropping solution under various

MC scheduling scenarios. We have derived that MC-ADAPT has a speedup factor of 1.618

for task dropping solution.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Insup Lee

Second Advisor
Linh T. Phan

Keywords
Mixed-Criticality systems, Multiprocessor, Real-time systems, Schedulability analysis, Scheduling algorithm

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2418

https://repository.upenn.edu/edissertations/2418?utm_source=repository.upenn.edu%2Fedissertations%2F2418&utm_medium=PDF&utm_campaign=PDFCoverPages

Subject Categories
Computer Engineering | Computer Sciences | Library and Information Science

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2418

https://repository.upenn.edu/edissertations/2418?utm_source=repository.upenn.edu%2Fedissertations%2F2418&utm_medium=PDF&utm_campaign=PDFCoverPages

RESOURCE-EFFICIENT SCHEDULING OF MULTIPROCESSOR

MIXED-CRITICALITY REAL-TIME SYSTEMS

Jaewoo Lee

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2017

Supervisor of Dissertation Co-Supervisor of Dissertation

Insup Lee Linh T.X. Phan

Cecilia Fitler Moore Professor of Assistant Professor of

Computer and Information Science Computer and Information Science

Graduate Group Chairperson

Lyle Ungar, Professor of Computer and Information Science

Dissertation Committee

Oleg Sokolsky, Research Professor of Computer and Information Science

Rahul Mangharam, Associate Professor of Electrical and Systems Engineering

Joseph Devietti, Assistant Professor of Computer and Information Science

Insik Shin, Associate Professor (Korean Advanced Institute of Science and Technology)

RESOURCE-EFFICIENT SCHEDULING OF MULTIPROCESSOR

MIXED-CRITICALITY REAL-TIME SYSTEMS

c© COPYRIGHT

2017

Jaewoo Lee

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 3.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/

ABSTRACT

RESOURCE-EFFICIENT SCHEDULING OF MULTIPROCESSOR

MIXED-CRITICALITY REAL-TIME SYSTEMS

Jaewoo Lee

Insup Lee

Linh T.X. Phan

Timing guarantee is critical to ensure the correctness of embedded software systems that

interact with the physical environment. As modern embedded real-time systems evolves,

they face three challenges: resource constraints, mixed-criticality, and multiprocessors. This

dissertation focuses on resource-efficient scheduling techniques for mixed-criticality systems

on multiprocessor platforms.

While Mixed-Criticality (MC) scheduling has been extensively studied on uniprocessor plat-

forms, the problem on multiprocessor platforms has been largely open. Multiprocessor al-

gorithms are broadly classified into two categories: global and partitioned. Global schedul-

ing approaches use a global run-queue and migrate tasks among processors for improved

schedulability. Partitioned scheduling approaches use per processor run-queues and can

reduce preemption/migration overheads in real implementation. Existing global scheduling

schemes for MC systems have suffered from low schedulability. Our goal in the first work is

to improve the schedulability of MC scheduling algorithms. Inspired by the fluid scheduling

model in a regular (non-MC) domain, we have developed the MC-Fluid scheduling algo-

rithm that executes a task with criticality-dependent rates. We have evaluated MC-Fluid in

terms of the processor speedup factor: MC-Fluid is a multiprocessor MC scheduling algo-

rithm with a speed factor of 4/3, which is known to be optimal. In other words, MC-Fluid

can schedule any feasible mixed-criticality task system if each processor is sped up by a

factor of 4/3.

iii

Although MC-Fluid is speedup-optimal, it is not directly implementable on multiprocessor

platforms of real processors due to the fractional processor assumption where multiple task

can be executed on one processor at the same time. In the second work, we have considered

the characteristic of a real processor (executing only one task at a time) and have developed

the MC-Discrete scheduling algorithm for regular (non-fluid) scheduling platforms. We have

shown that MC-Discrete is also speedup-optimal.

While our previous two works consider global scheduling approaches, our last work con-

siders partitioned scheduling approaches, which are widely used in practice because of low

implementation overheads. In addition to partitioned scheduling, the work consid-

ers the limitation of conventional MC scheduling algorithms that drops all low-criticality

tasks when violating a certain threshold of actual execution times. In practice, the system

designer wants to execute the tasks as much as possible. To address the issue, we have de-

veloped the MC-ADAPT scheduling framework under uniprocessor platforms to drop as few

low-criticality tasks as possible. Extending the framework with partitioned multiprocessor

platforms, we further reduce the dropping of low-criticality tasks by allowing migration of

low-criticality tasks at the moment of a criticality switch. We have evaluated the quality

of task dropping solution in terms of speedup factor. In existing work, the speedup factor

has been used to evaluate MC scheduling algorithms in terms of schedulability under the

worst-case scheduling scenario. In this work, we apply the speedup factor to evaluate MC

scheduling algorithms in terms of the quality of their task dropping solution under various

MC scheduling scenarios. We have derived that MC-ADAPT has a speedup factor of 1.618

for task dropping solution.

iv

TABLE OF CONTENTS

ABSTRACT . iii

LIST OF TABLES . vii

LIST OF ILLUSTRATIONS . viii

CHAPTER 1 : Introduction . 1

1.1 The Goal of the Dissertation and Our Approaches 2

1.2 Contributions . 5

1.3 Organization . 6

CHAPTER 2 : Background and Related Work . 7

2.1 Real-time Systems . 7

2.2 Mixed-Criticality Scheduling . 8

2.3 Related Work . 12

2.4 Recapitulation of Existing Work . 16

CHAPTER 3 : Fluid-based Mixed-Criticality Scheduling 21

3.1 The Overview of the MC-Fluid Scheduling Framework 21

3.2 The MC-Fluid Scheduling Algorithm . 23

3.3 Schedulability Analysis . 24

3.4 The Execution Rate Assignment . 31

3.5 Rate Assignment Algorithms . 36

3.6 The Speedup Factor . 53

3.7 Summary . 55

CHAPTER 4 : Transforming Fluid-based Mixed-Criticality Scheduling into Discrete-

time Platforms . 56

v

4.1 The Overview of the MC-Discrete Scheduling Framework 56

4.2 The MC-DP-Fair Scheduling Algorithm and Schedulability Analysis 57

4.3 The MC-Discrete Scheduling Algorithm and Schedulability Analysis 61

4.4 Evaluation . 63

4.5 Summary . 66

CHAPTER 5 : Adaptive Mixed-Criticality Scheduling on Partitioned Multiproces-

sor Platforms . 68

5.1 The Overview of the MC-ADAPT Scheduling Framework 68

5.2 The U-MC-ADAPT Framework on Uniprocessor Platforms 72

5.3 An Enhanced U-MC-ADAPT Framework on Uniprocessor Platforms 82

5.4 The Speedup Factor . 87

5.5 The Extension with Partitioned Multiprocessor Scheduling 90

5.6 Evaluation . 94

5.7 Summary . 99

CHAPTER 6 : Conclusion and Future Work . 103

vi

LIST OF TABLES

TABLE 1 : DO-178B, software considerations in airborne systems and equip-

ment certification, published by RTCA, Incorporated 2

TABLE 2 : Execution rate assignment algorithms in this chapter 22

TABLE 3 : An example task set and its execution rate assignment. 31

TABLE 4 : Acceptance ratio difference between MC-DP-Fair and MC-Discrete . 65

TABLE 5 : The Parameters of an Example Task Set 81

vii

LIST OF ILLUSTRATIONS

FIGURE 1 : The behavioral model of tasks . 11

FIGURE 2 : The model of a carry-over job of a task τi ∈ τH where mode-switch

happens at wi and the job is executed with θLi and θHi in LO- and

HI-mode, respectively (the execution amount of the job until its

deadline (Ti) should be CHi to meet its deadline). 26

FIGURE 3 : The plot of Sum Cal X(ψ) in respect to 1/
√
ψ on Example 3.3,

which is a piecewise linear function (note that there is ψ∗ s.t.

Sum Cal Xi(ψ
∗) = 0.4 where G1 ≤ ψ∗ < G2). 43

FIGURE 4 : The plot of f̄ ′i(Xi = x) varying x ∈ R for the task set in Table 3 . 45

FIGURE 5 : The partial reassignment of the execution rate from τp to τq . . . 50

FIGURE 6 : The acceptance ratio with varying the normalized utilization bound

(U b/m) and the number of processors (m). 64

FIGURE 7 : The weighted acceptance ratio with varying the upper bound of

task utilization (Zb). 66

FIGURE 8 : The weighted acceptance ratio with varying the probability of task

criticality (P c). 67

FIGURE 9 : MC-schedulability varying utilization bound 95

FIGURE 10 : The DMR for different PMS . 97

FIGURE 11 : The DMR for different PHI . 98

FIGURE 12 : The DMR for Different Simulation Duration 98

FIGURE 13 : The DMR varying PMS on four processors (m = 4) 100

FIGURE 14 : The DMR varying PMS on eight processors (m = 8) 101

viii

CHAPTER 1 : Introduction

Embedded software systems interact (i.e., sense and actuate) with the physical environment.

Those systems require not only logical correctness but also temporal correctness. For ex-

ample, when the autonomous vehicle decides to activate its brake based on the detection

of road obstacles, the brake component should be activated within the predefined timing

constraints, e.g., 100ms. Otherwise, the car may not avoid the collision, which could result

in property damage, injury or even death. Real-time systems are software systems subject

to timing constraints.

Traditional embedded real-time systems have been evolving into modern Cyber-Physical

Systems (CPS), which are intelligent systems interacting with the physical environment.

CPS applications include automobiles (e.g., autonomous driving vehicles), avionics (e.g.,

unmanned aerial vehicles), and health-care applications (e.g., surgery robots). CPS are

increasingly becoming complex systems with multiple subsystems of different criticalities.

There are three important challenges for modern real-time systems. The first challenge

is resource constraint. Since most embedded systems are constrained by Size, Weight and

Power (SWaP), we need resource-efficient scheduling techniques, which require less resources

for the same functionality. For example, the automotive industrial standard AUTOSAR [3]

aims to minimize the number of ECUs1 and their wiring (through software components), due

to the SWaP constraints of the automobile and manufacturing cost. A similar trend is also

observed in the avionics industry (e.g., the Integrated Modular Avionics architecture [44]).

The second challenge is Mixed-Criticality (MC). In real-time systems, components of dif-

ferent criticalities are often integrated under a shared platform. For example, the RTCA

DO-178B software standard (see Table 1), which is applied by the US FAA (Federal Aviation

Administration), specifies criticality levels of functions in aircraft, depending on the effects

of their failures. The failure of criticality level A function may result in an aircraft crash,

1An Electronic Control Unit (ECU) is a physical container of an embedded system controlling a subsystem
of an automobile

1

Level Failure Interpretation
Condition

A Catastrophic Failure may cause a crash

B Hazardous Failure has a large negative impact on safety or
performance, or reduces the ability of the crew to
operate the plane due to physical distress or a higher
workload, or causes serious or fatal injuries among
the passengers

C Major Failure is significant, but has a lesser impact
than a Hazardous failure (for example, leads to
passenger discomfort rather than injuries)

D Minor Failure is noticeable, but has a lesser impact
than a Major failure (for example, causing passenger
inconvenience or a routine flight plan change)

E No Effect Failure has no impact on safety, aircraft operation,
or crew workload

Table 1: DO-178B, software considerations in airborne systems and equipment certification,
published by RTCA, Incorporated

while the failure of criticality level E function results in no impact on aircraft safety. For

safety assurance, we need MC scheduling techniques in which a low-criticality functionality

cannot affect the correctness of a high-criticality functionality.

The third challenge is multiprocessor. Traditional uniprocessor platforms have the limita-

tions on power consumption and heat dissipation. In 2004, Intel killed the plan to release

the 4Ghz Pentium4 processor due to power and heat problems, and shifted all development

teams to multicore processors. Overcoming the limitations, multiprocessor platforms are

dominant across a wide range of domains (including CPS applications). Although mul-

tiprocessor scheduling is much studied on the conventional (non-MC) domain, it has not

sufficiently matured on the MC domain.

1.1. The Goal of the Dissertation and Our Approaches

The goal of this dissertation is to develop resource-efficient MC scheduling techniques on

multiprocessor platforms. An MC scheduling problem is the validation of multiple level

timing constraints of the MC system. While high-criticality tasks must use the Worst-Case

2

Execution Time (WCET) estimate under pessimistic conditions, low-criticality tasks may

use the WCET parameters under normal conditions. Then, the MC problem is to guarantee

temporal correctness of both (i) all tasks under normal WCET assumptions and (ii) only

high-criticality tasks under conservative WCET assumptions. While the MC scheduling

problem has been extensively studied for uniprocessor platforms, it has largely remained

open for the multiprocessor case.

Multiprocessor scheduling can be categorized depending on the resource allocation: global

and partitioned scheduling approaches. While global scheduling approaches globally sched-

ule tasks with a single run-queue, partitioned scheduling approaches statically assign tasks

to separate per-processor run-queues and independently schedule tasks within a proces-

sor. Generally, neither global scheduling approaches nor partitioned scheduling approaches

perform always better. Our work considers global approaches in the first two studies and

partitioned approaches in the last study.

1.1.1. Fluid-based Mixed-Criticality Scheduling

Our goal is to develop a resource-efficient multiprocessor MC scheduling technique. A

challenge is that existing multiprocessor MC scheduling approaches suffer from low schedu-

lability due to known multiprocessor scheduling problems (e.g., Dhall’s effect [22] and bin-

packing problem [35]). There exists a solution to the problem in the non-MC domain: fluid

scheduling model [9] (executing each task with each static rate), which is a global scheduling

approach. However, its direct application is inefficient in the MC multiprocessor domain

because it does not address the MC problem. EDF-VD [4] is a uniprocessor MC scheme

with optimal speedup factor2. Inspired by the fluid scheduling model and EDF-VD, we

develop a new multiprocessor MC scheduling algorithm, called MC-Fluid, which preserves

the speedup-optimality of EDF-VD.

2MC scheduling algorithms are often evaluated by a metric of the processor speedup factor [36], which is
a theoretical performance metric of a scheduling algorithm in comparison with an optimal algorithm.

3

1.1.2. Transforming Fluid-based Mixed-Criticality Scheduling into Discrete-time Platforms

Although MC-Fluid is a speedup-optimal scheduling algorithm for multiprocessor MC sys-

tems, it is not directly implementable on real hardware platforms due to the unrealistic

assumption on fluid-based scheduling (i.e., executing a task with a fractional processor). In

real hardware platforms, a processor executes only one task at a time. Our goal is to develop

an MC scheduling technique considering realistic multiprocessor platforms. A challenge is

how to transform the fluid schedule of MC tasks into a non-fluid schedule. In the non-MC

domain, there have been scheduling techniques [9, 20, 38] that transform the fluid sched-

ule into a non-fluid schedule without the loss of schedulability. Inspired by these results,

we develop two non-fluid scheduling algorithms (transforming the MC-Fluid schedule into

a non-fluid schedule), called MC-DP-Fair and MC-Discrete, both of whom have comparable

schedulability with MC-Fluid.

1.1.3. Adaptive Mixed-Criticality Scheduling on Partitioned Multiprocessor Platforms

While global scheduling approaches (including MC-Fluid and MC-Discrete) shows high schedu-

lability, they have large preemption/migration overheads and the implementation overheads

with global run-queue3 from a practical perspective. In the domain where implementation

overheads are critical, partitioned scheduling approaches are adopted. In this work, we

develop a new partitioned scheduling algorithm. By assigning tasks to processor statically,

we eliminate migration between processors. By using a separate run-queue per processor,

we reduce the overhead of the global shared run-queue. By directly applying uniprocessor

MC scheduling techniques (e.g., EDF-VD [4]) for each processor, we can reduce the number

of preemption in global MC scheduling algorithms such as MC-Fluid and MC-Discrete.

Conventional MC scheduling algorithms (including MC-Fluid and MC-Discrete) have the

limitation for low-criticality tasks: they drops all low-criticality tasks at mode switch (any

high-criticality task executes more than its normal WCET estimate). However, industrial

3In large systems, it could be excessive to manipulate a single run-queue for multiple processors.

4

demand is toward adaptive MC scheduling, which maximizes the survivability of each low-

criticality task, rather than ignoring all of them after system-level mode-switch [19]. In this

work, we develop an adaptive MC scheduling approach by dropping low-criticality tasks se-

lectively under a task-level mode-switch in which each high-criticality task is independently

mode-switched.

We present the MC-ADAPT scheduling framework for adaptive MC scheduling with parti-

tioned scheduling approach. Extending the existing EDF-VD under task-level mode-switch

mechanism, we have developed a uniprocessor adaptive MC scheduling algorithm that drops

as few low-criticality tasks as possible. We evaluate the effectiveness of our algorithm for

task dropping via the speedup factor. We extend our uniprocessor scheme with a semi-

partitioned scheduling approach, which is a variant of partitioned scheduling approach, to

further reduce task dropping via task migration when the system criticality changes.

1.2. Contributions

We make the following research contributions:

• We present MC-Fluid scheduling algorithm for multiprocessor MC systems (in Chap-

ter 3). To our best knowledge, this is the first work to apply the fluid scheduling

model (for global multiprocessor scheduling) to the MC domain. We develop the op-

timal algorithm for criticality-dependent execution rate assignment. We derive that

the speedup factor of MC-Fluid is 4/3, which is optimal for MC scheduling.

• Relaxing the fluid-based scheduling assumption, we present MC-DP-Fair and MC-

Discrete scheduling algorithms for realistic multiprocessor platforms (in Chapter 4).

Inspired by DP-Fair in the non-MC domain, we develop an MC-DP-Fair scheduling

algorithm which preserves the speedup optimality of MC-Fluid. Overcoming the lim-

itation of MC-DP-Fair (namely, the use of real-number deadlines in a low-criticality

mode), we develop a MC-Discrete scheduling algorithm which uses only integer dead-

lines for a realistic task scheduler. Our simulation results show that our scheme

5

significantly outperforms other existing multiprocessor MC schemes.

• We present the MC-ADAPT scheduling framework for adaptive MC scheduling on par-

titioned multiprocessor platforms (in Chapter 5). We develop two new uniprocessor

MC scheduling algorithms, called EDF-AD and EDF-AD-E, which drop low-criticality

tasks selectively under task-level mode-switch. We apply the speedup factor for task

dropping and derive that EDF-AD-E has a speedup factor of 1.618 for task dropping.

We extend our algorithms into multiprocessor platforms with partitioned scheduling.

Our simulation results show the effectiveness of our framework in terms of schedula-

bility and resource utilization.

1.3. Organization

The rest of the dissertation is organized as follows: we describe the background, related

work, and the summary of the existing work in Chapter 2. We present the fluid-based MC

scheduling algorithm in Chapter 3. Relaxing the fluid scheduling assumption, we present

the discrete, non-fluid variations of MC scheduling algorithms in Chapter 4. Addressing the

limitations of global multiprocessor scheduling approaches and conventional MC scheduling

approaches, we present adaptive MC scheduling framework with a partitioned multiproces-

sor scheduling approach in Chapter 5. Finally, we conclude the dissertation in Chapter 6.

6

CHAPTER 2 : Background and Related Work

In this chapter, we introduce the background of our research and related work.

2.1. Real-time Systems

Real-time systems require not only logical correctness but also temporal correctness. The

temporal correctness in real-time systems generally means that the required computation

is completed within a predefined deadline. The fundamental problem for real-time systems

is how to assure temporal correctness. This problem can be divided into two sub-problems:

scheduling algorithm (how to schedule tasks in a system) and its schedulability analysis

(whether the system is schedulable by the scheduling algorithm).

Assumptions. The scheduling algorithm and its analysis are based on various underlying

assumptions. A real-time system is generally constructed based on the task and platform

models. The task model defines the timing requirement. An example of task model is

periodic task model τi = (Ti, Ci), where Ti is an inter-arrival time between its instances

(called jobs) and Ci is the Worst-Case Execution-Time (WCET) of a job. A task τi invokes a

series of jobs, where a job has its WCET (Ci) and its deadline (which we assume equals to job

release time plus Ti). On the other hand, platform model defines scheduling environments

where tasks execute. An example of platform model is a preemptive multiprocessor platform

where a higher-priority job can preempt a lower-priority job at any time instant and there

are m processors that can execute n ≤ m jobs simultaneously.

Scheduling Algorithms. We can categorize scheduling algorithms depending on the num-

ber of processors: uniprocessor and multiprocessor scheduling algorithms. While uniproces-

sor scheduling has been extensively studied, due to the limitation of uniprocessor systems,

multiprocessor scheduling has received much attention recently. Multiprocessor schedul-

ing algorithms can be classified into global and partitioned scheduling approaches. Global

scheduling approaches allow task migration between processors with a single run-queue.

7

Partitioned scheduling approaches statically assign tasks into separate per-processor run-

queues and do not allow task migration between processors. After partitioning, we can

apply a uniprocessor scheduling technique within each processor.

Performance Metrics. A scheduling algorithm and its analysis can be evaluated in various

performance metrics: acceptance ratio for random task sets, speedup factor, deadline miss

ratio, etc. The acceptance ratio for random task sets is an empirical performance metric

to represent the ratio of task sets schedulable by the scheduling algorithm for randomly-

generated task sets. The deadline miss ratio for a given system is the ratio of the number of

missed deadlines to the total number of deadlines in the observed time window. Recently,

many studies evaluate their scheduling solution in terms of the speedup factor [36]. The

factor α ∈ R s.t. α ≥ 1 compares the worst-case behavior of different solution for solving

the same problem. The smaller speedup factor of the solution indicates that the behavior

of the algorithm is closer to that of the optimal solution.

2.2. Mixed-Criticality Scheduling

Mixed-Criticality (MC) systems are a part of real time systems. An MC system integrates

functions with different criticalities (or importance) in a single shared platform. Good

examples are Integrated Modular Avionics (IMA) [44] in avionics and AUTOSAR [3] in

automotive systems. In MC systems, a different function may have a different criticality.

A scheduling problem for MC systems is the validation of the temporal correctness of the

system on multiple levels. Many MC systems are subject to certification requirements: the

temporal correctness of their safety-critical functionalities must be certified with extremely

pessimistic assumptions by certification authorities (CAs). On the other hand, system

designers are concerned about the temporal correctness of all functionalities with normal

assumptions. For example, consider an unmanned aerial vehicle (UAV) with flight-critical

(high-critical) functions (e.g., engines) and mission-critical (low-critical) functions (e.g.,

surveillance cameras). System designers of the UAV examine the temporal correctness of

all functions by empirical measurements assuming typical runtime conditions. To operate

8

the UAV, it is mandatory that civilian CAs, such as the US FAA, must certify flight-critical

functions. The CA usually examines flight-critical functions of the UAV by rigorous static

timing analysis assuming extreme runtime conditions (e.g., all cache miss).

For simplicity, we consider dual criticality levels: high-criticality (HI) and low-criticality

(LO). Although some MC schemes are extended into arbitrary levels of criticality, most

standard MC schemes only consider dual criticality levels for simplicity of representation.

Task Model. We define an MC task model: an MC task τi is characterized by (Ti, C
L
i , C

H
i , χi),

where

• Ti is the minimum inter-job separation time,

• CLi is an LO-criticality WCET (LO-WCET),

• CHi is a HI-criticality WCET (HI-WCET), and

• χi is a task criticality level (HI or LO).

A task τi has a relative deadline equal to Ti. Any task can be executed on at most one

processor at any time instant. Since HI-WCETs are based on conservative assumptions, we

assume that 0 < CLi ≤ CHi ≤ Ti. Each MC task is either a LO-criticality task (LO-task) or

a HI-criticality task (HI-task) depending on its task criticality level.

Task Sets. We consider an MC sporadic task set τ = {τi}, where a task τi represents a

potentially infinite job release sequence. LO-task set (τL) and HI-task set (τH) are defined

as τL
def
= {τi ∈ τ |χi = LO} and τH

def
= {τi ∈ τ |χi = HI}.

Behavior Model. We assume some degree of uncertainty on the execution time of different

jobs for a task. We consider task-level criticality mode (task mode). Each HI-task τi has

its own task mode (denoted as Mi) that indicates its behavior. A task τi is said to be in

LO-mode (Mi = LO) if no job of the task has executed more than its LO-WCET (CLi), and

in HI-mode (Mi = HI) otherwise.

9

In Chapters 3 and 4, we assume system-level mode-switch, which is widely used in conven-

tional MC scheduling approaches. The system mode is a system-wide variable representing

the system criticality level (LO or HI). In LO-mode (the system mode is LO), we assume

that every HI-task τi has Mi = LO. In HI-mode, we assume that every HI-task τi has

Mi = HI. We assume the following scenario:

• The system starts in LO-mode. In LO-mode, jobs of all LO- and HI-tasks are released.

• If a job of any HI-task τi ∈ τH executes for more than its LO-WCET (CLi), the system

switches the system mode from LO to HI (called mode-switch). At mode-switch, the

system immediately discards all the jobs of LO-tasks.

• After mode-switch, only the jobs of HI-tasks are released.

If a job of any LO-task τi ∈ τL (likewise HI-task τi ∈ τH) executes for more than CLi in LO-

mode (likewise CHi in HI-mode), we regard that the system has a fault and do not consider

the case any further. Therefore, we assume that CLi = CHi for each LO-task τi ∈ τL without

loss of generality.

In Chapter 5, we assume task-level mode switch (an individual task changes its task mode

independently), which is adopted in recent adaptive MC scheduling approaches. Each HI-

task starts in LO-mode, and switches to HI-mode when its execution time violates CLi

(called mode switch) (see Fig. 1a). It is worth noting that system-level mode switch, which

is adopted in most existing MC schemes, is a special case of task-level mode switch.

We introduce the execution state of an LO-task (see Fig. 1b): each LO-task is in either an

active state or dropped state. Initially, all LO-tasks are in the active state. On mode switch

(from the active state to the dropped state), some LO-tasks may be dropped in order to

support HI-tasks with their additional resource requests.

System Goal. MC systems require different levels of assurance. We define the schedula-

bility requirement of MC systems as follows:

10

LO HI Active Dropped

The initial mode The initial state

(a) The task mode of a HI-task (b) The execution state of an LO-task

Execution time
violates LO-WCET

Task dropping algorithm
decides to drop

Figure 1: The behavioral model of tasks

Definition 2.1 (MC-schedulability). For a given task set, the system is MC-schedulable if

• Condition A: HI-tasks are always schedulable.

• Condition B: LO-tasks are schedulable if no HI-task has shown HI-behavior.

In Chapters 3 and 4, we consider MC-schedulability as the system goal. In Chapter 5, we

consider a different system goal. It is generally important to maximize the performance of

LO-tasks [18]. Recent adaptive MC scheduling approaches also consider the survivability of

each LO-task as well as MC-schedulability. Thus, the system goal of adaptive MC scheduling

is to drop as few LO-tasks as possible under MC-schedulability.

Utilization. LO- and HI-task utilizations of a task τi are defined as

uLi
def
= CLi /Ti and

uHi
def
= CHi /Ti,

respectively.

11

System-level utilizations of a task set τ are defined as

ULL
def
=
∑
τi∈τL

uLi ,

ULH
def
=
∑
τi∈τH

uLi , and

UHH
def
=
∑
τi∈τH

uHi .

We define criticality-dependent system utilizations. The LO-criticality and HI-criticality

utilizations are defined as ULL + ULH and UHH , respectively.

2.3. Related Work

Since the seminal work of Vestal [49], a vast amount of work has been studied for MC

scheduling (see [19] for a survey). In this section, we will look at our related work on

uniprocessor MC scheduling, multiprocessor MC scheduling, and adaptive MC scheduling.

2.3.1. Mixed-Criticality Scheduling on Uniprocessor Platforms

Vestal [49] introduced an MC scheduling problem with multiple levels of execution time es-

timates. Vestal observed that HI-tasks tend to have more pessimistic Worst-Case Execution

Time (WCET) estimates than LO-tasks. While HI-tasks must use WCET parameters from

extremely conservative WCET tools such as static analysis, LO-tasks may use WCET pa-

rameters from common measurement-based WCET tools. Based on this observation, Vestal

proposed a task model with multiple WCET parameters, which are different viewpoints of

WCET for the same executable-code.

There are rich literatures for Vestal’s MC task model. Vestal found that neither a rate-

monotonic algorithm nor a criticality-monotonic algorithm is optimal in the fixed-priority

(FP) scheduling with the MC task model [49]. He applied Optimal Priority Assignment

(OPA) [2], which is optimal in the FP scheduling. Dorin et al. [23] presented the formal

proof that the OPA algorithm can find an optimal assignment of task priorities for Vestal’s

12

response time analysis. However, Baruah and Vestal [8] showed that the OPA algorithm is

not yet optimal in general MC scheduling and proposed a hybrid-priority scheduling scheme

combining the feature of FP algorithms and Earliest Deadline First (EDF) algorithms.

Recent MC schemes have advanced Vestal’s task model with runtime monitoring, which

is a platform feature to monitor execution-times of MC jobs on runtime. With runtime

monitoring features, the system can continuously monitor the current execution-times of

jobs and cancel jobs if they execute more than their expected WCETs. This mechanism

can potentially improve the performance of MC systems.

Some early studies for runtime monitoring [7, 31, 39] addressed priority assignment problems

for an individual job. These approaches share the principle that each job has a single priority

regardless of the system mode. The first paper to consider runtime monitoring was the Own

Criticality-Based Priority (OCBP) algorithm [7] for the restricted problem of scheduling

a finite set of MC jobs. Because scheduling MC jobs even for dual-criticality systems

is strongly NP-hard [5], OCBP presented a sufficient, rather than exact, schedulability

analysis. It was later extended to sporadic task systems [31, 39]. On runtime, OCBP-

load [39] recomputes priority assignment considering a busy interval (a time interval which

has no idle instant). OCBP-priority [31] reduces high runtime overheads of the OCBP-load.

The above principle is extended into task-level priority assignment. The Adaptive Mixed-

Criticality (AMC) approach [13] proposed a fixed-priority scheduling to find a single task-

level priority regardless of the system mode. A body of studies [4, 10, 24, 25, 26] have

considered another principle that a job may have different priorities in different modes.

Since workload characteristics are different in LO and HI modes, these approaches find a

best job priority for each mode, which leads to better schedulability. The first such approach

was the Earliest Deadline First with Virtual Deadlines (EDF-VD) [10], which proposed the

MC-EDF algorithm and its analysis. Multiplying the real deadline by a single system-wide

parameter, EDF-VD computes virtual-deadlines. By using task-level parameters, Ekberg

and Yi [25, 26] proposed another virtual deadline scheme. Easwaran [24] presented a tighter

13

schedulability analysis for task-level virtual assignment schemes.

Speedup factor [36] is widely used to evaluate MC scheduling algorithms [4, 12, 6, 37, 41].

In uniprocessor MC scheduling, Baruah et al. [4] proposed EDF-VD with a speedup factor

of 4/3(≈ 1.333), which is optimal.

2.3.2. Mixed-Criticality Scheduling on Multiprocessor Platforms

Unlike the uniprocessor case, the multiprocessor case has not been studied much. There are

some global multiprocessor scheduling approaches [1, 40, 43]. Anderson et al. [1] first consid-

ered multiprocessor MC scheduling with a two-level hierarchical scheduler. Pathan [43] pro-

posed a global fixed-priority multiprocessor scheduling algorithm for MC task systems. Li et

al. [40] introduced a global scheduling algorithm with a speedup factor of 1 +
√

5 (≈ 3.236).

Recently, researchers have studied partitioned scheduling approaches that can directly ap-

ply the result of uniprocessor MC scheduling [11, 28, 46]. Baruah et al. [11] presented a

partitioned scheduling algorithm with a speedup factor of 8/3 (≈ 2.666). Gu et al. [28] pro-

posed a partitioned scheduling approach considering task-level virtual deadline assignment

based on Ekberg and Yi [25]. Ren and Phan [46] proposed another partitioned scheduling

approach considering multiple parameters (period and criticality-dependent utilizations),

which reduces resource overbooking in MC scheduling. However, the global scheduling ap-

proaches suffers from Dhall’s effect [22], and the partitioned scheduling approaches suffers

from the bin-packing problem, similar to non-MC multiprocessor scheduling.

Overcoming the limitation of previous multiprocessor MC scheduling, MC-Fluid [37, 45, 6]

were proposed based on the fluid scheduling model, which is the optimal scheduling model in

non-MC multiprocessor scheduling and does not suffer from Dhall’s effect or the bin-packing

problem. Lee et al. [37] first proposed MC-Fluid with a speedup factor of (1+
√

5)/2. Later,

Baruah et al. [6] improved its speedup factor to 4/3 (optimal) through a simplified version of

MC-Fluid, called MCF. Ramanathan and Easwaran [45] proposed another simplified version

of MC-Fluid with better performance than MCF. Chapters 3 and 4 are based on our previous

14

work [37].

2.3.3. Adaptive Mixed-Criticality Scheduling

Conventional MC scheduling algorithms consider only the schedulability of HI-tasks when

any task exceeds its LO-WCET while the industrial demand is toward adaptive MC schedul-

ing, which also considers the survivability of each LO-task [18]. Most of the existing MC

scheduling approaches employ an assumption of system-level mode switch that when a task

violates its LO-WCET, all the other HI-tasks also show the same behavior simultaneously.

There are scheduling techniques to execute LO-tasks longer by adjusting the transition

between LO-mode and HI-mode [47, 29, 16]. Santy et al. [47] proposed a method that

recomputes LO-WCETs of HI-tasks as long as they do not compromise the deadlines of

HI-tasks. Gu et al. proposed a method to delay mode-switch with runtime computa-

tion [29]. Bate et al. [16] presented a scheduling protocol for returning to the LO-mode so

as to resume the execution of LO-tasks. Other works [18, 27, 29, 34, 41, 48] provided de-

graded service to LO-tasks after system-level mode switch, which includes stretching their

periods [18, 34, 48], lowering their priorities [18], skipping their jobs [27], or reducing their

execution times [41, 29]. However, all the above studies share the assumption of system-level

mode switch, which results that resources are still under-utilized in practice.

Relaxing the assumption of system-level mode switch, recent studies [33, 46, 30] considered

task-level mode switch that enables LO-tasks to be penalized selectively in the event of

individual mode switch. Huang et al. [33] proposed offline mapping from each HI-tasks to

multiple LO-tasks: when the HI-task mode switches, the connected LO-tasks are dropped.

Ren and Phan [46] proposed a similar technique with exclusive task grouping where each

group has at most one HI-task. Gu et al. [30] also presented a task grouping technique that

allows multiple HI-tasks. Within the predefined tolerance limit of a task group, it drops

only LO-tasks within the task group; if it exceeds this tolerance limit, it drops all of the

entire LO-tasks in the system.

15

Our work (Chapter 5) differs from these approaches in that it makes an online task dropping

decision differently by adapting to the dynamically changing system state under task-level

mode switch. It is worth noting that the system state comprises of not only the information

considered by the above approaches but also new additional information, such as dropped

LO-tasks. Since the speedup factor for the MC scheduling problem cannot evaluate the

quality of task dropping, we apply the speedup factor for task dropping. Then, we evaluate

the speedup factor of MC-ADAPT for task dropping, which is 1.618.

2.4. Recapitulation of Existing Work

We review the fluid scheduling platform to develop the MC-Fluid scheduling framework

(Chapter 2.4.1). To transform the MC-Fluid schedule to a non-fluid schedule on realistic

multiprocessor platforms, we review a DP-Fair scheduling technique that transforms any

fluid schedule to a non-fluid schedule (Chapter 2.4.2). For adaptive MC scheduling on par-

titioned multiprocessor platforms, we review a uniprocessor EDF-VD scheduling algorithm

(Chapter 2.4.3).

2.4.1. Fluid Scheduling Model

Consider a platform where each processor can be allocated to one or more jobs simulta-

neously. Each job can be regraded as executing on a dedicated fractional processor with

a speed smaller than or equal to one. This scheduling platform is referred to as the fluid

scheduling platform [9, 32].

Definition 2.2 (Fluid scheduling platform [32]). The fluid scheduling platform is a schedul-

ing platform where a job of a task is executed on a fractional processor at all time instants.

The fluid scheduling platform continuously executes each task with its execution rate.

Definition 2.3 (Execution rate). A task τi is said to be executed with the execution rate

θi(t1, t2) ∈ R, s.t. 0 < θi(t1, t2) ≤ 1, if every job of the task is executed on a fractional

processor with a speed of θi(t1, t2) over a time interval [t1, t2], where t1 and t2 are time

16

instants s.t. t1 ≤ t21.

The schedulability of a fluid platform requires two conditions:

1. Task-schedulability: each task has an execution rate that ensures to meet its deadline.

2. Platform feasibility: execution rates of all tasks are feasible on the multiprocessor

platform.

In non-MC multiprocessor systems, many optimal scheduling algorithms [9, 20, 38, 50] have

been proposed based on the fluid platform. These algorithms employ a single static rate for

each job of a task τi ∈ τ from its release to its deadline: ∀k, θi(rki , dki) = θi where rki and

dki are the release time and the deadline of a job Jki (the k-th job of task τi), respectively.

They satisfy task-schedulability by assigning Ci/Ti to θi, which is the task utilization of

a non-MC task τi = (Ti, Ci) where Ci is its WCET. They satisfy platform feasibility if∑
τi∈τ θi ≤ m.

Lemma 2.1 presents platform feasibility for the fluid model, which is also applicable on MC

systems.

Lemma 2.1 (Platform feasibility, from [9]). Given a task set τ , all tasks can be executed

with their execution rates iff
∑

τi∈τ θi ≤ m.

2.4.2. DP-Fair Scheduling Model

Many fluid-based scheduling algorithms, including MC-Fluid, rely on the fractional (fluid)

processor assumption. Due to this assumption, the algorithms cannot schedule tasks on real

(non-fluid) hardware platforms. Overcoming the limitation of fluid-based algorithms, sev-

eral approaches (e.g.,[9, 20, 38, 50]) have been introduced to construct a non-fluid schedule,

while holding an equivalent schedulability to that of a fluid-based schedule.

Such approaches differ in the unit of a time interval over which they enforce the equivalence

of fluid-based and non-fluid schedules. Quantum-based approaches (e.g., [9]) identify the

1Since the task cannot be executed on more than one processor, θi ≤ 1.

17

minimal scheduling unit (i.e., a time quantum) in hardware platforms: for every time

quantum, they enforce the execution of every task to satisfy that the difference of the

execution amount between the actual schedule and the fluid schedule is no greater than

1. Deadline partitioning approaches (e.g., [20, 38, 50]) enforce every task to meet the fluid

scheduling requirement at only all distinct deadlines of the system, which suffices with

respect to schedulability.

DP-Fair enforces the fluid requirement at every time slice. A time slice is defined as a

time interval between two consecutive Deadline Partitions (DPs), where a DP is defined as

a distinct release time or deadline from all jobs in the system. For a time slice, DP-Fair

ensures that every task executes for its execution requirement in fluid platforms by the end

of the interval.

We present how to allocate resources to each task in a time slice. Let l be the length of

the time slice. For a non-MC task τi, DP-Fair allocates l · δi where δi is density of the task

(δi = Ci/Ti where Ti is its period and Ci is its WCET).

Next, we need to generate a schedule of tasks based on execution allocation of tasks for a

time slice. We need to consider non-parallel execution constraints that no task executes

in more than one processor. DP-Fair applies McNaughton’s algorithm [42]. The algorithm

consecutively fills resources of a processor with tasks one by one. If the processor cannot

accept a task, the algorithm splits the target task by the remaining capacity of the processor

and the remaining execution amount of the task. Then, the algorithm allocates the first

part of the task into the processor and the second part of the task to a new processor. This

ensures that each task executes on at most one processor at a time.

The following lemmas recapitulate the schedulability properties of DP-Fair.

Lemma 2.2 (from [38]). Given a non-MC task set τ and a time slice, if the task set is

scheduled within the time slice under DP-Fair and
∑

i∈τ δi ≤ m, then the required execution

amount of each task within the time slice can be executed until the end of the time slice.

18

Lemma 2.3 (from [38]). A non-MC task set τ is schedulable under DP-Fair iff
∑

τi∈τ δi ≤

m.

2.4.3. EDF-VD Scheduling Algorithm

We recapitulate EDF-VD [4] for the implicit-deadline task model, whose algorithm and anal-

ysis are simple while being speedup-optimal. Due to its simplicity, EDF-VD is extended

into various directions (e.g., constrained-deadline task model [25, 24], multiprocessor plat-

form [11, 6, 37], and imprecise computation model [41]).

EDF-VD considers a system-level mode switch that when a single HI-task switches to HI-

mode, all the other HI-tasks switch to HI-mode simultaneously. Upon such an event, it

changes the system mode from LO-mode to HI-mode and drops all the LO-tasks. Cap-

turing the characteristics of MC tasks that HI-tasks are subject to with different WCET

requirements in different modes, EDF-VD assigns different priorities to a HI-task in different

modes (virtual deadline (VD) in the LO mode and real deadline in HI-mode).

We now explain how EDF-VD assigns VDs. For a HI-task τi, the VD of the task (Vi)

is assigned by Vi = xTi where x is the VD coefficient2 (x ∈ R s.t. 0 < x ≤ 1) with

x = ULH/(1− ULL).

The schedulability analysis of EDF-VD consists of the following lemmas. We will reuse

Lemma 2.4 for our new algorithm.

Lemma 2.4 (from [4]). A task set τ is schedulable by EDF-VD when all HI-tasks are in

LO-mode if

ULL +
ULH
x
≤ 1. (2.1)

Lemma 2.5 (from [4]). A task set τ is schedulable by EDF-VD when any HI-tasks are in

2The computation of VD coefficient is derived from Eq. (2.1) of Lemma 2.4.

19

HI-mode if

xULL + UHH ≤ 1. (2.2)

By Lemmas 2.4 and 2.5, a given task τ is MC-schedulable by EDF-VD if Eqs. (2.1) and

(2.2) hold.

20

CHAPTER 3 : Fluid-based Mixed-Criticality Scheduling

In this chapter, we focus on global multiprocessor scheduling approaches to minimize the

number of the required processors for a given MC system.

3.1. The Overview of the MC-Fluid Scheduling Framework

While MC scheduling has been extensively studied for the uniprocessor case, the multi-

processor case has received little attention. In non-MC multiprocessor scheduling, many

optimal scheduling algorithms [9, 20, 38] are based on the fluid scheduling model, where each

task executes in proportion to a static rate (i.e., task utilization). While its proportional

progress is still applicable on MC systems, a single static rate is inefficient because charac-

teristics of MC systems change over time. For example, consider a task τi s.t. uLi < uHi .

If the task executes with a rate of uLi , then it misses deadlines after mode-switch. If the

task executes with a rate of uHi (the worst-case reservation approach), the task wastes its

resources when there is no mode-switch. Using criticality-dependent execution rates, we

can find an efficient fluid scheduling algorithm for MC systems.

We propose a new fluid scheduling algorithm for MC systems, called MC-Fluid, where each

task executes with its pre-assigned rate depending on the system-level criticality-mode (the

task initially executes with its low-criticality rate. As the criticality-mode changes (from

LO-mode to HI-mode) at runtime, the task executes with its high-criticality rate). A central

challenge that we address in this chapter is how to determine criticality-dependent execution

rates of all the tasks, given that the time instance when the system criticality-level changes

is unknown. Our goal is to optimally allocate criticality-dependent execution rates to each

task within the problem domain.

There have been different rate assignment strategies for MC-Fluid. In our conference ver-

sion [37], we presented the OERA (Optimal Execution Rate Assignment) algorithm to deter-

mine the optimal execution rates in polynomial time. Recently, Baruah et al. [6] presented

21

Table 2: Execution rate assignment algorithms in this chapter
Algorithm Approach Optimality under Complexity

dual-rate scheduling

OERA (Ch. 3.5.1) Convex optimal O(n log n)
optimization

MC-Derivative (Ch. 3.5.2) Derivative optimal O(n log n)

MCF [6] Approximation suboptimal O(n)

the MCF rate assignment algorithm with linear complexity, which is a simplified version of

OERA, and showed that MCF has a speedup factor of 4/3 meaning that MCF can schedule

any feasible MC task set if each processor is sped up by a factor of 4/3 (refer Performance

Metrics in Chapter 2.1). Since any MC scheduling algorithm cannot have a lower speedup

factor than 4/3 [4], MCF is optimal in terms of the speedup factor. Since the OERA algo-

rithm is optimal in terms of schedulability (i.e., all task sets schedulable by MCF are also

schedulable by OERA), the speedup result of MCF is also applicable to OERA: the OERA

algorithm has an optimal speedup factor.

In this chapter, we present two rate assignment algorithms. First, the OERA algorithm com-

putes the rate assignment by convex optimization. Compared to the conference version [37],

we reduce the complexity of the algorithm to O(n log n). Second, the MC-Derivative algo-

rithm computes the rate assignment by the first derivative principles. We show that both

algorithms assigns execution rates optimally under the MC-Fluid framework (with LO- and

HI-rates). Since the speedup factor of the suboptimal MCF is optimal, the speedup factor

of both OERA and MC-Derivative is optimal. Table 2 summarizes the performance of our

rate assignment algorithms with respect to complexity and optimality

Contributions. Our contributions in this chapter are summarized as follows:

• We present a fluid model-based multiprocessor MC scheduling algorithm, called MC-

Fluid, with criticality-dependent execution rates per task (Chapter 3.2) and analyze

its exact schedulability (Chapter 3.3).

• We propose three different rate assignment algorithms (Chapter 3.5). OERA and MC-

22

Derivative algorithms optimally assigns execution rates with O(n log n) complexity.

OERA algorithm is based on the convex optimization framework (Chapter 3.5.1) while

MC-Derivative algorithm is based on the first derivative principles (Chapter 3.5.2).

• We derive the speedup factor of MC-Fluid, which is 4/3, optimal in multiprocessor

MC scheduling (Chapter 3.6).

3.2. The MC-Fluid Scheduling Algorithm

The fluid scheduling algorithm with a single static execution rate per task is inefficient in

resource utilization on MC systems. We can consider the worst-case reservation approach

by assigning θi := uHi for each HI-task and θi := uLi for each LO-task. Then, the result

of rate assignment is overly pessimistic because characteristics of MC tasks can change

substantially at mode-switch. According to typical dual-criticality system behaviors, the

system changes task characteristic at mode-switch, from executing all LO- and HI-tasks to

executing only HI-tasks (the execution requirement for a HI-task is changed from CLi to

CHi).

For example, consider a HI-task τi with Ti = 5, CLi = 2, and CHi = 3. When a task

executes with a rate of uHi (= 0.6), it wastes 0.2 utilization if there is no mode-switch. If

a scheduling algorithm is allowed to adjust the execution rate of tasks at mode-switch, it

can reduce the pessimism of the single rate assignment, considering the dynamics of MC

systems. When the task executes with a rate of 0.5, it completes to execute its LO-WCET

at relative time 4 and it can still execute one more time unit until relative time 5, which

satisfies the HI-WCET requirement. Then, we can reduce 0.1 utilization compared to the

previous case. Then, we wonder whether the task is schedulable with a rate smaller than

0.5. Assume that the task executes with a rate of 0.5− ε for any small real number ε > 0.

While the task completes to execute its LO-WCET at relative time 2/(0.5 − ε), it cannot

23

execute anymore time until relative time 5:

CHi − CLi
Ti − The LO-WCET complete time

=
1

5− 2/(0.5− ε)
>

1

5− 2/0.5
= 1.

Therefore, the task cannot meet the MC requirement with a rate smaller than 0.5.

We propose a fluid scheduling algorithm, called MC-Fluid, two static per-task execution

rates. Informally, MC-Fluid executes each task τi ∈ τ with θLi in LO-mode and with θHi in

HI-mode.

Definition 3.1 (MC-Fluid scheduling algorithm). MC-Fluid is defined with LO- and HI-

execution rates (θLi and θHi) for each task τi ∈ τ . For a job Jki of a task τi, MC-Fluid

assigns θLi to θi(r
k
i ,min(tM , d

k
i)) and θHi to θi(max(tM , r

k
i), dki) where rki is its release time,

dki is its deadline, and tM is the time instant of mode-switch. Since all LO-tasks are dropped

at mode-switch, θHi is not specified for all LO-tasks ∀τi ∈ τL.

The execution amount of a job indicates the processor resources consumed by the job within

a time interval, based on Def. 3.1.

Definition 3.2. Execution amounts of a job of a task τi ∈ τ in a time interval of

length t in LO- and HI-mode, denoted by ELi (t) and EHi (t), are the total amount of pro-

cessor resources that the job has consumed during this time interval in LO- and HI-mode,

respectively: ELi (t)
def
= θLi · t and EHi (t)

def
= θHi · t.

3.3. Schedulability Analysis

In this section, we analyze the schedulability of MC-Fluid. The following theorem shows

the MC-schedulability of MC-Fluid, which consists of LO-mode schedulability and HI-mode

schedulability. In LO-mode, we need task-schedulability (Eq. (3.1)) and platform feasibility

(Eq. (3.3)). Similarly, in HI-mode, we need Eq. (3.2) and Eq. (3.4).

Theorem 3.1 (MC-schedulability). A task set τ , where each task τi ∈ τ has LO- and

24

HI-execution rates (θLi and θHi), is MC-schedulable under MC-Fluid iff

∀τi ∈ τ, θLi ≥ uLi , (3.1)

∀τi ∈ τH ,
uLi
θLi

+
uHi − uLi
θHi

≤ 1, (3.2)∑
τi∈τ

θLi ≤ m, (3.3)

∑
τi∈τH

θHi ≤ m. (3.4)

To prove Theorem 3.1, we need to derive task-schedulability and platform feasibility in each

mode.

Task-schedulability. We first consider task-schedulability in LO-mode in the following

lemma.

Lemma 3.1. A task τi ∈ τ can meet its deadline in LO-mode iff θLi ≥ uLi .

Proof. (⇐) Consider a job of the task which is finished in LO-mode. We need to show that

the execution amount of the job from its release time (time 0) to its deadline (time Ti) is

greater than or equal to LO-WCET (CLi). From θLi ≥ uLi ,

θLi · Ti ≥ uLi · Ti ⇒ ELi (Ti) ≥ CLi . (by Def. 3.2)

(⇒) We prove the contrapositive: if θLi < uLi , then the task cannot meet its deadline in

LO-mode. It is true because ELi (Ti) = θLi · Ti < uLi · Ti = CLi .

Next, we consider task-schedulability in HI-mode. In HI-mode, we only consider task-

schedulability of HI-tasks because LO-tasks are dropped in HI-mode. Consider a job of a

HI-task τi as shown in Fig. 2. We define a carry-over job as a job released in LO-mode

and finished in HI-mode as shown in Fig. 2. For the schedulability of HI-task, we only

need to consider the carry-over job because it includes all possible cases (the job released in

25

Mode-switch𝑤𝑤𝑖𝑖

Θ 𝑖𝑖
𝐿𝐿 � 𝑤𝑤𝑖𝑖

C 𝑖𝑖
𝐿𝐿

C 𝑖𝑖
𝐻𝐻

𝑇𝑇𝑖𝑖0
Time

Th
e e

xe
cu

tio
n

am
ou

nt

Figure 2: The model of a carry-over job of a task τi ∈ τH where mode-switch happens at wi
and the job is executed with θLi and θHi in LO- and HI-mode, respectively (the execution
amount of the job until its deadline (Ti) should be CHi to meet its deadline).

LO-mode and finished in LO-mode, the job released in LO-mode and finished in HI-mode,

and the job released in HI-mode and finished in HI-mode). Let wi ∈ R be the length of a

time interval from the release time of the job to mode-switch (or an executed time of the

job in LO-mode). The second case is a special case of the carry-over job when wi = 0,

which means that the job is released at mode-switch.

To derive task-schedulability for a carry-over job of τi, we need to know the relative time

of mode-switch (wi). We first derive task-schedulability condition with a given wi. Since

mode-switch triggers in the middle of its execution, the job is executed with θLi before

mode-switch and with θHi after mode-switch. A cumulative execution amount of the job

from its release time to its deadline (Ti) consists of its execution amount from its release

time to mode switch with θLi and its execution amount from mode switch to its deadline

with θHi :

ELi (wi) + EHi (Ti − wi) = θLi · wi + θHi · (Ti − wi)

by Def. 3.2. Task-schedulability condition with wi is that the cumulative execution amount

26

of the job is greater than or equal to its HI-WCET (CHi):

θLi · wi + θHi · (Ti − wi) ≥ CHi . (3.5)

Since the MC system model assumes that the time instant of mode-switch is unknown until

runtime scheduling, we should consider all possible mode-switch scenarios (any valid wi).

Note that 0 ≤ wi ≤ Ti because mode-switch can happen at any time instant between release

time and deadline of the job. Therefore, task-schedulability is Eq. (3.5) for any wi in [0, Ti]:

∀wi, θLi · wi + θHi · (Ti − wi) ≥ CHi . (3.6)

To sum up, task-schedulability in HI-mode is Eq. (3.6).

Now, we will derive task-schedulability in HI-mode (Eq. (3.6)) independent of wi. Its

derivation is different depending on whether θLi > θHi or θLi ≤ θHi . Lemma 3.2 considers

the first case (θLi > θHi).

Lemma 3.2. For a given θHi , a HI-task τi when θLi is larger than θHi can meet its deadline

in HI-mode iff it meets its deadline in HI-mode when θLi is equal to θHi .

Proof. (⇐) Suppose that θLi is set to θHi and the task meets its deadline in HI-mode. From

Eq. (3.6), we have

∀wi, θHi · wi + θHi · (Ti − wi) = θHi · Ti ≥ CHi . (3.7)

Let θLi
′

be the changed value of θLi where θLi
′
> θHi . To show that the task can meet its

deadline in HI-mode with θLi
′
, we need to show that Eq. (3.6) holds: ∀wi,

θLi
′ · wi + θHi · (Ti − wi) > θHi · wi + θHi · (Ti − wi)

= θHi · Ti,

27

which is greater than or equal to CHi by Eq. (3.7).

(⇒) Suppose that θLi is set to a value larger than θHi and the task can meet its deadline in

HI-mode.

We claim that θHi ≥ uHi . We prove it by contradiction: suppose that θHi < uHi . Then,

Eq. (3.6) does not hold when wi = 0:

θLi · 0 + θHi · (Ti − 0) = θHi · Ti,

which is smaller than CHi because θHi · Ti < uHi · Ti = CHi . However, since we assume that

the task meets its deadline in HI-mode, Eq. (3.6) holds, which is a contradiction. Thus, we

proved the claim (θHi ≥ uHi).

Let θLi
′

be the changed value of θLi where θLi
′

= θHi . Then, it is required to show that

Eq. (3.6) holds:

∀wi, θHi · wi + θHi · (Ti − wi) = θHi · Ti,

which is greater than or equal to CHi because θHi ≥ uHi .

Using the corollary below, we assume that θLi ≤ θHi for any task τi ∈ τH in the rest of the

chapter.

Corollary 3.1. For the task-schedulability of a HI-task τi in HI-mode, we only need to

consider the case where θLi ≤ θHi .

Proof. Task-schedulability of the task in HI-mode when θLi > θHi is equivalent to the one

when θLi = θHi by Lemma 3.2. Thus, its task-schedulability in HI-mode is equivalent to the

one when θLi ≤ θHi .

The following lemma presents task-schedulability in HI-mode by using the assumption that

28

task-schedulability in LO-mode holds. It is a valid assumption because we eventually con-

sider task-schedulability in both LO- and HI-mode for MC-schedulability.

Lemma 3.3 (Task-schedulability in HI-mode). Given a HI-task τi satisfying task-schedulability

in LO-mode, the task can meet its deadline in HI-mode iff

uLi
θLi

+
(uHi − uLi)

θHi
≤ 1. (3.8)

Proof. Consider a carry-over job of the task. We first derive the range of a valid wi and

derive task-schedulability in HI-mode by using the range.

Consider the range of wi, which is [0, Ti]. We can further reduce the range by using task-

schedulability in LO-mode. The execution amount of the job in LO-mode from its release

time to any time instant cannot exceed its LO-WCET (CLi)1. Thus, its execution amount

from its release time to mode-switch also cannot exceed CLi :

ELi (wi) ≤ CLi ⇒ θLi · wi ≤ CLi . (3.9)

Combining 0 ≤ wi ≤ Ti and Eq. (3.9), we have 0 ≤ wi ≤ min(CLi /θ
L
i , Ti). Since task-

schedulability in LO-mode holds, we have θLi ≥ uLi by Lemma 3.1. Then,

θLi ≥ CLi /Ti ⇒ Ti ≥ CLi /θLi . (multiplying by Ti/θ
L
i)

Thus, the range of valid wi is 0 ≤ wi ≤ CLi /θLi .

1The job triggers mode-switch if the job execute for more than CLi .

29

We know that task-schedulability in HI-mode is Eq. (3.6), which is rewritten to:

∀wi, θLi · wi + θHi · (Ti − wi) ≥ CHi

⇔ ∀wi, θHi · Ti ≥ (θHi − θLi) · wi + CHi

⇔ θHi · Ti ≥ (θHi − θLi) · CLi /θLi + CHi (∵ θHi − θLi ≥ 0)2

⇔ θHi · Ti ≥ CLi · θHi /θLi + CHi − CLi

⇔ 1 ≥ uLi /θLi + (uHi − uLi)/θHi . (dividing by θHi · Ti)

Thus, the task can meet its deadline in HI-mode iff Eq. (3.6) holds iff Eq. (3.8) holds.

MC-schedulability. Since task schedulability is derived in Lemmas 3.1 and 3.3, and plat-

form feasibility condition is straight-forward from Lemma 2.1, we can prove Theorem 3.1.

Proof of Theorem 3.1. (⇐) We need to show that the task set satisfies both task-schedulability

and platform feasibility in both LO- and HI-mode. We show that task-schedulability holds

in both LO- and HI-mode. In LO-mode, it holds by Lemma 3.1 with Eq. (3.1). In HI-mode,

it holds by Lemma 3.3 with Eq. (3.2) and task-schedulability in LO-mode.

We show that platform feasibility holds in both LO- and HI-mode. In LO-mode, it holds

by Lemma 2.1 with Eq. (3.3). In HI-mode, it holds by Lemma 2.1 with Eq. (3.4).

(⇒) We will prove the contrapositive: if any of the conditions does not hold, then the

task set is not MC-schedulable. If Eq. (3.1) and Eq. (3.2) do not hold, task-schedulability

in LO-mode and in HI-mode do not hold by Lemma 3.1 and Lemma 3.3, respectively. If

Eq. (3.3) and Eq. (3.4) do not hold, platform feasibility in LO-mode and in HI-mode do not

hold by Lemma 2.1, respectively.

We apply Theorem 3.1 in the following example.

Example 3.1. Consider a two-processor system where its task set τ and its execution rate

2We already assumed that θLi ≤ θHi by Corollary 3.1.

30

Table 3: An example task set and its execution rate assignment.
Ti CLi CHi χi uLi uHi θLi θHi

τ1 10 2 8.5 HI 0.2 0.85 0.571 1
τ2 20 5 10 HI 0.25 0.5 0.472 0.531
τ3 30 4.5 9 HI 0.15 0.3 0.283 0.319
τ4 40 4 6 HI 0.1 0.15 0.15 0.15
τ5 50 10 10 LO 0.2 0.2 0.2

assignment is given as shown in Table 3. To show that it is MC-schedulable, we need to

show that Eqs. (3.1), (3.2), (3.3) and (3.4) hold by Theorem 3.1. We can easily check that

Eq. (3.1) holds. We show that Eq. (3.2) holds: {0.2/0.571 + (0.85 − 0.2)/1} ≤ 1 for τ1,

{0.25/0.472 + (0.5− 0.25)/0.531} ≤ 1 for τ2, {0.15/0.283 + (0.3− 0.15)/0.319} ≤ 1 for τ3,

and {0.1/0.15 + (0.15 − 0.1)/0.15} ≤ 1 for τ4. We can check that
∑

τi∈τ θ
L
i = {0.571 +

0.472+0.283+0.15+0.2} ≤ 2 for Eq. (3.3) and
∑

τi∈τH θ
H
i = {1+0.531+0.319+0.15} ≤ 2

for Eq. (3.4).

3.4. The Execution Rate Assignment

In the previous section, we looked at the schedulability analysis of MC-Fluid for a given task

set and a given execution rate assignment. In this section, we find rate assignment for a

given task set, based on the MC-Fluid schedulability analysis. We first define the optimality

of a rate assignment algorithm, in a similar way to Davis et al.[21].

Definition 3.3. A task set τ is called MC-Fluid-feasible if there exists an execution

rate assignment that the task set is schedulable under MC-Fluid with. An execution rate

assignment algorithm A is called optimal if A can find a schedulable assignment for all

MC-Fluid-feasible task sets. For brevity, we refer to an execution rate assignment as an

“assignment” and say that a task is feasible when the task is MC-Fluid-feasible.

We will construct an efficient and optimal assignment algorithm. While a naive assign-

ment algorithm checking all combinations of execution rates is optimal, its complexity is

intractable because possible real-number execution rates are infinite. We formulate the

execution rate assignment problem as an optimization problem.

31

To find an optimal rate assignment algorithm, we consider an optimal assignment of θLi and

θHi . The following lemma presents an optimal assignment of θLi .

Lemma 3.4 (An optimal assignment of θLi). If a task set τ is feasible, there is a schedulable

assignment where (i) θLi := uLi for a task τi ∈ τL and (ii) θLi :=
uLi ·θHi

θHi −uHi +uLi
for τi ∈ τH .

Proof. Since the task set is feasible, there exists a schedulable assignment (denoted by A)

satisfying Eqs. (3.1), (3.2), (3.3), and (3.4) by Theorem 3.1.

(i) Consider a task τi ∈ τL and its LO-execution rate (θLi) in A. We will show that τ is still

schedulable after reassignment of θLi . If we reassign θLi , it only affects Eqs. (3.1) and (3.3).

Let θL∗i be the value of θLi in A. Since A is schedulable, Eq. (3.1) holds with θL∗i , which is

θL∗i ≥ uLi . Suppose that we reassign θLi := uLi . Then, Eq. (3.1) still holds because θLi ≥ uLi .

Eq. (3.3) still holds because the decreased θLi (from θL∗i to uLi) does not increase the sum

of the execution rates.

(ii) Consider a task τi ∈ τH and its LO-execution rate (θLi) in A. We will show that τ is

still schedulable after reassignment of θLi . If we reassign θLi , it only affects Eqs. (3.1), (3.2),

and (3.3).

Let θL∗i and θH∗i be the value of θLi and θHi in A, respectively. Since Eq. (3.2) holds for θL∗i

and θH∗i , we have

uHi − uLi
θH∗i

≤ 1− uLi
θL∗i

⇒ uHi − uLi
θH∗i

< 1, (3.10)

since uLi /θ
L∗
i > 0. Eq. (3.2) with θL∗i and θH∗i is rewritten to:

uLi
θL∗i
≤ θH∗i − uHi + uLi

θH∗i

⇔ uLi · θH∗i ≤ θL∗i (θH∗i − uHi + uLi) (multiplying by θH∗i · θL∗i)

⇔ uLi · θH∗i
θH∗i − uHi + uLi

≤ θL∗i . (∵ θH∗i > uHi − uLi by Eq. (3.10))

32

Since A is schedulable, Eqs. (3.1), (3.2), and (3.3) hold with θL∗i . Suppose that we reassign

θLi :=
uLi ·θH∗i

θH∗i −uHi +uLi
. Then, Eq. (3.1) still holds because θLi ≥ uLi . Eq. (3.2) still holds because

the value of the reassigned θLi is the minimum value satisfying Eq. (3.2). Eq. (3.3) still

holds because the decreased θLi does not increase the sum of the execution rates.

We define the optimal assignment of θLi mentioned in Lemma 3.4 as computeLoRatei(θ
H
i):

for each task τi,

computeLoRatei(θ
H
i) =

uLi ·θHi

θHi −uHi +uLi
, if τi ∈ τH ,

uLi , otherwise.

To find an optimal assignment of θHi , we first consider feasibility. Based on Lemma 3.4 and

Theorem 3.1, the following theorem presents a feasibility condition.

Theorem 3.2 (Feasibility). A task set τ is feasible iff there exists an assignment of θHi for

∀τi ∈ τH satisfying

uHi ≤ θHi ≤ 1, (3.11)

ULL + ULH +
∑
τi∈τH

uLi (uHi − uLi)

θHi − uHi + uLi
≤ m, (3.12)

∑
τi∈τH

θHi ≤ m. (3.13)

Proof. (⇐) To show that the task set is feasible, we need to show that there exists a

schedulable assignment. Consider an assignment where θLi := uLi for each task τi ∈ τL,

θLi := uLi · θHi /(θHi − uHi + uLi) for each task τi ∈ τH , and θHi for each task τi ∈ τH satisfying

Eqs. (3.11), (3.12), and (3.13).

We first show that θLi ≤ 1 for each τi ∈ τ and θHi ≤ 1 for each τi ∈ τH according to the

definition of execution rates (Def. 2.3). For τi ∈ τL, we have θLi ≤ 1 by the selection of θLi .

For τi ∈ τH , we have θHi ≤ 1 from Eq. (3.11). Since we assumed θLi ≤ θHi by Corollary 3.1,

33

we have θLi ≤ 1 from Eq. (3.11).

To show that this assignment is schedulable by Theorem 3.1, we need to show that it satisfies

Eqs. (3.1), (3.2), (3.3), and (3.4). We know that θLi for ∀τi ∈ τ satisfies Eq. (3.1) and θLi

for ∀τi ∈ τH satisfies Eq. (3.2). We can rewrite Eq. (3.3) to:

∑
τi∈τ

θLi ≤ m⇔
∑
τi∈τL

θLi +
∑
τi∈τH

θLi ≤ m

⇔
∑
τi∈τL

uLi +
∑
τi∈τH

uLi · θHi
θHi − uHi + uLi

≤ m

⇔ ULL +
∑
τi∈τH

(
uLi +

uLi (uHi − uLi)

θHi − uHi + uLi

)
≤ m,

which is Eq. (3.12). Since Eq. (3.3) is equivalent to Eq. (3.12), the equation holds. Eq. (3.4)

holds from Eq. (3.13).

(⇒) Since the task set is feasible, there is a schedulable assignment where θLi = uLi for

∀τi ∈ τL and θLi = uLi · θHi /(θHi − uHi + uLi) by Lemma 3.4. We need to show that θHi for

∀τi ∈ τH in the assignment satisfies Eqs. (3.11), (3.12), and (3.13).

Consider θHi of a task τi ∈ τH . We know θHi ≤ 1 from the definition of execution rates

(Def. 2.3). Since we assumed that θLi ≤ θHi by Corollary 3.1, we rewrite θLi ≤ θHi to:

uLi · θHi
θHi − uHi + uLi

≤ θHi ⇒ uLi ≤ θHi − uHi + uLi ,

which is uHi ≤ θHi . Then, Eq. (3.11) holds.

Since the assignment is schedulable, Eqs. (3.3) and (3.4) hold by Theorem 3.1. We already

proved that Eq. (3.12) holds from Eq. (3.3) in Case (⇐). Eq. (3.13) holds from Eq. (3.4).

From feasibility condition, we know that the assignment of θHi satisfying the conditions in

Theorem 3.2 is optimal. However, it is not easy to find such an assignment. We will find

an optimal assignment algorithm by solving an equivalent optimization problem based on

34

Theorem 3.2.

Definition 3.4 (Assignment Problem). Given a task set τ , we define a non-negative real

number Xi for each task τi ∈ τH such that θHi := uHi + X∗i and X∗i is an optimal point of

Xi on the following optimization problem:

minimize
∑
τi∈τH

uLi (uHi − uLi)

Xi + uLi

subject to
∑
τi∈τH

Xi −m+ UHH ≤ 0, (CON1)

∀τi ∈ τH , −Xi ≤ 0, (CON2)

∀τi ∈ τH , Xi − 1 + uHi ≤ 0. (CON3)

The following lemma shows that the assignment of θHi by solving the optimization problem

(Def. 3.4) is optimal.

Lemma 3.5. If a rate assignment constructs a solution for the problem in Def. 3.4, the

rate assignment is optimal (according to Def. 3.3).

Proof. We claim that if the assignment by Def. 3.4 cannot satisfy Eqs. (3.11), (3.12), and

(3.13), no assignment can satisfy those equations. Then, τ is not feasible by Theorem 3.2.

Suppose that we have a solution to the optimization problem in Def. 3.4. For each task

τi ∈ τH , let X∗i be the optimal value of Xi for the problem. Let OBJ∗ be the value of

the objective function with X∗i for ∀τi ∈ τH . By Def. 3.4, we have an assignment where

θHi := uHi +X∗i to for ∀τi ∈ τH . Then, Eq. (3.11) holds from CON2 and CON3 and Eq. (3.13)

holds from CON1.

Suppose that Eq. (3.12) does not hold with the assignment, meaning OBJ∗ > m−ULL −ULH .

For any set of Xi satisfying CON1, CON2, and CON3, we have
∑

τi∈τH u
L
i (uHi − uLi)/(Xi +

uLi) ≥ OBJ∗ by the definition of the optimization problem and thus Eq. (3.12) does not

35

hold,

∑
τi∈τH

uLi (uHi − uLi)

Xi + uLi
≥ OBJ∗ > m− ULL − ULH .

Thus, no assignment can satisfy Eqs. (3.11), (3.12), and (3.13).

3.5. Rate Assignment Algorithms

In Chapter 3.5.1, we formulated the optimization problem to construct an optimal as-

signment algorithm. In this section, we present two different execution rate assignment

algorithms (namely OERA and MC-Derivative) to solve the optimization problem. First,

OERA solves the optimization problem using convex optimization. Second, MC-Derivative

computes the execution rates using the first derivative principles. The structure of those

execution rate assignment algorithms is as follows:

• Compute θHi for all τi ∈ τH using the respective HI-execution rate assignment algo-

rithms,

• If
∑

τi∈τH
θHi ≤ m compute θLi (by Lemma 3.4) else declare failure;

θLi ←

uLi ·θHi

θHi −uHi +uLi
, if τi ∈ τH ,

uLi , otherwise.

• If
∑
τi∈τ

θLi ≤ m declare success else declare failure.

For brevity of the following sections, we abbreviate ∀τi ∈ τH as ∀τi because only HI-tasks

are considered in Def. 3.4.

36

3.5.1. The OERA Algorithm

Any optimization problem can be rewritten in its dual form using Lagrange multiplier

(Chapter 5, Boyd et al. [17]), a technique to find a solution for a constrained optimization

problem. Using Lagrangian multipliers, we can transform any optimization problem with

constraints into its dual problem without constraints. In particular, when its objective

function and constraints are differentiable and convex, we can apply Karush-Kuhn-Tucker

(KKT) conditions (Chapter 5.5.3, [17]), which is a set of optimality conditions for an opti-

mization problem with constraints.

Lemma 3.6 (KKT conditions[17]). Let x be a vector of xi for i = 1, · · · , n where n = |x|

and x∗i be the value of xi. Consider an optimization problem:

minimize f(x) subject to gj(x) ≤ 0 for j = 1, · · · , N

where N is the number of gj(x) and all of f(x) and gj(x) for ∀j are differentiable and

convex. Then, x∗ minimizes f(x) iff there exists λ∗ s.t.

∀j, gj(x∗) ≤ 0, (3.14)

∀j, λ∗j · gj(x∗) = 0, (3.15)

∀i, ∂f(x∗)

∂xi
+
∑
j

(λ∗j
∂gj(x∗)

∂xi
) = 0, (3.16)

∀j, λ∗j ≥ 0, (3.17)

where λj is a Lagrange multiplier, λ∗j is the value of λj, and λ is a vector of λj.

Lemma 3.7 applies KKT conditions (Lemma 3.6) to the optimization problem in Def. 3.4

because the objective function and all the constraints are differentiable and convex. Then,

we only need to find the value of Lagrange multipliers satisfying KKT conditions for the

optimal solution. We use ψ, λi, and νi as Lagrange multipliers for CON1, CON2, and CON3,

respectively. We denote a vector of Xi, λi, and νi by X, λ, and ν, and denote the value of

37

Xi, λi, and νi by X∗i , λ∗i , and ν∗i , respectively. We define, for each task τi,

Costi(x)
def
=
uLi (uHi − uLi)

(x+ uLi)2
where x ∈ R.

Lemma 3.7. Consider the optimization problem in Def. 3.4. X∗ minimizes f(X) iff there

exist ψ∗, λ∗, and ν∗ s.t.

∑
τi

X∗i −m+ UHH ≤ 0, (3.18)

∀τi, −X∗i ≤ 0, X∗i − 1 + uHi ≤ 0, (3.19)

ψ∗(
∑
τi

X∗i −m+ UHH) = 0, (3.20)

∀τi, λ∗i (−X∗i) = 0, ν∗i (X∗i − 1 + uHi) = 0, (3.21)

∀τi, − Costi(X
∗
i) + ψ∗ − λ∗i + ν∗i = 0, (3.22)

ψ∗ ≥ 0 ∧ ∀τi(λ∗i ≥ 0 ∧ ν∗i ≥ 0), (3.23)

where f(X) =
∑

τi

uLi (u
H
i −uLi)

Xi+uLi
.

Proof. We will derive KKT conditions for the optimization problem in Def. 3.4: f(X) =∑
τi

uLi (u
H
i −uLi)

Xi+uLi
and g1(X) =

∑
τi
Xi −m+ UHH for CON1; for ∀τi, g2,i(X) = −Xi for CON2

and g3,i(X) = Xi − 1 + uHi for CON3.

We know that f(X) and all constraints are differentiable. To show that they are convex,

we need to show that their second derivatives are no smaller than zero:

∀τi, ∀Xi ,
∂2f(X)

∂(Xi)2
=

2 · uLi (uHi − uLi)

(Xi + uLi)3
≥ 0 and

∀τi, ∀τj , ∀Xi,
∂2g1(X)

∂(Xi)2
=
∂2g2,j(X)

∂(Xi)2
=
∂2g3,j(X)

∂(Xi)2
= 0.

We derive KKT conditions for the problem by Lemma 3.6:

38

• We denote Lagrange multipliers for g1(X), g2,i(X) and g3,i(X) by ψ, λi and νi, re-

spectively.

• Eq. (3.14) for g1(X) is Eq. (3.18). Eq. (3.14) for g2,i(X) and g3,i(X) is Eq. (3.19).

• Eq. (3.15) for g1(X) is Eq. (3.20). Eq. (3.15) for g2,i(X) and g3,i(X) is Eq. (3.21).

• Eq. (3.16) is ∀τi, ∂f(X)/∂Xi + ψ − λi + νi = 0, which is Eq. (3.22).

• Eq. (3.17) for g1(X), g2,i(X) and g3,i(X) is Eq. (3.23).

By Lemma 3.6, X∗ minimizes f(X) iff there exist ψ∗, λ∗, and ν∗ satisfying Eqs. (3.18),

(3.19), (3.20), (3.21), (3.22), and (3.23).

Example 3.2. Consider the system in Example 3.1. We need to solve the optimization

problem in Def. 3.4. Suppose that we have X∗ satisfying KKT conditions in Lemma 3.7 for

the system: X∗1 = 0.2, X∗2 = 0.2, and X∗3 = 0. Eq. (3.18) holds: 0.2 + 0.2− 2 + 1.6 = 0. We

can easily check that Eqs. (3.19) and (3.20) hold. To satisfy Eq. (3.21), we have λ∗1 = λ∗2 =

ν∗2 = ν∗3 = 0. By Eq. (3.22), we have − 0.15
(0.2+0.3)2

+ ψ∗ + ν∗1 = 0, − 0.12
(0.2+0.4)2

+ ψ∗ = 0, and

ψ∗ − λ∗3 = 0. Then, we have ψ∗ = 1/3, ν∗1 = 4/15, and λ∗3 = 1/3. Eq. (3.23) holds with ψ∗,

λ∗, and ν∗. Thus, X∗ is the solution to the problem in Def. 3.4 by Lemma 3.7.

By Def. 3.4, we have θH1 := 1, θH2 := 0.9, and θH3 := 0.1. We can assign θLi for ∀τi ∈ τ by

Lemma 3.4. Since this calculated assignment is the same as the assignment in Example 3.1,

we conclude that the assignment in Example 3.1 is optimal.

The OERA algorithm. General KKT conditions are not easily solvable because we cannot

find the feasible values of the Lagrange multipliers for the conditions. We propose the

Optimal Execution Rate Assignment (OERA) algorithm to solve our KKT conditions. The

intuition is that we first independently analyze λ∗i , ν
∗
i , and X∗i for each task τi for a given

ψ∗ and later find ψ∗ satisfying our KKT conditions. In our KKT conditions (Lemma 3.7),

we know that λ∗i and ν∗i for each task τi depend only on X∗i . Since only ψ∗ depends on

X∗, we can find ψ∗ with each independently analyzed X∗i . Based on this observation, we

39

develop a simple greedy algorithm.

Before presenting the OERA algorithm, the following lemma shows that we can indepen-

dently analyze λ∗i , ν
∗
i , and X∗i for each task τi.

Lemma 3.8. Given a task τi and ψ (≥ 0), if we assign Xi :=

Cal Xi(ψ)
def
=

0 if ψ ≥ Costi(0),

1− uHi if ψ < Costi(1−uHi),√
uLi (u

H
i −uLi)
ψ − uLi otherwise,

then Eqs. (3.19), (3.21), (3.22), and (3.23) hold with some λi (≥ 0) and νi (≥ 0).

Proof. To satisfy Eq. (3.19), we assume that 0 ≤ Xi ≤ 1− uHi . Then, to prove this lemma,

we only need to show that Eqs. (3.21) and (3.22) hold in each case of Cal Xi(ψ).

Case (ψ ≥ Costi(0)). For some νi ≥ 0, Eq. (3.22) is simplified to:

ψ ≤ Costi(Xi) + λi, (3.24)

by removing νi. Note that Cost(Xi) ≤ Cost(0) where 0 ≤ Xi ≤ 1−uHi . To satisfy Eq. (3.24),

λi should satisfy that λi ≥ ψ − Costi(Xi) ≥ ψ − Costi(0), which is greater than or equal

to 0 from the assumption. To satisfy Eq. (3.21), we assign νi := 0 and Xi := 0. Thus,

Eqs. (3.21), (3.22), and (3.23) hold.

Case (ψ<Costi(1−uHi)). For some λi ≥ 0, Eq. (3.22) is simplified to:

ψ + νi ≥ Costi(Xi), (3.25)

by removing λi. Note that Cost(1 − uHi) ≤ Cost(Xi) where 0 ≤ Xi ≤ 1 − uHi . To satisfy

Eq. (3.25), νi should satisfy that νi ≥ Costi(Xi)− ψ ≥ Costi(1− uHi)− ψ, which is greater

than 0 from the assumption. To satisfy Eq. (3.21), we assign λi := 0 and Xi := 1 − uHi .

40

Thus, Eqs. (3.21), (3.22), and (3.23) hold.

Case (Costi(1− uHi) ≤ ψ < Costi(0)). To satisfy Eq. (3.21), we assign λi := 0 and νi := 0.

Then, to satisfy Eq. (3.22), we need to satisfy ψ = Costi(Xi), from which, Xi can be

computed:

ψ =
uLi (uHi − uLi)

(Xi + uLi)2
⇔ Xi =

√
uLi (uHi − uLi)

ψ
− uLi .

Thus, Eqs. (3.21), (3.22), and (3.23) hold.

Combining three cases, we showed that Eqs. (3.19), (3.21), and (3.22) hold with some

positive λi and νi.

Algorithm 3.1 describes the OERA algorithm. If we know ψ satisfying Eqs. (3.18) and (3.20)

of our KKT conditions, we satisfy the other equations by assigning Xi := Cal Xi(ψ
∗) for

∀τi. To find such a ψ, we will first consider ψ > 0 and later ψ = 0. Suppose that ψ > 0.

Then, we only need to satisfy the condition that
∑

τi
Xi −m+ UHH = 0, which is

Sum Cal X(ψ∗) = m− UHH (3.26)

where Sum Cal X(ψ∗) =
∑

τi
Cal Xi(ψ

∗).

The LHS of the required condition (Eq. (3.26)) is a piecewise linear function of 1/
√
ψ.

According to Lemma 3.8, if ψ is greater than or equal to Costi(0) or smaller than Costi(1−

uHi), Cal Xi(ψ) is a constant; otherwise, Cal Xi(ψ) is a linear function of 1/
√
ψ. To find the

range of each linear function in Sum Cal X(ψ∗), we define an ordered set of critical points:

G
def
= {x ∈ R|x = Costi(0) or x = Costi(1− uHi) for ∀τi}

where each element is sorted in increasing order. We denote the j-th element of G as Gj ,

which is a critical point for some task τi that Cal Xi(ψ) changes a constant to a linear

41

function of 1/
√
ψ or vice-versa (a linear function to constant) at ψ = Gj .

We will utilize the property of critical points that the function is a linear function within

two consecutive critical points Gj and Gj + 1. We apply a binary search to find G∗j s.t.

Sum Cal X(Gj+1) ≤ m − UHH and m − UHH < Sum Cal X(Gj). If it is found, there exist ψ∗

satisfying Eq. (3.26) between two consecutive critical points: G∗j < ψ∗ ≤ G∗j+1 (Line 1).

Since the LHS of the condition is just a linear function within the range, we can find ψ∗ by

solving the condition (Line 2) and OERA returns X∗ where X∗i = Cal Xi(ψ
∗) (Line 3).

It is possible that there does not exist G∗j satisfying Eq. (3.26). Suppose that ψ = 0 (Line

4). OERA returns X∗ where X∗i = Cal Xi(0) for ∀τi (Line 5).

Algorithm 3.1 The OERA algorithm

Input: τH , G, and m
Output: X∗ satisfying KKT conditions in Lemma 3.7

1: if binary search Gj s.t. Sum Cal X(Gj+1) ≤ m − UHH and m − UHH < Sum Cal X(Gj)
then

2: find ψ∗ by solving Eq. (3.26) return X∗ where Xi = Cal Xi(ψ
∗)

3: elsereturn X∗ where Xi = Cal Xi(0)
4: end if

Example 3.3. Consider KKT conditions in Example 3.2. We have G = {0.245, 0.6, 0.75, 1.667}.

We apply Algorithm 3.1. In Fig. 3, X-axis represents 1/
√
ψ. Blue (solid) line is Sum Cal X(ψ),

which is a piecewise linear function where its slope is changed at each 1/
√
Gj where Gj ∈ G.

Red (dashed) line is a constant function of m−UHH . When G1(= 0.245) ≤ ψ∗ < G2(= 0.6),

the condition in Line 2 holds: Sum Cal X(G2) ≤ m − UHH < Sum Cal X(G1), which is

0.5 ≤ 0.4 < 0.247. In other words, a crossing point between the blue line and the red line

is located in (1/
√
G2, 1/

√
G1]. Then, we can find ψ∗ by solving Eq. (3.26), where the blue

line meets the red line at 1/
√
ψ∗. Since 0.2 +

√
0.12/ψ∗− 0.4 = 0.4, we have 1/

√
ψ∗ =

√
3.

Finally, ψ∗ = 1/3, X∗1 = 0.2, X∗2 =
√

0.12
1/3 − 0.4 = 0.2, and X∗3 = 0. We conclude that

OERA can find X∗ satisfying the KKT conditions in Lemma 3.7 for Example 3.2.

The following theorem proves the correctness of OERA.

Theorem 3.3. Algorithm 3.1 (OERA) can find X∗ satisfying KKT conditions in Lemma 3.7.

42

0

0.1

0.2

0.3

0.4

0.5

0.5 1 1.5 2

1/ 𝝍𝝍

𝐒𝐒𝐒𝐒𝐒𝐒_𝐂𝐂𝐂𝐂𝐂𝐂_𝐗𝐗(𝝍𝝍)

𝒎𝒎−𝑼𝑼𝑯𝑯
𝑯𝑯

1/ 𝑮𝑮𝟏𝟏1/ 𝑮𝑮𝟐𝟐 𝟑𝟑

Figure 3: The plot of Sum Cal X(ψ) in respect to 1/
√
ψ on Example 3.3, which is a piecewise

linear function (note that there is ψ∗ s.t. Sum Cal Xi(ψ
∗) = 0.4 where G1 ≤ ψ∗ < G2).

Proof. If we know ψ∗ satisfying Eqs. (3.18) and (3.20), we can assign Xi := Cal Xi(ψ
∗) for

each τi, which satisfies Eqs. (3.19), (3.21), (3.22), and (3.23) by Lemma 3.8. To find such a

ψ∗, we will divide cases depending on whether Sum Cal X(0) ≤ m− UHH .

Case (Sum Cal X(0) ≤ m− UHH). Then, we assign ψ = 0, which satisfies Eq. (3.20). From

the assumption, Eqs. (3.18) holds.

Case (Sum Cal X(0) > m − UHH). To satisfy Eqs. (3.18) and (3.20), we only need to find

ψ∗ satisfying Eq. (3.26). Although the LHS of Eq. (3.26) is a piecewise linear function of

1/
√
ψ, it is a linear function within two consecutive critical points Gj and Gj +1. We apply

a binary search to find G∗j s.t. Sum Cal X(Gj+1) ≤ m−UHH and m−UHH < Sum Cal X(Gj).

If G∗j is found, we can find a unique ψ∗ because Sum Cal X(ψ) is a linear function within

[G∗j , G
∗
j+1).

We need to check Sum Cal X(maxj Gj) ≤ m−UHH and Sum Cal X(minj Gj) > m−UHH . If it

does not hold, G∗j may not exist. We know that Sum Cal X(maxj Gj) =
∑

τi
0 = 0, which is

smaller than or equal to m− UHH . However, we do not know whether Sum Cal X(minj Gj)

is larger than m− UHH or not.

We claim that for a task τi, Cal Xi(0) = Cal Xi(minj Gj). If minj Gj = 0, we have Cal Xi(0) =

Cal Xi(minj Gj). Otherwise, we have minj Gj > 0. When minj Gj 6= Costi(1− uHi), by the

second case of Lemma 3.8, we know that Cal Xi(0) = Cal Xi(minj Gj). When minj Gj =

43

Costi(1−uHi), we need to apply the third case of Lemma 3.8. Since Cal Xi(ψ) calculates Xi

s.t. ψ = Cost(Xi) in the third case of Lemma 3.8, we have Cal Xi(Costi(1− uHi)) = 1− uHi ,

from which we have Cal Xi(minj Gj) = 1 − uHi by using Costi(1 − uHi) = minj Gj . Since

Cal Xi(0) = 1− uHi , we have Cal Xi(0) = Cal Xi(minj Gj). Thus, we proved the claim.

Since Sum Cal X(minj Gj) = Sum Cal X(0) and Sum Cal X(0) > m − UHH , we confirm that

G∗j exists.

Algorithm Complexity. We consider the complexity of Algorithm 3.1 (OERA). Let n be

|τ |. Since the computation of Sum Cal Xi(ψ) for a given ψ takes O(n) times, the binary

search takes O(n log n). Additionally, finding a solution for Eq. (3.26) takes O(n). Since

O(n log n) +O(n) = O(n log n), OERA has linearithmic time-complexity (O(n log n)) .

3.5.2. The MC-Derivative Algorithm

In previous section, we presented a rate assignment algorithm by solving the problem in

Def. 3.4 using a convex optimization framework. Extending and solving such optimization

problem for a larger system such as a multi-criticality system without compromising on

the schedulability performance and runtime complexity can be quite challenging. To over-

come the shortcoming of the complex convex optimization framework, we require a simple

straightforward approach to determine the optimal execution rates. Thus, we propose MC-

Derivative which assigns execution rates by using the first derivative principles, instead of

using convex optimization technique.

The MC-Derivative rationale. We recall the objective function of the assignment problem

mentioned in Def. 3.4 as f(X):

f(X) =
∑
τi∈τH

uLi (uHi − uLi)

Xi + uLi

and X denotes the vector of Xi values. The objective function can be rewritten as separable

function f(X) =
∑
fi(Xi), where fi(Xi) =

uLi (u
H
i −uLi)

Xi+uLi
. Our aim is to minimize the objective

44

Figure 4: The plot of f̄ ′i(Xi = x) varying x ∈ R for the task set in Table 3

function f(X), and we denote the resulting Xi as X∗i (the optimal value of Xi). Since the

objective function is differentiable and convex, we can apply the first partial derivative

techniques to find the optimal solution.

The first partial derivative of the objective function, f ′i(Xi), is defined as f ′i(Xi) = ∂f(X)
∂(Xi)

.

The function with the maximum value of the first partial derivative gives the maximum

change in the objective function for a small change in Xi. For ease of understanding, since

f ′i(Xi) is a negative function within the range of Xi (by CON2 and CON3), 0 ≤ Xi ≤ 1−uHi ,

we consider the absolute value of f ′i(Xi) denoted as f̄ ′i(Xi):

f̄ ′i(Xi) =
uLi
(
uHi − uLi

)
(Xi + uLi)2

(3.27)

Thus, larger f̄ ′i(Xi) indicates a larger decrease of f(X).

We present the rationale behind MC-Derivative. It minimizes the objective function by as-

signing the execution rates to the tasks in the order of their maximum first partial derivative.

Initially, it assigns Xi = 0 for each HI-task, the minimum value according to CON2 in the

assignment problem (Def. 3.4). This assignment makes the objective function the largest.

Then, MC-Derivative minimizes the total sum by increasing the Xi of the tasks with a larger

f̄ ′i(Xi). We present the application of MC-Derivative strategy with an example.

Example 3.4. Consider a sample task set in Table 3. Fig. 4 plots f̄ ′i(x) of the corresponding

task set for x ∈ R. It can be observed that task τ1 has a larger f̄ ′i(x) compared to that of task

45

τ2, τ3 and τ4. Hence, MC-Derivative initially picks task τ1 for Xi assignment then followed

by task τ2, τ3 and τ4. MC-Derivative first assigns the minimum required execution rate,

Xi = 0 for each task. Then, MC-Derivative increases X1 until its f̄ ′i(Xi) of τ1 becomes equal

to that of task τ2/τ3 or until X1 becomes 1 − uH1 . Then, the remaining system utilization

(m −
∑

1≤i≤4(u
H
i + Xi)), called Slack, is allocated to the remaining tasks proportionately

such that the updated f̄ ′i(Xi) values of tasks are equal. When X1 becomes the maximum

value (1 − uH1), we allocate Slack to τ2 and τ3. Since f̄ ′4(X4) is lower than the updated

f̄ ′i(Xi) of task τ2 and τ3, X4 remains as 0.

Note that, the slack (the black dotted line in Fig. 4) lies below f̄ ′1(1− uH1), f̄ ′2(0) and f̄ ′3(0),

and above f̄ ′2(1−uH2), f̄ ′3(1−uH3) and f̄ ′4(0). Therefore, MC-Derivative assigns X1 = 1−uH1

(i.e., θH1 = 1), 0 < X2 < 1−uH2 (i.e., uH2 < θH2 < 1), 0 < X3 < 1−uH3 (i.e., uH3 < θH3 < 1)

and X4 = 0 (i.e., θH4 = uH4).

In MC-Derivative, we utilize the classification of HI-tasks (Def. 3.5) based on their final Xi

assignment.

Definition 3.5 (HI-tasks Classification). Without any loss of generality, tasks in τH are

categorized into three sets (τMAX, τMIN and τREM)3 based on their final Xi values:

τMAX
def
={τi ∈ τH | Xi = 1− uHi },

τREM
def
={τi ∈ τH | 0 < Xi < 1− uHi },

τMIN
def
={τi ∈ τH | Xi = 0}.

Note that τMAX, τREM, and τMIN are mutually exclusive, and τH = τMAX ∪ τREM ∪ τMIN .

For the example task set in Table 3, τMAX = {τ1}, τREM = {τ2, τ3} and τMIN = {τ4}.

The MC-Derivative algorithm. Algorithm 3.2 gives the overall flow for the rate assign-

ment strategy. The algorithm only inputs task set with UHH ≤ m for computing the rates,

3τMAX denotes the set of HI-tasks with the maximum rate assignment (i.e., θHi = 1), τMIN denotes the
set of HI-tasks with the minimum rate assignment (i.e., θHi = uHi) and τREM denotes the set of remaining
HI-tasks other than τMAX and τMIN.

46

and declares failure otherwise. Line 1 computes the Xi for all HI-tasks and τREM using Al-

gorithm 3.3. Line 2 assigns the θHi rate to the HI-tasks. Lines 3−5 assign the slack (output

of Algorithm 3.3) to the HI-tasks in τREM. Line 6 computes the LO-execution rate of the

tasks using computeLoRatei(θ
H
i) defined in Sec. 3.4. Finally, we can check the LO-mode

platform feasibility by
∑
τi∈τ

θLi ≤ m.

Algorithm 3.2 MC-Derivative Algorithm

Input: τ where UHH ≤ m
Output: θHi for each τi ∈ τH and θLi for each τi ∈ τ

1: Compute Xi and τREM using Algorithm 3.3
2: For each τi ∈ τH , assign θHi := uHi +Xi

3: if (Slack > 0) then
4: For each τi ∈ τREM, assign θHi using Algorithm 3.4
5: end if
6: For each τi ∈ τ , θLi := computeLoRatei(θ

H
i)

Algorithm 3.3 classifies the HI-tasks into τMAX, τMIN and τREM. Line 2 assigns the minimum

valid Xi for all the HI-tasks. Line 3 determines the minimum and maximum f̄ ′i(x)
(
2×|τH |

elements of F
)

for all the HI-tasks. Line 4 sorts all the HI-tasks in increasing order of f̄ ′i(x).

Lines 5−13 determine the range within which the slack (computed in Line 8) lies such that

the tasks with a larger f̄ ′i(x) is assigned a maximum Xi, which is 1−uHi according to CON3

in Def. 3.4. We consider each member (Fj)
4 of this sorted list (Line 5). For a HI-task, Xi

is assigned with x such that f̄ ′i(x) = Fj and x ≥ 0. When Γ := Fj , by Eq. (3.27), we have

x = max(0,

√
uLi (uHi − uLi)

Γ
− uLi). (3.28)

Lines 10 and 14 determine the set of tasks (τREM) that get the remaining slack in the system

after the Xi assignment. That is, tasks with f̄ ′i(0) > Fj > f̄ ′i(1 − uHi) are added to τREM.

Line 10 adds all τk s.t. f̄ ′k(x) = Fj to τREM for slack assignment if Xk = 0 because the slack

lies below f̄ ′k(0).

Algorithm 3.3 (Line 4) sorts F in increasing order to assign a maximum value of Xi to

4If two tasks have the same parameters, there exist Fj and Fj+1 such that Fj = Fj+1 with the different
task index.

47

all the HI-tasks in the first iteration. If the assigned rates are not feasible (i.e., slack is

negative), then the above process is repeated for the next HI-task τk in the sorted list. By

doing so, MC-Derivative assigns a maximum value of Xi to the tasks such that CON1 of

Def. 3.4 holds (the sum of the HI-execution rates is no greater than the system capacity).

That is, tasks with f̄ ′i(1− uHi) ≥ Fj (τi ∈ τMAX) is assigned a maximum Xi of 1− uHi . The

FOR loop exits either when the condition in Line 9 holds (assigned rates are feasible) or

without any modification to the initial assignment of Xi (Line 2), which is always feasible.

Algorithm 3.3 HI-Tasks Classification

Input: τH and τREM
Output: Xi for each τi ∈ τH , τREM, and Slack

1: Initialize τREM = ∅
2: For each τi ∈ τH , assign Xi = 0
3: Let F be the set of f̄ ′i(x) values at x = 0 and x = 1− uHi
4: Sort F in increasing order
5: for j := 1 to |F | (the size of F) do
6: Let k be the task index of Fj (the j-th member in F)
7: For each τi s.t. τi 6= τk, Xi := min(1− uHi , x) s.t. f̄ ′i(x) = Fj (by Eq. (3.28))
8: Let Slack = m−

∑
τi∈τH (uHi +Xi)

9: if
(
Slack ≥ 0

)
then

10: If Xk = 0, then ∀τk s.t. f̄ ′k(x) = Fj add τk in τREM
11: Break
12: end if
13: end for
14: For each τi ∈ τH s.t. 0 < Xi < 1− uHi , add τi in τREM

Algorithm 3.4 allocates Slack (the remaining utilization after Algorithm 2) to tasks in τREM.

The algorithm receives Slack (computed in Line 3 of Algorithm 3.2) as a input and allocates

it to all the HI-tasks in τREM proportionately, such that their updated f̄ ′i(x) values are equal

(formally proven in Lemma 3.10).

Algorithm 3.4 Slack Allocation for τREM
Input: τREM, Slack, and Xi

Output: θHi for each τi ∈ τREM
1: for τi in τREM do

2: Assign θHi := uHi + x s.t. f̄ ′i(x) = Γ where Γ =

(∑
τj∈τREM

√
uLj (u

H
j −uLj)

Slack+
∑

τj∈τREM
(Xj+uLj)

)2

3: end for

48

Optimality. We will show that the total sum of the objective function by MC-Derivative

is always smaller than or equal to the one by any rate assignments. Let us first determine

the possible cases for rate assignments different from MC-Derivative. Then, we derive the

property of f̄ ′i(Xi) of any two tasks in these classes for a valid rate assignment different

from MC-Derivative in Lemma 3.9. Finally, we prove the optimality in Theorem 3.4.

The tasks in τMAX cannot be assigned any additional Xi since Xi ≤ 1−uHi from CON3 (i.e.,

θHi ≤ 1). The Xi of the tasks in τMIN cannot be reduced any further because Xi ≥ 0 from

CON2 (i.e., θHi ≥ uHi). Therefore, there are only two cases to consider for rate assignments

different from MC-Derivative.

Case 1: The Xi of the task τp ∈ τMAX is partially reassigned5 to the one of task τq ∈

{τREM, τMIN} or the Xi of the task τp ∈ τREM is partially reassigned to task τq ∈ τMIN.

Case 2: The Xi of the task τp ∈ τREM is partially reassigned to the one of another task

τq ∈ τREM.

Before proving these cases, we introduce an auxiliary lemma (Lemma 3.9) showing the

property of f̄ ′i(X
∗
i) of any two tasks for a valid reassignment of execution rates. Using the

property, Theorem 3.4 proves the optimality of MC-Derivative.

Lemma 3.9. For any two tasks τp and τq, assume that their Xi’s are assigned by Algo-

rithm 3.2. If the Xi of τp is partially reassigned to the one of τq, we have f̄ ′p(X
∗
p) ≥ f̄ ′q(X∗q).

Proof. We need to show f̄ ′p(X
∗
p) ≥ f̄ ′q(X∗q) for the two cases. Consider Case 1. For any two

tasks τi and τj such that f̄ ′i(Xi) > f̄ ′j(Xj), Lines 5 − 12 of Algorithm 3.3 ensure task τi is

assigned an Xi such that f̄ ′i(Xi) is decreased to match f̄ ′j(Xj). The task τq ∈ τMIN does not

receive any execution rate (X∗q = 0) apart from its HI-utilization uHq because its f̄ ′q(X
∗
q) is

lower than f̄ ′p(X
∗
p) of any task τp ∈ {τMAX, τREM} until the slack gets assigned. In the case of

τp ∈ τMAX and τq ∈ τREM, the task τp is assigned a maximum execution rate (X∗p = 1− uHp)

and cannot be assigned any further. This implies f̄ ′p(Xp) cannot be decreased any further

5Denote Xi of τp is decreased by ε and that of τq is increased by ε.

49

Figure 5: The partial reassignment of the execution rate from τp to τq

which means f̄ ′p(X
∗
p) > f̄ ′q(X

∗
q).

We show that f̄ ′p(X
∗
p) ≥ f̄ ′q(X

∗
q) for Case 2. Since τp, τq ∈ τREM, we have f̄ ′p(X

∗
p) = f̄ ′q(X

∗
q)

by Line 2 of Algorithm 3.4.

Theorem 3.4. MC-Derivative is an optimal rate assignment algorithm.

Proof. We show that if the execution rates are reassigned, then the resulting sum of the

objective will be greater than the one determined: f(X#
i) ≥ f(X∗i) where X#

i denotes the

updated Xi after reassignment of execution rates such that X#
i 6= X∗i .

Consider the reassignment of rate from task τp to task τq as shown in Fig. 5. The execution

rates assigned by MC-Derivative to tasks τp and τq is given by X∗p and X∗q respectively. Let ε

denote the amount of execution rate reassigned, and X#
p and X#

q denote the corresponding

updated execution rates. Then, X#
p := X∗p − ε and X#

q := X∗q + ε where ε ∈ [0,min(X∗p , 1−

uHq −X∗q)] since for any task τi, Xi ∈ [0, 1− uHi].

To show that the sum of the objective is greater after reassignment, we only need to show

50

that

fp(X
#
p) + fq(X

#
q) ≥ fp(X∗p) + fq(X

∗
q)

⇔ fp(X
#
p)− fp(X∗p) ≥ fq(X∗q)− fq(X#

q)

⇔
∫ X∗p

X#
p

f̄ ′p(x)dx ≥
∫ X#

q

X∗q

f̄ ′q(x)dx. (3.29)

For task τi and X1 and X2 s.t. X1 < X2, note that
∫ X2

X1
f̄ ′i(x)dx ≥ minX1≤x≤X2 f̄

′
i(x) · (X2−

X1) and
∫ X2

X1
f̄ ′i(x)dx ≤ maxX1≤x≤X2 f̄

′
i(x) · (X2 −X1) (see the shaded rectangle in Fig. 5).

To show that Eq. (3.29), we only need to show that

min
X#
p ≤x≤X∗p

f̄ ′p(x)(X#
p −X∗p) ≥ max

X∗q≤x≤X
#
q

f̄ ′q(x)(X∗q −X#
q)

⇔ min
X#
p ≤x≤X∗p

f̄ ′p(x)ε ≥ max
X∗q≤x≤X

#
q

f̄ ′q(x)ε

⇔ min
X#
p ≤x≤X∗p

f̄ ′p(x) ≥ max
X∗q≤x≤X

#
q

f̄ ′q(x). (3.30)

Note that both f̄ ′p(Xp) and f̄ ′q(Xq) are monotonically non-increasing functions, we have

min
X#
p ≤x≤X∗p

f̄ ′p(x) = f̄ ′p(X
∗
p) and max

X∗q≤x≤X
#
q
f̄ ′q(x) = f̄ ′q(X

∗
q). Since we know f̄ ′p(X

∗
p) ≥

f̄ ′q(X
∗
q) by Lemma 3.9, Eq. (3.30) holds.

Correctness. Before presenting the correctness of MC-Derivative, we present the correct-

ness of Algorithm 3.4. The following lemma shows the correctness for proportional allocation

of slack to the tasks in τREM by Algorithm 3.4.

Lemma 3.10. Given a slack MC-Derivative assigns Xi to the tasks in τREM such that their

f̄ ′i(Xi) are equal.

Proof. Let X∗i denote the assignment of Xi to the tasks in τREM such that their f̄ ′i(Xi) are

equal. Let Γ
(
defined as f̄ ′i(X

∗
i)
)

be the updated f̄ ′i(Xi) value of the tasks in τREM. Then for

each τi ∈ τREM, we can compute Γ from the relation between the sum of Xi (intermediate

assignment in Line 7 of Algorithm 3.3) and the sum of X∗i (final assignment in Line 2 of

51

Algorithm 3.4). Since the Slack is assigned only to the tasks in τREM, Slack +
∑

τi∈τREM
Xi =∑

τi∈τREM
X∗i . Then,

Slack +
∑

τi∈τREM

(Xi + uLi) =
∑

τi∈τREM

(X∗i + uLi)

⇔Slack +
∑

τi∈τREM

(Xi + uLi) =
∑

τi∈τREM

√
uLi (uHi − uLi)

f̄ ′i(X
∗
i)(

by Eq. (3.28)
)

⇔Slack +
∑

τi∈τREM

(Xi + uLi) =
∑

τi∈τREM

√
uLi (uHi − uLi)

Γ(
by f̄ ′i(X

∗
i) = Γ

)
Thus, Algorithm 3.4 assigns Xi to the tasks in τREM such that f̄ ′i(x) = Γ.

Now, we present the correctness of MC-Derivative. Line 7 in Algorithm 3.3 ensures CON2

and CON3 in Def. 3.4 (i.e., uHi ≤ θHi ≤ 1). Line 9 in Algorithm 3.3 guarantees CON1 (i.e.,

the sum of the HI-execution rate does not exceed the system capacity).

Complexity. MC-Derivative algorithm has a run-time complexity of O(n log n) in the

number of tasks in τ . Xi computation can be done in O(n log n) time complexity. Assigning

an initial value to Xi can be done in O(n) time. Sorting F in Line 4 of Algorithm 3.3 can

be done in O(n log n) time complexity. Selecting a task with the least f̄ ′i(x) that satisfies

the condition in Line 9 of Algorithm 3.3 can be done using a binary search. Thus, the outer

FOR loop of Line 5 of Algorithm 3.3 runs at most O(log n) times. Computing Xi in Line

7 of Algorithm 3.3 consumes O(n) time. Proportionately allocating the remaining slack

to the tasks can also be done in O(n) time. Determining the HI-execution rates and the

LO-execution rates can also be done in O(n) time.

52

3.6. The Speedup Factor

In this section, we quantify the effectiveness of MC-Fluid via the metric of processor speedup

factor [36]. In general, the speedup factor of an algorithm A is defined as a real number

α (≥ 1) such that any task set schedulable by an optimal clairvoyant algorithm6. on m

speed-1 processors is also schedulable by A on m speed-α processors. In other words, a

task set that is clairvoyantly schedulable on m speed-(1/α) processors is also schedulable

by A on m speed-1 processors.

The following lemma shows α ≥ 4/3 for any algorithm.

Lemma 3.11. Any non-clairvoyant MC scheduling algorithm on multicores cannot have a

speedup factor better than 4/3.

Proof. It directly follows from Theorem 5 of Baruah et al. [4].

The following theorem shows that α for MC-Fluid is 4/3, which means that MC-Fluid has

an optimal speedup factor.

Theorem 3.5. Given a task set τ that is clairvoyantly MC-schedulable on m speed-(3/4)

processors, the task set is MC-schedulable on m speed-1 processors by MC-Fluid.

Proof. We consider the special assignment method: θHi := uHi /x where x is a real number

s.t. 0 ≤ x ≤ 1. If it is a valid schedulable assignment, the OERA algorithm can find the

assignment because OERA is the optimal assignment algorithm. By Lemma 3.4, we pick

execution rates as θLi = uLi for τi ∈ τL and θLi = uLi · θHi /(θHi − uHi + uLi) for τi ∈ τL. To

show that τ is MC-schedulable by MC-Fluid, we need to satisfy Eqs. (3.1), (3.2), (3.3), and

(3.4) of Theorem 3.1. By the selection of the execution rates, Eqs. (3.1) and (3.2) hold.

Since τ is clairvoyantly schedulable on m speed-(3/4) processors, we know that ULL +ULH ≤

3m/4 and UHH ≤ 3m/4. Since the task is assumed to be executable on a speed-(3/4)

6In MC systems, a clairvoyant (fluid or non-fluid) scheduling algorithm is the one that knows the time
instant of mode-switch before runtime scheduling. However, it is only possible for imaginary algorithms
because we cannot know the mode-switch instant in advance.

53

processor, we know that each task τi has uLi ≤ uHi ≤ 3/4.

To be a valid execution rate by Def. 2.3, HI-execution rate θHi should satisfy θHi ≤ 1:

uHi
x
≤ 1 ⇐ 3

4
≤ x. (by uHi ≤

3

4
)

Thus, we need x ≥ 3/4 to be a valid execution rate. Since we assume that θLi ≤ θHi by

Lemma 3.2, LO-execution rates are also valid.

We show that Eq. (3.4) holds (
∑

τi∈τH θ
H
i ≤ m):

∑
τi∈τH

uHi
x

=
UHH
x
≤ 3m

4
· 4

3
≤ m,

because UHH ≤
3m
4 and 1/x ≤ 4/3.

Before checking Eq. (3.3), we claim that θLi ≤ uLi + 1−x
x uHi for τi ∈ τH :

uLi · θHi
θHi − uHi + uLi

≤ uLi +
1− x
x

uHi

⇔ uLi · uHi /x
uHi /x− uHi + uLi

≤ uLi +
1− x
x

uHi (since θHi =
uHi
x)

⇔ uLi · uHi
x · uLi + (1− x)uHi

≤ uLi +
1− x
x

uHi

⇔ uLi · uHi ≤ x(uLi)2 + 2(1− x)uLi · uHi +
(1− x)2

x
(uHi)2

⇔ 0 ≤ x2(u
L
i

uHi
)2 + x(1− 2x)

uLi
uHi

+ (1− x)2

⇔ 0 ≤ x2(β − 1)2 + x(β − 2) + 1 (by replacing β =
uLi
uHi

)

⇔ 0 ≤ (x(β − 1)− 1/2)2 − x+ 3/4

⇐ 0 ≤ 3/4− x, (∵ (x(β − 1)− 1/2)2 ≥ 0)

which is true if x ≤ 3/4. We assume that x ≤ 3/4 for the claim.

54

We show that Eq. (3.3) holds (
∑

τi∈τH θ
L
i ≤ m):

ULL +
∑
τi∈τH

θLi

= ULL +
∑
τi∈τH

(
uLi +

1− x
x

uHi
)

= ULL + ULH +
1− x
x

UHH

≤ 3m

4
+

1− x
x
· 3m

4
(by UHH ≤

3m
4 , ULL + ULH ≤

3m
4)

≤ 3m

4
+

1

3
· 3m

4
(by 1−x

x ≤
1
3 from x ≤ 3

4)

≤ m

In sum, to have a solution, we need both x ≤ 3/4 and x ≥ 3/4, which is possible at

x = 3/4.

Baruah et al. [4] showed that any non-clairvoyant uniprocessor algorithm for a dual-criticality

task set cannot have a speedup factor better than 4/3. This result is also applicable for

multiprocessors. Since MC-Fluid has a speedup factor of 4/3, it is an optimal multicore MC

scheduling algorithm in terms of the speedup factor.

3.7. Summary

We presented a multiprocessor MC scheduling algorithm, called MC-Fluid, based on the

fluid scheduling platform. Given LO- and HI-execution rates per task, we derived an exact

schedulability analysis of MC-Fluid on the dual-criticality systems. We presented an optimal

execution rate assignment algorithm to determine the execution rates in O(n log n) time.

Furthermore, we also presented that MC-Fluid has an optimal speedup factor.

55

CHAPTER 4 : Transforming Fluid-based Mixed-Criticality Scheduling into

Discrete-time Platforms

In the previous chapter, we developed a resource-efficient MC-Fluid scheduling algorithm

for multiprocessor MC systems. However, it cannot be not directly implemented on real

hardware platforms because MC-Fluid assumes that a task executes on a fractional processor.

In real hardware platforms, a processor only executes one task at a time. In this chapter, we

develop MC scheduling techniques that can be implemented on multiprocessor platforms.

4.1. The Overview of the MC-Discrete Scheduling Framework

One challenge that we face is how to map the MC-Fluid schedule to a non-fluid sched-

ule. Inspired by schedule transformation techniques that the optimal fluid schedule into a

non-fluid schedule, called DP-Fair (Deadline Partitioning Fair), without the loss of schedu-

lability [9, 20, 38, 50], we develop the MC-DP-Fair scheduling algorithm with real-number

deadlines and the MC-Discrete scheduling algorithm with integer deadlines. MC-DP-Fair

preserves the speedup optimality in MC-Fluid while MC-Discrete mode-switches only at in-

teger time points, which is preferred in practice.

Contributions. Our contributions in this chapter are summarized as follows:

• We develop the MC-DP-Fair algorithm, which constructs a non-fluid schedule from the

MC-Fluid schedule and preserves the speedup-optimality of MC-Fluid (Chapter 4.2).

• We develop the MC-Discrete algorithm, which transforms the MC-Fluid schedule and

allows mode-switch in integer time points (Chapter 4.3).

• Simulation results show that MC-DP-Fair and MC-Discrete outperform other existing

approaches (Chapter 4.4).

56

4.2. The MC-DP-Fair Scheduling Algorithm and Schedulability Analysis

Building upon the DP-Fair algorithm, we propose the MC-DP-Fair scheduling algorithm,

which constructs a non-fluid schedule based on MC-Fluid. To extend MC-Fluid with the

DP-Fair algorithm, we have the following questions:

• How to compute LO-density (density in LO-mode) and HI-density from LO- and

HI-execution rates?

• How to determine whether a given task set is MC-schedulable by MC-DP-Fair?

To answer the first question, we utilize a concept of virtual deadlines (VDs), which is

introduced in EDF-VD [4]. To be compatible with DP-Fair, we will transform execution

rates of tasks into (virtual) deadlines, which may be different from their real deadlines.

With VDs, we present the MC-Discrete algorithm as follows:

Definition 4.1. MC-DP-Fair is defined with per-task virtual deadlines and a special DP Γ,

which is the earliest DP after mode-switch. For each task τi, we define a VD: Vi ∈ R s.t.

0 < Vi ≤ Ti. In MC-DP-Fair, each task executes with its VD before Γ and with its real

deadline after Γ, according to DP-Fair.

To utilize the analysis of MC-Fluid, we need to check whether the execution amount of tasks

in MC-Fluid is the one in MC-DP-Fair. In non-MC domain, the execution amounts of tasks

in fluid platforms is the same as the one in DP-Fair at every DP, according to Lemma 2.2.

In MC domain, MC-DP-Fair can utilize the results of MC-Fluid because MC-DP-Fair adopts

the delayed mode-switch at Γ (scheduling policy is changed not at mode-switch but at Γ).

We will show the computation of LO-density and HI-density with VD and discuss VD

assignment, utilizing the execution rates of MC-Fluid. To answer the second question, we

will present the schedulability analysis later.

Density Computation. We can compute LO-density: for each τi ∈ τ , δLi
def
= CLi /Vi. We

57

need to compute HI-density differently depending on the time instant of mode-switch is a

DP or not. We claim that we do not need to consider the latter case: mode-switch happens

in the middle of a time slice. Note that Γ indicates the end of this time slice. Due to the

delayed scheduling policy changed, MC-DP-Fair executes HI-tasks for the amount of their

required remaining execution (calculated based on CLi) until Γ. Then, the case is equivalent

to the former case (mode-switch happens at Γ).

Now, we only need to compute HI-density when mode-switch happens at a DP. To do this,

we need to know the remaining time to the deadline of the carry-over job, which is active

at mode-switch, and the remaining execution amount of the job. The former is calculated

by Ti − wi where wi is the time interval length from its release time to the boundary. The

latter is calculated by CHi −ELi (wi) where ELi (t) is the execution amount of the job for any

timer interval t (ELi (t) = δLi · t). Using these values, we can compute δHi :

δHi
def
=
CHi − ELi (wi)

Ti − wi
=
CHi − δLi · wi
Ti − wi

. (4.1)

Virtual Deadline Assignment. Although LO-density is fixed for a given VD, HI-density

varies on runtime. Intuitively, to utilize MC-Fluid analysis, LO-density for each task is no

greater than θLi and HI-density for each HI-task is no greater than θHi . Since we know

the optimal rate assignment of MC-Fluid, we propose a VD assignment based on the rate

assignment:

Definition 4.2 (MC-DP-Fair VD assignment). We assign Vi := Ti for an LO-task τi ∈ τL

and Vi := V ∗i where V ∗i = CLi /θ
L∗
i for a HI-task τi ∈ τH where θL∗i is the value of θLi in the

optimal assignment for MC-Fluid.

Lemma 4.1 validates the correctness of the VD assignment.

Lemma 4.1. Given an MC task set τ , we assume the virtual deadline assignment by

Def. 4.2. Thus, we have (i) δLi ≤ θ
L4
i for each task τi ∈ τ and (ii) δHi ≤ θ

H4
i for each task

τi ∈ τH , where θL4i = CLi /V
∗
i and θH4i = (uHi − uLi)/(1− uLi /θ

L4
i).

58

Proof. (i) We show that δLi ≤ θ
L4
i for τi ∈ τ : we have δLi = CLi /Ti = uLi = θL4i for τi ∈ τL

by Lemma 3.4 and δLi = CLi /Vi = θL4i for τi ∈ τH .

(ii) We will show that δHi ≤ θH4i for τi ∈τH . Since δHi varies on wi in Eq. (4.1), we first

derive the maximum δHi and later show that the value is no greater than θH4i .

To find the maximum δHi , consider derivative of Eq. (4.1):

d δHi
d wi

=
−δLi (Ti − wi) + (CHi − δLi · wi)

(Ti − wi)2
=
CHi − δLi · Ti
(Ti − wi)2

,

which is greater than or equal to 0 if uHi ≥ δLi .

To show that the derivative is non-negative, we show that uHi ≥ δLi . Since θL4i ≥ δLi from

Case (i), we only need to show uHi ≥ θ
L4
i : since θL4i =

uLi ·θ
H4
i

θH4i −uHi +uLi
by Lemma 3.4,

uHi ≥
uLi · θ

H4
i

θH4i − uHi + uLi
⇔ uHi (θH4i − uHi + uLi) ≥ uLi · θ

H4
i

⇔ θH4i (uHi − uLi) ≥ uHi (uHi − uLi)

⇔ θH4i ≥ uHi ,

which is true because θH∗i satisfies Eq. (3.11), which is θH∗i ≥ CLi /Ti, by Theorem 3.2 and

θH4i ≥ CLi /bTic = CLi /Ti.

From the derivative of δHi , we can find the inequality that δHi is maximized at the maximum

wi because
d δHi
d wi

≥ 0 and thus δHi is an increasing function of wi: since wi ≤ Vi,

δHi ≤
CHi − δLi · Vi
Ti − Vi

=
CHi − CLi /Vi · Vi
Ti − CLi /θ

L4
i

=
uHi − uLi

1− uLi /θ
L4
i

,

which is θH4i by Lemma 3.4. Thus, we conclude δHi ≤ θ
H4
i .

59

Schedule Generation. Since we assigned VDs, we can calculate how much resources are

allocated to each task for a time slice. Due to the delayed mode-switch of MC-DP-Fair,

the resource allocation is not changed within the time slice. Then, we can directly use the

schedule generation of DP-Fair, which is McNaughton’s algorithm [42] satisfying a sequen-

tial execution constraint (or called a non-parallel execution constraint) on multiprocessor

platforms.

Schedulability Analysis. Since MC tasks are subject to different execution time require-

ments (and thereby different densities), we extend Lemma 2.3 for MC systems as follows.

Lemma 4.2. Given δLi and δHi for each task τi ∈ τ , an MC task set τ is MC-schedulable

iff

∑
τi∈τ

δLi ≤ m, (4.2)

∑
τi∈τH

δHi ≤ m. (4.3)

Proof. Eq. (4.2) is the LO-schedulability condition by Lemma 2.3 with LO-mode. Eq. (4.3)

is the HI-schedulability condition by Lemma 2.3 with HI-mode. Since MC-schedulability

implies both LO- and HI-schedulability, the task set is MC-schedulable iff Eqs. (4.2) and

(4.3) hold.

Based on Lemmas 4.1 and 4.2, Theorem 4.1 presents that MC-DP-Fair has the same schedu-

lability as MC-Fluid.

Theorem 4.1. An MC task set τ is schedulable by MC-DP-Fair with the virtual deadline

assignment by Def. 4.2 iff τ is MC-Fluid-feasible.

Proof. (⇒) To show that τ is feasible, we need to show that there exists an assignment

satisfying Eq. (3.11), (3.12), and (3.13) by Theorem 3.2. Since θH∗i for ∀τi ∈ τH can only

violate Eq. (3.12) according to Def. 3.4, we need to show that Eq. (3.12) holds.

Since the task set is schedulable by MC-DP-Fair with Def. 4.2, we know that Eq. (4.2) holds

60

by Lemma 4.2. Eq. (4.2) is rewritten to:

∑
τi∈τ

δLi ≤ m⇔
∑
τi∈τL

CLi /Ti +
∑
τi∈τH

CLi /Vi ≤ m

⇔ ULL +
∑
τi∈τH

uLi · θH∗i
θH∗i − uHi + uLi

≤ m

⇔ ULL +
∑
τi∈τH

(
uLi +

uLi (uHi − uLi)

θH∗i − uHi + uLi

)
≤ m

⇔ ULL + ULH +
∑
τi∈τH

uLi (uHi − uLi)

θH∗i − uHi + uLi
≤ m,

which is Eq. (3.12).

(⇐) To show that the task set is schedulable, we need to show that Eqs. (4.2) and (4.3)

hold by Lemma 4.2.

Since the task set is feasible, Eq. (3.12) with θH∗i holds by Theorem 3.2. We already showed

that Eq. (3.12) is Eq. (4.2) in Case ⇒.

Since the feasible task set is scheduled by MC-DP-Fair with Def. 4.2, we have δHi ≤ θH∗i for

each task τi ∈ τH by Lemma 4.1. We show that Eq. (4.3) holds:

∑
τi∈τH

δHi ≤
∑
τi∈τH

θH∗i ≤ m,

which is true because the optimal assignment satisfies CON1 in Def. 3.4 with θH∗i = Xi +

uHi .

4.3. The MC-Discrete Scheduling Algorithm and Schedulability Analysis

We consider integer virtual deadlines, which are preferable for real hardware platforms,

compared to real number virtual deadlines. We present the revised algorithm, called MC-

Discrete, as follows:

61

Definition 4.3. MC-Discrete is defined with per-task virtual deadlines and a special DP Γ,

which is the earliest DP after mode-switch. For each task τi, we define a VD: Vi ∈ Z s.t.

0 < Vi ≤ Ti. Other rules are the same as MC-DP-Fair.

As an initial step toward a discrete-time schedule, we discretize the time point of mode-

switch of MC-Discrete (Γ is an integer time point because it is a real deadline or a virtual

deadline of a task).

Virtual Deadline Assignment. We also revise the VD assignment which only allows

integer VDs.

Definition 4.4 (MC-Discrete VD assignment). We assign Vi := Ti for an LO-task τi ∈ τL

and Vi := V ∗i where V ∗i = bCLi /θL∗i c for a HI-task τi ∈ τH where θL∗i is the value of θLi in

the optimal assignment for MCF.

Schedulability Analysis. MC-DP-Fair transforms the fluid schedule of MCF into a non-

fluid schedule without any schedulability loss. Since we allow only multiples of the schedul-

ing quantum (integer) in VDs, MC-DP-Fair incurs slight overheads compared to MC-DP-

Fair. Since the schedulability analysis of MC-DP-Fair is not applicable, we derive sufficient

schedulability conditions for MC-Discrete.

Theorem 4.2. An MC task set τ is schedulable by MC-Discrete with the VD assignment

by Def. 4.4 if

∑
τi∈τ

θL4i ≤ m. (4.4)

Proof. To show that the task set is schedulable, we need to show schedulability in LO-mode

and schedulability in HI-mode.

Consider LO-mode. Since Eq. (4.4) ia assumed and δLi ≤ θL4i by Lemma 4.1, we have∑
τi∈τ δ

L
i ≤

∑
τi∈τ θ

L4
i ≤ m. Since

∑
τi∈τ δ

L
i ≤ m, the task set is schedulable in LO-mode

by Lemma 2.3.

62

Consider HI-mode. Since θL4i ≥ θL∗i by the definition of θL4i , we have θH4i ≤ θH∗i . Since

δHi ≤ θ
H4
i by Lemma 4.1 and we have

∑
τi∈τH

δHi ≤
∑
τi∈τH

θH4i ≤
∑
τi∈τH

θH∗i ,

which is less than or equal to m because the optimal assignment satisfies CON1 in Def. 3.4.

Since
∑

τi∈τH δ
H
i ≤ m, the task set is schedulable in HI-mode by Lemma 2.3.

4.4. Evaluation

In this section we evaluate the schedulability of MC-DP-Fair (in Chapter 4.2) and MC-

Discrete (in Chapter 4.3) using the randomly generated task sets and compare them with

other multiprocessor MC scheduling algorithms. These algorithms include GLO [40] (a

global scheduling approach based on EDF-VD), PART [11] (a partitioned scheduling ap-

proach based on EDF-VD) and FP [43] (a global fixed-priority scheduling approach). We

first describe the task set generation procedure in the experimental setup section and then

discuss the performance results of the algorithms.

Task Set Generation. We generate random task sets according to the workload-generation

algorithm [40]. Let U b be the upper bound of system utilization in both LO- and HI-mode.

Input parameters are U b, m (the number of processors), Zb (the upper bound of task utiliza-

tion), and P c (the probability of task criticality). Initially, m = 2, Zb = 0.7, and P c = 0.5.

We will also evaluate varying different input parameters. A random task is generated as

follows (all task parameters are randomly drawn in uniform distribution):

• uLi is a real number drawn from the range [0.02, Zb].

• Ti is an integer drawn from the range [20, 300].

• Ri (the ratio of uHi /u
L
i) is a real number drawn from the range [1, 4].

• Pi (the probability that the task is a HI-task) is a real number from the range [0,1]. If

63

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized Utilization Bound

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

MC-DP-Fair

MC-Discrete

PART

GLO

FP

(a) m=2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized Utilization Bound

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

(b) m=4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized Utilization Bound

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o

(c) m=8

Figure 6: The acceptance ratio with varying the normalized utilization bound (U b/m) and
the number of processors (m).

64

U b/m ≤ 0.75 0.80 0.85 0.90 0.95 1.00
m

2 0 0.0035 0.0074 0.0057 0.0045 0.0019
4 0 0.0043 0.0071 0.0056 0.0039 0.0003
8 0 0.0033 0.0061 0.0069 0.0026 0.0004

Table 4: Acceptance ratio difference between MC-DP-Fair and MC-Discrete

Pi < P c, set χi := LO and CLi := buLi · Tic. Otherwise, set χi := HI, CLi := buLi · Tic,

and CHi := buLi ·Ri · Tic.

Repeat to generate a task in the task set until max(ULH +ULL , U
H
H) is larger than U b. Then,

discard the task added last.

Simulation Results. Fig. 6 shows the acceptance ratio (ratio of schedulable task sets) over

varying m ∈ {2, 4, 8} and normalized utilization bound U b/m from 0.3 to 1.0 in increments

of 0.05. Each data point is based on 10,000 task sets. The result shows that MC-Discrete

outperforms previously known approaches. As shown in Table 4, MC-Discrete has a slightly

lower acceptance ratio than MC-DP-Fair (the difference is no greater than 0.0074).

Fig. 7 and 8 show the effect of varying different parameters (P c or Zb). We use the weighted

acceptance ratio [15] to reduce the number of dimensions in the plots. Let U bm be U b/m and

A(U bm) be the acceptance ratio for U bm. The weighted acceptance ratio W (S) is calculated

to:

W (S)
def
=

∑
Ubm∈S

(
U bm ·A(U bm)

)∑
Ubm∈S U

b
m

,

where S is the set of U b/m. The set S is the same as the one for Fig. 6 (S = {0.3, 0.35, · · · , 1.0}).

In Figs. 7 and 8, each data point is based on 15,000 task sets where 1,000 task sets are ex-

perimented for each U b/m in S.

Fig. 7 shows the weighted acceptance ratio varying the upper bound of task utilization

(Zb). MC-Discrete and GLO are insensitive to Zb while the performance of PART decreases

as Zb increases due to difficulty of scheduling large utilization tasks. On the other hand,

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Max. Task Utilization

0.2

0.4

0.6

0.8

1.0

W
e
ig

h
te

d
 A

cc
e
p
ta

n
ce

 R
a
ti

o

MC-DP-Fair

MC-Discrete

PART

GLO

FP

Figure 7: The weighted acceptance ratio with varying the upper bound of task utilization
(Zb).

the performance of FP increases as Zb increases because interference-based analysis favors

a smaller number of tasks1.

Fig. 8 shows the weighted acceptance ratio varying the probability of task criticality (P c).

MC-DP-Fair and MC-Discrete can schedule all task sets when only LO-tasks or only HI-

tasks are generated (i.e., P c = 0 or P c = 1) since MC-DP-Fair and MC-Discrete generalizing

DP-Fair are optimal for the non-MC task model.

4.5. Summary

We presented the MC-DP-Fair and MC-Discrete scheduling algorithms, which is a variant of

MC-Fluid for mapping fluid schedules into practical non-fluid schedules. While MC-DP-Fair

allows mode switch at any time point, MC-Discrete allows mode switch only at integer time

points, which is more practical for a realistic scheduler. We showed that our non-fluid MC-

DP-Fair has the same schedulability as MC-Fluid on fluid scheduling model and MC-Discrete)

are comparable to MC-Fluid. In simulation, we showed that MC-DP-Fair and MC-Discrete

1While FP uses interference-based analysis, all others use utilization-based analysis.

66

0.0 0.2 0.4 0.6 0.8 1.0
The Probability of Task Criticality

0.2

0.4

0.6

0.8

1.0

W
e
ig

h
te

d
 A

cc
e
p
ta

n
ce

 R
a
ti

o

MC-DP-Fair

MC-Discrete

PART

GLO

FP

Figure 8: The weighted acceptance ratio with varying the probability of task criticality
(P c).

outperform all the existing multiprocessor MC scheduling algorithms.

67

CHAPTER 5 : Adaptive Mixed-Criticality Scheduling on Partitioned

Multiprocessor Platforms

In the previous two chapters, we studied global scheduling approaches for multiprocessor

MC systems. Although global MC scheduling approaches such as MC-Fluid and MC-Discrete

are resource-efficient, their efficiency is limited on the platforms (e.g., large-scale systems)

because implementation overheads can become high1. In this chapter, we focus on parti-

tioned scheduling approaches, which assign tasks to processors statically and use a separate

run-queue per processor. For adaptive MC scheduling on multiprocessors, we first present

an adaptive MC scheduling algorithm for uniprocessor platforms and later extend it for

partitioned multiprocessor platforms.

5.1. The Overview of the MC-ADAPT Scheduling Framework

Conventional MC scheduling approaches under system-level mode switch has the limitation

that drop all LO-tasks at mode-switch. Recently, industrial demand is toward adaptive MC

scheduling, which also considers the performance of LO-tasks [18]. In this chapter, we focus

on adaptive MC scheduling.

Relaxing system-level mode switch assumptions, we consider task-level mode switch, where

different tasks execute more than their LO-WCET at different times, independently from

each other. Under task-level mode switch, some HI-tasks execute in the HI-mode while

others remain in the LO-mode. This makes it possible to penalize some of the LO-tasks

selectively in the event of mode switch, rather than all of them unnecessarily. Our goal is

then to minimize the total number of LO-tasks to be dropped subject to the MC schedu-

lability constraints. To achieve this, we seek to develop a new MC scheduling framework

that dynamically determines which tasks to drop at runtime.

The task dropping decision under task-level mode switch is challenging since the system

1The overheads include preemption/migration overheads (in the case of MC-Discrete, preemption and
migration happen at every time quantum in the worst case) and the overheads of global run-queue. The
overhead could be severe for large-scale complex time-sensitive systems.

68

state is dynamically changing in the sense that a set of tasks in HI-mode (or LO-mode)

as well as a set of tasks dropped (or active) change dynamically over time. In addition,

when a HI-task requires additional resources due to its mode switch, the actual resources to

be secured by dropping LO-tasks may vary depending on the current system state. There

exist some recent studies [33, 46, 30] considering task dropping under task-level mode switch;

however, all of them do not take the dynamic behavior of the system into full consideration

since the tasks to be dropped are determined (and analyzed) at design time and then remain

unchanged during runtime. Such a static decision has a considerable degree of pessimism,

leading to unnecessary dropping of LO-tasks. This is because existing solutions cannot

fully capture dynamic system states and incorporate it efficiently into the decision making

of task dropping at runtime.

Our goal is adaptive MC scheduling under partitioned multiprocessor platforms. We first

partition tasks into processors and schedule tasks within each processor by using a unipro-

cessor adaptive MC scheduling algorithm. Although existing work focused on partition

algorithms for better schedulability, we would like to develop the multiprocessor scheduling

technique for better performance of LO-tasks.

We have the following research questions to address these challenges.

• Q1. How can we analyze the impact of dynamic system state changes on the MC

schedulability at runtime?

• Q2. How can we make adaptive decision on task dropping without sacrifice in the MC

schedulability?

• Q3. How can we evaluate the quality of task dropping solution for MC scheduling

algorithms?

• Q4. How can we schedule tasks for partitioned multiprocessor MC systems in order

to reduce the dropping of LO-tasks?

69

We present a new MC scheduling framework, called MC-ADAPT, that makes online adaptive

task dropping decisions according to dynamic system states under task-level mode switch. In

particular, to address Q1, we develop a run-time schedulability analysis capable of capturing

dynamic system states, which serves as a basis for online task dropping decisions. Our run-

time analysis is efficient in the sense that it is sufficient to consider only the current system

state without tracking the previous history of all system state changes when deciding which

tasks to drop.

To address Q2, we design a new scheduling algorithm, called EDF-AD, by extending EDF-

VD to support adaptive task dropping under task-level mode switch. EDF-AD utilizes the

proposed run-time schedulability analysis to find a minimal set of LO-tasks to be dropped,

so as to secure the additional resources requested by a mode-switching task at the current

system state. We found that a straightforward extension of EDF-VD yields a counter-

intuitive result – the extension with task-level mode switch would not dominate EDF-

VD with system-level mode switch, while task-level mode switch is a generalization of

system-level mode switch by definition. To handle this issue, we develop another scheduling

algorithm, called EDF-AD-E, and its MC schedulability analysis that strictly dominates

EDF-VD. EDF-AD-E identifies a subset of tasks triggering the scheduling anomaly and

isolates them from other tasks.

To address Q3, we propose the speedup factor for task dropping. Although the conventional

speedup factor for the MC scheduling problem is effective to evaluate MC scheduling algo-

rithms under system-level mode switch, it cannot be used to evaluate the quality of task

dropping under task-level mode switch. We apply the speedup factor for a different MC

scheduling problem, called the task dropping problem, extending the MC scheduling problem

into the optimization problem of task dropping under task-level mode switch. We derive

that the speedup factor of MC-ADAPT for the task dropping problem is 1+
√
5

2 (≈ 1.618).

This implies that the MC-ADAPT can behave the same as the optimal scheduling frame-

work with optimal task dropping if the processor is speeded up by a factor of 1.618. To the

70

best of our knowledge, this is the first work that quantifies task dropping performance of

MC scheduling algorithm with the processor speedup factor [36]. In addition, we evaluate

MC-ADAPT via simulation in terms of schedulability and resource utilization.

To address Q4, we adopt a semi-partitioned approach (allowing the migration of tasks in

the limited cases), which is a variant of partitioned scheduling approaches. The existing

partitioned MC scheduling approaches have focused on partition algorithms, whose perfor-

mance is evaluated by the number of required processors. We will focus on the performance

of LO-tasks, which is orthogonal to the existing work. A challenge is how to reduce the

dropping of LO-tasks under semi-partitioned multiprocessor platforms. We propose to mi-

grate LO-tasks that the scheduler decides to drop at mode-switch if there is an available

processor.

In summary, we makes the following contributions in this chapter:

• We present the uniprocessor U-MC-ADAPT framework supporting online adaptive task

dropping under task-level mode switch (Chapters 5.2, 5.3, and 5.4).

- We propose new scheduling algorithms, called EDF-AD and EDF-AD-E, that drop

a minimal set of LO-tasks based on run-time schedulability analysis (Chapters 5.2 and

5.3).

- We propose the speedup factor for the task dropping problem and derive that the

speedup factor of EDF-AD-E for the task dropping problem is 1.618 (Chapters 5.4).

• Based on U-MC-ADAPT, we propose a partitioned multiprocessor scheduling frame-

work for MC-ADAPT (Chapter 5.5).

- We develop the MC-ADAPT migration algorithm which moves the to-be-dropped

LO-tasks into another processor at runtime mode switch instant in order to reduce

the dropping of LO-tasks.

• Our simulation shows the effectiveness of our framework in terms of schedulability and

71

resource utilization under uniprocessor and multiprocessor platforms (Chapter 5.6).

5.2. The U-MC-ADAPT Framework on Uniprocessor Platforms

In this section, we present the U-MC-ADAPT framework that supports adaptive task drop-

ping under task-level mode switch.

5.2.1. The Overview of the U-MC-ADAPT Framework

We introduce the U-MC-ADAPT scheduling framework that seeks to drop as few LO-tasks as

possible under the MC-schedulability. The key features of U-MC-ADAPT include task-level

mode switch and adaptive LO-task dropping. To enable such features and leverage them for

achieving our goal raises several issues to address. We first need to design a new scheduling

algorithm that supports task-level mode switch effectively. It is desirable to generalize or

dominate the similar ones based on system-level mode switch. We then need to develop a

method of task dropping that finds a minimal set of LO-tasks to drop while securing the

additional resources requested by a mode-transiting task. This requires to analyze run-time

variation on the resource demand of HI-tasks under task-level mode switch. When a task

exhibits HI-behavior, the amount of additional resource demand for all HI-tasks to meet

their deadlines can vary depending on a different runtime system state, i.e., a different

combination of tasks in HI-mode, LO-mode, active state, and dropped state. This requires

to calculate such resource demand precisely based on a runtime system state and determine

which LO-tasks to be dropped so as to guarantee the required resources as well as minimize

the number of dropped tasks at runtime in an efficient manner.

To develop the U-MC-ADAPT framework, we design a scheduling algorithm (Chapter 5.2.2)

and its online analysis (Chapter 5.2.3) and its offline analysis (Chapter 5.2.4) building upon

the principle of EDF-VD (Chapter 2.4.3). By identifying and analyzing the schedulability

loss from EDF-VD, we enhance the scheduling algorithm to become a generalization of

EDF-VD (Chapter 5.3).

72

5.2.2. The EDF-AD Scheduling Algorithm

To minimize the dropping of LO-tasks, we propose the EDF-AD (EDF-Adaptive task Dropping)

algorithm, which consists of a resource-efficient MC scheduling algorithm and task drop-

ping algorithm to choose a minimal set of LO-tasks for additional resource requested by a

mode-switching task.

Runtime Scheduling Policy. To guarantee the schedulability of HI-tasks after mode

switch, we apply VDs to HI-tasks in their LO-mode. EDF-AD adopts the same VD as-

signment2 as EDF-VD, but changes the priorities of tasks according to task level mode

switch. EDF-AD schedules the job with the earliest effective deadline and operates under

the following rules:

• Schedule LO-tasks with their real deadlines.

• For each HI-task τi, schedule the task with its VD in its LO-mode (Mi = LO) and

with its real deadline otherwise.

• At the mode switch of a HI-task τi, set Mi := HI and drop LO-tasks3 by the EDF-AD

task dropping algorithm.

If the task mode of a HI-task is changed to HI at the mode switch, the relative deadline of

the task is postponed from its VD to its real deadline.

Task Dropping Algorithm. To drop as few LO-tasks as possible at mode switch, we

need to know how many resources are required to satisfy MC-schedulability. To do it, we

develop an online schedulability test and drop LO-tasks by the test.

To construct such a test, we introduce system state that captures the dynamic system

2The VD coefficient is derived from the schedulability analysis for the initial system state (all HI-tasks
are in LO-mode and all LO-tasks are active), which is identical for both EDF-VD and EDF-AD.

3If a task is dropped by the scheduler, then the currently-released job of the task is immediately stopped
(not guaranteed to meet its deadline) and no further job of the task is released. If a task is active (not
dropped), all jobs released by the task meet their deadlines.

73

behavior at mode switch, including the task mode (execution state) of each task.

Definition 5.1 (System state). For a given task set τ , a system state S is defined as four

tuple of disjoint sets: S = (τH1, τH2, τL1, τL2) where

• τH1 : the LO-mode HI-task set (τH1 = {τi ∈ τH |Mi = LO}),

• τH2: the HI-mode HI-task set (including the mode switching task) (τH2 = τH \ τH1),

• τL1: the active LO-task set, and

• τL2: the dropped LO-task set (including the dropping LO-tasks at mode switch) (τL2 =

τL \ τL1).

The initial system state is S0 = (τH , ∅, τL, ∅).

We present the EDF-AD task dropping algorithm as follows:

• Before system start, sort LO-tasks in decreasing order of their task utilization.

• Drop the LO-task with the highest utilization among the active LO-task set (τL1)

until the dropped LO-task set (τL2) satisfies the online schedulability test (Eq. (5.1)).

This algorithm minimizes the number of the dropping tasks during the entire running

time, which is optimal with respect to the online schedulability test.

We present the online schedulability test to determine which LO-tasks should be dropped

at mode-switch:

ULL2 ≥
ULL1 + ULH1/x+ UHH2 + ULL − 1

1− x
. (5.1)

Its correctness is presented in Section 5.2.3.

The runtime complexity of U-MC-ADAPT is O(n), a linear complexity. The task dropping

algorithm takes O(n): identifying resource deficiency takes O(n) and selecting the drop

candidates of LO-tasks (sorting LO-tasks is done offline) takes O(n). The required memory

74

space for the system state is at most n bits to store criticality-modes of HI-tasks.

5.2.3. Online Schedulability Analysis

We analyze online schedulability at a specific mode switch, which means whether a given

task set is schedulable by EDF-AD when the system state at mode switch is given. Let Sk

be the system state after k-th mode switch (k ≥ 1). To find the collective resource demand

on a given interval, we compute the resource demand of each task depending on its task

mode (execution state).

We consider online schedulability on two different kinds of system states: the initial system

state (S0) and the system state (Sk) that is switched from any feasible system state (Sk−1).

Since S0 is the same as system LO-mode in EDF-VD, we can reuse the result of EDF-VD

for online schedulability on S0.

Lemma 5.1. A task set τ is schedulable by EDF-AD on S0 if

ULL +
ULH
x
≤ 1. (5.2)

Proof. It is immediate from Lemma 2.4.

Next, consider online schedulability on Sk.

Theorem 5.1. Consider a task set τ . Assume that the task set is schedulable with Sk−1.

Let Sk be the system state transited from Sk−1. Then, τ is schedulable by EDF-AD on Sk if

ULL1 +
ULH1

x
+ xULL2 + UHH2 ≤ 1. (5.3)

�

We can derive the online schedulability test (Eq. (5.1)) from Theorem 5.1. Eq. (5.3) is

75

rewritten to

(ULL − ULL2) +
ULH1

x
+ xULL2 + UHH2 ≤ 1 (∵ ULL = ULL1 + ULL2)

⇔ ULL +
ULH1

x
+ UHH2 − 1 ≤ ULL2 − xULL2,

which is Eq. (5.1).

Now, we present the proof strategy for Theorem 5.1 and present auxiliary lemmas for the

proof. We prove it by contradiction. Suppose that a deadline is missed. Let I denote a

minimal4 instance of jobs released by τ on which a deadline is missed by EDF-AD. Without

loss of generality, we assume that the first job in I is released at time 0 and the deadline

miss occurs at time t1
5. For task τi and any time t, let DEMi(t) be an upper bound of the

demand6 of task τi over time interval [0, t) in I. Let DEM(t) be the sum of DEMi(t) of all

the tasks in τ . Since a deadline is missed at t1, we have DEM(t1) > t1. We will show that

our calculation of DEM(t1) is no greater than t1, which leads to a contradiction.

To find DEM(t1), we consider individual task demand over [0, t1). The following lemma

bounds the demand for a HI-task in LO-mode and the demand of a LO-task in the active

state.

Lemma 5.2. Consider any time t. (a) For a HI-task in LO-mode (τi ∈ τH1), DEMi(t) =

(uLi /x)t, and (b) for a LO-task in the active state (τi ∈ τL1), DEMi(t) = uLi · t.

Proof. (a) The task demand over [0, t) is smaller than or equal to CLi · t/(xTi). Thus,

DEMi(t) = (uLi /x)t.

(b) The task demand over [0, t) is smaller than or equal to CLi · t/Ti. Thus, DEMi(t1) =

uLi · t1.
4Since I is minimal, EDF-AD can schedule any proper subset of I.
5All jobs in I are necessary to construct the deadline miss. Otherwise, the unnecessary job can be removed

from I, which contradicts the minimality of I.
6The demand of a task for a time interval indicates the worst-case resource demand to meet deadlines of

jobs released by the tasks for the time interval [14].

76

For the demand for a HI-task in HI-mode and a LO-task in the dropped state, we utilize a

characteristic of the jobs that are included in DEM(t1).

Lemma 5.3 (from [4]). Consider the minimal instance I. All jobs that execute in [0, t1)

have deadline ≤ t1.

Based on Lemma 5.3, we bound the demand of a HI-task in HI-mode. For a HI-task τi, let

J∗i be the mode-switching job of τi in I and a∗i be the release time of J∗i .

Lemma 5.4. If HI-task τi is mode switched (τi ∈ τH2), then

DEMi(t1) =

(uLi /x)t1 if t1 < a∗i + xTi,

uLi · a∗i + uHi (t1 − a∗i) otherwise.

Proof. At mode switch of τi, the deadline of J∗i is changed from a∗i +xTi to a∗i +Ti and the

execution requirement is changed from CLi to CHi . By Lemma 5.3, the changed demand is

not considered when t1 < a∗i + Ti. The task demand over [0, t1) is different depending on

whether time t1 is before the VD of J∗i or not.

Case (t1 < a∗i + xTi). Since t1 < a∗i + xTi ≤ a∗i + Ti, the task demand is the same as

Lemma 5.2a.

Case (t1 ≥ a∗i + xTi). We calculate the task demand of jobs before time a∗i and the task

demand after time a∗i . Since jobs before time a∗i execute for LO-WCET (CLi), the task

demand of jobs before a∗i is CLi · a∗i /Ti. Since job J∗i and its successive jobs execute HI-

WCET (CHi), the task demand of jobs after time a∗i is CHi (t1 − a∗i)/Ti. Then, DEMi(t1) =

CLi · a∗i /Ti + CHi (t1 − a∗i)/Ti.

The following lemma bounds the demand of a LO-task in the dropped state.

Lemma 5.5. Let τq be the last (k-th) mode-switched task in I on Sk. If LO-task τi is

77

dropped (τi ∈ τL2), then

DEMi(t1) =

uLi · t1 if t1 < a∗q + xTq,

uLi (a∗q + xTq) otherwise.

Proof. Since τq is the last mode-switched task, τi is dropped before or at the mode switch

of J∗q . The mode switch of J∗q happens before or at its VD (a∗q + xTq). The task demand of

τi over [0, t1) is different depending on whether time t1 is before the VD of J∗q or not.

Case (t1 < a∗q + xTq). In the worst case, the mode switch happens at the VD of J∗q . Then,

the upper bound of the demand is the same as Lemma 5.2b.

Case (t1 ≥ a∗q + xTq). No job of the task executes after the mode switch of J∗q . To execute

before the mode switch, jobs must have a deadline no greater than the VD of J∗q . Then,

DEMi(t1) = CLi (a∗q + xTq)/Ti.

We consider the task demand on Sk based on the task demand on Sk−1. We know that

Sk−1 is a feasible system state and Sk is the transited state from Sk−1 by the mode switch

of HI-task τq. Let DEMk
i (t) be the demand of task τi over [0, t) on the system state Sk. We

compute DEMk
i (t1) based on DEMk−1

i (t1) for task τi depending on whether time t1 is before

the VD of J∗q or not (Lemmas 5.6 and 5.7).

Lemma 5.6. If t1 < a∗q + xTq, then DEMk
i (t1) = DEMk−1

i (t1).

Proof. Task τq belongs to τH2 when the system state is Sk and belongs to τH1 when the

system state is Sk−1. Since τq ∈ τH2 on Sk, we have DEMk
i (t1) = (uLi /x)t1 by Lemma 5.4.

Since τq ∈ τH1 on Sk−1, we have DEMk−1
i (t1) = (uLi /x)t1 by Lemma 5.2a.

Consider task τi that is dropped by τq. The task belongs to τL2 when the system state

is Sk and belongs to τL1 when the system state is Sk−1. Since τi ∈ τL2 on Sk, we have

DEMk
i (t1) = uLi · t1 by Lemma 5.5. Since τq ∈ τL1 on Sk−1, we have DEMk−1

i (t1) = uLi · t1

by Lemma 5.2b. Consider task τi ∈ τ that is not tq and not dropped by τq. Since its task

78

mode (execution state) is not changed from Sk−1 to Sk, we have DEMk
i (t) = DEMk−1

i (t) for

any t.

Lemma 5.7. If t1 ≥ a∗q + xTq, then

DEMk
i (t1) ≤ DEMk−1

i (a∗q)+(t1 − a∗q)

uLi /x if τi ∈ τH1,

uLi if τi ∈ τL1,

uHi if τi ∈ τH2,

x · uLi if τi ∈ τL2.

Proof. For τi ∈ τH1, we have DEMk
i (t1) = DEMk−1

i (a∗q) + (t1−a∗q)uLi /x by Lemma 5.2a. For

τi ∈ τL1, we have DEMk
i (t1) = DEMk−1

i (a∗q) + (t1 − a∗q)uLi by Lemma 5.2b.

Consider τi ∈ τH2. If a∗i ≤ a∗q , we have DEMk
i (t1) = DEMk−1

i (a∗q)+(t−a∗q)uHi by Lemma 5.4.

Otherwise, we have

DEMk
i (t1) =DEMk−1

i (a∗q) + (a∗i − a∗q)uLi + (t1 − a∗i)uHi

(by Lemma 5.4)

≤DEMk−1
i (a∗q) + (t1 − a∗q)uHi .

Consider τi ∈ τL2. By Lemma 5.3, the deadline of J∗q is no greater than t1: a
∗
q + Tq ≤ t1.

By Lemma 5.5, we have

DEMk
i (t1) =(a∗q + xTq)u

L
i

≤DEMk−1
i (a∗q) + x(t1 − a∗q)uLi (∵ Tq ≤ t1 − a∗q).

Based on the relation between the demand on Sk and the demand on Sk−1, we now prove

79

Theorem 5.1.

Proof of Theorem 5.1. We summarize the proof strategy stated before. Let DEMk(t) be

the sum of DEMk
i (t) of all the tasks in τ . Since Sk−1 is a feasible system state, we have

DEMk−1(t) ≤ t for any t. By proof by contradiction, we assume a deadline misses in

I. Then, we have DEMk(t1) > t1. To lead to a contradiction, we only need to show that

DEMk(t1) ≤ t1. Let τq be the last mode-switched task in I. DEMk(t1) is different depending

on whether t1 is before the VD of J∗q or not.

Case 1 (t1 < a∗q + xTq). We calculate DEMk(t1):

DEMk(t1) =
∑
τi∈τ

DEMk
i (t1)

=
∑
τi∈τ

DEMk−1
i (t1) (by Lemma 5.6)

= DEMk−1(t1),

which is smaller than or equal to 1 by the assumption on DEMk−1.

Case 2 (t1 ≥ a∗q + xTq). We calculate DEMk(t1):

DEMk(t1) =
∑
τi∈τ

DEMk
i (t1)

≤
∑
τi∈τ

DEMk−1
i (a∗q) + (t1 − a∗q)(ULL1 +

ULH1

x

+ xULL2 + UHH2) (by Lemma 5.7)

≤ DEMk−1(a∗q) + (t1 − a∗q) (Eq. (5.3) with Sk)

≤ a∗q + (t1 − a∗q) (by the assumption on DEMk−1)

= t1.

From Cases 1 and 2, we showed that DEMk(t1) ≤ t1.

80

Task χi uLi uHi
τ1 HI 0.10 0.35
τ2 HI 0.20 0.30
τ3 LO 0.18 N/A
τ4 LO 0.12 N/A
τ5 LO 0.10 N/A

Table 5: The Parameters of an Example Task Set

5.2.4. Offline Schedulability Analysis

We looked at online schedulability analysis at a mode switch. However, we do not yet know

whether a task set is schedulable by EDF-AD under any sequences of mode switches, which

is offline schedulability. To know it, we need to check whether EDF-AD can schedule the task

set on any system state satisfying MC-schedulability (Condition A and B in Chapter 2.2),

based on the online schedulability analysis (Lemma 5.1 and Theorem 5.1).

Theorem 5.2. A task set τ is MC-schedulable by EDF-AD if

ULL +
ULH
x
≤ 1, (5.4)

xULL +
∑
τi∈τH

max(
uLi
x
, uHi) ≤ 1. (5.5)

Proof. To show that τ is MC-schedulable, we need to satisfy both Conditions A and B.

Since Eq. (5.4) holds, by Lemma 5.1, τ is schedulable on S0, which satisfies Condition B.

For Condition A, by Theorem 5.1, we show that Eq. (5.3) holds with any τH2 6= ∅: since

each HI-task is either LO-mode or HI-mode, and all LO-tasks may be dropped in the worst

case,

xULL +
∑
τi∈τH

max(
uLi
x
, uHi) ≤ 1,

which holds from Eq. (5.5).

We show an example task set schedulable by EDF-AD.

81

Example 5.1. Consider the example task set in Table 5. According to the VD assignment,

we have x = 0.3/(1− 0.4) = 0.5. We show that Eqs. (5.4) and (5.5) hold: 0.4 + 0.3/0.5 = 1

and 0.5 ∗ 0.4 + max(0.1/0.5, 0.35) + max(0.2/0.5, 0.30) = 0.2 + 0.35 + 0.4 = 0.95 ≤ 1. Then,

the task set is MC-schedulable by Theorem 5.2.

5.3. An Enhanced U-MC-ADAPT Framework on Uniprocessor Platforms

A straightforward extension of EDF-VD, which is EDF-AD, yields a counter-intuitive result

that it does not dominate EDF-VD in schedulability. In Chapter 5.3.1, we find the char-

acteristics of the subset of tasks that cause the schedulability loss. In Chapter 5.3.2, we

present a new scheduling algorithm that isolates them from the other tasks.

5.3.1. The Schedulability Loss of EDF-AD

Let’s look at an example schedulable by EDF-VD but not by EDF-AD.

Example 5.2. We modify the task set in Table 5 by changing uH1 of τ1 to 0.45. Since ULL

and ULH are not changed, x will not be changed. The task set is schedulable by EDF-VD

because Lemmas 2.4 and 2.5 hold: 0.4+0.3/0.5 = 1 and 0.5·0.4+0.75 = 0.95 ≤ 1. However,

the task set is not schedulable by EDF-AD because Eq. (5.5) in Theorem 5.2 does not hold:

0.5 · 0.4 + max(0.1/0.5, 0.45) + max(0.2/0.5, 0.30) = 1.05 > 1.

We investigate which difference between EDF-VD and EDF-AD causes the schedulability

loss. When checking Condition B in MC-schedulability, both EDF-VD and EDF-AD consider

the initial system state S0. Thus, the loss is related to check Condition A. We define the

critical task mode as the combination of task modes for HI-tasks where the collective resource

demand of HI-tasks is maximized. While the critical task mode for EDF-VD is system HI-

mode (among system HI-mode and system LO-mode), the one for EDF-AD is not system

HI-mode (all HI-tasks are in HI-mode). Since a HI-task executes with its VD in LO-mode,

there may exist a HI-tasks whose resource utilization in LO-mode (CLi /Vi) is higher than the

one in HI-mode (CHi /Ti). Thus, the critical task mode is the combination of the task mode

of each HI-task where its resource utilization is maximized. However, EDF-VD adopting

82

the system-level mode switch (from system LO-mode to system HI-mode) is irrelevant to

the critical task mode of EDF-AD.

We investigate why some HI-task has higher resource utilization in LO-mode. All HI-tasks

execute with their VD (Vi = xTi) in their LO-mode and the VD coefficient is derived

from the collective utilization of the task set such that ULH/x ≤ UHH . However, the VD

assignment may not be the best choice for an individual task, specially for the HI-task

that has relatively small difference between HI-WCET and LO-WCET. Then, the task has

uLi /x > uHi . From the understanding of the schedulability loss, we will present a resolution

in the next subsection.

5.3.2. The EDF-AD-E Scheduling Algorithm

Since a fully-independent task-level mode switch may produce the schedulability loss, we

apply a limited mode switch not to sacrifice schedulability. We propose another scheduling

algorithm, called EDF-AD-E.

Scheduling Algorithm. We formally define the subset of HI-tasks that produces the

schedulability loss.

Definition 5.2. HI-mode-preferred tasks (τF) are defined as a set of HI-tasks s.t. CLi /Vi >

CHi /Ti: τF = {τi ∈ τH | uLi /x > uHi }

The schedulability loss may happen when HI-mode-preferred tasks remain in LO-mode

and the other tasks have mode-switched. In addition, since a HI-mode-preferred task has

resource utilization in HI-mode lower than the one in LO-mode, it is better for the task

to execute in HI-mode from system start. We now present the EDF-AD-E (Enhanced)

algorithm as follows:

• The VD of each HI-task τi is assigned by Vi = xTi where x = min(1, (1− UHH)/ULL).

• For HI-mode-preferred tasks, execute them in HI-mode from system start.

• All the other runtime scheduling policies (including the task dropping algorithm) are

83

the same as EDF-AD.

We cannot use the VD coefficient in EDF-AD because the offline schedulability of EDF-

AD-E is different from EDF-AD. We compute the VD coefficient from EDF-AD-E offline

schedulability (Theorem 5.4). The initial system state of EDF-AD-E is different from EDF-

AD: S0 = (τH \ τF , τF , τL, ∅).

Online Schedulability Analysis. Since the EDF-AD-E scheduling algorithm is modified

from EDF-AD, we need to check whether online schedulability analysis of EDF-AD is also ap-

plicable to EDF-AD-E. Since S0 is different from EDF-AD, we re-derive online schedulability

on S0.

Lemma 5.8. A task set τ is schedulable by EDF-AD-E on S0 if

ULL +
∑
τi∈τH

min(
uLi
x
, uHi) ≤ 1. (5.6)

Proof. On S0, we have τH1 = τH \ τF , τH2 = τF and τL1 = τL. Since the demand of task

τi ∈ τF over [0, t) is no greater than CHi · t/Ti, we have

τi ∈ τF ,DEMi(t) = uHi · t. (5.7)

84

We show that the demand over [0, t) is no greater than t:

DEM(t1)

=
∑

τi∈τH\τF

DEMi(t) +
∑
τi∈τL

DEMi(t) +
∑
τi∈τF

DEMi(t)

= (
∑

τi∈τH\τF

uLi /x+
∑
τi∈τL1

uLi)t+
∑
τi∈τF

DEMi(t)

(by Lemma 5.2)

= (
∑

τi∈τH\τF

uLi /x+ ULL)t+
∑
τi∈τF

uHi · t (by Eq. (5.7))

= (ULL +
∑

τi∈τH\τF

uLi /x+
∑
τi∈τF

uHi)t

≤ 1 · t (by assumption)

Online schedulability on Sk is the same as EDF-AD.

Theorem 5.3. Consider a task set τ . Assume that the task set is schedulable with Sk−1.

Let Sk be the system state that is transited from Sk−1. Then, the task set is schedulable by

EDF-AD-E on Sk if Eq. (5.3) holds.

Proof. The proof is the same as Theorem 5.1.

Offline Schedulability Analysis. The following theorem derives the offline schedulability

of EDF-AD-E.

Theorem 5.4. A task set τ is MC-schedulable by EDF-AD-E if

ULL +
∑
τi∈τH

min(
uLi
x
, uHi) ≤ 1, (5.8)

xULL + UHH ≤ 1. (5.9)

85

Proof. To show that τ is MC-schedulable, we need to satisfy both Conditions A and B in

MC-schedulability. Since Eq. (5.8) holds, by Lemma 5.8, τ is schedulable on S0, which

satisfies Condition B. For Condition A, by Theorem 5.3, we show that Eq. (5.3) holds with

any τH2 6= ∅: since each HI-task except HI-mode-preferred tasks is LO-mode or HI-mode,

and all LO-tasks may be dropped in the worst case,

xULL +
∑

τi∈τH\τF

max(
uLi
x
, uHi) +

∑
τi∈τF

uHi ≤ 1

⇔ xULL +
∑

τi∈τH\τF

uHi + UHF ≤ 1 (by Def. 5.2)

⇔ xULL + UHH − UHF + UHF ≤ 1,

which holds from Eq. (5.9).

Properties. EDF-AD-E strictly dominates EDF-VD in terms of MC-schedulability (Lemma 5.9

and Example 5.3).

Lemma 5.9. If any task set is MC-schedulable by EDF-VD, the task set is also MC-

schedulable by EDF-AD-E.

Proof. Since the task set is MC-schedulable by EDF-VD, by Lemmas 2.4 and 2.5, Eqs. (2.1)

and (2.2) hold. If Eqs. (5.8) and (5.9) holds, by Theorem 5.4, the task set is also MC-

schedulable by EDF-AD-E. Eq. (5.8) holds: ULL +
∑

τi∈τH min(
uLi
x , u

H
i) ≤ ULL +

ULH
x ≤ 1 from

Eq. (2.1). Eq. (5.9) holds from Eq. (2.2).

Example 5.3. We modify the task set in Table 5 by changing uH1 of τ1 to 0.55. We

will schedule the task set by EDF-VD. Since ULL and ULH are not changed, x will not be

changed. The task set is not schedulable by EDF-VD because Eq. (2.2) in Lemma 2.5 does

not hold: 0.5 ∗ 0.4 + 0.85 = 1.05 > 1. We will schedule the task set by EDF-AD-E. By

the VD assignment, we have x = (1 − 0.85)/0.4 = 0.375. Task τ2 is a HI-mode-preferred

task because uLi /x = 0.2/0.375 = 0.53 > uHi = 0.30. We show that Eqs. (5.8) and (5.9)

86

hold: 0.4 + 0.1/0.375 + 0.3 = 0.96 ≤ 1 and 0.375 ∗ 0.4 + 0.85 = 1. Then, the task set is

MC-schedulable by Theorem 5.4,

5.4. The Speedup Factor

In this section, we quantify the effectiveness of EDF-AD-E based on the metric of processor

speedup factor [36]. The speedup factor (α ∈ R s.t. α ≥ 1) is a reliable performance metric

for comparing the worst-case behavior of different algorithms for solving the same problem.

The smaller speedup factor of an algorithm indicates that the behavior of the algorithm

is closer to that of the optimal algorithm. Previously, the speedup factor for the MC

scheduling problem is effective to evaluate MC scheduling algorithms (e.g., [4]). However,

it only evaluates MC-schedulability, and cannot evaluate the quality of task dropping. So,

we propose the speedup factor for the task dropping problem which extends the existing

MC scheduling problem with the runtime performance of LO-tasks. First, we define the

task dropping problem.

Problem 5.1 (The task dropping problem). For a given feasible MC task set τ , a subset

of HI-tasks (τR ∈ τ), and scheduling algorithm A, the task dropping problem is: if tasks in

τR mode-switch on runtime, how many LO-tasks are required to be dropped for scheduling

τ by scheduling algorithm A?

Now, we define the speedup factor of scheduling algorithm A for the task dropping problem

Definition 5.3. Let OPT be the optimal clairvoyant scheduling algorithm with optimal task

dropping7. The speedup factor of A for task drop is defined as the smallest real number

α (≥ 1) such that the number of LO-tasks required to be dropped to schedule any given task

set τ under any given mode switch sequence (specified by τR ∈ τ) by OPT on a speed-1

processor is the same as the one to schedule τ under the mode switch sequence by A on a

speed-α processor.

7In MC systems, a clairvoyant scheme is the one that knows the time instant of mode switch before
runtime scheduling.

87

The speedup factor for the MC scheduling problem evaluates scheduling algorithms in terms

of MC-schedulability. Similarly, the speedup factor for the task dropping problem evaluates

scheduling algorithms in terms of the number of the required task dropping under any

possible scheduling scenarios. Although the existing work cannot provide any performance

guarantee on LO-tasks via the speedup factor, we propose the first work to evaluate how

many LO-tasks can be scheduled after mode switch via the speedup factor.

Next, we evaluate EDF-AD-E via the proposed metric.

Theorem 5.5. EDF-AD-E has a speedup factor of 1+
√
5

2 for task drop.

To prove Theorem 5.5, we present an auxiliary lemma.

Lemma 5.10. Consider a task set τ and a subset of HI-tasks τR ∈ τ . Consider a scheduling

scenario that tasks in τR mode-switches on runtime. EDF-AD-E can schedule τ under the

scenario by dropping a subset of LO-tasks τG ∈ τ if

ULL +
ULH
x
≤ 1, (5.10)

ULL1 +
ULH1

x
+ xULL2 + UHH2 ≤ 1 (5.11)

where τH2 = τR and τL2 = τG.

Proof. We need to show that τ is schedulable on S0 and any legitimate Sk considering τR

and τG. For schedulability on S0, by Lemma 5.8, we need to satisfy Eq. (5.6):

ULL +
∑
τi∈τH

min(
uLi
x
, uHi) ≤ 1,

which holds by
∑

τi∈τH min(
uLi
x , u

H
i) ≤ ULH and Eq. (5.10).

Consider any legitimate Sk considering τR and τG. Since each task in τR is either HI-mode

or LO-mode, τH2 in Sk is any subset of τR. In Sk, we set τL2 := τG because any LO-task in

τG may be dropped. To show that the task set is schedulable with Sk, by Theorem 5.3, we

88

need to satisfy Eq. (5.3):

ULL1 + xULL2 +
∑

τi∈τH1\τF

uLi
x

+
∑

τi∈τH2\τF

max(
uLi
x
, uHi)

+
∑
τi∈τF

uHi ≤ 1

⇔ ULL1 + xULL2 +
∑

τi∈τH1

min(
uLi
x
, uHi) + UHH2 ≤ 1,

which holds by
∑

τi∈τH1
min(

uLi
x , u

H
i) ≤ UHH1 and Eq. (5.11).

Proof of Theorem 5.5. Consider a task set τ . Consider a scheduling scenario that tasks in

a set of HI-tasks τR ∈ τ mode-switch on runtime. We will prove that if τ is schedulable

under the scenario by the optimal clairvoyant scheduling algorithm with dropping a set

of LO-tasks τG ∈ τ on a speed-1 processor, τ is also schedulable under the scenario by

EDF-AD-E with dropping τG on a speed-1+
√
5

2 processor.

Let τH1 := τH \ τR, τH2 := τR, τL1 := τL \ τG, and τL2 := τG. Let b denote an upper

bound on the utilization of τ on the initial state and the minimum utilization of τ on the

worst-case task modes of HI-tasks:

max(ULL + ULH , U
L
L1 + ULH1 + UHH2) ≤ b. (5.12)

To show that the task set is schedulable, by Lemma 5.10, it is required that Eqs. (5.10) and

(5.11) hold. Suppose that there exists α s.t. 1/x ≤ α and 1 + x ≤ α for some x ∈ R s.t.

0 < x ≤ 1. We show that Eq. (5.10) holds:

ULL +
ULH
x
≤ ULL + αULH

≤ α(ULL + ULH),

which is smaller than or equal to 1 if ULL + ULH ≤ 1/α.

89

We show that Eq. (5.11) holds. We divide cases depending on whether UHH2 − ULH2 ≤ ULL2

or not. When UHH2 − ULH2 ≤ ULL2, we show that Eq. (5.11) holds:

ULL1 +
ULH1

x
+ xULL2 + UHH2

≤ ULL1 + αULH1 + (1 + x)ULL2 + ULH2

≤ α(ULL + ULH),

which is smaller than or equal to 1 if ULL + ULH ≤ 1/α. When ULL2 < UHH2 − ULH2, we show

that Eq. (5.11) holds:

ULL1 +
ULH1

x
+ xULL2 + UHH2

≤ ULL1 + αULH1 + ULH2 + (1 + x)(UHH2 − ULH2)

≤ α(ULL1 + ULH1 + UHH2),

which is smaller than or equal to 1 if ULL1 + ULH1 + UHH2 ≤ 1/α. In sum, Eqs. (5.10) and

(5.11) hold if b ≤ 1/α.

We need to find the range of α. To do it, we show the existence of x satisfying both of

1/α ≤ x and x ≤ α− 1:

1/α ≤ α− 1 ⇔ α2 − α− 1 ≥ 0,

which is always true if α ≥ 1+
√
5

2 .

5.5. The Extension with Partitioned Multiprocessor Scheduling

To extend the uniprocessor U-MC-ADAPT scheduling framework into partitioned multipro-

cessor platforms, we propose an MC-ADAPT scheduling framework. In the framework, we

present a partition algorithm reflecting the characteristics of U-MC-ADAPT (Chapter 5.5.1).

Then, we present a new semi-partitioned scheduling approach (allowing the migration of

90

LO-tasks) which further reduces the dropping of LO-tasks at runtime (Chapter 5.5.2).

5.5.1. The MC-ADAPT Partition Algorithm

To schedule tasks on partitioned multiprocessor platforms, we need partition algorithms

that partition tasks into processors. In existing work, many partition algorithms have

been proposed for multiprocessor MC systems [11, 28, 46]. Baruah et al. [11] proposed a

First-Fit (FF) partition algorithm based on the EDF-VD scheduling algorithm [4]. The

Worst-Fit (WF) partition algorithms are adopted for individual VD tuning [28] based on

the EY scheduling algorithm [25], and for load balance across the processors based on its

own scheduling algorithm [46]. Since our EDF-AD-E is an extension of EDF-VD, we follow

the similar approaches to Baruah et al. [11]. This is our partition algorithm based on the

FF partition policy.

The Partition Algorithm for MC-ADAPT. We partition tasks into m processors as

follows:

• Sort tasks in a decreasing order of criticality-dependent task utilization (uHi if χi = HI

and uLi otherwise).

• Allocate each task to processors by the FF partition policy based on the offline schedu-

lability of EDF-AD-E (Theorem 5.4 in Chapter 5.3.2).

• If every processor is MC-schedulable, then partitioning is successful. Otherwise, the

system is not MC-schedulable under the MC-ADAPT framework with m processors.

After partitioning, we have a separate workload for each processor. Then, we can apply the

U-MC-ADAPT scheduling framework for each processor.

5.5.2. The MC-ADAPT Migration Algorithm

By adopting semi-partitioned approaches (allowing task migration to another processor), we

can further reduce the dropping of LO-tasks in partitioned multiprocessor platforms. Our

91

goal is to reduce the number of task dropping via task migration under the MC-ADAPT

scheduling framework. When the scheduler of a processor decides on some LO-tasks to drop,

we can consider to migrate the LO-task to another processor. A challenge is to develop a

migration decision algorithm which does not incur deadline misses of HI-tasks. We need to

analyze runtime slack of each component which can schedule the migrating LO-task, which

is almost the same as the online schedulability of the U-MC-ADAPT (Chapter 5.3.2). In

addition, we need to check whether the original workload of a processor and the migrating

LO-task are schedulable even if there is further mode-switches, which is similar to the

U-MC-ADAPT offline schedulability analysis.

The Offline Analysis for Migration Allowance. Consider the workload of a processor

after applying the partition algorithm. Since we only migrate LO-tasks, the set of HI-

tasks is unchanged during runtime scheduling. We need to analyze how many LO-tasks

of other processors are allowed to migrate into the processor. To do this, we regard the

LO-task set as a flexible set which can be added with new migrating LO-tasks from other

processors. The following theorem presents how many LO-tasks (from other processors) can

be migrated into a processor under EDF-AD-E by utilizing the offline schedulability analysis

of EDF-AD-E (Theorem 5.4 in Chapter 5.3.2).

Theorem 5.6. Consider a task set τ on a processer. Assume that the LO-task set τL′ 6∈ τ is

migrated into the processor at runtime. Then, the revised task set (τ∪τL′) is MC-schedulable

under EDF-AD-E if

ULL′ ≤
(1− UHH)(1− UHF)

1 + ULH − ULF − UHH
− ULL . (5.13)

.

Proof. Let τL# be τL ∪ τL′ . Then, the revised task set τ ∪ τL′ is equivalent to τH ∪ τL#.

To be MC-schedulable under EDF-AD-E, by Theorem 5.4, we need to satisfy Eq. (5.8) and

92

(5.9) with the revised task set (τH ∪ τL′), which is equivalent to:

ULH − ULF
1− UHF − ULL#

≤
1− UHH
ULL#

⇔ ULL#(ULH − ULF) ≤ (1− UHH)(1− UHF − ULL#)

⇔ ULL#(1 + ULH − ULF − UHH) ≤ (1− UHH)(1− UHF)

⇔ ULL# ≤
(1− UHH)(1− UHF)

1 + ULH − ULF − UHH
,

which is Eq. (5.13) because ULL# = ULL + ULL′ .

Since we consider the runtime migration, we need a different assignment of the VD coefficient

than EDF-AD-E that does not consider the migration. The VD coefficient by EDF-AD-E

makes the worst-case utilization after mode switch to be 1. Then, the migration of LO-tasks

into the processor makes the system unschedulable. To handle the migration, we present

a new assignment of the VD coefficient for the runtime migration based on Theorem 5.6,

which is x :=
1−UHH
ULL+ULL∗

where ULL∗ is the largest value of ULL′ satisfying Eq. (5.13).

The MC-ADAPT Online Migration Algorithm. We present the migration algorithm as

shown in Algorithm 5.1. The algorithm is activated when mode-switch in a processor ΦMS

happens and the scheduler of ΦMS decides to drop an LO-task τj . Instead of dropping the

LO-task, we seek another processor Φk that can execute the LO-task without any deadline

miss (Line 1–8). In Line 3, we check whether Φk can schedule its original workload and

the migrated LO-tasks according to Theorem 5.6. If such a Φk exists, we can migrate τj

on ΦMS into Φk (Line 4–6). Since τj may execute partly, we need to consider the executed

time of τj on ΦMS at the future mode-switch on ΦMS. Thus, we do not remove τj from the

task set of ΦMS and just treat τj as the dropped LO-task in the online schedulability test,

although we remove τj from the run-queue of ΦMS after the migration. If such a Φk does

not exist, the algorithm declares that the migration of τj fails and the scheduler drops τj ,

which is the original decision of the uniprocessor EDF-AD-E scheduling algorithm (Line 9).

93

Algorithm 5.1 The MC-ADAPT online migration algorithm

Input: {Wi} (the workload of processors {Φi}), ΦMS (the processor that mode switch
happens at), τj (the LO-task that the scheduler of ΦMS decides to drop at mode-switch
of a HI-task)

Output: {W ′i} (the workload of processors {Φi} after migration)
1: for k := 1 to m do
2: W ′k := Wk ∪ τj
3: if Eq. (5.13) with W ′k holds then
4: ∀Φi s.t. Φi 6= Φk, W

′
i := Wi

5: return {W ′i} . τj can migrate into Φk. τj does not need to be dropped.
6: end if
7: end for
8: return {Wi} . τj cannot migrate. τj needs to be dropped.

5.6. Evaluation

We evaluate MC-ADAPT on uniprocessor platforms (Chapter 5.6.2) and multiprocessor

platforms (Chapter 5.6.3). In the previous section, we looked at the speedup factor of the

EDF-AD-E for the task dropping problem. In this section, we evaluate the effectiveness

of EDF-AD-E in comparison with the existing approaches, via simulation with synthetic

workloads. In addition, we compare EDF-AD and EDF-AD-E with the existing approaches

in terms of MC-schedulability.

5.6.1. Experiment Setup

We generate random task sets according to the workload-generation algorithm [40]. Let U b

be the upper bound of both LO-criticality and HI-criticality utilizations. A random task is

generated as follows (all task parameters are randomly drawn in uniform distribution): for

a task τi,

• Ui (task utilization) is a real number drawn from the range [0.02, 0.2].

• Ti (task period) is an integer drawn from the range [20, 300].

• Ri (the ratio of uHi /u
L
i) is a real number drawn from the range [1, 4].

• Pi (the probability that the task is a HI-task) is a real number from the range [0,1].

94

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Utilization Bound

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

e
p
ta

n
ce

 R
a
ti

o
EDF-AD-E

EDF-VD

EDF-AD

ICG

EDF

Figure 9: MC-schedulability varying utilization bound

If Pi < PHI (default value of PHI is 0.5), set χi := LO and CLi := bUi ·Tic. Otherwise,

set χi := HI, CHi := bUi · Tic, and CLi := bUi · Ti/Ric.

Repeat generating a task in the task set until max(ULH +ULL , U
H
H) > U b. Then, discard the

task added last.

5.6.2. Evaluation on Uniprocessor Platforms

Before presenting simulation results on multiprocessor platforms, we first evaluate U-MC-

ADAPT on uniprocessor platforms in terms of MC-schedulability and the Deadline Miss

Ratio (DMR)8 of LO-tasks.

MC-schedulability. We compare the MC-schedulability of EDF-AD and EDF-AD-E with

the existing MC scheduling algorithms, which are regular EDF, EDF-VD [4], and ICG [33]9.

We mathematically compute the schedulability of the randomly-generated systems via the

schedulability test of each scheduling algorithms.

Fig. 9 shows the acceptance ratio (the ratio of schedulable task sets) over varying utilization

8DMR is the ratio of the number of the unfinished jobs over the total number of jobs released in a given
time interval. We assume that an LO-task in the dropped state releases its job but does not execute.

9The MC-schedulability of the ICG is maximum (because interference to LO-tasks are all constrained)
when the interference constraint graph is fully connected from HI-tasks to LO-tasks.

95

bound U b from 0.55 to 1.0 in increments of 0.05. Each data point is based on 5,000 systems.

The result shows that EDF-AD-E dominates other approaches. Although EDF-AD has a

higher acceptance ratio than regular EDF, we confirmed that EDF-AD has the schedulability

anomaly and has lower MC-schedulability than EDF-VD for all utilization ranges and ICG

for some utilization ranges.

The Deadline Miss Ratio. We compare EDF-AD-E with EDF-VD [4] in terms of the

DMR of LO-tasks. For a given randomly-generated system schedulable by EDF-VD, we

simulate the behavior of tasks with a given probability of mode switch for any HI-task,

denoted as PMS (default value of PMS is 0.4), for 10,000 time units10.

Fig. 10 shows the average DMR with varying utilization bound U b for different probabilities

of mode switch: PMS = 0.1, PMS = 0.4 and PMS = 0.7. For each utilization bound, we

generate 5,000 systems. The result shows that EDF-AD-E significantly outperforms EDF-

VD because the resource-efficient scheduling of EDF-AD-E minimizes the additional resource

request at mode switch and the EDF-AD-E task dropping algorithm selects the minimal set

of LO-tasks for the resource request.

Fig. 11 shows the DMR with fixing U b := 0.8 and varying PHI from 0.5 to 0.95 in increments

of 0.5. For each data point, we generate 5,000 systems. In the simulation result, EDF-VD

shows higher DMR for higher PHI while EDF-AD-E shows little variance for different PHI.

For the simulation where PHI is high (meaning a large number of HI-tasks), at every mode

switch of HI-tasks, EDF-VD drops all LO-tasks while EDF-AD-E drops only the minimal set

of LO-tasks.

Fig. 12 shows DMR varying simulation durations (U b = 0.85 and PMS = 0.4). It shows that

the simulation duration does not affect the simulation results. Due to the return protocol

to LO-mode, the DMR of EDF-VD and EDF-AD-E are converged in a large simulation

duration.

10According to EDF-VD [4], on idle tick, the system is switched back to the initial state (all HI-tasks are
in LO-mode and all LO-tasks are active).

96

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Utilization Bound

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
e
a
d
lin

e
 M

is
s

R
a
ti

o

EDF-AD-E

EDF-VD

(a) PMS = 0.1

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Utilization Bound

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
e
a
d
lin

e
 M

is
s

R
a
ti

o

EDF-AD-E

EDF-VD

(b) PMS = 0.4

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Utilization Bound

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
e
a
d
lin

e
 M

is
s

R
a
ti

o

EDF-AD-E

EDF-VD

(c) PMS = 0.7

Figure 10: The DMR for different PMS

97

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Probability to be a HI-task

0.0

0.2

0.4

0.6

0.8

1.0

D
e
a
d
lin

e
 M

is
s

R
a
ti

o

EDF-AD-E

EDF-VD

Figure 11: The DMR for different PHI

8000 10000 30000 50000 100000
Simulation Duration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
ad

lin
e

M
iss

 R
at

io

EDF-AD-E
EDF-VD

Figure 12: The DMR for Different Simulation Duration

98

5.6.3. Evaluation on Multiprocessor Platforms

To evaluate the effectiveness of our migration algorithm on multiprocessor platforms, we

compare the DMR of BASELINE (the MC-ADAPT scheduling algorithm without the mi-

gration algorithm) and OURS (the MC-ADAPT scheduling algorithm with the migration

algorithm) for randomly-generated systems that are schedulable by MC-ADAPT. We con-

duct the simulation on four processors (m = 4) and eight processors (m = 8). We measure

the DMR of each approach in different loads: light load (U b/m = 0.65), medium load

(U b/m = 0.75), and heavy load (U b/m = 0.85). For each load, we vary the probability of

mode switch (PMS) from 0.0 to 1.0 in increments of 0.1. For each data point, we measure

the DMRs of 5,000 random systems and take their average value. For each task system

that is generated by the random task set generator, we simulate the system for 10,000 time

units11.

Figure 13 is the simulation result on two processors. In the light load (Figure 5.13(a)),

OURS significantly outperforms BASELINE because the migration algorithm can utilize the

large remaining resources on each processor. As the probability of mode-switch increases,

the performance gap increases because OURS can effectively migrate LO-tasks that are

dropped in BASELINE. As load (utilization bound) increases (Figure 5.13(b) and 5.13(c)),

the performance gap between OURS and BASELINE decreases because the remaining pro-

cessor utilization for each processor decreases. Similar trends are also observed in the

simulation result on eight processors (Figure 14).

5.7. Summary

We present the uniprocessor U-MC-ADAPT framework that makes online adaptive task

dropping utilizing the dynamic system state under task-level mode switch. We develop

the EDF-AD-E scheduling algorithm that decides the dropping of LO-tasks via runtime

11On idle tick, the system is switched back to the initial state (all HI-tasks are in LO-mode and all LO-
tasks are active) and the LO-task set for a processor is fixed to the union of the original LO-tasks of the
processor and the migrated LO-tasks.

99

0.2 0.4 0.6 0.8 1.0
The Probability of Mode Switch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
e
a
d
lin

e
 M

is
s

R
a
ti

o

OURS

BASELINE

(a) Light load (Ub/m = 0.65)

0.2 0.4 0.6 0.8 1.0
The Probability of Mode Switch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
e
a
d
lin

e
 M

is
s

R
a
ti

o

OURS

BASELINE

(b) Medium load (Ub/m = 0.75)

0.2 0.4 0.6 0.8 1.0
The Probability of Mode Switch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
e
a
d
lin

e
 M

is
s

R
a
ti

o

OURS

BASELINE

(c) Heavy load (Ub/m = 0.85)

Figure 13: The DMR varying PMS on four processors (m = 4)

100

0.2 0.4 0.6 0.8 1.0
The Probability of Mode Switch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
e
a
d
lin

e
 M

is
s

R
a
ti

o

OURS

BASELINE

(a) Light load (Ub/m = 0.65)

0.2 0.4 0.6 0.8 1.0
The Probability of Mode Switch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
e
a
d
lin

e
 M

is
s

R
a
ti

o

OURS

BASELINE

(b) Medium load (Ub/m = 0.75)

0.2 0.4 0.6 0.8 1.0
The Probability of Mode Switch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
e
a
d
lin

e
 M

is
s

R
a
ti

o

OURS

BASELINE

(c) Heavy load (Ub/m = 0.85)

Figure 14: The DMR varying PMS on eight processors (m = 8)

101

analysis, which captures the dynamic system state efficiently without tracking the previous

history. To evaluate the quality of task dropping, we propose the speedup factor for the task

dropping problem while the speedup factor for the MC scheduling problem only evaluates

MC scheduling algorithms in terms of the worst-case schedulability. We derive that the

speedup factor of EDF-AD-E for the task dropping problem is 1.618.

Based on U-MC-ADAPT, we propose the partitioned multiprocessor scheduling framework

for MC-ADAPT. To further reduce the dropping of LO-tasks with multiprocessor platforms,

we propose the MC-ADAPT migration algorithm which migrates the LO-tasks that should

be dropped.

102

CHAPTER 6 : Conclusion and Future Work

This dissertation studied resource-efficient scheduling techniques on multiprocessor MC sys-

tems. First, we want to know whether the optimality result in uniprocessor MC scheduling

is applicable to the multiprocessor domain. Extending the optimal fluid scheduling model

from the regular (non-MC) domain, we presented the MC-Fluid scheduling framework,

which has the same speedup optimality as uniprocessor EDF-VD. Second, we considered

how to relax the unrealistic assumption of MC-Fluid (i.e., the use of a fractional processor).

Here, we presented the MC-DP-Fair scheduling algorithm and also showed that MC-DP-

Fair is also speedup optimal. Third, we considered the drawback of global multiprocessor

scheduling approaches (e.g., preemption/migration and global run-queue overheads) and

the limitation of conventional MC scheduling algorithms (i.e., all LO-tasks are dropped

when exceeding a certain threshold limit). Overcoming these limitations, we presented the

MC-ADAPT scheduling framework to drop as few LO-tasks as possible with partitioned

scheduling approaches. Addressing the limitation of the conventional speedup factor for

the MC scheduling problem which evaluates only the worst-case schedulability, we applied

the speedup factor for the task dropping problem. We derived that the speedup factor

of MC-ADAPT for the task dropping problem is 1.618. Based on the uniprocessor U-MC-

ADAPT, we proposed a partitioned multiprocessor scheduling framework for MC-ADAPT

with a runtime migration technique which reduces the dropping of LO-tasks via task mi-

gration.

As future work, we plan to extend our frameworks into general multi-criticality systems.

We also consider to extend our framework into component-based systems for large-scale

open MC systems. More specifically, we plan to extend the MC-Fluid framework with more

than two execution rates per task, which further increases resource efficiency. In order to

deploy MC-Discrete on hardware platforms which only supports discrete-time schedule, we

plan to extend MC-Discrete based on the Boundary Fair scheduling algorithm [50], which is

a non-MC solution for the same problem. For a better speedup factor for the task dropping

103

problem, we plan to extend MC-ADAPT by developing a new speedup derivation technique

for MC-ADAPT or proposing a new scheduling algorithm with adaptive task dropping.

104

Bibliography

[1] James H. Anderson, Sanjoy K. Baruah, and Bjorn B. Brandenburg. Multicore operating-system support
for mixed criticality. In Workshop on Mixed Criticality, 2009.

[2] N. C. Audsley. On priority asignment in fixed priority scheduling. Information Processsing Letters,
79(1):39–44, May 2001.

[3] AUTOSAR. AUTomotive Open System ARchitecture. www.autosar.org.

[4] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. van der Ster, and L. Stougie.
The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task systems. In
Real-Time Systems (ECRTS), 2012 24th Euromicro Conference on, pages 145–154, July 2012.

[5] S. Baruah, V. Bonifaci, G. D’Angelo, Haohan Li, A. Marchetti-Spaccamela, N. Megow, and L. Stougie.
Scheduling real-time mixed-criticality jobs. Computers, IEEE Transactions on, 61(8):1140–1152, Aug
2012.

[6] S. Baruah, A. Eswaran, and Z. Guo. MC-Fluid: Simplified and Optimally Quantified. In Real-Time
Systems Symposium, 2015 IEEE, pages 327–337, Dec 2015.

[7] S. Baruah, Haohan Li, and L. Stougie. Towards the design of certifiable mixed-criticality systems.
In Real-Time and Embedded Technology and Applications Symposium (RTAS), 2010 16th IEEE, pages
13–22, April 2010.

[8] S. Baruah and S. Vestal. Schedulability analysis of sporadic tasks with multiple criticality specifications.
In Real-Time Systems (ECRTS), 2008 21st Euromicro Conference on, pages 147–155, July 2008.

[9] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress: A notion of
fairness in resource allocation. In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory
of Computing, STOC ’93, pages 345–354, New York, NY, USA, 1993. ACM.

[10] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D Angelo, Alberto Marchetti-Spaccamela, Suzanne
van der Ster, and Leen Stougie. Mixed-criticality scheduling of sporadic task systems. In Algorithms -
European Symposium on Algorithms (ESA) 2011, volume 6942 of Lecture Notes in Computer Science,
pages 555–566. Springer Berlin Heidelberg, 2011.

[11] Sanjoy Baruah, Bipasa Chattopadhyay, Haohan Li, and Insik Shin. Mixed-criticality scheduling on
multiprocessors. Real-Time Systems, 50(1):142–177, 2014.

[12] Sanjoy K. Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Alberto Marchetti-Spaccamela, Suzanne
Van Der Ster, and Leen Stougie. Mixed-criticality scheduling of sporadic task systems. In Proceedings
of the 19th European Conference on Algorithms, ESA’11, pages 555–566, Berlin, Heidelberg, 2011.
Springer-Verlag.

[13] S.K. Baruah, A. Burns, and R.I. Davis. Response-time analysis for mixed criticality systems. In
Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd, pages 34–43, Nov 2011.

[14] S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptively scheduling hard-real-time sporadic tasks on
one processor. In Real-Time Systems Symposium, 1990. Proceedings., 11th, pages 182–190, Dec 1990.

[15] Andrea Bastoni, Bjorn B. Brandenburg, and James H. Anderson. Cache-related preemption and mi-
gration delays: Empirical approximation and impact on schedulability. In Proceedings of the Sixth
International Workshop on Operating Systems Platforms for Embedded Real-Time Applications (OS-
PERT 2010), pages 33–44, July 2010.

[16] Iain Bate, Alan Burns, and Robert I. Davis. A Bailout Protocol for Mixed Criticality Systems. In
Proceedings of the 2015 27th Euromicro Conference on Real-Time Systems, ECRTS ’15, pages 259–268,
Washington, DC, USA, 2015. IEEE Computer Society.

[17] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[18] Alan Burns and Sanjoy Baruah. Towards a more practical model for mixed criticality systems. In
Proceedings of the First Workshop of Mixed Criticality Systems (WMC 2013), pages 1–6, Dec 2013.

[19] Alan Burns and Robert Davis. Mixed criticality systems – a review. http://www-users.cs.york.ac.

uk/burns/review.pdf, Jan 2017. the ninth edition.

105

[20] Hyeonjoong Cho, B. Ravindran, and E.D. Jensen. An optimal real-time scheduling algorithm for
multiprocessors. In Real-Time Systems Symposium, 2006. RTSS ’06. 27th IEEE International, pages
101–110, Dec 2006.

[21] Robert I. Davis and Alan Burns. Improved priority assignment for global fixed priority pre-emptive
scheduling in multiprocessor real-time systems. Real-Time Systems, 47(1):1–40, 2011.

[22] Sudarshan K. Dhall and C. L. Liu. On a real-time scheduling problem. Operations Research, 26(1):127–
140, 1978.

[23] Francois Dorin, Pascal Richard, Michael Richard, and Joel Goossens. Schedulability and sensitivity
analysis of multiple criticality tasks with fixed-priorities. Real-Time Systems, 46(3):305–331, 2010.

[24] A. Easwaran. Demand-based scheduling of mixed-criticality sporadic tasks on one processor. In Real-
Time Systems Symposium (RTSS), 2013 IEEE 34th, pages 78–87, Dec 2013.

[25] P. Ekberg and Wang Yi. Bounding and shaping the demand of mixed-criticality sporadic tasks. In
Real-Time Systems (ECRTS), 2012 24th Euromicro Conference on, pages 135–144, July 2012.

[26] Pontus Ekberg and Wang Yi. Bounding and shaping the demand of generalized mixed-criticality
sporadic task systems. Real-Time Systems, 50(1):48–86, 2014.

[27] Oliver Gettings, Sophie Quinton, and Robert I. Davis. Mixed Criticality Systems with Weakly-hard
Constraints. In Proceedings of the 23rd International Conference on Real Time and Networks Systems,
RTNS ’15, pages 237–246, New York, NY, USA, 2015. ACM.

[28] C. Gu, N. Guan, Q. Deng, and W. Yi. Partitioned mixed-criticality scheduling on multiprocessor
platforms. In 2014 Design, Automation Test in Europe Conference Exhibition (DATE), pages 1–6,
March 2014.

[29] X. Gu and A. Easwaran. Dynamic budget management with service guarantees for mixed-criticality
systems. In 2016 IEEE Real-Time Systems Symposium (RTSS), pages 47–56, Nov 2016.

[30] Xiaozhe Gu, A. Easwaran, Kieu-My Phan, and Insik Shin. Resource efficient isolation mechanisms
in mixed-criticality scheduling. In Real-Time Systems (ECRTS), 2015 27th Euromicro Conference on,
pages 13–24, July 2015.

[31] Nan Guan, P. Ekberg, M. Stigge, and Wang Yi. Effective and efficient scheduling of certifiable mixed-
criticality sporadic task systems. In Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd, pages
13–23, Nov 2011.

[32] Philip Holman and James H. Anderson. Adapting pfair scheduling for symmetric multiprocessors. J.
Embedded Comput., 1(4):543–564, December 2005.

[33] P. Huang, P. Kumar, N. Stoimenov, and L. Thiele. Interference Constraint Graph - A new specifica-
tion for mixed-criticality systems. In 2013 IEEE 18th Conference on Emerging Technologies Factory
Automation (ETFA), pages 1–8, Sept 2013.

[34] Mathieu Jan, Lilia Zaourar, and Maurice Pitel. Maximizing the execution rate of low-criticality tasks
in mixed criticality systems. In Proceedings of the First Workshop of Mixed Criticality Systems (WMC
2013), Dec 2013.

[35] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case performance
bounds for simple one-dimensional packing algorithms. SIAM Journal on Computing, 3(4):299–325,
1974.

[36] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. Journal of ACM,
47(4):617–643, July 2000.

[37] J. Lee, K. M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee. MC-Fluid: Fluid Model-Based
Mixed-Criticality Scheduling on Multiprocessors. In Real-Time Systems Symposium (RTSS), 2014
IEEE, pages 41–52, Dec 2014.

[38] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt. Dp-fair: A simple model for understanding
optimal multiprocessor scheduling. In Real-Time Systems (ECRTS), 2010 22nd Euromicro Conference
on, pages 3–13, July 2010.

[39] Haohan Li and S. Baruah. An algorithm for scheduling certifiable mixed-criticality sporadic task
systems. In Real-Time Systems Symposium (RTSS), 2010 IEEE 31st, pages 183–192, Nov 2010.

106

[40] Haohan Li and S. Baruah. Global mixed-criticality scheduling on multiprocessors. In Real-Time Systems
(ECRTS), 2012 24th Euromicro Conference on, pages 166–175, July 2012.

[41] D. Liu, J. Spasic, N. Guan, G. Chen, S. Liu, T. Stefanov, and W. Yi. EDF-VD Scheduling of Mixed-
Criticality Systems with Degraded Quality Guarantees. In 2016 IEEE Real-Time Systems Symposium
(RTSS), pages 35–46, Nov 2016.

[42] Robert McNaughton. Scheduling with deadlines and loss functions. Management Science, 6(1):1–12,
1959.

[43] R.M. Pathan. Schedulability analysis of mixed-criticality systems on multiprocessors. In Real-Time
Systems (ECRTS), 2012 24th Euromicro Conference on, pages 309–320, July 2012.

[44] P.J. Prisaznuk. Integrated modular avionics. In Aerospace and Electronics Conference, 1992. NAECON
1992., Proceedings of the IEEE 1992 National, pages 39–45 vol.1, May 1992.

[45] Saravanan Ramanathan and Arvind Easwaran. MC-Fluid: rate assignment strategies. In International
Workshop of Mixed-Criticality Systems (WMC) in conjuction of RTSS, December 2015.

[46] J. Ren and Linh Thi Xuan Phan. Mixed-criticality scheduling on multiprocessors using task grouping.
In Real-Time Systems (ECRTS), 2015 27th Euromicro Conference on, pages 25–34, July 2015.

[47] F. Santy, L. George, P. Thierry, and J. Goossens. Relaxing Mixed-Criticality Scheduling Strictness
for Task Sets Scheduled with FP. In 2012 24th Euromicro Conference on Real-Time Systems, pages
155–165, July 2012.

[48] H. Su and D. Zhu. An Elastic Mixed-Criticality task model and its scheduling algorithm. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2013, pages 147–152, March 2013.

[49] S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution time
assurance. In Real-Time Systems Symposium, 2007. RTSS 2007. 28th IEEE International, pages 239–
243, Dec 2007.

[50] Dakai Zhu, D. Mosse, and R. Melhem. Multiple-resource periodic scheduling problem: how much
fairness is necessary? In Real-Time Systems Symposium, 2003. RTSS 2003. 24th IEEE, pages 142–151,
Dec 2003.

107

	University of Pennsylvania
	ScholarlyCommons
	2017

	Resource-Efficient Scheduling Of Multiprocessor Mixed-Criticality Real-Time Systems
	Jaewoo Lee
	Recommended Citation

	Resource-Efficient Scheduling Of Multiprocessor Mixed-Criticality Real-Time Systems
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Keywords
	Subject Categories

	tmp.1519418526.pdf.1e_yb

